1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #ifdef _KERNEL 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/mntent.h> 36 #include <sys/mkdev.h> 37 #include <sys/u8_textprep.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/errno.h> 45 #include <sys/unistd.h> 46 #include <sys/mode.h> 47 #include <sys/atomic.h> 48 #include <vm/pvn.h> 49 #include "fs/fs_subr.h" 50 #include <sys/zfs_dir.h> 51 #include <sys/zfs_acl.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_rlock.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/dnode.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/kidmap.h> 58 #endif /* _KERNEL */ 59 60 #include <sys/dmu.h> 61 #include <sys/refcount.h> 62 #include <sys/stat.h> 63 #include <sys/zap.h> 64 #include <sys/zfs_znode.h> 65 #include <sys/sa.h> 66 #include <sys/zfs_sa.h> 67 #include <sys/zfs_stat.h> 68 69 #include "zfs_prop.h" 70 #include "zfs_comutil.h" 71 72 /* 73 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 74 * turned on when DEBUG is also defined. 75 */ 76 #ifdef DEBUG 77 #define ZNODE_STATS 78 #endif /* DEBUG */ 79 80 #ifdef ZNODE_STATS 81 #define ZNODE_STAT_ADD(stat) ((stat)++) 82 #else 83 #define ZNODE_STAT_ADD(stat) /* nothing */ 84 #endif /* ZNODE_STATS */ 85 86 /* 87 * Functions needed for userland (ie: libzpool) are not put under 88 * #ifdef_KERNEL; the rest of the functions have dependencies 89 * (such as VFS logic) that will not compile easily in userland. 90 */ 91 #ifdef _KERNEL 92 /* 93 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to 94 * be freed before it can be safely accessed. 95 */ 96 krwlock_t zfsvfs_lock; 97 98 static kmem_cache_t *znode_cache = NULL; 99 100 /*ARGSUSED*/ 101 static void 102 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 103 { 104 /* 105 * We should never drop all dbuf refs without first clearing 106 * the eviction callback. 107 */ 108 panic("evicting znode %p\n", user_ptr); 109 } 110 111 /*ARGSUSED*/ 112 static int 113 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 114 { 115 znode_t *zp = buf; 116 117 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 118 119 zp->z_vnode = vn_alloc(kmflags); 120 if (zp->z_vnode == NULL) { 121 return (-1); 122 } 123 ZTOV(zp)->v_data = zp; 124 125 list_link_init(&zp->z_link_node); 126 127 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 128 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 129 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 130 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 131 132 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 133 avl_create(&zp->z_range_avl, zfs_range_compare, 134 sizeof (rl_t), offsetof(rl_t, r_node)); 135 136 zp->z_dirlocks = NULL; 137 zp->z_acl_cached = NULL; 138 zp->z_moved = 0; 139 return (0); 140 } 141 142 /*ARGSUSED*/ 143 static void 144 zfs_znode_cache_destructor(void *buf, void *arg) 145 { 146 znode_t *zp = buf; 147 148 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 149 ASSERT(ZTOV(zp)->v_data == zp); 150 vn_free(ZTOV(zp)); 151 ASSERT(!list_link_active(&zp->z_link_node)); 152 mutex_destroy(&zp->z_lock); 153 rw_destroy(&zp->z_parent_lock); 154 rw_destroy(&zp->z_name_lock); 155 mutex_destroy(&zp->z_acl_lock); 156 avl_destroy(&zp->z_range_avl); 157 mutex_destroy(&zp->z_range_lock); 158 159 ASSERT(zp->z_dirlocks == NULL); 160 ASSERT(zp->z_acl_cached == NULL); 161 } 162 163 #ifdef ZNODE_STATS 164 static struct { 165 uint64_t zms_zfsvfs_invalid; 166 uint64_t zms_zfsvfs_recheck1; 167 uint64_t zms_zfsvfs_unmounted; 168 uint64_t zms_zfsvfs_recheck2; 169 uint64_t zms_obj_held; 170 uint64_t zms_vnode_locked; 171 uint64_t zms_not_only_dnlc; 172 } znode_move_stats; 173 #endif /* ZNODE_STATS */ 174 175 static void 176 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 177 { 178 vnode_t *vp; 179 180 /* Copy fields. */ 181 nzp->z_zfsvfs = ozp->z_zfsvfs; 182 183 /* Swap vnodes. */ 184 vp = nzp->z_vnode; 185 nzp->z_vnode = ozp->z_vnode; 186 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 187 ZTOV(ozp)->v_data = ozp; 188 ZTOV(nzp)->v_data = nzp; 189 190 nzp->z_id = ozp->z_id; 191 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 192 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 193 nzp->z_unlinked = ozp->z_unlinked; 194 nzp->z_atime_dirty = ozp->z_atime_dirty; 195 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 196 nzp->z_blksz = ozp->z_blksz; 197 nzp->z_seq = ozp->z_seq; 198 nzp->z_mapcnt = ozp->z_mapcnt; 199 nzp->z_gen = ozp->z_gen; 200 nzp->z_sync_cnt = ozp->z_sync_cnt; 201 nzp->z_is_sa = ozp->z_is_sa; 202 nzp->z_sa_hdl = ozp->z_sa_hdl; 203 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2); 204 nzp->z_links = ozp->z_links; 205 nzp->z_size = ozp->z_size; 206 nzp->z_pflags = ozp->z_pflags; 207 nzp->z_uid = ozp->z_uid; 208 nzp->z_gid = ozp->z_gid; 209 nzp->z_mode = ozp->z_mode; 210 211 /* 212 * Since this is just an idle znode and kmem is already dealing with 213 * memory pressure, release any cached ACL. 214 */ 215 if (ozp->z_acl_cached) { 216 zfs_acl_free(ozp->z_acl_cached); 217 ozp->z_acl_cached = NULL; 218 } 219 220 sa_set_userp(nzp->z_sa_hdl, nzp); 221 222 /* 223 * Invalidate the original znode by clearing fields that provide a 224 * pointer back to the znode. Set the low bit of the vfs pointer to 225 * ensure that zfs_znode_move() recognizes the znode as invalid in any 226 * subsequent callback. 227 */ 228 ozp->z_sa_hdl = NULL; 229 POINTER_INVALIDATE(&ozp->z_zfsvfs); 230 231 /* 232 * Mark the znode. 233 */ 234 nzp->z_moved = 1; 235 ozp->z_moved = (uint8_t)-1; 236 } 237 238 /*ARGSUSED*/ 239 static kmem_cbrc_t 240 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 241 { 242 znode_t *ozp = buf, *nzp = newbuf; 243 zfsvfs_t *zfsvfs; 244 vnode_t *vp; 245 246 /* 247 * The znode is on the file system's list of known znodes if the vfs 248 * pointer is valid. We set the low bit of the vfs pointer when freeing 249 * the znode to invalidate it, and the memory patterns written by kmem 250 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 251 * created znode sets the vfs pointer last of all to indicate that the 252 * znode is known and in a valid state to be moved by this function. 253 */ 254 zfsvfs = ozp->z_zfsvfs; 255 if (!POINTER_IS_VALID(zfsvfs)) { 256 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 257 return (KMEM_CBRC_DONT_KNOW); 258 } 259 260 /* 261 * Close a small window in which it's possible that the filesystem could 262 * be unmounted and freed, and zfsvfs, though valid in the previous 263 * statement, could point to unrelated memory by the time we try to 264 * prevent the filesystem from being unmounted. 265 */ 266 rw_enter(&zfsvfs_lock, RW_WRITER); 267 if (zfsvfs != ozp->z_zfsvfs) { 268 rw_exit(&zfsvfs_lock); 269 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); 270 return (KMEM_CBRC_DONT_KNOW); 271 } 272 273 /* 274 * If the znode is still valid, then so is the file system. We know that 275 * no valid file system can be freed while we hold zfsvfs_lock, so we 276 * can safely ensure that the filesystem is not and will not be 277 * unmounted. The next statement is equivalent to ZFS_ENTER(). 278 */ 279 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 280 if (zfsvfs->z_unmounted) { 281 ZFS_EXIT(zfsvfs); 282 rw_exit(&zfsvfs_lock); 283 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 284 return (KMEM_CBRC_DONT_KNOW); 285 } 286 rw_exit(&zfsvfs_lock); 287 288 mutex_enter(&zfsvfs->z_znodes_lock); 289 /* 290 * Recheck the vfs pointer in case the znode was removed just before 291 * acquiring the lock. 292 */ 293 if (zfsvfs != ozp->z_zfsvfs) { 294 mutex_exit(&zfsvfs->z_znodes_lock); 295 ZFS_EXIT(zfsvfs); 296 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); 297 return (KMEM_CBRC_DONT_KNOW); 298 } 299 300 /* 301 * At this point we know that as long as we hold z_znodes_lock, the 302 * znode cannot be freed and fields within the znode can be safely 303 * accessed. Now, prevent a race with zfs_zget(). 304 */ 305 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 306 mutex_exit(&zfsvfs->z_znodes_lock); 307 ZFS_EXIT(zfsvfs); 308 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 309 return (KMEM_CBRC_LATER); 310 } 311 312 vp = ZTOV(ozp); 313 if (mutex_tryenter(&vp->v_lock) == 0) { 314 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 315 mutex_exit(&zfsvfs->z_znodes_lock); 316 ZFS_EXIT(zfsvfs); 317 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 318 return (KMEM_CBRC_LATER); 319 } 320 321 /* Only move znodes that are referenced _only_ by the DNLC. */ 322 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 323 mutex_exit(&vp->v_lock); 324 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 325 mutex_exit(&zfsvfs->z_znodes_lock); 326 ZFS_EXIT(zfsvfs); 327 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 328 return (KMEM_CBRC_LATER); 329 } 330 331 /* 332 * The znode is known and in a valid state to move. We're holding the 333 * locks needed to execute the critical section. 334 */ 335 zfs_znode_move_impl(ozp, nzp); 336 mutex_exit(&vp->v_lock); 337 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 338 339 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 340 mutex_exit(&zfsvfs->z_znodes_lock); 341 ZFS_EXIT(zfsvfs); 342 343 return (KMEM_CBRC_YES); 344 } 345 346 void 347 zfs_znode_init(void) 348 { 349 /* 350 * Initialize zcache 351 */ 352 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); 353 ASSERT(znode_cache == NULL); 354 znode_cache = kmem_cache_create("zfs_znode_cache", 355 sizeof (znode_t), 0, zfs_znode_cache_constructor, 356 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 357 kmem_cache_set_move(znode_cache, zfs_znode_move); 358 } 359 360 void 361 zfs_znode_fini(void) 362 { 363 /* 364 * Cleanup vfs & vnode ops 365 */ 366 zfs_remove_op_tables(); 367 368 /* 369 * Cleanup zcache 370 */ 371 if (znode_cache) 372 kmem_cache_destroy(znode_cache); 373 znode_cache = NULL; 374 rw_destroy(&zfsvfs_lock); 375 } 376 377 struct vnodeops *zfs_dvnodeops; 378 struct vnodeops *zfs_fvnodeops; 379 struct vnodeops *zfs_symvnodeops; 380 struct vnodeops *zfs_xdvnodeops; 381 struct vnodeops *zfs_evnodeops; 382 struct vnodeops *zfs_sharevnodeops; 383 384 void 385 zfs_remove_op_tables() 386 { 387 /* 388 * Remove vfs ops 389 */ 390 ASSERT(zfsfstype); 391 (void) vfs_freevfsops_by_type(zfsfstype); 392 zfsfstype = 0; 393 394 /* 395 * Remove vnode ops 396 */ 397 if (zfs_dvnodeops) 398 vn_freevnodeops(zfs_dvnodeops); 399 if (zfs_fvnodeops) 400 vn_freevnodeops(zfs_fvnodeops); 401 if (zfs_symvnodeops) 402 vn_freevnodeops(zfs_symvnodeops); 403 if (zfs_xdvnodeops) 404 vn_freevnodeops(zfs_xdvnodeops); 405 if (zfs_evnodeops) 406 vn_freevnodeops(zfs_evnodeops); 407 if (zfs_sharevnodeops) 408 vn_freevnodeops(zfs_sharevnodeops); 409 410 zfs_dvnodeops = NULL; 411 zfs_fvnodeops = NULL; 412 zfs_symvnodeops = NULL; 413 zfs_xdvnodeops = NULL; 414 zfs_evnodeops = NULL; 415 zfs_sharevnodeops = NULL; 416 } 417 418 extern const fs_operation_def_t zfs_dvnodeops_template[]; 419 extern const fs_operation_def_t zfs_fvnodeops_template[]; 420 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 421 extern const fs_operation_def_t zfs_symvnodeops_template[]; 422 extern const fs_operation_def_t zfs_evnodeops_template[]; 423 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 424 425 int 426 zfs_create_op_tables() 427 { 428 int error; 429 430 /* 431 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 432 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 433 * In this case we just return as the ops vectors are already set up. 434 */ 435 if (zfs_dvnodeops) 436 return (0); 437 438 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 439 &zfs_dvnodeops); 440 if (error) 441 return (error); 442 443 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 444 &zfs_fvnodeops); 445 if (error) 446 return (error); 447 448 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 449 &zfs_symvnodeops); 450 if (error) 451 return (error); 452 453 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 454 &zfs_xdvnodeops); 455 if (error) 456 return (error); 457 458 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 459 &zfs_evnodeops); 460 if (error) 461 return (error); 462 463 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 464 &zfs_sharevnodeops); 465 466 return (error); 467 } 468 469 int 470 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 471 { 472 zfs_acl_ids_t acl_ids; 473 vattr_t vattr; 474 znode_t *sharezp; 475 vnode_t *vp; 476 znode_t *zp; 477 int error; 478 479 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 480 vattr.va_type = VDIR; 481 vattr.va_mode = S_IFDIR|0555; 482 vattr.va_uid = crgetuid(kcred); 483 vattr.va_gid = crgetgid(kcred); 484 485 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 486 ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs)); 487 sharezp->z_moved = 0; 488 sharezp->z_unlinked = 0; 489 sharezp->z_atime_dirty = 0; 490 sharezp->z_zfsvfs = zfsvfs; 491 sharezp->z_is_sa = zfsvfs->z_use_sa; 492 493 vp = ZTOV(sharezp); 494 vn_reinit(vp); 495 vp->v_type = VDIR; 496 497 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 498 kcred, NULL, &acl_ids)); 499 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids); 500 ASSERT3P(zp, ==, sharezp); 501 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 502 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 503 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 504 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 505 zfsvfs->z_shares_dir = sharezp->z_id; 506 507 zfs_acl_ids_free(&acl_ids); 508 ZTOV(sharezp)->v_count = 0; 509 sa_handle_destroy(sharezp->z_sa_hdl); 510 kmem_cache_free(znode_cache, sharezp); 511 512 return (error); 513 } 514 515 /* 516 * define a couple of values we need available 517 * for both 64 and 32 bit environments. 518 */ 519 #ifndef NBITSMINOR64 520 #define NBITSMINOR64 32 521 #endif 522 #ifndef MAXMAJ64 523 #define MAXMAJ64 0xffffffffUL 524 #endif 525 #ifndef MAXMIN64 526 #define MAXMIN64 0xffffffffUL 527 #endif 528 529 /* 530 * Create special expldev for ZFS private use. 531 * Can't use standard expldev since it doesn't do 532 * what we want. The standard expldev() takes a 533 * dev32_t in LP64 and expands it to a long dev_t. 534 * We need an interface that takes a dev32_t in ILP32 535 * and expands it to a long dev_t. 536 */ 537 static uint64_t 538 zfs_expldev(dev_t dev) 539 { 540 #ifndef _LP64 541 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 542 return (((uint64_t)major << NBITSMINOR64) | 543 ((minor_t)dev & MAXMIN32)); 544 #else 545 return (dev); 546 #endif 547 } 548 549 /* 550 * Special cmpldev for ZFS private use. 551 * Can't use standard cmpldev since it takes 552 * a long dev_t and compresses it to dev32_t in 553 * LP64. We need to do a compaction of a long dev_t 554 * to a dev32_t in ILP32. 555 */ 556 dev_t 557 zfs_cmpldev(uint64_t dev) 558 { 559 #ifndef _LP64 560 minor_t minor = (minor_t)dev & MAXMIN64; 561 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 562 563 if (major > MAXMAJ32 || minor > MAXMIN32) 564 return (NODEV32); 565 566 return (((dev32_t)major << NBITSMINOR32) | minor); 567 #else 568 return (dev); 569 #endif 570 } 571 572 static void 573 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp, 574 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl) 575 { 576 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 577 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 578 579 mutex_enter(&zp->z_lock); 580 581 ASSERT(zp->z_sa_hdl == NULL); 582 ASSERT(zp->z_acl_cached == NULL); 583 if (sa_hdl == NULL) { 584 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp, 585 SA_HDL_SHARED, &zp->z_sa_hdl)); 586 } else { 587 zp->z_sa_hdl = sa_hdl; 588 sa_set_userp(sa_hdl, zp); 589 } 590 591 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE; 592 593 /* 594 * Slap on VROOT if we are the root znode 595 */ 596 if (zp->z_id == zfsvfs->z_root) 597 ZTOV(zp)->v_flag |= VROOT; 598 599 mutex_exit(&zp->z_lock); 600 vn_exists(ZTOV(zp)); 601 } 602 603 void 604 zfs_znode_dmu_fini(znode_t *zp) 605 { 606 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 607 zp->z_unlinked || 608 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 609 610 sa_handle_destroy(zp->z_sa_hdl); 611 zp->z_sa_hdl = NULL; 612 } 613 614 /* 615 * Construct a new znode/vnode and intialize. 616 * 617 * This does not do a call to dmu_set_user() that is 618 * up to the caller to do, in case you don't want to 619 * return the znode 620 */ 621 static znode_t * 622 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz, 623 dmu_object_type_t obj_type, sa_handle_t *hdl) 624 { 625 znode_t *zp; 626 vnode_t *vp; 627 uint64_t mode; 628 uint64_t parent; 629 sa_bulk_attr_t bulk[9]; 630 int count = 0; 631 632 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 633 634 ASSERT(zp->z_dirlocks == NULL); 635 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 636 zp->z_moved = 0; 637 638 /* 639 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 640 * the zfs_znode_move() callback. 641 */ 642 zp->z_sa_hdl = NULL; 643 zp->z_unlinked = 0; 644 zp->z_atime_dirty = 0; 645 zp->z_mapcnt = 0; 646 zp->z_id = db->db_object; 647 zp->z_blksz = blksz; 648 zp->z_seq = 0x7A4653; 649 zp->z_sync_cnt = 0; 650 651 vp = ZTOV(zp); 652 vn_reinit(vp); 653 654 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl); 655 656 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); 657 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8); 658 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 659 &zp->z_size, 8); 660 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 661 &zp->z_links, 8); 662 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 663 &zp->z_pflags, 8); 664 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); 665 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 666 &zp->z_atime, 16); 667 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 668 &zp->z_uid, 8); 669 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 670 &zp->z_gid, 8); 671 672 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) { 673 if (hdl == NULL) 674 sa_handle_destroy(zp->z_sa_hdl); 675 kmem_cache_free(znode_cache, zp); 676 return (NULL); 677 } 678 679 zp->z_mode = mode; 680 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 681 682 vp->v_type = IFTOVT((mode_t)mode); 683 684 switch (vp->v_type) { 685 case VDIR: 686 if (zp->z_pflags & ZFS_XATTR) { 687 vn_setops(vp, zfs_xdvnodeops); 688 vp->v_flag |= V_XATTRDIR; 689 } else { 690 vn_setops(vp, zfs_dvnodeops); 691 } 692 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 693 break; 694 case VBLK: 695 case VCHR: 696 { 697 uint64_t rdev; 698 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), 699 &rdev, sizeof (rdev)) == 0); 700 701 vp->v_rdev = zfs_cmpldev(rdev); 702 } 703 /*FALLTHROUGH*/ 704 case VFIFO: 705 case VSOCK: 706 case VDOOR: 707 vn_setops(vp, zfs_fvnodeops); 708 break; 709 case VREG: 710 vp->v_flag |= VMODSORT; 711 if (parent == zfsvfs->z_shares_dir) { 712 ASSERT(zp->z_uid == 0 && zp->z_gid == 0); 713 vn_setops(vp, zfs_sharevnodeops); 714 } else { 715 vn_setops(vp, zfs_fvnodeops); 716 } 717 break; 718 case VLNK: 719 vn_setops(vp, zfs_symvnodeops); 720 break; 721 default: 722 vn_setops(vp, zfs_evnodeops); 723 break; 724 } 725 726 mutex_enter(&zfsvfs->z_znodes_lock); 727 list_insert_tail(&zfsvfs->z_all_znodes, zp); 728 membar_producer(); 729 /* 730 * Everything else must be valid before assigning z_zfsvfs makes the 731 * znode eligible for zfs_znode_move(). 732 */ 733 zp->z_zfsvfs = zfsvfs; 734 mutex_exit(&zfsvfs->z_znodes_lock); 735 736 VFS_HOLD(zfsvfs->z_vfs); 737 return (zp); 738 } 739 740 static uint64_t empty_xattr; 741 static uint64_t pad[4]; 742 static zfs_acl_phys_t acl_phys; 743 /* 744 * Create a new DMU object to hold a zfs znode. 745 * 746 * IN: dzp - parent directory for new znode 747 * vap - file attributes for new znode 748 * tx - dmu transaction id for zap operations 749 * cr - credentials of caller 750 * flag - flags: 751 * IS_ROOT_NODE - new object will be root 752 * IS_XATTR - new object is an attribute 753 * bonuslen - length of bonus buffer 754 * setaclp - File/Dir initial ACL 755 * fuidp - Tracks fuid allocation. 756 * 757 * OUT: zpp - allocated znode 758 * 759 */ 760 void 761 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 762 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids) 763 { 764 uint64_t crtime[2], atime[2], mtime[2], ctime[2]; 765 uint64_t mode, size, links, parent, pflags; 766 uint64_t dzp_pflags = 0; 767 uint64_t rdev = 0; 768 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 769 dmu_buf_t *db; 770 timestruc_t now; 771 uint64_t gen, obj; 772 int err; 773 int bonuslen; 774 sa_handle_t *sa_hdl; 775 dmu_object_type_t obj_type; 776 sa_bulk_attr_t sa_attrs[ZPL_END]; 777 int cnt = 0; 778 zfs_acl_locator_cb_t locate = { 0 }; 779 780 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 781 782 if (zfsvfs->z_replay) { 783 obj = vap->va_nodeid; 784 now = vap->va_ctime; /* see zfs_replay_create() */ 785 gen = vap->va_nblocks; /* ditto */ 786 } else { 787 obj = 0; 788 gethrestime(&now); 789 gen = dmu_tx_get_txg(tx); 790 } 791 792 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE; 793 bonuslen = (obj_type == DMU_OT_SA) ? 794 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE; 795 796 /* 797 * Create a new DMU object. 798 */ 799 /* 800 * There's currently no mechanism for pre-reading the blocks that will 801 * be needed to allocate a new object, so we accept the small chance 802 * that there will be an i/o error and we will fail one of the 803 * assertions below. 804 */ 805 if (vap->va_type == VDIR) { 806 if (zfsvfs->z_replay) { 807 err = zap_create_claim_norm(zfsvfs->z_os, obj, 808 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 809 obj_type, bonuslen, tx); 810 ASSERT0(err); 811 } else { 812 obj = zap_create_norm(zfsvfs->z_os, 813 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 814 obj_type, bonuslen, tx); 815 } 816 } else { 817 if (zfsvfs->z_replay) { 818 err = dmu_object_claim(zfsvfs->z_os, obj, 819 DMU_OT_PLAIN_FILE_CONTENTS, 0, 820 obj_type, bonuslen, tx); 821 ASSERT0(err); 822 } else { 823 obj = dmu_object_alloc(zfsvfs->z_os, 824 DMU_OT_PLAIN_FILE_CONTENTS, 0, 825 obj_type, bonuslen, tx); 826 } 827 } 828 829 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 830 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db)); 831 832 /* 833 * If this is the root, fix up the half-initialized parent pointer 834 * to reference the just-allocated physical data area. 835 */ 836 if (flag & IS_ROOT_NODE) { 837 dzp->z_id = obj; 838 } else { 839 dzp_pflags = dzp->z_pflags; 840 } 841 842 /* 843 * If parent is an xattr, so am I. 844 */ 845 if (dzp_pflags & ZFS_XATTR) { 846 flag |= IS_XATTR; 847 } 848 849 if (zfsvfs->z_use_fuids) 850 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 851 else 852 pflags = 0; 853 854 if (vap->va_type == VDIR) { 855 size = 2; /* contents ("." and "..") */ 856 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 857 } else { 858 size = links = 0; 859 } 860 861 if (vap->va_type == VBLK || vap->va_type == VCHR) { 862 rdev = zfs_expldev(vap->va_rdev); 863 } 864 865 parent = dzp->z_id; 866 mode = acl_ids->z_mode; 867 if (flag & IS_XATTR) 868 pflags |= ZFS_XATTR; 869 870 /* 871 * No execs denied will be deterimed when zfs_mode_compute() is called. 872 */ 873 pflags |= acl_ids->z_aclp->z_hints & 874 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT| 875 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED); 876 877 ZFS_TIME_ENCODE(&now, crtime); 878 ZFS_TIME_ENCODE(&now, ctime); 879 880 if (vap->va_mask & AT_ATIME) { 881 ZFS_TIME_ENCODE(&vap->va_atime, atime); 882 } else { 883 ZFS_TIME_ENCODE(&now, atime); 884 } 885 886 if (vap->va_mask & AT_MTIME) { 887 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 888 } else { 889 ZFS_TIME_ENCODE(&now, mtime); 890 } 891 892 /* Now add in all of the "SA" attributes */ 893 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED, 894 &sa_hdl)); 895 896 /* 897 * Setup the array of attributes to be replaced/set on the new file 898 * 899 * order for DMU_OT_ZNODE is critical since it needs to be constructed 900 * in the old znode_phys_t format. Don't change this ordering 901 */ 902 903 if (obj_type == DMU_OT_ZNODE) { 904 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 905 NULL, &atime, 16); 906 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 907 NULL, &mtime, 16); 908 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 909 NULL, &ctime, 16); 910 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 911 NULL, &crtime, 16); 912 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 913 NULL, &gen, 8); 914 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 915 NULL, &mode, 8); 916 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 917 NULL, &size, 8); 918 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 919 NULL, &parent, 8); 920 } else { 921 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 922 NULL, &mode, 8); 923 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 924 NULL, &size, 8); 925 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 926 NULL, &gen, 8); 927 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 928 &acl_ids->z_fuid, 8); 929 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 930 &acl_ids->z_fgid, 8); 931 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 932 NULL, &parent, 8); 933 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 934 NULL, &pflags, 8); 935 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 936 NULL, &atime, 16); 937 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 938 NULL, &mtime, 16); 939 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 940 NULL, &ctime, 16); 941 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 942 NULL, &crtime, 16); 943 } 944 945 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8); 946 947 if (obj_type == DMU_OT_ZNODE) { 948 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL, 949 &empty_xattr, 8); 950 } 951 if (obj_type == DMU_OT_ZNODE || 952 (vap->va_type == VBLK || vap->va_type == VCHR)) { 953 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs), 954 NULL, &rdev, 8); 955 956 } 957 if (obj_type == DMU_OT_ZNODE) { 958 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 959 NULL, &pflags, 8); 960 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 961 &acl_ids->z_fuid, 8); 962 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 963 &acl_ids->z_fgid, 8); 964 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad, 965 sizeof (uint64_t) * 4); 966 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, 967 &acl_phys, sizeof (zfs_acl_phys_t)); 968 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) { 969 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL, 970 &acl_ids->z_aclp->z_acl_count, 8); 971 locate.cb_aclp = acl_ids->z_aclp; 972 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs), 973 zfs_acl_data_locator, &locate, 974 acl_ids->z_aclp->z_acl_bytes); 975 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags, 976 acl_ids->z_fuid, acl_ids->z_fgid); 977 } 978 979 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0); 980 981 if (!(flag & IS_ROOT_NODE)) { 982 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl); 983 ASSERT(*zpp != NULL); 984 } else { 985 /* 986 * If we are creating the root node, the "parent" we 987 * passed in is the znode for the root. 988 */ 989 *zpp = dzp; 990 991 (*zpp)->z_sa_hdl = sa_hdl; 992 } 993 994 (*zpp)->z_pflags = pflags; 995 (*zpp)->z_mode = mode; 996 997 if (vap->va_mask & AT_XVATTR) 998 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx); 999 1000 if (obj_type == DMU_OT_ZNODE || 1001 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) { 1002 err = zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx); 1003 ASSERT0(err); 1004 } 1005 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1006 } 1007 1008 /* 1009 * Update in-core attributes. It is assumed the caller will be doing an 1010 * sa_bulk_update to push the changes out. 1011 */ 1012 void 1013 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx) 1014 { 1015 xoptattr_t *xoap; 1016 1017 xoap = xva_getxoptattr(xvap); 1018 ASSERT(xoap); 1019 1020 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 1021 uint64_t times[2]; 1022 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times); 1023 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), 1024 ×, sizeof (times), tx); 1025 XVA_SET_RTN(xvap, XAT_CREATETIME); 1026 } 1027 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 1028 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly, 1029 zp->z_pflags, tx); 1030 XVA_SET_RTN(xvap, XAT_READONLY); 1031 } 1032 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 1033 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden, 1034 zp->z_pflags, tx); 1035 XVA_SET_RTN(xvap, XAT_HIDDEN); 1036 } 1037 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 1038 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system, 1039 zp->z_pflags, tx); 1040 XVA_SET_RTN(xvap, XAT_SYSTEM); 1041 } 1042 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 1043 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive, 1044 zp->z_pflags, tx); 1045 XVA_SET_RTN(xvap, XAT_ARCHIVE); 1046 } 1047 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 1048 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable, 1049 zp->z_pflags, tx); 1050 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 1051 } 1052 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 1053 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink, 1054 zp->z_pflags, tx); 1055 XVA_SET_RTN(xvap, XAT_NOUNLINK); 1056 } 1057 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 1058 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly, 1059 zp->z_pflags, tx); 1060 XVA_SET_RTN(xvap, XAT_APPENDONLY); 1061 } 1062 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 1063 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump, 1064 zp->z_pflags, tx); 1065 XVA_SET_RTN(xvap, XAT_NODUMP); 1066 } 1067 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 1068 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque, 1069 zp->z_pflags, tx); 1070 XVA_SET_RTN(xvap, XAT_OPAQUE); 1071 } 1072 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 1073 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 1074 xoap->xoa_av_quarantined, zp->z_pflags, tx); 1075 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 1076 } 1077 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 1078 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified, 1079 zp->z_pflags, tx); 1080 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 1081 } 1082 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 1083 zfs_sa_set_scanstamp(zp, xvap, tx); 1084 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 1085 } 1086 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 1087 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse, 1088 zp->z_pflags, tx); 1089 XVA_SET_RTN(xvap, XAT_REPARSE); 1090 } 1091 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 1092 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline, 1093 zp->z_pflags, tx); 1094 XVA_SET_RTN(xvap, XAT_OFFLINE); 1095 } 1096 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 1097 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse, 1098 zp->z_pflags, tx); 1099 XVA_SET_RTN(xvap, XAT_SPARSE); 1100 } 1101 } 1102 1103 int 1104 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 1105 { 1106 dmu_object_info_t doi; 1107 dmu_buf_t *db; 1108 znode_t *zp; 1109 int err; 1110 sa_handle_t *hdl; 1111 1112 *zpp = NULL; 1113 1114 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1115 1116 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1117 if (err) { 1118 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1119 return (err); 1120 } 1121 1122 dmu_object_info_from_db(db, &doi); 1123 if (doi.doi_bonus_type != DMU_OT_SA && 1124 (doi.doi_bonus_type != DMU_OT_ZNODE || 1125 (doi.doi_bonus_type == DMU_OT_ZNODE && 1126 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1127 sa_buf_rele(db, NULL); 1128 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1129 return (SET_ERROR(EINVAL)); 1130 } 1131 1132 hdl = dmu_buf_get_user(db); 1133 if (hdl != NULL) { 1134 zp = sa_get_userdata(hdl); 1135 1136 1137 /* 1138 * Since "SA" does immediate eviction we 1139 * should never find a sa handle that doesn't 1140 * know about the znode. 1141 */ 1142 1143 ASSERT3P(zp, !=, NULL); 1144 1145 mutex_enter(&zp->z_lock); 1146 ASSERT3U(zp->z_id, ==, obj_num); 1147 if (zp->z_unlinked) { 1148 err = SET_ERROR(ENOENT); 1149 } else { 1150 VN_HOLD(ZTOV(zp)); 1151 *zpp = zp; 1152 err = 0; 1153 } 1154 sa_buf_rele(db, NULL); 1155 mutex_exit(&zp->z_lock); 1156 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1157 return (err); 1158 } 1159 1160 /* 1161 * Not found create new znode/vnode 1162 * but only if file exists. 1163 * 1164 * There is a small window where zfs_vget() could 1165 * find this object while a file create is still in 1166 * progress. This is checked for in zfs_znode_alloc() 1167 * 1168 * if zfs_znode_alloc() fails it will drop the hold on the 1169 * bonus buffer. 1170 */ 1171 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size, 1172 doi.doi_bonus_type, NULL); 1173 if (zp == NULL) { 1174 err = SET_ERROR(ENOENT); 1175 } else { 1176 *zpp = zp; 1177 } 1178 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1179 return (err); 1180 } 1181 1182 int 1183 zfs_rezget(znode_t *zp) 1184 { 1185 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1186 dmu_object_info_t doi; 1187 dmu_buf_t *db; 1188 uint64_t obj_num = zp->z_id; 1189 uint64_t mode; 1190 sa_bulk_attr_t bulk[8]; 1191 int err; 1192 int count = 0; 1193 uint64_t gen; 1194 1195 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1196 1197 mutex_enter(&zp->z_acl_lock); 1198 if (zp->z_acl_cached) { 1199 zfs_acl_free(zp->z_acl_cached); 1200 zp->z_acl_cached = NULL; 1201 } 1202 1203 mutex_exit(&zp->z_acl_lock); 1204 ASSERT(zp->z_sa_hdl == NULL); 1205 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1206 if (err) { 1207 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1208 return (err); 1209 } 1210 1211 dmu_object_info_from_db(db, &doi); 1212 if (doi.doi_bonus_type != DMU_OT_SA && 1213 (doi.doi_bonus_type != DMU_OT_ZNODE || 1214 (doi.doi_bonus_type == DMU_OT_ZNODE && 1215 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1216 sa_buf_rele(db, NULL); 1217 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1218 return (SET_ERROR(EINVAL)); 1219 } 1220 1221 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL); 1222 1223 /* reload cached values */ 1224 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, 1225 &gen, sizeof (gen)); 1226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 1227 &zp->z_size, sizeof (zp->z_size)); 1228 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 1229 &zp->z_links, sizeof (zp->z_links)); 1230 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 1231 &zp->z_pflags, sizeof (zp->z_pflags)); 1232 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 1233 &zp->z_atime, sizeof (zp->z_atime)); 1234 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 1235 &zp->z_uid, sizeof (zp->z_uid)); 1236 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 1237 &zp->z_gid, sizeof (zp->z_gid)); 1238 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 1239 &mode, sizeof (mode)); 1240 1241 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) { 1242 zfs_znode_dmu_fini(zp); 1243 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1244 return (SET_ERROR(EIO)); 1245 } 1246 1247 zp->z_mode = mode; 1248 1249 if (gen != zp->z_gen) { 1250 zfs_znode_dmu_fini(zp); 1251 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1252 return (SET_ERROR(EIO)); 1253 } 1254 1255 zp->z_unlinked = (zp->z_links == 0); 1256 zp->z_blksz = doi.doi_data_block_size; 1257 1258 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1259 1260 return (0); 1261 } 1262 1263 void 1264 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1265 { 1266 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1267 objset_t *os = zfsvfs->z_os; 1268 uint64_t obj = zp->z_id; 1269 uint64_t acl_obj = zfs_external_acl(zp); 1270 1271 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1272 if (acl_obj) { 1273 VERIFY(!zp->z_is_sa); 1274 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1275 } 1276 VERIFY(0 == dmu_object_free(os, obj, tx)); 1277 zfs_znode_dmu_fini(zp); 1278 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1279 zfs_znode_free(zp); 1280 } 1281 1282 void 1283 zfs_zinactive(znode_t *zp) 1284 { 1285 vnode_t *vp = ZTOV(zp); 1286 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1287 uint64_t z_id = zp->z_id; 1288 1289 ASSERT(zp->z_sa_hdl); 1290 1291 /* 1292 * Don't allow a zfs_zget() while were trying to release this znode 1293 */ 1294 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1295 1296 mutex_enter(&zp->z_lock); 1297 mutex_enter(&vp->v_lock); 1298 vp->v_count--; 1299 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1300 /* 1301 * If the hold count is greater than zero, somebody has 1302 * obtained a new reference on this znode while we were 1303 * processing it here, so we are done. If we still have 1304 * mapped pages then we are also done, since we don't 1305 * want to inactivate the znode until the pages get pushed. 1306 * 1307 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1308 * this seems like it would leave the znode hanging with 1309 * no chance to go inactive... 1310 */ 1311 mutex_exit(&vp->v_lock); 1312 mutex_exit(&zp->z_lock); 1313 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1314 return; 1315 } 1316 mutex_exit(&vp->v_lock); 1317 1318 /* 1319 * If this was the last reference to a file with no links, 1320 * remove the file from the file system. 1321 */ 1322 if (zp->z_unlinked) { 1323 mutex_exit(&zp->z_lock); 1324 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1325 zfs_rmnode(zp); 1326 return; 1327 } 1328 1329 mutex_exit(&zp->z_lock); 1330 zfs_znode_dmu_fini(zp); 1331 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1332 zfs_znode_free(zp); 1333 } 1334 1335 void 1336 zfs_znode_free(znode_t *zp) 1337 { 1338 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1339 1340 vn_invalid(ZTOV(zp)); 1341 1342 ASSERT(ZTOV(zp)->v_count == 0); 1343 1344 mutex_enter(&zfsvfs->z_znodes_lock); 1345 POINTER_INVALIDATE(&zp->z_zfsvfs); 1346 list_remove(&zfsvfs->z_all_znodes, zp); 1347 mutex_exit(&zfsvfs->z_znodes_lock); 1348 1349 if (zp->z_acl_cached) { 1350 zfs_acl_free(zp->z_acl_cached); 1351 zp->z_acl_cached = NULL; 1352 } 1353 1354 kmem_cache_free(znode_cache, zp); 1355 1356 VFS_RELE(zfsvfs->z_vfs); 1357 } 1358 1359 void 1360 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2], 1361 uint64_t ctime[2], boolean_t have_tx) 1362 { 1363 timestruc_t now; 1364 1365 gethrestime(&now); 1366 1367 if (have_tx) { /* will sa_bulk_update happen really soon? */ 1368 zp->z_atime_dirty = 0; 1369 zp->z_seq++; 1370 } else { 1371 zp->z_atime_dirty = 1; 1372 } 1373 1374 if (flag & AT_ATIME) { 1375 ZFS_TIME_ENCODE(&now, zp->z_atime); 1376 } 1377 1378 if (flag & AT_MTIME) { 1379 ZFS_TIME_ENCODE(&now, mtime); 1380 if (zp->z_zfsvfs->z_use_fuids) { 1381 zp->z_pflags |= (ZFS_ARCHIVE | 1382 ZFS_AV_MODIFIED); 1383 } 1384 } 1385 1386 if (flag & AT_CTIME) { 1387 ZFS_TIME_ENCODE(&now, ctime); 1388 if (zp->z_zfsvfs->z_use_fuids) 1389 zp->z_pflags |= ZFS_ARCHIVE; 1390 } 1391 } 1392 1393 /* 1394 * Grow the block size for a file. 1395 * 1396 * IN: zp - znode of file to free data in. 1397 * size - requested block size 1398 * tx - open transaction. 1399 * 1400 * NOTE: this function assumes that the znode is write locked. 1401 */ 1402 void 1403 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1404 { 1405 int error; 1406 u_longlong_t dummy; 1407 1408 if (size <= zp->z_blksz) 1409 return; 1410 /* 1411 * If the file size is already greater than the current blocksize, 1412 * we will not grow. If there is more than one block in a file, 1413 * the blocksize cannot change. 1414 */ 1415 if (zp->z_blksz && zp->z_size > zp->z_blksz) 1416 return; 1417 1418 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1419 size, 0, tx); 1420 1421 if (error == ENOTSUP) 1422 return; 1423 ASSERT0(error); 1424 1425 /* What blocksize did we actually get? */ 1426 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy); 1427 } 1428 1429 /* 1430 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1431 * be calling back into the fs for a putpage(). E.g.: when truncating 1432 * a file, the pages being "thrown away* don't need to be written out. 1433 */ 1434 /* ARGSUSED */ 1435 static int 1436 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1437 int flags, cred_t *cr) 1438 { 1439 ASSERT(0); 1440 return (0); 1441 } 1442 1443 /* 1444 * Increase the file length 1445 * 1446 * IN: zp - znode of file to free data in. 1447 * end - new end-of-file 1448 * 1449 * RETURN: 0 on success, error code on failure 1450 */ 1451 static int 1452 zfs_extend(znode_t *zp, uint64_t end) 1453 { 1454 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1455 dmu_tx_t *tx; 1456 rl_t *rl; 1457 uint64_t newblksz; 1458 int error; 1459 1460 /* 1461 * We will change zp_size, lock the whole file. 1462 */ 1463 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1464 1465 /* 1466 * Nothing to do if file already at desired length. 1467 */ 1468 if (end <= zp->z_size) { 1469 zfs_range_unlock(rl); 1470 return (0); 1471 } 1472 tx = dmu_tx_create(zfsvfs->z_os); 1473 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1474 zfs_sa_upgrade_txholds(tx, zp); 1475 if (end > zp->z_blksz && 1476 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1477 /* 1478 * We are growing the file past the current block size. 1479 */ 1480 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1481 ASSERT(!ISP2(zp->z_blksz)); 1482 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1483 } else { 1484 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1485 } 1486 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1487 } else { 1488 newblksz = 0; 1489 } 1490 1491 error = dmu_tx_assign(tx, TXG_WAIT); 1492 if (error) { 1493 dmu_tx_abort(tx); 1494 zfs_range_unlock(rl); 1495 return (error); 1496 } 1497 1498 if (newblksz) 1499 zfs_grow_blocksize(zp, newblksz, tx); 1500 1501 zp->z_size = end; 1502 1503 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), 1504 &zp->z_size, sizeof (zp->z_size), tx)); 1505 1506 zfs_range_unlock(rl); 1507 1508 dmu_tx_commit(tx); 1509 1510 return (0); 1511 } 1512 1513 /* 1514 * Free space in a file. 1515 * 1516 * IN: zp - znode of file to free data in. 1517 * off - start of section to free. 1518 * len - length of section to free. 1519 * 1520 * RETURN: 0 on success, error code on failure 1521 */ 1522 static int 1523 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1524 { 1525 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1526 rl_t *rl; 1527 int error; 1528 1529 /* 1530 * Lock the range being freed. 1531 */ 1532 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1533 1534 /* 1535 * Nothing to do if file already at desired length. 1536 */ 1537 if (off >= zp->z_size) { 1538 zfs_range_unlock(rl); 1539 return (0); 1540 } 1541 1542 if (off + len > zp->z_size) 1543 len = zp->z_size - off; 1544 1545 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1546 1547 zfs_range_unlock(rl); 1548 1549 return (error); 1550 } 1551 1552 /* 1553 * Truncate a file 1554 * 1555 * IN: zp - znode of file to free data in. 1556 * end - new end-of-file. 1557 * 1558 * RETURN: 0 on success, error code on failure 1559 */ 1560 static int 1561 zfs_trunc(znode_t *zp, uint64_t end) 1562 { 1563 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1564 vnode_t *vp = ZTOV(zp); 1565 dmu_tx_t *tx; 1566 rl_t *rl; 1567 int error; 1568 sa_bulk_attr_t bulk[2]; 1569 int count = 0; 1570 1571 /* 1572 * We will change zp_size, lock the whole file. 1573 */ 1574 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1575 1576 /* 1577 * Nothing to do if file already at desired length. 1578 */ 1579 if (end >= zp->z_size) { 1580 zfs_range_unlock(rl); 1581 return (0); 1582 } 1583 1584 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1585 if (error) { 1586 zfs_range_unlock(rl); 1587 return (error); 1588 } 1589 tx = dmu_tx_create(zfsvfs->z_os); 1590 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1591 zfs_sa_upgrade_txholds(tx, zp); 1592 error = dmu_tx_assign(tx, TXG_WAIT); 1593 if (error) { 1594 dmu_tx_abort(tx); 1595 zfs_range_unlock(rl); 1596 return (error); 1597 } 1598 1599 zp->z_size = end; 1600 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), 1601 NULL, &zp->z_size, sizeof (zp->z_size)); 1602 1603 if (end == 0) { 1604 zp->z_pflags &= ~ZFS_SPARSE; 1605 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1606 NULL, &zp->z_pflags, 8); 1607 } 1608 VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0); 1609 1610 dmu_tx_commit(tx); 1611 1612 /* 1613 * Clear any mapped pages in the truncated region. This has to 1614 * happen outside of the transaction to avoid the possibility of 1615 * a deadlock with someone trying to push a page that we are 1616 * about to invalidate. 1617 */ 1618 if (vn_has_cached_data(vp)) { 1619 page_t *pp; 1620 uint64_t start = end & PAGEMASK; 1621 int poff = end & PAGEOFFSET; 1622 1623 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1624 /* 1625 * We need to zero a partial page. 1626 */ 1627 pagezero(pp, poff, PAGESIZE - poff); 1628 start += PAGESIZE; 1629 page_unlock(pp); 1630 } 1631 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1632 B_INVAL | B_TRUNC, NULL); 1633 ASSERT(error == 0); 1634 } 1635 1636 zfs_range_unlock(rl); 1637 1638 return (0); 1639 } 1640 1641 /* 1642 * Free space in a file 1643 * 1644 * IN: zp - znode of file to free data in. 1645 * off - start of range 1646 * len - end of range (0 => EOF) 1647 * flag - current file open mode flags. 1648 * log - TRUE if this action should be logged 1649 * 1650 * RETURN: 0 on success, error code on failure 1651 */ 1652 int 1653 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1654 { 1655 vnode_t *vp = ZTOV(zp); 1656 dmu_tx_t *tx; 1657 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1658 zilog_t *zilog = zfsvfs->z_log; 1659 uint64_t mode; 1660 uint64_t mtime[2], ctime[2]; 1661 sa_bulk_attr_t bulk[3]; 1662 int count = 0; 1663 int error; 1664 1665 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode, 1666 sizeof (mode))) != 0) 1667 return (error); 1668 1669 if (off > zp->z_size) { 1670 error = zfs_extend(zp, off+len); 1671 if (error == 0 && log) 1672 goto log; 1673 else 1674 return (error); 1675 } 1676 1677 /* 1678 * Check for any locks in the region to be freed. 1679 */ 1680 1681 if (MANDLOCK(vp, (mode_t)mode)) { 1682 uint64_t length = (len ? len : zp->z_size - off); 1683 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1684 return (error); 1685 } 1686 1687 if (len == 0) { 1688 error = zfs_trunc(zp, off); 1689 } else { 1690 if ((error = zfs_free_range(zp, off, len)) == 0 && 1691 off + len > zp->z_size) 1692 error = zfs_extend(zp, off+len); 1693 } 1694 if (error || !log) 1695 return (error); 1696 log: 1697 tx = dmu_tx_create(zfsvfs->z_os); 1698 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1699 zfs_sa_upgrade_txholds(tx, zp); 1700 error = dmu_tx_assign(tx, TXG_WAIT); 1701 if (error) { 1702 dmu_tx_abort(tx); 1703 return (error); 1704 } 1705 1706 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16); 1707 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16); 1708 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1709 NULL, &zp->z_pflags, 8); 1710 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); 1711 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1712 ASSERT(error == 0); 1713 1714 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1715 1716 dmu_tx_commit(tx); 1717 return (0); 1718 } 1719 1720 void 1721 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1722 { 1723 zfsvfs_t zfsvfs; 1724 uint64_t moid, obj, sa_obj, version; 1725 uint64_t sense = ZFS_CASE_SENSITIVE; 1726 uint64_t norm = 0; 1727 nvpair_t *elem; 1728 int error; 1729 int i; 1730 znode_t *rootzp = NULL; 1731 vnode_t *vp; 1732 vattr_t vattr; 1733 znode_t *zp; 1734 zfs_acl_ids_t acl_ids; 1735 1736 /* 1737 * First attempt to create master node. 1738 */ 1739 /* 1740 * In an empty objset, there are no blocks to read and thus 1741 * there can be no i/o errors (which we assert below). 1742 */ 1743 moid = MASTER_NODE_OBJ; 1744 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1745 DMU_OT_NONE, 0, tx); 1746 ASSERT(error == 0); 1747 1748 /* 1749 * Set starting attributes. 1750 */ 1751 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os))); 1752 elem = NULL; 1753 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1754 /* For the moment we expect all zpl props to be uint64_ts */ 1755 uint64_t val; 1756 char *name; 1757 1758 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1759 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1760 name = nvpair_name(elem); 1761 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1762 if (val < version) 1763 version = val; 1764 } else { 1765 error = zap_update(os, moid, name, 8, 1, &val, tx); 1766 } 1767 ASSERT(error == 0); 1768 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1769 norm = val; 1770 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1771 sense = val; 1772 } 1773 ASSERT(version != 0); 1774 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1775 1776 /* 1777 * Create zap object used for SA attribute registration 1778 */ 1779 1780 if (version >= ZPL_VERSION_SA) { 1781 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 1782 DMU_OT_NONE, 0, tx); 1783 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 1784 ASSERT(error == 0); 1785 } else { 1786 sa_obj = 0; 1787 } 1788 /* 1789 * Create a delete queue. 1790 */ 1791 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1792 1793 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1794 ASSERT(error == 0); 1795 1796 /* 1797 * Create root znode. Create minimal znode/vnode/zfsvfs 1798 * to allow zfs_mknode to work. 1799 */ 1800 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1801 vattr.va_type = VDIR; 1802 vattr.va_mode = S_IFDIR|0755; 1803 vattr.va_uid = crgetuid(cr); 1804 vattr.va_gid = crgetgid(cr); 1805 1806 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1807 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1808 rootzp->z_moved = 0; 1809 rootzp->z_unlinked = 0; 1810 rootzp->z_atime_dirty = 0; 1811 rootzp->z_is_sa = USE_SA(version, os); 1812 1813 vp = ZTOV(rootzp); 1814 vn_reinit(vp); 1815 vp->v_type = VDIR; 1816 1817 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1818 1819 zfsvfs.z_os = os; 1820 zfsvfs.z_parent = &zfsvfs; 1821 zfsvfs.z_version = version; 1822 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1823 zfsvfs.z_use_sa = USE_SA(version, os); 1824 zfsvfs.z_norm = norm; 1825 1826 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 1827 &zfsvfs.z_attr_table); 1828 1829 ASSERT(error == 0); 1830 1831 /* 1832 * Fold case on file systems that are always or sometimes case 1833 * insensitive. 1834 */ 1835 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1836 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1837 1838 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1839 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1840 offsetof(znode_t, z_link_node)); 1841 1842 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1843 mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1844 1845 rootzp->z_zfsvfs = &zfsvfs; 1846 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1847 cr, NULL, &acl_ids)); 1848 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids); 1849 ASSERT3P(zp, ==, rootzp); 1850 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1851 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1852 ASSERT(error == 0); 1853 zfs_acl_ids_free(&acl_ids); 1854 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1855 1856 ZTOV(rootzp)->v_count = 0; 1857 sa_handle_destroy(rootzp->z_sa_hdl); 1858 kmem_cache_free(znode_cache, rootzp); 1859 1860 /* 1861 * Create shares directory 1862 */ 1863 1864 error = zfs_create_share_dir(&zfsvfs, tx); 1865 1866 ASSERT(error == 0); 1867 1868 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1869 mutex_destroy(&zfsvfs.z_hold_mtx[i]); 1870 } 1871 1872 #endif /* _KERNEL */ 1873 1874 static int 1875 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table) 1876 { 1877 uint64_t sa_obj = 0; 1878 int error; 1879 1880 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); 1881 if (error != 0 && error != ENOENT) 1882 return (error); 1883 1884 error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table); 1885 return (error); 1886 } 1887 1888 static int 1889 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp, 1890 dmu_buf_t **db, void *tag) 1891 { 1892 dmu_object_info_t doi; 1893 int error; 1894 1895 if ((error = sa_buf_hold(osp, obj, tag, db)) != 0) 1896 return (error); 1897 1898 dmu_object_info_from_db(*db, &doi); 1899 if ((doi.doi_bonus_type != DMU_OT_SA && 1900 doi.doi_bonus_type != DMU_OT_ZNODE) || 1901 doi.doi_bonus_type == DMU_OT_ZNODE && 1902 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1903 sa_buf_rele(*db, tag); 1904 return (SET_ERROR(ENOTSUP)); 1905 } 1906 1907 error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp); 1908 if (error != 0) { 1909 sa_buf_rele(*db, tag); 1910 return (error); 1911 } 1912 1913 return (0); 1914 } 1915 1916 void 1917 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag) 1918 { 1919 sa_handle_destroy(hdl); 1920 sa_buf_rele(db, tag); 1921 } 1922 1923 /* 1924 * Given an object number, return its parent object number and whether 1925 * or not the object is an extended attribute directory. 1926 */ 1927 static int 1928 zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table, 1929 uint64_t *pobjp, int *is_xattrdir) 1930 { 1931 uint64_t parent; 1932 uint64_t pflags; 1933 uint64_t mode; 1934 uint64_t parent_mode; 1935 sa_bulk_attr_t bulk[3]; 1936 sa_handle_t *sa_hdl; 1937 dmu_buf_t *sa_db; 1938 int count = 0; 1939 int error; 1940 1941 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL, 1942 &parent, sizeof (parent)); 1943 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL, 1944 &pflags, sizeof (pflags)); 1945 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1946 &mode, sizeof (mode)); 1947 1948 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0) 1949 return (error); 1950 1951 /* 1952 * When a link is removed its parent pointer is not changed and will 1953 * be invalid. There are two cases where a link is removed but the 1954 * file stays around, when it goes to the delete queue and when there 1955 * are additional links. 1956 */ 1957 error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG); 1958 if (error != 0) 1959 return (error); 1960 1961 error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode)); 1962 zfs_release_sa_handle(sa_hdl, sa_db, FTAG); 1963 if (error != 0) 1964 return (error); 1965 1966 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode); 1967 1968 /* 1969 * Extended attributes can be applied to files, directories, etc. 1970 * Otherwise the parent must be a directory. 1971 */ 1972 if (!*is_xattrdir && !S_ISDIR(parent_mode)) 1973 return (SET_ERROR(EINVAL)); 1974 1975 *pobjp = parent; 1976 1977 return (0); 1978 } 1979 1980 /* 1981 * Given an object number, return some zpl level statistics 1982 */ 1983 static int 1984 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table, 1985 zfs_stat_t *sb) 1986 { 1987 sa_bulk_attr_t bulk[4]; 1988 int count = 0; 1989 1990 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1991 &sb->zs_mode, sizeof (sb->zs_mode)); 1992 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL, 1993 &sb->zs_gen, sizeof (sb->zs_gen)); 1994 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL, 1995 &sb->zs_links, sizeof (sb->zs_links)); 1996 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL, 1997 &sb->zs_ctime, sizeof (sb->zs_ctime)); 1998 1999 return (sa_bulk_lookup(hdl, bulk, count)); 2000 } 2001 2002 static int 2003 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl, 2004 sa_attr_type_t *sa_table, char *buf, int len) 2005 { 2006 sa_handle_t *sa_hdl; 2007 sa_handle_t *prevhdl = NULL; 2008 dmu_buf_t *prevdb = NULL; 2009 dmu_buf_t *sa_db = NULL; 2010 char *path = buf + len - 1; 2011 int error; 2012 2013 *path = '\0'; 2014 sa_hdl = hdl; 2015 2016 for (;;) { 2017 uint64_t pobj; 2018 char component[MAXNAMELEN + 2]; 2019 size_t complen; 2020 int is_xattrdir; 2021 2022 if (prevdb) 2023 zfs_release_sa_handle(prevhdl, prevdb, FTAG); 2024 2025 if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj, 2026 &is_xattrdir)) != 0) 2027 break; 2028 2029 if (pobj == obj) { 2030 if (path[0] != '/') 2031 *--path = '/'; 2032 break; 2033 } 2034 2035 component[0] = '/'; 2036 if (is_xattrdir) { 2037 (void) sprintf(component + 1, "<xattrdir>"); 2038 } else { 2039 error = zap_value_search(osp, pobj, obj, 2040 ZFS_DIRENT_OBJ(-1ULL), component + 1); 2041 if (error != 0) 2042 break; 2043 } 2044 2045 complen = strlen(component); 2046 path -= complen; 2047 ASSERT(path >= buf); 2048 bcopy(component, path, complen); 2049 obj = pobj; 2050 2051 if (sa_hdl != hdl) { 2052 prevhdl = sa_hdl; 2053 prevdb = sa_db; 2054 } 2055 error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG); 2056 if (error != 0) { 2057 sa_hdl = prevhdl; 2058 sa_db = prevdb; 2059 break; 2060 } 2061 } 2062 2063 if (sa_hdl != NULL && sa_hdl != hdl) { 2064 ASSERT(sa_db != NULL); 2065 zfs_release_sa_handle(sa_hdl, sa_db, FTAG); 2066 } 2067 2068 if (error == 0) 2069 (void) memmove(buf, path, buf + len - path); 2070 2071 return (error); 2072 } 2073 2074 int 2075 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 2076 { 2077 sa_attr_type_t *sa_table; 2078 sa_handle_t *hdl; 2079 dmu_buf_t *db; 2080 int error; 2081 2082 error = zfs_sa_setup(osp, &sa_table); 2083 if (error != 0) 2084 return (error); 2085 2086 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); 2087 if (error != 0) 2088 return (error); 2089 2090 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2091 2092 zfs_release_sa_handle(hdl, db, FTAG); 2093 return (error); 2094 } 2095 2096 int 2097 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb, 2098 char *buf, int len) 2099 { 2100 char *path = buf + len - 1; 2101 sa_attr_type_t *sa_table; 2102 sa_handle_t *hdl; 2103 dmu_buf_t *db; 2104 int error; 2105 2106 *path = '\0'; 2107 2108 error = zfs_sa_setup(osp, &sa_table); 2109 if (error != 0) 2110 return (error); 2111 2112 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); 2113 if (error != 0) 2114 return (error); 2115 2116 error = zfs_obj_to_stats_impl(hdl, sa_table, sb); 2117 if (error != 0) { 2118 zfs_release_sa_handle(hdl, db, FTAG); 2119 return (error); 2120 } 2121 2122 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2123 2124 zfs_release_sa_handle(hdl, db, FTAG); 2125 return (error); 2126 }