1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Steven Hartland. All rights reserved. 25 */ 26 27 #include <sys/dsl_pool.h> 28 #include <sys/dsl_dataset.h> 29 #include <sys/dsl_prop.h> 30 #include <sys/dsl_dir.h> 31 #include <sys/dsl_synctask.h> 32 #include <sys/dsl_scan.h> 33 #include <sys/dnode.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/arc.h> 37 #include <sys/zap.h> 38 #include <sys/zio.h> 39 #include <sys/zfs_context.h> 40 #include <sys/fs/zfs.h> 41 #include <sys/zfs_znode.h> 42 #include <sys/spa_impl.h> 43 #include <sys/dsl_deadlist.h> 44 #include <sys/bptree.h> 45 #include <sys/zfeature.h> 46 #include <sys/zil_impl.h> 47 #include <sys/dsl_userhold.h> 48 49 /* 50 * ZFS Write Throttle 51 * ------------------ 52 * 53 * ZFS must limit the rate of incoming writes to the rate at which it is able 54 * to sync data modifications to the backend storage. Throttling by too much 55 * creates an artificial limit; throttling by too little can only be sustained 56 * for short periods and would lead to highly lumpy performance. On a per-pool 57 * basis, ZFS tracks the amount of modified (dirty) data. As operations change 58 * data, the amount of dirty data increases; as ZFS syncs out data, the amount 59 * of dirty data decreases. When the amount of dirty data exceeds a 60 * predetermined threshold further modifications are blocked until the amount 61 * of dirty data decreases (as data is synced out). 62 * 63 * The limit on dirty data is tunable, and should be adjusted according to 64 * both the IO capacity and available memory of the system. The larger the 65 * window, the more ZFS is able to aggregate and amortize metadata (and data) 66 * changes. However, memory is a limited resource, and allowing for more dirty 67 * data comes at the cost of keeping other useful data in memory (for example 68 * ZFS data cached by the ARC). 69 * 70 * Implementation 71 * 72 * As buffers are modified dsl_pool_willuse_space() increments both the per- 73 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of 74 * dirty space used; dsl_pool_dirty_space() decrements those values as data 75 * is synced out from dsl_pool_sync(). While only the poolwide value is 76 * relevant, the per-txg value is useful for debugging. The tunable 77 * zfs_dirty_data_max determines the dirty space limit. Once that value is 78 * exceeded, new writes are halted until space frees up. 79 * 80 * The zfs_dirty_data_sync tunable dictates the threshold at which we 81 * ensure that there is a txg syncing (see the comment in txg.c for a full 82 * description of transaction group stages). 83 * 84 * The IO scheduler uses both the dirty space limit and current amount of 85 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS 86 * issues. See the comment in vdev_queue.c for details of the IO scheduler. 87 * 88 * The delay is also calculated based on the amount of dirty data. See the 89 * comment above dmu_tx_delay() for details. 90 */ 91 92 /* 93 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, 94 * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system. 95 */ 96 uint64_t zfs_dirty_data_max; 97 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024; 98 int zfs_dirty_data_max_percent = 10; 99 100 /* 101 * If there is at least this much dirty data, push out a txg. 102 */ 103 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024; 104 105 /* 106 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in 107 * and delay each transaction. 108 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. 109 */ 110 int zfs_delay_min_dirty_percent = 60; 111 112 /* 113 * This controls how quickly the delay approaches infinity. 114 * Larger values cause it to delay less for a given amount of dirty data. 115 * Therefore larger values will cause there to be more dirty data for a 116 * given throughput. 117 * 118 * For the smoothest delay, this value should be about 1 billion divided 119 * by the maximum number of operations per second. This will smoothly 120 * handle between 10x and 1/10th this number. 121 * 122 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the 123 * multiply in dmu_tx_delay(). 124 */ 125 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000; 126 127 128 /* 129 * XXX someday maybe turn these into #defines, and you have to tune it on a 130 * per-pool basis using zfs.conf. 131 */ 132 133 134 hrtime_t zfs_throttle_delay = MSEC2NSEC(10); 135 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10); 136 137 int 138 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) 139 { 140 uint64_t obj; 141 int err; 142 143 err = zap_lookup(dp->dp_meta_objset, 144 dp->dp_root_dir->dd_phys->dd_child_dir_zapobj, 145 name, sizeof (obj), 1, &obj); 146 if (err) 147 return (err); 148 149 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp)); 150 } 151 152 static dsl_pool_t * 153 dsl_pool_open_impl(spa_t *spa, uint64_t txg) 154 { 155 dsl_pool_t *dp; 156 blkptr_t *bp = spa_get_rootblkptr(spa); 157 158 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); 159 dp->dp_spa = spa; 160 dp->dp_meta_rootbp = *bp; 161 rrw_init(&dp->dp_config_rwlock, B_TRUE); 162 txg_init(dp, txg); 163 164 txg_list_create(&dp->dp_dirty_datasets, 165 offsetof(dsl_dataset_t, ds_dirty_link)); 166 txg_list_create(&dp->dp_dirty_zilogs, 167 offsetof(zilog_t, zl_dirty_link)); 168 txg_list_create(&dp->dp_dirty_dirs, 169 offsetof(dsl_dir_t, dd_dirty_link)); 170 txg_list_create(&dp->dp_sync_tasks, 171 offsetof(dsl_sync_task_t, dst_node)); 172 173 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); 174 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); 175 176 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri, 177 1, 4, 0); 178 179 return (dp); 180 } 181 182 int 183 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) 184 { 185 int err; 186 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 187 188 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, 189 &dp->dp_meta_objset); 190 if (err != 0) 191 dsl_pool_close(dp); 192 else 193 *dpp = dp; 194 195 return (err); 196 } 197 198 int 199 dsl_pool_open(dsl_pool_t *dp) 200 { 201 int err; 202 dsl_dir_t *dd; 203 dsl_dataset_t *ds; 204 uint64_t obj; 205 206 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 207 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 208 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, 209 &dp->dp_root_dir_obj); 210 if (err) 211 goto out; 212 213 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 214 NULL, dp, &dp->dp_root_dir); 215 if (err) 216 goto out; 217 218 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); 219 if (err) 220 goto out; 221 222 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) { 223 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); 224 if (err) 225 goto out; 226 err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj, 227 FTAG, &ds); 228 if (err == 0) { 229 err = dsl_dataset_hold_obj(dp, 230 ds->ds_phys->ds_prev_snap_obj, dp, 231 &dp->dp_origin_snap); 232 dsl_dataset_rele(ds, FTAG); 233 } 234 dsl_dir_rele(dd, dp); 235 if (err) 236 goto out; 237 } 238 239 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 240 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, 241 &dp->dp_free_dir); 242 if (err) 243 goto out; 244 245 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 246 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); 247 if (err) 248 goto out; 249 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 250 dp->dp_meta_objset, obj)); 251 } 252 253 if (spa_feature_is_active(dp->dp_spa, 254 &spa_feature_table[SPA_FEATURE_ASYNC_DESTROY])) { 255 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 256 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, 257 &dp->dp_bptree_obj); 258 if (err != 0) 259 goto out; 260 } 261 262 if (spa_feature_is_active(dp->dp_spa, 263 &spa_feature_table[SPA_FEATURE_EMPTY_BPOBJ])) { 264 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 265 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, 266 &dp->dp_empty_bpobj); 267 if (err != 0) 268 goto out; 269 } 270 271 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 272 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, 273 &dp->dp_tmp_userrefs_obj); 274 if (err == ENOENT) 275 err = 0; 276 if (err) 277 goto out; 278 279 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg); 280 281 out: 282 rrw_exit(&dp->dp_config_rwlock, FTAG); 283 return (err); 284 } 285 286 void 287 dsl_pool_close(dsl_pool_t *dp) 288 { 289 /* 290 * Drop our references from dsl_pool_open(). 291 * 292 * Since we held the origin_snap from "syncing" context (which 293 * includes pool-opening context), it actually only got a "ref" 294 * and not a hold, so just drop that here. 295 */ 296 if (dp->dp_origin_snap) 297 dsl_dataset_rele(dp->dp_origin_snap, dp); 298 if (dp->dp_mos_dir) 299 dsl_dir_rele(dp->dp_mos_dir, dp); 300 if (dp->dp_free_dir) 301 dsl_dir_rele(dp->dp_free_dir, dp); 302 if (dp->dp_root_dir) 303 dsl_dir_rele(dp->dp_root_dir, dp); 304 305 bpobj_close(&dp->dp_free_bpobj); 306 307 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ 308 if (dp->dp_meta_objset) 309 dmu_objset_evict(dp->dp_meta_objset); 310 311 txg_list_destroy(&dp->dp_dirty_datasets); 312 txg_list_destroy(&dp->dp_dirty_zilogs); 313 txg_list_destroy(&dp->dp_sync_tasks); 314 txg_list_destroy(&dp->dp_dirty_dirs); 315 316 arc_flush(dp->dp_spa); 317 txg_fini(dp); 318 dsl_scan_fini(dp); 319 rrw_destroy(&dp->dp_config_rwlock); 320 mutex_destroy(&dp->dp_lock); 321 taskq_destroy(dp->dp_vnrele_taskq); 322 if (dp->dp_blkstats) 323 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 324 kmem_free(dp, sizeof (dsl_pool_t)); 325 } 326 327 dsl_pool_t * 328 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg) 329 { 330 int err; 331 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 332 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 333 objset_t *os; 334 dsl_dataset_t *ds; 335 uint64_t obj; 336 337 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 338 339 /* create and open the MOS (meta-objset) */ 340 dp->dp_meta_objset = dmu_objset_create_impl(spa, 341 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); 342 343 /* create the pool directory */ 344 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 345 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); 346 ASSERT0(err); 347 348 /* Initialize scan structures */ 349 VERIFY0(dsl_scan_init(dp, txg)); 350 351 /* create and open the root dir */ 352 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); 353 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 354 NULL, dp, &dp->dp_root_dir)); 355 356 /* create and open the meta-objset dir */ 357 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); 358 VERIFY0(dsl_pool_open_special_dir(dp, 359 MOS_DIR_NAME, &dp->dp_mos_dir)); 360 361 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 362 /* create and open the free dir */ 363 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 364 FREE_DIR_NAME, tx); 365 VERIFY0(dsl_pool_open_special_dir(dp, 366 FREE_DIR_NAME, &dp->dp_free_dir)); 367 368 /* create and open the free_bplist */ 369 obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx); 370 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 371 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); 372 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 373 dp->dp_meta_objset, obj)); 374 } 375 376 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) 377 dsl_pool_create_origin(dp, tx); 378 379 /* create the root dataset */ 380 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx); 381 382 /* create the root objset */ 383 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds)); 384 os = dmu_objset_create_impl(dp->dp_spa, ds, 385 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); 386 #ifdef _KERNEL 387 zfs_create_fs(os, kcred, zplprops, tx); 388 #endif 389 dsl_dataset_rele(ds, FTAG); 390 391 dmu_tx_commit(tx); 392 393 rrw_exit(&dp->dp_config_rwlock, FTAG); 394 395 return (dp); 396 } 397 398 /* 399 * Account for the meta-objset space in its placeholder dsl_dir. 400 */ 401 void 402 dsl_pool_mos_diduse_space(dsl_pool_t *dp, 403 int64_t used, int64_t comp, int64_t uncomp) 404 { 405 ASSERT3U(comp, ==, uncomp); /* it's all metadata */ 406 mutex_enter(&dp->dp_lock); 407 dp->dp_mos_used_delta += used; 408 dp->dp_mos_compressed_delta += comp; 409 dp->dp_mos_uncompressed_delta += uncomp; 410 mutex_exit(&dp->dp_lock); 411 } 412 413 static int 414 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 415 { 416 dsl_deadlist_t *dl = arg; 417 dsl_deadlist_insert(dl, bp, tx); 418 return (0); 419 } 420 421 static void 422 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) 423 { 424 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 425 dmu_objset_sync(dp->dp_meta_objset, zio, tx); 426 VERIFY0(zio_wait(zio)); 427 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); 428 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 429 } 430 431 static void 432 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) 433 { 434 ASSERT(MUTEX_HELD(&dp->dp_lock)); 435 436 if (delta < 0) 437 ASSERT3U(-delta, <=, dp->dp_dirty_total); 438 439 dp->dp_dirty_total += delta; 440 441 /* 442 * Note: we signal even when increasing dp_dirty_total. 443 * This ensures forward progress -- each thread wakes the next waiter. 444 */ 445 if (dp->dp_dirty_total <= zfs_dirty_data_max) 446 cv_signal(&dp->dp_spaceavail_cv); 447 } 448 449 void 450 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) 451 { 452 zio_t *zio; 453 dmu_tx_t *tx; 454 dsl_dir_t *dd; 455 dsl_dataset_t *ds; 456 objset_t *mos = dp->dp_meta_objset; 457 list_t synced_datasets; 458 459 list_create(&synced_datasets, sizeof (dsl_dataset_t), 460 offsetof(dsl_dataset_t, ds_synced_link)); 461 462 tx = dmu_tx_create_assigned(dp, txg); 463 464 /* 465 * Write out all dirty blocks of dirty datasets. 466 */ 467 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 468 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 469 /* 470 * We must not sync any non-MOS datasets twice, because 471 * we may have taken a snapshot of them. However, we 472 * may sync newly-created datasets on pass 2. 473 */ 474 ASSERT(!list_link_active(&ds->ds_synced_link)); 475 list_insert_tail(&synced_datasets, ds); 476 dsl_dataset_sync(ds, zio, tx); 477 } 478 VERIFY0(zio_wait(zio)); 479 480 /* 481 * We have written all of the accounted dirty data, so our 482 * dp_space_towrite should now be zero. However, some seldom-used 483 * code paths do not adhere to this (e.g. dbuf_undirty(), also 484 * rounding error in dbuf_write_physdone). 485 * Shore up the accounting of any dirtied space now. 486 */ 487 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); 488 489 /* 490 * After the data blocks have been written (ensured by the zio_wait() 491 * above), update the user/group space accounting. 492 */ 493 for (ds = list_head(&synced_datasets); ds != NULL; 494 ds = list_next(&synced_datasets, ds)) { 495 dmu_objset_do_userquota_updates(ds->ds_objset, tx); 496 } 497 498 /* 499 * Sync the datasets again to push out the changes due to 500 * userspace updates. This must be done before we process the 501 * sync tasks, so that any snapshots will have the correct 502 * user accounting information (and we won't get confused 503 * about which blocks are part of the snapshot). 504 */ 505 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 506 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 507 ASSERT(list_link_active(&ds->ds_synced_link)); 508 dmu_buf_rele(ds->ds_dbuf, ds); 509 dsl_dataset_sync(ds, zio, tx); 510 } 511 VERIFY0(zio_wait(zio)); 512 513 /* 514 * Now that the datasets have been completely synced, we can 515 * clean up our in-memory structures accumulated while syncing: 516 * 517 * - move dead blocks from the pending deadlist to the on-disk deadlist 518 * - release hold from dsl_dataset_dirty() 519 */ 520 while ((ds = list_remove_head(&synced_datasets)) != NULL) { 521 objset_t *os = ds->ds_objset; 522 bplist_iterate(&ds->ds_pending_deadlist, 523 deadlist_enqueue_cb, &ds->ds_deadlist, tx); 524 ASSERT(!dmu_objset_is_dirty(os, txg)); 525 dmu_buf_rele(ds->ds_dbuf, ds); 526 } 527 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { 528 dsl_dir_sync(dd, tx); 529 } 530 531 /* 532 * The MOS's space is accounted for in the pool/$MOS 533 * (dp_mos_dir). We can't modify the mos while we're syncing 534 * it, so we remember the deltas and apply them here. 535 */ 536 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 || 537 dp->dp_mos_uncompressed_delta != 0) { 538 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD, 539 dp->dp_mos_used_delta, 540 dp->dp_mos_compressed_delta, 541 dp->dp_mos_uncompressed_delta, tx); 542 dp->dp_mos_used_delta = 0; 543 dp->dp_mos_compressed_delta = 0; 544 dp->dp_mos_uncompressed_delta = 0; 545 } 546 547 if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL || 548 list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) { 549 dsl_pool_sync_mos(dp, tx); 550 } 551 552 /* 553 * If we modify a dataset in the same txg that we want to destroy it, 554 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. 555 * dsl_dir_destroy_check() will fail if there are unexpected holds. 556 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf 557 * and clearing the hold on it) before we process the sync_tasks. 558 * The MOS data dirtied by the sync_tasks will be synced on the next 559 * pass. 560 */ 561 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { 562 dsl_sync_task_t *dst; 563 /* 564 * No more sync tasks should have been added while we 565 * were syncing. 566 */ 567 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 568 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) 569 dsl_sync_task_sync(dst, tx); 570 } 571 572 dmu_tx_commit(tx); 573 574 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); 575 } 576 577 void 578 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) 579 { 580 zilog_t *zilog; 581 582 while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) { 583 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 584 zil_clean(zilog, txg); 585 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); 586 dmu_buf_rele(ds->ds_dbuf, zilog); 587 } 588 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); 589 } 590 591 /* 592 * TRUE if the current thread is the tx_sync_thread or if we 593 * are being called from SPA context during pool initialization. 594 */ 595 int 596 dsl_pool_sync_context(dsl_pool_t *dp) 597 { 598 return (curthread == dp->dp_tx.tx_sync_thread || 599 spa_is_initializing(dp->dp_spa)); 600 } 601 602 uint64_t 603 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree) 604 { 605 uint64_t space, resv; 606 607 /* 608 * Reserve about 1.6% (1/64), or at least 32MB, for allocation 609 * efficiency. 610 * XXX The intent log is not accounted for, so it must fit 611 * within this slop. 612 * 613 * If we're trying to assess whether it's OK to do a free, 614 * cut the reservation in half to allow forward progress 615 * (e.g. make it possible to rm(1) files from a full pool). 616 */ 617 space = spa_get_dspace(dp->dp_spa); 618 resv = MAX(space >> 6, SPA_MINDEVSIZE >> 1); 619 if (netfree) 620 resv >>= 1; 621 622 return (space - resv); 623 } 624 625 boolean_t 626 dsl_pool_need_dirty_delay(dsl_pool_t *dp) 627 { 628 uint64_t delay_min_bytes = 629 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 630 boolean_t rv; 631 632 mutex_enter(&dp->dp_lock); 633 if (dp->dp_dirty_total > zfs_dirty_data_sync) 634 txg_kick(dp); 635 rv = (dp->dp_dirty_total > delay_min_bytes); 636 mutex_exit(&dp->dp_lock); 637 return (rv); 638 } 639 640 void 641 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 642 { 643 if (space > 0) { 644 mutex_enter(&dp->dp_lock); 645 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; 646 dsl_pool_dirty_delta(dp, space); 647 mutex_exit(&dp->dp_lock); 648 } 649 } 650 651 void 652 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) 653 { 654 ASSERT3S(space, >=, 0); 655 if (space == 0) 656 return; 657 mutex_enter(&dp->dp_lock); 658 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { 659 /* XXX writing something we didn't dirty? */ 660 space = dp->dp_dirty_pertxg[txg & TXG_MASK]; 661 } 662 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); 663 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; 664 ASSERT3U(dp->dp_dirty_total, >=, space); 665 dsl_pool_dirty_delta(dp, -space); 666 mutex_exit(&dp->dp_lock); 667 } 668 669 /* ARGSUSED */ 670 static int 671 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 672 { 673 dmu_tx_t *tx = arg; 674 dsl_dataset_t *ds, *prev = NULL; 675 int err; 676 677 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 678 if (err) 679 return (err); 680 681 while (ds->ds_phys->ds_prev_snap_obj != 0) { 682 err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, 683 FTAG, &prev); 684 if (err) { 685 dsl_dataset_rele(ds, FTAG); 686 return (err); 687 } 688 689 if (prev->ds_phys->ds_next_snap_obj != ds->ds_object) 690 break; 691 dsl_dataset_rele(ds, FTAG); 692 ds = prev; 693 prev = NULL; 694 } 695 696 if (prev == NULL) { 697 prev = dp->dp_origin_snap; 698 699 /* 700 * The $ORIGIN can't have any data, or the accounting 701 * will be wrong. 702 */ 703 ASSERT0(prev->ds_phys->ds_bp.blk_birth); 704 705 /* The origin doesn't get attached to itself */ 706 if (ds->ds_object == prev->ds_object) { 707 dsl_dataset_rele(ds, FTAG); 708 return (0); 709 } 710 711 dmu_buf_will_dirty(ds->ds_dbuf, tx); 712 ds->ds_phys->ds_prev_snap_obj = prev->ds_object; 713 ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg; 714 715 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 716 ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object; 717 718 dmu_buf_will_dirty(prev->ds_dbuf, tx); 719 prev->ds_phys->ds_num_children++; 720 721 if (ds->ds_phys->ds_next_snap_obj == 0) { 722 ASSERT(ds->ds_prev == NULL); 723 VERIFY0(dsl_dataset_hold_obj(dp, 724 ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev)); 725 } 726 } 727 728 ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object); 729 ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object); 730 731 if (prev->ds_phys->ds_next_clones_obj == 0) { 732 dmu_buf_will_dirty(prev->ds_dbuf, tx); 733 prev->ds_phys->ds_next_clones_obj = 734 zap_create(dp->dp_meta_objset, 735 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); 736 } 737 VERIFY0(zap_add_int(dp->dp_meta_objset, 738 prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx)); 739 740 dsl_dataset_rele(ds, FTAG); 741 if (prev != dp->dp_origin_snap) 742 dsl_dataset_rele(prev, FTAG); 743 return (0); 744 } 745 746 void 747 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) 748 { 749 ASSERT(dmu_tx_is_syncing(tx)); 750 ASSERT(dp->dp_origin_snap != NULL); 751 752 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb, 753 tx, DS_FIND_CHILDREN)); 754 } 755 756 /* ARGSUSED */ 757 static int 758 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 759 { 760 dmu_tx_t *tx = arg; 761 objset_t *mos = dp->dp_meta_objset; 762 763 if (ds->ds_dir->dd_phys->dd_origin_obj != 0) { 764 dsl_dataset_t *origin; 765 766 VERIFY0(dsl_dataset_hold_obj(dp, 767 ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin)); 768 769 if (origin->ds_dir->dd_phys->dd_clones == 0) { 770 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); 771 origin->ds_dir->dd_phys->dd_clones = zap_create(mos, 772 DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx); 773 } 774 775 VERIFY0(zap_add_int(dp->dp_meta_objset, 776 origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx)); 777 778 dsl_dataset_rele(origin, FTAG); 779 } 780 return (0); 781 } 782 783 void 784 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) 785 { 786 ASSERT(dmu_tx_is_syncing(tx)); 787 uint64_t obj; 788 789 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); 790 VERIFY0(dsl_pool_open_special_dir(dp, 791 FREE_DIR_NAME, &dp->dp_free_dir)); 792 793 /* 794 * We can't use bpobj_alloc(), because spa_version() still 795 * returns the old version, and we need a new-version bpobj with 796 * subobj support. So call dmu_object_alloc() directly. 797 */ 798 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, 799 SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); 800 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 801 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 802 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); 803 804 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 805 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN)); 806 } 807 808 void 809 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) 810 { 811 uint64_t dsobj; 812 dsl_dataset_t *ds; 813 814 ASSERT(dmu_tx_is_syncing(tx)); 815 ASSERT(dp->dp_origin_snap == NULL); 816 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER)); 817 818 /* create the origin dir, ds, & snap-ds */ 819 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, 820 NULL, 0, kcred, tx); 821 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 822 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx); 823 VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, 824 dp, &dp->dp_origin_snap)); 825 dsl_dataset_rele(ds, FTAG); 826 } 827 828 taskq_t * 829 dsl_pool_vnrele_taskq(dsl_pool_t *dp) 830 { 831 return (dp->dp_vnrele_taskq); 832 } 833 834 /* 835 * Walk through the pool-wide zap object of temporary snapshot user holds 836 * and release them. 837 */ 838 void 839 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) 840 { 841 zap_attribute_t za; 842 zap_cursor_t zc; 843 objset_t *mos = dp->dp_meta_objset; 844 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 845 nvlist_t *holds; 846 847 if (zapobj == 0) 848 return; 849 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 850 851 holds = fnvlist_alloc(); 852 853 for (zap_cursor_init(&zc, mos, zapobj); 854 zap_cursor_retrieve(&zc, &za) == 0; 855 zap_cursor_advance(&zc)) { 856 char *htag; 857 nvlist_t *tags; 858 859 htag = strchr(za.za_name, '-'); 860 *htag = '\0'; 861 ++htag; 862 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) { 863 tags = fnvlist_alloc(); 864 fnvlist_add_boolean(tags, htag); 865 fnvlist_add_nvlist(holds, za.za_name, tags); 866 fnvlist_free(tags); 867 } else { 868 fnvlist_add_boolean(tags, htag); 869 } 870 } 871 dsl_dataset_user_release_tmp(dp, holds); 872 fnvlist_free(holds); 873 zap_cursor_fini(&zc); 874 } 875 876 /* 877 * Create the pool-wide zap object for storing temporary snapshot holds. 878 */ 879 void 880 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) 881 { 882 objset_t *mos = dp->dp_meta_objset; 883 884 ASSERT(dp->dp_tmp_userrefs_obj == 0); 885 ASSERT(dmu_tx_is_syncing(tx)); 886 887 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS, 888 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx); 889 } 890 891 static int 892 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, 893 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding) 894 { 895 objset_t *mos = dp->dp_meta_objset; 896 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 897 char *name; 898 int error; 899 900 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 901 ASSERT(dmu_tx_is_syncing(tx)); 902 903 /* 904 * If the pool was created prior to SPA_VERSION_USERREFS, the 905 * zap object for temporary holds might not exist yet. 906 */ 907 if (zapobj == 0) { 908 if (holding) { 909 dsl_pool_user_hold_create_obj(dp, tx); 910 zapobj = dp->dp_tmp_userrefs_obj; 911 } else { 912 return (SET_ERROR(ENOENT)); 913 } 914 } 915 916 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); 917 if (holding) 918 error = zap_add(mos, zapobj, name, 8, 1, &now, tx); 919 else 920 error = zap_remove(mos, zapobj, name, tx); 921 strfree(name); 922 923 return (error); 924 } 925 926 /* 927 * Add a temporary hold for the given dataset object and tag. 928 */ 929 int 930 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 931 uint64_t now, dmu_tx_t *tx) 932 { 933 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); 934 } 935 936 /* 937 * Release a temporary hold for the given dataset object and tag. 938 */ 939 int 940 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 941 dmu_tx_t *tx) 942 { 943 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL, 944 tx, B_FALSE)); 945 } 946 947 /* 948 * DSL Pool Configuration Lock 949 * 950 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset 951 * creation / destruction / rename / property setting). It must be held for 952 * read to hold a dataset or dsl_dir. I.e. you must call 953 * dsl_pool_config_enter() or dsl_pool_hold() before calling 954 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock 955 * must be held continuously until all datasets and dsl_dirs are released. 956 * 957 * The only exception to this rule is that if a "long hold" is placed on 958 * a dataset, then the dp_config_rwlock may be dropped while the dataset 959 * is still held. The long hold will prevent the dataset from being 960 * destroyed -- the destroy will fail with EBUSY. A long hold can be 961 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset 962 * (by calling dsl_{dataset,objset}_{try}own{_obj}). 963 * 964 * Legitimate long-holders (including owners) should be long-running, cancelable 965 * tasks that should cause "zfs destroy" to fail. This includes DMU 966 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open), 967 * "zfs send", and "zfs diff". There are several other long-holders whose 968 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()). 969 * 970 * The usual formula for long-holding would be: 971 * dsl_pool_hold() 972 * dsl_dataset_hold() 973 * ... perform checks ... 974 * dsl_dataset_long_hold() 975 * dsl_pool_rele() 976 * ... perform long-running task ... 977 * dsl_dataset_long_rele() 978 * dsl_dataset_rele() 979 * 980 * Note that when the long hold is released, the dataset is still held but 981 * the pool is not held. The dataset may change arbitrarily during this time 982 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the 983 * dataset except release it. 984 * 985 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only 986 * or modifying operations. 987 * 988 * Modifying operations should generally use dsl_sync_task(). The synctask 989 * infrastructure enforces proper locking strategy with respect to the 990 * dp_config_rwlock. See the comment above dsl_sync_task() for details. 991 * 992 * Read-only operations will manually hold the pool, then the dataset, obtain 993 * information from the dataset, then release the pool and dataset. 994 * dmu_objset_{hold,rele}() are convenience routines that also do the pool 995 * hold/rele. 996 */ 997 998 int 999 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp) 1000 { 1001 spa_t *spa; 1002 int error; 1003 1004 error = spa_open(name, &spa, tag); 1005 if (error == 0) { 1006 *dp = spa_get_dsl(spa); 1007 dsl_pool_config_enter(*dp, tag); 1008 } 1009 return (error); 1010 } 1011 1012 void 1013 dsl_pool_rele(dsl_pool_t *dp, void *tag) 1014 { 1015 dsl_pool_config_exit(dp, tag); 1016 spa_close(dp->dp_spa, tag); 1017 } 1018 1019 void 1020 dsl_pool_config_enter(dsl_pool_t *dp, void *tag) 1021 { 1022 /* 1023 * We use a "reentrant" reader-writer lock, but not reentrantly. 1024 * 1025 * The rrwlock can (with the track_all flag) track all reading threads, 1026 * which is very useful for debugging which code path failed to release 1027 * the lock, and for verifying that the *current* thread does hold 1028 * the lock. 1029 * 1030 * (Unlike a rwlock, which knows that N threads hold it for 1031 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE 1032 * if any thread holds it for read, even if this thread doesn't). 1033 */ 1034 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1035 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag); 1036 } 1037 1038 void 1039 dsl_pool_config_exit(dsl_pool_t *dp, void *tag) 1040 { 1041 rrw_exit(&dp->dp_config_rwlock, tag); 1042 } 1043 1044 boolean_t 1045 dsl_pool_config_held(dsl_pool_t *dp) 1046 { 1047 return (RRW_LOCK_HELD(&dp->dp_config_rwlock)); 1048 }