1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2012 by Delphix. All rights reserved.
28 * Copyright (c) 2012 Joyent, Inc. All rights reserved.
29 */
30
31 #include <mdb/mdb_modapi.h>
32 #include <mdb/mdb_target.h>
33 #include <mdb/mdb_argvec.h>
34 #include <mdb/mdb_string.h>
35 #include <mdb/mdb_stdlib.h>
36 #include <mdb/mdb_err.h>
37 #include <mdb/mdb_debug.h>
38 #include <mdb/mdb_fmt.h>
39 #include <mdb/mdb_ctf.h>
40 #include <mdb/mdb_ctf_impl.h>
41 #include <mdb/mdb.h>
42 #include <mdb/mdb_tab.h>
43
44 #include <sys/isa_defs.h>
45 #include <sys/param.h>
46 #include <sys/sysmacros.h>
47 #include <netinet/in.h>
48 #include <strings.h>
49 #include <libctf.h>
50 #include <ctype.h>
51
52 typedef struct holeinfo {
53 ulong_t hi_offset; /* expected offset */
54 uchar_t hi_isunion; /* represents a union */
55 } holeinfo_t;
56
57 typedef struct printarg {
58 mdb_tgt_t *pa_tgt; /* current target */
59 mdb_tgt_t *pa_realtgt; /* real target (for -i) */
60 mdb_tgt_t *pa_immtgt; /* immediate target (for -i) */
61 mdb_tgt_as_t pa_as; /* address space to use for i/o */
62 mdb_tgt_addr_t pa_addr; /* base address for i/o */
63 ulong_t pa_armemlim; /* limit on array elements to print */
64 ulong_t pa_arstrlim; /* limit on array chars to print */
65 const char *pa_delim; /* element delimiter string */
66 const char *pa_prefix; /* element prefix string */
67 const char *pa_suffix; /* element suffix string */
68 holeinfo_t *pa_holes; /* hole detection information */
69 int pa_nholes; /* size of holes array */
70 int pa_flags; /* formatting flags (see below) */
71 int pa_depth; /* previous depth */
72 int pa_nest; /* array nesting depth */
73 int pa_tab; /* tabstop width */
74 uint_t pa_maxdepth; /* Limit max depth */
75 uint_t pa_nooutdepth; /* don't print output past this depth */
76 } printarg_t;
77
78 #define PA_SHOWTYPE 0x001 /* print type name */
79 #define PA_SHOWBASETYPE 0x002 /* print base type name */
80 #define PA_SHOWNAME 0x004 /* print member name */
81 #define PA_SHOWADDR 0x008 /* print address */
82 #define PA_SHOWVAL 0x010 /* print value */
83 #define PA_SHOWHOLES 0x020 /* print holes in structs */
84 #define PA_INTHEX 0x040 /* print integer values in hex */
85 #define PA_INTDEC 0x080 /* print integer values in decimal */
86 #define PA_NOSYMBOLIC 0x100 /* don't print ptrs as func+offset */
87
88 #define IS_CHAR(e) \
89 (((e).cte_format & (CTF_INT_CHAR | CTF_INT_SIGNED)) == \
90 (CTF_INT_CHAR | CTF_INT_SIGNED) && (e).cte_bits == NBBY)
91
92 #define COMPOSITE_MASK ((1 << CTF_K_STRUCT) | \
93 (1 << CTF_K_UNION) | (1 << CTF_K_ARRAY))
94 #define IS_COMPOSITE(k) (((1 << k) & COMPOSITE_MASK) != 0)
95
96 #define SOU_MASK ((1 << CTF_K_STRUCT) | (1 << CTF_K_UNION))
97 #define IS_SOU(k) (((1 << k) & SOU_MASK) != 0)
98
99 #define MEMBER_DELIM_ERR -1
100 #define MEMBER_DELIM_DONE 0
101 #define MEMBER_DELIM_PTR 1
102 #define MEMBER_DELIM_DOT 2
103 #define MEMBER_DELIM_LBR 3
104
105 typedef int printarg_f(const char *, const char *,
106 mdb_ctf_id_t, mdb_ctf_id_t, ulong_t, printarg_t *);
107
108 static int elt_print(const char *, mdb_ctf_id_t, mdb_ctf_id_t, ulong_t, int,
109 void *);
110 static void print_close_sou(printarg_t *, int);
111
112 /*
113 * Given an address, look up the symbol ID of the specified symbol in its
114 * containing module. We only support lookups for exact matches.
115 */
116 static const char *
117 addr_to_sym(mdb_tgt_t *t, uintptr_t addr, char *name, size_t namelen,
118 GElf_Sym *symp, mdb_syminfo_t *sip)
119 {
120 const mdb_map_t *mp;
121 const char *p;
122
123 if (mdb_tgt_lookup_by_addr(t, addr, MDB_TGT_SYM_EXACT, name,
124 namelen, NULL, NULL) == -1)
125 return (NULL); /* address does not exactly match a symbol */
126
127 if ((p = strrsplit(name, '`')) != NULL) {
128 if (mdb_tgt_lookup_by_name(t, name, p, symp, sip) == -1)
129 return (NULL);
130 return (p);
131 }
132
133 if ((mp = mdb_tgt_addr_to_map(t, addr)) == NULL)
134 return (NULL); /* address does not fall within a mapping */
135
136 if (mdb_tgt_lookup_by_name(t, mp->map_name, name, symp, sip) == -1)
137 return (NULL);
138
139 return (name);
140 }
141
142 /*
143 * This lets dcmds be a little fancy with their processing of type arguments
144 * while still treating them more or less as a single argument.
145 * For example, if a command is invokes like this:
146 *
147 * ::<dcmd> proc_t ...
148 *
149 * this function will just copy "proc_t" into the provided buffer. If the
150 * command is instead invoked like this:
151 *
152 * ::<dcmd> struct proc ...
153 *
154 * this function will place the string "struct proc" into the provided buffer
155 * and increment the caller's argv and argc. This allows the caller to still
156 * treat the type argument logically as it would an other atomic argument.
157 */
158 int
159 args_to_typename(int *argcp, const mdb_arg_t **argvp, char *buf, size_t len)
160 {
161 int argc = *argcp;
162 const mdb_arg_t *argv = *argvp;
163
164 if (argc < 1 || argv->a_type != MDB_TYPE_STRING)
165 return (DCMD_USAGE);
166
167 if (strcmp(argv->a_un.a_str, "struct") == 0 ||
168 strcmp(argv->a_un.a_str, "enum") == 0 ||
169 strcmp(argv->a_un.a_str, "union") == 0) {
170 if (argc <= 1) {
171 mdb_warn("%s is not a valid type\n", argv->a_un.a_str);
172 return (DCMD_ABORT);
173 }
174
175 if (argv[1].a_type != MDB_TYPE_STRING)
176 return (DCMD_USAGE);
177
178 (void) mdb_snprintf(buf, len, "%s %s",
179 argv[0].a_un.a_str, argv[1].a_un.a_str);
180
181 *argcp = argc - 1;
182 *argvp = argv + 1;
183 } else {
184 (void) mdb_snprintf(buf, len, "%s", argv[0].a_un.a_str);
185 }
186
187 return (0);
188 }
189
190 /*ARGSUSED*/
191 int
192 cmd_sizeof(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
193 {
194 mdb_ctf_id_t id;
195 char tn[MDB_SYM_NAMLEN];
196 int ret;
197
198 if (flags & DCMD_ADDRSPEC)
199 return (DCMD_USAGE);
200
201 if ((ret = args_to_typename(&argc, &argv, tn, sizeof (tn))) != 0)
202 return (ret);
203
204 if (argc != 1)
205 return (DCMD_USAGE);
206
207 if (mdb_ctf_lookup_by_name(tn, &id) != 0) {
208 mdb_warn("failed to look up type %s", tn);
209 return (DCMD_ERR);
210 }
211
212 if (flags & DCMD_PIPE_OUT)
213 mdb_printf("%#lr\n", mdb_ctf_type_size(id));
214 else
215 mdb_printf("sizeof (%s) = %#lr\n", tn, mdb_ctf_type_size(id));
216
217 return (DCMD_OK);
218 }
219
220 int
221 cmd_sizeof_tab(mdb_tab_cookie_t *mcp, uint_t flags, int argc,
222 const mdb_arg_t *argv)
223 {
224 char tn[MDB_SYM_NAMLEN];
225 int ret;
226
227 if (argc == 0 && !(flags & DCMD_TAB_SPACE))
228 return (0);
229
230 if (argc == 0 && (flags & DCMD_TAB_SPACE))
231 return (mdb_tab_complete_type(mcp, NULL, MDB_TABC_NOPOINT));
232
233 if ((ret = mdb_tab_typename(&argc, &argv, tn, sizeof (tn))) < 0)
234 return (ret);
235
236 if (argc == 1)
237 return (mdb_tab_complete_type(mcp, tn, MDB_TABC_NOPOINT));
238
239 return (0);
240 }
241
242 /*ARGSUSED*/
243 int
244 cmd_offsetof(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
245 {
246 const char *member;
247 mdb_ctf_id_t id;
248 ulong_t off;
249 char tn[MDB_SYM_NAMLEN];
250 ssize_t sz;
251 int ret;
252
253 if (flags & DCMD_ADDRSPEC)
254 return (DCMD_USAGE);
255
256 if ((ret = args_to_typename(&argc, &argv, tn, sizeof (tn))) != 0)
257 return (ret);
258
259 if (argc != 2 || argv[1].a_type != MDB_TYPE_STRING)
260 return (DCMD_USAGE);
261
262 if (mdb_ctf_lookup_by_name(tn, &id) != 0) {
263 mdb_warn("failed to look up type %s", tn);
264 return (DCMD_ERR);
265 }
266
267 member = argv[1].a_un.a_str;
268
269 if (mdb_ctf_member_info(id, member, &off, &id) != 0) {
270 mdb_warn("failed to find member %s of type %s", member, tn);
271 return (DCMD_ERR);
272 }
273
274 if (flags & DCMD_PIPE_OUT) {
275 if (off % NBBY != 0) {
276 mdb_warn("member %s of type %s is not byte-aligned\n",
277 member, tn);
278 return (DCMD_ERR);
279 }
280 mdb_printf("%#lr", off / NBBY);
281 return (DCMD_OK);
282 }
283
284 mdb_printf("offsetof (%s, %s) = %#lr",
285 tn, member, off / NBBY);
286 if (off % NBBY != 0)
287 mdb_printf(".%lr", off % NBBY);
288
289 if ((sz = mdb_ctf_type_size(id)) > 0)
290 mdb_printf(", sizeof (...->%s) = %#lr", member, sz);
291
292 mdb_printf("\n");
293
294 return (DCMD_OK);
295 }
296
297 /*ARGSUSED*/
298 static int
299 enum_prefix_scan_cb(const char *name, int value, void *arg)
300 {
301 char *str = arg;
302
303 /*
304 * This function is called with every name in the enum. We make
305 * "arg" be the common prefix, if any.
306 */
307 if (str[0] == 0) {
308 if (strlcpy(arg, name, MDB_SYM_NAMLEN) >= MDB_SYM_NAMLEN)
309 return (1);
310 return (0);
311 }
312
313 while (*name == *str) {
314 if (*str == 0) {
315 if (str != arg) {
316 str--; /* don't smother a name completely */
317 }
318 break;
319 }
320 name++;
321 str++;
322 }
323 *str = 0;
324
325 return (str == arg); /* only continue if prefix is non-empty */
326 }
327
328 struct enum_p2_info {
329 intmax_t e_value; /* value we're processing */
330 char *e_buf; /* buffer for holding names */
331 size_t e_size; /* size of buffer */
332 size_t e_prefix; /* length of initial prefix */
333 uint_t e_allprefix; /* apply prefix to first guy, too */
334 uint_t e_bits; /* bits seen */
335 uint8_t e_found; /* have we seen anything? */
336 uint8_t e_first; /* does buf contain the first one? */
337 uint8_t e_zero; /* have we seen a zero value? */
338 };
339
340 static int
341 enum_p2_cb(const char *name, int bit_arg, void *arg)
342 {
343 struct enum_p2_info *eiip = arg;
344 uintmax_t bit = bit_arg;
345
346 if (bit != 0 && !ISP2(bit))
347 return (1); /* non-power-of-2; abort processing */
348
349 if ((bit == 0 && eiip->e_zero) ||
350 (bit != 0 && (eiip->e_bits & bit) != 0)) {
351 return (0); /* already seen this value */
352 }
353
354 if (bit == 0)
355 eiip->e_zero = 1;
356 else
357 eiip->e_bits |= bit;
358
359 if (eiip->e_buf != NULL && (eiip->e_value & bit) != 0) {
360 char *buf = eiip->e_buf;
361 size_t prefix = eiip->e_prefix;
362
363 if (eiip->e_found) {
364 (void) strlcat(buf, "|", eiip->e_size);
365
366 if (eiip->e_first && !eiip->e_allprefix && prefix > 0) {
367 char c1 = buf[prefix];
368 char c2 = buf[prefix + 1];
369 buf[prefix] = '{';
370 buf[prefix + 1] = 0;
371 mdb_printf("%s", buf);
372 buf[prefix] = c1;
373 buf[prefix + 1] = c2;
374 mdb_printf("%s", buf + prefix);
375 } else {
376 mdb_printf("%s", buf);
377 }
378
379 }
380 /* skip the common prefix as necessary */
381 if ((eiip->e_found || eiip->e_allprefix) &&
382 strlen(name) > prefix)
383 name += prefix;
384
385 (void) strlcpy(eiip->e_buf, name, eiip->e_size);
386 eiip->e_first = !eiip->e_found;
387 eiip->e_found = 1;
388 }
389 return (0);
390 }
391
392 static int
393 enum_is_p2(mdb_ctf_id_t id)
394 {
395 struct enum_p2_info eii;
396 bzero(&eii, sizeof (eii));
397
398 return (mdb_ctf_type_kind(id) == CTF_K_ENUM &&
399 mdb_ctf_enum_iter(id, enum_p2_cb, &eii) == 0 &&
400 eii.e_bits != 0);
401 }
402
403 static int
404 enum_value_print_p2(mdb_ctf_id_t id, intmax_t value, uint_t allprefix)
405 {
406 struct enum_p2_info eii;
407 char prefix[MDB_SYM_NAMLEN + 2];
408 intmax_t missed;
409
410 bzero(&eii, sizeof (eii));
411
412 eii.e_value = value;
413 eii.e_buf = prefix;
414 eii.e_size = sizeof (prefix);
415 eii.e_allprefix = allprefix;
416
417 prefix[0] = 0;
418 if (mdb_ctf_enum_iter(id, enum_prefix_scan_cb, prefix) == 0)
419 eii.e_prefix = strlen(prefix);
420
421 if (mdb_ctf_enum_iter(id, enum_p2_cb, &eii) != 0 || eii.e_bits == 0)
422 return (-1);
423
424 missed = (value & ~(intmax_t)eii.e_bits);
425
426 if (eii.e_found) {
427 /* push out any final value, with a | if we missed anything */
428 if (!eii.e_first)
429 (void) strlcat(prefix, "}", sizeof (prefix));
430 if (missed != 0)
431 (void) strlcat(prefix, "|", sizeof (prefix));
432
433 mdb_printf("%s", prefix);
434 }
435
436 if (!eii.e_found || missed) {
437 mdb_printf("%#llx", missed);
438 }
439
440 return (0);
441 }
442
443 struct enum_cbinfo {
444 uint_t e_flags;
445 const char *e_string; /* NULL for value searches */
446 size_t e_prefix;
447 intmax_t e_value;
448 uint_t e_found;
449 mdb_ctf_id_t e_id;
450 };
451 #define E_PRETTY 0x01
452 #define E_HEX 0x02
453 #define E_SEARCH_STRING 0x04
454 #define E_SEARCH_VALUE 0x08
455 #define E_ELIDE_PREFIX 0x10
456
457 static void
458 enum_print(struct enum_cbinfo *info, const char *name, int value)
459 {
460 uint_t flags = info->e_flags;
461 uint_t elide_prefix = (info->e_flags & E_ELIDE_PREFIX);
462
463 if (name != NULL && info->e_prefix && strlen(name) > info->e_prefix)
464 name += info->e_prefix;
465
466 if (flags & E_PRETTY) {
467 uint_t indent = 5 + ((flags & E_HEX) ? 8 : 11);
468
469 mdb_printf((flags & E_HEX)? "%8x " : "%11d ", value);
470 (void) mdb_inc_indent(indent);
471 if (name != NULL) {
472 mdb_iob_puts(mdb.m_out, name);
473 } else {
474 (void) enum_value_print_p2(info->e_id, value,
475 elide_prefix);
476 }
477 (void) mdb_dec_indent(indent);
478 mdb_printf("\n");
479 } else {
480 mdb_printf("%#r\n", value);
481 }
482 }
483
484 static int
485 enum_cb(const char *name, int value, void *arg)
486 {
487 struct enum_cbinfo *info = arg;
488 uint_t flags = info->e_flags;
489
490 if (flags & E_SEARCH_STRING) {
491 if (strcmp(name, info->e_string) != 0)
492 return (0);
493
494 } else if (flags & E_SEARCH_VALUE) {
495 if (value != info->e_value)
496 return (0);
497 }
498
499 enum_print(info, name, value);
500
501 info->e_found = 1;
502 return (0);
503 }
504
505 void
506 enum_help(void)
507 {
508 mdb_printf("%s",
509 "Without an address and name, print all values for the enumeration \"enum\".\n"
510 "With an address, look up a particular value in \"enum\". With a name, look\n"
511 "up a particular name in \"enum\".\n");
512
513 (void) mdb_dec_indent(2);
514 mdb_printf("\n%<b>OPTIONS%</b>\n");
515 (void) mdb_inc_indent(2);
516
517 mdb_printf("%s",
518 " -e remove common prefixes from enum names\n"
519 " -x report enum values in hexadecimal\n");
520 }
521
522 /*ARGSUSED*/
523 int
524 cmd_enum(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
525 {
526 struct enum_cbinfo info;
527
528 char type[MDB_SYM_NAMLEN + sizeof ("enum ")];
529 char tn2[MDB_SYM_NAMLEN + sizeof ("enum ")];
530 char prefix[MDB_SYM_NAMLEN];
531 mdb_ctf_id_t id;
532 mdb_ctf_id_t idr;
533
534 int i;
535 intmax_t search;
536 uint_t isp2;
537
538 info.e_flags = (flags & DCMD_PIPE_OUT)? 0 : E_PRETTY;
539 info.e_string = NULL;
540 info.e_value = 0;
541 info.e_found = 0;
542
543 i = mdb_getopts(argc, argv,
544 'e', MDB_OPT_SETBITS, E_ELIDE_PREFIX, &info.e_flags,
545 'x', MDB_OPT_SETBITS, E_HEX, &info.e_flags,
546 NULL);
547
548 argc -= i;
549 argv += i;
550
551 if ((i = args_to_typename(&argc, &argv, type, MDB_SYM_NAMLEN)) != 0)
552 return (i);
553
554 if (strchr(type, ' ') == NULL) {
555 /*
556 * Check as an enumeration tag first, and fall back
557 * to checking for a typedef. Yes, this means that
558 * anonymous enumerations whose typedefs conflict with
559 * an enum tag can't be accessed. Don't do that.
560 */
561 (void) mdb_snprintf(tn2, sizeof (tn2), "enum %s", type);
562
563 if (mdb_ctf_lookup_by_name(tn2, &id) == 0) {
564 (void) strcpy(type, tn2);
565 } else if (mdb_ctf_lookup_by_name(type, &id) != 0) {
566 mdb_warn("types '%s', '%s'", tn2, type);
567 return (DCMD_ERR);
568 }
569 } else {
570 if (mdb_ctf_lookup_by_name(type, &id) != 0) {
571 mdb_warn("'%s'", type);
572 return (DCMD_ERR);
573 }
574 }
575
576 /* resolve it, and make sure we're looking at an enumeration */
577 if (mdb_ctf_type_resolve(id, &idr) == -1) {
578 mdb_warn("unable to resolve '%s'", type);
579 return (DCMD_ERR);
580 }
581 if (mdb_ctf_type_kind(idr) != CTF_K_ENUM) {
582 mdb_warn("'%s': not an enumeration\n", type);
583 return (DCMD_ERR);
584 }
585
586 info.e_id = idr;
587
588 if (argc > 2)
589 return (DCMD_USAGE);
590
591 if (argc == 2) {
592 if (flags & DCMD_ADDRSPEC) {
593 mdb_warn("may only specify one of: name, address\n");
594 return (DCMD_USAGE);
595 }
596
597 if (argv[1].a_type == MDB_TYPE_STRING) {
598 info.e_flags |= E_SEARCH_STRING;
599 info.e_string = argv[1].a_un.a_str;
600 } else if (argv[1].a_type == MDB_TYPE_IMMEDIATE) {
601 info.e_flags |= E_SEARCH_VALUE;
602 search = argv[1].a_un.a_val;
603 } else {
604 return (DCMD_USAGE);
605 }
606 }
607
608 if (flags & DCMD_ADDRSPEC) {
609 info.e_flags |= E_SEARCH_VALUE;
610 search = mdb_get_dot();
611 }
612
613 if (info.e_flags & E_SEARCH_VALUE) {
614 if ((int)search != search) {
615 mdb_warn("value '%lld' out of enumeration range\n",
616 search);
617 }
618 info.e_value = search;
619 }
620
621 isp2 = enum_is_p2(idr);
622 if (isp2)
623 info.e_flags |= E_HEX;
624
625 if (DCMD_HDRSPEC(flags) && (info.e_flags & E_PRETTY)) {
626 if (info.e_flags & E_HEX)
627 mdb_printf("%<u>%8s %-64s%</u>\n", "VALUE", "NAME");
628 else
629 mdb_printf("%<u>%11s %-64s%</u>\n", "VALUE", "NAME");
630 }
631
632 /* if the enum is a power-of-two one, process it that way */
633 if ((info.e_flags & E_SEARCH_VALUE) && isp2) {
634 enum_print(&info, NULL, info.e_value);
635 return (DCMD_OK);
636 }
637
638 prefix[0] = 0;
639 if ((info.e_flags & E_ELIDE_PREFIX) &&
640 mdb_ctf_enum_iter(id, enum_prefix_scan_cb, prefix) == 0)
641 info.e_prefix = strlen(prefix);
642
643 if (mdb_ctf_enum_iter(idr, enum_cb, &info) == -1) {
644 mdb_warn("cannot walk '%s' as enum", type);
645 return (DCMD_ERR);
646 }
647
648 if (info.e_found == 0 &&
649 (info.e_flags & (E_SEARCH_STRING | E_SEARCH_VALUE)) != 0) {
650 if (info.e_flags & E_SEARCH_STRING)
651 mdb_warn("name \"%s\" not in '%s'\n", info.e_string,
652 type);
653 else
654 mdb_warn("value %#lld not in '%s'\n", info.e_value,
655 type);
656
657 return (DCMD_ERR);
658 }
659
660 return (DCMD_OK);
661 }
662
663 static int
664 setup_vcb(const char *name, uintptr_t addr)
665 {
666 const char *p;
667 mdb_var_t *v;
668
669 if ((v = mdb_nv_lookup(&mdb.m_nv, name)) == NULL) {
670 if ((p = strbadid(name)) != NULL) {
671 mdb_warn("'%c' may not be used in a variable "
672 "name\n", *p);
673 return (DCMD_ABORT);
674 }
675
676 if ((v = mdb_nv_insert(&mdb.m_nv, name, NULL, addr, 0)) == NULL)
677 return (DCMD_ERR);
678 } else {
679 if (v->v_flags & MDB_NV_RDONLY) {
680 mdb_warn("variable %s is read-only\n", name);
681 return (DCMD_ABORT);
682 }
683 }
684
685 /*
686 * If there already exists a vcb for this variable, we may be
687 * calling the dcmd in a loop. We only create a vcb for this
688 * variable on the first invocation.
689 */
690 if (mdb_vcb_find(v, mdb.m_frame) == NULL)
691 mdb_vcb_insert(mdb_vcb_create(v), mdb.m_frame);
692
693 return (0);
694 }
695
696 /*ARGSUSED*/
697 int
698 cmd_list(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
699 {
700 int offset;
701 uintptr_t a, tmp;
702 int ret;
703
704 if (!(flags & DCMD_ADDRSPEC) || argc == 0)
705 return (DCMD_USAGE);
706
707 if (argv->a_type != MDB_TYPE_STRING) {
708 /*
709 * We are being given a raw offset in lieu of a type and
710 * member; confirm the arguments.
711 */
712 if (argv->a_type != MDB_TYPE_IMMEDIATE)
713 return (DCMD_USAGE);
714
715 offset = argv->a_un.a_val;
716
717 argv++;
718 argc--;
719
720 if (offset % sizeof (uintptr_t)) {
721 mdb_warn("offset must fall on a word boundary\n");
722 return (DCMD_ABORT);
723 }
724 } else {
725 const char *member;
726 char buf[MDB_SYM_NAMLEN];
727 int ret;
728
729 ret = args_to_typename(&argc, &argv, buf, sizeof (buf));
730 if (ret != 0)
731 return (ret);
732
733 argv++;
734 argc--;
735
736 member = argv->a_un.a_str;
737 offset = mdb_ctf_offsetof_by_name(buf, member);
738 if (offset == -1)
739 return (DCMD_ABORT);
740
741 argv++;
742 argc--;
743
744 if (offset % (sizeof (uintptr_t)) != 0) {
745 mdb_warn("%s is not a word-aligned member\n", member);
746 return (DCMD_ABORT);
747 }
748 }
749
750 /*
751 * If we have any unchewed arguments, a variable name must be present.
752 */
753 if (argc == 1) {
754 if (argv->a_type != MDB_TYPE_STRING)
755 return (DCMD_USAGE);
756
757 if ((ret = setup_vcb(argv->a_un.a_str, addr)) != 0)
758 return (ret);
759
760 } else if (argc != 0) {
761 return (DCMD_USAGE);
762 }
763
764 a = addr;
765
766 do {
767 mdb_printf("%lr\n", a);
768
769 if (mdb_vread(&tmp, sizeof (tmp), a + offset) == -1) {
770 mdb_warn("failed to read next pointer from object %p",
771 a);
772 return (DCMD_ERR);
773 }
774
775 a = tmp;
776 } while (a != addr && a != NULL);
777
778 return (DCMD_OK);
779 }
780
781 int
782 cmd_array(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
783 {
784 mdb_ctf_id_t id;
785 ssize_t elemsize = 0;
786 char tn[MDB_SYM_NAMLEN];
787 int ret, nelem = -1;
788
789 mdb_tgt_t *t = mdb.m_target;
790 GElf_Sym sym;
791 mdb_ctf_arinfo_t ar;
792 mdb_syminfo_t s_info;
793
794 if (!(flags & DCMD_ADDRSPEC))
795 return (DCMD_USAGE);
796
797 if (argc >= 2) {
798 ret = args_to_typename(&argc, &argv, tn, sizeof (tn));
799 if (ret != 0)
800 return (ret);
801
802 if (argc == 1) /* unquoted compound type without count */
803 return (DCMD_USAGE);
804
805 if (mdb_ctf_lookup_by_name(tn, &id) != 0) {
806 mdb_warn("failed to look up type %s", tn);
807 return (DCMD_ABORT);
808 }
809
810 if (argv[1].a_type == MDB_TYPE_IMMEDIATE)
811 nelem = argv[1].a_un.a_val;
812 else
813 nelem = mdb_strtoull(argv[1].a_un.a_str);
814
815 elemsize = mdb_ctf_type_size(id);
816 } else if (addr_to_sym(t, addr, tn, sizeof (tn), &sym, &s_info)
817 != NULL && mdb_ctf_lookup_by_symbol(&sym, &s_info, &id)
818 == 0 && mdb_ctf_type_kind(id) == CTF_K_ARRAY &&
819 mdb_ctf_array_info(id, &ar) != -1) {
820 elemsize = mdb_ctf_type_size(id) / ar.mta_nelems;
821 nelem = ar.mta_nelems;
822 } else {
823 mdb_warn("no symbol information for %a", addr);
824 return (DCMD_ERR);
825 }
826
827 if (argc == 3 || argc == 1) {
828 if (argv[argc - 1].a_type != MDB_TYPE_STRING)
829 return (DCMD_USAGE);
830
831 if ((ret = setup_vcb(argv[argc - 1].a_un.a_str, addr)) != 0)
832 return (ret);
833
834 } else if (argc > 3) {
835 return (DCMD_USAGE);
836 }
837
838 for (; nelem > 0; nelem--) {
839 mdb_printf("%lr\n", addr);
840 addr = addr + elemsize;
841 }
842
843 return (DCMD_OK);
844 }
845
846 /*
847 * Print an integer bitfield in hexadecimal by reading the enclosing byte(s)
848 * and then shifting and masking the data in the lower bits of a uint64_t.
849 */
850 static int
851 print_bitfield(ulong_t off, printarg_t *pap, ctf_encoding_t *ep)
852 {
853 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
854 size_t size = (ep->cte_bits + (NBBY - 1)) / NBBY;
855 uint64_t mask = (1ULL << ep->cte_bits) - 1;
856 uint64_t value = 0;
857 uint8_t *buf = (uint8_t *)&value;
858 uint8_t shift;
859
860 const char *format;
861
862 if (!(pap->pa_flags & PA_SHOWVAL))
863 return (0);
864
865 if (ep->cte_bits > sizeof (value) * NBBY - 1) {
866 mdb_printf("??? (invalid bitfield size %u)", ep->cte_bits);
867 return (0);
868 }
869
870 /*
871 * On big-endian machines, we need to adjust the buf pointer to refer
872 * to the lowest 'size' bytes in 'value', and we need shift based on
873 * the offset from the end of the data, not the offset of the start.
874 */
875 #ifdef _BIG_ENDIAN
876 buf += sizeof (value) - size;
877 off += ep->cte_bits;
878 #endif
879 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, buf, size, addr) != size) {
880 mdb_warn("failed to read %lu bytes at %llx",
881 (ulong_t)size, addr);
882 return (1);
883 }
884
885 shift = off % NBBY;
886
887 /*
888 * Offsets are counted from opposite ends on little- and
889 * big-endian machines.
890 */
891 #ifdef _BIG_ENDIAN
892 shift = NBBY - shift;
893 #endif
894
895 /*
896 * If the bits we want do not begin on a byte boundary, shift the data
897 * right so that the value is in the lowest 'cte_bits' of 'value'.
898 */
899 if (off % NBBY != 0)
900 value >>= shift;
901 value &= mask;
902
903 /*
904 * We default to printing signed bitfields as decimals,
905 * and unsigned bitfields in hexadecimal. If they specify
906 * hexadecimal, we treat the field as unsigned.
907 */
908 if ((pap->pa_flags & PA_INTHEX) ||
909 !(ep->cte_format & CTF_INT_SIGNED)) {
910 format = (pap->pa_flags & PA_INTDEC)? "%#llu" : "%#llx";
911 } else {
912 int sshift = sizeof (value) * NBBY - ep->cte_bits;
913
914 /* sign-extend value, and print as a signed decimal */
915 value = ((int64_t)value << sshift) >> sshift;
916 format = "%#lld";
917 }
918 mdb_printf(format, value);
919
920 return (0);
921 }
922
923 /*
924 * Print out a character or integer value. We use some simple heuristics,
925 * described below, to determine the appropriate radix to use for output.
926 */
927 static int
928 print_int_val(const char *type, ctf_encoding_t *ep, ulong_t off,
929 printarg_t *pap)
930 {
931 static const char *const sformat[] = { "%#d", "%#d", "%#d", "%#lld" };
932 static const char *const uformat[] = { "%#u", "%#u", "%#u", "%#llu" };
933 static const char *const xformat[] = { "%#x", "%#x", "%#x", "%#llx" };
934
935 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
936 const char *const *fsp;
937 size_t size;
938
939 union {
940 uint64_t i8;
941 uint32_t i4;
942 uint16_t i2;
943 uint8_t i1;
944 time_t t;
945 ipaddr_t I;
946 } u;
947
948 if (!(pap->pa_flags & PA_SHOWVAL))
949 return (0);
950
951 if (ep->cte_format & CTF_INT_VARARGS) {
952 mdb_printf("...\n");
953 return (0);
954 }
955
956 /*
957 * If the size is not a power-of-two number of bytes in the range 1-8
958 * then we assume it is a bitfield and print it as such.
959 */
960 size = ep->cte_bits / NBBY;
961 if (size > 8 || (ep->cte_bits % NBBY) != 0 || (size & (size - 1)) != 0)
962 return (print_bitfield(off, pap, ep));
963
964 if (IS_CHAR(*ep)) {
965 mdb_printf("'");
966 if (mdb_fmt_print(pap->pa_tgt, pap->pa_as,
967 addr, 1, 'C') == addr)
968 return (1);
969 mdb_printf("'");
970 return (0);
971 }
972
973 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.i8, size, addr) != size) {
974 mdb_warn("failed to read %lu bytes at %llx",
975 (ulong_t)size, addr);
976 return (1);
977 }
978
979 /*
980 * We pretty-print some integer based types. time_t values are
981 * printed as a calendar date and time, and IPv4 addresses as human
982 * readable dotted quads.
983 */
984 if (!(pap->pa_flags & (PA_INTHEX | PA_INTDEC))) {
985 if (strcmp(type, "time_t") == 0 && u.t != 0) {
986 mdb_printf("%Y", u.t);
987 return (0);
988 }
989 if (strcmp(type, "ipaddr_t") == 0 ||
990 strcmp(type, "in_addr_t") == 0) {
991 mdb_printf("%I", u.I);
992 return (0);
993 }
994 }
995
996 /*
997 * The default format is hexadecimal.
998 */
999 if (!(pap->pa_flags & PA_INTDEC))
1000 fsp = xformat;
1001 else if (ep->cte_format & CTF_INT_SIGNED)
1002 fsp = sformat;
1003 else
1004 fsp = uformat;
1005
1006 switch (size) {
1007 case sizeof (uint8_t):
1008 mdb_printf(fsp[0], u.i1);
1009 break;
1010 case sizeof (uint16_t):
1011 mdb_printf(fsp[1], u.i2);
1012 break;
1013 case sizeof (uint32_t):
1014 mdb_printf(fsp[2], u.i4);
1015 break;
1016 case sizeof (uint64_t):
1017 mdb_printf(fsp[3], u.i8);
1018 break;
1019 }
1020 return (0);
1021 }
1022
1023 /*ARGSUSED*/
1024 static int
1025 print_int(const char *type, const char *name, mdb_ctf_id_t id,
1026 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1027 {
1028 ctf_encoding_t e;
1029
1030 if (!(pap->pa_flags & PA_SHOWVAL))
1031 return (0);
1032
1033 if (mdb_ctf_type_encoding(base, &e) != 0) {
1034 mdb_printf("??? (%s)", mdb_strerror(errno));
1035 return (0);
1036 }
1037
1038 return (print_int_val(type, &e, off, pap));
1039 }
1040
1041 /*
1042 * Print out a floating point value. We only provide support for floats in
1043 * the ANSI-C float, double, and long double formats.
1044 */
1045 /*ARGSUSED*/
1046 static int
1047 print_float(const char *type, const char *name, mdb_ctf_id_t id,
1048 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1049 {
1050 #ifndef _KMDB
1051 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1052 ctf_encoding_t e;
1053
1054 union {
1055 float f;
1056 double d;
1057 long double ld;
1058 } u;
1059
1060 if (!(pap->pa_flags & PA_SHOWVAL))
1061 return (0);
1062
1063 if (mdb_ctf_type_encoding(base, &e) == 0) {
1064 if (e.cte_format == CTF_FP_SINGLE &&
1065 e.cte_bits == sizeof (float) * NBBY) {
1066 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.f,
1067 sizeof (u.f), addr) != sizeof (u.f)) {
1068 mdb_warn("failed to read float at %llx", addr);
1069 return (1);
1070 }
1071 mdb_printf("%s", doubletos(u.f, 7, 'e'));
1072
1073 } else if (e.cte_format == CTF_FP_DOUBLE &&
1074 e.cte_bits == sizeof (double) * NBBY) {
1075 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.d,
1076 sizeof (u.d), addr) != sizeof (u.d)) {
1077 mdb_warn("failed to read float at %llx", addr);
1078 return (1);
1079 }
1080 mdb_printf("%s", doubletos(u.d, 7, 'e'));
1081
1082 } else if (e.cte_format == CTF_FP_LDOUBLE &&
1083 e.cte_bits == sizeof (long double) * NBBY) {
1084 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.ld,
1085 sizeof (u.ld), addr) != sizeof (u.ld)) {
1086 mdb_warn("failed to read float at %llx", addr);
1087 return (1);
1088 }
1089 mdb_printf("%s", longdoubletos(&u.ld, 16, 'e'));
1090
1091 } else {
1092 mdb_printf("??? (unsupported FP format %u / %u bits\n",
1093 e.cte_format, e.cte_bits);
1094 }
1095 } else
1096 mdb_printf("??? (%s)", mdb_strerror(errno));
1097 #else
1098 mdb_printf("<FLOAT>");
1099 #endif
1100 return (0);
1101 }
1102
1103
1104 /*
1105 * Print out a pointer value as a symbol name + offset or a hexadecimal value.
1106 * If the pointer itself is a char *, we attempt to read a bit of the data
1107 * referenced by the pointer and display it if it is a printable ASCII string.
1108 */
1109 /*ARGSUSED*/
1110 static int
1111 print_ptr(const char *type, const char *name, mdb_ctf_id_t id,
1112 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1113 {
1114 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1115 ctf_encoding_t e;
1116 uintptr_t value;
1117 char buf[256];
1118 ssize_t len;
1119
1120 if (!(pap->pa_flags & PA_SHOWVAL))
1121 return (0);
1122
1123 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as,
1124 &value, sizeof (value), addr) != sizeof (value)) {
1125 mdb_warn("failed to read %s pointer at %llx", name, addr);
1126 return (1);
1127 }
1128
1129 if (pap->pa_flags & PA_NOSYMBOLIC) {
1130 mdb_printf("%#lx", value);
1131 return (0);
1132 }
1133
1134 mdb_printf("%a", value);
1135
1136 if (value == NULL || strcmp(type, "caddr_t") == 0)
1137 return (0);
1138
1139 if (mdb_ctf_type_kind(base) == CTF_K_POINTER &&
1140 mdb_ctf_type_reference(base, &base) != -1 &&
1141 mdb_ctf_type_resolve(base, &base) != -1 &&
1142 mdb_ctf_type_encoding(base, &e) == 0 && IS_CHAR(e)) {
1143 if ((len = mdb_tgt_readstr(pap->pa_realtgt, pap->pa_as,
1144 buf, sizeof (buf), value)) >= 0 && strisprint(buf)) {
1145 if (len == sizeof (buf))
1146 (void) strabbr(buf, sizeof (buf));
1147 mdb_printf(" \"%s\"", buf);
1148 }
1149 }
1150
1151 return (0);
1152 }
1153
1154
1155 /*
1156 * Print out a fixed-size array. We special-case arrays of characters
1157 * and attempt to print them out as ASCII strings if possible. For other
1158 * arrays, we iterate over a maximum of pa_armemlim members and call
1159 * mdb_ctf_type_visit() again on each element to print its value.
1160 */
1161 /*ARGSUSED*/
1162 static int
1163 print_array(const char *type, const char *name, mdb_ctf_id_t id,
1164 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1165 {
1166 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1167 printarg_t pa = *pap;
1168 ssize_t eltsize;
1169 mdb_ctf_arinfo_t r;
1170 ctf_encoding_t e;
1171 uint_t i, kind, limit;
1172 int d, sou;
1173 char buf[8];
1174 char *str;
1175
1176 if (!(pap->pa_flags & PA_SHOWVAL))
1177 return (0);
1178
1179 if (pap->pa_depth == pap->pa_maxdepth) {
1180 mdb_printf("[ ... ]");
1181 return (0);
1182 }
1183
1184 /*
1185 * Determine the base type and size of the array's content. If this
1186 * fails, we cannot print anything and just give up.
1187 */
1188 if (mdb_ctf_array_info(base, &r) == -1 ||
1189 mdb_ctf_type_resolve(r.mta_contents, &base) == -1 ||
1190 (eltsize = mdb_ctf_type_size(base)) == -1) {
1191 mdb_printf("[ ??? ] (%s)", mdb_strerror(errno));
1192 return (0);
1193 }
1194
1195 /*
1196 * Read a few bytes and determine if the content appears to be
1197 * printable ASCII characters. If so, read the entire array and
1198 * attempt to display it as a string if it is printable.
1199 */
1200 if ((pap->pa_arstrlim == MDB_ARR_NOLIMIT ||
1201 r.mta_nelems <= pap->pa_arstrlim) &&
1202 mdb_ctf_type_encoding(base, &e) == 0 && IS_CHAR(e) &&
1203 mdb_tgt_readstr(pap->pa_tgt, pap->pa_as, buf,
1204 MIN(sizeof (buf), r.mta_nelems), addr) > 0 && strisprint(buf)) {
1205
1206 str = mdb_alloc(r.mta_nelems + 1, UM_SLEEP | UM_GC);
1207 str[r.mta_nelems] = '\0';
1208
1209 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, str,
1210 r.mta_nelems, addr) != r.mta_nelems) {
1211 mdb_warn("failed to read char array at %llx", addr);
1212 return (1);
1213 }
1214
1215 if (strisprint(str)) {
1216 mdb_printf("[ \"%s\" ]", str);
1217 return (0);
1218 }
1219 }
1220
1221 if (pap->pa_armemlim != MDB_ARR_NOLIMIT)
1222 limit = MIN(r.mta_nelems, pap->pa_armemlim);
1223 else
1224 limit = r.mta_nelems;
1225
1226 if (limit == 0) {
1227 mdb_printf("[ ... ]");
1228 return (0);
1229 }
1230
1231 kind = mdb_ctf_type_kind(base);
1232 sou = IS_COMPOSITE(kind);
1233
1234 pa.pa_addr = addr; /* set base address to start of array */
1235 pa.pa_maxdepth = pa.pa_maxdepth - pa.pa_depth - 1;
1236 pa.pa_nest += pa.pa_depth + 1; /* nesting level is current depth + 1 */
1237 pa.pa_depth = 0; /* reset depth to 0 for new scope */
1238 pa.pa_prefix = NULL;
1239
1240 if (sou) {
1241 pa.pa_delim = "\n";
1242 mdb_printf("[\n");
1243 } else {
1244 pa.pa_flags &= ~(PA_SHOWTYPE | PA_SHOWNAME | PA_SHOWADDR);
1245 pa.pa_delim = ", ";
1246 mdb_printf("[ ");
1247 }
1248
1249 for (i = 0; i < limit; i++, pa.pa_addr += eltsize) {
1250 if (i == limit - 1 && !sou) {
1251 if (limit < r.mta_nelems)
1252 pa.pa_delim = ", ... ]";
1253 else
1254 pa.pa_delim = " ]";
1255 }
1256
1257 if (mdb_ctf_type_visit(r.mta_contents, elt_print, &pa) == -1) {
1258 mdb_warn("failed to print array data");
1259 return (1);
1260 }
1261 }
1262
1263 if (sou) {
1264 for (d = pa.pa_depth - 1; d >= 0; d--)
1265 print_close_sou(&pa, d);
1266
1267 if (limit < r.mta_nelems) {
1268 mdb_printf("%*s... ]",
1269 (pap->pa_depth + pap->pa_nest) * pap->pa_tab, "");
1270 } else {
1271 mdb_printf("%*s]",
1272 (pap->pa_depth + pap->pa_nest) * pap->pa_tab, "");
1273 }
1274 }
1275
1276 /* copy the hole array info, since it may have been grown */
1277 pap->pa_holes = pa.pa_holes;
1278 pap->pa_nholes = pa.pa_nholes;
1279
1280 return (0);
1281 }
1282
1283 /*
1284 * Print out a struct or union header. We need only print the open brace
1285 * because mdb_ctf_type_visit() itself will automatically recurse through
1286 * all members of the given struct or union.
1287 */
1288 /*ARGSUSED*/
1289 static int
1290 print_sou(const char *type, const char *name, mdb_ctf_id_t id,
1291 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1292 {
1293 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1294
1295 /*
1296 * We have pretty-printing for some structures where displaying
1297 * structure contents has no value.
1298 */
1299 if (pap->pa_flags & PA_SHOWVAL) {
1300 if (strcmp(type, "in6_addr_t") == 0 ||
1301 strcmp(type, "struct in6_addr") == 0) {
1302 in6_addr_t in6addr;
1303
1304 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &in6addr,
1305 sizeof (in6addr), addr) != sizeof (in6addr)) {
1306 mdb_warn("failed to read %s pointer at %llx",
1307 name, addr);
1308 return (1);
1309 }
1310 mdb_printf("%N", &in6addr);
1311 /*
1312 * Don't print anything further down in the
1313 * structure.
1314 */
1315 pap->pa_nooutdepth = pap->pa_depth;
1316 return (0);
1317 }
1318 if (strcmp(type, "struct in_addr") == 0) {
1319 in_addr_t inaddr;
1320
1321 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &inaddr,
1322 sizeof (inaddr), addr) != sizeof (inaddr)) {
1323 mdb_warn("failed to read %s pointer at %llx",
1324 name, addr);
1325 return (1);
1326 }
1327 mdb_printf("%I", inaddr);
1328 pap->pa_nooutdepth = pap->pa_depth;
1329 return (0);
1330 }
1331 }
1332
1333 if (pap->pa_depth == pap->pa_maxdepth)
1334 mdb_printf("{ ... }");
1335 else
1336 mdb_printf("{");
1337 pap->pa_delim = "\n";
1338 return (0);
1339 }
1340
1341 /*
1342 * Print an enum value. We attempt to convert the value to the corresponding
1343 * enum name and print that if possible.
1344 */
1345 /*ARGSUSED*/
1346 static int
1347 print_enum(const char *type, const char *name, mdb_ctf_id_t id,
1348 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1349 {
1350 mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1351 const char *ename;
1352 int value;
1353 int isp2 = enum_is_p2(base);
1354 int flags = pap->pa_flags | (isp2 ? PA_INTHEX : 0);
1355
1356 if (!(flags & PA_SHOWVAL))
1357 return (0);
1358
1359 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as,
1360 &value, sizeof (value), addr) != sizeof (value)) {
1361 mdb_warn("failed to read %s integer at %llx", name, addr);
1362 return (1);
1363 }
1364
1365 if (flags & PA_INTHEX)
1366 mdb_printf("%#x", value);
1367 else
1368 mdb_printf("%#d", value);
1369
1370 (void) mdb_inc_indent(8);
1371 mdb_printf(" (");
1372
1373 if (!isp2 || enum_value_print_p2(base, value, 0) != 0) {
1374 ename = mdb_ctf_enum_name(base, value);
1375 if (ename == NULL) {
1376 ename = "???";
1377 }
1378 mdb_printf("%s", ename);
1379 }
1380 mdb_printf(")");
1381 (void) mdb_dec_indent(8);
1382
1383 return (0);
1384 }
1385
1386 /*
1387 * This will only get called if the structure isn't found in any available CTF
1388 * data.
1389 */
1390 /*ARGSUSED*/
1391 static int
1392 print_tag(const char *type, const char *name, mdb_ctf_id_t id,
1393 mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1394 {
1395 char basename[MDB_SYM_NAMLEN];
1396
1397 if (pap->pa_flags & PA_SHOWVAL)
1398 mdb_printf("; ");
1399
1400 if (mdb_ctf_type_name(base, basename, sizeof (basename)) != NULL)
1401 mdb_printf("<forward declaration of %s>", basename);
1402 else
1403 mdb_printf("<forward declaration of unknown type>");
1404
1405 return (0);
1406 }
1407
1408 static void
1409 print_hole(printarg_t *pap, int depth, ulong_t off, ulong_t endoff)
1410 {
1411 ulong_t bits = endoff - off;
1412 ulong_t size = bits / NBBY;
1413 ctf_encoding_t e;
1414
1415 static const char *const name = "<<HOLE>>";
1416 char type[MDB_SYM_NAMLEN];
1417
1418 int bitfield =
1419 (off % NBBY != 0 ||
1420 bits % NBBY != 0 ||
1421 size > 8 ||
1422 (size & (size - 1)) != 0);
1423
1424 ASSERT(off < endoff);
1425
1426 if (bits > NBBY * sizeof (uint64_t)) {
1427 ulong_t end;
1428
1429 /*
1430 * The hole is larger than the largest integer type. To
1431 * handle this, we split up the hole at 8-byte-aligned
1432 * boundaries, recursing to print each subsection. For
1433 * normal C structures, we'll loop at most twice.
1434 */
1435 for (; off < endoff; off = end) {
1436 end = P2END(off, NBBY * sizeof (uint64_t));
1437 if (end > endoff)
1438 end = endoff;
1439
1440 ASSERT((end - off) <= NBBY * sizeof (uint64_t));
1441 print_hole(pap, depth, off, end);
1442 }
1443 ASSERT(end == endoff);
1444
1445 return;
1446 }
1447
1448 if (bitfield)
1449 (void) mdb_snprintf(type, sizeof (type), "unsigned");
1450 else
1451 (void) mdb_snprintf(type, sizeof (type), "uint%d_t", bits);
1452
1453 if (pap->pa_flags & (PA_SHOWTYPE | PA_SHOWNAME | PA_SHOWADDR))
1454 mdb_printf("%*s", (depth + pap->pa_nest) * pap->pa_tab, "");
1455
1456 if (pap->pa_flags & PA_SHOWADDR) {
1457 if (off % NBBY == 0)
1458 mdb_printf("%llx ", pap->pa_addr + off / NBBY);
1459 else
1460 mdb_printf("%llx.%lx ",
1461 pap->pa_addr + off / NBBY, off % NBBY);
1462 }
1463
1464 if (pap->pa_flags & PA_SHOWTYPE)
1465 mdb_printf("%s ", type);
1466
1467 if (pap->pa_flags & PA_SHOWNAME)
1468 mdb_printf("%s", name);
1469
1470 if (bitfield && (pap->pa_flags & PA_SHOWTYPE))
1471 mdb_printf(" :%d", bits);
1472
1473 mdb_printf("%s ", (pap->pa_flags & PA_SHOWVAL)? " =" : "");
1474
1475 /*
1476 * We fake up a ctf_encoding_t, and use print_int_val() to print
1477 * the value. Holes are always processed as unsigned integers.
1478 */
1479 bzero(&e, sizeof (e));
1480 e.cte_format = 0;
1481 e.cte_offset = 0;
1482 e.cte_bits = bits;
1483
1484 if (print_int_val(type, &e, off, pap) != 0)
1485 mdb_iob_discard(mdb.m_out);
1486 else
1487 mdb_iob_puts(mdb.m_out, pap->pa_delim);
1488 }
1489
1490 /*
1491 * The print_close_sou() function is called for each structure or union
1492 * which has been completed. For structures, we detect and print any holes
1493 * before printing the closing brace.
1494 */
1495 static void
1496 print_close_sou(printarg_t *pap, int newdepth)
1497 {
1498 int d = newdepth + pap->pa_nest;
1499
1500 if ((pap->pa_flags & PA_SHOWHOLES) && !pap->pa_holes[d].hi_isunion) {
1501 ulong_t end = pap->pa_holes[d + 1].hi_offset;
1502 ulong_t expected = pap->pa_holes[d].hi_offset;
1503
1504 if (end < expected)
1505 print_hole(pap, newdepth + 1, end, expected);
1506 }
1507 /* if the struct is an array element, print a comma after the } */
1508 mdb_printf("%*s}%s\n", d * pap->pa_tab, "",
1509 (newdepth == 0 && pap->pa_nest > 0)? "," : "");
1510 }
1511
1512 static printarg_f *const printfuncs[] = {
1513 print_int, /* CTF_K_INTEGER */
1514 print_float, /* CTF_K_FLOAT */
1515 print_ptr, /* CTF_K_POINTER */
1516 print_array, /* CTF_K_ARRAY */
1517 print_ptr, /* CTF_K_FUNCTION */
1518 print_sou, /* CTF_K_STRUCT */
1519 print_sou, /* CTF_K_UNION */
1520 print_enum, /* CTF_K_ENUM */
1521 print_tag /* CTF_K_FORWARD */
1522 };
1523
1524 /*
1525 * The elt_print function is used as the mdb_ctf_type_visit callback. For
1526 * each element, we print an appropriate name prefix and then call the
1527 * print subroutine for this type class in the array above.
1528 */
1529 static int
1530 elt_print(const char *name, mdb_ctf_id_t id, mdb_ctf_id_t base,
1531 ulong_t off, int depth, void *data)
1532 {
1533 char type[MDB_SYM_NAMLEN + sizeof (" <<12345678...>>")];
1534 int kind, rc, d;
1535 printarg_t *pap = data;
1536
1537 for (d = pap->pa_depth - 1; d >= depth; d--) {
1538 if (d < pap->pa_nooutdepth)
1539 print_close_sou(pap, d);
1540 }
1541
1542 /*
1543 * Reset pa_nooutdepth if we've come back out of the structure we
1544 * didn't want to print.
1545 */
1546 if (depth <= pap->pa_nooutdepth)
1547 pap->pa_nooutdepth = (uint_t)-1;
1548
1549 if (depth > pap->pa_maxdepth || depth > pap->pa_nooutdepth)
1550 return (0);
1551
1552 if (!mdb_ctf_type_valid(base) ||
1553 (kind = mdb_ctf_type_kind(base)) == -1)
1554 return (-1); /* errno is set for us */
1555
1556 if (mdb_ctf_type_name(id, type, MDB_SYM_NAMLEN) == NULL)
1557 (void) strcpy(type, "(?)");
1558
1559 if (pap->pa_flags & PA_SHOWBASETYPE) {
1560 /*
1561 * If basetype is different and informative, concatenate
1562 * <<basetype>> (or <<baset...>> if it doesn't fit)
1563 *
1564 * We just use the end of the buffer to store the type name, and
1565 * only connect it up if that's necessary.
1566 */
1567
1568 char *type_end = type + strlen(type);
1569 char *basetype;
1570 size_t sz;
1571
1572 (void) strlcat(type, " <<", sizeof (type));
1573
1574 basetype = type + strlen(type);
1575 sz = sizeof (type) - (basetype - type);
1576
1577 *type_end = '\0'; /* restore the end of type for strcmp() */
1578
1579 if (mdb_ctf_type_name(base, basetype, sz) != NULL &&
1580 strcmp(basetype, type) != 0 &&
1581 strcmp(basetype, "struct ") != 0 &&
1582 strcmp(basetype, "enum ") != 0 &&
1583 strcmp(basetype, "union ") != 0) {
1584 type_end[0] = ' '; /* reconnect */
1585 if (strlcat(type, ">>", sizeof (type)) >= sizeof (type))
1586 (void) strlcpy(
1587 type + sizeof (type) - 6, "...>>", 6);
1588 }
1589 }
1590
1591 if (pap->pa_flags & PA_SHOWHOLES) {
1592 ctf_encoding_t e;
1593 ssize_t nsize;
1594 ulong_t newoff;
1595 holeinfo_t *hole;
1596 int extra = IS_COMPOSITE(kind)? 1 : 0;
1597
1598 /*
1599 * grow the hole array, if necessary
1600 */
1601 if (pap->pa_nest + depth + extra >= pap->pa_nholes) {
1602 int new = MAX(MAX(8, pap->pa_nholes * 2),
1603 pap->pa_nest + depth + extra + 1);
1604
1605 holeinfo_t *nhi = mdb_zalloc(
1606 sizeof (*nhi) * new, UM_NOSLEEP | UM_GC);
1607
1608 bcopy(pap->pa_holes, nhi,
1609 pap->pa_nholes * sizeof (*nhi));
1610
1611 pap->pa_holes = nhi;
1612 pap->pa_nholes = new;
1613 }
1614
1615 hole = &pap->pa_holes[depth + pap->pa_nest];
1616
1617 if (depth != 0 && off > hole->hi_offset)
1618 print_hole(pap, depth, hole->hi_offset, off);
1619
1620 /* compute the next expected offset */
1621 if (kind == CTF_K_INTEGER &&
1622 mdb_ctf_type_encoding(base, &e) == 0)
1623 newoff = off + e.cte_bits;
1624 else if ((nsize = mdb_ctf_type_size(base)) >= 0)
1625 newoff = off + nsize * NBBY;
1626 else {
1627 /* something bad happened, disable hole checking */
1628 newoff = -1UL; /* ULONG_MAX */
1629 }
1630
1631 hole->hi_offset = newoff;
1632
1633 if (IS_COMPOSITE(kind)) {
1634 hole->hi_isunion = (kind == CTF_K_UNION);
1635 hole++;
1636 hole->hi_offset = off;
1637 }
1638 }
1639
1640 if (pap->pa_flags & (PA_SHOWTYPE | PA_SHOWNAME | PA_SHOWADDR))
1641 mdb_printf("%*s", (depth + pap->pa_nest) * pap->pa_tab, "");
1642
1643 if (pap->pa_flags & PA_SHOWADDR) {
1644 if (off % NBBY == 0)
1645 mdb_printf("%llx ", pap->pa_addr + off / NBBY);
1646 else
1647 mdb_printf("%llx.%lx ",
1648 pap->pa_addr + off / NBBY, off % NBBY);
1649 }
1650
1651 if ((pap->pa_flags & PA_SHOWTYPE)) {
1652 mdb_printf("%s", type);
1653 /*
1654 * We want to avoid printing a trailing space when
1655 * dealing with pointers in a structure, so we end
1656 * up with:
1657 *
1658 * label_t *t_onfault = 0
1659 *
1660 * If depth is zero, always print the trailing space unless
1661 * we also have a prefix.
1662 */
1663 if (type[strlen(type) - 1] != '*' ||
1664 (depth == 0 && (!(pap->pa_flags & PA_SHOWNAME) ||
1665 pap->pa_prefix == NULL)))
1666 mdb_printf(" ");
1667 }
1668
1669 if (pap->pa_flags & PA_SHOWNAME) {
1670 if (pap->pa_prefix != NULL && depth <= 1)
1671 mdb_printf("%s%s", pap->pa_prefix,
1672 (depth == 0) ? "" : pap->pa_suffix);
1673 mdb_printf("%s", name);
1674 }
1675
1676 if ((pap->pa_flags & PA_SHOWTYPE) && kind == CTF_K_INTEGER) {
1677 ctf_encoding_t e;
1678
1679 if (mdb_ctf_type_encoding(base, &e) == 0) {
1680 ulong_t bits = e.cte_bits;
1681 ulong_t size = bits / NBBY;
1682
1683 if (bits % NBBY != 0 ||
1684 off % NBBY != 0 ||
1685 size > 8 ||
1686 size != mdb_ctf_type_size(base))
1687 mdb_printf(" :%d", bits);
1688 }
1689 }
1690
1691 if (depth != 0 ||
1692 ((pap->pa_flags & PA_SHOWNAME) && pap->pa_prefix != NULL))
1693 mdb_printf("%s ", pap->pa_flags & PA_SHOWVAL ? " =" : "");
1694
1695 if (depth == 0 && pap->pa_prefix != NULL)
1696 name = pap->pa_prefix;
1697
1698 pap->pa_depth = depth;
1699 if (kind <= CTF_K_UNKNOWN || kind >= CTF_K_TYPEDEF) {
1700 mdb_warn("unknown ctf for %s type %s kind %d\n",
1701 name, type, kind);
1702 return (-1);
1703 }
1704 rc = printfuncs[kind - 1](type, name, id, base, off, pap);
1705
1706 if (rc != 0)
1707 mdb_iob_discard(mdb.m_out);
1708 else
1709 mdb_iob_puts(mdb.m_out, pap->pa_delim);
1710
1711 return (rc);
1712 }
1713
1714 /*
1715 * Special semantics for pipelines.
1716 */
1717 static int
1718 pipe_print(mdb_ctf_id_t id, ulong_t off, void *data)
1719 {
1720 printarg_t *pap = data;
1721 ssize_t size;
1722 static const char *const fsp[] = { "%#r", "%#r", "%#r", "%#llr" };
1723 uintptr_t value;
1724 uintptr_t addr = pap->pa_addr + off / NBBY;
1725 mdb_ctf_id_t base;
1726 ctf_encoding_t e;
1727
1728 union {
1729 uint64_t i8;
1730 uint32_t i4;
1731 uint16_t i2;
1732 uint8_t i1;
1733 } u;
1734
1735 if (mdb_ctf_type_resolve(id, &base) == -1) {
1736 mdb_warn("could not resolve type");
1737 return (-1);
1738 }
1739
1740 /*
1741 * If the user gives -a, then always print out the address of the
1742 * member.
1743 */
1744 if ((pap->pa_flags & PA_SHOWADDR)) {
1745 mdb_printf("%#lr\n", addr);
1746 return (0);
1747 }
1748
1749 again:
1750 switch (mdb_ctf_type_kind(base)) {
1751 case CTF_K_POINTER:
1752 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as,
1753 &value, sizeof (value), addr) != sizeof (value)) {
1754 mdb_warn("failed to read pointer at %p", addr);
1755 return (-1);
1756 }
1757 mdb_printf("%#lr\n", value);
1758 break;
1759
1760 case CTF_K_INTEGER:
1761 case CTF_K_ENUM:
1762 if (mdb_ctf_type_encoding(base, &e) != 0) {
1763 mdb_printf("could not get type encoding\n");
1764 return (-1);
1765 }
1766
1767 /*
1768 * For immediate values, we just print out the value.
1769 */
1770 size = e.cte_bits / NBBY;
1771 if (size > 8 || (e.cte_bits % NBBY) != 0 ||
1772 (size & (size - 1)) != 0) {
1773 return (print_bitfield(off, pap, &e));
1774 }
1775
1776 if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.i8, size,
1777 addr) != size) {
1778 mdb_warn("failed to read %lu bytes at %p",
1779 (ulong_t)size, pap->pa_addr);
1780 return (-1);
1781 }
1782
1783 switch (size) {
1784 case sizeof (uint8_t):
1785 mdb_printf(fsp[0], u.i1);
1786 break;
1787 case sizeof (uint16_t):
1788 mdb_printf(fsp[1], u.i2);
1789 break;
1790 case sizeof (uint32_t):
1791 mdb_printf(fsp[2], u.i4);
1792 break;
1793 case sizeof (uint64_t):
1794 mdb_printf(fsp[3], u.i8);
1795 break;
1796 }
1797 mdb_printf("\n");
1798 break;
1799
1800 case CTF_K_FUNCTION:
1801 case CTF_K_FLOAT:
1802 case CTF_K_ARRAY:
1803 case CTF_K_UNKNOWN:
1804 case CTF_K_STRUCT:
1805 case CTF_K_UNION:
1806 case CTF_K_FORWARD:
1807 /*
1808 * For these types, always print the address of the member
1809 */
1810 mdb_printf("%#lr\n", addr);
1811 break;
1812
1813 default:
1814 mdb_warn("unknown type %d", mdb_ctf_type_kind(base));
1815 break;
1816 }
1817
1818 return (0);
1819 }
1820
1821 static int
1822 parse_delimiter(char **strp)
1823 {
1824 switch (**strp) {
1825 case '\0':
1826 return (MEMBER_DELIM_DONE);
1827
1828 case '.':
1829 *strp = *strp + 1;
1830 return (MEMBER_DELIM_DOT);
1831
1832 case '[':
1833 *strp = *strp + 1;
1834 return (MEMBER_DELIM_LBR);
1835
1836 case '-':
1837 *strp = *strp + 1;
1838 if (**strp == '>') {
1839 *strp = *strp + 1;
1840 return (MEMBER_DELIM_PTR);
1841 }
1842 *strp = *strp - 1;
1843 /*FALLTHROUGH*/
1844 default:
1845 return (MEMBER_DELIM_ERR);
1846 }
1847 }
1848
1849 static int
1850 deref(printarg_t *pap, size_t size)
1851 {
1852 uint32_t a32;
1853 mdb_tgt_as_t as = pap->pa_as;
1854 mdb_tgt_addr_t *ap = &pap->pa_addr;
1855
1856 if (size == sizeof (mdb_tgt_addr_t)) {
1857 if (mdb_tgt_aread(mdb.m_target, as, ap, size, *ap) == -1) {
1858 mdb_warn("could not dereference pointer %llx\n", *ap);
1859 return (-1);
1860 }
1861 } else {
1862 if (mdb_tgt_aread(mdb.m_target, as, &a32, size, *ap) == -1) {
1863 mdb_warn("could not dereference pointer %x\n", *ap);
1864 return (-1);
1865 }
1866
1867 *ap = (mdb_tgt_addr_t)a32;
1868 }
1869
1870 /*
1871 * We've dereferenced at least once, we must be on the real
1872 * target. If we were in the immediate target, reset to the real
1873 * target; it's reset as needed when we return to the print
1874 * routines.
1875 */
1876 if (pap->pa_tgt == pap->pa_immtgt)
1877 pap->pa_tgt = pap->pa_realtgt;
1878
1879 return (0);
1880 }
1881
1882 static int
1883 parse_member(printarg_t *pap, const char *str, mdb_ctf_id_t id,
1884 mdb_ctf_id_t *idp, ulong_t *offp, int *last_deref)
1885 {
1886 int delim;
1887 char member[64];
1888 char buf[128];
1889 uint_t index;
1890 char *start = (char *)str;
1891 char *end;
1892 ulong_t off = 0;
1893 mdb_ctf_arinfo_t ar;
1894 mdb_ctf_id_t rid;
1895 int kind;
1896 ssize_t size;
1897 int non_array = FALSE;
1898
1899 /*
1900 * id always has the unresolved type for printing error messages
1901 * that include the type; rid always has the resolved type for
1902 * use in mdb_ctf_* calls. It is possible for this command to fail,
1903 * however, if the resolved type is in the parent and it is currently
1904 * unavailable. Note that we also can't print out the name of the
1905 * type, since that would also rely on looking up the resolved name.
1906 */
1907 if (mdb_ctf_type_resolve(id, &rid) != 0) {
1908 mdb_warn("failed to resolve type");
1909 return (-1);
1910 }
1911
1912 delim = parse_delimiter(&start);
1913 /*
1914 * If the user fails to specify an initial delimiter, guess -> for
1915 * pointer types and . for non-pointer types.
1916 */
1917 if (delim == MEMBER_DELIM_ERR)
1918 delim = (mdb_ctf_type_kind(rid) == CTF_K_POINTER) ?
1919 MEMBER_DELIM_PTR : MEMBER_DELIM_DOT;
1920
1921 *last_deref = FALSE;
1922
1923 while (delim != MEMBER_DELIM_DONE) {
1924 switch (delim) {
1925 case MEMBER_DELIM_PTR:
1926 kind = mdb_ctf_type_kind(rid);
1927 if (kind != CTF_K_POINTER) {
1928 mdb_warn("%s is not a pointer type\n",
1929 mdb_ctf_type_name(id, buf, sizeof (buf)));
1930 return (-1);
1931 }
1932
1933 size = mdb_ctf_type_size(id);
1934 if (deref(pap, size) != 0)
1935 return (-1);
1936
1937 (void) mdb_ctf_type_reference(rid, &id);
1938 (void) mdb_ctf_type_resolve(id, &rid);
1939
1940 off = 0;
1941 break;
1942
1943 case MEMBER_DELIM_DOT:
1944 kind = mdb_ctf_type_kind(rid);
1945 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) {
1946 mdb_warn("%s is not a struct or union type\n",
1947 mdb_ctf_type_name(id, buf, sizeof (buf)));
1948 return (-1);
1949 }
1950 break;
1951
1952 case MEMBER_DELIM_LBR:
1953 end = strchr(start, ']');
1954 if (end == NULL) {
1955 mdb_warn("no trailing ']'\n");
1956 return (-1);
1957 }
1958
1959 (void) mdb_snprintf(member, end - start + 1, "%s",
1960 start);
1961
1962 index = mdb_strtoull(member);
1963
1964 switch (mdb_ctf_type_kind(rid)) {
1965 case CTF_K_POINTER:
1966 size = mdb_ctf_type_size(rid);
1967
1968 if (deref(pap, size) != 0)
1969 return (-1);
1970
1971 (void) mdb_ctf_type_reference(rid, &id);
1972 (void) mdb_ctf_type_resolve(id, &rid);
1973
1974 size = mdb_ctf_type_size(id);
1975 if (size <= 0) {
1976 mdb_warn("cannot dereference void "
1977 "type\n");
1978 return (-1);
1979 }
1980
1981 pap->pa_addr += index * size;
1982 off = 0;
1983
1984 if (index == 0 && non_array)
1985 *last_deref = TRUE;
1986 break;
1987
1988 case CTF_K_ARRAY:
1989 (void) mdb_ctf_array_info(rid, &ar);
1990
1991 if (index >= ar.mta_nelems) {
1992 mdb_warn("index %r is outside of "
1993 "array bounds [0 .. %r]\n",
1994 index, ar.mta_nelems - 1);
1995 }
1996
1997 id = ar.mta_contents;
1998 (void) mdb_ctf_type_resolve(id, &rid);
1999
2000 size = mdb_ctf_type_size(id);
2001 if (size <= 0) {
2002 mdb_warn("cannot dereference void "
2003 "type\n");
2004 return (-1);
2005 }
2006
2007 pap->pa_addr += index * size;
2008 off = 0;
2009 break;
2010
2011 default:
2012 mdb_warn("cannot index into non-array, "
2013 "non-pointer type\n");
2014 return (-1);
2015 }
2016
2017 start = end + 1;
2018 delim = parse_delimiter(&start);
2019 continue;
2020
2021 case MEMBER_DELIM_ERR:
2022 default:
2023 mdb_warn("'%c' is not a valid delimiter\n", *start);
2024 return (-1);
2025 }
2026
2027 *last_deref = FALSE;
2028 non_array = TRUE;
2029
2030 /*
2031 * Find the end of the member name; assume that a member
2032 * name is at least one character long.
2033 */
2034 for (end = start + 1; isalnum(*end) || *end == '_'; end++)
2035 continue;
2036
2037 (void) mdb_snprintf(member, end - start + 1, "%s", start);
2038
2039 if (mdb_ctf_member_info(rid, member, &off, &id) != 0) {
2040 mdb_warn("failed to find member %s of %s", member,
2041 mdb_ctf_type_name(id, buf, sizeof (buf)));
2042 return (-1);
2043 }
2044 (void) mdb_ctf_type_resolve(id, &rid);
2045
2046 pap->pa_addr += off / NBBY;
2047
2048 start = end;
2049 delim = parse_delimiter(&start);
2050 }
2051
2052 *idp = id;
2053 *offp = off;
2054
2055 return (0);
2056 }
2057
2058 int
2059 cmd_print_tab(mdb_tab_cookie_t *mcp, uint_t flags, int argc,
2060 const mdb_arg_t *argv)
2061 {
2062 char tn[MDB_SYM_NAMLEN];
2063 char member[64];
2064 int i, dummy, delim, kind;
2065 int ret = 0;
2066 mdb_ctf_id_t id, rid;
2067 mdb_ctf_arinfo_t ar;
2068 char *start, *end;
2069 ulong_t dul;
2070
2071 /*
2072 * This getopts is only here to make the tab completion work better when
2073 * including options in the ::print arguments. None of the values should
2074 * be used. This should only be updated with additional arguments, if
2075 * they are added to cmd_print.
2076 */
2077 i = mdb_getopts(argc, argv,
2078 'a', MDB_OPT_SETBITS, PA_SHOWADDR, &dummy,
2079 'C', MDB_OPT_SETBITS, TRUE, &dummy,
2080 'c', MDB_OPT_UINTPTR, &dummy,
2081 'd', MDB_OPT_SETBITS, PA_INTDEC, &dummy,
2082 'h', MDB_OPT_SETBITS, PA_SHOWHOLES, &dummy,
2083 'i', MDB_OPT_SETBITS, TRUE, &dummy,
2084 'L', MDB_OPT_SETBITS, TRUE, &dummy,
2085 'l', MDB_OPT_UINTPTR, &dummy,
2086 'n', MDB_OPT_SETBITS, PA_NOSYMBOLIC, &dummy,
2087 'p', MDB_OPT_SETBITS, TRUE, &dummy,
2088 's', MDB_OPT_UINTPTR, &dummy,
2089 'T', MDB_OPT_SETBITS, PA_SHOWTYPE | PA_SHOWBASETYPE, &dummy,
2090 't', MDB_OPT_SETBITS, PA_SHOWTYPE, &dummy,
2091 'x', MDB_OPT_SETBITS, PA_INTHEX, &dummy,
2092 NULL);
2093
2094 argc -= i;
2095 argv += i;
2096
2097 if (argc == 0 && !(flags & DCMD_TAB_SPACE))
2098 return (0);
2099
2100 if (argc == 0 && (flags & DCMD_TAB_SPACE))
2101 return (mdb_tab_complete_type(mcp, NULL, MDB_TABC_NOPOINT |
2102 MDB_TABC_NOARRAY));
2103
2104 if ((ret = mdb_tab_typename(&argc, &argv, tn, sizeof (tn))) < 0)
2105 return (ret);
2106
2107 if (argc == 1 && (!(flags & DCMD_TAB_SPACE) || ret == 1))
2108 return (mdb_tab_complete_type(mcp, tn, MDB_TABC_NOPOINT |
2109 MDB_TABC_NOARRAY));
2110
2111 if (argc == 1 && (flags & DCMD_TAB_SPACE))
2112 return (mdb_tab_complete_member(mcp, tn, NULL));
2113
2114 /*
2115 * This is the reason that tab completion was created. We're going to go
2116 * along and walk the delimiters until we find something a member that
2117 * we don't recognize, at which point we'll try and tab complete it.
2118 * Note that ::print takes multiple args, so this is going to operate on
2119 * whatever the last arg that we have is.
2120 */
2121 if (mdb_ctf_lookup_by_name(tn, &id) != 0)
2122 return (1);
2123
2124 (void) mdb_ctf_type_resolve(id, &rid);
2125 start = (char *)argv[argc-1].a_un.a_str;
2126 delim = parse_delimiter(&start);
2127
2128 /*
2129 * If we hit the case where we actually have no delimiters, than we need
2130 * to make sure that we properly set up the fields the loops would.
2131 */
2132 if (delim == MEMBER_DELIM_DONE)
2133 (void) mdb_snprintf(member, sizeof (member), "%s", start);
2134
2135 while (delim != MEMBER_DELIM_DONE) {
2136 switch (delim) {
2137 case MEMBER_DELIM_PTR:
2138 kind = mdb_ctf_type_kind(rid);
2139 if (kind != CTF_K_POINTER)
2140 return (1);
2141
2142 (void) mdb_ctf_type_reference(rid, &id);
2143 (void) mdb_ctf_type_resolve(id, &rid);
2144 break;
2145 case MEMBER_DELIM_DOT:
2146 kind = mdb_ctf_type_kind(rid);
2147 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
2148 return (1);
2149 break;
2150 case MEMBER_DELIM_LBR:
2151 end = strchr(start, ']');
2152 /*
2153 * We're not going to try and tab complete the indexes
2154 * here. So for now, punt on it. Also, we're not going
2155 * to try and validate you're within the bounds, just
2156 * that you get the type you asked for.
2157 */
2158 if (end == NULL)
2159 return (1);
2160
2161 switch (mdb_ctf_type_kind(rid)) {
2162 case CTF_K_POINTER:
2163 (void) mdb_ctf_type_reference(rid, &id);
2164 (void) mdb_ctf_type_resolve(id, &rid);
2165 break;
2166 case CTF_K_ARRAY:
2167 (void) mdb_ctf_array_info(rid, &ar);
2168 id = ar.mta_contents;
2169 (void) mdb_ctf_type_resolve(id, &rid);
2170 break;
2171 default:
2172 return (1);
2173 }
2174
2175 start = end + 1;
2176 delim = parse_delimiter(&start);
2177 break;
2178 case MEMBER_DELIM_ERR:
2179 default:
2180 break;
2181 }
2182
2183 for (end = start + 1; isalnum(*end) || *end == '_'; end++)
2184 continue;
2185
2186 (void) mdb_snprintf(member, end - start + 1, start);
2187
2188 /*
2189 * We are going to try to resolve this name as a member. There
2190 * are a few two different questions that we need to answer. The
2191 * first is do we recognize this member. The second is are we at
2192 * the end of the string. If we encounter a member that we don't
2193 * recognize before the end, then we have to error out and can't
2194 * complete it. But if there are no more delimiters then we can
2195 * try and complete it.
2196 */
2197 ret = mdb_ctf_member_info(rid, member, &dul, &id);
2198 start = end;
2199 delim = parse_delimiter(&start);
2200 if (ret != 0 && errno == EMDB_CTFNOMEMB) {
2201 if (delim != MEMBER_DELIM_DONE)
2202 return (1);
2203 continue;
2204 } else if (ret != 0)
2205 return (1);
2206
2207 if (delim == MEMBER_DELIM_DONE)
2208 return (mdb_tab_complete_member_by_id(mcp, rid,
2209 member));
2210
2211 (void) mdb_ctf_type_resolve(id, &rid);
2212 }
2213
2214 /*
2215 * If we've reached here, then we need to try and tab complete the last
2216 * field, which is currently member, based on the ctf type id that we
2217 * already have in rid.
2218 */
2219 return (mdb_tab_complete_member_by_id(mcp, rid, member));
2220 }
2221
2222 /*
2223 * Recursively descend a print a given data structure. We create a struct of
2224 * the relevant print arguments and then call mdb_ctf_type_visit() to do the
2225 * traversal, using elt_print() as the callback for each element.
2226 */
2227 /*ARGSUSED*/
2228 int
2229 cmd_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2230 {
2231 uintptr_t opt_c = MDB_ARR_NOLIMIT, opt_l = MDB_ARR_NOLIMIT;
2232 uint_t opt_C = FALSE, opt_L = FALSE, opt_p = FALSE, opt_i = FALSE;
2233 uintptr_t opt_s = (uintptr_t)-1ul;
2234 int uflags = (flags & DCMD_ADDRSPEC) ? PA_SHOWVAL : 0;
2235 mdb_ctf_id_t id;
2236 int err = DCMD_OK;
2237
2238 mdb_tgt_t *t = mdb.m_target;
2239 printarg_t pa;
2240 int d, i;
2241
2242 char s_name[MDB_SYM_NAMLEN];
2243 mdb_syminfo_t s_info;
2244 GElf_Sym sym;
2245
2246 /*
2247 * If a new option is added, make sure the getopts above in
2248 * cmd_print_tab is also updated.
2249 */
2250 i = mdb_getopts(argc, argv,
2251 'a', MDB_OPT_SETBITS, PA_SHOWADDR, &uflags,
2252 'C', MDB_OPT_SETBITS, TRUE, &opt_C,
2253 'c', MDB_OPT_UINTPTR, &opt_c,
2254 'd', MDB_OPT_SETBITS, PA_INTDEC, &uflags,
2255 'h', MDB_OPT_SETBITS, PA_SHOWHOLES, &uflags,
2256 'i', MDB_OPT_SETBITS, TRUE, &opt_i,
2257 'L', MDB_OPT_SETBITS, TRUE, &opt_L,
2258 'l', MDB_OPT_UINTPTR, &opt_l,
2259 'n', MDB_OPT_SETBITS, PA_NOSYMBOLIC, &uflags,
2260 'p', MDB_OPT_SETBITS, TRUE, &opt_p,
2261 's', MDB_OPT_UINTPTR, &opt_s,
2262 'T', MDB_OPT_SETBITS, PA_SHOWTYPE | PA_SHOWBASETYPE, &uflags,
2263 't', MDB_OPT_SETBITS, PA_SHOWTYPE, &uflags,
2264 'x', MDB_OPT_SETBITS, PA_INTHEX, &uflags,
2265 NULL);
2266
2267 if (uflags & PA_INTHEX)
2268 uflags &= ~PA_INTDEC; /* -x and -d are mutually exclusive */
2269
2270 uflags |= PA_SHOWNAME;
2271
2272 if (opt_p && opt_i) {
2273 mdb_warn("-p and -i options are incompatible\n");
2274 return (DCMD_ERR);
2275 }
2276
2277 argc -= i;
2278 argv += i;
2279
2280 if (argc != 0 && argv->a_type == MDB_TYPE_STRING) {
2281 const char *t_name = s_name;
2282 int ret;
2283
2284 if (strchr("+-", argv->a_un.a_str[0]) != NULL)
2285 return (DCMD_USAGE);
2286
2287 if ((ret = args_to_typename(&argc, &argv, s_name,
2288 sizeof (s_name))) != 0)
2289 return (ret);
2290
2291 if (mdb_ctf_lookup_by_name(t_name, &id) != 0) {
2292 if (!(flags & DCMD_ADDRSPEC) || opt_i ||
2293 addr_to_sym(t, addr, s_name, sizeof (s_name),
2294 &sym, &s_info) == NULL ||
2295 mdb_ctf_lookup_by_symbol(&sym, &s_info, &id) != 0) {
2296
2297 mdb_warn("failed to look up type %s", t_name);
2298 return (DCMD_ABORT);
2299 }
2300 } else {
2301 argc--;
2302 argv++;
2303 }
2304
2305 } else if (!(flags & DCMD_ADDRSPEC) || opt_i) {
2306 return (DCMD_USAGE);
2307
2308 } else if (addr_to_sym(t, addr, s_name, sizeof (s_name),
2309 &sym, &s_info) == NULL) {
2310 mdb_warn("no symbol information for %a", addr);
2311 return (DCMD_ERR);
2312
2313 } else if (mdb_ctf_lookup_by_symbol(&sym, &s_info, &id) != 0) {
2314 mdb_warn("no type data available for %a [%u]", addr,
2315 s_info.sym_id);
2316 return (DCMD_ERR);
2317 }
2318
2319 pa.pa_tgt = mdb.m_target;
2320 pa.pa_realtgt = pa.pa_tgt;
2321 pa.pa_immtgt = NULL;
2322 pa.pa_as = opt_p ? MDB_TGT_AS_PHYS : MDB_TGT_AS_VIRT;
2323 pa.pa_armemlim = mdb.m_armemlim;
2324 pa.pa_arstrlim = mdb.m_arstrlim;
2325 pa.pa_delim = "\n";
2326 pa.pa_flags = uflags;
2327 pa.pa_nest = 0;
2328 pa.pa_tab = 4;
2329 pa.pa_prefix = NULL;
2330 pa.pa_suffix = NULL;
2331 pa.pa_holes = NULL;
2332 pa.pa_nholes = 0;
2333 pa.pa_depth = 0;
2334 pa.pa_maxdepth = opt_s;
2335 pa.pa_nooutdepth = (uint_t)-1;
2336
2337 if ((flags & DCMD_ADDRSPEC) && !opt_i)
2338 pa.pa_addr = opt_p ? mdb_get_dot() : addr;
2339 else
2340 pa.pa_addr = NULL;
2341
2342 if (opt_i) {
2343 const char *vargv[2];
2344 uintmax_t dot = mdb_get_dot();
2345 size_t outsize = mdb_ctf_type_size(id);
2346 vargv[0] = (const char *)˙
2347 vargv[1] = (const char *)&outsize;
2348 pa.pa_immtgt = mdb_tgt_create(mdb_value_tgt_create,
2349 0, 2, vargv);
2350 pa.pa_tgt = pa.pa_immtgt;
2351 }
2352
2353 if (opt_c != MDB_ARR_NOLIMIT)
2354 pa.pa_arstrlim = opt_c;
2355 if (opt_C)
2356 pa.pa_arstrlim = MDB_ARR_NOLIMIT;
2357 if (opt_l != MDB_ARR_NOLIMIT)
2358 pa.pa_armemlim = opt_l;
2359 if (opt_L)
2360 pa.pa_armemlim = MDB_ARR_NOLIMIT;
2361
2362 if (argc > 0) {
2363 for (i = 0; i < argc; i++) {
2364 mdb_ctf_id_t mid;
2365 int last_deref;
2366 ulong_t off;
2367 int kind;
2368 char buf[MDB_SYM_NAMLEN];
2369
2370 mdb_tgt_t *oldtgt = pa.pa_tgt;
2371 mdb_tgt_as_t oldas = pa.pa_as;
2372 mdb_tgt_addr_t oldaddr = pa.pa_addr;
2373
2374 if (argv->a_type == MDB_TYPE_STRING) {
2375 const char *member = argv[i].a_un.a_str;
2376 mdb_ctf_id_t rid;
2377
2378 if (parse_member(&pa, member, id, &mid,
2379 &off, &last_deref) != 0) {
2380 err = DCMD_ABORT;
2381 goto out;
2382 }
2383
2384 /*
2385 * If the member string ends with a "[0]"
2386 * (last_deref * is true) and the type is a
2387 * structure or union, * print "->" rather
2388 * than "[0]." in elt_print.
2389 */
2390 (void) mdb_ctf_type_resolve(mid, &rid);
2391 kind = mdb_ctf_type_kind(rid);
2392 if (last_deref && IS_SOU(kind)) {
2393 char *end;
2394 (void) mdb_snprintf(buf, sizeof (buf),
2395 "%s", member);
2396 end = strrchr(buf, '[');
2397 *end = '\0';
2398 pa.pa_suffix = "->";
2399 member = &buf[0];
2400 } else if (IS_SOU(kind)) {
2401 pa.pa_suffix = ".";
2402 } else {
2403 pa.pa_suffix = "";
2404 }
2405
2406 pa.pa_prefix = member;
2407 } else {
2408 ulong_t moff;
2409
2410 moff = (ulong_t)argv[i].a_un.a_val;
2411
2412 if (mdb_ctf_offset_to_name(id, moff * NBBY,
2413 buf, sizeof (buf), 0, &mid, &off) == -1) {
2414 mdb_warn("invalid offset %lx\n", moff);
2415 err = DCMD_ABORT;
2416 goto out;
2417 }
2418
2419 pa.pa_prefix = buf;
2420 pa.pa_addr += moff - off / NBBY;
2421 pa.pa_suffix = strlen(buf) == 0 ? "" : ".";
2422 }
2423
2424 off %= NBBY;
2425 if (flags & DCMD_PIPE_OUT) {
2426 if (pipe_print(mid, off, &pa) != 0) {
2427 mdb_warn("failed to print type");
2428 err = DCMD_ERR;
2429 goto out;
2430 }
2431 } else if (off != 0) {
2432 mdb_ctf_id_t base;
2433 (void) mdb_ctf_type_resolve(mid, &base);
2434
2435 if (elt_print("", mid, base, off, 0,
2436 &pa) != 0) {
2437 mdb_warn("failed to print type");
2438 err = DCMD_ERR;
2439 goto out;
2440 }
2441 } else {
2442 if (mdb_ctf_type_visit(mid, elt_print,
2443 &pa) == -1) {
2444 mdb_warn("failed to print type");
2445 err = DCMD_ERR;
2446 goto out;
2447 }
2448
2449 for (d = pa.pa_depth - 1; d >= 0; d--)
2450 print_close_sou(&pa, d);
2451 }
2452
2453 pa.pa_depth = 0;
2454 pa.pa_tgt = oldtgt;
2455 pa.pa_as = oldas;
2456 pa.pa_addr = oldaddr;
2457 pa.pa_delim = "\n";
2458 }
2459
2460 } else if (flags & DCMD_PIPE_OUT) {
2461 if (pipe_print(id, 0, &pa) != 0) {
2462 mdb_warn("failed to print type");
2463 err = DCMD_ERR;
2464 goto out;
2465 }
2466 } else {
2467 if (mdb_ctf_type_visit(id, elt_print, &pa) == -1) {
2468 mdb_warn("failed to print type");
2469 err = DCMD_ERR;
2470 goto out;
2471 }
2472
2473 for (d = pa.pa_depth - 1; d >= 0; d--)
2474 print_close_sou(&pa, d);
2475 }
2476
2477 mdb_set_dot(addr + mdb_ctf_type_size(id));
2478 err = DCMD_OK;
2479 out:
2480 if (pa.pa_immtgt)
2481 mdb_tgt_destroy(pa.pa_immtgt);
2482 return (err);
2483 }
2484
2485 void
2486 print_help(void)
2487 {
2488 mdb_printf(
2489 "-a show address of object\n"
2490 "-C unlimit the length of character arrays\n"
2491 "-c limit limit the length of character arrays\n"
2492 "-d output values in decimal\n"
2493 "-h print holes in structures\n"
2494 "-i interpret address as data of the given type\n"
2495 "-L unlimit the length of standard arrays\n"
2496 "-l limit limit the length of standard arrays\n"
2497 "-n don't print pointers as symbol offsets\n"
2498 "-p interpret address as a physical memory address\n"
2499 "-s depth limit the recursion depth\n"
2500 "-T show type and <<base type>> of object\n"
2501 "-t show type of object\n"
2502 "-x output values in hexadecimal\n"
2503 "\n"
2504 "type may be omitted if the C type of addr can be inferred.\n"
2505 "\n"
2506 "Members may be specified with standard C syntax using the\n"
2507 "array indexing operator \"[index]\", structure member\n"
2508 "operator \".\", or structure pointer operator \"->\".\n"
2509 "\n"
2510 "Offsets must use the $[ expression ] syntax\n");
2511 }
2512
2513 static int
2514 printf_signed(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt,
2515 boolean_t sign)
2516 {
2517 ssize_t size;
2518 mdb_ctf_id_t base;
2519 ctf_encoding_t e;
2520
2521 union {
2522 uint64_t ui8;
2523 uint32_t ui4;
2524 uint16_t ui2;
2525 uint8_t ui1;
2526 int64_t i8;
2527 int32_t i4;
2528 int16_t i2;
2529 int8_t i1;
2530 } u;
2531
2532 if (mdb_ctf_type_resolve(id, &base) == -1) {
2533 mdb_warn("could not resolve type");
2534 return (DCMD_ABORT);
2535 }
2536
2537 if (mdb_ctf_type_kind(base) != CTF_K_INTEGER) {
2538 mdb_warn("expected integer type\n");
2539 return (DCMD_ABORT);
2540 }
2541
2542 if (mdb_ctf_type_encoding(base, &e) != 0) {
2543 mdb_warn("could not get type encoding");
2544 return (DCMD_ABORT);
2545 }
2546
2547 if (sign)
2548 sign = e.cte_format & CTF_INT_SIGNED;
2549
2550 size = e.cte_bits / NBBY;
2551
2552 /*
2553 * Check to see if our life has been complicated by the presence of
2554 * a bitfield. If it has, we will print it using logic that is only
2555 * slightly different than that found in print_bitfield(), above. (In
2556 * particular, see the comments there for an explanation of the
2557 * endianness differences in this code.)
2558 */
2559 if (size > 8 || (e.cte_bits % NBBY) != 0 ||
2560 (size & (size - 1)) != 0) {
2561 uint64_t mask = (1ULL << e.cte_bits) - 1;
2562 uint64_t value = 0;
2563 uint8_t *buf = (uint8_t *)&value;
2564 uint8_t shift;
2565
2566 /*
2567 * Round our size up one byte.
2568 */
2569 size = (e.cte_bits + (NBBY - 1)) / NBBY;
2570
2571 if (e.cte_bits > sizeof (value) * NBBY - 1) {
2572 mdb_printf("invalid bitfield size %u", e.cte_bits);
2573 return (DCMD_ABORT);
2574 }
2575
2576 #ifdef _BIG_ENDIAN
2577 buf += sizeof (value) - size;
2578 off += e.cte_bits;
2579 #endif
2580
2581 if (mdb_vread(buf, size, addr) == -1) {
2582 mdb_warn("failed to read %lu bytes at %p", size, addr);
2583 return (DCMD_ERR);
2584 }
2585
2586 shift = off % NBBY;
2587 #ifdef _BIG_ENDIAN
2588 shift = NBBY - shift;
2589 #endif
2590
2591 /*
2592 * If we have a bit offset within the byte, shift it down.
2593 */
2594 if (off % NBBY != 0)
2595 value >>= shift;
2596 value &= mask;
2597
2598 if (sign) {
2599 int sshift = sizeof (value) * NBBY - e.cte_bits;
2600 value = ((int64_t)value << sshift) >> sshift;
2601 }
2602
2603 mdb_printf(fmt, value);
2604 return (0);
2605 }
2606
2607 if (mdb_vread(&u.i8, size, addr) == -1) {
2608 mdb_warn("failed to read %lu bytes at %p", (ulong_t)size, addr);
2609 return (DCMD_ERR);
2610 }
2611
2612 switch (size) {
2613 case sizeof (uint8_t):
2614 mdb_printf(fmt, (uint64_t)(sign ? u.i1 : u.ui1));
2615 break;
2616 case sizeof (uint16_t):
2617 mdb_printf(fmt, (uint64_t)(sign ? u.i2 : u.ui2));
2618 break;
2619 case sizeof (uint32_t):
2620 mdb_printf(fmt, (uint64_t)(sign ? u.i4 : u.ui4));
2621 break;
2622 case sizeof (uint64_t):
2623 mdb_printf(fmt, (uint64_t)(sign ? u.i8 : u.ui8));
2624 break;
2625 }
2626
2627 return (0);
2628 }
2629
2630 static int
2631 printf_int(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2632 {
2633 return (printf_signed(id, addr, off, fmt, B_TRUE));
2634 }
2635
2636 static int
2637 printf_uint(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2638 {
2639 return (printf_signed(id, addr, off, fmt, B_FALSE));
2640 }
2641
2642 /*ARGSUSED*/
2643 static int
2644 printf_uint32(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2645 {
2646 mdb_ctf_id_t base;
2647 ctf_encoding_t e;
2648 uint32_t value;
2649
2650 if (mdb_ctf_type_resolve(id, &base) == -1) {
2651 mdb_warn("could not resolve type\n");
2652 return (DCMD_ABORT);
2653 }
2654
2655 if (mdb_ctf_type_kind(base) != CTF_K_INTEGER ||
2656 mdb_ctf_type_encoding(base, &e) != 0 ||
2657 e.cte_bits / NBBY != sizeof (value)) {
2658 mdb_warn("expected 32-bit integer type\n");
2659 return (DCMD_ABORT);
2660 }
2661
2662 if (mdb_vread(&value, sizeof (value), addr) == -1) {
2663 mdb_warn("failed to read 32-bit value at %p", addr);
2664 return (DCMD_ERR);
2665 }
2666
2667 mdb_printf(fmt, value);
2668
2669 return (0);
2670 }
2671
2672 /*ARGSUSED*/
2673 static int
2674 printf_ptr(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2675 {
2676 uintptr_t value;
2677 mdb_ctf_id_t base;
2678
2679 if (mdb_ctf_type_resolve(id, &base) == -1) {
2680 mdb_warn("could not resolve type\n");
2681 return (DCMD_ABORT);
2682 }
2683
2684 if (mdb_ctf_type_kind(base) != CTF_K_POINTER) {
2685 mdb_warn("expected pointer type\n");
2686 return (DCMD_ABORT);
2687 }
2688
2689 if (mdb_vread(&value, sizeof (value), addr) == -1) {
2690 mdb_warn("failed to read pointer at %llx", addr);
2691 return (DCMD_ERR);
2692 }
2693
2694 mdb_printf(fmt, value);
2695
2696 return (0);
2697 }
2698
2699 /*ARGSUSED*/
2700 static int
2701 printf_string(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2702 {
2703 mdb_ctf_id_t base;
2704 mdb_ctf_arinfo_t r;
2705 char buf[1024];
2706 ssize_t size;
2707
2708 if (mdb_ctf_type_resolve(id, &base) == -1) {
2709 mdb_warn("could not resolve type");
2710 return (DCMD_ABORT);
2711 }
2712
2713 if (mdb_ctf_type_kind(base) == CTF_K_POINTER) {
2714 uintptr_t value;
2715
2716 if (mdb_vread(&value, sizeof (value), addr) == -1) {
2717 mdb_warn("failed to read pointer at %llx", addr);
2718 return (DCMD_ERR);
2719 }
2720
2721 if (mdb_readstr(buf, sizeof (buf) - 1, value) < 0) {
2722 mdb_warn("failed to read string at %llx", value);
2723 return (DCMD_ERR);
2724 }
2725
2726 mdb_printf(fmt, buf);
2727 return (0);
2728 }
2729
2730 if (mdb_ctf_type_kind(base) != CTF_K_ARRAY) {
2731 mdb_warn("exepected pointer or array type\n");
2732 return (DCMD_ABORT);
2733 }
2734
2735 if (mdb_ctf_array_info(base, &r) == -1 ||
2736 mdb_ctf_type_resolve(r.mta_contents, &base) == -1 ||
2737 (size = mdb_ctf_type_size(base)) == -1) {
2738 mdb_warn("can't determine array type");
2739 return (DCMD_ABORT);
2740 }
2741
2742 if (size != 1) {
2743 mdb_warn("string format specifier requires "
2744 "an array of characters\n");
2745 return (DCMD_ABORT);
2746 }
2747
2748 bzero(buf, sizeof (buf));
2749
2750 if (mdb_vread(buf, MIN(r.mta_nelems, sizeof (buf) - 1), addr) == -1) {
2751 mdb_warn("failed to read array at %p", addr);
2752 return (DCMD_ERR);
2753 }
2754
2755 mdb_printf(fmt, buf);
2756
2757 return (0);
2758 }
2759
2760 /*ARGSUSED*/
2761 static int
2762 printf_ipv6(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2763 {
2764 mdb_ctf_id_t base;
2765 mdb_ctf_id_t ipv6_type, ipv6_base;
2766 in6_addr_t ipv6;
2767
2768 if (mdb_ctf_lookup_by_name("in6_addr_t", &ipv6_type) == -1) {
2769 mdb_warn("could not resolve in6_addr_t type\n");
2770 return (DCMD_ABORT);
2771 }
2772
2773 if (mdb_ctf_type_resolve(id, &base) == -1) {
2774 mdb_warn("could not resolve type\n");
2775 return (DCMD_ABORT);
2776 }
2777
2778 if (mdb_ctf_type_resolve(ipv6_type, &ipv6_base) == -1) {
2779 mdb_warn("could not resolve in6_addr_t type\n");
2780 return (DCMD_ABORT);
2781 }
2782
2783 if (mdb_ctf_type_cmp(base, ipv6_base) != 0) {
2784 mdb_warn("requires argument of type in6_addr_t\n");
2785 return (DCMD_ABORT);
2786 }
2787
2788 if (mdb_vread(&ipv6, sizeof (ipv6), addr) == -1) {
2789 mdb_warn("couldn't read in6_addr_t at %p", addr);
2790 return (DCMD_ERR);
2791 }
2792
2793 mdb_printf(fmt, &ipv6);
2794
2795 return (0);
2796 }
2797
2798 /*
2799 * To validate the format string specified to ::printf, we run the format
2800 * string through a very simple state machine that restricts us to a subset
2801 * of mdb_printf() functionality.
2802 */
2803 enum {
2804 PRINTF_NOFMT = 1, /* no current format specifier */
2805 PRINTF_PERC, /* processed '%' */
2806 PRINTF_FMT, /* processing format specifier */
2807 PRINTF_LEFT, /* processed '-', expecting width */
2808 PRINTF_WIDTH, /* processing width */
2809 PRINTF_QUES /* processed '?', expecting format */
2810 };
2811
2812 int
2813 cmd_printf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2814 {
2815 char type[MDB_SYM_NAMLEN];
2816 int i, nfmts = 0, ret;
2817 mdb_ctf_id_t id;
2818 const char *fmt, *member;
2819 char **fmts, *last, *dest, f;
2820 int (**funcs)(mdb_ctf_id_t, uintptr_t, ulong_t, char *);
2821 int state = PRINTF_NOFMT;
2822 printarg_t pa;
2823
2824 if (!(flags & DCMD_ADDRSPEC))
2825 return (DCMD_USAGE);
2826
2827 bzero(&pa, sizeof (pa));
2828 pa.pa_as = MDB_TGT_AS_VIRT;
2829 pa.pa_realtgt = pa.pa_tgt = mdb.m_target;
2830
2831 if (argc == 0 || argv[0].a_type != MDB_TYPE_STRING) {
2832 mdb_warn("expected a format string\n");
2833 return (DCMD_USAGE);
2834 }
2835
2836 /*
2837 * Our first argument is a format string; rip it apart and run it
2838 * through our state machine to validate that our input is within the
2839 * subset of mdb_printf() format strings that we allow.
2840 */
2841 fmt = argv[0].a_un.a_str;
2842 /*
2843 * 'dest' must be large enough to hold a copy of the format string,
2844 * plus a NUL and up to 2 additional characters for each conversion
2845 * in the format string. This gives us a bloat factor of 5/2 ~= 3.
2846 * e.g. "%d" (strlen of 2) --> "%lld\0" (need 5 bytes)
2847 */
2848 dest = mdb_zalloc(strlen(fmt) * 3, UM_SLEEP | UM_GC);
2849 fmts = mdb_zalloc(strlen(fmt) * sizeof (char *), UM_SLEEP | UM_GC);
2850 funcs = mdb_zalloc(strlen(fmt) * sizeof (void *), UM_SLEEP | UM_GC);
2851 last = dest;
2852
2853 for (i = 0; fmt[i] != '\0'; i++) {
2854 *dest++ = f = fmt[i];
2855
2856 switch (state) {
2857 case PRINTF_NOFMT:
2858 state = f == '%' ? PRINTF_PERC : PRINTF_NOFMT;
2859 break;
2860
2861 case PRINTF_PERC:
2862 state = f == '-' ? PRINTF_LEFT :
2863 f >= '0' && f <= '9' ? PRINTF_WIDTH :
2864 f == '?' ? PRINTF_QUES :
2865 f == '%' ? PRINTF_NOFMT : PRINTF_FMT;
2866 break;
2867
2868 case PRINTF_LEFT:
2869 state = f >= '0' && f <= '9' ? PRINTF_WIDTH :
2870 f == '?' ? PRINTF_QUES : PRINTF_FMT;
2871 break;
2872
2873 case PRINTF_WIDTH:
2874 state = f >= '0' && f <= '9' ? PRINTF_WIDTH :
2875 PRINTF_FMT;
2876 break;
2877
2878 case PRINTF_QUES:
2879 state = PRINTF_FMT;
2880 break;
2881 }
2882
2883 if (state != PRINTF_FMT)
2884 continue;
2885
2886 dest--;
2887
2888 /*
2889 * Now check that we have one of our valid format characters.
2890 */
2891 switch (f) {
2892 case 'a':
2893 case 'A':
2894 case 'p':
2895 funcs[nfmts] = printf_ptr;
2896 break;
2897
2898 case 'd':
2899 case 'q':
2900 case 'R':
2901 funcs[nfmts] = printf_int;
2902 *dest++ = 'l';
2903 *dest++ = 'l';
2904 break;
2905
2906 case 'I':
2907 funcs[nfmts] = printf_uint32;
2908 break;
2909
2910 case 'N':
2911 funcs[nfmts] = printf_ipv6;
2912 break;
2913
2914 case 'H':
2915 case 'o':
2916 case 'r':
2917 case 'u':
2918 case 'x':
2919 case 'X':
2920 funcs[nfmts] = printf_uint;
2921 *dest++ = 'l';
2922 *dest++ = 'l';
2923 break;
2924
2925 case 's':
2926 funcs[nfmts] = printf_string;
2927 break;
2928
2929 case 'Y':
2930 funcs[nfmts] = sizeof (time_t) == sizeof (int) ?
2931 printf_uint32 : printf_uint;
2932 break;
2933
2934 default:
2935 mdb_warn("illegal format string at or near "
2936 "'%c' (position %d)\n", f, i + 1);
2937 return (DCMD_ABORT);
2938 }
2939
2940 *dest++ = f;
2941 *dest++ = '\0';
2942 fmts[nfmts++] = last;
2943 last = dest;
2944 state = PRINTF_NOFMT;
2945 }
2946
2947 argc--;
2948 argv++;
2949
2950 /*
2951 * Now we expect a type name.
2952 */
2953 if ((ret = args_to_typename(&argc, &argv, type, sizeof (type))) != 0)
2954 return (ret);
2955
2956 argv++;
2957 argc--;
2958
2959 if (mdb_ctf_lookup_by_name(type, &id) != 0) {
2960 mdb_warn("failed to look up type %s", type);
2961 return (DCMD_ABORT);
2962 }
2963
2964 if (argc == 0) {
2965 mdb_warn("at least one member must be specified\n");
2966 return (DCMD_USAGE);
2967 }
2968
2969 if (argc != nfmts) {
2970 mdb_warn("%s format specifiers (found %d, expected %d)\n",
2971 argc > nfmts ? "missing" : "extra", nfmts, argc);
2972 return (DCMD_ABORT);
2973 }
2974
2975 for (i = 0; i < argc; i++) {
2976 mdb_ctf_id_t mid;
2977 ulong_t off;
2978 int ignored;
2979
2980 if (argv[i].a_type != MDB_TYPE_STRING) {
2981 mdb_warn("expected only type member arguments\n");
2982 return (DCMD_ABORT);
2983 }
2984
2985 if (strcmp((member = argv[i].a_un.a_str), ".") == 0) {
2986 /*
2987 * We allow "." to be specified to denote the current
2988 * value of dot.
2989 */
2990 if (funcs[i] != printf_ptr && funcs[i] != printf_uint &&
2991 funcs[i] != printf_int) {
2992 mdb_warn("expected integer or pointer format "
2993 "specifier for '.'\n");
2994 return (DCMD_ABORT);
2995 }
2996
2997 mdb_printf(fmts[i], mdb_get_dot());
2998 continue;
2999 }
3000
3001 pa.pa_addr = addr;
3002
3003 if (parse_member(&pa, member, id, &mid, &off, &ignored) != 0)
3004 return (DCMD_ABORT);
3005
3006 if ((ret = funcs[i](mid, pa.pa_addr, off, fmts[i])) != 0) {
3007 mdb_warn("failed to print member '%s'\n", member);
3008 return (ret);
3009 }
3010 }
3011
3012 mdb_printf("%s", last);
3013
3014 return (DCMD_OK);
3015 }
3016
3017 static char _mdb_printf_help[] =
3018 "The format string argument is a printf(3C)-like format string that is a\n"
3019 "subset of the format strings supported by mdb_printf(). The type argument\n"
3020 "is the name of a type to be used to interpret the memory referenced by dot.\n"
3021 "The member should either be a field in the specified structure, or the\n"
3022 "special member '.', denoting the value of dot (and treated as a pointer).\n"
3023 "The number of members must match the number of format specifiers in the\n"
3024 "format string.\n"
3025 "\n"
3026 "The following format specifiers are recognized by ::printf:\n"
3027 "\n"
3028 " %% Prints the '%' symbol.\n"
3029 " %a Prints the member in symbolic form.\n"
3030 " %d Prints the member as a decimal integer. If the member is a signed\n"
3031 " integer type, the output will be signed.\n"
3032 " %H Prints the member as a human-readable size.\n"
3033 " %I Prints the member as an IPv4 address (must be 32-bit integer type).\n"
3034 " %N Prints the member as an IPv6 address (must be of type in6_addr_t).\n"
3035 " %o Prints the member as an unsigned octal integer.\n"
3036 " %p Prints the member as a pointer, in hexadecimal.\n"
3037 " %q Prints the member in signed octal. Honk if you ever use this!\n"
3038 " %r Prints the member as an unsigned value in the current output radix.\n"
3039 " %R Prints the member as a signed value in the current output radix.\n"
3040 " %s Prints the member as a string (requires a pointer or an array of\n"
3041 " characters).\n"
3042 " %u Prints the member as an unsigned decimal integer.\n"
3043 " %x Prints the member in hexadecimal.\n"
3044 " %X Prints the member in hexadecimal, using the characters A-F as the\n"
3045 " digits for the values 10-15.\n"
3046 " %Y Prints the member as a time_t as the string "
3047 "'year month day HH:MM:SS'.\n"
3048 "\n"
3049 "The following field width specifiers are recognized by ::printf:\n"
3050 "\n"
3051 " %n Field width is set to the specified decimal value.\n"
3052 " %? Field width is set to the maximum width of a hexadecimal pointer\n"
3053 " value. This is 8 in an ILP32 environment, and 16 in an LP64\n"
3054 " environment.\n"
3055 "\n"
3056 "The following flag specifers are recognized by ::printf:\n"
3057 "\n"
3058 " %- Left-justify the output within the specified field width. If the\n"
3059 " width of the output is less than the specified field width, the\n"
3060 " output will be padded with blanks on the right-hand side. Without\n"
3061 " %-, values are right-justified by default.\n"
3062 "\n"
3063 " %0 Zero-fill the output field if the output is right-justified and the\n"
3064 " width of the output is less than the specified field width. Without\n"
3065 " %0, right-justified values are prepended with blanks in order to\n"
3066 " fill the field.\n"
3067 "\n"
3068 "Examples: \n"
3069 "\n"
3070 " ::walk proc | "
3071 "::printf \"%-6d %s\\n\" proc_t p_pidp->pid_id p_user.u_psargs\n"
3072 " ::walk thread | "
3073 "::printf \"%?p %3d %a\\n\" kthread_t . t_pri t_startpc\n"
3074 " ::walk zone | "
3075 "::printf \"%-40s %20s\\n\" zone_t zone_name zone_nodename\n"
3076 " ::walk ire | "
3077 "::printf \"%Y %I\\n\" ire_t ire_create_time ire_u.ire4_u.ire4_addr\n"
3078 "\n";
3079
3080 void
3081 printf_help(void)
3082 {
3083 mdb_printf("%s", _mdb_printf_help);
3084 }