Print this page
3956 ::vdev -r should work with pipelines
3957 ztest should update the cachefile before killing itself
3958 multiple scans can lead to partial resilvering
3959 ddt entries are not always resilvered
3960 dsl_scan can skip over dedup-ed blocks if physical birth != logical birth
3961 freed gang blocks are not resilvered and can cause pool to suspend
3962 ztest should print out zfs debug buffer before exiting
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/spa.c
+++ new/usr/src/uts/common/fs/zfs/spa.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26 26 */
27 27
28 28 /*
29 29 * SPA: Storage Pool Allocator
30 30 *
31 31 * This file contains all the routines used when modifying on-disk SPA state.
32 32 * This includes opening, importing, destroying, exporting a pool, and syncing a
33 33 * pool.
34 34 */
35 35
36 36 #include <sys/zfs_context.h>
37 37 #include <sys/fm/fs/zfs.h>
38 38 #include <sys/spa_impl.h>
39 39 #include <sys/zio.h>
40 40 #include <sys/zio_checksum.h>
41 41 #include <sys/dmu.h>
42 42 #include <sys/dmu_tx.h>
43 43 #include <sys/zap.h>
44 44 #include <sys/zil.h>
45 45 #include <sys/ddt.h>
46 46 #include <sys/vdev_impl.h>
47 47 #include <sys/metaslab.h>
48 48 #include <sys/metaslab_impl.h>
49 49 #include <sys/uberblock_impl.h>
50 50 #include <sys/txg.h>
51 51 #include <sys/avl.h>
52 52 #include <sys/dmu_traverse.h>
53 53 #include <sys/dmu_objset.h>
54 54 #include <sys/unique.h>
55 55 #include <sys/dsl_pool.h>
56 56 #include <sys/dsl_dataset.h>
57 57 #include <sys/dsl_dir.h>
58 58 #include <sys/dsl_prop.h>
59 59 #include <sys/dsl_synctask.h>
60 60 #include <sys/fs/zfs.h>
61 61 #include <sys/arc.h>
62 62 #include <sys/callb.h>
63 63 #include <sys/systeminfo.h>
64 64 #include <sys/spa_boot.h>
65 65 #include <sys/zfs_ioctl.h>
66 66 #include <sys/dsl_scan.h>
67 67 #include <sys/zfeature.h>
68 68 #include <sys/dsl_destroy.h>
69 69
70 70 #ifdef _KERNEL
71 71 #include <sys/bootprops.h>
72 72 #include <sys/callb.h>
73 73 #include <sys/cpupart.h>
74 74 #include <sys/pool.h>
75 75 #include <sys/sysdc.h>
76 76 #include <sys/zone.h>
77 77 #endif /* _KERNEL */
78 78
79 79 #include "zfs_prop.h"
80 80 #include "zfs_comutil.h"
81 81
82 82 /*
83 83 * The interval, in seconds, at which failed configuration cache file writes
84 84 * should be retried.
85 85 */
86 86 static int zfs_ccw_retry_interval = 300;
87 87
88 88 typedef enum zti_modes {
89 89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
90 90 ZTI_MODE_ONLINE_PERCENT, /* value is % of online CPUs */
91 91 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
92 92 ZTI_MODE_NULL, /* don't create a taskq */
93 93 ZTI_NMODES
94 94 } zti_modes_t;
95 95
96 96 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
97 97 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
98 98 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
99 99 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
100 100
101 101 #define ZTI_N(n) ZTI_P(n, 1)
102 102 #define ZTI_ONE ZTI_N(1)
103 103
104 104 typedef struct zio_taskq_info {
105 105 zti_modes_t zti_mode;
106 106 uint_t zti_value;
107 107 uint_t zti_count;
108 108 } zio_taskq_info_t;
109 109
110 110 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
111 111 "issue", "issue_high", "intr", "intr_high"
112 112 };
113 113
114 114 /*
115 115 * This table defines the taskq settings for each ZFS I/O type. When
116 116 * initializing a pool, we use this table to create an appropriately sized
117 117 * taskq. Some operations are low volume and therefore have a small, static
118 118 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
119 119 * macros. Other operations process a large amount of data; the ZTI_BATCH
120 120 * macro causes us to create a taskq oriented for throughput. Some operations
121 121 * are so high frequency and short-lived that the taskq itself can become a a
122 122 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
123 123 * additional degree of parallelism specified by the number of threads per-
124 124 * taskq and the number of taskqs; when dispatching an event in this case, the
125 125 * particular taskq is chosen at random.
126 126 *
127 127 * The different taskq priorities are to handle the different contexts (issue
128 128 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
129 129 * need to be handled with minimum delay.
130 130 */
131 131 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
132 132 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
133 133 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
134 134 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */
135 135 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
136 136 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
137 137 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
138 138 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
139 139 };
140 140
141 141 static void spa_sync_version(void *arg, dmu_tx_t *tx);
142 142 static void spa_sync_props(void *arg, dmu_tx_t *tx);
143 143 static boolean_t spa_has_active_shared_spare(spa_t *spa);
144 144 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
145 145 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
146 146 char **ereport);
147 147 static void spa_vdev_resilver_done(spa_t *spa);
148 148
149 149 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */
150 150 id_t zio_taskq_psrset_bind = PS_NONE;
151 151 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
152 152 uint_t zio_taskq_basedc = 80; /* base duty cycle */
153 153
154 154 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
155 155 extern int zfs_sync_pass_deferred_free;
156 156
157 157 /*
158 158 * This (illegal) pool name is used when temporarily importing a spa_t in order
159 159 * to get the vdev stats associated with the imported devices.
160 160 */
161 161 #define TRYIMPORT_NAME "$import"
162 162
163 163 /*
164 164 * ==========================================================================
165 165 * SPA properties routines
166 166 * ==========================================================================
167 167 */
168 168
169 169 /*
170 170 * Add a (source=src, propname=propval) list to an nvlist.
171 171 */
172 172 static void
173 173 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
174 174 uint64_t intval, zprop_source_t src)
175 175 {
176 176 const char *propname = zpool_prop_to_name(prop);
177 177 nvlist_t *propval;
178 178
179 179 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
180 180 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
181 181
182 182 if (strval != NULL)
183 183 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
184 184 else
185 185 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
186 186
187 187 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
188 188 nvlist_free(propval);
189 189 }
190 190
191 191 /*
192 192 * Get property values from the spa configuration.
193 193 */
194 194 static void
195 195 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
196 196 {
197 197 vdev_t *rvd = spa->spa_root_vdev;
198 198 dsl_pool_t *pool = spa->spa_dsl_pool;
199 199 uint64_t size;
200 200 uint64_t alloc;
201 201 uint64_t space;
202 202 uint64_t cap, version;
203 203 zprop_source_t src = ZPROP_SRC_NONE;
204 204 spa_config_dirent_t *dp;
205 205
206 206 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
207 207
208 208 if (rvd != NULL) {
209 209 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
210 210 size = metaslab_class_get_space(spa_normal_class(spa));
211 211 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
212 212 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
213 213 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
214 214 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
215 215 size - alloc, src);
216 216
217 217 space = 0;
218 218 for (int c = 0; c < rvd->vdev_children; c++) {
219 219 vdev_t *tvd = rvd->vdev_child[c];
220 220 space += tvd->vdev_max_asize - tvd->vdev_asize;
221 221 }
222 222 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
223 223 src);
224 224
225 225 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
226 226 (spa_mode(spa) == FREAD), src);
227 227
228 228 cap = (size == 0) ? 0 : (alloc * 100 / size);
229 229 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
230 230
231 231 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
232 232 ddt_get_pool_dedup_ratio(spa), src);
233 233
234 234 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
235 235 rvd->vdev_state, src);
236 236
237 237 version = spa_version(spa);
238 238 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
239 239 src = ZPROP_SRC_DEFAULT;
240 240 else
241 241 src = ZPROP_SRC_LOCAL;
242 242 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
243 243 }
244 244
245 245 if (pool != NULL) {
246 246 dsl_dir_t *freedir = pool->dp_free_dir;
247 247
248 248 /*
249 249 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
250 250 * when opening pools before this version freedir will be NULL.
251 251 */
252 252 if (freedir != NULL) {
253 253 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
254 254 freedir->dd_phys->dd_used_bytes, src);
255 255 } else {
256 256 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
257 257 NULL, 0, src);
258 258 }
259 259 }
260 260
261 261 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
262 262
263 263 if (spa->spa_comment != NULL) {
264 264 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
265 265 0, ZPROP_SRC_LOCAL);
266 266 }
267 267
268 268 if (spa->spa_root != NULL)
269 269 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
270 270 0, ZPROP_SRC_LOCAL);
271 271
272 272 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
273 273 if (dp->scd_path == NULL) {
274 274 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
275 275 "none", 0, ZPROP_SRC_LOCAL);
276 276 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
277 277 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
278 278 dp->scd_path, 0, ZPROP_SRC_LOCAL);
279 279 }
280 280 }
281 281 }
282 282
283 283 /*
284 284 * Get zpool property values.
285 285 */
286 286 int
287 287 spa_prop_get(spa_t *spa, nvlist_t **nvp)
288 288 {
289 289 objset_t *mos = spa->spa_meta_objset;
290 290 zap_cursor_t zc;
291 291 zap_attribute_t za;
292 292 int err;
293 293
294 294 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
295 295
296 296 mutex_enter(&spa->spa_props_lock);
297 297
298 298 /*
299 299 * Get properties from the spa config.
300 300 */
301 301 spa_prop_get_config(spa, nvp);
302 302
303 303 /* If no pool property object, no more prop to get. */
304 304 if (mos == NULL || spa->spa_pool_props_object == 0) {
305 305 mutex_exit(&spa->spa_props_lock);
306 306 return (0);
307 307 }
308 308
309 309 /*
310 310 * Get properties from the MOS pool property object.
311 311 */
312 312 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
313 313 (err = zap_cursor_retrieve(&zc, &za)) == 0;
314 314 zap_cursor_advance(&zc)) {
315 315 uint64_t intval = 0;
316 316 char *strval = NULL;
317 317 zprop_source_t src = ZPROP_SRC_DEFAULT;
318 318 zpool_prop_t prop;
319 319
320 320 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
321 321 continue;
322 322
323 323 switch (za.za_integer_length) {
324 324 case 8:
325 325 /* integer property */
326 326 if (za.za_first_integer !=
327 327 zpool_prop_default_numeric(prop))
328 328 src = ZPROP_SRC_LOCAL;
329 329
330 330 if (prop == ZPOOL_PROP_BOOTFS) {
331 331 dsl_pool_t *dp;
332 332 dsl_dataset_t *ds = NULL;
333 333
334 334 dp = spa_get_dsl(spa);
335 335 dsl_pool_config_enter(dp, FTAG);
336 336 if (err = dsl_dataset_hold_obj(dp,
337 337 za.za_first_integer, FTAG, &ds)) {
338 338 dsl_pool_config_exit(dp, FTAG);
339 339 break;
340 340 }
341 341
342 342 strval = kmem_alloc(
343 343 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
344 344 KM_SLEEP);
345 345 dsl_dataset_name(ds, strval);
346 346 dsl_dataset_rele(ds, FTAG);
347 347 dsl_pool_config_exit(dp, FTAG);
348 348 } else {
349 349 strval = NULL;
350 350 intval = za.za_first_integer;
351 351 }
352 352
353 353 spa_prop_add_list(*nvp, prop, strval, intval, src);
354 354
355 355 if (strval != NULL)
356 356 kmem_free(strval,
357 357 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
358 358
359 359 break;
360 360
361 361 case 1:
362 362 /* string property */
363 363 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
364 364 err = zap_lookup(mos, spa->spa_pool_props_object,
365 365 za.za_name, 1, za.za_num_integers, strval);
366 366 if (err) {
367 367 kmem_free(strval, za.za_num_integers);
368 368 break;
369 369 }
370 370 spa_prop_add_list(*nvp, prop, strval, 0, src);
371 371 kmem_free(strval, za.za_num_integers);
372 372 break;
373 373
374 374 default:
375 375 break;
376 376 }
377 377 }
378 378 zap_cursor_fini(&zc);
379 379 mutex_exit(&spa->spa_props_lock);
380 380 out:
381 381 if (err && err != ENOENT) {
382 382 nvlist_free(*nvp);
383 383 *nvp = NULL;
384 384 return (err);
385 385 }
386 386
387 387 return (0);
388 388 }
389 389
390 390 /*
391 391 * Validate the given pool properties nvlist and modify the list
392 392 * for the property values to be set.
393 393 */
394 394 static int
395 395 spa_prop_validate(spa_t *spa, nvlist_t *props)
396 396 {
397 397 nvpair_t *elem;
398 398 int error = 0, reset_bootfs = 0;
399 399 uint64_t objnum = 0;
400 400 boolean_t has_feature = B_FALSE;
401 401
402 402 elem = NULL;
403 403 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
404 404 uint64_t intval;
405 405 char *strval, *slash, *check, *fname;
406 406 const char *propname = nvpair_name(elem);
407 407 zpool_prop_t prop = zpool_name_to_prop(propname);
408 408
409 409 switch (prop) {
410 410 case ZPROP_INVAL:
411 411 if (!zpool_prop_feature(propname)) {
412 412 error = SET_ERROR(EINVAL);
413 413 break;
414 414 }
415 415
416 416 /*
417 417 * Sanitize the input.
418 418 */
419 419 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
420 420 error = SET_ERROR(EINVAL);
421 421 break;
422 422 }
423 423
424 424 if (nvpair_value_uint64(elem, &intval) != 0) {
425 425 error = SET_ERROR(EINVAL);
426 426 break;
427 427 }
428 428
429 429 if (intval != 0) {
430 430 error = SET_ERROR(EINVAL);
431 431 break;
432 432 }
433 433
434 434 fname = strchr(propname, '@') + 1;
435 435 if (zfeature_lookup_name(fname, NULL) != 0) {
436 436 error = SET_ERROR(EINVAL);
437 437 break;
438 438 }
439 439
440 440 has_feature = B_TRUE;
441 441 break;
442 442
443 443 case ZPOOL_PROP_VERSION:
444 444 error = nvpair_value_uint64(elem, &intval);
445 445 if (!error &&
446 446 (intval < spa_version(spa) ||
447 447 intval > SPA_VERSION_BEFORE_FEATURES ||
448 448 has_feature))
449 449 error = SET_ERROR(EINVAL);
450 450 break;
451 451
452 452 case ZPOOL_PROP_DELEGATION:
453 453 case ZPOOL_PROP_AUTOREPLACE:
454 454 case ZPOOL_PROP_LISTSNAPS:
455 455 case ZPOOL_PROP_AUTOEXPAND:
456 456 error = nvpair_value_uint64(elem, &intval);
457 457 if (!error && intval > 1)
458 458 error = SET_ERROR(EINVAL);
459 459 break;
460 460
461 461 case ZPOOL_PROP_BOOTFS:
462 462 /*
463 463 * If the pool version is less than SPA_VERSION_BOOTFS,
464 464 * or the pool is still being created (version == 0),
465 465 * the bootfs property cannot be set.
466 466 */
467 467 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
468 468 error = SET_ERROR(ENOTSUP);
469 469 break;
470 470 }
471 471
472 472 /*
473 473 * Make sure the vdev config is bootable
474 474 */
475 475 if (!vdev_is_bootable(spa->spa_root_vdev)) {
476 476 error = SET_ERROR(ENOTSUP);
477 477 break;
478 478 }
479 479
480 480 reset_bootfs = 1;
481 481
482 482 error = nvpair_value_string(elem, &strval);
483 483
484 484 if (!error) {
485 485 objset_t *os;
486 486 uint64_t compress;
487 487
488 488 if (strval == NULL || strval[0] == '\0') {
489 489 objnum = zpool_prop_default_numeric(
490 490 ZPOOL_PROP_BOOTFS);
491 491 break;
492 492 }
493 493
494 494 if (error = dmu_objset_hold(strval, FTAG, &os))
495 495 break;
496 496
497 497 /* Must be ZPL and not gzip compressed. */
498 498
499 499 if (dmu_objset_type(os) != DMU_OST_ZFS) {
500 500 error = SET_ERROR(ENOTSUP);
501 501 } else if ((error =
502 502 dsl_prop_get_int_ds(dmu_objset_ds(os),
503 503 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
504 504 &compress)) == 0 &&
505 505 !BOOTFS_COMPRESS_VALID(compress)) {
506 506 error = SET_ERROR(ENOTSUP);
507 507 } else {
508 508 objnum = dmu_objset_id(os);
509 509 }
510 510 dmu_objset_rele(os, FTAG);
511 511 }
512 512 break;
513 513
514 514 case ZPOOL_PROP_FAILUREMODE:
515 515 error = nvpair_value_uint64(elem, &intval);
516 516 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
517 517 intval > ZIO_FAILURE_MODE_PANIC))
518 518 error = SET_ERROR(EINVAL);
519 519
520 520 /*
521 521 * This is a special case which only occurs when
522 522 * the pool has completely failed. This allows
523 523 * the user to change the in-core failmode property
524 524 * without syncing it out to disk (I/Os might
525 525 * currently be blocked). We do this by returning
526 526 * EIO to the caller (spa_prop_set) to trick it
527 527 * into thinking we encountered a property validation
528 528 * error.
529 529 */
530 530 if (!error && spa_suspended(spa)) {
531 531 spa->spa_failmode = intval;
532 532 error = SET_ERROR(EIO);
533 533 }
534 534 break;
535 535
536 536 case ZPOOL_PROP_CACHEFILE:
537 537 if ((error = nvpair_value_string(elem, &strval)) != 0)
538 538 break;
539 539
540 540 if (strval[0] == '\0')
541 541 break;
542 542
543 543 if (strcmp(strval, "none") == 0)
544 544 break;
545 545
546 546 if (strval[0] != '/') {
547 547 error = SET_ERROR(EINVAL);
548 548 break;
549 549 }
550 550
551 551 slash = strrchr(strval, '/');
552 552 ASSERT(slash != NULL);
553 553
554 554 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
555 555 strcmp(slash, "/..") == 0)
556 556 error = SET_ERROR(EINVAL);
557 557 break;
558 558
559 559 case ZPOOL_PROP_COMMENT:
560 560 if ((error = nvpair_value_string(elem, &strval)) != 0)
561 561 break;
562 562 for (check = strval; *check != '\0'; check++) {
563 563 /*
564 564 * The kernel doesn't have an easy isprint()
565 565 * check. For this kernel check, we merely
566 566 * check ASCII apart from DEL. Fix this if
567 567 * there is an easy-to-use kernel isprint().
568 568 */
569 569 if (*check >= 0x7f) {
570 570 error = SET_ERROR(EINVAL);
571 571 break;
572 572 }
573 573 check++;
574 574 }
575 575 if (strlen(strval) > ZPROP_MAX_COMMENT)
576 576 error = E2BIG;
577 577 break;
578 578
579 579 case ZPOOL_PROP_DEDUPDITTO:
580 580 if (spa_version(spa) < SPA_VERSION_DEDUP)
581 581 error = SET_ERROR(ENOTSUP);
582 582 else
583 583 error = nvpair_value_uint64(elem, &intval);
584 584 if (error == 0 &&
585 585 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
586 586 error = SET_ERROR(EINVAL);
587 587 break;
588 588 }
589 589
590 590 if (error)
591 591 break;
592 592 }
593 593
594 594 if (!error && reset_bootfs) {
595 595 error = nvlist_remove(props,
596 596 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
597 597
598 598 if (!error) {
599 599 error = nvlist_add_uint64(props,
600 600 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
601 601 }
602 602 }
603 603
604 604 return (error);
605 605 }
606 606
607 607 void
608 608 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
609 609 {
610 610 char *cachefile;
611 611 spa_config_dirent_t *dp;
612 612
613 613 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
614 614 &cachefile) != 0)
615 615 return;
616 616
617 617 dp = kmem_alloc(sizeof (spa_config_dirent_t),
618 618 KM_SLEEP);
619 619
620 620 if (cachefile[0] == '\0')
621 621 dp->scd_path = spa_strdup(spa_config_path);
622 622 else if (strcmp(cachefile, "none") == 0)
623 623 dp->scd_path = NULL;
624 624 else
625 625 dp->scd_path = spa_strdup(cachefile);
626 626
627 627 list_insert_head(&spa->spa_config_list, dp);
628 628 if (need_sync)
629 629 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
630 630 }
631 631
632 632 int
633 633 spa_prop_set(spa_t *spa, nvlist_t *nvp)
634 634 {
635 635 int error;
636 636 nvpair_t *elem = NULL;
637 637 boolean_t need_sync = B_FALSE;
638 638
639 639 if ((error = spa_prop_validate(spa, nvp)) != 0)
640 640 return (error);
641 641
642 642 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
643 643 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
644 644
645 645 if (prop == ZPOOL_PROP_CACHEFILE ||
646 646 prop == ZPOOL_PROP_ALTROOT ||
647 647 prop == ZPOOL_PROP_READONLY)
648 648 continue;
649 649
650 650 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
651 651 uint64_t ver;
652 652
653 653 if (prop == ZPOOL_PROP_VERSION) {
654 654 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
655 655 } else {
656 656 ASSERT(zpool_prop_feature(nvpair_name(elem)));
657 657 ver = SPA_VERSION_FEATURES;
658 658 need_sync = B_TRUE;
659 659 }
660 660
661 661 /* Save time if the version is already set. */
662 662 if (ver == spa_version(spa))
663 663 continue;
664 664
665 665 /*
666 666 * In addition to the pool directory object, we might
667 667 * create the pool properties object, the features for
668 668 * read object, the features for write object, or the
669 669 * feature descriptions object.
670 670 */
671 671 error = dsl_sync_task(spa->spa_name, NULL,
672 672 spa_sync_version, &ver, 6);
673 673 if (error)
674 674 return (error);
675 675 continue;
676 676 }
677 677
678 678 need_sync = B_TRUE;
679 679 break;
680 680 }
681 681
682 682 if (need_sync) {
683 683 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
684 684 nvp, 6));
685 685 }
686 686
687 687 return (0);
688 688 }
689 689
690 690 /*
691 691 * If the bootfs property value is dsobj, clear it.
692 692 */
693 693 void
694 694 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
695 695 {
696 696 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
697 697 VERIFY(zap_remove(spa->spa_meta_objset,
698 698 spa->spa_pool_props_object,
699 699 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
700 700 spa->spa_bootfs = 0;
701 701 }
702 702 }
703 703
704 704 /*ARGSUSED*/
705 705 static int
706 706 spa_change_guid_check(void *arg, dmu_tx_t *tx)
707 707 {
708 708 uint64_t *newguid = arg;
709 709 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
710 710 vdev_t *rvd = spa->spa_root_vdev;
711 711 uint64_t vdev_state;
712 712
713 713 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
714 714 vdev_state = rvd->vdev_state;
715 715 spa_config_exit(spa, SCL_STATE, FTAG);
716 716
717 717 if (vdev_state != VDEV_STATE_HEALTHY)
718 718 return (SET_ERROR(ENXIO));
719 719
720 720 ASSERT3U(spa_guid(spa), !=, *newguid);
721 721
722 722 return (0);
723 723 }
724 724
725 725 static void
726 726 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
727 727 {
728 728 uint64_t *newguid = arg;
729 729 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
730 730 uint64_t oldguid;
731 731 vdev_t *rvd = spa->spa_root_vdev;
732 732
733 733 oldguid = spa_guid(spa);
734 734
735 735 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
736 736 rvd->vdev_guid = *newguid;
737 737 rvd->vdev_guid_sum += (*newguid - oldguid);
738 738 vdev_config_dirty(rvd);
739 739 spa_config_exit(spa, SCL_STATE, FTAG);
740 740
741 741 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
742 742 oldguid, *newguid);
743 743 }
744 744
745 745 /*
746 746 * Change the GUID for the pool. This is done so that we can later
747 747 * re-import a pool built from a clone of our own vdevs. We will modify
748 748 * the root vdev's guid, our own pool guid, and then mark all of our
749 749 * vdevs dirty. Note that we must make sure that all our vdevs are
750 750 * online when we do this, or else any vdevs that weren't present
751 751 * would be orphaned from our pool. We are also going to issue a
752 752 * sysevent to update any watchers.
753 753 */
754 754 int
755 755 spa_change_guid(spa_t *spa)
756 756 {
757 757 int error;
758 758 uint64_t guid;
759 759
760 760 mutex_enter(&spa->spa_vdev_top_lock);
761 761 mutex_enter(&spa_namespace_lock);
762 762 guid = spa_generate_guid(NULL);
763 763
764 764 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
765 765 spa_change_guid_sync, &guid, 5);
766 766
767 767 if (error == 0) {
768 768 spa_config_sync(spa, B_FALSE, B_TRUE);
769 769 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
770 770 }
771 771
772 772 mutex_exit(&spa_namespace_lock);
773 773 mutex_exit(&spa->spa_vdev_top_lock);
774 774
775 775 return (error);
776 776 }
777 777
778 778 /*
779 779 * ==========================================================================
780 780 * SPA state manipulation (open/create/destroy/import/export)
781 781 * ==========================================================================
782 782 */
783 783
784 784 static int
785 785 spa_error_entry_compare(const void *a, const void *b)
786 786 {
787 787 spa_error_entry_t *sa = (spa_error_entry_t *)a;
788 788 spa_error_entry_t *sb = (spa_error_entry_t *)b;
789 789 int ret;
790 790
791 791 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
792 792 sizeof (zbookmark_t));
793 793
794 794 if (ret < 0)
795 795 return (-1);
796 796 else if (ret > 0)
797 797 return (1);
798 798 else
799 799 return (0);
800 800 }
801 801
802 802 /*
803 803 * Utility function which retrieves copies of the current logs and
804 804 * re-initializes them in the process.
805 805 */
806 806 void
807 807 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
808 808 {
809 809 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
810 810
811 811 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
812 812 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
813 813
814 814 avl_create(&spa->spa_errlist_scrub,
815 815 spa_error_entry_compare, sizeof (spa_error_entry_t),
816 816 offsetof(spa_error_entry_t, se_avl));
817 817 avl_create(&spa->spa_errlist_last,
818 818 spa_error_entry_compare, sizeof (spa_error_entry_t),
819 819 offsetof(spa_error_entry_t, se_avl));
820 820 }
821 821
822 822 static void
823 823 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
824 824 {
825 825 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
826 826 enum zti_modes mode = ztip->zti_mode;
827 827 uint_t value = ztip->zti_value;
828 828 uint_t count = ztip->zti_count;
829 829 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
830 830 char name[32];
831 831 uint_t flags = 0;
832 832 boolean_t batch = B_FALSE;
833 833
834 834 if (mode == ZTI_MODE_NULL) {
835 835 tqs->stqs_count = 0;
836 836 tqs->stqs_taskq = NULL;
837 837 return;
838 838 }
839 839
840 840 ASSERT3U(count, >, 0);
841 841
842 842 tqs->stqs_count = count;
843 843 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
844 844
845 845 for (uint_t i = 0; i < count; i++) {
846 846 taskq_t *tq;
847 847
848 848 switch (mode) {
849 849 case ZTI_MODE_FIXED:
850 850 ASSERT3U(value, >=, 1);
851 851 value = MAX(value, 1);
852 852 break;
853 853
854 854 case ZTI_MODE_BATCH:
855 855 batch = B_TRUE;
856 856 flags |= TASKQ_THREADS_CPU_PCT;
857 857 value = zio_taskq_batch_pct;
858 858 break;
859 859
860 860 case ZTI_MODE_ONLINE_PERCENT:
861 861 flags |= TASKQ_THREADS_CPU_PCT;
862 862 break;
863 863
864 864 default:
865 865 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
866 866 "spa_activate()",
867 867 zio_type_name[t], zio_taskq_types[q], mode, value);
868 868 break;
869 869 }
870 870
871 871 if (count > 1) {
872 872 (void) snprintf(name, sizeof (name), "%s_%s_%u",
873 873 zio_type_name[t], zio_taskq_types[q], i);
874 874 } else {
875 875 (void) snprintf(name, sizeof (name), "%s_%s",
876 876 zio_type_name[t], zio_taskq_types[q]);
877 877 }
878 878
879 879 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
880 880 if (batch)
881 881 flags |= TASKQ_DC_BATCH;
882 882
883 883 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
884 884 spa->spa_proc, zio_taskq_basedc, flags);
885 885 } else {
886 886 tq = taskq_create_proc(name, value, maxclsyspri, 50,
887 887 INT_MAX, spa->spa_proc, flags);
888 888 }
889 889
890 890 tqs->stqs_taskq[i] = tq;
891 891 }
892 892 }
893 893
894 894 static void
895 895 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
896 896 {
897 897 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
898 898
899 899 if (tqs->stqs_taskq == NULL) {
900 900 ASSERT0(tqs->stqs_count);
901 901 return;
902 902 }
903 903
904 904 for (uint_t i = 0; i < tqs->stqs_count; i++) {
905 905 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
906 906 taskq_destroy(tqs->stqs_taskq[i]);
907 907 }
908 908
909 909 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
910 910 tqs->stqs_taskq = NULL;
911 911 }
912 912
913 913 /*
914 914 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
915 915 * Note that a type may have multiple discrete taskqs to avoid lock contention
916 916 * on the taskq itself. In that case we choose which taskq at random by using
917 917 * the low bits of gethrtime().
918 918 */
919 919 void
920 920 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
921 921 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
922 922 {
923 923 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
924 924 taskq_t *tq;
925 925
926 926 ASSERT3P(tqs->stqs_taskq, !=, NULL);
927 927 ASSERT3U(tqs->stqs_count, !=, 0);
928 928
929 929 if (tqs->stqs_count == 1) {
930 930 tq = tqs->stqs_taskq[0];
931 931 } else {
932 932 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
933 933 }
934 934
935 935 taskq_dispatch_ent(tq, func, arg, flags, ent);
936 936 }
937 937
938 938 static void
939 939 spa_create_zio_taskqs(spa_t *spa)
940 940 {
941 941 for (int t = 0; t < ZIO_TYPES; t++) {
942 942 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
943 943 spa_taskqs_init(spa, t, q);
944 944 }
945 945 }
946 946 }
947 947
948 948 #ifdef _KERNEL
949 949 static void
950 950 spa_thread(void *arg)
951 951 {
952 952 callb_cpr_t cprinfo;
953 953
954 954 spa_t *spa = arg;
955 955 user_t *pu = PTOU(curproc);
956 956
957 957 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
958 958 spa->spa_name);
959 959
960 960 ASSERT(curproc != &p0);
961 961 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
962 962 "zpool-%s", spa->spa_name);
963 963 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
964 964
965 965 /* bind this thread to the requested psrset */
966 966 if (zio_taskq_psrset_bind != PS_NONE) {
967 967 pool_lock();
968 968 mutex_enter(&cpu_lock);
969 969 mutex_enter(&pidlock);
970 970 mutex_enter(&curproc->p_lock);
971 971
972 972 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
973 973 0, NULL, NULL) == 0) {
974 974 curthread->t_bind_pset = zio_taskq_psrset_bind;
975 975 } else {
976 976 cmn_err(CE_WARN,
977 977 "Couldn't bind process for zfs pool \"%s\" to "
978 978 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
979 979 }
980 980
981 981 mutex_exit(&curproc->p_lock);
982 982 mutex_exit(&pidlock);
983 983 mutex_exit(&cpu_lock);
984 984 pool_unlock();
985 985 }
986 986
987 987 if (zio_taskq_sysdc) {
988 988 sysdc_thread_enter(curthread, 100, 0);
989 989 }
990 990
991 991 spa->spa_proc = curproc;
992 992 spa->spa_did = curthread->t_did;
993 993
994 994 spa_create_zio_taskqs(spa);
995 995
996 996 mutex_enter(&spa->spa_proc_lock);
997 997 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
998 998
999 999 spa->spa_proc_state = SPA_PROC_ACTIVE;
1000 1000 cv_broadcast(&spa->spa_proc_cv);
1001 1001
1002 1002 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1003 1003 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1004 1004 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1005 1005 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1006 1006
1007 1007 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1008 1008 spa->spa_proc_state = SPA_PROC_GONE;
1009 1009 spa->spa_proc = &p0;
1010 1010 cv_broadcast(&spa->spa_proc_cv);
1011 1011 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1012 1012
1013 1013 mutex_enter(&curproc->p_lock);
1014 1014 lwp_exit();
1015 1015 }
1016 1016 #endif
1017 1017
1018 1018 /*
1019 1019 * Activate an uninitialized pool.
1020 1020 */
1021 1021 static void
1022 1022 spa_activate(spa_t *spa, int mode)
1023 1023 {
1024 1024 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1025 1025
1026 1026 spa->spa_state = POOL_STATE_ACTIVE;
1027 1027 spa->spa_mode = mode;
1028 1028
1029 1029 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1030 1030 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1031 1031
1032 1032 /* Try to create a covering process */
1033 1033 mutex_enter(&spa->spa_proc_lock);
1034 1034 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1035 1035 ASSERT(spa->spa_proc == &p0);
1036 1036 spa->spa_did = 0;
1037 1037
1038 1038 /* Only create a process if we're going to be around a while. */
1039 1039 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1040 1040 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1041 1041 NULL, 0) == 0) {
1042 1042 spa->spa_proc_state = SPA_PROC_CREATED;
1043 1043 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1044 1044 cv_wait(&spa->spa_proc_cv,
1045 1045 &spa->spa_proc_lock);
1046 1046 }
1047 1047 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1048 1048 ASSERT(spa->spa_proc != &p0);
1049 1049 ASSERT(spa->spa_did != 0);
1050 1050 } else {
1051 1051 #ifdef _KERNEL
1052 1052 cmn_err(CE_WARN,
1053 1053 "Couldn't create process for zfs pool \"%s\"\n",
1054 1054 spa->spa_name);
1055 1055 #endif
1056 1056 }
1057 1057 }
1058 1058 mutex_exit(&spa->spa_proc_lock);
1059 1059
1060 1060 /* If we didn't create a process, we need to create our taskqs. */
1061 1061 if (spa->spa_proc == &p0) {
1062 1062 spa_create_zio_taskqs(spa);
1063 1063 }
1064 1064
1065 1065 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1066 1066 offsetof(vdev_t, vdev_config_dirty_node));
1067 1067 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1068 1068 offsetof(vdev_t, vdev_state_dirty_node));
1069 1069
1070 1070 txg_list_create(&spa->spa_vdev_txg_list,
1071 1071 offsetof(struct vdev, vdev_txg_node));
1072 1072
1073 1073 avl_create(&spa->spa_errlist_scrub,
1074 1074 spa_error_entry_compare, sizeof (spa_error_entry_t),
1075 1075 offsetof(spa_error_entry_t, se_avl));
1076 1076 avl_create(&spa->spa_errlist_last,
1077 1077 spa_error_entry_compare, sizeof (spa_error_entry_t),
1078 1078 offsetof(spa_error_entry_t, se_avl));
1079 1079 }
1080 1080
1081 1081 /*
1082 1082 * Opposite of spa_activate().
1083 1083 */
1084 1084 static void
1085 1085 spa_deactivate(spa_t *spa)
1086 1086 {
1087 1087 ASSERT(spa->spa_sync_on == B_FALSE);
1088 1088 ASSERT(spa->spa_dsl_pool == NULL);
1089 1089 ASSERT(spa->spa_root_vdev == NULL);
1090 1090 ASSERT(spa->spa_async_zio_root == NULL);
1091 1091 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1092 1092
1093 1093 txg_list_destroy(&spa->spa_vdev_txg_list);
1094 1094
1095 1095 list_destroy(&spa->spa_config_dirty_list);
1096 1096 list_destroy(&spa->spa_state_dirty_list);
1097 1097
1098 1098 for (int t = 0; t < ZIO_TYPES; t++) {
1099 1099 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1100 1100 spa_taskqs_fini(spa, t, q);
1101 1101 }
1102 1102 }
1103 1103
1104 1104 metaslab_class_destroy(spa->spa_normal_class);
1105 1105 spa->spa_normal_class = NULL;
1106 1106
1107 1107 metaslab_class_destroy(spa->spa_log_class);
1108 1108 spa->spa_log_class = NULL;
1109 1109
1110 1110 /*
1111 1111 * If this was part of an import or the open otherwise failed, we may
1112 1112 * still have errors left in the queues. Empty them just in case.
1113 1113 */
1114 1114 spa_errlog_drain(spa);
1115 1115
1116 1116 avl_destroy(&spa->spa_errlist_scrub);
1117 1117 avl_destroy(&spa->spa_errlist_last);
1118 1118
1119 1119 spa->spa_state = POOL_STATE_UNINITIALIZED;
1120 1120
1121 1121 mutex_enter(&spa->spa_proc_lock);
1122 1122 if (spa->spa_proc_state != SPA_PROC_NONE) {
1123 1123 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1124 1124 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1125 1125 cv_broadcast(&spa->spa_proc_cv);
1126 1126 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1127 1127 ASSERT(spa->spa_proc != &p0);
1128 1128 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1129 1129 }
1130 1130 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1131 1131 spa->spa_proc_state = SPA_PROC_NONE;
1132 1132 }
1133 1133 ASSERT(spa->spa_proc == &p0);
1134 1134 mutex_exit(&spa->spa_proc_lock);
1135 1135
1136 1136 /*
1137 1137 * We want to make sure spa_thread() has actually exited the ZFS
1138 1138 * module, so that the module can't be unloaded out from underneath
1139 1139 * it.
1140 1140 */
1141 1141 if (spa->spa_did != 0) {
1142 1142 thread_join(spa->spa_did);
1143 1143 spa->spa_did = 0;
1144 1144 }
1145 1145 }
1146 1146
1147 1147 /*
1148 1148 * Verify a pool configuration, and construct the vdev tree appropriately. This
1149 1149 * will create all the necessary vdevs in the appropriate layout, with each vdev
1150 1150 * in the CLOSED state. This will prep the pool before open/creation/import.
1151 1151 * All vdev validation is done by the vdev_alloc() routine.
1152 1152 */
1153 1153 static int
1154 1154 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1155 1155 uint_t id, int atype)
1156 1156 {
1157 1157 nvlist_t **child;
1158 1158 uint_t children;
1159 1159 int error;
1160 1160
1161 1161 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1162 1162 return (error);
1163 1163
1164 1164 if ((*vdp)->vdev_ops->vdev_op_leaf)
1165 1165 return (0);
1166 1166
1167 1167 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1168 1168 &child, &children);
1169 1169
1170 1170 if (error == ENOENT)
1171 1171 return (0);
1172 1172
1173 1173 if (error) {
1174 1174 vdev_free(*vdp);
1175 1175 *vdp = NULL;
1176 1176 return (SET_ERROR(EINVAL));
1177 1177 }
1178 1178
1179 1179 for (int c = 0; c < children; c++) {
1180 1180 vdev_t *vd;
1181 1181 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1182 1182 atype)) != 0) {
1183 1183 vdev_free(*vdp);
1184 1184 *vdp = NULL;
1185 1185 return (error);
1186 1186 }
1187 1187 }
1188 1188
1189 1189 ASSERT(*vdp != NULL);
1190 1190
1191 1191 return (0);
1192 1192 }
1193 1193
1194 1194 /*
1195 1195 * Opposite of spa_load().
1196 1196 */
1197 1197 static void
1198 1198 spa_unload(spa_t *spa)
1199 1199 {
1200 1200 int i;
1201 1201
1202 1202 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1203 1203
1204 1204 /*
1205 1205 * Stop async tasks.
1206 1206 */
1207 1207 spa_async_suspend(spa);
1208 1208
1209 1209 /*
1210 1210 * Stop syncing.
1211 1211 */
1212 1212 if (spa->spa_sync_on) {
1213 1213 txg_sync_stop(spa->spa_dsl_pool);
1214 1214 spa->spa_sync_on = B_FALSE;
1215 1215 }
1216 1216
1217 1217 /*
1218 1218 * Wait for any outstanding async I/O to complete.
1219 1219 */
1220 1220 if (spa->spa_async_zio_root != NULL) {
1221 1221 (void) zio_wait(spa->spa_async_zio_root);
1222 1222 spa->spa_async_zio_root = NULL;
1223 1223 }
1224 1224
1225 1225 bpobj_close(&spa->spa_deferred_bpobj);
1226 1226
1227 1227 /*
1228 1228 * Close the dsl pool.
1229 1229 */
1230 1230 if (spa->spa_dsl_pool) {
1231 1231 dsl_pool_close(spa->spa_dsl_pool);
1232 1232 spa->spa_dsl_pool = NULL;
1233 1233 spa->spa_meta_objset = NULL;
1234 1234 }
1235 1235
1236 1236 ddt_unload(spa);
1237 1237
1238 1238 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1239 1239
1240 1240 /*
1241 1241 * Drop and purge level 2 cache
1242 1242 */
1243 1243 spa_l2cache_drop(spa);
1244 1244
1245 1245 /*
1246 1246 * Close all vdevs.
1247 1247 */
1248 1248 if (spa->spa_root_vdev)
1249 1249 vdev_free(spa->spa_root_vdev);
1250 1250 ASSERT(spa->spa_root_vdev == NULL);
1251 1251
1252 1252 for (i = 0; i < spa->spa_spares.sav_count; i++)
1253 1253 vdev_free(spa->spa_spares.sav_vdevs[i]);
1254 1254 if (spa->spa_spares.sav_vdevs) {
1255 1255 kmem_free(spa->spa_spares.sav_vdevs,
1256 1256 spa->spa_spares.sav_count * sizeof (void *));
1257 1257 spa->spa_spares.sav_vdevs = NULL;
1258 1258 }
1259 1259 if (spa->spa_spares.sav_config) {
1260 1260 nvlist_free(spa->spa_spares.sav_config);
1261 1261 spa->spa_spares.sav_config = NULL;
1262 1262 }
1263 1263 spa->spa_spares.sav_count = 0;
1264 1264
1265 1265 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1266 1266 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1267 1267 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1268 1268 }
1269 1269 if (spa->spa_l2cache.sav_vdevs) {
1270 1270 kmem_free(spa->spa_l2cache.sav_vdevs,
1271 1271 spa->spa_l2cache.sav_count * sizeof (void *));
1272 1272 spa->spa_l2cache.sav_vdevs = NULL;
1273 1273 }
1274 1274 if (spa->spa_l2cache.sav_config) {
1275 1275 nvlist_free(spa->spa_l2cache.sav_config);
1276 1276 spa->spa_l2cache.sav_config = NULL;
1277 1277 }
1278 1278 spa->spa_l2cache.sav_count = 0;
1279 1279
1280 1280 spa->spa_async_suspended = 0;
1281 1281
1282 1282 if (spa->spa_comment != NULL) {
1283 1283 spa_strfree(spa->spa_comment);
1284 1284 spa->spa_comment = NULL;
1285 1285 }
1286 1286
1287 1287 spa_config_exit(spa, SCL_ALL, FTAG);
1288 1288 }
1289 1289
1290 1290 /*
1291 1291 * Load (or re-load) the current list of vdevs describing the active spares for
1292 1292 * this pool. When this is called, we have some form of basic information in
1293 1293 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1294 1294 * then re-generate a more complete list including status information.
1295 1295 */
1296 1296 static void
1297 1297 spa_load_spares(spa_t *spa)
1298 1298 {
1299 1299 nvlist_t **spares;
1300 1300 uint_t nspares;
1301 1301 int i;
1302 1302 vdev_t *vd, *tvd;
1303 1303
1304 1304 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1305 1305
1306 1306 /*
1307 1307 * First, close and free any existing spare vdevs.
1308 1308 */
1309 1309 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1310 1310 vd = spa->spa_spares.sav_vdevs[i];
1311 1311
1312 1312 /* Undo the call to spa_activate() below */
1313 1313 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1314 1314 B_FALSE)) != NULL && tvd->vdev_isspare)
1315 1315 spa_spare_remove(tvd);
1316 1316 vdev_close(vd);
1317 1317 vdev_free(vd);
1318 1318 }
1319 1319
1320 1320 if (spa->spa_spares.sav_vdevs)
1321 1321 kmem_free(spa->spa_spares.sav_vdevs,
1322 1322 spa->spa_spares.sav_count * sizeof (void *));
1323 1323
1324 1324 if (spa->spa_spares.sav_config == NULL)
1325 1325 nspares = 0;
1326 1326 else
1327 1327 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1328 1328 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1329 1329
1330 1330 spa->spa_spares.sav_count = (int)nspares;
1331 1331 spa->spa_spares.sav_vdevs = NULL;
1332 1332
1333 1333 if (nspares == 0)
1334 1334 return;
1335 1335
1336 1336 /*
1337 1337 * Construct the array of vdevs, opening them to get status in the
1338 1338 * process. For each spare, there is potentially two different vdev_t
1339 1339 * structures associated with it: one in the list of spares (used only
1340 1340 * for basic validation purposes) and one in the active vdev
1341 1341 * configuration (if it's spared in). During this phase we open and
1342 1342 * validate each vdev on the spare list. If the vdev also exists in the
1343 1343 * active configuration, then we also mark this vdev as an active spare.
1344 1344 */
1345 1345 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1346 1346 KM_SLEEP);
1347 1347 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1348 1348 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1349 1349 VDEV_ALLOC_SPARE) == 0);
1350 1350 ASSERT(vd != NULL);
1351 1351
1352 1352 spa->spa_spares.sav_vdevs[i] = vd;
1353 1353
1354 1354 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1355 1355 B_FALSE)) != NULL) {
1356 1356 if (!tvd->vdev_isspare)
1357 1357 spa_spare_add(tvd);
1358 1358
1359 1359 /*
1360 1360 * We only mark the spare active if we were successfully
1361 1361 * able to load the vdev. Otherwise, importing a pool
1362 1362 * with a bad active spare would result in strange
1363 1363 * behavior, because multiple pool would think the spare
1364 1364 * is actively in use.
1365 1365 *
1366 1366 * There is a vulnerability here to an equally bizarre
1367 1367 * circumstance, where a dead active spare is later
1368 1368 * brought back to life (onlined or otherwise). Given
1369 1369 * the rarity of this scenario, and the extra complexity
1370 1370 * it adds, we ignore the possibility.
1371 1371 */
1372 1372 if (!vdev_is_dead(tvd))
1373 1373 spa_spare_activate(tvd);
1374 1374 }
1375 1375
1376 1376 vd->vdev_top = vd;
1377 1377 vd->vdev_aux = &spa->spa_spares;
1378 1378
1379 1379 if (vdev_open(vd) != 0)
1380 1380 continue;
1381 1381
1382 1382 if (vdev_validate_aux(vd) == 0)
1383 1383 spa_spare_add(vd);
1384 1384 }
1385 1385
1386 1386 /*
1387 1387 * Recompute the stashed list of spares, with status information
1388 1388 * this time.
1389 1389 */
1390 1390 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1391 1391 DATA_TYPE_NVLIST_ARRAY) == 0);
1392 1392
1393 1393 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1394 1394 KM_SLEEP);
1395 1395 for (i = 0; i < spa->spa_spares.sav_count; i++)
1396 1396 spares[i] = vdev_config_generate(spa,
1397 1397 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1398 1398 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1399 1399 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1400 1400 for (i = 0; i < spa->spa_spares.sav_count; i++)
1401 1401 nvlist_free(spares[i]);
1402 1402 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1403 1403 }
1404 1404
1405 1405 /*
1406 1406 * Load (or re-load) the current list of vdevs describing the active l2cache for
1407 1407 * this pool. When this is called, we have some form of basic information in
1408 1408 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1409 1409 * then re-generate a more complete list including status information.
1410 1410 * Devices which are already active have their details maintained, and are
1411 1411 * not re-opened.
1412 1412 */
1413 1413 static void
1414 1414 spa_load_l2cache(spa_t *spa)
1415 1415 {
1416 1416 nvlist_t **l2cache;
1417 1417 uint_t nl2cache;
1418 1418 int i, j, oldnvdevs;
1419 1419 uint64_t guid;
1420 1420 vdev_t *vd, **oldvdevs, **newvdevs;
1421 1421 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1422 1422
1423 1423 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1424 1424
1425 1425 if (sav->sav_config != NULL) {
1426 1426 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1427 1427 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1428 1428 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1429 1429 } else {
1430 1430 nl2cache = 0;
1431 1431 newvdevs = NULL;
1432 1432 }
1433 1433
1434 1434 oldvdevs = sav->sav_vdevs;
1435 1435 oldnvdevs = sav->sav_count;
1436 1436 sav->sav_vdevs = NULL;
1437 1437 sav->sav_count = 0;
1438 1438
1439 1439 /*
1440 1440 * Process new nvlist of vdevs.
1441 1441 */
1442 1442 for (i = 0; i < nl2cache; i++) {
1443 1443 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1444 1444 &guid) == 0);
1445 1445
1446 1446 newvdevs[i] = NULL;
1447 1447 for (j = 0; j < oldnvdevs; j++) {
1448 1448 vd = oldvdevs[j];
1449 1449 if (vd != NULL && guid == vd->vdev_guid) {
1450 1450 /*
1451 1451 * Retain previous vdev for add/remove ops.
1452 1452 */
1453 1453 newvdevs[i] = vd;
1454 1454 oldvdevs[j] = NULL;
1455 1455 break;
1456 1456 }
1457 1457 }
1458 1458
1459 1459 if (newvdevs[i] == NULL) {
1460 1460 /*
1461 1461 * Create new vdev
1462 1462 */
1463 1463 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1464 1464 VDEV_ALLOC_L2CACHE) == 0);
1465 1465 ASSERT(vd != NULL);
1466 1466 newvdevs[i] = vd;
1467 1467
1468 1468 /*
1469 1469 * Commit this vdev as an l2cache device,
1470 1470 * even if it fails to open.
1471 1471 */
1472 1472 spa_l2cache_add(vd);
1473 1473
1474 1474 vd->vdev_top = vd;
1475 1475 vd->vdev_aux = sav;
1476 1476
1477 1477 spa_l2cache_activate(vd);
1478 1478
1479 1479 if (vdev_open(vd) != 0)
1480 1480 continue;
1481 1481
1482 1482 (void) vdev_validate_aux(vd);
1483 1483
1484 1484 if (!vdev_is_dead(vd))
1485 1485 l2arc_add_vdev(spa, vd);
1486 1486 }
1487 1487 }
1488 1488
1489 1489 /*
1490 1490 * Purge vdevs that were dropped
1491 1491 */
1492 1492 for (i = 0; i < oldnvdevs; i++) {
1493 1493 uint64_t pool;
1494 1494
1495 1495 vd = oldvdevs[i];
1496 1496 if (vd != NULL) {
1497 1497 ASSERT(vd->vdev_isl2cache);
1498 1498
1499 1499 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1500 1500 pool != 0ULL && l2arc_vdev_present(vd))
1501 1501 l2arc_remove_vdev(vd);
1502 1502 vdev_clear_stats(vd);
1503 1503 vdev_free(vd);
1504 1504 }
1505 1505 }
1506 1506
1507 1507 if (oldvdevs)
1508 1508 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1509 1509
1510 1510 if (sav->sav_config == NULL)
1511 1511 goto out;
1512 1512
1513 1513 sav->sav_vdevs = newvdevs;
1514 1514 sav->sav_count = (int)nl2cache;
1515 1515
1516 1516 /*
1517 1517 * Recompute the stashed list of l2cache devices, with status
1518 1518 * information this time.
1519 1519 */
1520 1520 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1521 1521 DATA_TYPE_NVLIST_ARRAY) == 0);
1522 1522
1523 1523 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1524 1524 for (i = 0; i < sav->sav_count; i++)
1525 1525 l2cache[i] = vdev_config_generate(spa,
1526 1526 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1527 1527 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1528 1528 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1529 1529 out:
1530 1530 for (i = 0; i < sav->sav_count; i++)
1531 1531 nvlist_free(l2cache[i]);
1532 1532 if (sav->sav_count)
1533 1533 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1534 1534 }
1535 1535
1536 1536 static int
1537 1537 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1538 1538 {
1539 1539 dmu_buf_t *db;
1540 1540 char *packed = NULL;
1541 1541 size_t nvsize = 0;
1542 1542 int error;
1543 1543 *value = NULL;
1544 1544
1545 1545 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1546 1546 nvsize = *(uint64_t *)db->db_data;
1547 1547 dmu_buf_rele(db, FTAG);
1548 1548
1549 1549 packed = kmem_alloc(nvsize, KM_SLEEP);
1550 1550 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1551 1551 DMU_READ_PREFETCH);
1552 1552 if (error == 0)
1553 1553 error = nvlist_unpack(packed, nvsize, value, 0);
1554 1554 kmem_free(packed, nvsize);
1555 1555
1556 1556 return (error);
1557 1557 }
1558 1558
1559 1559 /*
1560 1560 * Checks to see if the given vdev could not be opened, in which case we post a
1561 1561 * sysevent to notify the autoreplace code that the device has been removed.
1562 1562 */
1563 1563 static void
1564 1564 spa_check_removed(vdev_t *vd)
1565 1565 {
1566 1566 for (int c = 0; c < vd->vdev_children; c++)
1567 1567 spa_check_removed(vd->vdev_child[c]);
1568 1568
1569 1569 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1570 1570 !vd->vdev_ishole) {
1571 1571 zfs_post_autoreplace(vd->vdev_spa, vd);
1572 1572 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1573 1573 }
1574 1574 }
1575 1575
1576 1576 /*
1577 1577 * Validate the current config against the MOS config
1578 1578 */
1579 1579 static boolean_t
1580 1580 spa_config_valid(spa_t *spa, nvlist_t *config)
1581 1581 {
1582 1582 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1583 1583 nvlist_t *nv;
1584 1584
1585 1585 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1586 1586
1587 1587 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1588 1588 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1589 1589
1590 1590 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1591 1591
1592 1592 /*
1593 1593 * If we're doing a normal import, then build up any additional
1594 1594 * diagnostic information about missing devices in this config.
1595 1595 * We'll pass this up to the user for further processing.
1596 1596 */
1597 1597 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1598 1598 nvlist_t **child, *nv;
1599 1599 uint64_t idx = 0;
1600 1600
1601 1601 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1602 1602 KM_SLEEP);
1603 1603 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1604 1604
1605 1605 for (int c = 0; c < rvd->vdev_children; c++) {
1606 1606 vdev_t *tvd = rvd->vdev_child[c];
1607 1607 vdev_t *mtvd = mrvd->vdev_child[c];
1608 1608
1609 1609 if (tvd->vdev_ops == &vdev_missing_ops &&
1610 1610 mtvd->vdev_ops != &vdev_missing_ops &&
1611 1611 mtvd->vdev_islog)
1612 1612 child[idx++] = vdev_config_generate(spa, mtvd,
1613 1613 B_FALSE, 0);
1614 1614 }
1615 1615
1616 1616 if (idx) {
1617 1617 VERIFY(nvlist_add_nvlist_array(nv,
1618 1618 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1619 1619 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1620 1620 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1621 1621
1622 1622 for (int i = 0; i < idx; i++)
1623 1623 nvlist_free(child[i]);
1624 1624 }
1625 1625 nvlist_free(nv);
1626 1626 kmem_free(child, rvd->vdev_children * sizeof (char **));
1627 1627 }
1628 1628
1629 1629 /*
1630 1630 * Compare the root vdev tree with the information we have
1631 1631 * from the MOS config (mrvd). Check each top-level vdev
1632 1632 * with the corresponding MOS config top-level (mtvd).
1633 1633 */
1634 1634 for (int c = 0; c < rvd->vdev_children; c++) {
1635 1635 vdev_t *tvd = rvd->vdev_child[c];
1636 1636 vdev_t *mtvd = mrvd->vdev_child[c];
1637 1637
1638 1638 /*
1639 1639 * Resolve any "missing" vdevs in the current configuration.
1640 1640 * If we find that the MOS config has more accurate information
1641 1641 * about the top-level vdev then use that vdev instead.
1642 1642 */
1643 1643 if (tvd->vdev_ops == &vdev_missing_ops &&
1644 1644 mtvd->vdev_ops != &vdev_missing_ops) {
1645 1645
1646 1646 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1647 1647 continue;
1648 1648
1649 1649 /*
1650 1650 * Device specific actions.
1651 1651 */
1652 1652 if (mtvd->vdev_islog) {
1653 1653 spa_set_log_state(spa, SPA_LOG_CLEAR);
1654 1654 } else {
1655 1655 /*
1656 1656 * XXX - once we have 'readonly' pool
1657 1657 * support we should be able to handle
1658 1658 * missing data devices by transitioning
1659 1659 * the pool to readonly.
1660 1660 */
1661 1661 continue;
1662 1662 }
1663 1663
1664 1664 /*
1665 1665 * Swap the missing vdev with the data we were
1666 1666 * able to obtain from the MOS config.
1667 1667 */
1668 1668 vdev_remove_child(rvd, tvd);
1669 1669 vdev_remove_child(mrvd, mtvd);
1670 1670
1671 1671 vdev_add_child(rvd, mtvd);
1672 1672 vdev_add_child(mrvd, tvd);
1673 1673
1674 1674 spa_config_exit(spa, SCL_ALL, FTAG);
1675 1675 vdev_load(mtvd);
1676 1676 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1677 1677
1678 1678 vdev_reopen(rvd);
1679 1679 } else if (mtvd->vdev_islog) {
1680 1680 /*
1681 1681 * Load the slog device's state from the MOS config
1682 1682 * since it's possible that the label does not
1683 1683 * contain the most up-to-date information.
1684 1684 */
1685 1685 vdev_load_log_state(tvd, mtvd);
1686 1686 vdev_reopen(tvd);
1687 1687 }
1688 1688 }
1689 1689 vdev_free(mrvd);
1690 1690 spa_config_exit(spa, SCL_ALL, FTAG);
1691 1691
1692 1692 /*
1693 1693 * Ensure we were able to validate the config.
1694 1694 */
1695 1695 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1696 1696 }
1697 1697
1698 1698 /*
1699 1699 * Check for missing log devices
1700 1700 */
1701 1701 static boolean_t
1702 1702 spa_check_logs(spa_t *spa)
1703 1703 {
1704 1704 boolean_t rv = B_FALSE;
1705 1705
1706 1706 switch (spa->spa_log_state) {
1707 1707 case SPA_LOG_MISSING:
1708 1708 /* need to recheck in case slog has been restored */
1709 1709 case SPA_LOG_UNKNOWN:
1710 1710 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1711 1711 NULL, DS_FIND_CHILDREN) != 0);
1712 1712 if (rv)
1713 1713 spa_set_log_state(spa, SPA_LOG_MISSING);
1714 1714 break;
1715 1715 }
1716 1716 return (rv);
1717 1717 }
1718 1718
1719 1719 static boolean_t
1720 1720 spa_passivate_log(spa_t *spa)
1721 1721 {
1722 1722 vdev_t *rvd = spa->spa_root_vdev;
1723 1723 boolean_t slog_found = B_FALSE;
1724 1724
1725 1725 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1726 1726
1727 1727 if (!spa_has_slogs(spa))
1728 1728 return (B_FALSE);
1729 1729
1730 1730 for (int c = 0; c < rvd->vdev_children; c++) {
1731 1731 vdev_t *tvd = rvd->vdev_child[c];
1732 1732 metaslab_group_t *mg = tvd->vdev_mg;
1733 1733
1734 1734 if (tvd->vdev_islog) {
1735 1735 metaslab_group_passivate(mg);
1736 1736 slog_found = B_TRUE;
1737 1737 }
1738 1738 }
1739 1739
1740 1740 return (slog_found);
1741 1741 }
1742 1742
1743 1743 static void
1744 1744 spa_activate_log(spa_t *spa)
1745 1745 {
1746 1746 vdev_t *rvd = spa->spa_root_vdev;
1747 1747
1748 1748 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1749 1749
1750 1750 for (int c = 0; c < rvd->vdev_children; c++) {
1751 1751 vdev_t *tvd = rvd->vdev_child[c];
1752 1752 metaslab_group_t *mg = tvd->vdev_mg;
1753 1753
1754 1754 if (tvd->vdev_islog)
1755 1755 metaslab_group_activate(mg);
1756 1756 }
1757 1757 }
1758 1758
1759 1759 int
1760 1760 spa_offline_log(spa_t *spa)
1761 1761 {
1762 1762 int error;
1763 1763
1764 1764 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1765 1765 NULL, DS_FIND_CHILDREN);
1766 1766 if (error == 0) {
1767 1767 /*
1768 1768 * We successfully offlined the log device, sync out the
1769 1769 * current txg so that the "stubby" block can be removed
1770 1770 * by zil_sync().
1771 1771 */
1772 1772 txg_wait_synced(spa->spa_dsl_pool, 0);
1773 1773 }
1774 1774 return (error);
1775 1775 }
1776 1776
1777 1777 static void
1778 1778 spa_aux_check_removed(spa_aux_vdev_t *sav)
1779 1779 {
1780 1780 for (int i = 0; i < sav->sav_count; i++)
1781 1781 spa_check_removed(sav->sav_vdevs[i]);
1782 1782 }
1783 1783
1784 1784 void
1785 1785 spa_claim_notify(zio_t *zio)
1786 1786 {
1787 1787 spa_t *spa = zio->io_spa;
1788 1788
1789 1789 if (zio->io_error)
1790 1790 return;
1791 1791
1792 1792 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1793 1793 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1794 1794 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1795 1795 mutex_exit(&spa->spa_props_lock);
1796 1796 }
1797 1797
1798 1798 typedef struct spa_load_error {
1799 1799 uint64_t sle_meta_count;
1800 1800 uint64_t sle_data_count;
1801 1801 } spa_load_error_t;
1802 1802
1803 1803 static void
1804 1804 spa_load_verify_done(zio_t *zio)
1805 1805 {
1806 1806 blkptr_t *bp = zio->io_bp;
1807 1807 spa_load_error_t *sle = zio->io_private;
1808 1808 dmu_object_type_t type = BP_GET_TYPE(bp);
1809 1809 int error = zio->io_error;
1810 1810
1811 1811 if (error) {
1812 1812 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1813 1813 type != DMU_OT_INTENT_LOG)
1814 1814 atomic_add_64(&sle->sle_meta_count, 1);
1815 1815 else
1816 1816 atomic_add_64(&sle->sle_data_count, 1);
1817 1817 }
1818 1818 zio_data_buf_free(zio->io_data, zio->io_size);
1819 1819 }
1820 1820
1821 1821 /*ARGSUSED*/
1822 1822 static int
1823 1823 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1824 1824 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1825 1825 {
1826 1826 if (bp != NULL) {
1827 1827 zio_t *rio = arg;
1828 1828 size_t size = BP_GET_PSIZE(bp);
1829 1829 void *data = zio_data_buf_alloc(size);
1830 1830
1831 1831 zio_nowait(zio_read(rio, spa, bp, data, size,
1832 1832 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1833 1833 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1834 1834 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1835 1835 }
1836 1836 return (0);
1837 1837 }
1838 1838
1839 1839 static int
1840 1840 spa_load_verify(spa_t *spa)
1841 1841 {
1842 1842 zio_t *rio;
1843 1843 spa_load_error_t sle = { 0 };
1844 1844 zpool_rewind_policy_t policy;
1845 1845 boolean_t verify_ok = B_FALSE;
1846 1846 int error;
1847 1847
1848 1848 zpool_get_rewind_policy(spa->spa_config, &policy);
1849 1849
1850 1850 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1851 1851 return (0);
1852 1852
1853 1853 rio = zio_root(spa, NULL, &sle,
1854 1854 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1855 1855
1856 1856 error = traverse_pool(spa, spa->spa_verify_min_txg,
1857 1857 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1858 1858
1859 1859 (void) zio_wait(rio);
1860 1860
1861 1861 spa->spa_load_meta_errors = sle.sle_meta_count;
1862 1862 spa->spa_load_data_errors = sle.sle_data_count;
1863 1863
1864 1864 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1865 1865 sle.sle_data_count <= policy.zrp_maxdata) {
1866 1866 int64_t loss = 0;
1867 1867
1868 1868 verify_ok = B_TRUE;
1869 1869 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1870 1870 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1871 1871
1872 1872 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1873 1873 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1874 1874 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1875 1875 VERIFY(nvlist_add_int64(spa->spa_load_info,
1876 1876 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1877 1877 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1878 1878 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1879 1879 } else {
1880 1880 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1881 1881 }
1882 1882
1883 1883 if (error) {
1884 1884 if (error != ENXIO && error != EIO)
1885 1885 error = SET_ERROR(EIO);
1886 1886 return (error);
1887 1887 }
1888 1888
1889 1889 return (verify_ok ? 0 : EIO);
1890 1890 }
1891 1891
1892 1892 /*
1893 1893 * Find a value in the pool props object.
1894 1894 */
1895 1895 static void
1896 1896 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1897 1897 {
1898 1898 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1899 1899 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1900 1900 }
1901 1901
1902 1902 /*
1903 1903 * Find a value in the pool directory object.
1904 1904 */
1905 1905 static int
1906 1906 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1907 1907 {
1908 1908 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1909 1909 name, sizeof (uint64_t), 1, val));
1910 1910 }
1911 1911
1912 1912 static int
1913 1913 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1914 1914 {
1915 1915 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1916 1916 return (err);
1917 1917 }
1918 1918
1919 1919 /*
1920 1920 * Fix up config after a partly-completed split. This is done with the
1921 1921 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1922 1922 * pool have that entry in their config, but only the splitting one contains
1923 1923 * a list of all the guids of the vdevs that are being split off.
1924 1924 *
1925 1925 * This function determines what to do with that list: either rejoin
1926 1926 * all the disks to the pool, or complete the splitting process. To attempt
1927 1927 * the rejoin, each disk that is offlined is marked online again, and
1928 1928 * we do a reopen() call. If the vdev label for every disk that was
1929 1929 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1930 1930 * then we call vdev_split() on each disk, and complete the split.
1931 1931 *
1932 1932 * Otherwise we leave the config alone, with all the vdevs in place in
1933 1933 * the original pool.
1934 1934 */
1935 1935 static void
1936 1936 spa_try_repair(spa_t *spa, nvlist_t *config)
1937 1937 {
1938 1938 uint_t extracted;
1939 1939 uint64_t *glist;
1940 1940 uint_t i, gcount;
1941 1941 nvlist_t *nvl;
1942 1942 vdev_t **vd;
1943 1943 boolean_t attempt_reopen;
1944 1944
1945 1945 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1946 1946 return;
1947 1947
1948 1948 /* check that the config is complete */
1949 1949 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1950 1950 &glist, &gcount) != 0)
1951 1951 return;
1952 1952
1953 1953 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1954 1954
1955 1955 /* attempt to online all the vdevs & validate */
1956 1956 attempt_reopen = B_TRUE;
1957 1957 for (i = 0; i < gcount; i++) {
1958 1958 if (glist[i] == 0) /* vdev is hole */
1959 1959 continue;
1960 1960
1961 1961 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1962 1962 if (vd[i] == NULL) {
1963 1963 /*
1964 1964 * Don't bother attempting to reopen the disks;
1965 1965 * just do the split.
1966 1966 */
1967 1967 attempt_reopen = B_FALSE;
1968 1968 } else {
1969 1969 /* attempt to re-online it */
1970 1970 vd[i]->vdev_offline = B_FALSE;
1971 1971 }
1972 1972 }
1973 1973
1974 1974 if (attempt_reopen) {
1975 1975 vdev_reopen(spa->spa_root_vdev);
1976 1976
1977 1977 /* check each device to see what state it's in */
1978 1978 for (extracted = 0, i = 0; i < gcount; i++) {
1979 1979 if (vd[i] != NULL &&
1980 1980 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1981 1981 break;
1982 1982 ++extracted;
1983 1983 }
1984 1984 }
1985 1985
1986 1986 /*
1987 1987 * If every disk has been moved to the new pool, or if we never
1988 1988 * even attempted to look at them, then we split them off for
1989 1989 * good.
1990 1990 */
1991 1991 if (!attempt_reopen || gcount == extracted) {
1992 1992 for (i = 0; i < gcount; i++)
1993 1993 if (vd[i] != NULL)
1994 1994 vdev_split(vd[i]);
1995 1995 vdev_reopen(spa->spa_root_vdev);
1996 1996 }
1997 1997
1998 1998 kmem_free(vd, gcount * sizeof (vdev_t *));
1999 1999 }
2000 2000
2001 2001 static int
2002 2002 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2003 2003 boolean_t mosconfig)
2004 2004 {
2005 2005 nvlist_t *config = spa->spa_config;
2006 2006 char *ereport = FM_EREPORT_ZFS_POOL;
2007 2007 char *comment;
2008 2008 int error;
2009 2009 uint64_t pool_guid;
2010 2010 nvlist_t *nvl;
2011 2011
2012 2012 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2013 2013 return (SET_ERROR(EINVAL));
2014 2014
2015 2015 ASSERT(spa->spa_comment == NULL);
2016 2016 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2017 2017 spa->spa_comment = spa_strdup(comment);
2018 2018
2019 2019 /*
2020 2020 * Versioning wasn't explicitly added to the label until later, so if
2021 2021 * it's not present treat it as the initial version.
2022 2022 */
2023 2023 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2024 2024 &spa->spa_ubsync.ub_version) != 0)
2025 2025 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2026 2026
2027 2027 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2028 2028 &spa->spa_config_txg);
2029 2029
2030 2030 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2031 2031 spa_guid_exists(pool_guid, 0)) {
2032 2032 error = SET_ERROR(EEXIST);
2033 2033 } else {
2034 2034 spa->spa_config_guid = pool_guid;
2035 2035
2036 2036 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2037 2037 &nvl) == 0) {
2038 2038 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2039 2039 KM_SLEEP) == 0);
2040 2040 }
2041 2041
2042 2042 nvlist_free(spa->spa_load_info);
2043 2043 spa->spa_load_info = fnvlist_alloc();
2044 2044
2045 2045 gethrestime(&spa->spa_loaded_ts);
2046 2046 error = spa_load_impl(spa, pool_guid, config, state, type,
2047 2047 mosconfig, &ereport);
2048 2048 }
2049 2049
2050 2050 spa->spa_minref = refcount_count(&spa->spa_refcount);
2051 2051 if (error) {
2052 2052 if (error != EEXIST) {
2053 2053 spa->spa_loaded_ts.tv_sec = 0;
2054 2054 spa->spa_loaded_ts.tv_nsec = 0;
2055 2055 }
2056 2056 if (error != EBADF) {
2057 2057 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2058 2058 }
2059 2059 }
2060 2060 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2061 2061 spa->spa_ena = 0;
2062 2062
2063 2063 return (error);
2064 2064 }
2065 2065
2066 2066 /*
2067 2067 * Load an existing storage pool, using the pool's builtin spa_config as a
2068 2068 * source of configuration information.
2069 2069 */
2070 2070 static int
2071 2071 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2072 2072 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2073 2073 char **ereport)
2074 2074 {
2075 2075 int error = 0;
2076 2076 nvlist_t *nvroot = NULL;
2077 2077 nvlist_t *label;
2078 2078 vdev_t *rvd;
2079 2079 uberblock_t *ub = &spa->spa_uberblock;
2080 2080 uint64_t children, config_cache_txg = spa->spa_config_txg;
2081 2081 int orig_mode = spa->spa_mode;
2082 2082 int parse;
2083 2083 uint64_t obj;
2084 2084 boolean_t missing_feat_write = B_FALSE;
2085 2085
2086 2086 /*
2087 2087 * If this is an untrusted config, access the pool in read-only mode.
2088 2088 * This prevents things like resilvering recently removed devices.
2089 2089 */
2090 2090 if (!mosconfig)
2091 2091 spa->spa_mode = FREAD;
2092 2092
2093 2093 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2094 2094
2095 2095 spa->spa_load_state = state;
2096 2096
2097 2097 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2098 2098 return (SET_ERROR(EINVAL));
2099 2099
2100 2100 parse = (type == SPA_IMPORT_EXISTING ?
2101 2101 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2102 2102
2103 2103 /*
2104 2104 * Create "The Godfather" zio to hold all async IOs
2105 2105 */
2106 2106 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2107 2107 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2108 2108
2109 2109 /*
2110 2110 * Parse the configuration into a vdev tree. We explicitly set the
2111 2111 * value that will be returned by spa_version() since parsing the
2112 2112 * configuration requires knowing the version number.
2113 2113 */
2114 2114 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2115 2115 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2116 2116 spa_config_exit(spa, SCL_ALL, FTAG);
2117 2117
2118 2118 if (error != 0)
2119 2119 return (error);
2120 2120
2121 2121 ASSERT(spa->spa_root_vdev == rvd);
2122 2122
2123 2123 if (type != SPA_IMPORT_ASSEMBLE) {
2124 2124 ASSERT(spa_guid(spa) == pool_guid);
2125 2125 }
2126 2126
2127 2127 /*
2128 2128 * Try to open all vdevs, loading each label in the process.
2129 2129 */
2130 2130 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2131 2131 error = vdev_open(rvd);
2132 2132 spa_config_exit(spa, SCL_ALL, FTAG);
2133 2133 if (error != 0)
2134 2134 return (error);
2135 2135
2136 2136 /*
2137 2137 * We need to validate the vdev labels against the configuration that
2138 2138 * we have in hand, which is dependent on the setting of mosconfig. If
2139 2139 * mosconfig is true then we're validating the vdev labels based on
2140 2140 * that config. Otherwise, we're validating against the cached config
2141 2141 * (zpool.cache) that was read when we loaded the zfs module, and then
2142 2142 * later we will recursively call spa_load() and validate against
2143 2143 * the vdev config.
2144 2144 *
2145 2145 * If we're assembling a new pool that's been split off from an
2146 2146 * existing pool, the labels haven't yet been updated so we skip
2147 2147 * validation for now.
2148 2148 */
2149 2149 if (type != SPA_IMPORT_ASSEMBLE) {
2150 2150 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2151 2151 error = vdev_validate(rvd, mosconfig);
2152 2152 spa_config_exit(spa, SCL_ALL, FTAG);
2153 2153
2154 2154 if (error != 0)
2155 2155 return (error);
2156 2156
2157 2157 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2158 2158 return (SET_ERROR(ENXIO));
2159 2159 }
2160 2160
2161 2161 /*
2162 2162 * Find the best uberblock.
2163 2163 */
2164 2164 vdev_uberblock_load(rvd, ub, &label);
2165 2165
2166 2166 /*
2167 2167 * If we weren't able to find a single valid uberblock, return failure.
2168 2168 */
2169 2169 if (ub->ub_txg == 0) {
2170 2170 nvlist_free(label);
2171 2171 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2172 2172 }
2173 2173
2174 2174 /*
2175 2175 * If the pool has an unsupported version we can't open it.
2176 2176 */
2177 2177 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2178 2178 nvlist_free(label);
2179 2179 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2180 2180 }
2181 2181
2182 2182 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2183 2183 nvlist_t *features;
2184 2184
2185 2185 /*
2186 2186 * If we weren't able to find what's necessary for reading the
2187 2187 * MOS in the label, return failure.
2188 2188 */
2189 2189 if (label == NULL || nvlist_lookup_nvlist(label,
2190 2190 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2191 2191 nvlist_free(label);
2192 2192 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2193 2193 ENXIO));
2194 2194 }
2195 2195
2196 2196 /*
2197 2197 * Update our in-core representation with the definitive values
2198 2198 * from the label.
2199 2199 */
2200 2200 nvlist_free(spa->spa_label_features);
2201 2201 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2202 2202 }
2203 2203
2204 2204 nvlist_free(label);
2205 2205
2206 2206 /*
2207 2207 * Look through entries in the label nvlist's features_for_read. If
2208 2208 * there is a feature listed there which we don't understand then we
2209 2209 * cannot open a pool.
2210 2210 */
2211 2211 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2212 2212 nvlist_t *unsup_feat;
2213 2213
2214 2214 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2215 2215 0);
2216 2216
2217 2217 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2218 2218 NULL); nvp != NULL;
2219 2219 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2220 2220 if (!zfeature_is_supported(nvpair_name(nvp))) {
2221 2221 VERIFY(nvlist_add_string(unsup_feat,
2222 2222 nvpair_name(nvp), "") == 0);
2223 2223 }
2224 2224 }
2225 2225
2226 2226 if (!nvlist_empty(unsup_feat)) {
2227 2227 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2228 2228 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2229 2229 nvlist_free(unsup_feat);
2230 2230 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2231 2231 ENOTSUP));
2232 2232 }
2233 2233
2234 2234 nvlist_free(unsup_feat);
2235 2235 }
2236 2236
2237 2237 /*
2238 2238 * If the vdev guid sum doesn't match the uberblock, we have an
2239 2239 * incomplete configuration. We first check to see if the pool
2240 2240 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2241 2241 * If it is, defer the vdev_guid_sum check till later so we
2242 2242 * can handle missing vdevs.
2243 2243 */
2244 2244 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2245 2245 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2246 2246 rvd->vdev_guid_sum != ub->ub_guid_sum)
2247 2247 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2248 2248
2249 2249 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2250 2250 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2251 2251 spa_try_repair(spa, config);
2252 2252 spa_config_exit(spa, SCL_ALL, FTAG);
2253 2253 nvlist_free(spa->spa_config_splitting);
2254 2254 spa->spa_config_splitting = NULL;
2255 2255 }
2256 2256
2257 2257 /*
2258 2258 * Initialize internal SPA structures.
2259 2259 */
2260 2260 spa->spa_state = POOL_STATE_ACTIVE;
2261 2261 spa->spa_ubsync = spa->spa_uberblock;
2262 2262 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2263 2263 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2264 2264 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2265 2265 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2266 2266 spa->spa_claim_max_txg = spa->spa_first_txg;
2267 2267 spa->spa_prev_software_version = ub->ub_software_version;
2268 2268
2269 2269 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2270 2270 if (error)
2271 2271 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2272 2272 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2273 2273
2274 2274 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2275 2275 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2276 2276
2277 2277 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2278 2278 boolean_t missing_feat_read = B_FALSE;
2279 2279 nvlist_t *unsup_feat, *enabled_feat;
2280 2280
2281 2281 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2282 2282 &spa->spa_feat_for_read_obj) != 0) {
2283 2283 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2284 2284 }
2285 2285
2286 2286 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2287 2287 &spa->spa_feat_for_write_obj) != 0) {
2288 2288 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2289 2289 }
2290 2290
2291 2291 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2292 2292 &spa->spa_feat_desc_obj) != 0) {
2293 2293 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2294 2294 }
2295 2295
2296 2296 enabled_feat = fnvlist_alloc();
2297 2297 unsup_feat = fnvlist_alloc();
2298 2298
2299 2299 if (!feature_is_supported(spa->spa_meta_objset,
2300 2300 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2301 2301 unsup_feat, enabled_feat))
2302 2302 missing_feat_read = B_TRUE;
2303 2303
2304 2304 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2305 2305 if (!feature_is_supported(spa->spa_meta_objset,
2306 2306 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2307 2307 unsup_feat, enabled_feat)) {
2308 2308 missing_feat_write = B_TRUE;
2309 2309 }
2310 2310 }
2311 2311
2312 2312 fnvlist_add_nvlist(spa->spa_load_info,
2313 2313 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2314 2314
2315 2315 if (!nvlist_empty(unsup_feat)) {
2316 2316 fnvlist_add_nvlist(spa->spa_load_info,
2317 2317 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2318 2318 }
2319 2319
2320 2320 fnvlist_free(enabled_feat);
2321 2321 fnvlist_free(unsup_feat);
2322 2322
2323 2323 if (!missing_feat_read) {
2324 2324 fnvlist_add_boolean(spa->spa_load_info,
2325 2325 ZPOOL_CONFIG_CAN_RDONLY);
2326 2326 }
2327 2327
2328 2328 /*
2329 2329 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2330 2330 * twofold: to determine whether the pool is available for
2331 2331 * import in read-write mode and (if it is not) whether the
2332 2332 * pool is available for import in read-only mode. If the pool
2333 2333 * is available for import in read-write mode, it is displayed
2334 2334 * as available in userland; if it is not available for import
2335 2335 * in read-only mode, it is displayed as unavailable in
2336 2336 * userland. If the pool is available for import in read-only
2337 2337 * mode but not read-write mode, it is displayed as unavailable
2338 2338 * in userland with a special note that the pool is actually
2339 2339 * available for open in read-only mode.
2340 2340 *
2341 2341 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2342 2342 * missing a feature for write, we must first determine whether
2343 2343 * the pool can be opened read-only before returning to
2344 2344 * userland in order to know whether to display the
2345 2345 * abovementioned note.
2346 2346 */
2347 2347 if (missing_feat_read || (missing_feat_write &&
2348 2348 spa_writeable(spa))) {
2349 2349 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2350 2350 ENOTSUP));
2351 2351 }
2352 2352 }
2353 2353
2354 2354 spa->spa_is_initializing = B_TRUE;
2355 2355 error = dsl_pool_open(spa->spa_dsl_pool);
2356 2356 spa->spa_is_initializing = B_FALSE;
2357 2357 if (error != 0)
2358 2358 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2359 2359
2360 2360 if (!mosconfig) {
2361 2361 uint64_t hostid;
2362 2362 nvlist_t *policy = NULL, *nvconfig;
2363 2363
2364 2364 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2365 2365 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2366 2366
2367 2367 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2368 2368 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2369 2369 char *hostname;
2370 2370 unsigned long myhostid = 0;
2371 2371
2372 2372 VERIFY(nvlist_lookup_string(nvconfig,
2373 2373 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2374 2374
2375 2375 #ifdef _KERNEL
2376 2376 myhostid = zone_get_hostid(NULL);
2377 2377 #else /* _KERNEL */
2378 2378 /*
2379 2379 * We're emulating the system's hostid in userland, so
2380 2380 * we can't use zone_get_hostid().
2381 2381 */
2382 2382 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2383 2383 #endif /* _KERNEL */
2384 2384 if (hostid != 0 && myhostid != 0 &&
2385 2385 hostid != myhostid) {
2386 2386 nvlist_free(nvconfig);
2387 2387 cmn_err(CE_WARN, "pool '%s' could not be "
2388 2388 "loaded as it was last accessed by "
2389 2389 "another system (host: %s hostid: 0x%lx). "
2390 2390 "See: http://illumos.org/msg/ZFS-8000-EY",
2391 2391 spa_name(spa), hostname,
2392 2392 (unsigned long)hostid);
2393 2393 return (SET_ERROR(EBADF));
2394 2394 }
2395 2395 }
2396 2396 if (nvlist_lookup_nvlist(spa->spa_config,
2397 2397 ZPOOL_REWIND_POLICY, &policy) == 0)
2398 2398 VERIFY(nvlist_add_nvlist(nvconfig,
2399 2399 ZPOOL_REWIND_POLICY, policy) == 0);
2400 2400
2401 2401 spa_config_set(spa, nvconfig);
2402 2402 spa_unload(spa);
2403 2403 spa_deactivate(spa);
2404 2404 spa_activate(spa, orig_mode);
2405 2405
2406 2406 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2407 2407 }
2408 2408
2409 2409 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2410 2410 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2411 2411 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2412 2412 if (error != 0)
2413 2413 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2414 2414
2415 2415 /*
2416 2416 * Load the bit that tells us to use the new accounting function
2417 2417 * (raid-z deflation). If we have an older pool, this will not
2418 2418 * be present.
2419 2419 */
2420 2420 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2421 2421 if (error != 0 && error != ENOENT)
2422 2422 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2423 2423
2424 2424 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2425 2425 &spa->spa_creation_version);
2426 2426 if (error != 0 && error != ENOENT)
2427 2427 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2428 2428
2429 2429 /*
2430 2430 * Load the persistent error log. If we have an older pool, this will
2431 2431 * not be present.
2432 2432 */
2433 2433 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2434 2434 if (error != 0 && error != ENOENT)
2435 2435 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2436 2436
2437 2437 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2438 2438 &spa->spa_errlog_scrub);
2439 2439 if (error != 0 && error != ENOENT)
2440 2440 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2441 2441
2442 2442 /*
2443 2443 * Load the history object. If we have an older pool, this
2444 2444 * will not be present.
2445 2445 */
2446 2446 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2447 2447 if (error != 0 && error != ENOENT)
2448 2448 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2449 2449
2450 2450 /*
2451 2451 * If we're assembling the pool from the split-off vdevs of
2452 2452 * an existing pool, we don't want to attach the spares & cache
2453 2453 * devices.
2454 2454 */
2455 2455
2456 2456 /*
2457 2457 * Load any hot spares for this pool.
2458 2458 */
2459 2459 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2460 2460 if (error != 0 && error != ENOENT)
2461 2461 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2462 2462 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2463 2463 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2464 2464 if (load_nvlist(spa, spa->spa_spares.sav_object,
2465 2465 &spa->spa_spares.sav_config) != 0)
2466 2466 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2467 2467
2468 2468 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2469 2469 spa_load_spares(spa);
2470 2470 spa_config_exit(spa, SCL_ALL, FTAG);
2471 2471 } else if (error == 0) {
2472 2472 spa->spa_spares.sav_sync = B_TRUE;
2473 2473 }
2474 2474
2475 2475 /*
2476 2476 * Load any level 2 ARC devices for this pool.
2477 2477 */
2478 2478 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2479 2479 &spa->spa_l2cache.sav_object);
2480 2480 if (error != 0 && error != ENOENT)
2481 2481 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2482 2482 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2483 2483 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2484 2484 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2485 2485 &spa->spa_l2cache.sav_config) != 0)
2486 2486 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2487 2487
2488 2488 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2489 2489 spa_load_l2cache(spa);
2490 2490 spa_config_exit(spa, SCL_ALL, FTAG);
2491 2491 } else if (error == 0) {
2492 2492 spa->spa_l2cache.sav_sync = B_TRUE;
2493 2493 }
2494 2494
2495 2495 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2496 2496
2497 2497 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2498 2498 if (error && error != ENOENT)
2499 2499 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2500 2500
2501 2501 if (error == 0) {
2502 2502 uint64_t autoreplace;
2503 2503
2504 2504 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2505 2505 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2506 2506 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2507 2507 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2508 2508 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2509 2509 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2510 2510 &spa->spa_dedup_ditto);
2511 2511
2512 2512 spa->spa_autoreplace = (autoreplace != 0);
2513 2513 }
2514 2514
2515 2515 /*
2516 2516 * If the 'autoreplace' property is set, then post a resource notifying
2517 2517 * the ZFS DE that it should not issue any faults for unopenable
2518 2518 * devices. We also iterate over the vdevs, and post a sysevent for any
2519 2519 * unopenable vdevs so that the normal autoreplace handler can take
2520 2520 * over.
2521 2521 */
2522 2522 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2523 2523 spa_check_removed(spa->spa_root_vdev);
2524 2524 /*
2525 2525 * For the import case, this is done in spa_import(), because
2526 2526 * at this point we're using the spare definitions from
2527 2527 * the MOS config, not necessarily from the userland config.
2528 2528 */
2529 2529 if (state != SPA_LOAD_IMPORT) {
2530 2530 spa_aux_check_removed(&spa->spa_spares);
2531 2531 spa_aux_check_removed(&spa->spa_l2cache);
2532 2532 }
2533 2533 }
2534 2534
2535 2535 /*
2536 2536 * Load the vdev state for all toplevel vdevs.
2537 2537 */
2538 2538 vdev_load(rvd);
2539 2539
2540 2540 /*
2541 2541 * Propagate the leaf DTLs we just loaded all the way up the tree.
2542 2542 */
2543 2543 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2544 2544 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2545 2545 spa_config_exit(spa, SCL_ALL, FTAG);
2546 2546
2547 2547 /*
2548 2548 * Load the DDTs (dedup tables).
2549 2549 */
2550 2550 error = ddt_load(spa);
2551 2551 if (error != 0)
2552 2552 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2553 2553
2554 2554 spa_update_dspace(spa);
2555 2555
2556 2556 /*
2557 2557 * Validate the config, using the MOS config to fill in any
2558 2558 * information which might be missing. If we fail to validate
2559 2559 * the config then declare the pool unfit for use. If we're
2560 2560 * assembling a pool from a split, the log is not transferred
2561 2561 * over.
2562 2562 */
2563 2563 if (type != SPA_IMPORT_ASSEMBLE) {
2564 2564 nvlist_t *nvconfig;
2565 2565
2566 2566 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2567 2567 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2568 2568
2569 2569 if (!spa_config_valid(spa, nvconfig)) {
2570 2570 nvlist_free(nvconfig);
2571 2571 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2572 2572 ENXIO));
2573 2573 }
2574 2574 nvlist_free(nvconfig);
2575 2575
2576 2576 /*
2577 2577 * Now that we've validated the config, check the state of the
2578 2578 * root vdev. If it can't be opened, it indicates one or
2579 2579 * more toplevel vdevs are faulted.
2580 2580 */
2581 2581 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2582 2582 return (SET_ERROR(ENXIO));
2583 2583
2584 2584 if (spa_check_logs(spa)) {
2585 2585 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2586 2586 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2587 2587 }
2588 2588 }
2589 2589
2590 2590 if (missing_feat_write) {
2591 2591 ASSERT(state == SPA_LOAD_TRYIMPORT);
2592 2592
2593 2593 /*
2594 2594 * At this point, we know that we can open the pool in
2595 2595 * read-only mode but not read-write mode. We now have enough
2596 2596 * information and can return to userland.
2597 2597 */
2598 2598 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2599 2599 }
2600 2600
2601 2601 /*
2602 2602 * We've successfully opened the pool, verify that we're ready
2603 2603 * to start pushing transactions.
2604 2604 */
2605 2605 if (state != SPA_LOAD_TRYIMPORT) {
2606 2606 if (error = spa_load_verify(spa))
2607 2607 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2608 2608 error));
2609 2609 }
2610 2610
2611 2611 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2612 2612 spa->spa_load_max_txg == UINT64_MAX)) {
2613 2613 dmu_tx_t *tx;
2614 2614 int need_update = B_FALSE;
2615 2615
2616 2616 ASSERT(state != SPA_LOAD_TRYIMPORT);
2617 2617
2618 2618 /*
2619 2619 * Claim log blocks that haven't been committed yet.
2620 2620 * This must all happen in a single txg.
2621 2621 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2622 2622 * invoked from zil_claim_log_block()'s i/o done callback.
2623 2623 * Price of rollback is that we abandon the log.
2624 2624 */
2625 2625 spa->spa_claiming = B_TRUE;
2626 2626
2627 2627 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2628 2628 spa_first_txg(spa));
2629 2629 (void) dmu_objset_find(spa_name(spa),
2630 2630 zil_claim, tx, DS_FIND_CHILDREN);
2631 2631 dmu_tx_commit(tx);
2632 2632
2633 2633 spa->spa_claiming = B_FALSE;
2634 2634
2635 2635 spa_set_log_state(spa, SPA_LOG_GOOD);
2636 2636 spa->spa_sync_on = B_TRUE;
2637 2637 txg_sync_start(spa->spa_dsl_pool);
2638 2638
2639 2639 /*
2640 2640 * Wait for all claims to sync. We sync up to the highest
2641 2641 * claimed log block birth time so that claimed log blocks
2642 2642 * don't appear to be from the future. spa_claim_max_txg
2643 2643 * will have been set for us by either zil_check_log_chain()
2644 2644 * (invoked from spa_check_logs()) or zil_claim() above.
2645 2645 */
2646 2646 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2647 2647
2648 2648 /*
2649 2649 * If the config cache is stale, or we have uninitialized
2650 2650 * metaslabs (see spa_vdev_add()), then update the config.
2651 2651 *
2652 2652 * If this is a verbatim import, trust the current
2653 2653 * in-core spa_config and update the disk labels.
2654 2654 */
2655 2655 if (config_cache_txg != spa->spa_config_txg ||
2656 2656 state == SPA_LOAD_IMPORT ||
2657 2657 state == SPA_LOAD_RECOVER ||
2658 2658 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2659 2659 need_update = B_TRUE;
2660 2660
2661 2661 for (int c = 0; c < rvd->vdev_children; c++)
2662 2662 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2663 2663 need_update = B_TRUE;
2664 2664
2665 2665 /*
2666 2666 * Update the config cache asychronously in case we're the
2667 2667 * root pool, in which case the config cache isn't writable yet.
2668 2668 */
2669 2669 if (need_update)
2670 2670 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2671 2671
2672 2672 /*
2673 2673 * Check all DTLs to see if anything needs resilvering.
2674 2674 */
2675 2675 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2676 2676 vdev_resilver_needed(rvd, NULL, NULL))
2677 2677 spa_async_request(spa, SPA_ASYNC_RESILVER);
2678 2678
2679 2679 /*
2680 2680 * Log the fact that we booted up (so that we can detect if
2681 2681 * we rebooted in the middle of an operation).
2682 2682 */
2683 2683 spa_history_log_version(spa, "open");
2684 2684
2685 2685 /*
2686 2686 * Delete any inconsistent datasets.
2687 2687 */
2688 2688 (void) dmu_objset_find(spa_name(spa),
2689 2689 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2690 2690
2691 2691 /*
2692 2692 * Clean up any stale temporary dataset userrefs.
2693 2693 */
2694 2694 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2695 2695 }
2696 2696
2697 2697 return (0);
2698 2698 }
2699 2699
2700 2700 static int
2701 2701 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2702 2702 {
2703 2703 int mode = spa->spa_mode;
2704 2704
2705 2705 spa_unload(spa);
2706 2706 spa_deactivate(spa);
2707 2707
2708 2708 spa->spa_load_max_txg--;
2709 2709
2710 2710 spa_activate(spa, mode);
2711 2711 spa_async_suspend(spa);
2712 2712
2713 2713 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2714 2714 }
2715 2715
2716 2716 /*
2717 2717 * If spa_load() fails this function will try loading prior txg's. If
2718 2718 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2719 2719 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2720 2720 * function will not rewind the pool and will return the same error as
2721 2721 * spa_load().
2722 2722 */
2723 2723 static int
2724 2724 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2725 2725 uint64_t max_request, int rewind_flags)
2726 2726 {
2727 2727 nvlist_t *loadinfo = NULL;
2728 2728 nvlist_t *config = NULL;
2729 2729 int load_error, rewind_error;
2730 2730 uint64_t safe_rewind_txg;
2731 2731 uint64_t min_txg;
2732 2732
2733 2733 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2734 2734 spa->spa_load_max_txg = spa->spa_load_txg;
2735 2735 spa_set_log_state(spa, SPA_LOG_CLEAR);
2736 2736 } else {
2737 2737 spa->spa_load_max_txg = max_request;
2738 2738 }
2739 2739
2740 2740 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2741 2741 mosconfig);
2742 2742 if (load_error == 0)
2743 2743 return (0);
2744 2744
2745 2745 if (spa->spa_root_vdev != NULL)
2746 2746 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2747 2747
2748 2748 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2749 2749 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2750 2750
2751 2751 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2752 2752 nvlist_free(config);
2753 2753 return (load_error);
2754 2754 }
2755 2755
2756 2756 if (state == SPA_LOAD_RECOVER) {
2757 2757 /* Price of rolling back is discarding txgs, including log */
2758 2758 spa_set_log_state(spa, SPA_LOG_CLEAR);
2759 2759 } else {
2760 2760 /*
2761 2761 * If we aren't rolling back save the load info from our first
2762 2762 * import attempt so that we can restore it after attempting
2763 2763 * to rewind.
2764 2764 */
2765 2765 loadinfo = spa->spa_load_info;
2766 2766 spa->spa_load_info = fnvlist_alloc();
2767 2767 }
2768 2768
2769 2769 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2770 2770 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2771 2771 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2772 2772 TXG_INITIAL : safe_rewind_txg;
2773 2773
2774 2774 /*
2775 2775 * Continue as long as we're finding errors, we're still within
2776 2776 * the acceptable rewind range, and we're still finding uberblocks
2777 2777 */
2778 2778 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2779 2779 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2780 2780 if (spa->spa_load_max_txg < safe_rewind_txg)
2781 2781 spa->spa_extreme_rewind = B_TRUE;
2782 2782 rewind_error = spa_load_retry(spa, state, mosconfig);
2783 2783 }
2784 2784
2785 2785 spa->spa_extreme_rewind = B_FALSE;
2786 2786 spa->spa_load_max_txg = UINT64_MAX;
2787 2787
2788 2788 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2789 2789 spa_config_set(spa, config);
2790 2790
2791 2791 if (state == SPA_LOAD_RECOVER) {
2792 2792 ASSERT3P(loadinfo, ==, NULL);
2793 2793 return (rewind_error);
2794 2794 } else {
2795 2795 /* Store the rewind info as part of the initial load info */
2796 2796 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2797 2797 spa->spa_load_info);
2798 2798
2799 2799 /* Restore the initial load info */
2800 2800 fnvlist_free(spa->spa_load_info);
2801 2801 spa->spa_load_info = loadinfo;
2802 2802
2803 2803 return (load_error);
2804 2804 }
2805 2805 }
2806 2806
2807 2807 /*
2808 2808 * Pool Open/Import
2809 2809 *
2810 2810 * The import case is identical to an open except that the configuration is sent
2811 2811 * down from userland, instead of grabbed from the configuration cache. For the
2812 2812 * case of an open, the pool configuration will exist in the
2813 2813 * POOL_STATE_UNINITIALIZED state.
2814 2814 *
2815 2815 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2816 2816 * the same time open the pool, without having to keep around the spa_t in some
2817 2817 * ambiguous state.
2818 2818 */
2819 2819 static int
2820 2820 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2821 2821 nvlist_t **config)
2822 2822 {
2823 2823 spa_t *spa;
2824 2824 spa_load_state_t state = SPA_LOAD_OPEN;
2825 2825 int error;
2826 2826 int locked = B_FALSE;
2827 2827
2828 2828 *spapp = NULL;
2829 2829
2830 2830 /*
2831 2831 * As disgusting as this is, we need to support recursive calls to this
2832 2832 * function because dsl_dir_open() is called during spa_load(), and ends
2833 2833 * up calling spa_open() again. The real fix is to figure out how to
2834 2834 * avoid dsl_dir_open() calling this in the first place.
2835 2835 */
2836 2836 if (mutex_owner(&spa_namespace_lock) != curthread) {
2837 2837 mutex_enter(&spa_namespace_lock);
2838 2838 locked = B_TRUE;
2839 2839 }
2840 2840
2841 2841 if ((spa = spa_lookup(pool)) == NULL) {
2842 2842 if (locked)
2843 2843 mutex_exit(&spa_namespace_lock);
2844 2844 return (SET_ERROR(ENOENT));
2845 2845 }
2846 2846
2847 2847 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2848 2848 zpool_rewind_policy_t policy;
2849 2849
2850 2850 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2851 2851 &policy);
2852 2852 if (policy.zrp_request & ZPOOL_DO_REWIND)
2853 2853 state = SPA_LOAD_RECOVER;
2854 2854
2855 2855 spa_activate(spa, spa_mode_global);
2856 2856
2857 2857 if (state != SPA_LOAD_RECOVER)
2858 2858 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2859 2859
2860 2860 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2861 2861 policy.zrp_request);
2862 2862
2863 2863 if (error == EBADF) {
2864 2864 /*
2865 2865 * If vdev_validate() returns failure (indicated by
2866 2866 * EBADF), it indicates that one of the vdevs indicates
2867 2867 * that the pool has been exported or destroyed. If
2868 2868 * this is the case, the config cache is out of sync and
2869 2869 * we should remove the pool from the namespace.
2870 2870 */
2871 2871 spa_unload(spa);
2872 2872 spa_deactivate(spa);
2873 2873 spa_config_sync(spa, B_TRUE, B_TRUE);
2874 2874 spa_remove(spa);
2875 2875 if (locked)
2876 2876 mutex_exit(&spa_namespace_lock);
2877 2877 return (SET_ERROR(ENOENT));
2878 2878 }
2879 2879
2880 2880 if (error) {
2881 2881 /*
2882 2882 * We can't open the pool, but we still have useful
2883 2883 * information: the state of each vdev after the
2884 2884 * attempted vdev_open(). Return this to the user.
2885 2885 */
2886 2886 if (config != NULL && spa->spa_config) {
2887 2887 VERIFY(nvlist_dup(spa->spa_config, config,
2888 2888 KM_SLEEP) == 0);
2889 2889 VERIFY(nvlist_add_nvlist(*config,
2890 2890 ZPOOL_CONFIG_LOAD_INFO,
2891 2891 spa->spa_load_info) == 0);
2892 2892 }
2893 2893 spa_unload(spa);
2894 2894 spa_deactivate(spa);
2895 2895 spa->spa_last_open_failed = error;
2896 2896 if (locked)
2897 2897 mutex_exit(&spa_namespace_lock);
2898 2898 *spapp = NULL;
2899 2899 return (error);
2900 2900 }
2901 2901 }
2902 2902
2903 2903 spa_open_ref(spa, tag);
2904 2904
2905 2905 if (config != NULL)
2906 2906 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2907 2907
2908 2908 /*
2909 2909 * If we've recovered the pool, pass back any information we
2910 2910 * gathered while doing the load.
2911 2911 */
2912 2912 if (state == SPA_LOAD_RECOVER) {
2913 2913 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2914 2914 spa->spa_load_info) == 0);
2915 2915 }
2916 2916
2917 2917 if (locked) {
2918 2918 spa->spa_last_open_failed = 0;
2919 2919 spa->spa_last_ubsync_txg = 0;
2920 2920 spa->spa_load_txg = 0;
2921 2921 mutex_exit(&spa_namespace_lock);
2922 2922 }
2923 2923
2924 2924 *spapp = spa;
2925 2925
2926 2926 return (0);
2927 2927 }
2928 2928
2929 2929 int
2930 2930 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2931 2931 nvlist_t **config)
2932 2932 {
2933 2933 return (spa_open_common(name, spapp, tag, policy, config));
2934 2934 }
2935 2935
2936 2936 int
2937 2937 spa_open(const char *name, spa_t **spapp, void *tag)
2938 2938 {
2939 2939 return (spa_open_common(name, spapp, tag, NULL, NULL));
2940 2940 }
2941 2941
2942 2942 /*
2943 2943 * Lookup the given spa_t, incrementing the inject count in the process,
2944 2944 * preventing it from being exported or destroyed.
2945 2945 */
2946 2946 spa_t *
2947 2947 spa_inject_addref(char *name)
2948 2948 {
2949 2949 spa_t *spa;
2950 2950
2951 2951 mutex_enter(&spa_namespace_lock);
2952 2952 if ((spa = spa_lookup(name)) == NULL) {
2953 2953 mutex_exit(&spa_namespace_lock);
2954 2954 return (NULL);
2955 2955 }
2956 2956 spa->spa_inject_ref++;
2957 2957 mutex_exit(&spa_namespace_lock);
2958 2958
2959 2959 return (spa);
2960 2960 }
2961 2961
2962 2962 void
2963 2963 spa_inject_delref(spa_t *spa)
2964 2964 {
2965 2965 mutex_enter(&spa_namespace_lock);
2966 2966 spa->spa_inject_ref--;
2967 2967 mutex_exit(&spa_namespace_lock);
2968 2968 }
2969 2969
2970 2970 /*
2971 2971 * Add spares device information to the nvlist.
2972 2972 */
2973 2973 static void
2974 2974 spa_add_spares(spa_t *spa, nvlist_t *config)
2975 2975 {
2976 2976 nvlist_t **spares;
2977 2977 uint_t i, nspares;
2978 2978 nvlist_t *nvroot;
2979 2979 uint64_t guid;
2980 2980 vdev_stat_t *vs;
2981 2981 uint_t vsc;
2982 2982 uint64_t pool;
2983 2983
2984 2984 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2985 2985
2986 2986 if (spa->spa_spares.sav_count == 0)
2987 2987 return;
2988 2988
2989 2989 VERIFY(nvlist_lookup_nvlist(config,
2990 2990 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2991 2991 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2992 2992 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2993 2993 if (nspares != 0) {
2994 2994 VERIFY(nvlist_add_nvlist_array(nvroot,
2995 2995 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2996 2996 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2997 2997 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2998 2998
2999 2999 /*
3000 3000 * Go through and find any spares which have since been
3001 3001 * repurposed as an active spare. If this is the case, update
3002 3002 * their status appropriately.
3003 3003 */
3004 3004 for (i = 0; i < nspares; i++) {
3005 3005 VERIFY(nvlist_lookup_uint64(spares[i],
3006 3006 ZPOOL_CONFIG_GUID, &guid) == 0);
3007 3007 if (spa_spare_exists(guid, &pool, NULL) &&
3008 3008 pool != 0ULL) {
3009 3009 VERIFY(nvlist_lookup_uint64_array(
3010 3010 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3011 3011 (uint64_t **)&vs, &vsc) == 0);
3012 3012 vs->vs_state = VDEV_STATE_CANT_OPEN;
3013 3013 vs->vs_aux = VDEV_AUX_SPARED;
3014 3014 }
3015 3015 }
3016 3016 }
3017 3017 }
3018 3018
3019 3019 /*
3020 3020 * Add l2cache device information to the nvlist, including vdev stats.
3021 3021 */
3022 3022 static void
3023 3023 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3024 3024 {
3025 3025 nvlist_t **l2cache;
3026 3026 uint_t i, j, nl2cache;
3027 3027 nvlist_t *nvroot;
3028 3028 uint64_t guid;
3029 3029 vdev_t *vd;
3030 3030 vdev_stat_t *vs;
3031 3031 uint_t vsc;
3032 3032
3033 3033 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3034 3034
3035 3035 if (spa->spa_l2cache.sav_count == 0)
3036 3036 return;
3037 3037
3038 3038 VERIFY(nvlist_lookup_nvlist(config,
3039 3039 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3040 3040 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3041 3041 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3042 3042 if (nl2cache != 0) {
3043 3043 VERIFY(nvlist_add_nvlist_array(nvroot,
3044 3044 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3045 3045 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3046 3046 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3047 3047
3048 3048 /*
3049 3049 * Update level 2 cache device stats.
3050 3050 */
3051 3051
3052 3052 for (i = 0; i < nl2cache; i++) {
3053 3053 VERIFY(nvlist_lookup_uint64(l2cache[i],
3054 3054 ZPOOL_CONFIG_GUID, &guid) == 0);
3055 3055
3056 3056 vd = NULL;
3057 3057 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3058 3058 if (guid ==
3059 3059 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3060 3060 vd = spa->spa_l2cache.sav_vdevs[j];
3061 3061 break;
3062 3062 }
3063 3063 }
3064 3064 ASSERT(vd != NULL);
3065 3065
3066 3066 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3067 3067 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3068 3068 == 0);
3069 3069 vdev_get_stats(vd, vs);
3070 3070 }
3071 3071 }
3072 3072 }
3073 3073
3074 3074 static void
3075 3075 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3076 3076 {
3077 3077 nvlist_t *features;
3078 3078 zap_cursor_t zc;
3079 3079 zap_attribute_t za;
3080 3080
3081 3081 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3082 3082 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3083 3083
3084 3084 if (spa->spa_feat_for_read_obj != 0) {
3085 3085 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3086 3086 spa->spa_feat_for_read_obj);
3087 3087 zap_cursor_retrieve(&zc, &za) == 0;
3088 3088 zap_cursor_advance(&zc)) {
3089 3089 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3090 3090 za.za_num_integers == 1);
3091 3091 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3092 3092 za.za_first_integer));
3093 3093 }
3094 3094 zap_cursor_fini(&zc);
3095 3095 }
3096 3096
3097 3097 if (spa->spa_feat_for_write_obj != 0) {
3098 3098 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3099 3099 spa->spa_feat_for_write_obj);
3100 3100 zap_cursor_retrieve(&zc, &za) == 0;
3101 3101 zap_cursor_advance(&zc)) {
3102 3102 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3103 3103 za.za_num_integers == 1);
3104 3104 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3105 3105 za.za_first_integer));
3106 3106 }
3107 3107 zap_cursor_fini(&zc);
3108 3108 }
3109 3109
3110 3110 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3111 3111 features) == 0);
3112 3112 nvlist_free(features);
3113 3113 }
3114 3114
3115 3115 int
3116 3116 spa_get_stats(const char *name, nvlist_t **config,
3117 3117 char *altroot, size_t buflen)
3118 3118 {
3119 3119 int error;
3120 3120 spa_t *spa;
3121 3121
3122 3122 *config = NULL;
3123 3123 error = spa_open_common(name, &spa, FTAG, NULL, config);
3124 3124
3125 3125 if (spa != NULL) {
3126 3126 /*
3127 3127 * This still leaves a window of inconsistency where the spares
3128 3128 * or l2cache devices could change and the config would be
3129 3129 * self-inconsistent.
3130 3130 */
3131 3131 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3132 3132
3133 3133 if (*config != NULL) {
3134 3134 uint64_t loadtimes[2];
3135 3135
3136 3136 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3137 3137 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3138 3138 VERIFY(nvlist_add_uint64_array(*config,
3139 3139 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3140 3140
3141 3141 VERIFY(nvlist_add_uint64(*config,
3142 3142 ZPOOL_CONFIG_ERRCOUNT,
3143 3143 spa_get_errlog_size(spa)) == 0);
3144 3144
3145 3145 if (spa_suspended(spa))
3146 3146 VERIFY(nvlist_add_uint64(*config,
3147 3147 ZPOOL_CONFIG_SUSPENDED,
3148 3148 spa->spa_failmode) == 0);
3149 3149
3150 3150 spa_add_spares(spa, *config);
3151 3151 spa_add_l2cache(spa, *config);
3152 3152 spa_add_feature_stats(spa, *config);
3153 3153 }
3154 3154 }
3155 3155
3156 3156 /*
3157 3157 * We want to get the alternate root even for faulted pools, so we cheat
3158 3158 * and call spa_lookup() directly.
3159 3159 */
3160 3160 if (altroot) {
3161 3161 if (spa == NULL) {
3162 3162 mutex_enter(&spa_namespace_lock);
3163 3163 spa = spa_lookup(name);
3164 3164 if (spa)
3165 3165 spa_altroot(spa, altroot, buflen);
3166 3166 else
3167 3167 altroot[0] = '\0';
3168 3168 spa = NULL;
3169 3169 mutex_exit(&spa_namespace_lock);
3170 3170 } else {
3171 3171 spa_altroot(spa, altroot, buflen);
3172 3172 }
3173 3173 }
3174 3174
3175 3175 if (spa != NULL) {
3176 3176 spa_config_exit(spa, SCL_CONFIG, FTAG);
3177 3177 spa_close(spa, FTAG);
3178 3178 }
3179 3179
3180 3180 return (error);
3181 3181 }
3182 3182
3183 3183 /*
3184 3184 * Validate that the auxiliary device array is well formed. We must have an
3185 3185 * array of nvlists, each which describes a valid leaf vdev. If this is an
3186 3186 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3187 3187 * specified, as long as they are well-formed.
3188 3188 */
3189 3189 static int
3190 3190 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3191 3191 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3192 3192 vdev_labeltype_t label)
3193 3193 {
3194 3194 nvlist_t **dev;
3195 3195 uint_t i, ndev;
3196 3196 vdev_t *vd;
3197 3197 int error;
3198 3198
3199 3199 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3200 3200
3201 3201 /*
3202 3202 * It's acceptable to have no devs specified.
3203 3203 */
3204 3204 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3205 3205 return (0);
3206 3206
3207 3207 if (ndev == 0)
3208 3208 return (SET_ERROR(EINVAL));
3209 3209
3210 3210 /*
3211 3211 * Make sure the pool is formatted with a version that supports this
3212 3212 * device type.
3213 3213 */
3214 3214 if (spa_version(spa) < version)
3215 3215 return (SET_ERROR(ENOTSUP));
3216 3216
3217 3217 /*
3218 3218 * Set the pending device list so we correctly handle device in-use
3219 3219 * checking.
3220 3220 */
3221 3221 sav->sav_pending = dev;
3222 3222 sav->sav_npending = ndev;
3223 3223
3224 3224 for (i = 0; i < ndev; i++) {
3225 3225 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3226 3226 mode)) != 0)
3227 3227 goto out;
3228 3228
3229 3229 if (!vd->vdev_ops->vdev_op_leaf) {
3230 3230 vdev_free(vd);
3231 3231 error = SET_ERROR(EINVAL);
3232 3232 goto out;
3233 3233 }
3234 3234
3235 3235 /*
3236 3236 * The L2ARC currently only supports disk devices in
3237 3237 * kernel context. For user-level testing, we allow it.
3238 3238 */
3239 3239 #ifdef _KERNEL
3240 3240 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3241 3241 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3242 3242 error = SET_ERROR(ENOTBLK);
3243 3243 vdev_free(vd);
3244 3244 goto out;
3245 3245 }
3246 3246 #endif
3247 3247 vd->vdev_top = vd;
3248 3248
3249 3249 if ((error = vdev_open(vd)) == 0 &&
3250 3250 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3251 3251 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3252 3252 vd->vdev_guid) == 0);
3253 3253 }
3254 3254
3255 3255 vdev_free(vd);
3256 3256
3257 3257 if (error &&
3258 3258 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3259 3259 goto out;
3260 3260 else
3261 3261 error = 0;
3262 3262 }
3263 3263
3264 3264 out:
3265 3265 sav->sav_pending = NULL;
3266 3266 sav->sav_npending = 0;
3267 3267 return (error);
3268 3268 }
3269 3269
3270 3270 static int
3271 3271 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3272 3272 {
3273 3273 int error;
3274 3274
3275 3275 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3276 3276
3277 3277 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3278 3278 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3279 3279 VDEV_LABEL_SPARE)) != 0) {
3280 3280 return (error);
3281 3281 }
3282 3282
3283 3283 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3284 3284 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3285 3285 VDEV_LABEL_L2CACHE));
3286 3286 }
3287 3287
3288 3288 static void
3289 3289 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3290 3290 const char *config)
3291 3291 {
3292 3292 int i;
3293 3293
3294 3294 if (sav->sav_config != NULL) {
3295 3295 nvlist_t **olddevs;
3296 3296 uint_t oldndevs;
3297 3297 nvlist_t **newdevs;
3298 3298
3299 3299 /*
3300 3300 * Generate new dev list by concatentating with the
3301 3301 * current dev list.
3302 3302 */
3303 3303 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3304 3304 &olddevs, &oldndevs) == 0);
3305 3305
3306 3306 newdevs = kmem_alloc(sizeof (void *) *
3307 3307 (ndevs + oldndevs), KM_SLEEP);
3308 3308 for (i = 0; i < oldndevs; i++)
3309 3309 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3310 3310 KM_SLEEP) == 0);
3311 3311 for (i = 0; i < ndevs; i++)
3312 3312 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3313 3313 KM_SLEEP) == 0);
3314 3314
3315 3315 VERIFY(nvlist_remove(sav->sav_config, config,
3316 3316 DATA_TYPE_NVLIST_ARRAY) == 0);
3317 3317
3318 3318 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3319 3319 config, newdevs, ndevs + oldndevs) == 0);
3320 3320 for (i = 0; i < oldndevs + ndevs; i++)
3321 3321 nvlist_free(newdevs[i]);
3322 3322 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3323 3323 } else {
3324 3324 /*
3325 3325 * Generate a new dev list.
3326 3326 */
3327 3327 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3328 3328 KM_SLEEP) == 0);
3329 3329 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3330 3330 devs, ndevs) == 0);
3331 3331 }
3332 3332 }
3333 3333
3334 3334 /*
3335 3335 * Stop and drop level 2 ARC devices
3336 3336 */
3337 3337 void
3338 3338 spa_l2cache_drop(spa_t *spa)
3339 3339 {
3340 3340 vdev_t *vd;
3341 3341 int i;
3342 3342 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3343 3343
3344 3344 for (i = 0; i < sav->sav_count; i++) {
3345 3345 uint64_t pool;
3346 3346
3347 3347 vd = sav->sav_vdevs[i];
3348 3348 ASSERT(vd != NULL);
3349 3349
3350 3350 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3351 3351 pool != 0ULL && l2arc_vdev_present(vd))
3352 3352 l2arc_remove_vdev(vd);
3353 3353 }
3354 3354 }
3355 3355
3356 3356 /*
3357 3357 * Pool Creation
3358 3358 */
3359 3359 int
3360 3360 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3361 3361 nvlist_t *zplprops)
3362 3362 {
3363 3363 spa_t *spa;
3364 3364 char *altroot = NULL;
3365 3365 vdev_t *rvd;
3366 3366 dsl_pool_t *dp;
3367 3367 dmu_tx_t *tx;
3368 3368 int error = 0;
3369 3369 uint64_t txg = TXG_INITIAL;
3370 3370 nvlist_t **spares, **l2cache;
3371 3371 uint_t nspares, nl2cache;
3372 3372 uint64_t version, obj;
3373 3373 boolean_t has_features;
3374 3374
3375 3375 /*
3376 3376 * If this pool already exists, return failure.
3377 3377 */
3378 3378 mutex_enter(&spa_namespace_lock);
3379 3379 if (spa_lookup(pool) != NULL) {
3380 3380 mutex_exit(&spa_namespace_lock);
3381 3381 return (SET_ERROR(EEXIST));
3382 3382 }
3383 3383
3384 3384 /*
3385 3385 * Allocate a new spa_t structure.
3386 3386 */
3387 3387 (void) nvlist_lookup_string(props,
3388 3388 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3389 3389 spa = spa_add(pool, NULL, altroot);
3390 3390 spa_activate(spa, spa_mode_global);
3391 3391
3392 3392 if (props && (error = spa_prop_validate(spa, props))) {
3393 3393 spa_deactivate(spa);
3394 3394 spa_remove(spa);
3395 3395 mutex_exit(&spa_namespace_lock);
3396 3396 return (error);
3397 3397 }
3398 3398
3399 3399 has_features = B_FALSE;
3400 3400 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3401 3401 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3402 3402 if (zpool_prop_feature(nvpair_name(elem)))
3403 3403 has_features = B_TRUE;
3404 3404 }
3405 3405
3406 3406 if (has_features || nvlist_lookup_uint64(props,
3407 3407 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3408 3408 version = SPA_VERSION;
3409 3409 }
3410 3410 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3411 3411
3412 3412 spa->spa_first_txg = txg;
3413 3413 spa->spa_uberblock.ub_txg = txg - 1;
3414 3414 spa->spa_uberblock.ub_version = version;
3415 3415 spa->spa_ubsync = spa->spa_uberblock;
3416 3416
3417 3417 /*
3418 3418 * Create "The Godfather" zio to hold all async IOs
3419 3419 */
3420 3420 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3421 3421 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3422 3422
3423 3423 /*
3424 3424 * Create the root vdev.
3425 3425 */
3426 3426 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3427 3427
3428 3428 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3429 3429
3430 3430 ASSERT(error != 0 || rvd != NULL);
3431 3431 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3432 3432
3433 3433 if (error == 0 && !zfs_allocatable_devs(nvroot))
3434 3434 error = SET_ERROR(EINVAL);
3435 3435
3436 3436 if (error == 0 &&
3437 3437 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3438 3438 (error = spa_validate_aux(spa, nvroot, txg,
3439 3439 VDEV_ALLOC_ADD)) == 0) {
3440 3440 for (int c = 0; c < rvd->vdev_children; c++) {
3441 3441 vdev_metaslab_set_size(rvd->vdev_child[c]);
3442 3442 vdev_expand(rvd->vdev_child[c], txg);
3443 3443 }
3444 3444 }
3445 3445
3446 3446 spa_config_exit(spa, SCL_ALL, FTAG);
3447 3447
3448 3448 if (error != 0) {
3449 3449 spa_unload(spa);
3450 3450 spa_deactivate(spa);
3451 3451 spa_remove(spa);
3452 3452 mutex_exit(&spa_namespace_lock);
3453 3453 return (error);
3454 3454 }
3455 3455
3456 3456 /*
3457 3457 * Get the list of spares, if specified.
3458 3458 */
3459 3459 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3460 3460 &spares, &nspares) == 0) {
3461 3461 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3462 3462 KM_SLEEP) == 0);
3463 3463 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3464 3464 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3465 3465 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3466 3466 spa_load_spares(spa);
3467 3467 spa_config_exit(spa, SCL_ALL, FTAG);
3468 3468 spa->spa_spares.sav_sync = B_TRUE;
3469 3469 }
3470 3470
3471 3471 /*
3472 3472 * Get the list of level 2 cache devices, if specified.
3473 3473 */
3474 3474 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3475 3475 &l2cache, &nl2cache) == 0) {
3476 3476 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3477 3477 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3478 3478 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3479 3479 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3480 3480 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3481 3481 spa_load_l2cache(spa);
3482 3482 spa_config_exit(spa, SCL_ALL, FTAG);
3483 3483 spa->spa_l2cache.sav_sync = B_TRUE;
3484 3484 }
3485 3485
3486 3486 spa->spa_is_initializing = B_TRUE;
3487 3487 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3488 3488 spa->spa_meta_objset = dp->dp_meta_objset;
3489 3489 spa->spa_is_initializing = B_FALSE;
3490 3490
3491 3491 /*
3492 3492 * Create DDTs (dedup tables).
3493 3493 */
3494 3494 ddt_create(spa);
3495 3495
3496 3496 spa_update_dspace(spa);
3497 3497
3498 3498 tx = dmu_tx_create_assigned(dp, txg);
3499 3499
3500 3500 /*
3501 3501 * Create the pool config object.
3502 3502 */
3503 3503 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3504 3504 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3505 3505 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3506 3506
3507 3507 if (zap_add(spa->spa_meta_objset,
3508 3508 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3509 3509 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3510 3510 cmn_err(CE_PANIC, "failed to add pool config");
3511 3511 }
3512 3512
3513 3513 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3514 3514 spa_feature_create_zap_objects(spa, tx);
3515 3515
3516 3516 if (zap_add(spa->spa_meta_objset,
3517 3517 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3518 3518 sizeof (uint64_t), 1, &version, tx) != 0) {
3519 3519 cmn_err(CE_PANIC, "failed to add pool version");
3520 3520 }
3521 3521
3522 3522 /* Newly created pools with the right version are always deflated. */
3523 3523 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3524 3524 spa->spa_deflate = TRUE;
3525 3525 if (zap_add(spa->spa_meta_objset,
3526 3526 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3527 3527 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3528 3528 cmn_err(CE_PANIC, "failed to add deflate");
3529 3529 }
3530 3530 }
3531 3531
3532 3532 /*
3533 3533 * Create the deferred-free bpobj. Turn off compression
3534 3534 * because sync-to-convergence takes longer if the blocksize
3535 3535 * keeps changing.
3536 3536 */
3537 3537 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3538 3538 dmu_object_set_compress(spa->spa_meta_objset, obj,
3539 3539 ZIO_COMPRESS_OFF, tx);
3540 3540 if (zap_add(spa->spa_meta_objset,
3541 3541 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3542 3542 sizeof (uint64_t), 1, &obj, tx) != 0) {
3543 3543 cmn_err(CE_PANIC, "failed to add bpobj");
3544 3544 }
3545 3545 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3546 3546 spa->spa_meta_objset, obj));
3547 3547
3548 3548 /*
3549 3549 * Create the pool's history object.
3550 3550 */
3551 3551 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3552 3552 spa_history_create_obj(spa, tx);
3553 3553
3554 3554 /*
3555 3555 * Set pool properties.
3556 3556 */
3557 3557 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3558 3558 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3559 3559 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3560 3560 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3561 3561
3562 3562 if (props != NULL) {
3563 3563 spa_configfile_set(spa, props, B_FALSE);
3564 3564 spa_sync_props(props, tx);
3565 3565 }
3566 3566
3567 3567 dmu_tx_commit(tx);
3568 3568
3569 3569 spa->spa_sync_on = B_TRUE;
3570 3570 txg_sync_start(spa->spa_dsl_pool);
3571 3571
3572 3572 /*
3573 3573 * We explicitly wait for the first transaction to complete so that our
3574 3574 * bean counters are appropriately updated.
3575 3575 */
3576 3576 txg_wait_synced(spa->spa_dsl_pool, txg);
3577 3577
3578 3578 spa_config_sync(spa, B_FALSE, B_TRUE);
3579 3579
3580 3580 spa_history_log_version(spa, "create");
3581 3581
3582 3582 spa->spa_minref = refcount_count(&spa->spa_refcount);
3583 3583
3584 3584 mutex_exit(&spa_namespace_lock);
3585 3585
3586 3586 return (0);
3587 3587 }
3588 3588
3589 3589 #ifdef _KERNEL
3590 3590 /*
3591 3591 * Get the root pool information from the root disk, then import the root pool
3592 3592 * during the system boot up time.
3593 3593 */
3594 3594 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3595 3595
3596 3596 static nvlist_t *
3597 3597 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3598 3598 {
3599 3599 nvlist_t *config;
3600 3600 nvlist_t *nvtop, *nvroot;
3601 3601 uint64_t pgid;
3602 3602
3603 3603 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3604 3604 return (NULL);
3605 3605
3606 3606 /*
3607 3607 * Add this top-level vdev to the child array.
3608 3608 */
3609 3609 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3610 3610 &nvtop) == 0);
3611 3611 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3612 3612 &pgid) == 0);
3613 3613 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3614 3614
3615 3615 /*
3616 3616 * Put this pool's top-level vdevs into a root vdev.
3617 3617 */
3618 3618 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3619 3619 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3620 3620 VDEV_TYPE_ROOT) == 0);
3621 3621 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3622 3622 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3623 3623 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3624 3624 &nvtop, 1) == 0);
3625 3625
3626 3626 /*
3627 3627 * Replace the existing vdev_tree with the new root vdev in
3628 3628 * this pool's configuration (remove the old, add the new).
3629 3629 */
3630 3630 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3631 3631 nvlist_free(nvroot);
3632 3632 return (config);
3633 3633 }
3634 3634
3635 3635 /*
3636 3636 * Walk the vdev tree and see if we can find a device with "better"
3637 3637 * configuration. A configuration is "better" if the label on that
3638 3638 * device has a more recent txg.
3639 3639 */
3640 3640 static void
3641 3641 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3642 3642 {
3643 3643 for (int c = 0; c < vd->vdev_children; c++)
3644 3644 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3645 3645
3646 3646 if (vd->vdev_ops->vdev_op_leaf) {
3647 3647 nvlist_t *label;
3648 3648 uint64_t label_txg;
3649 3649
3650 3650 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3651 3651 &label) != 0)
3652 3652 return;
3653 3653
3654 3654 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3655 3655 &label_txg) == 0);
3656 3656
3657 3657 /*
3658 3658 * Do we have a better boot device?
3659 3659 */
3660 3660 if (label_txg > *txg) {
3661 3661 *txg = label_txg;
3662 3662 *avd = vd;
3663 3663 }
3664 3664 nvlist_free(label);
3665 3665 }
3666 3666 }
3667 3667
3668 3668 /*
3669 3669 * Import a root pool.
3670 3670 *
3671 3671 * For x86. devpath_list will consist of devid and/or physpath name of
3672 3672 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3673 3673 * The GRUB "findroot" command will return the vdev we should boot.
3674 3674 *
3675 3675 * For Sparc, devpath_list consists the physpath name of the booting device
3676 3676 * no matter the rootpool is a single device pool or a mirrored pool.
3677 3677 * e.g.
3678 3678 * "/pci@1f,0/ide@d/disk@0,0:a"
3679 3679 */
3680 3680 int
3681 3681 spa_import_rootpool(char *devpath, char *devid)
3682 3682 {
3683 3683 spa_t *spa;
3684 3684 vdev_t *rvd, *bvd, *avd = NULL;
3685 3685 nvlist_t *config, *nvtop;
3686 3686 uint64_t guid, txg;
3687 3687 char *pname;
3688 3688 int error;
3689 3689
3690 3690 /*
3691 3691 * Read the label from the boot device and generate a configuration.
3692 3692 */
3693 3693 config = spa_generate_rootconf(devpath, devid, &guid);
3694 3694 #if defined(_OBP) && defined(_KERNEL)
3695 3695 if (config == NULL) {
3696 3696 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3697 3697 /* iscsi boot */
3698 3698 get_iscsi_bootpath_phy(devpath);
3699 3699 config = spa_generate_rootconf(devpath, devid, &guid);
3700 3700 }
3701 3701 }
3702 3702 #endif
3703 3703 if (config == NULL) {
3704 3704 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3705 3705 devpath);
3706 3706 return (SET_ERROR(EIO));
3707 3707 }
3708 3708
3709 3709 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3710 3710 &pname) == 0);
3711 3711 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3712 3712
3713 3713 mutex_enter(&spa_namespace_lock);
3714 3714 if ((spa = spa_lookup(pname)) != NULL) {
3715 3715 /*
3716 3716 * Remove the existing root pool from the namespace so that we
3717 3717 * can replace it with the correct config we just read in.
3718 3718 */
3719 3719 spa_remove(spa);
3720 3720 }
3721 3721
3722 3722 spa = spa_add(pname, config, NULL);
3723 3723 spa->spa_is_root = B_TRUE;
3724 3724 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3725 3725
3726 3726 /*
3727 3727 * Build up a vdev tree based on the boot device's label config.
3728 3728 */
3729 3729 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3730 3730 &nvtop) == 0);
3731 3731 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3732 3732 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3733 3733 VDEV_ALLOC_ROOTPOOL);
3734 3734 spa_config_exit(spa, SCL_ALL, FTAG);
3735 3735 if (error) {
3736 3736 mutex_exit(&spa_namespace_lock);
3737 3737 nvlist_free(config);
3738 3738 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3739 3739 pname);
3740 3740 return (error);
3741 3741 }
3742 3742
3743 3743 /*
3744 3744 * Get the boot vdev.
3745 3745 */
3746 3746 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3747 3747 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3748 3748 (u_longlong_t)guid);
3749 3749 error = SET_ERROR(ENOENT);
3750 3750 goto out;
3751 3751 }
3752 3752
3753 3753 /*
3754 3754 * Determine if there is a better boot device.
3755 3755 */
3756 3756 avd = bvd;
3757 3757 spa_alt_rootvdev(rvd, &avd, &txg);
3758 3758 if (avd != bvd) {
3759 3759 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3760 3760 "try booting from '%s'", avd->vdev_path);
3761 3761 error = SET_ERROR(EINVAL);
3762 3762 goto out;
3763 3763 }
3764 3764
3765 3765 /*
3766 3766 * If the boot device is part of a spare vdev then ensure that
3767 3767 * we're booting off the active spare.
3768 3768 */
3769 3769 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3770 3770 !bvd->vdev_isspare) {
3771 3771 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3772 3772 "try booting from '%s'",
3773 3773 bvd->vdev_parent->
3774 3774 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3775 3775 error = SET_ERROR(EINVAL);
3776 3776 goto out;
3777 3777 }
3778 3778
3779 3779 error = 0;
3780 3780 out:
3781 3781 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3782 3782 vdev_free(rvd);
3783 3783 spa_config_exit(spa, SCL_ALL, FTAG);
3784 3784 mutex_exit(&spa_namespace_lock);
3785 3785
3786 3786 nvlist_free(config);
3787 3787 return (error);
3788 3788 }
3789 3789
3790 3790 #endif
3791 3791
3792 3792 /*
3793 3793 * Import a non-root pool into the system.
3794 3794 */
3795 3795 int
3796 3796 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3797 3797 {
3798 3798 spa_t *spa;
3799 3799 char *altroot = NULL;
3800 3800 spa_load_state_t state = SPA_LOAD_IMPORT;
3801 3801 zpool_rewind_policy_t policy;
3802 3802 uint64_t mode = spa_mode_global;
3803 3803 uint64_t readonly = B_FALSE;
3804 3804 int error;
3805 3805 nvlist_t *nvroot;
3806 3806 nvlist_t **spares, **l2cache;
3807 3807 uint_t nspares, nl2cache;
3808 3808
3809 3809 /*
3810 3810 * If a pool with this name exists, return failure.
3811 3811 */
3812 3812 mutex_enter(&spa_namespace_lock);
3813 3813 if (spa_lookup(pool) != NULL) {
3814 3814 mutex_exit(&spa_namespace_lock);
3815 3815 return (SET_ERROR(EEXIST));
3816 3816 }
3817 3817
3818 3818 /*
3819 3819 * Create and initialize the spa structure.
3820 3820 */
3821 3821 (void) nvlist_lookup_string(props,
3822 3822 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3823 3823 (void) nvlist_lookup_uint64(props,
3824 3824 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3825 3825 if (readonly)
3826 3826 mode = FREAD;
3827 3827 spa = spa_add(pool, config, altroot);
3828 3828 spa->spa_import_flags = flags;
3829 3829
3830 3830 /*
3831 3831 * Verbatim import - Take a pool and insert it into the namespace
3832 3832 * as if it had been loaded at boot.
3833 3833 */
3834 3834 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3835 3835 if (props != NULL)
3836 3836 spa_configfile_set(spa, props, B_FALSE);
3837 3837
3838 3838 spa_config_sync(spa, B_FALSE, B_TRUE);
3839 3839
3840 3840 mutex_exit(&spa_namespace_lock);
3841 3841 spa_history_log_version(spa, "import");
3842 3842
3843 3843 return (0);
3844 3844 }
3845 3845
3846 3846 spa_activate(spa, mode);
3847 3847
3848 3848 /*
3849 3849 * Don't start async tasks until we know everything is healthy.
3850 3850 */
3851 3851 spa_async_suspend(spa);
3852 3852
3853 3853 zpool_get_rewind_policy(config, &policy);
3854 3854 if (policy.zrp_request & ZPOOL_DO_REWIND)
3855 3855 state = SPA_LOAD_RECOVER;
3856 3856
3857 3857 /*
3858 3858 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3859 3859 * because the user-supplied config is actually the one to trust when
3860 3860 * doing an import.
3861 3861 */
3862 3862 if (state != SPA_LOAD_RECOVER)
3863 3863 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3864 3864
3865 3865 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3866 3866 policy.zrp_request);
3867 3867
3868 3868 /*
3869 3869 * Propagate anything learned while loading the pool and pass it
3870 3870 * back to caller (i.e. rewind info, missing devices, etc).
3871 3871 */
3872 3872 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3873 3873 spa->spa_load_info) == 0);
3874 3874
3875 3875 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3876 3876 /*
3877 3877 * Toss any existing sparelist, as it doesn't have any validity
3878 3878 * anymore, and conflicts with spa_has_spare().
3879 3879 */
3880 3880 if (spa->spa_spares.sav_config) {
3881 3881 nvlist_free(spa->spa_spares.sav_config);
3882 3882 spa->spa_spares.sav_config = NULL;
3883 3883 spa_load_spares(spa);
3884 3884 }
3885 3885 if (spa->spa_l2cache.sav_config) {
3886 3886 nvlist_free(spa->spa_l2cache.sav_config);
3887 3887 spa->spa_l2cache.sav_config = NULL;
3888 3888 spa_load_l2cache(spa);
3889 3889 }
3890 3890
3891 3891 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3892 3892 &nvroot) == 0);
3893 3893 if (error == 0)
3894 3894 error = spa_validate_aux(spa, nvroot, -1ULL,
3895 3895 VDEV_ALLOC_SPARE);
3896 3896 if (error == 0)
3897 3897 error = spa_validate_aux(spa, nvroot, -1ULL,
3898 3898 VDEV_ALLOC_L2CACHE);
3899 3899 spa_config_exit(spa, SCL_ALL, FTAG);
3900 3900
3901 3901 if (props != NULL)
3902 3902 spa_configfile_set(spa, props, B_FALSE);
3903 3903
3904 3904 if (error != 0 || (props && spa_writeable(spa) &&
3905 3905 (error = spa_prop_set(spa, props)))) {
3906 3906 spa_unload(spa);
3907 3907 spa_deactivate(spa);
3908 3908 spa_remove(spa);
3909 3909 mutex_exit(&spa_namespace_lock);
3910 3910 return (error);
3911 3911 }
3912 3912
3913 3913 spa_async_resume(spa);
3914 3914
3915 3915 /*
3916 3916 * Override any spares and level 2 cache devices as specified by
3917 3917 * the user, as these may have correct device names/devids, etc.
3918 3918 */
3919 3919 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3920 3920 &spares, &nspares) == 0) {
3921 3921 if (spa->spa_spares.sav_config)
3922 3922 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3923 3923 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3924 3924 else
3925 3925 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3926 3926 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3927 3927 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3928 3928 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3929 3929 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3930 3930 spa_load_spares(spa);
3931 3931 spa_config_exit(spa, SCL_ALL, FTAG);
3932 3932 spa->spa_spares.sav_sync = B_TRUE;
3933 3933 }
3934 3934 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3935 3935 &l2cache, &nl2cache) == 0) {
3936 3936 if (spa->spa_l2cache.sav_config)
3937 3937 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3938 3938 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3939 3939 else
3940 3940 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3941 3941 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3942 3942 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3943 3943 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3944 3944 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3945 3945 spa_load_l2cache(spa);
3946 3946 spa_config_exit(spa, SCL_ALL, FTAG);
3947 3947 spa->spa_l2cache.sav_sync = B_TRUE;
3948 3948 }
3949 3949
3950 3950 /*
3951 3951 * Check for any removed devices.
3952 3952 */
3953 3953 if (spa->spa_autoreplace) {
3954 3954 spa_aux_check_removed(&spa->spa_spares);
3955 3955 spa_aux_check_removed(&spa->spa_l2cache);
3956 3956 }
3957 3957
3958 3958 if (spa_writeable(spa)) {
3959 3959 /*
3960 3960 * Update the config cache to include the newly-imported pool.
3961 3961 */
3962 3962 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3963 3963 }
3964 3964
3965 3965 /*
3966 3966 * It's possible that the pool was expanded while it was exported.
3967 3967 * We kick off an async task to handle this for us.
3968 3968 */
3969 3969 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3970 3970
3971 3971 mutex_exit(&spa_namespace_lock);
3972 3972 spa_history_log_version(spa, "import");
3973 3973
3974 3974 return (0);
3975 3975 }
3976 3976
3977 3977 nvlist_t *
3978 3978 spa_tryimport(nvlist_t *tryconfig)
3979 3979 {
3980 3980 nvlist_t *config = NULL;
3981 3981 char *poolname;
3982 3982 spa_t *spa;
3983 3983 uint64_t state;
3984 3984 int error;
3985 3985
3986 3986 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3987 3987 return (NULL);
3988 3988
3989 3989 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3990 3990 return (NULL);
3991 3991
3992 3992 /*
3993 3993 * Create and initialize the spa structure.
3994 3994 */
3995 3995 mutex_enter(&spa_namespace_lock);
3996 3996 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3997 3997 spa_activate(spa, FREAD);
3998 3998
3999 3999 /*
4000 4000 * Pass off the heavy lifting to spa_load().
4001 4001 * Pass TRUE for mosconfig because the user-supplied config
4002 4002 * is actually the one to trust when doing an import.
4003 4003 */
4004 4004 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4005 4005
4006 4006 /*
4007 4007 * If 'tryconfig' was at least parsable, return the current config.
4008 4008 */
4009 4009 if (spa->spa_root_vdev != NULL) {
4010 4010 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4011 4011 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4012 4012 poolname) == 0);
4013 4013 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4014 4014 state) == 0);
4015 4015 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4016 4016 spa->spa_uberblock.ub_timestamp) == 0);
4017 4017 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4018 4018 spa->spa_load_info) == 0);
4019 4019
4020 4020 /*
4021 4021 * If the bootfs property exists on this pool then we
4022 4022 * copy it out so that external consumers can tell which
4023 4023 * pools are bootable.
4024 4024 */
4025 4025 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4026 4026 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4027 4027
4028 4028 /*
4029 4029 * We have to play games with the name since the
4030 4030 * pool was opened as TRYIMPORT_NAME.
4031 4031 */
4032 4032 if (dsl_dsobj_to_dsname(spa_name(spa),
4033 4033 spa->spa_bootfs, tmpname) == 0) {
4034 4034 char *cp;
4035 4035 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4036 4036
4037 4037 cp = strchr(tmpname, '/');
4038 4038 if (cp == NULL) {
4039 4039 (void) strlcpy(dsname, tmpname,
4040 4040 MAXPATHLEN);
4041 4041 } else {
4042 4042 (void) snprintf(dsname, MAXPATHLEN,
4043 4043 "%s/%s", poolname, ++cp);
4044 4044 }
4045 4045 VERIFY(nvlist_add_string(config,
4046 4046 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4047 4047 kmem_free(dsname, MAXPATHLEN);
4048 4048 }
4049 4049 kmem_free(tmpname, MAXPATHLEN);
4050 4050 }
4051 4051
4052 4052 /*
4053 4053 * Add the list of hot spares and level 2 cache devices.
4054 4054 */
4055 4055 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4056 4056 spa_add_spares(spa, config);
4057 4057 spa_add_l2cache(spa, config);
4058 4058 spa_config_exit(spa, SCL_CONFIG, FTAG);
4059 4059 }
4060 4060
4061 4061 spa_unload(spa);
4062 4062 spa_deactivate(spa);
4063 4063 spa_remove(spa);
4064 4064 mutex_exit(&spa_namespace_lock);
4065 4065
4066 4066 return (config);
4067 4067 }
4068 4068
4069 4069 /*
4070 4070 * Pool export/destroy
4071 4071 *
4072 4072 * The act of destroying or exporting a pool is very simple. We make sure there
4073 4073 * is no more pending I/O and any references to the pool are gone. Then, we
4074 4074 * update the pool state and sync all the labels to disk, removing the
4075 4075 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4076 4076 * we don't sync the labels or remove the configuration cache.
4077 4077 */
4078 4078 static int
4079 4079 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4080 4080 boolean_t force, boolean_t hardforce)
4081 4081 {
4082 4082 spa_t *spa;
4083 4083
4084 4084 if (oldconfig)
4085 4085 *oldconfig = NULL;
4086 4086
4087 4087 if (!(spa_mode_global & FWRITE))
4088 4088 return (SET_ERROR(EROFS));
4089 4089
4090 4090 mutex_enter(&spa_namespace_lock);
4091 4091 if ((spa = spa_lookup(pool)) == NULL) {
4092 4092 mutex_exit(&spa_namespace_lock);
4093 4093 return (SET_ERROR(ENOENT));
4094 4094 }
4095 4095
4096 4096 /*
4097 4097 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4098 4098 * reacquire the namespace lock, and see if we can export.
4099 4099 */
4100 4100 spa_open_ref(spa, FTAG);
4101 4101 mutex_exit(&spa_namespace_lock);
4102 4102 spa_async_suspend(spa);
4103 4103 mutex_enter(&spa_namespace_lock);
4104 4104 spa_close(spa, FTAG);
4105 4105
4106 4106 /*
4107 4107 * The pool will be in core if it's openable,
4108 4108 * in which case we can modify its state.
4109 4109 */
4110 4110 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4111 4111 /*
4112 4112 * Objsets may be open only because they're dirty, so we
4113 4113 * have to force it to sync before checking spa_refcnt.
4114 4114 */
4115 4115 txg_wait_synced(spa->spa_dsl_pool, 0);
4116 4116
4117 4117 /*
4118 4118 * A pool cannot be exported or destroyed if there are active
4119 4119 * references. If we are resetting a pool, allow references by
4120 4120 * fault injection handlers.
4121 4121 */
4122 4122 if (!spa_refcount_zero(spa) ||
4123 4123 (spa->spa_inject_ref != 0 &&
4124 4124 new_state != POOL_STATE_UNINITIALIZED)) {
4125 4125 spa_async_resume(spa);
4126 4126 mutex_exit(&spa_namespace_lock);
4127 4127 return (SET_ERROR(EBUSY));
4128 4128 }
4129 4129
4130 4130 /*
4131 4131 * A pool cannot be exported if it has an active shared spare.
4132 4132 * This is to prevent other pools stealing the active spare
4133 4133 * from an exported pool. At user's own will, such pool can
4134 4134 * be forcedly exported.
4135 4135 */
4136 4136 if (!force && new_state == POOL_STATE_EXPORTED &&
4137 4137 spa_has_active_shared_spare(spa)) {
4138 4138 spa_async_resume(spa);
4139 4139 mutex_exit(&spa_namespace_lock);
4140 4140 return (SET_ERROR(EXDEV));
4141 4141 }
4142 4142
4143 4143 /*
4144 4144 * We want this to be reflected on every label,
4145 4145 * so mark them all dirty. spa_unload() will do the
4146 4146 * final sync that pushes these changes out.
4147 4147 */
4148 4148 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4149 4149 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4150 4150 spa->spa_state = new_state;
4151 4151 spa->spa_final_txg = spa_last_synced_txg(spa) +
4152 4152 TXG_DEFER_SIZE + 1;
4153 4153 vdev_config_dirty(spa->spa_root_vdev);
4154 4154 spa_config_exit(spa, SCL_ALL, FTAG);
4155 4155 }
4156 4156 }
4157 4157
4158 4158 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4159 4159
4160 4160 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4161 4161 spa_unload(spa);
4162 4162 spa_deactivate(spa);
4163 4163 }
4164 4164
4165 4165 if (oldconfig && spa->spa_config)
4166 4166 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4167 4167
4168 4168 if (new_state != POOL_STATE_UNINITIALIZED) {
4169 4169 if (!hardforce)
4170 4170 spa_config_sync(spa, B_TRUE, B_TRUE);
4171 4171 spa_remove(spa);
4172 4172 }
4173 4173 mutex_exit(&spa_namespace_lock);
4174 4174
4175 4175 return (0);
4176 4176 }
4177 4177
4178 4178 /*
4179 4179 * Destroy a storage pool.
4180 4180 */
4181 4181 int
4182 4182 spa_destroy(char *pool)
4183 4183 {
4184 4184 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4185 4185 B_FALSE, B_FALSE));
4186 4186 }
4187 4187
4188 4188 /*
4189 4189 * Export a storage pool.
4190 4190 */
4191 4191 int
4192 4192 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4193 4193 boolean_t hardforce)
4194 4194 {
4195 4195 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4196 4196 force, hardforce));
4197 4197 }
4198 4198
4199 4199 /*
4200 4200 * Similar to spa_export(), this unloads the spa_t without actually removing it
4201 4201 * from the namespace in any way.
4202 4202 */
4203 4203 int
4204 4204 spa_reset(char *pool)
4205 4205 {
4206 4206 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4207 4207 B_FALSE, B_FALSE));
4208 4208 }
4209 4209
4210 4210 /*
4211 4211 * ==========================================================================
4212 4212 * Device manipulation
4213 4213 * ==========================================================================
4214 4214 */
4215 4215
4216 4216 /*
4217 4217 * Add a device to a storage pool.
4218 4218 */
4219 4219 int
4220 4220 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4221 4221 {
4222 4222 uint64_t txg, id;
4223 4223 int error;
4224 4224 vdev_t *rvd = spa->spa_root_vdev;
4225 4225 vdev_t *vd, *tvd;
4226 4226 nvlist_t **spares, **l2cache;
4227 4227 uint_t nspares, nl2cache;
4228 4228
4229 4229 ASSERT(spa_writeable(spa));
4230 4230
4231 4231 txg = spa_vdev_enter(spa);
4232 4232
4233 4233 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4234 4234 VDEV_ALLOC_ADD)) != 0)
4235 4235 return (spa_vdev_exit(spa, NULL, txg, error));
4236 4236
4237 4237 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4238 4238
4239 4239 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4240 4240 &nspares) != 0)
4241 4241 nspares = 0;
4242 4242
4243 4243 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4244 4244 &nl2cache) != 0)
4245 4245 nl2cache = 0;
4246 4246
4247 4247 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4248 4248 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4249 4249
4250 4250 if (vd->vdev_children != 0 &&
4251 4251 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4252 4252 return (spa_vdev_exit(spa, vd, txg, error));
4253 4253
4254 4254 /*
4255 4255 * We must validate the spares and l2cache devices after checking the
4256 4256 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4257 4257 */
4258 4258 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4259 4259 return (spa_vdev_exit(spa, vd, txg, error));
4260 4260
4261 4261 /*
4262 4262 * Transfer each new top-level vdev from vd to rvd.
4263 4263 */
4264 4264 for (int c = 0; c < vd->vdev_children; c++) {
4265 4265
4266 4266 /*
4267 4267 * Set the vdev id to the first hole, if one exists.
4268 4268 */
4269 4269 for (id = 0; id < rvd->vdev_children; id++) {
4270 4270 if (rvd->vdev_child[id]->vdev_ishole) {
4271 4271 vdev_free(rvd->vdev_child[id]);
4272 4272 break;
4273 4273 }
4274 4274 }
4275 4275 tvd = vd->vdev_child[c];
4276 4276 vdev_remove_child(vd, tvd);
4277 4277 tvd->vdev_id = id;
4278 4278 vdev_add_child(rvd, tvd);
4279 4279 vdev_config_dirty(tvd);
4280 4280 }
4281 4281
4282 4282 if (nspares != 0) {
4283 4283 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4284 4284 ZPOOL_CONFIG_SPARES);
4285 4285 spa_load_spares(spa);
4286 4286 spa->spa_spares.sav_sync = B_TRUE;
4287 4287 }
4288 4288
4289 4289 if (nl2cache != 0) {
4290 4290 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4291 4291 ZPOOL_CONFIG_L2CACHE);
4292 4292 spa_load_l2cache(spa);
4293 4293 spa->spa_l2cache.sav_sync = B_TRUE;
4294 4294 }
4295 4295
4296 4296 /*
4297 4297 * We have to be careful when adding new vdevs to an existing pool.
4298 4298 * If other threads start allocating from these vdevs before we
4299 4299 * sync the config cache, and we lose power, then upon reboot we may
4300 4300 * fail to open the pool because there are DVAs that the config cache
4301 4301 * can't translate. Therefore, we first add the vdevs without
4302 4302 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4303 4303 * and then let spa_config_update() initialize the new metaslabs.
4304 4304 *
4305 4305 * spa_load() checks for added-but-not-initialized vdevs, so that
4306 4306 * if we lose power at any point in this sequence, the remaining
4307 4307 * steps will be completed the next time we load the pool.
4308 4308 */
4309 4309 (void) spa_vdev_exit(spa, vd, txg, 0);
4310 4310
4311 4311 mutex_enter(&spa_namespace_lock);
4312 4312 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4313 4313 mutex_exit(&spa_namespace_lock);
4314 4314
4315 4315 return (0);
4316 4316 }
4317 4317
4318 4318 /*
4319 4319 * Attach a device to a mirror. The arguments are the path to any device
4320 4320 * in the mirror, and the nvroot for the new device. If the path specifies
4321 4321 * a device that is not mirrored, we automatically insert the mirror vdev.
4322 4322 *
4323 4323 * If 'replacing' is specified, the new device is intended to replace the
4324 4324 * existing device; in this case the two devices are made into their own
4325 4325 * mirror using the 'replacing' vdev, which is functionally identical to
4326 4326 * the mirror vdev (it actually reuses all the same ops) but has a few
4327 4327 * extra rules: you can't attach to it after it's been created, and upon
4328 4328 * completion of resilvering, the first disk (the one being replaced)
4329 4329 * is automatically detached.
4330 4330 */
4331 4331 int
4332 4332 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4333 4333 {
4334 4334 uint64_t txg, dtl_max_txg;
4335 4335 vdev_t *rvd = spa->spa_root_vdev;
4336 4336 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4337 4337 vdev_ops_t *pvops;
4338 4338 char *oldvdpath, *newvdpath;
4339 4339 int newvd_isspare;
4340 4340 int error;
4341 4341
4342 4342 ASSERT(spa_writeable(spa));
4343 4343
4344 4344 txg = spa_vdev_enter(spa);
4345 4345
4346 4346 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4347 4347
4348 4348 if (oldvd == NULL)
4349 4349 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4350 4350
4351 4351 if (!oldvd->vdev_ops->vdev_op_leaf)
4352 4352 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4353 4353
4354 4354 pvd = oldvd->vdev_parent;
4355 4355
4356 4356 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4357 4357 VDEV_ALLOC_ATTACH)) != 0)
4358 4358 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4359 4359
4360 4360 if (newrootvd->vdev_children != 1)
4361 4361 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4362 4362
4363 4363 newvd = newrootvd->vdev_child[0];
4364 4364
4365 4365 if (!newvd->vdev_ops->vdev_op_leaf)
4366 4366 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4367 4367
4368 4368 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4369 4369 return (spa_vdev_exit(spa, newrootvd, txg, error));
4370 4370
4371 4371 /*
4372 4372 * Spares can't replace logs
4373 4373 */
4374 4374 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4375 4375 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4376 4376
4377 4377 if (!replacing) {
4378 4378 /*
4379 4379 * For attach, the only allowable parent is a mirror or the root
4380 4380 * vdev.
4381 4381 */
4382 4382 if (pvd->vdev_ops != &vdev_mirror_ops &&
4383 4383 pvd->vdev_ops != &vdev_root_ops)
4384 4384 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4385 4385
4386 4386 pvops = &vdev_mirror_ops;
4387 4387 } else {
4388 4388 /*
4389 4389 * Active hot spares can only be replaced by inactive hot
4390 4390 * spares.
4391 4391 */
4392 4392 if (pvd->vdev_ops == &vdev_spare_ops &&
4393 4393 oldvd->vdev_isspare &&
4394 4394 !spa_has_spare(spa, newvd->vdev_guid))
4395 4395 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4396 4396
4397 4397 /*
4398 4398 * If the source is a hot spare, and the parent isn't already a
4399 4399 * spare, then we want to create a new hot spare. Otherwise, we
4400 4400 * want to create a replacing vdev. The user is not allowed to
4401 4401 * attach to a spared vdev child unless the 'isspare' state is
4402 4402 * the same (spare replaces spare, non-spare replaces
4403 4403 * non-spare).
4404 4404 */
4405 4405 if (pvd->vdev_ops == &vdev_replacing_ops &&
4406 4406 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4407 4407 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4408 4408 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4409 4409 newvd->vdev_isspare != oldvd->vdev_isspare) {
4410 4410 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4411 4411 }
4412 4412
4413 4413 if (newvd->vdev_isspare)
4414 4414 pvops = &vdev_spare_ops;
4415 4415 else
4416 4416 pvops = &vdev_replacing_ops;
4417 4417 }
4418 4418
4419 4419 /*
4420 4420 * Make sure the new device is big enough.
4421 4421 */
4422 4422 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4423 4423 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4424 4424
4425 4425 /*
4426 4426 * The new device cannot have a higher alignment requirement
4427 4427 * than the top-level vdev.
4428 4428 */
4429 4429 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4430 4430 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4431 4431
4432 4432 /*
4433 4433 * If this is an in-place replacement, update oldvd's path and devid
4434 4434 * to make it distinguishable from newvd, and unopenable from now on.
4435 4435 */
4436 4436 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4437 4437 spa_strfree(oldvd->vdev_path);
4438 4438 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
↓ open down ↓ |
4438 lines elided |
↑ open up ↑ |
4439 4439 KM_SLEEP);
4440 4440 (void) sprintf(oldvd->vdev_path, "%s/%s",
4441 4441 newvd->vdev_path, "old");
4442 4442 if (oldvd->vdev_devid != NULL) {
4443 4443 spa_strfree(oldvd->vdev_devid);
4444 4444 oldvd->vdev_devid = NULL;
4445 4445 }
4446 4446 }
4447 4447
4448 4448 /* mark the device being resilvered */
4449 - newvd->vdev_resilvering = B_TRUE;
4449 + newvd->vdev_resilver_txg = txg;
4450 4450
4451 4451 /*
4452 4452 * If the parent is not a mirror, or if we're replacing, insert the new
4453 4453 * mirror/replacing/spare vdev above oldvd.
4454 4454 */
4455 4455 if (pvd->vdev_ops != pvops)
4456 4456 pvd = vdev_add_parent(oldvd, pvops);
4457 4457
4458 4458 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4459 4459 ASSERT(pvd->vdev_ops == pvops);
4460 4460 ASSERT(oldvd->vdev_parent == pvd);
4461 4461
4462 4462 /*
4463 4463 * Extract the new device from its root and add it to pvd.
4464 4464 */
4465 4465 vdev_remove_child(newrootvd, newvd);
4466 4466 newvd->vdev_id = pvd->vdev_children;
4467 4467 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4468 4468 vdev_add_child(pvd, newvd);
4469 4469
4470 4470 tvd = newvd->vdev_top;
4471 4471 ASSERT(pvd->vdev_top == tvd);
4472 4472 ASSERT(tvd->vdev_parent == rvd);
4473 4473
4474 4474 vdev_config_dirty(tvd);
4475 4475
4476 4476 /*
4477 4477 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4478 4478 * for any dmu_sync-ed blocks. It will propagate upward when
4479 4479 * spa_vdev_exit() calls vdev_dtl_reassess().
4480 4480 */
4481 4481 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4482 4482
4483 4483 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4484 4484 dtl_max_txg - TXG_INITIAL);
4485 4485
4486 4486 if (newvd->vdev_isspare) {
4487 4487 spa_spare_activate(newvd);
4488 4488 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4489 4489 }
4490 4490
4491 4491 oldvdpath = spa_strdup(oldvd->vdev_path);
4492 4492 newvdpath = spa_strdup(newvd->vdev_path);
4493 4493 newvd_isspare = newvd->vdev_isspare;
4494 4494
4495 4495 /*
4496 4496 * Mark newvd's DTL dirty in this txg.
4497 4497 */
4498 4498 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4499 4499
4500 4500 /*
4501 4501 * Restart the resilver
4502 4502 */
4503 4503 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4504 4504
4505 4505 /*
4506 4506 * Commit the config
4507 4507 */
4508 4508 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4509 4509
4510 4510 spa_history_log_internal(spa, "vdev attach", NULL,
4511 4511 "%s vdev=%s %s vdev=%s",
4512 4512 replacing && newvd_isspare ? "spare in" :
4513 4513 replacing ? "replace" : "attach", newvdpath,
4514 4514 replacing ? "for" : "to", oldvdpath);
4515 4515
4516 4516 spa_strfree(oldvdpath);
4517 4517 spa_strfree(newvdpath);
4518 4518
4519 4519 if (spa->spa_bootfs)
4520 4520 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4521 4521
4522 4522 return (0);
4523 4523 }
4524 4524
4525 4525 /*
4526 4526 * Detach a device from a mirror or replacing vdev.
4527 4527 *
4528 4528 * If 'replace_done' is specified, only detach if the parent
4529 4529 * is a replacing vdev.
4530 4530 */
4531 4531 int
4532 4532 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4533 4533 {
4534 4534 uint64_t txg;
4535 4535 int error;
4536 4536 vdev_t *rvd = spa->spa_root_vdev;
4537 4537 vdev_t *vd, *pvd, *cvd, *tvd;
4538 4538 boolean_t unspare = B_FALSE;
4539 4539 uint64_t unspare_guid = 0;
4540 4540 char *vdpath;
4541 4541
4542 4542 ASSERT(spa_writeable(spa));
4543 4543
4544 4544 txg = spa_vdev_enter(spa);
4545 4545
4546 4546 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4547 4547
4548 4548 if (vd == NULL)
4549 4549 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4550 4550
4551 4551 if (!vd->vdev_ops->vdev_op_leaf)
4552 4552 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4553 4553
4554 4554 pvd = vd->vdev_parent;
4555 4555
4556 4556 /*
4557 4557 * If the parent/child relationship is not as expected, don't do it.
4558 4558 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4559 4559 * vdev that's replacing B with C. The user's intent in replacing
4560 4560 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4561 4561 * the replace by detaching C, the expected behavior is to end up
4562 4562 * M(A,B). But suppose that right after deciding to detach C,
4563 4563 * the replacement of B completes. We would have M(A,C), and then
4564 4564 * ask to detach C, which would leave us with just A -- not what
4565 4565 * the user wanted. To prevent this, we make sure that the
4566 4566 * parent/child relationship hasn't changed -- in this example,
4567 4567 * that C's parent is still the replacing vdev R.
4568 4568 */
4569 4569 if (pvd->vdev_guid != pguid && pguid != 0)
4570 4570 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4571 4571
4572 4572 /*
4573 4573 * Only 'replacing' or 'spare' vdevs can be replaced.
4574 4574 */
4575 4575 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4576 4576 pvd->vdev_ops != &vdev_spare_ops)
4577 4577 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4578 4578
4579 4579 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4580 4580 spa_version(spa) >= SPA_VERSION_SPARES);
4581 4581
4582 4582 /*
4583 4583 * Only mirror, replacing, and spare vdevs support detach.
4584 4584 */
4585 4585 if (pvd->vdev_ops != &vdev_replacing_ops &&
4586 4586 pvd->vdev_ops != &vdev_mirror_ops &&
4587 4587 pvd->vdev_ops != &vdev_spare_ops)
4588 4588 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4589 4589
4590 4590 /*
4591 4591 * If this device has the only valid copy of some data,
4592 4592 * we cannot safely detach it.
4593 4593 */
4594 4594 if (vdev_dtl_required(vd))
4595 4595 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4596 4596
4597 4597 ASSERT(pvd->vdev_children >= 2);
4598 4598
4599 4599 /*
4600 4600 * If we are detaching the second disk from a replacing vdev, then
4601 4601 * check to see if we changed the original vdev's path to have "/old"
4602 4602 * at the end in spa_vdev_attach(). If so, undo that change now.
4603 4603 */
4604 4604 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4605 4605 vd->vdev_path != NULL) {
4606 4606 size_t len = strlen(vd->vdev_path);
4607 4607
4608 4608 for (int c = 0; c < pvd->vdev_children; c++) {
4609 4609 cvd = pvd->vdev_child[c];
4610 4610
4611 4611 if (cvd == vd || cvd->vdev_path == NULL)
4612 4612 continue;
4613 4613
4614 4614 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4615 4615 strcmp(cvd->vdev_path + len, "/old") == 0) {
4616 4616 spa_strfree(cvd->vdev_path);
4617 4617 cvd->vdev_path = spa_strdup(vd->vdev_path);
4618 4618 break;
4619 4619 }
4620 4620 }
4621 4621 }
4622 4622
4623 4623 /*
4624 4624 * If we are detaching the original disk from a spare, then it implies
4625 4625 * that the spare should become a real disk, and be removed from the
4626 4626 * active spare list for the pool.
4627 4627 */
4628 4628 if (pvd->vdev_ops == &vdev_spare_ops &&
4629 4629 vd->vdev_id == 0 &&
4630 4630 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4631 4631 unspare = B_TRUE;
4632 4632
4633 4633 /*
4634 4634 * Erase the disk labels so the disk can be used for other things.
4635 4635 * This must be done after all other error cases are handled,
4636 4636 * but before we disembowel vd (so we can still do I/O to it).
4637 4637 * But if we can't do it, don't treat the error as fatal --
4638 4638 * it may be that the unwritability of the disk is the reason
4639 4639 * it's being detached!
4640 4640 */
4641 4641 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4642 4642
4643 4643 /*
4644 4644 * Remove vd from its parent and compact the parent's children.
4645 4645 */
4646 4646 vdev_remove_child(pvd, vd);
4647 4647 vdev_compact_children(pvd);
4648 4648
4649 4649 /*
4650 4650 * Remember one of the remaining children so we can get tvd below.
4651 4651 */
4652 4652 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4653 4653
4654 4654 /*
4655 4655 * If we need to remove the remaining child from the list of hot spares,
4656 4656 * do it now, marking the vdev as no longer a spare in the process.
4657 4657 * We must do this before vdev_remove_parent(), because that can
4658 4658 * change the GUID if it creates a new toplevel GUID. For a similar
4659 4659 * reason, we must remove the spare now, in the same txg as the detach;
4660 4660 * otherwise someone could attach a new sibling, change the GUID, and
4661 4661 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4662 4662 */
4663 4663 if (unspare) {
4664 4664 ASSERT(cvd->vdev_isspare);
4665 4665 spa_spare_remove(cvd);
4666 4666 unspare_guid = cvd->vdev_guid;
4667 4667 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4668 4668 cvd->vdev_unspare = B_TRUE;
4669 4669 }
4670 4670
4671 4671 /*
4672 4672 * If the parent mirror/replacing vdev only has one child,
4673 4673 * the parent is no longer needed. Remove it from the tree.
4674 4674 */
4675 4675 if (pvd->vdev_children == 1) {
4676 4676 if (pvd->vdev_ops == &vdev_spare_ops)
4677 4677 cvd->vdev_unspare = B_FALSE;
4678 4678 vdev_remove_parent(cvd);
4679 4679 }
4680 4680
4681 4681
4682 4682 /*
4683 4683 * We don't set tvd until now because the parent we just removed
4684 4684 * may have been the previous top-level vdev.
4685 4685 */
4686 4686 tvd = cvd->vdev_top;
4687 4687 ASSERT(tvd->vdev_parent == rvd);
4688 4688
4689 4689 /*
4690 4690 * Reevaluate the parent vdev state.
4691 4691 */
4692 4692 vdev_propagate_state(cvd);
4693 4693
4694 4694 /*
4695 4695 * If the 'autoexpand' property is set on the pool then automatically
4696 4696 * try to expand the size of the pool. For example if the device we
4697 4697 * just detached was smaller than the others, it may be possible to
4698 4698 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4699 4699 * first so that we can obtain the updated sizes of the leaf vdevs.
4700 4700 */
4701 4701 if (spa->spa_autoexpand) {
4702 4702 vdev_reopen(tvd);
4703 4703 vdev_expand(tvd, txg);
4704 4704 }
4705 4705
4706 4706 vdev_config_dirty(tvd);
4707 4707
4708 4708 /*
4709 4709 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4710 4710 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4711 4711 * But first make sure we're not on any *other* txg's DTL list, to
4712 4712 * prevent vd from being accessed after it's freed.
4713 4713 */
4714 4714 vdpath = spa_strdup(vd->vdev_path);
4715 4715 for (int t = 0; t < TXG_SIZE; t++)
4716 4716 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4717 4717 vd->vdev_detached = B_TRUE;
4718 4718 vdev_dirty(tvd, VDD_DTL, vd, txg);
4719 4719
4720 4720 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4721 4721
4722 4722 /* hang on to the spa before we release the lock */
4723 4723 spa_open_ref(spa, FTAG);
4724 4724
4725 4725 error = spa_vdev_exit(spa, vd, txg, 0);
4726 4726
4727 4727 spa_history_log_internal(spa, "detach", NULL,
4728 4728 "vdev=%s", vdpath);
4729 4729 spa_strfree(vdpath);
4730 4730
4731 4731 /*
4732 4732 * If this was the removal of the original device in a hot spare vdev,
4733 4733 * then we want to go through and remove the device from the hot spare
4734 4734 * list of every other pool.
4735 4735 */
4736 4736 if (unspare) {
4737 4737 spa_t *altspa = NULL;
4738 4738
4739 4739 mutex_enter(&spa_namespace_lock);
4740 4740 while ((altspa = spa_next(altspa)) != NULL) {
4741 4741 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4742 4742 altspa == spa)
4743 4743 continue;
4744 4744
4745 4745 spa_open_ref(altspa, FTAG);
4746 4746 mutex_exit(&spa_namespace_lock);
4747 4747 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4748 4748 mutex_enter(&spa_namespace_lock);
4749 4749 spa_close(altspa, FTAG);
4750 4750 }
4751 4751 mutex_exit(&spa_namespace_lock);
4752 4752
4753 4753 /* search the rest of the vdevs for spares to remove */
4754 4754 spa_vdev_resilver_done(spa);
4755 4755 }
4756 4756
4757 4757 /* all done with the spa; OK to release */
4758 4758 mutex_enter(&spa_namespace_lock);
4759 4759 spa_close(spa, FTAG);
4760 4760 mutex_exit(&spa_namespace_lock);
4761 4761
4762 4762 return (error);
4763 4763 }
4764 4764
4765 4765 /*
4766 4766 * Split a set of devices from their mirrors, and create a new pool from them.
4767 4767 */
4768 4768 int
4769 4769 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4770 4770 nvlist_t *props, boolean_t exp)
4771 4771 {
4772 4772 int error = 0;
4773 4773 uint64_t txg, *glist;
4774 4774 spa_t *newspa;
4775 4775 uint_t c, children, lastlog;
4776 4776 nvlist_t **child, *nvl, *tmp;
4777 4777 dmu_tx_t *tx;
4778 4778 char *altroot = NULL;
4779 4779 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4780 4780 boolean_t activate_slog;
4781 4781
4782 4782 ASSERT(spa_writeable(spa));
4783 4783
4784 4784 txg = spa_vdev_enter(spa);
4785 4785
4786 4786 /* clear the log and flush everything up to now */
4787 4787 activate_slog = spa_passivate_log(spa);
4788 4788 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4789 4789 error = spa_offline_log(spa);
4790 4790 txg = spa_vdev_config_enter(spa);
4791 4791
4792 4792 if (activate_slog)
4793 4793 spa_activate_log(spa);
4794 4794
4795 4795 if (error != 0)
4796 4796 return (spa_vdev_exit(spa, NULL, txg, error));
4797 4797
4798 4798 /* check new spa name before going any further */
4799 4799 if (spa_lookup(newname) != NULL)
4800 4800 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4801 4801
4802 4802 /*
4803 4803 * scan through all the children to ensure they're all mirrors
4804 4804 */
4805 4805 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4806 4806 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4807 4807 &children) != 0)
4808 4808 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4809 4809
4810 4810 /* first, check to ensure we've got the right child count */
4811 4811 rvd = spa->spa_root_vdev;
4812 4812 lastlog = 0;
4813 4813 for (c = 0; c < rvd->vdev_children; c++) {
4814 4814 vdev_t *vd = rvd->vdev_child[c];
4815 4815
4816 4816 /* don't count the holes & logs as children */
4817 4817 if (vd->vdev_islog || vd->vdev_ishole) {
4818 4818 if (lastlog == 0)
4819 4819 lastlog = c;
4820 4820 continue;
4821 4821 }
4822 4822
4823 4823 lastlog = 0;
4824 4824 }
4825 4825 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4826 4826 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4827 4827
4828 4828 /* next, ensure no spare or cache devices are part of the split */
4829 4829 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4830 4830 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4831 4831 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4832 4832
4833 4833 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4834 4834 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4835 4835
4836 4836 /* then, loop over each vdev and validate it */
4837 4837 for (c = 0; c < children; c++) {
4838 4838 uint64_t is_hole = 0;
4839 4839
4840 4840 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4841 4841 &is_hole);
4842 4842
4843 4843 if (is_hole != 0) {
4844 4844 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4845 4845 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4846 4846 continue;
4847 4847 } else {
4848 4848 error = SET_ERROR(EINVAL);
4849 4849 break;
4850 4850 }
4851 4851 }
4852 4852
4853 4853 /* which disk is going to be split? */
4854 4854 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4855 4855 &glist[c]) != 0) {
4856 4856 error = SET_ERROR(EINVAL);
4857 4857 break;
4858 4858 }
4859 4859
4860 4860 /* look it up in the spa */
4861 4861 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4862 4862 if (vml[c] == NULL) {
4863 4863 error = SET_ERROR(ENODEV);
4864 4864 break;
4865 4865 }
4866 4866
4867 4867 /* make sure there's nothing stopping the split */
4868 4868 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4869 4869 vml[c]->vdev_islog ||
4870 4870 vml[c]->vdev_ishole ||
4871 4871 vml[c]->vdev_isspare ||
4872 4872 vml[c]->vdev_isl2cache ||
4873 4873 !vdev_writeable(vml[c]) ||
4874 4874 vml[c]->vdev_children != 0 ||
4875 4875 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4876 4876 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4877 4877 error = SET_ERROR(EINVAL);
4878 4878 break;
4879 4879 }
4880 4880
4881 4881 if (vdev_dtl_required(vml[c])) {
4882 4882 error = SET_ERROR(EBUSY);
4883 4883 break;
4884 4884 }
4885 4885
4886 4886 /* we need certain info from the top level */
4887 4887 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4888 4888 vml[c]->vdev_top->vdev_ms_array) == 0);
4889 4889 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4890 4890 vml[c]->vdev_top->vdev_ms_shift) == 0);
4891 4891 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4892 4892 vml[c]->vdev_top->vdev_asize) == 0);
4893 4893 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4894 4894 vml[c]->vdev_top->vdev_ashift) == 0);
4895 4895 }
4896 4896
4897 4897 if (error != 0) {
4898 4898 kmem_free(vml, children * sizeof (vdev_t *));
4899 4899 kmem_free(glist, children * sizeof (uint64_t));
4900 4900 return (spa_vdev_exit(spa, NULL, txg, error));
4901 4901 }
4902 4902
4903 4903 /* stop writers from using the disks */
4904 4904 for (c = 0; c < children; c++) {
4905 4905 if (vml[c] != NULL)
4906 4906 vml[c]->vdev_offline = B_TRUE;
4907 4907 }
4908 4908 vdev_reopen(spa->spa_root_vdev);
4909 4909
4910 4910 /*
4911 4911 * Temporarily record the splitting vdevs in the spa config. This
4912 4912 * will disappear once the config is regenerated.
4913 4913 */
4914 4914 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4915 4915 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4916 4916 glist, children) == 0);
4917 4917 kmem_free(glist, children * sizeof (uint64_t));
4918 4918
4919 4919 mutex_enter(&spa->spa_props_lock);
4920 4920 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4921 4921 nvl) == 0);
4922 4922 mutex_exit(&spa->spa_props_lock);
4923 4923 spa->spa_config_splitting = nvl;
4924 4924 vdev_config_dirty(spa->spa_root_vdev);
4925 4925
4926 4926 /* configure and create the new pool */
4927 4927 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4928 4928 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4929 4929 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4930 4930 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4931 4931 spa_version(spa)) == 0);
4932 4932 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4933 4933 spa->spa_config_txg) == 0);
4934 4934 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4935 4935 spa_generate_guid(NULL)) == 0);
4936 4936 (void) nvlist_lookup_string(props,
4937 4937 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4938 4938
4939 4939 /* add the new pool to the namespace */
4940 4940 newspa = spa_add(newname, config, altroot);
4941 4941 newspa->spa_config_txg = spa->spa_config_txg;
4942 4942 spa_set_log_state(newspa, SPA_LOG_CLEAR);
4943 4943
4944 4944 /* release the spa config lock, retaining the namespace lock */
4945 4945 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4946 4946
4947 4947 if (zio_injection_enabled)
4948 4948 zio_handle_panic_injection(spa, FTAG, 1);
4949 4949
4950 4950 spa_activate(newspa, spa_mode_global);
4951 4951 spa_async_suspend(newspa);
4952 4952
4953 4953 /* create the new pool from the disks of the original pool */
4954 4954 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4955 4955 if (error)
4956 4956 goto out;
4957 4957
4958 4958 /* if that worked, generate a real config for the new pool */
4959 4959 if (newspa->spa_root_vdev != NULL) {
4960 4960 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4961 4961 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4962 4962 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4963 4963 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4964 4964 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4965 4965 B_TRUE));
4966 4966 }
4967 4967
4968 4968 /* set the props */
4969 4969 if (props != NULL) {
4970 4970 spa_configfile_set(newspa, props, B_FALSE);
4971 4971 error = spa_prop_set(newspa, props);
4972 4972 if (error)
4973 4973 goto out;
4974 4974 }
4975 4975
4976 4976 /* flush everything */
4977 4977 txg = spa_vdev_config_enter(newspa);
4978 4978 vdev_config_dirty(newspa->spa_root_vdev);
4979 4979 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4980 4980
4981 4981 if (zio_injection_enabled)
4982 4982 zio_handle_panic_injection(spa, FTAG, 2);
4983 4983
4984 4984 spa_async_resume(newspa);
4985 4985
4986 4986 /* finally, update the original pool's config */
4987 4987 txg = spa_vdev_config_enter(spa);
4988 4988 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4989 4989 error = dmu_tx_assign(tx, TXG_WAIT);
4990 4990 if (error != 0)
4991 4991 dmu_tx_abort(tx);
4992 4992 for (c = 0; c < children; c++) {
4993 4993 if (vml[c] != NULL) {
4994 4994 vdev_split(vml[c]);
4995 4995 if (error == 0)
4996 4996 spa_history_log_internal(spa, "detach", tx,
4997 4997 "vdev=%s", vml[c]->vdev_path);
4998 4998 vdev_free(vml[c]);
4999 4999 }
5000 5000 }
5001 5001 vdev_config_dirty(spa->spa_root_vdev);
5002 5002 spa->spa_config_splitting = NULL;
5003 5003 nvlist_free(nvl);
5004 5004 if (error == 0)
5005 5005 dmu_tx_commit(tx);
5006 5006 (void) spa_vdev_exit(spa, NULL, txg, 0);
5007 5007
5008 5008 if (zio_injection_enabled)
5009 5009 zio_handle_panic_injection(spa, FTAG, 3);
5010 5010
5011 5011 /* split is complete; log a history record */
5012 5012 spa_history_log_internal(newspa, "split", NULL,
5013 5013 "from pool %s", spa_name(spa));
5014 5014
5015 5015 kmem_free(vml, children * sizeof (vdev_t *));
5016 5016
5017 5017 /* if we're not going to mount the filesystems in userland, export */
5018 5018 if (exp)
5019 5019 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5020 5020 B_FALSE, B_FALSE);
5021 5021
5022 5022 return (error);
5023 5023
5024 5024 out:
5025 5025 spa_unload(newspa);
5026 5026 spa_deactivate(newspa);
5027 5027 spa_remove(newspa);
5028 5028
5029 5029 txg = spa_vdev_config_enter(spa);
5030 5030
5031 5031 /* re-online all offlined disks */
5032 5032 for (c = 0; c < children; c++) {
5033 5033 if (vml[c] != NULL)
5034 5034 vml[c]->vdev_offline = B_FALSE;
5035 5035 }
5036 5036 vdev_reopen(spa->spa_root_vdev);
5037 5037
5038 5038 nvlist_free(spa->spa_config_splitting);
5039 5039 spa->spa_config_splitting = NULL;
5040 5040 (void) spa_vdev_exit(spa, NULL, txg, error);
5041 5041
5042 5042 kmem_free(vml, children * sizeof (vdev_t *));
5043 5043 return (error);
5044 5044 }
5045 5045
5046 5046 static nvlist_t *
5047 5047 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5048 5048 {
5049 5049 for (int i = 0; i < count; i++) {
5050 5050 uint64_t guid;
5051 5051
5052 5052 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5053 5053 &guid) == 0);
5054 5054
5055 5055 if (guid == target_guid)
5056 5056 return (nvpp[i]);
5057 5057 }
5058 5058
5059 5059 return (NULL);
5060 5060 }
5061 5061
5062 5062 static void
5063 5063 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5064 5064 nvlist_t *dev_to_remove)
5065 5065 {
5066 5066 nvlist_t **newdev = NULL;
5067 5067
5068 5068 if (count > 1)
5069 5069 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5070 5070
5071 5071 for (int i = 0, j = 0; i < count; i++) {
5072 5072 if (dev[i] == dev_to_remove)
5073 5073 continue;
5074 5074 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5075 5075 }
5076 5076
5077 5077 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5078 5078 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5079 5079
5080 5080 for (int i = 0; i < count - 1; i++)
5081 5081 nvlist_free(newdev[i]);
5082 5082
5083 5083 if (count > 1)
5084 5084 kmem_free(newdev, (count - 1) * sizeof (void *));
5085 5085 }
5086 5086
5087 5087 /*
5088 5088 * Evacuate the device.
5089 5089 */
5090 5090 static int
5091 5091 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5092 5092 {
5093 5093 uint64_t txg;
5094 5094 int error = 0;
5095 5095
5096 5096 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5097 5097 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5098 5098 ASSERT(vd == vd->vdev_top);
5099 5099
5100 5100 /*
5101 5101 * Evacuate the device. We don't hold the config lock as writer
5102 5102 * since we need to do I/O but we do keep the
5103 5103 * spa_namespace_lock held. Once this completes the device
5104 5104 * should no longer have any blocks allocated on it.
5105 5105 */
5106 5106 if (vd->vdev_islog) {
5107 5107 if (vd->vdev_stat.vs_alloc != 0)
5108 5108 error = spa_offline_log(spa);
5109 5109 } else {
5110 5110 error = SET_ERROR(ENOTSUP);
5111 5111 }
5112 5112
5113 5113 if (error)
5114 5114 return (error);
5115 5115
5116 5116 /*
5117 5117 * The evacuation succeeded. Remove any remaining MOS metadata
5118 5118 * associated with this vdev, and wait for these changes to sync.
5119 5119 */
5120 5120 ASSERT0(vd->vdev_stat.vs_alloc);
5121 5121 txg = spa_vdev_config_enter(spa);
5122 5122 vd->vdev_removing = B_TRUE;
5123 5123 vdev_dirty(vd, 0, NULL, txg);
5124 5124 vdev_config_dirty(vd);
5125 5125 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5126 5126
5127 5127 return (0);
5128 5128 }
5129 5129
5130 5130 /*
5131 5131 * Complete the removal by cleaning up the namespace.
5132 5132 */
5133 5133 static void
5134 5134 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5135 5135 {
5136 5136 vdev_t *rvd = spa->spa_root_vdev;
5137 5137 uint64_t id = vd->vdev_id;
5138 5138 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5139 5139
5140 5140 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5141 5141 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5142 5142 ASSERT(vd == vd->vdev_top);
5143 5143
5144 5144 /*
5145 5145 * Only remove any devices which are empty.
5146 5146 */
5147 5147 if (vd->vdev_stat.vs_alloc != 0)
5148 5148 return;
5149 5149
5150 5150 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5151 5151
5152 5152 if (list_link_active(&vd->vdev_state_dirty_node))
5153 5153 vdev_state_clean(vd);
5154 5154 if (list_link_active(&vd->vdev_config_dirty_node))
5155 5155 vdev_config_clean(vd);
5156 5156
5157 5157 vdev_free(vd);
5158 5158
5159 5159 if (last_vdev) {
5160 5160 vdev_compact_children(rvd);
5161 5161 } else {
5162 5162 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5163 5163 vdev_add_child(rvd, vd);
5164 5164 }
5165 5165 vdev_config_dirty(rvd);
5166 5166
5167 5167 /*
5168 5168 * Reassess the health of our root vdev.
5169 5169 */
5170 5170 vdev_reopen(rvd);
5171 5171 }
5172 5172
5173 5173 /*
5174 5174 * Remove a device from the pool -
5175 5175 *
5176 5176 * Removing a device from the vdev namespace requires several steps
5177 5177 * and can take a significant amount of time. As a result we use
5178 5178 * the spa_vdev_config_[enter/exit] functions which allow us to
5179 5179 * grab and release the spa_config_lock while still holding the namespace
5180 5180 * lock. During each step the configuration is synced out.
5181 5181 *
5182 5182 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5183 5183 * devices.
5184 5184 */
5185 5185 int
5186 5186 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5187 5187 {
5188 5188 vdev_t *vd;
5189 5189 metaslab_group_t *mg;
5190 5190 nvlist_t **spares, **l2cache, *nv;
5191 5191 uint64_t txg = 0;
5192 5192 uint_t nspares, nl2cache;
5193 5193 int error = 0;
5194 5194 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5195 5195
5196 5196 ASSERT(spa_writeable(spa));
5197 5197
5198 5198 if (!locked)
5199 5199 txg = spa_vdev_enter(spa);
5200 5200
5201 5201 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5202 5202
5203 5203 if (spa->spa_spares.sav_vdevs != NULL &&
5204 5204 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5205 5205 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5206 5206 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5207 5207 /*
5208 5208 * Only remove the hot spare if it's not currently in use
5209 5209 * in this pool.
5210 5210 */
5211 5211 if (vd == NULL || unspare) {
5212 5212 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5213 5213 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5214 5214 spa_load_spares(spa);
5215 5215 spa->spa_spares.sav_sync = B_TRUE;
5216 5216 } else {
5217 5217 error = SET_ERROR(EBUSY);
5218 5218 }
5219 5219 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5220 5220 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5221 5221 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5222 5222 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5223 5223 /*
5224 5224 * Cache devices can always be removed.
5225 5225 */
5226 5226 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5227 5227 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5228 5228 spa_load_l2cache(spa);
5229 5229 spa->spa_l2cache.sav_sync = B_TRUE;
5230 5230 } else if (vd != NULL && vd->vdev_islog) {
5231 5231 ASSERT(!locked);
5232 5232 ASSERT(vd == vd->vdev_top);
5233 5233
5234 5234 /*
5235 5235 * XXX - Once we have bp-rewrite this should
5236 5236 * become the common case.
5237 5237 */
5238 5238
5239 5239 mg = vd->vdev_mg;
5240 5240
5241 5241 /*
5242 5242 * Stop allocating from this vdev.
5243 5243 */
5244 5244 metaslab_group_passivate(mg);
5245 5245
5246 5246 /*
5247 5247 * Wait for the youngest allocations and frees to sync,
5248 5248 * and then wait for the deferral of those frees to finish.
5249 5249 */
5250 5250 spa_vdev_config_exit(spa, NULL,
5251 5251 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5252 5252
5253 5253 /*
5254 5254 * Attempt to evacuate the vdev.
5255 5255 */
5256 5256 error = spa_vdev_remove_evacuate(spa, vd);
5257 5257
5258 5258 txg = spa_vdev_config_enter(spa);
5259 5259
5260 5260 /*
5261 5261 * If we couldn't evacuate the vdev, unwind.
5262 5262 */
5263 5263 if (error) {
5264 5264 metaslab_group_activate(mg);
5265 5265 return (spa_vdev_exit(spa, NULL, txg, error));
5266 5266 }
5267 5267
5268 5268 /*
5269 5269 * Clean up the vdev namespace.
5270 5270 */
5271 5271 spa_vdev_remove_from_namespace(spa, vd);
5272 5272
5273 5273 } else if (vd != NULL) {
5274 5274 /*
5275 5275 * Normal vdevs cannot be removed (yet).
5276 5276 */
5277 5277 error = SET_ERROR(ENOTSUP);
5278 5278 } else {
5279 5279 /*
5280 5280 * There is no vdev of any kind with the specified guid.
5281 5281 */
5282 5282 error = SET_ERROR(ENOENT);
5283 5283 }
5284 5284
5285 5285 if (!locked)
5286 5286 return (spa_vdev_exit(spa, NULL, txg, error));
5287 5287
5288 5288 return (error);
5289 5289 }
5290 5290
5291 5291 /*
5292 5292 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5293 5293 * currently spared, so we can detach it.
5294 5294 */
5295 5295 static vdev_t *
↓ open down ↓ |
836 lines elided |
↑ open up ↑ |
5296 5296 spa_vdev_resilver_done_hunt(vdev_t *vd)
5297 5297 {
5298 5298 vdev_t *newvd, *oldvd;
5299 5299
5300 5300 for (int c = 0; c < vd->vdev_children; c++) {
5301 5301 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5302 5302 if (oldvd != NULL)
5303 5303 return (oldvd);
5304 5304 }
5305 5305
5306 - if (vd->vdev_resilvering && vdev_dtl_empty(vd, DTL_MISSING) &&
5307 - vdev_dtl_empty(vd, DTL_OUTAGE)) {
5308 - ASSERT(vd->vdev_ops->vdev_op_leaf);
5309 - vd->vdev_resilvering = B_FALSE;
5310 - vdev_config_dirty(vd->vdev_top);
5311 - }
5312 -
5313 5306 /*
5314 5307 * Check for a completed replacement. We always consider the first
5315 5308 * vdev in the list to be the oldest vdev, and the last one to be
5316 5309 * the newest (see spa_vdev_attach() for how that works). In
5317 5310 * the case where the newest vdev is faulted, we will not automatically
5318 5311 * remove it after a resilver completes. This is OK as it will require
5319 5312 * user intervention to determine which disk the admin wishes to keep.
5320 5313 */
5321 5314 if (vd->vdev_ops == &vdev_replacing_ops) {
5322 5315 ASSERT(vd->vdev_children > 1);
5323 5316
5324 5317 newvd = vd->vdev_child[vd->vdev_children - 1];
5325 5318 oldvd = vd->vdev_child[0];
5326 5319
5327 5320 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5328 5321 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5329 5322 !vdev_dtl_required(oldvd))
5330 5323 return (oldvd);
5331 5324 }
5332 5325
5333 5326 /*
5334 5327 * Check for a completed resilver with the 'unspare' flag set.
5335 5328 */
5336 5329 if (vd->vdev_ops == &vdev_spare_ops) {
5337 5330 vdev_t *first = vd->vdev_child[0];
5338 5331 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5339 5332
5340 5333 if (last->vdev_unspare) {
5341 5334 oldvd = first;
5342 5335 newvd = last;
5343 5336 } else if (first->vdev_unspare) {
5344 5337 oldvd = last;
5345 5338 newvd = first;
5346 5339 } else {
5347 5340 oldvd = NULL;
5348 5341 }
5349 5342
5350 5343 if (oldvd != NULL &&
5351 5344 vdev_dtl_empty(newvd, DTL_MISSING) &&
5352 5345 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5353 5346 !vdev_dtl_required(oldvd))
5354 5347 return (oldvd);
5355 5348
5356 5349 /*
5357 5350 * If there are more than two spares attached to a disk,
5358 5351 * and those spares are not required, then we want to
5359 5352 * attempt to free them up now so that they can be used
5360 5353 * by other pools. Once we're back down to a single
5361 5354 * disk+spare, we stop removing them.
5362 5355 */
5363 5356 if (vd->vdev_children > 2) {
5364 5357 newvd = vd->vdev_child[1];
5365 5358
5366 5359 if (newvd->vdev_isspare && last->vdev_isspare &&
5367 5360 vdev_dtl_empty(last, DTL_MISSING) &&
5368 5361 vdev_dtl_empty(last, DTL_OUTAGE) &&
5369 5362 !vdev_dtl_required(newvd))
5370 5363 return (newvd);
5371 5364 }
5372 5365 }
5373 5366
5374 5367 return (NULL);
5375 5368 }
5376 5369
5377 5370 static void
5378 5371 spa_vdev_resilver_done(spa_t *spa)
5379 5372 {
5380 5373 vdev_t *vd, *pvd, *ppvd;
5381 5374 uint64_t guid, sguid, pguid, ppguid;
5382 5375
5383 5376 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5384 5377
5385 5378 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5386 5379 pvd = vd->vdev_parent;
5387 5380 ppvd = pvd->vdev_parent;
5388 5381 guid = vd->vdev_guid;
5389 5382 pguid = pvd->vdev_guid;
5390 5383 ppguid = ppvd->vdev_guid;
5391 5384 sguid = 0;
↓ open down ↓ |
69 lines elided |
↑ open up ↑ |
5392 5385 /*
5393 5386 * If we have just finished replacing a hot spared device, then
5394 5387 * we need to detach the parent's first child (the original hot
5395 5388 * spare) as well.
5396 5389 */
5397 5390 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5398 5391 ppvd->vdev_children == 2) {
5399 5392 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5400 5393 sguid = ppvd->vdev_child[1]->vdev_guid;
5401 5394 }
5395 + ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5396 +
5402 5397 spa_config_exit(spa, SCL_ALL, FTAG);
5403 5398 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5404 5399 return;
5405 5400 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5406 5401 return;
5407 5402 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5408 5403 }
5409 5404
5410 5405 spa_config_exit(spa, SCL_ALL, FTAG);
5411 5406 }
5412 5407
5413 5408 /*
5414 5409 * Update the stored path or FRU for this vdev.
5415 5410 */
5416 5411 int
5417 5412 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5418 5413 boolean_t ispath)
5419 5414 {
5420 5415 vdev_t *vd;
5421 5416 boolean_t sync = B_FALSE;
5422 5417
5423 5418 ASSERT(spa_writeable(spa));
5424 5419
5425 5420 spa_vdev_state_enter(spa, SCL_ALL);
5426 5421
5427 5422 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5428 5423 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5429 5424
5430 5425 if (!vd->vdev_ops->vdev_op_leaf)
5431 5426 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5432 5427
5433 5428 if (ispath) {
5434 5429 if (strcmp(value, vd->vdev_path) != 0) {
5435 5430 spa_strfree(vd->vdev_path);
5436 5431 vd->vdev_path = spa_strdup(value);
5437 5432 sync = B_TRUE;
5438 5433 }
5439 5434 } else {
5440 5435 if (vd->vdev_fru == NULL) {
5441 5436 vd->vdev_fru = spa_strdup(value);
5442 5437 sync = B_TRUE;
5443 5438 } else if (strcmp(value, vd->vdev_fru) != 0) {
5444 5439 spa_strfree(vd->vdev_fru);
5445 5440 vd->vdev_fru = spa_strdup(value);
5446 5441 sync = B_TRUE;
5447 5442 }
5448 5443 }
5449 5444
5450 5445 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5451 5446 }
5452 5447
5453 5448 int
5454 5449 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5455 5450 {
5456 5451 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5457 5452 }
5458 5453
5459 5454 int
5460 5455 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5461 5456 {
5462 5457 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5463 5458 }
5464 5459
5465 5460 /*
5466 5461 * ==========================================================================
5467 5462 * SPA Scanning
5468 5463 * ==========================================================================
5469 5464 */
5470 5465
5471 5466 int
5472 5467 spa_scan_stop(spa_t *spa)
5473 5468 {
5474 5469 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5475 5470 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5476 5471 return (SET_ERROR(EBUSY));
5477 5472 return (dsl_scan_cancel(spa->spa_dsl_pool));
5478 5473 }
5479 5474
5480 5475 int
5481 5476 spa_scan(spa_t *spa, pool_scan_func_t func)
5482 5477 {
5483 5478 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5484 5479
5485 5480 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5486 5481 return (SET_ERROR(ENOTSUP));
5487 5482
5488 5483 /*
5489 5484 * If a resilver was requested, but there is no DTL on a
5490 5485 * writeable leaf device, we have nothing to do.
5491 5486 */
5492 5487 if (func == POOL_SCAN_RESILVER &&
5493 5488 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5494 5489 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5495 5490 return (0);
5496 5491 }
5497 5492
5498 5493 return (dsl_scan(spa->spa_dsl_pool, func));
5499 5494 }
5500 5495
5501 5496 /*
5502 5497 * ==========================================================================
5503 5498 * SPA async task processing
5504 5499 * ==========================================================================
5505 5500 */
5506 5501
5507 5502 static void
5508 5503 spa_async_remove(spa_t *spa, vdev_t *vd)
5509 5504 {
5510 5505 if (vd->vdev_remove_wanted) {
5511 5506 vd->vdev_remove_wanted = B_FALSE;
5512 5507 vd->vdev_delayed_close = B_FALSE;
5513 5508 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5514 5509
5515 5510 /*
5516 5511 * We want to clear the stats, but we don't want to do a full
5517 5512 * vdev_clear() as that will cause us to throw away
5518 5513 * degraded/faulted state as well as attempt to reopen the
5519 5514 * device, all of which is a waste.
5520 5515 */
5521 5516 vd->vdev_stat.vs_read_errors = 0;
5522 5517 vd->vdev_stat.vs_write_errors = 0;
5523 5518 vd->vdev_stat.vs_checksum_errors = 0;
5524 5519
5525 5520 vdev_state_dirty(vd->vdev_top);
5526 5521 }
5527 5522
5528 5523 for (int c = 0; c < vd->vdev_children; c++)
5529 5524 spa_async_remove(spa, vd->vdev_child[c]);
5530 5525 }
5531 5526
5532 5527 static void
5533 5528 spa_async_probe(spa_t *spa, vdev_t *vd)
5534 5529 {
5535 5530 if (vd->vdev_probe_wanted) {
5536 5531 vd->vdev_probe_wanted = B_FALSE;
5537 5532 vdev_reopen(vd); /* vdev_open() does the actual probe */
5538 5533 }
5539 5534
5540 5535 for (int c = 0; c < vd->vdev_children; c++)
5541 5536 spa_async_probe(spa, vd->vdev_child[c]);
5542 5537 }
5543 5538
5544 5539 static void
5545 5540 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5546 5541 {
5547 5542 sysevent_id_t eid;
5548 5543 nvlist_t *attr;
5549 5544 char *physpath;
5550 5545
5551 5546 if (!spa->spa_autoexpand)
5552 5547 return;
5553 5548
5554 5549 for (int c = 0; c < vd->vdev_children; c++) {
5555 5550 vdev_t *cvd = vd->vdev_child[c];
5556 5551 spa_async_autoexpand(spa, cvd);
5557 5552 }
5558 5553
5559 5554 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5560 5555 return;
5561 5556
5562 5557 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5563 5558 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5564 5559
5565 5560 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5566 5561 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5567 5562
5568 5563 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5569 5564 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5570 5565
5571 5566 nvlist_free(attr);
5572 5567 kmem_free(physpath, MAXPATHLEN);
5573 5568 }
5574 5569
5575 5570 static void
5576 5571 spa_async_thread(spa_t *spa)
5577 5572 {
5578 5573 int tasks;
5579 5574
5580 5575 ASSERT(spa->spa_sync_on);
5581 5576
5582 5577 mutex_enter(&spa->spa_async_lock);
5583 5578 tasks = spa->spa_async_tasks;
5584 5579 spa->spa_async_tasks = 0;
5585 5580 mutex_exit(&spa->spa_async_lock);
5586 5581
5587 5582 /*
5588 5583 * See if the config needs to be updated.
5589 5584 */
5590 5585 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5591 5586 uint64_t old_space, new_space;
5592 5587
5593 5588 mutex_enter(&spa_namespace_lock);
5594 5589 old_space = metaslab_class_get_space(spa_normal_class(spa));
5595 5590 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5596 5591 new_space = metaslab_class_get_space(spa_normal_class(spa));
5597 5592 mutex_exit(&spa_namespace_lock);
5598 5593
5599 5594 /*
5600 5595 * If the pool grew as a result of the config update,
5601 5596 * then log an internal history event.
5602 5597 */
5603 5598 if (new_space != old_space) {
5604 5599 spa_history_log_internal(spa, "vdev online", NULL,
5605 5600 "pool '%s' size: %llu(+%llu)",
5606 5601 spa_name(spa), new_space, new_space - old_space);
5607 5602 }
5608 5603 }
5609 5604
5610 5605 /*
5611 5606 * See if any devices need to be marked REMOVED.
5612 5607 */
5613 5608 if (tasks & SPA_ASYNC_REMOVE) {
5614 5609 spa_vdev_state_enter(spa, SCL_NONE);
5615 5610 spa_async_remove(spa, spa->spa_root_vdev);
5616 5611 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5617 5612 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5618 5613 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5619 5614 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5620 5615 (void) spa_vdev_state_exit(spa, NULL, 0);
5621 5616 }
5622 5617
5623 5618 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5624 5619 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5625 5620 spa_async_autoexpand(spa, spa->spa_root_vdev);
5626 5621 spa_config_exit(spa, SCL_CONFIG, FTAG);
5627 5622 }
5628 5623
5629 5624 /*
5630 5625 * See if any devices need to be probed.
5631 5626 */
5632 5627 if (tasks & SPA_ASYNC_PROBE) {
5633 5628 spa_vdev_state_enter(spa, SCL_NONE);
5634 5629 spa_async_probe(spa, spa->spa_root_vdev);
5635 5630 (void) spa_vdev_state_exit(spa, NULL, 0);
5636 5631 }
5637 5632
5638 5633 /*
5639 5634 * If any devices are done replacing, detach them.
5640 5635 */
5641 5636 if (tasks & SPA_ASYNC_RESILVER_DONE)
5642 5637 spa_vdev_resilver_done(spa);
5643 5638
5644 5639 /*
5645 5640 * Kick off a resilver.
5646 5641 */
5647 5642 if (tasks & SPA_ASYNC_RESILVER)
5648 5643 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5649 5644
5650 5645 /*
5651 5646 * Let the world know that we're done.
5652 5647 */
5653 5648 mutex_enter(&spa->spa_async_lock);
5654 5649 spa->spa_async_thread = NULL;
5655 5650 cv_broadcast(&spa->spa_async_cv);
5656 5651 mutex_exit(&spa->spa_async_lock);
5657 5652 thread_exit();
5658 5653 }
5659 5654
5660 5655 void
5661 5656 spa_async_suspend(spa_t *spa)
5662 5657 {
5663 5658 mutex_enter(&spa->spa_async_lock);
5664 5659 spa->spa_async_suspended++;
5665 5660 while (spa->spa_async_thread != NULL)
5666 5661 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5667 5662 mutex_exit(&spa->spa_async_lock);
5668 5663 }
5669 5664
5670 5665 void
5671 5666 spa_async_resume(spa_t *spa)
5672 5667 {
5673 5668 mutex_enter(&spa->spa_async_lock);
5674 5669 ASSERT(spa->spa_async_suspended != 0);
5675 5670 spa->spa_async_suspended--;
5676 5671 mutex_exit(&spa->spa_async_lock);
5677 5672 }
5678 5673
5679 5674 static boolean_t
5680 5675 spa_async_tasks_pending(spa_t *spa)
5681 5676 {
5682 5677 uint_t non_config_tasks;
5683 5678 uint_t config_task;
5684 5679 boolean_t config_task_suspended;
5685 5680
5686 5681 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5687 5682 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5688 5683 if (spa->spa_ccw_fail_time == 0) {
5689 5684 config_task_suspended = B_FALSE;
5690 5685 } else {
5691 5686 config_task_suspended =
5692 5687 (gethrtime() - spa->spa_ccw_fail_time) <
5693 5688 (zfs_ccw_retry_interval * NANOSEC);
5694 5689 }
5695 5690
5696 5691 return (non_config_tasks || (config_task && !config_task_suspended));
5697 5692 }
5698 5693
5699 5694 static void
5700 5695 spa_async_dispatch(spa_t *spa)
5701 5696 {
5702 5697 mutex_enter(&spa->spa_async_lock);
5703 5698 if (spa_async_tasks_pending(spa) &&
5704 5699 !spa->spa_async_suspended &&
5705 5700 spa->spa_async_thread == NULL &&
5706 5701 rootdir != NULL)
5707 5702 spa->spa_async_thread = thread_create(NULL, 0,
5708 5703 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5709 5704 mutex_exit(&spa->spa_async_lock);
5710 5705 }
5711 5706
5712 5707 void
5713 5708 spa_async_request(spa_t *spa, int task)
5714 5709 {
5715 5710 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5716 5711 mutex_enter(&spa->spa_async_lock);
5717 5712 spa->spa_async_tasks |= task;
5718 5713 mutex_exit(&spa->spa_async_lock);
5719 5714 }
5720 5715
5721 5716 /*
5722 5717 * ==========================================================================
5723 5718 * SPA syncing routines
5724 5719 * ==========================================================================
5725 5720 */
5726 5721
5727 5722 static int
5728 5723 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5729 5724 {
5730 5725 bpobj_t *bpo = arg;
5731 5726 bpobj_enqueue(bpo, bp, tx);
5732 5727 return (0);
5733 5728 }
5734 5729
5735 5730 static int
5736 5731 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5737 5732 {
5738 5733 zio_t *zio = arg;
5739 5734
5740 5735 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5741 5736 zio->io_flags));
5742 5737 return (0);
5743 5738 }
5744 5739
5745 5740 static void
5746 5741 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5747 5742 {
5748 5743 char *packed = NULL;
5749 5744 size_t bufsize;
5750 5745 size_t nvsize = 0;
5751 5746 dmu_buf_t *db;
5752 5747
5753 5748 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5754 5749
5755 5750 /*
5756 5751 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5757 5752 * information. This avoids the dbuf_will_dirty() path and
5758 5753 * saves us a pre-read to get data we don't actually care about.
5759 5754 */
5760 5755 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5761 5756 packed = kmem_alloc(bufsize, KM_SLEEP);
5762 5757
5763 5758 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5764 5759 KM_SLEEP) == 0);
5765 5760 bzero(packed + nvsize, bufsize - nvsize);
5766 5761
5767 5762 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5768 5763
5769 5764 kmem_free(packed, bufsize);
5770 5765
5771 5766 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5772 5767 dmu_buf_will_dirty(db, tx);
5773 5768 *(uint64_t *)db->db_data = nvsize;
5774 5769 dmu_buf_rele(db, FTAG);
5775 5770 }
5776 5771
5777 5772 static void
5778 5773 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5779 5774 const char *config, const char *entry)
5780 5775 {
5781 5776 nvlist_t *nvroot;
5782 5777 nvlist_t **list;
5783 5778 int i;
5784 5779
5785 5780 if (!sav->sav_sync)
5786 5781 return;
5787 5782
5788 5783 /*
5789 5784 * Update the MOS nvlist describing the list of available devices.
5790 5785 * spa_validate_aux() will have already made sure this nvlist is
5791 5786 * valid and the vdevs are labeled appropriately.
5792 5787 */
5793 5788 if (sav->sav_object == 0) {
5794 5789 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5795 5790 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5796 5791 sizeof (uint64_t), tx);
5797 5792 VERIFY(zap_update(spa->spa_meta_objset,
5798 5793 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5799 5794 &sav->sav_object, tx) == 0);
5800 5795 }
5801 5796
5802 5797 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5803 5798 if (sav->sav_count == 0) {
5804 5799 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5805 5800 } else {
5806 5801 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5807 5802 for (i = 0; i < sav->sav_count; i++)
5808 5803 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5809 5804 B_FALSE, VDEV_CONFIG_L2CACHE);
5810 5805 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5811 5806 sav->sav_count) == 0);
5812 5807 for (i = 0; i < sav->sav_count; i++)
5813 5808 nvlist_free(list[i]);
5814 5809 kmem_free(list, sav->sav_count * sizeof (void *));
5815 5810 }
5816 5811
5817 5812 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5818 5813 nvlist_free(nvroot);
5819 5814
5820 5815 sav->sav_sync = B_FALSE;
5821 5816 }
5822 5817
5823 5818 static void
5824 5819 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5825 5820 {
5826 5821 nvlist_t *config;
5827 5822
5828 5823 if (list_is_empty(&spa->spa_config_dirty_list))
5829 5824 return;
5830 5825
5831 5826 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5832 5827
5833 5828 config = spa_config_generate(spa, spa->spa_root_vdev,
5834 5829 dmu_tx_get_txg(tx), B_FALSE);
5835 5830
5836 5831 /*
5837 5832 * If we're upgrading the spa version then make sure that
5838 5833 * the config object gets updated with the correct version.
5839 5834 */
5840 5835 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5841 5836 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5842 5837 spa->spa_uberblock.ub_version);
5843 5838
5844 5839 spa_config_exit(spa, SCL_STATE, FTAG);
5845 5840
5846 5841 if (spa->spa_config_syncing)
5847 5842 nvlist_free(spa->spa_config_syncing);
5848 5843 spa->spa_config_syncing = config;
5849 5844
5850 5845 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5851 5846 }
5852 5847
5853 5848 static void
5854 5849 spa_sync_version(void *arg, dmu_tx_t *tx)
5855 5850 {
5856 5851 uint64_t *versionp = arg;
5857 5852 uint64_t version = *versionp;
5858 5853 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5859 5854
5860 5855 /*
5861 5856 * Setting the version is special cased when first creating the pool.
5862 5857 */
5863 5858 ASSERT(tx->tx_txg != TXG_INITIAL);
5864 5859
5865 5860 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5866 5861 ASSERT(version >= spa_version(spa));
5867 5862
5868 5863 spa->spa_uberblock.ub_version = version;
5869 5864 vdev_config_dirty(spa->spa_root_vdev);
5870 5865 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5871 5866 }
5872 5867
5873 5868 /*
5874 5869 * Set zpool properties.
5875 5870 */
5876 5871 static void
5877 5872 spa_sync_props(void *arg, dmu_tx_t *tx)
5878 5873 {
5879 5874 nvlist_t *nvp = arg;
5880 5875 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5881 5876 objset_t *mos = spa->spa_meta_objset;
5882 5877 nvpair_t *elem = NULL;
5883 5878
5884 5879 mutex_enter(&spa->spa_props_lock);
5885 5880
5886 5881 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5887 5882 uint64_t intval;
5888 5883 char *strval, *fname;
5889 5884 zpool_prop_t prop;
5890 5885 const char *propname;
5891 5886 zprop_type_t proptype;
5892 5887 zfeature_info_t *feature;
5893 5888
5894 5889 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5895 5890 case ZPROP_INVAL:
5896 5891 /*
5897 5892 * We checked this earlier in spa_prop_validate().
5898 5893 */
5899 5894 ASSERT(zpool_prop_feature(nvpair_name(elem)));
5900 5895
5901 5896 fname = strchr(nvpair_name(elem), '@') + 1;
5902 5897 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5903 5898
5904 5899 spa_feature_enable(spa, feature, tx);
5905 5900 spa_history_log_internal(spa, "set", tx,
5906 5901 "%s=enabled", nvpair_name(elem));
5907 5902 break;
5908 5903
5909 5904 case ZPOOL_PROP_VERSION:
5910 5905 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5911 5906 /*
5912 5907 * The version is synced seperatly before other
5913 5908 * properties and should be correct by now.
5914 5909 */
5915 5910 ASSERT3U(spa_version(spa), >=, intval);
5916 5911 break;
5917 5912
5918 5913 case ZPOOL_PROP_ALTROOT:
5919 5914 /*
5920 5915 * 'altroot' is a non-persistent property. It should
5921 5916 * have been set temporarily at creation or import time.
5922 5917 */
5923 5918 ASSERT(spa->spa_root != NULL);
5924 5919 break;
5925 5920
5926 5921 case ZPOOL_PROP_READONLY:
5927 5922 case ZPOOL_PROP_CACHEFILE:
5928 5923 /*
5929 5924 * 'readonly' and 'cachefile' are also non-persisitent
5930 5925 * properties.
5931 5926 */
5932 5927 break;
5933 5928 case ZPOOL_PROP_COMMENT:
5934 5929 VERIFY(nvpair_value_string(elem, &strval) == 0);
5935 5930 if (spa->spa_comment != NULL)
5936 5931 spa_strfree(spa->spa_comment);
5937 5932 spa->spa_comment = spa_strdup(strval);
5938 5933 /*
5939 5934 * We need to dirty the configuration on all the vdevs
5940 5935 * so that their labels get updated. It's unnecessary
5941 5936 * to do this for pool creation since the vdev's
5942 5937 * configuratoin has already been dirtied.
5943 5938 */
5944 5939 if (tx->tx_txg != TXG_INITIAL)
5945 5940 vdev_config_dirty(spa->spa_root_vdev);
5946 5941 spa_history_log_internal(spa, "set", tx,
5947 5942 "%s=%s", nvpair_name(elem), strval);
5948 5943 break;
5949 5944 default:
5950 5945 /*
5951 5946 * Set pool property values in the poolprops mos object.
5952 5947 */
5953 5948 if (spa->spa_pool_props_object == 0) {
5954 5949 spa->spa_pool_props_object =
5955 5950 zap_create_link(mos, DMU_OT_POOL_PROPS,
5956 5951 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5957 5952 tx);
5958 5953 }
5959 5954
5960 5955 /* normalize the property name */
5961 5956 propname = zpool_prop_to_name(prop);
5962 5957 proptype = zpool_prop_get_type(prop);
5963 5958
5964 5959 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5965 5960 ASSERT(proptype == PROP_TYPE_STRING);
5966 5961 VERIFY(nvpair_value_string(elem, &strval) == 0);
5967 5962 VERIFY(zap_update(mos,
5968 5963 spa->spa_pool_props_object, propname,
5969 5964 1, strlen(strval) + 1, strval, tx) == 0);
5970 5965 spa_history_log_internal(spa, "set", tx,
5971 5966 "%s=%s", nvpair_name(elem), strval);
5972 5967 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5973 5968 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5974 5969
5975 5970 if (proptype == PROP_TYPE_INDEX) {
5976 5971 const char *unused;
5977 5972 VERIFY(zpool_prop_index_to_string(
5978 5973 prop, intval, &unused) == 0);
5979 5974 }
5980 5975 VERIFY(zap_update(mos,
5981 5976 spa->spa_pool_props_object, propname,
5982 5977 8, 1, &intval, tx) == 0);
5983 5978 spa_history_log_internal(spa, "set", tx,
5984 5979 "%s=%lld", nvpair_name(elem), intval);
5985 5980 } else {
5986 5981 ASSERT(0); /* not allowed */
5987 5982 }
5988 5983
5989 5984 switch (prop) {
5990 5985 case ZPOOL_PROP_DELEGATION:
5991 5986 spa->spa_delegation = intval;
5992 5987 break;
5993 5988 case ZPOOL_PROP_BOOTFS:
5994 5989 spa->spa_bootfs = intval;
5995 5990 break;
5996 5991 case ZPOOL_PROP_FAILUREMODE:
5997 5992 spa->spa_failmode = intval;
5998 5993 break;
5999 5994 case ZPOOL_PROP_AUTOEXPAND:
6000 5995 spa->spa_autoexpand = intval;
6001 5996 if (tx->tx_txg != TXG_INITIAL)
6002 5997 spa_async_request(spa,
6003 5998 SPA_ASYNC_AUTOEXPAND);
6004 5999 break;
6005 6000 case ZPOOL_PROP_DEDUPDITTO:
6006 6001 spa->spa_dedup_ditto = intval;
6007 6002 break;
6008 6003 default:
6009 6004 break;
6010 6005 }
6011 6006 }
6012 6007
6013 6008 }
6014 6009
6015 6010 mutex_exit(&spa->spa_props_lock);
6016 6011 }
6017 6012
6018 6013 /*
6019 6014 * Perform one-time upgrade on-disk changes. spa_version() does not
6020 6015 * reflect the new version this txg, so there must be no changes this
6021 6016 * txg to anything that the upgrade code depends on after it executes.
6022 6017 * Therefore this must be called after dsl_pool_sync() does the sync
6023 6018 * tasks.
6024 6019 */
6025 6020 static void
6026 6021 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6027 6022 {
6028 6023 dsl_pool_t *dp = spa->spa_dsl_pool;
6029 6024
6030 6025 ASSERT(spa->spa_sync_pass == 1);
6031 6026
6032 6027 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6033 6028
6034 6029 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6035 6030 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6036 6031 dsl_pool_create_origin(dp, tx);
6037 6032
6038 6033 /* Keeping the origin open increases spa_minref */
6039 6034 spa->spa_minref += 3;
6040 6035 }
6041 6036
6042 6037 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6043 6038 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6044 6039 dsl_pool_upgrade_clones(dp, tx);
6045 6040 }
6046 6041
6047 6042 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6048 6043 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6049 6044 dsl_pool_upgrade_dir_clones(dp, tx);
6050 6045
6051 6046 /* Keeping the freedir open increases spa_minref */
6052 6047 spa->spa_minref += 3;
6053 6048 }
6054 6049
6055 6050 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6056 6051 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6057 6052 spa_feature_create_zap_objects(spa, tx);
6058 6053 }
6059 6054 rrw_exit(&dp->dp_config_rwlock, FTAG);
6060 6055 }
6061 6056
6062 6057 /*
6063 6058 * Sync the specified transaction group. New blocks may be dirtied as
6064 6059 * part of the process, so we iterate until it converges.
6065 6060 */
6066 6061 void
6067 6062 spa_sync(spa_t *spa, uint64_t txg)
6068 6063 {
6069 6064 dsl_pool_t *dp = spa->spa_dsl_pool;
6070 6065 objset_t *mos = spa->spa_meta_objset;
6071 6066 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
6072 6067 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6073 6068 vdev_t *rvd = spa->spa_root_vdev;
6074 6069 vdev_t *vd;
6075 6070 dmu_tx_t *tx;
6076 6071 int error;
6077 6072
6078 6073 VERIFY(spa_writeable(spa));
6079 6074
6080 6075 /*
6081 6076 * Lock out configuration changes.
6082 6077 */
6083 6078 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6084 6079
6085 6080 spa->spa_syncing_txg = txg;
6086 6081 spa->spa_sync_pass = 0;
6087 6082
6088 6083 /*
6089 6084 * If there are any pending vdev state changes, convert them
6090 6085 * into config changes that go out with this transaction group.
6091 6086 */
6092 6087 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6093 6088 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6094 6089 /*
6095 6090 * We need the write lock here because, for aux vdevs,
6096 6091 * calling vdev_config_dirty() modifies sav_config.
6097 6092 * This is ugly and will become unnecessary when we
6098 6093 * eliminate the aux vdev wart by integrating all vdevs
6099 6094 * into the root vdev tree.
6100 6095 */
6101 6096 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6102 6097 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6103 6098 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6104 6099 vdev_state_clean(vd);
6105 6100 vdev_config_dirty(vd);
6106 6101 }
6107 6102 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6108 6103 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6109 6104 }
6110 6105 spa_config_exit(spa, SCL_STATE, FTAG);
6111 6106
6112 6107 tx = dmu_tx_create_assigned(dp, txg);
6113 6108
6114 6109 spa->spa_sync_starttime = gethrtime();
6115 6110 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6116 6111 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6117 6112
6118 6113 /*
6119 6114 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6120 6115 * set spa_deflate if we have no raid-z vdevs.
6121 6116 */
6122 6117 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6123 6118 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6124 6119 int i;
6125 6120
6126 6121 for (i = 0; i < rvd->vdev_children; i++) {
6127 6122 vd = rvd->vdev_child[i];
6128 6123 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6129 6124 break;
6130 6125 }
6131 6126 if (i == rvd->vdev_children) {
6132 6127 spa->spa_deflate = TRUE;
6133 6128 VERIFY(0 == zap_add(spa->spa_meta_objset,
6134 6129 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6135 6130 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6136 6131 }
6137 6132 }
6138 6133
6139 6134 /*
6140 6135 * If anything has changed in this txg, or if someone is waiting
6141 6136 * for this txg to sync (eg, spa_vdev_remove()), push the
6142 6137 * deferred frees from the previous txg. If not, leave them
6143 6138 * alone so that we don't generate work on an otherwise idle
6144 6139 * system.
6145 6140 */
6146 6141 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6147 6142 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6148 6143 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6149 6144 ((dsl_scan_active(dp->dp_scan) ||
6150 6145 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6151 6146 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6152 6147 VERIFY3U(bpobj_iterate(defer_bpo,
6153 6148 spa_free_sync_cb, zio, tx), ==, 0);
6154 6149 VERIFY0(zio_wait(zio));
6155 6150 }
6156 6151
6157 6152 /*
6158 6153 * Iterate to convergence.
6159 6154 */
6160 6155 do {
6161 6156 int pass = ++spa->spa_sync_pass;
6162 6157
6163 6158 spa_sync_config_object(spa, tx);
6164 6159 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6165 6160 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6166 6161 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6167 6162 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6168 6163 spa_errlog_sync(spa, txg);
6169 6164 dsl_pool_sync(dp, txg);
6170 6165
6171 6166 if (pass < zfs_sync_pass_deferred_free) {
6172 6167 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6173 6168 bplist_iterate(free_bpl, spa_free_sync_cb,
6174 6169 zio, tx);
6175 6170 VERIFY(zio_wait(zio) == 0);
6176 6171 } else {
6177 6172 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6178 6173 defer_bpo, tx);
6179 6174 }
6180 6175
6181 6176 ddt_sync(spa, txg);
6182 6177 dsl_scan_sync(dp, tx);
6183 6178
6184 6179 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6185 6180 vdev_sync(vd, txg);
6186 6181
6187 6182 if (pass == 1)
6188 6183 spa_sync_upgrades(spa, tx);
6189 6184
6190 6185 } while (dmu_objset_is_dirty(mos, txg));
6191 6186
6192 6187 /*
6193 6188 * Rewrite the vdev configuration (which includes the uberblock)
6194 6189 * to commit the transaction group.
6195 6190 *
6196 6191 * If there are no dirty vdevs, we sync the uberblock to a few
6197 6192 * random top-level vdevs that are known to be visible in the
6198 6193 * config cache (see spa_vdev_add() for a complete description).
6199 6194 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6200 6195 */
6201 6196 for (;;) {
6202 6197 /*
6203 6198 * We hold SCL_STATE to prevent vdev open/close/etc.
6204 6199 * while we're attempting to write the vdev labels.
6205 6200 */
6206 6201 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6207 6202
6208 6203 if (list_is_empty(&spa->spa_config_dirty_list)) {
6209 6204 vdev_t *svd[SPA_DVAS_PER_BP];
6210 6205 int svdcount = 0;
6211 6206 int children = rvd->vdev_children;
6212 6207 int c0 = spa_get_random(children);
6213 6208
6214 6209 for (int c = 0; c < children; c++) {
6215 6210 vd = rvd->vdev_child[(c0 + c) % children];
6216 6211 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6217 6212 continue;
6218 6213 svd[svdcount++] = vd;
6219 6214 if (svdcount == SPA_DVAS_PER_BP)
6220 6215 break;
6221 6216 }
6222 6217 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6223 6218 if (error != 0)
6224 6219 error = vdev_config_sync(svd, svdcount, txg,
6225 6220 B_TRUE);
6226 6221 } else {
6227 6222 error = vdev_config_sync(rvd->vdev_child,
6228 6223 rvd->vdev_children, txg, B_FALSE);
6229 6224 if (error != 0)
6230 6225 error = vdev_config_sync(rvd->vdev_child,
6231 6226 rvd->vdev_children, txg, B_TRUE);
6232 6227 }
6233 6228
6234 6229 if (error == 0)
6235 6230 spa->spa_last_synced_guid = rvd->vdev_guid;
6236 6231
6237 6232 spa_config_exit(spa, SCL_STATE, FTAG);
6238 6233
6239 6234 if (error == 0)
6240 6235 break;
6241 6236 zio_suspend(spa, NULL);
6242 6237 zio_resume_wait(spa);
6243 6238 }
6244 6239 dmu_tx_commit(tx);
6245 6240
6246 6241 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6247 6242
6248 6243 /*
6249 6244 * Clear the dirty config list.
6250 6245 */
6251 6246 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6252 6247 vdev_config_clean(vd);
6253 6248
6254 6249 /*
6255 6250 * Now that the new config has synced transactionally,
6256 6251 * let it become visible to the config cache.
6257 6252 */
6258 6253 if (spa->spa_config_syncing != NULL) {
6259 6254 spa_config_set(spa, spa->spa_config_syncing);
6260 6255 spa->spa_config_txg = txg;
6261 6256 spa->spa_config_syncing = NULL;
6262 6257 }
6263 6258
6264 6259 spa->spa_ubsync = spa->spa_uberblock;
6265 6260
6266 6261 dsl_pool_sync_done(dp, txg);
6267 6262
6268 6263 /*
6269 6264 * Update usable space statistics.
6270 6265 */
6271 6266 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6272 6267 vdev_sync_done(vd, txg);
6273 6268
6274 6269 spa_update_dspace(spa);
6275 6270
6276 6271 /*
6277 6272 * It had better be the case that we didn't dirty anything
6278 6273 * since vdev_config_sync().
6279 6274 */
6280 6275 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6281 6276 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6282 6277 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6283 6278
6284 6279 spa->spa_sync_pass = 0;
6285 6280
6286 6281 spa_config_exit(spa, SCL_CONFIG, FTAG);
6287 6282
6288 6283 spa_handle_ignored_writes(spa);
6289 6284
6290 6285 /*
6291 6286 * If any async tasks have been requested, kick them off.
6292 6287 */
6293 6288 spa_async_dispatch(spa);
6294 6289 }
6295 6290
6296 6291 /*
6297 6292 * Sync all pools. We don't want to hold the namespace lock across these
6298 6293 * operations, so we take a reference on the spa_t and drop the lock during the
6299 6294 * sync.
6300 6295 */
6301 6296 void
6302 6297 spa_sync_allpools(void)
6303 6298 {
6304 6299 spa_t *spa = NULL;
6305 6300 mutex_enter(&spa_namespace_lock);
6306 6301 while ((spa = spa_next(spa)) != NULL) {
6307 6302 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6308 6303 !spa_writeable(spa) || spa_suspended(spa))
6309 6304 continue;
6310 6305 spa_open_ref(spa, FTAG);
6311 6306 mutex_exit(&spa_namespace_lock);
6312 6307 txg_wait_synced(spa_get_dsl(spa), 0);
6313 6308 mutex_enter(&spa_namespace_lock);
6314 6309 spa_close(spa, FTAG);
6315 6310 }
6316 6311 mutex_exit(&spa_namespace_lock);
6317 6312 }
6318 6313
6319 6314 /*
6320 6315 * ==========================================================================
6321 6316 * Miscellaneous routines
6322 6317 * ==========================================================================
6323 6318 */
6324 6319
6325 6320 /*
6326 6321 * Remove all pools in the system.
6327 6322 */
6328 6323 void
6329 6324 spa_evict_all(void)
6330 6325 {
6331 6326 spa_t *spa;
6332 6327
6333 6328 /*
6334 6329 * Remove all cached state. All pools should be closed now,
6335 6330 * so every spa in the AVL tree should be unreferenced.
6336 6331 */
6337 6332 mutex_enter(&spa_namespace_lock);
6338 6333 while ((spa = spa_next(NULL)) != NULL) {
6339 6334 /*
6340 6335 * Stop async tasks. The async thread may need to detach
6341 6336 * a device that's been replaced, which requires grabbing
6342 6337 * spa_namespace_lock, so we must drop it here.
6343 6338 */
6344 6339 spa_open_ref(spa, FTAG);
6345 6340 mutex_exit(&spa_namespace_lock);
6346 6341 spa_async_suspend(spa);
6347 6342 mutex_enter(&spa_namespace_lock);
6348 6343 spa_close(spa, FTAG);
6349 6344
6350 6345 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6351 6346 spa_unload(spa);
6352 6347 spa_deactivate(spa);
6353 6348 }
6354 6349 spa_remove(spa);
6355 6350 }
6356 6351 mutex_exit(&spa_namespace_lock);
6357 6352 }
6358 6353
6359 6354 vdev_t *
6360 6355 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6361 6356 {
6362 6357 vdev_t *vd;
6363 6358 int i;
6364 6359
6365 6360 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6366 6361 return (vd);
6367 6362
6368 6363 if (aux) {
6369 6364 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6370 6365 vd = spa->spa_l2cache.sav_vdevs[i];
6371 6366 if (vd->vdev_guid == guid)
6372 6367 return (vd);
6373 6368 }
6374 6369
6375 6370 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6376 6371 vd = spa->spa_spares.sav_vdevs[i];
6377 6372 if (vd->vdev_guid == guid)
6378 6373 return (vd);
6379 6374 }
6380 6375 }
6381 6376
6382 6377 return (NULL);
6383 6378 }
6384 6379
6385 6380 void
6386 6381 spa_upgrade(spa_t *spa, uint64_t version)
6387 6382 {
6388 6383 ASSERT(spa_writeable(spa));
6389 6384
6390 6385 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6391 6386
6392 6387 /*
6393 6388 * This should only be called for a non-faulted pool, and since a
6394 6389 * future version would result in an unopenable pool, this shouldn't be
6395 6390 * possible.
6396 6391 */
6397 6392 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6398 6393 ASSERT(version >= spa->spa_uberblock.ub_version);
6399 6394
6400 6395 spa->spa_uberblock.ub_version = version;
6401 6396 vdev_config_dirty(spa->spa_root_vdev);
6402 6397
6403 6398 spa_config_exit(spa, SCL_ALL, FTAG);
6404 6399
6405 6400 txg_wait_synced(spa_get_dsl(spa), 0);
6406 6401 }
6407 6402
6408 6403 boolean_t
6409 6404 spa_has_spare(spa_t *spa, uint64_t guid)
6410 6405 {
6411 6406 int i;
6412 6407 uint64_t spareguid;
6413 6408 spa_aux_vdev_t *sav = &spa->spa_spares;
6414 6409
6415 6410 for (i = 0; i < sav->sav_count; i++)
6416 6411 if (sav->sav_vdevs[i]->vdev_guid == guid)
6417 6412 return (B_TRUE);
6418 6413
6419 6414 for (i = 0; i < sav->sav_npending; i++) {
6420 6415 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6421 6416 &spareguid) == 0 && spareguid == guid)
6422 6417 return (B_TRUE);
6423 6418 }
6424 6419
6425 6420 return (B_FALSE);
6426 6421 }
6427 6422
6428 6423 /*
6429 6424 * Check if a pool has an active shared spare device.
6430 6425 * Note: reference count of an active spare is 2, as a spare and as a replace
6431 6426 */
6432 6427 static boolean_t
6433 6428 spa_has_active_shared_spare(spa_t *spa)
6434 6429 {
6435 6430 int i, refcnt;
6436 6431 uint64_t pool;
6437 6432 spa_aux_vdev_t *sav = &spa->spa_spares;
6438 6433
6439 6434 for (i = 0; i < sav->sav_count; i++) {
6440 6435 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6441 6436 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6442 6437 refcnt > 2)
6443 6438 return (B_TRUE);
6444 6439 }
6445 6440
6446 6441 return (B_FALSE);
6447 6442 }
6448 6443
6449 6444 /*
6450 6445 * Post a sysevent corresponding to the given event. The 'name' must be one of
6451 6446 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6452 6447 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6453 6448 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6454 6449 * or zdb as real changes.
6455 6450 */
6456 6451 void
6457 6452 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6458 6453 {
6459 6454 #ifdef _KERNEL
6460 6455 sysevent_t *ev;
6461 6456 sysevent_attr_list_t *attr = NULL;
6462 6457 sysevent_value_t value;
6463 6458 sysevent_id_t eid;
6464 6459
6465 6460 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6466 6461 SE_SLEEP);
6467 6462
6468 6463 value.value_type = SE_DATA_TYPE_STRING;
6469 6464 value.value.sv_string = spa_name(spa);
6470 6465 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6471 6466 goto done;
6472 6467
6473 6468 value.value_type = SE_DATA_TYPE_UINT64;
6474 6469 value.value.sv_uint64 = spa_guid(spa);
6475 6470 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6476 6471 goto done;
6477 6472
6478 6473 if (vd) {
6479 6474 value.value_type = SE_DATA_TYPE_UINT64;
6480 6475 value.value.sv_uint64 = vd->vdev_guid;
6481 6476 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6482 6477 SE_SLEEP) != 0)
6483 6478 goto done;
6484 6479
6485 6480 if (vd->vdev_path) {
6486 6481 value.value_type = SE_DATA_TYPE_STRING;
6487 6482 value.value.sv_string = vd->vdev_path;
6488 6483 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6489 6484 &value, SE_SLEEP) != 0)
6490 6485 goto done;
6491 6486 }
6492 6487 }
6493 6488
6494 6489 if (sysevent_attach_attributes(ev, attr) != 0)
6495 6490 goto done;
6496 6491 attr = NULL;
6497 6492
6498 6493 (void) log_sysevent(ev, SE_SLEEP, &eid);
6499 6494
6500 6495 done:
6501 6496 if (attr)
6502 6497 sysevent_free_attr(attr);
6503 6498 sysevent_free(ev);
6504 6499 #endif
6505 6500 }
↓ open down ↓ |
1094 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX