1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 */ 27 28 /* 29 * The objective of this program is to provide a DMU/ZAP/SPA stress test 30 * that runs entirely in userland, is easy to use, and easy to extend. 31 * 32 * The overall design of the ztest program is as follows: 33 * 34 * (1) For each major functional area (e.g. adding vdevs to a pool, 35 * creating and destroying datasets, reading and writing objects, etc) 36 * we have a simple routine to test that functionality. These 37 * individual routines do not have to do anything "stressful". 38 * 39 * (2) We turn these simple functionality tests into a stress test by 40 * running them all in parallel, with as many threads as desired, 41 * and spread across as many datasets, objects, and vdevs as desired. 42 * 43 * (3) While all this is happening, we inject faults into the pool to 44 * verify that self-healing data really works. 45 * 46 * (4) Every time we open a dataset, we change its checksum and compression 47 * functions. Thus even individual objects vary from block to block 48 * in which checksum they use and whether they're compressed. 49 * 50 * (5) To verify that we never lose on-disk consistency after a crash, 51 * we run the entire test in a child of the main process. 52 * At random times, the child self-immolates with a SIGKILL. 53 * This is the software equivalent of pulling the power cord. 54 * The parent then runs the test again, using the existing 55 * storage pool, as many times as desired. If backwards compatability 56 * testing is enabled ztest will sometimes run the "older" version 57 * of ztest after a SIGKILL. 58 * 59 * (6) To verify that we don't have future leaks or temporal incursions, 60 * many of the functional tests record the transaction group number 61 * as part of their data. When reading old data, they verify that 62 * the transaction group number is less than the current, open txg. 63 * If you add a new test, please do this if applicable. 64 * 65 * When run with no arguments, ztest runs for about five minutes and 66 * produces no output if successful. To get a little bit of information, 67 * specify -V. To get more information, specify -VV, and so on. 68 * 69 * To turn this into an overnight stress test, use -T to specify run time. 70 * 71 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 72 * to increase the pool capacity, fanout, and overall stress level. 73 * 74 * Use the -k option to set the desired frequency of kills. 75 * 76 * When ztest invokes itself it passes all relevant information through a 77 * temporary file which is mmap-ed in the child process. This allows shared 78 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 79 * stored at offset 0 of this file and contains information on the size and 80 * number of shared structures in the file. The information stored in this file 81 * must remain backwards compatible with older versions of ztest so that 82 * ztest can invoke them during backwards compatibility testing (-B). 83 */ 84 85 #include <sys/zfs_context.h> 86 #include <sys/spa.h> 87 #include <sys/dmu.h> 88 #include <sys/txg.h> 89 #include <sys/dbuf.h> 90 #include <sys/zap.h> 91 #include <sys/dmu_objset.h> 92 #include <sys/poll.h> 93 #include <sys/stat.h> 94 #include <sys/time.h> 95 #include <sys/wait.h> 96 #include <sys/mman.h> 97 #include <sys/resource.h> 98 #include <sys/zio.h> 99 #include <sys/zil.h> 100 #include <sys/zil_impl.h> 101 #include <sys/vdev_impl.h> 102 #include <sys/vdev_file.h> 103 #include <sys/spa_impl.h> 104 #include <sys/metaslab_impl.h> 105 #include <sys/dsl_prop.h> 106 #include <sys/dsl_dataset.h> 107 #include <sys/dsl_destroy.h> 108 #include <sys/dsl_scan.h> 109 #include <sys/zio_checksum.h> 110 #include <sys/refcount.h> 111 #include <sys/zfeature.h> 112 #include <sys/dsl_userhold.h> 113 #include <stdio.h> 114 #include <stdio_ext.h> 115 #include <stdlib.h> 116 #include <unistd.h> 117 #include <signal.h> 118 #include <umem.h> 119 #include <dlfcn.h> 120 #include <ctype.h> 121 #include <math.h> 122 #include <sys/fs/zfs.h> 123 #include <libnvpair.h> 124 125 static int ztest_fd_data = -1; 126 static int ztest_fd_rand = -1; 127 128 typedef struct ztest_shared_hdr { 129 uint64_t zh_hdr_size; 130 uint64_t zh_opts_size; 131 uint64_t zh_size; 132 uint64_t zh_stats_size; 133 uint64_t zh_stats_count; 134 uint64_t zh_ds_size; 135 uint64_t zh_ds_count; 136 } ztest_shared_hdr_t; 137 138 static ztest_shared_hdr_t *ztest_shared_hdr; 139 140 typedef struct ztest_shared_opts { 141 char zo_pool[MAXNAMELEN]; 142 char zo_dir[MAXNAMELEN]; 143 char zo_alt_ztest[MAXNAMELEN]; 144 char zo_alt_libpath[MAXNAMELEN]; 145 uint64_t zo_vdevs; 146 uint64_t zo_vdevtime; 147 size_t zo_vdev_size; 148 int zo_ashift; 149 int zo_mirrors; 150 int zo_raidz; 151 int zo_raidz_parity; 152 int zo_datasets; 153 int zo_threads; 154 uint64_t zo_passtime; 155 uint64_t zo_killrate; 156 int zo_verbose; 157 int zo_init; 158 uint64_t zo_time; 159 uint64_t zo_maxloops; 160 uint64_t zo_metaslab_gang_bang; 161 } ztest_shared_opts_t; 162 163 static const ztest_shared_opts_t ztest_opts_defaults = { 164 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 165 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 166 .zo_alt_ztest = { '\0' }, 167 .zo_alt_libpath = { '\0' }, 168 .zo_vdevs = 5, 169 .zo_ashift = SPA_MINBLOCKSHIFT, 170 .zo_mirrors = 2, 171 .zo_raidz = 4, 172 .zo_raidz_parity = 1, 173 .zo_vdev_size = SPA_MINDEVSIZE, 174 .zo_datasets = 7, 175 .zo_threads = 23, 176 .zo_passtime = 60, /* 60 seconds */ 177 .zo_killrate = 70, /* 70% kill rate */ 178 .zo_verbose = 0, 179 .zo_init = 1, 180 .zo_time = 300, /* 5 minutes */ 181 .zo_maxloops = 50, /* max loops during spa_freeze() */ 182 .zo_metaslab_gang_bang = 32 << 10 183 }; 184 185 extern uint64_t metaslab_gang_bang; 186 extern uint64_t metaslab_df_alloc_threshold; 187 extern uint64_t zfs_deadman_synctime; 188 189 static ztest_shared_opts_t *ztest_shared_opts; 190 static ztest_shared_opts_t ztest_opts; 191 192 typedef struct ztest_shared_ds { 193 uint64_t zd_seq; 194 } ztest_shared_ds_t; 195 196 static ztest_shared_ds_t *ztest_shared_ds; 197 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 198 199 #define BT_MAGIC 0x123456789abcdefULL 200 #define MAXFAULTS() \ 201 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 202 203 enum ztest_io_type { 204 ZTEST_IO_WRITE_TAG, 205 ZTEST_IO_WRITE_PATTERN, 206 ZTEST_IO_WRITE_ZEROES, 207 ZTEST_IO_TRUNCATE, 208 ZTEST_IO_SETATTR, 209 ZTEST_IO_REWRITE, 210 ZTEST_IO_TYPES 211 }; 212 213 typedef struct ztest_block_tag { 214 uint64_t bt_magic; 215 uint64_t bt_objset; 216 uint64_t bt_object; 217 uint64_t bt_offset; 218 uint64_t bt_gen; 219 uint64_t bt_txg; 220 uint64_t bt_crtxg; 221 } ztest_block_tag_t; 222 223 typedef struct bufwad { 224 uint64_t bw_index; 225 uint64_t bw_txg; 226 uint64_t bw_data; 227 } bufwad_t; 228 229 /* 230 * XXX -- fix zfs range locks to be generic so we can use them here. 231 */ 232 typedef enum { 233 RL_READER, 234 RL_WRITER, 235 RL_APPEND 236 } rl_type_t; 237 238 typedef struct rll { 239 void *rll_writer; 240 int rll_readers; 241 mutex_t rll_lock; 242 cond_t rll_cv; 243 } rll_t; 244 245 typedef struct rl { 246 uint64_t rl_object; 247 uint64_t rl_offset; 248 uint64_t rl_size; 249 rll_t *rl_lock; 250 } rl_t; 251 252 #define ZTEST_RANGE_LOCKS 64 253 #define ZTEST_OBJECT_LOCKS 64 254 255 /* 256 * Object descriptor. Used as a template for object lookup/create/remove. 257 */ 258 typedef struct ztest_od { 259 uint64_t od_dir; 260 uint64_t od_object; 261 dmu_object_type_t od_type; 262 dmu_object_type_t od_crtype; 263 uint64_t od_blocksize; 264 uint64_t od_crblocksize; 265 uint64_t od_gen; 266 uint64_t od_crgen; 267 char od_name[MAXNAMELEN]; 268 } ztest_od_t; 269 270 /* 271 * Per-dataset state. 272 */ 273 typedef struct ztest_ds { 274 ztest_shared_ds_t *zd_shared; 275 objset_t *zd_os; 276 rwlock_t zd_zilog_lock; 277 zilog_t *zd_zilog; 278 ztest_od_t *zd_od; /* debugging aid */ 279 char zd_name[MAXNAMELEN]; 280 mutex_t zd_dirobj_lock; 281 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 282 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 283 } ztest_ds_t; 284 285 /* 286 * Per-iteration state. 287 */ 288 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 289 290 typedef struct ztest_info { 291 ztest_func_t *zi_func; /* test function */ 292 uint64_t zi_iters; /* iterations per execution */ 293 uint64_t *zi_interval; /* execute every <interval> seconds */ 294 } ztest_info_t; 295 296 typedef struct ztest_shared_callstate { 297 uint64_t zc_count; /* per-pass count */ 298 uint64_t zc_time; /* per-pass time */ 299 uint64_t zc_next; /* next time to call this function */ 300 } ztest_shared_callstate_t; 301 302 static ztest_shared_callstate_t *ztest_shared_callstate; 303 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 304 305 /* 306 * Note: these aren't static because we want dladdr() to work. 307 */ 308 ztest_func_t ztest_dmu_read_write; 309 ztest_func_t ztest_dmu_write_parallel; 310 ztest_func_t ztest_dmu_object_alloc_free; 311 ztest_func_t ztest_dmu_commit_callbacks; 312 ztest_func_t ztest_zap; 313 ztest_func_t ztest_zap_parallel; 314 ztest_func_t ztest_zil_commit; 315 ztest_func_t ztest_zil_remount; 316 ztest_func_t ztest_dmu_read_write_zcopy; 317 ztest_func_t ztest_dmu_objset_create_destroy; 318 ztest_func_t ztest_dmu_prealloc; 319 ztest_func_t ztest_fzap; 320 ztest_func_t ztest_dmu_snapshot_create_destroy; 321 ztest_func_t ztest_dsl_prop_get_set; 322 ztest_func_t ztest_spa_prop_get_set; 323 ztest_func_t ztest_spa_create_destroy; 324 ztest_func_t ztest_fault_inject; 325 ztest_func_t ztest_ddt_repair; 326 ztest_func_t ztest_dmu_snapshot_hold; 327 ztest_func_t ztest_spa_rename; 328 ztest_func_t ztest_scrub; 329 ztest_func_t ztest_dsl_dataset_promote_busy; 330 ztest_func_t ztest_vdev_attach_detach; 331 ztest_func_t ztest_vdev_LUN_growth; 332 ztest_func_t ztest_vdev_add_remove; 333 ztest_func_t ztest_vdev_aux_add_remove; 334 ztest_func_t ztest_split_pool; 335 ztest_func_t ztest_reguid; 336 ztest_func_t ztest_spa_upgrade; 337 338 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 339 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 340 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 341 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 342 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 343 344 ztest_info_t ztest_info[] = { 345 { ztest_dmu_read_write, 1, &zopt_always }, 346 { ztest_dmu_write_parallel, 10, &zopt_always }, 347 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 348 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 349 { ztest_zap, 30, &zopt_always }, 350 { ztest_zap_parallel, 100, &zopt_always }, 351 { ztest_split_pool, 1, &zopt_always }, 352 { ztest_zil_commit, 1, &zopt_incessant }, 353 { ztest_zil_remount, 1, &zopt_sometimes }, 354 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 355 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 356 { ztest_dsl_prop_get_set, 1, &zopt_often }, 357 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 358 #if 0 359 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 360 #endif 361 { ztest_fzap, 1, &zopt_sometimes }, 362 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 363 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 364 { ztest_fault_inject, 1, &zopt_sometimes }, 365 { ztest_ddt_repair, 1, &zopt_sometimes }, 366 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 367 { ztest_reguid, 1, &zopt_rarely }, 368 { ztest_spa_rename, 1, &zopt_rarely }, 369 { ztest_scrub, 1, &zopt_rarely }, 370 { ztest_spa_upgrade, 1, &zopt_rarely }, 371 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 372 { ztest_vdev_attach_detach, 1, &zopt_sometimes }, 373 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 374 { ztest_vdev_add_remove, 1, 375 &ztest_opts.zo_vdevtime }, 376 { ztest_vdev_aux_add_remove, 1, 377 &ztest_opts.zo_vdevtime }, 378 }; 379 380 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 381 382 /* 383 * The following struct is used to hold a list of uncalled commit callbacks. 384 * The callbacks are ordered by txg number. 385 */ 386 typedef struct ztest_cb_list { 387 mutex_t zcl_callbacks_lock; 388 list_t zcl_callbacks; 389 } ztest_cb_list_t; 390 391 /* 392 * Stuff we need to share writably between parent and child. 393 */ 394 typedef struct ztest_shared { 395 boolean_t zs_do_init; 396 hrtime_t zs_proc_start; 397 hrtime_t zs_proc_stop; 398 hrtime_t zs_thread_start; 399 hrtime_t zs_thread_stop; 400 hrtime_t zs_thread_kill; 401 uint64_t zs_enospc_count; 402 uint64_t zs_vdev_next_leaf; 403 uint64_t zs_vdev_aux; 404 uint64_t zs_alloc; 405 uint64_t zs_space; 406 uint64_t zs_splits; 407 uint64_t zs_mirrors; 408 uint64_t zs_metaslab_sz; 409 uint64_t zs_metaslab_df_alloc_threshold; 410 uint64_t zs_guid; 411 } ztest_shared_t; 412 413 #define ID_PARALLEL -1ULL 414 415 static char ztest_dev_template[] = "%s/%s.%llua"; 416 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 417 ztest_shared_t *ztest_shared; 418 419 static spa_t *ztest_spa = NULL; 420 static ztest_ds_t *ztest_ds; 421 422 static mutex_t ztest_vdev_lock; 423 424 /* 425 * The ztest_name_lock protects the pool and dataset namespace used by 426 * the individual tests. To modify the namespace, consumers must grab 427 * this lock as writer. Grabbing the lock as reader will ensure that the 428 * namespace does not change while the lock is held. 429 */ 430 static rwlock_t ztest_name_lock; 431 432 static boolean_t ztest_dump_core = B_TRUE; 433 static boolean_t ztest_exiting; 434 435 /* Global commit callback list */ 436 static ztest_cb_list_t zcl; 437 438 enum ztest_object { 439 ZTEST_META_DNODE = 0, 440 ZTEST_DIROBJ, 441 ZTEST_OBJECTS 442 }; 443 444 static void usage(boolean_t) __NORETURN; 445 446 /* 447 * These libumem hooks provide a reasonable set of defaults for the allocator's 448 * debugging facilities. 449 */ 450 const char * 451 _umem_debug_init() 452 { 453 return ("default,verbose"); /* $UMEM_DEBUG setting */ 454 } 455 456 const char * 457 _umem_logging_init(void) 458 { 459 return ("fail,contents"); /* $UMEM_LOGGING setting */ 460 } 461 462 #define FATAL_MSG_SZ 1024 463 464 char *fatal_msg; 465 466 static void 467 fatal(int do_perror, char *message, ...) 468 { 469 va_list args; 470 int save_errno = errno; 471 char buf[FATAL_MSG_SZ]; 472 473 (void) fflush(stdout); 474 475 va_start(args, message); 476 (void) sprintf(buf, "ztest: "); 477 /* LINTED */ 478 (void) vsprintf(buf + strlen(buf), message, args); 479 va_end(args); 480 if (do_perror) { 481 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 482 ": %s", strerror(save_errno)); 483 } 484 (void) fprintf(stderr, "%s\n", buf); 485 fatal_msg = buf; /* to ease debugging */ 486 if (ztest_dump_core) 487 abort(); 488 exit(3); 489 } 490 491 static int 492 str2shift(const char *buf) 493 { 494 const char *ends = "BKMGTPEZ"; 495 int i; 496 497 if (buf[0] == '\0') 498 return (0); 499 for (i = 0; i < strlen(ends); i++) { 500 if (toupper(buf[0]) == ends[i]) 501 break; 502 } 503 if (i == strlen(ends)) { 504 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 505 buf); 506 usage(B_FALSE); 507 } 508 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 509 return (10*i); 510 } 511 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 512 usage(B_FALSE); 513 /* NOTREACHED */ 514 } 515 516 static uint64_t 517 nicenumtoull(const char *buf) 518 { 519 char *end; 520 uint64_t val; 521 522 val = strtoull(buf, &end, 0); 523 if (end == buf) { 524 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 525 usage(B_FALSE); 526 } else if (end[0] == '.') { 527 double fval = strtod(buf, &end); 528 fval *= pow(2, str2shift(end)); 529 if (fval > UINT64_MAX) { 530 (void) fprintf(stderr, "ztest: value too large: %s\n", 531 buf); 532 usage(B_FALSE); 533 } 534 val = (uint64_t)fval; 535 } else { 536 int shift = str2shift(end); 537 if (shift >= 64 || (val << shift) >> shift != val) { 538 (void) fprintf(stderr, "ztest: value too large: %s\n", 539 buf); 540 usage(B_FALSE); 541 } 542 val <<= shift; 543 } 544 return (val); 545 } 546 547 static void 548 usage(boolean_t requested) 549 { 550 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 551 552 char nice_vdev_size[10]; 553 char nice_gang_bang[10]; 554 FILE *fp = requested ? stdout : stderr; 555 556 nicenum(zo->zo_vdev_size, nice_vdev_size); 557 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang); 558 559 (void) fprintf(fp, "Usage: %s\n" 560 "\t[-v vdevs (default: %llu)]\n" 561 "\t[-s size_of_each_vdev (default: %s)]\n" 562 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 563 "\t[-m mirror_copies (default: %d)]\n" 564 "\t[-r raidz_disks (default: %d)]\n" 565 "\t[-R raidz_parity (default: %d)]\n" 566 "\t[-d datasets (default: %d)]\n" 567 "\t[-t threads (default: %d)]\n" 568 "\t[-g gang_block_threshold (default: %s)]\n" 569 "\t[-i init_count (default: %d)] initialize pool i times\n" 570 "\t[-k kill_percentage (default: %llu%%)]\n" 571 "\t[-p pool_name (default: %s)]\n" 572 "\t[-f dir (default: %s)] file directory for vdev files\n" 573 "\t[-V] verbose (use multiple times for ever more blather)\n" 574 "\t[-E] use existing pool instead of creating new one\n" 575 "\t[-T time (default: %llu sec)] total run time\n" 576 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 577 "\t[-P passtime (default: %llu sec)] time per pass\n" 578 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 579 "\t[-h] (print help)\n" 580 "", 581 zo->zo_pool, 582 (u_longlong_t)zo->zo_vdevs, /* -v */ 583 nice_vdev_size, /* -s */ 584 zo->zo_ashift, /* -a */ 585 zo->zo_mirrors, /* -m */ 586 zo->zo_raidz, /* -r */ 587 zo->zo_raidz_parity, /* -R */ 588 zo->zo_datasets, /* -d */ 589 zo->zo_threads, /* -t */ 590 nice_gang_bang, /* -g */ 591 zo->zo_init, /* -i */ 592 (u_longlong_t)zo->zo_killrate, /* -k */ 593 zo->zo_pool, /* -p */ 594 zo->zo_dir, /* -f */ 595 (u_longlong_t)zo->zo_time, /* -T */ 596 (u_longlong_t)zo->zo_maxloops, /* -F */ 597 (u_longlong_t)zo->zo_passtime); 598 exit(requested ? 0 : 1); 599 } 600 601 static void 602 process_options(int argc, char **argv) 603 { 604 char *path; 605 ztest_shared_opts_t *zo = &ztest_opts; 606 607 int opt; 608 uint64_t value; 609 char altdir[MAXNAMELEN] = { 0 }; 610 611 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 612 613 while ((opt = getopt(argc, argv, 614 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) { 615 value = 0; 616 switch (opt) { 617 case 'v': 618 case 's': 619 case 'a': 620 case 'm': 621 case 'r': 622 case 'R': 623 case 'd': 624 case 't': 625 case 'g': 626 case 'i': 627 case 'k': 628 case 'T': 629 case 'P': 630 case 'F': 631 value = nicenumtoull(optarg); 632 } 633 switch (opt) { 634 case 'v': 635 zo->zo_vdevs = value; 636 break; 637 case 's': 638 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 639 break; 640 case 'a': 641 zo->zo_ashift = value; 642 break; 643 case 'm': 644 zo->zo_mirrors = value; 645 break; 646 case 'r': 647 zo->zo_raidz = MAX(1, value); 648 break; 649 case 'R': 650 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 651 break; 652 case 'd': 653 zo->zo_datasets = MAX(1, value); 654 break; 655 case 't': 656 zo->zo_threads = MAX(1, value); 657 break; 658 case 'g': 659 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, 660 value); 661 break; 662 case 'i': 663 zo->zo_init = value; 664 break; 665 case 'k': 666 zo->zo_killrate = value; 667 break; 668 case 'p': 669 (void) strlcpy(zo->zo_pool, optarg, 670 sizeof (zo->zo_pool)); 671 break; 672 case 'f': 673 path = realpath(optarg, NULL); 674 if (path == NULL) { 675 (void) fprintf(stderr, "error: %s: %s\n", 676 optarg, strerror(errno)); 677 usage(B_FALSE); 678 } else { 679 (void) strlcpy(zo->zo_dir, path, 680 sizeof (zo->zo_dir)); 681 } 682 break; 683 case 'V': 684 zo->zo_verbose++; 685 break; 686 case 'E': 687 zo->zo_init = 0; 688 break; 689 case 'T': 690 zo->zo_time = value; 691 break; 692 case 'P': 693 zo->zo_passtime = MAX(1, value); 694 break; 695 case 'F': 696 zo->zo_maxloops = MAX(1, value); 697 break; 698 case 'B': 699 (void) strlcpy(altdir, optarg, sizeof (altdir)); 700 break; 701 case 'h': 702 usage(B_TRUE); 703 break; 704 case '?': 705 default: 706 usage(B_FALSE); 707 break; 708 } 709 } 710 711 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 712 713 zo->zo_vdevtime = 714 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 715 UINT64_MAX >> 2); 716 717 if (strlen(altdir) > 0) { 718 char *cmd; 719 char *realaltdir; 720 char *bin; 721 char *ztest; 722 char *isa; 723 int isalen; 724 725 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 726 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 727 728 VERIFY(NULL != realpath(getexecname(), cmd)); 729 if (0 != access(altdir, F_OK)) { 730 ztest_dump_core = B_FALSE; 731 fatal(B_TRUE, "invalid alternate ztest path: %s", 732 altdir); 733 } 734 VERIFY(NULL != realpath(altdir, realaltdir)); 735 736 /* 737 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 738 * We want to extract <isa> to determine if we should use 739 * 32 or 64 bit binaries. 740 */ 741 bin = strstr(cmd, "/usr/bin/"); 742 ztest = strstr(bin, "/ztest"); 743 isa = bin + 9; 744 isalen = ztest - isa; 745 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 746 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 747 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 748 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 749 750 if (0 != access(zo->zo_alt_ztest, X_OK)) { 751 ztest_dump_core = B_FALSE; 752 fatal(B_TRUE, "invalid alternate ztest: %s", 753 zo->zo_alt_ztest); 754 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 755 ztest_dump_core = B_FALSE; 756 fatal(B_TRUE, "invalid alternate lib directory %s", 757 zo->zo_alt_libpath); 758 } 759 760 umem_free(cmd, MAXPATHLEN); 761 umem_free(realaltdir, MAXPATHLEN); 762 } 763 } 764 765 static void 766 ztest_kill(ztest_shared_t *zs) 767 { 768 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 769 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 770 (void) kill(getpid(), SIGKILL); 771 } 772 773 static uint64_t 774 ztest_random(uint64_t range) 775 { 776 uint64_t r; 777 778 ASSERT3S(ztest_fd_rand, >=, 0); 779 780 if (range == 0) 781 return (0); 782 783 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 784 fatal(1, "short read from /dev/urandom"); 785 786 return (r % range); 787 } 788 789 /* ARGSUSED */ 790 static void 791 ztest_record_enospc(const char *s) 792 { 793 ztest_shared->zs_enospc_count++; 794 } 795 796 static uint64_t 797 ztest_get_ashift(void) 798 { 799 if (ztest_opts.zo_ashift == 0) 800 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 801 return (ztest_opts.zo_ashift); 802 } 803 804 static nvlist_t * 805 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 806 { 807 char pathbuf[MAXPATHLEN]; 808 uint64_t vdev; 809 nvlist_t *file; 810 811 if (ashift == 0) 812 ashift = ztest_get_ashift(); 813 814 if (path == NULL) { 815 path = pathbuf; 816 817 if (aux != NULL) { 818 vdev = ztest_shared->zs_vdev_aux; 819 (void) snprintf(path, sizeof (pathbuf), 820 ztest_aux_template, ztest_opts.zo_dir, 821 pool == NULL ? ztest_opts.zo_pool : pool, 822 aux, vdev); 823 } else { 824 vdev = ztest_shared->zs_vdev_next_leaf++; 825 (void) snprintf(path, sizeof (pathbuf), 826 ztest_dev_template, ztest_opts.zo_dir, 827 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 828 } 829 } 830 831 if (size != 0) { 832 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 833 if (fd == -1) 834 fatal(1, "can't open %s", path); 835 if (ftruncate(fd, size) != 0) 836 fatal(1, "can't ftruncate %s", path); 837 (void) close(fd); 838 } 839 840 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 841 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 842 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 843 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 844 845 return (file); 846 } 847 848 static nvlist_t * 849 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 850 uint64_t ashift, int r) 851 { 852 nvlist_t *raidz, **child; 853 int c; 854 855 if (r < 2) 856 return (make_vdev_file(path, aux, pool, size, ashift)); 857 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 858 859 for (c = 0; c < r; c++) 860 child[c] = make_vdev_file(path, aux, pool, size, ashift); 861 862 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 863 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 864 VDEV_TYPE_RAIDZ) == 0); 865 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 866 ztest_opts.zo_raidz_parity) == 0); 867 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 868 child, r) == 0); 869 870 for (c = 0; c < r; c++) 871 nvlist_free(child[c]); 872 873 umem_free(child, r * sizeof (nvlist_t *)); 874 875 return (raidz); 876 } 877 878 static nvlist_t * 879 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 880 uint64_t ashift, int r, int m) 881 { 882 nvlist_t *mirror, **child; 883 int c; 884 885 if (m < 1) 886 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 887 888 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 889 890 for (c = 0; c < m; c++) 891 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 892 893 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 894 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 895 VDEV_TYPE_MIRROR) == 0); 896 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 897 child, m) == 0); 898 899 for (c = 0; c < m; c++) 900 nvlist_free(child[c]); 901 902 umem_free(child, m * sizeof (nvlist_t *)); 903 904 return (mirror); 905 } 906 907 static nvlist_t * 908 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 909 int log, int r, int m, int t) 910 { 911 nvlist_t *root, **child; 912 int c; 913 914 ASSERT(t > 0); 915 916 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 917 918 for (c = 0; c < t; c++) { 919 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 920 r, m); 921 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 922 log) == 0); 923 } 924 925 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 926 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 927 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 928 child, t) == 0); 929 930 for (c = 0; c < t; c++) 931 nvlist_free(child[c]); 932 933 umem_free(child, t * sizeof (nvlist_t *)); 934 935 return (root); 936 } 937 938 /* 939 * Find a random spa version. Returns back a random spa version in the 940 * range [initial_version, SPA_VERSION_FEATURES]. 941 */ 942 static uint64_t 943 ztest_random_spa_version(uint64_t initial_version) 944 { 945 uint64_t version = initial_version; 946 947 if (version <= SPA_VERSION_BEFORE_FEATURES) { 948 version = version + 949 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 950 } 951 952 if (version > SPA_VERSION_BEFORE_FEATURES) 953 version = SPA_VERSION_FEATURES; 954 955 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 956 return (version); 957 } 958 959 static int 960 ztest_random_blocksize(void) 961 { 962 return (1 << (SPA_MINBLOCKSHIFT + 963 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1))); 964 } 965 966 static int 967 ztest_random_ibshift(void) 968 { 969 return (DN_MIN_INDBLKSHIFT + 970 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 971 } 972 973 static uint64_t 974 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 975 { 976 uint64_t top; 977 vdev_t *rvd = spa->spa_root_vdev; 978 vdev_t *tvd; 979 980 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 981 982 do { 983 top = ztest_random(rvd->vdev_children); 984 tvd = rvd->vdev_child[top]; 985 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 986 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 987 988 return (top); 989 } 990 991 static uint64_t 992 ztest_random_dsl_prop(zfs_prop_t prop) 993 { 994 uint64_t value; 995 996 do { 997 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 998 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 999 1000 return (value); 1001 } 1002 1003 static int 1004 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1005 boolean_t inherit) 1006 { 1007 const char *propname = zfs_prop_to_name(prop); 1008 const char *valname; 1009 char setpoint[MAXPATHLEN]; 1010 uint64_t curval; 1011 int error; 1012 1013 error = dsl_prop_set_int(osname, propname, 1014 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1015 1016 if (error == ENOSPC) { 1017 ztest_record_enospc(FTAG); 1018 return (error); 1019 } 1020 ASSERT0(error); 1021 1022 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1023 1024 if (ztest_opts.zo_verbose >= 6) { 1025 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1026 (void) printf("%s %s = %s at '%s'\n", 1027 osname, propname, valname, setpoint); 1028 } 1029 1030 return (error); 1031 } 1032 1033 static int 1034 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1035 { 1036 spa_t *spa = ztest_spa; 1037 nvlist_t *props = NULL; 1038 int error; 1039 1040 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1041 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1042 1043 error = spa_prop_set(spa, props); 1044 1045 nvlist_free(props); 1046 1047 if (error == ENOSPC) { 1048 ztest_record_enospc(FTAG); 1049 return (error); 1050 } 1051 ASSERT0(error); 1052 1053 return (error); 1054 } 1055 1056 static void 1057 ztest_rll_init(rll_t *rll) 1058 { 1059 rll->rll_writer = NULL; 1060 rll->rll_readers = 0; 1061 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 1062 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 1063 } 1064 1065 static void 1066 ztest_rll_destroy(rll_t *rll) 1067 { 1068 ASSERT(rll->rll_writer == NULL); 1069 ASSERT(rll->rll_readers == 0); 1070 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 1071 VERIFY(cond_destroy(&rll->rll_cv) == 0); 1072 } 1073 1074 static void 1075 ztest_rll_lock(rll_t *rll, rl_type_t type) 1076 { 1077 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1078 1079 if (type == RL_READER) { 1080 while (rll->rll_writer != NULL) 1081 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1082 rll->rll_readers++; 1083 } else { 1084 while (rll->rll_writer != NULL || rll->rll_readers) 1085 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1086 rll->rll_writer = curthread; 1087 } 1088 1089 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1090 } 1091 1092 static void 1093 ztest_rll_unlock(rll_t *rll) 1094 { 1095 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1096 1097 if (rll->rll_writer) { 1098 ASSERT(rll->rll_readers == 0); 1099 rll->rll_writer = NULL; 1100 } else { 1101 ASSERT(rll->rll_readers != 0); 1102 ASSERT(rll->rll_writer == NULL); 1103 rll->rll_readers--; 1104 } 1105 1106 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1107 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 1108 1109 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1110 } 1111 1112 static void 1113 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1114 { 1115 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1116 1117 ztest_rll_lock(rll, type); 1118 } 1119 1120 static void 1121 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1122 { 1123 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1124 1125 ztest_rll_unlock(rll); 1126 } 1127 1128 static rl_t * 1129 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1130 uint64_t size, rl_type_t type) 1131 { 1132 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1133 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1134 rl_t *rl; 1135 1136 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1137 rl->rl_object = object; 1138 rl->rl_offset = offset; 1139 rl->rl_size = size; 1140 rl->rl_lock = rll; 1141 1142 ztest_rll_lock(rll, type); 1143 1144 return (rl); 1145 } 1146 1147 static void 1148 ztest_range_unlock(rl_t *rl) 1149 { 1150 rll_t *rll = rl->rl_lock; 1151 1152 ztest_rll_unlock(rll); 1153 1154 umem_free(rl, sizeof (*rl)); 1155 } 1156 1157 static void 1158 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1159 { 1160 zd->zd_os = os; 1161 zd->zd_zilog = dmu_objset_zil(os); 1162 zd->zd_shared = szd; 1163 dmu_objset_name(os, zd->zd_name); 1164 1165 if (zd->zd_shared != NULL) 1166 zd->zd_shared->zd_seq = 0; 1167 1168 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0); 1169 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 1170 1171 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1172 ztest_rll_init(&zd->zd_object_lock[l]); 1173 1174 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1175 ztest_rll_init(&zd->zd_range_lock[l]); 1176 } 1177 1178 static void 1179 ztest_zd_fini(ztest_ds_t *zd) 1180 { 1181 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 1182 1183 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1184 ztest_rll_destroy(&zd->zd_object_lock[l]); 1185 1186 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1187 ztest_rll_destroy(&zd->zd_range_lock[l]); 1188 } 1189 1190 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1191 1192 static uint64_t 1193 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1194 { 1195 uint64_t txg; 1196 int error; 1197 1198 /* 1199 * Attempt to assign tx to some transaction group. 1200 */ 1201 error = dmu_tx_assign(tx, txg_how); 1202 if (error) { 1203 if (error == ERESTART) { 1204 ASSERT(txg_how == TXG_NOWAIT); 1205 dmu_tx_wait(tx); 1206 } else { 1207 ASSERT3U(error, ==, ENOSPC); 1208 ztest_record_enospc(tag); 1209 } 1210 dmu_tx_abort(tx); 1211 return (0); 1212 } 1213 txg = dmu_tx_get_txg(tx); 1214 ASSERT(txg != 0); 1215 return (txg); 1216 } 1217 1218 static void 1219 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1220 { 1221 uint64_t *ip = buf; 1222 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1223 1224 while (ip < ip_end) 1225 *ip++ = value; 1226 } 1227 1228 static boolean_t 1229 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1230 { 1231 uint64_t *ip = buf; 1232 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1233 uint64_t diff = 0; 1234 1235 while (ip < ip_end) 1236 diff |= (value - *ip++); 1237 1238 return (diff == 0); 1239 } 1240 1241 static void 1242 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1243 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1244 { 1245 bt->bt_magic = BT_MAGIC; 1246 bt->bt_objset = dmu_objset_id(os); 1247 bt->bt_object = object; 1248 bt->bt_offset = offset; 1249 bt->bt_gen = gen; 1250 bt->bt_txg = txg; 1251 bt->bt_crtxg = crtxg; 1252 } 1253 1254 static void 1255 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1256 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1257 { 1258 ASSERT(bt->bt_magic == BT_MAGIC); 1259 ASSERT(bt->bt_objset == dmu_objset_id(os)); 1260 ASSERT(bt->bt_object == object); 1261 ASSERT(bt->bt_offset == offset); 1262 ASSERT(bt->bt_gen <= gen); 1263 ASSERT(bt->bt_txg <= txg); 1264 ASSERT(bt->bt_crtxg == crtxg); 1265 } 1266 1267 static ztest_block_tag_t * 1268 ztest_bt_bonus(dmu_buf_t *db) 1269 { 1270 dmu_object_info_t doi; 1271 ztest_block_tag_t *bt; 1272 1273 dmu_object_info_from_db(db, &doi); 1274 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1275 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1276 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1277 1278 return (bt); 1279 } 1280 1281 /* 1282 * ZIL logging ops 1283 */ 1284 1285 #define lrz_type lr_mode 1286 #define lrz_blocksize lr_uid 1287 #define lrz_ibshift lr_gid 1288 #define lrz_bonustype lr_rdev 1289 #define lrz_bonuslen lr_crtime[1] 1290 1291 static void 1292 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1293 { 1294 char *name = (void *)(lr + 1); /* name follows lr */ 1295 size_t namesize = strlen(name) + 1; 1296 itx_t *itx; 1297 1298 if (zil_replaying(zd->zd_zilog, tx)) 1299 return; 1300 1301 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1302 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1303 sizeof (*lr) + namesize - sizeof (lr_t)); 1304 1305 zil_itx_assign(zd->zd_zilog, itx, tx); 1306 } 1307 1308 static void 1309 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1310 { 1311 char *name = (void *)(lr + 1); /* name follows lr */ 1312 size_t namesize = strlen(name) + 1; 1313 itx_t *itx; 1314 1315 if (zil_replaying(zd->zd_zilog, tx)) 1316 return; 1317 1318 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1319 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1320 sizeof (*lr) + namesize - sizeof (lr_t)); 1321 1322 itx->itx_oid = object; 1323 zil_itx_assign(zd->zd_zilog, itx, tx); 1324 } 1325 1326 static void 1327 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1328 { 1329 itx_t *itx; 1330 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1331 1332 if (zil_replaying(zd->zd_zilog, tx)) 1333 return; 1334 1335 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1336 write_state = WR_INDIRECT; 1337 1338 itx = zil_itx_create(TX_WRITE, 1339 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1340 1341 if (write_state == WR_COPIED && 1342 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1343 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1344 zil_itx_destroy(itx); 1345 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1346 write_state = WR_NEED_COPY; 1347 } 1348 itx->itx_private = zd; 1349 itx->itx_wr_state = write_state; 1350 itx->itx_sync = (ztest_random(8) == 0); 1351 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1352 1353 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1354 sizeof (*lr) - sizeof (lr_t)); 1355 1356 zil_itx_assign(zd->zd_zilog, itx, tx); 1357 } 1358 1359 static void 1360 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1361 { 1362 itx_t *itx; 1363 1364 if (zil_replaying(zd->zd_zilog, tx)) 1365 return; 1366 1367 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1368 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1369 sizeof (*lr) - sizeof (lr_t)); 1370 1371 itx->itx_sync = B_FALSE; 1372 zil_itx_assign(zd->zd_zilog, itx, tx); 1373 } 1374 1375 static void 1376 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1377 { 1378 itx_t *itx; 1379 1380 if (zil_replaying(zd->zd_zilog, tx)) 1381 return; 1382 1383 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1384 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1385 sizeof (*lr) - sizeof (lr_t)); 1386 1387 itx->itx_sync = B_FALSE; 1388 zil_itx_assign(zd->zd_zilog, itx, tx); 1389 } 1390 1391 /* 1392 * ZIL replay ops 1393 */ 1394 static int 1395 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1396 { 1397 char *name = (void *)(lr + 1); /* name follows lr */ 1398 objset_t *os = zd->zd_os; 1399 ztest_block_tag_t *bbt; 1400 dmu_buf_t *db; 1401 dmu_tx_t *tx; 1402 uint64_t txg; 1403 int error = 0; 1404 1405 if (byteswap) 1406 byteswap_uint64_array(lr, sizeof (*lr)); 1407 1408 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1409 ASSERT(name[0] != '\0'); 1410 1411 tx = dmu_tx_create(os); 1412 1413 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1414 1415 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1416 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1417 } else { 1418 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1419 } 1420 1421 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1422 if (txg == 0) 1423 return (ENOSPC); 1424 1425 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1426 1427 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1428 if (lr->lr_foid == 0) { 1429 lr->lr_foid = zap_create(os, 1430 lr->lrz_type, lr->lrz_bonustype, 1431 lr->lrz_bonuslen, tx); 1432 } else { 1433 error = zap_create_claim(os, lr->lr_foid, 1434 lr->lrz_type, lr->lrz_bonustype, 1435 lr->lrz_bonuslen, tx); 1436 } 1437 } else { 1438 if (lr->lr_foid == 0) { 1439 lr->lr_foid = dmu_object_alloc(os, 1440 lr->lrz_type, 0, lr->lrz_bonustype, 1441 lr->lrz_bonuslen, tx); 1442 } else { 1443 error = dmu_object_claim(os, lr->lr_foid, 1444 lr->lrz_type, 0, lr->lrz_bonustype, 1445 lr->lrz_bonuslen, tx); 1446 } 1447 } 1448 1449 if (error) { 1450 ASSERT3U(error, ==, EEXIST); 1451 ASSERT(zd->zd_zilog->zl_replay); 1452 dmu_tx_commit(tx); 1453 return (error); 1454 } 1455 1456 ASSERT(lr->lr_foid != 0); 1457 1458 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1459 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1460 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1461 1462 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1463 bbt = ztest_bt_bonus(db); 1464 dmu_buf_will_dirty(db, tx); 1465 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1466 dmu_buf_rele(db, FTAG); 1467 1468 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1469 &lr->lr_foid, tx)); 1470 1471 (void) ztest_log_create(zd, tx, lr); 1472 1473 dmu_tx_commit(tx); 1474 1475 return (0); 1476 } 1477 1478 static int 1479 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1480 { 1481 char *name = (void *)(lr + 1); /* name follows lr */ 1482 objset_t *os = zd->zd_os; 1483 dmu_object_info_t doi; 1484 dmu_tx_t *tx; 1485 uint64_t object, txg; 1486 1487 if (byteswap) 1488 byteswap_uint64_array(lr, sizeof (*lr)); 1489 1490 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1491 ASSERT(name[0] != '\0'); 1492 1493 VERIFY3U(0, ==, 1494 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1495 ASSERT(object != 0); 1496 1497 ztest_object_lock(zd, object, RL_WRITER); 1498 1499 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1500 1501 tx = dmu_tx_create(os); 1502 1503 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1504 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1505 1506 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1507 if (txg == 0) { 1508 ztest_object_unlock(zd, object); 1509 return (ENOSPC); 1510 } 1511 1512 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1513 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1514 } else { 1515 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1516 } 1517 1518 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1519 1520 (void) ztest_log_remove(zd, tx, lr, object); 1521 1522 dmu_tx_commit(tx); 1523 1524 ztest_object_unlock(zd, object); 1525 1526 return (0); 1527 } 1528 1529 static int 1530 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1531 { 1532 objset_t *os = zd->zd_os; 1533 void *data = lr + 1; /* data follows lr */ 1534 uint64_t offset, length; 1535 ztest_block_tag_t *bt = data; 1536 ztest_block_tag_t *bbt; 1537 uint64_t gen, txg, lrtxg, crtxg; 1538 dmu_object_info_t doi; 1539 dmu_tx_t *tx; 1540 dmu_buf_t *db; 1541 arc_buf_t *abuf = NULL; 1542 rl_t *rl; 1543 1544 if (byteswap) 1545 byteswap_uint64_array(lr, sizeof (*lr)); 1546 1547 offset = lr->lr_offset; 1548 length = lr->lr_length; 1549 1550 /* If it's a dmu_sync() block, write the whole block */ 1551 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1552 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1553 if (length < blocksize) { 1554 offset -= offset % blocksize; 1555 length = blocksize; 1556 } 1557 } 1558 1559 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1560 byteswap_uint64_array(bt, sizeof (*bt)); 1561 1562 if (bt->bt_magic != BT_MAGIC) 1563 bt = NULL; 1564 1565 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1566 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1567 1568 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1569 1570 dmu_object_info_from_db(db, &doi); 1571 1572 bbt = ztest_bt_bonus(db); 1573 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1574 gen = bbt->bt_gen; 1575 crtxg = bbt->bt_crtxg; 1576 lrtxg = lr->lr_common.lrc_txg; 1577 1578 tx = dmu_tx_create(os); 1579 1580 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1581 1582 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1583 P2PHASE(offset, length) == 0) 1584 abuf = dmu_request_arcbuf(db, length); 1585 1586 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1587 if (txg == 0) { 1588 if (abuf != NULL) 1589 dmu_return_arcbuf(abuf); 1590 dmu_buf_rele(db, FTAG); 1591 ztest_range_unlock(rl); 1592 ztest_object_unlock(zd, lr->lr_foid); 1593 return (ENOSPC); 1594 } 1595 1596 if (bt != NULL) { 1597 /* 1598 * Usually, verify the old data before writing new data -- 1599 * but not always, because we also want to verify correct 1600 * behavior when the data was not recently read into cache. 1601 */ 1602 ASSERT(offset % doi.doi_data_block_size == 0); 1603 if (ztest_random(4) != 0) { 1604 int prefetch = ztest_random(2) ? 1605 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1606 ztest_block_tag_t rbt; 1607 1608 VERIFY(dmu_read(os, lr->lr_foid, offset, 1609 sizeof (rbt), &rbt, prefetch) == 0); 1610 if (rbt.bt_magic == BT_MAGIC) { 1611 ztest_bt_verify(&rbt, os, lr->lr_foid, 1612 offset, gen, txg, crtxg); 1613 } 1614 } 1615 1616 /* 1617 * Writes can appear to be newer than the bonus buffer because 1618 * the ztest_get_data() callback does a dmu_read() of the 1619 * open-context data, which may be different than the data 1620 * as it was when the write was generated. 1621 */ 1622 if (zd->zd_zilog->zl_replay) { 1623 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1624 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1625 bt->bt_crtxg); 1626 } 1627 1628 /* 1629 * Set the bt's gen/txg to the bonus buffer's gen/txg 1630 * so that all of the usual ASSERTs will work. 1631 */ 1632 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1633 } 1634 1635 if (abuf == NULL) { 1636 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1637 } else { 1638 bcopy(data, abuf->b_data, length); 1639 dmu_assign_arcbuf(db, offset, abuf, tx); 1640 } 1641 1642 (void) ztest_log_write(zd, tx, lr); 1643 1644 dmu_buf_rele(db, FTAG); 1645 1646 dmu_tx_commit(tx); 1647 1648 ztest_range_unlock(rl); 1649 ztest_object_unlock(zd, lr->lr_foid); 1650 1651 return (0); 1652 } 1653 1654 static int 1655 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1656 { 1657 objset_t *os = zd->zd_os; 1658 dmu_tx_t *tx; 1659 uint64_t txg; 1660 rl_t *rl; 1661 1662 if (byteswap) 1663 byteswap_uint64_array(lr, sizeof (*lr)); 1664 1665 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1666 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1667 RL_WRITER); 1668 1669 tx = dmu_tx_create(os); 1670 1671 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1672 1673 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1674 if (txg == 0) { 1675 ztest_range_unlock(rl); 1676 ztest_object_unlock(zd, lr->lr_foid); 1677 return (ENOSPC); 1678 } 1679 1680 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1681 lr->lr_length, tx) == 0); 1682 1683 (void) ztest_log_truncate(zd, tx, lr); 1684 1685 dmu_tx_commit(tx); 1686 1687 ztest_range_unlock(rl); 1688 ztest_object_unlock(zd, lr->lr_foid); 1689 1690 return (0); 1691 } 1692 1693 static int 1694 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1695 { 1696 objset_t *os = zd->zd_os; 1697 dmu_tx_t *tx; 1698 dmu_buf_t *db; 1699 ztest_block_tag_t *bbt; 1700 uint64_t txg, lrtxg, crtxg; 1701 1702 if (byteswap) 1703 byteswap_uint64_array(lr, sizeof (*lr)); 1704 1705 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1706 1707 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1708 1709 tx = dmu_tx_create(os); 1710 dmu_tx_hold_bonus(tx, lr->lr_foid); 1711 1712 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1713 if (txg == 0) { 1714 dmu_buf_rele(db, FTAG); 1715 ztest_object_unlock(zd, lr->lr_foid); 1716 return (ENOSPC); 1717 } 1718 1719 bbt = ztest_bt_bonus(db); 1720 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1721 crtxg = bbt->bt_crtxg; 1722 lrtxg = lr->lr_common.lrc_txg; 1723 1724 if (zd->zd_zilog->zl_replay) { 1725 ASSERT(lr->lr_size != 0); 1726 ASSERT(lr->lr_mode != 0); 1727 ASSERT(lrtxg != 0); 1728 } else { 1729 /* 1730 * Randomly change the size and increment the generation. 1731 */ 1732 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1733 sizeof (*bbt); 1734 lr->lr_mode = bbt->bt_gen + 1; 1735 ASSERT(lrtxg == 0); 1736 } 1737 1738 /* 1739 * Verify that the current bonus buffer is not newer than our txg. 1740 */ 1741 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1742 MAX(txg, lrtxg), crtxg); 1743 1744 dmu_buf_will_dirty(db, tx); 1745 1746 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1747 ASSERT3U(lr->lr_size, <=, db->db_size); 1748 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1749 bbt = ztest_bt_bonus(db); 1750 1751 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1752 1753 dmu_buf_rele(db, FTAG); 1754 1755 (void) ztest_log_setattr(zd, tx, lr); 1756 1757 dmu_tx_commit(tx); 1758 1759 ztest_object_unlock(zd, lr->lr_foid); 1760 1761 return (0); 1762 } 1763 1764 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1765 NULL, /* 0 no such transaction type */ 1766 ztest_replay_create, /* TX_CREATE */ 1767 NULL, /* TX_MKDIR */ 1768 NULL, /* TX_MKXATTR */ 1769 NULL, /* TX_SYMLINK */ 1770 ztest_replay_remove, /* TX_REMOVE */ 1771 NULL, /* TX_RMDIR */ 1772 NULL, /* TX_LINK */ 1773 NULL, /* TX_RENAME */ 1774 ztest_replay_write, /* TX_WRITE */ 1775 ztest_replay_truncate, /* TX_TRUNCATE */ 1776 ztest_replay_setattr, /* TX_SETATTR */ 1777 NULL, /* TX_ACL */ 1778 NULL, /* TX_CREATE_ACL */ 1779 NULL, /* TX_CREATE_ATTR */ 1780 NULL, /* TX_CREATE_ACL_ATTR */ 1781 NULL, /* TX_MKDIR_ACL */ 1782 NULL, /* TX_MKDIR_ATTR */ 1783 NULL, /* TX_MKDIR_ACL_ATTR */ 1784 NULL, /* TX_WRITE2 */ 1785 }; 1786 1787 /* 1788 * ZIL get_data callbacks 1789 */ 1790 1791 static void 1792 ztest_get_done(zgd_t *zgd, int error) 1793 { 1794 ztest_ds_t *zd = zgd->zgd_private; 1795 uint64_t object = zgd->zgd_rl->rl_object; 1796 1797 if (zgd->zgd_db) 1798 dmu_buf_rele(zgd->zgd_db, zgd); 1799 1800 ztest_range_unlock(zgd->zgd_rl); 1801 ztest_object_unlock(zd, object); 1802 1803 if (error == 0 && zgd->zgd_bp) 1804 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1805 1806 umem_free(zgd, sizeof (*zgd)); 1807 } 1808 1809 static int 1810 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1811 { 1812 ztest_ds_t *zd = arg; 1813 objset_t *os = zd->zd_os; 1814 uint64_t object = lr->lr_foid; 1815 uint64_t offset = lr->lr_offset; 1816 uint64_t size = lr->lr_length; 1817 blkptr_t *bp = &lr->lr_blkptr; 1818 uint64_t txg = lr->lr_common.lrc_txg; 1819 uint64_t crtxg; 1820 dmu_object_info_t doi; 1821 dmu_buf_t *db; 1822 zgd_t *zgd; 1823 int error; 1824 1825 ztest_object_lock(zd, object, RL_READER); 1826 error = dmu_bonus_hold(os, object, FTAG, &db); 1827 if (error) { 1828 ztest_object_unlock(zd, object); 1829 return (error); 1830 } 1831 1832 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1833 1834 if (crtxg == 0 || crtxg > txg) { 1835 dmu_buf_rele(db, FTAG); 1836 ztest_object_unlock(zd, object); 1837 return (ENOENT); 1838 } 1839 1840 dmu_object_info_from_db(db, &doi); 1841 dmu_buf_rele(db, FTAG); 1842 db = NULL; 1843 1844 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1845 zgd->zgd_zilog = zd->zd_zilog; 1846 zgd->zgd_private = zd; 1847 1848 if (buf != NULL) { /* immediate write */ 1849 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1850 RL_READER); 1851 1852 error = dmu_read(os, object, offset, size, buf, 1853 DMU_READ_NO_PREFETCH); 1854 ASSERT(error == 0); 1855 } else { 1856 size = doi.doi_data_block_size; 1857 if (ISP2(size)) { 1858 offset = P2ALIGN(offset, size); 1859 } else { 1860 ASSERT(offset < size); 1861 offset = 0; 1862 } 1863 1864 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1865 RL_READER); 1866 1867 error = dmu_buf_hold(os, object, offset, zgd, &db, 1868 DMU_READ_NO_PREFETCH); 1869 1870 if (error == 0) { 1871 blkptr_t *obp = dmu_buf_get_blkptr(db); 1872 if (obp) { 1873 ASSERT(BP_IS_HOLE(bp)); 1874 *bp = *obp; 1875 } 1876 1877 zgd->zgd_db = db; 1878 zgd->zgd_bp = bp; 1879 1880 ASSERT(db->db_offset == offset); 1881 ASSERT(db->db_size == size); 1882 1883 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1884 ztest_get_done, zgd); 1885 1886 if (error == 0) 1887 return (0); 1888 } 1889 } 1890 1891 ztest_get_done(zgd, error); 1892 1893 return (error); 1894 } 1895 1896 static void * 1897 ztest_lr_alloc(size_t lrsize, char *name) 1898 { 1899 char *lr; 1900 size_t namesize = name ? strlen(name) + 1 : 0; 1901 1902 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1903 1904 if (name) 1905 bcopy(name, lr + lrsize, namesize); 1906 1907 return (lr); 1908 } 1909 1910 void 1911 ztest_lr_free(void *lr, size_t lrsize, char *name) 1912 { 1913 size_t namesize = name ? strlen(name) + 1 : 0; 1914 1915 umem_free(lr, lrsize + namesize); 1916 } 1917 1918 /* 1919 * Lookup a bunch of objects. Returns the number of objects not found. 1920 */ 1921 static int 1922 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1923 { 1924 int missing = 0; 1925 int error; 1926 1927 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1928 1929 for (int i = 0; i < count; i++, od++) { 1930 od->od_object = 0; 1931 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1932 sizeof (uint64_t), 1, &od->od_object); 1933 if (error) { 1934 ASSERT(error == ENOENT); 1935 ASSERT(od->od_object == 0); 1936 missing++; 1937 } else { 1938 dmu_buf_t *db; 1939 ztest_block_tag_t *bbt; 1940 dmu_object_info_t doi; 1941 1942 ASSERT(od->od_object != 0); 1943 ASSERT(missing == 0); /* there should be no gaps */ 1944 1945 ztest_object_lock(zd, od->od_object, RL_READER); 1946 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1947 od->od_object, FTAG, &db)); 1948 dmu_object_info_from_db(db, &doi); 1949 bbt = ztest_bt_bonus(db); 1950 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1951 od->od_type = doi.doi_type; 1952 od->od_blocksize = doi.doi_data_block_size; 1953 od->od_gen = bbt->bt_gen; 1954 dmu_buf_rele(db, FTAG); 1955 ztest_object_unlock(zd, od->od_object); 1956 } 1957 } 1958 1959 return (missing); 1960 } 1961 1962 static int 1963 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1964 { 1965 int missing = 0; 1966 1967 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1968 1969 for (int i = 0; i < count; i++, od++) { 1970 if (missing) { 1971 od->od_object = 0; 1972 missing++; 1973 continue; 1974 } 1975 1976 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1977 1978 lr->lr_doid = od->od_dir; 1979 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 1980 lr->lrz_type = od->od_crtype; 1981 lr->lrz_blocksize = od->od_crblocksize; 1982 lr->lrz_ibshift = ztest_random_ibshift(); 1983 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 1984 lr->lrz_bonuslen = dmu_bonus_max(); 1985 lr->lr_gen = od->od_crgen; 1986 lr->lr_crtime[0] = time(NULL); 1987 1988 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 1989 ASSERT(missing == 0); 1990 od->od_object = 0; 1991 missing++; 1992 } else { 1993 od->od_object = lr->lr_foid; 1994 od->od_type = od->od_crtype; 1995 od->od_blocksize = od->od_crblocksize; 1996 od->od_gen = od->od_crgen; 1997 ASSERT(od->od_object != 0); 1998 } 1999 2000 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2001 } 2002 2003 return (missing); 2004 } 2005 2006 static int 2007 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2008 { 2009 int missing = 0; 2010 int error; 2011 2012 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 2013 2014 od += count - 1; 2015 2016 for (int i = count - 1; i >= 0; i--, od--) { 2017 if (missing) { 2018 missing++; 2019 continue; 2020 } 2021 2022 /* 2023 * No object was found. 2024 */ 2025 if (od->od_object == 0) 2026 continue; 2027 2028 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2029 2030 lr->lr_doid = od->od_dir; 2031 2032 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2033 ASSERT3U(error, ==, ENOSPC); 2034 missing++; 2035 } else { 2036 od->od_object = 0; 2037 } 2038 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2039 } 2040 2041 return (missing); 2042 } 2043 2044 static int 2045 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2046 void *data) 2047 { 2048 lr_write_t *lr; 2049 int error; 2050 2051 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2052 2053 lr->lr_foid = object; 2054 lr->lr_offset = offset; 2055 lr->lr_length = size; 2056 lr->lr_blkoff = 0; 2057 BP_ZERO(&lr->lr_blkptr); 2058 2059 bcopy(data, lr + 1, size); 2060 2061 error = ztest_replay_write(zd, lr, B_FALSE); 2062 2063 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2064 2065 return (error); 2066 } 2067 2068 static int 2069 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2070 { 2071 lr_truncate_t *lr; 2072 int error; 2073 2074 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2075 2076 lr->lr_foid = object; 2077 lr->lr_offset = offset; 2078 lr->lr_length = size; 2079 2080 error = ztest_replay_truncate(zd, lr, B_FALSE); 2081 2082 ztest_lr_free(lr, sizeof (*lr), NULL); 2083 2084 return (error); 2085 } 2086 2087 static int 2088 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2089 { 2090 lr_setattr_t *lr; 2091 int error; 2092 2093 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2094 2095 lr->lr_foid = object; 2096 lr->lr_size = 0; 2097 lr->lr_mode = 0; 2098 2099 error = ztest_replay_setattr(zd, lr, B_FALSE); 2100 2101 ztest_lr_free(lr, sizeof (*lr), NULL); 2102 2103 return (error); 2104 } 2105 2106 static void 2107 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2108 { 2109 objset_t *os = zd->zd_os; 2110 dmu_tx_t *tx; 2111 uint64_t txg; 2112 rl_t *rl; 2113 2114 txg_wait_synced(dmu_objset_pool(os), 0); 2115 2116 ztest_object_lock(zd, object, RL_READER); 2117 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2118 2119 tx = dmu_tx_create(os); 2120 2121 dmu_tx_hold_write(tx, object, offset, size); 2122 2123 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2124 2125 if (txg != 0) { 2126 dmu_prealloc(os, object, offset, size, tx); 2127 dmu_tx_commit(tx); 2128 txg_wait_synced(dmu_objset_pool(os), txg); 2129 } else { 2130 (void) dmu_free_long_range(os, object, offset, size); 2131 } 2132 2133 ztest_range_unlock(rl); 2134 ztest_object_unlock(zd, object); 2135 } 2136 2137 static void 2138 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2139 { 2140 int err; 2141 ztest_block_tag_t wbt; 2142 dmu_object_info_t doi; 2143 enum ztest_io_type io_type; 2144 uint64_t blocksize; 2145 void *data; 2146 2147 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2148 blocksize = doi.doi_data_block_size; 2149 data = umem_alloc(blocksize, UMEM_NOFAIL); 2150 2151 /* 2152 * Pick an i/o type at random, biased toward writing block tags. 2153 */ 2154 io_type = ztest_random(ZTEST_IO_TYPES); 2155 if (ztest_random(2) == 0) 2156 io_type = ZTEST_IO_WRITE_TAG; 2157 2158 (void) rw_rdlock(&zd->zd_zilog_lock); 2159 2160 switch (io_type) { 2161 2162 case ZTEST_IO_WRITE_TAG: 2163 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2164 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2165 break; 2166 2167 case ZTEST_IO_WRITE_PATTERN: 2168 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2169 if (ztest_random(2) == 0) { 2170 /* 2171 * Induce fletcher2 collisions to ensure that 2172 * zio_ddt_collision() detects and resolves them 2173 * when using fletcher2-verify for deduplication. 2174 */ 2175 ((uint64_t *)data)[0] ^= 1ULL << 63; 2176 ((uint64_t *)data)[4] ^= 1ULL << 63; 2177 } 2178 (void) ztest_write(zd, object, offset, blocksize, data); 2179 break; 2180 2181 case ZTEST_IO_WRITE_ZEROES: 2182 bzero(data, blocksize); 2183 (void) ztest_write(zd, object, offset, blocksize, data); 2184 break; 2185 2186 case ZTEST_IO_TRUNCATE: 2187 (void) ztest_truncate(zd, object, offset, blocksize); 2188 break; 2189 2190 case ZTEST_IO_SETATTR: 2191 (void) ztest_setattr(zd, object); 2192 break; 2193 2194 case ZTEST_IO_REWRITE: 2195 (void) rw_rdlock(&ztest_name_lock); 2196 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2197 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2198 B_FALSE); 2199 VERIFY(err == 0 || err == ENOSPC); 2200 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2201 ZFS_PROP_COMPRESSION, 2202 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2203 B_FALSE); 2204 VERIFY(err == 0 || err == ENOSPC); 2205 (void) rw_unlock(&ztest_name_lock); 2206 2207 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2208 DMU_READ_NO_PREFETCH)); 2209 2210 (void) ztest_write(zd, object, offset, blocksize, data); 2211 break; 2212 } 2213 2214 (void) rw_unlock(&zd->zd_zilog_lock); 2215 2216 umem_free(data, blocksize); 2217 } 2218 2219 /* 2220 * Initialize an object description template. 2221 */ 2222 static void 2223 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2224 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2225 { 2226 od->od_dir = ZTEST_DIROBJ; 2227 od->od_object = 0; 2228 2229 od->od_crtype = type; 2230 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2231 od->od_crgen = gen; 2232 2233 od->od_type = DMU_OT_NONE; 2234 od->od_blocksize = 0; 2235 od->od_gen = 0; 2236 2237 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2238 tag, (int64_t)id, index); 2239 } 2240 2241 /* 2242 * Lookup or create the objects for a test using the od template. 2243 * If the objects do not all exist, or if 'remove' is specified, 2244 * remove any existing objects and create new ones. Otherwise, 2245 * use the existing objects. 2246 */ 2247 static int 2248 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2249 { 2250 int count = size / sizeof (*od); 2251 int rv = 0; 2252 2253 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2254 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2255 (ztest_remove(zd, od, count) != 0 || 2256 ztest_create(zd, od, count) != 0)) 2257 rv = -1; 2258 zd->zd_od = od; 2259 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2260 2261 return (rv); 2262 } 2263 2264 /* ARGSUSED */ 2265 void 2266 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2267 { 2268 zilog_t *zilog = zd->zd_zilog; 2269 2270 (void) rw_rdlock(&zd->zd_zilog_lock); 2271 2272 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2273 2274 /* 2275 * Remember the committed values in zd, which is in parent/child 2276 * shared memory. If we die, the next iteration of ztest_run() 2277 * will verify that the log really does contain this record. 2278 */ 2279 mutex_enter(&zilog->zl_lock); 2280 ASSERT(zd->zd_shared != NULL); 2281 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2282 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2283 mutex_exit(&zilog->zl_lock); 2284 2285 (void) rw_unlock(&zd->zd_zilog_lock); 2286 } 2287 2288 /* 2289 * This function is designed to simulate the operations that occur during a 2290 * mount/unmount operation. We hold the dataset across these operations in an 2291 * attempt to expose any implicit assumptions about ZIL management. 2292 */ 2293 /* ARGSUSED */ 2294 void 2295 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2296 { 2297 objset_t *os = zd->zd_os; 2298 2299 /* 2300 * We grab the zd_dirobj_lock to ensure that no other thread is 2301 * updating the zil (i.e. adding in-memory log records) and the 2302 * zd_zilog_lock to block any I/O. 2303 */ 2304 VERIFY0(mutex_lock(&zd->zd_dirobj_lock)); 2305 (void) rw_wrlock(&zd->zd_zilog_lock); 2306 2307 /* zfsvfs_teardown() */ 2308 zil_close(zd->zd_zilog); 2309 2310 /* zfsvfs_setup() */ 2311 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2312 zil_replay(os, zd, ztest_replay_vector); 2313 2314 (void) rw_unlock(&zd->zd_zilog_lock); 2315 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2316 } 2317 2318 /* 2319 * Verify that we can't destroy an active pool, create an existing pool, 2320 * or create a pool with a bad vdev spec. 2321 */ 2322 /* ARGSUSED */ 2323 void 2324 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2325 { 2326 ztest_shared_opts_t *zo = &ztest_opts; 2327 spa_t *spa; 2328 nvlist_t *nvroot; 2329 2330 /* 2331 * Attempt to create using a bad file. 2332 */ 2333 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2334 VERIFY3U(ENOENT, ==, 2335 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2336 nvlist_free(nvroot); 2337 2338 /* 2339 * Attempt to create using a bad mirror. 2340 */ 2341 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); 2342 VERIFY3U(ENOENT, ==, 2343 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2344 nvlist_free(nvroot); 2345 2346 /* 2347 * Attempt to create an existing pool. It shouldn't matter 2348 * what's in the nvroot; we should fail with EEXIST. 2349 */ 2350 (void) rw_rdlock(&ztest_name_lock); 2351 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2352 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2353 nvlist_free(nvroot); 2354 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2355 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2356 spa_close(spa, FTAG); 2357 2358 (void) rw_unlock(&ztest_name_lock); 2359 } 2360 2361 /* ARGSUSED */ 2362 void 2363 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2364 { 2365 spa_t *spa; 2366 uint64_t initial_version = SPA_VERSION_INITIAL; 2367 uint64_t version, newversion; 2368 nvlist_t *nvroot, *props; 2369 char *name; 2370 2371 VERIFY0(mutex_lock(&ztest_vdev_lock)); 2372 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2373 2374 /* 2375 * Clean up from previous runs. 2376 */ 2377 (void) spa_destroy(name); 2378 2379 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2380 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2381 2382 /* 2383 * If we're configuring a RAIDZ device then make sure that the 2384 * the initial version is capable of supporting that feature. 2385 */ 2386 switch (ztest_opts.zo_raidz_parity) { 2387 case 0: 2388 case 1: 2389 initial_version = SPA_VERSION_INITIAL; 2390 break; 2391 case 2: 2392 initial_version = SPA_VERSION_RAIDZ2; 2393 break; 2394 case 3: 2395 initial_version = SPA_VERSION_RAIDZ3; 2396 break; 2397 } 2398 2399 /* 2400 * Create a pool with a spa version that can be upgraded. Pick 2401 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2402 */ 2403 do { 2404 version = ztest_random_spa_version(initial_version); 2405 } while (version > SPA_VERSION_BEFORE_FEATURES); 2406 2407 props = fnvlist_alloc(); 2408 fnvlist_add_uint64(props, 2409 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2410 VERIFY0(spa_create(name, nvroot, props, NULL)); 2411 fnvlist_free(nvroot); 2412 fnvlist_free(props); 2413 2414 VERIFY0(spa_open(name, &spa, FTAG)); 2415 VERIFY3U(spa_version(spa), ==, version); 2416 newversion = ztest_random_spa_version(version + 1); 2417 2418 if (ztest_opts.zo_verbose >= 4) { 2419 (void) printf("upgrading spa version from %llu to %llu\n", 2420 (u_longlong_t)version, (u_longlong_t)newversion); 2421 } 2422 2423 spa_upgrade(spa, newversion); 2424 VERIFY3U(spa_version(spa), >, version); 2425 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2426 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2427 spa_close(spa, FTAG); 2428 2429 strfree(name); 2430 VERIFY0(mutex_unlock(&ztest_vdev_lock)); 2431 } 2432 2433 static vdev_t * 2434 vdev_lookup_by_path(vdev_t *vd, const char *path) 2435 { 2436 vdev_t *mvd; 2437 2438 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2439 return (vd); 2440 2441 for (int c = 0; c < vd->vdev_children; c++) 2442 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2443 NULL) 2444 return (mvd); 2445 2446 return (NULL); 2447 } 2448 2449 /* 2450 * Find the first available hole which can be used as a top-level. 2451 */ 2452 int 2453 find_vdev_hole(spa_t *spa) 2454 { 2455 vdev_t *rvd = spa->spa_root_vdev; 2456 int c; 2457 2458 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2459 2460 for (c = 0; c < rvd->vdev_children; c++) { 2461 vdev_t *cvd = rvd->vdev_child[c]; 2462 2463 if (cvd->vdev_ishole) 2464 break; 2465 } 2466 return (c); 2467 } 2468 2469 /* 2470 * Verify that vdev_add() works as expected. 2471 */ 2472 /* ARGSUSED */ 2473 void 2474 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2475 { 2476 ztest_shared_t *zs = ztest_shared; 2477 spa_t *spa = ztest_spa; 2478 uint64_t leaves; 2479 uint64_t guid; 2480 nvlist_t *nvroot; 2481 int error; 2482 2483 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2484 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2485 2486 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2487 2488 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2489 2490 /* 2491 * If we have slogs then remove them 1/4 of the time. 2492 */ 2493 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2494 /* 2495 * Grab the guid from the head of the log class rotor. 2496 */ 2497 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2498 2499 spa_config_exit(spa, SCL_VDEV, FTAG); 2500 2501 /* 2502 * We have to grab the zs_name_lock as writer to 2503 * prevent a race between removing a slog (dmu_objset_find) 2504 * and destroying a dataset. Removing the slog will 2505 * grab a reference on the dataset which may cause 2506 * dmu_objset_destroy() to fail with EBUSY thus 2507 * leaving the dataset in an inconsistent state. 2508 */ 2509 VERIFY(rw_wrlock(&ztest_name_lock) == 0); 2510 error = spa_vdev_remove(spa, guid, B_FALSE); 2511 VERIFY(rw_unlock(&ztest_name_lock) == 0); 2512 2513 if (error && error != EEXIST) 2514 fatal(0, "spa_vdev_remove() = %d", error); 2515 } else { 2516 spa_config_exit(spa, SCL_VDEV, FTAG); 2517 2518 /* 2519 * Make 1/4 of the devices be log devices. 2520 */ 2521 nvroot = make_vdev_root(NULL, NULL, NULL, 2522 ztest_opts.zo_vdev_size, 0, 2523 ztest_random(4) == 0, ztest_opts.zo_raidz, 2524 zs->zs_mirrors, 1); 2525 2526 error = spa_vdev_add(spa, nvroot); 2527 nvlist_free(nvroot); 2528 2529 if (error == ENOSPC) 2530 ztest_record_enospc("spa_vdev_add"); 2531 else if (error != 0) 2532 fatal(0, "spa_vdev_add() = %d", error); 2533 } 2534 2535 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2536 } 2537 2538 /* 2539 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2540 */ 2541 /* ARGSUSED */ 2542 void 2543 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2544 { 2545 ztest_shared_t *zs = ztest_shared; 2546 spa_t *spa = ztest_spa; 2547 vdev_t *rvd = spa->spa_root_vdev; 2548 spa_aux_vdev_t *sav; 2549 char *aux; 2550 uint64_t guid = 0; 2551 int error; 2552 2553 if (ztest_random(2) == 0) { 2554 sav = &spa->spa_spares; 2555 aux = ZPOOL_CONFIG_SPARES; 2556 } else { 2557 sav = &spa->spa_l2cache; 2558 aux = ZPOOL_CONFIG_L2CACHE; 2559 } 2560 2561 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2562 2563 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2564 2565 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2566 /* 2567 * Pick a random device to remove. 2568 */ 2569 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2570 } else { 2571 /* 2572 * Find an unused device we can add. 2573 */ 2574 zs->zs_vdev_aux = 0; 2575 for (;;) { 2576 char path[MAXPATHLEN]; 2577 int c; 2578 (void) snprintf(path, sizeof (path), ztest_aux_template, 2579 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2580 zs->zs_vdev_aux); 2581 for (c = 0; c < sav->sav_count; c++) 2582 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2583 path) == 0) 2584 break; 2585 if (c == sav->sav_count && 2586 vdev_lookup_by_path(rvd, path) == NULL) 2587 break; 2588 zs->zs_vdev_aux++; 2589 } 2590 } 2591 2592 spa_config_exit(spa, SCL_VDEV, FTAG); 2593 2594 if (guid == 0) { 2595 /* 2596 * Add a new device. 2597 */ 2598 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 2599 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2600 error = spa_vdev_add(spa, nvroot); 2601 if (error != 0) 2602 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2603 nvlist_free(nvroot); 2604 } else { 2605 /* 2606 * Remove an existing device. Sometimes, dirty its 2607 * vdev state first to make sure we handle removal 2608 * of devices that have pending state changes. 2609 */ 2610 if (ztest_random(2) == 0) 2611 (void) vdev_online(spa, guid, 0, NULL); 2612 2613 error = spa_vdev_remove(spa, guid, B_FALSE); 2614 if (error != 0 && error != EBUSY) 2615 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2616 } 2617 2618 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2619 } 2620 2621 /* 2622 * split a pool if it has mirror tlvdevs 2623 */ 2624 /* ARGSUSED */ 2625 void 2626 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2627 { 2628 ztest_shared_t *zs = ztest_shared; 2629 spa_t *spa = ztest_spa; 2630 vdev_t *rvd = spa->spa_root_vdev; 2631 nvlist_t *tree, **child, *config, *split, **schild; 2632 uint_t c, children, schildren = 0, lastlogid = 0; 2633 int error = 0; 2634 2635 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2636 2637 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2638 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2639 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2640 return; 2641 } 2642 2643 /* clean up the old pool, if any */ 2644 (void) spa_destroy("splitp"); 2645 2646 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2647 2648 /* generate a config from the existing config */ 2649 mutex_enter(&spa->spa_props_lock); 2650 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2651 &tree) == 0); 2652 mutex_exit(&spa->spa_props_lock); 2653 2654 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2655 &children) == 0); 2656 2657 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2658 for (c = 0; c < children; c++) { 2659 vdev_t *tvd = rvd->vdev_child[c]; 2660 nvlist_t **mchild; 2661 uint_t mchildren; 2662 2663 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2664 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2665 0) == 0); 2666 VERIFY(nvlist_add_string(schild[schildren], 2667 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2668 VERIFY(nvlist_add_uint64(schild[schildren], 2669 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2670 if (lastlogid == 0) 2671 lastlogid = schildren; 2672 ++schildren; 2673 continue; 2674 } 2675 lastlogid = 0; 2676 VERIFY(nvlist_lookup_nvlist_array(child[c], 2677 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2678 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2679 } 2680 2681 /* OK, create a config that can be used to split */ 2682 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2683 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2684 VDEV_TYPE_ROOT) == 0); 2685 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2686 lastlogid != 0 ? lastlogid : schildren) == 0); 2687 2688 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2689 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2690 2691 for (c = 0; c < schildren; c++) 2692 nvlist_free(schild[c]); 2693 free(schild); 2694 nvlist_free(split); 2695 2696 spa_config_exit(spa, SCL_VDEV, FTAG); 2697 2698 (void) rw_wrlock(&ztest_name_lock); 2699 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2700 (void) rw_unlock(&ztest_name_lock); 2701 2702 nvlist_free(config); 2703 2704 if (error == 0) { 2705 (void) printf("successful split - results:\n"); 2706 mutex_enter(&spa_namespace_lock); 2707 show_pool_stats(spa); 2708 show_pool_stats(spa_lookup("splitp")); 2709 mutex_exit(&spa_namespace_lock); 2710 ++zs->zs_splits; 2711 --zs->zs_mirrors; 2712 } 2713 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2714 2715 } 2716 2717 /* 2718 * Verify that we can attach and detach devices. 2719 */ 2720 /* ARGSUSED */ 2721 void 2722 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2723 { 2724 ztest_shared_t *zs = ztest_shared; 2725 spa_t *spa = ztest_spa; 2726 spa_aux_vdev_t *sav = &spa->spa_spares; 2727 vdev_t *rvd = spa->spa_root_vdev; 2728 vdev_t *oldvd, *newvd, *pvd; 2729 nvlist_t *root; 2730 uint64_t leaves; 2731 uint64_t leaf, top; 2732 uint64_t ashift = ztest_get_ashift(); 2733 uint64_t oldguid, pguid; 2734 size_t oldsize, newsize; 2735 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2736 int replacing; 2737 int oldvd_has_siblings = B_FALSE; 2738 int newvd_is_spare = B_FALSE; 2739 int oldvd_is_log; 2740 int error, expected_error; 2741 2742 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2743 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2744 2745 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2746 2747 /* 2748 * Decide whether to do an attach or a replace. 2749 */ 2750 replacing = ztest_random(2); 2751 2752 /* 2753 * Pick a random top-level vdev. 2754 */ 2755 top = ztest_random_vdev_top(spa, B_TRUE); 2756 2757 /* 2758 * Pick a random leaf within it. 2759 */ 2760 leaf = ztest_random(leaves); 2761 2762 /* 2763 * Locate this vdev. 2764 */ 2765 oldvd = rvd->vdev_child[top]; 2766 if (zs->zs_mirrors >= 1) { 2767 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2768 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2769 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2770 } 2771 if (ztest_opts.zo_raidz > 1) { 2772 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2773 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2774 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2775 } 2776 2777 /* 2778 * If we're already doing an attach or replace, oldvd may be a 2779 * mirror vdev -- in which case, pick a random child. 2780 */ 2781 while (oldvd->vdev_children != 0) { 2782 oldvd_has_siblings = B_TRUE; 2783 ASSERT(oldvd->vdev_children >= 2); 2784 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2785 } 2786 2787 oldguid = oldvd->vdev_guid; 2788 oldsize = vdev_get_min_asize(oldvd); 2789 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2790 (void) strcpy(oldpath, oldvd->vdev_path); 2791 pvd = oldvd->vdev_parent; 2792 pguid = pvd->vdev_guid; 2793 2794 /* 2795 * If oldvd has siblings, then half of the time, detach it. 2796 */ 2797 if (oldvd_has_siblings && ztest_random(2) == 0) { 2798 spa_config_exit(spa, SCL_VDEV, FTAG); 2799 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2800 if (error != 0 && error != ENODEV && error != EBUSY && 2801 error != ENOTSUP) 2802 fatal(0, "detach (%s) returned %d", oldpath, error); 2803 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2804 return; 2805 } 2806 2807 /* 2808 * For the new vdev, choose with equal probability between the two 2809 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2810 */ 2811 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2812 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2813 newvd_is_spare = B_TRUE; 2814 (void) strcpy(newpath, newvd->vdev_path); 2815 } else { 2816 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2817 ztest_opts.zo_dir, ztest_opts.zo_pool, 2818 top * leaves + leaf); 2819 if (ztest_random(2) == 0) 2820 newpath[strlen(newpath) - 1] = 'b'; 2821 newvd = vdev_lookup_by_path(rvd, newpath); 2822 } 2823 2824 if (newvd) { 2825 newsize = vdev_get_min_asize(newvd); 2826 } else { 2827 /* 2828 * Make newsize a little bigger or smaller than oldsize. 2829 * If it's smaller, the attach should fail. 2830 * If it's larger, and we're doing a replace, 2831 * we should get dynamic LUN growth when we're done. 2832 */ 2833 newsize = 10 * oldsize / (9 + ztest_random(3)); 2834 } 2835 2836 /* 2837 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2838 * unless it's a replace; in that case any non-replacing parent is OK. 2839 * 2840 * If newvd is already part of the pool, it should fail with EBUSY. 2841 * 2842 * If newvd is too small, it should fail with EOVERFLOW. 2843 */ 2844 if (pvd->vdev_ops != &vdev_mirror_ops && 2845 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2846 pvd->vdev_ops == &vdev_replacing_ops || 2847 pvd->vdev_ops == &vdev_spare_ops)) 2848 expected_error = ENOTSUP; 2849 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2850 expected_error = ENOTSUP; 2851 else if (newvd == oldvd) 2852 expected_error = replacing ? 0 : EBUSY; 2853 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2854 expected_error = EBUSY; 2855 else if (newsize < oldsize) 2856 expected_error = EOVERFLOW; 2857 else if (ashift > oldvd->vdev_top->vdev_ashift) 2858 expected_error = EDOM; 2859 else 2860 expected_error = 0; 2861 2862 spa_config_exit(spa, SCL_VDEV, FTAG); 2863 2864 /* 2865 * Build the nvlist describing newpath. 2866 */ 2867 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 2868 ashift, 0, 0, 0, 1); 2869 2870 error = spa_vdev_attach(spa, oldguid, root, replacing); 2871 2872 nvlist_free(root); 2873 2874 /* 2875 * If our parent was the replacing vdev, but the replace completed, 2876 * then instead of failing with ENOTSUP we may either succeed, 2877 * fail with ENODEV, or fail with EOVERFLOW. 2878 */ 2879 if (expected_error == ENOTSUP && 2880 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2881 expected_error = error; 2882 2883 /* 2884 * If someone grew the LUN, the replacement may be too small. 2885 */ 2886 if (error == EOVERFLOW || error == EBUSY) 2887 expected_error = error; 2888 2889 /* XXX workaround 6690467 */ 2890 if (error != expected_error && expected_error != EBUSY) { 2891 fatal(0, "attach (%s %llu, %s %llu, %d) " 2892 "returned %d, expected %d", 2893 oldpath, (longlong_t)oldsize, newpath, 2894 (longlong_t)newsize, replacing, error, expected_error); 2895 } 2896 2897 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2898 } 2899 2900 /* 2901 * Callback function which expands the physical size of the vdev. 2902 */ 2903 vdev_t * 2904 grow_vdev(vdev_t *vd, void *arg) 2905 { 2906 spa_t *spa = vd->vdev_spa; 2907 size_t *newsize = arg; 2908 size_t fsize; 2909 int fd; 2910 2911 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2912 ASSERT(vd->vdev_ops->vdev_op_leaf); 2913 2914 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2915 return (vd); 2916 2917 fsize = lseek(fd, 0, SEEK_END); 2918 (void) ftruncate(fd, *newsize); 2919 2920 if (ztest_opts.zo_verbose >= 6) { 2921 (void) printf("%s grew from %lu to %lu bytes\n", 2922 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2923 } 2924 (void) close(fd); 2925 return (NULL); 2926 } 2927 2928 /* 2929 * Callback function which expands a given vdev by calling vdev_online(). 2930 */ 2931 /* ARGSUSED */ 2932 vdev_t * 2933 online_vdev(vdev_t *vd, void *arg) 2934 { 2935 spa_t *spa = vd->vdev_spa; 2936 vdev_t *tvd = vd->vdev_top; 2937 uint64_t guid = vd->vdev_guid; 2938 uint64_t generation = spa->spa_config_generation + 1; 2939 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2940 int error; 2941 2942 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2943 ASSERT(vd->vdev_ops->vdev_op_leaf); 2944 2945 /* Calling vdev_online will initialize the new metaslabs */ 2946 spa_config_exit(spa, SCL_STATE, spa); 2947 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2948 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2949 2950 /* 2951 * If vdev_online returned an error or the underlying vdev_open 2952 * failed then we abort the expand. The only way to know that 2953 * vdev_open fails is by checking the returned newstate. 2954 */ 2955 if (error || newstate != VDEV_STATE_HEALTHY) { 2956 if (ztest_opts.zo_verbose >= 5) { 2957 (void) printf("Unable to expand vdev, state %llu, " 2958 "error %d\n", (u_longlong_t)newstate, error); 2959 } 2960 return (vd); 2961 } 2962 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2963 2964 /* 2965 * Since we dropped the lock we need to ensure that we're 2966 * still talking to the original vdev. It's possible this 2967 * vdev may have been detached/replaced while we were 2968 * trying to online it. 2969 */ 2970 if (generation != spa->spa_config_generation) { 2971 if (ztest_opts.zo_verbose >= 5) { 2972 (void) printf("vdev configuration has changed, " 2973 "guid %llu, state %llu, expected gen %llu, " 2974 "got gen %llu\n", 2975 (u_longlong_t)guid, 2976 (u_longlong_t)tvd->vdev_state, 2977 (u_longlong_t)generation, 2978 (u_longlong_t)spa->spa_config_generation); 2979 } 2980 return (vd); 2981 } 2982 return (NULL); 2983 } 2984 2985 /* 2986 * Traverse the vdev tree calling the supplied function. 2987 * We continue to walk the tree until we either have walked all 2988 * children or we receive a non-NULL return from the callback. 2989 * If a NULL callback is passed, then we just return back the first 2990 * leaf vdev we encounter. 2991 */ 2992 vdev_t * 2993 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 2994 { 2995 if (vd->vdev_ops->vdev_op_leaf) { 2996 if (func == NULL) 2997 return (vd); 2998 else 2999 return (func(vd, arg)); 3000 } 3001 3002 for (uint_t c = 0; c < vd->vdev_children; c++) { 3003 vdev_t *cvd = vd->vdev_child[c]; 3004 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3005 return (cvd); 3006 } 3007 return (NULL); 3008 } 3009 3010 /* 3011 * Verify that dynamic LUN growth works as expected. 3012 */ 3013 /* ARGSUSED */ 3014 void 3015 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3016 { 3017 spa_t *spa = ztest_spa; 3018 vdev_t *vd, *tvd; 3019 metaslab_class_t *mc; 3020 metaslab_group_t *mg; 3021 size_t psize, newsize; 3022 uint64_t top; 3023 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3024 3025 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 3026 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3027 3028 top = ztest_random_vdev_top(spa, B_TRUE); 3029 3030 tvd = spa->spa_root_vdev->vdev_child[top]; 3031 mg = tvd->vdev_mg; 3032 mc = mg->mg_class; 3033 old_ms_count = tvd->vdev_ms_count; 3034 old_class_space = metaslab_class_get_space(mc); 3035 3036 /* 3037 * Determine the size of the first leaf vdev associated with 3038 * our top-level device. 3039 */ 3040 vd = vdev_walk_tree(tvd, NULL, NULL); 3041 ASSERT3P(vd, !=, NULL); 3042 ASSERT(vd->vdev_ops->vdev_op_leaf); 3043 3044 psize = vd->vdev_psize; 3045 3046 /* 3047 * We only try to expand the vdev if it's healthy, less than 4x its 3048 * original size, and it has a valid psize. 3049 */ 3050 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3051 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3052 spa_config_exit(spa, SCL_STATE, spa); 3053 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3054 return; 3055 } 3056 ASSERT(psize > 0); 3057 newsize = psize + psize / 8; 3058 ASSERT3U(newsize, >, psize); 3059 3060 if (ztest_opts.zo_verbose >= 6) { 3061 (void) printf("Expanding LUN %s from %lu to %lu\n", 3062 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3063 } 3064 3065 /* 3066 * Growing the vdev is a two step process: 3067 * 1). expand the physical size (i.e. relabel) 3068 * 2). online the vdev to create the new metaslabs 3069 */ 3070 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3071 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3072 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3073 if (ztest_opts.zo_verbose >= 5) { 3074 (void) printf("Could not expand LUN because " 3075 "the vdev configuration changed.\n"); 3076 } 3077 spa_config_exit(spa, SCL_STATE, spa); 3078 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3079 return; 3080 } 3081 3082 spa_config_exit(spa, SCL_STATE, spa); 3083 3084 /* 3085 * Expanding the LUN will update the config asynchronously, 3086 * thus we must wait for the async thread to complete any 3087 * pending tasks before proceeding. 3088 */ 3089 for (;;) { 3090 boolean_t done; 3091 mutex_enter(&spa->spa_async_lock); 3092 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3093 mutex_exit(&spa->spa_async_lock); 3094 if (done) 3095 break; 3096 txg_wait_synced(spa_get_dsl(spa), 0); 3097 (void) poll(NULL, 0, 100); 3098 } 3099 3100 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3101 3102 tvd = spa->spa_root_vdev->vdev_child[top]; 3103 new_ms_count = tvd->vdev_ms_count; 3104 new_class_space = metaslab_class_get_space(mc); 3105 3106 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3107 if (ztest_opts.zo_verbose >= 5) { 3108 (void) printf("Could not verify LUN expansion due to " 3109 "intervening vdev offline or remove.\n"); 3110 } 3111 spa_config_exit(spa, SCL_STATE, spa); 3112 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3113 return; 3114 } 3115 3116 /* 3117 * Make sure we were able to grow the vdev. 3118 */ 3119 if (new_ms_count <= old_ms_count) 3120 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 3121 old_ms_count, new_ms_count); 3122 3123 /* 3124 * Make sure we were able to grow the pool. 3125 */ 3126 if (new_class_space <= old_class_space) 3127 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 3128 old_class_space, new_class_space); 3129 3130 if (ztest_opts.zo_verbose >= 5) { 3131 char oldnumbuf[6], newnumbuf[6]; 3132 3133 nicenum(old_class_space, oldnumbuf); 3134 nicenum(new_class_space, newnumbuf); 3135 (void) printf("%s grew from %s to %s\n", 3136 spa->spa_name, oldnumbuf, newnumbuf); 3137 } 3138 3139 spa_config_exit(spa, SCL_STATE, spa); 3140 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3141 } 3142 3143 /* 3144 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3145 */ 3146 /* ARGSUSED */ 3147 static void 3148 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3149 { 3150 /* 3151 * Create the objects common to all ztest datasets. 3152 */ 3153 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3154 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3155 } 3156 3157 static int 3158 ztest_dataset_create(char *dsname) 3159 { 3160 uint64_t zilset = ztest_random(100); 3161 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3162 ztest_objset_create_cb, NULL); 3163 3164 if (err || zilset < 80) 3165 return (err); 3166 3167 if (ztest_opts.zo_verbose >= 6) 3168 (void) printf("Setting dataset %s to sync always\n", dsname); 3169 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3170 ZFS_SYNC_ALWAYS, B_FALSE)); 3171 } 3172 3173 /* ARGSUSED */ 3174 static int 3175 ztest_objset_destroy_cb(const char *name, void *arg) 3176 { 3177 objset_t *os; 3178 dmu_object_info_t doi; 3179 int error; 3180 3181 /* 3182 * Verify that the dataset contains a directory object. 3183 */ 3184 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); 3185 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3186 if (error != ENOENT) { 3187 /* We could have crashed in the middle of destroying it */ 3188 ASSERT0(error); 3189 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3190 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3191 } 3192 dmu_objset_disown(os, FTAG); 3193 3194 /* 3195 * Destroy the dataset. 3196 */ 3197 if (strchr(name, '@') != NULL) { 3198 VERIFY0(dsl_destroy_snapshot(name, B_FALSE)); 3199 } else { 3200 VERIFY0(dsl_destroy_head(name)); 3201 } 3202 return (0); 3203 } 3204 3205 static boolean_t 3206 ztest_snapshot_create(char *osname, uint64_t id) 3207 { 3208 char snapname[MAXNAMELEN]; 3209 int error; 3210 3211 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3212 3213 error = dmu_objset_snapshot_one(osname, snapname); 3214 if (error == ENOSPC) { 3215 ztest_record_enospc(FTAG); 3216 return (B_FALSE); 3217 } 3218 if (error != 0 && error != EEXIST) { 3219 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3220 snapname, error); 3221 } 3222 return (B_TRUE); 3223 } 3224 3225 static boolean_t 3226 ztest_snapshot_destroy(char *osname, uint64_t id) 3227 { 3228 char snapname[MAXNAMELEN]; 3229 int error; 3230 3231 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 3232 (u_longlong_t)id); 3233 3234 error = dsl_destroy_snapshot(snapname, B_FALSE); 3235 if (error != 0 && error != ENOENT) 3236 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3237 return (B_TRUE); 3238 } 3239 3240 /* ARGSUSED */ 3241 void 3242 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3243 { 3244 ztest_ds_t zdtmp; 3245 int iters; 3246 int error; 3247 objset_t *os, *os2; 3248 char name[MAXNAMELEN]; 3249 zilog_t *zilog; 3250 3251 (void) rw_rdlock(&ztest_name_lock); 3252 3253 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 3254 ztest_opts.zo_pool, (u_longlong_t)id); 3255 3256 /* 3257 * If this dataset exists from a previous run, process its replay log 3258 * half of the time. If we don't replay it, then dmu_objset_destroy() 3259 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3260 */ 3261 if (ztest_random(2) == 0 && 3262 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3263 ztest_zd_init(&zdtmp, NULL, os); 3264 zil_replay(os, &zdtmp, ztest_replay_vector); 3265 ztest_zd_fini(&zdtmp); 3266 dmu_objset_disown(os, FTAG); 3267 } 3268 3269 /* 3270 * There may be an old instance of the dataset we're about to 3271 * create lying around from a previous run. If so, destroy it 3272 * and all of its snapshots. 3273 */ 3274 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3275 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3276 3277 /* 3278 * Verify that the destroyed dataset is no longer in the namespace. 3279 */ 3280 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3281 FTAG, &os)); 3282 3283 /* 3284 * Verify that we can create a new dataset. 3285 */ 3286 error = ztest_dataset_create(name); 3287 if (error) { 3288 if (error == ENOSPC) { 3289 ztest_record_enospc(FTAG); 3290 (void) rw_unlock(&ztest_name_lock); 3291 return; 3292 } 3293 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3294 } 3295 3296 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3297 3298 ztest_zd_init(&zdtmp, NULL, os); 3299 3300 /* 3301 * Open the intent log for it. 3302 */ 3303 zilog = zil_open(os, ztest_get_data); 3304 3305 /* 3306 * Put some objects in there, do a little I/O to them, 3307 * and randomly take a couple of snapshots along the way. 3308 */ 3309 iters = ztest_random(5); 3310 for (int i = 0; i < iters; i++) { 3311 ztest_dmu_object_alloc_free(&zdtmp, id); 3312 if (ztest_random(iters) == 0) 3313 (void) ztest_snapshot_create(name, i); 3314 } 3315 3316 /* 3317 * Verify that we cannot create an existing dataset. 3318 */ 3319 VERIFY3U(EEXIST, ==, 3320 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3321 3322 /* 3323 * Verify that we can hold an objset that is also owned. 3324 */ 3325 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3326 dmu_objset_rele(os2, FTAG); 3327 3328 /* 3329 * Verify that we cannot own an objset that is already owned. 3330 */ 3331 VERIFY3U(EBUSY, ==, 3332 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3333 3334 zil_close(zilog); 3335 dmu_objset_disown(os, FTAG); 3336 ztest_zd_fini(&zdtmp); 3337 3338 (void) rw_unlock(&ztest_name_lock); 3339 } 3340 3341 /* 3342 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3343 */ 3344 void 3345 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3346 { 3347 (void) rw_rdlock(&ztest_name_lock); 3348 (void) ztest_snapshot_destroy(zd->zd_name, id); 3349 (void) ztest_snapshot_create(zd->zd_name, id); 3350 (void) rw_unlock(&ztest_name_lock); 3351 } 3352 3353 /* 3354 * Cleanup non-standard snapshots and clones. 3355 */ 3356 void 3357 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3358 { 3359 char snap1name[MAXNAMELEN]; 3360 char clone1name[MAXNAMELEN]; 3361 char snap2name[MAXNAMELEN]; 3362 char clone2name[MAXNAMELEN]; 3363 char snap3name[MAXNAMELEN]; 3364 int error; 3365 3366 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3367 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3368 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3369 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3370 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3371 3372 error = dsl_destroy_head(clone2name); 3373 if (error && error != ENOENT) 3374 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 3375 error = dsl_destroy_snapshot(snap3name, B_FALSE); 3376 if (error && error != ENOENT) 3377 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 3378 error = dsl_destroy_snapshot(snap2name, B_FALSE); 3379 if (error && error != ENOENT) 3380 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 3381 error = dsl_destroy_head(clone1name); 3382 if (error && error != ENOENT) 3383 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 3384 error = dsl_destroy_snapshot(snap1name, B_FALSE); 3385 if (error && error != ENOENT) 3386 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 3387 } 3388 3389 /* 3390 * Verify dsl_dataset_promote handles EBUSY 3391 */ 3392 void 3393 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3394 { 3395 objset_t *os; 3396 char snap1name[MAXNAMELEN]; 3397 char clone1name[MAXNAMELEN]; 3398 char snap2name[MAXNAMELEN]; 3399 char clone2name[MAXNAMELEN]; 3400 char snap3name[MAXNAMELEN]; 3401 char *osname = zd->zd_name; 3402 int error; 3403 3404 (void) rw_rdlock(&ztest_name_lock); 3405 3406 ztest_dsl_dataset_cleanup(osname, id); 3407 3408 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3409 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3410 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3411 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3412 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3413 3414 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3415 if (error && error != EEXIST) { 3416 if (error == ENOSPC) { 3417 ztest_record_enospc(FTAG); 3418 goto out; 3419 } 3420 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3421 } 3422 3423 error = dmu_objset_clone(clone1name, snap1name); 3424 if (error) { 3425 if (error == ENOSPC) { 3426 ztest_record_enospc(FTAG); 3427 goto out; 3428 } 3429 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3430 } 3431 3432 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3433 if (error && error != EEXIST) { 3434 if (error == ENOSPC) { 3435 ztest_record_enospc(FTAG); 3436 goto out; 3437 } 3438 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3439 } 3440 3441 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3442 if (error && error != EEXIST) { 3443 if (error == ENOSPC) { 3444 ztest_record_enospc(FTAG); 3445 goto out; 3446 } 3447 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3448 } 3449 3450 error = dmu_objset_clone(clone2name, snap3name); 3451 if (error) { 3452 if (error == ENOSPC) { 3453 ztest_record_enospc(FTAG); 3454 goto out; 3455 } 3456 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3457 } 3458 3459 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); 3460 if (error) 3461 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 3462 error = dsl_dataset_promote(clone2name, NULL); 3463 if (error != EBUSY) 3464 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3465 error); 3466 dmu_objset_disown(os, FTAG); 3467 3468 out: 3469 ztest_dsl_dataset_cleanup(osname, id); 3470 3471 (void) rw_unlock(&ztest_name_lock); 3472 } 3473 3474 /* 3475 * Verify that dmu_object_{alloc,free} work as expected. 3476 */ 3477 void 3478 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3479 { 3480 ztest_od_t od[4]; 3481 int batchsize = sizeof (od) / sizeof (od[0]); 3482 3483 for (int b = 0; b < batchsize; b++) 3484 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3485 3486 /* 3487 * Destroy the previous batch of objects, create a new batch, 3488 * and do some I/O on the new objects. 3489 */ 3490 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3491 return; 3492 3493 while (ztest_random(4 * batchsize) != 0) 3494 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3495 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3496 } 3497 3498 /* 3499 * Verify that dmu_{read,write} work as expected. 3500 */ 3501 void 3502 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3503 { 3504 objset_t *os = zd->zd_os; 3505 ztest_od_t od[2]; 3506 dmu_tx_t *tx; 3507 int i, freeit, error; 3508 uint64_t n, s, txg; 3509 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3510 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3511 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3512 uint64_t regions = 997; 3513 uint64_t stride = 123456789ULL; 3514 uint64_t width = 40; 3515 int free_percent = 5; 3516 3517 /* 3518 * This test uses two objects, packobj and bigobj, that are always 3519 * updated together (i.e. in the same tx) so that their contents are 3520 * in sync and can be compared. Their contents relate to each other 3521 * in a simple way: packobj is a dense array of 'bufwad' structures, 3522 * while bigobj is a sparse array of the same bufwads. Specifically, 3523 * for any index n, there are three bufwads that should be identical: 3524 * 3525 * packobj, at offset n * sizeof (bufwad_t) 3526 * bigobj, at the head of the nth chunk 3527 * bigobj, at the tail of the nth chunk 3528 * 3529 * The chunk size is arbitrary. It doesn't have to be a power of two, 3530 * and it doesn't have any relation to the object blocksize. 3531 * The only requirement is that it can hold at least two bufwads. 3532 * 3533 * Normally, we write the bufwad to each of these locations. 3534 * However, free_percent of the time we instead write zeroes to 3535 * packobj and perform a dmu_free_range() on bigobj. By comparing 3536 * bigobj to packobj, we can verify that the DMU is correctly 3537 * tracking which parts of an object are allocated and free, 3538 * and that the contents of the allocated blocks are correct. 3539 */ 3540 3541 /* 3542 * Read the directory info. If it's the first time, set things up. 3543 */ 3544 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3545 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3546 3547 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3548 return; 3549 3550 bigobj = od[0].od_object; 3551 packobj = od[1].od_object; 3552 chunksize = od[0].od_gen; 3553 ASSERT(chunksize == od[1].od_gen); 3554 3555 /* 3556 * Prefetch a random chunk of the big object. 3557 * Our aim here is to get some async reads in flight 3558 * for blocks that we may free below; the DMU should 3559 * handle this race correctly. 3560 */ 3561 n = ztest_random(regions) * stride + ztest_random(width); 3562 s = 1 + ztest_random(2 * width - 1); 3563 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); 3564 3565 /* 3566 * Pick a random index and compute the offsets into packobj and bigobj. 3567 */ 3568 n = ztest_random(regions) * stride + ztest_random(width); 3569 s = 1 + ztest_random(width - 1); 3570 3571 packoff = n * sizeof (bufwad_t); 3572 packsize = s * sizeof (bufwad_t); 3573 3574 bigoff = n * chunksize; 3575 bigsize = s * chunksize; 3576 3577 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3578 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3579 3580 /* 3581 * free_percent of the time, free a range of bigobj rather than 3582 * overwriting it. 3583 */ 3584 freeit = (ztest_random(100) < free_percent); 3585 3586 /* 3587 * Read the current contents of our objects. 3588 */ 3589 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3590 DMU_READ_PREFETCH); 3591 ASSERT0(error); 3592 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3593 DMU_READ_PREFETCH); 3594 ASSERT0(error); 3595 3596 /* 3597 * Get a tx for the mods to both packobj and bigobj. 3598 */ 3599 tx = dmu_tx_create(os); 3600 3601 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3602 3603 if (freeit) 3604 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3605 else 3606 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3607 3608 /* This accounts for setting the checksum/compression. */ 3609 dmu_tx_hold_bonus(tx, bigobj); 3610 3611 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3612 if (txg == 0) { 3613 umem_free(packbuf, packsize); 3614 umem_free(bigbuf, bigsize); 3615 return; 3616 } 3617 3618 dmu_object_set_checksum(os, bigobj, 3619 (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx); 3620 3621 dmu_object_set_compress(os, bigobj, 3622 (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx); 3623 3624 /* 3625 * For each index from n to n + s, verify that the existing bufwad 3626 * in packobj matches the bufwads at the head and tail of the 3627 * corresponding chunk in bigobj. Then update all three bufwads 3628 * with the new values we want to write out. 3629 */ 3630 for (i = 0; i < s; i++) { 3631 /* LINTED */ 3632 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3633 /* LINTED */ 3634 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3635 /* LINTED */ 3636 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3637 3638 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3639 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3640 3641 if (pack->bw_txg > txg) 3642 fatal(0, "future leak: got %llx, open txg is %llx", 3643 pack->bw_txg, txg); 3644 3645 if (pack->bw_data != 0 && pack->bw_index != n + i) 3646 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3647 pack->bw_index, n, i); 3648 3649 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3650 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3651 3652 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3653 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3654 3655 if (freeit) { 3656 bzero(pack, sizeof (bufwad_t)); 3657 } else { 3658 pack->bw_index = n + i; 3659 pack->bw_txg = txg; 3660 pack->bw_data = 1 + ztest_random(-2ULL); 3661 } 3662 *bigH = *pack; 3663 *bigT = *pack; 3664 } 3665 3666 /* 3667 * We've verified all the old bufwads, and made new ones. 3668 * Now write them out. 3669 */ 3670 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3671 3672 if (freeit) { 3673 if (ztest_opts.zo_verbose >= 7) { 3674 (void) printf("freeing offset %llx size %llx" 3675 " txg %llx\n", 3676 (u_longlong_t)bigoff, 3677 (u_longlong_t)bigsize, 3678 (u_longlong_t)txg); 3679 } 3680 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3681 } else { 3682 if (ztest_opts.zo_verbose >= 7) { 3683 (void) printf("writing offset %llx size %llx" 3684 " txg %llx\n", 3685 (u_longlong_t)bigoff, 3686 (u_longlong_t)bigsize, 3687 (u_longlong_t)txg); 3688 } 3689 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3690 } 3691 3692 dmu_tx_commit(tx); 3693 3694 /* 3695 * Sanity check the stuff we just wrote. 3696 */ 3697 { 3698 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3699 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3700 3701 VERIFY(0 == dmu_read(os, packobj, packoff, 3702 packsize, packcheck, DMU_READ_PREFETCH)); 3703 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3704 bigsize, bigcheck, DMU_READ_PREFETCH)); 3705 3706 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3707 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3708 3709 umem_free(packcheck, packsize); 3710 umem_free(bigcheck, bigsize); 3711 } 3712 3713 umem_free(packbuf, packsize); 3714 umem_free(bigbuf, bigsize); 3715 } 3716 3717 void 3718 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3719 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3720 { 3721 uint64_t i; 3722 bufwad_t *pack; 3723 bufwad_t *bigH; 3724 bufwad_t *bigT; 3725 3726 /* 3727 * For each index from n to n + s, verify that the existing bufwad 3728 * in packobj matches the bufwads at the head and tail of the 3729 * corresponding chunk in bigobj. Then update all three bufwads 3730 * with the new values we want to write out. 3731 */ 3732 for (i = 0; i < s; i++) { 3733 /* LINTED */ 3734 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3735 /* LINTED */ 3736 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3737 /* LINTED */ 3738 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3739 3740 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3741 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3742 3743 if (pack->bw_txg > txg) 3744 fatal(0, "future leak: got %llx, open txg is %llx", 3745 pack->bw_txg, txg); 3746 3747 if (pack->bw_data != 0 && pack->bw_index != n + i) 3748 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3749 pack->bw_index, n, i); 3750 3751 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3752 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3753 3754 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3755 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3756 3757 pack->bw_index = n + i; 3758 pack->bw_txg = txg; 3759 pack->bw_data = 1 + ztest_random(-2ULL); 3760 3761 *bigH = *pack; 3762 *bigT = *pack; 3763 } 3764 } 3765 3766 void 3767 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3768 { 3769 objset_t *os = zd->zd_os; 3770 ztest_od_t od[2]; 3771 dmu_tx_t *tx; 3772 uint64_t i; 3773 int error; 3774 uint64_t n, s, txg; 3775 bufwad_t *packbuf, *bigbuf; 3776 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3777 uint64_t blocksize = ztest_random_blocksize(); 3778 uint64_t chunksize = blocksize; 3779 uint64_t regions = 997; 3780 uint64_t stride = 123456789ULL; 3781 uint64_t width = 9; 3782 dmu_buf_t *bonus_db; 3783 arc_buf_t **bigbuf_arcbufs; 3784 dmu_object_info_t doi; 3785 3786 /* 3787 * This test uses two objects, packobj and bigobj, that are always 3788 * updated together (i.e. in the same tx) so that their contents are 3789 * in sync and can be compared. Their contents relate to each other 3790 * in a simple way: packobj is a dense array of 'bufwad' structures, 3791 * while bigobj is a sparse array of the same bufwads. Specifically, 3792 * for any index n, there are three bufwads that should be identical: 3793 * 3794 * packobj, at offset n * sizeof (bufwad_t) 3795 * bigobj, at the head of the nth chunk 3796 * bigobj, at the tail of the nth chunk 3797 * 3798 * The chunk size is set equal to bigobj block size so that 3799 * dmu_assign_arcbuf() can be tested for object updates. 3800 */ 3801 3802 /* 3803 * Read the directory info. If it's the first time, set things up. 3804 */ 3805 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3806 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3807 3808 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3809 return; 3810 3811 bigobj = od[0].od_object; 3812 packobj = od[1].od_object; 3813 blocksize = od[0].od_blocksize; 3814 chunksize = blocksize; 3815 ASSERT(chunksize == od[1].od_gen); 3816 3817 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3818 VERIFY(ISP2(doi.doi_data_block_size)); 3819 VERIFY(chunksize == doi.doi_data_block_size); 3820 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3821 3822 /* 3823 * Pick a random index and compute the offsets into packobj and bigobj. 3824 */ 3825 n = ztest_random(regions) * stride + ztest_random(width); 3826 s = 1 + ztest_random(width - 1); 3827 3828 packoff = n * sizeof (bufwad_t); 3829 packsize = s * sizeof (bufwad_t); 3830 3831 bigoff = n * chunksize; 3832 bigsize = s * chunksize; 3833 3834 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3835 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3836 3837 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3838 3839 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3840 3841 /* 3842 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3843 * Iteration 1 test zcopy to already referenced dbufs. 3844 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3845 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3846 * Iteration 4 test zcopy when dbuf is no longer dirty. 3847 * Iteration 5 test zcopy when it can't be done. 3848 * Iteration 6 one more zcopy write. 3849 */ 3850 for (i = 0; i < 7; i++) { 3851 uint64_t j; 3852 uint64_t off; 3853 3854 /* 3855 * In iteration 5 (i == 5) use arcbufs 3856 * that don't match bigobj blksz to test 3857 * dmu_assign_arcbuf() when it can't directly 3858 * assign an arcbuf to a dbuf. 3859 */ 3860 for (j = 0; j < s; j++) { 3861 if (i != 5) { 3862 bigbuf_arcbufs[j] = 3863 dmu_request_arcbuf(bonus_db, chunksize); 3864 } else { 3865 bigbuf_arcbufs[2 * j] = 3866 dmu_request_arcbuf(bonus_db, chunksize / 2); 3867 bigbuf_arcbufs[2 * j + 1] = 3868 dmu_request_arcbuf(bonus_db, chunksize / 2); 3869 } 3870 } 3871 3872 /* 3873 * Get a tx for the mods to both packobj and bigobj. 3874 */ 3875 tx = dmu_tx_create(os); 3876 3877 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3878 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3879 3880 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3881 if (txg == 0) { 3882 umem_free(packbuf, packsize); 3883 umem_free(bigbuf, bigsize); 3884 for (j = 0; j < s; j++) { 3885 if (i != 5) { 3886 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3887 } else { 3888 dmu_return_arcbuf( 3889 bigbuf_arcbufs[2 * j]); 3890 dmu_return_arcbuf( 3891 bigbuf_arcbufs[2 * j + 1]); 3892 } 3893 } 3894 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3895 dmu_buf_rele(bonus_db, FTAG); 3896 return; 3897 } 3898 3899 /* 3900 * 50% of the time don't read objects in the 1st iteration to 3901 * test dmu_assign_arcbuf() for the case when there're no 3902 * existing dbufs for the specified offsets. 3903 */ 3904 if (i != 0 || ztest_random(2) != 0) { 3905 error = dmu_read(os, packobj, packoff, 3906 packsize, packbuf, DMU_READ_PREFETCH); 3907 ASSERT0(error); 3908 error = dmu_read(os, bigobj, bigoff, bigsize, 3909 bigbuf, DMU_READ_PREFETCH); 3910 ASSERT0(error); 3911 } 3912 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3913 n, chunksize, txg); 3914 3915 /* 3916 * We've verified all the old bufwads, and made new ones. 3917 * Now write them out. 3918 */ 3919 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3920 if (ztest_opts.zo_verbose >= 7) { 3921 (void) printf("writing offset %llx size %llx" 3922 " txg %llx\n", 3923 (u_longlong_t)bigoff, 3924 (u_longlong_t)bigsize, 3925 (u_longlong_t)txg); 3926 } 3927 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3928 dmu_buf_t *dbt; 3929 if (i != 5) { 3930 bcopy((caddr_t)bigbuf + (off - bigoff), 3931 bigbuf_arcbufs[j]->b_data, chunksize); 3932 } else { 3933 bcopy((caddr_t)bigbuf + (off - bigoff), 3934 bigbuf_arcbufs[2 * j]->b_data, 3935 chunksize / 2); 3936 bcopy((caddr_t)bigbuf + (off - bigoff) + 3937 chunksize / 2, 3938 bigbuf_arcbufs[2 * j + 1]->b_data, 3939 chunksize / 2); 3940 } 3941 3942 if (i == 1) { 3943 VERIFY(dmu_buf_hold(os, bigobj, off, 3944 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 3945 } 3946 if (i != 5) { 3947 dmu_assign_arcbuf(bonus_db, off, 3948 bigbuf_arcbufs[j], tx); 3949 } else { 3950 dmu_assign_arcbuf(bonus_db, off, 3951 bigbuf_arcbufs[2 * j], tx); 3952 dmu_assign_arcbuf(bonus_db, 3953 off + chunksize / 2, 3954 bigbuf_arcbufs[2 * j + 1], tx); 3955 } 3956 if (i == 1) { 3957 dmu_buf_rele(dbt, FTAG); 3958 } 3959 } 3960 dmu_tx_commit(tx); 3961 3962 /* 3963 * Sanity check the stuff we just wrote. 3964 */ 3965 { 3966 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3967 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3968 3969 VERIFY(0 == dmu_read(os, packobj, packoff, 3970 packsize, packcheck, DMU_READ_PREFETCH)); 3971 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3972 bigsize, bigcheck, DMU_READ_PREFETCH)); 3973 3974 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3975 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3976 3977 umem_free(packcheck, packsize); 3978 umem_free(bigcheck, bigsize); 3979 } 3980 if (i == 2) { 3981 txg_wait_open(dmu_objset_pool(os), 0); 3982 } else if (i == 3) { 3983 txg_wait_synced(dmu_objset_pool(os), 0); 3984 } 3985 } 3986 3987 dmu_buf_rele(bonus_db, FTAG); 3988 umem_free(packbuf, packsize); 3989 umem_free(bigbuf, bigsize); 3990 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3991 } 3992 3993 /* ARGSUSED */ 3994 void 3995 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 3996 { 3997 ztest_od_t od[1]; 3998 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 3999 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4000 4001 /* 4002 * Have multiple threads write to large offsets in an object 4003 * to verify that parallel writes to an object -- even to the 4004 * same blocks within the object -- doesn't cause any trouble. 4005 */ 4006 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4007 4008 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4009 return; 4010 4011 while (ztest_random(10) != 0) 4012 ztest_io(zd, od[0].od_object, offset); 4013 } 4014 4015 void 4016 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4017 { 4018 ztest_od_t od[1]; 4019 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4020 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4021 uint64_t count = ztest_random(20) + 1; 4022 uint64_t blocksize = ztest_random_blocksize(); 4023 void *data; 4024 4025 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4026 4027 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4028 return; 4029 4030 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4031 return; 4032 4033 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4034 4035 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4036 4037 while (ztest_random(count) != 0) { 4038 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4039 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4040 data) != 0) 4041 break; 4042 while (ztest_random(4) != 0) 4043 ztest_io(zd, od[0].od_object, randoff); 4044 } 4045 4046 umem_free(data, blocksize); 4047 } 4048 4049 /* 4050 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4051 */ 4052 #define ZTEST_ZAP_MIN_INTS 1 4053 #define ZTEST_ZAP_MAX_INTS 4 4054 #define ZTEST_ZAP_MAX_PROPS 1000 4055 4056 void 4057 ztest_zap(ztest_ds_t *zd, uint64_t id) 4058 { 4059 objset_t *os = zd->zd_os; 4060 ztest_od_t od[1]; 4061 uint64_t object; 4062 uint64_t txg, last_txg; 4063 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4064 uint64_t zl_ints, zl_intsize, prop; 4065 int i, ints; 4066 dmu_tx_t *tx; 4067 char propname[100], txgname[100]; 4068 int error; 4069 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4070 4071 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4072 4073 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4074 return; 4075 4076 object = od[0].od_object; 4077 4078 /* 4079 * Generate a known hash collision, and verify that 4080 * we can lookup and remove both entries. 4081 */ 4082 tx = dmu_tx_create(os); 4083 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4084 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4085 if (txg == 0) 4086 return; 4087 for (i = 0; i < 2; i++) { 4088 value[i] = i; 4089 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4090 1, &value[i], tx)); 4091 } 4092 for (i = 0; i < 2; i++) { 4093 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4094 sizeof (uint64_t), 1, &value[i], tx)); 4095 VERIFY3U(0, ==, 4096 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4097 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4098 ASSERT3U(zl_ints, ==, 1); 4099 } 4100 for (i = 0; i < 2; i++) { 4101 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4102 } 4103 dmu_tx_commit(tx); 4104 4105 /* 4106 * Generate a buch of random entries. 4107 */ 4108 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4109 4110 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4111 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4112 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4113 bzero(value, sizeof (value)); 4114 last_txg = 0; 4115 4116 /* 4117 * If these zap entries already exist, validate their contents. 4118 */ 4119 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4120 if (error == 0) { 4121 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4122 ASSERT3U(zl_ints, ==, 1); 4123 4124 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4125 zl_ints, &last_txg) == 0); 4126 4127 VERIFY(zap_length(os, object, propname, &zl_intsize, 4128 &zl_ints) == 0); 4129 4130 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4131 ASSERT3U(zl_ints, ==, ints); 4132 4133 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4134 zl_ints, value) == 0); 4135 4136 for (i = 0; i < ints; i++) { 4137 ASSERT3U(value[i], ==, last_txg + object + i); 4138 } 4139 } else { 4140 ASSERT3U(error, ==, ENOENT); 4141 } 4142 4143 /* 4144 * Atomically update two entries in our zap object. 4145 * The first is named txg_%llu, and contains the txg 4146 * in which the property was last updated. The second 4147 * is named prop_%llu, and the nth element of its value 4148 * should be txg + object + n. 4149 */ 4150 tx = dmu_tx_create(os); 4151 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4152 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4153 if (txg == 0) 4154 return; 4155 4156 if (last_txg > txg) 4157 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4158 4159 for (i = 0; i < ints; i++) 4160 value[i] = txg + object + i; 4161 4162 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4163 1, &txg, tx)); 4164 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4165 ints, value, tx)); 4166 4167 dmu_tx_commit(tx); 4168 4169 /* 4170 * Remove a random pair of entries. 4171 */ 4172 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4173 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4174 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4175 4176 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4177 4178 if (error == ENOENT) 4179 return; 4180 4181 ASSERT0(error); 4182 4183 tx = dmu_tx_create(os); 4184 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4185 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4186 if (txg == 0) 4187 return; 4188 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4189 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4190 dmu_tx_commit(tx); 4191 } 4192 4193 /* 4194 * Testcase to test the upgrading of a microzap to fatzap. 4195 */ 4196 void 4197 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4198 { 4199 objset_t *os = zd->zd_os; 4200 ztest_od_t od[1]; 4201 uint64_t object, txg; 4202 4203 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4204 4205 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4206 return; 4207 4208 object = od[0].od_object; 4209 4210 /* 4211 * Add entries to this ZAP and make sure it spills over 4212 * and gets upgraded to a fatzap. Also, since we are adding 4213 * 2050 entries we should see ptrtbl growth and leaf-block split. 4214 */ 4215 for (int i = 0; i < 2050; i++) { 4216 char name[MAXNAMELEN]; 4217 uint64_t value = i; 4218 dmu_tx_t *tx; 4219 int error; 4220 4221 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4222 id, value); 4223 4224 tx = dmu_tx_create(os); 4225 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4226 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4227 if (txg == 0) 4228 return; 4229 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4230 &value, tx); 4231 ASSERT(error == 0 || error == EEXIST); 4232 dmu_tx_commit(tx); 4233 } 4234 } 4235 4236 /* ARGSUSED */ 4237 void 4238 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4239 { 4240 objset_t *os = zd->zd_os; 4241 ztest_od_t od[1]; 4242 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4243 dmu_tx_t *tx; 4244 int i, namelen, error; 4245 int micro = ztest_random(2); 4246 char name[20], string_value[20]; 4247 void *data; 4248 4249 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4250 4251 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4252 return; 4253 4254 object = od[0].od_object; 4255 4256 /* 4257 * Generate a random name of the form 'xxx.....' where each 4258 * x is a random printable character and the dots are dots. 4259 * There are 94 such characters, and the name length goes from 4260 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4261 */ 4262 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4263 4264 for (i = 0; i < 3; i++) 4265 name[i] = '!' + ztest_random('~' - '!' + 1); 4266 for (; i < namelen - 1; i++) 4267 name[i] = '.'; 4268 name[i] = '\0'; 4269 4270 if ((namelen & 1) || micro) { 4271 wsize = sizeof (txg); 4272 wc = 1; 4273 data = &txg; 4274 } else { 4275 wsize = 1; 4276 wc = namelen; 4277 data = string_value; 4278 } 4279 4280 count = -1ULL; 4281 VERIFY0(zap_count(os, object, &count)); 4282 ASSERT(count != -1ULL); 4283 4284 /* 4285 * Select an operation: length, lookup, add, update, remove. 4286 */ 4287 i = ztest_random(5); 4288 4289 if (i >= 2) { 4290 tx = dmu_tx_create(os); 4291 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4292 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4293 if (txg == 0) 4294 return; 4295 bcopy(name, string_value, namelen); 4296 } else { 4297 tx = NULL; 4298 txg = 0; 4299 bzero(string_value, namelen); 4300 } 4301 4302 switch (i) { 4303 4304 case 0: 4305 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4306 if (error == 0) { 4307 ASSERT3U(wsize, ==, zl_wsize); 4308 ASSERT3U(wc, ==, zl_wc); 4309 } else { 4310 ASSERT3U(error, ==, ENOENT); 4311 } 4312 break; 4313 4314 case 1: 4315 error = zap_lookup(os, object, name, wsize, wc, data); 4316 if (error == 0) { 4317 if (data == string_value && 4318 bcmp(name, data, namelen) != 0) 4319 fatal(0, "name '%s' != val '%s' len %d", 4320 name, data, namelen); 4321 } else { 4322 ASSERT3U(error, ==, ENOENT); 4323 } 4324 break; 4325 4326 case 2: 4327 error = zap_add(os, object, name, wsize, wc, data, tx); 4328 ASSERT(error == 0 || error == EEXIST); 4329 break; 4330 4331 case 3: 4332 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4333 break; 4334 4335 case 4: 4336 error = zap_remove(os, object, name, tx); 4337 ASSERT(error == 0 || error == ENOENT); 4338 break; 4339 } 4340 4341 if (tx != NULL) 4342 dmu_tx_commit(tx); 4343 } 4344 4345 /* 4346 * Commit callback data. 4347 */ 4348 typedef struct ztest_cb_data { 4349 list_node_t zcd_node; 4350 uint64_t zcd_txg; 4351 int zcd_expected_err; 4352 boolean_t zcd_added; 4353 boolean_t zcd_called; 4354 spa_t *zcd_spa; 4355 } ztest_cb_data_t; 4356 4357 /* This is the actual commit callback function */ 4358 static void 4359 ztest_commit_callback(void *arg, int error) 4360 { 4361 ztest_cb_data_t *data = arg; 4362 uint64_t synced_txg; 4363 4364 VERIFY(data != NULL); 4365 VERIFY3S(data->zcd_expected_err, ==, error); 4366 VERIFY(!data->zcd_called); 4367 4368 synced_txg = spa_last_synced_txg(data->zcd_spa); 4369 if (data->zcd_txg > synced_txg) 4370 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4371 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4372 synced_txg); 4373 4374 data->zcd_called = B_TRUE; 4375 4376 if (error == ECANCELED) { 4377 ASSERT0(data->zcd_txg); 4378 ASSERT(!data->zcd_added); 4379 4380 /* 4381 * The private callback data should be destroyed here, but 4382 * since we are going to check the zcd_called field after 4383 * dmu_tx_abort(), we will destroy it there. 4384 */ 4385 return; 4386 } 4387 4388 /* Was this callback added to the global callback list? */ 4389 if (!data->zcd_added) 4390 goto out; 4391 4392 ASSERT3U(data->zcd_txg, !=, 0); 4393 4394 /* Remove our callback from the list */ 4395 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4396 list_remove(&zcl.zcl_callbacks, data); 4397 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4398 4399 out: 4400 umem_free(data, sizeof (ztest_cb_data_t)); 4401 } 4402 4403 /* Allocate and initialize callback data structure */ 4404 static ztest_cb_data_t * 4405 ztest_create_cb_data(objset_t *os, uint64_t txg) 4406 { 4407 ztest_cb_data_t *cb_data; 4408 4409 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4410 4411 cb_data->zcd_txg = txg; 4412 cb_data->zcd_spa = dmu_objset_spa(os); 4413 4414 return (cb_data); 4415 } 4416 4417 /* 4418 * If a number of txgs equal to this threshold have been created after a commit 4419 * callback has been registered but not called, then we assume there is an 4420 * implementation bug. 4421 */ 4422 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4423 4424 /* 4425 * Commit callback test. 4426 */ 4427 void 4428 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4429 { 4430 objset_t *os = zd->zd_os; 4431 ztest_od_t od[1]; 4432 dmu_tx_t *tx; 4433 ztest_cb_data_t *cb_data[3], *tmp_cb; 4434 uint64_t old_txg, txg; 4435 int i, error; 4436 4437 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4438 4439 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4440 return; 4441 4442 tx = dmu_tx_create(os); 4443 4444 cb_data[0] = ztest_create_cb_data(os, 0); 4445 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4446 4447 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4448 4449 /* Every once in a while, abort the transaction on purpose */ 4450 if (ztest_random(100) == 0) 4451 error = -1; 4452 4453 if (!error) 4454 error = dmu_tx_assign(tx, TXG_NOWAIT); 4455 4456 txg = error ? 0 : dmu_tx_get_txg(tx); 4457 4458 cb_data[0]->zcd_txg = txg; 4459 cb_data[1] = ztest_create_cb_data(os, txg); 4460 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4461 4462 if (error) { 4463 /* 4464 * It's not a strict requirement to call the registered 4465 * callbacks from inside dmu_tx_abort(), but that's what 4466 * it's supposed to happen in the current implementation 4467 * so we will check for that. 4468 */ 4469 for (i = 0; i < 2; i++) { 4470 cb_data[i]->zcd_expected_err = ECANCELED; 4471 VERIFY(!cb_data[i]->zcd_called); 4472 } 4473 4474 dmu_tx_abort(tx); 4475 4476 for (i = 0; i < 2; i++) { 4477 VERIFY(cb_data[i]->zcd_called); 4478 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4479 } 4480 4481 return; 4482 } 4483 4484 cb_data[2] = ztest_create_cb_data(os, txg); 4485 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4486 4487 /* 4488 * Read existing data to make sure there isn't a future leak. 4489 */ 4490 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4491 &old_txg, DMU_READ_PREFETCH)); 4492 4493 if (old_txg > txg) 4494 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4495 old_txg, txg); 4496 4497 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4498 4499 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4500 4501 /* 4502 * Since commit callbacks don't have any ordering requirement and since 4503 * it is theoretically possible for a commit callback to be called 4504 * after an arbitrary amount of time has elapsed since its txg has been 4505 * synced, it is difficult to reliably determine whether a commit 4506 * callback hasn't been called due to high load or due to a flawed 4507 * implementation. 4508 * 4509 * In practice, we will assume that if after a certain number of txgs a 4510 * commit callback hasn't been called, then most likely there's an 4511 * implementation bug.. 4512 */ 4513 tmp_cb = list_head(&zcl.zcl_callbacks); 4514 if (tmp_cb != NULL && 4515 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { 4516 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4517 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4518 } 4519 4520 /* 4521 * Let's find the place to insert our callbacks. 4522 * 4523 * Even though the list is ordered by txg, it is possible for the 4524 * insertion point to not be the end because our txg may already be 4525 * quiescing at this point and other callbacks in the open txg 4526 * (from other objsets) may have sneaked in. 4527 */ 4528 tmp_cb = list_tail(&zcl.zcl_callbacks); 4529 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4530 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4531 4532 /* Add the 3 callbacks to the list */ 4533 for (i = 0; i < 3; i++) { 4534 if (tmp_cb == NULL) 4535 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4536 else 4537 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4538 cb_data[i]); 4539 4540 cb_data[i]->zcd_added = B_TRUE; 4541 VERIFY(!cb_data[i]->zcd_called); 4542 4543 tmp_cb = cb_data[i]; 4544 } 4545 4546 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4547 4548 dmu_tx_commit(tx); 4549 } 4550 4551 /* ARGSUSED */ 4552 void 4553 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4554 { 4555 zfs_prop_t proplist[] = { 4556 ZFS_PROP_CHECKSUM, 4557 ZFS_PROP_COMPRESSION, 4558 ZFS_PROP_COPIES, 4559 ZFS_PROP_DEDUP 4560 }; 4561 4562 (void) rw_rdlock(&ztest_name_lock); 4563 4564 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4565 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4566 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4567 4568 (void) rw_unlock(&ztest_name_lock); 4569 } 4570 4571 /* ARGSUSED */ 4572 void 4573 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4574 { 4575 nvlist_t *props = NULL; 4576 4577 (void) rw_rdlock(&ztest_name_lock); 4578 4579 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4580 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4581 4582 VERIFY0(spa_prop_get(ztest_spa, &props)); 4583 4584 if (ztest_opts.zo_verbose >= 6) 4585 dump_nvlist(props, 4); 4586 4587 nvlist_free(props); 4588 4589 (void) rw_unlock(&ztest_name_lock); 4590 } 4591 4592 static int 4593 user_release_one(const char *snapname, const char *holdname) 4594 { 4595 nvlist_t *snaps, *holds; 4596 int error; 4597 4598 snaps = fnvlist_alloc(); 4599 holds = fnvlist_alloc(); 4600 fnvlist_add_boolean(holds, holdname); 4601 fnvlist_add_nvlist(snaps, snapname, holds); 4602 fnvlist_free(holds); 4603 error = dsl_dataset_user_release(snaps, NULL); 4604 fnvlist_free(snaps); 4605 return (error); 4606 } 4607 4608 /* 4609 * Test snapshot hold/release and deferred destroy. 4610 */ 4611 void 4612 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4613 { 4614 int error; 4615 objset_t *os = zd->zd_os; 4616 objset_t *origin; 4617 char snapname[100]; 4618 char fullname[100]; 4619 char clonename[100]; 4620 char tag[100]; 4621 char osname[MAXNAMELEN]; 4622 nvlist_t *holds; 4623 4624 (void) rw_rdlock(&ztest_name_lock); 4625 4626 dmu_objset_name(os, osname); 4627 4628 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 4629 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 4630 (void) snprintf(clonename, sizeof (clonename), 4631 "%s/ch1_%llu", osname, id); 4632 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 4633 4634 /* 4635 * Clean up from any previous run. 4636 */ 4637 error = dsl_destroy_head(clonename); 4638 if (error != ENOENT) 4639 ASSERT0(error); 4640 error = user_release_one(fullname, tag); 4641 if (error != ESRCH && error != ENOENT) 4642 ASSERT0(error); 4643 error = dsl_destroy_snapshot(fullname, B_FALSE); 4644 if (error != ENOENT) 4645 ASSERT0(error); 4646 4647 /* 4648 * Create snapshot, clone it, mark snap for deferred destroy, 4649 * destroy clone, verify snap was also destroyed. 4650 */ 4651 error = dmu_objset_snapshot_one(osname, snapname); 4652 if (error) { 4653 if (error == ENOSPC) { 4654 ztest_record_enospc("dmu_objset_snapshot"); 4655 goto out; 4656 } 4657 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4658 } 4659 4660 error = dmu_objset_clone(clonename, fullname); 4661 if (error) { 4662 if (error == ENOSPC) { 4663 ztest_record_enospc("dmu_objset_clone"); 4664 goto out; 4665 } 4666 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4667 } 4668 4669 error = dsl_destroy_snapshot(fullname, B_TRUE); 4670 if (error) { 4671 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4672 fullname, error); 4673 } 4674 4675 error = dsl_destroy_head(clonename); 4676 if (error) 4677 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 4678 4679 error = dmu_objset_hold(fullname, FTAG, &origin); 4680 if (error != ENOENT) 4681 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4682 4683 /* 4684 * Create snapshot, add temporary hold, verify that we can't 4685 * destroy a held snapshot, mark for deferred destroy, 4686 * release hold, verify snapshot was destroyed. 4687 */ 4688 error = dmu_objset_snapshot_one(osname, snapname); 4689 if (error) { 4690 if (error == ENOSPC) { 4691 ztest_record_enospc("dmu_objset_snapshot"); 4692 goto out; 4693 } 4694 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4695 } 4696 4697 holds = fnvlist_alloc(); 4698 fnvlist_add_string(holds, fullname, tag); 4699 error = dsl_dataset_user_hold(holds, 0, NULL); 4700 fnvlist_free(holds); 4701 4702 if (error) 4703 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag); 4704 4705 error = dsl_destroy_snapshot(fullname, B_FALSE); 4706 if (error != EBUSY) { 4707 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 4708 fullname, error); 4709 } 4710 4711 error = dsl_destroy_snapshot(fullname, B_TRUE); 4712 if (error) { 4713 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4714 fullname, error); 4715 } 4716 4717 error = user_release_one(fullname, tag); 4718 if (error) 4719 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); 4720 4721 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 4722 4723 out: 4724 (void) rw_unlock(&ztest_name_lock); 4725 } 4726 4727 /* 4728 * Inject random faults into the on-disk data. 4729 */ 4730 /* ARGSUSED */ 4731 void 4732 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4733 { 4734 ztest_shared_t *zs = ztest_shared; 4735 spa_t *spa = ztest_spa; 4736 int fd; 4737 uint64_t offset; 4738 uint64_t leaves; 4739 uint64_t bad = 0x1990c0ffeedecade; 4740 uint64_t top, leaf; 4741 char path0[MAXPATHLEN]; 4742 char pathrand[MAXPATHLEN]; 4743 size_t fsize; 4744 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4745 int iters = 1000; 4746 int maxfaults; 4747 int mirror_save; 4748 vdev_t *vd0 = NULL; 4749 uint64_t guid0 = 0; 4750 boolean_t islog = B_FALSE; 4751 4752 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4753 maxfaults = MAXFAULTS(); 4754 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 4755 mirror_save = zs->zs_mirrors; 4756 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4757 4758 ASSERT(leaves >= 1); 4759 4760 /* 4761 * Grab the name lock as reader. There are some operations 4762 * which don't like to have their vdevs changed while 4763 * they are in progress (i.e. spa_change_guid). Those 4764 * operations will have grabbed the name lock as writer. 4765 */ 4766 (void) rw_rdlock(&ztest_name_lock); 4767 4768 /* 4769 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4770 */ 4771 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4772 4773 if (ztest_random(2) == 0) { 4774 /* 4775 * Inject errors on a normal data device or slog device. 4776 */ 4777 top = ztest_random_vdev_top(spa, B_TRUE); 4778 leaf = ztest_random(leaves) + zs->zs_splits; 4779 4780 /* 4781 * Generate paths to the first leaf in this top-level vdev, 4782 * and to the random leaf we selected. We'll induce transient 4783 * write failures and random online/offline activity on leaf 0, 4784 * and we'll write random garbage to the randomly chosen leaf. 4785 */ 4786 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4787 ztest_opts.zo_dir, ztest_opts.zo_pool, 4788 top * leaves + zs->zs_splits); 4789 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4790 ztest_opts.zo_dir, ztest_opts.zo_pool, 4791 top * leaves + leaf); 4792 4793 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4794 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4795 islog = B_TRUE; 4796 4797 /* 4798 * If the top-level vdev needs to be resilvered 4799 * then we only allow faults on the device that is 4800 * resilvering. 4801 */ 4802 if (vd0 != NULL && maxfaults != 1 && 4803 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || 4804 vd0->vdev_resilvering)) { 4805 /* 4806 * Make vd0 explicitly claim to be unreadable, 4807 * or unwriteable, or reach behind its back 4808 * and close the underlying fd. We can do this if 4809 * maxfaults == 0 because we'll fail and reexecute, 4810 * and we can do it if maxfaults >= 2 because we'll 4811 * have enough redundancy. If maxfaults == 1, the 4812 * combination of this with injection of random data 4813 * corruption below exceeds the pool's fault tolerance. 4814 */ 4815 vdev_file_t *vf = vd0->vdev_tsd; 4816 4817 if (vf != NULL && ztest_random(3) == 0) { 4818 (void) close(vf->vf_vnode->v_fd); 4819 vf->vf_vnode->v_fd = -1; 4820 } else if (ztest_random(2) == 0) { 4821 vd0->vdev_cant_read = B_TRUE; 4822 } else { 4823 vd0->vdev_cant_write = B_TRUE; 4824 } 4825 guid0 = vd0->vdev_guid; 4826 } 4827 } else { 4828 /* 4829 * Inject errors on an l2cache device. 4830 */ 4831 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4832 4833 if (sav->sav_count == 0) { 4834 spa_config_exit(spa, SCL_STATE, FTAG); 4835 (void) rw_unlock(&ztest_name_lock); 4836 return; 4837 } 4838 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4839 guid0 = vd0->vdev_guid; 4840 (void) strcpy(path0, vd0->vdev_path); 4841 (void) strcpy(pathrand, vd0->vdev_path); 4842 4843 leaf = 0; 4844 leaves = 1; 4845 maxfaults = INT_MAX; /* no limit on cache devices */ 4846 } 4847 4848 spa_config_exit(spa, SCL_STATE, FTAG); 4849 (void) rw_unlock(&ztest_name_lock); 4850 4851 /* 4852 * If we can tolerate two or more faults, or we're dealing 4853 * with a slog, randomly online/offline vd0. 4854 */ 4855 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4856 if (ztest_random(10) < 6) { 4857 int flags = (ztest_random(2) == 0 ? 4858 ZFS_OFFLINE_TEMPORARY : 0); 4859 4860 /* 4861 * We have to grab the zs_name_lock as writer to 4862 * prevent a race between offlining a slog and 4863 * destroying a dataset. Offlining the slog will 4864 * grab a reference on the dataset which may cause 4865 * dmu_objset_destroy() to fail with EBUSY thus 4866 * leaving the dataset in an inconsistent state. 4867 */ 4868 if (islog) 4869 (void) rw_wrlock(&ztest_name_lock); 4870 4871 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4872 4873 if (islog) 4874 (void) rw_unlock(&ztest_name_lock); 4875 } else { 4876 /* 4877 * Ideally we would like to be able to randomly 4878 * call vdev_[on|off]line without holding locks 4879 * to force unpredictable failures but the side 4880 * effects of vdev_[on|off]line prevent us from 4881 * doing so. We grab the ztest_vdev_lock here to 4882 * prevent a race between injection testing and 4883 * aux_vdev removal. 4884 */ 4885 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4886 (void) vdev_online(spa, guid0, 0, NULL); 4887 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4888 } 4889 } 4890 4891 if (maxfaults == 0) 4892 return; 4893 4894 /* 4895 * We have at least single-fault tolerance, so inject data corruption. 4896 */ 4897 fd = open(pathrand, O_RDWR); 4898 4899 if (fd == -1) /* we hit a gap in the device namespace */ 4900 return; 4901 4902 fsize = lseek(fd, 0, SEEK_END); 4903 4904 while (--iters != 0) { 4905 offset = ztest_random(fsize / (leaves << bshift)) * 4906 (leaves << bshift) + (leaf << bshift) + 4907 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4908 4909 if (offset >= fsize) 4910 continue; 4911 4912 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4913 if (mirror_save != zs->zs_mirrors) { 4914 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4915 (void) close(fd); 4916 return; 4917 } 4918 4919 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4920 fatal(1, "can't inject bad word at 0x%llx in %s", 4921 offset, pathrand); 4922 4923 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4924 4925 if (ztest_opts.zo_verbose >= 7) 4926 (void) printf("injected bad word into %s," 4927 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4928 } 4929 4930 (void) close(fd); 4931 } 4932 4933 /* 4934 * Verify that DDT repair works as expected. 4935 */ 4936 void 4937 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 4938 { 4939 ztest_shared_t *zs = ztest_shared; 4940 spa_t *spa = ztest_spa; 4941 objset_t *os = zd->zd_os; 4942 ztest_od_t od[1]; 4943 uint64_t object, blocksize, txg, pattern, psize; 4944 enum zio_checksum checksum = spa_dedup_checksum(spa); 4945 dmu_buf_t *db; 4946 dmu_tx_t *tx; 4947 void *buf; 4948 blkptr_t blk; 4949 int copies = 2 * ZIO_DEDUPDITTO_MIN; 4950 4951 blocksize = ztest_random_blocksize(); 4952 blocksize = MIN(blocksize, 2048); /* because we write so many */ 4953 4954 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4955 4956 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4957 return; 4958 4959 /* 4960 * Take the name lock as writer to prevent anyone else from changing 4961 * the pool and dataset properies we need to maintain during this test. 4962 */ 4963 (void) rw_wrlock(&ztest_name_lock); 4964 4965 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 4966 B_FALSE) != 0 || 4967 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 4968 B_FALSE) != 0) { 4969 (void) rw_unlock(&ztest_name_lock); 4970 return; 4971 } 4972 4973 object = od[0].od_object; 4974 blocksize = od[0].od_blocksize; 4975 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os); 4976 4977 ASSERT(object != 0); 4978 4979 tx = dmu_tx_create(os); 4980 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 4981 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 4982 if (txg == 0) { 4983 (void) rw_unlock(&ztest_name_lock); 4984 return; 4985 } 4986 4987 /* 4988 * Write all the copies of our block. 4989 */ 4990 for (int i = 0; i < copies; i++) { 4991 uint64_t offset = i * blocksize; 4992 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 4993 DMU_READ_NO_PREFETCH); 4994 if (error != 0) { 4995 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 4996 os, (long long)object, (long long) offset, error); 4997 } 4998 ASSERT(db->db_offset == offset); 4999 ASSERT(db->db_size == blocksize); 5000 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 5001 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 5002 dmu_buf_will_fill(db, tx); 5003 ztest_pattern_set(db->db_data, db->db_size, pattern); 5004 dmu_buf_rele(db, FTAG); 5005 } 5006 5007 dmu_tx_commit(tx); 5008 txg_wait_synced(spa_get_dsl(spa), txg); 5009 5010 /* 5011 * Find out what block we got. 5012 */ 5013 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 5014 DMU_READ_NO_PREFETCH)); 5015 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 5016 dmu_buf_rele(db, FTAG); 5017 5018 /* 5019 * Damage the block. Dedup-ditto will save us when we read it later. 5020 */ 5021 psize = BP_GET_PSIZE(&blk); 5022 buf = zio_buf_alloc(psize); 5023 ztest_pattern_set(buf, psize, ~pattern); 5024 5025 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5026 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5027 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5028 5029 zio_buf_free(buf, psize); 5030 5031 (void) rw_unlock(&ztest_name_lock); 5032 } 5033 5034 /* 5035 * Scrub the pool. 5036 */ 5037 /* ARGSUSED */ 5038 void 5039 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5040 { 5041 spa_t *spa = ztest_spa; 5042 5043 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5044 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5045 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5046 } 5047 5048 /* 5049 * Change the guid for the pool. 5050 */ 5051 /* ARGSUSED */ 5052 void 5053 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5054 { 5055 spa_t *spa = ztest_spa; 5056 uint64_t orig, load; 5057 int error; 5058 5059 orig = spa_guid(spa); 5060 load = spa_load_guid(spa); 5061 5062 (void) rw_wrlock(&ztest_name_lock); 5063 error = spa_change_guid(spa); 5064 (void) rw_unlock(&ztest_name_lock); 5065 5066 if (error != 0) 5067 return; 5068 5069 if (ztest_opts.zo_verbose >= 4) { 5070 (void) printf("Changed guid old %llu -> %llu\n", 5071 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5072 } 5073 5074 VERIFY3U(orig, !=, spa_guid(spa)); 5075 VERIFY3U(load, ==, spa_load_guid(spa)); 5076 } 5077 5078 /* 5079 * Rename the pool to a different name and then rename it back. 5080 */ 5081 /* ARGSUSED */ 5082 void 5083 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 5084 { 5085 char *oldname, *newname; 5086 spa_t *spa; 5087 5088 (void) rw_wrlock(&ztest_name_lock); 5089 5090 oldname = ztest_opts.zo_pool; 5091 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 5092 (void) strcpy(newname, oldname); 5093 (void) strcat(newname, "_tmp"); 5094 5095 /* 5096 * Do the rename 5097 */ 5098 VERIFY3U(0, ==, spa_rename(oldname, newname)); 5099 5100 /* 5101 * Try to open it under the old name, which shouldn't exist 5102 */ 5103 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5104 5105 /* 5106 * Open it under the new name and make sure it's still the same spa_t. 5107 */ 5108 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5109 5110 ASSERT(spa == ztest_spa); 5111 spa_close(spa, FTAG); 5112 5113 /* 5114 * Rename it back to the original 5115 */ 5116 VERIFY3U(0, ==, spa_rename(newname, oldname)); 5117 5118 /* 5119 * Make sure it can still be opened 5120 */ 5121 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5122 5123 ASSERT(spa == ztest_spa); 5124 spa_close(spa, FTAG); 5125 5126 umem_free(newname, strlen(newname) + 1); 5127 5128 (void) rw_unlock(&ztest_name_lock); 5129 } 5130 5131 /* 5132 * Verify pool integrity by running zdb. 5133 */ 5134 static void 5135 ztest_run_zdb(char *pool) 5136 { 5137 int status; 5138 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 5139 char zbuf[1024]; 5140 char *bin; 5141 char *ztest; 5142 char *isa; 5143 int isalen; 5144 FILE *fp; 5145 5146 (void) realpath(getexecname(), zdb); 5147 5148 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 5149 bin = strstr(zdb, "/usr/bin/"); 5150 ztest = strstr(bin, "/ztest"); 5151 isa = bin + 8; 5152 isalen = ztest - isa; 5153 isa = strdup(isa); 5154 /* LINTED */ 5155 (void) sprintf(bin, 5156 "/usr/sbin%.*s/zdb -bcc%s%s -U %s %s", 5157 isalen, 5158 isa, 5159 ztest_opts.zo_verbose >= 3 ? "s" : "", 5160 ztest_opts.zo_verbose >= 4 ? "v" : "", 5161 spa_config_path, 5162 pool); 5163 free(isa); 5164 5165 if (ztest_opts.zo_verbose >= 5) 5166 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 5167 5168 fp = popen(zdb, "r"); 5169 5170 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 5171 if (ztest_opts.zo_verbose >= 3) 5172 (void) printf("%s", zbuf); 5173 5174 status = pclose(fp); 5175 5176 if (status == 0) 5177 return; 5178 5179 ztest_dump_core = 0; 5180 if (WIFEXITED(status)) 5181 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5182 else 5183 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5184 } 5185 5186 static void 5187 ztest_walk_pool_directory(char *header) 5188 { 5189 spa_t *spa = NULL; 5190 5191 if (ztest_opts.zo_verbose >= 6) 5192 (void) printf("%s\n", header); 5193 5194 mutex_enter(&spa_namespace_lock); 5195 while ((spa = spa_next(spa)) != NULL) 5196 if (ztest_opts.zo_verbose >= 6) 5197 (void) printf("\t%s\n", spa_name(spa)); 5198 mutex_exit(&spa_namespace_lock); 5199 } 5200 5201 static void 5202 ztest_spa_import_export(char *oldname, char *newname) 5203 { 5204 nvlist_t *config, *newconfig; 5205 uint64_t pool_guid; 5206 spa_t *spa; 5207 int error; 5208 5209 if (ztest_opts.zo_verbose >= 4) { 5210 (void) printf("import/export: old = %s, new = %s\n", 5211 oldname, newname); 5212 } 5213 5214 /* 5215 * Clean up from previous runs. 5216 */ 5217 (void) spa_destroy(newname); 5218 5219 /* 5220 * Get the pool's configuration and guid. 5221 */ 5222 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5223 5224 /* 5225 * Kick off a scrub to tickle scrub/export races. 5226 */ 5227 if (ztest_random(2) == 0) 5228 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5229 5230 pool_guid = spa_guid(spa); 5231 spa_close(spa, FTAG); 5232 5233 ztest_walk_pool_directory("pools before export"); 5234 5235 /* 5236 * Export it. 5237 */ 5238 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5239 5240 ztest_walk_pool_directory("pools after export"); 5241 5242 /* 5243 * Try to import it. 5244 */ 5245 newconfig = spa_tryimport(config); 5246 ASSERT(newconfig != NULL); 5247 nvlist_free(newconfig); 5248 5249 /* 5250 * Import it under the new name. 5251 */ 5252 error = spa_import(newname, config, NULL, 0); 5253 if (error != 0) { 5254 dump_nvlist(config, 0); 5255 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 5256 oldname, newname, error); 5257 } 5258 5259 ztest_walk_pool_directory("pools after import"); 5260 5261 /* 5262 * Try to import it again -- should fail with EEXIST. 5263 */ 5264 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5265 5266 /* 5267 * Try to import it under a different name -- should fail with EEXIST. 5268 */ 5269 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5270 5271 /* 5272 * Verify that the pool is no longer visible under the old name. 5273 */ 5274 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5275 5276 /* 5277 * Verify that we can open and close the pool using the new name. 5278 */ 5279 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5280 ASSERT(pool_guid == spa_guid(spa)); 5281 spa_close(spa, FTAG); 5282 5283 nvlist_free(config); 5284 } 5285 5286 static void 5287 ztest_resume(spa_t *spa) 5288 { 5289 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5290 (void) printf("resuming from suspended state\n"); 5291 spa_vdev_state_enter(spa, SCL_NONE); 5292 vdev_clear(spa, NULL); 5293 (void) spa_vdev_state_exit(spa, NULL, 0); 5294 (void) zio_resume(spa); 5295 } 5296 5297 static void * 5298 ztest_resume_thread(void *arg) 5299 { 5300 spa_t *spa = arg; 5301 5302 while (!ztest_exiting) { 5303 if (spa_suspended(spa)) 5304 ztest_resume(spa); 5305 (void) poll(NULL, 0, 100); 5306 } 5307 return (NULL); 5308 } 5309 5310 static void * 5311 ztest_deadman_thread(void *arg) 5312 { 5313 ztest_shared_t *zs = arg; 5314 spa_t *spa = ztest_spa; 5315 hrtime_t delta, total = 0; 5316 5317 for (;;) { 5318 delta = (zs->zs_thread_stop - zs->zs_thread_start) / 5319 NANOSEC + zfs_deadman_synctime; 5320 5321 (void) poll(NULL, 0, (int)(1000 * delta)); 5322 5323 /* 5324 * If the pool is suspended then fail immediately. Otherwise, 5325 * check to see if the pool is making any progress. If 5326 * vdev_deadman() discovers that there hasn't been any recent 5327 * I/Os then it will end up aborting the tests. 5328 */ 5329 if (spa_suspended(spa)) { 5330 fatal(0, "aborting test after %llu seconds because " 5331 "pool has transitioned to a suspended state.", 5332 zfs_deadman_synctime); 5333 return (NULL); 5334 } 5335 vdev_deadman(spa->spa_root_vdev); 5336 5337 total += zfs_deadman_synctime; 5338 (void) printf("ztest has been running for %lld seconds\n", 5339 total); 5340 } 5341 } 5342 5343 static void 5344 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5345 { 5346 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5347 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5348 hrtime_t functime = gethrtime(); 5349 5350 for (int i = 0; i < zi->zi_iters; i++) 5351 zi->zi_func(zd, id); 5352 5353 functime = gethrtime() - functime; 5354 5355 atomic_add_64(&zc->zc_count, 1); 5356 atomic_add_64(&zc->zc_time, functime); 5357 5358 if (ztest_opts.zo_verbose >= 4) { 5359 Dl_info dli; 5360 (void) dladdr((void *)zi->zi_func, &dli); 5361 (void) printf("%6.2f sec in %s\n", 5362 (double)functime / NANOSEC, dli.dli_sname); 5363 } 5364 } 5365 5366 static void * 5367 ztest_thread(void *arg) 5368 { 5369 int rand; 5370 uint64_t id = (uintptr_t)arg; 5371 ztest_shared_t *zs = ztest_shared; 5372 uint64_t call_next; 5373 hrtime_t now; 5374 ztest_info_t *zi; 5375 ztest_shared_callstate_t *zc; 5376 5377 while ((now = gethrtime()) < zs->zs_thread_stop) { 5378 /* 5379 * See if it's time to force a crash. 5380 */ 5381 if (now > zs->zs_thread_kill) 5382 ztest_kill(zs); 5383 5384 /* 5385 * If we're getting ENOSPC with some regularity, stop. 5386 */ 5387 if (zs->zs_enospc_count > 10) 5388 break; 5389 5390 /* 5391 * Pick a random function to execute. 5392 */ 5393 rand = ztest_random(ZTEST_FUNCS); 5394 zi = &ztest_info[rand]; 5395 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5396 call_next = zc->zc_next; 5397 5398 if (now >= call_next && 5399 atomic_cas_64(&zc->zc_next, call_next, call_next + 5400 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5401 ztest_execute(rand, zi, id); 5402 } 5403 } 5404 5405 return (NULL); 5406 } 5407 5408 static void 5409 ztest_dataset_name(char *dsname, char *pool, int d) 5410 { 5411 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 5412 } 5413 5414 static void 5415 ztest_dataset_destroy(int d) 5416 { 5417 char name[MAXNAMELEN]; 5418 5419 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5420 5421 if (ztest_opts.zo_verbose >= 3) 5422 (void) printf("Destroying %s to free up space\n", name); 5423 5424 /* 5425 * Cleanup any non-standard clones and snapshots. In general, 5426 * ztest thread t operates on dataset (t % zopt_datasets), 5427 * so there may be more than one thing to clean up. 5428 */ 5429 for (int t = d; t < ztest_opts.zo_threads; 5430 t += ztest_opts.zo_datasets) { 5431 ztest_dsl_dataset_cleanup(name, t); 5432 } 5433 5434 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5435 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5436 } 5437 5438 static void 5439 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5440 { 5441 uint64_t usedobjs, dirobjs, scratch; 5442 5443 /* 5444 * ZTEST_DIROBJ is the object directory for the entire dataset. 5445 * Therefore, the number of objects in use should equal the 5446 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5447 * If not, we have an object leak. 5448 * 5449 * Note that we can only check this in ztest_dataset_open(), 5450 * when the open-context and syncing-context values agree. 5451 * That's because zap_count() returns the open-context value, 5452 * while dmu_objset_space() returns the rootbp fill count. 5453 */ 5454 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5455 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5456 ASSERT3U(dirobjs + 1, ==, usedobjs); 5457 } 5458 5459 static int 5460 ztest_dataset_open(int d) 5461 { 5462 ztest_ds_t *zd = &ztest_ds[d]; 5463 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5464 objset_t *os; 5465 zilog_t *zilog; 5466 char name[MAXNAMELEN]; 5467 int error; 5468 5469 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5470 5471 (void) rw_rdlock(&ztest_name_lock); 5472 5473 error = ztest_dataset_create(name); 5474 if (error == ENOSPC) { 5475 (void) rw_unlock(&ztest_name_lock); 5476 ztest_record_enospc(FTAG); 5477 return (error); 5478 } 5479 ASSERT(error == 0 || error == EEXIST); 5480 5481 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); 5482 (void) rw_unlock(&ztest_name_lock); 5483 5484 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5485 5486 zilog = zd->zd_zilog; 5487 5488 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5489 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5490 fatal(0, "missing log records: claimed %llu < committed %llu", 5491 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5492 5493 ztest_dataset_dirobj_verify(zd); 5494 5495 zil_replay(os, zd, ztest_replay_vector); 5496 5497 ztest_dataset_dirobj_verify(zd); 5498 5499 if (ztest_opts.zo_verbose >= 6) 5500 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5501 zd->zd_name, 5502 (u_longlong_t)zilog->zl_parse_blk_count, 5503 (u_longlong_t)zilog->zl_parse_lr_count, 5504 (u_longlong_t)zilog->zl_replaying_seq); 5505 5506 zilog = zil_open(os, ztest_get_data); 5507 5508 if (zilog->zl_replaying_seq != 0 && 5509 zilog->zl_replaying_seq < committed_seq) 5510 fatal(0, "missing log records: replayed %llu < committed %llu", 5511 zilog->zl_replaying_seq, committed_seq); 5512 5513 return (0); 5514 } 5515 5516 static void 5517 ztest_dataset_close(int d) 5518 { 5519 ztest_ds_t *zd = &ztest_ds[d]; 5520 5521 zil_close(zd->zd_zilog); 5522 dmu_objset_disown(zd->zd_os, zd); 5523 5524 ztest_zd_fini(zd); 5525 } 5526 5527 /* 5528 * Kick off threads to run tests on all datasets in parallel. 5529 */ 5530 static void 5531 ztest_run(ztest_shared_t *zs) 5532 { 5533 thread_t *tid; 5534 spa_t *spa; 5535 objset_t *os; 5536 thread_t resume_tid; 5537 int error; 5538 5539 ztest_exiting = B_FALSE; 5540 5541 /* 5542 * Initialize parent/child shared state. 5543 */ 5544 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5545 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5546 5547 zs->zs_thread_start = gethrtime(); 5548 zs->zs_thread_stop = 5549 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5550 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5551 zs->zs_thread_kill = zs->zs_thread_stop; 5552 if (ztest_random(100) < ztest_opts.zo_killrate) { 5553 zs->zs_thread_kill -= 5554 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5555 } 5556 5557 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5558 5559 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5560 offsetof(ztest_cb_data_t, zcd_node)); 5561 5562 /* 5563 * Open our pool. 5564 */ 5565 kernel_init(FREAD | FWRITE); 5566 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5567 spa->spa_debug = B_TRUE; 5568 ztest_spa = spa; 5569 5570 VERIFY0(dmu_objset_own(ztest_opts.zo_pool, 5571 DMU_OST_ANY, B_TRUE, FTAG, &os)); 5572 zs->zs_guid = dmu_objset_fsid_guid(os); 5573 dmu_objset_disown(os, FTAG); 5574 5575 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5576 5577 /* 5578 * We don't expect the pool to suspend unless maxfaults == 0, 5579 * in which case ztest_fault_inject() temporarily takes away 5580 * the only valid replica. 5581 */ 5582 if (MAXFAULTS() == 0) 5583 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5584 else 5585 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5586 5587 /* 5588 * Create a thread to periodically resume suspended I/O. 5589 */ 5590 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5591 &resume_tid) == 0); 5592 5593 /* 5594 * Create a deadman thread to abort() if we hang. 5595 */ 5596 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5597 NULL) == 0); 5598 5599 /* 5600 * Verify that we can safely inquire about about any object, 5601 * whether it's allocated or not. To make it interesting, 5602 * we probe a 5-wide window around each power of two. 5603 * This hits all edge cases, including zero and the max. 5604 */ 5605 for (int t = 0; t < 64; t++) { 5606 for (int d = -5; d <= 5; d++) { 5607 error = dmu_object_info(spa->spa_meta_objset, 5608 (1ULL << t) + d, NULL); 5609 ASSERT(error == 0 || error == ENOENT || 5610 error == EINVAL); 5611 } 5612 } 5613 5614 /* 5615 * If we got any ENOSPC errors on the previous run, destroy something. 5616 */ 5617 if (zs->zs_enospc_count != 0) { 5618 int d = ztest_random(ztest_opts.zo_datasets); 5619 ztest_dataset_destroy(d); 5620 } 5621 zs->zs_enospc_count = 0; 5622 5623 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 5624 UMEM_NOFAIL); 5625 5626 if (ztest_opts.zo_verbose >= 4) 5627 (void) printf("starting main threads...\n"); 5628 5629 /* 5630 * Kick off all the tests that run in parallel. 5631 */ 5632 for (int t = 0; t < ztest_opts.zo_threads; t++) { 5633 if (t < ztest_opts.zo_datasets && 5634 ztest_dataset_open(t) != 0) 5635 return; 5636 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5637 THR_BOUND, &tid[t]) == 0); 5638 } 5639 5640 /* 5641 * Wait for all of the tests to complete. We go in reverse order 5642 * so we don't close datasets while threads are still using them. 5643 */ 5644 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 5645 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5646 if (t < ztest_opts.zo_datasets) 5647 ztest_dataset_close(t); 5648 } 5649 5650 txg_wait_synced(spa_get_dsl(spa), 0); 5651 5652 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5653 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5654 5655 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 5656 5657 /* Kill the resume thread */ 5658 ztest_exiting = B_TRUE; 5659 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5660 ztest_resume(spa); 5661 5662 /* 5663 * Right before closing the pool, kick off a bunch of async I/O; 5664 * spa_close() should wait for it to complete. 5665 */ 5666 for (uint64_t object = 1; object < 50; object++) 5667 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); 5668 5669 spa_close(spa, FTAG); 5670 5671 /* 5672 * Verify that we can loop over all pools. 5673 */ 5674 mutex_enter(&spa_namespace_lock); 5675 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5676 if (ztest_opts.zo_verbose > 3) 5677 (void) printf("spa_next: found %s\n", spa_name(spa)); 5678 mutex_exit(&spa_namespace_lock); 5679 5680 /* 5681 * Verify that we can export the pool and reimport it under a 5682 * different name. 5683 */ 5684 if (ztest_random(2) == 0) { 5685 char name[MAXNAMELEN]; 5686 (void) snprintf(name, MAXNAMELEN, "%s_import", 5687 ztest_opts.zo_pool); 5688 ztest_spa_import_export(ztest_opts.zo_pool, name); 5689 ztest_spa_import_export(name, ztest_opts.zo_pool); 5690 } 5691 5692 kernel_fini(); 5693 5694 list_destroy(&zcl.zcl_callbacks); 5695 5696 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5697 5698 (void) rwlock_destroy(&ztest_name_lock); 5699 (void) _mutex_destroy(&ztest_vdev_lock); 5700 } 5701 5702 static void 5703 ztest_freeze(void) 5704 { 5705 ztest_ds_t *zd = &ztest_ds[0]; 5706 spa_t *spa; 5707 int numloops = 0; 5708 5709 if (ztest_opts.zo_verbose >= 3) 5710 (void) printf("testing spa_freeze()...\n"); 5711 5712 kernel_init(FREAD | FWRITE); 5713 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5714 VERIFY3U(0, ==, ztest_dataset_open(0)); 5715 spa->spa_debug = B_TRUE; 5716 ztest_spa = spa; 5717 5718 /* 5719 * Force the first log block to be transactionally allocated. 5720 * We have to do this before we freeze the pool -- otherwise 5721 * the log chain won't be anchored. 5722 */ 5723 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5724 ztest_dmu_object_alloc_free(zd, 0); 5725 zil_commit(zd->zd_zilog, 0); 5726 } 5727 5728 txg_wait_synced(spa_get_dsl(spa), 0); 5729 5730 /* 5731 * Freeze the pool. This stops spa_sync() from doing anything, 5732 * so that the only way to record changes from now on is the ZIL. 5733 */ 5734 spa_freeze(spa); 5735 5736 /* 5737 * Run tests that generate log records but don't alter the pool config 5738 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5739 * We do a txg_wait_synced() after each iteration to force the txg 5740 * to increase well beyond the last synced value in the uberblock. 5741 * The ZIL should be OK with that. 5742 */ 5743 while (ztest_random(10) != 0 && 5744 numloops++ < ztest_opts.zo_maxloops) { 5745 ztest_dmu_write_parallel(zd, 0); 5746 ztest_dmu_object_alloc_free(zd, 0); 5747 txg_wait_synced(spa_get_dsl(spa), 0); 5748 } 5749 5750 /* 5751 * Commit all of the changes we just generated. 5752 */ 5753 zil_commit(zd->zd_zilog, 0); 5754 txg_wait_synced(spa_get_dsl(spa), 0); 5755 5756 /* 5757 * Close our dataset and close the pool. 5758 */ 5759 ztest_dataset_close(0); 5760 spa_close(spa, FTAG); 5761 kernel_fini(); 5762 5763 /* 5764 * Open and close the pool and dataset to induce log replay. 5765 */ 5766 kernel_init(FREAD | FWRITE); 5767 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5768 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 5769 VERIFY3U(0, ==, ztest_dataset_open(0)); 5770 ztest_dataset_close(0); 5771 5772 spa->spa_debug = B_TRUE; 5773 ztest_spa = spa; 5774 txg_wait_synced(spa_get_dsl(spa), 0); 5775 ztest_reguid(NULL, 0); 5776 5777 spa_close(spa, FTAG); 5778 kernel_fini(); 5779 } 5780 5781 void 5782 print_time(hrtime_t t, char *timebuf) 5783 { 5784 hrtime_t s = t / NANOSEC; 5785 hrtime_t m = s / 60; 5786 hrtime_t h = m / 60; 5787 hrtime_t d = h / 24; 5788 5789 s -= m * 60; 5790 m -= h * 60; 5791 h -= d * 24; 5792 5793 timebuf[0] = '\0'; 5794 5795 if (d) 5796 (void) sprintf(timebuf, 5797 "%llud%02lluh%02llum%02llus", d, h, m, s); 5798 else if (h) 5799 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5800 else if (m) 5801 (void) sprintf(timebuf, "%llum%02llus", m, s); 5802 else 5803 (void) sprintf(timebuf, "%llus", s); 5804 } 5805 5806 static nvlist_t * 5807 make_random_props() 5808 { 5809 nvlist_t *props; 5810 5811 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5812 if (ztest_random(2) == 0) 5813 return (props); 5814 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5815 5816 return (props); 5817 } 5818 5819 /* 5820 * Create a storage pool with the given name and initial vdev size. 5821 * Then test spa_freeze() functionality. 5822 */ 5823 static void 5824 ztest_init(ztest_shared_t *zs) 5825 { 5826 spa_t *spa; 5827 nvlist_t *nvroot, *props; 5828 5829 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5830 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5831 5832 kernel_init(FREAD | FWRITE); 5833 5834 /* 5835 * Create the storage pool. 5836 */ 5837 (void) spa_destroy(ztest_opts.zo_pool); 5838 ztest_shared->zs_vdev_next_leaf = 0; 5839 zs->zs_splits = 0; 5840 zs->zs_mirrors = ztest_opts.zo_mirrors; 5841 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 5842 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 5843 props = make_random_props(); 5844 for (int i = 0; i < SPA_FEATURES; i++) { 5845 char buf[1024]; 5846 (void) snprintf(buf, sizeof (buf), "feature@%s", 5847 spa_feature_table[i].fi_uname); 5848 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 5849 } 5850 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 5851 nvlist_free(nvroot); 5852 5853 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5854 zs->zs_metaslab_sz = 5855 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5856 5857 spa_close(spa, FTAG); 5858 5859 kernel_fini(); 5860 5861 ztest_run_zdb(ztest_opts.zo_pool); 5862 5863 ztest_freeze(); 5864 5865 ztest_run_zdb(ztest_opts.zo_pool); 5866 5867 (void) rwlock_destroy(&ztest_name_lock); 5868 (void) _mutex_destroy(&ztest_vdev_lock); 5869 } 5870 5871 static void 5872 setup_data_fd(void) 5873 { 5874 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 5875 5876 ztest_fd_data = mkstemp(ztest_name_data); 5877 ASSERT3S(ztest_fd_data, >=, 0); 5878 (void) unlink(ztest_name_data); 5879 } 5880 5881 5882 static int 5883 shared_data_size(ztest_shared_hdr_t *hdr) 5884 { 5885 int size; 5886 5887 size = hdr->zh_hdr_size; 5888 size += hdr->zh_opts_size; 5889 size += hdr->zh_size; 5890 size += hdr->zh_stats_size * hdr->zh_stats_count; 5891 size += hdr->zh_ds_size * hdr->zh_ds_count; 5892 5893 return (size); 5894 } 5895 5896 static void 5897 setup_hdr(void) 5898 { 5899 int size; 5900 ztest_shared_hdr_t *hdr; 5901 5902 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5903 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5904 ASSERT(hdr != MAP_FAILED); 5905 5906 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 5907 5908 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 5909 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 5910 hdr->zh_size = sizeof (ztest_shared_t); 5911 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 5912 hdr->zh_stats_count = ZTEST_FUNCS; 5913 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 5914 hdr->zh_ds_count = ztest_opts.zo_datasets; 5915 5916 size = shared_data_size(hdr); 5917 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 5918 5919 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5920 } 5921 5922 static void 5923 setup_data(void) 5924 { 5925 int size, offset; 5926 ztest_shared_hdr_t *hdr; 5927 uint8_t *buf; 5928 5929 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5930 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 5931 ASSERT(hdr != MAP_FAILED); 5932 5933 size = shared_data_size(hdr); 5934 5935 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5936 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 5937 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5938 ASSERT(hdr != MAP_FAILED); 5939 buf = (uint8_t *)hdr; 5940 5941 offset = hdr->zh_hdr_size; 5942 ztest_shared_opts = (void *)&buf[offset]; 5943 offset += hdr->zh_opts_size; 5944 ztest_shared = (void *)&buf[offset]; 5945 offset += hdr->zh_size; 5946 ztest_shared_callstate = (void *)&buf[offset]; 5947 offset += hdr->zh_stats_size * hdr->zh_stats_count; 5948 ztest_shared_ds = (void *)&buf[offset]; 5949 } 5950 5951 static boolean_t 5952 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 5953 { 5954 pid_t pid; 5955 int status; 5956 char *cmdbuf = NULL; 5957 5958 pid = fork(); 5959 5960 if (cmd == NULL) { 5961 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 5962 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 5963 cmd = cmdbuf; 5964 } 5965 5966 if (pid == -1) 5967 fatal(1, "fork failed"); 5968 5969 if (pid == 0) { /* child */ 5970 char *emptyargv[2] = { cmd, NULL }; 5971 char fd_data_str[12]; 5972 5973 struct rlimit rl = { 1024, 1024 }; 5974 (void) setrlimit(RLIMIT_NOFILE, &rl); 5975 5976 (void) close(ztest_fd_rand); 5977 VERIFY3U(11, >=, 5978 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 5979 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 5980 5981 (void) enable_extended_FILE_stdio(-1, -1); 5982 if (libpath != NULL) 5983 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 5984 (void) execv(cmd, emptyargv); 5985 ztest_dump_core = B_FALSE; 5986 fatal(B_TRUE, "exec failed: %s", cmd); 5987 } 5988 5989 if (cmdbuf != NULL) { 5990 umem_free(cmdbuf, MAXPATHLEN); 5991 cmd = NULL; 5992 } 5993 5994 while (waitpid(pid, &status, 0) != pid) 5995 continue; 5996 if (statusp != NULL) 5997 *statusp = status; 5998 5999 if (WIFEXITED(status)) { 6000 if (WEXITSTATUS(status) != 0) { 6001 (void) fprintf(stderr, "child exited with code %d\n", 6002 WEXITSTATUS(status)); 6003 exit(2); 6004 } 6005 return (B_FALSE); 6006 } else if (WIFSIGNALED(status)) { 6007 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 6008 (void) fprintf(stderr, "child died with signal %d\n", 6009 WTERMSIG(status)); 6010 exit(3); 6011 } 6012 return (B_TRUE); 6013 } else { 6014 (void) fprintf(stderr, "something strange happened to child\n"); 6015 exit(4); 6016 /* NOTREACHED */ 6017 } 6018 } 6019 6020 static void 6021 ztest_run_init(void) 6022 { 6023 ztest_shared_t *zs = ztest_shared; 6024 6025 ASSERT(ztest_opts.zo_init != 0); 6026 6027 /* 6028 * Blow away any existing copy of zpool.cache 6029 */ 6030 (void) remove(spa_config_path); 6031 6032 /* 6033 * Create and initialize our storage pool. 6034 */ 6035 for (int i = 1; i <= ztest_opts.zo_init; i++) { 6036 bzero(zs, sizeof (ztest_shared_t)); 6037 if (ztest_opts.zo_verbose >= 3 && 6038 ztest_opts.zo_init != 1) { 6039 (void) printf("ztest_init(), pass %d\n", i); 6040 } 6041 ztest_init(zs); 6042 } 6043 } 6044 6045 int 6046 main(int argc, char **argv) 6047 { 6048 int kills = 0; 6049 int iters = 0; 6050 int older = 0; 6051 int newer = 0; 6052 ztest_shared_t *zs; 6053 ztest_info_t *zi; 6054 ztest_shared_callstate_t *zc; 6055 char timebuf[100]; 6056 char numbuf[6]; 6057 spa_t *spa; 6058 char *cmd; 6059 boolean_t hasalt; 6060 char *fd_data_str = getenv("ZTEST_FD_DATA"); 6061 6062 (void) setvbuf(stdout, NULL, _IOLBF, 0); 6063 6064 dprintf_setup(&argc, argv); 6065 zfs_deadman_synctime = 300; 6066 6067 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 6068 ASSERT3S(ztest_fd_rand, >=, 0); 6069 6070 if (!fd_data_str) { 6071 process_options(argc, argv); 6072 6073 setup_data_fd(); 6074 setup_hdr(); 6075 setup_data(); 6076 bcopy(&ztest_opts, ztest_shared_opts, 6077 sizeof (*ztest_shared_opts)); 6078 } else { 6079 ztest_fd_data = atoi(fd_data_str); 6080 setup_data(); 6081 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 6082 } 6083 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 6084 6085 /* Override location of zpool.cache */ 6086 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 6087 ztest_opts.zo_dir), !=, -1); 6088 6089 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 6090 UMEM_NOFAIL); 6091 zs = ztest_shared; 6092 6093 if (fd_data_str) { 6094 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; 6095 metaslab_df_alloc_threshold = 6096 zs->zs_metaslab_df_alloc_threshold; 6097 6098 if (zs->zs_do_init) 6099 ztest_run_init(); 6100 else 6101 ztest_run(zs); 6102 exit(0); 6103 } 6104 6105 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 6106 6107 if (ztest_opts.zo_verbose >= 1) { 6108 (void) printf("%llu vdevs, %d datasets, %d threads," 6109 " %llu seconds...\n", 6110 (u_longlong_t)ztest_opts.zo_vdevs, 6111 ztest_opts.zo_datasets, 6112 ztest_opts.zo_threads, 6113 (u_longlong_t)ztest_opts.zo_time); 6114 } 6115 6116 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 6117 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 6118 6119 zs->zs_do_init = B_TRUE; 6120 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 6121 if (ztest_opts.zo_verbose >= 1) { 6122 (void) printf("Executing older ztest for " 6123 "initialization: %s\n", ztest_opts.zo_alt_ztest); 6124 } 6125 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 6126 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 6127 } else { 6128 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 6129 } 6130 zs->zs_do_init = B_FALSE; 6131 6132 zs->zs_proc_start = gethrtime(); 6133 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 6134 6135 for (int f = 0; f < ZTEST_FUNCS; f++) { 6136 zi = &ztest_info[f]; 6137 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6138 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 6139 zc->zc_next = UINT64_MAX; 6140 else 6141 zc->zc_next = zs->zs_proc_start + 6142 ztest_random(2 * zi->zi_interval[0] + 1); 6143 } 6144 6145 /* 6146 * Run the tests in a loop. These tests include fault injection 6147 * to verify that self-healing data works, and forced crashes 6148 * to verify that we never lose on-disk consistency. 6149 */ 6150 while (gethrtime() < zs->zs_proc_stop) { 6151 int status; 6152 boolean_t killed; 6153 6154 /* 6155 * Initialize the workload counters for each function. 6156 */ 6157 for (int f = 0; f < ZTEST_FUNCS; f++) { 6158 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6159 zc->zc_count = 0; 6160 zc->zc_time = 0; 6161 } 6162 6163 /* Set the allocation switch size */ 6164 zs->zs_metaslab_df_alloc_threshold = 6165 ztest_random(zs->zs_metaslab_sz / 4) + 1; 6166 6167 if (!hasalt || ztest_random(2) == 0) { 6168 if (hasalt && ztest_opts.zo_verbose >= 1) { 6169 (void) printf("Executing newer ztest: %s\n", 6170 cmd); 6171 } 6172 newer++; 6173 killed = exec_child(cmd, NULL, B_TRUE, &status); 6174 } else { 6175 if (hasalt && ztest_opts.zo_verbose >= 1) { 6176 (void) printf("Executing older ztest: %s\n", 6177 ztest_opts.zo_alt_ztest); 6178 } 6179 older++; 6180 killed = exec_child(ztest_opts.zo_alt_ztest, 6181 ztest_opts.zo_alt_libpath, B_TRUE, &status); 6182 } 6183 6184 if (killed) 6185 kills++; 6186 iters++; 6187 6188 if (ztest_opts.zo_verbose >= 1) { 6189 hrtime_t now = gethrtime(); 6190 6191 now = MIN(now, zs->zs_proc_stop); 6192 print_time(zs->zs_proc_stop - now, timebuf); 6193 nicenum(zs->zs_space, numbuf); 6194 6195 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 6196 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 6197 iters, 6198 WIFEXITED(status) ? "Complete" : "SIGKILL", 6199 (u_longlong_t)zs->zs_enospc_count, 6200 100.0 * zs->zs_alloc / zs->zs_space, 6201 numbuf, 6202 100.0 * (now - zs->zs_proc_start) / 6203 (ztest_opts.zo_time * NANOSEC), timebuf); 6204 } 6205 6206 if (ztest_opts.zo_verbose >= 2) { 6207 (void) printf("\nWorkload summary:\n\n"); 6208 (void) printf("%7s %9s %s\n", 6209 "Calls", "Time", "Function"); 6210 (void) printf("%7s %9s %s\n", 6211 "-----", "----", "--------"); 6212 for (int f = 0; f < ZTEST_FUNCS; f++) { 6213 Dl_info dli; 6214 6215 zi = &ztest_info[f]; 6216 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6217 print_time(zc->zc_time, timebuf); 6218 (void) dladdr((void *)zi->zi_func, &dli); 6219 (void) printf("%7llu %9s %s\n", 6220 (u_longlong_t)zc->zc_count, timebuf, 6221 dli.dli_sname); 6222 } 6223 (void) printf("\n"); 6224 } 6225 6226 /* 6227 * It's possible that we killed a child during a rename test, 6228 * in which case we'll have a 'ztest_tmp' pool lying around 6229 * instead of 'ztest'. Do a blind rename in case this happened. 6230 */ 6231 kernel_init(FREAD); 6232 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6233 spa_close(spa, FTAG); 6234 } else { 6235 char tmpname[MAXNAMELEN]; 6236 kernel_fini(); 6237 kernel_init(FREAD | FWRITE); 6238 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6239 ztest_opts.zo_pool); 6240 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6241 } 6242 kernel_fini(); 6243 6244 ztest_run_zdb(ztest_opts.zo_pool); 6245 } 6246 6247 if (ztest_opts.zo_verbose >= 1) { 6248 if (hasalt) { 6249 (void) printf("%d runs of older ztest: %s\n", older, 6250 ztest_opts.zo_alt_ztest); 6251 (void) printf("%d runs of newer ztest: %s\n", newer, 6252 cmd); 6253 } 6254 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6255 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6256 } 6257 6258 umem_free(cmd, MAXNAMELEN); 6259 6260 return (0); 6261 }