1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 */ 26 27 /* 28 * Virtual Device Labels 29 * --------------------- 30 * 31 * The vdev label serves several distinct purposes: 32 * 33 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 34 * identity within the pool. 35 * 36 * 2. Verify that all the devices given in a configuration are present 37 * within the pool. 38 * 39 * 3. Determine the uberblock for the pool. 40 * 41 * 4. In case of an import operation, determine the configuration of the 42 * toplevel vdev of which it is a part. 43 * 44 * 5. If an import operation cannot find all the devices in the pool, 45 * provide enough information to the administrator to determine which 46 * devices are missing. 47 * 48 * It is important to note that while the kernel is responsible for writing the 49 * label, it only consumes the information in the first three cases. The 50 * latter information is only consumed in userland when determining the 51 * configuration to import a pool. 52 * 53 * 54 * Label Organization 55 * ------------------ 56 * 57 * Before describing the contents of the label, it's important to understand how 58 * the labels are written and updated with respect to the uberblock. 59 * 60 * When the pool configuration is altered, either because it was newly created 61 * or a device was added, we want to update all the labels such that we can deal 62 * with fatal failure at any point. To this end, each disk has two labels which 63 * are updated before and after the uberblock is synced. Assuming we have 64 * labels and an uberblock with the following transaction groups: 65 * 66 * L1 UB L2 67 * +------+ +------+ +------+ 68 * | | | | | | 69 * | t10 | | t10 | | t10 | 70 * | | | | | | 71 * +------+ +------+ +------+ 72 * 73 * In this stable state, the labels and the uberblock were all updated within 74 * the same transaction group (10). Each label is mirrored and checksummed, so 75 * that we can detect when we fail partway through writing the label. 76 * 77 * In order to identify which labels are valid, the labels are written in the 78 * following manner: 79 * 80 * 1. For each vdev, update 'L1' to the new label 81 * 2. Update the uberblock 82 * 3. For each vdev, update 'L2' to the new label 83 * 84 * Given arbitrary failure, we can determine the correct label to use based on 85 * the transaction group. If we fail after updating L1 but before updating the 86 * UB, we will notice that L1's transaction group is greater than the uberblock, 87 * so L2 must be valid. If we fail after writing the uberblock but before 88 * writing L2, we will notice that L2's transaction group is less than L1, and 89 * therefore L1 is valid. 90 * 91 * Another added complexity is that not every label is updated when the config 92 * is synced. If we add a single device, we do not want to have to re-write 93 * every label for every device in the pool. This means that both L1 and L2 may 94 * be older than the pool uberblock, because the necessary information is stored 95 * on another vdev. 96 * 97 * 98 * On-disk Format 99 * -------------- 100 * 101 * The vdev label consists of two distinct parts, and is wrapped within the 102 * vdev_label_t structure. The label includes 8k of padding to permit legacy 103 * VTOC disk labels, but is otherwise ignored. 104 * 105 * The first half of the label is a packed nvlist which contains pool wide 106 * properties, per-vdev properties, and configuration information. It is 107 * described in more detail below. 108 * 109 * The latter half of the label consists of a redundant array of uberblocks. 110 * These uberblocks are updated whenever a transaction group is committed, 111 * or when the configuration is updated. When a pool is loaded, we scan each 112 * vdev for the 'best' uberblock. 113 * 114 * 115 * Configuration Information 116 * ------------------------- 117 * 118 * The nvlist describing the pool and vdev contains the following elements: 119 * 120 * version ZFS on-disk version 121 * name Pool name 122 * state Pool state 123 * txg Transaction group in which this label was written 124 * pool_guid Unique identifier for this pool 125 * vdev_tree An nvlist describing vdev tree. 126 * features_for_read 127 * An nvlist of the features necessary for reading the MOS. 128 * 129 * Each leaf device label also contains the following: 130 * 131 * top_guid Unique ID for top-level vdev in which this is contained 132 * guid Unique ID for the leaf vdev 133 * 134 * The 'vs' configuration follows the format described in 'spa_config.c'. 135 */ 136 137 #include <sys/zfs_context.h> 138 #include <sys/spa.h> 139 #include <sys/spa_impl.h> 140 #include <sys/dmu.h> 141 #include <sys/zap.h> 142 #include <sys/vdev.h> 143 #include <sys/vdev_impl.h> 144 #include <sys/uberblock_impl.h> 145 #include <sys/metaslab.h> 146 #include <sys/zio.h> 147 #include <sys/dsl_scan.h> 148 #include <sys/fs/zfs.h> 149 150 /* 151 * Basic routines to read and write from a vdev label. 152 * Used throughout the rest of this file. 153 */ 154 uint64_t 155 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 156 { 157 ASSERT(offset < sizeof (vdev_label_t)); 158 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 159 160 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 161 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 162 } 163 164 /* 165 * Returns back the vdev label associated with the passed in offset. 166 */ 167 int 168 vdev_label_number(uint64_t psize, uint64_t offset) 169 { 170 int l; 171 172 if (offset >= psize - VDEV_LABEL_END_SIZE) { 173 offset -= psize - VDEV_LABEL_END_SIZE; 174 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 175 } 176 l = offset / sizeof (vdev_label_t); 177 return (l < VDEV_LABELS ? l : -1); 178 } 179 180 static void 181 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 182 uint64_t size, zio_done_func_t *done, void *private, int flags) 183 { 184 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == 185 SCL_STATE_ALL); 186 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 187 188 zio_nowait(zio_read_phys(zio, vd, 189 vdev_label_offset(vd->vdev_psize, l, offset), 190 size, buf, ZIO_CHECKSUM_LABEL, done, private, 191 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 192 } 193 194 static void 195 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 196 uint64_t size, zio_done_func_t *done, void *private, int flags) 197 { 198 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || 199 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == 200 (SCL_CONFIG | SCL_STATE) && 201 dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); 202 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 203 204 zio_nowait(zio_write_phys(zio, vd, 205 vdev_label_offset(vd->vdev_psize, l, offset), 206 size, buf, ZIO_CHECKSUM_LABEL, done, private, 207 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 208 } 209 210 /* 211 * Generate the nvlist representing this vdev's config. 212 */ 213 nvlist_t * 214 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 215 vdev_config_flag_t flags) 216 { 217 nvlist_t *nv = NULL; 218 219 nv = fnvlist_alloc(); 220 221 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); 222 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 223 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); 224 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); 225 226 if (vd->vdev_path != NULL) 227 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); 228 229 if (vd->vdev_devid != NULL) 230 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 231 232 if (vd->vdev_physpath != NULL) 233 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 234 vd->vdev_physpath); 235 236 if (vd->vdev_fru != NULL) 237 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); 238 239 if (vd->vdev_nparity != 0) { 240 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 241 VDEV_TYPE_RAIDZ) == 0); 242 243 /* 244 * Make sure someone hasn't managed to sneak a fancy new vdev 245 * into a crufty old storage pool. 246 */ 247 ASSERT(vd->vdev_nparity == 1 || 248 (vd->vdev_nparity <= 2 && 249 spa_version(spa) >= SPA_VERSION_RAIDZ2) || 250 (vd->vdev_nparity <= 3 && 251 spa_version(spa) >= SPA_VERSION_RAIDZ3)); 252 253 /* 254 * Note that we'll add the nparity tag even on storage pools 255 * that only support a single parity device -- older software 256 * will just ignore it. 257 */ 258 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity); 259 } 260 261 if (vd->vdev_wholedisk != -1ULL) 262 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 263 vd->vdev_wholedisk); 264 265 if (vd->vdev_not_present) 266 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); 267 268 if (vd->vdev_isspare) 269 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 270 271 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 272 vd == vd->vdev_top) { 273 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 274 vd->vdev_ms_array); 275 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 276 vd->vdev_ms_shift); 277 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 278 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 279 vd->vdev_asize); 280 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); 281 if (vd->vdev_removing) 282 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 283 vd->vdev_removing); 284 } 285 286 if (vd->vdev_dtl_smo.smo_object != 0) 287 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 288 vd->vdev_dtl_smo.smo_object); 289 290 if (vd->vdev_crtxg) 291 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 292 293 if (getstats) { 294 vdev_stat_t vs; 295 pool_scan_stat_t ps; 296 297 vdev_get_stats(vd, &vs); 298 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 299 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)); 300 301 /* provide either current or previous scan information */ 302 if (spa_scan_get_stats(spa, &ps) == 0) { 303 fnvlist_add_uint64_array(nv, 304 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 305 sizeof (pool_scan_stat_t) / sizeof (uint64_t)); 306 } 307 } 308 309 if (!vd->vdev_ops->vdev_op_leaf) { 310 nvlist_t **child; 311 int c, idx; 312 313 ASSERT(!vd->vdev_ishole); 314 315 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 316 KM_SLEEP); 317 318 for (c = 0, idx = 0; c < vd->vdev_children; c++) { 319 vdev_t *cvd = vd->vdev_child[c]; 320 321 /* 322 * If we're generating an nvlist of removing 323 * vdevs then skip over any device which is 324 * not being removed. 325 */ 326 if ((flags & VDEV_CONFIG_REMOVING) && 327 !cvd->vdev_removing) 328 continue; 329 330 child[idx++] = vdev_config_generate(spa, cvd, 331 getstats, flags); 332 } 333 334 if (idx) { 335 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 336 child, idx); 337 } 338 339 for (c = 0; c < idx; c++) 340 nvlist_free(child[c]); 341 342 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 343 344 } else { 345 const char *aux = NULL; 346 347 if (vd->vdev_offline && !vd->vdev_tmpoffline) 348 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); 349 if (vd->vdev_resilver_txg != 0) 350 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 351 vd->vdev_resilver_txg); 352 if (vd->vdev_faulted) 353 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); 354 if (vd->vdev_degraded) 355 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); 356 if (vd->vdev_removed) 357 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); 358 if (vd->vdev_unspare) 359 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); 360 if (vd->vdev_ishole) 361 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); 362 363 switch (vd->vdev_stat.vs_aux) { 364 case VDEV_AUX_ERR_EXCEEDED: 365 aux = "err_exceeded"; 366 break; 367 368 case VDEV_AUX_EXTERNAL: 369 aux = "external"; 370 break; 371 } 372 373 if (aux != NULL) 374 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); 375 376 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 377 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 378 vd->vdev_orig_guid); 379 } 380 } 381 382 return (nv); 383 } 384 385 /* 386 * Generate a view of the top-level vdevs. If we currently have holes 387 * in the namespace, then generate an array which contains a list of holey 388 * vdevs. Additionally, add the number of top-level children that currently 389 * exist. 390 */ 391 void 392 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 393 { 394 vdev_t *rvd = spa->spa_root_vdev; 395 uint64_t *array; 396 uint_t c, idx; 397 398 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 399 400 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 401 vdev_t *tvd = rvd->vdev_child[c]; 402 403 if (tvd->vdev_ishole) 404 array[idx++] = c; 405 } 406 407 if (idx) { 408 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 409 array, idx) == 0); 410 } 411 412 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 413 rvd->vdev_children) == 0); 414 415 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 416 } 417 418 /* 419 * Returns the configuration from the label of the given vdev. For vdevs 420 * which don't have a txg value stored on their label (i.e. spares/cache) 421 * or have not been completely initialized (txg = 0) just return 422 * the configuration from the first valid label we find. Otherwise, 423 * find the most up-to-date label that does not exceed the specified 424 * 'txg' value. 425 */ 426 nvlist_t * 427 vdev_label_read_config(vdev_t *vd, uint64_t txg) 428 { 429 spa_t *spa = vd->vdev_spa; 430 nvlist_t *config = NULL; 431 vdev_phys_t *vp; 432 zio_t *zio; 433 uint64_t best_txg = 0; 434 int error = 0; 435 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 436 ZIO_FLAG_SPECULATIVE; 437 438 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 439 440 if (!vdev_readable(vd)) 441 return (NULL); 442 443 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 444 445 retry: 446 for (int l = 0; l < VDEV_LABELS; l++) { 447 nvlist_t *label = NULL; 448 449 zio = zio_root(spa, NULL, NULL, flags); 450 451 vdev_label_read(zio, vd, l, vp, 452 offsetof(vdev_label_t, vl_vdev_phys), 453 sizeof (vdev_phys_t), NULL, NULL, flags); 454 455 if (zio_wait(zio) == 0 && 456 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 457 &label, 0) == 0) { 458 uint64_t label_txg = 0; 459 460 /* 461 * Auxiliary vdevs won't have txg values in their 462 * labels and newly added vdevs may not have been 463 * completely initialized so just return the 464 * configuration from the first valid label we 465 * encounter. 466 */ 467 error = nvlist_lookup_uint64(label, 468 ZPOOL_CONFIG_POOL_TXG, &label_txg); 469 if ((error || label_txg == 0) && !config) { 470 config = label; 471 break; 472 } else if (label_txg <= txg && label_txg > best_txg) { 473 best_txg = label_txg; 474 nvlist_free(config); 475 config = fnvlist_dup(label); 476 } 477 } 478 479 if (label != NULL) { 480 nvlist_free(label); 481 label = NULL; 482 } 483 } 484 485 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 486 flags |= ZIO_FLAG_TRYHARD; 487 goto retry; 488 } 489 490 zio_buf_free(vp, sizeof (vdev_phys_t)); 491 492 return (config); 493 } 494 495 /* 496 * Determine if a device is in use. The 'spare_guid' parameter will be filled 497 * in with the device guid if this spare is active elsewhere on the system. 498 */ 499 static boolean_t 500 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 501 uint64_t *spare_guid, uint64_t *l2cache_guid) 502 { 503 spa_t *spa = vd->vdev_spa; 504 uint64_t state, pool_guid, device_guid, txg, spare_pool; 505 uint64_t vdtxg = 0; 506 nvlist_t *label; 507 508 if (spare_guid) 509 *spare_guid = 0ULL; 510 if (l2cache_guid) 511 *l2cache_guid = 0ULL; 512 513 /* 514 * Read the label, if any, and perform some basic sanity checks. 515 */ 516 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 517 return (B_FALSE); 518 519 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 520 &vdtxg); 521 522 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 523 &state) != 0 || 524 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 525 &device_guid) != 0) { 526 nvlist_free(label); 527 return (B_FALSE); 528 } 529 530 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 531 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 532 &pool_guid) != 0 || 533 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 534 &txg) != 0)) { 535 nvlist_free(label); 536 return (B_FALSE); 537 } 538 539 nvlist_free(label); 540 541 /* 542 * Check to see if this device indeed belongs to the pool it claims to 543 * be a part of. The only way this is allowed is if the device is a hot 544 * spare (which we check for later on). 545 */ 546 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 547 !spa_guid_exists(pool_guid, device_guid) && 548 !spa_spare_exists(device_guid, NULL, NULL) && 549 !spa_l2cache_exists(device_guid, NULL)) 550 return (B_FALSE); 551 552 /* 553 * If the transaction group is zero, then this an initialized (but 554 * unused) label. This is only an error if the create transaction 555 * on-disk is the same as the one we're using now, in which case the 556 * user has attempted to add the same vdev multiple times in the same 557 * transaction. 558 */ 559 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 560 txg == 0 && vdtxg == crtxg) 561 return (B_TRUE); 562 563 /* 564 * Check to see if this is a spare device. We do an explicit check for 565 * spa_has_spare() here because it may be on our pending list of spares 566 * to add. We also check if it is an l2cache device. 567 */ 568 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 569 spa_has_spare(spa, device_guid)) { 570 if (spare_guid) 571 *spare_guid = device_guid; 572 573 switch (reason) { 574 case VDEV_LABEL_CREATE: 575 case VDEV_LABEL_L2CACHE: 576 return (B_TRUE); 577 578 case VDEV_LABEL_REPLACE: 579 return (!spa_has_spare(spa, device_guid) || 580 spare_pool != 0ULL); 581 582 case VDEV_LABEL_SPARE: 583 return (spa_has_spare(spa, device_guid)); 584 } 585 } 586 587 /* 588 * Check to see if this is an l2cache device. 589 */ 590 if (spa_l2cache_exists(device_guid, NULL)) 591 return (B_TRUE); 592 593 /* 594 * We can't rely on a pool's state if it's been imported 595 * read-only. Instead we look to see if the pools is marked 596 * read-only in the namespace and set the state to active. 597 */ 598 if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL && 599 spa_mode(spa) == FREAD) 600 state = POOL_STATE_ACTIVE; 601 602 /* 603 * If the device is marked ACTIVE, then this device is in use by another 604 * pool on the system. 605 */ 606 return (state == POOL_STATE_ACTIVE); 607 } 608 609 /* 610 * Initialize a vdev label. We check to make sure each leaf device is not in 611 * use, and writable. We put down an initial label which we will later 612 * overwrite with a complete label. Note that it's important to do this 613 * sequentially, not in parallel, so that we catch cases of multiple use of the 614 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 615 * itself. 616 */ 617 int 618 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 619 { 620 spa_t *spa = vd->vdev_spa; 621 nvlist_t *label; 622 vdev_phys_t *vp; 623 char *pad2; 624 uberblock_t *ub; 625 zio_t *zio; 626 char *buf; 627 size_t buflen; 628 int error; 629 uint64_t spare_guid, l2cache_guid; 630 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 631 632 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 633 634 for (int c = 0; c < vd->vdev_children; c++) 635 if ((error = vdev_label_init(vd->vdev_child[c], 636 crtxg, reason)) != 0) 637 return (error); 638 639 /* Track the creation time for this vdev */ 640 vd->vdev_crtxg = crtxg; 641 642 if (!vd->vdev_ops->vdev_op_leaf) 643 return (0); 644 645 /* 646 * Dead vdevs cannot be initialized. 647 */ 648 if (vdev_is_dead(vd)) 649 return (SET_ERROR(EIO)); 650 651 /* 652 * Determine if the vdev is in use. 653 */ 654 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 655 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 656 return (SET_ERROR(EBUSY)); 657 658 /* 659 * If this is a request to add or replace a spare or l2cache device 660 * that is in use elsewhere on the system, then we must update the 661 * guid (which was initialized to a random value) to reflect the 662 * actual GUID (which is shared between multiple pools). 663 */ 664 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 665 spare_guid != 0ULL) { 666 uint64_t guid_delta = spare_guid - vd->vdev_guid; 667 668 vd->vdev_guid += guid_delta; 669 670 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 671 pvd->vdev_guid_sum += guid_delta; 672 673 /* 674 * If this is a replacement, then we want to fallthrough to the 675 * rest of the code. If we're adding a spare, then it's already 676 * labeled appropriately and we can just return. 677 */ 678 if (reason == VDEV_LABEL_SPARE) 679 return (0); 680 ASSERT(reason == VDEV_LABEL_REPLACE || 681 reason == VDEV_LABEL_SPLIT); 682 } 683 684 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 685 l2cache_guid != 0ULL) { 686 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 687 688 vd->vdev_guid += guid_delta; 689 690 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 691 pvd->vdev_guid_sum += guid_delta; 692 693 /* 694 * If this is a replacement, then we want to fallthrough to the 695 * rest of the code. If we're adding an l2cache, then it's 696 * already labeled appropriately and we can just return. 697 */ 698 if (reason == VDEV_LABEL_L2CACHE) 699 return (0); 700 ASSERT(reason == VDEV_LABEL_REPLACE); 701 } 702 703 /* 704 * Initialize its label. 705 */ 706 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 707 bzero(vp, sizeof (vdev_phys_t)); 708 709 /* 710 * Generate a label describing the pool and our top-level vdev. 711 * We mark it as being from txg 0 to indicate that it's not 712 * really part of an active pool just yet. The labels will 713 * be written again with a meaningful txg by spa_sync(). 714 */ 715 if (reason == VDEV_LABEL_SPARE || 716 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 717 /* 718 * For inactive hot spares, we generate a special label that 719 * identifies as a mutually shared hot spare. We write the 720 * label if we are adding a hot spare, or if we are removing an 721 * active hot spare (in which case we want to revert the 722 * labels). 723 */ 724 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 725 726 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 727 spa_version(spa)) == 0); 728 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 729 POOL_STATE_SPARE) == 0); 730 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 731 vd->vdev_guid) == 0); 732 } else if (reason == VDEV_LABEL_L2CACHE || 733 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 734 /* 735 * For level 2 ARC devices, add a special label. 736 */ 737 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 738 739 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 740 spa_version(spa)) == 0); 741 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 742 POOL_STATE_L2CACHE) == 0); 743 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 744 vd->vdev_guid) == 0); 745 } else { 746 uint64_t txg = 0ULL; 747 748 if (reason == VDEV_LABEL_SPLIT) 749 txg = spa->spa_uberblock.ub_txg; 750 label = spa_config_generate(spa, vd, txg, B_FALSE); 751 752 /* 753 * Add our creation time. This allows us to detect multiple 754 * vdev uses as described above, and automatically expires if we 755 * fail. 756 */ 757 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 758 crtxg) == 0); 759 } 760 761 buf = vp->vp_nvlist; 762 buflen = sizeof (vp->vp_nvlist); 763 764 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 765 if (error != 0) { 766 nvlist_free(label); 767 zio_buf_free(vp, sizeof (vdev_phys_t)); 768 /* EFAULT means nvlist_pack ran out of room */ 769 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 770 } 771 772 /* 773 * Initialize uberblock template. 774 */ 775 ub = zio_buf_alloc(VDEV_UBERBLOCK_RING); 776 bzero(ub, VDEV_UBERBLOCK_RING); 777 *ub = spa->spa_uberblock; 778 ub->ub_txg = 0; 779 780 /* Initialize the 2nd padding area. */ 781 pad2 = zio_buf_alloc(VDEV_PAD_SIZE); 782 bzero(pad2, VDEV_PAD_SIZE); 783 784 /* 785 * Write everything in parallel. 786 */ 787 retry: 788 zio = zio_root(spa, NULL, NULL, flags); 789 790 for (int l = 0; l < VDEV_LABELS; l++) { 791 792 vdev_label_write(zio, vd, l, vp, 793 offsetof(vdev_label_t, vl_vdev_phys), 794 sizeof (vdev_phys_t), NULL, NULL, flags); 795 796 /* 797 * Skip the 1st padding area. 798 * Zero out the 2nd padding area where it might have 799 * left over data from previous filesystem format. 800 */ 801 vdev_label_write(zio, vd, l, pad2, 802 offsetof(vdev_label_t, vl_pad2), 803 VDEV_PAD_SIZE, NULL, NULL, flags); 804 805 vdev_label_write(zio, vd, l, ub, 806 offsetof(vdev_label_t, vl_uberblock), 807 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 808 } 809 810 error = zio_wait(zio); 811 812 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 813 flags |= ZIO_FLAG_TRYHARD; 814 goto retry; 815 } 816 817 nvlist_free(label); 818 zio_buf_free(pad2, VDEV_PAD_SIZE); 819 zio_buf_free(ub, VDEV_UBERBLOCK_RING); 820 zio_buf_free(vp, sizeof (vdev_phys_t)); 821 822 /* 823 * If this vdev hasn't been previously identified as a spare, then we 824 * mark it as such only if a) we are labeling it as a spare, or b) it 825 * exists as a spare elsewhere in the system. Do the same for 826 * level 2 ARC devices. 827 */ 828 if (error == 0 && !vd->vdev_isspare && 829 (reason == VDEV_LABEL_SPARE || 830 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 831 spa_spare_add(vd); 832 833 if (error == 0 && !vd->vdev_isl2cache && 834 (reason == VDEV_LABEL_L2CACHE || 835 spa_l2cache_exists(vd->vdev_guid, NULL))) 836 spa_l2cache_add(vd); 837 838 return (error); 839 } 840 841 /* 842 * ========================================================================== 843 * uberblock load/sync 844 * ========================================================================== 845 */ 846 847 /* 848 * Consider the following situation: txg is safely synced to disk. We've 849 * written the first uberblock for txg + 1, and then we lose power. When we 850 * come back up, we fail to see the uberblock for txg + 1 because, say, 851 * it was on a mirrored device and the replica to which we wrote txg + 1 852 * is now offline. If we then make some changes and sync txg + 1, and then 853 * the missing replica comes back, then for a few seconds we'll have two 854 * conflicting uberblocks on disk with the same txg. The solution is simple: 855 * among uberblocks with equal txg, choose the one with the latest timestamp. 856 */ 857 static int 858 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 859 { 860 if (ub1->ub_txg < ub2->ub_txg) 861 return (-1); 862 if (ub1->ub_txg > ub2->ub_txg) 863 return (1); 864 865 if (ub1->ub_timestamp < ub2->ub_timestamp) 866 return (-1); 867 if (ub1->ub_timestamp > ub2->ub_timestamp) 868 return (1); 869 870 return (0); 871 } 872 873 struct ubl_cbdata { 874 uberblock_t *ubl_ubbest; /* Best uberblock */ 875 vdev_t *ubl_vd; /* vdev associated with the above */ 876 }; 877 878 static void 879 vdev_uberblock_load_done(zio_t *zio) 880 { 881 vdev_t *vd = zio->io_vd; 882 spa_t *spa = zio->io_spa; 883 zio_t *rio = zio->io_private; 884 uberblock_t *ub = zio->io_data; 885 struct ubl_cbdata *cbp = rio->io_private; 886 887 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 888 889 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 890 mutex_enter(&rio->io_lock); 891 if (ub->ub_txg <= spa->spa_load_max_txg && 892 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 893 /* 894 * Keep track of the vdev in which this uberblock 895 * was found. We will use this information later 896 * to obtain the config nvlist associated with 897 * this uberblock. 898 */ 899 *cbp->ubl_ubbest = *ub; 900 cbp->ubl_vd = vd; 901 } 902 mutex_exit(&rio->io_lock); 903 } 904 905 zio_buf_free(zio->io_data, zio->io_size); 906 } 907 908 static void 909 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 910 struct ubl_cbdata *cbp) 911 { 912 for (int c = 0; c < vd->vdev_children; c++) 913 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 914 915 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 916 for (int l = 0; l < VDEV_LABELS; l++) { 917 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 918 vdev_label_read(zio, vd, l, 919 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), 920 VDEV_UBERBLOCK_OFFSET(vd, n), 921 VDEV_UBERBLOCK_SIZE(vd), 922 vdev_uberblock_load_done, zio, flags); 923 } 924 } 925 } 926 } 927 928 /* 929 * Reads the 'best' uberblock from disk along with its associated 930 * configuration. First, we read the uberblock array of each label of each 931 * vdev, keeping track of the uberblock with the highest txg in each array. 932 * Then, we read the configuration from the same vdev as the best uberblock. 933 */ 934 void 935 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 936 { 937 zio_t *zio; 938 spa_t *spa = rvd->vdev_spa; 939 struct ubl_cbdata cb; 940 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 941 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 942 943 ASSERT(ub); 944 ASSERT(config); 945 946 bzero(ub, sizeof (uberblock_t)); 947 *config = NULL; 948 949 cb.ubl_ubbest = ub; 950 cb.ubl_vd = NULL; 951 952 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 953 zio = zio_root(spa, NULL, &cb, flags); 954 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 955 (void) zio_wait(zio); 956 957 /* 958 * It's possible that the best uberblock was discovered on a label 959 * that has a configuration which was written in a future txg. 960 * Search all labels on this vdev to find the configuration that 961 * matches the txg for our uberblock. 962 */ 963 if (cb.ubl_vd != NULL) 964 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 965 spa_config_exit(spa, SCL_ALL, FTAG); 966 } 967 968 /* 969 * On success, increment root zio's count of good writes. 970 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 971 */ 972 static void 973 vdev_uberblock_sync_done(zio_t *zio) 974 { 975 uint64_t *good_writes = zio->io_private; 976 977 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 978 atomic_add_64(good_writes, 1); 979 } 980 981 /* 982 * Write the uberblock to all labels of all leaves of the specified vdev. 983 */ 984 static void 985 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags) 986 { 987 uberblock_t *ubbuf; 988 int n; 989 990 for (int c = 0; c < vd->vdev_children; c++) 991 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags); 992 993 if (!vd->vdev_ops->vdev_op_leaf) 994 return; 995 996 if (!vdev_writeable(vd)) 997 return; 998 999 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 1000 1001 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 1002 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 1003 *ubbuf = *ub; 1004 1005 for (int l = 0; l < VDEV_LABELS; l++) 1006 vdev_label_write(zio, vd, l, ubbuf, 1007 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1008 vdev_uberblock_sync_done, zio->io_private, 1009 flags | ZIO_FLAG_DONT_PROPAGATE); 1010 1011 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 1012 } 1013 1014 /* Sync the uberblocks to all vdevs in svd[] */ 1015 int 1016 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1017 { 1018 spa_t *spa = svd[0]->vdev_spa; 1019 zio_t *zio; 1020 uint64_t good_writes = 0; 1021 1022 zio = zio_root(spa, NULL, &good_writes, flags); 1023 1024 for (int v = 0; v < svdcount; v++) 1025 vdev_uberblock_sync(zio, ub, svd[v], flags); 1026 1027 (void) zio_wait(zio); 1028 1029 /* 1030 * Flush the uberblocks to disk. This ensures that the odd labels 1031 * are no longer needed (because the new uberblocks and the even 1032 * labels are safely on disk), so it is safe to overwrite them. 1033 */ 1034 zio = zio_root(spa, NULL, NULL, flags); 1035 1036 for (int v = 0; v < svdcount; v++) 1037 zio_flush(zio, svd[v]); 1038 1039 (void) zio_wait(zio); 1040 1041 return (good_writes >= 1 ? 0 : EIO); 1042 } 1043 1044 /* 1045 * On success, increment the count of good writes for our top-level vdev. 1046 */ 1047 static void 1048 vdev_label_sync_done(zio_t *zio) 1049 { 1050 uint64_t *good_writes = zio->io_private; 1051 1052 if (zio->io_error == 0) 1053 atomic_add_64(good_writes, 1); 1054 } 1055 1056 /* 1057 * If there weren't enough good writes, indicate failure to the parent. 1058 */ 1059 static void 1060 vdev_label_sync_top_done(zio_t *zio) 1061 { 1062 uint64_t *good_writes = zio->io_private; 1063 1064 if (*good_writes == 0) 1065 zio->io_error = SET_ERROR(EIO); 1066 1067 kmem_free(good_writes, sizeof (uint64_t)); 1068 } 1069 1070 /* 1071 * We ignore errors for log and cache devices, simply free the private data. 1072 */ 1073 static void 1074 vdev_label_sync_ignore_done(zio_t *zio) 1075 { 1076 kmem_free(zio->io_private, sizeof (uint64_t)); 1077 } 1078 1079 /* 1080 * Write all even or odd labels to all leaves of the specified vdev. 1081 */ 1082 static void 1083 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags) 1084 { 1085 nvlist_t *label; 1086 vdev_phys_t *vp; 1087 char *buf; 1088 size_t buflen; 1089 1090 for (int c = 0; c < vd->vdev_children; c++) 1091 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags); 1092 1093 if (!vd->vdev_ops->vdev_op_leaf) 1094 return; 1095 1096 if (!vdev_writeable(vd)) 1097 return; 1098 1099 /* 1100 * Generate a label describing the top-level config to which we belong. 1101 */ 1102 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1103 1104 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 1105 bzero(vp, sizeof (vdev_phys_t)); 1106 1107 buf = vp->vp_nvlist; 1108 buflen = sizeof (vp->vp_nvlist); 1109 1110 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 1111 for (; l < VDEV_LABELS; l += 2) { 1112 vdev_label_write(zio, vd, l, vp, 1113 offsetof(vdev_label_t, vl_vdev_phys), 1114 sizeof (vdev_phys_t), 1115 vdev_label_sync_done, zio->io_private, 1116 flags | ZIO_FLAG_DONT_PROPAGATE); 1117 } 1118 } 1119 1120 zio_buf_free(vp, sizeof (vdev_phys_t)); 1121 nvlist_free(label); 1122 } 1123 1124 int 1125 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1126 { 1127 list_t *dl = &spa->spa_config_dirty_list; 1128 vdev_t *vd; 1129 zio_t *zio; 1130 int error; 1131 1132 /* 1133 * Write the new labels to disk. 1134 */ 1135 zio = zio_root(spa, NULL, NULL, flags); 1136 1137 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1138 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 1139 KM_SLEEP); 1140 1141 ASSERT(!vd->vdev_ishole); 1142 1143 zio_t *vio = zio_null(zio, spa, NULL, 1144 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1145 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1146 good_writes, flags); 1147 vdev_label_sync(vio, vd, l, txg, flags); 1148 zio_nowait(vio); 1149 } 1150 1151 error = zio_wait(zio); 1152 1153 /* 1154 * Flush the new labels to disk. 1155 */ 1156 zio = zio_root(spa, NULL, NULL, flags); 1157 1158 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1159 zio_flush(zio, vd); 1160 1161 (void) zio_wait(zio); 1162 1163 return (error); 1164 } 1165 1166 /* 1167 * Sync the uberblock and any changes to the vdev configuration. 1168 * 1169 * The order of operations is carefully crafted to ensure that 1170 * if the system panics or loses power at any time, the state on disk 1171 * is still transactionally consistent. The in-line comments below 1172 * describe the failure semantics at each stage. 1173 * 1174 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1175 * at any time, you can just call it again, and it will resume its work. 1176 */ 1177 int 1178 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard) 1179 { 1180 spa_t *spa = svd[0]->vdev_spa; 1181 uberblock_t *ub = &spa->spa_uberblock; 1182 vdev_t *vd; 1183 zio_t *zio; 1184 int error; 1185 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1186 1187 /* 1188 * Normally, we don't want to try too hard to write every label and 1189 * uberblock. If there is a flaky disk, we don't want the rest of the 1190 * sync process to block while we retry. But if we can't write a 1191 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1192 * bailing out and declaring the pool faulted. 1193 */ 1194 if (tryhard) 1195 flags |= ZIO_FLAG_TRYHARD; 1196 1197 ASSERT(ub->ub_txg <= txg); 1198 1199 /* 1200 * If this isn't a resync due to I/O errors, 1201 * and nothing changed in this transaction group, 1202 * and the vdev configuration hasn't changed, 1203 * then there's nothing to do. 1204 */ 1205 if (ub->ub_txg < txg && 1206 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && 1207 list_is_empty(&spa->spa_config_dirty_list)) 1208 return (0); 1209 1210 if (txg > spa_freeze_txg(spa)) 1211 return (0); 1212 1213 ASSERT(txg <= spa->spa_final_txg); 1214 1215 /* 1216 * Flush the write cache of every disk that's been written to 1217 * in this transaction group. This ensures that all blocks 1218 * written in this txg will be committed to stable storage 1219 * before any uberblock that references them. 1220 */ 1221 zio = zio_root(spa, NULL, NULL, flags); 1222 1223 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 1224 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1225 zio_flush(zio, vd); 1226 1227 (void) zio_wait(zio); 1228 1229 /* 1230 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1231 * system dies in the middle of this process, that's OK: all of the 1232 * even labels that made it to disk will be newer than any uberblock, 1233 * and will therefore be considered invalid. The odd labels (L1, L3), 1234 * which have not yet been touched, will still be valid. We flush 1235 * the new labels to disk to ensure that all even-label updates 1236 * are committed to stable storage before the uberblock update. 1237 */ 1238 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) 1239 return (error); 1240 1241 /* 1242 * Sync the uberblocks to all vdevs in svd[]. 1243 * If the system dies in the middle of this step, there are two cases 1244 * to consider, and the on-disk state is consistent either way: 1245 * 1246 * (1) If none of the new uberblocks made it to disk, then the 1247 * previous uberblock will be the newest, and the odd labels 1248 * (which had not yet been touched) will be valid with respect 1249 * to that uberblock. 1250 * 1251 * (2) If one or more new uberblocks made it to disk, then they 1252 * will be the newest, and the even labels (which had all 1253 * been successfully committed) will be valid with respect 1254 * to the new uberblocks. 1255 */ 1256 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) 1257 return (error); 1258 1259 /* 1260 * Sync out odd labels for every dirty vdev. If the system dies 1261 * in the middle of this process, the even labels and the new 1262 * uberblocks will suffice to open the pool. The next time 1263 * the pool is opened, the first thing we'll do -- before any 1264 * user data is modified -- is mark every vdev dirty so that 1265 * all labels will be brought up to date. We flush the new labels 1266 * to disk to ensure that all odd-label updates are committed to 1267 * stable storage before the next transaction group begins. 1268 */ 1269 return (vdev_label_sync_list(spa, 1, txg, flags)); 1270 }