1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 */
27
28 /*
29 * The objective of this program is to provide a DMU/ZAP/SPA stress test
30 * that runs entirely in userland, is easy to use, and easy to extend.
31 *
32 * The overall design of the ztest program is as follows:
33 *
34 * (1) For each major functional area (e.g. adding vdevs to a pool,
35 * creating and destroying datasets, reading and writing objects, etc)
36 * we have a simple routine to test that functionality. These
37 * individual routines do not have to do anything "stressful".
38 *
39 * (2) We turn these simple functionality tests into a stress test by
40 * running them all in parallel, with as many threads as desired,
41 * and spread across as many datasets, objects, and vdevs as desired.
42 *
43 * (3) While all this is happening, we inject faults into the pool to
44 * verify that self-healing data really works.
45 *
46 * (4) Every time we open a dataset, we change its checksum and compression
47 * functions. Thus even individual objects vary from block to block
48 * in which checksum they use and whether they're compressed.
49 *
50 * (5) To verify that we never lose on-disk consistency after a crash,
51 * we run the entire test in a child of the main process.
52 * At random times, the child self-immolates with a SIGKILL.
53 * This is the software equivalent of pulling the power cord.
54 * The parent then runs the test again, using the existing
55 * storage pool, as many times as desired. If backwards compatability
56 * testing is enabled ztest will sometimes run the "older" version
57 * of ztest after a SIGKILL.
58 *
59 * (6) To verify that we don't have future leaks or temporal incursions,
60 * many of the functional tests record the transaction group number
61 * as part of their data. When reading old data, they verify that
62 * the transaction group number is less than the current, open txg.
63 * If you add a new test, please do this if applicable.
64 *
65 * When run with no arguments, ztest runs for about five minutes and
66 * produces no output if successful. To get a little bit of information,
67 * specify -V. To get more information, specify -VV, and so on.
68 *
69 * To turn this into an overnight stress test, use -T to specify run time.
70 *
71 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
72 * to increase the pool capacity, fanout, and overall stress level.
73 *
74 * Use the -k option to set the desired frequency of kills.
75 *
76 * When ztest invokes itself it passes all relevant information through a
77 * temporary file which is mmap-ed in the child process. This allows shared
78 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
79 * stored at offset 0 of this file and contains information on the size and
80 * number of shared structures in the file. The information stored in this file
81 * must remain backwards compatible with older versions of ztest so that
82 * ztest can invoke them during backwards compatibility testing (-B).
83 */
84
85 #include <sys/zfs_context.h>
86 #include <sys/spa.h>
87 #include <sys/dmu.h>
88 #include <sys/txg.h>
89 #include <sys/dbuf.h>
90 #include <sys/zap.h>
91 #include <sys/dmu_objset.h>
92 #include <sys/poll.h>
93 #include <sys/stat.h>
94 #include <sys/time.h>
95 #include <sys/wait.h>
96 #include <sys/mman.h>
97 #include <sys/resource.h>
98 #include <sys/zio.h>
99 #include <sys/zil.h>
100 #include <sys/zil_impl.h>
101 #include <sys/vdev_impl.h>
102 #include <sys/vdev_file.h>
103 #include <sys/spa_impl.h>
104 #include <sys/metaslab_impl.h>
105 #include <sys/dsl_prop.h>
106 #include <sys/dsl_dataset.h>
107 #include <sys/dsl_destroy.h>
108 #include <sys/dsl_scan.h>
109 #include <sys/zio_checksum.h>
110 #include <sys/refcount.h>
111 #include <sys/zfeature.h>
112 #include <sys/dsl_userhold.h>
113 #include <stdio.h>
114 #include <stdio_ext.h>
115 #include <stdlib.h>
116 #include <unistd.h>
117 #include <signal.h>
118 #include <umem.h>
119 #include <dlfcn.h>
120 #include <ctype.h>
121 #include <math.h>
122 #include <sys/fs/zfs.h>
123 #include <libnvpair.h>
124
125 static int ztest_fd_data = -1;
126 static int ztest_fd_rand = -1;
127
128 typedef struct ztest_shared_hdr {
129 uint64_t zh_hdr_size;
130 uint64_t zh_opts_size;
131 uint64_t zh_size;
132 uint64_t zh_stats_size;
133 uint64_t zh_stats_count;
134 uint64_t zh_ds_size;
135 uint64_t zh_ds_count;
136 } ztest_shared_hdr_t;
137
138 static ztest_shared_hdr_t *ztest_shared_hdr;
139
140 typedef struct ztest_shared_opts {
141 char zo_pool[MAXNAMELEN];
142 char zo_dir[MAXNAMELEN];
143 char zo_alt_ztest[MAXNAMELEN];
144 char zo_alt_libpath[MAXNAMELEN];
145 uint64_t zo_vdevs;
146 uint64_t zo_vdevtime;
147 size_t zo_vdev_size;
148 int zo_ashift;
149 int zo_mirrors;
150 int zo_raidz;
151 int zo_raidz_parity;
152 int zo_datasets;
153 int zo_threads;
154 uint64_t zo_passtime;
155 uint64_t zo_killrate;
156 int zo_verbose;
157 int zo_init;
158 uint64_t zo_time;
159 uint64_t zo_maxloops;
160 uint64_t zo_metaslab_gang_bang;
161 } ztest_shared_opts_t;
162
163 static const ztest_shared_opts_t ztest_opts_defaults = {
164 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
165 .zo_dir = { '/', 't', 'm', 'p', '\0' },
166 .zo_alt_ztest = { '\0' },
167 .zo_alt_libpath = { '\0' },
168 .zo_vdevs = 5,
169 .zo_ashift = SPA_MINBLOCKSHIFT,
170 .zo_mirrors = 2,
171 .zo_raidz = 4,
172 .zo_raidz_parity = 1,
173 .zo_vdev_size = SPA_MINDEVSIZE,
174 .zo_datasets = 7,
175 .zo_threads = 23,
176 .zo_passtime = 60, /* 60 seconds */
177 .zo_killrate = 70, /* 70% kill rate */
178 .zo_verbose = 0,
179 .zo_init = 1,
180 .zo_time = 300, /* 5 minutes */
181 .zo_maxloops = 50, /* max loops during spa_freeze() */
182 .zo_metaslab_gang_bang = 32 << 10
183 };
184
185 extern uint64_t metaslab_gang_bang;
186 extern uint64_t metaslab_df_alloc_threshold;
187 extern uint64_t zfs_deadman_synctime;
188
189 static ztest_shared_opts_t *ztest_shared_opts;
190 static ztest_shared_opts_t ztest_opts;
191
192 typedef struct ztest_shared_ds {
193 uint64_t zd_seq;
194 } ztest_shared_ds_t;
195
196 static ztest_shared_ds_t *ztest_shared_ds;
197 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
198
199 #define BT_MAGIC 0x123456789abcdefULL
200 #define MAXFAULTS() \
201 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
202
203 enum ztest_io_type {
204 ZTEST_IO_WRITE_TAG,
205 ZTEST_IO_WRITE_PATTERN,
206 ZTEST_IO_WRITE_ZEROES,
207 ZTEST_IO_TRUNCATE,
208 ZTEST_IO_SETATTR,
209 ZTEST_IO_REWRITE,
210 ZTEST_IO_TYPES
211 };
212
213 typedef struct ztest_block_tag {
214 uint64_t bt_magic;
215 uint64_t bt_objset;
216 uint64_t bt_object;
217 uint64_t bt_offset;
218 uint64_t bt_gen;
219 uint64_t bt_txg;
220 uint64_t bt_crtxg;
221 } ztest_block_tag_t;
222
223 typedef struct bufwad {
224 uint64_t bw_index;
225 uint64_t bw_txg;
226 uint64_t bw_data;
227 } bufwad_t;
228
229 /*
230 * XXX -- fix zfs range locks to be generic so we can use them here.
231 */
232 typedef enum {
233 RL_READER,
234 RL_WRITER,
235 RL_APPEND
236 } rl_type_t;
237
238 typedef struct rll {
239 void *rll_writer;
240 int rll_readers;
241 mutex_t rll_lock;
242 cond_t rll_cv;
243 } rll_t;
244
245 typedef struct rl {
246 uint64_t rl_object;
247 uint64_t rl_offset;
248 uint64_t rl_size;
249 rll_t *rl_lock;
250 } rl_t;
251
252 #define ZTEST_RANGE_LOCKS 64
253 #define ZTEST_OBJECT_LOCKS 64
254
255 /*
256 * Object descriptor. Used as a template for object lookup/create/remove.
257 */
258 typedef struct ztest_od {
259 uint64_t od_dir;
260 uint64_t od_object;
261 dmu_object_type_t od_type;
262 dmu_object_type_t od_crtype;
263 uint64_t od_blocksize;
264 uint64_t od_crblocksize;
265 uint64_t od_gen;
266 uint64_t od_crgen;
267 char od_name[MAXNAMELEN];
268 } ztest_od_t;
269
270 /*
271 * Per-dataset state.
272 */
273 typedef struct ztest_ds {
274 ztest_shared_ds_t *zd_shared;
275 objset_t *zd_os;
276 rwlock_t zd_zilog_lock;
277 zilog_t *zd_zilog;
278 ztest_od_t *zd_od; /* debugging aid */
279 char zd_name[MAXNAMELEN];
280 mutex_t zd_dirobj_lock;
281 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
282 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
283 } ztest_ds_t;
284
285 /*
286 * Per-iteration state.
287 */
288 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
289
290 typedef struct ztest_info {
291 ztest_func_t *zi_func; /* test function */
292 uint64_t zi_iters; /* iterations per execution */
293 uint64_t *zi_interval; /* execute every <interval> seconds */
294 } ztest_info_t;
295
296 typedef struct ztest_shared_callstate {
297 uint64_t zc_count; /* per-pass count */
298 uint64_t zc_time; /* per-pass time */
299 uint64_t zc_next; /* next time to call this function */
300 } ztest_shared_callstate_t;
301
302 static ztest_shared_callstate_t *ztest_shared_callstate;
303 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
304
305 /*
306 * Note: these aren't static because we want dladdr() to work.
307 */
308 ztest_func_t ztest_dmu_read_write;
309 ztest_func_t ztest_dmu_write_parallel;
310 ztest_func_t ztest_dmu_object_alloc_free;
311 ztest_func_t ztest_dmu_commit_callbacks;
312 ztest_func_t ztest_zap;
313 ztest_func_t ztest_zap_parallel;
314 ztest_func_t ztest_zil_commit;
315 ztest_func_t ztest_zil_remount;
316 ztest_func_t ztest_dmu_read_write_zcopy;
317 ztest_func_t ztest_dmu_objset_create_destroy;
318 ztest_func_t ztest_dmu_prealloc;
319 ztest_func_t ztest_fzap;
320 ztest_func_t ztest_dmu_snapshot_create_destroy;
321 ztest_func_t ztest_dsl_prop_get_set;
322 ztest_func_t ztest_spa_prop_get_set;
323 ztest_func_t ztest_spa_create_destroy;
324 ztest_func_t ztest_fault_inject;
325 ztest_func_t ztest_ddt_repair;
326 ztest_func_t ztest_dmu_snapshot_hold;
327 ztest_func_t ztest_spa_rename;
328 ztest_func_t ztest_scrub;
329 ztest_func_t ztest_dsl_dataset_promote_busy;
330 ztest_func_t ztest_vdev_attach_detach;
331 ztest_func_t ztest_vdev_LUN_growth;
332 ztest_func_t ztest_vdev_add_remove;
333 ztest_func_t ztest_vdev_aux_add_remove;
334 ztest_func_t ztest_split_pool;
335 ztest_func_t ztest_reguid;
336 ztest_func_t ztest_spa_upgrade;
337
338 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
339 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
340 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
341 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
342 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
343
344 ztest_info_t ztest_info[] = {
345 { ztest_dmu_read_write, 1, &zopt_always },
346 { ztest_dmu_write_parallel, 10, &zopt_always },
347 { ztest_dmu_object_alloc_free, 1, &zopt_always },
348 { ztest_dmu_commit_callbacks, 1, &zopt_always },
349 { ztest_zap, 30, &zopt_always },
350 { ztest_zap_parallel, 100, &zopt_always },
351 { ztest_split_pool, 1, &zopt_always },
352 { ztest_zil_commit, 1, &zopt_incessant },
353 { ztest_zil_remount, 1, &zopt_sometimes },
354 { ztest_dmu_read_write_zcopy, 1, &zopt_often },
355 { ztest_dmu_objset_create_destroy, 1, &zopt_often },
356 { ztest_dsl_prop_get_set, 1, &zopt_often },
357 { ztest_spa_prop_get_set, 1, &zopt_sometimes },
358 #if 0
359 { ztest_dmu_prealloc, 1, &zopt_sometimes },
360 #endif
361 { ztest_fzap, 1, &zopt_sometimes },
362 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes },
363 { ztest_spa_create_destroy, 1, &zopt_sometimes },
364 { ztest_fault_inject, 1, &zopt_sometimes },
365 { ztest_ddt_repair, 1, &zopt_sometimes },
366 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes },
367 { ztest_reguid, 1, &zopt_rarely },
368 { ztest_spa_rename, 1, &zopt_rarely },
369 { ztest_scrub, 1, &zopt_rarely },
370 { ztest_spa_upgrade, 1, &zopt_rarely },
371 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely },
372 { ztest_vdev_attach_detach, 1, &zopt_sometimes },
373 { ztest_vdev_LUN_growth, 1, &zopt_rarely },
374 { ztest_vdev_add_remove, 1,
375 &ztest_opts.zo_vdevtime },
376 { ztest_vdev_aux_add_remove, 1,
377 &ztest_opts.zo_vdevtime },
378 };
379
380 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
381
382 /*
383 * The following struct is used to hold a list of uncalled commit callbacks.
384 * The callbacks are ordered by txg number.
385 */
386 typedef struct ztest_cb_list {
387 mutex_t zcl_callbacks_lock;
388 list_t zcl_callbacks;
389 } ztest_cb_list_t;
390
391 /*
392 * Stuff we need to share writably between parent and child.
393 */
394 typedef struct ztest_shared {
395 boolean_t zs_do_init;
396 hrtime_t zs_proc_start;
397 hrtime_t zs_proc_stop;
398 hrtime_t zs_thread_start;
399 hrtime_t zs_thread_stop;
400 hrtime_t zs_thread_kill;
401 uint64_t zs_enospc_count;
402 uint64_t zs_vdev_next_leaf;
403 uint64_t zs_vdev_aux;
404 uint64_t zs_alloc;
405 uint64_t zs_space;
406 uint64_t zs_splits;
407 uint64_t zs_mirrors;
408 uint64_t zs_metaslab_sz;
409 uint64_t zs_metaslab_df_alloc_threshold;
410 uint64_t zs_guid;
411 } ztest_shared_t;
412
413 #define ID_PARALLEL -1ULL
414
415 static char ztest_dev_template[] = "%s/%s.%llua";
416 static char ztest_aux_template[] = "%s/%s.%s.%llu";
417 ztest_shared_t *ztest_shared;
418
419 static spa_t *ztest_spa = NULL;
420 static ztest_ds_t *ztest_ds;
421
422 static mutex_t ztest_vdev_lock;
423
424 /*
425 * The ztest_name_lock protects the pool and dataset namespace used by
426 * the individual tests. To modify the namespace, consumers must grab
427 * this lock as writer. Grabbing the lock as reader will ensure that the
428 * namespace does not change while the lock is held.
429 */
430 static rwlock_t ztest_name_lock;
431
432 static boolean_t ztest_dump_core = B_TRUE;
433 static boolean_t ztest_exiting;
434
435 /* Global commit callback list */
436 static ztest_cb_list_t zcl;
437
438 enum ztest_object {
439 ZTEST_META_DNODE = 0,
440 ZTEST_DIROBJ,
441 ZTEST_OBJECTS
442 };
443
444 static void usage(boolean_t) __NORETURN;
445
446 /*
447 * These libumem hooks provide a reasonable set of defaults for the allocator's
448 * debugging facilities.
449 */
450 const char *
451 _umem_debug_init()
452 {
453 return ("default,verbose"); /* $UMEM_DEBUG setting */
454 }
455
456 const char *
457 _umem_logging_init(void)
458 {
459 return ("fail,contents"); /* $UMEM_LOGGING setting */
460 }
461
462 #define FATAL_MSG_SZ 1024
463
464 char *fatal_msg;
465
466 static void
467 fatal(int do_perror, char *message, ...)
468 {
469 va_list args;
470 int save_errno = errno;
471 char buf[FATAL_MSG_SZ];
472
473 (void) fflush(stdout);
474
475 va_start(args, message);
476 (void) sprintf(buf, "ztest: ");
477 /* LINTED */
478 (void) vsprintf(buf + strlen(buf), message, args);
479 va_end(args);
480 if (do_perror) {
481 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
482 ": %s", strerror(save_errno));
483 }
484 (void) fprintf(stderr, "%s\n", buf);
485 fatal_msg = buf; /* to ease debugging */
486 if (ztest_dump_core)
487 abort();
488 exit(3);
489 }
490
491 static int
492 str2shift(const char *buf)
493 {
494 const char *ends = "BKMGTPEZ";
495 int i;
496
497 if (buf[0] == '\0')
498 return (0);
499 for (i = 0; i < strlen(ends); i++) {
500 if (toupper(buf[0]) == ends[i])
501 break;
502 }
503 if (i == strlen(ends)) {
504 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
505 buf);
506 usage(B_FALSE);
507 }
508 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
509 return (10*i);
510 }
511 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
512 usage(B_FALSE);
513 /* NOTREACHED */
514 }
515
516 static uint64_t
517 nicenumtoull(const char *buf)
518 {
519 char *end;
520 uint64_t val;
521
522 val = strtoull(buf, &end, 0);
523 if (end == buf) {
524 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
525 usage(B_FALSE);
526 } else if (end[0] == '.') {
527 double fval = strtod(buf, &end);
528 fval *= pow(2, str2shift(end));
529 if (fval > UINT64_MAX) {
530 (void) fprintf(stderr, "ztest: value too large: %s\n",
531 buf);
532 usage(B_FALSE);
533 }
534 val = (uint64_t)fval;
535 } else {
536 int shift = str2shift(end);
537 if (shift >= 64 || (val << shift) >> shift != val) {
538 (void) fprintf(stderr, "ztest: value too large: %s\n",
539 buf);
540 usage(B_FALSE);
541 }
542 val <<= shift;
543 }
544 return (val);
545 }
546
547 static void
548 usage(boolean_t requested)
549 {
550 const ztest_shared_opts_t *zo = &ztest_opts_defaults;
551
552 char nice_vdev_size[10];
553 char nice_gang_bang[10];
554 FILE *fp = requested ? stdout : stderr;
555
556 nicenum(zo->zo_vdev_size, nice_vdev_size);
557 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang);
558
559 (void) fprintf(fp, "Usage: %s\n"
560 "\t[-v vdevs (default: %llu)]\n"
561 "\t[-s size_of_each_vdev (default: %s)]\n"
562 "\t[-a alignment_shift (default: %d)] use 0 for random\n"
563 "\t[-m mirror_copies (default: %d)]\n"
564 "\t[-r raidz_disks (default: %d)]\n"
565 "\t[-R raidz_parity (default: %d)]\n"
566 "\t[-d datasets (default: %d)]\n"
567 "\t[-t threads (default: %d)]\n"
568 "\t[-g gang_block_threshold (default: %s)]\n"
569 "\t[-i init_count (default: %d)] initialize pool i times\n"
570 "\t[-k kill_percentage (default: %llu%%)]\n"
571 "\t[-p pool_name (default: %s)]\n"
572 "\t[-f dir (default: %s)] file directory for vdev files\n"
573 "\t[-V] verbose (use multiple times for ever more blather)\n"
574 "\t[-E] use existing pool instead of creating new one\n"
575 "\t[-T time (default: %llu sec)] total run time\n"
576 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
577 "\t[-P passtime (default: %llu sec)] time per pass\n"
578 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
579 "\t[-h] (print help)\n"
580 "",
581 zo->zo_pool,
582 (u_longlong_t)zo->zo_vdevs, /* -v */
583 nice_vdev_size, /* -s */
584 zo->zo_ashift, /* -a */
585 zo->zo_mirrors, /* -m */
586 zo->zo_raidz, /* -r */
587 zo->zo_raidz_parity, /* -R */
588 zo->zo_datasets, /* -d */
589 zo->zo_threads, /* -t */
590 nice_gang_bang, /* -g */
591 zo->zo_init, /* -i */
592 (u_longlong_t)zo->zo_killrate, /* -k */
593 zo->zo_pool, /* -p */
594 zo->zo_dir, /* -f */
595 (u_longlong_t)zo->zo_time, /* -T */
596 (u_longlong_t)zo->zo_maxloops, /* -F */
597 (u_longlong_t)zo->zo_passtime);
598 exit(requested ? 0 : 1);
599 }
600
601 static void
602 process_options(int argc, char **argv)
603 {
604 char *path;
605 ztest_shared_opts_t *zo = &ztest_opts;
606
607 int opt;
608 uint64_t value;
609 char altdir[MAXNAMELEN] = { 0 };
610
611 bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
612
613 while ((opt = getopt(argc, argv,
614 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) {
615 value = 0;
616 switch (opt) {
617 case 'v':
618 case 's':
619 case 'a':
620 case 'm':
621 case 'r':
622 case 'R':
623 case 'd':
624 case 't':
625 case 'g':
626 case 'i':
627 case 'k':
628 case 'T':
629 case 'P':
630 case 'F':
631 value = nicenumtoull(optarg);
632 }
633 switch (opt) {
634 case 'v':
635 zo->zo_vdevs = value;
636 break;
637 case 's':
638 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
639 break;
640 case 'a':
641 zo->zo_ashift = value;
642 break;
643 case 'm':
644 zo->zo_mirrors = value;
645 break;
646 case 'r':
647 zo->zo_raidz = MAX(1, value);
648 break;
649 case 'R':
650 zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
651 break;
652 case 'd':
653 zo->zo_datasets = MAX(1, value);
654 break;
655 case 't':
656 zo->zo_threads = MAX(1, value);
657 break;
658 case 'g':
659 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1,
660 value);
661 break;
662 case 'i':
663 zo->zo_init = value;
664 break;
665 case 'k':
666 zo->zo_killrate = value;
667 break;
668 case 'p':
669 (void) strlcpy(zo->zo_pool, optarg,
670 sizeof (zo->zo_pool));
671 break;
672 case 'f':
673 path = realpath(optarg, NULL);
674 if (path == NULL) {
675 (void) fprintf(stderr, "error: %s: %s\n",
676 optarg, strerror(errno));
677 usage(B_FALSE);
678 } else {
679 (void) strlcpy(zo->zo_dir, path,
680 sizeof (zo->zo_dir));
681 }
682 break;
683 case 'V':
684 zo->zo_verbose++;
685 break;
686 case 'E':
687 zo->zo_init = 0;
688 break;
689 case 'T':
690 zo->zo_time = value;
691 break;
692 case 'P':
693 zo->zo_passtime = MAX(1, value);
694 break;
695 case 'F':
696 zo->zo_maxloops = MAX(1, value);
697 break;
698 case 'B':
699 (void) strlcpy(altdir, optarg, sizeof (altdir));
700 break;
701 case 'h':
702 usage(B_TRUE);
703 break;
704 case '?':
705 default:
706 usage(B_FALSE);
707 break;
708 }
709 }
710
711 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
712
713 zo->zo_vdevtime =
714 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
715 UINT64_MAX >> 2);
716
717 if (strlen(altdir) > 0) {
718 char *cmd;
719 char *realaltdir;
720 char *bin;
721 char *ztest;
722 char *isa;
723 int isalen;
724
725 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
726 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
727
728 VERIFY(NULL != realpath(getexecname(), cmd));
729 if (0 != access(altdir, F_OK)) {
730 ztest_dump_core = B_FALSE;
731 fatal(B_TRUE, "invalid alternate ztest path: %s",
732 altdir);
733 }
734 VERIFY(NULL != realpath(altdir, realaltdir));
735
736 /*
737 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
738 * We want to extract <isa> to determine if we should use
739 * 32 or 64 bit binaries.
740 */
741 bin = strstr(cmd, "/usr/bin/");
742 ztest = strstr(bin, "/ztest");
743 isa = bin + 9;
744 isalen = ztest - isa;
745 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
746 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
747 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
748 "%s/usr/lib/%.*s", realaltdir, isalen, isa);
749
750 if (0 != access(zo->zo_alt_ztest, X_OK)) {
751 ztest_dump_core = B_FALSE;
752 fatal(B_TRUE, "invalid alternate ztest: %s",
753 zo->zo_alt_ztest);
754 } else if (0 != access(zo->zo_alt_libpath, X_OK)) {
755 ztest_dump_core = B_FALSE;
756 fatal(B_TRUE, "invalid alternate lib directory %s",
757 zo->zo_alt_libpath);
758 }
759
760 umem_free(cmd, MAXPATHLEN);
761 umem_free(realaltdir, MAXPATHLEN);
762 }
763 }
764
765 static void
766 ztest_kill(ztest_shared_t *zs)
767 {
768 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
769 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
770 (void) kill(getpid(), SIGKILL);
771 }
772
773 static uint64_t
774 ztest_random(uint64_t range)
775 {
776 uint64_t r;
777
778 ASSERT3S(ztest_fd_rand, >=, 0);
779
780 if (range == 0)
781 return (0);
782
783 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
784 fatal(1, "short read from /dev/urandom");
785
786 return (r % range);
787 }
788
789 /* ARGSUSED */
790 static void
791 ztest_record_enospc(const char *s)
792 {
793 ztest_shared->zs_enospc_count++;
794 }
795
796 static uint64_t
797 ztest_get_ashift(void)
798 {
799 if (ztest_opts.zo_ashift == 0)
800 return (SPA_MINBLOCKSHIFT + ztest_random(3));
801 return (ztest_opts.zo_ashift);
802 }
803
804 static nvlist_t *
805 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
806 {
807 char pathbuf[MAXPATHLEN];
808 uint64_t vdev;
809 nvlist_t *file;
810
811 if (ashift == 0)
812 ashift = ztest_get_ashift();
813
814 if (path == NULL) {
815 path = pathbuf;
816
817 if (aux != NULL) {
818 vdev = ztest_shared->zs_vdev_aux;
819 (void) snprintf(path, sizeof (pathbuf),
820 ztest_aux_template, ztest_opts.zo_dir,
821 pool == NULL ? ztest_opts.zo_pool : pool,
822 aux, vdev);
823 } else {
824 vdev = ztest_shared->zs_vdev_next_leaf++;
825 (void) snprintf(path, sizeof (pathbuf),
826 ztest_dev_template, ztest_opts.zo_dir,
827 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
828 }
829 }
830
831 if (size != 0) {
832 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
833 if (fd == -1)
834 fatal(1, "can't open %s", path);
835 if (ftruncate(fd, size) != 0)
836 fatal(1, "can't ftruncate %s", path);
837 (void) close(fd);
838 }
839
840 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
841 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
842 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
843 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
844
845 return (file);
846 }
847
848 static nvlist_t *
849 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
850 uint64_t ashift, int r)
851 {
852 nvlist_t *raidz, **child;
853 int c;
854
855 if (r < 2)
856 return (make_vdev_file(path, aux, pool, size, ashift));
857 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
858
859 for (c = 0; c < r; c++)
860 child[c] = make_vdev_file(path, aux, pool, size, ashift);
861
862 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
863 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
864 VDEV_TYPE_RAIDZ) == 0);
865 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
866 ztest_opts.zo_raidz_parity) == 0);
867 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
868 child, r) == 0);
869
870 for (c = 0; c < r; c++)
871 nvlist_free(child[c]);
872
873 umem_free(child, r * sizeof (nvlist_t *));
874
875 return (raidz);
876 }
877
878 static nvlist_t *
879 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
880 uint64_t ashift, int r, int m)
881 {
882 nvlist_t *mirror, **child;
883 int c;
884
885 if (m < 1)
886 return (make_vdev_raidz(path, aux, pool, size, ashift, r));
887
888 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
889
890 for (c = 0; c < m; c++)
891 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
892
893 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
894 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
895 VDEV_TYPE_MIRROR) == 0);
896 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
897 child, m) == 0);
898
899 for (c = 0; c < m; c++)
900 nvlist_free(child[c]);
901
902 umem_free(child, m * sizeof (nvlist_t *));
903
904 return (mirror);
905 }
906
907 static nvlist_t *
908 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
909 int log, int r, int m, int t)
910 {
911 nvlist_t *root, **child;
912 int c;
913
914 ASSERT(t > 0);
915
916 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
917
918 for (c = 0; c < t; c++) {
919 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
920 r, m);
921 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
922 log) == 0);
923 }
924
925 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
926 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
927 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
928 child, t) == 0);
929
930 for (c = 0; c < t; c++)
931 nvlist_free(child[c]);
932
933 umem_free(child, t * sizeof (nvlist_t *));
934
935 return (root);
936 }
937
938 /*
939 * Find a random spa version. Returns back a random spa version in the
940 * range [initial_version, SPA_VERSION_FEATURES].
941 */
942 static uint64_t
943 ztest_random_spa_version(uint64_t initial_version)
944 {
945 uint64_t version = initial_version;
946
947 if (version <= SPA_VERSION_BEFORE_FEATURES) {
948 version = version +
949 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
950 }
951
952 if (version > SPA_VERSION_BEFORE_FEATURES)
953 version = SPA_VERSION_FEATURES;
954
955 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
956 return (version);
957 }
958
959 static int
960 ztest_random_blocksize(void)
961 {
962 return (1 << (SPA_MINBLOCKSHIFT +
963 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1)));
964 }
965
966 static int
967 ztest_random_ibshift(void)
968 {
969 return (DN_MIN_INDBLKSHIFT +
970 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
971 }
972
973 static uint64_t
974 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
975 {
976 uint64_t top;
977 vdev_t *rvd = spa->spa_root_vdev;
978 vdev_t *tvd;
979
980 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
981
982 do {
983 top = ztest_random(rvd->vdev_children);
984 tvd = rvd->vdev_child[top];
985 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) ||
986 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
987
988 return (top);
989 }
990
991 static uint64_t
992 ztest_random_dsl_prop(zfs_prop_t prop)
993 {
994 uint64_t value;
995
996 do {
997 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
998 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
999
1000 return (value);
1001 }
1002
1003 static int
1004 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1005 boolean_t inherit)
1006 {
1007 const char *propname = zfs_prop_to_name(prop);
1008 const char *valname;
1009 char setpoint[MAXPATHLEN];
1010 uint64_t curval;
1011 int error;
1012
1013 error = dsl_prop_set_int(osname, propname,
1014 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1015
1016 if (error == ENOSPC) {
1017 ztest_record_enospc(FTAG);
1018 return (error);
1019 }
1020 ASSERT0(error);
1021
1022 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1023
1024 if (ztest_opts.zo_verbose >= 6) {
1025 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
1026 (void) printf("%s %s = %s at '%s'\n",
1027 osname, propname, valname, setpoint);
1028 }
1029
1030 return (error);
1031 }
1032
1033 static int
1034 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1035 {
1036 spa_t *spa = ztest_spa;
1037 nvlist_t *props = NULL;
1038 int error;
1039
1040 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1041 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1042
1043 error = spa_prop_set(spa, props);
1044
1045 nvlist_free(props);
1046
1047 if (error == ENOSPC) {
1048 ztest_record_enospc(FTAG);
1049 return (error);
1050 }
1051 ASSERT0(error);
1052
1053 return (error);
1054 }
1055
1056 static void
1057 ztest_rll_init(rll_t *rll)
1058 {
1059 rll->rll_writer = NULL;
1060 rll->rll_readers = 0;
1061 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0);
1062 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0);
1063 }
1064
1065 static void
1066 ztest_rll_destroy(rll_t *rll)
1067 {
1068 ASSERT(rll->rll_writer == NULL);
1069 ASSERT(rll->rll_readers == 0);
1070 VERIFY(_mutex_destroy(&rll->rll_lock) == 0);
1071 VERIFY(cond_destroy(&rll->rll_cv) == 0);
1072 }
1073
1074 static void
1075 ztest_rll_lock(rll_t *rll, rl_type_t type)
1076 {
1077 VERIFY(mutex_lock(&rll->rll_lock) == 0);
1078
1079 if (type == RL_READER) {
1080 while (rll->rll_writer != NULL)
1081 (void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1082 rll->rll_readers++;
1083 } else {
1084 while (rll->rll_writer != NULL || rll->rll_readers)
1085 (void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1086 rll->rll_writer = curthread;
1087 }
1088
1089 VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1090 }
1091
1092 static void
1093 ztest_rll_unlock(rll_t *rll)
1094 {
1095 VERIFY(mutex_lock(&rll->rll_lock) == 0);
1096
1097 if (rll->rll_writer) {
1098 ASSERT(rll->rll_readers == 0);
1099 rll->rll_writer = NULL;
1100 } else {
1101 ASSERT(rll->rll_readers != 0);
1102 ASSERT(rll->rll_writer == NULL);
1103 rll->rll_readers--;
1104 }
1105
1106 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1107 VERIFY(cond_broadcast(&rll->rll_cv) == 0);
1108
1109 VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1110 }
1111
1112 static void
1113 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1114 {
1115 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1116
1117 ztest_rll_lock(rll, type);
1118 }
1119
1120 static void
1121 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1122 {
1123 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1124
1125 ztest_rll_unlock(rll);
1126 }
1127
1128 static rl_t *
1129 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1130 uint64_t size, rl_type_t type)
1131 {
1132 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1133 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1134 rl_t *rl;
1135
1136 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1137 rl->rl_object = object;
1138 rl->rl_offset = offset;
1139 rl->rl_size = size;
1140 rl->rl_lock = rll;
1141
1142 ztest_rll_lock(rll, type);
1143
1144 return (rl);
1145 }
1146
1147 static void
1148 ztest_range_unlock(rl_t *rl)
1149 {
1150 rll_t *rll = rl->rl_lock;
1151
1152 ztest_rll_unlock(rll);
1153
1154 umem_free(rl, sizeof (*rl));
1155 }
1156
1157 static void
1158 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1159 {
1160 zd->zd_os = os;
1161 zd->zd_zilog = dmu_objset_zil(os);
1162 zd->zd_shared = szd;
1163 dmu_objset_name(os, zd->zd_name);
1164
1165 if (zd->zd_shared != NULL)
1166 zd->zd_shared->zd_seq = 0;
1167
1168 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0);
1169 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0);
1170
1171 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1172 ztest_rll_init(&zd->zd_object_lock[l]);
1173
1174 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1175 ztest_rll_init(&zd->zd_range_lock[l]);
1176 }
1177
1178 static void
1179 ztest_zd_fini(ztest_ds_t *zd)
1180 {
1181 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0);
1182
1183 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1184 ztest_rll_destroy(&zd->zd_object_lock[l]);
1185
1186 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1187 ztest_rll_destroy(&zd->zd_range_lock[l]);
1188 }
1189
1190 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1191
1192 static uint64_t
1193 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1194 {
1195 uint64_t txg;
1196 int error;
1197
1198 /*
1199 * Attempt to assign tx to some transaction group.
1200 */
1201 error = dmu_tx_assign(tx, txg_how);
1202 if (error) {
1203 if (error == ERESTART) {
1204 ASSERT(txg_how == TXG_NOWAIT);
1205 dmu_tx_wait(tx);
1206 } else {
1207 ASSERT3U(error, ==, ENOSPC);
1208 ztest_record_enospc(tag);
1209 }
1210 dmu_tx_abort(tx);
1211 return (0);
1212 }
1213 txg = dmu_tx_get_txg(tx);
1214 ASSERT(txg != 0);
1215 return (txg);
1216 }
1217
1218 static void
1219 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1220 {
1221 uint64_t *ip = buf;
1222 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1223
1224 while (ip < ip_end)
1225 *ip++ = value;
1226 }
1227
1228 static boolean_t
1229 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1230 {
1231 uint64_t *ip = buf;
1232 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1233 uint64_t diff = 0;
1234
1235 while (ip < ip_end)
1236 diff |= (value - *ip++);
1237
1238 return (diff == 0);
1239 }
1240
1241 static void
1242 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1243 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1244 {
1245 bt->bt_magic = BT_MAGIC;
1246 bt->bt_objset = dmu_objset_id(os);
1247 bt->bt_object = object;
1248 bt->bt_offset = offset;
1249 bt->bt_gen = gen;
1250 bt->bt_txg = txg;
1251 bt->bt_crtxg = crtxg;
1252 }
1253
1254 static void
1255 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1256 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1257 {
1258 ASSERT(bt->bt_magic == BT_MAGIC);
1259 ASSERT(bt->bt_objset == dmu_objset_id(os));
1260 ASSERT(bt->bt_object == object);
1261 ASSERT(bt->bt_offset == offset);
1262 ASSERT(bt->bt_gen <= gen);
1263 ASSERT(bt->bt_txg <= txg);
1264 ASSERT(bt->bt_crtxg == crtxg);
1265 }
1266
1267 static ztest_block_tag_t *
1268 ztest_bt_bonus(dmu_buf_t *db)
1269 {
1270 dmu_object_info_t doi;
1271 ztest_block_tag_t *bt;
1272
1273 dmu_object_info_from_db(db, &doi);
1274 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1275 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1276 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1277
1278 return (bt);
1279 }
1280
1281 /*
1282 * ZIL logging ops
1283 */
1284
1285 #define lrz_type lr_mode
1286 #define lrz_blocksize lr_uid
1287 #define lrz_ibshift lr_gid
1288 #define lrz_bonustype lr_rdev
1289 #define lrz_bonuslen lr_crtime[1]
1290
1291 static void
1292 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1293 {
1294 char *name = (void *)(lr + 1); /* name follows lr */
1295 size_t namesize = strlen(name) + 1;
1296 itx_t *itx;
1297
1298 if (zil_replaying(zd->zd_zilog, tx))
1299 return;
1300
1301 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1302 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1303 sizeof (*lr) + namesize - sizeof (lr_t));
1304
1305 zil_itx_assign(zd->zd_zilog, itx, tx);
1306 }
1307
1308 static void
1309 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1310 {
1311 char *name = (void *)(lr + 1); /* name follows lr */
1312 size_t namesize = strlen(name) + 1;
1313 itx_t *itx;
1314
1315 if (zil_replaying(zd->zd_zilog, tx))
1316 return;
1317
1318 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1319 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1320 sizeof (*lr) + namesize - sizeof (lr_t));
1321
1322 itx->itx_oid = object;
1323 zil_itx_assign(zd->zd_zilog, itx, tx);
1324 }
1325
1326 static void
1327 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1328 {
1329 itx_t *itx;
1330 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1331
1332 if (zil_replaying(zd->zd_zilog, tx))
1333 return;
1334
1335 if (lr->lr_length > ZIL_MAX_LOG_DATA)
1336 write_state = WR_INDIRECT;
1337
1338 itx = zil_itx_create(TX_WRITE,
1339 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1340
1341 if (write_state == WR_COPIED &&
1342 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1343 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1344 zil_itx_destroy(itx);
1345 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1346 write_state = WR_NEED_COPY;
1347 }
1348 itx->itx_private = zd;
1349 itx->itx_wr_state = write_state;
1350 itx->itx_sync = (ztest_random(8) == 0);
1351 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0);
1352
1353 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1354 sizeof (*lr) - sizeof (lr_t));
1355
1356 zil_itx_assign(zd->zd_zilog, itx, tx);
1357 }
1358
1359 static void
1360 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1361 {
1362 itx_t *itx;
1363
1364 if (zil_replaying(zd->zd_zilog, tx))
1365 return;
1366
1367 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1368 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1369 sizeof (*lr) - sizeof (lr_t));
1370
1371 itx->itx_sync = B_FALSE;
1372 zil_itx_assign(zd->zd_zilog, itx, tx);
1373 }
1374
1375 static void
1376 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1377 {
1378 itx_t *itx;
1379
1380 if (zil_replaying(zd->zd_zilog, tx))
1381 return;
1382
1383 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1384 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1385 sizeof (*lr) - sizeof (lr_t));
1386
1387 itx->itx_sync = B_FALSE;
1388 zil_itx_assign(zd->zd_zilog, itx, tx);
1389 }
1390
1391 /*
1392 * ZIL replay ops
1393 */
1394 static int
1395 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap)
1396 {
1397 char *name = (void *)(lr + 1); /* name follows lr */
1398 objset_t *os = zd->zd_os;
1399 ztest_block_tag_t *bbt;
1400 dmu_buf_t *db;
1401 dmu_tx_t *tx;
1402 uint64_t txg;
1403 int error = 0;
1404
1405 if (byteswap)
1406 byteswap_uint64_array(lr, sizeof (*lr));
1407
1408 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1409 ASSERT(name[0] != '\0');
1410
1411 tx = dmu_tx_create(os);
1412
1413 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1414
1415 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1416 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1417 } else {
1418 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1419 }
1420
1421 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1422 if (txg == 0)
1423 return (ENOSPC);
1424
1425 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1426
1427 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1428 if (lr->lr_foid == 0) {
1429 lr->lr_foid = zap_create(os,
1430 lr->lrz_type, lr->lrz_bonustype,
1431 lr->lrz_bonuslen, tx);
1432 } else {
1433 error = zap_create_claim(os, lr->lr_foid,
1434 lr->lrz_type, lr->lrz_bonustype,
1435 lr->lrz_bonuslen, tx);
1436 }
1437 } else {
1438 if (lr->lr_foid == 0) {
1439 lr->lr_foid = dmu_object_alloc(os,
1440 lr->lrz_type, 0, lr->lrz_bonustype,
1441 lr->lrz_bonuslen, tx);
1442 } else {
1443 error = dmu_object_claim(os, lr->lr_foid,
1444 lr->lrz_type, 0, lr->lrz_bonustype,
1445 lr->lrz_bonuslen, tx);
1446 }
1447 }
1448
1449 if (error) {
1450 ASSERT3U(error, ==, EEXIST);
1451 ASSERT(zd->zd_zilog->zl_replay);
1452 dmu_tx_commit(tx);
1453 return (error);
1454 }
1455
1456 ASSERT(lr->lr_foid != 0);
1457
1458 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1459 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1460 lr->lrz_blocksize, lr->lrz_ibshift, tx));
1461
1462 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1463 bbt = ztest_bt_bonus(db);
1464 dmu_buf_will_dirty(db, tx);
1465 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1466 dmu_buf_rele(db, FTAG);
1467
1468 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1469 &lr->lr_foid, tx));
1470
1471 (void) ztest_log_create(zd, tx, lr);
1472
1473 dmu_tx_commit(tx);
1474
1475 return (0);
1476 }
1477
1478 static int
1479 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap)
1480 {
1481 char *name = (void *)(lr + 1); /* name follows lr */
1482 objset_t *os = zd->zd_os;
1483 dmu_object_info_t doi;
1484 dmu_tx_t *tx;
1485 uint64_t object, txg;
1486
1487 if (byteswap)
1488 byteswap_uint64_array(lr, sizeof (*lr));
1489
1490 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1491 ASSERT(name[0] != '\0');
1492
1493 VERIFY3U(0, ==,
1494 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1495 ASSERT(object != 0);
1496
1497 ztest_object_lock(zd, object, RL_WRITER);
1498
1499 VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1500
1501 tx = dmu_tx_create(os);
1502
1503 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1504 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1505
1506 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1507 if (txg == 0) {
1508 ztest_object_unlock(zd, object);
1509 return (ENOSPC);
1510 }
1511
1512 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1513 VERIFY3U(0, ==, zap_destroy(os, object, tx));
1514 } else {
1515 VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1516 }
1517
1518 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1519
1520 (void) ztest_log_remove(zd, tx, lr, object);
1521
1522 dmu_tx_commit(tx);
1523
1524 ztest_object_unlock(zd, object);
1525
1526 return (0);
1527 }
1528
1529 static int
1530 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap)
1531 {
1532 objset_t *os = zd->zd_os;
1533 void *data = lr + 1; /* data follows lr */
1534 uint64_t offset, length;
1535 ztest_block_tag_t *bt = data;
1536 ztest_block_tag_t *bbt;
1537 uint64_t gen, txg, lrtxg, crtxg;
1538 dmu_object_info_t doi;
1539 dmu_tx_t *tx;
1540 dmu_buf_t *db;
1541 arc_buf_t *abuf = NULL;
1542 rl_t *rl;
1543
1544 if (byteswap)
1545 byteswap_uint64_array(lr, sizeof (*lr));
1546
1547 offset = lr->lr_offset;
1548 length = lr->lr_length;
1549
1550 /* If it's a dmu_sync() block, write the whole block */
1551 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1552 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1553 if (length < blocksize) {
1554 offset -= offset % blocksize;
1555 length = blocksize;
1556 }
1557 }
1558
1559 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1560 byteswap_uint64_array(bt, sizeof (*bt));
1561
1562 if (bt->bt_magic != BT_MAGIC)
1563 bt = NULL;
1564
1565 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1566 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1567
1568 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1569
1570 dmu_object_info_from_db(db, &doi);
1571
1572 bbt = ztest_bt_bonus(db);
1573 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1574 gen = bbt->bt_gen;
1575 crtxg = bbt->bt_crtxg;
1576 lrtxg = lr->lr_common.lrc_txg;
1577
1578 tx = dmu_tx_create(os);
1579
1580 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1581
1582 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1583 P2PHASE(offset, length) == 0)
1584 abuf = dmu_request_arcbuf(db, length);
1585
1586 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1587 if (txg == 0) {
1588 if (abuf != NULL)
1589 dmu_return_arcbuf(abuf);
1590 dmu_buf_rele(db, FTAG);
1591 ztest_range_unlock(rl);
1592 ztest_object_unlock(zd, lr->lr_foid);
1593 return (ENOSPC);
1594 }
1595
1596 if (bt != NULL) {
1597 /*
1598 * Usually, verify the old data before writing new data --
1599 * but not always, because we also want to verify correct
1600 * behavior when the data was not recently read into cache.
1601 */
1602 ASSERT(offset % doi.doi_data_block_size == 0);
1603 if (ztest_random(4) != 0) {
1604 int prefetch = ztest_random(2) ?
1605 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1606 ztest_block_tag_t rbt;
1607
1608 VERIFY(dmu_read(os, lr->lr_foid, offset,
1609 sizeof (rbt), &rbt, prefetch) == 0);
1610 if (rbt.bt_magic == BT_MAGIC) {
1611 ztest_bt_verify(&rbt, os, lr->lr_foid,
1612 offset, gen, txg, crtxg);
1613 }
1614 }
1615
1616 /*
1617 * Writes can appear to be newer than the bonus buffer because
1618 * the ztest_get_data() callback does a dmu_read() of the
1619 * open-context data, which may be different than the data
1620 * as it was when the write was generated.
1621 */
1622 if (zd->zd_zilog->zl_replay) {
1623 ztest_bt_verify(bt, os, lr->lr_foid, offset,
1624 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1625 bt->bt_crtxg);
1626 }
1627
1628 /*
1629 * Set the bt's gen/txg to the bonus buffer's gen/txg
1630 * so that all of the usual ASSERTs will work.
1631 */
1632 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1633 }
1634
1635 if (abuf == NULL) {
1636 dmu_write(os, lr->lr_foid, offset, length, data, tx);
1637 } else {
1638 bcopy(data, abuf->b_data, length);
1639 dmu_assign_arcbuf(db, offset, abuf, tx);
1640 }
1641
1642 (void) ztest_log_write(zd, tx, lr);
1643
1644 dmu_buf_rele(db, FTAG);
1645
1646 dmu_tx_commit(tx);
1647
1648 ztest_range_unlock(rl);
1649 ztest_object_unlock(zd, lr->lr_foid);
1650
1651 return (0);
1652 }
1653
1654 static int
1655 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap)
1656 {
1657 objset_t *os = zd->zd_os;
1658 dmu_tx_t *tx;
1659 uint64_t txg;
1660 rl_t *rl;
1661
1662 if (byteswap)
1663 byteswap_uint64_array(lr, sizeof (*lr));
1664
1665 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1666 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1667 RL_WRITER);
1668
1669 tx = dmu_tx_create(os);
1670
1671 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1672
1673 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1674 if (txg == 0) {
1675 ztest_range_unlock(rl);
1676 ztest_object_unlock(zd, lr->lr_foid);
1677 return (ENOSPC);
1678 }
1679
1680 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1681 lr->lr_length, tx) == 0);
1682
1683 (void) ztest_log_truncate(zd, tx, lr);
1684
1685 dmu_tx_commit(tx);
1686
1687 ztest_range_unlock(rl);
1688 ztest_object_unlock(zd, lr->lr_foid);
1689
1690 return (0);
1691 }
1692
1693 static int
1694 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap)
1695 {
1696 objset_t *os = zd->zd_os;
1697 dmu_tx_t *tx;
1698 dmu_buf_t *db;
1699 ztest_block_tag_t *bbt;
1700 uint64_t txg, lrtxg, crtxg;
1701
1702 if (byteswap)
1703 byteswap_uint64_array(lr, sizeof (*lr));
1704
1705 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1706
1707 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1708
1709 tx = dmu_tx_create(os);
1710 dmu_tx_hold_bonus(tx, lr->lr_foid);
1711
1712 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1713 if (txg == 0) {
1714 dmu_buf_rele(db, FTAG);
1715 ztest_object_unlock(zd, lr->lr_foid);
1716 return (ENOSPC);
1717 }
1718
1719 bbt = ztest_bt_bonus(db);
1720 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1721 crtxg = bbt->bt_crtxg;
1722 lrtxg = lr->lr_common.lrc_txg;
1723
1724 if (zd->zd_zilog->zl_replay) {
1725 ASSERT(lr->lr_size != 0);
1726 ASSERT(lr->lr_mode != 0);
1727 ASSERT(lrtxg != 0);
1728 } else {
1729 /*
1730 * Randomly change the size and increment the generation.
1731 */
1732 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1733 sizeof (*bbt);
1734 lr->lr_mode = bbt->bt_gen + 1;
1735 ASSERT(lrtxg == 0);
1736 }
1737
1738 /*
1739 * Verify that the current bonus buffer is not newer than our txg.
1740 */
1741 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1742 MAX(txg, lrtxg), crtxg);
1743
1744 dmu_buf_will_dirty(db, tx);
1745
1746 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1747 ASSERT3U(lr->lr_size, <=, db->db_size);
1748 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
1749 bbt = ztest_bt_bonus(db);
1750
1751 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
1752
1753 dmu_buf_rele(db, FTAG);
1754
1755 (void) ztest_log_setattr(zd, tx, lr);
1756
1757 dmu_tx_commit(tx);
1758
1759 ztest_object_unlock(zd, lr->lr_foid);
1760
1761 return (0);
1762 }
1763
1764 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
1765 NULL, /* 0 no such transaction type */
1766 ztest_replay_create, /* TX_CREATE */
1767 NULL, /* TX_MKDIR */
1768 NULL, /* TX_MKXATTR */
1769 NULL, /* TX_SYMLINK */
1770 ztest_replay_remove, /* TX_REMOVE */
1771 NULL, /* TX_RMDIR */
1772 NULL, /* TX_LINK */
1773 NULL, /* TX_RENAME */
1774 ztest_replay_write, /* TX_WRITE */
1775 ztest_replay_truncate, /* TX_TRUNCATE */
1776 ztest_replay_setattr, /* TX_SETATTR */
1777 NULL, /* TX_ACL */
1778 NULL, /* TX_CREATE_ACL */
1779 NULL, /* TX_CREATE_ATTR */
1780 NULL, /* TX_CREATE_ACL_ATTR */
1781 NULL, /* TX_MKDIR_ACL */
1782 NULL, /* TX_MKDIR_ATTR */
1783 NULL, /* TX_MKDIR_ACL_ATTR */
1784 NULL, /* TX_WRITE2 */
1785 };
1786
1787 /*
1788 * ZIL get_data callbacks
1789 */
1790
1791 static void
1792 ztest_get_done(zgd_t *zgd, int error)
1793 {
1794 ztest_ds_t *zd = zgd->zgd_private;
1795 uint64_t object = zgd->zgd_rl->rl_object;
1796
1797 if (zgd->zgd_db)
1798 dmu_buf_rele(zgd->zgd_db, zgd);
1799
1800 ztest_range_unlock(zgd->zgd_rl);
1801 ztest_object_unlock(zd, object);
1802
1803 if (error == 0 && zgd->zgd_bp)
1804 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1805
1806 umem_free(zgd, sizeof (*zgd));
1807 }
1808
1809 static int
1810 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1811 {
1812 ztest_ds_t *zd = arg;
1813 objset_t *os = zd->zd_os;
1814 uint64_t object = lr->lr_foid;
1815 uint64_t offset = lr->lr_offset;
1816 uint64_t size = lr->lr_length;
1817 blkptr_t *bp = &lr->lr_blkptr;
1818 uint64_t txg = lr->lr_common.lrc_txg;
1819 uint64_t crtxg;
1820 dmu_object_info_t doi;
1821 dmu_buf_t *db;
1822 zgd_t *zgd;
1823 int error;
1824
1825 ztest_object_lock(zd, object, RL_READER);
1826 error = dmu_bonus_hold(os, object, FTAG, &db);
1827 if (error) {
1828 ztest_object_unlock(zd, object);
1829 return (error);
1830 }
1831
1832 crtxg = ztest_bt_bonus(db)->bt_crtxg;
1833
1834 if (crtxg == 0 || crtxg > txg) {
1835 dmu_buf_rele(db, FTAG);
1836 ztest_object_unlock(zd, object);
1837 return (ENOENT);
1838 }
1839
1840 dmu_object_info_from_db(db, &doi);
1841 dmu_buf_rele(db, FTAG);
1842 db = NULL;
1843
1844 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1845 zgd->zgd_zilog = zd->zd_zilog;
1846 zgd->zgd_private = zd;
1847
1848 if (buf != NULL) { /* immediate write */
1849 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1850 RL_READER);
1851
1852 error = dmu_read(os, object, offset, size, buf,
1853 DMU_READ_NO_PREFETCH);
1854 ASSERT(error == 0);
1855 } else {
1856 size = doi.doi_data_block_size;
1857 if (ISP2(size)) {
1858 offset = P2ALIGN(offset, size);
1859 } else {
1860 ASSERT(offset < size);
1861 offset = 0;
1862 }
1863
1864 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1865 RL_READER);
1866
1867 error = dmu_buf_hold(os, object, offset, zgd, &db,
1868 DMU_READ_NO_PREFETCH);
1869
1870 if (error == 0) {
1871 blkptr_t *obp = dmu_buf_get_blkptr(db);
1872 if (obp) {
1873 ASSERT(BP_IS_HOLE(bp));
1874 *bp = *obp;
1875 }
1876
1877 zgd->zgd_db = db;
1878 zgd->zgd_bp = bp;
1879
1880 ASSERT(db->db_offset == offset);
1881 ASSERT(db->db_size == size);
1882
1883 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1884 ztest_get_done, zgd);
1885
1886 if (error == 0)
1887 return (0);
1888 }
1889 }
1890
1891 ztest_get_done(zgd, error);
1892
1893 return (error);
1894 }
1895
1896 static void *
1897 ztest_lr_alloc(size_t lrsize, char *name)
1898 {
1899 char *lr;
1900 size_t namesize = name ? strlen(name) + 1 : 0;
1901
1902 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
1903
1904 if (name)
1905 bcopy(name, lr + lrsize, namesize);
1906
1907 return (lr);
1908 }
1909
1910 void
1911 ztest_lr_free(void *lr, size_t lrsize, char *name)
1912 {
1913 size_t namesize = name ? strlen(name) + 1 : 0;
1914
1915 umem_free(lr, lrsize + namesize);
1916 }
1917
1918 /*
1919 * Lookup a bunch of objects. Returns the number of objects not found.
1920 */
1921 static int
1922 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
1923 {
1924 int missing = 0;
1925 int error;
1926
1927 ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1928
1929 for (int i = 0; i < count; i++, od++) {
1930 od->od_object = 0;
1931 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
1932 sizeof (uint64_t), 1, &od->od_object);
1933 if (error) {
1934 ASSERT(error == ENOENT);
1935 ASSERT(od->od_object == 0);
1936 missing++;
1937 } else {
1938 dmu_buf_t *db;
1939 ztest_block_tag_t *bbt;
1940 dmu_object_info_t doi;
1941
1942 ASSERT(od->od_object != 0);
1943 ASSERT(missing == 0); /* there should be no gaps */
1944
1945 ztest_object_lock(zd, od->od_object, RL_READER);
1946 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
1947 od->od_object, FTAG, &db));
1948 dmu_object_info_from_db(db, &doi);
1949 bbt = ztest_bt_bonus(db);
1950 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1951 od->od_type = doi.doi_type;
1952 od->od_blocksize = doi.doi_data_block_size;
1953 od->od_gen = bbt->bt_gen;
1954 dmu_buf_rele(db, FTAG);
1955 ztest_object_unlock(zd, od->od_object);
1956 }
1957 }
1958
1959 return (missing);
1960 }
1961
1962 static int
1963 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
1964 {
1965 int missing = 0;
1966
1967 ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1968
1969 for (int i = 0; i < count; i++, od++) {
1970 if (missing) {
1971 od->od_object = 0;
1972 missing++;
1973 continue;
1974 }
1975
1976 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
1977
1978 lr->lr_doid = od->od_dir;
1979 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
1980 lr->lrz_type = od->od_crtype;
1981 lr->lrz_blocksize = od->od_crblocksize;
1982 lr->lrz_ibshift = ztest_random_ibshift();
1983 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
1984 lr->lrz_bonuslen = dmu_bonus_max();
1985 lr->lr_gen = od->od_crgen;
1986 lr->lr_crtime[0] = time(NULL);
1987
1988 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
1989 ASSERT(missing == 0);
1990 od->od_object = 0;
1991 missing++;
1992 } else {
1993 od->od_object = lr->lr_foid;
1994 od->od_type = od->od_crtype;
1995 od->od_blocksize = od->od_crblocksize;
1996 od->od_gen = od->od_crgen;
1997 ASSERT(od->od_object != 0);
1998 }
1999
2000 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2001 }
2002
2003 return (missing);
2004 }
2005
2006 static int
2007 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2008 {
2009 int missing = 0;
2010 int error;
2011
2012 ASSERT(_mutex_held(&zd->zd_dirobj_lock));
2013
2014 od += count - 1;
2015
2016 for (int i = count - 1; i >= 0; i--, od--) {
2017 if (missing) {
2018 missing++;
2019 continue;
2020 }
2021
2022 /*
2023 * No object was found.
2024 */
2025 if (od->od_object == 0)
2026 continue;
2027
2028 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2029
2030 lr->lr_doid = od->od_dir;
2031
2032 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2033 ASSERT3U(error, ==, ENOSPC);
2034 missing++;
2035 } else {
2036 od->od_object = 0;
2037 }
2038 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2039 }
2040
2041 return (missing);
2042 }
2043
2044 static int
2045 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2046 void *data)
2047 {
2048 lr_write_t *lr;
2049 int error;
2050
2051 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2052
2053 lr->lr_foid = object;
2054 lr->lr_offset = offset;
2055 lr->lr_length = size;
2056 lr->lr_blkoff = 0;
2057 BP_ZERO(&lr->lr_blkptr);
2058
2059 bcopy(data, lr + 1, size);
2060
2061 error = ztest_replay_write(zd, lr, B_FALSE);
2062
2063 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2064
2065 return (error);
2066 }
2067
2068 static int
2069 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2070 {
2071 lr_truncate_t *lr;
2072 int error;
2073
2074 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2075
2076 lr->lr_foid = object;
2077 lr->lr_offset = offset;
2078 lr->lr_length = size;
2079
2080 error = ztest_replay_truncate(zd, lr, B_FALSE);
2081
2082 ztest_lr_free(lr, sizeof (*lr), NULL);
2083
2084 return (error);
2085 }
2086
2087 static int
2088 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2089 {
2090 lr_setattr_t *lr;
2091 int error;
2092
2093 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2094
2095 lr->lr_foid = object;
2096 lr->lr_size = 0;
2097 lr->lr_mode = 0;
2098
2099 error = ztest_replay_setattr(zd, lr, B_FALSE);
2100
2101 ztest_lr_free(lr, sizeof (*lr), NULL);
2102
2103 return (error);
2104 }
2105
2106 static void
2107 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2108 {
2109 objset_t *os = zd->zd_os;
2110 dmu_tx_t *tx;
2111 uint64_t txg;
2112 rl_t *rl;
2113
2114 txg_wait_synced(dmu_objset_pool(os), 0);
2115
2116 ztest_object_lock(zd, object, RL_READER);
2117 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2118
2119 tx = dmu_tx_create(os);
2120
2121 dmu_tx_hold_write(tx, object, offset, size);
2122
2123 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2124
2125 if (txg != 0) {
2126 dmu_prealloc(os, object, offset, size, tx);
2127 dmu_tx_commit(tx);
2128 txg_wait_synced(dmu_objset_pool(os), txg);
2129 } else {
2130 (void) dmu_free_long_range(os, object, offset, size);
2131 }
2132
2133 ztest_range_unlock(rl);
2134 ztest_object_unlock(zd, object);
2135 }
2136
2137 static void
2138 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2139 {
2140 int err;
2141 ztest_block_tag_t wbt;
2142 dmu_object_info_t doi;
2143 enum ztest_io_type io_type;
2144 uint64_t blocksize;
2145 void *data;
2146
2147 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2148 blocksize = doi.doi_data_block_size;
2149 data = umem_alloc(blocksize, UMEM_NOFAIL);
2150
2151 /*
2152 * Pick an i/o type at random, biased toward writing block tags.
2153 */
2154 io_type = ztest_random(ZTEST_IO_TYPES);
2155 if (ztest_random(2) == 0)
2156 io_type = ZTEST_IO_WRITE_TAG;
2157
2158 (void) rw_rdlock(&zd->zd_zilog_lock);
2159
2160 switch (io_type) {
2161
2162 case ZTEST_IO_WRITE_TAG:
2163 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
2164 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2165 break;
2166
2167 case ZTEST_IO_WRITE_PATTERN:
2168 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2169 if (ztest_random(2) == 0) {
2170 /*
2171 * Induce fletcher2 collisions to ensure that
2172 * zio_ddt_collision() detects and resolves them
2173 * when using fletcher2-verify for deduplication.
2174 */
2175 ((uint64_t *)data)[0] ^= 1ULL << 63;
2176 ((uint64_t *)data)[4] ^= 1ULL << 63;
2177 }
2178 (void) ztest_write(zd, object, offset, blocksize, data);
2179 break;
2180
2181 case ZTEST_IO_WRITE_ZEROES:
2182 bzero(data, blocksize);
2183 (void) ztest_write(zd, object, offset, blocksize, data);
2184 break;
2185
2186 case ZTEST_IO_TRUNCATE:
2187 (void) ztest_truncate(zd, object, offset, blocksize);
2188 break;
2189
2190 case ZTEST_IO_SETATTR:
2191 (void) ztest_setattr(zd, object);
2192 break;
2193
2194 case ZTEST_IO_REWRITE:
2195 (void) rw_rdlock(&ztest_name_lock);
2196 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2197 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2198 B_FALSE);
2199 VERIFY(err == 0 || err == ENOSPC);
2200 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2201 ZFS_PROP_COMPRESSION,
2202 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2203 B_FALSE);
2204 VERIFY(err == 0 || err == ENOSPC);
2205 (void) rw_unlock(&ztest_name_lock);
2206
2207 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2208 DMU_READ_NO_PREFETCH));
2209
2210 (void) ztest_write(zd, object, offset, blocksize, data);
2211 break;
2212 }
2213
2214 (void) rw_unlock(&zd->zd_zilog_lock);
2215
2216 umem_free(data, blocksize);
2217 }
2218
2219 /*
2220 * Initialize an object description template.
2221 */
2222 static void
2223 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2224 dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
2225 {
2226 od->od_dir = ZTEST_DIROBJ;
2227 od->od_object = 0;
2228
2229 od->od_crtype = type;
2230 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2231 od->od_crgen = gen;
2232
2233 od->od_type = DMU_OT_NONE;
2234 od->od_blocksize = 0;
2235 od->od_gen = 0;
2236
2237 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2238 tag, (int64_t)id, index);
2239 }
2240
2241 /*
2242 * Lookup or create the objects for a test using the od template.
2243 * If the objects do not all exist, or if 'remove' is specified,
2244 * remove any existing objects and create new ones. Otherwise,
2245 * use the existing objects.
2246 */
2247 static int
2248 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2249 {
2250 int count = size / sizeof (*od);
2251 int rv = 0;
2252
2253 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0);
2254 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2255 (ztest_remove(zd, od, count) != 0 ||
2256 ztest_create(zd, od, count) != 0))
2257 rv = -1;
2258 zd->zd_od = od;
2259 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2260
2261 return (rv);
2262 }
2263
2264 /* ARGSUSED */
2265 void
2266 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2267 {
2268 zilog_t *zilog = zd->zd_zilog;
2269
2270 (void) rw_rdlock(&zd->zd_zilog_lock);
2271
2272 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2273
2274 /*
2275 * Remember the committed values in zd, which is in parent/child
2276 * shared memory. If we die, the next iteration of ztest_run()
2277 * will verify that the log really does contain this record.
2278 */
2279 mutex_enter(&zilog->zl_lock);
2280 ASSERT(zd->zd_shared != NULL);
2281 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2282 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2283 mutex_exit(&zilog->zl_lock);
2284
2285 (void) rw_unlock(&zd->zd_zilog_lock);
2286 }
2287
2288 /*
2289 * This function is designed to simulate the operations that occur during a
2290 * mount/unmount operation. We hold the dataset across these operations in an
2291 * attempt to expose any implicit assumptions about ZIL management.
2292 */
2293 /* ARGSUSED */
2294 void
2295 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2296 {
2297 objset_t *os = zd->zd_os;
2298
2299 /*
2300 * We grab the zd_dirobj_lock to ensure that no other thread is
2301 * updating the zil (i.e. adding in-memory log records) and the
2302 * zd_zilog_lock to block any I/O.
2303 */
2304 VERIFY0(mutex_lock(&zd->zd_dirobj_lock));
2305 (void) rw_wrlock(&zd->zd_zilog_lock);
2306
2307 /* zfsvfs_teardown() */
2308 zil_close(zd->zd_zilog);
2309
2310 /* zfsvfs_setup() */
2311 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2312 zil_replay(os, zd, ztest_replay_vector);
2313
2314 (void) rw_unlock(&zd->zd_zilog_lock);
2315 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2316 }
2317
2318 /*
2319 * Verify that we can't destroy an active pool, create an existing pool,
2320 * or create a pool with a bad vdev spec.
2321 */
2322 /* ARGSUSED */
2323 void
2324 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2325 {
2326 ztest_shared_opts_t *zo = &ztest_opts;
2327 spa_t *spa;
2328 nvlist_t *nvroot;
2329
2330 /*
2331 * Attempt to create using a bad file.
2332 */
2333 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2334 VERIFY3U(ENOENT, ==,
2335 spa_create("ztest_bad_file", nvroot, NULL, NULL));
2336 nvlist_free(nvroot);
2337
2338 /*
2339 * Attempt to create using a bad mirror.
2340 */
2341 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1);
2342 VERIFY3U(ENOENT, ==,
2343 spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2344 nvlist_free(nvroot);
2345
2346 /*
2347 * Attempt to create an existing pool. It shouldn't matter
2348 * what's in the nvroot; we should fail with EEXIST.
2349 */
2350 (void) rw_rdlock(&ztest_name_lock);
2351 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2352 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2353 nvlist_free(nvroot);
2354 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2355 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2356 spa_close(spa, FTAG);
2357
2358 (void) rw_unlock(&ztest_name_lock);
2359 }
2360
2361 /* ARGSUSED */
2362 void
2363 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2364 {
2365 spa_t *spa;
2366 uint64_t initial_version = SPA_VERSION_INITIAL;
2367 uint64_t version, newversion;
2368 nvlist_t *nvroot, *props;
2369 char *name;
2370
2371 VERIFY0(mutex_lock(&ztest_vdev_lock));
2372 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2373
2374 /*
2375 * Clean up from previous runs.
2376 */
2377 (void) spa_destroy(name);
2378
2379 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2380 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2381
2382 /*
2383 * If we're configuring a RAIDZ device then make sure that the
2384 * the initial version is capable of supporting that feature.
2385 */
2386 switch (ztest_opts.zo_raidz_parity) {
2387 case 0:
2388 case 1:
2389 initial_version = SPA_VERSION_INITIAL;
2390 break;
2391 case 2:
2392 initial_version = SPA_VERSION_RAIDZ2;
2393 break;
2394 case 3:
2395 initial_version = SPA_VERSION_RAIDZ3;
2396 break;
2397 }
2398
2399 /*
2400 * Create a pool with a spa version that can be upgraded. Pick
2401 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2402 */
2403 do {
2404 version = ztest_random_spa_version(initial_version);
2405 } while (version > SPA_VERSION_BEFORE_FEATURES);
2406
2407 props = fnvlist_alloc();
2408 fnvlist_add_uint64(props,
2409 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2410 VERIFY0(spa_create(name, nvroot, props, NULL));
2411 fnvlist_free(nvroot);
2412 fnvlist_free(props);
2413
2414 VERIFY0(spa_open(name, &spa, FTAG));
2415 VERIFY3U(spa_version(spa), ==, version);
2416 newversion = ztest_random_spa_version(version + 1);
2417
2418 if (ztest_opts.zo_verbose >= 4) {
2419 (void) printf("upgrading spa version from %llu to %llu\n",
2420 (u_longlong_t)version, (u_longlong_t)newversion);
2421 }
2422
2423 spa_upgrade(spa, newversion);
2424 VERIFY3U(spa_version(spa), >, version);
2425 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2426 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2427 spa_close(spa, FTAG);
2428
2429 strfree(name);
2430 VERIFY0(mutex_unlock(&ztest_vdev_lock));
2431 }
2432
2433 static vdev_t *
2434 vdev_lookup_by_path(vdev_t *vd, const char *path)
2435 {
2436 vdev_t *mvd;
2437
2438 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2439 return (vd);
2440
2441 for (int c = 0; c < vd->vdev_children; c++)
2442 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2443 NULL)
2444 return (mvd);
2445
2446 return (NULL);
2447 }
2448
2449 /*
2450 * Find the first available hole which can be used as a top-level.
2451 */
2452 int
2453 find_vdev_hole(spa_t *spa)
2454 {
2455 vdev_t *rvd = spa->spa_root_vdev;
2456 int c;
2457
2458 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2459
2460 for (c = 0; c < rvd->vdev_children; c++) {
2461 vdev_t *cvd = rvd->vdev_child[c];
2462
2463 if (cvd->vdev_ishole)
2464 break;
2465 }
2466 return (c);
2467 }
2468
2469 /*
2470 * Verify that vdev_add() works as expected.
2471 */
2472 /* ARGSUSED */
2473 void
2474 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2475 {
2476 ztest_shared_t *zs = ztest_shared;
2477 spa_t *spa = ztest_spa;
2478 uint64_t leaves;
2479 uint64_t guid;
2480 nvlist_t *nvroot;
2481 int error;
2482
2483 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2484 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2485
2486 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2487
2488 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2489
2490 /*
2491 * If we have slogs then remove them 1/4 of the time.
2492 */
2493 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2494 /*
2495 * Grab the guid from the head of the log class rotor.
2496 */
2497 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2498
2499 spa_config_exit(spa, SCL_VDEV, FTAG);
2500
2501 /*
2502 * We have to grab the zs_name_lock as writer to
2503 * prevent a race between removing a slog (dmu_objset_find)
2504 * and destroying a dataset. Removing the slog will
2505 * grab a reference on the dataset which may cause
2506 * dmu_objset_destroy() to fail with EBUSY thus
2507 * leaving the dataset in an inconsistent state.
2508 */
2509 VERIFY(rw_wrlock(&ztest_name_lock) == 0);
2510 error = spa_vdev_remove(spa, guid, B_FALSE);
2511 VERIFY(rw_unlock(&ztest_name_lock) == 0);
2512
2513 if (error && error != EEXIST)
2514 fatal(0, "spa_vdev_remove() = %d", error);
2515 } else {
2516 spa_config_exit(spa, SCL_VDEV, FTAG);
2517
2518 /*
2519 * Make 1/4 of the devices be log devices.
2520 */
2521 nvroot = make_vdev_root(NULL, NULL, NULL,
2522 ztest_opts.zo_vdev_size, 0,
2523 ztest_random(4) == 0, ztest_opts.zo_raidz,
2524 zs->zs_mirrors, 1);
2525
2526 error = spa_vdev_add(spa, nvroot);
2527 nvlist_free(nvroot);
2528
2529 if (error == ENOSPC)
2530 ztest_record_enospc("spa_vdev_add");
2531 else if (error != 0)
2532 fatal(0, "spa_vdev_add() = %d", error);
2533 }
2534
2535 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2536 }
2537
2538 /*
2539 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2540 */
2541 /* ARGSUSED */
2542 void
2543 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2544 {
2545 ztest_shared_t *zs = ztest_shared;
2546 spa_t *spa = ztest_spa;
2547 vdev_t *rvd = spa->spa_root_vdev;
2548 spa_aux_vdev_t *sav;
2549 char *aux;
2550 uint64_t guid = 0;
2551 int error;
2552
2553 if (ztest_random(2) == 0) {
2554 sav = &spa->spa_spares;
2555 aux = ZPOOL_CONFIG_SPARES;
2556 } else {
2557 sav = &spa->spa_l2cache;
2558 aux = ZPOOL_CONFIG_L2CACHE;
2559 }
2560
2561 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2562
2563 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2564
2565 if (sav->sav_count != 0 && ztest_random(4) == 0) {
2566 /*
2567 * Pick a random device to remove.
2568 */
2569 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2570 } else {
2571 /*
2572 * Find an unused device we can add.
2573 */
2574 zs->zs_vdev_aux = 0;
2575 for (;;) {
2576 char path[MAXPATHLEN];
2577 int c;
2578 (void) snprintf(path, sizeof (path), ztest_aux_template,
2579 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2580 zs->zs_vdev_aux);
2581 for (c = 0; c < sav->sav_count; c++)
2582 if (strcmp(sav->sav_vdevs[c]->vdev_path,
2583 path) == 0)
2584 break;
2585 if (c == sav->sav_count &&
2586 vdev_lookup_by_path(rvd, path) == NULL)
2587 break;
2588 zs->zs_vdev_aux++;
2589 }
2590 }
2591
2592 spa_config_exit(spa, SCL_VDEV, FTAG);
2593
2594 if (guid == 0) {
2595 /*
2596 * Add a new device.
2597 */
2598 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
2599 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2600 error = spa_vdev_add(spa, nvroot);
2601 if (error != 0)
2602 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2603 nvlist_free(nvroot);
2604 } else {
2605 /*
2606 * Remove an existing device. Sometimes, dirty its
2607 * vdev state first to make sure we handle removal
2608 * of devices that have pending state changes.
2609 */
2610 if (ztest_random(2) == 0)
2611 (void) vdev_online(spa, guid, 0, NULL);
2612
2613 error = spa_vdev_remove(spa, guid, B_FALSE);
2614 if (error != 0 && error != EBUSY)
2615 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2616 }
2617
2618 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2619 }
2620
2621 /*
2622 * split a pool if it has mirror tlvdevs
2623 */
2624 /* ARGSUSED */
2625 void
2626 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2627 {
2628 ztest_shared_t *zs = ztest_shared;
2629 spa_t *spa = ztest_spa;
2630 vdev_t *rvd = spa->spa_root_vdev;
2631 nvlist_t *tree, **child, *config, *split, **schild;
2632 uint_t c, children, schildren = 0, lastlogid = 0;
2633 int error = 0;
2634
2635 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2636
2637 /* ensure we have a useable config; mirrors of raidz aren't supported */
2638 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
2639 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2640 return;
2641 }
2642
2643 /* clean up the old pool, if any */
2644 (void) spa_destroy("splitp");
2645
2646 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2647
2648 /* generate a config from the existing config */
2649 mutex_enter(&spa->spa_props_lock);
2650 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2651 &tree) == 0);
2652 mutex_exit(&spa->spa_props_lock);
2653
2654 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2655 &children) == 0);
2656
2657 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2658 for (c = 0; c < children; c++) {
2659 vdev_t *tvd = rvd->vdev_child[c];
2660 nvlist_t **mchild;
2661 uint_t mchildren;
2662
2663 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2664 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2665 0) == 0);
2666 VERIFY(nvlist_add_string(schild[schildren],
2667 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2668 VERIFY(nvlist_add_uint64(schild[schildren],
2669 ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2670 if (lastlogid == 0)
2671 lastlogid = schildren;
2672 ++schildren;
2673 continue;
2674 }
2675 lastlogid = 0;
2676 VERIFY(nvlist_lookup_nvlist_array(child[c],
2677 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2678 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2679 }
2680
2681 /* OK, create a config that can be used to split */
2682 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2683 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2684 VDEV_TYPE_ROOT) == 0);
2685 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2686 lastlogid != 0 ? lastlogid : schildren) == 0);
2687
2688 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2689 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2690
2691 for (c = 0; c < schildren; c++)
2692 nvlist_free(schild[c]);
2693 free(schild);
2694 nvlist_free(split);
2695
2696 spa_config_exit(spa, SCL_VDEV, FTAG);
2697
2698 (void) rw_wrlock(&ztest_name_lock);
2699 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2700 (void) rw_unlock(&ztest_name_lock);
2701
2702 nvlist_free(config);
2703
2704 if (error == 0) {
2705 (void) printf("successful split - results:\n");
2706 mutex_enter(&spa_namespace_lock);
2707 show_pool_stats(spa);
2708 show_pool_stats(spa_lookup("splitp"));
2709 mutex_exit(&spa_namespace_lock);
2710 ++zs->zs_splits;
2711 --zs->zs_mirrors;
2712 }
2713 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2714
2715 }
2716
2717 /*
2718 * Verify that we can attach and detach devices.
2719 */
2720 /* ARGSUSED */
2721 void
2722 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2723 {
2724 ztest_shared_t *zs = ztest_shared;
2725 spa_t *spa = ztest_spa;
2726 spa_aux_vdev_t *sav = &spa->spa_spares;
2727 vdev_t *rvd = spa->spa_root_vdev;
2728 vdev_t *oldvd, *newvd, *pvd;
2729 nvlist_t *root;
2730 uint64_t leaves;
2731 uint64_t leaf, top;
2732 uint64_t ashift = ztest_get_ashift();
2733 uint64_t oldguid, pguid;
2734 size_t oldsize, newsize;
2735 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
2736 int replacing;
2737 int oldvd_has_siblings = B_FALSE;
2738 int newvd_is_spare = B_FALSE;
2739 int oldvd_is_log;
2740 int error, expected_error;
2741
2742 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2743 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
2744
2745 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2746
2747 /*
2748 * Decide whether to do an attach or a replace.
2749 */
2750 replacing = ztest_random(2);
2751
2752 /*
2753 * Pick a random top-level vdev.
2754 */
2755 top = ztest_random_vdev_top(spa, B_TRUE);
2756
2757 /*
2758 * Pick a random leaf within it.
2759 */
2760 leaf = ztest_random(leaves);
2761
2762 /*
2763 * Locate this vdev.
2764 */
2765 oldvd = rvd->vdev_child[top];
2766 if (zs->zs_mirrors >= 1) {
2767 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
2768 ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
2769 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
2770 }
2771 if (ztest_opts.zo_raidz > 1) {
2772 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
2773 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
2774 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
2775 }
2776
2777 /*
2778 * If we're already doing an attach or replace, oldvd may be a
2779 * mirror vdev -- in which case, pick a random child.
2780 */
2781 while (oldvd->vdev_children != 0) {
2782 oldvd_has_siblings = B_TRUE;
2783 ASSERT(oldvd->vdev_children >= 2);
2784 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
2785 }
2786
2787 oldguid = oldvd->vdev_guid;
2788 oldsize = vdev_get_min_asize(oldvd);
2789 oldvd_is_log = oldvd->vdev_top->vdev_islog;
2790 (void) strcpy(oldpath, oldvd->vdev_path);
2791 pvd = oldvd->vdev_parent;
2792 pguid = pvd->vdev_guid;
2793
2794 /*
2795 * If oldvd has siblings, then half of the time, detach it.
2796 */
2797 if (oldvd_has_siblings && ztest_random(2) == 0) {
2798 spa_config_exit(spa, SCL_VDEV, FTAG);
2799 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
2800 if (error != 0 && error != ENODEV && error != EBUSY &&
2801 error != ENOTSUP)
2802 fatal(0, "detach (%s) returned %d", oldpath, error);
2803 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2804 return;
2805 }
2806
2807 /*
2808 * For the new vdev, choose with equal probability between the two
2809 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2810 */
2811 if (sav->sav_count != 0 && ztest_random(3) == 0) {
2812 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
2813 newvd_is_spare = B_TRUE;
2814 (void) strcpy(newpath, newvd->vdev_path);
2815 } else {
2816 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
2817 ztest_opts.zo_dir, ztest_opts.zo_pool,
2818 top * leaves + leaf);
2819 if (ztest_random(2) == 0)
2820 newpath[strlen(newpath) - 1] = 'b';
2821 newvd = vdev_lookup_by_path(rvd, newpath);
2822 }
2823
2824 if (newvd) {
2825 newsize = vdev_get_min_asize(newvd);
2826 } else {
2827 /*
2828 * Make newsize a little bigger or smaller than oldsize.
2829 * If it's smaller, the attach should fail.
2830 * If it's larger, and we're doing a replace,
2831 * we should get dynamic LUN growth when we're done.
2832 */
2833 newsize = 10 * oldsize / (9 + ztest_random(3));
2834 }
2835
2836 /*
2837 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2838 * unless it's a replace; in that case any non-replacing parent is OK.
2839 *
2840 * If newvd is already part of the pool, it should fail with EBUSY.
2841 *
2842 * If newvd is too small, it should fail with EOVERFLOW.
2843 */
2844 if (pvd->vdev_ops != &vdev_mirror_ops &&
2845 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
2846 pvd->vdev_ops == &vdev_replacing_ops ||
2847 pvd->vdev_ops == &vdev_spare_ops))
2848 expected_error = ENOTSUP;
2849 else if (newvd_is_spare && (!replacing || oldvd_is_log))
2850 expected_error = ENOTSUP;
2851 else if (newvd == oldvd)
2852 expected_error = replacing ? 0 : EBUSY;
2853 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
2854 expected_error = EBUSY;
2855 else if (newsize < oldsize)
2856 expected_error = EOVERFLOW;
2857 else if (ashift > oldvd->vdev_top->vdev_ashift)
2858 expected_error = EDOM;
2859 else
2860 expected_error = 0;
2861
2862 spa_config_exit(spa, SCL_VDEV, FTAG);
2863
2864 /*
2865 * Build the nvlist describing newpath.
2866 */
2867 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
2868 ashift, 0, 0, 0, 1);
2869
2870 error = spa_vdev_attach(spa, oldguid, root, replacing);
2871
2872 nvlist_free(root);
2873
2874 /*
2875 * If our parent was the replacing vdev, but the replace completed,
2876 * then instead of failing with ENOTSUP we may either succeed,
2877 * fail with ENODEV, or fail with EOVERFLOW.
2878 */
2879 if (expected_error == ENOTSUP &&
2880 (error == 0 || error == ENODEV || error == EOVERFLOW))
2881 expected_error = error;
2882
2883 /*
2884 * If someone grew the LUN, the replacement may be too small.
2885 */
2886 if (error == EOVERFLOW || error == EBUSY)
2887 expected_error = error;
2888
2889 /* XXX workaround 6690467 */
2890 if (error != expected_error && expected_error != EBUSY) {
2891 fatal(0, "attach (%s %llu, %s %llu, %d) "
2892 "returned %d, expected %d",
2893 oldpath, (longlong_t)oldsize, newpath,
2894 (longlong_t)newsize, replacing, error, expected_error);
2895 }
2896
2897 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2898 }
2899
2900 /*
2901 * Callback function which expands the physical size of the vdev.
2902 */
2903 vdev_t *
2904 grow_vdev(vdev_t *vd, void *arg)
2905 {
2906 spa_t *spa = vd->vdev_spa;
2907 size_t *newsize = arg;
2908 size_t fsize;
2909 int fd;
2910
2911 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2912 ASSERT(vd->vdev_ops->vdev_op_leaf);
2913
2914 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
2915 return (vd);
2916
2917 fsize = lseek(fd, 0, SEEK_END);
2918 (void) ftruncate(fd, *newsize);
2919
2920 if (ztest_opts.zo_verbose >= 6) {
2921 (void) printf("%s grew from %lu to %lu bytes\n",
2922 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
2923 }
2924 (void) close(fd);
2925 return (NULL);
2926 }
2927
2928 /*
2929 * Callback function which expands a given vdev by calling vdev_online().
2930 */
2931 /* ARGSUSED */
2932 vdev_t *
2933 online_vdev(vdev_t *vd, void *arg)
2934 {
2935 spa_t *spa = vd->vdev_spa;
2936 vdev_t *tvd = vd->vdev_top;
2937 uint64_t guid = vd->vdev_guid;
2938 uint64_t generation = spa->spa_config_generation + 1;
2939 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
2940 int error;
2941
2942 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2943 ASSERT(vd->vdev_ops->vdev_op_leaf);
2944
2945 /* Calling vdev_online will initialize the new metaslabs */
2946 spa_config_exit(spa, SCL_STATE, spa);
2947 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
2948 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2949
2950 /*
2951 * If vdev_online returned an error or the underlying vdev_open
2952 * failed then we abort the expand. The only way to know that
2953 * vdev_open fails is by checking the returned newstate.
2954 */
2955 if (error || newstate != VDEV_STATE_HEALTHY) {
2956 if (ztest_opts.zo_verbose >= 5) {
2957 (void) printf("Unable to expand vdev, state %llu, "
2958 "error %d\n", (u_longlong_t)newstate, error);
2959 }
2960 return (vd);
2961 }
2962 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
2963
2964 /*
2965 * Since we dropped the lock we need to ensure that we're
2966 * still talking to the original vdev. It's possible this
2967 * vdev may have been detached/replaced while we were
2968 * trying to online it.
2969 */
2970 if (generation != spa->spa_config_generation) {
2971 if (ztest_opts.zo_verbose >= 5) {
2972 (void) printf("vdev configuration has changed, "
2973 "guid %llu, state %llu, expected gen %llu, "
2974 "got gen %llu\n",
2975 (u_longlong_t)guid,
2976 (u_longlong_t)tvd->vdev_state,
2977 (u_longlong_t)generation,
2978 (u_longlong_t)spa->spa_config_generation);
2979 }
2980 return (vd);
2981 }
2982 return (NULL);
2983 }
2984
2985 /*
2986 * Traverse the vdev tree calling the supplied function.
2987 * We continue to walk the tree until we either have walked all
2988 * children or we receive a non-NULL return from the callback.
2989 * If a NULL callback is passed, then we just return back the first
2990 * leaf vdev we encounter.
2991 */
2992 vdev_t *
2993 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
2994 {
2995 if (vd->vdev_ops->vdev_op_leaf) {
2996 if (func == NULL)
2997 return (vd);
2998 else
2999 return (func(vd, arg));
3000 }
3001
3002 for (uint_t c = 0; c < vd->vdev_children; c++) {
3003 vdev_t *cvd = vd->vdev_child[c];
3004 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3005 return (cvd);
3006 }
3007 return (NULL);
3008 }
3009
3010 /*
3011 * Verify that dynamic LUN growth works as expected.
3012 */
3013 /* ARGSUSED */
3014 void
3015 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3016 {
3017 spa_t *spa = ztest_spa;
3018 vdev_t *vd, *tvd;
3019 metaslab_class_t *mc;
3020 metaslab_group_t *mg;
3021 size_t psize, newsize;
3022 uint64_t top;
3023 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3024
3025 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
3026 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3027
3028 top = ztest_random_vdev_top(spa, B_TRUE);
3029
3030 tvd = spa->spa_root_vdev->vdev_child[top];
3031 mg = tvd->vdev_mg;
3032 mc = mg->mg_class;
3033 old_ms_count = tvd->vdev_ms_count;
3034 old_class_space = metaslab_class_get_space(mc);
3035
3036 /*
3037 * Determine the size of the first leaf vdev associated with
3038 * our top-level device.
3039 */
3040 vd = vdev_walk_tree(tvd, NULL, NULL);
3041 ASSERT3P(vd, !=, NULL);
3042 ASSERT(vd->vdev_ops->vdev_op_leaf);
3043
3044 psize = vd->vdev_psize;
3045
3046 /*
3047 * We only try to expand the vdev if it's healthy, less than 4x its
3048 * original size, and it has a valid psize.
3049 */
3050 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3051 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3052 spa_config_exit(spa, SCL_STATE, spa);
3053 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3054 return;
3055 }
3056 ASSERT(psize > 0);
3057 newsize = psize + psize / 8;
3058 ASSERT3U(newsize, >, psize);
3059
3060 if (ztest_opts.zo_verbose >= 6) {
3061 (void) printf("Expanding LUN %s from %lu to %lu\n",
3062 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3063 }
3064
3065 /*
3066 * Growing the vdev is a two step process:
3067 * 1). expand the physical size (i.e. relabel)
3068 * 2). online the vdev to create the new metaslabs
3069 */
3070 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3071 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3072 tvd->vdev_state != VDEV_STATE_HEALTHY) {
3073 if (ztest_opts.zo_verbose >= 5) {
3074 (void) printf("Could not expand LUN because "
3075 "the vdev configuration changed.\n");
3076 }
3077 spa_config_exit(spa, SCL_STATE, spa);
3078 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3079 return;
3080 }
3081
3082 spa_config_exit(spa, SCL_STATE, spa);
3083
3084 /*
3085 * Expanding the LUN will update the config asynchronously,
3086 * thus we must wait for the async thread to complete any
3087 * pending tasks before proceeding.
3088 */
3089 for (;;) {
3090 boolean_t done;
3091 mutex_enter(&spa->spa_async_lock);
3092 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3093 mutex_exit(&spa->spa_async_lock);
3094 if (done)
3095 break;
3096 txg_wait_synced(spa_get_dsl(spa), 0);
3097 (void) poll(NULL, 0, 100);
3098 }
3099
3100 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3101
3102 tvd = spa->spa_root_vdev->vdev_child[top];
3103 new_ms_count = tvd->vdev_ms_count;
3104 new_class_space = metaslab_class_get_space(mc);
3105
3106 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3107 if (ztest_opts.zo_verbose >= 5) {
3108 (void) printf("Could not verify LUN expansion due to "
3109 "intervening vdev offline or remove.\n");
3110 }
3111 spa_config_exit(spa, SCL_STATE, spa);
3112 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3113 return;
3114 }
3115
3116 /*
3117 * Make sure we were able to grow the vdev.
3118 */
3119 if (new_ms_count <= old_ms_count)
3120 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
3121 old_ms_count, new_ms_count);
3122
3123 /*
3124 * Make sure we were able to grow the pool.
3125 */
3126 if (new_class_space <= old_class_space)
3127 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
3128 old_class_space, new_class_space);
3129
3130 if (ztest_opts.zo_verbose >= 5) {
3131 char oldnumbuf[6], newnumbuf[6];
3132
3133 nicenum(old_class_space, oldnumbuf);
3134 nicenum(new_class_space, newnumbuf);
3135 (void) printf("%s grew from %s to %s\n",
3136 spa->spa_name, oldnumbuf, newnumbuf);
3137 }
3138
3139 spa_config_exit(spa, SCL_STATE, spa);
3140 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3141 }
3142
3143 /*
3144 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3145 */
3146 /* ARGSUSED */
3147 static void
3148 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3149 {
3150 /*
3151 * Create the objects common to all ztest datasets.
3152 */
3153 VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3154 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3155 }
3156
3157 static int
3158 ztest_dataset_create(char *dsname)
3159 {
3160 uint64_t zilset = ztest_random(100);
3161 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3162 ztest_objset_create_cb, NULL);
3163
3164 if (err || zilset < 80)
3165 return (err);
3166
3167 if (ztest_opts.zo_verbose >= 6)
3168 (void) printf("Setting dataset %s to sync always\n", dsname);
3169 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3170 ZFS_SYNC_ALWAYS, B_FALSE));
3171 }
3172
3173 /* ARGSUSED */
3174 static int
3175 ztest_objset_destroy_cb(const char *name, void *arg)
3176 {
3177 objset_t *os;
3178 dmu_object_info_t doi;
3179 int error;
3180
3181 /*
3182 * Verify that the dataset contains a directory object.
3183 */
3184 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os));
3185 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3186 if (error != ENOENT) {
3187 /* We could have crashed in the middle of destroying it */
3188 ASSERT0(error);
3189 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3190 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3191 }
3192 dmu_objset_disown(os, FTAG);
3193
3194 /*
3195 * Destroy the dataset.
3196 */
3197 if (strchr(name, '@') != NULL) {
3198 VERIFY0(dsl_destroy_snapshot(name, B_FALSE));
3199 } else {
3200 VERIFY0(dsl_destroy_head(name));
3201 }
3202 return (0);
3203 }
3204
3205 static boolean_t
3206 ztest_snapshot_create(char *osname, uint64_t id)
3207 {
3208 char snapname[MAXNAMELEN];
3209 int error;
3210
3211 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3212
3213 error = dmu_objset_snapshot_one(osname, snapname);
3214 if (error == ENOSPC) {
3215 ztest_record_enospc(FTAG);
3216 return (B_FALSE);
3217 }
3218 if (error != 0 && error != EEXIST) {
3219 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3220 snapname, error);
3221 }
3222 return (B_TRUE);
3223 }
3224
3225 static boolean_t
3226 ztest_snapshot_destroy(char *osname, uint64_t id)
3227 {
3228 char snapname[MAXNAMELEN];
3229 int error;
3230
3231 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname,
3232 (u_longlong_t)id);
3233
3234 error = dsl_destroy_snapshot(snapname, B_FALSE);
3235 if (error != 0 && error != ENOENT)
3236 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3237 return (B_TRUE);
3238 }
3239
3240 /* ARGSUSED */
3241 void
3242 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3243 {
3244 ztest_ds_t zdtmp;
3245 int iters;
3246 int error;
3247 objset_t *os, *os2;
3248 char name[MAXNAMELEN];
3249 zilog_t *zilog;
3250
3251 (void) rw_rdlock(&ztest_name_lock);
3252
3253 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu",
3254 ztest_opts.zo_pool, (u_longlong_t)id);
3255
3256 /*
3257 * If this dataset exists from a previous run, process its replay log
3258 * half of the time. If we don't replay it, then dmu_objset_destroy()
3259 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3260 */
3261 if (ztest_random(2) == 0 &&
3262 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3263 ztest_zd_init(&zdtmp, NULL, os);
3264 zil_replay(os, &zdtmp, ztest_replay_vector);
3265 ztest_zd_fini(&zdtmp);
3266 dmu_objset_disown(os, FTAG);
3267 }
3268
3269 /*
3270 * There may be an old instance of the dataset we're about to
3271 * create lying around from a previous run. If so, destroy it
3272 * and all of its snapshots.
3273 */
3274 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3275 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3276
3277 /*
3278 * Verify that the destroyed dataset is no longer in the namespace.
3279 */
3280 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3281 FTAG, &os));
3282
3283 /*
3284 * Verify that we can create a new dataset.
3285 */
3286 error = ztest_dataset_create(name);
3287 if (error) {
3288 if (error == ENOSPC) {
3289 ztest_record_enospc(FTAG);
3290 (void) rw_unlock(&ztest_name_lock);
3291 return;
3292 }
3293 fatal(0, "dmu_objset_create(%s) = %d", name, error);
3294 }
3295
3296 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3297
3298 ztest_zd_init(&zdtmp, NULL, os);
3299
3300 /*
3301 * Open the intent log for it.
3302 */
3303 zilog = zil_open(os, ztest_get_data);
3304
3305 /*
3306 * Put some objects in there, do a little I/O to them,
3307 * and randomly take a couple of snapshots along the way.
3308 */
3309 iters = ztest_random(5);
3310 for (int i = 0; i < iters; i++) {
3311 ztest_dmu_object_alloc_free(&zdtmp, id);
3312 if (ztest_random(iters) == 0)
3313 (void) ztest_snapshot_create(name, i);
3314 }
3315
3316 /*
3317 * Verify that we cannot create an existing dataset.
3318 */
3319 VERIFY3U(EEXIST, ==,
3320 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3321
3322 /*
3323 * Verify that we can hold an objset that is also owned.
3324 */
3325 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3326 dmu_objset_rele(os2, FTAG);
3327
3328 /*
3329 * Verify that we cannot own an objset that is already owned.
3330 */
3331 VERIFY3U(EBUSY, ==,
3332 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3333
3334 zil_close(zilog);
3335 dmu_objset_disown(os, FTAG);
3336 ztest_zd_fini(&zdtmp);
3337
3338 (void) rw_unlock(&ztest_name_lock);
3339 }
3340
3341 /*
3342 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3343 */
3344 void
3345 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3346 {
3347 (void) rw_rdlock(&ztest_name_lock);
3348 (void) ztest_snapshot_destroy(zd->zd_name, id);
3349 (void) ztest_snapshot_create(zd->zd_name, id);
3350 (void) rw_unlock(&ztest_name_lock);
3351 }
3352
3353 /*
3354 * Cleanup non-standard snapshots and clones.
3355 */
3356 void
3357 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3358 {
3359 char snap1name[MAXNAMELEN];
3360 char clone1name[MAXNAMELEN];
3361 char snap2name[MAXNAMELEN];
3362 char clone2name[MAXNAMELEN];
3363 char snap3name[MAXNAMELEN];
3364 int error;
3365
3366 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id);
3367 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id);
3368 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id);
3369 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id);
3370 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id);
3371
3372 error = dsl_destroy_head(clone2name);
3373 if (error && error != ENOENT)
3374 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
3375 error = dsl_destroy_snapshot(snap3name, B_FALSE);
3376 if (error && error != ENOENT)
3377 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
3378 error = dsl_destroy_snapshot(snap2name, B_FALSE);
3379 if (error && error != ENOENT)
3380 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
3381 error = dsl_destroy_head(clone1name);
3382 if (error && error != ENOENT)
3383 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
3384 error = dsl_destroy_snapshot(snap1name, B_FALSE);
3385 if (error && error != ENOENT)
3386 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
3387 }
3388
3389 /*
3390 * Verify dsl_dataset_promote handles EBUSY
3391 */
3392 void
3393 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3394 {
3395 objset_t *os;
3396 char snap1name[MAXNAMELEN];
3397 char clone1name[MAXNAMELEN];
3398 char snap2name[MAXNAMELEN];
3399 char clone2name[MAXNAMELEN];
3400 char snap3name[MAXNAMELEN];
3401 char *osname = zd->zd_name;
3402 int error;
3403
3404 (void) rw_rdlock(&ztest_name_lock);
3405
3406 ztest_dsl_dataset_cleanup(osname, id);
3407
3408 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id);
3409 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id);
3410 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id);
3411 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id);
3412 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id);
3413
3414 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3415 if (error && error != EEXIST) {
3416 if (error == ENOSPC) {
3417 ztest_record_enospc(FTAG);
3418 goto out;
3419 }
3420 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3421 }
3422
3423 error = dmu_objset_clone(clone1name, snap1name);
3424 if (error) {
3425 if (error == ENOSPC) {
3426 ztest_record_enospc(FTAG);
3427 goto out;
3428 }
3429 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3430 }
3431
3432 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
3433 if (error && error != EEXIST) {
3434 if (error == ENOSPC) {
3435 ztest_record_enospc(FTAG);
3436 goto out;
3437 }
3438 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3439 }
3440
3441 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
3442 if (error && error != EEXIST) {
3443 if (error == ENOSPC) {
3444 ztest_record_enospc(FTAG);
3445 goto out;
3446 }
3447 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3448 }
3449
3450 error = dmu_objset_clone(clone2name, snap3name);
3451 if (error) {
3452 if (error == ENOSPC) {
3453 ztest_record_enospc(FTAG);
3454 goto out;
3455 }
3456 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3457 }
3458
3459 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os);
3460 if (error)
3461 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
3462 error = dsl_dataset_promote(clone2name, NULL);
3463 if (error != EBUSY)
3464 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3465 error);
3466 dmu_objset_disown(os, FTAG);
3467
3468 out:
3469 ztest_dsl_dataset_cleanup(osname, id);
3470
3471 (void) rw_unlock(&ztest_name_lock);
3472 }
3473
3474 /*
3475 * Verify that dmu_object_{alloc,free} work as expected.
3476 */
3477 void
3478 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3479 {
3480 ztest_od_t od[4];
3481 int batchsize = sizeof (od) / sizeof (od[0]);
3482
3483 for (int b = 0; b < batchsize; b++)
3484 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
3485
3486 /*
3487 * Destroy the previous batch of objects, create a new batch,
3488 * and do some I/O on the new objects.
3489 */
3490 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0)
3491 return;
3492
3493 while (ztest_random(4 * batchsize) != 0)
3494 ztest_io(zd, od[ztest_random(batchsize)].od_object,
3495 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3496 }
3497
3498 /*
3499 * Verify that dmu_{read,write} work as expected.
3500 */
3501 void
3502 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3503 {
3504 objset_t *os = zd->zd_os;
3505 ztest_od_t od[2];
3506 dmu_tx_t *tx;
3507 int i, freeit, error;
3508 uint64_t n, s, txg;
3509 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3510 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3511 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3512 uint64_t regions = 997;
3513 uint64_t stride = 123456789ULL;
3514 uint64_t width = 40;
3515 int free_percent = 5;
3516
3517 /*
3518 * This test uses two objects, packobj and bigobj, that are always
3519 * updated together (i.e. in the same tx) so that their contents are
3520 * in sync and can be compared. Their contents relate to each other
3521 * in a simple way: packobj is a dense array of 'bufwad' structures,
3522 * while bigobj is a sparse array of the same bufwads. Specifically,
3523 * for any index n, there are three bufwads that should be identical:
3524 *
3525 * packobj, at offset n * sizeof (bufwad_t)
3526 * bigobj, at the head of the nth chunk
3527 * bigobj, at the tail of the nth chunk
3528 *
3529 * The chunk size is arbitrary. It doesn't have to be a power of two,
3530 * and it doesn't have any relation to the object blocksize.
3531 * The only requirement is that it can hold at least two bufwads.
3532 *
3533 * Normally, we write the bufwad to each of these locations.
3534 * However, free_percent of the time we instead write zeroes to
3535 * packobj and perform a dmu_free_range() on bigobj. By comparing
3536 * bigobj to packobj, we can verify that the DMU is correctly
3537 * tracking which parts of an object are allocated and free,
3538 * and that the contents of the allocated blocks are correct.
3539 */
3540
3541 /*
3542 * Read the directory info. If it's the first time, set things up.
3543 */
3544 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3545 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3546
3547 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3548 return;
3549
3550 bigobj = od[0].od_object;
3551 packobj = od[1].od_object;
3552 chunksize = od[0].od_gen;
3553 ASSERT(chunksize == od[1].od_gen);
3554
3555 /*
3556 * Prefetch a random chunk of the big object.
3557 * Our aim here is to get some async reads in flight
3558 * for blocks that we may free below; the DMU should
3559 * handle this race correctly.
3560 */
3561 n = ztest_random(regions) * stride + ztest_random(width);
3562 s = 1 + ztest_random(2 * width - 1);
3563 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize);
3564
3565 /*
3566 * Pick a random index and compute the offsets into packobj and bigobj.
3567 */
3568 n = ztest_random(regions) * stride + ztest_random(width);
3569 s = 1 + ztest_random(width - 1);
3570
3571 packoff = n * sizeof (bufwad_t);
3572 packsize = s * sizeof (bufwad_t);
3573
3574 bigoff = n * chunksize;
3575 bigsize = s * chunksize;
3576
3577 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3578 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3579
3580 /*
3581 * free_percent of the time, free a range of bigobj rather than
3582 * overwriting it.
3583 */
3584 freeit = (ztest_random(100) < free_percent);
3585
3586 /*
3587 * Read the current contents of our objects.
3588 */
3589 error = dmu_read(os, packobj, packoff, packsize, packbuf,
3590 DMU_READ_PREFETCH);
3591 ASSERT0(error);
3592 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3593 DMU_READ_PREFETCH);
3594 ASSERT0(error);
3595
3596 /*
3597 * Get a tx for the mods to both packobj and bigobj.
3598 */
3599 tx = dmu_tx_create(os);
3600
3601 dmu_tx_hold_write(tx, packobj, packoff, packsize);
3602
3603 if (freeit)
3604 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3605 else
3606 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3607
3608 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3609 if (txg == 0) {
3610 umem_free(packbuf, packsize);
3611 umem_free(bigbuf, bigsize);
3612 return;
3613 }
3614
3615 dmu_object_set_checksum(os, bigobj,
3616 (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx);
3617
3618 dmu_object_set_compress(os, bigobj,
3619 (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx);
3620
3621 /*
3622 * For each index from n to n + s, verify that the existing bufwad
3623 * in packobj matches the bufwads at the head and tail of the
3624 * corresponding chunk in bigobj. Then update all three bufwads
3625 * with the new values we want to write out.
3626 */
3627 for (i = 0; i < s; i++) {
3628 /* LINTED */
3629 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3630 /* LINTED */
3631 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3632 /* LINTED */
3633 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3634
3635 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3636 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3637
3638 if (pack->bw_txg > txg)
3639 fatal(0, "future leak: got %llx, open txg is %llx",
3640 pack->bw_txg, txg);
3641
3642 if (pack->bw_data != 0 && pack->bw_index != n + i)
3643 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3644 pack->bw_index, n, i);
3645
3646 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3647 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3648
3649 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3650 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3651
3652 if (freeit) {
3653 bzero(pack, sizeof (bufwad_t));
3654 } else {
3655 pack->bw_index = n + i;
3656 pack->bw_txg = txg;
3657 pack->bw_data = 1 + ztest_random(-2ULL);
3658 }
3659 *bigH = *pack;
3660 *bigT = *pack;
3661 }
3662
3663 /*
3664 * We've verified all the old bufwads, and made new ones.
3665 * Now write them out.
3666 */
3667 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3668
3669 if (freeit) {
3670 if (ztest_opts.zo_verbose >= 7) {
3671 (void) printf("freeing offset %llx size %llx"
3672 " txg %llx\n",
3673 (u_longlong_t)bigoff,
3674 (u_longlong_t)bigsize,
3675 (u_longlong_t)txg);
3676 }
3677 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3678 } else {
3679 if (ztest_opts.zo_verbose >= 7) {
3680 (void) printf("writing offset %llx size %llx"
3681 " txg %llx\n",
3682 (u_longlong_t)bigoff,
3683 (u_longlong_t)bigsize,
3684 (u_longlong_t)txg);
3685 }
3686 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3687 }
3688
3689 dmu_tx_commit(tx);
3690
3691 /*
3692 * Sanity check the stuff we just wrote.
3693 */
3694 {
3695 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3696 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3697
3698 VERIFY(0 == dmu_read(os, packobj, packoff,
3699 packsize, packcheck, DMU_READ_PREFETCH));
3700 VERIFY(0 == dmu_read(os, bigobj, bigoff,
3701 bigsize, bigcheck, DMU_READ_PREFETCH));
3702
3703 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3704 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3705
3706 umem_free(packcheck, packsize);
3707 umem_free(bigcheck, bigsize);
3708 }
3709
3710 umem_free(packbuf, packsize);
3711 umem_free(bigbuf, bigsize);
3712 }
3713
3714 void
3715 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3716 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
3717 {
3718 uint64_t i;
3719 bufwad_t *pack;
3720 bufwad_t *bigH;
3721 bufwad_t *bigT;
3722
3723 /*
3724 * For each index from n to n + s, verify that the existing bufwad
3725 * in packobj matches the bufwads at the head and tail of the
3726 * corresponding chunk in bigobj. Then update all three bufwads
3727 * with the new values we want to write out.
3728 */
3729 for (i = 0; i < s; i++) {
3730 /* LINTED */
3731 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3732 /* LINTED */
3733 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3734 /* LINTED */
3735 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3736
3737 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3738 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3739
3740 if (pack->bw_txg > txg)
3741 fatal(0, "future leak: got %llx, open txg is %llx",
3742 pack->bw_txg, txg);
3743
3744 if (pack->bw_data != 0 && pack->bw_index != n + i)
3745 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3746 pack->bw_index, n, i);
3747
3748 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3749 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3750
3751 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3752 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3753
3754 pack->bw_index = n + i;
3755 pack->bw_txg = txg;
3756 pack->bw_data = 1 + ztest_random(-2ULL);
3757
3758 *bigH = *pack;
3759 *bigT = *pack;
3760 }
3761 }
3762
3763 void
3764 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
3765 {
3766 objset_t *os = zd->zd_os;
3767 ztest_od_t od[2];
3768 dmu_tx_t *tx;
3769 uint64_t i;
3770 int error;
3771 uint64_t n, s, txg;
3772 bufwad_t *packbuf, *bigbuf;
3773 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3774 uint64_t blocksize = ztest_random_blocksize();
3775 uint64_t chunksize = blocksize;
3776 uint64_t regions = 997;
3777 uint64_t stride = 123456789ULL;
3778 uint64_t width = 9;
3779 dmu_buf_t *bonus_db;
3780 arc_buf_t **bigbuf_arcbufs;
3781 dmu_object_info_t doi;
3782
3783 /*
3784 * This test uses two objects, packobj and bigobj, that are always
3785 * updated together (i.e. in the same tx) so that their contents are
3786 * in sync and can be compared. Their contents relate to each other
3787 * in a simple way: packobj is a dense array of 'bufwad' structures,
3788 * while bigobj is a sparse array of the same bufwads. Specifically,
3789 * for any index n, there are three bufwads that should be identical:
3790 *
3791 * packobj, at offset n * sizeof (bufwad_t)
3792 * bigobj, at the head of the nth chunk
3793 * bigobj, at the tail of the nth chunk
3794 *
3795 * The chunk size is set equal to bigobj block size so that
3796 * dmu_assign_arcbuf() can be tested for object updates.
3797 */
3798
3799 /*
3800 * Read the directory info. If it's the first time, set things up.
3801 */
3802 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3803 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3804
3805 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3806 return;
3807
3808 bigobj = od[0].od_object;
3809 packobj = od[1].od_object;
3810 blocksize = od[0].od_blocksize;
3811 chunksize = blocksize;
3812 ASSERT(chunksize == od[1].od_gen);
3813
3814 VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
3815 VERIFY(ISP2(doi.doi_data_block_size));
3816 VERIFY(chunksize == doi.doi_data_block_size);
3817 VERIFY(chunksize >= 2 * sizeof (bufwad_t));
3818
3819 /*
3820 * Pick a random index and compute the offsets into packobj and bigobj.
3821 */
3822 n = ztest_random(regions) * stride + ztest_random(width);
3823 s = 1 + ztest_random(width - 1);
3824
3825 packoff = n * sizeof (bufwad_t);
3826 packsize = s * sizeof (bufwad_t);
3827
3828 bigoff = n * chunksize;
3829 bigsize = s * chunksize;
3830
3831 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
3832 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
3833
3834 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
3835
3836 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
3837
3838 /*
3839 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
3840 * Iteration 1 test zcopy to already referenced dbufs.
3841 * Iteration 2 test zcopy to dirty dbuf in the same txg.
3842 * Iteration 3 test zcopy to dbuf dirty in previous txg.
3843 * Iteration 4 test zcopy when dbuf is no longer dirty.
3844 * Iteration 5 test zcopy when it can't be done.
3845 * Iteration 6 one more zcopy write.
3846 */
3847 for (i = 0; i < 7; i++) {
3848 uint64_t j;
3849 uint64_t off;
3850
3851 /*
3852 * In iteration 5 (i == 5) use arcbufs
3853 * that don't match bigobj blksz to test
3854 * dmu_assign_arcbuf() when it can't directly
3855 * assign an arcbuf to a dbuf.
3856 */
3857 for (j = 0; j < s; j++) {
3858 if (i != 5) {
3859 bigbuf_arcbufs[j] =
3860 dmu_request_arcbuf(bonus_db, chunksize);
3861 } else {
3862 bigbuf_arcbufs[2 * j] =
3863 dmu_request_arcbuf(bonus_db, chunksize / 2);
3864 bigbuf_arcbufs[2 * j + 1] =
3865 dmu_request_arcbuf(bonus_db, chunksize / 2);
3866 }
3867 }
3868
3869 /*
3870 * Get a tx for the mods to both packobj and bigobj.
3871 */
3872 tx = dmu_tx_create(os);
3873
3874 dmu_tx_hold_write(tx, packobj, packoff, packsize);
3875 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3876
3877 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3878 if (txg == 0) {
3879 umem_free(packbuf, packsize);
3880 umem_free(bigbuf, bigsize);
3881 for (j = 0; j < s; j++) {
3882 if (i != 5) {
3883 dmu_return_arcbuf(bigbuf_arcbufs[j]);
3884 } else {
3885 dmu_return_arcbuf(
3886 bigbuf_arcbufs[2 * j]);
3887 dmu_return_arcbuf(
3888 bigbuf_arcbufs[2 * j + 1]);
3889 }
3890 }
3891 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3892 dmu_buf_rele(bonus_db, FTAG);
3893 return;
3894 }
3895
3896 /*
3897 * 50% of the time don't read objects in the 1st iteration to
3898 * test dmu_assign_arcbuf() for the case when there're no
3899 * existing dbufs for the specified offsets.
3900 */
3901 if (i != 0 || ztest_random(2) != 0) {
3902 error = dmu_read(os, packobj, packoff,
3903 packsize, packbuf, DMU_READ_PREFETCH);
3904 ASSERT0(error);
3905 error = dmu_read(os, bigobj, bigoff, bigsize,
3906 bigbuf, DMU_READ_PREFETCH);
3907 ASSERT0(error);
3908 }
3909 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
3910 n, chunksize, txg);
3911
3912 /*
3913 * We've verified all the old bufwads, and made new ones.
3914 * Now write them out.
3915 */
3916 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3917 if (ztest_opts.zo_verbose >= 7) {
3918 (void) printf("writing offset %llx size %llx"
3919 " txg %llx\n",
3920 (u_longlong_t)bigoff,
3921 (u_longlong_t)bigsize,
3922 (u_longlong_t)txg);
3923 }
3924 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
3925 dmu_buf_t *dbt;
3926 if (i != 5) {
3927 bcopy((caddr_t)bigbuf + (off - bigoff),
3928 bigbuf_arcbufs[j]->b_data, chunksize);
3929 } else {
3930 bcopy((caddr_t)bigbuf + (off - bigoff),
3931 bigbuf_arcbufs[2 * j]->b_data,
3932 chunksize / 2);
3933 bcopy((caddr_t)bigbuf + (off - bigoff) +
3934 chunksize / 2,
3935 bigbuf_arcbufs[2 * j + 1]->b_data,
3936 chunksize / 2);
3937 }
3938
3939 if (i == 1) {
3940 VERIFY(dmu_buf_hold(os, bigobj, off,
3941 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
3942 }
3943 if (i != 5) {
3944 dmu_assign_arcbuf(bonus_db, off,
3945 bigbuf_arcbufs[j], tx);
3946 } else {
3947 dmu_assign_arcbuf(bonus_db, off,
3948 bigbuf_arcbufs[2 * j], tx);
3949 dmu_assign_arcbuf(bonus_db,
3950 off + chunksize / 2,
3951 bigbuf_arcbufs[2 * j + 1], tx);
3952 }
3953 if (i == 1) {
3954 dmu_buf_rele(dbt, FTAG);
3955 }
3956 }
3957 dmu_tx_commit(tx);
3958
3959 /*
3960 * Sanity check the stuff we just wrote.
3961 */
3962 {
3963 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3964 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3965
3966 VERIFY(0 == dmu_read(os, packobj, packoff,
3967 packsize, packcheck, DMU_READ_PREFETCH));
3968 VERIFY(0 == dmu_read(os, bigobj, bigoff,
3969 bigsize, bigcheck, DMU_READ_PREFETCH));
3970
3971 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3972 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3973
3974 umem_free(packcheck, packsize);
3975 umem_free(bigcheck, bigsize);
3976 }
3977 if (i == 2) {
3978 txg_wait_open(dmu_objset_pool(os), 0);
3979 } else if (i == 3) {
3980 txg_wait_synced(dmu_objset_pool(os), 0);
3981 }
3982 }
3983
3984 dmu_buf_rele(bonus_db, FTAG);
3985 umem_free(packbuf, packsize);
3986 umem_free(bigbuf, bigsize);
3987 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3988 }
3989
3990 /* ARGSUSED */
3991 void
3992 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
3993 {
3994 ztest_od_t od[1];
3995 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
3996 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3997
3998 /*
3999 * Have multiple threads write to large offsets in an object
4000 * to verify that parallel writes to an object -- even to the
4001 * same blocks within the object -- doesn't cause any trouble.
4002 */
4003 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4004
4005 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4006 return;
4007
4008 while (ztest_random(10) != 0)
4009 ztest_io(zd, od[0].od_object, offset);
4010 }
4011
4012 void
4013 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4014 {
4015 ztest_od_t od[1];
4016 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4017 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4018 uint64_t count = ztest_random(20) + 1;
4019 uint64_t blocksize = ztest_random_blocksize();
4020 void *data;
4021
4022 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4023
4024 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4025 return;
4026
4027 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0)
4028 return;
4029
4030 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize);
4031
4032 data = umem_zalloc(blocksize, UMEM_NOFAIL);
4033
4034 while (ztest_random(count) != 0) {
4035 uint64_t randoff = offset + (ztest_random(count) * blocksize);
4036 if (ztest_write(zd, od[0].od_object, randoff, blocksize,
4037 data) != 0)
4038 break;
4039 while (ztest_random(4) != 0)
4040 ztest_io(zd, od[0].od_object, randoff);
4041 }
4042
4043 umem_free(data, blocksize);
4044 }
4045
4046 /*
4047 * Verify that zap_{create,destroy,add,remove,update} work as expected.
4048 */
4049 #define ZTEST_ZAP_MIN_INTS 1
4050 #define ZTEST_ZAP_MAX_INTS 4
4051 #define ZTEST_ZAP_MAX_PROPS 1000
4052
4053 void
4054 ztest_zap(ztest_ds_t *zd, uint64_t id)
4055 {
4056 objset_t *os = zd->zd_os;
4057 ztest_od_t od[1];
4058 uint64_t object;
4059 uint64_t txg, last_txg;
4060 uint64_t value[ZTEST_ZAP_MAX_INTS];
4061 uint64_t zl_ints, zl_intsize, prop;
4062 int i, ints;
4063 dmu_tx_t *tx;
4064 char propname[100], txgname[100];
4065 int error;
4066 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4067
4068 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4069
4070 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4071 return;
4072
4073 object = od[0].od_object;
4074
4075 /*
4076 * Generate a known hash collision, and verify that
4077 * we can lookup and remove both entries.
4078 */
4079 tx = dmu_tx_create(os);
4080 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4081 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4082 if (txg == 0)
4083 return;
4084 for (i = 0; i < 2; i++) {
4085 value[i] = i;
4086 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4087 1, &value[i], tx));
4088 }
4089 for (i = 0; i < 2; i++) {
4090 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4091 sizeof (uint64_t), 1, &value[i], tx));
4092 VERIFY3U(0, ==,
4093 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4094 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4095 ASSERT3U(zl_ints, ==, 1);
4096 }
4097 for (i = 0; i < 2; i++) {
4098 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4099 }
4100 dmu_tx_commit(tx);
4101
4102 /*
4103 * Generate a buch of random entries.
4104 */
4105 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4106
4107 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4108 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4109 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4110 bzero(value, sizeof (value));
4111 last_txg = 0;
4112
4113 /*
4114 * If these zap entries already exist, validate their contents.
4115 */
4116 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4117 if (error == 0) {
4118 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4119 ASSERT3U(zl_ints, ==, 1);
4120
4121 VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4122 zl_ints, &last_txg) == 0);
4123
4124 VERIFY(zap_length(os, object, propname, &zl_intsize,
4125 &zl_ints) == 0);
4126
4127 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4128 ASSERT3U(zl_ints, ==, ints);
4129
4130 VERIFY(zap_lookup(os, object, propname, zl_intsize,
4131 zl_ints, value) == 0);
4132
4133 for (i = 0; i < ints; i++) {
4134 ASSERT3U(value[i], ==, last_txg + object + i);
4135 }
4136 } else {
4137 ASSERT3U(error, ==, ENOENT);
4138 }
4139
4140 /*
4141 * Atomically update two entries in our zap object.
4142 * The first is named txg_%llu, and contains the txg
4143 * in which the property was last updated. The second
4144 * is named prop_%llu, and the nth element of its value
4145 * should be txg + object + n.
4146 */
4147 tx = dmu_tx_create(os);
4148 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4149 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4150 if (txg == 0)
4151 return;
4152
4153 if (last_txg > txg)
4154 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4155
4156 for (i = 0; i < ints; i++)
4157 value[i] = txg + object + i;
4158
4159 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4160 1, &txg, tx));
4161 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4162 ints, value, tx));
4163
4164 dmu_tx_commit(tx);
4165
4166 /*
4167 * Remove a random pair of entries.
4168 */
4169 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4170 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4171 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4172
4173 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4174
4175 if (error == ENOENT)
4176 return;
4177
4178 ASSERT0(error);
4179
4180 tx = dmu_tx_create(os);
4181 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4182 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4183 if (txg == 0)
4184 return;
4185 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4186 VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4187 dmu_tx_commit(tx);
4188 }
4189
4190 /*
4191 * Testcase to test the upgrading of a microzap to fatzap.
4192 */
4193 void
4194 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4195 {
4196 objset_t *os = zd->zd_os;
4197 ztest_od_t od[1];
4198 uint64_t object, txg;
4199
4200 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4201
4202 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4203 return;
4204
4205 object = od[0].od_object;
4206
4207 /*
4208 * Add entries to this ZAP and make sure it spills over
4209 * and gets upgraded to a fatzap. Also, since we are adding
4210 * 2050 entries we should see ptrtbl growth and leaf-block split.
4211 */
4212 for (int i = 0; i < 2050; i++) {
4213 char name[MAXNAMELEN];
4214 uint64_t value = i;
4215 dmu_tx_t *tx;
4216 int error;
4217
4218 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4219 id, value);
4220
4221 tx = dmu_tx_create(os);
4222 dmu_tx_hold_zap(tx, object, B_TRUE, name);
4223 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4224 if (txg == 0)
4225 return;
4226 error = zap_add(os, object, name, sizeof (uint64_t), 1,
4227 &value, tx);
4228 ASSERT(error == 0 || error == EEXIST);
4229 dmu_tx_commit(tx);
4230 }
4231 }
4232
4233 /* ARGSUSED */
4234 void
4235 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4236 {
4237 objset_t *os = zd->zd_os;
4238 ztest_od_t od[1];
4239 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4240 dmu_tx_t *tx;
4241 int i, namelen, error;
4242 int micro = ztest_random(2);
4243 char name[20], string_value[20];
4244 void *data;
4245
4246 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
4247
4248 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4249 return;
4250
4251 object = od[0].od_object;
4252
4253 /*
4254 * Generate a random name of the form 'xxx.....' where each
4255 * x is a random printable character and the dots are dots.
4256 * There are 94 such characters, and the name length goes from
4257 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4258 */
4259 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4260
4261 for (i = 0; i < 3; i++)
4262 name[i] = '!' + ztest_random('~' - '!' + 1);
4263 for (; i < namelen - 1; i++)
4264 name[i] = '.';
4265 name[i] = '\0';
4266
4267 if ((namelen & 1) || micro) {
4268 wsize = sizeof (txg);
4269 wc = 1;
4270 data = &txg;
4271 } else {
4272 wsize = 1;
4273 wc = namelen;
4274 data = string_value;
4275 }
4276
4277 count = -1ULL;
4278 VERIFY0(zap_count(os, object, &count));
4279 ASSERT(count != -1ULL);
4280
4281 /*
4282 * Select an operation: length, lookup, add, update, remove.
4283 */
4284 i = ztest_random(5);
4285
4286 if (i >= 2) {
4287 tx = dmu_tx_create(os);
4288 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4289 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4290 if (txg == 0)
4291 return;
4292 bcopy(name, string_value, namelen);
4293 } else {
4294 tx = NULL;
4295 txg = 0;
4296 bzero(string_value, namelen);
4297 }
4298
4299 switch (i) {
4300
4301 case 0:
4302 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4303 if (error == 0) {
4304 ASSERT3U(wsize, ==, zl_wsize);
4305 ASSERT3U(wc, ==, zl_wc);
4306 } else {
4307 ASSERT3U(error, ==, ENOENT);
4308 }
4309 break;
4310
4311 case 1:
4312 error = zap_lookup(os, object, name, wsize, wc, data);
4313 if (error == 0) {
4314 if (data == string_value &&
4315 bcmp(name, data, namelen) != 0)
4316 fatal(0, "name '%s' != val '%s' len %d",
4317 name, data, namelen);
4318 } else {
4319 ASSERT3U(error, ==, ENOENT);
4320 }
4321 break;
4322
4323 case 2:
4324 error = zap_add(os, object, name, wsize, wc, data, tx);
4325 ASSERT(error == 0 || error == EEXIST);
4326 break;
4327
4328 case 3:
4329 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4330 break;
4331
4332 case 4:
4333 error = zap_remove(os, object, name, tx);
4334 ASSERT(error == 0 || error == ENOENT);
4335 break;
4336 }
4337
4338 if (tx != NULL)
4339 dmu_tx_commit(tx);
4340 }
4341
4342 /*
4343 * Commit callback data.
4344 */
4345 typedef struct ztest_cb_data {
4346 list_node_t zcd_node;
4347 uint64_t zcd_txg;
4348 int zcd_expected_err;
4349 boolean_t zcd_added;
4350 boolean_t zcd_called;
4351 spa_t *zcd_spa;
4352 } ztest_cb_data_t;
4353
4354 /* This is the actual commit callback function */
4355 static void
4356 ztest_commit_callback(void *arg, int error)
4357 {
4358 ztest_cb_data_t *data = arg;
4359 uint64_t synced_txg;
4360
4361 VERIFY(data != NULL);
4362 VERIFY3S(data->zcd_expected_err, ==, error);
4363 VERIFY(!data->zcd_called);
4364
4365 synced_txg = spa_last_synced_txg(data->zcd_spa);
4366 if (data->zcd_txg > synced_txg)
4367 fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4368 ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4369 synced_txg);
4370
4371 data->zcd_called = B_TRUE;
4372
4373 if (error == ECANCELED) {
4374 ASSERT0(data->zcd_txg);
4375 ASSERT(!data->zcd_added);
4376
4377 /*
4378 * The private callback data should be destroyed here, but
4379 * since we are going to check the zcd_called field after
4380 * dmu_tx_abort(), we will destroy it there.
4381 */
4382 return;
4383 }
4384
4385 /* Was this callback added to the global callback list? */
4386 if (!data->zcd_added)
4387 goto out;
4388
4389 ASSERT3U(data->zcd_txg, !=, 0);
4390
4391 /* Remove our callback from the list */
4392 (void) mutex_lock(&zcl.zcl_callbacks_lock);
4393 list_remove(&zcl.zcl_callbacks, data);
4394 (void) mutex_unlock(&zcl.zcl_callbacks_lock);
4395
4396 out:
4397 umem_free(data, sizeof (ztest_cb_data_t));
4398 }
4399
4400 /* Allocate and initialize callback data structure */
4401 static ztest_cb_data_t *
4402 ztest_create_cb_data(objset_t *os, uint64_t txg)
4403 {
4404 ztest_cb_data_t *cb_data;
4405
4406 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4407
4408 cb_data->zcd_txg = txg;
4409 cb_data->zcd_spa = dmu_objset_spa(os);
4410
4411 return (cb_data);
4412 }
4413
4414 /*
4415 * If a number of txgs equal to this threshold have been created after a commit
4416 * callback has been registered but not called, then we assume there is an
4417 * implementation bug.
4418 */
4419 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2)
4420
4421 /*
4422 * Commit callback test.
4423 */
4424 void
4425 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4426 {
4427 objset_t *os = zd->zd_os;
4428 ztest_od_t od[1];
4429 dmu_tx_t *tx;
4430 ztest_cb_data_t *cb_data[3], *tmp_cb;
4431 uint64_t old_txg, txg;
4432 int i, error;
4433
4434 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4435
4436 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4437 return;
4438
4439 tx = dmu_tx_create(os);
4440
4441 cb_data[0] = ztest_create_cb_data(os, 0);
4442 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4443
4444 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t));
4445
4446 /* Every once in a while, abort the transaction on purpose */
4447 if (ztest_random(100) == 0)
4448 error = -1;
4449
4450 if (!error)
4451 error = dmu_tx_assign(tx, TXG_NOWAIT);
4452
4453 txg = error ? 0 : dmu_tx_get_txg(tx);
4454
4455 cb_data[0]->zcd_txg = txg;
4456 cb_data[1] = ztest_create_cb_data(os, txg);
4457 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4458
4459 if (error) {
4460 /*
4461 * It's not a strict requirement to call the registered
4462 * callbacks from inside dmu_tx_abort(), but that's what
4463 * it's supposed to happen in the current implementation
4464 * so we will check for that.
4465 */
4466 for (i = 0; i < 2; i++) {
4467 cb_data[i]->zcd_expected_err = ECANCELED;
4468 VERIFY(!cb_data[i]->zcd_called);
4469 }
4470
4471 dmu_tx_abort(tx);
4472
4473 for (i = 0; i < 2; i++) {
4474 VERIFY(cb_data[i]->zcd_called);
4475 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4476 }
4477
4478 return;
4479 }
4480
4481 cb_data[2] = ztest_create_cb_data(os, txg);
4482 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4483
4484 /*
4485 * Read existing data to make sure there isn't a future leak.
4486 */
4487 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t),
4488 &old_txg, DMU_READ_PREFETCH));
4489
4490 if (old_txg > txg)
4491 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4492 old_txg, txg);
4493
4494 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx);
4495
4496 (void) mutex_lock(&zcl.zcl_callbacks_lock);
4497
4498 /*
4499 * Since commit callbacks don't have any ordering requirement and since
4500 * it is theoretically possible for a commit callback to be called
4501 * after an arbitrary amount of time has elapsed since its txg has been
4502 * synced, it is difficult to reliably determine whether a commit
4503 * callback hasn't been called due to high load or due to a flawed
4504 * implementation.
4505 *
4506 * In practice, we will assume that if after a certain number of txgs a
4507 * commit callback hasn't been called, then most likely there's an
4508 * implementation bug..
4509 */
4510 tmp_cb = list_head(&zcl.zcl_callbacks);
4511 if (tmp_cb != NULL &&
4512 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) {
4513 fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4514 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4515 }
4516
4517 /*
4518 * Let's find the place to insert our callbacks.
4519 *
4520 * Even though the list is ordered by txg, it is possible for the
4521 * insertion point to not be the end because our txg may already be
4522 * quiescing at this point and other callbacks in the open txg
4523 * (from other objsets) may have sneaked in.
4524 */
4525 tmp_cb = list_tail(&zcl.zcl_callbacks);
4526 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4527 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4528
4529 /* Add the 3 callbacks to the list */
4530 for (i = 0; i < 3; i++) {
4531 if (tmp_cb == NULL)
4532 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4533 else
4534 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4535 cb_data[i]);
4536
4537 cb_data[i]->zcd_added = B_TRUE;
4538 VERIFY(!cb_data[i]->zcd_called);
4539
4540 tmp_cb = cb_data[i];
4541 }
4542
4543 (void) mutex_unlock(&zcl.zcl_callbacks_lock);
4544
4545 dmu_tx_commit(tx);
4546 }
4547
4548 /* ARGSUSED */
4549 void
4550 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4551 {
4552 zfs_prop_t proplist[] = {
4553 ZFS_PROP_CHECKSUM,
4554 ZFS_PROP_COMPRESSION,
4555 ZFS_PROP_COPIES,
4556 ZFS_PROP_DEDUP
4557 };
4558
4559 (void) rw_rdlock(&ztest_name_lock);
4560
4561 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4562 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4563 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4564
4565 (void) rw_unlock(&ztest_name_lock);
4566 }
4567
4568 /* ARGSUSED */
4569 void
4570 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4571 {
4572 nvlist_t *props = NULL;
4573
4574 (void) rw_rdlock(&ztest_name_lock);
4575
4576 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
4577 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4578
4579 VERIFY0(spa_prop_get(ztest_spa, &props));
4580
4581 if (ztest_opts.zo_verbose >= 6)
4582 dump_nvlist(props, 4);
4583
4584 nvlist_free(props);
4585
4586 (void) rw_unlock(&ztest_name_lock);
4587 }
4588
4589 static int
4590 user_release_one(const char *snapname, const char *holdname)
4591 {
4592 nvlist_t *snaps, *holds;
4593 int error;
4594
4595 snaps = fnvlist_alloc();
4596 holds = fnvlist_alloc();
4597 fnvlist_add_boolean(holds, holdname);
4598 fnvlist_add_nvlist(snaps, snapname, holds);
4599 fnvlist_free(holds);
4600 error = dsl_dataset_user_release(snaps, NULL);
4601 fnvlist_free(snaps);
4602 return (error);
4603 }
4604
4605 /*
4606 * Test snapshot hold/release and deferred destroy.
4607 */
4608 void
4609 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
4610 {
4611 int error;
4612 objset_t *os = zd->zd_os;
4613 objset_t *origin;
4614 char snapname[100];
4615 char fullname[100];
4616 char clonename[100];
4617 char tag[100];
4618 char osname[MAXNAMELEN];
4619 nvlist_t *holds;
4620
4621 (void) rw_rdlock(&ztest_name_lock);
4622
4623 dmu_objset_name(os, osname);
4624
4625 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id);
4626 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
4627 (void) snprintf(clonename, sizeof (clonename),
4628 "%s/ch1_%llu", osname, id);
4629 (void) snprintf(tag, sizeof (tag), "tag_%llu", id);
4630
4631 /*
4632 * Clean up from any previous run.
4633 */
4634 error = dsl_destroy_head(clonename);
4635 if (error != ENOENT)
4636 ASSERT0(error);
4637 error = user_release_one(fullname, tag);
4638 if (error != ESRCH && error != ENOENT)
4639 ASSERT0(error);
4640 error = dsl_destroy_snapshot(fullname, B_FALSE);
4641 if (error != ENOENT)
4642 ASSERT0(error);
4643
4644 /*
4645 * Create snapshot, clone it, mark snap for deferred destroy,
4646 * destroy clone, verify snap was also destroyed.
4647 */
4648 error = dmu_objset_snapshot_one(osname, snapname);
4649 if (error) {
4650 if (error == ENOSPC) {
4651 ztest_record_enospc("dmu_objset_snapshot");
4652 goto out;
4653 }
4654 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4655 }
4656
4657 error = dmu_objset_clone(clonename, fullname);
4658 if (error) {
4659 if (error == ENOSPC) {
4660 ztest_record_enospc("dmu_objset_clone");
4661 goto out;
4662 }
4663 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
4664 }
4665
4666 error = dsl_destroy_snapshot(fullname, B_TRUE);
4667 if (error) {
4668 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4669 fullname, error);
4670 }
4671
4672 error = dsl_destroy_head(clonename);
4673 if (error)
4674 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
4675
4676 error = dmu_objset_hold(fullname, FTAG, &origin);
4677 if (error != ENOENT)
4678 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4679
4680 /*
4681 * Create snapshot, add temporary hold, verify that we can't
4682 * destroy a held snapshot, mark for deferred destroy,
4683 * release hold, verify snapshot was destroyed.
4684 */
4685 error = dmu_objset_snapshot_one(osname, snapname);
4686 if (error) {
4687 if (error == ENOSPC) {
4688 ztest_record_enospc("dmu_objset_snapshot");
4689 goto out;
4690 }
4691 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4692 }
4693
4694 holds = fnvlist_alloc();
4695 fnvlist_add_string(holds, fullname, tag);
4696 error = dsl_dataset_user_hold(holds, 0, NULL);
4697 fnvlist_free(holds);
4698
4699 if (error)
4700 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag);
4701
4702 error = dsl_destroy_snapshot(fullname, B_FALSE);
4703 if (error != EBUSY) {
4704 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
4705 fullname, error);
4706 }
4707
4708 error = dsl_destroy_snapshot(fullname, B_TRUE);
4709 if (error) {
4710 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4711 fullname, error);
4712 }
4713
4714 error = user_release_one(fullname, tag);
4715 if (error)
4716 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
4717
4718 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
4719
4720 out:
4721 (void) rw_unlock(&ztest_name_lock);
4722 }
4723
4724 /*
4725 * Inject random faults into the on-disk data.
4726 */
4727 /* ARGSUSED */
4728 void
4729 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
4730 {
4731 ztest_shared_t *zs = ztest_shared;
4732 spa_t *spa = ztest_spa;
4733 int fd;
4734 uint64_t offset;
4735 uint64_t leaves;
4736 uint64_t bad = 0x1990c0ffeedecade;
4737 uint64_t top, leaf;
4738 char path0[MAXPATHLEN];
4739 char pathrand[MAXPATHLEN];
4740 size_t fsize;
4741 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */
4742 int iters = 1000;
4743 int maxfaults;
4744 int mirror_save;
4745 vdev_t *vd0 = NULL;
4746 uint64_t guid0 = 0;
4747 boolean_t islog = B_FALSE;
4748
4749 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4750 maxfaults = MAXFAULTS();
4751 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
4752 mirror_save = zs->zs_mirrors;
4753 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4754
4755 ASSERT(leaves >= 1);
4756
4757 /*
4758 * Grab the name lock as reader. There are some operations
4759 * which don't like to have their vdevs changed while
4760 * they are in progress (i.e. spa_change_guid). Those
4761 * operations will have grabbed the name lock as writer.
4762 */
4763 (void) rw_rdlock(&ztest_name_lock);
4764
4765 /*
4766 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
4767 */
4768 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4769
4770 if (ztest_random(2) == 0) {
4771 /*
4772 * Inject errors on a normal data device or slog device.
4773 */
4774 top = ztest_random_vdev_top(spa, B_TRUE);
4775 leaf = ztest_random(leaves) + zs->zs_splits;
4776
4777 /*
4778 * Generate paths to the first leaf in this top-level vdev,
4779 * and to the random leaf we selected. We'll induce transient
4780 * write failures and random online/offline activity on leaf 0,
4781 * and we'll write random garbage to the randomly chosen leaf.
4782 */
4783 (void) snprintf(path0, sizeof (path0), ztest_dev_template,
4784 ztest_opts.zo_dir, ztest_opts.zo_pool,
4785 top * leaves + zs->zs_splits);
4786 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
4787 ztest_opts.zo_dir, ztest_opts.zo_pool,
4788 top * leaves + leaf);
4789
4790 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
4791 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
4792 islog = B_TRUE;
4793
4794 /*
4795 * If the top-level vdev needs to be resilvered
4796 * then we only allow faults on the device that is
4797 * resilvering.
4798 */
4799 if (vd0 != NULL && maxfaults != 1 &&
4800 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
4801 vd0->vdev_resilvering)) {
4802 /*
4803 * Make vd0 explicitly claim to be unreadable,
4804 * or unwriteable, or reach behind its back
4805 * and close the underlying fd. We can do this if
4806 * maxfaults == 0 because we'll fail and reexecute,
4807 * and we can do it if maxfaults >= 2 because we'll
4808 * have enough redundancy. If maxfaults == 1, the
4809 * combination of this with injection of random data
4810 * corruption below exceeds the pool's fault tolerance.
4811 */
4812 vdev_file_t *vf = vd0->vdev_tsd;
4813
4814 if (vf != NULL && ztest_random(3) == 0) {
4815 (void) close(vf->vf_vnode->v_fd);
4816 vf->vf_vnode->v_fd = -1;
4817 } else if (ztest_random(2) == 0) {
4818 vd0->vdev_cant_read = B_TRUE;
4819 } else {
4820 vd0->vdev_cant_write = B_TRUE;
4821 }
4822 guid0 = vd0->vdev_guid;
4823 }
4824 } else {
4825 /*
4826 * Inject errors on an l2cache device.
4827 */
4828 spa_aux_vdev_t *sav = &spa->spa_l2cache;
4829
4830 if (sav->sav_count == 0) {
4831 spa_config_exit(spa, SCL_STATE, FTAG);
4832 (void) rw_unlock(&ztest_name_lock);
4833 return;
4834 }
4835 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
4836 guid0 = vd0->vdev_guid;
4837 (void) strcpy(path0, vd0->vdev_path);
4838 (void) strcpy(pathrand, vd0->vdev_path);
4839
4840 leaf = 0;
4841 leaves = 1;
4842 maxfaults = INT_MAX; /* no limit on cache devices */
4843 }
4844
4845 spa_config_exit(spa, SCL_STATE, FTAG);
4846 (void) rw_unlock(&ztest_name_lock);
4847
4848 /*
4849 * If we can tolerate two or more faults, or we're dealing
4850 * with a slog, randomly online/offline vd0.
4851 */
4852 if ((maxfaults >= 2 || islog) && guid0 != 0) {
4853 if (ztest_random(10) < 6) {
4854 int flags = (ztest_random(2) == 0 ?
4855 ZFS_OFFLINE_TEMPORARY : 0);
4856
4857 /*
4858 * We have to grab the zs_name_lock as writer to
4859 * prevent a race between offlining a slog and
4860 * destroying a dataset. Offlining the slog will
4861 * grab a reference on the dataset which may cause
4862 * dmu_objset_destroy() to fail with EBUSY thus
4863 * leaving the dataset in an inconsistent state.
4864 */
4865 if (islog)
4866 (void) rw_wrlock(&ztest_name_lock);
4867
4868 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
4869
4870 if (islog)
4871 (void) rw_unlock(&ztest_name_lock);
4872 } else {
4873 /*
4874 * Ideally we would like to be able to randomly
4875 * call vdev_[on|off]line without holding locks
4876 * to force unpredictable failures but the side
4877 * effects of vdev_[on|off]line prevent us from
4878 * doing so. We grab the ztest_vdev_lock here to
4879 * prevent a race between injection testing and
4880 * aux_vdev removal.
4881 */
4882 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4883 (void) vdev_online(spa, guid0, 0, NULL);
4884 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4885 }
4886 }
4887
4888 if (maxfaults == 0)
4889 return;
4890
4891 /*
4892 * We have at least single-fault tolerance, so inject data corruption.
4893 */
4894 fd = open(pathrand, O_RDWR);
4895
4896 if (fd == -1) /* we hit a gap in the device namespace */
4897 return;
4898
4899 fsize = lseek(fd, 0, SEEK_END);
4900
4901 while (--iters != 0) {
4902 offset = ztest_random(fsize / (leaves << bshift)) *
4903 (leaves << bshift) + (leaf << bshift) +
4904 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
4905
4906 if (offset >= fsize)
4907 continue;
4908
4909 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4910 if (mirror_save != zs->zs_mirrors) {
4911 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4912 (void) close(fd);
4913 return;
4914 }
4915
4916 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
4917 fatal(1, "can't inject bad word at 0x%llx in %s",
4918 offset, pathrand);
4919
4920 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4921
4922 if (ztest_opts.zo_verbose >= 7)
4923 (void) printf("injected bad word into %s,"
4924 " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
4925 }
4926
4927 (void) close(fd);
4928 }
4929
4930 /*
4931 * Verify that DDT repair works as expected.
4932 */
4933 void
4934 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
4935 {
4936 ztest_shared_t *zs = ztest_shared;
4937 spa_t *spa = ztest_spa;
4938 objset_t *os = zd->zd_os;
4939 ztest_od_t od[1];
4940 uint64_t object, blocksize, txg, pattern, psize;
4941 enum zio_checksum checksum = spa_dedup_checksum(spa);
4942 dmu_buf_t *db;
4943 dmu_tx_t *tx;
4944 void *buf;
4945 blkptr_t blk;
4946 int copies = 2 * ZIO_DEDUPDITTO_MIN;
4947
4948 blocksize = ztest_random_blocksize();
4949 blocksize = MIN(blocksize, 2048); /* because we write so many */
4950
4951 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4952
4953 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4954 return;
4955
4956 /*
4957 * Take the name lock as writer to prevent anyone else from changing
4958 * the pool and dataset properies we need to maintain during this test.
4959 */
4960 (void) rw_wrlock(&ztest_name_lock);
4961
4962 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
4963 B_FALSE) != 0 ||
4964 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
4965 B_FALSE) != 0) {
4966 (void) rw_unlock(&ztest_name_lock);
4967 return;
4968 }
4969
4970 object = od[0].od_object;
4971 blocksize = od[0].od_blocksize;
4972 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os);
4973
4974 ASSERT(object != 0);
4975
4976 tx = dmu_tx_create(os);
4977 dmu_tx_hold_write(tx, object, 0, copies * blocksize);
4978 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
4979 if (txg == 0) {
4980 (void) rw_unlock(&ztest_name_lock);
4981 return;
4982 }
4983
4984 /*
4985 * Write all the copies of our block.
4986 */
4987 for (int i = 0; i < copies; i++) {
4988 uint64_t offset = i * blocksize;
4989 int error = dmu_buf_hold(os, object, offset, FTAG, &db,
4990 DMU_READ_NO_PREFETCH);
4991 if (error != 0) {
4992 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
4993 os, (long long)object, (long long) offset, error);
4994 }
4995 ASSERT(db->db_offset == offset);
4996 ASSERT(db->db_size == blocksize);
4997 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
4998 ztest_pattern_match(db->db_data, db->db_size, 0ULL));
4999 dmu_buf_will_fill(db, tx);
5000 ztest_pattern_set(db->db_data, db->db_size, pattern);
5001 dmu_buf_rele(db, FTAG);
5002 }
5003
5004 dmu_tx_commit(tx);
5005 txg_wait_synced(spa_get_dsl(spa), txg);
5006
5007 /*
5008 * Find out what block we got.
5009 */
5010 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
5011 DMU_READ_NO_PREFETCH));
5012 blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5013 dmu_buf_rele(db, FTAG);
5014
5015 /*
5016 * Damage the block. Dedup-ditto will save us when we read it later.
5017 */
5018 psize = BP_GET_PSIZE(&blk);
5019 buf = zio_buf_alloc(psize);
5020 ztest_pattern_set(buf, psize, ~pattern);
5021
5022 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5023 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5024 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5025
5026 zio_buf_free(buf, psize);
5027
5028 (void) rw_unlock(&ztest_name_lock);
5029 }
5030
5031 /*
5032 * Scrub the pool.
5033 */
5034 /* ARGSUSED */
5035 void
5036 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5037 {
5038 spa_t *spa = ztest_spa;
5039
5040 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5041 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5042 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5043 }
5044
5045 /*
5046 * Change the guid for the pool.
5047 */
5048 /* ARGSUSED */
5049 void
5050 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5051 {
5052 spa_t *spa = ztest_spa;
5053 uint64_t orig, load;
5054 int error;
5055
5056 orig = spa_guid(spa);
5057 load = spa_load_guid(spa);
5058
5059 (void) rw_wrlock(&ztest_name_lock);
5060 error = spa_change_guid(spa);
5061 (void) rw_unlock(&ztest_name_lock);
5062
5063 if (error != 0)
5064 return;
5065
5066 if (ztest_opts.zo_verbose >= 4) {
5067 (void) printf("Changed guid old %llu -> %llu\n",
5068 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5069 }
5070
5071 VERIFY3U(orig, !=, spa_guid(spa));
5072 VERIFY3U(load, ==, spa_load_guid(spa));
5073 }
5074
5075 /*
5076 * Rename the pool to a different name and then rename it back.
5077 */
5078 /* ARGSUSED */
5079 void
5080 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
5081 {
5082 char *oldname, *newname;
5083 spa_t *spa;
5084
5085 (void) rw_wrlock(&ztest_name_lock);
5086
5087 oldname = ztest_opts.zo_pool;
5088 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
5089 (void) strcpy(newname, oldname);
5090 (void) strcat(newname, "_tmp");
5091
5092 /*
5093 * Do the rename
5094 */
5095 VERIFY3U(0, ==, spa_rename(oldname, newname));
5096
5097 /*
5098 * Try to open it under the old name, which shouldn't exist
5099 */
5100 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5101
5102 /*
5103 * Open it under the new name and make sure it's still the same spa_t.
5104 */
5105 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5106
5107 ASSERT(spa == ztest_spa);
5108 spa_close(spa, FTAG);
5109
5110 /*
5111 * Rename it back to the original
5112 */
5113 VERIFY3U(0, ==, spa_rename(newname, oldname));
5114
5115 /*
5116 * Make sure it can still be opened
5117 */
5118 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5119
5120 ASSERT(spa == ztest_spa);
5121 spa_close(spa, FTAG);
5122
5123 umem_free(newname, strlen(newname) + 1);
5124
5125 (void) rw_unlock(&ztest_name_lock);
5126 }
5127
5128 /*
5129 * Verify pool integrity by running zdb.
5130 */
5131 static void
5132 ztest_run_zdb(char *pool)
5133 {
5134 int status;
5135 char zdb[MAXPATHLEN + MAXNAMELEN + 20];
5136 char zbuf[1024];
5137 char *bin;
5138 char *ztest;
5139 char *isa;
5140 int isalen;
5141 FILE *fp;
5142
5143 (void) realpath(getexecname(), zdb);
5144
5145 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
5146 bin = strstr(zdb, "/usr/bin/");
5147 ztest = strstr(bin, "/ztest");
5148 isa = bin + 8;
5149 isalen = ztest - isa;
5150 isa = strdup(isa);
5151 /* LINTED */
5152 (void) sprintf(bin,
5153 "/usr/sbin%.*s/zdb -bcc%s%s -U %s %s",
5154 isalen,
5155 isa,
5156 ztest_opts.zo_verbose >= 3 ? "s" : "",
5157 ztest_opts.zo_verbose >= 4 ? "v" : "",
5158 spa_config_path,
5159 pool);
5160 free(isa);
5161
5162 if (ztest_opts.zo_verbose >= 5)
5163 (void) printf("Executing %s\n", strstr(zdb, "zdb "));
5164
5165 fp = popen(zdb, "r");
5166
5167 while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
5168 if (ztest_opts.zo_verbose >= 3)
5169 (void) printf("%s", zbuf);
5170
5171 status = pclose(fp);
5172
5173 if (status == 0)
5174 return;
5175
5176 ztest_dump_core = 0;
5177 if (WIFEXITED(status))
5178 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5179 else
5180 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5181 }
5182
5183 static void
5184 ztest_walk_pool_directory(char *header)
5185 {
5186 spa_t *spa = NULL;
5187
5188 if (ztest_opts.zo_verbose >= 6)
5189 (void) printf("%s\n", header);
5190
5191 mutex_enter(&spa_namespace_lock);
5192 while ((spa = spa_next(spa)) != NULL)
5193 if (ztest_opts.zo_verbose >= 6)
5194 (void) printf("\t%s\n", spa_name(spa));
5195 mutex_exit(&spa_namespace_lock);
5196 }
5197
5198 static void
5199 ztest_spa_import_export(char *oldname, char *newname)
5200 {
5201 nvlist_t *config, *newconfig;
5202 uint64_t pool_guid;
5203 spa_t *spa;
5204 int error;
5205
5206 if (ztest_opts.zo_verbose >= 4) {
5207 (void) printf("import/export: old = %s, new = %s\n",
5208 oldname, newname);
5209 }
5210
5211 /*
5212 * Clean up from previous runs.
5213 */
5214 (void) spa_destroy(newname);
5215
5216 /*
5217 * Get the pool's configuration and guid.
5218 */
5219 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5220
5221 /*
5222 * Kick off a scrub to tickle scrub/export races.
5223 */
5224 if (ztest_random(2) == 0)
5225 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5226
5227 pool_guid = spa_guid(spa);
5228 spa_close(spa, FTAG);
5229
5230 ztest_walk_pool_directory("pools before export");
5231
5232 /*
5233 * Export it.
5234 */
5235 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
5236
5237 ztest_walk_pool_directory("pools after export");
5238
5239 /*
5240 * Try to import it.
5241 */
5242 newconfig = spa_tryimport(config);
5243 ASSERT(newconfig != NULL);
5244 nvlist_free(newconfig);
5245
5246 /*
5247 * Import it under the new name.
5248 */
5249 error = spa_import(newname, config, NULL, 0);
5250 if (error != 0) {
5251 dump_nvlist(config, 0);
5252 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
5253 oldname, newname, error);
5254 }
5255
5256 ztest_walk_pool_directory("pools after import");
5257
5258 /*
5259 * Try to import it again -- should fail with EEXIST.
5260 */
5261 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5262
5263 /*
5264 * Try to import it under a different name -- should fail with EEXIST.
5265 */
5266 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5267
5268 /*
5269 * Verify that the pool is no longer visible under the old name.
5270 */
5271 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5272
5273 /*
5274 * Verify that we can open and close the pool using the new name.
5275 */
5276 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5277 ASSERT(pool_guid == spa_guid(spa));
5278 spa_close(spa, FTAG);
5279
5280 nvlist_free(config);
5281 }
5282
5283 static void
5284 ztest_resume(spa_t *spa)
5285 {
5286 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
5287 (void) printf("resuming from suspended state\n");
5288 spa_vdev_state_enter(spa, SCL_NONE);
5289 vdev_clear(spa, NULL);
5290 (void) spa_vdev_state_exit(spa, NULL, 0);
5291 (void) zio_resume(spa);
5292 }
5293
5294 static void *
5295 ztest_resume_thread(void *arg)
5296 {
5297 spa_t *spa = arg;
5298
5299 while (!ztest_exiting) {
5300 if (spa_suspended(spa))
5301 ztest_resume(spa);
5302 (void) poll(NULL, 0, 100);
5303 }
5304 return (NULL);
5305 }
5306
5307 static void *
5308 ztest_deadman_thread(void *arg)
5309 {
5310 ztest_shared_t *zs = arg;
5311 spa_t *spa = ztest_spa;
5312 hrtime_t delta, total = 0;
5313
5314 for (;;) {
5315 delta = (zs->zs_thread_stop - zs->zs_thread_start) /
5316 NANOSEC + zfs_deadman_synctime;
5317
5318 (void) poll(NULL, 0, (int)(1000 * delta));
5319
5320 /*
5321 * If the pool is suspended then fail immediately. Otherwise,
5322 * check to see if the pool is making any progress. If
5323 * vdev_deadman() discovers that there hasn't been any recent
5324 * I/Os then it will end up aborting the tests.
5325 */
5326 if (spa_suspended(spa)) {
5327 fatal(0, "aborting test after %llu seconds because "
5328 "pool has transitioned to a suspended state.",
5329 zfs_deadman_synctime);
5330 return (NULL);
5331 }
5332 vdev_deadman(spa->spa_root_vdev);
5333
5334 total += zfs_deadman_synctime;
5335 (void) printf("ztest has been running for %lld seconds\n",
5336 total);
5337 }
5338 }
5339
5340 static void
5341 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
5342 {
5343 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
5344 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
5345 hrtime_t functime = gethrtime();
5346
5347 for (int i = 0; i < zi->zi_iters; i++)
5348 zi->zi_func(zd, id);
5349
5350 functime = gethrtime() - functime;
5351
5352 atomic_add_64(&zc->zc_count, 1);
5353 atomic_add_64(&zc->zc_time, functime);
5354
5355 if (ztest_opts.zo_verbose >= 4) {
5356 Dl_info dli;
5357 (void) dladdr((void *)zi->zi_func, &dli);
5358 (void) printf("%6.2f sec in %s\n",
5359 (double)functime / NANOSEC, dli.dli_sname);
5360 }
5361 }
5362
5363 static void *
5364 ztest_thread(void *arg)
5365 {
5366 int rand;
5367 uint64_t id = (uintptr_t)arg;
5368 ztest_shared_t *zs = ztest_shared;
5369 uint64_t call_next;
5370 hrtime_t now;
5371 ztest_info_t *zi;
5372 ztest_shared_callstate_t *zc;
5373
5374 while ((now = gethrtime()) < zs->zs_thread_stop) {
5375 /*
5376 * See if it's time to force a crash.
5377 */
5378 if (now > zs->zs_thread_kill)
5379 ztest_kill(zs);
5380
5381 /*
5382 * If we're getting ENOSPC with some regularity, stop.
5383 */
5384 if (zs->zs_enospc_count > 10)
5385 break;
5386
5387 /*
5388 * Pick a random function to execute.
5389 */
5390 rand = ztest_random(ZTEST_FUNCS);
5391 zi = &ztest_info[rand];
5392 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
5393 call_next = zc->zc_next;
5394
5395 if (now >= call_next &&
5396 atomic_cas_64(&zc->zc_next, call_next, call_next +
5397 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
5398 ztest_execute(rand, zi, id);
5399 }
5400 }
5401
5402 return (NULL);
5403 }
5404
5405 static void
5406 ztest_dataset_name(char *dsname, char *pool, int d)
5407 {
5408 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d);
5409 }
5410
5411 static void
5412 ztest_dataset_destroy(int d)
5413 {
5414 char name[MAXNAMELEN];
5415
5416 ztest_dataset_name(name, ztest_opts.zo_pool, d);
5417
5418 if (ztest_opts.zo_verbose >= 3)
5419 (void) printf("Destroying %s to free up space\n", name);
5420
5421 /*
5422 * Cleanup any non-standard clones and snapshots. In general,
5423 * ztest thread t operates on dataset (t % zopt_datasets),
5424 * so there may be more than one thing to clean up.
5425 */
5426 for (int t = d; t < ztest_opts.zo_threads;
5427 t += ztest_opts.zo_datasets) {
5428 ztest_dsl_dataset_cleanup(name, t);
5429 }
5430
5431 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5432 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5433 }
5434
5435 static void
5436 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5437 {
5438 uint64_t usedobjs, dirobjs, scratch;
5439
5440 /*
5441 * ZTEST_DIROBJ is the object directory for the entire dataset.
5442 * Therefore, the number of objects in use should equal the
5443 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5444 * If not, we have an object leak.
5445 *
5446 * Note that we can only check this in ztest_dataset_open(),
5447 * when the open-context and syncing-context values agree.
5448 * That's because zap_count() returns the open-context value,
5449 * while dmu_objset_space() returns the rootbp fill count.
5450 */
5451 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5452 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5453 ASSERT3U(dirobjs + 1, ==, usedobjs);
5454 }
5455
5456 static int
5457 ztest_dataset_open(int d)
5458 {
5459 ztest_ds_t *zd = &ztest_ds[d];
5460 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
5461 objset_t *os;
5462 zilog_t *zilog;
5463 char name[MAXNAMELEN];
5464 int error;
5465
5466 ztest_dataset_name(name, ztest_opts.zo_pool, d);
5467
5468 (void) rw_rdlock(&ztest_name_lock);
5469
5470 error = ztest_dataset_create(name);
5471 if (error == ENOSPC) {
5472 (void) rw_unlock(&ztest_name_lock);
5473 ztest_record_enospc(FTAG);
5474 return (error);
5475 }
5476 ASSERT(error == 0 || error == EEXIST);
5477
5478 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os));
5479 (void) rw_unlock(&ztest_name_lock);
5480
5481 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
5482
5483 zilog = zd->zd_zilog;
5484
5485 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5486 zilog->zl_header->zh_claim_lr_seq < committed_seq)
5487 fatal(0, "missing log records: claimed %llu < committed %llu",
5488 zilog->zl_header->zh_claim_lr_seq, committed_seq);
5489
5490 ztest_dataset_dirobj_verify(zd);
5491
5492 zil_replay(os, zd, ztest_replay_vector);
5493
5494 ztest_dataset_dirobj_verify(zd);
5495
5496 if (ztest_opts.zo_verbose >= 6)
5497 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5498 zd->zd_name,
5499 (u_longlong_t)zilog->zl_parse_blk_count,
5500 (u_longlong_t)zilog->zl_parse_lr_count,
5501 (u_longlong_t)zilog->zl_replaying_seq);
5502
5503 zilog = zil_open(os, ztest_get_data);
5504
5505 if (zilog->zl_replaying_seq != 0 &&
5506 zilog->zl_replaying_seq < committed_seq)
5507 fatal(0, "missing log records: replayed %llu < committed %llu",
5508 zilog->zl_replaying_seq, committed_seq);
5509
5510 return (0);
5511 }
5512
5513 static void
5514 ztest_dataset_close(int d)
5515 {
5516 ztest_ds_t *zd = &ztest_ds[d];
5517
5518 zil_close(zd->zd_zilog);
5519 dmu_objset_disown(zd->zd_os, zd);
5520
5521 ztest_zd_fini(zd);
5522 }
5523
5524 /*
5525 * Kick off threads to run tests on all datasets in parallel.
5526 */
5527 static void
5528 ztest_run(ztest_shared_t *zs)
5529 {
5530 thread_t *tid;
5531 spa_t *spa;
5532 objset_t *os;
5533 thread_t resume_tid;
5534 int error;
5535
5536 ztest_exiting = B_FALSE;
5537
5538 /*
5539 * Initialize parent/child shared state.
5540 */
5541 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5542 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5543
5544 zs->zs_thread_start = gethrtime();
5545 zs->zs_thread_stop =
5546 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
5547 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5548 zs->zs_thread_kill = zs->zs_thread_stop;
5549 if (ztest_random(100) < ztest_opts.zo_killrate) {
5550 zs->zs_thread_kill -=
5551 ztest_random(ztest_opts.zo_passtime * NANOSEC);
5552 }
5553
5554 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL);
5555
5556 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5557 offsetof(ztest_cb_data_t, zcd_node));
5558
5559 /*
5560 * Open our pool.
5561 */
5562 kernel_init(FREAD | FWRITE);
5563 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5564 spa->spa_debug = B_TRUE;
5565 ztest_spa = spa;
5566
5567 VERIFY0(dmu_objset_own(ztest_opts.zo_pool,
5568 DMU_OST_ANY, B_TRUE, FTAG, &os));
5569 zs->zs_guid = dmu_objset_fsid_guid(os);
5570 dmu_objset_disown(os, FTAG);
5571
5572 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
5573
5574 /*
5575 * We don't expect the pool to suspend unless maxfaults == 0,
5576 * in which case ztest_fault_inject() temporarily takes away
5577 * the only valid replica.
5578 */
5579 if (MAXFAULTS() == 0)
5580 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5581 else
5582 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
5583
5584 /*
5585 * Create a thread to periodically resume suspended I/O.
5586 */
5587 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
5588 &resume_tid) == 0);
5589
5590 /*
5591 * Create a deadman thread to abort() if we hang.
5592 */
5593 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND,
5594 NULL) == 0);
5595
5596 /*
5597 * Verify that we can safely inquire about about any object,
5598 * whether it's allocated or not. To make it interesting,
5599 * we probe a 5-wide window around each power of two.
5600 * This hits all edge cases, including zero and the max.
5601 */
5602 for (int t = 0; t < 64; t++) {
5603 for (int d = -5; d <= 5; d++) {
5604 error = dmu_object_info(spa->spa_meta_objset,
5605 (1ULL << t) + d, NULL);
5606 ASSERT(error == 0 || error == ENOENT ||
5607 error == EINVAL);
5608 }
5609 }
5610
5611 /*
5612 * If we got any ENOSPC errors on the previous run, destroy something.
5613 */
5614 if (zs->zs_enospc_count != 0) {
5615 int d = ztest_random(ztest_opts.zo_datasets);
5616 ztest_dataset_destroy(d);
5617 }
5618 zs->zs_enospc_count = 0;
5619
5620 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t),
5621 UMEM_NOFAIL);
5622
5623 if (ztest_opts.zo_verbose >= 4)
5624 (void) printf("starting main threads...\n");
5625
5626 /*
5627 * Kick off all the tests that run in parallel.
5628 */
5629 for (int t = 0; t < ztest_opts.zo_threads; t++) {
5630 if (t < ztest_opts.zo_datasets &&
5631 ztest_dataset_open(t) != 0)
5632 return;
5633 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t,
5634 THR_BOUND, &tid[t]) == 0);
5635 }
5636
5637 /*
5638 * Wait for all of the tests to complete. We go in reverse order
5639 * so we don't close datasets while threads are still using them.
5640 */
5641 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) {
5642 VERIFY(thr_join(tid[t], NULL, NULL) == 0);
5643 if (t < ztest_opts.zo_datasets)
5644 ztest_dataset_close(t);
5645 }
5646
5647 txg_wait_synced(spa_get_dsl(spa), 0);
5648
5649 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
5650 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
5651
5652 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t));
5653
5654 /* Kill the resume thread */
5655 ztest_exiting = B_TRUE;
5656 VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
5657 ztest_resume(spa);
5658
5659 /*
5660 * Right before closing the pool, kick off a bunch of async I/O;
5661 * spa_close() should wait for it to complete.
5662 */
5663 for (uint64_t object = 1; object < 50; object++)
5664 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20);
5665
5666 spa_close(spa, FTAG);
5667
5668 /*
5669 * Verify that we can loop over all pools.
5670 */
5671 mutex_enter(&spa_namespace_lock);
5672 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
5673 if (ztest_opts.zo_verbose > 3)
5674 (void) printf("spa_next: found %s\n", spa_name(spa));
5675 mutex_exit(&spa_namespace_lock);
5676
5677 /*
5678 * Verify that we can export the pool and reimport it under a
5679 * different name.
5680 */
5681 if (ztest_random(2) == 0) {
5682 char name[MAXNAMELEN];
5683 (void) snprintf(name, MAXNAMELEN, "%s_import",
5684 ztest_opts.zo_pool);
5685 ztest_spa_import_export(ztest_opts.zo_pool, name);
5686 ztest_spa_import_export(name, ztest_opts.zo_pool);
5687 }
5688
5689 kernel_fini();
5690
5691 list_destroy(&zcl.zcl_callbacks);
5692
5693 (void) _mutex_destroy(&zcl.zcl_callbacks_lock);
5694
5695 (void) rwlock_destroy(&ztest_name_lock);
5696 (void) _mutex_destroy(&ztest_vdev_lock);
5697 }
5698
5699 static void
5700 ztest_freeze(void)
5701 {
5702 ztest_ds_t *zd = &ztest_ds[0];
5703 spa_t *spa;
5704 int numloops = 0;
5705
5706 if (ztest_opts.zo_verbose >= 3)
5707 (void) printf("testing spa_freeze()...\n");
5708
5709 kernel_init(FREAD | FWRITE);
5710 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5711 VERIFY3U(0, ==, ztest_dataset_open(0));
5712 spa->spa_debug = B_TRUE;
5713 ztest_spa = spa;
5714
5715 /*
5716 * Force the first log block to be transactionally allocated.
5717 * We have to do this before we freeze the pool -- otherwise
5718 * the log chain won't be anchored.
5719 */
5720 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
5721 ztest_dmu_object_alloc_free(zd, 0);
5722 zil_commit(zd->zd_zilog, 0);
5723 }
5724
5725 txg_wait_synced(spa_get_dsl(spa), 0);
5726
5727 /*
5728 * Freeze the pool. This stops spa_sync() from doing anything,
5729 * so that the only way to record changes from now on is the ZIL.
5730 */
5731 spa_freeze(spa);
5732
5733 /*
5734 * Run tests that generate log records but don't alter the pool config
5735 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5736 * We do a txg_wait_synced() after each iteration to force the txg
5737 * to increase well beyond the last synced value in the uberblock.
5738 * The ZIL should be OK with that.
5739 */
5740 while (ztest_random(10) != 0 &&
5741 numloops++ < ztest_opts.zo_maxloops) {
5742 ztest_dmu_write_parallel(zd, 0);
5743 ztest_dmu_object_alloc_free(zd, 0);
5744 txg_wait_synced(spa_get_dsl(spa), 0);
5745 }
5746
5747 /*
5748 * Commit all of the changes we just generated.
5749 */
5750 zil_commit(zd->zd_zilog, 0);
5751 txg_wait_synced(spa_get_dsl(spa), 0);
5752
5753 /*
5754 * Close our dataset and close the pool.
5755 */
5756 ztest_dataset_close(0);
5757 spa_close(spa, FTAG);
5758 kernel_fini();
5759
5760 /*
5761 * Open and close the pool and dataset to induce log replay.
5762 */
5763 kernel_init(FREAD | FWRITE);
5764 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5765 ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
5766 VERIFY3U(0, ==, ztest_dataset_open(0));
5767 ztest_dataset_close(0);
5768
5769 spa->spa_debug = B_TRUE;
5770 ztest_spa = spa;
5771 txg_wait_synced(spa_get_dsl(spa), 0);
5772 ztest_reguid(NULL, 0);
5773
5774 spa_close(spa, FTAG);
5775 kernel_fini();
5776 }
5777
5778 void
5779 print_time(hrtime_t t, char *timebuf)
5780 {
5781 hrtime_t s = t / NANOSEC;
5782 hrtime_t m = s / 60;
5783 hrtime_t h = m / 60;
5784 hrtime_t d = h / 24;
5785
5786 s -= m * 60;
5787 m -= h * 60;
5788 h -= d * 24;
5789
5790 timebuf[0] = '\0';
5791
5792 if (d)
5793 (void) sprintf(timebuf,
5794 "%llud%02lluh%02llum%02llus", d, h, m, s);
5795 else if (h)
5796 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
5797 else if (m)
5798 (void) sprintf(timebuf, "%llum%02llus", m, s);
5799 else
5800 (void) sprintf(timebuf, "%llus", s);
5801 }
5802
5803 static nvlist_t *
5804 make_random_props()
5805 {
5806 nvlist_t *props;
5807
5808 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
5809 if (ztest_random(2) == 0)
5810 return (props);
5811 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
5812
5813 return (props);
5814 }
5815
5816 /*
5817 * Create a storage pool with the given name and initial vdev size.
5818 * Then test spa_freeze() functionality.
5819 */
5820 static void
5821 ztest_init(ztest_shared_t *zs)
5822 {
5823 spa_t *spa;
5824 nvlist_t *nvroot, *props;
5825
5826 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5827 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5828
5829 kernel_init(FREAD | FWRITE);
5830
5831 /*
5832 * Create the storage pool.
5833 */
5834 (void) spa_destroy(ztest_opts.zo_pool);
5835 ztest_shared->zs_vdev_next_leaf = 0;
5836 zs->zs_splits = 0;
5837 zs->zs_mirrors = ztest_opts.zo_mirrors;
5838 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
5839 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
5840 props = make_random_props();
5841 for (int i = 0; i < SPA_FEATURES; i++) {
5842 char buf[1024];
5843 (void) snprintf(buf, sizeof (buf), "feature@%s",
5844 spa_feature_table[i].fi_uname);
5845 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
5846 }
5847 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
5848 nvlist_free(nvroot);
5849
5850 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5851 zs->zs_metaslab_sz =
5852 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
5853
5854 spa_close(spa, FTAG);
5855
5856 kernel_fini();
5857
5858 ztest_run_zdb(ztest_opts.zo_pool);
5859
5860 ztest_freeze();
5861
5862 ztest_run_zdb(ztest_opts.zo_pool);
5863
5864 (void) rwlock_destroy(&ztest_name_lock);
5865 (void) _mutex_destroy(&ztest_vdev_lock);
5866 }
5867
5868 static void
5869 setup_data_fd(void)
5870 {
5871 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
5872
5873 ztest_fd_data = mkstemp(ztest_name_data);
5874 ASSERT3S(ztest_fd_data, >=, 0);
5875 (void) unlink(ztest_name_data);
5876 }
5877
5878
5879 static int
5880 shared_data_size(ztest_shared_hdr_t *hdr)
5881 {
5882 int size;
5883
5884 size = hdr->zh_hdr_size;
5885 size += hdr->zh_opts_size;
5886 size += hdr->zh_size;
5887 size += hdr->zh_stats_size * hdr->zh_stats_count;
5888 size += hdr->zh_ds_size * hdr->zh_ds_count;
5889
5890 return (size);
5891 }
5892
5893 static void
5894 setup_hdr(void)
5895 {
5896 int size;
5897 ztest_shared_hdr_t *hdr;
5898
5899 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
5900 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
5901 ASSERT(hdr != MAP_FAILED);
5902
5903 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
5904
5905 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
5906 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
5907 hdr->zh_size = sizeof (ztest_shared_t);
5908 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
5909 hdr->zh_stats_count = ZTEST_FUNCS;
5910 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
5911 hdr->zh_ds_count = ztest_opts.zo_datasets;
5912
5913 size = shared_data_size(hdr);
5914 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
5915
5916 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
5917 }
5918
5919 static void
5920 setup_data(void)
5921 {
5922 int size, offset;
5923 ztest_shared_hdr_t *hdr;
5924 uint8_t *buf;
5925
5926 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
5927 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
5928 ASSERT(hdr != MAP_FAILED);
5929
5930 size = shared_data_size(hdr);
5931
5932 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
5933 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
5934 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
5935 ASSERT(hdr != MAP_FAILED);
5936 buf = (uint8_t *)hdr;
5937
5938 offset = hdr->zh_hdr_size;
5939 ztest_shared_opts = (void *)&buf[offset];
5940 offset += hdr->zh_opts_size;
5941 ztest_shared = (void *)&buf[offset];
5942 offset += hdr->zh_size;
5943 ztest_shared_callstate = (void *)&buf[offset];
5944 offset += hdr->zh_stats_size * hdr->zh_stats_count;
5945 ztest_shared_ds = (void *)&buf[offset];
5946 }
5947
5948 static boolean_t
5949 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
5950 {
5951 pid_t pid;
5952 int status;
5953 char *cmdbuf = NULL;
5954
5955 pid = fork();
5956
5957 if (cmd == NULL) {
5958 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
5959 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
5960 cmd = cmdbuf;
5961 }
5962
5963 if (pid == -1)
5964 fatal(1, "fork failed");
5965
5966 if (pid == 0) { /* child */
5967 char *emptyargv[2] = { cmd, NULL };
5968 char fd_data_str[12];
5969
5970 struct rlimit rl = { 1024, 1024 };
5971 (void) setrlimit(RLIMIT_NOFILE, &rl);
5972
5973 (void) close(ztest_fd_rand);
5974 VERIFY3U(11, >=,
5975 snprintf(fd_data_str, 12, "%d", ztest_fd_data));
5976 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
5977
5978 (void) enable_extended_FILE_stdio(-1, -1);
5979 if (libpath != NULL)
5980 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
5981 (void) execv(cmd, emptyargv);
5982 ztest_dump_core = B_FALSE;
5983 fatal(B_TRUE, "exec failed: %s", cmd);
5984 }
5985
5986 if (cmdbuf != NULL) {
5987 umem_free(cmdbuf, MAXPATHLEN);
5988 cmd = NULL;
5989 }
5990
5991 while (waitpid(pid, &status, 0) != pid)
5992 continue;
5993 if (statusp != NULL)
5994 *statusp = status;
5995
5996 if (WIFEXITED(status)) {
5997 if (WEXITSTATUS(status) != 0) {
5998 (void) fprintf(stderr, "child exited with code %d\n",
5999 WEXITSTATUS(status));
6000 exit(2);
6001 }
6002 return (B_FALSE);
6003 } else if (WIFSIGNALED(status)) {
6004 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
6005 (void) fprintf(stderr, "child died with signal %d\n",
6006 WTERMSIG(status));
6007 exit(3);
6008 }
6009 return (B_TRUE);
6010 } else {
6011 (void) fprintf(stderr, "something strange happened to child\n");
6012 exit(4);
6013 /* NOTREACHED */
6014 }
6015 }
6016
6017 static void
6018 ztest_run_init(void)
6019 {
6020 ztest_shared_t *zs = ztest_shared;
6021
6022 ASSERT(ztest_opts.zo_init != 0);
6023
6024 /*
6025 * Blow away any existing copy of zpool.cache
6026 */
6027 (void) remove(spa_config_path);
6028
6029 /*
6030 * Create and initialize our storage pool.
6031 */
6032 for (int i = 1; i <= ztest_opts.zo_init; i++) {
6033 bzero(zs, sizeof (ztest_shared_t));
6034 if (ztest_opts.zo_verbose >= 3 &&
6035 ztest_opts.zo_init != 1) {
6036 (void) printf("ztest_init(), pass %d\n", i);
6037 }
6038 ztest_init(zs);
6039 }
6040 }
6041
6042 int
6043 main(int argc, char **argv)
6044 {
6045 int kills = 0;
6046 int iters = 0;
6047 int older = 0;
6048 int newer = 0;
6049 ztest_shared_t *zs;
6050 ztest_info_t *zi;
6051 ztest_shared_callstate_t *zc;
6052 char timebuf[100];
6053 char numbuf[6];
6054 spa_t *spa;
6055 char *cmd;
6056 boolean_t hasalt;
6057 char *fd_data_str = getenv("ZTEST_FD_DATA");
6058
6059 (void) setvbuf(stdout, NULL, _IOLBF, 0);
6060
6061 dprintf_setup(&argc, argv);
6062 zfs_deadman_synctime = 300;
6063
6064 ztest_fd_rand = open("/dev/urandom", O_RDONLY);
6065 ASSERT3S(ztest_fd_rand, >=, 0);
6066
6067 if (!fd_data_str) {
6068 process_options(argc, argv);
6069
6070 setup_data_fd();
6071 setup_hdr();
6072 setup_data();
6073 bcopy(&ztest_opts, ztest_shared_opts,
6074 sizeof (*ztest_shared_opts));
6075 } else {
6076 ztest_fd_data = atoi(fd_data_str);
6077 setup_data();
6078 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
6079 }
6080 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
6081
6082 /* Override location of zpool.cache */
6083 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache",
6084 ztest_opts.zo_dir), !=, -1);
6085
6086 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
6087 UMEM_NOFAIL);
6088 zs = ztest_shared;
6089
6090 if (fd_data_str) {
6091 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang;
6092 metaslab_df_alloc_threshold =
6093 zs->zs_metaslab_df_alloc_threshold;
6094
6095 if (zs->zs_do_init)
6096 ztest_run_init();
6097 else
6098 ztest_run(zs);
6099 exit(0);
6100 }
6101
6102 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
6103
6104 if (ztest_opts.zo_verbose >= 1) {
6105 (void) printf("%llu vdevs, %d datasets, %d threads,"
6106 " %llu seconds...\n",
6107 (u_longlong_t)ztest_opts.zo_vdevs,
6108 ztest_opts.zo_datasets,
6109 ztest_opts.zo_threads,
6110 (u_longlong_t)ztest_opts.zo_time);
6111 }
6112
6113 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
6114 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
6115
6116 zs->zs_do_init = B_TRUE;
6117 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
6118 if (ztest_opts.zo_verbose >= 1) {
6119 (void) printf("Executing older ztest for "
6120 "initialization: %s\n", ztest_opts.zo_alt_ztest);
6121 }
6122 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
6123 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
6124 } else {
6125 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
6126 }
6127 zs->zs_do_init = B_FALSE;
6128
6129 zs->zs_proc_start = gethrtime();
6130 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
6131
6132 for (int f = 0; f < ZTEST_FUNCS; f++) {
6133 zi = &ztest_info[f];
6134 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6135 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
6136 zc->zc_next = UINT64_MAX;
6137 else
6138 zc->zc_next = zs->zs_proc_start +
6139 ztest_random(2 * zi->zi_interval[0] + 1);
6140 }
6141
6142 /*
6143 * Run the tests in a loop. These tests include fault injection
6144 * to verify that self-healing data works, and forced crashes
6145 * to verify that we never lose on-disk consistency.
6146 */
6147 while (gethrtime() < zs->zs_proc_stop) {
6148 int status;
6149 boolean_t killed;
6150
6151 /*
6152 * Initialize the workload counters for each function.
6153 */
6154 for (int f = 0; f < ZTEST_FUNCS; f++) {
6155 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6156 zc->zc_count = 0;
6157 zc->zc_time = 0;
6158 }
6159
6160 /* Set the allocation switch size */
6161 zs->zs_metaslab_df_alloc_threshold =
6162 ztest_random(zs->zs_metaslab_sz / 4) + 1;
6163
6164 if (!hasalt || ztest_random(2) == 0) {
6165 if (hasalt && ztest_opts.zo_verbose >= 1) {
6166 (void) printf("Executing newer ztest: %s\n",
6167 cmd);
6168 }
6169 newer++;
6170 killed = exec_child(cmd, NULL, B_TRUE, &status);
6171 } else {
6172 if (hasalt && ztest_opts.zo_verbose >= 1) {
6173 (void) printf("Executing older ztest: %s\n",
6174 ztest_opts.zo_alt_ztest);
6175 }
6176 older++;
6177 killed = exec_child(ztest_opts.zo_alt_ztest,
6178 ztest_opts.zo_alt_libpath, B_TRUE, &status);
6179 }
6180
6181 if (killed)
6182 kills++;
6183 iters++;
6184
6185 if (ztest_opts.zo_verbose >= 1) {
6186 hrtime_t now = gethrtime();
6187
6188 now = MIN(now, zs->zs_proc_stop);
6189 print_time(zs->zs_proc_stop - now, timebuf);
6190 nicenum(zs->zs_space, numbuf);
6191
6192 (void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6193 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6194 iters,
6195 WIFEXITED(status) ? "Complete" : "SIGKILL",
6196 (u_longlong_t)zs->zs_enospc_count,
6197 100.0 * zs->zs_alloc / zs->zs_space,
6198 numbuf,
6199 100.0 * (now - zs->zs_proc_start) /
6200 (ztest_opts.zo_time * NANOSEC), timebuf);
6201 }
6202
6203 if (ztest_opts.zo_verbose >= 2) {
6204 (void) printf("\nWorkload summary:\n\n");
6205 (void) printf("%7s %9s %s\n",
6206 "Calls", "Time", "Function");
6207 (void) printf("%7s %9s %s\n",
6208 "-----", "----", "--------");
6209 for (int f = 0; f < ZTEST_FUNCS; f++) {
6210 Dl_info dli;
6211
6212 zi = &ztest_info[f];
6213 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6214 print_time(zc->zc_time, timebuf);
6215 (void) dladdr((void *)zi->zi_func, &dli);
6216 (void) printf("%7llu %9s %s\n",
6217 (u_longlong_t)zc->zc_count, timebuf,
6218 dli.dli_sname);
6219 }
6220 (void) printf("\n");
6221 }
6222
6223 /*
6224 * It's possible that we killed a child during a rename test,
6225 * in which case we'll have a 'ztest_tmp' pool lying around
6226 * instead of 'ztest'. Do a blind rename in case this happened.
6227 */
6228 kernel_init(FREAD);
6229 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
6230 spa_close(spa, FTAG);
6231 } else {
6232 char tmpname[MAXNAMELEN];
6233 kernel_fini();
6234 kernel_init(FREAD | FWRITE);
6235 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
6236 ztest_opts.zo_pool);
6237 (void) spa_rename(tmpname, ztest_opts.zo_pool);
6238 }
6239 kernel_fini();
6240
6241 ztest_run_zdb(ztest_opts.zo_pool);
6242 }
6243
6244 if (ztest_opts.zo_verbose >= 1) {
6245 if (hasalt) {
6246 (void) printf("%d runs of older ztest: %s\n", older,
6247 ztest_opts.zo_alt_ztest);
6248 (void) printf("%d runs of newer ztest: %s\n", newer,
6249 cmd);
6250 }
6251 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6252 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
6253 }
6254
6255 umem_free(cmd, MAXNAMELEN);
6256
6257 return (0);
6258 }