1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2013 by Delphix. All rights reserved.
  25  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
  26  */
  27 
  28 /*
  29  * SPA: Storage Pool Allocator
  30  *
  31  * This file contains all the routines used when modifying on-disk SPA state.
  32  * This includes opening, importing, destroying, exporting a pool, and syncing a
  33  * pool.
  34  */
  35 
  36 #include <sys/zfs_context.h>
  37 #include <sys/fm/fs/zfs.h>
  38 #include <sys/spa_impl.h>
  39 #include <sys/zio.h>
  40 #include <sys/zio_checksum.h>
  41 #include <sys/dmu.h>
  42 #include <sys/dmu_tx.h>
  43 #include <sys/zap.h>
  44 #include <sys/zil.h>
  45 #include <sys/ddt.h>
  46 #include <sys/vdev_impl.h>
  47 #include <sys/metaslab.h>
  48 #include <sys/metaslab_impl.h>
  49 #include <sys/uberblock_impl.h>
  50 #include <sys/txg.h>
  51 #include <sys/avl.h>
  52 #include <sys/dmu_traverse.h>
  53 #include <sys/dmu_objset.h>
  54 #include <sys/unique.h>
  55 #include <sys/dsl_pool.h>
  56 #include <sys/dsl_dataset.h>
  57 #include <sys/dsl_dir.h>
  58 #include <sys/dsl_prop.h>
  59 #include <sys/dsl_synctask.h>
  60 #include <sys/fs/zfs.h>
  61 #include <sys/arc.h>
  62 #include <sys/callb.h>
  63 #include <sys/systeminfo.h>
  64 #include <sys/spa_boot.h>
  65 #include <sys/zfs_ioctl.h>
  66 #include <sys/dsl_scan.h>
  67 #include <sys/zfeature.h>
  68 #include <sys/dsl_destroy.h>
  69 
  70 #ifdef  _KERNEL
  71 #include <sys/bootprops.h>
  72 #include <sys/callb.h>
  73 #include <sys/cpupart.h>
  74 #include <sys/pool.h>
  75 #include <sys/sysdc.h>
  76 #include <sys/zone.h>
  77 #endif  /* _KERNEL */
  78 
  79 #include "zfs_prop.h"
  80 #include "zfs_comutil.h"
  81 
  82 /*
  83  * The interval, in seconds, at which failed configuration cache file writes
  84  * should be retried.
  85  */
  86 static int zfs_ccw_retry_interval = 300;
  87 
  88 typedef enum zti_modes {
  89         ZTI_MODE_FIXED,                 /* value is # of threads (min 1) */
  90         ZTI_MODE_BATCH,                 /* cpu-intensive; value is ignored */
  91         ZTI_MODE_NULL,                  /* don't create a taskq */
  92         ZTI_NMODES
  93 } zti_modes_t;
  94 
  95 #define ZTI_P(n, q)     { ZTI_MODE_FIXED, (n), (q) }
  96 #define ZTI_BATCH       { ZTI_MODE_BATCH, 0, 1 }
  97 #define ZTI_NULL        { ZTI_MODE_NULL, 0, 0 }
  98 
  99 #define ZTI_N(n)        ZTI_P(n, 1)
 100 #define ZTI_ONE         ZTI_N(1)
 101 
 102 typedef struct zio_taskq_info {
 103         zti_modes_t zti_mode;
 104         uint_t zti_value;
 105         uint_t zti_count;
 106 } zio_taskq_info_t;
 107 
 108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
 109         "issue", "issue_high", "intr", "intr_high"
 110 };
 111 
 112 /*
 113  * This table defines the taskq settings for each ZFS I/O type. When
 114  * initializing a pool, we use this table to create an appropriately sized
 115  * taskq. Some operations are low volume and therefore have a small, static
 116  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
 117  * macros. Other operations process a large amount of data; the ZTI_BATCH
 118  * macro causes us to create a taskq oriented for throughput. Some operations
 119  * are so high frequency and short-lived that the taskq itself can become a a
 120  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
 121  * additional degree of parallelism specified by the number of threads per-
 122  * taskq and the number of taskqs; when dispatching an event in this case, the
 123  * particular taskq is chosen at random.
 124  *
 125  * The different taskq priorities are to handle the different contexts (issue
 126  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
 127  * need to be handled with minimum delay.
 128  */
 129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
 130         /* ISSUE        ISSUE_HIGH      INTR            INTR_HIGH */
 131         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* NULL */
 132         { ZTI_N(8),     ZTI_NULL,       ZTI_BATCH,      ZTI_NULL }, /* READ */
 133         { ZTI_BATCH,    ZTI_N(5),       ZTI_N(8),       ZTI_N(5) }, /* WRITE */
 134         { ZTI_P(12, 8), ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* FREE */
 135         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* CLAIM */
 136         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* IOCTL */
 137 };
 138 
 139 static void spa_sync_version(void *arg, dmu_tx_t *tx);
 140 static void spa_sync_props(void *arg, dmu_tx_t *tx);
 141 static boolean_t spa_has_active_shared_spare(spa_t *spa);
 142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
 143     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
 144     char **ereport);
 145 static void spa_vdev_resilver_done(spa_t *spa);
 146 
 147 uint_t          zio_taskq_batch_pct = 75;       /* 1 thread per cpu in pset */
 148 id_t            zio_taskq_psrset_bind = PS_NONE;
 149 boolean_t       zio_taskq_sysdc = B_TRUE;       /* use SDC scheduling class */
 150 uint_t          zio_taskq_basedc = 80;          /* base duty cycle */
 151 
 152 boolean_t       spa_create_process = B_TRUE;    /* no process ==> no sysdc */
 153 extern int      zfs_sync_pass_deferred_free;
 154 
 155 /*
 156  * This (illegal) pool name is used when temporarily importing a spa_t in order
 157  * to get the vdev stats associated with the imported devices.
 158  */
 159 #define TRYIMPORT_NAME  "$import"
 160 
 161 /*
 162  * ==========================================================================
 163  * SPA properties routines
 164  * ==========================================================================
 165  */
 166 
 167 /*
 168  * Add a (source=src, propname=propval) list to an nvlist.
 169  */
 170 static void
 171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
 172     uint64_t intval, zprop_source_t src)
 173 {
 174         const char *propname = zpool_prop_to_name(prop);
 175         nvlist_t *propval;
 176 
 177         VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 178         VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
 179 
 180         if (strval != NULL)
 181                 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
 182         else
 183                 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
 184 
 185         VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
 186         nvlist_free(propval);
 187 }
 188 
 189 /*
 190  * Get property values from the spa configuration.
 191  */
 192 static void
 193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
 194 {
 195         vdev_t *rvd = spa->spa_root_vdev;
 196         dsl_pool_t *pool = spa->spa_dsl_pool;
 197         uint64_t size;
 198         uint64_t alloc;
 199         uint64_t space;
 200         uint64_t cap, version;
 201         zprop_source_t src = ZPROP_SRC_NONE;
 202         spa_config_dirent_t *dp;
 203 
 204         ASSERT(MUTEX_HELD(&spa->spa_props_lock));
 205 
 206         if (rvd != NULL) {
 207                 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
 208                 size = metaslab_class_get_space(spa_normal_class(spa));
 209                 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
 210                 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
 211                 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
 212                 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
 213                     size - alloc, src);
 214 
 215                 space = 0;
 216                 for (int c = 0; c < rvd->vdev_children; c++) {
 217                         vdev_t *tvd = rvd->vdev_child[c];
 218                         space += tvd->vdev_max_asize - tvd->vdev_asize;
 219                 }
 220                 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
 221                     src);
 222 
 223                 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
 224                     (spa_mode(spa) == FREAD), src);
 225 
 226                 cap = (size == 0) ? 0 : (alloc * 100 / size);
 227                 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
 228 
 229                 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
 230                     ddt_get_pool_dedup_ratio(spa), src);
 231 
 232                 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
 233                     rvd->vdev_state, src);
 234 
 235                 version = spa_version(spa);
 236                 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
 237                         src = ZPROP_SRC_DEFAULT;
 238                 else
 239                         src = ZPROP_SRC_LOCAL;
 240                 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
 241         }
 242 
 243         if (pool != NULL) {
 244                 dsl_dir_t *freedir = pool->dp_free_dir;
 245 
 246                 /*
 247                  * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
 248                  * when opening pools before this version freedir will be NULL.
 249                  */
 250                 if (freedir != NULL) {
 251                         spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
 252                             freedir->dd_phys->dd_used_bytes, src);
 253                 } else {
 254                         spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
 255                             NULL, 0, src);
 256                 }
 257         }
 258 
 259         spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
 260 
 261         if (spa->spa_comment != NULL) {
 262                 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
 263                     0, ZPROP_SRC_LOCAL);
 264         }
 265 
 266         if (spa->spa_root != NULL)
 267                 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
 268                     0, ZPROP_SRC_LOCAL);
 269 
 270         if ((dp = list_head(&spa->spa_config_list)) != NULL) {
 271                 if (dp->scd_path == NULL) {
 272                         spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 273                             "none", 0, ZPROP_SRC_LOCAL);
 274                 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
 275                         spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 276                             dp->scd_path, 0, ZPROP_SRC_LOCAL);
 277                 }
 278         }
 279 }
 280 
 281 /*
 282  * Get zpool property values.
 283  */
 284 int
 285 spa_prop_get(spa_t *spa, nvlist_t **nvp)
 286 {
 287         objset_t *mos = spa->spa_meta_objset;
 288         zap_cursor_t zc;
 289         zap_attribute_t za;
 290         int err;
 291 
 292         VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 293 
 294         mutex_enter(&spa->spa_props_lock);
 295 
 296         /*
 297          * Get properties from the spa config.
 298          */
 299         spa_prop_get_config(spa, nvp);
 300 
 301         /* If no pool property object, no more prop to get. */
 302         if (mos == NULL || spa->spa_pool_props_object == 0) {
 303                 mutex_exit(&spa->spa_props_lock);
 304                 return (0);
 305         }
 306 
 307         /*
 308          * Get properties from the MOS pool property object.
 309          */
 310         for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
 311             (err = zap_cursor_retrieve(&zc, &za)) == 0;
 312             zap_cursor_advance(&zc)) {
 313                 uint64_t intval = 0;
 314                 char *strval = NULL;
 315                 zprop_source_t src = ZPROP_SRC_DEFAULT;
 316                 zpool_prop_t prop;
 317 
 318                 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
 319                         continue;
 320 
 321                 switch (za.za_integer_length) {
 322                 case 8:
 323                         /* integer property */
 324                         if (za.za_first_integer !=
 325                             zpool_prop_default_numeric(prop))
 326                                 src = ZPROP_SRC_LOCAL;
 327 
 328                         if (prop == ZPOOL_PROP_BOOTFS) {
 329                                 dsl_pool_t *dp;
 330                                 dsl_dataset_t *ds = NULL;
 331 
 332                                 dp = spa_get_dsl(spa);
 333                                 dsl_pool_config_enter(dp, FTAG);
 334                                 if (err = dsl_dataset_hold_obj(dp,
 335                                     za.za_first_integer, FTAG, &ds)) {
 336                                         dsl_pool_config_exit(dp, FTAG);
 337                                         break;
 338                                 }
 339 
 340                                 strval = kmem_alloc(
 341                                     MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
 342                                     KM_SLEEP);
 343                                 dsl_dataset_name(ds, strval);
 344                                 dsl_dataset_rele(ds, FTAG);
 345                                 dsl_pool_config_exit(dp, FTAG);
 346                         } else {
 347                                 strval = NULL;
 348                                 intval = za.za_first_integer;
 349                         }
 350 
 351                         spa_prop_add_list(*nvp, prop, strval, intval, src);
 352 
 353                         if (strval != NULL)
 354                                 kmem_free(strval,
 355                                     MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
 356 
 357                         break;
 358 
 359                 case 1:
 360                         /* string property */
 361                         strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
 362                         err = zap_lookup(mos, spa->spa_pool_props_object,
 363                             za.za_name, 1, za.za_num_integers, strval);
 364                         if (err) {
 365                                 kmem_free(strval, za.za_num_integers);
 366                                 break;
 367                         }
 368                         spa_prop_add_list(*nvp, prop, strval, 0, src);
 369                         kmem_free(strval, za.za_num_integers);
 370                         break;
 371 
 372                 default:
 373                         break;
 374                 }
 375         }
 376         zap_cursor_fini(&zc);
 377         mutex_exit(&spa->spa_props_lock);
 378 out:
 379         if (err && err != ENOENT) {
 380                 nvlist_free(*nvp);
 381                 *nvp = NULL;
 382                 return (err);
 383         }
 384 
 385         return (0);
 386 }
 387 
 388 /*
 389  * Validate the given pool properties nvlist and modify the list
 390  * for the property values to be set.
 391  */
 392 static int
 393 spa_prop_validate(spa_t *spa, nvlist_t *props)
 394 {
 395         nvpair_t *elem;
 396         int error = 0, reset_bootfs = 0;
 397         uint64_t objnum = 0;
 398         boolean_t has_feature = B_FALSE;
 399 
 400         elem = NULL;
 401         while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
 402                 uint64_t intval;
 403                 char *strval, *slash, *check, *fname;
 404                 const char *propname = nvpair_name(elem);
 405                 zpool_prop_t prop = zpool_name_to_prop(propname);
 406 
 407                 switch (prop) {
 408                 case ZPROP_INVAL:
 409                         if (!zpool_prop_feature(propname)) {
 410                                 error = SET_ERROR(EINVAL);
 411                                 break;
 412                         }
 413 
 414                         /*
 415                          * Sanitize the input.
 416                          */
 417                         if (nvpair_type(elem) != DATA_TYPE_UINT64) {
 418                                 error = SET_ERROR(EINVAL);
 419                                 break;
 420                         }
 421 
 422                         if (nvpair_value_uint64(elem, &intval) != 0) {
 423                                 error = SET_ERROR(EINVAL);
 424                                 break;
 425                         }
 426 
 427                         if (intval != 0) {
 428                                 error = SET_ERROR(EINVAL);
 429                                 break;
 430                         }
 431 
 432                         fname = strchr(propname, '@') + 1;
 433                         if (zfeature_lookup_name(fname, NULL) != 0) {
 434                                 error = SET_ERROR(EINVAL);
 435                                 break;
 436                         }
 437 
 438                         has_feature = B_TRUE;
 439                         break;
 440 
 441                 case ZPOOL_PROP_VERSION:
 442                         error = nvpair_value_uint64(elem, &intval);
 443                         if (!error &&
 444                             (intval < spa_version(spa) ||
 445                             intval > SPA_VERSION_BEFORE_FEATURES ||
 446                             has_feature))
 447                                 error = SET_ERROR(EINVAL);
 448                         break;
 449 
 450                 case ZPOOL_PROP_DELEGATION:
 451                 case ZPOOL_PROP_AUTOREPLACE:
 452                 case ZPOOL_PROP_LISTSNAPS:
 453                 case ZPOOL_PROP_AUTOEXPAND:
 454                         error = nvpair_value_uint64(elem, &intval);
 455                         if (!error && intval > 1)
 456                                 error = SET_ERROR(EINVAL);
 457                         break;
 458 
 459                 case ZPOOL_PROP_BOOTFS:
 460                         /*
 461                          * If the pool version is less than SPA_VERSION_BOOTFS,
 462                          * or the pool is still being created (version == 0),
 463                          * the bootfs property cannot be set.
 464                          */
 465                         if (spa_version(spa) < SPA_VERSION_BOOTFS) {
 466                                 error = SET_ERROR(ENOTSUP);
 467                                 break;
 468                         }
 469 
 470                         /*
 471                          * Make sure the vdev config is bootable
 472                          */
 473                         if (!vdev_is_bootable(spa->spa_root_vdev)) {
 474                                 error = SET_ERROR(ENOTSUP);
 475                                 break;
 476                         }
 477 
 478                         reset_bootfs = 1;
 479 
 480                         error = nvpair_value_string(elem, &strval);
 481 
 482                         if (!error) {
 483                                 objset_t *os;
 484                                 uint64_t compress;
 485 
 486                                 if (strval == NULL || strval[0] == '\0') {
 487                                         objnum = zpool_prop_default_numeric(
 488                                             ZPOOL_PROP_BOOTFS);
 489                                         break;
 490                                 }
 491 
 492                                 if (error = dmu_objset_hold(strval, FTAG, &os))
 493                                         break;
 494 
 495                                 /* Must be ZPL and not gzip compressed. */
 496 
 497                                 if (dmu_objset_type(os) != DMU_OST_ZFS) {
 498                                         error = SET_ERROR(ENOTSUP);
 499                                 } else if ((error =
 500                                     dsl_prop_get_int_ds(dmu_objset_ds(os),
 501                                     zfs_prop_to_name(ZFS_PROP_COMPRESSION),
 502                                     &compress)) == 0 &&
 503                                     !BOOTFS_COMPRESS_VALID(compress)) {
 504                                         error = SET_ERROR(ENOTSUP);
 505                                 } else {
 506                                         objnum = dmu_objset_id(os);
 507                                 }
 508                                 dmu_objset_rele(os, FTAG);
 509                         }
 510                         break;
 511 
 512                 case ZPOOL_PROP_FAILUREMODE:
 513                         error = nvpair_value_uint64(elem, &intval);
 514                         if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
 515                             intval > ZIO_FAILURE_MODE_PANIC))
 516                                 error = SET_ERROR(EINVAL);
 517 
 518                         /*
 519                          * This is a special case which only occurs when
 520                          * the pool has completely failed. This allows
 521                          * the user to change the in-core failmode property
 522                          * without syncing it out to disk (I/Os might
 523                          * currently be blocked). We do this by returning
 524                          * EIO to the caller (spa_prop_set) to trick it
 525                          * into thinking we encountered a property validation
 526                          * error.
 527                          */
 528                         if (!error && spa_suspended(spa)) {
 529                                 spa->spa_failmode = intval;
 530                                 error = SET_ERROR(EIO);
 531                         }
 532                         break;
 533 
 534                 case ZPOOL_PROP_CACHEFILE:
 535                         if ((error = nvpair_value_string(elem, &strval)) != 0)
 536                                 break;
 537 
 538                         if (strval[0] == '\0')
 539                                 break;
 540 
 541                         if (strcmp(strval, "none") == 0)
 542                                 break;
 543 
 544                         if (strval[0] != '/') {
 545                                 error = SET_ERROR(EINVAL);
 546                                 break;
 547                         }
 548 
 549                         slash = strrchr(strval, '/');
 550                         ASSERT(slash != NULL);
 551 
 552                         if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
 553                             strcmp(slash, "/..") == 0)
 554                                 error = SET_ERROR(EINVAL);
 555                         break;
 556 
 557                 case ZPOOL_PROP_COMMENT:
 558                         if ((error = nvpair_value_string(elem, &strval)) != 0)
 559                                 break;
 560                         for (check = strval; *check != '\0'; check++) {
 561                                 /*
 562                                  * The kernel doesn't have an easy isprint()
 563                                  * check.  For this kernel check, we merely
 564                                  * check ASCII apart from DEL.  Fix this if
 565                                  * there is an easy-to-use kernel isprint().
 566                                  */
 567                                 if (*check >= 0x7f) {
 568                                         error = SET_ERROR(EINVAL);
 569                                         break;
 570                                 }
 571                                 check++;
 572                         }
 573                         if (strlen(strval) > ZPROP_MAX_COMMENT)
 574                                 error = E2BIG;
 575                         break;
 576 
 577                 case ZPOOL_PROP_DEDUPDITTO:
 578                         if (spa_version(spa) < SPA_VERSION_DEDUP)
 579                                 error = SET_ERROR(ENOTSUP);
 580                         else
 581                                 error = nvpair_value_uint64(elem, &intval);
 582                         if (error == 0 &&
 583                             intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
 584                                 error = SET_ERROR(EINVAL);
 585                         break;
 586                 }
 587 
 588                 if (error)
 589                         break;
 590         }
 591 
 592         if (!error && reset_bootfs) {
 593                 error = nvlist_remove(props,
 594                     zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
 595 
 596                 if (!error) {
 597                         error = nvlist_add_uint64(props,
 598                             zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
 599                 }
 600         }
 601 
 602         return (error);
 603 }
 604 
 605 void
 606 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
 607 {
 608         char *cachefile;
 609         spa_config_dirent_t *dp;
 610 
 611         if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
 612             &cachefile) != 0)
 613                 return;
 614 
 615         dp = kmem_alloc(sizeof (spa_config_dirent_t),
 616             KM_SLEEP);
 617 
 618         if (cachefile[0] == '\0')
 619                 dp->scd_path = spa_strdup(spa_config_path);
 620         else if (strcmp(cachefile, "none") == 0)
 621                 dp->scd_path = NULL;
 622         else
 623                 dp->scd_path = spa_strdup(cachefile);
 624 
 625         list_insert_head(&spa->spa_config_list, dp);
 626         if (need_sync)
 627                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
 628 }
 629 
 630 int
 631 spa_prop_set(spa_t *spa, nvlist_t *nvp)
 632 {
 633         int error;
 634         nvpair_t *elem = NULL;
 635         boolean_t need_sync = B_FALSE;
 636 
 637         if ((error = spa_prop_validate(spa, nvp)) != 0)
 638                 return (error);
 639 
 640         while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
 641                 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
 642 
 643                 if (prop == ZPOOL_PROP_CACHEFILE ||
 644                     prop == ZPOOL_PROP_ALTROOT ||
 645                     prop == ZPOOL_PROP_READONLY)
 646                         continue;
 647 
 648                 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
 649                         uint64_t ver;
 650 
 651                         if (prop == ZPOOL_PROP_VERSION) {
 652                                 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
 653                         } else {
 654                                 ASSERT(zpool_prop_feature(nvpair_name(elem)));
 655                                 ver = SPA_VERSION_FEATURES;
 656                                 need_sync = B_TRUE;
 657                         }
 658 
 659                         /* Save time if the version is already set. */
 660                         if (ver == spa_version(spa))
 661                                 continue;
 662 
 663                         /*
 664                          * In addition to the pool directory object, we might
 665                          * create the pool properties object, the features for
 666                          * read object, the features for write object, or the
 667                          * feature descriptions object.
 668                          */
 669                         error = dsl_sync_task(spa->spa_name, NULL,
 670                             spa_sync_version, &ver, 6);
 671                         if (error)
 672                                 return (error);
 673                         continue;
 674                 }
 675 
 676                 need_sync = B_TRUE;
 677                 break;
 678         }
 679 
 680         if (need_sync) {
 681                 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
 682                     nvp, 6));
 683         }
 684 
 685         return (0);
 686 }
 687 
 688 /*
 689  * If the bootfs property value is dsobj, clear it.
 690  */
 691 void
 692 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
 693 {
 694         if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
 695                 VERIFY(zap_remove(spa->spa_meta_objset,
 696                     spa->spa_pool_props_object,
 697                     zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
 698                 spa->spa_bootfs = 0;
 699         }
 700 }
 701 
 702 /*ARGSUSED*/
 703 static int
 704 spa_change_guid_check(void *arg, dmu_tx_t *tx)
 705 {
 706         uint64_t *newguid = arg;
 707         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 708         vdev_t *rvd = spa->spa_root_vdev;
 709         uint64_t vdev_state;
 710 
 711         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 712         vdev_state = rvd->vdev_state;
 713         spa_config_exit(spa, SCL_STATE, FTAG);
 714 
 715         if (vdev_state != VDEV_STATE_HEALTHY)
 716                 return (SET_ERROR(ENXIO));
 717 
 718         ASSERT3U(spa_guid(spa), !=, *newguid);
 719 
 720         return (0);
 721 }
 722 
 723 static void
 724 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
 725 {
 726         uint64_t *newguid = arg;
 727         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 728         uint64_t oldguid;
 729         vdev_t *rvd = spa->spa_root_vdev;
 730 
 731         oldguid = spa_guid(spa);
 732 
 733         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 734         rvd->vdev_guid = *newguid;
 735         rvd->vdev_guid_sum += (*newguid - oldguid);
 736         vdev_config_dirty(rvd);
 737         spa_config_exit(spa, SCL_STATE, FTAG);
 738 
 739         spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
 740             oldguid, *newguid);
 741 }
 742 
 743 /*
 744  * Change the GUID for the pool.  This is done so that we can later
 745  * re-import a pool built from a clone of our own vdevs.  We will modify
 746  * the root vdev's guid, our own pool guid, and then mark all of our
 747  * vdevs dirty.  Note that we must make sure that all our vdevs are
 748  * online when we do this, or else any vdevs that weren't present
 749  * would be orphaned from our pool.  We are also going to issue a
 750  * sysevent to update any watchers.
 751  */
 752 int
 753 spa_change_guid(spa_t *spa)
 754 {
 755         int error;
 756         uint64_t guid;
 757 
 758         mutex_enter(&spa->spa_vdev_top_lock);
 759         mutex_enter(&spa_namespace_lock);
 760         guid = spa_generate_guid(NULL);
 761 
 762         error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
 763             spa_change_guid_sync, &guid, 5);
 764 
 765         if (error == 0) {
 766                 spa_config_sync(spa, B_FALSE, B_TRUE);
 767                 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
 768         }
 769 
 770         mutex_exit(&spa_namespace_lock);
 771         mutex_exit(&spa->spa_vdev_top_lock);
 772 
 773         return (error);
 774 }
 775 
 776 /*
 777  * ==========================================================================
 778  * SPA state manipulation (open/create/destroy/import/export)
 779  * ==========================================================================
 780  */
 781 
 782 static int
 783 spa_error_entry_compare(const void *a, const void *b)
 784 {
 785         spa_error_entry_t *sa = (spa_error_entry_t *)a;
 786         spa_error_entry_t *sb = (spa_error_entry_t *)b;
 787         int ret;
 788 
 789         ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
 790             sizeof (zbookmark_t));
 791 
 792         if (ret < 0)
 793                 return (-1);
 794         else if (ret > 0)
 795                 return (1);
 796         else
 797                 return (0);
 798 }
 799 
 800 /*
 801  * Utility function which retrieves copies of the current logs and
 802  * re-initializes them in the process.
 803  */
 804 void
 805 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
 806 {
 807         ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
 808 
 809         bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
 810         bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
 811 
 812         avl_create(&spa->spa_errlist_scrub,
 813             spa_error_entry_compare, sizeof (spa_error_entry_t),
 814             offsetof(spa_error_entry_t, se_avl));
 815         avl_create(&spa->spa_errlist_last,
 816             spa_error_entry_compare, sizeof (spa_error_entry_t),
 817             offsetof(spa_error_entry_t, se_avl));
 818 }
 819 
 820 static void
 821 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
 822 {
 823         const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
 824         enum zti_modes mode = ztip->zti_mode;
 825         uint_t value = ztip->zti_value;
 826         uint_t count = ztip->zti_count;
 827         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 828         char name[32];
 829         uint_t flags = 0;
 830         boolean_t batch = B_FALSE;
 831 
 832         if (mode == ZTI_MODE_NULL) {
 833                 tqs->stqs_count = 0;
 834                 tqs->stqs_taskq = NULL;
 835                 return;
 836         }
 837 
 838         ASSERT3U(count, >, 0);
 839 
 840         tqs->stqs_count = count;
 841         tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
 842 
 843         switch (mode) {
 844         case ZTI_MODE_FIXED:
 845                 ASSERT3U(value, >=, 1);
 846                 value = MAX(value, 1);
 847                 break;
 848 
 849         case ZTI_MODE_BATCH:
 850                 batch = B_TRUE;
 851                 flags |= TASKQ_THREADS_CPU_PCT;
 852                 value = zio_taskq_batch_pct;
 853                 break;
 854 
 855         default:
 856                 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
 857                     "spa_activate()",
 858                     zio_type_name[t], zio_taskq_types[q], mode, value);
 859                 break;
 860         }
 861 
 862         for (uint_t i = 0; i < count; i++) {
 863                 taskq_t *tq;
 864 
 865                 if (count > 1) {
 866                         (void) snprintf(name, sizeof (name), "%s_%s_%u",
 867                             zio_type_name[t], zio_taskq_types[q], i);
 868                 } else {
 869                         (void) snprintf(name, sizeof (name), "%s_%s",
 870                             zio_type_name[t], zio_taskq_types[q]);
 871                 }
 872 
 873                 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
 874                         if (batch)
 875                                 flags |= TASKQ_DC_BATCH;
 876 
 877                         tq = taskq_create_sysdc(name, value, 50, INT_MAX,
 878                             spa->spa_proc, zio_taskq_basedc, flags);
 879                 } else {
 880                         pri_t pri = maxclsyspri;
 881                         /*
 882                          * The write issue taskq can be extremely CPU
 883                          * intensive.  Run it at slightly lower priority
 884                          * than the other taskqs.
 885                          */
 886                         if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
 887                                 pri--;
 888 
 889                         tq = taskq_create_proc(name, value, pri, 50,
 890                             INT_MAX, spa->spa_proc, flags);
 891                 }
 892 
 893                 tqs->stqs_taskq[i] = tq;
 894         }
 895 }
 896 
 897 static void
 898 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
 899 {
 900         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 901 
 902         if (tqs->stqs_taskq == NULL) {
 903                 ASSERT0(tqs->stqs_count);
 904                 return;
 905         }
 906 
 907         for (uint_t i = 0; i < tqs->stqs_count; i++) {
 908                 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
 909                 taskq_destroy(tqs->stqs_taskq[i]);
 910         }
 911 
 912         kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
 913         tqs->stqs_taskq = NULL;
 914 }
 915 
 916 /*
 917  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
 918  * Note that a type may have multiple discrete taskqs to avoid lock contention
 919  * on the taskq itself. In that case we choose which taskq at random by using
 920  * the low bits of gethrtime().
 921  */
 922 void
 923 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
 924     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
 925 {
 926         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 927         taskq_t *tq;
 928 
 929         ASSERT3P(tqs->stqs_taskq, !=, NULL);
 930         ASSERT3U(tqs->stqs_count, !=, 0);
 931 
 932         if (tqs->stqs_count == 1) {
 933                 tq = tqs->stqs_taskq[0];
 934         } else {
 935                 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
 936         }
 937 
 938         taskq_dispatch_ent(tq, func, arg, flags, ent);
 939 }
 940 
 941 static void
 942 spa_create_zio_taskqs(spa_t *spa)
 943 {
 944         for (int t = 0; t < ZIO_TYPES; t++) {
 945                 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
 946                         spa_taskqs_init(spa, t, q);
 947                 }
 948         }
 949 }
 950 
 951 #ifdef _KERNEL
 952 static void
 953 spa_thread(void *arg)
 954 {
 955         callb_cpr_t cprinfo;
 956 
 957         spa_t *spa = arg;
 958         user_t *pu = PTOU(curproc);
 959 
 960         CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
 961             spa->spa_name);
 962 
 963         ASSERT(curproc != &p0);
 964         (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
 965             "zpool-%s", spa->spa_name);
 966         (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
 967 
 968         /* bind this thread to the requested psrset */
 969         if (zio_taskq_psrset_bind != PS_NONE) {
 970                 pool_lock();
 971                 mutex_enter(&cpu_lock);
 972                 mutex_enter(&pidlock);
 973                 mutex_enter(&curproc->p_lock);
 974 
 975                 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
 976                     0, NULL, NULL) == 0)  {
 977                         curthread->t_bind_pset = zio_taskq_psrset_bind;
 978                 } else {
 979                         cmn_err(CE_WARN,
 980                             "Couldn't bind process for zfs pool \"%s\" to "
 981                             "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
 982                 }
 983 
 984                 mutex_exit(&curproc->p_lock);
 985                 mutex_exit(&pidlock);
 986                 mutex_exit(&cpu_lock);
 987                 pool_unlock();
 988         }
 989 
 990         if (zio_taskq_sysdc) {
 991                 sysdc_thread_enter(curthread, 100, 0);
 992         }
 993 
 994         spa->spa_proc = curproc;
 995         spa->spa_did = curthread->t_did;
 996 
 997         spa_create_zio_taskqs(spa);
 998 
 999         mutex_enter(&spa->spa_proc_lock);
1000         ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1001 
1002         spa->spa_proc_state = SPA_PROC_ACTIVE;
1003         cv_broadcast(&spa->spa_proc_cv);
1004 
1005         CALLB_CPR_SAFE_BEGIN(&cprinfo);
1006         while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1007                 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1008         CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1009 
1010         ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1011         spa->spa_proc_state = SPA_PROC_GONE;
1012         spa->spa_proc = &p0;
1013         cv_broadcast(&spa->spa_proc_cv);
1014         CALLB_CPR_EXIT(&cprinfo);   /* drops spa_proc_lock */
1015 
1016         mutex_enter(&curproc->p_lock);
1017         lwp_exit();
1018 }
1019 #endif
1020 
1021 /*
1022  * Activate an uninitialized pool.
1023  */
1024 static void
1025 spa_activate(spa_t *spa, int mode)
1026 {
1027         ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1028 
1029         spa->spa_state = POOL_STATE_ACTIVE;
1030         spa->spa_mode = mode;
1031 
1032         spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1033         spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1034 
1035         /* Try to create a covering process */
1036         mutex_enter(&spa->spa_proc_lock);
1037         ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1038         ASSERT(spa->spa_proc == &p0);
1039         spa->spa_did = 0;
1040 
1041         /* Only create a process if we're going to be around a while. */
1042         if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1043                 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1044                     NULL, 0) == 0) {
1045                         spa->spa_proc_state = SPA_PROC_CREATED;
1046                         while (spa->spa_proc_state == SPA_PROC_CREATED) {
1047                                 cv_wait(&spa->spa_proc_cv,
1048                                     &spa->spa_proc_lock);
1049                         }
1050                         ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1051                         ASSERT(spa->spa_proc != &p0);
1052                         ASSERT(spa->spa_did != 0);
1053                 } else {
1054 #ifdef _KERNEL
1055                         cmn_err(CE_WARN,
1056                             "Couldn't create process for zfs pool \"%s\"\n",
1057                             spa->spa_name);
1058 #endif
1059                 }
1060         }
1061         mutex_exit(&spa->spa_proc_lock);
1062 
1063         /* If we didn't create a process, we need to create our taskqs. */
1064         if (spa->spa_proc == &p0) {
1065                 spa_create_zio_taskqs(spa);
1066         }
1067 
1068         list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1069             offsetof(vdev_t, vdev_config_dirty_node));
1070         list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1071             offsetof(vdev_t, vdev_state_dirty_node));
1072 
1073         txg_list_create(&spa->spa_vdev_txg_list,
1074             offsetof(struct vdev, vdev_txg_node));
1075 
1076         avl_create(&spa->spa_errlist_scrub,
1077             spa_error_entry_compare, sizeof (spa_error_entry_t),
1078             offsetof(spa_error_entry_t, se_avl));
1079         avl_create(&spa->spa_errlist_last,
1080             spa_error_entry_compare, sizeof (spa_error_entry_t),
1081             offsetof(spa_error_entry_t, se_avl));
1082 }
1083 
1084 /*
1085  * Opposite of spa_activate().
1086  */
1087 static void
1088 spa_deactivate(spa_t *spa)
1089 {
1090         ASSERT(spa->spa_sync_on == B_FALSE);
1091         ASSERT(spa->spa_dsl_pool == NULL);
1092         ASSERT(spa->spa_root_vdev == NULL);
1093         ASSERT(spa->spa_async_zio_root == NULL);
1094         ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1095 
1096         txg_list_destroy(&spa->spa_vdev_txg_list);
1097 
1098         list_destroy(&spa->spa_config_dirty_list);
1099         list_destroy(&spa->spa_state_dirty_list);
1100 
1101         for (int t = 0; t < ZIO_TYPES; t++) {
1102                 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1103                         spa_taskqs_fini(spa, t, q);
1104                 }
1105         }
1106 
1107         metaslab_class_destroy(spa->spa_normal_class);
1108         spa->spa_normal_class = NULL;
1109 
1110         metaslab_class_destroy(spa->spa_log_class);
1111         spa->spa_log_class = NULL;
1112 
1113         /*
1114          * If this was part of an import or the open otherwise failed, we may
1115          * still have errors left in the queues.  Empty them just in case.
1116          */
1117         spa_errlog_drain(spa);
1118 
1119         avl_destroy(&spa->spa_errlist_scrub);
1120         avl_destroy(&spa->spa_errlist_last);
1121 
1122         spa->spa_state = POOL_STATE_UNINITIALIZED;
1123 
1124         mutex_enter(&spa->spa_proc_lock);
1125         if (spa->spa_proc_state != SPA_PROC_NONE) {
1126                 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1127                 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1128                 cv_broadcast(&spa->spa_proc_cv);
1129                 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1130                         ASSERT(spa->spa_proc != &p0);
1131                         cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1132                 }
1133                 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1134                 spa->spa_proc_state = SPA_PROC_NONE;
1135         }
1136         ASSERT(spa->spa_proc == &p0);
1137         mutex_exit(&spa->spa_proc_lock);
1138 
1139         /*
1140          * We want to make sure spa_thread() has actually exited the ZFS
1141          * module, so that the module can't be unloaded out from underneath
1142          * it.
1143          */
1144         if (spa->spa_did != 0) {
1145                 thread_join(spa->spa_did);
1146                 spa->spa_did = 0;
1147         }
1148 }
1149 
1150 /*
1151  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1152  * will create all the necessary vdevs in the appropriate layout, with each vdev
1153  * in the CLOSED state.  This will prep the pool before open/creation/import.
1154  * All vdev validation is done by the vdev_alloc() routine.
1155  */
1156 static int
1157 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1158     uint_t id, int atype)
1159 {
1160         nvlist_t **child;
1161         uint_t children;
1162         int error;
1163 
1164         if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1165                 return (error);
1166 
1167         if ((*vdp)->vdev_ops->vdev_op_leaf)
1168                 return (0);
1169 
1170         error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1171             &child, &children);
1172 
1173         if (error == ENOENT)
1174                 return (0);
1175 
1176         if (error) {
1177                 vdev_free(*vdp);
1178                 *vdp = NULL;
1179                 return (SET_ERROR(EINVAL));
1180         }
1181 
1182         for (int c = 0; c < children; c++) {
1183                 vdev_t *vd;
1184                 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1185                     atype)) != 0) {
1186                         vdev_free(*vdp);
1187                         *vdp = NULL;
1188                         return (error);
1189                 }
1190         }
1191 
1192         ASSERT(*vdp != NULL);
1193 
1194         return (0);
1195 }
1196 
1197 /*
1198  * Opposite of spa_load().
1199  */
1200 static void
1201 spa_unload(spa_t *spa)
1202 {
1203         int i;
1204 
1205         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1206 
1207         /*
1208          * Stop async tasks.
1209          */
1210         spa_async_suspend(spa);
1211 
1212         /*
1213          * Stop syncing.
1214          */
1215         if (spa->spa_sync_on) {
1216                 txg_sync_stop(spa->spa_dsl_pool);
1217                 spa->spa_sync_on = B_FALSE;
1218         }
1219 
1220         /*
1221          * Wait for any outstanding async I/O to complete.
1222          */
1223         if (spa->spa_async_zio_root != NULL) {
1224                 (void) zio_wait(spa->spa_async_zio_root);
1225                 spa->spa_async_zio_root = NULL;
1226         }
1227 
1228         bpobj_close(&spa->spa_deferred_bpobj);
1229 
1230         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1231 
1232         /*
1233          * Close all vdevs.
1234          */
1235         if (spa->spa_root_vdev)
1236                 vdev_free(spa->spa_root_vdev);
1237         ASSERT(spa->spa_root_vdev == NULL);
1238 
1239         /*
1240          * Close the dsl pool.
1241          */
1242         if (spa->spa_dsl_pool) {
1243                 dsl_pool_close(spa->spa_dsl_pool);
1244                 spa->spa_dsl_pool = NULL;
1245                 spa->spa_meta_objset = NULL;
1246         }
1247 
1248         ddt_unload(spa);
1249 
1250 
1251         /*
1252          * Drop and purge level 2 cache
1253          */
1254         spa_l2cache_drop(spa);
1255 
1256         for (i = 0; i < spa->spa_spares.sav_count; i++)
1257                 vdev_free(spa->spa_spares.sav_vdevs[i]);
1258         if (spa->spa_spares.sav_vdevs) {
1259                 kmem_free(spa->spa_spares.sav_vdevs,
1260                     spa->spa_spares.sav_count * sizeof (void *));
1261                 spa->spa_spares.sav_vdevs = NULL;
1262         }
1263         if (spa->spa_spares.sav_config) {
1264                 nvlist_free(spa->spa_spares.sav_config);
1265                 spa->spa_spares.sav_config = NULL;
1266         }
1267         spa->spa_spares.sav_count = 0;
1268 
1269         for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1270                 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1271                 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1272         }
1273         if (spa->spa_l2cache.sav_vdevs) {
1274                 kmem_free(spa->spa_l2cache.sav_vdevs,
1275                     spa->spa_l2cache.sav_count * sizeof (void *));
1276                 spa->spa_l2cache.sav_vdevs = NULL;
1277         }
1278         if (spa->spa_l2cache.sav_config) {
1279                 nvlist_free(spa->spa_l2cache.sav_config);
1280                 spa->spa_l2cache.sav_config = NULL;
1281         }
1282         spa->spa_l2cache.sav_count = 0;
1283 
1284         spa->spa_async_suspended = 0;
1285 
1286         if (spa->spa_comment != NULL) {
1287                 spa_strfree(spa->spa_comment);
1288                 spa->spa_comment = NULL;
1289         }
1290 
1291         spa_config_exit(spa, SCL_ALL, FTAG);
1292 }
1293 
1294 /*
1295  * Load (or re-load) the current list of vdevs describing the active spares for
1296  * this pool.  When this is called, we have some form of basic information in
1297  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1298  * then re-generate a more complete list including status information.
1299  */
1300 static void
1301 spa_load_spares(spa_t *spa)
1302 {
1303         nvlist_t **spares;
1304         uint_t nspares;
1305         int i;
1306         vdev_t *vd, *tvd;
1307 
1308         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1309 
1310         /*
1311          * First, close and free any existing spare vdevs.
1312          */
1313         for (i = 0; i < spa->spa_spares.sav_count; i++) {
1314                 vd = spa->spa_spares.sav_vdevs[i];
1315 
1316                 /* Undo the call to spa_activate() below */
1317                 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1318                     B_FALSE)) != NULL && tvd->vdev_isspare)
1319                         spa_spare_remove(tvd);
1320                 vdev_close(vd);
1321                 vdev_free(vd);
1322         }
1323 
1324         if (spa->spa_spares.sav_vdevs)
1325                 kmem_free(spa->spa_spares.sav_vdevs,
1326                     spa->spa_spares.sav_count * sizeof (void *));
1327 
1328         if (spa->spa_spares.sav_config == NULL)
1329                 nspares = 0;
1330         else
1331                 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1332                     ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1333 
1334         spa->spa_spares.sav_count = (int)nspares;
1335         spa->spa_spares.sav_vdevs = NULL;
1336 
1337         if (nspares == 0)
1338                 return;
1339 
1340         /*
1341          * Construct the array of vdevs, opening them to get status in the
1342          * process.   For each spare, there is potentially two different vdev_t
1343          * structures associated with it: one in the list of spares (used only
1344          * for basic validation purposes) and one in the active vdev
1345          * configuration (if it's spared in).  During this phase we open and
1346          * validate each vdev on the spare list.  If the vdev also exists in the
1347          * active configuration, then we also mark this vdev as an active spare.
1348          */
1349         spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1350             KM_SLEEP);
1351         for (i = 0; i < spa->spa_spares.sav_count; i++) {
1352                 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1353                     VDEV_ALLOC_SPARE) == 0);
1354                 ASSERT(vd != NULL);
1355 
1356                 spa->spa_spares.sav_vdevs[i] = vd;
1357 
1358                 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1359                     B_FALSE)) != NULL) {
1360                         if (!tvd->vdev_isspare)
1361                                 spa_spare_add(tvd);
1362 
1363                         /*
1364                          * We only mark the spare active if we were successfully
1365                          * able to load the vdev.  Otherwise, importing a pool
1366                          * with a bad active spare would result in strange
1367                          * behavior, because multiple pool would think the spare
1368                          * is actively in use.
1369                          *
1370                          * There is a vulnerability here to an equally bizarre
1371                          * circumstance, where a dead active spare is later
1372                          * brought back to life (onlined or otherwise).  Given
1373                          * the rarity of this scenario, and the extra complexity
1374                          * it adds, we ignore the possibility.
1375                          */
1376                         if (!vdev_is_dead(tvd))
1377                                 spa_spare_activate(tvd);
1378                 }
1379 
1380                 vd->vdev_top = vd;
1381                 vd->vdev_aux = &spa->spa_spares;
1382 
1383                 if (vdev_open(vd) != 0)
1384                         continue;
1385 
1386                 if (vdev_validate_aux(vd) == 0)
1387                         spa_spare_add(vd);
1388         }
1389 
1390         /*
1391          * Recompute the stashed list of spares, with status information
1392          * this time.
1393          */
1394         VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1395             DATA_TYPE_NVLIST_ARRAY) == 0);
1396 
1397         spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1398             KM_SLEEP);
1399         for (i = 0; i < spa->spa_spares.sav_count; i++)
1400                 spares[i] = vdev_config_generate(spa,
1401                     spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1402         VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1403             ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1404         for (i = 0; i < spa->spa_spares.sav_count; i++)
1405                 nvlist_free(spares[i]);
1406         kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1407 }
1408 
1409 /*
1410  * Load (or re-load) the current list of vdevs describing the active l2cache for
1411  * this pool.  When this is called, we have some form of basic information in
1412  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1413  * then re-generate a more complete list including status information.
1414  * Devices which are already active have their details maintained, and are
1415  * not re-opened.
1416  */
1417 static void
1418 spa_load_l2cache(spa_t *spa)
1419 {
1420         nvlist_t **l2cache;
1421         uint_t nl2cache;
1422         int i, j, oldnvdevs;
1423         uint64_t guid;
1424         vdev_t *vd, **oldvdevs, **newvdevs;
1425         spa_aux_vdev_t *sav = &spa->spa_l2cache;
1426 
1427         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1428 
1429         if (sav->sav_config != NULL) {
1430                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1431                     ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1432                 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1433         } else {
1434                 nl2cache = 0;
1435                 newvdevs = NULL;
1436         }
1437 
1438         oldvdevs = sav->sav_vdevs;
1439         oldnvdevs = sav->sav_count;
1440         sav->sav_vdevs = NULL;
1441         sav->sav_count = 0;
1442 
1443         /*
1444          * Process new nvlist of vdevs.
1445          */
1446         for (i = 0; i < nl2cache; i++) {
1447                 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1448                     &guid) == 0);
1449 
1450                 newvdevs[i] = NULL;
1451                 for (j = 0; j < oldnvdevs; j++) {
1452                         vd = oldvdevs[j];
1453                         if (vd != NULL && guid == vd->vdev_guid) {
1454                                 /*
1455                                  * Retain previous vdev for add/remove ops.
1456                                  */
1457                                 newvdevs[i] = vd;
1458                                 oldvdevs[j] = NULL;
1459                                 break;
1460                         }
1461                 }
1462 
1463                 if (newvdevs[i] == NULL) {
1464                         /*
1465                          * Create new vdev
1466                          */
1467                         VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1468                             VDEV_ALLOC_L2CACHE) == 0);
1469                         ASSERT(vd != NULL);
1470                         newvdevs[i] = vd;
1471 
1472                         /*
1473                          * Commit this vdev as an l2cache device,
1474                          * even if it fails to open.
1475                          */
1476                         spa_l2cache_add(vd);
1477 
1478                         vd->vdev_top = vd;
1479                         vd->vdev_aux = sav;
1480 
1481                         spa_l2cache_activate(vd);
1482 
1483                         if (vdev_open(vd) != 0)
1484                                 continue;
1485 
1486                         (void) vdev_validate_aux(vd);
1487 
1488                         if (!vdev_is_dead(vd))
1489                                 l2arc_add_vdev(spa, vd);
1490                 }
1491         }
1492 
1493         /*
1494          * Purge vdevs that were dropped
1495          */
1496         for (i = 0; i < oldnvdevs; i++) {
1497                 uint64_t pool;
1498 
1499                 vd = oldvdevs[i];
1500                 if (vd != NULL) {
1501                         ASSERT(vd->vdev_isl2cache);
1502 
1503                         if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1504                             pool != 0ULL && l2arc_vdev_present(vd))
1505                                 l2arc_remove_vdev(vd);
1506                         vdev_clear_stats(vd);
1507                         vdev_free(vd);
1508                 }
1509         }
1510 
1511         if (oldvdevs)
1512                 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1513 
1514         if (sav->sav_config == NULL)
1515                 goto out;
1516 
1517         sav->sav_vdevs = newvdevs;
1518         sav->sav_count = (int)nl2cache;
1519 
1520         /*
1521          * Recompute the stashed list of l2cache devices, with status
1522          * information this time.
1523          */
1524         VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1525             DATA_TYPE_NVLIST_ARRAY) == 0);
1526 
1527         l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1528         for (i = 0; i < sav->sav_count; i++)
1529                 l2cache[i] = vdev_config_generate(spa,
1530                     sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1531         VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1532             ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1533 out:
1534         for (i = 0; i < sav->sav_count; i++)
1535                 nvlist_free(l2cache[i]);
1536         if (sav->sav_count)
1537                 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1538 }
1539 
1540 static int
1541 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1542 {
1543         dmu_buf_t *db;
1544         char *packed = NULL;
1545         size_t nvsize = 0;
1546         int error;
1547         *value = NULL;
1548 
1549         VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1550         nvsize = *(uint64_t *)db->db_data;
1551         dmu_buf_rele(db, FTAG);
1552 
1553         packed = kmem_alloc(nvsize, KM_SLEEP);
1554         error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1555             DMU_READ_PREFETCH);
1556         if (error == 0)
1557                 error = nvlist_unpack(packed, nvsize, value, 0);
1558         kmem_free(packed, nvsize);
1559 
1560         return (error);
1561 }
1562 
1563 /*
1564  * Checks to see if the given vdev could not be opened, in which case we post a
1565  * sysevent to notify the autoreplace code that the device has been removed.
1566  */
1567 static void
1568 spa_check_removed(vdev_t *vd)
1569 {
1570         for (int c = 0; c < vd->vdev_children; c++)
1571                 spa_check_removed(vd->vdev_child[c]);
1572 
1573         if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1574             !vd->vdev_ishole) {
1575                 zfs_post_autoreplace(vd->vdev_spa, vd);
1576                 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1577         }
1578 }
1579 
1580 /*
1581  * Validate the current config against the MOS config
1582  */
1583 static boolean_t
1584 spa_config_valid(spa_t *spa, nvlist_t *config)
1585 {
1586         vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1587         nvlist_t *nv;
1588 
1589         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1590 
1591         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1592         VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1593 
1594         ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1595 
1596         /*
1597          * If we're doing a normal import, then build up any additional
1598          * diagnostic information about missing devices in this config.
1599          * We'll pass this up to the user for further processing.
1600          */
1601         if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1602                 nvlist_t **child, *nv;
1603                 uint64_t idx = 0;
1604 
1605                 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1606                     KM_SLEEP);
1607                 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1608 
1609                 for (int c = 0; c < rvd->vdev_children; c++) {
1610                         vdev_t *tvd = rvd->vdev_child[c];
1611                         vdev_t *mtvd  = mrvd->vdev_child[c];
1612 
1613                         if (tvd->vdev_ops == &vdev_missing_ops &&
1614                             mtvd->vdev_ops != &vdev_missing_ops &&
1615                             mtvd->vdev_islog)
1616                                 child[idx++] = vdev_config_generate(spa, mtvd,
1617                                     B_FALSE, 0);
1618                 }
1619 
1620                 if (idx) {
1621                         VERIFY(nvlist_add_nvlist_array(nv,
1622                             ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1623                         VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1624                             ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1625 
1626                         for (int i = 0; i < idx; i++)
1627                                 nvlist_free(child[i]);
1628                 }
1629                 nvlist_free(nv);
1630                 kmem_free(child, rvd->vdev_children * sizeof (char **));
1631         }
1632 
1633         /*
1634          * Compare the root vdev tree with the information we have
1635          * from the MOS config (mrvd). Check each top-level vdev
1636          * with the corresponding MOS config top-level (mtvd).
1637          */
1638         for (int c = 0; c < rvd->vdev_children; c++) {
1639                 vdev_t *tvd = rvd->vdev_child[c];
1640                 vdev_t *mtvd  = mrvd->vdev_child[c];
1641 
1642                 /*
1643                  * Resolve any "missing" vdevs in the current configuration.
1644                  * If we find that the MOS config has more accurate information
1645                  * about the top-level vdev then use that vdev instead.
1646                  */
1647                 if (tvd->vdev_ops == &vdev_missing_ops &&
1648                     mtvd->vdev_ops != &vdev_missing_ops) {
1649 
1650                         if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1651                                 continue;
1652 
1653                         /*
1654                          * Device specific actions.
1655                          */
1656                         if (mtvd->vdev_islog) {
1657                                 spa_set_log_state(spa, SPA_LOG_CLEAR);
1658                         } else {
1659                                 /*
1660                                  * XXX - once we have 'readonly' pool
1661                                  * support we should be able to handle
1662                                  * missing data devices by transitioning
1663                                  * the pool to readonly.
1664                                  */
1665                                 continue;
1666                         }
1667 
1668                         /*
1669                          * Swap the missing vdev with the data we were
1670                          * able to obtain from the MOS config.
1671                          */
1672                         vdev_remove_child(rvd, tvd);
1673                         vdev_remove_child(mrvd, mtvd);
1674 
1675                         vdev_add_child(rvd, mtvd);
1676                         vdev_add_child(mrvd, tvd);
1677 
1678                         spa_config_exit(spa, SCL_ALL, FTAG);
1679                         vdev_load(mtvd);
1680                         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1681 
1682                         vdev_reopen(rvd);
1683                 } else if (mtvd->vdev_islog) {
1684                         /*
1685                          * Load the slog device's state from the MOS config
1686                          * since it's possible that the label does not
1687                          * contain the most up-to-date information.
1688                          */
1689                         vdev_load_log_state(tvd, mtvd);
1690                         vdev_reopen(tvd);
1691                 }
1692         }
1693         vdev_free(mrvd);
1694         spa_config_exit(spa, SCL_ALL, FTAG);
1695 
1696         /*
1697          * Ensure we were able to validate the config.
1698          */
1699         return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1700 }
1701 
1702 /*
1703  * Check for missing log devices
1704  */
1705 static boolean_t
1706 spa_check_logs(spa_t *spa)
1707 {
1708         boolean_t rv = B_FALSE;
1709 
1710         switch (spa->spa_log_state) {
1711         case SPA_LOG_MISSING:
1712                 /* need to recheck in case slog has been restored */
1713         case SPA_LOG_UNKNOWN:
1714                 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1715                     NULL, DS_FIND_CHILDREN) != 0);
1716                 if (rv)
1717                         spa_set_log_state(spa, SPA_LOG_MISSING);
1718                 break;
1719         }
1720         return (rv);
1721 }
1722 
1723 static boolean_t
1724 spa_passivate_log(spa_t *spa)
1725 {
1726         vdev_t *rvd = spa->spa_root_vdev;
1727         boolean_t slog_found = B_FALSE;
1728 
1729         ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1730 
1731         if (!spa_has_slogs(spa))
1732                 return (B_FALSE);
1733 
1734         for (int c = 0; c < rvd->vdev_children; c++) {
1735                 vdev_t *tvd = rvd->vdev_child[c];
1736                 metaslab_group_t *mg = tvd->vdev_mg;
1737 
1738                 if (tvd->vdev_islog) {
1739                         metaslab_group_passivate(mg);
1740                         slog_found = B_TRUE;
1741                 }
1742         }
1743 
1744         return (slog_found);
1745 }
1746 
1747 static void
1748 spa_activate_log(spa_t *spa)
1749 {
1750         vdev_t *rvd = spa->spa_root_vdev;
1751 
1752         ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1753 
1754         for (int c = 0; c < rvd->vdev_children; c++) {
1755                 vdev_t *tvd = rvd->vdev_child[c];
1756                 metaslab_group_t *mg = tvd->vdev_mg;
1757 
1758                 if (tvd->vdev_islog)
1759                         metaslab_group_activate(mg);
1760         }
1761 }
1762 
1763 int
1764 spa_offline_log(spa_t *spa)
1765 {
1766         int error;
1767 
1768         error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1769             NULL, DS_FIND_CHILDREN);
1770         if (error == 0) {
1771                 /*
1772                  * We successfully offlined the log device, sync out the
1773                  * current txg so that the "stubby" block can be removed
1774                  * by zil_sync().
1775                  */
1776                 txg_wait_synced(spa->spa_dsl_pool, 0);
1777         }
1778         return (error);
1779 }
1780 
1781 static void
1782 spa_aux_check_removed(spa_aux_vdev_t *sav)
1783 {
1784         for (int i = 0; i < sav->sav_count; i++)
1785                 spa_check_removed(sav->sav_vdevs[i]);
1786 }
1787 
1788 void
1789 spa_claim_notify(zio_t *zio)
1790 {
1791         spa_t *spa = zio->io_spa;
1792 
1793         if (zio->io_error)
1794                 return;
1795 
1796         mutex_enter(&spa->spa_props_lock);       /* any mutex will do */
1797         if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1798                 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1799         mutex_exit(&spa->spa_props_lock);
1800 }
1801 
1802 typedef struct spa_load_error {
1803         uint64_t        sle_meta_count;
1804         uint64_t        sle_data_count;
1805 } spa_load_error_t;
1806 
1807 static void
1808 spa_load_verify_done(zio_t *zio)
1809 {
1810         blkptr_t *bp = zio->io_bp;
1811         spa_load_error_t *sle = zio->io_private;
1812         dmu_object_type_t type = BP_GET_TYPE(bp);
1813         int error = zio->io_error;
1814 
1815         if (error) {
1816                 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1817                     type != DMU_OT_INTENT_LOG)
1818                         atomic_add_64(&sle->sle_meta_count, 1);
1819                 else
1820                         atomic_add_64(&sle->sle_data_count, 1);
1821         }
1822         zio_data_buf_free(zio->io_data, zio->io_size);
1823 }
1824 
1825 /*ARGSUSED*/
1826 static int
1827 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1828     const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1829 {
1830         if (bp != NULL) {
1831                 zio_t *rio = arg;
1832                 size_t size = BP_GET_PSIZE(bp);
1833                 void *data = zio_data_buf_alloc(size);
1834 
1835                 zio_nowait(zio_read(rio, spa, bp, data, size,
1836                     spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1837                     ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1838                     ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1839         }
1840         return (0);
1841 }
1842 
1843 static int
1844 spa_load_verify(spa_t *spa)
1845 {
1846         zio_t *rio;
1847         spa_load_error_t sle = { 0 };
1848         zpool_rewind_policy_t policy;
1849         boolean_t verify_ok = B_FALSE;
1850         int error;
1851 
1852         zpool_get_rewind_policy(spa->spa_config, &policy);
1853 
1854         if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1855                 return (0);
1856 
1857         rio = zio_root(spa, NULL, &sle,
1858             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1859 
1860         error = traverse_pool(spa, spa->spa_verify_min_txg,
1861             TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1862 
1863         (void) zio_wait(rio);
1864 
1865         spa->spa_load_meta_errors = sle.sle_meta_count;
1866         spa->spa_load_data_errors = sle.sle_data_count;
1867 
1868         if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1869             sle.sle_data_count <= policy.zrp_maxdata) {
1870                 int64_t loss = 0;
1871 
1872                 verify_ok = B_TRUE;
1873                 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1874                 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1875 
1876                 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1877                 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1878                     ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1879                 VERIFY(nvlist_add_int64(spa->spa_load_info,
1880                     ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1881                 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1882                     ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1883         } else {
1884                 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1885         }
1886 
1887         if (error) {
1888                 if (error != ENXIO && error != EIO)
1889                         error = SET_ERROR(EIO);
1890                 return (error);
1891         }
1892 
1893         return (verify_ok ? 0 : EIO);
1894 }
1895 
1896 /*
1897  * Find a value in the pool props object.
1898  */
1899 static void
1900 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1901 {
1902         (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1903             zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1904 }
1905 
1906 /*
1907  * Find a value in the pool directory object.
1908  */
1909 static int
1910 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1911 {
1912         return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1913             name, sizeof (uint64_t), 1, val));
1914 }
1915 
1916 static int
1917 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1918 {
1919         vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1920         return (err);
1921 }
1922 
1923 /*
1924  * Fix up config after a partly-completed split.  This is done with the
1925  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1926  * pool have that entry in their config, but only the splitting one contains
1927  * a list of all the guids of the vdevs that are being split off.
1928  *
1929  * This function determines what to do with that list: either rejoin
1930  * all the disks to the pool, or complete the splitting process.  To attempt
1931  * the rejoin, each disk that is offlined is marked online again, and
1932  * we do a reopen() call.  If the vdev label for every disk that was
1933  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1934  * then we call vdev_split() on each disk, and complete the split.
1935  *
1936  * Otherwise we leave the config alone, with all the vdevs in place in
1937  * the original pool.
1938  */
1939 static void
1940 spa_try_repair(spa_t *spa, nvlist_t *config)
1941 {
1942         uint_t extracted;
1943         uint64_t *glist;
1944         uint_t i, gcount;
1945         nvlist_t *nvl;
1946         vdev_t **vd;
1947         boolean_t attempt_reopen;
1948 
1949         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1950                 return;
1951 
1952         /* check that the config is complete */
1953         if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1954             &glist, &gcount) != 0)
1955                 return;
1956 
1957         vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1958 
1959         /* attempt to online all the vdevs & validate */
1960         attempt_reopen = B_TRUE;
1961         for (i = 0; i < gcount; i++) {
1962                 if (glist[i] == 0)      /* vdev is hole */
1963                         continue;
1964 
1965                 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1966                 if (vd[i] == NULL) {
1967                         /*
1968                          * Don't bother attempting to reopen the disks;
1969                          * just do the split.
1970                          */
1971                         attempt_reopen = B_FALSE;
1972                 } else {
1973                         /* attempt to re-online it */
1974                         vd[i]->vdev_offline = B_FALSE;
1975                 }
1976         }
1977 
1978         if (attempt_reopen) {
1979                 vdev_reopen(spa->spa_root_vdev);
1980 
1981                 /* check each device to see what state it's in */
1982                 for (extracted = 0, i = 0; i < gcount; i++) {
1983                         if (vd[i] != NULL &&
1984                             vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1985                                 break;
1986                         ++extracted;
1987                 }
1988         }
1989 
1990         /*
1991          * If every disk has been moved to the new pool, or if we never
1992          * even attempted to look at them, then we split them off for
1993          * good.
1994          */
1995         if (!attempt_reopen || gcount == extracted) {
1996                 for (i = 0; i < gcount; i++)
1997                         if (vd[i] != NULL)
1998                                 vdev_split(vd[i]);
1999                 vdev_reopen(spa->spa_root_vdev);
2000         }
2001 
2002         kmem_free(vd, gcount * sizeof (vdev_t *));
2003 }
2004 
2005 static int
2006 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2007     boolean_t mosconfig)
2008 {
2009         nvlist_t *config = spa->spa_config;
2010         char *ereport = FM_EREPORT_ZFS_POOL;
2011         char *comment;
2012         int error;
2013         uint64_t pool_guid;
2014         nvlist_t *nvl;
2015 
2016         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2017                 return (SET_ERROR(EINVAL));
2018 
2019         ASSERT(spa->spa_comment == NULL);
2020         if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2021                 spa->spa_comment = spa_strdup(comment);
2022 
2023         /*
2024          * Versioning wasn't explicitly added to the label until later, so if
2025          * it's not present treat it as the initial version.
2026          */
2027         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2028             &spa->spa_ubsync.ub_version) != 0)
2029                 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2030 
2031         (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2032             &spa->spa_config_txg);
2033 
2034         if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2035             spa_guid_exists(pool_guid, 0)) {
2036                 error = SET_ERROR(EEXIST);
2037         } else {
2038                 spa->spa_config_guid = pool_guid;
2039 
2040                 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2041                     &nvl) == 0) {
2042                         VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2043                             KM_SLEEP) == 0);
2044                 }
2045 
2046                 nvlist_free(spa->spa_load_info);
2047                 spa->spa_load_info = fnvlist_alloc();
2048 
2049                 gethrestime(&spa->spa_loaded_ts);
2050                 error = spa_load_impl(spa, pool_guid, config, state, type,
2051                     mosconfig, &ereport);
2052         }
2053 
2054         spa->spa_minref = refcount_count(&spa->spa_refcount);
2055         if (error) {
2056                 if (error != EEXIST) {
2057                         spa->spa_loaded_ts.tv_sec = 0;
2058                         spa->spa_loaded_ts.tv_nsec = 0;
2059                 }
2060                 if (error != EBADF) {
2061                         zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2062                 }
2063         }
2064         spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2065         spa->spa_ena = 0;
2066 
2067         return (error);
2068 }
2069 
2070 /*
2071  * Load an existing storage pool, using the pool's builtin spa_config as a
2072  * source of configuration information.
2073  */
2074 static int
2075 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2076     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2077     char **ereport)
2078 {
2079         int error = 0;
2080         nvlist_t *nvroot = NULL;
2081         nvlist_t *label;
2082         vdev_t *rvd;
2083         uberblock_t *ub = &spa->spa_uberblock;
2084         uint64_t children, config_cache_txg = spa->spa_config_txg;
2085         int orig_mode = spa->spa_mode;
2086         int parse;
2087         uint64_t obj;
2088         boolean_t missing_feat_write = B_FALSE;
2089 
2090         /*
2091          * If this is an untrusted config, access the pool in read-only mode.
2092          * This prevents things like resilvering recently removed devices.
2093          */
2094         if (!mosconfig)
2095                 spa->spa_mode = FREAD;
2096 
2097         ASSERT(MUTEX_HELD(&spa_namespace_lock));
2098 
2099         spa->spa_load_state = state;
2100 
2101         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2102                 return (SET_ERROR(EINVAL));
2103 
2104         parse = (type == SPA_IMPORT_EXISTING ?
2105             VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2106 
2107         /*
2108          * Create "The Godfather" zio to hold all async IOs
2109          */
2110         spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2111             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2112 
2113         /*
2114          * Parse the configuration into a vdev tree.  We explicitly set the
2115          * value that will be returned by spa_version() since parsing the
2116          * configuration requires knowing the version number.
2117          */
2118         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2119         error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2120         spa_config_exit(spa, SCL_ALL, FTAG);
2121 
2122         if (error != 0)
2123                 return (error);
2124 
2125         ASSERT(spa->spa_root_vdev == rvd);
2126 
2127         if (type != SPA_IMPORT_ASSEMBLE) {
2128                 ASSERT(spa_guid(spa) == pool_guid);
2129         }
2130 
2131         /*
2132          * Try to open all vdevs, loading each label in the process.
2133          */
2134         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2135         error = vdev_open(rvd);
2136         spa_config_exit(spa, SCL_ALL, FTAG);
2137         if (error != 0)
2138                 return (error);
2139 
2140         /*
2141          * We need to validate the vdev labels against the configuration that
2142          * we have in hand, which is dependent on the setting of mosconfig. If
2143          * mosconfig is true then we're validating the vdev labels based on
2144          * that config.  Otherwise, we're validating against the cached config
2145          * (zpool.cache) that was read when we loaded the zfs module, and then
2146          * later we will recursively call spa_load() and validate against
2147          * the vdev config.
2148          *
2149          * If we're assembling a new pool that's been split off from an
2150          * existing pool, the labels haven't yet been updated so we skip
2151          * validation for now.
2152          */
2153         if (type != SPA_IMPORT_ASSEMBLE) {
2154                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2155                 error = vdev_validate(rvd, mosconfig);
2156                 spa_config_exit(spa, SCL_ALL, FTAG);
2157 
2158                 if (error != 0)
2159                         return (error);
2160 
2161                 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2162                         return (SET_ERROR(ENXIO));
2163         }
2164 
2165         /*
2166          * Find the best uberblock.
2167          */
2168         vdev_uberblock_load(rvd, ub, &label);
2169 
2170         /*
2171          * If we weren't able to find a single valid uberblock, return failure.
2172          */
2173         if (ub->ub_txg == 0) {
2174                 nvlist_free(label);
2175                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2176         }
2177 
2178         /*
2179          * If the pool has an unsupported version we can't open it.
2180          */
2181         if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2182                 nvlist_free(label);
2183                 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2184         }
2185 
2186         if (ub->ub_version >= SPA_VERSION_FEATURES) {
2187                 nvlist_t *features;
2188 
2189                 /*
2190                  * If we weren't able to find what's necessary for reading the
2191                  * MOS in the label, return failure.
2192                  */
2193                 if (label == NULL || nvlist_lookup_nvlist(label,
2194                     ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2195                         nvlist_free(label);
2196                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2197                             ENXIO));
2198                 }
2199 
2200                 /*
2201                  * Update our in-core representation with the definitive values
2202                  * from the label.
2203                  */
2204                 nvlist_free(spa->spa_label_features);
2205                 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2206         }
2207 
2208         nvlist_free(label);
2209 
2210         /*
2211          * Look through entries in the label nvlist's features_for_read. If
2212          * there is a feature listed there which we don't understand then we
2213          * cannot open a pool.
2214          */
2215         if (ub->ub_version >= SPA_VERSION_FEATURES) {
2216                 nvlist_t *unsup_feat;
2217 
2218                 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2219                     0);
2220 
2221                 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2222                     NULL); nvp != NULL;
2223                     nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2224                         if (!zfeature_is_supported(nvpair_name(nvp))) {
2225                                 VERIFY(nvlist_add_string(unsup_feat,
2226                                     nvpair_name(nvp), "") == 0);
2227                         }
2228                 }
2229 
2230                 if (!nvlist_empty(unsup_feat)) {
2231                         VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2232                             ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2233                         nvlist_free(unsup_feat);
2234                         return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2235                             ENOTSUP));
2236                 }
2237 
2238                 nvlist_free(unsup_feat);
2239         }
2240 
2241         /*
2242          * If the vdev guid sum doesn't match the uberblock, we have an
2243          * incomplete configuration.  We first check to see if the pool
2244          * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2245          * If it is, defer the vdev_guid_sum check till later so we
2246          * can handle missing vdevs.
2247          */
2248         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2249             &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2250             rvd->vdev_guid_sum != ub->ub_guid_sum)
2251                 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2252 
2253         if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2254                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2255                 spa_try_repair(spa, config);
2256                 spa_config_exit(spa, SCL_ALL, FTAG);
2257                 nvlist_free(spa->spa_config_splitting);
2258                 spa->spa_config_splitting = NULL;
2259         }
2260 
2261         /*
2262          * Initialize internal SPA structures.
2263          */
2264         spa->spa_state = POOL_STATE_ACTIVE;
2265         spa->spa_ubsync = spa->spa_uberblock;
2266         spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2267             TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2268         spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2269             spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2270         spa->spa_claim_max_txg = spa->spa_first_txg;
2271         spa->spa_prev_software_version = ub->ub_software_version;
2272 
2273         error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2274         if (error)
2275                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2276         spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2277 
2278         if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2279                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2280 
2281         if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2282                 boolean_t missing_feat_read = B_FALSE;
2283                 nvlist_t *unsup_feat, *enabled_feat;
2284 
2285                 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2286                     &spa->spa_feat_for_read_obj) != 0) {
2287                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2288                 }
2289 
2290                 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2291                     &spa->spa_feat_for_write_obj) != 0) {
2292                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2293                 }
2294 
2295                 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2296                     &spa->spa_feat_desc_obj) != 0) {
2297                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2298                 }
2299 
2300                 enabled_feat = fnvlist_alloc();
2301                 unsup_feat = fnvlist_alloc();
2302 
2303                 if (!feature_is_supported(spa->spa_meta_objset,
2304                     spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2305                     unsup_feat, enabled_feat))
2306                         missing_feat_read = B_TRUE;
2307 
2308                 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2309                         if (!feature_is_supported(spa->spa_meta_objset,
2310                             spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2311                             unsup_feat, enabled_feat)) {
2312                                 missing_feat_write = B_TRUE;
2313                         }
2314                 }
2315 
2316                 fnvlist_add_nvlist(spa->spa_load_info,
2317                     ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2318 
2319                 if (!nvlist_empty(unsup_feat)) {
2320                         fnvlist_add_nvlist(spa->spa_load_info,
2321                             ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2322                 }
2323 
2324                 fnvlist_free(enabled_feat);
2325                 fnvlist_free(unsup_feat);
2326 
2327                 if (!missing_feat_read) {
2328                         fnvlist_add_boolean(spa->spa_load_info,
2329                             ZPOOL_CONFIG_CAN_RDONLY);
2330                 }
2331 
2332                 /*
2333                  * If the state is SPA_LOAD_TRYIMPORT, our objective is
2334                  * twofold: to determine whether the pool is available for
2335                  * import in read-write mode and (if it is not) whether the
2336                  * pool is available for import in read-only mode. If the pool
2337                  * is available for import in read-write mode, it is displayed
2338                  * as available in userland; if it is not available for import
2339                  * in read-only mode, it is displayed as unavailable in
2340                  * userland. If the pool is available for import in read-only
2341                  * mode but not read-write mode, it is displayed as unavailable
2342                  * in userland with a special note that the pool is actually
2343                  * available for open in read-only mode.
2344                  *
2345                  * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2346                  * missing a feature for write, we must first determine whether
2347                  * the pool can be opened read-only before returning to
2348                  * userland in order to know whether to display the
2349                  * abovementioned note.
2350                  */
2351                 if (missing_feat_read || (missing_feat_write &&
2352                     spa_writeable(spa))) {
2353                         return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2354                             ENOTSUP));
2355                 }
2356         }
2357 
2358         spa->spa_is_initializing = B_TRUE;
2359         error = dsl_pool_open(spa->spa_dsl_pool);
2360         spa->spa_is_initializing = B_FALSE;
2361         if (error != 0)
2362                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2363 
2364         if (!mosconfig) {
2365                 uint64_t hostid;
2366                 nvlist_t *policy = NULL, *nvconfig;
2367 
2368                 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2369                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2370 
2371                 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2372                     ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2373                         char *hostname;
2374                         unsigned long myhostid = 0;
2375 
2376                         VERIFY(nvlist_lookup_string(nvconfig,
2377                             ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2378 
2379 #ifdef  _KERNEL
2380                         myhostid = zone_get_hostid(NULL);
2381 #else   /* _KERNEL */
2382                         /*
2383                          * We're emulating the system's hostid in userland, so
2384                          * we can't use zone_get_hostid().
2385                          */
2386                         (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2387 #endif  /* _KERNEL */
2388                         if (hostid != 0 && myhostid != 0 &&
2389                             hostid != myhostid) {
2390                                 nvlist_free(nvconfig);
2391                                 cmn_err(CE_WARN, "pool '%s' could not be "
2392                                     "loaded as it was last accessed by "
2393                                     "another system (host: %s hostid: 0x%lx). "
2394                                     "See: http://illumos.org/msg/ZFS-8000-EY",
2395                                     spa_name(spa), hostname,
2396                                     (unsigned long)hostid);
2397                                 return (SET_ERROR(EBADF));
2398                         }
2399                 }
2400                 if (nvlist_lookup_nvlist(spa->spa_config,
2401                     ZPOOL_REWIND_POLICY, &policy) == 0)
2402                         VERIFY(nvlist_add_nvlist(nvconfig,
2403                             ZPOOL_REWIND_POLICY, policy) == 0);
2404 
2405                 spa_config_set(spa, nvconfig);
2406                 spa_unload(spa);
2407                 spa_deactivate(spa);
2408                 spa_activate(spa, orig_mode);
2409 
2410                 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2411         }
2412 
2413         if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2414                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2415         error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2416         if (error != 0)
2417                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2418 
2419         /*
2420          * Load the bit that tells us to use the new accounting function
2421          * (raid-z deflation).  If we have an older pool, this will not
2422          * be present.
2423          */
2424         error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2425         if (error != 0 && error != ENOENT)
2426                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2427 
2428         error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2429             &spa->spa_creation_version);
2430         if (error != 0 && error != ENOENT)
2431                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2432 
2433         /*
2434          * Load the persistent error log.  If we have an older pool, this will
2435          * not be present.
2436          */
2437         error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2438         if (error != 0 && error != ENOENT)
2439                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2440 
2441         error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2442             &spa->spa_errlog_scrub);
2443         if (error != 0 && error != ENOENT)
2444                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2445 
2446         /*
2447          * Load the history object.  If we have an older pool, this
2448          * will not be present.
2449          */
2450         error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2451         if (error != 0 && error != ENOENT)
2452                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2453 
2454         /*
2455          * If we're assembling the pool from the split-off vdevs of
2456          * an existing pool, we don't want to attach the spares & cache
2457          * devices.
2458          */
2459 
2460         /*
2461          * Load any hot spares for this pool.
2462          */
2463         error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2464         if (error != 0 && error != ENOENT)
2465                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2466         if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2467                 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2468                 if (load_nvlist(spa, spa->spa_spares.sav_object,
2469                     &spa->spa_spares.sav_config) != 0)
2470                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2471 
2472                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2473                 spa_load_spares(spa);
2474                 spa_config_exit(spa, SCL_ALL, FTAG);
2475         } else if (error == 0) {
2476                 spa->spa_spares.sav_sync = B_TRUE;
2477         }
2478 
2479         /*
2480          * Load any level 2 ARC devices for this pool.
2481          */
2482         error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2483             &spa->spa_l2cache.sav_object);
2484         if (error != 0 && error != ENOENT)
2485                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2486         if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2487                 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2488                 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2489                     &spa->spa_l2cache.sav_config) != 0)
2490                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2491 
2492                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2493                 spa_load_l2cache(spa);
2494                 spa_config_exit(spa, SCL_ALL, FTAG);
2495         } else if (error == 0) {
2496                 spa->spa_l2cache.sav_sync = B_TRUE;
2497         }
2498 
2499         spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2500 
2501         error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2502         if (error && error != ENOENT)
2503                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2504 
2505         if (error == 0) {
2506                 uint64_t autoreplace;
2507 
2508                 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2509                 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2510                 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2511                 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2512                 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2513                 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2514                     &spa->spa_dedup_ditto);
2515 
2516                 spa->spa_autoreplace = (autoreplace != 0);
2517         }
2518 
2519         /*
2520          * If the 'autoreplace' property is set, then post a resource notifying
2521          * the ZFS DE that it should not issue any faults for unopenable
2522          * devices.  We also iterate over the vdevs, and post a sysevent for any
2523          * unopenable vdevs so that the normal autoreplace handler can take
2524          * over.
2525          */
2526         if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2527                 spa_check_removed(spa->spa_root_vdev);
2528                 /*
2529                  * For the import case, this is done in spa_import(), because
2530                  * at this point we're using the spare definitions from
2531                  * the MOS config, not necessarily from the userland config.
2532                  */
2533                 if (state != SPA_LOAD_IMPORT) {
2534                         spa_aux_check_removed(&spa->spa_spares);
2535                         spa_aux_check_removed(&spa->spa_l2cache);
2536                 }
2537         }
2538 
2539         /*
2540          * Load the vdev state for all toplevel vdevs.
2541          */
2542         vdev_load(rvd);
2543 
2544         /*
2545          * Propagate the leaf DTLs we just loaded all the way up the tree.
2546          */
2547         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2548         vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2549         spa_config_exit(spa, SCL_ALL, FTAG);
2550 
2551         /*
2552          * Load the DDTs (dedup tables).
2553          */
2554         error = ddt_load(spa);
2555         if (error != 0)
2556                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2557 
2558         spa_update_dspace(spa);
2559 
2560         /*
2561          * Validate the config, using the MOS config to fill in any
2562          * information which might be missing.  If we fail to validate
2563          * the config then declare the pool unfit for use. If we're
2564          * assembling a pool from a split, the log is not transferred
2565          * over.
2566          */
2567         if (type != SPA_IMPORT_ASSEMBLE) {
2568                 nvlist_t *nvconfig;
2569 
2570                 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2571                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2572 
2573                 if (!spa_config_valid(spa, nvconfig)) {
2574                         nvlist_free(nvconfig);
2575                         return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2576                             ENXIO));
2577                 }
2578                 nvlist_free(nvconfig);
2579 
2580                 /*
2581                  * Now that we've validated the config, check the state of the
2582                  * root vdev.  If it can't be opened, it indicates one or
2583                  * more toplevel vdevs are faulted.
2584                  */
2585                 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2586                         return (SET_ERROR(ENXIO));
2587 
2588                 if (spa_check_logs(spa)) {
2589                         *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2590                         return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2591                 }
2592         }
2593 
2594         if (missing_feat_write) {
2595                 ASSERT(state == SPA_LOAD_TRYIMPORT);
2596 
2597                 /*
2598                  * At this point, we know that we can open the pool in
2599                  * read-only mode but not read-write mode. We now have enough
2600                  * information and can return to userland.
2601                  */
2602                 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2603         }
2604 
2605         /*
2606          * We've successfully opened the pool, verify that we're ready
2607          * to start pushing transactions.
2608          */
2609         if (state != SPA_LOAD_TRYIMPORT) {
2610                 if (error = spa_load_verify(spa))
2611                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2612                             error));
2613         }
2614 
2615         if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2616             spa->spa_load_max_txg == UINT64_MAX)) {
2617                 dmu_tx_t *tx;
2618                 int need_update = B_FALSE;
2619 
2620                 ASSERT(state != SPA_LOAD_TRYIMPORT);
2621 
2622                 /*
2623                  * Claim log blocks that haven't been committed yet.
2624                  * This must all happen in a single txg.
2625                  * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2626                  * invoked from zil_claim_log_block()'s i/o done callback.
2627                  * Price of rollback is that we abandon the log.
2628                  */
2629                 spa->spa_claiming = B_TRUE;
2630 
2631                 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2632                     spa_first_txg(spa));
2633                 (void) dmu_objset_find(spa_name(spa),
2634                     zil_claim, tx, DS_FIND_CHILDREN);
2635                 dmu_tx_commit(tx);
2636 
2637                 spa->spa_claiming = B_FALSE;
2638 
2639                 spa_set_log_state(spa, SPA_LOG_GOOD);
2640                 spa->spa_sync_on = B_TRUE;
2641                 txg_sync_start(spa->spa_dsl_pool);
2642 
2643                 /*
2644                  * Wait for all claims to sync.  We sync up to the highest
2645                  * claimed log block birth time so that claimed log blocks
2646                  * don't appear to be from the future.  spa_claim_max_txg
2647                  * will have been set for us by either zil_check_log_chain()
2648                  * (invoked from spa_check_logs()) or zil_claim() above.
2649                  */
2650                 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2651 
2652                 /*
2653                  * If the config cache is stale, or we have uninitialized
2654                  * metaslabs (see spa_vdev_add()), then update the config.
2655                  *
2656                  * If this is a verbatim import, trust the current
2657                  * in-core spa_config and update the disk labels.
2658                  */
2659                 if (config_cache_txg != spa->spa_config_txg ||
2660                     state == SPA_LOAD_IMPORT ||
2661                     state == SPA_LOAD_RECOVER ||
2662                     (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2663                         need_update = B_TRUE;
2664 
2665                 for (int c = 0; c < rvd->vdev_children; c++)
2666                         if (rvd->vdev_child[c]->vdev_ms_array == 0)
2667                                 need_update = B_TRUE;
2668 
2669                 /*
2670                  * Update the config cache asychronously in case we're the
2671                  * root pool, in which case the config cache isn't writable yet.
2672                  */
2673                 if (need_update)
2674                         spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2675 
2676                 /*
2677                  * Check all DTLs to see if anything needs resilvering.
2678                  */
2679                 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2680                     vdev_resilver_needed(rvd, NULL, NULL))
2681                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2682 
2683                 /*
2684                  * Log the fact that we booted up (so that we can detect if
2685                  * we rebooted in the middle of an operation).
2686                  */
2687                 spa_history_log_version(spa, "open");
2688 
2689                 /*
2690                  * Delete any inconsistent datasets.
2691                  */
2692                 (void) dmu_objset_find(spa_name(spa),
2693                     dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2694 
2695                 /*
2696                  * Clean up any stale temporary dataset userrefs.
2697                  */
2698                 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2699         }
2700 
2701         return (0);
2702 }
2703 
2704 static int
2705 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2706 {
2707         int mode = spa->spa_mode;
2708 
2709         spa_unload(spa);
2710         spa_deactivate(spa);
2711 
2712         spa->spa_load_max_txg--;
2713 
2714         spa_activate(spa, mode);
2715         spa_async_suspend(spa);
2716 
2717         return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2718 }
2719 
2720 /*
2721  * If spa_load() fails this function will try loading prior txg's. If
2722  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2723  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2724  * function will not rewind the pool and will return the same error as
2725  * spa_load().
2726  */
2727 static int
2728 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2729     uint64_t max_request, int rewind_flags)
2730 {
2731         nvlist_t *loadinfo = NULL;
2732         nvlist_t *config = NULL;
2733         int load_error, rewind_error;
2734         uint64_t safe_rewind_txg;
2735         uint64_t min_txg;
2736 
2737         if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2738                 spa->spa_load_max_txg = spa->spa_load_txg;
2739                 spa_set_log_state(spa, SPA_LOG_CLEAR);
2740         } else {
2741                 spa->spa_load_max_txg = max_request;
2742         }
2743 
2744         load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2745             mosconfig);
2746         if (load_error == 0)
2747                 return (0);
2748 
2749         if (spa->spa_root_vdev != NULL)
2750                 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2751 
2752         spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2753         spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2754 
2755         if (rewind_flags & ZPOOL_NEVER_REWIND) {
2756                 nvlist_free(config);
2757                 return (load_error);
2758         }
2759 
2760         if (state == SPA_LOAD_RECOVER) {
2761                 /* Price of rolling back is discarding txgs, including log */
2762                 spa_set_log_state(spa, SPA_LOG_CLEAR);
2763         } else {
2764                 /*
2765                  * If we aren't rolling back save the load info from our first
2766                  * import attempt so that we can restore it after attempting
2767                  * to rewind.
2768                  */
2769                 loadinfo = spa->spa_load_info;
2770                 spa->spa_load_info = fnvlist_alloc();
2771         }
2772 
2773         spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2774         safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2775         min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2776             TXG_INITIAL : safe_rewind_txg;
2777 
2778         /*
2779          * Continue as long as we're finding errors, we're still within
2780          * the acceptable rewind range, and we're still finding uberblocks
2781          */
2782         while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2783             spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2784                 if (spa->spa_load_max_txg < safe_rewind_txg)
2785                         spa->spa_extreme_rewind = B_TRUE;
2786                 rewind_error = spa_load_retry(spa, state, mosconfig);
2787         }
2788 
2789         spa->spa_extreme_rewind = B_FALSE;
2790         spa->spa_load_max_txg = UINT64_MAX;
2791 
2792         if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2793                 spa_config_set(spa, config);
2794 
2795         if (state == SPA_LOAD_RECOVER) {
2796                 ASSERT3P(loadinfo, ==, NULL);
2797                 return (rewind_error);
2798         } else {
2799                 /* Store the rewind info as part of the initial load info */
2800                 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2801                     spa->spa_load_info);
2802 
2803                 /* Restore the initial load info */
2804                 fnvlist_free(spa->spa_load_info);
2805                 spa->spa_load_info = loadinfo;
2806 
2807                 return (load_error);
2808         }
2809 }
2810 
2811 /*
2812  * Pool Open/Import
2813  *
2814  * The import case is identical to an open except that the configuration is sent
2815  * down from userland, instead of grabbed from the configuration cache.  For the
2816  * case of an open, the pool configuration will exist in the
2817  * POOL_STATE_UNINITIALIZED state.
2818  *
2819  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2820  * the same time open the pool, without having to keep around the spa_t in some
2821  * ambiguous state.
2822  */
2823 static int
2824 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2825     nvlist_t **config)
2826 {
2827         spa_t *spa;
2828         spa_load_state_t state = SPA_LOAD_OPEN;
2829         int error;
2830         int locked = B_FALSE;
2831 
2832         *spapp = NULL;
2833 
2834         /*
2835          * As disgusting as this is, we need to support recursive calls to this
2836          * function because dsl_dir_open() is called during spa_load(), and ends
2837          * up calling spa_open() again.  The real fix is to figure out how to
2838          * avoid dsl_dir_open() calling this in the first place.
2839          */
2840         if (mutex_owner(&spa_namespace_lock) != curthread) {
2841                 mutex_enter(&spa_namespace_lock);
2842                 locked = B_TRUE;
2843         }
2844 
2845         if ((spa = spa_lookup(pool)) == NULL) {
2846                 if (locked)
2847                         mutex_exit(&spa_namespace_lock);
2848                 return (SET_ERROR(ENOENT));
2849         }
2850 
2851         if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2852                 zpool_rewind_policy_t policy;
2853 
2854                 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2855                     &policy);
2856                 if (policy.zrp_request & ZPOOL_DO_REWIND)
2857                         state = SPA_LOAD_RECOVER;
2858 
2859                 spa_activate(spa, spa_mode_global);
2860 
2861                 if (state != SPA_LOAD_RECOVER)
2862                         spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2863 
2864                 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2865                     policy.zrp_request);
2866 
2867                 if (error == EBADF) {
2868                         /*
2869                          * If vdev_validate() returns failure (indicated by
2870                          * EBADF), it indicates that one of the vdevs indicates
2871                          * that the pool has been exported or destroyed.  If
2872                          * this is the case, the config cache is out of sync and
2873                          * we should remove the pool from the namespace.
2874                          */
2875                         spa_unload(spa);
2876                         spa_deactivate(spa);
2877                         spa_config_sync(spa, B_TRUE, B_TRUE);
2878                         spa_remove(spa);
2879                         if (locked)
2880                                 mutex_exit(&spa_namespace_lock);
2881                         return (SET_ERROR(ENOENT));
2882                 }
2883 
2884                 if (error) {
2885                         /*
2886                          * We can't open the pool, but we still have useful
2887                          * information: the state of each vdev after the
2888                          * attempted vdev_open().  Return this to the user.
2889                          */
2890                         if (config != NULL && spa->spa_config) {
2891                                 VERIFY(nvlist_dup(spa->spa_config, config,
2892                                     KM_SLEEP) == 0);
2893                                 VERIFY(nvlist_add_nvlist(*config,
2894                                     ZPOOL_CONFIG_LOAD_INFO,
2895                                     spa->spa_load_info) == 0);
2896                         }
2897                         spa_unload(spa);
2898                         spa_deactivate(spa);
2899                         spa->spa_last_open_failed = error;
2900                         if (locked)
2901                                 mutex_exit(&spa_namespace_lock);
2902                         *spapp = NULL;
2903                         return (error);
2904                 }
2905         }
2906 
2907         spa_open_ref(spa, tag);
2908 
2909         if (config != NULL)
2910                 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2911 
2912         /*
2913          * If we've recovered the pool, pass back any information we
2914          * gathered while doing the load.
2915          */
2916         if (state == SPA_LOAD_RECOVER) {
2917                 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2918                     spa->spa_load_info) == 0);
2919         }
2920 
2921         if (locked) {
2922                 spa->spa_last_open_failed = 0;
2923                 spa->spa_last_ubsync_txg = 0;
2924                 spa->spa_load_txg = 0;
2925                 mutex_exit(&spa_namespace_lock);
2926         }
2927 
2928         *spapp = spa;
2929 
2930         return (0);
2931 }
2932 
2933 int
2934 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2935     nvlist_t **config)
2936 {
2937         return (spa_open_common(name, spapp, tag, policy, config));
2938 }
2939 
2940 int
2941 spa_open(const char *name, spa_t **spapp, void *tag)
2942 {
2943         return (spa_open_common(name, spapp, tag, NULL, NULL));
2944 }
2945 
2946 /*
2947  * Lookup the given spa_t, incrementing the inject count in the process,
2948  * preventing it from being exported or destroyed.
2949  */
2950 spa_t *
2951 spa_inject_addref(char *name)
2952 {
2953         spa_t *spa;
2954 
2955         mutex_enter(&spa_namespace_lock);
2956         if ((spa = spa_lookup(name)) == NULL) {
2957                 mutex_exit(&spa_namespace_lock);
2958                 return (NULL);
2959         }
2960         spa->spa_inject_ref++;
2961         mutex_exit(&spa_namespace_lock);
2962 
2963         return (spa);
2964 }
2965 
2966 void
2967 spa_inject_delref(spa_t *spa)
2968 {
2969         mutex_enter(&spa_namespace_lock);
2970         spa->spa_inject_ref--;
2971         mutex_exit(&spa_namespace_lock);
2972 }
2973 
2974 /*
2975  * Add spares device information to the nvlist.
2976  */
2977 static void
2978 spa_add_spares(spa_t *spa, nvlist_t *config)
2979 {
2980         nvlist_t **spares;
2981         uint_t i, nspares;
2982         nvlist_t *nvroot;
2983         uint64_t guid;
2984         vdev_stat_t *vs;
2985         uint_t vsc;
2986         uint64_t pool;
2987 
2988         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2989 
2990         if (spa->spa_spares.sav_count == 0)
2991                 return;
2992 
2993         VERIFY(nvlist_lookup_nvlist(config,
2994             ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2995         VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2996             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2997         if (nspares != 0) {
2998                 VERIFY(nvlist_add_nvlist_array(nvroot,
2999                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3000                 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3001                     ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3002 
3003                 /*
3004                  * Go through and find any spares which have since been
3005                  * repurposed as an active spare.  If this is the case, update
3006                  * their status appropriately.
3007                  */
3008                 for (i = 0; i < nspares; i++) {
3009                         VERIFY(nvlist_lookup_uint64(spares[i],
3010                             ZPOOL_CONFIG_GUID, &guid) == 0);
3011                         if (spa_spare_exists(guid, &pool, NULL) &&
3012                             pool != 0ULL) {
3013                                 VERIFY(nvlist_lookup_uint64_array(
3014                                     spares[i], ZPOOL_CONFIG_VDEV_STATS,
3015                                     (uint64_t **)&vs, &vsc) == 0);
3016                                 vs->vs_state = VDEV_STATE_CANT_OPEN;
3017                                 vs->vs_aux = VDEV_AUX_SPARED;
3018                         }
3019                 }
3020         }
3021 }
3022 
3023 /*
3024  * Add l2cache device information to the nvlist, including vdev stats.
3025  */
3026 static void
3027 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3028 {
3029         nvlist_t **l2cache;
3030         uint_t i, j, nl2cache;
3031         nvlist_t *nvroot;
3032         uint64_t guid;
3033         vdev_t *vd;
3034         vdev_stat_t *vs;
3035         uint_t vsc;
3036 
3037         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3038 
3039         if (spa->spa_l2cache.sav_count == 0)
3040                 return;
3041 
3042         VERIFY(nvlist_lookup_nvlist(config,
3043             ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3044         VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3045             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3046         if (nl2cache != 0) {
3047                 VERIFY(nvlist_add_nvlist_array(nvroot,
3048                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3049                 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3050                     ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3051 
3052                 /*
3053                  * Update level 2 cache device stats.
3054                  */
3055 
3056                 for (i = 0; i < nl2cache; i++) {
3057                         VERIFY(nvlist_lookup_uint64(l2cache[i],
3058                             ZPOOL_CONFIG_GUID, &guid) == 0);
3059 
3060                         vd = NULL;
3061                         for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3062                                 if (guid ==
3063                                     spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3064                                         vd = spa->spa_l2cache.sav_vdevs[j];
3065                                         break;
3066                                 }
3067                         }
3068                         ASSERT(vd != NULL);
3069 
3070                         VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3071                             ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3072                             == 0);
3073                         vdev_get_stats(vd, vs);
3074                 }
3075         }
3076 }
3077 
3078 static void
3079 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3080 {
3081         nvlist_t *features;
3082         zap_cursor_t zc;
3083         zap_attribute_t za;
3084 
3085         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3086         VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3087 
3088         if (spa->spa_feat_for_read_obj != 0) {
3089                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3090                     spa->spa_feat_for_read_obj);
3091                     zap_cursor_retrieve(&zc, &za) == 0;
3092                     zap_cursor_advance(&zc)) {
3093                         ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3094                             za.za_num_integers == 1);
3095                         VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3096                             za.za_first_integer));
3097                 }
3098                 zap_cursor_fini(&zc);
3099         }
3100 
3101         if (spa->spa_feat_for_write_obj != 0) {
3102                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3103                     spa->spa_feat_for_write_obj);
3104                     zap_cursor_retrieve(&zc, &za) == 0;
3105                     zap_cursor_advance(&zc)) {
3106                         ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3107                             za.za_num_integers == 1);
3108                         VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3109                             za.za_first_integer));
3110                 }
3111                 zap_cursor_fini(&zc);
3112         }
3113 
3114         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3115             features) == 0);
3116         nvlist_free(features);
3117 }
3118 
3119 int
3120 spa_get_stats(const char *name, nvlist_t **config,
3121     char *altroot, size_t buflen)
3122 {
3123         int error;
3124         spa_t *spa;
3125 
3126         *config = NULL;
3127         error = spa_open_common(name, &spa, FTAG, NULL, config);
3128 
3129         if (spa != NULL) {
3130                 /*
3131                  * This still leaves a window of inconsistency where the spares
3132                  * or l2cache devices could change and the config would be
3133                  * self-inconsistent.
3134                  */
3135                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3136 
3137                 if (*config != NULL) {
3138                         uint64_t loadtimes[2];
3139 
3140                         loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3141                         loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3142                         VERIFY(nvlist_add_uint64_array(*config,
3143                             ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3144 
3145                         VERIFY(nvlist_add_uint64(*config,
3146                             ZPOOL_CONFIG_ERRCOUNT,
3147                             spa_get_errlog_size(spa)) == 0);
3148 
3149                         if (spa_suspended(spa))
3150                                 VERIFY(nvlist_add_uint64(*config,
3151                                     ZPOOL_CONFIG_SUSPENDED,
3152                                     spa->spa_failmode) == 0);
3153 
3154                         spa_add_spares(spa, *config);
3155                         spa_add_l2cache(spa, *config);
3156                         spa_add_feature_stats(spa, *config);
3157                 }
3158         }
3159 
3160         /*
3161          * We want to get the alternate root even for faulted pools, so we cheat
3162          * and call spa_lookup() directly.
3163          */
3164         if (altroot) {
3165                 if (spa == NULL) {
3166                         mutex_enter(&spa_namespace_lock);
3167                         spa = spa_lookup(name);
3168                         if (spa)
3169                                 spa_altroot(spa, altroot, buflen);
3170                         else
3171                                 altroot[0] = '\0';
3172                         spa = NULL;
3173                         mutex_exit(&spa_namespace_lock);
3174                 } else {
3175                         spa_altroot(spa, altroot, buflen);
3176                 }
3177         }
3178 
3179         if (spa != NULL) {
3180                 spa_config_exit(spa, SCL_CONFIG, FTAG);
3181                 spa_close(spa, FTAG);
3182         }
3183 
3184         return (error);
3185 }
3186 
3187 /*
3188  * Validate that the auxiliary device array is well formed.  We must have an
3189  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3190  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3191  * specified, as long as they are well-formed.
3192  */
3193 static int
3194 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3195     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3196     vdev_labeltype_t label)
3197 {
3198         nvlist_t **dev;
3199         uint_t i, ndev;
3200         vdev_t *vd;
3201         int error;
3202 
3203         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3204 
3205         /*
3206          * It's acceptable to have no devs specified.
3207          */
3208         if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3209                 return (0);
3210 
3211         if (ndev == 0)
3212                 return (SET_ERROR(EINVAL));
3213 
3214         /*
3215          * Make sure the pool is formatted with a version that supports this
3216          * device type.
3217          */
3218         if (spa_version(spa) < version)
3219                 return (SET_ERROR(ENOTSUP));
3220 
3221         /*
3222          * Set the pending device list so we correctly handle device in-use
3223          * checking.
3224          */
3225         sav->sav_pending = dev;
3226         sav->sav_npending = ndev;
3227 
3228         for (i = 0; i < ndev; i++) {
3229                 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3230                     mode)) != 0)
3231                         goto out;
3232 
3233                 if (!vd->vdev_ops->vdev_op_leaf) {
3234                         vdev_free(vd);
3235                         error = SET_ERROR(EINVAL);
3236                         goto out;
3237                 }
3238 
3239                 /*
3240                  * The L2ARC currently only supports disk devices in
3241                  * kernel context.  For user-level testing, we allow it.
3242                  */
3243 #ifdef _KERNEL
3244                 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3245                     strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3246                         error = SET_ERROR(ENOTBLK);
3247                         vdev_free(vd);
3248                         goto out;
3249                 }
3250 #endif
3251                 vd->vdev_top = vd;
3252 
3253                 if ((error = vdev_open(vd)) == 0 &&
3254                     (error = vdev_label_init(vd, crtxg, label)) == 0) {
3255                         VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3256                             vd->vdev_guid) == 0);
3257                 }
3258 
3259                 vdev_free(vd);
3260 
3261                 if (error &&
3262                     (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3263                         goto out;
3264                 else
3265                         error = 0;
3266         }
3267 
3268 out:
3269         sav->sav_pending = NULL;
3270         sav->sav_npending = 0;
3271         return (error);
3272 }
3273 
3274 static int
3275 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3276 {
3277         int error;
3278 
3279         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3280 
3281         if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3282             &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3283             VDEV_LABEL_SPARE)) != 0) {
3284                 return (error);
3285         }
3286 
3287         return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3288             &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3289             VDEV_LABEL_L2CACHE));
3290 }
3291 
3292 static void
3293 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3294     const char *config)
3295 {
3296         int i;
3297 
3298         if (sav->sav_config != NULL) {
3299                 nvlist_t **olddevs;
3300                 uint_t oldndevs;
3301                 nvlist_t **newdevs;
3302 
3303                 /*
3304                  * Generate new dev list by concatentating with the
3305                  * current dev list.
3306                  */
3307                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3308                     &olddevs, &oldndevs) == 0);
3309 
3310                 newdevs = kmem_alloc(sizeof (void *) *
3311                     (ndevs + oldndevs), KM_SLEEP);
3312                 for (i = 0; i < oldndevs; i++)
3313                         VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3314                             KM_SLEEP) == 0);
3315                 for (i = 0; i < ndevs; i++)
3316                         VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3317                             KM_SLEEP) == 0);
3318 
3319                 VERIFY(nvlist_remove(sav->sav_config, config,
3320                     DATA_TYPE_NVLIST_ARRAY) == 0);
3321 
3322                 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3323                     config, newdevs, ndevs + oldndevs) == 0);
3324                 for (i = 0; i < oldndevs + ndevs; i++)
3325                         nvlist_free(newdevs[i]);
3326                 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3327         } else {
3328                 /*
3329                  * Generate a new dev list.
3330                  */
3331                 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3332                     KM_SLEEP) == 0);
3333                 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3334                     devs, ndevs) == 0);
3335         }
3336 }
3337 
3338 /*
3339  * Stop and drop level 2 ARC devices
3340  */
3341 void
3342 spa_l2cache_drop(spa_t *spa)
3343 {
3344         vdev_t *vd;
3345         int i;
3346         spa_aux_vdev_t *sav = &spa->spa_l2cache;
3347 
3348         for (i = 0; i < sav->sav_count; i++) {
3349                 uint64_t pool;
3350 
3351                 vd = sav->sav_vdevs[i];
3352                 ASSERT(vd != NULL);
3353 
3354                 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3355                     pool != 0ULL && l2arc_vdev_present(vd))
3356                         l2arc_remove_vdev(vd);
3357         }
3358 }
3359 
3360 /*
3361  * Pool Creation
3362  */
3363 int
3364 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3365     nvlist_t *zplprops)
3366 {
3367         spa_t *spa;
3368         char *altroot = NULL;
3369         vdev_t *rvd;
3370         dsl_pool_t *dp;
3371         dmu_tx_t *tx;
3372         int error = 0;
3373         uint64_t txg = TXG_INITIAL;
3374         nvlist_t **spares, **l2cache;
3375         uint_t nspares, nl2cache;
3376         uint64_t version, obj;
3377         boolean_t has_features;
3378 
3379         /*
3380          * If this pool already exists, return failure.
3381          */
3382         mutex_enter(&spa_namespace_lock);
3383         if (spa_lookup(pool) != NULL) {
3384                 mutex_exit(&spa_namespace_lock);
3385                 return (SET_ERROR(EEXIST));
3386         }
3387 
3388         /*
3389          * Allocate a new spa_t structure.
3390          */
3391         (void) nvlist_lookup_string(props,
3392             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3393         spa = spa_add(pool, NULL, altroot);
3394         spa_activate(spa, spa_mode_global);
3395 
3396         if (props && (error = spa_prop_validate(spa, props))) {
3397                 spa_deactivate(spa);
3398                 spa_remove(spa);
3399                 mutex_exit(&spa_namespace_lock);
3400                 return (error);
3401         }
3402 
3403         has_features = B_FALSE;
3404         for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3405             elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3406                 if (zpool_prop_feature(nvpair_name(elem)))
3407                         has_features = B_TRUE;
3408         }
3409 
3410         if (has_features || nvlist_lookup_uint64(props,
3411             zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3412                 version = SPA_VERSION;
3413         }
3414         ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3415 
3416         spa->spa_first_txg = txg;
3417         spa->spa_uberblock.ub_txg = txg - 1;
3418         spa->spa_uberblock.ub_version = version;
3419         spa->spa_ubsync = spa->spa_uberblock;
3420 
3421         /*
3422          * Create "The Godfather" zio to hold all async IOs
3423          */
3424         spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3425             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3426 
3427         /*
3428          * Create the root vdev.
3429          */
3430         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3431 
3432         error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3433 
3434         ASSERT(error != 0 || rvd != NULL);
3435         ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3436 
3437         if (error == 0 && !zfs_allocatable_devs(nvroot))
3438                 error = SET_ERROR(EINVAL);
3439 
3440         if (error == 0 &&
3441             (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3442             (error = spa_validate_aux(spa, nvroot, txg,
3443             VDEV_ALLOC_ADD)) == 0) {
3444                 for (int c = 0; c < rvd->vdev_children; c++) {
3445                         vdev_metaslab_set_size(rvd->vdev_child[c]);
3446                         vdev_expand(rvd->vdev_child[c], txg);
3447                 }
3448         }
3449 
3450         spa_config_exit(spa, SCL_ALL, FTAG);
3451 
3452         if (error != 0) {
3453                 spa_unload(spa);
3454                 spa_deactivate(spa);
3455                 spa_remove(spa);
3456                 mutex_exit(&spa_namespace_lock);
3457                 return (error);
3458         }
3459 
3460         /*
3461          * Get the list of spares, if specified.
3462          */
3463         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3464             &spares, &nspares) == 0) {
3465                 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3466                     KM_SLEEP) == 0);
3467                 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3468                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3469                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3470                 spa_load_spares(spa);
3471                 spa_config_exit(spa, SCL_ALL, FTAG);
3472                 spa->spa_spares.sav_sync = B_TRUE;
3473         }
3474 
3475         /*
3476          * Get the list of level 2 cache devices, if specified.
3477          */
3478         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3479             &l2cache, &nl2cache) == 0) {
3480                 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3481                     NV_UNIQUE_NAME, KM_SLEEP) == 0);
3482                 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3483                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3484                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3485                 spa_load_l2cache(spa);
3486                 spa_config_exit(spa, SCL_ALL, FTAG);
3487                 spa->spa_l2cache.sav_sync = B_TRUE;
3488         }
3489 
3490         spa->spa_is_initializing = B_TRUE;
3491         spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3492         spa->spa_meta_objset = dp->dp_meta_objset;
3493         spa->spa_is_initializing = B_FALSE;
3494 
3495         /*
3496          * Create DDTs (dedup tables).
3497          */
3498         ddt_create(spa);
3499 
3500         spa_update_dspace(spa);
3501 
3502         tx = dmu_tx_create_assigned(dp, txg);
3503 
3504         /*
3505          * Create the pool config object.
3506          */
3507         spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3508             DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3509             DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3510 
3511         if (zap_add(spa->spa_meta_objset,
3512             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3513             sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3514                 cmn_err(CE_PANIC, "failed to add pool config");
3515         }
3516 
3517         if (spa_version(spa) >= SPA_VERSION_FEATURES)
3518                 spa_feature_create_zap_objects(spa, tx);
3519 
3520         if (zap_add(spa->spa_meta_objset,
3521             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3522             sizeof (uint64_t), 1, &version, tx) != 0) {
3523                 cmn_err(CE_PANIC, "failed to add pool version");
3524         }
3525 
3526         /* Newly created pools with the right version are always deflated. */
3527         if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3528                 spa->spa_deflate = TRUE;
3529                 if (zap_add(spa->spa_meta_objset,
3530                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3531                     sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3532                         cmn_err(CE_PANIC, "failed to add deflate");
3533                 }
3534         }
3535 
3536         /*
3537          * Create the deferred-free bpobj.  Turn off compression
3538          * because sync-to-convergence takes longer if the blocksize
3539          * keeps changing.
3540          */
3541         obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3542         dmu_object_set_compress(spa->spa_meta_objset, obj,
3543             ZIO_COMPRESS_OFF, tx);
3544         if (zap_add(spa->spa_meta_objset,
3545             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3546             sizeof (uint64_t), 1, &obj, tx) != 0) {
3547                 cmn_err(CE_PANIC, "failed to add bpobj");
3548         }
3549         VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3550             spa->spa_meta_objset, obj));
3551 
3552         /*
3553          * Create the pool's history object.
3554          */
3555         if (version >= SPA_VERSION_ZPOOL_HISTORY)
3556                 spa_history_create_obj(spa, tx);
3557 
3558         /*
3559          * Set pool properties.
3560          */
3561         spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3562         spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3563         spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3564         spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3565 
3566         if (props != NULL) {
3567                 spa_configfile_set(spa, props, B_FALSE);
3568                 spa_sync_props(props, tx);
3569         }
3570 
3571         dmu_tx_commit(tx);
3572 
3573         spa->spa_sync_on = B_TRUE;
3574         txg_sync_start(spa->spa_dsl_pool);
3575 
3576         /*
3577          * We explicitly wait for the first transaction to complete so that our
3578          * bean counters are appropriately updated.
3579          */
3580         txg_wait_synced(spa->spa_dsl_pool, txg);
3581 
3582         spa_config_sync(spa, B_FALSE, B_TRUE);
3583 
3584         spa_history_log_version(spa, "create");
3585 
3586         spa->spa_minref = refcount_count(&spa->spa_refcount);
3587 
3588         mutex_exit(&spa_namespace_lock);
3589 
3590         return (0);
3591 }
3592 
3593 #ifdef _KERNEL
3594 /*
3595  * Get the root pool information from the root disk, then import the root pool
3596  * during the system boot up time.
3597  */
3598 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3599 
3600 static nvlist_t *
3601 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3602 {
3603         nvlist_t *config;
3604         nvlist_t *nvtop, *nvroot;
3605         uint64_t pgid;
3606 
3607         if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3608                 return (NULL);
3609 
3610         /*
3611          * Add this top-level vdev to the child array.
3612          */
3613         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3614             &nvtop) == 0);
3615         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3616             &pgid) == 0);
3617         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3618 
3619         /*
3620          * Put this pool's top-level vdevs into a root vdev.
3621          */
3622         VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3623         VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3624             VDEV_TYPE_ROOT) == 0);
3625         VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3626         VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3627         VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3628             &nvtop, 1) == 0);
3629 
3630         /*
3631          * Replace the existing vdev_tree with the new root vdev in
3632          * this pool's configuration (remove the old, add the new).
3633          */
3634         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3635         nvlist_free(nvroot);
3636         return (config);
3637 }
3638 
3639 /*
3640  * Walk the vdev tree and see if we can find a device with "better"
3641  * configuration. A configuration is "better" if the label on that
3642  * device has a more recent txg.
3643  */
3644 static void
3645 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3646 {
3647         for (int c = 0; c < vd->vdev_children; c++)
3648                 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3649 
3650         if (vd->vdev_ops->vdev_op_leaf) {
3651                 nvlist_t *label;
3652                 uint64_t label_txg;
3653 
3654                 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3655                     &label) != 0)
3656                         return;
3657 
3658                 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3659                     &label_txg) == 0);
3660 
3661                 /*
3662                  * Do we have a better boot device?
3663                  */
3664                 if (label_txg > *txg) {
3665                         *txg = label_txg;
3666                         *avd = vd;
3667                 }
3668                 nvlist_free(label);
3669         }
3670 }
3671 
3672 /*
3673  * Import a root pool.
3674  *
3675  * For x86. devpath_list will consist of devid and/or physpath name of
3676  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3677  * The GRUB "findroot" command will return the vdev we should boot.
3678  *
3679  * For Sparc, devpath_list consists the physpath name of the booting device
3680  * no matter the rootpool is a single device pool or a mirrored pool.
3681  * e.g.
3682  *      "/pci@1f,0/ide@d/disk@0,0:a"
3683  */
3684 int
3685 spa_import_rootpool(char *devpath, char *devid)
3686 {
3687         spa_t *spa;
3688         vdev_t *rvd, *bvd, *avd = NULL;
3689         nvlist_t *config, *nvtop;
3690         uint64_t guid, txg;
3691         char *pname;
3692         int error;
3693 
3694         /*
3695          * Read the label from the boot device and generate a configuration.
3696          */
3697         config = spa_generate_rootconf(devpath, devid, &guid);
3698 #if defined(_OBP) && defined(_KERNEL)
3699         if (config == NULL) {
3700                 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3701                         /* iscsi boot */
3702                         get_iscsi_bootpath_phy(devpath);
3703                         config = spa_generate_rootconf(devpath, devid, &guid);
3704                 }
3705         }
3706 #endif
3707         if (config == NULL) {
3708                 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3709                     devpath);
3710                 return (SET_ERROR(EIO));
3711         }
3712 
3713         VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3714             &pname) == 0);
3715         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3716 
3717         mutex_enter(&spa_namespace_lock);
3718         if ((spa = spa_lookup(pname)) != NULL) {
3719                 /*
3720                  * Remove the existing root pool from the namespace so that we
3721                  * can replace it with the correct config we just read in.
3722                  */
3723                 spa_remove(spa);
3724         }
3725 
3726         spa = spa_add(pname, config, NULL);
3727         spa->spa_is_root = B_TRUE;
3728         spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3729 
3730         /*
3731          * Build up a vdev tree based on the boot device's label config.
3732          */
3733         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3734             &nvtop) == 0);
3735         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3736         error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3737             VDEV_ALLOC_ROOTPOOL);
3738         spa_config_exit(spa, SCL_ALL, FTAG);
3739         if (error) {
3740                 mutex_exit(&spa_namespace_lock);
3741                 nvlist_free(config);
3742                 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3743                     pname);
3744                 return (error);
3745         }
3746 
3747         /*
3748          * Get the boot vdev.
3749          */
3750         if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3751                 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3752                     (u_longlong_t)guid);
3753                 error = SET_ERROR(ENOENT);
3754                 goto out;
3755         }
3756 
3757         /*
3758          * Determine if there is a better boot device.
3759          */
3760         avd = bvd;
3761         spa_alt_rootvdev(rvd, &avd, &txg);
3762         if (avd != bvd) {
3763                 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3764                     "try booting from '%s'", avd->vdev_path);
3765                 error = SET_ERROR(EINVAL);
3766                 goto out;
3767         }
3768 
3769         /*
3770          * If the boot device is part of a spare vdev then ensure that
3771          * we're booting off the active spare.
3772          */
3773         if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3774             !bvd->vdev_isspare) {
3775                 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3776                     "try booting from '%s'",
3777                     bvd->vdev_parent->
3778                     vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3779                 error = SET_ERROR(EINVAL);
3780                 goto out;
3781         }
3782 
3783         error = 0;
3784 out:
3785         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3786         vdev_free(rvd);
3787         spa_config_exit(spa, SCL_ALL, FTAG);
3788         mutex_exit(&spa_namespace_lock);
3789 
3790         nvlist_free(config);
3791         return (error);
3792 }
3793 
3794 #endif
3795 
3796 /*
3797  * Import a non-root pool into the system.
3798  */
3799 int
3800 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3801 {
3802         spa_t *spa;
3803         char *altroot = NULL;
3804         spa_load_state_t state = SPA_LOAD_IMPORT;
3805         zpool_rewind_policy_t policy;
3806         uint64_t mode = spa_mode_global;
3807         uint64_t readonly = B_FALSE;
3808         int error;
3809         nvlist_t *nvroot;
3810         nvlist_t **spares, **l2cache;
3811         uint_t nspares, nl2cache;
3812 
3813         /*
3814          * If a pool with this name exists, return failure.
3815          */
3816         mutex_enter(&spa_namespace_lock);
3817         if (spa_lookup(pool) != NULL) {
3818                 mutex_exit(&spa_namespace_lock);
3819                 return (SET_ERROR(EEXIST));
3820         }
3821 
3822         /*
3823          * Create and initialize the spa structure.
3824          */
3825         (void) nvlist_lookup_string(props,
3826             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3827         (void) nvlist_lookup_uint64(props,
3828             zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3829         if (readonly)
3830                 mode = FREAD;
3831         spa = spa_add(pool, config, altroot);
3832         spa->spa_import_flags = flags;
3833 
3834         /*
3835          * Verbatim import - Take a pool and insert it into the namespace
3836          * as if it had been loaded at boot.
3837          */
3838         if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3839                 if (props != NULL)
3840                         spa_configfile_set(spa, props, B_FALSE);
3841 
3842                 spa_config_sync(spa, B_FALSE, B_TRUE);
3843 
3844                 mutex_exit(&spa_namespace_lock);
3845                 spa_history_log_version(spa, "import");
3846 
3847                 return (0);
3848         }
3849 
3850         spa_activate(spa, mode);
3851 
3852         /*
3853          * Don't start async tasks until we know everything is healthy.
3854          */
3855         spa_async_suspend(spa);
3856 
3857         zpool_get_rewind_policy(config, &policy);
3858         if (policy.zrp_request & ZPOOL_DO_REWIND)
3859                 state = SPA_LOAD_RECOVER;
3860 
3861         /*
3862          * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3863          * because the user-supplied config is actually the one to trust when
3864          * doing an import.
3865          */
3866         if (state != SPA_LOAD_RECOVER)
3867                 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3868 
3869         error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3870             policy.zrp_request);
3871 
3872         /*
3873          * Propagate anything learned while loading the pool and pass it
3874          * back to caller (i.e. rewind info, missing devices, etc).
3875          */
3876         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3877             spa->spa_load_info) == 0);
3878 
3879         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3880         /*
3881          * Toss any existing sparelist, as it doesn't have any validity
3882          * anymore, and conflicts with spa_has_spare().
3883          */
3884         if (spa->spa_spares.sav_config) {
3885                 nvlist_free(spa->spa_spares.sav_config);
3886                 spa->spa_spares.sav_config = NULL;
3887                 spa_load_spares(spa);
3888         }
3889         if (spa->spa_l2cache.sav_config) {
3890                 nvlist_free(spa->spa_l2cache.sav_config);
3891                 spa->spa_l2cache.sav_config = NULL;
3892                 spa_load_l2cache(spa);
3893         }
3894 
3895         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3896             &nvroot) == 0);
3897         if (error == 0)
3898                 error = spa_validate_aux(spa, nvroot, -1ULL,
3899                     VDEV_ALLOC_SPARE);
3900         if (error == 0)
3901                 error = spa_validate_aux(spa, nvroot, -1ULL,
3902                     VDEV_ALLOC_L2CACHE);
3903         spa_config_exit(spa, SCL_ALL, FTAG);
3904 
3905         if (props != NULL)
3906                 spa_configfile_set(spa, props, B_FALSE);
3907 
3908         if (error != 0 || (props && spa_writeable(spa) &&
3909             (error = spa_prop_set(spa, props)))) {
3910                 spa_unload(spa);
3911                 spa_deactivate(spa);
3912                 spa_remove(spa);
3913                 mutex_exit(&spa_namespace_lock);
3914                 return (error);
3915         }
3916 
3917         spa_async_resume(spa);
3918 
3919         /*
3920          * Override any spares and level 2 cache devices as specified by
3921          * the user, as these may have correct device names/devids, etc.
3922          */
3923         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3924             &spares, &nspares) == 0) {
3925                 if (spa->spa_spares.sav_config)
3926                         VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3927                             ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3928                 else
3929                         VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3930                             NV_UNIQUE_NAME, KM_SLEEP) == 0);
3931                 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3932                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3933                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3934                 spa_load_spares(spa);
3935                 spa_config_exit(spa, SCL_ALL, FTAG);
3936                 spa->spa_spares.sav_sync = B_TRUE;
3937         }
3938         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3939             &l2cache, &nl2cache) == 0) {
3940                 if (spa->spa_l2cache.sav_config)
3941                         VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3942                             ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3943                 else
3944                         VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3945                             NV_UNIQUE_NAME, KM_SLEEP) == 0);
3946                 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3947                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3948                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3949                 spa_load_l2cache(spa);
3950                 spa_config_exit(spa, SCL_ALL, FTAG);
3951                 spa->spa_l2cache.sav_sync = B_TRUE;
3952         }
3953 
3954         /*
3955          * Check for any removed devices.
3956          */
3957         if (spa->spa_autoreplace) {
3958                 spa_aux_check_removed(&spa->spa_spares);
3959                 spa_aux_check_removed(&spa->spa_l2cache);
3960         }
3961 
3962         if (spa_writeable(spa)) {
3963                 /*
3964                  * Update the config cache to include the newly-imported pool.
3965                  */
3966                 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3967         }
3968 
3969         /*
3970          * It's possible that the pool was expanded while it was exported.
3971          * We kick off an async task to handle this for us.
3972          */
3973         spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3974 
3975         mutex_exit(&spa_namespace_lock);
3976         spa_history_log_version(spa, "import");
3977 
3978         return (0);
3979 }
3980 
3981 nvlist_t *
3982 spa_tryimport(nvlist_t *tryconfig)
3983 {
3984         nvlist_t *config = NULL;
3985         char *poolname;
3986         spa_t *spa;
3987         uint64_t state;
3988         int error;
3989 
3990         if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3991                 return (NULL);
3992 
3993         if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3994                 return (NULL);
3995 
3996         /*
3997          * Create and initialize the spa structure.
3998          */
3999         mutex_enter(&spa_namespace_lock);
4000         spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4001         spa_activate(spa, FREAD);
4002 
4003         /*
4004          * Pass off the heavy lifting to spa_load().
4005          * Pass TRUE for mosconfig because the user-supplied config
4006          * is actually the one to trust when doing an import.
4007          */
4008         error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4009 
4010         /*
4011          * If 'tryconfig' was at least parsable, return the current config.
4012          */
4013         if (spa->spa_root_vdev != NULL) {
4014                 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4015                 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4016                     poolname) == 0);
4017                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4018                     state) == 0);
4019                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4020                     spa->spa_uberblock.ub_timestamp) == 0);
4021                 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4022                     spa->spa_load_info) == 0);
4023 
4024                 /*
4025                  * If the bootfs property exists on this pool then we
4026                  * copy it out so that external consumers can tell which
4027                  * pools are bootable.
4028                  */
4029                 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4030                         char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4031 
4032                         /*
4033                          * We have to play games with the name since the
4034                          * pool was opened as TRYIMPORT_NAME.
4035                          */
4036                         if (dsl_dsobj_to_dsname(spa_name(spa),
4037                             spa->spa_bootfs, tmpname) == 0) {
4038                                 char *cp;
4039                                 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4040 
4041                                 cp = strchr(tmpname, '/');
4042                                 if (cp == NULL) {
4043                                         (void) strlcpy(dsname, tmpname,
4044                                             MAXPATHLEN);
4045                                 } else {
4046                                         (void) snprintf(dsname, MAXPATHLEN,
4047                                             "%s/%s", poolname, ++cp);
4048                                 }
4049                                 VERIFY(nvlist_add_string(config,
4050                                     ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4051                                 kmem_free(dsname, MAXPATHLEN);
4052                         }
4053                         kmem_free(tmpname, MAXPATHLEN);
4054                 }
4055 
4056                 /*
4057                  * Add the list of hot spares and level 2 cache devices.
4058                  */
4059                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4060                 spa_add_spares(spa, config);
4061                 spa_add_l2cache(spa, config);
4062                 spa_config_exit(spa, SCL_CONFIG, FTAG);
4063         }
4064 
4065         spa_unload(spa);
4066         spa_deactivate(spa);
4067         spa_remove(spa);
4068         mutex_exit(&spa_namespace_lock);
4069 
4070         return (config);
4071 }
4072 
4073 /*
4074  * Pool export/destroy
4075  *
4076  * The act of destroying or exporting a pool is very simple.  We make sure there
4077  * is no more pending I/O and any references to the pool are gone.  Then, we
4078  * update the pool state and sync all the labels to disk, removing the
4079  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4080  * we don't sync the labels or remove the configuration cache.
4081  */
4082 static int
4083 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4084     boolean_t force, boolean_t hardforce)
4085 {
4086         spa_t *spa;
4087 
4088         if (oldconfig)
4089                 *oldconfig = NULL;
4090 
4091         if (!(spa_mode_global & FWRITE))
4092                 return (SET_ERROR(EROFS));
4093 
4094         mutex_enter(&spa_namespace_lock);
4095         if ((spa = spa_lookup(pool)) == NULL) {
4096                 mutex_exit(&spa_namespace_lock);
4097                 return (SET_ERROR(ENOENT));
4098         }
4099 
4100         /*
4101          * Put a hold on the pool, drop the namespace lock, stop async tasks,
4102          * reacquire the namespace lock, and see if we can export.
4103          */
4104         spa_open_ref(spa, FTAG);
4105         mutex_exit(&spa_namespace_lock);
4106         spa_async_suspend(spa);
4107         mutex_enter(&spa_namespace_lock);
4108         spa_close(spa, FTAG);
4109 
4110         /*
4111          * The pool will be in core if it's openable,
4112          * in which case we can modify its state.
4113          */
4114         if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4115                 /*
4116                  * Objsets may be open only because they're dirty, so we
4117                  * have to force it to sync before checking spa_refcnt.
4118                  */
4119                 txg_wait_synced(spa->spa_dsl_pool, 0);
4120 
4121                 /*
4122                  * A pool cannot be exported or destroyed if there are active
4123                  * references.  If we are resetting a pool, allow references by
4124                  * fault injection handlers.
4125                  */
4126                 if (!spa_refcount_zero(spa) ||
4127                     (spa->spa_inject_ref != 0 &&
4128                     new_state != POOL_STATE_UNINITIALIZED)) {
4129                         spa_async_resume(spa);
4130                         mutex_exit(&spa_namespace_lock);
4131                         return (SET_ERROR(EBUSY));
4132                 }
4133 
4134                 /*
4135                  * A pool cannot be exported if it has an active shared spare.
4136                  * This is to prevent other pools stealing the active spare
4137                  * from an exported pool. At user's own will, such pool can
4138                  * be forcedly exported.
4139                  */
4140                 if (!force && new_state == POOL_STATE_EXPORTED &&
4141                     spa_has_active_shared_spare(spa)) {
4142                         spa_async_resume(spa);
4143                         mutex_exit(&spa_namespace_lock);
4144                         return (SET_ERROR(EXDEV));
4145                 }
4146 
4147                 /*
4148                  * We want this to be reflected on every label,
4149                  * so mark them all dirty.  spa_unload() will do the
4150                  * final sync that pushes these changes out.
4151                  */
4152                 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4153                         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4154                         spa->spa_state = new_state;
4155                         spa->spa_final_txg = spa_last_synced_txg(spa) +
4156                             TXG_DEFER_SIZE + 1;
4157                         vdev_config_dirty(spa->spa_root_vdev);
4158                         spa_config_exit(spa, SCL_ALL, FTAG);
4159                 }
4160         }
4161 
4162         spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4163 
4164         if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4165                 spa_unload(spa);
4166                 spa_deactivate(spa);
4167         }
4168 
4169         if (oldconfig && spa->spa_config)
4170                 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4171 
4172         if (new_state != POOL_STATE_UNINITIALIZED) {
4173                 if (!hardforce)
4174                         spa_config_sync(spa, B_TRUE, B_TRUE);
4175                 spa_remove(spa);
4176         }
4177         mutex_exit(&spa_namespace_lock);
4178 
4179         return (0);
4180 }
4181 
4182 /*
4183  * Destroy a storage pool.
4184  */
4185 int
4186 spa_destroy(char *pool)
4187 {
4188         return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4189             B_FALSE, B_FALSE));
4190 }
4191 
4192 /*
4193  * Export a storage pool.
4194  */
4195 int
4196 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4197     boolean_t hardforce)
4198 {
4199         return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4200             force, hardforce));
4201 }
4202 
4203 /*
4204  * Similar to spa_export(), this unloads the spa_t without actually removing it
4205  * from the namespace in any way.
4206  */
4207 int
4208 spa_reset(char *pool)
4209 {
4210         return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4211             B_FALSE, B_FALSE));
4212 }
4213 
4214 /*
4215  * ==========================================================================
4216  * Device manipulation
4217  * ==========================================================================
4218  */
4219 
4220 /*
4221  * Add a device to a storage pool.
4222  */
4223 int
4224 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4225 {
4226         uint64_t txg, id;
4227         int error;
4228         vdev_t *rvd = spa->spa_root_vdev;
4229         vdev_t *vd, *tvd;
4230         nvlist_t **spares, **l2cache;
4231         uint_t nspares, nl2cache;
4232 
4233         ASSERT(spa_writeable(spa));
4234 
4235         txg = spa_vdev_enter(spa);
4236 
4237         if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4238             VDEV_ALLOC_ADD)) != 0)
4239                 return (spa_vdev_exit(spa, NULL, txg, error));
4240 
4241         spa->spa_pending_vdev = vd;  /* spa_vdev_exit() will clear this */
4242 
4243         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4244             &nspares) != 0)
4245                 nspares = 0;
4246 
4247         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4248             &nl2cache) != 0)
4249                 nl2cache = 0;
4250 
4251         if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4252                 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4253 
4254         if (vd->vdev_children != 0 &&
4255             (error = vdev_create(vd, txg, B_FALSE)) != 0)
4256                 return (spa_vdev_exit(spa, vd, txg, error));
4257 
4258         /*
4259          * We must validate the spares and l2cache devices after checking the
4260          * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4261          */
4262         if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4263                 return (spa_vdev_exit(spa, vd, txg, error));
4264 
4265         /*
4266          * Transfer each new top-level vdev from vd to rvd.
4267          */
4268         for (int c = 0; c < vd->vdev_children; c++) {
4269 
4270                 /*
4271                  * Set the vdev id to the first hole, if one exists.
4272                  */
4273                 for (id = 0; id < rvd->vdev_children; id++) {
4274                         if (rvd->vdev_child[id]->vdev_ishole) {
4275                                 vdev_free(rvd->vdev_child[id]);
4276                                 break;
4277                         }
4278                 }
4279                 tvd = vd->vdev_child[c];
4280                 vdev_remove_child(vd, tvd);
4281                 tvd->vdev_id = id;
4282                 vdev_add_child(rvd, tvd);
4283                 vdev_config_dirty(tvd);
4284         }
4285 
4286         if (nspares != 0) {
4287                 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4288                     ZPOOL_CONFIG_SPARES);
4289                 spa_load_spares(spa);
4290                 spa->spa_spares.sav_sync = B_TRUE;
4291         }
4292 
4293         if (nl2cache != 0) {
4294                 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4295                     ZPOOL_CONFIG_L2CACHE);
4296                 spa_load_l2cache(spa);
4297                 spa->spa_l2cache.sav_sync = B_TRUE;
4298         }
4299 
4300         /*
4301          * We have to be careful when adding new vdevs to an existing pool.
4302          * If other threads start allocating from these vdevs before we
4303          * sync the config cache, and we lose power, then upon reboot we may
4304          * fail to open the pool because there are DVAs that the config cache
4305          * can't translate.  Therefore, we first add the vdevs without
4306          * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4307          * and then let spa_config_update() initialize the new metaslabs.
4308          *
4309          * spa_load() checks for added-but-not-initialized vdevs, so that
4310          * if we lose power at any point in this sequence, the remaining
4311          * steps will be completed the next time we load the pool.
4312          */
4313         (void) spa_vdev_exit(spa, vd, txg, 0);
4314 
4315         mutex_enter(&spa_namespace_lock);
4316         spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4317         mutex_exit(&spa_namespace_lock);
4318 
4319         return (0);
4320 }
4321 
4322 /*
4323  * Attach a device to a mirror.  The arguments are the path to any device
4324  * in the mirror, and the nvroot for the new device.  If the path specifies
4325  * a device that is not mirrored, we automatically insert the mirror vdev.
4326  *
4327  * If 'replacing' is specified, the new device is intended to replace the
4328  * existing device; in this case the two devices are made into their own
4329  * mirror using the 'replacing' vdev, which is functionally identical to
4330  * the mirror vdev (it actually reuses all the same ops) but has a few
4331  * extra rules: you can't attach to it after it's been created, and upon
4332  * completion of resilvering, the first disk (the one being replaced)
4333  * is automatically detached.
4334  */
4335 int
4336 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4337 {
4338         uint64_t txg, dtl_max_txg;
4339         vdev_t *rvd = spa->spa_root_vdev;
4340         vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4341         vdev_ops_t *pvops;
4342         char *oldvdpath, *newvdpath;
4343         int newvd_isspare;
4344         int error;
4345 
4346         ASSERT(spa_writeable(spa));
4347 
4348         txg = spa_vdev_enter(spa);
4349 
4350         oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4351 
4352         if (oldvd == NULL)
4353                 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4354 
4355         if (!oldvd->vdev_ops->vdev_op_leaf)
4356                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4357 
4358         pvd = oldvd->vdev_parent;
4359 
4360         if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4361             VDEV_ALLOC_ATTACH)) != 0)
4362                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4363 
4364         if (newrootvd->vdev_children != 1)
4365                 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4366 
4367         newvd = newrootvd->vdev_child[0];
4368 
4369         if (!newvd->vdev_ops->vdev_op_leaf)
4370                 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4371 
4372         if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4373                 return (spa_vdev_exit(spa, newrootvd, txg, error));
4374 
4375         /*
4376          * Spares can't replace logs
4377          */
4378         if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4379                 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4380 
4381         if (!replacing) {
4382                 /*
4383                  * For attach, the only allowable parent is a mirror or the root
4384                  * vdev.
4385                  */
4386                 if (pvd->vdev_ops != &vdev_mirror_ops &&
4387                     pvd->vdev_ops != &vdev_root_ops)
4388                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4389 
4390                 pvops = &vdev_mirror_ops;
4391         } else {
4392                 /*
4393                  * Active hot spares can only be replaced by inactive hot
4394                  * spares.
4395                  */
4396                 if (pvd->vdev_ops == &vdev_spare_ops &&
4397                     oldvd->vdev_isspare &&
4398                     !spa_has_spare(spa, newvd->vdev_guid))
4399                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4400 
4401                 /*
4402                  * If the source is a hot spare, and the parent isn't already a
4403                  * spare, then we want to create a new hot spare.  Otherwise, we
4404                  * want to create a replacing vdev.  The user is not allowed to
4405                  * attach to a spared vdev child unless the 'isspare' state is
4406                  * the same (spare replaces spare, non-spare replaces
4407                  * non-spare).
4408                  */
4409                 if (pvd->vdev_ops == &vdev_replacing_ops &&
4410                     spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4411                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4412                 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4413                     newvd->vdev_isspare != oldvd->vdev_isspare) {
4414                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4415                 }
4416 
4417                 if (newvd->vdev_isspare)
4418                         pvops = &vdev_spare_ops;
4419                 else
4420                         pvops = &vdev_replacing_ops;
4421         }
4422 
4423         /*
4424          * Make sure the new device is big enough.
4425          */
4426         if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4427                 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4428 
4429         /*
4430          * The new device cannot have a higher alignment requirement
4431          * than the top-level vdev.
4432          */
4433         if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4434                 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4435 
4436         /*
4437          * If this is an in-place replacement, update oldvd's path and devid
4438          * to make it distinguishable from newvd, and unopenable from now on.
4439          */
4440         if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4441                 spa_strfree(oldvd->vdev_path);
4442                 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4443                     KM_SLEEP);
4444                 (void) sprintf(oldvd->vdev_path, "%s/%s",
4445                     newvd->vdev_path, "old");
4446                 if (oldvd->vdev_devid != NULL) {
4447                         spa_strfree(oldvd->vdev_devid);
4448                         oldvd->vdev_devid = NULL;
4449                 }
4450         }
4451 
4452         /* mark the device being resilvered */
4453         newvd->vdev_resilver_txg = txg;
4454 
4455         /*
4456          * If the parent is not a mirror, or if we're replacing, insert the new
4457          * mirror/replacing/spare vdev above oldvd.
4458          */
4459         if (pvd->vdev_ops != pvops)
4460                 pvd = vdev_add_parent(oldvd, pvops);
4461 
4462         ASSERT(pvd->vdev_top->vdev_parent == rvd);
4463         ASSERT(pvd->vdev_ops == pvops);
4464         ASSERT(oldvd->vdev_parent == pvd);
4465 
4466         /*
4467          * Extract the new device from its root and add it to pvd.
4468          */
4469         vdev_remove_child(newrootvd, newvd);
4470         newvd->vdev_id = pvd->vdev_children;
4471         newvd->vdev_crtxg = oldvd->vdev_crtxg;
4472         vdev_add_child(pvd, newvd);
4473 
4474         tvd = newvd->vdev_top;
4475         ASSERT(pvd->vdev_top == tvd);
4476         ASSERT(tvd->vdev_parent == rvd);
4477 
4478         vdev_config_dirty(tvd);
4479 
4480         /*
4481          * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4482          * for any dmu_sync-ed blocks.  It will propagate upward when
4483          * spa_vdev_exit() calls vdev_dtl_reassess().
4484          */
4485         dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4486 
4487         vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4488             dtl_max_txg - TXG_INITIAL);
4489 
4490         if (newvd->vdev_isspare) {
4491                 spa_spare_activate(newvd);
4492                 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4493         }
4494 
4495         oldvdpath = spa_strdup(oldvd->vdev_path);
4496         newvdpath = spa_strdup(newvd->vdev_path);
4497         newvd_isspare = newvd->vdev_isspare;
4498 
4499         /*
4500          * Mark newvd's DTL dirty in this txg.
4501          */
4502         vdev_dirty(tvd, VDD_DTL, newvd, txg);
4503 
4504         /*
4505          * Schedule the resilver to restart in the future. We do this to
4506          * ensure that dmu_sync-ed blocks have been stitched into the
4507          * respective datasets.
4508          */
4509         dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4510 
4511         /*
4512          * Commit the config
4513          */
4514         (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4515 
4516         spa_history_log_internal(spa, "vdev attach", NULL,
4517             "%s vdev=%s %s vdev=%s",
4518             replacing && newvd_isspare ? "spare in" :
4519             replacing ? "replace" : "attach", newvdpath,
4520             replacing ? "for" : "to", oldvdpath);
4521 
4522         spa_strfree(oldvdpath);
4523         spa_strfree(newvdpath);
4524 
4525         if (spa->spa_bootfs)
4526                 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4527 
4528         return (0);
4529 }
4530 
4531 /*
4532  * Detach a device from a mirror or replacing vdev.
4533  *
4534  * If 'replace_done' is specified, only detach if the parent
4535  * is a replacing vdev.
4536  */
4537 int
4538 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4539 {
4540         uint64_t txg;
4541         int error;
4542         vdev_t *rvd = spa->spa_root_vdev;
4543         vdev_t *vd, *pvd, *cvd, *tvd;
4544         boolean_t unspare = B_FALSE;
4545         uint64_t unspare_guid = 0;
4546         char *vdpath;
4547 
4548         ASSERT(spa_writeable(spa));
4549 
4550         txg = spa_vdev_enter(spa);
4551 
4552         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4553 
4554         if (vd == NULL)
4555                 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4556 
4557         if (!vd->vdev_ops->vdev_op_leaf)
4558                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4559 
4560         pvd = vd->vdev_parent;
4561 
4562         /*
4563          * If the parent/child relationship is not as expected, don't do it.
4564          * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4565          * vdev that's replacing B with C.  The user's intent in replacing
4566          * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4567          * the replace by detaching C, the expected behavior is to end up
4568          * M(A,B).  But suppose that right after deciding to detach C,
4569          * the replacement of B completes.  We would have M(A,C), and then
4570          * ask to detach C, which would leave us with just A -- not what
4571          * the user wanted.  To prevent this, we make sure that the
4572          * parent/child relationship hasn't changed -- in this example,
4573          * that C's parent is still the replacing vdev R.
4574          */
4575         if (pvd->vdev_guid != pguid && pguid != 0)
4576                 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4577 
4578         /*
4579          * Only 'replacing' or 'spare' vdevs can be replaced.
4580          */
4581         if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4582             pvd->vdev_ops != &vdev_spare_ops)
4583                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4584 
4585         ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4586             spa_version(spa) >= SPA_VERSION_SPARES);
4587 
4588         /*
4589          * Only mirror, replacing, and spare vdevs support detach.
4590          */
4591         if (pvd->vdev_ops != &vdev_replacing_ops &&
4592             pvd->vdev_ops != &vdev_mirror_ops &&
4593             pvd->vdev_ops != &vdev_spare_ops)
4594                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4595 
4596         /*
4597          * If this device has the only valid copy of some data,
4598          * we cannot safely detach it.
4599          */
4600         if (vdev_dtl_required(vd))
4601                 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4602 
4603         ASSERT(pvd->vdev_children >= 2);
4604 
4605         /*
4606          * If we are detaching the second disk from a replacing vdev, then
4607          * check to see if we changed the original vdev's path to have "/old"
4608          * at the end in spa_vdev_attach().  If so, undo that change now.
4609          */
4610         if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4611             vd->vdev_path != NULL) {
4612                 size_t len = strlen(vd->vdev_path);
4613 
4614                 for (int c = 0; c < pvd->vdev_children; c++) {
4615                         cvd = pvd->vdev_child[c];
4616 
4617                         if (cvd == vd || cvd->vdev_path == NULL)
4618                                 continue;
4619 
4620                         if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4621                             strcmp(cvd->vdev_path + len, "/old") == 0) {
4622                                 spa_strfree(cvd->vdev_path);
4623                                 cvd->vdev_path = spa_strdup(vd->vdev_path);
4624                                 break;
4625                         }
4626                 }
4627         }
4628 
4629         /*
4630          * If we are detaching the original disk from a spare, then it implies
4631          * that the spare should become a real disk, and be removed from the
4632          * active spare list for the pool.
4633          */
4634         if (pvd->vdev_ops == &vdev_spare_ops &&
4635             vd->vdev_id == 0 &&
4636             pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4637                 unspare = B_TRUE;
4638 
4639         /*
4640          * Erase the disk labels so the disk can be used for other things.
4641          * This must be done after all other error cases are handled,
4642          * but before we disembowel vd (so we can still do I/O to it).
4643          * But if we can't do it, don't treat the error as fatal --
4644          * it may be that the unwritability of the disk is the reason
4645          * it's being detached!
4646          */
4647         error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4648 
4649         /*
4650          * Remove vd from its parent and compact the parent's children.
4651          */
4652         vdev_remove_child(pvd, vd);
4653         vdev_compact_children(pvd);
4654 
4655         /*
4656          * Remember one of the remaining children so we can get tvd below.
4657          */
4658         cvd = pvd->vdev_child[pvd->vdev_children - 1];
4659 
4660         /*
4661          * If we need to remove the remaining child from the list of hot spares,
4662          * do it now, marking the vdev as no longer a spare in the process.
4663          * We must do this before vdev_remove_parent(), because that can
4664          * change the GUID if it creates a new toplevel GUID.  For a similar
4665          * reason, we must remove the spare now, in the same txg as the detach;
4666          * otherwise someone could attach a new sibling, change the GUID, and
4667          * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4668          */
4669         if (unspare) {
4670                 ASSERT(cvd->vdev_isspare);
4671                 spa_spare_remove(cvd);
4672                 unspare_guid = cvd->vdev_guid;
4673                 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4674                 cvd->vdev_unspare = B_TRUE;
4675         }
4676 
4677         /*
4678          * If the parent mirror/replacing vdev only has one child,
4679          * the parent is no longer needed.  Remove it from the tree.
4680          */
4681         if (pvd->vdev_children == 1) {
4682                 if (pvd->vdev_ops == &vdev_spare_ops)
4683                         cvd->vdev_unspare = B_FALSE;
4684                 vdev_remove_parent(cvd);
4685         }
4686 
4687 
4688         /*
4689          * We don't set tvd until now because the parent we just removed
4690          * may have been the previous top-level vdev.
4691          */
4692         tvd = cvd->vdev_top;
4693         ASSERT(tvd->vdev_parent == rvd);
4694 
4695         /*
4696          * Reevaluate the parent vdev state.
4697          */
4698         vdev_propagate_state(cvd);
4699 
4700         /*
4701          * If the 'autoexpand' property is set on the pool then automatically
4702          * try to expand the size of the pool. For example if the device we
4703          * just detached was smaller than the others, it may be possible to
4704          * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4705          * first so that we can obtain the updated sizes of the leaf vdevs.
4706          */
4707         if (spa->spa_autoexpand) {
4708                 vdev_reopen(tvd);
4709                 vdev_expand(tvd, txg);
4710         }
4711 
4712         vdev_config_dirty(tvd);
4713 
4714         /*
4715          * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4716          * vd->vdev_detached is set and free vd's DTL object in syncing context.
4717          * But first make sure we're not on any *other* txg's DTL list, to
4718          * prevent vd from being accessed after it's freed.
4719          */
4720         vdpath = spa_strdup(vd->vdev_path);
4721         for (int t = 0; t < TXG_SIZE; t++)
4722                 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4723         vd->vdev_detached = B_TRUE;
4724         vdev_dirty(tvd, VDD_DTL, vd, txg);
4725 
4726         spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4727 
4728         /* hang on to the spa before we release the lock */
4729         spa_open_ref(spa, FTAG);
4730 
4731         error = spa_vdev_exit(spa, vd, txg, 0);
4732 
4733         spa_history_log_internal(spa, "detach", NULL,
4734             "vdev=%s", vdpath);
4735         spa_strfree(vdpath);
4736 
4737         /*
4738          * If this was the removal of the original device in a hot spare vdev,
4739          * then we want to go through and remove the device from the hot spare
4740          * list of every other pool.
4741          */
4742         if (unspare) {
4743                 spa_t *altspa = NULL;
4744 
4745                 mutex_enter(&spa_namespace_lock);
4746                 while ((altspa = spa_next(altspa)) != NULL) {
4747                         if (altspa->spa_state != POOL_STATE_ACTIVE ||
4748                             altspa == spa)
4749                                 continue;
4750 
4751                         spa_open_ref(altspa, FTAG);
4752                         mutex_exit(&spa_namespace_lock);
4753                         (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4754                         mutex_enter(&spa_namespace_lock);
4755                         spa_close(altspa, FTAG);
4756                 }
4757                 mutex_exit(&spa_namespace_lock);
4758 
4759                 /* search the rest of the vdevs for spares to remove */
4760                 spa_vdev_resilver_done(spa);
4761         }
4762 
4763         /* all done with the spa; OK to release */
4764         mutex_enter(&spa_namespace_lock);
4765         spa_close(spa, FTAG);
4766         mutex_exit(&spa_namespace_lock);
4767 
4768         return (error);
4769 }
4770 
4771 /*
4772  * Split a set of devices from their mirrors, and create a new pool from them.
4773  */
4774 int
4775 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4776     nvlist_t *props, boolean_t exp)
4777 {
4778         int error = 0;
4779         uint64_t txg, *glist;
4780         spa_t *newspa;
4781         uint_t c, children, lastlog;
4782         nvlist_t **child, *nvl, *tmp;
4783         dmu_tx_t *tx;
4784         char *altroot = NULL;
4785         vdev_t *rvd, **vml = NULL;                      /* vdev modify list */
4786         boolean_t activate_slog;
4787 
4788         ASSERT(spa_writeable(spa));
4789 
4790         txg = spa_vdev_enter(spa);
4791 
4792         /* clear the log and flush everything up to now */
4793         activate_slog = spa_passivate_log(spa);
4794         (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4795         error = spa_offline_log(spa);
4796         txg = spa_vdev_config_enter(spa);
4797 
4798         if (activate_slog)
4799                 spa_activate_log(spa);
4800 
4801         if (error != 0)
4802                 return (spa_vdev_exit(spa, NULL, txg, error));
4803 
4804         /* check new spa name before going any further */
4805         if (spa_lookup(newname) != NULL)
4806                 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4807 
4808         /*
4809          * scan through all the children to ensure they're all mirrors
4810          */
4811         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4812             nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4813             &children) != 0)
4814                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4815 
4816         /* first, check to ensure we've got the right child count */
4817         rvd = spa->spa_root_vdev;
4818         lastlog = 0;
4819         for (c = 0; c < rvd->vdev_children; c++) {
4820                 vdev_t *vd = rvd->vdev_child[c];
4821 
4822                 /* don't count the holes & logs as children */
4823                 if (vd->vdev_islog || vd->vdev_ishole) {
4824                         if (lastlog == 0)
4825                                 lastlog = c;
4826                         continue;
4827                 }
4828 
4829                 lastlog = 0;
4830         }
4831         if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4832                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4833 
4834         /* next, ensure no spare or cache devices are part of the split */
4835         if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4836             nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4837                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4838 
4839         vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4840         glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4841 
4842         /* then, loop over each vdev and validate it */
4843         for (c = 0; c < children; c++) {
4844                 uint64_t is_hole = 0;
4845 
4846                 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4847                     &is_hole);
4848 
4849                 if (is_hole != 0) {
4850                         if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4851                             spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4852                                 continue;
4853                         } else {
4854                                 error = SET_ERROR(EINVAL);
4855                                 break;
4856                         }
4857                 }
4858 
4859                 /* which disk is going to be split? */
4860                 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4861                     &glist[c]) != 0) {
4862                         error = SET_ERROR(EINVAL);
4863                         break;
4864                 }
4865 
4866                 /* look it up in the spa */
4867                 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4868                 if (vml[c] == NULL) {
4869                         error = SET_ERROR(ENODEV);
4870                         break;
4871                 }
4872 
4873                 /* make sure there's nothing stopping the split */
4874                 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4875                     vml[c]->vdev_islog ||
4876                     vml[c]->vdev_ishole ||
4877                     vml[c]->vdev_isspare ||
4878                     vml[c]->vdev_isl2cache ||
4879                     !vdev_writeable(vml[c]) ||
4880                     vml[c]->vdev_children != 0 ||
4881                     vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4882                     c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4883                         error = SET_ERROR(EINVAL);
4884                         break;
4885                 }
4886 
4887                 if (vdev_dtl_required(vml[c])) {
4888                         error = SET_ERROR(EBUSY);
4889                         break;
4890                 }
4891 
4892                 /* we need certain info from the top level */
4893                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4894                     vml[c]->vdev_top->vdev_ms_array) == 0);
4895                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4896                     vml[c]->vdev_top->vdev_ms_shift) == 0);
4897                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4898                     vml[c]->vdev_top->vdev_asize) == 0);
4899                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4900                     vml[c]->vdev_top->vdev_ashift) == 0);
4901         }
4902 
4903         if (error != 0) {
4904                 kmem_free(vml, children * sizeof (vdev_t *));
4905                 kmem_free(glist, children * sizeof (uint64_t));
4906                 return (spa_vdev_exit(spa, NULL, txg, error));
4907         }
4908 
4909         /* stop writers from using the disks */
4910         for (c = 0; c < children; c++) {
4911                 if (vml[c] != NULL)
4912                         vml[c]->vdev_offline = B_TRUE;
4913         }
4914         vdev_reopen(spa->spa_root_vdev);
4915 
4916         /*
4917          * Temporarily record the splitting vdevs in the spa config.  This
4918          * will disappear once the config is regenerated.
4919          */
4920         VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4921         VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4922             glist, children) == 0);
4923         kmem_free(glist, children * sizeof (uint64_t));
4924 
4925         mutex_enter(&spa->spa_props_lock);
4926         VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4927             nvl) == 0);
4928         mutex_exit(&spa->spa_props_lock);
4929         spa->spa_config_splitting = nvl;
4930         vdev_config_dirty(spa->spa_root_vdev);
4931 
4932         /* configure and create the new pool */
4933         VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4934         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4935             exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4936         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4937             spa_version(spa)) == 0);
4938         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4939             spa->spa_config_txg) == 0);
4940         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4941             spa_generate_guid(NULL)) == 0);
4942         (void) nvlist_lookup_string(props,
4943             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4944 
4945         /* add the new pool to the namespace */
4946         newspa = spa_add(newname, config, altroot);
4947         newspa->spa_config_txg = spa->spa_config_txg;
4948         spa_set_log_state(newspa, SPA_LOG_CLEAR);
4949 
4950         /* release the spa config lock, retaining the namespace lock */
4951         spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4952 
4953         if (zio_injection_enabled)
4954                 zio_handle_panic_injection(spa, FTAG, 1);
4955 
4956         spa_activate(newspa, spa_mode_global);
4957         spa_async_suspend(newspa);
4958 
4959         /* create the new pool from the disks of the original pool */
4960         error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4961         if (error)
4962                 goto out;
4963 
4964         /* if that worked, generate a real config for the new pool */
4965         if (newspa->spa_root_vdev != NULL) {
4966                 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4967                     NV_UNIQUE_NAME, KM_SLEEP) == 0);
4968                 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4969                     ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4970                 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4971                     B_TRUE));
4972         }
4973 
4974         /* set the props */
4975         if (props != NULL) {
4976                 spa_configfile_set(newspa, props, B_FALSE);
4977                 error = spa_prop_set(newspa, props);
4978                 if (error)
4979                         goto out;
4980         }
4981 
4982         /* flush everything */
4983         txg = spa_vdev_config_enter(newspa);
4984         vdev_config_dirty(newspa->spa_root_vdev);
4985         (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4986 
4987         if (zio_injection_enabled)
4988                 zio_handle_panic_injection(spa, FTAG, 2);
4989 
4990         spa_async_resume(newspa);
4991 
4992         /* finally, update the original pool's config */
4993         txg = spa_vdev_config_enter(spa);
4994         tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4995         error = dmu_tx_assign(tx, TXG_WAIT);
4996         if (error != 0)
4997                 dmu_tx_abort(tx);
4998         for (c = 0; c < children; c++) {
4999                 if (vml[c] != NULL) {
5000                         vdev_split(vml[c]);
5001                         if (error == 0)
5002                                 spa_history_log_internal(spa, "detach", tx,
5003                                     "vdev=%s", vml[c]->vdev_path);
5004                         vdev_free(vml[c]);
5005                 }
5006         }
5007         vdev_config_dirty(spa->spa_root_vdev);
5008         spa->spa_config_splitting = NULL;
5009         nvlist_free(nvl);
5010         if (error == 0)
5011                 dmu_tx_commit(tx);
5012         (void) spa_vdev_exit(spa, NULL, txg, 0);
5013 
5014         if (zio_injection_enabled)
5015                 zio_handle_panic_injection(spa, FTAG, 3);
5016 
5017         /* split is complete; log a history record */
5018         spa_history_log_internal(newspa, "split", NULL,
5019             "from pool %s", spa_name(spa));
5020 
5021         kmem_free(vml, children * sizeof (vdev_t *));
5022 
5023         /* if we're not going to mount the filesystems in userland, export */
5024         if (exp)
5025                 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5026                     B_FALSE, B_FALSE);
5027 
5028         return (error);
5029 
5030 out:
5031         spa_unload(newspa);
5032         spa_deactivate(newspa);
5033         spa_remove(newspa);
5034 
5035         txg = spa_vdev_config_enter(spa);
5036 
5037         /* re-online all offlined disks */
5038         for (c = 0; c < children; c++) {
5039                 if (vml[c] != NULL)
5040                         vml[c]->vdev_offline = B_FALSE;
5041         }
5042         vdev_reopen(spa->spa_root_vdev);
5043 
5044         nvlist_free(spa->spa_config_splitting);
5045         spa->spa_config_splitting = NULL;
5046         (void) spa_vdev_exit(spa, NULL, txg, error);
5047 
5048         kmem_free(vml, children * sizeof (vdev_t *));
5049         return (error);
5050 }
5051 
5052 static nvlist_t *
5053 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5054 {
5055         for (int i = 0; i < count; i++) {
5056                 uint64_t guid;
5057 
5058                 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5059                     &guid) == 0);
5060 
5061                 if (guid == target_guid)
5062                         return (nvpp[i]);
5063         }
5064 
5065         return (NULL);
5066 }
5067 
5068 static void
5069 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5070         nvlist_t *dev_to_remove)
5071 {
5072         nvlist_t **newdev = NULL;
5073 
5074         if (count > 1)
5075                 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5076 
5077         for (int i = 0, j = 0; i < count; i++) {
5078                 if (dev[i] == dev_to_remove)
5079                         continue;
5080                 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5081         }
5082 
5083         VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5084         VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5085 
5086         for (int i = 0; i < count - 1; i++)
5087                 nvlist_free(newdev[i]);
5088 
5089         if (count > 1)
5090                 kmem_free(newdev, (count - 1) * sizeof (void *));
5091 }
5092 
5093 /*
5094  * Evacuate the device.
5095  */
5096 static int
5097 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5098 {
5099         uint64_t txg;
5100         int error = 0;
5101 
5102         ASSERT(MUTEX_HELD(&spa_namespace_lock));
5103         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5104         ASSERT(vd == vd->vdev_top);
5105 
5106         /*
5107          * Evacuate the device.  We don't hold the config lock as writer
5108          * since we need to do I/O but we do keep the
5109          * spa_namespace_lock held.  Once this completes the device
5110          * should no longer have any blocks allocated on it.
5111          */
5112         if (vd->vdev_islog) {
5113                 if (vd->vdev_stat.vs_alloc != 0)
5114                         error = spa_offline_log(spa);
5115         } else {
5116                 error = SET_ERROR(ENOTSUP);
5117         }
5118 
5119         if (error)
5120                 return (error);
5121 
5122         /*
5123          * The evacuation succeeded.  Remove any remaining MOS metadata
5124          * associated with this vdev, and wait for these changes to sync.
5125          */
5126         ASSERT0(vd->vdev_stat.vs_alloc);
5127         txg = spa_vdev_config_enter(spa);
5128         vd->vdev_removing = B_TRUE;
5129         vdev_dirty_leaves(vd, VDD_DTL, txg);
5130         vdev_config_dirty(vd);
5131         spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5132 
5133         return (0);
5134 }
5135 
5136 /*
5137  * Complete the removal by cleaning up the namespace.
5138  */
5139 static void
5140 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5141 {
5142         vdev_t *rvd = spa->spa_root_vdev;
5143         uint64_t id = vd->vdev_id;
5144         boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5145 
5146         ASSERT(MUTEX_HELD(&spa_namespace_lock));
5147         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5148         ASSERT(vd == vd->vdev_top);
5149 
5150         /*
5151          * Only remove any devices which are empty.
5152          */
5153         if (vd->vdev_stat.vs_alloc != 0)
5154                 return;
5155 
5156         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5157 
5158         if (list_link_active(&vd->vdev_state_dirty_node))
5159                 vdev_state_clean(vd);
5160         if (list_link_active(&vd->vdev_config_dirty_node))
5161                 vdev_config_clean(vd);
5162 
5163         vdev_free(vd);
5164 
5165         if (last_vdev) {
5166                 vdev_compact_children(rvd);
5167         } else {
5168                 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5169                 vdev_add_child(rvd, vd);
5170         }
5171         vdev_config_dirty(rvd);
5172 
5173         /*
5174          * Reassess the health of our root vdev.
5175          */
5176         vdev_reopen(rvd);
5177 }
5178 
5179 /*
5180  * Remove a device from the pool -
5181  *
5182  * Removing a device from the vdev namespace requires several steps
5183  * and can take a significant amount of time.  As a result we use
5184  * the spa_vdev_config_[enter/exit] functions which allow us to
5185  * grab and release the spa_config_lock while still holding the namespace
5186  * lock.  During each step the configuration is synced out.
5187  *
5188  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5189  * devices.
5190  */
5191 int
5192 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5193 {
5194         vdev_t *vd;
5195         metaslab_group_t *mg;
5196         nvlist_t **spares, **l2cache, *nv;
5197         uint64_t txg = 0;
5198         uint_t nspares, nl2cache;
5199         int error = 0;
5200         boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5201 
5202         ASSERT(spa_writeable(spa));
5203 
5204         if (!locked)
5205                 txg = spa_vdev_enter(spa);
5206 
5207         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5208 
5209         if (spa->spa_spares.sav_vdevs != NULL &&
5210             nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5211             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5212             (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5213                 /*
5214                  * Only remove the hot spare if it's not currently in use
5215                  * in this pool.
5216                  */
5217                 if (vd == NULL || unspare) {
5218                         spa_vdev_remove_aux(spa->spa_spares.sav_config,
5219                             ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5220                         spa_load_spares(spa);
5221                         spa->spa_spares.sav_sync = B_TRUE;
5222                 } else {
5223                         error = SET_ERROR(EBUSY);
5224                 }
5225         } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5226             nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5227             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5228             (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5229                 /*
5230                  * Cache devices can always be removed.
5231                  */
5232                 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5233                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5234                 spa_load_l2cache(spa);
5235                 spa->spa_l2cache.sav_sync = B_TRUE;
5236         } else if (vd != NULL && vd->vdev_islog) {
5237                 ASSERT(!locked);
5238                 ASSERT(vd == vd->vdev_top);
5239 
5240                 /*
5241                  * XXX - Once we have bp-rewrite this should
5242                  * become the common case.
5243                  */
5244 
5245                 mg = vd->vdev_mg;
5246 
5247                 /*
5248                  * Stop allocating from this vdev.
5249                  */
5250                 metaslab_group_passivate(mg);
5251 
5252                 /*
5253                  * Wait for the youngest allocations and frees to sync,
5254                  * and then wait for the deferral of those frees to finish.
5255                  */
5256                 spa_vdev_config_exit(spa, NULL,
5257                     txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5258 
5259                 /*
5260                  * Attempt to evacuate the vdev.
5261                  */
5262                 error = spa_vdev_remove_evacuate(spa, vd);
5263 
5264                 txg = spa_vdev_config_enter(spa);
5265 
5266                 /*
5267                  * If we couldn't evacuate the vdev, unwind.
5268                  */
5269                 if (error) {
5270                         metaslab_group_activate(mg);
5271                         return (spa_vdev_exit(spa, NULL, txg, error));
5272                 }
5273 
5274                 /*
5275                  * Clean up the vdev namespace.
5276                  */
5277                 spa_vdev_remove_from_namespace(spa, vd);
5278 
5279         } else if (vd != NULL) {
5280                 /*
5281                  * Normal vdevs cannot be removed (yet).
5282                  */
5283                 error = SET_ERROR(ENOTSUP);
5284         } else {
5285                 /*
5286                  * There is no vdev of any kind with the specified guid.
5287                  */
5288                 error = SET_ERROR(ENOENT);
5289         }
5290 
5291         if (!locked)
5292                 return (spa_vdev_exit(spa, NULL, txg, error));
5293 
5294         return (error);
5295 }
5296 
5297 /*
5298  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5299  * currently spared, so we can detach it.
5300  */
5301 static vdev_t *
5302 spa_vdev_resilver_done_hunt(vdev_t *vd)
5303 {
5304         vdev_t *newvd, *oldvd;
5305 
5306         for (int c = 0; c < vd->vdev_children; c++) {
5307                 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5308                 if (oldvd != NULL)
5309                         return (oldvd);
5310         }
5311 
5312         /*
5313          * Check for a completed replacement.  We always consider the first
5314          * vdev in the list to be the oldest vdev, and the last one to be
5315          * the newest (see spa_vdev_attach() for how that works).  In
5316          * the case where the newest vdev is faulted, we will not automatically
5317          * remove it after a resilver completes.  This is OK as it will require
5318          * user intervention to determine which disk the admin wishes to keep.
5319          */
5320         if (vd->vdev_ops == &vdev_replacing_ops) {
5321                 ASSERT(vd->vdev_children > 1);
5322 
5323                 newvd = vd->vdev_child[vd->vdev_children - 1];
5324                 oldvd = vd->vdev_child[0];
5325 
5326                 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5327                     vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5328                     !vdev_dtl_required(oldvd))
5329                         return (oldvd);
5330         }
5331 
5332         /*
5333          * Check for a completed resilver with the 'unspare' flag set.
5334          */
5335         if (vd->vdev_ops == &vdev_spare_ops) {
5336                 vdev_t *first = vd->vdev_child[0];
5337                 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5338 
5339                 if (last->vdev_unspare) {
5340                         oldvd = first;
5341                         newvd = last;
5342                 } else if (first->vdev_unspare) {
5343                         oldvd = last;
5344                         newvd = first;
5345                 } else {
5346                         oldvd = NULL;
5347                 }
5348 
5349                 if (oldvd != NULL &&
5350                     vdev_dtl_empty(newvd, DTL_MISSING) &&
5351                     vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5352                     !vdev_dtl_required(oldvd))
5353                         return (oldvd);
5354 
5355                 /*
5356                  * If there are more than two spares attached to a disk,
5357                  * and those spares are not required, then we want to
5358                  * attempt to free them up now so that they can be used
5359                  * by other pools.  Once we're back down to a single
5360                  * disk+spare, we stop removing them.
5361                  */
5362                 if (vd->vdev_children > 2) {
5363                         newvd = vd->vdev_child[1];
5364 
5365                         if (newvd->vdev_isspare && last->vdev_isspare &&
5366                             vdev_dtl_empty(last, DTL_MISSING) &&
5367                             vdev_dtl_empty(last, DTL_OUTAGE) &&
5368                             !vdev_dtl_required(newvd))
5369                                 return (newvd);
5370                 }
5371         }
5372 
5373         return (NULL);
5374 }
5375 
5376 static void
5377 spa_vdev_resilver_done(spa_t *spa)
5378 {
5379         vdev_t *vd, *pvd, *ppvd;
5380         uint64_t guid, sguid, pguid, ppguid;
5381 
5382         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5383 
5384         while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5385                 pvd = vd->vdev_parent;
5386                 ppvd = pvd->vdev_parent;
5387                 guid = vd->vdev_guid;
5388                 pguid = pvd->vdev_guid;
5389                 ppguid = ppvd->vdev_guid;
5390                 sguid = 0;
5391                 /*
5392                  * If we have just finished replacing a hot spared device, then
5393                  * we need to detach the parent's first child (the original hot
5394                  * spare) as well.
5395                  */
5396                 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5397                     ppvd->vdev_children == 2) {
5398                         ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5399                         sguid = ppvd->vdev_child[1]->vdev_guid;
5400                 }
5401                 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5402 
5403                 spa_config_exit(spa, SCL_ALL, FTAG);
5404                 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5405                         return;
5406                 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5407                         return;
5408                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5409         }
5410 
5411         spa_config_exit(spa, SCL_ALL, FTAG);
5412 }
5413 
5414 /*
5415  * Update the stored path or FRU for this vdev.
5416  */
5417 int
5418 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5419     boolean_t ispath)
5420 {
5421         vdev_t *vd;
5422         boolean_t sync = B_FALSE;
5423 
5424         ASSERT(spa_writeable(spa));
5425 
5426         spa_vdev_state_enter(spa, SCL_ALL);
5427 
5428         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5429                 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5430 
5431         if (!vd->vdev_ops->vdev_op_leaf)
5432                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5433 
5434         if (ispath) {
5435                 if (strcmp(value, vd->vdev_path) != 0) {
5436                         spa_strfree(vd->vdev_path);
5437                         vd->vdev_path = spa_strdup(value);
5438                         sync = B_TRUE;
5439                 }
5440         } else {
5441                 if (vd->vdev_fru == NULL) {
5442                         vd->vdev_fru = spa_strdup(value);
5443                         sync = B_TRUE;
5444                 } else if (strcmp(value, vd->vdev_fru) != 0) {
5445                         spa_strfree(vd->vdev_fru);
5446                         vd->vdev_fru = spa_strdup(value);
5447                         sync = B_TRUE;
5448                 }
5449         }
5450 
5451         return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5452 }
5453 
5454 int
5455 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5456 {
5457         return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5458 }
5459 
5460 int
5461 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5462 {
5463         return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5464 }
5465 
5466 /*
5467  * ==========================================================================
5468  * SPA Scanning
5469  * ==========================================================================
5470  */
5471 
5472 int
5473 spa_scan_stop(spa_t *spa)
5474 {
5475         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5476         if (dsl_scan_resilvering(spa->spa_dsl_pool))
5477                 return (SET_ERROR(EBUSY));
5478         return (dsl_scan_cancel(spa->spa_dsl_pool));
5479 }
5480 
5481 int
5482 spa_scan(spa_t *spa, pool_scan_func_t func)
5483 {
5484         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5485 
5486         if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5487                 return (SET_ERROR(ENOTSUP));
5488 
5489         /*
5490          * If a resilver was requested, but there is no DTL on a
5491          * writeable leaf device, we have nothing to do.
5492          */
5493         if (func == POOL_SCAN_RESILVER &&
5494             !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5495                 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5496                 return (0);
5497         }
5498 
5499         return (dsl_scan(spa->spa_dsl_pool, func));
5500 }
5501 
5502 /*
5503  * ==========================================================================
5504  * SPA async task processing
5505  * ==========================================================================
5506  */
5507 
5508 static void
5509 spa_async_remove(spa_t *spa, vdev_t *vd)
5510 {
5511         if (vd->vdev_remove_wanted) {
5512                 vd->vdev_remove_wanted = B_FALSE;
5513                 vd->vdev_delayed_close = B_FALSE;
5514                 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5515 
5516                 /*
5517                  * We want to clear the stats, but we don't want to do a full
5518                  * vdev_clear() as that will cause us to throw away
5519                  * degraded/faulted state as well as attempt to reopen the
5520                  * device, all of which is a waste.
5521                  */
5522                 vd->vdev_stat.vs_read_errors = 0;
5523                 vd->vdev_stat.vs_write_errors = 0;
5524                 vd->vdev_stat.vs_checksum_errors = 0;
5525 
5526                 vdev_state_dirty(vd->vdev_top);
5527         }
5528 
5529         for (int c = 0; c < vd->vdev_children; c++)
5530                 spa_async_remove(spa, vd->vdev_child[c]);
5531 }
5532 
5533 static void
5534 spa_async_probe(spa_t *spa, vdev_t *vd)
5535 {
5536         if (vd->vdev_probe_wanted) {
5537                 vd->vdev_probe_wanted = B_FALSE;
5538                 vdev_reopen(vd);        /* vdev_open() does the actual probe */
5539         }
5540 
5541         for (int c = 0; c < vd->vdev_children; c++)
5542                 spa_async_probe(spa, vd->vdev_child[c]);
5543 }
5544 
5545 static void
5546 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5547 {
5548         sysevent_id_t eid;
5549         nvlist_t *attr;
5550         char *physpath;
5551 
5552         if (!spa->spa_autoexpand)
5553                 return;
5554 
5555         for (int c = 0; c < vd->vdev_children; c++) {
5556                 vdev_t *cvd = vd->vdev_child[c];
5557                 spa_async_autoexpand(spa, cvd);
5558         }
5559 
5560         if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5561                 return;
5562 
5563         physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5564         (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5565 
5566         VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5567         VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5568 
5569         (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5570             ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5571 
5572         nvlist_free(attr);
5573         kmem_free(physpath, MAXPATHLEN);
5574 }
5575 
5576 static void
5577 spa_async_thread(spa_t *spa)
5578 {
5579         int tasks;
5580 
5581         ASSERT(spa->spa_sync_on);
5582 
5583         mutex_enter(&spa->spa_async_lock);
5584         tasks = spa->spa_async_tasks;
5585         spa->spa_async_tasks = 0;
5586         mutex_exit(&spa->spa_async_lock);
5587 
5588         /*
5589          * See if the config needs to be updated.
5590          */
5591         if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5592                 uint64_t old_space, new_space;
5593 
5594                 mutex_enter(&spa_namespace_lock);
5595                 old_space = metaslab_class_get_space(spa_normal_class(spa));
5596                 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5597                 new_space = metaslab_class_get_space(spa_normal_class(spa));
5598                 mutex_exit(&spa_namespace_lock);
5599 
5600                 /*
5601                  * If the pool grew as a result of the config update,
5602                  * then log an internal history event.
5603                  */
5604                 if (new_space != old_space) {
5605                         spa_history_log_internal(spa, "vdev online", NULL,
5606                             "pool '%s' size: %llu(+%llu)",
5607                             spa_name(spa), new_space, new_space - old_space);
5608                 }
5609         }
5610 
5611         /*
5612          * See if any devices need to be marked REMOVED.
5613          */
5614         if (tasks & SPA_ASYNC_REMOVE) {
5615                 spa_vdev_state_enter(spa, SCL_NONE);
5616                 spa_async_remove(spa, spa->spa_root_vdev);
5617                 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5618                         spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5619                 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5620                         spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5621                 (void) spa_vdev_state_exit(spa, NULL, 0);
5622         }
5623 
5624         if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5625                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5626                 spa_async_autoexpand(spa, spa->spa_root_vdev);
5627                 spa_config_exit(spa, SCL_CONFIG, FTAG);
5628         }
5629 
5630         /*
5631          * See if any devices need to be probed.
5632          */
5633         if (tasks & SPA_ASYNC_PROBE) {
5634                 spa_vdev_state_enter(spa, SCL_NONE);
5635                 spa_async_probe(spa, spa->spa_root_vdev);
5636                 (void) spa_vdev_state_exit(spa, NULL, 0);
5637         }
5638 
5639         /*
5640          * If any devices are done replacing, detach them.
5641          */
5642         if (tasks & SPA_ASYNC_RESILVER_DONE)
5643                 spa_vdev_resilver_done(spa);
5644 
5645         /*
5646          * Kick off a resilver.
5647          */
5648         if (tasks & SPA_ASYNC_RESILVER)
5649                 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5650 
5651         /*
5652          * Let the world know that we're done.
5653          */
5654         mutex_enter(&spa->spa_async_lock);
5655         spa->spa_async_thread = NULL;
5656         cv_broadcast(&spa->spa_async_cv);
5657         mutex_exit(&spa->spa_async_lock);
5658         thread_exit();
5659 }
5660 
5661 void
5662 spa_async_suspend(spa_t *spa)
5663 {
5664         mutex_enter(&spa->spa_async_lock);
5665         spa->spa_async_suspended++;
5666         while (spa->spa_async_thread != NULL)
5667                 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5668         mutex_exit(&spa->spa_async_lock);
5669 }
5670 
5671 void
5672 spa_async_resume(spa_t *spa)
5673 {
5674         mutex_enter(&spa->spa_async_lock);
5675         ASSERT(spa->spa_async_suspended != 0);
5676         spa->spa_async_suspended--;
5677         mutex_exit(&spa->spa_async_lock);
5678 }
5679 
5680 static boolean_t
5681 spa_async_tasks_pending(spa_t *spa)
5682 {
5683         uint_t non_config_tasks;
5684         uint_t config_task;
5685         boolean_t config_task_suspended;
5686 
5687         non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5688         config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5689         if (spa->spa_ccw_fail_time == 0) {
5690                 config_task_suspended = B_FALSE;
5691         } else {
5692                 config_task_suspended =
5693                     (gethrtime() - spa->spa_ccw_fail_time) <
5694                     (zfs_ccw_retry_interval * NANOSEC);
5695         }
5696 
5697         return (non_config_tasks || (config_task && !config_task_suspended));
5698 }
5699 
5700 static void
5701 spa_async_dispatch(spa_t *spa)
5702 {
5703         mutex_enter(&spa->spa_async_lock);
5704         if (spa_async_tasks_pending(spa) &&
5705             !spa->spa_async_suspended &&
5706             spa->spa_async_thread == NULL &&
5707             rootdir != NULL)
5708                 spa->spa_async_thread = thread_create(NULL, 0,
5709                     spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5710         mutex_exit(&spa->spa_async_lock);
5711 }
5712 
5713 void
5714 spa_async_request(spa_t *spa, int task)
5715 {
5716         zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5717         mutex_enter(&spa->spa_async_lock);
5718         spa->spa_async_tasks |= task;
5719         mutex_exit(&spa->spa_async_lock);
5720 }
5721 
5722 /*
5723  * ==========================================================================
5724  * SPA syncing routines
5725  * ==========================================================================
5726  */
5727 
5728 static int
5729 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5730 {
5731         bpobj_t *bpo = arg;
5732         bpobj_enqueue(bpo, bp, tx);
5733         return (0);
5734 }
5735 
5736 static int
5737 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5738 {
5739         zio_t *zio = arg;
5740 
5741         zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5742             zio->io_flags));
5743         return (0);
5744 }
5745 
5746 /*
5747  * Note: this simple function is not inlined to make it easier to dtrace the
5748  * amount of time spent syncing frees.
5749  */
5750 static void
5751 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5752 {
5753         zio_t *zio = zio_root(spa, NULL, NULL, 0);
5754         bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5755         VERIFY(zio_wait(zio) == 0);
5756 }
5757 
5758 /*
5759  * Note: this simple function is not inlined to make it easier to dtrace the
5760  * amount of time spent syncing deferred frees.
5761  */
5762 static void
5763 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5764 {
5765         zio_t *zio = zio_root(spa, NULL, NULL, 0);
5766         VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5767             spa_free_sync_cb, zio, tx), ==, 0);
5768         VERIFY0(zio_wait(zio));
5769 }
5770 
5771 
5772 static void
5773 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5774 {
5775         char *packed = NULL;
5776         size_t bufsize;
5777         size_t nvsize = 0;
5778         dmu_buf_t *db;
5779 
5780         VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5781 
5782         /*
5783          * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5784          * information.  This avoids the dbuf_will_dirty() path and
5785          * saves us a pre-read to get data we don't actually care about.
5786          */
5787         bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5788         packed = kmem_alloc(bufsize, KM_SLEEP);
5789 
5790         VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5791             KM_SLEEP) == 0);
5792         bzero(packed + nvsize, bufsize - nvsize);
5793 
5794         dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5795 
5796         kmem_free(packed, bufsize);
5797 
5798         VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5799         dmu_buf_will_dirty(db, tx);
5800         *(uint64_t *)db->db_data = nvsize;
5801         dmu_buf_rele(db, FTAG);
5802 }
5803 
5804 static void
5805 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5806     const char *config, const char *entry)
5807 {
5808         nvlist_t *nvroot;
5809         nvlist_t **list;
5810         int i;
5811 
5812         if (!sav->sav_sync)
5813                 return;
5814 
5815         /*
5816          * Update the MOS nvlist describing the list of available devices.
5817          * spa_validate_aux() will have already made sure this nvlist is
5818          * valid and the vdevs are labeled appropriately.
5819          */
5820         if (sav->sav_object == 0) {
5821                 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5822                     DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5823                     sizeof (uint64_t), tx);
5824                 VERIFY(zap_update(spa->spa_meta_objset,
5825                     DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5826                     &sav->sav_object, tx) == 0);
5827         }
5828 
5829         VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5830         if (sav->sav_count == 0) {
5831                 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5832         } else {
5833                 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5834                 for (i = 0; i < sav->sav_count; i++)
5835                         list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5836                             B_FALSE, VDEV_CONFIG_L2CACHE);
5837                 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5838                     sav->sav_count) == 0);
5839                 for (i = 0; i < sav->sav_count; i++)
5840                         nvlist_free(list[i]);
5841                 kmem_free(list, sav->sav_count * sizeof (void *));
5842         }
5843 
5844         spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5845         nvlist_free(nvroot);
5846 
5847         sav->sav_sync = B_FALSE;
5848 }
5849 
5850 static void
5851 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5852 {
5853         nvlist_t *config;
5854 
5855         if (list_is_empty(&spa->spa_config_dirty_list))
5856                 return;
5857 
5858         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5859 
5860         config = spa_config_generate(spa, spa->spa_root_vdev,
5861             dmu_tx_get_txg(tx), B_FALSE);
5862 
5863         /*
5864          * If we're upgrading the spa version then make sure that
5865          * the config object gets updated with the correct version.
5866          */
5867         if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5868                 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5869                     spa->spa_uberblock.ub_version);
5870 
5871         spa_config_exit(spa, SCL_STATE, FTAG);
5872 
5873         if (spa->spa_config_syncing)
5874                 nvlist_free(spa->spa_config_syncing);
5875         spa->spa_config_syncing = config;
5876 
5877         spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5878 }
5879 
5880 static void
5881 spa_sync_version(void *arg, dmu_tx_t *tx)
5882 {
5883         uint64_t *versionp = arg;
5884         uint64_t version = *versionp;
5885         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5886 
5887         /*
5888          * Setting the version is special cased when first creating the pool.
5889          */
5890         ASSERT(tx->tx_txg != TXG_INITIAL);
5891 
5892         ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5893         ASSERT(version >= spa_version(spa));
5894 
5895         spa->spa_uberblock.ub_version = version;
5896         vdev_config_dirty(spa->spa_root_vdev);
5897         spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5898 }
5899 
5900 /*
5901  * Set zpool properties.
5902  */
5903 static void
5904 spa_sync_props(void *arg, dmu_tx_t *tx)
5905 {
5906         nvlist_t *nvp = arg;
5907         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5908         objset_t *mos = spa->spa_meta_objset;
5909         nvpair_t *elem = NULL;
5910 
5911         mutex_enter(&spa->spa_props_lock);
5912 
5913         while ((elem = nvlist_next_nvpair(nvp, elem))) {
5914                 uint64_t intval;
5915                 char *strval, *fname;
5916                 zpool_prop_t prop;
5917                 const char *propname;
5918                 zprop_type_t proptype;
5919                 zfeature_info_t *feature;
5920 
5921                 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5922                 case ZPROP_INVAL:
5923                         /*
5924                          * We checked this earlier in spa_prop_validate().
5925                          */
5926                         ASSERT(zpool_prop_feature(nvpair_name(elem)));
5927 
5928                         fname = strchr(nvpair_name(elem), '@') + 1;
5929                         VERIFY0(zfeature_lookup_name(fname, &feature));
5930 
5931                         spa_feature_enable(spa, feature, tx);
5932                         spa_history_log_internal(spa, "set", tx,
5933                             "%s=enabled", nvpair_name(elem));
5934                         break;
5935 
5936                 case ZPOOL_PROP_VERSION:
5937                         intval = fnvpair_value_uint64(elem);
5938                         /*
5939                          * The version is synced seperatly before other
5940                          * properties and should be correct by now.
5941                          */
5942                         ASSERT3U(spa_version(spa), >=, intval);
5943                         break;
5944 
5945                 case ZPOOL_PROP_ALTROOT:
5946                         /*
5947                          * 'altroot' is a non-persistent property. It should
5948                          * have been set temporarily at creation or import time.
5949                          */
5950                         ASSERT(spa->spa_root != NULL);
5951                         break;
5952 
5953                 case ZPOOL_PROP_READONLY:
5954                 case ZPOOL_PROP_CACHEFILE:
5955                         /*
5956                          * 'readonly' and 'cachefile' are also non-persisitent
5957                          * properties.
5958                          */
5959                         break;
5960                 case ZPOOL_PROP_COMMENT:
5961                         strval = fnvpair_value_string(elem);
5962                         if (spa->spa_comment != NULL)
5963                                 spa_strfree(spa->spa_comment);
5964                         spa->spa_comment = spa_strdup(strval);
5965                         /*
5966                          * We need to dirty the configuration on all the vdevs
5967                          * so that their labels get updated.  It's unnecessary
5968                          * to do this for pool creation since the vdev's
5969                          * configuratoin has already been dirtied.
5970                          */
5971                         if (tx->tx_txg != TXG_INITIAL)
5972                                 vdev_config_dirty(spa->spa_root_vdev);
5973                         spa_history_log_internal(spa, "set", tx,
5974                             "%s=%s", nvpair_name(elem), strval);
5975                         break;
5976                 default:
5977                         /*
5978                          * Set pool property values in the poolprops mos object.
5979                          */
5980                         if (spa->spa_pool_props_object == 0) {
5981                                 spa->spa_pool_props_object =
5982                                     zap_create_link(mos, DMU_OT_POOL_PROPS,
5983                                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5984                                     tx);
5985                         }
5986 
5987                         /* normalize the property name */
5988                         propname = zpool_prop_to_name(prop);
5989                         proptype = zpool_prop_get_type(prop);
5990 
5991                         if (nvpair_type(elem) == DATA_TYPE_STRING) {
5992                                 ASSERT(proptype == PROP_TYPE_STRING);
5993                                 strval = fnvpair_value_string(elem);
5994                                 VERIFY0(zap_update(mos,
5995                                     spa->spa_pool_props_object, propname,
5996                                     1, strlen(strval) + 1, strval, tx));
5997                                 spa_history_log_internal(spa, "set", tx,
5998                                     "%s=%s", nvpair_name(elem), strval);
5999                         } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6000                                 intval = fnvpair_value_uint64(elem);
6001 
6002                                 if (proptype == PROP_TYPE_INDEX) {
6003                                         const char *unused;
6004                                         VERIFY0(zpool_prop_index_to_string(
6005                                             prop, intval, &unused));
6006                                 }
6007                                 VERIFY0(zap_update(mos,
6008                                     spa->spa_pool_props_object, propname,
6009                                     8, 1, &intval, tx));
6010                                 spa_history_log_internal(spa, "set", tx,
6011                                     "%s=%lld", nvpair_name(elem), intval);
6012                         } else {
6013                                 ASSERT(0); /* not allowed */
6014                         }
6015 
6016                         switch (prop) {
6017                         case ZPOOL_PROP_DELEGATION:
6018                                 spa->spa_delegation = intval;
6019                                 break;
6020                         case ZPOOL_PROP_BOOTFS:
6021                                 spa->spa_bootfs = intval;
6022                                 break;
6023                         case ZPOOL_PROP_FAILUREMODE:
6024                                 spa->spa_failmode = intval;
6025                                 break;
6026                         case ZPOOL_PROP_AUTOEXPAND:
6027                                 spa->spa_autoexpand = intval;
6028                                 if (tx->tx_txg != TXG_INITIAL)
6029                                         spa_async_request(spa,
6030                                             SPA_ASYNC_AUTOEXPAND);
6031                                 break;
6032                         case ZPOOL_PROP_DEDUPDITTO:
6033                                 spa->spa_dedup_ditto = intval;
6034                                 break;
6035                         default:
6036                                 break;
6037                         }
6038                 }
6039 
6040         }
6041 
6042         mutex_exit(&spa->spa_props_lock);
6043 }
6044 
6045 /*
6046  * Perform one-time upgrade on-disk changes.  spa_version() does not
6047  * reflect the new version this txg, so there must be no changes this
6048  * txg to anything that the upgrade code depends on after it executes.
6049  * Therefore this must be called after dsl_pool_sync() does the sync
6050  * tasks.
6051  */
6052 static void
6053 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6054 {
6055         dsl_pool_t *dp = spa->spa_dsl_pool;
6056 
6057         ASSERT(spa->spa_sync_pass == 1);
6058 
6059         rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6060 
6061         if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6062             spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6063                 dsl_pool_create_origin(dp, tx);
6064 
6065                 /* Keeping the origin open increases spa_minref */
6066                 spa->spa_minref += 3;
6067         }
6068 
6069         if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6070             spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6071                 dsl_pool_upgrade_clones(dp, tx);
6072         }
6073 
6074         if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6075             spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6076                 dsl_pool_upgrade_dir_clones(dp, tx);
6077 
6078                 /* Keeping the freedir open increases spa_minref */
6079                 spa->spa_minref += 3;
6080         }
6081 
6082         if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6083             spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6084                 spa_feature_create_zap_objects(spa, tx);
6085         }
6086         rrw_exit(&dp->dp_config_rwlock, FTAG);
6087 }
6088 
6089 /*
6090  * Sync the specified transaction group.  New blocks may be dirtied as
6091  * part of the process, so we iterate until it converges.
6092  */
6093 void
6094 spa_sync(spa_t *spa, uint64_t txg)
6095 {
6096         dsl_pool_t *dp = spa->spa_dsl_pool;
6097         objset_t *mos = spa->spa_meta_objset;
6098         bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6099         vdev_t *rvd = spa->spa_root_vdev;
6100         vdev_t *vd;
6101         dmu_tx_t *tx;
6102         int error;
6103 
6104         VERIFY(spa_writeable(spa));
6105 
6106         /*
6107          * Lock out configuration changes.
6108          */
6109         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6110 
6111         spa->spa_syncing_txg = txg;
6112         spa->spa_sync_pass = 0;
6113 
6114         /*
6115          * If there are any pending vdev state changes, convert them
6116          * into config changes that go out with this transaction group.
6117          */
6118         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6119         while (list_head(&spa->spa_state_dirty_list) != NULL) {
6120                 /*
6121                  * We need the write lock here because, for aux vdevs,
6122                  * calling vdev_config_dirty() modifies sav_config.
6123                  * This is ugly and will become unnecessary when we
6124                  * eliminate the aux vdev wart by integrating all vdevs
6125                  * into the root vdev tree.
6126                  */
6127                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6128                 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6129                 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6130                         vdev_state_clean(vd);
6131                         vdev_config_dirty(vd);
6132                 }
6133                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6134                 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6135         }
6136         spa_config_exit(spa, SCL_STATE, FTAG);
6137 
6138         tx = dmu_tx_create_assigned(dp, txg);
6139 
6140         spa->spa_sync_starttime = gethrtime();
6141         VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6142             spa->spa_sync_starttime + spa->spa_deadman_synctime));
6143 
6144         /*
6145          * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6146          * set spa_deflate if we have no raid-z vdevs.
6147          */
6148         if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6149             spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6150                 int i;
6151 
6152                 for (i = 0; i < rvd->vdev_children; i++) {
6153                         vd = rvd->vdev_child[i];
6154                         if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6155                                 break;
6156                 }
6157                 if (i == rvd->vdev_children) {
6158                         spa->spa_deflate = TRUE;
6159                         VERIFY(0 == zap_add(spa->spa_meta_objset,
6160                             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6161                             sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6162                 }
6163         }
6164 
6165         /*
6166          * If anything has changed in this txg, or if someone is waiting
6167          * for this txg to sync (eg, spa_vdev_remove()), push the
6168          * deferred frees from the previous txg.  If not, leave them
6169          * alone so that we don't generate work on an otherwise idle
6170          * system.
6171          */
6172         if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6173             !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6174             !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6175             ((dsl_scan_active(dp->dp_scan) ||
6176             txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6177                 spa_sync_deferred_frees(spa, tx);
6178         }
6179 
6180         /*
6181          * Iterate to convergence.
6182          */
6183         do {
6184                 int pass = ++spa->spa_sync_pass;
6185 
6186                 spa_sync_config_object(spa, tx);
6187                 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6188                     ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6189                 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6190                     ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6191                 spa_errlog_sync(spa, txg);
6192                 dsl_pool_sync(dp, txg);
6193 
6194                 if (pass < zfs_sync_pass_deferred_free) {
6195                         spa_sync_frees(spa, free_bpl, tx);
6196                 } else {
6197                         bplist_iterate(free_bpl, bpobj_enqueue_cb,
6198                             &spa->spa_deferred_bpobj, tx);
6199                 }
6200 
6201                 ddt_sync(spa, txg);
6202                 dsl_scan_sync(dp, tx);
6203 
6204                 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6205                         vdev_sync(vd, txg);
6206 
6207                 if (pass == 1)
6208                         spa_sync_upgrades(spa, tx);
6209 
6210         } while (dmu_objset_is_dirty(mos, txg));
6211 
6212         /*
6213          * Rewrite the vdev configuration (which includes the uberblock)
6214          * to commit the transaction group.
6215          *
6216          * If there are no dirty vdevs, we sync the uberblock to a few
6217          * random top-level vdevs that are known to be visible in the
6218          * config cache (see spa_vdev_add() for a complete description).
6219          * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6220          */
6221         for (;;) {
6222                 /*
6223                  * We hold SCL_STATE to prevent vdev open/close/etc.
6224                  * while we're attempting to write the vdev labels.
6225                  */
6226                 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6227 
6228                 if (list_is_empty(&spa->spa_config_dirty_list)) {
6229                         vdev_t *svd[SPA_DVAS_PER_BP];
6230                         int svdcount = 0;
6231                         int children = rvd->vdev_children;
6232                         int c0 = spa_get_random(children);
6233 
6234                         for (int c = 0; c < children; c++) {
6235                                 vd = rvd->vdev_child[(c0 + c) % children];
6236                                 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6237                                         continue;
6238                                 svd[svdcount++] = vd;
6239                                 if (svdcount == SPA_DVAS_PER_BP)
6240                                         break;
6241                         }
6242                         error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6243                         if (error != 0)
6244                                 error = vdev_config_sync(svd, svdcount, txg,
6245                                     B_TRUE);
6246                 } else {
6247                         error = vdev_config_sync(rvd->vdev_child,
6248                             rvd->vdev_children, txg, B_FALSE);
6249                         if (error != 0)
6250                                 error = vdev_config_sync(rvd->vdev_child,
6251                                     rvd->vdev_children, txg, B_TRUE);
6252                 }
6253 
6254                 if (error == 0)
6255                         spa->spa_last_synced_guid = rvd->vdev_guid;
6256 
6257                 spa_config_exit(spa, SCL_STATE, FTAG);
6258 
6259                 if (error == 0)
6260                         break;
6261                 zio_suspend(spa, NULL);
6262                 zio_resume_wait(spa);
6263         }
6264         dmu_tx_commit(tx);
6265 
6266         VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6267 
6268         /*
6269          * Clear the dirty config list.
6270          */
6271         while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6272                 vdev_config_clean(vd);
6273 
6274         /*
6275          * Now that the new config has synced transactionally,
6276          * let it become visible to the config cache.
6277          */
6278         if (spa->spa_config_syncing != NULL) {
6279                 spa_config_set(spa, spa->spa_config_syncing);
6280                 spa->spa_config_txg = txg;
6281                 spa->spa_config_syncing = NULL;
6282         }
6283 
6284         spa->spa_ubsync = spa->spa_uberblock;
6285 
6286         dsl_pool_sync_done(dp, txg);
6287 
6288         /*
6289          * Update usable space statistics.
6290          */
6291         while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6292                 vdev_sync_done(vd, txg);
6293 
6294         spa_update_dspace(spa);
6295 
6296         /*
6297          * It had better be the case that we didn't dirty anything
6298          * since vdev_config_sync().
6299          */
6300         ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6301         ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6302         ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6303 
6304         spa->spa_sync_pass = 0;
6305 
6306         spa_config_exit(spa, SCL_CONFIG, FTAG);
6307 
6308         spa_handle_ignored_writes(spa);
6309 
6310         /*
6311          * If any async tasks have been requested, kick them off.
6312          */
6313         spa_async_dispatch(spa);
6314 }
6315 
6316 /*
6317  * Sync all pools.  We don't want to hold the namespace lock across these
6318  * operations, so we take a reference on the spa_t and drop the lock during the
6319  * sync.
6320  */
6321 void
6322 spa_sync_allpools(void)
6323 {
6324         spa_t *spa = NULL;
6325         mutex_enter(&spa_namespace_lock);
6326         while ((spa = spa_next(spa)) != NULL) {
6327                 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6328                     !spa_writeable(spa) || spa_suspended(spa))
6329                         continue;
6330                 spa_open_ref(spa, FTAG);
6331                 mutex_exit(&spa_namespace_lock);
6332                 txg_wait_synced(spa_get_dsl(spa), 0);
6333                 mutex_enter(&spa_namespace_lock);
6334                 spa_close(spa, FTAG);
6335         }
6336         mutex_exit(&spa_namespace_lock);
6337 }
6338 
6339 /*
6340  * ==========================================================================
6341  * Miscellaneous routines
6342  * ==========================================================================
6343  */
6344 
6345 /*
6346  * Remove all pools in the system.
6347  */
6348 void
6349 spa_evict_all(void)
6350 {
6351         spa_t *spa;
6352 
6353         /*
6354          * Remove all cached state.  All pools should be closed now,
6355          * so every spa in the AVL tree should be unreferenced.
6356          */
6357         mutex_enter(&spa_namespace_lock);
6358         while ((spa = spa_next(NULL)) != NULL) {
6359                 /*
6360                  * Stop async tasks.  The async thread may need to detach
6361                  * a device that's been replaced, which requires grabbing
6362                  * spa_namespace_lock, so we must drop it here.
6363                  */
6364                 spa_open_ref(spa, FTAG);
6365                 mutex_exit(&spa_namespace_lock);
6366                 spa_async_suspend(spa);
6367                 mutex_enter(&spa_namespace_lock);
6368                 spa_close(spa, FTAG);
6369 
6370                 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6371                         spa_unload(spa);
6372                         spa_deactivate(spa);
6373                 }
6374                 spa_remove(spa);
6375         }
6376         mutex_exit(&spa_namespace_lock);
6377 }
6378 
6379 vdev_t *
6380 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6381 {
6382         vdev_t *vd;
6383         int i;
6384 
6385         if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6386                 return (vd);
6387 
6388         if (aux) {
6389                 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6390                         vd = spa->spa_l2cache.sav_vdevs[i];
6391                         if (vd->vdev_guid == guid)
6392                                 return (vd);
6393                 }
6394 
6395                 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6396                         vd = spa->spa_spares.sav_vdevs[i];
6397                         if (vd->vdev_guid == guid)
6398                                 return (vd);
6399                 }
6400         }
6401 
6402         return (NULL);
6403 }
6404 
6405 void
6406 spa_upgrade(spa_t *spa, uint64_t version)
6407 {
6408         ASSERT(spa_writeable(spa));
6409 
6410         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6411 
6412         /*
6413          * This should only be called for a non-faulted pool, and since a
6414          * future version would result in an unopenable pool, this shouldn't be
6415          * possible.
6416          */
6417         ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6418         ASSERT(version >= spa->spa_uberblock.ub_version);
6419 
6420         spa->spa_uberblock.ub_version = version;
6421         vdev_config_dirty(spa->spa_root_vdev);
6422 
6423         spa_config_exit(spa, SCL_ALL, FTAG);
6424 
6425         txg_wait_synced(spa_get_dsl(spa), 0);
6426 }
6427 
6428 boolean_t
6429 spa_has_spare(spa_t *spa, uint64_t guid)
6430 {
6431         int i;
6432         uint64_t spareguid;
6433         spa_aux_vdev_t *sav = &spa->spa_spares;
6434 
6435         for (i = 0; i < sav->sav_count; i++)
6436                 if (sav->sav_vdevs[i]->vdev_guid == guid)
6437                         return (B_TRUE);
6438 
6439         for (i = 0; i < sav->sav_npending; i++) {
6440                 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6441                     &spareguid) == 0 && spareguid == guid)
6442                         return (B_TRUE);
6443         }
6444 
6445         return (B_FALSE);
6446 }
6447 
6448 /*
6449  * Check if a pool has an active shared spare device.
6450  * Note: reference count of an active spare is 2, as a spare and as a replace
6451  */
6452 static boolean_t
6453 spa_has_active_shared_spare(spa_t *spa)
6454 {
6455         int i, refcnt;
6456         uint64_t pool;
6457         spa_aux_vdev_t *sav = &spa->spa_spares;
6458 
6459         for (i = 0; i < sav->sav_count; i++) {
6460                 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6461                     &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6462                     refcnt > 2)
6463                         return (B_TRUE);
6464         }
6465 
6466         return (B_FALSE);
6467 }
6468 
6469 /*
6470  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6471  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6472  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6473  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6474  * or zdb as real changes.
6475  */
6476 void
6477 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6478 {
6479 #ifdef _KERNEL
6480         sysevent_t              *ev;
6481         sysevent_attr_list_t    *attr = NULL;
6482         sysevent_value_t        value;
6483         sysevent_id_t           eid;
6484 
6485         ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6486             SE_SLEEP);
6487 
6488         value.value_type = SE_DATA_TYPE_STRING;
6489         value.value.sv_string = spa_name(spa);
6490         if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6491                 goto done;
6492 
6493         value.value_type = SE_DATA_TYPE_UINT64;
6494         value.value.sv_uint64 = spa_guid(spa);
6495         if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6496                 goto done;
6497 
6498         if (vd) {
6499                 value.value_type = SE_DATA_TYPE_UINT64;
6500                 value.value.sv_uint64 = vd->vdev_guid;
6501                 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6502                     SE_SLEEP) != 0)
6503                         goto done;
6504 
6505                 if (vd->vdev_path) {
6506                         value.value_type = SE_DATA_TYPE_STRING;
6507                         value.value.sv_string = vd->vdev_path;
6508                         if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6509                             &value, SE_SLEEP) != 0)
6510                                 goto done;
6511                 }
6512         }
6513 
6514         if (sysevent_attach_attributes(ev, attr) != 0)
6515                 goto done;
6516         attr = NULL;
6517 
6518         (void) log_sysevent(ev, SE_SLEEP, &eid);
6519 
6520 done:
6521         if (attr)
6522                 sysevent_free_attr(attr);
6523         sysevent_free(ev);
6524 #endif
6525 }