1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26 */
27
28 /*
29 * SPA: Storage Pool Allocator
30 *
31 * This file contains all the routines used when modifying on-disk SPA state.
32 * This includes opening, importing, destroying, exporting a pool, and syncing a
33 * pool.
34 */
35
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa_impl.h>
39 #include <sys/zio.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/ddt.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/dmu_traverse.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/unique.h>
55 #include <sys/dsl_pool.h>
56 #include <sys/dsl_dataset.h>
57 #include <sys/dsl_dir.h>
58 #include <sys/dsl_prop.h>
59 #include <sys/dsl_synctask.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/arc.h>
62 #include <sys/callb.h>
63 #include <sys/systeminfo.h>
64 #include <sys/spa_boot.h>
65 #include <sys/zfs_ioctl.h>
66 #include <sys/dsl_scan.h>
67 #include <sys/zfeature.h>
68 #include <sys/dsl_destroy.h>
69
70 #ifdef _KERNEL
71 #include <sys/bootprops.h>
72 #include <sys/callb.h>
73 #include <sys/cpupart.h>
74 #include <sys/pool.h>
75 #include <sys/sysdc.h>
76 #include <sys/zone.h>
77 #endif /* _KERNEL */
78
79 #include "zfs_prop.h"
80 #include "zfs_comutil.h"
81
82 /*
83 * The interval, in seconds, at which failed configuration cache file writes
84 * should be retried.
85 */
86 static int zfs_ccw_retry_interval = 300;
87
88 typedef enum zti_modes {
89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
90 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
91 ZTI_MODE_NULL, /* don't create a taskq */
92 ZTI_NMODES
93 } zti_modes_t;
94
95 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
98
99 #define ZTI_N(n) ZTI_P(n, 1)
100 #define ZTI_ONE ZTI_N(1)
101
102 typedef struct zio_taskq_info {
103 zti_modes_t zti_mode;
104 uint_t zti_value;
105 uint_t zti_count;
106 } zio_taskq_info_t;
107
108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
109 "issue", "issue_high", "intr", "intr_high"
110 };
111
112 /*
113 * This table defines the taskq settings for each ZFS I/O type. When
114 * initializing a pool, we use this table to create an appropriately sized
115 * taskq. Some operations are low volume and therefore have a small, static
116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
117 * macros. Other operations process a large amount of data; the ZTI_BATCH
118 * macro causes us to create a taskq oriented for throughput. Some operations
119 * are so high frequency and short-lived that the taskq itself can become a a
120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
121 * additional degree of parallelism specified by the number of threads per-
122 * taskq and the number of taskqs; when dispatching an event in this case, the
123 * particular taskq is chosen at random.
124 *
125 * The different taskq priorities are to handle the different contexts (issue
126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
127 * need to be handled with minimum delay.
128 */
129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
132 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */
133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
137 };
138
139 static void spa_sync_version(void *arg, dmu_tx_t *tx);
140 static void spa_sync_props(void *arg, dmu_tx_t *tx);
141 static boolean_t spa_has_active_shared_spare(spa_t *spa);
142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
144 char **ereport);
145 static void spa_vdev_resilver_done(spa_t *spa);
146
147 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
148 id_t zio_taskq_psrset_bind = PS_NONE;
149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
150 uint_t zio_taskq_basedc = 80; /* base duty cycle */
151
152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
153 extern int zfs_sync_pass_deferred_free;
154
155 /*
156 * This (illegal) pool name is used when temporarily importing a spa_t in order
157 * to get the vdev stats associated with the imported devices.
158 */
159 #define TRYIMPORT_NAME "$import"
160
161 /*
162 * ==========================================================================
163 * SPA properties routines
164 * ==========================================================================
165 */
166
167 /*
168 * Add a (source=src, propname=propval) list to an nvlist.
169 */
170 static void
171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
172 uint64_t intval, zprop_source_t src)
173 {
174 const char *propname = zpool_prop_to_name(prop);
175 nvlist_t *propval;
176
177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
179
180 if (strval != NULL)
181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
182 else
183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
184
185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
186 nvlist_free(propval);
187 }
188
189 /*
190 * Get property values from the spa configuration.
191 */
192 static void
193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
194 {
195 vdev_t *rvd = spa->spa_root_vdev;
196 dsl_pool_t *pool = spa->spa_dsl_pool;
197 uint64_t size;
198 uint64_t alloc;
199 uint64_t space;
200 uint64_t cap, version;
201 zprop_source_t src = ZPROP_SRC_NONE;
202 spa_config_dirent_t *dp;
203
204 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
205
206 if (rvd != NULL) {
207 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
208 size = metaslab_class_get_space(spa_normal_class(spa));
209 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
210 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
211 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
212 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
213 size - alloc, src);
214
215 space = 0;
216 for (int c = 0; c < rvd->vdev_children; c++) {
217 vdev_t *tvd = rvd->vdev_child[c];
218 space += tvd->vdev_max_asize - tvd->vdev_asize;
219 }
220 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
221 src);
222
223 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
224 (spa_mode(spa) == FREAD), src);
225
226 cap = (size == 0) ? 0 : (alloc * 100 / size);
227 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
228
229 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
230 ddt_get_pool_dedup_ratio(spa), src);
231
232 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
233 rvd->vdev_state, src);
234
235 version = spa_version(spa);
236 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
237 src = ZPROP_SRC_DEFAULT;
238 else
239 src = ZPROP_SRC_LOCAL;
240 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
241 }
242
243 if (pool != NULL) {
244 dsl_dir_t *freedir = pool->dp_free_dir;
245
246 /*
247 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
248 * when opening pools before this version freedir will be NULL.
249 */
250 if (freedir != NULL) {
251 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
252 freedir->dd_phys->dd_used_bytes, src);
253 } else {
254 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
255 NULL, 0, src);
256 }
257 }
258
259 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
260
261 if (spa->spa_comment != NULL) {
262 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
263 0, ZPROP_SRC_LOCAL);
264 }
265
266 if (spa->spa_root != NULL)
267 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
268 0, ZPROP_SRC_LOCAL);
269
270 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
271 if (dp->scd_path == NULL) {
272 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
273 "none", 0, ZPROP_SRC_LOCAL);
274 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
275 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
276 dp->scd_path, 0, ZPROP_SRC_LOCAL);
277 }
278 }
279 }
280
281 /*
282 * Get zpool property values.
283 */
284 int
285 spa_prop_get(spa_t *spa, nvlist_t **nvp)
286 {
287 objset_t *mos = spa->spa_meta_objset;
288 zap_cursor_t zc;
289 zap_attribute_t za;
290 int err;
291
292 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
293
294 mutex_enter(&spa->spa_props_lock);
295
296 /*
297 * Get properties from the spa config.
298 */
299 spa_prop_get_config(spa, nvp);
300
301 /* If no pool property object, no more prop to get. */
302 if (mos == NULL || spa->spa_pool_props_object == 0) {
303 mutex_exit(&spa->spa_props_lock);
304 return (0);
305 }
306
307 /*
308 * Get properties from the MOS pool property object.
309 */
310 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
311 (err = zap_cursor_retrieve(&zc, &za)) == 0;
312 zap_cursor_advance(&zc)) {
313 uint64_t intval = 0;
314 char *strval = NULL;
315 zprop_source_t src = ZPROP_SRC_DEFAULT;
316 zpool_prop_t prop;
317
318 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
319 continue;
320
321 switch (za.za_integer_length) {
322 case 8:
323 /* integer property */
324 if (za.za_first_integer !=
325 zpool_prop_default_numeric(prop))
326 src = ZPROP_SRC_LOCAL;
327
328 if (prop == ZPOOL_PROP_BOOTFS) {
329 dsl_pool_t *dp;
330 dsl_dataset_t *ds = NULL;
331
332 dp = spa_get_dsl(spa);
333 dsl_pool_config_enter(dp, FTAG);
334 if (err = dsl_dataset_hold_obj(dp,
335 za.za_first_integer, FTAG, &ds)) {
336 dsl_pool_config_exit(dp, FTAG);
337 break;
338 }
339
340 strval = kmem_alloc(
341 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
342 KM_SLEEP);
343 dsl_dataset_name(ds, strval);
344 dsl_dataset_rele(ds, FTAG);
345 dsl_pool_config_exit(dp, FTAG);
346 } else {
347 strval = NULL;
348 intval = za.za_first_integer;
349 }
350
351 spa_prop_add_list(*nvp, prop, strval, intval, src);
352
353 if (strval != NULL)
354 kmem_free(strval,
355 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
356
357 break;
358
359 case 1:
360 /* string property */
361 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
362 err = zap_lookup(mos, spa->spa_pool_props_object,
363 za.za_name, 1, za.za_num_integers, strval);
364 if (err) {
365 kmem_free(strval, za.za_num_integers);
366 break;
367 }
368 spa_prop_add_list(*nvp, prop, strval, 0, src);
369 kmem_free(strval, za.za_num_integers);
370 break;
371
372 default:
373 break;
374 }
375 }
376 zap_cursor_fini(&zc);
377 mutex_exit(&spa->spa_props_lock);
378 out:
379 if (err && err != ENOENT) {
380 nvlist_free(*nvp);
381 *nvp = NULL;
382 return (err);
383 }
384
385 return (0);
386 }
387
388 /*
389 * Validate the given pool properties nvlist and modify the list
390 * for the property values to be set.
391 */
392 static int
393 spa_prop_validate(spa_t *spa, nvlist_t *props)
394 {
395 nvpair_t *elem;
396 int error = 0, reset_bootfs = 0;
397 uint64_t objnum = 0;
398 boolean_t has_feature = B_FALSE;
399
400 elem = NULL;
401 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
402 uint64_t intval;
403 char *strval, *slash, *check, *fname;
404 const char *propname = nvpair_name(elem);
405 zpool_prop_t prop = zpool_name_to_prop(propname);
406
407 switch (prop) {
408 case ZPROP_INVAL:
409 if (!zpool_prop_feature(propname)) {
410 error = SET_ERROR(EINVAL);
411 break;
412 }
413
414 /*
415 * Sanitize the input.
416 */
417 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
418 error = SET_ERROR(EINVAL);
419 break;
420 }
421
422 if (nvpair_value_uint64(elem, &intval) != 0) {
423 error = SET_ERROR(EINVAL);
424 break;
425 }
426
427 if (intval != 0) {
428 error = SET_ERROR(EINVAL);
429 break;
430 }
431
432 fname = strchr(propname, '@') + 1;
433 if (zfeature_lookup_name(fname, NULL) != 0) {
434 error = SET_ERROR(EINVAL);
435 break;
436 }
437
438 has_feature = B_TRUE;
439 break;
440
441 case ZPOOL_PROP_VERSION:
442 error = nvpair_value_uint64(elem, &intval);
443 if (!error &&
444 (intval < spa_version(spa) ||
445 intval > SPA_VERSION_BEFORE_FEATURES ||
446 has_feature))
447 error = SET_ERROR(EINVAL);
448 break;
449
450 case ZPOOL_PROP_DELEGATION:
451 case ZPOOL_PROP_AUTOREPLACE:
452 case ZPOOL_PROP_LISTSNAPS:
453 case ZPOOL_PROP_AUTOEXPAND:
454 error = nvpair_value_uint64(elem, &intval);
455 if (!error && intval > 1)
456 error = SET_ERROR(EINVAL);
457 break;
458
459 case ZPOOL_PROP_BOOTFS:
460 /*
461 * If the pool version is less than SPA_VERSION_BOOTFS,
462 * or the pool is still being created (version == 0),
463 * the bootfs property cannot be set.
464 */
465 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
466 error = SET_ERROR(ENOTSUP);
467 break;
468 }
469
470 /*
471 * Make sure the vdev config is bootable
472 */
473 if (!vdev_is_bootable(spa->spa_root_vdev)) {
474 error = SET_ERROR(ENOTSUP);
475 break;
476 }
477
478 reset_bootfs = 1;
479
480 error = nvpair_value_string(elem, &strval);
481
482 if (!error) {
483 objset_t *os;
484 uint64_t compress;
485
486 if (strval == NULL || strval[0] == '\0') {
487 objnum = zpool_prop_default_numeric(
488 ZPOOL_PROP_BOOTFS);
489 break;
490 }
491
492 if (error = dmu_objset_hold(strval, FTAG, &os))
493 break;
494
495 /* Must be ZPL and not gzip compressed. */
496
497 if (dmu_objset_type(os) != DMU_OST_ZFS) {
498 error = SET_ERROR(ENOTSUP);
499 } else if ((error =
500 dsl_prop_get_int_ds(dmu_objset_ds(os),
501 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
502 &compress)) == 0 &&
503 !BOOTFS_COMPRESS_VALID(compress)) {
504 error = SET_ERROR(ENOTSUP);
505 } else {
506 objnum = dmu_objset_id(os);
507 }
508 dmu_objset_rele(os, FTAG);
509 }
510 break;
511
512 case ZPOOL_PROP_FAILUREMODE:
513 error = nvpair_value_uint64(elem, &intval);
514 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
515 intval > ZIO_FAILURE_MODE_PANIC))
516 error = SET_ERROR(EINVAL);
517
518 /*
519 * This is a special case which only occurs when
520 * the pool has completely failed. This allows
521 * the user to change the in-core failmode property
522 * without syncing it out to disk (I/Os might
523 * currently be blocked). We do this by returning
524 * EIO to the caller (spa_prop_set) to trick it
525 * into thinking we encountered a property validation
526 * error.
527 */
528 if (!error && spa_suspended(spa)) {
529 spa->spa_failmode = intval;
530 error = SET_ERROR(EIO);
531 }
532 break;
533
534 case ZPOOL_PROP_CACHEFILE:
535 if ((error = nvpair_value_string(elem, &strval)) != 0)
536 break;
537
538 if (strval[0] == '\0')
539 break;
540
541 if (strcmp(strval, "none") == 0)
542 break;
543
544 if (strval[0] != '/') {
545 error = SET_ERROR(EINVAL);
546 break;
547 }
548
549 slash = strrchr(strval, '/');
550 ASSERT(slash != NULL);
551
552 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
553 strcmp(slash, "/..") == 0)
554 error = SET_ERROR(EINVAL);
555 break;
556
557 case ZPOOL_PROP_COMMENT:
558 if ((error = nvpair_value_string(elem, &strval)) != 0)
559 break;
560 for (check = strval; *check != '\0'; check++) {
561 /*
562 * The kernel doesn't have an easy isprint()
563 * check. For this kernel check, we merely
564 * check ASCII apart from DEL. Fix this if
565 * there is an easy-to-use kernel isprint().
566 */
567 if (*check >= 0x7f) {
568 error = SET_ERROR(EINVAL);
569 break;
570 }
571 check++;
572 }
573 if (strlen(strval) > ZPROP_MAX_COMMENT)
574 error = E2BIG;
575 break;
576
577 case ZPOOL_PROP_DEDUPDITTO:
578 if (spa_version(spa) < SPA_VERSION_DEDUP)
579 error = SET_ERROR(ENOTSUP);
580 else
581 error = nvpair_value_uint64(elem, &intval);
582 if (error == 0 &&
583 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
584 error = SET_ERROR(EINVAL);
585 break;
586 }
587
588 if (error)
589 break;
590 }
591
592 if (!error && reset_bootfs) {
593 error = nvlist_remove(props,
594 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
595
596 if (!error) {
597 error = nvlist_add_uint64(props,
598 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
599 }
600 }
601
602 return (error);
603 }
604
605 void
606 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
607 {
608 char *cachefile;
609 spa_config_dirent_t *dp;
610
611 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
612 &cachefile) != 0)
613 return;
614
615 dp = kmem_alloc(sizeof (spa_config_dirent_t),
616 KM_SLEEP);
617
618 if (cachefile[0] == '\0')
619 dp->scd_path = spa_strdup(spa_config_path);
620 else if (strcmp(cachefile, "none") == 0)
621 dp->scd_path = NULL;
622 else
623 dp->scd_path = spa_strdup(cachefile);
624
625 list_insert_head(&spa->spa_config_list, dp);
626 if (need_sync)
627 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
628 }
629
630 int
631 spa_prop_set(spa_t *spa, nvlist_t *nvp)
632 {
633 int error;
634 nvpair_t *elem = NULL;
635 boolean_t need_sync = B_FALSE;
636
637 if ((error = spa_prop_validate(spa, nvp)) != 0)
638 return (error);
639
640 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
641 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
642
643 if (prop == ZPOOL_PROP_CACHEFILE ||
644 prop == ZPOOL_PROP_ALTROOT ||
645 prop == ZPOOL_PROP_READONLY)
646 continue;
647
648 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
649 uint64_t ver;
650
651 if (prop == ZPOOL_PROP_VERSION) {
652 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
653 } else {
654 ASSERT(zpool_prop_feature(nvpair_name(elem)));
655 ver = SPA_VERSION_FEATURES;
656 need_sync = B_TRUE;
657 }
658
659 /* Save time if the version is already set. */
660 if (ver == spa_version(spa))
661 continue;
662
663 /*
664 * In addition to the pool directory object, we might
665 * create the pool properties object, the features for
666 * read object, the features for write object, or the
667 * feature descriptions object.
668 */
669 error = dsl_sync_task(spa->spa_name, NULL,
670 spa_sync_version, &ver, 6);
671 if (error)
672 return (error);
673 continue;
674 }
675
676 need_sync = B_TRUE;
677 break;
678 }
679
680 if (need_sync) {
681 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
682 nvp, 6));
683 }
684
685 return (0);
686 }
687
688 /*
689 * If the bootfs property value is dsobj, clear it.
690 */
691 void
692 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
693 {
694 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
695 VERIFY(zap_remove(spa->spa_meta_objset,
696 spa->spa_pool_props_object,
697 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
698 spa->spa_bootfs = 0;
699 }
700 }
701
702 /*ARGSUSED*/
703 static int
704 spa_change_guid_check(void *arg, dmu_tx_t *tx)
705 {
706 uint64_t *newguid = arg;
707 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
708 vdev_t *rvd = spa->spa_root_vdev;
709 uint64_t vdev_state;
710
711 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
712 vdev_state = rvd->vdev_state;
713 spa_config_exit(spa, SCL_STATE, FTAG);
714
715 if (vdev_state != VDEV_STATE_HEALTHY)
716 return (SET_ERROR(ENXIO));
717
718 ASSERT3U(spa_guid(spa), !=, *newguid);
719
720 return (0);
721 }
722
723 static void
724 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
725 {
726 uint64_t *newguid = arg;
727 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
728 uint64_t oldguid;
729 vdev_t *rvd = spa->spa_root_vdev;
730
731 oldguid = spa_guid(spa);
732
733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
734 rvd->vdev_guid = *newguid;
735 rvd->vdev_guid_sum += (*newguid - oldguid);
736 vdev_config_dirty(rvd);
737 spa_config_exit(spa, SCL_STATE, FTAG);
738
739 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
740 oldguid, *newguid);
741 }
742
743 /*
744 * Change the GUID for the pool. This is done so that we can later
745 * re-import a pool built from a clone of our own vdevs. We will modify
746 * the root vdev's guid, our own pool guid, and then mark all of our
747 * vdevs dirty. Note that we must make sure that all our vdevs are
748 * online when we do this, or else any vdevs that weren't present
749 * would be orphaned from our pool. We are also going to issue a
750 * sysevent to update any watchers.
751 */
752 int
753 spa_change_guid(spa_t *spa)
754 {
755 int error;
756 uint64_t guid;
757
758 mutex_enter(&spa->spa_vdev_top_lock);
759 mutex_enter(&spa_namespace_lock);
760 guid = spa_generate_guid(NULL);
761
762 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
763 spa_change_guid_sync, &guid, 5);
764
765 if (error == 0) {
766 spa_config_sync(spa, B_FALSE, B_TRUE);
767 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
768 }
769
770 mutex_exit(&spa_namespace_lock);
771 mutex_exit(&spa->spa_vdev_top_lock);
772
773 return (error);
774 }
775
776 /*
777 * ==========================================================================
778 * SPA state manipulation (open/create/destroy/import/export)
779 * ==========================================================================
780 */
781
782 static int
783 spa_error_entry_compare(const void *a, const void *b)
784 {
785 spa_error_entry_t *sa = (spa_error_entry_t *)a;
786 spa_error_entry_t *sb = (spa_error_entry_t *)b;
787 int ret;
788
789 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
790 sizeof (zbookmark_t));
791
792 if (ret < 0)
793 return (-1);
794 else if (ret > 0)
795 return (1);
796 else
797 return (0);
798 }
799
800 /*
801 * Utility function which retrieves copies of the current logs and
802 * re-initializes them in the process.
803 */
804 void
805 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
806 {
807 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
808
809 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
810 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
811
812 avl_create(&spa->spa_errlist_scrub,
813 spa_error_entry_compare, sizeof (spa_error_entry_t),
814 offsetof(spa_error_entry_t, se_avl));
815 avl_create(&spa->spa_errlist_last,
816 spa_error_entry_compare, sizeof (spa_error_entry_t),
817 offsetof(spa_error_entry_t, se_avl));
818 }
819
820 static void
821 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
822 {
823 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
824 enum zti_modes mode = ztip->zti_mode;
825 uint_t value = ztip->zti_value;
826 uint_t count = ztip->zti_count;
827 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
828 char name[32];
829 uint_t flags = 0;
830 boolean_t batch = B_FALSE;
831
832 if (mode == ZTI_MODE_NULL) {
833 tqs->stqs_count = 0;
834 tqs->stqs_taskq = NULL;
835 return;
836 }
837
838 ASSERT3U(count, >, 0);
839
840 tqs->stqs_count = count;
841 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
842
843 switch (mode) {
844 case ZTI_MODE_FIXED:
845 ASSERT3U(value, >=, 1);
846 value = MAX(value, 1);
847 break;
848
849 case ZTI_MODE_BATCH:
850 batch = B_TRUE;
851 flags |= TASKQ_THREADS_CPU_PCT;
852 value = zio_taskq_batch_pct;
853 break;
854
855 default:
856 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
857 "spa_activate()",
858 zio_type_name[t], zio_taskq_types[q], mode, value);
859 break;
860 }
861
862 for (uint_t i = 0; i < count; i++) {
863 taskq_t *tq;
864
865 if (count > 1) {
866 (void) snprintf(name, sizeof (name), "%s_%s_%u",
867 zio_type_name[t], zio_taskq_types[q], i);
868 } else {
869 (void) snprintf(name, sizeof (name), "%s_%s",
870 zio_type_name[t], zio_taskq_types[q]);
871 }
872
873 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
874 if (batch)
875 flags |= TASKQ_DC_BATCH;
876
877 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
878 spa->spa_proc, zio_taskq_basedc, flags);
879 } else {
880 pri_t pri = maxclsyspri;
881 /*
882 * The write issue taskq can be extremely CPU
883 * intensive. Run it at slightly lower priority
884 * than the other taskqs.
885 */
886 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
887 pri--;
888
889 tq = taskq_create_proc(name, value, pri, 50,
890 INT_MAX, spa->spa_proc, flags);
891 }
892
893 tqs->stqs_taskq[i] = tq;
894 }
895 }
896
897 static void
898 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
899 {
900 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
901
902 if (tqs->stqs_taskq == NULL) {
903 ASSERT0(tqs->stqs_count);
904 return;
905 }
906
907 for (uint_t i = 0; i < tqs->stqs_count; i++) {
908 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
909 taskq_destroy(tqs->stqs_taskq[i]);
910 }
911
912 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
913 tqs->stqs_taskq = NULL;
914 }
915
916 /*
917 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
918 * Note that a type may have multiple discrete taskqs to avoid lock contention
919 * on the taskq itself. In that case we choose which taskq at random by using
920 * the low bits of gethrtime().
921 */
922 void
923 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
924 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
925 {
926 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
927 taskq_t *tq;
928
929 ASSERT3P(tqs->stqs_taskq, !=, NULL);
930 ASSERT3U(tqs->stqs_count, !=, 0);
931
932 if (tqs->stqs_count == 1) {
933 tq = tqs->stqs_taskq[0];
934 } else {
935 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
936 }
937
938 taskq_dispatch_ent(tq, func, arg, flags, ent);
939 }
940
941 static void
942 spa_create_zio_taskqs(spa_t *spa)
943 {
944 for (int t = 0; t < ZIO_TYPES; t++) {
945 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
946 spa_taskqs_init(spa, t, q);
947 }
948 }
949 }
950
951 #ifdef _KERNEL
952 static void
953 spa_thread(void *arg)
954 {
955 callb_cpr_t cprinfo;
956
957 spa_t *spa = arg;
958 user_t *pu = PTOU(curproc);
959
960 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
961 spa->spa_name);
962
963 ASSERT(curproc != &p0);
964 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
965 "zpool-%s", spa->spa_name);
966 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
967
968 /* bind this thread to the requested psrset */
969 if (zio_taskq_psrset_bind != PS_NONE) {
970 pool_lock();
971 mutex_enter(&cpu_lock);
972 mutex_enter(&pidlock);
973 mutex_enter(&curproc->p_lock);
974
975 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
976 0, NULL, NULL) == 0) {
977 curthread->t_bind_pset = zio_taskq_psrset_bind;
978 } else {
979 cmn_err(CE_WARN,
980 "Couldn't bind process for zfs pool \"%s\" to "
981 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
982 }
983
984 mutex_exit(&curproc->p_lock);
985 mutex_exit(&pidlock);
986 mutex_exit(&cpu_lock);
987 pool_unlock();
988 }
989
990 if (zio_taskq_sysdc) {
991 sysdc_thread_enter(curthread, 100, 0);
992 }
993
994 spa->spa_proc = curproc;
995 spa->spa_did = curthread->t_did;
996
997 spa_create_zio_taskqs(spa);
998
999 mutex_enter(&spa->spa_proc_lock);
1000 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1001
1002 spa->spa_proc_state = SPA_PROC_ACTIVE;
1003 cv_broadcast(&spa->spa_proc_cv);
1004
1005 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1006 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1007 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1008 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1009
1010 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1011 spa->spa_proc_state = SPA_PROC_GONE;
1012 spa->spa_proc = &p0;
1013 cv_broadcast(&spa->spa_proc_cv);
1014 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1015
1016 mutex_enter(&curproc->p_lock);
1017 lwp_exit();
1018 }
1019 #endif
1020
1021 /*
1022 * Activate an uninitialized pool.
1023 */
1024 static void
1025 spa_activate(spa_t *spa, int mode)
1026 {
1027 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1028
1029 spa->spa_state = POOL_STATE_ACTIVE;
1030 spa->spa_mode = mode;
1031
1032 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1033 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1034
1035 /* Try to create a covering process */
1036 mutex_enter(&spa->spa_proc_lock);
1037 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1038 ASSERT(spa->spa_proc == &p0);
1039 spa->spa_did = 0;
1040
1041 /* Only create a process if we're going to be around a while. */
1042 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1043 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1044 NULL, 0) == 0) {
1045 spa->spa_proc_state = SPA_PROC_CREATED;
1046 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1047 cv_wait(&spa->spa_proc_cv,
1048 &spa->spa_proc_lock);
1049 }
1050 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1051 ASSERT(spa->spa_proc != &p0);
1052 ASSERT(spa->spa_did != 0);
1053 } else {
1054 #ifdef _KERNEL
1055 cmn_err(CE_WARN,
1056 "Couldn't create process for zfs pool \"%s\"\n",
1057 spa->spa_name);
1058 #endif
1059 }
1060 }
1061 mutex_exit(&spa->spa_proc_lock);
1062
1063 /* If we didn't create a process, we need to create our taskqs. */
1064 if (spa->spa_proc == &p0) {
1065 spa_create_zio_taskqs(spa);
1066 }
1067
1068 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1069 offsetof(vdev_t, vdev_config_dirty_node));
1070 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1071 offsetof(vdev_t, vdev_state_dirty_node));
1072
1073 txg_list_create(&spa->spa_vdev_txg_list,
1074 offsetof(struct vdev, vdev_txg_node));
1075
1076 avl_create(&spa->spa_errlist_scrub,
1077 spa_error_entry_compare, sizeof (spa_error_entry_t),
1078 offsetof(spa_error_entry_t, se_avl));
1079 avl_create(&spa->spa_errlist_last,
1080 spa_error_entry_compare, sizeof (spa_error_entry_t),
1081 offsetof(spa_error_entry_t, se_avl));
1082 }
1083
1084 /*
1085 * Opposite of spa_activate().
1086 */
1087 static void
1088 spa_deactivate(spa_t *spa)
1089 {
1090 ASSERT(spa->spa_sync_on == B_FALSE);
1091 ASSERT(spa->spa_dsl_pool == NULL);
1092 ASSERT(spa->spa_root_vdev == NULL);
1093 ASSERT(spa->spa_async_zio_root == NULL);
1094 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1095
1096 txg_list_destroy(&spa->spa_vdev_txg_list);
1097
1098 list_destroy(&spa->spa_config_dirty_list);
1099 list_destroy(&spa->spa_state_dirty_list);
1100
1101 for (int t = 0; t < ZIO_TYPES; t++) {
1102 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1103 spa_taskqs_fini(spa, t, q);
1104 }
1105 }
1106
1107 metaslab_class_destroy(spa->spa_normal_class);
1108 spa->spa_normal_class = NULL;
1109
1110 metaslab_class_destroy(spa->spa_log_class);
1111 spa->spa_log_class = NULL;
1112
1113 /*
1114 * If this was part of an import or the open otherwise failed, we may
1115 * still have errors left in the queues. Empty them just in case.
1116 */
1117 spa_errlog_drain(spa);
1118
1119 avl_destroy(&spa->spa_errlist_scrub);
1120 avl_destroy(&spa->spa_errlist_last);
1121
1122 spa->spa_state = POOL_STATE_UNINITIALIZED;
1123
1124 mutex_enter(&spa->spa_proc_lock);
1125 if (spa->spa_proc_state != SPA_PROC_NONE) {
1126 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1127 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1128 cv_broadcast(&spa->spa_proc_cv);
1129 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1130 ASSERT(spa->spa_proc != &p0);
1131 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1132 }
1133 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1134 spa->spa_proc_state = SPA_PROC_NONE;
1135 }
1136 ASSERT(spa->spa_proc == &p0);
1137 mutex_exit(&spa->spa_proc_lock);
1138
1139 /*
1140 * We want to make sure spa_thread() has actually exited the ZFS
1141 * module, so that the module can't be unloaded out from underneath
1142 * it.
1143 */
1144 if (spa->spa_did != 0) {
1145 thread_join(spa->spa_did);
1146 spa->spa_did = 0;
1147 }
1148 }
1149
1150 /*
1151 * Verify a pool configuration, and construct the vdev tree appropriately. This
1152 * will create all the necessary vdevs in the appropriate layout, with each vdev
1153 * in the CLOSED state. This will prep the pool before open/creation/import.
1154 * All vdev validation is done by the vdev_alloc() routine.
1155 */
1156 static int
1157 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1158 uint_t id, int atype)
1159 {
1160 nvlist_t **child;
1161 uint_t children;
1162 int error;
1163
1164 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1165 return (error);
1166
1167 if ((*vdp)->vdev_ops->vdev_op_leaf)
1168 return (0);
1169
1170 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1171 &child, &children);
1172
1173 if (error == ENOENT)
1174 return (0);
1175
1176 if (error) {
1177 vdev_free(*vdp);
1178 *vdp = NULL;
1179 return (SET_ERROR(EINVAL));
1180 }
1181
1182 for (int c = 0; c < children; c++) {
1183 vdev_t *vd;
1184 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1185 atype)) != 0) {
1186 vdev_free(*vdp);
1187 *vdp = NULL;
1188 return (error);
1189 }
1190 }
1191
1192 ASSERT(*vdp != NULL);
1193
1194 return (0);
1195 }
1196
1197 /*
1198 * Opposite of spa_load().
1199 */
1200 static void
1201 spa_unload(spa_t *spa)
1202 {
1203 int i;
1204
1205 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1206
1207 /*
1208 * Stop async tasks.
1209 */
1210 spa_async_suspend(spa);
1211
1212 /*
1213 * Stop syncing.
1214 */
1215 if (spa->spa_sync_on) {
1216 txg_sync_stop(spa->spa_dsl_pool);
1217 spa->spa_sync_on = B_FALSE;
1218 }
1219
1220 /*
1221 * Wait for any outstanding async I/O to complete.
1222 */
1223 if (spa->spa_async_zio_root != NULL) {
1224 (void) zio_wait(spa->spa_async_zio_root);
1225 spa->spa_async_zio_root = NULL;
1226 }
1227
1228 bpobj_close(&spa->spa_deferred_bpobj);
1229
1230 /*
1231 * Close the dsl pool.
1232 */
1233 if (spa->spa_dsl_pool) {
1234 dsl_pool_close(spa->spa_dsl_pool);
1235 spa->spa_dsl_pool = NULL;
1236 spa->spa_meta_objset = NULL;
1237 }
1238
1239 ddt_unload(spa);
1240
1241 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1242
1243 /*
1244 * Drop and purge level 2 cache
1245 */
1246 spa_l2cache_drop(spa);
1247
1248 /*
1249 * Close all vdevs.
1250 */
1251 if (spa->spa_root_vdev)
1252 vdev_free(spa->spa_root_vdev);
1253 ASSERT(spa->spa_root_vdev == NULL);
1254
1255 for (i = 0; i < spa->spa_spares.sav_count; i++)
1256 vdev_free(spa->spa_spares.sav_vdevs[i]);
1257 if (spa->spa_spares.sav_vdevs) {
1258 kmem_free(spa->spa_spares.sav_vdevs,
1259 spa->spa_spares.sav_count * sizeof (void *));
1260 spa->spa_spares.sav_vdevs = NULL;
1261 }
1262 if (spa->spa_spares.sav_config) {
1263 nvlist_free(spa->spa_spares.sav_config);
1264 spa->spa_spares.sav_config = NULL;
1265 }
1266 spa->spa_spares.sav_count = 0;
1267
1268 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1269 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1270 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1271 }
1272 if (spa->spa_l2cache.sav_vdevs) {
1273 kmem_free(spa->spa_l2cache.sav_vdevs,
1274 spa->spa_l2cache.sav_count * sizeof (void *));
1275 spa->spa_l2cache.sav_vdevs = NULL;
1276 }
1277 if (spa->spa_l2cache.sav_config) {
1278 nvlist_free(spa->spa_l2cache.sav_config);
1279 spa->spa_l2cache.sav_config = NULL;
1280 }
1281 spa->spa_l2cache.sav_count = 0;
1282
1283 spa->spa_async_suspended = 0;
1284
1285 if (spa->spa_comment != NULL) {
1286 spa_strfree(spa->spa_comment);
1287 spa->spa_comment = NULL;
1288 }
1289
1290 spa_config_exit(spa, SCL_ALL, FTAG);
1291 }
1292
1293 /*
1294 * Load (or re-load) the current list of vdevs describing the active spares for
1295 * this pool. When this is called, we have some form of basic information in
1296 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1297 * then re-generate a more complete list including status information.
1298 */
1299 static void
1300 spa_load_spares(spa_t *spa)
1301 {
1302 nvlist_t **spares;
1303 uint_t nspares;
1304 int i;
1305 vdev_t *vd, *tvd;
1306
1307 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1308
1309 /*
1310 * First, close and free any existing spare vdevs.
1311 */
1312 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1313 vd = spa->spa_spares.sav_vdevs[i];
1314
1315 /* Undo the call to spa_activate() below */
1316 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1317 B_FALSE)) != NULL && tvd->vdev_isspare)
1318 spa_spare_remove(tvd);
1319 vdev_close(vd);
1320 vdev_free(vd);
1321 }
1322
1323 if (spa->spa_spares.sav_vdevs)
1324 kmem_free(spa->spa_spares.sav_vdevs,
1325 spa->spa_spares.sav_count * sizeof (void *));
1326
1327 if (spa->spa_spares.sav_config == NULL)
1328 nspares = 0;
1329 else
1330 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1331 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1332
1333 spa->spa_spares.sav_count = (int)nspares;
1334 spa->spa_spares.sav_vdevs = NULL;
1335
1336 if (nspares == 0)
1337 return;
1338
1339 /*
1340 * Construct the array of vdevs, opening them to get status in the
1341 * process. For each spare, there is potentially two different vdev_t
1342 * structures associated with it: one in the list of spares (used only
1343 * for basic validation purposes) and one in the active vdev
1344 * configuration (if it's spared in). During this phase we open and
1345 * validate each vdev on the spare list. If the vdev also exists in the
1346 * active configuration, then we also mark this vdev as an active spare.
1347 */
1348 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1349 KM_SLEEP);
1350 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1351 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1352 VDEV_ALLOC_SPARE) == 0);
1353 ASSERT(vd != NULL);
1354
1355 spa->spa_spares.sav_vdevs[i] = vd;
1356
1357 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1358 B_FALSE)) != NULL) {
1359 if (!tvd->vdev_isspare)
1360 spa_spare_add(tvd);
1361
1362 /*
1363 * We only mark the spare active if we were successfully
1364 * able to load the vdev. Otherwise, importing a pool
1365 * with a bad active spare would result in strange
1366 * behavior, because multiple pool would think the spare
1367 * is actively in use.
1368 *
1369 * There is a vulnerability here to an equally bizarre
1370 * circumstance, where a dead active spare is later
1371 * brought back to life (onlined or otherwise). Given
1372 * the rarity of this scenario, and the extra complexity
1373 * it adds, we ignore the possibility.
1374 */
1375 if (!vdev_is_dead(tvd))
1376 spa_spare_activate(tvd);
1377 }
1378
1379 vd->vdev_top = vd;
1380 vd->vdev_aux = &spa->spa_spares;
1381
1382 if (vdev_open(vd) != 0)
1383 continue;
1384
1385 if (vdev_validate_aux(vd) == 0)
1386 spa_spare_add(vd);
1387 }
1388
1389 /*
1390 * Recompute the stashed list of spares, with status information
1391 * this time.
1392 */
1393 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1394 DATA_TYPE_NVLIST_ARRAY) == 0);
1395
1396 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1397 KM_SLEEP);
1398 for (i = 0; i < spa->spa_spares.sav_count; i++)
1399 spares[i] = vdev_config_generate(spa,
1400 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1401 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1402 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1403 for (i = 0; i < spa->spa_spares.sav_count; i++)
1404 nvlist_free(spares[i]);
1405 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1406 }
1407
1408 /*
1409 * Load (or re-load) the current list of vdevs describing the active l2cache for
1410 * this pool. When this is called, we have some form of basic information in
1411 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1412 * then re-generate a more complete list including status information.
1413 * Devices which are already active have their details maintained, and are
1414 * not re-opened.
1415 */
1416 static void
1417 spa_load_l2cache(spa_t *spa)
1418 {
1419 nvlist_t **l2cache;
1420 uint_t nl2cache;
1421 int i, j, oldnvdevs;
1422 uint64_t guid;
1423 vdev_t *vd, **oldvdevs, **newvdevs;
1424 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1425
1426 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1427
1428 if (sav->sav_config != NULL) {
1429 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1430 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1431 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1432 } else {
1433 nl2cache = 0;
1434 newvdevs = NULL;
1435 }
1436
1437 oldvdevs = sav->sav_vdevs;
1438 oldnvdevs = sav->sav_count;
1439 sav->sav_vdevs = NULL;
1440 sav->sav_count = 0;
1441
1442 /*
1443 * Process new nvlist of vdevs.
1444 */
1445 for (i = 0; i < nl2cache; i++) {
1446 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1447 &guid) == 0);
1448
1449 newvdevs[i] = NULL;
1450 for (j = 0; j < oldnvdevs; j++) {
1451 vd = oldvdevs[j];
1452 if (vd != NULL && guid == vd->vdev_guid) {
1453 /*
1454 * Retain previous vdev for add/remove ops.
1455 */
1456 newvdevs[i] = vd;
1457 oldvdevs[j] = NULL;
1458 break;
1459 }
1460 }
1461
1462 if (newvdevs[i] == NULL) {
1463 /*
1464 * Create new vdev
1465 */
1466 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1467 VDEV_ALLOC_L2CACHE) == 0);
1468 ASSERT(vd != NULL);
1469 newvdevs[i] = vd;
1470
1471 /*
1472 * Commit this vdev as an l2cache device,
1473 * even if it fails to open.
1474 */
1475 spa_l2cache_add(vd);
1476
1477 vd->vdev_top = vd;
1478 vd->vdev_aux = sav;
1479
1480 spa_l2cache_activate(vd);
1481
1482 if (vdev_open(vd) != 0)
1483 continue;
1484
1485 (void) vdev_validate_aux(vd);
1486
1487 if (!vdev_is_dead(vd))
1488 l2arc_add_vdev(spa, vd);
1489 }
1490 }
1491
1492 /*
1493 * Purge vdevs that were dropped
1494 */
1495 for (i = 0; i < oldnvdevs; i++) {
1496 uint64_t pool;
1497
1498 vd = oldvdevs[i];
1499 if (vd != NULL) {
1500 ASSERT(vd->vdev_isl2cache);
1501
1502 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1503 pool != 0ULL && l2arc_vdev_present(vd))
1504 l2arc_remove_vdev(vd);
1505 vdev_clear_stats(vd);
1506 vdev_free(vd);
1507 }
1508 }
1509
1510 if (oldvdevs)
1511 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1512
1513 if (sav->sav_config == NULL)
1514 goto out;
1515
1516 sav->sav_vdevs = newvdevs;
1517 sav->sav_count = (int)nl2cache;
1518
1519 /*
1520 * Recompute the stashed list of l2cache devices, with status
1521 * information this time.
1522 */
1523 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1524 DATA_TYPE_NVLIST_ARRAY) == 0);
1525
1526 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1527 for (i = 0; i < sav->sav_count; i++)
1528 l2cache[i] = vdev_config_generate(spa,
1529 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1530 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1531 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1532 out:
1533 for (i = 0; i < sav->sav_count; i++)
1534 nvlist_free(l2cache[i]);
1535 if (sav->sav_count)
1536 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1537 }
1538
1539 static int
1540 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1541 {
1542 dmu_buf_t *db;
1543 char *packed = NULL;
1544 size_t nvsize = 0;
1545 int error;
1546 *value = NULL;
1547
1548 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1549 nvsize = *(uint64_t *)db->db_data;
1550 dmu_buf_rele(db, FTAG);
1551
1552 packed = kmem_alloc(nvsize, KM_SLEEP);
1553 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1554 DMU_READ_PREFETCH);
1555 if (error == 0)
1556 error = nvlist_unpack(packed, nvsize, value, 0);
1557 kmem_free(packed, nvsize);
1558
1559 return (error);
1560 }
1561
1562 /*
1563 * Checks to see if the given vdev could not be opened, in which case we post a
1564 * sysevent to notify the autoreplace code that the device has been removed.
1565 */
1566 static void
1567 spa_check_removed(vdev_t *vd)
1568 {
1569 for (int c = 0; c < vd->vdev_children; c++)
1570 spa_check_removed(vd->vdev_child[c]);
1571
1572 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1573 !vd->vdev_ishole) {
1574 zfs_post_autoreplace(vd->vdev_spa, vd);
1575 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1576 }
1577 }
1578
1579 /*
1580 * Validate the current config against the MOS config
1581 */
1582 static boolean_t
1583 spa_config_valid(spa_t *spa, nvlist_t *config)
1584 {
1585 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1586 nvlist_t *nv;
1587
1588 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1589
1590 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1591 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1592
1593 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1594
1595 /*
1596 * If we're doing a normal import, then build up any additional
1597 * diagnostic information about missing devices in this config.
1598 * We'll pass this up to the user for further processing.
1599 */
1600 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1601 nvlist_t **child, *nv;
1602 uint64_t idx = 0;
1603
1604 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1605 KM_SLEEP);
1606 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1607
1608 for (int c = 0; c < rvd->vdev_children; c++) {
1609 vdev_t *tvd = rvd->vdev_child[c];
1610 vdev_t *mtvd = mrvd->vdev_child[c];
1611
1612 if (tvd->vdev_ops == &vdev_missing_ops &&
1613 mtvd->vdev_ops != &vdev_missing_ops &&
1614 mtvd->vdev_islog)
1615 child[idx++] = vdev_config_generate(spa, mtvd,
1616 B_FALSE, 0);
1617 }
1618
1619 if (idx) {
1620 VERIFY(nvlist_add_nvlist_array(nv,
1621 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1622 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1623 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1624
1625 for (int i = 0; i < idx; i++)
1626 nvlist_free(child[i]);
1627 }
1628 nvlist_free(nv);
1629 kmem_free(child, rvd->vdev_children * sizeof (char **));
1630 }
1631
1632 /*
1633 * Compare the root vdev tree with the information we have
1634 * from the MOS config (mrvd). Check each top-level vdev
1635 * with the corresponding MOS config top-level (mtvd).
1636 */
1637 for (int c = 0; c < rvd->vdev_children; c++) {
1638 vdev_t *tvd = rvd->vdev_child[c];
1639 vdev_t *mtvd = mrvd->vdev_child[c];
1640
1641 /*
1642 * Resolve any "missing" vdevs in the current configuration.
1643 * If we find that the MOS config has more accurate information
1644 * about the top-level vdev then use that vdev instead.
1645 */
1646 if (tvd->vdev_ops == &vdev_missing_ops &&
1647 mtvd->vdev_ops != &vdev_missing_ops) {
1648
1649 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1650 continue;
1651
1652 /*
1653 * Device specific actions.
1654 */
1655 if (mtvd->vdev_islog) {
1656 spa_set_log_state(spa, SPA_LOG_CLEAR);
1657 } else {
1658 /*
1659 * XXX - once we have 'readonly' pool
1660 * support we should be able to handle
1661 * missing data devices by transitioning
1662 * the pool to readonly.
1663 */
1664 continue;
1665 }
1666
1667 /*
1668 * Swap the missing vdev with the data we were
1669 * able to obtain from the MOS config.
1670 */
1671 vdev_remove_child(rvd, tvd);
1672 vdev_remove_child(mrvd, mtvd);
1673
1674 vdev_add_child(rvd, mtvd);
1675 vdev_add_child(mrvd, tvd);
1676
1677 spa_config_exit(spa, SCL_ALL, FTAG);
1678 vdev_load(mtvd);
1679 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1680
1681 vdev_reopen(rvd);
1682 } else if (mtvd->vdev_islog) {
1683 /*
1684 * Load the slog device's state from the MOS config
1685 * since it's possible that the label does not
1686 * contain the most up-to-date information.
1687 */
1688 vdev_load_log_state(tvd, mtvd);
1689 vdev_reopen(tvd);
1690 }
1691 }
1692 vdev_free(mrvd);
1693 spa_config_exit(spa, SCL_ALL, FTAG);
1694
1695 /*
1696 * Ensure we were able to validate the config.
1697 */
1698 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1699 }
1700
1701 /*
1702 * Check for missing log devices
1703 */
1704 static boolean_t
1705 spa_check_logs(spa_t *spa)
1706 {
1707 boolean_t rv = B_FALSE;
1708
1709 switch (spa->spa_log_state) {
1710 case SPA_LOG_MISSING:
1711 /* need to recheck in case slog has been restored */
1712 case SPA_LOG_UNKNOWN:
1713 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1714 NULL, DS_FIND_CHILDREN) != 0);
1715 if (rv)
1716 spa_set_log_state(spa, SPA_LOG_MISSING);
1717 break;
1718 }
1719 return (rv);
1720 }
1721
1722 static boolean_t
1723 spa_passivate_log(spa_t *spa)
1724 {
1725 vdev_t *rvd = spa->spa_root_vdev;
1726 boolean_t slog_found = B_FALSE;
1727
1728 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1729
1730 if (!spa_has_slogs(spa))
1731 return (B_FALSE);
1732
1733 for (int c = 0; c < rvd->vdev_children; c++) {
1734 vdev_t *tvd = rvd->vdev_child[c];
1735 metaslab_group_t *mg = tvd->vdev_mg;
1736
1737 if (tvd->vdev_islog) {
1738 metaslab_group_passivate(mg);
1739 slog_found = B_TRUE;
1740 }
1741 }
1742
1743 return (slog_found);
1744 }
1745
1746 static void
1747 spa_activate_log(spa_t *spa)
1748 {
1749 vdev_t *rvd = spa->spa_root_vdev;
1750
1751 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1752
1753 for (int c = 0; c < rvd->vdev_children; c++) {
1754 vdev_t *tvd = rvd->vdev_child[c];
1755 metaslab_group_t *mg = tvd->vdev_mg;
1756
1757 if (tvd->vdev_islog)
1758 metaslab_group_activate(mg);
1759 }
1760 }
1761
1762 int
1763 spa_offline_log(spa_t *spa)
1764 {
1765 int error;
1766
1767 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1768 NULL, DS_FIND_CHILDREN);
1769 if (error == 0) {
1770 /*
1771 * We successfully offlined the log device, sync out the
1772 * current txg so that the "stubby" block can be removed
1773 * by zil_sync().
1774 */
1775 txg_wait_synced(spa->spa_dsl_pool, 0);
1776 }
1777 return (error);
1778 }
1779
1780 static void
1781 spa_aux_check_removed(spa_aux_vdev_t *sav)
1782 {
1783 for (int i = 0; i < sav->sav_count; i++)
1784 spa_check_removed(sav->sav_vdevs[i]);
1785 }
1786
1787 void
1788 spa_claim_notify(zio_t *zio)
1789 {
1790 spa_t *spa = zio->io_spa;
1791
1792 if (zio->io_error)
1793 return;
1794
1795 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1796 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1797 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1798 mutex_exit(&spa->spa_props_lock);
1799 }
1800
1801 typedef struct spa_load_error {
1802 uint64_t sle_meta_count;
1803 uint64_t sle_data_count;
1804 } spa_load_error_t;
1805
1806 static void
1807 spa_load_verify_done(zio_t *zio)
1808 {
1809 blkptr_t *bp = zio->io_bp;
1810 spa_load_error_t *sle = zio->io_private;
1811 dmu_object_type_t type = BP_GET_TYPE(bp);
1812 int error = zio->io_error;
1813
1814 if (error) {
1815 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1816 type != DMU_OT_INTENT_LOG)
1817 atomic_add_64(&sle->sle_meta_count, 1);
1818 else
1819 atomic_add_64(&sle->sle_data_count, 1);
1820 }
1821 zio_data_buf_free(zio->io_data, zio->io_size);
1822 }
1823
1824 /*ARGSUSED*/
1825 static int
1826 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1827 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1828 {
1829 if (bp != NULL) {
1830 zio_t *rio = arg;
1831 size_t size = BP_GET_PSIZE(bp);
1832 void *data = zio_data_buf_alloc(size);
1833
1834 zio_nowait(zio_read(rio, spa, bp, data, size,
1835 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1836 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1837 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1838 }
1839 return (0);
1840 }
1841
1842 static int
1843 spa_load_verify(spa_t *spa)
1844 {
1845 zio_t *rio;
1846 spa_load_error_t sle = { 0 };
1847 zpool_rewind_policy_t policy;
1848 boolean_t verify_ok = B_FALSE;
1849 int error;
1850
1851 zpool_get_rewind_policy(spa->spa_config, &policy);
1852
1853 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1854 return (0);
1855
1856 rio = zio_root(spa, NULL, &sle,
1857 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1858
1859 error = traverse_pool(spa, spa->spa_verify_min_txg,
1860 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1861
1862 (void) zio_wait(rio);
1863
1864 spa->spa_load_meta_errors = sle.sle_meta_count;
1865 spa->spa_load_data_errors = sle.sle_data_count;
1866
1867 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1868 sle.sle_data_count <= policy.zrp_maxdata) {
1869 int64_t loss = 0;
1870
1871 verify_ok = B_TRUE;
1872 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1873 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1874
1875 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1876 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1877 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1878 VERIFY(nvlist_add_int64(spa->spa_load_info,
1879 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1880 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1881 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1882 } else {
1883 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1884 }
1885
1886 if (error) {
1887 if (error != ENXIO && error != EIO)
1888 error = SET_ERROR(EIO);
1889 return (error);
1890 }
1891
1892 return (verify_ok ? 0 : EIO);
1893 }
1894
1895 /*
1896 * Find a value in the pool props object.
1897 */
1898 static void
1899 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1900 {
1901 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1902 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1903 }
1904
1905 /*
1906 * Find a value in the pool directory object.
1907 */
1908 static int
1909 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1910 {
1911 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1912 name, sizeof (uint64_t), 1, val));
1913 }
1914
1915 static int
1916 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1917 {
1918 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1919 return (err);
1920 }
1921
1922 /*
1923 * Fix up config after a partly-completed split. This is done with the
1924 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1925 * pool have that entry in their config, but only the splitting one contains
1926 * a list of all the guids of the vdevs that are being split off.
1927 *
1928 * This function determines what to do with that list: either rejoin
1929 * all the disks to the pool, or complete the splitting process. To attempt
1930 * the rejoin, each disk that is offlined is marked online again, and
1931 * we do a reopen() call. If the vdev label for every disk that was
1932 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1933 * then we call vdev_split() on each disk, and complete the split.
1934 *
1935 * Otherwise we leave the config alone, with all the vdevs in place in
1936 * the original pool.
1937 */
1938 static void
1939 spa_try_repair(spa_t *spa, nvlist_t *config)
1940 {
1941 uint_t extracted;
1942 uint64_t *glist;
1943 uint_t i, gcount;
1944 nvlist_t *nvl;
1945 vdev_t **vd;
1946 boolean_t attempt_reopen;
1947
1948 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1949 return;
1950
1951 /* check that the config is complete */
1952 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1953 &glist, &gcount) != 0)
1954 return;
1955
1956 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1957
1958 /* attempt to online all the vdevs & validate */
1959 attempt_reopen = B_TRUE;
1960 for (i = 0; i < gcount; i++) {
1961 if (glist[i] == 0) /* vdev is hole */
1962 continue;
1963
1964 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1965 if (vd[i] == NULL) {
1966 /*
1967 * Don't bother attempting to reopen the disks;
1968 * just do the split.
1969 */
1970 attempt_reopen = B_FALSE;
1971 } else {
1972 /* attempt to re-online it */
1973 vd[i]->vdev_offline = B_FALSE;
1974 }
1975 }
1976
1977 if (attempt_reopen) {
1978 vdev_reopen(spa->spa_root_vdev);
1979
1980 /* check each device to see what state it's in */
1981 for (extracted = 0, i = 0; i < gcount; i++) {
1982 if (vd[i] != NULL &&
1983 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1984 break;
1985 ++extracted;
1986 }
1987 }
1988
1989 /*
1990 * If every disk has been moved to the new pool, or if we never
1991 * even attempted to look at them, then we split them off for
1992 * good.
1993 */
1994 if (!attempt_reopen || gcount == extracted) {
1995 for (i = 0; i < gcount; i++)
1996 if (vd[i] != NULL)
1997 vdev_split(vd[i]);
1998 vdev_reopen(spa->spa_root_vdev);
1999 }
2000
2001 kmem_free(vd, gcount * sizeof (vdev_t *));
2002 }
2003
2004 static int
2005 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2006 boolean_t mosconfig)
2007 {
2008 nvlist_t *config = spa->spa_config;
2009 char *ereport = FM_EREPORT_ZFS_POOL;
2010 char *comment;
2011 int error;
2012 uint64_t pool_guid;
2013 nvlist_t *nvl;
2014
2015 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2016 return (SET_ERROR(EINVAL));
2017
2018 ASSERT(spa->spa_comment == NULL);
2019 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2020 spa->spa_comment = spa_strdup(comment);
2021
2022 /*
2023 * Versioning wasn't explicitly added to the label until later, so if
2024 * it's not present treat it as the initial version.
2025 */
2026 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2027 &spa->spa_ubsync.ub_version) != 0)
2028 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2029
2030 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2031 &spa->spa_config_txg);
2032
2033 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2034 spa_guid_exists(pool_guid, 0)) {
2035 error = SET_ERROR(EEXIST);
2036 } else {
2037 spa->spa_config_guid = pool_guid;
2038
2039 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2040 &nvl) == 0) {
2041 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2042 KM_SLEEP) == 0);
2043 }
2044
2045 nvlist_free(spa->spa_load_info);
2046 spa->spa_load_info = fnvlist_alloc();
2047
2048 gethrestime(&spa->spa_loaded_ts);
2049 error = spa_load_impl(spa, pool_guid, config, state, type,
2050 mosconfig, &ereport);
2051 }
2052
2053 spa->spa_minref = refcount_count(&spa->spa_refcount);
2054 if (error) {
2055 if (error != EEXIST) {
2056 spa->spa_loaded_ts.tv_sec = 0;
2057 spa->spa_loaded_ts.tv_nsec = 0;
2058 }
2059 if (error != EBADF) {
2060 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2061 }
2062 }
2063 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2064 spa->spa_ena = 0;
2065
2066 return (error);
2067 }
2068
2069 /*
2070 * Load an existing storage pool, using the pool's builtin spa_config as a
2071 * source of configuration information.
2072 */
2073 static int
2074 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2075 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2076 char **ereport)
2077 {
2078 int error = 0;
2079 nvlist_t *nvroot = NULL;
2080 nvlist_t *label;
2081 vdev_t *rvd;
2082 uberblock_t *ub = &spa->spa_uberblock;
2083 uint64_t children, config_cache_txg = spa->spa_config_txg;
2084 int orig_mode = spa->spa_mode;
2085 int parse;
2086 uint64_t obj;
2087 boolean_t missing_feat_write = B_FALSE;
2088
2089 /*
2090 * If this is an untrusted config, access the pool in read-only mode.
2091 * This prevents things like resilvering recently removed devices.
2092 */
2093 if (!mosconfig)
2094 spa->spa_mode = FREAD;
2095
2096 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2097
2098 spa->spa_load_state = state;
2099
2100 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2101 return (SET_ERROR(EINVAL));
2102
2103 parse = (type == SPA_IMPORT_EXISTING ?
2104 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2105
2106 /*
2107 * Create "The Godfather" zio to hold all async IOs
2108 */
2109 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2110 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2111
2112 /*
2113 * Parse the configuration into a vdev tree. We explicitly set the
2114 * value that will be returned by spa_version() since parsing the
2115 * configuration requires knowing the version number.
2116 */
2117 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2118 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2119 spa_config_exit(spa, SCL_ALL, FTAG);
2120
2121 if (error != 0)
2122 return (error);
2123
2124 ASSERT(spa->spa_root_vdev == rvd);
2125
2126 if (type != SPA_IMPORT_ASSEMBLE) {
2127 ASSERT(spa_guid(spa) == pool_guid);
2128 }
2129
2130 /*
2131 * Try to open all vdevs, loading each label in the process.
2132 */
2133 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2134 error = vdev_open(rvd);
2135 spa_config_exit(spa, SCL_ALL, FTAG);
2136 if (error != 0)
2137 return (error);
2138
2139 /*
2140 * We need to validate the vdev labels against the configuration that
2141 * we have in hand, which is dependent on the setting of mosconfig. If
2142 * mosconfig is true then we're validating the vdev labels based on
2143 * that config. Otherwise, we're validating against the cached config
2144 * (zpool.cache) that was read when we loaded the zfs module, and then
2145 * later we will recursively call spa_load() and validate against
2146 * the vdev config.
2147 *
2148 * If we're assembling a new pool that's been split off from an
2149 * existing pool, the labels haven't yet been updated so we skip
2150 * validation for now.
2151 */
2152 if (type != SPA_IMPORT_ASSEMBLE) {
2153 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2154 error = vdev_validate(rvd, mosconfig);
2155 spa_config_exit(spa, SCL_ALL, FTAG);
2156
2157 if (error != 0)
2158 return (error);
2159
2160 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2161 return (SET_ERROR(ENXIO));
2162 }
2163
2164 /*
2165 * Find the best uberblock.
2166 */
2167 vdev_uberblock_load(rvd, ub, &label);
2168
2169 /*
2170 * If we weren't able to find a single valid uberblock, return failure.
2171 */
2172 if (ub->ub_txg == 0) {
2173 nvlist_free(label);
2174 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2175 }
2176
2177 /*
2178 * If the pool has an unsupported version we can't open it.
2179 */
2180 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2181 nvlist_free(label);
2182 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2183 }
2184
2185 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2186 nvlist_t *features;
2187
2188 /*
2189 * If we weren't able to find what's necessary for reading the
2190 * MOS in the label, return failure.
2191 */
2192 if (label == NULL || nvlist_lookup_nvlist(label,
2193 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2194 nvlist_free(label);
2195 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2196 ENXIO));
2197 }
2198
2199 /*
2200 * Update our in-core representation with the definitive values
2201 * from the label.
2202 */
2203 nvlist_free(spa->spa_label_features);
2204 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2205 }
2206
2207 nvlist_free(label);
2208
2209 /*
2210 * Look through entries in the label nvlist's features_for_read. If
2211 * there is a feature listed there which we don't understand then we
2212 * cannot open a pool.
2213 */
2214 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2215 nvlist_t *unsup_feat;
2216
2217 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2218 0);
2219
2220 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2221 NULL); nvp != NULL;
2222 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2223 if (!zfeature_is_supported(nvpair_name(nvp))) {
2224 VERIFY(nvlist_add_string(unsup_feat,
2225 nvpair_name(nvp), "") == 0);
2226 }
2227 }
2228
2229 if (!nvlist_empty(unsup_feat)) {
2230 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2231 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2232 nvlist_free(unsup_feat);
2233 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2234 ENOTSUP));
2235 }
2236
2237 nvlist_free(unsup_feat);
2238 }
2239
2240 /*
2241 * If the vdev guid sum doesn't match the uberblock, we have an
2242 * incomplete configuration. We first check to see if the pool
2243 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2244 * If it is, defer the vdev_guid_sum check till later so we
2245 * can handle missing vdevs.
2246 */
2247 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2248 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2249 rvd->vdev_guid_sum != ub->ub_guid_sum)
2250 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2251
2252 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2253 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2254 spa_try_repair(spa, config);
2255 spa_config_exit(spa, SCL_ALL, FTAG);
2256 nvlist_free(spa->spa_config_splitting);
2257 spa->spa_config_splitting = NULL;
2258 }
2259
2260 /*
2261 * Initialize internal SPA structures.
2262 */
2263 spa->spa_state = POOL_STATE_ACTIVE;
2264 spa->spa_ubsync = spa->spa_uberblock;
2265 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2266 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2267 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2268 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2269 spa->spa_claim_max_txg = spa->spa_first_txg;
2270 spa->spa_prev_software_version = ub->ub_software_version;
2271
2272 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2273 if (error)
2274 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2275 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2276
2277 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2278 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2279
2280 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2281 boolean_t missing_feat_read = B_FALSE;
2282 nvlist_t *unsup_feat, *enabled_feat;
2283
2284 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2285 &spa->spa_feat_for_read_obj) != 0) {
2286 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2287 }
2288
2289 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2290 &spa->spa_feat_for_write_obj) != 0) {
2291 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2292 }
2293
2294 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2295 &spa->spa_feat_desc_obj) != 0) {
2296 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2297 }
2298
2299 enabled_feat = fnvlist_alloc();
2300 unsup_feat = fnvlist_alloc();
2301
2302 if (!feature_is_supported(spa->spa_meta_objset,
2303 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2304 unsup_feat, enabled_feat))
2305 missing_feat_read = B_TRUE;
2306
2307 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2308 if (!feature_is_supported(spa->spa_meta_objset,
2309 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2310 unsup_feat, enabled_feat)) {
2311 missing_feat_write = B_TRUE;
2312 }
2313 }
2314
2315 fnvlist_add_nvlist(spa->spa_load_info,
2316 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2317
2318 if (!nvlist_empty(unsup_feat)) {
2319 fnvlist_add_nvlist(spa->spa_load_info,
2320 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2321 }
2322
2323 fnvlist_free(enabled_feat);
2324 fnvlist_free(unsup_feat);
2325
2326 if (!missing_feat_read) {
2327 fnvlist_add_boolean(spa->spa_load_info,
2328 ZPOOL_CONFIG_CAN_RDONLY);
2329 }
2330
2331 /*
2332 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2333 * twofold: to determine whether the pool is available for
2334 * import in read-write mode and (if it is not) whether the
2335 * pool is available for import in read-only mode. If the pool
2336 * is available for import in read-write mode, it is displayed
2337 * as available in userland; if it is not available for import
2338 * in read-only mode, it is displayed as unavailable in
2339 * userland. If the pool is available for import in read-only
2340 * mode but not read-write mode, it is displayed as unavailable
2341 * in userland with a special note that the pool is actually
2342 * available for open in read-only mode.
2343 *
2344 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2345 * missing a feature for write, we must first determine whether
2346 * the pool can be opened read-only before returning to
2347 * userland in order to know whether to display the
2348 * abovementioned note.
2349 */
2350 if (missing_feat_read || (missing_feat_write &&
2351 spa_writeable(spa))) {
2352 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2353 ENOTSUP));
2354 }
2355 }
2356
2357 spa->spa_is_initializing = B_TRUE;
2358 error = dsl_pool_open(spa->spa_dsl_pool);
2359 spa->spa_is_initializing = B_FALSE;
2360 if (error != 0)
2361 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2362
2363 if (!mosconfig) {
2364 uint64_t hostid;
2365 nvlist_t *policy = NULL, *nvconfig;
2366
2367 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2368 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2369
2370 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2371 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2372 char *hostname;
2373 unsigned long myhostid = 0;
2374
2375 VERIFY(nvlist_lookup_string(nvconfig,
2376 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2377
2378 #ifdef _KERNEL
2379 myhostid = zone_get_hostid(NULL);
2380 #else /* _KERNEL */
2381 /*
2382 * We're emulating the system's hostid in userland, so
2383 * we can't use zone_get_hostid().
2384 */
2385 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2386 #endif /* _KERNEL */
2387 if (hostid != 0 && myhostid != 0 &&
2388 hostid != myhostid) {
2389 nvlist_free(nvconfig);
2390 cmn_err(CE_WARN, "pool '%s' could not be "
2391 "loaded as it was last accessed by "
2392 "another system (host: %s hostid: 0x%lx). "
2393 "See: http://illumos.org/msg/ZFS-8000-EY",
2394 spa_name(spa), hostname,
2395 (unsigned long)hostid);
2396 return (SET_ERROR(EBADF));
2397 }
2398 }
2399 if (nvlist_lookup_nvlist(spa->spa_config,
2400 ZPOOL_REWIND_POLICY, &policy) == 0)
2401 VERIFY(nvlist_add_nvlist(nvconfig,
2402 ZPOOL_REWIND_POLICY, policy) == 0);
2403
2404 spa_config_set(spa, nvconfig);
2405 spa_unload(spa);
2406 spa_deactivate(spa);
2407 spa_activate(spa, orig_mode);
2408
2409 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2410 }
2411
2412 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2413 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2414 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2415 if (error != 0)
2416 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2417
2418 /*
2419 * Load the bit that tells us to use the new accounting function
2420 * (raid-z deflation). If we have an older pool, this will not
2421 * be present.
2422 */
2423 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2424 if (error != 0 && error != ENOENT)
2425 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2426
2427 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2428 &spa->spa_creation_version);
2429 if (error != 0 && error != ENOENT)
2430 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2431
2432 /*
2433 * Load the persistent error log. If we have an older pool, this will
2434 * not be present.
2435 */
2436 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2437 if (error != 0 && error != ENOENT)
2438 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2439
2440 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2441 &spa->spa_errlog_scrub);
2442 if (error != 0 && error != ENOENT)
2443 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2444
2445 /*
2446 * Load the history object. If we have an older pool, this
2447 * will not be present.
2448 */
2449 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2450 if (error != 0 && error != ENOENT)
2451 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2452
2453 /*
2454 * If we're assembling the pool from the split-off vdevs of
2455 * an existing pool, we don't want to attach the spares & cache
2456 * devices.
2457 */
2458
2459 /*
2460 * Load any hot spares for this pool.
2461 */
2462 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2463 if (error != 0 && error != ENOENT)
2464 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2465 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2466 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2467 if (load_nvlist(spa, spa->spa_spares.sav_object,
2468 &spa->spa_spares.sav_config) != 0)
2469 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2470
2471 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2472 spa_load_spares(spa);
2473 spa_config_exit(spa, SCL_ALL, FTAG);
2474 } else if (error == 0) {
2475 spa->spa_spares.sav_sync = B_TRUE;
2476 }
2477
2478 /*
2479 * Load any level 2 ARC devices for this pool.
2480 */
2481 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2482 &spa->spa_l2cache.sav_object);
2483 if (error != 0 && error != ENOENT)
2484 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2485 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2486 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2487 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2488 &spa->spa_l2cache.sav_config) != 0)
2489 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2490
2491 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2492 spa_load_l2cache(spa);
2493 spa_config_exit(spa, SCL_ALL, FTAG);
2494 } else if (error == 0) {
2495 spa->spa_l2cache.sav_sync = B_TRUE;
2496 }
2497
2498 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2499
2500 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2501 if (error && error != ENOENT)
2502 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2503
2504 if (error == 0) {
2505 uint64_t autoreplace;
2506
2507 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2508 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2509 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2510 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2511 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2512 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2513 &spa->spa_dedup_ditto);
2514
2515 spa->spa_autoreplace = (autoreplace != 0);
2516 }
2517
2518 /*
2519 * If the 'autoreplace' property is set, then post a resource notifying
2520 * the ZFS DE that it should not issue any faults for unopenable
2521 * devices. We also iterate over the vdevs, and post a sysevent for any
2522 * unopenable vdevs so that the normal autoreplace handler can take
2523 * over.
2524 */
2525 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2526 spa_check_removed(spa->spa_root_vdev);
2527 /*
2528 * For the import case, this is done in spa_import(), because
2529 * at this point we're using the spare definitions from
2530 * the MOS config, not necessarily from the userland config.
2531 */
2532 if (state != SPA_LOAD_IMPORT) {
2533 spa_aux_check_removed(&spa->spa_spares);
2534 spa_aux_check_removed(&spa->spa_l2cache);
2535 }
2536 }
2537
2538 /*
2539 * Load the vdev state for all toplevel vdevs.
2540 */
2541 vdev_load(rvd);
2542
2543 /*
2544 * Propagate the leaf DTLs we just loaded all the way up the tree.
2545 */
2546 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2547 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2548 spa_config_exit(spa, SCL_ALL, FTAG);
2549
2550 /*
2551 * Load the DDTs (dedup tables).
2552 */
2553 error = ddt_load(spa);
2554 if (error != 0)
2555 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2556
2557 spa_update_dspace(spa);
2558
2559 /*
2560 * Validate the config, using the MOS config to fill in any
2561 * information which might be missing. If we fail to validate
2562 * the config then declare the pool unfit for use. If we're
2563 * assembling a pool from a split, the log is not transferred
2564 * over.
2565 */
2566 if (type != SPA_IMPORT_ASSEMBLE) {
2567 nvlist_t *nvconfig;
2568
2569 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2570 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2571
2572 if (!spa_config_valid(spa, nvconfig)) {
2573 nvlist_free(nvconfig);
2574 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2575 ENXIO));
2576 }
2577 nvlist_free(nvconfig);
2578
2579 /*
2580 * Now that we've validated the config, check the state of the
2581 * root vdev. If it can't be opened, it indicates one or
2582 * more toplevel vdevs are faulted.
2583 */
2584 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2585 return (SET_ERROR(ENXIO));
2586
2587 if (spa_check_logs(spa)) {
2588 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2589 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2590 }
2591 }
2592
2593 if (missing_feat_write) {
2594 ASSERT(state == SPA_LOAD_TRYIMPORT);
2595
2596 /*
2597 * At this point, we know that we can open the pool in
2598 * read-only mode but not read-write mode. We now have enough
2599 * information and can return to userland.
2600 */
2601 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2602 }
2603
2604 /*
2605 * We've successfully opened the pool, verify that we're ready
2606 * to start pushing transactions.
2607 */
2608 if (state != SPA_LOAD_TRYIMPORT) {
2609 if (error = spa_load_verify(spa))
2610 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2611 error));
2612 }
2613
2614 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2615 spa->spa_load_max_txg == UINT64_MAX)) {
2616 dmu_tx_t *tx;
2617 int need_update = B_FALSE;
2618
2619 ASSERT(state != SPA_LOAD_TRYIMPORT);
2620
2621 /*
2622 * Claim log blocks that haven't been committed yet.
2623 * This must all happen in a single txg.
2624 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2625 * invoked from zil_claim_log_block()'s i/o done callback.
2626 * Price of rollback is that we abandon the log.
2627 */
2628 spa->spa_claiming = B_TRUE;
2629
2630 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2631 spa_first_txg(spa));
2632 (void) dmu_objset_find(spa_name(spa),
2633 zil_claim, tx, DS_FIND_CHILDREN);
2634 dmu_tx_commit(tx);
2635
2636 spa->spa_claiming = B_FALSE;
2637
2638 spa_set_log_state(spa, SPA_LOG_GOOD);
2639 spa->spa_sync_on = B_TRUE;
2640 txg_sync_start(spa->spa_dsl_pool);
2641
2642 /*
2643 * Wait for all claims to sync. We sync up to the highest
2644 * claimed log block birth time so that claimed log blocks
2645 * don't appear to be from the future. spa_claim_max_txg
2646 * will have been set for us by either zil_check_log_chain()
2647 * (invoked from spa_check_logs()) or zil_claim() above.
2648 */
2649 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2650
2651 /*
2652 * If the config cache is stale, or we have uninitialized
2653 * metaslabs (see spa_vdev_add()), then update the config.
2654 *
2655 * If this is a verbatim import, trust the current
2656 * in-core spa_config and update the disk labels.
2657 */
2658 if (config_cache_txg != spa->spa_config_txg ||
2659 state == SPA_LOAD_IMPORT ||
2660 state == SPA_LOAD_RECOVER ||
2661 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2662 need_update = B_TRUE;
2663
2664 for (int c = 0; c < rvd->vdev_children; c++)
2665 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2666 need_update = B_TRUE;
2667
2668 /*
2669 * Update the config cache asychronously in case we're the
2670 * root pool, in which case the config cache isn't writable yet.
2671 */
2672 if (need_update)
2673 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2674
2675 /*
2676 * Check all DTLs to see if anything needs resilvering.
2677 */
2678 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2679 vdev_resilver_needed(rvd, NULL, NULL))
2680 spa_async_request(spa, SPA_ASYNC_RESILVER);
2681
2682 /*
2683 * Log the fact that we booted up (so that we can detect if
2684 * we rebooted in the middle of an operation).
2685 */
2686 spa_history_log_version(spa, "open");
2687
2688 /*
2689 * Delete any inconsistent datasets.
2690 */
2691 (void) dmu_objset_find(spa_name(spa),
2692 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2693
2694 /*
2695 * Clean up any stale temporary dataset userrefs.
2696 */
2697 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2698 }
2699
2700 return (0);
2701 }
2702
2703 static int
2704 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2705 {
2706 int mode = spa->spa_mode;
2707
2708 spa_unload(spa);
2709 spa_deactivate(spa);
2710
2711 spa->spa_load_max_txg--;
2712
2713 spa_activate(spa, mode);
2714 spa_async_suspend(spa);
2715
2716 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2717 }
2718
2719 /*
2720 * If spa_load() fails this function will try loading prior txg's. If
2721 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2722 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2723 * function will not rewind the pool and will return the same error as
2724 * spa_load().
2725 */
2726 static int
2727 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2728 uint64_t max_request, int rewind_flags)
2729 {
2730 nvlist_t *loadinfo = NULL;
2731 nvlist_t *config = NULL;
2732 int load_error, rewind_error;
2733 uint64_t safe_rewind_txg;
2734 uint64_t min_txg;
2735
2736 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2737 spa->spa_load_max_txg = spa->spa_load_txg;
2738 spa_set_log_state(spa, SPA_LOG_CLEAR);
2739 } else {
2740 spa->spa_load_max_txg = max_request;
2741 }
2742
2743 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2744 mosconfig);
2745 if (load_error == 0)
2746 return (0);
2747
2748 if (spa->spa_root_vdev != NULL)
2749 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2750
2751 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2752 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2753
2754 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2755 nvlist_free(config);
2756 return (load_error);
2757 }
2758
2759 if (state == SPA_LOAD_RECOVER) {
2760 /* Price of rolling back is discarding txgs, including log */
2761 spa_set_log_state(spa, SPA_LOG_CLEAR);
2762 } else {
2763 /*
2764 * If we aren't rolling back save the load info from our first
2765 * import attempt so that we can restore it after attempting
2766 * to rewind.
2767 */
2768 loadinfo = spa->spa_load_info;
2769 spa->spa_load_info = fnvlist_alloc();
2770 }
2771
2772 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2773 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2774 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2775 TXG_INITIAL : safe_rewind_txg;
2776
2777 /*
2778 * Continue as long as we're finding errors, we're still within
2779 * the acceptable rewind range, and we're still finding uberblocks
2780 */
2781 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2782 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2783 if (spa->spa_load_max_txg < safe_rewind_txg)
2784 spa->spa_extreme_rewind = B_TRUE;
2785 rewind_error = spa_load_retry(spa, state, mosconfig);
2786 }
2787
2788 spa->spa_extreme_rewind = B_FALSE;
2789 spa->spa_load_max_txg = UINT64_MAX;
2790
2791 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2792 spa_config_set(spa, config);
2793
2794 if (state == SPA_LOAD_RECOVER) {
2795 ASSERT3P(loadinfo, ==, NULL);
2796 return (rewind_error);
2797 } else {
2798 /* Store the rewind info as part of the initial load info */
2799 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2800 spa->spa_load_info);
2801
2802 /* Restore the initial load info */
2803 fnvlist_free(spa->spa_load_info);
2804 spa->spa_load_info = loadinfo;
2805
2806 return (load_error);
2807 }
2808 }
2809
2810 /*
2811 * Pool Open/Import
2812 *
2813 * The import case is identical to an open except that the configuration is sent
2814 * down from userland, instead of grabbed from the configuration cache. For the
2815 * case of an open, the pool configuration will exist in the
2816 * POOL_STATE_UNINITIALIZED state.
2817 *
2818 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2819 * the same time open the pool, without having to keep around the spa_t in some
2820 * ambiguous state.
2821 */
2822 static int
2823 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2824 nvlist_t **config)
2825 {
2826 spa_t *spa;
2827 spa_load_state_t state = SPA_LOAD_OPEN;
2828 int error;
2829 int locked = B_FALSE;
2830
2831 *spapp = NULL;
2832
2833 /*
2834 * As disgusting as this is, we need to support recursive calls to this
2835 * function because dsl_dir_open() is called during spa_load(), and ends
2836 * up calling spa_open() again. The real fix is to figure out how to
2837 * avoid dsl_dir_open() calling this in the first place.
2838 */
2839 if (mutex_owner(&spa_namespace_lock) != curthread) {
2840 mutex_enter(&spa_namespace_lock);
2841 locked = B_TRUE;
2842 }
2843
2844 if ((spa = spa_lookup(pool)) == NULL) {
2845 if (locked)
2846 mutex_exit(&spa_namespace_lock);
2847 return (SET_ERROR(ENOENT));
2848 }
2849
2850 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2851 zpool_rewind_policy_t policy;
2852
2853 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2854 &policy);
2855 if (policy.zrp_request & ZPOOL_DO_REWIND)
2856 state = SPA_LOAD_RECOVER;
2857
2858 spa_activate(spa, spa_mode_global);
2859
2860 if (state != SPA_LOAD_RECOVER)
2861 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2862
2863 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2864 policy.zrp_request);
2865
2866 if (error == EBADF) {
2867 /*
2868 * If vdev_validate() returns failure (indicated by
2869 * EBADF), it indicates that one of the vdevs indicates
2870 * that the pool has been exported or destroyed. If
2871 * this is the case, the config cache is out of sync and
2872 * we should remove the pool from the namespace.
2873 */
2874 spa_unload(spa);
2875 spa_deactivate(spa);
2876 spa_config_sync(spa, B_TRUE, B_TRUE);
2877 spa_remove(spa);
2878 if (locked)
2879 mutex_exit(&spa_namespace_lock);
2880 return (SET_ERROR(ENOENT));
2881 }
2882
2883 if (error) {
2884 /*
2885 * We can't open the pool, but we still have useful
2886 * information: the state of each vdev after the
2887 * attempted vdev_open(). Return this to the user.
2888 */
2889 if (config != NULL && spa->spa_config) {
2890 VERIFY(nvlist_dup(spa->spa_config, config,
2891 KM_SLEEP) == 0);
2892 VERIFY(nvlist_add_nvlist(*config,
2893 ZPOOL_CONFIG_LOAD_INFO,
2894 spa->spa_load_info) == 0);
2895 }
2896 spa_unload(spa);
2897 spa_deactivate(spa);
2898 spa->spa_last_open_failed = error;
2899 if (locked)
2900 mutex_exit(&spa_namespace_lock);
2901 *spapp = NULL;
2902 return (error);
2903 }
2904 }
2905
2906 spa_open_ref(spa, tag);
2907
2908 if (config != NULL)
2909 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2910
2911 /*
2912 * If we've recovered the pool, pass back any information we
2913 * gathered while doing the load.
2914 */
2915 if (state == SPA_LOAD_RECOVER) {
2916 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2917 spa->spa_load_info) == 0);
2918 }
2919
2920 if (locked) {
2921 spa->spa_last_open_failed = 0;
2922 spa->spa_last_ubsync_txg = 0;
2923 spa->spa_load_txg = 0;
2924 mutex_exit(&spa_namespace_lock);
2925 }
2926
2927 *spapp = spa;
2928
2929 return (0);
2930 }
2931
2932 int
2933 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2934 nvlist_t **config)
2935 {
2936 return (spa_open_common(name, spapp, tag, policy, config));
2937 }
2938
2939 int
2940 spa_open(const char *name, spa_t **spapp, void *tag)
2941 {
2942 return (spa_open_common(name, spapp, tag, NULL, NULL));
2943 }
2944
2945 /*
2946 * Lookup the given spa_t, incrementing the inject count in the process,
2947 * preventing it from being exported or destroyed.
2948 */
2949 spa_t *
2950 spa_inject_addref(char *name)
2951 {
2952 spa_t *spa;
2953
2954 mutex_enter(&spa_namespace_lock);
2955 if ((spa = spa_lookup(name)) == NULL) {
2956 mutex_exit(&spa_namespace_lock);
2957 return (NULL);
2958 }
2959 spa->spa_inject_ref++;
2960 mutex_exit(&spa_namespace_lock);
2961
2962 return (spa);
2963 }
2964
2965 void
2966 spa_inject_delref(spa_t *spa)
2967 {
2968 mutex_enter(&spa_namespace_lock);
2969 spa->spa_inject_ref--;
2970 mutex_exit(&spa_namespace_lock);
2971 }
2972
2973 /*
2974 * Add spares device information to the nvlist.
2975 */
2976 static void
2977 spa_add_spares(spa_t *spa, nvlist_t *config)
2978 {
2979 nvlist_t **spares;
2980 uint_t i, nspares;
2981 nvlist_t *nvroot;
2982 uint64_t guid;
2983 vdev_stat_t *vs;
2984 uint_t vsc;
2985 uint64_t pool;
2986
2987 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2988
2989 if (spa->spa_spares.sav_count == 0)
2990 return;
2991
2992 VERIFY(nvlist_lookup_nvlist(config,
2993 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2994 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2995 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2996 if (nspares != 0) {
2997 VERIFY(nvlist_add_nvlist_array(nvroot,
2998 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2999 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3000 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3001
3002 /*
3003 * Go through and find any spares which have since been
3004 * repurposed as an active spare. If this is the case, update
3005 * their status appropriately.
3006 */
3007 for (i = 0; i < nspares; i++) {
3008 VERIFY(nvlist_lookup_uint64(spares[i],
3009 ZPOOL_CONFIG_GUID, &guid) == 0);
3010 if (spa_spare_exists(guid, &pool, NULL) &&
3011 pool != 0ULL) {
3012 VERIFY(nvlist_lookup_uint64_array(
3013 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3014 (uint64_t **)&vs, &vsc) == 0);
3015 vs->vs_state = VDEV_STATE_CANT_OPEN;
3016 vs->vs_aux = VDEV_AUX_SPARED;
3017 }
3018 }
3019 }
3020 }
3021
3022 /*
3023 * Add l2cache device information to the nvlist, including vdev stats.
3024 */
3025 static void
3026 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3027 {
3028 nvlist_t **l2cache;
3029 uint_t i, j, nl2cache;
3030 nvlist_t *nvroot;
3031 uint64_t guid;
3032 vdev_t *vd;
3033 vdev_stat_t *vs;
3034 uint_t vsc;
3035
3036 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3037
3038 if (spa->spa_l2cache.sav_count == 0)
3039 return;
3040
3041 VERIFY(nvlist_lookup_nvlist(config,
3042 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3043 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3044 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3045 if (nl2cache != 0) {
3046 VERIFY(nvlist_add_nvlist_array(nvroot,
3047 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3048 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3049 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3050
3051 /*
3052 * Update level 2 cache device stats.
3053 */
3054
3055 for (i = 0; i < nl2cache; i++) {
3056 VERIFY(nvlist_lookup_uint64(l2cache[i],
3057 ZPOOL_CONFIG_GUID, &guid) == 0);
3058
3059 vd = NULL;
3060 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3061 if (guid ==
3062 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3063 vd = spa->spa_l2cache.sav_vdevs[j];
3064 break;
3065 }
3066 }
3067 ASSERT(vd != NULL);
3068
3069 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3070 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3071 == 0);
3072 vdev_get_stats(vd, vs);
3073 }
3074 }
3075 }
3076
3077 static void
3078 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3079 {
3080 nvlist_t *features;
3081 zap_cursor_t zc;
3082 zap_attribute_t za;
3083
3084 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3085 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3086
3087 if (spa->spa_feat_for_read_obj != 0) {
3088 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3089 spa->spa_feat_for_read_obj);
3090 zap_cursor_retrieve(&zc, &za) == 0;
3091 zap_cursor_advance(&zc)) {
3092 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3093 za.za_num_integers == 1);
3094 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3095 za.za_first_integer));
3096 }
3097 zap_cursor_fini(&zc);
3098 }
3099
3100 if (spa->spa_feat_for_write_obj != 0) {
3101 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3102 spa->spa_feat_for_write_obj);
3103 zap_cursor_retrieve(&zc, &za) == 0;
3104 zap_cursor_advance(&zc)) {
3105 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3106 za.za_num_integers == 1);
3107 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3108 za.za_first_integer));
3109 }
3110 zap_cursor_fini(&zc);
3111 }
3112
3113 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3114 features) == 0);
3115 nvlist_free(features);
3116 }
3117
3118 int
3119 spa_get_stats(const char *name, nvlist_t **config,
3120 char *altroot, size_t buflen)
3121 {
3122 int error;
3123 spa_t *spa;
3124
3125 *config = NULL;
3126 error = spa_open_common(name, &spa, FTAG, NULL, config);
3127
3128 if (spa != NULL) {
3129 /*
3130 * This still leaves a window of inconsistency where the spares
3131 * or l2cache devices could change and the config would be
3132 * self-inconsistent.
3133 */
3134 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3135
3136 if (*config != NULL) {
3137 uint64_t loadtimes[2];
3138
3139 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3140 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3141 VERIFY(nvlist_add_uint64_array(*config,
3142 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3143
3144 VERIFY(nvlist_add_uint64(*config,
3145 ZPOOL_CONFIG_ERRCOUNT,
3146 spa_get_errlog_size(spa)) == 0);
3147
3148 if (spa_suspended(spa))
3149 VERIFY(nvlist_add_uint64(*config,
3150 ZPOOL_CONFIG_SUSPENDED,
3151 spa->spa_failmode) == 0);
3152
3153 spa_add_spares(spa, *config);
3154 spa_add_l2cache(spa, *config);
3155 spa_add_feature_stats(spa, *config);
3156 }
3157 }
3158
3159 /*
3160 * We want to get the alternate root even for faulted pools, so we cheat
3161 * and call spa_lookup() directly.
3162 */
3163 if (altroot) {
3164 if (spa == NULL) {
3165 mutex_enter(&spa_namespace_lock);
3166 spa = spa_lookup(name);
3167 if (spa)
3168 spa_altroot(spa, altroot, buflen);
3169 else
3170 altroot[0] = '\0';
3171 spa = NULL;
3172 mutex_exit(&spa_namespace_lock);
3173 } else {
3174 spa_altroot(spa, altroot, buflen);
3175 }
3176 }
3177
3178 if (spa != NULL) {
3179 spa_config_exit(spa, SCL_CONFIG, FTAG);
3180 spa_close(spa, FTAG);
3181 }
3182
3183 return (error);
3184 }
3185
3186 /*
3187 * Validate that the auxiliary device array is well formed. We must have an
3188 * array of nvlists, each which describes a valid leaf vdev. If this is an
3189 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3190 * specified, as long as they are well-formed.
3191 */
3192 static int
3193 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3194 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3195 vdev_labeltype_t label)
3196 {
3197 nvlist_t **dev;
3198 uint_t i, ndev;
3199 vdev_t *vd;
3200 int error;
3201
3202 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3203
3204 /*
3205 * It's acceptable to have no devs specified.
3206 */
3207 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3208 return (0);
3209
3210 if (ndev == 0)
3211 return (SET_ERROR(EINVAL));
3212
3213 /*
3214 * Make sure the pool is formatted with a version that supports this
3215 * device type.
3216 */
3217 if (spa_version(spa) < version)
3218 return (SET_ERROR(ENOTSUP));
3219
3220 /*
3221 * Set the pending device list so we correctly handle device in-use
3222 * checking.
3223 */
3224 sav->sav_pending = dev;
3225 sav->sav_npending = ndev;
3226
3227 for (i = 0; i < ndev; i++) {
3228 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3229 mode)) != 0)
3230 goto out;
3231
3232 if (!vd->vdev_ops->vdev_op_leaf) {
3233 vdev_free(vd);
3234 error = SET_ERROR(EINVAL);
3235 goto out;
3236 }
3237
3238 /*
3239 * The L2ARC currently only supports disk devices in
3240 * kernel context. For user-level testing, we allow it.
3241 */
3242 #ifdef _KERNEL
3243 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3244 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3245 error = SET_ERROR(ENOTBLK);
3246 vdev_free(vd);
3247 goto out;
3248 }
3249 #endif
3250 vd->vdev_top = vd;
3251
3252 if ((error = vdev_open(vd)) == 0 &&
3253 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3254 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3255 vd->vdev_guid) == 0);
3256 }
3257
3258 vdev_free(vd);
3259
3260 if (error &&
3261 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3262 goto out;
3263 else
3264 error = 0;
3265 }
3266
3267 out:
3268 sav->sav_pending = NULL;
3269 sav->sav_npending = 0;
3270 return (error);
3271 }
3272
3273 static int
3274 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3275 {
3276 int error;
3277
3278 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3279
3280 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3281 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3282 VDEV_LABEL_SPARE)) != 0) {
3283 return (error);
3284 }
3285
3286 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3287 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3288 VDEV_LABEL_L2CACHE));
3289 }
3290
3291 static void
3292 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3293 const char *config)
3294 {
3295 int i;
3296
3297 if (sav->sav_config != NULL) {
3298 nvlist_t **olddevs;
3299 uint_t oldndevs;
3300 nvlist_t **newdevs;
3301
3302 /*
3303 * Generate new dev list by concatentating with the
3304 * current dev list.
3305 */
3306 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3307 &olddevs, &oldndevs) == 0);
3308
3309 newdevs = kmem_alloc(sizeof (void *) *
3310 (ndevs + oldndevs), KM_SLEEP);
3311 for (i = 0; i < oldndevs; i++)
3312 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3313 KM_SLEEP) == 0);
3314 for (i = 0; i < ndevs; i++)
3315 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3316 KM_SLEEP) == 0);
3317
3318 VERIFY(nvlist_remove(sav->sav_config, config,
3319 DATA_TYPE_NVLIST_ARRAY) == 0);
3320
3321 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3322 config, newdevs, ndevs + oldndevs) == 0);
3323 for (i = 0; i < oldndevs + ndevs; i++)
3324 nvlist_free(newdevs[i]);
3325 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3326 } else {
3327 /*
3328 * Generate a new dev list.
3329 */
3330 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3331 KM_SLEEP) == 0);
3332 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3333 devs, ndevs) == 0);
3334 }
3335 }
3336
3337 /*
3338 * Stop and drop level 2 ARC devices
3339 */
3340 void
3341 spa_l2cache_drop(spa_t *spa)
3342 {
3343 vdev_t *vd;
3344 int i;
3345 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3346
3347 for (i = 0; i < sav->sav_count; i++) {
3348 uint64_t pool;
3349
3350 vd = sav->sav_vdevs[i];
3351 ASSERT(vd != NULL);
3352
3353 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3354 pool != 0ULL && l2arc_vdev_present(vd))
3355 l2arc_remove_vdev(vd);
3356 }
3357 }
3358
3359 /*
3360 * Pool Creation
3361 */
3362 int
3363 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3364 nvlist_t *zplprops)
3365 {
3366 spa_t *spa;
3367 char *altroot = NULL;
3368 vdev_t *rvd;
3369 dsl_pool_t *dp;
3370 dmu_tx_t *tx;
3371 int error = 0;
3372 uint64_t txg = TXG_INITIAL;
3373 nvlist_t **spares, **l2cache;
3374 uint_t nspares, nl2cache;
3375 uint64_t version, obj;
3376 boolean_t has_features;
3377
3378 /*
3379 * If this pool already exists, return failure.
3380 */
3381 mutex_enter(&spa_namespace_lock);
3382 if (spa_lookup(pool) != NULL) {
3383 mutex_exit(&spa_namespace_lock);
3384 return (SET_ERROR(EEXIST));
3385 }
3386
3387 /*
3388 * Allocate a new spa_t structure.
3389 */
3390 (void) nvlist_lookup_string(props,
3391 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3392 spa = spa_add(pool, NULL, altroot);
3393 spa_activate(spa, spa_mode_global);
3394
3395 if (props && (error = spa_prop_validate(spa, props))) {
3396 spa_deactivate(spa);
3397 spa_remove(spa);
3398 mutex_exit(&spa_namespace_lock);
3399 return (error);
3400 }
3401
3402 has_features = B_FALSE;
3403 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3404 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3405 if (zpool_prop_feature(nvpair_name(elem)))
3406 has_features = B_TRUE;
3407 }
3408
3409 if (has_features || nvlist_lookup_uint64(props,
3410 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3411 version = SPA_VERSION;
3412 }
3413 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3414
3415 spa->spa_first_txg = txg;
3416 spa->spa_uberblock.ub_txg = txg - 1;
3417 spa->spa_uberblock.ub_version = version;
3418 spa->spa_ubsync = spa->spa_uberblock;
3419
3420 /*
3421 * Create "The Godfather" zio to hold all async IOs
3422 */
3423 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3424 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3425
3426 /*
3427 * Create the root vdev.
3428 */
3429 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3430
3431 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3432
3433 ASSERT(error != 0 || rvd != NULL);
3434 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3435
3436 if (error == 0 && !zfs_allocatable_devs(nvroot))
3437 error = SET_ERROR(EINVAL);
3438
3439 if (error == 0 &&
3440 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3441 (error = spa_validate_aux(spa, nvroot, txg,
3442 VDEV_ALLOC_ADD)) == 0) {
3443 for (int c = 0; c < rvd->vdev_children; c++) {
3444 vdev_metaslab_set_size(rvd->vdev_child[c]);
3445 vdev_expand(rvd->vdev_child[c], txg);
3446 }
3447 }
3448
3449 spa_config_exit(spa, SCL_ALL, FTAG);
3450
3451 if (error != 0) {
3452 spa_unload(spa);
3453 spa_deactivate(spa);
3454 spa_remove(spa);
3455 mutex_exit(&spa_namespace_lock);
3456 return (error);
3457 }
3458
3459 /*
3460 * Get the list of spares, if specified.
3461 */
3462 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3463 &spares, &nspares) == 0) {
3464 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3465 KM_SLEEP) == 0);
3466 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3467 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3468 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3469 spa_load_spares(spa);
3470 spa_config_exit(spa, SCL_ALL, FTAG);
3471 spa->spa_spares.sav_sync = B_TRUE;
3472 }
3473
3474 /*
3475 * Get the list of level 2 cache devices, if specified.
3476 */
3477 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3478 &l2cache, &nl2cache) == 0) {
3479 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3480 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3481 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3482 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3483 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3484 spa_load_l2cache(spa);
3485 spa_config_exit(spa, SCL_ALL, FTAG);
3486 spa->spa_l2cache.sav_sync = B_TRUE;
3487 }
3488
3489 spa->spa_is_initializing = B_TRUE;
3490 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3491 spa->spa_meta_objset = dp->dp_meta_objset;
3492 spa->spa_is_initializing = B_FALSE;
3493
3494 /*
3495 * Create DDTs (dedup tables).
3496 */
3497 ddt_create(spa);
3498
3499 spa_update_dspace(spa);
3500
3501 tx = dmu_tx_create_assigned(dp, txg);
3502
3503 /*
3504 * Create the pool config object.
3505 */
3506 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3507 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3508 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3509
3510 if (zap_add(spa->spa_meta_objset,
3511 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3512 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3513 cmn_err(CE_PANIC, "failed to add pool config");
3514 }
3515
3516 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3517 spa_feature_create_zap_objects(spa, tx);
3518
3519 if (zap_add(spa->spa_meta_objset,
3520 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3521 sizeof (uint64_t), 1, &version, tx) != 0) {
3522 cmn_err(CE_PANIC, "failed to add pool version");
3523 }
3524
3525 /* Newly created pools with the right version are always deflated. */
3526 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3527 spa->spa_deflate = TRUE;
3528 if (zap_add(spa->spa_meta_objset,
3529 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3530 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3531 cmn_err(CE_PANIC, "failed to add deflate");
3532 }
3533 }
3534
3535 /*
3536 * Create the deferred-free bpobj. Turn off compression
3537 * because sync-to-convergence takes longer if the blocksize
3538 * keeps changing.
3539 */
3540 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3541 dmu_object_set_compress(spa->spa_meta_objset, obj,
3542 ZIO_COMPRESS_OFF, tx);
3543 if (zap_add(spa->spa_meta_objset,
3544 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3545 sizeof (uint64_t), 1, &obj, tx) != 0) {
3546 cmn_err(CE_PANIC, "failed to add bpobj");
3547 }
3548 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3549 spa->spa_meta_objset, obj));
3550
3551 /*
3552 * Create the pool's history object.
3553 */
3554 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3555 spa_history_create_obj(spa, tx);
3556
3557 /*
3558 * Set pool properties.
3559 */
3560 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3561 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3562 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3563 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3564
3565 if (props != NULL) {
3566 spa_configfile_set(spa, props, B_FALSE);
3567 spa_sync_props(props, tx);
3568 }
3569
3570 dmu_tx_commit(tx);
3571
3572 spa->spa_sync_on = B_TRUE;
3573 txg_sync_start(spa->spa_dsl_pool);
3574
3575 /*
3576 * We explicitly wait for the first transaction to complete so that our
3577 * bean counters are appropriately updated.
3578 */
3579 txg_wait_synced(spa->spa_dsl_pool, txg);
3580
3581 spa_config_sync(spa, B_FALSE, B_TRUE);
3582
3583 spa_history_log_version(spa, "create");
3584
3585 spa->spa_minref = refcount_count(&spa->spa_refcount);
3586
3587 mutex_exit(&spa_namespace_lock);
3588
3589 return (0);
3590 }
3591
3592 #ifdef _KERNEL
3593 /*
3594 * Get the root pool information from the root disk, then import the root pool
3595 * during the system boot up time.
3596 */
3597 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3598
3599 static nvlist_t *
3600 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3601 {
3602 nvlist_t *config;
3603 nvlist_t *nvtop, *nvroot;
3604 uint64_t pgid;
3605
3606 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3607 return (NULL);
3608
3609 /*
3610 * Add this top-level vdev to the child array.
3611 */
3612 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3613 &nvtop) == 0);
3614 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3615 &pgid) == 0);
3616 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3617
3618 /*
3619 * Put this pool's top-level vdevs into a root vdev.
3620 */
3621 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3622 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3623 VDEV_TYPE_ROOT) == 0);
3624 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3625 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3626 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3627 &nvtop, 1) == 0);
3628
3629 /*
3630 * Replace the existing vdev_tree with the new root vdev in
3631 * this pool's configuration (remove the old, add the new).
3632 */
3633 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3634 nvlist_free(nvroot);
3635 return (config);
3636 }
3637
3638 /*
3639 * Walk the vdev tree and see if we can find a device with "better"
3640 * configuration. A configuration is "better" if the label on that
3641 * device has a more recent txg.
3642 */
3643 static void
3644 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3645 {
3646 for (int c = 0; c < vd->vdev_children; c++)
3647 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3648
3649 if (vd->vdev_ops->vdev_op_leaf) {
3650 nvlist_t *label;
3651 uint64_t label_txg;
3652
3653 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3654 &label) != 0)
3655 return;
3656
3657 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3658 &label_txg) == 0);
3659
3660 /*
3661 * Do we have a better boot device?
3662 */
3663 if (label_txg > *txg) {
3664 *txg = label_txg;
3665 *avd = vd;
3666 }
3667 nvlist_free(label);
3668 }
3669 }
3670
3671 /*
3672 * Import a root pool.
3673 *
3674 * For x86. devpath_list will consist of devid and/or physpath name of
3675 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3676 * The GRUB "findroot" command will return the vdev we should boot.
3677 *
3678 * For Sparc, devpath_list consists the physpath name of the booting device
3679 * no matter the rootpool is a single device pool or a mirrored pool.
3680 * e.g.
3681 * "/pci@1f,0/ide@d/disk@0,0:a"
3682 */
3683 int
3684 spa_import_rootpool(char *devpath, char *devid)
3685 {
3686 spa_t *spa;
3687 vdev_t *rvd, *bvd, *avd = NULL;
3688 nvlist_t *config, *nvtop;
3689 uint64_t guid, txg;
3690 char *pname;
3691 int error;
3692
3693 /*
3694 * Read the label from the boot device and generate a configuration.
3695 */
3696 config = spa_generate_rootconf(devpath, devid, &guid);
3697 #if defined(_OBP) && defined(_KERNEL)
3698 if (config == NULL) {
3699 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3700 /* iscsi boot */
3701 get_iscsi_bootpath_phy(devpath);
3702 config = spa_generate_rootconf(devpath, devid, &guid);
3703 }
3704 }
3705 #endif
3706 if (config == NULL) {
3707 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3708 devpath);
3709 return (SET_ERROR(EIO));
3710 }
3711
3712 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3713 &pname) == 0);
3714 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3715
3716 mutex_enter(&spa_namespace_lock);
3717 if ((spa = spa_lookup(pname)) != NULL) {
3718 /*
3719 * Remove the existing root pool from the namespace so that we
3720 * can replace it with the correct config we just read in.
3721 */
3722 spa_remove(spa);
3723 }
3724
3725 spa = spa_add(pname, config, NULL);
3726 spa->spa_is_root = B_TRUE;
3727 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3728
3729 /*
3730 * Build up a vdev tree based on the boot device's label config.
3731 */
3732 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3733 &nvtop) == 0);
3734 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3735 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3736 VDEV_ALLOC_ROOTPOOL);
3737 spa_config_exit(spa, SCL_ALL, FTAG);
3738 if (error) {
3739 mutex_exit(&spa_namespace_lock);
3740 nvlist_free(config);
3741 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3742 pname);
3743 return (error);
3744 }
3745
3746 /*
3747 * Get the boot vdev.
3748 */
3749 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3750 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3751 (u_longlong_t)guid);
3752 error = SET_ERROR(ENOENT);
3753 goto out;
3754 }
3755
3756 /*
3757 * Determine if there is a better boot device.
3758 */
3759 avd = bvd;
3760 spa_alt_rootvdev(rvd, &avd, &txg);
3761 if (avd != bvd) {
3762 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3763 "try booting from '%s'", avd->vdev_path);
3764 error = SET_ERROR(EINVAL);
3765 goto out;
3766 }
3767
3768 /*
3769 * If the boot device is part of a spare vdev then ensure that
3770 * we're booting off the active spare.
3771 */
3772 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3773 !bvd->vdev_isspare) {
3774 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3775 "try booting from '%s'",
3776 bvd->vdev_parent->
3777 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3778 error = SET_ERROR(EINVAL);
3779 goto out;
3780 }
3781
3782 error = 0;
3783 out:
3784 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3785 vdev_free(rvd);
3786 spa_config_exit(spa, SCL_ALL, FTAG);
3787 mutex_exit(&spa_namespace_lock);
3788
3789 nvlist_free(config);
3790 return (error);
3791 }
3792
3793 #endif
3794
3795 /*
3796 * Import a non-root pool into the system.
3797 */
3798 int
3799 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3800 {
3801 spa_t *spa;
3802 char *altroot = NULL;
3803 spa_load_state_t state = SPA_LOAD_IMPORT;
3804 zpool_rewind_policy_t policy;
3805 uint64_t mode = spa_mode_global;
3806 uint64_t readonly = B_FALSE;
3807 int error;
3808 nvlist_t *nvroot;
3809 nvlist_t **spares, **l2cache;
3810 uint_t nspares, nl2cache;
3811
3812 /*
3813 * If a pool with this name exists, return failure.
3814 */
3815 mutex_enter(&spa_namespace_lock);
3816 if (spa_lookup(pool) != NULL) {
3817 mutex_exit(&spa_namespace_lock);
3818 return (SET_ERROR(EEXIST));
3819 }
3820
3821 /*
3822 * Create and initialize the spa structure.
3823 */
3824 (void) nvlist_lookup_string(props,
3825 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3826 (void) nvlist_lookup_uint64(props,
3827 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3828 if (readonly)
3829 mode = FREAD;
3830 spa = spa_add(pool, config, altroot);
3831 spa->spa_import_flags = flags;
3832
3833 /*
3834 * Verbatim import - Take a pool and insert it into the namespace
3835 * as if it had been loaded at boot.
3836 */
3837 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3838 if (props != NULL)
3839 spa_configfile_set(spa, props, B_FALSE);
3840
3841 spa_config_sync(spa, B_FALSE, B_TRUE);
3842
3843 mutex_exit(&spa_namespace_lock);
3844 spa_history_log_version(spa, "import");
3845
3846 return (0);
3847 }
3848
3849 spa_activate(spa, mode);
3850
3851 /*
3852 * Don't start async tasks until we know everything is healthy.
3853 */
3854 spa_async_suspend(spa);
3855
3856 zpool_get_rewind_policy(config, &policy);
3857 if (policy.zrp_request & ZPOOL_DO_REWIND)
3858 state = SPA_LOAD_RECOVER;
3859
3860 /*
3861 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3862 * because the user-supplied config is actually the one to trust when
3863 * doing an import.
3864 */
3865 if (state != SPA_LOAD_RECOVER)
3866 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3867
3868 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3869 policy.zrp_request);
3870
3871 /*
3872 * Propagate anything learned while loading the pool and pass it
3873 * back to caller (i.e. rewind info, missing devices, etc).
3874 */
3875 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3876 spa->spa_load_info) == 0);
3877
3878 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3879 /*
3880 * Toss any existing sparelist, as it doesn't have any validity
3881 * anymore, and conflicts with spa_has_spare().
3882 */
3883 if (spa->spa_spares.sav_config) {
3884 nvlist_free(spa->spa_spares.sav_config);
3885 spa->spa_spares.sav_config = NULL;
3886 spa_load_spares(spa);
3887 }
3888 if (spa->spa_l2cache.sav_config) {
3889 nvlist_free(spa->spa_l2cache.sav_config);
3890 spa->spa_l2cache.sav_config = NULL;
3891 spa_load_l2cache(spa);
3892 }
3893
3894 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3895 &nvroot) == 0);
3896 if (error == 0)
3897 error = spa_validate_aux(spa, nvroot, -1ULL,
3898 VDEV_ALLOC_SPARE);
3899 if (error == 0)
3900 error = spa_validate_aux(spa, nvroot, -1ULL,
3901 VDEV_ALLOC_L2CACHE);
3902 spa_config_exit(spa, SCL_ALL, FTAG);
3903
3904 if (props != NULL)
3905 spa_configfile_set(spa, props, B_FALSE);
3906
3907 if (error != 0 || (props && spa_writeable(spa) &&
3908 (error = spa_prop_set(spa, props)))) {
3909 spa_unload(spa);
3910 spa_deactivate(spa);
3911 spa_remove(spa);
3912 mutex_exit(&spa_namespace_lock);
3913 return (error);
3914 }
3915
3916 spa_async_resume(spa);
3917
3918 /*
3919 * Override any spares and level 2 cache devices as specified by
3920 * the user, as these may have correct device names/devids, etc.
3921 */
3922 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3923 &spares, &nspares) == 0) {
3924 if (spa->spa_spares.sav_config)
3925 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3926 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3927 else
3928 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3929 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3930 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3931 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3932 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3933 spa_load_spares(spa);
3934 spa_config_exit(spa, SCL_ALL, FTAG);
3935 spa->spa_spares.sav_sync = B_TRUE;
3936 }
3937 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3938 &l2cache, &nl2cache) == 0) {
3939 if (spa->spa_l2cache.sav_config)
3940 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3941 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3942 else
3943 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3944 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3945 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3946 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3947 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3948 spa_load_l2cache(spa);
3949 spa_config_exit(spa, SCL_ALL, FTAG);
3950 spa->spa_l2cache.sav_sync = B_TRUE;
3951 }
3952
3953 /*
3954 * Check for any removed devices.
3955 */
3956 if (spa->spa_autoreplace) {
3957 spa_aux_check_removed(&spa->spa_spares);
3958 spa_aux_check_removed(&spa->spa_l2cache);
3959 }
3960
3961 if (spa_writeable(spa)) {
3962 /*
3963 * Update the config cache to include the newly-imported pool.
3964 */
3965 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3966 }
3967
3968 /*
3969 * It's possible that the pool was expanded while it was exported.
3970 * We kick off an async task to handle this for us.
3971 */
3972 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3973
3974 mutex_exit(&spa_namespace_lock);
3975 spa_history_log_version(spa, "import");
3976
3977 return (0);
3978 }
3979
3980 nvlist_t *
3981 spa_tryimport(nvlist_t *tryconfig)
3982 {
3983 nvlist_t *config = NULL;
3984 char *poolname;
3985 spa_t *spa;
3986 uint64_t state;
3987 int error;
3988
3989 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3990 return (NULL);
3991
3992 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3993 return (NULL);
3994
3995 /*
3996 * Create and initialize the spa structure.
3997 */
3998 mutex_enter(&spa_namespace_lock);
3999 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4000 spa_activate(spa, FREAD);
4001
4002 /*
4003 * Pass off the heavy lifting to spa_load().
4004 * Pass TRUE for mosconfig because the user-supplied config
4005 * is actually the one to trust when doing an import.
4006 */
4007 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4008
4009 /*
4010 * If 'tryconfig' was at least parsable, return the current config.
4011 */
4012 if (spa->spa_root_vdev != NULL) {
4013 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4014 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4015 poolname) == 0);
4016 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4017 state) == 0);
4018 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4019 spa->spa_uberblock.ub_timestamp) == 0);
4020 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4021 spa->spa_load_info) == 0);
4022
4023 /*
4024 * If the bootfs property exists on this pool then we
4025 * copy it out so that external consumers can tell which
4026 * pools are bootable.
4027 */
4028 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4029 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4030
4031 /*
4032 * We have to play games with the name since the
4033 * pool was opened as TRYIMPORT_NAME.
4034 */
4035 if (dsl_dsobj_to_dsname(spa_name(spa),
4036 spa->spa_bootfs, tmpname) == 0) {
4037 char *cp;
4038 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4039
4040 cp = strchr(tmpname, '/');
4041 if (cp == NULL) {
4042 (void) strlcpy(dsname, tmpname,
4043 MAXPATHLEN);
4044 } else {
4045 (void) snprintf(dsname, MAXPATHLEN,
4046 "%s/%s", poolname, ++cp);
4047 }
4048 VERIFY(nvlist_add_string(config,
4049 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4050 kmem_free(dsname, MAXPATHLEN);
4051 }
4052 kmem_free(tmpname, MAXPATHLEN);
4053 }
4054
4055 /*
4056 * Add the list of hot spares and level 2 cache devices.
4057 */
4058 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4059 spa_add_spares(spa, config);
4060 spa_add_l2cache(spa, config);
4061 spa_config_exit(spa, SCL_CONFIG, FTAG);
4062 }
4063
4064 spa_unload(spa);
4065 spa_deactivate(spa);
4066 spa_remove(spa);
4067 mutex_exit(&spa_namespace_lock);
4068
4069 return (config);
4070 }
4071
4072 /*
4073 * Pool export/destroy
4074 *
4075 * The act of destroying or exporting a pool is very simple. We make sure there
4076 * is no more pending I/O and any references to the pool are gone. Then, we
4077 * update the pool state and sync all the labels to disk, removing the
4078 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4079 * we don't sync the labels or remove the configuration cache.
4080 */
4081 static int
4082 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4083 boolean_t force, boolean_t hardforce)
4084 {
4085 spa_t *spa;
4086
4087 if (oldconfig)
4088 *oldconfig = NULL;
4089
4090 if (!(spa_mode_global & FWRITE))
4091 return (SET_ERROR(EROFS));
4092
4093 mutex_enter(&spa_namespace_lock);
4094 if ((spa = spa_lookup(pool)) == NULL) {
4095 mutex_exit(&spa_namespace_lock);
4096 return (SET_ERROR(ENOENT));
4097 }
4098
4099 /*
4100 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4101 * reacquire the namespace lock, and see if we can export.
4102 */
4103 spa_open_ref(spa, FTAG);
4104 mutex_exit(&spa_namespace_lock);
4105 spa_async_suspend(spa);
4106 mutex_enter(&spa_namespace_lock);
4107 spa_close(spa, FTAG);
4108
4109 /*
4110 * The pool will be in core if it's openable,
4111 * in which case we can modify its state.
4112 */
4113 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4114 /*
4115 * Objsets may be open only because they're dirty, so we
4116 * have to force it to sync before checking spa_refcnt.
4117 */
4118 txg_wait_synced(spa->spa_dsl_pool, 0);
4119
4120 /*
4121 * A pool cannot be exported or destroyed if there are active
4122 * references. If we are resetting a pool, allow references by
4123 * fault injection handlers.
4124 */
4125 if (!spa_refcount_zero(spa) ||
4126 (spa->spa_inject_ref != 0 &&
4127 new_state != POOL_STATE_UNINITIALIZED)) {
4128 spa_async_resume(spa);
4129 mutex_exit(&spa_namespace_lock);
4130 return (SET_ERROR(EBUSY));
4131 }
4132
4133 /*
4134 * A pool cannot be exported if it has an active shared spare.
4135 * This is to prevent other pools stealing the active spare
4136 * from an exported pool. At user's own will, such pool can
4137 * be forcedly exported.
4138 */
4139 if (!force && new_state == POOL_STATE_EXPORTED &&
4140 spa_has_active_shared_spare(spa)) {
4141 spa_async_resume(spa);
4142 mutex_exit(&spa_namespace_lock);
4143 return (SET_ERROR(EXDEV));
4144 }
4145
4146 /*
4147 * We want this to be reflected on every label,
4148 * so mark them all dirty. spa_unload() will do the
4149 * final sync that pushes these changes out.
4150 */
4151 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4152 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4153 spa->spa_state = new_state;
4154 spa->spa_final_txg = spa_last_synced_txg(spa) +
4155 TXG_DEFER_SIZE + 1;
4156 vdev_config_dirty(spa->spa_root_vdev);
4157 spa_config_exit(spa, SCL_ALL, FTAG);
4158 }
4159 }
4160
4161 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4162
4163 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4164 spa_unload(spa);
4165 spa_deactivate(spa);
4166 }
4167
4168 if (oldconfig && spa->spa_config)
4169 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4170
4171 if (new_state != POOL_STATE_UNINITIALIZED) {
4172 if (!hardforce)
4173 spa_config_sync(spa, B_TRUE, B_TRUE);
4174 spa_remove(spa);
4175 }
4176 mutex_exit(&spa_namespace_lock);
4177
4178 return (0);
4179 }
4180
4181 /*
4182 * Destroy a storage pool.
4183 */
4184 int
4185 spa_destroy(char *pool)
4186 {
4187 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4188 B_FALSE, B_FALSE));
4189 }
4190
4191 /*
4192 * Export a storage pool.
4193 */
4194 int
4195 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4196 boolean_t hardforce)
4197 {
4198 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4199 force, hardforce));
4200 }
4201
4202 /*
4203 * Similar to spa_export(), this unloads the spa_t without actually removing it
4204 * from the namespace in any way.
4205 */
4206 int
4207 spa_reset(char *pool)
4208 {
4209 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4210 B_FALSE, B_FALSE));
4211 }
4212
4213 /*
4214 * ==========================================================================
4215 * Device manipulation
4216 * ==========================================================================
4217 */
4218
4219 /*
4220 * Add a device to a storage pool.
4221 */
4222 int
4223 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4224 {
4225 uint64_t txg, id;
4226 int error;
4227 vdev_t *rvd = spa->spa_root_vdev;
4228 vdev_t *vd, *tvd;
4229 nvlist_t **spares, **l2cache;
4230 uint_t nspares, nl2cache;
4231
4232 ASSERT(spa_writeable(spa));
4233
4234 txg = spa_vdev_enter(spa);
4235
4236 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4237 VDEV_ALLOC_ADD)) != 0)
4238 return (spa_vdev_exit(spa, NULL, txg, error));
4239
4240 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4241
4242 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4243 &nspares) != 0)
4244 nspares = 0;
4245
4246 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4247 &nl2cache) != 0)
4248 nl2cache = 0;
4249
4250 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4251 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4252
4253 if (vd->vdev_children != 0 &&
4254 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4255 return (spa_vdev_exit(spa, vd, txg, error));
4256
4257 /*
4258 * We must validate the spares and l2cache devices after checking the
4259 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4260 */
4261 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4262 return (spa_vdev_exit(spa, vd, txg, error));
4263
4264 /*
4265 * Transfer each new top-level vdev from vd to rvd.
4266 */
4267 for (int c = 0; c < vd->vdev_children; c++) {
4268
4269 /*
4270 * Set the vdev id to the first hole, if one exists.
4271 */
4272 for (id = 0; id < rvd->vdev_children; id++) {
4273 if (rvd->vdev_child[id]->vdev_ishole) {
4274 vdev_free(rvd->vdev_child[id]);
4275 break;
4276 }
4277 }
4278 tvd = vd->vdev_child[c];
4279 vdev_remove_child(vd, tvd);
4280 tvd->vdev_id = id;
4281 vdev_add_child(rvd, tvd);
4282 vdev_config_dirty(tvd);
4283 }
4284
4285 if (nspares != 0) {
4286 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4287 ZPOOL_CONFIG_SPARES);
4288 spa_load_spares(spa);
4289 spa->spa_spares.sav_sync = B_TRUE;
4290 }
4291
4292 if (nl2cache != 0) {
4293 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4294 ZPOOL_CONFIG_L2CACHE);
4295 spa_load_l2cache(spa);
4296 spa->spa_l2cache.sav_sync = B_TRUE;
4297 }
4298
4299 /*
4300 * We have to be careful when adding new vdevs to an existing pool.
4301 * If other threads start allocating from these vdevs before we
4302 * sync the config cache, and we lose power, then upon reboot we may
4303 * fail to open the pool because there are DVAs that the config cache
4304 * can't translate. Therefore, we first add the vdevs without
4305 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4306 * and then let spa_config_update() initialize the new metaslabs.
4307 *
4308 * spa_load() checks for added-but-not-initialized vdevs, so that
4309 * if we lose power at any point in this sequence, the remaining
4310 * steps will be completed the next time we load the pool.
4311 */
4312 (void) spa_vdev_exit(spa, vd, txg, 0);
4313
4314 mutex_enter(&spa_namespace_lock);
4315 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4316 mutex_exit(&spa_namespace_lock);
4317
4318 return (0);
4319 }
4320
4321 /*
4322 * Attach a device to a mirror. The arguments are the path to any device
4323 * in the mirror, and the nvroot for the new device. If the path specifies
4324 * a device that is not mirrored, we automatically insert the mirror vdev.
4325 *
4326 * If 'replacing' is specified, the new device is intended to replace the
4327 * existing device; in this case the two devices are made into their own
4328 * mirror using the 'replacing' vdev, which is functionally identical to
4329 * the mirror vdev (it actually reuses all the same ops) but has a few
4330 * extra rules: you can't attach to it after it's been created, and upon
4331 * completion of resilvering, the first disk (the one being replaced)
4332 * is automatically detached.
4333 */
4334 int
4335 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4336 {
4337 uint64_t txg, dtl_max_txg;
4338 vdev_t *rvd = spa->spa_root_vdev;
4339 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4340 vdev_ops_t *pvops;
4341 char *oldvdpath, *newvdpath;
4342 int newvd_isspare;
4343 int error;
4344
4345 ASSERT(spa_writeable(spa));
4346
4347 txg = spa_vdev_enter(spa);
4348
4349 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4350
4351 if (oldvd == NULL)
4352 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4353
4354 if (!oldvd->vdev_ops->vdev_op_leaf)
4355 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4356
4357 pvd = oldvd->vdev_parent;
4358
4359 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4360 VDEV_ALLOC_ATTACH)) != 0)
4361 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4362
4363 if (newrootvd->vdev_children != 1)
4364 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4365
4366 newvd = newrootvd->vdev_child[0];
4367
4368 if (!newvd->vdev_ops->vdev_op_leaf)
4369 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4370
4371 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4372 return (spa_vdev_exit(spa, newrootvd, txg, error));
4373
4374 /*
4375 * Spares can't replace logs
4376 */
4377 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4378 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4379
4380 if (!replacing) {
4381 /*
4382 * For attach, the only allowable parent is a mirror or the root
4383 * vdev.
4384 */
4385 if (pvd->vdev_ops != &vdev_mirror_ops &&
4386 pvd->vdev_ops != &vdev_root_ops)
4387 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4388
4389 pvops = &vdev_mirror_ops;
4390 } else {
4391 /*
4392 * Active hot spares can only be replaced by inactive hot
4393 * spares.
4394 */
4395 if (pvd->vdev_ops == &vdev_spare_ops &&
4396 oldvd->vdev_isspare &&
4397 !spa_has_spare(spa, newvd->vdev_guid))
4398 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4399
4400 /*
4401 * If the source is a hot spare, and the parent isn't already a
4402 * spare, then we want to create a new hot spare. Otherwise, we
4403 * want to create a replacing vdev. The user is not allowed to
4404 * attach to a spared vdev child unless the 'isspare' state is
4405 * the same (spare replaces spare, non-spare replaces
4406 * non-spare).
4407 */
4408 if (pvd->vdev_ops == &vdev_replacing_ops &&
4409 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4410 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4411 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4412 newvd->vdev_isspare != oldvd->vdev_isspare) {
4413 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4414 }
4415
4416 if (newvd->vdev_isspare)
4417 pvops = &vdev_spare_ops;
4418 else
4419 pvops = &vdev_replacing_ops;
4420 }
4421
4422 /*
4423 * Make sure the new device is big enough.
4424 */
4425 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4426 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4427
4428 /*
4429 * The new device cannot have a higher alignment requirement
4430 * than the top-level vdev.
4431 */
4432 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4433 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4434
4435 /*
4436 * If this is an in-place replacement, update oldvd's path and devid
4437 * to make it distinguishable from newvd, and unopenable from now on.
4438 */
4439 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4440 spa_strfree(oldvd->vdev_path);
4441 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4442 KM_SLEEP);
4443 (void) sprintf(oldvd->vdev_path, "%s/%s",
4444 newvd->vdev_path, "old");
4445 if (oldvd->vdev_devid != NULL) {
4446 spa_strfree(oldvd->vdev_devid);
4447 oldvd->vdev_devid = NULL;
4448 }
4449 }
4450
4451 /* mark the device being resilvered */
4452 newvd->vdev_resilver_txg = txg;
4453
4454 /*
4455 * If the parent is not a mirror, or if we're replacing, insert the new
4456 * mirror/replacing/spare vdev above oldvd.
4457 */
4458 if (pvd->vdev_ops != pvops)
4459 pvd = vdev_add_parent(oldvd, pvops);
4460
4461 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4462 ASSERT(pvd->vdev_ops == pvops);
4463 ASSERT(oldvd->vdev_parent == pvd);
4464
4465 /*
4466 * Extract the new device from its root and add it to pvd.
4467 */
4468 vdev_remove_child(newrootvd, newvd);
4469 newvd->vdev_id = pvd->vdev_children;
4470 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4471 vdev_add_child(pvd, newvd);
4472
4473 tvd = newvd->vdev_top;
4474 ASSERT(pvd->vdev_top == tvd);
4475 ASSERT(tvd->vdev_parent == rvd);
4476
4477 vdev_config_dirty(tvd);
4478
4479 /*
4480 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4481 * for any dmu_sync-ed blocks. It will propagate upward when
4482 * spa_vdev_exit() calls vdev_dtl_reassess().
4483 */
4484 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4485
4486 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4487 dtl_max_txg - TXG_INITIAL);
4488
4489 if (newvd->vdev_isspare) {
4490 spa_spare_activate(newvd);
4491 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4492 }
4493
4494 oldvdpath = spa_strdup(oldvd->vdev_path);
4495 newvdpath = spa_strdup(newvd->vdev_path);
4496 newvd_isspare = newvd->vdev_isspare;
4497
4498 /*
4499 * Mark newvd's DTL dirty in this txg.
4500 */
4501 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4502
4503 /*
4504 * Restart the resilver
4505 */
4506 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4507
4508 /*
4509 * Commit the config
4510 */
4511 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4512
4513 spa_history_log_internal(spa, "vdev attach", NULL,
4514 "%s vdev=%s %s vdev=%s",
4515 replacing && newvd_isspare ? "spare in" :
4516 replacing ? "replace" : "attach", newvdpath,
4517 replacing ? "for" : "to", oldvdpath);
4518
4519 spa_strfree(oldvdpath);
4520 spa_strfree(newvdpath);
4521
4522 if (spa->spa_bootfs)
4523 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4524
4525 return (0);
4526 }
4527
4528 /*
4529 * Detach a device from a mirror or replacing vdev.
4530 *
4531 * If 'replace_done' is specified, only detach if the parent
4532 * is a replacing vdev.
4533 */
4534 int
4535 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4536 {
4537 uint64_t txg;
4538 int error;
4539 vdev_t *rvd = spa->spa_root_vdev;
4540 vdev_t *vd, *pvd, *cvd, *tvd;
4541 boolean_t unspare = B_FALSE;
4542 uint64_t unspare_guid = 0;
4543 char *vdpath;
4544
4545 ASSERT(spa_writeable(spa));
4546
4547 txg = spa_vdev_enter(spa);
4548
4549 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4550
4551 if (vd == NULL)
4552 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4553
4554 if (!vd->vdev_ops->vdev_op_leaf)
4555 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4556
4557 pvd = vd->vdev_parent;
4558
4559 /*
4560 * If the parent/child relationship is not as expected, don't do it.
4561 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4562 * vdev that's replacing B with C. The user's intent in replacing
4563 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4564 * the replace by detaching C, the expected behavior is to end up
4565 * M(A,B). But suppose that right after deciding to detach C,
4566 * the replacement of B completes. We would have M(A,C), and then
4567 * ask to detach C, which would leave us with just A -- not what
4568 * the user wanted. To prevent this, we make sure that the
4569 * parent/child relationship hasn't changed -- in this example,
4570 * that C's parent is still the replacing vdev R.
4571 */
4572 if (pvd->vdev_guid != pguid && pguid != 0)
4573 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4574
4575 /*
4576 * Only 'replacing' or 'spare' vdevs can be replaced.
4577 */
4578 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4579 pvd->vdev_ops != &vdev_spare_ops)
4580 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4581
4582 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4583 spa_version(spa) >= SPA_VERSION_SPARES);
4584
4585 /*
4586 * Only mirror, replacing, and spare vdevs support detach.
4587 */
4588 if (pvd->vdev_ops != &vdev_replacing_ops &&
4589 pvd->vdev_ops != &vdev_mirror_ops &&
4590 pvd->vdev_ops != &vdev_spare_ops)
4591 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4592
4593 /*
4594 * If this device has the only valid copy of some data,
4595 * we cannot safely detach it.
4596 */
4597 if (vdev_dtl_required(vd))
4598 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4599
4600 ASSERT(pvd->vdev_children >= 2);
4601
4602 /*
4603 * If we are detaching the second disk from a replacing vdev, then
4604 * check to see if we changed the original vdev's path to have "/old"
4605 * at the end in spa_vdev_attach(). If so, undo that change now.
4606 */
4607 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4608 vd->vdev_path != NULL) {
4609 size_t len = strlen(vd->vdev_path);
4610
4611 for (int c = 0; c < pvd->vdev_children; c++) {
4612 cvd = pvd->vdev_child[c];
4613
4614 if (cvd == vd || cvd->vdev_path == NULL)
4615 continue;
4616
4617 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4618 strcmp(cvd->vdev_path + len, "/old") == 0) {
4619 spa_strfree(cvd->vdev_path);
4620 cvd->vdev_path = spa_strdup(vd->vdev_path);
4621 break;
4622 }
4623 }
4624 }
4625
4626 /*
4627 * If we are detaching the original disk from a spare, then it implies
4628 * that the spare should become a real disk, and be removed from the
4629 * active spare list for the pool.
4630 */
4631 if (pvd->vdev_ops == &vdev_spare_ops &&
4632 vd->vdev_id == 0 &&
4633 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4634 unspare = B_TRUE;
4635
4636 /*
4637 * Erase the disk labels so the disk can be used for other things.
4638 * This must be done after all other error cases are handled,
4639 * but before we disembowel vd (so we can still do I/O to it).
4640 * But if we can't do it, don't treat the error as fatal --
4641 * it may be that the unwritability of the disk is the reason
4642 * it's being detached!
4643 */
4644 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4645
4646 /*
4647 * Remove vd from its parent and compact the parent's children.
4648 */
4649 vdev_remove_child(pvd, vd);
4650 vdev_compact_children(pvd);
4651
4652 /*
4653 * Remember one of the remaining children so we can get tvd below.
4654 */
4655 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4656
4657 /*
4658 * If we need to remove the remaining child from the list of hot spares,
4659 * do it now, marking the vdev as no longer a spare in the process.
4660 * We must do this before vdev_remove_parent(), because that can
4661 * change the GUID if it creates a new toplevel GUID. For a similar
4662 * reason, we must remove the spare now, in the same txg as the detach;
4663 * otherwise someone could attach a new sibling, change the GUID, and
4664 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4665 */
4666 if (unspare) {
4667 ASSERT(cvd->vdev_isspare);
4668 spa_spare_remove(cvd);
4669 unspare_guid = cvd->vdev_guid;
4670 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4671 cvd->vdev_unspare = B_TRUE;
4672 }
4673
4674 /*
4675 * If the parent mirror/replacing vdev only has one child,
4676 * the parent is no longer needed. Remove it from the tree.
4677 */
4678 if (pvd->vdev_children == 1) {
4679 if (pvd->vdev_ops == &vdev_spare_ops)
4680 cvd->vdev_unspare = B_FALSE;
4681 vdev_remove_parent(cvd);
4682 }
4683
4684
4685 /*
4686 * We don't set tvd until now because the parent we just removed
4687 * may have been the previous top-level vdev.
4688 */
4689 tvd = cvd->vdev_top;
4690 ASSERT(tvd->vdev_parent == rvd);
4691
4692 /*
4693 * Reevaluate the parent vdev state.
4694 */
4695 vdev_propagate_state(cvd);
4696
4697 /*
4698 * If the 'autoexpand' property is set on the pool then automatically
4699 * try to expand the size of the pool. For example if the device we
4700 * just detached was smaller than the others, it may be possible to
4701 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4702 * first so that we can obtain the updated sizes of the leaf vdevs.
4703 */
4704 if (spa->spa_autoexpand) {
4705 vdev_reopen(tvd);
4706 vdev_expand(tvd, txg);
4707 }
4708
4709 vdev_config_dirty(tvd);
4710
4711 /*
4712 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4713 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4714 * But first make sure we're not on any *other* txg's DTL list, to
4715 * prevent vd from being accessed after it's freed.
4716 */
4717 vdpath = spa_strdup(vd->vdev_path);
4718 for (int t = 0; t < TXG_SIZE; t++)
4719 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4720 vd->vdev_detached = B_TRUE;
4721 vdev_dirty(tvd, VDD_DTL, vd, txg);
4722
4723 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4724
4725 /* hang on to the spa before we release the lock */
4726 spa_open_ref(spa, FTAG);
4727
4728 error = spa_vdev_exit(spa, vd, txg, 0);
4729
4730 spa_history_log_internal(spa, "detach", NULL,
4731 "vdev=%s", vdpath);
4732 spa_strfree(vdpath);
4733
4734 /*
4735 * If this was the removal of the original device in a hot spare vdev,
4736 * then we want to go through and remove the device from the hot spare
4737 * list of every other pool.
4738 */
4739 if (unspare) {
4740 spa_t *altspa = NULL;
4741
4742 mutex_enter(&spa_namespace_lock);
4743 while ((altspa = spa_next(altspa)) != NULL) {
4744 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4745 altspa == spa)
4746 continue;
4747
4748 spa_open_ref(altspa, FTAG);
4749 mutex_exit(&spa_namespace_lock);
4750 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4751 mutex_enter(&spa_namespace_lock);
4752 spa_close(altspa, FTAG);
4753 }
4754 mutex_exit(&spa_namespace_lock);
4755
4756 /* search the rest of the vdevs for spares to remove */
4757 spa_vdev_resilver_done(spa);
4758 }
4759
4760 /* all done with the spa; OK to release */
4761 mutex_enter(&spa_namespace_lock);
4762 spa_close(spa, FTAG);
4763 mutex_exit(&spa_namespace_lock);
4764
4765 return (error);
4766 }
4767
4768 /*
4769 * Split a set of devices from their mirrors, and create a new pool from them.
4770 */
4771 int
4772 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4773 nvlist_t *props, boolean_t exp)
4774 {
4775 int error = 0;
4776 uint64_t txg, *glist;
4777 spa_t *newspa;
4778 uint_t c, children, lastlog;
4779 nvlist_t **child, *nvl, *tmp;
4780 dmu_tx_t *tx;
4781 char *altroot = NULL;
4782 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4783 boolean_t activate_slog;
4784
4785 ASSERT(spa_writeable(spa));
4786
4787 txg = spa_vdev_enter(spa);
4788
4789 /* clear the log and flush everything up to now */
4790 activate_slog = spa_passivate_log(spa);
4791 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4792 error = spa_offline_log(spa);
4793 txg = spa_vdev_config_enter(spa);
4794
4795 if (activate_slog)
4796 spa_activate_log(spa);
4797
4798 if (error != 0)
4799 return (spa_vdev_exit(spa, NULL, txg, error));
4800
4801 /* check new spa name before going any further */
4802 if (spa_lookup(newname) != NULL)
4803 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4804
4805 /*
4806 * scan through all the children to ensure they're all mirrors
4807 */
4808 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4809 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4810 &children) != 0)
4811 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4812
4813 /* first, check to ensure we've got the right child count */
4814 rvd = spa->spa_root_vdev;
4815 lastlog = 0;
4816 for (c = 0; c < rvd->vdev_children; c++) {
4817 vdev_t *vd = rvd->vdev_child[c];
4818
4819 /* don't count the holes & logs as children */
4820 if (vd->vdev_islog || vd->vdev_ishole) {
4821 if (lastlog == 0)
4822 lastlog = c;
4823 continue;
4824 }
4825
4826 lastlog = 0;
4827 }
4828 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4829 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4830
4831 /* next, ensure no spare or cache devices are part of the split */
4832 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4833 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4834 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4835
4836 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4837 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4838
4839 /* then, loop over each vdev and validate it */
4840 for (c = 0; c < children; c++) {
4841 uint64_t is_hole = 0;
4842
4843 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4844 &is_hole);
4845
4846 if (is_hole != 0) {
4847 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4848 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4849 continue;
4850 } else {
4851 error = SET_ERROR(EINVAL);
4852 break;
4853 }
4854 }
4855
4856 /* which disk is going to be split? */
4857 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4858 &glist[c]) != 0) {
4859 error = SET_ERROR(EINVAL);
4860 break;
4861 }
4862
4863 /* look it up in the spa */
4864 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4865 if (vml[c] == NULL) {
4866 error = SET_ERROR(ENODEV);
4867 break;
4868 }
4869
4870 /* make sure there's nothing stopping the split */
4871 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4872 vml[c]->vdev_islog ||
4873 vml[c]->vdev_ishole ||
4874 vml[c]->vdev_isspare ||
4875 vml[c]->vdev_isl2cache ||
4876 !vdev_writeable(vml[c]) ||
4877 vml[c]->vdev_children != 0 ||
4878 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4879 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4880 error = SET_ERROR(EINVAL);
4881 break;
4882 }
4883
4884 if (vdev_dtl_required(vml[c])) {
4885 error = SET_ERROR(EBUSY);
4886 break;
4887 }
4888
4889 /* we need certain info from the top level */
4890 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4891 vml[c]->vdev_top->vdev_ms_array) == 0);
4892 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4893 vml[c]->vdev_top->vdev_ms_shift) == 0);
4894 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4895 vml[c]->vdev_top->vdev_asize) == 0);
4896 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4897 vml[c]->vdev_top->vdev_ashift) == 0);
4898 }
4899
4900 if (error != 0) {
4901 kmem_free(vml, children * sizeof (vdev_t *));
4902 kmem_free(glist, children * sizeof (uint64_t));
4903 return (spa_vdev_exit(spa, NULL, txg, error));
4904 }
4905
4906 /* stop writers from using the disks */
4907 for (c = 0; c < children; c++) {
4908 if (vml[c] != NULL)
4909 vml[c]->vdev_offline = B_TRUE;
4910 }
4911 vdev_reopen(spa->spa_root_vdev);
4912
4913 /*
4914 * Temporarily record the splitting vdevs in the spa config. This
4915 * will disappear once the config is regenerated.
4916 */
4917 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4918 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4919 glist, children) == 0);
4920 kmem_free(glist, children * sizeof (uint64_t));
4921
4922 mutex_enter(&spa->spa_props_lock);
4923 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4924 nvl) == 0);
4925 mutex_exit(&spa->spa_props_lock);
4926 spa->spa_config_splitting = nvl;
4927 vdev_config_dirty(spa->spa_root_vdev);
4928
4929 /* configure and create the new pool */
4930 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4931 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4932 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4933 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4934 spa_version(spa)) == 0);
4935 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4936 spa->spa_config_txg) == 0);
4937 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4938 spa_generate_guid(NULL)) == 0);
4939 (void) nvlist_lookup_string(props,
4940 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4941
4942 /* add the new pool to the namespace */
4943 newspa = spa_add(newname, config, altroot);
4944 newspa->spa_config_txg = spa->spa_config_txg;
4945 spa_set_log_state(newspa, SPA_LOG_CLEAR);
4946
4947 /* release the spa config lock, retaining the namespace lock */
4948 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4949
4950 if (zio_injection_enabled)
4951 zio_handle_panic_injection(spa, FTAG, 1);
4952
4953 spa_activate(newspa, spa_mode_global);
4954 spa_async_suspend(newspa);
4955
4956 /* create the new pool from the disks of the original pool */
4957 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4958 if (error)
4959 goto out;
4960
4961 /* if that worked, generate a real config for the new pool */
4962 if (newspa->spa_root_vdev != NULL) {
4963 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4964 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4965 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4966 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4967 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4968 B_TRUE));
4969 }
4970
4971 /* set the props */
4972 if (props != NULL) {
4973 spa_configfile_set(newspa, props, B_FALSE);
4974 error = spa_prop_set(newspa, props);
4975 if (error)
4976 goto out;
4977 }
4978
4979 /* flush everything */
4980 txg = spa_vdev_config_enter(newspa);
4981 vdev_config_dirty(newspa->spa_root_vdev);
4982 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4983
4984 if (zio_injection_enabled)
4985 zio_handle_panic_injection(spa, FTAG, 2);
4986
4987 spa_async_resume(newspa);
4988
4989 /* finally, update the original pool's config */
4990 txg = spa_vdev_config_enter(spa);
4991 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4992 error = dmu_tx_assign(tx, TXG_WAIT);
4993 if (error != 0)
4994 dmu_tx_abort(tx);
4995 for (c = 0; c < children; c++) {
4996 if (vml[c] != NULL) {
4997 vdev_split(vml[c]);
4998 if (error == 0)
4999 spa_history_log_internal(spa, "detach", tx,
5000 "vdev=%s", vml[c]->vdev_path);
5001 vdev_free(vml[c]);
5002 }
5003 }
5004 vdev_config_dirty(spa->spa_root_vdev);
5005 spa->spa_config_splitting = NULL;
5006 nvlist_free(nvl);
5007 if (error == 0)
5008 dmu_tx_commit(tx);
5009 (void) spa_vdev_exit(spa, NULL, txg, 0);
5010
5011 if (zio_injection_enabled)
5012 zio_handle_panic_injection(spa, FTAG, 3);
5013
5014 /* split is complete; log a history record */
5015 spa_history_log_internal(newspa, "split", NULL,
5016 "from pool %s", spa_name(spa));
5017
5018 kmem_free(vml, children * sizeof (vdev_t *));
5019
5020 /* if we're not going to mount the filesystems in userland, export */
5021 if (exp)
5022 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5023 B_FALSE, B_FALSE);
5024
5025 return (error);
5026
5027 out:
5028 spa_unload(newspa);
5029 spa_deactivate(newspa);
5030 spa_remove(newspa);
5031
5032 txg = spa_vdev_config_enter(spa);
5033
5034 /* re-online all offlined disks */
5035 for (c = 0; c < children; c++) {
5036 if (vml[c] != NULL)
5037 vml[c]->vdev_offline = B_FALSE;
5038 }
5039 vdev_reopen(spa->spa_root_vdev);
5040
5041 nvlist_free(spa->spa_config_splitting);
5042 spa->spa_config_splitting = NULL;
5043 (void) spa_vdev_exit(spa, NULL, txg, error);
5044
5045 kmem_free(vml, children * sizeof (vdev_t *));
5046 return (error);
5047 }
5048
5049 static nvlist_t *
5050 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5051 {
5052 for (int i = 0; i < count; i++) {
5053 uint64_t guid;
5054
5055 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5056 &guid) == 0);
5057
5058 if (guid == target_guid)
5059 return (nvpp[i]);
5060 }
5061
5062 return (NULL);
5063 }
5064
5065 static void
5066 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5067 nvlist_t *dev_to_remove)
5068 {
5069 nvlist_t **newdev = NULL;
5070
5071 if (count > 1)
5072 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5073
5074 for (int i = 0, j = 0; i < count; i++) {
5075 if (dev[i] == dev_to_remove)
5076 continue;
5077 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5078 }
5079
5080 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5081 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5082
5083 for (int i = 0; i < count - 1; i++)
5084 nvlist_free(newdev[i]);
5085
5086 if (count > 1)
5087 kmem_free(newdev, (count - 1) * sizeof (void *));
5088 }
5089
5090 /*
5091 * Evacuate the device.
5092 */
5093 static int
5094 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5095 {
5096 uint64_t txg;
5097 int error = 0;
5098
5099 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5100 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5101 ASSERT(vd == vd->vdev_top);
5102
5103 /*
5104 * Evacuate the device. We don't hold the config lock as writer
5105 * since we need to do I/O but we do keep the
5106 * spa_namespace_lock held. Once this completes the device
5107 * should no longer have any blocks allocated on it.
5108 */
5109 if (vd->vdev_islog) {
5110 if (vd->vdev_stat.vs_alloc != 0)
5111 error = spa_offline_log(spa);
5112 } else {
5113 error = SET_ERROR(ENOTSUP);
5114 }
5115
5116 if (error)
5117 return (error);
5118
5119 /*
5120 * The evacuation succeeded. Remove any remaining MOS metadata
5121 * associated with this vdev, and wait for these changes to sync.
5122 */
5123 ASSERT0(vd->vdev_stat.vs_alloc);
5124 txg = spa_vdev_config_enter(spa);
5125 vd->vdev_removing = B_TRUE;
5126 vdev_dirty(vd, 0, NULL, txg);
5127 vdev_config_dirty(vd);
5128 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5129
5130 return (0);
5131 }
5132
5133 /*
5134 * Complete the removal by cleaning up the namespace.
5135 */
5136 static void
5137 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5138 {
5139 vdev_t *rvd = spa->spa_root_vdev;
5140 uint64_t id = vd->vdev_id;
5141 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5142
5143 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5144 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5145 ASSERT(vd == vd->vdev_top);
5146
5147 /*
5148 * Only remove any devices which are empty.
5149 */
5150 if (vd->vdev_stat.vs_alloc != 0)
5151 return;
5152
5153 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5154
5155 if (list_link_active(&vd->vdev_state_dirty_node))
5156 vdev_state_clean(vd);
5157 if (list_link_active(&vd->vdev_config_dirty_node))
5158 vdev_config_clean(vd);
5159
5160 vdev_free(vd);
5161
5162 if (last_vdev) {
5163 vdev_compact_children(rvd);
5164 } else {
5165 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5166 vdev_add_child(rvd, vd);
5167 }
5168 vdev_config_dirty(rvd);
5169
5170 /*
5171 * Reassess the health of our root vdev.
5172 */
5173 vdev_reopen(rvd);
5174 }
5175
5176 /*
5177 * Remove a device from the pool -
5178 *
5179 * Removing a device from the vdev namespace requires several steps
5180 * and can take a significant amount of time. As a result we use
5181 * the spa_vdev_config_[enter/exit] functions which allow us to
5182 * grab and release the spa_config_lock while still holding the namespace
5183 * lock. During each step the configuration is synced out.
5184 *
5185 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5186 * devices.
5187 */
5188 int
5189 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5190 {
5191 vdev_t *vd;
5192 metaslab_group_t *mg;
5193 nvlist_t **spares, **l2cache, *nv;
5194 uint64_t txg = 0;
5195 uint_t nspares, nl2cache;
5196 int error = 0;
5197 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5198
5199 ASSERT(spa_writeable(spa));
5200
5201 if (!locked)
5202 txg = spa_vdev_enter(spa);
5203
5204 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5205
5206 if (spa->spa_spares.sav_vdevs != NULL &&
5207 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5208 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5209 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5210 /*
5211 * Only remove the hot spare if it's not currently in use
5212 * in this pool.
5213 */
5214 if (vd == NULL || unspare) {
5215 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5216 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5217 spa_load_spares(spa);
5218 spa->spa_spares.sav_sync = B_TRUE;
5219 } else {
5220 error = SET_ERROR(EBUSY);
5221 }
5222 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5223 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5224 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5225 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5226 /*
5227 * Cache devices can always be removed.
5228 */
5229 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5230 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5231 spa_load_l2cache(spa);
5232 spa->spa_l2cache.sav_sync = B_TRUE;
5233 } else if (vd != NULL && vd->vdev_islog) {
5234 ASSERT(!locked);
5235 ASSERT(vd == vd->vdev_top);
5236
5237 /*
5238 * XXX - Once we have bp-rewrite this should
5239 * become the common case.
5240 */
5241
5242 mg = vd->vdev_mg;
5243
5244 /*
5245 * Stop allocating from this vdev.
5246 */
5247 metaslab_group_passivate(mg);
5248
5249 /*
5250 * Wait for the youngest allocations and frees to sync,
5251 * and then wait for the deferral of those frees to finish.
5252 */
5253 spa_vdev_config_exit(spa, NULL,
5254 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5255
5256 /*
5257 * Attempt to evacuate the vdev.
5258 */
5259 error = spa_vdev_remove_evacuate(spa, vd);
5260
5261 txg = spa_vdev_config_enter(spa);
5262
5263 /*
5264 * If we couldn't evacuate the vdev, unwind.
5265 */
5266 if (error) {
5267 metaslab_group_activate(mg);
5268 return (spa_vdev_exit(spa, NULL, txg, error));
5269 }
5270
5271 /*
5272 * Clean up the vdev namespace.
5273 */
5274 spa_vdev_remove_from_namespace(spa, vd);
5275
5276 } else if (vd != NULL) {
5277 /*
5278 * Normal vdevs cannot be removed (yet).
5279 */
5280 error = SET_ERROR(ENOTSUP);
5281 } else {
5282 /*
5283 * There is no vdev of any kind with the specified guid.
5284 */
5285 error = SET_ERROR(ENOENT);
5286 }
5287
5288 if (!locked)
5289 return (spa_vdev_exit(spa, NULL, txg, error));
5290
5291 return (error);
5292 }
5293
5294 /*
5295 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5296 * currently spared, so we can detach it.
5297 */
5298 static vdev_t *
5299 spa_vdev_resilver_done_hunt(vdev_t *vd)
5300 {
5301 vdev_t *newvd, *oldvd;
5302
5303 for (int c = 0; c < vd->vdev_children; c++) {
5304 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5305 if (oldvd != NULL)
5306 return (oldvd);
5307 }
5308
5309 /*
5310 * Check for a completed replacement. We always consider the first
5311 * vdev in the list to be the oldest vdev, and the last one to be
5312 * the newest (see spa_vdev_attach() for how that works). In
5313 * the case where the newest vdev is faulted, we will not automatically
5314 * remove it after a resilver completes. This is OK as it will require
5315 * user intervention to determine which disk the admin wishes to keep.
5316 */
5317 if (vd->vdev_ops == &vdev_replacing_ops) {
5318 ASSERT(vd->vdev_children > 1);
5319
5320 newvd = vd->vdev_child[vd->vdev_children - 1];
5321 oldvd = vd->vdev_child[0];
5322
5323 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5324 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5325 !vdev_dtl_required(oldvd))
5326 return (oldvd);
5327 }
5328
5329 /*
5330 * Check for a completed resilver with the 'unspare' flag set.
5331 */
5332 if (vd->vdev_ops == &vdev_spare_ops) {
5333 vdev_t *first = vd->vdev_child[0];
5334 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5335
5336 if (last->vdev_unspare) {
5337 oldvd = first;
5338 newvd = last;
5339 } else if (first->vdev_unspare) {
5340 oldvd = last;
5341 newvd = first;
5342 } else {
5343 oldvd = NULL;
5344 }
5345
5346 if (oldvd != NULL &&
5347 vdev_dtl_empty(newvd, DTL_MISSING) &&
5348 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5349 !vdev_dtl_required(oldvd))
5350 return (oldvd);
5351
5352 /*
5353 * If there are more than two spares attached to a disk,
5354 * and those spares are not required, then we want to
5355 * attempt to free them up now so that they can be used
5356 * by other pools. Once we're back down to a single
5357 * disk+spare, we stop removing them.
5358 */
5359 if (vd->vdev_children > 2) {
5360 newvd = vd->vdev_child[1];
5361
5362 if (newvd->vdev_isspare && last->vdev_isspare &&
5363 vdev_dtl_empty(last, DTL_MISSING) &&
5364 vdev_dtl_empty(last, DTL_OUTAGE) &&
5365 !vdev_dtl_required(newvd))
5366 return (newvd);
5367 }
5368 }
5369
5370 return (NULL);
5371 }
5372
5373 static void
5374 spa_vdev_resilver_done(spa_t *spa)
5375 {
5376 vdev_t *vd, *pvd, *ppvd;
5377 uint64_t guid, sguid, pguid, ppguid;
5378
5379 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5380
5381 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5382 pvd = vd->vdev_parent;
5383 ppvd = pvd->vdev_parent;
5384 guid = vd->vdev_guid;
5385 pguid = pvd->vdev_guid;
5386 ppguid = ppvd->vdev_guid;
5387 sguid = 0;
5388 /*
5389 * If we have just finished replacing a hot spared device, then
5390 * we need to detach the parent's first child (the original hot
5391 * spare) as well.
5392 */
5393 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5394 ppvd->vdev_children == 2) {
5395 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5396 sguid = ppvd->vdev_child[1]->vdev_guid;
5397 }
5398 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5399
5400 spa_config_exit(spa, SCL_ALL, FTAG);
5401 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5402 return;
5403 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5404 return;
5405 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5406 }
5407
5408 spa_config_exit(spa, SCL_ALL, FTAG);
5409 }
5410
5411 /*
5412 * Update the stored path or FRU for this vdev.
5413 */
5414 int
5415 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5416 boolean_t ispath)
5417 {
5418 vdev_t *vd;
5419 boolean_t sync = B_FALSE;
5420
5421 ASSERT(spa_writeable(spa));
5422
5423 spa_vdev_state_enter(spa, SCL_ALL);
5424
5425 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5426 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5427
5428 if (!vd->vdev_ops->vdev_op_leaf)
5429 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5430
5431 if (ispath) {
5432 if (strcmp(value, vd->vdev_path) != 0) {
5433 spa_strfree(vd->vdev_path);
5434 vd->vdev_path = spa_strdup(value);
5435 sync = B_TRUE;
5436 }
5437 } else {
5438 if (vd->vdev_fru == NULL) {
5439 vd->vdev_fru = spa_strdup(value);
5440 sync = B_TRUE;
5441 } else if (strcmp(value, vd->vdev_fru) != 0) {
5442 spa_strfree(vd->vdev_fru);
5443 vd->vdev_fru = spa_strdup(value);
5444 sync = B_TRUE;
5445 }
5446 }
5447
5448 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5449 }
5450
5451 int
5452 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5453 {
5454 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5455 }
5456
5457 int
5458 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5459 {
5460 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5461 }
5462
5463 /*
5464 * ==========================================================================
5465 * SPA Scanning
5466 * ==========================================================================
5467 */
5468
5469 int
5470 spa_scan_stop(spa_t *spa)
5471 {
5472 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5473 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5474 return (SET_ERROR(EBUSY));
5475 return (dsl_scan_cancel(spa->spa_dsl_pool));
5476 }
5477
5478 int
5479 spa_scan(spa_t *spa, pool_scan_func_t func)
5480 {
5481 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5482
5483 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5484 return (SET_ERROR(ENOTSUP));
5485
5486 /*
5487 * If a resilver was requested, but there is no DTL on a
5488 * writeable leaf device, we have nothing to do.
5489 */
5490 if (func == POOL_SCAN_RESILVER &&
5491 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5492 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5493 return (0);
5494 }
5495
5496 return (dsl_scan(spa->spa_dsl_pool, func));
5497 }
5498
5499 /*
5500 * ==========================================================================
5501 * SPA async task processing
5502 * ==========================================================================
5503 */
5504
5505 static void
5506 spa_async_remove(spa_t *spa, vdev_t *vd)
5507 {
5508 if (vd->vdev_remove_wanted) {
5509 vd->vdev_remove_wanted = B_FALSE;
5510 vd->vdev_delayed_close = B_FALSE;
5511 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5512
5513 /*
5514 * We want to clear the stats, but we don't want to do a full
5515 * vdev_clear() as that will cause us to throw away
5516 * degraded/faulted state as well as attempt to reopen the
5517 * device, all of which is a waste.
5518 */
5519 vd->vdev_stat.vs_read_errors = 0;
5520 vd->vdev_stat.vs_write_errors = 0;
5521 vd->vdev_stat.vs_checksum_errors = 0;
5522
5523 vdev_state_dirty(vd->vdev_top);
5524 }
5525
5526 for (int c = 0; c < vd->vdev_children; c++)
5527 spa_async_remove(spa, vd->vdev_child[c]);
5528 }
5529
5530 static void
5531 spa_async_probe(spa_t *spa, vdev_t *vd)
5532 {
5533 if (vd->vdev_probe_wanted) {
5534 vd->vdev_probe_wanted = B_FALSE;
5535 vdev_reopen(vd); /* vdev_open() does the actual probe */
5536 }
5537
5538 for (int c = 0; c < vd->vdev_children; c++)
5539 spa_async_probe(spa, vd->vdev_child[c]);
5540 }
5541
5542 static void
5543 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5544 {
5545 sysevent_id_t eid;
5546 nvlist_t *attr;
5547 char *physpath;
5548
5549 if (!spa->spa_autoexpand)
5550 return;
5551
5552 for (int c = 0; c < vd->vdev_children; c++) {
5553 vdev_t *cvd = vd->vdev_child[c];
5554 spa_async_autoexpand(spa, cvd);
5555 }
5556
5557 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5558 return;
5559
5560 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5561 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5562
5563 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5564 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5565
5566 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5567 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5568
5569 nvlist_free(attr);
5570 kmem_free(physpath, MAXPATHLEN);
5571 }
5572
5573 static void
5574 spa_async_thread(spa_t *spa)
5575 {
5576 int tasks;
5577
5578 ASSERT(spa->spa_sync_on);
5579
5580 mutex_enter(&spa->spa_async_lock);
5581 tasks = spa->spa_async_tasks;
5582 spa->spa_async_tasks = 0;
5583 mutex_exit(&spa->spa_async_lock);
5584
5585 /*
5586 * See if the config needs to be updated.
5587 */
5588 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5589 uint64_t old_space, new_space;
5590
5591 mutex_enter(&spa_namespace_lock);
5592 old_space = metaslab_class_get_space(spa_normal_class(spa));
5593 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5594 new_space = metaslab_class_get_space(spa_normal_class(spa));
5595 mutex_exit(&spa_namespace_lock);
5596
5597 /*
5598 * If the pool grew as a result of the config update,
5599 * then log an internal history event.
5600 */
5601 if (new_space != old_space) {
5602 spa_history_log_internal(spa, "vdev online", NULL,
5603 "pool '%s' size: %llu(+%llu)",
5604 spa_name(spa), new_space, new_space - old_space);
5605 }
5606 }
5607
5608 /*
5609 * See if any devices need to be marked REMOVED.
5610 */
5611 if (tasks & SPA_ASYNC_REMOVE) {
5612 spa_vdev_state_enter(spa, SCL_NONE);
5613 spa_async_remove(spa, spa->spa_root_vdev);
5614 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5615 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5616 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5617 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5618 (void) spa_vdev_state_exit(spa, NULL, 0);
5619 }
5620
5621 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5622 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5623 spa_async_autoexpand(spa, spa->spa_root_vdev);
5624 spa_config_exit(spa, SCL_CONFIG, FTAG);
5625 }
5626
5627 /*
5628 * See if any devices need to be probed.
5629 */
5630 if (tasks & SPA_ASYNC_PROBE) {
5631 spa_vdev_state_enter(spa, SCL_NONE);
5632 spa_async_probe(spa, spa->spa_root_vdev);
5633 (void) spa_vdev_state_exit(spa, NULL, 0);
5634 }
5635
5636 /*
5637 * If any devices are done replacing, detach them.
5638 */
5639 if (tasks & SPA_ASYNC_RESILVER_DONE)
5640 spa_vdev_resilver_done(spa);
5641
5642 /*
5643 * Kick off a resilver.
5644 */
5645 if (tasks & SPA_ASYNC_RESILVER)
5646 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5647
5648 /*
5649 * Let the world know that we're done.
5650 */
5651 mutex_enter(&spa->spa_async_lock);
5652 spa->spa_async_thread = NULL;
5653 cv_broadcast(&spa->spa_async_cv);
5654 mutex_exit(&spa->spa_async_lock);
5655 thread_exit();
5656 }
5657
5658 void
5659 spa_async_suspend(spa_t *spa)
5660 {
5661 mutex_enter(&spa->spa_async_lock);
5662 spa->spa_async_suspended++;
5663 while (spa->spa_async_thread != NULL)
5664 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5665 mutex_exit(&spa->spa_async_lock);
5666 }
5667
5668 void
5669 spa_async_resume(spa_t *spa)
5670 {
5671 mutex_enter(&spa->spa_async_lock);
5672 ASSERT(spa->spa_async_suspended != 0);
5673 spa->spa_async_suspended--;
5674 mutex_exit(&spa->spa_async_lock);
5675 }
5676
5677 static boolean_t
5678 spa_async_tasks_pending(spa_t *spa)
5679 {
5680 uint_t non_config_tasks;
5681 uint_t config_task;
5682 boolean_t config_task_suspended;
5683
5684 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5685 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5686 if (spa->spa_ccw_fail_time == 0) {
5687 config_task_suspended = B_FALSE;
5688 } else {
5689 config_task_suspended =
5690 (gethrtime() - spa->spa_ccw_fail_time) <
5691 (zfs_ccw_retry_interval * NANOSEC);
5692 }
5693
5694 return (non_config_tasks || (config_task && !config_task_suspended));
5695 }
5696
5697 static void
5698 spa_async_dispatch(spa_t *spa)
5699 {
5700 mutex_enter(&spa->spa_async_lock);
5701 if (spa_async_tasks_pending(spa) &&
5702 !spa->spa_async_suspended &&
5703 spa->spa_async_thread == NULL &&
5704 rootdir != NULL)
5705 spa->spa_async_thread = thread_create(NULL, 0,
5706 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5707 mutex_exit(&spa->spa_async_lock);
5708 }
5709
5710 void
5711 spa_async_request(spa_t *spa, int task)
5712 {
5713 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5714 mutex_enter(&spa->spa_async_lock);
5715 spa->spa_async_tasks |= task;
5716 mutex_exit(&spa->spa_async_lock);
5717 }
5718
5719 /*
5720 * ==========================================================================
5721 * SPA syncing routines
5722 * ==========================================================================
5723 */
5724
5725 static int
5726 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5727 {
5728 bpobj_t *bpo = arg;
5729 bpobj_enqueue(bpo, bp, tx);
5730 return (0);
5731 }
5732
5733 static int
5734 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5735 {
5736 zio_t *zio = arg;
5737
5738 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5739 zio->io_flags));
5740 return (0);
5741 }
5742
5743 /*
5744 * Note: this simple function is not inlined to make it easier to dtrace the
5745 * amount of time spent syncing frees.
5746 */
5747 static void
5748 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5749 {
5750 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5751 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5752 VERIFY(zio_wait(zio) == 0);
5753 }
5754
5755 /*
5756 * Note: this simple function is not inlined to make it easier to dtrace the
5757 * amount of time spent syncing deferred frees.
5758 */
5759 static void
5760 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5761 {
5762 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5763 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5764 spa_free_sync_cb, zio, tx), ==, 0);
5765 VERIFY0(zio_wait(zio));
5766 }
5767
5768
5769 static void
5770 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5771 {
5772 char *packed = NULL;
5773 size_t bufsize;
5774 size_t nvsize = 0;
5775 dmu_buf_t *db;
5776
5777 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5778
5779 /*
5780 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5781 * information. This avoids the dbuf_will_dirty() path and
5782 * saves us a pre-read to get data we don't actually care about.
5783 */
5784 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5785 packed = kmem_alloc(bufsize, KM_SLEEP);
5786
5787 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5788 KM_SLEEP) == 0);
5789 bzero(packed + nvsize, bufsize - nvsize);
5790
5791 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5792
5793 kmem_free(packed, bufsize);
5794
5795 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5796 dmu_buf_will_dirty(db, tx);
5797 *(uint64_t *)db->db_data = nvsize;
5798 dmu_buf_rele(db, FTAG);
5799 }
5800
5801 static void
5802 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5803 const char *config, const char *entry)
5804 {
5805 nvlist_t *nvroot;
5806 nvlist_t **list;
5807 int i;
5808
5809 if (!sav->sav_sync)
5810 return;
5811
5812 /*
5813 * Update the MOS nvlist describing the list of available devices.
5814 * spa_validate_aux() will have already made sure this nvlist is
5815 * valid and the vdevs are labeled appropriately.
5816 */
5817 if (sav->sav_object == 0) {
5818 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5819 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5820 sizeof (uint64_t), tx);
5821 VERIFY(zap_update(spa->spa_meta_objset,
5822 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5823 &sav->sav_object, tx) == 0);
5824 }
5825
5826 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5827 if (sav->sav_count == 0) {
5828 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5829 } else {
5830 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5831 for (i = 0; i < sav->sav_count; i++)
5832 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5833 B_FALSE, VDEV_CONFIG_L2CACHE);
5834 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5835 sav->sav_count) == 0);
5836 for (i = 0; i < sav->sav_count; i++)
5837 nvlist_free(list[i]);
5838 kmem_free(list, sav->sav_count * sizeof (void *));
5839 }
5840
5841 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5842 nvlist_free(nvroot);
5843
5844 sav->sav_sync = B_FALSE;
5845 }
5846
5847 static void
5848 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5849 {
5850 nvlist_t *config;
5851
5852 if (list_is_empty(&spa->spa_config_dirty_list))
5853 return;
5854
5855 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5856
5857 config = spa_config_generate(spa, spa->spa_root_vdev,
5858 dmu_tx_get_txg(tx), B_FALSE);
5859
5860 /*
5861 * If we're upgrading the spa version then make sure that
5862 * the config object gets updated with the correct version.
5863 */
5864 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5865 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5866 spa->spa_uberblock.ub_version);
5867
5868 spa_config_exit(spa, SCL_STATE, FTAG);
5869
5870 if (spa->spa_config_syncing)
5871 nvlist_free(spa->spa_config_syncing);
5872 spa->spa_config_syncing = config;
5873
5874 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5875 }
5876
5877 static void
5878 spa_sync_version(void *arg, dmu_tx_t *tx)
5879 {
5880 uint64_t *versionp = arg;
5881 uint64_t version = *versionp;
5882 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5883
5884 /*
5885 * Setting the version is special cased when first creating the pool.
5886 */
5887 ASSERT(tx->tx_txg != TXG_INITIAL);
5888
5889 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5890 ASSERT(version >= spa_version(spa));
5891
5892 spa->spa_uberblock.ub_version = version;
5893 vdev_config_dirty(spa->spa_root_vdev);
5894 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5895 }
5896
5897 /*
5898 * Set zpool properties.
5899 */
5900 static void
5901 spa_sync_props(void *arg, dmu_tx_t *tx)
5902 {
5903 nvlist_t *nvp = arg;
5904 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5905 objset_t *mos = spa->spa_meta_objset;
5906 nvpair_t *elem = NULL;
5907
5908 mutex_enter(&spa->spa_props_lock);
5909
5910 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5911 uint64_t intval;
5912 char *strval, *fname;
5913 zpool_prop_t prop;
5914 const char *propname;
5915 zprop_type_t proptype;
5916 zfeature_info_t *feature;
5917
5918 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5919 case ZPROP_INVAL:
5920 /*
5921 * We checked this earlier in spa_prop_validate().
5922 */
5923 ASSERT(zpool_prop_feature(nvpair_name(elem)));
5924
5925 fname = strchr(nvpair_name(elem), '@') + 1;
5926 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5927
5928 spa_feature_enable(spa, feature, tx);
5929 spa_history_log_internal(spa, "set", tx,
5930 "%s=enabled", nvpair_name(elem));
5931 break;
5932
5933 case ZPOOL_PROP_VERSION:
5934 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5935 /*
5936 * The version is synced seperatly before other
5937 * properties and should be correct by now.
5938 */
5939 ASSERT3U(spa_version(spa), >=, intval);
5940 break;
5941
5942 case ZPOOL_PROP_ALTROOT:
5943 /*
5944 * 'altroot' is a non-persistent property. It should
5945 * have been set temporarily at creation or import time.
5946 */
5947 ASSERT(spa->spa_root != NULL);
5948 break;
5949
5950 case ZPOOL_PROP_READONLY:
5951 case ZPOOL_PROP_CACHEFILE:
5952 /*
5953 * 'readonly' and 'cachefile' are also non-persisitent
5954 * properties.
5955 */
5956 break;
5957 case ZPOOL_PROP_COMMENT:
5958 VERIFY(nvpair_value_string(elem, &strval) == 0);
5959 if (spa->spa_comment != NULL)
5960 spa_strfree(spa->spa_comment);
5961 spa->spa_comment = spa_strdup(strval);
5962 /*
5963 * We need to dirty the configuration on all the vdevs
5964 * so that their labels get updated. It's unnecessary
5965 * to do this for pool creation since the vdev's
5966 * configuratoin has already been dirtied.
5967 */
5968 if (tx->tx_txg != TXG_INITIAL)
5969 vdev_config_dirty(spa->spa_root_vdev);
5970 spa_history_log_internal(spa, "set", tx,
5971 "%s=%s", nvpair_name(elem), strval);
5972 break;
5973 default:
5974 /*
5975 * Set pool property values in the poolprops mos object.
5976 */
5977 if (spa->spa_pool_props_object == 0) {
5978 spa->spa_pool_props_object =
5979 zap_create_link(mos, DMU_OT_POOL_PROPS,
5980 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5981 tx);
5982 }
5983
5984 /* normalize the property name */
5985 propname = zpool_prop_to_name(prop);
5986 proptype = zpool_prop_get_type(prop);
5987
5988 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5989 ASSERT(proptype == PROP_TYPE_STRING);
5990 VERIFY(nvpair_value_string(elem, &strval) == 0);
5991 VERIFY(zap_update(mos,
5992 spa->spa_pool_props_object, propname,
5993 1, strlen(strval) + 1, strval, tx) == 0);
5994 spa_history_log_internal(spa, "set", tx,
5995 "%s=%s", nvpair_name(elem), strval);
5996 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5997 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5998
5999 if (proptype == PROP_TYPE_INDEX) {
6000 const char *unused;
6001 VERIFY(zpool_prop_index_to_string(
6002 prop, intval, &unused) == 0);
6003 }
6004 VERIFY(zap_update(mos,
6005 spa->spa_pool_props_object, propname,
6006 8, 1, &intval, tx) == 0);
6007 spa_history_log_internal(spa, "set", tx,
6008 "%s=%lld", nvpair_name(elem), intval);
6009 } else {
6010 ASSERT(0); /* not allowed */
6011 }
6012
6013 switch (prop) {
6014 case ZPOOL_PROP_DELEGATION:
6015 spa->spa_delegation = intval;
6016 break;
6017 case ZPOOL_PROP_BOOTFS:
6018 spa->spa_bootfs = intval;
6019 break;
6020 case ZPOOL_PROP_FAILUREMODE:
6021 spa->spa_failmode = intval;
6022 break;
6023 case ZPOOL_PROP_AUTOEXPAND:
6024 spa->spa_autoexpand = intval;
6025 if (tx->tx_txg != TXG_INITIAL)
6026 spa_async_request(spa,
6027 SPA_ASYNC_AUTOEXPAND);
6028 break;
6029 case ZPOOL_PROP_DEDUPDITTO:
6030 spa->spa_dedup_ditto = intval;
6031 break;
6032 default:
6033 break;
6034 }
6035 }
6036
6037 }
6038
6039 mutex_exit(&spa->spa_props_lock);
6040 }
6041
6042 /*
6043 * Perform one-time upgrade on-disk changes. spa_version() does not
6044 * reflect the new version this txg, so there must be no changes this
6045 * txg to anything that the upgrade code depends on after it executes.
6046 * Therefore this must be called after dsl_pool_sync() does the sync
6047 * tasks.
6048 */
6049 static void
6050 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6051 {
6052 dsl_pool_t *dp = spa->spa_dsl_pool;
6053
6054 ASSERT(spa->spa_sync_pass == 1);
6055
6056 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6057
6058 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6059 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6060 dsl_pool_create_origin(dp, tx);
6061
6062 /* Keeping the origin open increases spa_minref */
6063 spa->spa_minref += 3;
6064 }
6065
6066 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6067 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6068 dsl_pool_upgrade_clones(dp, tx);
6069 }
6070
6071 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6072 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6073 dsl_pool_upgrade_dir_clones(dp, tx);
6074
6075 /* Keeping the freedir open increases spa_minref */
6076 spa->spa_minref += 3;
6077 }
6078
6079 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6080 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6081 spa_feature_create_zap_objects(spa, tx);
6082 }
6083 rrw_exit(&dp->dp_config_rwlock, FTAG);
6084 }
6085
6086 /*
6087 * Sync the specified transaction group. New blocks may be dirtied as
6088 * part of the process, so we iterate until it converges.
6089 */
6090 void
6091 spa_sync(spa_t *spa, uint64_t txg)
6092 {
6093 dsl_pool_t *dp = spa->spa_dsl_pool;
6094 objset_t *mos = spa->spa_meta_objset;
6095 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6096 vdev_t *rvd = spa->spa_root_vdev;
6097 vdev_t *vd;
6098 dmu_tx_t *tx;
6099 int error;
6100
6101 VERIFY(spa_writeable(spa));
6102
6103 /*
6104 * Lock out configuration changes.
6105 */
6106 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6107
6108 spa->spa_syncing_txg = txg;
6109 spa->spa_sync_pass = 0;
6110
6111 /*
6112 * If there are any pending vdev state changes, convert them
6113 * into config changes that go out with this transaction group.
6114 */
6115 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6116 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6117 /*
6118 * We need the write lock here because, for aux vdevs,
6119 * calling vdev_config_dirty() modifies sav_config.
6120 * This is ugly and will become unnecessary when we
6121 * eliminate the aux vdev wart by integrating all vdevs
6122 * into the root vdev tree.
6123 */
6124 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6125 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6126 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6127 vdev_state_clean(vd);
6128 vdev_config_dirty(vd);
6129 }
6130 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6131 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6132 }
6133 spa_config_exit(spa, SCL_STATE, FTAG);
6134
6135 tx = dmu_tx_create_assigned(dp, txg);
6136
6137 spa->spa_sync_starttime = gethrtime();
6138 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6139 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6140
6141 /*
6142 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6143 * set spa_deflate if we have no raid-z vdevs.
6144 */
6145 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6146 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6147 int i;
6148
6149 for (i = 0; i < rvd->vdev_children; i++) {
6150 vd = rvd->vdev_child[i];
6151 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6152 break;
6153 }
6154 if (i == rvd->vdev_children) {
6155 spa->spa_deflate = TRUE;
6156 VERIFY(0 == zap_add(spa->spa_meta_objset,
6157 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6158 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6159 }
6160 }
6161
6162 /*
6163 * If anything has changed in this txg, or if someone is waiting
6164 * for this txg to sync (eg, spa_vdev_remove()), push the
6165 * deferred frees from the previous txg. If not, leave them
6166 * alone so that we don't generate work on an otherwise idle
6167 * system.
6168 */
6169 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6170 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6171 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6172 ((dsl_scan_active(dp->dp_scan) ||
6173 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6174 spa_sync_deferred_frees(spa, tx);
6175 }
6176
6177 /*
6178 * Iterate to convergence.
6179 */
6180 do {
6181 int pass = ++spa->spa_sync_pass;
6182
6183 spa_sync_config_object(spa, tx);
6184 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6185 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6186 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6187 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6188 spa_errlog_sync(spa, txg);
6189 dsl_pool_sync(dp, txg);
6190
6191 if (pass < zfs_sync_pass_deferred_free) {
6192 spa_sync_frees(spa, free_bpl, tx);
6193 } else {
6194 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6195 &spa->spa_deferred_bpobj, tx);
6196 }
6197
6198 ddt_sync(spa, txg);
6199 dsl_scan_sync(dp, tx);
6200
6201 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6202 vdev_sync(vd, txg);
6203
6204 if (pass == 1)
6205 spa_sync_upgrades(spa, tx);
6206
6207 } while (dmu_objset_is_dirty(mos, txg));
6208
6209 /*
6210 * Rewrite the vdev configuration (which includes the uberblock)
6211 * to commit the transaction group.
6212 *
6213 * If there are no dirty vdevs, we sync the uberblock to a few
6214 * random top-level vdevs that are known to be visible in the
6215 * config cache (see spa_vdev_add() for a complete description).
6216 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6217 */
6218 for (;;) {
6219 /*
6220 * We hold SCL_STATE to prevent vdev open/close/etc.
6221 * while we're attempting to write the vdev labels.
6222 */
6223 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6224
6225 if (list_is_empty(&spa->spa_config_dirty_list)) {
6226 vdev_t *svd[SPA_DVAS_PER_BP];
6227 int svdcount = 0;
6228 int children = rvd->vdev_children;
6229 int c0 = spa_get_random(children);
6230
6231 for (int c = 0; c < children; c++) {
6232 vd = rvd->vdev_child[(c0 + c) % children];
6233 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6234 continue;
6235 svd[svdcount++] = vd;
6236 if (svdcount == SPA_DVAS_PER_BP)
6237 break;
6238 }
6239 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6240 if (error != 0)
6241 error = vdev_config_sync(svd, svdcount, txg,
6242 B_TRUE);
6243 } else {
6244 error = vdev_config_sync(rvd->vdev_child,
6245 rvd->vdev_children, txg, B_FALSE);
6246 if (error != 0)
6247 error = vdev_config_sync(rvd->vdev_child,
6248 rvd->vdev_children, txg, B_TRUE);
6249 }
6250
6251 if (error == 0)
6252 spa->spa_last_synced_guid = rvd->vdev_guid;
6253
6254 spa_config_exit(spa, SCL_STATE, FTAG);
6255
6256 if (error == 0)
6257 break;
6258 zio_suspend(spa, NULL);
6259 zio_resume_wait(spa);
6260 }
6261 dmu_tx_commit(tx);
6262
6263 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6264
6265 /*
6266 * Clear the dirty config list.
6267 */
6268 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6269 vdev_config_clean(vd);
6270
6271 /*
6272 * Now that the new config has synced transactionally,
6273 * let it become visible to the config cache.
6274 */
6275 if (spa->spa_config_syncing != NULL) {
6276 spa_config_set(spa, spa->spa_config_syncing);
6277 spa->spa_config_txg = txg;
6278 spa->spa_config_syncing = NULL;
6279 }
6280
6281 spa->spa_ubsync = spa->spa_uberblock;
6282
6283 dsl_pool_sync_done(dp, txg);
6284
6285 /*
6286 * Update usable space statistics.
6287 */
6288 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6289 vdev_sync_done(vd, txg);
6290
6291 spa_update_dspace(spa);
6292
6293 /*
6294 * It had better be the case that we didn't dirty anything
6295 * since vdev_config_sync().
6296 */
6297 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6298 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6299 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6300
6301 spa->spa_sync_pass = 0;
6302
6303 spa_config_exit(spa, SCL_CONFIG, FTAG);
6304
6305 spa_handle_ignored_writes(spa);
6306
6307 /*
6308 * If any async tasks have been requested, kick them off.
6309 */
6310 spa_async_dispatch(spa);
6311 }
6312
6313 /*
6314 * Sync all pools. We don't want to hold the namespace lock across these
6315 * operations, so we take a reference on the spa_t and drop the lock during the
6316 * sync.
6317 */
6318 void
6319 spa_sync_allpools(void)
6320 {
6321 spa_t *spa = NULL;
6322 mutex_enter(&spa_namespace_lock);
6323 while ((spa = spa_next(spa)) != NULL) {
6324 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6325 !spa_writeable(spa) || spa_suspended(spa))
6326 continue;
6327 spa_open_ref(spa, FTAG);
6328 mutex_exit(&spa_namespace_lock);
6329 txg_wait_synced(spa_get_dsl(spa), 0);
6330 mutex_enter(&spa_namespace_lock);
6331 spa_close(spa, FTAG);
6332 }
6333 mutex_exit(&spa_namespace_lock);
6334 }
6335
6336 /*
6337 * ==========================================================================
6338 * Miscellaneous routines
6339 * ==========================================================================
6340 */
6341
6342 /*
6343 * Remove all pools in the system.
6344 */
6345 void
6346 spa_evict_all(void)
6347 {
6348 spa_t *spa;
6349
6350 /*
6351 * Remove all cached state. All pools should be closed now,
6352 * so every spa in the AVL tree should be unreferenced.
6353 */
6354 mutex_enter(&spa_namespace_lock);
6355 while ((spa = spa_next(NULL)) != NULL) {
6356 /*
6357 * Stop async tasks. The async thread may need to detach
6358 * a device that's been replaced, which requires grabbing
6359 * spa_namespace_lock, so we must drop it here.
6360 */
6361 spa_open_ref(spa, FTAG);
6362 mutex_exit(&spa_namespace_lock);
6363 spa_async_suspend(spa);
6364 mutex_enter(&spa_namespace_lock);
6365 spa_close(spa, FTAG);
6366
6367 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6368 spa_unload(spa);
6369 spa_deactivate(spa);
6370 }
6371 spa_remove(spa);
6372 }
6373 mutex_exit(&spa_namespace_lock);
6374 }
6375
6376 vdev_t *
6377 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6378 {
6379 vdev_t *vd;
6380 int i;
6381
6382 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6383 return (vd);
6384
6385 if (aux) {
6386 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6387 vd = spa->spa_l2cache.sav_vdevs[i];
6388 if (vd->vdev_guid == guid)
6389 return (vd);
6390 }
6391
6392 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6393 vd = spa->spa_spares.sav_vdevs[i];
6394 if (vd->vdev_guid == guid)
6395 return (vd);
6396 }
6397 }
6398
6399 return (NULL);
6400 }
6401
6402 void
6403 spa_upgrade(spa_t *spa, uint64_t version)
6404 {
6405 ASSERT(spa_writeable(spa));
6406
6407 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6408
6409 /*
6410 * This should only be called for a non-faulted pool, and since a
6411 * future version would result in an unopenable pool, this shouldn't be
6412 * possible.
6413 */
6414 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6415 ASSERT(version >= spa->spa_uberblock.ub_version);
6416
6417 spa->spa_uberblock.ub_version = version;
6418 vdev_config_dirty(spa->spa_root_vdev);
6419
6420 spa_config_exit(spa, SCL_ALL, FTAG);
6421
6422 txg_wait_synced(spa_get_dsl(spa), 0);
6423 }
6424
6425 boolean_t
6426 spa_has_spare(spa_t *spa, uint64_t guid)
6427 {
6428 int i;
6429 uint64_t spareguid;
6430 spa_aux_vdev_t *sav = &spa->spa_spares;
6431
6432 for (i = 0; i < sav->sav_count; i++)
6433 if (sav->sav_vdevs[i]->vdev_guid == guid)
6434 return (B_TRUE);
6435
6436 for (i = 0; i < sav->sav_npending; i++) {
6437 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6438 &spareguid) == 0 && spareguid == guid)
6439 return (B_TRUE);
6440 }
6441
6442 return (B_FALSE);
6443 }
6444
6445 /*
6446 * Check if a pool has an active shared spare device.
6447 * Note: reference count of an active spare is 2, as a spare and as a replace
6448 */
6449 static boolean_t
6450 spa_has_active_shared_spare(spa_t *spa)
6451 {
6452 int i, refcnt;
6453 uint64_t pool;
6454 spa_aux_vdev_t *sav = &spa->spa_spares;
6455
6456 for (i = 0; i < sav->sav_count; i++) {
6457 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6458 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6459 refcnt > 2)
6460 return (B_TRUE);
6461 }
6462
6463 return (B_FALSE);
6464 }
6465
6466 /*
6467 * Post a sysevent corresponding to the given event. The 'name' must be one of
6468 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6469 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6470 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6471 * or zdb as real changes.
6472 */
6473 void
6474 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6475 {
6476 #ifdef _KERNEL
6477 sysevent_t *ev;
6478 sysevent_attr_list_t *attr = NULL;
6479 sysevent_value_t value;
6480 sysevent_id_t eid;
6481
6482 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6483 SE_SLEEP);
6484
6485 value.value_type = SE_DATA_TYPE_STRING;
6486 value.value.sv_string = spa_name(spa);
6487 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6488 goto done;
6489
6490 value.value_type = SE_DATA_TYPE_UINT64;
6491 value.value.sv_uint64 = spa_guid(spa);
6492 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6493 goto done;
6494
6495 if (vd) {
6496 value.value_type = SE_DATA_TYPE_UINT64;
6497 value.value.sv_uint64 = vd->vdev_guid;
6498 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6499 SE_SLEEP) != 0)
6500 goto done;
6501
6502 if (vd->vdev_path) {
6503 value.value_type = SE_DATA_TYPE_STRING;
6504 value.value.sv_string = vd->vdev_path;
6505 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6506 &value, SE_SLEEP) != 0)
6507 goto done;
6508 }
6509 }
6510
6511 if (sysevent_attach_attributes(ev, attr) != 0)
6512 goto done;
6513 attr = NULL;
6514
6515 (void) log_sysevent(ev, SE_SLEEP, &eid);
6516
6517 done:
6518 if (attr)
6519 sysevent_free_attr(attr);
6520 sysevent_free(ev);
6521 #endif
6522 }