Print this page
4171 clean up spa_feature_*() interfaces
4172 implement extensible_dataset feature for use by other zpool features
Reviewed by: Max Grossman <max.grossman@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/zap_micro.c
+++ new/usr/src/uts/common/fs/zfs/zap_micro.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 24 */
25 25
26 26 #include <sys/zio.h>
27 27 #include <sys/spa.h>
28 28 #include <sys/dmu.h>
29 29 #include <sys/zfs_context.h>
30 30 #include <sys/zap.h>
31 31 #include <sys/refcount.h>
32 32 #include <sys/zap_impl.h>
33 33 #include <sys/zap_leaf.h>
34 34 #include <sys/avl.h>
35 35 #include <sys/arc.h>
36 36
37 37 #ifdef _KERNEL
38 38 #include <sys/sunddi.h>
39 39 #endif
40 40
41 41 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
42 42
43 43 uint64_t
44 44 zap_getflags(zap_t *zap)
45 45 {
46 46 if (zap->zap_ismicro)
47 47 return (0);
48 48 return (zap->zap_u.zap_fat.zap_phys->zap_flags);
49 49 }
50 50
51 51 int
52 52 zap_hashbits(zap_t *zap)
53 53 {
54 54 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
55 55 return (48);
56 56 else
57 57 return (28);
58 58 }
59 59
60 60 uint32_t
61 61 zap_maxcd(zap_t *zap)
62 62 {
63 63 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
64 64 return ((1<<16)-1);
65 65 else
66 66 return (-1U);
67 67 }
68 68
69 69 static uint64_t
70 70 zap_hash(zap_name_t *zn)
71 71 {
72 72 zap_t *zap = zn->zn_zap;
73 73 uint64_t h = 0;
74 74
75 75 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
76 76 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
77 77 h = *(uint64_t *)zn->zn_key_orig;
78 78 } else {
79 79 h = zap->zap_salt;
80 80 ASSERT(h != 0);
81 81 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
82 82
83 83 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
84 84 int i;
85 85 const uint64_t *wp = zn->zn_key_norm;
86 86
87 87 ASSERT(zn->zn_key_intlen == 8);
88 88 for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
89 89 int j;
90 90 uint64_t word = *wp;
91 91
92 92 for (j = 0; j < zn->zn_key_intlen; j++) {
93 93 h = (h >> 8) ^
94 94 zfs_crc64_table[(h ^ word) & 0xFF];
95 95 word >>= NBBY;
96 96 }
97 97 }
98 98 } else {
99 99 int i, len;
100 100 const uint8_t *cp = zn->zn_key_norm;
101 101
102 102 /*
103 103 * We previously stored the terminating null on
104 104 * disk, but didn't hash it, so we need to
105 105 * continue to not hash it. (The
106 106 * zn_key_*_numints includes the terminating
107 107 * null for non-binary keys.)
108 108 */
109 109 len = zn->zn_key_norm_numints - 1;
110 110
111 111 ASSERT(zn->zn_key_intlen == 1);
112 112 for (i = 0; i < len; cp++, i++) {
113 113 h = (h >> 8) ^
114 114 zfs_crc64_table[(h ^ *cp) & 0xFF];
115 115 }
116 116 }
117 117 }
118 118 /*
119 119 * Don't use all 64 bits, since we need some in the cookie for
120 120 * the collision differentiator. We MUST use the high bits,
121 121 * since those are the ones that we first pay attention to when
122 122 * chosing the bucket.
123 123 */
124 124 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
125 125
126 126 return (h);
127 127 }
128 128
129 129 static int
130 130 zap_normalize(zap_t *zap, const char *name, char *namenorm)
131 131 {
132 132 size_t inlen, outlen;
133 133 int err;
134 134
135 135 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
136 136
137 137 inlen = strlen(name) + 1;
138 138 outlen = ZAP_MAXNAMELEN;
139 139
140 140 err = 0;
141 141 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
142 142 zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
143 143 U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
144 144
145 145 return (err);
146 146 }
147 147
148 148 boolean_t
149 149 zap_match(zap_name_t *zn, const char *matchname)
150 150 {
151 151 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
152 152
153 153 if (zn->zn_matchtype == MT_FIRST) {
154 154 char norm[ZAP_MAXNAMELEN];
155 155
156 156 if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
157 157 return (B_FALSE);
158 158
159 159 return (strcmp(zn->zn_key_norm, norm) == 0);
160 160 } else {
161 161 /* MT_BEST or MT_EXACT */
162 162 return (strcmp(zn->zn_key_orig, matchname) == 0);
163 163 }
164 164 }
165 165
166 166 void
167 167 zap_name_free(zap_name_t *zn)
168 168 {
169 169 kmem_free(zn, sizeof (zap_name_t));
170 170 }
171 171
172 172 zap_name_t *
173 173 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
174 174 {
175 175 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
176 176
177 177 zn->zn_zap = zap;
178 178 zn->zn_key_intlen = sizeof (*key);
179 179 zn->zn_key_orig = key;
180 180 zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
181 181 zn->zn_matchtype = mt;
182 182 if (zap->zap_normflags) {
183 183 if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
184 184 zap_name_free(zn);
185 185 return (NULL);
186 186 }
187 187 zn->zn_key_norm = zn->zn_normbuf;
188 188 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
189 189 } else {
190 190 if (mt != MT_EXACT) {
191 191 zap_name_free(zn);
192 192 return (NULL);
193 193 }
194 194 zn->zn_key_norm = zn->zn_key_orig;
195 195 zn->zn_key_norm_numints = zn->zn_key_orig_numints;
196 196 }
197 197
198 198 zn->zn_hash = zap_hash(zn);
199 199 return (zn);
200 200 }
201 201
202 202 zap_name_t *
203 203 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
204 204 {
205 205 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
206 206
207 207 ASSERT(zap->zap_normflags == 0);
208 208 zn->zn_zap = zap;
209 209 zn->zn_key_intlen = sizeof (*key);
210 210 zn->zn_key_orig = zn->zn_key_norm = key;
211 211 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
212 212 zn->zn_matchtype = MT_EXACT;
213 213
214 214 zn->zn_hash = zap_hash(zn);
215 215 return (zn);
216 216 }
217 217
218 218 static void
219 219 mzap_byteswap(mzap_phys_t *buf, size_t size)
220 220 {
221 221 int i, max;
222 222 buf->mz_block_type = BSWAP_64(buf->mz_block_type);
223 223 buf->mz_salt = BSWAP_64(buf->mz_salt);
224 224 buf->mz_normflags = BSWAP_64(buf->mz_normflags);
225 225 max = (size / MZAP_ENT_LEN) - 1;
226 226 for (i = 0; i < max; i++) {
227 227 buf->mz_chunk[i].mze_value =
228 228 BSWAP_64(buf->mz_chunk[i].mze_value);
229 229 buf->mz_chunk[i].mze_cd =
230 230 BSWAP_32(buf->mz_chunk[i].mze_cd);
231 231 }
232 232 }
233 233
234 234 void
235 235 zap_byteswap(void *buf, size_t size)
236 236 {
237 237 uint64_t block_type;
238 238
239 239 block_type = *(uint64_t *)buf;
240 240
241 241 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
242 242 /* ASSERT(magic == ZAP_LEAF_MAGIC); */
243 243 mzap_byteswap(buf, size);
244 244 } else {
245 245 fzap_byteswap(buf, size);
246 246 }
247 247 }
248 248
249 249 static int
250 250 mze_compare(const void *arg1, const void *arg2)
251 251 {
252 252 const mzap_ent_t *mze1 = arg1;
253 253 const mzap_ent_t *mze2 = arg2;
254 254
255 255 if (mze1->mze_hash > mze2->mze_hash)
256 256 return (+1);
257 257 if (mze1->mze_hash < mze2->mze_hash)
258 258 return (-1);
259 259 if (mze1->mze_cd > mze2->mze_cd)
260 260 return (+1);
261 261 if (mze1->mze_cd < mze2->mze_cd)
262 262 return (-1);
263 263 return (0);
264 264 }
265 265
266 266 static void
267 267 mze_insert(zap_t *zap, int chunkid, uint64_t hash)
268 268 {
269 269 mzap_ent_t *mze;
270 270
271 271 ASSERT(zap->zap_ismicro);
272 272 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
273 273
274 274 mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
275 275 mze->mze_chunkid = chunkid;
276 276 mze->mze_hash = hash;
277 277 mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
278 278 ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
279 279 avl_add(&zap->zap_m.zap_avl, mze);
280 280 }
281 281
282 282 static mzap_ent_t *
283 283 mze_find(zap_name_t *zn)
284 284 {
285 285 mzap_ent_t mze_tofind;
286 286 mzap_ent_t *mze;
287 287 avl_index_t idx;
288 288 avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
289 289
290 290 ASSERT(zn->zn_zap->zap_ismicro);
291 291 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
292 292
293 293 mze_tofind.mze_hash = zn->zn_hash;
294 294 mze_tofind.mze_cd = 0;
295 295
296 296 again:
297 297 mze = avl_find(avl, &mze_tofind, &idx);
298 298 if (mze == NULL)
299 299 mze = avl_nearest(avl, idx, AVL_AFTER);
300 300 for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
301 301 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
302 302 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
303 303 return (mze);
304 304 }
305 305 if (zn->zn_matchtype == MT_BEST) {
306 306 zn->zn_matchtype = MT_FIRST;
307 307 goto again;
308 308 }
309 309 return (NULL);
310 310 }
311 311
312 312 static uint32_t
313 313 mze_find_unused_cd(zap_t *zap, uint64_t hash)
314 314 {
315 315 mzap_ent_t mze_tofind;
316 316 mzap_ent_t *mze;
317 317 avl_index_t idx;
318 318 avl_tree_t *avl = &zap->zap_m.zap_avl;
319 319 uint32_t cd;
320 320
321 321 ASSERT(zap->zap_ismicro);
322 322 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
323 323
324 324 mze_tofind.mze_hash = hash;
325 325 mze_tofind.mze_cd = 0;
326 326
327 327 cd = 0;
328 328 for (mze = avl_find(avl, &mze_tofind, &idx);
329 329 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
330 330 if (mze->mze_cd != cd)
331 331 break;
332 332 cd++;
333 333 }
334 334
335 335 return (cd);
336 336 }
337 337
338 338 static void
339 339 mze_remove(zap_t *zap, mzap_ent_t *mze)
340 340 {
341 341 ASSERT(zap->zap_ismicro);
342 342 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
343 343
344 344 avl_remove(&zap->zap_m.zap_avl, mze);
345 345 kmem_free(mze, sizeof (mzap_ent_t));
346 346 }
347 347
348 348 static void
349 349 mze_destroy(zap_t *zap)
350 350 {
351 351 mzap_ent_t *mze;
352 352 void *avlcookie = NULL;
353 353
354 354 while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
355 355 kmem_free(mze, sizeof (mzap_ent_t));
356 356 avl_destroy(&zap->zap_m.zap_avl);
357 357 }
358 358
359 359 static zap_t *
360 360 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
361 361 {
362 362 zap_t *winner;
363 363 zap_t *zap;
364 364 int i;
365 365
366 366 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
367 367
368 368 zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
369 369 rw_init(&zap->zap_rwlock, 0, 0, 0);
370 370 rw_enter(&zap->zap_rwlock, RW_WRITER);
371 371 zap->zap_objset = os;
372 372 zap->zap_object = obj;
373 373 zap->zap_dbuf = db;
374 374
375 375 if (*(uint64_t *)db->db_data != ZBT_MICRO) {
376 376 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
377 377 zap->zap_f.zap_block_shift = highbit(db->db_size) - 1;
378 378 } else {
379 379 zap->zap_ismicro = TRUE;
380 380 }
381 381
382 382 /*
383 383 * Make sure that zap_ismicro is set before we let others see
384 384 * it, because zap_lockdir() checks zap_ismicro without the lock
385 385 * held.
386 386 */
387 387 winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_evict);
388 388
389 389 if (winner != NULL) {
390 390 rw_exit(&zap->zap_rwlock);
391 391 rw_destroy(&zap->zap_rwlock);
392 392 if (!zap->zap_ismicro)
393 393 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
394 394 kmem_free(zap, sizeof (zap_t));
395 395 return (winner);
396 396 }
397 397
398 398 if (zap->zap_ismicro) {
399 399 zap->zap_salt = zap->zap_m.zap_phys->mz_salt;
400 400 zap->zap_normflags = zap->zap_m.zap_phys->mz_normflags;
401 401 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
402 402 avl_create(&zap->zap_m.zap_avl, mze_compare,
403 403 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
404 404
405 405 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
406 406 mzap_ent_phys_t *mze =
407 407 &zap->zap_m.zap_phys->mz_chunk[i];
408 408 if (mze->mze_name[0]) {
409 409 zap_name_t *zn;
410 410
411 411 zap->zap_m.zap_num_entries++;
412 412 zn = zap_name_alloc(zap, mze->mze_name,
413 413 MT_EXACT);
414 414 mze_insert(zap, i, zn->zn_hash);
415 415 zap_name_free(zn);
416 416 }
417 417 }
418 418 } else {
419 419 zap->zap_salt = zap->zap_f.zap_phys->zap_salt;
420 420 zap->zap_normflags = zap->zap_f.zap_phys->zap_normflags;
421 421
422 422 ASSERT3U(sizeof (struct zap_leaf_header), ==,
423 423 2*ZAP_LEAF_CHUNKSIZE);
424 424
425 425 /*
426 426 * The embedded pointer table should not overlap the
427 427 * other members.
428 428 */
429 429 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
430 430 &zap->zap_f.zap_phys->zap_salt);
431 431
432 432 /*
433 433 * The embedded pointer table should end at the end of
434 434 * the block
435 435 */
436 436 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
437 437 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
438 438 (uintptr_t)zap->zap_f.zap_phys, ==,
439 439 zap->zap_dbuf->db_size);
440 440 }
441 441 rw_exit(&zap->zap_rwlock);
442 442 return (zap);
443 443 }
444 444
445 445 int
446 446 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
447 447 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
448 448 {
449 449 zap_t *zap;
450 450 dmu_buf_t *db;
451 451 krw_t lt;
452 452 int err;
453 453
454 454 *zapp = NULL;
455 455
456 456 err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH);
457 457 if (err)
458 458 return (err);
459 459
460 460 #ifdef ZFS_DEBUG
461 461 {
462 462 dmu_object_info_t doi;
463 463 dmu_object_info_from_db(db, &doi);
464 464 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
465 465 }
466 466 #endif
467 467
468 468 zap = dmu_buf_get_user(db);
469 469 if (zap == NULL)
470 470 zap = mzap_open(os, obj, db);
471 471
472 472 /*
473 473 * We're checking zap_ismicro without the lock held, in order to
474 474 * tell what type of lock we want. Once we have some sort of
475 475 * lock, see if it really is the right type. In practice this
476 476 * can only be different if it was upgraded from micro to fat,
477 477 * and micro wanted WRITER but fat only needs READER.
478 478 */
479 479 lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
480 480 rw_enter(&zap->zap_rwlock, lt);
481 481 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
482 482 /* it was upgraded, now we only need reader */
483 483 ASSERT(lt == RW_WRITER);
484 484 ASSERT(RW_READER ==
485 485 (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
486 486 rw_downgrade(&zap->zap_rwlock);
487 487 lt = RW_READER;
488 488 }
489 489
490 490 zap->zap_objset = os;
491 491
492 492 if (lt == RW_WRITER)
493 493 dmu_buf_will_dirty(db, tx);
494 494
495 495 ASSERT3P(zap->zap_dbuf, ==, db);
496 496
497 497 ASSERT(!zap->zap_ismicro ||
498 498 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
499 499 if (zap->zap_ismicro && tx && adding &&
500 500 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
501 501 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
502 502 if (newsz > MZAP_MAX_BLKSZ) {
503 503 dprintf("upgrading obj %llu: num_entries=%u\n",
504 504 obj, zap->zap_m.zap_num_entries);
505 505 *zapp = zap;
506 506 return (mzap_upgrade(zapp, tx, 0));
507 507 }
508 508 err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
509 509 ASSERT0(err);
510 510 zap->zap_m.zap_num_chunks =
511 511 db->db_size / MZAP_ENT_LEN - 1;
512 512 }
513 513
514 514 *zapp = zap;
515 515 return (0);
516 516 }
517 517
518 518 void
519 519 zap_unlockdir(zap_t *zap)
520 520 {
521 521 rw_exit(&zap->zap_rwlock);
522 522 dmu_buf_rele(zap->zap_dbuf, NULL);
523 523 }
524 524
525 525 static int
526 526 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
527 527 {
528 528 mzap_phys_t *mzp;
529 529 int i, sz, nchunks;
530 530 int err = 0;
531 531 zap_t *zap = *zapp;
532 532
533 533 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
534 534
535 535 sz = zap->zap_dbuf->db_size;
536 536 mzp = kmem_alloc(sz, KM_SLEEP);
537 537 bcopy(zap->zap_dbuf->db_data, mzp, sz);
538 538 nchunks = zap->zap_m.zap_num_chunks;
539 539
540 540 if (!flags) {
541 541 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
542 542 1ULL << fzap_default_block_shift, 0, tx);
543 543 if (err) {
544 544 kmem_free(mzp, sz);
545 545 return (err);
546 546 }
547 547 }
548 548
549 549 dprintf("upgrading obj=%llu with %u chunks\n",
550 550 zap->zap_object, nchunks);
551 551 /* XXX destroy the avl later, so we can use the stored hash value */
552 552 mze_destroy(zap);
553 553
554 554 fzap_upgrade(zap, tx, flags);
555 555
556 556 for (i = 0; i < nchunks; i++) {
557 557 mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
558 558 zap_name_t *zn;
559 559 if (mze->mze_name[0] == 0)
560 560 continue;
561 561 dprintf("adding %s=%llu\n",
562 562 mze->mze_name, mze->mze_value);
563 563 zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
564 564 err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
↓ open down ↓ |
564 lines elided |
↑ open up ↑ |
565 565 zap = zn->zn_zap; /* fzap_add_cd() may change zap */
566 566 zap_name_free(zn);
567 567 if (err)
568 568 break;
569 569 }
570 570 kmem_free(mzp, sz);
571 571 *zapp = zap;
572 572 return (err);
573 573 }
574 574
575 -static void
575 +void
576 576 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
577 577 dmu_tx_t *tx)
578 578 {
579 579 dmu_buf_t *db;
580 580 mzap_phys_t *zp;
581 581
582 582 VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
583 583
584 584 #ifdef ZFS_DEBUG
585 585 {
586 586 dmu_object_info_t doi;
587 587 dmu_object_info_from_db(db, &doi);
588 588 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
589 589 }
590 590 #endif
591 591
592 592 dmu_buf_will_dirty(db, tx);
593 593 zp = db->db_data;
594 594 zp->mz_block_type = ZBT_MICRO;
595 595 zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
596 596 zp->mz_normflags = normflags;
597 597 dmu_buf_rele(db, FTAG);
598 598
599 599 if (flags != 0) {
600 600 zap_t *zap;
601 601 /* Only fat zap supports flags; upgrade immediately. */
602 602 VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
603 603 B_FALSE, B_FALSE, &zap));
604 604 VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
605 605 zap_unlockdir(zap);
606 606 }
607 607 }
608 608
609 609 int
610 610 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
611 611 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
612 612 {
613 613 return (zap_create_claim_norm(os, obj,
614 614 0, ot, bonustype, bonuslen, tx));
615 615 }
616 616
617 617 int
618 618 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
619 619 dmu_object_type_t ot,
620 620 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
621 621 {
622 622 int err;
623 623
624 624 err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
625 625 if (err != 0)
626 626 return (err);
627 627 mzap_create_impl(os, obj, normflags, 0, tx);
628 628 return (0);
629 629 }
630 630
631 631 uint64_t
632 632 zap_create(objset_t *os, dmu_object_type_t ot,
633 633 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
634 634 {
635 635 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
636 636 }
637 637
638 638 uint64_t
639 639 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
640 640 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
641 641 {
642 642 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
643 643
644 644 mzap_create_impl(os, obj, normflags, 0, tx);
645 645 return (obj);
646 646 }
647 647
648 648 uint64_t
649 649 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
650 650 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
651 651 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
652 652 {
653 653 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
654 654
655 655 ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
656 656 leaf_blockshift <= SPA_MAXBLOCKSHIFT &&
657 657 indirect_blockshift >= SPA_MINBLOCKSHIFT &&
658 658 indirect_blockshift <= SPA_MAXBLOCKSHIFT);
659 659
660 660 VERIFY(dmu_object_set_blocksize(os, obj,
661 661 1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
662 662
663 663 mzap_create_impl(os, obj, normflags, flags, tx);
664 664 return (obj);
665 665 }
666 666
667 667 int
668 668 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
669 669 {
670 670 /*
671 671 * dmu_object_free will free the object number and free the
672 672 * data. Freeing the data will cause our pageout function to be
673 673 * called, which will destroy our data (zap_leaf_t's and zap_t).
674 674 */
675 675
676 676 return (dmu_object_free(os, zapobj, tx));
677 677 }
678 678
679 679 _NOTE(ARGSUSED(0))
680 680 void
681 681 zap_evict(dmu_buf_t *db, void *vzap)
682 682 {
683 683 zap_t *zap = vzap;
684 684
685 685 rw_destroy(&zap->zap_rwlock);
686 686
687 687 if (zap->zap_ismicro)
688 688 mze_destroy(zap);
689 689 else
690 690 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
691 691
692 692 kmem_free(zap, sizeof (zap_t));
693 693 }
694 694
695 695 int
696 696 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
697 697 {
698 698 zap_t *zap;
699 699 int err;
700 700
701 701 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
702 702 if (err)
703 703 return (err);
704 704 if (!zap->zap_ismicro) {
705 705 err = fzap_count(zap, count);
706 706 } else {
707 707 *count = zap->zap_m.zap_num_entries;
708 708 }
709 709 zap_unlockdir(zap);
710 710 return (err);
711 711 }
712 712
713 713 /*
714 714 * zn may be NULL; if not specified, it will be computed if needed.
715 715 * See also the comment above zap_entry_normalization_conflict().
716 716 */
717 717 static boolean_t
718 718 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
719 719 {
720 720 mzap_ent_t *other;
721 721 int direction = AVL_BEFORE;
722 722 boolean_t allocdzn = B_FALSE;
723 723
724 724 if (zap->zap_normflags == 0)
725 725 return (B_FALSE);
726 726
727 727 again:
728 728 for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
729 729 other && other->mze_hash == mze->mze_hash;
730 730 other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
731 731
732 732 if (zn == NULL) {
733 733 zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
734 734 MT_FIRST);
735 735 allocdzn = B_TRUE;
736 736 }
737 737 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
738 738 if (allocdzn)
739 739 zap_name_free(zn);
740 740 return (B_TRUE);
741 741 }
742 742 }
743 743
744 744 if (direction == AVL_BEFORE) {
745 745 direction = AVL_AFTER;
746 746 goto again;
747 747 }
748 748
749 749 if (allocdzn)
750 750 zap_name_free(zn);
751 751 return (B_FALSE);
752 752 }
753 753
754 754 /*
755 755 * Routines for manipulating attributes.
756 756 */
757 757
758 758 int
759 759 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
760 760 uint64_t integer_size, uint64_t num_integers, void *buf)
761 761 {
762 762 return (zap_lookup_norm(os, zapobj, name, integer_size,
763 763 num_integers, buf, MT_EXACT, NULL, 0, NULL));
764 764 }
765 765
766 766 int
767 767 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
768 768 uint64_t integer_size, uint64_t num_integers, void *buf,
769 769 matchtype_t mt, char *realname, int rn_len,
770 770 boolean_t *ncp)
771 771 {
772 772 zap_t *zap;
773 773 int err;
774 774 mzap_ent_t *mze;
775 775 zap_name_t *zn;
776 776
777 777 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
778 778 if (err)
779 779 return (err);
780 780 zn = zap_name_alloc(zap, name, mt);
781 781 if (zn == NULL) {
782 782 zap_unlockdir(zap);
783 783 return (SET_ERROR(ENOTSUP));
784 784 }
785 785
786 786 if (!zap->zap_ismicro) {
787 787 err = fzap_lookup(zn, integer_size, num_integers, buf,
788 788 realname, rn_len, ncp);
789 789 } else {
790 790 mze = mze_find(zn);
791 791 if (mze == NULL) {
792 792 err = SET_ERROR(ENOENT);
793 793 } else {
794 794 if (num_integers < 1) {
795 795 err = SET_ERROR(EOVERFLOW);
796 796 } else if (integer_size != 8) {
797 797 err = SET_ERROR(EINVAL);
798 798 } else {
799 799 *(uint64_t *)buf =
800 800 MZE_PHYS(zap, mze)->mze_value;
801 801 (void) strlcpy(realname,
802 802 MZE_PHYS(zap, mze)->mze_name, rn_len);
803 803 if (ncp) {
804 804 *ncp = mzap_normalization_conflict(zap,
805 805 zn, mze);
806 806 }
807 807 }
808 808 }
809 809 }
810 810 zap_name_free(zn);
811 811 zap_unlockdir(zap);
812 812 return (err);
813 813 }
814 814
815 815 int
816 816 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
817 817 int key_numints)
818 818 {
819 819 zap_t *zap;
820 820 int err;
821 821 zap_name_t *zn;
822 822
823 823 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
824 824 if (err)
825 825 return (err);
826 826 zn = zap_name_alloc_uint64(zap, key, key_numints);
827 827 if (zn == NULL) {
828 828 zap_unlockdir(zap);
829 829 return (SET_ERROR(ENOTSUP));
830 830 }
831 831
832 832 fzap_prefetch(zn);
833 833 zap_name_free(zn);
834 834 zap_unlockdir(zap);
835 835 return (err);
836 836 }
837 837
838 838 int
839 839 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
840 840 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
841 841 {
842 842 zap_t *zap;
843 843 int err;
844 844 zap_name_t *zn;
845 845
846 846 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
847 847 if (err)
848 848 return (err);
849 849 zn = zap_name_alloc_uint64(zap, key, key_numints);
850 850 if (zn == NULL) {
851 851 zap_unlockdir(zap);
852 852 return (SET_ERROR(ENOTSUP));
853 853 }
854 854
↓ open down ↓ |
269 lines elided |
↑ open up ↑ |
855 855 err = fzap_lookup(zn, integer_size, num_integers, buf,
856 856 NULL, 0, NULL);
857 857 zap_name_free(zn);
858 858 zap_unlockdir(zap);
859 859 return (err);
860 860 }
861 861
862 862 int
863 863 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
864 864 {
865 - int err = (zap_lookup_norm(os, zapobj, name, 0,
866 - 0, NULL, MT_EXACT, NULL, 0, NULL));
865 + int err = zap_lookup_norm(os, zapobj, name, 0,
866 + 0, NULL, MT_EXACT, NULL, 0, NULL);
867 867 if (err == EOVERFLOW || err == EINVAL)
868 868 err = 0; /* found, but skipped reading the value */
869 869 return (err);
870 870 }
871 871
872 872 int
873 873 zap_length(objset_t *os, uint64_t zapobj, const char *name,
874 874 uint64_t *integer_size, uint64_t *num_integers)
875 875 {
876 876 zap_t *zap;
877 877 int err;
878 878 mzap_ent_t *mze;
879 879 zap_name_t *zn;
880 880
881 881 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
882 882 if (err)
883 883 return (err);
884 884 zn = zap_name_alloc(zap, name, MT_EXACT);
885 885 if (zn == NULL) {
886 886 zap_unlockdir(zap);
887 887 return (SET_ERROR(ENOTSUP));
888 888 }
889 889 if (!zap->zap_ismicro) {
890 890 err = fzap_length(zn, integer_size, num_integers);
891 891 } else {
892 892 mze = mze_find(zn);
893 893 if (mze == NULL) {
894 894 err = SET_ERROR(ENOENT);
895 895 } else {
896 896 if (integer_size)
897 897 *integer_size = 8;
898 898 if (num_integers)
899 899 *num_integers = 1;
900 900 }
901 901 }
902 902 zap_name_free(zn);
903 903 zap_unlockdir(zap);
904 904 return (err);
905 905 }
906 906
907 907 int
908 908 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
909 909 int key_numints, uint64_t *integer_size, uint64_t *num_integers)
910 910 {
911 911 zap_t *zap;
912 912 int err;
913 913 zap_name_t *zn;
914 914
915 915 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
916 916 if (err)
917 917 return (err);
918 918 zn = zap_name_alloc_uint64(zap, key, key_numints);
919 919 if (zn == NULL) {
920 920 zap_unlockdir(zap);
921 921 return (SET_ERROR(ENOTSUP));
922 922 }
923 923 err = fzap_length(zn, integer_size, num_integers);
924 924 zap_name_free(zn);
925 925 zap_unlockdir(zap);
926 926 return (err);
927 927 }
928 928
929 929 static void
930 930 mzap_addent(zap_name_t *zn, uint64_t value)
931 931 {
932 932 int i;
933 933 zap_t *zap = zn->zn_zap;
934 934 int start = zap->zap_m.zap_alloc_next;
935 935 uint32_t cd;
936 936
937 937 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
938 938
939 939 #ifdef ZFS_DEBUG
940 940 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
941 941 mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
942 942 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
943 943 }
944 944 #endif
945 945
946 946 cd = mze_find_unused_cd(zap, zn->zn_hash);
947 947 /* given the limited size of the microzap, this can't happen */
948 948 ASSERT(cd < zap_maxcd(zap));
949 949
950 950 again:
951 951 for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
952 952 mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
953 953 if (mze->mze_name[0] == 0) {
954 954 mze->mze_value = value;
955 955 mze->mze_cd = cd;
956 956 (void) strcpy(mze->mze_name, zn->zn_key_orig);
957 957 zap->zap_m.zap_num_entries++;
958 958 zap->zap_m.zap_alloc_next = i+1;
959 959 if (zap->zap_m.zap_alloc_next ==
960 960 zap->zap_m.zap_num_chunks)
961 961 zap->zap_m.zap_alloc_next = 0;
962 962 mze_insert(zap, i, zn->zn_hash);
963 963 return;
964 964 }
965 965 }
966 966 if (start != 0) {
967 967 start = 0;
968 968 goto again;
969 969 }
970 970 ASSERT(!"out of entries!");
971 971 }
972 972
973 973 int
974 974 zap_add(objset_t *os, uint64_t zapobj, const char *key,
975 975 int integer_size, uint64_t num_integers,
976 976 const void *val, dmu_tx_t *tx)
977 977 {
978 978 zap_t *zap;
979 979 int err;
980 980 mzap_ent_t *mze;
981 981 const uint64_t *intval = val;
982 982 zap_name_t *zn;
983 983
984 984 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
985 985 if (err)
986 986 return (err);
987 987 zn = zap_name_alloc(zap, key, MT_EXACT);
988 988 if (zn == NULL) {
989 989 zap_unlockdir(zap);
990 990 return (SET_ERROR(ENOTSUP));
991 991 }
992 992 if (!zap->zap_ismicro) {
993 993 err = fzap_add(zn, integer_size, num_integers, val, tx);
994 994 zap = zn->zn_zap; /* fzap_add() may change zap */
995 995 } else if (integer_size != 8 || num_integers != 1 ||
996 996 strlen(key) >= MZAP_NAME_LEN) {
997 997 err = mzap_upgrade(&zn->zn_zap, tx, 0);
998 998 if (err == 0)
999 999 err = fzap_add(zn, integer_size, num_integers, val, tx);
1000 1000 zap = zn->zn_zap; /* fzap_add() may change zap */
1001 1001 } else {
1002 1002 mze = mze_find(zn);
1003 1003 if (mze != NULL) {
1004 1004 err = SET_ERROR(EEXIST);
1005 1005 } else {
1006 1006 mzap_addent(zn, *intval);
1007 1007 }
1008 1008 }
1009 1009 ASSERT(zap == zn->zn_zap);
1010 1010 zap_name_free(zn);
1011 1011 if (zap != NULL) /* may be NULL if fzap_add() failed */
1012 1012 zap_unlockdir(zap);
1013 1013 return (err);
1014 1014 }
1015 1015
1016 1016 int
1017 1017 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1018 1018 int key_numints, int integer_size, uint64_t num_integers,
1019 1019 const void *val, dmu_tx_t *tx)
1020 1020 {
1021 1021 zap_t *zap;
1022 1022 int err;
1023 1023 zap_name_t *zn;
1024 1024
1025 1025 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1026 1026 if (err)
1027 1027 return (err);
1028 1028 zn = zap_name_alloc_uint64(zap, key, key_numints);
1029 1029 if (zn == NULL) {
1030 1030 zap_unlockdir(zap);
1031 1031 return (SET_ERROR(ENOTSUP));
1032 1032 }
1033 1033 err = fzap_add(zn, integer_size, num_integers, val, tx);
1034 1034 zap = zn->zn_zap; /* fzap_add() may change zap */
1035 1035 zap_name_free(zn);
1036 1036 if (zap != NULL) /* may be NULL if fzap_add() failed */
1037 1037 zap_unlockdir(zap);
1038 1038 return (err);
1039 1039 }
1040 1040
1041 1041 int
1042 1042 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1043 1043 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1044 1044 {
1045 1045 zap_t *zap;
1046 1046 mzap_ent_t *mze;
1047 1047 uint64_t oldval;
1048 1048 const uint64_t *intval = val;
1049 1049 zap_name_t *zn;
1050 1050 int err;
1051 1051
1052 1052 #ifdef ZFS_DEBUG
1053 1053 /*
1054 1054 * If there is an old value, it shouldn't change across the
1055 1055 * lockdir (eg, due to bprewrite's xlation).
1056 1056 */
1057 1057 if (integer_size == 8 && num_integers == 1)
1058 1058 (void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1059 1059 #endif
1060 1060
1061 1061 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1062 1062 if (err)
1063 1063 return (err);
1064 1064 zn = zap_name_alloc(zap, name, MT_EXACT);
1065 1065 if (zn == NULL) {
1066 1066 zap_unlockdir(zap);
1067 1067 return (SET_ERROR(ENOTSUP));
1068 1068 }
1069 1069 if (!zap->zap_ismicro) {
1070 1070 err = fzap_update(zn, integer_size, num_integers, val, tx);
1071 1071 zap = zn->zn_zap; /* fzap_update() may change zap */
1072 1072 } else if (integer_size != 8 || num_integers != 1 ||
1073 1073 strlen(name) >= MZAP_NAME_LEN) {
1074 1074 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1075 1075 zapobj, integer_size, num_integers, name);
1076 1076 err = mzap_upgrade(&zn->zn_zap, tx, 0);
1077 1077 if (err == 0)
1078 1078 err = fzap_update(zn, integer_size, num_integers,
1079 1079 val, tx);
1080 1080 zap = zn->zn_zap; /* fzap_update() may change zap */
1081 1081 } else {
1082 1082 mze = mze_find(zn);
1083 1083 if (mze != NULL) {
1084 1084 ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1085 1085 MZE_PHYS(zap, mze)->mze_value = *intval;
1086 1086 } else {
1087 1087 mzap_addent(zn, *intval);
1088 1088 }
1089 1089 }
1090 1090 ASSERT(zap == zn->zn_zap);
1091 1091 zap_name_free(zn);
1092 1092 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1093 1093 zap_unlockdir(zap);
1094 1094 return (err);
1095 1095 }
1096 1096
1097 1097 int
1098 1098 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1099 1099 int key_numints,
1100 1100 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1101 1101 {
1102 1102 zap_t *zap;
1103 1103 zap_name_t *zn;
1104 1104 int err;
1105 1105
1106 1106 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1107 1107 if (err)
1108 1108 return (err);
1109 1109 zn = zap_name_alloc_uint64(zap, key, key_numints);
1110 1110 if (zn == NULL) {
1111 1111 zap_unlockdir(zap);
1112 1112 return (SET_ERROR(ENOTSUP));
1113 1113 }
1114 1114 err = fzap_update(zn, integer_size, num_integers, val, tx);
1115 1115 zap = zn->zn_zap; /* fzap_update() may change zap */
1116 1116 zap_name_free(zn);
1117 1117 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1118 1118 zap_unlockdir(zap);
1119 1119 return (err);
1120 1120 }
1121 1121
1122 1122 int
1123 1123 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1124 1124 {
1125 1125 return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1126 1126 }
1127 1127
1128 1128 int
1129 1129 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1130 1130 matchtype_t mt, dmu_tx_t *tx)
1131 1131 {
1132 1132 zap_t *zap;
1133 1133 int err;
1134 1134 mzap_ent_t *mze;
1135 1135 zap_name_t *zn;
1136 1136
1137 1137 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1138 1138 if (err)
1139 1139 return (err);
1140 1140 zn = zap_name_alloc(zap, name, mt);
1141 1141 if (zn == NULL) {
1142 1142 zap_unlockdir(zap);
1143 1143 return (SET_ERROR(ENOTSUP));
1144 1144 }
1145 1145 if (!zap->zap_ismicro) {
1146 1146 err = fzap_remove(zn, tx);
1147 1147 } else {
1148 1148 mze = mze_find(zn);
1149 1149 if (mze == NULL) {
1150 1150 err = SET_ERROR(ENOENT);
1151 1151 } else {
1152 1152 zap->zap_m.zap_num_entries--;
1153 1153 bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid],
1154 1154 sizeof (mzap_ent_phys_t));
1155 1155 mze_remove(zap, mze);
1156 1156 }
1157 1157 }
1158 1158 zap_name_free(zn);
1159 1159 zap_unlockdir(zap);
1160 1160 return (err);
1161 1161 }
1162 1162
1163 1163 int
1164 1164 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1165 1165 int key_numints, dmu_tx_t *tx)
1166 1166 {
1167 1167 zap_t *zap;
1168 1168 int err;
1169 1169 zap_name_t *zn;
1170 1170
1171 1171 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1172 1172 if (err)
1173 1173 return (err);
1174 1174 zn = zap_name_alloc_uint64(zap, key, key_numints);
1175 1175 if (zn == NULL) {
1176 1176 zap_unlockdir(zap);
1177 1177 return (SET_ERROR(ENOTSUP));
1178 1178 }
1179 1179 err = fzap_remove(zn, tx);
1180 1180 zap_name_free(zn);
1181 1181 zap_unlockdir(zap);
1182 1182 return (err);
1183 1183 }
1184 1184
1185 1185 /*
1186 1186 * Routines for iterating over the attributes.
1187 1187 */
1188 1188
1189 1189 void
1190 1190 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1191 1191 uint64_t serialized)
1192 1192 {
1193 1193 zc->zc_objset = os;
1194 1194 zc->zc_zap = NULL;
1195 1195 zc->zc_leaf = NULL;
1196 1196 zc->zc_zapobj = zapobj;
1197 1197 zc->zc_serialized = serialized;
1198 1198 zc->zc_hash = 0;
1199 1199 zc->zc_cd = 0;
1200 1200 }
1201 1201
1202 1202 void
1203 1203 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1204 1204 {
1205 1205 zap_cursor_init_serialized(zc, os, zapobj, 0);
1206 1206 }
1207 1207
1208 1208 void
1209 1209 zap_cursor_fini(zap_cursor_t *zc)
1210 1210 {
1211 1211 if (zc->zc_zap) {
1212 1212 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1213 1213 zap_unlockdir(zc->zc_zap);
1214 1214 zc->zc_zap = NULL;
1215 1215 }
1216 1216 if (zc->zc_leaf) {
1217 1217 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1218 1218 zap_put_leaf(zc->zc_leaf);
1219 1219 zc->zc_leaf = NULL;
1220 1220 }
1221 1221 zc->zc_objset = NULL;
1222 1222 }
1223 1223
1224 1224 uint64_t
1225 1225 zap_cursor_serialize(zap_cursor_t *zc)
1226 1226 {
1227 1227 if (zc->zc_hash == -1ULL)
1228 1228 return (-1ULL);
1229 1229 if (zc->zc_zap == NULL)
1230 1230 return (zc->zc_serialized);
1231 1231 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1232 1232 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1233 1233
1234 1234 /*
1235 1235 * We want to keep the high 32 bits of the cursor zero if we can, so
1236 1236 * that 32-bit programs can access this. So usually use a small
1237 1237 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1238 1238 * of the cursor.
1239 1239 *
1240 1240 * [ collision differentiator | zap_hashbits()-bit hash value ]
1241 1241 */
1242 1242 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1243 1243 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1244 1244 }
1245 1245
1246 1246 int
1247 1247 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1248 1248 {
1249 1249 int err;
1250 1250 avl_index_t idx;
1251 1251 mzap_ent_t mze_tofind;
1252 1252 mzap_ent_t *mze;
1253 1253
1254 1254 if (zc->zc_hash == -1ULL)
1255 1255 return (SET_ERROR(ENOENT));
1256 1256
1257 1257 if (zc->zc_zap == NULL) {
1258 1258 int hb;
1259 1259 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1260 1260 RW_READER, TRUE, FALSE, &zc->zc_zap);
1261 1261 if (err)
1262 1262 return (err);
1263 1263
1264 1264 /*
1265 1265 * To support zap_cursor_init_serialized, advance, retrieve,
1266 1266 * we must add to the existing zc_cd, which may already
1267 1267 * be 1 due to the zap_cursor_advance.
1268 1268 */
1269 1269 ASSERT(zc->zc_hash == 0);
1270 1270 hb = zap_hashbits(zc->zc_zap);
1271 1271 zc->zc_hash = zc->zc_serialized << (64 - hb);
1272 1272 zc->zc_cd += zc->zc_serialized >> hb;
1273 1273 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1274 1274 zc->zc_cd = 0;
1275 1275 } else {
1276 1276 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1277 1277 }
1278 1278 if (!zc->zc_zap->zap_ismicro) {
1279 1279 err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1280 1280 } else {
1281 1281 mze_tofind.mze_hash = zc->zc_hash;
1282 1282 mze_tofind.mze_cd = zc->zc_cd;
1283 1283
1284 1284 mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1285 1285 if (mze == NULL) {
1286 1286 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1287 1287 idx, AVL_AFTER);
1288 1288 }
1289 1289 if (mze) {
1290 1290 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1291 1291 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1292 1292 za->za_normalization_conflict =
1293 1293 mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1294 1294 za->za_integer_length = 8;
1295 1295 za->za_num_integers = 1;
1296 1296 za->za_first_integer = mzep->mze_value;
1297 1297 (void) strcpy(za->za_name, mzep->mze_name);
1298 1298 zc->zc_hash = mze->mze_hash;
1299 1299 zc->zc_cd = mze->mze_cd;
1300 1300 err = 0;
1301 1301 } else {
1302 1302 zc->zc_hash = -1ULL;
1303 1303 err = SET_ERROR(ENOENT);
1304 1304 }
1305 1305 }
1306 1306 rw_exit(&zc->zc_zap->zap_rwlock);
1307 1307 return (err);
1308 1308 }
1309 1309
1310 1310 void
1311 1311 zap_cursor_advance(zap_cursor_t *zc)
1312 1312 {
1313 1313 if (zc->zc_hash == -1ULL)
1314 1314 return;
1315 1315 zc->zc_cd++;
1316 1316 }
1317 1317
1318 1318 int
1319 1319 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1320 1320 {
1321 1321 int err;
1322 1322 zap_t *zap;
1323 1323
1324 1324 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1325 1325 if (err)
1326 1326 return (err);
1327 1327
1328 1328 bzero(zs, sizeof (zap_stats_t));
1329 1329
1330 1330 if (zap->zap_ismicro) {
1331 1331 zs->zs_blocksize = zap->zap_dbuf->db_size;
1332 1332 zs->zs_num_entries = zap->zap_m.zap_num_entries;
1333 1333 zs->zs_num_blocks = 1;
1334 1334 } else {
1335 1335 fzap_get_stats(zap, zs);
1336 1336 }
1337 1337 zap_unlockdir(zap);
1338 1338 return (0);
1339 1339 }
1340 1340
1341 1341 int
1342 1342 zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
1343 1343 uint64_t *towrite, uint64_t *tooverwrite)
1344 1344 {
1345 1345 zap_t *zap;
1346 1346 int err = 0;
1347 1347
1348 1348
1349 1349 /*
1350 1350 * Since, we don't have a name, we cannot figure out which blocks will
1351 1351 * be affected in this operation. So, account for the worst case :
1352 1352 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1353 1353 * - 4 new blocks written if adding:
1354 1354 * - 2 blocks for possibly split leaves,
1355 1355 * - 2 grown ptrtbl blocks
1356 1356 *
1357 1357 * This also accomodates the case where an add operation to a fairly
1358 1358 * large microzap results in a promotion to fatzap.
1359 1359 */
1360 1360 if (name == NULL) {
1361 1361 *towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1362 1362 return (err);
1363 1363 }
1364 1364
1365 1365 /*
1366 1366 * We lock the zap with adding == FALSE. Because, if we pass
1367 1367 * the actual value of add, it could trigger a mzap_upgrade().
1368 1368 * At present we are just evaluating the possibility of this operation
1369 1369 * and hence we donot want to trigger an upgrade.
1370 1370 */
1371 1371 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1372 1372 if (err)
1373 1373 return (err);
1374 1374
1375 1375 if (!zap->zap_ismicro) {
1376 1376 zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1377 1377 if (zn) {
1378 1378 err = fzap_count_write(zn, add, towrite,
1379 1379 tooverwrite);
1380 1380 zap_name_free(zn);
1381 1381 } else {
1382 1382 /*
1383 1383 * We treat this case as similar to (name == NULL)
1384 1384 */
1385 1385 *towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1386 1386 }
1387 1387 } else {
1388 1388 /*
1389 1389 * We are here if (name != NULL) and this is a micro-zap.
1390 1390 * We account for the header block depending on whether it
1391 1391 * is freeable.
1392 1392 *
1393 1393 * Incase of an add-operation it is hard to find out
1394 1394 * if this add will promote this microzap to fatzap.
1395 1395 * Hence, we consider the worst case and account for the
1396 1396 * blocks assuming this microzap would be promoted to a
1397 1397 * fatzap.
1398 1398 *
1399 1399 * 1 block overwritten : header block
1400 1400 * 4 new blocks written : 2 new split leaf, 2 grown
1401 1401 * ptrtbl blocks
1402 1402 */
1403 1403 if (dmu_buf_freeable(zap->zap_dbuf))
1404 1404 *tooverwrite += SPA_MAXBLOCKSIZE;
1405 1405 else
1406 1406 *towrite += SPA_MAXBLOCKSIZE;
1407 1407
1408 1408 if (add) {
1409 1409 *towrite += 4 * SPA_MAXBLOCKSIZE;
1410 1410 }
1411 1411 }
1412 1412
1413 1413 zap_unlockdir(zap);
1414 1414 return (err);
1415 1415 }
↓ open down ↓ |
539 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX