1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa_impl.h> 29 #include <sys/spa_boot.h> 30 #include <sys/zio.h> 31 #include <sys/zio_checksum.h> 32 #include <sys/zio_compress.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/zap.h> 36 #include <sys/zil.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/uberblock_impl.h> 40 #include <sys/txg.h> 41 #include <sys/avl.h> 42 #include <sys/unique.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_dir.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/dsl_scan.h> 47 #include <sys/fs/zfs.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/arc.h> 50 #include <sys/ddt.h> 51 #include "zfs_prop.h" 52 #include "zfeature_common.h" 53 54 /* 55 * SPA locking 56 * 57 * There are four basic locks for managing spa_t structures: 58 * 59 * spa_namespace_lock (global mutex) 60 * 61 * This lock must be acquired to do any of the following: 62 * 63 * - Lookup a spa_t by name 64 * - Add or remove a spa_t from the namespace 65 * - Increase spa_refcount from non-zero 66 * - Check if spa_refcount is zero 67 * - Rename a spa_t 68 * - add/remove/attach/detach devices 69 * - Held for the duration of create/destroy/import/export 70 * 71 * It does not need to handle recursion. A create or destroy may 72 * reference objects (files or zvols) in other pools, but by 73 * definition they must have an existing reference, and will never need 74 * to lookup a spa_t by name. 75 * 76 * spa_refcount (per-spa refcount_t protected by mutex) 77 * 78 * This reference count keep track of any active users of the spa_t. The 79 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 80 * the refcount is never really 'zero' - opening a pool implicitly keeps 81 * some references in the DMU. Internally we check against spa_minref, but 82 * present the image of a zero/non-zero value to consumers. 83 * 84 * spa_config_lock[] (per-spa array of rwlocks) 85 * 86 * This protects the spa_t from config changes, and must be held in 87 * the following circumstances: 88 * 89 * - RW_READER to perform I/O to the spa 90 * - RW_WRITER to change the vdev config 91 * 92 * The locking order is fairly straightforward: 93 * 94 * spa_namespace_lock -> spa_refcount 95 * 96 * The namespace lock must be acquired to increase the refcount from 0 97 * or to check if it is zero. 98 * 99 * spa_refcount -> spa_config_lock[] 100 * 101 * There must be at least one valid reference on the spa_t to acquire 102 * the config lock. 103 * 104 * spa_namespace_lock -> spa_config_lock[] 105 * 106 * The namespace lock must always be taken before the config lock. 107 * 108 * 109 * The spa_namespace_lock can be acquired directly and is globally visible. 110 * 111 * The namespace is manipulated using the following functions, all of which 112 * require the spa_namespace_lock to be held. 113 * 114 * spa_lookup() Lookup a spa_t by name. 115 * 116 * spa_add() Create a new spa_t in the namespace. 117 * 118 * spa_remove() Remove a spa_t from the namespace. This also 119 * frees up any memory associated with the spa_t. 120 * 121 * spa_next() Returns the next spa_t in the system, or the 122 * first if NULL is passed. 123 * 124 * spa_evict_all() Shutdown and remove all spa_t structures in 125 * the system. 126 * 127 * spa_guid_exists() Determine whether a pool/device guid exists. 128 * 129 * The spa_refcount is manipulated using the following functions: 130 * 131 * spa_open_ref() Adds a reference to the given spa_t. Must be 132 * called with spa_namespace_lock held if the 133 * refcount is currently zero. 134 * 135 * spa_close() Remove a reference from the spa_t. This will 136 * not free the spa_t or remove it from the 137 * namespace. No locking is required. 138 * 139 * spa_refcount_zero() Returns true if the refcount is currently 140 * zero. Must be called with spa_namespace_lock 141 * held. 142 * 143 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 144 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 145 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 146 * 147 * To read the configuration, it suffices to hold one of these locks as reader. 148 * To modify the configuration, you must hold all locks as writer. To modify 149 * vdev state without altering the vdev tree's topology (e.g. online/offline), 150 * you must hold SCL_STATE and SCL_ZIO as writer. 151 * 152 * We use these distinct config locks to avoid recursive lock entry. 153 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 154 * block allocations (SCL_ALLOC), which may require reading space maps 155 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 156 * 157 * The spa config locks cannot be normal rwlocks because we need the 158 * ability to hand off ownership. For example, SCL_ZIO is acquired 159 * by the issuing thread and later released by an interrupt thread. 160 * They do, however, obey the usual write-wanted semantics to prevent 161 * writer (i.e. system administrator) starvation. 162 * 163 * The lock acquisition rules are as follows: 164 * 165 * SCL_CONFIG 166 * Protects changes to the vdev tree topology, such as vdev 167 * add/remove/attach/detach. Protects the dirty config list 168 * (spa_config_dirty_list) and the set of spares and l2arc devices. 169 * 170 * SCL_STATE 171 * Protects changes to pool state and vdev state, such as vdev 172 * online/offline/fault/degrade/clear. Protects the dirty state list 173 * (spa_state_dirty_list) and global pool state (spa_state). 174 * 175 * SCL_ALLOC 176 * Protects changes to metaslab groups and classes. 177 * Held as reader by metaslab_alloc() and metaslab_claim(). 178 * 179 * SCL_ZIO 180 * Held by bp-level zios (those which have no io_vd upon entry) 181 * to prevent changes to the vdev tree. The bp-level zio implicitly 182 * protects all of its vdev child zios, which do not hold SCL_ZIO. 183 * 184 * SCL_FREE 185 * Protects changes to metaslab groups and classes. 186 * Held as reader by metaslab_free(). SCL_FREE is distinct from 187 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 188 * blocks in zio_done() while another i/o that holds either 189 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 190 * 191 * SCL_VDEV 192 * Held as reader to prevent changes to the vdev tree during trivial 193 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 194 * other locks, and lower than all of them, to ensure that it's safe 195 * to acquire regardless of caller context. 196 * 197 * In addition, the following rules apply: 198 * 199 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 200 * The lock ordering is SCL_CONFIG > spa_props_lock. 201 * 202 * (b) I/O operations on leaf vdevs. For any zio operation that takes 203 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 204 * or zio_write_phys() -- the caller must ensure that the config cannot 205 * cannot change in the interim, and that the vdev cannot be reopened. 206 * SCL_STATE as reader suffices for both. 207 * 208 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 209 * 210 * spa_vdev_enter() Acquire the namespace lock and the config lock 211 * for writing. 212 * 213 * spa_vdev_exit() Release the config lock, wait for all I/O 214 * to complete, sync the updated configs to the 215 * cache, and release the namespace lock. 216 * 217 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 218 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 219 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 220 * 221 * spa_rename() is also implemented within this file since it requires 222 * manipulation of the namespace. 223 */ 224 225 static avl_tree_t spa_namespace_avl; 226 kmutex_t spa_namespace_lock; 227 static kcondvar_t spa_namespace_cv; 228 static int spa_active_count; 229 int spa_max_replication_override = SPA_DVAS_PER_BP; 230 231 static kmutex_t spa_spare_lock; 232 static avl_tree_t spa_spare_avl; 233 static kmutex_t spa_l2cache_lock; 234 static avl_tree_t spa_l2cache_avl; 235 236 kmem_cache_t *spa_buffer_pool; 237 int spa_mode_global; 238 239 #ifdef ZFS_DEBUG 240 /* Everything except dprintf and spa is on by default in debug builds */ 241 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA); 242 #else 243 int zfs_flags = 0; 244 #endif 245 246 /* 247 * zfs_recover can be set to nonzero to attempt to recover from 248 * otherwise-fatal errors, typically caused by on-disk corruption. When 249 * set, calls to zfs_panic_recover() will turn into warning messages. 250 */ 251 int zfs_recover = 0; 252 253 /* 254 * Expiration time in milliseconds. This value has two meanings. First it is 255 * used to determine when the spa_deadman() logic should fire. By default the 256 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds. 257 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 258 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 259 * in a system panic. 260 */ 261 uint64_t zfs_deadman_synctime_ms = 1000000ULL; 262 263 /* 264 * Check time in milliseconds. This defines the frequency at which we check 265 * for hung I/O. 266 */ 267 uint64_t zfs_deadman_checktime_ms = 5000ULL; 268 269 /* 270 * Override the zfs deadman behavior via /etc/system. By default the 271 * deadman is enabled except on VMware and sparc deployments. 272 */ 273 int zfs_deadman_enabled = -1; 274 275 /* 276 * The worst case is single-sector max-parity RAID-Z blocks, in which 277 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 278 * times the size; so just assume that. Add to this the fact that 279 * we can have up to 3 DVAs per bp, and one more factor of 2 because 280 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 281 * the worst case is: 282 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 283 */ 284 int spa_asize_inflation = 24; 285 286 /* 287 * ========================================================================== 288 * SPA config locking 289 * ========================================================================== 290 */ 291 static void 292 spa_config_lock_init(spa_t *spa) 293 { 294 for (int i = 0; i < SCL_LOCKS; i++) { 295 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 296 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 297 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 298 refcount_create_untracked(&scl->scl_count); 299 scl->scl_writer = NULL; 300 scl->scl_write_wanted = 0; 301 } 302 } 303 304 static void 305 spa_config_lock_destroy(spa_t *spa) 306 { 307 for (int i = 0; i < SCL_LOCKS; i++) { 308 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 309 mutex_destroy(&scl->scl_lock); 310 cv_destroy(&scl->scl_cv); 311 refcount_destroy(&scl->scl_count); 312 ASSERT(scl->scl_writer == NULL); 313 ASSERT(scl->scl_write_wanted == 0); 314 } 315 } 316 317 int 318 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 319 { 320 for (int i = 0; i < SCL_LOCKS; i++) { 321 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 322 if (!(locks & (1 << i))) 323 continue; 324 mutex_enter(&scl->scl_lock); 325 if (rw == RW_READER) { 326 if (scl->scl_writer || scl->scl_write_wanted) { 327 mutex_exit(&scl->scl_lock); 328 spa_config_exit(spa, locks ^ (1 << i), tag); 329 return (0); 330 } 331 } else { 332 ASSERT(scl->scl_writer != curthread); 333 if (!refcount_is_zero(&scl->scl_count)) { 334 mutex_exit(&scl->scl_lock); 335 spa_config_exit(spa, locks ^ (1 << i), tag); 336 return (0); 337 } 338 scl->scl_writer = curthread; 339 } 340 (void) refcount_add(&scl->scl_count, tag); 341 mutex_exit(&scl->scl_lock); 342 } 343 return (1); 344 } 345 346 void 347 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 348 { 349 int wlocks_held = 0; 350 351 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 352 353 for (int i = 0; i < SCL_LOCKS; i++) { 354 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 355 if (scl->scl_writer == curthread) 356 wlocks_held |= (1 << i); 357 if (!(locks & (1 << i))) 358 continue; 359 mutex_enter(&scl->scl_lock); 360 if (rw == RW_READER) { 361 while (scl->scl_writer || scl->scl_write_wanted) { 362 cv_wait(&scl->scl_cv, &scl->scl_lock); 363 } 364 } else { 365 ASSERT(scl->scl_writer != curthread); 366 while (!refcount_is_zero(&scl->scl_count)) { 367 scl->scl_write_wanted++; 368 cv_wait(&scl->scl_cv, &scl->scl_lock); 369 scl->scl_write_wanted--; 370 } 371 scl->scl_writer = curthread; 372 } 373 (void) refcount_add(&scl->scl_count, tag); 374 mutex_exit(&scl->scl_lock); 375 } 376 ASSERT(wlocks_held <= locks); 377 } 378 379 void 380 spa_config_exit(spa_t *spa, int locks, void *tag) 381 { 382 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 383 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 384 if (!(locks & (1 << i))) 385 continue; 386 mutex_enter(&scl->scl_lock); 387 ASSERT(!refcount_is_zero(&scl->scl_count)); 388 if (refcount_remove(&scl->scl_count, tag) == 0) { 389 ASSERT(scl->scl_writer == NULL || 390 scl->scl_writer == curthread); 391 scl->scl_writer = NULL; /* OK in either case */ 392 cv_broadcast(&scl->scl_cv); 393 } 394 mutex_exit(&scl->scl_lock); 395 } 396 } 397 398 int 399 spa_config_held(spa_t *spa, int locks, krw_t rw) 400 { 401 int locks_held = 0; 402 403 for (int i = 0; i < SCL_LOCKS; i++) { 404 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 405 if (!(locks & (1 << i))) 406 continue; 407 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || 408 (rw == RW_WRITER && scl->scl_writer == curthread)) 409 locks_held |= 1 << i; 410 } 411 412 return (locks_held); 413 } 414 415 /* 416 * ========================================================================== 417 * SPA namespace functions 418 * ========================================================================== 419 */ 420 421 /* 422 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 423 * Returns NULL if no matching spa_t is found. 424 */ 425 spa_t * 426 spa_lookup(const char *name) 427 { 428 static spa_t search; /* spa_t is large; don't allocate on stack */ 429 spa_t *spa; 430 avl_index_t where; 431 char *cp; 432 433 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 434 435 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 436 437 /* 438 * If it's a full dataset name, figure out the pool name and 439 * just use that. 440 */ 441 cp = strpbrk(search.spa_name, "/@"); 442 if (cp != NULL) 443 *cp = '\0'; 444 445 spa = avl_find(&spa_namespace_avl, &search, &where); 446 447 return (spa); 448 } 449 450 /* 451 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 452 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 453 * looking for potentially hung I/Os. 454 */ 455 void 456 spa_deadman(void *arg) 457 { 458 spa_t *spa = arg; 459 460 /* 461 * Disable the deadman timer if the pool is suspended. 462 */ 463 if (spa_suspended(spa)) { 464 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 465 return; 466 } 467 468 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 469 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 470 ++spa->spa_deadman_calls); 471 if (zfs_deadman_enabled) 472 vdev_deadman(spa->spa_root_vdev); 473 } 474 475 /* 476 * Create an uninitialized spa_t with the given name. Requires 477 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 478 * exist by calling spa_lookup() first. 479 */ 480 spa_t * 481 spa_add(const char *name, nvlist_t *config, const char *altroot) 482 { 483 spa_t *spa; 484 spa_config_dirent_t *dp; 485 cyc_handler_t hdlr; 486 cyc_time_t when; 487 488 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 489 490 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 491 492 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 493 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 494 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 495 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 496 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 497 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 498 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 499 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 500 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 501 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL); 502 503 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 504 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 505 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 506 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 507 508 for (int t = 0; t < TXG_SIZE; t++) 509 bplist_create(&spa->spa_free_bplist[t]); 510 511 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 512 spa->spa_state = POOL_STATE_UNINITIALIZED; 513 spa->spa_freeze_txg = UINT64_MAX; 514 spa->spa_final_txg = UINT64_MAX; 515 spa->spa_load_max_txg = UINT64_MAX; 516 spa->spa_proc = &p0; 517 spa->spa_proc_state = SPA_PROC_NONE; 518 519 hdlr.cyh_func = spa_deadman; 520 hdlr.cyh_arg = spa; 521 hdlr.cyh_level = CY_LOW_LEVEL; 522 523 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 524 525 /* 526 * This determines how often we need to check for hung I/Os after 527 * the cyclic has already fired. Since checking for hung I/Os is 528 * an expensive operation we don't want to check too frequently. 529 * Instead wait for 5 seconds before checking again. 530 */ 531 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms); 532 when.cyt_when = CY_INFINITY; 533 mutex_enter(&cpu_lock); 534 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when); 535 mutex_exit(&cpu_lock); 536 537 refcount_create(&spa->spa_refcount); 538 spa_config_lock_init(spa); 539 540 avl_add(&spa_namespace_avl, spa); 541 542 /* 543 * Set the alternate root, if there is one. 544 */ 545 if (altroot) { 546 spa->spa_root = spa_strdup(altroot); 547 spa_active_count++; 548 } 549 550 /* 551 * Every pool starts with the default cachefile 552 */ 553 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 554 offsetof(spa_config_dirent_t, scd_link)); 555 556 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 557 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 558 list_insert_head(&spa->spa_config_list, dp); 559 560 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 561 KM_SLEEP) == 0); 562 563 if (config != NULL) { 564 nvlist_t *features; 565 566 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 567 &features) == 0) { 568 VERIFY(nvlist_dup(features, &spa->spa_label_features, 569 0) == 0); 570 } 571 572 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 573 } 574 575 if (spa->spa_label_features == NULL) { 576 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 577 KM_SLEEP) == 0); 578 } 579 580 spa->spa_iokstat = kstat_create("zfs", 0, name, 581 "disk", KSTAT_TYPE_IO, 1, 0); 582 if (spa->spa_iokstat) { 583 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock; 584 kstat_install(spa->spa_iokstat); 585 } 586 587 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0); 588 589 return (spa); 590 } 591 592 /* 593 * Removes a spa_t from the namespace, freeing up any memory used. Requires 594 * spa_namespace_lock. This is called only after the spa_t has been closed and 595 * deactivated. 596 */ 597 void 598 spa_remove(spa_t *spa) 599 { 600 spa_config_dirent_t *dp; 601 602 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 603 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 604 605 nvlist_free(spa->spa_config_splitting); 606 607 avl_remove(&spa_namespace_avl, spa); 608 cv_broadcast(&spa_namespace_cv); 609 610 if (spa->spa_root) { 611 spa_strfree(spa->spa_root); 612 spa_active_count--; 613 } 614 615 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 616 list_remove(&spa->spa_config_list, dp); 617 if (dp->scd_path != NULL) 618 spa_strfree(dp->scd_path); 619 kmem_free(dp, sizeof (spa_config_dirent_t)); 620 } 621 622 list_destroy(&spa->spa_config_list); 623 624 nvlist_free(spa->spa_label_features); 625 nvlist_free(spa->spa_load_info); 626 spa_config_set(spa, NULL); 627 628 mutex_enter(&cpu_lock); 629 if (spa->spa_deadman_cycid != CYCLIC_NONE) 630 cyclic_remove(spa->spa_deadman_cycid); 631 mutex_exit(&cpu_lock); 632 spa->spa_deadman_cycid = CYCLIC_NONE; 633 634 refcount_destroy(&spa->spa_refcount); 635 636 spa_config_lock_destroy(spa); 637 638 kstat_delete(spa->spa_iokstat); 639 spa->spa_iokstat = NULL; 640 641 for (int t = 0; t < TXG_SIZE; t++) 642 bplist_destroy(&spa->spa_free_bplist[t]); 643 644 cv_destroy(&spa->spa_async_cv); 645 cv_destroy(&spa->spa_proc_cv); 646 cv_destroy(&spa->spa_scrub_io_cv); 647 cv_destroy(&spa->spa_suspend_cv); 648 649 mutex_destroy(&spa->spa_async_lock); 650 mutex_destroy(&spa->spa_errlist_lock); 651 mutex_destroy(&spa->spa_errlog_lock); 652 mutex_destroy(&spa->spa_history_lock); 653 mutex_destroy(&spa->spa_proc_lock); 654 mutex_destroy(&spa->spa_props_lock); 655 mutex_destroy(&spa->spa_scrub_lock); 656 mutex_destroy(&spa->spa_suspend_lock); 657 mutex_destroy(&spa->spa_vdev_top_lock); 658 mutex_destroy(&spa->spa_iokstat_lock); 659 660 kmem_free(spa, sizeof (spa_t)); 661 } 662 663 /* 664 * Given a pool, return the next pool in the namespace, or NULL if there is 665 * none. If 'prev' is NULL, return the first pool. 666 */ 667 spa_t * 668 spa_next(spa_t *prev) 669 { 670 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 671 672 if (prev) 673 return (AVL_NEXT(&spa_namespace_avl, prev)); 674 else 675 return (avl_first(&spa_namespace_avl)); 676 } 677 678 /* 679 * ========================================================================== 680 * SPA refcount functions 681 * ========================================================================== 682 */ 683 684 /* 685 * Add a reference to the given spa_t. Must have at least one reference, or 686 * have the namespace lock held. 687 */ 688 void 689 spa_open_ref(spa_t *spa, void *tag) 690 { 691 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || 692 MUTEX_HELD(&spa_namespace_lock)); 693 (void) refcount_add(&spa->spa_refcount, tag); 694 } 695 696 /* 697 * Remove a reference to the given spa_t. Must have at least one reference, or 698 * have the namespace lock held. 699 */ 700 void 701 spa_close(spa_t *spa, void *tag) 702 { 703 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || 704 MUTEX_HELD(&spa_namespace_lock)); 705 (void) refcount_remove(&spa->spa_refcount, tag); 706 } 707 708 /* 709 * Check to see if the spa refcount is zero. Must be called with 710 * spa_namespace_lock held. We really compare against spa_minref, which is the 711 * number of references acquired when opening a pool 712 */ 713 boolean_t 714 spa_refcount_zero(spa_t *spa) 715 { 716 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 717 718 return (refcount_count(&spa->spa_refcount) == spa->spa_minref); 719 } 720 721 /* 722 * ========================================================================== 723 * SPA spare and l2cache tracking 724 * ========================================================================== 725 */ 726 727 /* 728 * Hot spares and cache devices are tracked using the same code below, 729 * for 'auxiliary' devices. 730 */ 731 732 typedef struct spa_aux { 733 uint64_t aux_guid; 734 uint64_t aux_pool; 735 avl_node_t aux_avl; 736 int aux_count; 737 } spa_aux_t; 738 739 static int 740 spa_aux_compare(const void *a, const void *b) 741 { 742 const spa_aux_t *sa = a; 743 const spa_aux_t *sb = b; 744 745 if (sa->aux_guid < sb->aux_guid) 746 return (-1); 747 else if (sa->aux_guid > sb->aux_guid) 748 return (1); 749 else 750 return (0); 751 } 752 753 void 754 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 755 { 756 avl_index_t where; 757 spa_aux_t search; 758 spa_aux_t *aux; 759 760 search.aux_guid = vd->vdev_guid; 761 if ((aux = avl_find(avl, &search, &where)) != NULL) { 762 aux->aux_count++; 763 } else { 764 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 765 aux->aux_guid = vd->vdev_guid; 766 aux->aux_count = 1; 767 avl_insert(avl, aux, where); 768 } 769 } 770 771 void 772 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 773 { 774 spa_aux_t search; 775 spa_aux_t *aux; 776 avl_index_t where; 777 778 search.aux_guid = vd->vdev_guid; 779 aux = avl_find(avl, &search, &where); 780 781 ASSERT(aux != NULL); 782 783 if (--aux->aux_count == 0) { 784 avl_remove(avl, aux); 785 kmem_free(aux, sizeof (spa_aux_t)); 786 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 787 aux->aux_pool = 0ULL; 788 } 789 } 790 791 boolean_t 792 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 793 { 794 spa_aux_t search, *found; 795 796 search.aux_guid = guid; 797 found = avl_find(avl, &search, NULL); 798 799 if (pool) { 800 if (found) 801 *pool = found->aux_pool; 802 else 803 *pool = 0ULL; 804 } 805 806 if (refcnt) { 807 if (found) 808 *refcnt = found->aux_count; 809 else 810 *refcnt = 0; 811 } 812 813 return (found != NULL); 814 } 815 816 void 817 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 818 { 819 spa_aux_t search, *found; 820 avl_index_t where; 821 822 search.aux_guid = vd->vdev_guid; 823 found = avl_find(avl, &search, &where); 824 ASSERT(found != NULL); 825 ASSERT(found->aux_pool == 0ULL); 826 827 found->aux_pool = spa_guid(vd->vdev_spa); 828 } 829 830 /* 831 * Spares are tracked globally due to the following constraints: 832 * 833 * - A spare may be part of multiple pools. 834 * - A spare may be added to a pool even if it's actively in use within 835 * another pool. 836 * - A spare in use in any pool can only be the source of a replacement if 837 * the target is a spare in the same pool. 838 * 839 * We keep track of all spares on the system through the use of a reference 840 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 841 * spare, then we bump the reference count in the AVL tree. In addition, we set 842 * the 'vdev_isspare' member to indicate that the device is a spare (active or 843 * inactive). When a spare is made active (used to replace a device in the 844 * pool), we also keep track of which pool its been made a part of. 845 * 846 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 847 * called under the spa_namespace lock as part of vdev reconfiguration. The 848 * separate spare lock exists for the status query path, which does not need to 849 * be completely consistent with respect to other vdev configuration changes. 850 */ 851 852 static int 853 spa_spare_compare(const void *a, const void *b) 854 { 855 return (spa_aux_compare(a, b)); 856 } 857 858 void 859 spa_spare_add(vdev_t *vd) 860 { 861 mutex_enter(&spa_spare_lock); 862 ASSERT(!vd->vdev_isspare); 863 spa_aux_add(vd, &spa_spare_avl); 864 vd->vdev_isspare = B_TRUE; 865 mutex_exit(&spa_spare_lock); 866 } 867 868 void 869 spa_spare_remove(vdev_t *vd) 870 { 871 mutex_enter(&spa_spare_lock); 872 ASSERT(vd->vdev_isspare); 873 spa_aux_remove(vd, &spa_spare_avl); 874 vd->vdev_isspare = B_FALSE; 875 mutex_exit(&spa_spare_lock); 876 } 877 878 boolean_t 879 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 880 { 881 boolean_t found; 882 883 mutex_enter(&spa_spare_lock); 884 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 885 mutex_exit(&spa_spare_lock); 886 887 return (found); 888 } 889 890 void 891 spa_spare_activate(vdev_t *vd) 892 { 893 mutex_enter(&spa_spare_lock); 894 ASSERT(vd->vdev_isspare); 895 spa_aux_activate(vd, &spa_spare_avl); 896 mutex_exit(&spa_spare_lock); 897 } 898 899 /* 900 * Level 2 ARC devices are tracked globally for the same reasons as spares. 901 * Cache devices currently only support one pool per cache device, and so 902 * for these devices the aux reference count is currently unused beyond 1. 903 */ 904 905 static int 906 spa_l2cache_compare(const void *a, const void *b) 907 { 908 return (spa_aux_compare(a, b)); 909 } 910 911 void 912 spa_l2cache_add(vdev_t *vd) 913 { 914 mutex_enter(&spa_l2cache_lock); 915 ASSERT(!vd->vdev_isl2cache); 916 spa_aux_add(vd, &spa_l2cache_avl); 917 vd->vdev_isl2cache = B_TRUE; 918 mutex_exit(&spa_l2cache_lock); 919 } 920 921 void 922 spa_l2cache_remove(vdev_t *vd) 923 { 924 mutex_enter(&spa_l2cache_lock); 925 ASSERT(vd->vdev_isl2cache); 926 spa_aux_remove(vd, &spa_l2cache_avl); 927 vd->vdev_isl2cache = B_FALSE; 928 mutex_exit(&spa_l2cache_lock); 929 } 930 931 boolean_t 932 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 933 { 934 boolean_t found; 935 936 mutex_enter(&spa_l2cache_lock); 937 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 938 mutex_exit(&spa_l2cache_lock); 939 940 return (found); 941 } 942 943 void 944 spa_l2cache_activate(vdev_t *vd) 945 { 946 mutex_enter(&spa_l2cache_lock); 947 ASSERT(vd->vdev_isl2cache); 948 spa_aux_activate(vd, &spa_l2cache_avl); 949 mutex_exit(&spa_l2cache_lock); 950 } 951 952 /* 953 * ========================================================================== 954 * SPA vdev locking 955 * ========================================================================== 956 */ 957 958 /* 959 * Lock the given spa_t for the purpose of adding or removing a vdev. 960 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 961 * It returns the next transaction group for the spa_t. 962 */ 963 uint64_t 964 spa_vdev_enter(spa_t *spa) 965 { 966 mutex_enter(&spa->spa_vdev_top_lock); 967 mutex_enter(&spa_namespace_lock); 968 return (spa_vdev_config_enter(spa)); 969 } 970 971 /* 972 * Internal implementation for spa_vdev_enter(). Used when a vdev 973 * operation requires multiple syncs (i.e. removing a device) while 974 * keeping the spa_namespace_lock held. 975 */ 976 uint64_t 977 spa_vdev_config_enter(spa_t *spa) 978 { 979 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 980 981 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 982 983 return (spa_last_synced_txg(spa) + 1); 984 } 985 986 /* 987 * Used in combination with spa_vdev_config_enter() to allow the syncing 988 * of multiple transactions without releasing the spa_namespace_lock. 989 */ 990 void 991 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 992 { 993 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 994 995 int config_changed = B_FALSE; 996 997 ASSERT(txg > spa_last_synced_txg(spa)); 998 999 spa->spa_pending_vdev = NULL; 1000 1001 /* 1002 * Reassess the DTLs. 1003 */ 1004 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 1005 1006 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1007 config_changed = B_TRUE; 1008 spa->spa_config_generation++; 1009 } 1010 1011 /* 1012 * Verify the metaslab classes. 1013 */ 1014 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1015 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1016 1017 spa_config_exit(spa, SCL_ALL, spa); 1018 1019 /* 1020 * Panic the system if the specified tag requires it. This 1021 * is useful for ensuring that configurations are updated 1022 * transactionally. 1023 */ 1024 if (zio_injection_enabled) 1025 zio_handle_panic_injection(spa, tag, 0); 1026 1027 /* 1028 * Note: this txg_wait_synced() is important because it ensures 1029 * that there won't be more than one config change per txg. 1030 * This allows us to use the txg as the generation number. 1031 */ 1032 if (error == 0) 1033 txg_wait_synced(spa->spa_dsl_pool, txg); 1034 1035 if (vd != NULL) { 1036 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1037 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1038 vdev_free(vd); 1039 spa_config_exit(spa, SCL_ALL, spa); 1040 } 1041 1042 /* 1043 * If the config changed, update the config cache. 1044 */ 1045 if (config_changed) 1046 spa_config_sync(spa, B_FALSE, B_TRUE); 1047 } 1048 1049 /* 1050 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1051 * locking of spa_vdev_enter(), we also want make sure the transactions have 1052 * synced to disk, and then update the global configuration cache with the new 1053 * information. 1054 */ 1055 int 1056 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1057 { 1058 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1059 mutex_exit(&spa_namespace_lock); 1060 mutex_exit(&spa->spa_vdev_top_lock); 1061 1062 return (error); 1063 } 1064 1065 /* 1066 * Lock the given spa_t for the purpose of changing vdev state. 1067 */ 1068 void 1069 spa_vdev_state_enter(spa_t *spa, int oplocks) 1070 { 1071 int locks = SCL_STATE_ALL | oplocks; 1072 1073 /* 1074 * Root pools may need to read of the underlying devfs filesystem 1075 * when opening up a vdev. Unfortunately if we're holding the 1076 * SCL_ZIO lock it will result in a deadlock when we try to issue 1077 * the read from the root filesystem. Instead we "prefetch" 1078 * the associated vnodes that we need prior to opening the 1079 * underlying devices and cache them so that we can prevent 1080 * any I/O when we are doing the actual open. 1081 */ 1082 if (spa_is_root(spa)) { 1083 int low = locks & ~(SCL_ZIO - 1); 1084 int high = locks & ~low; 1085 1086 spa_config_enter(spa, high, spa, RW_WRITER); 1087 vdev_hold(spa->spa_root_vdev); 1088 spa_config_enter(spa, low, spa, RW_WRITER); 1089 } else { 1090 spa_config_enter(spa, locks, spa, RW_WRITER); 1091 } 1092 spa->spa_vdev_locks = locks; 1093 } 1094 1095 int 1096 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1097 { 1098 boolean_t config_changed = B_FALSE; 1099 1100 if (vd != NULL || error == 0) 1101 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 1102 0, 0, B_FALSE); 1103 1104 if (vd != NULL) { 1105 vdev_state_dirty(vd->vdev_top); 1106 config_changed = B_TRUE; 1107 spa->spa_config_generation++; 1108 } 1109 1110 if (spa_is_root(spa)) 1111 vdev_rele(spa->spa_root_vdev); 1112 1113 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1114 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1115 1116 /* 1117 * If anything changed, wait for it to sync. This ensures that, 1118 * from the system administrator's perspective, zpool(1M) commands 1119 * are synchronous. This is important for things like zpool offline: 1120 * when the command completes, you expect no further I/O from ZFS. 1121 */ 1122 if (vd != NULL) 1123 txg_wait_synced(spa->spa_dsl_pool, 0); 1124 1125 /* 1126 * If the config changed, update the config cache. 1127 */ 1128 if (config_changed) { 1129 mutex_enter(&spa_namespace_lock); 1130 spa_config_sync(spa, B_FALSE, B_TRUE); 1131 mutex_exit(&spa_namespace_lock); 1132 } 1133 1134 return (error); 1135 } 1136 1137 /* 1138 * ========================================================================== 1139 * Miscellaneous functions 1140 * ========================================================================== 1141 */ 1142 1143 void 1144 spa_activate_mos_feature(spa_t *spa, const char *feature) 1145 { 1146 (void) nvlist_add_boolean(spa->spa_label_features, feature); 1147 vdev_config_dirty(spa->spa_root_vdev); 1148 } 1149 1150 void 1151 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1152 { 1153 (void) nvlist_remove_all(spa->spa_label_features, feature); 1154 vdev_config_dirty(spa->spa_root_vdev); 1155 } 1156 1157 /* 1158 * Rename a spa_t. 1159 */ 1160 int 1161 spa_rename(const char *name, const char *newname) 1162 { 1163 spa_t *spa; 1164 int err; 1165 1166 /* 1167 * Lookup the spa_t and grab the config lock for writing. We need to 1168 * actually open the pool so that we can sync out the necessary labels. 1169 * It's OK to call spa_open() with the namespace lock held because we 1170 * allow recursive calls for other reasons. 1171 */ 1172 mutex_enter(&spa_namespace_lock); 1173 if ((err = spa_open(name, &spa, FTAG)) != 0) { 1174 mutex_exit(&spa_namespace_lock); 1175 return (err); 1176 } 1177 1178 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1179 1180 avl_remove(&spa_namespace_avl, spa); 1181 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); 1182 avl_add(&spa_namespace_avl, spa); 1183 1184 /* 1185 * Sync all labels to disk with the new names by marking the root vdev 1186 * dirty and waiting for it to sync. It will pick up the new pool name 1187 * during the sync. 1188 */ 1189 vdev_config_dirty(spa->spa_root_vdev); 1190 1191 spa_config_exit(spa, SCL_ALL, FTAG); 1192 1193 txg_wait_synced(spa->spa_dsl_pool, 0); 1194 1195 /* 1196 * Sync the updated config cache. 1197 */ 1198 spa_config_sync(spa, B_FALSE, B_TRUE); 1199 1200 spa_close(spa, FTAG); 1201 1202 mutex_exit(&spa_namespace_lock); 1203 1204 return (0); 1205 } 1206 1207 /* 1208 * Return the spa_t associated with given pool_guid, if it exists. If 1209 * device_guid is non-zero, determine whether the pool exists *and* contains 1210 * a device with the specified device_guid. 1211 */ 1212 spa_t * 1213 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1214 { 1215 spa_t *spa; 1216 avl_tree_t *t = &spa_namespace_avl; 1217 1218 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1219 1220 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1221 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1222 continue; 1223 if (spa->spa_root_vdev == NULL) 1224 continue; 1225 if (spa_guid(spa) == pool_guid) { 1226 if (device_guid == 0) 1227 break; 1228 1229 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1230 device_guid) != NULL) 1231 break; 1232 1233 /* 1234 * Check any devices we may be in the process of adding. 1235 */ 1236 if (spa->spa_pending_vdev) { 1237 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1238 device_guid) != NULL) 1239 break; 1240 } 1241 } 1242 } 1243 1244 return (spa); 1245 } 1246 1247 /* 1248 * Determine whether a pool with the given pool_guid exists. 1249 */ 1250 boolean_t 1251 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1252 { 1253 return (spa_by_guid(pool_guid, device_guid) != NULL); 1254 } 1255 1256 char * 1257 spa_strdup(const char *s) 1258 { 1259 size_t len; 1260 char *new; 1261 1262 len = strlen(s); 1263 new = kmem_alloc(len + 1, KM_SLEEP); 1264 bcopy(s, new, len); 1265 new[len] = '\0'; 1266 1267 return (new); 1268 } 1269 1270 void 1271 spa_strfree(char *s) 1272 { 1273 kmem_free(s, strlen(s) + 1); 1274 } 1275 1276 uint64_t 1277 spa_get_random(uint64_t range) 1278 { 1279 uint64_t r; 1280 1281 ASSERT(range != 0); 1282 1283 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1284 1285 return (r % range); 1286 } 1287 1288 uint64_t 1289 spa_generate_guid(spa_t *spa) 1290 { 1291 uint64_t guid = spa_get_random(-1ULL); 1292 1293 if (spa != NULL) { 1294 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1295 guid = spa_get_random(-1ULL); 1296 } else { 1297 while (guid == 0 || spa_guid_exists(guid, 0)) 1298 guid = spa_get_random(-1ULL); 1299 } 1300 1301 return (guid); 1302 } 1303 1304 void 1305 sprintf_blkptr(char *buf, const blkptr_t *bp) 1306 { 1307 char type[256]; 1308 char *checksum = NULL; 1309 char *compress = NULL; 1310 1311 if (bp != NULL) { 1312 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1313 dmu_object_byteswap_t bswap = 1314 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1315 (void) snprintf(type, sizeof (type), "bswap %s %s", 1316 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1317 "metadata" : "data", 1318 dmu_ot_byteswap[bswap].ob_name); 1319 } else { 1320 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1321 sizeof (type)); 1322 } 1323 checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1324 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1325 } 1326 1327 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress); 1328 } 1329 1330 void 1331 spa_freeze(spa_t *spa) 1332 { 1333 uint64_t freeze_txg = 0; 1334 1335 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1336 if (spa->spa_freeze_txg == UINT64_MAX) { 1337 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1338 spa->spa_freeze_txg = freeze_txg; 1339 } 1340 spa_config_exit(spa, SCL_ALL, FTAG); 1341 if (freeze_txg != 0) 1342 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1343 } 1344 1345 void 1346 zfs_panic_recover(const char *fmt, ...) 1347 { 1348 va_list adx; 1349 1350 va_start(adx, fmt); 1351 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1352 va_end(adx); 1353 } 1354 1355 /* 1356 * This is a stripped-down version of strtoull, suitable only for converting 1357 * lowercase hexadecimal numbers that don't overflow. 1358 */ 1359 uint64_t 1360 strtonum(const char *str, char **nptr) 1361 { 1362 uint64_t val = 0; 1363 char c; 1364 int digit; 1365 1366 while ((c = *str) != '\0') { 1367 if (c >= '0' && c <= '9') 1368 digit = c - '0'; 1369 else if (c >= 'a' && c <= 'f') 1370 digit = 10 + c - 'a'; 1371 else 1372 break; 1373 1374 val *= 16; 1375 val += digit; 1376 1377 str++; 1378 } 1379 1380 if (nptr) 1381 *nptr = (char *)str; 1382 1383 return (val); 1384 } 1385 1386 /* 1387 * ========================================================================== 1388 * Accessor functions 1389 * ========================================================================== 1390 */ 1391 1392 boolean_t 1393 spa_shutting_down(spa_t *spa) 1394 { 1395 return (spa->spa_async_suspended); 1396 } 1397 1398 dsl_pool_t * 1399 spa_get_dsl(spa_t *spa) 1400 { 1401 return (spa->spa_dsl_pool); 1402 } 1403 1404 boolean_t 1405 spa_is_initializing(spa_t *spa) 1406 { 1407 return (spa->spa_is_initializing); 1408 } 1409 1410 blkptr_t * 1411 spa_get_rootblkptr(spa_t *spa) 1412 { 1413 return (&spa->spa_ubsync.ub_rootbp); 1414 } 1415 1416 void 1417 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1418 { 1419 spa->spa_uberblock.ub_rootbp = *bp; 1420 } 1421 1422 void 1423 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1424 { 1425 if (spa->spa_root == NULL) 1426 buf[0] = '\0'; 1427 else 1428 (void) strncpy(buf, spa->spa_root, buflen); 1429 } 1430 1431 int 1432 spa_sync_pass(spa_t *spa) 1433 { 1434 return (spa->spa_sync_pass); 1435 } 1436 1437 char * 1438 spa_name(spa_t *spa) 1439 { 1440 return (spa->spa_name); 1441 } 1442 1443 uint64_t 1444 spa_guid(spa_t *spa) 1445 { 1446 dsl_pool_t *dp = spa_get_dsl(spa); 1447 uint64_t guid; 1448 1449 /* 1450 * If we fail to parse the config during spa_load(), we can go through 1451 * the error path (which posts an ereport) and end up here with no root 1452 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1453 * this case. 1454 */ 1455 if (spa->spa_root_vdev == NULL) 1456 return (spa->spa_config_guid); 1457 1458 guid = spa->spa_last_synced_guid != 0 ? 1459 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1460 1461 /* 1462 * Return the most recently synced out guid unless we're 1463 * in syncing context. 1464 */ 1465 if (dp && dsl_pool_sync_context(dp)) 1466 return (spa->spa_root_vdev->vdev_guid); 1467 else 1468 return (guid); 1469 } 1470 1471 uint64_t 1472 spa_load_guid(spa_t *spa) 1473 { 1474 /* 1475 * This is a GUID that exists solely as a reference for the 1476 * purposes of the arc. It is generated at load time, and 1477 * is never written to persistent storage. 1478 */ 1479 return (spa->spa_load_guid); 1480 } 1481 1482 uint64_t 1483 spa_last_synced_txg(spa_t *spa) 1484 { 1485 return (spa->spa_ubsync.ub_txg); 1486 } 1487 1488 uint64_t 1489 spa_first_txg(spa_t *spa) 1490 { 1491 return (spa->spa_first_txg); 1492 } 1493 1494 uint64_t 1495 spa_syncing_txg(spa_t *spa) 1496 { 1497 return (spa->spa_syncing_txg); 1498 } 1499 1500 pool_state_t 1501 spa_state(spa_t *spa) 1502 { 1503 return (spa->spa_state); 1504 } 1505 1506 spa_load_state_t 1507 spa_load_state(spa_t *spa) 1508 { 1509 return (spa->spa_load_state); 1510 } 1511 1512 uint64_t 1513 spa_freeze_txg(spa_t *spa) 1514 { 1515 return (spa->spa_freeze_txg); 1516 } 1517 1518 /* ARGSUSED */ 1519 uint64_t 1520 spa_get_asize(spa_t *spa, uint64_t lsize) 1521 { 1522 return (lsize * spa_asize_inflation); 1523 } 1524 1525 uint64_t 1526 spa_get_dspace(spa_t *spa) 1527 { 1528 return (spa->spa_dspace); 1529 } 1530 1531 void 1532 spa_update_dspace(spa_t *spa) 1533 { 1534 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1535 ddt_get_dedup_dspace(spa); 1536 } 1537 1538 /* 1539 * Return the failure mode that has been set to this pool. The default 1540 * behavior will be to block all I/Os when a complete failure occurs. 1541 */ 1542 uint8_t 1543 spa_get_failmode(spa_t *spa) 1544 { 1545 return (spa->spa_failmode); 1546 } 1547 1548 boolean_t 1549 spa_suspended(spa_t *spa) 1550 { 1551 return (spa->spa_suspended); 1552 } 1553 1554 uint64_t 1555 spa_version(spa_t *spa) 1556 { 1557 return (spa->spa_ubsync.ub_version); 1558 } 1559 1560 boolean_t 1561 spa_deflate(spa_t *spa) 1562 { 1563 return (spa->spa_deflate); 1564 } 1565 1566 metaslab_class_t * 1567 spa_normal_class(spa_t *spa) 1568 { 1569 return (spa->spa_normal_class); 1570 } 1571 1572 metaslab_class_t * 1573 spa_log_class(spa_t *spa) 1574 { 1575 return (spa->spa_log_class); 1576 } 1577 1578 int 1579 spa_max_replication(spa_t *spa) 1580 { 1581 /* 1582 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1583 * handle BPs with more than one DVA allocated. Set our max 1584 * replication level accordingly. 1585 */ 1586 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1587 return (1); 1588 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1589 } 1590 1591 int 1592 spa_prev_software_version(spa_t *spa) 1593 { 1594 return (spa->spa_prev_software_version); 1595 } 1596 1597 uint64_t 1598 spa_deadman_synctime(spa_t *spa) 1599 { 1600 return (spa->spa_deadman_synctime); 1601 } 1602 1603 uint64_t 1604 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 1605 { 1606 uint64_t asize = DVA_GET_ASIZE(dva); 1607 uint64_t dsize = asize; 1608 1609 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1610 1611 if (asize != 0 && spa->spa_deflate) { 1612 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 1613 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1614 } 1615 1616 return (dsize); 1617 } 1618 1619 uint64_t 1620 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 1621 { 1622 uint64_t dsize = 0; 1623 1624 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1625 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1626 1627 return (dsize); 1628 } 1629 1630 uint64_t 1631 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 1632 { 1633 uint64_t dsize = 0; 1634 1635 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1636 1637 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1638 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1639 1640 spa_config_exit(spa, SCL_VDEV, FTAG); 1641 1642 return (dsize); 1643 } 1644 1645 /* 1646 * ========================================================================== 1647 * Initialization and Termination 1648 * ========================================================================== 1649 */ 1650 1651 static int 1652 spa_name_compare(const void *a1, const void *a2) 1653 { 1654 const spa_t *s1 = a1; 1655 const spa_t *s2 = a2; 1656 int s; 1657 1658 s = strcmp(s1->spa_name, s2->spa_name); 1659 if (s > 0) 1660 return (1); 1661 if (s < 0) 1662 return (-1); 1663 return (0); 1664 } 1665 1666 int 1667 spa_busy(void) 1668 { 1669 return (spa_active_count); 1670 } 1671 1672 void 1673 spa_boot_init() 1674 { 1675 spa_config_load(); 1676 } 1677 1678 void 1679 spa_init(int mode) 1680 { 1681 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1682 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1683 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 1684 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1685 1686 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1687 offsetof(spa_t, spa_avl)); 1688 1689 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 1690 offsetof(spa_aux_t, aux_avl)); 1691 1692 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 1693 offsetof(spa_aux_t, aux_avl)); 1694 1695 spa_mode_global = mode; 1696 1697 #ifdef _KERNEL 1698 spa_arch_init(); 1699 #else 1700 if (spa_mode_global != FREAD && dprintf_find_string("watch")) { 1701 arc_procfd = open("/proc/self/ctl", O_WRONLY); 1702 if (arc_procfd == -1) { 1703 perror("could not enable watchpoints: " 1704 "opening /proc/self/ctl failed: "); 1705 } else { 1706 arc_watch = B_TRUE; 1707 } 1708 } 1709 #endif 1710 1711 refcount_init(); 1712 unique_init(); 1713 range_tree_init(); 1714 zio_init(); 1715 dmu_init(); 1716 zil_init(); 1717 vdev_cache_stat_init(); 1718 zfs_prop_init(); 1719 zpool_prop_init(); 1720 zpool_feature_init(); 1721 spa_config_load(); 1722 l2arc_start(); 1723 } 1724 1725 void 1726 spa_fini(void) 1727 { 1728 l2arc_stop(); 1729 1730 spa_evict_all(); 1731 1732 vdev_cache_stat_fini(); 1733 zil_fini(); 1734 dmu_fini(); 1735 zio_fini(); 1736 range_tree_fini(); 1737 unique_fini(); 1738 refcount_fini(); 1739 1740 avl_destroy(&spa_namespace_avl); 1741 avl_destroy(&spa_spare_avl); 1742 avl_destroy(&spa_l2cache_avl); 1743 1744 cv_destroy(&spa_namespace_cv); 1745 mutex_destroy(&spa_namespace_lock); 1746 mutex_destroy(&spa_spare_lock); 1747 mutex_destroy(&spa_l2cache_lock); 1748 } 1749 1750 /* 1751 * Return whether this pool has slogs. No locking needed. 1752 * It's not a problem if the wrong answer is returned as it's only for 1753 * performance and not correctness 1754 */ 1755 boolean_t 1756 spa_has_slogs(spa_t *spa) 1757 { 1758 return (spa->spa_log_class->mc_rotor != NULL); 1759 } 1760 1761 spa_log_state_t 1762 spa_get_log_state(spa_t *spa) 1763 { 1764 return (spa->spa_log_state); 1765 } 1766 1767 void 1768 spa_set_log_state(spa_t *spa, spa_log_state_t state) 1769 { 1770 spa->spa_log_state = state; 1771 } 1772 1773 boolean_t 1774 spa_is_root(spa_t *spa) 1775 { 1776 return (spa->spa_is_root); 1777 } 1778 1779 boolean_t 1780 spa_writeable(spa_t *spa) 1781 { 1782 return (!!(spa->spa_mode & FWRITE)); 1783 } 1784 1785 int 1786 spa_mode(spa_t *spa) 1787 { 1788 return (spa->spa_mode); 1789 } 1790 1791 uint64_t 1792 spa_bootfs(spa_t *spa) 1793 { 1794 return (spa->spa_bootfs); 1795 } 1796 1797 uint64_t 1798 spa_delegation(spa_t *spa) 1799 { 1800 return (spa->spa_delegation); 1801 } 1802 1803 objset_t * 1804 spa_meta_objset(spa_t *spa) 1805 { 1806 return (spa->spa_meta_objset); 1807 } 1808 1809 enum zio_checksum 1810 spa_dedup_checksum(spa_t *spa) 1811 { 1812 return (spa->spa_dedup_checksum); 1813 } 1814 1815 /* 1816 * Reset pool scan stat per scan pass (or reboot). 1817 */ 1818 void 1819 spa_scan_stat_init(spa_t *spa) 1820 { 1821 /* data not stored on disk */ 1822 spa->spa_scan_pass_start = gethrestime_sec(); 1823 spa->spa_scan_pass_exam = 0; 1824 vdev_scan_stat_init(spa->spa_root_vdev); 1825 } 1826 1827 /* 1828 * Get scan stats for zpool status reports 1829 */ 1830 int 1831 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 1832 { 1833 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 1834 1835 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 1836 return (SET_ERROR(ENOENT)); 1837 bzero(ps, sizeof (pool_scan_stat_t)); 1838 1839 /* data stored on disk */ 1840 ps->pss_func = scn->scn_phys.scn_func; 1841 ps->pss_start_time = scn->scn_phys.scn_start_time; 1842 ps->pss_end_time = scn->scn_phys.scn_end_time; 1843 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 1844 ps->pss_examined = scn->scn_phys.scn_examined; 1845 ps->pss_to_process = scn->scn_phys.scn_to_process; 1846 ps->pss_processed = scn->scn_phys.scn_processed; 1847 ps->pss_errors = scn->scn_phys.scn_errors; 1848 ps->pss_state = scn->scn_phys.scn_state; 1849 1850 /* data not stored on disk */ 1851 ps->pss_pass_start = spa->spa_scan_pass_start; 1852 ps->pss_pass_exam = spa->spa_scan_pass_exam; 1853 1854 return (0); 1855 } 1856 1857 boolean_t 1858 spa_debug_enabled(spa_t *spa) 1859 { 1860 return (spa->spa_debug); 1861 }