1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 /*
  26  * Copyright (c) 2012 by Delphix. All rights reserved.
  27  */
  28 
  29 #include <sys/zfs_context.h>
  30 #include <sys/spa.h>
  31 #include <sys/dmu.h>
  32 #include <sys/zio.h>
  33 #include <sys/space_map.h>
  34 
  35 static kmem_cache_t *space_seg_cache;
  36 
  37 void
  38 space_map_init(void)
  39 {
  40         ASSERT(space_seg_cache == NULL);
  41         space_seg_cache = kmem_cache_create("space_seg_cache",
  42             sizeof (space_seg_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
  43 }
  44 
  45 void
  46 space_map_fini(void)
  47 {
  48         kmem_cache_destroy(space_seg_cache);
  49         space_seg_cache = NULL;
  50 }
  51 
  52 /*
  53  * Space map routines.
  54  * NOTE: caller is responsible for all locking.
  55  */
  56 static int
  57 space_map_seg_compare(const void *x1, const void *x2)
  58 {
  59         const space_seg_t *s1 = x1;
  60         const space_seg_t *s2 = x2;
  61 
  62         if (s1->ss_start < s2->ss_start) {
  63                 if (s1->ss_end > s2->ss_start)
  64                         return (0);
  65                 return (-1);
  66         }
  67         if (s1->ss_start > s2->ss_start) {
  68                 if (s1->ss_start < s2->ss_end)
  69                         return (0);
  70                 return (1);
  71         }
  72         return (0);
  73 }
  74 
  75 void
  76 space_map_create(space_map_t *sm, uint64_t start, uint64_t size, uint8_t shift,
  77         kmutex_t *lp)
  78 {
  79         bzero(sm, sizeof (*sm));
  80 
  81         cv_init(&sm->sm_load_cv, NULL, CV_DEFAULT, NULL);
  82 
  83         avl_create(&sm->sm_root, space_map_seg_compare,
  84             sizeof (space_seg_t), offsetof(struct space_seg, ss_node));
  85 
  86         sm->sm_start = start;
  87         sm->sm_size = size;
  88         sm->sm_shift = shift;
  89         sm->sm_lock = lp;
  90 }
  91 
  92 void
  93 space_map_destroy(space_map_t *sm)
  94 {
  95         ASSERT(!sm->sm_loaded && !sm->sm_loading);
  96         VERIFY0(sm->sm_space);
  97         avl_destroy(&sm->sm_root);
  98         cv_destroy(&sm->sm_load_cv);
  99 }
 100 
 101 void
 102 space_map_add(space_map_t *sm, uint64_t start, uint64_t size)
 103 {
 104         avl_index_t where;
 105         space_seg_t *ss_before, *ss_after, *ss;
 106         uint64_t end = start + size;
 107         int merge_before, merge_after;
 108 
 109         ASSERT(MUTEX_HELD(sm->sm_lock));
 110         VERIFY(!sm->sm_condensing);
 111         VERIFY(size != 0);
 112         VERIFY3U(start, >=, sm->sm_start);
 113         VERIFY3U(end, <=, sm->sm_start + sm->sm_size);
 114         VERIFY(sm->sm_space + size <= sm->sm_size);
 115         VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
 116         VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
 117 
 118         ss = space_map_find(sm, start, size, &where);
 119         if (ss != NULL) {
 120                 zfs_panic_recover("zfs: allocating allocated segment"
 121                     "(offset=%llu size=%llu)\n",
 122                     (longlong_t)start, (longlong_t)size);
 123                 return;
 124         }
 125 
 126         /* Make sure we don't overlap with either of our neighbors */
 127         VERIFY(ss == NULL);
 128 
 129         ss_before = avl_nearest(&sm->sm_root, where, AVL_BEFORE);
 130         ss_after = avl_nearest(&sm->sm_root, where, AVL_AFTER);
 131 
 132         merge_before = (ss_before != NULL && ss_before->ss_end == start);
 133         merge_after = (ss_after != NULL && ss_after->ss_start == end);
 134 
 135         if (merge_before && merge_after) {
 136                 avl_remove(&sm->sm_root, ss_before);
 137                 if (sm->sm_pp_root) {
 138                         avl_remove(sm->sm_pp_root, ss_before);
 139                         avl_remove(sm->sm_pp_root, ss_after);
 140                 }
 141                 ss_after->ss_start = ss_before->ss_start;
 142                 kmem_cache_free(space_seg_cache, ss_before);
 143                 ss = ss_after;
 144         } else if (merge_before) {
 145                 ss_before->ss_end = end;
 146                 if (sm->sm_pp_root)
 147                         avl_remove(sm->sm_pp_root, ss_before);
 148                 ss = ss_before;
 149         } else if (merge_after) {
 150                 ss_after->ss_start = start;
 151                 if (sm->sm_pp_root)
 152                         avl_remove(sm->sm_pp_root, ss_after);
 153                 ss = ss_after;
 154         } else {
 155                 ss = kmem_cache_alloc(space_seg_cache, KM_SLEEP);
 156                 ss->ss_start = start;
 157                 ss->ss_end = end;
 158                 avl_insert(&sm->sm_root, ss, where);
 159         }
 160 
 161         if (sm->sm_pp_root)
 162                 avl_add(sm->sm_pp_root, ss);
 163 
 164         sm->sm_space += size;
 165 }
 166 
 167 void
 168 space_map_remove(space_map_t *sm, uint64_t start, uint64_t size)
 169 {
 170         avl_index_t where;
 171         space_seg_t *ss, *newseg;
 172         uint64_t end = start + size;
 173         int left_over, right_over;
 174 
 175         VERIFY(!sm->sm_condensing);
 176         ss = space_map_find(sm, start, size, &where);
 177 
 178         /* Make sure we completely overlap with someone */
 179         if (ss == NULL) {
 180                 zfs_panic_recover("zfs: freeing free segment "
 181                     "(offset=%llu size=%llu)",
 182                     (longlong_t)start, (longlong_t)size);
 183                 return;
 184         }
 185         VERIFY3U(ss->ss_start, <=, start);
 186         VERIFY3U(ss->ss_end, >=, end);
 187         VERIFY(sm->sm_space - size <= sm->sm_size);
 188 
 189         left_over = (ss->ss_start != start);
 190         right_over = (ss->ss_end != end);
 191 
 192         if (sm->sm_pp_root)
 193                 avl_remove(sm->sm_pp_root, ss);
 194 
 195         if (left_over && right_over) {
 196                 newseg = kmem_cache_alloc(space_seg_cache, KM_SLEEP);
 197                 newseg->ss_start = end;
 198                 newseg->ss_end = ss->ss_end;
 199                 ss->ss_end = start;
 200                 avl_insert_here(&sm->sm_root, newseg, ss, AVL_AFTER);
 201                 if (sm->sm_pp_root)
 202                         avl_add(sm->sm_pp_root, newseg);
 203         } else if (left_over) {
 204                 ss->ss_end = start;
 205         } else if (right_over) {
 206                 ss->ss_start = end;
 207         } else {
 208                 avl_remove(&sm->sm_root, ss);
 209                 kmem_cache_free(space_seg_cache, ss);
 210                 ss = NULL;
 211         }
 212 
 213         if (sm->sm_pp_root && ss != NULL)
 214                 avl_add(sm->sm_pp_root, ss);
 215 
 216         sm->sm_space -= size;
 217 }
 218 
 219 space_seg_t *
 220 space_map_find(space_map_t *sm, uint64_t start, uint64_t size,
 221     avl_index_t *wherep)
 222 {
 223         space_seg_t ssearch, *ss;
 224 
 225         ASSERT(MUTEX_HELD(sm->sm_lock));
 226         VERIFY(size != 0);
 227         VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
 228         VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
 229 
 230         ssearch.ss_start = start;
 231         ssearch.ss_end = start + size;
 232         ss = avl_find(&sm->sm_root, &ssearch, wherep);
 233 
 234         if (ss != NULL && ss->ss_start <= start && ss->ss_end >= start + size)
 235                 return (ss);
 236         return (NULL);
 237 }
 238 
 239 boolean_t
 240 space_map_contains(space_map_t *sm, uint64_t start, uint64_t size)
 241 {
 242         avl_index_t where;
 243 
 244         return (space_map_find(sm, start, size, &where) != 0);
 245 }
 246 
 247 void
 248 space_map_swap(space_map_t **msrc, space_map_t **mdst)
 249 {
 250         space_map_t *sm;
 251 
 252         ASSERT(MUTEX_HELD((*msrc)->sm_lock));
 253         ASSERT0((*mdst)->sm_space);
 254         ASSERT0(avl_numnodes(&(*mdst)->sm_root));
 255 
 256         sm = *msrc;
 257         *msrc = *mdst;
 258         *mdst = sm;
 259 }
 260 
 261 void
 262 space_map_vacate(space_map_t *sm, space_map_func_t *func, space_map_t *mdest)
 263 {
 264         space_seg_t *ss;
 265         void *cookie = NULL;
 266 
 267         ASSERT(MUTEX_HELD(sm->sm_lock));
 268 
 269         while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) {
 270                 if (func != NULL)
 271                         func(mdest, ss->ss_start, ss->ss_end - ss->ss_start);
 272                 kmem_cache_free(space_seg_cache, ss);
 273         }
 274         sm->sm_space = 0;
 275 }
 276 
 277 void
 278 space_map_walk(space_map_t *sm, space_map_func_t *func, space_map_t *mdest)
 279 {
 280         space_seg_t *ss;
 281 
 282         ASSERT(MUTEX_HELD(sm->sm_lock));
 283 
 284         for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
 285                 func(mdest, ss->ss_start, ss->ss_end - ss->ss_start);
 286 }
 287 
 288 /*
 289  * Wait for any in-progress space_map_load() to complete.
 290  */
 291 void
 292 space_map_load_wait(space_map_t *sm)
 293 {
 294         ASSERT(MUTEX_HELD(sm->sm_lock));
 295 
 296         while (sm->sm_loading) {
 297                 ASSERT(!sm->sm_loaded);
 298                 cv_wait(&sm->sm_load_cv, sm->sm_lock);
 299         }
 300 }
 301 
 302 /*
 303  * Note: space_map_load() will drop sm_lock across dmu_read() calls.
 304  * The caller must be OK with this.
 305  */
 306 int
 307 space_map_load(space_map_t *sm, space_map_ops_t *ops, uint8_t maptype,
 308         space_map_obj_t *smo, objset_t *os)
 309 {
 310         uint64_t *entry, *entry_map, *entry_map_end;
 311         uint64_t bufsize, size, offset, end, space;
 312         uint64_t mapstart = sm->sm_start;
 313         int error = 0;
 314 
 315         ASSERT(MUTEX_HELD(sm->sm_lock));
 316         ASSERT(!sm->sm_loaded);
 317         ASSERT(!sm->sm_loading);
 318 
 319         sm->sm_loading = B_TRUE;
 320         end = smo->smo_objsize;
 321         space = smo->smo_alloc;
 322 
 323         ASSERT(sm->sm_ops == NULL);
 324         VERIFY0(sm->sm_space);
 325 
 326         if (maptype == SM_FREE) {
 327                 space_map_add(sm, sm->sm_start, sm->sm_size);
 328                 space = sm->sm_size - space;
 329         }
 330 
 331         bufsize = 1ULL << SPACE_MAP_BLOCKSHIFT;
 332         entry_map = zio_buf_alloc(bufsize);
 333 
 334         mutex_exit(sm->sm_lock);
 335         if (end > bufsize)
 336                 dmu_prefetch(os, smo->smo_object, bufsize, end - bufsize);
 337         mutex_enter(sm->sm_lock);
 338 
 339         for (offset = 0; offset < end; offset += bufsize) {
 340                 size = MIN(end - offset, bufsize);
 341                 VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
 342                 VERIFY(size != 0);
 343 
 344                 dprintf("object=%llu  offset=%llx  size=%llx\n",
 345                     smo->smo_object, offset, size);
 346 
 347                 mutex_exit(sm->sm_lock);
 348                 error = dmu_read(os, smo->smo_object, offset, size, entry_map,
 349                     DMU_READ_PREFETCH);
 350                 mutex_enter(sm->sm_lock);
 351                 if (error != 0)
 352                         break;
 353 
 354                 entry_map_end = entry_map + (size / sizeof (uint64_t));
 355                 for (entry = entry_map; entry < entry_map_end; entry++) {
 356                         uint64_t e = *entry;
 357 
 358                         if (SM_DEBUG_DECODE(e))         /* Skip debug entries */
 359                                 continue;
 360 
 361                         (SM_TYPE_DECODE(e) == maptype ?
 362                             space_map_add : space_map_remove)(sm,
 363                             (SM_OFFSET_DECODE(e) << sm->sm_shift) + mapstart,
 364                             SM_RUN_DECODE(e) << sm->sm_shift);
 365                 }
 366         }
 367 
 368         if (error == 0) {
 369                 VERIFY3U(sm->sm_space, ==, space);
 370 
 371                 sm->sm_loaded = B_TRUE;
 372                 sm->sm_ops = ops;
 373                 if (ops != NULL)
 374                         ops->smop_load(sm);
 375         } else {
 376                 space_map_vacate(sm, NULL, NULL);
 377         }
 378 
 379         zio_buf_free(entry_map, bufsize);
 380 
 381         sm->sm_loading = B_FALSE;
 382 
 383         cv_broadcast(&sm->sm_load_cv);
 384 
 385         return (error);
 386 }
 387 
 388 void
 389 space_map_unload(space_map_t *sm)
 390 {
 391         ASSERT(MUTEX_HELD(sm->sm_lock));
 392 
 393         if (sm->sm_loaded && sm->sm_ops != NULL)
 394                 sm->sm_ops->smop_unload(sm);
 395 
 396         sm->sm_loaded = B_FALSE;
 397         sm->sm_ops = NULL;
 398 
 399         space_map_vacate(sm, NULL, NULL);
 400 }
 401 
 402 uint64_t
 403 space_map_maxsize(space_map_t *sm)
 404 {
 405         ASSERT(sm->sm_ops != NULL);
 406         return (sm->sm_ops->smop_max(sm));
 407 }
 408 
 409 uint64_t
 410 space_map_alloc(space_map_t *sm, uint64_t size)
 411 {
 412         uint64_t start;
 413 
 414         start = sm->sm_ops->smop_alloc(sm, size);
 415         if (start != -1ULL)
 416                 space_map_remove(sm, start, size);
 417         return (start);
 418 }
 419 
 420 void
 421 space_map_claim(space_map_t *sm, uint64_t start, uint64_t size)
 422 {
 423         sm->sm_ops->smop_claim(sm, start, size);
 424         space_map_remove(sm, start, size);
 425 }
 426 
 427 void
 428 space_map_free(space_map_t *sm, uint64_t start, uint64_t size)
 429 {
 430         space_map_add(sm, start, size);
 431         sm->sm_ops->smop_free(sm, start, size);
 432 }
 433 
 434 /*
 435  * Note: space_map_sync() will drop sm_lock across dmu_write() calls.
 436  */
 437 void
 438 space_map_sync(space_map_t *sm, uint8_t maptype,
 439         space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx)
 440 {
 441         spa_t *spa = dmu_objset_spa(os);
 442         avl_tree_t *t = &sm->sm_root;
 443         space_seg_t *ss;
 444         uint64_t bufsize, start, size, run_len, total, sm_space, nodes;
 445         uint64_t *entry, *entry_map, *entry_map_end;
 446 
 447         ASSERT(MUTEX_HELD(sm->sm_lock));
 448 
 449         if (sm->sm_space == 0)
 450                 return;
 451 
 452         dprintf("object %4llu, txg %llu, pass %d, %c, count %lu, space %llx\n",
 453             smo->smo_object, dmu_tx_get_txg(tx), spa_sync_pass(spa),
 454             maptype == SM_ALLOC ? 'A' : 'F', avl_numnodes(&sm->sm_root),
 455             sm->sm_space);
 456 
 457         if (maptype == SM_ALLOC)
 458                 smo->smo_alloc += sm->sm_space;
 459         else
 460                 smo->smo_alloc -= sm->sm_space;
 461 
 462         bufsize = (8 + avl_numnodes(&sm->sm_root)) * sizeof (uint64_t);
 463         bufsize = MIN(bufsize, 1ULL << SPACE_MAP_BLOCKSHIFT);
 464         entry_map = zio_buf_alloc(bufsize);
 465         entry_map_end = entry_map + (bufsize / sizeof (uint64_t));
 466         entry = entry_map;
 467 
 468         *entry++ = SM_DEBUG_ENCODE(1) |
 469             SM_DEBUG_ACTION_ENCODE(maptype) |
 470             SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
 471             SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
 472 
 473         total = 0;
 474         nodes = avl_numnodes(&sm->sm_root);
 475         sm_space = sm->sm_space;
 476         for (ss = avl_first(t); ss != NULL; ss = AVL_NEXT(t, ss)) {
 477                 size = ss->ss_end - ss->ss_start;
 478                 start = (ss->ss_start - sm->sm_start) >> sm->sm_shift;
 479 
 480                 total += size;
 481                 size >>= sm->sm_shift;
 482 
 483                 while (size) {
 484                         run_len = MIN(size, SM_RUN_MAX);
 485 
 486                         if (entry == entry_map_end) {
 487                                 mutex_exit(sm->sm_lock);
 488                                 dmu_write(os, smo->smo_object, smo->smo_objsize,
 489                                     bufsize, entry_map, tx);
 490                                 mutex_enter(sm->sm_lock);
 491                                 smo->smo_objsize += bufsize;
 492                                 entry = entry_map;
 493                         }
 494 
 495                         *entry++ = SM_OFFSET_ENCODE(start) |
 496                             SM_TYPE_ENCODE(maptype) |
 497                             SM_RUN_ENCODE(run_len);
 498 
 499                         start += run_len;
 500                         size -= run_len;
 501                 }
 502         }
 503 
 504         if (entry != entry_map) {
 505                 size = (entry - entry_map) * sizeof (uint64_t);
 506                 mutex_exit(sm->sm_lock);
 507                 dmu_write(os, smo->smo_object, smo->smo_objsize,
 508                     size, entry_map, tx);
 509                 mutex_enter(sm->sm_lock);
 510                 smo->smo_objsize += size;
 511         }
 512 
 513         /*
 514          * Ensure that the space_map's accounting wasn't changed
 515          * while we were in the middle of writing it out.
 516          */
 517         VERIFY3U(nodes, ==, avl_numnodes(&sm->sm_root));
 518         VERIFY3U(sm->sm_space, ==, sm_space);
 519         VERIFY3U(sm->sm_space, ==, total);
 520 
 521         zio_buf_free(entry_map, bufsize);
 522 }
 523 
 524 void
 525 space_map_truncate(space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx)
 526 {
 527         VERIFY(dmu_free_range(os, smo->smo_object, 0, -1ULL, tx) == 0);
 528 
 529         smo->smo_objsize = 0;
 530         smo->smo_alloc = 0;
 531 }
 532 
 533 /*
 534  * Space map reference trees.
 535  *
 536  * A space map is a collection of integers.  Every integer is either
 537  * in the map, or it's not.  A space map reference tree generalizes
 538  * the idea: it allows its members to have arbitrary reference counts,
 539  * as opposed to the implicit reference count of 0 or 1 in a space map.
 540  * This representation comes in handy when computing the union or
 541  * intersection of multiple space maps.  For example, the union of
 542  * N space maps is the subset of the reference tree with refcnt >= 1.
 543  * The intersection of N space maps is the subset with refcnt >= N.
 544  *
 545  * [It's very much like a Fourier transform.  Unions and intersections
 546  * are hard to perform in the 'space map domain', so we convert the maps
 547  * into the 'reference count domain', where it's trivial, then invert.]
 548  *
 549  * vdev_dtl_reassess() uses computations of this form to determine
 550  * DTL_MISSING and DTL_OUTAGE for interior vdevs -- e.g. a RAID-Z vdev
 551  * has an outage wherever refcnt >= vdev_nparity + 1, and a mirror vdev
 552  * has an outage wherever refcnt >= vdev_children.
 553  */
 554 static int
 555 space_map_ref_compare(const void *x1, const void *x2)
 556 {
 557         const space_ref_t *sr1 = x1;
 558         const space_ref_t *sr2 = x2;
 559 
 560         if (sr1->sr_offset < sr2->sr_offset)
 561                 return (-1);
 562         if (sr1->sr_offset > sr2->sr_offset)
 563                 return (1);
 564 
 565         if (sr1 < sr2)
 566                 return (-1);
 567         if (sr1 > sr2)
 568                 return (1);
 569 
 570         return (0);
 571 }
 572 
 573 void
 574 space_map_ref_create(avl_tree_t *t)
 575 {
 576         avl_create(t, space_map_ref_compare,
 577             sizeof (space_ref_t), offsetof(space_ref_t, sr_node));
 578 }
 579 
 580 void
 581 space_map_ref_destroy(avl_tree_t *t)
 582 {
 583         space_ref_t *sr;
 584         void *cookie = NULL;
 585 
 586         while ((sr = avl_destroy_nodes(t, &cookie)) != NULL)
 587                 kmem_free(sr, sizeof (*sr));
 588 
 589         avl_destroy(t);
 590 }
 591 
 592 static void
 593 space_map_ref_add_node(avl_tree_t *t, uint64_t offset, int64_t refcnt)
 594 {
 595         space_ref_t *sr;
 596 
 597         sr = kmem_alloc(sizeof (*sr), KM_SLEEP);
 598         sr->sr_offset = offset;
 599         sr->sr_refcnt = refcnt;
 600 
 601         avl_add(t, sr);
 602 }
 603 
 604 void
 605 space_map_ref_add_seg(avl_tree_t *t, uint64_t start, uint64_t end,
 606         int64_t refcnt)
 607 {
 608         space_map_ref_add_node(t, start, refcnt);
 609         space_map_ref_add_node(t, end, -refcnt);
 610 }
 611 
 612 /*
 613  * Convert (or add) a space map into a reference tree.
 614  */
 615 void
 616 space_map_ref_add_map(avl_tree_t *t, space_map_t *sm, int64_t refcnt)
 617 {
 618         space_seg_t *ss;
 619 
 620         ASSERT(MUTEX_HELD(sm->sm_lock));
 621 
 622         for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
 623                 space_map_ref_add_seg(t, ss->ss_start, ss->ss_end, refcnt);
 624 }
 625 
 626 /*
 627  * Convert a reference tree into a space map.  The space map will contain
 628  * all members of the reference tree for which refcnt >= minref.
 629  */
 630 void
 631 space_map_ref_generate_map(avl_tree_t *t, space_map_t *sm, int64_t minref)
 632 {
 633         uint64_t start = -1ULL;
 634         int64_t refcnt = 0;
 635         space_ref_t *sr;
 636 
 637         ASSERT(MUTEX_HELD(sm->sm_lock));
 638 
 639         space_map_vacate(sm, NULL, NULL);
 640 
 641         for (sr = avl_first(t); sr != NULL; sr = AVL_NEXT(t, sr)) {
 642                 refcnt += sr->sr_refcnt;
 643                 if (refcnt >= minref) {
 644                         if (start == -1ULL) {
 645                                 start = sr->sr_offset;
 646                         }
 647                 } else {
 648                         if (start != -1ULL) {
 649                                 uint64_t end = sr->sr_offset;
 650                                 ASSERT(start <= end);
 651                                 if (end > start)
 652                                         space_map_add(sm, start, end - start);
 653                                 start = -1ULL;
 654                         }
 655                 }
 656         }
 657         ASSERT(refcnt == 0);
 658         ASSERT(start == -1ULL);
 659 }