1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2013 by Delphix. All rights reserved.
  24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
  25  */
  26 
  27 #include <sys/zfs_context.h>
  28 #include <sys/dmu.h>
  29 #include <sys/dmu_tx.h>
  30 #include <sys/space_map.h>
  31 #include <sys/metaslab_impl.h>
  32 #include <sys/vdev_impl.h>
  33 #include <sys/zio.h>
  34 #include <sys/spa_impl.h>
  35 
  36 /*
  37  * Allow allocations to switch to gang blocks quickly. We do this to
  38  * avoid having to load lots of space_maps in a given txg. There are,
  39  * however, some cases where we want to avoid "fast" ganging and instead
  40  * we want to do an exhaustive search of all metaslabs on this device.
  41  * Currently we don't allow any gang, zil, or dump device related allocations
  42  * to "fast" gang.
  43  */
  44 #define CAN_FASTGANG(flags) \
  45         (!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
  46         METASLAB_GANG_AVOID)))
  47 
  48 #define METASLAB_WEIGHT_PRIMARY         (1ULL << 63)
  49 #define METASLAB_WEIGHT_SECONDARY       (1ULL << 62)
  50 #define METASLAB_ACTIVE_MASK            \
  51         (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
  52 
  53 uint64_t metaslab_aliquot = 512ULL << 10;
  54 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1;     /* force gang blocks */
  55 
  56 /*
  57  * The in-core space map representation is more compact than its on-disk form.
  58  * The zfs_condense_pct determines how much more compact the in-core
  59  * space_map representation must be before we compact it on-disk.
  60  * Values should be greater than or equal to 100.
  61  */
  62 int zfs_condense_pct = 200;
  63 
  64 /*
  65  * This value defines the number of allowed allocation failures per vdev.
  66  * If a device reaches this threshold in a given txg then we consider skipping
  67  * allocations on that device. The value of zfs_mg_alloc_failures is computed
  68  * in zio_init() unless it has been overridden in /etc/system.
  69  */
  70 int zfs_mg_alloc_failures = 0;
  71 
  72 /*
  73  * The zfs_mg_noalloc_threshold defines which metaslab groups should
  74  * be eligible for allocation. The value is defined as a percentage of
  75  * a free space. Metaslab groups that have more free space than
  76  * zfs_mg_noalloc_threshold are always eligible for allocations. Once
  77  * a metaslab group's free space is less than or equal to the
  78  * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
  79  * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
  80  * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
  81  * groups are allowed to accept allocations. Gang blocks are always
  82  * eligible to allocate on any metaslab group. The default value of 0 means
  83  * no metaslab group will be excluded based on this criterion.
  84  */
  85 int zfs_mg_noalloc_threshold = 0;
  86 
  87 /*
  88  * When set will load all metaslabs when pool is first opened.
  89  */
  90 int metaslab_debug_load = 0;
  91 
  92 /*
  93  * When set will prevent metaslabs from being unloaded.
  94  */
  95 int metaslab_debug_unload = 0;
  96 
  97 /*
  98  * Minimum size which forces the dynamic allocator to change
  99  * it's allocation strategy.  Once the space map cannot satisfy
 100  * an allocation of this size then it switches to using more
 101  * aggressive strategy (i.e search by size rather than offset).
 102  */
 103 uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
 104 
 105 /*
 106  * The minimum free space, in percent, which must be available
 107  * in a space map to continue allocations in a first-fit fashion.
 108  * Once the space_map's free space drops below this level we dynamically
 109  * switch to using best-fit allocations.
 110  */
 111 int metaslab_df_free_pct = 4;
 112 
 113 /*
 114  * A metaslab is considered "free" if it contains a contiguous
 115  * segment which is greater than metaslab_min_alloc_size.
 116  */
 117 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
 118 
 119 /*
 120  * Percentage of all cpus that can be used by the metaslab taskq.
 121  */
 122 int metaslab_load_pct = 50;
 123 
 124 /*
 125  * Determines how many txgs a metaslab may remain loaded without having any
 126  * allocations from it. As long as a metaslab continues to be used we will
 127  * keep it loaded.
 128  */
 129 int metaslab_unload_delay = TXG_SIZE * 2;
 130 
 131 /*
 132  * Should we be willing to write data to degraded vdevs?
 133  */
 134 boolean_t zfs_write_to_degraded = B_FALSE;
 135 
 136 /*
 137  * Max number of metaslabs per group to preload.
 138  */
 139 int metaslab_preload_limit = SPA_DVAS_PER_BP;
 140 
 141 /*
 142  * Enable/disable preloading of metaslab.
 143  */
 144 boolean_t metaslab_preload_enabled = B_TRUE;
 145 
 146 /*
 147  * Enable/disable additional weight factor for each metaslab.
 148  */
 149 boolean_t metaslab_weight_factor_enable = B_FALSE;
 150 
 151 
 152 /*
 153  * ==========================================================================
 154  * Metaslab classes
 155  * ==========================================================================
 156  */
 157 metaslab_class_t *
 158 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
 159 {
 160         metaslab_class_t *mc;
 161 
 162         mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
 163 
 164         mc->mc_spa = spa;
 165         mc->mc_rotor = NULL;
 166         mc->mc_ops = ops;
 167 
 168         return (mc);
 169 }
 170 
 171 void
 172 metaslab_class_destroy(metaslab_class_t *mc)
 173 {
 174         ASSERT(mc->mc_rotor == NULL);
 175         ASSERT(mc->mc_alloc == 0);
 176         ASSERT(mc->mc_deferred == 0);
 177         ASSERT(mc->mc_space == 0);
 178         ASSERT(mc->mc_dspace == 0);
 179 
 180         kmem_free(mc, sizeof (metaslab_class_t));
 181 }
 182 
 183 int
 184 metaslab_class_validate(metaslab_class_t *mc)
 185 {
 186         metaslab_group_t *mg;
 187         vdev_t *vd;
 188 
 189         /*
 190          * Must hold one of the spa_config locks.
 191          */
 192         ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
 193             spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
 194 
 195         if ((mg = mc->mc_rotor) == NULL)
 196                 return (0);
 197 
 198         do {
 199                 vd = mg->mg_vd;
 200                 ASSERT(vd->vdev_mg != NULL);
 201                 ASSERT3P(vd->vdev_top, ==, vd);
 202                 ASSERT3P(mg->mg_class, ==, mc);
 203                 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
 204         } while ((mg = mg->mg_next) != mc->mc_rotor);
 205 
 206         return (0);
 207 }
 208 
 209 void
 210 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
 211     int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
 212 {
 213         atomic_add_64(&mc->mc_alloc, alloc_delta);
 214         atomic_add_64(&mc->mc_deferred, defer_delta);
 215         atomic_add_64(&mc->mc_space, space_delta);
 216         atomic_add_64(&mc->mc_dspace, dspace_delta);
 217 }
 218 
 219 uint64_t
 220 metaslab_class_get_alloc(metaslab_class_t *mc)
 221 {
 222         return (mc->mc_alloc);
 223 }
 224 
 225 uint64_t
 226 metaslab_class_get_deferred(metaslab_class_t *mc)
 227 {
 228         return (mc->mc_deferred);
 229 }
 230 
 231 uint64_t
 232 metaslab_class_get_space(metaslab_class_t *mc)
 233 {
 234         return (mc->mc_space);
 235 }
 236 
 237 uint64_t
 238 metaslab_class_get_dspace(metaslab_class_t *mc)
 239 {
 240         return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
 241 }
 242 
 243 /*
 244  * ==========================================================================
 245  * Metaslab groups
 246  * ==========================================================================
 247  */
 248 static int
 249 metaslab_compare(const void *x1, const void *x2)
 250 {
 251         const metaslab_t *m1 = x1;
 252         const metaslab_t *m2 = x2;
 253 
 254         if (m1->ms_weight < m2->ms_weight)
 255                 return (1);
 256         if (m1->ms_weight > m2->ms_weight)
 257                 return (-1);
 258 
 259         /*
 260          * If the weights are identical, use the offset to force uniqueness.
 261          */
 262         if (m1->ms_start < m2->ms_start)
 263                 return (-1);
 264         if (m1->ms_start > m2->ms_start)
 265                 return (1);
 266 
 267         ASSERT3P(m1, ==, m2);
 268 
 269         return (0);
 270 }
 271 
 272 /*
 273  * Update the allocatable flag and the metaslab group's capacity.
 274  * The allocatable flag is set to true if the capacity is below
 275  * the zfs_mg_noalloc_threshold. If a metaslab group transitions
 276  * from allocatable to non-allocatable or vice versa then the metaslab
 277  * group's class is updated to reflect the transition.
 278  */
 279 static void
 280 metaslab_group_alloc_update(metaslab_group_t *mg)
 281 {
 282         vdev_t *vd = mg->mg_vd;
 283         metaslab_class_t *mc = mg->mg_class;
 284         vdev_stat_t *vs = &vd->vdev_stat;
 285         boolean_t was_allocatable;
 286 
 287         ASSERT(vd == vd->vdev_top);
 288 
 289         mutex_enter(&mg->mg_lock);
 290         was_allocatable = mg->mg_allocatable;
 291 
 292         mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
 293             (vs->vs_space + 1);
 294 
 295         mg->mg_allocatable = (mg->mg_free_capacity > zfs_mg_noalloc_threshold);
 296 
 297         /*
 298          * The mc_alloc_groups maintains a count of the number of
 299          * groups in this metaslab class that are still above the
 300          * zfs_mg_noalloc_threshold. This is used by the allocating
 301          * threads to determine if they should avoid allocations to
 302          * a given group. The allocator will avoid allocations to a group
 303          * if that group has reached or is below the zfs_mg_noalloc_threshold
 304          * and there are still other groups that are above the threshold.
 305          * When a group transitions from allocatable to non-allocatable or
 306          * vice versa we update the metaslab class to reflect that change.
 307          * When the mc_alloc_groups value drops to 0 that means that all
 308          * groups have reached the zfs_mg_noalloc_threshold making all groups
 309          * eligible for allocations. This effectively means that all devices
 310          * are balanced again.
 311          */
 312         if (was_allocatable && !mg->mg_allocatable)
 313                 mc->mc_alloc_groups--;
 314         else if (!was_allocatable && mg->mg_allocatable)
 315                 mc->mc_alloc_groups++;
 316         mutex_exit(&mg->mg_lock);
 317 }
 318 
 319 metaslab_group_t *
 320 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
 321 {
 322         metaslab_group_t *mg;
 323 
 324         mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
 325         mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
 326         avl_create(&mg->mg_metaslab_tree, metaslab_compare,
 327             sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
 328         mg->mg_vd = vd;
 329         mg->mg_class = mc;
 330         mg->mg_activation_count = 0;
 331 
 332         mg->mg_taskq = taskq_create("metaslab_group_tasksq", metaslab_load_pct,
 333             minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT);
 334 
 335         return (mg);
 336 }
 337 
 338 void
 339 metaslab_group_destroy(metaslab_group_t *mg)
 340 {
 341         ASSERT(mg->mg_prev == NULL);
 342         ASSERT(mg->mg_next == NULL);
 343         /*
 344          * We may have gone below zero with the activation count
 345          * either because we never activated in the first place or
 346          * because we're done, and possibly removing the vdev.
 347          */
 348         ASSERT(mg->mg_activation_count <= 0);
 349 
 350         avl_destroy(&mg->mg_metaslab_tree);
 351         mutex_destroy(&mg->mg_lock);
 352         kmem_free(mg, sizeof (metaslab_group_t));
 353 }
 354 
 355 void
 356 metaslab_group_activate(metaslab_group_t *mg)
 357 {
 358         metaslab_class_t *mc = mg->mg_class;
 359         metaslab_group_t *mgprev, *mgnext;
 360 
 361         ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
 362 
 363         ASSERT(mc->mc_rotor != mg);
 364         ASSERT(mg->mg_prev == NULL);
 365         ASSERT(mg->mg_next == NULL);
 366         ASSERT(mg->mg_activation_count <= 0);
 367 
 368         if (++mg->mg_activation_count <= 0)
 369                 return;
 370 
 371         mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
 372         metaslab_group_alloc_update(mg);
 373 
 374         if ((mgprev = mc->mc_rotor) == NULL) {
 375                 mg->mg_prev = mg;
 376                 mg->mg_next = mg;
 377         } else {
 378                 mgnext = mgprev->mg_next;
 379                 mg->mg_prev = mgprev;
 380                 mg->mg_next = mgnext;
 381                 mgprev->mg_next = mg;
 382                 mgnext->mg_prev = mg;
 383         }
 384         mc->mc_rotor = mg;
 385 }
 386 
 387 void
 388 metaslab_group_passivate(metaslab_group_t *mg)
 389 {
 390         metaslab_class_t *mc = mg->mg_class;
 391         metaslab_group_t *mgprev, *mgnext;
 392 
 393         ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
 394 
 395         if (--mg->mg_activation_count != 0) {
 396                 ASSERT(mc->mc_rotor != mg);
 397                 ASSERT(mg->mg_prev == NULL);
 398                 ASSERT(mg->mg_next == NULL);
 399                 ASSERT(mg->mg_activation_count < 0);
 400                 return;
 401         }
 402 
 403         taskq_wait(mg->mg_taskq);
 404 
 405         mgprev = mg->mg_prev;
 406         mgnext = mg->mg_next;
 407 
 408         if (mg == mgnext) {
 409                 mc->mc_rotor = NULL;
 410         } else {
 411                 mc->mc_rotor = mgnext;
 412                 mgprev->mg_next = mgnext;
 413                 mgnext->mg_prev = mgprev;
 414         }
 415 
 416         mg->mg_prev = NULL;
 417         mg->mg_next = NULL;
 418 }
 419 
 420 static void
 421 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
 422 {
 423         mutex_enter(&mg->mg_lock);
 424         ASSERT(msp->ms_group == NULL);
 425         msp->ms_group = mg;
 426         msp->ms_weight = 0;
 427         avl_add(&mg->mg_metaslab_tree, msp);
 428         mutex_exit(&mg->mg_lock);
 429 }
 430 
 431 static void
 432 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
 433 {
 434         mutex_enter(&mg->mg_lock);
 435         ASSERT(msp->ms_group == mg);
 436         avl_remove(&mg->mg_metaslab_tree, msp);
 437         msp->ms_group = NULL;
 438         mutex_exit(&mg->mg_lock);
 439 }
 440 
 441 static void
 442 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
 443 {
 444         /*
 445          * Although in principle the weight can be any value, in
 446          * practice we do not use values in the range [1, 510].
 447          */
 448         ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
 449         ASSERT(MUTEX_HELD(&msp->ms_lock));
 450 
 451         mutex_enter(&mg->mg_lock);
 452         ASSERT(msp->ms_group == mg);
 453         avl_remove(&mg->mg_metaslab_tree, msp);
 454         msp->ms_weight = weight;
 455         avl_add(&mg->mg_metaslab_tree, msp);
 456         mutex_exit(&mg->mg_lock);
 457 }
 458 
 459 /*
 460  * Determine if a given metaslab group should skip allocations. A metaslab
 461  * group should avoid allocations if its used capacity has crossed the
 462  * zfs_mg_noalloc_threshold and there is at least one metaslab group
 463  * that can still handle allocations.
 464  */
 465 static boolean_t
 466 metaslab_group_allocatable(metaslab_group_t *mg)
 467 {
 468         vdev_t *vd = mg->mg_vd;
 469         spa_t *spa = vd->vdev_spa;
 470         metaslab_class_t *mc = mg->mg_class;
 471 
 472         /*
 473          * A metaslab group is considered allocatable if its free capacity
 474          * is greater than the set value of zfs_mg_noalloc_threshold, it's
 475          * associated with a slog, or there are no other metaslab groups
 476          * with free capacity greater than zfs_mg_noalloc_threshold.
 477          */
 478         return (mg->mg_free_capacity > zfs_mg_noalloc_threshold ||
 479             mc != spa_normal_class(spa) || mc->mc_alloc_groups == 0);
 480 }
 481 
 482 /*
 483  * ==========================================================================
 484  * Range tree callbacks
 485  * ==========================================================================
 486  */
 487 
 488 /*
 489  * Comparison function for the private size-ordered tree. Tree is sorted
 490  * by size, larger sizes at the end of the tree.
 491  */
 492 static int
 493 metaslab_rangesize_compare(const void *x1, const void *x2)
 494 {
 495         const range_seg_t *r1 = x1;
 496         const range_seg_t *r2 = x2;
 497         uint64_t rs_size1 = r1->rs_end - r1->rs_start;
 498         uint64_t rs_size2 = r2->rs_end - r2->rs_start;
 499 
 500         if (rs_size1 < rs_size2)
 501                 return (-1);
 502         if (rs_size1 > rs_size2)
 503                 return (1);
 504 
 505         if (r1->rs_start < r2->rs_start)
 506                 return (-1);
 507 
 508         if (r1->rs_start > r2->rs_start)
 509                 return (1);
 510 
 511         return (0);
 512 }
 513 
 514 /*
 515  * Create any block allocator specific components. The current allocators
 516  * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
 517  */
 518 static void
 519 metaslab_rt_create(range_tree_t *rt, void *arg)
 520 {
 521         metaslab_t *msp = arg;
 522 
 523         ASSERT3P(rt->rt_arg, ==, msp);
 524         ASSERT(msp->ms_tree == NULL);
 525 
 526         avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
 527             sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
 528 }
 529 
 530 /*
 531  * Destroy the block allocator specific components.
 532  */
 533 static void
 534 metaslab_rt_destroy(range_tree_t *rt, void *arg)
 535 {
 536         metaslab_t *msp = arg;
 537 
 538         ASSERT3P(rt->rt_arg, ==, msp);
 539         ASSERT3P(msp->ms_tree, ==, rt);
 540         ASSERT0(avl_numnodes(&msp->ms_size_tree));
 541 
 542         avl_destroy(&msp->ms_size_tree);
 543 }
 544 
 545 static void
 546 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
 547 {
 548         metaslab_t *msp = arg;
 549 
 550         ASSERT3P(rt->rt_arg, ==, msp);
 551         ASSERT3P(msp->ms_tree, ==, rt);
 552         VERIFY(!msp->ms_condensing);
 553         avl_add(&msp->ms_size_tree, rs);
 554 }
 555 
 556 static void
 557 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
 558 {
 559         metaslab_t *msp = arg;
 560 
 561         ASSERT3P(rt->rt_arg, ==, msp);
 562         ASSERT3P(msp->ms_tree, ==, rt);
 563         VERIFY(!msp->ms_condensing);
 564         avl_remove(&msp->ms_size_tree, rs);
 565 }
 566 
 567 static void
 568 metaslab_rt_vacate(range_tree_t *rt, void *arg)
 569 {
 570         metaslab_t *msp = arg;
 571 
 572         ASSERT3P(rt->rt_arg, ==, msp);
 573         ASSERT3P(msp->ms_tree, ==, rt);
 574 
 575         /*
 576          * Normally one would walk the tree freeing nodes along the way.
 577          * Since the nodes are shared with the range trees we can avoid
 578          * walking all nodes and just reinitialize the avl tree. The nodes
 579          * will be freed by the range tree, so we don't want to free them here.
 580          */
 581         avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
 582             sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
 583 }
 584 
 585 static range_tree_ops_t metaslab_rt_ops = {
 586         metaslab_rt_create,
 587         metaslab_rt_destroy,
 588         metaslab_rt_add,
 589         metaslab_rt_remove,
 590         metaslab_rt_vacate
 591 };
 592 
 593 /*
 594  * ==========================================================================
 595  * Metaslab block operations
 596  * ==========================================================================
 597  */
 598 
 599 /*
 600  * Return the maximum contiguous segment within the metaslab.
 601  */
 602 uint64_t
 603 metaslab_block_maxsize(metaslab_t *msp)
 604 {
 605         avl_tree_t *t = &msp->ms_size_tree;
 606         range_seg_t *rs;
 607 
 608         if (t == NULL || (rs = avl_last(t)) == NULL)
 609                 return (0ULL);
 610 
 611         return (rs->rs_end - rs->rs_start);
 612 }
 613 
 614 uint64_t
 615 metaslab_block_alloc(metaslab_t *msp, uint64_t size)
 616 {
 617         uint64_t start;
 618         range_tree_t *rt = msp->ms_tree;
 619 
 620         VERIFY(!msp->ms_condensing);
 621 
 622         start = msp->ms_ops->msop_alloc(msp, size);
 623         if (start != -1ULL) {
 624                 vdev_t *vd = msp->ms_group->mg_vd;
 625 
 626                 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
 627                 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
 628                 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
 629                 range_tree_remove(rt, start, size);
 630         }
 631         return (start);
 632 }
 633 
 634 /*
 635  * ==========================================================================
 636  * Common allocator routines
 637  * ==========================================================================
 638  */
 639 
 640 /*
 641  * This is a helper function that can be used by the allocator to find
 642  * a suitable block to allocate. This will search the specified AVL
 643  * tree looking for a block that matches the specified criteria.
 644  */
 645 static uint64_t
 646 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
 647     uint64_t align)
 648 {
 649         range_seg_t *rs, rsearch;
 650         avl_index_t where;
 651 
 652         rsearch.rs_start = *cursor;
 653         rsearch.rs_end = *cursor + size;
 654 
 655         rs = avl_find(t, &rsearch, &where);
 656         if (rs == NULL)
 657                 rs = avl_nearest(t, where, AVL_AFTER);
 658 
 659         while (rs != NULL) {
 660                 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
 661 
 662                 if (offset + size <= rs->rs_end) {
 663                         *cursor = offset + size;
 664                         return (offset);
 665                 }
 666                 rs = AVL_NEXT(t, rs);
 667         }
 668 
 669         /*
 670          * If we know we've searched the whole map (*cursor == 0), give up.
 671          * Otherwise, reset the cursor to the beginning and try again.
 672          */
 673         if (*cursor == 0)
 674                 return (-1ULL);
 675 
 676         *cursor = 0;
 677         return (metaslab_block_picker(t, cursor, size, align));
 678 }
 679 
 680 /*
 681  * ==========================================================================
 682  * The first-fit block allocator
 683  * ==========================================================================
 684  */
 685 static uint64_t
 686 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
 687 {
 688         /*
 689          * Find the largest power of 2 block size that evenly divides the
 690          * requested size. This is used to try to allocate blocks with similar
 691          * alignment from the same area of the metaslab (i.e. same cursor
 692          * bucket) but it does not guarantee that other allocations sizes
 693          * may exist in the same region.
 694          */
 695         uint64_t align = size & -size;
 696         uint64_t *cursor = &msp->ms_lbas[highbit(align) - 1];
 697         avl_tree_t *t = &msp->ms_tree->rt_root;
 698 
 699         return (metaslab_block_picker(t, cursor, size, align));
 700 }
 701 
 702 /* ARGSUSED */
 703 static boolean_t
 704 metaslab_ff_fragmented(metaslab_t *msp)
 705 {
 706         return (B_TRUE);
 707 }
 708 
 709 static metaslab_ops_t metaslab_ff_ops = {
 710         metaslab_ff_alloc,
 711         metaslab_ff_fragmented
 712 };
 713 
 714 /*
 715  * ==========================================================================
 716  * Dynamic block allocator -
 717  * Uses the first fit allocation scheme until space get low and then
 718  * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
 719  * and metaslab_df_free_pct to determine when to switch the allocation scheme.
 720  * ==========================================================================
 721  */
 722 static uint64_t
 723 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
 724 {
 725         /*
 726          * Find the largest power of 2 block size that evenly divides the
 727          * requested size. This is used to try to allocate blocks with similar
 728          * alignment from the same area of the metaslab (i.e. same cursor
 729          * bucket) but it does not guarantee that other allocations sizes
 730          * may exist in the same region.
 731          */
 732         uint64_t align = size & -size;
 733         uint64_t *cursor = &msp->ms_lbas[highbit(align) - 1];
 734         range_tree_t *rt = msp->ms_tree;
 735         avl_tree_t *t = &rt->rt_root;
 736         uint64_t max_size = metaslab_block_maxsize(msp);
 737         int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
 738 
 739         ASSERT(MUTEX_HELD(&msp->ms_lock));
 740         ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
 741 
 742         if (max_size < size)
 743                 return (-1ULL);
 744 
 745         /*
 746          * If we're running low on space switch to using the size
 747          * sorted AVL tree (best-fit).
 748          */
 749         if (max_size < metaslab_df_alloc_threshold ||
 750             free_pct < metaslab_df_free_pct) {
 751                 t = &msp->ms_size_tree;
 752                 *cursor = 0;
 753         }
 754 
 755         return (metaslab_block_picker(t, cursor, size, 1ULL));
 756 }
 757 
 758 static boolean_t
 759 metaslab_df_fragmented(metaslab_t *msp)
 760 {
 761         range_tree_t *rt = msp->ms_tree;
 762         uint64_t max_size = metaslab_block_maxsize(msp);
 763         int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
 764 
 765         if (max_size >= metaslab_df_alloc_threshold &&
 766             free_pct >= metaslab_df_free_pct)
 767                 return (B_FALSE);
 768 
 769         return (B_TRUE);
 770 }
 771 
 772 static metaslab_ops_t metaslab_df_ops = {
 773         metaslab_df_alloc,
 774         metaslab_df_fragmented
 775 };
 776 
 777 /*
 778  * ==========================================================================
 779  * Cursor fit block allocator -
 780  * Select the largest region in the metaslab, set the cursor to the beginning
 781  * of the range and the cursor_end to the end of the range. As allocations
 782  * are made advance the cursor. Continue allocating from the cursor until
 783  * the range is exhausted and then find a new range.
 784  * ==========================================================================
 785  */
 786 static uint64_t
 787 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
 788 {
 789         range_tree_t *rt = msp->ms_tree;
 790         avl_tree_t *t = &msp->ms_size_tree;
 791         uint64_t *cursor = &msp->ms_lbas[0];
 792         uint64_t *cursor_end = &msp->ms_lbas[1];
 793         uint64_t offset = 0;
 794 
 795         ASSERT(MUTEX_HELD(&msp->ms_lock));
 796         ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
 797 
 798         ASSERT3U(*cursor_end, >=, *cursor);
 799 
 800         if ((*cursor + size) > *cursor_end) {
 801                 range_seg_t *rs;
 802 
 803                 rs = avl_last(&msp->ms_size_tree);
 804                 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
 805                         return (-1ULL);
 806 
 807                 *cursor = rs->rs_start;
 808                 *cursor_end = rs->rs_end;
 809         }
 810 
 811         offset = *cursor;
 812         *cursor += size;
 813 
 814         return (offset);
 815 }
 816 
 817 static boolean_t
 818 metaslab_cf_fragmented(metaslab_t *msp)
 819 {
 820         return (metaslab_block_maxsize(msp) < metaslab_min_alloc_size);
 821 }
 822 
 823 static metaslab_ops_t metaslab_cf_ops = {
 824         metaslab_cf_alloc,
 825         metaslab_cf_fragmented
 826 };
 827 
 828 /*
 829  * ==========================================================================
 830  * New dynamic fit allocator -
 831  * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
 832  * contiguous blocks. If no region is found then just use the largest segment
 833  * that remains.
 834  * ==========================================================================
 835  */
 836 
 837 /*
 838  * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
 839  * to request from the allocator.
 840  */
 841 uint64_t metaslab_ndf_clump_shift = 4;
 842 
 843 static uint64_t
 844 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
 845 {
 846         avl_tree_t *t = &msp->ms_tree->rt_root;
 847         avl_index_t where;
 848         range_seg_t *rs, rsearch;
 849         uint64_t hbit = highbit(size);
 850         uint64_t *cursor = &msp->ms_lbas[hbit - 1];
 851         uint64_t max_size = metaslab_block_maxsize(msp);
 852 
 853         ASSERT(MUTEX_HELD(&msp->ms_lock));
 854         ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
 855 
 856         if (max_size < size)
 857                 return (-1ULL);
 858 
 859         rsearch.rs_start = *cursor;
 860         rsearch.rs_end = *cursor + size;
 861 
 862         rs = avl_find(t, &rsearch, &where);
 863         if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
 864                 t = &msp->ms_size_tree;
 865 
 866                 rsearch.rs_start = 0;
 867                 rsearch.rs_end = MIN(max_size,
 868                     1ULL << (hbit + metaslab_ndf_clump_shift));
 869                 rs = avl_find(t, &rsearch, &where);
 870                 if (rs == NULL)
 871                         rs = avl_nearest(t, where, AVL_AFTER);
 872                 ASSERT(rs != NULL);
 873         }
 874 
 875         if ((rs->rs_end - rs->rs_start) >= size) {
 876                 *cursor = rs->rs_start + size;
 877                 return (rs->rs_start);
 878         }
 879         return (-1ULL);
 880 }
 881 
 882 static boolean_t
 883 metaslab_ndf_fragmented(metaslab_t *msp)
 884 {
 885         return (metaslab_block_maxsize(msp) <=
 886             (metaslab_min_alloc_size << metaslab_ndf_clump_shift));
 887 }
 888 
 889 static metaslab_ops_t metaslab_ndf_ops = {
 890         metaslab_ndf_alloc,
 891         metaslab_ndf_fragmented
 892 };
 893 
 894 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
 895 
 896 /*
 897  * ==========================================================================
 898  * Metaslabs
 899  * ==========================================================================
 900  */
 901 
 902 /*
 903  * Wait for any in-progress metaslab loads to complete.
 904  */
 905 void
 906 metaslab_load_wait(metaslab_t *msp)
 907 {
 908         ASSERT(MUTEX_HELD(&msp->ms_lock));
 909 
 910         while (msp->ms_loading) {
 911                 ASSERT(!msp->ms_loaded);
 912                 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
 913         }
 914 }
 915 
 916 int
 917 metaslab_load(metaslab_t *msp)
 918 {
 919         int error = 0;
 920 
 921         ASSERT(MUTEX_HELD(&msp->ms_lock));
 922         ASSERT(!msp->ms_loaded);
 923         ASSERT(!msp->ms_loading);
 924 
 925         msp->ms_loading = B_TRUE;
 926 
 927         /*
 928          * If the space map has not been allocated yet, then treat
 929          * all the space in the metaslab as free and add it to the
 930          * ms_tree.
 931          */
 932         if (msp->ms_sm != NULL)
 933                 error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
 934         else
 935                 range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
 936 
 937         msp->ms_loaded = (error == 0);
 938         msp->ms_loading = B_FALSE;
 939 
 940         if (msp->ms_loaded) {
 941                 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 942                         range_tree_walk(msp->ms_defertree[t],
 943                             range_tree_remove, msp->ms_tree);
 944                 }
 945         }
 946         cv_broadcast(&msp->ms_load_cv);
 947         return (error);
 948 }
 949 
 950 void
 951 metaslab_unload(metaslab_t *msp)
 952 {
 953         ASSERT(MUTEX_HELD(&msp->ms_lock));
 954         range_tree_vacate(msp->ms_tree, NULL, NULL);
 955         msp->ms_loaded = B_FALSE;
 956         msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
 957 }
 958 
 959 metaslab_t *
 960 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg)
 961 {
 962         vdev_t *vd = mg->mg_vd;
 963         objset_t *mos = vd->vdev_spa->spa_meta_objset;
 964         metaslab_t *msp;
 965 
 966         msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
 967         mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
 968         cv_init(&msp->ms_load_cv, NULL, CV_DEFAULT, NULL);
 969         msp->ms_id = id;
 970         msp->ms_start = id << vd->vdev_ms_shift;
 971         msp->ms_size = 1ULL << vd->vdev_ms_shift;
 972 
 973         /*
 974          * We only open space map objects that already exist. All others
 975          * will be opened when we finally allocate an object for it.
 976          */
 977         if (object != 0) {
 978                 VERIFY0(space_map_open(&msp->ms_sm, mos, object, msp->ms_start,
 979                     msp->ms_size, vd->vdev_ashift, &msp->ms_lock));
 980                 ASSERT(msp->ms_sm != NULL);
 981         }
 982 
 983         /*
 984          * We create the main range tree here, but we don't create the
 985          * alloctree and freetree until metaslab_sync_done().  This serves
 986          * two purposes: it allows metaslab_sync_done() to detect the
 987          * addition of new space; and for debugging, it ensures that we'd
 988          * data fault on any attempt to use this metaslab before it's ready.
 989          */
 990         msp->ms_tree = range_tree_create(&metaslab_rt_ops, msp, &msp->ms_lock);
 991         metaslab_group_add(mg, msp);
 992 
 993         msp->ms_ops = mg->mg_class->mc_ops;
 994 
 995         /*
 996          * If we're opening an existing pool (txg == 0) or creating
 997          * a new one (txg == TXG_INITIAL), all space is available now.
 998          * If we're adding space to an existing pool, the new space
 999          * does not become available until after this txg has synced.
1000          */
1001         if (txg <= TXG_INITIAL)
1002                 metaslab_sync_done(msp, 0);
1003 
1004         /*
1005          * If metaslab_debug_load is set and we're initializing a metaslab
1006          * that has an allocated space_map object then load the its space
1007          * map so that can verify frees.
1008          */
1009         if (metaslab_debug_load && msp->ms_sm != NULL) {
1010                 mutex_enter(&msp->ms_lock);
1011                 VERIFY0(metaslab_load(msp));
1012                 mutex_exit(&msp->ms_lock);
1013         }
1014 
1015         if (txg != 0) {
1016                 vdev_dirty(vd, 0, NULL, txg);
1017                 vdev_dirty(vd, VDD_METASLAB, msp, txg);
1018         }
1019 
1020         return (msp);
1021 }
1022 
1023 void
1024 metaslab_fini(metaslab_t *msp)
1025 {
1026         metaslab_group_t *mg = msp->ms_group;
1027 
1028         metaslab_group_remove(mg, msp);
1029 
1030         mutex_enter(&msp->ms_lock);
1031 
1032         VERIFY(msp->ms_group == NULL);
1033         vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1034             0, -msp->ms_size);
1035         space_map_close(msp->ms_sm);
1036 
1037         metaslab_unload(msp);
1038         range_tree_destroy(msp->ms_tree);
1039 
1040         for (int t = 0; t < TXG_SIZE; t++) {
1041                 range_tree_destroy(msp->ms_alloctree[t]);
1042                 range_tree_destroy(msp->ms_freetree[t]);
1043         }
1044 
1045         for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1046                 range_tree_destroy(msp->ms_defertree[t]);
1047         }
1048 
1049         ASSERT0(msp->ms_deferspace);
1050 
1051         mutex_exit(&msp->ms_lock);
1052         cv_destroy(&msp->ms_load_cv);
1053         mutex_destroy(&msp->ms_lock);
1054 
1055         kmem_free(msp, sizeof (metaslab_t));
1056 }
1057 
1058 /*
1059  * Apply a weighting factor based on the histogram information for this
1060  * metaslab. The current weighting factor is somewhat arbitrary and requires
1061  * additional investigation. The implementation provides a measure of
1062  * "weighted" free space and gives a higher weighting for larger contiguous
1063  * regions. The weighting factor is determined by counting the number of
1064  * sm_shift sectors that exist in each region represented by the histogram.
1065  * That value is then multiplied by the power of 2 exponent and the sm_shift
1066  * value.
1067  *
1068  * For example, assume the 2^21 histogram bucket has 4 2MB regions and the
1069  * metaslab has an sm_shift value of 9 (512B):
1070  *
1071  * 1) calculate the number of sm_shift sectors in the region:
1072  *      2^21 / 2^9 = 2^12 = 4096 * 4 (number of regions) = 16384
1073  * 2) multiply by the power of 2 exponent and the sm_shift value:
1074  *      16384 * 21 * 9 = 3096576
1075  * This value will be added to the weighting of the metaslab.
1076  */
1077 static uint64_t
1078 metaslab_weight_factor(metaslab_t *msp)
1079 {
1080         uint64_t factor = 0;
1081         uint64_t sectors;
1082         int i;
1083 
1084         /*
1085          * A null space map means that the entire metaslab is free,
1086          * calculate a weight factor that spans the entire size of the
1087          * metaslab.
1088          */
1089         if (msp->ms_sm == NULL) {
1090                 vdev_t *vd = msp->ms_group->mg_vd;
1091 
1092                 i = highbit(msp->ms_size) - 1;
1093                 sectors = msp->ms_size >> vd->vdev_ashift;
1094                 return (sectors * i * vd->vdev_ashift);
1095         }
1096 
1097         if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
1098                 return (0);
1099 
1100         for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE(msp->ms_sm); i++) {
1101                 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1102                         continue;
1103 
1104                 /*
1105                  * Determine the number of sm_shift sectors in the region
1106                  * indicated by the histogram. For example, given an
1107                  * sm_shift value of 9 (512 bytes) and i = 4 then we know
1108                  * that we're looking at an 8K region in the histogram
1109                  * (i.e. 9 + 4 = 13, 2^13 = 8192). To figure out the
1110                  * number of sm_shift sectors (512 bytes in this example),
1111                  * we would take 8192 / 512 = 16. Since the histogram
1112                  * is offset by sm_shift we can simply use the value of
1113                  * of i to calculate this (i.e. 2^i = 16 where i = 4).
1114                  */
1115                 sectors = msp->ms_sm->sm_phys->smp_histogram[i] << i;
1116                 factor += (i + msp->ms_sm->sm_shift) * sectors;
1117         }
1118         return (factor * msp->ms_sm->sm_shift);
1119 }
1120 
1121 static uint64_t
1122 metaslab_weight(metaslab_t *msp)
1123 {
1124         metaslab_group_t *mg = msp->ms_group;
1125         vdev_t *vd = mg->mg_vd;
1126         uint64_t weight, space;
1127 
1128         ASSERT(MUTEX_HELD(&msp->ms_lock));
1129 
1130         /*
1131          * This vdev is in the process of being removed so there is nothing
1132          * for us to do here.
1133          */
1134         if (vd->vdev_removing) {
1135                 ASSERT0(space_map_allocated(msp->ms_sm));
1136                 ASSERT0(vd->vdev_ms_shift);
1137                 return (0);
1138         }
1139 
1140         /*
1141          * The baseline weight is the metaslab's free space.
1142          */
1143         space = msp->ms_size - space_map_allocated(msp->ms_sm);
1144         weight = space;
1145 
1146         /*
1147          * Modern disks have uniform bit density and constant angular velocity.
1148          * Therefore, the outer recording zones are faster (higher bandwidth)
1149          * than the inner zones by the ratio of outer to inner track diameter,
1150          * which is typically around 2:1.  We account for this by assigning
1151          * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1152          * In effect, this means that we'll select the metaslab with the most
1153          * free bandwidth rather than simply the one with the most free space.
1154          */
1155         weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1156         ASSERT(weight >= space && weight <= 2 * space);
1157 
1158         msp->ms_factor = metaslab_weight_factor(msp);
1159         if (metaslab_weight_factor_enable)
1160                 weight += msp->ms_factor;
1161 
1162         if (msp->ms_loaded && !msp->ms_ops->msop_fragmented(msp)) {
1163                 /*
1164                  * If this metaslab is one we're actively using, adjust its
1165                  * weight to make it preferable to any inactive metaslab so
1166                  * we'll polish it off.
1167                  */
1168                 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1169         }
1170 
1171         return (weight);
1172 }
1173 
1174 static int
1175 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
1176 {
1177         ASSERT(MUTEX_HELD(&msp->ms_lock));
1178 
1179         if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1180                 metaslab_load_wait(msp);
1181                 if (!msp->ms_loaded) {
1182                         int error = metaslab_load(msp);
1183                         if (error) {
1184                                 metaslab_group_sort(msp->ms_group, msp, 0);
1185                                 return (error);
1186                         }
1187                 }
1188 
1189                 metaslab_group_sort(msp->ms_group, msp,
1190                     msp->ms_weight | activation_weight);
1191         }
1192         ASSERT(msp->ms_loaded);
1193         ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1194 
1195         return (0);
1196 }
1197 
1198 static void
1199 metaslab_passivate(metaslab_t *msp, uint64_t size)
1200 {
1201         /*
1202          * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1203          * this metaslab again.  In that case, it had better be empty,
1204          * or we would be leaving space on the table.
1205          */
1206         ASSERT(size >= SPA_MINBLOCKSIZE || range_tree_space(msp->ms_tree) == 0);
1207         metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
1208         ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1209 }
1210 
1211 static void
1212 metaslab_preload(void *arg)
1213 {
1214         metaslab_t *msp = arg;
1215         spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1216 
1217         mutex_enter(&msp->ms_lock);
1218         metaslab_load_wait(msp);
1219         if (!msp->ms_loaded)
1220                 (void) metaslab_load(msp);
1221 
1222         /*
1223          * Set the ms_access_txg value so that we don't unload it right away.
1224          */
1225         msp->ms_access_txg = spa_syncing_txg(spa) + metaslab_unload_delay + 1;
1226         mutex_exit(&msp->ms_lock);
1227 }
1228 
1229 static void
1230 metaslab_group_preload(metaslab_group_t *mg)
1231 {
1232         spa_t *spa = mg->mg_vd->vdev_spa;
1233         metaslab_t *msp;
1234         avl_tree_t *t = &mg->mg_metaslab_tree;
1235         int m = 0;
1236 
1237         if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
1238                 taskq_wait(mg->mg_taskq);
1239                 return;
1240         }
1241         mutex_enter(&mg->mg_lock);
1242 
1243         /*
1244          * Prefetch the next potential metaslabs
1245          */
1246         for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
1247 
1248                 /* If we have reached our preload limit then we're done */
1249                 if (++m > metaslab_preload_limit)
1250                         break;
1251 
1252                 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
1253                     msp, TQ_SLEEP) != NULL);
1254         }
1255         mutex_exit(&mg->mg_lock);
1256 }
1257 
1258 /*
1259  * Determine if the space map's on-disk footprint is past our tolerance
1260  * for inefficiency. We would like to use the following criteria to make
1261  * our decision:
1262  *
1263  * 1. The size of the space map object should not dramatically increase as a
1264  * result of writing out the free space range tree.
1265  *
1266  * 2. The minimal on-disk space map representation is zfs_condense_pct/100
1267  * times the size than the free space range tree representation
1268  * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
1269  *
1270  * Checking the first condition is tricky since we don't want to walk
1271  * the entire AVL tree calculating the estimated on-disk size. Instead we
1272  * use the size-ordered range tree in the metaslab and calculate the
1273  * size required to write out the largest segment in our free tree. If the
1274  * size required to represent that segment on disk is larger than the space
1275  * map object then we avoid condensing this map.
1276  *
1277  * To determine the second criterion we use a best-case estimate and assume
1278  * each segment can be represented on-disk as a single 64-bit entry. We refer
1279  * to this best-case estimate as the space map's minimal form.
1280  */
1281 static boolean_t
1282 metaslab_should_condense(metaslab_t *msp)
1283 {
1284         space_map_t *sm = msp->ms_sm;
1285         range_seg_t *rs;
1286         uint64_t size, entries, segsz;
1287 
1288         ASSERT(MUTEX_HELD(&msp->ms_lock));
1289         ASSERT(msp->ms_loaded);
1290 
1291         /*
1292          * Use the ms_size_tree range tree, which is ordered by size, to
1293          * obtain the largest segment in the free tree. If the tree is empty
1294          * then we should condense the map.
1295          */
1296         rs = avl_last(&msp->ms_size_tree);
1297         if (rs == NULL)
1298                 return (B_TRUE);
1299 
1300         /*
1301          * Calculate the number of 64-bit entries this segment would
1302          * require when written to disk. If this single segment would be
1303          * larger on-disk than the entire current on-disk structure, then
1304          * clearly condensing will increase the on-disk structure size.
1305          */
1306         size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
1307         entries = size / (MIN(size, SM_RUN_MAX));
1308         segsz = entries * sizeof (uint64_t);
1309 
1310         return (segsz <= space_map_length(msp->ms_sm) &&
1311             space_map_length(msp->ms_sm) >= (zfs_condense_pct *
1312             sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root)) / 100);
1313 }
1314 
1315 /*
1316  * Condense the on-disk space map representation to its minimized form.
1317  * The minimized form consists of a small number of allocations followed by
1318  * the entries of the free range tree.
1319  */
1320 static void
1321 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
1322 {
1323         spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1324         range_tree_t *freetree = msp->ms_freetree[txg & TXG_MASK];
1325         range_tree_t *condense_tree;
1326         space_map_t *sm = msp->ms_sm;
1327 
1328         ASSERT(MUTEX_HELD(&msp->ms_lock));
1329         ASSERT3U(spa_sync_pass(spa), ==, 1);
1330         ASSERT(msp->ms_loaded);
1331 
1332         spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, "
1333             "smp size %llu, segments %lu", txg, msp->ms_id, msp,
1334             space_map_length(msp->ms_sm), avl_numnodes(&msp->ms_tree->rt_root));
1335 
1336         /*
1337          * Create an range tree that is 100% allocated. We remove segments
1338          * that have been freed in this txg, any deferred frees that exist,
1339          * and any allocation in the future. Removing segments should be
1340          * a relatively inexpensive operation since we expect these trees to
1341          * have a small number of nodes.
1342          */
1343         condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
1344         range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
1345 
1346         /*
1347          * Remove what's been freed in this txg from the condense_tree.
1348          * Since we're in sync_pass 1, we know that all the frees from
1349          * this txg are in the freetree.
1350          */
1351         range_tree_walk(freetree, range_tree_remove, condense_tree);
1352 
1353         for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1354                 range_tree_walk(msp->ms_defertree[t],
1355                     range_tree_remove, condense_tree);
1356         }
1357 
1358         for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
1359                 range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
1360                     range_tree_remove, condense_tree);
1361         }
1362 
1363         /*
1364          * We're about to drop the metaslab's lock thus allowing
1365          * other consumers to change it's content. Set the
1366          * metaslab's ms_condensing flag to ensure that
1367          * allocations on this metaslab do not occur while we're
1368          * in the middle of committing it to disk. This is only critical
1369          * for the ms_tree as all other range trees use per txg
1370          * views of their content.
1371          */
1372         msp->ms_condensing = B_TRUE;
1373 
1374         mutex_exit(&msp->ms_lock);
1375         space_map_truncate(sm, tx);
1376         mutex_enter(&msp->ms_lock);
1377 
1378         /*
1379          * While we would ideally like to create a space_map representation
1380          * that consists only of allocation records, doing so can be
1381          * prohibitively expensive because the in-core free tree can be
1382          * large, and therefore computationally expensive to subtract
1383          * from the condense_tree. Instead we sync out two trees, a cheap
1384          * allocation only tree followed by the in-core free tree. While not
1385          * optimal, this is typically close to optimal, and much cheaper to
1386          * compute.
1387          */
1388         space_map_write(sm, condense_tree, SM_ALLOC, tx);
1389         range_tree_vacate(condense_tree, NULL, NULL);
1390         range_tree_destroy(condense_tree);
1391 
1392         space_map_write(sm, msp->ms_tree, SM_FREE, tx);
1393         msp->ms_condensing = B_FALSE;
1394 }
1395 
1396 /*
1397  * Write a metaslab to disk in the context of the specified transaction group.
1398  */
1399 void
1400 metaslab_sync(metaslab_t *msp, uint64_t txg)
1401 {
1402         metaslab_group_t *mg = msp->ms_group;
1403         vdev_t *vd = mg->mg_vd;
1404         spa_t *spa = vd->vdev_spa;
1405         objset_t *mos = spa_meta_objset(spa);
1406         range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
1407         range_tree_t **freetree = &msp->ms_freetree[txg & TXG_MASK];
1408         range_tree_t **freed_tree =
1409             &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1410         dmu_tx_t *tx;
1411         uint64_t object = space_map_object(msp->ms_sm);
1412 
1413         ASSERT(!vd->vdev_ishole);
1414 
1415         /*
1416          * This metaslab has just been added so there's no work to do now.
1417          */
1418         if (*freetree == NULL) {
1419                 ASSERT3P(alloctree, ==, NULL);
1420                 return;
1421         }
1422 
1423         ASSERT3P(alloctree, !=, NULL);
1424         ASSERT3P(*freetree, !=, NULL);
1425         ASSERT3P(*freed_tree, !=, NULL);
1426 
1427         if (range_tree_space(alloctree) == 0 &&
1428             range_tree_space(*freetree) == 0)
1429                 return;
1430 
1431         /*
1432          * The only state that can actually be changing concurrently with
1433          * metaslab_sync() is the metaslab's ms_tree.  No other thread can
1434          * be modifying this txg's alloctree, freetree, freed_tree, or
1435          * space_map_phys_t. Therefore, we only hold ms_lock to satify
1436          * space_map ASSERTs. We drop it whenever we call into the DMU,
1437          * because the DMU can call down to us (e.g. via zio_free()) at
1438          * any time.
1439          */
1440 
1441         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1442 
1443         if (msp->ms_sm == NULL) {
1444                 uint64_t new_object;
1445 
1446                 new_object = space_map_alloc(mos, tx);
1447                 VERIFY3U(new_object, !=, 0);
1448 
1449                 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
1450                     msp->ms_start, msp->ms_size, vd->vdev_ashift,
1451                     &msp->ms_lock));
1452                 ASSERT(msp->ms_sm != NULL);
1453         }
1454 
1455         mutex_enter(&msp->ms_lock);
1456 
1457         if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
1458             metaslab_should_condense(msp)) {
1459                 metaslab_condense(msp, txg, tx);
1460         } else {
1461                 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
1462                 space_map_write(msp->ms_sm, *freetree, SM_FREE, tx);
1463         }
1464 
1465         range_tree_vacate(alloctree, NULL, NULL);
1466 
1467         if (msp->ms_loaded) {
1468                 /*
1469                  * When the space map is loaded, we have an accruate
1470                  * histogram in the range tree. This gives us an opportunity
1471                  * to bring the space map's histogram up-to-date so we clear
1472                  * it first before updating it.
1473                  */
1474                 space_map_histogram_clear(msp->ms_sm);
1475                 space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
1476         } else {
1477                 /*
1478                  * Since the space map is not loaded we simply update the
1479                  * exisiting histogram with what was freed in this txg. This
1480                  * means that the on-disk histogram may not have an accurate
1481                  * view of the free space but it's close enough to allow
1482                  * us to make allocation decisions.
1483                  */
1484                 space_map_histogram_add(msp->ms_sm, *freetree, tx);
1485         }
1486 
1487         /*
1488          * For sync pass 1, we avoid traversing this txg's free range tree
1489          * and instead will just swap the pointers for freetree and
1490          * freed_tree. We can safely do this since the freed_tree is
1491          * guaranteed to be empty on the initial pass.
1492          */
1493         if (spa_sync_pass(spa) == 1) {
1494                 range_tree_swap(freetree, freed_tree);
1495         } else {
1496                 range_tree_vacate(*freetree, range_tree_add, *freed_tree);
1497         }
1498 
1499         ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1500         ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
1501 
1502         mutex_exit(&msp->ms_lock);
1503 
1504         if (object != space_map_object(msp->ms_sm)) {
1505                 object = space_map_object(msp->ms_sm);
1506                 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
1507                     msp->ms_id, sizeof (uint64_t), &object, tx);
1508         }
1509         dmu_tx_commit(tx);
1510 }
1511 
1512 /*
1513  * Called after a transaction group has completely synced to mark
1514  * all of the metaslab's free space as usable.
1515  */
1516 void
1517 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
1518 {
1519         metaslab_group_t *mg = msp->ms_group;
1520         vdev_t *vd = mg->mg_vd;
1521         range_tree_t **freed_tree;
1522         range_tree_t **defer_tree;
1523         int64_t alloc_delta, defer_delta;
1524 
1525         ASSERT(!vd->vdev_ishole);
1526 
1527         mutex_enter(&msp->ms_lock);
1528 
1529         /*
1530          * If this metaslab is just becoming available, initialize its
1531          * alloctrees, freetrees, and defertree and add its capacity to
1532          * the vdev.
1533          */
1534         if (msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK] == NULL) {
1535                 for (int t = 0; t < TXG_SIZE; t++) {
1536                         ASSERT(msp->ms_alloctree[t] == NULL);
1537                         ASSERT(msp->ms_freetree[t] == NULL);
1538 
1539                         msp->ms_alloctree[t] = range_tree_create(NULL, msp,
1540                             &msp->ms_lock);
1541                         msp->ms_freetree[t] = range_tree_create(NULL, msp,
1542                             &msp->ms_lock);
1543                 }
1544 
1545                 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1546                         ASSERT(msp->ms_defertree[t] == NULL);
1547 
1548                         msp->ms_defertree[t] = range_tree_create(NULL, msp,
1549                             &msp->ms_lock);
1550                 }
1551 
1552                 vdev_space_update(vd, 0, 0, msp->ms_size);
1553         }
1554 
1555         freed_tree = &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1556         defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
1557 
1558         alloc_delta = space_map_alloc_delta(msp->ms_sm);
1559         defer_delta = range_tree_space(*freed_tree) -
1560             range_tree_space(*defer_tree);
1561 
1562         vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
1563 
1564         ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1565         ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
1566 
1567         /*
1568          * If there's a metaslab_load() in progress, wait for it to complete
1569          * so that we have a consistent view of the in-core space map.
1570          */
1571         metaslab_load_wait(msp);
1572 
1573         /*
1574          * Move the frees from the defer_tree back to the free
1575          * range tree (if it's loaded). Swap the freed_tree and the
1576          * defer_tree -- this is safe to do because we've just emptied out
1577          * the defer_tree.
1578          */
1579         range_tree_vacate(*defer_tree,
1580             msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
1581         range_tree_swap(freed_tree, defer_tree);
1582 
1583         space_map_update(msp->ms_sm);
1584 
1585         msp->ms_deferspace += defer_delta;
1586         ASSERT3S(msp->ms_deferspace, >=, 0);
1587         ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
1588         if (msp->ms_deferspace != 0) {
1589                 /*
1590                  * Keep syncing this metaslab until all deferred frees
1591                  * are back in circulation.
1592                  */
1593                 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1594         }
1595 
1596         if (msp->ms_loaded && msp->ms_access_txg < txg) {
1597                 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
1598                         VERIFY0(range_tree_space(
1599                             msp->ms_alloctree[(txg + t) & TXG_MASK]));
1600                 }
1601 
1602                 if (!metaslab_debug_unload)
1603                         metaslab_unload(msp);
1604         }
1605 
1606         metaslab_group_sort(mg, msp, metaslab_weight(msp));
1607         mutex_exit(&msp->ms_lock);
1608 
1609 }
1610 
1611 void
1612 metaslab_sync_reassess(metaslab_group_t *mg)
1613 {
1614         int64_t failures = mg->mg_alloc_failures;
1615 
1616         metaslab_group_alloc_update(mg);
1617         atomic_add_64(&mg->mg_alloc_failures, -failures);
1618 
1619         /*
1620          * Preload the next potential metaslabs
1621          */
1622         metaslab_group_preload(mg);
1623 }
1624 
1625 static uint64_t
1626 metaslab_distance(metaslab_t *msp, dva_t *dva)
1627 {
1628         uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
1629         uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
1630         uint64_t start = msp->ms_id;
1631 
1632         if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
1633                 return (1ULL << 63);
1634 
1635         if (offset < start)
1636                 return ((start - offset) << ms_shift);
1637         if (offset > start)
1638                 return ((offset - start) << ms_shift);
1639         return (0);
1640 }
1641 
1642 static uint64_t
1643 metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
1644     uint64_t txg, uint64_t min_distance, dva_t *dva, int d, int flags)
1645 {
1646         spa_t *spa = mg->mg_vd->vdev_spa;
1647         metaslab_t *msp = NULL;
1648         uint64_t offset = -1ULL;
1649         avl_tree_t *t = &mg->mg_metaslab_tree;
1650         uint64_t activation_weight;
1651         uint64_t target_distance;
1652         int i;
1653 
1654         activation_weight = METASLAB_WEIGHT_PRIMARY;
1655         for (i = 0; i < d; i++) {
1656                 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
1657                         activation_weight = METASLAB_WEIGHT_SECONDARY;
1658                         break;
1659                 }
1660         }
1661 
1662         for (;;) {
1663                 boolean_t was_active;
1664 
1665                 mutex_enter(&mg->mg_lock);
1666                 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
1667                         if (msp->ms_weight < asize) {
1668                                 spa_dbgmsg(spa, "%s: failed to meet weight "
1669                                     "requirement: vdev %llu, txg %llu, mg %p, "
1670                                     "msp %p, psize %llu, asize %llu, "
1671                                     "failures %llu, weight %llu",
1672                                     spa_name(spa), mg->mg_vd->vdev_id, txg,
1673                                     mg, msp, psize, asize,
1674                                     mg->mg_alloc_failures, msp->ms_weight);
1675                                 mutex_exit(&mg->mg_lock);
1676                                 return (-1ULL);
1677                         }
1678 
1679                         /*
1680                          * If the selected metaslab is condensing, skip it.
1681                          */
1682                         if (msp->ms_condensing)
1683                                 continue;
1684 
1685                         was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
1686                         if (activation_weight == METASLAB_WEIGHT_PRIMARY)
1687                                 break;
1688 
1689                         target_distance = min_distance +
1690                             (space_map_allocated(msp->ms_sm) != 0 ? 0 :
1691                             min_distance >> 1);
1692 
1693                         for (i = 0; i < d; i++)
1694                                 if (metaslab_distance(msp, &dva[i]) <
1695                                     target_distance)
1696                                         break;
1697                         if (i == d)
1698                                 break;
1699                 }
1700                 mutex_exit(&mg->mg_lock);
1701                 if (msp == NULL)
1702                         return (-1ULL);
1703 
1704                 mutex_enter(&msp->ms_lock);
1705 
1706                 /*
1707                  * If we've already reached the allowable number of failed
1708                  * allocation attempts on this metaslab group then we
1709                  * consider skipping it. We skip it only if we're allowed
1710                  * to "fast" gang, the physical size is larger than
1711                  * a gang block, and we're attempting to allocate from
1712                  * the primary metaslab.
1713                  */
1714                 if (mg->mg_alloc_failures > zfs_mg_alloc_failures &&
1715                     CAN_FASTGANG(flags) && psize > SPA_GANGBLOCKSIZE &&
1716                     activation_weight == METASLAB_WEIGHT_PRIMARY) {
1717                         spa_dbgmsg(spa, "%s: skipping metaslab group: "
1718                             "vdev %llu, txg %llu, mg %p, msp[%llu] %p, "
1719                             "psize %llu, asize %llu, failures %llu",
1720                             spa_name(spa), mg->mg_vd->vdev_id, txg, mg,
1721                             msp->ms_id, msp, psize, asize,
1722                             mg->mg_alloc_failures);
1723                         mutex_exit(&msp->ms_lock);
1724                         return (-1ULL);
1725                 }
1726 
1727                 /*
1728                  * Ensure that the metaslab we have selected is still
1729                  * capable of handling our request. It's possible that
1730                  * another thread may have changed the weight while we
1731                  * were blocked on the metaslab lock.
1732                  */
1733                 if (msp->ms_weight < asize || (was_active &&
1734                     !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
1735                     activation_weight == METASLAB_WEIGHT_PRIMARY)) {
1736                         mutex_exit(&msp->ms_lock);
1737                         continue;
1738                 }
1739 
1740                 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
1741                     activation_weight == METASLAB_WEIGHT_PRIMARY) {
1742                         metaslab_passivate(msp,
1743                             msp->ms_weight & ~METASLAB_ACTIVE_MASK);
1744                         mutex_exit(&msp->ms_lock);
1745                         continue;
1746                 }
1747 
1748                 if (metaslab_activate(msp, activation_weight) != 0) {
1749                         mutex_exit(&msp->ms_lock);
1750                         continue;
1751                 }
1752 
1753                 /*
1754                  * If this metaslab is currently condensing then pick again as
1755                  * we can't manipulate this metaslab until it's committed
1756                  * to disk.
1757                  */
1758                 if (msp->ms_condensing) {
1759                         mutex_exit(&msp->ms_lock);
1760                         continue;
1761                 }
1762 
1763                 if ((offset = metaslab_block_alloc(msp, asize)) != -1ULL)
1764                         break;
1765 
1766                 atomic_inc_64(&mg->mg_alloc_failures);
1767 
1768                 metaslab_passivate(msp, metaslab_block_maxsize(msp));
1769                 mutex_exit(&msp->ms_lock);
1770         }
1771 
1772         if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
1773                 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
1774 
1775         range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, asize);
1776         msp->ms_access_txg = txg + metaslab_unload_delay;
1777 
1778         mutex_exit(&msp->ms_lock);
1779 
1780         return (offset);
1781 }
1782 
1783 /*
1784  * Allocate a block for the specified i/o.
1785  */
1786 static int
1787 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
1788     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
1789 {
1790         metaslab_group_t *mg, *rotor;
1791         vdev_t *vd;
1792         int dshift = 3;
1793         int all_zero;
1794         int zio_lock = B_FALSE;
1795         boolean_t allocatable;
1796         uint64_t offset = -1ULL;
1797         uint64_t asize;
1798         uint64_t distance;
1799 
1800         ASSERT(!DVA_IS_VALID(&dva[d]));
1801 
1802         /*
1803          * For testing, make some blocks above a certain size be gang blocks.
1804          */
1805         if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
1806                 return (SET_ERROR(ENOSPC));
1807 
1808         /*
1809          * Start at the rotor and loop through all mgs until we find something.
1810          * Note that there's no locking on mc_rotor or mc_aliquot because
1811          * nothing actually breaks if we miss a few updates -- we just won't
1812          * allocate quite as evenly.  It all balances out over time.
1813          *
1814          * If we are doing ditto or log blocks, try to spread them across
1815          * consecutive vdevs.  If we're forced to reuse a vdev before we've
1816          * allocated all of our ditto blocks, then try and spread them out on
1817          * that vdev as much as possible.  If it turns out to not be possible,
1818          * gradually lower our standards until anything becomes acceptable.
1819          * Also, allocating on consecutive vdevs (as opposed to random vdevs)
1820          * gives us hope of containing our fault domains to something we're
1821          * able to reason about.  Otherwise, any two top-level vdev failures
1822          * will guarantee the loss of data.  With consecutive allocation,
1823          * only two adjacent top-level vdev failures will result in data loss.
1824          *
1825          * If we are doing gang blocks (hintdva is non-NULL), try to keep
1826          * ourselves on the same vdev as our gang block header.  That
1827          * way, we can hope for locality in vdev_cache, plus it makes our
1828          * fault domains something tractable.
1829          */
1830         if (hintdva) {
1831                 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
1832 
1833                 /*
1834                  * It's possible the vdev we're using as the hint no
1835                  * longer exists (i.e. removed). Consult the rotor when
1836                  * all else fails.
1837                  */
1838                 if (vd != NULL) {
1839                         mg = vd->vdev_mg;
1840 
1841                         if (flags & METASLAB_HINTBP_AVOID &&
1842                             mg->mg_next != NULL)
1843                                 mg = mg->mg_next;
1844                 } else {
1845                         mg = mc->mc_rotor;
1846                 }
1847         } else if (d != 0) {
1848                 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
1849                 mg = vd->vdev_mg->mg_next;
1850         } else {
1851                 mg = mc->mc_rotor;
1852         }
1853 
1854         /*
1855          * If the hint put us into the wrong metaslab class, or into a
1856          * metaslab group that has been passivated, just follow the rotor.
1857          */
1858         if (mg->mg_class != mc || mg->mg_activation_count <= 0)
1859                 mg = mc->mc_rotor;
1860 
1861         rotor = mg;
1862 top:
1863         all_zero = B_TRUE;
1864         do {
1865                 ASSERT(mg->mg_activation_count == 1);
1866 
1867                 vd = mg->mg_vd;
1868 
1869                 /*
1870                  * Don't allocate from faulted devices.
1871                  */
1872                 if (zio_lock) {
1873                         spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
1874                         allocatable = vdev_allocatable(vd);
1875                         spa_config_exit(spa, SCL_ZIO, FTAG);
1876                 } else {
1877                         allocatable = vdev_allocatable(vd);
1878                 }
1879 
1880                 /*
1881                  * Determine if the selected metaslab group is eligible
1882                  * for allocations. If we're ganging or have requested
1883                  * an allocation for the smallest gang block size
1884                  * then we don't want to avoid allocating to the this
1885                  * metaslab group. If we're in this condition we should
1886                  * try to allocate from any device possible so that we
1887                  * don't inadvertently return ENOSPC and suspend the pool
1888                  * even though space is still available.
1889                  */
1890                 if (allocatable && CAN_FASTGANG(flags) &&
1891                     psize > SPA_GANGBLOCKSIZE)
1892                         allocatable = metaslab_group_allocatable(mg);
1893 
1894                 if (!allocatable)
1895                         goto next;
1896 
1897                 /*
1898                  * Avoid writing single-copy data to a failing vdev
1899                  * unless the user instructs us that it is okay.
1900                  */
1901                 if ((vd->vdev_stat.vs_write_errors > 0 ||
1902                     vd->vdev_state < VDEV_STATE_HEALTHY) &&
1903                     d == 0 && dshift == 3 &&
1904                     !(zfs_write_to_degraded && vd->vdev_state ==
1905                     VDEV_STATE_DEGRADED)) {
1906                         all_zero = B_FALSE;
1907                         goto next;
1908                 }
1909 
1910                 ASSERT(mg->mg_class == mc);
1911 
1912                 distance = vd->vdev_asize >> dshift;
1913                 if (distance <= (1ULL << vd->vdev_ms_shift))
1914                         distance = 0;
1915                 else
1916                         all_zero = B_FALSE;
1917 
1918                 asize = vdev_psize_to_asize(vd, psize);
1919                 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
1920 
1921                 offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
1922                     dva, d, flags);
1923                 if (offset != -1ULL) {
1924                         /*
1925                          * If we've just selected this metaslab group,
1926                          * figure out whether the corresponding vdev is
1927                          * over- or under-used relative to the pool,
1928                          * and set an allocation bias to even it out.
1929                          */
1930                         if (mc->mc_aliquot == 0) {
1931                                 vdev_stat_t *vs = &vd->vdev_stat;
1932                                 int64_t vu, cu;
1933 
1934                                 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
1935                                 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
1936 
1937                                 /*
1938                                  * Calculate how much more or less we should
1939                                  * try to allocate from this device during
1940                                  * this iteration around the rotor.
1941                                  * For example, if a device is 80% full
1942                                  * and the pool is 20% full then we should
1943                                  * reduce allocations by 60% on this device.
1944                                  *
1945                                  * mg_bias = (20 - 80) * 512K / 100 = -307K
1946                                  *
1947                                  * This reduces allocations by 307K for this
1948                                  * iteration.
1949                                  */
1950                                 mg->mg_bias = ((cu - vu) *
1951                                     (int64_t)mg->mg_aliquot) / 100;
1952                         }
1953 
1954                         if (atomic_add_64_nv(&mc->mc_aliquot, asize) >=
1955                             mg->mg_aliquot + mg->mg_bias) {
1956                                 mc->mc_rotor = mg->mg_next;
1957                                 mc->mc_aliquot = 0;
1958                         }
1959 
1960                         DVA_SET_VDEV(&dva[d], vd->vdev_id);
1961                         DVA_SET_OFFSET(&dva[d], offset);
1962                         DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
1963                         DVA_SET_ASIZE(&dva[d], asize);
1964 
1965                         return (0);
1966                 }
1967 next:
1968                 mc->mc_rotor = mg->mg_next;
1969                 mc->mc_aliquot = 0;
1970         } while ((mg = mg->mg_next) != rotor);
1971 
1972         if (!all_zero) {
1973                 dshift++;
1974                 ASSERT(dshift < 64);
1975                 goto top;
1976         }
1977 
1978         if (!allocatable && !zio_lock) {
1979                 dshift = 3;
1980                 zio_lock = B_TRUE;
1981                 goto top;
1982         }
1983 
1984         bzero(&dva[d], sizeof (dva_t));
1985 
1986         return (SET_ERROR(ENOSPC));
1987 }
1988 
1989 /*
1990  * Free the block represented by DVA in the context of the specified
1991  * transaction group.
1992  */
1993 static void
1994 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
1995 {
1996         uint64_t vdev = DVA_GET_VDEV(dva);
1997         uint64_t offset = DVA_GET_OFFSET(dva);
1998         uint64_t size = DVA_GET_ASIZE(dva);
1999         vdev_t *vd;
2000         metaslab_t *msp;
2001 
2002         ASSERT(DVA_IS_VALID(dva));
2003 
2004         if (txg > spa_freeze_txg(spa))
2005                 return;
2006 
2007         if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2008             (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
2009                 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
2010                     (u_longlong_t)vdev, (u_longlong_t)offset);
2011                 ASSERT(0);
2012                 return;
2013         }
2014 
2015         msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2016 
2017         if (DVA_GET_GANG(dva))
2018                 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2019 
2020         mutex_enter(&msp->ms_lock);
2021 
2022         if (now) {
2023                 range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
2024                     offset, size);
2025 
2026                 VERIFY(!msp->ms_condensing);
2027                 VERIFY3U(offset, >=, msp->ms_start);
2028                 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
2029                 VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
2030                     msp->ms_size);
2031                 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2032                 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2033                 range_tree_add(msp->ms_tree, offset, size);
2034         } else {
2035                 if (range_tree_space(msp->ms_freetree[txg & TXG_MASK]) == 0)
2036                         vdev_dirty(vd, VDD_METASLAB, msp, txg);
2037                 range_tree_add(msp->ms_freetree[txg & TXG_MASK],
2038                     offset, size);
2039         }
2040 
2041         mutex_exit(&msp->ms_lock);
2042 }
2043 
2044 /*
2045  * Intent log support: upon opening the pool after a crash, notify the SPA
2046  * of blocks that the intent log has allocated for immediate write, but
2047  * which are still considered free by the SPA because the last transaction
2048  * group didn't commit yet.
2049  */
2050 static int
2051 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
2052 {
2053         uint64_t vdev = DVA_GET_VDEV(dva);
2054         uint64_t offset = DVA_GET_OFFSET(dva);
2055         uint64_t size = DVA_GET_ASIZE(dva);
2056         vdev_t *vd;
2057         metaslab_t *msp;
2058         int error = 0;
2059 
2060         ASSERT(DVA_IS_VALID(dva));
2061 
2062         if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2063             (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
2064                 return (SET_ERROR(ENXIO));
2065 
2066         msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2067 
2068         if (DVA_GET_GANG(dva))
2069                 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2070 
2071         mutex_enter(&msp->ms_lock);
2072 
2073         if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
2074                 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
2075 
2076         if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
2077                 error = SET_ERROR(ENOENT);
2078 
2079         if (error || txg == 0) {        /* txg == 0 indicates dry run */
2080                 mutex_exit(&msp->ms_lock);
2081                 return (error);
2082         }
2083 
2084         VERIFY(!msp->ms_condensing);
2085         VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2086         VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2087         VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
2088         range_tree_remove(msp->ms_tree, offset, size);
2089 
2090         if (spa_writeable(spa)) {       /* don't dirty if we're zdb(1M) */
2091                 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2092                         vdev_dirty(vd, VDD_METASLAB, msp, txg);
2093                 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
2094         }
2095 
2096         mutex_exit(&msp->ms_lock);
2097 
2098         return (0);
2099 }
2100 
2101 int
2102 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
2103     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
2104 {
2105         dva_t *dva = bp->blk_dva;
2106         dva_t *hintdva = hintbp->blk_dva;
2107         int error = 0;
2108 
2109         ASSERT(bp->blk_birth == 0);
2110         ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
2111 
2112         spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2113 
2114         if (mc->mc_rotor == NULL) {  /* no vdevs in this class */
2115                 spa_config_exit(spa, SCL_ALLOC, FTAG);
2116                 return (SET_ERROR(ENOSPC));
2117         }
2118 
2119         ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
2120         ASSERT(BP_GET_NDVAS(bp) == 0);
2121         ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
2122 
2123         for (int d = 0; d < ndvas; d++) {
2124                 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
2125                     txg, flags);
2126                 if (error != 0) {
2127                         for (d--; d >= 0; d--) {
2128                                 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
2129                                 bzero(&dva[d], sizeof (dva_t));
2130                         }
2131                         spa_config_exit(spa, SCL_ALLOC, FTAG);
2132                         return (error);
2133                 }
2134         }
2135         ASSERT(error == 0);
2136         ASSERT(BP_GET_NDVAS(bp) == ndvas);
2137 
2138         spa_config_exit(spa, SCL_ALLOC, FTAG);
2139 
2140         BP_SET_BIRTH(bp, txg, txg);
2141 
2142         return (0);
2143 }
2144 
2145 void
2146 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
2147 {
2148         const dva_t *dva = bp->blk_dva;
2149         int ndvas = BP_GET_NDVAS(bp);
2150 
2151         ASSERT(!BP_IS_HOLE(bp));
2152         ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
2153 
2154         spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
2155 
2156         for (int d = 0; d < ndvas; d++)
2157                 metaslab_free_dva(spa, &dva[d], txg, now);
2158 
2159         spa_config_exit(spa, SCL_FREE, FTAG);
2160 }
2161 
2162 int
2163 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
2164 {
2165         const dva_t *dva = bp->blk_dva;
2166         int ndvas = BP_GET_NDVAS(bp);
2167         int error = 0;
2168 
2169         ASSERT(!BP_IS_HOLE(bp));
2170 
2171         if (txg != 0) {
2172                 /*
2173                  * First do a dry run to make sure all DVAs are claimable,
2174                  * so we don't have to unwind from partial failures below.
2175                  */
2176                 if ((error = metaslab_claim(spa, bp, 0)) != 0)
2177                         return (error);
2178         }
2179 
2180         spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2181 
2182         for (int d = 0; d < ndvas; d++)
2183                 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
2184                         break;
2185 
2186         spa_config_exit(spa, SCL_ALLOC, FTAG);
2187 
2188         ASSERT(error == 0 || txg == 0);
2189 
2190         return (error);
2191 }
2192 
2193 void
2194 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
2195 {
2196         if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
2197                 return;
2198 
2199         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2200         for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
2201                 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
2202                 vdev_t *vd = vdev_lookup_top(spa, vdev);
2203                 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
2204                 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
2205                 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2206 
2207                 if (msp->ms_loaded)
2208                         range_tree_verify(msp->ms_tree, offset, size);
2209 
2210                 for (int j = 0; j < TXG_SIZE; j++)
2211                         range_tree_verify(msp->ms_freetree[j], offset, size);
2212                 for (int j = 0; j < TXG_DEFER_SIZE; j++)
2213                         range_tree_verify(msp->ms_defertree[j], offset, size);
2214         }
2215         spa_config_exit(spa, SCL_VDEV, FTAG);
2216 }