1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26 */
27
28 /*
29 * SPA: Storage Pool Allocator
30 *
31 * This file contains all the routines used when modifying on-disk SPA state.
32 * This includes opening, importing, destroying, exporting a pool, and syncing a
33 * pool.
34 */
35
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa_impl.h>
39 #include <sys/zio.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/ddt.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/dmu_traverse.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/unique.h>
55 #include <sys/dsl_pool.h>
56 #include <sys/dsl_dataset.h>
57 #include <sys/dsl_dir.h>
58 #include <sys/dsl_prop.h>
59 #include <sys/dsl_synctask.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/arc.h>
62 #include <sys/callb.h>
63 #include <sys/systeminfo.h>
64 #include <sys/spa_boot.h>
65 #include <sys/zfs_ioctl.h>
66 #include <sys/dsl_scan.h>
67 #include <sys/zfeature.h>
68 #include <sys/dsl_destroy.h>
69
70 #ifdef _KERNEL
71 #include <sys/bootprops.h>
72 #include <sys/callb.h>
73 #include <sys/cpupart.h>
74 #include <sys/pool.h>
75 #include <sys/sysdc.h>
76 #include <sys/zone.h>
77 #endif /* _KERNEL */
78
79 #include "zfs_prop.h"
80 #include "zfs_comutil.h"
81
82 /*
83 * The interval, in seconds, at which failed configuration cache file writes
84 * should be retried.
85 */
86 static int zfs_ccw_retry_interval = 300;
87
88 typedef enum zti_modes {
89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
90 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
91 ZTI_MODE_NULL, /* don't create a taskq */
92 ZTI_NMODES
93 } zti_modes_t;
94
95 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
98
99 #define ZTI_N(n) ZTI_P(n, 1)
100 #define ZTI_ONE ZTI_N(1)
101
102 typedef struct zio_taskq_info {
103 zti_modes_t zti_mode;
104 uint_t zti_value;
105 uint_t zti_count;
106 } zio_taskq_info_t;
107
108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
109 "issue", "issue_high", "intr", "intr_high"
110 };
111
112 /*
113 * This table defines the taskq settings for each ZFS I/O type. When
114 * initializing a pool, we use this table to create an appropriately sized
115 * taskq. Some operations are low volume and therefore have a small, static
116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
117 * macros. Other operations process a large amount of data; the ZTI_BATCH
118 * macro causes us to create a taskq oriented for throughput. Some operations
119 * are so high frequency and short-lived that the taskq itself can become a a
120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
121 * additional degree of parallelism specified by the number of threads per-
122 * taskq and the number of taskqs; when dispatching an event in this case, the
123 * particular taskq is chosen at random.
124 *
125 * The different taskq priorities are to handle the different contexts (issue
126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
127 * need to be handled with minimum delay.
128 */
129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
132 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */
133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
137 };
138
139 static void spa_sync_version(void *arg, dmu_tx_t *tx);
140 static void spa_sync_props(void *arg, dmu_tx_t *tx);
141 static boolean_t spa_has_active_shared_spare(spa_t *spa);
142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
144 char **ereport);
145 static void spa_vdev_resilver_done(spa_t *spa);
146
147 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
148 id_t zio_taskq_psrset_bind = PS_NONE;
149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
150 uint_t zio_taskq_basedc = 80; /* base duty cycle */
151
152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
153 extern int zfs_sync_pass_deferred_free;
154
155 /*
156 * This (illegal) pool name is used when temporarily importing a spa_t in order
157 * to get the vdev stats associated with the imported devices.
158 */
159 #define TRYIMPORT_NAME "$import"
160
161 /*
162 * ==========================================================================
163 * SPA properties routines
164 * ==========================================================================
165 */
166
167 /*
168 * Add a (source=src, propname=propval) list to an nvlist.
169 */
170 static void
171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
172 uint64_t intval, zprop_source_t src)
173 {
174 const char *propname = zpool_prop_to_name(prop);
175 nvlist_t *propval;
176
177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
179
180 if (strval != NULL)
181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
182 else
183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
184
185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
186 nvlist_free(propval);
187 }
188
189 /*
190 * Get property values from the spa configuration.
191 */
192 static void
193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
194 {
195 vdev_t *rvd = spa->spa_root_vdev;
196 dsl_pool_t *pool = spa->spa_dsl_pool;
197 uint64_t size;
198 uint64_t alloc;
199 uint64_t space;
200 uint64_t cap, version;
201 zprop_source_t src = ZPROP_SRC_NONE;
202 spa_config_dirent_t *dp;
203
204 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
205
206 if (rvd != NULL) {
207 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
208 size = metaslab_class_get_space(spa_normal_class(spa));
209 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
210 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
211 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
212 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
213 size - alloc, src);
214
215 space = 0;
216 for (int c = 0; c < rvd->vdev_children; c++) {
217 vdev_t *tvd = rvd->vdev_child[c];
218 space += tvd->vdev_max_asize - tvd->vdev_asize;
219 }
220 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
221 src);
222
223 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
224 (spa_mode(spa) == FREAD), src);
225
226 cap = (size == 0) ? 0 : (alloc * 100 / size);
227 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
228
229 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
230 ddt_get_pool_dedup_ratio(spa), src);
231
232 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
233 rvd->vdev_state, src);
234
235 version = spa_version(spa);
236 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
237 src = ZPROP_SRC_DEFAULT;
238 else
239 src = ZPROP_SRC_LOCAL;
240 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
241 }
242
243 if (pool != NULL) {
244 dsl_dir_t *freedir = pool->dp_free_dir;
245
246 /*
247 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
248 * when opening pools before this version freedir will be NULL.
249 */
250 if (freedir != NULL) {
251 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
252 freedir->dd_phys->dd_used_bytes, src);
253 } else {
254 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
255 NULL, 0, src);
256 }
257 }
258
259 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
260
261 if (spa->spa_comment != NULL) {
262 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
263 0, ZPROP_SRC_LOCAL);
264 }
265
266 if (spa->spa_root != NULL)
267 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
268 0, ZPROP_SRC_LOCAL);
269
270 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
271 if (dp->scd_path == NULL) {
272 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
273 "none", 0, ZPROP_SRC_LOCAL);
274 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
275 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
276 dp->scd_path, 0, ZPROP_SRC_LOCAL);
277 }
278 }
279 }
280
281 /*
282 * Get zpool property values.
283 */
284 int
285 spa_prop_get(spa_t *spa, nvlist_t **nvp)
286 {
287 objset_t *mos = spa->spa_meta_objset;
288 zap_cursor_t zc;
289 zap_attribute_t za;
290 int err;
291
292 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
293
294 mutex_enter(&spa->spa_props_lock);
295
296 /*
297 * Get properties from the spa config.
298 */
299 spa_prop_get_config(spa, nvp);
300
301 /* If no pool property object, no more prop to get. */
302 if (mos == NULL || spa->spa_pool_props_object == 0) {
303 mutex_exit(&spa->spa_props_lock);
304 return (0);
305 }
306
307 /*
308 * Get properties from the MOS pool property object.
309 */
310 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
311 (err = zap_cursor_retrieve(&zc, &za)) == 0;
312 zap_cursor_advance(&zc)) {
313 uint64_t intval = 0;
314 char *strval = NULL;
315 zprop_source_t src = ZPROP_SRC_DEFAULT;
316 zpool_prop_t prop;
317
318 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
319 continue;
320
321 switch (za.za_integer_length) {
322 case 8:
323 /* integer property */
324 if (za.za_first_integer !=
325 zpool_prop_default_numeric(prop))
326 src = ZPROP_SRC_LOCAL;
327
328 if (prop == ZPOOL_PROP_BOOTFS) {
329 dsl_pool_t *dp;
330 dsl_dataset_t *ds = NULL;
331
332 dp = spa_get_dsl(spa);
333 dsl_pool_config_enter(dp, FTAG);
334 if (err = dsl_dataset_hold_obj(dp,
335 za.za_first_integer, FTAG, &ds)) {
336 dsl_pool_config_exit(dp, FTAG);
337 break;
338 }
339
340 strval = kmem_alloc(
341 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
342 KM_SLEEP);
343 dsl_dataset_name(ds, strval);
344 dsl_dataset_rele(ds, FTAG);
345 dsl_pool_config_exit(dp, FTAG);
346 } else {
347 strval = NULL;
348 intval = za.za_first_integer;
349 }
350
351 spa_prop_add_list(*nvp, prop, strval, intval, src);
352
353 if (strval != NULL)
354 kmem_free(strval,
355 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
356
357 break;
358
359 case 1:
360 /* string property */
361 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
362 err = zap_lookup(mos, spa->spa_pool_props_object,
363 za.za_name, 1, za.za_num_integers, strval);
364 if (err) {
365 kmem_free(strval, za.za_num_integers);
366 break;
367 }
368 spa_prop_add_list(*nvp, prop, strval, 0, src);
369 kmem_free(strval, za.za_num_integers);
370 break;
371
372 default:
373 break;
374 }
375 }
376 zap_cursor_fini(&zc);
377 mutex_exit(&spa->spa_props_lock);
378 out:
379 if (err && err != ENOENT) {
380 nvlist_free(*nvp);
381 *nvp = NULL;
382 return (err);
383 }
384
385 return (0);
386 }
387
388 /*
389 * Validate the given pool properties nvlist and modify the list
390 * for the property values to be set.
391 */
392 static int
393 spa_prop_validate(spa_t *spa, nvlist_t *props)
394 {
395 nvpair_t *elem;
396 int error = 0, reset_bootfs = 0;
397 uint64_t objnum = 0;
398 boolean_t has_feature = B_FALSE;
399
400 elem = NULL;
401 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
402 uint64_t intval;
403 char *strval, *slash, *check, *fname;
404 const char *propname = nvpair_name(elem);
405 zpool_prop_t prop = zpool_name_to_prop(propname);
406
407 switch (prop) {
408 case ZPROP_INVAL:
409 if (!zpool_prop_feature(propname)) {
410 error = SET_ERROR(EINVAL);
411 break;
412 }
413
414 /*
415 * Sanitize the input.
416 */
417 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
418 error = SET_ERROR(EINVAL);
419 break;
420 }
421
422 if (nvpair_value_uint64(elem, &intval) != 0) {
423 error = SET_ERROR(EINVAL);
424 break;
425 }
426
427 if (intval != 0) {
428 error = SET_ERROR(EINVAL);
429 break;
430 }
431
432 fname = strchr(propname, '@') + 1;
433 if (zfeature_lookup_name(fname, NULL) != 0) {
434 error = SET_ERROR(EINVAL);
435 break;
436 }
437
438 has_feature = B_TRUE;
439 break;
440
441 case ZPOOL_PROP_VERSION:
442 error = nvpair_value_uint64(elem, &intval);
443 if (!error &&
444 (intval < spa_version(spa) ||
445 intval > SPA_VERSION_BEFORE_FEATURES ||
446 has_feature))
447 error = SET_ERROR(EINVAL);
448 break;
449
450 case ZPOOL_PROP_DELEGATION:
451 case ZPOOL_PROP_AUTOREPLACE:
452 case ZPOOL_PROP_LISTSNAPS:
453 case ZPOOL_PROP_AUTOEXPAND:
454 error = nvpair_value_uint64(elem, &intval);
455 if (!error && intval > 1)
456 error = SET_ERROR(EINVAL);
457 break;
458
459 case ZPOOL_PROP_BOOTFS:
460 /*
461 * If the pool version is less than SPA_VERSION_BOOTFS,
462 * or the pool is still being created (version == 0),
463 * the bootfs property cannot be set.
464 */
465 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
466 error = SET_ERROR(ENOTSUP);
467 break;
468 }
469
470 /*
471 * Make sure the vdev config is bootable
472 */
473 if (!vdev_is_bootable(spa->spa_root_vdev)) {
474 error = SET_ERROR(ENOTSUP);
475 break;
476 }
477
478 reset_bootfs = 1;
479
480 error = nvpair_value_string(elem, &strval);
481
482 if (!error) {
483 objset_t *os;
484 uint64_t compress;
485
486 if (strval == NULL || strval[0] == '\0') {
487 objnum = zpool_prop_default_numeric(
488 ZPOOL_PROP_BOOTFS);
489 break;
490 }
491
492 if (error = dmu_objset_hold(strval, FTAG, &os))
493 break;
494
495 /* Must be ZPL and not gzip compressed. */
496
497 if (dmu_objset_type(os) != DMU_OST_ZFS) {
498 error = SET_ERROR(ENOTSUP);
499 } else if ((error =
500 dsl_prop_get_int_ds(dmu_objset_ds(os),
501 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
502 &compress)) == 0 &&
503 !BOOTFS_COMPRESS_VALID(compress)) {
504 error = SET_ERROR(ENOTSUP);
505 } else {
506 objnum = dmu_objset_id(os);
507 }
508 dmu_objset_rele(os, FTAG);
509 }
510 break;
511
512 case ZPOOL_PROP_FAILUREMODE:
513 error = nvpair_value_uint64(elem, &intval);
514 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
515 intval > ZIO_FAILURE_MODE_PANIC))
516 error = SET_ERROR(EINVAL);
517
518 /*
519 * This is a special case which only occurs when
520 * the pool has completely failed. This allows
521 * the user to change the in-core failmode property
522 * without syncing it out to disk (I/Os might
523 * currently be blocked). We do this by returning
524 * EIO to the caller (spa_prop_set) to trick it
525 * into thinking we encountered a property validation
526 * error.
527 */
528 if (!error && spa_suspended(spa)) {
529 spa->spa_failmode = intval;
530 error = SET_ERROR(EIO);
531 }
532 break;
533
534 case ZPOOL_PROP_CACHEFILE:
535 if ((error = nvpair_value_string(elem, &strval)) != 0)
536 break;
537
538 if (strval[0] == '\0')
539 break;
540
541 if (strcmp(strval, "none") == 0)
542 break;
543
544 if (strval[0] != '/') {
545 error = SET_ERROR(EINVAL);
546 break;
547 }
548
549 slash = strrchr(strval, '/');
550 ASSERT(slash != NULL);
551
552 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
553 strcmp(slash, "/..") == 0)
554 error = SET_ERROR(EINVAL);
555 break;
556
557 case ZPOOL_PROP_COMMENT:
558 if ((error = nvpair_value_string(elem, &strval)) != 0)
559 break;
560 for (check = strval; *check != '\0'; check++) {
561 /*
562 * The kernel doesn't have an easy isprint()
563 * check. For this kernel check, we merely
564 * check ASCII apart from DEL. Fix this if
565 * there is an easy-to-use kernel isprint().
566 */
567 if (*check >= 0x7f) {
568 error = SET_ERROR(EINVAL);
569 break;
570 }
571 check++;
572 }
573 if (strlen(strval) > ZPROP_MAX_COMMENT)
574 error = E2BIG;
575 break;
576
577 case ZPOOL_PROP_DEDUPDITTO:
578 if (spa_version(spa) < SPA_VERSION_DEDUP)
579 error = SET_ERROR(ENOTSUP);
580 else
581 error = nvpair_value_uint64(elem, &intval);
582 if (error == 0 &&
583 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
584 error = SET_ERROR(EINVAL);
585 break;
586 }
587
588 if (error)
589 break;
590 }
591
592 if (!error && reset_bootfs) {
593 error = nvlist_remove(props,
594 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
595
596 if (!error) {
597 error = nvlist_add_uint64(props,
598 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
599 }
600 }
601
602 return (error);
603 }
604
605 void
606 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
607 {
608 char *cachefile;
609 spa_config_dirent_t *dp;
610
611 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
612 &cachefile) != 0)
613 return;
614
615 dp = kmem_alloc(sizeof (spa_config_dirent_t),
616 KM_SLEEP);
617
618 if (cachefile[0] == '\0')
619 dp->scd_path = spa_strdup(spa_config_path);
620 else if (strcmp(cachefile, "none") == 0)
621 dp->scd_path = NULL;
622 else
623 dp->scd_path = spa_strdup(cachefile);
624
625 list_insert_head(&spa->spa_config_list, dp);
626 if (need_sync)
627 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
628 }
629
630 int
631 spa_prop_set(spa_t *spa, nvlist_t *nvp)
632 {
633 int error;
634 nvpair_t *elem = NULL;
635 boolean_t need_sync = B_FALSE;
636
637 if ((error = spa_prop_validate(spa, nvp)) != 0)
638 return (error);
639
640 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
641 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
642
643 if (prop == ZPOOL_PROP_CACHEFILE ||
644 prop == ZPOOL_PROP_ALTROOT ||
645 prop == ZPOOL_PROP_READONLY)
646 continue;
647
648 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
649 uint64_t ver;
650
651 if (prop == ZPOOL_PROP_VERSION) {
652 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
653 } else {
654 ASSERT(zpool_prop_feature(nvpair_name(elem)));
655 ver = SPA_VERSION_FEATURES;
656 need_sync = B_TRUE;
657 }
658
659 /* Save time if the version is already set. */
660 if (ver == spa_version(spa))
661 continue;
662
663 /*
664 * In addition to the pool directory object, we might
665 * create the pool properties object, the features for
666 * read object, the features for write object, or the
667 * feature descriptions object.
668 */
669 error = dsl_sync_task(spa->spa_name, NULL,
670 spa_sync_version, &ver, 6);
671 if (error)
672 return (error);
673 continue;
674 }
675
676 need_sync = B_TRUE;
677 break;
678 }
679
680 if (need_sync) {
681 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
682 nvp, 6));
683 }
684
685 return (0);
686 }
687
688 /*
689 * If the bootfs property value is dsobj, clear it.
690 */
691 void
692 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
693 {
694 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
695 VERIFY(zap_remove(spa->spa_meta_objset,
696 spa->spa_pool_props_object,
697 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
698 spa->spa_bootfs = 0;
699 }
700 }
701
702 /*ARGSUSED*/
703 static int
704 spa_change_guid_check(void *arg, dmu_tx_t *tx)
705 {
706 uint64_t *newguid = arg;
707 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
708 vdev_t *rvd = spa->spa_root_vdev;
709 uint64_t vdev_state;
710
711 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
712 vdev_state = rvd->vdev_state;
713 spa_config_exit(spa, SCL_STATE, FTAG);
714
715 if (vdev_state != VDEV_STATE_HEALTHY)
716 return (SET_ERROR(ENXIO));
717
718 ASSERT3U(spa_guid(spa), !=, *newguid);
719
720 return (0);
721 }
722
723 static void
724 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
725 {
726 uint64_t *newguid = arg;
727 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
728 uint64_t oldguid;
729 vdev_t *rvd = spa->spa_root_vdev;
730
731 oldguid = spa_guid(spa);
732
733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
734 rvd->vdev_guid = *newguid;
735 rvd->vdev_guid_sum += (*newguid - oldguid);
736 vdev_config_dirty(rvd);
737 spa_config_exit(spa, SCL_STATE, FTAG);
738
739 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
740 oldguid, *newguid);
741 }
742
743 /*
744 * Change the GUID for the pool. This is done so that we can later
745 * re-import a pool built from a clone of our own vdevs. We will modify
746 * the root vdev's guid, our own pool guid, and then mark all of our
747 * vdevs dirty. Note that we must make sure that all our vdevs are
748 * online when we do this, or else any vdevs that weren't present
749 * would be orphaned from our pool. We are also going to issue a
750 * sysevent to update any watchers.
751 */
752 int
753 spa_change_guid(spa_t *spa)
754 {
755 int error;
756 uint64_t guid;
757
758 mutex_enter(&spa->spa_vdev_top_lock);
759 mutex_enter(&spa_namespace_lock);
760 guid = spa_generate_guid(NULL);
761
762 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
763 spa_change_guid_sync, &guid, 5);
764
765 if (error == 0) {
766 spa_config_sync(spa, B_FALSE, B_TRUE);
767 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
768 }
769
770 mutex_exit(&spa_namespace_lock);
771 mutex_exit(&spa->spa_vdev_top_lock);
772
773 return (error);
774 }
775
776 /*
777 * ==========================================================================
778 * SPA state manipulation (open/create/destroy/import/export)
779 * ==========================================================================
780 */
781
782 static int
783 spa_error_entry_compare(const void *a, const void *b)
784 {
785 spa_error_entry_t *sa = (spa_error_entry_t *)a;
786 spa_error_entry_t *sb = (spa_error_entry_t *)b;
787 int ret;
788
789 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
790 sizeof (zbookmark_t));
791
792 if (ret < 0)
793 return (-1);
794 else if (ret > 0)
795 return (1);
796 else
797 return (0);
798 }
799
800 /*
801 * Utility function which retrieves copies of the current logs and
802 * re-initializes them in the process.
803 */
804 void
805 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
806 {
807 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
808
809 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
810 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
811
812 avl_create(&spa->spa_errlist_scrub,
813 spa_error_entry_compare, sizeof (spa_error_entry_t),
814 offsetof(spa_error_entry_t, se_avl));
815 avl_create(&spa->spa_errlist_last,
816 spa_error_entry_compare, sizeof (spa_error_entry_t),
817 offsetof(spa_error_entry_t, se_avl));
818 }
819
820 static void
821 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
822 {
823 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
824 enum zti_modes mode = ztip->zti_mode;
825 uint_t value = ztip->zti_value;
826 uint_t count = ztip->zti_count;
827 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
828 char name[32];
829 uint_t flags = 0;
830 boolean_t batch = B_FALSE;
831
832 if (mode == ZTI_MODE_NULL) {
833 tqs->stqs_count = 0;
834 tqs->stqs_taskq = NULL;
835 return;
836 }
837
838 ASSERT3U(count, >, 0);
839
840 tqs->stqs_count = count;
841 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
842
843 switch (mode) {
844 case ZTI_MODE_FIXED:
845 ASSERT3U(value, >=, 1);
846 value = MAX(value, 1);
847 break;
848
849 case ZTI_MODE_BATCH:
850 batch = B_TRUE;
851 flags |= TASKQ_THREADS_CPU_PCT;
852 value = zio_taskq_batch_pct;
853 break;
854
855 default:
856 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
857 "spa_activate()",
858 zio_type_name[t], zio_taskq_types[q], mode, value);
859 break;
860 }
861
862 for (uint_t i = 0; i < count; i++) {
863 taskq_t *tq;
864
865 if (count > 1) {
866 (void) snprintf(name, sizeof (name), "%s_%s_%u",
867 zio_type_name[t], zio_taskq_types[q], i);
868 } else {
869 (void) snprintf(name, sizeof (name), "%s_%s",
870 zio_type_name[t], zio_taskq_types[q]);
871 }
872
873 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
874 if (batch)
875 flags |= TASKQ_DC_BATCH;
876
877 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
878 spa->spa_proc, zio_taskq_basedc, flags);
879 } else {
880 pri_t pri = maxclsyspri;
881 /*
882 * The write issue taskq can be extremely CPU
883 * intensive. Run it at slightly lower priority
884 * than the other taskqs.
885 */
886 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
887 pri--;
888
889 tq = taskq_create_proc(name, value, pri, 50,
890 INT_MAX, spa->spa_proc, flags);
891 }
892
893 tqs->stqs_taskq[i] = tq;
894 }
895 }
896
897 static void
898 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
899 {
900 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
901
902 if (tqs->stqs_taskq == NULL) {
903 ASSERT0(tqs->stqs_count);
904 return;
905 }
906
907 for (uint_t i = 0; i < tqs->stqs_count; i++) {
908 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
909 taskq_destroy(tqs->stqs_taskq[i]);
910 }
911
912 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
913 tqs->stqs_taskq = NULL;
914 }
915
916 /*
917 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
918 * Note that a type may have multiple discrete taskqs to avoid lock contention
919 * on the taskq itself. In that case we choose which taskq at random by using
920 * the low bits of gethrtime().
921 */
922 void
923 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
924 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
925 {
926 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
927 taskq_t *tq;
928
929 ASSERT3P(tqs->stqs_taskq, !=, NULL);
930 ASSERT3U(tqs->stqs_count, !=, 0);
931
932 if (tqs->stqs_count == 1) {
933 tq = tqs->stqs_taskq[0];
934 } else {
935 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
936 }
937
938 taskq_dispatch_ent(tq, func, arg, flags, ent);
939 }
940
941 static void
942 spa_create_zio_taskqs(spa_t *spa)
943 {
944 for (int t = 0; t < ZIO_TYPES; t++) {
945 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
946 spa_taskqs_init(spa, t, q);
947 }
948 }
949 }
950
951 #ifdef _KERNEL
952 static void
953 spa_thread(void *arg)
954 {
955 callb_cpr_t cprinfo;
956
957 spa_t *spa = arg;
958 user_t *pu = PTOU(curproc);
959
960 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
961 spa->spa_name);
962
963 ASSERT(curproc != &p0);
964 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
965 "zpool-%s", spa->spa_name);
966 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
967
968 /* bind this thread to the requested psrset */
969 if (zio_taskq_psrset_bind != PS_NONE) {
970 pool_lock();
971 mutex_enter(&cpu_lock);
972 mutex_enter(&pidlock);
973 mutex_enter(&curproc->p_lock);
974
975 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
976 0, NULL, NULL) == 0) {
977 curthread->t_bind_pset = zio_taskq_psrset_bind;
978 } else {
979 cmn_err(CE_WARN,
980 "Couldn't bind process for zfs pool \"%s\" to "
981 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
982 }
983
984 mutex_exit(&curproc->p_lock);
985 mutex_exit(&pidlock);
986 mutex_exit(&cpu_lock);
987 pool_unlock();
988 }
989
990 if (zio_taskq_sysdc) {
991 sysdc_thread_enter(curthread, 100, 0);
992 }
993
994 spa->spa_proc = curproc;
995 spa->spa_did = curthread->t_did;
996
997 spa_create_zio_taskqs(spa);
998
999 mutex_enter(&spa->spa_proc_lock);
1000 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1001
1002 spa->spa_proc_state = SPA_PROC_ACTIVE;
1003 cv_broadcast(&spa->spa_proc_cv);
1004
1005 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1006 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1007 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1008 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1009
1010 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1011 spa->spa_proc_state = SPA_PROC_GONE;
1012 spa->spa_proc = &p0;
1013 cv_broadcast(&spa->spa_proc_cv);
1014 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1015
1016 mutex_enter(&curproc->p_lock);
1017 lwp_exit();
1018 }
1019 #endif
1020
1021 /*
1022 * Activate an uninitialized pool.
1023 */
1024 static void
1025 spa_activate(spa_t *spa, int mode)
1026 {
1027 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1028
1029 spa->spa_state = POOL_STATE_ACTIVE;
1030 spa->spa_mode = mode;
1031
1032 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1033 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1034
1035 /* Try to create a covering process */
1036 mutex_enter(&spa->spa_proc_lock);
1037 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1038 ASSERT(spa->spa_proc == &p0);
1039 spa->spa_did = 0;
1040
1041 /* Only create a process if we're going to be around a while. */
1042 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1043 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1044 NULL, 0) == 0) {
1045 spa->spa_proc_state = SPA_PROC_CREATED;
1046 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1047 cv_wait(&spa->spa_proc_cv,
1048 &spa->spa_proc_lock);
1049 }
1050 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1051 ASSERT(spa->spa_proc != &p0);
1052 ASSERT(spa->spa_did != 0);
1053 } else {
1054 #ifdef _KERNEL
1055 cmn_err(CE_WARN,
1056 "Couldn't create process for zfs pool \"%s\"\n",
1057 spa->spa_name);
1058 #endif
1059 }
1060 }
1061 mutex_exit(&spa->spa_proc_lock);
1062
1063 /* If we didn't create a process, we need to create our taskqs. */
1064 if (spa->spa_proc == &p0) {
1065 spa_create_zio_taskqs(spa);
1066 }
1067
1068 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1069 offsetof(vdev_t, vdev_config_dirty_node));
1070 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1071 offsetof(vdev_t, vdev_state_dirty_node));
1072
1073 txg_list_create(&spa->spa_vdev_txg_list,
1074 offsetof(struct vdev, vdev_txg_node));
1075
1076 avl_create(&spa->spa_errlist_scrub,
1077 spa_error_entry_compare, sizeof (spa_error_entry_t),
1078 offsetof(spa_error_entry_t, se_avl));
1079 avl_create(&spa->spa_errlist_last,
1080 spa_error_entry_compare, sizeof (spa_error_entry_t),
1081 offsetof(spa_error_entry_t, se_avl));
1082 }
1083
1084 /*
1085 * Opposite of spa_activate().
1086 */
1087 static void
1088 spa_deactivate(spa_t *spa)
1089 {
1090 ASSERT(spa->spa_sync_on == B_FALSE);
1091 ASSERT(spa->spa_dsl_pool == NULL);
1092 ASSERT(spa->spa_root_vdev == NULL);
1093 ASSERT(spa->spa_async_zio_root == NULL);
1094 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1095
1096 txg_list_destroy(&spa->spa_vdev_txg_list);
1097
1098 list_destroy(&spa->spa_config_dirty_list);
1099 list_destroy(&spa->spa_state_dirty_list);
1100
1101 for (int t = 0; t < ZIO_TYPES; t++) {
1102 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1103 spa_taskqs_fini(spa, t, q);
1104 }
1105 }
1106
1107 metaslab_class_destroy(spa->spa_normal_class);
1108 spa->spa_normal_class = NULL;
1109
1110 metaslab_class_destroy(spa->spa_log_class);
1111 spa->spa_log_class = NULL;
1112
1113 /*
1114 * If this was part of an import or the open otherwise failed, we may
1115 * still have errors left in the queues. Empty them just in case.
1116 */
1117 spa_errlog_drain(spa);
1118
1119 avl_destroy(&spa->spa_errlist_scrub);
1120 avl_destroy(&spa->spa_errlist_last);
1121
1122 spa->spa_state = POOL_STATE_UNINITIALIZED;
1123
1124 mutex_enter(&spa->spa_proc_lock);
1125 if (spa->spa_proc_state != SPA_PROC_NONE) {
1126 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1127 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1128 cv_broadcast(&spa->spa_proc_cv);
1129 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1130 ASSERT(spa->spa_proc != &p0);
1131 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1132 }
1133 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1134 spa->spa_proc_state = SPA_PROC_NONE;
1135 }
1136 ASSERT(spa->spa_proc == &p0);
1137 mutex_exit(&spa->spa_proc_lock);
1138
1139 /*
1140 * We want to make sure spa_thread() has actually exited the ZFS
1141 * module, so that the module can't be unloaded out from underneath
1142 * it.
1143 */
1144 if (spa->spa_did != 0) {
1145 thread_join(spa->spa_did);
1146 spa->spa_did = 0;
1147 }
1148 }
1149
1150 /*
1151 * Verify a pool configuration, and construct the vdev tree appropriately. This
1152 * will create all the necessary vdevs in the appropriate layout, with each vdev
1153 * in the CLOSED state. This will prep the pool before open/creation/import.
1154 * All vdev validation is done by the vdev_alloc() routine.
1155 */
1156 static int
1157 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1158 uint_t id, int atype)
1159 {
1160 nvlist_t **child;
1161 uint_t children;
1162 int error;
1163
1164 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1165 return (error);
1166
1167 if ((*vdp)->vdev_ops->vdev_op_leaf)
1168 return (0);
1169
1170 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1171 &child, &children);
1172
1173 if (error == ENOENT)
1174 return (0);
1175
1176 if (error) {
1177 vdev_free(*vdp);
1178 *vdp = NULL;
1179 return (SET_ERROR(EINVAL));
1180 }
1181
1182 for (int c = 0; c < children; c++) {
1183 vdev_t *vd;
1184 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1185 atype)) != 0) {
1186 vdev_free(*vdp);
1187 *vdp = NULL;
1188 return (error);
1189 }
1190 }
1191
1192 ASSERT(*vdp != NULL);
1193
1194 return (0);
1195 }
1196
1197 /*
1198 * Opposite of spa_load().
1199 */
1200 static void
1201 spa_unload(spa_t *spa)
1202 {
1203 int i;
1204
1205 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1206
1207 /*
1208 * Stop async tasks.
1209 */
1210 spa_async_suspend(spa);
1211
1212 /*
1213 * Stop syncing.
1214 */
1215 if (spa->spa_sync_on) {
1216 txg_sync_stop(spa->spa_dsl_pool);
1217 spa->spa_sync_on = B_FALSE;
1218 }
1219
1220 /*
1221 * Wait for any outstanding async I/O to complete.
1222 */
1223 if (spa->spa_async_zio_root != NULL) {
1224 (void) zio_wait(spa->spa_async_zio_root);
1225 spa->spa_async_zio_root = NULL;
1226 }
1227
1228 bpobj_close(&spa->spa_deferred_bpobj);
1229
1230 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1231
1232 /*
1233 * Close all vdevs.
1234 */
1235 if (spa->spa_root_vdev)
1236 vdev_free(spa->spa_root_vdev);
1237 ASSERT(spa->spa_root_vdev == NULL);
1238
1239 /*
1240 * Close the dsl pool.
1241 */
1242 if (spa->spa_dsl_pool) {
1243 dsl_pool_close(spa->spa_dsl_pool);
1244 spa->spa_dsl_pool = NULL;
1245 spa->spa_meta_objset = NULL;
1246 }
1247
1248 ddt_unload(spa);
1249
1250
1251 /*
1252 * Drop and purge level 2 cache
1253 */
1254 spa_l2cache_drop(spa);
1255
1256 for (i = 0; i < spa->spa_spares.sav_count; i++)
1257 vdev_free(spa->spa_spares.sav_vdevs[i]);
1258 if (spa->spa_spares.sav_vdevs) {
1259 kmem_free(spa->spa_spares.sav_vdevs,
1260 spa->spa_spares.sav_count * sizeof (void *));
1261 spa->spa_spares.sav_vdevs = NULL;
1262 }
1263 if (spa->spa_spares.sav_config) {
1264 nvlist_free(spa->spa_spares.sav_config);
1265 spa->spa_spares.sav_config = NULL;
1266 }
1267 spa->spa_spares.sav_count = 0;
1268
1269 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1270 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1271 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1272 }
1273 if (spa->spa_l2cache.sav_vdevs) {
1274 kmem_free(spa->spa_l2cache.sav_vdevs,
1275 spa->spa_l2cache.sav_count * sizeof (void *));
1276 spa->spa_l2cache.sav_vdevs = NULL;
1277 }
1278 if (spa->spa_l2cache.sav_config) {
1279 nvlist_free(spa->spa_l2cache.sav_config);
1280 spa->spa_l2cache.sav_config = NULL;
1281 }
1282 spa->spa_l2cache.sav_count = 0;
1283
1284 spa->spa_async_suspended = 0;
1285
1286 if (spa->spa_comment != NULL) {
1287 spa_strfree(spa->spa_comment);
1288 spa->spa_comment = NULL;
1289 }
1290
1291 spa_config_exit(spa, SCL_ALL, FTAG);
1292 }
1293
1294 /*
1295 * Load (or re-load) the current list of vdevs describing the active spares for
1296 * this pool. When this is called, we have some form of basic information in
1297 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1298 * then re-generate a more complete list including status information.
1299 */
1300 static void
1301 spa_load_spares(spa_t *spa)
1302 {
1303 nvlist_t **spares;
1304 uint_t nspares;
1305 int i;
1306 vdev_t *vd, *tvd;
1307
1308 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1309
1310 /*
1311 * First, close and free any existing spare vdevs.
1312 */
1313 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1314 vd = spa->spa_spares.sav_vdevs[i];
1315
1316 /* Undo the call to spa_activate() below */
1317 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1318 B_FALSE)) != NULL && tvd->vdev_isspare)
1319 spa_spare_remove(tvd);
1320 vdev_close(vd);
1321 vdev_free(vd);
1322 }
1323
1324 if (spa->spa_spares.sav_vdevs)
1325 kmem_free(spa->spa_spares.sav_vdevs,
1326 spa->spa_spares.sav_count * sizeof (void *));
1327
1328 if (spa->spa_spares.sav_config == NULL)
1329 nspares = 0;
1330 else
1331 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1332 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1333
1334 spa->spa_spares.sav_count = (int)nspares;
1335 spa->spa_spares.sav_vdevs = NULL;
1336
1337 if (nspares == 0)
1338 return;
1339
1340 /*
1341 * Construct the array of vdevs, opening them to get status in the
1342 * process. For each spare, there is potentially two different vdev_t
1343 * structures associated with it: one in the list of spares (used only
1344 * for basic validation purposes) and one in the active vdev
1345 * configuration (if it's spared in). During this phase we open and
1346 * validate each vdev on the spare list. If the vdev also exists in the
1347 * active configuration, then we also mark this vdev as an active spare.
1348 */
1349 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1350 KM_SLEEP);
1351 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1352 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1353 VDEV_ALLOC_SPARE) == 0);
1354 ASSERT(vd != NULL);
1355
1356 spa->spa_spares.sav_vdevs[i] = vd;
1357
1358 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1359 B_FALSE)) != NULL) {
1360 if (!tvd->vdev_isspare)
1361 spa_spare_add(tvd);
1362
1363 /*
1364 * We only mark the spare active if we were successfully
1365 * able to load the vdev. Otherwise, importing a pool
1366 * with a bad active spare would result in strange
1367 * behavior, because multiple pool would think the spare
1368 * is actively in use.
1369 *
1370 * There is a vulnerability here to an equally bizarre
1371 * circumstance, where a dead active spare is later
1372 * brought back to life (onlined or otherwise). Given
1373 * the rarity of this scenario, and the extra complexity
1374 * it adds, we ignore the possibility.
1375 */
1376 if (!vdev_is_dead(tvd))
1377 spa_spare_activate(tvd);
1378 }
1379
1380 vd->vdev_top = vd;
1381 vd->vdev_aux = &spa->spa_spares;
1382
1383 if (vdev_open(vd) != 0)
1384 continue;
1385
1386 if (vdev_validate_aux(vd) == 0)
1387 spa_spare_add(vd);
1388 }
1389
1390 /*
1391 * Recompute the stashed list of spares, with status information
1392 * this time.
1393 */
1394 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1395 DATA_TYPE_NVLIST_ARRAY) == 0);
1396
1397 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1398 KM_SLEEP);
1399 for (i = 0; i < spa->spa_spares.sav_count; i++)
1400 spares[i] = vdev_config_generate(spa,
1401 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1402 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1403 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1404 for (i = 0; i < spa->spa_spares.sav_count; i++)
1405 nvlist_free(spares[i]);
1406 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1407 }
1408
1409 /*
1410 * Load (or re-load) the current list of vdevs describing the active l2cache for
1411 * this pool. When this is called, we have some form of basic information in
1412 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1413 * then re-generate a more complete list including status information.
1414 * Devices which are already active have their details maintained, and are
1415 * not re-opened.
1416 */
1417 static void
1418 spa_load_l2cache(spa_t *spa)
1419 {
1420 nvlist_t **l2cache;
1421 uint_t nl2cache;
1422 int i, j, oldnvdevs;
1423 uint64_t guid;
1424 vdev_t *vd, **oldvdevs, **newvdevs;
1425 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1426
1427 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1428
1429 if (sav->sav_config != NULL) {
1430 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1431 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1432 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1433 } else {
1434 nl2cache = 0;
1435 newvdevs = NULL;
1436 }
1437
1438 oldvdevs = sav->sav_vdevs;
1439 oldnvdevs = sav->sav_count;
1440 sav->sav_vdevs = NULL;
1441 sav->sav_count = 0;
1442
1443 /*
1444 * Process new nvlist of vdevs.
1445 */
1446 for (i = 0; i < nl2cache; i++) {
1447 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1448 &guid) == 0);
1449
1450 newvdevs[i] = NULL;
1451 for (j = 0; j < oldnvdevs; j++) {
1452 vd = oldvdevs[j];
1453 if (vd != NULL && guid == vd->vdev_guid) {
1454 /*
1455 * Retain previous vdev for add/remove ops.
1456 */
1457 newvdevs[i] = vd;
1458 oldvdevs[j] = NULL;
1459 break;
1460 }
1461 }
1462
1463 if (newvdevs[i] == NULL) {
1464 /*
1465 * Create new vdev
1466 */
1467 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1468 VDEV_ALLOC_L2CACHE) == 0);
1469 ASSERT(vd != NULL);
1470 newvdevs[i] = vd;
1471
1472 /*
1473 * Commit this vdev as an l2cache device,
1474 * even if it fails to open.
1475 */
1476 spa_l2cache_add(vd);
1477
1478 vd->vdev_top = vd;
1479 vd->vdev_aux = sav;
1480
1481 spa_l2cache_activate(vd);
1482
1483 if (vdev_open(vd) != 0)
1484 continue;
1485
1486 (void) vdev_validate_aux(vd);
1487
1488 if (!vdev_is_dead(vd))
1489 l2arc_add_vdev(spa, vd);
1490 }
1491 }
1492
1493 /*
1494 * Purge vdevs that were dropped
1495 */
1496 for (i = 0; i < oldnvdevs; i++) {
1497 uint64_t pool;
1498
1499 vd = oldvdevs[i];
1500 if (vd != NULL) {
1501 ASSERT(vd->vdev_isl2cache);
1502
1503 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1504 pool != 0ULL && l2arc_vdev_present(vd))
1505 l2arc_remove_vdev(vd);
1506 vdev_clear_stats(vd);
1507 vdev_free(vd);
1508 }
1509 }
1510
1511 if (oldvdevs)
1512 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1513
1514 if (sav->sav_config == NULL)
1515 goto out;
1516
1517 sav->sav_vdevs = newvdevs;
1518 sav->sav_count = (int)nl2cache;
1519
1520 /*
1521 * Recompute the stashed list of l2cache devices, with status
1522 * information this time.
1523 */
1524 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1525 DATA_TYPE_NVLIST_ARRAY) == 0);
1526
1527 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1528 for (i = 0; i < sav->sav_count; i++)
1529 l2cache[i] = vdev_config_generate(spa,
1530 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1531 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1532 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1533 out:
1534 for (i = 0; i < sav->sav_count; i++)
1535 nvlist_free(l2cache[i]);
1536 if (sav->sav_count)
1537 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1538 }
1539
1540 static int
1541 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1542 {
1543 dmu_buf_t *db;
1544 char *packed = NULL;
1545 size_t nvsize = 0;
1546 int error;
1547 *value = NULL;
1548
1549 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1550 nvsize = *(uint64_t *)db->db_data;
1551 dmu_buf_rele(db, FTAG);
1552
1553 packed = kmem_alloc(nvsize, KM_SLEEP);
1554 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1555 DMU_READ_PREFETCH);
1556 if (error == 0)
1557 error = nvlist_unpack(packed, nvsize, value, 0);
1558 kmem_free(packed, nvsize);
1559
1560 return (error);
1561 }
1562
1563 /*
1564 * Checks to see if the given vdev could not be opened, in which case we post a
1565 * sysevent to notify the autoreplace code that the device has been removed.
1566 */
1567 static void
1568 spa_check_removed(vdev_t *vd)
1569 {
1570 for (int c = 0; c < vd->vdev_children; c++)
1571 spa_check_removed(vd->vdev_child[c]);
1572
1573 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1574 !vd->vdev_ishole) {
1575 zfs_post_autoreplace(vd->vdev_spa, vd);
1576 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1577 }
1578 }
1579
1580 /*
1581 * Validate the current config against the MOS config
1582 */
1583 static boolean_t
1584 spa_config_valid(spa_t *spa, nvlist_t *config)
1585 {
1586 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1587 nvlist_t *nv;
1588
1589 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1590
1591 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1592 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1593
1594 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1595
1596 /*
1597 * If we're doing a normal import, then build up any additional
1598 * diagnostic information about missing devices in this config.
1599 * We'll pass this up to the user for further processing.
1600 */
1601 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1602 nvlist_t **child, *nv;
1603 uint64_t idx = 0;
1604
1605 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1606 KM_SLEEP);
1607 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1608
1609 for (int c = 0; c < rvd->vdev_children; c++) {
1610 vdev_t *tvd = rvd->vdev_child[c];
1611 vdev_t *mtvd = mrvd->vdev_child[c];
1612
1613 if (tvd->vdev_ops == &vdev_missing_ops &&
1614 mtvd->vdev_ops != &vdev_missing_ops &&
1615 mtvd->vdev_islog)
1616 child[idx++] = vdev_config_generate(spa, mtvd,
1617 B_FALSE, 0);
1618 }
1619
1620 if (idx) {
1621 VERIFY(nvlist_add_nvlist_array(nv,
1622 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1623 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1624 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1625
1626 for (int i = 0; i < idx; i++)
1627 nvlist_free(child[i]);
1628 }
1629 nvlist_free(nv);
1630 kmem_free(child, rvd->vdev_children * sizeof (char **));
1631 }
1632
1633 /*
1634 * Compare the root vdev tree with the information we have
1635 * from the MOS config (mrvd). Check each top-level vdev
1636 * with the corresponding MOS config top-level (mtvd).
1637 */
1638 for (int c = 0; c < rvd->vdev_children; c++) {
1639 vdev_t *tvd = rvd->vdev_child[c];
1640 vdev_t *mtvd = mrvd->vdev_child[c];
1641
1642 /*
1643 * Resolve any "missing" vdevs in the current configuration.
1644 * If we find that the MOS config has more accurate information
1645 * about the top-level vdev then use that vdev instead.
1646 */
1647 if (tvd->vdev_ops == &vdev_missing_ops &&
1648 mtvd->vdev_ops != &vdev_missing_ops) {
1649
1650 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1651 continue;
1652
1653 /*
1654 * Device specific actions.
1655 */
1656 if (mtvd->vdev_islog) {
1657 spa_set_log_state(spa, SPA_LOG_CLEAR);
1658 } else {
1659 /*
1660 * XXX - once we have 'readonly' pool
1661 * support we should be able to handle
1662 * missing data devices by transitioning
1663 * the pool to readonly.
1664 */
1665 continue;
1666 }
1667
1668 /*
1669 * Swap the missing vdev with the data we were
1670 * able to obtain from the MOS config.
1671 */
1672 vdev_remove_child(rvd, tvd);
1673 vdev_remove_child(mrvd, mtvd);
1674
1675 vdev_add_child(rvd, mtvd);
1676 vdev_add_child(mrvd, tvd);
1677
1678 spa_config_exit(spa, SCL_ALL, FTAG);
1679 vdev_load(mtvd);
1680 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1681
1682 vdev_reopen(rvd);
1683 } else if (mtvd->vdev_islog) {
1684 /*
1685 * Load the slog device's state from the MOS config
1686 * since it's possible that the label does not
1687 * contain the most up-to-date information.
1688 */
1689 vdev_load_log_state(tvd, mtvd);
1690 vdev_reopen(tvd);
1691 }
1692 }
1693 vdev_free(mrvd);
1694 spa_config_exit(spa, SCL_ALL, FTAG);
1695
1696 /*
1697 * Ensure we were able to validate the config.
1698 */
1699 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1700 }
1701
1702 /*
1703 * Check for missing log devices
1704 */
1705 static boolean_t
1706 spa_check_logs(spa_t *spa)
1707 {
1708 boolean_t rv = B_FALSE;
1709
1710 switch (spa->spa_log_state) {
1711 case SPA_LOG_MISSING:
1712 /* need to recheck in case slog has been restored */
1713 case SPA_LOG_UNKNOWN:
1714 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1715 NULL, DS_FIND_CHILDREN) != 0);
1716 if (rv)
1717 spa_set_log_state(spa, SPA_LOG_MISSING);
1718 break;
1719 }
1720 return (rv);
1721 }
1722
1723 static boolean_t
1724 spa_passivate_log(spa_t *spa)
1725 {
1726 vdev_t *rvd = spa->spa_root_vdev;
1727 boolean_t slog_found = B_FALSE;
1728
1729 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1730
1731 if (!spa_has_slogs(spa))
1732 return (B_FALSE);
1733
1734 for (int c = 0; c < rvd->vdev_children; c++) {
1735 vdev_t *tvd = rvd->vdev_child[c];
1736 metaslab_group_t *mg = tvd->vdev_mg;
1737
1738 if (tvd->vdev_islog) {
1739 metaslab_group_passivate(mg);
1740 slog_found = B_TRUE;
1741 }
1742 }
1743
1744 return (slog_found);
1745 }
1746
1747 static void
1748 spa_activate_log(spa_t *spa)
1749 {
1750 vdev_t *rvd = spa->spa_root_vdev;
1751
1752 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1753
1754 for (int c = 0; c < rvd->vdev_children; c++) {
1755 vdev_t *tvd = rvd->vdev_child[c];
1756 metaslab_group_t *mg = tvd->vdev_mg;
1757
1758 if (tvd->vdev_islog)
1759 metaslab_group_activate(mg);
1760 }
1761 }
1762
1763 int
1764 spa_offline_log(spa_t *spa)
1765 {
1766 int error;
1767
1768 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1769 NULL, DS_FIND_CHILDREN);
1770 if (error == 0) {
1771 /*
1772 * We successfully offlined the log device, sync out the
1773 * current txg so that the "stubby" block can be removed
1774 * by zil_sync().
1775 */
1776 txg_wait_synced(spa->spa_dsl_pool, 0);
1777 }
1778 return (error);
1779 }
1780
1781 static void
1782 spa_aux_check_removed(spa_aux_vdev_t *sav)
1783 {
1784 for (int i = 0; i < sav->sav_count; i++)
1785 spa_check_removed(sav->sav_vdevs[i]);
1786 }
1787
1788 void
1789 spa_claim_notify(zio_t *zio)
1790 {
1791 spa_t *spa = zio->io_spa;
1792
1793 if (zio->io_error)
1794 return;
1795
1796 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1797 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1798 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1799 mutex_exit(&spa->spa_props_lock);
1800 }
1801
1802 typedef struct spa_load_error {
1803 uint64_t sle_meta_count;
1804 uint64_t sle_data_count;
1805 } spa_load_error_t;
1806
1807 static void
1808 spa_load_verify_done(zio_t *zio)
1809 {
1810 blkptr_t *bp = zio->io_bp;
1811 spa_load_error_t *sle = zio->io_private;
1812 dmu_object_type_t type = BP_GET_TYPE(bp);
1813 int error = zio->io_error;
1814
1815 if (error) {
1816 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1817 type != DMU_OT_INTENT_LOG)
1818 atomic_add_64(&sle->sle_meta_count, 1);
1819 else
1820 atomic_add_64(&sle->sle_data_count, 1);
1821 }
1822 zio_data_buf_free(zio->io_data, zio->io_size);
1823 }
1824
1825 /*ARGSUSED*/
1826 static int
1827 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1828 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1829 {
1830 if (bp != NULL) {
1831 zio_t *rio = arg;
1832 size_t size = BP_GET_PSIZE(bp);
1833 void *data = zio_data_buf_alloc(size);
1834
1835 zio_nowait(zio_read(rio, spa, bp, data, size,
1836 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1837 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1838 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1839 }
1840 return (0);
1841 }
1842
1843 static int
1844 spa_load_verify(spa_t *spa)
1845 {
1846 zio_t *rio;
1847 spa_load_error_t sle = { 0 };
1848 zpool_rewind_policy_t policy;
1849 boolean_t verify_ok = B_FALSE;
1850 int error;
1851
1852 zpool_get_rewind_policy(spa->spa_config, &policy);
1853
1854 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1855 return (0);
1856
1857 rio = zio_root(spa, NULL, &sle,
1858 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1859
1860 error = traverse_pool(spa, spa->spa_verify_min_txg,
1861 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1862
1863 (void) zio_wait(rio);
1864
1865 spa->spa_load_meta_errors = sle.sle_meta_count;
1866 spa->spa_load_data_errors = sle.sle_data_count;
1867
1868 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1869 sle.sle_data_count <= policy.zrp_maxdata) {
1870 int64_t loss = 0;
1871
1872 verify_ok = B_TRUE;
1873 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1874 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1875
1876 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1877 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1878 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1879 VERIFY(nvlist_add_int64(spa->spa_load_info,
1880 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1881 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1882 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1883 } else {
1884 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1885 }
1886
1887 if (error) {
1888 if (error != ENXIO && error != EIO)
1889 error = SET_ERROR(EIO);
1890 return (error);
1891 }
1892
1893 return (verify_ok ? 0 : EIO);
1894 }
1895
1896 /*
1897 * Find a value in the pool props object.
1898 */
1899 static void
1900 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1901 {
1902 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1903 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1904 }
1905
1906 /*
1907 * Find a value in the pool directory object.
1908 */
1909 static int
1910 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1911 {
1912 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1913 name, sizeof (uint64_t), 1, val));
1914 }
1915
1916 static int
1917 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1918 {
1919 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1920 return (err);
1921 }
1922
1923 /*
1924 * Fix up config after a partly-completed split. This is done with the
1925 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1926 * pool have that entry in their config, but only the splitting one contains
1927 * a list of all the guids of the vdevs that are being split off.
1928 *
1929 * This function determines what to do with that list: either rejoin
1930 * all the disks to the pool, or complete the splitting process. To attempt
1931 * the rejoin, each disk that is offlined is marked online again, and
1932 * we do a reopen() call. If the vdev label for every disk that was
1933 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1934 * then we call vdev_split() on each disk, and complete the split.
1935 *
1936 * Otherwise we leave the config alone, with all the vdevs in place in
1937 * the original pool.
1938 */
1939 static void
1940 spa_try_repair(spa_t *spa, nvlist_t *config)
1941 {
1942 uint_t extracted;
1943 uint64_t *glist;
1944 uint_t i, gcount;
1945 nvlist_t *nvl;
1946 vdev_t **vd;
1947 boolean_t attempt_reopen;
1948
1949 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1950 return;
1951
1952 /* check that the config is complete */
1953 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1954 &glist, &gcount) != 0)
1955 return;
1956
1957 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1958
1959 /* attempt to online all the vdevs & validate */
1960 attempt_reopen = B_TRUE;
1961 for (i = 0; i < gcount; i++) {
1962 if (glist[i] == 0) /* vdev is hole */
1963 continue;
1964
1965 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1966 if (vd[i] == NULL) {
1967 /*
1968 * Don't bother attempting to reopen the disks;
1969 * just do the split.
1970 */
1971 attempt_reopen = B_FALSE;
1972 } else {
1973 /* attempt to re-online it */
1974 vd[i]->vdev_offline = B_FALSE;
1975 }
1976 }
1977
1978 if (attempt_reopen) {
1979 vdev_reopen(spa->spa_root_vdev);
1980
1981 /* check each device to see what state it's in */
1982 for (extracted = 0, i = 0; i < gcount; i++) {
1983 if (vd[i] != NULL &&
1984 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1985 break;
1986 ++extracted;
1987 }
1988 }
1989
1990 /*
1991 * If every disk has been moved to the new pool, or if we never
1992 * even attempted to look at them, then we split them off for
1993 * good.
1994 */
1995 if (!attempt_reopen || gcount == extracted) {
1996 for (i = 0; i < gcount; i++)
1997 if (vd[i] != NULL)
1998 vdev_split(vd[i]);
1999 vdev_reopen(spa->spa_root_vdev);
2000 }
2001
2002 kmem_free(vd, gcount * sizeof (vdev_t *));
2003 }
2004
2005 static int
2006 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2007 boolean_t mosconfig)
2008 {
2009 nvlist_t *config = spa->spa_config;
2010 char *ereport = FM_EREPORT_ZFS_POOL;
2011 char *comment;
2012 int error;
2013 uint64_t pool_guid;
2014 nvlist_t *nvl;
2015
2016 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2017 return (SET_ERROR(EINVAL));
2018
2019 ASSERT(spa->spa_comment == NULL);
2020 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2021 spa->spa_comment = spa_strdup(comment);
2022
2023 /*
2024 * Versioning wasn't explicitly added to the label until later, so if
2025 * it's not present treat it as the initial version.
2026 */
2027 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2028 &spa->spa_ubsync.ub_version) != 0)
2029 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2030
2031 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2032 &spa->spa_config_txg);
2033
2034 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2035 spa_guid_exists(pool_guid, 0)) {
2036 error = SET_ERROR(EEXIST);
2037 } else {
2038 spa->spa_config_guid = pool_guid;
2039
2040 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2041 &nvl) == 0) {
2042 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2043 KM_SLEEP) == 0);
2044 }
2045
2046 nvlist_free(spa->spa_load_info);
2047 spa->spa_load_info = fnvlist_alloc();
2048
2049 gethrestime(&spa->spa_loaded_ts);
2050 error = spa_load_impl(spa, pool_guid, config, state, type,
2051 mosconfig, &ereport);
2052 }
2053
2054 spa->spa_minref = refcount_count(&spa->spa_refcount);
2055 if (error) {
2056 if (error != EEXIST) {
2057 spa->spa_loaded_ts.tv_sec = 0;
2058 spa->spa_loaded_ts.tv_nsec = 0;
2059 }
2060 if (error != EBADF) {
2061 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2062 }
2063 }
2064 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2065 spa->spa_ena = 0;
2066
2067 return (error);
2068 }
2069
2070 /*
2071 * Load an existing storage pool, using the pool's builtin spa_config as a
2072 * source of configuration information.
2073 */
2074 static int
2075 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2076 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2077 char **ereport)
2078 {
2079 int error = 0;
2080 nvlist_t *nvroot = NULL;
2081 nvlist_t *label;
2082 vdev_t *rvd;
2083 uberblock_t *ub = &spa->spa_uberblock;
2084 uint64_t children, config_cache_txg = spa->spa_config_txg;
2085 int orig_mode = spa->spa_mode;
2086 int parse;
2087 uint64_t obj;
2088 boolean_t missing_feat_write = B_FALSE;
2089
2090 /*
2091 * If this is an untrusted config, access the pool in read-only mode.
2092 * This prevents things like resilvering recently removed devices.
2093 */
2094 if (!mosconfig)
2095 spa->spa_mode = FREAD;
2096
2097 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2098
2099 spa->spa_load_state = state;
2100
2101 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2102 return (SET_ERROR(EINVAL));
2103
2104 parse = (type == SPA_IMPORT_EXISTING ?
2105 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2106
2107 /*
2108 * Create "The Godfather" zio to hold all async IOs
2109 */
2110 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2111 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2112
2113 /*
2114 * Parse the configuration into a vdev tree. We explicitly set the
2115 * value that will be returned by spa_version() since parsing the
2116 * configuration requires knowing the version number.
2117 */
2118 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2119 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2120 spa_config_exit(spa, SCL_ALL, FTAG);
2121
2122 if (error != 0)
2123 return (error);
2124
2125 ASSERT(spa->spa_root_vdev == rvd);
2126
2127 if (type != SPA_IMPORT_ASSEMBLE) {
2128 ASSERT(spa_guid(spa) == pool_guid);
2129 }
2130
2131 /*
2132 * Try to open all vdevs, loading each label in the process.
2133 */
2134 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2135 error = vdev_open(rvd);
2136 spa_config_exit(spa, SCL_ALL, FTAG);
2137 if (error != 0)
2138 return (error);
2139
2140 /*
2141 * We need to validate the vdev labels against the configuration that
2142 * we have in hand, which is dependent on the setting of mosconfig. If
2143 * mosconfig is true then we're validating the vdev labels based on
2144 * that config. Otherwise, we're validating against the cached config
2145 * (zpool.cache) that was read when we loaded the zfs module, and then
2146 * later we will recursively call spa_load() and validate against
2147 * the vdev config.
2148 *
2149 * If we're assembling a new pool that's been split off from an
2150 * existing pool, the labels haven't yet been updated so we skip
2151 * validation for now.
2152 */
2153 if (type != SPA_IMPORT_ASSEMBLE) {
2154 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2155 error = vdev_validate(rvd, mosconfig);
2156 spa_config_exit(spa, SCL_ALL, FTAG);
2157
2158 if (error != 0)
2159 return (error);
2160
2161 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2162 return (SET_ERROR(ENXIO));
2163 }
2164
2165 /*
2166 * Find the best uberblock.
2167 */
2168 vdev_uberblock_load(rvd, ub, &label);
2169
2170 /*
2171 * If we weren't able to find a single valid uberblock, return failure.
2172 */
2173 if (ub->ub_txg == 0) {
2174 nvlist_free(label);
2175 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2176 }
2177
2178 /*
2179 * If the pool has an unsupported version we can't open it.
2180 */
2181 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2182 nvlist_free(label);
2183 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2184 }
2185
2186 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2187 nvlist_t *features;
2188
2189 /*
2190 * If we weren't able to find what's necessary for reading the
2191 * MOS in the label, return failure.
2192 */
2193 if (label == NULL || nvlist_lookup_nvlist(label,
2194 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2195 nvlist_free(label);
2196 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2197 ENXIO));
2198 }
2199
2200 /*
2201 * Update our in-core representation with the definitive values
2202 * from the label.
2203 */
2204 nvlist_free(spa->spa_label_features);
2205 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2206 }
2207
2208 nvlist_free(label);
2209
2210 /*
2211 * Look through entries in the label nvlist's features_for_read. If
2212 * there is a feature listed there which we don't understand then we
2213 * cannot open a pool.
2214 */
2215 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2216 nvlist_t *unsup_feat;
2217
2218 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2219 0);
2220
2221 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2222 NULL); nvp != NULL;
2223 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2224 if (!zfeature_is_supported(nvpair_name(nvp))) {
2225 VERIFY(nvlist_add_string(unsup_feat,
2226 nvpair_name(nvp), "") == 0);
2227 }
2228 }
2229
2230 if (!nvlist_empty(unsup_feat)) {
2231 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2232 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2233 nvlist_free(unsup_feat);
2234 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2235 ENOTSUP));
2236 }
2237
2238 nvlist_free(unsup_feat);
2239 }
2240
2241 /*
2242 * If the vdev guid sum doesn't match the uberblock, we have an
2243 * incomplete configuration. We first check to see if the pool
2244 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2245 * If it is, defer the vdev_guid_sum check till later so we
2246 * can handle missing vdevs.
2247 */
2248 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2249 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2250 rvd->vdev_guid_sum != ub->ub_guid_sum)
2251 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2252
2253 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2254 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2255 spa_try_repair(spa, config);
2256 spa_config_exit(spa, SCL_ALL, FTAG);
2257 nvlist_free(spa->spa_config_splitting);
2258 spa->spa_config_splitting = NULL;
2259 }
2260
2261 /*
2262 * Initialize internal SPA structures.
2263 */
2264 spa->spa_state = POOL_STATE_ACTIVE;
2265 spa->spa_ubsync = spa->spa_uberblock;
2266 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2267 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2268 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2269 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2270 spa->spa_claim_max_txg = spa->spa_first_txg;
2271 spa->spa_prev_software_version = ub->ub_software_version;
2272
2273 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2274 if (error)
2275 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2276 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2277
2278 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2279 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2280
2281 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2282 boolean_t missing_feat_read = B_FALSE;
2283 nvlist_t *unsup_feat, *enabled_feat;
2284
2285 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2286 &spa->spa_feat_for_read_obj) != 0) {
2287 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2288 }
2289
2290 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2291 &spa->spa_feat_for_write_obj) != 0) {
2292 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2293 }
2294
2295 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2296 &spa->spa_feat_desc_obj) != 0) {
2297 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2298 }
2299
2300 enabled_feat = fnvlist_alloc();
2301 unsup_feat = fnvlist_alloc();
2302
2303 if (!feature_is_supported(spa->spa_meta_objset,
2304 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2305 unsup_feat, enabled_feat))
2306 missing_feat_read = B_TRUE;
2307
2308 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2309 if (!feature_is_supported(spa->spa_meta_objset,
2310 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2311 unsup_feat, enabled_feat)) {
2312 missing_feat_write = B_TRUE;
2313 }
2314 }
2315
2316 fnvlist_add_nvlist(spa->spa_load_info,
2317 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2318
2319 if (!nvlist_empty(unsup_feat)) {
2320 fnvlist_add_nvlist(spa->spa_load_info,
2321 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2322 }
2323
2324 fnvlist_free(enabled_feat);
2325 fnvlist_free(unsup_feat);
2326
2327 if (!missing_feat_read) {
2328 fnvlist_add_boolean(spa->spa_load_info,
2329 ZPOOL_CONFIG_CAN_RDONLY);
2330 }
2331
2332 /*
2333 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2334 * twofold: to determine whether the pool is available for
2335 * import in read-write mode and (if it is not) whether the
2336 * pool is available for import in read-only mode. If the pool
2337 * is available for import in read-write mode, it is displayed
2338 * as available in userland; if it is not available for import
2339 * in read-only mode, it is displayed as unavailable in
2340 * userland. If the pool is available for import in read-only
2341 * mode but not read-write mode, it is displayed as unavailable
2342 * in userland with a special note that the pool is actually
2343 * available for open in read-only mode.
2344 *
2345 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2346 * missing a feature for write, we must first determine whether
2347 * the pool can be opened read-only before returning to
2348 * userland in order to know whether to display the
2349 * abovementioned note.
2350 */
2351 if (missing_feat_read || (missing_feat_write &&
2352 spa_writeable(spa))) {
2353 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2354 ENOTSUP));
2355 }
2356 }
2357
2358 spa->spa_is_initializing = B_TRUE;
2359 error = dsl_pool_open(spa->spa_dsl_pool);
2360 spa->spa_is_initializing = B_FALSE;
2361 if (error != 0)
2362 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2363
2364 if (!mosconfig) {
2365 uint64_t hostid;
2366 nvlist_t *policy = NULL, *nvconfig;
2367
2368 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2369 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2370
2371 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2372 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2373 char *hostname;
2374 unsigned long myhostid = 0;
2375
2376 VERIFY(nvlist_lookup_string(nvconfig,
2377 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2378
2379 #ifdef _KERNEL
2380 myhostid = zone_get_hostid(NULL);
2381 #else /* _KERNEL */
2382 /*
2383 * We're emulating the system's hostid in userland, so
2384 * we can't use zone_get_hostid().
2385 */
2386 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2387 #endif /* _KERNEL */
2388 if (hostid != 0 && myhostid != 0 &&
2389 hostid != myhostid) {
2390 nvlist_free(nvconfig);
2391 cmn_err(CE_WARN, "pool '%s' could not be "
2392 "loaded as it was last accessed by "
2393 "another system (host: %s hostid: 0x%lx). "
2394 "See: http://illumos.org/msg/ZFS-8000-EY",
2395 spa_name(spa), hostname,
2396 (unsigned long)hostid);
2397 return (SET_ERROR(EBADF));
2398 }
2399 }
2400 if (nvlist_lookup_nvlist(spa->spa_config,
2401 ZPOOL_REWIND_POLICY, &policy) == 0)
2402 VERIFY(nvlist_add_nvlist(nvconfig,
2403 ZPOOL_REWIND_POLICY, policy) == 0);
2404
2405 spa_config_set(spa, nvconfig);
2406 spa_unload(spa);
2407 spa_deactivate(spa);
2408 spa_activate(spa, orig_mode);
2409
2410 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2411 }
2412
2413 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2414 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2415 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2416 if (error != 0)
2417 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2418
2419 /*
2420 * Load the bit that tells us to use the new accounting function
2421 * (raid-z deflation). If we have an older pool, this will not
2422 * be present.
2423 */
2424 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2425 if (error != 0 && error != ENOENT)
2426 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2427
2428 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2429 &spa->spa_creation_version);
2430 if (error != 0 && error != ENOENT)
2431 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2432
2433 /*
2434 * Load the persistent error log. If we have an older pool, this will
2435 * not be present.
2436 */
2437 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2438 if (error != 0 && error != ENOENT)
2439 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2440
2441 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2442 &spa->spa_errlog_scrub);
2443 if (error != 0 && error != ENOENT)
2444 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2445
2446 /*
2447 * Load the history object. If we have an older pool, this
2448 * will not be present.
2449 */
2450 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2451 if (error != 0 && error != ENOENT)
2452 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2453
2454 /*
2455 * If we're assembling the pool from the split-off vdevs of
2456 * an existing pool, we don't want to attach the spares & cache
2457 * devices.
2458 */
2459
2460 /*
2461 * Load any hot spares for this pool.
2462 */
2463 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2464 if (error != 0 && error != ENOENT)
2465 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2466 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2467 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2468 if (load_nvlist(spa, spa->spa_spares.sav_object,
2469 &spa->spa_spares.sav_config) != 0)
2470 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2471
2472 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2473 spa_load_spares(spa);
2474 spa_config_exit(spa, SCL_ALL, FTAG);
2475 } else if (error == 0) {
2476 spa->spa_spares.sav_sync = B_TRUE;
2477 }
2478
2479 /*
2480 * Load any level 2 ARC devices for this pool.
2481 */
2482 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2483 &spa->spa_l2cache.sav_object);
2484 if (error != 0 && error != ENOENT)
2485 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2486 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2487 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2488 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2489 &spa->spa_l2cache.sav_config) != 0)
2490 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2491
2492 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2493 spa_load_l2cache(spa);
2494 spa_config_exit(spa, SCL_ALL, FTAG);
2495 } else if (error == 0) {
2496 spa->spa_l2cache.sav_sync = B_TRUE;
2497 }
2498
2499 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2500
2501 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2502 if (error && error != ENOENT)
2503 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2504
2505 if (error == 0) {
2506 uint64_t autoreplace;
2507
2508 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2509 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2510 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2511 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2512 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2513 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2514 &spa->spa_dedup_ditto);
2515
2516 spa->spa_autoreplace = (autoreplace != 0);
2517 }
2518
2519 /*
2520 * If the 'autoreplace' property is set, then post a resource notifying
2521 * the ZFS DE that it should not issue any faults for unopenable
2522 * devices. We also iterate over the vdevs, and post a sysevent for any
2523 * unopenable vdevs so that the normal autoreplace handler can take
2524 * over.
2525 */
2526 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2527 spa_check_removed(spa->spa_root_vdev);
2528 /*
2529 * For the import case, this is done in spa_import(), because
2530 * at this point we're using the spare definitions from
2531 * the MOS config, not necessarily from the userland config.
2532 */
2533 if (state != SPA_LOAD_IMPORT) {
2534 spa_aux_check_removed(&spa->spa_spares);
2535 spa_aux_check_removed(&spa->spa_l2cache);
2536 }
2537 }
2538
2539 /*
2540 * Load the vdev state for all toplevel vdevs.
2541 */
2542 vdev_load(rvd);
2543
2544 /*
2545 * Propagate the leaf DTLs we just loaded all the way up the tree.
2546 */
2547 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2548 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2549 spa_config_exit(spa, SCL_ALL, FTAG);
2550
2551 /*
2552 * Load the DDTs (dedup tables).
2553 */
2554 error = ddt_load(spa);
2555 if (error != 0)
2556 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2557
2558 spa_update_dspace(spa);
2559
2560 /*
2561 * Validate the config, using the MOS config to fill in any
2562 * information which might be missing. If we fail to validate
2563 * the config then declare the pool unfit for use. If we're
2564 * assembling a pool from a split, the log is not transferred
2565 * over.
2566 */
2567 if (type != SPA_IMPORT_ASSEMBLE) {
2568 nvlist_t *nvconfig;
2569
2570 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2571 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2572
2573 if (!spa_config_valid(spa, nvconfig)) {
2574 nvlist_free(nvconfig);
2575 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2576 ENXIO));
2577 }
2578 nvlist_free(nvconfig);
2579
2580 /*
2581 * Now that we've validated the config, check the state of the
2582 * root vdev. If it can't be opened, it indicates one or
2583 * more toplevel vdevs are faulted.
2584 */
2585 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2586 return (SET_ERROR(ENXIO));
2587
2588 if (spa_check_logs(spa)) {
2589 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2590 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2591 }
2592 }
2593
2594 if (missing_feat_write) {
2595 ASSERT(state == SPA_LOAD_TRYIMPORT);
2596
2597 /*
2598 * At this point, we know that we can open the pool in
2599 * read-only mode but not read-write mode. We now have enough
2600 * information and can return to userland.
2601 */
2602 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2603 }
2604
2605 /*
2606 * We've successfully opened the pool, verify that we're ready
2607 * to start pushing transactions.
2608 */
2609 if (state != SPA_LOAD_TRYIMPORT) {
2610 if (error = spa_load_verify(spa))
2611 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2612 error));
2613 }
2614
2615 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2616 spa->spa_load_max_txg == UINT64_MAX)) {
2617 dmu_tx_t *tx;
2618 int need_update = B_FALSE;
2619
2620 ASSERT(state != SPA_LOAD_TRYIMPORT);
2621
2622 /*
2623 * Claim log blocks that haven't been committed yet.
2624 * This must all happen in a single txg.
2625 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2626 * invoked from zil_claim_log_block()'s i/o done callback.
2627 * Price of rollback is that we abandon the log.
2628 */
2629 spa->spa_claiming = B_TRUE;
2630
2631 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2632 spa_first_txg(spa));
2633 (void) dmu_objset_find(spa_name(spa),
2634 zil_claim, tx, DS_FIND_CHILDREN);
2635 dmu_tx_commit(tx);
2636
2637 spa->spa_claiming = B_FALSE;
2638
2639 spa_set_log_state(spa, SPA_LOG_GOOD);
2640 spa->spa_sync_on = B_TRUE;
2641 txg_sync_start(spa->spa_dsl_pool);
2642
2643 /*
2644 * Wait for all claims to sync. We sync up to the highest
2645 * claimed log block birth time so that claimed log blocks
2646 * don't appear to be from the future. spa_claim_max_txg
2647 * will have been set for us by either zil_check_log_chain()
2648 * (invoked from spa_check_logs()) or zil_claim() above.
2649 */
2650 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2651
2652 /*
2653 * If the config cache is stale, or we have uninitialized
2654 * metaslabs (see spa_vdev_add()), then update the config.
2655 *
2656 * If this is a verbatim import, trust the current
2657 * in-core spa_config and update the disk labels.
2658 */
2659 if (config_cache_txg != spa->spa_config_txg ||
2660 state == SPA_LOAD_IMPORT ||
2661 state == SPA_LOAD_RECOVER ||
2662 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2663 need_update = B_TRUE;
2664
2665 for (int c = 0; c < rvd->vdev_children; c++)
2666 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2667 need_update = B_TRUE;
2668
2669 /*
2670 * Update the config cache asychronously in case we're the
2671 * root pool, in which case the config cache isn't writable yet.
2672 */
2673 if (need_update)
2674 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2675
2676 /*
2677 * Check all DTLs to see if anything needs resilvering.
2678 */
2679 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2680 vdev_resilver_needed(rvd, NULL, NULL))
2681 spa_async_request(spa, SPA_ASYNC_RESILVER);
2682
2683 /*
2684 * Log the fact that we booted up (so that we can detect if
2685 * we rebooted in the middle of an operation).
2686 */
2687 spa_history_log_version(spa, "open");
2688
2689 /*
2690 * Delete any inconsistent datasets.
2691 */
2692 (void) dmu_objset_find(spa_name(spa),
2693 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2694
2695 /*
2696 * Clean up any stale temporary dataset userrefs.
2697 */
2698 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2699 }
2700
2701 return (0);
2702 }
2703
2704 static int
2705 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2706 {
2707 int mode = spa->spa_mode;
2708
2709 spa_unload(spa);
2710 spa_deactivate(spa);
2711
2712 spa->spa_load_max_txg--;
2713
2714 spa_activate(spa, mode);
2715 spa_async_suspend(spa);
2716
2717 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2718 }
2719
2720 /*
2721 * If spa_load() fails this function will try loading prior txg's. If
2722 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2723 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2724 * function will not rewind the pool and will return the same error as
2725 * spa_load().
2726 */
2727 static int
2728 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2729 uint64_t max_request, int rewind_flags)
2730 {
2731 nvlist_t *loadinfo = NULL;
2732 nvlist_t *config = NULL;
2733 int load_error, rewind_error;
2734 uint64_t safe_rewind_txg;
2735 uint64_t min_txg;
2736
2737 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2738 spa->spa_load_max_txg = spa->spa_load_txg;
2739 spa_set_log_state(spa, SPA_LOG_CLEAR);
2740 } else {
2741 spa->spa_load_max_txg = max_request;
2742 }
2743
2744 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2745 mosconfig);
2746 if (load_error == 0)
2747 return (0);
2748
2749 if (spa->spa_root_vdev != NULL)
2750 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2751
2752 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2753 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2754
2755 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2756 nvlist_free(config);
2757 return (load_error);
2758 }
2759
2760 if (state == SPA_LOAD_RECOVER) {
2761 /* Price of rolling back is discarding txgs, including log */
2762 spa_set_log_state(spa, SPA_LOG_CLEAR);
2763 } else {
2764 /*
2765 * If we aren't rolling back save the load info from our first
2766 * import attempt so that we can restore it after attempting
2767 * to rewind.
2768 */
2769 loadinfo = spa->spa_load_info;
2770 spa->spa_load_info = fnvlist_alloc();
2771 }
2772
2773 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2774 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2775 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2776 TXG_INITIAL : safe_rewind_txg;
2777
2778 /*
2779 * Continue as long as we're finding errors, we're still within
2780 * the acceptable rewind range, and we're still finding uberblocks
2781 */
2782 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2783 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2784 if (spa->spa_load_max_txg < safe_rewind_txg)
2785 spa->spa_extreme_rewind = B_TRUE;
2786 rewind_error = spa_load_retry(spa, state, mosconfig);
2787 }
2788
2789 spa->spa_extreme_rewind = B_FALSE;
2790 spa->spa_load_max_txg = UINT64_MAX;
2791
2792 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2793 spa_config_set(spa, config);
2794
2795 if (state == SPA_LOAD_RECOVER) {
2796 ASSERT3P(loadinfo, ==, NULL);
2797 return (rewind_error);
2798 } else {
2799 /* Store the rewind info as part of the initial load info */
2800 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2801 spa->spa_load_info);
2802
2803 /* Restore the initial load info */
2804 fnvlist_free(spa->spa_load_info);
2805 spa->spa_load_info = loadinfo;
2806
2807 return (load_error);
2808 }
2809 }
2810
2811 /*
2812 * Pool Open/Import
2813 *
2814 * The import case is identical to an open except that the configuration is sent
2815 * down from userland, instead of grabbed from the configuration cache. For the
2816 * case of an open, the pool configuration will exist in the
2817 * POOL_STATE_UNINITIALIZED state.
2818 *
2819 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2820 * the same time open the pool, without having to keep around the spa_t in some
2821 * ambiguous state.
2822 */
2823 static int
2824 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2825 nvlist_t **config)
2826 {
2827 spa_t *spa;
2828 spa_load_state_t state = SPA_LOAD_OPEN;
2829 int error;
2830 int locked = B_FALSE;
2831
2832 *spapp = NULL;
2833
2834 /*
2835 * As disgusting as this is, we need to support recursive calls to this
2836 * function because dsl_dir_open() is called during spa_load(), and ends
2837 * up calling spa_open() again. The real fix is to figure out how to
2838 * avoid dsl_dir_open() calling this in the first place.
2839 */
2840 if (mutex_owner(&spa_namespace_lock) != curthread) {
2841 mutex_enter(&spa_namespace_lock);
2842 locked = B_TRUE;
2843 }
2844
2845 if ((spa = spa_lookup(pool)) == NULL) {
2846 if (locked)
2847 mutex_exit(&spa_namespace_lock);
2848 return (SET_ERROR(ENOENT));
2849 }
2850
2851 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2852 zpool_rewind_policy_t policy;
2853
2854 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2855 &policy);
2856 if (policy.zrp_request & ZPOOL_DO_REWIND)
2857 state = SPA_LOAD_RECOVER;
2858
2859 spa_activate(spa, spa_mode_global);
2860
2861 if (state != SPA_LOAD_RECOVER)
2862 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2863
2864 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2865 policy.zrp_request);
2866
2867 if (error == EBADF) {
2868 /*
2869 * If vdev_validate() returns failure (indicated by
2870 * EBADF), it indicates that one of the vdevs indicates
2871 * that the pool has been exported or destroyed. If
2872 * this is the case, the config cache is out of sync and
2873 * we should remove the pool from the namespace.
2874 */
2875 spa_unload(spa);
2876 spa_deactivate(spa);
2877 spa_config_sync(spa, B_TRUE, B_TRUE);
2878 spa_remove(spa);
2879 if (locked)
2880 mutex_exit(&spa_namespace_lock);
2881 return (SET_ERROR(ENOENT));
2882 }
2883
2884 if (error) {
2885 /*
2886 * We can't open the pool, but we still have useful
2887 * information: the state of each vdev after the
2888 * attempted vdev_open(). Return this to the user.
2889 */
2890 if (config != NULL && spa->spa_config) {
2891 VERIFY(nvlist_dup(spa->spa_config, config,
2892 KM_SLEEP) == 0);
2893 VERIFY(nvlist_add_nvlist(*config,
2894 ZPOOL_CONFIG_LOAD_INFO,
2895 spa->spa_load_info) == 0);
2896 }
2897 spa_unload(spa);
2898 spa_deactivate(spa);
2899 spa->spa_last_open_failed = error;
2900 if (locked)
2901 mutex_exit(&spa_namespace_lock);
2902 *spapp = NULL;
2903 return (error);
2904 }
2905 }
2906
2907 spa_open_ref(spa, tag);
2908
2909 if (config != NULL)
2910 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2911
2912 /*
2913 * If we've recovered the pool, pass back any information we
2914 * gathered while doing the load.
2915 */
2916 if (state == SPA_LOAD_RECOVER) {
2917 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2918 spa->spa_load_info) == 0);
2919 }
2920
2921 if (locked) {
2922 spa->spa_last_open_failed = 0;
2923 spa->spa_last_ubsync_txg = 0;
2924 spa->spa_load_txg = 0;
2925 mutex_exit(&spa_namespace_lock);
2926 }
2927
2928 *spapp = spa;
2929
2930 return (0);
2931 }
2932
2933 int
2934 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2935 nvlist_t **config)
2936 {
2937 return (spa_open_common(name, spapp, tag, policy, config));
2938 }
2939
2940 int
2941 spa_open(const char *name, spa_t **spapp, void *tag)
2942 {
2943 return (spa_open_common(name, spapp, tag, NULL, NULL));
2944 }
2945
2946 /*
2947 * Lookup the given spa_t, incrementing the inject count in the process,
2948 * preventing it from being exported or destroyed.
2949 */
2950 spa_t *
2951 spa_inject_addref(char *name)
2952 {
2953 spa_t *spa;
2954
2955 mutex_enter(&spa_namespace_lock);
2956 if ((spa = spa_lookup(name)) == NULL) {
2957 mutex_exit(&spa_namespace_lock);
2958 return (NULL);
2959 }
2960 spa->spa_inject_ref++;
2961 mutex_exit(&spa_namespace_lock);
2962
2963 return (spa);
2964 }
2965
2966 void
2967 spa_inject_delref(spa_t *spa)
2968 {
2969 mutex_enter(&spa_namespace_lock);
2970 spa->spa_inject_ref--;
2971 mutex_exit(&spa_namespace_lock);
2972 }
2973
2974 /*
2975 * Add spares device information to the nvlist.
2976 */
2977 static void
2978 spa_add_spares(spa_t *spa, nvlist_t *config)
2979 {
2980 nvlist_t **spares;
2981 uint_t i, nspares;
2982 nvlist_t *nvroot;
2983 uint64_t guid;
2984 vdev_stat_t *vs;
2985 uint_t vsc;
2986 uint64_t pool;
2987
2988 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2989
2990 if (spa->spa_spares.sav_count == 0)
2991 return;
2992
2993 VERIFY(nvlist_lookup_nvlist(config,
2994 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2995 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2996 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2997 if (nspares != 0) {
2998 VERIFY(nvlist_add_nvlist_array(nvroot,
2999 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3000 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3001 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3002
3003 /*
3004 * Go through and find any spares which have since been
3005 * repurposed as an active spare. If this is the case, update
3006 * their status appropriately.
3007 */
3008 for (i = 0; i < nspares; i++) {
3009 VERIFY(nvlist_lookup_uint64(spares[i],
3010 ZPOOL_CONFIG_GUID, &guid) == 0);
3011 if (spa_spare_exists(guid, &pool, NULL) &&
3012 pool != 0ULL) {
3013 VERIFY(nvlist_lookup_uint64_array(
3014 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3015 (uint64_t **)&vs, &vsc) == 0);
3016 vs->vs_state = VDEV_STATE_CANT_OPEN;
3017 vs->vs_aux = VDEV_AUX_SPARED;
3018 }
3019 }
3020 }
3021 }
3022
3023 /*
3024 * Add l2cache device information to the nvlist, including vdev stats.
3025 */
3026 static void
3027 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3028 {
3029 nvlist_t **l2cache;
3030 uint_t i, j, nl2cache;
3031 nvlist_t *nvroot;
3032 uint64_t guid;
3033 vdev_t *vd;
3034 vdev_stat_t *vs;
3035 uint_t vsc;
3036
3037 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3038
3039 if (spa->spa_l2cache.sav_count == 0)
3040 return;
3041
3042 VERIFY(nvlist_lookup_nvlist(config,
3043 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3044 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3045 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3046 if (nl2cache != 0) {
3047 VERIFY(nvlist_add_nvlist_array(nvroot,
3048 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3049 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3050 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3051
3052 /*
3053 * Update level 2 cache device stats.
3054 */
3055
3056 for (i = 0; i < nl2cache; i++) {
3057 VERIFY(nvlist_lookup_uint64(l2cache[i],
3058 ZPOOL_CONFIG_GUID, &guid) == 0);
3059
3060 vd = NULL;
3061 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3062 if (guid ==
3063 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3064 vd = spa->spa_l2cache.sav_vdevs[j];
3065 break;
3066 }
3067 }
3068 ASSERT(vd != NULL);
3069
3070 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3071 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3072 == 0);
3073 vdev_get_stats(vd, vs);
3074 }
3075 }
3076 }
3077
3078 static void
3079 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3080 {
3081 nvlist_t *features;
3082 zap_cursor_t zc;
3083 zap_attribute_t za;
3084
3085 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3086 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3087
3088 if (spa->spa_feat_for_read_obj != 0) {
3089 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3090 spa->spa_feat_for_read_obj);
3091 zap_cursor_retrieve(&zc, &za) == 0;
3092 zap_cursor_advance(&zc)) {
3093 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3094 za.za_num_integers == 1);
3095 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3096 za.za_first_integer));
3097 }
3098 zap_cursor_fini(&zc);
3099 }
3100
3101 if (spa->spa_feat_for_write_obj != 0) {
3102 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3103 spa->spa_feat_for_write_obj);
3104 zap_cursor_retrieve(&zc, &za) == 0;
3105 zap_cursor_advance(&zc)) {
3106 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3107 za.za_num_integers == 1);
3108 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3109 za.za_first_integer));
3110 }
3111 zap_cursor_fini(&zc);
3112 }
3113
3114 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3115 features) == 0);
3116 nvlist_free(features);
3117 }
3118
3119 int
3120 spa_get_stats(const char *name, nvlist_t **config,
3121 char *altroot, size_t buflen)
3122 {
3123 int error;
3124 spa_t *spa;
3125
3126 *config = NULL;
3127 error = spa_open_common(name, &spa, FTAG, NULL, config);
3128
3129 if (spa != NULL) {
3130 /*
3131 * This still leaves a window of inconsistency where the spares
3132 * or l2cache devices could change and the config would be
3133 * self-inconsistent.
3134 */
3135 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3136
3137 if (*config != NULL) {
3138 uint64_t loadtimes[2];
3139
3140 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3141 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3142 VERIFY(nvlist_add_uint64_array(*config,
3143 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3144
3145 VERIFY(nvlist_add_uint64(*config,
3146 ZPOOL_CONFIG_ERRCOUNT,
3147 spa_get_errlog_size(spa)) == 0);
3148
3149 if (spa_suspended(spa))
3150 VERIFY(nvlist_add_uint64(*config,
3151 ZPOOL_CONFIG_SUSPENDED,
3152 spa->spa_failmode) == 0);
3153
3154 spa_add_spares(spa, *config);
3155 spa_add_l2cache(spa, *config);
3156 spa_add_feature_stats(spa, *config);
3157 }
3158 }
3159
3160 /*
3161 * We want to get the alternate root even for faulted pools, so we cheat
3162 * and call spa_lookup() directly.
3163 */
3164 if (altroot) {
3165 if (spa == NULL) {
3166 mutex_enter(&spa_namespace_lock);
3167 spa = spa_lookup(name);
3168 if (spa)
3169 spa_altroot(spa, altroot, buflen);
3170 else
3171 altroot[0] = '\0';
3172 spa = NULL;
3173 mutex_exit(&spa_namespace_lock);
3174 } else {
3175 spa_altroot(spa, altroot, buflen);
3176 }
3177 }
3178
3179 if (spa != NULL) {
3180 spa_config_exit(spa, SCL_CONFIG, FTAG);
3181 spa_close(spa, FTAG);
3182 }
3183
3184 return (error);
3185 }
3186
3187 /*
3188 * Validate that the auxiliary device array is well formed. We must have an
3189 * array of nvlists, each which describes a valid leaf vdev. If this is an
3190 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3191 * specified, as long as they are well-formed.
3192 */
3193 static int
3194 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3195 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3196 vdev_labeltype_t label)
3197 {
3198 nvlist_t **dev;
3199 uint_t i, ndev;
3200 vdev_t *vd;
3201 int error;
3202
3203 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3204
3205 /*
3206 * It's acceptable to have no devs specified.
3207 */
3208 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3209 return (0);
3210
3211 if (ndev == 0)
3212 return (SET_ERROR(EINVAL));
3213
3214 /*
3215 * Make sure the pool is formatted with a version that supports this
3216 * device type.
3217 */
3218 if (spa_version(spa) < version)
3219 return (SET_ERROR(ENOTSUP));
3220
3221 /*
3222 * Set the pending device list so we correctly handle device in-use
3223 * checking.
3224 */
3225 sav->sav_pending = dev;
3226 sav->sav_npending = ndev;
3227
3228 for (i = 0; i < ndev; i++) {
3229 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3230 mode)) != 0)
3231 goto out;
3232
3233 if (!vd->vdev_ops->vdev_op_leaf) {
3234 vdev_free(vd);
3235 error = SET_ERROR(EINVAL);
3236 goto out;
3237 }
3238
3239 /*
3240 * The L2ARC currently only supports disk devices in
3241 * kernel context. For user-level testing, we allow it.
3242 */
3243 #ifdef _KERNEL
3244 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3245 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3246 error = SET_ERROR(ENOTBLK);
3247 vdev_free(vd);
3248 goto out;
3249 }
3250 #endif
3251 vd->vdev_top = vd;
3252
3253 if ((error = vdev_open(vd)) == 0 &&
3254 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3255 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3256 vd->vdev_guid) == 0);
3257 }
3258
3259 vdev_free(vd);
3260
3261 if (error &&
3262 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3263 goto out;
3264 else
3265 error = 0;
3266 }
3267
3268 out:
3269 sav->sav_pending = NULL;
3270 sav->sav_npending = 0;
3271 return (error);
3272 }
3273
3274 static int
3275 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3276 {
3277 int error;
3278
3279 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3280
3281 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3282 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3283 VDEV_LABEL_SPARE)) != 0) {
3284 return (error);
3285 }
3286
3287 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3288 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3289 VDEV_LABEL_L2CACHE));
3290 }
3291
3292 static void
3293 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3294 const char *config)
3295 {
3296 int i;
3297
3298 if (sav->sav_config != NULL) {
3299 nvlist_t **olddevs;
3300 uint_t oldndevs;
3301 nvlist_t **newdevs;
3302
3303 /*
3304 * Generate new dev list by concatentating with the
3305 * current dev list.
3306 */
3307 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3308 &olddevs, &oldndevs) == 0);
3309
3310 newdevs = kmem_alloc(sizeof (void *) *
3311 (ndevs + oldndevs), KM_SLEEP);
3312 for (i = 0; i < oldndevs; i++)
3313 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3314 KM_SLEEP) == 0);
3315 for (i = 0; i < ndevs; i++)
3316 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3317 KM_SLEEP) == 0);
3318
3319 VERIFY(nvlist_remove(sav->sav_config, config,
3320 DATA_TYPE_NVLIST_ARRAY) == 0);
3321
3322 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3323 config, newdevs, ndevs + oldndevs) == 0);
3324 for (i = 0; i < oldndevs + ndevs; i++)
3325 nvlist_free(newdevs[i]);
3326 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3327 } else {
3328 /*
3329 * Generate a new dev list.
3330 */
3331 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3332 KM_SLEEP) == 0);
3333 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3334 devs, ndevs) == 0);
3335 }
3336 }
3337
3338 /*
3339 * Stop and drop level 2 ARC devices
3340 */
3341 void
3342 spa_l2cache_drop(spa_t *spa)
3343 {
3344 vdev_t *vd;
3345 int i;
3346 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3347
3348 for (i = 0; i < sav->sav_count; i++) {
3349 uint64_t pool;
3350
3351 vd = sav->sav_vdevs[i];
3352 ASSERT(vd != NULL);
3353
3354 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3355 pool != 0ULL && l2arc_vdev_present(vd))
3356 l2arc_remove_vdev(vd);
3357 }
3358 }
3359
3360 /*
3361 * Pool Creation
3362 */
3363 int
3364 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3365 nvlist_t *zplprops)
3366 {
3367 spa_t *spa;
3368 char *altroot = NULL;
3369 vdev_t *rvd;
3370 dsl_pool_t *dp;
3371 dmu_tx_t *tx;
3372 int error = 0;
3373 uint64_t txg = TXG_INITIAL;
3374 nvlist_t **spares, **l2cache;
3375 uint_t nspares, nl2cache;
3376 uint64_t version, obj;
3377 boolean_t has_features;
3378
3379 /*
3380 * If this pool already exists, return failure.
3381 */
3382 mutex_enter(&spa_namespace_lock);
3383 if (spa_lookup(pool) != NULL) {
3384 mutex_exit(&spa_namespace_lock);
3385 return (SET_ERROR(EEXIST));
3386 }
3387
3388 /*
3389 * Allocate a new spa_t structure.
3390 */
3391 (void) nvlist_lookup_string(props,
3392 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3393 spa = spa_add(pool, NULL, altroot);
3394 spa_activate(spa, spa_mode_global);
3395
3396 if (props && (error = spa_prop_validate(spa, props))) {
3397 spa_deactivate(spa);
3398 spa_remove(spa);
3399 mutex_exit(&spa_namespace_lock);
3400 return (error);
3401 }
3402
3403 has_features = B_FALSE;
3404 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3405 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3406 if (zpool_prop_feature(nvpair_name(elem)))
3407 has_features = B_TRUE;
3408 }
3409
3410 if (has_features || nvlist_lookup_uint64(props,
3411 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3412 version = SPA_VERSION;
3413 }
3414 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3415
3416 spa->spa_first_txg = txg;
3417 spa->spa_uberblock.ub_txg = txg - 1;
3418 spa->spa_uberblock.ub_version = version;
3419 spa->spa_ubsync = spa->spa_uberblock;
3420
3421 /*
3422 * Create "The Godfather" zio to hold all async IOs
3423 */
3424 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3425 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3426
3427 /*
3428 * Create the root vdev.
3429 */
3430 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3431
3432 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3433
3434 ASSERT(error != 0 || rvd != NULL);
3435 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3436
3437 if (error == 0 && !zfs_allocatable_devs(nvroot))
3438 error = SET_ERROR(EINVAL);
3439
3440 if (error == 0 &&
3441 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3442 (error = spa_validate_aux(spa, nvroot, txg,
3443 VDEV_ALLOC_ADD)) == 0) {
3444 for (int c = 0; c < rvd->vdev_children; c++) {
3445 vdev_metaslab_set_size(rvd->vdev_child[c]);
3446 vdev_expand(rvd->vdev_child[c], txg);
3447 }
3448 }
3449
3450 spa_config_exit(spa, SCL_ALL, FTAG);
3451
3452 if (error != 0) {
3453 spa_unload(spa);
3454 spa_deactivate(spa);
3455 spa_remove(spa);
3456 mutex_exit(&spa_namespace_lock);
3457 return (error);
3458 }
3459
3460 /*
3461 * Get the list of spares, if specified.
3462 */
3463 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3464 &spares, &nspares) == 0) {
3465 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3466 KM_SLEEP) == 0);
3467 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3468 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3469 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3470 spa_load_spares(spa);
3471 spa_config_exit(spa, SCL_ALL, FTAG);
3472 spa->spa_spares.sav_sync = B_TRUE;
3473 }
3474
3475 /*
3476 * Get the list of level 2 cache devices, if specified.
3477 */
3478 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3479 &l2cache, &nl2cache) == 0) {
3480 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3481 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3482 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3483 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3484 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3485 spa_load_l2cache(spa);
3486 spa_config_exit(spa, SCL_ALL, FTAG);
3487 spa->spa_l2cache.sav_sync = B_TRUE;
3488 }
3489
3490 spa->spa_is_initializing = B_TRUE;
3491 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3492 spa->spa_meta_objset = dp->dp_meta_objset;
3493 spa->spa_is_initializing = B_FALSE;
3494
3495 /*
3496 * Create DDTs (dedup tables).
3497 */
3498 ddt_create(spa);
3499
3500 spa_update_dspace(spa);
3501
3502 tx = dmu_tx_create_assigned(dp, txg);
3503
3504 /*
3505 * Create the pool config object.
3506 */
3507 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3508 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3509 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3510
3511 if (zap_add(spa->spa_meta_objset,
3512 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3513 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3514 cmn_err(CE_PANIC, "failed to add pool config");
3515 }
3516
3517 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3518 spa_feature_create_zap_objects(spa, tx);
3519
3520 if (zap_add(spa->spa_meta_objset,
3521 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3522 sizeof (uint64_t), 1, &version, tx) != 0) {
3523 cmn_err(CE_PANIC, "failed to add pool version");
3524 }
3525
3526 /* Newly created pools with the right version are always deflated. */
3527 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3528 spa->spa_deflate = TRUE;
3529 if (zap_add(spa->spa_meta_objset,
3530 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3531 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3532 cmn_err(CE_PANIC, "failed to add deflate");
3533 }
3534 }
3535
3536 /*
3537 * Create the deferred-free bpobj. Turn off compression
3538 * because sync-to-convergence takes longer if the blocksize
3539 * keeps changing.
3540 */
3541 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3542 dmu_object_set_compress(spa->spa_meta_objset, obj,
3543 ZIO_COMPRESS_OFF, tx);
3544 if (zap_add(spa->spa_meta_objset,
3545 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3546 sizeof (uint64_t), 1, &obj, tx) != 0) {
3547 cmn_err(CE_PANIC, "failed to add bpobj");
3548 }
3549 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3550 spa->spa_meta_objset, obj));
3551
3552 /*
3553 * Create the pool's history object.
3554 */
3555 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3556 spa_history_create_obj(spa, tx);
3557
3558 /*
3559 * Set pool properties.
3560 */
3561 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3562 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3563 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3564 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3565
3566 if (props != NULL) {
3567 spa_configfile_set(spa, props, B_FALSE);
3568 spa_sync_props(props, tx);
3569 }
3570
3571 dmu_tx_commit(tx);
3572
3573 spa->spa_sync_on = B_TRUE;
3574 txg_sync_start(spa->spa_dsl_pool);
3575
3576 /*
3577 * We explicitly wait for the first transaction to complete so that our
3578 * bean counters are appropriately updated.
3579 */
3580 txg_wait_synced(spa->spa_dsl_pool, txg);
3581
3582 spa_config_sync(spa, B_FALSE, B_TRUE);
3583
3584 spa_history_log_version(spa, "create");
3585
3586 spa->spa_minref = refcount_count(&spa->spa_refcount);
3587
3588 mutex_exit(&spa_namespace_lock);
3589
3590 return (0);
3591 }
3592
3593 #ifdef _KERNEL
3594 /*
3595 * Get the root pool information from the root disk, then import the root pool
3596 * during the system boot up time.
3597 */
3598 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3599
3600 static nvlist_t *
3601 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3602 {
3603 nvlist_t *config;
3604 nvlist_t *nvtop, *nvroot;
3605 uint64_t pgid;
3606
3607 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3608 return (NULL);
3609
3610 /*
3611 * Add this top-level vdev to the child array.
3612 */
3613 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3614 &nvtop) == 0);
3615 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3616 &pgid) == 0);
3617 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3618
3619 /*
3620 * Put this pool's top-level vdevs into a root vdev.
3621 */
3622 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3623 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3624 VDEV_TYPE_ROOT) == 0);
3625 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3626 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3627 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3628 &nvtop, 1) == 0);
3629
3630 /*
3631 * Replace the existing vdev_tree with the new root vdev in
3632 * this pool's configuration (remove the old, add the new).
3633 */
3634 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3635 nvlist_free(nvroot);
3636 return (config);
3637 }
3638
3639 /*
3640 * Walk the vdev tree and see if we can find a device with "better"
3641 * configuration. A configuration is "better" if the label on that
3642 * device has a more recent txg.
3643 */
3644 static void
3645 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3646 {
3647 for (int c = 0; c < vd->vdev_children; c++)
3648 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3649
3650 if (vd->vdev_ops->vdev_op_leaf) {
3651 nvlist_t *label;
3652 uint64_t label_txg;
3653
3654 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3655 &label) != 0)
3656 return;
3657
3658 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3659 &label_txg) == 0);
3660
3661 /*
3662 * Do we have a better boot device?
3663 */
3664 if (label_txg > *txg) {
3665 *txg = label_txg;
3666 *avd = vd;
3667 }
3668 nvlist_free(label);
3669 }
3670 }
3671
3672 /*
3673 * Import a root pool.
3674 *
3675 * For x86. devpath_list will consist of devid and/or physpath name of
3676 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3677 * The GRUB "findroot" command will return the vdev we should boot.
3678 *
3679 * For Sparc, devpath_list consists the physpath name of the booting device
3680 * no matter the rootpool is a single device pool or a mirrored pool.
3681 * e.g.
3682 * "/pci@1f,0/ide@d/disk@0,0:a"
3683 */
3684 int
3685 spa_import_rootpool(char *devpath, char *devid)
3686 {
3687 spa_t *spa;
3688 vdev_t *rvd, *bvd, *avd = NULL;
3689 nvlist_t *config, *nvtop;
3690 uint64_t guid, txg;
3691 char *pname;
3692 int error;
3693
3694 /*
3695 * Read the label from the boot device and generate a configuration.
3696 */
3697 config = spa_generate_rootconf(devpath, devid, &guid);
3698 #if defined(_OBP) && defined(_KERNEL)
3699 if (config == NULL) {
3700 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3701 /* iscsi boot */
3702 get_iscsi_bootpath_phy(devpath);
3703 config = spa_generate_rootconf(devpath, devid, &guid);
3704 }
3705 }
3706 #endif
3707 if (config == NULL) {
3708 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3709 devpath);
3710 return (SET_ERROR(EIO));
3711 }
3712
3713 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3714 &pname) == 0);
3715 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3716
3717 mutex_enter(&spa_namespace_lock);
3718 if ((spa = spa_lookup(pname)) != NULL) {
3719 /*
3720 * Remove the existing root pool from the namespace so that we
3721 * can replace it with the correct config we just read in.
3722 */
3723 spa_remove(spa);
3724 }
3725
3726 spa = spa_add(pname, config, NULL);
3727 spa->spa_is_root = B_TRUE;
3728 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3729
3730 /*
3731 * Build up a vdev tree based on the boot device's label config.
3732 */
3733 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3734 &nvtop) == 0);
3735 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3736 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3737 VDEV_ALLOC_ROOTPOOL);
3738 spa_config_exit(spa, SCL_ALL, FTAG);
3739 if (error) {
3740 mutex_exit(&spa_namespace_lock);
3741 nvlist_free(config);
3742 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3743 pname);
3744 return (error);
3745 }
3746
3747 /*
3748 * Get the boot vdev.
3749 */
3750 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3751 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3752 (u_longlong_t)guid);
3753 error = SET_ERROR(ENOENT);
3754 goto out;
3755 }
3756
3757 /*
3758 * Determine if there is a better boot device.
3759 */
3760 avd = bvd;
3761 spa_alt_rootvdev(rvd, &avd, &txg);
3762 if (avd != bvd) {
3763 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3764 "try booting from '%s'", avd->vdev_path);
3765 error = SET_ERROR(EINVAL);
3766 goto out;
3767 }
3768
3769 /*
3770 * If the boot device is part of a spare vdev then ensure that
3771 * we're booting off the active spare.
3772 */
3773 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3774 !bvd->vdev_isspare) {
3775 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3776 "try booting from '%s'",
3777 bvd->vdev_parent->
3778 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3779 error = SET_ERROR(EINVAL);
3780 goto out;
3781 }
3782
3783 error = 0;
3784 out:
3785 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3786 vdev_free(rvd);
3787 spa_config_exit(spa, SCL_ALL, FTAG);
3788 mutex_exit(&spa_namespace_lock);
3789
3790 nvlist_free(config);
3791 return (error);
3792 }
3793
3794 #endif
3795
3796 /*
3797 * Import a non-root pool into the system.
3798 */
3799 int
3800 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3801 {
3802 spa_t *spa;
3803 char *altroot = NULL;
3804 spa_load_state_t state = SPA_LOAD_IMPORT;
3805 zpool_rewind_policy_t policy;
3806 uint64_t mode = spa_mode_global;
3807 uint64_t readonly = B_FALSE;
3808 int error;
3809 nvlist_t *nvroot;
3810 nvlist_t **spares, **l2cache;
3811 uint_t nspares, nl2cache;
3812
3813 /*
3814 * If a pool with this name exists, return failure.
3815 */
3816 mutex_enter(&spa_namespace_lock);
3817 if (spa_lookup(pool) != NULL) {
3818 mutex_exit(&spa_namespace_lock);
3819 return (SET_ERROR(EEXIST));
3820 }
3821
3822 /*
3823 * Create and initialize the spa structure.
3824 */
3825 (void) nvlist_lookup_string(props,
3826 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3827 (void) nvlist_lookup_uint64(props,
3828 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3829 if (readonly)
3830 mode = FREAD;
3831 spa = spa_add(pool, config, altroot);
3832 spa->spa_import_flags = flags;
3833
3834 /*
3835 * Verbatim import - Take a pool and insert it into the namespace
3836 * as if it had been loaded at boot.
3837 */
3838 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3839 if (props != NULL)
3840 spa_configfile_set(spa, props, B_FALSE);
3841
3842 spa_config_sync(spa, B_FALSE, B_TRUE);
3843
3844 mutex_exit(&spa_namespace_lock);
3845 return (0);
3846 }
3847
3848 spa_activate(spa, mode);
3849
3850 /*
3851 * Don't start async tasks until we know everything is healthy.
3852 */
3853 spa_async_suspend(spa);
3854
3855 zpool_get_rewind_policy(config, &policy);
3856 if (policy.zrp_request & ZPOOL_DO_REWIND)
3857 state = SPA_LOAD_RECOVER;
3858
3859 /*
3860 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3861 * because the user-supplied config is actually the one to trust when
3862 * doing an import.
3863 */
3864 if (state != SPA_LOAD_RECOVER)
3865 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3866
3867 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3868 policy.zrp_request);
3869
3870 /*
3871 * Propagate anything learned while loading the pool and pass it
3872 * back to caller (i.e. rewind info, missing devices, etc).
3873 */
3874 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3875 spa->spa_load_info) == 0);
3876
3877 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3878 /*
3879 * Toss any existing sparelist, as it doesn't have any validity
3880 * anymore, and conflicts with spa_has_spare().
3881 */
3882 if (spa->spa_spares.sav_config) {
3883 nvlist_free(spa->spa_spares.sav_config);
3884 spa->spa_spares.sav_config = NULL;
3885 spa_load_spares(spa);
3886 }
3887 if (spa->spa_l2cache.sav_config) {
3888 nvlist_free(spa->spa_l2cache.sav_config);
3889 spa->spa_l2cache.sav_config = NULL;
3890 spa_load_l2cache(spa);
3891 }
3892
3893 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3894 &nvroot) == 0);
3895 if (error == 0)
3896 error = spa_validate_aux(spa, nvroot, -1ULL,
3897 VDEV_ALLOC_SPARE);
3898 if (error == 0)
3899 error = spa_validate_aux(spa, nvroot, -1ULL,
3900 VDEV_ALLOC_L2CACHE);
3901 spa_config_exit(spa, SCL_ALL, FTAG);
3902
3903 if (props != NULL)
3904 spa_configfile_set(spa, props, B_FALSE);
3905
3906 if (error != 0 || (props && spa_writeable(spa) &&
3907 (error = spa_prop_set(spa, props)))) {
3908 spa_unload(spa);
3909 spa_deactivate(spa);
3910 spa_remove(spa);
3911 mutex_exit(&spa_namespace_lock);
3912 return (error);
3913 }
3914
3915 spa_async_resume(spa);
3916
3917 /*
3918 * Override any spares and level 2 cache devices as specified by
3919 * the user, as these may have correct device names/devids, etc.
3920 */
3921 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3922 &spares, &nspares) == 0) {
3923 if (spa->spa_spares.sav_config)
3924 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3925 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3926 else
3927 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3928 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3929 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3930 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3931 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3932 spa_load_spares(spa);
3933 spa_config_exit(spa, SCL_ALL, FTAG);
3934 spa->spa_spares.sav_sync = B_TRUE;
3935 }
3936 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3937 &l2cache, &nl2cache) == 0) {
3938 if (spa->spa_l2cache.sav_config)
3939 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3940 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3941 else
3942 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3943 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3944 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3945 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3946 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3947 spa_load_l2cache(spa);
3948 spa_config_exit(spa, SCL_ALL, FTAG);
3949 spa->spa_l2cache.sav_sync = B_TRUE;
3950 }
3951
3952 /*
3953 * Check for any removed devices.
3954 */
3955 if (spa->spa_autoreplace) {
3956 spa_aux_check_removed(&spa->spa_spares);
3957 spa_aux_check_removed(&spa->spa_l2cache);
3958 }
3959
3960 if (spa_writeable(spa)) {
3961 /*
3962 * Update the config cache to include the newly-imported pool.
3963 */
3964 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3965 }
3966
3967 /*
3968 * It's possible that the pool was expanded while it was exported.
3969 * We kick off an async task to handle this for us.
3970 */
3971 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3972
3973 mutex_exit(&spa_namespace_lock);
3974 spa_history_log_version(spa, "import");
3975
3976 return (0);
3977 }
3978
3979 nvlist_t *
3980 spa_tryimport(nvlist_t *tryconfig)
3981 {
3982 nvlist_t *config = NULL;
3983 char *poolname;
3984 spa_t *spa;
3985 uint64_t state;
3986 int error;
3987
3988 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3989 return (NULL);
3990
3991 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3992 return (NULL);
3993
3994 /*
3995 * Create and initialize the spa structure.
3996 */
3997 mutex_enter(&spa_namespace_lock);
3998 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3999 spa_activate(spa, FREAD);
4000
4001 /*
4002 * Pass off the heavy lifting to spa_load().
4003 * Pass TRUE for mosconfig because the user-supplied config
4004 * is actually the one to trust when doing an import.
4005 */
4006 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4007
4008 /*
4009 * If 'tryconfig' was at least parsable, return the current config.
4010 */
4011 if (spa->spa_root_vdev != NULL) {
4012 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4013 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4014 poolname) == 0);
4015 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4016 state) == 0);
4017 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4018 spa->spa_uberblock.ub_timestamp) == 0);
4019 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4020 spa->spa_load_info) == 0);
4021
4022 /*
4023 * If the bootfs property exists on this pool then we
4024 * copy it out so that external consumers can tell which
4025 * pools are bootable.
4026 */
4027 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4028 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4029
4030 /*
4031 * We have to play games with the name since the
4032 * pool was opened as TRYIMPORT_NAME.
4033 */
4034 if (dsl_dsobj_to_dsname(spa_name(spa),
4035 spa->spa_bootfs, tmpname) == 0) {
4036 char *cp;
4037 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4038
4039 cp = strchr(tmpname, '/');
4040 if (cp == NULL) {
4041 (void) strlcpy(dsname, tmpname,
4042 MAXPATHLEN);
4043 } else {
4044 (void) snprintf(dsname, MAXPATHLEN,
4045 "%s/%s", poolname, ++cp);
4046 }
4047 VERIFY(nvlist_add_string(config,
4048 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4049 kmem_free(dsname, MAXPATHLEN);
4050 }
4051 kmem_free(tmpname, MAXPATHLEN);
4052 }
4053
4054 /*
4055 * Add the list of hot spares and level 2 cache devices.
4056 */
4057 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4058 spa_add_spares(spa, config);
4059 spa_add_l2cache(spa, config);
4060 spa_config_exit(spa, SCL_CONFIG, FTAG);
4061 }
4062
4063 spa_unload(spa);
4064 spa_deactivate(spa);
4065 spa_remove(spa);
4066 mutex_exit(&spa_namespace_lock);
4067
4068 return (config);
4069 }
4070
4071 /*
4072 * Pool export/destroy
4073 *
4074 * The act of destroying or exporting a pool is very simple. We make sure there
4075 * is no more pending I/O and any references to the pool are gone. Then, we
4076 * update the pool state and sync all the labels to disk, removing the
4077 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4078 * we don't sync the labels or remove the configuration cache.
4079 */
4080 static int
4081 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4082 boolean_t force, boolean_t hardforce)
4083 {
4084 spa_t *spa;
4085
4086 if (oldconfig)
4087 *oldconfig = NULL;
4088
4089 if (!(spa_mode_global & FWRITE))
4090 return (SET_ERROR(EROFS));
4091
4092 mutex_enter(&spa_namespace_lock);
4093 if ((spa = spa_lookup(pool)) == NULL) {
4094 mutex_exit(&spa_namespace_lock);
4095 return (SET_ERROR(ENOENT));
4096 }
4097
4098 /*
4099 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4100 * reacquire the namespace lock, and see if we can export.
4101 */
4102 spa_open_ref(spa, FTAG);
4103 mutex_exit(&spa_namespace_lock);
4104 spa_async_suspend(spa);
4105 mutex_enter(&spa_namespace_lock);
4106 spa_close(spa, FTAG);
4107
4108 /*
4109 * The pool will be in core if it's openable,
4110 * in which case we can modify its state.
4111 */
4112 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4113 /*
4114 * Objsets may be open only because they're dirty, so we
4115 * have to force it to sync before checking spa_refcnt.
4116 */
4117 txg_wait_synced(spa->spa_dsl_pool, 0);
4118
4119 /*
4120 * A pool cannot be exported or destroyed if there are active
4121 * references. If we are resetting a pool, allow references by
4122 * fault injection handlers.
4123 */
4124 if (!spa_refcount_zero(spa) ||
4125 (spa->spa_inject_ref != 0 &&
4126 new_state != POOL_STATE_UNINITIALIZED)) {
4127 spa_async_resume(spa);
4128 mutex_exit(&spa_namespace_lock);
4129 return (SET_ERROR(EBUSY));
4130 }
4131
4132 /*
4133 * A pool cannot be exported if it has an active shared spare.
4134 * This is to prevent other pools stealing the active spare
4135 * from an exported pool. At user's own will, such pool can
4136 * be forcedly exported.
4137 */
4138 if (!force && new_state == POOL_STATE_EXPORTED &&
4139 spa_has_active_shared_spare(spa)) {
4140 spa_async_resume(spa);
4141 mutex_exit(&spa_namespace_lock);
4142 return (SET_ERROR(EXDEV));
4143 }
4144
4145 /*
4146 * We want this to be reflected on every label,
4147 * so mark them all dirty. spa_unload() will do the
4148 * final sync that pushes these changes out.
4149 */
4150 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4151 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4152 spa->spa_state = new_state;
4153 spa->spa_final_txg = spa_last_synced_txg(spa) +
4154 TXG_DEFER_SIZE + 1;
4155 vdev_config_dirty(spa->spa_root_vdev);
4156 spa_config_exit(spa, SCL_ALL, FTAG);
4157 }
4158 }
4159
4160 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4161
4162 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4163 spa_unload(spa);
4164 spa_deactivate(spa);
4165 }
4166
4167 if (oldconfig && spa->spa_config)
4168 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4169
4170 if (new_state != POOL_STATE_UNINITIALIZED) {
4171 if (!hardforce)
4172 spa_config_sync(spa, B_TRUE, B_TRUE);
4173 spa_remove(spa);
4174 }
4175 mutex_exit(&spa_namespace_lock);
4176
4177 return (0);
4178 }
4179
4180 /*
4181 * Destroy a storage pool.
4182 */
4183 int
4184 spa_destroy(char *pool)
4185 {
4186 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4187 B_FALSE, B_FALSE));
4188 }
4189
4190 /*
4191 * Export a storage pool.
4192 */
4193 int
4194 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4195 boolean_t hardforce)
4196 {
4197 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4198 force, hardforce));
4199 }
4200
4201 /*
4202 * Similar to spa_export(), this unloads the spa_t without actually removing it
4203 * from the namespace in any way.
4204 */
4205 int
4206 spa_reset(char *pool)
4207 {
4208 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4209 B_FALSE, B_FALSE));
4210 }
4211
4212 /*
4213 * ==========================================================================
4214 * Device manipulation
4215 * ==========================================================================
4216 */
4217
4218 /*
4219 * Add a device to a storage pool.
4220 */
4221 int
4222 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4223 {
4224 uint64_t txg, id;
4225 int error;
4226 vdev_t *rvd = spa->spa_root_vdev;
4227 vdev_t *vd, *tvd;
4228 nvlist_t **spares, **l2cache;
4229 uint_t nspares, nl2cache;
4230
4231 ASSERT(spa_writeable(spa));
4232
4233 txg = spa_vdev_enter(spa);
4234
4235 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4236 VDEV_ALLOC_ADD)) != 0)
4237 return (spa_vdev_exit(spa, NULL, txg, error));
4238
4239 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4240
4241 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4242 &nspares) != 0)
4243 nspares = 0;
4244
4245 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4246 &nl2cache) != 0)
4247 nl2cache = 0;
4248
4249 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4250 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4251
4252 if (vd->vdev_children != 0 &&
4253 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4254 return (spa_vdev_exit(spa, vd, txg, error));
4255
4256 /*
4257 * We must validate the spares and l2cache devices after checking the
4258 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4259 */
4260 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4261 return (spa_vdev_exit(spa, vd, txg, error));
4262
4263 /*
4264 * Transfer each new top-level vdev from vd to rvd.
4265 */
4266 for (int c = 0; c < vd->vdev_children; c++) {
4267
4268 /*
4269 * Set the vdev id to the first hole, if one exists.
4270 */
4271 for (id = 0; id < rvd->vdev_children; id++) {
4272 if (rvd->vdev_child[id]->vdev_ishole) {
4273 vdev_free(rvd->vdev_child[id]);
4274 break;
4275 }
4276 }
4277 tvd = vd->vdev_child[c];
4278 vdev_remove_child(vd, tvd);
4279 tvd->vdev_id = id;
4280 vdev_add_child(rvd, tvd);
4281 vdev_config_dirty(tvd);
4282 }
4283
4284 if (nspares != 0) {
4285 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4286 ZPOOL_CONFIG_SPARES);
4287 spa_load_spares(spa);
4288 spa->spa_spares.sav_sync = B_TRUE;
4289 }
4290
4291 if (nl2cache != 0) {
4292 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4293 ZPOOL_CONFIG_L2CACHE);
4294 spa_load_l2cache(spa);
4295 spa->spa_l2cache.sav_sync = B_TRUE;
4296 }
4297
4298 /*
4299 * We have to be careful when adding new vdevs to an existing pool.
4300 * If other threads start allocating from these vdevs before we
4301 * sync the config cache, and we lose power, then upon reboot we may
4302 * fail to open the pool because there are DVAs that the config cache
4303 * can't translate. Therefore, we first add the vdevs without
4304 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4305 * and then let spa_config_update() initialize the new metaslabs.
4306 *
4307 * spa_load() checks for added-but-not-initialized vdevs, so that
4308 * if we lose power at any point in this sequence, the remaining
4309 * steps will be completed the next time we load the pool.
4310 */
4311 (void) spa_vdev_exit(spa, vd, txg, 0);
4312
4313 mutex_enter(&spa_namespace_lock);
4314 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4315 mutex_exit(&spa_namespace_lock);
4316
4317 return (0);
4318 }
4319
4320 /*
4321 * Attach a device to a mirror. The arguments are the path to any device
4322 * in the mirror, and the nvroot for the new device. If the path specifies
4323 * a device that is not mirrored, we automatically insert the mirror vdev.
4324 *
4325 * If 'replacing' is specified, the new device is intended to replace the
4326 * existing device; in this case the two devices are made into their own
4327 * mirror using the 'replacing' vdev, which is functionally identical to
4328 * the mirror vdev (it actually reuses all the same ops) but has a few
4329 * extra rules: you can't attach to it after it's been created, and upon
4330 * completion of resilvering, the first disk (the one being replaced)
4331 * is automatically detached.
4332 */
4333 int
4334 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4335 {
4336 uint64_t txg, dtl_max_txg;
4337 vdev_t *rvd = spa->spa_root_vdev;
4338 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4339 vdev_ops_t *pvops;
4340 char *oldvdpath, *newvdpath;
4341 int newvd_isspare;
4342 int error;
4343
4344 ASSERT(spa_writeable(spa));
4345
4346 txg = spa_vdev_enter(spa);
4347
4348 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4349
4350 if (oldvd == NULL)
4351 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4352
4353 if (!oldvd->vdev_ops->vdev_op_leaf)
4354 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4355
4356 pvd = oldvd->vdev_parent;
4357
4358 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4359 VDEV_ALLOC_ATTACH)) != 0)
4360 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4361
4362 if (newrootvd->vdev_children != 1)
4363 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4364
4365 newvd = newrootvd->vdev_child[0];
4366
4367 if (!newvd->vdev_ops->vdev_op_leaf)
4368 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4369
4370 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4371 return (spa_vdev_exit(spa, newrootvd, txg, error));
4372
4373 /*
4374 * Spares can't replace logs
4375 */
4376 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4377 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4378
4379 if (!replacing) {
4380 /*
4381 * For attach, the only allowable parent is a mirror or the root
4382 * vdev.
4383 */
4384 if (pvd->vdev_ops != &vdev_mirror_ops &&
4385 pvd->vdev_ops != &vdev_root_ops)
4386 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4387
4388 pvops = &vdev_mirror_ops;
4389 } else {
4390 /*
4391 * Active hot spares can only be replaced by inactive hot
4392 * spares.
4393 */
4394 if (pvd->vdev_ops == &vdev_spare_ops &&
4395 oldvd->vdev_isspare &&
4396 !spa_has_spare(spa, newvd->vdev_guid))
4397 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4398
4399 /*
4400 * If the source is a hot spare, and the parent isn't already a
4401 * spare, then we want to create a new hot spare. Otherwise, we
4402 * want to create a replacing vdev. The user is not allowed to
4403 * attach to a spared vdev child unless the 'isspare' state is
4404 * the same (spare replaces spare, non-spare replaces
4405 * non-spare).
4406 */
4407 if (pvd->vdev_ops == &vdev_replacing_ops &&
4408 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4409 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4410 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4411 newvd->vdev_isspare != oldvd->vdev_isspare) {
4412 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4413 }
4414
4415 if (newvd->vdev_isspare)
4416 pvops = &vdev_spare_ops;
4417 else
4418 pvops = &vdev_replacing_ops;
4419 }
4420
4421 /*
4422 * Make sure the new device is big enough.
4423 */
4424 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4425 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4426
4427 /*
4428 * The new device cannot have a higher alignment requirement
4429 * than the top-level vdev.
4430 */
4431 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4432 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4433
4434 /*
4435 * If this is an in-place replacement, update oldvd's path and devid
4436 * to make it distinguishable from newvd, and unopenable from now on.
4437 */
4438 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4439 spa_strfree(oldvd->vdev_path);
4440 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4441 KM_SLEEP);
4442 (void) sprintf(oldvd->vdev_path, "%s/%s",
4443 newvd->vdev_path, "old");
4444 if (oldvd->vdev_devid != NULL) {
4445 spa_strfree(oldvd->vdev_devid);
4446 oldvd->vdev_devid = NULL;
4447 }
4448 }
4449
4450 /* mark the device being resilvered */
4451 newvd->vdev_resilver_txg = txg;
4452
4453 /*
4454 * If the parent is not a mirror, or if we're replacing, insert the new
4455 * mirror/replacing/spare vdev above oldvd.
4456 */
4457 if (pvd->vdev_ops != pvops)
4458 pvd = vdev_add_parent(oldvd, pvops);
4459
4460 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4461 ASSERT(pvd->vdev_ops == pvops);
4462 ASSERT(oldvd->vdev_parent == pvd);
4463
4464 /*
4465 * Extract the new device from its root and add it to pvd.
4466 */
4467 vdev_remove_child(newrootvd, newvd);
4468 newvd->vdev_id = pvd->vdev_children;
4469 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4470 vdev_add_child(pvd, newvd);
4471
4472 tvd = newvd->vdev_top;
4473 ASSERT(pvd->vdev_top == tvd);
4474 ASSERT(tvd->vdev_parent == rvd);
4475
4476 vdev_config_dirty(tvd);
4477
4478 /*
4479 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4480 * for any dmu_sync-ed blocks. It will propagate upward when
4481 * spa_vdev_exit() calls vdev_dtl_reassess().
4482 */
4483 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4484
4485 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4486 dtl_max_txg - TXG_INITIAL);
4487
4488 if (newvd->vdev_isspare) {
4489 spa_spare_activate(newvd);
4490 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4491 }
4492
4493 oldvdpath = spa_strdup(oldvd->vdev_path);
4494 newvdpath = spa_strdup(newvd->vdev_path);
4495 newvd_isspare = newvd->vdev_isspare;
4496
4497 /*
4498 * Mark newvd's DTL dirty in this txg.
4499 */
4500 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4501
4502 /*
4503 * Schedule the resilver to restart in the future. We do this to
4504 * ensure that dmu_sync-ed blocks have been stitched into the
4505 * respective datasets.
4506 */
4507 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4508
4509 /*
4510 * Commit the config
4511 */
4512 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4513
4514 spa_history_log_internal(spa, "vdev attach", NULL,
4515 "%s vdev=%s %s vdev=%s",
4516 replacing && newvd_isspare ? "spare in" :
4517 replacing ? "replace" : "attach", newvdpath,
4518 replacing ? "for" : "to", oldvdpath);
4519
4520 spa_strfree(oldvdpath);
4521 spa_strfree(newvdpath);
4522
4523 if (spa->spa_bootfs)
4524 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4525
4526 return (0);
4527 }
4528
4529 /*
4530 * Detach a device from a mirror or replacing vdev.
4531 *
4532 * If 'replace_done' is specified, only detach if the parent
4533 * is a replacing vdev.
4534 */
4535 int
4536 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4537 {
4538 uint64_t txg;
4539 int error;
4540 vdev_t *rvd = spa->spa_root_vdev;
4541 vdev_t *vd, *pvd, *cvd, *tvd;
4542 boolean_t unspare = B_FALSE;
4543 uint64_t unspare_guid = 0;
4544 char *vdpath;
4545
4546 ASSERT(spa_writeable(spa));
4547
4548 txg = spa_vdev_enter(spa);
4549
4550 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4551
4552 if (vd == NULL)
4553 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4554
4555 if (!vd->vdev_ops->vdev_op_leaf)
4556 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4557
4558 pvd = vd->vdev_parent;
4559
4560 /*
4561 * If the parent/child relationship is not as expected, don't do it.
4562 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4563 * vdev that's replacing B with C. The user's intent in replacing
4564 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4565 * the replace by detaching C, the expected behavior is to end up
4566 * M(A,B). But suppose that right after deciding to detach C,
4567 * the replacement of B completes. We would have M(A,C), and then
4568 * ask to detach C, which would leave us with just A -- not what
4569 * the user wanted. To prevent this, we make sure that the
4570 * parent/child relationship hasn't changed -- in this example,
4571 * that C's parent is still the replacing vdev R.
4572 */
4573 if (pvd->vdev_guid != pguid && pguid != 0)
4574 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4575
4576 /*
4577 * Only 'replacing' or 'spare' vdevs can be replaced.
4578 */
4579 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4580 pvd->vdev_ops != &vdev_spare_ops)
4581 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4582
4583 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4584 spa_version(spa) >= SPA_VERSION_SPARES);
4585
4586 /*
4587 * Only mirror, replacing, and spare vdevs support detach.
4588 */
4589 if (pvd->vdev_ops != &vdev_replacing_ops &&
4590 pvd->vdev_ops != &vdev_mirror_ops &&
4591 pvd->vdev_ops != &vdev_spare_ops)
4592 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4593
4594 /*
4595 * If this device has the only valid copy of some data,
4596 * we cannot safely detach it.
4597 */
4598 if (vdev_dtl_required(vd))
4599 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4600
4601 ASSERT(pvd->vdev_children >= 2);
4602
4603 /*
4604 * If we are detaching the second disk from a replacing vdev, then
4605 * check to see if we changed the original vdev's path to have "/old"
4606 * at the end in spa_vdev_attach(). If so, undo that change now.
4607 */
4608 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4609 vd->vdev_path != NULL) {
4610 size_t len = strlen(vd->vdev_path);
4611
4612 for (int c = 0; c < pvd->vdev_children; c++) {
4613 cvd = pvd->vdev_child[c];
4614
4615 if (cvd == vd || cvd->vdev_path == NULL)
4616 continue;
4617
4618 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4619 strcmp(cvd->vdev_path + len, "/old") == 0) {
4620 spa_strfree(cvd->vdev_path);
4621 cvd->vdev_path = spa_strdup(vd->vdev_path);
4622 break;
4623 }
4624 }
4625 }
4626
4627 /*
4628 * If we are detaching the original disk from a spare, then it implies
4629 * that the spare should become a real disk, and be removed from the
4630 * active spare list for the pool.
4631 */
4632 if (pvd->vdev_ops == &vdev_spare_ops &&
4633 vd->vdev_id == 0 &&
4634 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4635 unspare = B_TRUE;
4636
4637 /*
4638 * Erase the disk labels so the disk can be used for other things.
4639 * This must be done after all other error cases are handled,
4640 * but before we disembowel vd (so we can still do I/O to it).
4641 * But if we can't do it, don't treat the error as fatal --
4642 * it may be that the unwritability of the disk is the reason
4643 * it's being detached!
4644 */
4645 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4646
4647 /*
4648 * Remove vd from its parent and compact the parent's children.
4649 */
4650 vdev_remove_child(pvd, vd);
4651 vdev_compact_children(pvd);
4652
4653 /*
4654 * Remember one of the remaining children so we can get tvd below.
4655 */
4656 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4657
4658 /*
4659 * If we need to remove the remaining child from the list of hot spares,
4660 * do it now, marking the vdev as no longer a spare in the process.
4661 * We must do this before vdev_remove_parent(), because that can
4662 * change the GUID if it creates a new toplevel GUID. For a similar
4663 * reason, we must remove the spare now, in the same txg as the detach;
4664 * otherwise someone could attach a new sibling, change the GUID, and
4665 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4666 */
4667 if (unspare) {
4668 ASSERT(cvd->vdev_isspare);
4669 spa_spare_remove(cvd);
4670 unspare_guid = cvd->vdev_guid;
4671 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4672 cvd->vdev_unspare = B_TRUE;
4673 }
4674
4675 /*
4676 * If the parent mirror/replacing vdev only has one child,
4677 * the parent is no longer needed. Remove it from the tree.
4678 */
4679 if (pvd->vdev_children == 1) {
4680 if (pvd->vdev_ops == &vdev_spare_ops)
4681 cvd->vdev_unspare = B_FALSE;
4682 vdev_remove_parent(cvd);
4683 }
4684
4685
4686 /*
4687 * We don't set tvd until now because the parent we just removed
4688 * may have been the previous top-level vdev.
4689 */
4690 tvd = cvd->vdev_top;
4691 ASSERT(tvd->vdev_parent == rvd);
4692
4693 /*
4694 * Reevaluate the parent vdev state.
4695 */
4696 vdev_propagate_state(cvd);
4697
4698 /*
4699 * If the 'autoexpand' property is set on the pool then automatically
4700 * try to expand the size of the pool. For example if the device we
4701 * just detached was smaller than the others, it may be possible to
4702 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4703 * first so that we can obtain the updated sizes of the leaf vdevs.
4704 */
4705 if (spa->spa_autoexpand) {
4706 vdev_reopen(tvd);
4707 vdev_expand(tvd, txg);
4708 }
4709
4710 vdev_config_dirty(tvd);
4711
4712 /*
4713 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4714 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4715 * But first make sure we're not on any *other* txg's DTL list, to
4716 * prevent vd from being accessed after it's freed.
4717 */
4718 vdpath = spa_strdup(vd->vdev_path);
4719 for (int t = 0; t < TXG_SIZE; t++)
4720 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4721 vd->vdev_detached = B_TRUE;
4722 vdev_dirty(tvd, VDD_DTL, vd, txg);
4723
4724 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4725
4726 /* hang on to the spa before we release the lock */
4727 spa_open_ref(spa, FTAG);
4728
4729 error = spa_vdev_exit(spa, vd, txg, 0);
4730
4731 spa_history_log_internal(spa, "detach", NULL,
4732 "vdev=%s", vdpath);
4733 spa_strfree(vdpath);
4734
4735 /*
4736 * If this was the removal of the original device in a hot spare vdev,
4737 * then we want to go through and remove the device from the hot spare
4738 * list of every other pool.
4739 */
4740 if (unspare) {
4741 spa_t *altspa = NULL;
4742
4743 mutex_enter(&spa_namespace_lock);
4744 while ((altspa = spa_next(altspa)) != NULL) {
4745 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4746 altspa == spa)
4747 continue;
4748
4749 spa_open_ref(altspa, FTAG);
4750 mutex_exit(&spa_namespace_lock);
4751 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4752 mutex_enter(&spa_namespace_lock);
4753 spa_close(altspa, FTAG);
4754 }
4755 mutex_exit(&spa_namespace_lock);
4756
4757 /* search the rest of the vdevs for spares to remove */
4758 spa_vdev_resilver_done(spa);
4759 }
4760
4761 /* all done with the spa; OK to release */
4762 mutex_enter(&spa_namespace_lock);
4763 spa_close(spa, FTAG);
4764 mutex_exit(&spa_namespace_lock);
4765
4766 return (error);
4767 }
4768
4769 /*
4770 * Split a set of devices from their mirrors, and create a new pool from them.
4771 */
4772 int
4773 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4774 nvlist_t *props, boolean_t exp)
4775 {
4776 int error = 0;
4777 uint64_t txg, *glist;
4778 spa_t *newspa;
4779 uint_t c, children, lastlog;
4780 nvlist_t **child, *nvl, *tmp;
4781 dmu_tx_t *tx;
4782 char *altroot = NULL;
4783 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4784 boolean_t activate_slog;
4785
4786 ASSERT(spa_writeable(spa));
4787
4788 txg = spa_vdev_enter(spa);
4789
4790 /* clear the log and flush everything up to now */
4791 activate_slog = spa_passivate_log(spa);
4792 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4793 error = spa_offline_log(spa);
4794 txg = spa_vdev_config_enter(spa);
4795
4796 if (activate_slog)
4797 spa_activate_log(spa);
4798
4799 if (error != 0)
4800 return (spa_vdev_exit(spa, NULL, txg, error));
4801
4802 /* check new spa name before going any further */
4803 if (spa_lookup(newname) != NULL)
4804 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4805
4806 /*
4807 * scan through all the children to ensure they're all mirrors
4808 */
4809 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4810 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4811 &children) != 0)
4812 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4813
4814 /* first, check to ensure we've got the right child count */
4815 rvd = spa->spa_root_vdev;
4816 lastlog = 0;
4817 for (c = 0; c < rvd->vdev_children; c++) {
4818 vdev_t *vd = rvd->vdev_child[c];
4819
4820 /* don't count the holes & logs as children */
4821 if (vd->vdev_islog || vd->vdev_ishole) {
4822 if (lastlog == 0)
4823 lastlog = c;
4824 continue;
4825 }
4826
4827 lastlog = 0;
4828 }
4829 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4830 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4831
4832 /* next, ensure no spare or cache devices are part of the split */
4833 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4834 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4835 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4836
4837 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4838 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4839
4840 /* then, loop over each vdev and validate it */
4841 for (c = 0; c < children; c++) {
4842 uint64_t is_hole = 0;
4843
4844 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4845 &is_hole);
4846
4847 if (is_hole != 0) {
4848 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4849 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4850 continue;
4851 } else {
4852 error = SET_ERROR(EINVAL);
4853 break;
4854 }
4855 }
4856
4857 /* which disk is going to be split? */
4858 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4859 &glist[c]) != 0) {
4860 error = SET_ERROR(EINVAL);
4861 break;
4862 }
4863
4864 /* look it up in the spa */
4865 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4866 if (vml[c] == NULL) {
4867 error = SET_ERROR(ENODEV);
4868 break;
4869 }
4870
4871 /* make sure there's nothing stopping the split */
4872 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4873 vml[c]->vdev_islog ||
4874 vml[c]->vdev_ishole ||
4875 vml[c]->vdev_isspare ||
4876 vml[c]->vdev_isl2cache ||
4877 !vdev_writeable(vml[c]) ||
4878 vml[c]->vdev_children != 0 ||
4879 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4880 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4881 error = SET_ERROR(EINVAL);
4882 break;
4883 }
4884
4885 if (vdev_dtl_required(vml[c])) {
4886 error = SET_ERROR(EBUSY);
4887 break;
4888 }
4889
4890 /* we need certain info from the top level */
4891 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4892 vml[c]->vdev_top->vdev_ms_array) == 0);
4893 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4894 vml[c]->vdev_top->vdev_ms_shift) == 0);
4895 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4896 vml[c]->vdev_top->vdev_asize) == 0);
4897 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4898 vml[c]->vdev_top->vdev_ashift) == 0);
4899 }
4900
4901 if (error != 0) {
4902 kmem_free(vml, children * sizeof (vdev_t *));
4903 kmem_free(glist, children * sizeof (uint64_t));
4904 return (spa_vdev_exit(spa, NULL, txg, error));
4905 }
4906
4907 /* stop writers from using the disks */
4908 for (c = 0; c < children; c++) {
4909 if (vml[c] != NULL)
4910 vml[c]->vdev_offline = B_TRUE;
4911 }
4912 vdev_reopen(spa->spa_root_vdev);
4913
4914 /*
4915 * Temporarily record the splitting vdevs in the spa config. This
4916 * will disappear once the config is regenerated.
4917 */
4918 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4919 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4920 glist, children) == 0);
4921 kmem_free(glist, children * sizeof (uint64_t));
4922
4923 mutex_enter(&spa->spa_props_lock);
4924 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4925 nvl) == 0);
4926 mutex_exit(&spa->spa_props_lock);
4927 spa->spa_config_splitting = nvl;
4928 vdev_config_dirty(spa->spa_root_vdev);
4929
4930 /* configure and create the new pool */
4931 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4932 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4933 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4934 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4935 spa_version(spa)) == 0);
4936 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4937 spa->spa_config_txg) == 0);
4938 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4939 spa_generate_guid(NULL)) == 0);
4940 (void) nvlist_lookup_string(props,
4941 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4942
4943 /* add the new pool to the namespace */
4944 newspa = spa_add(newname, config, altroot);
4945 newspa->spa_config_txg = spa->spa_config_txg;
4946 spa_set_log_state(newspa, SPA_LOG_CLEAR);
4947
4948 /* release the spa config lock, retaining the namespace lock */
4949 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4950
4951 if (zio_injection_enabled)
4952 zio_handle_panic_injection(spa, FTAG, 1);
4953
4954 spa_activate(newspa, spa_mode_global);
4955 spa_async_suspend(newspa);
4956
4957 /* create the new pool from the disks of the original pool */
4958 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4959 if (error)
4960 goto out;
4961
4962 /* if that worked, generate a real config for the new pool */
4963 if (newspa->spa_root_vdev != NULL) {
4964 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4965 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4966 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4967 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4968 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4969 B_TRUE));
4970 }
4971
4972 /* set the props */
4973 if (props != NULL) {
4974 spa_configfile_set(newspa, props, B_FALSE);
4975 error = spa_prop_set(newspa, props);
4976 if (error)
4977 goto out;
4978 }
4979
4980 /* flush everything */
4981 txg = spa_vdev_config_enter(newspa);
4982 vdev_config_dirty(newspa->spa_root_vdev);
4983 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4984
4985 if (zio_injection_enabled)
4986 zio_handle_panic_injection(spa, FTAG, 2);
4987
4988 spa_async_resume(newspa);
4989
4990 /* finally, update the original pool's config */
4991 txg = spa_vdev_config_enter(spa);
4992 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4993 error = dmu_tx_assign(tx, TXG_WAIT);
4994 if (error != 0)
4995 dmu_tx_abort(tx);
4996 for (c = 0; c < children; c++) {
4997 if (vml[c] != NULL) {
4998 vdev_split(vml[c]);
4999 if (error == 0)
5000 spa_history_log_internal(spa, "detach", tx,
5001 "vdev=%s", vml[c]->vdev_path);
5002 vdev_free(vml[c]);
5003 }
5004 }
5005 vdev_config_dirty(spa->spa_root_vdev);
5006 spa->spa_config_splitting = NULL;
5007 nvlist_free(nvl);
5008 if (error == 0)
5009 dmu_tx_commit(tx);
5010 (void) spa_vdev_exit(spa, NULL, txg, 0);
5011
5012 if (zio_injection_enabled)
5013 zio_handle_panic_injection(spa, FTAG, 3);
5014
5015 /* split is complete; log a history record */
5016 spa_history_log_internal(newspa, "split", NULL,
5017 "from pool %s", spa_name(spa));
5018
5019 kmem_free(vml, children * sizeof (vdev_t *));
5020
5021 /* if we're not going to mount the filesystems in userland, export */
5022 if (exp)
5023 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5024 B_FALSE, B_FALSE);
5025
5026 return (error);
5027
5028 out:
5029 spa_unload(newspa);
5030 spa_deactivate(newspa);
5031 spa_remove(newspa);
5032
5033 txg = spa_vdev_config_enter(spa);
5034
5035 /* re-online all offlined disks */
5036 for (c = 0; c < children; c++) {
5037 if (vml[c] != NULL)
5038 vml[c]->vdev_offline = B_FALSE;
5039 }
5040 vdev_reopen(spa->spa_root_vdev);
5041
5042 nvlist_free(spa->spa_config_splitting);
5043 spa->spa_config_splitting = NULL;
5044 (void) spa_vdev_exit(spa, NULL, txg, error);
5045
5046 kmem_free(vml, children * sizeof (vdev_t *));
5047 return (error);
5048 }
5049
5050 static nvlist_t *
5051 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5052 {
5053 for (int i = 0; i < count; i++) {
5054 uint64_t guid;
5055
5056 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5057 &guid) == 0);
5058
5059 if (guid == target_guid)
5060 return (nvpp[i]);
5061 }
5062
5063 return (NULL);
5064 }
5065
5066 static void
5067 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5068 nvlist_t *dev_to_remove)
5069 {
5070 nvlist_t **newdev = NULL;
5071
5072 if (count > 1)
5073 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5074
5075 for (int i = 0, j = 0; i < count; i++) {
5076 if (dev[i] == dev_to_remove)
5077 continue;
5078 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5079 }
5080
5081 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5082 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5083
5084 for (int i = 0; i < count - 1; i++)
5085 nvlist_free(newdev[i]);
5086
5087 if (count > 1)
5088 kmem_free(newdev, (count - 1) * sizeof (void *));
5089 }
5090
5091 /*
5092 * Evacuate the device.
5093 */
5094 static int
5095 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5096 {
5097 uint64_t txg;
5098 int error = 0;
5099
5100 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5101 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5102 ASSERT(vd == vd->vdev_top);
5103
5104 /*
5105 * Evacuate the device. We don't hold the config lock as writer
5106 * since we need to do I/O but we do keep the
5107 * spa_namespace_lock held. Once this completes the device
5108 * should no longer have any blocks allocated on it.
5109 */
5110 if (vd->vdev_islog) {
5111 if (vd->vdev_stat.vs_alloc != 0)
5112 error = spa_offline_log(spa);
5113 } else {
5114 error = SET_ERROR(ENOTSUP);
5115 }
5116
5117 if (error)
5118 return (error);
5119
5120 /*
5121 * The evacuation succeeded. Remove any remaining MOS metadata
5122 * associated with this vdev, and wait for these changes to sync.
5123 */
5124 ASSERT0(vd->vdev_stat.vs_alloc);
5125 txg = spa_vdev_config_enter(spa);
5126 vd->vdev_removing = B_TRUE;
5127 vdev_dirty_leaves(vd, VDD_DTL, txg);
5128 vdev_config_dirty(vd);
5129 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5130
5131 return (0);
5132 }
5133
5134 /*
5135 * Complete the removal by cleaning up the namespace.
5136 */
5137 static void
5138 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5139 {
5140 vdev_t *rvd = spa->spa_root_vdev;
5141 uint64_t id = vd->vdev_id;
5142 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5143
5144 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5145 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5146 ASSERT(vd == vd->vdev_top);
5147
5148 /*
5149 * Only remove any devices which are empty.
5150 */
5151 if (vd->vdev_stat.vs_alloc != 0)
5152 return;
5153
5154 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5155
5156 if (list_link_active(&vd->vdev_state_dirty_node))
5157 vdev_state_clean(vd);
5158 if (list_link_active(&vd->vdev_config_dirty_node))
5159 vdev_config_clean(vd);
5160
5161 vdev_free(vd);
5162
5163 if (last_vdev) {
5164 vdev_compact_children(rvd);
5165 } else {
5166 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5167 vdev_add_child(rvd, vd);
5168 }
5169 vdev_config_dirty(rvd);
5170
5171 /*
5172 * Reassess the health of our root vdev.
5173 */
5174 vdev_reopen(rvd);
5175 }
5176
5177 /*
5178 * Remove a device from the pool -
5179 *
5180 * Removing a device from the vdev namespace requires several steps
5181 * and can take a significant amount of time. As a result we use
5182 * the spa_vdev_config_[enter/exit] functions which allow us to
5183 * grab and release the spa_config_lock while still holding the namespace
5184 * lock. During each step the configuration is synced out.
5185 *
5186 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5187 * devices.
5188 */
5189 int
5190 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5191 {
5192 vdev_t *vd;
5193 metaslab_group_t *mg;
5194 nvlist_t **spares, **l2cache, *nv;
5195 uint64_t txg = 0;
5196 uint_t nspares, nl2cache;
5197 int error = 0;
5198 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5199
5200 ASSERT(spa_writeable(spa));
5201
5202 if (!locked)
5203 txg = spa_vdev_enter(spa);
5204
5205 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5206
5207 if (spa->spa_spares.sav_vdevs != NULL &&
5208 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5209 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5210 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5211 /*
5212 * Only remove the hot spare if it's not currently in use
5213 * in this pool.
5214 */
5215 if (vd == NULL || unspare) {
5216 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5217 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5218 spa_load_spares(spa);
5219 spa->spa_spares.sav_sync = B_TRUE;
5220 } else {
5221 error = SET_ERROR(EBUSY);
5222 }
5223 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5224 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5225 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5226 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5227 /*
5228 * Cache devices can always be removed.
5229 */
5230 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5231 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5232 spa_load_l2cache(spa);
5233 spa->spa_l2cache.sav_sync = B_TRUE;
5234 } else if (vd != NULL && vd->vdev_islog) {
5235 ASSERT(!locked);
5236 ASSERT(vd == vd->vdev_top);
5237
5238 /*
5239 * XXX - Once we have bp-rewrite this should
5240 * become the common case.
5241 */
5242
5243 mg = vd->vdev_mg;
5244
5245 /*
5246 * Stop allocating from this vdev.
5247 */
5248 metaslab_group_passivate(mg);
5249
5250 /*
5251 * Wait for the youngest allocations and frees to sync,
5252 * and then wait for the deferral of those frees to finish.
5253 */
5254 spa_vdev_config_exit(spa, NULL,
5255 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5256
5257 /*
5258 * Attempt to evacuate the vdev.
5259 */
5260 error = spa_vdev_remove_evacuate(spa, vd);
5261
5262 txg = spa_vdev_config_enter(spa);
5263
5264 /*
5265 * If we couldn't evacuate the vdev, unwind.
5266 */
5267 if (error) {
5268 metaslab_group_activate(mg);
5269 return (spa_vdev_exit(spa, NULL, txg, error));
5270 }
5271
5272 /*
5273 * Clean up the vdev namespace.
5274 */
5275 spa_vdev_remove_from_namespace(spa, vd);
5276
5277 } else if (vd != NULL) {
5278 /*
5279 * Normal vdevs cannot be removed (yet).
5280 */
5281 error = SET_ERROR(ENOTSUP);
5282 } else {
5283 /*
5284 * There is no vdev of any kind with the specified guid.
5285 */
5286 error = SET_ERROR(ENOENT);
5287 }
5288
5289 if (!locked)
5290 return (spa_vdev_exit(spa, NULL, txg, error));
5291
5292 return (error);
5293 }
5294
5295 /*
5296 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5297 * currently spared, so we can detach it.
5298 */
5299 static vdev_t *
5300 spa_vdev_resilver_done_hunt(vdev_t *vd)
5301 {
5302 vdev_t *newvd, *oldvd;
5303
5304 for (int c = 0; c < vd->vdev_children; c++) {
5305 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5306 if (oldvd != NULL)
5307 return (oldvd);
5308 }
5309
5310 /*
5311 * Check for a completed replacement. We always consider the first
5312 * vdev in the list to be the oldest vdev, and the last one to be
5313 * the newest (see spa_vdev_attach() for how that works). In
5314 * the case where the newest vdev is faulted, we will not automatically
5315 * remove it after a resilver completes. This is OK as it will require
5316 * user intervention to determine which disk the admin wishes to keep.
5317 */
5318 if (vd->vdev_ops == &vdev_replacing_ops) {
5319 ASSERT(vd->vdev_children > 1);
5320
5321 newvd = vd->vdev_child[vd->vdev_children - 1];
5322 oldvd = vd->vdev_child[0];
5323
5324 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5325 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5326 !vdev_dtl_required(oldvd))
5327 return (oldvd);
5328 }
5329
5330 /*
5331 * Check for a completed resilver with the 'unspare' flag set.
5332 */
5333 if (vd->vdev_ops == &vdev_spare_ops) {
5334 vdev_t *first = vd->vdev_child[0];
5335 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5336
5337 if (last->vdev_unspare) {
5338 oldvd = first;
5339 newvd = last;
5340 } else if (first->vdev_unspare) {
5341 oldvd = last;
5342 newvd = first;
5343 } else {
5344 oldvd = NULL;
5345 }
5346
5347 if (oldvd != NULL &&
5348 vdev_dtl_empty(newvd, DTL_MISSING) &&
5349 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5350 !vdev_dtl_required(oldvd))
5351 return (oldvd);
5352
5353 /*
5354 * If there are more than two spares attached to a disk,
5355 * and those spares are not required, then we want to
5356 * attempt to free them up now so that they can be used
5357 * by other pools. Once we're back down to a single
5358 * disk+spare, we stop removing them.
5359 */
5360 if (vd->vdev_children > 2) {
5361 newvd = vd->vdev_child[1];
5362
5363 if (newvd->vdev_isspare && last->vdev_isspare &&
5364 vdev_dtl_empty(last, DTL_MISSING) &&
5365 vdev_dtl_empty(last, DTL_OUTAGE) &&
5366 !vdev_dtl_required(newvd))
5367 return (newvd);
5368 }
5369 }
5370
5371 return (NULL);
5372 }
5373
5374 static void
5375 spa_vdev_resilver_done(spa_t *spa)
5376 {
5377 vdev_t *vd, *pvd, *ppvd;
5378 uint64_t guid, sguid, pguid, ppguid;
5379
5380 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5381
5382 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5383 pvd = vd->vdev_parent;
5384 ppvd = pvd->vdev_parent;
5385 guid = vd->vdev_guid;
5386 pguid = pvd->vdev_guid;
5387 ppguid = ppvd->vdev_guid;
5388 sguid = 0;
5389 /*
5390 * If we have just finished replacing a hot spared device, then
5391 * we need to detach the parent's first child (the original hot
5392 * spare) as well.
5393 */
5394 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5395 ppvd->vdev_children == 2) {
5396 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5397 sguid = ppvd->vdev_child[1]->vdev_guid;
5398 }
5399 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5400
5401 spa_config_exit(spa, SCL_ALL, FTAG);
5402 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5403 return;
5404 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5405 return;
5406 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5407 }
5408
5409 spa_config_exit(spa, SCL_ALL, FTAG);
5410 }
5411
5412 /*
5413 * Update the stored path or FRU for this vdev.
5414 */
5415 int
5416 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5417 boolean_t ispath)
5418 {
5419 vdev_t *vd;
5420 boolean_t sync = B_FALSE;
5421
5422 ASSERT(spa_writeable(spa));
5423
5424 spa_vdev_state_enter(spa, SCL_ALL);
5425
5426 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5427 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5428
5429 if (!vd->vdev_ops->vdev_op_leaf)
5430 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5431
5432 if (ispath) {
5433 if (strcmp(value, vd->vdev_path) != 0) {
5434 spa_strfree(vd->vdev_path);
5435 vd->vdev_path = spa_strdup(value);
5436 sync = B_TRUE;
5437 }
5438 } else {
5439 if (vd->vdev_fru == NULL) {
5440 vd->vdev_fru = spa_strdup(value);
5441 sync = B_TRUE;
5442 } else if (strcmp(value, vd->vdev_fru) != 0) {
5443 spa_strfree(vd->vdev_fru);
5444 vd->vdev_fru = spa_strdup(value);
5445 sync = B_TRUE;
5446 }
5447 }
5448
5449 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5450 }
5451
5452 int
5453 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5454 {
5455 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5456 }
5457
5458 int
5459 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5460 {
5461 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5462 }
5463
5464 /*
5465 * ==========================================================================
5466 * SPA Scanning
5467 * ==========================================================================
5468 */
5469
5470 int
5471 spa_scan_stop(spa_t *spa)
5472 {
5473 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5474 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5475 return (SET_ERROR(EBUSY));
5476 return (dsl_scan_cancel(spa->spa_dsl_pool));
5477 }
5478
5479 int
5480 spa_scan(spa_t *spa, pool_scan_func_t func)
5481 {
5482 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5483
5484 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5485 return (SET_ERROR(ENOTSUP));
5486
5487 /*
5488 * If a resilver was requested, but there is no DTL on a
5489 * writeable leaf device, we have nothing to do.
5490 */
5491 if (func == POOL_SCAN_RESILVER &&
5492 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5493 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5494 return (0);
5495 }
5496
5497 return (dsl_scan(spa->spa_dsl_pool, func));
5498 }
5499
5500 /*
5501 * ==========================================================================
5502 * SPA async task processing
5503 * ==========================================================================
5504 */
5505
5506 static void
5507 spa_async_remove(spa_t *spa, vdev_t *vd)
5508 {
5509 if (vd->vdev_remove_wanted) {
5510 vd->vdev_remove_wanted = B_FALSE;
5511 vd->vdev_delayed_close = B_FALSE;
5512 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5513
5514 /*
5515 * We want to clear the stats, but we don't want to do a full
5516 * vdev_clear() as that will cause us to throw away
5517 * degraded/faulted state as well as attempt to reopen the
5518 * device, all of which is a waste.
5519 */
5520 vd->vdev_stat.vs_read_errors = 0;
5521 vd->vdev_stat.vs_write_errors = 0;
5522 vd->vdev_stat.vs_checksum_errors = 0;
5523
5524 vdev_state_dirty(vd->vdev_top);
5525 }
5526
5527 for (int c = 0; c < vd->vdev_children; c++)
5528 spa_async_remove(spa, vd->vdev_child[c]);
5529 }
5530
5531 static void
5532 spa_async_probe(spa_t *spa, vdev_t *vd)
5533 {
5534 if (vd->vdev_probe_wanted) {
5535 vd->vdev_probe_wanted = B_FALSE;
5536 vdev_reopen(vd); /* vdev_open() does the actual probe */
5537 }
5538
5539 for (int c = 0; c < vd->vdev_children; c++)
5540 spa_async_probe(spa, vd->vdev_child[c]);
5541 }
5542
5543 static void
5544 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5545 {
5546 sysevent_id_t eid;
5547 nvlist_t *attr;
5548 char *physpath;
5549
5550 if (!spa->spa_autoexpand)
5551 return;
5552
5553 for (int c = 0; c < vd->vdev_children; c++) {
5554 vdev_t *cvd = vd->vdev_child[c];
5555 spa_async_autoexpand(spa, cvd);
5556 }
5557
5558 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5559 return;
5560
5561 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5562 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5563
5564 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5565 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5566
5567 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5568 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5569
5570 nvlist_free(attr);
5571 kmem_free(physpath, MAXPATHLEN);
5572 }
5573
5574 static void
5575 spa_async_thread(spa_t *spa)
5576 {
5577 int tasks;
5578
5579 ASSERT(spa->spa_sync_on);
5580
5581 mutex_enter(&spa->spa_async_lock);
5582 tasks = spa->spa_async_tasks;
5583 spa->spa_async_tasks = 0;
5584 mutex_exit(&spa->spa_async_lock);
5585
5586 /*
5587 * See if the config needs to be updated.
5588 */
5589 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5590 uint64_t old_space, new_space;
5591
5592 mutex_enter(&spa_namespace_lock);
5593 old_space = metaslab_class_get_space(spa_normal_class(spa));
5594 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5595 new_space = metaslab_class_get_space(spa_normal_class(spa));
5596 mutex_exit(&spa_namespace_lock);
5597
5598 /*
5599 * If the pool grew as a result of the config update,
5600 * then log an internal history event.
5601 */
5602 if (new_space != old_space) {
5603 spa_history_log_internal(spa, "vdev online", NULL,
5604 "pool '%s' size: %llu(+%llu)",
5605 spa_name(spa), new_space, new_space - old_space);
5606 }
5607 }
5608
5609 /*
5610 * See if any devices need to be marked REMOVED.
5611 */
5612 if (tasks & SPA_ASYNC_REMOVE) {
5613 spa_vdev_state_enter(spa, SCL_NONE);
5614 spa_async_remove(spa, spa->spa_root_vdev);
5615 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5616 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5617 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5618 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5619 (void) spa_vdev_state_exit(spa, NULL, 0);
5620 }
5621
5622 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5623 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5624 spa_async_autoexpand(spa, spa->spa_root_vdev);
5625 spa_config_exit(spa, SCL_CONFIG, FTAG);
5626 }
5627
5628 /*
5629 * See if any devices need to be probed.
5630 */
5631 if (tasks & SPA_ASYNC_PROBE) {
5632 spa_vdev_state_enter(spa, SCL_NONE);
5633 spa_async_probe(spa, spa->spa_root_vdev);
5634 (void) spa_vdev_state_exit(spa, NULL, 0);
5635 }
5636
5637 /*
5638 * If any devices are done replacing, detach them.
5639 */
5640 if (tasks & SPA_ASYNC_RESILVER_DONE)
5641 spa_vdev_resilver_done(spa);
5642
5643 /*
5644 * Kick off a resilver.
5645 */
5646 if (tasks & SPA_ASYNC_RESILVER)
5647 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5648
5649 /*
5650 * Let the world know that we're done.
5651 */
5652 mutex_enter(&spa->spa_async_lock);
5653 spa->spa_async_thread = NULL;
5654 cv_broadcast(&spa->spa_async_cv);
5655 mutex_exit(&spa->spa_async_lock);
5656 thread_exit();
5657 }
5658
5659 void
5660 spa_async_suspend(spa_t *spa)
5661 {
5662 mutex_enter(&spa->spa_async_lock);
5663 spa->spa_async_suspended++;
5664 while (spa->spa_async_thread != NULL)
5665 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5666 mutex_exit(&spa->spa_async_lock);
5667 }
5668
5669 void
5670 spa_async_resume(spa_t *spa)
5671 {
5672 mutex_enter(&spa->spa_async_lock);
5673 ASSERT(spa->spa_async_suspended != 0);
5674 spa->spa_async_suspended--;
5675 mutex_exit(&spa->spa_async_lock);
5676 }
5677
5678 static boolean_t
5679 spa_async_tasks_pending(spa_t *spa)
5680 {
5681 uint_t non_config_tasks;
5682 uint_t config_task;
5683 boolean_t config_task_suspended;
5684
5685 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5686 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5687 if (spa->spa_ccw_fail_time == 0) {
5688 config_task_suspended = B_FALSE;
5689 } else {
5690 config_task_suspended =
5691 (gethrtime() - spa->spa_ccw_fail_time) <
5692 (zfs_ccw_retry_interval * NANOSEC);
5693 }
5694
5695 return (non_config_tasks || (config_task && !config_task_suspended));
5696 }
5697
5698 static void
5699 spa_async_dispatch(spa_t *spa)
5700 {
5701 mutex_enter(&spa->spa_async_lock);
5702 if (spa_async_tasks_pending(spa) &&
5703 !spa->spa_async_suspended &&
5704 spa->spa_async_thread == NULL &&
5705 rootdir != NULL)
5706 spa->spa_async_thread = thread_create(NULL, 0,
5707 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5708 mutex_exit(&spa->spa_async_lock);
5709 }
5710
5711 void
5712 spa_async_request(spa_t *spa, int task)
5713 {
5714 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5715 mutex_enter(&spa->spa_async_lock);
5716 spa->spa_async_tasks |= task;
5717 mutex_exit(&spa->spa_async_lock);
5718 }
5719
5720 /*
5721 * ==========================================================================
5722 * SPA syncing routines
5723 * ==========================================================================
5724 */
5725
5726 static int
5727 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5728 {
5729 bpobj_t *bpo = arg;
5730 bpobj_enqueue(bpo, bp, tx);
5731 return (0);
5732 }
5733
5734 static int
5735 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5736 {
5737 zio_t *zio = arg;
5738
5739 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5740 zio->io_flags));
5741 return (0);
5742 }
5743
5744 /*
5745 * Note: this simple function is not inlined to make it easier to dtrace the
5746 * amount of time spent syncing frees.
5747 */
5748 static void
5749 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5750 {
5751 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5752 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5753 VERIFY(zio_wait(zio) == 0);
5754 }
5755
5756 /*
5757 * Note: this simple function is not inlined to make it easier to dtrace the
5758 * amount of time spent syncing deferred frees.
5759 */
5760 static void
5761 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5762 {
5763 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5764 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5765 spa_free_sync_cb, zio, tx), ==, 0);
5766 VERIFY0(zio_wait(zio));
5767 }
5768
5769
5770 static void
5771 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5772 {
5773 char *packed = NULL;
5774 size_t bufsize;
5775 size_t nvsize = 0;
5776 dmu_buf_t *db;
5777
5778 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5779
5780 /*
5781 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5782 * information. This avoids the dbuf_will_dirty() path and
5783 * saves us a pre-read to get data we don't actually care about.
5784 */
5785 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5786 packed = kmem_alloc(bufsize, KM_SLEEP);
5787
5788 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5789 KM_SLEEP) == 0);
5790 bzero(packed + nvsize, bufsize - nvsize);
5791
5792 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5793
5794 kmem_free(packed, bufsize);
5795
5796 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5797 dmu_buf_will_dirty(db, tx);
5798 *(uint64_t *)db->db_data = nvsize;
5799 dmu_buf_rele(db, FTAG);
5800 }
5801
5802 static void
5803 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5804 const char *config, const char *entry)
5805 {
5806 nvlist_t *nvroot;
5807 nvlist_t **list;
5808 int i;
5809
5810 if (!sav->sav_sync)
5811 return;
5812
5813 /*
5814 * Update the MOS nvlist describing the list of available devices.
5815 * spa_validate_aux() will have already made sure this nvlist is
5816 * valid and the vdevs are labeled appropriately.
5817 */
5818 if (sav->sav_object == 0) {
5819 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5820 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5821 sizeof (uint64_t), tx);
5822 VERIFY(zap_update(spa->spa_meta_objset,
5823 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5824 &sav->sav_object, tx) == 0);
5825 }
5826
5827 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5828 if (sav->sav_count == 0) {
5829 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5830 } else {
5831 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5832 for (i = 0; i < sav->sav_count; i++)
5833 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5834 B_FALSE, VDEV_CONFIG_L2CACHE);
5835 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5836 sav->sav_count) == 0);
5837 for (i = 0; i < sav->sav_count; i++)
5838 nvlist_free(list[i]);
5839 kmem_free(list, sav->sav_count * sizeof (void *));
5840 }
5841
5842 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5843 nvlist_free(nvroot);
5844
5845 sav->sav_sync = B_FALSE;
5846 }
5847
5848 static void
5849 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5850 {
5851 nvlist_t *config;
5852
5853 if (list_is_empty(&spa->spa_config_dirty_list))
5854 return;
5855
5856 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5857
5858 config = spa_config_generate(spa, spa->spa_root_vdev,
5859 dmu_tx_get_txg(tx), B_FALSE);
5860
5861 /*
5862 * If we're upgrading the spa version then make sure that
5863 * the config object gets updated with the correct version.
5864 */
5865 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5866 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5867 spa->spa_uberblock.ub_version);
5868
5869 spa_config_exit(spa, SCL_STATE, FTAG);
5870
5871 if (spa->spa_config_syncing)
5872 nvlist_free(spa->spa_config_syncing);
5873 spa->spa_config_syncing = config;
5874
5875 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5876 }
5877
5878 static void
5879 spa_sync_version(void *arg, dmu_tx_t *tx)
5880 {
5881 uint64_t *versionp = arg;
5882 uint64_t version = *versionp;
5883 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5884
5885 /*
5886 * Setting the version is special cased when first creating the pool.
5887 */
5888 ASSERT(tx->tx_txg != TXG_INITIAL);
5889
5890 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5891 ASSERT(version >= spa_version(spa));
5892
5893 spa->spa_uberblock.ub_version = version;
5894 vdev_config_dirty(spa->spa_root_vdev);
5895 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5896 }
5897
5898 /*
5899 * Set zpool properties.
5900 */
5901 static void
5902 spa_sync_props(void *arg, dmu_tx_t *tx)
5903 {
5904 nvlist_t *nvp = arg;
5905 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5906 objset_t *mos = spa->spa_meta_objset;
5907 nvpair_t *elem = NULL;
5908
5909 mutex_enter(&spa->spa_props_lock);
5910
5911 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5912 uint64_t intval;
5913 char *strval, *fname;
5914 zpool_prop_t prop;
5915 const char *propname;
5916 zprop_type_t proptype;
5917 zfeature_info_t *feature;
5918
5919 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5920 case ZPROP_INVAL:
5921 /*
5922 * We checked this earlier in spa_prop_validate().
5923 */
5924 ASSERT(zpool_prop_feature(nvpair_name(elem)));
5925
5926 fname = strchr(nvpair_name(elem), '@') + 1;
5927 VERIFY0(zfeature_lookup_name(fname, &feature));
5928
5929 spa_feature_enable(spa, feature, tx);
5930 spa_history_log_internal(spa, "set", tx,
5931 "%s=enabled", nvpair_name(elem));
5932 break;
5933
5934 case ZPOOL_PROP_VERSION:
5935 intval = fnvpair_value_uint64(elem);
5936 /*
5937 * The version is synced seperatly before other
5938 * properties and should be correct by now.
5939 */
5940 ASSERT3U(spa_version(spa), >=, intval);
5941 break;
5942
5943 case ZPOOL_PROP_ALTROOT:
5944 /*
5945 * 'altroot' is a non-persistent property. It should
5946 * have been set temporarily at creation or import time.
5947 */
5948 ASSERT(spa->spa_root != NULL);
5949 break;
5950
5951 case ZPOOL_PROP_READONLY:
5952 case ZPOOL_PROP_CACHEFILE:
5953 /*
5954 * 'readonly' and 'cachefile' are also non-persisitent
5955 * properties.
5956 */
5957 break;
5958 case ZPOOL_PROP_COMMENT:
5959 strval = fnvpair_value_string(elem);
5960 if (spa->spa_comment != NULL)
5961 spa_strfree(spa->spa_comment);
5962 spa->spa_comment = spa_strdup(strval);
5963 /*
5964 * We need to dirty the configuration on all the vdevs
5965 * so that their labels get updated. It's unnecessary
5966 * to do this for pool creation since the vdev's
5967 * configuratoin has already been dirtied.
5968 */
5969 if (tx->tx_txg != TXG_INITIAL)
5970 vdev_config_dirty(spa->spa_root_vdev);
5971 spa_history_log_internal(spa, "set", tx,
5972 "%s=%s", nvpair_name(elem), strval);
5973 break;
5974 default:
5975 /*
5976 * Set pool property values in the poolprops mos object.
5977 */
5978 if (spa->spa_pool_props_object == 0) {
5979 spa->spa_pool_props_object =
5980 zap_create_link(mos, DMU_OT_POOL_PROPS,
5981 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5982 tx);
5983 }
5984
5985 /* normalize the property name */
5986 propname = zpool_prop_to_name(prop);
5987 proptype = zpool_prop_get_type(prop);
5988
5989 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5990 ASSERT(proptype == PROP_TYPE_STRING);
5991 strval = fnvpair_value_string(elem);
5992 VERIFY0(zap_update(mos,
5993 spa->spa_pool_props_object, propname,
5994 1, strlen(strval) + 1, strval, tx));
5995 spa_history_log_internal(spa, "set", tx,
5996 "%s=%s", nvpair_name(elem), strval);
5997 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5998 intval = fnvpair_value_uint64(elem);
5999
6000 if (proptype == PROP_TYPE_INDEX) {
6001 const char *unused;
6002 VERIFY0(zpool_prop_index_to_string(
6003 prop, intval, &unused));
6004 }
6005 VERIFY0(zap_update(mos,
6006 spa->spa_pool_props_object, propname,
6007 8, 1, &intval, tx));
6008 spa_history_log_internal(spa, "set", tx,
6009 "%s=%lld", nvpair_name(elem), intval);
6010 } else {
6011 ASSERT(0); /* not allowed */
6012 }
6013
6014 switch (prop) {
6015 case ZPOOL_PROP_DELEGATION:
6016 spa->spa_delegation = intval;
6017 break;
6018 case ZPOOL_PROP_BOOTFS:
6019 spa->spa_bootfs = intval;
6020 break;
6021 case ZPOOL_PROP_FAILUREMODE:
6022 spa->spa_failmode = intval;
6023 break;
6024 case ZPOOL_PROP_AUTOEXPAND:
6025 spa->spa_autoexpand = intval;
6026 if (tx->tx_txg != TXG_INITIAL)
6027 spa_async_request(spa,
6028 SPA_ASYNC_AUTOEXPAND);
6029 break;
6030 case ZPOOL_PROP_DEDUPDITTO:
6031 spa->spa_dedup_ditto = intval;
6032 break;
6033 default:
6034 break;
6035 }
6036 }
6037
6038 }
6039
6040 mutex_exit(&spa->spa_props_lock);
6041 }
6042
6043 /*
6044 * Perform one-time upgrade on-disk changes. spa_version() does not
6045 * reflect the new version this txg, so there must be no changes this
6046 * txg to anything that the upgrade code depends on after it executes.
6047 * Therefore this must be called after dsl_pool_sync() does the sync
6048 * tasks.
6049 */
6050 static void
6051 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6052 {
6053 dsl_pool_t *dp = spa->spa_dsl_pool;
6054
6055 ASSERT(spa->spa_sync_pass == 1);
6056
6057 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6058
6059 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6060 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6061 dsl_pool_create_origin(dp, tx);
6062
6063 /* Keeping the origin open increases spa_minref */
6064 spa->spa_minref += 3;
6065 }
6066
6067 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6068 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6069 dsl_pool_upgrade_clones(dp, tx);
6070 }
6071
6072 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6073 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6074 dsl_pool_upgrade_dir_clones(dp, tx);
6075
6076 /* Keeping the freedir open increases spa_minref */
6077 spa->spa_minref += 3;
6078 }
6079
6080 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6081 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6082 spa_feature_create_zap_objects(spa, tx);
6083 }
6084 rrw_exit(&dp->dp_config_rwlock, FTAG);
6085 }
6086
6087 /*
6088 * Sync the specified transaction group. New blocks may be dirtied as
6089 * part of the process, so we iterate until it converges.
6090 */
6091 void
6092 spa_sync(spa_t *spa, uint64_t txg)
6093 {
6094 dsl_pool_t *dp = spa->spa_dsl_pool;
6095 objset_t *mos = spa->spa_meta_objset;
6096 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6097 vdev_t *rvd = spa->spa_root_vdev;
6098 vdev_t *vd;
6099 dmu_tx_t *tx;
6100 int error;
6101
6102 VERIFY(spa_writeable(spa));
6103
6104 /*
6105 * Lock out configuration changes.
6106 */
6107 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6108
6109 spa->spa_syncing_txg = txg;
6110 spa->spa_sync_pass = 0;
6111
6112 /*
6113 * If there are any pending vdev state changes, convert them
6114 * into config changes that go out with this transaction group.
6115 */
6116 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6117 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6118 /*
6119 * We need the write lock here because, for aux vdevs,
6120 * calling vdev_config_dirty() modifies sav_config.
6121 * This is ugly and will become unnecessary when we
6122 * eliminate the aux vdev wart by integrating all vdevs
6123 * into the root vdev tree.
6124 */
6125 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6126 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6127 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6128 vdev_state_clean(vd);
6129 vdev_config_dirty(vd);
6130 }
6131 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6132 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6133 }
6134 spa_config_exit(spa, SCL_STATE, FTAG);
6135
6136 tx = dmu_tx_create_assigned(dp, txg);
6137
6138 spa->spa_sync_starttime = gethrtime();
6139 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6140 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6141
6142 /*
6143 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6144 * set spa_deflate if we have no raid-z vdevs.
6145 */
6146 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6147 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6148 int i;
6149
6150 for (i = 0; i < rvd->vdev_children; i++) {
6151 vd = rvd->vdev_child[i];
6152 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6153 break;
6154 }
6155 if (i == rvd->vdev_children) {
6156 spa->spa_deflate = TRUE;
6157 VERIFY(0 == zap_add(spa->spa_meta_objset,
6158 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6159 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6160 }
6161 }
6162
6163 /*
6164 * If anything has changed in this txg, or if someone is waiting
6165 * for this txg to sync (eg, spa_vdev_remove()), push the
6166 * deferred frees from the previous txg. If not, leave them
6167 * alone so that we don't generate work on an otherwise idle
6168 * system.
6169 */
6170 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6171 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6172 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6173 ((dsl_scan_active(dp->dp_scan) ||
6174 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6175 spa_sync_deferred_frees(spa, tx);
6176 }
6177
6178 /*
6179 * Iterate to convergence.
6180 */
6181 do {
6182 int pass = ++spa->spa_sync_pass;
6183
6184 spa_sync_config_object(spa, tx);
6185 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6186 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6187 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6188 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6189 spa_errlog_sync(spa, txg);
6190 dsl_pool_sync(dp, txg);
6191
6192 if (pass < zfs_sync_pass_deferred_free) {
6193 spa_sync_frees(spa, free_bpl, tx);
6194 } else {
6195 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6196 &spa->spa_deferred_bpobj, tx);
6197 }
6198
6199 ddt_sync(spa, txg);
6200 dsl_scan_sync(dp, tx);
6201
6202 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6203 vdev_sync(vd, txg);
6204
6205 if (pass == 1)
6206 spa_sync_upgrades(spa, tx);
6207
6208 } while (dmu_objset_is_dirty(mos, txg));
6209
6210 /*
6211 * Rewrite the vdev configuration (which includes the uberblock)
6212 * to commit the transaction group.
6213 *
6214 * If there are no dirty vdevs, we sync the uberblock to a few
6215 * random top-level vdevs that are known to be visible in the
6216 * config cache (see spa_vdev_add() for a complete description).
6217 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6218 */
6219 for (;;) {
6220 /*
6221 * We hold SCL_STATE to prevent vdev open/close/etc.
6222 * while we're attempting to write the vdev labels.
6223 */
6224 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6225
6226 if (list_is_empty(&spa->spa_config_dirty_list)) {
6227 vdev_t *svd[SPA_DVAS_PER_BP];
6228 int svdcount = 0;
6229 int children = rvd->vdev_children;
6230 int c0 = spa_get_random(children);
6231
6232 for (int c = 0; c < children; c++) {
6233 vd = rvd->vdev_child[(c0 + c) % children];
6234 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6235 continue;
6236 svd[svdcount++] = vd;
6237 if (svdcount == SPA_DVAS_PER_BP)
6238 break;
6239 }
6240 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6241 if (error != 0)
6242 error = vdev_config_sync(svd, svdcount, txg,
6243 B_TRUE);
6244 } else {
6245 error = vdev_config_sync(rvd->vdev_child,
6246 rvd->vdev_children, txg, B_FALSE);
6247 if (error != 0)
6248 error = vdev_config_sync(rvd->vdev_child,
6249 rvd->vdev_children, txg, B_TRUE);
6250 }
6251
6252 if (error == 0)
6253 spa->spa_last_synced_guid = rvd->vdev_guid;
6254
6255 spa_config_exit(spa, SCL_STATE, FTAG);
6256
6257 if (error == 0)
6258 break;
6259 zio_suspend(spa, NULL);
6260 zio_resume_wait(spa);
6261 }
6262 dmu_tx_commit(tx);
6263
6264 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6265
6266 /*
6267 * Clear the dirty config list.
6268 */
6269 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6270 vdev_config_clean(vd);
6271
6272 /*
6273 * Now that the new config has synced transactionally,
6274 * let it become visible to the config cache.
6275 */
6276 if (spa->spa_config_syncing != NULL) {
6277 spa_config_set(spa, spa->spa_config_syncing);
6278 spa->spa_config_txg = txg;
6279 spa->spa_config_syncing = NULL;
6280 }
6281
6282 spa->spa_ubsync = spa->spa_uberblock;
6283
6284 dsl_pool_sync_done(dp, txg);
6285
6286 /*
6287 * Update usable space statistics.
6288 */
6289 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6290 vdev_sync_done(vd, txg);
6291
6292 spa_update_dspace(spa);
6293
6294 /*
6295 * It had better be the case that we didn't dirty anything
6296 * since vdev_config_sync().
6297 */
6298 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6299 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6300 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6301
6302 spa->spa_sync_pass = 0;
6303
6304 spa_config_exit(spa, SCL_CONFIG, FTAG);
6305
6306 spa_handle_ignored_writes(spa);
6307
6308 /*
6309 * If any async tasks have been requested, kick them off.
6310 */
6311 spa_async_dispatch(spa);
6312 }
6313
6314 /*
6315 * Sync all pools. We don't want to hold the namespace lock across these
6316 * operations, so we take a reference on the spa_t and drop the lock during the
6317 * sync.
6318 */
6319 void
6320 spa_sync_allpools(void)
6321 {
6322 spa_t *spa = NULL;
6323 mutex_enter(&spa_namespace_lock);
6324 while ((spa = spa_next(spa)) != NULL) {
6325 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6326 !spa_writeable(spa) || spa_suspended(spa))
6327 continue;
6328 spa_open_ref(spa, FTAG);
6329 mutex_exit(&spa_namespace_lock);
6330 txg_wait_synced(spa_get_dsl(spa), 0);
6331 mutex_enter(&spa_namespace_lock);
6332 spa_close(spa, FTAG);
6333 }
6334 mutex_exit(&spa_namespace_lock);
6335 }
6336
6337 /*
6338 * ==========================================================================
6339 * Miscellaneous routines
6340 * ==========================================================================
6341 */
6342
6343 /*
6344 * Remove all pools in the system.
6345 */
6346 void
6347 spa_evict_all(void)
6348 {
6349 spa_t *spa;
6350
6351 /*
6352 * Remove all cached state. All pools should be closed now,
6353 * so every spa in the AVL tree should be unreferenced.
6354 */
6355 mutex_enter(&spa_namespace_lock);
6356 while ((spa = spa_next(NULL)) != NULL) {
6357 /*
6358 * Stop async tasks. The async thread may need to detach
6359 * a device that's been replaced, which requires grabbing
6360 * spa_namespace_lock, so we must drop it here.
6361 */
6362 spa_open_ref(spa, FTAG);
6363 mutex_exit(&spa_namespace_lock);
6364 spa_async_suspend(spa);
6365 mutex_enter(&spa_namespace_lock);
6366 spa_close(spa, FTAG);
6367
6368 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6369 spa_unload(spa);
6370 spa_deactivate(spa);
6371 }
6372 spa_remove(spa);
6373 }
6374 mutex_exit(&spa_namespace_lock);
6375 }
6376
6377 vdev_t *
6378 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6379 {
6380 vdev_t *vd;
6381 int i;
6382
6383 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6384 return (vd);
6385
6386 if (aux) {
6387 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6388 vd = spa->spa_l2cache.sav_vdevs[i];
6389 if (vd->vdev_guid == guid)
6390 return (vd);
6391 }
6392
6393 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6394 vd = spa->spa_spares.sav_vdevs[i];
6395 if (vd->vdev_guid == guid)
6396 return (vd);
6397 }
6398 }
6399
6400 return (NULL);
6401 }
6402
6403 void
6404 spa_upgrade(spa_t *spa, uint64_t version)
6405 {
6406 ASSERT(spa_writeable(spa));
6407
6408 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6409
6410 /*
6411 * This should only be called for a non-faulted pool, and since a
6412 * future version would result in an unopenable pool, this shouldn't be
6413 * possible.
6414 */
6415 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6416 ASSERT(version >= spa->spa_uberblock.ub_version);
6417
6418 spa->spa_uberblock.ub_version = version;
6419 vdev_config_dirty(spa->spa_root_vdev);
6420
6421 spa_config_exit(spa, SCL_ALL, FTAG);
6422
6423 txg_wait_synced(spa_get_dsl(spa), 0);
6424 }
6425
6426 boolean_t
6427 spa_has_spare(spa_t *spa, uint64_t guid)
6428 {
6429 int i;
6430 uint64_t spareguid;
6431 spa_aux_vdev_t *sav = &spa->spa_spares;
6432
6433 for (i = 0; i < sav->sav_count; i++)
6434 if (sav->sav_vdevs[i]->vdev_guid == guid)
6435 return (B_TRUE);
6436
6437 for (i = 0; i < sav->sav_npending; i++) {
6438 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6439 &spareguid) == 0 && spareguid == guid)
6440 return (B_TRUE);
6441 }
6442
6443 return (B_FALSE);
6444 }
6445
6446 /*
6447 * Check if a pool has an active shared spare device.
6448 * Note: reference count of an active spare is 2, as a spare and as a replace
6449 */
6450 static boolean_t
6451 spa_has_active_shared_spare(spa_t *spa)
6452 {
6453 int i, refcnt;
6454 uint64_t pool;
6455 spa_aux_vdev_t *sav = &spa->spa_spares;
6456
6457 for (i = 0; i < sav->sav_count; i++) {
6458 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6459 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6460 refcnt > 2)
6461 return (B_TRUE);
6462 }
6463
6464 return (B_FALSE);
6465 }
6466
6467 /*
6468 * Post a sysevent corresponding to the given event. The 'name' must be one of
6469 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6470 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6471 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6472 * or zdb as real changes.
6473 */
6474 void
6475 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6476 {
6477 #ifdef _KERNEL
6478 sysevent_t *ev;
6479 sysevent_attr_list_t *attr = NULL;
6480 sysevent_value_t value;
6481 sysevent_id_t eid;
6482
6483 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6484 SE_SLEEP);
6485
6486 value.value_type = SE_DATA_TYPE_STRING;
6487 value.value.sv_string = spa_name(spa);
6488 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6489 goto done;
6490
6491 value.value_type = SE_DATA_TYPE_UINT64;
6492 value.value.sv_uint64 = spa_guid(spa);
6493 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6494 goto done;
6495
6496 if (vd) {
6497 value.value_type = SE_DATA_TYPE_UINT64;
6498 value.value.sv_uint64 = vd->vdev_guid;
6499 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6500 SE_SLEEP) != 0)
6501 goto done;
6502
6503 if (vd->vdev_path) {
6504 value.value_type = SE_DATA_TYPE_STRING;
6505 value.value.sv_string = vd->vdev_path;
6506 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6507 &value, SE_SLEEP) != 0)
6508 goto done;
6509 }
6510 }
6511
6512 if (sysevent_attach_attributes(ev, attr) != 0)
6513 goto done;
6514 attr = NULL;
6515
6516 (void) log_sysevent(ev, SE_SLEEP, &eid);
6517
6518 done:
6519 if (attr)
6520 sysevent_free_attr(attr);
6521 sysevent_free(ev);
6522 #endif
6523 }