Print this page
4168 ztest assertion failure in dbuf_undirty
4169 verbatim import causes zdb to segfault
4170 zhack leaves pool in ACTIVE state
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/spa.c
+++ new/usr/src/uts/common/fs/zfs/spa.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26 26 */
27 27
28 28 /*
29 29 * SPA: Storage Pool Allocator
30 30 *
31 31 * This file contains all the routines used when modifying on-disk SPA state.
32 32 * This includes opening, importing, destroying, exporting a pool, and syncing a
33 33 * pool.
34 34 */
35 35
36 36 #include <sys/zfs_context.h>
37 37 #include <sys/fm/fs/zfs.h>
38 38 #include <sys/spa_impl.h>
39 39 #include <sys/zio.h>
40 40 #include <sys/zio_checksum.h>
41 41 #include <sys/dmu.h>
42 42 #include <sys/dmu_tx.h>
43 43 #include <sys/zap.h>
44 44 #include <sys/zil.h>
45 45 #include <sys/ddt.h>
46 46 #include <sys/vdev_impl.h>
47 47 #include <sys/metaslab.h>
48 48 #include <sys/metaslab_impl.h>
49 49 #include <sys/uberblock_impl.h>
50 50 #include <sys/txg.h>
51 51 #include <sys/avl.h>
52 52 #include <sys/dmu_traverse.h>
53 53 #include <sys/dmu_objset.h>
54 54 #include <sys/unique.h>
55 55 #include <sys/dsl_pool.h>
56 56 #include <sys/dsl_dataset.h>
57 57 #include <sys/dsl_dir.h>
58 58 #include <sys/dsl_prop.h>
59 59 #include <sys/dsl_synctask.h>
60 60 #include <sys/fs/zfs.h>
61 61 #include <sys/arc.h>
62 62 #include <sys/callb.h>
63 63 #include <sys/systeminfo.h>
64 64 #include <sys/spa_boot.h>
65 65 #include <sys/zfs_ioctl.h>
66 66 #include <sys/dsl_scan.h>
67 67 #include <sys/zfeature.h>
68 68 #include <sys/dsl_destroy.h>
69 69
70 70 #ifdef _KERNEL
71 71 #include <sys/bootprops.h>
72 72 #include <sys/callb.h>
73 73 #include <sys/cpupart.h>
74 74 #include <sys/pool.h>
75 75 #include <sys/sysdc.h>
76 76 #include <sys/zone.h>
77 77 #endif /* _KERNEL */
78 78
79 79 #include "zfs_prop.h"
80 80 #include "zfs_comutil.h"
81 81
82 82 /*
83 83 * The interval, in seconds, at which failed configuration cache file writes
84 84 * should be retried.
85 85 */
86 86 static int zfs_ccw_retry_interval = 300;
87 87
88 88 typedef enum zti_modes {
89 89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
90 90 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
91 91 ZTI_MODE_NULL, /* don't create a taskq */
92 92 ZTI_NMODES
93 93 } zti_modes_t;
94 94
95 95 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
96 96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
97 97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
98 98
99 99 #define ZTI_N(n) ZTI_P(n, 1)
100 100 #define ZTI_ONE ZTI_N(1)
101 101
102 102 typedef struct zio_taskq_info {
103 103 zti_modes_t zti_mode;
104 104 uint_t zti_value;
105 105 uint_t zti_count;
106 106 } zio_taskq_info_t;
107 107
108 108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
109 109 "issue", "issue_high", "intr", "intr_high"
110 110 };
111 111
112 112 /*
113 113 * This table defines the taskq settings for each ZFS I/O type. When
114 114 * initializing a pool, we use this table to create an appropriately sized
115 115 * taskq. Some operations are low volume and therefore have a small, static
116 116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
117 117 * macros. Other operations process a large amount of data; the ZTI_BATCH
118 118 * macro causes us to create a taskq oriented for throughput. Some operations
119 119 * are so high frequency and short-lived that the taskq itself can become a a
120 120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
121 121 * additional degree of parallelism specified by the number of threads per-
122 122 * taskq and the number of taskqs; when dispatching an event in this case, the
123 123 * particular taskq is chosen at random.
124 124 *
125 125 * The different taskq priorities are to handle the different contexts (issue
126 126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
127 127 * need to be handled with minimum delay.
128 128 */
129 129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
130 130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
131 131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
132 132 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */
133 133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
134 134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
135 135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
136 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
137 137 };
138 138
139 139 static void spa_sync_version(void *arg, dmu_tx_t *tx);
140 140 static void spa_sync_props(void *arg, dmu_tx_t *tx);
141 141 static boolean_t spa_has_active_shared_spare(spa_t *spa);
142 142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
143 143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
144 144 char **ereport);
145 145 static void spa_vdev_resilver_done(spa_t *spa);
146 146
147 147 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
148 148 id_t zio_taskq_psrset_bind = PS_NONE;
149 149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
150 150 uint_t zio_taskq_basedc = 80; /* base duty cycle */
151 151
152 152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
153 153 extern int zfs_sync_pass_deferred_free;
154 154
155 155 /*
156 156 * This (illegal) pool name is used when temporarily importing a spa_t in order
157 157 * to get the vdev stats associated with the imported devices.
158 158 */
159 159 #define TRYIMPORT_NAME "$import"
160 160
161 161 /*
162 162 * ==========================================================================
163 163 * SPA properties routines
164 164 * ==========================================================================
165 165 */
166 166
167 167 /*
168 168 * Add a (source=src, propname=propval) list to an nvlist.
169 169 */
170 170 static void
171 171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
172 172 uint64_t intval, zprop_source_t src)
173 173 {
174 174 const char *propname = zpool_prop_to_name(prop);
175 175 nvlist_t *propval;
176 176
177 177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
178 178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
179 179
180 180 if (strval != NULL)
181 181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
182 182 else
183 183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
184 184
185 185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
186 186 nvlist_free(propval);
187 187 }
188 188
189 189 /*
190 190 * Get property values from the spa configuration.
191 191 */
192 192 static void
193 193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
194 194 {
195 195 vdev_t *rvd = spa->spa_root_vdev;
196 196 dsl_pool_t *pool = spa->spa_dsl_pool;
197 197 uint64_t size;
198 198 uint64_t alloc;
199 199 uint64_t space;
200 200 uint64_t cap, version;
201 201 zprop_source_t src = ZPROP_SRC_NONE;
202 202 spa_config_dirent_t *dp;
203 203
204 204 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
205 205
206 206 if (rvd != NULL) {
207 207 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
208 208 size = metaslab_class_get_space(spa_normal_class(spa));
209 209 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
210 210 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
211 211 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
212 212 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
213 213 size - alloc, src);
214 214
215 215 space = 0;
216 216 for (int c = 0; c < rvd->vdev_children; c++) {
217 217 vdev_t *tvd = rvd->vdev_child[c];
218 218 space += tvd->vdev_max_asize - tvd->vdev_asize;
219 219 }
220 220 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
221 221 src);
222 222
223 223 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
224 224 (spa_mode(spa) == FREAD), src);
225 225
226 226 cap = (size == 0) ? 0 : (alloc * 100 / size);
227 227 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
228 228
229 229 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
230 230 ddt_get_pool_dedup_ratio(spa), src);
231 231
232 232 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
233 233 rvd->vdev_state, src);
234 234
235 235 version = spa_version(spa);
236 236 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
237 237 src = ZPROP_SRC_DEFAULT;
238 238 else
239 239 src = ZPROP_SRC_LOCAL;
240 240 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
241 241 }
242 242
243 243 if (pool != NULL) {
244 244 dsl_dir_t *freedir = pool->dp_free_dir;
245 245
246 246 /*
247 247 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
248 248 * when opening pools before this version freedir will be NULL.
249 249 */
250 250 if (freedir != NULL) {
251 251 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
252 252 freedir->dd_phys->dd_used_bytes, src);
253 253 } else {
254 254 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
255 255 NULL, 0, src);
256 256 }
257 257 }
258 258
259 259 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
260 260
261 261 if (spa->spa_comment != NULL) {
262 262 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
263 263 0, ZPROP_SRC_LOCAL);
264 264 }
265 265
266 266 if (spa->spa_root != NULL)
267 267 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
268 268 0, ZPROP_SRC_LOCAL);
269 269
270 270 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
271 271 if (dp->scd_path == NULL) {
272 272 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
273 273 "none", 0, ZPROP_SRC_LOCAL);
274 274 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
275 275 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
276 276 dp->scd_path, 0, ZPROP_SRC_LOCAL);
277 277 }
278 278 }
279 279 }
280 280
281 281 /*
282 282 * Get zpool property values.
283 283 */
284 284 int
285 285 spa_prop_get(spa_t *spa, nvlist_t **nvp)
286 286 {
287 287 objset_t *mos = spa->spa_meta_objset;
288 288 zap_cursor_t zc;
289 289 zap_attribute_t za;
290 290 int err;
291 291
292 292 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
293 293
294 294 mutex_enter(&spa->spa_props_lock);
295 295
296 296 /*
297 297 * Get properties from the spa config.
298 298 */
299 299 spa_prop_get_config(spa, nvp);
300 300
301 301 /* If no pool property object, no more prop to get. */
302 302 if (mos == NULL || spa->spa_pool_props_object == 0) {
303 303 mutex_exit(&spa->spa_props_lock);
304 304 return (0);
305 305 }
306 306
307 307 /*
308 308 * Get properties from the MOS pool property object.
309 309 */
310 310 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
311 311 (err = zap_cursor_retrieve(&zc, &za)) == 0;
312 312 zap_cursor_advance(&zc)) {
313 313 uint64_t intval = 0;
314 314 char *strval = NULL;
315 315 zprop_source_t src = ZPROP_SRC_DEFAULT;
316 316 zpool_prop_t prop;
317 317
318 318 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
319 319 continue;
320 320
321 321 switch (za.za_integer_length) {
322 322 case 8:
323 323 /* integer property */
324 324 if (za.za_first_integer !=
325 325 zpool_prop_default_numeric(prop))
326 326 src = ZPROP_SRC_LOCAL;
327 327
328 328 if (prop == ZPOOL_PROP_BOOTFS) {
329 329 dsl_pool_t *dp;
330 330 dsl_dataset_t *ds = NULL;
331 331
332 332 dp = spa_get_dsl(spa);
333 333 dsl_pool_config_enter(dp, FTAG);
334 334 if (err = dsl_dataset_hold_obj(dp,
335 335 za.za_first_integer, FTAG, &ds)) {
336 336 dsl_pool_config_exit(dp, FTAG);
337 337 break;
338 338 }
339 339
340 340 strval = kmem_alloc(
341 341 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
342 342 KM_SLEEP);
343 343 dsl_dataset_name(ds, strval);
344 344 dsl_dataset_rele(ds, FTAG);
345 345 dsl_pool_config_exit(dp, FTAG);
346 346 } else {
347 347 strval = NULL;
348 348 intval = za.za_first_integer;
349 349 }
350 350
351 351 spa_prop_add_list(*nvp, prop, strval, intval, src);
352 352
353 353 if (strval != NULL)
354 354 kmem_free(strval,
355 355 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
356 356
357 357 break;
358 358
359 359 case 1:
360 360 /* string property */
361 361 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
362 362 err = zap_lookup(mos, spa->spa_pool_props_object,
363 363 za.za_name, 1, za.za_num_integers, strval);
364 364 if (err) {
365 365 kmem_free(strval, za.za_num_integers);
366 366 break;
367 367 }
368 368 spa_prop_add_list(*nvp, prop, strval, 0, src);
369 369 kmem_free(strval, za.za_num_integers);
370 370 break;
371 371
372 372 default:
373 373 break;
374 374 }
375 375 }
376 376 zap_cursor_fini(&zc);
377 377 mutex_exit(&spa->spa_props_lock);
378 378 out:
379 379 if (err && err != ENOENT) {
380 380 nvlist_free(*nvp);
381 381 *nvp = NULL;
382 382 return (err);
383 383 }
384 384
385 385 return (0);
386 386 }
387 387
388 388 /*
389 389 * Validate the given pool properties nvlist and modify the list
390 390 * for the property values to be set.
391 391 */
392 392 static int
393 393 spa_prop_validate(spa_t *spa, nvlist_t *props)
394 394 {
395 395 nvpair_t *elem;
396 396 int error = 0, reset_bootfs = 0;
397 397 uint64_t objnum = 0;
398 398 boolean_t has_feature = B_FALSE;
399 399
400 400 elem = NULL;
401 401 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
402 402 uint64_t intval;
403 403 char *strval, *slash, *check, *fname;
404 404 const char *propname = nvpair_name(elem);
405 405 zpool_prop_t prop = zpool_name_to_prop(propname);
406 406
407 407 switch (prop) {
408 408 case ZPROP_INVAL:
409 409 if (!zpool_prop_feature(propname)) {
410 410 error = SET_ERROR(EINVAL);
411 411 break;
412 412 }
413 413
414 414 /*
415 415 * Sanitize the input.
416 416 */
417 417 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
418 418 error = SET_ERROR(EINVAL);
419 419 break;
420 420 }
421 421
422 422 if (nvpair_value_uint64(elem, &intval) != 0) {
423 423 error = SET_ERROR(EINVAL);
424 424 break;
425 425 }
426 426
427 427 if (intval != 0) {
428 428 error = SET_ERROR(EINVAL);
429 429 break;
430 430 }
431 431
432 432 fname = strchr(propname, '@') + 1;
433 433 if (zfeature_lookup_name(fname, NULL) != 0) {
434 434 error = SET_ERROR(EINVAL);
435 435 break;
436 436 }
437 437
438 438 has_feature = B_TRUE;
439 439 break;
440 440
441 441 case ZPOOL_PROP_VERSION:
442 442 error = nvpair_value_uint64(elem, &intval);
443 443 if (!error &&
444 444 (intval < spa_version(spa) ||
445 445 intval > SPA_VERSION_BEFORE_FEATURES ||
446 446 has_feature))
447 447 error = SET_ERROR(EINVAL);
448 448 break;
449 449
450 450 case ZPOOL_PROP_DELEGATION:
451 451 case ZPOOL_PROP_AUTOREPLACE:
452 452 case ZPOOL_PROP_LISTSNAPS:
453 453 case ZPOOL_PROP_AUTOEXPAND:
454 454 error = nvpair_value_uint64(elem, &intval);
455 455 if (!error && intval > 1)
456 456 error = SET_ERROR(EINVAL);
457 457 break;
458 458
459 459 case ZPOOL_PROP_BOOTFS:
460 460 /*
461 461 * If the pool version is less than SPA_VERSION_BOOTFS,
462 462 * or the pool is still being created (version == 0),
463 463 * the bootfs property cannot be set.
464 464 */
465 465 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
466 466 error = SET_ERROR(ENOTSUP);
467 467 break;
468 468 }
469 469
470 470 /*
471 471 * Make sure the vdev config is bootable
472 472 */
473 473 if (!vdev_is_bootable(spa->spa_root_vdev)) {
474 474 error = SET_ERROR(ENOTSUP);
475 475 break;
476 476 }
477 477
478 478 reset_bootfs = 1;
479 479
480 480 error = nvpair_value_string(elem, &strval);
481 481
482 482 if (!error) {
483 483 objset_t *os;
484 484 uint64_t compress;
485 485
486 486 if (strval == NULL || strval[0] == '\0') {
487 487 objnum = zpool_prop_default_numeric(
488 488 ZPOOL_PROP_BOOTFS);
489 489 break;
490 490 }
491 491
492 492 if (error = dmu_objset_hold(strval, FTAG, &os))
493 493 break;
494 494
495 495 /* Must be ZPL and not gzip compressed. */
496 496
497 497 if (dmu_objset_type(os) != DMU_OST_ZFS) {
498 498 error = SET_ERROR(ENOTSUP);
499 499 } else if ((error =
500 500 dsl_prop_get_int_ds(dmu_objset_ds(os),
501 501 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
502 502 &compress)) == 0 &&
503 503 !BOOTFS_COMPRESS_VALID(compress)) {
504 504 error = SET_ERROR(ENOTSUP);
505 505 } else {
506 506 objnum = dmu_objset_id(os);
507 507 }
508 508 dmu_objset_rele(os, FTAG);
509 509 }
510 510 break;
511 511
512 512 case ZPOOL_PROP_FAILUREMODE:
513 513 error = nvpair_value_uint64(elem, &intval);
514 514 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
515 515 intval > ZIO_FAILURE_MODE_PANIC))
516 516 error = SET_ERROR(EINVAL);
517 517
518 518 /*
519 519 * This is a special case which only occurs when
520 520 * the pool has completely failed. This allows
521 521 * the user to change the in-core failmode property
522 522 * without syncing it out to disk (I/Os might
523 523 * currently be blocked). We do this by returning
524 524 * EIO to the caller (spa_prop_set) to trick it
525 525 * into thinking we encountered a property validation
526 526 * error.
527 527 */
528 528 if (!error && spa_suspended(spa)) {
529 529 spa->spa_failmode = intval;
530 530 error = SET_ERROR(EIO);
531 531 }
532 532 break;
533 533
534 534 case ZPOOL_PROP_CACHEFILE:
535 535 if ((error = nvpair_value_string(elem, &strval)) != 0)
536 536 break;
537 537
538 538 if (strval[0] == '\0')
539 539 break;
540 540
541 541 if (strcmp(strval, "none") == 0)
542 542 break;
543 543
544 544 if (strval[0] != '/') {
545 545 error = SET_ERROR(EINVAL);
546 546 break;
547 547 }
548 548
549 549 slash = strrchr(strval, '/');
550 550 ASSERT(slash != NULL);
551 551
552 552 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
553 553 strcmp(slash, "/..") == 0)
554 554 error = SET_ERROR(EINVAL);
555 555 break;
556 556
557 557 case ZPOOL_PROP_COMMENT:
558 558 if ((error = nvpair_value_string(elem, &strval)) != 0)
559 559 break;
560 560 for (check = strval; *check != '\0'; check++) {
561 561 /*
562 562 * The kernel doesn't have an easy isprint()
563 563 * check. For this kernel check, we merely
564 564 * check ASCII apart from DEL. Fix this if
565 565 * there is an easy-to-use kernel isprint().
566 566 */
567 567 if (*check >= 0x7f) {
568 568 error = SET_ERROR(EINVAL);
569 569 break;
570 570 }
571 571 check++;
572 572 }
573 573 if (strlen(strval) > ZPROP_MAX_COMMENT)
574 574 error = E2BIG;
575 575 break;
576 576
577 577 case ZPOOL_PROP_DEDUPDITTO:
578 578 if (spa_version(spa) < SPA_VERSION_DEDUP)
579 579 error = SET_ERROR(ENOTSUP);
580 580 else
581 581 error = nvpair_value_uint64(elem, &intval);
582 582 if (error == 0 &&
583 583 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
584 584 error = SET_ERROR(EINVAL);
585 585 break;
586 586 }
587 587
588 588 if (error)
589 589 break;
590 590 }
591 591
592 592 if (!error && reset_bootfs) {
593 593 error = nvlist_remove(props,
594 594 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
595 595
596 596 if (!error) {
597 597 error = nvlist_add_uint64(props,
598 598 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
599 599 }
600 600 }
601 601
602 602 return (error);
603 603 }
604 604
605 605 void
606 606 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
607 607 {
608 608 char *cachefile;
609 609 spa_config_dirent_t *dp;
610 610
611 611 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
612 612 &cachefile) != 0)
613 613 return;
614 614
615 615 dp = kmem_alloc(sizeof (spa_config_dirent_t),
616 616 KM_SLEEP);
617 617
618 618 if (cachefile[0] == '\0')
619 619 dp->scd_path = spa_strdup(spa_config_path);
620 620 else if (strcmp(cachefile, "none") == 0)
621 621 dp->scd_path = NULL;
622 622 else
623 623 dp->scd_path = spa_strdup(cachefile);
624 624
625 625 list_insert_head(&spa->spa_config_list, dp);
626 626 if (need_sync)
627 627 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
628 628 }
629 629
630 630 int
631 631 spa_prop_set(spa_t *spa, nvlist_t *nvp)
632 632 {
633 633 int error;
634 634 nvpair_t *elem = NULL;
635 635 boolean_t need_sync = B_FALSE;
636 636
637 637 if ((error = spa_prop_validate(spa, nvp)) != 0)
638 638 return (error);
639 639
640 640 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
641 641 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
642 642
643 643 if (prop == ZPOOL_PROP_CACHEFILE ||
644 644 prop == ZPOOL_PROP_ALTROOT ||
645 645 prop == ZPOOL_PROP_READONLY)
646 646 continue;
647 647
648 648 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
649 649 uint64_t ver;
650 650
651 651 if (prop == ZPOOL_PROP_VERSION) {
652 652 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
653 653 } else {
654 654 ASSERT(zpool_prop_feature(nvpair_name(elem)));
655 655 ver = SPA_VERSION_FEATURES;
656 656 need_sync = B_TRUE;
657 657 }
658 658
659 659 /* Save time if the version is already set. */
660 660 if (ver == spa_version(spa))
661 661 continue;
662 662
663 663 /*
664 664 * In addition to the pool directory object, we might
665 665 * create the pool properties object, the features for
666 666 * read object, the features for write object, or the
667 667 * feature descriptions object.
668 668 */
669 669 error = dsl_sync_task(spa->spa_name, NULL,
670 670 spa_sync_version, &ver, 6);
671 671 if (error)
672 672 return (error);
673 673 continue;
674 674 }
675 675
676 676 need_sync = B_TRUE;
677 677 break;
678 678 }
679 679
680 680 if (need_sync) {
681 681 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
682 682 nvp, 6));
683 683 }
684 684
685 685 return (0);
686 686 }
687 687
688 688 /*
689 689 * If the bootfs property value is dsobj, clear it.
690 690 */
691 691 void
692 692 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
693 693 {
694 694 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
695 695 VERIFY(zap_remove(spa->spa_meta_objset,
696 696 spa->spa_pool_props_object,
697 697 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
698 698 spa->spa_bootfs = 0;
699 699 }
700 700 }
701 701
702 702 /*ARGSUSED*/
703 703 static int
704 704 spa_change_guid_check(void *arg, dmu_tx_t *tx)
705 705 {
706 706 uint64_t *newguid = arg;
707 707 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
708 708 vdev_t *rvd = spa->spa_root_vdev;
709 709 uint64_t vdev_state;
710 710
711 711 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
712 712 vdev_state = rvd->vdev_state;
713 713 spa_config_exit(spa, SCL_STATE, FTAG);
714 714
715 715 if (vdev_state != VDEV_STATE_HEALTHY)
716 716 return (SET_ERROR(ENXIO));
717 717
718 718 ASSERT3U(spa_guid(spa), !=, *newguid);
719 719
720 720 return (0);
721 721 }
722 722
723 723 static void
724 724 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
725 725 {
726 726 uint64_t *newguid = arg;
727 727 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
728 728 uint64_t oldguid;
729 729 vdev_t *rvd = spa->spa_root_vdev;
730 730
731 731 oldguid = spa_guid(spa);
732 732
733 733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
734 734 rvd->vdev_guid = *newguid;
735 735 rvd->vdev_guid_sum += (*newguid - oldguid);
736 736 vdev_config_dirty(rvd);
737 737 spa_config_exit(spa, SCL_STATE, FTAG);
738 738
739 739 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
740 740 oldguid, *newguid);
741 741 }
742 742
743 743 /*
744 744 * Change the GUID for the pool. This is done so that we can later
745 745 * re-import a pool built from a clone of our own vdevs. We will modify
746 746 * the root vdev's guid, our own pool guid, and then mark all of our
747 747 * vdevs dirty. Note that we must make sure that all our vdevs are
748 748 * online when we do this, or else any vdevs that weren't present
749 749 * would be orphaned from our pool. We are also going to issue a
750 750 * sysevent to update any watchers.
751 751 */
752 752 int
753 753 spa_change_guid(spa_t *spa)
754 754 {
755 755 int error;
756 756 uint64_t guid;
757 757
758 758 mutex_enter(&spa->spa_vdev_top_lock);
759 759 mutex_enter(&spa_namespace_lock);
760 760 guid = spa_generate_guid(NULL);
761 761
762 762 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
763 763 spa_change_guid_sync, &guid, 5);
764 764
765 765 if (error == 0) {
766 766 spa_config_sync(spa, B_FALSE, B_TRUE);
767 767 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
768 768 }
769 769
770 770 mutex_exit(&spa_namespace_lock);
771 771 mutex_exit(&spa->spa_vdev_top_lock);
772 772
773 773 return (error);
774 774 }
775 775
776 776 /*
777 777 * ==========================================================================
778 778 * SPA state manipulation (open/create/destroy/import/export)
779 779 * ==========================================================================
780 780 */
781 781
782 782 static int
783 783 spa_error_entry_compare(const void *a, const void *b)
784 784 {
785 785 spa_error_entry_t *sa = (spa_error_entry_t *)a;
786 786 spa_error_entry_t *sb = (spa_error_entry_t *)b;
787 787 int ret;
788 788
789 789 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
790 790 sizeof (zbookmark_t));
791 791
792 792 if (ret < 0)
793 793 return (-1);
794 794 else if (ret > 0)
795 795 return (1);
796 796 else
797 797 return (0);
798 798 }
799 799
800 800 /*
801 801 * Utility function which retrieves copies of the current logs and
802 802 * re-initializes them in the process.
803 803 */
804 804 void
805 805 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
806 806 {
807 807 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
808 808
809 809 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
810 810 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
811 811
812 812 avl_create(&spa->spa_errlist_scrub,
813 813 spa_error_entry_compare, sizeof (spa_error_entry_t),
814 814 offsetof(spa_error_entry_t, se_avl));
815 815 avl_create(&spa->spa_errlist_last,
816 816 spa_error_entry_compare, sizeof (spa_error_entry_t),
817 817 offsetof(spa_error_entry_t, se_avl));
818 818 }
819 819
820 820 static void
821 821 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
822 822 {
823 823 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
824 824 enum zti_modes mode = ztip->zti_mode;
825 825 uint_t value = ztip->zti_value;
826 826 uint_t count = ztip->zti_count;
827 827 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
828 828 char name[32];
829 829 uint_t flags = 0;
830 830 boolean_t batch = B_FALSE;
831 831
832 832 if (mode == ZTI_MODE_NULL) {
833 833 tqs->stqs_count = 0;
834 834 tqs->stqs_taskq = NULL;
835 835 return;
836 836 }
837 837
838 838 ASSERT3U(count, >, 0);
839 839
840 840 tqs->stqs_count = count;
841 841 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
842 842
843 843 switch (mode) {
844 844 case ZTI_MODE_FIXED:
845 845 ASSERT3U(value, >=, 1);
846 846 value = MAX(value, 1);
847 847 break;
848 848
849 849 case ZTI_MODE_BATCH:
850 850 batch = B_TRUE;
851 851 flags |= TASKQ_THREADS_CPU_PCT;
852 852 value = zio_taskq_batch_pct;
853 853 break;
854 854
855 855 default:
856 856 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
857 857 "spa_activate()",
858 858 zio_type_name[t], zio_taskq_types[q], mode, value);
859 859 break;
860 860 }
861 861
862 862 for (uint_t i = 0; i < count; i++) {
863 863 taskq_t *tq;
864 864
865 865 if (count > 1) {
866 866 (void) snprintf(name, sizeof (name), "%s_%s_%u",
867 867 zio_type_name[t], zio_taskq_types[q], i);
868 868 } else {
869 869 (void) snprintf(name, sizeof (name), "%s_%s",
870 870 zio_type_name[t], zio_taskq_types[q]);
871 871 }
872 872
873 873 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
874 874 if (batch)
875 875 flags |= TASKQ_DC_BATCH;
876 876
877 877 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
878 878 spa->spa_proc, zio_taskq_basedc, flags);
879 879 } else {
880 880 pri_t pri = maxclsyspri;
881 881 /*
882 882 * The write issue taskq can be extremely CPU
883 883 * intensive. Run it at slightly lower priority
884 884 * than the other taskqs.
885 885 */
886 886 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
887 887 pri--;
888 888
889 889 tq = taskq_create_proc(name, value, pri, 50,
890 890 INT_MAX, spa->spa_proc, flags);
891 891 }
892 892
893 893 tqs->stqs_taskq[i] = tq;
894 894 }
895 895 }
896 896
897 897 static void
898 898 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
899 899 {
900 900 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
901 901
902 902 if (tqs->stqs_taskq == NULL) {
903 903 ASSERT0(tqs->stqs_count);
904 904 return;
905 905 }
906 906
907 907 for (uint_t i = 0; i < tqs->stqs_count; i++) {
908 908 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
909 909 taskq_destroy(tqs->stqs_taskq[i]);
910 910 }
911 911
912 912 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
913 913 tqs->stqs_taskq = NULL;
914 914 }
915 915
916 916 /*
917 917 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
918 918 * Note that a type may have multiple discrete taskqs to avoid lock contention
919 919 * on the taskq itself. In that case we choose which taskq at random by using
920 920 * the low bits of gethrtime().
921 921 */
922 922 void
923 923 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
924 924 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
925 925 {
926 926 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
927 927 taskq_t *tq;
928 928
929 929 ASSERT3P(tqs->stqs_taskq, !=, NULL);
930 930 ASSERT3U(tqs->stqs_count, !=, 0);
931 931
932 932 if (tqs->stqs_count == 1) {
933 933 tq = tqs->stqs_taskq[0];
934 934 } else {
935 935 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
936 936 }
937 937
938 938 taskq_dispatch_ent(tq, func, arg, flags, ent);
939 939 }
940 940
941 941 static void
942 942 spa_create_zio_taskqs(spa_t *spa)
943 943 {
944 944 for (int t = 0; t < ZIO_TYPES; t++) {
945 945 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
946 946 spa_taskqs_init(spa, t, q);
947 947 }
948 948 }
949 949 }
950 950
951 951 #ifdef _KERNEL
952 952 static void
953 953 spa_thread(void *arg)
954 954 {
955 955 callb_cpr_t cprinfo;
956 956
957 957 spa_t *spa = arg;
958 958 user_t *pu = PTOU(curproc);
959 959
960 960 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
961 961 spa->spa_name);
962 962
963 963 ASSERT(curproc != &p0);
964 964 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
965 965 "zpool-%s", spa->spa_name);
966 966 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
967 967
968 968 /* bind this thread to the requested psrset */
969 969 if (zio_taskq_psrset_bind != PS_NONE) {
970 970 pool_lock();
971 971 mutex_enter(&cpu_lock);
972 972 mutex_enter(&pidlock);
973 973 mutex_enter(&curproc->p_lock);
974 974
975 975 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
976 976 0, NULL, NULL) == 0) {
977 977 curthread->t_bind_pset = zio_taskq_psrset_bind;
978 978 } else {
979 979 cmn_err(CE_WARN,
980 980 "Couldn't bind process for zfs pool \"%s\" to "
981 981 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
982 982 }
983 983
984 984 mutex_exit(&curproc->p_lock);
985 985 mutex_exit(&pidlock);
986 986 mutex_exit(&cpu_lock);
987 987 pool_unlock();
988 988 }
989 989
990 990 if (zio_taskq_sysdc) {
991 991 sysdc_thread_enter(curthread, 100, 0);
992 992 }
993 993
994 994 spa->spa_proc = curproc;
995 995 spa->spa_did = curthread->t_did;
996 996
997 997 spa_create_zio_taskqs(spa);
998 998
999 999 mutex_enter(&spa->spa_proc_lock);
1000 1000 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1001 1001
1002 1002 spa->spa_proc_state = SPA_PROC_ACTIVE;
1003 1003 cv_broadcast(&spa->spa_proc_cv);
1004 1004
1005 1005 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1006 1006 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1007 1007 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1008 1008 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1009 1009
1010 1010 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1011 1011 spa->spa_proc_state = SPA_PROC_GONE;
1012 1012 spa->spa_proc = &p0;
1013 1013 cv_broadcast(&spa->spa_proc_cv);
1014 1014 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1015 1015
1016 1016 mutex_enter(&curproc->p_lock);
1017 1017 lwp_exit();
1018 1018 }
1019 1019 #endif
1020 1020
1021 1021 /*
1022 1022 * Activate an uninitialized pool.
1023 1023 */
1024 1024 static void
1025 1025 spa_activate(spa_t *spa, int mode)
1026 1026 {
1027 1027 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1028 1028
1029 1029 spa->spa_state = POOL_STATE_ACTIVE;
1030 1030 spa->spa_mode = mode;
1031 1031
1032 1032 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1033 1033 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1034 1034
1035 1035 /* Try to create a covering process */
1036 1036 mutex_enter(&spa->spa_proc_lock);
1037 1037 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1038 1038 ASSERT(spa->spa_proc == &p0);
1039 1039 spa->spa_did = 0;
1040 1040
1041 1041 /* Only create a process if we're going to be around a while. */
1042 1042 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1043 1043 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1044 1044 NULL, 0) == 0) {
1045 1045 spa->spa_proc_state = SPA_PROC_CREATED;
1046 1046 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1047 1047 cv_wait(&spa->spa_proc_cv,
1048 1048 &spa->spa_proc_lock);
1049 1049 }
1050 1050 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1051 1051 ASSERT(spa->spa_proc != &p0);
1052 1052 ASSERT(spa->spa_did != 0);
1053 1053 } else {
1054 1054 #ifdef _KERNEL
1055 1055 cmn_err(CE_WARN,
1056 1056 "Couldn't create process for zfs pool \"%s\"\n",
1057 1057 spa->spa_name);
1058 1058 #endif
1059 1059 }
1060 1060 }
1061 1061 mutex_exit(&spa->spa_proc_lock);
1062 1062
1063 1063 /* If we didn't create a process, we need to create our taskqs. */
1064 1064 if (spa->spa_proc == &p0) {
1065 1065 spa_create_zio_taskqs(spa);
1066 1066 }
1067 1067
1068 1068 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1069 1069 offsetof(vdev_t, vdev_config_dirty_node));
1070 1070 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1071 1071 offsetof(vdev_t, vdev_state_dirty_node));
1072 1072
1073 1073 txg_list_create(&spa->spa_vdev_txg_list,
1074 1074 offsetof(struct vdev, vdev_txg_node));
1075 1075
1076 1076 avl_create(&spa->spa_errlist_scrub,
1077 1077 spa_error_entry_compare, sizeof (spa_error_entry_t),
1078 1078 offsetof(spa_error_entry_t, se_avl));
1079 1079 avl_create(&spa->spa_errlist_last,
1080 1080 spa_error_entry_compare, sizeof (spa_error_entry_t),
1081 1081 offsetof(spa_error_entry_t, se_avl));
1082 1082 }
1083 1083
1084 1084 /*
1085 1085 * Opposite of spa_activate().
1086 1086 */
1087 1087 static void
1088 1088 spa_deactivate(spa_t *spa)
1089 1089 {
1090 1090 ASSERT(spa->spa_sync_on == B_FALSE);
1091 1091 ASSERT(spa->spa_dsl_pool == NULL);
1092 1092 ASSERT(spa->spa_root_vdev == NULL);
1093 1093 ASSERT(spa->spa_async_zio_root == NULL);
1094 1094 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1095 1095
1096 1096 txg_list_destroy(&spa->spa_vdev_txg_list);
1097 1097
1098 1098 list_destroy(&spa->spa_config_dirty_list);
1099 1099 list_destroy(&spa->spa_state_dirty_list);
1100 1100
1101 1101 for (int t = 0; t < ZIO_TYPES; t++) {
1102 1102 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1103 1103 spa_taskqs_fini(spa, t, q);
1104 1104 }
1105 1105 }
1106 1106
1107 1107 metaslab_class_destroy(spa->spa_normal_class);
1108 1108 spa->spa_normal_class = NULL;
1109 1109
1110 1110 metaslab_class_destroy(spa->spa_log_class);
1111 1111 spa->spa_log_class = NULL;
1112 1112
1113 1113 /*
1114 1114 * If this was part of an import or the open otherwise failed, we may
1115 1115 * still have errors left in the queues. Empty them just in case.
1116 1116 */
1117 1117 spa_errlog_drain(spa);
1118 1118
1119 1119 avl_destroy(&spa->spa_errlist_scrub);
1120 1120 avl_destroy(&spa->spa_errlist_last);
1121 1121
1122 1122 spa->spa_state = POOL_STATE_UNINITIALIZED;
1123 1123
1124 1124 mutex_enter(&spa->spa_proc_lock);
1125 1125 if (spa->spa_proc_state != SPA_PROC_NONE) {
1126 1126 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1127 1127 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1128 1128 cv_broadcast(&spa->spa_proc_cv);
1129 1129 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1130 1130 ASSERT(spa->spa_proc != &p0);
1131 1131 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1132 1132 }
1133 1133 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1134 1134 spa->spa_proc_state = SPA_PROC_NONE;
1135 1135 }
1136 1136 ASSERT(spa->spa_proc == &p0);
1137 1137 mutex_exit(&spa->spa_proc_lock);
1138 1138
1139 1139 /*
1140 1140 * We want to make sure spa_thread() has actually exited the ZFS
1141 1141 * module, so that the module can't be unloaded out from underneath
1142 1142 * it.
1143 1143 */
1144 1144 if (spa->spa_did != 0) {
1145 1145 thread_join(spa->spa_did);
1146 1146 spa->spa_did = 0;
1147 1147 }
1148 1148 }
1149 1149
1150 1150 /*
1151 1151 * Verify a pool configuration, and construct the vdev tree appropriately. This
1152 1152 * will create all the necessary vdevs in the appropriate layout, with each vdev
1153 1153 * in the CLOSED state. This will prep the pool before open/creation/import.
1154 1154 * All vdev validation is done by the vdev_alloc() routine.
1155 1155 */
1156 1156 static int
1157 1157 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1158 1158 uint_t id, int atype)
1159 1159 {
1160 1160 nvlist_t **child;
1161 1161 uint_t children;
1162 1162 int error;
1163 1163
1164 1164 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1165 1165 return (error);
1166 1166
1167 1167 if ((*vdp)->vdev_ops->vdev_op_leaf)
1168 1168 return (0);
1169 1169
1170 1170 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1171 1171 &child, &children);
1172 1172
1173 1173 if (error == ENOENT)
1174 1174 return (0);
1175 1175
1176 1176 if (error) {
1177 1177 vdev_free(*vdp);
1178 1178 *vdp = NULL;
1179 1179 return (SET_ERROR(EINVAL));
1180 1180 }
1181 1181
1182 1182 for (int c = 0; c < children; c++) {
1183 1183 vdev_t *vd;
1184 1184 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1185 1185 atype)) != 0) {
1186 1186 vdev_free(*vdp);
1187 1187 *vdp = NULL;
1188 1188 return (error);
1189 1189 }
1190 1190 }
1191 1191
1192 1192 ASSERT(*vdp != NULL);
1193 1193
1194 1194 return (0);
1195 1195 }
1196 1196
1197 1197 /*
1198 1198 * Opposite of spa_load().
1199 1199 */
1200 1200 static void
1201 1201 spa_unload(spa_t *spa)
1202 1202 {
1203 1203 int i;
1204 1204
1205 1205 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1206 1206
1207 1207 /*
1208 1208 * Stop async tasks.
1209 1209 */
1210 1210 spa_async_suspend(spa);
1211 1211
1212 1212 /*
1213 1213 * Stop syncing.
1214 1214 */
1215 1215 if (spa->spa_sync_on) {
1216 1216 txg_sync_stop(spa->spa_dsl_pool);
1217 1217 spa->spa_sync_on = B_FALSE;
1218 1218 }
1219 1219
1220 1220 /*
1221 1221 * Wait for any outstanding async I/O to complete.
1222 1222 */
1223 1223 if (spa->spa_async_zio_root != NULL) {
1224 1224 (void) zio_wait(spa->spa_async_zio_root);
1225 1225 spa->spa_async_zio_root = NULL;
1226 1226 }
1227 1227
1228 1228 bpobj_close(&spa->spa_deferred_bpobj);
1229 1229
1230 1230 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1231 1231
1232 1232 /*
1233 1233 * Close all vdevs.
1234 1234 */
1235 1235 if (spa->spa_root_vdev)
1236 1236 vdev_free(spa->spa_root_vdev);
1237 1237 ASSERT(spa->spa_root_vdev == NULL);
1238 1238
1239 1239 /*
1240 1240 * Close the dsl pool.
1241 1241 */
1242 1242 if (spa->spa_dsl_pool) {
1243 1243 dsl_pool_close(spa->spa_dsl_pool);
1244 1244 spa->spa_dsl_pool = NULL;
1245 1245 spa->spa_meta_objset = NULL;
1246 1246 }
1247 1247
1248 1248 ddt_unload(spa);
1249 1249
1250 1250
1251 1251 /*
1252 1252 * Drop and purge level 2 cache
1253 1253 */
1254 1254 spa_l2cache_drop(spa);
1255 1255
1256 1256 for (i = 0; i < spa->spa_spares.sav_count; i++)
1257 1257 vdev_free(spa->spa_spares.sav_vdevs[i]);
1258 1258 if (spa->spa_spares.sav_vdevs) {
1259 1259 kmem_free(spa->spa_spares.sav_vdevs,
1260 1260 spa->spa_spares.sav_count * sizeof (void *));
1261 1261 spa->spa_spares.sav_vdevs = NULL;
1262 1262 }
1263 1263 if (spa->spa_spares.sav_config) {
1264 1264 nvlist_free(spa->spa_spares.sav_config);
1265 1265 spa->spa_spares.sav_config = NULL;
1266 1266 }
1267 1267 spa->spa_spares.sav_count = 0;
1268 1268
1269 1269 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1270 1270 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1271 1271 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1272 1272 }
1273 1273 if (spa->spa_l2cache.sav_vdevs) {
1274 1274 kmem_free(spa->spa_l2cache.sav_vdevs,
1275 1275 spa->spa_l2cache.sav_count * sizeof (void *));
1276 1276 spa->spa_l2cache.sav_vdevs = NULL;
1277 1277 }
1278 1278 if (spa->spa_l2cache.sav_config) {
1279 1279 nvlist_free(spa->spa_l2cache.sav_config);
1280 1280 spa->spa_l2cache.sav_config = NULL;
1281 1281 }
1282 1282 spa->spa_l2cache.sav_count = 0;
1283 1283
1284 1284 spa->spa_async_suspended = 0;
1285 1285
1286 1286 if (spa->spa_comment != NULL) {
1287 1287 spa_strfree(spa->spa_comment);
1288 1288 spa->spa_comment = NULL;
1289 1289 }
1290 1290
1291 1291 spa_config_exit(spa, SCL_ALL, FTAG);
1292 1292 }
1293 1293
1294 1294 /*
1295 1295 * Load (or re-load) the current list of vdevs describing the active spares for
1296 1296 * this pool. When this is called, we have some form of basic information in
1297 1297 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1298 1298 * then re-generate a more complete list including status information.
1299 1299 */
1300 1300 static void
1301 1301 spa_load_spares(spa_t *spa)
1302 1302 {
1303 1303 nvlist_t **spares;
1304 1304 uint_t nspares;
1305 1305 int i;
1306 1306 vdev_t *vd, *tvd;
1307 1307
1308 1308 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1309 1309
1310 1310 /*
1311 1311 * First, close and free any existing spare vdevs.
1312 1312 */
1313 1313 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1314 1314 vd = spa->spa_spares.sav_vdevs[i];
1315 1315
1316 1316 /* Undo the call to spa_activate() below */
1317 1317 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1318 1318 B_FALSE)) != NULL && tvd->vdev_isspare)
1319 1319 spa_spare_remove(tvd);
1320 1320 vdev_close(vd);
1321 1321 vdev_free(vd);
1322 1322 }
1323 1323
1324 1324 if (spa->spa_spares.sav_vdevs)
1325 1325 kmem_free(spa->spa_spares.sav_vdevs,
1326 1326 spa->spa_spares.sav_count * sizeof (void *));
1327 1327
1328 1328 if (spa->spa_spares.sav_config == NULL)
1329 1329 nspares = 0;
1330 1330 else
1331 1331 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1332 1332 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1333 1333
1334 1334 spa->spa_spares.sav_count = (int)nspares;
1335 1335 spa->spa_spares.sav_vdevs = NULL;
1336 1336
1337 1337 if (nspares == 0)
1338 1338 return;
1339 1339
1340 1340 /*
1341 1341 * Construct the array of vdevs, opening them to get status in the
1342 1342 * process. For each spare, there is potentially two different vdev_t
1343 1343 * structures associated with it: one in the list of spares (used only
1344 1344 * for basic validation purposes) and one in the active vdev
1345 1345 * configuration (if it's spared in). During this phase we open and
1346 1346 * validate each vdev on the spare list. If the vdev also exists in the
1347 1347 * active configuration, then we also mark this vdev as an active spare.
1348 1348 */
1349 1349 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1350 1350 KM_SLEEP);
1351 1351 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1352 1352 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1353 1353 VDEV_ALLOC_SPARE) == 0);
1354 1354 ASSERT(vd != NULL);
1355 1355
1356 1356 spa->spa_spares.sav_vdevs[i] = vd;
1357 1357
1358 1358 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1359 1359 B_FALSE)) != NULL) {
1360 1360 if (!tvd->vdev_isspare)
1361 1361 spa_spare_add(tvd);
1362 1362
1363 1363 /*
1364 1364 * We only mark the spare active if we were successfully
1365 1365 * able to load the vdev. Otherwise, importing a pool
1366 1366 * with a bad active spare would result in strange
1367 1367 * behavior, because multiple pool would think the spare
1368 1368 * is actively in use.
1369 1369 *
1370 1370 * There is a vulnerability here to an equally bizarre
1371 1371 * circumstance, where a dead active spare is later
1372 1372 * brought back to life (onlined or otherwise). Given
1373 1373 * the rarity of this scenario, and the extra complexity
1374 1374 * it adds, we ignore the possibility.
1375 1375 */
1376 1376 if (!vdev_is_dead(tvd))
1377 1377 spa_spare_activate(tvd);
1378 1378 }
1379 1379
1380 1380 vd->vdev_top = vd;
1381 1381 vd->vdev_aux = &spa->spa_spares;
1382 1382
1383 1383 if (vdev_open(vd) != 0)
1384 1384 continue;
1385 1385
1386 1386 if (vdev_validate_aux(vd) == 0)
1387 1387 spa_spare_add(vd);
1388 1388 }
1389 1389
1390 1390 /*
1391 1391 * Recompute the stashed list of spares, with status information
1392 1392 * this time.
1393 1393 */
1394 1394 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1395 1395 DATA_TYPE_NVLIST_ARRAY) == 0);
1396 1396
1397 1397 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1398 1398 KM_SLEEP);
1399 1399 for (i = 0; i < spa->spa_spares.sav_count; i++)
1400 1400 spares[i] = vdev_config_generate(spa,
1401 1401 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1402 1402 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1403 1403 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1404 1404 for (i = 0; i < spa->spa_spares.sav_count; i++)
1405 1405 nvlist_free(spares[i]);
1406 1406 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1407 1407 }
1408 1408
1409 1409 /*
1410 1410 * Load (or re-load) the current list of vdevs describing the active l2cache for
1411 1411 * this pool. When this is called, we have some form of basic information in
1412 1412 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1413 1413 * then re-generate a more complete list including status information.
1414 1414 * Devices which are already active have their details maintained, and are
1415 1415 * not re-opened.
1416 1416 */
1417 1417 static void
1418 1418 spa_load_l2cache(spa_t *spa)
1419 1419 {
1420 1420 nvlist_t **l2cache;
1421 1421 uint_t nl2cache;
1422 1422 int i, j, oldnvdevs;
1423 1423 uint64_t guid;
1424 1424 vdev_t *vd, **oldvdevs, **newvdevs;
1425 1425 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1426 1426
1427 1427 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1428 1428
1429 1429 if (sav->sav_config != NULL) {
1430 1430 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1431 1431 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1432 1432 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1433 1433 } else {
1434 1434 nl2cache = 0;
1435 1435 newvdevs = NULL;
1436 1436 }
1437 1437
1438 1438 oldvdevs = sav->sav_vdevs;
1439 1439 oldnvdevs = sav->sav_count;
1440 1440 sav->sav_vdevs = NULL;
1441 1441 sav->sav_count = 0;
1442 1442
1443 1443 /*
1444 1444 * Process new nvlist of vdevs.
1445 1445 */
1446 1446 for (i = 0; i < nl2cache; i++) {
1447 1447 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1448 1448 &guid) == 0);
1449 1449
1450 1450 newvdevs[i] = NULL;
1451 1451 for (j = 0; j < oldnvdevs; j++) {
1452 1452 vd = oldvdevs[j];
1453 1453 if (vd != NULL && guid == vd->vdev_guid) {
1454 1454 /*
1455 1455 * Retain previous vdev for add/remove ops.
1456 1456 */
1457 1457 newvdevs[i] = vd;
1458 1458 oldvdevs[j] = NULL;
1459 1459 break;
1460 1460 }
1461 1461 }
1462 1462
1463 1463 if (newvdevs[i] == NULL) {
1464 1464 /*
1465 1465 * Create new vdev
1466 1466 */
1467 1467 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1468 1468 VDEV_ALLOC_L2CACHE) == 0);
1469 1469 ASSERT(vd != NULL);
1470 1470 newvdevs[i] = vd;
1471 1471
1472 1472 /*
1473 1473 * Commit this vdev as an l2cache device,
1474 1474 * even if it fails to open.
1475 1475 */
1476 1476 spa_l2cache_add(vd);
1477 1477
1478 1478 vd->vdev_top = vd;
1479 1479 vd->vdev_aux = sav;
1480 1480
1481 1481 spa_l2cache_activate(vd);
1482 1482
1483 1483 if (vdev_open(vd) != 0)
1484 1484 continue;
1485 1485
1486 1486 (void) vdev_validate_aux(vd);
1487 1487
1488 1488 if (!vdev_is_dead(vd))
1489 1489 l2arc_add_vdev(spa, vd);
1490 1490 }
1491 1491 }
1492 1492
1493 1493 /*
1494 1494 * Purge vdevs that were dropped
1495 1495 */
1496 1496 for (i = 0; i < oldnvdevs; i++) {
1497 1497 uint64_t pool;
1498 1498
1499 1499 vd = oldvdevs[i];
1500 1500 if (vd != NULL) {
1501 1501 ASSERT(vd->vdev_isl2cache);
1502 1502
1503 1503 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1504 1504 pool != 0ULL && l2arc_vdev_present(vd))
1505 1505 l2arc_remove_vdev(vd);
1506 1506 vdev_clear_stats(vd);
1507 1507 vdev_free(vd);
1508 1508 }
1509 1509 }
1510 1510
1511 1511 if (oldvdevs)
1512 1512 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1513 1513
1514 1514 if (sav->sav_config == NULL)
1515 1515 goto out;
1516 1516
1517 1517 sav->sav_vdevs = newvdevs;
1518 1518 sav->sav_count = (int)nl2cache;
1519 1519
1520 1520 /*
1521 1521 * Recompute the stashed list of l2cache devices, with status
1522 1522 * information this time.
1523 1523 */
1524 1524 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1525 1525 DATA_TYPE_NVLIST_ARRAY) == 0);
1526 1526
1527 1527 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1528 1528 for (i = 0; i < sav->sav_count; i++)
1529 1529 l2cache[i] = vdev_config_generate(spa,
1530 1530 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1531 1531 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1532 1532 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1533 1533 out:
1534 1534 for (i = 0; i < sav->sav_count; i++)
1535 1535 nvlist_free(l2cache[i]);
1536 1536 if (sav->sav_count)
1537 1537 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1538 1538 }
1539 1539
1540 1540 static int
1541 1541 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1542 1542 {
1543 1543 dmu_buf_t *db;
1544 1544 char *packed = NULL;
1545 1545 size_t nvsize = 0;
1546 1546 int error;
1547 1547 *value = NULL;
1548 1548
1549 1549 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1550 1550 nvsize = *(uint64_t *)db->db_data;
1551 1551 dmu_buf_rele(db, FTAG);
1552 1552
1553 1553 packed = kmem_alloc(nvsize, KM_SLEEP);
1554 1554 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1555 1555 DMU_READ_PREFETCH);
1556 1556 if (error == 0)
1557 1557 error = nvlist_unpack(packed, nvsize, value, 0);
1558 1558 kmem_free(packed, nvsize);
1559 1559
1560 1560 return (error);
1561 1561 }
1562 1562
1563 1563 /*
1564 1564 * Checks to see if the given vdev could not be opened, in which case we post a
1565 1565 * sysevent to notify the autoreplace code that the device has been removed.
1566 1566 */
1567 1567 static void
1568 1568 spa_check_removed(vdev_t *vd)
1569 1569 {
1570 1570 for (int c = 0; c < vd->vdev_children; c++)
1571 1571 spa_check_removed(vd->vdev_child[c]);
1572 1572
1573 1573 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1574 1574 !vd->vdev_ishole) {
1575 1575 zfs_post_autoreplace(vd->vdev_spa, vd);
1576 1576 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1577 1577 }
1578 1578 }
1579 1579
1580 1580 /*
1581 1581 * Validate the current config against the MOS config
1582 1582 */
1583 1583 static boolean_t
1584 1584 spa_config_valid(spa_t *spa, nvlist_t *config)
1585 1585 {
1586 1586 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1587 1587 nvlist_t *nv;
1588 1588
1589 1589 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1590 1590
1591 1591 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1592 1592 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1593 1593
1594 1594 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1595 1595
1596 1596 /*
1597 1597 * If we're doing a normal import, then build up any additional
1598 1598 * diagnostic information about missing devices in this config.
1599 1599 * We'll pass this up to the user for further processing.
1600 1600 */
1601 1601 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1602 1602 nvlist_t **child, *nv;
1603 1603 uint64_t idx = 0;
1604 1604
1605 1605 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1606 1606 KM_SLEEP);
1607 1607 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1608 1608
1609 1609 for (int c = 0; c < rvd->vdev_children; c++) {
1610 1610 vdev_t *tvd = rvd->vdev_child[c];
1611 1611 vdev_t *mtvd = mrvd->vdev_child[c];
1612 1612
1613 1613 if (tvd->vdev_ops == &vdev_missing_ops &&
1614 1614 mtvd->vdev_ops != &vdev_missing_ops &&
1615 1615 mtvd->vdev_islog)
1616 1616 child[idx++] = vdev_config_generate(spa, mtvd,
1617 1617 B_FALSE, 0);
1618 1618 }
1619 1619
1620 1620 if (idx) {
1621 1621 VERIFY(nvlist_add_nvlist_array(nv,
1622 1622 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1623 1623 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1624 1624 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1625 1625
1626 1626 for (int i = 0; i < idx; i++)
1627 1627 nvlist_free(child[i]);
1628 1628 }
1629 1629 nvlist_free(nv);
1630 1630 kmem_free(child, rvd->vdev_children * sizeof (char **));
1631 1631 }
1632 1632
1633 1633 /*
1634 1634 * Compare the root vdev tree with the information we have
1635 1635 * from the MOS config (mrvd). Check each top-level vdev
1636 1636 * with the corresponding MOS config top-level (mtvd).
1637 1637 */
1638 1638 for (int c = 0; c < rvd->vdev_children; c++) {
1639 1639 vdev_t *tvd = rvd->vdev_child[c];
1640 1640 vdev_t *mtvd = mrvd->vdev_child[c];
1641 1641
1642 1642 /*
1643 1643 * Resolve any "missing" vdevs in the current configuration.
1644 1644 * If we find that the MOS config has more accurate information
1645 1645 * about the top-level vdev then use that vdev instead.
1646 1646 */
1647 1647 if (tvd->vdev_ops == &vdev_missing_ops &&
1648 1648 mtvd->vdev_ops != &vdev_missing_ops) {
1649 1649
1650 1650 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1651 1651 continue;
1652 1652
1653 1653 /*
1654 1654 * Device specific actions.
1655 1655 */
1656 1656 if (mtvd->vdev_islog) {
1657 1657 spa_set_log_state(spa, SPA_LOG_CLEAR);
1658 1658 } else {
1659 1659 /*
1660 1660 * XXX - once we have 'readonly' pool
1661 1661 * support we should be able to handle
1662 1662 * missing data devices by transitioning
1663 1663 * the pool to readonly.
1664 1664 */
1665 1665 continue;
1666 1666 }
1667 1667
1668 1668 /*
1669 1669 * Swap the missing vdev with the data we were
1670 1670 * able to obtain from the MOS config.
1671 1671 */
1672 1672 vdev_remove_child(rvd, tvd);
1673 1673 vdev_remove_child(mrvd, mtvd);
1674 1674
1675 1675 vdev_add_child(rvd, mtvd);
1676 1676 vdev_add_child(mrvd, tvd);
1677 1677
1678 1678 spa_config_exit(spa, SCL_ALL, FTAG);
1679 1679 vdev_load(mtvd);
1680 1680 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1681 1681
1682 1682 vdev_reopen(rvd);
1683 1683 } else if (mtvd->vdev_islog) {
1684 1684 /*
1685 1685 * Load the slog device's state from the MOS config
1686 1686 * since it's possible that the label does not
1687 1687 * contain the most up-to-date information.
1688 1688 */
1689 1689 vdev_load_log_state(tvd, mtvd);
1690 1690 vdev_reopen(tvd);
1691 1691 }
1692 1692 }
1693 1693 vdev_free(mrvd);
1694 1694 spa_config_exit(spa, SCL_ALL, FTAG);
1695 1695
1696 1696 /*
1697 1697 * Ensure we were able to validate the config.
1698 1698 */
1699 1699 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1700 1700 }
1701 1701
1702 1702 /*
1703 1703 * Check for missing log devices
1704 1704 */
1705 1705 static boolean_t
1706 1706 spa_check_logs(spa_t *spa)
1707 1707 {
1708 1708 boolean_t rv = B_FALSE;
1709 1709
1710 1710 switch (spa->spa_log_state) {
1711 1711 case SPA_LOG_MISSING:
1712 1712 /* need to recheck in case slog has been restored */
1713 1713 case SPA_LOG_UNKNOWN:
1714 1714 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1715 1715 NULL, DS_FIND_CHILDREN) != 0);
1716 1716 if (rv)
1717 1717 spa_set_log_state(spa, SPA_LOG_MISSING);
1718 1718 break;
1719 1719 }
1720 1720 return (rv);
1721 1721 }
1722 1722
1723 1723 static boolean_t
1724 1724 spa_passivate_log(spa_t *spa)
1725 1725 {
1726 1726 vdev_t *rvd = spa->spa_root_vdev;
1727 1727 boolean_t slog_found = B_FALSE;
1728 1728
1729 1729 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1730 1730
1731 1731 if (!spa_has_slogs(spa))
1732 1732 return (B_FALSE);
1733 1733
1734 1734 for (int c = 0; c < rvd->vdev_children; c++) {
1735 1735 vdev_t *tvd = rvd->vdev_child[c];
1736 1736 metaslab_group_t *mg = tvd->vdev_mg;
1737 1737
1738 1738 if (tvd->vdev_islog) {
1739 1739 metaslab_group_passivate(mg);
1740 1740 slog_found = B_TRUE;
1741 1741 }
1742 1742 }
1743 1743
1744 1744 return (slog_found);
1745 1745 }
1746 1746
1747 1747 static void
1748 1748 spa_activate_log(spa_t *spa)
1749 1749 {
1750 1750 vdev_t *rvd = spa->spa_root_vdev;
1751 1751
1752 1752 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1753 1753
1754 1754 for (int c = 0; c < rvd->vdev_children; c++) {
1755 1755 vdev_t *tvd = rvd->vdev_child[c];
1756 1756 metaslab_group_t *mg = tvd->vdev_mg;
1757 1757
1758 1758 if (tvd->vdev_islog)
1759 1759 metaslab_group_activate(mg);
1760 1760 }
1761 1761 }
1762 1762
1763 1763 int
1764 1764 spa_offline_log(spa_t *spa)
1765 1765 {
1766 1766 int error;
1767 1767
1768 1768 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1769 1769 NULL, DS_FIND_CHILDREN);
1770 1770 if (error == 0) {
1771 1771 /*
1772 1772 * We successfully offlined the log device, sync out the
1773 1773 * current txg so that the "stubby" block can be removed
1774 1774 * by zil_sync().
1775 1775 */
1776 1776 txg_wait_synced(spa->spa_dsl_pool, 0);
1777 1777 }
1778 1778 return (error);
1779 1779 }
1780 1780
1781 1781 static void
1782 1782 spa_aux_check_removed(spa_aux_vdev_t *sav)
1783 1783 {
1784 1784 for (int i = 0; i < sav->sav_count; i++)
1785 1785 spa_check_removed(sav->sav_vdevs[i]);
1786 1786 }
1787 1787
1788 1788 void
1789 1789 spa_claim_notify(zio_t *zio)
1790 1790 {
1791 1791 spa_t *spa = zio->io_spa;
1792 1792
1793 1793 if (zio->io_error)
1794 1794 return;
1795 1795
1796 1796 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1797 1797 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1798 1798 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1799 1799 mutex_exit(&spa->spa_props_lock);
1800 1800 }
1801 1801
1802 1802 typedef struct spa_load_error {
1803 1803 uint64_t sle_meta_count;
1804 1804 uint64_t sle_data_count;
1805 1805 } spa_load_error_t;
1806 1806
1807 1807 static void
1808 1808 spa_load_verify_done(zio_t *zio)
1809 1809 {
1810 1810 blkptr_t *bp = zio->io_bp;
1811 1811 spa_load_error_t *sle = zio->io_private;
1812 1812 dmu_object_type_t type = BP_GET_TYPE(bp);
1813 1813 int error = zio->io_error;
1814 1814
1815 1815 if (error) {
1816 1816 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1817 1817 type != DMU_OT_INTENT_LOG)
1818 1818 atomic_add_64(&sle->sle_meta_count, 1);
1819 1819 else
1820 1820 atomic_add_64(&sle->sle_data_count, 1);
1821 1821 }
1822 1822 zio_data_buf_free(zio->io_data, zio->io_size);
1823 1823 }
1824 1824
1825 1825 /*ARGSUSED*/
1826 1826 static int
1827 1827 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1828 1828 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1829 1829 {
1830 1830 if (bp != NULL) {
1831 1831 zio_t *rio = arg;
1832 1832 size_t size = BP_GET_PSIZE(bp);
1833 1833 void *data = zio_data_buf_alloc(size);
1834 1834
1835 1835 zio_nowait(zio_read(rio, spa, bp, data, size,
1836 1836 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1837 1837 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1838 1838 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1839 1839 }
1840 1840 return (0);
1841 1841 }
1842 1842
1843 1843 static int
1844 1844 spa_load_verify(spa_t *spa)
1845 1845 {
1846 1846 zio_t *rio;
1847 1847 spa_load_error_t sle = { 0 };
1848 1848 zpool_rewind_policy_t policy;
1849 1849 boolean_t verify_ok = B_FALSE;
1850 1850 int error;
1851 1851
1852 1852 zpool_get_rewind_policy(spa->spa_config, &policy);
1853 1853
1854 1854 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1855 1855 return (0);
1856 1856
1857 1857 rio = zio_root(spa, NULL, &sle,
1858 1858 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1859 1859
1860 1860 error = traverse_pool(spa, spa->spa_verify_min_txg,
1861 1861 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1862 1862
1863 1863 (void) zio_wait(rio);
1864 1864
1865 1865 spa->spa_load_meta_errors = sle.sle_meta_count;
1866 1866 spa->spa_load_data_errors = sle.sle_data_count;
1867 1867
1868 1868 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1869 1869 sle.sle_data_count <= policy.zrp_maxdata) {
1870 1870 int64_t loss = 0;
1871 1871
1872 1872 verify_ok = B_TRUE;
1873 1873 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1874 1874 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1875 1875
1876 1876 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1877 1877 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1878 1878 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1879 1879 VERIFY(nvlist_add_int64(spa->spa_load_info,
1880 1880 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1881 1881 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1882 1882 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1883 1883 } else {
1884 1884 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1885 1885 }
1886 1886
1887 1887 if (error) {
1888 1888 if (error != ENXIO && error != EIO)
1889 1889 error = SET_ERROR(EIO);
1890 1890 return (error);
1891 1891 }
1892 1892
1893 1893 return (verify_ok ? 0 : EIO);
1894 1894 }
1895 1895
1896 1896 /*
1897 1897 * Find a value in the pool props object.
1898 1898 */
1899 1899 static void
1900 1900 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1901 1901 {
1902 1902 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1903 1903 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1904 1904 }
1905 1905
1906 1906 /*
1907 1907 * Find a value in the pool directory object.
1908 1908 */
1909 1909 static int
1910 1910 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1911 1911 {
1912 1912 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1913 1913 name, sizeof (uint64_t), 1, val));
1914 1914 }
1915 1915
1916 1916 static int
1917 1917 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1918 1918 {
1919 1919 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1920 1920 return (err);
1921 1921 }
1922 1922
1923 1923 /*
1924 1924 * Fix up config after a partly-completed split. This is done with the
1925 1925 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1926 1926 * pool have that entry in their config, but only the splitting one contains
1927 1927 * a list of all the guids of the vdevs that are being split off.
1928 1928 *
1929 1929 * This function determines what to do with that list: either rejoin
1930 1930 * all the disks to the pool, or complete the splitting process. To attempt
1931 1931 * the rejoin, each disk that is offlined is marked online again, and
1932 1932 * we do a reopen() call. If the vdev label for every disk that was
1933 1933 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1934 1934 * then we call vdev_split() on each disk, and complete the split.
1935 1935 *
1936 1936 * Otherwise we leave the config alone, with all the vdevs in place in
1937 1937 * the original pool.
1938 1938 */
1939 1939 static void
1940 1940 spa_try_repair(spa_t *spa, nvlist_t *config)
1941 1941 {
1942 1942 uint_t extracted;
1943 1943 uint64_t *glist;
1944 1944 uint_t i, gcount;
1945 1945 nvlist_t *nvl;
1946 1946 vdev_t **vd;
1947 1947 boolean_t attempt_reopen;
1948 1948
1949 1949 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1950 1950 return;
1951 1951
1952 1952 /* check that the config is complete */
1953 1953 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1954 1954 &glist, &gcount) != 0)
1955 1955 return;
1956 1956
1957 1957 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1958 1958
1959 1959 /* attempt to online all the vdevs & validate */
1960 1960 attempt_reopen = B_TRUE;
1961 1961 for (i = 0; i < gcount; i++) {
1962 1962 if (glist[i] == 0) /* vdev is hole */
1963 1963 continue;
1964 1964
1965 1965 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1966 1966 if (vd[i] == NULL) {
1967 1967 /*
1968 1968 * Don't bother attempting to reopen the disks;
1969 1969 * just do the split.
1970 1970 */
1971 1971 attempt_reopen = B_FALSE;
1972 1972 } else {
1973 1973 /* attempt to re-online it */
1974 1974 vd[i]->vdev_offline = B_FALSE;
1975 1975 }
1976 1976 }
1977 1977
1978 1978 if (attempt_reopen) {
1979 1979 vdev_reopen(spa->spa_root_vdev);
1980 1980
1981 1981 /* check each device to see what state it's in */
1982 1982 for (extracted = 0, i = 0; i < gcount; i++) {
1983 1983 if (vd[i] != NULL &&
1984 1984 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1985 1985 break;
1986 1986 ++extracted;
1987 1987 }
1988 1988 }
1989 1989
1990 1990 /*
1991 1991 * If every disk has been moved to the new pool, or if we never
1992 1992 * even attempted to look at them, then we split them off for
1993 1993 * good.
1994 1994 */
1995 1995 if (!attempt_reopen || gcount == extracted) {
1996 1996 for (i = 0; i < gcount; i++)
1997 1997 if (vd[i] != NULL)
1998 1998 vdev_split(vd[i]);
1999 1999 vdev_reopen(spa->spa_root_vdev);
2000 2000 }
2001 2001
2002 2002 kmem_free(vd, gcount * sizeof (vdev_t *));
2003 2003 }
2004 2004
2005 2005 static int
2006 2006 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2007 2007 boolean_t mosconfig)
2008 2008 {
2009 2009 nvlist_t *config = spa->spa_config;
2010 2010 char *ereport = FM_EREPORT_ZFS_POOL;
2011 2011 char *comment;
2012 2012 int error;
2013 2013 uint64_t pool_guid;
2014 2014 nvlist_t *nvl;
2015 2015
2016 2016 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2017 2017 return (SET_ERROR(EINVAL));
2018 2018
2019 2019 ASSERT(spa->spa_comment == NULL);
2020 2020 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2021 2021 spa->spa_comment = spa_strdup(comment);
2022 2022
2023 2023 /*
2024 2024 * Versioning wasn't explicitly added to the label until later, so if
2025 2025 * it's not present treat it as the initial version.
2026 2026 */
2027 2027 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2028 2028 &spa->spa_ubsync.ub_version) != 0)
2029 2029 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2030 2030
2031 2031 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2032 2032 &spa->spa_config_txg);
2033 2033
2034 2034 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2035 2035 spa_guid_exists(pool_guid, 0)) {
2036 2036 error = SET_ERROR(EEXIST);
2037 2037 } else {
2038 2038 spa->spa_config_guid = pool_guid;
2039 2039
2040 2040 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2041 2041 &nvl) == 0) {
2042 2042 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2043 2043 KM_SLEEP) == 0);
2044 2044 }
2045 2045
2046 2046 nvlist_free(spa->spa_load_info);
2047 2047 spa->spa_load_info = fnvlist_alloc();
2048 2048
2049 2049 gethrestime(&spa->spa_loaded_ts);
2050 2050 error = spa_load_impl(spa, pool_guid, config, state, type,
2051 2051 mosconfig, &ereport);
2052 2052 }
2053 2053
2054 2054 spa->spa_minref = refcount_count(&spa->spa_refcount);
2055 2055 if (error) {
2056 2056 if (error != EEXIST) {
2057 2057 spa->spa_loaded_ts.tv_sec = 0;
2058 2058 spa->spa_loaded_ts.tv_nsec = 0;
2059 2059 }
2060 2060 if (error != EBADF) {
2061 2061 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2062 2062 }
2063 2063 }
2064 2064 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2065 2065 spa->spa_ena = 0;
2066 2066
2067 2067 return (error);
2068 2068 }
2069 2069
2070 2070 /*
2071 2071 * Load an existing storage pool, using the pool's builtin spa_config as a
2072 2072 * source of configuration information.
2073 2073 */
2074 2074 static int
2075 2075 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2076 2076 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2077 2077 char **ereport)
2078 2078 {
2079 2079 int error = 0;
2080 2080 nvlist_t *nvroot = NULL;
2081 2081 nvlist_t *label;
2082 2082 vdev_t *rvd;
2083 2083 uberblock_t *ub = &spa->spa_uberblock;
2084 2084 uint64_t children, config_cache_txg = spa->spa_config_txg;
2085 2085 int orig_mode = spa->spa_mode;
2086 2086 int parse;
2087 2087 uint64_t obj;
2088 2088 boolean_t missing_feat_write = B_FALSE;
2089 2089
2090 2090 /*
2091 2091 * If this is an untrusted config, access the pool in read-only mode.
2092 2092 * This prevents things like resilvering recently removed devices.
2093 2093 */
2094 2094 if (!mosconfig)
2095 2095 spa->spa_mode = FREAD;
2096 2096
2097 2097 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2098 2098
2099 2099 spa->spa_load_state = state;
2100 2100
2101 2101 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2102 2102 return (SET_ERROR(EINVAL));
2103 2103
2104 2104 parse = (type == SPA_IMPORT_EXISTING ?
2105 2105 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2106 2106
2107 2107 /*
2108 2108 * Create "The Godfather" zio to hold all async IOs
2109 2109 */
2110 2110 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2111 2111 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2112 2112
2113 2113 /*
2114 2114 * Parse the configuration into a vdev tree. We explicitly set the
2115 2115 * value that will be returned by spa_version() since parsing the
2116 2116 * configuration requires knowing the version number.
2117 2117 */
2118 2118 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2119 2119 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2120 2120 spa_config_exit(spa, SCL_ALL, FTAG);
2121 2121
2122 2122 if (error != 0)
2123 2123 return (error);
2124 2124
2125 2125 ASSERT(spa->spa_root_vdev == rvd);
2126 2126
2127 2127 if (type != SPA_IMPORT_ASSEMBLE) {
2128 2128 ASSERT(spa_guid(spa) == pool_guid);
2129 2129 }
2130 2130
2131 2131 /*
2132 2132 * Try to open all vdevs, loading each label in the process.
2133 2133 */
2134 2134 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2135 2135 error = vdev_open(rvd);
2136 2136 spa_config_exit(spa, SCL_ALL, FTAG);
2137 2137 if (error != 0)
2138 2138 return (error);
2139 2139
2140 2140 /*
2141 2141 * We need to validate the vdev labels against the configuration that
2142 2142 * we have in hand, which is dependent on the setting of mosconfig. If
2143 2143 * mosconfig is true then we're validating the vdev labels based on
2144 2144 * that config. Otherwise, we're validating against the cached config
2145 2145 * (zpool.cache) that was read when we loaded the zfs module, and then
2146 2146 * later we will recursively call spa_load() and validate against
2147 2147 * the vdev config.
2148 2148 *
2149 2149 * If we're assembling a new pool that's been split off from an
2150 2150 * existing pool, the labels haven't yet been updated so we skip
2151 2151 * validation for now.
2152 2152 */
2153 2153 if (type != SPA_IMPORT_ASSEMBLE) {
2154 2154 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2155 2155 error = vdev_validate(rvd, mosconfig);
2156 2156 spa_config_exit(spa, SCL_ALL, FTAG);
2157 2157
2158 2158 if (error != 0)
2159 2159 return (error);
2160 2160
2161 2161 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2162 2162 return (SET_ERROR(ENXIO));
2163 2163 }
2164 2164
2165 2165 /*
2166 2166 * Find the best uberblock.
2167 2167 */
2168 2168 vdev_uberblock_load(rvd, ub, &label);
2169 2169
2170 2170 /*
2171 2171 * If we weren't able to find a single valid uberblock, return failure.
2172 2172 */
2173 2173 if (ub->ub_txg == 0) {
2174 2174 nvlist_free(label);
2175 2175 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2176 2176 }
2177 2177
2178 2178 /*
2179 2179 * If the pool has an unsupported version we can't open it.
2180 2180 */
2181 2181 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2182 2182 nvlist_free(label);
2183 2183 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2184 2184 }
2185 2185
2186 2186 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2187 2187 nvlist_t *features;
2188 2188
2189 2189 /*
2190 2190 * If we weren't able to find what's necessary for reading the
2191 2191 * MOS in the label, return failure.
2192 2192 */
2193 2193 if (label == NULL || nvlist_lookup_nvlist(label,
2194 2194 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2195 2195 nvlist_free(label);
2196 2196 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2197 2197 ENXIO));
2198 2198 }
2199 2199
2200 2200 /*
2201 2201 * Update our in-core representation with the definitive values
2202 2202 * from the label.
2203 2203 */
2204 2204 nvlist_free(spa->spa_label_features);
2205 2205 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2206 2206 }
2207 2207
2208 2208 nvlist_free(label);
2209 2209
2210 2210 /*
2211 2211 * Look through entries in the label nvlist's features_for_read. If
2212 2212 * there is a feature listed there which we don't understand then we
2213 2213 * cannot open a pool.
2214 2214 */
2215 2215 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2216 2216 nvlist_t *unsup_feat;
2217 2217
2218 2218 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2219 2219 0);
2220 2220
2221 2221 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2222 2222 NULL); nvp != NULL;
2223 2223 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2224 2224 if (!zfeature_is_supported(nvpair_name(nvp))) {
2225 2225 VERIFY(nvlist_add_string(unsup_feat,
2226 2226 nvpair_name(nvp), "") == 0);
2227 2227 }
2228 2228 }
2229 2229
2230 2230 if (!nvlist_empty(unsup_feat)) {
2231 2231 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2232 2232 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2233 2233 nvlist_free(unsup_feat);
2234 2234 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2235 2235 ENOTSUP));
2236 2236 }
2237 2237
2238 2238 nvlist_free(unsup_feat);
2239 2239 }
2240 2240
2241 2241 /*
2242 2242 * If the vdev guid sum doesn't match the uberblock, we have an
2243 2243 * incomplete configuration. We first check to see if the pool
2244 2244 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2245 2245 * If it is, defer the vdev_guid_sum check till later so we
2246 2246 * can handle missing vdevs.
2247 2247 */
2248 2248 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2249 2249 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2250 2250 rvd->vdev_guid_sum != ub->ub_guid_sum)
2251 2251 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2252 2252
2253 2253 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2254 2254 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2255 2255 spa_try_repair(spa, config);
2256 2256 spa_config_exit(spa, SCL_ALL, FTAG);
2257 2257 nvlist_free(spa->spa_config_splitting);
2258 2258 spa->spa_config_splitting = NULL;
2259 2259 }
2260 2260
2261 2261 /*
2262 2262 * Initialize internal SPA structures.
2263 2263 */
2264 2264 spa->spa_state = POOL_STATE_ACTIVE;
2265 2265 spa->spa_ubsync = spa->spa_uberblock;
2266 2266 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2267 2267 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2268 2268 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2269 2269 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2270 2270 spa->spa_claim_max_txg = spa->spa_first_txg;
2271 2271 spa->spa_prev_software_version = ub->ub_software_version;
2272 2272
2273 2273 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2274 2274 if (error)
2275 2275 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2276 2276 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2277 2277
2278 2278 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2279 2279 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2280 2280
2281 2281 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2282 2282 boolean_t missing_feat_read = B_FALSE;
2283 2283 nvlist_t *unsup_feat, *enabled_feat;
2284 2284
2285 2285 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2286 2286 &spa->spa_feat_for_read_obj) != 0) {
2287 2287 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2288 2288 }
2289 2289
2290 2290 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2291 2291 &spa->spa_feat_for_write_obj) != 0) {
2292 2292 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2293 2293 }
2294 2294
2295 2295 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2296 2296 &spa->spa_feat_desc_obj) != 0) {
2297 2297 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2298 2298 }
2299 2299
2300 2300 enabled_feat = fnvlist_alloc();
2301 2301 unsup_feat = fnvlist_alloc();
2302 2302
2303 2303 if (!feature_is_supported(spa->spa_meta_objset,
2304 2304 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2305 2305 unsup_feat, enabled_feat))
2306 2306 missing_feat_read = B_TRUE;
2307 2307
2308 2308 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2309 2309 if (!feature_is_supported(spa->spa_meta_objset,
2310 2310 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2311 2311 unsup_feat, enabled_feat)) {
2312 2312 missing_feat_write = B_TRUE;
2313 2313 }
2314 2314 }
2315 2315
2316 2316 fnvlist_add_nvlist(spa->spa_load_info,
2317 2317 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2318 2318
2319 2319 if (!nvlist_empty(unsup_feat)) {
2320 2320 fnvlist_add_nvlist(spa->spa_load_info,
2321 2321 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2322 2322 }
2323 2323
2324 2324 fnvlist_free(enabled_feat);
2325 2325 fnvlist_free(unsup_feat);
2326 2326
2327 2327 if (!missing_feat_read) {
2328 2328 fnvlist_add_boolean(spa->spa_load_info,
2329 2329 ZPOOL_CONFIG_CAN_RDONLY);
2330 2330 }
2331 2331
2332 2332 /*
2333 2333 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2334 2334 * twofold: to determine whether the pool is available for
2335 2335 * import in read-write mode and (if it is not) whether the
2336 2336 * pool is available for import in read-only mode. If the pool
2337 2337 * is available for import in read-write mode, it is displayed
2338 2338 * as available in userland; if it is not available for import
2339 2339 * in read-only mode, it is displayed as unavailable in
2340 2340 * userland. If the pool is available for import in read-only
2341 2341 * mode but not read-write mode, it is displayed as unavailable
2342 2342 * in userland with a special note that the pool is actually
2343 2343 * available for open in read-only mode.
2344 2344 *
2345 2345 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2346 2346 * missing a feature for write, we must first determine whether
2347 2347 * the pool can be opened read-only before returning to
2348 2348 * userland in order to know whether to display the
2349 2349 * abovementioned note.
2350 2350 */
2351 2351 if (missing_feat_read || (missing_feat_write &&
2352 2352 spa_writeable(spa))) {
2353 2353 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2354 2354 ENOTSUP));
2355 2355 }
2356 2356 }
2357 2357
2358 2358 spa->spa_is_initializing = B_TRUE;
2359 2359 error = dsl_pool_open(spa->spa_dsl_pool);
2360 2360 spa->spa_is_initializing = B_FALSE;
2361 2361 if (error != 0)
2362 2362 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2363 2363
2364 2364 if (!mosconfig) {
2365 2365 uint64_t hostid;
2366 2366 nvlist_t *policy = NULL, *nvconfig;
2367 2367
2368 2368 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2369 2369 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2370 2370
2371 2371 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2372 2372 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2373 2373 char *hostname;
2374 2374 unsigned long myhostid = 0;
2375 2375
2376 2376 VERIFY(nvlist_lookup_string(nvconfig,
2377 2377 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2378 2378
2379 2379 #ifdef _KERNEL
2380 2380 myhostid = zone_get_hostid(NULL);
2381 2381 #else /* _KERNEL */
2382 2382 /*
2383 2383 * We're emulating the system's hostid in userland, so
2384 2384 * we can't use zone_get_hostid().
2385 2385 */
2386 2386 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2387 2387 #endif /* _KERNEL */
2388 2388 if (hostid != 0 && myhostid != 0 &&
2389 2389 hostid != myhostid) {
2390 2390 nvlist_free(nvconfig);
2391 2391 cmn_err(CE_WARN, "pool '%s' could not be "
2392 2392 "loaded as it was last accessed by "
2393 2393 "another system (host: %s hostid: 0x%lx). "
2394 2394 "See: http://illumos.org/msg/ZFS-8000-EY",
2395 2395 spa_name(spa), hostname,
2396 2396 (unsigned long)hostid);
2397 2397 return (SET_ERROR(EBADF));
2398 2398 }
2399 2399 }
2400 2400 if (nvlist_lookup_nvlist(spa->spa_config,
2401 2401 ZPOOL_REWIND_POLICY, &policy) == 0)
2402 2402 VERIFY(nvlist_add_nvlist(nvconfig,
2403 2403 ZPOOL_REWIND_POLICY, policy) == 0);
2404 2404
2405 2405 spa_config_set(spa, nvconfig);
2406 2406 spa_unload(spa);
2407 2407 spa_deactivate(spa);
2408 2408 spa_activate(spa, orig_mode);
2409 2409
2410 2410 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2411 2411 }
2412 2412
2413 2413 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2414 2414 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2415 2415 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2416 2416 if (error != 0)
2417 2417 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2418 2418
2419 2419 /*
2420 2420 * Load the bit that tells us to use the new accounting function
2421 2421 * (raid-z deflation). If we have an older pool, this will not
2422 2422 * be present.
2423 2423 */
2424 2424 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2425 2425 if (error != 0 && error != ENOENT)
2426 2426 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2427 2427
2428 2428 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2429 2429 &spa->spa_creation_version);
2430 2430 if (error != 0 && error != ENOENT)
2431 2431 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2432 2432
2433 2433 /*
2434 2434 * Load the persistent error log. If we have an older pool, this will
2435 2435 * not be present.
2436 2436 */
2437 2437 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2438 2438 if (error != 0 && error != ENOENT)
2439 2439 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2440 2440
2441 2441 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2442 2442 &spa->spa_errlog_scrub);
2443 2443 if (error != 0 && error != ENOENT)
2444 2444 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2445 2445
2446 2446 /*
2447 2447 * Load the history object. If we have an older pool, this
2448 2448 * will not be present.
2449 2449 */
2450 2450 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2451 2451 if (error != 0 && error != ENOENT)
2452 2452 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2453 2453
2454 2454 /*
2455 2455 * If we're assembling the pool from the split-off vdevs of
2456 2456 * an existing pool, we don't want to attach the spares & cache
2457 2457 * devices.
2458 2458 */
2459 2459
2460 2460 /*
2461 2461 * Load any hot spares for this pool.
2462 2462 */
2463 2463 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2464 2464 if (error != 0 && error != ENOENT)
2465 2465 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2466 2466 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2467 2467 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2468 2468 if (load_nvlist(spa, spa->spa_spares.sav_object,
2469 2469 &spa->spa_spares.sav_config) != 0)
2470 2470 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2471 2471
2472 2472 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2473 2473 spa_load_spares(spa);
2474 2474 spa_config_exit(spa, SCL_ALL, FTAG);
2475 2475 } else if (error == 0) {
2476 2476 spa->spa_spares.sav_sync = B_TRUE;
2477 2477 }
2478 2478
2479 2479 /*
2480 2480 * Load any level 2 ARC devices for this pool.
2481 2481 */
2482 2482 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2483 2483 &spa->spa_l2cache.sav_object);
2484 2484 if (error != 0 && error != ENOENT)
2485 2485 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2486 2486 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2487 2487 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2488 2488 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2489 2489 &spa->spa_l2cache.sav_config) != 0)
2490 2490 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2491 2491
2492 2492 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2493 2493 spa_load_l2cache(spa);
2494 2494 spa_config_exit(spa, SCL_ALL, FTAG);
2495 2495 } else if (error == 0) {
2496 2496 spa->spa_l2cache.sav_sync = B_TRUE;
2497 2497 }
2498 2498
2499 2499 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2500 2500
2501 2501 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2502 2502 if (error && error != ENOENT)
2503 2503 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2504 2504
2505 2505 if (error == 0) {
2506 2506 uint64_t autoreplace;
2507 2507
2508 2508 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2509 2509 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2510 2510 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2511 2511 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2512 2512 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2513 2513 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2514 2514 &spa->spa_dedup_ditto);
2515 2515
2516 2516 spa->spa_autoreplace = (autoreplace != 0);
2517 2517 }
2518 2518
2519 2519 /*
2520 2520 * If the 'autoreplace' property is set, then post a resource notifying
2521 2521 * the ZFS DE that it should not issue any faults for unopenable
2522 2522 * devices. We also iterate over the vdevs, and post a sysevent for any
2523 2523 * unopenable vdevs so that the normal autoreplace handler can take
2524 2524 * over.
2525 2525 */
2526 2526 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2527 2527 spa_check_removed(spa->spa_root_vdev);
2528 2528 /*
2529 2529 * For the import case, this is done in spa_import(), because
2530 2530 * at this point we're using the spare definitions from
2531 2531 * the MOS config, not necessarily from the userland config.
2532 2532 */
2533 2533 if (state != SPA_LOAD_IMPORT) {
2534 2534 spa_aux_check_removed(&spa->spa_spares);
2535 2535 spa_aux_check_removed(&spa->spa_l2cache);
2536 2536 }
2537 2537 }
2538 2538
2539 2539 /*
2540 2540 * Load the vdev state for all toplevel vdevs.
2541 2541 */
2542 2542 vdev_load(rvd);
2543 2543
2544 2544 /*
2545 2545 * Propagate the leaf DTLs we just loaded all the way up the tree.
2546 2546 */
2547 2547 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2548 2548 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2549 2549 spa_config_exit(spa, SCL_ALL, FTAG);
2550 2550
2551 2551 /*
2552 2552 * Load the DDTs (dedup tables).
2553 2553 */
2554 2554 error = ddt_load(spa);
2555 2555 if (error != 0)
2556 2556 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2557 2557
2558 2558 spa_update_dspace(spa);
2559 2559
2560 2560 /*
2561 2561 * Validate the config, using the MOS config to fill in any
2562 2562 * information which might be missing. If we fail to validate
2563 2563 * the config then declare the pool unfit for use. If we're
2564 2564 * assembling a pool from a split, the log is not transferred
2565 2565 * over.
2566 2566 */
2567 2567 if (type != SPA_IMPORT_ASSEMBLE) {
2568 2568 nvlist_t *nvconfig;
2569 2569
2570 2570 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2571 2571 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2572 2572
2573 2573 if (!spa_config_valid(spa, nvconfig)) {
2574 2574 nvlist_free(nvconfig);
2575 2575 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2576 2576 ENXIO));
2577 2577 }
2578 2578 nvlist_free(nvconfig);
2579 2579
2580 2580 /*
2581 2581 * Now that we've validated the config, check the state of the
2582 2582 * root vdev. If it can't be opened, it indicates one or
2583 2583 * more toplevel vdevs are faulted.
2584 2584 */
2585 2585 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2586 2586 return (SET_ERROR(ENXIO));
2587 2587
2588 2588 if (spa_check_logs(spa)) {
2589 2589 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2590 2590 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2591 2591 }
2592 2592 }
2593 2593
2594 2594 if (missing_feat_write) {
2595 2595 ASSERT(state == SPA_LOAD_TRYIMPORT);
2596 2596
2597 2597 /*
2598 2598 * At this point, we know that we can open the pool in
2599 2599 * read-only mode but not read-write mode. We now have enough
2600 2600 * information and can return to userland.
2601 2601 */
2602 2602 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2603 2603 }
2604 2604
2605 2605 /*
2606 2606 * We've successfully opened the pool, verify that we're ready
2607 2607 * to start pushing transactions.
2608 2608 */
2609 2609 if (state != SPA_LOAD_TRYIMPORT) {
2610 2610 if (error = spa_load_verify(spa))
2611 2611 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2612 2612 error));
2613 2613 }
2614 2614
2615 2615 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2616 2616 spa->spa_load_max_txg == UINT64_MAX)) {
2617 2617 dmu_tx_t *tx;
2618 2618 int need_update = B_FALSE;
2619 2619
2620 2620 ASSERT(state != SPA_LOAD_TRYIMPORT);
2621 2621
2622 2622 /*
2623 2623 * Claim log blocks that haven't been committed yet.
2624 2624 * This must all happen in a single txg.
2625 2625 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2626 2626 * invoked from zil_claim_log_block()'s i/o done callback.
2627 2627 * Price of rollback is that we abandon the log.
2628 2628 */
2629 2629 spa->spa_claiming = B_TRUE;
2630 2630
2631 2631 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2632 2632 spa_first_txg(spa));
2633 2633 (void) dmu_objset_find(spa_name(spa),
2634 2634 zil_claim, tx, DS_FIND_CHILDREN);
2635 2635 dmu_tx_commit(tx);
2636 2636
2637 2637 spa->spa_claiming = B_FALSE;
2638 2638
2639 2639 spa_set_log_state(spa, SPA_LOG_GOOD);
2640 2640 spa->spa_sync_on = B_TRUE;
2641 2641 txg_sync_start(spa->spa_dsl_pool);
2642 2642
2643 2643 /*
2644 2644 * Wait for all claims to sync. We sync up to the highest
2645 2645 * claimed log block birth time so that claimed log blocks
2646 2646 * don't appear to be from the future. spa_claim_max_txg
2647 2647 * will have been set for us by either zil_check_log_chain()
2648 2648 * (invoked from spa_check_logs()) or zil_claim() above.
2649 2649 */
2650 2650 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2651 2651
2652 2652 /*
2653 2653 * If the config cache is stale, or we have uninitialized
2654 2654 * metaslabs (see spa_vdev_add()), then update the config.
2655 2655 *
2656 2656 * If this is a verbatim import, trust the current
2657 2657 * in-core spa_config and update the disk labels.
2658 2658 */
2659 2659 if (config_cache_txg != spa->spa_config_txg ||
2660 2660 state == SPA_LOAD_IMPORT ||
2661 2661 state == SPA_LOAD_RECOVER ||
2662 2662 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2663 2663 need_update = B_TRUE;
2664 2664
2665 2665 for (int c = 0; c < rvd->vdev_children; c++)
2666 2666 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2667 2667 need_update = B_TRUE;
2668 2668
2669 2669 /*
2670 2670 * Update the config cache asychronously in case we're the
2671 2671 * root pool, in which case the config cache isn't writable yet.
2672 2672 */
2673 2673 if (need_update)
2674 2674 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2675 2675
2676 2676 /*
2677 2677 * Check all DTLs to see if anything needs resilvering.
2678 2678 */
2679 2679 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2680 2680 vdev_resilver_needed(rvd, NULL, NULL))
2681 2681 spa_async_request(spa, SPA_ASYNC_RESILVER);
2682 2682
2683 2683 /*
2684 2684 * Log the fact that we booted up (so that we can detect if
2685 2685 * we rebooted in the middle of an operation).
2686 2686 */
2687 2687 spa_history_log_version(spa, "open");
2688 2688
2689 2689 /*
2690 2690 * Delete any inconsistent datasets.
2691 2691 */
2692 2692 (void) dmu_objset_find(spa_name(spa),
2693 2693 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2694 2694
2695 2695 /*
2696 2696 * Clean up any stale temporary dataset userrefs.
2697 2697 */
2698 2698 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2699 2699 }
2700 2700
2701 2701 return (0);
2702 2702 }
2703 2703
2704 2704 static int
2705 2705 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2706 2706 {
2707 2707 int mode = spa->spa_mode;
2708 2708
2709 2709 spa_unload(spa);
2710 2710 spa_deactivate(spa);
2711 2711
2712 2712 spa->spa_load_max_txg--;
2713 2713
2714 2714 spa_activate(spa, mode);
2715 2715 spa_async_suspend(spa);
2716 2716
2717 2717 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2718 2718 }
2719 2719
2720 2720 /*
2721 2721 * If spa_load() fails this function will try loading prior txg's. If
2722 2722 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2723 2723 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2724 2724 * function will not rewind the pool and will return the same error as
2725 2725 * spa_load().
2726 2726 */
2727 2727 static int
2728 2728 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2729 2729 uint64_t max_request, int rewind_flags)
2730 2730 {
2731 2731 nvlist_t *loadinfo = NULL;
2732 2732 nvlist_t *config = NULL;
2733 2733 int load_error, rewind_error;
2734 2734 uint64_t safe_rewind_txg;
2735 2735 uint64_t min_txg;
2736 2736
2737 2737 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2738 2738 spa->spa_load_max_txg = spa->spa_load_txg;
2739 2739 spa_set_log_state(spa, SPA_LOG_CLEAR);
2740 2740 } else {
2741 2741 spa->spa_load_max_txg = max_request;
2742 2742 }
2743 2743
2744 2744 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2745 2745 mosconfig);
2746 2746 if (load_error == 0)
2747 2747 return (0);
2748 2748
2749 2749 if (spa->spa_root_vdev != NULL)
2750 2750 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2751 2751
2752 2752 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2753 2753 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2754 2754
2755 2755 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2756 2756 nvlist_free(config);
2757 2757 return (load_error);
2758 2758 }
2759 2759
2760 2760 if (state == SPA_LOAD_RECOVER) {
2761 2761 /* Price of rolling back is discarding txgs, including log */
2762 2762 spa_set_log_state(spa, SPA_LOG_CLEAR);
2763 2763 } else {
2764 2764 /*
2765 2765 * If we aren't rolling back save the load info from our first
2766 2766 * import attempt so that we can restore it after attempting
2767 2767 * to rewind.
2768 2768 */
2769 2769 loadinfo = spa->spa_load_info;
2770 2770 spa->spa_load_info = fnvlist_alloc();
2771 2771 }
2772 2772
2773 2773 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2774 2774 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2775 2775 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2776 2776 TXG_INITIAL : safe_rewind_txg;
2777 2777
2778 2778 /*
2779 2779 * Continue as long as we're finding errors, we're still within
2780 2780 * the acceptable rewind range, and we're still finding uberblocks
2781 2781 */
2782 2782 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2783 2783 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2784 2784 if (spa->spa_load_max_txg < safe_rewind_txg)
2785 2785 spa->spa_extreme_rewind = B_TRUE;
2786 2786 rewind_error = spa_load_retry(spa, state, mosconfig);
2787 2787 }
2788 2788
2789 2789 spa->spa_extreme_rewind = B_FALSE;
2790 2790 spa->spa_load_max_txg = UINT64_MAX;
2791 2791
2792 2792 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2793 2793 spa_config_set(spa, config);
2794 2794
2795 2795 if (state == SPA_LOAD_RECOVER) {
2796 2796 ASSERT3P(loadinfo, ==, NULL);
2797 2797 return (rewind_error);
2798 2798 } else {
2799 2799 /* Store the rewind info as part of the initial load info */
2800 2800 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2801 2801 spa->spa_load_info);
2802 2802
2803 2803 /* Restore the initial load info */
2804 2804 fnvlist_free(spa->spa_load_info);
2805 2805 spa->spa_load_info = loadinfo;
2806 2806
2807 2807 return (load_error);
2808 2808 }
2809 2809 }
2810 2810
2811 2811 /*
2812 2812 * Pool Open/Import
2813 2813 *
2814 2814 * The import case is identical to an open except that the configuration is sent
2815 2815 * down from userland, instead of grabbed from the configuration cache. For the
2816 2816 * case of an open, the pool configuration will exist in the
2817 2817 * POOL_STATE_UNINITIALIZED state.
2818 2818 *
2819 2819 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2820 2820 * the same time open the pool, without having to keep around the spa_t in some
2821 2821 * ambiguous state.
2822 2822 */
2823 2823 static int
2824 2824 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2825 2825 nvlist_t **config)
2826 2826 {
2827 2827 spa_t *spa;
2828 2828 spa_load_state_t state = SPA_LOAD_OPEN;
2829 2829 int error;
2830 2830 int locked = B_FALSE;
2831 2831
2832 2832 *spapp = NULL;
2833 2833
2834 2834 /*
2835 2835 * As disgusting as this is, we need to support recursive calls to this
2836 2836 * function because dsl_dir_open() is called during spa_load(), and ends
2837 2837 * up calling spa_open() again. The real fix is to figure out how to
2838 2838 * avoid dsl_dir_open() calling this in the first place.
2839 2839 */
2840 2840 if (mutex_owner(&spa_namespace_lock) != curthread) {
2841 2841 mutex_enter(&spa_namespace_lock);
2842 2842 locked = B_TRUE;
2843 2843 }
2844 2844
2845 2845 if ((spa = spa_lookup(pool)) == NULL) {
2846 2846 if (locked)
2847 2847 mutex_exit(&spa_namespace_lock);
2848 2848 return (SET_ERROR(ENOENT));
2849 2849 }
2850 2850
2851 2851 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2852 2852 zpool_rewind_policy_t policy;
2853 2853
2854 2854 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2855 2855 &policy);
2856 2856 if (policy.zrp_request & ZPOOL_DO_REWIND)
2857 2857 state = SPA_LOAD_RECOVER;
2858 2858
2859 2859 spa_activate(spa, spa_mode_global);
2860 2860
2861 2861 if (state != SPA_LOAD_RECOVER)
2862 2862 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2863 2863
2864 2864 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2865 2865 policy.zrp_request);
2866 2866
2867 2867 if (error == EBADF) {
2868 2868 /*
2869 2869 * If vdev_validate() returns failure (indicated by
2870 2870 * EBADF), it indicates that one of the vdevs indicates
2871 2871 * that the pool has been exported or destroyed. If
2872 2872 * this is the case, the config cache is out of sync and
2873 2873 * we should remove the pool from the namespace.
2874 2874 */
2875 2875 spa_unload(spa);
2876 2876 spa_deactivate(spa);
2877 2877 spa_config_sync(spa, B_TRUE, B_TRUE);
2878 2878 spa_remove(spa);
2879 2879 if (locked)
2880 2880 mutex_exit(&spa_namespace_lock);
2881 2881 return (SET_ERROR(ENOENT));
2882 2882 }
2883 2883
2884 2884 if (error) {
2885 2885 /*
2886 2886 * We can't open the pool, but we still have useful
2887 2887 * information: the state of each vdev after the
2888 2888 * attempted vdev_open(). Return this to the user.
2889 2889 */
2890 2890 if (config != NULL && spa->spa_config) {
2891 2891 VERIFY(nvlist_dup(spa->spa_config, config,
2892 2892 KM_SLEEP) == 0);
2893 2893 VERIFY(nvlist_add_nvlist(*config,
2894 2894 ZPOOL_CONFIG_LOAD_INFO,
2895 2895 spa->spa_load_info) == 0);
2896 2896 }
2897 2897 spa_unload(spa);
2898 2898 spa_deactivate(spa);
2899 2899 spa->spa_last_open_failed = error;
2900 2900 if (locked)
2901 2901 mutex_exit(&spa_namespace_lock);
2902 2902 *spapp = NULL;
2903 2903 return (error);
2904 2904 }
2905 2905 }
2906 2906
2907 2907 spa_open_ref(spa, tag);
2908 2908
2909 2909 if (config != NULL)
2910 2910 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2911 2911
2912 2912 /*
2913 2913 * If we've recovered the pool, pass back any information we
2914 2914 * gathered while doing the load.
2915 2915 */
2916 2916 if (state == SPA_LOAD_RECOVER) {
2917 2917 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2918 2918 spa->spa_load_info) == 0);
2919 2919 }
2920 2920
2921 2921 if (locked) {
2922 2922 spa->spa_last_open_failed = 0;
2923 2923 spa->spa_last_ubsync_txg = 0;
2924 2924 spa->spa_load_txg = 0;
2925 2925 mutex_exit(&spa_namespace_lock);
2926 2926 }
2927 2927
2928 2928 *spapp = spa;
2929 2929
2930 2930 return (0);
2931 2931 }
2932 2932
2933 2933 int
2934 2934 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2935 2935 nvlist_t **config)
2936 2936 {
2937 2937 return (spa_open_common(name, spapp, tag, policy, config));
2938 2938 }
2939 2939
2940 2940 int
2941 2941 spa_open(const char *name, spa_t **spapp, void *tag)
2942 2942 {
2943 2943 return (spa_open_common(name, spapp, tag, NULL, NULL));
2944 2944 }
2945 2945
2946 2946 /*
2947 2947 * Lookup the given spa_t, incrementing the inject count in the process,
2948 2948 * preventing it from being exported or destroyed.
2949 2949 */
2950 2950 spa_t *
2951 2951 spa_inject_addref(char *name)
2952 2952 {
2953 2953 spa_t *spa;
2954 2954
2955 2955 mutex_enter(&spa_namespace_lock);
2956 2956 if ((spa = spa_lookup(name)) == NULL) {
2957 2957 mutex_exit(&spa_namespace_lock);
2958 2958 return (NULL);
2959 2959 }
2960 2960 spa->spa_inject_ref++;
2961 2961 mutex_exit(&spa_namespace_lock);
2962 2962
2963 2963 return (spa);
2964 2964 }
2965 2965
2966 2966 void
2967 2967 spa_inject_delref(spa_t *spa)
2968 2968 {
2969 2969 mutex_enter(&spa_namespace_lock);
2970 2970 spa->spa_inject_ref--;
2971 2971 mutex_exit(&spa_namespace_lock);
2972 2972 }
2973 2973
2974 2974 /*
2975 2975 * Add spares device information to the nvlist.
2976 2976 */
2977 2977 static void
2978 2978 spa_add_spares(spa_t *spa, nvlist_t *config)
2979 2979 {
2980 2980 nvlist_t **spares;
2981 2981 uint_t i, nspares;
2982 2982 nvlist_t *nvroot;
2983 2983 uint64_t guid;
2984 2984 vdev_stat_t *vs;
2985 2985 uint_t vsc;
2986 2986 uint64_t pool;
2987 2987
2988 2988 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2989 2989
2990 2990 if (spa->spa_spares.sav_count == 0)
2991 2991 return;
2992 2992
2993 2993 VERIFY(nvlist_lookup_nvlist(config,
2994 2994 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2995 2995 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2996 2996 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2997 2997 if (nspares != 0) {
2998 2998 VERIFY(nvlist_add_nvlist_array(nvroot,
2999 2999 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3000 3000 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3001 3001 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3002 3002
3003 3003 /*
3004 3004 * Go through and find any spares which have since been
3005 3005 * repurposed as an active spare. If this is the case, update
3006 3006 * their status appropriately.
3007 3007 */
3008 3008 for (i = 0; i < nspares; i++) {
3009 3009 VERIFY(nvlist_lookup_uint64(spares[i],
3010 3010 ZPOOL_CONFIG_GUID, &guid) == 0);
3011 3011 if (spa_spare_exists(guid, &pool, NULL) &&
3012 3012 pool != 0ULL) {
3013 3013 VERIFY(nvlist_lookup_uint64_array(
3014 3014 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3015 3015 (uint64_t **)&vs, &vsc) == 0);
3016 3016 vs->vs_state = VDEV_STATE_CANT_OPEN;
3017 3017 vs->vs_aux = VDEV_AUX_SPARED;
3018 3018 }
3019 3019 }
3020 3020 }
3021 3021 }
3022 3022
3023 3023 /*
3024 3024 * Add l2cache device information to the nvlist, including vdev stats.
3025 3025 */
3026 3026 static void
3027 3027 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3028 3028 {
3029 3029 nvlist_t **l2cache;
3030 3030 uint_t i, j, nl2cache;
3031 3031 nvlist_t *nvroot;
3032 3032 uint64_t guid;
3033 3033 vdev_t *vd;
3034 3034 vdev_stat_t *vs;
3035 3035 uint_t vsc;
3036 3036
3037 3037 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3038 3038
3039 3039 if (spa->spa_l2cache.sav_count == 0)
3040 3040 return;
3041 3041
3042 3042 VERIFY(nvlist_lookup_nvlist(config,
3043 3043 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3044 3044 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3045 3045 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3046 3046 if (nl2cache != 0) {
3047 3047 VERIFY(nvlist_add_nvlist_array(nvroot,
3048 3048 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3049 3049 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3050 3050 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3051 3051
3052 3052 /*
3053 3053 * Update level 2 cache device stats.
3054 3054 */
3055 3055
3056 3056 for (i = 0; i < nl2cache; i++) {
3057 3057 VERIFY(nvlist_lookup_uint64(l2cache[i],
3058 3058 ZPOOL_CONFIG_GUID, &guid) == 0);
3059 3059
3060 3060 vd = NULL;
3061 3061 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3062 3062 if (guid ==
3063 3063 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3064 3064 vd = spa->spa_l2cache.sav_vdevs[j];
3065 3065 break;
3066 3066 }
3067 3067 }
3068 3068 ASSERT(vd != NULL);
3069 3069
3070 3070 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3071 3071 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3072 3072 == 0);
3073 3073 vdev_get_stats(vd, vs);
3074 3074 }
3075 3075 }
3076 3076 }
3077 3077
3078 3078 static void
3079 3079 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3080 3080 {
3081 3081 nvlist_t *features;
3082 3082 zap_cursor_t zc;
3083 3083 zap_attribute_t za;
3084 3084
3085 3085 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3086 3086 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3087 3087
3088 3088 if (spa->spa_feat_for_read_obj != 0) {
3089 3089 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3090 3090 spa->spa_feat_for_read_obj);
3091 3091 zap_cursor_retrieve(&zc, &za) == 0;
3092 3092 zap_cursor_advance(&zc)) {
3093 3093 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3094 3094 za.za_num_integers == 1);
3095 3095 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3096 3096 za.za_first_integer));
3097 3097 }
3098 3098 zap_cursor_fini(&zc);
3099 3099 }
3100 3100
3101 3101 if (spa->spa_feat_for_write_obj != 0) {
3102 3102 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3103 3103 spa->spa_feat_for_write_obj);
3104 3104 zap_cursor_retrieve(&zc, &za) == 0;
3105 3105 zap_cursor_advance(&zc)) {
3106 3106 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3107 3107 za.za_num_integers == 1);
3108 3108 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3109 3109 za.za_first_integer));
3110 3110 }
3111 3111 zap_cursor_fini(&zc);
3112 3112 }
3113 3113
3114 3114 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3115 3115 features) == 0);
3116 3116 nvlist_free(features);
3117 3117 }
3118 3118
3119 3119 int
3120 3120 spa_get_stats(const char *name, nvlist_t **config,
3121 3121 char *altroot, size_t buflen)
3122 3122 {
3123 3123 int error;
3124 3124 spa_t *spa;
3125 3125
3126 3126 *config = NULL;
3127 3127 error = spa_open_common(name, &spa, FTAG, NULL, config);
3128 3128
3129 3129 if (spa != NULL) {
3130 3130 /*
3131 3131 * This still leaves a window of inconsistency where the spares
3132 3132 * or l2cache devices could change and the config would be
3133 3133 * self-inconsistent.
3134 3134 */
3135 3135 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3136 3136
3137 3137 if (*config != NULL) {
3138 3138 uint64_t loadtimes[2];
3139 3139
3140 3140 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3141 3141 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3142 3142 VERIFY(nvlist_add_uint64_array(*config,
3143 3143 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3144 3144
3145 3145 VERIFY(nvlist_add_uint64(*config,
3146 3146 ZPOOL_CONFIG_ERRCOUNT,
3147 3147 spa_get_errlog_size(spa)) == 0);
3148 3148
3149 3149 if (spa_suspended(spa))
3150 3150 VERIFY(nvlist_add_uint64(*config,
3151 3151 ZPOOL_CONFIG_SUSPENDED,
3152 3152 spa->spa_failmode) == 0);
3153 3153
3154 3154 spa_add_spares(spa, *config);
3155 3155 spa_add_l2cache(spa, *config);
3156 3156 spa_add_feature_stats(spa, *config);
3157 3157 }
3158 3158 }
3159 3159
3160 3160 /*
3161 3161 * We want to get the alternate root even for faulted pools, so we cheat
3162 3162 * and call spa_lookup() directly.
3163 3163 */
3164 3164 if (altroot) {
3165 3165 if (spa == NULL) {
3166 3166 mutex_enter(&spa_namespace_lock);
3167 3167 spa = spa_lookup(name);
3168 3168 if (spa)
3169 3169 spa_altroot(spa, altroot, buflen);
3170 3170 else
3171 3171 altroot[0] = '\0';
3172 3172 spa = NULL;
3173 3173 mutex_exit(&spa_namespace_lock);
3174 3174 } else {
3175 3175 spa_altroot(spa, altroot, buflen);
3176 3176 }
3177 3177 }
3178 3178
3179 3179 if (spa != NULL) {
3180 3180 spa_config_exit(spa, SCL_CONFIG, FTAG);
3181 3181 spa_close(spa, FTAG);
3182 3182 }
3183 3183
3184 3184 return (error);
3185 3185 }
3186 3186
3187 3187 /*
3188 3188 * Validate that the auxiliary device array is well formed. We must have an
3189 3189 * array of nvlists, each which describes a valid leaf vdev. If this is an
3190 3190 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3191 3191 * specified, as long as they are well-formed.
3192 3192 */
3193 3193 static int
3194 3194 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3195 3195 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3196 3196 vdev_labeltype_t label)
3197 3197 {
3198 3198 nvlist_t **dev;
3199 3199 uint_t i, ndev;
3200 3200 vdev_t *vd;
3201 3201 int error;
3202 3202
3203 3203 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3204 3204
3205 3205 /*
3206 3206 * It's acceptable to have no devs specified.
3207 3207 */
3208 3208 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3209 3209 return (0);
3210 3210
3211 3211 if (ndev == 0)
3212 3212 return (SET_ERROR(EINVAL));
3213 3213
3214 3214 /*
3215 3215 * Make sure the pool is formatted with a version that supports this
3216 3216 * device type.
3217 3217 */
3218 3218 if (spa_version(spa) < version)
3219 3219 return (SET_ERROR(ENOTSUP));
3220 3220
3221 3221 /*
3222 3222 * Set the pending device list so we correctly handle device in-use
3223 3223 * checking.
3224 3224 */
3225 3225 sav->sav_pending = dev;
3226 3226 sav->sav_npending = ndev;
3227 3227
3228 3228 for (i = 0; i < ndev; i++) {
3229 3229 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3230 3230 mode)) != 0)
3231 3231 goto out;
3232 3232
3233 3233 if (!vd->vdev_ops->vdev_op_leaf) {
3234 3234 vdev_free(vd);
3235 3235 error = SET_ERROR(EINVAL);
3236 3236 goto out;
3237 3237 }
3238 3238
3239 3239 /*
3240 3240 * The L2ARC currently only supports disk devices in
3241 3241 * kernel context. For user-level testing, we allow it.
3242 3242 */
3243 3243 #ifdef _KERNEL
3244 3244 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3245 3245 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3246 3246 error = SET_ERROR(ENOTBLK);
3247 3247 vdev_free(vd);
3248 3248 goto out;
3249 3249 }
3250 3250 #endif
3251 3251 vd->vdev_top = vd;
3252 3252
3253 3253 if ((error = vdev_open(vd)) == 0 &&
3254 3254 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3255 3255 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3256 3256 vd->vdev_guid) == 0);
3257 3257 }
3258 3258
3259 3259 vdev_free(vd);
3260 3260
3261 3261 if (error &&
3262 3262 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3263 3263 goto out;
3264 3264 else
3265 3265 error = 0;
3266 3266 }
3267 3267
3268 3268 out:
3269 3269 sav->sav_pending = NULL;
3270 3270 sav->sav_npending = 0;
3271 3271 return (error);
3272 3272 }
3273 3273
3274 3274 static int
3275 3275 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3276 3276 {
3277 3277 int error;
3278 3278
3279 3279 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3280 3280
3281 3281 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3282 3282 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3283 3283 VDEV_LABEL_SPARE)) != 0) {
3284 3284 return (error);
3285 3285 }
3286 3286
3287 3287 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3288 3288 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3289 3289 VDEV_LABEL_L2CACHE));
3290 3290 }
3291 3291
3292 3292 static void
3293 3293 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3294 3294 const char *config)
3295 3295 {
3296 3296 int i;
3297 3297
3298 3298 if (sav->sav_config != NULL) {
3299 3299 nvlist_t **olddevs;
3300 3300 uint_t oldndevs;
3301 3301 nvlist_t **newdevs;
3302 3302
3303 3303 /*
3304 3304 * Generate new dev list by concatentating with the
3305 3305 * current dev list.
3306 3306 */
3307 3307 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3308 3308 &olddevs, &oldndevs) == 0);
3309 3309
3310 3310 newdevs = kmem_alloc(sizeof (void *) *
3311 3311 (ndevs + oldndevs), KM_SLEEP);
3312 3312 for (i = 0; i < oldndevs; i++)
3313 3313 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3314 3314 KM_SLEEP) == 0);
3315 3315 for (i = 0; i < ndevs; i++)
3316 3316 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3317 3317 KM_SLEEP) == 0);
3318 3318
3319 3319 VERIFY(nvlist_remove(sav->sav_config, config,
3320 3320 DATA_TYPE_NVLIST_ARRAY) == 0);
3321 3321
3322 3322 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3323 3323 config, newdevs, ndevs + oldndevs) == 0);
3324 3324 for (i = 0; i < oldndevs + ndevs; i++)
3325 3325 nvlist_free(newdevs[i]);
3326 3326 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3327 3327 } else {
3328 3328 /*
3329 3329 * Generate a new dev list.
3330 3330 */
3331 3331 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3332 3332 KM_SLEEP) == 0);
3333 3333 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3334 3334 devs, ndevs) == 0);
3335 3335 }
3336 3336 }
3337 3337
3338 3338 /*
3339 3339 * Stop and drop level 2 ARC devices
3340 3340 */
3341 3341 void
3342 3342 spa_l2cache_drop(spa_t *spa)
3343 3343 {
3344 3344 vdev_t *vd;
3345 3345 int i;
3346 3346 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3347 3347
3348 3348 for (i = 0; i < sav->sav_count; i++) {
3349 3349 uint64_t pool;
3350 3350
3351 3351 vd = sav->sav_vdevs[i];
3352 3352 ASSERT(vd != NULL);
3353 3353
3354 3354 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3355 3355 pool != 0ULL && l2arc_vdev_present(vd))
3356 3356 l2arc_remove_vdev(vd);
3357 3357 }
3358 3358 }
3359 3359
3360 3360 /*
3361 3361 * Pool Creation
3362 3362 */
3363 3363 int
3364 3364 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3365 3365 nvlist_t *zplprops)
3366 3366 {
3367 3367 spa_t *spa;
3368 3368 char *altroot = NULL;
3369 3369 vdev_t *rvd;
3370 3370 dsl_pool_t *dp;
3371 3371 dmu_tx_t *tx;
3372 3372 int error = 0;
3373 3373 uint64_t txg = TXG_INITIAL;
3374 3374 nvlist_t **spares, **l2cache;
3375 3375 uint_t nspares, nl2cache;
3376 3376 uint64_t version, obj;
3377 3377 boolean_t has_features;
3378 3378
3379 3379 /*
3380 3380 * If this pool already exists, return failure.
3381 3381 */
3382 3382 mutex_enter(&spa_namespace_lock);
3383 3383 if (spa_lookup(pool) != NULL) {
3384 3384 mutex_exit(&spa_namespace_lock);
3385 3385 return (SET_ERROR(EEXIST));
3386 3386 }
3387 3387
3388 3388 /*
3389 3389 * Allocate a new spa_t structure.
3390 3390 */
3391 3391 (void) nvlist_lookup_string(props,
3392 3392 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3393 3393 spa = spa_add(pool, NULL, altroot);
3394 3394 spa_activate(spa, spa_mode_global);
3395 3395
3396 3396 if (props && (error = spa_prop_validate(spa, props))) {
3397 3397 spa_deactivate(spa);
3398 3398 spa_remove(spa);
3399 3399 mutex_exit(&spa_namespace_lock);
3400 3400 return (error);
3401 3401 }
3402 3402
3403 3403 has_features = B_FALSE;
3404 3404 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3405 3405 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3406 3406 if (zpool_prop_feature(nvpair_name(elem)))
3407 3407 has_features = B_TRUE;
3408 3408 }
3409 3409
3410 3410 if (has_features || nvlist_lookup_uint64(props,
3411 3411 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3412 3412 version = SPA_VERSION;
3413 3413 }
3414 3414 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3415 3415
3416 3416 spa->spa_first_txg = txg;
3417 3417 spa->spa_uberblock.ub_txg = txg - 1;
3418 3418 spa->spa_uberblock.ub_version = version;
3419 3419 spa->spa_ubsync = spa->spa_uberblock;
3420 3420
3421 3421 /*
3422 3422 * Create "The Godfather" zio to hold all async IOs
3423 3423 */
3424 3424 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3425 3425 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3426 3426
3427 3427 /*
3428 3428 * Create the root vdev.
3429 3429 */
3430 3430 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3431 3431
3432 3432 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3433 3433
3434 3434 ASSERT(error != 0 || rvd != NULL);
3435 3435 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3436 3436
3437 3437 if (error == 0 && !zfs_allocatable_devs(nvroot))
3438 3438 error = SET_ERROR(EINVAL);
3439 3439
3440 3440 if (error == 0 &&
3441 3441 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3442 3442 (error = spa_validate_aux(spa, nvroot, txg,
3443 3443 VDEV_ALLOC_ADD)) == 0) {
3444 3444 for (int c = 0; c < rvd->vdev_children; c++) {
3445 3445 vdev_metaslab_set_size(rvd->vdev_child[c]);
3446 3446 vdev_expand(rvd->vdev_child[c], txg);
3447 3447 }
3448 3448 }
3449 3449
3450 3450 spa_config_exit(spa, SCL_ALL, FTAG);
3451 3451
3452 3452 if (error != 0) {
3453 3453 spa_unload(spa);
3454 3454 spa_deactivate(spa);
3455 3455 spa_remove(spa);
3456 3456 mutex_exit(&spa_namespace_lock);
3457 3457 return (error);
3458 3458 }
3459 3459
3460 3460 /*
3461 3461 * Get the list of spares, if specified.
3462 3462 */
3463 3463 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3464 3464 &spares, &nspares) == 0) {
3465 3465 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3466 3466 KM_SLEEP) == 0);
3467 3467 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3468 3468 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3469 3469 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3470 3470 spa_load_spares(spa);
3471 3471 spa_config_exit(spa, SCL_ALL, FTAG);
3472 3472 spa->spa_spares.sav_sync = B_TRUE;
3473 3473 }
3474 3474
3475 3475 /*
3476 3476 * Get the list of level 2 cache devices, if specified.
3477 3477 */
3478 3478 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3479 3479 &l2cache, &nl2cache) == 0) {
3480 3480 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3481 3481 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3482 3482 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3483 3483 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3484 3484 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3485 3485 spa_load_l2cache(spa);
3486 3486 spa_config_exit(spa, SCL_ALL, FTAG);
3487 3487 spa->spa_l2cache.sav_sync = B_TRUE;
3488 3488 }
3489 3489
3490 3490 spa->spa_is_initializing = B_TRUE;
3491 3491 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3492 3492 spa->spa_meta_objset = dp->dp_meta_objset;
3493 3493 spa->spa_is_initializing = B_FALSE;
3494 3494
3495 3495 /*
3496 3496 * Create DDTs (dedup tables).
3497 3497 */
3498 3498 ddt_create(spa);
3499 3499
3500 3500 spa_update_dspace(spa);
3501 3501
3502 3502 tx = dmu_tx_create_assigned(dp, txg);
3503 3503
3504 3504 /*
3505 3505 * Create the pool config object.
3506 3506 */
3507 3507 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3508 3508 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3509 3509 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3510 3510
3511 3511 if (zap_add(spa->spa_meta_objset,
3512 3512 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3513 3513 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3514 3514 cmn_err(CE_PANIC, "failed to add pool config");
3515 3515 }
3516 3516
3517 3517 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3518 3518 spa_feature_create_zap_objects(spa, tx);
3519 3519
3520 3520 if (zap_add(spa->spa_meta_objset,
3521 3521 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3522 3522 sizeof (uint64_t), 1, &version, tx) != 0) {
3523 3523 cmn_err(CE_PANIC, "failed to add pool version");
3524 3524 }
3525 3525
3526 3526 /* Newly created pools with the right version are always deflated. */
3527 3527 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3528 3528 spa->spa_deflate = TRUE;
3529 3529 if (zap_add(spa->spa_meta_objset,
3530 3530 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3531 3531 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3532 3532 cmn_err(CE_PANIC, "failed to add deflate");
3533 3533 }
3534 3534 }
3535 3535
3536 3536 /*
3537 3537 * Create the deferred-free bpobj. Turn off compression
3538 3538 * because sync-to-convergence takes longer if the blocksize
3539 3539 * keeps changing.
3540 3540 */
3541 3541 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3542 3542 dmu_object_set_compress(spa->spa_meta_objset, obj,
3543 3543 ZIO_COMPRESS_OFF, tx);
3544 3544 if (zap_add(spa->spa_meta_objset,
3545 3545 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3546 3546 sizeof (uint64_t), 1, &obj, tx) != 0) {
3547 3547 cmn_err(CE_PANIC, "failed to add bpobj");
3548 3548 }
3549 3549 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3550 3550 spa->spa_meta_objset, obj));
3551 3551
3552 3552 /*
3553 3553 * Create the pool's history object.
3554 3554 */
3555 3555 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3556 3556 spa_history_create_obj(spa, tx);
3557 3557
3558 3558 /*
3559 3559 * Set pool properties.
3560 3560 */
3561 3561 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3562 3562 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3563 3563 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3564 3564 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3565 3565
3566 3566 if (props != NULL) {
3567 3567 spa_configfile_set(spa, props, B_FALSE);
3568 3568 spa_sync_props(props, tx);
3569 3569 }
3570 3570
3571 3571 dmu_tx_commit(tx);
3572 3572
3573 3573 spa->spa_sync_on = B_TRUE;
3574 3574 txg_sync_start(spa->spa_dsl_pool);
3575 3575
3576 3576 /*
3577 3577 * We explicitly wait for the first transaction to complete so that our
3578 3578 * bean counters are appropriately updated.
3579 3579 */
3580 3580 txg_wait_synced(spa->spa_dsl_pool, txg);
3581 3581
3582 3582 spa_config_sync(spa, B_FALSE, B_TRUE);
3583 3583
3584 3584 spa_history_log_version(spa, "create");
3585 3585
3586 3586 spa->spa_minref = refcount_count(&spa->spa_refcount);
3587 3587
3588 3588 mutex_exit(&spa_namespace_lock);
3589 3589
3590 3590 return (0);
3591 3591 }
3592 3592
3593 3593 #ifdef _KERNEL
3594 3594 /*
3595 3595 * Get the root pool information from the root disk, then import the root pool
3596 3596 * during the system boot up time.
3597 3597 */
3598 3598 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3599 3599
3600 3600 static nvlist_t *
3601 3601 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3602 3602 {
3603 3603 nvlist_t *config;
3604 3604 nvlist_t *nvtop, *nvroot;
3605 3605 uint64_t pgid;
3606 3606
3607 3607 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3608 3608 return (NULL);
3609 3609
3610 3610 /*
3611 3611 * Add this top-level vdev to the child array.
3612 3612 */
3613 3613 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3614 3614 &nvtop) == 0);
3615 3615 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3616 3616 &pgid) == 0);
3617 3617 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3618 3618
3619 3619 /*
3620 3620 * Put this pool's top-level vdevs into a root vdev.
3621 3621 */
3622 3622 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3623 3623 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3624 3624 VDEV_TYPE_ROOT) == 0);
3625 3625 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3626 3626 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3627 3627 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3628 3628 &nvtop, 1) == 0);
3629 3629
3630 3630 /*
3631 3631 * Replace the existing vdev_tree with the new root vdev in
3632 3632 * this pool's configuration (remove the old, add the new).
3633 3633 */
3634 3634 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3635 3635 nvlist_free(nvroot);
3636 3636 return (config);
3637 3637 }
3638 3638
3639 3639 /*
3640 3640 * Walk the vdev tree and see if we can find a device with "better"
3641 3641 * configuration. A configuration is "better" if the label on that
3642 3642 * device has a more recent txg.
3643 3643 */
3644 3644 static void
3645 3645 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3646 3646 {
3647 3647 for (int c = 0; c < vd->vdev_children; c++)
3648 3648 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3649 3649
3650 3650 if (vd->vdev_ops->vdev_op_leaf) {
3651 3651 nvlist_t *label;
3652 3652 uint64_t label_txg;
3653 3653
3654 3654 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3655 3655 &label) != 0)
3656 3656 return;
3657 3657
3658 3658 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3659 3659 &label_txg) == 0);
3660 3660
3661 3661 /*
3662 3662 * Do we have a better boot device?
3663 3663 */
3664 3664 if (label_txg > *txg) {
3665 3665 *txg = label_txg;
3666 3666 *avd = vd;
3667 3667 }
3668 3668 nvlist_free(label);
3669 3669 }
3670 3670 }
3671 3671
3672 3672 /*
3673 3673 * Import a root pool.
3674 3674 *
3675 3675 * For x86. devpath_list will consist of devid and/or physpath name of
3676 3676 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3677 3677 * The GRUB "findroot" command will return the vdev we should boot.
3678 3678 *
3679 3679 * For Sparc, devpath_list consists the physpath name of the booting device
3680 3680 * no matter the rootpool is a single device pool or a mirrored pool.
3681 3681 * e.g.
3682 3682 * "/pci@1f,0/ide@d/disk@0,0:a"
3683 3683 */
3684 3684 int
3685 3685 spa_import_rootpool(char *devpath, char *devid)
3686 3686 {
3687 3687 spa_t *spa;
3688 3688 vdev_t *rvd, *bvd, *avd = NULL;
3689 3689 nvlist_t *config, *nvtop;
3690 3690 uint64_t guid, txg;
3691 3691 char *pname;
3692 3692 int error;
3693 3693
3694 3694 /*
3695 3695 * Read the label from the boot device and generate a configuration.
3696 3696 */
3697 3697 config = spa_generate_rootconf(devpath, devid, &guid);
3698 3698 #if defined(_OBP) && defined(_KERNEL)
3699 3699 if (config == NULL) {
3700 3700 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3701 3701 /* iscsi boot */
3702 3702 get_iscsi_bootpath_phy(devpath);
3703 3703 config = spa_generate_rootconf(devpath, devid, &guid);
3704 3704 }
3705 3705 }
3706 3706 #endif
3707 3707 if (config == NULL) {
3708 3708 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3709 3709 devpath);
3710 3710 return (SET_ERROR(EIO));
3711 3711 }
3712 3712
3713 3713 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3714 3714 &pname) == 0);
3715 3715 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3716 3716
3717 3717 mutex_enter(&spa_namespace_lock);
3718 3718 if ((spa = spa_lookup(pname)) != NULL) {
3719 3719 /*
3720 3720 * Remove the existing root pool from the namespace so that we
3721 3721 * can replace it with the correct config we just read in.
3722 3722 */
3723 3723 spa_remove(spa);
3724 3724 }
3725 3725
3726 3726 spa = spa_add(pname, config, NULL);
3727 3727 spa->spa_is_root = B_TRUE;
3728 3728 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3729 3729
3730 3730 /*
3731 3731 * Build up a vdev tree based on the boot device's label config.
3732 3732 */
3733 3733 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3734 3734 &nvtop) == 0);
3735 3735 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3736 3736 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3737 3737 VDEV_ALLOC_ROOTPOOL);
3738 3738 spa_config_exit(spa, SCL_ALL, FTAG);
3739 3739 if (error) {
3740 3740 mutex_exit(&spa_namespace_lock);
3741 3741 nvlist_free(config);
3742 3742 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3743 3743 pname);
3744 3744 return (error);
3745 3745 }
3746 3746
3747 3747 /*
3748 3748 * Get the boot vdev.
3749 3749 */
3750 3750 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3751 3751 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3752 3752 (u_longlong_t)guid);
3753 3753 error = SET_ERROR(ENOENT);
3754 3754 goto out;
3755 3755 }
3756 3756
3757 3757 /*
3758 3758 * Determine if there is a better boot device.
3759 3759 */
3760 3760 avd = bvd;
3761 3761 spa_alt_rootvdev(rvd, &avd, &txg);
3762 3762 if (avd != bvd) {
3763 3763 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3764 3764 "try booting from '%s'", avd->vdev_path);
3765 3765 error = SET_ERROR(EINVAL);
3766 3766 goto out;
3767 3767 }
3768 3768
3769 3769 /*
3770 3770 * If the boot device is part of a spare vdev then ensure that
3771 3771 * we're booting off the active spare.
3772 3772 */
3773 3773 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3774 3774 !bvd->vdev_isspare) {
3775 3775 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3776 3776 "try booting from '%s'",
3777 3777 bvd->vdev_parent->
3778 3778 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3779 3779 error = SET_ERROR(EINVAL);
3780 3780 goto out;
3781 3781 }
3782 3782
3783 3783 error = 0;
3784 3784 out:
3785 3785 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3786 3786 vdev_free(rvd);
3787 3787 spa_config_exit(spa, SCL_ALL, FTAG);
3788 3788 mutex_exit(&spa_namespace_lock);
3789 3789
3790 3790 nvlist_free(config);
3791 3791 return (error);
3792 3792 }
3793 3793
3794 3794 #endif
3795 3795
3796 3796 /*
3797 3797 * Import a non-root pool into the system.
3798 3798 */
3799 3799 int
3800 3800 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3801 3801 {
3802 3802 spa_t *spa;
3803 3803 char *altroot = NULL;
3804 3804 spa_load_state_t state = SPA_LOAD_IMPORT;
3805 3805 zpool_rewind_policy_t policy;
3806 3806 uint64_t mode = spa_mode_global;
3807 3807 uint64_t readonly = B_FALSE;
3808 3808 int error;
3809 3809 nvlist_t *nvroot;
3810 3810 nvlist_t **spares, **l2cache;
3811 3811 uint_t nspares, nl2cache;
3812 3812
3813 3813 /*
3814 3814 * If a pool with this name exists, return failure.
3815 3815 */
3816 3816 mutex_enter(&spa_namespace_lock);
3817 3817 if (spa_lookup(pool) != NULL) {
3818 3818 mutex_exit(&spa_namespace_lock);
3819 3819 return (SET_ERROR(EEXIST));
3820 3820 }
3821 3821
3822 3822 /*
3823 3823 * Create and initialize the spa structure.
3824 3824 */
3825 3825 (void) nvlist_lookup_string(props,
3826 3826 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3827 3827 (void) nvlist_lookup_uint64(props,
3828 3828 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3829 3829 if (readonly)
3830 3830 mode = FREAD;
3831 3831 spa = spa_add(pool, config, altroot);
3832 3832 spa->spa_import_flags = flags;
3833 3833
3834 3834 /*
↓ open down ↓ |
3834 lines elided |
↑ open up ↑ |
3835 3835 * Verbatim import - Take a pool and insert it into the namespace
3836 3836 * as if it had been loaded at boot.
3837 3837 */
3838 3838 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3839 3839 if (props != NULL)
3840 3840 spa_configfile_set(spa, props, B_FALSE);
3841 3841
3842 3842 spa_config_sync(spa, B_FALSE, B_TRUE);
3843 3843
3844 3844 mutex_exit(&spa_namespace_lock);
3845 - spa_history_log_version(spa, "import");
3846 -
3847 3845 return (0);
3848 3846 }
3849 3847
3850 3848 spa_activate(spa, mode);
3851 3849
3852 3850 /*
3853 3851 * Don't start async tasks until we know everything is healthy.
3854 3852 */
3855 3853 spa_async_suspend(spa);
3856 3854
3857 3855 zpool_get_rewind_policy(config, &policy);
3858 3856 if (policy.zrp_request & ZPOOL_DO_REWIND)
3859 3857 state = SPA_LOAD_RECOVER;
3860 3858
3861 3859 /*
3862 3860 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3863 3861 * because the user-supplied config is actually the one to trust when
3864 3862 * doing an import.
3865 3863 */
3866 3864 if (state != SPA_LOAD_RECOVER)
3867 3865 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3868 3866
3869 3867 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3870 3868 policy.zrp_request);
3871 3869
3872 3870 /*
3873 3871 * Propagate anything learned while loading the pool and pass it
3874 3872 * back to caller (i.e. rewind info, missing devices, etc).
3875 3873 */
3876 3874 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3877 3875 spa->spa_load_info) == 0);
3878 3876
3879 3877 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3880 3878 /*
3881 3879 * Toss any existing sparelist, as it doesn't have any validity
3882 3880 * anymore, and conflicts with spa_has_spare().
3883 3881 */
3884 3882 if (spa->spa_spares.sav_config) {
3885 3883 nvlist_free(spa->spa_spares.sav_config);
3886 3884 spa->spa_spares.sav_config = NULL;
3887 3885 spa_load_spares(spa);
3888 3886 }
3889 3887 if (spa->spa_l2cache.sav_config) {
3890 3888 nvlist_free(spa->spa_l2cache.sav_config);
3891 3889 spa->spa_l2cache.sav_config = NULL;
3892 3890 spa_load_l2cache(spa);
3893 3891 }
3894 3892
3895 3893 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3896 3894 &nvroot) == 0);
3897 3895 if (error == 0)
3898 3896 error = spa_validate_aux(spa, nvroot, -1ULL,
3899 3897 VDEV_ALLOC_SPARE);
3900 3898 if (error == 0)
3901 3899 error = spa_validate_aux(spa, nvroot, -1ULL,
3902 3900 VDEV_ALLOC_L2CACHE);
3903 3901 spa_config_exit(spa, SCL_ALL, FTAG);
3904 3902
3905 3903 if (props != NULL)
3906 3904 spa_configfile_set(spa, props, B_FALSE);
3907 3905
3908 3906 if (error != 0 || (props && spa_writeable(spa) &&
3909 3907 (error = spa_prop_set(spa, props)))) {
3910 3908 spa_unload(spa);
3911 3909 spa_deactivate(spa);
3912 3910 spa_remove(spa);
3913 3911 mutex_exit(&spa_namespace_lock);
3914 3912 return (error);
3915 3913 }
3916 3914
3917 3915 spa_async_resume(spa);
3918 3916
3919 3917 /*
3920 3918 * Override any spares and level 2 cache devices as specified by
3921 3919 * the user, as these may have correct device names/devids, etc.
3922 3920 */
3923 3921 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3924 3922 &spares, &nspares) == 0) {
3925 3923 if (spa->spa_spares.sav_config)
3926 3924 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3927 3925 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3928 3926 else
3929 3927 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3930 3928 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3931 3929 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3932 3930 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3933 3931 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3934 3932 spa_load_spares(spa);
3935 3933 spa_config_exit(spa, SCL_ALL, FTAG);
3936 3934 spa->spa_spares.sav_sync = B_TRUE;
3937 3935 }
3938 3936 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3939 3937 &l2cache, &nl2cache) == 0) {
3940 3938 if (spa->spa_l2cache.sav_config)
3941 3939 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3942 3940 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3943 3941 else
3944 3942 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3945 3943 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3946 3944 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3947 3945 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3948 3946 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3949 3947 spa_load_l2cache(spa);
3950 3948 spa_config_exit(spa, SCL_ALL, FTAG);
3951 3949 spa->spa_l2cache.sav_sync = B_TRUE;
3952 3950 }
3953 3951
3954 3952 /*
3955 3953 * Check for any removed devices.
3956 3954 */
3957 3955 if (spa->spa_autoreplace) {
3958 3956 spa_aux_check_removed(&spa->spa_spares);
3959 3957 spa_aux_check_removed(&spa->spa_l2cache);
3960 3958 }
3961 3959
3962 3960 if (spa_writeable(spa)) {
3963 3961 /*
3964 3962 * Update the config cache to include the newly-imported pool.
3965 3963 */
3966 3964 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3967 3965 }
3968 3966
3969 3967 /*
3970 3968 * It's possible that the pool was expanded while it was exported.
3971 3969 * We kick off an async task to handle this for us.
3972 3970 */
3973 3971 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3974 3972
3975 3973 mutex_exit(&spa_namespace_lock);
3976 3974 spa_history_log_version(spa, "import");
3977 3975
3978 3976 return (0);
3979 3977 }
3980 3978
3981 3979 nvlist_t *
3982 3980 spa_tryimport(nvlist_t *tryconfig)
3983 3981 {
3984 3982 nvlist_t *config = NULL;
3985 3983 char *poolname;
3986 3984 spa_t *spa;
3987 3985 uint64_t state;
3988 3986 int error;
3989 3987
3990 3988 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3991 3989 return (NULL);
3992 3990
3993 3991 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3994 3992 return (NULL);
3995 3993
3996 3994 /*
3997 3995 * Create and initialize the spa structure.
3998 3996 */
3999 3997 mutex_enter(&spa_namespace_lock);
4000 3998 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4001 3999 spa_activate(spa, FREAD);
4002 4000
4003 4001 /*
4004 4002 * Pass off the heavy lifting to spa_load().
4005 4003 * Pass TRUE for mosconfig because the user-supplied config
4006 4004 * is actually the one to trust when doing an import.
4007 4005 */
4008 4006 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4009 4007
4010 4008 /*
4011 4009 * If 'tryconfig' was at least parsable, return the current config.
4012 4010 */
4013 4011 if (spa->spa_root_vdev != NULL) {
4014 4012 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4015 4013 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4016 4014 poolname) == 0);
4017 4015 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4018 4016 state) == 0);
4019 4017 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4020 4018 spa->spa_uberblock.ub_timestamp) == 0);
4021 4019 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4022 4020 spa->spa_load_info) == 0);
4023 4021
4024 4022 /*
4025 4023 * If the bootfs property exists on this pool then we
4026 4024 * copy it out so that external consumers can tell which
4027 4025 * pools are bootable.
4028 4026 */
4029 4027 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4030 4028 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4031 4029
4032 4030 /*
4033 4031 * We have to play games with the name since the
4034 4032 * pool was opened as TRYIMPORT_NAME.
4035 4033 */
4036 4034 if (dsl_dsobj_to_dsname(spa_name(spa),
4037 4035 spa->spa_bootfs, tmpname) == 0) {
4038 4036 char *cp;
4039 4037 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4040 4038
4041 4039 cp = strchr(tmpname, '/');
4042 4040 if (cp == NULL) {
4043 4041 (void) strlcpy(dsname, tmpname,
4044 4042 MAXPATHLEN);
4045 4043 } else {
4046 4044 (void) snprintf(dsname, MAXPATHLEN,
4047 4045 "%s/%s", poolname, ++cp);
4048 4046 }
4049 4047 VERIFY(nvlist_add_string(config,
4050 4048 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4051 4049 kmem_free(dsname, MAXPATHLEN);
4052 4050 }
4053 4051 kmem_free(tmpname, MAXPATHLEN);
4054 4052 }
4055 4053
4056 4054 /*
4057 4055 * Add the list of hot spares and level 2 cache devices.
4058 4056 */
4059 4057 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4060 4058 spa_add_spares(spa, config);
4061 4059 spa_add_l2cache(spa, config);
4062 4060 spa_config_exit(spa, SCL_CONFIG, FTAG);
4063 4061 }
4064 4062
4065 4063 spa_unload(spa);
4066 4064 spa_deactivate(spa);
4067 4065 spa_remove(spa);
4068 4066 mutex_exit(&spa_namespace_lock);
4069 4067
4070 4068 return (config);
4071 4069 }
4072 4070
4073 4071 /*
4074 4072 * Pool export/destroy
4075 4073 *
4076 4074 * The act of destroying or exporting a pool is very simple. We make sure there
4077 4075 * is no more pending I/O and any references to the pool are gone. Then, we
4078 4076 * update the pool state and sync all the labels to disk, removing the
4079 4077 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4080 4078 * we don't sync the labels or remove the configuration cache.
4081 4079 */
4082 4080 static int
4083 4081 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4084 4082 boolean_t force, boolean_t hardforce)
4085 4083 {
4086 4084 spa_t *spa;
4087 4085
4088 4086 if (oldconfig)
4089 4087 *oldconfig = NULL;
4090 4088
4091 4089 if (!(spa_mode_global & FWRITE))
4092 4090 return (SET_ERROR(EROFS));
4093 4091
4094 4092 mutex_enter(&spa_namespace_lock);
4095 4093 if ((spa = spa_lookup(pool)) == NULL) {
4096 4094 mutex_exit(&spa_namespace_lock);
4097 4095 return (SET_ERROR(ENOENT));
4098 4096 }
4099 4097
4100 4098 /*
4101 4099 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4102 4100 * reacquire the namespace lock, and see if we can export.
4103 4101 */
4104 4102 spa_open_ref(spa, FTAG);
4105 4103 mutex_exit(&spa_namespace_lock);
4106 4104 spa_async_suspend(spa);
4107 4105 mutex_enter(&spa_namespace_lock);
4108 4106 spa_close(spa, FTAG);
4109 4107
4110 4108 /*
4111 4109 * The pool will be in core if it's openable,
4112 4110 * in which case we can modify its state.
4113 4111 */
4114 4112 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4115 4113 /*
4116 4114 * Objsets may be open only because they're dirty, so we
4117 4115 * have to force it to sync before checking spa_refcnt.
4118 4116 */
4119 4117 txg_wait_synced(spa->spa_dsl_pool, 0);
4120 4118
4121 4119 /*
4122 4120 * A pool cannot be exported or destroyed if there are active
4123 4121 * references. If we are resetting a pool, allow references by
4124 4122 * fault injection handlers.
4125 4123 */
4126 4124 if (!spa_refcount_zero(spa) ||
4127 4125 (spa->spa_inject_ref != 0 &&
4128 4126 new_state != POOL_STATE_UNINITIALIZED)) {
4129 4127 spa_async_resume(spa);
4130 4128 mutex_exit(&spa_namespace_lock);
4131 4129 return (SET_ERROR(EBUSY));
4132 4130 }
4133 4131
4134 4132 /*
4135 4133 * A pool cannot be exported if it has an active shared spare.
4136 4134 * This is to prevent other pools stealing the active spare
4137 4135 * from an exported pool. At user's own will, such pool can
4138 4136 * be forcedly exported.
4139 4137 */
4140 4138 if (!force && new_state == POOL_STATE_EXPORTED &&
4141 4139 spa_has_active_shared_spare(spa)) {
4142 4140 spa_async_resume(spa);
4143 4141 mutex_exit(&spa_namespace_lock);
4144 4142 return (SET_ERROR(EXDEV));
4145 4143 }
4146 4144
4147 4145 /*
4148 4146 * We want this to be reflected on every label,
4149 4147 * so mark them all dirty. spa_unload() will do the
4150 4148 * final sync that pushes these changes out.
4151 4149 */
4152 4150 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4153 4151 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4154 4152 spa->spa_state = new_state;
4155 4153 spa->spa_final_txg = spa_last_synced_txg(spa) +
4156 4154 TXG_DEFER_SIZE + 1;
4157 4155 vdev_config_dirty(spa->spa_root_vdev);
4158 4156 spa_config_exit(spa, SCL_ALL, FTAG);
4159 4157 }
4160 4158 }
4161 4159
4162 4160 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4163 4161
4164 4162 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4165 4163 spa_unload(spa);
4166 4164 spa_deactivate(spa);
4167 4165 }
4168 4166
4169 4167 if (oldconfig && spa->spa_config)
4170 4168 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4171 4169
4172 4170 if (new_state != POOL_STATE_UNINITIALIZED) {
4173 4171 if (!hardforce)
4174 4172 spa_config_sync(spa, B_TRUE, B_TRUE);
4175 4173 spa_remove(spa);
4176 4174 }
4177 4175 mutex_exit(&spa_namespace_lock);
4178 4176
4179 4177 return (0);
4180 4178 }
4181 4179
4182 4180 /*
4183 4181 * Destroy a storage pool.
4184 4182 */
4185 4183 int
4186 4184 spa_destroy(char *pool)
4187 4185 {
4188 4186 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4189 4187 B_FALSE, B_FALSE));
4190 4188 }
4191 4189
4192 4190 /*
4193 4191 * Export a storage pool.
4194 4192 */
4195 4193 int
4196 4194 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4197 4195 boolean_t hardforce)
4198 4196 {
4199 4197 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4200 4198 force, hardforce));
4201 4199 }
4202 4200
4203 4201 /*
4204 4202 * Similar to spa_export(), this unloads the spa_t without actually removing it
4205 4203 * from the namespace in any way.
4206 4204 */
4207 4205 int
4208 4206 spa_reset(char *pool)
4209 4207 {
4210 4208 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4211 4209 B_FALSE, B_FALSE));
4212 4210 }
4213 4211
4214 4212 /*
4215 4213 * ==========================================================================
4216 4214 * Device manipulation
4217 4215 * ==========================================================================
4218 4216 */
4219 4217
4220 4218 /*
4221 4219 * Add a device to a storage pool.
4222 4220 */
4223 4221 int
4224 4222 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4225 4223 {
4226 4224 uint64_t txg, id;
4227 4225 int error;
4228 4226 vdev_t *rvd = spa->spa_root_vdev;
4229 4227 vdev_t *vd, *tvd;
4230 4228 nvlist_t **spares, **l2cache;
4231 4229 uint_t nspares, nl2cache;
4232 4230
4233 4231 ASSERT(spa_writeable(spa));
4234 4232
4235 4233 txg = spa_vdev_enter(spa);
4236 4234
4237 4235 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4238 4236 VDEV_ALLOC_ADD)) != 0)
4239 4237 return (spa_vdev_exit(spa, NULL, txg, error));
4240 4238
4241 4239 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4242 4240
4243 4241 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4244 4242 &nspares) != 0)
4245 4243 nspares = 0;
4246 4244
4247 4245 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4248 4246 &nl2cache) != 0)
4249 4247 nl2cache = 0;
4250 4248
4251 4249 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4252 4250 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4253 4251
4254 4252 if (vd->vdev_children != 0 &&
4255 4253 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4256 4254 return (spa_vdev_exit(spa, vd, txg, error));
4257 4255
4258 4256 /*
4259 4257 * We must validate the spares and l2cache devices after checking the
4260 4258 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4261 4259 */
4262 4260 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4263 4261 return (spa_vdev_exit(spa, vd, txg, error));
4264 4262
4265 4263 /*
4266 4264 * Transfer each new top-level vdev from vd to rvd.
4267 4265 */
4268 4266 for (int c = 0; c < vd->vdev_children; c++) {
4269 4267
4270 4268 /*
4271 4269 * Set the vdev id to the first hole, if one exists.
4272 4270 */
4273 4271 for (id = 0; id < rvd->vdev_children; id++) {
4274 4272 if (rvd->vdev_child[id]->vdev_ishole) {
4275 4273 vdev_free(rvd->vdev_child[id]);
4276 4274 break;
4277 4275 }
4278 4276 }
4279 4277 tvd = vd->vdev_child[c];
4280 4278 vdev_remove_child(vd, tvd);
4281 4279 tvd->vdev_id = id;
4282 4280 vdev_add_child(rvd, tvd);
4283 4281 vdev_config_dirty(tvd);
4284 4282 }
4285 4283
4286 4284 if (nspares != 0) {
4287 4285 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4288 4286 ZPOOL_CONFIG_SPARES);
4289 4287 spa_load_spares(spa);
4290 4288 spa->spa_spares.sav_sync = B_TRUE;
4291 4289 }
4292 4290
4293 4291 if (nl2cache != 0) {
4294 4292 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4295 4293 ZPOOL_CONFIG_L2CACHE);
4296 4294 spa_load_l2cache(spa);
4297 4295 spa->spa_l2cache.sav_sync = B_TRUE;
4298 4296 }
4299 4297
4300 4298 /*
4301 4299 * We have to be careful when adding new vdevs to an existing pool.
4302 4300 * If other threads start allocating from these vdevs before we
4303 4301 * sync the config cache, and we lose power, then upon reboot we may
4304 4302 * fail to open the pool because there are DVAs that the config cache
4305 4303 * can't translate. Therefore, we first add the vdevs without
4306 4304 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4307 4305 * and then let spa_config_update() initialize the new metaslabs.
4308 4306 *
4309 4307 * spa_load() checks for added-but-not-initialized vdevs, so that
4310 4308 * if we lose power at any point in this sequence, the remaining
4311 4309 * steps will be completed the next time we load the pool.
4312 4310 */
4313 4311 (void) spa_vdev_exit(spa, vd, txg, 0);
4314 4312
4315 4313 mutex_enter(&spa_namespace_lock);
4316 4314 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4317 4315 mutex_exit(&spa_namespace_lock);
4318 4316
4319 4317 return (0);
4320 4318 }
4321 4319
4322 4320 /*
4323 4321 * Attach a device to a mirror. The arguments are the path to any device
4324 4322 * in the mirror, and the nvroot for the new device. If the path specifies
4325 4323 * a device that is not mirrored, we automatically insert the mirror vdev.
4326 4324 *
4327 4325 * If 'replacing' is specified, the new device is intended to replace the
4328 4326 * existing device; in this case the two devices are made into their own
4329 4327 * mirror using the 'replacing' vdev, which is functionally identical to
4330 4328 * the mirror vdev (it actually reuses all the same ops) but has a few
4331 4329 * extra rules: you can't attach to it after it's been created, and upon
4332 4330 * completion of resilvering, the first disk (the one being replaced)
4333 4331 * is automatically detached.
4334 4332 */
4335 4333 int
4336 4334 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4337 4335 {
4338 4336 uint64_t txg, dtl_max_txg;
4339 4337 vdev_t *rvd = spa->spa_root_vdev;
4340 4338 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4341 4339 vdev_ops_t *pvops;
4342 4340 char *oldvdpath, *newvdpath;
4343 4341 int newvd_isspare;
4344 4342 int error;
4345 4343
4346 4344 ASSERT(spa_writeable(spa));
4347 4345
4348 4346 txg = spa_vdev_enter(spa);
4349 4347
4350 4348 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4351 4349
4352 4350 if (oldvd == NULL)
4353 4351 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4354 4352
4355 4353 if (!oldvd->vdev_ops->vdev_op_leaf)
4356 4354 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4357 4355
4358 4356 pvd = oldvd->vdev_parent;
4359 4357
4360 4358 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4361 4359 VDEV_ALLOC_ATTACH)) != 0)
4362 4360 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4363 4361
4364 4362 if (newrootvd->vdev_children != 1)
4365 4363 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4366 4364
4367 4365 newvd = newrootvd->vdev_child[0];
4368 4366
4369 4367 if (!newvd->vdev_ops->vdev_op_leaf)
4370 4368 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4371 4369
4372 4370 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4373 4371 return (spa_vdev_exit(spa, newrootvd, txg, error));
4374 4372
4375 4373 /*
4376 4374 * Spares can't replace logs
4377 4375 */
4378 4376 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4379 4377 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4380 4378
4381 4379 if (!replacing) {
4382 4380 /*
4383 4381 * For attach, the only allowable parent is a mirror or the root
4384 4382 * vdev.
4385 4383 */
4386 4384 if (pvd->vdev_ops != &vdev_mirror_ops &&
4387 4385 pvd->vdev_ops != &vdev_root_ops)
4388 4386 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4389 4387
4390 4388 pvops = &vdev_mirror_ops;
4391 4389 } else {
4392 4390 /*
4393 4391 * Active hot spares can only be replaced by inactive hot
4394 4392 * spares.
4395 4393 */
4396 4394 if (pvd->vdev_ops == &vdev_spare_ops &&
4397 4395 oldvd->vdev_isspare &&
4398 4396 !spa_has_spare(spa, newvd->vdev_guid))
4399 4397 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4400 4398
4401 4399 /*
4402 4400 * If the source is a hot spare, and the parent isn't already a
4403 4401 * spare, then we want to create a new hot spare. Otherwise, we
4404 4402 * want to create a replacing vdev. The user is not allowed to
4405 4403 * attach to a spared vdev child unless the 'isspare' state is
4406 4404 * the same (spare replaces spare, non-spare replaces
4407 4405 * non-spare).
4408 4406 */
4409 4407 if (pvd->vdev_ops == &vdev_replacing_ops &&
4410 4408 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4411 4409 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4412 4410 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4413 4411 newvd->vdev_isspare != oldvd->vdev_isspare) {
4414 4412 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4415 4413 }
4416 4414
4417 4415 if (newvd->vdev_isspare)
4418 4416 pvops = &vdev_spare_ops;
4419 4417 else
4420 4418 pvops = &vdev_replacing_ops;
4421 4419 }
4422 4420
4423 4421 /*
4424 4422 * Make sure the new device is big enough.
4425 4423 */
4426 4424 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4427 4425 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4428 4426
4429 4427 /*
4430 4428 * The new device cannot have a higher alignment requirement
4431 4429 * than the top-level vdev.
4432 4430 */
4433 4431 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4434 4432 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4435 4433
4436 4434 /*
4437 4435 * If this is an in-place replacement, update oldvd's path and devid
4438 4436 * to make it distinguishable from newvd, and unopenable from now on.
4439 4437 */
4440 4438 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4441 4439 spa_strfree(oldvd->vdev_path);
4442 4440 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4443 4441 KM_SLEEP);
4444 4442 (void) sprintf(oldvd->vdev_path, "%s/%s",
4445 4443 newvd->vdev_path, "old");
4446 4444 if (oldvd->vdev_devid != NULL) {
4447 4445 spa_strfree(oldvd->vdev_devid);
4448 4446 oldvd->vdev_devid = NULL;
4449 4447 }
4450 4448 }
4451 4449
4452 4450 /* mark the device being resilvered */
4453 4451 newvd->vdev_resilver_txg = txg;
4454 4452
4455 4453 /*
4456 4454 * If the parent is not a mirror, or if we're replacing, insert the new
4457 4455 * mirror/replacing/spare vdev above oldvd.
4458 4456 */
4459 4457 if (pvd->vdev_ops != pvops)
4460 4458 pvd = vdev_add_parent(oldvd, pvops);
4461 4459
4462 4460 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4463 4461 ASSERT(pvd->vdev_ops == pvops);
4464 4462 ASSERT(oldvd->vdev_parent == pvd);
4465 4463
4466 4464 /*
4467 4465 * Extract the new device from its root and add it to pvd.
4468 4466 */
4469 4467 vdev_remove_child(newrootvd, newvd);
4470 4468 newvd->vdev_id = pvd->vdev_children;
4471 4469 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4472 4470 vdev_add_child(pvd, newvd);
4473 4471
4474 4472 tvd = newvd->vdev_top;
4475 4473 ASSERT(pvd->vdev_top == tvd);
4476 4474 ASSERT(tvd->vdev_parent == rvd);
4477 4475
4478 4476 vdev_config_dirty(tvd);
4479 4477
4480 4478 /*
4481 4479 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4482 4480 * for any dmu_sync-ed blocks. It will propagate upward when
4483 4481 * spa_vdev_exit() calls vdev_dtl_reassess().
4484 4482 */
4485 4483 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4486 4484
4487 4485 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4488 4486 dtl_max_txg - TXG_INITIAL);
4489 4487
4490 4488 if (newvd->vdev_isspare) {
4491 4489 spa_spare_activate(newvd);
4492 4490 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4493 4491 }
4494 4492
4495 4493 oldvdpath = spa_strdup(oldvd->vdev_path);
4496 4494 newvdpath = spa_strdup(newvd->vdev_path);
4497 4495 newvd_isspare = newvd->vdev_isspare;
4498 4496
4499 4497 /*
4500 4498 * Mark newvd's DTL dirty in this txg.
4501 4499 */
4502 4500 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4503 4501
4504 4502 /*
4505 4503 * Schedule the resilver to restart in the future. We do this to
4506 4504 * ensure that dmu_sync-ed blocks have been stitched into the
4507 4505 * respective datasets.
4508 4506 */
4509 4507 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4510 4508
4511 4509 /*
4512 4510 * Commit the config
4513 4511 */
4514 4512 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4515 4513
4516 4514 spa_history_log_internal(spa, "vdev attach", NULL,
4517 4515 "%s vdev=%s %s vdev=%s",
4518 4516 replacing && newvd_isspare ? "spare in" :
4519 4517 replacing ? "replace" : "attach", newvdpath,
4520 4518 replacing ? "for" : "to", oldvdpath);
4521 4519
4522 4520 spa_strfree(oldvdpath);
4523 4521 spa_strfree(newvdpath);
4524 4522
4525 4523 if (spa->spa_bootfs)
4526 4524 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4527 4525
4528 4526 return (0);
4529 4527 }
4530 4528
4531 4529 /*
4532 4530 * Detach a device from a mirror or replacing vdev.
4533 4531 *
4534 4532 * If 'replace_done' is specified, only detach if the parent
4535 4533 * is a replacing vdev.
4536 4534 */
4537 4535 int
4538 4536 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4539 4537 {
4540 4538 uint64_t txg;
4541 4539 int error;
4542 4540 vdev_t *rvd = spa->spa_root_vdev;
4543 4541 vdev_t *vd, *pvd, *cvd, *tvd;
4544 4542 boolean_t unspare = B_FALSE;
4545 4543 uint64_t unspare_guid = 0;
4546 4544 char *vdpath;
4547 4545
4548 4546 ASSERT(spa_writeable(spa));
4549 4547
4550 4548 txg = spa_vdev_enter(spa);
4551 4549
4552 4550 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4553 4551
4554 4552 if (vd == NULL)
4555 4553 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4556 4554
4557 4555 if (!vd->vdev_ops->vdev_op_leaf)
4558 4556 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4559 4557
4560 4558 pvd = vd->vdev_parent;
4561 4559
4562 4560 /*
4563 4561 * If the parent/child relationship is not as expected, don't do it.
4564 4562 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4565 4563 * vdev that's replacing B with C. The user's intent in replacing
4566 4564 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4567 4565 * the replace by detaching C, the expected behavior is to end up
4568 4566 * M(A,B). But suppose that right after deciding to detach C,
4569 4567 * the replacement of B completes. We would have M(A,C), and then
4570 4568 * ask to detach C, which would leave us with just A -- not what
4571 4569 * the user wanted. To prevent this, we make sure that the
4572 4570 * parent/child relationship hasn't changed -- in this example,
4573 4571 * that C's parent is still the replacing vdev R.
4574 4572 */
4575 4573 if (pvd->vdev_guid != pguid && pguid != 0)
4576 4574 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4577 4575
4578 4576 /*
4579 4577 * Only 'replacing' or 'spare' vdevs can be replaced.
4580 4578 */
4581 4579 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4582 4580 pvd->vdev_ops != &vdev_spare_ops)
4583 4581 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4584 4582
4585 4583 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4586 4584 spa_version(spa) >= SPA_VERSION_SPARES);
4587 4585
4588 4586 /*
4589 4587 * Only mirror, replacing, and spare vdevs support detach.
4590 4588 */
4591 4589 if (pvd->vdev_ops != &vdev_replacing_ops &&
4592 4590 pvd->vdev_ops != &vdev_mirror_ops &&
4593 4591 pvd->vdev_ops != &vdev_spare_ops)
4594 4592 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4595 4593
4596 4594 /*
4597 4595 * If this device has the only valid copy of some data,
4598 4596 * we cannot safely detach it.
4599 4597 */
4600 4598 if (vdev_dtl_required(vd))
4601 4599 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4602 4600
4603 4601 ASSERT(pvd->vdev_children >= 2);
4604 4602
4605 4603 /*
4606 4604 * If we are detaching the second disk from a replacing vdev, then
4607 4605 * check to see if we changed the original vdev's path to have "/old"
4608 4606 * at the end in spa_vdev_attach(). If so, undo that change now.
4609 4607 */
4610 4608 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4611 4609 vd->vdev_path != NULL) {
4612 4610 size_t len = strlen(vd->vdev_path);
4613 4611
4614 4612 for (int c = 0; c < pvd->vdev_children; c++) {
4615 4613 cvd = pvd->vdev_child[c];
4616 4614
4617 4615 if (cvd == vd || cvd->vdev_path == NULL)
4618 4616 continue;
4619 4617
4620 4618 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4621 4619 strcmp(cvd->vdev_path + len, "/old") == 0) {
4622 4620 spa_strfree(cvd->vdev_path);
4623 4621 cvd->vdev_path = spa_strdup(vd->vdev_path);
4624 4622 break;
4625 4623 }
4626 4624 }
4627 4625 }
4628 4626
4629 4627 /*
4630 4628 * If we are detaching the original disk from a spare, then it implies
4631 4629 * that the spare should become a real disk, and be removed from the
4632 4630 * active spare list for the pool.
4633 4631 */
4634 4632 if (pvd->vdev_ops == &vdev_spare_ops &&
4635 4633 vd->vdev_id == 0 &&
4636 4634 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4637 4635 unspare = B_TRUE;
4638 4636
4639 4637 /*
4640 4638 * Erase the disk labels so the disk can be used for other things.
4641 4639 * This must be done after all other error cases are handled,
4642 4640 * but before we disembowel vd (so we can still do I/O to it).
4643 4641 * But if we can't do it, don't treat the error as fatal --
4644 4642 * it may be that the unwritability of the disk is the reason
4645 4643 * it's being detached!
4646 4644 */
4647 4645 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4648 4646
4649 4647 /*
4650 4648 * Remove vd from its parent and compact the parent's children.
4651 4649 */
4652 4650 vdev_remove_child(pvd, vd);
4653 4651 vdev_compact_children(pvd);
4654 4652
4655 4653 /*
4656 4654 * Remember one of the remaining children so we can get tvd below.
4657 4655 */
4658 4656 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4659 4657
4660 4658 /*
4661 4659 * If we need to remove the remaining child from the list of hot spares,
4662 4660 * do it now, marking the vdev as no longer a spare in the process.
4663 4661 * We must do this before vdev_remove_parent(), because that can
4664 4662 * change the GUID if it creates a new toplevel GUID. For a similar
4665 4663 * reason, we must remove the spare now, in the same txg as the detach;
4666 4664 * otherwise someone could attach a new sibling, change the GUID, and
4667 4665 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4668 4666 */
4669 4667 if (unspare) {
4670 4668 ASSERT(cvd->vdev_isspare);
4671 4669 spa_spare_remove(cvd);
4672 4670 unspare_guid = cvd->vdev_guid;
4673 4671 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4674 4672 cvd->vdev_unspare = B_TRUE;
4675 4673 }
4676 4674
4677 4675 /*
4678 4676 * If the parent mirror/replacing vdev only has one child,
4679 4677 * the parent is no longer needed. Remove it from the tree.
4680 4678 */
4681 4679 if (pvd->vdev_children == 1) {
4682 4680 if (pvd->vdev_ops == &vdev_spare_ops)
4683 4681 cvd->vdev_unspare = B_FALSE;
4684 4682 vdev_remove_parent(cvd);
4685 4683 }
4686 4684
4687 4685
4688 4686 /*
4689 4687 * We don't set tvd until now because the parent we just removed
4690 4688 * may have been the previous top-level vdev.
4691 4689 */
4692 4690 tvd = cvd->vdev_top;
4693 4691 ASSERT(tvd->vdev_parent == rvd);
4694 4692
4695 4693 /*
4696 4694 * Reevaluate the parent vdev state.
4697 4695 */
4698 4696 vdev_propagate_state(cvd);
4699 4697
4700 4698 /*
4701 4699 * If the 'autoexpand' property is set on the pool then automatically
4702 4700 * try to expand the size of the pool. For example if the device we
4703 4701 * just detached was smaller than the others, it may be possible to
4704 4702 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4705 4703 * first so that we can obtain the updated sizes of the leaf vdevs.
4706 4704 */
4707 4705 if (spa->spa_autoexpand) {
4708 4706 vdev_reopen(tvd);
4709 4707 vdev_expand(tvd, txg);
4710 4708 }
4711 4709
4712 4710 vdev_config_dirty(tvd);
4713 4711
4714 4712 /*
4715 4713 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4716 4714 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4717 4715 * But first make sure we're not on any *other* txg's DTL list, to
4718 4716 * prevent vd from being accessed after it's freed.
4719 4717 */
4720 4718 vdpath = spa_strdup(vd->vdev_path);
4721 4719 for (int t = 0; t < TXG_SIZE; t++)
4722 4720 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4723 4721 vd->vdev_detached = B_TRUE;
4724 4722 vdev_dirty(tvd, VDD_DTL, vd, txg);
4725 4723
4726 4724 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4727 4725
4728 4726 /* hang on to the spa before we release the lock */
4729 4727 spa_open_ref(spa, FTAG);
4730 4728
4731 4729 error = spa_vdev_exit(spa, vd, txg, 0);
4732 4730
4733 4731 spa_history_log_internal(spa, "detach", NULL,
4734 4732 "vdev=%s", vdpath);
4735 4733 spa_strfree(vdpath);
4736 4734
4737 4735 /*
4738 4736 * If this was the removal of the original device in a hot spare vdev,
4739 4737 * then we want to go through and remove the device from the hot spare
4740 4738 * list of every other pool.
4741 4739 */
4742 4740 if (unspare) {
4743 4741 spa_t *altspa = NULL;
4744 4742
4745 4743 mutex_enter(&spa_namespace_lock);
4746 4744 while ((altspa = spa_next(altspa)) != NULL) {
4747 4745 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4748 4746 altspa == spa)
4749 4747 continue;
4750 4748
4751 4749 spa_open_ref(altspa, FTAG);
4752 4750 mutex_exit(&spa_namespace_lock);
4753 4751 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4754 4752 mutex_enter(&spa_namespace_lock);
4755 4753 spa_close(altspa, FTAG);
4756 4754 }
4757 4755 mutex_exit(&spa_namespace_lock);
4758 4756
4759 4757 /* search the rest of the vdevs for spares to remove */
4760 4758 spa_vdev_resilver_done(spa);
4761 4759 }
4762 4760
4763 4761 /* all done with the spa; OK to release */
4764 4762 mutex_enter(&spa_namespace_lock);
4765 4763 spa_close(spa, FTAG);
4766 4764 mutex_exit(&spa_namespace_lock);
4767 4765
4768 4766 return (error);
4769 4767 }
4770 4768
4771 4769 /*
4772 4770 * Split a set of devices from their mirrors, and create a new pool from them.
4773 4771 */
4774 4772 int
4775 4773 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4776 4774 nvlist_t *props, boolean_t exp)
4777 4775 {
4778 4776 int error = 0;
4779 4777 uint64_t txg, *glist;
4780 4778 spa_t *newspa;
4781 4779 uint_t c, children, lastlog;
4782 4780 nvlist_t **child, *nvl, *tmp;
4783 4781 dmu_tx_t *tx;
4784 4782 char *altroot = NULL;
4785 4783 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4786 4784 boolean_t activate_slog;
4787 4785
4788 4786 ASSERT(spa_writeable(spa));
4789 4787
4790 4788 txg = spa_vdev_enter(spa);
4791 4789
4792 4790 /* clear the log and flush everything up to now */
4793 4791 activate_slog = spa_passivate_log(spa);
4794 4792 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4795 4793 error = spa_offline_log(spa);
4796 4794 txg = spa_vdev_config_enter(spa);
4797 4795
4798 4796 if (activate_slog)
4799 4797 spa_activate_log(spa);
4800 4798
4801 4799 if (error != 0)
4802 4800 return (spa_vdev_exit(spa, NULL, txg, error));
4803 4801
4804 4802 /* check new spa name before going any further */
4805 4803 if (spa_lookup(newname) != NULL)
4806 4804 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4807 4805
4808 4806 /*
4809 4807 * scan through all the children to ensure they're all mirrors
4810 4808 */
4811 4809 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4812 4810 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4813 4811 &children) != 0)
4814 4812 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4815 4813
4816 4814 /* first, check to ensure we've got the right child count */
4817 4815 rvd = spa->spa_root_vdev;
4818 4816 lastlog = 0;
4819 4817 for (c = 0; c < rvd->vdev_children; c++) {
4820 4818 vdev_t *vd = rvd->vdev_child[c];
4821 4819
4822 4820 /* don't count the holes & logs as children */
4823 4821 if (vd->vdev_islog || vd->vdev_ishole) {
4824 4822 if (lastlog == 0)
4825 4823 lastlog = c;
4826 4824 continue;
4827 4825 }
4828 4826
4829 4827 lastlog = 0;
4830 4828 }
4831 4829 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4832 4830 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4833 4831
4834 4832 /* next, ensure no spare or cache devices are part of the split */
4835 4833 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4836 4834 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4837 4835 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4838 4836
4839 4837 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4840 4838 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4841 4839
4842 4840 /* then, loop over each vdev and validate it */
4843 4841 for (c = 0; c < children; c++) {
4844 4842 uint64_t is_hole = 0;
4845 4843
4846 4844 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4847 4845 &is_hole);
4848 4846
4849 4847 if (is_hole != 0) {
4850 4848 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4851 4849 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4852 4850 continue;
4853 4851 } else {
4854 4852 error = SET_ERROR(EINVAL);
4855 4853 break;
4856 4854 }
4857 4855 }
4858 4856
4859 4857 /* which disk is going to be split? */
4860 4858 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4861 4859 &glist[c]) != 0) {
4862 4860 error = SET_ERROR(EINVAL);
4863 4861 break;
4864 4862 }
4865 4863
4866 4864 /* look it up in the spa */
4867 4865 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4868 4866 if (vml[c] == NULL) {
4869 4867 error = SET_ERROR(ENODEV);
4870 4868 break;
4871 4869 }
4872 4870
4873 4871 /* make sure there's nothing stopping the split */
4874 4872 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4875 4873 vml[c]->vdev_islog ||
4876 4874 vml[c]->vdev_ishole ||
4877 4875 vml[c]->vdev_isspare ||
4878 4876 vml[c]->vdev_isl2cache ||
4879 4877 !vdev_writeable(vml[c]) ||
4880 4878 vml[c]->vdev_children != 0 ||
4881 4879 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4882 4880 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4883 4881 error = SET_ERROR(EINVAL);
4884 4882 break;
4885 4883 }
4886 4884
4887 4885 if (vdev_dtl_required(vml[c])) {
4888 4886 error = SET_ERROR(EBUSY);
4889 4887 break;
4890 4888 }
4891 4889
4892 4890 /* we need certain info from the top level */
4893 4891 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4894 4892 vml[c]->vdev_top->vdev_ms_array) == 0);
4895 4893 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4896 4894 vml[c]->vdev_top->vdev_ms_shift) == 0);
4897 4895 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4898 4896 vml[c]->vdev_top->vdev_asize) == 0);
4899 4897 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4900 4898 vml[c]->vdev_top->vdev_ashift) == 0);
4901 4899 }
4902 4900
4903 4901 if (error != 0) {
4904 4902 kmem_free(vml, children * sizeof (vdev_t *));
4905 4903 kmem_free(glist, children * sizeof (uint64_t));
4906 4904 return (spa_vdev_exit(spa, NULL, txg, error));
4907 4905 }
4908 4906
4909 4907 /* stop writers from using the disks */
4910 4908 for (c = 0; c < children; c++) {
4911 4909 if (vml[c] != NULL)
4912 4910 vml[c]->vdev_offline = B_TRUE;
4913 4911 }
4914 4912 vdev_reopen(spa->spa_root_vdev);
4915 4913
4916 4914 /*
4917 4915 * Temporarily record the splitting vdevs in the spa config. This
4918 4916 * will disappear once the config is regenerated.
4919 4917 */
4920 4918 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4921 4919 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4922 4920 glist, children) == 0);
4923 4921 kmem_free(glist, children * sizeof (uint64_t));
4924 4922
4925 4923 mutex_enter(&spa->spa_props_lock);
4926 4924 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4927 4925 nvl) == 0);
4928 4926 mutex_exit(&spa->spa_props_lock);
4929 4927 spa->spa_config_splitting = nvl;
4930 4928 vdev_config_dirty(spa->spa_root_vdev);
4931 4929
4932 4930 /* configure and create the new pool */
4933 4931 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4934 4932 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4935 4933 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4936 4934 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4937 4935 spa_version(spa)) == 0);
4938 4936 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4939 4937 spa->spa_config_txg) == 0);
4940 4938 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4941 4939 spa_generate_guid(NULL)) == 0);
4942 4940 (void) nvlist_lookup_string(props,
4943 4941 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4944 4942
4945 4943 /* add the new pool to the namespace */
4946 4944 newspa = spa_add(newname, config, altroot);
4947 4945 newspa->spa_config_txg = spa->spa_config_txg;
4948 4946 spa_set_log_state(newspa, SPA_LOG_CLEAR);
4949 4947
4950 4948 /* release the spa config lock, retaining the namespace lock */
4951 4949 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4952 4950
4953 4951 if (zio_injection_enabled)
4954 4952 zio_handle_panic_injection(spa, FTAG, 1);
4955 4953
4956 4954 spa_activate(newspa, spa_mode_global);
4957 4955 spa_async_suspend(newspa);
4958 4956
4959 4957 /* create the new pool from the disks of the original pool */
4960 4958 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4961 4959 if (error)
4962 4960 goto out;
4963 4961
4964 4962 /* if that worked, generate a real config for the new pool */
4965 4963 if (newspa->spa_root_vdev != NULL) {
4966 4964 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4967 4965 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4968 4966 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4969 4967 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4970 4968 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4971 4969 B_TRUE));
4972 4970 }
4973 4971
4974 4972 /* set the props */
4975 4973 if (props != NULL) {
4976 4974 spa_configfile_set(newspa, props, B_FALSE);
4977 4975 error = spa_prop_set(newspa, props);
4978 4976 if (error)
4979 4977 goto out;
4980 4978 }
4981 4979
4982 4980 /* flush everything */
4983 4981 txg = spa_vdev_config_enter(newspa);
4984 4982 vdev_config_dirty(newspa->spa_root_vdev);
4985 4983 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4986 4984
4987 4985 if (zio_injection_enabled)
4988 4986 zio_handle_panic_injection(spa, FTAG, 2);
4989 4987
4990 4988 spa_async_resume(newspa);
4991 4989
4992 4990 /* finally, update the original pool's config */
4993 4991 txg = spa_vdev_config_enter(spa);
4994 4992 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4995 4993 error = dmu_tx_assign(tx, TXG_WAIT);
4996 4994 if (error != 0)
4997 4995 dmu_tx_abort(tx);
4998 4996 for (c = 0; c < children; c++) {
4999 4997 if (vml[c] != NULL) {
5000 4998 vdev_split(vml[c]);
5001 4999 if (error == 0)
5002 5000 spa_history_log_internal(spa, "detach", tx,
5003 5001 "vdev=%s", vml[c]->vdev_path);
5004 5002 vdev_free(vml[c]);
5005 5003 }
5006 5004 }
5007 5005 vdev_config_dirty(spa->spa_root_vdev);
5008 5006 spa->spa_config_splitting = NULL;
5009 5007 nvlist_free(nvl);
5010 5008 if (error == 0)
5011 5009 dmu_tx_commit(tx);
5012 5010 (void) spa_vdev_exit(spa, NULL, txg, 0);
5013 5011
5014 5012 if (zio_injection_enabled)
5015 5013 zio_handle_panic_injection(spa, FTAG, 3);
5016 5014
5017 5015 /* split is complete; log a history record */
5018 5016 spa_history_log_internal(newspa, "split", NULL,
5019 5017 "from pool %s", spa_name(spa));
5020 5018
5021 5019 kmem_free(vml, children * sizeof (vdev_t *));
5022 5020
5023 5021 /* if we're not going to mount the filesystems in userland, export */
5024 5022 if (exp)
5025 5023 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5026 5024 B_FALSE, B_FALSE);
5027 5025
5028 5026 return (error);
5029 5027
5030 5028 out:
5031 5029 spa_unload(newspa);
5032 5030 spa_deactivate(newspa);
5033 5031 spa_remove(newspa);
5034 5032
5035 5033 txg = spa_vdev_config_enter(spa);
5036 5034
5037 5035 /* re-online all offlined disks */
5038 5036 for (c = 0; c < children; c++) {
5039 5037 if (vml[c] != NULL)
5040 5038 vml[c]->vdev_offline = B_FALSE;
5041 5039 }
5042 5040 vdev_reopen(spa->spa_root_vdev);
5043 5041
5044 5042 nvlist_free(spa->spa_config_splitting);
5045 5043 spa->spa_config_splitting = NULL;
5046 5044 (void) spa_vdev_exit(spa, NULL, txg, error);
5047 5045
5048 5046 kmem_free(vml, children * sizeof (vdev_t *));
5049 5047 return (error);
5050 5048 }
5051 5049
5052 5050 static nvlist_t *
5053 5051 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5054 5052 {
5055 5053 for (int i = 0; i < count; i++) {
5056 5054 uint64_t guid;
5057 5055
5058 5056 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5059 5057 &guid) == 0);
5060 5058
5061 5059 if (guid == target_guid)
5062 5060 return (nvpp[i]);
5063 5061 }
5064 5062
5065 5063 return (NULL);
5066 5064 }
5067 5065
5068 5066 static void
5069 5067 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5070 5068 nvlist_t *dev_to_remove)
5071 5069 {
5072 5070 nvlist_t **newdev = NULL;
5073 5071
5074 5072 if (count > 1)
5075 5073 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5076 5074
5077 5075 for (int i = 0, j = 0; i < count; i++) {
5078 5076 if (dev[i] == dev_to_remove)
5079 5077 continue;
5080 5078 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5081 5079 }
5082 5080
5083 5081 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5084 5082 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5085 5083
5086 5084 for (int i = 0; i < count - 1; i++)
5087 5085 nvlist_free(newdev[i]);
5088 5086
5089 5087 if (count > 1)
5090 5088 kmem_free(newdev, (count - 1) * sizeof (void *));
5091 5089 }
5092 5090
5093 5091 /*
5094 5092 * Evacuate the device.
5095 5093 */
5096 5094 static int
5097 5095 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5098 5096 {
5099 5097 uint64_t txg;
5100 5098 int error = 0;
5101 5099
5102 5100 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5103 5101 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5104 5102 ASSERT(vd == vd->vdev_top);
5105 5103
5106 5104 /*
5107 5105 * Evacuate the device. We don't hold the config lock as writer
5108 5106 * since we need to do I/O but we do keep the
5109 5107 * spa_namespace_lock held. Once this completes the device
5110 5108 * should no longer have any blocks allocated on it.
5111 5109 */
5112 5110 if (vd->vdev_islog) {
5113 5111 if (vd->vdev_stat.vs_alloc != 0)
5114 5112 error = spa_offline_log(spa);
5115 5113 } else {
5116 5114 error = SET_ERROR(ENOTSUP);
5117 5115 }
5118 5116
5119 5117 if (error)
5120 5118 return (error);
5121 5119
5122 5120 /*
5123 5121 * The evacuation succeeded. Remove any remaining MOS metadata
5124 5122 * associated with this vdev, and wait for these changes to sync.
5125 5123 */
5126 5124 ASSERT0(vd->vdev_stat.vs_alloc);
5127 5125 txg = spa_vdev_config_enter(spa);
5128 5126 vd->vdev_removing = B_TRUE;
5129 5127 vdev_dirty_leaves(vd, VDD_DTL, txg);
5130 5128 vdev_config_dirty(vd);
5131 5129 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5132 5130
5133 5131 return (0);
5134 5132 }
5135 5133
5136 5134 /*
5137 5135 * Complete the removal by cleaning up the namespace.
5138 5136 */
5139 5137 static void
5140 5138 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5141 5139 {
5142 5140 vdev_t *rvd = spa->spa_root_vdev;
5143 5141 uint64_t id = vd->vdev_id;
5144 5142 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5145 5143
5146 5144 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5147 5145 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5148 5146 ASSERT(vd == vd->vdev_top);
5149 5147
5150 5148 /*
5151 5149 * Only remove any devices which are empty.
5152 5150 */
5153 5151 if (vd->vdev_stat.vs_alloc != 0)
5154 5152 return;
5155 5153
5156 5154 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5157 5155
5158 5156 if (list_link_active(&vd->vdev_state_dirty_node))
5159 5157 vdev_state_clean(vd);
5160 5158 if (list_link_active(&vd->vdev_config_dirty_node))
5161 5159 vdev_config_clean(vd);
5162 5160
5163 5161 vdev_free(vd);
5164 5162
5165 5163 if (last_vdev) {
5166 5164 vdev_compact_children(rvd);
5167 5165 } else {
5168 5166 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5169 5167 vdev_add_child(rvd, vd);
5170 5168 }
5171 5169 vdev_config_dirty(rvd);
5172 5170
5173 5171 /*
5174 5172 * Reassess the health of our root vdev.
5175 5173 */
5176 5174 vdev_reopen(rvd);
5177 5175 }
5178 5176
5179 5177 /*
5180 5178 * Remove a device from the pool -
5181 5179 *
5182 5180 * Removing a device from the vdev namespace requires several steps
5183 5181 * and can take a significant amount of time. As a result we use
5184 5182 * the spa_vdev_config_[enter/exit] functions which allow us to
5185 5183 * grab and release the spa_config_lock while still holding the namespace
5186 5184 * lock. During each step the configuration is synced out.
5187 5185 *
5188 5186 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5189 5187 * devices.
5190 5188 */
5191 5189 int
5192 5190 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5193 5191 {
5194 5192 vdev_t *vd;
5195 5193 metaslab_group_t *mg;
5196 5194 nvlist_t **spares, **l2cache, *nv;
5197 5195 uint64_t txg = 0;
5198 5196 uint_t nspares, nl2cache;
5199 5197 int error = 0;
5200 5198 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5201 5199
5202 5200 ASSERT(spa_writeable(spa));
5203 5201
5204 5202 if (!locked)
5205 5203 txg = spa_vdev_enter(spa);
5206 5204
5207 5205 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5208 5206
5209 5207 if (spa->spa_spares.sav_vdevs != NULL &&
5210 5208 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5211 5209 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5212 5210 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5213 5211 /*
5214 5212 * Only remove the hot spare if it's not currently in use
5215 5213 * in this pool.
5216 5214 */
5217 5215 if (vd == NULL || unspare) {
5218 5216 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5219 5217 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5220 5218 spa_load_spares(spa);
5221 5219 spa->spa_spares.sav_sync = B_TRUE;
5222 5220 } else {
5223 5221 error = SET_ERROR(EBUSY);
5224 5222 }
5225 5223 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5226 5224 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5227 5225 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5228 5226 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5229 5227 /*
5230 5228 * Cache devices can always be removed.
5231 5229 */
5232 5230 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5233 5231 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5234 5232 spa_load_l2cache(spa);
5235 5233 spa->spa_l2cache.sav_sync = B_TRUE;
5236 5234 } else if (vd != NULL && vd->vdev_islog) {
5237 5235 ASSERT(!locked);
5238 5236 ASSERT(vd == vd->vdev_top);
5239 5237
5240 5238 /*
5241 5239 * XXX - Once we have bp-rewrite this should
5242 5240 * become the common case.
5243 5241 */
5244 5242
5245 5243 mg = vd->vdev_mg;
5246 5244
5247 5245 /*
5248 5246 * Stop allocating from this vdev.
5249 5247 */
5250 5248 metaslab_group_passivate(mg);
5251 5249
5252 5250 /*
5253 5251 * Wait for the youngest allocations and frees to sync,
5254 5252 * and then wait for the deferral of those frees to finish.
5255 5253 */
5256 5254 spa_vdev_config_exit(spa, NULL,
5257 5255 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5258 5256
5259 5257 /*
5260 5258 * Attempt to evacuate the vdev.
5261 5259 */
5262 5260 error = spa_vdev_remove_evacuate(spa, vd);
5263 5261
5264 5262 txg = spa_vdev_config_enter(spa);
5265 5263
5266 5264 /*
5267 5265 * If we couldn't evacuate the vdev, unwind.
5268 5266 */
5269 5267 if (error) {
5270 5268 metaslab_group_activate(mg);
5271 5269 return (spa_vdev_exit(spa, NULL, txg, error));
5272 5270 }
5273 5271
5274 5272 /*
5275 5273 * Clean up the vdev namespace.
5276 5274 */
5277 5275 spa_vdev_remove_from_namespace(spa, vd);
5278 5276
5279 5277 } else if (vd != NULL) {
5280 5278 /*
5281 5279 * Normal vdevs cannot be removed (yet).
5282 5280 */
5283 5281 error = SET_ERROR(ENOTSUP);
5284 5282 } else {
5285 5283 /*
5286 5284 * There is no vdev of any kind with the specified guid.
5287 5285 */
5288 5286 error = SET_ERROR(ENOENT);
5289 5287 }
5290 5288
5291 5289 if (!locked)
5292 5290 return (spa_vdev_exit(spa, NULL, txg, error));
5293 5291
5294 5292 return (error);
5295 5293 }
5296 5294
5297 5295 /*
5298 5296 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5299 5297 * currently spared, so we can detach it.
5300 5298 */
5301 5299 static vdev_t *
5302 5300 spa_vdev_resilver_done_hunt(vdev_t *vd)
5303 5301 {
5304 5302 vdev_t *newvd, *oldvd;
5305 5303
5306 5304 for (int c = 0; c < vd->vdev_children; c++) {
5307 5305 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5308 5306 if (oldvd != NULL)
5309 5307 return (oldvd);
5310 5308 }
5311 5309
5312 5310 /*
5313 5311 * Check for a completed replacement. We always consider the first
5314 5312 * vdev in the list to be the oldest vdev, and the last one to be
5315 5313 * the newest (see spa_vdev_attach() for how that works). In
5316 5314 * the case where the newest vdev is faulted, we will not automatically
5317 5315 * remove it after a resilver completes. This is OK as it will require
5318 5316 * user intervention to determine which disk the admin wishes to keep.
5319 5317 */
5320 5318 if (vd->vdev_ops == &vdev_replacing_ops) {
5321 5319 ASSERT(vd->vdev_children > 1);
5322 5320
5323 5321 newvd = vd->vdev_child[vd->vdev_children - 1];
5324 5322 oldvd = vd->vdev_child[0];
5325 5323
5326 5324 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5327 5325 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5328 5326 !vdev_dtl_required(oldvd))
5329 5327 return (oldvd);
5330 5328 }
5331 5329
5332 5330 /*
5333 5331 * Check for a completed resilver with the 'unspare' flag set.
5334 5332 */
5335 5333 if (vd->vdev_ops == &vdev_spare_ops) {
5336 5334 vdev_t *first = vd->vdev_child[0];
5337 5335 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5338 5336
5339 5337 if (last->vdev_unspare) {
5340 5338 oldvd = first;
5341 5339 newvd = last;
5342 5340 } else if (first->vdev_unspare) {
5343 5341 oldvd = last;
5344 5342 newvd = first;
5345 5343 } else {
5346 5344 oldvd = NULL;
5347 5345 }
5348 5346
5349 5347 if (oldvd != NULL &&
5350 5348 vdev_dtl_empty(newvd, DTL_MISSING) &&
5351 5349 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5352 5350 !vdev_dtl_required(oldvd))
5353 5351 return (oldvd);
5354 5352
5355 5353 /*
5356 5354 * If there are more than two spares attached to a disk,
5357 5355 * and those spares are not required, then we want to
5358 5356 * attempt to free them up now so that they can be used
5359 5357 * by other pools. Once we're back down to a single
5360 5358 * disk+spare, we stop removing them.
5361 5359 */
5362 5360 if (vd->vdev_children > 2) {
5363 5361 newvd = vd->vdev_child[1];
5364 5362
5365 5363 if (newvd->vdev_isspare && last->vdev_isspare &&
5366 5364 vdev_dtl_empty(last, DTL_MISSING) &&
5367 5365 vdev_dtl_empty(last, DTL_OUTAGE) &&
5368 5366 !vdev_dtl_required(newvd))
5369 5367 return (newvd);
5370 5368 }
5371 5369 }
5372 5370
5373 5371 return (NULL);
5374 5372 }
5375 5373
5376 5374 static void
5377 5375 spa_vdev_resilver_done(spa_t *spa)
5378 5376 {
5379 5377 vdev_t *vd, *pvd, *ppvd;
5380 5378 uint64_t guid, sguid, pguid, ppguid;
5381 5379
5382 5380 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5383 5381
5384 5382 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5385 5383 pvd = vd->vdev_parent;
5386 5384 ppvd = pvd->vdev_parent;
5387 5385 guid = vd->vdev_guid;
5388 5386 pguid = pvd->vdev_guid;
5389 5387 ppguid = ppvd->vdev_guid;
5390 5388 sguid = 0;
5391 5389 /*
5392 5390 * If we have just finished replacing a hot spared device, then
5393 5391 * we need to detach the parent's first child (the original hot
5394 5392 * spare) as well.
5395 5393 */
5396 5394 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5397 5395 ppvd->vdev_children == 2) {
5398 5396 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5399 5397 sguid = ppvd->vdev_child[1]->vdev_guid;
5400 5398 }
5401 5399 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5402 5400
5403 5401 spa_config_exit(spa, SCL_ALL, FTAG);
5404 5402 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5405 5403 return;
5406 5404 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5407 5405 return;
5408 5406 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5409 5407 }
5410 5408
5411 5409 spa_config_exit(spa, SCL_ALL, FTAG);
5412 5410 }
5413 5411
5414 5412 /*
5415 5413 * Update the stored path or FRU for this vdev.
5416 5414 */
5417 5415 int
5418 5416 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5419 5417 boolean_t ispath)
5420 5418 {
5421 5419 vdev_t *vd;
5422 5420 boolean_t sync = B_FALSE;
5423 5421
5424 5422 ASSERT(spa_writeable(spa));
5425 5423
5426 5424 spa_vdev_state_enter(spa, SCL_ALL);
5427 5425
5428 5426 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5429 5427 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5430 5428
5431 5429 if (!vd->vdev_ops->vdev_op_leaf)
5432 5430 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5433 5431
5434 5432 if (ispath) {
5435 5433 if (strcmp(value, vd->vdev_path) != 0) {
5436 5434 spa_strfree(vd->vdev_path);
5437 5435 vd->vdev_path = spa_strdup(value);
5438 5436 sync = B_TRUE;
5439 5437 }
5440 5438 } else {
5441 5439 if (vd->vdev_fru == NULL) {
5442 5440 vd->vdev_fru = spa_strdup(value);
5443 5441 sync = B_TRUE;
5444 5442 } else if (strcmp(value, vd->vdev_fru) != 0) {
5445 5443 spa_strfree(vd->vdev_fru);
5446 5444 vd->vdev_fru = spa_strdup(value);
5447 5445 sync = B_TRUE;
5448 5446 }
5449 5447 }
5450 5448
5451 5449 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5452 5450 }
5453 5451
5454 5452 int
5455 5453 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5456 5454 {
5457 5455 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5458 5456 }
5459 5457
5460 5458 int
5461 5459 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5462 5460 {
5463 5461 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5464 5462 }
5465 5463
5466 5464 /*
5467 5465 * ==========================================================================
5468 5466 * SPA Scanning
5469 5467 * ==========================================================================
5470 5468 */
5471 5469
5472 5470 int
5473 5471 spa_scan_stop(spa_t *spa)
5474 5472 {
5475 5473 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5476 5474 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5477 5475 return (SET_ERROR(EBUSY));
5478 5476 return (dsl_scan_cancel(spa->spa_dsl_pool));
5479 5477 }
5480 5478
5481 5479 int
5482 5480 spa_scan(spa_t *spa, pool_scan_func_t func)
5483 5481 {
5484 5482 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5485 5483
5486 5484 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5487 5485 return (SET_ERROR(ENOTSUP));
5488 5486
5489 5487 /*
5490 5488 * If a resilver was requested, but there is no DTL on a
5491 5489 * writeable leaf device, we have nothing to do.
5492 5490 */
5493 5491 if (func == POOL_SCAN_RESILVER &&
5494 5492 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5495 5493 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5496 5494 return (0);
5497 5495 }
5498 5496
5499 5497 return (dsl_scan(spa->spa_dsl_pool, func));
5500 5498 }
5501 5499
5502 5500 /*
5503 5501 * ==========================================================================
5504 5502 * SPA async task processing
5505 5503 * ==========================================================================
5506 5504 */
5507 5505
5508 5506 static void
5509 5507 spa_async_remove(spa_t *spa, vdev_t *vd)
5510 5508 {
5511 5509 if (vd->vdev_remove_wanted) {
5512 5510 vd->vdev_remove_wanted = B_FALSE;
5513 5511 vd->vdev_delayed_close = B_FALSE;
5514 5512 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5515 5513
5516 5514 /*
5517 5515 * We want to clear the stats, but we don't want to do a full
5518 5516 * vdev_clear() as that will cause us to throw away
5519 5517 * degraded/faulted state as well as attempt to reopen the
5520 5518 * device, all of which is a waste.
5521 5519 */
5522 5520 vd->vdev_stat.vs_read_errors = 0;
5523 5521 vd->vdev_stat.vs_write_errors = 0;
5524 5522 vd->vdev_stat.vs_checksum_errors = 0;
5525 5523
5526 5524 vdev_state_dirty(vd->vdev_top);
5527 5525 }
5528 5526
5529 5527 for (int c = 0; c < vd->vdev_children; c++)
5530 5528 spa_async_remove(spa, vd->vdev_child[c]);
5531 5529 }
5532 5530
5533 5531 static void
5534 5532 spa_async_probe(spa_t *spa, vdev_t *vd)
5535 5533 {
5536 5534 if (vd->vdev_probe_wanted) {
5537 5535 vd->vdev_probe_wanted = B_FALSE;
5538 5536 vdev_reopen(vd); /* vdev_open() does the actual probe */
5539 5537 }
5540 5538
5541 5539 for (int c = 0; c < vd->vdev_children; c++)
5542 5540 spa_async_probe(spa, vd->vdev_child[c]);
5543 5541 }
5544 5542
5545 5543 static void
5546 5544 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5547 5545 {
5548 5546 sysevent_id_t eid;
5549 5547 nvlist_t *attr;
5550 5548 char *physpath;
5551 5549
5552 5550 if (!spa->spa_autoexpand)
5553 5551 return;
5554 5552
5555 5553 for (int c = 0; c < vd->vdev_children; c++) {
5556 5554 vdev_t *cvd = vd->vdev_child[c];
5557 5555 spa_async_autoexpand(spa, cvd);
5558 5556 }
5559 5557
5560 5558 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5561 5559 return;
5562 5560
5563 5561 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5564 5562 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5565 5563
5566 5564 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5567 5565 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5568 5566
5569 5567 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5570 5568 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5571 5569
5572 5570 nvlist_free(attr);
5573 5571 kmem_free(physpath, MAXPATHLEN);
5574 5572 }
5575 5573
5576 5574 static void
5577 5575 spa_async_thread(spa_t *spa)
5578 5576 {
5579 5577 int tasks;
5580 5578
5581 5579 ASSERT(spa->spa_sync_on);
5582 5580
5583 5581 mutex_enter(&spa->spa_async_lock);
5584 5582 tasks = spa->spa_async_tasks;
5585 5583 spa->spa_async_tasks = 0;
5586 5584 mutex_exit(&spa->spa_async_lock);
5587 5585
5588 5586 /*
5589 5587 * See if the config needs to be updated.
5590 5588 */
5591 5589 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5592 5590 uint64_t old_space, new_space;
5593 5591
5594 5592 mutex_enter(&spa_namespace_lock);
5595 5593 old_space = metaslab_class_get_space(spa_normal_class(spa));
5596 5594 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5597 5595 new_space = metaslab_class_get_space(spa_normal_class(spa));
5598 5596 mutex_exit(&spa_namespace_lock);
5599 5597
5600 5598 /*
5601 5599 * If the pool grew as a result of the config update,
5602 5600 * then log an internal history event.
5603 5601 */
5604 5602 if (new_space != old_space) {
5605 5603 spa_history_log_internal(spa, "vdev online", NULL,
5606 5604 "pool '%s' size: %llu(+%llu)",
5607 5605 spa_name(spa), new_space, new_space - old_space);
5608 5606 }
5609 5607 }
5610 5608
5611 5609 /*
5612 5610 * See if any devices need to be marked REMOVED.
5613 5611 */
5614 5612 if (tasks & SPA_ASYNC_REMOVE) {
5615 5613 spa_vdev_state_enter(spa, SCL_NONE);
5616 5614 spa_async_remove(spa, spa->spa_root_vdev);
5617 5615 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5618 5616 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5619 5617 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5620 5618 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5621 5619 (void) spa_vdev_state_exit(spa, NULL, 0);
5622 5620 }
5623 5621
5624 5622 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5625 5623 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5626 5624 spa_async_autoexpand(spa, spa->spa_root_vdev);
5627 5625 spa_config_exit(spa, SCL_CONFIG, FTAG);
5628 5626 }
5629 5627
5630 5628 /*
5631 5629 * See if any devices need to be probed.
5632 5630 */
5633 5631 if (tasks & SPA_ASYNC_PROBE) {
5634 5632 spa_vdev_state_enter(spa, SCL_NONE);
5635 5633 spa_async_probe(spa, spa->spa_root_vdev);
5636 5634 (void) spa_vdev_state_exit(spa, NULL, 0);
5637 5635 }
5638 5636
5639 5637 /*
5640 5638 * If any devices are done replacing, detach them.
5641 5639 */
5642 5640 if (tasks & SPA_ASYNC_RESILVER_DONE)
5643 5641 spa_vdev_resilver_done(spa);
5644 5642
5645 5643 /*
5646 5644 * Kick off a resilver.
5647 5645 */
5648 5646 if (tasks & SPA_ASYNC_RESILVER)
5649 5647 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5650 5648
5651 5649 /*
5652 5650 * Let the world know that we're done.
5653 5651 */
5654 5652 mutex_enter(&spa->spa_async_lock);
5655 5653 spa->spa_async_thread = NULL;
5656 5654 cv_broadcast(&spa->spa_async_cv);
5657 5655 mutex_exit(&spa->spa_async_lock);
5658 5656 thread_exit();
5659 5657 }
5660 5658
5661 5659 void
5662 5660 spa_async_suspend(spa_t *spa)
5663 5661 {
5664 5662 mutex_enter(&spa->spa_async_lock);
5665 5663 spa->spa_async_suspended++;
5666 5664 while (spa->spa_async_thread != NULL)
5667 5665 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5668 5666 mutex_exit(&spa->spa_async_lock);
5669 5667 }
5670 5668
5671 5669 void
5672 5670 spa_async_resume(spa_t *spa)
5673 5671 {
5674 5672 mutex_enter(&spa->spa_async_lock);
5675 5673 ASSERT(spa->spa_async_suspended != 0);
5676 5674 spa->spa_async_suspended--;
5677 5675 mutex_exit(&spa->spa_async_lock);
5678 5676 }
5679 5677
5680 5678 static boolean_t
5681 5679 spa_async_tasks_pending(spa_t *spa)
5682 5680 {
5683 5681 uint_t non_config_tasks;
5684 5682 uint_t config_task;
5685 5683 boolean_t config_task_suspended;
5686 5684
5687 5685 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5688 5686 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5689 5687 if (spa->spa_ccw_fail_time == 0) {
5690 5688 config_task_suspended = B_FALSE;
5691 5689 } else {
5692 5690 config_task_suspended =
5693 5691 (gethrtime() - spa->spa_ccw_fail_time) <
5694 5692 (zfs_ccw_retry_interval * NANOSEC);
5695 5693 }
5696 5694
5697 5695 return (non_config_tasks || (config_task && !config_task_suspended));
5698 5696 }
5699 5697
5700 5698 static void
5701 5699 spa_async_dispatch(spa_t *spa)
5702 5700 {
5703 5701 mutex_enter(&spa->spa_async_lock);
5704 5702 if (spa_async_tasks_pending(spa) &&
5705 5703 !spa->spa_async_suspended &&
5706 5704 spa->spa_async_thread == NULL &&
5707 5705 rootdir != NULL)
5708 5706 spa->spa_async_thread = thread_create(NULL, 0,
5709 5707 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5710 5708 mutex_exit(&spa->spa_async_lock);
5711 5709 }
5712 5710
5713 5711 void
5714 5712 spa_async_request(spa_t *spa, int task)
5715 5713 {
5716 5714 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5717 5715 mutex_enter(&spa->spa_async_lock);
5718 5716 spa->spa_async_tasks |= task;
5719 5717 mutex_exit(&spa->spa_async_lock);
5720 5718 }
5721 5719
5722 5720 /*
5723 5721 * ==========================================================================
5724 5722 * SPA syncing routines
5725 5723 * ==========================================================================
5726 5724 */
5727 5725
5728 5726 static int
5729 5727 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5730 5728 {
5731 5729 bpobj_t *bpo = arg;
5732 5730 bpobj_enqueue(bpo, bp, tx);
5733 5731 return (0);
5734 5732 }
5735 5733
5736 5734 static int
5737 5735 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5738 5736 {
5739 5737 zio_t *zio = arg;
5740 5738
5741 5739 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5742 5740 zio->io_flags));
5743 5741 return (0);
5744 5742 }
5745 5743
5746 5744 /*
5747 5745 * Note: this simple function is not inlined to make it easier to dtrace the
5748 5746 * amount of time spent syncing frees.
5749 5747 */
5750 5748 static void
5751 5749 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5752 5750 {
5753 5751 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5754 5752 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5755 5753 VERIFY(zio_wait(zio) == 0);
5756 5754 }
5757 5755
5758 5756 /*
5759 5757 * Note: this simple function is not inlined to make it easier to dtrace the
5760 5758 * amount of time spent syncing deferred frees.
5761 5759 */
5762 5760 static void
5763 5761 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5764 5762 {
5765 5763 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5766 5764 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5767 5765 spa_free_sync_cb, zio, tx), ==, 0);
5768 5766 VERIFY0(zio_wait(zio));
5769 5767 }
5770 5768
5771 5769
5772 5770 static void
5773 5771 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5774 5772 {
5775 5773 char *packed = NULL;
5776 5774 size_t bufsize;
5777 5775 size_t nvsize = 0;
5778 5776 dmu_buf_t *db;
5779 5777
5780 5778 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5781 5779
5782 5780 /*
5783 5781 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5784 5782 * information. This avoids the dbuf_will_dirty() path and
5785 5783 * saves us a pre-read to get data we don't actually care about.
5786 5784 */
5787 5785 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5788 5786 packed = kmem_alloc(bufsize, KM_SLEEP);
5789 5787
5790 5788 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5791 5789 KM_SLEEP) == 0);
5792 5790 bzero(packed + nvsize, bufsize - nvsize);
5793 5791
5794 5792 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5795 5793
5796 5794 kmem_free(packed, bufsize);
5797 5795
5798 5796 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5799 5797 dmu_buf_will_dirty(db, tx);
5800 5798 *(uint64_t *)db->db_data = nvsize;
5801 5799 dmu_buf_rele(db, FTAG);
5802 5800 }
5803 5801
5804 5802 static void
5805 5803 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5806 5804 const char *config, const char *entry)
5807 5805 {
5808 5806 nvlist_t *nvroot;
5809 5807 nvlist_t **list;
5810 5808 int i;
5811 5809
5812 5810 if (!sav->sav_sync)
5813 5811 return;
5814 5812
5815 5813 /*
5816 5814 * Update the MOS nvlist describing the list of available devices.
5817 5815 * spa_validate_aux() will have already made sure this nvlist is
5818 5816 * valid and the vdevs are labeled appropriately.
5819 5817 */
5820 5818 if (sav->sav_object == 0) {
5821 5819 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5822 5820 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5823 5821 sizeof (uint64_t), tx);
5824 5822 VERIFY(zap_update(spa->spa_meta_objset,
5825 5823 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5826 5824 &sav->sav_object, tx) == 0);
5827 5825 }
5828 5826
5829 5827 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5830 5828 if (sav->sav_count == 0) {
5831 5829 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5832 5830 } else {
5833 5831 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5834 5832 for (i = 0; i < sav->sav_count; i++)
5835 5833 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5836 5834 B_FALSE, VDEV_CONFIG_L2CACHE);
5837 5835 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5838 5836 sav->sav_count) == 0);
5839 5837 for (i = 0; i < sav->sav_count; i++)
5840 5838 nvlist_free(list[i]);
5841 5839 kmem_free(list, sav->sav_count * sizeof (void *));
5842 5840 }
5843 5841
5844 5842 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5845 5843 nvlist_free(nvroot);
5846 5844
5847 5845 sav->sav_sync = B_FALSE;
5848 5846 }
5849 5847
5850 5848 static void
5851 5849 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5852 5850 {
5853 5851 nvlist_t *config;
5854 5852
5855 5853 if (list_is_empty(&spa->spa_config_dirty_list))
5856 5854 return;
5857 5855
5858 5856 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5859 5857
5860 5858 config = spa_config_generate(spa, spa->spa_root_vdev,
5861 5859 dmu_tx_get_txg(tx), B_FALSE);
5862 5860
5863 5861 /*
5864 5862 * If we're upgrading the spa version then make sure that
5865 5863 * the config object gets updated with the correct version.
5866 5864 */
5867 5865 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5868 5866 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5869 5867 spa->spa_uberblock.ub_version);
5870 5868
5871 5869 spa_config_exit(spa, SCL_STATE, FTAG);
5872 5870
5873 5871 if (spa->spa_config_syncing)
5874 5872 nvlist_free(spa->spa_config_syncing);
5875 5873 spa->spa_config_syncing = config;
5876 5874
5877 5875 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5878 5876 }
5879 5877
5880 5878 static void
5881 5879 spa_sync_version(void *arg, dmu_tx_t *tx)
5882 5880 {
5883 5881 uint64_t *versionp = arg;
5884 5882 uint64_t version = *versionp;
5885 5883 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5886 5884
5887 5885 /*
5888 5886 * Setting the version is special cased when first creating the pool.
5889 5887 */
5890 5888 ASSERT(tx->tx_txg != TXG_INITIAL);
5891 5889
5892 5890 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5893 5891 ASSERT(version >= spa_version(spa));
5894 5892
5895 5893 spa->spa_uberblock.ub_version = version;
5896 5894 vdev_config_dirty(spa->spa_root_vdev);
5897 5895 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5898 5896 }
5899 5897
5900 5898 /*
5901 5899 * Set zpool properties.
5902 5900 */
5903 5901 static void
5904 5902 spa_sync_props(void *arg, dmu_tx_t *tx)
5905 5903 {
5906 5904 nvlist_t *nvp = arg;
5907 5905 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5908 5906 objset_t *mos = spa->spa_meta_objset;
5909 5907 nvpair_t *elem = NULL;
5910 5908
5911 5909 mutex_enter(&spa->spa_props_lock);
5912 5910
5913 5911 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5914 5912 uint64_t intval;
5915 5913 char *strval, *fname;
5916 5914 zpool_prop_t prop;
5917 5915 const char *propname;
5918 5916 zprop_type_t proptype;
5919 5917 zfeature_info_t *feature;
5920 5918
5921 5919 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5922 5920 case ZPROP_INVAL:
5923 5921 /*
5924 5922 * We checked this earlier in spa_prop_validate().
5925 5923 */
5926 5924 ASSERT(zpool_prop_feature(nvpair_name(elem)));
5927 5925
5928 5926 fname = strchr(nvpair_name(elem), '@') + 1;
5929 5927 VERIFY0(zfeature_lookup_name(fname, &feature));
5930 5928
5931 5929 spa_feature_enable(spa, feature, tx);
5932 5930 spa_history_log_internal(spa, "set", tx,
5933 5931 "%s=enabled", nvpair_name(elem));
5934 5932 break;
5935 5933
5936 5934 case ZPOOL_PROP_VERSION:
5937 5935 intval = fnvpair_value_uint64(elem);
5938 5936 /*
5939 5937 * The version is synced seperatly before other
5940 5938 * properties and should be correct by now.
5941 5939 */
5942 5940 ASSERT3U(spa_version(spa), >=, intval);
5943 5941 break;
5944 5942
5945 5943 case ZPOOL_PROP_ALTROOT:
5946 5944 /*
5947 5945 * 'altroot' is a non-persistent property. It should
5948 5946 * have been set temporarily at creation or import time.
5949 5947 */
5950 5948 ASSERT(spa->spa_root != NULL);
5951 5949 break;
5952 5950
5953 5951 case ZPOOL_PROP_READONLY:
5954 5952 case ZPOOL_PROP_CACHEFILE:
5955 5953 /*
5956 5954 * 'readonly' and 'cachefile' are also non-persisitent
5957 5955 * properties.
5958 5956 */
5959 5957 break;
5960 5958 case ZPOOL_PROP_COMMENT:
5961 5959 strval = fnvpair_value_string(elem);
5962 5960 if (spa->spa_comment != NULL)
5963 5961 spa_strfree(spa->spa_comment);
5964 5962 spa->spa_comment = spa_strdup(strval);
5965 5963 /*
5966 5964 * We need to dirty the configuration on all the vdevs
5967 5965 * so that their labels get updated. It's unnecessary
5968 5966 * to do this for pool creation since the vdev's
5969 5967 * configuratoin has already been dirtied.
5970 5968 */
5971 5969 if (tx->tx_txg != TXG_INITIAL)
5972 5970 vdev_config_dirty(spa->spa_root_vdev);
5973 5971 spa_history_log_internal(spa, "set", tx,
5974 5972 "%s=%s", nvpair_name(elem), strval);
5975 5973 break;
5976 5974 default:
5977 5975 /*
5978 5976 * Set pool property values in the poolprops mos object.
5979 5977 */
5980 5978 if (spa->spa_pool_props_object == 0) {
5981 5979 spa->spa_pool_props_object =
5982 5980 zap_create_link(mos, DMU_OT_POOL_PROPS,
5983 5981 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5984 5982 tx);
5985 5983 }
5986 5984
5987 5985 /* normalize the property name */
5988 5986 propname = zpool_prop_to_name(prop);
5989 5987 proptype = zpool_prop_get_type(prop);
5990 5988
5991 5989 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5992 5990 ASSERT(proptype == PROP_TYPE_STRING);
5993 5991 strval = fnvpair_value_string(elem);
5994 5992 VERIFY0(zap_update(mos,
5995 5993 spa->spa_pool_props_object, propname,
5996 5994 1, strlen(strval) + 1, strval, tx));
5997 5995 spa_history_log_internal(spa, "set", tx,
5998 5996 "%s=%s", nvpair_name(elem), strval);
5999 5997 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6000 5998 intval = fnvpair_value_uint64(elem);
6001 5999
6002 6000 if (proptype == PROP_TYPE_INDEX) {
6003 6001 const char *unused;
6004 6002 VERIFY0(zpool_prop_index_to_string(
6005 6003 prop, intval, &unused));
6006 6004 }
6007 6005 VERIFY0(zap_update(mos,
6008 6006 spa->spa_pool_props_object, propname,
6009 6007 8, 1, &intval, tx));
6010 6008 spa_history_log_internal(spa, "set", tx,
6011 6009 "%s=%lld", nvpair_name(elem), intval);
6012 6010 } else {
6013 6011 ASSERT(0); /* not allowed */
6014 6012 }
6015 6013
6016 6014 switch (prop) {
6017 6015 case ZPOOL_PROP_DELEGATION:
6018 6016 spa->spa_delegation = intval;
6019 6017 break;
6020 6018 case ZPOOL_PROP_BOOTFS:
6021 6019 spa->spa_bootfs = intval;
6022 6020 break;
6023 6021 case ZPOOL_PROP_FAILUREMODE:
6024 6022 spa->spa_failmode = intval;
6025 6023 break;
6026 6024 case ZPOOL_PROP_AUTOEXPAND:
6027 6025 spa->spa_autoexpand = intval;
6028 6026 if (tx->tx_txg != TXG_INITIAL)
6029 6027 spa_async_request(spa,
6030 6028 SPA_ASYNC_AUTOEXPAND);
6031 6029 break;
6032 6030 case ZPOOL_PROP_DEDUPDITTO:
6033 6031 spa->spa_dedup_ditto = intval;
6034 6032 break;
6035 6033 default:
6036 6034 break;
6037 6035 }
6038 6036 }
6039 6037
6040 6038 }
6041 6039
6042 6040 mutex_exit(&spa->spa_props_lock);
6043 6041 }
6044 6042
6045 6043 /*
6046 6044 * Perform one-time upgrade on-disk changes. spa_version() does not
6047 6045 * reflect the new version this txg, so there must be no changes this
6048 6046 * txg to anything that the upgrade code depends on after it executes.
6049 6047 * Therefore this must be called after dsl_pool_sync() does the sync
6050 6048 * tasks.
6051 6049 */
6052 6050 static void
6053 6051 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6054 6052 {
6055 6053 dsl_pool_t *dp = spa->spa_dsl_pool;
6056 6054
6057 6055 ASSERT(spa->spa_sync_pass == 1);
6058 6056
6059 6057 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6060 6058
6061 6059 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6062 6060 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6063 6061 dsl_pool_create_origin(dp, tx);
6064 6062
6065 6063 /* Keeping the origin open increases spa_minref */
6066 6064 spa->spa_minref += 3;
6067 6065 }
6068 6066
6069 6067 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6070 6068 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6071 6069 dsl_pool_upgrade_clones(dp, tx);
6072 6070 }
6073 6071
6074 6072 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6075 6073 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6076 6074 dsl_pool_upgrade_dir_clones(dp, tx);
6077 6075
6078 6076 /* Keeping the freedir open increases spa_minref */
6079 6077 spa->spa_minref += 3;
6080 6078 }
6081 6079
6082 6080 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6083 6081 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6084 6082 spa_feature_create_zap_objects(spa, tx);
6085 6083 }
6086 6084 rrw_exit(&dp->dp_config_rwlock, FTAG);
6087 6085 }
6088 6086
6089 6087 /*
6090 6088 * Sync the specified transaction group. New blocks may be dirtied as
6091 6089 * part of the process, so we iterate until it converges.
6092 6090 */
6093 6091 void
6094 6092 spa_sync(spa_t *spa, uint64_t txg)
6095 6093 {
6096 6094 dsl_pool_t *dp = spa->spa_dsl_pool;
6097 6095 objset_t *mos = spa->spa_meta_objset;
6098 6096 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6099 6097 vdev_t *rvd = spa->spa_root_vdev;
6100 6098 vdev_t *vd;
6101 6099 dmu_tx_t *tx;
6102 6100 int error;
6103 6101
6104 6102 VERIFY(spa_writeable(spa));
6105 6103
6106 6104 /*
6107 6105 * Lock out configuration changes.
6108 6106 */
6109 6107 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6110 6108
6111 6109 spa->spa_syncing_txg = txg;
6112 6110 spa->spa_sync_pass = 0;
6113 6111
6114 6112 /*
6115 6113 * If there are any pending vdev state changes, convert them
6116 6114 * into config changes that go out with this transaction group.
6117 6115 */
6118 6116 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6119 6117 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6120 6118 /*
6121 6119 * We need the write lock here because, for aux vdevs,
6122 6120 * calling vdev_config_dirty() modifies sav_config.
6123 6121 * This is ugly and will become unnecessary when we
6124 6122 * eliminate the aux vdev wart by integrating all vdevs
6125 6123 * into the root vdev tree.
6126 6124 */
6127 6125 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6128 6126 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6129 6127 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6130 6128 vdev_state_clean(vd);
6131 6129 vdev_config_dirty(vd);
6132 6130 }
6133 6131 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6134 6132 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6135 6133 }
6136 6134 spa_config_exit(spa, SCL_STATE, FTAG);
6137 6135
6138 6136 tx = dmu_tx_create_assigned(dp, txg);
6139 6137
6140 6138 spa->spa_sync_starttime = gethrtime();
6141 6139 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6142 6140 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6143 6141
6144 6142 /*
6145 6143 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6146 6144 * set spa_deflate if we have no raid-z vdevs.
6147 6145 */
6148 6146 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6149 6147 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6150 6148 int i;
6151 6149
6152 6150 for (i = 0; i < rvd->vdev_children; i++) {
6153 6151 vd = rvd->vdev_child[i];
6154 6152 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6155 6153 break;
6156 6154 }
6157 6155 if (i == rvd->vdev_children) {
6158 6156 spa->spa_deflate = TRUE;
6159 6157 VERIFY(0 == zap_add(spa->spa_meta_objset,
6160 6158 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6161 6159 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6162 6160 }
6163 6161 }
6164 6162
6165 6163 /*
6166 6164 * If anything has changed in this txg, or if someone is waiting
6167 6165 * for this txg to sync (eg, spa_vdev_remove()), push the
6168 6166 * deferred frees from the previous txg. If not, leave them
6169 6167 * alone so that we don't generate work on an otherwise idle
6170 6168 * system.
6171 6169 */
6172 6170 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6173 6171 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6174 6172 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6175 6173 ((dsl_scan_active(dp->dp_scan) ||
6176 6174 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6177 6175 spa_sync_deferred_frees(spa, tx);
6178 6176 }
6179 6177
6180 6178 /*
6181 6179 * Iterate to convergence.
6182 6180 */
6183 6181 do {
6184 6182 int pass = ++spa->spa_sync_pass;
6185 6183
6186 6184 spa_sync_config_object(spa, tx);
6187 6185 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6188 6186 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6189 6187 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6190 6188 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6191 6189 spa_errlog_sync(spa, txg);
6192 6190 dsl_pool_sync(dp, txg);
6193 6191
6194 6192 if (pass < zfs_sync_pass_deferred_free) {
6195 6193 spa_sync_frees(spa, free_bpl, tx);
6196 6194 } else {
6197 6195 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6198 6196 &spa->spa_deferred_bpobj, tx);
6199 6197 }
6200 6198
6201 6199 ddt_sync(spa, txg);
6202 6200 dsl_scan_sync(dp, tx);
6203 6201
6204 6202 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6205 6203 vdev_sync(vd, txg);
6206 6204
6207 6205 if (pass == 1)
6208 6206 spa_sync_upgrades(spa, tx);
6209 6207
6210 6208 } while (dmu_objset_is_dirty(mos, txg));
6211 6209
6212 6210 /*
6213 6211 * Rewrite the vdev configuration (which includes the uberblock)
6214 6212 * to commit the transaction group.
6215 6213 *
6216 6214 * If there are no dirty vdevs, we sync the uberblock to a few
6217 6215 * random top-level vdevs that are known to be visible in the
6218 6216 * config cache (see spa_vdev_add() for a complete description).
6219 6217 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6220 6218 */
6221 6219 for (;;) {
6222 6220 /*
6223 6221 * We hold SCL_STATE to prevent vdev open/close/etc.
6224 6222 * while we're attempting to write the vdev labels.
6225 6223 */
6226 6224 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6227 6225
6228 6226 if (list_is_empty(&spa->spa_config_dirty_list)) {
6229 6227 vdev_t *svd[SPA_DVAS_PER_BP];
6230 6228 int svdcount = 0;
6231 6229 int children = rvd->vdev_children;
6232 6230 int c0 = spa_get_random(children);
6233 6231
6234 6232 for (int c = 0; c < children; c++) {
6235 6233 vd = rvd->vdev_child[(c0 + c) % children];
6236 6234 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6237 6235 continue;
6238 6236 svd[svdcount++] = vd;
6239 6237 if (svdcount == SPA_DVAS_PER_BP)
6240 6238 break;
6241 6239 }
6242 6240 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6243 6241 if (error != 0)
6244 6242 error = vdev_config_sync(svd, svdcount, txg,
6245 6243 B_TRUE);
6246 6244 } else {
6247 6245 error = vdev_config_sync(rvd->vdev_child,
6248 6246 rvd->vdev_children, txg, B_FALSE);
6249 6247 if (error != 0)
6250 6248 error = vdev_config_sync(rvd->vdev_child,
6251 6249 rvd->vdev_children, txg, B_TRUE);
6252 6250 }
6253 6251
6254 6252 if (error == 0)
6255 6253 spa->spa_last_synced_guid = rvd->vdev_guid;
6256 6254
6257 6255 spa_config_exit(spa, SCL_STATE, FTAG);
6258 6256
6259 6257 if (error == 0)
6260 6258 break;
6261 6259 zio_suspend(spa, NULL);
6262 6260 zio_resume_wait(spa);
6263 6261 }
6264 6262 dmu_tx_commit(tx);
6265 6263
6266 6264 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6267 6265
6268 6266 /*
6269 6267 * Clear the dirty config list.
6270 6268 */
6271 6269 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6272 6270 vdev_config_clean(vd);
6273 6271
6274 6272 /*
6275 6273 * Now that the new config has synced transactionally,
6276 6274 * let it become visible to the config cache.
6277 6275 */
6278 6276 if (spa->spa_config_syncing != NULL) {
6279 6277 spa_config_set(spa, spa->spa_config_syncing);
6280 6278 spa->spa_config_txg = txg;
6281 6279 spa->spa_config_syncing = NULL;
6282 6280 }
6283 6281
6284 6282 spa->spa_ubsync = spa->spa_uberblock;
6285 6283
6286 6284 dsl_pool_sync_done(dp, txg);
6287 6285
6288 6286 /*
6289 6287 * Update usable space statistics.
6290 6288 */
6291 6289 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6292 6290 vdev_sync_done(vd, txg);
6293 6291
6294 6292 spa_update_dspace(spa);
6295 6293
6296 6294 /*
6297 6295 * It had better be the case that we didn't dirty anything
6298 6296 * since vdev_config_sync().
6299 6297 */
6300 6298 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6301 6299 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6302 6300 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6303 6301
6304 6302 spa->spa_sync_pass = 0;
6305 6303
6306 6304 spa_config_exit(spa, SCL_CONFIG, FTAG);
6307 6305
6308 6306 spa_handle_ignored_writes(spa);
6309 6307
6310 6308 /*
6311 6309 * If any async tasks have been requested, kick them off.
6312 6310 */
6313 6311 spa_async_dispatch(spa);
6314 6312 }
6315 6313
6316 6314 /*
6317 6315 * Sync all pools. We don't want to hold the namespace lock across these
6318 6316 * operations, so we take a reference on the spa_t and drop the lock during the
6319 6317 * sync.
6320 6318 */
6321 6319 void
6322 6320 spa_sync_allpools(void)
6323 6321 {
6324 6322 spa_t *spa = NULL;
6325 6323 mutex_enter(&spa_namespace_lock);
6326 6324 while ((spa = spa_next(spa)) != NULL) {
6327 6325 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6328 6326 !spa_writeable(spa) || spa_suspended(spa))
6329 6327 continue;
6330 6328 spa_open_ref(spa, FTAG);
6331 6329 mutex_exit(&spa_namespace_lock);
6332 6330 txg_wait_synced(spa_get_dsl(spa), 0);
6333 6331 mutex_enter(&spa_namespace_lock);
6334 6332 spa_close(spa, FTAG);
6335 6333 }
6336 6334 mutex_exit(&spa_namespace_lock);
6337 6335 }
6338 6336
6339 6337 /*
6340 6338 * ==========================================================================
6341 6339 * Miscellaneous routines
6342 6340 * ==========================================================================
6343 6341 */
6344 6342
6345 6343 /*
6346 6344 * Remove all pools in the system.
6347 6345 */
6348 6346 void
6349 6347 spa_evict_all(void)
6350 6348 {
6351 6349 spa_t *spa;
6352 6350
6353 6351 /*
6354 6352 * Remove all cached state. All pools should be closed now,
6355 6353 * so every spa in the AVL tree should be unreferenced.
6356 6354 */
6357 6355 mutex_enter(&spa_namespace_lock);
6358 6356 while ((spa = spa_next(NULL)) != NULL) {
6359 6357 /*
6360 6358 * Stop async tasks. The async thread may need to detach
6361 6359 * a device that's been replaced, which requires grabbing
6362 6360 * spa_namespace_lock, so we must drop it here.
6363 6361 */
6364 6362 spa_open_ref(spa, FTAG);
6365 6363 mutex_exit(&spa_namespace_lock);
6366 6364 spa_async_suspend(spa);
6367 6365 mutex_enter(&spa_namespace_lock);
6368 6366 spa_close(spa, FTAG);
6369 6367
6370 6368 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6371 6369 spa_unload(spa);
6372 6370 spa_deactivate(spa);
6373 6371 }
6374 6372 spa_remove(spa);
6375 6373 }
6376 6374 mutex_exit(&spa_namespace_lock);
6377 6375 }
6378 6376
6379 6377 vdev_t *
6380 6378 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6381 6379 {
6382 6380 vdev_t *vd;
6383 6381 int i;
6384 6382
6385 6383 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6386 6384 return (vd);
6387 6385
6388 6386 if (aux) {
6389 6387 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6390 6388 vd = spa->spa_l2cache.sav_vdevs[i];
6391 6389 if (vd->vdev_guid == guid)
6392 6390 return (vd);
6393 6391 }
6394 6392
6395 6393 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6396 6394 vd = spa->spa_spares.sav_vdevs[i];
6397 6395 if (vd->vdev_guid == guid)
6398 6396 return (vd);
6399 6397 }
6400 6398 }
6401 6399
6402 6400 return (NULL);
6403 6401 }
6404 6402
6405 6403 void
6406 6404 spa_upgrade(spa_t *spa, uint64_t version)
6407 6405 {
6408 6406 ASSERT(spa_writeable(spa));
6409 6407
6410 6408 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6411 6409
6412 6410 /*
6413 6411 * This should only be called for a non-faulted pool, and since a
6414 6412 * future version would result in an unopenable pool, this shouldn't be
6415 6413 * possible.
6416 6414 */
6417 6415 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6418 6416 ASSERT(version >= spa->spa_uberblock.ub_version);
6419 6417
6420 6418 spa->spa_uberblock.ub_version = version;
6421 6419 vdev_config_dirty(spa->spa_root_vdev);
6422 6420
6423 6421 spa_config_exit(spa, SCL_ALL, FTAG);
6424 6422
6425 6423 txg_wait_synced(spa_get_dsl(spa), 0);
6426 6424 }
6427 6425
6428 6426 boolean_t
6429 6427 spa_has_spare(spa_t *spa, uint64_t guid)
6430 6428 {
6431 6429 int i;
6432 6430 uint64_t spareguid;
6433 6431 spa_aux_vdev_t *sav = &spa->spa_spares;
6434 6432
6435 6433 for (i = 0; i < sav->sav_count; i++)
6436 6434 if (sav->sav_vdevs[i]->vdev_guid == guid)
6437 6435 return (B_TRUE);
6438 6436
6439 6437 for (i = 0; i < sav->sav_npending; i++) {
6440 6438 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6441 6439 &spareguid) == 0 && spareguid == guid)
6442 6440 return (B_TRUE);
6443 6441 }
6444 6442
6445 6443 return (B_FALSE);
6446 6444 }
6447 6445
6448 6446 /*
6449 6447 * Check if a pool has an active shared spare device.
6450 6448 * Note: reference count of an active spare is 2, as a spare and as a replace
6451 6449 */
6452 6450 static boolean_t
6453 6451 spa_has_active_shared_spare(spa_t *spa)
6454 6452 {
6455 6453 int i, refcnt;
6456 6454 uint64_t pool;
6457 6455 spa_aux_vdev_t *sav = &spa->spa_spares;
6458 6456
6459 6457 for (i = 0; i < sav->sav_count; i++) {
6460 6458 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6461 6459 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6462 6460 refcnt > 2)
6463 6461 return (B_TRUE);
6464 6462 }
6465 6463
6466 6464 return (B_FALSE);
6467 6465 }
6468 6466
6469 6467 /*
6470 6468 * Post a sysevent corresponding to the given event. The 'name' must be one of
6471 6469 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6472 6470 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6473 6471 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6474 6472 * or zdb as real changes.
6475 6473 */
6476 6474 void
6477 6475 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6478 6476 {
6479 6477 #ifdef _KERNEL
6480 6478 sysevent_t *ev;
6481 6479 sysevent_attr_list_t *attr = NULL;
6482 6480 sysevent_value_t value;
6483 6481 sysevent_id_t eid;
6484 6482
6485 6483 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6486 6484 SE_SLEEP);
6487 6485
6488 6486 value.value_type = SE_DATA_TYPE_STRING;
6489 6487 value.value.sv_string = spa_name(spa);
6490 6488 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6491 6489 goto done;
6492 6490
6493 6491 value.value_type = SE_DATA_TYPE_UINT64;
6494 6492 value.value.sv_uint64 = spa_guid(spa);
6495 6493 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6496 6494 goto done;
6497 6495
6498 6496 if (vd) {
6499 6497 value.value_type = SE_DATA_TYPE_UINT64;
6500 6498 value.value.sv_uint64 = vd->vdev_guid;
6501 6499 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6502 6500 SE_SLEEP) != 0)
6503 6501 goto done;
6504 6502
6505 6503 if (vd->vdev_path) {
6506 6504 value.value_type = SE_DATA_TYPE_STRING;
6507 6505 value.value.sv_string = vd->vdev_path;
6508 6506 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6509 6507 &value, SE_SLEEP) != 0)
6510 6508 goto done;
6511 6509 }
6512 6510 }
6513 6511
6514 6512 if (sysevent_attach_attributes(ev, attr) != 0)
6515 6513 goto done;
6516 6514 attr = NULL;
6517 6515
6518 6516 (void) log_sysevent(ev, SE_SLEEP, &eid);
6519 6517
6520 6518 done:
6521 6519 if (attr)
6522 6520 sysevent_free_attr(attr);
6523 6521 sysevent_free(ev);
6524 6522 #endif
6525 6523 }
↓ open down ↓ |
2669 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX