1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012 by Delphix. All rights reserved. 28 * Copyright (c) 2012 Joyent, Inc. All rights reserved. 29 */ 30 31 #include <mdb/mdb_modapi.h> 32 #include <mdb/mdb_target.h> 33 #include <mdb/mdb_argvec.h> 34 #include <mdb/mdb_string.h> 35 #include <mdb/mdb_stdlib.h> 36 #include <mdb/mdb_err.h> 37 #include <mdb/mdb_debug.h> 38 #include <mdb/mdb_fmt.h> 39 #include <mdb/mdb_ctf.h> 40 #include <mdb/mdb_ctf_impl.h> 41 #include <mdb/mdb.h> 42 #include <mdb/mdb_tab.h> 43 44 #include <sys/isa_defs.h> 45 #include <sys/param.h> 46 #include <sys/sysmacros.h> 47 #include <netinet/in.h> 48 #include <strings.h> 49 #include <libctf.h> 50 #include <ctype.h> 51 52 typedef struct holeinfo { 53 ulong_t hi_offset; /* expected offset */ 54 uchar_t hi_isunion; /* represents a union */ 55 } holeinfo_t; 56 57 typedef struct printarg { 58 mdb_tgt_t *pa_tgt; /* current target */ 59 mdb_tgt_t *pa_realtgt; /* real target (for -i) */ 60 mdb_tgt_t *pa_immtgt; /* immediate target (for -i) */ 61 mdb_tgt_as_t pa_as; /* address space to use for i/o */ 62 mdb_tgt_addr_t pa_addr; /* base address for i/o */ 63 ulong_t pa_armemlim; /* limit on array elements to print */ 64 ulong_t pa_arstrlim; /* limit on array chars to print */ 65 const char *pa_delim; /* element delimiter string */ 66 const char *pa_prefix; /* element prefix string */ 67 const char *pa_suffix; /* element suffix string */ 68 holeinfo_t *pa_holes; /* hole detection information */ 69 int pa_nholes; /* size of holes array */ 70 int pa_flags; /* formatting flags (see below) */ 71 int pa_depth; /* previous depth */ 72 int pa_nest; /* array nesting depth */ 73 int pa_tab; /* tabstop width */ 74 uint_t pa_maxdepth; /* Limit max depth */ 75 uint_t pa_nooutdepth; /* don't print output past this depth */ 76 } printarg_t; 77 78 #define PA_SHOWTYPE 0x001 /* print type name */ 79 #define PA_SHOWBASETYPE 0x002 /* print base type name */ 80 #define PA_SHOWNAME 0x004 /* print member name */ 81 #define PA_SHOWADDR 0x008 /* print address */ 82 #define PA_SHOWVAL 0x010 /* print value */ 83 #define PA_SHOWHOLES 0x020 /* print holes in structs */ 84 #define PA_INTHEX 0x040 /* print integer values in hex */ 85 #define PA_INTDEC 0x080 /* print integer values in decimal */ 86 #define PA_NOSYMBOLIC 0x100 /* don't print ptrs as func+offset */ 87 88 #define IS_CHAR(e) \ 89 (((e).cte_format & (CTF_INT_CHAR | CTF_INT_SIGNED)) == \ 90 (CTF_INT_CHAR | CTF_INT_SIGNED) && (e).cte_bits == NBBY) 91 92 #define COMPOSITE_MASK ((1 << CTF_K_STRUCT) | \ 93 (1 << CTF_K_UNION) | (1 << CTF_K_ARRAY)) 94 #define IS_COMPOSITE(k) (((1 << k) & COMPOSITE_MASK) != 0) 95 96 #define SOU_MASK ((1 << CTF_K_STRUCT) | (1 << CTF_K_UNION)) 97 #define IS_SOU(k) (((1 << k) & SOU_MASK) != 0) 98 99 #define MEMBER_DELIM_ERR -1 100 #define MEMBER_DELIM_DONE 0 101 #define MEMBER_DELIM_PTR 1 102 #define MEMBER_DELIM_DOT 2 103 #define MEMBER_DELIM_LBR 3 104 105 typedef int printarg_f(const char *, const char *, 106 mdb_ctf_id_t, mdb_ctf_id_t, ulong_t, printarg_t *); 107 108 static int elt_print(const char *, mdb_ctf_id_t, mdb_ctf_id_t, ulong_t, int, 109 void *); 110 static void print_close_sou(printarg_t *, int); 111 112 /* 113 * Given an address, look up the symbol ID of the specified symbol in its 114 * containing module. We only support lookups for exact matches. 115 */ 116 static const char * 117 addr_to_sym(mdb_tgt_t *t, uintptr_t addr, char *name, size_t namelen, 118 GElf_Sym *symp, mdb_syminfo_t *sip) 119 { 120 const mdb_map_t *mp; 121 const char *p; 122 123 if (mdb_tgt_lookup_by_addr(t, addr, MDB_TGT_SYM_EXACT, name, 124 namelen, NULL, NULL) == -1) 125 return (NULL); /* address does not exactly match a symbol */ 126 127 if ((p = strrsplit(name, '`')) != NULL) { 128 if (mdb_tgt_lookup_by_name(t, name, p, symp, sip) == -1) 129 return (NULL); 130 return (p); 131 } 132 133 if ((mp = mdb_tgt_addr_to_map(t, addr)) == NULL) 134 return (NULL); /* address does not fall within a mapping */ 135 136 if (mdb_tgt_lookup_by_name(t, mp->map_name, name, symp, sip) == -1) 137 return (NULL); 138 139 return (name); 140 } 141 142 /* 143 * This lets dcmds be a little fancy with their processing of type arguments 144 * while still treating them more or less as a single argument. 145 * For example, if a command is invokes like this: 146 * 147 * ::<dcmd> proc_t ... 148 * 149 * this function will just copy "proc_t" into the provided buffer. If the 150 * command is instead invoked like this: 151 * 152 * ::<dcmd> struct proc ... 153 * 154 * this function will place the string "struct proc" into the provided buffer 155 * and increment the caller's argv and argc. This allows the caller to still 156 * treat the type argument logically as it would an other atomic argument. 157 */ 158 int 159 args_to_typename(int *argcp, const mdb_arg_t **argvp, char *buf, size_t len) 160 { 161 int argc = *argcp; 162 const mdb_arg_t *argv = *argvp; 163 164 if (argc < 1 || argv->a_type != MDB_TYPE_STRING) 165 return (DCMD_USAGE); 166 167 if (strcmp(argv->a_un.a_str, "struct") == 0 || 168 strcmp(argv->a_un.a_str, "enum") == 0 || 169 strcmp(argv->a_un.a_str, "union") == 0) { 170 if (argc <= 1) { 171 mdb_warn("%s is not a valid type\n", argv->a_un.a_str); 172 return (DCMD_ABORT); 173 } 174 175 if (argv[1].a_type != MDB_TYPE_STRING) 176 return (DCMD_USAGE); 177 178 (void) mdb_snprintf(buf, len, "%s %s", 179 argv[0].a_un.a_str, argv[1].a_un.a_str); 180 181 *argcp = argc - 1; 182 *argvp = argv + 1; 183 } else { 184 (void) mdb_snprintf(buf, len, "%s", argv[0].a_un.a_str); 185 } 186 187 return (0); 188 } 189 190 /*ARGSUSED*/ 191 int 192 cmd_sizeof(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 193 { 194 mdb_ctf_id_t id; 195 char tn[MDB_SYM_NAMLEN]; 196 int ret; 197 198 if (flags & DCMD_ADDRSPEC) 199 return (DCMD_USAGE); 200 201 if ((ret = args_to_typename(&argc, &argv, tn, sizeof (tn))) != 0) 202 return (ret); 203 204 if (argc != 1) 205 return (DCMD_USAGE); 206 207 if (mdb_ctf_lookup_by_name(tn, &id) != 0) { 208 mdb_warn("failed to look up type %s", tn); 209 return (DCMD_ERR); 210 } 211 212 if (flags & DCMD_PIPE_OUT) 213 mdb_printf("%#lr\n", mdb_ctf_type_size(id)); 214 else 215 mdb_printf("sizeof (%s) = %#lr\n", tn, mdb_ctf_type_size(id)); 216 217 return (DCMD_OK); 218 } 219 220 int 221 cmd_sizeof_tab(mdb_tab_cookie_t *mcp, uint_t flags, int argc, 222 const mdb_arg_t *argv) 223 { 224 char tn[MDB_SYM_NAMLEN]; 225 int ret; 226 227 if (argc == 0 && !(flags & DCMD_TAB_SPACE)) 228 return (0); 229 230 if (argc == 0 && (flags & DCMD_TAB_SPACE)) 231 return (mdb_tab_complete_type(mcp, NULL, MDB_TABC_NOPOINT)); 232 233 if ((ret = mdb_tab_typename(&argc, &argv, tn, sizeof (tn))) < 0) 234 return (ret); 235 236 if (argc == 1) 237 return (mdb_tab_complete_type(mcp, tn, MDB_TABC_NOPOINT)); 238 239 return (0); 240 } 241 242 /*ARGSUSED*/ 243 int 244 cmd_offsetof(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 245 { 246 const char *member; 247 mdb_ctf_id_t id; 248 ulong_t off; 249 char tn[MDB_SYM_NAMLEN]; 250 ssize_t sz; 251 int ret; 252 253 if (flags & DCMD_ADDRSPEC) 254 return (DCMD_USAGE); 255 256 if ((ret = args_to_typename(&argc, &argv, tn, sizeof (tn))) != 0) 257 return (ret); 258 259 if (argc != 2 || argv[1].a_type != MDB_TYPE_STRING) 260 return (DCMD_USAGE); 261 262 if (mdb_ctf_lookup_by_name(tn, &id) != 0) { 263 mdb_warn("failed to look up type %s", tn); 264 return (DCMD_ERR); 265 } 266 267 member = argv[1].a_un.a_str; 268 269 if (mdb_ctf_member_info(id, member, &off, &id) != 0) { 270 mdb_warn("failed to find member %s of type %s", member, tn); 271 return (DCMD_ERR); 272 } 273 274 if (flags & DCMD_PIPE_OUT) { 275 if (off % NBBY != 0) { 276 mdb_warn("member %s of type %s is not byte-aligned\n", 277 member, tn); 278 return (DCMD_ERR); 279 } 280 mdb_printf("%#lr", off / NBBY); 281 return (DCMD_OK); 282 } 283 284 mdb_printf("offsetof (%s, %s) = %#lr", 285 tn, member, off / NBBY); 286 if (off % NBBY != 0) 287 mdb_printf(".%lr", off % NBBY); 288 289 if ((sz = mdb_ctf_type_size(id)) > 0) 290 mdb_printf(", sizeof (...->%s) = %#lr", member, sz); 291 292 mdb_printf("\n"); 293 294 return (DCMD_OK); 295 } 296 297 /*ARGSUSED*/ 298 static int 299 enum_prefix_scan_cb(const char *name, int value, void *arg) 300 { 301 char *str = arg; 302 303 /* 304 * This function is called with every name in the enum. We make 305 * "arg" be the common prefix, if any. 306 */ 307 if (str[0] == 0) { 308 if (strlcpy(arg, name, MDB_SYM_NAMLEN) >= MDB_SYM_NAMLEN) 309 return (1); 310 return (0); 311 } 312 313 while (*name == *str) { 314 if (*str == 0) { 315 if (str != arg) { 316 str--; /* don't smother a name completely */ 317 } 318 break; 319 } 320 name++; 321 str++; 322 } 323 *str = 0; 324 325 return (str == arg); /* only continue if prefix is non-empty */ 326 } 327 328 struct enum_p2_info { 329 intmax_t e_value; /* value we're processing */ 330 char *e_buf; /* buffer for holding names */ 331 size_t e_size; /* size of buffer */ 332 size_t e_prefix; /* length of initial prefix */ 333 uint_t e_allprefix; /* apply prefix to first guy, too */ 334 uint_t e_bits; /* bits seen */ 335 uint8_t e_found; /* have we seen anything? */ 336 uint8_t e_first; /* does buf contain the first one? */ 337 uint8_t e_zero; /* have we seen a zero value? */ 338 }; 339 340 static int 341 enum_p2_cb(const char *name, int bit_arg, void *arg) 342 { 343 struct enum_p2_info *eiip = arg; 344 uintmax_t bit = bit_arg; 345 346 if (bit != 0 && !ISP2(bit)) 347 return (1); /* non-power-of-2; abort processing */ 348 349 if ((bit == 0 && eiip->e_zero) || 350 (bit != 0 && (eiip->e_bits & bit) != 0)) { 351 return (0); /* already seen this value */ 352 } 353 354 if (bit == 0) 355 eiip->e_zero = 1; 356 else 357 eiip->e_bits |= bit; 358 359 if (eiip->e_buf != NULL && (eiip->e_value & bit) != 0) { 360 char *buf = eiip->e_buf; 361 size_t prefix = eiip->e_prefix; 362 363 if (eiip->e_found) { 364 (void) strlcat(buf, "|", eiip->e_size); 365 366 if (eiip->e_first && !eiip->e_allprefix && prefix > 0) { 367 char c1 = buf[prefix]; 368 char c2 = buf[prefix + 1]; 369 buf[prefix] = '{'; 370 buf[prefix + 1] = 0; 371 mdb_printf("%s", buf); 372 buf[prefix] = c1; 373 buf[prefix + 1] = c2; 374 mdb_printf("%s", buf + prefix); 375 } else { 376 mdb_printf("%s", buf); 377 } 378 379 } 380 /* skip the common prefix as necessary */ 381 if ((eiip->e_found || eiip->e_allprefix) && 382 strlen(name) > prefix) 383 name += prefix; 384 385 (void) strlcpy(eiip->e_buf, name, eiip->e_size); 386 eiip->e_first = !eiip->e_found; 387 eiip->e_found = 1; 388 } 389 return (0); 390 } 391 392 static int 393 enum_is_p2(mdb_ctf_id_t id) 394 { 395 struct enum_p2_info eii; 396 bzero(&eii, sizeof (eii)); 397 398 return (mdb_ctf_type_kind(id) == CTF_K_ENUM && 399 mdb_ctf_enum_iter(id, enum_p2_cb, &eii) == 0 && 400 eii.e_bits != 0); 401 } 402 403 static int 404 enum_value_print_p2(mdb_ctf_id_t id, intmax_t value, uint_t allprefix) 405 { 406 struct enum_p2_info eii; 407 char prefix[MDB_SYM_NAMLEN + 2]; 408 intmax_t missed; 409 410 bzero(&eii, sizeof (eii)); 411 412 eii.e_value = value; 413 eii.e_buf = prefix; 414 eii.e_size = sizeof (prefix); 415 eii.e_allprefix = allprefix; 416 417 prefix[0] = 0; 418 if (mdb_ctf_enum_iter(id, enum_prefix_scan_cb, prefix) == 0) 419 eii.e_prefix = strlen(prefix); 420 421 if (mdb_ctf_enum_iter(id, enum_p2_cb, &eii) != 0 || eii.e_bits == 0) 422 return (-1); 423 424 missed = (value & ~(intmax_t)eii.e_bits); 425 426 if (eii.e_found) { 427 /* push out any final value, with a | if we missed anything */ 428 if (!eii.e_first) 429 (void) strlcat(prefix, "}", sizeof (prefix)); 430 if (missed != 0) 431 (void) strlcat(prefix, "|", sizeof (prefix)); 432 433 mdb_printf("%s", prefix); 434 } 435 436 if (!eii.e_found || missed) { 437 mdb_printf("%#llx", missed); 438 } 439 440 return (0); 441 } 442 443 struct enum_cbinfo { 444 uint_t e_flags; 445 const char *e_string; /* NULL for value searches */ 446 size_t e_prefix; 447 intmax_t e_value; 448 uint_t e_found; 449 mdb_ctf_id_t e_id; 450 }; 451 #define E_PRETTY 0x01 452 #define E_HEX 0x02 453 #define E_SEARCH_STRING 0x04 454 #define E_SEARCH_VALUE 0x08 455 #define E_ELIDE_PREFIX 0x10 456 457 static void 458 enum_print(struct enum_cbinfo *info, const char *name, int value) 459 { 460 uint_t flags = info->e_flags; 461 uint_t elide_prefix = (info->e_flags & E_ELIDE_PREFIX); 462 463 if (name != NULL && info->e_prefix && strlen(name) > info->e_prefix) 464 name += info->e_prefix; 465 466 if (flags & E_PRETTY) { 467 uint_t indent = 5 + ((flags & E_HEX) ? 8 : 11); 468 469 mdb_printf((flags & E_HEX)? "%8x " : "%11d ", value); 470 (void) mdb_inc_indent(indent); 471 if (name != NULL) { 472 mdb_iob_puts(mdb.m_out, name); 473 } else { 474 (void) enum_value_print_p2(info->e_id, value, 475 elide_prefix); 476 } 477 (void) mdb_dec_indent(indent); 478 mdb_printf("\n"); 479 } else { 480 mdb_printf("%#r\n", value); 481 } 482 } 483 484 static int 485 enum_cb(const char *name, int value, void *arg) 486 { 487 struct enum_cbinfo *info = arg; 488 uint_t flags = info->e_flags; 489 490 if (flags & E_SEARCH_STRING) { 491 if (strcmp(name, info->e_string) != 0) 492 return (0); 493 494 } else if (flags & E_SEARCH_VALUE) { 495 if (value != info->e_value) 496 return (0); 497 } 498 499 enum_print(info, name, value); 500 501 info->e_found = 1; 502 return (0); 503 } 504 505 void 506 enum_help(void) 507 { 508 mdb_printf("%s", 509 "Without an address and name, print all values for the enumeration \"enum\".\n" 510 "With an address, look up a particular value in \"enum\". With a name, look\n" 511 "up a particular name in \"enum\".\n"); 512 513 (void) mdb_dec_indent(2); 514 mdb_printf("\n%<b>OPTIONS%</b>\n"); 515 (void) mdb_inc_indent(2); 516 517 mdb_printf("%s", 518 " -e remove common prefixes from enum names\n" 519 " -x report enum values in hexadecimal\n"); 520 } 521 522 /*ARGSUSED*/ 523 int 524 cmd_enum(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 525 { 526 struct enum_cbinfo info; 527 528 char type[MDB_SYM_NAMLEN + sizeof ("enum ")]; 529 char tn2[MDB_SYM_NAMLEN + sizeof ("enum ")]; 530 char prefix[MDB_SYM_NAMLEN]; 531 mdb_ctf_id_t id; 532 mdb_ctf_id_t idr; 533 534 int i; 535 intmax_t search; 536 uint_t isp2; 537 538 info.e_flags = (flags & DCMD_PIPE_OUT)? 0 : E_PRETTY; 539 info.e_string = NULL; 540 info.e_value = 0; 541 info.e_found = 0; 542 543 i = mdb_getopts(argc, argv, 544 'e', MDB_OPT_SETBITS, E_ELIDE_PREFIX, &info.e_flags, 545 'x', MDB_OPT_SETBITS, E_HEX, &info.e_flags, 546 NULL); 547 548 argc -= i; 549 argv += i; 550 551 if ((i = args_to_typename(&argc, &argv, type, MDB_SYM_NAMLEN)) != 0) 552 return (i); 553 554 if (strchr(type, ' ') == NULL) { 555 /* 556 * Check as an enumeration tag first, and fall back 557 * to checking for a typedef. Yes, this means that 558 * anonymous enumerations whose typedefs conflict with 559 * an enum tag can't be accessed. Don't do that. 560 */ 561 (void) mdb_snprintf(tn2, sizeof (tn2), "enum %s", type); 562 563 if (mdb_ctf_lookup_by_name(tn2, &id) == 0) { 564 (void) strcpy(type, tn2); 565 } else if (mdb_ctf_lookup_by_name(type, &id) != 0) { 566 mdb_warn("types '%s', '%s'", tn2, type); 567 return (DCMD_ERR); 568 } 569 } else { 570 if (mdb_ctf_lookup_by_name(type, &id) != 0) { 571 mdb_warn("'%s'", type); 572 return (DCMD_ERR); 573 } 574 } 575 576 /* resolve it, and make sure we're looking at an enumeration */ 577 if (mdb_ctf_type_resolve(id, &idr) == -1) { 578 mdb_warn("unable to resolve '%s'", type); 579 return (DCMD_ERR); 580 } 581 if (mdb_ctf_type_kind(idr) != CTF_K_ENUM) { 582 mdb_warn("'%s': not an enumeration\n", type); 583 return (DCMD_ERR); 584 } 585 586 info.e_id = idr; 587 588 if (argc > 2) 589 return (DCMD_USAGE); 590 591 if (argc == 2) { 592 if (flags & DCMD_ADDRSPEC) { 593 mdb_warn("may only specify one of: name, address\n"); 594 return (DCMD_USAGE); 595 } 596 597 if (argv[1].a_type == MDB_TYPE_STRING) { 598 info.e_flags |= E_SEARCH_STRING; 599 info.e_string = argv[1].a_un.a_str; 600 } else if (argv[1].a_type == MDB_TYPE_IMMEDIATE) { 601 info.e_flags |= E_SEARCH_VALUE; 602 search = argv[1].a_un.a_val; 603 } else { 604 return (DCMD_USAGE); 605 } 606 } 607 608 if (flags & DCMD_ADDRSPEC) { 609 info.e_flags |= E_SEARCH_VALUE; 610 search = mdb_get_dot(); 611 } 612 613 if (info.e_flags & E_SEARCH_VALUE) { 614 if ((int)search != search) { 615 mdb_warn("value '%lld' out of enumeration range\n", 616 search); 617 } 618 info.e_value = search; 619 } 620 621 isp2 = enum_is_p2(idr); 622 if (isp2) 623 info.e_flags |= E_HEX; 624 625 if (DCMD_HDRSPEC(flags) && (info.e_flags & E_PRETTY)) { 626 if (info.e_flags & E_HEX) 627 mdb_printf("%<u>%8s %-64s%</u>\n", "VALUE", "NAME"); 628 else 629 mdb_printf("%<u>%11s %-64s%</u>\n", "VALUE", "NAME"); 630 } 631 632 /* if the enum is a power-of-two one, process it that way */ 633 if ((info.e_flags & E_SEARCH_VALUE) && isp2) { 634 enum_print(&info, NULL, info.e_value); 635 return (DCMD_OK); 636 } 637 638 prefix[0] = 0; 639 if ((info.e_flags & E_ELIDE_PREFIX) && 640 mdb_ctf_enum_iter(id, enum_prefix_scan_cb, prefix) == 0) 641 info.e_prefix = strlen(prefix); 642 643 if (mdb_ctf_enum_iter(idr, enum_cb, &info) == -1) { 644 mdb_warn("cannot walk '%s' as enum", type); 645 return (DCMD_ERR); 646 } 647 648 if (info.e_found == 0 && 649 (info.e_flags & (E_SEARCH_STRING | E_SEARCH_VALUE)) != 0) { 650 if (info.e_flags & E_SEARCH_STRING) 651 mdb_warn("name \"%s\" not in '%s'\n", info.e_string, 652 type); 653 else 654 mdb_warn("value %#lld not in '%s'\n", info.e_value, 655 type); 656 657 return (DCMD_ERR); 658 } 659 660 return (DCMD_OK); 661 } 662 663 static int 664 setup_vcb(const char *name, uintptr_t addr) 665 { 666 const char *p; 667 mdb_var_t *v; 668 669 if ((v = mdb_nv_lookup(&mdb.m_nv, name)) == NULL) { 670 if ((p = strbadid(name)) != NULL) { 671 mdb_warn("'%c' may not be used in a variable " 672 "name\n", *p); 673 return (DCMD_ABORT); 674 } 675 676 if ((v = mdb_nv_insert(&mdb.m_nv, name, NULL, addr, 0)) == NULL) 677 return (DCMD_ERR); 678 } else { 679 if (v->v_flags & MDB_NV_RDONLY) { 680 mdb_warn("variable %s is read-only\n", name); 681 return (DCMD_ABORT); 682 } 683 } 684 685 /* 686 * If there already exists a vcb for this variable, we may be 687 * calling the dcmd in a loop. We only create a vcb for this 688 * variable on the first invocation. 689 */ 690 if (mdb_vcb_find(v, mdb.m_frame) == NULL) 691 mdb_vcb_insert(mdb_vcb_create(v), mdb.m_frame); 692 693 return (0); 694 } 695 696 /*ARGSUSED*/ 697 int 698 cmd_list(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 699 { 700 int offset; 701 uintptr_t a, tmp; 702 int ret; 703 704 if (!(flags & DCMD_ADDRSPEC) || argc == 0) 705 return (DCMD_USAGE); 706 707 if (argv->a_type != MDB_TYPE_STRING) { 708 /* 709 * We are being given a raw offset in lieu of a type and 710 * member; confirm the arguments. 711 */ 712 if (argv->a_type != MDB_TYPE_IMMEDIATE) 713 return (DCMD_USAGE); 714 715 offset = argv->a_un.a_val; 716 717 argv++; 718 argc--; 719 720 if (offset % sizeof (uintptr_t)) { 721 mdb_warn("offset must fall on a word boundary\n"); 722 return (DCMD_ABORT); 723 } 724 } else { 725 const char *member; 726 char buf[MDB_SYM_NAMLEN]; 727 int ret; 728 729 ret = args_to_typename(&argc, &argv, buf, sizeof (buf)); 730 if (ret != 0) 731 return (ret); 732 733 argv++; 734 argc--; 735 736 member = argv->a_un.a_str; 737 offset = mdb_ctf_offsetof_by_name(buf, member); 738 if (offset == -1) 739 return (DCMD_ABORT); 740 741 argv++; 742 argc--; 743 744 if (offset % (sizeof (uintptr_t)) != 0) { 745 mdb_warn("%s is not a word-aligned member\n", member); 746 return (DCMD_ABORT); 747 } 748 } 749 750 /* 751 * If we have any unchewed arguments, a variable name must be present. 752 */ 753 if (argc == 1) { 754 if (argv->a_type != MDB_TYPE_STRING) 755 return (DCMD_USAGE); 756 757 if ((ret = setup_vcb(argv->a_un.a_str, addr)) != 0) 758 return (ret); 759 760 } else if (argc != 0) { 761 return (DCMD_USAGE); 762 } 763 764 a = addr; 765 766 do { 767 mdb_printf("%lr\n", a); 768 769 if (mdb_vread(&tmp, sizeof (tmp), a + offset) == -1) { 770 mdb_warn("failed to read next pointer from object %p", 771 a); 772 return (DCMD_ERR); 773 } 774 775 a = tmp; 776 } while (a != addr && a != NULL); 777 778 return (DCMD_OK); 779 } 780 781 int 782 cmd_array(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 783 { 784 mdb_ctf_id_t id; 785 ssize_t elemsize = 0; 786 char tn[MDB_SYM_NAMLEN]; 787 int ret, nelem = -1; 788 789 mdb_tgt_t *t = mdb.m_target; 790 GElf_Sym sym; 791 mdb_ctf_arinfo_t ar; 792 mdb_syminfo_t s_info; 793 794 if (!(flags & DCMD_ADDRSPEC)) 795 return (DCMD_USAGE); 796 797 if (argc >= 2) { 798 ret = args_to_typename(&argc, &argv, tn, sizeof (tn)); 799 if (ret != 0) 800 return (ret); 801 802 if (argc == 1) /* unquoted compound type without count */ 803 return (DCMD_USAGE); 804 805 if (mdb_ctf_lookup_by_name(tn, &id) != 0) { 806 mdb_warn("failed to look up type %s", tn); 807 return (DCMD_ABORT); 808 } 809 810 if (argv[1].a_type == MDB_TYPE_IMMEDIATE) 811 nelem = argv[1].a_un.a_val; 812 else 813 nelem = mdb_strtoull(argv[1].a_un.a_str); 814 815 elemsize = mdb_ctf_type_size(id); 816 } else if (addr_to_sym(t, addr, tn, sizeof (tn), &sym, &s_info) 817 != NULL && mdb_ctf_lookup_by_symbol(&sym, &s_info, &id) 818 == 0 && mdb_ctf_type_kind(id) == CTF_K_ARRAY && 819 mdb_ctf_array_info(id, &ar) != -1) { 820 elemsize = mdb_ctf_type_size(id) / ar.mta_nelems; 821 nelem = ar.mta_nelems; 822 } else { 823 mdb_warn("no symbol information for %a", addr); 824 return (DCMD_ERR); 825 } 826 827 if (argc == 3 || argc == 1) { 828 if (argv[argc - 1].a_type != MDB_TYPE_STRING) 829 return (DCMD_USAGE); 830 831 if ((ret = setup_vcb(argv[argc - 1].a_un.a_str, addr)) != 0) 832 return (ret); 833 834 } else if (argc > 3) { 835 return (DCMD_USAGE); 836 } 837 838 for (; nelem > 0; nelem--) { 839 mdb_printf("%lr\n", addr); 840 addr = addr + elemsize; 841 } 842 843 return (DCMD_OK); 844 } 845 846 /* 847 * Print an integer bitfield in hexadecimal by reading the enclosing byte(s) 848 * and then shifting and masking the data in the lower bits of a uint64_t. 849 */ 850 static int 851 print_bitfield(ulong_t off, printarg_t *pap, ctf_encoding_t *ep) 852 { 853 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY; 854 size_t size = (ep->cte_bits + (NBBY - 1)) / NBBY; 855 uint64_t mask = (1ULL << ep->cte_bits) - 1; 856 uint64_t value = 0; 857 uint8_t *buf = (uint8_t *)&value; 858 uint8_t shift; 859 860 const char *format; 861 862 if (!(pap->pa_flags & PA_SHOWVAL)) 863 return (0); 864 865 if (ep->cte_bits > sizeof (value) * NBBY - 1) { 866 mdb_printf("??? (invalid bitfield size %u)", ep->cte_bits); 867 return (0); 868 } 869 870 /* 871 * On big-endian machines, we need to adjust the buf pointer to refer 872 * to the lowest 'size' bytes in 'value', and we need shift based on 873 * the offset from the end of the data, not the offset of the start. 874 */ 875 #ifdef _BIG_ENDIAN 876 buf += sizeof (value) - size; 877 off += ep->cte_bits; 878 #endif 879 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, buf, size, addr) != size) { 880 mdb_warn("failed to read %lu bytes at %llx", 881 (ulong_t)size, addr); 882 return (1); 883 } 884 885 shift = off % NBBY; 886 887 /* 888 * Offsets are counted from opposite ends on little- and 889 * big-endian machines. 890 */ 891 #ifdef _BIG_ENDIAN 892 shift = NBBY - shift; 893 #endif 894 895 /* 896 * If the bits we want do not begin on a byte boundary, shift the data 897 * right so that the value is in the lowest 'cte_bits' of 'value'. 898 */ 899 if (off % NBBY != 0) 900 value >>= shift; 901 value &= mask; 902 903 /* 904 * We default to printing signed bitfields as decimals, 905 * and unsigned bitfields in hexadecimal. If they specify 906 * hexadecimal, we treat the field as unsigned. 907 */ 908 if ((pap->pa_flags & PA_INTHEX) || 909 !(ep->cte_format & CTF_INT_SIGNED)) { 910 format = (pap->pa_flags & PA_INTDEC)? "%#llu" : "%#llx"; 911 } else { 912 int sshift = sizeof (value) * NBBY - ep->cte_bits; 913 914 /* sign-extend value, and print as a signed decimal */ 915 value = ((int64_t)value << sshift) >> sshift; 916 format = "%#lld"; 917 } 918 mdb_printf(format, value); 919 920 return (0); 921 } 922 923 /* 924 * Print out a character or integer value. We use some simple heuristics, 925 * described below, to determine the appropriate radix to use for output. 926 */ 927 static int 928 print_int_val(const char *type, ctf_encoding_t *ep, ulong_t off, 929 printarg_t *pap) 930 { 931 static const char *const sformat[] = { "%#d", "%#d", "%#d", "%#lld" }; 932 static const char *const uformat[] = { "%#u", "%#u", "%#u", "%#llu" }; 933 static const char *const xformat[] = { "%#x", "%#x", "%#x", "%#llx" }; 934 935 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY; 936 const char *const *fsp; 937 size_t size; 938 939 union { 940 uint64_t i8; 941 uint32_t i4; 942 uint16_t i2; 943 uint8_t i1; 944 time_t t; 945 ipaddr_t I; 946 } u; 947 948 if (!(pap->pa_flags & PA_SHOWVAL)) 949 return (0); 950 951 if (ep->cte_format & CTF_INT_VARARGS) { 952 mdb_printf("...\n"); 953 return (0); 954 } 955 956 /* 957 * If the size is not a power-of-two number of bytes in the range 1-8 958 * then we assume it is a bitfield and print it as such. 959 */ 960 size = ep->cte_bits / NBBY; 961 if (size > 8 || (ep->cte_bits % NBBY) != 0 || (size & (size - 1)) != 0) 962 return (print_bitfield(off, pap, ep)); 963 964 if (IS_CHAR(*ep)) { 965 mdb_printf("'"); 966 if (mdb_fmt_print(pap->pa_tgt, pap->pa_as, 967 addr, 1, 'C') == addr) 968 return (1); 969 mdb_printf("'"); 970 return (0); 971 } 972 973 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.i8, size, addr) != size) { 974 mdb_warn("failed to read %lu bytes at %llx", 975 (ulong_t)size, addr); 976 return (1); 977 } 978 979 /* 980 * We pretty-print some integer based types. time_t values are 981 * printed as a calendar date and time, and IPv4 addresses as human 982 * readable dotted quads. 983 */ 984 if (!(pap->pa_flags & (PA_INTHEX | PA_INTDEC))) { 985 if (strcmp(type, "time_t") == 0 && u.t != 0) { 986 mdb_printf("%Y", u.t); 987 return (0); 988 } 989 if (strcmp(type, "ipaddr_t") == 0 || 990 strcmp(type, "in_addr_t") == 0) { 991 mdb_printf("%I", u.I); 992 return (0); 993 } 994 } 995 996 /* 997 * The default format is hexadecimal. 998 */ 999 if (!(pap->pa_flags & PA_INTDEC)) 1000 fsp = xformat; 1001 else if (ep->cte_format & CTF_INT_SIGNED) 1002 fsp = sformat; 1003 else 1004 fsp = uformat; 1005 1006 switch (size) { 1007 case sizeof (uint8_t): 1008 mdb_printf(fsp[0], u.i1); 1009 break; 1010 case sizeof (uint16_t): 1011 mdb_printf(fsp[1], u.i2); 1012 break; 1013 case sizeof (uint32_t): 1014 mdb_printf(fsp[2], u.i4); 1015 break; 1016 case sizeof (uint64_t): 1017 mdb_printf(fsp[3], u.i8); 1018 break; 1019 } 1020 return (0); 1021 } 1022 1023 /*ARGSUSED*/ 1024 static int 1025 print_int(const char *type, const char *name, mdb_ctf_id_t id, 1026 mdb_ctf_id_t base, ulong_t off, printarg_t *pap) 1027 { 1028 ctf_encoding_t e; 1029 1030 if (!(pap->pa_flags & PA_SHOWVAL)) 1031 return (0); 1032 1033 if (mdb_ctf_type_encoding(base, &e) != 0) { 1034 mdb_printf("??? (%s)", mdb_strerror(errno)); 1035 return (0); 1036 } 1037 1038 return (print_int_val(type, &e, off, pap)); 1039 } 1040 1041 /* 1042 * Print out a floating point value. We only provide support for floats in 1043 * the ANSI-C float, double, and long double formats. 1044 */ 1045 /*ARGSUSED*/ 1046 static int 1047 print_float(const char *type, const char *name, mdb_ctf_id_t id, 1048 mdb_ctf_id_t base, ulong_t off, printarg_t *pap) 1049 { 1050 #ifndef _KMDB 1051 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY; 1052 ctf_encoding_t e; 1053 1054 union { 1055 float f; 1056 double d; 1057 long double ld; 1058 } u; 1059 1060 if (!(pap->pa_flags & PA_SHOWVAL)) 1061 return (0); 1062 1063 if (mdb_ctf_type_encoding(base, &e) == 0) { 1064 if (e.cte_format == CTF_FP_SINGLE && 1065 e.cte_bits == sizeof (float) * NBBY) { 1066 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.f, 1067 sizeof (u.f), addr) != sizeof (u.f)) { 1068 mdb_warn("failed to read float at %llx", addr); 1069 return (1); 1070 } 1071 mdb_printf("%s", doubletos(u.f, 7, 'e')); 1072 1073 } else if (e.cte_format == CTF_FP_DOUBLE && 1074 e.cte_bits == sizeof (double) * NBBY) { 1075 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.d, 1076 sizeof (u.d), addr) != sizeof (u.d)) { 1077 mdb_warn("failed to read float at %llx", addr); 1078 return (1); 1079 } 1080 mdb_printf("%s", doubletos(u.d, 7, 'e')); 1081 1082 } else if (e.cte_format == CTF_FP_LDOUBLE && 1083 e.cte_bits == sizeof (long double) * NBBY) { 1084 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.ld, 1085 sizeof (u.ld), addr) != sizeof (u.ld)) { 1086 mdb_warn("failed to read float at %llx", addr); 1087 return (1); 1088 } 1089 mdb_printf("%s", longdoubletos(&u.ld, 16, 'e')); 1090 1091 } else { 1092 mdb_printf("??? (unsupported FP format %u / %u bits\n", 1093 e.cte_format, e.cte_bits); 1094 } 1095 } else 1096 mdb_printf("??? (%s)", mdb_strerror(errno)); 1097 #else 1098 mdb_printf("<FLOAT>"); 1099 #endif 1100 return (0); 1101 } 1102 1103 1104 /* 1105 * Print out a pointer value as a symbol name + offset or a hexadecimal value. 1106 * If the pointer itself is a char *, we attempt to read a bit of the data 1107 * referenced by the pointer and display it if it is a printable ASCII string. 1108 */ 1109 /*ARGSUSED*/ 1110 static int 1111 print_ptr(const char *type, const char *name, mdb_ctf_id_t id, 1112 mdb_ctf_id_t base, ulong_t off, printarg_t *pap) 1113 { 1114 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY; 1115 ctf_encoding_t e; 1116 uintptr_t value; 1117 char buf[256]; 1118 ssize_t len; 1119 1120 if (!(pap->pa_flags & PA_SHOWVAL)) 1121 return (0); 1122 1123 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, 1124 &value, sizeof (value), addr) != sizeof (value)) { 1125 mdb_warn("failed to read %s pointer at %llx", name, addr); 1126 return (1); 1127 } 1128 1129 if (pap->pa_flags & PA_NOSYMBOLIC) { 1130 mdb_printf("%#lx", value); 1131 return (0); 1132 } 1133 1134 mdb_printf("%a", value); 1135 1136 if (value == NULL || strcmp(type, "caddr_t") == 0) 1137 return (0); 1138 1139 if (mdb_ctf_type_kind(base) == CTF_K_POINTER && 1140 mdb_ctf_type_reference(base, &base) != -1 && 1141 mdb_ctf_type_resolve(base, &base) != -1 && 1142 mdb_ctf_type_encoding(base, &e) == 0 && IS_CHAR(e)) { 1143 if ((len = mdb_tgt_readstr(pap->pa_realtgt, pap->pa_as, 1144 buf, sizeof (buf), value)) >= 0 && strisprint(buf)) { 1145 if (len == sizeof (buf)) 1146 (void) strabbr(buf, sizeof (buf)); 1147 mdb_printf(" \"%s\"", buf); 1148 } 1149 } 1150 1151 return (0); 1152 } 1153 1154 1155 /* 1156 * Print out a fixed-size array. We special-case arrays of characters 1157 * and attempt to print them out as ASCII strings if possible. For other 1158 * arrays, we iterate over a maximum of pa_armemlim members and call 1159 * mdb_ctf_type_visit() again on each element to print its value. 1160 */ 1161 /*ARGSUSED*/ 1162 static int 1163 print_array(const char *type, const char *name, mdb_ctf_id_t id, 1164 mdb_ctf_id_t base, ulong_t off, printarg_t *pap) 1165 { 1166 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY; 1167 printarg_t pa = *pap; 1168 ssize_t eltsize; 1169 mdb_ctf_arinfo_t r; 1170 ctf_encoding_t e; 1171 uint_t i, kind, limit; 1172 int d, sou; 1173 char buf[8]; 1174 char *str; 1175 1176 if (!(pap->pa_flags & PA_SHOWVAL)) 1177 return (0); 1178 1179 if (pap->pa_depth == pap->pa_maxdepth) { 1180 mdb_printf("[ ... ]"); 1181 return (0); 1182 } 1183 1184 /* 1185 * Determine the base type and size of the array's content. If this 1186 * fails, we cannot print anything and just give up. 1187 */ 1188 if (mdb_ctf_array_info(base, &r) == -1 || 1189 mdb_ctf_type_resolve(r.mta_contents, &base) == -1 || 1190 (eltsize = mdb_ctf_type_size(base)) == -1) { 1191 mdb_printf("[ ??? ] (%s)", mdb_strerror(errno)); 1192 return (0); 1193 } 1194 1195 /* 1196 * Read a few bytes and determine if the content appears to be 1197 * printable ASCII characters. If so, read the entire array and 1198 * attempt to display it as a string if it is printable. 1199 */ 1200 if ((pap->pa_arstrlim == MDB_ARR_NOLIMIT || 1201 r.mta_nelems <= pap->pa_arstrlim) && 1202 mdb_ctf_type_encoding(base, &e) == 0 && IS_CHAR(e) && 1203 mdb_tgt_readstr(pap->pa_tgt, pap->pa_as, buf, 1204 MIN(sizeof (buf), r.mta_nelems), addr) > 0 && strisprint(buf)) { 1205 1206 str = mdb_alloc(r.mta_nelems + 1, UM_SLEEP | UM_GC); 1207 str[r.mta_nelems] = '\0'; 1208 1209 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, str, 1210 r.mta_nelems, addr) != r.mta_nelems) { 1211 mdb_warn("failed to read char array at %llx", addr); 1212 return (1); 1213 } 1214 1215 if (strisprint(str)) { 1216 mdb_printf("[ \"%s\" ]", str); 1217 return (0); 1218 } 1219 } 1220 1221 if (pap->pa_armemlim != MDB_ARR_NOLIMIT) 1222 limit = MIN(r.mta_nelems, pap->pa_armemlim); 1223 else 1224 limit = r.mta_nelems; 1225 1226 if (limit == 0) { 1227 mdb_printf("[ ... ]"); 1228 return (0); 1229 } 1230 1231 kind = mdb_ctf_type_kind(base); 1232 sou = IS_COMPOSITE(kind); 1233 1234 pa.pa_addr = addr; /* set base address to start of array */ 1235 pa.pa_maxdepth = pa.pa_maxdepth - pa.pa_depth - 1; 1236 pa.pa_nest += pa.pa_depth + 1; /* nesting level is current depth + 1 */ 1237 pa.pa_depth = 0; /* reset depth to 0 for new scope */ 1238 pa.pa_prefix = NULL; 1239 1240 if (sou) { 1241 pa.pa_delim = "\n"; 1242 mdb_printf("[\n"); 1243 } else { 1244 pa.pa_flags &= ~(PA_SHOWTYPE | PA_SHOWNAME | PA_SHOWADDR); 1245 pa.pa_delim = ", "; 1246 mdb_printf("[ "); 1247 } 1248 1249 for (i = 0; i < limit; i++, pa.pa_addr += eltsize) { 1250 if (i == limit - 1 && !sou) { 1251 if (limit < r.mta_nelems) 1252 pa.pa_delim = ", ... ]"; 1253 else 1254 pa.pa_delim = " ]"; 1255 } 1256 1257 if (mdb_ctf_type_visit(r.mta_contents, elt_print, &pa) == -1) { 1258 mdb_warn("failed to print array data"); 1259 return (1); 1260 } 1261 } 1262 1263 if (sou) { 1264 for (d = pa.pa_depth - 1; d >= 0; d--) 1265 print_close_sou(&pa, d); 1266 1267 if (limit < r.mta_nelems) { 1268 mdb_printf("%*s... ]", 1269 (pap->pa_depth + pap->pa_nest) * pap->pa_tab, ""); 1270 } else { 1271 mdb_printf("%*s]", 1272 (pap->pa_depth + pap->pa_nest) * pap->pa_tab, ""); 1273 } 1274 } 1275 1276 /* copy the hole array info, since it may have been grown */ 1277 pap->pa_holes = pa.pa_holes; 1278 pap->pa_nholes = pa.pa_nholes; 1279 1280 return (0); 1281 } 1282 1283 /* 1284 * Print out a struct or union header. We need only print the open brace 1285 * because mdb_ctf_type_visit() itself will automatically recurse through 1286 * all members of the given struct or union. 1287 */ 1288 /*ARGSUSED*/ 1289 static int 1290 print_sou(const char *type, const char *name, mdb_ctf_id_t id, 1291 mdb_ctf_id_t base, ulong_t off, printarg_t *pap) 1292 { 1293 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY; 1294 1295 /* 1296 * We have pretty-printing for some structures where displaying 1297 * structure contents has no value. 1298 */ 1299 if (pap->pa_flags & PA_SHOWVAL) { 1300 if (strcmp(type, "in6_addr_t") == 0 || 1301 strcmp(type, "struct in6_addr") == 0) { 1302 in6_addr_t in6addr; 1303 1304 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &in6addr, 1305 sizeof (in6addr), addr) != sizeof (in6addr)) { 1306 mdb_warn("failed to read %s pointer at %llx", 1307 name, addr); 1308 return (1); 1309 } 1310 mdb_printf("%N", &in6addr); 1311 /* 1312 * Don't print anything further down in the 1313 * structure. 1314 */ 1315 pap->pa_nooutdepth = pap->pa_depth; 1316 return (0); 1317 } 1318 if (strcmp(type, "struct in_addr") == 0) { 1319 in_addr_t inaddr; 1320 1321 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &inaddr, 1322 sizeof (inaddr), addr) != sizeof (inaddr)) { 1323 mdb_warn("failed to read %s pointer at %llx", 1324 name, addr); 1325 return (1); 1326 } 1327 mdb_printf("%I", inaddr); 1328 pap->pa_nooutdepth = pap->pa_depth; 1329 return (0); 1330 } 1331 } 1332 1333 if (pap->pa_depth == pap->pa_maxdepth) 1334 mdb_printf("{ ... }"); 1335 else 1336 mdb_printf("{"); 1337 pap->pa_delim = "\n"; 1338 return (0); 1339 } 1340 1341 /* 1342 * Print an enum value. We attempt to convert the value to the corresponding 1343 * enum name and print that if possible. 1344 */ 1345 /*ARGSUSED*/ 1346 static int 1347 print_enum(const char *type, const char *name, mdb_ctf_id_t id, 1348 mdb_ctf_id_t base, ulong_t off, printarg_t *pap) 1349 { 1350 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY; 1351 const char *ename; 1352 int value; 1353 int isp2 = enum_is_p2(base); 1354 int flags = pap->pa_flags | (isp2 ? PA_INTHEX : 0); 1355 1356 if (!(flags & PA_SHOWVAL)) 1357 return (0); 1358 1359 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, 1360 &value, sizeof (value), addr) != sizeof (value)) { 1361 mdb_warn("failed to read %s integer at %llx", name, addr); 1362 return (1); 1363 } 1364 1365 if (flags & PA_INTHEX) 1366 mdb_printf("%#x", value); 1367 else 1368 mdb_printf("%#d", value); 1369 1370 (void) mdb_inc_indent(8); 1371 mdb_printf(" ("); 1372 1373 if (!isp2 || enum_value_print_p2(base, value, 0) != 0) { 1374 ename = mdb_ctf_enum_name(base, value); 1375 if (ename == NULL) { 1376 ename = "???"; 1377 } 1378 mdb_printf("%s", ename); 1379 } 1380 mdb_printf(")"); 1381 (void) mdb_dec_indent(8); 1382 1383 return (0); 1384 } 1385 1386 /* 1387 * This will only get called if the structure isn't found in any available CTF 1388 * data. 1389 */ 1390 /*ARGSUSED*/ 1391 static int 1392 print_tag(const char *type, const char *name, mdb_ctf_id_t id, 1393 mdb_ctf_id_t base, ulong_t off, printarg_t *pap) 1394 { 1395 char basename[MDB_SYM_NAMLEN]; 1396 1397 if (pap->pa_flags & PA_SHOWVAL) 1398 mdb_printf("; "); 1399 1400 if (mdb_ctf_type_name(base, basename, sizeof (basename)) != NULL) 1401 mdb_printf("<forward declaration of %s>", basename); 1402 else 1403 mdb_printf("<forward declaration of unknown type>"); 1404 1405 return (0); 1406 } 1407 1408 static void 1409 print_hole(printarg_t *pap, int depth, ulong_t off, ulong_t endoff) 1410 { 1411 ulong_t bits = endoff - off; 1412 ulong_t size = bits / NBBY; 1413 ctf_encoding_t e; 1414 1415 static const char *const name = "<<HOLE>>"; 1416 char type[MDB_SYM_NAMLEN]; 1417 1418 int bitfield = 1419 (off % NBBY != 0 || 1420 bits % NBBY != 0 || 1421 size > 8 || 1422 (size & (size - 1)) != 0); 1423 1424 ASSERT(off < endoff); 1425 1426 if (bits > NBBY * sizeof (uint64_t)) { 1427 ulong_t end; 1428 1429 /* 1430 * The hole is larger than the largest integer type. To 1431 * handle this, we split up the hole at 8-byte-aligned 1432 * boundaries, recursing to print each subsection. For 1433 * normal C structures, we'll loop at most twice. 1434 */ 1435 for (; off < endoff; off = end) { 1436 end = P2END(off, NBBY * sizeof (uint64_t)); 1437 if (end > endoff) 1438 end = endoff; 1439 1440 ASSERT((end - off) <= NBBY * sizeof (uint64_t)); 1441 print_hole(pap, depth, off, end); 1442 } 1443 ASSERT(end == endoff); 1444 1445 return; 1446 } 1447 1448 if (bitfield) 1449 (void) mdb_snprintf(type, sizeof (type), "unsigned"); 1450 else 1451 (void) mdb_snprintf(type, sizeof (type), "uint%d_t", bits); 1452 1453 if (pap->pa_flags & (PA_SHOWTYPE | PA_SHOWNAME | PA_SHOWADDR)) 1454 mdb_printf("%*s", (depth + pap->pa_nest) * pap->pa_tab, ""); 1455 1456 if (pap->pa_flags & PA_SHOWADDR) { 1457 if (off % NBBY == 0) 1458 mdb_printf("%llx ", pap->pa_addr + off / NBBY); 1459 else 1460 mdb_printf("%llx.%lx ", 1461 pap->pa_addr + off / NBBY, off % NBBY); 1462 } 1463 1464 if (pap->pa_flags & PA_SHOWTYPE) 1465 mdb_printf("%s ", type); 1466 1467 if (pap->pa_flags & PA_SHOWNAME) 1468 mdb_printf("%s", name); 1469 1470 if (bitfield && (pap->pa_flags & PA_SHOWTYPE)) 1471 mdb_printf(" :%d", bits); 1472 1473 mdb_printf("%s ", (pap->pa_flags & PA_SHOWVAL)? " =" : ""); 1474 1475 /* 1476 * We fake up a ctf_encoding_t, and use print_int_val() to print 1477 * the value. Holes are always processed as unsigned integers. 1478 */ 1479 bzero(&e, sizeof (e)); 1480 e.cte_format = 0; 1481 e.cte_offset = 0; 1482 e.cte_bits = bits; 1483 1484 if (print_int_val(type, &e, off, pap) != 0) 1485 mdb_iob_discard(mdb.m_out); 1486 else 1487 mdb_iob_puts(mdb.m_out, pap->pa_delim); 1488 } 1489 1490 /* 1491 * The print_close_sou() function is called for each structure or union 1492 * which has been completed. For structures, we detect and print any holes 1493 * before printing the closing brace. 1494 */ 1495 static void 1496 print_close_sou(printarg_t *pap, int newdepth) 1497 { 1498 int d = newdepth + pap->pa_nest; 1499 1500 if ((pap->pa_flags & PA_SHOWHOLES) && !pap->pa_holes[d].hi_isunion) { 1501 ulong_t end = pap->pa_holes[d + 1].hi_offset; 1502 ulong_t expected = pap->pa_holes[d].hi_offset; 1503 1504 if (end < expected) 1505 print_hole(pap, newdepth + 1, end, expected); 1506 } 1507 /* if the struct is an array element, print a comma after the } */ 1508 mdb_printf("%*s}%s\n", d * pap->pa_tab, "", 1509 (newdepth == 0 && pap->pa_nest > 0)? "," : ""); 1510 } 1511 1512 static printarg_f *const printfuncs[] = { 1513 print_int, /* CTF_K_INTEGER */ 1514 print_float, /* CTF_K_FLOAT */ 1515 print_ptr, /* CTF_K_POINTER */ 1516 print_array, /* CTF_K_ARRAY */ 1517 print_ptr, /* CTF_K_FUNCTION */ 1518 print_sou, /* CTF_K_STRUCT */ 1519 print_sou, /* CTF_K_UNION */ 1520 print_enum, /* CTF_K_ENUM */ 1521 print_tag /* CTF_K_FORWARD */ 1522 }; 1523 1524 /* 1525 * The elt_print function is used as the mdb_ctf_type_visit callback. For 1526 * each element, we print an appropriate name prefix and then call the 1527 * print subroutine for this type class in the array above. 1528 */ 1529 static int 1530 elt_print(const char *name, mdb_ctf_id_t id, mdb_ctf_id_t base, 1531 ulong_t off, int depth, void *data) 1532 { 1533 char type[MDB_SYM_NAMLEN + sizeof (" <<12345678...>>")]; 1534 int kind, rc, d; 1535 printarg_t *pap = data; 1536 1537 for (d = pap->pa_depth - 1; d >= depth; d--) { 1538 if (d < pap->pa_nooutdepth) 1539 print_close_sou(pap, d); 1540 } 1541 1542 /* 1543 * Reset pa_nooutdepth if we've come back out of the structure we 1544 * didn't want to print. 1545 */ 1546 if (depth <= pap->pa_nooutdepth) 1547 pap->pa_nooutdepth = (uint_t)-1; 1548 1549 if (depth > pap->pa_maxdepth || depth > pap->pa_nooutdepth) 1550 return (0); 1551 1552 if (!mdb_ctf_type_valid(base) || 1553 (kind = mdb_ctf_type_kind(base)) == -1) 1554 return (-1); /* errno is set for us */ 1555 1556 if (mdb_ctf_type_name(id, type, MDB_SYM_NAMLEN) == NULL) 1557 (void) strcpy(type, "(?)"); 1558 1559 if (pap->pa_flags & PA_SHOWBASETYPE) { 1560 /* 1561 * If basetype is different and informative, concatenate 1562 * <<basetype>> (or <<baset...>> if it doesn't fit) 1563 * 1564 * We just use the end of the buffer to store the type name, and 1565 * only connect it up if that's necessary. 1566 */ 1567 1568 char *type_end = type + strlen(type); 1569 char *basetype; 1570 size_t sz; 1571 1572 (void) strlcat(type, " <<", sizeof (type)); 1573 1574 basetype = type + strlen(type); 1575 sz = sizeof (type) - (basetype - type); 1576 1577 *type_end = '\0'; /* restore the end of type for strcmp() */ 1578 1579 if (mdb_ctf_type_name(base, basetype, sz) != NULL && 1580 strcmp(basetype, type) != 0 && 1581 strcmp(basetype, "struct ") != 0 && 1582 strcmp(basetype, "enum ") != 0 && 1583 strcmp(basetype, "union ") != 0) { 1584 type_end[0] = ' '; /* reconnect */ 1585 if (strlcat(type, ">>", sizeof (type)) >= sizeof (type)) 1586 (void) strlcpy( 1587 type + sizeof (type) - 6, "...>>", 6); 1588 } 1589 } 1590 1591 if (pap->pa_flags & PA_SHOWHOLES) { 1592 ctf_encoding_t e; 1593 ssize_t nsize; 1594 ulong_t newoff; 1595 holeinfo_t *hole; 1596 int extra = IS_COMPOSITE(kind)? 1 : 0; 1597 1598 /* 1599 * grow the hole array, if necessary 1600 */ 1601 if (pap->pa_nest + depth + extra >= pap->pa_nholes) { 1602 int new = MAX(MAX(8, pap->pa_nholes * 2), 1603 pap->pa_nest + depth + extra + 1); 1604 1605 holeinfo_t *nhi = mdb_zalloc( 1606 sizeof (*nhi) * new, UM_NOSLEEP | UM_GC); 1607 1608 bcopy(pap->pa_holes, nhi, 1609 pap->pa_nholes * sizeof (*nhi)); 1610 1611 pap->pa_holes = nhi; 1612 pap->pa_nholes = new; 1613 } 1614 1615 hole = &pap->pa_holes[depth + pap->pa_nest]; 1616 1617 if (depth != 0 && off > hole->hi_offset) 1618 print_hole(pap, depth, hole->hi_offset, off); 1619 1620 /* compute the next expected offset */ 1621 if (kind == CTF_K_INTEGER && 1622 mdb_ctf_type_encoding(base, &e) == 0) 1623 newoff = off + e.cte_bits; 1624 else if ((nsize = mdb_ctf_type_size(base)) >= 0) 1625 newoff = off + nsize * NBBY; 1626 else { 1627 /* something bad happened, disable hole checking */ 1628 newoff = -1UL; /* ULONG_MAX */ 1629 } 1630 1631 hole->hi_offset = newoff; 1632 1633 if (IS_COMPOSITE(kind)) { 1634 hole->hi_isunion = (kind == CTF_K_UNION); 1635 hole++; 1636 hole->hi_offset = off; 1637 } 1638 } 1639 1640 if (pap->pa_flags & (PA_SHOWTYPE | PA_SHOWNAME | PA_SHOWADDR)) 1641 mdb_printf("%*s", (depth + pap->pa_nest) * pap->pa_tab, ""); 1642 1643 if (pap->pa_flags & PA_SHOWADDR) { 1644 if (off % NBBY == 0) 1645 mdb_printf("%llx ", pap->pa_addr + off / NBBY); 1646 else 1647 mdb_printf("%llx.%lx ", 1648 pap->pa_addr + off / NBBY, off % NBBY); 1649 } 1650 1651 if ((pap->pa_flags & PA_SHOWTYPE)) { 1652 mdb_printf("%s", type); 1653 /* 1654 * We want to avoid printing a trailing space when 1655 * dealing with pointers in a structure, so we end 1656 * up with: 1657 * 1658 * label_t *t_onfault = 0 1659 * 1660 * If depth is zero, always print the trailing space unless 1661 * we also have a prefix. 1662 */ 1663 if (type[strlen(type) - 1] != '*' || 1664 (depth == 0 && (!(pap->pa_flags & PA_SHOWNAME) || 1665 pap->pa_prefix == NULL))) 1666 mdb_printf(" "); 1667 } 1668 1669 if (pap->pa_flags & PA_SHOWNAME) { 1670 if (pap->pa_prefix != NULL && depth <= 1) 1671 mdb_printf("%s%s", pap->pa_prefix, 1672 (depth == 0) ? "" : pap->pa_suffix); 1673 mdb_printf("%s", name); 1674 } 1675 1676 if ((pap->pa_flags & PA_SHOWTYPE) && kind == CTF_K_INTEGER) { 1677 ctf_encoding_t e; 1678 1679 if (mdb_ctf_type_encoding(base, &e) == 0) { 1680 ulong_t bits = e.cte_bits; 1681 ulong_t size = bits / NBBY; 1682 1683 if (bits % NBBY != 0 || 1684 off % NBBY != 0 || 1685 size > 8 || 1686 size != mdb_ctf_type_size(base)) 1687 mdb_printf(" :%d", bits); 1688 } 1689 } 1690 1691 if (depth != 0 || 1692 ((pap->pa_flags & PA_SHOWNAME) && pap->pa_prefix != NULL)) 1693 mdb_printf("%s ", pap->pa_flags & PA_SHOWVAL ? " =" : ""); 1694 1695 if (depth == 0 && pap->pa_prefix != NULL) 1696 name = pap->pa_prefix; 1697 1698 pap->pa_depth = depth; 1699 if (kind <= CTF_K_UNKNOWN || kind >= CTF_K_TYPEDEF) { 1700 mdb_warn("unknown ctf for %s type %s kind %d\n", 1701 name, type, kind); 1702 return (-1); 1703 } 1704 rc = printfuncs[kind - 1](type, name, id, base, off, pap); 1705 1706 if (rc != 0) 1707 mdb_iob_discard(mdb.m_out); 1708 else 1709 mdb_iob_puts(mdb.m_out, pap->pa_delim); 1710 1711 return (rc); 1712 } 1713 1714 /* 1715 * Special semantics for pipelines. 1716 */ 1717 static int 1718 pipe_print(mdb_ctf_id_t id, ulong_t off, void *data) 1719 { 1720 printarg_t *pap = data; 1721 ssize_t size; 1722 static const char *const fsp[] = { "%#r", "%#r", "%#r", "%#llr" }; 1723 uintptr_t value; 1724 uintptr_t addr = pap->pa_addr + off / NBBY; 1725 mdb_ctf_id_t base; 1726 ctf_encoding_t e; 1727 1728 union { 1729 uint64_t i8; 1730 uint32_t i4; 1731 uint16_t i2; 1732 uint8_t i1; 1733 } u; 1734 1735 if (mdb_ctf_type_resolve(id, &base) == -1) { 1736 mdb_warn("could not resolve type"); 1737 return (-1); 1738 } 1739 1740 /* 1741 * If the user gives -a, then always print out the address of the 1742 * member. 1743 */ 1744 if ((pap->pa_flags & PA_SHOWADDR)) { 1745 mdb_printf("%#lr\n", addr); 1746 return (0); 1747 } 1748 1749 again: 1750 switch (mdb_ctf_type_kind(base)) { 1751 case CTF_K_POINTER: 1752 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, 1753 &value, sizeof (value), addr) != sizeof (value)) { 1754 mdb_warn("failed to read pointer at %p", addr); 1755 return (-1); 1756 } 1757 mdb_printf("%#lr\n", value); 1758 break; 1759 1760 case CTF_K_INTEGER: 1761 case CTF_K_ENUM: 1762 if (mdb_ctf_type_encoding(base, &e) != 0) { 1763 mdb_printf("could not get type encoding\n"); 1764 return (-1); 1765 } 1766 1767 /* 1768 * For immediate values, we just print out the value. 1769 */ 1770 size = e.cte_bits / NBBY; 1771 if (size > 8 || (e.cte_bits % NBBY) != 0 || 1772 (size & (size - 1)) != 0) { 1773 return (print_bitfield(off, pap, &e)); 1774 } 1775 1776 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.i8, size, 1777 addr) != size) { 1778 mdb_warn("failed to read %lu bytes at %p", 1779 (ulong_t)size, pap->pa_addr); 1780 return (-1); 1781 } 1782 1783 switch (size) { 1784 case sizeof (uint8_t): 1785 mdb_printf(fsp[0], u.i1); 1786 break; 1787 case sizeof (uint16_t): 1788 mdb_printf(fsp[1], u.i2); 1789 break; 1790 case sizeof (uint32_t): 1791 mdb_printf(fsp[2], u.i4); 1792 break; 1793 case sizeof (uint64_t): 1794 mdb_printf(fsp[3], u.i8); 1795 break; 1796 } 1797 mdb_printf("\n"); 1798 break; 1799 1800 case CTF_K_FUNCTION: 1801 case CTF_K_FLOAT: 1802 case CTF_K_ARRAY: 1803 case CTF_K_UNKNOWN: 1804 case CTF_K_STRUCT: 1805 case CTF_K_UNION: 1806 case CTF_K_FORWARD: 1807 /* 1808 * For these types, always print the address of the member 1809 */ 1810 mdb_printf("%#lr\n", addr); 1811 break; 1812 1813 default: 1814 mdb_warn("unknown type %d", mdb_ctf_type_kind(base)); 1815 break; 1816 } 1817 1818 return (0); 1819 } 1820 1821 static int 1822 parse_delimiter(char **strp) 1823 { 1824 switch (**strp) { 1825 case '\0': 1826 return (MEMBER_DELIM_DONE); 1827 1828 case '.': 1829 *strp = *strp + 1; 1830 return (MEMBER_DELIM_DOT); 1831 1832 case '[': 1833 *strp = *strp + 1; 1834 return (MEMBER_DELIM_LBR); 1835 1836 case '-': 1837 *strp = *strp + 1; 1838 if (**strp == '>') { 1839 *strp = *strp + 1; 1840 return (MEMBER_DELIM_PTR); 1841 } 1842 *strp = *strp - 1; 1843 /*FALLTHROUGH*/ 1844 default: 1845 return (MEMBER_DELIM_ERR); 1846 } 1847 } 1848 1849 static int 1850 deref(printarg_t *pap, size_t size) 1851 { 1852 uint32_t a32; 1853 mdb_tgt_as_t as = pap->pa_as; 1854 mdb_tgt_addr_t *ap = &pap->pa_addr; 1855 1856 if (size == sizeof (mdb_tgt_addr_t)) { 1857 if (mdb_tgt_aread(mdb.m_target, as, ap, size, *ap) == -1) { 1858 mdb_warn("could not dereference pointer %llx\n", *ap); 1859 return (-1); 1860 } 1861 } else { 1862 if (mdb_tgt_aread(mdb.m_target, as, &a32, size, *ap) == -1) { 1863 mdb_warn("could not dereference pointer %x\n", *ap); 1864 return (-1); 1865 } 1866 1867 *ap = (mdb_tgt_addr_t)a32; 1868 } 1869 1870 /* 1871 * We've dereferenced at least once, we must be on the real 1872 * target. If we were in the immediate target, reset to the real 1873 * target; it's reset as needed when we return to the print 1874 * routines. 1875 */ 1876 if (pap->pa_tgt == pap->pa_immtgt) 1877 pap->pa_tgt = pap->pa_realtgt; 1878 1879 return (0); 1880 } 1881 1882 static int 1883 parse_member(printarg_t *pap, const char *str, mdb_ctf_id_t id, 1884 mdb_ctf_id_t *idp, ulong_t *offp, int *last_deref) 1885 { 1886 int delim; 1887 char member[64]; 1888 char buf[128]; 1889 uint_t index; 1890 char *start = (char *)str; 1891 char *end; 1892 ulong_t off = 0; 1893 mdb_ctf_arinfo_t ar; 1894 mdb_ctf_id_t rid; 1895 int kind; 1896 ssize_t size; 1897 int non_array = FALSE; 1898 1899 /* 1900 * id always has the unresolved type for printing error messages 1901 * that include the type; rid always has the resolved type for 1902 * use in mdb_ctf_* calls. It is possible for this command to fail, 1903 * however, if the resolved type is in the parent and it is currently 1904 * unavailable. Note that we also can't print out the name of the 1905 * type, since that would also rely on looking up the resolved name. 1906 */ 1907 if (mdb_ctf_type_resolve(id, &rid) != 0) { 1908 mdb_warn("failed to resolve type"); 1909 return (-1); 1910 } 1911 1912 delim = parse_delimiter(&start); 1913 /* 1914 * If the user fails to specify an initial delimiter, guess -> for 1915 * pointer types and . for non-pointer types. 1916 */ 1917 if (delim == MEMBER_DELIM_ERR) 1918 delim = (mdb_ctf_type_kind(rid) == CTF_K_POINTER) ? 1919 MEMBER_DELIM_PTR : MEMBER_DELIM_DOT; 1920 1921 *last_deref = FALSE; 1922 1923 while (delim != MEMBER_DELIM_DONE) { 1924 switch (delim) { 1925 case MEMBER_DELIM_PTR: 1926 kind = mdb_ctf_type_kind(rid); 1927 if (kind != CTF_K_POINTER) { 1928 mdb_warn("%s is not a pointer type\n", 1929 mdb_ctf_type_name(id, buf, sizeof (buf))); 1930 return (-1); 1931 } 1932 1933 size = mdb_ctf_type_size(id); 1934 if (deref(pap, size) != 0) 1935 return (-1); 1936 1937 (void) mdb_ctf_type_reference(rid, &id); 1938 (void) mdb_ctf_type_resolve(id, &rid); 1939 1940 off = 0; 1941 break; 1942 1943 case MEMBER_DELIM_DOT: 1944 kind = mdb_ctf_type_kind(rid); 1945 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) { 1946 mdb_warn("%s is not a struct or union type\n", 1947 mdb_ctf_type_name(id, buf, sizeof (buf))); 1948 return (-1); 1949 } 1950 break; 1951 1952 case MEMBER_DELIM_LBR: 1953 end = strchr(start, ']'); 1954 if (end == NULL) { 1955 mdb_warn("no trailing ']'\n"); 1956 return (-1); 1957 } 1958 1959 (void) mdb_snprintf(member, end - start + 1, "%s", 1960 start); 1961 1962 index = mdb_strtoull(member); 1963 1964 switch (mdb_ctf_type_kind(rid)) { 1965 case CTF_K_POINTER: 1966 size = mdb_ctf_type_size(rid); 1967 1968 if (deref(pap, size) != 0) 1969 return (-1); 1970 1971 (void) mdb_ctf_type_reference(rid, &id); 1972 (void) mdb_ctf_type_resolve(id, &rid); 1973 1974 size = mdb_ctf_type_size(id); 1975 if (size <= 0) { 1976 mdb_warn("cannot dereference void " 1977 "type\n"); 1978 return (-1); 1979 } 1980 1981 pap->pa_addr += index * size; 1982 off = 0; 1983 1984 if (index == 0 && non_array) 1985 *last_deref = TRUE; 1986 break; 1987 1988 case CTF_K_ARRAY: 1989 (void) mdb_ctf_array_info(rid, &ar); 1990 1991 if (index >= ar.mta_nelems) { 1992 mdb_warn("index %r is outside of " 1993 "array bounds [0 .. %r]\n", 1994 index, ar.mta_nelems - 1); 1995 } 1996 1997 id = ar.mta_contents; 1998 (void) mdb_ctf_type_resolve(id, &rid); 1999 2000 size = mdb_ctf_type_size(id); 2001 if (size <= 0) { 2002 mdb_warn("cannot dereference void " 2003 "type\n"); 2004 return (-1); 2005 } 2006 2007 pap->pa_addr += index * size; 2008 off = 0; 2009 break; 2010 2011 default: 2012 mdb_warn("cannot index into non-array, " 2013 "non-pointer type\n"); 2014 return (-1); 2015 } 2016 2017 start = end + 1; 2018 delim = parse_delimiter(&start); 2019 continue; 2020 2021 case MEMBER_DELIM_ERR: 2022 default: 2023 mdb_warn("'%c' is not a valid delimiter\n", *start); 2024 return (-1); 2025 } 2026 2027 *last_deref = FALSE; 2028 non_array = TRUE; 2029 2030 /* 2031 * Find the end of the member name; assume that a member 2032 * name is at least one character long. 2033 */ 2034 for (end = start + 1; isalnum(*end) || *end == '_'; end++) 2035 continue; 2036 2037 (void) mdb_snprintf(member, end - start + 1, "%s", start); 2038 2039 if (mdb_ctf_member_info(rid, member, &off, &id) != 0) { 2040 mdb_warn("failed to find member %s of %s", member, 2041 mdb_ctf_type_name(id, buf, sizeof (buf))); 2042 return (-1); 2043 } 2044 (void) mdb_ctf_type_resolve(id, &rid); 2045 2046 pap->pa_addr += off / NBBY; 2047 2048 start = end; 2049 delim = parse_delimiter(&start); 2050 } 2051 2052 *idp = id; 2053 *offp = off; 2054 2055 return (0); 2056 } 2057 2058 int 2059 cmd_print_tab(mdb_tab_cookie_t *mcp, uint_t flags, int argc, 2060 const mdb_arg_t *argv) 2061 { 2062 char tn[MDB_SYM_NAMLEN]; 2063 char member[64]; 2064 int i, dummy, delim, kind; 2065 int ret = 0; 2066 mdb_ctf_id_t id, rid; 2067 mdb_ctf_arinfo_t ar; 2068 char *start, *end; 2069 ulong_t dul; 2070 2071 /* 2072 * This getopts is only here to make the tab completion work better when 2073 * including options in the ::print arguments. None of the values should 2074 * be used. This should only be updated with additional arguments, if 2075 * they are added to cmd_print. 2076 */ 2077 i = mdb_getopts(argc, argv, 2078 'a', MDB_OPT_SETBITS, PA_SHOWADDR, &dummy, 2079 'C', MDB_OPT_SETBITS, TRUE, &dummy, 2080 'c', MDB_OPT_UINTPTR, &dummy, 2081 'd', MDB_OPT_SETBITS, PA_INTDEC, &dummy, 2082 'h', MDB_OPT_SETBITS, PA_SHOWHOLES, &dummy, 2083 'i', MDB_OPT_SETBITS, TRUE, &dummy, 2084 'L', MDB_OPT_SETBITS, TRUE, &dummy, 2085 'l', MDB_OPT_UINTPTR, &dummy, 2086 'n', MDB_OPT_SETBITS, PA_NOSYMBOLIC, &dummy, 2087 'p', MDB_OPT_SETBITS, TRUE, &dummy, 2088 's', MDB_OPT_UINTPTR, &dummy, 2089 'T', MDB_OPT_SETBITS, PA_SHOWTYPE | PA_SHOWBASETYPE, &dummy, 2090 't', MDB_OPT_SETBITS, PA_SHOWTYPE, &dummy, 2091 'x', MDB_OPT_SETBITS, PA_INTHEX, &dummy, 2092 NULL); 2093 2094 argc -= i; 2095 argv += i; 2096 2097 if (argc == 0 && !(flags & DCMD_TAB_SPACE)) 2098 return (0); 2099 2100 if (argc == 0 && (flags & DCMD_TAB_SPACE)) 2101 return (mdb_tab_complete_type(mcp, NULL, MDB_TABC_NOPOINT | 2102 MDB_TABC_NOARRAY)); 2103 2104 if ((ret = mdb_tab_typename(&argc, &argv, tn, sizeof (tn))) < 0) 2105 return (ret); 2106 2107 if (argc == 1 && (!(flags & DCMD_TAB_SPACE) || ret == 1)) 2108 return (mdb_tab_complete_type(mcp, tn, MDB_TABC_NOPOINT | 2109 MDB_TABC_NOARRAY)); 2110 2111 if (argc == 1 && (flags & DCMD_TAB_SPACE)) 2112 return (mdb_tab_complete_member(mcp, tn, NULL)); 2113 2114 /* 2115 * This is the reason that tab completion was created. We're going to go 2116 * along and walk the delimiters until we find something a member that 2117 * we don't recognize, at which point we'll try and tab complete it. 2118 * Note that ::print takes multiple args, so this is going to operate on 2119 * whatever the last arg that we have is. 2120 */ 2121 if (mdb_ctf_lookup_by_name(tn, &id) != 0) 2122 return (1); 2123 2124 (void) mdb_ctf_type_resolve(id, &rid); 2125 start = (char *)argv[argc-1].a_un.a_str; 2126 delim = parse_delimiter(&start); 2127 2128 /* 2129 * If we hit the case where we actually have no delimiters, than we need 2130 * to make sure that we properly set up the fields the loops would. 2131 */ 2132 if (delim == MEMBER_DELIM_DONE) 2133 (void) mdb_snprintf(member, sizeof (member), "%s", start); 2134 2135 while (delim != MEMBER_DELIM_DONE) { 2136 switch (delim) { 2137 case MEMBER_DELIM_PTR: 2138 kind = mdb_ctf_type_kind(rid); 2139 if (kind != CTF_K_POINTER) 2140 return (1); 2141 2142 (void) mdb_ctf_type_reference(rid, &id); 2143 (void) mdb_ctf_type_resolve(id, &rid); 2144 break; 2145 case MEMBER_DELIM_DOT: 2146 kind = mdb_ctf_type_kind(rid); 2147 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) 2148 return (1); 2149 break; 2150 case MEMBER_DELIM_LBR: 2151 end = strchr(start, ']'); 2152 /* 2153 * We're not going to try and tab complete the indexes 2154 * here. So for now, punt on it. Also, we're not going 2155 * to try and validate you're within the bounds, just 2156 * that you get the type you asked for. 2157 */ 2158 if (end == NULL) 2159 return (1); 2160 2161 switch (mdb_ctf_type_kind(rid)) { 2162 case CTF_K_POINTER: 2163 (void) mdb_ctf_type_reference(rid, &id); 2164 (void) mdb_ctf_type_resolve(id, &rid); 2165 break; 2166 case CTF_K_ARRAY: 2167 (void) mdb_ctf_array_info(rid, &ar); 2168 id = ar.mta_contents; 2169 (void) mdb_ctf_type_resolve(id, &rid); 2170 break; 2171 default: 2172 return (1); 2173 } 2174 2175 start = end + 1; 2176 delim = parse_delimiter(&start); 2177 break; 2178 case MEMBER_DELIM_ERR: 2179 default: 2180 break; 2181 } 2182 2183 for (end = start + 1; isalnum(*end) || *end == '_'; end++) 2184 continue; 2185 2186 (void) mdb_snprintf(member, end - start + 1, start); 2187 2188 /* 2189 * We are going to try to resolve this name as a member. There 2190 * are a few two different questions that we need to answer. The 2191 * first is do we recognize this member. The second is are we at 2192 * the end of the string. If we encounter a member that we don't 2193 * recognize before the end, then we have to error out and can't 2194 * complete it. But if there are no more delimiters then we can 2195 * try and complete it. 2196 */ 2197 ret = mdb_ctf_member_info(rid, member, &dul, &id); 2198 start = end; 2199 delim = parse_delimiter(&start); 2200 if (ret != 0 && errno == EMDB_CTFNOMEMB) { 2201 if (delim != MEMBER_DELIM_DONE) 2202 return (1); 2203 continue; 2204 } else if (ret != 0) 2205 return (1); 2206 2207 if (delim == MEMBER_DELIM_DONE) 2208 return (mdb_tab_complete_member_by_id(mcp, rid, 2209 member)); 2210 2211 (void) mdb_ctf_type_resolve(id, &rid); 2212 } 2213 2214 /* 2215 * If we've reached here, then we need to try and tab complete the last 2216 * field, which is currently member, based on the ctf type id that we 2217 * already have in rid. 2218 */ 2219 return (mdb_tab_complete_member_by_id(mcp, rid, member)); 2220 } 2221 2222 /* 2223 * Recursively descend a print a given data structure. We create a struct of 2224 * the relevant print arguments and then call mdb_ctf_type_visit() to do the 2225 * traversal, using elt_print() as the callback for each element. 2226 */ 2227 /*ARGSUSED*/ 2228 int 2229 cmd_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2230 { 2231 uintptr_t opt_c = MDB_ARR_NOLIMIT, opt_l = MDB_ARR_NOLIMIT; 2232 uint_t opt_C = FALSE, opt_L = FALSE, opt_p = FALSE, opt_i = FALSE; 2233 uintptr_t opt_s = (uintptr_t)-1ul; 2234 int uflags = (flags & DCMD_ADDRSPEC) ? PA_SHOWVAL : 0; 2235 mdb_ctf_id_t id; 2236 int err = DCMD_OK; 2237 2238 mdb_tgt_t *t = mdb.m_target; 2239 printarg_t pa; 2240 int d, i; 2241 2242 char s_name[MDB_SYM_NAMLEN]; 2243 mdb_syminfo_t s_info; 2244 GElf_Sym sym; 2245 2246 /* 2247 * If a new option is added, make sure the getopts above in 2248 * cmd_print_tab is also updated. 2249 */ 2250 i = mdb_getopts(argc, argv, 2251 'a', MDB_OPT_SETBITS, PA_SHOWADDR, &uflags, 2252 'C', MDB_OPT_SETBITS, TRUE, &opt_C, 2253 'c', MDB_OPT_UINTPTR, &opt_c, 2254 'd', MDB_OPT_SETBITS, PA_INTDEC, &uflags, 2255 'h', MDB_OPT_SETBITS, PA_SHOWHOLES, &uflags, 2256 'i', MDB_OPT_SETBITS, TRUE, &opt_i, 2257 'L', MDB_OPT_SETBITS, TRUE, &opt_L, 2258 'l', MDB_OPT_UINTPTR, &opt_l, 2259 'n', MDB_OPT_SETBITS, PA_NOSYMBOLIC, &uflags, 2260 'p', MDB_OPT_SETBITS, TRUE, &opt_p, 2261 's', MDB_OPT_UINTPTR, &opt_s, 2262 'T', MDB_OPT_SETBITS, PA_SHOWTYPE | PA_SHOWBASETYPE, &uflags, 2263 't', MDB_OPT_SETBITS, PA_SHOWTYPE, &uflags, 2264 'x', MDB_OPT_SETBITS, PA_INTHEX, &uflags, 2265 NULL); 2266 2267 if (uflags & PA_INTHEX) 2268 uflags &= ~PA_INTDEC; /* -x and -d are mutually exclusive */ 2269 2270 uflags |= PA_SHOWNAME; 2271 2272 if (opt_p && opt_i) { 2273 mdb_warn("-p and -i options are incompatible\n"); 2274 return (DCMD_ERR); 2275 } 2276 2277 argc -= i; 2278 argv += i; 2279 2280 if (argc != 0 && argv->a_type == MDB_TYPE_STRING) { 2281 const char *t_name = s_name; 2282 int ret; 2283 2284 if (strchr("+-", argv->a_un.a_str[0]) != NULL) 2285 return (DCMD_USAGE); 2286 2287 if ((ret = args_to_typename(&argc, &argv, s_name, 2288 sizeof (s_name))) != 0) 2289 return (ret); 2290 2291 if (mdb_ctf_lookup_by_name(t_name, &id) != 0) { 2292 if (!(flags & DCMD_ADDRSPEC) || opt_i || 2293 addr_to_sym(t, addr, s_name, sizeof (s_name), 2294 &sym, &s_info) == NULL || 2295 mdb_ctf_lookup_by_symbol(&sym, &s_info, &id) != 0) { 2296 2297 mdb_warn("failed to look up type %s", t_name); 2298 return (DCMD_ABORT); 2299 } 2300 } else { 2301 argc--; 2302 argv++; 2303 } 2304 2305 } else if (!(flags & DCMD_ADDRSPEC) || opt_i) { 2306 return (DCMD_USAGE); 2307 2308 } else if (addr_to_sym(t, addr, s_name, sizeof (s_name), 2309 &sym, &s_info) == NULL) { 2310 mdb_warn("no symbol information for %a", addr); 2311 return (DCMD_ERR); 2312 2313 } else if (mdb_ctf_lookup_by_symbol(&sym, &s_info, &id) != 0) { 2314 mdb_warn("no type data available for %a [%u]", addr, 2315 s_info.sym_id); 2316 return (DCMD_ERR); 2317 } 2318 2319 pa.pa_tgt = mdb.m_target; 2320 pa.pa_realtgt = pa.pa_tgt; 2321 pa.pa_immtgt = NULL; 2322 pa.pa_as = opt_p ? MDB_TGT_AS_PHYS : MDB_TGT_AS_VIRT; 2323 pa.pa_armemlim = mdb.m_armemlim; 2324 pa.pa_arstrlim = mdb.m_arstrlim; 2325 pa.pa_delim = "\n"; 2326 pa.pa_flags = uflags; 2327 pa.pa_nest = 0; 2328 pa.pa_tab = 4; 2329 pa.pa_prefix = NULL; 2330 pa.pa_suffix = NULL; 2331 pa.pa_holes = NULL; 2332 pa.pa_nholes = 0; 2333 pa.pa_depth = 0; 2334 pa.pa_maxdepth = opt_s; 2335 pa.pa_nooutdepth = (uint_t)-1; 2336 2337 if ((flags & DCMD_ADDRSPEC) && !opt_i) 2338 pa.pa_addr = opt_p ? mdb_get_dot() : addr; 2339 else 2340 pa.pa_addr = NULL; 2341 2342 if (opt_i) { 2343 const char *vargv[2]; 2344 uintmax_t dot = mdb_get_dot(); 2345 size_t outsize = mdb_ctf_type_size(id); 2346 vargv[0] = (const char *)˙ 2347 vargv[1] = (const char *)&outsize; 2348 pa.pa_immtgt = mdb_tgt_create(mdb_value_tgt_create, 2349 0, 2, vargv); 2350 pa.pa_tgt = pa.pa_immtgt; 2351 } 2352 2353 if (opt_c != MDB_ARR_NOLIMIT) 2354 pa.pa_arstrlim = opt_c; 2355 if (opt_C) 2356 pa.pa_arstrlim = MDB_ARR_NOLIMIT; 2357 if (opt_l != MDB_ARR_NOLIMIT) 2358 pa.pa_armemlim = opt_l; 2359 if (opt_L) 2360 pa.pa_armemlim = MDB_ARR_NOLIMIT; 2361 2362 if (argc > 0) { 2363 for (i = 0; i < argc; i++) { 2364 mdb_ctf_id_t mid; 2365 int last_deref; 2366 ulong_t off; 2367 int kind; 2368 char buf[MDB_SYM_NAMLEN]; 2369 2370 mdb_tgt_t *oldtgt = pa.pa_tgt; 2371 mdb_tgt_as_t oldas = pa.pa_as; 2372 mdb_tgt_addr_t oldaddr = pa.pa_addr; 2373 2374 if (argv->a_type == MDB_TYPE_STRING) { 2375 const char *member = argv[i].a_un.a_str; 2376 mdb_ctf_id_t rid; 2377 2378 if (parse_member(&pa, member, id, &mid, 2379 &off, &last_deref) != 0) { 2380 err = DCMD_ABORT; 2381 goto out; 2382 } 2383 2384 /* 2385 * If the member string ends with a "[0]" 2386 * (last_deref * is true) and the type is a 2387 * structure or union, * print "->" rather 2388 * than "[0]." in elt_print. 2389 */ 2390 (void) mdb_ctf_type_resolve(mid, &rid); 2391 kind = mdb_ctf_type_kind(rid); 2392 if (last_deref && IS_SOU(kind)) { 2393 char *end; 2394 (void) mdb_snprintf(buf, sizeof (buf), 2395 "%s", member); 2396 end = strrchr(buf, '['); 2397 *end = '\0'; 2398 pa.pa_suffix = "->"; 2399 member = &buf[0]; 2400 } else if (IS_SOU(kind)) { 2401 pa.pa_suffix = "."; 2402 } else { 2403 pa.pa_suffix = ""; 2404 } 2405 2406 pa.pa_prefix = member; 2407 } else { 2408 ulong_t moff; 2409 2410 moff = (ulong_t)argv[i].a_un.a_val; 2411 2412 if (mdb_ctf_offset_to_name(id, moff * NBBY, 2413 buf, sizeof (buf), 0, &mid, &off) == -1) { 2414 mdb_warn("invalid offset %lx\n", moff); 2415 err = DCMD_ABORT; 2416 goto out; 2417 } 2418 2419 pa.pa_prefix = buf; 2420 pa.pa_addr += moff - off / NBBY; 2421 pa.pa_suffix = strlen(buf) == 0 ? "" : "."; 2422 } 2423 2424 off %= NBBY; 2425 if (flags & DCMD_PIPE_OUT) { 2426 if (pipe_print(mid, off, &pa) != 0) { 2427 mdb_warn("failed to print type"); 2428 err = DCMD_ERR; 2429 goto out; 2430 } 2431 } else if (off != 0) { 2432 mdb_ctf_id_t base; 2433 (void) mdb_ctf_type_resolve(mid, &base); 2434 2435 if (elt_print("", mid, base, off, 0, 2436 &pa) != 0) { 2437 mdb_warn("failed to print type"); 2438 err = DCMD_ERR; 2439 goto out; 2440 } 2441 } else { 2442 if (mdb_ctf_type_visit(mid, elt_print, 2443 &pa) == -1) { 2444 mdb_warn("failed to print type"); 2445 err = DCMD_ERR; 2446 goto out; 2447 } 2448 2449 for (d = pa.pa_depth - 1; d >= 0; d--) 2450 print_close_sou(&pa, d); 2451 } 2452 2453 pa.pa_depth = 0; 2454 pa.pa_tgt = oldtgt; 2455 pa.pa_as = oldas; 2456 pa.pa_addr = oldaddr; 2457 pa.pa_delim = "\n"; 2458 } 2459 2460 } else if (flags & DCMD_PIPE_OUT) { 2461 if (pipe_print(id, 0, &pa) != 0) { 2462 mdb_warn("failed to print type"); 2463 err = DCMD_ERR; 2464 goto out; 2465 } 2466 } else { 2467 if (mdb_ctf_type_visit(id, elt_print, &pa) == -1) { 2468 mdb_warn("failed to print type"); 2469 err = DCMD_ERR; 2470 goto out; 2471 } 2472 2473 for (d = pa.pa_depth - 1; d >= 0; d--) 2474 print_close_sou(&pa, d); 2475 } 2476 2477 mdb_set_dot(addr + mdb_ctf_type_size(id)); 2478 err = DCMD_OK; 2479 out: 2480 if (pa.pa_immtgt) 2481 mdb_tgt_destroy(pa.pa_immtgt); 2482 return (err); 2483 } 2484 2485 void 2486 print_help(void) 2487 { 2488 mdb_printf( 2489 "-a show address of object\n" 2490 "-C unlimit the length of character arrays\n" 2491 "-c limit limit the length of character arrays\n" 2492 "-d output values in decimal\n" 2493 "-h print holes in structures\n" 2494 "-i interpret address as data of the given type\n" 2495 "-L unlimit the length of standard arrays\n" 2496 "-l limit limit the length of standard arrays\n" 2497 "-n don't print pointers as symbol offsets\n" 2498 "-p interpret address as a physical memory address\n" 2499 "-s depth limit the recursion depth\n" 2500 "-T show type and <<base type>> of object\n" 2501 "-t show type of object\n" 2502 "-x output values in hexadecimal\n" 2503 "\n" 2504 "type may be omitted if the C type of addr can be inferred.\n" 2505 "\n" 2506 "Members may be specified with standard C syntax using the\n" 2507 "array indexing operator \"[index]\", structure member\n" 2508 "operator \".\", or structure pointer operator \"->\".\n" 2509 "\n" 2510 "Offsets must use the $[ expression ] syntax\n"); 2511 } 2512 2513 static int 2514 printf_signed(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt, 2515 boolean_t sign) 2516 { 2517 ssize_t size; 2518 mdb_ctf_id_t base; 2519 ctf_encoding_t e; 2520 2521 union { 2522 uint64_t ui8; 2523 uint32_t ui4; 2524 uint16_t ui2; 2525 uint8_t ui1; 2526 int64_t i8; 2527 int32_t i4; 2528 int16_t i2; 2529 int8_t i1; 2530 } u; 2531 2532 if (mdb_ctf_type_resolve(id, &base) == -1) { 2533 mdb_warn("could not resolve type"); 2534 return (DCMD_ABORT); 2535 } 2536 2537 if (mdb_ctf_type_kind(base) != CTF_K_INTEGER) { 2538 mdb_warn("expected integer type\n"); 2539 return (DCMD_ABORT); 2540 } 2541 2542 if (mdb_ctf_type_encoding(base, &e) != 0) { 2543 mdb_warn("could not get type encoding"); 2544 return (DCMD_ABORT); 2545 } 2546 2547 if (sign) 2548 sign = e.cte_format & CTF_INT_SIGNED; 2549 2550 size = e.cte_bits / NBBY; 2551 2552 /* 2553 * Check to see if our life has been complicated by the presence of 2554 * a bitfield. If it has, we will print it using logic that is only 2555 * slightly different than that found in print_bitfield(), above. (In 2556 * particular, see the comments there for an explanation of the 2557 * endianness differences in this code.) 2558 */ 2559 if (size > 8 || (e.cte_bits % NBBY) != 0 || 2560 (size & (size - 1)) != 0) { 2561 uint64_t mask = (1ULL << e.cte_bits) - 1; 2562 uint64_t value = 0; 2563 uint8_t *buf = (uint8_t *)&value; 2564 uint8_t shift; 2565 2566 /* 2567 * Round our size up one byte. 2568 */ 2569 size = (e.cte_bits + (NBBY - 1)) / NBBY; 2570 2571 if (e.cte_bits > sizeof (value) * NBBY - 1) { 2572 mdb_printf("invalid bitfield size %u", e.cte_bits); 2573 return (DCMD_ABORT); 2574 } 2575 2576 #ifdef _BIG_ENDIAN 2577 buf += sizeof (value) - size; 2578 off += e.cte_bits; 2579 #endif 2580 2581 if (mdb_vread(buf, size, addr) == -1) { 2582 mdb_warn("failed to read %lu bytes at %p", size, addr); 2583 return (DCMD_ERR); 2584 } 2585 2586 shift = off % NBBY; 2587 #ifdef _BIG_ENDIAN 2588 shift = NBBY - shift; 2589 #endif 2590 2591 /* 2592 * If we have a bit offset within the byte, shift it down. 2593 */ 2594 if (off % NBBY != 0) 2595 value >>= shift; 2596 value &= mask; 2597 2598 if (sign) { 2599 int sshift = sizeof (value) * NBBY - e.cte_bits; 2600 value = ((int64_t)value << sshift) >> sshift; 2601 } 2602 2603 mdb_printf(fmt, value); 2604 return (0); 2605 } 2606 2607 if (mdb_vread(&u.i8, size, addr) == -1) { 2608 mdb_warn("failed to read %lu bytes at %p", (ulong_t)size, addr); 2609 return (DCMD_ERR); 2610 } 2611 2612 switch (size) { 2613 case sizeof (uint8_t): 2614 mdb_printf(fmt, (uint64_t)(sign ? u.i1 : u.ui1)); 2615 break; 2616 case sizeof (uint16_t): 2617 mdb_printf(fmt, (uint64_t)(sign ? u.i2 : u.ui2)); 2618 break; 2619 case sizeof (uint32_t): 2620 mdb_printf(fmt, (uint64_t)(sign ? u.i4 : u.ui4)); 2621 break; 2622 case sizeof (uint64_t): 2623 mdb_printf(fmt, (uint64_t)(sign ? u.i8 : u.ui8)); 2624 break; 2625 } 2626 2627 return (0); 2628 } 2629 2630 static int 2631 printf_int(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt) 2632 { 2633 return (printf_signed(id, addr, off, fmt, B_TRUE)); 2634 } 2635 2636 static int 2637 printf_uint(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt) 2638 { 2639 return (printf_signed(id, addr, off, fmt, B_FALSE)); 2640 } 2641 2642 /*ARGSUSED*/ 2643 static int 2644 printf_uint32(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt) 2645 { 2646 mdb_ctf_id_t base; 2647 ctf_encoding_t e; 2648 uint32_t value; 2649 2650 if (mdb_ctf_type_resolve(id, &base) == -1) { 2651 mdb_warn("could not resolve type\n"); 2652 return (DCMD_ABORT); 2653 } 2654 2655 if (mdb_ctf_type_kind(base) != CTF_K_INTEGER || 2656 mdb_ctf_type_encoding(base, &e) != 0 || 2657 e.cte_bits / NBBY != sizeof (value)) { 2658 mdb_warn("expected 32-bit integer type\n"); 2659 return (DCMD_ABORT); 2660 } 2661 2662 if (mdb_vread(&value, sizeof (value), addr) == -1) { 2663 mdb_warn("failed to read 32-bit value at %p", addr); 2664 return (DCMD_ERR); 2665 } 2666 2667 mdb_printf(fmt, value); 2668 2669 return (0); 2670 } 2671 2672 /*ARGSUSED*/ 2673 static int 2674 printf_ptr(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt) 2675 { 2676 uintptr_t value; 2677 mdb_ctf_id_t base; 2678 2679 if (mdb_ctf_type_resolve(id, &base) == -1) { 2680 mdb_warn("could not resolve type\n"); 2681 return (DCMD_ABORT); 2682 } 2683 2684 if (mdb_ctf_type_kind(base) != CTF_K_POINTER) { 2685 mdb_warn("expected pointer type\n"); 2686 return (DCMD_ABORT); 2687 } 2688 2689 if (mdb_vread(&value, sizeof (value), addr) == -1) { 2690 mdb_warn("failed to read pointer at %llx", addr); 2691 return (DCMD_ERR); 2692 } 2693 2694 mdb_printf(fmt, value); 2695 2696 return (0); 2697 } 2698 2699 /*ARGSUSED*/ 2700 static int 2701 printf_string(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt) 2702 { 2703 mdb_ctf_id_t base; 2704 mdb_ctf_arinfo_t r; 2705 char buf[1024]; 2706 ssize_t size; 2707 2708 if (mdb_ctf_type_resolve(id, &base) == -1) { 2709 mdb_warn("could not resolve type"); 2710 return (DCMD_ABORT); 2711 } 2712 2713 if (mdb_ctf_type_kind(base) == CTF_K_POINTER) { 2714 uintptr_t value; 2715 2716 if (mdb_vread(&value, sizeof (value), addr) == -1) { 2717 mdb_warn("failed to read pointer at %llx", addr); 2718 return (DCMD_ERR); 2719 } 2720 2721 if (mdb_readstr(buf, sizeof (buf) - 1, value) < 0) { 2722 mdb_warn("failed to read string at %llx", value); 2723 return (DCMD_ERR); 2724 } 2725 2726 mdb_printf(fmt, buf); 2727 return (0); 2728 } 2729 2730 if (mdb_ctf_type_kind(base) != CTF_K_ARRAY) { 2731 mdb_warn("exepected pointer or array type\n"); 2732 return (DCMD_ABORT); 2733 } 2734 2735 if (mdb_ctf_array_info(base, &r) == -1 || 2736 mdb_ctf_type_resolve(r.mta_contents, &base) == -1 || 2737 (size = mdb_ctf_type_size(base)) == -1) { 2738 mdb_warn("can't determine array type"); 2739 return (DCMD_ABORT); 2740 } 2741 2742 if (size != 1) { 2743 mdb_warn("string format specifier requires " 2744 "an array of characters\n"); 2745 return (DCMD_ABORT); 2746 } 2747 2748 bzero(buf, sizeof (buf)); 2749 2750 if (mdb_vread(buf, MIN(r.mta_nelems, sizeof (buf) - 1), addr) == -1) { 2751 mdb_warn("failed to read array at %p", addr); 2752 return (DCMD_ERR); 2753 } 2754 2755 mdb_printf(fmt, buf); 2756 2757 return (0); 2758 } 2759 2760 /*ARGSUSED*/ 2761 static int 2762 printf_ipv6(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt) 2763 { 2764 mdb_ctf_id_t base; 2765 mdb_ctf_id_t ipv6_type, ipv6_base; 2766 in6_addr_t ipv6; 2767 2768 if (mdb_ctf_lookup_by_name("in6_addr_t", &ipv6_type) == -1) { 2769 mdb_warn("could not resolve in6_addr_t type\n"); 2770 return (DCMD_ABORT); 2771 } 2772 2773 if (mdb_ctf_type_resolve(id, &base) == -1) { 2774 mdb_warn("could not resolve type\n"); 2775 return (DCMD_ABORT); 2776 } 2777 2778 if (mdb_ctf_type_resolve(ipv6_type, &ipv6_base) == -1) { 2779 mdb_warn("could not resolve in6_addr_t type\n"); 2780 return (DCMD_ABORT); 2781 } 2782 2783 if (mdb_ctf_type_cmp(base, ipv6_base) != 0) { 2784 mdb_warn("requires argument of type in6_addr_t\n"); 2785 return (DCMD_ABORT); 2786 } 2787 2788 if (mdb_vread(&ipv6, sizeof (ipv6), addr) == -1) { 2789 mdb_warn("couldn't read in6_addr_t at %p", addr); 2790 return (DCMD_ERR); 2791 } 2792 2793 mdb_printf(fmt, &ipv6); 2794 2795 return (0); 2796 } 2797 2798 /* 2799 * To validate the format string specified to ::printf, we run the format 2800 * string through a very simple state machine that restricts us to a subset 2801 * of mdb_printf() functionality. 2802 */ 2803 enum { 2804 PRINTF_NOFMT = 1, /* no current format specifier */ 2805 PRINTF_PERC, /* processed '%' */ 2806 PRINTF_FMT, /* processing format specifier */ 2807 PRINTF_LEFT, /* processed '-', expecting width */ 2808 PRINTF_WIDTH, /* processing width */ 2809 PRINTF_QUES /* processed '?', expecting format */ 2810 }; 2811 2812 int 2813 cmd_printf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2814 { 2815 char type[MDB_SYM_NAMLEN]; 2816 int i, nfmts = 0, ret; 2817 mdb_ctf_id_t id; 2818 const char *fmt, *member; 2819 char **fmts, *last, *dest, f; 2820 int (**funcs)(mdb_ctf_id_t, uintptr_t, ulong_t, char *); 2821 int state = PRINTF_NOFMT; 2822 printarg_t pa; 2823 2824 if (!(flags & DCMD_ADDRSPEC)) 2825 return (DCMD_USAGE); 2826 2827 bzero(&pa, sizeof (pa)); 2828 pa.pa_as = MDB_TGT_AS_VIRT; 2829 pa.pa_realtgt = pa.pa_tgt = mdb.m_target; 2830 2831 if (argc == 0 || argv[0].a_type != MDB_TYPE_STRING) { 2832 mdb_warn("expected a format string\n"); 2833 return (DCMD_USAGE); 2834 } 2835 2836 /* 2837 * Our first argument is a format string; rip it apart and run it 2838 * through our state machine to validate that our input is within the 2839 * subset of mdb_printf() format strings that we allow. 2840 */ 2841 fmt = argv[0].a_un.a_str; 2842 /* 2843 * 'dest' must be large enough to hold a copy of the format string, 2844 * plus a NUL and up to 2 additional characters for each conversion 2845 * in the format string. This gives us a bloat factor of 5/2 ~= 3. 2846 * e.g. "%d" (strlen of 2) --> "%lld\0" (need 5 bytes) 2847 */ 2848 dest = mdb_zalloc(strlen(fmt) * 3, UM_SLEEP | UM_GC); 2849 fmts = mdb_zalloc(strlen(fmt) * sizeof (char *), UM_SLEEP | UM_GC); 2850 funcs = mdb_zalloc(strlen(fmt) * sizeof (void *), UM_SLEEP | UM_GC); 2851 last = dest; 2852 2853 for (i = 0; fmt[i] != '\0'; i++) { 2854 *dest++ = f = fmt[i]; 2855 2856 switch (state) { 2857 case PRINTF_NOFMT: 2858 state = f == '%' ? PRINTF_PERC : PRINTF_NOFMT; 2859 break; 2860 2861 case PRINTF_PERC: 2862 state = f == '-' ? PRINTF_LEFT : 2863 f >= '0' && f <= '9' ? PRINTF_WIDTH : 2864 f == '?' ? PRINTF_QUES : 2865 f == '%' ? PRINTF_NOFMT : PRINTF_FMT; 2866 break; 2867 2868 case PRINTF_LEFT: 2869 state = f >= '0' && f <= '9' ? PRINTF_WIDTH : 2870 f == '?' ? PRINTF_QUES : PRINTF_FMT; 2871 break; 2872 2873 case PRINTF_WIDTH: 2874 state = f >= '0' && f <= '9' ? PRINTF_WIDTH : 2875 PRINTF_FMT; 2876 break; 2877 2878 case PRINTF_QUES: 2879 state = PRINTF_FMT; 2880 break; 2881 } 2882 2883 if (state != PRINTF_FMT) 2884 continue; 2885 2886 dest--; 2887 2888 /* 2889 * Now check that we have one of our valid format characters. 2890 */ 2891 switch (f) { 2892 case 'a': 2893 case 'A': 2894 case 'p': 2895 funcs[nfmts] = printf_ptr; 2896 break; 2897 2898 case 'd': 2899 case 'q': 2900 case 'R': 2901 funcs[nfmts] = printf_int; 2902 *dest++ = 'l'; 2903 *dest++ = 'l'; 2904 break; 2905 2906 case 'I': 2907 funcs[nfmts] = printf_uint32; 2908 break; 2909 2910 case 'N': 2911 funcs[nfmts] = printf_ipv6; 2912 break; 2913 2914 case 'H': 2915 case 'o': 2916 case 'r': 2917 case 'u': 2918 case 'x': 2919 case 'X': 2920 funcs[nfmts] = printf_uint; 2921 *dest++ = 'l'; 2922 *dest++ = 'l'; 2923 break; 2924 2925 case 's': 2926 funcs[nfmts] = printf_string; 2927 break; 2928 2929 case 'Y': 2930 funcs[nfmts] = sizeof (time_t) == sizeof (int) ? 2931 printf_uint32 : printf_uint; 2932 break; 2933 2934 default: 2935 mdb_warn("illegal format string at or near " 2936 "'%c' (position %d)\n", f, i + 1); 2937 return (DCMD_ABORT); 2938 } 2939 2940 *dest++ = f; 2941 *dest++ = '\0'; 2942 fmts[nfmts++] = last; 2943 last = dest; 2944 state = PRINTF_NOFMT; 2945 } 2946 2947 argc--; 2948 argv++; 2949 2950 /* 2951 * Now we expect a type name. 2952 */ 2953 if ((ret = args_to_typename(&argc, &argv, type, sizeof (type))) != 0) 2954 return (ret); 2955 2956 argv++; 2957 argc--; 2958 2959 if (mdb_ctf_lookup_by_name(type, &id) != 0) { 2960 mdb_warn("failed to look up type %s", type); 2961 return (DCMD_ABORT); 2962 } 2963 2964 if (argc == 0) { 2965 mdb_warn("at least one member must be specified\n"); 2966 return (DCMD_USAGE); 2967 } 2968 2969 if (argc != nfmts) { 2970 mdb_warn("%s format specifiers (found %d, expected %d)\n", 2971 argc > nfmts ? "missing" : "extra", nfmts, argc); 2972 return (DCMD_ABORT); 2973 } 2974 2975 for (i = 0; i < argc; i++) { 2976 mdb_ctf_id_t mid; 2977 ulong_t off; 2978 int ignored; 2979 2980 if (argv[i].a_type != MDB_TYPE_STRING) { 2981 mdb_warn("expected only type member arguments\n"); 2982 return (DCMD_ABORT); 2983 } 2984 2985 if (strcmp((member = argv[i].a_un.a_str), ".") == 0) { 2986 /* 2987 * We allow "." to be specified to denote the current 2988 * value of dot. 2989 */ 2990 if (funcs[i] != printf_ptr && funcs[i] != printf_uint && 2991 funcs[i] != printf_int) { 2992 mdb_warn("expected integer or pointer format " 2993 "specifier for '.'\n"); 2994 return (DCMD_ABORT); 2995 } 2996 2997 mdb_printf(fmts[i], mdb_get_dot()); 2998 continue; 2999 } 3000 3001 pa.pa_addr = addr; 3002 3003 if (parse_member(&pa, member, id, &mid, &off, &ignored) != 0) 3004 return (DCMD_ABORT); 3005 3006 if ((ret = funcs[i](mid, pa.pa_addr, off, fmts[i])) != 0) { 3007 mdb_warn("failed to print member '%s'\n", member); 3008 return (ret); 3009 } 3010 } 3011 3012 mdb_printf("%s", last); 3013 3014 return (DCMD_OK); 3015 } 3016 3017 static char _mdb_printf_help[] = 3018 "The format string argument is a printf(3C)-like format string that is a\n" 3019 "subset of the format strings supported by mdb_printf(). The type argument\n" 3020 "is the name of a type to be used to interpret the memory referenced by dot.\n" 3021 "The member should either be a field in the specified structure, or the\n" 3022 "special member '.', denoting the value of dot (and treated as a pointer).\n" 3023 "The number of members must match the number of format specifiers in the\n" 3024 "format string.\n" 3025 "\n" 3026 "The following format specifiers are recognized by ::printf:\n" 3027 "\n" 3028 " %% Prints the '%' symbol.\n" 3029 " %a Prints the member in symbolic form.\n" 3030 " %d Prints the member as a decimal integer. If the member is a signed\n" 3031 " integer type, the output will be signed.\n" 3032 " %H Prints the member as a human-readable size.\n" 3033 " %I Prints the member as an IPv4 address (must be 32-bit integer type).\n" 3034 " %N Prints the member as an IPv6 address (must be of type in6_addr_t).\n" 3035 " %o Prints the member as an unsigned octal integer.\n" 3036 " %p Prints the member as a pointer, in hexadecimal.\n" 3037 " %q Prints the member in signed octal. Honk if you ever use this!\n" 3038 " %r Prints the member as an unsigned value in the current output radix.\n" 3039 " %R Prints the member as a signed value in the current output radix.\n" 3040 " %s Prints the member as a string (requires a pointer or an array of\n" 3041 " characters).\n" 3042 " %u Prints the member as an unsigned decimal integer.\n" 3043 " %x Prints the member in hexadecimal.\n" 3044 " %X Prints the member in hexadecimal, using the characters A-F as the\n" 3045 " digits for the values 10-15.\n" 3046 " %Y Prints the member as a time_t as the string " 3047 "'year month day HH:MM:SS'.\n" 3048 "\n" 3049 "The following field width specifiers are recognized by ::printf:\n" 3050 "\n" 3051 " %n Field width is set to the specified decimal value.\n" 3052 " %? Field width is set to the maximum width of a hexadecimal pointer\n" 3053 " value. This is 8 in an ILP32 environment, and 16 in an LP64\n" 3054 " environment.\n" 3055 "\n" 3056 "The following flag specifers are recognized by ::printf:\n" 3057 "\n" 3058 " %- Left-justify the output within the specified field width. If the\n" 3059 " width of the output is less than the specified field width, the\n" 3060 " output will be padded with blanks on the right-hand side. Without\n" 3061 " %-, values are right-justified by default.\n" 3062 "\n" 3063 " %0 Zero-fill the output field if the output is right-justified and the\n" 3064 " width of the output is less than the specified field width. Without\n" 3065 " %0, right-justified values are prepended with blanks in order to\n" 3066 " fill the field.\n" 3067 "\n" 3068 "Examples: \n" 3069 "\n" 3070 " ::walk proc | " 3071 "::printf \"%-6d %s\\n\" proc_t p_pidp->pid_id p_user.u_psargs\n" 3072 " ::walk thread | " 3073 "::printf \"%?p %3d %a\\n\" kthread_t . t_pri t_startpc\n" 3074 " ::walk zone | " 3075 "::printf \"%-40s %20s\\n\" zone_t zone_name zone_nodename\n" 3076 " ::walk ire | " 3077 "::printf \"%Y %I\\n\" ire_t ire_create_time ire_u.ire4_u.ire4_addr\n" 3078 "\n"; 3079 3080 void 3081 printf_help(void) 3082 { 3083 mdb_printf("%s", _mdb_printf_help); 3084 }