Print this page
3956 ::vdev -r should work with pipelines
3957 ztest should update the cachefile before killing itself
3958 multiple scans can lead to partial resilvering
3959 ddt entries are not always resilvered
3960 dsl_scan can skip over dedup-ed blocks if physical birth != logical birth
3961 freed gang blocks are not resilvered and can cause pool to suspend
3962 ztest should print out zfs debug buffer before exiting
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/spa_config.c
+++ new/usr/src/uts/common/fs/zfs/spa_config.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 - * Copyright (c) 2012 by Delphix. All rights reserved.
25 + * Copyright (c) 2013 by Delphix. All rights reserved.
26 26 */
27 27
28 28 #include <sys/spa.h>
29 29 #include <sys/fm/fs/zfs.h>
30 30 #include <sys/spa_impl.h>
31 31 #include <sys/nvpair.h>
32 32 #include <sys/uio.h>
33 33 #include <sys/fs/zfs.h>
34 34 #include <sys/vdev_impl.h>
35 35 #include <sys/zfs_ioctl.h>
36 36 #include <sys/utsname.h>
37 37 #include <sys/systeminfo.h>
38 38 #include <sys/sunddi.h>
39 39 #include <sys/zfeature.h>
40 40 #ifdef _KERNEL
41 41 #include <sys/kobj.h>
42 42 #include <sys/zone.h>
43 43 #endif
44 44
45 45 /*
46 46 * Pool configuration repository.
47 47 *
48 48 * Pool configuration is stored as a packed nvlist on the filesystem. By
49 49 * default, all pools are stored in /etc/zfs/zpool.cache and loaded on boot
50 50 * (when the ZFS module is loaded). Pools can also have the 'cachefile'
51 51 * property set that allows them to be stored in an alternate location until
52 52 * the control of external software.
53 53 *
54 54 * For each cache file, we have a single nvlist which holds all the
55 55 * configuration information. When the module loads, we read this information
56 56 * from /etc/zfs/zpool.cache and populate the SPA namespace. This namespace is
57 57 * maintained independently in spa.c. Whenever the namespace is modified, or
58 58 * the configuration of a pool is changed, we call spa_config_sync(), which
59 59 * walks through all the active pools and writes the configuration to disk.
60 60 */
61 61
62 62 static uint64_t spa_config_generation = 1;
63 63
64 64 /*
65 65 * This can be overridden in userland to preserve an alternate namespace for
66 66 * userland pools when doing testing.
67 67 */
68 68 const char *spa_config_path = ZPOOL_CACHE;
69 69
70 70 /*
71 71 * Called when the module is first loaded, this routine loads the configuration
72 72 * file into the SPA namespace. It does not actually open or load the pools; it
73 73 * only populates the namespace.
74 74 */
75 75 void
76 76 spa_config_load(void)
77 77 {
78 78 void *buf = NULL;
79 79 nvlist_t *nvlist, *child;
80 80 nvpair_t *nvpair;
81 81 char *pathname;
82 82 struct _buf *file;
83 83 uint64_t fsize;
84 84
85 85 /*
86 86 * Open the configuration file.
87 87 */
88 88 pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
89 89
90 90 (void) snprintf(pathname, MAXPATHLEN, "%s%s",
91 91 (rootdir != NULL) ? "./" : "", spa_config_path);
92 92
93 93 file = kobj_open_file(pathname);
94 94
95 95 kmem_free(pathname, MAXPATHLEN);
96 96
97 97 if (file == (struct _buf *)-1)
98 98 return;
99 99
100 100 if (kobj_get_filesize(file, &fsize) != 0)
101 101 goto out;
102 102
103 103 buf = kmem_alloc(fsize, KM_SLEEP);
104 104
105 105 /*
106 106 * Read the nvlist from the file.
107 107 */
108 108 if (kobj_read_file(file, buf, fsize, 0) < 0)
109 109 goto out;
110 110
111 111 /*
112 112 * Unpack the nvlist.
113 113 */
114 114 if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0)
115 115 goto out;
116 116
117 117 /*
118 118 * Iterate over all elements in the nvlist, creating a new spa_t for
119 119 * each one with the specified configuration.
120 120 */
121 121 mutex_enter(&spa_namespace_lock);
122 122 nvpair = NULL;
123 123 while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) {
124 124 if (nvpair_type(nvpair) != DATA_TYPE_NVLIST)
125 125 continue;
126 126
127 127 VERIFY(nvpair_value_nvlist(nvpair, &child) == 0);
128 128
129 129 if (spa_lookup(nvpair_name(nvpair)) != NULL)
130 130 continue;
131 131 (void) spa_add(nvpair_name(nvpair), child, NULL);
132 132 }
133 133 mutex_exit(&spa_namespace_lock);
134 134
135 135 nvlist_free(nvlist);
136 136
137 137 out:
138 138 if (buf != NULL)
139 139 kmem_free(buf, fsize);
140 140
141 141 kobj_close_file(file);
142 142 }
143 143
144 144 static int
145 145 spa_config_write(spa_config_dirent_t *dp, nvlist_t *nvl)
146 146 {
147 147 size_t buflen;
148 148 char *buf;
149 149 vnode_t *vp;
150 150 int oflags = FWRITE | FTRUNC | FCREAT | FOFFMAX;
151 151 char *temp;
152 152 int err;
153 153
154 154 /*
155 155 * If the nvlist is empty (NULL), then remove the old cachefile.
156 156 */
157 157 if (nvl == NULL) {
158 158 err = vn_remove(dp->scd_path, UIO_SYSSPACE, RMFILE);
159 159 return (err);
160 160 }
161 161
162 162 /*
163 163 * Pack the configuration into a buffer.
164 164 */
165 165 VERIFY(nvlist_size(nvl, &buflen, NV_ENCODE_XDR) == 0);
166 166
167 167 buf = kmem_alloc(buflen, KM_SLEEP);
168 168 temp = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
169 169
170 170 VERIFY(nvlist_pack(nvl, &buf, &buflen, NV_ENCODE_XDR,
171 171 KM_SLEEP) == 0);
172 172
173 173 /*
174 174 * Write the configuration to disk. We need to do the traditional
175 175 * 'write to temporary file, sync, move over original' to make sure we
176 176 * always have a consistent view of the data.
177 177 */
178 178 (void) snprintf(temp, MAXPATHLEN, "%s.tmp", dp->scd_path);
179 179
180 180 err = vn_open(temp, UIO_SYSSPACE, oflags, 0644, &vp, CRCREAT, 0);
181 181 if (err == 0) {
182 182 err = vn_rdwr(UIO_WRITE, vp, buf, buflen, 0, UIO_SYSSPACE,
183 183 0, RLIM64_INFINITY, kcred, NULL);
184 184 if (err == 0)
185 185 err = VOP_FSYNC(vp, FSYNC, kcred, NULL);
186 186 if (err == 0)
187 187 err = vn_rename(temp, dp->scd_path, UIO_SYSSPACE);
188 188 (void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL);
189 189 VN_RELE(vp);
190 190 }
↓ open down ↓ |
155 lines elided |
↑ open up ↑ |
191 191
192 192 (void) vn_remove(temp, UIO_SYSSPACE, RMFILE);
193 193
194 194 kmem_free(buf, buflen);
195 195 kmem_free(temp, MAXPATHLEN);
196 196 return (err);
197 197 }
198 198
199 199 /*
200 200 * Synchronize pool configuration to disk. This must be called with the
201 - * namespace lock held.
201 + * namespace lock held. Synchronizing the pool cache is typically done after
202 + * the configuration has been synced to the MOS. This exposes a window where
203 + * the MOS config will have been updated but the cache file has not. If
204 + * the system were to crash at that instant then the cached config may not
205 + * contain the correct information to open the pool and an explicity import
206 + * would be required.
202 207 */
203 208 void
204 209 spa_config_sync(spa_t *target, boolean_t removing, boolean_t postsysevent)
205 210 {
206 211 spa_config_dirent_t *dp, *tdp;
207 212 nvlist_t *nvl;
208 213 boolean_t ccw_failure;
209 214 int error;
210 215
211 216 ASSERT(MUTEX_HELD(&spa_namespace_lock));
212 217
213 218 if (rootdir == NULL || !(spa_mode_global & FWRITE))
214 219 return;
215 220
216 221 /*
217 222 * Iterate over all cachefiles for the pool, past or present. When the
218 223 * cachefile is changed, the new one is pushed onto this list, allowing
219 224 * us to update previous cachefiles that no longer contain this pool.
220 225 */
221 226 ccw_failure = B_FALSE;
222 227 for (dp = list_head(&target->spa_config_list); dp != NULL;
223 228 dp = list_next(&target->spa_config_list, dp)) {
224 229 spa_t *spa = NULL;
225 230 if (dp->scd_path == NULL)
226 231 continue;
227 232
228 233 /*
229 234 * Iterate over all pools, adding any matching pools to 'nvl'.
230 235 */
231 236 nvl = NULL;
232 237 while ((spa = spa_next(spa)) != NULL) {
233 238 /*
234 239 * Skip over our own pool if we're about to remove
235 240 * ourselves from the spa namespace or any pool that
236 241 * is readonly. Since we cannot guarantee that a
237 242 * readonly pool would successfully import upon reboot,
238 243 * we don't allow them to be written to the cache file.
239 244 */
240 245 if ((spa == target && removing) ||
241 246 !spa_writeable(spa))
242 247 continue;
243 248
244 249 mutex_enter(&spa->spa_props_lock);
245 250 tdp = list_head(&spa->spa_config_list);
246 251 if (spa->spa_config == NULL ||
247 252 tdp->scd_path == NULL ||
248 253 strcmp(tdp->scd_path, dp->scd_path) != 0) {
249 254 mutex_exit(&spa->spa_props_lock);
250 255 continue;
251 256 }
252 257
253 258 if (nvl == NULL)
254 259 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME,
255 260 KM_SLEEP) == 0);
256 261
257 262 VERIFY(nvlist_add_nvlist(nvl, spa->spa_name,
258 263 spa->spa_config) == 0);
259 264 mutex_exit(&spa->spa_props_lock);
260 265 }
261 266
262 267 error = spa_config_write(dp, nvl);
263 268 if (error != 0)
264 269 ccw_failure = B_TRUE;
265 270 nvlist_free(nvl);
266 271 }
267 272
268 273 if (ccw_failure) {
269 274 /*
270 275 * Keep trying so that configuration data is
271 276 * written if/when any temporary filesystem
272 277 * resource issues are resolved.
273 278 */
274 279 if (target->spa_ccw_fail_time == 0) {
275 280 zfs_ereport_post(FM_EREPORT_ZFS_CONFIG_CACHE_WRITE,
276 281 target, NULL, NULL, 0, 0);
277 282 }
278 283 target->spa_ccw_fail_time = gethrtime();
279 284 spa_async_request(target, SPA_ASYNC_CONFIG_UPDATE);
280 285 } else {
281 286 /*
282 287 * Do not rate limit future attempts to update
283 288 * the config cache.
284 289 */
285 290 target->spa_ccw_fail_time = 0;
286 291 }
287 292
288 293 /*
289 294 * Remove any config entries older than the current one.
290 295 */
291 296 dp = list_head(&target->spa_config_list);
292 297 while ((tdp = list_next(&target->spa_config_list, dp)) != NULL) {
293 298 list_remove(&target->spa_config_list, tdp);
294 299 if (tdp->scd_path != NULL)
295 300 spa_strfree(tdp->scd_path);
296 301 kmem_free(tdp, sizeof (spa_config_dirent_t));
297 302 }
298 303
299 304 spa_config_generation++;
300 305
301 306 if (postsysevent)
302 307 spa_event_notify(target, NULL, ESC_ZFS_CONFIG_SYNC);
303 308 }
304 309
305 310 /*
306 311 * Sigh. Inside a local zone, we don't have access to /etc/zfs/zpool.cache,
307 312 * and we don't want to allow the local zone to see all the pools anyway.
308 313 * So we have to invent the ZFS_IOC_CONFIG ioctl to grab the configuration
309 314 * information for all pool visible within the zone.
310 315 */
311 316 nvlist_t *
312 317 spa_all_configs(uint64_t *generation)
313 318 {
314 319 nvlist_t *pools;
315 320 spa_t *spa = NULL;
316 321
317 322 if (*generation == spa_config_generation)
318 323 return (NULL);
319 324
320 325 VERIFY(nvlist_alloc(&pools, NV_UNIQUE_NAME, KM_SLEEP) == 0);
321 326
322 327 mutex_enter(&spa_namespace_lock);
323 328 while ((spa = spa_next(spa)) != NULL) {
324 329 if (INGLOBALZONE(curproc) ||
325 330 zone_dataset_visible(spa_name(spa), NULL)) {
326 331 mutex_enter(&spa->spa_props_lock);
327 332 VERIFY(nvlist_add_nvlist(pools, spa_name(spa),
328 333 spa->spa_config) == 0);
329 334 mutex_exit(&spa->spa_props_lock);
330 335 }
331 336 }
332 337 *generation = spa_config_generation;
333 338 mutex_exit(&spa_namespace_lock);
334 339
335 340 return (pools);
336 341 }
337 342
338 343 void
339 344 spa_config_set(spa_t *spa, nvlist_t *config)
340 345 {
341 346 mutex_enter(&spa->spa_props_lock);
342 347 if (spa->spa_config != NULL)
343 348 nvlist_free(spa->spa_config);
344 349 spa->spa_config = config;
345 350 mutex_exit(&spa->spa_props_lock);
346 351 }
347 352
348 353 /*
349 354 * Generate the pool's configuration based on the current in-core state.
350 355 *
351 356 * We infer whether to generate a complete config or just one top-level config
352 357 * based on whether vd is the root vdev.
353 358 */
354 359 nvlist_t *
355 360 spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats)
356 361 {
357 362 nvlist_t *config, *nvroot;
358 363 vdev_t *rvd = spa->spa_root_vdev;
359 364 unsigned long hostid = 0;
360 365 boolean_t locked = B_FALSE;
361 366 uint64_t split_guid;
362 367
363 368 if (vd == NULL) {
364 369 vd = rvd;
365 370 locked = B_TRUE;
366 371 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
367 372 }
368 373
369 374 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
370 375 (SCL_CONFIG | SCL_STATE));
371 376
372 377 /*
373 378 * If txg is -1, report the current value of spa->spa_config_txg.
374 379 */
375 380 if (txg == -1ULL)
376 381 txg = spa->spa_config_txg;
377 382
378 383 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, KM_SLEEP) == 0);
379 384
380 385 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
381 386 spa_version(spa)) == 0);
382 387 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
383 388 spa_name(spa)) == 0);
384 389 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
385 390 spa_state(spa)) == 0);
386 391 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
387 392 txg) == 0);
388 393 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
389 394 spa_guid(spa)) == 0);
390 395 VERIFY(spa->spa_comment == NULL || nvlist_add_string(config,
391 396 ZPOOL_CONFIG_COMMENT, spa->spa_comment) == 0);
392 397
393 398
394 399 #ifdef _KERNEL
395 400 hostid = zone_get_hostid(NULL);
396 401 #else /* _KERNEL */
397 402 /*
398 403 * We're emulating the system's hostid in userland, so we can't use
399 404 * zone_get_hostid().
400 405 */
401 406 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
402 407 #endif /* _KERNEL */
403 408 if (hostid != 0) {
404 409 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
405 410 hostid) == 0);
406 411 }
407 412 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
408 413 utsname.nodename) == 0);
409 414
410 415 if (vd != rvd) {
411 416 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID,
412 417 vd->vdev_top->vdev_guid) == 0);
413 418 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_GUID,
414 419 vd->vdev_guid) == 0);
415 420 if (vd->vdev_isspare)
416 421 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_SPARE,
417 422 1ULL) == 0);
418 423 if (vd->vdev_islog)
419 424 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_LOG,
420 425 1ULL) == 0);
421 426 vd = vd->vdev_top; /* label contains top config */
422 427 } else {
423 428 /*
424 429 * Only add the (potentially large) split information
425 430 * in the mos config, and not in the vdev labels
426 431 */
427 432 if (spa->spa_config_splitting != NULL)
428 433 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT,
429 434 spa->spa_config_splitting) == 0);
430 435 }
431 436
432 437 /*
433 438 * Add the top-level config. We even add this on pools which
434 439 * don't support holes in the namespace.
435 440 */
436 441 vdev_top_config_generate(spa, config);
437 442
438 443 /*
439 444 * If we're splitting, record the original pool's guid.
440 445 */
441 446 if (spa->spa_config_splitting != NULL &&
442 447 nvlist_lookup_uint64(spa->spa_config_splitting,
443 448 ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) {
444 449 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID,
445 450 split_guid) == 0);
446 451 }
447 452
448 453 nvroot = vdev_config_generate(spa, vd, getstats, 0);
449 454 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
450 455 nvlist_free(nvroot);
451 456
452 457 /*
453 458 * Store what's necessary for reading the MOS in the label.
454 459 */
455 460 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
456 461 spa->spa_label_features) == 0);
457 462
458 463 if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) {
459 464 ddt_histogram_t *ddh;
460 465 ddt_stat_t *dds;
461 466 ddt_object_t *ddo;
462 467
463 468 ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP);
464 469 ddt_get_dedup_histogram(spa, ddh);
465 470 VERIFY(nvlist_add_uint64_array(config,
466 471 ZPOOL_CONFIG_DDT_HISTOGRAM,
467 472 (uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t)) == 0);
468 473 kmem_free(ddh, sizeof (ddt_histogram_t));
469 474
470 475 ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP);
471 476 ddt_get_dedup_object_stats(spa, ddo);
472 477 VERIFY(nvlist_add_uint64_array(config,
473 478 ZPOOL_CONFIG_DDT_OBJ_STATS,
474 479 (uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t)) == 0);
475 480 kmem_free(ddo, sizeof (ddt_object_t));
476 481
477 482 dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP);
478 483 ddt_get_dedup_stats(spa, dds);
479 484 VERIFY(nvlist_add_uint64_array(config,
480 485 ZPOOL_CONFIG_DDT_STATS,
481 486 (uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t)) == 0);
482 487 kmem_free(dds, sizeof (ddt_stat_t));
483 488 }
484 489
485 490 if (locked)
486 491 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
487 492
488 493 return (config);
489 494 }
490 495
491 496 /*
492 497 * Update all disk labels, generate a fresh config based on the current
493 498 * in-core state, and sync the global config cache (do not sync the config
494 499 * cache if this is a booting rootpool).
495 500 */
496 501 void
497 502 spa_config_update(spa_t *spa, int what)
498 503 {
499 504 vdev_t *rvd = spa->spa_root_vdev;
500 505 uint64_t txg;
501 506 int c;
502 507
503 508 ASSERT(MUTEX_HELD(&spa_namespace_lock));
504 509
505 510 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
506 511 txg = spa_last_synced_txg(spa) + 1;
507 512 if (what == SPA_CONFIG_UPDATE_POOL) {
508 513 vdev_config_dirty(rvd);
509 514 } else {
510 515 /*
511 516 * If we have top-level vdevs that were added but have
512 517 * not yet been prepared for allocation, do that now.
513 518 * (It's safe now because the config cache is up to date,
514 519 * so it will be able to translate the new DVAs.)
515 520 * See comments in spa_vdev_add() for full details.
516 521 */
517 522 for (c = 0; c < rvd->vdev_children; c++) {
518 523 vdev_t *tvd = rvd->vdev_child[c];
519 524 if (tvd->vdev_ms_array == 0)
520 525 vdev_metaslab_set_size(tvd);
521 526 vdev_expand(tvd, txg);
522 527 }
523 528 }
524 529 spa_config_exit(spa, SCL_ALL, FTAG);
525 530
526 531 /*
527 532 * Wait for the mosconfig to be regenerated and synced.
528 533 */
529 534 txg_wait_synced(spa->spa_dsl_pool, txg);
530 535
531 536 /*
532 537 * Update the global config cache to reflect the new mosconfig.
533 538 */
534 539 if (!spa->spa_is_root)
535 540 spa_config_sync(spa, B_FALSE, what != SPA_CONFIG_UPDATE_POOL);
536 541
537 542 if (what == SPA_CONFIG_UPDATE_POOL)
538 543 spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS);
539 544 }
↓ open down ↓ |
328 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX