1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/dmu.h> 29 #include <sys/dmu_tx.h> 30 #include <sys/space_map.h> 31 #include <sys/metaslab_impl.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/zio.h> 34 35 /* 36 * Allow allocations to switch to gang blocks quickly. We do this to 37 * avoid having to load lots of space_maps in a given txg. There are, 38 * however, some cases where we want to avoid "fast" ganging and instead 39 * we want to do an exhaustive search of all metaslabs on this device. 40 * Currently we don't allow any gang, zil, or dump device related allocations 41 * to "fast" gang. 42 */ 43 #define CAN_FASTGANG(flags) \ 44 (!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \ 45 METASLAB_GANG_AVOID))) 46 47 uint64_t metaslab_aliquot = 512ULL << 10; 48 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */ 49 50 /* 51 * The in-core space map representation is more compact than its on-disk form. 52 * The zfs_condense_pct determines how much more compact the in-core 53 * space_map representation must be before we compact it on-disk. 54 * Values should be greater than or equal to 100. 55 */ 56 int zfs_condense_pct = 200; 57 58 /* 59 * This value defines the number of allowed allocation failures per vdev. 60 * If a device reaches this threshold in a given txg then we consider skipping 61 * allocations on that device. The value of zfs_mg_alloc_failures is computed 62 * in zio_init() unless it has been overridden in /etc/system. 63 */ 64 int zfs_mg_alloc_failures = 0; 65 66 /* 67 * The zfs_mg_noalloc_threshold defines which metaslab groups should 68 * be eligible for allocation. The value is defined as a percentage of 69 * a free space. Metaslab groups that have more free space than 70 * zfs_mg_noalloc_threshold are always eligible for allocations. Once 71 * a metaslab group's free space is less than or equal to the 72 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that 73 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold. 74 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all 75 * groups are allowed to accept allocations. Gang blocks are always 76 * eligible to allocate on any metaslab group. The default value of 0 means 77 * no metaslab group will be excluded based on this criterion. 78 */ 79 int zfs_mg_noalloc_threshold = 0; 80 81 /* 82 * Metaslab debugging: when set, keeps all space maps in core to verify frees. 83 */ 84 static int metaslab_debug = 0; 85 86 /* 87 * Minimum size which forces the dynamic allocator to change 88 * it's allocation strategy. Once the space map cannot satisfy 89 * an allocation of this size then it switches to using more 90 * aggressive strategy (i.e search by size rather than offset). 91 */ 92 uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE; 93 94 /* 95 * The minimum free space, in percent, which must be available 96 * in a space map to continue allocations in a first-fit fashion. 97 * Once the space_map's free space drops below this level we dynamically 98 * switch to using best-fit allocations. 99 */ 100 int metaslab_df_free_pct = 4; 101 102 /* 103 * A metaslab is considered "free" if it contains a contiguous 104 * segment which is greater than metaslab_min_alloc_size. 105 */ 106 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS; 107 108 /* 109 * Max number of space_maps to prefetch. 110 */ 111 int metaslab_prefetch_limit = SPA_DVAS_PER_BP; 112 113 /* 114 * Percentage bonus multiplier for metaslabs that are in the bonus area. 115 */ 116 int metaslab_smo_bonus_pct = 150; 117 118 /* 119 * Should we be willing to write data to degraded vdevs? 120 */ 121 boolean_t zfs_write_to_degraded = B_FALSE; 122 123 /* 124 * ========================================================================== 125 * Metaslab classes 126 * ========================================================================== 127 */ 128 metaslab_class_t * 129 metaslab_class_create(spa_t *spa, space_map_ops_t *ops) 130 { 131 metaslab_class_t *mc; 132 133 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP); 134 135 mc->mc_spa = spa; 136 mc->mc_rotor = NULL; 137 mc->mc_ops = ops; 138 139 return (mc); 140 } 141 142 void 143 metaslab_class_destroy(metaslab_class_t *mc) 144 { 145 ASSERT(mc->mc_rotor == NULL); 146 ASSERT(mc->mc_alloc == 0); 147 ASSERT(mc->mc_deferred == 0); 148 ASSERT(mc->mc_space == 0); 149 ASSERT(mc->mc_dspace == 0); 150 151 kmem_free(mc, sizeof (metaslab_class_t)); 152 } 153 154 int 155 metaslab_class_validate(metaslab_class_t *mc) 156 { 157 metaslab_group_t *mg; 158 vdev_t *vd; 159 160 /* 161 * Must hold one of the spa_config locks. 162 */ 163 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || 164 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); 165 166 if ((mg = mc->mc_rotor) == NULL) 167 return (0); 168 169 do { 170 vd = mg->mg_vd; 171 ASSERT(vd->vdev_mg != NULL); 172 ASSERT3P(vd->vdev_top, ==, vd); 173 ASSERT3P(mg->mg_class, ==, mc); 174 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); 175 } while ((mg = mg->mg_next) != mc->mc_rotor); 176 177 return (0); 178 } 179 180 void 181 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, 182 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) 183 { 184 atomic_add_64(&mc->mc_alloc, alloc_delta); 185 atomic_add_64(&mc->mc_deferred, defer_delta); 186 atomic_add_64(&mc->mc_space, space_delta); 187 atomic_add_64(&mc->mc_dspace, dspace_delta); 188 } 189 190 uint64_t 191 metaslab_class_get_alloc(metaslab_class_t *mc) 192 { 193 return (mc->mc_alloc); 194 } 195 196 uint64_t 197 metaslab_class_get_deferred(metaslab_class_t *mc) 198 { 199 return (mc->mc_deferred); 200 } 201 202 uint64_t 203 metaslab_class_get_space(metaslab_class_t *mc) 204 { 205 return (mc->mc_space); 206 } 207 208 uint64_t 209 metaslab_class_get_dspace(metaslab_class_t *mc) 210 { 211 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); 212 } 213 214 /* 215 * ========================================================================== 216 * Metaslab groups 217 * ========================================================================== 218 */ 219 static int 220 metaslab_compare(const void *x1, const void *x2) 221 { 222 const metaslab_t *m1 = x1; 223 const metaslab_t *m2 = x2; 224 225 if (m1->ms_weight < m2->ms_weight) 226 return (1); 227 if (m1->ms_weight > m2->ms_weight) 228 return (-1); 229 230 /* 231 * If the weights are identical, use the offset to force uniqueness. 232 */ 233 if (m1->ms_map->sm_start < m2->ms_map->sm_start) 234 return (-1); 235 if (m1->ms_map->sm_start > m2->ms_map->sm_start) 236 return (1); 237 238 ASSERT3P(m1, ==, m2); 239 240 return (0); 241 } 242 243 /* 244 * Update the allocatable flag and the metaslab group's capacity. 245 * The allocatable flag is set to true if the capacity is below 246 * the zfs_mg_noalloc_threshold. If a metaslab group transitions 247 * from allocatable to non-allocatable or vice versa then the metaslab 248 * group's class is updated to reflect the transition. 249 */ 250 static void 251 metaslab_group_alloc_update(metaslab_group_t *mg) 252 { 253 vdev_t *vd = mg->mg_vd; 254 metaslab_class_t *mc = mg->mg_class; 255 vdev_stat_t *vs = &vd->vdev_stat; 256 boolean_t was_allocatable; 257 258 ASSERT(vd == vd->vdev_top); 259 260 mutex_enter(&mg->mg_lock); 261 was_allocatable = mg->mg_allocatable; 262 263 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) / 264 (vs->vs_space + 1); 265 266 mg->mg_allocatable = (mg->mg_free_capacity > zfs_mg_noalloc_threshold); 267 268 /* 269 * The mc_alloc_groups maintains a count of the number of 270 * groups in this metaslab class that are still above the 271 * zfs_mg_noalloc_threshold. This is used by the allocating 272 * threads to determine if they should avoid allocations to 273 * a given group. The allocator will avoid allocations to a group 274 * if that group has reached or is below the zfs_mg_noalloc_threshold 275 * and there are still other groups that are above the threshold. 276 * When a group transitions from allocatable to non-allocatable or 277 * vice versa we update the metaslab class to reflect that change. 278 * When the mc_alloc_groups value drops to 0 that means that all 279 * groups have reached the zfs_mg_noalloc_threshold making all groups 280 * eligible for allocations. This effectively means that all devices 281 * are balanced again. 282 */ 283 if (was_allocatable && !mg->mg_allocatable) 284 mc->mc_alloc_groups--; 285 else if (!was_allocatable && mg->mg_allocatable) 286 mc->mc_alloc_groups++; 287 mutex_exit(&mg->mg_lock); 288 } 289 290 metaslab_group_t * 291 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd) 292 { 293 metaslab_group_t *mg; 294 295 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP); 296 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 297 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 298 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node)); 299 mg->mg_vd = vd; 300 mg->mg_class = mc; 301 mg->mg_activation_count = 0; 302 303 return (mg); 304 } 305 306 void 307 metaslab_group_destroy(metaslab_group_t *mg) 308 { 309 ASSERT(mg->mg_prev == NULL); 310 ASSERT(mg->mg_next == NULL); 311 /* 312 * We may have gone below zero with the activation count 313 * either because we never activated in the first place or 314 * because we're done, and possibly removing the vdev. 315 */ 316 ASSERT(mg->mg_activation_count <= 0); 317 318 avl_destroy(&mg->mg_metaslab_tree); 319 mutex_destroy(&mg->mg_lock); 320 kmem_free(mg, sizeof (metaslab_group_t)); 321 } 322 323 void 324 metaslab_group_activate(metaslab_group_t *mg) 325 { 326 metaslab_class_t *mc = mg->mg_class; 327 metaslab_group_t *mgprev, *mgnext; 328 329 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER)); 330 331 ASSERT(mc->mc_rotor != mg); 332 ASSERT(mg->mg_prev == NULL); 333 ASSERT(mg->mg_next == NULL); 334 ASSERT(mg->mg_activation_count <= 0); 335 336 if (++mg->mg_activation_count <= 0) 337 return; 338 339 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children); 340 metaslab_group_alloc_update(mg); 341 342 if ((mgprev = mc->mc_rotor) == NULL) { 343 mg->mg_prev = mg; 344 mg->mg_next = mg; 345 } else { 346 mgnext = mgprev->mg_next; 347 mg->mg_prev = mgprev; 348 mg->mg_next = mgnext; 349 mgprev->mg_next = mg; 350 mgnext->mg_prev = mg; 351 } 352 mc->mc_rotor = mg; 353 } 354 355 void 356 metaslab_group_passivate(metaslab_group_t *mg) 357 { 358 metaslab_class_t *mc = mg->mg_class; 359 metaslab_group_t *mgprev, *mgnext; 360 361 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER)); 362 363 if (--mg->mg_activation_count != 0) { 364 ASSERT(mc->mc_rotor != mg); 365 ASSERT(mg->mg_prev == NULL); 366 ASSERT(mg->mg_next == NULL); 367 ASSERT(mg->mg_activation_count < 0); 368 return; 369 } 370 371 mgprev = mg->mg_prev; 372 mgnext = mg->mg_next; 373 374 if (mg == mgnext) { 375 mc->mc_rotor = NULL; 376 } else { 377 mc->mc_rotor = mgnext; 378 mgprev->mg_next = mgnext; 379 mgnext->mg_prev = mgprev; 380 } 381 382 mg->mg_prev = NULL; 383 mg->mg_next = NULL; 384 } 385 386 static void 387 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 388 { 389 mutex_enter(&mg->mg_lock); 390 ASSERT(msp->ms_group == NULL); 391 msp->ms_group = mg; 392 msp->ms_weight = 0; 393 avl_add(&mg->mg_metaslab_tree, msp); 394 mutex_exit(&mg->mg_lock); 395 } 396 397 static void 398 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 399 { 400 mutex_enter(&mg->mg_lock); 401 ASSERT(msp->ms_group == mg); 402 avl_remove(&mg->mg_metaslab_tree, msp); 403 msp->ms_group = NULL; 404 mutex_exit(&mg->mg_lock); 405 } 406 407 static void 408 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 409 { 410 /* 411 * Although in principle the weight can be any value, in 412 * practice we do not use values in the range [1, 510]. 413 */ 414 ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0); 415 ASSERT(MUTEX_HELD(&msp->ms_lock)); 416 417 mutex_enter(&mg->mg_lock); 418 ASSERT(msp->ms_group == mg); 419 avl_remove(&mg->mg_metaslab_tree, msp); 420 msp->ms_weight = weight; 421 avl_add(&mg->mg_metaslab_tree, msp); 422 mutex_exit(&mg->mg_lock); 423 } 424 425 /* 426 * Determine if a given metaslab group should skip allocations. A metaslab 427 * group should avoid allocations if its used capacity has crossed the 428 * zfs_mg_noalloc_threshold and there is at least one metaslab group 429 * that can still handle allocations. 430 */ 431 static boolean_t 432 metaslab_group_allocatable(metaslab_group_t *mg) 433 { 434 vdev_t *vd = mg->mg_vd; 435 spa_t *spa = vd->vdev_spa; 436 metaslab_class_t *mc = mg->mg_class; 437 438 /* 439 * A metaslab group is considered allocatable if its free capacity 440 * is greater than the set value of zfs_mg_noalloc_threshold, it's 441 * associated with a slog, or there are no other metaslab groups 442 * with free capacity greater than zfs_mg_noalloc_threshold. 443 */ 444 return (mg->mg_free_capacity > zfs_mg_noalloc_threshold || 445 mc != spa_normal_class(spa) || mc->mc_alloc_groups == 0); 446 } 447 448 /* 449 * ========================================================================== 450 * Common allocator routines 451 * ========================================================================== 452 */ 453 static int 454 metaslab_segsize_compare(const void *x1, const void *x2) 455 { 456 const space_seg_t *s1 = x1; 457 const space_seg_t *s2 = x2; 458 uint64_t ss_size1 = s1->ss_end - s1->ss_start; 459 uint64_t ss_size2 = s2->ss_end - s2->ss_start; 460 461 if (ss_size1 < ss_size2) 462 return (-1); 463 if (ss_size1 > ss_size2) 464 return (1); 465 466 if (s1->ss_start < s2->ss_start) 467 return (-1); 468 if (s1->ss_start > s2->ss_start) 469 return (1); 470 471 return (0); 472 } 473 474 /* 475 * This is a helper function that can be used by the allocator to find 476 * a suitable block to allocate. This will search the specified AVL 477 * tree looking for a block that matches the specified criteria. 478 */ 479 static uint64_t 480 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size, 481 uint64_t align) 482 { 483 space_seg_t *ss, ssearch; 484 avl_index_t where; 485 486 ssearch.ss_start = *cursor; 487 ssearch.ss_end = *cursor + size; 488 489 ss = avl_find(t, &ssearch, &where); 490 if (ss == NULL) 491 ss = avl_nearest(t, where, AVL_AFTER); 492 493 while (ss != NULL) { 494 uint64_t offset = P2ROUNDUP(ss->ss_start, align); 495 496 if (offset + size <= ss->ss_end) { 497 *cursor = offset + size; 498 return (offset); 499 } 500 ss = AVL_NEXT(t, ss); 501 } 502 503 /* 504 * If we know we've searched the whole map (*cursor == 0), give up. 505 * Otherwise, reset the cursor to the beginning and try again. 506 */ 507 if (*cursor == 0) 508 return (-1ULL); 509 510 *cursor = 0; 511 return (metaslab_block_picker(t, cursor, size, align)); 512 } 513 514 static void 515 metaslab_pp_load(space_map_t *sm) 516 { 517 space_seg_t *ss; 518 519 ASSERT(sm->sm_ppd == NULL); 520 sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP); 521 522 sm->sm_pp_root = kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 523 avl_create(sm->sm_pp_root, metaslab_segsize_compare, 524 sizeof (space_seg_t), offsetof(struct space_seg, ss_pp_node)); 525 526 for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss)) 527 avl_add(sm->sm_pp_root, ss); 528 } 529 530 static void 531 metaslab_pp_unload(space_map_t *sm) 532 { 533 void *cookie = NULL; 534 535 kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t)); 536 sm->sm_ppd = NULL; 537 538 while (avl_destroy_nodes(sm->sm_pp_root, &cookie) != NULL) { 539 /* tear down the tree */ 540 } 541 542 avl_destroy(sm->sm_pp_root); 543 kmem_free(sm->sm_pp_root, sizeof (avl_tree_t)); 544 sm->sm_pp_root = NULL; 545 } 546 547 /* ARGSUSED */ 548 static void 549 metaslab_pp_claim(space_map_t *sm, uint64_t start, uint64_t size) 550 { 551 /* No need to update cursor */ 552 } 553 554 /* ARGSUSED */ 555 static void 556 metaslab_pp_free(space_map_t *sm, uint64_t start, uint64_t size) 557 { 558 /* No need to update cursor */ 559 } 560 561 /* 562 * Return the maximum contiguous segment within the metaslab. 563 */ 564 uint64_t 565 metaslab_pp_maxsize(space_map_t *sm) 566 { 567 avl_tree_t *t = sm->sm_pp_root; 568 space_seg_t *ss; 569 570 if (t == NULL || (ss = avl_last(t)) == NULL) 571 return (0ULL); 572 573 return (ss->ss_end - ss->ss_start); 574 } 575 576 /* 577 * ========================================================================== 578 * The first-fit block allocator 579 * ========================================================================== 580 */ 581 static uint64_t 582 metaslab_ff_alloc(space_map_t *sm, uint64_t size) 583 { 584 avl_tree_t *t = &sm->sm_root; 585 uint64_t align = size & -size; 586 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1; 587 588 return (metaslab_block_picker(t, cursor, size, align)); 589 } 590 591 /* ARGSUSED */ 592 boolean_t 593 metaslab_ff_fragmented(space_map_t *sm) 594 { 595 return (B_TRUE); 596 } 597 598 static space_map_ops_t metaslab_ff_ops = { 599 metaslab_pp_load, 600 metaslab_pp_unload, 601 metaslab_ff_alloc, 602 metaslab_pp_claim, 603 metaslab_pp_free, 604 metaslab_pp_maxsize, 605 metaslab_ff_fragmented 606 }; 607 608 /* 609 * ========================================================================== 610 * Dynamic block allocator - 611 * Uses the first fit allocation scheme until space get low and then 612 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold 613 * and metaslab_df_free_pct to determine when to switch the allocation scheme. 614 * ========================================================================== 615 */ 616 static uint64_t 617 metaslab_df_alloc(space_map_t *sm, uint64_t size) 618 { 619 avl_tree_t *t = &sm->sm_root; 620 uint64_t align = size & -size; 621 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1; 622 uint64_t max_size = metaslab_pp_maxsize(sm); 623 int free_pct = sm->sm_space * 100 / sm->sm_size; 624 625 ASSERT(MUTEX_HELD(sm->sm_lock)); 626 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root)); 627 628 if (max_size < size) 629 return (-1ULL); 630 631 /* 632 * If we're running low on space switch to using the size 633 * sorted AVL tree (best-fit). 634 */ 635 if (max_size < metaslab_df_alloc_threshold || 636 free_pct < metaslab_df_free_pct) { 637 t = sm->sm_pp_root; 638 *cursor = 0; 639 } 640 641 return (metaslab_block_picker(t, cursor, size, 1ULL)); 642 } 643 644 static boolean_t 645 metaslab_df_fragmented(space_map_t *sm) 646 { 647 uint64_t max_size = metaslab_pp_maxsize(sm); 648 int free_pct = sm->sm_space * 100 / sm->sm_size; 649 650 if (max_size >= metaslab_df_alloc_threshold && 651 free_pct >= metaslab_df_free_pct) 652 return (B_FALSE); 653 654 return (B_TRUE); 655 } 656 657 static space_map_ops_t metaslab_df_ops = { 658 metaslab_pp_load, 659 metaslab_pp_unload, 660 metaslab_df_alloc, 661 metaslab_pp_claim, 662 metaslab_pp_free, 663 metaslab_pp_maxsize, 664 metaslab_df_fragmented 665 }; 666 667 /* 668 * ========================================================================== 669 * Other experimental allocators 670 * ========================================================================== 671 */ 672 static uint64_t 673 metaslab_cdf_alloc(space_map_t *sm, uint64_t size) 674 { 675 avl_tree_t *t = &sm->sm_root; 676 uint64_t *cursor = (uint64_t *)sm->sm_ppd; 677 uint64_t *extent_end = (uint64_t *)sm->sm_ppd + 1; 678 uint64_t max_size = metaslab_pp_maxsize(sm); 679 uint64_t rsize = size; 680 uint64_t offset = 0; 681 682 ASSERT(MUTEX_HELD(sm->sm_lock)); 683 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root)); 684 685 if (max_size < size) 686 return (-1ULL); 687 688 ASSERT3U(*extent_end, >=, *cursor); 689 690 /* 691 * If we're running low on space switch to using the size 692 * sorted AVL tree (best-fit). 693 */ 694 if ((*cursor + size) > *extent_end) { 695 696 t = sm->sm_pp_root; 697 *cursor = *extent_end = 0; 698 699 if (max_size > 2 * SPA_MAXBLOCKSIZE) 700 rsize = MIN(metaslab_min_alloc_size, max_size); 701 offset = metaslab_block_picker(t, extent_end, rsize, 1ULL); 702 if (offset != -1) 703 *cursor = offset + size; 704 } else { 705 offset = metaslab_block_picker(t, cursor, rsize, 1ULL); 706 } 707 ASSERT3U(*cursor, <=, *extent_end); 708 return (offset); 709 } 710 711 static boolean_t 712 metaslab_cdf_fragmented(space_map_t *sm) 713 { 714 uint64_t max_size = metaslab_pp_maxsize(sm); 715 716 if (max_size > (metaslab_min_alloc_size * 10)) 717 return (B_FALSE); 718 return (B_TRUE); 719 } 720 721 static space_map_ops_t metaslab_cdf_ops = { 722 metaslab_pp_load, 723 metaslab_pp_unload, 724 metaslab_cdf_alloc, 725 metaslab_pp_claim, 726 metaslab_pp_free, 727 metaslab_pp_maxsize, 728 metaslab_cdf_fragmented 729 }; 730 731 uint64_t metaslab_ndf_clump_shift = 4; 732 733 static uint64_t 734 metaslab_ndf_alloc(space_map_t *sm, uint64_t size) 735 { 736 avl_tree_t *t = &sm->sm_root; 737 avl_index_t where; 738 space_seg_t *ss, ssearch; 739 uint64_t hbit = highbit(size); 740 uint64_t *cursor = (uint64_t *)sm->sm_ppd + hbit - 1; 741 uint64_t max_size = metaslab_pp_maxsize(sm); 742 743 ASSERT(MUTEX_HELD(sm->sm_lock)); 744 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root)); 745 746 if (max_size < size) 747 return (-1ULL); 748 749 ssearch.ss_start = *cursor; 750 ssearch.ss_end = *cursor + size; 751 752 ss = avl_find(t, &ssearch, &where); 753 if (ss == NULL || (ss->ss_start + size > ss->ss_end)) { 754 t = sm->sm_pp_root; 755 756 ssearch.ss_start = 0; 757 ssearch.ss_end = MIN(max_size, 758 1ULL << (hbit + metaslab_ndf_clump_shift)); 759 ss = avl_find(t, &ssearch, &where); 760 if (ss == NULL) 761 ss = avl_nearest(t, where, AVL_AFTER); 762 ASSERT(ss != NULL); 763 } 764 765 if (ss != NULL) { 766 if (ss->ss_start + size <= ss->ss_end) { 767 *cursor = ss->ss_start + size; 768 return (ss->ss_start); 769 } 770 } 771 return (-1ULL); 772 } 773 774 static boolean_t 775 metaslab_ndf_fragmented(space_map_t *sm) 776 { 777 uint64_t max_size = metaslab_pp_maxsize(sm); 778 779 if (max_size > (metaslab_min_alloc_size << metaslab_ndf_clump_shift)) 780 return (B_FALSE); 781 return (B_TRUE); 782 } 783 784 785 static space_map_ops_t metaslab_ndf_ops = { 786 metaslab_pp_load, 787 metaslab_pp_unload, 788 metaslab_ndf_alloc, 789 metaslab_pp_claim, 790 metaslab_pp_free, 791 metaslab_pp_maxsize, 792 metaslab_ndf_fragmented 793 }; 794 795 space_map_ops_t *zfs_metaslab_ops = &metaslab_df_ops; 796 797 /* 798 * ========================================================================== 799 * Metaslabs 800 * ========================================================================== 801 */ 802 metaslab_t * 803 metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo, 804 uint64_t start, uint64_t size, uint64_t txg) 805 { 806 vdev_t *vd = mg->mg_vd; 807 metaslab_t *msp; 808 809 msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 810 mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL); 811 812 msp->ms_smo_syncing = *smo; 813 814 /* 815 * We create the main space map here, but we don't create the 816 * allocmaps and freemaps until metaslab_sync_done(). This serves 817 * two purposes: it allows metaslab_sync_done() to detect the 818 * addition of new space; and for debugging, it ensures that we'd 819 * data fault on any attempt to use this metaslab before it's ready. 820 */ 821 msp->ms_map = kmem_zalloc(sizeof (space_map_t), KM_SLEEP); 822 space_map_create(msp->ms_map, start, size, 823 vd->vdev_ashift, &msp->ms_lock); 824 825 metaslab_group_add(mg, msp); 826 827 if (metaslab_debug && smo->smo_object != 0) { 828 mutex_enter(&msp->ms_lock); 829 VERIFY(space_map_load(msp->ms_map, mg->mg_class->mc_ops, 830 SM_FREE, smo, spa_meta_objset(vd->vdev_spa)) == 0); 831 mutex_exit(&msp->ms_lock); 832 } 833 834 /* 835 * If we're opening an existing pool (txg == 0) or creating 836 * a new one (txg == TXG_INITIAL), all space is available now. 837 * If we're adding space to an existing pool, the new space 838 * does not become available until after this txg has synced. 839 */ 840 if (txg <= TXG_INITIAL) 841 metaslab_sync_done(msp, 0); 842 843 if (txg != 0) { 844 vdev_dirty(vd, 0, NULL, txg); 845 vdev_dirty(vd, VDD_METASLAB, msp, txg); 846 } 847 848 return (msp); 849 } 850 851 void 852 metaslab_fini(metaslab_t *msp) 853 { 854 metaslab_group_t *mg = msp->ms_group; 855 856 vdev_space_update(mg->mg_vd, 857 -msp->ms_smo.smo_alloc, 0, -msp->ms_map->sm_size); 858 859 metaslab_group_remove(mg, msp); 860 861 mutex_enter(&msp->ms_lock); 862 863 space_map_unload(msp->ms_map); 864 space_map_destroy(msp->ms_map); 865 kmem_free(msp->ms_map, sizeof (*msp->ms_map)); 866 867 for (int t = 0; t < TXG_SIZE; t++) { 868 space_map_destroy(msp->ms_allocmap[t]); 869 space_map_destroy(msp->ms_freemap[t]); 870 kmem_free(msp->ms_allocmap[t], sizeof (*msp->ms_allocmap[t])); 871 kmem_free(msp->ms_freemap[t], sizeof (*msp->ms_freemap[t])); 872 } 873 874 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 875 space_map_destroy(msp->ms_defermap[t]); 876 kmem_free(msp->ms_defermap[t], sizeof (*msp->ms_defermap[t])); 877 } 878 879 ASSERT0(msp->ms_deferspace); 880 881 mutex_exit(&msp->ms_lock); 882 mutex_destroy(&msp->ms_lock); 883 884 kmem_free(msp, sizeof (metaslab_t)); 885 } 886 887 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63) 888 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62) 889 #define METASLAB_ACTIVE_MASK \ 890 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY) 891 892 static uint64_t 893 metaslab_weight(metaslab_t *msp) 894 { 895 metaslab_group_t *mg = msp->ms_group; 896 space_map_t *sm = msp->ms_map; 897 space_map_obj_t *smo = &msp->ms_smo; 898 vdev_t *vd = mg->mg_vd; 899 uint64_t weight, space; 900 901 ASSERT(MUTEX_HELD(&msp->ms_lock)); 902 903 /* 904 * This vdev is in the process of being removed so there is nothing 905 * for us to do here. 906 */ 907 if (vd->vdev_removing) { 908 ASSERT0(smo->smo_alloc); 909 ASSERT0(vd->vdev_ms_shift); 910 return (0); 911 } 912 913 /* 914 * The baseline weight is the metaslab's free space. 915 */ 916 space = sm->sm_size - smo->smo_alloc; 917 weight = space; 918 919 /* 920 * Modern disks have uniform bit density and constant angular velocity. 921 * Therefore, the outer recording zones are faster (higher bandwidth) 922 * than the inner zones by the ratio of outer to inner track diameter, 923 * which is typically around 2:1. We account for this by assigning 924 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 925 * In effect, this means that we'll select the metaslab with the most 926 * free bandwidth rather than simply the one with the most free space. 927 */ 928 weight = 2 * weight - 929 ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count; 930 ASSERT(weight >= space && weight <= 2 * space); 931 932 /* 933 * For locality, assign higher weight to metaslabs which have 934 * a lower offset than what we've already activated. 935 */ 936 if (sm->sm_start <= mg->mg_bonus_area) 937 weight *= (metaslab_smo_bonus_pct / 100); 938 ASSERT(weight >= space && 939 weight <= 2 * (metaslab_smo_bonus_pct / 100) * space); 940 941 if (sm->sm_loaded && !sm->sm_ops->smop_fragmented(sm)) { 942 /* 943 * If this metaslab is one we're actively using, adjust its 944 * weight to make it preferable to any inactive metaslab so 945 * we'll polish it off. 946 */ 947 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 948 } 949 return (weight); 950 } 951 952 static void 953 metaslab_prefetch(metaslab_group_t *mg) 954 { 955 spa_t *spa = mg->mg_vd->vdev_spa; 956 metaslab_t *msp; 957 avl_tree_t *t = &mg->mg_metaslab_tree; 958 int m; 959 960 mutex_enter(&mg->mg_lock); 961 962 /* 963 * Prefetch the next potential metaslabs 964 */ 965 for (msp = avl_first(t), m = 0; msp; msp = AVL_NEXT(t, msp), m++) { 966 space_map_t *sm = msp->ms_map; 967 space_map_obj_t *smo = &msp->ms_smo; 968 969 /* If we have reached our prefetch limit then we're done */ 970 if (m >= metaslab_prefetch_limit) 971 break; 972 973 if (!sm->sm_loaded && smo->smo_object != 0) { 974 mutex_exit(&mg->mg_lock); 975 dmu_prefetch(spa_meta_objset(spa), smo->smo_object, 976 0ULL, smo->smo_objsize); 977 mutex_enter(&mg->mg_lock); 978 } 979 } 980 mutex_exit(&mg->mg_lock); 981 } 982 983 static int 984 metaslab_activate(metaslab_t *msp, uint64_t activation_weight) 985 { 986 metaslab_group_t *mg = msp->ms_group; 987 space_map_t *sm = msp->ms_map; 988 space_map_ops_t *sm_ops = msp->ms_group->mg_class->mc_ops; 989 990 ASSERT(MUTEX_HELD(&msp->ms_lock)); 991 992 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { 993 space_map_load_wait(sm); 994 if (!sm->sm_loaded) { 995 space_map_obj_t *smo = &msp->ms_smo; 996 997 int error = space_map_load(sm, sm_ops, SM_FREE, smo, 998 spa_meta_objset(msp->ms_group->mg_vd->vdev_spa)); 999 if (error) { 1000 metaslab_group_sort(msp->ms_group, msp, 0); 1001 return (error); 1002 } 1003 for (int t = 0; t < TXG_DEFER_SIZE; t++) 1004 space_map_walk(msp->ms_defermap[t], 1005 space_map_claim, sm); 1006 1007 } 1008 1009 /* 1010 * Track the bonus area as we activate new metaslabs. 1011 */ 1012 if (sm->sm_start > mg->mg_bonus_area) { 1013 mutex_enter(&mg->mg_lock); 1014 mg->mg_bonus_area = sm->sm_start; 1015 mutex_exit(&mg->mg_lock); 1016 } 1017 1018 metaslab_group_sort(msp->ms_group, msp, 1019 msp->ms_weight | activation_weight); 1020 } 1021 ASSERT(sm->sm_loaded); 1022 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 1023 1024 return (0); 1025 } 1026 1027 static void 1028 metaslab_passivate(metaslab_t *msp, uint64_t size) 1029 { 1030 /* 1031 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 1032 * this metaslab again. In that case, it had better be empty, 1033 * or we would be leaving space on the table. 1034 */ 1035 ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map->sm_space == 0); 1036 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size)); 1037 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0); 1038 } 1039 1040 /* 1041 * Determine if the in-core space map representation can be condensed on-disk. 1042 * We would like to use the following criteria to make our decision: 1043 * 1044 * 1. The size of the space map object should not dramatically increase as a 1045 * result of writing out our in-core free map. 1046 * 1047 * 2. The minimal on-disk space map representation is zfs_condense_pct/100 1048 * times the size than the in-core representation (i.e. zfs_condense_pct = 110 1049 * and in-core = 1MB, minimal = 1.1.MB). 1050 * 1051 * Checking the first condition is tricky since we don't want to walk 1052 * the entire AVL tree calculating the estimated on-disk size. Instead we 1053 * use the size-ordered AVL tree in the space map and calculate the 1054 * size required for the largest segment in our in-core free map. If the 1055 * size required to represent that segment on disk is larger than the space 1056 * map object then we avoid condensing this map. 1057 * 1058 * To determine the second criterion we use a best-case estimate and assume 1059 * each segment can be represented on-disk as a single 64-bit entry. We refer 1060 * to this best-case estimate as the space map's minimal form. 1061 */ 1062 static boolean_t 1063 metaslab_should_condense(metaslab_t *msp) 1064 { 1065 space_map_t *sm = msp->ms_map; 1066 space_map_obj_t *smo = &msp->ms_smo_syncing; 1067 space_seg_t *ss; 1068 uint64_t size, entries, segsz; 1069 1070 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1071 ASSERT(sm->sm_loaded); 1072 1073 /* 1074 * Use the sm_pp_root AVL tree, which is ordered by size, to obtain 1075 * the largest segment in the in-core free map. If the tree is 1076 * empty then we should condense the map. 1077 */ 1078 ss = avl_last(sm->sm_pp_root); 1079 if (ss == NULL) 1080 return (B_TRUE); 1081 1082 /* 1083 * Calculate the number of 64-bit entries this segment would 1084 * require when written to disk. If this single segment would be 1085 * larger on-disk than the entire current on-disk structure, then 1086 * clearly condensing will increase the on-disk structure size. 1087 */ 1088 size = (ss->ss_end - ss->ss_start) >> sm->sm_shift; 1089 entries = size / (MIN(size, SM_RUN_MAX)); 1090 segsz = entries * sizeof (uint64_t); 1091 1092 return (segsz <= smo->smo_objsize && 1093 smo->smo_objsize >= (zfs_condense_pct * 1094 sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) / 100); 1095 } 1096 1097 /* 1098 * Condense the on-disk space map representation to its minimized form. 1099 * The minimized form consists of a small number of allocations followed by 1100 * the in-core free map. 1101 */ 1102 static void 1103 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx) 1104 { 1105 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1106 space_map_t *freemap = msp->ms_freemap[txg & TXG_MASK]; 1107 space_map_t condense_map; 1108 space_map_t *sm = msp->ms_map; 1109 objset_t *mos = spa_meta_objset(spa); 1110 space_map_obj_t *smo = &msp->ms_smo_syncing; 1111 1112 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1113 ASSERT3U(spa_sync_pass(spa), ==, 1); 1114 ASSERT(sm->sm_loaded); 1115 1116 spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, " 1117 "smo size %llu, segments %lu", txg, 1118 (msp->ms_map->sm_start / msp->ms_map->sm_size), msp, 1119 smo->smo_objsize, avl_numnodes(&sm->sm_root)); 1120 1121 /* 1122 * Create an map that is a 100% allocated map. We remove segments 1123 * that have been freed in this txg, any deferred frees that exist, 1124 * and any allocation in the future. Removing segments should be 1125 * a relatively inexpensive operation since we expect these maps to 1126 * a small number of nodes. 1127 */ 1128 space_map_create(&condense_map, sm->sm_start, sm->sm_size, 1129 sm->sm_shift, sm->sm_lock); 1130 space_map_add(&condense_map, condense_map.sm_start, 1131 condense_map.sm_size); 1132 1133 /* 1134 * Remove what's been freed in this txg from the condense_map. 1135 * Since we're in sync_pass 1, we know that all the frees from 1136 * this txg are in the freemap. 1137 */ 1138 space_map_walk(freemap, space_map_remove, &condense_map); 1139 1140 for (int t = 0; t < TXG_DEFER_SIZE; t++) 1141 space_map_walk(msp->ms_defermap[t], 1142 space_map_remove, &condense_map); 1143 1144 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) 1145 space_map_walk(msp->ms_allocmap[(txg + t) & TXG_MASK], 1146 space_map_remove, &condense_map); 1147 1148 /* 1149 * We're about to drop the metaslab's lock thus allowing 1150 * other consumers to change it's content. Set the 1151 * space_map's sm_condensing flag to ensure that 1152 * allocations on this metaslab do not occur while we're 1153 * in the middle of committing it to disk. This is only critical 1154 * for the ms_map as all other space_maps use per txg 1155 * views of their content. 1156 */ 1157 sm->sm_condensing = B_TRUE; 1158 1159 mutex_exit(&msp->ms_lock); 1160 space_map_truncate(smo, mos, tx); 1161 mutex_enter(&msp->ms_lock); 1162 1163 /* 1164 * While we would ideally like to create a space_map representation 1165 * that consists only of allocation records, doing so can be 1166 * prohibitively expensive because the in-core free map can be 1167 * large, and therefore computationally expensive to subtract 1168 * from the condense_map. Instead we sync out two maps, a cheap 1169 * allocation only map followed by the in-core free map. While not 1170 * optimal, this is typically close to optimal, and much cheaper to 1171 * compute. 1172 */ 1173 space_map_sync(&condense_map, SM_ALLOC, smo, mos, tx); 1174 space_map_vacate(&condense_map, NULL, NULL); 1175 space_map_destroy(&condense_map); 1176 1177 space_map_sync(sm, SM_FREE, smo, mos, tx); 1178 sm->sm_condensing = B_FALSE; 1179 1180 spa_dbgmsg(spa, "condensed: txg %llu, msp[%llu] %p, " 1181 "smo size %llu", txg, 1182 (msp->ms_map->sm_start / msp->ms_map->sm_size), msp, 1183 smo->smo_objsize); 1184 } 1185 1186 /* 1187 * Write a metaslab to disk in the context of the specified transaction group. 1188 */ 1189 void 1190 metaslab_sync(metaslab_t *msp, uint64_t txg) 1191 { 1192 vdev_t *vd = msp->ms_group->mg_vd; 1193 spa_t *spa = vd->vdev_spa; 1194 objset_t *mos = spa_meta_objset(spa); 1195 space_map_t *allocmap = msp->ms_allocmap[txg & TXG_MASK]; 1196 space_map_t **freemap = &msp->ms_freemap[txg & TXG_MASK]; 1197 space_map_t **freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; 1198 space_map_t *sm = msp->ms_map; 1199 space_map_obj_t *smo = &msp->ms_smo_syncing; 1200 dmu_buf_t *db; 1201 dmu_tx_t *tx; 1202 1203 ASSERT(!vd->vdev_ishole); 1204 1205 /* 1206 * This metaslab has just been added so there's no work to do now. 1207 */ 1208 if (*freemap == NULL) { 1209 ASSERT3P(allocmap, ==, NULL); 1210 return; 1211 } 1212 1213 ASSERT3P(allocmap, !=, NULL); 1214 ASSERT3P(*freemap, !=, NULL); 1215 ASSERT3P(*freed_map, !=, NULL); 1216 1217 if (allocmap->sm_space == 0 && (*freemap)->sm_space == 0) 1218 return; 1219 1220 /* 1221 * The only state that can actually be changing concurrently with 1222 * metaslab_sync() is the metaslab's ms_map. No other thread can 1223 * be modifying this txg's allocmap, freemap, freed_map, or smo. 1224 * Therefore, we only hold ms_lock to satify space_map ASSERTs. 1225 * We drop it whenever we call into the DMU, because the DMU 1226 * can call down to us (e.g. via zio_free()) at any time. 1227 */ 1228 1229 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 1230 1231 if (smo->smo_object == 0) { 1232 ASSERT(smo->smo_objsize == 0); 1233 ASSERT(smo->smo_alloc == 0); 1234 smo->smo_object = dmu_object_alloc(mos, 1235 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1236 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1237 ASSERT(smo->smo_object != 0); 1238 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 1239 (sm->sm_start >> vd->vdev_ms_shift), 1240 sizeof (uint64_t), &smo->smo_object, tx); 1241 } 1242 1243 mutex_enter(&msp->ms_lock); 1244 1245 if (sm->sm_loaded && spa_sync_pass(spa) == 1 && 1246 metaslab_should_condense(msp)) { 1247 metaslab_condense(msp, txg, tx); 1248 } else { 1249 space_map_sync(allocmap, SM_ALLOC, smo, mos, tx); 1250 space_map_sync(*freemap, SM_FREE, smo, mos, tx); 1251 } 1252 1253 space_map_vacate(allocmap, NULL, NULL); 1254 1255 /* 1256 * For sync pass 1, we avoid walking the entire space map and 1257 * instead will just swap the pointers for freemap and 1258 * freed_map. We can safely do this since the freed_map is 1259 * guaranteed to be empty on the initial pass. 1260 */ 1261 if (spa_sync_pass(spa) == 1) { 1262 ASSERT0((*freed_map)->sm_space); 1263 ASSERT0(avl_numnodes(&(*freed_map)->sm_root)); 1264 space_map_swap(freemap, freed_map); 1265 } else { 1266 space_map_vacate(*freemap, space_map_add, *freed_map); 1267 } 1268 1269 ASSERT0(msp->ms_allocmap[txg & TXG_MASK]->sm_space); 1270 ASSERT0(msp->ms_freemap[txg & TXG_MASK]->sm_space); 1271 1272 mutex_exit(&msp->ms_lock); 1273 1274 VERIFY0(dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1275 dmu_buf_will_dirty(db, tx); 1276 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1277 bcopy(smo, db->db_data, sizeof (*smo)); 1278 dmu_buf_rele(db, FTAG); 1279 1280 dmu_tx_commit(tx); 1281 } 1282 1283 /* 1284 * Called after a transaction group has completely synced to mark 1285 * all of the metaslab's free space as usable. 1286 */ 1287 void 1288 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 1289 { 1290 space_map_obj_t *smo = &msp->ms_smo; 1291 space_map_obj_t *smosync = &msp->ms_smo_syncing; 1292 space_map_t *sm = msp->ms_map; 1293 space_map_t **freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; 1294 space_map_t **defer_map = &msp->ms_defermap[txg % TXG_DEFER_SIZE]; 1295 metaslab_group_t *mg = msp->ms_group; 1296 vdev_t *vd = mg->mg_vd; 1297 int64_t alloc_delta, defer_delta; 1298 1299 ASSERT(!vd->vdev_ishole); 1300 1301 mutex_enter(&msp->ms_lock); 1302 1303 /* 1304 * If this metaslab is just becoming available, initialize its 1305 * allocmaps, freemaps, and defermap and add its capacity to the vdev. 1306 */ 1307 if (*freed_map == NULL) { 1308 ASSERT(*defer_map == NULL); 1309 for (int t = 0; t < TXG_SIZE; t++) { 1310 msp->ms_allocmap[t] = kmem_zalloc(sizeof (space_map_t), 1311 KM_SLEEP); 1312 space_map_create(msp->ms_allocmap[t], sm->sm_start, 1313 sm->sm_size, sm->sm_shift, sm->sm_lock); 1314 msp->ms_freemap[t] = kmem_zalloc(sizeof (space_map_t), 1315 KM_SLEEP); 1316 space_map_create(msp->ms_freemap[t], sm->sm_start, 1317 sm->sm_size, sm->sm_shift, sm->sm_lock); 1318 } 1319 1320 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1321 msp->ms_defermap[t] = kmem_zalloc(sizeof (space_map_t), 1322 KM_SLEEP); 1323 space_map_create(msp->ms_defermap[t], sm->sm_start, 1324 sm->sm_size, sm->sm_shift, sm->sm_lock); 1325 } 1326 1327 freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; 1328 defer_map = &msp->ms_defermap[txg % TXG_DEFER_SIZE]; 1329 1330 vdev_space_update(vd, 0, 0, sm->sm_size); 1331 } 1332 1333 alloc_delta = smosync->smo_alloc - smo->smo_alloc; 1334 defer_delta = (*freed_map)->sm_space - (*defer_map)->sm_space; 1335 1336 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0); 1337 1338 ASSERT(msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0); 1339 ASSERT(msp->ms_freemap[txg & TXG_MASK]->sm_space == 0); 1340 1341 /* 1342 * If there's a space_map_load() in progress, wait for it to complete 1343 * so that we have a consistent view of the in-core space map. 1344 */ 1345 space_map_load_wait(sm); 1346 1347 /* 1348 * Move the frees from the defer_map to this map (if it's loaded). 1349 * Swap the freed_map and the defer_map -- this is safe to do 1350 * because we've just emptied out the defer_map. 1351 */ 1352 space_map_vacate(*defer_map, sm->sm_loaded ? space_map_free : NULL, sm); 1353 ASSERT0((*defer_map)->sm_space); 1354 ASSERT0(avl_numnodes(&(*defer_map)->sm_root)); 1355 space_map_swap(freed_map, defer_map); 1356 1357 *smo = *smosync; 1358 1359 msp->ms_deferspace += defer_delta; 1360 ASSERT3S(msp->ms_deferspace, >=, 0); 1361 ASSERT3S(msp->ms_deferspace, <=, sm->sm_size); 1362 if (msp->ms_deferspace != 0) { 1363 /* 1364 * Keep syncing this metaslab until all deferred frees 1365 * are back in circulation. 1366 */ 1367 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 1368 } 1369 1370 /* 1371 * If the map is loaded but no longer active, evict it as soon as all 1372 * future allocations have synced. (If we unloaded it now and then 1373 * loaded a moment later, the map wouldn't reflect those allocations.) 1374 */ 1375 if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { 1376 int evictable = 1; 1377 1378 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) 1379 if (msp->ms_allocmap[(txg + t) & TXG_MASK]->sm_space) 1380 evictable = 0; 1381 1382 if (evictable && !metaslab_debug) 1383 space_map_unload(sm); 1384 } 1385 1386 metaslab_group_sort(mg, msp, metaslab_weight(msp)); 1387 1388 mutex_exit(&msp->ms_lock); 1389 } 1390 1391 void 1392 metaslab_sync_reassess(metaslab_group_t *mg) 1393 { 1394 vdev_t *vd = mg->mg_vd; 1395 int64_t failures = mg->mg_alloc_failures; 1396 1397 metaslab_group_alloc_update(mg); 1398 1399 /* 1400 * Re-evaluate all metaslabs which have lower offsets than the 1401 * bonus area. 1402 */ 1403 for (int m = 0; m < vd->vdev_ms_count; m++) { 1404 metaslab_t *msp = vd->vdev_ms[m]; 1405 1406 if (msp->ms_map->sm_start > mg->mg_bonus_area) 1407 break; 1408 1409 mutex_enter(&msp->ms_lock); 1410 metaslab_group_sort(mg, msp, metaslab_weight(msp)); 1411 mutex_exit(&msp->ms_lock); 1412 } 1413 1414 atomic_add_64(&mg->mg_alloc_failures, -failures); 1415 1416 /* 1417 * Prefetch the next potential metaslabs 1418 */ 1419 metaslab_prefetch(mg); 1420 } 1421 1422 static uint64_t 1423 metaslab_distance(metaslab_t *msp, dva_t *dva) 1424 { 1425 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift; 1426 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift; 1427 uint64_t start = msp->ms_map->sm_start >> ms_shift; 1428 1429 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 1430 return (1ULL << 63); 1431 1432 if (offset < start) 1433 return ((start - offset) << ms_shift); 1434 if (offset > start) 1435 return ((offset - start) << ms_shift); 1436 return (0); 1437 } 1438 1439 static uint64_t 1440 metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize, 1441 uint64_t txg, uint64_t min_distance, dva_t *dva, int d, int flags) 1442 { 1443 spa_t *spa = mg->mg_vd->vdev_spa; 1444 metaslab_t *msp = NULL; 1445 uint64_t offset = -1ULL; 1446 avl_tree_t *t = &mg->mg_metaslab_tree; 1447 uint64_t activation_weight; 1448 uint64_t target_distance; 1449 int i; 1450 1451 activation_weight = METASLAB_WEIGHT_PRIMARY; 1452 for (i = 0; i < d; i++) { 1453 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 1454 activation_weight = METASLAB_WEIGHT_SECONDARY; 1455 break; 1456 } 1457 } 1458 1459 for (;;) { 1460 boolean_t was_active; 1461 1462 mutex_enter(&mg->mg_lock); 1463 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) { 1464 if (msp->ms_weight < asize) { 1465 spa_dbgmsg(spa, "%s: failed to meet weight " 1466 "requirement: vdev %llu, txg %llu, mg %p, " 1467 "msp %p, psize %llu, asize %llu, " 1468 "failures %llu, weight %llu", 1469 spa_name(spa), mg->mg_vd->vdev_id, txg, 1470 mg, msp, psize, asize, 1471 mg->mg_alloc_failures, msp->ms_weight); 1472 mutex_exit(&mg->mg_lock); 1473 return (-1ULL); 1474 } 1475 1476 /* 1477 * If the selected metaslab is condensing, skip it. 1478 */ 1479 if (msp->ms_map->sm_condensing) 1480 continue; 1481 1482 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 1483 if (activation_weight == METASLAB_WEIGHT_PRIMARY) 1484 break; 1485 1486 target_distance = min_distance + 1487 (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1); 1488 1489 for (i = 0; i < d; i++) 1490 if (metaslab_distance(msp, &dva[i]) < 1491 target_distance) 1492 break; 1493 if (i == d) 1494 break; 1495 } 1496 mutex_exit(&mg->mg_lock); 1497 if (msp == NULL) 1498 return (-1ULL); 1499 1500 mutex_enter(&msp->ms_lock); 1501 1502 /* 1503 * If we've already reached the allowable number of failed 1504 * allocation attempts on this metaslab group then we 1505 * consider skipping it. We skip it only if we're allowed 1506 * to "fast" gang, the physical size is larger than 1507 * a gang block, and we're attempting to allocate from 1508 * the primary metaslab. 1509 */ 1510 if (mg->mg_alloc_failures > zfs_mg_alloc_failures && 1511 CAN_FASTGANG(flags) && psize > SPA_GANGBLOCKSIZE && 1512 activation_weight == METASLAB_WEIGHT_PRIMARY) { 1513 spa_dbgmsg(spa, "%s: skipping metaslab group: " 1514 "vdev %llu, txg %llu, mg %p, psize %llu, " 1515 "asize %llu, failures %llu", spa_name(spa), 1516 mg->mg_vd->vdev_id, txg, mg, psize, asize, 1517 mg->mg_alloc_failures); 1518 mutex_exit(&msp->ms_lock); 1519 return (-1ULL); 1520 } 1521 1522 /* 1523 * Ensure that the metaslab we have selected is still 1524 * capable of handling our request. It's possible that 1525 * another thread may have changed the weight while we 1526 * were blocked on the metaslab lock. 1527 */ 1528 if (msp->ms_weight < asize || (was_active && 1529 !(msp->ms_weight & METASLAB_ACTIVE_MASK) && 1530 activation_weight == METASLAB_WEIGHT_PRIMARY)) { 1531 mutex_exit(&msp->ms_lock); 1532 continue; 1533 } 1534 1535 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) && 1536 activation_weight == METASLAB_WEIGHT_PRIMARY) { 1537 metaslab_passivate(msp, 1538 msp->ms_weight & ~METASLAB_ACTIVE_MASK); 1539 mutex_exit(&msp->ms_lock); 1540 continue; 1541 } 1542 1543 if (metaslab_activate(msp, activation_weight) != 0) { 1544 mutex_exit(&msp->ms_lock); 1545 continue; 1546 } 1547 1548 /* 1549 * If this metaslab is currently condensing then pick again as 1550 * we can't manipulate this metaslab until it's committed 1551 * to disk. 1552 */ 1553 if (msp->ms_map->sm_condensing) { 1554 mutex_exit(&msp->ms_lock); 1555 continue; 1556 } 1557 1558 if ((offset = space_map_alloc(msp->ms_map, asize)) != -1ULL) 1559 break; 1560 1561 atomic_inc_64(&mg->mg_alloc_failures); 1562 1563 metaslab_passivate(msp, space_map_maxsize(msp->ms_map)); 1564 1565 mutex_exit(&msp->ms_lock); 1566 } 1567 1568 if (msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0) 1569 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 1570 1571 space_map_add(msp->ms_allocmap[txg & TXG_MASK], offset, asize); 1572 1573 mutex_exit(&msp->ms_lock); 1574 1575 return (offset); 1576 } 1577 1578 /* 1579 * Allocate a block for the specified i/o. 1580 */ 1581 static int 1582 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 1583 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags) 1584 { 1585 metaslab_group_t *mg, *rotor; 1586 vdev_t *vd; 1587 int dshift = 3; 1588 int all_zero; 1589 int zio_lock = B_FALSE; 1590 boolean_t allocatable; 1591 uint64_t offset = -1ULL; 1592 uint64_t asize; 1593 uint64_t distance; 1594 1595 ASSERT(!DVA_IS_VALID(&dva[d])); 1596 1597 /* 1598 * For testing, make some blocks above a certain size be gang blocks. 1599 */ 1600 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0) 1601 return (SET_ERROR(ENOSPC)); 1602 1603 /* 1604 * Start at the rotor and loop through all mgs until we find something. 1605 * Note that there's no locking on mc_rotor or mc_aliquot because 1606 * nothing actually breaks if we miss a few updates -- we just won't 1607 * allocate quite as evenly. It all balances out over time. 1608 * 1609 * If we are doing ditto or log blocks, try to spread them across 1610 * consecutive vdevs. If we're forced to reuse a vdev before we've 1611 * allocated all of our ditto blocks, then try and spread them out on 1612 * that vdev as much as possible. If it turns out to not be possible, 1613 * gradually lower our standards until anything becomes acceptable. 1614 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 1615 * gives us hope of containing our fault domains to something we're 1616 * able to reason about. Otherwise, any two top-level vdev failures 1617 * will guarantee the loss of data. With consecutive allocation, 1618 * only two adjacent top-level vdev failures will result in data loss. 1619 * 1620 * If we are doing gang blocks (hintdva is non-NULL), try to keep 1621 * ourselves on the same vdev as our gang block header. That 1622 * way, we can hope for locality in vdev_cache, plus it makes our 1623 * fault domains something tractable. 1624 */ 1625 if (hintdva) { 1626 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 1627 1628 /* 1629 * It's possible the vdev we're using as the hint no 1630 * longer exists (i.e. removed). Consult the rotor when 1631 * all else fails. 1632 */ 1633 if (vd != NULL) { 1634 mg = vd->vdev_mg; 1635 1636 if (flags & METASLAB_HINTBP_AVOID && 1637 mg->mg_next != NULL) 1638 mg = mg->mg_next; 1639 } else { 1640 mg = mc->mc_rotor; 1641 } 1642 } else if (d != 0) { 1643 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 1644 mg = vd->vdev_mg->mg_next; 1645 } else { 1646 mg = mc->mc_rotor; 1647 } 1648 1649 /* 1650 * If the hint put us into the wrong metaslab class, or into a 1651 * metaslab group that has been passivated, just follow the rotor. 1652 */ 1653 if (mg->mg_class != mc || mg->mg_activation_count <= 0) 1654 mg = mc->mc_rotor; 1655 1656 rotor = mg; 1657 top: 1658 all_zero = B_TRUE; 1659 do { 1660 ASSERT(mg->mg_activation_count == 1); 1661 1662 vd = mg->mg_vd; 1663 1664 /* 1665 * Don't allocate from faulted devices. 1666 */ 1667 if (zio_lock) { 1668 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 1669 allocatable = vdev_allocatable(vd); 1670 spa_config_exit(spa, SCL_ZIO, FTAG); 1671 } else { 1672 allocatable = vdev_allocatable(vd); 1673 } 1674 1675 /* 1676 * Determine if the selected metaslab group is eligible 1677 * for allocations. If we're ganging or have requested 1678 * an allocation for the smallest gang block size 1679 * then we don't want to avoid allocating to the this 1680 * metaslab group. If we're in this condition we should 1681 * try to allocate from any device possible so that we 1682 * don't inadvertently return ENOSPC and suspend the pool 1683 * even though space is still available. 1684 */ 1685 if (allocatable && CAN_FASTGANG(flags) && 1686 psize > SPA_GANGBLOCKSIZE) 1687 allocatable = metaslab_group_allocatable(mg); 1688 1689 if (!allocatable) 1690 goto next; 1691 1692 /* 1693 * Avoid writing single-copy data to a failing vdev 1694 * unless the user instructs us that it is okay. 1695 */ 1696 if ((vd->vdev_stat.vs_write_errors > 0 || 1697 vd->vdev_state < VDEV_STATE_HEALTHY) && 1698 d == 0 && dshift == 3 && 1699 !(zfs_write_to_degraded && vd->vdev_state == 1700 VDEV_STATE_DEGRADED)) { 1701 all_zero = B_FALSE; 1702 goto next; 1703 } 1704 1705 ASSERT(mg->mg_class == mc); 1706 1707 distance = vd->vdev_asize >> dshift; 1708 if (distance <= (1ULL << vd->vdev_ms_shift)) 1709 distance = 0; 1710 else 1711 all_zero = B_FALSE; 1712 1713 asize = vdev_psize_to_asize(vd, psize); 1714 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 1715 1716 offset = metaslab_group_alloc(mg, psize, asize, txg, distance, 1717 dva, d, flags); 1718 if (offset != -1ULL) { 1719 /* 1720 * If we've just selected this metaslab group, 1721 * figure out whether the corresponding vdev is 1722 * over- or under-used relative to the pool, 1723 * and set an allocation bias to even it out. 1724 */ 1725 if (mc->mc_aliquot == 0) { 1726 vdev_stat_t *vs = &vd->vdev_stat; 1727 int64_t vu, cu; 1728 1729 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1); 1730 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1); 1731 1732 /* 1733 * Calculate how much more or less we should 1734 * try to allocate from this device during 1735 * this iteration around the rotor. 1736 * For example, if a device is 80% full 1737 * and the pool is 20% full then we should 1738 * reduce allocations by 60% on this device. 1739 * 1740 * mg_bias = (20 - 80) * 512K / 100 = -307K 1741 * 1742 * This reduces allocations by 307K for this 1743 * iteration. 1744 */ 1745 mg->mg_bias = ((cu - vu) * 1746 (int64_t)mg->mg_aliquot) / 100; 1747 } 1748 1749 if (atomic_add_64_nv(&mc->mc_aliquot, asize) >= 1750 mg->mg_aliquot + mg->mg_bias) { 1751 mc->mc_rotor = mg->mg_next; 1752 mc->mc_aliquot = 0; 1753 } 1754 1755 DVA_SET_VDEV(&dva[d], vd->vdev_id); 1756 DVA_SET_OFFSET(&dva[d], offset); 1757 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER)); 1758 DVA_SET_ASIZE(&dva[d], asize); 1759 1760 return (0); 1761 } 1762 next: 1763 mc->mc_rotor = mg->mg_next; 1764 mc->mc_aliquot = 0; 1765 } while ((mg = mg->mg_next) != rotor); 1766 1767 if (!all_zero) { 1768 dshift++; 1769 ASSERT(dshift < 64); 1770 goto top; 1771 } 1772 1773 if (!allocatable && !zio_lock) { 1774 dshift = 3; 1775 zio_lock = B_TRUE; 1776 goto top; 1777 } 1778 1779 bzero(&dva[d], sizeof (dva_t)); 1780 1781 return (SET_ERROR(ENOSPC)); 1782 } 1783 1784 /* 1785 * Free the block represented by DVA in the context of the specified 1786 * transaction group. 1787 */ 1788 static void 1789 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now) 1790 { 1791 uint64_t vdev = DVA_GET_VDEV(dva); 1792 uint64_t offset = DVA_GET_OFFSET(dva); 1793 uint64_t size = DVA_GET_ASIZE(dva); 1794 vdev_t *vd; 1795 metaslab_t *msp; 1796 1797 ASSERT(DVA_IS_VALID(dva)); 1798 1799 if (txg > spa_freeze_txg(spa)) 1800 return; 1801 1802 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || 1803 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 1804 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu", 1805 (u_longlong_t)vdev, (u_longlong_t)offset); 1806 ASSERT(0); 1807 return; 1808 } 1809 1810 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 1811 1812 if (DVA_GET_GANG(dva)) 1813 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 1814 1815 mutex_enter(&msp->ms_lock); 1816 1817 if (now) { 1818 space_map_remove(msp->ms_allocmap[txg & TXG_MASK], 1819 offset, size); 1820 space_map_free(msp->ms_map, offset, size); 1821 } else { 1822 if (msp->ms_freemap[txg & TXG_MASK]->sm_space == 0) 1823 vdev_dirty(vd, VDD_METASLAB, msp, txg); 1824 space_map_add(msp->ms_freemap[txg & TXG_MASK], offset, size); 1825 } 1826 1827 mutex_exit(&msp->ms_lock); 1828 } 1829 1830 /* 1831 * Intent log support: upon opening the pool after a crash, notify the SPA 1832 * of blocks that the intent log has allocated for immediate write, but 1833 * which are still considered free by the SPA because the last transaction 1834 * group didn't commit yet. 1835 */ 1836 static int 1837 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 1838 { 1839 uint64_t vdev = DVA_GET_VDEV(dva); 1840 uint64_t offset = DVA_GET_OFFSET(dva); 1841 uint64_t size = DVA_GET_ASIZE(dva); 1842 vdev_t *vd; 1843 metaslab_t *msp; 1844 int error = 0; 1845 1846 ASSERT(DVA_IS_VALID(dva)); 1847 1848 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || 1849 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) 1850 return (SET_ERROR(ENXIO)); 1851 1852 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 1853 1854 if (DVA_GET_GANG(dva)) 1855 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 1856 1857 mutex_enter(&msp->ms_lock); 1858 1859 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_map->sm_loaded) 1860 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY); 1861 1862 if (error == 0 && !space_map_contains(msp->ms_map, offset, size)) 1863 error = SET_ERROR(ENOENT); 1864 1865 if (error || txg == 0) { /* txg == 0 indicates dry run */ 1866 mutex_exit(&msp->ms_lock); 1867 return (error); 1868 } 1869 1870 space_map_claim(msp->ms_map, offset, size); 1871 1872 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */ 1873 if (msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0) 1874 vdev_dirty(vd, VDD_METASLAB, msp, txg); 1875 space_map_add(msp->ms_allocmap[txg & TXG_MASK], offset, size); 1876 } 1877 1878 mutex_exit(&msp->ms_lock); 1879 1880 return (0); 1881 } 1882 1883 int 1884 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, 1885 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags) 1886 { 1887 dva_t *dva = bp->blk_dva; 1888 dva_t *hintdva = hintbp->blk_dva; 1889 int error = 0; 1890 1891 ASSERT(bp->blk_birth == 0); 1892 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0); 1893 1894 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 1895 1896 if (mc->mc_rotor == NULL) { /* no vdevs in this class */ 1897 spa_config_exit(spa, SCL_ALLOC, FTAG); 1898 return (SET_ERROR(ENOSPC)); 1899 } 1900 1901 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 1902 ASSERT(BP_GET_NDVAS(bp) == 0); 1903 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 1904 1905 for (int d = 0; d < ndvas; d++) { 1906 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, 1907 txg, flags); 1908 if (error) { 1909 for (d--; d >= 0; d--) { 1910 metaslab_free_dva(spa, &dva[d], txg, B_TRUE); 1911 bzero(&dva[d], sizeof (dva_t)); 1912 } 1913 spa_config_exit(spa, SCL_ALLOC, FTAG); 1914 return (error); 1915 } 1916 } 1917 ASSERT(error == 0); 1918 ASSERT(BP_GET_NDVAS(bp) == ndvas); 1919 1920 spa_config_exit(spa, SCL_ALLOC, FTAG); 1921 1922 BP_SET_BIRTH(bp, txg, txg); 1923 1924 return (0); 1925 } 1926 1927 void 1928 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 1929 { 1930 const dva_t *dva = bp->blk_dva; 1931 int ndvas = BP_GET_NDVAS(bp); 1932 1933 ASSERT(!BP_IS_HOLE(bp)); 1934 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa)); 1935 1936 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); 1937 1938 for (int d = 0; d < ndvas; d++) 1939 metaslab_free_dva(spa, &dva[d], txg, now); 1940 1941 spa_config_exit(spa, SCL_FREE, FTAG); 1942 } 1943 1944 int 1945 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 1946 { 1947 const dva_t *dva = bp->blk_dva; 1948 int ndvas = BP_GET_NDVAS(bp); 1949 int error = 0; 1950 1951 ASSERT(!BP_IS_HOLE(bp)); 1952 1953 if (txg != 0) { 1954 /* 1955 * First do a dry run to make sure all DVAs are claimable, 1956 * so we don't have to unwind from partial failures below. 1957 */ 1958 if ((error = metaslab_claim(spa, bp, 0)) != 0) 1959 return (error); 1960 } 1961 1962 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 1963 1964 for (int d = 0; d < ndvas; d++) 1965 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0) 1966 break; 1967 1968 spa_config_exit(spa, SCL_ALLOC, FTAG); 1969 1970 ASSERT(error == 0 || txg == 0); 1971 1972 return (error); 1973 } 1974 1975 static void 1976 checkmap(space_map_t *sm, uint64_t off, uint64_t size) 1977 { 1978 space_seg_t *ss; 1979 avl_index_t where; 1980 1981 mutex_enter(sm->sm_lock); 1982 ss = space_map_find(sm, off, size, &where); 1983 if (ss != NULL) 1984 panic("freeing free block; ss=%p", (void *)ss); 1985 mutex_exit(sm->sm_lock); 1986 } 1987 1988 void 1989 metaslab_check_free(spa_t *spa, const blkptr_t *bp) 1990 { 1991 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 1992 return; 1993 1994 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1995 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 1996 uint64_t vdid = DVA_GET_VDEV(&bp->blk_dva[i]); 1997 vdev_t *vd = vdev_lookup_top(spa, vdid); 1998 uint64_t off = DVA_GET_OFFSET(&bp->blk_dva[i]); 1999 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); 2000 metaslab_t *ms = vd->vdev_ms[off >> vd->vdev_ms_shift]; 2001 2002 if (ms->ms_map->sm_loaded) 2003 checkmap(ms->ms_map, off, size); 2004 2005 for (int j = 0; j < TXG_SIZE; j++) 2006 checkmap(ms->ms_freemap[j], off, size); 2007 for (int j = 0; j < TXG_DEFER_SIZE; j++) 2008 checkmap(ms->ms_defermap[j], off, size); 2009 } 2010 spa_config_exit(spa, SCL_VDEV, FTAG); 2011 }