1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2013 by Delphix. All rights reserved.
  25  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
  26  */
  27 
  28 /*
  29  * SPA: Storage Pool Allocator
  30  *
  31  * This file contains all the routines used when modifying on-disk SPA state.
  32  * This includes opening, importing, destroying, exporting a pool, and syncing a
  33  * pool.
  34  */
  35 
  36 #include <sys/zfs_context.h>
  37 #include <sys/fm/fs/zfs.h>
  38 #include <sys/spa_impl.h>
  39 #include <sys/zio.h>
  40 #include <sys/zio_checksum.h>
  41 #include <sys/dmu.h>
  42 #include <sys/dmu_tx.h>
  43 #include <sys/zap.h>
  44 #include <sys/zil.h>
  45 #include <sys/ddt.h>
  46 #include <sys/vdev_impl.h>
  47 #include <sys/metaslab.h>
  48 #include <sys/metaslab_impl.h>
  49 #include <sys/uberblock_impl.h>
  50 #include <sys/txg.h>
  51 #include <sys/avl.h>
  52 #include <sys/dmu_traverse.h>
  53 #include <sys/dmu_objset.h>
  54 #include <sys/unique.h>
  55 #include <sys/dsl_pool.h>
  56 #include <sys/dsl_dataset.h>
  57 #include <sys/dsl_dir.h>
  58 #include <sys/dsl_prop.h>
  59 #include <sys/dsl_synctask.h>
  60 #include <sys/fs/zfs.h>
  61 #include <sys/arc.h>
  62 #include <sys/callb.h>
  63 #include <sys/systeminfo.h>
  64 #include <sys/spa_boot.h>
  65 #include <sys/zfs_ioctl.h>
  66 #include <sys/dsl_scan.h>
  67 #include <sys/zfeature.h>
  68 #include <sys/dsl_destroy.h>
  69 
  70 #ifdef  _KERNEL
  71 #include <sys/bootprops.h>
  72 #include <sys/callb.h>
  73 #include <sys/cpupart.h>
  74 #include <sys/pool.h>
  75 #include <sys/sysdc.h>
  76 #include <sys/zone.h>
  77 #endif  /* _KERNEL */
  78 
  79 #include "zfs_prop.h"
  80 #include "zfs_comutil.h"
  81 
  82 /*
  83  * The interval, in seconds, at which failed configuration cache file writes
  84  * should be retried.
  85  */
  86 static int zfs_ccw_retry_interval = 300;
  87 
  88 typedef enum zti_modes {
  89         ZTI_MODE_FIXED,                 /* value is # of threads (min 1) */
  90         ZTI_MODE_BATCH,                 /* cpu-intensive; value is ignored */
  91         ZTI_MODE_NULL,                  /* don't create a taskq */
  92         ZTI_NMODES
  93 } zti_modes_t;
  94 
  95 #define ZTI_P(n, q)     { ZTI_MODE_FIXED, (n), (q) }
  96 #define ZTI_BATCH       { ZTI_MODE_BATCH, 0, 1 }
  97 #define ZTI_NULL        { ZTI_MODE_NULL, 0, 0 }
  98 
  99 #define ZTI_N(n)        ZTI_P(n, 1)
 100 #define ZTI_ONE         ZTI_N(1)
 101 
 102 typedef struct zio_taskq_info {
 103         zti_modes_t zti_mode;
 104         uint_t zti_value;
 105         uint_t zti_count;
 106 } zio_taskq_info_t;
 107 
 108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
 109         "issue", "issue_high", "intr", "intr_high"
 110 };
 111 
 112 /*
 113  * This table defines the taskq settings for each ZFS I/O type. When
 114  * initializing a pool, we use this table to create an appropriately sized
 115  * taskq. Some operations are low volume and therefore have a small, static
 116  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
 117  * macros. Other operations process a large amount of data; the ZTI_BATCH
 118  * macro causes us to create a taskq oriented for throughput. Some operations
 119  * are so high frequency and short-lived that the taskq itself can become a a
 120  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
 121  * additional degree of parallelism specified by the number of threads per-
 122  * taskq and the number of taskqs; when dispatching an event in this case, the
 123  * particular taskq is chosen at random.
 124  *
 125  * The different taskq priorities are to handle the different contexts (issue
 126  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
 127  * need to be handled with minimum delay.
 128  */
 129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
 130         /* ISSUE        ISSUE_HIGH      INTR            INTR_HIGH */
 131         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* NULL */
 132         { ZTI_N(8),     ZTI_NULL,       ZTI_BATCH,      ZTI_NULL }, /* READ */
 133         { ZTI_BATCH,    ZTI_N(5),       ZTI_N(8),       ZTI_N(5) }, /* WRITE */
 134         { ZTI_P(12, 8), ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* FREE */
 135         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* CLAIM */
 136         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* IOCTL */
 137 };
 138 
 139 static void spa_sync_version(void *arg, dmu_tx_t *tx);
 140 static void spa_sync_props(void *arg, dmu_tx_t *tx);
 141 static boolean_t spa_has_active_shared_spare(spa_t *spa);
 142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
 143     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
 144     char **ereport);
 145 static void spa_vdev_resilver_done(spa_t *spa);
 146 
 147 uint_t          zio_taskq_batch_pct = 75;       /* 1 thread per cpu in pset */
 148 id_t            zio_taskq_psrset_bind = PS_NONE;
 149 boolean_t       zio_taskq_sysdc = B_TRUE;       /* use SDC scheduling class */
 150 uint_t          zio_taskq_basedc = 80;          /* base duty cycle */
 151 
 152 boolean_t       spa_create_process = B_TRUE;    /* no process ==> no sysdc */
 153 extern int      zfs_sync_pass_deferred_free;
 154 
 155 /*
 156  * This (illegal) pool name is used when temporarily importing a spa_t in order
 157  * to get the vdev stats associated with the imported devices.
 158  */
 159 #define TRYIMPORT_NAME  "$import"
 160 
 161 /*
 162  * ==========================================================================
 163  * SPA properties routines
 164  * ==========================================================================
 165  */
 166 
 167 /*
 168  * Add a (source=src, propname=propval) list to an nvlist.
 169  */
 170 static void
 171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
 172     uint64_t intval, zprop_source_t src)
 173 {
 174         const char *propname = zpool_prop_to_name(prop);
 175         nvlist_t *propval;
 176 
 177         VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 178         VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
 179 
 180         if (strval != NULL)
 181                 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
 182         else
 183                 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
 184 
 185         VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
 186         nvlist_free(propval);
 187 }
 188 
 189 /*
 190  * Get property values from the spa configuration.
 191  */
 192 static void
 193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
 194 {
 195         vdev_t *rvd = spa->spa_root_vdev;
 196         dsl_pool_t *pool = spa->spa_dsl_pool;
 197         uint64_t size;
 198         uint64_t alloc;
 199         uint64_t space;
 200         uint64_t cap, version;
 201         zprop_source_t src = ZPROP_SRC_NONE;
 202         spa_config_dirent_t *dp;
 203 
 204         ASSERT(MUTEX_HELD(&spa->spa_props_lock));
 205 
 206         if (rvd != NULL) {
 207                 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
 208                 size = metaslab_class_get_space(spa_normal_class(spa));
 209                 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
 210                 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
 211                 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
 212                 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
 213                     size - alloc, src);
 214 
 215                 space = 0;
 216                 for (int c = 0; c < rvd->vdev_children; c++) {
 217                         vdev_t *tvd = rvd->vdev_child[c];
 218                         space += tvd->vdev_max_asize - tvd->vdev_asize;
 219                 }
 220                 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
 221                     src);
 222 
 223                 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
 224                     (spa_mode(spa) == FREAD), src);
 225 
 226                 cap = (size == 0) ? 0 : (alloc * 100 / size);
 227                 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
 228 
 229                 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
 230                     ddt_get_pool_dedup_ratio(spa), src);
 231 
 232                 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
 233                     rvd->vdev_state, src);
 234 
 235                 version = spa_version(spa);
 236                 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
 237                         src = ZPROP_SRC_DEFAULT;
 238                 else
 239                         src = ZPROP_SRC_LOCAL;
 240                 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
 241         }
 242 
 243         if (pool != NULL) {
 244                 dsl_dir_t *freedir = pool->dp_free_dir;
 245 
 246                 /*
 247                  * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
 248                  * when opening pools before this version freedir will be NULL.
 249                  */
 250                 if (freedir != NULL) {
 251                         spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
 252                             freedir->dd_phys->dd_used_bytes, src);
 253                 } else {
 254                         spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
 255                             NULL, 0, src);
 256                 }
 257         }
 258 
 259         spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
 260 
 261         if (spa->spa_comment != NULL) {
 262                 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
 263                     0, ZPROP_SRC_LOCAL);
 264         }
 265 
 266         if (spa->spa_root != NULL)
 267                 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
 268                     0, ZPROP_SRC_LOCAL);
 269 
 270         if ((dp = list_head(&spa->spa_config_list)) != NULL) {
 271                 if (dp->scd_path == NULL) {
 272                         spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 273                             "none", 0, ZPROP_SRC_LOCAL);
 274                 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
 275                         spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 276                             dp->scd_path, 0, ZPROP_SRC_LOCAL);
 277                 }
 278         }
 279 }
 280 
 281 /*
 282  * Get zpool property values.
 283  */
 284 int
 285 spa_prop_get(spa_t *spa, nvlist_t **nvp)
 286 {
 287         objset_t *mos = spa->spa_meta_objset;
 288         zap_cursor_t zc;
 289         zap_attribute_t za;
 290         int err;
 291 
 292         VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 293 
 294         mutex_enter(&spa->spa_props_lock);
 295 
 296         /*
 297          * Get properties from the spa config.
 298          */
 299         spa_prop_get_config(spa, nvp);
 300 
 301         /* If no pool property object, no more prop to get. */
 302         if (mos == NULL || spa->spa_pool_props_object == 0) {
 303                 mutex_exit(&spa->spa_props_lock);
 304                 return (0);
 305         }
 306 
 307         /*
 308          * Get properties from the MOS pool property object.
 309          */
 310         for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
 311             (err = zap_cursor_retrieve(&zc, &za)) == 0;
 312             zap_cursor_advance(&zc)) {
 313                 uint64_t intval = 0;
 314                 char *strval = NULL;
 315                 zprop_source_t src = ZPROP_SRC_DEFAULT;
 316                 zpool_prop_t prop;
 317 
 318                 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
 319                         continue;
 320 
 321                 switch (za.za_integer_length) {
 322                 case 8:
 323                         /* integer property */
 324                         if (za.za_first_integer !=
 325                             zpool_prop_default_numeric(prop))
 326                                 src = ZPROP_SRC_LOCAL;
 327 
 328                         if (prop == ZPOOL_PROP_BOOTFS) {
 329                                 dsl_pool_t *dp;
 330                                 dsl_dataset_t *ds = NULL;
 331 
 332                                 dp = spa_get_dsl(spa);
 333                                 dsl_pool_config_enter(dp, FTAG);
 334                                 if (err = dsl_dataset_hold_obj(dp,
 335                                     za.za_first_integer, FTAG, &ds)) {
 336                                         dsl_pool_config_exit(dp, FTAG);
 337                                         break;
 338                                 }
 339 
 340                                 strval = kmem_alloc(
 341                                     MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
 342                                     KM_SLEEP);
 343                                 dsl_dataset_name(ds, strval);
 344                                 dsl_dataset_rele(ds, FTAG);
 345                                 dsl_pool_config_exit(dp, FTAG);
 346                         } else {
 347                                 strval = NULL;
 348                                 intval = za.za_first_integer;
 349                         }
 350 
 351                         spa_prop_add_list(*nvp, prop, strval, intval, src);
 352 
 353                         if (strval != NULL)
 354                                 kmem_free(strval,
 355                                     MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
 356 
 357                         break;
 358 
 359                 case 1:
 360                         /* string property */
 361                         strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
 362                         err = zap_lookup(mos, spa->spa_pool_props_object,
 363                             za.za_name, 1, za.za_num_integers, strval);
 364                         if (err) {
 365                                 kmem_free(strval, za.za_num_integers);
 366                                 break;
 367                         }
 368                         spa_prop_add_list(*nvp, prop, strval, 0, src);
 369                         kmem_free(strval, za.za_num_integers);
 370                         break;
 371 
 372                 default:
 373                         break;
 374                 }
 375         }
 376         zap_cursor_fini(&zc);
 377         mutex_exit(&spa->spa_props_lock);
 378 out:
 379         if (err && err != ENOENT) {
 380                 nvlist_free(*nvp);
 381                 *nvp = NULL;
 382                 return (err);
 383         }
 384 
 385         return (0);
 386 }
 387 
 388 /*
 389  * Validate the given pool properties nvlist and modify the list
 390  * for the property values to be set.
 391  */
 392 static int
 393 spa_prop_validate(spa_t *spa, nvlist_t *props)
 394 {
 395         nvpair_t *elem;
 396         int error = 0, reset_bootfs = 0;
 397         uint64_t objnum = 0;
 398         boolean_t has_feature = B_FALSE;
 399 
 400         elem = NULL;
 401         while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
 402                 uint64_t intval;
 403                 char *strval, *slash, *check, *fname;
 404                 const char *propname = nvpair_name(elem);
 405                 zpool_prop_t prop = zpool_name_to_prop(propname);
 406 
 407                 switch (prop) {
 408                 case ZPROP_INVAL:
 409                         if (!zpool_prop_feature(propname)) {
 410                                 error = SET_ERROR(EINVAL);
 411                                 break;
 412                         }
 413 
 414                         /*
 415                          * Sanitize the input.
 416                          */
 417                         if (nvpair_type(elem) != DATA_TYPE_UINT64) {
 418                                 error = SET_ERROR(EINVAL);
 419                                 break;
 420                         }
 421 
 422                         if (nvpair_value_uint64(elem, &intval) != 0) {
 423                                 error = SET_ERROR(EINVAL);
 424                                 break;
 425                         }
 426 
 427                         if (intval != 0) {
 428                                 error = SET_ERROR(EINVAL);
 429                                 break;
 430                         }
 431 
 432                         fname = strchr(propname, '@') + 1;
 433                         if (zfeature_lookup_name(fname, NULL) != 0) {
 434                                 error = SET_ERROR(EINVAL);
 435                                 break;
 436                         }
 437 
 438                         has_feature = B_TRUE;
 439                         break;
 440 
 441                 case ZPOOL_PROP_VERSION:
 442                         error = nvpair_value_uint64(elem, &intval);
 443                         if (!error &&
 444                             (intval < spa_version(spa) ||
 445                             intval > SPA_VERSION_BEFORE_FEATURES ||
 446                             has_feature))
 447                                 error = SET_ERROR(EINVAL);
 448                         break;
 449 
 450                 case ZPOOL_PROP_DELEGATION:
 451                 case ZPOOL_PROP_AUTOREPLACE:
 452                 case ZPOOL_PROP_LISTSNAPS:
 453                 case ZPOOL_PROP_AUTOEXPAND:
 454                         error = nvpair_value_uint64(elem, &intval);
 455                         if (!error && intval > 1)
 456                                 error = SET_ERROR(EINVAL);
 457                         break;
 458 
 459                 case ZPOOL_PROP_BOOTFS:
 460                         /*
 461                          * If the pool version is less than SPA_VERSION_BOOTFS,
 462                          * or the pool is still being created (version == 0),
 463                          * the bootfs property cannot be set.
 464                          */
 465                         if (spa_version(spa) < SPA_VERSION_BOOTFS) {
 466                                 error = SET_ERROR(ENOTSUP);
 467                                 break;
 468                         }
 469 
 470                         /*
 471                          * Make sure the vdev config is bootable
 472                          */
 473                         if (!vdev_is_bootable(spa->spa_root_vdev)) {
 474                                 error = SET_ERROR(ENOTSUP);
 475                                 break;
 476                         }
 477 
 478                         reset_bootfs = 1;
 479 
 480                         error = nvpair_value_string(elem, &strval);
 481 
 482                         if (!error) {
 483                                 objset_t *os;
 484                                 uint64_t compress;
 485 
 486                                 if (strval == NULL || strval[0] == '\0') {
 487                                         objnum = zpool_prop_default_numeric(
 488                                             ZPOOL_PROP_BOOTFS);
 489                                         break;
 490                                 }
 491 
 492                                 if (error = dmu_objset_hold(strval, FTAG, &os))
 493                                         break;
 494 
 495                                 /* Must be ZPL and not gzip compressed. */
 496 
 497                                 if (dmu_objset_type(os) != DMU_OST_ZFS) {
 498                                         error = SET_ERROR(ENOTSUP);
 499                                 } else if ((error =
 500                                     dsl_prop_get_int_ds(dmu_objset_ds(os),
 501                                     zfs_prop_to_name(ZFS_PROP_COMPRESSION),
 502                                     &compress)) == 0 &&
 503                                     !BOOTFS_COMPRESS_VALID(compress)) {
 504                                         error = SET_ERROR(ENOTSUP);
 505                                 } else {
 506                                         objnum = dmu_objset_id(os);
 507                                 }
 508                                 dmu_objset_rele(os, FTAG);
 509                         }
 510                         break;
 511 
 512                 case ZPOOL_PROP_FAILUREMODE:
 513                         error = nvpair_value_uint64(elem, &intval);
 514                         if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
 515                             intval > ZIO_FAILURE_MODE_PANIC))
 516                                 error = SET_ERROR(EINVAL);
 517 
 518                         /*
 519                          * This is a special case which only occurs when
 520                          * the pool has completely failed. This allows
 521                          * the user to change the in-core failmode property
 522                          * without syncing it out to disk (I/Os might
 523                          * currently be blocked). We do this by returning
 524                          * EIO to the caller (spa_prop_set) to trick it
 525                          * into thinking we encountered a property validation
 526                          * error.
 527                          */
 528                         if (!error && spa_suspended(spa)) {
 529                                 spa->spa_failmode = intval;
 530                                 error = SET_ERROR(EIO);
 531                         }
 532                         break;
 533 
 534                 case ZPOOL_PROP_CACHEFILE:
 535                         if ((error = nvpair_value_string(elem, &strval)) != 0)
 536                                 break;
 537 
 538                         if (strval[0] == '\0')
 539                                 break;
 540 
 541                         if (strcmp(strval, "none") == 0)
 542                                 break;
 543 
 544                         if (strval[0] != '/') {
 545                                 error = SET_ERROR(EINVAL);
 546                                 break;
 547                         }
 548 
 549                         slash = strrchr(strval, '/');
 550                         ASSERT(slash != NULL);
 551 
 552                         if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
 553                             strcmp(slash, "/..") == 0)
 554                                 error = SET_ERROR(EINVAL);
 555                         break;
 556 
 557                 case ZPOOL_PROP_COMMENT:
 558                         if ((error = nvpair_value_string(elem, &strval)) != 0)
 559                                 break;
 560                         for (check = strval; *check != '\0'; check++) {
 561                                 /*
 562                                  * The kernel doesn't have an easy isprint()
 563                                  * check.  For this kernel check, we merely
 564                                  * check ASCII apart from DEL.  Fix this if
 565                                  * there is an easy-to-use kernel isprint().
 566                                  */
 567                                 if (*check >= 0x7f) {
 568                                         error = SET_ERROR(EINVAL);
 569                                         break;
 570                                 }
 571                                 check++;
 572                         }
 573                         if (strlen(strval) > ZPROP_MAX_COMMENT)
 574                                 error = E2BIG;
 575                         break;
 576 
 577                 case ZPOOL_PROP_DEDUPDITTO:
 578                         if (spa_version(spa) < SPA_VERSION_DEDUP)
 579                                 error = SET_ERROR(ENOTSUP);
 580                         else
 581                                 error = nvpair_value_uint64(elem, &intval);
 582                         if (error == 0 &&
 583                             intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
 584                                 error = SET_ERROR(EINVAL);
 585                         break;
 586                 }
 587 
 588                 if (error)
 589                         break;
 590         }
 591 
 592         if (!error && reset_bootfs) {
 593                 error = nvlist_remove(props,
 594                     zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
 595 
 596                 if (!error) {
 597                         error = nvlist_add_uint64(props,
 598                             zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
 599                 }
 600         }
 601 
 602         return (error);
 603 }
 604 
 605 void
 606 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
 607 {
 608         char *cachefile;
 609         spa_config_dirent_t *dp;
 610 
 611         if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
 612             &cachefile) != 0)
 613                 return;
 614 
 615         dp = kmem_alloc(sizeof (spa_config_dirent_t),
 616             KM_SLEEP);
 617 
 618         if (cachefile[0] == '\0')
 619                 dp->scd_path = spa_strdup(spa_config_path);
 620         else if (strcmp(cachefile, "none") == 0)
 621                 dp->scd_path = NULL;
 622         else
 623                 dp->scd_path = spa_strdup(cachefile);
 624 
 625         list_insert_head(&spa->spa_config_list, dp);
 626         if (need_sync)
 627                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
 628 }
 629 
 630 int
 631 spa_prop_set(spa_t *spa, nvlist_t *nvp)
 632 {
 633         int error;
 634         nvpair_t *elem = NULL;
 635         boolean_t need_sync = B_FALSE;
 636 
 637         if ((error = spa_prop_validate(spa, nvp)) != 0)
 638                 return (error);
 639 
 640         while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
 641                 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
 642 
 643                 if (prop == ZPOOL_PROP_CACHEFILE ||
 644                     prop == ZPOOL_PROP_ALTROOT ||
 645                     prop == ZPOOL_PROP_READONLY)
 646                         continue;
 647 
 648                 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
 649                         uint64_t ver;
 650 
 651                         if (prop == ZPOOL_PROP_VERSION) {
 652                                 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
 653                         } else {
 654                                 ASSERT(zpool_prop_feature(nvpair_name(elem)));
 655                                 ver = SPA_VERSION_FEATURES;
 656                                 need_sync = B_TRUE;
 657                         }
 658 
 659                         /* Save time if the version is already set. */
 660                         if (ver == spa_version(spa))
 661                                 continue;
 662 
 663                         /*
 664                          * In addition to the pool directory object, we might
 665                          * create the pool properties object, the features for
 666                          * read object, the features for write object, or the
 667                          * feature descriptions object.
 668                          */
 669                         error = dsl_sync_task(spa->spa_name, NULL,
 670                             spa_sync_version, &ver, 6);
 671                         if (error)
 672                                 return (error);
 673                         continue;
 674                 }
 675 
 676                 need_sync = B_TRUE;
 677                 break;
 678         }
 679 
 680         if (need_sync) {
 681                 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
 682                     nvp, 6));
 683         }
 684 
 685         return (0);
 686 }
 687 
 688 /*
 689  * If the bootfs property value is dsobj, clear it.
 690  */
 691 void
 692 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
 693 {
 694         if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
 695                 VERIFY(zap_remove(spa->spa_meta_objset,
 696                     spa->spa_pool_props_object,
 697                     zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
 698                 spa->spa_bootfs = 0;
 699         }
 700 }
 701 
 702 /*ARGSUSED*/
 703 static int
 704 spa_change_guid_check(void *arg, dmu_tx_t *tx)
 705 {
 706         uint64_t *newguid = arg;
 707         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 708         vdev_t *rvd = spa->spa_root_vdev;
 709         uint64_t vdev_state;
 710 
 711         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 712         vdev_state = rvd->vdev_state;
 713         spa_config_exit(spa, SCL_STATE, FTAG);
 714 
 715         if (vdev_state != VDEV_STATE_HEALTHY)
 716                 return (SET_ERROR(ENXIO));
 717 
 718         ASSERT3U(spa_guid(spa), !=, *newguid);
 719 
 720         return (0);
 721 }
 722 
 723 static void
 724 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
 725 {
 726         uint64_t *newguid = arg;
 727         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 728         uint64_t oldguid;
 729         vdev_t *rvd = spa->spa_root_vdev;
 730 
 731         oldguid = spa_guid(spa);
 732 
 733         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 734         rvd->vdev_guid = *newguid;
 735         rvd->vdev_guid_sum += (*newguid - oldguid);
 736         vdev_config_dirty(rvd);
 737         spa_config_exit(spa, SCL_STATE, FTAG);
 738 
 739         spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
 740             oldguid, *newguid);
 741 }
 742 
 743 /*
 744  * Change the GUID for the pool.  This is done so that we can later
 745  * re-import a pool built from a clone of our own vdevs.  We will modify
 746  * the root vdev's guid, our own pool guid, and then mark all of our
 747  * vdevs dirty.  Note that we must make sure that all our vdevs are
 748  * online when we do this, or else any vdevs that weren't present
 749  * would be orphaned from our pool.  We are also going to issue a
 750  * sysevent to update any watchers.
 751  */
 752 int
 753 spa_change_guid(spa_t *spa)
 754 {
 755         int error;
 756         uint64_t guid;
 757 
 758         mutex_enter(&spa->spa_vdev_top_lock);
 759         mutex_enter(&spa_namespace_lock);
 760         guid = spa_generate_guid(NULL);
 761 
 762         error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
 763             spa_change_guid_sync, &guid, 5);
 764 
 765         if (error == 0) {
 766                 spa_config_sync(spa, B_FALSE, B_TRUE);
 767                 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
 768         }
 769 
 770         mutex_exit(&spa_namespace_lock);
 771         mutex_exit(&spa->spa_vdev_top_lock);
 772 
 773         return (error);
 774 }
 775 
 776 /*
 777  * ==========================================================================
 778  * SPA state manipulation (open/create/destroy/import/export)
 779  * ==========================================================================
 780  */
 781 
 782 static int
 783 spa_error_entry_compare(const void *a, const void *b)
 784 {
 785         spa_error_entry_t *sa = (spa_error_entry_t *)a;
 786         spa_error_entry_t *sb = (spa_error_entry_t *)b;
 787         int ret;
 788 
 789         ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
 790             sizeof (zbookmark_t));
 791 
 792         if (ret < 0)
 793                 return (-1);
 794         else if (ret > 0)
 795                 return (1);
 796         else
 797                 return (0);
 798 }
 799 
 800 /*
 801  * Utility function which retrieves copies of the current logs and
 802  * re-initializes them in the process.
 803  */
 804 void
 805 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
 806 {
 807         ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
 808 
 809         bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
 810         bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
 811 
 812         avl_create(&spa->spa_errlist_scrub,
 813             spa_error_entry_compare, sizeof (spa_error_entry_t),
 814             offsetof(spa_error_entry_t, se_avl));
 815         avl_create(&spa->spa_errlist_last,
 816             spa_error_entry_compare, sizeof (spa_error_entry_t),
 817             offsetof(spa_error_entry_t, se_avl));
 818 }
 819 
 820 static void
 821 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
 822 {
 823         const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
 824         enum zti_modes mode = ztip->zti_mode;
 825         uint_t value = ztip->zti_value;
 826         uint_t count = ztip->zti_count;
 827         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 828         char name[32];
 829         uint_t flags = 0;
 830         boolean_t batch = B_FALSE;
 831 
 832         if (mode == ZTI_MODE_NULL) {
 833                 tqs->stqs_count = 0;
 834                 tqs->stqs_taskq = NULL;
 835                 return;
 836         }
 837 
 838         ASSERT3U(count, >, 0);
 839 
 840         tqs->stqs_count = count;
 841         tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
 842 
 843         switch (mode) {
 844         case ZTI_MODE_FIXED:
 845                 ASSERT3U(value, >=, 1);
 846                 value = MAX(value, 1);
 847                 break;
 848 
 849         case ZTI_MODE_BATCH:
 850                 batch = B_TRUE;
 851                 flags |= TASKQ_THREADS_CPU_PCT;
 852                 value = zio_taskq_batch_pct;
 853                 break;
 854 
 855         default:
 856                 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
 857                     "spa_activate()",
 858                     zio_type_name[t], zio_taskq_types[q], mode, value);
 859                 break;
 860         }
 861 
 862         for (uint_t i = 0; i < count; i++) {
 863                 taskq_t *tq;
 864 
 865                 if (count > 1) {
 866                         (void) snprintf(name, sizeof (name), "%s_%s_%u",
 867                             zio_type_name[t], zio_taskq_types[q], i);
 868                 } else {
 869                         (void) snprintf(name, sizeof (name), "%s_%s",
 870                             zio_type_name[t], zio_taskq_types[q]);
 871                 }
 872 
 873                 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
 874                         if (batch)
 875                                 flags |= TASKQ_DC_BATCH;
 876 
 877                         tq = taskq_create_sysdc(name, value, 50, INT_MAX,
 878                             spa->spa_proc, zio_taskq_basedc, flags);
 879                 } else {
 880                         pri_t pri = maxclsyspri;
 881                         /*
 882                          * The write issue taskq can be extremely CPU
 883                          * intensive.  Run it at slightly lower priority
 884                          * than the other taskqs.
 885                          */
 886                         if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
 887                                 pri--;
 888 
 889                         tq = taskq_create_proc(name, value, pri, 50,
 890                             INT_MAX, spa->spa_proc, flags);
 891                 }
 892 
 893                 tqs->stqs_taskq[i] = tq;
 894         }
 895 }
 896 
 897 static void
 898 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
 899 {
 900         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 901 
 902         if (tqs->stqs_taskq == NULL) {
 903                 ASSERT0(tqs->stqs_count);
 904                 return;
 905         }
 906 
 907         for (uint_t i = 0; i < tqs->stqs_count; i++) {
 908                 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
 909                 taskq_destroy(tqs->stqs_taskq[i]);
 910         }
 911 
 912         kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
 913         tqs->stqs_taskq = NULL;
 914 }
 915 
 916 /*
 917  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
 918  * Note that a type may have multiple discrete taskqs to avoid lock contention
 919  * on the taskq itself. In that case we choose which taskq at random by using
 920  * the low bits of gethrtime().
 921  */
 922 void
 923 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
 924     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
 925 {
 926         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 927         taskq_t *tq;
 928 
 929         ASSERT3P(tqs->stqs_taskq, !=, NULL);
 930         ASSERT3U(tqs->stqs_count, !=, 0);
 931 
 932         if (tqs->stqs_count == 1) {
 933                 tq = tqs->stqs_taskq[0];
 934         } else {
 935                 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
 936         }
 937 
 938         taskq_dispatch_ent(tq, func, arg, flags, ent);
 939 }
 940 
 941 static void
 942 spa_create_zio_taskqs(spa_t *spa)
 943 {
 944         for (int t = 0; t < ZIO_TYPES; t++) {
 945                 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
 946                         spa_taskqs_init(spa, t, q);
 947                 }
 948         }
 949 }
 950 
 951 #ifdef _KERNEL
 952 static void
 953 spa_thread(void *arg)
 954 {
 955         callb_cpr_t cprinfo;
 956 
 957         spa_t *spa = arg;
 958         user_t *pu = PTOU(curproc);
 959 
 960         CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
 961             spa->spa_name);
 962 
 963         ASSERT(curproc != &p0);
 964         (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
 965             "zpool-%s", spa->spa_name);
 966         (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
 967 
 968         /* bind this thread to the requested psrset */
 969         if (zio_taskq_psrset_bind != PS_NONE) {
 970                 pool_lock();
 971                 mutex_enter(&cpu_lock);
 972                 mutex_enter(&pidlock);
 973                 mutex_enter(&curproc->p_lock);
 974 
 975                 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
 976                     0, NULL, NULL) == 0)  {
 977                         curthread->t_bind_pset = zio_taskq_psrset_bind;
 978                 } else {
 979                         cmn_err(CE_WARN,
 980                             "Couldn't bind process for zfs pool \"%s\" to "
 981                             "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
 982                 }
 983 
 984                 mutex_exit(&curproc->p_lock);
 985                 mutex_exit(&pidlock);
 986                 mutex_exit(&cpu_lock);
 987                 pool_unlock();
 988         }
 989 
 990         if (zio_taskq_sysdc) {
 991                 sysdc_thread_enter(curthread, 100, 0);
 992         }
 993 
 994         spa->spa_proc = curproc;
 995         spa->spa_did = curthread->t_did;
 996 
 997         spa_create_zio_taskqs(spa);
 998 
 999         mutex_enter(&spa->spa_proc_lock);
1000         ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1001 
1002         spa->spa_proc_state = SPA_PROC_ACTIVE;
1003         cv_broadcast(&spa->spa_proc_cv);
1004 
1005         CALLB_CPR_SAFE_BEGIN(&cprinfo);
1006         while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1007                 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1008         CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1009 
1010         ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1011         spa->spa_proc_state = SPA_PROC_GONE;
1012         spa->spa_proc = &p0;
1013         cv_broadcast(&spa->spa_proc_cv);
1014         CALLB_CPR_EXIT(&cprinfo);   /* drops spa_proc_lock */
1015 
1016         mutex_enter(&curproc->p_lock);
1017         lwp_exit();
1018 }
1019 #endif
1020 
1021 /*
1022  * Activate an uninitialized pool.
1023  */
1024 static void
1025 spa_activate(spa_t *spa, int mode)
1026 {
1027         ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1028 
1029         spa->spa_state = POOL_STATE_ACTIVE;
1030         spa->spa_mode = mode;
1031 
1032         spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1033         spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1034 
1035         /* Try to create a covering process */
1036         mutex_enter(&spa->spa_proc_lock);
1037         ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1038         ASSERT(spa->spa_proc == &p0);
1039         spa->spa_did = 0;
1040 
1041         /* Only create a process if we're going to be around a while. */
1042         if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1043                 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1044                     NULL, 0) == 0) {
1045                         spa->spa_proc_state = SPA_PROC_CREATED;
1046                         while (spa->spa_proc_state == SPA_PROC_CREATED) {
1047                                 cv_wait(&spa->spa_proc_cv,
1048                                     &spa->spa_proc_lock);
1049                         }
1050                         ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1051                         ASSERT(spa->spa_proc != &p0);
1052                         ASSERT(spa->spa_did != 0);
1053                 } else {
1054 #ifdef _KERNEL
1055                         cmn_err(CE_WARN,
1056                             "Couldn't create process for zfs pool \"%s\"\n",
1057                             spa->spa_name);
1058 #endif
1059                 }
1060         }
1061         mutex_exit(&spa->spa_proc_lock);
1062 
1063         /* If we didn't create a process, we need to create our taskqs. */
1064         if (spa->spa_proc == &p0) {
1065                 spa_create_zio_taskqs(spa);
1066         }
1067 
1068         list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1069             offsetof(vdev_t, vdev_config_dirty_node));
1070         list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1071             offsetof(vdev_t, vdev_state_dirty_node));
1072 
1073         txg_list_create(&spa->spa_vdev_txg_list,
1074             offsetof(struct vdev, vdev_txg_node));
1075 
1076         avl_create(&spa->spa_errlist_scrub,
1077             spa_error_entry_compare, sizeof (spa_error_entry_t),
1078             offsetof(spa_error_entry_t, se_avl));
1079         avl_create(&spa->spa_errlist_last,
1080             spa_error_entry_compare, sizeof (spa_error_entry_t),
1081             offsetof(spa_error_entry_t, se_avl));
1082 }
1083 
1084 /*
1085  * Opposite of spa_activate().
1086  */
1087 static void
1088 spa_deactivate(spa_t *spa)
1089 {
1090         ASSERT(spa->spa_sync_on == B_FALSE);
1091         ASSERT(spa->spa_dsl_pool == NULL);
1092         ASSERT(spa->spa_root_vdev == NULL);
1093         ASSERT(spa->spa_async_zio_root == NULL);
1094         ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1095 
1096         txg_list_destroy(&spa->spa_vdev_txg_list);
1097 
1098         list_destroy(&spa->spa_config_dirty_list);
1099         list_destroy(&spa->spa_state_dirty_list);
1100 
1101         for (int t = 0; t < ZIO_TYPES; t++) {
1102                 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1103                         spa_taskqs_fini(spa, t, q);
1104                 }
1105         }
1106 
1107         metaslab_class_destroy(spa->spa_normal_class);
1108         spa->spa_normal_class = NULL;
1109 
1110         metaslab_class_destroy(spa->spa_log_class);
1111         spa->spa_log_class = NULL;
1112 
1113         /*
1114          * If this was part of an import or the open otherwise failed, we may
1115          * still have errors left in the queues.  Empty them just in case.
1116          */
1117         spa_errlog_drain(spa);
1118 
1119         avl_destroy(&spa->spa_errlist_scrub);
1120         avl_destroy(&spa->spa_errlist_last);
1121 
1122         spa->spa_state = POOL_STATE_UNINITIALIZED;
1123 
1124         mutex_enter(&spa->spa_proc_lock);
1125         if (spa->spa_proc_state != SPA_PROC_NONE) {
1126                 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1127                 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1128                 cv_broadcast(&spa->spa_proc_cv);
1129                 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1130                         ASSERT(spa->spa_proc != &p0);
1131                         cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1132                 }
1133                 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1134                 spa->spa_proc_state = SPA_PROC_NONE;
1135         }
1136         ASSERT(spa->spa_proc == &p0);
1137         mutex_exit(&spa->spa_proc_lock);
1138 
1139         /*
1140          * We want to make sure spa_thread() has actually exited the ZFS
1141          * module, so that the module can't be unloaded out from underneath
1142          * it.
1143          */
1144         if (spa->spa_did != 0) {
1145                 thread_join(spa->spa_did);
1146                 spa->spa_did = 0;
1147         }
1148 }
1149 
1150 /*
1151  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1152  * will create all the necessary vdevs in the appropriate layout, with each vdev
1153  * in the CLOSED state.  This will prep the pool before open/creation/import.
1154  * All vdev validation is done by the vdev_alloc() routine.
1155  */
1156 static int
1157 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1158     uint_t id, int atype)
1159 {
1160         nvlist_t **child;
1161         uint_t children;
1162         int error;
1163 
1164         if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1165                 return (error);
1166 
1167         if ((*vdp)->vdev_ops->vdev_op_leaf)
1168                 return (0);
1169 
1170         error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1171             &child, &children);
1172 
1173         if (error == ENOENT)
1174                 return (0);
1175 
1176         if (error) {
1177                 vdev_free(*vdp);
1178                 *vdp = NULL;
1179                 return (SET_ERROR(EINVAL));
1180         }
1181 
1182         for (int c = 0; c < children; c++) {
1183                 vdev_t *vd;
1184                 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1185                     atype)) != 0) {
1186                         vdev_free(*vdp);
1187                         *vdp = NULL;
1188                         return (error);
1189                 }
1190         }
1191 
1192         ASSERT(*vdp != NULL);
1193 
1194         return (0);
1195 }
1196 
1197 /*
1198  * Opposite of spa_load().
1199  */
1200 static void
1201 spa_unload(spa_t *spa)
1202 {
1203         int i;
1204 
1205         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1206 
1207         /*
1208          * Stop async tasks.
1209          */
1210         spa_async_suspend(spa);
1211 
1212         /*
1213          * Stop syncing.
1214          */
1215         if (spa->spa_sync_on) {
1216                 txg_sync_stop(spa->spa_dsl_pool);
1217                 spa->spa_sync_on = B_FALSE;
1218         }
1219 
1220         /*
1221          * Wait for any outstanding async I/O to complete.
1222          */
1223         if (spa->spa_async_zio_root != NULL) {
1224                 (void) zio_wait(spa->spa_async_zio_root);
1225                 spa->spa_async_zio_root = NULL;
1226         }
1227 
1228         bpobj_close(&spa->spa_deferred_bpobj);
1229 
1230         /*
1231          * Close the dsl pool.
1232          */
1233         if (spa->spa_dsl_pool) {
1234                 dsl_pool_close(spa->spa_dsl_pool);
1235                 spa->spa_dsl_pool = NULL;
1236                 spa->spa_meta_objset = NULL;
1237         }
1238 
1239         ddt_unload(spa);
1240 
1241         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1242 
1243         /*
1244          * Drop and purge level 2 cache
1245          */
1246         spa_l2cache_drop(spa);
1247 
1248         /*
1249          * Close all vdevs.
1250          */
1251         if (spa->spa_root_vdev)
1252                 vdev_free(spa->spa_root_vdev);
1253         ASSERT(spa->spa_root_vdev == NULL);
1254 
1255         for (i = 0; i < spa->spa_spares.sav_count; i++)
1256                 vdev_free(spa->spa_spares.sav_vdevs[i]);
1257         if (spa->spa_spares.sav_vdevs) {
1258                 kmem_free(spa->spa_spares.sav_vdevs,
1259                     spa->spa_spares.sav_count * sizeof (void *));
1260                 spa->spa_spares.sav_vdevs = NULL;
1261         }
1262         if (spa->spa_spares.sav_config) {
1263                 nvlist_free(spa->spa_spares.sav_config);
1264                 spa->spa_spares.sav_config = NULL;
1265         }
1266         spa->spa_spares.sav_count = 0;
1267 
1268         for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1269                 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1270                 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1271         }
1272         if (spa->spa_l2cache.sav_vdevs) {
1273                 kmem_free(spa->spa_l2cache.sav_vdevs,
1274                     spa->spa_l2cache.sav_count * sizeof (void *));
1275                 spa->spa_l2cache.sav_vdevs = NULL;
1276         }
1277         if (spa->spa_l2cache.sav_config) {
1278                 nvlist_free(spa->spa_l2cache.sav_config);
1279                 spa->spa_l2cache.sav_config = NULL;
1280         }
1281         spa->spa_l2cache.sav_count = 0;
1282 
1283         spa->spa_async_suspended = 0;
1284 
1285         if (spa->spa_comment != NULL) {
1286                 spa_strfree(spa->spa_comment);
1287                 spa->spa_comment = NULL;
1288         }
1289 
1290         spa_config_exit(spa, SCL_ALL, FTAG);
1291 }
1292 
1293 /*
1294  * Load (or re-load) the current list of vdevs describing the active spares for
1295  * this pool.  When this is called, we have some form of basic information in
1296  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1297  * then re-generate a more complete list including status information.
1298  */
1299 static void
1300 spa_load_spares(spa_t *spa)
1301 {
1302         nvlist_t **spares;
1303         uint_t nspares;
1304         int i;
1305         vdev_t *vd, *tvd;
1306 
1307         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1308 
1309         /*
1310          * First, close and free any existing spare vdevs.
1311          */
1312         for (i = 0; i < spa->spa_spares.sav_count; i++) {
1313                 vd = spa->spa_spares.sav_vdevs[i];
1314 
1315                 /* Undo the call to spa_activate() below */
1316                 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1317                     B_FALSE)) != NULL && tvd->vdev_isspare)
1318                         spa_spare_remove(tvd);
1319                 vdev_close(vd);
1320                 vdev_free(vd);
1321         }
1322 
1323         if (spa->spa_spares.sav_vdevs)
1324                 kmem_free(spa->spa_spares.sav_vdevs,
1325                     spa->spa_spares.sav_count * sizeof (void *));
1326 
1327         if (spa->spa_spares.sav_config == NULL)
1328                 nspares = 0;
1329         else
1330                 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1331                     ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1332 
1333         spa->spa_spares.sav_count = (int)nspares;
1334         spa->spa_spares.sav_vdevs = NULL;
1335 
1336         if (nspares == 0)
1337                 return;
1338 
1339         /*
1340          * Construct the array of vdevs, opening them to get status in the
1341          * process.   For each spare, there is potentially two different vdev_t
1342          * structures associated with it: one in the list of spares (used only
1343          * for basic validation purposes) and one in the active vdev
1344          * configuration (if it's spared in).  During this phase we open and
1345          * validate each vdev on the spare list.  If the vdev also exists in the
1346          * active configuration, then we also mark this vdev as an active spare.
1347          */
1348         spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1349             KM_SLEEP);
1350         for (i = 0; i < spa->spa_spares.sav_count; i++) {
1351                 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1352                     VDEV_ALLOC_SPARE) == 0);
1353                 ASSERT(vd != NULL);
1354 
1355                 spa->spa_spares.sav_vdevs[i] = vd;
1356 
1357                 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1358                     B_FALSE)) != NULL) {
1359                         if (!tvd->vdev_isspare)
1360                                 spa_spare_add(tvd);
1361 
1362                         /*
1363                          * We only mark the spare active if we were successfully
1364                          * able to load the vdev.  Otherwise, importing a pool
1365                          * with a bad active spare would result in strange
1366                          * behavior, because multiple pool would think the spare
1367                          * is actively in use.
1368                          *
1369                          * There is a vulnerability here to an equally bizarre
1370                          * circumstance, where a dead active spare is later
1371                          * brought back to life (onlined or otherwise).  Given
1372                          * the rarity of this scenario, and the extra complexity
1373                          * it adds, we ignore the possibility.
1374                          */
1375                         if (!vdev_is_dead(tvd))
1376                                 spa_spare_activate(tvd);
1377                 }
1378 
1379                 vd->vdev_top = vd;
1380                 vd->vdev_aux = &spa->spa_spares;
1381 
1382                 if (vdev_open(vd) != 0)
1383                         continue;
1384 
1385                 if (vdev_validate_aux(vd) == 0)
1386                         spa_spare_add(vd);
1387         }
1388 
1389         /*
1390          * Recompute the stashed list of spares, with status information
1391          * this time.
1392          */
1393         VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1394             DATA_TYPE_NVLIST_ARRAY) == 0);
1395 
1396         spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1397             KM_SLEEP);
1398         for (i = 0; i < spa->spa_spares.sav_count; i++)
1399                 spares[i] = vdev_config_generate(spa,
1400                     spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1401         VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1402             ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1403         for (i = 0; i < spa->spa_spares.sav_count; i++)
1404                 nvlist_free(spares[i]);
1405         kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1406 }
1407 
1408 /*
1409  * Load (or re-load) the current list of vdevs describing the active l2cache for
1410  * this pool.  When this is called, we have some form of basic information in
1411  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1412  * then re-generate a more complete list including status information.
1413  * Devices which are already active have their details maintained, and are
1414  * not re-opened.
1415  */
1416 static void
1417 spa_load_l2cache(spa_t *spa)
1418 {
1419         nvlist_t **l2cache;
1420         uint_t nl2cache;
1421         int i, j, oldnvdevs;
1422         uint64_t guid;
1423         vdev_t *vd, **oldvdevs, **newvdevs;
1424         spa_aux_vdev_t *sav = &spa->spa_l2cache;
1425 
1426         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1427 
1428         if (sav->sav_config != NULL) {
1429                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1430                     ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1431                 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1432         } else {
1433                 nl2cache = 0;
1434                 newvdevs = NULL;
1435         }
1436 
1437         oldvdevs = sav->sav_vdevs;
1438         oldnvdevs = sav->sav_count;
1439         sav->sav_vdevs = NULL;
1440         sav->sav_count = 0;
1441 
1442         /*
1443          * Process new nvlist of vdevs.
1444          */
1445         for (i = 0; i < nl2cache; i++) {
1446                 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1447                     &guid) == 0);
1448 
1449                 newvdevs[i] = NULL;
1450                 for (j = 0; j < oldnvdevs; j++) {
1451                         vd = oldvdevs[j];
1452                         if (vd != NULL && guid == vd->vdev_guid) {
1453                                 /*
1454                                  * Retain previous vdev for add/remove ops.
1455                                  */
1456                                 newvdevs[i] = vd;
1457                                 oldvdevs[j] = NULL;
1458                                 break;
1459                         }
1460                 }
1461 
1462                 if (newvdevs[i] == NULL) {
1463                         /*
1464                          * Create new vdev
1465                          */
1466                         VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1467                             VDEV_ALLOC_L2CACHE) == 0);
1468                         ASSERT(vd != NULL);
1469                         newvdevs[i] = vd;
1470 
1471                         /*
1472                          * Commit this vdev as an l2cache device,
1473                          * even if it fails to open.
1474                          */
1475                         spa_l2cache_add(vd);
1476 
1477                         vd->vdev_top = vd;
1478                         vd->vdev_aux = sav;
1479 
1480                         spa_l2cache_activate(vd);
1481 
1482                         if (vdev_open(vd) != 0)
1483                                 continue;
1484 
1485                         (void) vdev_validate_aux(vd);
1486 
1487                         if (!vdev_is_dead(vd))
1488                                 l2arc_add_vdev(spa, vd);
1489                 }
1490         }
1491 
1492         /*
1493          * Purge vdevs that were dropped
1494          */
1495         for (i = 0; i < oldnvdevs; i++) {
1496                 uint64_t pool;
1497 
1498                 vd = oldvdevs[i];
1499                 if (vd != NULL) {
1500                         ASSERT(vd->vdev_isl2cache);
1501 
1502                         if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1503                             pool != 0ULL && l2arc_vdev_present(vd))
1504                                 l2arc_remove_vdev(vd);
1505                         vdev_clear_stats(vd);
1506                         vdev_free(vd);
1507                 }
1508         }
1509 
1510         if (oldvdevs)
1511                 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1512 
1513         if (sav->sav_config == NULL)
1514                 goto out;
1515 
1516         sav->sav_vdevs = newvdevs;
1517         sav->sav_count = (int)nl2cache;
1518 
1519         /*
1520          * Recompute the stashed list of l2cache devices, with status
1521          * information this time.
1522          */
1523         VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1524             DATA_TYPE_NVLIST_ARRAY) == 0);
1525 
1526         l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1527         for (i = 0; i < sav->sav_count; i++)
1528                 l2cache[i] = vdev_config_generate(spa,
1529                     sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1530         VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1531             ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1532 out:
1533         for (i = 0; i < sav->sav_count; i++)
1534                 nvlist_free(l2cache[i]);
1535         if (sav->sav_count)
1536                 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1537 }
1538 
1539 static int
1540 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1541 {
1542         dmu_buf_t *db;
1543         char *packed = NULL;
1544         size_t nvsize = 0;
1545         int error;
1546         *value = NULL;
1547 
1548         VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1549         nvsize = *(uint64_t *)db->db_data;
1550         dmu_buf_rele(db, FTAG);
1551 
1552         packed = kmem_alloc(nvsize, KM_SLEEP);
1553         error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1554             DMU_READ_PREFETCH);
1555         if (error == 0)
1556                 error = nvlist_unpack(packed, nvsize, value, 0);
1557         kmem_free(packed, nvsize);
1558 
1559         return (error);
1560 }
1561 
1562 /*
1563  * Checks to see if the given vdev could not be opened, in which case we post a
1564  * sysevent to notify the autoreplace code that the device has been removed.
1565  */
1566 static void
1567 spa_check_removed(vdev_t *vd)
1568 {
1569         for (int c = 0; c < vd->vdev_children; c++)
1570                 spa_check_removed(vd->vdev_child[c]);
1571 
1572         if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1573             !vd->vdev_ishole) {
1574                 zfs_post_autoreplace(vd->vdev_spa, vd);
1575                 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1576         }
1577 }
1578 
1579 /*
1580  * Validate the current config against the MOS config
1581  */
1582 static boolean_t
1583 spa_config_valid(spa_t *spa, nvlist_t *config)
1584 {
1585         vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1586         nvlist_t *nv;
1587 
1588         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1589 
1590         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1591         VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1592 
1593         ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1594 
1595         /*
1596          * If we're doing a normal import, then build up any additional
1597          * diagnostic information about missing devices in this config.
1598          * We'll pass this up to the user for further processing.
1599          */
1600         if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1601                 nvlist_t **child, *nv;
1602                 uint64_t idx = 0;
1603 
1604                 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1605                     KM_SLEEP);
1606                 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1607 
1608                 for (int c = 0; c < rvd->vdev_children; c++) {
1609                         vdev_t *tvd = rvd->vdev_child[c];
1610                         vdev_t *mtvd  = mrvd->vdev_child[c];
1611 
1612                         if (tvd->vdev_ops == &vdev_missing_ops &&
1613                             mtvd->vdev_ops != &vdev_missing_ops &&
1614                             mtvd->vdev_islog)
1615                                 child[idx++] = vdev_config_generate(spa, mtvd,
1616                                     B_FALSE, 0);
1617                 }
1618 
1619                 if (idx) {
1620                         VERIFY(nvlist_add_nvlist_array(nv,
1621                             ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1622                         VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1623                             ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1624 
1625                         for (int i = 0; i < idx; i++)
1626                                 nvlist_free(child[i]);
1627                 }
1628                 nvlist_free(nv);
1629                 kmem_free(child, rvd->vdev_children * sizeof (char **));
1630         }
1631 
1632         /*
1633          * Compare the root vdev tree with the information we have
1634          * from the MOS config (mrvd). Check each top-level vdev
1635          * with the corresponding MOS config top-level (mtvd).
1636          */
1637         for (int c = 0; c < rvd->vdev_children; c++) {
1638                 vdev_t *tvd = rvd->vdev_child[c];
1639                 vdev_t *mtvd  = mrvd->vdev_child[c];
1640 
1641                 /*
1642                  * Resolve any "missing" vdevs in the current configuration.
1643                  * If we find that the MOS config has more accurate information
1644                  * about the top-level vdev then use that vdev instead.
1645                  */
1646                 if (tvd->vdev_ops == &vdev_missing_ops &&
1647                     mtvd->vdev_ops != &vdev_missing_ops) {
1648 
1649                         if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1650                                 continue;
1651 
1652                         /*
1653                          * Device specific actions.
1654                          */
1655                         if (mtvd->vdev_islog) {
1656                                 spa_set_log_state(spa, SPA_LOG_CLEAR);
1657                         } else {
1658                                 /*
1659                                  * XXX - once we have 'readonly' pool
1660                                  * support we should be able to handle
1661                                  * missing data devices by transitioning
1662                                  * the pool to readonly.
1663                                  */
1664                                 continue;
1665                         }
1666 
1667                         /*
1668                          * Swap the missing vdev with the data we were
1669                          * able to obtain from the MOS config.
1670                          */
1671                         vdev_remove_child(rvd, tvd);
1672                         vdev_remove_child(mrvd, mtvd);
1673 
1674                         vdev_add_child(rvd, mtvd);
1675                         vdev_add_child(mrvd, tvd);
1676 
1677                         spa_config_exit(spa, SCL_ALL, FTAG);
1678                         vdev_load(mtvd);
1679                         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1680 
1681                         vdev_reopen(rvd);
1682                 } else if (mtvd->vdev_islog) {
1683                         /*
1684                          * Load the slog device's state from the MOS config
1685                          * since it's possible that the label does not
1686                          * contain the most up-to-date information.
1687                          */
1688                         vdev_load_log_state(tvd, mtvd);
1689                         vdev_reopen(tvd);
1690                 }
1691         }
1692         vdev_free(mrvd);
1693         spa_config_exit(spa, SCL_ALL, FTAG);
1694 
1695         /*
1696          * Ensure we were able to validate the config.
1697          */
1698         return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1699 }
1700 
1701 /*
1702  * Check for missing log devices
1703  */
1704 static boolean_t
1705 spa_check_logs(spa_t *spa)
1706 {
1707         boolean_t rv = B_FALSE;
1708 
1709         switch (spa->spa_log_state) {
1710         case SPA_LOG_MISSING:
1711                 /* need to recheck in case slog has been restored */
1712         case SPA_LOG_UNKNOWN:
1713                 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1714                     NULL, DS_FIND_CHILDREN) != 0);
1715                 if (rv)
1716                         spa_set_log_state(spa, SPA_LOG_MISSING);
1717                 break;
1718         }
1719         return (rv);
1720 }
1721 
1722 static boolean_t
1723 spa_passivate_log(spa_t *spa)
1724 {
1725         vdev_t *rvd = spa->spa_root_vdev;
1726         boolean_t slog_found = B_FALSE;
1727 
1728         ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1729 
1730         if (!spa_has_slogs(spa))
1731                 return (B_FALSE);
1732 
1733         for (int c = 0; c < rvd->vdev_children; c++) {
1734                 vdev_t *tvd = rvd->vdev_child[c];
1735                 metaslab_group_t *mg = tvd->vdev_mg;
1736 
1737                 if (tvd->vdev_islog) {
1738                         metaslab_group_passivate(mg);
1739                         slog_found = B_TRUE;
1740                 }
1741         }
1742 
1743         return (slog_found);
1744 }
1745 
1746 static void
1747 spa_activate_log(spa_t *spa)
1748 {
1749         vdev_t *rvd = spa->spa_root_vdev;
1750 
1751         ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1752 
1753         for (int c = 0; c < rvd->vdev_children; c++) {
1754                 vdev_t *tvd = rvd->vdev_child[c];
1755                 metaslab_group_t *mg = tvd->vdev_mg;
1756 
1757                 if (tvd->vdev_islog)
1758                         metaslab_group_activate(mg);
1759         }
1760 }
1761 
1762 int
1763 spa_offline_log(spa_t *spa)
1764 {
1765         int error;
1766 
1767         error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1768             NULL, DS_FIND_CHILDREN);
1769         if (error == 0) {
1770                 /*
1771                  * We successfully offlined the log device, sync out the
1772                  * current txg so that the "stubby" block can be removed
1773                  * by zil_sync().
1774                  */
1775                 txg_wait_synced(spa->spa_dsl_pool, 0);
1776         }
1777         return (error);
1778 }
1779 
1780 static void
1781 spa_aux_check_removed(spa_aux_vdev_t *sav)
1782 {
1783         for (int i = 0; i < sav->sav_count; i++)
1784                 spa_check_removed(sav->sav_vdevs[i]);
1785 }
1786 
1787 void
1788 spa_claim_notify(zio_t *zio)
1789 {
1790         spa_t *spa = zio->io_spa;
1791 
1792         if (zio->io_error)
1793                 return;
1794 
1795         mutex_enter(&spa->spa_props_lock);       /* any mutex will do */
1796         if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1797                 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1798         mutex_exit(&spa->spa_props_lock);
1799 }
1800 
1801 typedef struct spa_load_error {
1802         uint64_t        sle_meta_count;
1803         uint64_t        sle_data_count;
1804 } spa_load_error_t;
1805 
1806 static void
1807 spa_load_verify_done(zio_t *zio)
1808 {
1809         blkptr_t *bp = zio->io_bp;
1810         spa_load_error_t *sle = zio->io_private;
1811         dmu_object_type_t type = BP_GET_TYPE(bp);
1812         int error = zio->io_error;
1813 
1814         if (error) {
1815                 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1816                     type != DMU_OT_INTENT_LOG)
1817                         atomic_add_64(&sle->sle_meta_count, 1);
1818                 else
1819                         atomic_add_64(&sle->sle_data_count, 1);
1820         }
1821         zio_data_buf_free(zio->io_data, zio->io_size);
1822 }
1823 
1824 /*ARGSUSED*/
1825 static int
1826 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1827     const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1828 {
1829         if (bp != NULL) {
1830                 zio_t *rio = arg;
1831                 size_t size = BP_GET_PSIZE(bp);
1832                 void *data = zio_data_buf_alloc(size);
1833 
1834                 zio_nowait(zio_read(rio, spa, bp, data, size,
1835                     spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1836                     ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1837                     ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1838         }
1839         return (0);
1840 }
1841 
1842 static int
1843 spa_load_verify(spa_t *spa)
1844 {
1845         zio_t *rio;
1846         spa_load_error_t sle = { 0 };
1847         zpool_rewind_policy_t policy;
1848         boolean_t verify_ok = B_FALSE;
1849         int error;
1850 
1851         zpool_get_rewind_policy(spa->spa_config, &policy);
1852 
1853         if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1854                 return (0);
1855 
1856         rio = zio_root(spa, NULL, &sle,
1857             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1858 
1859         error = traverse_pool(spa, spa->spa_verify_min_txg,
1860             TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1861 
1862         (void) zio_wait(rio);
1863 
1864         spa->spa_load_meta_errors = sle.sle_meta_count;
1865         spa->spa_load_data_errors = sle.sle_data_count;
1866 
1867         if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1868             sle.sle_data_count <= policy.zrp_maxdata) {
1869                 int64_t loss = 0;
1870 
1871                 verify_ok = B_TRUE;
1872                 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1873                 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1874 
1875                 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1876                 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1877                     ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1878                 VERIFY(nvlist_add_int64(spa->spa_load_info,
1879                     ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1880                 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1881                     ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1882         } else {
1883                 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1884         }
1885 
1886         if (error) {
1887                 if (error != ENXIO && error != EIO)
1888                         error = SET_ERROR(EIO);
1889                 return (error);
1890         }
1891 
1892         return (verify_ok ? 0 : EIO);
1893 }
1894 
1895 /*
1896  * Find a value in the pool props object.
1897  */
1898 static void
1899 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1900 {
1901         (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1902             zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1903 }
1904 
1905 /*
1906  * Find a value in the pool directory object.
1907  */
1908 static int
1909 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1910 {
1911         return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1912             name, sizeof (uint64_t), 1, val));
1913 }
1914 
1915 static int
1916 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1917 {
1918         vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1919         return (err);
1920 }
1921 
1922 /*
1923  * Fix up config after a partly-completed split.  This is done with the
1924  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1925  * pool have that entry in their config, but only the splitting one contains
1926  * a list of all the guids of the vdevs that are being split off.
1927  *
1928  * This function determines what to do with that list: either rejoin
1929  * all the disks to the pool, or complete the splitting process.  To attempt
1930  * the rejoin, each disk that is offlined is marked online again, and
1931  * we do a reopen() call.  If the vdev label for every disk that was
1932  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1933  * then we call vdev_split() on each disk, and complete the split.
1934  *
1935  * Otherwise we leave the config alone, with all the vdevs in place in
1936  * the original pool.
1937  */
1938 static void
1939 spa_try_repair(spa_t *spa, nvlist_t *config)
1940 {
1941         uint_t extracted;
1942         uint64_t *glist;
1943         uint_t i, gcount;
1944         nvlist_t *nvl;
1945         vdev_t **vd;
1946         boolean_t attempt_reopen;
1947 
1948         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1949                 return;
1950 
1951         /* check that the config is complete */
1952         if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1953             &glist, &gcount) != 0)
1954                 return;
1955 
1956         vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1957 
1958         /* attempt to online all the vdevs & validate */
1959         attempt_reopen = B_TRUE;
1960         for (i = 0; i < gcount; i++) {
1961                 if (glist[i] == 0)      /* vdev is hole */
1962                         continue;
1963 
1964                 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1965                 if (vd[i] == NULL) {
1966                         /*
1967                          * Don't bother attempting to reopen the disks;
1968                          * just do the split.
1969                          */
1970                         attempt_reopen = B_FALSE;
1971                 } else {
1972                         /* attempt to re-online it */
1973                         vd[i]->vdev_offline = B_FALSE;
1974                 }
1975         }
1976 
1977         if (attempt_reopen) {
1978                 vdev_reopen(spa->spa_root_vdev);
1979 
1980                 /* check each device to see what state it's in */
1981                 for (extracted = 0, i = 0; i < gcount; i++) {
1982                         if (vd[i] != NULL &&
1983                             vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1984                                 break;
1985                         ++extracted;
1986                 }
1987         }
1988 
1989         /*
1990          * If every disk has been moved to the new pool, or if we never
1991          * even attempted to look at them, then we split them off for
1992          * good.
1993          */
1994         if (!attempt_reopen || gcount == extracted) {
1995                 for (i = 0; i < gcount; i++)
1996                         if (vd[i] != NULL)
1997                                 vdev_split(vd[i]);
1998                 vdev_reopen(spa->spa_root_vdev);
1999         }
2000 
2001         kmem_free(vd, gcount * sizeof (vdev_t *));
2002 }
2003 
2004 static int
2005 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2006     boolean_t mosconfig)
2007 {
2008         nvlist_t *config = spa->spa_config;
2009         char *ereport = FM_EREPORT_ZFS_POOL;
2010         char *comment;
2011         int error;
2012         uint64_t pool_guid;
2013         nvlist_t *nvl;
2014 
2015         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2016                 return (SET_ERROR(EINVAL));
2017 
2018         ASSERT(spa->spa_comment == NULL);
2019         if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2020                 spa->spa_comment = spa_strdup(comment);
2021 
2022         /*
2023          * Versioning wasn't explicitly added to the label until later, so if
2024          * it's not present treat it as the initial version.
2025          */
2026         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2027             &spa->spa_ubsync.ub_version) != 0)
2028                 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2029 
2030         (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2031             &spa->spa_config_txg);
2032 
2033         if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2034             spa_guid_exists(pool_guid, 0)) {
2035                 error = SET_ERROR(EEXIST);
2036         } else {
2037                 spa->spa_config_guid = pool_guid;
2038 
2039                 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2040                     &nvl) == 0) {
2041                         VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2042                             KM_SLEEP) == 0);
2043                 }
2044 
2045                 nvlist_free(spa->spa_load_info);
2046                 spa->spa_load_info = fnvlist_alloc();
2047 
2048                 gethrestime(&spa->spa_loaded_ts);
2049                 error = spa_load_impl(spa, pool_guid, config, state, type,
2050                     mosconfig, &ereport);
2051         }
2052 
2053         spa->spa_minref = refcount_count(&spa->spa_refcount);
2054         if (error) {
2055                 if (error != EEXIST) {
2056                         spa->spa_loaded_ts.tv_sec = 0;
2057                         spa->spa_loaded_ts.tv_nsec = 0;
2058                 }
2059                 if (error != EBADF) {
2060                         zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2061                 }
2062         }
2063         spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2064         spa->spa_ena = 0;
2065 
2066         return (error);
2067 }
2068 
2069 /*
2070  * Load an existing storage pool, using the pool's builtin spa_config as a
2071  * source of configuration information.
2072  */
2073 static int
2074 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2075     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2076     char **ereport)
2077 {
2078         int error = 0;
2079         nvlist_t *nvroot = NULL;
2080         nvlist_t *label;
2081         vdev_t *rvd;
2082         uberblock_t *ub = &spa->spa_uberblock;
2083         uint64_t children, config_cache_txg = spa->spa_config_txg;
2084         int orig_mode = spa->spa_mode;
2085         int parse;
2086         uint64_t obj;
2087         boolean_t missing_feat_write = B_FALSE;
2088 
2089         /*
2090          * If this is an untrusted config, access the pool in read-only mode.
2091          * This prevents things like resilvering recently removed devices.
2092          */
2093         if (!mosconfig)
2094                 spa->spa_mode = FREAD;
2095 
2096         ASSERT(MUTEX_HELD(&spa_namespace_lock));
2097 
2098         spa->spa_load_state = state;
2099 
2100         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2101                 return (SET_ERROR(EINVAL));
2102 
2103         parse = (type == SPA_IMPORT_EXISTING ?
2104             VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2105 
2106         /*
2107          * Create "The Godfather" zio to hold all async IOs
2108          */
2109         spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2110             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2111 
2112         /*
2113          * Parse the configuration into a vdev tree.  We explicitly set the
2114          * value that will be returned by spa_version() since parsing the
2115          * configuration requires knowing the version number.
2116          */
2117         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2118         error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2119         spa_config_exit(spa, SCL_ALL, FTAG);
2120 
2121         if (error != 0)
2122                 return (error);
2123 
2124         ASSERT(spa->spa_root_vdev == rvd);
2125 
2126         if (type != SPA_IMPORT_ASSEMBLE) {
2127                 ASSERT(spa_guid(spa) == pool_guid);
2128         }
2129 
2130         /*
2131          * Try to open all vdevs, loading each label in the process.
2132          */
2133         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2134         error = vdev_open(rvd);
2135         spa_config_exit(spa, SCL_ALL, FTAG);
2136         if (error != 0)
2137                 return (error);
2138 
2139         /*
2140          * We need to validate the vdev labels against the configuration that
2141          * we have in hand, which is dependent on the setting of mosconfig. If
2142          * mosconfig is true then we're validating the vdev labels based on
2143          * that config.  Otherwise, we're validating against the cached config
2144          * (zpool.cache) that was read when we loaded the zfs module, and then
2145          * later we will recursively call spa_load() and validate against
2146          * the vdev config.
2147          *
2148          * If we're assembling a new pool that's been split off from an
2149          * existing pool, the labels haven't yet been updated so we skip
2150          * validation for now.
2151          */
2152         if (type != SPA_IMPORT_ASSEMBLE) {
2153                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2154                 error = vdev_validate(rvd, mosconfig);
2155                 spa_config_exit(spa, SCL_ALL, FTAG);
2156 
2157                 if (error != 0)
2158                         return (error);
2159 
2160                 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2161                         return (SET_ERROR(ENXIO));
2162         }
2163 
2164         /*
2165          * Find the best uberblock.
2166          */
2167         vdev_uberblock_load(rvd, ub, &label);
2168 
2169         /*
2170          * If we weren't able to find a single valid uberblock, return failure.
2171          */
2172         if (ub->ub_txg == 0) {
2173                 nvlist_free(label);
2174                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2175         }
2176 
2177         /*
2178          * If the pool has an unsupported version we can't open it.
2179          */
2180         if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2181                 nvlist_free(label);
2182                 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2183         }
2184 
2185         if (ub->ub_version >= SPA_VERSION_FEATURES) {
2186                 nvlist_t *features;
2187 
2188                 /*
2189                  * If we weren't able to find what's necessary for reading the
2190                  * MOS in the label, return failure.
2191                  */
2192                 if (label == NULL || nvlist_lookup_nvlist(label,
2193                     ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2194                         nvlist_free(label);
2195                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2196                             ENXIO));
2197                 }
2198 
2199                 /*
2200                  * Update our in-core representation with the definitive values
2201                  * from the label.
2202                  */
2203                 nvlist_free(spa->spa_label_features);
2204                 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2205         }
2206 
2207         nvlist_free(label);
2208 
2209         /*
2210          * Look through entries in the label nvlist's features_for_read. If
2211          * there is a feature listed there which we don't understand then we
2212          * cannot open a pool.
2213          */
2214         if (ub->ub_version >= SPA_VERSION_FEATURES) {
2215                 nvlist_t *unsup_feat;
2216 
2217                 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2218                     0);
2219 
2220                 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2221                     NULL); nvp != NULL;
2222                     nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2223                         if (!zfeature_is_supported(nvpair_name(nvp))) {
2224                                 VERIFY(nvlist_add_string(unsup_feat,
2225                                     nvpair_name(nvp), "") == 0);
2226                         }
2227                 }
2228 
2229                 if (!nvlist_empty(unsup_feat)) {
2230                         VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2231                             ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2232                         nvlist_free(unsup_feat);
2233                         return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2234                             ENOTSUP));
2235                 }
2236 
2237                 nvlist_free(unsup_feat);
2238         }
2239 
2240         /*
2241          * If the vdev guid sum doesn't match the uberblock, we have an
2242          * incomplete configuration.  We first check to see if the pool
2243          * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2244          * If it is, defer the vdev_guid_sum check till later so we
2245          * can handle missing vdevs.
2246          */
2247         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2248             &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2249             rvd->vdev_guid_sum != ub->ub_guid_sum)
2250                 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2251 
2252         if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2253                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2254                 spa_try_repair(spa, config);
2255                 spa_config_exit(spa, SCL_ALL, FTAG);
2256                 nvlist_free(spa->spa_config_splitting);
2257                 spa->spa_config_splitting = NULL;
2258         }
2259 
2260         /*
2261          * Initialize internal SPA structures.
2262          */
2263         spa->spa_state = POOL_STATE_ACTIVE;
2264         spa->spa_ubsync = spa->spa_uberblock;
2265         spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2266             TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2267         spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2268             spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2269         spa->spa_claim_max_txg = spa->spa_first_txg;
2270         spa->spa_prev_software_version = ub->ub_software_version;
2271 
2272         error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2273         if (error)
2274                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2275         spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2276 
2277         if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2278                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2279 
2280         if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2281                 boolean_t missing_feat_read = B_FALSE;
2282                 nvlist_t *unsup_feat, *enabled_feat;
2283 
2284                 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2285                     &spa->spa_feat_for_read_obj) != 0) {
2286                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2287                 }
2288 
2289                 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2290                     &spa->spa_feat_for_write_obj) != 0) {
2291                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2292                 }
2293 
2294                 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2295                     &spa->spa_feat_desc_obj) != 0) {
2296                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2297                 }
2298 
2299                 enabled_feat = fnvlist_alloc();
2300                 unsup_feat = fnvlist_alloc();
2301 
2302                 if (!feature_is_supported(spa->spa_meta_objset,
2303                     spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2304                     unsup_feat, enabled_feat))
2305                         missing_feat_read = B_TRUE;
2306 
2307                 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2308                         if (!feature_is_supported(spa->spa_meta_objset,
2309                             spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2310                             unsup_feat, enabled_feat)) {
2311                                 missing_feat_write = B_TRUE;
2312                         }
2313                 }
2314 
2315                 fnvlist_add_nvlist(spa->spa_load_info,
2316                     ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2317 
2318                 if (!nvlist_empty(unsup_feat)) {
2319                         fnvlist_add_nvlist(spa->spa_load_info,
2320                             ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2321                 }
2322 
2323                 fnvlist_free(enabled_feat);
2324                 fnvlist_free(unsup_feat);
2325 
2326                 if (!missing_feat_read) {
2327                         fnvlist_add_boolean(spa->spa_load_info,
2328                             ZPOOL_CONFIG_CAN_RDONLY);
2329                 }
2330 
2331                 /*
2332                  * If the state is SPA_LOAD_TRYIMPORT, our objective is
2333                  * twofold: to determine whether the pool is available for
2334                  * import in read-write mode and (if it is not) whether the
2335                  * pool is available for import in read-only mode. If the pool
2336                  * is available for import in read-write mode, it is displayed
2337                  * as available in userland; if it is not available for import
2338                  * in read-only mode, it is displayed as unavailable in
2339                  * userland. If the pool is available for import in read-only
2340                  * mode but not read-write mode, it is displayed as unavailable
2341                  * in userland with a special note that the pool is actually
2342                  * available for open in read-only mode.
2343                  *
2344                  * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2345                  * missing a feature for write, we must first determine whether
2346                  * the pool can be opened read-only before returning to
2347                  * userland in order to know whether to display the
2348                  * abovementioned note.
2349                  */
2350                 if (missing_feat_read || (missing_feat_write &&
2351                     spa_writeable(spa))) {
2352                         return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2353                             ENOTSUP));
2354                 }
2355         }
2356 
2357         spa->spa_is_initializing = B_TRUE;
2358         error = dsl_pool_open(spa->spa_dsl_pool);
2359         spa->spa_is_initializing = B_FALSE;
2360         if (error != 0)
2361                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2362 
2363         if (!mosconfig) {
2364                 uint64_t hostid;
2365                 nvlist_t *policy = NULL, *nvconfig;
2366 
2367                 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2368                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2369 
2370                 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2371                     ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2372                         char *hostname;
2373                         unsigned long myhostid = 0;
2374 
2375                         VERIFY(nvlist_lookup_string(nvconfig,
2376                             ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2377 
2378 #ifdef  _KERNEL
2379                         myhostid = zone_get_hostid(NULL);
2380 #else   /* _KERNEL */
2381                         /*
2382                          * We're emulating the system's hostid in userland, so
2383                          * we can't use zone_get_hostid().
2384                          */
2385                         (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2386 #endif  /* _KERNEL */
2387                         if (hostid != 0 && myhostid != 0 &&
2388                             hostid != myhostid) {
2389                                 nvlist_free(nvconfig);
2390                                 cmn_err(CE_WARN, "pool '%s' could not be "
2391                                     "loaded as it was last accessed by "
2392                                     "another system (host: %s hostid: 0x%lx). "
2393                                     "See: http://illumos.org/msg/ZFS-8000-EY",
2394                                     spa_name(spa), hostname,
2395                                     (unsigned long)hostid);
2396                                 return (SET_ERROR(EBADF));
2397                         }
2398                 }
2399                 if (nvlist_lookup_nvlist(spa->spa_config,
2400                     ZPOOL_REWIND_POLICY, &policy) == 0)
2401                         VERIFY(nvlist_add_nvlist(nvconfig,
2402                             ZPOOL_REWIND_POLICY, policy) == 0);
2403 
2404                 spa_config_set(spa, nvconfig);
2405                 spa_unload(spa);
2406                 spa_deactivate(spa);
2407                 spa_activate(spa, orig_mode);
2408 
2409                 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2410         }
2411 
2412         if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2413                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2414         error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2415         if (error != 0)
2416                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2417 
2418         /*
2419          * Load the bit that tells us to use the new accounting function
2420          * (raid-z deflation).  If we have an older pool, this will not
2421          * be present.
2422          */
2423         error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2424         if (error != 0 && error != ENOENT)
2425                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2426 
2427         error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2428             &spa->spa_creation_version);
2429         if (error != 0 && error != ENOENT)
2430                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2431 
2432         /*
2433          * Load the persistent error log.  If we have an older pool, this will
2434          * not be present.
2435          */
2436         error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2437         if (error != 0 && error != ENOENT)
2438                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2439 
2440         error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2441             &spa->spa_errlog_scrub);
2442         if (error != 0 && error != ENOENT)
2443                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2444 
2445         /*
2446          * Load the history object.  If we have an older pool, this
2447          * will not be present.
2448          */
2449         error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2450         if (error != 0 && error != ENOENT)
2451                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2452 
2453         /*
2454          * If we're assembling the pool from the split-off vdevs of
2455          * an existing pool, we don't want to attach the spares & cache
2456          * devices.
2457          */
2458 
2459         /*
2460          * Load any hot spares for this pool.
2461          */
2462         error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2463         if (error != 0 && error != ENOENT)
2464                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2465         if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2466                 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2467                 if (load_nvlist(spa, spa->spa_spares.sav_object,
2468                     &spa->spa_spares.sav_config) != 0)
2469                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2470 
2471                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2472                 spa_load_spares(spa);
2473                 spa_config_exit(spa, SCL_ALL, FTAG);
2474         } else if (error == 0) {
2475                 spa->spa_spares.sav_sync = B_TRUE;
2476         }
2477 
2478         /*
2479          * Load any level 2 ARC devices for this pool.
2480          */
2481         error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2482             &spa->spa_l2cache.sav_object);
2483         if (error != 0 && error != ENOENT)
2484                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2485         if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2486                 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2487                 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2488                     &spa->spa_l2cache.sav_config) != 0)
2489                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2490 
2491                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2492                 spa_load_l2cache(spa);
2493                 spa_config_exit(spa, SCL_ALL, FTAG);
2494         } else if (error == 0) {
2495                 spa->spa_l2cache.sav_sync = B_TRUE;
2496         }
2497 
2498         spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2499 
2500         error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2501         if (error && error != ENOENT)
2502                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2503 
2504         if (error == 0) {
2505                 uint64_t autoreplace;
2506 
2507                 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2508                 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2509                 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2510                 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2511                 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2512                 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2513                     &spa->spa_dedup_ditto);
2514 
2515                 spa->spa_autoreplace = (autoreplace != 0);
2516         }
2517 
2518         /*
2519          * If the 'autoreplace' property is set, then post a resource notifying
2520          * the ZFS DE that it should not issue any faults for unopenable
2521          * devices.  We also iterate over the vdevs, and post a sysevent for any
2522          * unopenable vdevs so that the normal autoreplace handler can take
2523          * over.
2524          */
2525         if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2526                 spa_check_removed(spa->spa_root_vdev);
2527                 /*
2528                  * For the import case, this is done in spa_import(), because
2529                  * at this point we're using the spare definitions from
2530                  * the MOS config, not necessarily from the userland config.
2531                  */
2532                 if (state != SPA_LOAD_IMPORT) {
2533                         spa_aux_check_removed(&spa->spa_spares);
2534                         spa_aux_check_removed(&spa->spa_l2cache);
2535                 }
2536         }
2537 
2538         /*
2539          * Load the vdev state for all toplevel vdevs.
2540          */
2541         vdev_load(rvd);
2542 
2543         /*
2544          * Propagate the leaf DTLs we just loaded all the way up the tree.
2545          */
2546         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2547         vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2548         spa_config_exit(spa, SCL_ALL, FTAG);
2549 
2550         /*
2551          * Load the DDTs (dedup tables).
2552          */
2553         error = ddt_load(spa);
2554         if (error != 0)
2555                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2556 
2557         spa_update_dspace(spa);
2558 
2559         /*
2560          * Validate the config, using the MOS config to fill in any
2561          * information which might be missing.  If we fail to validate
2562          * the config then declare the pool unfit for use. If we're
2563          * assembling a pool from a split, the log is not transferred
2564          * over.
2565          */
2566         if (type != SPA_IMPORT_ASSEMBLE) {
2567                 nvlist_t *nvconfig;
2568 
2569                 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2570                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2571 
2572                 if (!spa_config_valid(spa, nvconfig)) {
2573                         nvlist_free(nvconfig);
2574                         return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2575                             ENXIO));
2576                 }
2577                 nvlist_free(nvconfig);
2578 
2579                 /*
2580                  * Now that we've validated the config, check the state of the
2581                  * root vdev.  If it can't be opened, it indicates one or
2582                  * more toplevel vdevs are faulted.
2583                  */
2584                 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2585                         return (SET_ERROR(ENXIO));
2586 
2587                 if (spa_check_logs(spa)) {
2588                         *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2589                         return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2590                 }
2591         }
2592 
2593         if (missing_feat_write) {
2594                 ASSERT(state == SPA_LOAD_TRYIMPORT);
2595 
2596                 /*
2597                  * At this point, we know that we can open the pool in
2598                  * read-only mode but not read-write mode. We now have enough
2599                  * information and can return to userland.
2600                  */
2601                 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2602         }
2603 
2604         /*
2605          * We've successfully opened the pool, verify that we're ready
2606          * to start pushing transactions.
2607          */
2608         if (state != SPA_LOAD_TRYIMPORT) {
2609                 if (error = spa_load_verify(spa))
2610                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2611                             error));
2612         }
2613 
2614         if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2615             spa->spa_load_max_txg == UINT64_MAX)) {
2616                 dmu_tx_t *tx;
2617                 int need_update = B_FALSE;
2618 
2619                 ASSERT(state != SPA_LOAD_TRYIMPORT);
2620 
2621                 /*
2622                  * Claim log blocks that haven't been committed yet.
2623                  * This must all happen in a single txg.
2624                  * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2625                  * invoked from zil_claim_log_block()'s i/o done callback.
2626                  * Price of rollback is that we abandon the log.
2627                  */
2628                 spa->spa_claiming = B_TRUE;
2629 
2630                 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2631                     spa_first_txg(spa));
2632                 (void) dmu_objset_find(spa_name(spa),
2633                     zil_claim, tx, DS_FIND_CHILDREN);
2634                 dmu_tx_commit(tx);
2635 
2636                 spa->spa_claiming = B_FALSE;
2637 
2638                 spa_set_log_state(spa, SPA_LOG_GOOD);
2639                 spa->spa_sync_on = B_TRUE;
2640                 txg_sync_start(spa->spa_dsl_pool);
2641 
2642                 /*
2643                  * Wait for all claims to sync.  We sync up to the highest
2644                  * claimed log block birth time so that claimed log blocks
2645                  * don't appear to be from the future.  spa_claim_max_txg
2646                  * will have been set for us by either zil_check_log_chain()
2647                  * (invoked from spa_check_logs()) or zil_claim() above.
2648                  */
2649                 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2650 
2651                 /*
2652                  * If the config cache is stale, or we have uninitialized
2653                  * metaslabs (see spa_vdev_add()), then update the config.
2654                  *
2655                  * If this is a verbatim import, trust the current
2656                  * in-core spa_config and update the disk labels.
2657                  */
2658                 if (config_cache_txg != spa->spa_config_txg ||
2659                     state == SPA_LOAD_IMPORT ||
2660                     state == SPA_LOAD_RECOVER ||
2661                     (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2662                         need_update = B_TRUE;
2663 
2664                 for (int c = 0; c < rvd->vdev_children; c++)
2665                         if (rvd->vdev_child[c]->vdev_ms_array == 0)
2666                                 need_update = B_TRUE;
2667 
2668                 /*
2669                  * Update the config cache asychronously in case we're the
2670                  * root pool, in which case the config cache isn't writable yet.
2671                  */
2672                 if (need_update)
2673                         spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2674 
2675                 /*
2676                  * Check all DTLs to see if anything needs resilvering.
2677                  */
2678                 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2679                     vdev_resilver_needed(rvd, NULL, NULL))
2680                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2681 
2682                 /*
2683                  * Log the fact that we booted up (so that we can detect if
2684                  * we rebooted in the middle of an operation).
2685                  */
2686                 spa_history_log_version(spa, "open");
2687 
2688                 /*
2689                  * Delete any inconsistent datasets.
2690                  */
2691                 (void) dmu_objset_find(spa_name(spa),
2692                     dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2693 
2694                 /*
2695                  * Clean up any stale temporary dataset userrefs.
2696                  */
2697                 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2698         }
2699 
2700         return (0);
2701 }
2702 
2703 static int
2704 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2705 {
2706         int mode = spa->spa_mode;
2707 
2708         spa_unload(spa);
2709         spa_deactivate(spa);
2710 
2711         spa->spa_load_max_txg--;
2712 
2713         spa_activate(spa, mode);
2714         spa_async_suspend(spa);
2715 
2716         return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2717 }
2718 
2719 /*
2720  * If spa_load() fails this function will try loading prior txg's. If
2721  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2722  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2723  * function will not rewind the pool and will return the same error as
2724  * spa_load().
2725  */
2726 static int
2727 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2728     uint64_t max_request, int rewind_flags)
2729 {
2730         nvlist_t *loadinfo = NULL;
2731         nvlist_t *config = NULL;
2732         int load_error, rewind_error;
2733         uint64_t safe_rewind_txg;
2734         uint64_t min_txg;
2735 
2736         if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2737                 spa->spa_load_max_txg = spa->spa_load_txg;
2738                 spa_set_log_state(spa, SPA_LOG_CLEAR);
2739         } else {
2740                 spa->spa_load_max_txg = max_request;
2741         }
2742 
2743         load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2744             mosconfig);
2745         if (load_error == 0)
2746                 return (0);
2747 
2748         if (spa->spa_root_vdev != NULL)
2749                 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2750 
2751         spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2752         spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2753 
2754         if (rewind_flags & ZPOOL_NEVER_REWIND) {
2755                 nvlist_free(config);
2756                 return (load_error);
2757         }
2758 
2759         if (state == SPA_LOAD_RECOVER) {
2760                 /* Price of rolling back is discarding txgs, including log */
2761                 spa_set_log_state(spa, SPA_LOG_CLEAR);
2762         } else {
2763                 /*
2764                  * If we aren't rolling back save the load info from our first
2765                  * import attempt so that we can restore it after attempting
2766                  * to rewind.
2767                  */
2768                 loadinfo = spa->spa_load_info;
2769                 spa->spa_load_info = fnvlist_alloc();
2770         }
2771 
2772         spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2773         safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2774         min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2775             TXG_INITIAL : safe_rewind_txg;
2776 
2777         /*
2778          * Continue as long as we're finding errors, we're still within
2779          * the acceptable rewind range, and we're still finding uberblocks
2780          */
2781         while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2782             spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2783                 if (spa->spa_load_max_txg < safe_rewind_txg)
2784                         spa->spa_extreme_rewind = B_TRUE;
2785                 rewind_error = spa_load_retry(spa, state, mosconfig);
2786         }
2787 
2788         spa->spa_extreme_rewind = B_FALSE;
2789         spa->spa_load_max_txg = UINT64_MAX;
2790 
2791         if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2792                 spa_config_set(spa, config);
2793 
2794         if (state == SPA_LOAD_RECOVER) {
2795                 ASSERT3P(loadinfo, ==, NULL);
2796                 return (rewind_error);
2797         } else {
2798                 /* Store the rewind info as part of the initial load info */
2799                 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2800                     spa->spa_load_info);
2801 
2802                 /* Restore the initial load info */
2803                 fnvlist_free(spa->spa_load_info);
2804                 spa->spa_load_info = loadinfo;
2805 
2806                 return (load_error);
2807         }
2808 }
2809 
2810 /*
2811  * Pool Open/Import
2812  *
2813  * The import case is identical to an open except that the configuration is sent
2814  * down from userland, instead of grabbed from the configuration cache.  For the
2815  * case of an open, the pool configuration will exist in the
2816  * POOL_STATE_UNINITIALIZED state.
2817  *
2818  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2819  * the same time open the pool, without having to keep around the spa_t in some
2820  * ambiguous state.
2821  */
2822 static int
2823 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2824     nvlist_t **config)
2825 {
2826         spa_t *spa;
2827         spa_load_state_t state = SPA_LOAD_OPEN;
2828         int error;
2829         int locked = B_FALSE;
2830 
2831         *spapp = NULL;
2832 
2833         /*
2834          * As disgusting as this is, we need to support recursive calls to this
2835          * function because dsl_dir_open() is called during spa_load(), and ends
2836          * up calling spa_open() again.  The real fix is to figure out how to
2837          * avoid dsl_dir_open() calling this in the first place.
2838          */
2839         if (mutex_owner(&spa_namespace_lock) != curthread) {
2840                 mutex_enter(&spa_namespace_lock);
2841                 locked = B_TRUE;
2842         }
2843 
2844         if ((spa = spa_lookup(pool)) == NULL) {
2845                 if (locked)
2846                         mutex_exit(&spa_namespace_lock);
2847                 return (SET_ERROR(ENOENT));
2848         }
2849 
2850         if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2851                 zpool_rewind_policy_t policy;
2852 
2853                 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2854                     &policy);
2855                 if (policy.zrp_request & ZPOOL_DO_REWIND)
2856                         state = SPA_LOAD_RECOVER;
2857 
2858                 spa_activate(spa, spa_mode_global);
2859 
2860                 if (state != SPA_LOAD_RECOVER)
2861                         spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2862 
2863                 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2864                     policy.zrp_request);
2865 
2866                 if (error == EBADF) {
2867                         /*
2868                          * If vdev_validate() returns failure (indicated by
2869                          * EBADF), it indicates that one of the vdevs indicates
2870                          * that the pool has been exported or destroyed.  If
2871                          * this is the case, the config cache is out of sync and
2872                          * we should remove the pool from the namespace.
2873                          */
2874                         spa_unload(spa);
2875                         spa_deactivate(spa);
2876                         spa_config_sync(spa, B_TRUE, B_TRUE);
2877                         spa_remove(spa);
2878                         if (locked)
2879                                 mutex_exit(&spa_namespace_lock);
2880                         return (SET_ERROR(ENOENT));
2881                 }
2882 
2883                 if (error) {
2884                         /*
2885                          * We can't open the pool, but we still have useful
2886                          * information: the state of each vdev after the
2887                          * attempted vdev_open().  Return this to the user.
2888                          */
2889                         if (config != NULL && spa->spa_config) {
2890                                 VERIFY(nvlist_dup(spa->spa_config, config,
2891                                     KM_SLEEP) == 0);
2892                                 VERIFY(nvlist_add_nvlist(*config,
2893                                     ZPOOL_CONFIG_LOAD_INFO,
2894                                     spa->spa_load_info) == 0);
2895                         }
2896                         spa_unload(spa);
2897                         spa_deactivate(spa);
2898                         spa->spa_last_open_failed = error;
2899                         if (locked)
2900                                 mutex_exit(&spa_namespace_lock);
2901                         *spapp = NULL;
2902                         return (error);
2903                 }
2904         }
2905 
2906         spa_open_ref(spa, tag);
2907 
2908         if (config != NULL)
2909                 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2910 
2911         /*
2912          * If we've recovered the pool, pass back any information we
2913          * gathered while doing the load.
2914          */
2915         if (state == SPA_LOAD_RECOVER) {
2916                 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2917                     spa->spa_load_info) == 0);
2918         }
2919 
2920         if (locked) {
2921                 spa->spa_last_open_failed = 0;
2922                 spa->spa_last_ubsync_txg = 0;
2923                 spa->spa_load_txg = 0;
2924                 mutex_exit(&spa_namespace_lock);
2925         }
2926 
2927         *spapp = spa;
2928 
2929         return (0);
2930 }
2931 
2932 int
2933 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2934     nvlist_t **config)
2935 {
2936         return (spa_open_common(name, spapp, tag, policy, config));
2937 }
2938 
2939 int
2940 spa_open(const char *name, spa_t **spapp, void *tag)
2941 {
2942         return (spa_open_common(name, spapp, tag, NULL, NULL));
2943 }
2944 
2945 /*
2946  * Lookup the given spa_t, incrementing the inject count in the process,
2947  * preventing it from being exported or destroyed.
2948  */
2949 spa_t *
2950 spa_inject_addref(char *name)
2951 {
2952         spa_t *spa;
2953 
2954         mutex_enter(&spa_namespace_lock);
2955         if ((spa = spa_lookup(name)) == NULL) {
2956                 mutex_exit(&spa_namespace_lock);
2957                 return (NULL);
2958         }
2959         spa->spa_inject_ref++;
2960         mutex_exit(&spa_namespace_lock);
2961 
2962         return (spa);
2963 }
2964 
2965 void
2966 spa_inject_delref(spa_t *spa)
2967 {
2968         mutex_enter(&spa_namespace_lock);
2969         spa->spa_inject_ref--;
2970         mutex_exit(&spa_namespace_lock);
2971 }
2972 
2973 /*
2974  * Add spares device information to the nvlist.
2975  */
2976 static void
2977 spa_add_spares(spa_t *spa, nvlist_t *config)
2978 {
2979         nvlist_t **spares;
2980         uint_t i, nspares;
2981         nvlist_t *nvroot;
2982         uint64_t guid;
2983         vdev_stat_t *vs;
2984         uint_t vsc;
2985         uint64_t pool;
2986 
2987         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2988 
2989         if (spa->spa_spares.sav_count == 0)
2990                 return;
2991 
2992         VERIFY(nvlist_lookup_nvlist(config,
2993             ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2994         VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2995             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2996         if (nspares != 0) {
2997                 VERIFY(nvlist_add_nvlist_array(nvroot,
2998                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2999                 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3000                     ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3001 
3002                 /*
3003                  * Go through and find any spares which have since been
3004                  * repurposed as an active spare.  If this is the case, update
3005                  * their status appropriately.
3006                  */
3007                 for (i = 0; i < nspares; i++) {
3008                         VERIFY(nvlist_lookup_uint64(spares[i],
3009                             ZPOOL_CONFIG_GUID, &guid) == 0);
3010                         if (spa_spare_exists(guid, &pool, NULL) &&
3011                             pool != 0ULL) {
3012                                 VERIFY(nvlist_lookup_uint64_array(
3013                                     spares[i], ZPOOL_CONFIG_VDEV_STATS,
3014                                     (uint64_t **)&vs, &vsc) == 0);
3015                                 vs->vs_state = VDEV_STATE_CANT_OPEN;
3016                                 vs->vs_aux = VDEV_AUX_SPARED;
3017                         }
3018                 }
3019         }
3020 }
3021 
3022 /*
3023  * Add l2cache device information to the nvlist, including vdev stats.
3024  */
3025 static void
3026 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3027 {
3028         nvlist_t **l2cache;
3029         uint_t i, j, nl2cache;
3030         nvlist_t *nvroot;
3031         uint64_t guid;
3032         vdev_t *vd;
3033         vdev_stat_t *vs;
3034         uint_t vsc;
3035 
3036         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3037 
3038         if (spa->spa_l2cache.sav_count == 0)
3039                 return;
3040 
3041         VERIFY(nvlist_lookup_nvlist(config,
3042             ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3043         VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3044             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3045         if (nl2cache != 0) {
3046                 VERIFY(nvlist_add_nvlist_array(nvroot,
3047                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3048                 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3049                     ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3050 
3051                 /*
3052                  * Update level 2 cache device stats.
3053                  */
3054 
3055                 for (i = 0; i < nl2cache; i++) {
3056                         VERIFY(nvlist_lookup_uint64(l2cache[i],
3057                             ZPOOL_CONFIG_GUID, &guid) == 0);
3058 
3059                         vd = NULL;
3060                         for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3061                                 if (guid ==
3062                                     spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3063                                         vd = spa->spa_l2cache.sav_vdevs[j];
3064                                         break;
3065                                 }
3066                         }
3067                         ASSERT(vd != NULL);
3068 
3069                         VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3070                             ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3071                             == 0);
3072                         vdev_get_stats(vd, vs);
3073                 }
3074         }
3075 }
3076 
3077 static void
3078 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3079 {
3080         nvlist_t *features;
3081         zap_cursor_t zc;
3082         zap_attribute_t za;
3083 
3084         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3085         VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3086 
3087         if (spa->spa_feat_for_read_obj != 0) {
3088                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3089                     spa->spa_feat_for_read_obj);
3090                     zap_cursor_retrieve(&zc, &za) == 0;
3091                     zap_cursor_advance(&zc)) {
3092                         ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3093                             za.za_num_integers == 1);
3094                         VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3095                             za.za_first_integer));
3096                 }
3097                 zap_cursor_fini(&zc);
3098         }
3099 
3100         if (spa->spa_feat_for_write_obj != 0) {
3101                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3102                     spa->spa_feat_for_write_obj);
3103                     zap_cursor_retrieve(&zc, &za) == 0;
3104                     zap_cursor_advance(&zc)) {
3105                         ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3106                             za.za_num_integers == 1);
3107                         VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3108                             za.za_first_integer));
3109                 }
3110                 zap_cursor_fini(&zc);
3111         }
3112 
3113         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3114             features) == 0);
3115         nvlist_free(features);
3116 }
3117 
3118 int
3119 spa_get_stats(const char *name, nvlist_t **config,
3120     char *altroot, size_t buflen)
3121 {
3122         int error;
3123         spa_t *spa;
3124 
3125         *config = NULL;
3126         error = spa_open_common(name, &spa, FTAG, NULL, config);
3127 
3128         if (spa != NULL) {
3129                 /*
3130                  * This still leaves a window of inconsistency where the spares
3131                  * or l2cache devices could change and the config would be
3132                  * self-inconsistent.
3133                  */
3134                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3135 
3136                 if (*config != NULL) {
3137                         uint64_t loadtimes[2];
3138 
3139                         loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3140                         loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3141                         VERIFY(nvlist_add_uint64_array(*config,
3142                             ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3143 
3144                         VERIFY(nvlist_add_uint64(*config,
3145                             ZPOOL_CONFIG_ERRCOUNT,
3146                             spa_get_errlog_size(spa)) == 0);
3147 
3148                         if (spa_suspended(spa))
3149                                 VERIFY(nvlist_add_uint64(*config,
3150                                     ZPOOL_CONFIG_SUSPENDED,
3151                                     spa->spa_failmode) == 0);
3152 
3153                         spa_add_spares(spa, *config);
3154                         spa_add_l2cache(spa, *config);
3155                         spa_add_feature_stats(spa, *config);
3156                 }
3157         }
3158 
3159         /*
3160          * We want to get the alternate root even for faulted pools, so we cheat
3161          * and call spa_lookup() directly.
3162          */
3163         if (altroot) {
3164                 if (spa == NULL) {
3165                         mutex_enter(&spa_namespace_lock);
3166                         spa = spa_lookup(name);
3167                         if (spa)
3168                                 spa_altroot(spa, altroot, buflen);
3169                         else
3170                                 altroot[0] = '\0';
3171                         spa = NULL;
3172                         mutex_exit(&spa_namespace_lock);
3173                 } else {
3174                         spa_altroot(spa, altroot, buflen);
3175                 }
3176         }
3177 
3178         if (spa != NULL) {
3179                 spa_config_exit(spa, SCL_CONFIG, FTAG);
3180                 spa_close(spa, FTAG);
3181         }
3182 
3183         return (error);
3184 }
3185 
3186 /*
3187  * Validate that the auxiliary device array is well formed.  We must have an
3188  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3189  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3190  * specified, as long as they are well-formed.
3191  */
3192 static int
3193 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3194     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3195     vdev_labeltype_t label)
3196 {
3197         nvlist_t **dev;
3198         uint_t i, ndev;
3199         vdev_t *vd;
3200         int error;
3201 
3202         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3203 
3204         /*
3205          * It's acceptable to have no devs specified.
3206          */
3207         if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3208                 return (0);
3209 
3210         if (ndev == 0)
3211                 return (SET_ERROR(EINVAL));
3212 
3213         /*
3214          * Make sure the pool is formatted with a version that supports this
3215          * device type.
3216          */
3217         if (spa_version(spa) < version)
3218                 return (SET_ERROR(ENOTSUP));
3219 
3220         /*
3221          * Set the pending device list so we correctly handle device in-use
3222          * checking.
3223          */
3224         sav->sav_pending = dev;
3225         sav->sav_npending = ndev;
3226 
3227         for (i = 0; i < ndev; i++) {
3228                 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3229                     mode)) != 0)
3230                         goto out;
3231 
3232                 if (!vd->vdev_ops->vdev_op_leaf) {
3233                         vdev_free(vd);
3234                         error = SET_ERROR(EINVAL);
3235                         goto out;
3236                 }
3237 
3238                 /*
3239                  * The L2ARC currently only supports disk devices in
3240                  * kernel context.  For user-level testing, we allow it.
3241                  */
3242 #ifdef _KERNEL
3243                 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3244                     strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3245                         error = SET_ERROR(ENOTBLK);
3246                         vdev_free(vd);
3247                         goto out;
3248                 }
3249 #endif
3250                 vd->vdev_top = vd;
3251 
3252                 if ((error = vdev_open(vd)) == 0 &&
3253                     (error = vdev_label_init(vd, crtxg, label)) == 0) {
3254                         VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3255                             vd->vdev_guid) == 0);
3256                 }
3257 
3258                 vdev_free(vd);
3259 
3260                 if (error &&
3261                     (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3262                         goto out;
3263                 else
3264                         error = 0;
3265         }
3266 
3267 out:
3268         sav->sav_pending = NULL;
3269         sav->sav_npending = 0;
3270         return (error);
3271 }
3272 
3273 static int
3274 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3275 {
3276         int error;
3277 
3278         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3279 
3280         if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3281             &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3282             VDEV_LABEL_SPARE)) != 0) {
3283                 return (error);
3284         }
3285 
3286         return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3287             &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3288             VDEV_LABEL_L2CACHE));
3289 }
3290 
3291 static void
3292 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3293     const char *config)
3294 {
3295         int i;
3296 
3297         if (sav->sav_config != NULL) {
3298                 nvlist_t **olddevs;
3299                 uint_t oldndevs;
3300                 nvlist_t **newdevs;
3301 
3302                 /*
3303                  * Generate new dev list by concatentating with the
3304                  * current dev list.
3305                  */
3306                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3307                     &olddevs, &oldndevs) == 0);
3308 
3309                 newdevs = kmem_alloc(sizeof (void *) *
3310                     (ndevs + oldndevs), KM_SLEEP);
3311                 for (i = 0; i < oldndevs; i++)
3312                         VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3313                             KM_SLEEP) == 0);
3314                 for (i = 0; i < ndevs; i++)
3315                         VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3316                             KM_SLEEP) == 0);
3317 
3318                 VERIFY(nvlist_remove(sav->sav_config, config,
3319                     DATA_TYPE_NVLIST_ARRAY) == 0);
3320 
3321                 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3322                     config, newdevs, ndevs + oldndevs) == 0);
3323                 for (i = 0; i < oldndevs + ndevs; i++)
3324                         nvlist_free(newdevs[i]);
3325                 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3326         } else {
3327                 /*
3328                  * Generate a new dev list.
3329                  */
3330                 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3331                     KM_SLEEP) == 0);
3332                 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3333                     devs, ndevs) == 0);
3334         }
3335 }
3336 
3337 /*
3338  * Stop and drop level 2 ARC devices
3339  */
3340 void
3341 spa_l2cache_drop(spa_t *spa)
3342 {
3343         vdev_t *vd;
3344         int i;
3345         spa_aux_vdev_t *sav = &spa->spa_l2cache;
3346 
3347         for (i = 0; i < sav->sav_count; i++) {
3348                 uint64_t pool;
3349 
3350                 vd = sav->sav_vdevs[i];
3351                 ASSERT(vd != NULL);
3352 
3353                 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3354                     pool != 0ULL && l2arc_vdev_present(vd))
3355                         l2arc_remove_vdev(vd);
3356         }
3357 }
3358 
3359 /*
3360  * Pool Creation
3361  */
3362 int
3363 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3364     nvlist_t *zplprops)
3365 {
3366         spa_t *spa;
3367         char *altroot = NULL;
3368         vdev_t *rvd;
3369         dsl_pool_t *dp;
3370         dmu_tx_t *tx;
3371         int error = 0;
3372         uint64_t txg = TXG_INITIAL;
3373         nvlist_t **spares, **l2cache;
3374         uint_t nspares, nl2cache;
3375         uint64_t version, obj;
3376         boolean_t has_features;
3377 
3378         /*
3379          * If this pool already exists, return failure.
3380          */
3381         mutex_enter(&spa_namespace_lock);
3382         if (spa_lookup(pool) != NULL) {
3383                 mutex_exit(&spa_namespace_lock);
3384                 return (SET_ERROR(EEXIST));
3385         }
3386 
3387         /*
3388          * Allocate a new spa_t structure.
3389          */
3390         (void) nvlist_lookup_string(props,
3391             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3392         spa = spa_add(pool, NULL, altroot);
3393         spa_activate(spa, spa_mode_global);
3394 
3395         if (props && (error = spa_prop_validate(spa, props))) {
3396                 spa_deactivate(spa);
3397                 spa_remove(spa);
3398                 mutex_exit(&spa_namespace_lock);
3399                 return (error);
3400         }
3401 
3402         has_features = B_FALSE;
3403         for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3404             elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3405                 if (zpool_prop_feature(nvpair_name(elem)))
3406                         has_features = B_TRUE;
3407         }
3408 
3409         if (has_features || nvlist_lookup_uint64(props,
3410             zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3411                 version = SPA_VERSION;
3412         }
3413         ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3414 
3415         spa->spa_first_txg = txg;
3416         spa->spa_uberblock.ub_txg = txg - 1;
3417         spa->spa_uberblock.ub_version = version;
3418         spa->spa_ubsync = spa->spa_uberblock;
3419 
3420         /*
3421          * Create "The Godfather" zio to hold all async IOs
3422          */
3423         spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3424             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3425 
3426         /*
3427          * Create the root vdev.
3428          */
3429         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3430 
3431         error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3432 
3433         ASSERT(error != 0 || rvd != NULL);
3434         ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3435 
3436         if (error == 0 && !zfs_allocatable_devs(nvroot))
3437                 error = SET_ERROR(EINVAL);
3438 
3439         if (error == 0 &&
3440             (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3441             (error = spa_validate_aux(spa, nvroot, txg,
3442             VDEV_ALLOC_ADD)) == 0) {
3443                 for (int c = 0; c < rvd->vdev_children; c++) {
3444                         vdev_metaslab_set_size(rvd->vdev_child[c]);
3445                         vdev_expand(rvd->vdev_child[c], txg);
3446                 }
3447         }
3448 
3449         spa_config_exit(spa, SCL_ALL, FTAG);
3450 
3451         if (error != 0) {
3452                 spa_unload(spa);
3453                 spa_deactivate(spa);
3454                 spa_remove(spa);
3455                 mutex_exit(&spa_namespace_lock);
3456                 return (error);
3457         }
3458 
3459         /*
3460          * Get the list of spares, if specified.
3461          */
3462         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3463             &spares, &nspares) == 0) {
3464                 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3465                     KM_SLEEP) == 0);
3466                 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3467                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3468                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3469                 spa_load_spares(spa);
3470                 spa_config_exit(spa, SCL_ALL, FTAG);
3471                 spa->spa_spares.sav_sync = B_TRUE;
3472         }
3473 
3474         /*
3475          * Get the list of level 2 cache devices, if specified.
3476          */
3477         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3478             &l2cache, &nl2cache) == 0) {
3479                 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3480                     NV_UNIQUE_NAME, KM_SLEEP) == 0);
3481                 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3482                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3483                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3484                 spa_load_l2cache(spa);
3485                 spa_config_exit(spa, SCL_ALL, FTAG);
3486                 spa->spa_l2cache.sav_sync = B_TRUE;
3487         }
3488 
3489         spa->spa_is_initializing = B_TRUE;
3490         spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3491         spa->spa_meta_objset = dp->dp_meta_objset;
3492         spa->spa_is_initializing = B_FALSE;
3493 
3494         /*
3495          * Create DDTs (dedup tables).
3496          */
3497         ddt_create(spa);
3498 
3499         spa_update_dspace(spa);
3500 
3501         tx = dmu_tx_create_assigned(dp, txg);
3502 
3503         /*
3504          * Create the pool config object.
3505          */
3506         spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3507             DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3508             DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3509 
3510         if (zap_add(spa->spa_meta_objset,
3511             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3512             sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3513                 cmn_err(CE_PANIC, "failed to add pool config");
3514         }
3515 
3516         if (spa_version(spa) >= SPA_VERSION_FEATURES)
3517                 spa_feature_create_zap_objects(spa, tx);
3518 
3519         if (zap_add(spa->spa_meta_objset,
3520             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3521             sizeof (uint64_t), 1, &version, tx) != 0) {
3522                 cmn_err(CE_PANIC, "failed to add pool version");
3523         }
3524 
3525         /* Newly created pools with the right version are always deflated. */
3526         if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3527                 spa->spa_deflate = TRUE;
3528                 if (zap_add(spa->spa_meta_objset,
3529                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3530                     sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3531                         cmn_err(CE_PANIC, "failed to add deflate");
3532                 }
3533         }
3534 
3535         /*
3536          * Create the deferred-free bpobj.  Turn off compression
3537          * because sync-to-convergence takes longer if the blocksize
3538          * keeps changing.
3539          */
3540         obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3541         dmu_object_set_compress(spa->spa_meta_objset, obj,
3542             ZIO_COMPRESS_OFF, tx);
3543         if (zap_add(spa->spa_meta_objset,
3544             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3545             sizeof (uint64_t), 1, &obj, tx) != 0) {
3546                 cmn_err(CE_PANIC, "failed to add bpobj");
3547         }
3548         VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3549             spa->spa_meta_objset, obj));
3550 
3551         /*
3552          * Create the pool's history object.
3553          */
3554         if (version >= SPA_VERSION_ZPOOL_HISTORY)
3555                 spa_history_create_obj(spa, tx);
3556 
3557         /*
3558          * Set pool properties.
3559          */
3560         spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3561         spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3562         spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3563         spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3564 
3565         if (props != NULL) {
3566                 spa_configfile_set(spa, props, B_FALSE);
3567                 spa_sync_props(props, tx);
3568         }
3569 
3570         dmu_tx_commit(tx);
3571 
3572         spa->spa_sync_on = B_TRUE;
3573         txg_sync_start(spa->spa_dsl_pool);
3574 
3575         /*
3576          * We explicitly wait for the first transaction to complete so that our
3577          * bean counters are appropriately updated.
3578          */
3579         txg_wait_synced(spa->spa_dsl_pool, txg);
3580 
3581         spa_config_sync(spa, B_FALSE, B_TRUE);
3582 
3583         spa_history_log_version(spa, "create");
3584 
3585         spa->spa_minref = refcount_count(&spa->spa_refcount);
3586 
3587         mutex_exit(&spa_namespace_lock);
3588 
3589         return (0);
3590 }
3591 
3592 #ifdef _KERNEL
3593 /*
3594  * Get the root pool information from the root disk, then import the root pool
3595  * during the system boot up time.
3596  */
3597 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3598 
3599 static nvlist_t *
3600 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3601 {
3602         nvlist_t *config;
3603         nvlist_t *nvtop, *nvroot;
3604         uint64_t pgid;
3605 
3606         if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3607                 return (NULL);
3608 
3609         /*
3610          * Add this top-level vdev to the child array.
3611          */
3612         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3613             &nvtop) == 0);
3614         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3615             &pgid) == 0);
3616         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3617 
3618         /*
3619          * Put this pool's top-level vdevs into a root vdev.
3620          */
3621         VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3622         VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3623             VDEV_TYPE_ROOT) == 0);
3624         VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3625         VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3626         VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3627             &nvtop, 1) == 0);
3628 
3629         /*
3630          * Replace the existing vdev_tree with the new root vdev in
3631          * this pool's configuration (remove the old, add the new).
3632          */
3633         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3634         nvlist_free(nvroot);
3635         return (config);
3636 }
3637 
3638 /*
3639  * Walk the vdev tree and see if we can find a device with "better"
3640  * configuration. A configuration is "better" if the label on that
3641  * device has a more recent txg.
3642  */
3643 static void
3644 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3645 {
3646         for (int c = 0; c < vd->vdev_children; c++)
3647                 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3648 
3649         if (vd->vdev_ops->vdev_op_leaf) {
3650                 nvlist_t *label;
3651                 uint64_t label_txg;
3652 
3653                 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3654                     &label) != 0)
3655                         return;
3656 
3657                 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3658                     &label_txg) == 0);
3659 
3660                 /*
3661                  * Do we have a better boot device?
3662                  */
3663                 if (label_txg > *txg) {
3664                         *txg = label_txg;
3665                         *avd = vd;
3666                 }
3667                 nvlist_free(label);
3668         }
3669 }
3670 
3671 /*
3672  * Import a root pool.
3673  *
3674  * For x86. devpath_list will consist of devid and/or physpath name of
3675  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3676  * The GRUB "findroot" command will return the vdev we should boot.
3677  *
3678  * For Sparc, devpath_list consists the physpath name of the booting device
3679  * no matter the rootpool is a single device pool or a mirrored pool.
3680  * e.g.
3681  *      "/pci@1f,0/ide@d/disk@0,0:a"
3682  */
3683 int
3684 spa_import_rootpool(char *devpath, char *devid)
3685 {
3686         spa_t *spa;
3687         vdev_t *rvd, *bvd, *avd = NULL;
3688         nvlist_t *config, *nvtop;
3689         uint64_t guid, txg;
3690         char *pname;
3691         int error;
3692 
3693         /*
3694          * Read the label from the boot device and generate a configuration.
3695          */
3696         config = spa_generate_rootconf(devpath, devid, &guid);
3697 #if defined(_OBP) && defined(_KERNEL)
3698         if (config == NULL) {
3699                 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3700                         /* iscsi boot */
3701                         get_iscsi_bootpath_phy(devpath);
3702                         config = spa_generate_rootconf(devpath, devid, &guid);
3703                 }
3704         }
3705 #endif
3706         if (config == NULL) {
3707                 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3708                     devpath);
3709                 return (SET_ERROR(EIO));
3710         }
3711 
3712         VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3713             &pname) == 0);
3714         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3715 
3716         mutex_enter(&spa_namespace_lock);
3717         if ((spa = spa_lookup(pname)) != NULL) {
3718                 /*
3719                  * Remove the existing root pool from the namespace so that we
3720                  * can replace it with the correct config we just read in.
3721                  */
3722                 spa_remove(spa);
3723         }
3724 
3725         spa = spa_add(pname, config, NULL);
3726         spa->spa_is_root = B_TRUE;
3727         spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3728 
3729         /*
3730          * Build up a vdev tree based on the boot device's label config.
3731          */
3732         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3733             &nvtop) == 0);
3734         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3735         error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3736             VDEV_ALLOC_ROOTPOOL);
3737         spa_config_exit(spa, SCL_ALL, FTAG);
3738         if (error) {
3739                 mutex_exit(&spa_namespace_lock);
3740                 nvlist_free(config);
3741                 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3742                     pname);
3743                 return (error);
3744         }
3745 
3746         /*
3747          * Get the boot vdev.
3748          */
3749         if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3750                 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3751                     (u_longlong_t)guid);
3752                 error = SET_ERROR(ENOENT);
3753                 goto out;
3754         }
3755 
3756         /*
3757          * Determine if there is a better boot device.
3758          */
3759         avd = bvd;
3760         spa_alt_rootvdev(rvd, &avd, &txg);
3761         if (avd != bvd) {
3762                 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3763                     "try booting from '%s'", avd->vdev_path);
3764                 error = SET_ERROR(EINVAL);
3765                 goto out;
3766         }
3767 
3768         /*
3769          * If the boot device is part of a spare vdev then ensure that
3770          * we're booting off the active spare.
3771          */
3772         if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3773             !bvd->vdev_isspare) {
3774                 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3775                     "try booting from '%s'",
3776                     bvd->vdev_parent->
3777                     vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3778                 error = SET_ERROR(EINVAL);
3779                 goto out;
3780         }
3781 
3782         error = 0;
3783 out:
3784         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3785         vdev_free(rvd);
3786         spa_config_exit(spa, SCL_ALL, FTAG);
3787         mutex_exit(&spa_namespace_lock);
3788 
3789         nvlist_free(config);
3790         return (error);
3791 }
3792 
3793 #endif
3794 
3795 /*
3796  * Import a non-root pool into the system.
3797  */
3798 int
3799 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3800 {
3801         spa_t *spa;
3802         char *altroot = NULL;
3803         spa_load_state_t state = SPA_LOAD_IMPORT;
3804         zpool_rewind_policy_t policy;
3805         uint64_t mode = spa_mode_global;
3806         uint64_t readonly = B_FALSE;
3807         int error;
3808         nvlist_t *nvroot;
3809         nvlist_t **spares, **l2cache;
3810         uint_t nspares, nl2cache;
3811 
3812         /*
3813          * If a pool with this name exists, return failure.
3814          */
3815         mutex_enter(&spa_namespace_lock);
3816         if (spa_lookup(pool) != NULL) {
3817                 mutex_exit(&spa_namespace_lock);
3818                 return (SET_ERROR(EEXIST));
3819         }
3820 
3821         /*
3822          * Create and initialize the spa structure.
3823          */
3824         (void) nvlist_lookup_string(props,
3825             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3826         (void) nvlist_lookup_uint64(props,
3827             zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3828         if (readonly)
3829                 mode = FREAD;
3830         spa = spa_add(pool, config, altroot);
3831         spa->spa_import_flags = flags;
3832 
3833         /*
3834          * Verbatim import - Take a pool and insert it into the namespace
3835          * as if it had been loaded at boot.
3836          */
3837         if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3838                 if (props != NULL)
3839                         spa_configfile_set(spa, props, B_FALSE);
3840 
3841                 spa_config_sync(spa, B_FALSE, B_TRUE);
3842 
3843                 mutex_exit(&spa_namespace_lock);
3844                 spa_history_log_version(spa, "import");
3845 
3846                 return (0);
3847         }
3848 
3849         spa_activate(spa, mode);
3850 
3851         /*
3852          * Don't start async tasks until we know everything is healthy.
3853          */
3854         spa_async_suspend(spa);
3855 
3856         zpool_get_rewind_policy(config, &policy);
3857         if (policy.zrp_request & ZPOOL_DO_REWIND)
3858                 state = SPA_LOAD_RECOVER;
3859 
3860         /*
3861          * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3862          * because the user-supplied config is actually the one to trust when
3863          * doing an import.
3864          */
3865         if (state != SPA_LOAD_RECOVER)
3866                 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3867 
3868         error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3869             policy.zrp_request);
3870 
3871         /*
3872          * Propagate anything learned while loading the pool and pass it
3873          * back to caller (i.e. rewind info, missing devices, etc).
3874          */
3875         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3876             spa->spa_load_info) == 0);
3877 
3878         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3879         /*
3880          * Toss any existing sparelist, as it doesn't have any validity
3881          * anymore, and conflicts with spa_has_spare().
3882          */
3883         if (spa->spa_spares.sav_config) {
3884                 nvlist_free(spa->spa_spares.sav_config);
3885                 spa->spa_spares.sav_config = NULL;
3886                 spa_load_spares(spa);
3887         }
3888         if (spa->spa_l2cache.sav_config) {
3889                 nvlist_free(spa->spa_l2cache.sav_config);
3890                 spa->spa_l2cache.sav_config = NULL;
3891                 spa_load_l2cache(spa);
3892         }
3893 
3894         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3895             &nvroot) == 0);
3896         if (error == 0)
3897                 error = spa_validate_aux(spa, nvroot, -1ULL,
3898                     VDEV_ALLOC_SPARE);
3899         if (error == 0)
3900                 error = spa_validate_aux(spa, nvroot, -1ULL,
3901                     VDEV_ALLOC_L2CACHE);
3902         spa_config_exit(spa, SCL_ALL, FTAG);
3903 
3904         if (props != NULL)
3905                 spa_configfile_set(spa, props, B_FALSE);
3906 
3907         if (error != 0 || (props && spa_writeable(spa) &&
3908             (error = spa_prop_set(spa, props)))) {
3909                 spa_unload(spa);
3910                 spa_deactivate(spa);
3911                 spa_remove(spa);
3912                 mutex_exit(&spa_namespace_lock);
3913                 return (error);
3914         }
3915 
3916         spa_async_resume(spa);
3917 
3918         /*
3919          * Override any spares and level 2 cache devices as specified by
3920          * the user, as these may have correct device names/devids, etc.
3921          */
3922         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3923             &spares, &nspares) == 0) {
3924                 if (spa->spa_spares.sav_config)
3925                         VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3926                             ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3927                 else
3928                         VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3929                             NV_UNIQUE_NAME, KM_SLEEP) == 0);
3930                 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3931                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3932                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3933                 spa_load_spares(spa);
3934                 spa_config_exit(spa, SCL_ALL, FTAG);
3935                 spa->spa_spares.sav_sync = B_TRUE;
3936         }
3937         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3938             &l2cache, &nl2cache) == 0) {
3939                 if (spa->spa_l2cache.sav_config)
3940                         VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3941                             ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3942                 else
3943                         VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3944                             NV_UNIQUE_NAME, KM_SLEEP) == 0);
3945                 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3946                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3947                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3948                 spa_load_l2cache(spa);
3949                 spa_config_exit(spa, SCL_ALL, FTAG);
3950                 spa->spa_l2cache.sav_sync = B_TRUE;
3951         }
3952 
3953         /*
3954          * Check for any removed devices.
3955          */
3956         if (spa->spa_autoreplace) {
3957                 spa_aux_check_removed(&spa->spa_spares);
3958                 spa_aux_check_removed(&spa->spa_l2cache);
3959         }
3960 
3961         if (spa_writeable(spa)) {
3962                 /*
3963                  * Update the config cache to include the newly-imported pool.
3964                  */
3965                 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3966         }
3967 
3968         /*
3969          * It's possible that the pool was expanded while it was exported.
3970          * We kick off an async task to handle this for us.
3971          */
3972         spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3973 
3974         mutex_exit(&spa_namespace_lock);
3975         spa_history_log_version(spa, "import");
3976 
3977         return (0);
3978 }
3979 
3980 nvlist_t *
3981 spa_tryimport(nvlist_t *tryconfig)
3982 {
3983         nvlist_t *config = NULL;
3984         char *poolname;
3985         spa_t *spa;
3986         uint64_t state;
3987         int error;
3988 
3989         if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3990                 return (NULL);
3991 
3992         if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3993                 return (NULL);
3994 
3995         /*
3996          * Create and initialize the spa structure.
3997          */
3998         mutex_enter(&spa_namespace_lock);
3999         spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4000         spa_activate(spa, FREAD);
4001 
4002         /*
4003          * Pass off the heavy lifting to spa_load().
4004          * Pass TRUE for mosconfig because the user-supplied config
4005          * is actually the one to trust when doing an import.
4006          */
4007         error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4008 
4009         /*
4010          * If 'tryconfig' was at least parsable, return the current config.
4011          */
4012         if (spa->spa_root_vdev != NULL) {
4013                 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4014                 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4015                     poolname) == 0);
4016                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4017                     state) == 0);
4018                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4019                     spa->spa_uberblock.ub_timestamp) == 0);
4020                 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4021                     spa->spa_load_info) == 0);
4022 
4023                 /*
4024                  * If the bootfs property exists on this pool then we
4025                  * copy it out so that external consumers can tell which
4026                  * pools are bootable.
4027                  */
4028                 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4029                         char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4030 
4031                         /*
4032                          * We have to play games with the name since the
4033                          * pool was opened as TRYIMPORT_NAME.
4034                          */
4035                         if (dsl_dsobj_to_dsname(spa_name(spa),
4036                             spa->spa_bootfs, tmpname) == 0) {
4037                                 char *cp;
4038                                 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4039 
4040                                 cp = strchr(tmpname, '/');
4041                                 if (cp == NULL) {
4042                                         (void) strlcpy(dsname, tmpname,
4043                                             MAXPATHLEN);
4044                                 } else {
4045                                         (void) snprintf(dsname, MAXPATHLEN,
4046                                             "%s/%s", poolname, ++cp);
4047                                 }
4048                                 VERIFY(nvlist_add_string(config,
4049                                     ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4050                                 kmem_free(dsname, MAXPATHLEN);
4051                         }
4052                         kmem_free(tmpname, MAXPATHLEN);
4053                 }
4054 
4055                 /*
4056                  * Add the list of hot spares and level 2 cache devices.
4057                  */
4058                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4059                 spa_add_spares(spa, config);
4060                 spa_add_l2cache(spa, config);
4061                 spa_config_exit(spa, SCL_CONFIG, FTAG);
4062         }
4063 
4064         spa_unload(spa);
4065         spa_deactivate(spa);
4066         spa_remove(spa);
4067         mutex_exit(&spa_namespace_lock);
4068 
4069         return (config);
4070 }
4071 
4072 /*
4073  * Pool export/destroy
4074  *
4075  * The act of destroying or exporting a pool is very simple.  We make sure there
4076  * is no more pending I/O and any references to the pool are gone.  Then, we
4077  * update the pool state and sync all the labels to disk, removing the
4078  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4079  * we don't sync the labels or remove the configuration cache.
4080  */
4081 static int
4082 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4083     boolean_t force, boolean_t hardforce)
4084 {
4085         spa_t *spa;
4086 
4087         if (oldconfig)
4088                 *oldconfig = NULL;
4089 
4090         if (!(spa_mode_global & FWRITE))
4091                 return (SET_ERROR(EROFS));
4092 
4093         mutex_enter(&spa_namespace_lock);
4094         if ((spa = spa_lookup(pool)) == NULL) {
4095                 mutex_exit(&spa_namespace_lock);
4096                 return (SET_ERROR(ENOENT));
4097         }
4098 
4099         /*
4100          * Put a hold on the pool, drop the namespace lock, stop async tasks,
4101          * reacquire the namespace lock, and see if we can export.
4102          */
4103         spa_open_ref(spa, FTAG);
4104         mutex_exit(&spa_namespace_lock);
4105         spa_async_suspend(spa);
4106         mutex_enter(&spa_namespace_lock);
4107         spa_close(spa, FTAG);
4108 
4109         /*
4110          * The pool will be in core if it's openable,
4111          * in which case we can modify its state.
4112          */
4113         if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4114                 /*
4115                  * Objsets may be open only because they're dirty, so we
4116                  * have to force it to sync before checking spa_refcnt.
4117                  */
4118                 txg_wait_synced(spa->spa_dsl_pool, 0);
4119 
4120                 /*
4121                  * A pool cannot be exported or destroyed if there are active
4122                  * references.  If we are resetting a pool, allow references by
4123                  * fault injection handlers.
4124                  */
4125                 if (!spa_refcount_zero(spa) ||
4126                     (spa->spa_inject_ref != 0 &&
4127                     new_state != POOL_STATE_UNINITIALIZED)) {
4128                         spa_async_resume(spa);
4129                         mutex_exit(&spa_namespace_lock);
4130                         return (SET_ERROR(EBUSY));
4131                 }
4132 
4133                 /*
4134                  * A pool cannot be exported if it has an active shared spare.
4135                  * This is to prevent other pools stealing the active spare
4136                  * from an exported pool. At user's own will, such pool can
4137                  * be forcedly exported.
4138                  */
4139                 if (!force && new_state == POOL_STATE_EXPORTED &&
4140                     spa_has_active_shared_spare(spa)) {
4141                         spa_async_resume(spa);
4142                         mutex_exit(&spa_namespace_lock);
4143                         return (SET_ERROR(EXDEV));
4144                 }
4145 
4146                 /*
4147                  * We want this to be reflected on every label,
4148                  * so mark them all dirty.  spa_unload() will do the
4149                  * final sync that pushes these changes out.
4150                  */
4151                 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4152                         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4153                         spa->spa_state = new_state;
4154                         spa->spa_final_txg = spa_last_synced_txg(spa) +
4155                             TXG_DEFER_SIZE + 1;
4156                         vdev_config_dirty(spa->spa_root_vdev);
4157                         spa_config_exit(spa, SCL_ALL, FTAG);
4158                 }
4159         }
4160 
4161         spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4162 
4163         if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4164                 spa_unload(spa);
4165                 spa_deactivate(spa);
4166         }
4167 
4168         if (oldconfig && spa->spa_config)
4169                 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4170 
4171         if (new_state != POOL_STATE_UNINITIALIZED) {
4172                 if (!hardforce)
4173                         spa_config_sync(spa, B_TRUE, B_TRUE);
4174                 spa_remove(spa);
4175         }
4176         mutex_exit(&spa_namespace_lock);
4177 
4178         return (0);
4179 }
4180 
4181 /*
4182  * Destroy a storage pool.
4183  */
4184 int
4185 spa_destroy(char *pool)
4186 {
4187         return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4188             B_FALSE, B_FALSE));
4189 }
4190 
4191 /*
4192  * Export a storage pool.
4193  */
4194 int
4195 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4196     boolean_t hardforce)
4197 {
4198         return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4199             force, hardforce));
4200 }
4201 
4202 /*
4203  * Similar to spa_export(), this unloads the spa_t without actually removing it
4204  * from the namespace in any way.
4205  */
4206 int
4207 spa_reset(char *pool)
4208 {
4209         return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4210             B_FALSE, B_FALSE));
4211 }
4212 
4213 /*
4214  * ==========================================================================
4215  * Device manipulation
4216  * ==========================================================================
4217  */
4218 
4219 /*
4220  * Add a device to a storage pool.
4221  */
4222 int
4223 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4224 {
4225         uint64_t txg, id;
4226         int error;
4227         vdev_t *rvd = spa->spa_root_vdev;
4228         vdev_t *vd, *tvd;
4229         nvlist_t **spares, **l2cache;
4230         uint_t nspares, nl2cache;
4231 
4232         ASSERT(spa_writeable(spa));
4233 
4234         txg = spa_vdev_enter(spa);
4235 
4236         if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4237             VDEV_ALLOC_ADD)) != 0)
4238                 return (spa_vdev_exit(spa, NULL, txg, error));
4239 
4240         spa->spa_pending_vdev = vd;  /* spa_vdev_exit() will clear this */
4241 
4242         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4243             &nspares) != 0)
4244                 nspares = 0;
4245 
4246         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4247             &nl2cache) != 0)
4248                 nl2cache = 0;
4249 
4250         if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4251                 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4252 
4253         if (vd->vdev_children != 0 &&
4254             (error = vdev_create(vd, txg, B_FALSE)) != 0)
4255                 return (spa_vdev_exit(spa, vd, txg, error));
4256 
4257         /*
4258          * We must validate the spares and l2cache devices after checking the
4259          * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4260          */
4261         if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4262                 return (spa_vdev_exit(spa, vd, txg, error));
4263 
4264         /*
4265          * Transfer each new top-level vdev from vd to rvd.
4266          */
4267         for (int c = 0; c < vd->vdev_children; c++) {
4268 
4269                 /*
4270                  * Set the vdev id to the first hole, if one exists.
4271                  */
4272                 for (id = 0; id < rvd->vdev_children; id++) {
4273                         if (rvd->vdev_child[id]->vdev_ishole) {
4274                                 vdev_free(rvd->vdev_child[id]);
4275                                 break;
4276                         }
4277                 }
4278                 tvd = vd->vdev_child[c];
4279                 vdev_remove_child(vd, tvd);
4280                 tvd->vdev_id = id;
4281                 vdev_add_child(rvd, tvd);
4282                 vdev_config_dirty(tvd);
4283         }
4284 
4285         if (nspares != 0) {
4286                 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4287                     ZPOOL_CONFIG_SPARES);
4288                 spa_load_spares(spa);
4289                 spa->spa_spares.sav_sync = B_TRUE;
4290         }
4291 
4292         if (nl2cache != 0) {
4293                 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4294                     ZPOOL_CONFIG_L2CACHE);
4295                 spa_load_l2cache(spa);
4296                 spa->spa_l2cache.sav_sync = B_TRUE;
4297         }
4298 
4299         /*
4300          * We have to be careful when adding new vdevs to an existing pool.
4301          * If other threads start allocating from these vdevs before we
4302          * sync the config cache, and we lose power, then upon reboot we may
4303          * fail to open the pool because there are DVAs that the config cache
4304          * can't translate.  Therefore, we first add the vdevs without
4305          * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4306          * and then let spa_config_update() initialize the new metaslabs.
4307          *
4308          * spa_load() checks for added-but-not-initialized vdevs, so that
4309          * if we lose power at any point in this sequence, the remaining
4310          * steps will be completed the next time we load the pool.
4311          */
4312         (void) spa_vdev_exit(spa, vd, txg, 0);
4313 
4314         mutex_enter(&spa_namespace_lock);
4315         spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4316         mutex_exit(&spa_namespace_lock);
4317 
4318         return (0);
4319 }
4320 
4321 /*
4322  * Attach a device to a mirror.  The arguments are the path to any device
4323  * in the mirror, and the nvroot for the new device.  If the path specifies
4324  * a device that is not mirrored, we automatically insert the mirror vdev.
4325  *
4326  * If 'replacing' is specified, the new device is intended to replace the
4327  * existing device; in this case the two devices are made into their own
4328  * mirror using the 'replacing' vdev, which is functionally identical to
4329  * the mirror vdev (it actually reuses all the same ops) but has a few
4330  * extra rules: you can't attach to it after it's been created, and upon
4331  * completion of resilvering, the first disk (the one being replaced)
4332  * is automatically detached.
4333  */
4334 int
4335 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4336 {
4337         uint64_t txg, dtl_max_txg;
4338         vdev_t *rvd = spa->spa_root_vdev;
4339         vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4340         vdev_ops_t *pvops;
4341         char *oldvdpath, *newvdpath;
4342         int newvd_isspare;
4343         int error;
4344 
4345         ASSERT(spa_writeable(spa));
4346 
4347         txg = spa_vdev_enter(spa);
4348 
4349         oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4350 
4351         if (oldvd == NULL)
4352                 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4353 
4354         if (!oldvd->vdev_ops->vdev_op_leaf)
4355                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4356 
4357         pvd = oldvd->vdev_parent;
4358 
4359         if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4360             VDEV_ALLOC_ATTACH)) != 0)
4361                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4362 
4363         if (newrootvd->vdev_children != 1)
4364                 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4365 
4366         newvd = newrootvd->vdev_child[0];
4367 
4368         if (!newvd->vdev_ops->vdev_op_leaf)
4369                 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4370 
4371         if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4372                 return (spa_vdev_exit(spa, newrootvd, txg, error));
4373 
4374         /*
4375          * Spares can't replace logs
4376          */
4377         if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4378                 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4379 
4380         if (!replacing) {
4381                 /*
4382                  * For attach, the only allowable parent is a mirror or the root
4383                  * vdev.
4384                  */
4385                 if (pvd->vdev_ops != &vdev_mirror_ops &&
4386                     pvd->vdev_ops != &vdev_root_ops)
4387                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4388 
4389                 pvops = &vdev_mirror_ops;
4390         } else {
4391                 /*
4392                  * Active hot spares can only be replaced by inactive hot
4393                  * spares.
4394                  */
4395                 if (pvd->vdev_ops == &vdev_spare_ops &&
4396                     oldvd->vdev_isspare &&
4397                     !spa_has_spare(spa, newvd->vdev_guid))
4398                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4399 
4400                 /*
4401                  * If the source is a hot spare, and the parent isn't already a
4402                  * spare, then we want to create a new hot spare.  Otherwise, we
4403                  * want to create a replacing vdev.  The user is not allowed to
4404                  * attach to a spared vdev child unless the 'isspare' state is
4405                  * the same (spare replaces spare, non-spare replaces
4406                  * non-spare).
4407                  */
4408                 if (pvd->vdev_ops == &vdev_replacing_ops &&
4409                     spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4410                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4411                 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4412                     newvd->vdev_isspare != oldvd->vdev_isspare) {
4413                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4414                 }
4415 
4416                 if (newvd->vdev_isspare)
4417                         pvops = &vdev_spare_ops;
4418                 else
4419                         pvops = &vdev_replacing_ops;
4420         }
4421 
4422         /*
4423          * Make sure the new device is big enough.
4424          */
4425         if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4426                 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4427 
4428         /*
4429          * The new device cannot have a higher alignment requirement
4430          * than the top-level vdev.
4431          */
4432         if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4433                 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4434 
4435         /*
4436          * If this is an in-place replacement, update oldvd's path and devid
4437          * to make it distinguishable from newvd, and unopenable from now on.
4438          */
4439         if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4440                 spa_strfree(oldvd->vdev_path);
4441                 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4442                     KM_SLEEP);
4443                 (void) sprintf(oldvd->vdev_path, "%s/%s",
4444                     newvd->vdev_path, "old");
4445                 if (oldvd->vdev_devid != NULL) {
4446                         spa_strfree(oldvd->vdev_devid);
4447                         oldvd->vdev_devid = NULL;
4448                 }
4449         }
4450 
4451         /* mark the device being resilvered */
4452         newvd->vdev_resilver_txg = txg;
4453 
4454         /*
4455          * If the parent is not a mirror, or if we're replacing, insert the new
4456          * mirror/replacing/spare vdev above oldvd.
4457          */
4458         if (pvd->vdev_ops != pvops)
4459                 pvd = vdev_add_parent(oldvd, pvops);
4460 
4461         ASSERT(pvd->vdev_top->vdev_parent == rvd);
4462         ASSERT(pvd->vdev_ops == pvops);
4463         ASSERT(oldvd->vdev_parent == pvd);
4464 
4465         /*
4466          * Extract the new device from its root and add it to pvd.
4467          */
4468         vdev_remove_child(newrootvd, newvd);
4469         newvd->vdev_id = pvd->vdev_children;
4470         newvd->vdev_crtxg = oldvd->vdev_crtxg;
4471         vdev_add_child(pvd, newvd);
4472 
4473         tvd = newvd->vdev_top;
4474         ASSERT(pvd->vdev_top == tvd);
4475         ASSERT(tvd->vdev_parent == rvd);
4476 
4477         vdev_config_dirty(tvd);
4478 
4479         /*
4480          * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4481          * for any dmu_sync-ed blocks.  It will propagate upward when
4482          * spa_vdev_exit() calls vdev_dtl_reassess().
4483          */
4484         dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4485 
4486         vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4487             dtl_max_txg - TXG_INITIAL);
4488 
4489         if (newvd->vdev_isspare) {
4490                 spa_spare_activate(newvd);
4491                 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4492         }
4493 
4494         oldvdpath = spa_strdup(oldvd->vdev_path);
4495         newvdpath = spa_strdup(newvd->vdev_path);
4496         newvd_isspare = newvd->vdev_isspare;
4497 
4498         /*
4499          * Mark newvd's DTL dirty in this txg.
4500          */
4501         vdev_dirty(tvd, VDD_DTL, newvd, txg);
4502 
4503         /*
4504          * Restart the resilver
4505          */
4506         dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4507 
4508         /*
4509          * Commit the config
4510          */
4511         (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4512 
4513         spa_history_log_internal(spa, "vdev attach", NULL,
4514             "%s vdev=%s %s vdev=%s",
4515             replacing && newvd_isspare ? "spare in" :
4516             replacing ? "replace" : "attach", newvdpath,
4517             replacing ? "for" : "to", oldvdpath);
4518 
4519         spa_strfree(oldvdpath);
4520         spa_strfree(newvdpath);
4521 
4522         if (spa->spa_bootfs)
4523                 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4524 
4525         return (0);
4526 }
4527 
4528 /*
4529  * Detach a device from a mirror or replacing vdev.
4530  *
4531  * If 'replace_done' is specified, only detach if the parent
4532  * is a replacing vdev.
4533  */
4534 int
4535 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4536 {
4537         uint64_t txg;
4538         int error;
4539         vdev_t *rvd = spa->spa_root_vdev;
4540         vdev_t *vd, *pvd, *cvd, *tvd;
4541         boolean_t unspare = B_FALSE;
4542         uint64_t unspare_guid = 0;
4543         char *vdpath;
4544 
4545         ASSERT(spa_writeable(spa));
4546 
4547         txg = spa_vdev_enter(spa);
4548 
4549         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4550 
4551         if (vd == NULL)
4552                 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4553 
4554         if (!vd->vdev_ops->vdev_op_leaf)
4555                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4556 
4557         pvd = vd->vdev_parent;
4558 
4559         /*
4560          * If the parent/child relationship is not as expected, don't do it.
4561          * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4562          * vdev that's replacing B with C.  The user's intent in replacing
4563          * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4564          * the replace by detaching C, the expected behavior is to end up
4565          * M(A,B).  But suppose that right after deciding to detach C,
4566          * the replacement of B completes.  We would have M(A,C), and then
4567          * ask to detach C, which would leave us with just A -- not what
4568          * the user wanted.  To prevent this, we make sure that the
4569          * parent/child relationship hasn't changed -- in this example,
4570          * that C's parent is still the replacing vdev R.
4571          */
4572         if (pvd->vdev_guid != pguid && pguid != 0)
4573                 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4574 
4575         /*
4576          * Only 'replacing' or 'spare' vdevs can be replaced.
4577          */
4578         if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4579             pvd->vdev_ops != &vdev_spare_ops)
4580                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4581 
4582         ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4583             spa_version(spa) >= SPA_VERSION_SPARES);
4584 
4585         /*
4586          * Only mirror, replacing, and spare vdevs support detach.
4587          */
4588         if (pvd->vdev_ops != &vdev_replacing_ops &&
4589             pvd->vdev_ops != &vdev_mirror_ops &&
4590             pvd->vdev_ops != &vdev_spare_ops)
4591                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4592 
4593         /*
4594          * If this device has the only valid copy of some data,
4595          * we cannot safely detach it.
4596          */
4597         if (vdev_dtl_required(vd))
4598                 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4599 
4600         ASSERT(pvd->vdev_children >= 2);
4601 
4602         /*
4603          * If we are detaching the second disk from a replacing vdev, then
4604          * check to see if we changed the original vdev's path to have "/old"
4605          * at the end in spa_vdev_attach().  If so, undo that change now.
4606          */
4607         if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4608             vd->vdev_path != NULL) {
4609                 size_t len = strlen(vd->vdev_path);
4610 
4611                 for (int c = 0; c < pvd->vdev_children; c++) {
4612                         cvd = pvd->vdev_child[c];
4613 
4614                         if (cvd == vd || cvd->vdev_path == NULL)
4615                                 continue;
4616 
4617                         if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4618                             strcmp(cvd->vdev_path + len, "/old") == 0) {
4619                                 spa_strfree(cvd->vdev_path);
4620                                 cvd->vdev_path = spa_strdup(vd->vdev_path);
4621                                 break;
4622                         }
4623                 }
4624         }
4625 
4626         /*
4627          * If we are detaching the original disk from a spare, then it implies
4628          * that the spare should become a real disk, and be removed from the
4629          * active spare list for the pool.
4630          */
4631         if (pvd->vdev_ops == &vdev_spare_ops &&
4632             vd->vdev_id == 0 &&
4633             pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4634                 unspare = B_TRUE;
4635 
4636         /*
4637          * Erase the disk labels so the disk can be used for other things.
4638          * This must be done after all other error cases are handled,
4639          * but before we disembowel vd (so we can still do I/O to it).
4640          * But if we can't do it, don't treat the error as fatal --
4641          * it may be that the unwritability of the disk is the reason
4642          * it's being detached!
4643          */
4644         error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4645 
4646         /*
4647          * Remove vd from its parent and compact the parent's children.
4648          */
4649         vdev_remove_child(pvd, vd);
4650         vdev_compact_children(pvd);
4651 
4652         /*
4653          * Remember one of the remaining children so we can get tvd below.
4654          */
4655         cvd = pvd->vdev_child[pvd->vdev_children - 1];
4656 
4657         /*
4658          * If we need to remove the remaining child from the list of hot spares,
4659          * do it now, marking the vdev as no longer a spare in the process.
4660          * We must do this before vdev_remove_parent(), because that can
4661          * change the GUID if it creates a new toplevel GUID.  For a similar
4662          * reason, we must remove the spare now, in the same txg as the detach;
4663          * otherwise someone could attach a new sibling, change the GUID, and
4664          * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4665          */
4666         if (unspare) {
4667                 ASSERT(cvd->vdev_isspare);
4668                 spa_spare_remove(cvd);
4669                 unspare_guid = cvd->vdev_guid;
4670                 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4671                 cvd->vdev_unspare = B_TRUE;
4672         }
4673 
4674         /*
4675          * If the parent mirror/replacing vdev only has one child,
4676          * the parent is no longer needed.  Remove it from the tree.
4677          */
4678         if (pvd->vdev_children == 1) {
4679                 if (pvd->vdev_ops == &vdev_spare_ops)
4680                         cvd->vdev_unspare = B_FALSE;
4681                 vdev_remove_parent(cvd);
4682         }
4683 
4684 
4685         /*
4686          * We don't set tvd until now because the parent we just removed
4687          * may have been the previous top-level vdev.
4688          */
4689         tvd = cvd->vdev_top;
4690         ASSERT(tvd->vdev_parent == rvd);
4691 
4692         /*
4693          * Reevaluate the parent vdev state.
4694          */
4695         vdev_propagate_state(cvd);
4696 
4697         /*
4698          * If the 'autoexpand' property is set on the pool then automatically
4699          * try to expand the size of the pool. For example if the device we
4700          * just detached was smaller than the others, it may be possible to
4701          * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4702          * first so that we can obtain the updated sizes of the leaf vdevs.
4703          */
4704         if (spa->spa_autoexpand) {
4705                 vdev_reopen(tvd);
4706                 vdev_expand(tvd, txg);
4707         }
4708 
4709         vdev_config_dirty(tvd);
4710 
4711         /*
4712          * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4713          * vd->vdev_detached is set and free vd's DTL object in syncing context.
4714          * But first make sure we're not on any *other* txg's DTL list, to
4715          * prevent vd from being accessed after it's freed.
4716          */
4717         vdpath = spa_strdup(vd->vdev_path);
4718         for (int t = 0; t < TXG_SIZE; t++)
4719                 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4720         vd->vdev_detached = B_TRUE;
4721         vdev_dirty(tvd, VDD_DTL, vd, txg);
4722 
4723         spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4724 
4725         /* hang on to the spa before we release the lock */
4726         spa_open_ref(spa, FTAG);
4727 
4728         error = spa_vdev_exit(spa, vd, txg, 0);
4729 
4730         spa_history_log_internal(spa, "detach", NULL,
4731             "vdev=%s", vdpath);
4732         spa_strfree(vdpath);
4733 
4734         /*
4735          * If this was the removal of the original device in a hot spare vdev,
4736          * then we want to go through and remove the device from the hot spare
4737          * list of every other pool.
4738          */
4739         if (unspare) {
4740                 spa_t *altspa = NULL;
4741 
4742                 mutex_enter(&spa_namespace_lock);
4743                 while ((altspa = spa_next(altspa)) != NULL) {
4744                         if (altspa->spa_state != POOL_STATE_ACTIVE ||
4745                             altspa == spa)
4746                                 continue;
4747 
4748                         spa_open_ref(altspa, FTAG);
4749                         mutex_exit(&spa_namespace_lock);
4750                         (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4751                         mutex_enter(&spa_namespace_lock);
4752                         spa_close(altspa, FTAG);
4753                 }
4754                 mutex_exit(&spa_namespace_lock);
4755 
4756                 /* search the rest of the vdevs for spares to remove */
4757                 spa_vdev_resilver_done(spa);
4758         }
4759 
4760         /* all done with the spa; OK to release */
4761         mutex_enter(&spa_namespace_lock);
4762         spa_close(spa, FTAG);
4763         mutex_exit(&spa_namespace_lock);
4764 
4765         return (error);
4766 }
4767 
4768 /*
4769  * Split a set of devices from their mirrors, and create a new pool from them.
4770  */
4771 int
4772 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4773     nvlist_t *props, boolean_t exp)
4774 {
4775         int error = 0;
4776         uint64_t txg, *glist;
4777         spa_t *newspa;
4778         uint_t c, children, lastlog;
4779         nvlist_t **child, *nvl, *tmp;
4780         dmu_tx_t *tx;
4781         char *altroot = NULL;
4782         vdev_t *rvd, **vml = NULL;                      /* vdev modify list */
4783         boolean_t activate_slog;
4784 
4785         ASSERT(spa_writeable(spa));
4786 
4787         txg = spa_vdev_enter(spa);
4788 
4789         /* clear the log and flush everything up to now */
4790         activate_slog = spa_passivate_log(spa);
4791         (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4792         error = spa_offline_log(spa);
4793         txg = spa_vdev_config_enter(spa);
4794 
4795         if (activate_slog)
4796                 spa_activate_log(spa);
4797 
4798         if (error != 0)
4799                 return (spa_vdev_exit(spa, NULL, txg, error));
4800 
4801         /* check new spa name before going any further */
4802         if (spa_lookup(newname) != NULL)
4803                 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4804 
4805         /*
4806          * scan through all the children to ensure they're all mirrors
4807          */
4808         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4809             nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4810             &children) != 0)
4811                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4812 
4813         /* first, check to ensure we've got the right child count */
4814         rvd = spa->spa_root_vdev;
4815         lastlog = 0;
4816         for (c = 0; c < rvd->vdev_children; c++) {
4817                 vdev_t *vd = rvd->vdev_child[c];
4818 
4819                 /* don't count the holes & logs as children */
4820                 if (vd->vdev_islog || vd->vdev_ishole) {
4821                         if (lastlog == 0)
4822                                 lastlog = c;
4823                         continue;
4824                 }
4825 
4826                 lastlog = 0;
4827         }
4828         if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4829                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4830 
4831         /* next, ensure no spare or cache devices are part of the split */
4832         if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4833             nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4834                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4835 
4836         vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4837         glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4838 
4839         /* then, loop over each vdev and validate it */
4840         for (c = 0; c < children; c++) {
4841                 uint64_t is_hole = 0;
4842 
4843                 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4844                     &is_hole);
4845 
4846                 if (is_hole != 0) {
4847                         if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4848                             spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4849                                 continue;
4850                         } else {
4851                                 error = SET_ERROR(EINVAL);
4852                                 break;
4853                         }
4854                 }
4855 
4856                 /* which disk is going to be split? */
4857                 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4858                     &glist[c]) != 0) {
4859                         error = SET_ERROR(EINVAL);
4860                         break;
4861                 }
4862 
4863                 /* look it up in the spa */
4864                 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4865                 if (vml[c] == NULL) {
4866                         error = SET_ERROR(ENODEV);
4867                         break;
4868                 }
4869 
4870                 /* make sure there's nothing stopping the split */
4871                 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4872                     vml[c]->vdev_islog ||
4873                     vml[c]->vdev_ishole ||
4874                     vml[c]->vdev_isspare ||
4875                     vml[c]->vdev_isl2cache ||
4876                     !vdev_writeable(vml[c]) ||
4877                     vml[c]->vdev_children != 0 ||
4878                     vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4879                     c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4880                         error = SET_ERROR(EINVAL);
4881                         break;
4882                 }
4883 
4884                 if (vdev_dtl_required(vml[c])) {
4885                         error = SET_ERROR(EBUSY);
4886                         break;
4887                 }
4888 
4889                 /* we need certain info from the top level */
4890                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4891                     vml[c]->vdev_top->vdev_ms_array) == 0);
4892                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4893                     vml[c]->vdev_top->vdev_ms_shift) == 0);
4894                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4895                     vml[c]->vdev_top->vdev_asize) == 0);
4896                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4897                     vml[c]->vdev_top->vdev_ashift) == 0);
4898         }
4899 
4900         if (error != 0) {
4901                 kmem_free(vml, children * sizeof (vdev_t *));
4902                 kmem_free(glist, children * sizeof (uint64_t));
4903                 return (spa_vdev_exit(spa, NULL, txg, error));
4904         }
4905 
4906         /* stop writers from using the disks */
4907         for (c = 0; c < children; c++) {
4908                 if (vml[c] != NULL)
4909                         vml[c]->vdev_offline = B_TRUE;
4910         }
4911         vdev_reopen(spa->spa_root_vdev);
4912 
4913         /*
4914          * Temporarily record the splitting vdevs in the spa config.  This
4915          * will disappear once the config is regenerated.
4916          */
4917         VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4918         VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4919             glist, children) == 0);
4920         kmem_free(glist, children * sizeof (uint64_t));
4921 
4922         mutex_enter(&spa->spa_props_lock);
4923         VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4924             nvl) == 0);
4925         mutex_exit(&spa->spa_props_lock);
4926         spa->spa_config_splitting = nvl;
4927         vdev_config_dirty(spa->spa_root_vdev);
4928 
4929         /* configure and create the new pool */
4930         VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4931         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4932             exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4933         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4934             spa_version(spa)) == 0);
4935         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4936             spa->spa_config_txg) == 0);
4937         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4938             spa_generate_guid(NULL)) == 0);
4939         (void) nvlist_lookup_string(props,
4940             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4941 
4942         /* add the new pool to the namespace */
4943         newspa = spa_add(newname, config, altroot);
4944         newspa->spa_config_txg = spa->spa_config_txg;
4945         spa_set_log_state(newspa, SPA_LOG_CLEAR);
4946 
4947         /* release the spa config lock, retaining the namespace lock */
4948         spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4949 
4950         if (zio_injection_enabled)
4951                 zio_handle_panic_injection(spa, FTAG, 1);
4952 
4953         spa_activate(newspa, spa_mode_global);
4954         spa_async_suspend(newspa);
4955 
4956         /* create the new pool from the disks of the original pool */
4957         error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4958         if (error)
4959                 goto out;
4960 
4961         /* if that worked, generate a real config for the new pool */
4962         if (newspa->spa_root_vdev != NULL) {
4963                 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4964                     NV_UNIQUE_NAME, KM_SLEEP) == 0);
4965                 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4966                     ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4967                 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4968                     B_TRUE));
4969         }
4970 
4971         /* set the props */
4972         if (props != NULL) {
4973                 spa_configfile_set(newspa, props, B_FALSE);
4974                 error = spa_prop_set(newspa, props);
4975                 if (error)
4976                         goto out;
4977         }
4978 
4979         /* flush everything */
4980         txg = spa_vdev_config_enter(newspa);
4981         vdev_config_dirty(newspa->spa_root_vdev);
4982         (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4983 
4984         if (zio_injection_enabled)
4985                 zio_handle_panic_injection(spa, FTAG, 2);
4986 
4987         spa_async_resume(newspa);
4988 
4989         /* finally, update the original pool's config */
4990         txg = spa_vdev_config_enter(spa);
4991         tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4992         error = dmu_tx_assign(tx, TXG_WAIT);
4993         if (error != 0)
4994                 dmu_tx_abort(tx);
4995         for (c = 0; c < children; c++) {
4996                 if (vml[c] != NULL) {
4997                         vdev_split(vml[c]);
4998                         if (error == 0)
4999                                 spa_history_log_internal(spa, "detach", tx,
5000                                     "vdev=%s", vml[c]->vdev_path);
5001                         vdev_free(vml[c]);
5002                 }
5003         }
5004         vdev_config_dirty(spa->spa_root_vdev);
5005         spa->spa_config_splitting = NULL;
5006         nvlist_free(nvl);
5007         if (error == 0)
5008                 dmu_tx_commit(tx);
5009         (void) spa_vdev_exit(spa, NULL, txg, 0);
5010 
5011         if (zio_injection_enabled)
5012                 zio_handle_panic_injection(spa, FTAG, 3);
5013 
5014         /* split is complete; log a history record */
5015         spa_history_log_internal(newspa, "split", NULL,
5016             "from pool %s", spa_name(spa));
5017 
5018         kmem_free(vml, children * sizeof (vdev_t *));
5019 
5020         /* if we're not going to mount the filesystems in userland, export */
5021         if (exp)
5022                 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5023                     B_FALSE, B_FALSE);
5024 
5025         return (error);
5026 
5027 out:
5028         spa_unload(newspa);
5029         spa_deactivate(newspa);
5030         spa_remove(newspa);
5031 
5032         txg = spa_vdev_config_enter(spa);
5033 
5034         /* re-online all offlined disks */
5035         for (c = 0; c < children; c++) {
5036                 if (vml[c] != NULL)
5037                         vml[c]->vdev_offline = B_FALSE;
5038         }
5039         vdev_reopen(spa->spa_root_vdev);
5040 
5041         nvlist_free(spa->spa_config_splitting);
5042         spa->spa_config_splitting = NULL;
5043         (void) spa_vdev_exit(spa, NULL, txg, error);
5044 
5045         kmem_free(vml, children * sizeof (vdev_t *));
5046         return (error);
5047 }
5048 
5049 static nvlist_t *
5050 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5051 {
5052         for (int i = 0; i < count; i++) {
5053                 uint64_t guid;
5054 
5055                 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5056                     &guid) == 0);
5057 
5058                 if (guid == target_guid)
5059                         return (nvpp[i]);
5060         }
5061 
5062         return (NULL);
5063 }
5064 
5065 static void
5066 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5067         nvlist_t *dev_to_remove)
5068 {
5069         nvlist_t **newdev = NULL;
5070 
5071         if (count > 1)
5072                 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5073 
5074         for (int i = 0, j = 0; i < count; i++) {
5075                 if (dev[i] == dev_to_remove)
5076                         continue;
5077                 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5078         }
5079 
5080         VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5081         VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5082 
5083         for (int i = 0; i < count - 1; i++)
5084                 nvlist_free(newdev[i]);
5085 
5086         if (count > 1)
5087                 kmem_free(newdev, (count - 1) * sizeof (void *));
5088 }
5089 
5090 /*
5091  * Evacuate the device.
5092  */
5093 static int
5094 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5095 {
5096         uint64_t txg;
5097         int error = 0;
5098 
5099         ASSERT(MUTEX_HELD(&spa_namespace_lock));
5100         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5101         ASSERT(vd == vd->vdev_top);
5102 
5103         /*
5104          * Evacuate the device.  We don't hold the config lock as writer
5105          * since we need to do I/O but we do keep the
5106          * spa_namespace_lock held.  Once this completes the device
5107          * should no longer have any blocks allocated on it.
5108          */
5109         if (vd->vdev_islog) {
5110                 if (vd->vdev_stat.vs_alloc != 0)
5111                         error = spa_offline_log(spa);
5112         } else {
5113                 error = SET_ERROR(ENOTSUP);
5114         }
5115 
5116         if (error)
5117                 return (error);
5118 
5119         /*
5120          * The evacuation succeeded.  Remove any remaining MOS metadata
5121          * associated with this vdev, and wait for these changes to sync.
5122          */
5123         ASSERT0(vd->vdev_stat.vs_alloc);
5124         txg = spa_vdev_config_enter(spa);
5125         vd->vdev_removing = B_TRUE;
5126         vdev_dirty(vd, 0, NULL, txg);
5127         vdev_config_dirty(vd);
5128         spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5129 
5130         return (0);
5131 }
5132 
5133 /*
5134  * Complete the removal by cleaning up the namespace.
5135  */
5136 static void
5137 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5138 {
5139         vdev_t *rvd = spa->spa_root_vdev;
5140         uint64_t id = vd->vdev_id;
5141         boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5142 
5143         ASSERT(MUTEX_HELD(&spa_namespace_lock));
5144         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5145         ASSERT(vd == vd->vdev_top);
5146 
5147         /*
5148          * Only remove any devices which are empty.
5149          */
5150         if (vd->vdev_stat.vs_alloc != 0)
5151                 return;
5152 
5153         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5154 
5155         if (list_link_active(&vd->vdev_state_dirty_node))
5156                 vdev_state_clean(vd);
5157         if (list_link_active(&vd->vdev_config_dirty_node))
5158                 vdev_config_clean(vd);
5159 
5160         vdev_free(vd);
5161 
5162         if (last_vdev) {
5163                 vdev_compact_children(rvd);
5164         } else {
5165                 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5166                 vdev_add_child(rvd, vd);
5167         }
5168         vdev_config_dirty(rvd);
5169 
5170         /*
5171          * Reassess the health of our root vdev.
5172          */
5173         vdev_reopen(rvd);
5174 }
5175 
5176 /*
5177  * Remove a device from the pool -
5178  *
5179  * Removing a device from the vdev namespace requires several steps
5180  * and can take a significant amount of time.  As a result we use
5181  * the spa_vdev_config_[enter/exit] functions which allow us to
5182  * grab and release the spa_config_lock while still holding the namespace
5183  * lock.  During each step the configuration is synced out.
5184  *
5185  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5186  * devices.
5187  */
5188 int
5189 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5190 {
5191         vdev_t *vd;
5192         metaslab_group_t *mg;
5193         nvlist_t **spares, **l2cache, *nv;
5194         uint64_t txg = 0;
5195         uint_t nspares, nl2cache;
5196         int error = 0;
5197         boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5198 
5199         ASSERT(spa_writeable(spa));
5200 
5201         if (!locked)
5202                 txg = spa_vdev_enter(spa);
5203 
5204         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5205 
5206         if (spa->spa_spares.sav_vdevs != NULL &&
5207             nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5208             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5209             (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5210                 /*
5211                  * Only remove the hot spare if it's not currently in use
5212                  * in this pool.
5213                  */
5214                 if (vd == NULL || unspare) {
5215                         spa_vdev_remove_aux(spa->spa_spares.sav_config,
5216                             ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5217                         spa_load_spares(spa);
5218                         spa->spa_spares.sav_sync = B_TRUE;
5219                 } else {
5220                         error = SET_ERROR(EBUSY);
5221                 }
5222         } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5223             nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5224             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5225             (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5226                 /*
5227                  * Cache devices can always be removed.
5228                  */
5229                 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5230                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5231                 spa_load_l2cache(spa);
5232                 spa->spa_l2cache.sav_sync = B_TRUE;
5233         } else if (vd != NULL && vd->vdev_islog) {
5234                 ASSERT(!locked);
5235                 ASSERT(vd == vd->vdev_top);
5236 
5237                 /*
5238                  * XXX - Once we have bp-rewrite this should
5239                  * become the common case.
5240                  */
5241 
5242                 mg = vd->vdev_mg;
5243 
5244                 /*
5245                  * Stop allocating from this vdev.
5246                  */
5247                 metaslab_group_passivate(mg);
5248 
5249                 /*
5250                  * Wait for the youngest allocations and frees to sync,
5251                  * and then wait for the deferral of those frees to finish.
5252                  */
5253                 spa_vdev_config_exit(spa, NULL,
5254                     txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5255 
5256                 /*
5257                  * Attempt to evacuate the vdev.
5258                  */
5259                 error = spa_vdev_remove_evacuate(spa, vd);
5260 
5261                 txg = spa_vdev_config_enter(spa);
5262 
5263                 /*
5264                  * If we couldn't evacuate the vdev, unwind.
5265                  */
5266                 if (error) {
5267                         metaslab_group_activate(mg);
5268                         return (spa_vdev_exit(spa, NULL, txg, error));
5269                 }
5270 
5271                 /*
5272                  * Clean up the vdev namespace.
5273                  */
5274                 spa_vdev_remove_from_namespace(spa, vd);
5275 
5276         } else if (vd != NULL) {
5277                 /*
5278                  * Normal vdevs cannot be removed (yet).
5279                  */
5280                 error = SET_ERROR(ENOTSUP);
5281         } else {
5282                 /*
5283                  * There is no vdev of any kind with the specified guid.
5284                  */
5285                 error = SET_ERROR(ENOENT);
5286         }
5287 
5288         if (!locked)
5289                 return (spa_vdev_exit(spa, NULL, txg, error));
5290 
5291         return (error);
5292 }
5293 
5294 /*
5295  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5296  * currently spared, so we can detach it.
5297  */
5298 static vdev_t *
5299 spa_vdev_resilver_done_hunt(vdev_t *vd)
5300 {
5301         vdev_t *newvd, *oldvd;
5302 
5303         for (int c = 0; c < vd->vdev_children; c++) {
5304                 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5305                 if (oldvd != NULL)
5306                         return (oldvd);
5307         }
5308 
5309         /*
5310          * Check for a completed replacement.  We always consider the first
5311          * vdev in the list to be the oldest vdev, and the last one to be
5312          * the newest (see spa_vdev_attach() for how that works).  In
5313          * the case where the newest vdev is faulted, we will not automatically
5314          * remove it after a resilver completes.  This is OK as it will require
5315          * user intervention to determine which disk the admin wishes to keep.
5316          */
5317         if (vd->vdev_ops == &vdev_replacing_ops) {
5318                 ASSERT(vd->vdev_children > 1);
5319 
5320                 newvd = vd->vdev_child[vd->vdev_children - 1];
5321                 oldvd = vd->vdev_child[0];
5322 
5323                 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5324                     vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5325                     !vdev_dtl_required(oldvd))
5326                         return (oldvd);
5327         }
5328 
5329         /*
5330          * Check for a completed resilver with the 'unspare' flag set.
5331          */
5332         if (vd->vdev_ops == &vdev_spare_ops) {
5333                 vdev_t *first = vd->vdev_child[0];
5334                 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5335 
5336                 if (last->vdev_unspare) {
5337                         oldvd = first;
5338                         newvd = last;
5339                 } else if (first->vdev_unspare) {
5340                         oldvd = last;
5341                         newvd = first;
5342                 } else {
5343                         oldvd = NULL;
5344                 }
5345 
5346                 if (oldvd != NULL &&
5347                     vdev_dtl_empty(newvd, DTL_MISSING) &&
5348                     vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5349                     !vdev_dtl_required(oldvd))
5350                         return (oldvd);
5351 
5352                 /*
5353                  * If there are more than two spares attached to a disk,
5354                  * and those spares are not required, then we want to
5355                  * attempt to free them up now so that they can be used
5356                  * by other pools.  Once we're back down to a single
5357                  * disk+spare, we stop removing them.
5358                  */
5359                 if (vd->vdev_children > 2) {
5360                         newvd = vd->vdev_child[1];
5361 
5362                         if (newvd->vdev_isspare && last->vdev_isspare &&
5363                             vdev_dtl_empty(last, DTL_MISSING) &&
5364                             vdev_dtl_empty(last, DTL_OUTAGE) &&
5365                             !vdev_dtl_required(newvd))
5366                                 return (newvd);
5367                 }
5368         }
5369 
5370         return (NULL);
5371 }
5372 
5373 static void
5374 spa_vdev_resilver_done(spa_t *spa)
5375 {
5376         vdev_t *vd, *pvd, *ppvd;
5377         uint64_t guid, sguid, pguid, ppguid;
5378 
5379         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5380 
5381         while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5382                 pvd = vd->vdev_parent;
5383                 ppvd = pvd->vdev_parent;
5384                 guid = vd->vdev_guid;
5385                 pguid = pvd->vdev_guid;
5386                 ppguid = ppvd->vdev_guid;
5387                 sguid = 0;
5388                 /*
5389                  * If we have just finished replacing a hot spared device, then
5390                  * we need to detach the parent's first child (the original hot
5391                  * spare) as well.
5392                  */
5393                 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5394                     ppvd->vdev_children == 2) {
5395                         ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5396                         sguid = ppvd->vdev_child[1]->vdev_guid;
5397                 }
5398                 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5399 
5400                 spa_config_exit(spa, SCL_ALL, FTAG);
5401                 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5402                         return;
5403                 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5404                         return;
5405                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5406         }
5407 
5408         spa_config_exit(spa, SCL_ALL, FTAG);
5409 }
5410 
5411 /*
5412  * Update the stored path or FRU for this vdev.
5413  */
5414 int
5415 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5416     boolean_t ispath)
5417 {
5418         vdev_t *vd;
5419         boolean_t sync = B_FALSE;
5420 
5421         ASSERT(spa_writeable(spa));
5422 
5423         spa_vdev_state_enter(spa, SCL_ALL);
5424 
5425         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5426                 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5427 
5428         if (!vd->vdev_ops->vdev_op_leaf)
5429                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5430 
5431         if (ispath) {
5432                 if (strcmp(value, vd->vdev_path) != 0) {
5433                         spa_strfree(vd->vdev_path);
5434                         vd->vdev_path = spa_strdup(value);
5435                         sync = B_TRUE;
5436                 }
5437         } else {
5438                 if (vd->vdev_fru == NULL) {
5439                         vd->vdev_fru = spa_strdup(value);
5440                         sync = B_TRUE;
5441                 } else if (strcmp(value, vd->vdev_fru) != 0) {
5442                         spa_strfree(vd->vdev_fru);
5443                         vd->vdev_fru = spa_strdup(value);
5444                         sync = B_TRUE;
5445                 }
5446         }
5447 
5448         return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5449 }
5450 
5451 int
5452 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5453 {
5454         return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5455 }
5456 
5457 int
5458 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5459 {
5460         return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5461 }
5462 
5463 /*
5464  * ==========================================================================
5465  * SPA Scanning
5466  * ==========================================================================
5467  */
5468 
5469 int
5470 spa_scan_stop(spa_t *spa)
5471 {
5472         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5473         if (dsl_scan_resilvering(spa->spa_dsl_pool))
5474                 return (SET_ERROR(EBUSY));
5475         return (dsl_scan_cancel(spa->spa_dsl_pool));
5476 }
5477 
5478 int
5479 spa_scan(spa_t *spa, pool_scan_func_t func)
5480 {
5481         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5482 
5483         if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5484                 return (SET_ERROR(ENOTSUP));
5485 
5486         /*
5487          * If a resilver was requested, but there is no DTL on a
5488          * writeable leaf device, we have nothing to do.
5489          */
5490         if (func == POOL_SCAN_RESILVER &&
5491             !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5492                 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5493                 return (0);
5494         }
5495 
5496         return (dsl_scan(spa->spa_dsl_pool, func));
5497 }
5498 
5499 /*
5500  * ==========================================================================
5501  * SPA async task processing
5502  * ==========================================================================
5503  */
5504 
5505 static void
5506 spa_async_remove(spa_t *spa, vdev_t *vd)
5507 {
5508         if (vd->vdev_remove_wanted) {
5509                 vd->vdev_remove_wanted = B_FALSE;
5510                 vd->vdev_delayed_close = B_FALSE;
5511                 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5512 
5513                 /*
5514                  * We want to clear the stats, but we don't want to do a full
5515                  * vdev_clear() as that will cause us to throw away
5516                  * degraded/faulted state as well as attempt to reopen the
5517                  * device, all of which is a waste.
5518                  */
5519                 vd->vdev_stat.vs_read_errors = 0;
5520                 vd->vdev_stat.vs_write_errors = 0;
5521                 vd->vdev_stat.vs_checksum_errors = 0;
5522 
5523                 vdev_state_dirty(vd->vdev_top);
5524         }
5525 
5526         for (int c = 0; c < vd->vdev_children; c++)
5527                 spa_async_remove(spa, vd->vdev_child[c]);
5528 }
5529 
5530 static void
5531 spa_async_probe(spa_t *spa, vdev_t *vd)
5532 {
5533         if (vd->vdev_probe_wanted) {
5534                 vd->vdev_probe_wanted = B_FALSE;
5535                 vdev_reopen(vd);        /* vdev_open() does the actual probe */
5536         }
5537 
5538         for (int c = 0; c < vd->vdev_children; c++)
5539                 spa_async_probe(spa, vd->vdev_child[c]);
5540 }
5541 
5542 static void
5543 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5544 {
5545         sysevent_id_t eid;
5546         nvlist_t *attr;
5547         char *physpath;
5548 
5549         if (!spa->spa_autoexpand)
5550                 return;
5551 
5552         for (int c = 0; c < vd->vdev_children; c++) {
5553                 vdev_t *cvd = vd->vdev_child[c];
5554                 spa_async_autoexpand(spa, cvd);
5555         }
5556 
5557         if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5558                 return;
5559 
5560         physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5561         (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5562 
5563         VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5564         VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5565 
5566         (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5567             ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5568 
5569         nvlist_free(attr);
5570         kmem_free(physpath, MAXPATHLEN);
5571 }
5572 
5573 static void
5574 spa_async_thread(spa_t *spa)
5575 {
5576         int tasks;
5577 
5578         ASSERT(spa->spa_sync_on);
5579 
5580         mutex_enter(&spa->spa_async_lock);
5581         tasks = spa->spa_async_tasks;
5582         spa->spa_async_tasks = 0;
5583         mutex_exit(&spa->spa_async_lock);
5584 
5585         /*
5586          * See if the config needs to be updated.
5587          */
5588         if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5589                 uint64_t old_space, new_space;
5590 
5591                 mutex_enter(&spa_namespace_lock);
5592                 old_space = metaslab_class_get_space(spa_normal_class(spa));
5593                 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5594                 new_space = metaslab_class_get_space(spa_normal_class(spa));
5595                 mutex_exit(&spa_namespace_lock);
5596 
5597                 /*
5598                  * If the pool grew as a result of the config update,
5599                  * then log an internal history event.
5600                  */
5601                 if (new_space != old_space) {
5602                         spa_history_log_internal(spa, "vdev online", NULL,
5603                             "pool '%s' size: %llu(+%llu)",
5604                             spa_name(spa), new_space, new_space - old_space);
5605                 }
5606         }
5607 
5608         /*
5609          * See if any devices need to be marked REMOVED.
5610          */
5611         if (tasks & SPA_ASYNC_REMOVE) {
5612                 spa_vdev_state_enter(spa, SCL_NONE);
5613                 spa_async_remove(spa, spa->spa_root_vdev);
5614                 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5615                         spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5616                 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5617                         spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5618                 (void) spa_vdev_state_exit(spa, NULL, 0);
5619         }
5620 
5621         if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5622                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5623                 spa_async_autoexpand(spa, spa->spa_root_vdev);
5624                 spa_config_exit(spa, SCL_CONFIG, FTAG);
5625         }
5626 
5627         /*
5628          * See if any devices need to be probed.
5629          */
5630         if (tasks & SPA_ASYNC_PROBE) {
5631                 spa_vdev_state_enter(spa, SCL_NONE);
5632                 spa_async_probe(spa, spa->spa_root_vdev);
5633                 (void) spa_vdev_state_exit(spa, NULL, 0);
5634         }
5635 
5636         /*
5637          * If any devices are done replacing, detach them.
5638          */
5639         if (tasks & SPA_ASYNC_RESILVER_DONE)
5640                 spa_vdev_resilver_done(spa);
5641 
5642         /*
5643          * Kick off a resilver.
5644          */
5645         if (tasks & SPA_ASYNC_RESILVER)
5646                 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5647 
5648         /*
5649          * Let the world know that we're done.
5650          */
5651         mutex_enter(&spa->spa_async_lock);
5652         spa->spa_async_thread = NULL;
5653         cv_broadcast(&spa->spa_async_cv);
5654         mutex_exit(&spa->spa_async_lock);
5655         thread_exit();
5656 }
5657 
5658 void
5659 spa_async_suspend(spa_t *spa)
5660 {
5661         mutex_enter(&spa->spa_async_lock);
5662         spa->spa_async_suspended++;
5663         while (spa->spa_async_thread != NULL)
5664                 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5665         mutex_exit(&spa->spa_async_lock);
5666 }
5667 
5668 void
5669 spa_async_resume(spa_t *spa)
5670 {
5671         mutex_enter(&spa->spa_async_lock);
5672         ASSERT(spa->spa_async_suspended != 0);
5673         spa->spa_async_suspended--;
5674         mutex_exit(&spa->spa_async_lock);
5675 }
5676 
5677 static boolean_t
5678 spa_async_tasks_pending(spa_t *spa)
5679 {
5680         uint_t non_config_tasks;
5681         uint_t config_task;
5682         boolean_t config_task_suspended;
5683 
5684         non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5685         config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5686         if (spa->spa_ccw_fail_time == 0) {
5687                 config_task_suspended = B_FALSE;
5688         } else {
5689                 config_task_suspended =
5690                     (gethrtime() - spa->spa_ccw_fail_time) <
5691                     (zfs_ccw_retry_interval * NANOSEC);
5692         }
5693 
5694         return (non_config_tasks || (config_task && !config_task_suspended));
5695 }
5696 
5697 static void
5698 spa_async_dispatch(spa_t *spa)
5699 {
5700         mutex_enter(&spa->spa_async_lock);
5701         if (spa_async_tasks_pending(spa) &&
5702             !spa->spa_async_suspended &&
5703             spa->spa_async_thread == NULL &&
5704             rootdir != NULL)
5705                 spa->spa_async_thread = thread_create(NULL, 0,
5706                     spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5707         mutex_exit(&spa->spa_async_lock);
5708 }
5709 
5710 void
5711 spa_async_request(spa_t *spa, int task)
5712 {
5713         zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5714         mutex_enter(&spa->spa_async_lock);
5715         spa->spa_async_tasks |= task;
5716         mutex_exit(&spa->spa_async_lock);
5717 }
5718 
5719 /*
5720  * ==========================================================================
5721  * SPA syncing routines
5722  * ==========================================================================
5723  */
5724 
5725 static int
5726 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5727 {
5728         bpobj_t *bpo = arg;
5729         bpobj_enqueue(bpo, bp, tx);
5730         return (0);
5731 }
5732 
5733 static int
5734 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5735 {
5736         zio_t *zio = arg;
5737 
5738         zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5739             zio->io_flags));
5740         return (0);
5741 }
5742 
5743 /*
5744  * Note: this simple function is not inlined to make it easier to dtrace the
5745  * amount of time spent syncing frees.
5746  */
5747 static void
5748 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5749 {
5750         zio_t *zio = zio_root(spa, NULL, NULL, 0);
5751         bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5752         VERIFY(zio_wait(zio) == 0);
5753 }
5754 
5755 /*
5756  * Note: this simple function is not inlined to make it easier to dtrace the
5757  * amount of time spent syncing deferred frees.
5758  */
5759 static void
5760 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5761 {
5762         zio_t *zio = zio_root(spa, NULL, NULL, 0);
5763         VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5764             spa_free_sync_cb, zio, tx), ==, 0);
5765         VERIFY0(zio_wait(zio));
5766 }
5767 
5768 
5769 static void
5770 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5771 {
5772         char *packed = NULL;
5773         size_t bufsize;
5774         size_t nvsize = 0;
5775         dmu_buf_t *db;
5776 
5777         VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5778 
5779         /*
5780          * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5781          * information.  This avoids the dbuf_will_dirty() path and
5782          * saves us a pre-read to get data we don't actually care about.
5783          */
5784         bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5785         packed = kmem_alloc(bufsize, KM_SLEEP);
5786 
5787         VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5788             KM_SLEEP) == 0);
5789         bzero(packed + nvsize, bufsize - nvsize);
5790 
5791         dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5792 
5793         kmem_free(packed, bufsize);
5794 
5795         VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5796         dmu_buf_will_dirty(db, tx);
5797         *(uint64_t *)db->db_data = nvsize;
5798         dmu_buf_rele(db, FTAG);
5799 }
5800 
5801 static void
5802 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5803     const char *config, const char *entry)
5804 {
5805         nvlist_t *nvroot;
5806         nvlist_t **list;
5807         int i;
5808 
5809         if (!sav->sav_sync)
5810                 return;
5811 
5812         /*
5813          * Update the MOS nvlist describing the list of available devices.
5814          * spa_validate_aux() will have already made sure this nvlist is
5815          * valid and the vdevs are labeled appropriately.
5816          */
5817         if (sav->sav_object == 0) {
5818                 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5819                     DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5820                     sizeof (uint64_t), tx);
5821                 VERIFY(zap_update(spa->spa_meta_objset,
5822                     DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5823                     &sav->sav_object, tx) == 0);
5824         }
5825 
5826         VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5827         if (sav->sav_count == 0) {
5828                 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5829         } else {
5830                 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5831                 for (i = 0; i < sav->sav_count; i++)
5832                         list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5833                             B_FALSE, VDEV_CONFIG_L2CACHE);
5834                 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5835                     sav->sav_count) == 0);
5836                 for (i = 0; i < sav->sav_count; i++)
5837                         nvlist_free(list[i]);
5838                 kmem_free(list, sav->sav_count * sizeof (void *));
5839         }
5840 
5841         spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5842         nvlist_free(nvroot);
5843 
5844         sav->sav_sync = B_FALSE;
5845 }
5846 
5847 static void
5848 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5849 {
5850         nvlist_t *config;
5851 
5852         if (list_is_empty(&spa->spa_config_dirty_list))
5853                 return;
5854 
5855         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5856 
5857         config = spa_config_generate(spa, spa->spa_root_vdev,
5858             dmu_tx_get_txg(tx), B_FALSE);
5859 
5860         /*
5861          * If we're upgrading the spa version then make sure that
5862          * the config object gets updated with the correct version.
5863          */
5864         if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5865                 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5866                     spa->spa_uberblock.ub_version);
5867 
5868         spa_config_exit(spa, SCL_STATE, FTAG);
5869 
5870         if (spa->spa_config_syncing)
5871                 nvlist_free(spa->spa_config_syncing);
5872         spa->spa_config_syncing = config;
5873 
5874         spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5875 }
5876 
5877 static void
5878 spa_sync_version(void *arg, dmu_tx_t *tx)
5879 {
5880         uint64_t *versionp = arg;
5881         uint64_t version = *versionp;
5882         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5883 
5884         /*
5885          * Setting the version is special cased when first creating the pool.
5886          */
5887         ASSERT(tx->tx_txg != TXG_INITIAL);
5888 
5889         ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5890         ASSERT(version >= spa_version(spa));
5891 
5892         spa->spa_uberblock.ub_version = version;
5893         vdev_config_dirty(spa->spa_root_vdev);
5894         spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5895 }
5896 
5897 /*
5898  * Set zpool properties.
5899  */
5900 static void
5901 spa_sync_props(void *arg, dmu_tx_t *tx)
5902 {
5903         nvlist_t *nvp = arg;
5904         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5905         objset_t *mos = spa->spa_meta_objset;
5906         nvpair_t *elem = NULL;
5907 
5908         mutex_enter(&spa->spa_props_lock);
5909 
5910         while ((elem = nvlist_next_nvpair(nvp, elem))) {
5911                 uint64_t intval;
5912                 char *strval, *fname;
5913                 zpool_prop_t prop;
5914                 const char *propname;
5915                 zprop_type_t proptype;
5916                 zfeature_info_t *feature;
5917 
5918                 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5919                 case ZPROP_INVAL:
5920                         /*
5921                          * We checked this earlier in spa_prop_validate().
5922                          */
5923                         ASSERT(zpool_prop_feature(nvpair_name(elem)));
5924 
5925                         fname = strchr(nvpair_name(elem), '@') + 1;
5926                         VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5927 
5928                         spa_feature_enable(spa, feature, tx);
5929                         spa_history_log_internal(spa, "set", tx,
5930                             "%s=enabled", nvpair_name(elem));
5931                         break;
5932 
5933                 case ZPOOL_PROP_VERSION:
5934                         VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5935                         /*
5936                          * The version is synced seperatly before other
5937                          * properties and should be correct by now.
5938                          */
5939                         ASSERT3U(spa_version(spa), >=, intval);
5940                         break;
5941 
5942                 case ZPOOL_PROP_ALTROOT:
5943                         /*
5944                          * 'altroot' is a non-persistent property. It should
5945                          * have been set temporarily at creation or import time.
5946                          */
5947                         ASSERT(spa->spa_root != NULL);
5948                         break;
5949 
5950                 case ZPOOL_PROP_READONLY:
5951                 case ZPOOL_PROP_CACHEFILE:
5952                         /*
5953                          * 'readonly' and 'cachefile' are also non-persisitent
5954                          * properties.
5955                          */
5956                         break;
5957                 case ZPOOL_PROP_COMMENT:
5958                         VERIFY(nvpair_value_string(elem, &strval) == 0);
5959                         if (spa->spa_comment != NULL)
5960                                 spa_strfree(spa->spa_comment);
5961                         spa->spa_comment = spa_strdup(strval);
5962                         /*
5963                          * We need to dirty the configuration on all the vdevs
5964                          * so that their labels get updated.  It's unnecessary
5965                          * to do this for pool creation since the vdev's
5966                          * configuratoin has already been dirtied.
5967                          */
5968                         if (tx->tx_txg != TXG_INITIAL)
5969                                 vdev_config_dirty(spa->spa_root_vdev);
5970                         spa_history_log_internal(spa, "set", tx,
5971                             "%s=%s", nvpair_name(elem), strval);
5972                         break;
5973                 default:
5974                         /*
5975                          * Set pool property values in the poolprops mos object.
5976                          */
5977                         if (spa->spa_pool_props_object == 0) {
5978                                 spa->spa_pool_props_object =
5979                                     zap_create_link(mos, DMU_OT_POOL_PROPS,
5980                                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5981                                     tx);
5982                         }
5983 
5984                         /* normalize the property name */
5985                         propname = zpool_prop_to_name(prop);
5986                         proptype = zpool_prop_get_type(prop);
5987 
5988                         if (nvpair_type(elem) == DATA_TYPE_STRING) {
5989                                 ASSERT(proptype == PROP_TYPE_STRING);
5990                                 VERIFY(nvpair_value_string(elem, &strval) == 0);
5991                                 VERIFY(zap_update(mos,
5992                                     spa->spa_pool_props_object, propname,
5993                                     1, strlen(strval) + 1, strval, tx) == 0);
5994                                 spa_history_log_internal(spa, "set", tx,
5995                                     "%s=%s", nvpair_name(elem), strval);
5996                         } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5997                                 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5998 
5999                                 if (proptype == PROP_TYPE_INDEX) {
6000                                         const char *unused;
6001                                         VERIFY(zpool_prop_index_to_string(
6002                                             prop, intval, &unused) == 0);
6003                                 }
6004                                 VERIFY(zap_update(mos,
6005                                     spa->spa_pool_props_object, propname,
6006                                     8, 1, &intval, tx) == 0);
6007                                 spa_history_log_internal(spa, "set", tx,
6008                                     "%s=%lld", nvpair_name(elem), intval);
6009                         } else {
6010                                 ASSERT(0); /* not allowed */
6011                         }
6012 
6013                         switch (prop) {
6014                         case ZPOOL_PROP_DELEGATION:
6015                                 spa->spa_delegation = intval;
6016                                 break;
6017                         case ZPOOL_PROP_BOOTFS:
6018                                 spa->spa_bootfs = intval;
6019                                 break;
6020                         case ZPOOL_PROP_FAILUREMODE:
6021                                 spa->spa_failmode = intval;
6022                                 break;
6023                         case ZPOOL_PROP_AUTOEXPAND:
6024                                 spa->spa_autoexpand = intval;
6025                                 if (tx->tx_txg != TXG_INITIAL)
6026                                         spa_async_request(spa,
6027                                             SPA_ASYNC_AUTOEXPAND);
6028                                 break;
6029                         case ZPOOL_PROP_DEDUPDITTO:
6030                                 spa->spa_dedup_ditto = intval;
6031                                 break;
6032                         default:
6033                                 break;
6034                         }
6035                 }
6036 
6037         }
6038 
6039         mutex_exit(&spa->spa_props_lock);
6040 }
6041 
6042 /*
6043  * Perform one-time upgrade on-disk changes.  spa_version() does not
6044  * reflect the new version this txg, so there must be no changes this
6045  * txg to anything that the upgrade code depends on after it executes.
6046  * Therefore this must be called after dsl_pool_sync() does the sync
6047  * tasks.
6048  */
6049 static void
6050 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6051 {
6052         dsl_pool_t *dp = spa->spa_dsl_pool;
6053 
6054         ASSERT(spa->spa_sync_pass == 1);
6055 
6056         rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6057 
6058         if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6059             spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6060                 dsl_pool_create_origin(dp, tx);
6061 
6062                 /* Keeping the origin open increases spa_minref */
6063                 spa->spa_minref += 3;
6064         }
6065 
6066         if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6067             spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6068                 dsl_pool_upgrade_clones(dp, tx);
6069         }
6070 
6071         if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6072             spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6073                 dsl_pool_upgrade_dir_clones(dp, tx);
6074 
6075                 /* Keeping the freedir open increases spa_minref */
6076                 spa->spa_minref += 3;
6077         }
6078 
6079         if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6080             spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6081                 spa_feature_create_zap_objects(spa, tx);
6082         }
6083         rrw_exit(&dp->dp_config_rwlock, FTAG);
6084 }
6085 
6086 /*
6087  * Sync the specified transaction group.  New blocks may be dirtied as
6088  * part of the process, so we iterate until it converges.
6089  */
6090 void
6091 spa_sync(spa_t *spa, uint64_t txg)
6092 {
6093         dsl_pool_t *dp = spa->spa_dsl_pool;
6094         objset_t *mos = spa->spa_meta_objset;
6095         bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6096         vdev_t *rvd = spa->spa_root_vdev;
6097         vdev_t *vd;
6098         dmu_tx_t *tx;
6099         int error;
6100 
6101         VERIFY(spa_writeable(spa));
6102 
6103         /*
6104          * Lock out configuration changes.
6105          */
6106         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6107 
6108         spa->spa_syncing_txg = txg;
6109         spa->spa_sync_pass = 0;
6110 
6111         /*
6112          * If there are any pending vdev state changes, convert them
6113          * into config changes that go out with this transaction group.
6114          */
6115         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6116         while (list_head(&spa->spa_state_dirty_list) != NULL) {
6117                 /*
6118                  * We need the write lock here because, for aux vdevs,
6119                  * calling vdev_config_dirty() modifies sav_config.
6120                  * This is ugly and will become unnecessary when we
6121                  * eliminate the aux vdev wart by integrating all vdevs
6122                  * into the root vdev tree.
6123                  */
6124                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6125                 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6126                 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6127                         vdev_state_clean(vd);
6128                         vdev_config_dirty(vd);
6129                 }
6130                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6131                 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6132         }
6133         spa_config_exit(spa, SCL_STATE, FTAG);
6134 
6135         tx = dmu_tx_create_assigned(dp, txg);
6136 
6137         spa->spa_sync_starttime = gethrtime();
6138         VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6139             spa->spa_sync_starttime + spa->spa_deadman_synctime));
6140 
6141         /*
6142          * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6143          * set spa_deflate if we have no raid-z vdevs.
6144          */
6145         if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6146             spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6147                 int i;
6148 
6149                 for (i = 0; i < rvd->vdev_children; i++) {
6150                         vd = rvd->vdev_child[i];
6151                         if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6152                                 break;
6153                 }
6154                 if (i == rvd->vdev_children) {
6155                         spa->spa_deflate = TRUE;
6156                         VERIFY(0 == zap_add(spa->spa_meta_objset,
6157                             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6158                             sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6159                 }
6160         }
6161 
6162         /*
6163          * If anything has changed in this txg, or if someone is waiting
6164          * for this txg to sync (eg, spa_vdev_remove()), push the
6165          * deferred frees from the previous txg.  If not, leave them
6166          * alone so that we don't generate work on an otherwise idle
6167          * system.
6168          */
6169         if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6170             !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6171             !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6172             ((dsl_scan_active(dp->dp_scan) ||
6173             txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6174                 spa_sync_deferred_frees(spa, tx);
6175         }
6176 
6177         /*
6178          * Iterate to convergence.
6179          */
6180         do {
6181                 int pass = ++spa->spa_sync_pass;
6182 
6183                 spa_sync_config_object(spa, tx);
6184                 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6185                     ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6186                 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6187                     ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6188                 spa_errlog_sync(spa, txg);
6189                 dsl_pool_sync(dp, txg);
6190 
6191                 if (pass < zfs_sync_pass_deferred_free) {
6192                         spa_sync_frees(spa, free_bpl, tx);
6193                 } else {
6194                         bplist_iterate(free_bpl, bpobj_enqueue_cb,
6195                             &spa->spa_deferred_bpobj, tx);
6196                 }
6197 
6198                 ddt_sync(spa, txg);
6199                 dsl_scan_sync(dp, tx);
6200 
6201                 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6202                         vdev_sync(vd, txg);
6203 
6204                 if (pass == 1)
6205                         spa_sync_upgrades(spa, tx);
6206 
6207         } while (dmu_objset_is_dirty(mos, txg));
6208 
6209         /*
6210          * Rewrite the vdev configuration (which includes the uberblock)
6211          * to commit the transaction group.
6212          *
6213          * If there are no dirty vdevs, we sync the uberblock to a few
6214          * random top-level vdevs that are known to be visible in the
6215          * config cache (see spa_vdev_add() for a complete description).
6216          * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6217          */
6218         for (;;) {
6219                 /*
6220                  * We hold SCL_STATE to prevent vdev open/close/etc.
6221                  * while we're attempting to write the vdev labels.
6222                  */
6223                 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6224 
6225                 if (list_is_empty(&spa->spa_config_dirty_list)) {
6226                         vdev_t *svd[SPA_DVAS_PER_BP];
6227                         int svdcount = 0;
6228                         int children = rvd->vdev_children;
6229                         int c0 = spa_get_random(children);
6230 
6231                         for (int c = 0; c < children; c++) {
6232                                 vd = rvd->vdev_child[(c0 + c) % children];
6233                                 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6234                                         continue;
6235                                 svd[svdcount++] = vd;
6236                                 if (svdcount == SPA_DVAS_PER_BP)
6237                                         break;
6238                         }
6239                         error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6240                         if (error != 0)
6241                                 error = vdev_config_sync(svd, svdcount, txg,
6242                                     B_TRUE);
6243                 } else {
6244                         error = vdev_config_sync(rvd->vdev_child,
6245                             rvd->vdev_children, txg, B_FALSE);
6246                         if (error != 0)
6247                                 error = vdev_config_sync(rvd->vdev_child,
6248                                     rvd->vdev_children, txg, B_TRUE);
6249                 }
6250 
6251                 if (error == 0)
6252                         spa->spa_last_synced_guid = rvd->vdev_guid;
6253 
6254                 spa_config_exit(spa, SCL_STATE, FTAG);
6255 
6256                 if (error == 0)
6257                         break;
6258                 zio_suspend(spa, NULL);
6259                 zio_resume_wait(spa);
6260         }
6261         dmu_tx_commit(tx);
6262 
6263         VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6264 
6265         /*
6266          * Clear the dirty config list.
6267          */
6268         while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6269                 vdev_config_clean(vd);
6270 
6271         /*
6272          * Now that the new config has synced transactionally,
6273          * let it become visible to the config cache.
6274          */
6275         if (spa->spa_config_syncing != NULL) {
6276                 spa_config_set(spa, spa->spa_config_syncing);
6277                 spa->spa_config_txg = txg;
6278                 spa->spa_config_syncing = NULL;
6279         }
6280 
6281         spa->spa_ubsync = spa->spa_uberblock;
6282 
6283         dsl_pool_sync_done(dp, txg);
6284 
6285         /*
6286          * Update usable space statistics.
6287          */
6288         while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6289                 vdev_sync_done(vd, txg);
6290 
6291         spa_update_dspace(spa);
6292 
6293         /*
6294          * It had better be the case that we didn't dirty anything
6295          * since vdev_config_sync().
6296          */
6297         ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6298         ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6299         ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6300 
6301         spa->spa_sync_pass = 0;
6302 
6303         spa_config_exit(spa, SCL_CONFIG, FTAG);
6304 
6305         spa_handle_ignored_writes(spa);
6306 
6307         /*
6308          * If any async tasks have been requested, kick them off.
6309          */
6310         spa_async_dispatch(spa);
6311 }
6312 
6313 /*
6314  * Sync all pools.  We don't want to hold the namespace lock across these
6315  * operations, so we take a reference on the spa_t and drop the lock during the
6316  * sync.
6317  */
6318 void
6319 spa_sync_allpools(void)
6320 {
6321         spa_t *spa = NULL;
6322         mutex_enter(&spa_namespace_lock);
6323         while ((spa = spa_next(spa)) != NULL) {
6324                 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6325                     !spa_writeable(spa) || spa_suspended(spa))
6326                         continue;
6327                 spa_open_ref(spa, FTAG);
6328                 mutex_exit(&spa_namespace_lock);
6329                 txg_wait_synced(spa_get_dsl(spa), 0);
6330                 mutex_enter(&spa_namespace_lock);
6331                 spa_close(spa, FTAG);
6332         }
6333         mutex_exit(&spa_namespace_lock);
6334 }
6335 
6336 /*
6337  * ==========================================================================
6338  * Miscellaneous routines
6339  * ==========================================================================
6340  */
6341 
6342 /*
6343  * Remove all pools in the system.
6344  */
6345 void
6346 spa_evict_all(void)
6347 {
6348         spa_t *spa;
6349 
6350         /*
6351          * Remove all cached state.  All pools should be closed now,
6352          * so every spa in the AVL tree should be unreferenced.
6353          */
6354         mutex_enter(&spa_namespace_lock);
6355         while ((spa = spa_next(NULL)) != NULL) {
6356                 /*
6357                  * Stop async tasks.  The async thread may need to detach
6358                  * a device that's been replaced, which requires grabbing
6359                  * spa_namespace_lock, so we must drop it here.
6360                  */
6361                 spa_open_ref(spa, FTAG);
6362                 mutex_exit(&spa_namespace_lock);
6363                 spa_async_suspend(spa);
6364                 mutex_enter(&spa_namespace_lock);
6365                 spa_close(spa, FTAG);
6366 
6367                 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6368                         spa_unload(spa);
6369                         spa_deactivate(spa);
6370                 }
6371                 spa_remove(spa);
6372         }
6373         mutex_exit(&spa_namespace_lock);
6374 }
6375 
6376 vdev_t *
6377 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6378 {
6379         vdev_t *vd;
6380         int i;
6381 
6382         if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6383                 return (vd);
6384 
6385         if (aux) {
6386                 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6387                         vd = spa->spa_l2cache.sav_vdevs[i];
6388                         if (vd->vdev_guid == guid)
6389                                 return (vd);
6390                 }
6391 
6392                 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6393                         vd = spa->spa_spares.sav_vdevs[i];
6394                         if (vd->vdev_guid == guid)
6395                                 return (vd);
6396                 }
6397         }
6398 
6399         return (NULL);
6400 }
6401 
6402 void
6403 spa_upgrade(spa_t *spa, uint64_t version)
6404 {
6405         ASSERT(spa_writeable(spa));
6406 
6407         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6408 
6409         /*
6410          * This should only be called for a non-faulted pool, and since a
6411          * future version would result in an unopenable pool, this shouldn't be
6412          * possible.
6413          */
6414         ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6415         ASSERT(version >= spa->spa_uberblock.ub_version);
6416 
6417         spa->spa_uberblock.ub_version = version;
6418         vdev_config_dirty(spa->spa_root_vdev);
6419 
6420         spa_config_exit(spa, SCL_ALL, FTAG);
6421 
6422         txg_wait_synced(spa_get_dsl(spa), 0);
6423 }
6424 
6425 boolean_t
6426 spa_has_spare(spa_t *spa, uint64_t guid)
6427 {
6428         int i;
6429         uint64_t spareguid;
6430         spa_aux_vdev_t *sav = &spa->spa_spares;
6431 
6432         for (i = 0; i < sav->sav_count; i++)
6433                 if (sav->sav_vdevs[i]->vdev_guid == guid)
6434                         return (B_TRUE);
6435 
6436         for (i = 0; i < sav->sav_npending; i++) {
6437                 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6438                     &spareguid) == 0 && spareguid == guid)
6439                         return (B_TRUE);
6440         }
6441 
6442         return (B_FALSE);
6443 }
6444 
6445 /*
6446  * Check if a pool has an active shared spare device.
6447  * Note: reference count of an active spare is 2, as a spare and as a replace
6448  */
6449 static boolean_t
6450 spa_has_active_shared_spare(spa_t *spa)
6451 {
6452         int i, refcnt;
6453         uint64_t pool;
6454         spa_aux_vdev_t *sav = &spa->spa_spares;
6455 
6456         for (i = 0; i < sav->sav_count; i++) {
6457                 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6458                     &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6459                     refcnt > 2)
6460                         return (B_TRUE);
6461         }
6462 
6463         return (B_FALSE);
6464 }
6465 
6466 /*
6467  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6468  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6469  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6470  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6471  * or zdb as real changes.
6472  */
6473 void
6474 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6475 {
6476 #ifdef _KERNEL
6477         sysevent_t              *ev;
6478         sysevent_attr_list_t    *attr = NULL;
6479         sysevent_value_t        value;
6480         sysevent_id_t           eid;
6481 
6482         ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6483             SE_SLEEP);
6484 
6485         value.value_type = SE_DATA_TYPE_STRING;
6486         value.value.sv_string = spa_name(spa);
6487         if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6488                 goto done;
6489 
6490         value.value_type = SE_DATA_TYPE_UINT64;
6491         value.value.sv_uint64 = spa_guid(spa);
6492         if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6493                 goto done;
6494 
6495         if (vd) {
6496                 value.value_type = SE_DATA_TYPE_UINT64;
6497                 value.value.sv_uint64 = vd->vdev_guid;
6498                 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6499                     SE_SLEEP) != 0)
6500                         goto done;
6501 
6502                 if (vd->vdev_path) {
6503                         value.value_type = SE_DATA_TYPE_STRING;
6504                         value.value.sv_string = vd->vdev_path;
6505                         if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6506                             &value, SE_SLEEP) != 0)
6507                                 goto done;
6508                 }
6509         }
6510 
6511         if (sysevent_attach_attributes(ev, attr) != 0)
6512                 goto done;
6513         attr = NULL;
6514 
6515         (void) log_sysevent(ev, SE_SLEEP, &eid);
6516 
6517 done:
6518         if (attr)
6519                 sysevent_free_attr(attr);
6520         sysevent_free(ev);
6521 #endif
6522 }