Print this page
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4104 ::spa_space no longer works
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/spa.c
+++ new/usr/src/uts/common/fs/zfs/spa.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26 26 */
27 27
28 28 /*
29 29 * SPA: Storage Pool Allocator
30 30 *
31 31 * This file contains all the routines used when modifying on-disk SPA state.
32 32 * This includes opening, importing, destroying, exporting a pool, and syncing a
33 33 * pool.
34 34 */
35 35
36 36 #include <sys/zfs_context.h>
37 37 #include <sys/fm/fs/zfs.h>
38 38 #include <sys/spa_impl.h>
39 39 #include <sys/zio.h>
40 40 #include <sys/zio_checksum.h>
41 41 #include <sys/dmu.h>
42 42 #include <sys/dmu_tx.h>
43 43 #include <sys/zap.h>
44 44 #include <sys/zil.h>
45 45 #include <sys/ddt.h>
46 46 #include <sys/vdev_impl.h>
47 47 #include <sys/metaslab.h>
48 48 #include <sys/metaslab_impl.h>
49 49 #include <sys/uberblock_impl.h>
50 50 #include <sys/txg.h>
51 51 #include <sys/avl.h>
52 52 #include <sys/dmu_traverse.h>
53 53 #include <sys/dmu_objset.h>
54 54 #include <sys/unique.h>
55 55 #include <sys/dsl_pool.h>
56 56 #include <sys/dsl_dataset.h>
57 57 #include <sys/dsl_dir.h>
58 58 #include <sys/dsl_prop.h>
59 59 #include <sys/dsl_synctask.h>
60 60 #include <sys/fs/zfs.h>
61 61 #include <sys/arc.h>
62 62 #include <sys/callb.h>
63 63 #include <sys/systeminfo.h>
64 64 #include <sys/spa_boot.h>
65 65 #include <sys/zfs_ioctl.h>
66 66 #include <sys/dsl_scan.h>
67 67 #include <sys/zfeature.h>
68 68 #include <sys/dsl_destroy.h>
69 69
70 70 #ifdef _KERNEL
71 71 #include <sys/bootprops.h>
72 72 #include <sys/callb.h>
73 73 #include <sys/cpupart.h>
74 74 #include <sys/pool.h>
75 75 #include <sys/sysdc.h>
76 76 #include <sys/zone.h>
77 77 #endif /* _KERNEL */
78 78
79 79 #include "zfs_prop.h"
80 80 #include "zfs_comutil.h"
81 81
82 82 /*
83 83 * The interval, in seconds, at which failed configuration cache file writes
84 84 * should be retried.
85 85 */
86 86 static int zfs_ccw_retry_interval = 300;
87 87
88 88 typedef enum zti_modes {
89 89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
90 90 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
91 91 ZTI_MODE_NULL, /* don't create a taskq */
92 92 ZTI_NMODES
93 93 } zti_modes_t;
94 94
95 95 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
96 96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
97 97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
98 98
99 99 #define ZTI_N(n) ZTI_P(n, 1)
100 100 #define ZTI_ONE ZTI_N(1)
101 101
102 102 typedef struct zio_taskq_info {
103 103 zti_modes_t zti_mode;
104 104 uint_t zti_value;
105 105 uint_t zti_count;
106 106 } zio_taskq_info_t;
107 107
108 108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
109 109 "issue", "issue_high", "intr", "intr_high"
110 110 };
111 111
112 112 /*
113 113 * This table defines the taskq settings for each ZFS I/O type. When
114 114 * initializing a pool, we use this table to create an appropriately sized
115 115 * taskq. Some operations are low volume and therefore have a small, static
116 116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
117 117 * macros. Other operations process a large amount of data; the ZTI_BATCH
118 118 * macro causes us to create a taskq oriented for throughput. Some operations
119 119 * are so high frequency and short-lived that the taskq itself can become a a
120 120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
121 121 * additional degree of parallelism specified by the number of threads per-
122 122 * taskq and the number of taskqs; when dispatching an event in this case, the
123 123 * particular taskq is chosen at random.
124 124 *
125 125 * The different taskq priorities are to handle the different contexts (issue
126 126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
127 127 * need to be handled with minimum delay.
128 128 */
129 129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
130 130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
131 131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
132 132 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */
133 133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
134 134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
135 135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
136 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
137 137 };
138 138
139 139 static void spa_sync_version(void *arg, dmu_tx_t *tx);
140 140 static void spa_sync_props(void *arg, dmu_tx_t *tx);
141 141 static boolean_t spa_has_active_shared_spare(spa_t *spa);
142 142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
143 143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
144 144 char **ereport);
145 145 static void spa_vdev_resilver_done(spa_t *spa);
146 146
147 147 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
148 148 id_t zio_taskq_psrset_bind = PS_NONE;
149 149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
150 150 uint_t zio_taskq_basedc = 80; /* base duty cycle */
151 151
152 152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
153 153 extern int zfs_sync_pass_deferred_free;
154 154
155 155 /*
156 156 * This (illegal) pool name is used when temporarily importing a spa_t in order
157 157 * to get the vdev stats associated with the imported devices.
158 158 */
159 159 #define TRYIMPORT_NAME "$import"
160 160
161 161 /*
162 162 * ==========================================================================
163 163 * SPA properties routines
164 164 * ==========================================================================
165 165 */
166 166
167 167 /*
168 168 * Add a (source=src, propname=propval) list to an nvlist.
169 169 */
170 170 static void
171 171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
172 172 uint64_t intval, zprop_source_t src)
173 173 {
174 174 const char *propname = zpool_prop_to_name(prop);
175 175 nvlist_t *propval;
176 176
177 177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
178 178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
179 179
180 180 if (strval != NULL)
181 181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
182 182 else
183 183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
184 184
185 185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
186 186 nvlist_free(propval);
187 187 }
188 188
189 189 /*
190 190 * Get property values from the spa configuration.
191 191 */
192 192 static void
193 193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
194 194 {
195 195 vdev_t *rvd = spa->spa_root_vdev;
196 196 dsl_pool_t *pool = spa->spa_dsl_pool;
197 197 uint64_t size;
198 198 uint64_t alloc;
199 199 uint64_t space;
200 200 uint64_t cap, version;
201 201 zprop_source_t src = ZPROP_SRC_NONE;
202 202 spa_config_dirent_t *dp;
203 203
204 204 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
205 205
206 206 if (rvd != NULL) {
207 207 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
208 208 size = metaslab_class_get_space(spa_normal_class(spa));
209 209 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
210 210 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
211 211 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
212 212 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
213 213 size - alloc, src);
214 214
215 215 space = 0;
216 216 for (int c = 0; c < rvd->vdev_children; c++) {
217 217 vdev_t *tvd = rvd->vdev_child[c];
218 218 space += tvd->vdev_max_asize - tvd->vdev_asize;
219 219 }
220 220 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
221 221 src);
222 222
223 223 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
224 224 (spa_mode(spa) == FREAD), src);
225 225
226 226 cap = (size == 0) ? 0 : (alloc * 100 / size);
227 227 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
228 228
229 229 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
230 230 ddt_get_pool_dedup_ratio(spa), src);
231 231
232 232 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
233 233 rvd->vdev_state, src);
234 234
235 235 version = spa_version(spa);
236 236 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
237 237 src = ZPROP_SRC_DEFAULT;
238 238 else
239 239 src = ZPROP_SRC_LOCAL;
240 240 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
241 241 }
242 242
243 243 if (pool != NULL) {
244 244 dsl_dir_t *freedir = pool->dp_free_dir;
245 245
246 246 /*
247 247 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
248 248 * when opening pools before this version freedir will be NULL.
249 249 */
250 250 if (freedir != NULL) {
251 251 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
252 252 freedir->dd_phys->dd_used_bytes, src);
253 253 } else {
254 254 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
255 255 NULL, 0, src);
256 256 }
257 257 }
258 258
259 259 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
260 260
261 261 if (spa->spa_comment != NULL) {
262 262 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
263 263 0, ZPROP_SRC_LOCAL);
264 264 }
265 265
266 266 if (spa->spa_root != NULL)
267 267 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
268 268 0, ZPROP_SRC_LOCAL);
269 269
270 270 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
271 271 if (dp->scd_path == NULL) {
272 272 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
273 273 "none", 0, ZPROP_SRC_LOCAL);
274 274 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
275 275 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
276 276 dp->scd_path, 0, ZPROP_SRC_LOCAL);
277 277 }
278 278 }
279 279 }
280 280
281 281 /*
282 282 * Get zpool property values.
283 283 */
284 284 int
285 285 spa_prop_get(spa_t *spa, nvlist_t **nvp)
286 286 {
287 287 objset_t *mos = spa->spa_meta_objset;
288 288 zap_cursor_t zc;
289 289 zap_attribute_t za;
290 290 int err;
291 291
292 292 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
293 293
294 294 mutex_enter(&spa->spa_props_lock);
295 295
296 296 /*
297 297 * Get properties from the spa config.
298 298 */
299 299 spa_prop_get_config(spa, nvp);
300 300
301 301 /* If no pool property object, no more prop to get. */
302 302 if (mos == NULL || spa->spa_pool_props_object == 0) {
303 303 mutex_exit(&spa->spa_props_lock);
304 304 return (0);
305 305 }
306 306
307 307 /*
308 308 * Get properties from the MOS pool property object.
309 309 */
310 310 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
311 311 (err = zap_cursor_retrieve(&zc, &za)) == 0;
312 312 zap_cursor_advance(&zc)) {
313 313 uint64_t intval = 0;
314 314 char *strval = NULL;
315 315 zprop_source_t src = ZPROP_SRC_DEFAULT;
316 316 zpool_prop_t prop;
317 317
318 318 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
319 319 continue;
320 320
321 321 switch (za.za_integer_length) {
322 322 case 8:
323 323 /* integer property */
324 324 if (za.za_first_integer !=
325 325 zpool_prop_default_numeric(prop))
326 326 src = ZPROP_SRC_LOCAL;
327 327
328 328 if (prop == ZPOOL_PROP_BOOTFS) {
329 329 dsl_pool_t *dp;
330 330 dsl_dataset_t *ds = NULL;
331 331
332 332 dp = spa_get_dsl(spa);
333 333 dsl_pool_config_enter(dp, FTAG);
334 334 if (err = dsl_dataset_hold_obj(dp,
335 335 za.za_first_integer, FTAG, &ds)) {
336 336 dsl_pool_config_exit(dp, FTAG);
337 337 break;
338 338 }
339 339
340 340 strval = kmem_alloc(
341 341 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
342 342 KM_SLEEP);
343 343 dsl_dataset_name(ds, strval);
344 344 dsl_dataset_rele(ds, FTAG);
345 345 dsl_pool_config_exit(dp, FTAG);
346 346 } else {
347 347 strval = NULL;
348 348 intval = za.za_first_integer;
349 349 }
350 350
351 351 spa_prop_add_list(*nvp, prop, strval, intval, src);
352 352
353 353 if (strval != NULL)
354 354 kmem_free(strval,
355 355 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
356 356
357 357 break;
358 358
359 359 case 1:
360 360 /* string property */
361 361 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
362 362 err = zap_lookup(mos, spa->spa_pool_props_object,
363 363 za.za_name, 1, za.za_num_integers, strval);
364 364 if (err) {
365 365 kmem_free(strval, za.za_num_integers);
366 366 break;
367 367 }
368 368 spa_prop_add_list(*nvp, prop, strval, 0, src);
369 369 kmem_free(strval, za.za_num_integers);
370 370 break;
371 371
372 372 default:
373 373 break;
374 374 }
375 375 }
376 376 zap_cursor_fini(&zc);
377 377 mutex_exit(&spa->spa_props_lock);
378 378 out:
379 379 if (err && err != ENOENT) {
380 380 nvlist_free(*nvp);
381 381 *nvp = NULL;
382 382 return (err);
383 383 }
384 384
385 385 return (0);
386 386 }
387 387
388 388 /*
389 389 * Validate the given pool properties nvlist and modify the list
390 390 * for the property values to be set.
391 391 */
392 392 static int
393 393 spa_prop_validate(spa_t *spa, nvlist_t *props)
394 394 {
395 395 nvpair_t *elem;
396 396 int error = 0, reset_bootfs = 0;
397 397 uint64_t objnum = 0;
398 398 boolean_t has_feature = B_FALSE;
399 399
400 400 elem = NULL;
401 401 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
402 402 uint64_t intval;
403 403 char *strval, *slash, *check, *fname;
404 404 const char *propname = nvpair_name(elem);
405 405 zpool_prop_t prop = zpool_name_to_prop(propname);
406 406
407 407 switch (prop) {
408 408 case ZPROP_INVAL:
409 409 if (!zpool_prop_feature(propname)) {
410 410 error = SET_ERROR(EINVAL);
411 411 break;
412 412 }
413 413
414 414 /*
415 415 * Sanitize the input.
416 416 */
417 417 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
418 418 error = SET_ERROR(EINVAL);
419 419 break;
420 420 }
421 421
422 422 if (nvpair_value_uint64(elem, &intval) != 0) {
423 423 error = SET_ERROR(EINVAL);
424 424 break;
425 425 }
426 426
427 427 if (intval != 0) {
428 428 error = SET_ERROR(EINVAL);
429 429 break;
430 430 }
431 431
432 432 fname = strchr(propname, '@') + 1;
433 433 if (zfeature_lookup_name(fname, NULL) != 0) {
434 434 error = SET_ERROR(EINVAL);
435 435 break;
436 436 }
437 437
438 438 has_feature = B_TRUE;
439 439 break;
440 440
441 441 case ZPOOL_PROP_VERSION:
442 442 error = nvpair_value_uint64(elem, &intval);
443 443 if (!error &&
444 444 (intval < spa_version(spa) ||
445 445 intval > SPA_VERSION_BEFORE_FEATURES ||
446 446 has_feature))
447 447 error = SET_ERROR(EINVAL);
448 448 break;
449 449
450 450 case ZPOOL_PROP_DELEGATION:
451 451 case ZPOOL_PROP_AUTOREPLACE:
452 452 case ZPOOL_PROP_LISTSNAPS:
453 453 case ZPOOL_PROP_AUTOEXPAND:
454 454 error = nvpair_value_uint64(elem, &intval);
455 455 if (!error && intval > 1)
456 456 error = SET_ERROR(EINVAL);
457 457 break;
458 458
459 459 case ZPOOL_PROP_BOOTFS:
460 460 /*
461 461 * If the pool version is less than SPA_VERSION_BOOTFS,
462 462 * or the pool is still being created (version == 0),
463 463 * the bootfs property cannot be set.
464 464 */
465 465 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
466 466 error = SET_ERROR(ENOTSUP);
467 467 break;
468 468 }
469 469
470 470 /*
471 471 * Make sure the vdev config is bootable
472 472 */
473 473 if (!vdev_is_bootable(spa->spa_root_vdev)) {
474 474 error = SET_ERROR(ENOTSUP);
475 475 break;
476 476 }
477 477
478 478 reset_bootfs = 1;
479 479
480 480 error = nvpair_value_string(elem, &strval);
481 481
482 482 if (!error) {
483 483 objset_t *os;
484 484 uint64_t compress;
485 485
486 486 if (strval == NULL || strval[0] == '\0') {
487 487 objnum = zpool_prop_default_numeric(
488 488 ZPOOL_PROP_BOOTFS);
489 489 break;
490 490 }
491 491
492 492 if (error = dmu_objset_hold(strval, FTAG, &os))
493 493 break;
494 494
495 495 /* Must be ZPL and not gzip compressed. */
496 496
497 497 if (dmu_objset_type(os) != DMU_OST_ZFS) {
498 498 error = SET_ERROR(ENOTSUP);
499 499 } else if ((error =
500 500 dsl_prop_get_int_ds(dmu_objset_ds(os),
501 501 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
502 502 &compress)) == 0 &&
503 503 !BOOTFS_COMPRESS_VALID(compress)) {
504 504 error = SET_ERROR(ENOTSUP);
505 505 } else {
506 506 objnum = dmu_objset_id(os);
507 507 }
508 508 dmu_objset_rele(os, FTAG);
509 509 }
510 510 break;
511 511
512 512 case ZPOOL_PROP_FAILUREMODE:
513 513 error = nvpair_value_uint64(elem, &intval);
514 514 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
515 515 intval > ZIO_FAILURE_MODE_PANIC))
516 516 error = SET_ERROR(EINVAL);
517 517
518 518 /*
519 519 * This is a special case which only occurs when
520 520 * the pool has completely failed. This allows
521 521 * the user to change the in-core failmode property
522 522 * without syncing it out to disk (I/Os might
523 523 * currently be blocked). We do this by returning
524 524 * EIO to the caller (spa_prop_set) to trick it
525 525 * into thinking we encountered a property validation
526 526 * error.
527 527 */
528 528 if (!error && spa_suspended(spa)) {
529 529 spa->spa_failmode = intval;
530 530 error = SET_ERROR(EIO);
531 531 }
532 532 break;
533 533
534 534 case ZPOOL_PROP_CACHEFILE:
535 535 if ((error = nvpair_value_string(elem, &strval)) != 0)
536 536 break;
537 537
538 538 if (strval[0] == '\0')
539 539 break;
540 540
541 541 if (strcmp(strval, "none") == 0)
542 542 break;
543 543
544 544 if (strval[0] != '/') {
545 545 error = SET_ERROR(EINVAL);
546 546 break;
547 547 }
548 548
549 549 slash = strrchr(strval, '/');
550 550 ASSERT(slash != NULL);
551 551
552 552 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
553 553 strcmp(slash, "/..") == 0)
554 554 error = SET_ERROR(EINVAL);
555 555 break;
556 556
557 557 case ZPOOL_PROP_COMMENT:
558 558 if ((error = nvpair_value_string(elem, &strval)) != 0)
559 559 break;
560 560 for (check = strval; *check != '\0'; check++) {
561 561 /*
562 562 * The kernel doesn't have an easy isprint()
563 563 * check. For this kernel check, we merely
564 564 * check ASCII apart from DEL. Fix this if
565 565 * there is an easy-to-use kernel isprint().
566 566 */
567 567 if (*check >= 0x7f) {
568 568 error = SET_ERROR(EINVAL);
569 569 break;
570 570 }
571 571 check++;
572 572 }
573 573 if (strlen(strval) > ZPROP_MAX_COMMENT)
574 574 error = E2BIG;
575 575 break;
576 576
577 577 case ZPOOL_PROP_DEDUPDITTO:
578 578 if (spa_version(spa) < SPA_VERSION_DEDUP)
579 579 error = SET_ERROR(ENOTSUP);
580 580 else
581 581 error = nvpair_value_uint64(elem, &intval);
582 582 if (error == 0 &&
583 583 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
584 584 error = SET_ERROR(EINVAL);
585 585 break;
586 586 }
587 587
588 588 if (error)
589 589 break;
590 590 }
591 591
592 592 if (!error && reset_bootfs) {
593 593 error = nvlist_remove(props,
594 594 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
595 595
596 596 if (!error) {
597 597 error = nvlist_add_uint64(props,
598 598 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
599 599 }
600 600 }
601 601
602 602 return (error);
603 603 }
604 604
605 605 void
606 606 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
607 607 {
608 608 char *cachefile;
609 609 spa_config_dirent_t *dp;
610 610
611 611 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
612 612 &cachefile) != 0)
613 613 return;
614 614
615 615 dp = kmem_alloc(sizeof (spa_config_dirent_t),
616 616 KM_SLEEP);
617 617
618 618 if (cachefile[0] == '\0')
619 619 dp->scd_path = spa_strdup(spa_config_path);
620 620 else if (strcmp(cachefile, "none") == 0)
621 621 dp->scd_path = NULL;
622 622 else
623 623 dp->scd_path = spa_strdup(cachefile);
624 624
625 625 list_insert_head(&spa->spa_config_list, dp);
626 626 if (need_sync)
627 627 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
628 628 }
629 629
630 630 int
631 631 spa_prop_set(spa_t *spa, nvlist_t *nvp)
632 632 {
633 633 int error;
634 634 nvpair_t *elem = NULL;
635 635 boolean_t need_sync = B_FALSE;
636 636
637 637 if ((error = spa_prop_validate(spa, nvp)) != 0)
638 638 return (error);
639 639
640 640 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
641 641 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
642 642
643 643 if (prop == ZPOOL_PROP_CACHEFILE ||
644 644 prop == ZPOOL_PROP_ALTROOT ||
645 645 prop == ZPOOL_PROP_READONLY)
646 646 continue;
647 647
648 648 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
649 649 uint64_t ver;
650 650
651 651 if (prop == ZPOOL_PROP_VERSION) {
652 652 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
653 653 } else {
654 654 ASSERT(zpool_prop_feature(nvpair_name(elem)));
655 655 ver = SPA_VERSION_FEATURES;
656 656 need_sync = B_TRUE;
657 657 }
658 658
659 659 /* Save time if the version is already set. */
660 660 if (ver == spa_version(spa))
661 661 continue;
662 662
663 663 /*
664 664 * In addition to the pool directory object, we might
665 665 * create the pool properties object, the features for
666 666 * read object, the features for write object, or the
667 667 * feature descriptions object.
668 668 */
669 669 error = dsl_sync_task(spa->spa_name, NULL,
670 670 spa_sync_version, &ver, 6);
671 671 if (error)
672 672 return (error);
673 673 continue;
674 674 }
675 675
676 676 need_sync = B_TRUE;
677 677 break;
678 678 }
679 679
680 680 if (need_sync) {
681 681 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
682 682 nvp, 6));
683 683 }
684 684
685 685 return (0);
686 686 }
687 687
688 688 /*
689 689 * If the bootfs property value is dsobj, clear it.
690 690 */
691 691 void
692 692 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
693 693 {
694 694 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
695 695 VERIFY(zap_remove(spa->spa_meta_objset,
696 696 spa->spa_pool_props_object,
697 697 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
698 698 spa->spa_bootfs = 0;
699 699 }
700 700 }
701 701
702 702 /*ARGSUSED*/
703 703 static int
704 704 spa_change_guid_check(void *arg, dmu_tx_t *tx)
705 705 {
706 706 uint64_t *newguid = arg;
707 707 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
708 708 vdev_t *rvd = spa->spa_root_vdev;
709 709 uint64_t vdev_state;
710 710
711 711 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
712 712 vdev_state = rvd->vdev_state;
713 713 spa_config_exit(spa, SCL_STATE, FTAG);
714 714
715 715 if (vdev_state != VDEV_STATE_HEALTHY)
716 716 return (SET_ERROR(ENXIO));
717 717
718 718 ASSERT3U(spa_guid(spa), !=, *newguid);
719 719
720 720 return (0);
721 721 }
722 722
723 723 static void
724 724 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
725 725 {
726 726 uint64_t *newguid = arg;
727 727 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
728 728 uint64_t oldguid;
729 729 vdev_t *rvd = spa->spa_root_vdev;
730 730
731 731 oldguid = spa_guid(spa);
732 732
733 733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
734 734 rvd->vdev_guid = *newguid;
735 735 rvd->vdev_guid_sum += (*newguid - oldguid);
736 736 vdev_config_dirty(rvd);
737 737 spa_config_exit(spa, SCL_STATE, FTAG);
738 738
739 739 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
740 740 oldguid, *newguid);
741 741 }
742 742
743 743 /*
744 744 * Change the GUID for the pool. This is done so that we can later
745 745 * re-import a pool built from a clone of our own vdevs. We will modify
746 746 * the root vdev's guid, our own pool guid, and then mark all of our
747 747 * vdevs dirty. Note that we must make sure that all our vdevs are
748 748 * online when we do this, or else any vdevs that weren't present
749 749 * would be orphaned from our pool. We are also going to issue a
750 750 * sysevent to update any watchers.
751 751 */
752 752 int
753 753 spa_change_guid(spa_t *spa)
754 754 {
755 755 int error;
756 756 uint64_t guid;
757 757
758 758 mutex_enter(&spa->spa_vdev_top_lock);
759 759 mutex_enter(&spa_namespace_lock);
760 760 guid = spa_generate_guid(NULL);
761 761
762 762 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
763 763 spa_change_guid_sync, &guid, 5);
764 764
765 765 if (error == 0) {
766 766 spa_config_sync(spa, B_FALSE, B_TRUE);
767 767 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
768 768 }
769 769
770 770 mutex_exit(&spa_namespace_lock);
771 771 mutex_exit(&spa->spa_vdev_top_lock);
772 772
773 773 return (error);
774 774 }
775 775
776 776 /*
777 777 * ==========================================================================
778 778 * SPA state manipulation (open/create/destroy/import/export)
779 779 * ==========================================================================
780 780 */
781 781
782 782 static int
783 783 spa_error_entry_compare(const void *a, const void *b)
784 784 {
785 785 spa_error_entry_t *sa = (spa_error_entry_t *)a;
786 786 spa_error_entry_t *sb = (spa_error_entry_t *)b;
787 787 int ret;
788 788
789 789 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
790 790 sizeof (zbookmark_t));
791 791
792 792 if (ret < 0)
793 793 return (-1);
794 794 else if (ret > 0)
795 795 return (1);
796 796 else
797 797 return (0);
798 798 }
799 799
800 800 /*
801 801 * Utility function which retrieves copies of the current logs and
802 802 * re-initializes them in the process.
803 803 */
804 804 void
805 805 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
806 806 {
807 807 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
808 808
809 809 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
810 810 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
811 811
812 812 avl_create(&spa->spa_errlist_scrub,
813 813 spa_error_entry_compare, sizeof (spa_error_entry_t),
814 814 offsetof(spa_error_entry_t, se_avl));
815 815 avl_create(&spa->spa_errlist_last,
816 816 spa_error_entry_compare, sizeof (spa_error_entry_t),
817 817 offsetof(spa_error_entry_t, se_avl));
818 818 }
819 819
820 820 static void
821 821 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
822 822 {
823 823 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
824 824 enum zti_modes mode = ztip->zti_mode;
825 825 uint_t value = ztip->zti_value;
826 826 uint_t count = ztip->zti_count;
827 827 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
828 828 char name[32];
829 829 uint_t flags = 0;
830 830 boolean_t batch = B_FALSE;
831 831
832 832 if (mode == ZTI_MODE_NULL) {
833 833 tqs->stqs_count = 0;
834 834 tqs->stqs_taskq = NULL;
835 835 return;
836 836 }
837 837
838 838 ASSERT3U(count, >, 0);
839 839
840 840 tqs->stqs_count = count;
841 841 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
842 842
843 843 switch (mode) {
844 844 case ZTI_MODE_FIXED:
845 845 ASSERT3U(value, >=, 1);
846 846 value = MAX(value, 1);
847 847 break;
848 848
849 849 case ZTI_MODE_BATCH:
850 850 batch = B_TRUE;
851 851 flags |= TASKQ_THREADS_CPU_PCT;
852 852 value = zio_taskq_batch_pct;
853 853 break;
854 854
855 855 default:
856 856 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
857 857 "spa_activate()",
858 858 zio_type_name[t], zio_taskq_types[q], mode, value);
859 859 break;
860 860 }
861 861
862 862 for (uint_t i = 0; i < count; i++) {
863 863 taskq_t *tq;
864 864
865 865 if (count > 1) {
866 866 (void) snprintf(name, sizeof (name), "%s_%s_%u",
867 867 zio_type_name[t], zio_taskq_types[q], i);
868 868 } else {
869 869 (void) snprintf(name, sizeof (name), "%s_%s",
870 870 zio_type_name[t], zio_taskq_types[q]);
871 871 }
872 872
873 873 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
874 874 if (batch)
875 875 flags |= TASKQ_DC_BATCH;
876 876
877 877 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
878 878 spa->spa_proc, zio_taskq_basedc, flags);
879 879 } else {
880 880 pri_t pri = maxclsyspri;
881 881 /*
882 882 * The write issue taskq can be extremely CPU
883 883 * intensive. Run it at slightly lower priority
884 884 * than the other taskqs.
885 885 */
886 886 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
887 887 pri--;
888 888
889 889 tq = taskq_create_proc(name, value, pri, 50,
890 890 INT_MAX, spa->spa_proc, flags);
891 891 }
892 892
893 893 tqs->stqs_taskq[i] = tq;
894 894 }
895 895 }
896 896
897 897 static void
898 898 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
899 899 {
900 900 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
901 901
902 902 if (tqs->stqs_taskq == NULL) {
903 903 ASSERT0(tqs->stqs_count);
904 904 return;
905 905 }
906 906
907 907 for (uint_t i = 0; i < tqs->stqs_count; i++) {
908 908 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
909 909 taskq_destroy(tqs->stqs_taskq[i]);
910 910 }
911 911
912 912 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
913 913 tqs->stqs_taskq = NULL;
914 914 }
915 915
916 916 /*
917 917 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
918 918 * Note that a type may have multiple discrete taskqs to avoid lock contention
919 919 * on the taskq itself. In that case we choose which taskq at random by using
920 920 * the low bits of gethrtime().
921 921 */
922 922 void
923 923 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
924 924 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
925 925 {
926 926 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
927 927 taskq_t *tq;
928 928
929 929 ASSERT3P(tqs->stqs_taskq, !=, NULL);
930 930 ASSERT3U(tqs->stqs_count, !=, 0);
931 931
932 932 if (tqs->stqs_count == 1) {
933 933 tq = tqs->stqs_taskq[0];
934 934 } else {
935 935 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
936 936 }
937 937
938 938 taskq_dispatch_ent(tq, func, arg, flags, ent);
939 939 }
940 940
941 941 static void
942 942 spa_create_zio_taskqs(spa_t *spa)
943 943 {
944 944 for (int t = 0; t < ZIO_TYPES; t++) {
945 945 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
946 946 spa_taskqs_init(spa, t, q);
947 947 }
948 948 }
949 949 }
950 950
951 951 #ifdef _KERNEL
952 952 static void
953 953 spa_thread(void *arg)
954 954 {
955 955 callb_cpr_t cprinfo;
956 956
957 957 spa_t *spa = arg;
958 958 user_t *pu = PTOU(curproc);
959 959
960 960 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
961 961 spa->spa_name);
962 962
963 963 ASSERT(curproc != &p0);
964 964 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
965 965 "zpool-%s", spa->spa_name);
966 966 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
967 967
968 968 /* bind this thread to the requested psrset */
969 969 if (zio_taskq_psrset_bind != PS_NONE) {
970 970 pool_lock();
971 971 mutex_enter(&cpu_lock);
972 972 mutex_enter(&pidlock);
973 973 mutex_enter(&curproc->p_lock);
974 974
975 975 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
976 976 0, NULL, NULL) == 0) {
977 977 curthread->t_bind_pset = zio_taskq_psrset_bind;
978 978 } else {
979 979 cmn_err(CE_WARN,
980 980 "Couldn't bind process for zfs pool \"%s\" to "
981 981 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
982 982 }
983 983
984 984 mutex_exit(&curproc->p_lock);
985 985 mutex_exit(&pidlock);
986 986 mutex_exit(&cpu_lock);
987 987 pool_unlock();
988 988 }
989 989
990 990 if (zio_taskq_sysdc) {
991 991 sysdc_thread_enter(curthread, 100, 0);
992 992 }
993 993
994 994 spa->spa_proc = curproc;
995 995 spa->spa_did = curthread->t_did;
996 996
997 997 spa_create_zio_taskqs(spa);
998 998
999 999 mutex_enter(&spa->spa_proc_lock);
1000 1000 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1001 1001
1002 1002 spa->spa_proc_state = SPA_PROC_ACTIVE;
1003 1003 cv_broadcast(&spa->spa_proc_cv);
1004 1004
1005 1005 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1006 1006 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1007 1007 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1008 1008 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1009 1009
1010 1010 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1011 1011 spa->spa_proc_state = SPA_PROC_GONE;
1012 1012 spa->spa_proc = &p0;
1013 1013 cv_broadcast(&spa->spa_proc_cv);
1014 1014 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1015 1015
1016 1016 mutex_enter(&curproc->p_lock);
1017 1017 lwp_exit();
1018 1018 }
1019 1019 #endif
1020 1020
1021 1021 /*
1022 1022 * Activate an uninitialized pool.
1023 1023 */
1024 1024 static void
1025 1025 spa_activate(spa_t *spa, int mode)
1026 1026 {
1027 1027 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1028 1028
1029 1029 spa->spa_state = POOL_STATE_ACTIVE;
1030 1030 spa->spa_mode = mode;
1031 1031
1032 1032 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1033 1033 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1034 1034
1035 1035 /* Try to create a covering process */
1036 1036 mutex_enter(&spa->spa_proc_lock);
1037 1037 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1038 1038 ASSERT(spa->spa_proc == &p0);
1039 1039 spa->spa_did = 0;
1040 1040
1041 1041 /* Only create a process if we're going to be around a while. */
1042 1042 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1043 1043 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1044 1044 NULL, 0) == 0) {
1045 1045 spa->spa_proc_state = SPA_PROC_CREATED;
1046 1046 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1047 1047 cv_wait(&spa->spa_proc_cv,
1048 1048 &spa->spa_proc_lock);
1049 1049 }
1050 1050 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1051 1051 ASSERT(spa->spa_proc != &p0);
1052 1052 ASSERT(spa->spa_did != 0);
1053 1053 } else {
1054 1054 #ifdef _KERNEL
1055 1055 cmn_err(CE_WARN,
1056 1056 "Couldn't create process for zfs pool \"%s\"\n",
1057 1057 spa->spa_name);
1058 1058 #endif
1059 1059 }
1060 1060 }
1061 1061 mutex_exit(&spa->spa_proc_lock);
1062 1062
1063 1063 /* If we didn't create a process, we need to create our taskqs. */
1064 1064 if (spa->spa_proc == &p0) {
1065 1065 spa_create_zio_taskqs(spa);
1066 1066 }
1067 1067
1068 1068 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1069 1069 offsetof(vdev_t, vdev_config_dirty_node));
1070 1070 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1071 1071 offsetof(vdev_t, vdev_state_dirty_node));
1072 1072
1073 1073 txg_list_create(&spa->spa_vdev_txg_list,
1074 1074 offsetof(struct vdev, vdev_txg_node));
1075 1075
1076 1076 avl_create(&spa->spa_errlist_scrub,
1077 1077 spa_error_entry_compare, sizeof (spa_error_entry_t),
1078 1078 offsetof(spa_error_entry_t, se_avl));
1079 1079 avl_create(&spa->spa_errlist_last,
1080 1080 spa_error_entry_compare, sizeof (spa_error_entry_t),
1081 1081 offsetof(spa_error_entry_t, se_avl));
1082 1082 }
1083 1083
1084 1084 /*
1085 1085 * Opposite of spa_activate().
1086 1086 */
1087 1087 static void
1088 1088 spa_deactivate(spa_t *spa)
1089 1089 {
1090 1090 ASSERT(spa->spa_sync_on == B_FALSE);
1091 1091 ASSERT(spa->spa_dsl_pool == NULL);
1092 1092 ASSERT(spa->spa_root_vdev == NULL);
1093 1093 ASSERT(spa->spa_async_zio_root == NULL);
1094 1094 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1095 1095
1096 1096 txg_list_destroy(&spa->spa_vdev_txg_list);
1097 1097
1098 1098 list_destroy(&spa->spa_config_dirty_list);
1099 1099 list_destroy(&spa->spa_state_dirty_list);
1100 1100
1101 1101 for (int t = 0; t < ZIO_TYPES; t++) {
1102 1102 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1103 1103 spa_taskqs_fini(spa, t, q);
1104 1104 }
1105 1105 }
1106 1106
1107 1107 metaslab_class_destroy(spa->spa_normal_class);
1108 1108 spa->spa_normal_class = NULL;
1109 1109
1110 1110 metaslab_class_destroy(spa->spa_log_class);
1111 1111 spa->spa_log_class = NULL;
1112 1112
1113 1113 /*
1114 1114 * If this was part of an import or the open otherwise failed, we may
1115 1115 * still have errors left in the queues. Empty them just in case.
1116 1116 */
1117 1117 spa_errlog_drain(spa);
1118 1118
1119 1119 avl_destroy(&spa->spa_errlist_scrub);
1120 1120 avl_destroy(&spa->spa_errlist_last);
1121 1121
1122 1122 spa->spa_state = POOL_STATE_UNINITIALIZED;
1123 1123
1124 1124 mutex_enter(&spa->spa_proc_lock);
1125 1125 if (spa->spa_proc_state != SPA_PROC_NONE) {
1126 1126 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1127 1127 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1128 1128 cv_broadcast(&spa->spa_proc_cv);
1129 1129 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1130 1130 ASSERT(spa->spa_proc != &p0);
1131 1131 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1132 1132 }
1133 1133 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1134 1134 spa->spa_proc_state = SPA_PROC_NONE;
1135 1135 }
1136 1136 ASSERT(spa->spa_proc == &p0);
1137 1137 mutex_exit(&spa->spa_proc_lock);
1138 1138
1139 1139 /*
1140 1140 * We want to make sure spa_thread() has actually exited the ZFS
1141 1141 * module, so that the module can't be unloaded out from underneath
1142 1142 * it.
1143 1143 */
1144 1144 if (spa->spa_did != 0) {
1145 1145 thread_join(spa->spa_did);
1146 1146 spa->spa_did = 0;
1147 1147 }
1148 1148 }
1149 1149
1150 1150 /*
1151 1151 * Verify a pool configuration, and construct the vdev tree appropriately. This
1152 1152 * will create all the necessary vdevs in the appropriate layout, with each vdev
1153 1153 * in the CLOSED state. This will prep the pool before open/creation/import.
1154 1154 * All vdev validation is done by the vdev_alloc() routine.
1155 1155 */
1156 1156 static int
1157 1157 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1158 1158 uint_t id, int atype)
1159 1159 {
1160 1160 nvlist_t **child;
1161 1161 uint_t children;
1162 1162 int error;
1163 1163
1164 1164 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1165 1165 return (error);
1166 1166
1167 1167 if ((*vdp)->vdev_ops->vdev_op_leaf)
1168 1168 return (0);
1169 1169
1170 1170 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1171 1171 &child, &children);
1172 1172
1173 1173 if (error == ENOENT)
1174 1174 return (0);
1175 1175
1176 1176 if (error) {
1177 1177 vdev_free(*vdp);
1178 1178 *vdp = NULL;
1179 1179 return (SET_ERROR(EINVAL));
1180 1180 }
1181 1181
1182 1182 for (int c = 0; c < children; c++) {
1183 1183 vdev_t *vd;
1184 1184 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1185 1185 atype)) != 0) {
1186 1186 vdev_free(*vdp);
1187 1187 *vdp = NULL;
1188 1188 return (error);
1189 1189 }
1190 1190 }
1191 1191
1192 1192 ASSERT(*vdp != NULL);
1193 1193
1194 1194 return (0);
1195 1195 }
1196 1196
1197 1197 /*
1198 1198 * Opposite of spa_load().
1199 1199 */
1200 1200 static void
1201 1201 spa_unload(spa_t *spa)
1202 1202 {
1203 1203 int i;
1204 1204
1205 1205 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1206 1206
1207 1207 /*
1208 1208 * Stop async tasks.
1209 1209 */
1210 1210 spa_async_suspend(spa);
1211 1211
1212 1212 /*
1213 1213 * Stop syncing.
1214 1214 */
1215 1215 if (spa->spa_sync_on) {
1216 1216 txg_sync_stop(spa->spa_dsl_pool);
1217 1217 spa->spa_sync_on = B_FALSE;
1218 1218 }
1219 1219
↓ open down ↓ |
1219 lines elided |
↑ open up ↑ |
1220 1220 /*
1221 1221 * Wait for any outstanding async I/O to complete.
1222 1222 */
1223 1223 if (spa->spa_async_zio_root != NULL) {
1224 1224 (void) zio_wait(spa->spa_async_zio_root);
1225 1225 spa->spa_async_zio_root = NULL;
1226 1226 }
1227 1227
1228 1228 bpobj_close(&spa->spa_deferred_bpobj);
1229 1229
1230 + spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1231 +
1230 1232 /*
1233 + * Close all vdevs.
1234 + */
1235 + if (spa->spa_root_vdev)
1236 + vdev_free(spa->spa_root_vdev);
1237 + ASSERT(spa->spa_root_vdev == NULL);
1238 +
1239 + /*
1231 1240 * Close the dsl pool.
1232 1241 */
1233 1242 if (spa->spa_dsl_pool) {
1234 1243 dsl_pool_close(spa->spa_dsl_pool);
1235 1244 spa->spa_dsl_pool = NULL;
1236 1245 spa->spa_meta_objset = NULL;
1237 1246 }
1238 1247
1239 1248 ddt_unload(spa);
1240 1249
1241 - spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1242 1250
1243 1251 /*
1244 1252 * Drop and purge level 2 cache
1245 1253 */
1246 1254 spa_l2cache_drop(spa);
1247 1255
1248 - /*
1249 - * Close all vdevs.
1250 - */
1251 - if (spa->spa_root_vdev)
1252 - vdev_free(spa->spa_root_vdev);
1253 - ASSERT(spa->spa_root_vdev == NULL);
1254 -
1255 1256 for (i = 0; i < spa->spa_spares.sav_count; i++)
1256 1257 vdev_free(spa->spa_spares.sav_vdevs[i]);
1257 1258 if (spa->spa_spares.sav_vdevs) {
1258 1259 kmem_free(spa->spa_spares.sav_vdevs,
1259 1260 spa->spa_spares.sav_count * sizeof (void *));
1260 1261 spa->spa_spares.sav_vdevs = NULL;
1261 1262 }
1262 1263 if (spa->spa_spares.sav_config) {
1263 1264 nvlist_free(spa->spa_spares.sav_config);
1264 1265 spa->spa_spares.sav_config = NULL;
1265 1266 }
1266 1267 spa->spa_spares.sav_count = 0;
1267 1268
1268 1269 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1269 1270 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1270 1271 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1271 1272 }
1272 1273 if (spa->spa_l2cache.sav_vdevs) {
1273 1274 kmem_free(spa->spa_l2cache.sav_vdevs,
1274 1275 spa->spa_l2cache.sav_count * sizeof (void *));
1275 1276 spa->spa_l2cache.sav_vdevs = NULL;
1276 1277 }
1277 1278 if (spa->spa_l2cache.sav_config) {
1278 1279 nvlist_free(spa->spa_l2cache.sav_config);
1279 1280 spa->spa_l2cache.sav_config = NULL;
1280 1281 }
1281 1282 spa->spa_l2cache.sav_count = 0;
1282 1283
1283 1284 spa->spa_async_suspended = 0;
1284 1285
1285 1286 if (spa->spa_comment != NULL) {
1286 1287 spa_strfree(spa->spa_comment);
1287 1288 spa->spa_comment = NULL;
1288 1289 }
1289 1290
1290 1291 spa_config_exit(spa, SCL_ALL, FTAG);
1291 1292 }
1292 1293
1293 1294 /*
1294 1295 * Load (or re-load) the current list of vdevs describing the active spares for
1295 1296 * this pool. When this is called, we have some form of basic information in
1296 1297 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1297 1298 * then re-generate a more complete list including status information.
1298 1299 */
1299 1300 static void
1300 1301 spa_load_spares(spa_t *spa)
1301 1302 {
1302 1303 nvlist_t **spares;
1303 1304 uint_t nspares;
1304 1305 int i;
1305 1306 vdev_t *vd, *tvd;
1306 1307
1307 1308 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1308 1309
1309 1310 /*
1310 1311 * First, close and free any existing spare vdevs.
1311 1312 */
1312 1313 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1313 1314 vd = spa->spa_spares.sav_vdevs[i];
1314 1315
1315 1316 /* Undo the call to spa_activate() below */
1316 1317 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1317 1318 B_FALSE)) != NULL && tvd->vdev_isspare)
1318 1319 spa_spare_remove(tvd);
1319 1320 vdev_close(vd);
1320 1321 vdev_free(vd);
1321 1322 }
1322 1323
1323 1324 if (spa->spa_spares.sav_vdevs)
1324 1325 kmem_free(spa->spa_spares.sav_vdevs,
1325 1326 spa->spa_spares.sav_count * sizeof (void *));
1326 1327
1327 1328 if (spa->spa_spares.sav_config == NULL)
1328 1329 nspares = 0;
1329 1330 else
1330 1331 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1331 1332 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1332 1333
1333 1334 spa->spa_spares.sav_count = (int)nspares;
1334 1335 spa->spa_spares.sav_vdevs = NULL;
1335 1336
1336 1337 if (nspares == 0)
1337 1338 return;
1338 1339
1339 1340 /*
1340 1341 * Construct the array of vdevs, opening them to get status in the
1341 1342 * process. For each spare, there is potentially two different vdev_t
1342 1343 * structures associated with it: one in the list of spares (used only
1343 1344 * for basic validation purposes) and one in the active vdev
1344 1345 * configuration (if it's spared in). During this phase we open and
1345 1346 * validate each vdev on the spare list. If the vdev also exists in the
1346 1347 * active configuration, then we also mark this vdev as an active spare.
1347 1348 */
1348 1349 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1349 1350 KM_SLEEP);
1350 1351 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1351 1352 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1352 1353 VDEV_ALLOC_SPARE) == 0);
1353 1354 ASSERT(vd != NULL);
1354 1355
1355 1356 spa->spa_spares.sav_vdevs[i] = vd;
1356 1357
1357 1358 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1358 1359 B_FALSE)) != NULL) {
1359 1360 if (!tvd->vdev_isspare)
1360 1361 spa_spare_add(tvd);
1361 1362
1362 1363 /*
1363 1364 * We only mark the spare active if we were successfully
1364 1365 * able to load the vdev. Otherwise, importing a pool
1365 1366 * with a bad active spare would result in strange
1366 1367 * behavior, because multiple pool would think the spare
1367 1368 * is actively in use.
1368 1369 *
1369 1370 * There is a vulnerability here to an equally bizarre
1370 1371 * circumstance, where a dead active spare is later
1371 1372 * brought back to life (onlined or otherwise). Given
1372 1373 * the rarity of this scenario, and the extra complexity
1373 1374 * it adds, we ignore the possibility.
1374 1375 */
1375 1376 if (!vdev_is_dead(tvd))
1376 1377 spa_spare_activate(tvd);
1377 1378 }
1378 1379
1379 1380 vd->vdev_top = vd;
1380 1381 vd->vdev_aux = &spa->spa_spares;
1381 1382
1382 1383 if (vdev_open(vd) != 0)
1383 1384 continue;
1384 1385
1385 1386 if (vdev_validate_aux(vd) == 0)
1386 1387 spa_spare_add(vd);
1387 1388 }
1388 1389
1389 1390 /*
1390 1391 * Recompute the stashed list of spares, with status information
1391 1392 * this time.
1392 1393 */
1393 1394 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1394 1395 DATA_TYPE_NVLIST_ARRAY) == 0);
1395 1396
1396 1397 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1397 1398 KM_SLEEP);
1398 1399 for (i = 0; i < spa->spa_spares.sav_count; i++)
1399 1400 spares[i] = vdev_config_generate(spa,
1400 1401 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1401 1402 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1402 1403 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1403 1404 for (i = 0; i < spa->spa_spares.sav_count; i++)
1404 1405 nvlist_free(spares[i]);
1405 1406 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1406 1407 }
1407 1408
1408 1409 /*
1409 1410 * Load (or re-load) the current list of vdevs describing the active l2cache for
1410 1411 * this pool. When this is called, we have some form of basic information in
1411 1412 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1412 1413 * then re-generate a more complete list including status information.
1413 1414 * Devices which are already active have their details maintained, and are
1414 1415 * not re-opened.
1415 1416 */
1416 1417 static void
1417 1418 spa_load_l2cache(spa_t *spa)
1418 1419 {
1419 1420 nvlist_t **l2cache;
1420 1421 uint_t nl2cache;
1421 1422 int i, j, oldnvdevs;
1422 1423 uint64_t guid;
1423 1424 vdev_t *vd, **oldvdevs, **newvdevs;
1424 1425 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1425 1426
1426 1427 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1427 1428
1428 1429 if (sav->sav_config != NULL) {
1429 1430 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1430 1431 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1431 1432 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1432 1433 } else {
1433 1434 nl2cache = 0;
1434 1435 newvdevs = NULL;
1435 1436 }
1436 1437
1437 1438 oldvdevs = sav->sav_vdevs;
1438 1439 oldnvdevs = sav->sav_count;
1439 1440 sav->sav_vdevs = NULL;
1440 1441 sav->sav_count = 0;
1441 1442
1442 1443 /*
1443 1444 * Process new nvlist of vdevs.
1444 1445 */
1445 1446 for (i = 0; i < nl2cache; i++) {
1446 1447 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1447 1448 &guid) == 0);
1448 1449
1449 1450 newvdevs[i] = NULL;
1450 1451 for (j = 0; j < oldnvdevs; j++) {
1451 1452 vd = oldvdevs[j];
1452 1453 if (vd != NULL && guid == vd->vdev_guid) {
1453 1454 /*
1454 1455 * Retain previous vdev for add/remove ops.
1455 1456 */
1456 1457 newvdevs[i] = vd;
1457 1458 oldvdevs[j] = NULL;
1458 1459 break;
1459 1460 }
1460 1461 }
1461 1462
1462 1463 if (newvdevs[i] == NULL) {
1463 1464 /*
1464 1465 * Create new vdev
1465 1466 */
1466 1467 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1467 1468 VDEV_ALLOC_L2CACHE) == 0);
1468 1469 ASSERT(vd != NULL);
1469 1470 newvdevs[i] = vd;
1470 1471
1471 1472 /*
1472 1473 * Commit this vdev as an l2cache device,
1473 1474 * even if it fails to open.
1474 1475 */
1475 1476 spa_l2cache_add(vd);
1476 1477
1477 1478 vd->vdev_top = vd;
1478 1479 vd->vdev_aux = sav;
1479 1480
1480 1481 spa_l2cache_activate(vd);
1481 1482
1482 1483 if (vdev_open(vd) != 0)
1483 1484 continue;
1484 1485
1485 1486 (void) vdev_validate_aux(vd);
1486 1487
1487 1488 if (!vdev_is_dead(vd))
1488 1489 l2arc_add_vdev(spa, vd);
1489 1490 }
1490 1491 }
1491 1492
1492 1493 /*
1493 1494 * Purge vdevs that were dropped
1494 1495 */
1495 1496 for (i = 0; i < oldnvdevs; i++) {
1496 1497 uint64_t pool;
1497 1498
1498 1499 vd = oldvdevs[i];
1499 1500 if (vd != NULL) {
1500 1501 ASSERT(vd->vdev_isl2cache);
1501 1502
1502 1503 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1503 1504 pool != 0ULL && l2arc_vdev_present(vd))
1504 1505 l2arc_remove_vdev(vd);
1505 1506 vdev_clear_stats(vd);
1506 1507 vdev_free(vd);
1507 1508 }
1508 1509 }
1509 1510
1510 1511 if (oldvdevs)
1511 1512 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1512 1513
1513 1514 if (sav->sav_config == NULL)
1514 1515 goto out;
1515 1516
1516 1517 sav->sav_vdevs = newvdevs;
1517 1518 sav->sav_count = (int)nl2cache;
1518 1519
1519 1520 /*
1520 1521 * Recompute the stashed list of l2cache devices, with status
1521 1522 * information this time.
1522 1523 */
1523 1524 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1524 1525 DATA_TYPE_NVLIST_ARRAY) == 0);
1525 1526
1526 1527 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1527 1528 for (i = 0; i < sav->sav_count; i++)
1528 1529 l2cache[i] = vdev_config_generate(spa,
1529 1530 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1530 1531 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1531 1532 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1532 1533 out:
1533 1534 for (i = 0; i < sav->sav_count; i++)
1534 1535 nvlist_free(l2cache[i]);
1535 1536 if (sav->sav_count)
1536 1537 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1537 1538 }
1538 1539
1539 1540 static int
1540 1541 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1541 1542 {
1542 1543 dmu_buf_t *db;
1543 1544 char *packed = NULL;
1544 1545 size_t nvsize = 0;
1545 1546 int error;
1546 1547 *value = NULL;
1547 1548
1548 1549 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1549 1550 nvsize = *(uint64_t *)db->db_data;
1550 1551 dmu_buf_rele(db, FTAG);
1551 1552
1552 1553 packed = kmem_alloc(nvsize, KM_SLEEP);
1553 1554 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1554 1555 DMU_READ_PREFETCH);
1555 1556 if (error == 0)
1556 1557 error = nvlist_unpack(packed, nvsize, value, 0);
1557 1558 kmem_free(packed, nvsize);
1558 1559
1559 1560 return (error);
1560 1561 }
1561 1562
1562 1563 /*
1563 1564 * Checks to see if the given vdev could not be opened, in which case we post a
1564 1565 * sysevent to notify the autoreplace code that the device has been removed.
1565 1566 */
1566 1567 static void
1567 1568 spa_check_removed(vdev_t *vd)
1568 1569 {
1569 1570 for (int c = 0; c < vd->vdev_children; c++)
1570 1571 spa_check_removed(vd->vdev_child[c]);
1571 1572
1572 1573 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1573 1574 !vd->vdev_ishole) {
1574 1575 zfs_post_autoreplace(vd->vdev_spa, vd);
1575 1576 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1576 1577 }
1577 1578 }
1578 1579
1579 1580 /*
1580 1581 * Validate the current config against the MOS config
1581 1582 */
1582 1583 static boolean_t
1583 1584 spa_config_valid(spa_t *spa, nvlist_t *config)
1584 1585 {
1585 1586 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1586 1587 nvlist_t *nv;
1587 1588
1588 1589 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1589 1590
1590 1591 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1591 1592 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1592 1593
1593 1594 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1594 1595
1595 1596 /*
1596 1597 * If we're doing a normal import, then build up any additional
1597 1598 * diagnostic information about missing devices in this config.
1598 1599 * We'll pass this up to the user for further processing.
1599 1600 */
1600 1601 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1601 1602 nvlist_t **child, *nv;
1602 1603 uint64_t idx = 0;
1603 1604
1604 1605 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1605 1606 KM_SLEEP);
1606 1607 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1607 1608
1608 1609 for (int c = 0; c < rvd->vdev_children; c++) {
1609 1610 vdev_t *tvd = rvd->vdev_child[c];
1610 1611 vdev_t *mtvd = mrvd->vdev_child[c];
1611 1612
1612 1613 if (tvd->vdev_ops == &vdev_missing_ops &&
1613 1614 mtvd->vdev_ops != &vdev_missing_ops &&
1614 1615 mtvd->vdev_islog)
1615 1616 child[idx++] = vdev_config_generate(spa, mtvd,
1616 1617 B_FALSE, 0);
1617 1618 }
1618 1619
1619 1620 if (idx) {
1620 1621 VERIFY(nvlist_add_nvlist_array(nv,
1621 1622 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1622 1623 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1623 1624 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1624 1625
1625 1626 for (int i = 0; i < idx; i++)
1626 1627 nvlist_free(child[i]);
1627 1628 }
1628 1629 nvlist_free(nv);
1629 1630 kmem_free(child, rvd->vdev_children * sizeof (char **));
1630 1631 }
1631 1632
1632 1633 /*
1633 1634 * Compare the root vdev tree with the information we have
1634 1635 * from the MOS config (mrvd). Check each top-level vdev
1635 1636 * with the corresponding MOS config top-level (mtvd).
1636 1637 */
1637 1638 for (int c = 0; c < rvd->vdev_children; c++) {
1638 1639 vdev_t *tvd = rvd->vdev_child[c];
1639 1640 vdev_t *mtvd = mrvd->vdev_child[c];
1640 1641
1641 1642 /*
1642 1643 * Resolve any "missing" vdevs in the current configuration.
1643 1644 * If we find that the MOS config has more accurate information
1644 1645 * about the top-level vdev then use that vdev instead.
1645 1646 */
1646 1647 if (tvd->vdev_ops == &vdev_missing_ops &&
1647 1648 mtvd->vdev_ops != &vdev_missing_ops) {
1648 1649
1649 1650 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1650 1651 continue;
1651 1652
1652 1653 /*
1653 1654 * Device specific actions.
1654 1655 */
1655 1656 if (mtvd->vdev_islog) {
1656 1657 spa_set_log_state(spa, SPA_LOG_CLEAR);
1657 1658 } else {
1658 1659 /*
1659 1660 * XXX - once we have 'readonly' pool
1660 1661 * support we should be able to handle
1661 1662 * missing data devices by transitioning
1662 1663 * the pool to readonly.
1663 1664 */
1664 1665 continue;
1665 1666 }
1666 1667
1667 1668 /*
1668 1669 * Swap the missing vdev with the data we were
1669 1670 * able to obtain from the MOS config.
1670 1671 */
1671 1672 vdev_remove_child(rvd, tvd);
1672 1673 vdev_remove_child(mrvd, mtvd);
1673 1674
1674 1675 vdev_add_child(rvd, mtvd);
1675 1676 vdev_add_child(mrvd, tvd);
1676 1677
1677 1678 spa_config_exit(spa, SCL_ALL, FTAG);
1678 1679 vdev_load(mtvd);
1679 1680 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1680 1681
1681 1682 vdev_reopen(rvd);
1682 1683 } else if (mtvd->vdev_islog) {
1683 1684 /*
1684 1685 * Load the slog device's state from the MOS config
1685 1686 * since it's possible that the label does not
1686 1687 * contain the most up-to-date information.
1687 1688 */
1688 1689 vdev_load_log_state(tvd, mtvd);
1689 1690 vdev_reopen(tvd);
1690 1691 }
1691 1692 }
1692 1693 vdev_free(mrvd);
1693 1694 spa_config_exit(spa, SCL_ALL, FTAG);
1694 1695
1695 1696 /*
1696 1697 * Ensure we were able to validate the config.
1697 1698 */
1698 1699 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1699 1700 }
1700 1701
1701 1702 /*
1702 1703 * Check for missing log devices
1703 1704 */
1704 1705 static boolean_t
1705 1706 spa_check_logs(spa_t *spa)
1706 1707 {
1707 1708 boolean_t rv = B_FALSE;
1708 1709
1709 1710 switch (spa->spa_log_state) {
1710 1711 case SPA_LOG_MISSING:
1711 1712 /* need to recheck in case slog has been restored */
1712 1713 case SPA_LOG_UNKNOWN:
1713 1714 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1714 1715 NULL, DS_FIND_CHILDREN) != 0);
1715 1716 if (rv)
1716 1717 spa_set_log_state(spa, SPA_LOG_MISSING);
1717 1718 break;
1718 1719 }
1719 1720 return (rv);
1720 1721 }
1721 1722
1722 1723 static boolean_t
1723 1724 spa_passivate_log(spa_t *spa)
1724 1725 {
1725 1726 vdev_t *rvd = spa->spa_root_vdev;
1726 1727 boolean_t slog_found = B_FALSE;
1727 1728
1728 1729 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1729 1730
1730 1731 if (!spa_has_slogs(spa))
1731 1732 return (B_FALSE);
1732 1733
1733 1734 for (int c = 0; c < rvd->vdev_children; c++) {
1734 1735 vdev_t *tvd = rvd->vdev_child[c];
1735 1736 metaslab_group_t *mg = tvd->vdev_mg;
1736 1737
1737 1738 if (tvd->vdev_islog) {
1738 1739 metaslab_group_passivate(mg);
1739 1740 slog_found = B_TRUE;
1740 1741 }
1741 1742 }
1742 1743
1743 1744 return (slog_found);
1744 1745 }
1745 1746
1746 1747 static void
1747 1748 spa_activate_log(spa_t *spa)
1748 1749 {
1749 1750 vdev_t *rvd = spa->spa_root_vdev;
1750 1751
1751 1752 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1752 1753
1753 1754 for (int c = 0; c < rvd->vdev_children; c++) {
1754 1755 vdev_t *tvd = rvd->vdev_child[c];
1755 1756 metaslab_group_t *mg = tvd->vdev_mg;
1756 1757
1757 1758 if (tvd->vdev_islog)
1758 1759 metaslab_group_activate(mg);
1759 1760 }
1760 1761 }
1761 1762
1762 1763 int
1763 1764 spa_offline_log(spa_t *spa)
1764 1765 {
1765 1766 int error;
1766 1767
1767 1768 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1768 1769 NULL, DS_FIND_CHILDREN);
1769 1770 if (error == 0) {
1770 1771 /*
1771 1772 * We successfully offlined the log device, sync out the
1772 1773 * current txg so that the "stubby" block can be removed
1773 1774 * by zil_sync().
1774 1775 */
1775 1776 txg_wait_synced(spa->spa_dsl_pool, 0);
1776 1777 }
1777 1778 return (error);
1778 1779 }
1779 1780
1780 1781 static void
1781 1782 spa_aux_check_removed(spa_aux_vdev_t *sav)
1782 1783 {
1783 1784 for (int i = 0; i < sav->sav_count; i++)
1784 1785 spa_check_removed(sav->sav_vdevs[i]);
1785 1786 }
1786 1787
1787 1788 void
1788 1789 spa_claim_notify(zio_t *zio)
1789 1790 {
1790 1791 spa_t *spa = zio->io_spa;
1791 1792
1792 1793 if (zio->io_error)
1793 1794 return;
1794 1795
1795 1796 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1796 1797 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1797 1798 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1798 1799 mutex_exit(&spa->spa_props_lock);
1799 1800 }
1800 1801
1801 1802 typedef struct spa_load_error {
1802 1803 uint64_t sle_meta_count;
1803 1804 uint64_t sle_data_count;
1804 1805 } spa_load_error_t;
1805 1806
1806 1807 static void
1807 1808 spa_load_verify_done(zio_t *zio)
1808 1809 {
1809 1810 blkptr_t *bp = zio->io_bp;
1810 1811 spa_load_error_t *sle = zio->io_private;
1811 1812 dmu_object_type_t type = BP_GET_TYPE(bp);
1812 1813 int error = zio->io_error;
1813 1814
1814 1815 if (error) {
1815 1816 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1816 1817 type != DMU_OT_INTENT_LOG)
1817 1818 atomic_add_64(&sle->sle_meta_count, 1);
1818 1819 else
1819 1820 atomic_add_64(&sle->sle_data_count, 1);
1820 1821 }
1821 1822 zio_data_buf_free(zio->io_data, zio->io_size);
1822 1823 }
1823 1824
1824 1825 /*ARGSUSED*/
1825 1826 static int
1826 1827 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1827 1828 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1828 1829 {
1829 1830 if (bp != NULL) {
1830 1831 zio_t *rio = arg;
1831 1832 size_t size = BP_GET_PSIZE(bp);
1832 1833 void *data = zio_data_buf_alloc(size);
1833 1834
1834 1835 zio_nowait(zio_read(rio, spa, bp, data, size,
1835 1836 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1836 1837 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1837 1838 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1838 1839 }
1839 1840 return (0);
1840 1841 }
1841 1842
1842 1843 static int
1843 1844 spa_load_verify(spa_t *spa)
1844 1845 {
1845 1846 zio_t *rio;
1846 1847 spa_load_error_t sle = { 0 };
1847 1848 zpool_rewind_policy_t policy;
1848 1849 boolean_t verify_ok = B_FALSE;
1849 1850 int error;
1850 1851
1851 1852 zpool_get_rewind_policy(spa->spa_config, &policy);
1852 1853
1853 1854 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1854 1855 return (0);
1855 1856
1856 1857 rio = zio_root(spa, NULL, &sle,
1857 1858 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1858 1859
1859 1860 error = traverse_pool(spa, spa->spa_verify_min_txg,
1860 1861 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1861 1862
1862 1863 (void) zio_wait(rio);
1863 1864
1864 1865 spa->spa_load_meta_errors = sle.sle_meta_count;
1865 1866 spa->spa_load_data_errors = sle.sle_data_count;
1866 1867
1867 1868 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1868 1869 sle.sle_data_count <= policy.zrp_maxdata) {
1869 1870 int64_t loss = 0;
1870 1871
1871 1872 verify_ok = B_TRUE;
1872 1873 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1873 1874 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1874 1875
1875 1876 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1876 1877 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1877 1878 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1878 1879 VERIFY(nvlist_add_int64(spa->spa_load_info,
1879 1880 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1880 1881 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1881 1882 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1882 1883 } else {
1883 1884 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1884 1885 }
1885 1886
1886 1887 if (error) {
1887 1888 if (error != ENXIO && error != EIO)
1888 1889 error = SET_ERROR(EIO);
1889 1890 return (error);
1890 1891 }
1891 1892
1892 1893 return (verify_ok ? 0 : EIO);
1893 1894 }
1894 1895
1895 1896 /*
1896 1897 * Find a value in the pool props object.
1897 1898 */
1898 1899 static void
1899 1900 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1900 1901 {
1901 1902 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1902 1903 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1903 1904 }
1904 1905
1905 1906 /*
1906 1907 * Find a value in the pool directory object.
1907 1908 */
1908 1909 static int
1909 1910 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1910 1911 {
1911 1912 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1912 1913 name, sizeof (uint64_t), 1, val));
1913 1914 }
1914 1915
1915 1916 static int
1916 1917 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1917 1918 {
1918 1919 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1919 1920 return (err);
1920 1921 }
1921 1922
1922 1923 /*
1923 1924 * Fix up config after a partly-completed split. This is done with the
1924 1925 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1925 1926 * pool have that entry in their config, but only the splitting one contains
1926 1927 * a list of all the guids of the vdevs that are being split off.
1927 1928 *
1928 1929 * This function determines what to do with that list: either rejoin
1929 1930 * all the disks to the pool, or complete the splitting process. To attempt
1930 1931 * the rejoin, each disk that is offlined is marked online again, and
1931 1932 * we do a reopen() call. If the vdev label for every disk that was
1932 1933 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1933 1934 * then we call vdev_split() on each disk, and complete the split.
1934 1935 *
1935 1936 * Otherwise we leave the config alone, with all the vdevs in place in
1936 1937 * the original pool.
1937 1938 */
1938 1939 static void
1939 1940 spa_try_repair(spa_t *spa, nvlist_t *config)
1940 1941 {
1941 1942 uint_t extracted;
1942 1943 uint64_t *glist;
1943 1944 uint_t i, gcount;
1944 1945 nvlist_t *nvl;
1945 1946 vdev_t **vd;
1946 1947 boolean_t attempt_reopen;
1947 1948
1948 1949 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1949 1950 return;
1950 1951
1951 1952 /* check that the config is complete */
1952 1953 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1953 1954 &glist, &gcount) != 0)
1954 1955 return;
1955 1956
1956 1957 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1957 1958
1958 1959 /* attempt to online all the vdevs & validate */
1959 1960 attempt_reopen = B_TRUE;
1960 1961 for (i = 0; i < gcount; i++) {
1961 1962 if (glist[i] == 0) /* vdev is hole */
1962 1963 continue;
1963 1964
1964 1965 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1965 1966 if (vd[i] == NULL) {
1966 1967 /*
1967 1968 * Don't bother attempting to reopen the disks;
1968 1969 * just do the split.
1969 1970 */
1970 1971 attempt_reopen = B_FALSE;
1971 1972 } else {
1972 1973 /* attempt to re-online it */
1973 1974 vd[i]->vdev_offline = B_FALSE;
1974 1975 }
1975 1976 }
1976 1977
1977 1978 if (attempt_reopen) {
1978 1979 vdev_reopen(spa->spa_root_vdev);
1979 1980
1980 1981 /* check each device to see what state it's in */
1981 1982 for (extracted = 0, i = 0; i < gcount; i++) {
1982 1983 if (vd[i] != NULL &&
1983 1984 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1984 1985 break;
1985 1986 ++extracted;
1986 1987 }
1987 1988 }
1988 1989
1989 1990 /*
1990 1991 * If every disk has been moved to the new pool, or if we never
1991 1992 * even attempted to look at them, then we split them off for
1992 1993 * good.
1993 1994 */
1994 1995 if (!attempt_reopen || gcount == extracted) {
1995 1996 for (i = 0; i < gcount; i++)
1996 1997 if (vd[i] != NULL)
1997 1998 vdev_split(vd[i]);
1998 1999 vdev_reopen(spa->spa_root_vdev);
1999 2000 }
2000 2001
2001 2002 kmem_free(vd, gcount * sizeof (vdev_t *));
2002 2003 }
2003 2004
2004 2005 static int
2005 2006 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2006 2007 boolean_t mosconfig)
2007 2008 {
2008 2009 nvlist_t *config = spa->spa_config;
2009 2010 char *ereport = FM_EREPORT_ZFS_POOL;
2010 2011 char *comment;
2011 2012 int error;
2012 2013 uint64_t pool_guid;
2013 2014 nvlist_t *nvl;
2014 2015
2015 2016 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2016 2017 return (SET_ERROR(EINVAL));
2017 2018
2018 2019 ASSERT(spa->spa_comment == NULL);
2019 2020 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2020 2021 spa->spa_comment = spa_strdup(comment);
2021 2022
2022 2023 /*
2023 2024 * Versioning wasn't explicitly added to the label until later, so if
2024 2025 * it's not present treat it as the initial version.
2025 2026 */
2026 2027 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2027 2028 &spa->spa_ubsync.ub_version) != 0)
2028 2029 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2029 2030
2030 2031 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2031 2032 &spa->spa_config_txg);
2032 2033
2033 2034 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2034 2035 spa_guid_exists(pool_guid, 0)) {
2035 2036 error = SET_ERROR(EEXIST);
2036 2037 } else {
2037 2038 spa->spa_config_guid = pool_guid;
2038 2039
2039 2040 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2040 2041 &nvl) == 0) {
2041 2042 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2042 2043 KM_SLEEP) == 0);
2043 2044 }
2044 2045
2045 2046 nvlist_free(spa->spa_load_info);
2046 2047 spa->spa_load_info = fnvlist_alloc();
2047 2048
2048 2049 gethrestime(&spa->spa_loaded_ts);
2049 2050 error = spa_load_impl(spa, pool_guid, config, state, type,
2050 2051 mosconfig, &ereport);
2051 2052 }
2052 2053
2053 2054 spa->spa_minref = refcount_count(&spa->spa_refcount);
2054 2055 if (error) {
2055 2056 if (error != EEXIST) {
2056 2057 spa->spa_loaded_ts.tv_sec = 0;
2057 2058 spa->spa_loaded_ts.tv_nsec = 0;
2058 2059 }
2059 2060 if (error != EBADF) {
2060 2061 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2061 2062 }
2062 2063 }
2063 2064 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2064 2065 spa->spa_ena = 0;
2065 2066
2066 2067 return (error);
2067 2068 }
2068 2069
2069 2070 /*
2070 2071 * Load an existing storage pool, using the pool's builtin spa_config as a
2071 2072 * source of configuration information.
2072 2073 */
2073 2074 static int
2074 2075 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2075 2076 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2076 2077 char **ereport)
2077 2078 {
2078 2079 int error = 0;
2079 2080 nvlist_t *nvroot = NULL;
2080 2081 nvlist_t *label;
2081 2082 vdev_t *rvd;
2082 2083 uberblock_t *ub = &spa->spa_uberblock;
2083 2084 uint64_t children, config_cache_txg = spa->spa_config_txg;
2084 2085 int orig_mode = spa->spa_mode;
2085 2086 int parse;
2086 2087 uint64_t obj;
2087 2088 boolean_t missing_feat_write = B_FALSE;
2088 2089
2089 2090 /*
2090 2091 * If this is an untrusted config, access the pool in read-only mode.
2091 2092 * This prevents things like resilvering recently removed devices.
2092 2093 */
2093 2094 if (!mosconfig)
2094 2095 spa->spa_mode = FREAD;
2095 2096
2096 2097 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2097 2098
2098 2099 spa->spa_load_state = state;
2099 2100
2100 2101 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2101 2102 return (SET_ERROR(EINVAL));
2102 2103
2103 2104 parse = (type == SPA_IMPORT_EXISTING ?
2104 2105 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2105 2106
2106 2107 /*
2107 2108 * Create "The Godfather" zio to hold all async IOs
2108 2109 */
2109 2110 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2110 2111 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2111 2112
2112 2113 /*
2113 2114 * Parse the configuration into a vdev tree. We explicitly set the
2114 2115 * value that will be returned by spa_version() since parsing the
2115 2116 * configuration requires knowing the version number.
2116 2117 */
2117 2118 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2118 2119 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2119 2120 spa_config_exit(spa, SCL_ALL, FTAG);
2120 2121
2121 2122 if (error != 0)
2122 2123 return (error);
2123 2124
2124 2125 ASSERT(spa->spa_root_vdev == rvd);
2125 2126
2126 2127 if (type != SPA_IMPORT_ASSEMBLE) {
2127 2128 ASSERT(spa_guid(spa) == pool_guid);
2128 2129 }
2129 2130
2130 2131 /*
2131 2132 * Try to open all vdevs, loading each label in the process.
2132 2133 */
2133 2134 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2134 2135 error = vdev_open(rvd);
2135 2136 spa_config_exit(spa, SCL_ALL, FTAG);
2136 2137 if (error != 0)
2137 2138 return (error);
2138 2139
2139 2140 /*
2140 2141 * We need to validate the vdev labels against the configuration that
2141 2142 * we have in hand, which is dependent on the setting of mosconfig. If
2142 2143 * mosconfig is true then we're validating the vdev labels based on
2143 2144 * that config. Otherwise, we're validating against the cached config
2144 2145 * (zpool.cache) that was read when we loaded the zfs module, and then
2145 2146 * later we will recursively call spa_load() and validate against
2146 2147 * the vdev config.
2147 2148 *
2148 2149 * If we're assembling a new pool that's been split off from an
2149 2150 * existing pool, the labels haven't yet been updated so we skip
2150 2151 * validation for now.
2151 2152 */
2152 2153 if (type != SPA_IMPORT_ASSEMBLE) {
2153 2154 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2154 2155 error = vdev_validate(rvd, mosconfig);
2155 2156 spa_config_exit(spa, SCL_ALL, FTAG);
2156 2157
2157 2158 if (error != 0)
2158 2159 return (error);
2159 2160
2160 2161 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2161 2162 return (SET_ERROR(ENXIO));
2162 2163 }
2163 2164
2164 2165 /*
2165 2166 * Find the best uberblock.
2166 2167 */
2167 2168 vdev_uberblock_load(rvd, ub, &label);
2168 2169
2169 2170 /*
2170 2171 * If we weren't able to find a single valid uberblock, return failure.
2171 2172 */
2172 2173 if (ub->ub_txg == 0) {
2173 2174 nvlist_free(label);
2174 2175 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2175 2176 }
2176 2177
2177 2178 /*
2178 2179 * If the pool has an unsupported version we can't open it.
2179 2180 */
2180 2181 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2181 2182 nvlist_free(label);
2182 2183 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2183 2184 }
2184 2185
2185 2186 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2186 2187 nvlist_t *features;
2187 2188
2188 2189 /*
2189 2190 * If we weren't able to find what's necessary for reading the
2190 2191 * MOS in the label, return failure.
2191 2192 */
2192 2193 if (label == NULL || nvlist_lookup_nvlist(label,
2193 2194 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2194 2195 nvlist_free(label);
2195 2196 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2196 2197 ENXIO));
2197 2198 }
2198 2199
2199 2200 /*
2200 2201 * Update our in-core representation with the definitive values
2201 2202 * from the label.
2202 2203 */
2203 2204 nvlist_free(spa->spa_label_features);
2204 2205 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2205 2206 }
2206 2207
2207 2208 nvlist_free(label);
2208 2209
2209 2210 /*
2210 2211 * Look through entries in the label nvlist's features_for_read. If
2211 2212 * there is a feature listed there which we don't understand then we
2212 2213 * cannot open a pool.
2213 2214 */
2214 2215 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2215 2216 nvlist_t *unsup_feat;
2216 2217
2217 2218 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2218 2219 0);
2219 2220
2220 2221 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2221 2222 NULL); nvp != NULL;
2222 2223 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2223 2224 if (!zfeature_is_supported(nvpair_name(nvp))) {
2224 2225 VERIFY(nvlist_add_string(unsup_feat,
2225 2226 nvpair_name(nvp), "") == 0);
2226 2227 }
2227 2228 }
2228 2229
2229 2230 if (!nvlist_empty(unsup_feat)) {
2230 2231 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2231 2232 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2232 2233 nvlist_free(unsup_feat);
2233 2234 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2234 2235 ENOTSUP));
2235 2236 }
2236 2237
2237 2238 nvlist_free(unsup_feat);
2238 2239 }
2239 2240
2240 2241 /*
2241 2242 * If the vdev guid sum doesn't match the uberblock, we have an
2242 2243 * incomplete configuration. We first check to see if the pool
2243 2244 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2244 2245 * If it is, defer the vdev_guid_sum check till later so we
2245 2246 * can handle missing vdevs.
2246 2247 */
2247 2248 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2248 2249 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2249 2250 rvd->vdev_guid_sum != ub->ub_guid_sum)
2250 2251 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2251 2252
2252 2253 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2253 2254 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2254 2255 spa_try_repair(spa, config);
2255 2256 spa_config_exit(spa, SCL_ALL, FTAG);
2256 2257 nvlist_free(spa->spa_config_splitting);
2257 2258 spa->spa_config_splitting = NULL;
2258 2259 }
2259 2260
2260 2261 /*
2261 2262 * Initialize internal SPA structures.
2262 2263 */
2263 2264 spa->spa_state = POOL_STATE_ACTIVE;
2264 2265 spa->spa_ubsync = spa->spa_uberblock;
2265 2266 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2266 2267 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2267 2268 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2268 2269 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2269 2270 spa->spa_claim_max_txg = spa->spa_first_txg;
2270 2271 spa->spa_prev_software_version = ub->ub_software_version;
2271 2272
2272 2273 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2273 2274 if (error)
2274 2275 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2275 2276 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2276 2277
2277 2278 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2278 2279 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2279 2280
2280 2281 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2281 2282 boolean_t missing_feat_read = B_FALSE;
2282 2283 nvlist_t *unsup_feat, *enabled_feat;
2283 2284
2284 2285 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2285 2286 &spa->spa_feat_for_read_obj) != 0) {
2286 2287 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2287 2288 }
2288 2289
2289 2290 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2290 2291 &spa->spa_feat_for_write_obj) != 0) {
2291 2292 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2292 2293 }
2293 2294
2294 2295 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2295 2296 &spa->spa_feat_desc_obj) != 0) {
2296 2297 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2297 2298 }
2298 2299
2299 2300 enabled_feat = fnvlist_alloc();
2300 2301 unsup_feat = fnvlist_alloc();
2301 2302
2302 2303 if (!feature_is_supported(spa->spa_meta_objset,
2303 2304 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2304 2305 unsup_feat, enabled_feat))
2305 2306 missing_feat_read = B_TRUE;
2306 2307
2307 2308 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2308 2309 if (!feature_is_supported(spa->spa_meta_objset,
2309 2310 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2310 2311 unsup_feat, enabled_feat)) {
2311 2312 missing_feat_write = B_TRUE;
2312 2313 }
2313 2314 }
2314 2315
2315 2316 fnvlist_add_nvlist(spa->spa_load_info,
2316 2317 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2317 2318
2318 2319 if (!nvlist_empty(unsup_feat)) {
2319 2320 fnvlist_add_nvlist(spa->spa_load_info,
2320 2321 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2321 2322 }
2322 2323
2323 2324 fnvlist_free(enabled_feat);
2324 2325 fnvlist_free(unsup_feat);
2325 2326
2326 2327 if (!missing_feat_read) {
2327 2328 fnvlist_add_boolean(spa->spa_load_info,
2328 2329 ZPOOL_CONFIG_CAN_RDONLY);
2329 2330 }
2330 2331
2331 2332 /*
2332 2333 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2333 2334 * twofold: to determine whether the pool is available for
2334 2335 * import in read-write mode and (if it is not) whether the
2335 2336 * pool is available for import in read-only mode. If the pool
2336 2337 * is available for import in read-write mode, it is displayed
2337 2338 * as available in userland; if it is not available for import
2338 2339 * in read-only mode, it is displayed as unavailable in
2339 2340 * userland. If the pool is available for import in read-only
2340 2341 * mode but not read-write mode, it is displayed as unavailable
2341 2342 * in userland with a special note that the pool is actually
2342 2343 * available for open in read-only mode.
2343 2344 *
2344 2345 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2345 2346 * missing a feature for write, we must first determine whether
2346 2347 * the pool can be opened read-only before returning to
2347 2348 * userland in order to know whether to display the
2348 2349 * abovementioned note.
2349 2350 */
2350 2351 if (missing_feat_read || (missing_feat_write &&
2351 2352 spa_writeable(spa))) {
2352 2353 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2353 2354 ENOTSUP));
2354 2355 }
2355 2356 }
2356 2357
2357 2358 spa->spa_is_initializing = B_TRUE;
2358 2359 error = dsl_pool_open(spa->spa_dsl_pool);
2359 2360 spa->spa_is_initializing = B_FALSE;
2360 2361 if (error != 0)
2361 2362 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2362 2363
2363 2364 if (!mosconfig) {
2364 2365 uint64_t hostid;
2365 2366 nvlist_t *policy = NULL, *nvconfig;
2366 2367
2367 2368 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2368 2369 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2369 2370
2370 2371 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2371 2372 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2372 2373 char *hostname;
2373 2374 unsigned long myhostid = 0;
2374 2375
2375 2376 VERIFY(nvlist_lookup_string(nvconfig,
2376 2377 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2377 2378
2378 2379 #ifdef _KERNEL
2379 2380 myhostid = zone_get_hostid(NULL);
2380 2381 #else /* _KERNEL */
2381 2382 /*
2382 2383 * We're emulating the system's hostid in userland, so
2383 2384 * we can't use zone_get_hostid().
2384 2385 */
2385 2386 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2386 2387 #endif /* _KERNEL */
2387 2388 if (hostid != 0 && myhostid != 0 &&
2388 2389 hostid != myhostid) {
2389 2390 nvlist_free(nvconfig);
2390 2391 cmn_err(CE_WARN, "pool '%s' could not be "
2391 2392 "loaded as it was last accessed by "
2392 2393 "another system (host: %s hostid: 0x%lx). "
2393 2394 "See: http://illumos.org/msg/ZFS-8000-EY",
2394 2395 spa_name(spa), hostname,
2395 2396 (unsigned long)hostid);
2396 2397 return (SET_ERROR(EBADF));
2397 2398 }
2398 2399 }
2399 2400 if (nvlist_lookup_nvlist(spa->spa_config,
2400 2401 ZPOOL_REWIND_POLICY, &policy) == 0)
2401 2402 VERIFY(nvlist_add_nvlist(nvconfig,
2402 2403 ZPOOL_REWIND_POLICY, policy) == 0);
2403 2404
2404 2405 spa_config_set(spa, nvconfig);
2405 2406 spa_unload(spa);
2406 2407 spa_deactivate(spa);
2407 2408 spa_activate(spa, orig_mode);
2408 2409
2409 2410 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2410 2411 }
2411 2412
2412 2413 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2413 2414 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2414 2415 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2415 2416 if (error != 0)
2416 2417 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2417 2418
2418 2419 /*
2419 2420 * Load the bit that tells us to use the new accounting function
2420 2421 * (raid-z deflation). If we have an older pool, this will not
2421 2422 * be present.
2422 2423 */
2423 2424 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2424 2425 if (error != 0 && error != ENOENT)
2425 2426 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2426 2427
2427 2428 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2428 2429 &spa->spa_creation_version);
2429 2430 if (error != 0 && error != ENOENT)
2430 2431 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2431 2432
2432 2433 /*
2433 2434 * Load the persistent error log. If we have an older pool, this will
2434 2435 * not be present.
2435 2436 */
2436 2437 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2437 2438 if (error != 0 && error != ENOENT)
2438 2439 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2439 2440
2440 2441 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2441 2442 &spa->spa_errlog_scrub);
2442 2443 if (error != 0 && error != ENOENT)
2443 2444 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2444 2445
2445 2446 /*
2446 2447 * Load the history object. If we have an older pool, this
2447 2448 * will not be present.
2448 2449 */
2449 2450 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2450 2451 if (error != 0 && error != ENOENT)
2451 2452 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2452 2453
2453 2454 /*
2454 2455 * If we're assembling the pool from the split-off vdevs of
2455 2456 * an existing pool, we don't want to attach the spares & cache
2456 2457 * devices.
2457 2458 */
2458 2459
2459 2460 /*
2460 2461 * Load any hot spares for this pool.
2461 2462 */
2462 2463 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2463 2464 if (error != 0 && error != ENOENT)
2464 2465 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2465 2466 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2466 2467 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2467 2468 if (load_nvlist(spa, spa->spa_spares.sav_object,
2468 2469 &spa->spa_spares.sav_config) != 0)
2469 2470 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2470 2471
2471 2472 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2472 2473 spa_load_spares(spa);
2473 2474 spa_config_exit(spa, SCL_ALL, FTAG);
2474 2475 } else if (error == 0) {
2475 2476 spa->spa_spares.sav_sync = B_TRUE;
2476 2477 }
2477 2478
2478 2479 /*
2479 2480 * Load any level 2 ARC devices for this pool.
2480 2481 */
2481 2482 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2482 2483 &spa->spa_l2cache.sav_object);
2483 2484 if (error != 0 && error != ENOENT)
2484 2485 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2485 2486 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2486 2487 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2487 2488 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2488 2489 &spa->spa_l2cache.sav_config) != 0)
2489 2490 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2490 2491
2491 2492 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2492 2493 spa_load_l2cache(spa);
2493 2494 spa_config_exit(spa, SCL_ALL, FTAG);
2494 2495 } else if (error == 0) {
2495 2496 spa->spa_l2cache.sav_sync = B_TRUE;
2496 2497 }
2497 2498
2498 2499 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2499 2500
2500 2501 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2501 2502 if (error && error != ENOENT)
2502 2503 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2503 2504
2504 2505 if (error == 0) {
2505 2506 uint64_t autoreplace;
2506 2507
2507 2508 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2508 2509 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2509 2510 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2510 2511 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2511 2512 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2512 2513 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2513 2514 &spa->spa_dedup_ditto);
2514 2515
2515 2516 spa->spa_autoreplace = (autoreplace != 0);
2516 2517 }
2517 2518
2518 2519 /*
2519 2520 * If the 'autoreplace' property is set, then post a resource notifying
2520 2521 * the ZFS DE that it should not issue any faults for unopenable
2521 2522 * devices. We also iterate over the vdevs, and post a sysevent for any
2522 2523 * unopenable vdevs so that the normal autoreplace handler can take
2523 2524 * over.
2524 2525 */
2525 2526 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2526 2527 spa_check_removed(spa->spa_root_vdev);
2527 2528 /*
2528 2529 * For the import case, this is done in spa_import(), because
2529 2530 * at this point we're using the spare definitions from
2530 2531 * the MOS config, not necessarily from the userland config.
2531 2532 */
2532 2533 if (state != SPA_LOAD_IMPORT) {
2533 2534 spa_aux_check_removed(&spa->spa_spares);
2534 2535 spa_aux_check_removed(&spa->spa_l2cache);
2535 2536 }
2536 2537 }
2537 2538
2538 2539 /*
2539 2540 * Load the vdev state for all toplevel vdevs.
2540 2541 */
2541 2542 vdev_load(rvd);
2542 2543
2543 2544 /*
2544 2545 * Propagate the leaf DTLs we just loaded all the way up the tree.
2545 2546 */
2546 2547 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2547 2548 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2548 2549 spa_config_exit(spa, SCL_ALL, FTAG);
2549 2550
2550 2551 /*
2551 2552 * Load the DDTs (dedup tables).
2552 2553 */
2553 2554 error = ddt_load(spa);
2554 2555 if (error != 0)
2555 2556 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2556 2557
2557 2558 spa_update_dspace(spa);
2558 2559
2559 2560 /*
2560 2561 * Validate the config, using the MOS config to fill in any
2561 2562 * information which might be missing. If we fail to validate
2562 2563 * the config then declare the pool unfit for use. If we're
2563 2564 * assembling a pool from a split, the log is not transferred
2564 2565 * over.
2565 2566 */
2566 2567 if (type != SPA_IMPORT_ASSEMBLE) {
2567 2568 nvlist_t *nvconfig;
2568 2569
2569 2570 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2570 2571 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2571 2572
2572 2573 if (!spa_config_valid(spa, nvconfig)) {
2573 2574 nvlist_free(nvconfig);
2574 2575 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2575 2576 ENXIO));
2576 2577 }
2577 2578 nvlist_free(nvconfig);
2578 2579
2579 2580 /*
2580 2581 * Now that we've validated the config, check the state of the
2581 2582 * root vdev. If it can't be opened, it indicates one or
2582 2583 * more toplevel vdevs are faulted.
2583 2584 */
2584 2585 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2585 2586 return (SET_ERROR(ENXIO));
2586 2587
2587 2588 if (spa_check_logs(spa)) {
2588 2589 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2589 2590 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2590 2591 }
2591 2592 }
2592 2593
2593 2594 if (missing_feat_write) {
2594 2595 ASSERT(state == SPA_LOAD_TRYIMPORT);
2595 2596
2596 2597 /*
2597 2598 * At this point, we know that we can open the pool in
2598 2599 * read-only mode but not read-write mode. We now have enough
2599 2600 * information and can return to userland.
2600 2601 */
2601 2602 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2602 2603 }
2603 2604
2604 2605 /*
2605 2606 * We've successfully opened the pool, verify that we're ready
2606 2607 * to start pushing transactions.
2607 2608 */
2608 2609 if (state != SPA_LOAD_TRYIMPORT) {
2609 2610 if (error = spa_load_verify(spa))
2610 2611 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2611 2612 error));
2612 2613 }
2613 2614
2614 2615 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2615 2616 spa->spa_load_max_txg == UINT64_MAX)) {
2616 2617 dmu_tx_t *tx;
2617 2618 int need_update = B_FALSE;
2618 2619
2619 2620 ASSERT(state != SPA_LOAD_TRYIMPORT);
2620 2621
2621 2622 /*
2622 2623 * Claim log blocks that haven't been committed yet.
2623 2624 * This must all happen in a single txg.
2624 2625 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2625 2626 * invoked from zil_claim_log_block()'s i/o done callback.
2626 2627 * Price of rollback is that we abandon the log.
2627 2628 */
2628 2629 spa->spa_claiming = B_TRUE;
2629 2630
2630 2631 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2631 2632 spa_first_txg(spa));
2632 2633 (void) dmu_objset_find(spa_name(spa),
2633 2634 zil_claim, tx, DS_FIND_CHILDREN);
2634 2635 dmu_tx_commit(tx);
2635 2636
2636 2637 spa->spa_claiming = B_FALSE;
2637 2638
2638 2639 spa_set_log_state(spa, SPA_LOG_GOOD);
2639 2640 spa->spa_sync_on = B_TRUE;
2640 2641 txg_sync_start(spa->spa_dsl_pool);
2641 2642
2642 2643 /*
2643 2644 * Wait for all claims to sync. We sync up to the highest
2644 2645 * claimed log block birth time so that claimed log blocks
2645 2646 * don't appear to be from the future. spa_claim_max_txg
2646 2647 * will have been set for us by either zil_check_log_chain()
2647 2648 * (invoked from spa_check_logs()) or zil_claim() above.
2648 2649 */
2649 2650 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2650 2651
2651 2652 /*
2652 2653 * If the config cache is stale, or we have uninitialized
2653 2654 * metaslabs (see spa_vdev_add()), then update the config.
2654 2655 *
2655 2656 * If this is a verbatim import, trust the current
2656 2657 * in-core spa_config and update the disk labels.
2657 2658 */
2658 2659 if (config_cache_txg != spa->spa_config_txg ||
2659 2660 state == SPA_LOAD_IMPORT ||
2660 2661 state == SPA_LOAD_RECOVER ||
2661 2662 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2662 2663 need_update = B_TRUE;
2663 2664
2664 2665 for (int c = 0; c < rvd->vdev_children; c++)
2665 2666 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2666 2667 need_update = B_TRUE;
2667 2668
2668 2669 /*
2669 2670 * Update the config cache asychronously in case we're the
2670 2671 * root pool, in which case the config cache isn't writable yet.
2671 2672 */
2672 2673 if (need_update)
2673 2674 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2674 2675
2675 2676 /*
2676 2677 * Check all DTLs to see if anything needs resilvering.
2677 2678 */
2678 2679 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2679 2680 vdev_resilver_needed(rvd, NULL, NULL))
2680 2681 spa_async_request(spa, SPA_ASYNC_RESILVER);
2681 2682
2682 2683 /*
2683 2684 * Log the fact that we booted up (so that we can detect if
2684 2685 * we rebooted in the middle of an operation).
2685 2686 */
2686 2687 spa_history_log_version(spa, "open");
2687 2688
2688 2689 /*
2689 2690 * Delete any inconsistent datasets.
2690 2691 */
2691 2692 (void) dmu_objset_find(spa_name(spa),
2692 2693 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2693 2694
2694 2695 /*
2695 2696 * Clean up any stale temporary dataset userrefs.
2696 2697 */
2697 2698 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2698 2699 }
2699 2700
2700 2701 return (0);
2701 2702 }
2702 2703
2703 2704 static int
2704 2705 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2705 2706 {
2706 2707 int mode = spa->spa_mode;
2707 2708
2708 2709 spa_unload(spa);
2709 2710 spa_deactivate(spa);
2710 2711
2711 2712 spa->spa_load_max_txg--;
2712 2713
2713 2714 spa_activate(spa, mode);
2714 2715 spa_async_suspend(spa);
2715 2716
2716 2717 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2717 2718 }
2718 2719
2719 2720 /*
2720 2721 * If spa_load() fails this function will try loading prior txg's. If
2721 2722 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2722 2723 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2723 2724 * function will not rewind the pool and will return the same error as
2724 2725 * spa_load().
2725 2726 */
2726 2727 static int
2727 2728 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2728 2729 uint64_t max_request, int rewind_flags)
2729 2730 {
2730 2731 nvlist_t *loadinfo = NULL;
2731 2732 nvlist_t *config = NULL;
2732 2733 int load_error, rewind_error;
2733 2734 uint64_t safe_rewind_txg;
2734 2735 uint64_t min_txg;
2735 2736
2736 2737 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2737 2738 spa->spa_load_max_txg = spa->spa_load_txg;
2738 2739 spa_set_log_state(spa, SPA_LOG_CLEAR);
2739 2740 } else {
2740 2741 spa->spa_load_max_txg = max_request;
2741 2742 }
2742 2743
2743 2744 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2744 2745 mosconfig);
2745 2746 if (load_error == 0)
2746 2747 return (0);
2747 2748
2748 2749 if (spa->spa_root_vdev != NULL)
2749 2750 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2750 2751
2751 2752 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2752 2753 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2753 2754
2754 2755 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2755 2756 nvlist_free(config);
2756 2757 return (load_error);
2757 2758 }
2758 2759
2759 2760 if (state == SPA_LOAD_RECOVER) {
2760 2761 /* Price of rolling back is discarding txgs, including log */
2761 2762 spa_set_log_state(spa, SPA_LOG_CLEAR);
2762 2763 } else {
2763 2764 /*
2764 2765 * If we aren't rolling back save the load info from our first
2765 2766 * import attempt so that we can restore it after attempting
2766 2767 * to rewind.
2767 2768 */
2768 2769 loadinfo = spa->spa_load_info;
2769 2770 spa->spa_load_info = fnvlist_alloc();
2770 2771 }
2771 2772
2772 2773 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2773 2774 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2774 2775 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2775 2776 TXG_INITIAL : safe_rewind_txg;
2776 2777
2777 2778 /*
2778 2779 * Continue as long as we're finding errors, we're still within
2779 2780 * the acceptable rewind range, and we're still finding uberblocks
2780 2781 */
2781 2782 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2782 2783 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2783 2784 if (spa->spa_load_max_txg < safe_rewind_txg)
2784 2785 spa->spa_extreme_rewind = B_TRUE;
2785 2786 rewind_error = spa_load_retry(spa, state, mosconfig);
2786 2787 }
2787 2788
2788 2789 spa->spa_extreme_rewind = B_FALSE;
2789 2790 spa->spa_load_max_txg = UINT64_MAX;
2790 2791
2791 2792 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2792 2793 spa_config_set(spa, config);
2793 2794
2794 2795 if (state == SPA_LOAD_RECOVER) {
2795 2796 ASSERT3P(loadinfo, ==, NULL);
2796 2797 return (rewind_error);
2797 2798 } else {
2798 2799 /* Store the rewind info as part of the initial load info */
2799 2800 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2800 2801 spa->spa_load_info);
2801 2802
2802 2803 /* Restore the initial load info */
2803 2804 fnvlist_free(spa->spa_load_info);
2804 2805 spa->spa_load_info = loadinfo;
2805 2806
2806 2807 return (load_error);
2807 2808 }
2808 2809 }
2809 2810
2810 2811 /*
2811 2812 * Pool Open/Import
2812 2813 *
2813 2814 * The import case is identical to an open except that the configuration is sent
2814 2815 * down from userland, instead of grabbed from the configuration cache. For the
2815 2816 * case of an open, the pool configuration will exist in the
2816 2817 * POOL_STATE_UNINITIALIZED state.
2817 2818 *
2818 2819 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2819 2820 * the same time open the pool, without having to keep around the spa_t in some
2820 2821 * ambiguous state.
2821 2822 */
2822 2823 static int
2823 2824 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2824 2825 nvlist_t **config)
2825 2826 {
2826 2827 spa_t *spa;
2827 2828 spa_load_state_t state = SPA_LOAD_OPEN;
2828 2829 int error;
2829 2830 int locked = B_FALSE;
2830 2831
2831 2832 *spapp = NULL;
2832 2833
2833 2834 /*
2834 2835 * As disgusting as this is, we need to support recursive calls to this
2835 2836 * function because dsl_dir_open() is called during spa_load(), and ends
2836 2837 * up calling spa_open() again. The real fix is to figure out how to
2837 2838 * avoid dsl_dir_open() calling this in the first place.
2838 2839 */
2839 2840 if (mutex_owner(&spa_namespace_lock) != curthread) {
2840 2841 mutex_enter(&spa_namespace_lock);
2841 2842 locked = B_TRUE;
2842 2843 }
2843 2844
2844 2845 if ((spa = spa_lookup(pool)) == NULL) {
2845 2846 if (locked)
2846 2847 mutex_exit(&spa_namespace_lock);
2847 2848 return (SET_ERROR(ENOENT));
2848 2849 }
2849 2850
2850 2851 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2851 2852 zpool_rewind_policy_t policy;
2852 2853
2853 2854 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2854 2855 &policy);
2855 2856 if (policy.zrp_request & ZPOOL_DO_REWIND)
2856 2857 state = SPA_LOAD_RECOVER;
2857 2858
2858 2859 spa_activate(spa, spa_mode_global);
2859 2860
2860 2861 if (state != SPA_LOAD_RECOVER)
2861 2862 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2862 2863
2863 2864 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2864 2865 policy.zrp_request);
2865 2866
2866 2867 if (error == EBADF) {
2867 2868 /*
2868 2869 * If vdev_validate() returns failure (indicated by
2869 2870 * EBADF), it indicates that one of the vdevs indicates
2870 2871 * that the pool has been exported or destroyed. If
2871 2872 * this is the case, the config cache is out of sync and
2872 2873 * we should remove the pool from the namespace.
2873 2874 */
2874 2875 spa_unload(spa);
2875 2876 spa_deactivate(spa);
2876 2877 spa_config_sync(spa, B_TRUE, B_TRUE);
2877 2878 spa_remove(spa);
2878 2879 if (locked)
2879 2880 mutex_exit(&spa_namespace_lock);
2880 2881 return (SET_ERROR(ENOENT));
2881 2882 }
2882 2883
2883 2884 if (error) {
2884 2885 /*
2885 2886 * We can't open the pool, but we still have useful
2886 2887 * information: the state of each vdev after the
2887 2888 * attempted vdev_open(). Return this to the user.
2888 2889 */
2889 2890 if (config != NULL && spa->spa_config) {
2890 2891 VERIFY(nvlist_dup(spa->spa_config, config,
2891 2892 KM_SLEEP) == 0);
2892 2893 VERIFY(nvlist_add_nvlist(*config,
2893 2894 ZPOOL_CONFIG_LOAD_INFO,
2894 2895 spa->spa_load_info) == 0);
2895 2896 }
2896 2897 spa_unload(spa);
2897 2898 spa_deactivate(spa);
2898 2899 spa->spa_last_open_failed = error;
2899 2900 if (locked)
2900 2901 mutex_exit(&spa_namespace_lock);
2901 2902 *spapp = NULL;
2902 2903 return (error);
2903 2904 }
2904 2905 }
2905 2906
2906 2907 spa_open_ref(spa, tag);
2907 2908
2908 2909 if (config != NULL)
2909 2910 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2910 2911
2911 2912 /*
2912 2913 * If we've recovered the pool, pass back any information we
2913 2914 * gathered while doing the load.
2914 2915 */
2915 2916 if (state == SPA_LOAD_RECOVER) {
2916 2917 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2917 2918 spa->spa_load_info) == 0);
2918 2919 }
2919 2920
2920 2921 if (locked) {
2921 2922 spa->spa_last_open_failed = 0;
2922 2923 spa->spa_last_ubsync_txg = 0;
2923 2924 spa->spa_load_txg = 0;
2924 2925 mutex_exit(&spa_namespace_lock);
2925 2926 }
2926 2927
2927 2928 *spapp = spa;
2928 2929
2929 2930 return (0);
2930 2931 }
2931 2932
2932 2933 int
2933 2934 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2934 2935 nvlist_t **config)
2935 2936 {
2936 2937 return (spa_open_common(name, spapp, tag, policy, config));
2937 2938 }
2938 2939
2939 2940 int
2940 2941 spa_open(const char *name, spa_t **spapp, void *tag)
2941 2942 {
2942 2943 return (spa_open_common(name, spapp, tag, NULL, NULL));
2943 2944 }
2944 2945
2945 2946 /*
2946 2947 * Lookup the given spa_t, incrementing the inject count in the process,
2947 2948 * preventing it from being exported or destroyed.
2948 2949 */
2949 2950 spa_t *
2950 2951 spa_inject_addref(char *name)
2951 2952 {
2952 2953 spa_t *spa;
2953 2954
2954 2955 mutex_enter(&spa_namespace_lock);
2955 2956 if ((spa = spa_lookup(name)) == NULL) {
2956 2957 mutex_exit(&spa_namespace_lock);
2957 2958 return (NULL);
2958 2959 }
2959 2960 spa->spa_inject_ref++;
2960 2961 mutex_exit(&spa_namespace_lock);
2961 2962
2962 2963 return (spa);
2963 2964 }
2964 2965
2965 2966 void
2966 2967 spa_inject_delref(spa_t *spa)
2967 2968 {
2968 2969 mutex_enter(&spa_namespace_lock);
2969 2970 spa->spa_inject_ref--;
2970 2971 mutex_exit(&spa_namespace_lock);
2971 2972 }
2972 2973
2973 2974 /*
2974 2975 * Add spares device information to the nvlist.
2975 2976 */
2976 2977 static void
2977 2978 spa_add_spares(spa_t *spa, nvlist_t *config)
2978 2979 {
2979 2980 nvlist_t **spares;
2980 2981 uint_t i, nspares;
2981 2982 nvlist_t *nvroot;
2982 2983 uint64_t guid;
2983 2984 vdev_stat_t *vs;
2984 2985 uint_t vsc;
2985 2986 uint64_t pool;
2986 2987
2987 2988 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2988 2989
2989 2990 if (spa->spa_spares.sav_count == 0)
2990 2991 return;
2991 2992
2992 2993 VERIFY(nvlist_lookup_nvlist(config,
2993 2994 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2994 2995 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2995 2996 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2996 2997 if (nspares != 0) {
2997 2998 VERIFY(nvlist_add_nvlist_array(nvroot,
2998 2999 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2999 3000 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3000 3001 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3001 3002
3002 3003 /*
3003 3004 * Go through and find any spares which have since been
3004 3005 * repurposed as an active spare. If this is the case, update
3005 3006 * their status appropriately.
3006 3007 */
3007 3008 for (i = 0; i < nspares; i++) {
3008 3009 VERIFY(nvlist_lookup_uint64(spares[i],
3009 3010 ZPOOL_CONFIG_GUID, &guid) == 0);
3010 3011 if (spa_spare_exists(guid, &pool, NULL) &&
3011 3012 pool != 0ULL) {
3012 3013 VERIFY(nvlist_lookup_uint64_array(
3013 3014 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3014 3015 (uint64_t **)&vs, &vsc) == 0);
3015 3016 vs->vs_state = VDEV_STATE_CANT_OPEN;
3016 3017 vs->vs_aux = VDEV_AUX_SPARED;
3017 3018 }
3018 3019 }
3019 3020 }
3020 3021 }
3021 3022
3022 3023 /*
3023 3024 * Add l2cache device information to the nvlist, including vdev stats.
3024 3025 */
3025 3026 static void
3026 3027 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3027 3028 {
3028 3029 nvlist_t **l2cache;
3029 3030 uint_t i, j, nl2cache;
3030 3031 nvlist_t *nvroot;
3031 3032 uint64_t guid;
3032 3033 vdev_t *vd;
3033 3034 vdev_stat_t *vs;
3034 3035 uint_t vsc;
3035 3036
3036 3037 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3037 3038
3038 3039 if (spa->spa_l2cache.sav_count == 0)
3039 3040 return;
3040 3041
3041 3042 VERIFY(nvlist_lookup_nvlist(config,
3042 3043 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3043 3044 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3044 3045 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3045 3046 if (nl2cache != 0) {
3046 3047 VERIFY(nvlist_add_nvlist_array(nvroot,
3047 3048 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3048 3049 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3049 3050 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3050 3051
3051 3052 /*
3052 3053 * Update level 2 cache device stats.
3053 3054 */
3054 3055
3055 3056 for (i = 0; i < nl2cache; i++) {
3056 3057 VERIFY(nvlist_lookup_uint64(l2cache[i],
3057 3058 ZPOOL_CONFIG_GUID, &guid) == 0);
3058 3059
3059 3060 vd = NULL;
3060 3061 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3061 3062 if (guid ==
3062 3063 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3063 3064 vd = spa->spa_l2cache.sav_vdevs[j];
3064 3065 break;
3065 3066 }
3066 3067 }
3067 3068 ASSERT(vd != NULL);
3068 3069
3069 3070 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3070 3071 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3071 3072 == 0);
3072 3073 vdev_get_stats(vd, vs);
3073 3074 }
3074 3075 }
3075 3076 }
3076 3077
3077 3078 static void
3078 3079 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3079 3080 {
3080 3081 nvlist_t *features;
3081 3082 zap_cursor_t zc;
3082 3083 zap_attribute_t za;
3083 3084
3084 3085 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3085 3086 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3086 3087
3087 3088 if (spa->spa_feat_for_read_obj != 0) {
3088 3089 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3089 3090 spa->spa_feat_for_read_obj);
3090 3091 zap_cursor_retrieve(&zc, &za) == 0;
3091 3092 zap_cursor_advance(&zc)) {
3092 3093 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3093 3094 za.za_num_integers == 1);
3094 3095 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3095 3096 za.za_first_integer));
3096 3097 }
3097 3098 zap_cursor_fini(&zc);
3098 3099 }
3099 3100
3100 3101 if (spa->spa_feat_for_write_obj != 0) {
3101 3102 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3102 3103 spa->spa_feat_for_write_obj);
3103 3104 zap_cursor_retrieve(&zc, &za) == 0;
3104 3105 zap_cursor_advance(&zc)) {
3105 3106 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3106 3107 za.za_num_integers == 1);
3107 3108 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3108 3109 za.za_first_integer));
3109 3110 }
3110 3111 zap_cursor_fini(&zc);
3111 3112 }
3112 3113
3113 3114 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3114 3115 features) == 0);
3115 3116 nvlist_free(features);
3116 3117 }
3117 3118
3118 3119 int
3119 3120 spa_get_stats(const char *name, nvlist_t **config,
3120 3121 char *altroot, size_t buflen)
3121 3122 {
3122 3123 int error;
3123 3124 spa_t *spa;
3124 3125
3125 3126 *config = NULL;
3126 3127 error = spa_open_common(name, &spa, FTAG, NULL, config);
3127 3128
3128 3129 if (spa != NULL) {
3129 3130 /*
3130 3131 * This still leaves a window of inconsistency where the spares
3131 3132 * or l2cache devices could change and the config would be
3132 3133 * self-inconsistent.
3133 3134 */
3134 3135 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3135 3136
3136 3137 if (*config != NULL) {
3137 3138 uint64_t loadtimes[2];
3138 3139
3139 3140 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3140 3141 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3141 3142 VERIFY(nvlist_add_uint64_array(*config,
3142 3143 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3143 3144
3144 3145 VERIFY(nvlist_add_uint64(*config,
3145 3146 ZPOOL_CONFIG_ERRCOUNT,
3146 3147 spa_get_errlog_size(spa)) == 0);
3147 3148
3148 3149 if (spa_suspended(spa))
3149 3150 VERIFY(nvlist_add_uint64(*config,
3150 3151 ZPOOL_CONFIG_SUSPENDED,
3151 3152 spa->spa_failmode) == 0);
3152 3153
3153 3154 spa_add_spares(spa, *config);
3154 3155 spa_add_l2cache(spa, *config);
3155 3156 spa_add_feature_stats(spa, *config);
3156 3157 }
3157 3158 }
3158 3159
3159 3160 /*
3160 3161 * We want to get the alternate root even for faulted pools, so we cheat
3161 3162 * and call spa_lookup() directly.
3162 3163 */
3163 3164 if (altroot) {
3164 3165 if (spa == NULL) {
3165 3166 mutex_enter(&spa_namespace_lock);
3166 3167 spa = spa_lookup(name);
3167 3168 if (spa)
3168 3169 spa_altroot(spa, altroot, buflen);
3169 3170 else
3170 3171 altroot[0] = '\0';
3171 3172 spa = NULL;
3172 3173 mutex_exit(&spa_namespace_lock);
3173 3174 } else {
3174 3175 spa_altroot(spa, altroot, buflen);
3175 3176 }
3176 3177 }
3177 3178
3178 3179 if (spa != NULL) {
3179 3180 spa_config_exit(spa, SCL_CONFIG, FTAG);
3180 3181 spa_close(spa, FTAG);
3181 3182 }
3182 3183
3183 3184 return (error);
3184 3185 }
3185 3186
3186 3187 /*
3187 3188 * Validate that the auxiliary device array is well formed. We must have an
3188 3189 * array of nvlists, each which describes a valid leaf vdev. If this is an
3189 3190 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3190 3191 * specified, as long as they are well-formed.
3191 3192 */
3192 3193 static int
3193 3194 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3194 3195 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3195 3196 vdev_labeltype_t label)
3196 3197 {
3197 3198 nvlist_t **dev;
3198 3199 uint_t i, ndev;
3199 3200 vdev_t *vd;
3200 3201 int error;
3201 3202
3202 3203 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3203 3204
3204 3205 /*
3205 3206 * It's acceptable to have no devs specified.
3206 3207 */
3207 3208 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3208 3209 return (0);
3209 3210
3210 3211 if (ndev == 0)
3211 3212 return (SET_ERROR(EINVAL));
3212 3213
3213 3214 /*
3214 3215 * Make sure the pool is formatted with a version that supports this
3215 3216 * device type.
3216 3217 */
3217 3218 if (spa_version(spa) < version)
3218 3219 return (SET_ERROR(ENOTSUP));
3219 3220
3220 3221 /*
3221 3222 * Set the pending device list so we correctly handle device in-use
3222 3223 * checking.
3223 3224 */
3224 3225 sav->sav_pending = dev;
3225 3226 sav->sav_npending = ndev;
3226 3227
3227 3228 for (i = 0; i < ndev; i++) {
3228 3229 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3229 3230 mode)) != 0)
3230 3231 goto out;
3231 3232
3232 3233 if (!vd->vdev_ops->vdev_op_leaf) {
3233 3234 vdev_free(vd);
3234 3235 error = SET_ERROR(EINVAL);
3235 3236 goto out;
3236 3237 }
3237 3238
3238 3239 /*
3239 3240 * The L2ARC currently only supports disk devices in
3240 3241 * kernel context. For user-level testing, we allow it.
3241 3242 */
3242 3243 #ifdef _KERNEL
3243 3244 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3244 3245 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3245 3246 error = SET_ERROR(ENOTBLK);
3246 3247 vdev_free(vd);
3247 3248 goto out;
3248 3249 }
3249 3250 #endif
3250 3251 vd->vdev_top = vd;
3251 3252
3252 3253 if ((error = vdev_open(vd)) == 0 &&
3253 3254 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3254 3255 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3255 3256 vd->vdev_guid) == 0);
3256 3257 }
3257 3258
3258 3259 vdev_free(vd);
3259 3260
3260 3261 if (error &&
3261 3262 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3262 3263 goto out;
3263 3264 else
3264 3265 error = 0;
3265 3266 }
3266 3267
3267 3268 out:
3268 3269 sav->sav_pending = NULL;
3269 3270 sav->sav_npending = 0;
3270 3271 return (error);
3271 3272 }
3272 3273
3273 3274 static int
3274 3275 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3275 3276 {
3276 3277 int error;
3277 3278
3278 3279 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3279 3280
3280 3281 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3281 3282 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3282 3283 VDEV_LABEL_SPARE)) != 0) {
3283 3284 return (error);
3284 3285 }
3285 3286
3286 3287 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3287 3288 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3288 3289 VDEV_LABEL_L2CACHE));
3289 3290 }
3290 3291
3291 3292 static void
3292 3293 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3293 3294 const char *config)
3294 3295 {
3295 3296 int i;
3296 3297
3297 3298 if (sav->sav_config != NULL) {
3298 3299 nvlist_t **olddevs;
3299 3300 uint_t oldndevs;
3300 3301 nvlist_t **newdevs;
3301 3302
3302 3303 /*
3303 3304 * Generate new dev list by concatentating with the
3304 3305 * current dev list.
3305 3306 */
3306 3307 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3307 3308 &olddevs, &oldndevs) == 0);
3308 3309
3309 3310 newdevs = kmem_alloc(sizeof (void *) *
3310 3311 (ndevs + oldndevs), KM_SLEEP);
3311 3312 for (i = 0; i < oldndevs; i++)
3312 3313 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3313 3314 KM_SLEEP) == 0);
3314 3315 for (i = 0; i < ndevs; i++)
3315 3316 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3316 3317 KM_SLEEP) == 0);
3317 3318
3318 3319 VERIFY(nvlist_remove(sav->sav_config, config,
3319 3320 DATA_TYPE_NVLIST_ARRAY) == 0);
3320 3321
3321 3322 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3322 3323 config, newdevs, ndevs + oldndevs) == 0);
3323 3324 for (i = 0; i < oldndevs + ndevs; i++)
3324 3325 nvlist_free(newdevs[i]);
3325 3326 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3326 3327 } else {
3327 3328 /*
3328 3329 * Generate a new dev list.
3329 3330 */
3330 3331 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3331 3332 KM_SLEEP) == 0);
3332 3333 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3333 3334 devs, ndevs) == 0);
3334 3335 }
3335 3336 }
3336 3337
3337 3338 /*
3338 3339 * Stop and drop level 2 ARC devices
3339 3340 */
3340 3341 void
3341 3342 spa_l2cache_drop(spa_t *spa)
3342 3343 {
3343 3344 vdev_t *vd;
3344 3345 int i;
3345 3346 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3346 3347
3347 3348 for (i = 0; i < sav->sav_count; i++) {
3348 3349 uint64_t pool;
3349 3350
3350 3351 vd = sav->sav_vdevs[i];
3351 3352 ASSERT(vd != NULL);
3352 3353
3353 3354 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3354 3355 pool != 0ULL && l2arc_vdev_present(vd))
3355 3356 l2arc_remove_vdev(vd);
3356 3357 }
3357 3358 }
3358 3359
3359 3360 /*
3360 3361 * Pool Creation
3361 3362 */
3362 3363 int
3363 3364 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3364 3365 nvlist_t *zplprops)
3365 3366 {
3366 3367 spa_t *spa;
3367 3368 char *altroot = NULL;
3368 3369 vdev_t *rvd;
3369 3370 dsl_pool_t *dp;
3370 3371 dmu_tx_t *tx;
3371 3372 int error = 0;
3372 3373 uint64_t txg = TXG_INITIAL;
3373 3374 nvlist_t **spares, **l2cache;
3374 3375 uint_t nspares, nl2cache;
3375 3376 uint64_t version, obj;
3376 3377 boolean_t has_features;
3377 3378
3378 3379 /*
3379 3380 * If this pool already exists, return failure.
3380 3381 */
3381 3382 mutex_enter(&spa_namespace_lock);
3382 3383 if (spa_lookup(pool) != NULL) {
3383 3384 mutex_exit(&spa_namespace_lock);
3384 3385 return (SET_ERROR(EEXIST));
3385 3386 }
3386 3387
3387 3388 /*
3388 3389 * Allocate a new spa_t structure.
3389 3390 */
3390 3391 (void) nvlist_lookup_string(props,
3391 3392 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3392 3393 spa = spa_add(pool, NULL, altroot);
3393 3394 spa_activate(spa, spa_mode_global);
3394 3395
3395 3396 if (props && (error = spa_prop_validate(spa, props))) {
3396 3397 spa_deactivate(spa);
3397 3398 spa_remove(spa);
3398 3399 mutex_exit(&spa_namespace_lock);
3399 3400 return (error);
3400 3401 }
3401 3402
3402 3403 has_features = B_FALSE;
3403 3404 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3404 3405 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3405 3406 if (zpool_prop_feature(nvpair_name(elem)))
3406 3407 has_features = B_TRUE;
3407 3408 }
3408 3409
3409 3410 if (has_features || nvlist_lookup_uint64(props,
3410 3411 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3411 3412 version = SPA_VERSION;
3412 3413 }
3413 3414 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3414 3415
3415 3416 spa->spa_first_txg = txg;
3416 3417 spa->spa_uberblock.ub_txg = txg - 1;
3417 3418 spa->spa_uberblock.ub_version = version;
3418 3419 spa->spa_ubsync = spa->spa_uberblock;
3419 3420
3420 3421 /*
3421 3422 * Create "The Godfather" zio to hold all async IOs
3422 3423 */
3423 3424 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3424 3425 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3425 3426
3426 3427 /*
3427 3428 * Create the root vdev.
3428 3429 */
3429 3430 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3430 3431
3431 3432 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3432 3433
3433 3434 ASSERT(error != 0 || rvd != NULL);
3434 3435 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3435 3436
3436 3437 if (error == 0 && !zfs_allocatable_devs(nvroot))
3437 3438 error = SET_ERROR(EINVAL);
3438 3439
3439 3440 if (error == 0 &&
3440 3441 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3441 3442 (error = spa_validate_aux(spa, nvroot, txg,
3442 3443 VDEV_ALLOC_ADD)) == 0) {
3443 3444 for (int c = 0; c < rvd->vdev_children; c++) {
3444 3445 vdev_metaslab_set_size(rvd->vdev_child[c]);
3445 3446 vdev_expand(rvd->vdev_child[c], txg);
3446 3447 }
3447 3448 }
3448 3449
3449 3450 spa_config_exit(spa, SCL_ALL, FTAG);
3450 3451
3451 3452 if (error != 0) {
3452 3453 spa_unload(spa);
3453 3454 spa_deactivate(spa);
3454 3455 spa_remove(spa);
3455 3456 mutex_exit(&spa_namespace_lock);
3456 3457 return (error);
3457 3458 }
3458 3459
3459 3460 /*
3460 3461 * Get the list of spares, if specified.
3461 3462 */
3462 3463 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3463 3464 &spares, &nspares) == 0) {
3464 3465 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3465 3466 KM_SLEEP) == 0);
3466 3467 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3467 3468 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3468 3469 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3469 3470 spa_load_spares(spa);
3470 3471 spa_config_exit(spa, SCL_ALL, FTAG);
3471 3472 spa->spa_spares.sav_sync = B_TRUE;
3472 3473 }
3473 3474
3474 3475 /*
3475 3476 * Get the list of level 2 cache devices, if specified.
3476 3477 */
3477 3478 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3478 3479 &l2cache, &nl2cache) == 0) {
3479 3480 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3480 3481 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3481 3482 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3482 3483 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3483 3484 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3484 3485 spa_load_l2cache(spa);
3485 3486 spa_config_exit(spa, SCL_ALL, FTAG);
3486 3487 spa->spa_l2cache.sav_sync = B_TRUE;
3487 3488 }
3488 3489
3489 3490 spa->spa_is_initializing = B_TRUE;
3490 3491 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3491 3492 spa->spa_meta_objset = dp->dp_meta_objset;
3492 3493 spa->spa_is_initializing = B_FALSE;
3493 3494
3494 3495 /*
3495 3496 * Create DDTs (dedup tables).
3496 3497 */
3497 3498 ddt_create(spa);
3498 3499
3499 3500 spa_update_dspace(spa);
3500 3501
3501 3502 tx = dmu_tx_create_assigned(dp, txg);
3502 3503
3503 3504 /*
3504 3505 * Create the pool config object.
3505 3506 */
3506 3507 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3507 3508 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3508 3509 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3509 3510
3510 3511 if (zap_add(spa->spa_meta_objset,
3511 3512 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3512 3513 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3513 3514 cmn_err(CE_PANIC, "failed to add pool config");
3514 3515 }
3515 3516
3516 3517 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3517 3518 spa_feature_create_zap_objects(spa, tx);
3518 3519
3519 3520 if (zap_add(spa->spa_meta_objset,
3520 3521 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3521 3522 sizeof (uint64_t), 1, &version, tx) != 0) {
3522 3523 cmn_err(CE_PANIC, "failed to add pool version");
3523 3524 }
3524 3525
3525 3526 /* Newly created pools with the right version are always deflated. */
3526 3527 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3527 3528 spa->spa_deflate = TRUE;
3528 3529 if (zap_add(spa->spa_meta_objset,
3529 3530 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3530 3531 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3531 3532 cmn_err(CE_PANIC, "failed to add deflate");
3532 3533 }
3533 3534 }
3534 3535
3535 3536 /*
3536 3537 * Create the deferred-free bpobj. Turn off compression
3537 3538 * because sync-to-convergence takes longer if the blocksize
3538 3539 * keeps changing.
3539 3540 */
3540 3541 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3541 3542 dmu_object_set_compress(spa->spa_meta_objset, obj,
3542 3543 ZIO_COMPRESS_OFF, tx);
3543 3544 if (zap_add(spa->spa_meta_objset,
3544 3545 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3545 3546 sizeof (uint64_t), 1, &obj, tx) != 0) {
3546 3547 cmn_err(CE_PANIC, "failed to add bpobj");
3547 3548 }
3548 3549 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3549 3550 spa->spa_meta_objset, obj));
3550 3551
3551 3552 /*
3552 3553 * Create the pool's history object.
3553 3554 */
3554 3555 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3555 3556 spa_history_create_obj(spa, tx);
3556 3557
3557 3558 /*
3558 3559 * Set pool properties.
3559 3560 */
3560 3561 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3561 3562 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3562 3563 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3563 3564 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3564 3565
3565 3566 if (props != NULL) {
3566 3567 spa_configfile_set(spa, props, B_FALSE);
3567 3568 spa_sync_props(props, tx);
3568 3569 }
3569 3570
3570 3571 dmu_tx_commit(tx);
3571 3572
3572 3573 spa->spa_sync_on = B_TRUE;
3573 3574 txg_sync_start(spa->spa_dsl_pool);
3574 3575
3575 3576 /*
3576 3577 * We explicitly wait for the first transaction to complete so that our
3577 3578 * bean counters are appropriately updated.
3578 3579 */
3579 3580 txg_wait_synced(spa->spa_dsl_pool, txg);
3580 3581
3581 3582 spa_config_sync(spa, B_FALSE, B_TRUE);
3582 3583
3583 3584 spa_history_log_version(spa, "create");
3584 3585
3585 3586 spa->spa_minref = refcount_count(&spa->spa_refcount);
3586 3587
3587 3588 mutex_exit(&spa_namespace_lock);
3588 3589
3589 3590 return (0);
3590 3591 }
3591 3592
3592 3593 #ifdef _KERNEL
3593 3594 /*
3594 3595 * Get the root pool information from the root disk, then import the root pool
3595 3596 * during the system boot up time.
3596 3597 */
3597 3598 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3598 3599
3599 3600 static nvlist_t *
3600 3601 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3601 3602 {
3602 3603 nvlist_t *config;
3603 3604 nvlist_t *nvtop, *nvroot;
3604 3605 uint64_t pgid;
3605 3606
3606 3607 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3607 3608 return (NULL);
3608 3609
3609 3610 /*
3610 3611 * Add this top-level vdev to the child array.
3611 3612 */
3612 3613 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3613 3614 &nvtop) == 0);
3614 3615 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3615 3616 &pgid) == 0);
3616 3617 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3617 3618
3618 3619 /*
3619 3620 * Put this pool's top-level vdevs into a root vdev.
3620 3621 */
3621 3622 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3622 3623 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3623 3624 VDEV_TYPE_ROOT) == 0);
3624 3625 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3625 3626 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3626 3627 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3627 3628 &nvtop, 1) == 0);
3628 3629
3629 3630 /*
3630 3631 * Replace the existing vdev_tree with the new root vdev in
3631 3632 * this pool's configuration (remove the old, add the new).
3632 3633 */
3633 3634 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3634 3635 nvlist_free(nvroot);
3635 3636 return (config);
3636 3637 }
3637 3638
3638 3639 /*
3639 3640 * Walk the vdev tree and see if we can find a device with "better"
3640 3641 * configuration. A configuration is "better" if the label on that
3641 3642 * device has a more recent txg.
3642 3643 */
3643 3644 static void
3644 3645 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3645 3646 {
3646 3647 for (int c = 0; c < vd->vdev_children; c++)
3647 3648 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3648 3649
3649 3650 if (vd->vdev_ops->vdev_op_leaf) {
3650 3651 nvlist_t *label;
3651 3652 uint64_t label_txg;
3652 3653
3653 3654 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3654 3655 &label) != 0)
3655 3656 return;
3656 3657
3657 3658 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3658 3659 &label_txg) == 0);
3659 3660
3660 3661 /*
3661 3662 * Do we have a better boot device?
3662 3663 */
3663 3664 if (label_txg > *txg) {
3664 3665 *txg = label_txg;
3665 3666 *avd = vd;
3666 3667 }
3667 3668 nvlist_free(label);
3668 3669 }
3669 3670 }
3670 3671
3671 3672 /*
3672 3673 * Import a root pool.
3673 3674 *
3674 3675 * For x86. devpath_list will consist of devid and/or physpath name of
3675 3676 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3676 3677 * The GRUB "findroot" command will return the vdev we should boot.
3677 3678 *
3678 3679 * For Sparc, devpath_list consists the physpath name of the booting device
3679 3680 * no matter the rootpool is a single device pool or a mirrored pool.
3680 3681 * e.g.
3681 3682 * "/pci@1f,0/ide@d/disk@0,0:a"
3682 3683 */
3683 3684 int
3684 3685 spa_import_rootpool(char *devpath, char *devid)
3685 3686 {
3686 3687 spa_t *spa;
3687 3688 vdev_t *rvd, *bvd, *avd = NULL;
3688 3689 nvlist_t *config, *nvtop;
3689 3690 uint64_t guid, txg;
3690 3691 char *pname;
3691 3692 int error;
3692 3693
3693 3694 /*
3694 3695 * Read the label from the boot device and generate a configuration.
3695 3696 */
3696 3697 config = spa_generate_rootconf(devpath, devid, &guid);
3697 3698 #if defined(_OBP) && defined(_KERNEL)
3698 3699 if (config == NULL) {
3699 3700 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3700 3701 /* iscsi boot */
3701 3702 get_iscsi_bootpath_phy(devpath);
3702 3703 config = spa_generate_rootconf(devpath, devid, &guid);
3703 3704 }
3704 3705 }
3705 3706 #endif
3706 3707 if (config == NULL) {
3707 3708 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3708 3709 devpath);
3709 3710 return (SET_ERROR(EIO));
3710 3711 }
3711 3712
3712 3713 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3713 3714 &pname) == 0);
3714 3715 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3715 3716
3716 3717 mutex_enter(&spa_namespace_lock);
3717 3718 if ((spa = spa_lookup(pname)) != NULL) {
3718 3719 /*
3719 3720 * Remove the existing root pool from the namespace so that we
3720 3721 * can replace it with the correct config we just read in.
3721 3722 */
3722 3723 spa_remove(spa);
3723 3724 }
3724 3725
3725 3726 spa = spa_add(pname, config, NULL);
3726 3727 spa->spa_is_root = B_TRUE;
3727 3728 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3728 3729
3729 3730 /*
3730 3731 * Build up a vdev tree based on the boot device's label config.
3731 3732 */
3732 3733 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3733 3734 &nvtop) == 0);
3734 3735 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3735 3736 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3736 3737 VDEV_ALLOC_ROOTPOOL);
3737 3738 spa_config_exit(spa, SCL_ALL, FTAG);
3738 3739 if (error) {
3739 3740 mutex_exit(&spa_namespace_lock);
3740 3741 nvlist_free(config);
3741 3742 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3742 3743 pname);
3743 3744 return (error);
3744 3745 }
3745 3746
3746 3747 /*
3747 3748 * Get the boot vdev.
3748 3749 */
3749 3750 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3750 3751 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3751 3752 (u_longlong_t)guid);
3752 3753 error = SET_ERROR(ENOENT);
3753 3754 goto out;
3754 3755 }
3755 3756
3756 3757 /*
3757 3758 * Determine if there is a better boot device.
3758 3759 */
3759 3760 avd = bvd;
3760 3761 spa_alt_rootvdev(rvd, &avd, &txg);
3761 3762 if (avd != bvd) {
3762 3763 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3763 3764 "try booting from '%s'", avd->vdev_path);
3764 3765 error = SET_ERROR(EINVAL);
3765 3766 goto out;
3766 3767 }
3767 3768
3768 3769 /*
3769 3770 * If the boot device is part of a spare vdev then ensure that
3770 3771 * we're booting off the active spare.
3771 3772 */
3772 3773 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3773 3774 !bvd->vdev_isspare) {
3774 3775 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3775 3776 "try booting from '%s'",
3776 3777 bvd->vdev_parent->
3777 3778 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3778 3779 error = SET_ERROR(EINVAL);
3779 3780 goto out;
3780 3781 }
3781 3782
3782 3783 error = 0;
3783 3784 out:
3784 3785 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3785 3786 vdev_free(rvd);
3786 3787 spa_config_exit(spa, SCL_ALL, FTAG);
3787 3788 mutex_exit(&spa_namespace_lock);
3788 3789
3789 3790 nvlist_free(config);
3790 3791 return (error);
3791 3792 }
3792 3793
3793 3794 #endif
3794 3795
3795 3796 /*
3796 3797 * Import a non-root pool into the system.
3797 3798 */
3798 3799 int
3799 3800 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3800 3801 {
3801 3802 spa_t *spa;
3802 3803 char *altroot = NULL;
3803 3804 spa_load_state_t state = SPA_LOAD_IMPORT;
3804 3805 zpool_rewind_policy_t policy;
3805 3806 uint64_t mode = spa_mode_global;
3806 3807 uint64_t readonly = B_FALSE;
3807 3808 int error;
3808 3809 nvlist_t *nvroot;
3809 3810 nvlist_t **spares, **l2cache;
3810 3811 uint_t nspares, nl2cache;
3811 3812
3812 3813 /*
3813 3814 * If a pool with this name exists, return failure.
3814 3815 */
3815 3816 mutex_enter(&spa_namespace_lock);
3816 3817 if (spa_lookup(pool) != NULL) {
3817 3818 mutex_exit(&spa_namespace_lock);
3818 3819 return (SET_ERROR(EEXIST));
3819 3820 }
3820 3821
3821 3822 /*
3822 3823 * Create and initialize the spa structure.
3823 3824 */
3824 3825 (void) nvlist_lookup_string(props,
3825 3826 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3826 3827 (void) nvlist_lookup_uint64(props,
3827 3828 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3828 3829 if (readonly)
3829 3830 mode = FREAD;
3830 3831 spa = spa_add(pool, config, altroot);
3831 3832 spa->spa_import_flags = flags;
3832 3833
3833 3834 /*
3834 3835 * Verbatim import - Take a pool and insert it into the namespace
3835 3836 * as if it had been loaded at boot.
3836 3837 */
3837 3838 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3838 3839 if (props != NULL)
3839 3840 spa_configfile_set(spa, props, B_FALSE);
3840 3841
3841 3842 spa_config_sync(spa, B_FALSE, B_TRUE);
3842 3843
3843 3844 mutex_exit(&spa_namespace_lock);
3844 3845 spa_history_log_version(spa, "import");
3845 3846
3846 3847 return (0);
3847 3848 }
3848 3849
3849 3850 spa_activate(spa, mode);
3850 3851
3851 3852 /*
3852 3853 * Don't start async tasks until we know everything is healthy.
3853 3854 */
3854 3855 spa_async_suspend(spa);
3855 3856
3856 3857 zpool_get_rewind_policy(config, &policy);
3857 3858 if (policy.zrp_request & ZPOOL_DO_REWIND)
3858 3859 state = SPA_LOAD_RECOVER;
3859 3860
3860 3861 /*
3861 3862 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3862 3863 * because the user-supplied config is actually the one to trust when
3863 3864 * doing an import.
3864 3865 */
3865 3866 if (state != SPA_LOAD_RECOVER)
3866 3867 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3867 3868
3868 3869 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3869 3870 policy.zrp_request);
3870 3871
3871 3872 /*
3872 3873 * Propagate anything learned while loading the pool and pass it
3873 3874 * back to caller (i.e. rewind info, missing devices, etc).
3874 3875 */
3875 3876 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3876 3877 spa->spa_load_info) == 0);
3877 3878
3878 3879 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3879 3880 /*
3880 3881 * Toss any existing sparelist, as it doesn't have any validity
3881 3882 * anymore, and conflicts with spa_has_spare().
3882 3883 */
3883 3884 if (spa->spa_spares.sav_config) {
3884 3885 nvlist_free(spa->spa_spares.sav_config);
3885 3886 spa->spa_spares.sav_config = NULL;
3886 3887 spa_load_spares(spa);
3887 3888 }
3888 3889 if (spa->spa_l2cache.sav_config) {
3889 3890 nvlist_free(spa->spa_l2cache.sav_config);
3890 3891 spa->spa_l2cache.sav_config = NULL;
3891 3892 spa_load_l2cache(spa);
3892 3893 }
3893 3894
3894 3895 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3895 3896 &nvroot) == 0);
3896 3897 if (error == 0)
3897 3898 error = spa_validate_aux(spa, nvroot, -1ULL,
3898 3899 VDEV_ALLOC_SPARE);
3899 3900 if (error == 0)
3900 3901 error = spa_validate_aux(spa, nvroot, -1ULL,
3901 3902 VDEV_ALLOC_L2CACHE);
3902 3903 spa_config_exit(spa, SCL_ALL, FTAG);
3903 3904
3904 3905 if (props != NULL)
3905 3906 spa_configfile_set(spa, props, B_FALSE);
3906 3907
3907 3908 if (error != 0 || (props && spa_writeable(spa) &&
3908 3909 (error = spa_prop_set(spa, props)))) {
3909 3910 spa_unload(spa);
3910 3911 spa_deactivate(spa);
3911 3912 spa_remove(spa);
3912 3913 mutex_exit(&spa_namespace_lock);
3913 3914 return (error);
3914 3915 }
3915 3916
3916 3917 spa_async_resume(spa);
3917 3918
3918 3919 /*
3919 3920 * Override any spares and level 2 cache devices as specified by
3920 3921 * the user, as these may have correct device names/devids, etc.
3921 3922 */
3922 3923 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3923 3924 &spares, &nspares) == 0) {
3924 3925 if (spa->spa_spares.sav_config)
3925 3926 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3926 3927 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3927 3928 else
3928 3929 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3929 3930 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3930 3931 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3931 3932 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3932 3933 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3933 3934 spa_load_spares(spa);
3934 3935 spa_config_exit(spa, SCL_ALL, FTAG);
3935 3936 spa->spa_spares.sav_sync = B_TRUE;
3936 3937 }
3937 3938 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3938 3939 &l2cache, &nl2cache) == 0) {
3939 3940 if (spa->spa_l2cache.sav_config)
3940 3941 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3941 3942 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3942 3943 else
3943 3944 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3944 3945 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3945 3946 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3946 3947 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3947 3948 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3948 3949 spa_load_l2cache(spa);
3949 3950 spa_config_exit(spa, SCL_ALL, FTAG);
3950 3951 spa->spa_l2cache.sav_sync = B_TRUE;
3951 3952 }
3952 3953
3953 3954 /*
3954 3955 * Check for any removed devices.
3955 3956 */
3956 3957 if (spa->spa_autoreplace) {
3957 3958 spa_aux_check_removed(&spa->spa_spares);
3958 3959 spa_aux_check_removed(&spa->spa_l2cache);
3959 3960 }
3960 3961
3961 3962 if (spa_writeable(spa)) {
3962 3963 /*
3963 3964 * Update the config cache to include the newly-imported pool.
3964 3965 */
3965 3966 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3966 3967 }
3967 3968
3968 3969 /*
3969 3970 * It's possible that the pool was expanded while it was exported.
3970 3971 * We kick off an async task to handle this for us.
3971 3972 */
3972 3973 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3973 3974
3974 3975 mutex_exit(&spa_namespace_lock);
3975 3976 spa_history_log_version(spa, "import");
3976 3977
3977 3978 return (0);
3978 3979 }
3979 3980
3980 3981 nvlist_t *
3981 3982 spa_tryimport(nvlist_t *tryconfig)
3982 3983 {
3983 3984 nvlist_t *config = NULL;
3984 3985 char *poolname;
3985 3986 spa_t *spa;
3986 3987 uint64_t state;
3987 3988 int error;
3988 3989
3989 3990 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3990 3991 return (NULL);
3991 3992
3992 3993 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3993 3994 return (NULL);
3994 3995
3995 3996 /*
3996 3997 * Create and initialize the spa structure.
3997 3998 */
3998 3999 mutex_enter(&spa_namespace_lock);
3999 4000 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4000 4001 spa_activate(spa, FREAD);
4001 4002
4002 4003 /*
4003 4004 * Pass off the heavy lifting to spa_load().
4004 4005 * Pass TRUE for mosconfig because the user-supplied config
4005 4006 * is actually the one to trust when doing an import.
4006 4007 */
4007 4008 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4008 4009
4009 4010 /*
4010 4011 * If 'tryconfig' was at least parsable, return the current config.
4011 4012 */
4012 4013 if (spa->spa_root_vdev != NULL) {
4013 4014 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4014 4015 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4015 4016 poolname) == 0);
4016 4017 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4017 4018 state) == 0);
4018 4019 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4019 4020 spa->spa_uberblock.ub_timestamp) == 0);
4020 4021 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4021 4022 spa->spa_load_info) == 0);
4022 4023
4023 4024 /*
4024 4025 * If the bootfs property exists on this pool then we
4025 4026 * copy it out so that external consumers can tell which
4026 4027 * pools are bootable.
4027 4028 */
4028 4029 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4029 4030 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4030 4031
4031 4032 /*
4032 4033 * We have to play games with the name since the
4033 4034 * pool was opened as TRYIMPORT_NAME.
4034 4035 */
4035 4036 if (dsl_dsobj_to_dsname(spa_name(spa),
4036 4037 spa->spa_bootfs, tmpname) == 0) {
4037 4038 char *cp;
4038 4039 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4039 4040
4040 4041 cp = strchr(tmpname, '/');
4041 4042 if (cp == NULL) {
4042 4043 (void) strlcpy(dsname, tmpname,
4043 4044 MAXPATHLEN);
4044 4045 } else {
4045 4046 (void) snprintf(dsname, MAXPATHLEN,
4046 4047 "%s/%s", poolname, ++cp);
4047 4048 }
4048 4049 VERIFY(nvlist_add_string(config,
4049 4050 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4050 4051 kmem_free(dsname, MAXPATHLEN);
4051 4052 }
4052 4053 kmem_free(tmpname, MAXPATHLEN);
4053 4054 }
4054 4055
4055 4056 /*
4056 4057 * Add the list of hot spares and level 2 cache devices.
4057 4058 */
4058 4059 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4059 4060 spa_add_spares(spa, config);
4060 4061 spa_add_l2cache(spa, config);
4061 4062 spa_config_exit(spa, SCL_CONFIG, FTAG);
4062 4063 }
4063 4064
4064 4065 spa_unload(spa);
4065 4066 spa_deactivate(spa);
4066 4067 spa_remove(spa);
4067 4068 mutex_exit(&spa_namespace_lock);
4068 4069
4069 4070 return (config);
4070 4071 }
4071 4072
4072 4073 /*
4073 4074 * Pool export/destroy
4074 4075 *
4075 4076 * The act of destroying or exporting a pool is very simple. We make sure there
4076 4077 * is no more pending I/O and any references to the pool are gone. Then, we
4077 4078 * update the pool state and sync all the labels to disk, removing the
4078 4079 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4079 4080 * we don't sync the labels or remove the configuration cache.
4080 4081 */
4081 4082 static int
4082 4083 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4083 4084 boolean_t force, boolean_t hardforce)
4084 4085 {
4085 4086 spa_t *spa;
4086 4087
4087 4088 if (oldconfig)
4088 4089 *oldconfig = NULL;
4089 4090
4090 4091 if (!(spa_mode_global & FWRITE))
4091 4092 return (SET_ERROR(EROFS));
4092 4093
4093 4094 mutex_enter(&spa_namespace_lock);
4094 4095 if ((spa = spa_lookup(pool)) == NULL) {
4095 4096 mutex_exit(&spa_namespace_lock);
4096 4097 return (SET_ERROR(ENOENT));
4097 4098 }
4098 4099
4099 4100 /*
4100 4101 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4101 4102 * reacquire the namespace lock, and see if we can export.
4102 4103 */
4103 4104 spa_open_ref(spa, FTAG);
4104 4105 mutex_exit(&spa_namespace_lock);
4105 4106 spa_async_suspend(spa);
4106 4107 mutex_enter(&spa_namespace_lock);
4107 4108 spa_close(spa, FTAG);
4108 4109
4109 4110 /*
4110 4111 * The pool will be in core if it's openable,
4111 4112 * in which case we can modify its state.
4112 4113 */
4113 4114 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4114 4115 /*
4115 4116 * Objsets may be open only because they're dirty, so we
4116 4117 * have to force it to sync before checking spa_refcnt.
4117 4118 */
4118 4119 txg_wait_synced(spa->spa_dsl_pool, 0);
4119 4120
4120 4121 /*
4121 4122 * A pool cannot be exported or destroyed if there are active
4122 4123 * references. If we are resetting a pool, allow references by
4123 4124 * fault injection handlers.
4124 4125 */
4125 4126 if (!spa_refcount_zero(spa) ||
4126 4127 (spa->spa_inject_ref != 0 &&
4127 4128 new_state != POOL_STATE_UNINITIALIZED)) {
4128 4129 spa_async_resume(spa);
4129 4130 mutex_exit(&spa_namespace_lock);
4130 4131 return (SET_ERROR(EBUSY));
4131 4132 }
4132 4133
4133 4134 /*
4134 4135 * A pool cannot be exported if it has an active shared spare.
4135 4136 * This is to prevent other pools stealing the active spare
4136 4137 * from an exported pool. At user's own will, such pool can
4137 4138 * be forcedly exported.
4138 4139 */
4139 4140 if (!force && new_state == POOL_STATE_EXPORTED &&
4140 4141 spa_has_active_shared_spare(spa)) {
4141 4142 spa_async_resume(spa);
4142 4143 mutex_exit(&spa_namespace_lock);
4143 4144 return (SET_ERROR(EXDEV));
4144 4145 }
4145 4146
4146 4147 /*
4147 4148 * We want this to be reflected on every label,
4148 4149 * so mark them all dirty. spa_unload() will do the
4149 4150 * final sync that pushes these changes out.
4150 4151 */
4151 4152 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4152 4153 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4153 4154 spa->spa_state = new_state;
4154 4155 spa->spa_final_txg = spa_last_synced_txg(spa) +
4155 4156 TXG_DEFER_SIZE + 1;
4156 4157 vdev_config_dirty(spa->spa_root_vdev);
4157 4158 spa_config_exit(spa, SCL_ALL, FTAG);
4158 4159 }
4159 4160 }
4160 4161
4161 4162 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4162 4163
4163 4164 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4164 4165 spa_unload(spa);
4165 4166 spa_deactivate(spa);
4166 4167 }
4167 4168
4168 4169 if (oldconfig && spa->spa_config)
4169 4170 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4170 4171
4171 4172 if (new_state != POOL_STATE_UNINITIALIZED) {
4172 4173 if (!hardforce)
4173 4174 spa_config_sync(spa, B_TRUE, B_TRUE);
4174 4175 spa_remove(spa);
4175 4176 }
4176 4177 mutex_exit(&spa_namespace_lock);
4177 4178
4178 4179 return (0);
4179 4180 }
4180 4181
4181 4182 /*
4182 4183 * Destroy a storage pool.
4183 4184 */
4184 4185 int
4185 4186 spa_destroy(char *pool)
4186 4187 {
4187 4188 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4188 4189 B_FALSE, B_FALSE));
4189 4190 }
4190 4191
4191 4192 /*
4192 4193 * Export a storage pool.
4193 4194 */
4194 4195 int
4195 4196 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4196 4197 boolean_t hardforce)
4197 4198 {
4198 4199 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4199 4200 force, hardforce));
4200 4201 }
4201 4202
4202 4203 /*
4203 4204 * Similar to spa_export(), this unloads the spa_t without actually removing it
4204 4205 * from the namespace in any way.
4205 4206 */
4206 4207 int
4207 4208 spa_reset(char *pool)
4208 4209 {
4209 4210 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4210 4211 B_FALSE, B_FALSE));
4211 4212 }
4212 4213
4213 4214 /*
4214 4215 * ==========================================================================
4215 4216 * Device manipulation
4216 4217 * ==========================================================================
4217 4218 */
4218 4219
4219 4220 /*
4220 4221 * Add a device to a storage pool.
4221 4222 */
4222 4223 int
4223 4224 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4224 4225 {
4225 4226 uint64_t txg, id;
4226 4227 int error;
4227 4228 vdev_t *rvd = spa->spa_root_vdev;
4228 4229 vdev_t *vd, *tvd;
4229 4230 nvlist_t **spares, **l2cache;
4230 4231 uint_t nspares, nl2cache;
4231 4232
4232 4233 ASSERT(spa_writeable(spa));
4233 4234
4234 4235 txg = spa_vdev_enter(spa);
4235 4236
4236 4237 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4237 4238 VDEV_ALLOC_ADD)) != 0)
4238 4239 return (spa_vdev_exit(spa, NULL, txg, error));
4239 4240
4240 4241 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4241 4242
4242 4243 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4243 4244 &nspares) != 0)
4244 4245 nspares = 0;
4245 4246
4246 4247 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4247 4248 &nl2cache) != 0)
4248 4249 nl2cache = 0;
4249 4250
4250 4251 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4251 4252 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4252 4253
4253 4254 if (vd->vdev_children != 0 &&
4254 4255 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4255 4256 return (spa_vdev_exit(spa, vd, txg, error));
4256 4257
4257 4258 /*
4258 4259 * We must validate the spares and l2cache devices after checking the
4259 4260 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4260 4261 */
4261 4262 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4262 4263 return (spa_vdev_exit(spa, vd, txg, error));
4263 4264
4264 4265 /*
4265 4266 * Transfer each new top-level vdev from vd to rvd.
4266 4267 */
4267 4268 for (int c = 0; c < vd->vdev_children; c++) {
4268 4269
4269 4270 /*
4270 4271 * Set the vdev id to the first hole, if one exists.
4271 4272 */
4272 4273 for (id = 0; id < rvd->vdev_children; id++) {
4273 4274 if (rvd->vdev_child[id]->vdev_ishole) {
4274 4275 vdev_free(rvd->vdev_child[id]);
4275 4276 break;
4276 4277 }
4277 4278 }
4278 4279 tvd = vd->vdev_child[c];
4279 4280 vdev_remove_child(vd, tvd);
4280 4281 tvd->vdev_id = id;
4281 4282 vdev_add_child(rvd, tvd);
4282 4283 vdev_config_dirty(tvd);
4283 4284 }
4284 4285
4285 4286 if (nspares != 0) {
4286 4287 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4287 4288 ZPOOL_CONFIG_SPARES);
4288 4289 spa_load_spares(spa);
4289 4290 spa->spa_spares.sav_sync = B_TRUE;
4290 4291 }
4291 4292
4292 4293 if (nl2cache != 0) {
4293 4294 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4294 4295 ZPOOL_CONFIG_L2CACHE);
4295 4296 spa_load_l2cache(spa);
4296 4297 spa->spa_l2cache.sav_sync = B_TRUE;
4297 4298 }
4298 4299
4299 4300 /*
4300 4301 * We have to be careful when adding new vdevs to an existing pool.
4301 4302 * If other threads start allocating from these vdevs before we
4302 4303 * sync the config cache, and we lose power, then upon reboot we may
4303 4304 * fail to open the pool because there are DVAs that the config cache
4304 4305 * can't translate. Therefore, we first add the vdevs without
4305 4306 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4306 4307 * and then let spa_config_update() initialize the new metaslabs.
4307 4308 *
4308 4309 * spa_load() checks for added-but-not-initialized vdevs, so that
4309 4310 * if we lose power at any point in this sequence, the remaining
4310 4311 * steps will be completed the next time we load the pool.
4311 4312 */
4312 4313 (void) spa_vdev_exit(spa, vd, txg, 0);
4313 4314
4314 4315 mutex_enter(&spa_namespace_lock);
4315 4316 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4316 4317 mutex_exit(&spa_namespace_lock);
4317 4318
4318 4319 return (0);
4319 4320 }
4320 4321
4321 4322 /*
4322 4323 * Attach a device to a mirror. The arguments are the path to any device
4323 4324 * in the mirror, and the nvroot for the new device. If the path specifies
4324 4325 * a device that is not mirrored, we automatically insert the mirror vdev.
4325 4326 *
4326 4327 * If 'replacing' is specified, the new device is intended to replace the
4327 4328 * existing device; in this case the two devices are made into their own
4328 4329 * mirror using the 'replacing' vdev, which is functionally identical to
4329 4330 * the mirror vdev (it actually reuses all the same ops) but has a few
4330 4331 * extra rules: you can't attach to it after it's been created, and upon
4331 4332 * completion of resilvering, the first disk (the one being replaced)
4332 4333 * is automatically detached.
4333 4334 */
4334 4335 int
4335 4336 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4336 4337 {
4337 4338 uint64_t txg, dtl_max_txg;
4338 4339 vdev_t *rvd = spa->spa_root_vdev;
4339 4340 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4340 4341 vdev_ops_t *pvops;
4341 4342 char *oldvdpath, *newvdpath;
4342 4343 int newvd_isspare;
4343 4344 int error;
4344 4345
4345 4346 ASSERT(spa_writeable(spa));
4346 4347
4347 4348 txg = spa_vdev_enter(spa);
4348 4349
4349 4350 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4350 4351
4351 4352 if (oldvd == NULL)
4352 4353 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4353 4354
4354 4355 if (!oldvd->vdev_ops->vdev_op_leaf)
4355 4356 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4356 4357
4357 4358 pvd = oldvd->vdev_parent;
4358 4359
4359 4360 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4360 4361 VDEV_ALLOC_ATTACH)) != 0)
4361 4362 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4362 4363
4363 4364 if (newrootvd->vdev_children != 1)
4364 4365 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4365 4366
4366 4367 newvd = newrootvd->vdev_child[0];
4367 4368
4368 4369 if (!newvd->vdev_ops->vdev_op_leaf)
4369 4370 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4370 4371
4371 4372 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4372 4373 return (spa_vdev_exit(spa, newrootvd, txg, error));
4373 4374
4374 4375 /*
4375 4376 * Spares can't replace logs
4376 4377 */
4377 4378 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4378 4379 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4379 4380
4380 4381 if (!replacing) {
4381 4382 /*
4382 4383 * For attach, the only allowable parent is a mirror or the root
4383 4384 * vdev.
4384 4385 */
4385 4386 if (pvd->vdev_ops != &vdev_mirror_ops &&
4386 4387 pvd->vdev_ops != &vdev_root_ops)
4387 4388 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4388 4389
4389 4390 pvops = &vdev_mirror_ops;
4390 4391 } else {
4391 4392 /*
4392 4393 * Active hot spares can only be replaced by inactive hot
4393 4394 * spares.
4394 4395 */
4395 4396 if (pvd->vdev_ops == &vdev_spare_ops &&
4396 4397 oldvd->vdev_isspare &&
4397 4398 !spa_has_spare(spa, newvd->vdev_guid))
4398 4399 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4399 4400
4400 4401 /*
4401 4402 * If the source is a hot spare, and the parent isn't already a
4402 4403 * spare, then we want to create a new hot spare. Otherwise, we
4403 4404 * want to create a replacing vdev. The user is not allowed to
4404 4405 * attach to a spared vdev child unless the 'isspare' state is
4405 4406 * the same (spare replaces spare, non-spare replaces
4406 4407 * non-spare).
4407 4408 */
4408 4409 if (pvd->vdev_ops == &vdev_replacing_ops &&
4409 4410 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4410 4411 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4411 4412 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4412 4413 newvd->vdev_isspare != oldvd->vdev_isspare) {
4413 4414 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4414 4415 }
4415 4416
4416 4417 if (newvd->vdev_isspare)
4417 4418 pvops = &vdev_spare_ops;
4418 4419 else
4419 4420 pvops = &vdev_replacing_ops;
4420 4421 }
4421 4422
4422 4423 /*
4423 4424 * Make sure the new device is big enough.
4424 4425 */
4425 4426 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4426 4427 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4427 4428
4428 4429 /*
4429 4430 * The new device cannot have a higher alignment requirement
4430 4431 * than the top-level vdev.
4431 4432 */
4432 4433 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4433 4434 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4434 4435
4435 4436 /*
4436 4437 * If this is an in-place replacement, update oldvd's path and devid
4437 4438 * to make it distinguishable from newvd, and unopenable from now on.
4438 4439 */
4439 4440 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4440 4441 spa_strfree(oldvd->vdev_path);
4441 4442 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4442 4443 KM_SLEEP);
4443 4444 (void) sprintf(oldvd->vdev_path, "%s/%s",
4444 4445 newvd->vdev_path, "old");
4445 4446 if (oldvd->vdev_devid != NULL) {
4446 4447 spa_strfree(oldvd->vdev_devid);
4447 4448 oldvd->vdev_devid = NULL;
4448 4449 }
4449 4450 }
4450 4451
4451 4452 /* mark the device being resilvered */
4452 4453 newvd->vdev_resilver_txg = txg;
4453 4454
4454 4455 /*
4455 4456 * If the parent is not a mirror, or if we're replacing, insert the new
4456 4457 * mirror/replacing/spare vdev above oldvd.
4457 4458 */
4458 4459 if (pvd->vdev_ops != pvops)
4459 4460 pvd = vdev_add_parent(oldvd, pvops);
4460 4461
4461 4462 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4462 4463 ASSERT(pvd->vdev_ops == pvops);
4463 4464 ASSERT(oldvd->vdev_parent == pvd);
4464 4465
4465 4466 /*
4466 4467 * Extract the new device from its root and add it to pvd.
4467 4468 */
4468 4469 vdev_remove_child(newrootvd, newvd);
4469 4470 newvd->vdev_id = pvd->vdev_children;
4470 4471 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4471 4472 vdev_add_child(pvd, newvd);
4472 4473
4473 4474 tvd = newvd->vdev_top;
4474 4475 ASSERT(pvd->vdev_top == tvd);
4475 4476 ASSERT(tvd->vdev_parent == rvd);
4476 4477
4477 4478 vdev_config_dirty(tvd);
4478 4479
4479 4480 /*
4480 4481 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4481 4482 * for any dmu_sync-ed blocks. It will propagate upward when
4482 4483 * spa_vdev_exit() calls vdev_dtl_reassess().
4483 4484 */
4484 4485 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4485 4486
4486 4487 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4487 4488 dtl_max_txg - TXG_INITIAL);
4488 4489
4489 4490 if (newvd->vdev_isspare) {
4490 4491 spa_spare_activate(newvd);
4491 4492 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4492 4493 }
4493 4494
↓ open down ↓ |
3229 lines elided |
↑ open up ↑ |
4494 4495 oldvdpath = spa_strdup(oldvd->vdev_path);
4495 4496 newvdpath = spa_strdup(newvd->vdev_path);
4496 4497 newvd_isspare = newvd->vdev_isspare;
4497 4498
4498 4499 /*
4499 4500 * Mark newvd's DTL dirty in this txg.
4500 4501 */
4501 4502 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4502 4503
4503 4504 /*
4504 - * Restart the resilver
4505 + * Schedule the resilver to restart in the future. We do this to
4506 + * ensure that dmu_sync-ed blocks have been stitched into the
4507 + * respective datasets.
4505 4508 */
4506 4509 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4507 4510
4508 4511 /*
4509 4512 * Commit the config
4510 4513 */
4511 4514 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4512 4515
4513 4516 spa_history_log_internal(spa, "vdev attach", NULL,
4514 4517 "%s vdev=%s %s vdev=%s",
4515 4518 replacing && newvd_isspare ? "spare in" :
4516 4519 replacing ? "replace" : "attach", newvdpath,
4517 4520 replacing ? "for" : "to", oldvdpath);
4518 4521
4519 4522 spa_strfree(oldvdpath);
4520 4523 spa_strfree(newvdpath);
4521 4524
4522 4525 if (spa->spa_bootfs)
4523 4526 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4524 4527
4525 4528 return (0);
4526 4529 }
4527 4530
4528 4531 /*
4529 4532 * Detach a device from a mirror or replacing vdev.
4530 4533 *
4531 4534 * If 'replace_done' is specified, only detach if the parent
4532 4535 * is a replacing vdev.
4533 4536 */
4534 4537 int
4535 4538 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4536 4539 {
4537 4540 uint64_t txg;
4538 4541 int error;
4539 4542 vdev_t *rvd = spa->spa_root_vdev;
4540 4543 vdev_t *vd, *pvd, *cvd, *tvd;
4541 4544 boolean_t unspare = B_FALSE;
4542 4545 uint64_t unspare_guid = 0;
4543 4546 char *vdpath;
4544 4547
4545 4548 ASSERT(spa_writeable(spa));
4546 4549
4547 4550 txg = spa_vdev_enter(spa);
4548 4551
4549 4552 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4550 4553
4551 4554 if (vd == NULL)
4552 4555 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4553 4556
4554 4557 if (!vd->vdev_ops->vdev_op_leaf)
4555 4558 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4556 4559
4557 4560 pvd = vd->vdev_parent;
4558 4561
4559 4562 /*
4560 4563 * If the parent/child relationship is not as expected, don't do it.
4561 4564 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4562 4565 * vdev that's replacing B with C. The user's intent in replacing
4563 4566 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4564 4567 * the replace by detaching C, the expected behavior is to end up
4565 4568 * M(A,B). But suppose that right after deciding to detach C,
4566 4569 * the replacement of B completes. We would have M(A,C), and then
4567 4570 * ask to detach C, which would leave us with just A -- not what
4568 4571 * the user wanted. To prevent this, we make sure that the
4569 4572 * parent/child relationship hasn't changed -- in this example,
4570 4573 * that C's parent is still the replacing vdev R.
4571 4574 */
4572 4575 if (pvd->vdev_guid != pguid && pguid != 0)
4573 4576 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4574 4577
4575 4578 /*
4576 4579 * Only 'replacing' or 'spare' vdevs can be replaced.
4577 4580 */
4578 4581 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4579 4582 pvd->vdev_ops != &vdev_spare_ops)
4580 4583 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4581 4584
4582 4585 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4583 4586 spa_version(spa) >= SPA_VERSION_SPARES);
4584 4587
4585 4588 /*
4586 4589 * Only mirror, replacing, and spare vdevs support detach.
4587 4590 */
4588 4591 if (pvd->vdev_ops != &vdev_replacing_ops &&
4589 4592 pvd->vdev_ops != &vdev_mirror_ops &&
4590 4593 pvd->vdev_ops != &vdev_spare_ops)
4591 4594 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4592 4595
4593 4596 /*
4594 4597 * If this device has the only valid copy of some data,
4595 4598 * we cannot safely detach it.
4596 4599 */
4597 4600 if (vdev_dtl_required(vd))
4598 4601 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4599 4602
4600 4603 ASSERT(pvd->vdev_children >= 2);
4601 4604
4602 4605 /*
4603 4606 * If we are detaching the second disk from a replacing vdev, then
4604 4607 * check to see if we changed the original vdev's path to have "/old"
4605 4608 * at the end in spa_vdev_attach(). If so, undo that change now.
4606 4609 */
4607 4610 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4608 4611 vd->vdev_path != NULL) {
4609 4612 size_t len = strlen(vd->vdev_path);
4610 4613
4611 4614 for (int c = 0; c < pvd->vdev_children; c++) {
4612 4615 cvd = pvd->vdev_child[c];
4613 4616
4614 4617 if (cvd == vd || cvd->vdev_path == NULL)
4615 4618 continue;
4616 4619
4617 4620 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4618 4621 strcmp(cvd->vdev_path + len, "/old") == 0) {
4619 4622 spa_strfree(cvd->vdev_path);
4620 4623 cvd->vdev_path = spa_strdup(vd->vdev_path);
4621 4624 break;
4622 4625 }
4623 4626 }
4624 4627 }
4625 4628
4626 4629 /*
4627 4630 * If we are detaching the original disk from a spare, then it implies
4628 4631 * that the spare should become a real disk, and be removed from the
4629 4632 * active spare list for the pool.
4630 4633 */
4631 4634 if (pvd->vdev_ops == &vdev_spare_ops &&
4632 4635 vd->vdev_id == 0 &&
4633 4636 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4634 4637 unspare = B_TRUE;
4635 4638
4636 4639 /*
4637 4640 * Erase the disk labels so the disk can be used for other things.
4638 4641 * This must be done after all other error cases are handled,
4639 4642 * but before we disembowel vd (so we can still do I/O to it).
4640 4643 * But if we can't do it, don't treat the error as fatal --
4641 4644 * it may be that the unwritability of the disk is the reason
4642 4645 * it's being detached!
4643 4646 */
4644 4647 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4645 4648
4646 4649 /*
4647 4650 * Remove vd from its parent and compact the parent's children.
4648 4651 */
4649 4652 vdev_remove_child(pvd, vd);
4650 4653 vdev_compact_children(pvd);
4651 4654
4652 4655 /*
4653 4656 * Remember one of the remaining children so we can get tvd below.
4654 4657 */
4655 4658 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4656 4659
4657 4660 /*
4658 4661 * If we need to remove the remaining child from the list of hot spares,
4659 4662 * do it now, marking the vdev as no longer a spare in the process.
4660 4663 * We must do this before vdev_remove_parent(), because that can
4661 4664 * change the GUID if it creates a new toplevel GUID. For a similar
4662 4665 * reason, we must remove the spare now, in the same txg as the detach;
4663 4666 * otherwise someone could attach a new sibling, change the GUID, and
4664 4667 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4665 4668 */
4666 4669 if (unspare) {
4667 4670 ASSERT(cvd->vdev_isspare);
4668 4671 spa_spare_remove(cvd);
4669 4672 unspare_guid = cvd->vdev_guid;
4670 4673 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4671 4674 cvd->vdev_unspare = B_TRUE;
4672 4675 }
4673 4676
4674 4677 /*
4675 4678 * If the parent mirror/replacing vdev only has one child,
4676 4679 * the parent is no longer needed. Remove it from the tree.
4677 4680 */
4678 4681 if (pvd->vdev_children == 1) {
4679 4682 if (pvd->vdev_ops == &vdev_spare_ops)
4680 4683 cvd->vdev_unspare = B_FALSE;
4681 4684 vdev_remove_parent(cvd);
4682 4685 }
4683 4686
4684 4687
4685 4688 /*
4686 4689 * We don't set tvd until now because the parent we just removed
4687 4690 * may have been the previous top-level vdev.
4688 4691 */
4689 4692 tvd = cvd->vdev_top;
4690 4693 ASSERT(tvd->vdev_parent == rvd);
4691 4694
4692 4695 /*
4693 4696 * Reevaluate the parent vdev state.
4694 4697 */
4695 4698 vdev_propagate_state(cvd);
4696 4699
4697 4700 /*
4698 4701 * If the 'autoexpand' property is set on the pool then automatically
4699 4702 * try to expand the size of the pool. For example if the device we
4700 4703 * just detached was smaller than the others, it may be possible to
4701 4704 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4702 4705 * first so that we can obtain the updated sizes of the leaf vdevs.
4703 4706 */
4704 4707 if (spa->spa_autoexpand) {
4705 4708 vdev_reopen(tvd);
4706 4709 vdev_expand(tvd, txg);
4707 4710 }
4708 4711
4709 4712 vdev_config_dirty(tvd);
4710 4713
4711 4714 /*
4712 4715 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4713 4716 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4714 4717 * But first make sure we're not on any *other* txg's DTL list, to
4715 4718 * prevent vd from being accessed after it's freed.
4716 4719 */
4717 4720 vdpath = spa_strdup(vd->vdev_path);
4718 4721 for (int t = 0; t < TXG_SIZE; t++)
4719 4722 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4720 4723 vd->vdev_detached = B_TRUE;
4721 4724 vdev_dirty(tvd, VDD_DTL, vd, txg);
4722 4725
4723 4726 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4724 4727
4725 4728 /* hang on to the spa before we release the lock */
4726 4729 spa_open_ref(spa, FTAG);
4727 4730
4728 4731 error = spa_vdev_exit(spa, vd, txg, 0);
4729 4732
4730 4733 spa_history_log_internal(spa, "detach", NULL,
4731 4734 "vdev=%s", vdpath);
4732 4735 spa_strfree(vdpath);
4733 4736
4734 4737 /*
4735 4738 * If this was the removal of the original device in a hot spare vdev,
4736 4739 * then we want to go through and remove the device from the hot spare
4737 4740 * list of every other pool.
4738 4741 */
4739 4742 if (unspare) {
4740 4743 spa_t *altspa = NULL;
4741 4744
4742 4745 mutex_enter(&spa_namespace_lock);
4743 4746 while ((altspa = spa_next(altspa)) != NULL) {
4744 4747 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4745 4748 altspa == spa)
4746 4749 continue;
4747 4750
4748 4751 spa_open_ref(altspa, FTAG);
4749 4752 mutex_exit(&spa_namespace_lock);
4750 4753 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4751 4754 mutex_enter(&spa_namespace_lock);
4752 4755 spa_close(altspa, FTAG);
4753 4756 }
4754 4757 mutex_exit(&spa_namespace_lock);
4755 4758
4756 4759 /* search the rest of the vdevs for spares to remove */
4757 4760 spa_vdev_resilver_done(spa);
4758 4761 }
4759 4762
4760 4763 /* all done with the spa; OK to release */
4761 4764 mutex_enter(&spa_namespace_lock);
4762 4765 spa_close(spa, FTAG);
4763 4766 mutex_exit(&spa_namespace_lock);
4764 4767
4765 4768 return (error);
4766 4769 }
4767 4770
4768 4771 /*
4769 4772 * Split a set of devices from their mirrors, and create a new pool from them.
4770 4773 */
4771 4774 int
4772 4775 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4773 4776 nvlist_t *props, boolean_t exp)
4774 4777 {
4775 4778 int error = 0;
4776 4779 uint64_t txg, *glist;
4777 4780 spa_t *newspa;
4778 4781 uint_t c, children, lastlog;
4779 4782 nvlist_t **child, *nvl, *tmp;
4780 4783 dmu_tx_t *tx;
4781 4784 char *altroot = NULL;
4782 4785 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4783 4786 boolean_t activate_slog;
4784 4787
4785 4788 ASSERT(spa_writeable(spa));
4786 4789
4787 4790 txg = spa_vdev_enter(spa);
4788 4791
4789 4792 /* clear the log and flush everything up to now */
4790 4793 activate_slog = spa_passivate_log(spa);
4791 4794 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4792 4795 error = spa_offline_log(spa);
4793 4796 txg = spa_vdev_config_enter(spa);
4794 4797
4795 4798 if (activate_slog)
4796 4799 spa_activate_log(spa);
4797 4800
4798 4801 if (error != 0)
4799 4802 return (spa_vdev_exit(spa, NULL, txg, error));
4800 4803
4801 4804 /* check new spa name before going any further */
4802 4805 if (spa_lookup(newname) != NULL)
4803 4806 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4804 4807
4805 4808 /*
4806 4809 * scan through all the children to ensure they're all mirrors
4807 4810 */
4808 4811 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4809 4812 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4810 4813 &children) != 0)
4811 4814 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4812 4815
4813 4816 /* first, check to ensure we've got the right child count */
4814 4817 rvd = spa->spa_root_vdev;
4815 4818 lastlog = 0;
4816 4819 for (c = 0; c < rvd->vdev_children; c++) {
4817 4820 vdev_t *vd = rvd->vdev_child[c];
4818 4821
4819 4822 /* don't count the holes & logs as children */
4820 4823 if (vd->vdev_islog || vd->vdev_ishole) {
4821 4824 if (lastlog == 0)
4822 4825 lastlog = c;
4823 4826 continue;
4824 4827 }
4825 4828
4826 4829 lastlog = 0;
4827 4830 }
4828 4831 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4829 4832 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4830 4833
4831 4834 /* next, ensure no spare or cache devices are part of the split */
4832 4835 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4833 4836 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4834 4837 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4835 4838
4836 4839 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4837 4840 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4838 4841
4839 4842 /* then, loop over each vdev and validate it */
4840 4843 for (c = 0; c < children; c++) {
4841 4844 uint64_t is_hole = 0;
4842 4845
4843 4846 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4844 4847 &is_hole);
4845 4848
4846 4849 if (is_hole != 0) {
4847 4850 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4848 4851 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4849 4852 continue;
4850 4853 } else {
4851 4854 error = SET_ERROR(EINVAL);
4852 4855 break;
4853 4856 }
4854 4857 }
4855 4858
4856 4859 /* which disk is going to be split? */
4857 4860 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4858 4861 &glist[c]) != 0) {
4859 4862 error = SET_ERROR(EINVAL);
4860 4863 break;
4861 4864 }
4862 4865
4863 4866 /* look it up in the spa */
4864 4867 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4865 4868 if (vml[c] == NULL) {
4866 4869 error = SET_ERROR(ENODEV);
4867 4870 break;
4868 4871 }
4869 4872
4870 4873 /* make sure there's nothing stopping the split */
4871 4874 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4872 4875 vml[c]->vdev_islog ||
4873 4876 vml[c]->vdev_ishole ||
4874 4877 vml[c]->vdev_isspare ||
4875 4878 vml[c]->vdev_isl2cache ||
4876 4879 !vdev_writeable(vml[c]) ||
4877 4880 vml[c]->vdev_children != 0 ||
4878 4881 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4879 4882 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4880 4883 error = SET_ERROR(EINVAL);
4881 4884 break;
4882 4885 }
4883 4886
4884 4887 if (vdev_dtl_required(vml[c])) {
4885 4888 error = SET_ERROR(EBUSY);
4886 4889 break;
4887 4890 }
4888 4891
4889 4892 /* we need certain info from the top level */
4890 4893 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4891 4894 vml[c]->vdev_top->vdev_ms_array) == 0);
4892 4895 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4893 4896 vml[c]->vdev_top->vdev_ms_shift) == 0);
4894 4897 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4895 4898 vml[c]->vdev_top->vdev_asize) == 0);
4896 4899 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4897 4900 vml[c]->vdev_top->vdev_ashift) == 0);
4898 4901 }
4899 4902
4900 4903 if (error != 0) {
4901 4904 kmem_free(vml, children * sizeof (vdev_t *));
4902 4905 kmem_free(glist, children * sizeof (uint64_t));
4903 4906 return (spa_vdev_exit(spa, NULL, txg, error));
4904 4907 }
4905 4908
4906 4909 /* stop writers from using the disks */
4907 4910 for (c = 0; c < children; c++) {
4908 4911 if (vml[c] != NULL)
4909 4912 vml[c]->vdev_offline = B_TRUE;
4910 4913 }
4911 4914 vdev_reopen(spa->spa_root_vdev);
4912 4915
4913 4916 /*
4914 4917 * Temporarily record the splitting vdevs in the spa config. This
4915 4918 * will disappear once the config is regenerated.
4916 4919 */
4917 4920 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4918 4921 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4919 4922 glist, children) == 0);
4920 4923 kmem_free(glist, children * sizeof (uint64_t));
4921 4924
4922 4925 mutex_enter(&spa->spa_props_lock);
4923 4926 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4924 4927 nvl) == 0);
4925 4928 mutex_exit(&spa->spa_props_lock);
4926 4929 spa->spa_config_splitting = nvl;
4927 4930 vdev_config_dirty(spa->spa_root_vdev);
4928 4931
4929 4932 /* configure and create the new pool */
4930 4933 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4931 4934 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4932 4935 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4933 4936 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4934 4937 spa_version(spa)) == 0);
4935 4938 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4936 4939 spa->spa_config_txg) == 0);
4937 4940 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4938 4941 spa_generate_guid(NULL)) == 0);
4939 4942 (void) nvlist_lookup_string(props,
4940 4943 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4941 4944
4942 4945 /* add the new pool to the namespace */
4943 4946 newspa = spa_add(newname, config, altroot);
4944 4947 newspa->spa_config_txg = spa->spa_config_txg;
4945 4948 spa_set_log_state(newspa, SPA_LOG_CLEAR);
4946 4949
4947 4950 /* release the spa config lock, retaining the namespace lock */
4948 4951 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4949 4952
4950 4953 if (zio_injection_enabled)
4951 4954 zio_handle_panic_injection(spa, FTAG, 1);
4952 4955
4953 4956 spa_activate(newspa, spa_mode_global);
4954 4957 spa_async_suspend(newspa);
4955 4958
4956 4959 /* create the new pool from the disks of the original pool */
4957 4960 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4958 4961 if (error)
4959 4962 goto out;
4960 4963
4961 4964 /* if that worked, generate a real config for the new pool */
4962 4965 if (newspa->spa_root_vdev != NULL) {
4963 4966 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4964 4967 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4965 4968 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4966 4969 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4967 4970 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4968 4971 B_TRUE));
4969 4972 }
4970 4973
4971 4974 /* set the props */
4972 4975 if (props != NULL) {
4973 4976 spa_configfile_set(newspa, props, B_FALSE);
4974 4977 error = spa_prop_set(newspa, props);
4975 4978 if (error)
4976 4979 goto out;
4977 4980 }
4978 4981
4979 4982 /* flush everything */
4980 4983 txg = spa_vdev_config_enter(newspa);
4981 4984 vdev_config_dirty(newspa->spa_root_vdev);
4982 4985 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4983 4986
4984 4987 if (zio_injection_enabled)
4985 4988 zio_handle_panic_injection(spa, FTAG, 2);
4986 4989
4987 4990 spa_async_resume(newspa);
4988 4991
4989 4992 /* finally, update the original pool's config */
4990 4993 txg = spa_vdev_config_enter(spa);
4991 4994 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4992 4995 error = dmu_tx_assign(tx, TXG_WAIT);
4993 4996 if (error != 0)
4994 4997 dmu_tx_abort(tx);
4995 4998 for (c = 0; c < children; c++) {
4996 4999 if (vml[c] != NULL) {
4997 5000 vdev_split(vml[c]);
4998 5001 if (error == 0)
4999 5002 spa_history_log_internal(spa, "detach", tx,
5000 5003 "vdev=%s", vml[c]->vdev_path);
5001 5004 vdev_free(vml[c]);
5002 5005 }
5003 5006 }
5004 5007 vdev_config_dirty(spa->spa_root_vdev);
5005 5008 spa->spa_config_splitting = NULL;
5006 5009 nvlist_free(nvl);
5007 5010 if (error == 0)
5008 5011 dmu_tx_commit(tx);
5009 5012 (void) spa_vdev_exit(spa, NULL, txg, 0);
5010 5013
5011 5014 if (zio_injection_enabled)
5012 5015 zio_handle_panic_injection(spa, FTAG, 3);
5013 5016
5014 5017 /* split is complete; log a history record */
5015 5018 spa_history_log_internal(newspa, "split", NULL,
5016 5019 "from pool %s", spa_name(spa));
5017 5020
5018 5021 kmem_free(vml, children * sizeof (vdev_t *));
5019 5022
5020 5023 /* if we're not going to mount the filesystems in userland, export */
5021 5024 if (exp)
5022 5025 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5023 5026 B_FALSE, B_FALSE);
5024 5027
5025 5028 return (error);
5026 5029
5027 5030 out:
5028 5031 spa_unload(newspa);
5029 5032 spa_deactivate(newspa);
5030 5033 spa_remove(newspa);
5031 5034
5032 5035 txg = spa_vdev_config_enter(spa);
5033 5036
5034 5037 /* re-online all offlined disks */
5035 5038 for (c = 0; c < children; c++) {
5036 5039 if (vml[c] != NULL)
5037 5040 vml[c]->vdev_offline = B_FALSE;
5038 5041 }
5039 5042 vdev_reopen(spa->spa_root_vdev);
5040 5043
5041 5044 nvlist_free(spa->spa_config_splitting);
5042 5045 spa->spa_config_splitting = NULL;
5043 5046 (void) spa_vdev_exit(spa, NULL, txg, error);
5044 5047
5045 5048 kmem_free(vml, children * sizeof (vdev_t *));
5046 5049 return (error);
5047 5050 }
5048 5051
5049 5052 static nvlist_t *
5050 5053 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5051 5054 {
5052 5055 for (int i = 0; i < count; i++) {
5053 5056 uint64_t guid;
5054 5057
5055 5058 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5056 5059 &guid) == 0);
5057 5060
5058 5061 if (guid == target_guid)
5059 5062 return (nvpp[i]);
5060 5063 }
5061 5064
5062 5065 return (NULL);
5063 5066 }
5064 5067
5065 5068 static void
5066 5069 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5067 5070 nvlist_t *dev_to_remove)
5068 5071 {
5069 5072 nvlist_t **newdev = NULL;
5070 5073
5071 5074 if (count > 1)
5072 5075 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5073 5076
5074 5077 for (int i = 0, j = 0; i < count; i++) {
5075 5078 if (dev[i] == dev_to_remove)
5076 5079 continue;
5077 5080 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5078 5081 }
5079 5082
5080 5083 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5081 5084 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5082 5085
5083 5086 for (int i = 0; i < count - 1; i++)
5084 5087 nvlist_free(newdev[i]);
5085 5088
5086 5089 if (count > 1)
5087 5090 kmem_free(newdev, (count - 1) * sizeof (void *));
5088 5091 }
5089 5092
5090 5093 /*
5091 5094 * Evacuate the device.
5092 5095 */
5093 5096 static int
5094 5097 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5095 5098 {
5096 5099 uint64_t txg;
5097 5100 int error = 0;
5098 5101
5099 5102 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5100 5103 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5101 5104 ASSERT(vd == vd->vdev_top);
5102 5105
5103 5106 /*
5104 5107 * Evacuate the device. We don't hold the config lock as writer
5105 5108 * since we need to do I/O but we do keep the
5106 5109 * spa_namespace_lock held. Once this completes the device
5107 5110 * should no longer have any blocks allocated on it.
5108 5111 */
5109 5112 if (vd->vdev_islog) {
5110 5113 if (vd->vdev_stat.vs_alloc != 0)
5111 5114 error = spa_offline_log(spa);
5112 5115 } else {
5113 5116 error = SET_ERROR(ENOTSUP);
5114 5117 }
5115 5118
↓ open down ↓ |
601 lines elided |
↑ open up ↑ |
5116 5119 if (error)
5117 5120 return (error);
5118 5121
5119 5122 /*
5120 5123 * The evacuation succeeded. Remove any remaining MOS metadata
5121 5124 * associated with this vdev, and wait for these changes to sync.
5122 5125 */
5123 5126 ASSERT0(vd->vdev_stat.vs_alloc);
5124 5127 txg = spa_vdev_config_enter(spa);
5125 5128 vd->vdev_removing = B_TRUE;
5126 - vdev_dirty(vd, 0, NULL, txg);
5129 + vdev_dirty_leaves(vd, VDD_DTL, txg);
5127 5130 vdev_config_dirty(vd);
5128 5131 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5129 5132
5130 5133 return (0);
5131 5134 }
5132 5135
5133 5136 /*
5134 5137 * Complete the removal by cleaning up the namespace.
5135 5138 */
5136 5139 static void
5137 5140 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5138 5141 {
5139 5142 vdev_t *rvd = spa->spa_root_vdev;
5140 5143 uint64_t id = vd->vdev_id;
5141 5144 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5142 5145
5143 5146 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5144 5147 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5145 5148 ASSERT(vd == vd->vdev_top);
5146 5149
5147 5150 /*
5148 5151 * Only remove any devices which are empty.
5149 5152 */
5150 5153 if (vd->vdev_stat.vs_alloc != 0)
5151 5154 return;
5152 5155
5153 5156 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5154 5157
5155 5158 if (list_link_active(&vd->vdev_state_dirty_node))
5156 5159 vdev_state_clean(vd);
5157 5160 if (list_link_active(&vd->vdev_config_dirty_node))
5158 5161 vdev_config_clean(vd);
5159 5162
5160 5163 vdev_free(vd);
5161 5164
5162 5165 if (last_vdev) {
5163 5166 vdev_compact_children(rvd);
5164 5167 } else {
5165 5168 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5166 5169 vdev_add_child(rvd, vd);
5167 5170 }
5168 5171 vdev_config_dirty(rvd);
5169 5172
5170 5173 /*
5171 5174 * Reassess the health of our root vdev.
5172 5175 */
5173 5176 vdev_reopen(rvd);
5174 5177 }
5175 5178
5176 5179 /*
5177 5180 * Remove a device from the pool -
5178 5181 *
5179 5182 * Removing a device from the vdev namespace requires several steps
5180 5183 * and can take a significant amount of time. As a result we use
5181 5184 * the spa_vdev_config_[enter/exit] functions which allow us to
5182 5185 * grab and release the spa_config_lock while still holding the namespace
5183 5186 * lock. During each step the configuration is synced out.
5184 5187 *
5185 5188 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5186 5189 * devices.
5187 5190 */
5188 5191 int
5189 5192 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5190 5193 {
5191 5194 vdev_t *vd;
5192 5195 metaslab_group_t *mg;
5193 5196 nvlist_t **spares, **l2cache, *nv;
5194 5197 uint64_t txg = 0;
5195 5198 uint_t nspares, nl2cache;
5196 5199 int error = 0;
5197 5200 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5198 5201
5199 5202 ASSERT(spa_writeable(spa));
5200 5203
5201 5204 if (!locked)
5202 5205 txg = spa_vdev_enter(spa);
5203 5206
5204 5207 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5205 5208
5206 5209 if (spa->spa_spares.sav_vdevs != NULL &&
5207 5210 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5208 5211 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5209 5212 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5210 5213 /*
5211 5214 * Only remove the hot spare if it's not currently in use
5212 5215 * in this pool.
5213 5216 */
5214 5217 if (vd == NULL || unspare) {
5215 5218 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5216 5219 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5217 5220 spa_load_spares(spa);
5218 5221 spa->spa_spares.sav_sync = B_TRUE;
5219 5222 } else {
5220 5223 error = SET_ERROR(EBUSY);
5221 5224 }
5222 5225 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5223 5226 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5224 5227 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5225 5228 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5226 5229 /*
5227 5230 * Cache devices can always be removed.
5228 5231 */
5229 5232 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5230 5233 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5231 5234 spa_load_l2cache(spa);
5232 5235 spa->spa_l2cache.sav_sync = B_TRUE;
5233 5236 } else if (vd != NULL && vd->vdev_islog) {
5234 5237 ASSERT(!locked);
5235 5238 ASSERT(vd == vd->vdev_top);
5236 5239
5237 5240 /*
5238 5241 * XXX - Once we have bp-rewrite this should
5239 5242 * become the common case.
5240 5243 */
5241 5244
5242 5245 mg = vd->vdev_mg;
5243 5246
5244 5247 /*
5245 5248 * Stop allocating from this vdev.
5246 5249 */
5247 5250 metaslab_group_passivate(mg);
5248 5251
5249 5252 /*
5250 5253 * Wait for the youngest allocations and frees to sync,
5251 5254 * and then wait for the deferral of those frees to finish.
5252 5255 */
5253 5256 spa_vdev_config_exit(spa, NULL,
5254 5257 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5255 5258
5256 5259 /*
5257 5260 * Attempt to evacuate the vdev.
5258 5261 */
5259 5262 error = spa_vdev_remove_evacuate(spa, vd);
5260 5263
5261 5264 txg = spa_vdev_config_enter(spa);
5262 5265
5263 5266 /*
5264 5267 * If we couldn't evacuate the vdev, unwind.
5265 5268 */
5266 5269 if (error) {
5267 5270 metaslab_group_activate(mg);
5268 5271 return (spa_vdev_exit(spa, NULL, txg, error));
5269 5272 }
5270 5273
5271 5274 /*
5272 5275 * Clean up the vdev namespace.
5273 5276 */
5274 5277 spa_vdev_remove_from_namespace(spa, vd);
5275 5278
5276 5279 } else if (vd != NULL) {
5277 5280 /*
5278 5281 * Normal vdevs cannot be removed (yet).
5279 5282 */
5280 5283 error = SET_ERROR(ENOTSUP);
5281 5284 } else {
5282 5285 /*
5283 5286 * There is no vdev of any kind with the specified guid.
5284 5287 */
5285 5288 error = SET_ERROR(ENOENT);
5286 5289 }
5287 5290
5288 5291 if (!locked)
5289 5292 return (spa_vdev_exit(spa, NULL, txg, error));
5290 5293
5291 5294 return (error);
5292 5295 }
5293 5296
5294 5297 /*
5295 5298 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5296 5299 * currently spared, so we can detach it.
5297 5300 */
5298 5301 static vdev_t *
5299 5302 spa_vdev_resilver_done_hunt(vdev_t *vd)
5300 5303 {
5301 5304 vdev_t *newvd, *oldvd;
5302 5305
5303 5306 for (int c = 0; c < vd->vdev_children; c++) {
5304 5307 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5305 5308 if (oldvd != NULL)
5306 5309 return (oldvd);
5307 5310 }
5308 5311
5309 5312 /*
5310 5313 * Check for a completed replacement. We always consider the first
5311 5314 * vdev in the list to be the oldest vdev, and the last one to be
5312 5315 * the newest (see spa_vdev_attach() for how that works). In
5313 5316 * the case where the newest vdev is faulted, we will not automatically
5314 5317 * remove it after a resilver completes. This is OK as it will require
5315 5318 * user intervention to determine which disk the admin wishes to keep.
5316 5319 */
5317 5320 if (vd->vdev_ops == &vdev_replacing_ops) {
5318 5321 ASSERT(vd->vdev_children > 1);
5319 5322
5320 5323 newvd = vd->vdev_child[vd->vdev_children - 1];
5321 5324 oldvd = vd->vdev_child[0];
5322 5325
5323 5326 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5324 5327 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5325 5328 !vdev_dtl_required(oldvd))
5326 5329 return (oldvd);
5327 5330 }
5328 5331
5329 5332 /*
5330 5333 * Check for a completed resilver with the 'unspare' flag set.
5331 5334 */
5332 5335 if (vd->vdev_ops == &vdev_spare_ops) {
5333 5336 vdev_t *first = vd->vdev_child[0];
5334 5337 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5335 5338
5336 5339 if (last->vdev_unspare) {
5337 5340 oldvd = first;
5338 5341 newvd = last;
5339 5342 } else if (first->vdev_unspare) {
5340 5343 oldvd = last;
5341 5344 newvd = first;
5342 5345 } else {
5343 5346 oldvd = NULL;
5344 5347 }
5345 5348
5346 5349 if (oldvd != NULL &&
5347 5350 vdev_dtl_empty(newvd, DTL_MISSING) &&
5348 5351 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5349 5352 !vdev_dtl_required(oldvd))
5350 5353 return (oldvd);
5351 5354
5352 5355 /*
5353 5356 * If there are more than two spares attached to a disk,
5354 5357 * and those spares are not required, then we want to
5355 5358 * attempt to free them up now so that they can be used
5356 5359 * by other pools. Once we're back down to a single
5357 5360 * disk+spare, we stop removing them.
5358 5361 */
5359 5362 if (vd->vdev_children > 2) {
5360 5363 newvd = vd->vdev_child[1];
5361 5364
5362 5365 if (newvd->vdev_isspare && last->vdev_isspare &&
5363 5366 vdev_dtl_empty(last, DTL_MISSING) &&
5364 5367 vdev_dtl_empty(last, DTL_OUTAGE) &&
5365 5368 !vdev_dtl_required(newvd))
5366 5369 return (newvd);
5367 5370 }
5368 5371 }
5369 5372
5370 5373 return (NULL);
5371 5374 }
5372 5375
5373 5376 static void
5374 5377 spa_vdev_resilver_done(spa_t *spa)
5375 5378 {
5376 5379 vdev_t *vd, *pvd, *ppvd;
5377 5380 uint64_t guid, sguid, pguid, ppguid;
5378 5381
5379 5382 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5380 5383
5381 5384 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5382 5385 pvd = vd->vdev_parent;
5383 5386 ppvd = pvd->vdev_parent;
5384 5387 guid = vd->vdev_guid;
5385 5388 pguid = pvd->vdev_guid;
5386 5389 ppguid = ppvd->vdev_guid;
5387 5390 sguid = 0;
5388 5391 /*
5389 5392 * If we have just finished replacing a hot spared device, then
5390 5393 * we need to detach the parent's first child (the original hot
5391 5394 * spare) as well.
5392 5395 */
5393 5396 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5394 5397 ppvd->vdev_children == 2) {
5395 5398 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5396 5399 sguid = ppvd->vdev_child[1]->vdev_guid;
5397 5400 }
5398 5401 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5399 5402
5400 5403 spa_config_exit(spa, SCL_ALL, FTAG);
5401 5404 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5402 5405 return;
5403 5406 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5404 5407 return;
5405 5408 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5406 5409 }
5407 5410
5408 5411 spa_config_exit(spa, SCL_ALL, FTAG);
5409 5412 }
5410 5413
5411 5414 /*
5412 5415 * Update the stored path or FRU for this vdev.
5413 5416 */
5414 5417 int
5415 5418 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5416 5419 boolean_t ispath)
5417 5420 {
5418 5421 vdev_t *vd;
5419 5422 boolean_t sync = B_FALSE;
5420 5423
5421 5424 ASSERT(spa_writeable(spa));
5422 5425
5423 5426 spa_vdev_state_enter(spa, SCL_ALL);
5424 5427
5425 5428 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5426 5429 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5427 5430
5428 5431 if (!vd->vdev_ops->vdev_op_leaf)
5429 5432 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5430 5433
5431 5434 if (ispath) {
5432 5435 if (strcmp(value, vd->vdev_path) != 0) {
5433 5436 spa_strfree(vd->vdev_path);
5434 5437 vd->vdev_path = spa_strdup(value);
5435 5438 sync = B_TRUE;
5436 5439 }
5437 5440 } else {
5438 5441 if (vd->vdev_fru == NULL) {
5439 5442 vd->vdev_fru = spa_strdup(value);
5440 5443 sync = B_TRUE;
5441 5444 } else if (strcmp(value, vd->vdev_fru) != 0) {
5442 5445 spa_strfree(vd->vdev_fru);
5443 5446 vd->vdev_fru = spa_strdup(value);
5444 5447 sync = B_TRUE;
5445 5448 }
5446 5449 }
5447 5450
5448 5451 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5449 5452 }
5450 5453
5451 5454 int
5452 5455 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5453 5456 {
5454 5457 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5455 5458 }
5456 5459
5457 5460 int
5458 5461 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5459 5462 {
5460 5463 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5461 5464 }
5462 5465
5463 5466 /*
5464 5467 * ==========================================================================
5465 5468 * SPA Scanning
5466 5469 * ==========================================================================
5467 5470 */
5468 5471
5469 5472 int
5470 5473 spa_scan_stop(spa_t *spa)
5471 5474 {
5472 5475 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5473 5476 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5474 5477 return (SET_ERROR(EBUSY));
5475 5478 return (dsl_scan_cancel(spa->spa_dsl_pool));
5476 5479 }
5477 5480
5478 5481 int
5479 5482 spa_scan(spa_t *spa, pool_scan_func_t func)
5480 5483 {
5481 5484 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5482 5485
5483 5486 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5484 5487 return (SET_ERROR(ENOTSUP));
5485 5488
5486 5489 /*
5487 5490 * If a resilver was requested, but there is no DTL on a
5488 5491 * writeable leaf device, we have nothing to do.
5489 5492 */
5490 5493 if (func == POOL_SCAN_RESILVER &&
5491 5494 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5492 5495 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5493 5496 return (0);
5494 5497 }
5495 5498
5496 5499 return (dsl_scan(spa->spa_dsl_pool, func));
5497 5500 }
5498 5501
5499 5502 /*
5500 5503 * ==========================================================================
5501 5504 * SPA async task processing
5502 5505 * ==========================================================================
5503 5506 */
5504 5507
5505 5508 static void
5506 5509 spa_async_remove(spa_t *spa, vdev_t *vd)
5507 5510 {
5508 5511 if (vd->vdev_remove_wanted) {
5509 5512 vd->vdev_remove_wanted = B_FALSE;
5510 5513 vd->vdev_delayed_close = B_FALSE;
5511 5514 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5512 5515
5513 5516 /*
5514 5517 * We want to clear the stats, but we don't want to do a full
5515 5518 * vdev_clear() as that will cause us to throw away
5516 5519 * degraded/faulted state as well as attempt to reopen the
5517 5520 * device, all of which is a waste.
5518 5521 */
5519 5522 vd->vdev_stat.vs_read_errors = 0;
5520 5523 vd->vdev_stat.vs_write_errors = 0;
5521 5524 vd->vdev_stat.vs_checksum_errors = 0;
5522 5525
5523 5526 vdev_state_dirty(vd->vdev_top);
5524 5527 }
5525 5528
5526 5529 for (int c = 0; c < vd->vdev_children; c++)
5527 5530 spa_async_remove(spa, vd->vdev_child[c]);
5528 5531 }
5529 5532
5530 5533 static void
5531 5534 spa_async_probe(spa_t *spa, vdev_t *vd)
5532 5535 {
5533 5536 if (vd->vdev_probe_wanted) {
5534 5537 vd->vdev_probe_wanted = B_FALSE;
5535 5538 vdev_reopen(vd); /* vdev_open() does the actual probe */
5536 5539 }
5537 5540
5538 5541 for (int c = 0; c < vd->vdev_children; c++)
5539 5542 spa_async_probe(spa, vd->vdev_child[c]);
5540 5543 }
5541 5544
5542 5545 static void
5543 5546 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5544 5547 {
5545 5548 sysevent_id_t eid;
5546 5549 nvlist_t *attr;
5547 5550 char *physpath;
5548 5551
5549 5552 if (!spa->spa_autoexpand)
5550 5553 return;
5551 5554
5552 5555 for (int c = 0; c < vd->vdev_children; c++) {
5553 5556 vdev_t *cvd = vd->vdev_child[c];
5554 5557 spa_async_autoexpand(spa, cvd);
5555 5558 }
5556 5559
5557 5560 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5558 5561 return;
5559 5562
5560 5563 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5561 5564 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5562 5565
5563 5566 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5564 5567 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5565 5568
5566 5569 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5567 5570 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5568 5571
5569 5572 nvlist_free(attr);
5570 5573 kmem_free(physpath, MAXPATHLEN);
5571 5574 }
5572 5575
5573 5576 static void
5574 5577 spa_async_thread(spa_t *spa)
5575 5578 {
5576 5579 int tasks;
5577 5580
5578 5581 ASSERT(spa->spa_sync_on);
5579 5582
5580 5583 mutex_enter(&spa->spa_async_lock);
5581 5584 tasks = spa->spa_async_tasks;
5582 5585 spa->spa_async_tasks = 0;
5583 5586 mutex_exit(&spa->spa_async_lock);
5584 5587
5585 5588 /*
5586 5589 * See if the config needs to be updated.
5587 5590 */
5588 5591 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5589 5592 uint64_t old_space, new_space;
5590 5593
5591 5594 mutex_enter(&spa_namespace_lock);
5592 5595 old_space = metaslab_class_get_space(spa_normal_class(spa));
5593 5596 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5594 5597 new_space = metaslab_class_get_space(spa_normal_class(spa));
5595 5598 mutex_exit(&spa_namespace_lock);
5596 5599
5597 5600 /*
5598 5601 * If the pool grew as a result of the config update,
5599 5602 * then log an internal history event.
5600 5603 */
5601 5604 if (new_space != old_space) {
5602 5605 spa_history_log_internal(spa, "vdev online", NULL,
5603 5606 "pool '%s' size: %llu(+%llu)",
5604 5607 spa_name(spa), new_space, new_space - old_space);
5605 5608 }
5606 5609 }
5607 5610
5608 5611 /*
5609 5612 * See if any devices need to be marked REMOVED.
5610 5613 */
5611 5614 if (tasks & SPA_ASYNC_REMOVE) {
5612 5615 spa_vdev_state_enter(spa, SCL_NONE);
5613 5616 spa_async_remove(spa, spa->spa_root_vdev);
5614 5617 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5615 5618 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5616 5619 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5617 5620 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5618 5621 (void) spa_vdev_state_exit(spa, NULL, 0);
5619 5622 }
5620 5623
5621 5624 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5622 5625 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5623 5626 spa_async_autoexpand(spa, spa->spa_root_vdev);
5624 5627 spa_config_exit(spa, SCL_CONFIG, FTAG);
5625 5628 }
5626 5629
5627 5630 /*
5628 5631 * See if any devices need to be probed.
5629 5632 */
5630 5633 if (tasks & SPA_ASYNC_PROBE) {
5631 5634 spa_vdev_state_enter(spa, SCL_NONE);
5632 5635 spa_async_probe(spa, spa->spa_root_vdev);
5633 5636 (void) spa_vdev_state_exit(spa, NULL, 0);
5634 5637 }
5635 5638
5636 5639 /*
5637 5640 * If any devices are done replacing, detach them.
5638 5641 */
5639 5642 if (tasks & SPA_ASYNC_RESILVER_DONE)
5640 5643 spa_vdev_resilver_done(spa);
5641 5644
5642 5645 /*
5643 5646 * Kick off a resilver.
5644 5647 */
5645 5648 if (tasks & SPA_ASYNC_RESILVER)
5646 5649 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5647 5650
5648 5651 /*
5649 5652 * Let the world know that we're done.
5650 5653 */
5651 5654 mutex_enter(&spa->spa_async_lock);
5652 5655 spa->spa_async_thread = NULL;
5653 5656 cv_broadcast(&spa->spa_async_cv);
5654 5657 mutex_exit(&spa->spa_async_lock);
5655 5658 thread_exit();
5656 5659 }
5657 5660
5658 5661 void
5659 5662 spa_async_suspend(spa_t *spa)
5660 5663 {
5661 5664 mutex_enter(&spa->spa_async_lock);
5662 5665 spa->spa_async_suspended++;
5663 5666 while (spa->spa_async_thread != NULL)
5664 5667 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5665 5668 mutex_exit(&spa->spa_async_lock);
5666 5669 }
5667 5670
5668 5671 void
5669 5672 spa_async_resume(spa_t *spa)
5670 5673 {
5671 5674 mutex_enter(&spa->spa_async_lock);
5672 5675 ASSERT(spa->spa_async_suspended != 0);
5673 5676 spa->spa_async_suspended--;
5674 5677 mutex_exit(&spa->spa_async_lock);
5675 5678 }
5676 5679
5677 5680 static boolean_t
5678 5681 spa_async_tasks_pending(spa_t *spa)
5679 5682 {
5680 5683 uint_t non_config_tasks;
5681 5684 uint_t config_task;
5682 5685 boolean_t config_task_suspended;
5683 5686
5684 5687 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5685 5688 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5686 5689 if (spa->spa_ccw_fail_time == 0) {
5687 5690 config_task_suspended = B_FALSE;
5688 5691 } else {
5689 5692 config_task_suspended =
5690 5693 (gethrtime() - spa->spa_ccw_fail_time) <
5691 5694 (zfs_ccw_retry_interval * NANOSEC);
5692 5695 }
5693 5696
5694 5697 return (non_config_tasks || (config_task && !config_task_suspended));
5695 5698 }
5696 5699
5697 5700 static void
5698 5701 spa_async_dispatch(spa_t *spa)
5699 5702 {
5700 5703 mutex_enter(&spa->spa_async_lock);
5701 5704 if (spa_async_tasks_pending(spa) &&
5702 5705 !spa->spa_async_suspended &&
5703 5706 spa->spa_async_thread == NULL &&
5704 5707 rootdir != NULL)
5705 5708 spa->spa_async_thread = thread_create(NULL, 0,
5706 5709 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5707 5710 mutex_exit(&spa->spa_async_lock);
5708 5711 }
5709 5712
5710 5713 void
5711 5714 spa_async_request(spa_t *spa, int task)
5712 5715 {
5713 5716 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5714 5717 mutex_enter(&spa->spa_async_lock);
5715 5718 spa->spa_async_tasks |= task;
5716 5719 mutex_exit(&spa->spa_async_lock);
5717 5720 }
5718 5721
5719 5722 /*
5720 5723 * ==========================================================================
5721 5724 * SPA syncing routines
5722 5725 * ==========================================================================
5723 5726 */
5724 5727
5725 5728 static int
5726 5729 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5727 5730 {
5728 5731 bpobj_t *bpo = arg;
5729 5732 bpobj_enqueue(bpo, bp, tx);
5730 5733 return (0);
5731 5734 }
5732 5735
5733 5736 static int
5734 5737 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5735 5738 {
5736 5739 zio_t *zio = arg;
5737 5740
5738 5741 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5739 5742 zio->io_flags));
5740 5743 return (0);
5741 5744 }
5742 5745
5743 5746 /*
5744 5747 * Note: this simple function is not inlined to make it easier to dtrace the
5745 5748 * amount of time spent syncing frees.
5746 5749 */
5747 5750 static void
5748 5751 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5749 5752 {
5750 5753 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5751 5754 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5752 5755 VERIFY(zio_wait(zio) == 0);
5753 5756 }
5754 5757
5755 5758 /*
5756 5759 * Note: this simple function is not inlined to make it easier to dtrace the
5757 5760 * amount of time spent syncing deferred frees.
5758 5761 */
5759 5762 static void
5760 5763 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5761 5764 {
5762 5765 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5763 5766 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5764 5767 spa_free_sync_cb, zio, tx), ==, 0);
5765 5768 VERIFY0(zio_wait(zio));
5766 5769 }
5767 5770
5768 5771
5769 5772 static void
5770 5773 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5771 5774 {
5772 5775 char *packed = NULL;
5773 5776 size_t bufsize;
5774 5777 size_t nvsize = 0;
5775 5778 dmu_buf_t *db;
5776 5779
5777 5780 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5778 5781
5779 5782 /*
5780 5783 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5781 5784 * information. This avoids the dbuf_will_dirty() path and
5782 5785 * saves us a pre-read to get data we don't actually care about.
5783 5786 */
5784 5787 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5785 5788 packed = kmem_alloc(bufsize, KM_SLEEP);
5786 5789
5787 5790 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5788 5791 KM_SLEEP) == 0);
5789 5792 bzero(packed + nvsize, bufsize - nvsize);
5790 5793
5791 5794 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5792 5795
5793 5796 kmem_free(packed, bufsize);
5794 5797
5795 5798 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5796 5799 dmu_buf_will_dirty(db, tx);
5797 5800 *(uint64_t *)db->db_data = nvsize;
5798 5801 dmu_buf_rele(db, FTAG);
5799 5802 }
5800 5803
5801 5804 static void
5802 5805 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5803 5806 const char *config, const char *entry)
5804 5807 {
5805 5808 nvlist_t *nvroot;
5806 5809 nvlist_t **list;
5807 5810 int i;
5808 5811
5809 5812 if (!sav->sav_sync)
5810 5813 return;
5811 5814
5812 5815 /*
5813 5816 * Update the MOS nvlist describing the list of available devices.
5814 5817 * spa_validate_aux() will have already made sure this nvlist is
5815 5818 * valid and the vdevs are labeled appropriately.
5816 5819 */
5817 5820 if (sav->sav_object == 0) {
5818 5821 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5819 5822 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5820 5823 sizeof (uint64_t), tx);
5821 5824 VERIFY(zap_update(spa->spa_meta_objset,
5822 5825 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5823 5826 &sav->sav_object, tx) == 0);
5824 5827 }
5825 5828
5826 5829 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5827 5830 if (sav->sav_count == 0) {
5828 5831 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5829 5832 } else {
5830 5833 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5831 5834 for (i = 0; i < sav->sav_count; i++)
5832 5835 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5833 5836 B_FALSE, VDEV_CONFIG_L2CACHE);
5834 5837 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5835 5838 sav->sav_count) == 0);
5836 5839 for (i = 0; i < sav->sav_count; i++)
5837 5840 nvlist_free(list[i]);
5838 5841 kmem_free(list, sav->sav_count * sizeof (void *));
5839 5842 }
5840 5843
5841 5844 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5842 5845 nvlist_free(nvroot);
5843 5846
5844 5847 sav->sav_sync = B_FALSE;
5845 5848 }
5846 5849
5847 5850 static void
5848 5851 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5849 5852 {
5850 5853 nvlist_t *config;
5851 5854
5852 5855 if (list_is_empty(&spa->spa_config_dirty_list))
5853 5856 return;
5854 5857
5855 5858 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5856 5859
5857 5860 config = spa_config_generate(spa, spa->spa_root_vdev,
5858 5861 dmu_tx_get_txg(tx), B_FALSE);
5859 5862
5860 5863 /*
5861 5864 * If we're upgrading the spa version then make sure that
5862 5865 * the config object gets updated with the correct version.
5863 5866 */
5864 5867 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5865 5868 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5866 5869 spa->spa_uberblock.ub_version);
5867 5870
5868 5871 spa_config_exit(spa, SCL_STATE, FTAG);
5869 5872
5870 5873 if (spa->spa_config_syncing)
5871 5874 nvlist_free(spa->spa_config_syncing);
5872 5875 spa->spa_config_syncing = config;
5873 5876
5874 5877 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5875 5878 }
5876 5879
5877 5880 static void
5878 5881 spa_sync_version(void *arg, dmu_tx_t *tx)
5879 5882 {
5880 5883 uint64_t *versionp = arg;
5881 5884 uint64_t version = *versionp;
5882 5885 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5883 5886
5884 5887 /*
5885 5888 * Setting the version is special cased when first creating the pool.
5886 5889 */
5887 5890 ASSERT(tx->tx_txg != TXG_INITIAL);
5888 5891
5889 5892 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5890 5893 ASSERT(version >= spa_version(spa));
5891 5894
5892 5895 spa->spa_uberblock.ub_version = version;
5893 5896 vdev_config_dirty(spa->spa_root_vdev);
5894 5897 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5895 5898 }
5896 5899
5897 5900 /*
5898 5901 * Set zpool properties.
5899 5902 */
5900 5903 static void
5901 5904 spa_sync_props(void *arg, dmu_tx_t *tx)
5902 5905 {
5903 5906 nvlist_t *nvp = arg;
5904 5907 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5905 5908 objset_t *mos = spa->spa_meta_objset;
5906 5909 nvpair_t *elem = NULL;
5907 5910
5908 5911 mutex_enter(&spa->spa_props_lock);
5909 5912
5910 5913 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5911 5914 uint64_t intval;
5912 5915 char *strval, *fname;
5913 5916 zpool_prop_t prop;
5914 5917 const char *propname;
5915 5918 zprop_type_t proptype;
↓ open down ↓ |
779 lines elided |
↑ open up ↑ |
5916 5919 zfeature_info_t *feature;
5917 5920
5918 5921 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5919 5922 case ZPROP_INVAL:
5920 5923 /*
5921 5924 * We checked this earlier in spa_prop_validate().
5922 5925 */
5923 5926 ASSERT(zpool_prop_feature(nvpair_name(elem)));
5924 5927
5925 5928 fname = strchr(nvpair_name(elem), '@') + 1;
5926 - VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5929 + VERIFY0(zfeature_lookup_name(fname, &feature));
5927 5930
5928 5931 spa_feature_enable(spa, feature, tx);
5929 5932 spa_history_log_internal(spa, "set", tx,
5930 5933 "%s=enabled", nvpair_name(elem));
5931 5934 break;
5932 5935
5933 5936 case ZPOOL_PROP_VERSION:
5934 - VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5937 + intval = fnvpair_value_uint64(elem);
5935 5938 /*
5936 5939 * The version is synced seperatly before other
5937 5940 * properties and should be correct by now.
5938 5941 */
5939 5942 ASSERT3U(spa_version(spa), >=, intval);
5940 5943 break;
5941 5944
5942 5945 case ZPOOL_PROP_ALTROOT:
5943 5946 /*
5944 5947 * 'altroot' is a non-persistent property. It should
5945 5948 * have been set temporarily at creation or import time.
5946 5949 */
5947 5950 ASSERT(spa->spa_root != NULL);
↓ open down ↓ |
3 lines elided |
↑ open up ↑ |
5948 5951 break;
5949 5952
5950 5953 case ZPOOL_PROP_READONLY:
5951 5954 case ZPOOL_PROP_CACHEFILE:
5952 5955 /*
5953 5956 * 'readonly' and 'cachefile' are also non-persisitent
5954 5957 * properties.
5955 5958 */
5956 5959 break;
5957 5960 case ZPOOL_PROP_COMMENT:
5958 - VERIFY(nvpair_value_string(elem, &strval) == 0);
5961 + strval = fnvpair_value_string(elem);
5959 5962 if (spa->spa_comment != NULL)
5960 5963 spa_strfree(spa->spa_comment);
5961 5964 spa->spa_comment = spa_strdup(strval);
5962 5965 /*
5963 5966 * We need to dirty the configuration on all the vdevs
5964 5967 * so that their labels get updated. It's unnecessary
5965 5968 * to do this for pool creation since the vdev's
5966 5969 * configuratoin has already been dirtied.
5967 5970 */
5968 5971 if (tx->tx_txg != TXG_INITIAL)
5969 5972 vdev_config_dirty(spa->spa_root_vdev);
5970 5973 spa_history_log_internal(spa, "set", tx,
5971 5974 "%s=%s", nvpair_name(elem), strval);
5972 5975 break;
5973 5976 default:
5974 5977 /*
5975 5978 * Set pool property values in the poolprops mos object.
5976 5979 */
5977 5980 if (spa->spa_pool_props_object == 0) {
5978 5981 spa->spa_pool_props_object =
5979 5982 zap_create_link(mos, DMU_OT_POOL_PROPS,
↓ open down ↓ |
11 lines elided |
↑ open up ↑ |
5980 5983 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5981 5984 tx);
5982 5985 }
5983 5986
5984 5987 /* normalize the property name */
5985 5988 propname = zpool_prop_to_name(prop);
5986 5989 proptype = zpool_prop_get_type(prop);
5987 5990
5988 5991 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5989 5992 ASSERT(proptype == PROP_TYPE_STRING);
5990 - VERIFY(nvpair_value_string(elem, &strval) == 0);
5991 - VERIFY(zap_update(mos,
5993 + strval = fnvpair_value_string(elem);
5994 + VERIFY0(zap_update(mos,
5992 5995 spa->spa_pool_props_object, propname,
5993 - 1, strlen(strval) + 1, strval, tx) == 0);
5996 + 1, strlen(strval) + 1, strval, tx));
5994 5997 spa_history_log_internal(spa, "set", tx,
5995 5998 "%s=%s", nvpair_name(elem), strval);
5996 5999 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5997 - VERIFY(nvpair_value_uint64(elem, &intval) == 0);
6000 + intval = fnvpair_value_uint64(elem);
5998 6001
5999 6002 if (proptype == PROP_TYPE_INDEX) {
6000 6003 const char *unused;
6001 - VERIFY(zpool_prop_index_to_string(
6002 - prop, intval, &unused) == 0);
6004 + VERIFY0(zpool_prop_index_to_string(
6005 + prop, intval, &unused));
6003 6006 }
6004 - VERIFY(zap_update(mos,
6007 + VERIFY0(zap_update(mos,
6005 6008 spa->spa_pool_props_object, propname,
6006 - 8, 1, &intval, tx) == 0);
6009 + 8, 1, &intval, tx));
6007 6010 spa_history_log_internal(spa, "set", tx,
6008 6011 "%s=%lld", nvpair_name(elem), intval);
6009 6012 } else {
6010 6013 ASSERT(0); /* not allowed */
6011 6014 }
6012 6015
6013 6016 switch (prop) {
6014 6017 case ZPOOL_PROP_DELEGATION:
6015 6018 spa->spa_delegation = intval;
6016 6019 break;
6017 6020 case ZPOOL_PROP_BOOTFS:
6018 6021 spa->spa_bootfs = intval;
6019 6022 break;
6020 6023 case ZPOOL_PROP_FAILUREMODE:
6021 6024 spa->spa_failmode = intval;
6022 6025 break;
6023 6026 case ZPOOL_PROP_AUTOEXPAND:
6024 6027 spa->spa_autoexpand = intval;
6025 6028 if (tx->tx_txg != TXG_INITIAL)
6026 6029 spa_async_request(spa,
6027 6030 SPA_ASYNC_AUTOEXPAND);
6028 6031 break;
6029 6032 case ZPOOL_PROP_DEDUPDITTO:
6030 6033 spa->spa_dedup_ditto = intval;
6031 6034 break;
6032 6035 default:
6033 6036 break;
6034 6037 }
6035 6038 }
6036 6039
6037 6040 }
6038 6041
6039 6042 mutex_exit(&spa->spa_props_lock);
6040 6043 }
6041 6044
6042 6045 /*
6043 6046 * Perform one-time upgrade on-disk changes. spa_version() does not
6044 6047 * reflect the new version this txg, so there must be no changes this
6045 6048 * txg to anything that the upgrade code depends on after it executes.
6046 6049 * Therefore this must be called after dsl_pool_sync() does the sync
6047 6050 * tasks.
6048 6051 */
6049 6052 static void
6050 6053 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6051 6054 {
6052 6055 dsl_pool_t *dp = spa->spa_dsl_pool;
6053 6056
6054 6057 ASSERT(spa->spa_sync_pass == 1);
6055 6058
6056 6059 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6057 6060
6058 6061 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6059 6062 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6060 6063 dsl_pool_create_origin(dp, tx);
6061 6064
6062 6065 /* Keeping the origin open increases spa_minref */
6063 6066 spa->spa_minref += 3;
6064 6067 }
6065 6068
6066 6069 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6067 6070 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6068 6071 dsl_pool_upgrade_clones(dp, tx);
6069 6072 }
6070 6073
6071 6074 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6072 6075 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6073 6076 dsl_pool_upgrade_dir_clones(dp, tx);
6074 6077
6075 6078 /* Keeping the freedir open increases spa_minref */
6076 6079 spa->spa_minref += 3;
6077 6080 }
6078 6081
6079 6082 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6080 6083 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6081 6084 spa_feature_create_zap_objects(spa, tx);
6082 6085 }
6083 6086 rrw_exit(&dp->dp_config_rwlock, FTAG);
6084 6087 }
6085 6088
6086 6089 /*
6087 6090 * Sync the specified transaction group. New blocks may be dirtied as
6088 6091 * part of the process, so we iterate until it converges.
6089 6092 */
6090 6093 void
6091 6094 spa_sync(spa_t *spa, uint64_t txg)
6092 6095 {
6093 6096 dsl_pool_t *dp = spa->spa_dsl_pool;
6094 6097 objset_t *mos = spa->spa_meta_objset;
6095 6098 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6096 6099 vdev_t *rvd = spa->spa_root_vdev;
6097 6100 vdev_t *vd;
6098 6101 dmu_tx_t *tx;
6099 6102 int error;
6100 6103
6101 6104 VERIFY(spa_writeable(spa));
6102 6105
6103 6106 /*
6104 6107 * Lock out configuration changes.
6105 6108 */
6106 6109 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6107 6110
6108 6111 spa->spa_syncing_txg = txg;
6109 6112 spa->spa_sync_pass = 0;
6110 6113
6111 6114 /*
6112 6115 * If there are any pending vdev state changes, convert them
6113 6116 * into config changes that go out with this transaction group.
6114 6117 */
6115 6118 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6116 6119 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6117 6120 /*
6118 6121 * We need the write lock here because, for aux vdevs,
6119 6122 * calling vdev_config_dirty() modifies sav_config.
6120 6123 * This is ugly and will become unnecessary when we
6121 6124 * eliminate the aux vdev wart by integrating all vdevs
6122 6125 * into the root vdev tree.
6123 6126 */
6124 6127 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6125 6128 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6126 6129 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6127 6130 vdev_state_clean(vd);
6128 6131 vdev_config_dirty(vd);
6129 6132 }
6130 6133 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6131 6134 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6132 6135 }
6133 6136 spa_config_exit(spa, SCL_STATE, FTAG);
6134 6137
6135 6138 tx = dmu_tx_create_assigned(dp, txg);
6136 6139
6137 6140 spa->spa_sync_starttime = gethrtime();
6138 6141 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6139 6142 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6140 6143
6141 6144 /*
6142 6145 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6143 6146 * set spa_deflate if we have no raid-z vdevs.
6144 6147 */
6145 6148 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6146 6149 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6147 6150 int i;
6148 6151
6149 6152 for (i = 0; i < rvd->vdev_children; i++) {
6150 6153 vd = rvd->vdev_child[i];
6151 6154 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6152 6155 break;
6153 6156 }
6154 6157 if (i == rvd->vdev_children) {
6155 6158 spa->spa_deflate = TRUE;
6156 6159 VERIFY(0 == zap_add(spa->spa_meta_objset,
6157 6160 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6158 6161 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6159 6162 }
6160 6163 }
6161 6164
6162 6165 /*
6163 6166 * If anything has changed in this txg, or if someone is waiting
6164 6167 * for this txg to sync (eg, spa_vdev_remove()), push the
6165 6168 * deferred frees from the previous txg. If not, leave them
6166 6169 * alone so that we don't generate work on an otherwise idle
6167 6170 * system.
6168 6171 */
6169 6172 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6170 6173 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6171 6174 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6172 6175 ((dsl_scan_active(dp->dp_scan) ||
6173 6176 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6174 6177 spa_sync_deferred_frees(spa, tx);
6175 6178 }
6176 6179
6177 6180 /*
6178 6181 * Iterate to convergence.
6179 6182 */
6180 6183 do {
6181 6184 int pass = ++spa->spa_sync_pass;
6182 6185
6183 6186 spa_sync_config_object(spa, tx);
6184 6187 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6185 6188 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6186 6189 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6187 6190 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6188 6191 spa_errlog_sync(spa, txg);
6189 6192 dsl_pool_sync(dp, txg);
6190 6193
6191 6194 if (pass < zfs_sync_pass_deferred_free) {
6192 6195 spa_sync_frees(spa, free_bpl, tx);
6193 6196 } else {
6194 6197 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6195 6198 &spa->spa_deferred_bpobj, tx);
6196 6199 }
6197 6200
6198 6201 ddt_sync(spa, txg);
6199 6202 dsl_scan_sync(dp, tx);
6200 6203
6201 6204 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6202 6205 vdev_sync(vd, txg);
6203 6206
6204 6207 if (pass == 1)
6205 6208 spa_sync_upgrades(spa, tx);
6206 6209
6207 6210 } while (dmu_objset_is_dirty(mos, txg));
6208 6211
6209 6212 /*
6210 6213 * Rewrite the vdev configuration (which includes the uberblock)
6211 6214 * to commit the transaction group.
6212 6215 *
6213 6216 * If there are no dirty vdevs, we sync the uberblock to a few
6214 6217 * random top-level vdevs that are known to be visible in the
6215 6218 * config cache (see spa_vdev_add() for a complete description).
6216 6219 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6217 6220 */
6218 6221 for (;;) {
6219 6222 /*
6220 6223 * We hold SCL_STATE to prevent vdev open/close/etc.
6221 6224 * while we're attempting to write the vdev labels.
6222 6225 */
6223 6226 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6224 6227
6225 6228 if (list_is_empty(&spa->spa_config_dirty_list)) {
6226 6229 vdev_t *svd[SPA_DVAS_PER_BP];
6227 6230 int svdcount = 0;
6228 6231 int children = rvd->vdev_children;
6229 6232 int c0 = spa_get_random(children);
6230 6233
6231 6234 for (int c = 0; c < children; c++) {
6232 6235 vd = rvd->vdev_child[(c0 + c) % children];
6233 6236 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6234 6237 continue;
6235 6238 svd[svdcount++] = vd;
6236 6239 if (svdcount == SPA_DVAS_PER_BP)
6237 6240 break;
6238 6241 }
6239 6242 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6240 6243 if (error != 0)
6241 6244 error = vdev_config_sync(svd, svdcount, txg,
6242 6245 B_TRUE);
6243 6246 } else {
6244 6247 error = vdev_config_sync(rvd->vdev_child,
6245 6248 rvd->vdev_children, txg, B_FALSE);
6246 6249 if (error != 0)
6247 6250 error = vdev_config_sync(rvd->vdev_child,
6248 6251 rvd->vdev_children, txg, B_TRUE);
6249 6252 }
6250 6253
6251 6254 if (error == 0)
6252 6255 spa->spa_last_synced_guid = rvd->vdev_guid;
6253 6256
6254 6257 spa_config_exit(spa, SCL_STATE, FTAG);
6255 6258
6256 6259 if (error == 0)
6257 6260 break;
6258 6261 zio_suspend(spa, NULL);
6259 6262 zio_resume_wait(spa);
6260 6263 }
6261 6264 dmu_tx_commit(tx);
6262 6265
6263 6266 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6264 6267
6265 6268 /*
6266 6269 * Clear the dirty config list.
6267 6270 */
6268 6271 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6269 6272 vdev_config_clean(vd);
6270 6273
6271 6274 /*
6272 6275 * Now that the new config has synced transactionally,
6273 6276 * let it become visible to the config cache.
6274 6277 */
6275 6278 if (spa->spa_config_syncing != NULL) {
6276 6279 spa_config_set(spa, spa->spa_config_syncing);
6277 6280 spa->spa_config_txg = txg;
6278 6281 spa->spa_config_syncing = NULL;
6279 6282 }
6280 6283
6281 6284 spa->spa_ubsync = spa->spa_uberblock;
6282 6285
6283 6286 dsl_pool_sync_done(dp, txg);
6284 6287
6285 6288 /*
6286 6289 * Update usable space statistics.
6287 6290 */
6288 6291 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6289 6292 vdev_sync_done(vd, txg);
6290 6293
6291 6294 spa_update_dspace(spa);
6292 6295
6293 6296 /*
6294 6297 * It had better be the case that we didn't dirty anything
6295 6298 * since vdev_config_sync().
6296 6299 */
6297 6300 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6298 6301 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6299 6302 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6300 6303
6301 6304 spa->spa_sync_pass = 0;
6302 6305
6303 6306 spa_config_exit(spa, SCL_CONFIG, FTAG);
6304 6307
6305 6308 spa_handle_ignored_writes(spa);
6306 6309
6307 6310 /*
6308 6311 * If any async tasks have been requested, kick them off.
6309 6312 */
6310 6313 spa_async_dispatch(spa);
6311 6314 }
6312 6315
6313 6316 /*
6314 6317 * Sync all pools. We don't want to hold the namespace lock across these
6315 6318 * operations, so we take a reference on the spa_t and drop the lock during the
6316 6319 * sync.
6317 6320 */
6318 6321 void
6319 6322 spa_sync_allpools(void)
6320 6323 {
6321 6324 spa_t *spa = NULL;
6322 6325 mutex_enter(&spa_namespace_lock);
6323 6326 while ((spa = spa_next(spa)) != NULL) {
6324 6327 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6325 6328 !spa_writeable(spa) || spa_suspended(spa))
6326 6329 continue;
6327 6330 spa_open_ref(spa, FTAG);
6328 6331 mutex_exit(&spa_namespace_lock);
6329 6332 txg_wait_synced(spa_get_dsl(spa), 0);
6330 6333 mutex_enter(&spa_namespace_lock);
6331 6334 spa_close(spa, FTAG);
6332 6335 }
6333 6336 mutex_exit(&spa_namespace_lock);
6334 6337 }
6335 6338
6336 6339 /*
6337 6340 * ==========================================================================
6338 6341 * Miscellaneous routines
6339 6342 * ==========================================================================
6340 6343 */
6341 6344
6342 6345 /*
6343 6346 * Remove all pools in the system.
6344 6347 */
6345 6348 void
6346 6349 spa_evict_all(void)
6347 6350 {
6348 6351 spa_t *spa;
6349 6352
6350 6353 /*
6351 6354 * Remove all cached state. All pools should be closed now,
6352 6355 * so every spa in the AVL tree should be unreferenced.
6353 6356 */
6354 6357 mutex_enter(&spa_namespace_lock);
6355 6358 while ((spa = spa_next(NULL)) != NULL) {
6356 6359 /*
6357 6360 * Stop async tasks. The async thread may need to detach
6358 6361 * a device that's been replaced, which requires grabbing
6359 6362 * spa_namespace_lock, so we must drop it here.
6360 6363 */
6361 6364 spa_open_ref(spa, FTAG);
6362 6365 mutex_exit(&spa_namespace_lock);
6363 6366 spa_async_suspend(spa);
6364 6367 mutex_enter(&spa_namespace_lock);
6365 6368 spa_close(spa, FTAG);
6366 6369
6367 6370 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6368 6371 spa_unload(spa);
6369 6372 spa_deactivate(spa);
6370 6373 }
6371 6374 spa_remove(spa);
6372 6375 }
6373 6376 mutex_exit(&spa_namespace_lock);
6374 6377 }
6375 6378
6376 6379 vdev_t *
6377 6380 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6378 6381 {
6379 6382 vdev_t *vd;
6380 6383 int i;
6381 6384
6382 6385 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6383 6386 return (vd);
6384 6387
6385 6388 if (aux) {
6386 6389 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6387 6390 vd = spa->spa_l2cache.sav_vdevs[i];
6388 6391 if (vd->vdev_guid == guid)
6389 6392 return (vd);
6390 6393 }
6391 6394
6392 6395 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6393 6396 vd = spa->spa_spares.sav_vdevs[i];
6394 6397 if (vd->vdev_guid == guid)
6395 6398 return (vd);
6396 6399 }
6397 6400 }
6398 6401
6399 6402 return (NULL);
6400 6403 }
6401 6404
6402 6405 void
6403 6406 spa_upgrade(spa_t *spa, uint64_t version)
6404 6407 {
6405 6408 ASSERT(spa_writeable(spa));
6406 6409
6407 6410 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6408 6411
6409 6412 /*
6410 6413 * This should only be called for a non-faulted pool, and since a
6411 6414 * future version would result in an unopenable pool, this shouldn't be
6412 6415 * possible.
6413 6416 */
6414 6417 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6415 6418 ASSERT(version >= spa->spa_uberblock.ub_version);
6416 6419
6417 6420 spa->spa_uberblock.ub_version = version;
6418 6421 vdev_config_dirty(spa->spa_root_vdev);
6419 6422
6420 6423 spa_config_exit(spa, SCL_ALL, FTAG);
6421 6424
6422 6425 txg_wait_synced(spa_get_dsl(spa), 0);
6423 6426 }
6424 6427
6425 6428 boolean_t
6426 6429 spa_has_spare(spa_t *spa, uint64_t guid)
6427 6430 {
6428 6431 int i;
6429 6432 uint64_t spareguid;
6430 6433 spa_aux_vdev_t *sav = &spa->spa_spares;
6431 6434
6432 6435 for (i = 0; i < sav->sav_count; i++)
6433 6436 if (sav->sav_vdevs[i]->vdev_guid == guid)
6434 6437 return (B_TRUE);
6435 6438
6436 6439 for (i = 0; i < sav->sav_npending; i++) {
6437 6440 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6438 6441 &spareguid) == 0 && spareguid == guid)
6439 6442 return (B_TRUE);
6440 6443 }
6441 6444
6442 6445 return (B_FALSE);
6443 6446 }
6444 6447
6445 6448 /*
6446 6449 * Check if a pool has an active shared spare device.
6447 6450 * Note: reference count of an active spare is 2, as a spare and as a replace
6448 6451 */
6449 6452 static boolean_t
6450 6453 spa_has_active_shared_spare(spa_t *spa)
6451 6454 {
6452 6455 int i, refcnt;
6453 6456 uint64_t pool;
6454 6457 spa_aux_vdev_t *sav = &spa->spa_spares;
6455 6458
6456 6459 for (i = 0; i < sav->sav_count; i++) {
6457 6460 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6458 6461 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6459 6462 refcnt > 2)
6460 6463 return (B_TRUE);
6461 6464 }
6462 6465
6463 6466 return (B_FALSE);
6464 6467 }
6465 6468
6466 6469 /*
6467 6470 * Post a sysevent corresponding to the given event. The 'name' must be one of
6468 6471 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6469 6472 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6470 6473 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6471 6474 * or zdb as real changes.
6472 6475 */
6473 6476 void
6474 6477 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6475 6478 {
6476 6479 #ifdef _KERNEL
6477 6480 sysevent_t *ev;
6478 6481 sysevent_attr_list_t *attr = NULL;
6479 6482 sysevent_value_t value;
6480 6483 sysevent_id_t eid;
6481 6484
6482 6485 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6483 6486 SE_SLEEP);
6484 6487
6485 6488 value.value_type = SE_DATA_TYPE_STRING;
6486 6489 value.value.sv_string = spa_name(spa);
6487 6490 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6488 6491 goto done;
6489 6492
6490 6493 value.value_type = SE_DATA_TYPE_UINT64;
6491 6494 value.value.sv_uint64 = spa_guid(spa);
6492 6495 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6493 6496 goto done;
6494 6497
6495 6498 if (vd) {
6496 6499 value.value_type = SE_DATA_TYPE_UINT64;
6497 6500 value.value.sv_uint64 = vd->vdev_guid;
6498 6501 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6499 6502 SE_SLEEP) != 0)
6500 6503 goto done;
6501 6504
6502 6505 if (vd->vdev_path) {
6503 6506 value.value_type = SE_DATA_TYPE_STRING;
6504 6507 value.value.sv_string = vd->vdev_path;
6505 6508 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6506 6509 &value, SE_SLEEP) != 0)
6507 6510 goto done;
6508 6511 }
6509 6512 }
6510 6513
6511 6514 if (sysevent_attach_attributes(ev, attr) != 0)
6512 6515 goto done;
6513 6516 attr = NULL;
6514 6517
6515 6518 (void) log_sysevent(ev, SE_SLEEP, &eid);
6516 6519
6517 6520 done:
6518 6521 if (attr)
6519 6522 sysevent_free_attr(attr);
6520 6523 sysevent_free(ev);
6521 6524 #endif
6522 6525 }
↓ open down ↓ |
506 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX