1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/dmu.h> 28 #include <sys/dmu_impl.h> 29 #include <sys/dbuf.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dsl_dataset.h> /* for dsl_dataset_block_freeable() */ 33 #include <sys/dsl_dir.h> /* for dsl_dir_tempreserve_*() */ 34 #include <sys/dsl_pool.h> 35 #include <sys/zap_impl.h> /* for fzap_default_block_shift */ 36 #include <sys/spa.h> 37 #include <sys/sa.h> 38 #include <sys/sa_impl.h> 39 #include <sys/zfs_context.h> 40 #include <sys/varargs.h> 41 42 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn, 43 uint64_t arg1, uint64_t arg2); 44 45 46 dmu_tx_t * 47 dmu_tx_create_dd(dsl_dir_t *dd) 48 { 49 dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP); 50 tx->tx_dir = dd; 51 if (dd != NULL) 52 tx->tx_pool = dd->dd_pool; 53 list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t), 54 offsetof(dmu_tx_hold_t, txh_node)); 55 list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t), 56 offsetof(dmu_tx_callback_t, dcb_node)); 57 tx->tx_start = gethrtime(); 58 #ifdef ZFS_DEBUG 59 refcount_create(&tx->tx_space_written); 60 refcount_create(&tx->tx_space_freed); 61 #endif 62 return (tx); 63 } 64 65 dmu_tx_t * 66 dmu_tx_create(objset_t *os) 67 { 68 dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir); 69 tx->tx_objset = os; 70 tx->tx_lastsnap_txg = dsl_dataset_prev_snap_txg(os->os_dsl_dataset); 71 return (tx); 72 } 73 74 dmu_tx_t * 75 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg) 76 { 77 dmu_tx_t *tx = dmu_tx_create_dd(NULL); 78 79 ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg); 80 tx->tx_pool = dp; 81 tx->tx_txg = txg; 82 tx->tx_anyobj = TRUE; 83 84 return (tx); 85 } 86 87 int 88 dmu_tx_is_syncing(dmu_tx_t *tx) 89 { 90 return (tx->tx_anyobj); 91 } 92 93 int 94 dmu_tx_private_ok(dmu_tx_t *tx) 95 { 96 return (tx->tx_anyobj); 97 } 98 99 static dmu_tx_hold_t * 100 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object, 101 enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2) 102 { 103 dmu_tx_hold_t *txh; 104 dnode_t *dn = NULL; 105 int err; 106 107 if (object != DMU_NEW_OBJECT) { 108 err = dnode_hold(os, object, tx, &dn); 109 if (err) { 110 tx->tx_err = err; 111 return (NULL); 112 } 113 114 if (err == 0 && tx->tx_txg != 0) { 115 mutex_enter(&dn->dn_mtx); 116 /* 117 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a 118 * problem, but there's no way for it to happen (for 119 * now, at least). 120 */ 121 ASSERT(dn->dn_assigned_txg == 0); 122 dn->dn_assigned_txg = tx->tx_txg; 123 (void) refcount_add(&dn->dn_tx_holds, tx); 124 mutex_exit(&dn->dn_mtx); 125 } 126 } 127 128 txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP); 129 txh->txh_tx = tx; 130 txh->txh_dnode = dn; 131 #ifdef ZFS_DEBUG 132 txh->txh_type = type; 133 txh->txh_arg1 = arg1; 134 txh->txh_arg2 = arg2; 135 #endif 136 list_insert_tail(&tx->tx_holds, txh); 137 138 return (txh); 139 } 140 141 void 142 dmu_tx_add_new_object(dmu_tx_t *tx, objset_t *os, uint64_t object) 143 { 144 /* 145 * If we're syncing, they can manipulate any object anyhow, and 146 * the hold on the dnode_t can cause problems. 147 */ 148 if (!dmu_tx_is_syncing(tx)) { 149 (void) dmu_tx_hold_object_impl(tx, os, 150 object, THT_NEWOBJECT, 0, 0); 151 } 152 } 153 154 static int 155 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid) 156 { 157 int err; 158 dmu_buf_impl_t *db; 159 160 rw_enter(&dn->dn_struct_rwlock, RW_READER); 161 db = dbuf_hold_level(dn, level, blkid, FTAG); 162 rw_exit(&dn->dn_struct_rwlock); 163 if (db == NULL) 164 return (SET_ERROR(EIO)); 165 err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH); 166 dbuf_rele(db, FTAG); 167 return (err); 168 } 169 170 static void 171 dmu_tx_count_twig(dmu_tx_hold_t *txh, dnode_t *dn, dmu_buf_impl_t *db, 172 int level, uint64_t blkid, boolean_t freeable, uint64_t *history) 173 { 174 objset_t *os = dn->dn_objset; 175 dsl_dataset_t *ds = os->os_dsl_dataset; 176 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 177 dmu_buf_impl_t *parent = NULL; 178 blkptr_t *bp = NULL; 179 uint64_t space; 180 181 if (level >= dn->dn_nlevels || history[level] == blkid) 182 return; 183 184 history[level] = blkid; 185 186 space = (level == 0) ? dn->dn_datablksz : (1ULL << dn->dn_indblkshift); 187 188 if (db == NULL || db == dn->dn_dbuf) { 189 ASSERT(level != 0); 190 db = NULL; 191 } else { 192 ASSERT(DB_DNODE(db) == dn); 193 ASSERT(db->db_level == level); 194 ASSERT(db->db.db_size == space); 195 ASSERT(db->db_blkid == blkid); 196 bp = db->db_blkptr; 197 parent = db->db_parent; 198 } 199 200 freeable = (bp && (freeable || 201 dsl_dataset_block_freeable(ds, bp, bp->blk_birth))); 202 203 if (freeable) 204 txh->txh_space_tooverwrite += space; 205 else 206 txh->txh_space_towrite += space; 207 if (bp) 208 txh->txh_space_tounref += bp_get_dsize(os->os_spa, bp); 209 210 dmu_tx_count_twig(txh, dn, parent, level + 1, 211 blkid >> epbs, freeable, history); 212 } 213 214 /* ARGSUSED */ 215 static void 216 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) 217 { 218 dnode_t *dn = txh->txh_dnode; 219 uint64_t start, end, i; 220 int min_bs, max_bs, min_ibs, max_ibs, epbs, bits; 221 int err = 0; 222 223 if (len == 0) 224 return; 225 226 min_bs = SPA_MINBLOCKSHIFT; 227 max_bs = SPA_MAXBLOCKSHIFT; 228 min_ibs = DN_MIN_INDBLKSHIFT; 229 max_ibs = DN_MAX_INDBLKSHIFT; 230 231 if (dn) { 232 uint64_t history[DN_MAX_LEVELS]; 233 int nlvls = dn->dn_nlevels; 234 int delta; 235 236 /* 237 * For i/o error checking, read the first and last level-0 238 * blocks (if they are not aligned), and all the level-1 blocks. 239 */ 240 if (dn->dn_maxblkid == 0) { 241 delta = dn->dn_datablksz; 242 start = (off < dn->dn_datablksz) ? 0 : 1; 243 end = (off+len <= dn->dn_datablksz) ? 0 : 1; 244 if (start == 0 && (off > 0 || len < dn->dn_datablksz)) { 245 err = dmu_tx_check_ioerr(NULL, dn, 0, 0); 246 if (err) 247 goto out; 248 delta -= off; 249 } 250 } else { 251 zio_t *zio = zio_root(dn->dn_objset->os_spa, 252 NULL, NULL, ZIO_FLAG_CANFAIL); 253 254 /* first level-0 block */ 255 start = off >> dn->dn_datablkshift; 256 if (P2PHASE(off, dn->dn_datablksz) || 257 len < dn->dn_datablksz) { 258 err = dmu_tx_check_ioerr(zio, dn, 0, start); 259 if (err) 260 goto out; 261 } 262 263 /* last level-0 block */ 264 end = (off+len-1) >> dn->dn_datablkshift; 265 if (end != start && end <= dn->dn_maxblkid && 266 P2PHASE(off+len, dn->dn_datablksz)) { 267 err = dmu_tx_check_ioerr(zio, dn, 0, end); 268 if (err) 269 goto out; 270 } 271 272 /* level-1 blocks */ 273 if (nlvls > 1) { 274 int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 275 for (i = (start>>shft)+1; i < end>>shft; i++) { 276 err = dmu_tx_check_ioerr(zio, dn, 1, i); 277 if (err) 278 goto out; 279 } 280 } 281 282 err = zio_wait(zio); 283 if (err) 284 goto out; 285 delta = P2NPHASE(off, dn->dn_datablksz); 286 } 287 288 min_ibs = max_ibs = dn->dn_indblkshift; 289 if (dn->dn_maxblkid > 0) { 290 /* 291 * The blocksize can't change, 292 * so we can make a more precise estimate. 293 */ 294 ASSERT(dn->dn_datablkshift != 0); 295 min_bs = max_bs = dn->dn_datablkshift; 296 } 297 298 /* 299 * If this write is not off the end of the file 300 * we need to account for overwrites/unref. 301 */ 302 if (start <= dn->dn_maxblkid) { 303 for (int l = 0; l < DN_MAX_LEVELS; l++) 304 history[l] = -1ULL; 305 } 306 while (start <= dn->dn_maxblkid) { 307 dmu_buf_impl_t *db; 308 309 rw_enter(&dn->dn_struct_rwlock, RW_READER); 310 err = dbuf_hold_impl(dn, 0, start, FALSE, FTAG, &db); 311 rw_exit(&dn->dn_struct_rwlock); 312 313 if (err) { 314 txh->txh_tx->tx_err = err; 315 return; 316 } 317 318 dmu_tx_count_twig(txh, dn, db, 0, start, B_FALSE, 319 history); 320 dbuf_rele(db, FTAG); 321 if (++start > end) { 322 /* 323 * Account for new indirects appearing 324 * before this IO gets assigned into a txg. 325 */ 326 bits = 64 - min_bs; 327 epbs = min_ibs - SPA_BLKPTRSHIFT; 328 for (bits -= epbs * (nlvls - 1); 329 bits >= 0; bits -= epbs) 330 txh->txh_fudge += 1ULL << max_ibs; 331 goto out; 332 } 333 off += delta; 334 if (len >= delta) 335 len -= delta; 336 delta = dn->dn_datablksz; 337 } 338 } 339 340 /* 341 * 'end' is the last thing we will access, not one past. 342 * This way we won't overflow when accessing the last byte. 343 */ 344 start = P2ALIGN(off, 1ULL << max_bs); 345 end = P2ROUNDUP(off + len, 1ULL << max_bs) - 1; 346 txh->txh_space_towrite += end - start + 1; 347 348 start >>= min_bs; 349 end >>= min_bs; 350 351 epbs = min_ibs - SPA_BLKPTRSHIFT; 352 353 /* 354 * The object contains at most 2^(64 - min_bs) blocks, 355 * and each indirect level maps 2^epbs. 356 */ 357 for (bits = 64 - min_bs; bits >= 0; bits -= epbs) { 358 start >>= epbs; 359 end >>= epbs; 360 ASSERT3U(end, >=, start); 361 txh->txh_space_towrite += (end - start + 1) << max_ibs; 362 if (start != 0) { 363 /* 364 * We also need a new blkid=0 indirect block 365 * to reference any existing file data. 366 */ 367 txh->txh_space_towrite += 1ULL << max_ibs; 368 } 369 } 370 371 out: 372 if (txh->txh_space_towrite + txh->txh_space_tooverwrite > 373 2 * DMU_MAX_ACCESS) 374 err = SET_ERROR(EFBIG); 375 376 if (err) 377 txh->txh_tx->tx_err = err; 378 } 379 380 static void 381 dmu_tx_count_dnode(dmu_tx_hold_t *txh) 382 { 383 dnode_t *dn = txh->txh_dnode; 384 dnode_t *mdn = DMU_META_DNODE(txh->txh_tx->tx_objset); 385 uint64_t space = mdn->dn_datablksz + 386 ((mdn->dn_nlevels-1) << mdn->dn_indblkshift); 387 388 if (dn && dn->dn_dbuf->db_blkptr && 389 dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, 390 dn->dn_dbuf->db_blkptr, dn->dn_dbuf->db_blkptr->blk_birth)) { 391 txh->txh_space_tooverwrite += space; 392 txh->txh_space_tounref += space; 393 } else { 394 txh->txh_space_towrite += space; 395 if (dn && dn->dn_dbuf->db_blkptr) 396 txh->txh_space_tounref += space; 397 } 398 } 399 400 void 401 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len) 402 { 403 dmu_tx_hold_t *txh; 404 405 ASSERT(tx->tx_txg == 0); 406 ASSERT(len < DMU_MAX_ACCESS); 407 ASSERT(len == 0 || UINT64_MAX - off >= len - 1); 408 409 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 410 object, THT_WRITE, off, len); 411 if (txh == NULL) 412 return; 413 414 dmu_tx_count_write(txh, off, len); 415 dmu_tx_count_dnode(txh); 416 } 417 418 static void 419 dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) 420 { 421 uint64_t blkid, nblks, lastblk; 422 uint64_t space = 0, unref = 0, skipped = 0; 423 dnode_t *dn = txh->txh_dnode; 424 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 425 spa_t *spa = txh->txh_tx->tx_pool->dp_spa; 426 int epbs; 427 uint64_t l0span = 0, nl1blks = 0; 428 429 if (dn->dn_nlevels == 0) 430 return; 431 432 /* 433 * The struct_rwlock protects us against dn_nlevels 434 * changing, in case (against all odds) we manage to dirty & 435 * sync out the changes after we check for being dirty. 436 * Also, dbuf_hold_impl() wants us to have the struct_rwlock. 437 */ 438 rw_enter(&dn->dn_struct_rwlock, RW_READER); 439 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 440 if (dn->dn_maxblkid == 0) { 441 if (off == 0 && len >= dn->dn_datablksz) { 442 blkid = 0; 443 nblks = 1; 444 } else { 445 rw_exit(&dn->dn_struct_rwlock); 446 return; 447 } 448 } else { 449 blkid = off >> dn->dn_datablkshift; 450 nblks = (len + dn->dn_datablksz - 1) >> dn->dn_datablkshift; 451 452 if (blkid > dn->dn_maxblkid) { 453 rw_exit(&dn->dn_struct_rwlock); 454 return; 455 } 456 if (blkid + nblks > dn->dn_maxblkid) 457 nblks = dn->dn_maxblkid - blkid + 1; 458 459 } 460 l0span = nblks; /* save for later use to calc level > 1 overhead */ 461 if (dn->dn_nlevels == 1) { 462 int i; 463 for (i = 0; i < nblks; i++) { 464 blkptr_t *bp = dn->dn_phys->dn_blkptr; 465 ASSERT3U(blkid + i, <, dn->dn_nblkptr); 466 bp += blkid + i; 467 if (dsl_dataset_block_freeable(ds, bp, bp->blk_birth)) { 468 dprintf_bp(bp, "can free old%s", ""); 469 space += bp_get_dsize(spa, bp); 470 } 471 unref += BP_GET_ASIZE(bp); 472 } 473 nl1blks = 1; 474 nblks = 0; 475 } 476 477 lastblk = blkid + nblks - 1; 478 while (nblks) { 479 dmu_buf_impl_t *dbuf; 480 uint64_t ibyte, new_blkid; 481 int epb = 1 << epbs; 482 int err, i, blkoff, tochk; 483 blkptr_t *bp; 484 485 ibyte = blkid << dn->dn_datablkshift; 486 err = dnode_next_offset(dn, 487 DNODE_FIND_HAVELOCK, &ibyte, 2, 1, 0); 488 new_blkid = ibyte >> dn->dn_datablkshift; 489 if (err == ESRCH) { 490 skipped += (lastblk >> epbs) - (blkid >> epbs) + 1; 491 break; 492 } 493 if (err) { 494 txh->txh_tx->tx_err = err; 495 break; 496 } 497 if (new_blkid > lastblk) { 498 skipped += (lastblk >> epbs) - (blkid >> epbs) + 1; 499 break; 500 } 501 502 if (new_blkid > blkid) { 503 ASSERT((new_blkid >> epbs) > (blkid >> epbs)); 504 skipped += (new_blkid >> epbs) - (blkid >> epbs) - 1; 505 nblks -= new_blkid - blkid; 506 blkid = new_blkid; 507 } 508 blkoff = P2PHASE(blkid, epb); 509 tochk = MIN(epb - blkoff, nblks); 510 511 err = dbuf_hold_impl(dn, 1, blkid >> epbs, FALSE, FTAG, &dbuf); 512 if (err) { 513 txh->txh_tx->tx_err = err; 514 break; 515 } 516 517 txh->txh_memory_tohold += dbuf->db.db_size; 518 519 /* 520 * We don't check memory_tohold against DMU_MAX_ACCESS because 521 * memory_tohold is an over-estimation (especially the >L1 522 * indirect blocks), so it could fail. Callers should have 523 * already verified that they will not be holding too much 524 * memory. 525 */ 526 527 err = dbuf_read(dbuf, NULL, DB_RF_HAVESTRUCT | DB_RF_CANFAIL); 528 if (err != 0) { 529 txh->txh_tx->tx_err = err; 530 dbuf_rele(dbuf, FTAG); 531 break; 532 } 533 534 bp = dbuf->db.db_data; 535 bp += blkoff; 536 537 for (i = 0; i < tochk; i++) { 538 if (dsl_dataset_block_freeable(ds, &bp[i], 539 bp[i].blk_birth)) { 540 dprintf_bp(&bp[i], "can free old%s", ""); 541 space += bp_get_dsize(spa, &bp[i]); 542 } 543 unref += BP_GET_ASIZE(bp); 544 } 545 dbuf_rele(dbuf, FTAG); 546 547 ++nl1blks; 548 blkid += tochk; 549 nblks -= tochk; 550 } 551 rw_exit(&dn->dn_struct_rwlock); 552 553 /* 554 * Add in memory requirements of higher-level indirects. 555 * This assumes a worst-possible scenario for dn_nlevels and a 556 * worst-possible distribution of l1-blocks over the region to free. 557 */ 558 { 559 uint64_t blkcnt = 1 + ((l0span >> epbs) >> epbs); 560 int level = 2; 561 /* 562 * Here we don't use DN_MAX_LEVEL, but calculate it with the 563 * given datablkshift and indblkshift. This makes the 564 * difference between 19 and 8 on large files. 565 */ 566 int maxlevel = 2 + (DN_MAX_OFFSET_SHIFT - dn->dn_datablkshift) / 567 (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 568 569 while (level++ < maxlevel) { 570 txh->txh_memory_tohold += MAX(MIN(blkcnt, nl1blks), 1) 571 << dn->dn_indblkshift; 572 blkcnt = 1 + (blkcnt >> epbs); 573 } 574 } 575 576 /* account for new level 1 indirect blocks that might show up */ 577 if (skipped > 0) { 578 txh->txh_fudge += skipped << dn->dn_indblkshift; 579 skipped = MIN(skipped, DMU_MAX_DELETEBLKCNT >> epbs); 580 txh->txh_memory_tohold += skipped << dn->dn_indblkshift; 581 } 582 txh->txh_space_tofree += space; 583 txh->txh_space_tounref += unref; 584 } 585 586 void 587 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len) 588 { 589 dmu_tx_hold_t *txh; 590 dnode_t *dn; 591 int err; 592 zio_t *zio; 593 594 ASSERT(tx->tx_txg == 0); 595 596 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 597 object, THT_FREE, off, len); 598 if (txh == NULL) 599 return; 600 dn = txh->txh_dnode; 601 dmu_tx_count_dnode(txh); 602 603 if (off >= (dn->dn_maxblkid+1) * dn->dn_datablksz) 604 return; 605 if (len == DMU_OBJECT_END) 606 len = (dn->dn_maxblkid+1) * dn->dn_datablksz - off; 607 608 /* 609 * For i/o error checking, we read the first and last level-0 610 * blocks if they are not aligned, and all the level-1 blocks. 611 * 612 * Note: dbuf_free_range() assumes that we have not instantiated 613 * any level-0 dbufs that will be completely freed. Therefore we must 614 * exercise care to not read or count the first and last blocks 615 * if they are blocksize-aligned. 616 */ 617 if (dn->dn_datablkshift == 0) { 618 if (off != 0 || len < dn->dn_datablksz) 619 dmu_tx_count_write(txh, 0, dn->dn_datablksz); 620 } else { 621 /* first block will be modified if it is not aligned */ 622 if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift)) 623 dmu_tx_count_write(txh, off, 1); 624 /* last block will be modified if it is not aligned */ 625 if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift)) 626 dmu_tx_count_write(txh, off+len, 1); 627 } 628 629 /* 630 * Check level-1 blocks. 631 */ 632 if (dn->dn_nlevels > 1) { 633 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 634 SPA_BLKPTRSHIFT; 635 uint64_t start = off >> shift; 636 uint64_t end = (off + len) >> shift; 637 638 ASSERT(dn->dn_datablkshift != 0); 639 ASSERT(dn->dn_indblkshift != 0); 640 641 zio = zio_root(tx->tx_pool->dp_spa, 642 NULL, NULL, ZIO_FLAG_CANFAIL); 643 for (uint64_t i = start; i <= end; i++) { 644 uint64_t ibyte = i << shift; 645 err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0); 646 i = ibyte >> shift; 647 if (err == ESRCH) 648 break; 649 if (err) { 650 tx->tx_err = err; 651 return; 652 } 653 654 err = dmu_tx_check_ioerr(zio, dn, 1, i); 655 if (err) { 656 tx->tx_err = err; 657 return; 658 } 659 } 660 err = zio_wait(zio); 661 if (err) { 662 tx->tx_err = err; 663 return; 664 } 665 } 666 667 dmu_tx_count_free(txh, off, len); 668 } 669 670 void 671 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name) 672 { 673 dmu_tx_hold_t *txh; 674 dnode_t *dn; 675 uint64_t nblocks; 676 int epbs, err; 677 678 ASSERT(tx->tx_txg == 0); 679 680 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 681 object, THT_ZAP, add, (uintptr_t)name); 682 if (txh == NULL) 683 return; 684 dn = txh->txh_dnode; 685 686 dmu_tx_count_dnode(txh); 687 688 if (dn == NULL) { 689 /* 690 * We will be able to fit a new object's entries into one leaf 691 * block. So there will be at most 2 blocks total, 692 * including the header block. 693 */ 694 dmu_tx_count_write(txh, 0, 2 << fzap_default_block_shift); 695 return; 696 } 697 698 ASSERT3P(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP); 699 700 if (dn->dn_maxblkid == 0 && !add) { 701 blkptr_t *bp; 702 703 /* 704 * If there is only one block (i.e. this is a micro-zap) 705 * and we are not adding anything, the accounting is simple. 706 */ 707 err = dmu_tx_check_ioerr(NULL, dn, 0, 0); 708 if (err) { 709 tx->tx_err = err; 710 return; 711 } 712 713 /* 714 * Use max block size here, since we don't know how much 715 * the size will change between now and the dbuf dirty call. 716 */ 717 bp = &dn->dn_phys->dn_blkptr[0]; 718 if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, 719 bp, bp->blk_birth)) 720 txh->txh_space_tooverwrite += SPA_MAXBLOCKSIZE; 721 else 722 txh->txh_space_towrite += SPA_MAXBLOCKSIZE; 723 if (!BP_IS_HOLE(bp)) 724 txh->txh_space_tounref += SPA_MAXBLOCKSIZE; 725 return; 726 } 727 728 if (dn->dn_maxblkid > 0 && name) { 729 /* 730 * access the name in this fat-zap so that we'll check 731 * for i/o errors to the leaf blocks, etc. 732 */ 733 err = zap_lookup(dn->dn_objset, dn->dn_object, name, 734 8, 0, NULL); 735 if (err == EIO) { 736 tx->tx_err = err; 737 return; 738 } 739 } 740 741 err = zap_count_write(dn->dn_objset, dn->dn_object, name, add, 742 &txh->txh_space_towrite, &txh->txh_space_tooverwrite); 743 744 /* 745 * If the modified blocks are scattered to the four winds, 746 * we'll have to modify an indirect twig for each. 747 */ 748 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 749 for (nblocks = dn->dn_maxblkid >> epbs; nblocks != 0; nblocks >>= epbs) 750 if (dn->dn_objset->os_dsl_dataset->ds_phys->ds_prev_snap_obj) 751 txh->txh_space_towrite += 3 << dn->dn_indblkshift; 752 else 753 txh->txh_space_tooverwrite += 3 << dn->dn_indblkshift; 754 } 755 756 void 757 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object) 758 { 759 dmu_tx_hold_t *txh; 760 761 ASSERT(tx->tx_txg == 0); 762 763 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 764 object, THT_BONUS, 0, 0); 765 if (txh) 766 dmu_tx_count_dnode(txh); 767 } 768 769 void 770 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space) 771 { 772 dmu_tx_hold_t *txh; 773 ASSERT(tx->tx_txg == 0); 774 775 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 776 DMU_NEW_OBJECT, THT_SPACE, space, 0); 777 778 txh->txh_space_towrite += space; 779 } 780 781 int 782 dmu_tx_holds(dmu_tx_t *tx, uint64_t object) 783 { 784 dmu_tx_hold_t *txh; 785 int holds = 0; 786 787 /* 788 * By asserting that the tx is assigned, we're counting the 789 * number of dn_tx_holds, which is the same as the number of 790 * dn_holds. Otherwise, we'd be counting dn_holds, but 791 * dn_tx_holds could be 0. 792 */ 793 ASSERT(tx->tx_txg != 0); 794 795 /* if (tx->tx_anyobj == TRUE) */ 796 /* return (0); */ 797 798 for (txh = list_head(&tx->tx_holds); txh; 799 txh = list_next(&tx->tx_holds, txh)) { 800 if (txh->txh_dnode && txh->txh_dnode->dn_object == object) 801 holds++; 802 } 803 804 return (holds); 805 } 806 807 #ifdef ZFS_DEBUG 808 void 809 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db) 810 { 811 dmu_tx_hold_t *txh; 812 int match_object = FALSE, match_offset = FALSE; 813 dnode_t *dn; 814 815 DB_DNODE_ENTER(db); 816 dn = DB_DNODE(db); 817 ASSERT(tx->tx_txg != 0); 818 ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset); 819 ASSERT3U(dn->dn_object, ==, db->db.db_object); 820 821 if (tx->tx_anyobj) { 822 DB_DNODE_EXIT(db); 823 return; 824 } 825 826 /* XXX No checking on the meta dnode for now */ 827 if (db->db.db_object == DMU_META_DNODE_OBJECT) { 828 DB_DNODE_EXIT(db); 829 return; 830 } 831 832 for (txh = list_head(&tx->tx_holds); txh; 833 txh = list_next(&tx->tx_holds, txh)) { 834 ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg); 835 if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT) 836 match_object = TRUE; 837 if (txh->txh_dnode == NULL || txh->txh_dnode == dn) { 838 int datablkshift = dn->dn_datablkshift ? 839 dn->dn_datablkshift : SPA_MAXBLOCKSHIFT; 840 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 841 int shift = datablkshift + epbs * db->db_level; 842 uint64_t beginblk = shift >= 64 ? 0 : 843 (txh->txh_arg1 >> shift); 844 uint64_t endblk = shift >= 64 ? 0 : 845 ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift); 846 uint64_t blkid = db->db_blkid; 847 848 /* XXX txh_arg2 better not be zero... */ 849 850 dprintf("found txh type %x beginblk=%llx endblk=%llx\n", 851 txh->txh_type, beginblk, endblk); 852 853 switch (txh->txh_type) { 854 case THT_WRITE: 855 if (blkid >= beginblk && blkid <= endblk) 856 match_offset = TRUE; 857 /* 858 * We will let this hold work for the bonus 859 * or spill buffer so that we don't need to 860 * hold it when creating a new object. 861 */ 862 if (blkid == DMU_BONUS_BLKID || 863 blkid == DMU_SPILL_BLKID) 864 match_offset = TRUE; 865 /* 866 * They might have to increase nlevels, 867 * thus dirtying the new TLIBs. Or the 868 * might have to change the block size, 869 * thus dirying the new lvl=0 blk=0. 870 */ 871 if (blkid == 0) 872 match_offset = TRUE; 873 break; 874 case THT_FREE: 875 /* 876 * We will dirty all the level 1 blocks in 877 * the free range and perhaps the first and 878 * last level 0 block. 879 */ 880 if (blkid >= beginblk && (blkid <= endblk || 881 txh->txh_arg2 == DMU_OBJECT_END)) 882 match_offset = TRUE; 883 break; 884 case THT_SPILL: 885 if (blkid == DMU_SPILL_BLKID) 886 match_offset = TRUE; 887 break; 888 case THT_BONUS: 889 if (blkid == DMU_BONUS_BLKID) 890 match_offset = TRUE; 891 break; 892 case THT_ZAP: 893 match_offset = TRUE; 894 break; 895 case THT_NEWOBJECT: 896 match_object = TRUE; 897 break; 898 default: 899 ASSERT(!"bad txh_type"); 900 } 901 } 902 if (match_object && match_offset) { 903 DB_DNODE_EXIT(db); 904 return; 905 } 906 } 907 DB_DNODE_EXIT(db); 908 panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n", 909 (u_longlong_t)db->db.db_object, db->db_level, 910 (u_longlong_t)db->db_blkid); 911 } 912 #endif 913 914 /* 915 * If we can't do 10 iops, something is wrong. Let us go ahead 916 * and hit zfs_dirty_data_max. 917 */ 918 hrtime_t zfs_delay_max_ns = MSEC2NSEC(100); 919 int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */ 920 921 /* 922 * We delay transactions when we've determined that the backend storage 923 * isn't able to accommodate the rate of incoming writes. 924 * 925 * If there is already a transaction waiting, we delay relative to when 926 * that transaction finishes waiting. This way the calculated min_time 927 * is independent of the number of threads concurrently executing 928 * transactions. 929 * 930 * If we are the only waiter, wait relative to when the transaction 931 * started, rather than the current time. This credits the transaction for 932 * "time already served", e.g. reading indirect blocks. 933 * 934 * The minimum time for a transaction to take is calculated as: 935 * min_time = scale * (dirty - min) / (max - dirty) 936 * min_time is then capped at zfs_delay_max_ns. 937 * 938 * The delay has two degrees of freedom that can be adjusted via tunables. 939 * The percentage of dirty data at which we start to delay is defined by 940 * zfs_delay_min_dirty_percent. This should typically be at or above 941 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to 942 * delay after writing at full speed has failed to keep up with the incoming 943 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly 944 * speaking, this variable determines the amount of delay at the midpoint of 945 * the curve. 946 * 947 * delay 948 * 10ms +-------------------------------------------------------------*+ 949 * | *| 950 * 9ms + *+ 951 * | *| 952 * 8ms + *+ 953 * | * | 954 * 7ms + * + 955 * | * | 956 * 6ms + * + 957 * | * | 958 * 5ms + * + 959 * | * | 960 * 4ms + * + 961 * | * | 962 * 3ms + * + 963 * | * | 964 * 2ms + (midpoint) * + 965 * | | ** | 966 * 1ms + v *** + 967 * | zfs_delay_scale ----------> ******** | 968 * 0 +-------------------------------------*********----------------+ 969 * 0% <- zfs_dirty_data_max -> 100% 970 * 971 * Note that since the delay is added to the outstanding time remaining on the 972 * most recent transaction, the delay is effectively the inverse of IOPS. 973 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve 974 * was chosen such that small changes in the amount of accumulated dirty data 975 * in the first 3/4 of the curve yield relatively small differences in the 976 * amount of delay. 977 * 978 * The effects can be easier to understand when the amount of delay is 979 * represented on a log scale: 980 * 981 * delay 982 * 100ms +-------------------------------------------------------------++ 983 * + + 984 * | | 985 * + *+ 986 * 10ms + *+ 987 * + ** + 988 * | (midpoint) ** | 989 * + | ** + 990 * 1ms + v **** + 991 * + zfs_delay_scale ----------> ***** + 992 * | **** | 993 * + **** + 994 * 100us + ** + 995 * + * + 996 * | * | 997 * + * + 998 * 10us + * + 999 * + + 1000 * | | 1001 * + + 1002 * +--------------------------------------------------------------+ 1003 * 0% <- zfs_dirty_data_max -> 100% 1004 * 1005 * Note here that only as the amount of dirty data approaches its limit does 1006 * the delay start to increase rapidly. The goal of a properly tuned system 1007 * should be to keep the amount of dirty data out of that range by first 1008 * ensuring that the appropriate limits are set for the I/O scheduler to reach 1009 * optimal throughput on the backend storage, and then by changing the value 1010 * of zfs_delay_scale to increase the steepness of the curve. 1011 */ 1012 static void 1013 dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty) 1014 { 1015 dsl_pool_t *dp = tx->tx_pool; 1016 uint64_t delay_min_bytes = 1017 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 1018 hrtime_t wakeup, min_tx_time, now; 1019 1020 if (dirty <= delay_min_bytes) 1021 return; 1022 1023 /* 1024 * The caller has already waited until we are under the max. 1025 * We make them pass us the amount of dirty data so we don't 1026 * have to handle the case of it being >= the max, which could 1027 * cause a divide-by-zero if it's == the max. 1028 */ 1029 ASSERT3U(dirty, <, zfs_dirty_data_max); 1030 1031 now = gethrtime(); 1032 min_tx_time = zfs_delay_scale * 1033 (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty); 1034 if (now > tx->tx_start + min_tx_time) 1035 return; 1036 1037 min_tx_time = MIN(min_tx_time, zfs_delay_max_ns); 1038 1039 DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty, 1040 uint64_t, min_tx_time); 1041 1042 mutex_enter(&dp->dp_lock); 1043 wakeup = MAX(tx->tx_start + min_tx_time, 1044 dp->dp_last_wakeup + min_tx_time); 1045 dp->dp_last_wakeup = wakeup; 1046 mutex_exit(&dp->dp_lock); 1047 1048 #ifdef _KERNEL 1049 mutex_enter(&curthread->t_delay_lock); 1050 while (cv_timedwait_hires(&curthread->t_delay_cv, 1051 &curthread->t_delay_lock, wakeup, zfs_delay_resolution_ns, 1052 CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP) > 0) 1053 continue; 1054 mutex_exit(&curthread->t_delay_lock); 1055 #else 1056 hrtime_t delta = wakeup - gethrtime(); 1057 struct timespec ts; 1058 ts.tv_sec = delta / NANOSEC; 1059 ts.tv_nsec = delta % NANOSEC; 1060 (void) nanosleep(&ts, NULL); 1061 #endif 1062 } 1063 1064 static int 1065 dmu_tx_try_assign(dmu_tx_t *tx, txg_how_t txg_how) 1066 { 1067 dmu_tx_hold_t *txh; 1068 spa_t *spa = tx->tx_pool->dp_spa; 1069 uint64_t memory, asize, fsize, usize; 1070 uint64_t towrite, tofree, tooverwrite, tounref, tohold, fudge; 1071 1072 ASSERT0(tx->tx_txg); 1073 1074 if (tx->tx_err) 1075 return (tx->tx_err); 1076 1077 if (spa_suspended(spa)) { 1078 /* 1079 * If the user has indicated a blocking failure mode 1080 * then return ERESTART which will block in dmu_tx_wait(). 1081 * Otherwise, return EIO so that an error can get 1082 * propagated back to the VOP calls. 1083 * 1084 * Note that we always honor the txg_how flag regardless 1085 * of the failuremode setting. 1086 */ 1087 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE && 1088 txg_how != TXG_WAIT) 1089 return (SET_ERROR(EIO)); 1090 1091 return (SET_ERROR(ERESTART)); 1092 } 1093 1094 if (!tx->tx_waited && 1095 dsl_pool_need_dirty_delay(tx->tx_pool)) { 1096 tx->tx_wait_dirty = B_TRUE; 1097 return (SET_ERROR(ERESTART)); 1098 } 1099 1100 tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh); 1101 tx->tx_needassign_txh = NULL; 1102 1103 /* 1104 * NB: No error returns are allowed after txg_hold_open, but 1105 * before processing the dnode holds, due to the 1106 * dmu_tx_unassign() logic. 1107 */ 1108 1109 towrite = tofree = tooverwrite = tounref = tohold = fudge = 0; 1110 for (txh = list_head(&tx->tx_holds); txh; 1111 txh = list_next(&tx->tx_holds, txh)) { 1112 dnode_t *dn = txh->txh_dnode; 1113 if (dn != NULL) { 1114 mutex_enter(&dn->dn_mtx); 1115 if (dn->dn_assigned_txg == tx->tx_txg - 1) { 1116 mutex_exit(&dn->dn_mtx); 1117 tx->tx_needassign_txh = txh; 1118 return (SET_ERROR(ERESTART)); 1119 } 1120 if (dn->dn_assigned_txg == 0) 1121 dn->dn_assigned_txg = tx->tx_txg; 1122 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 1123 (void) refcount_add(&dn->dn_tx_holds, tx); 1124 mutex_exit(&dn->dn_mtx); 1125 } 1126 towrite += txh->txh_space_towrite; 1127 tofree += txh->txh_space_tofree; 1128 tooverwrite += txh->txh_space_tooverwrite; 1129 tounref += txh->txh_space_tounref; 1130 tohold += txh->txh_memory_tohold; 1131 fudge += txh->txh_fudge; 1132 } 1133 1134 /* 1135 * If a snapshot has been taken since we made our estimates, 1136 * assume that we won't be able to free or overwrite anything. 1137 */ 1138 if (tx->tx_objset && 1139 dsl_dataset_prev_snap_txg(tx->tx_objset->os_dsl_dataset) > 1140 tx->tx_lastsnap_txg) { 1141 towrite += tooverwrite; 1142 tooverwrite = tofree = 0; 1143 } 1144 1145 /* needed allocation: worst-case estimate of write space */ 1146 asize = spa_get_asize(tx->tx_pool->dp_spa, towrite + tooverwrite); 1147 /* freed space estimate: worst-case overwrite + free estimate */ 1148 fsize = spa_get_asize(tx->tx_pool->dp_spa, tooverwrite) + tofree; 1149 /* convert unrefd space to worst-case estimate */ 1150 usize = spa_get_asize(tx->tx_pool->dp_spa, tounref); 1151 /* calculate memory footprint estimate */ 1152 memory = towrite + tooverwrite + tohold; 1153 1154 #ifdef ZFS_DEBUG 1155 /* 1156 * Add in 'tohold' to account for our dirty holds on this memory 1157 * XXX - the "fudge" factor is to account for skipped blocks that 1158 * we missed because dnode_next_offset() misses in-core-only blocks. 1159 */ 1160 tx->tx_space_towrite = asize + 1161 spa_get_asize(tx->tx_pool->dp_spa, tohold + fudge); 1162 tx->tx_space_tofree = tofree; 1163 tx->tx_space_tooverwrite = tooverwrite; 1164 tx->tx_space_tounref = tounref; 1165 #endif 1166 1167 if (tx->tx_dir && asize != 0) { 1168 int err = dsl_dir_tempreserve_space(tx->tx_dir, memory, 1169 asize, fsize, usize, &tx->tx_tempreserve_cookie, tx); 1170 if (err) 1171 return (err); 1172 } 1173 1174 return (0); 1175 } 1176 1177 static void 1178 dmu_tx_unassign(dmu_tx_t *tx) 1179 { 1180 dmu_tx_hold_t *txh; 1181 1182 if (tx->tx_txg == 0) 1183 return; 1184 1185 txg_rele_to_quiesce(&tx->tx_txgh); 1186 1187 /* 1188 * Walk the transaction's hold list, removing the hold on the 1189 * associated dnode, and notifying waiters if the refcount drops to 0. 1190 */ 1191 for (txh = list_head(&tx->tx_holds); txh != tx->tx_needassign_txh; 1192 txh = list_next(&tx->tx_holds, txh)) { 1193 dnode_t *dn = txh->txh_dnode; 1194 1195 if (dn == NULL) 1196 continue; 1197 mutex_enter(&dn->dn_mtx); 1198 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 1199 1200 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { 1201 dn->dn_assigned_txg = 0; 1202 cv_broadcast(&dn->dn_notxholds); 1203 } 1204 mutex_exit(&dn->dn_mtx); 1205 } 1206 1207 txg_rele_to_sync(&tx->tx_txgh); 1208 1209 tx->tx_lasttried_txg = tx->tx_txg; 1210 tx->tx_txg = 0; 1211 } 1212 1213 /* 1214 * Assign tx to a transaction group. txg_how can be one of: 1215 * 1216 * (1) TXG_WAIT. If the current open txg is full, waits until there's 1217 * a new one. This should be used when you're not holding locks. 1218 * It will only fail if we're truly out of space (or over quota). 1219 * 1220 * (2) TXG_NOWAIT. If we can't assign into the current open txg without 1221 * blocking, returns immediately with ERESTART. This should be used 1222 * whenever you're holding locks. On an ERESTART error, the caller 1223 * should drop locks, do a dmu_tx_wait(tx), and try again. 1224 * 1225 * (3) TXG_WAITED. Like TXG_NOWAIT, but indicates that dmu_tx_wait() 1226 * has already been called on behalf of this operation (though 1227 * most likely on a different tx). 1228 */ 1229 int 1230 dmu_tx_assign(dmu_tx_t *tx, txg_how_t txg_how) 1231 { 1232 int err; 1233 1234 ASSERT(tx->tx_txg == 0); 1235 ASSERT(txg_how == TXG_WAIT || txg_how == TXG_NOWAIT || 1236 txg_how == TXG_WAITED); 1237 ASSERT(!dsl_pool_sync_context(tx->tx_pool)); 1238 1239 /* If we might wait, we must not hold the config lock. */ 1240 ASSERT(txg_how != TXG_WAIT || !dsl_pool_config_held(tx->tx_pool)); 1241 1242 if (txg_how == TXG_WAITED) 1243 tx->tx_waited = B_TRUE; 1244 1245 while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) { 1246 dmu_tx_unassign(tx); 1247 1248 if (err != ERESTART || txg_how != TXG_WAIT) 1249 return (err); 1250 1251 dmu_tx_wait(tx); 1252 } 1253 1254 txg_rele_to_quiesce(&tx->tx_txgh); 1255 1256 return (0); 1257 } 1258 1259 void 1260 dmu_tx_wait(dmu_tx_t *tx) 1261 { 1262 spa_t *spa = tx->tx_pool->dp_spa; 1263 dsl_pool_t *dp = tx->tx_pool; 1264 1265 ASSERT(tx->tx_txg == 0); 1266 ASSERT(!dsl_pool_config_held(tx->tx_pool)); 1267 1268 if (tx->tx_wait_dirty) { 1269 /* 1270 * dmu_tx_try_assign() has determined that we need to wait 1271 * because we've consumed much or all of the dirty buffer 1272 * space. 1273 */ 1274 mutex_enter(&dp->dp_lock); 1275 while (dp->dp_dirty_total >= zfs_dirty_data_max) 1276 cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock); 1277 uint64_t dirty = dp->dp_dirty_total; 1278 mutex_exit(&dp->dp_lock); 1279 1280 dmu_tx_delay(tx, dirty); 1281 1282 tx->tx_wait_dirty = B_FALSE; 1283 1284 /* 1285 * Note: setting tx_waited only has effect if the caller 1286 * used TX_WAIT. Otherwise they are going to destroy 1287 * this tx and try again. The common case, zfs_write(), 1288 * uses TX_WAIT. 1289 */ 1290 tx->tx_waited = B_TRUE; 1291 } else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) { 1292 /* 1293 * If the pool is suspended we need to wait until it 1294 * is resumed. Note that it's possible that the pool 1295 * has become active after this thread has tried to 1296 * obtain a tx. If that's the case then tx_lasttried_txg 1297 * would not have been set. 1298 */ 1299 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1); 1300 } else if (tx->tx_needassign_txh) { 1301 /* 1302 * A dnode is assigned to the quiescing txg. Wait for its 1303 * transaction to complete. 1304 */ 1305 dnode_t *dn = tx->tx_needassign_txh->txh_dnode; 1306 1307 mutex_enter(&dn->dn_mtx); 1308 while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1) 1309 cv_wait(&dn->dn_notxholds, &dn->dn_mtx); 1310 mutex_exit(&dn->dn_mtx); 1311 tx->tx_needassign_txh = NULL; 1312 } else { 1313 txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1); 1314 } 1315 } 1316 1317 void 1318 dmu_tx_willuse_space(dmu_tx_t *tx, int64_t delta) 1319 { 1320 #ifdef ZFS_DEBUG 1321 if (tx->tx_dir == NULL || delta == 0) 1322 return; 1323 1324 if (delta > 0) { 1325 ASSERT3U(refcount_count(&tx->tx_space_written) + delta, <=, 1326 tx->tx_space_towrite); 1327 (void) refcount_add_many(&tx->tx_space_written, delta, NULL); 1328 } else { 1329 (void) refcount_add_many(&tx->tx_space_freed, -delta, NULL); 1330 } 1331 #endif 1332 } 1333 1334 void 1335 dmu_tx_commit(dmu_tx_t *tx) 1336 { 1337 dmu_tx_hold_t *txh; 1338 1339 ASSERT(tx->tx_txg != 0); 1340 1341 /* 1342 * Go through the transaction's hold list and remove holds on 1343 * associated dnodes, notifying waiters if no holds remain. 1344 */ 1345 while (txh = list_head(&tx->tx_holds)) { 1346 dnode_t *dn = txh->txh_dnode; 1347 1348 list_remove(&tx->tx_holds, txh); 1349 kmem_free(txh, sizeof (dmu_tx_hold_t)); 1350 if (dn == NULL) 1351 continue; 1352 mutex_enter(&dn->dn_mtx); 1353 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 1354 1355 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { 1356 dn->dn_assigned_txg = 0; 1357 cv_broadcast(&dn->dn_notxholds); 1358 } 1359 mutex_exit(&dn->dn_mtx); 1360 dnode_rele(dn, tx); 1361 } 1362 1363 if (tx->tx_tempreserve_cookie) 1364 dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx); 1365 1366 if (!list_is_empty(&tx->tx_callbacks)) 1367 txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks); 1368 1369 if (tx->tx_anyobj == FALSE) 1370 txg_rele_to_sync(&tx->tx_txgh); 1371 1372 list_destroy(&tx->tx_callbacks); 1373 list_destroy(&tx->tx_holds); 1374 #ifdef ZFS_DEBUG 1375 dprintf("towrite=%llu written=%llu tofree=%llu freed=%llu\n", 1376 tx->tx_space_towrite, refcount_count(&tx->tx_space_written), 1377 tx->tx_space_tofree, refcount_count(&tx->tx_space_freed)); 1378 refcount_destroy_many(&tx->tx_space_written, 1379 refcount_count(&tx->tx_space_written)); 1380 refcount_destroy_many(&tx->tx_space_freed, 1381 refcount_count(&tx->tx_space_freed)); 1382 #endif 1383 kmem_free(tx, sizeof (dmu_tx_t)); 1384 } 1385 1386 void 1387 dmu_tx_abort(dmu_tx_t *tx) 1388 { 1389 dmu_tx_hold_t *txh; 1390 1391 ASSERT(tx->tx_txg == 0); 1392 1393 while (txh = list_head(&tx->tx_holds)) { 1394 dnode_t *dn = txh->txh_dnode; 1395 1396 list_remove(&tx->tx_holds, txh); 1397 kmem_free(txh, sizeof (dmu_tx_hold_t)); 1398 if (dn != NULL) 1399 dnode_rele(dn, tx); 1400 } 1401 1402 /* 1403 * Call any registered callbacks with an error code. 1404 */ 1405 if (!list_is_empty(&tx->tx_callbacks)) 1406 dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED); 1407 1408 list_destroy(&tx->tx_callbacks); 1409 list_destroy(&tx->tx_holds); 1410 #ifdef ZFS_DEBUG 1411 refcount_destroy_many(&tx->tx_space_written, 1412 refcount_count(&tx->tx_space_written)); 1413 refcount_destroy_many(&tx->tx_space_freed, 1414 refcount_count(&tx->tx_space_freed)); 1415 #endif 1416 kmem_free(tx, sizeof (dmu_tx_t)); 1417 } 1418 1419 uint64_t 1420 dmu_tx_get_txg(dmu_tx_t *tx) 1421 { 1422 ASSERT(tx->tx_txg != 0); 1423 return (tx->tx_txg); 1424 } 1425 1426 dsl_pool_t * 1427 dmu_tx_pool(dmu_tx_t *tx) 1428 { 1429 ASSERT(tx->tx_pool != NULL); 1430 return (tx->tx_pool); 1431 } 1432 1433 1434 void 1435 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data) 1436 { 1437 dmu_tx_callback_t *dcb; 1438 1439 dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP); 1440 1441 dcb->dcb_func = func; 1442 dcb->dcb_data = data; 1443 1444 list_insert_tail(&tx->tx_callbacks, dcb); 1445 } 1446 1447 /* 1448 * Call all the commit callbacks on a list, with a given error code. 1449 */ 1450 void 1451 dmu_tx_do_callbacks(list_t *cb_list, int error) 1452 { 1453 dmu_tx_callback_t *dcb; 1454 1455 while (dcb = list_head(cb_list)) { 1456 list_remove(cb_list, dcb); 1457 dcb->dcb_func(dcb->dcb_data, error); 1458 kmem_free(dcb, sizeof (dmu_tx_callback_t)); 1459 } 1460 } 1461 1462 /* 1463 * Interface to hold a bunch of attributes. 1464 * used for creating new files. 1465 * attrsize is the total size of all attributes 1466 * to be added during object creation 1467 * 1468 * For updating/adding a single attribute dmu_tx_hold_sa() should be used. 1469 */ 1470 1471 /* 1472 * hold necessary attribute name for attribute registration. 1473 * should be a very rare case where this is needed. If it does 1474 * happen it would only happen on the first write to the file system. 1475 */ 1476 static void 1477 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx) 1478 { 1479 int i; 1480 1481 if (!sa->sa_need_attr_registration) 1482 return; 1483 1484 for (i = 0; i != sa->sa_num_attrs; i++) { 1485 if (!sa->sa_attr_table[i].sa_registered) { 1486 if (sa->sa_reg_attr_obj) 1487 dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj, 1488 B_TRUE, sa->sa_attr_table[i].sa_name); 1489 else 1490 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, 1491 B_TRUE, sa->sa_attr_table[i].sa_name); 1492 } 1493 } 1494 } 1495 1496 1497 void 1498 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object) 1499 { 1500 dnode_t *dn; 1501 dmu_tx_hold_t *txh; 1502 1503 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, 1504 THT_SPILL, 0, 0); 1505 1506 dn = txh->txh_dnode; 1507 1508 if (dn == NULL) 1509 return; 1510 1511 /* If blkptr doesn't exist then add space to towrite */ 1512 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 1513 txh->txh_space_towrite += SPA_MAXBLOCKSIZE; 1514 } else { 1515 blkptr_t *bp; 1516 1517 bp = &dn->dn_phys->dn_spill; 1518 if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, 1519 bp, bp->blk_birth)) 1520 txh->txh_space_tooverwrite += SPA_MAXBLOCKSIZE; 1521 else 1522 txh->txh_space_towrite += SPA_MAXBLOCKSIZE; 1523 if (!BP_IS_HOLE(bp)) 1524 txh->txh_space_tounref += SPA_MAXBLOCKSIZE; 1525 } 1526 } 1527 1528 void 1529 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize) 1530 { 1531 sa_os_t *sa = tx->tx_objset->os_sa; 1532 1533 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1534 1535 if (tx->tx_objset->os_sa->sa_master_obj == 0) 1536 return; 1537 1538 if (tx->tx_objset->os_sa->sa_layout_attr_obj) 1539 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL); 1540 else { 1541 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS); 1542 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY); 1543 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1544 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1545 } 1546 1547 dmu_tx_sa_registration_hold(sa, tx); 1548 1549 if (attrsize <= DN_MAX_BONUSLEN && !sa->sa_force_spill) 1550 return; 1551 1552 (void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT, 1553 THT_SPILL, 0, 0); 1554 } 1555 1556 /* 1557 * Hold SA attribute 1558 * 1559 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size) 1560 * 1561 * variable_size is the total size of all variable sized attributes 1562 * passed to this function. It is not the total size of all 1563 * variable size attributes that *may* exist on this object. 1564 */ 1565 void 1566 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow) 1567 { 1568 uint64_t object; 1569 sa_os_t *sa = tx->tx_objset->os_sa; 1570 1571 ASSERT(hdl != NULL); 1572 1573 object = sa_handle_object(hdl); 1574 1575 dmu_tx_hold_bonus(tx, object); 1576 1577 if (tx->tx_objset->os_sa->sa_master_obj == 0) 1578 return; 1579 1580 if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 || 1581 tx->tx_objset->os_sa->sa_layout_attr_obj == 0) { 1582 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS); 1583 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY); 1584 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1585 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1586 } 1587 1588 dmu_tx_sa_registration_hold(sa, tx); 1589 1590 if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj) 1591 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL); 1592 1593 if (sa->sa_force_spill || may_grow || hdl->sa_spill) { 1594 ASSERT(tx->tx_txg == 0); 1595 dmu_tx_hold_spill(tx, object); 1596 } else { 1597 dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus; 1598 dnode_t *dn; 1599 1600 DB_DNODE_ENTER(db); 1601 dn = DB_DNODE(db); 1602 if (dn->dn_have_spill) { 1603 ASSERT(tx->tx_txg == 0); 1604 dmu_tx_hold_spill(tx, object); 1605 } 1606 DB_DNODE_EXIT(db); 1607 } 1608 }