1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26 */
27
28 /*
29 * SPA: Storage Pool Allocator
30 *
31 * This file contains all the routines used when modifying on-disk SPA state.
32 * This includes opening, importing, destroying, exporting a pool, and syncing a
33 * pool.
34 */
35
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa_impl.h>
39 #include <sys/zio.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/ddt.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/dmu_traverse.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/unique.h>
55 #include <sys/dsl_pool.h>
56 #include <sys/dsl_dataset.h>
57 #include <sys/dsl_dir.h>
58 #include <sys/dsl_prop.h>
59 #include <sys/dsl_synctask.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/arc.h>
62 #include <sys/callb.h>
63 #include <sys/systeminfo.h>
64 #include <sys/spa_boot.h>
65 #include <sys/zfs_ioctl.h>
66 #include <sys/dsl_scan.h>
67 #include <sys/zfeature.h>
68 #include <sys/dsl_destroy.h>
69
70 #ifdef _KERNEL
71 #include <sys/bootprops.h>
72 #include <sys/callb.h>
73 #include <sys/cpupart.h>
74 #include <sys/pool.h>
75 #include <sys/sysdc.h>
76 #include <sys/zone.h>
77 #endif /* _KERNEL */
78
79 #include "zfs_prop.h"
80 #include "zfs_comutil.h"
81
82 /*
83 * The interval, in seconds, at which failed configuration cache file writes
84 * should be retried.
85 */
86 static int zfs_ccw_retry_interval = 300;
87
88 typedef enum zti_modes {
89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
90 ZTI_MODE_ONLINE_PERCENT, /* value is % of online CPUs */
91 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
92 ZTI_MODE_NULL, /* don't create a taskq */
93 ZTI_NMODES
94 } zti_modes_t;
95
96 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
97 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
98 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
99 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
100
101 #define ZTI_N(n) ZTI_P(n, 1)
102 #define ZTI_ONE ZTI_N(1)
103
104 typedef struct zio_taskq_info {
105 zti_modes_t zti_mode;
106 uint_t zti_value;
107 uint_t zti_count;
108 } zio_taskq_info_t;
109
110 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
111 "issue", "issue_high", "intr", "intr_high"
112 };
113
114 /*
115 * This table defines the taskq settings for each ZFS I/O type. When
116 * initializing a pool, we use this table to create an appropriately sized
117 * taskq. Some operations are low volume and therefore have a small, static
118 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
119 * macros. Other operations process a large amount of data; the ZTI_BATCH
120 * macro causes us to create a taskq oriented for throughput. Some operations
121 * are so high frequency and short-lived that the taskq itself can become a a
122 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
123 * additional degree of parallelism specified by the number of threads per-
124 * taskq and the number of taskqs; when dispatching an event in this case, the
125 * particular taskq is chosen at random.
126 *
127 * The different taskq priorities are to handle the different contexts (issue
128 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
129 * need to be handled with minimum delay.
130 */
131 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
132 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
133 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
134 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */
135 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
136 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
137 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
138 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
139 };
140
141 static void spa_sync_version(void *arg, dmu_tx_t *tx);
142 static void spa_sync_props(void *arg, dmu_tx_t *tx);
143 static boolean_t spa_has_active_shared_spare(spa_t *spa);
144 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
145 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
146 char **ereport);
147 static void spa_vdev_resilver_done(spa_t *spa);
148
149 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */
150 id_t zio_taskq_psrset_bind = PS_NONE;
151 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
152 uint_t zio_taskq_basedc = 80; /* base duty cycle */
153
154 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
155 extern int zfs_sync_pass_deferred_free;
156
157 /*
158 * This (illegal) pool name is used when temporarily importing a spa_t in order
159 * to get the vdev stats associated with the imported devices.
160 */
161 #define TRYIMPORT_NAME "$import"
162
163 /*
164 * ==========================================================================
165 * SPA properties routines
166 * ==========================================================================
167 */
168
169 /*
170 * Add a (source=src, propname=propval) list to an nvlist.
171 */
172 static void
173 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
174 uint64_t intval, zprop_source_t src)
175 {
176 const char *propname = zpool_prop_to_name(prop);
177 nvlist_t *propval;
178
179 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
180 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
181
182 if (strval != NULL)
183 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
184 else
185 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
186
187 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
188 nvlist_free(propval);
189 }
190
191 /*
192 * Get property values from the spa configuration.
193 */
194 static void
195 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
196 {
197 vdev_t *rvd = spa->spa_root_vdev;
198 dsl_pool_t *pool = spa->spa_dsl_pool;
199 uint64_t size;
200 uint64_t alloc;
201 uint64_t space;
202 uint64_t cap, version;
203 zprop_source_t src = ZPROP_SRC_NONE;
204 spa_config_dirent_t *dp;
205
206 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
207
208 if (rvd != NULL) {
209 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
210 size = metaslab_class_get_space(spa_normal_class(spa));
211 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
212 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
213 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
214 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
215 size - alloc, src);
216
217 space = 0;
218 for (int c = 0; c < rvd->vdev_children; c++) {
219 vdev_t *tvd = rvd->vdev_child[c];
220 space += tvd->vdev_max_asize - tvd->vdev_asize;
221 }
222 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
223 src);
224
225 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
226 (spa_mode(spa) == FREAD), src);
227
228 cap = (size == 0) ? 0 : (alloc * 100 / size);
229 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
230
231 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
232 ddt_get_pool_dedup_ratio(spa), src);
233
234 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
235 rvd->vdev_state, src);
236
237 version = spa_version(spa);
238 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
239 src = ZPROP_SRC_DEFAULT;
240 else
241 src = ZPROP_SRC_LOCAL;
242 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
243 }
244
245 if (pool != NULL) {
246 dsl_dir_t *freedir = pool->dp_free_dir;
247
248 /*
249 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
250 * when opening pools before this version freedir will be NULL.
251 */
252 if (freedir != NULL) {
253 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
254 freedir->dd_phys->dd_used_bytes, src);
255 } else {
256 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
257 NULL, 0, src);
258 }
259 }
260
261 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
262
263 if (spa->spa_comment != NULL) {
264 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
265 0, ZPROP_SRC_LOCAL);
266 }
267
268 if (spa->spa_root != NULL)
269 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
270 0, ZPROP_SRC_LOCAL);
271
272 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
273 if (dp->scd_path == NULL) {
274 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
275 "none", 0, ZPROP_SRC_LOCAL);
276 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
277 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
278 dp->scd_path, 0, ZPROP_SRC_LOCAL);
279 }
280 }
281 }
282
283 /*
284 * Get zpool property values.
285 */
286 int
287 spa_prop_get(spa_t *spa, nvlist_t **nvp)
288 {
289 objset_t *mos = spa->spa_meta_objset;
290 zap_cursor_t zc;
291 zap_attribute_t za;
292 int err;
293
294 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
295
296 mutex_enter(&spa->spa_props_lock);
297
298 /*
299 * Get properties from the spa config.
300 */
301 spa_prop_get_config(spa, nvp);
302
303 /* If no pool property object, no more prop to get. */
304 if (mos == NULL || spa->spa_pool_props_object == 0) {
305 mutex_exit(&spa->spa_props_lock);
306 return (0);
307 }
308
309 /*
310 * Get properties from the MOS pool property object.
311 */
312 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
313 (err = zap_cursor_retrieve(&zc, &za)) == 0;
314 zap_cursor_advance(&zc)) {
315 uint64_t intval = 0;
316 char *strval = NULL;
317 zprop_source_t src = ZPROP_SRC_DEFAULT;
318 zpool_prop_t prop;
319
320 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
321 continue;
322
323 switch (za.za_integer_length) {
324 case 8:
325 /* integer property */
326 if (za.za_first_integer !=
327 zpool_prop_default_numeric(prop))
328 src = ZPROP_SRC_LOCAL;
329
330 if (prop == ZPOOL_PROP_BOOTFS) {
331 dsl_pool_t *dp;
332 dsl_dataset_t *ds = NULL;
333
334 dp = spa_get_dsl(spa);
335 dsl_pool_config_enter(dp, FTAG);
336 if (err = dsl_dataset_hold_obj(dp,
337 za.za_first_integer, FTAG, &ds)) {
338 dsl_pool_config_exit(dp, FTAG);
339 break;
340 }
341
342 strval = kmem_alloc(
343 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
344 KM_SLEEP);
345 dsl_dataset_name(ds, strval);
346 dsl_dataset_rele(ds, FTAG);
347 dsl_pool_config_exit(dp, FTAG);
348 } else {
349 strval = NULL;
350 intval = za.za_first_integer;
351 }
352
353 spa_prop_add_list(*nvp, prop, strval, intval, src);
354
355 if (strval != NULL)
356 kmem_free(strval,
357 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
358
359 break;
360
361 case 1:
362 /* string property */
363 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
364 err = zap_lookup(mos, spa->spa_pool_props_object,
365 za.za_name, 1, za.za_num_integers, strval);
366 if (err) {
367 kmem_free(strval, za.za_num_integers);
368 break;
369 }
370 spa_prop_add_list(*nvp, prop, strval, 0, src);
371 kmem_free(strval, za.za_num_integers);
372 break;
373
374 default:
375 break;
376 }
377 }
378 zap_cursor_fini(&zc);
379 mutex_exit(&spa->spa_props_lock);
380 out:
381 if (err && err != ENOENT) {
382 nvlist_free(*nvp);
383 *nvp = NULL;
384 return (err);
385 }
386
387 return (0);
388 }
389
390 /*
391 * Validate the given pool properties nvlist and modify the list
392 * for the property values to be set.
393 */
394 static int
395 spa_prop_validate(spa_t *spa, nvlist_t *props)
396 {
397 nvpair_t *elem;
398 int error = 0, reset_bootfs = 0;
399 uint64_t objnum = 0;
400 boolean_t has_feature = B_FALSE;
401
402 elem = NULL;
403 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
404 uint64_t intval;
405 char *strval, *slash, *check, *fname;
406 const char *propname = nvpair_name(elem);
407 zpool_prop_t prop = zpool_name_to_prop(propname);
408
409 switch (prop) {
410 case ZPROP_INVAL:
411 if (!zpool_prop_feature(propname)) {
412 error = SET_ERROR(EINVAL);
413 break;
414 }
415
416 /*
417 * Sanitize the input.
418 */
419 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
420 error = SET_ERROR(EINVAL);
421 break;
422 }
423
424 if (nvpair_value_uint64(elem, &intval) != 0) {
425 error = SET_ERROR(EINVAL);
426 break;
427 }
428
429 if (intval != 0) {
430 error = SET_ERROR(EINVAL);
431 break;
432 }
433
434 fname = strchr(propname, '@') + 1;
435 if (zfeature_lookup_name(fname, NULL) != 0) {
436 error = SET_ERROR(EINVAL);
437 break;
438 }
439
440 has_feature = B_TRUE;
441 break;
442
443 case ZPOOL_PROP_VERSION:
444 error = nvpair_value_uint64(elem, &intval);
445 if (!error &&
446 (intval < spa_version(spa) ||
447 intval > SPA_VERSION_BEFORE_FEATURES ||
448 has_feature))
449 error = SET_ERROR(EINVAL);
450 break;
451
452 case ZPOOL_PROP_DELEGATION:
453 case ZPOOL_PROP_AUTOREPLACE:
454 case ZPOOL_PROP_LISTSNAPS:
455 case ZPOOL_PROP_AUTOEXPAND:
456 error = nvpair_value_uint64(elem, &intval);
457 if (!error && intval > 1)
458 error = SET_ERROR(EINVAL);
459 break;
460
461 case ZPOOL_PROP_BOOTFS:
462 /*
463 * If the pool version is less than SPA_VERSION_BOOTFS,
464 * or the pool is still being created (version == 0),
465 * the bootfs property cannot be set.
466 */
467 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
468 error = SET_ERROR(ENOTSUP);
469 break;
470 }
471
472 /*
473 * Make sure the vdev config is bootable
474 */
475 if (!vdev_is_bootable(spa->spa_root_vdev)) {
476 error = SET_ERROR(ENOTSUP);
477 break;
478 }
479
480 reset_bootfs = 1;
481
482 error = nvpair_value_string(elem, &strval);
483
484 if (!error) {
485 objset_t *os;
486 uint64_t compress;
487
488 if (strval == NULL || strval[0] == '\0') {
489 objnum = zpool_prop_default_numeric(
490 ZPOOL_PROP_BOOTFS);
491 break;
492 }
493
494 if (error = dmu_objset_hold(strval, FTAG, &os))
495 break;
496
497 /* Must be ZPL and not gzip compressed. */
498
499 if (dmu_objset_type(os) != DMU_OST_ZFS) {
500 error = SET_ERROR(ENOTSUP);
501 } else if ((error =
502 dsl_prop_get_int_ds(dmu_objset_ds(os),
503 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
504 &compress)) == 0 &&
505 !BOOTFS_COMPRESS_VALID(compress)) {
506 error = SET_ERROR(ENOTSUP);
507 } else {
508 objnum = dmu_objset_id(os);
509 }
510 dmu_objset_rele(os, FTAG);
511 }
512 break;
513
514 case ZPOOL_PROP_FAILUREMODE:
515 error = nvpair_value_uint64(elem, &intval);
516 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
517 intval > ZIO_FAILURE_MODE_PANIC))
518 error = SET_ERROR(EINVAL);
519
520 /*
521 * This is a special case which only occurs when
522 * the pool has completely failed. This allows
523 * the user to change the in-core failmode property
524 * without syncing it out to disk (I/Os might
525 * currently be blocked). We do this by returning
526 * EIO to the caller (spa_prop_set) to trick it
527 * into thinking we encountered a property validation
528 * error.
529 */
530 if (!error && spa_suspended(spa)) {
531 spa->spa_failmode = intval;
532 error = SET_ERROR(EIO);
533 }
534 break;
535
536 case ZPOOL_PROP_CACHEFILE:
537 if ((error = nvpair_value_string(elem, &strval)) != 0)
538 break;
539
540 if (strval[0] == '\0')
541 break;
542
543 if (strcmp(strval, "none") == 0)
544 break;
545
546 if (strval[0] != '/') {
547 error = SET_ERROR(EINVAL);
548 break;
549 }
550
551 slash = strrchr(strval, '/');
552 ASSERT(slash != NULL);
553
554 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
555 strcmp(slash, "/..") == 0)
556 error = SET_ERROR(EINVAL);
557 break;
558
559 case ZPOOL_PROP_COMMENT:
560 if ((error = nvpair_value_string(elem, &strval)) != 0)
561 break;
562 for (check = strval; *check != '\0'; check++) {
563 /*
564 * The kernel doesn't have an easy isprint()
565 * check. For this kernel check, we merely
566 * check ASCII apart from DEL. Fix this if
567 * there is an easy-to-use kernel isprint().
568 */
569 if (*check >= 0x7f) {
570 error = SET_ERROR(EINVAL);
571 break;
572 }
573 check++;
574 }
575 if (strlen(strval) > ZPROP_MAX_COMMENT)
576 error = E2BIG;
577 break;
578
579 case ZPOOL_PROP_DEDUPDITTO:
580 if (spa_version(spa) < SPA_VERSION_DEDUP)
581 error = SET_ERROR(ENOTSUP);
582 else
583 error = nvpair_value_uint64(elem, &intval);
584 if (error == 0 &&
585 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
586 error = SET_ERROR(EINVAL);
587 break;
588 }
589
590 if (error)
591 break;
592 }
593
594 if (!error && reset_bootfs) {
595 error = nvlist_remove(props,
596 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
597
598 if (!error) {
599 error = nvlist_add_uint64(props,
600 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
601 }
602 }
603
604 return (error);
605 }
606
607 void
608 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
609 {
610 char *cachefile;
611 spa_config_dirent_t *dp;
612
613 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
614 &cachefile) != 0)
615 return;
616
617 dp = kmem_alloc(sizeof (spa_config_dirent_t),
618 KM_SLEEP);
619
620 if (cachefile[0] == '\0')
621 dp->scd_path = spa_strdup(spa_config_path);
622 else if (strcmp(cachefile, "none") == 0)
623 dp->scd_path = NULL;
624 else
625 dp->scd_path = spa_strdup(cachefile);
626
627 list_insert_head(&spa->spa_config_list, dp);
628 if (need_sync)
629 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
630 }
631
632 int
633 spa_prop_set(spa_t *spa, nvlist_t *nvp)
634 {
635 int error;
636 nvpair_t *elem = NULL;
637 boolean_t need_sync = B_FALSE;
638
639 if ((error = spa_prop_validate(spa, nvp)) != 0)
640 return (error);
641
642 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
643 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
644
645 if (prop == ZPOOL_PROP_CACHEFILE ||
646 prop == ZPOOL_PROP_ALTROOT ||
647 prop == ZPOOL_PROP_READONLY)
648 continue;
649
650 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
651 uint64_t ver;
652
653 if (prop == ZPOOL_PROP_VERSION) {
654 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
655 } else {
656 ASSERT(zpool_prop_feature(nvpair_name(elem)));
657 ver = SPA_VERSION_FEATURES;
658 need_sync = B_TRUE;
659 }
660
661 /* Save time if the version is already set. */
662 if (ver == spa_version(spa))
663 continue;
664
665 /*
666 * In addition to the pool directory object, we might
667 * create the pool properties object, the features for
668 * read object, the features for write object, or the
669 * feature descriptions object.
670 */
671 error = dsl_sync_task(spa->spa_name, NULL,
672 spa_sync_version, &ver, 6);
673 if (error)
674 return (error);
675 continue;
676 }
677
678 need_sync = B_TRUE;
679 break;
680 }
681
682 if (need_sync) {
683 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
684 nvp, 6));
685 }
686
687 return (0);
688 }
689
690 /*
691 * If the bootfs property value is dsobj, clear it.
692 */
693 void
694 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
695 {
696 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
697 VERIFY(zap_remove(spa->spa_meta_objset,
698 spa->spa_pool_props_object,
699 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
700 spa->spa_bootfs = 0;
701 }
702 }
703
704 /*ARGSUSED*/
705 static int
706 spa_change_guid_check(void *arg, dmu_tx_t *tx)
707 {
708 uint64_t *newguid = arg;
709 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
710 vdev_t *rvd = spa->spa_root_vdev;
711 uint64_t vdev_state;
712
713 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
714 vdev_state = rvd->vdev_state;
715 spa_config_exit(spa, SCL_STATE, FTAG);
716
717 if (vdev_state != VDEV_STATE_HEALTHY)
718 return (SET_ERROR(ENXIO));
719
720 ASSERT3U(spa_guid(spa), !=, *newguid);
721
722 return (0);
723 }
724
725 static void
726 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
727 {
728 uint64_t *newguid = arg;
729 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
730 uint64_t oldguid;
731 vdev_t *rvd = spa->spa_root_vdev;
732
733 oldguid = spa_guid(spa);
734
735 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
736 rvd->vdev_guid = *newguid;
737 rvd->vdev_guid_sum += (*newguid - oldguid);
738 vdev_config_dirty(rvd);
739 spa_config_exit(spa, SCL_STATE, FTAG);
740
741 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
742 oldguid, *newguid);
743 }
744
745 /*
746 * Change the GUID for the pool. This is done so that we can later
747 * re-import a pool built from a clone of our own vdevs. We will modify
748 * the root vdev's guid, our own pool guid, and then mark all of our
749 * vdevs dirty. Note that we must make sure that all our vdevs are
750 * online when we do this, or else any vdevs that weren't present
751 * would be orphaned from our pool. We are also going to issue a
752 * sysevent to update any watchers.
753 */
754 int
755 spa_change_guid(spa_t *spa)
756 {
757 int error;
758 uint64_t guid;
759
760 mutex_enter(&spa->spa_vdev_top_lock);
761 mutex_enter(&spa_namespace_lock);
762 guid = spa_generate_guid(NULL);
763
764 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
765 spa_change_guid_sync, &guid, 5);
766
767 if (error == 0) {
768 spa_config_sync(spa, B_FALSE, B_TRUE);
769 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
770 }
771
772 mutex_exit(&spa_namespace_lock);
773 mutex_exit(&spa->spa_vdev_top_lock);
774
775 return (error);
776 }
777
778 /*
779 * ==========================================================================
780 * SPA state manipulation (open/create/destroy/import/export)
781 * ==========================================================================
782 */
783
784 static int
785 spa_error_entry_compare(const void *a, const void *b)
786 {
787 spa_error_entry_t *sa = (spa_error_entry_t *)a;
788 spa_error_entry_t *sb = (spa_error_entry_t *)b;
789 int ret;
790
791 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
792 sizeof (zbookmark_t));
793
794 if (ret < 0)
795 return (-1);
796 else if (ret > 0)
797 return (1);
798 else
799 return (0);
800 }
801
802 /*
803 * Utility function which retrieves copies of the current logs and
804 * re-initializes them in the process.
805 */
806 void
807 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
808 {
809 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
810
811 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
812 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
813
814 avl_create(&spa->spa_errlist_scrub,
815 spa_error_entry_compare, sizeof (spa_error_entry_t),
816 offsetof(spa_error_entry_t, se_avl));
817 avl_create(&spa->spa_errlist_last,
818 spa_error_entry_compare, sizeof (spa_error_entry_t),
819 offsetof(spa_error_entry_t, se_avl));
820 }
821
822 static void
823 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
824 {
825 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
826 enum zti_modes mode = ztip->zti_mode;
827 uint_t value = ztip->zti_value;
828 uint_t count = ztip->zti_count;
829 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
830 char name[32];
831 uint_t flags = 0;
832 boolean_t batch = B_FALSE;
833
834 if (mode == ZTI_MODE_NULL) {
835 tqs->stqs_count = 0;
836 tqs->stqs_taskq = NULL;
837 return;
838 }
839
840 ASSERT3U(count, >, 0);
841
842 tqs->stqs_count = count;
843 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
844
845 for (uint_t i = 0; i < count; i++) {
846 taskq_t *tq;
847
848 switch (mode) {
849 case ZTI_MODE_FIXED:
850 ASSERT3U(value, >=, 1);
851 value = MAX(value, 1);
852 break;
853
854 case ZTI_MODE_BATCH:
855 batch = B_TRUE;
856 flags |= TASKQ_THREADS_CPU_PCT;
857 value = zio_taskq_batch_pct;
858 break;
859
860 case ZTI_MODE_ONLINE_PERCENT:
861 flags |= TASKQ_THREADS_CPU_PCT;
862 break;
863
864 default:
865 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
866 "spa_activate()",
867 zio_type_name[t], zio_taskq_types[q], mode, value);
868 break;
869 }
870
871 if (count > 1) {
872 (void) snprintf(name, sizeof (name), "%s_%s_%u",
873 zio_type_name[t], zio_taskq_types[q], i);
874 } else {
875 (void) snprintf(name, sizeof (name), "%s_%s",
876 zio_type_name[t], zio_taskq_types[q]);
877 }
878
879 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
880 if (batch)
881 flags |= TASKQ_DC_BATCH;
882
883 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
884 spa->spa_proc, zio_taskq_basedc, flags);
885 } else {
886 tq = taskq_create_proc(name, value, maxclsyspri, 50,
887 INT_MAX, spa->spa_proc, flags);
888 }
889
890 tqs->stqs_taskq[i] = tq;
891 }
892 }
893
894 static void
895 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
896 {
897 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
898
899 if (tqs->stqs_taskq == NULL) {
900 ASSERT0(tqs->stqs_count);
901 return;
902 }
903
904 for (uint_t i = 0; i < tqs->stqs_count; i++) {
905 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
906 taskq_destroy(tqs->stqs_taskq[i]);
907 }
908
909 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
910 tqs->stqs_taskq = NULL;
911 }
912
913 /*
914 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
915 * Note that a type may have multiple discrete taskqs to avoid lock contention
916 * on the taskq itself. In that case we choose which taskq at random by using
917 * the low bits of gethrtime().
918 */
919 void
920 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
921 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
922 {
923 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
924 taskq_t *tq;
925
926 ASSERT3P(tqs->stqs_taskq, !=, NULL);
927 ASSERT3U(tqs->stqs_count, !=, 0);
928
929 if (tqs->stqs_count == 1) {
930 tq = tqs->stqs_taskq[0];
931 } else {
932 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
933 }
934
935 taskq_dispatch_ent(tq, func, arg, flags, ent);
936 }
937
938 static void
939 spa_create_zio_taskqs(spa_t *spa)
940 {
941 for (int t = 0; t < ZIO_TYPES; t++) {
942 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
943 spa_taskqs_init(spa, t, q);
944 }
945 }
946 }
947
948 #ifdef _KERNEL
949 static void
950 spa_thread(void *arg)
951 {
952 callb_cpr_t cprinfo;
953
954 spa_t *spa = arg;
955 user_t *pu = PTOU(curproc);
956
957 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
958 spa->spa_name);
959
960 ASSERT(curproc != &p0);
961 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
962 "zpool-%s", spa->spa_name);
963 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
964
965 /* bind this thread to the requested psrset */
966 if (zio_taskq_psrset_bind != PS_NONE) {
967 pool_lock();
968 mutex_enter(&cpu_lock);
969 mutex_enter(&pidlock);
970 mutex_enter(&curproc->p_lock);
971
972 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
973 0, NULL, NULL) == 0) {
974 curthread->t_bind_pset = zio_taskq_psrset_bind;
975 } else {
976 cmn_err(CE_WARN,
977 "Couldn't bind process for zfs pool \"%s\" to "
978 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
979 }
980
981 mutex_exit(&curproc->p_lock);
982 mutex_exit(&pidlock);
983 mutex_exit(&cpu_lock);
984 pool_unlock();
985 }
986
987 if (zio_taskq_sysdc) {
988 sysdc_thread_enter(curthread, 100, 0);
989 }
990
991 spa->spa_proc = curproc;
992 spa->spa_did = curthread->t_did;
993
994 spa_create_zio_taskqs(spa);
995
996 mutex_enter(&spa->spa_proc_lock);
997 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
998
999 spa->spa_proc_state = SPA_PROC_ACTIVE;
1000 cv_broadcast(&spa->spa_proc_cv);
1001
1002 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1003 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1004 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1005 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1006
1007 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1008 spa->spa_proc_state = SPA_PROC_GONE;
1009 spa->spa_proc = &p0;
1010 cv_broadcast(&spa->spa_proc_cv);
1011 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1012
1013 mutex_enter(&curproc->p_lock);
1014 lwp_exit();
1015 }
1016 #endif
1017
1018 /*
1019 * Activate an uninitialized pool.
1020 */
1021 static void
1022 spa_activate(spa_t *spa, int mode)
1023 {
1024 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1025
1026 spa->spa_state = POOL_STATE_ACTIVE;
1027 spa->spa_mode = mode;
1028
1029 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1030 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1031
1032 /* Try to create a covering process */
1033 mutex_enter(&spa->spa_proc_lock);
1034 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1035 ASSERT(spa->spa_proc == &p0);
1036 spa->spa_did = 0;
1037
1038 /* Only create a process if we're going to be around a while. */
1039 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1040 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1041 NULL, 0) == 0) {
1042 spa->spa_proc_state = SPA_PROC_CREATED;
1043 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1044 cv_wait(&spa->spa_proc_cv,
1045 &spa->spa_proc_lock);
1046 }
1047 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1048 ASSERT(spa->spa_proc != &p0);
1049 ASSERT(spa->spa_did != 0);
1050 } else {
1051 #ifdef _KERNEL
1052 cmn_err(CE_WARN,
1053 "Couldn't create process for zfs pool \"%s\"\n",
1054 spa->spa_name);
1055 #endif
1056 }
1057 }
1058 mutex_exit(&spa->spa_proc_lock);
1059
1060 /* If we didn't create a process, we need to create our taskqs. */
1061 if (spa->spa_proc == &p0) {
1062 spa_create_zio_taskqs(spa);
1063 }
1064
1065 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1066 offsetof(vdev_t, vdev_config_dirty_node));
1067 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1068 offsetof(vdev_t, vdev_state_dirty_node));
1069
1070 txg_list_create(&spa->spa_vdev_txg_list,
1071 offsetof(struct vdev, vdev_txg_node));
1072
1073 avl_create(&spa->spa_errlist_scrub,
1074 spa_error_entry_compare, sizeof (spa_error_entry_t),
1075 offsetof(spa_error_entry_t, se_avl));
1076 avl_create(&spa->spa_errlist_last,
1077 spa_error_entry_compare, sizeof (spa_error_entry_t),
1078 offsetof(spa_error_entry_t, se_avl));
1079 }
1080
1081 /*
1082 * Opposite of spa_activate().
1083 */
1084 static void
1085 spa_deactivate(spa_t *spa)
1086 {
1087 ASSERT(spa->spa_sync_on == B_FALSE);
1088 ASSERT(spa->spa_dsl_pool == NULL);
1089 ASSERT(spa->spa_root_vdev == NULL);
1090 ASSERT(spa->spa_async_zio_root == NULL);
1091 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1092
1093 txg_list_destroy(&spa->spa_vdev_txg_list);
1094
1095 list_destroy(&spa->spa_config_dirty_list);
1096 list_destroy(&spa->spa_state_dirty_list);
1097
1098 for (int t = 0; t < ZIO_TYPES; t++) {
1099 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1100 spa_taskqs_fini(spa, t, q);
1101 }
1102 }
1103
1104 metaslab_class_destroy(spa->spa_normal_class);
1105 spa->spa_normal_class = NULL;
1106
1107 metaslab_class_destroy(spa->spa_log_class);
1108 spa->spa_log_class = NULL;
1109
1110 /*
1111 * If this was part of an import or the open otherwise failed, we may
1112 * still have errors left in the queues. Empty them just in case.
1113 */
1114 spa_errlog_drain(spa);
1115
1116 avl_destroy(&spa->spa_errlist_scrub);
1117 avl_destroy(&spa->spa_errlist_last);
1118
1119 spa->spa_state = POOL_STATE_UNINITIALIZED;
1120
1121 mutex_enter(&spa->spa_proc_lock);
1122 if (spa->spa_proc_state != SPA_PROC_NONE) {
1123 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1124 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1125 cv_broadcast(&spa->spa_proc_cv);
1126 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1127 ASSERT(spa->spa_proc != &p0);
1128 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1129 }
1130 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1131 spa->spa_proc_state = SPA_PROC_NONE;
1132 }
1133 ASSERT(spa->spa_proc == &p0);
1134 mutex_exit(&spa->spa_proc_lock);
1135
1136 /*
1137 * We want to make sure spa_thread() has actually exited the ZFS
1138 * module, so that the module can't be unloaded out from underneath
1139 * it.
1140 */
1141 if (spa->spa_did != 0) {
1142 thread_join(spa->spa_did);
1143 spa->spa_did = 0;
1144 }
1145 }
1146
1147 /*
1148 * Verify a pool configuration, and construct the vdev tree appropriately. This
1149 * will create all the necessary vdevs in the appropriate layout, with each vdev
1150 * in the CLOSED state. This will prep the pool before open/creation/import.
1151 * All vdev validation is done by the vdev_alloc() routine.
1152 */
1153 static int
1154 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1155 uint_t id, int atype)
1156 {
1157 nvlist_t **child;
1158 uint_t children;
1159 int error;
1160
1161 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1162 return (error);
1163
1164 if ((*vdp)->vdev_ops->vdev_op_leaf)
1165 return (0);
1166
1167 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1168 &child, &children);
1169
1170 if (error == ENOENT)
1171 return (0);
1172
1173 if (error) {
1174 vdev_free(*vdp);
1175 *vdp = NULL;
1176 return (SET_ERROR(EINVAL));
1177 }
1178
1179 for (int c = 0; c < children; c++) {
1180 vdev_t *vd;
1181 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1182 atype)) != 0) {
1183 vdev_free(*vdp);
1184 *vdp = NULL;
1185 return (error);
1186 }
1187 }
1188
1189 ASSERT(*vdp != NULL);
1190
1191 return (0);
1192 }
1193
1194 /*
1195 * Opposite of spa_load().
1196 */
1197 static void
1198 spa_unload(spa_t *spa)
1199 {
1200 int i;
1201
1202 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1203
1204 /*
1205 * Stop async tasks.
1206 */
1207 spa_async_suspend(spa);
1208
1209 /*
1210 * Stop syncing.
1211 */
1212 if (spa->spa_sync_on) {
1213 txg_sync_stop(spa->spa_dsl_pool);
1214 spa->spa_sync_on = B_FALSE;
1215 }
1216
1217 /*
1218 * Wait for any outstanding async I/O to complete.
1219 */
1220 if (spa->spa_async_zio_root != NULL) {
1221 (void) zio_wait(spa->spa_async_zio_root);
1222 spa->spa_async_zio_root = NULL;
1223 }
1224
1225 bpobj_close(&spa->spa_deferred_bpobj);
1226
1227 /*
1228 * Close the dsl pool.
1229 */
1230 if (spa->spa_dsl_pool) {
1231 dsl_pool_close(spa->spa_dsl_pool);
1232 spa->spa_dsl_pool = NULL;
1233 spa->spa_meta_objset = NULL;
1234 }
1235
1236 ddt_unload(spa);
1237
1238 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1239
1240 /*
1241 * Drop and purge level 2 cache
1242 */
1243 spa_l2cache_drop(spa);
1244
1245 /*
1246 * Close all vdevs.
1247 */
1248 if (spa->spa_root_vdev)
1249 vdev_free(spa->spa_root_vdev);
1250 ASSERT(spa->spa_root_vdev == NULL);
1251
1252 for (i = 0; i < spa->spa_spares.sav_count; i++)
1253 vdev_free(spa->spa_spares.sav_vdevs[i]);
1254 if (spa->spa_spares.sav_vdevs) {
1255 kmem_free(spa->spa_spares.sav_vdevs,
1256 spa->spa_spares.sav_count * sizeof (void *));
1257 spa->spa_spares.sav_vdevs = NULL;
1258 }
1259 if (spa->spa_spares.sav_config) {
1260 nvlist_free(spa->spa_spares.sav_config);
1261 spa->spa_spares.sav_config = NULL;
1262 }
1263 spa->spa_spares.sav_count = 0;
1264
1265 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1266 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1267 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1268 }
1269 if (spa->spa_l2cache.sav_vdevs) {
1270 kmem_free(spa->spa_l2cache.sav_vdevs,
1271 spa->spa_l2cache.sav_count * sizeof (void *));
1272 spa->spa_l2cache.sav_vdevs = NULL;
1273 }
1274 if (spa->spa_l2cache.sav_config) {
1275 nvlist_free(spa->spa_l2cache.sav_config);
1276 spa->spa_l2cache.sav_config = NULL;
1277 }
1278 spa->spa_l2cache.sav_count = 0;
1279
1280 spa->spa_async_suspended = 0;
1281
1282 if (spa->spa_comment != NULL) {
1283 spa_strfree(spa->spa_comment);
1284 spa->spa_comment = NULL;
1285 }
1286
1287 spa_config_exit(spa, SCL_ALL, FTAG);
1288 }
1289
1290 /*
1291 * Load (or re-load) the current list of vdevs describing the active spares for
1292 * this pool. When this is called, we have some form of basic information in
1293 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1294 * then re-generate a more complete list including status information.
1295 */
1296 static void
1297 spa_load_spares(spa_t *spa)
1298 {
1299 nvlist_t **spares;
1300 uint_t nspares;
1301 int i;
1302 vdev_t *vd, *tvd;
1303
1304 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1305
1306 /*
1307 * First, close and free any existing spare vdevs.
1308 */
1309 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1310 vd = spa->spa_spares.sav_vdevs[i];
1311
1312 /* Undo the call to spa_activate() below */
1313 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1314 B_FALSE)) != NULL && tvd->vdev_isspare)
1315 spa_spare_remove(tvd);
1316 vdev_close(vd);
1317 vdev_free(vd);
1318 }
1319
1320 if (spa->spa_spares.sav_vdevs)
1321 kmem_free(spa->spa_spares.sav_vdevs,
1322 spa->spa_spares.sav_count * sizeof (void *));
1323
1324 if (spa->spa_spares.sav_config == NULL)
1325 nspares = 0;
1326 else
1327 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1328 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1329
1330 spa->spa_spares.sav_count = (int)nspares;
1331 spa->spa_spares.sav_vdevs = NULL;
1332
1333 if (nspares == 0)
1334 return;
1335
1336 /*
1337 * Construct the array of vdevs, opening them to get status in the
1338 * process. For each spare, there is potentially two different vdev_t
1339 * structures associated with it: one in the list of spares (used only
1340 * for basic validation purposes) and one in the active vdev
1341 * configuration (if it's spared in). During this phase we open and
1342 * validate each vdev on the spare list. If the vdev also exists in the
1343 * active configuration, then we also mark this vdev as an active spare.
1344 */
1345 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1346 KM_SLEEP);
1347 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1348 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1349 VDEV_ALLOC_SPARE) == 0);
1350 ASSERT(vd != NULL);
1351
1352 spa->spa_spares.sav_vdevs[i] = vd;
1353
1354 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1355 B_FALSE)) != NULL) {
1356 if (!tvd->vdev_isspare)
1357 spa_spare_add(tvd);
1358
1359 /*
1360 * We only mark the spare active if we were successfully
1361 * able to load the vdev. Otherwise, importing a pool
1362 * with a bad active spare would result in strange
1363 * behavior, because multiple pool would think the spare
1364 * is actively in use.
1365 *
1366 * There is a vulnerability here to an equally bizarre
1367 * circumstance, where a dead active spare is later
1368 * brought back to life (onlined or otherwise). Given
1369 * the rarity of this scenario, and the extra complexity
1370 * it adds, we ignore the possibility.
1371 */
1372 if (!vdev_is_dead(tvd))
1373 spa_spare_activate(tvd);
1374 }
1375
1376 vd->vdev_top = vd;
1377 vd->vdev_aux = &spa->spa_spares;
1378
1379 if (vdev_open(vd) != 0)
1380 continue;
1381
1382 if (vdev_validate_aux(vd) == 0)
1383 spa_spare_add(vd);
1384 }
1385
1386 /*
1387 * Recompute the stashed list of spares, with status information
1388 * this time.
1389 */
1390 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1391 DATA_TYPE_NVLIST_ARRAY) == 0);
1392
1393 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1394 KM_SLEEP);
1395 for (i = 0; i < spa->spa_spares.sav_count; i++)
1396 spares[i] = vdev_config_generate(spa,
1397 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1398 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1399 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1400 for (i = 0; i < spa->spa_spares.sav_count; i++)
1401 nvlist_free(spares[i]);
1402 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1403 }
1404
1405 /*
1406 * Load (or re-load) the current list of vdevs describing the active l2cache for
1407 * this pool. When this is called, we have some form of basic information in
1408 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1409 * then re-generate a more complete list including status information.
1410 * Devices which are already active have their details maintained, and are
1411 * not re-opened.
1412 */
1413 static void
1414 spa_load_l2cache(spa_t *spa)
1415 {
1416 nvlist_t **l2cache;
1417 uint_t nl2cache;
1418 int i, j, oldnvdevs;
1419 uint64_t guid;
1420 vdev_t *vd, **oldvdevs, **newvdevs;
1421 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1422
1423 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1424
1425 if (sav->sav_config != NULL) {
1426 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1427 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1428 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1429 } else {
1430 nl2cache = 0;
1431 newvdevs = NULL;
1432 }
1433
1434 oldvdevs = sav->sav_vdevs;
1435 oldnvdevs = sav->sav_count;
1436 sav->sav_vdevs = NULL;
1437 sav->sav_count = 0;
1438
1439 /*
1440 * Process new nvlist of vdevs.
1441 */
1442 for (i = 0; i < nl2cache; i++) {
1443 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1444 &guid) == 0);
1445
1446 newvdevs[i] = NULL;
1447 for (j = 0; j < oldnvdevs; j++) {
1448 vd = oldvdevs[j];
1449 if (vd != NULL && guid == vd->vdev_guid) {
1450 /*
1451 * Retain previous vdev for add/remove ops.
1452 */
1453 newvdevs[i] = vd;
1454 oldvdevs[j] = NULL;
1455 break;
1456 }
1457 }
1458
1459 if (newvdevs[i] == NULL) {
1460 /*
1461 * Create new vdev
1462 */
1463 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1464 VDEV_ALLOC_L2CACHE) == 0);
1465 ASSERT(vd != NULL);
1466 newvdevs[i] = vd;
1467
1468 /*
1469 * Commit this vdev as an l2cache device,
1470 * even if it fails to open.
1471 */
1472 spa_l2cache_add(vd);
1473
1474 vd->vdev_top = vd;
1475 vd->vdev_aux = sav;
1476
1477 spa_l2cache_activate(vd);
1478
1479 if (vdev_open(vd) != 0)
1480 continue;
1481
1482 (void) vdev_validate_aux(vd);
1483
1484 if (!vdev_is_dead(vd))
1485 l2arc_add_vdev(spa, vd);
1486 }
1487 }
1488
1489 /*
1490 * Purge vdevs that were dropped
1491 */
1492 for (i = 0; i < oldnvdevs; i++) {
1493 uint64_t pool;
1494
1495 vd = oldvdevs[i];
1496 if (vd != NULL) {
1497 ASSERT(vd->vdev_isl2cache);
1498
1499 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1500 pool != 0ULL && l2arc_vdev_present(vd))
1501 l2arc_remove_vdev(vd);
1502 vdev_clear_stats(vd);
1503 vdev_free(vd);
1504 }
1505 }
1506
1507 if (oldvdevs)
1508 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1509
1510 if (sav->sav_config == NULL)
1511 goto out;
1512
1513 sav->sav_vdevs = newvdevs;
1514 sav->sav_count = (int)nl2cache;
1515
1516 /*
1517 * Recompute the stashed list of l2cache devices, with status
1518 * information this time.
1519 */
1520 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1521 DATA_TYPE_NVLIST_ARRAY) == 0);
1522
1523 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1524 for (i = 0; i < sav->sav_count; i++)
1525 l2cache[i] = vdev_config_generate(spa,
1526 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1527 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1528 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1529 out:
1530 for (i = 0; i < sav->sav_count; i++)
1531 nvlist_free(l2cache[i]);
1532 if (sav->sav_count)
1533 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1534 }
1535
1536 static int
1537 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1538 {
1539 dmu_buf_t *db;
1540 char *packed = NULL;
1541 size_t nvsize = 0;
1542 int error;
1543 *value = NULL;
1544
1545 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1546 nvsize = *(uint64_t *)db->db_data;
1547 dmu_buf_rele(db, FTAG);
1548
1549 packed = kmem_alloc(nvsize, KM_SLEEP);
1550 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1551 DMU_READ_PREFETCH);
1552 if (error == 0)
1553 error = nvlist_unpack(packed, nvsize, value, 0);
1554 kmem_free(packed, nvsize);
1555
1556 return (error);
1557 }
1558
1559 /*
1560 * Checks to see if the given vdev could not be opened, in which case we post a
1561 * sysevent to notify the autoreplace code that the device has been removed.
1562 */
1563 static void
1564 spa_check_removed(vdev_t *vd)
1565 {
1566 for (int c = 0; c < vd->vdev_children; c++)
1567 spa_check_removed(vd->vdev_child[c]);
1568
1569 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1570 !vd->vdev_ishole) {
1571 zfs_post_autoreplace(vd->vdev_spa, vd);
1572 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1573 }
1574 }
1575
1576 /*
1577 * Validate the current config against the MOS config
1578 */
1579 static boolean_t
1580 spa_config_valid(spa_t *spa, nvlist_t *config)
1581 {
1582 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1583 nvlist_t *nv;
1584
1585 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1586
1587 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1588 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1589
1590 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1591
1592 /*
1593 * If we're doing a normal import, then build up any additional
1594 * diagnostic information about missing devices in this config.
1595 * We'll pass this up to the user for further processing.
1596 */
1597 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1598 nvlist_t **child, *nv;
1599 uint64_t idx = 0;
1600
1601 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1602 KM_SLEEP);
1603 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1604
1605 for (int c = 0; c < rvd->vdev_children; c++) {
1606 vdev_t *tvd = rvd->vdev_child[c];
1607 vdev_t *mtvd = mrvd->vdev_child[c];
1608
1609 if (tvd->vdev_ops == &vdev_missing_ops &&
1610 mtvd->vdev_ops != &vdev_missing_ops &&
1611 mtvd->vdev_islog)
1612 child[idx++] = vdev_config_generate(spa, mtvd,
1613 B_FALSE, 0);
1614 }
1615
1616 if (idx) {
1617 VERIFY(nvlist_add_nvlist_array(nv,
1618 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1619 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1620 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1621
1622 for (int i = 0; i < idx; i++)
1623 nvlist_free(child[i]);
1624 }
1625 nvlist_free(nv);
1626 kmem_free(child, rvd->vdev_children * sizeof (char **));
1627 }
1628
1629 /*
1630 * Compare the root vdev tree with the information we have
1631 * from the MOS config (mrvd). Check each top-level vdev
1632 * with the corresponding MOS config top-level (mtvd).
1633 */
1634 for (int c = 0; c < rvd->vdev_children; c++) {
1635 vdev_t *tvd = rvd->vdev_child[c];
1636 vdev_t *mtvd = mrvd->vdev_child[c];
1637
1638 /*
1639 * Resolve any "missing" vdevs in the current configuration.
1640 * If we find that the MOS config has more accurate information
1641 * about the top-level vdev then use that vdev instead.
1642 */
1643 if (tvd->vdev_ops == &vdev_missing_ops &&
1644 mtvd->vdev_ops != &vdev_missing_ops) {
1645
1646 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1647 continue;
1648
1649 /*
1650 * Device specific actions.
1651 */
1652 if (mtvd->vdev_islog) {
1653 spa_set_log_state(spa, SPA_LOG_CLEAR);
1654 } else {
1655 /*
1656 * XXX - once we have 'readonly' pool
1657 * support we should be able to handle
1658 * missing data devices by transitioning
1659 * the pool to readonly.
1660 */
1661 continue;
1662 }
1663
1664 /*
1665 * Swap the missing vdev with the data we were
1666 * able to obtain from the MOS config.
1667 */
1668 vdev_remove_child(rvd, tvd);
1669 vdev_remove_child(mrvd, mtvd);
1670
1671 vdev_add_child(rvd, mtvd);
1672 vdev_add_child(mrvd, tvd);
1673
1674 spa_config_exit(spa, SCL_ALL, FTAG);
1675 vdev_load(mtvd);
1676 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1677
1678 vdev_reopen(rvd);
1679 } else if (mtvd->vdev_islog) {
1680 /*
1681 * Load the slog device's state from the MOS config
1682 * since it's possible that the label does not
1683 * contain the most up-to-date information.
1684 */
1685 vdev_load_log_state(tvd, mtvd);
1686 vdev_reopen(tvd);
1687 }
1688 }
1689 vdev_free(mrvd);
1690 spa_config_exit(spa, SCL_ALL, FTAG);
1691
1692 /*
1693 * Ensure we were able to validate the config.
1694 */
1695 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1696 }
1697
1698 /*
1699 * Check for missing log devices
1700 */
1701 static boolean_t
1702 spa_check_logs(spa_t *spa)
1703 {
1704 boolean_t rv = B_FALSE;
1705
1706 switch (spa->spa_log_state) {
1707 case SPA_LOG_MISSING:
1708 /* need to recheck in case slog has been restored */
1709 case SPA_LOG_UNKNOWN:
1710 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1711 NULL, DS_FIND_CHILDREN) != 0);
1712 if (rv)
1713 spa_set_log_state(spa, SPA_LOG_MISSING);
1714 break;
1715 }
1716 return (rv);
1717 }
1718
1719 static boolean_t
1720 spa_passivate_log(spa_t *spa)
1721 {
1722 vdev_t *rvd = spa->spa_root_vdev;
1723 boolean_t slog_found = B_FALSE;
1724
1725 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1726
1727 if (!spa_has_slogs(spa))
1728 return (B_FALSE);
1729
1730 for (int c = 0; c < rvd->vdev_children; c++) {
1731 vdev_t *tvd = rvd->vdev_child[c];
1732 metaslab_group_t *mg = tvd->vdev_mg;
1733
1734 if (tvd->vdev_islog) {
1735 metaslab_group_passivate(mg);
1736 slog_found = B_TRUE;
1737 }
1738 }
1739
1740 return (slog_found);
1741 }
1742
1743 static void
1744 spa_activate_log(spa_t *spa)
1745 {
1746 vdev_t *rvd = spa->spa_root_vdev;
1747
1748 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1749
1750 for (int c = 0; c < rvd->vdev_children; c++) {
1751 vdev_t *tvd = rvd->vdev_child[c];
1752 metaslab_group_t *mg = tvd->vdev_mg;
1753
1754 if (tvd->vdev_islog)
1755 metaslab_group_activate(mg);
1756 }
1757 }
1758
1759 int
1760 spa_offline_log(spa_t *spa)
1761 {
1762 int error;
1763
1764 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1765 NULL, DS_FIND_CHILDREN);
1766 if (error == 0) {
1767 /*
1768 * We successfully offlined the log device, sync out the
1769 * current txg so that the "stubby" block can be removed
1770 * by zil_sync().
1771 */
1772 txg_wait_synced(spa->spa_dsl_pool, 0);
1773 }
1774 return (error);
1775 }
1776
1777 static void
1778 spa_aux_check_removed(spa_aux_vdev_t *sav)
1779 {
1780 for (int i = 0; i < sav->sav_count; i++)
1781 spa_check_removed(sav->sav_vdevs[i]);
1782 }
1783
1784 void
1785 spa_claim_notify(zio_t *zio)
1786 {
1787 spa_t *spa = zio->io_spa;
1788
1789 if (zio->io_error)
1790 return;
1791
1792 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1793 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1794 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1795 mutex_exit(&spa->spa_props_lock);
1796 }
1797
1798 typedef struct spa_load_error {
1799 uint64_t sle_meta_count;
1800 uint64_t sle_data_count;
1801 } spa_load_error_t;
1802
1803 static void
1804 spa_load_verify_done(zio_t *zio)
1805 {
1806 blkptr_t *bp = zio->io_bp;
1807 spa_load_error_t *sle = zio->io_private;
1808 dmu_object_type_t type = BP_GET_TYPE(bp);
1809 int error = zio->io_error;
1810
1811 if (error) {
1812 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1813 type != DMU_OT_INTENT_LOG)
1814 atomic_add_64(&sle->sle_meta_count, 1);
1815 else
1816 atomic_add_64(&sle->sle_data_count, 1);
1817 }
1818 zio_data_buf_free(zio->io_data, zio->io_size);
1819 }
1820
1821 /*ARGSUSED*/
1822 static int
1823 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1824 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1825 {
1826 if (bp != NULL) {
1827 zio_t *rio = arg;
1828 size_t size = BP_GET_PSIZE(bp);
1829 void *data = zio_data_buf_alloc(size);
1830
1831 zio_nowait(zio_read(rio, spa, bp, data, size,
1832 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1833 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1834 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1835 }
1836 return (0);
1837 }
1838
1839 static int
1840 spa_load_verify(spa_t *spa)
1841 {
1842 zio_t *rio;
1843 spa_load_error_t sle = { 0 };
1844 zpool_rewind_policy_t policy;
1845 boolean_t verify_ok = B_FALSE;
1846 int error;
1847
1848 zpool_get_rewind_policy(spa->spa_config, &policy);
1849
1850 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1851 return (0);
1852
1853 rio = zio_root(spa, NULL, &sle,
1854 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1855
1856 error = traverse_pool(spa, spa->spa_verify_min_txg,
1857 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1858
1859 (void) zio_wait(rio);
1860
1861 spa->spa_load_meta_errors = sle.sle_meta_count;
1862 spa->spa_load_data_errors = sle.sle_data_count;
1863
1864 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1865 sle.sle_data_count <= policy.zrp_maxdata) {
1866 int64_t loss = 0;
1867
1868 verify_ok = B_TRUE;
1869 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1870 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1871
1872 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1873 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1874 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1875 VERIFY(nvlist_add_int64(spa->spa_load_info,
1876 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1877 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1878 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1879 } else {
1880 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1881 }
1882
1883 if (error) {
1884 if (error != ENXIO && error != EIO)
1885 error = SET_ERROR(EIO);
1886 return (error);
1887 }
1888
1889 return (verify_ok ? 0 : EIO);
1890 }
1891
1892 /*
1893 * Find a value in the pool props object.
1894 */
1895 static void
1896 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1897 {
1898 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1899 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1900 }
1901
1902 /*
1903 * Find a value in the pool directory object.
1904 */
1905 static int
1906 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1907 {
1908 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1909 name, sizeof (uint64_t), 1, val));
1910 }
1911
1912 static int
1913 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1914 {
1915 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1916 return (err);
1917 }
1918
1919 /*
1920 * Fix up config after a partly-completed split. This is done with the
1921 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1922 * pool have that entry in their config, but only the splitting one contains
1923 * a list of all the guids of the vdevs that are being split off.
1924 *
1925 * This function determines what to do with that list: either rejoin
1926 * all the disks to the pool, or complete the splitting process. To attempt
1927 * the rejoin, each disk that is offlined is marked online again, and
1928 * we do a reopen() call. If the vdev label for every disk that was
1929 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1930 * then we call vdev_split() on each disk, and complete the split.
1931 *
1932 * Otherwise we leave the config alone, with all the vdevs in place in
1933 * the original pool.
1934 */
1935 static void
1936 spa_try_repair(spa_t *spa, nvlist_t *config)
1937 {
1938 uint_t extracted;
1939 uint64_t *glist;
1940 uint_t i, gcount;
1941 nvlist_t *nvl;
1942 vdev_t **vd;
1943 boolean_t attempt_reopen;
1944
1945 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1946 return;
1947
1948 /* check that the config is complete */
1949 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1950 &glist, &gcount) != 0)
1951 return;
1952
1953 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1954
1955 /* attempt to online all the vdevs & validate */
1956 attempt_reopen = B_TRUE;
1957 for (i = 0; i < gcount; i++) {
1958 if (glist[i] == 0) /* vdev is hole */
1959 continue;
1960
1961 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1962 if (vd[i] == NULL) {
1963 /*
1964 * Don't bother attempting to reopen the disks;
1965 * just do the split.
1966 */
1967 attempt_reopen = B_FALSE;
1968 } else {
1969 /* attempt to re-online it */
1970 vd[i]->vdev_offline = B_FALSE;
1971 }
1972 }
1973
1974 if (attempt_reopen) {
1975 vdev_reopen(spa->spa_root_vdev);
1976
1977 /* check each device to see what state it's in */
1978 for (extracted = 0, i = 0; i < gcount; i++) {
1979 if (vd[i] != NULL &&
1980 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1981 break;
1982 ++extracted;
1983 }
1984 }
1985
1986 /*
1987 * If every disk has been moved to the new pool, or if we never
1988 * even attempted to look at them, then we split them off for
1989 * good.
1990 */
1991 if (!attempt_reopen || gcount == extracted) {
1992 for (i = 0; i < gcount; i++)
1993 if (vd[i] != NULL)
1994 vdev_split(vd[i]);
1995 vdev_reopen(spa->spa_root_vdev);
1996 }
1997
1998 kmem_free(vd, gcount * sizeof (vdev_t *));
1999 }
2000
2001 static int
2002 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2003 boolean_t mosconfig)
2004 {
2005 nvlist_t *config = spa->spa_config;
2006 char *ereport = FM_EREPORT_ZFS_POOL;
2007 char *comment;
2008 int error;
2009 uint64_t pool_guid;
2010 nvlist_t *nvl;
2011
2012 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2013 return (SET_ERROR(EINVAL));
2014
2015 ASSERT(spa->spa_comment == NULL);
2016 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2017 spa->spa_comment = spa_strdup(comment);
2018
2019 /*
2020 * Versioning wasn't explicitly added to the label until later, so if
2021 * it's not present treat it as the initial version.
2022 */
2023 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2024 &spa->spa_ubsync.ub_version) != 0)
2025 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2026
2027 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2028 &spa->spa_config_txg);
2029
2030 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2031 spa_guid_exists(pool_guid, 0)) {
2032 error = SET_ERROR(EEXIST);
2033 } else {
2034 spa->spa_config_guid = pool_guid;
2035
2036 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2037 &nvl) == 0) {
2038 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2039 KM_SLEEP) == 0);
2040 }
2041
2042 nvlist_free(spa->spa_load_info);
2043 spa->spa_load_info = fnvlist_alloc();
2044
2045 gethrestime(&spa->spa_loaded_ts);
2046 error = spa_load_impl(spa, pool_guid, config, state, type,
2047 mosconfig, &ereport);
2048 }
2049
2050 spa->spa_minref = refcount_count(&spa->spa_refcount);
2051 if (error) {
2052 if (error != EEXIST) {
2053 spa->spa_loaded_ts.tv_sec = 0;
2054 spa->spa_loaded_ts.tv_nsec = 0;
2055 }
2056 if (error != EBADF) {
2057 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2058 }
2059 }
2060 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2061 spa->spa_ena = 0;
2062
2063 return (error);
2064 }
2065
2066 /*
2067 * Load an existing storage pool, using the pool's builtin spa_config as a
2068 * source of configuration information.
2069 */
2070 static int
2071 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2072 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2073 char **ereport)
2074 {
2075 int error = 0;
2076 nvlist_t *nvroot = NULL;
2077 nvlist_t *label;
2078 vdev_t *rvd;
2079 uberblock_t *ub = &spa->spa_uberblock;
2080 uint64_t children, config_cache_txg = spa->spa_config_txg;
2081 int orig_mode = spa->spa_mode;
2082 int parse;
2083 uint64_t obj;
2084 boolean_t missing_feat_write = B_FALSE;
2085
2086 /*
2087 * If this is an untrusted config, access the pool in read-only mode.
2088 * This prevents things like resilvering recently removed devices.
2089 */
2090 if (!mosconfig)
2091 spa->spa_mode = FREAD;
2092
2093 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2094
2095 spa->spa_load_state = state;
2096
2097 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2098 return (SET_ERROR(EINVAL));
2099
2100 parse = (type == SPA_IMPORT_EXISTING ?
2101 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2102
2103 /*
2104 * Create "The Godfather" zio to hold all async IOs
2105 */
2106 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2107 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2108
2109 /*
2110 * Parse the configuration into a vdev tree. We explicitly set the
2111 * value that will be returned by spa_version() since parsing the
2112 * configuration requires knowing the version number.
2113 */
2114 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2115 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2116 spa_config_exit(spa, SCL_ALL, FTAG);
2117
2118 if (error != 0)
2119 return (error);
2120
2121 ASSERT(spa->spa_root_vdev == rvd);
2122
2123 if (type != SPA_IMPORT_ASSEMBLE) {
2124 ASSERT(spa_guid(spa) == pool_guid);
2125 }
2126
2127 /*
2128 * Try to open all vdevs, loading each label in the process.
2129 */
2130 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2131 error = vdev_open(rvd);
2132 spa_config_exit(spa, SCL_ALL, FTAG);
2133 if (error != 0)
2134 return (error);
2135
2136 /*
2137 * We need to validate the vdev labels against the configuration that
2138 * we have in hand, which is dependent on the setting of mosconfig. If
2139 * mosconfig is true then we're validating the vdev labels based on
2140 * that config. Otherwise, we're validating against the cached config
2141 * (zpool.cache) that was read when we loaded the zfs module, and then
2142 * later we will recursively call spa_load() and validate against
2143 * the vdev config.
2144 *
2145 * If we're assembling a new pool that's been split off from an
2146 * existing pool, the labels haven't yet been updated so we skip
2147 * validation for now.
2148 */
2149 if (type != SPA_IMPORT_ASSEMBLE) {
2150 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2151 error = vdev_validate(rvd, mosconfig);
2152 spa_config_exit(spa, SCL_ALL, FTAG);
2153
2154 if (error != 0)
2155 return (error);
2156
2157 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2158 return (SET_ERROR(ENXIO));
2159 }
2160
2161 /*
2162 * Find the best uberblock.
2163 */
2164 vdev_uberblock_load(rvd, ub, &label);
2165
2166 /*
2167 * If we weren't able to find a single valid uberblock, return failure.
2168 */
2169 if (ub->ub_txg == 0) {
2170 nvlist_free(label);
2171 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2172 }
2173
2174 /*
2175 * If the pool has an unsupported version we can't open it.
2176 */
2177 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2178 nvlist_free(label);
2179 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2180 }
2181
2182 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2183 nvlist_t *features;
2184
2185 /*
2186 * If we weren't able to find what's necessary for reading the
2187 * MOS in the label, return failure.
2188 */
2189 if (label == NULL || nvlist_lookup_nvlist(label,
2190 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2191 nvlist_free(label);
2192 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2193 ENXIO));
2194 }
2195
2196 /*
2197 * Update our in-core representation with the definitive values
2198 * from the label.
2199 */
2200 nvlist_free(spa->spa_label_features);
2201 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2202 }
2203
2204 nvlist_free(label);
2205
2206 /*
2207 * Look through entries in the label nvlist's features_for_read. If
2208 * there is a feature listed there which we don't understand then we
2209 * cannot open a pool.
2210 */
2211 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2212 nvlist_t *unsup_feat;
2213
2214 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2215 0);
2216
2217 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2218 NULL); nvp != NULL;
2219 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2220 if (!zfeature_is_supported(nvpair_name(nvp))) {
2221 VERIFY(nvlist_add_string(unsup_feat,
2222 nvpair_name(nvp), "") == 0);
2223 }
2224 }
2225
2226 if (!nvlist_empty(unsup_feat)) {
2227 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2228 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2229 nvlist_free(unsup_feat);
2230 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2231 ENOTSUP));
2232 }
2233
2234 nvlist_free(unsup_feat);
2235 }
2236
2237 /*
2238 * If the vdev guid sum doesn't match the uberblock, we have an
2239 * incomplete configuration. We first check to see if the pool
2240 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2241 * If it is, defer the vdev_guid_sum check till later so we
2242 * can handle missing vdevs.
2243 */
2244 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2245 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2246 rvd->vdev_guid_sum != ub->ub_guid_sum)
2247 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2248
2249 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2250 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2251 spa_try_repair(spa, config);
2252 spa_config_exit(spa, SCL_ALL, FTAG);
2253 nvlist_free(spa->spa_config_splitting);
2254 spa->spa_config_splitting = NULL;
2255 }
2256
2257 /*
2258 * Initialize internal SPA structures.
2259 */
2260 spa->spa_state = POOL_STATE_ACTIVE;
2261 spa->spa_ubsync = spa->spa_uberblock;
2262 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2263 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2264 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2265 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2266 spa->spa_claim_max_txg = spa->spa_first_txg;
2267 spa->spa_prev_software_version = ub->ub_software_version;
2268
2269 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2270 if (error)
2271 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2272 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2273
2274 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2275 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2276
2277 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2278 boolean_t missing_feat_read = B_FALSE;
2279 nvlist_t *unsup_feat, *enabled_feat;
2280
2281 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2282 &spa->spa_feat_for_read_obj) != 0) {
2283 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2284 }
2285
2286 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2287 &spa->spa_feat_for_write_obj) != 0) {
2288 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2289 }
2290
2291 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2292 &spa->spa_feat_desc_obj) != 0) {
2293 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2294 }
2295
2296 enabled_feat = fnvlist_alloc();
2297 unsup_feat = fnvlist_alloc();
2298
2299 if (!feature_is_supported(spa->spa_meta_objset,
2300 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2301 unsup_feat, enabled_feat))
2302 missing_feat_read = B_TRUE;
2303
2304 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2305 if (!feature_is_supported(spa->spa_meta_objset,
2306 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2307 unsup_feat, enabled_feat)) {
2308 missing_feat_write = B_TRUE;
2309 }
2310 }
2311
2312 fnvlist_add_nvlist(spa->spa_load_info,
2313 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2314
2315 if (!nvlist_empty(unsup_feat)) {
2316 fnvlist_add_nvlist(spa->spa_load_info,
2317 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2318 }
2319
2320 fnvlist_free(enabled_feat);
2321 fnvlist_free(unsup_feat);
2322
2323 if (!missing_feat_read) {
2324 fnvlist_add_boolean(spa->spa_load_info,
2325 ZPOOL_CONFIG_CAN_RDONLY);
2326 }
2327
2328 /*
2329 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2330 * twofold: to determine whether the pool is available for
2331 * import in read-write mode and (if it is not) whether the
2332 * pool is available for import in read-only mode. If the pool
2333 * is available for import in read-write mode, it is displayed
2334 * as available in userland; if it is not available for import
2335 * in read-only mode, it is displayed as unavailable in
2336 * userland. If the pool is available for import in read-only
2337 * mode but not read-write mode, it is displayed as unavailable
2338 * in userland with a special note that the pool is actually
2339 * available for open in read-only mode.
2340 *
2341 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2342 * missing a feature for write, we must first determine whether
2343 * the pool can be opened read-only before returning to
2344 * userland in order to know whether to display the
2345 * abovementioned note.
2346 */
2347 if (missing_feat_read || (missing_feat_write &&
2348 spa_writeable(spa))) {
2349 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2350 ENOTSUP));
2351 }
2352 }
2353
2354 spa->spa_is_initializing = B_TRUE;
2355 error = dsl_pool_open(spa->spa_dsl_pool);
2356 spa->spa_is_initializing = B_FALSE;
2357 if (error != 0)
2358 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2359
2360 if (!mosconfig) {
2361 uint64_t hostid;
2362 nvlist_t *policy = NULL, *nvconfig;
2363
2364 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2365 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2366
2367 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2368 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2369 char *hostname;
2370 unsigned long myhostid = 0;
2371
2372 VERIFY(nvlist_lookup_string(nvconfig,
2373 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2374
2375 #ifdef _KERNEL
2376 myhostid = zone_get_hostid(NULL);
2377 #else /* _KERNEL */
2378 /*
2379 * We're emulating the system's hostid in userland, so
2380 * we can't use zone_get_hostid().
2381 */
2382 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2383 #endif /* _KERNEL */
2384 if (hostid != 0 && myhostid != 0 &&
2385 hostid != myhostid) {
2386 nvlist_free(nvconfig);
2387 cmn_err(CE_WARN, "pool '%s' could not be "
2388 "loaded as it was last accessed by "
2389 "another system (host: %s hostid: 0x%lx). "
2390 "See: http://illumos.org/msg/ZFS-8000-EY",
2391 spa_name(spa), hostname,
2392 (unsigned long)hostid);
2393 return (SET_ERROR(EBADF));
2394 }
2395 }
2396 if (nvlist_lookup_nvlist(spa->spa_config,
2397 ZPOOL_REWIND_POLICY, &policy) == 0)
2398 VERIFY(nvlist_add_nvlist(nvconfig,
2399 ZPOOL_REWIND_POLICY, policy) == 0);
2400
2401 spa_config_set(spa, nvconfig);
2402 spa_unload(spa);
2403 spa_deactivate(spa);
2404 spa_activate(spa, orig_mode);
2405
2406 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2407 }
2408
2409 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2410 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2411 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2412 if (error != 0)
2413 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2414
2415 /*
2416 * Load the bit that tells us to use the new accounting function
2417 * (raid-z deflation). If we have an older pool, this will not
2418 * be present.
2419 */
2420 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2421 if (error != 0 && error != ENOENT)
2422 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2423
2424 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2425 &spa->spa_creation_version);
2426 if (error != 0 && error != ENOENT)
2427 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2428
2429 /*
2430 * Load the persistent error log. If we have an older pool, this will
2431 * not be present.
2432 */
2433 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2434 if (error != 0 && error != ENOENT)
2435 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2436
2437 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2438 &spa->spa_errlog_scrub);
2439 if (error != 0 && error != ENOENT)
2440 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2441
2442 /*
2443 * Load the history object. If we have an older pool, this
2444 * will not be present.
2445 */
2446 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2447 if (error != 0 && error != ENOENT)
2448 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2449
2450 /*
2451 * If we're assembling the pool from the split-off vdevs of
2452 * an existing pool, we don't want to attach the spares & cache
2453 * devices.
2454 */
2455
2456 /*
2457 * Load any hot spares for this pool.
2458 */
2459 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2460 if (error != 0 && error != ENOENT)
2461 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2462 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2463 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2464 if (load_nvlist(spa, spa->spa_spares.sav_object,
2465 &spa->spa_spares.sav_config) != 0)
2466 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2467
2468 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2469 spa_load_spares(spa);
2470 spa_config_exit(spa, SCL_ALL, FTAG);
2471 } else if (error == 0) {
2472 spa->spa_spares.sav_sync = B_TRUE;
2473 }
2474
2475 /*
2476 * Load any level 2 ARC devices for this pool.
2477 */
2478 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2479 &spa->spa_l2cache.sav_object);
2480 if (error != 0 && error != ENOENT)
2481 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2482 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2483 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2484 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2485 &spa->spa_l2cache.sav_config) != 0)
2486 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2487
2488 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2489 spa_load_l2cache(spa);
2490 spa_config_exit(spa, SCL_ALL, FTAG);
2491 } else if (error == 0) {
2492 spa->spa_l2cache.sav_sync = B_TRUE;
2493 }
2494
2495 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2496
2497 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2498 if (error && error != ENOENT)
2499 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2500
2501 if (error == 0) {
2502 uint64_t autoreplace;
2503
2504 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2505 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2506 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2507 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2508 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2509 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2510 &spa->spa_dedup_ditto);
2511
2512 spa->spa_autoreplace = (autoreplace != 0);
2513 }
2514
2515 /*
2516 * If the 'autoreplace' property is set, then post a resource notifying
2517 * the ZFS DE that it should not issue any faults for unopenable
2518 * devices. We also iterate over the vdevs, and post a sysevent for any
2519 * unopenable vdevs so that the normal autoreplace handler can take
2520 * over.
2521 */
2522 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2523 spa_check_removed(spa->spa_root_vdev);
2524 /*
2525 * For the import case, this is done in spa_import(), because
2526 * at this point we're using the spare definitions from
2527 * the MOS config, not necessarily from the userland config.
2528 */
2529 if (state != SPA_LOAD_IMPORT) {
2530 spa_aux_check_removed(&spa->spa_spares);
2531 spa_aux_check_removed(&spa->spa_l2cache);
2532 }
2533 }
2534
2535 /*
2536 * Load the vdev state for all toplevel vdevs.
2537 */
2538 vdev_load(rvd);
2539
2540 /*
2541 * Propagate the leaf DTLs we just loaded all the way up the tree.
2542 */
2543 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2544 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2545 spa_config_exit(spa, SCL_ALL, FTAG);
2546
2547 /*
2548 * Load the DDTs (dedup tables).
2549 */
2550 error = ddt_load(spa);
2551 if (error != 0)
2552 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2553
2554 spa_update_dspace(spa);
2555
2556 /*
2557 * Validate the config, using the MOS config to fill in any
2558 * information which might be missing. If we fail to validate
2559 * the config then declare the pool unfit for use. If we're
2560 * assembling a pool from a split, the log is not transferred
2561 * over.
2562 */
2563 if (type != SPA_IMPORT_ASSEMBLE) {
2564 nvlist_t *nvconfig;
2565
2566 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2567 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2568
2569 if (!spa_config_valid(spa, nvconfig)) {
2570 nvlist_free(nvconfig);
2571 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2572 ENXIO));
2573 }
2574 nvlist_free(nvconfig);
2575
2576 /*
2577 * Now that we've validated the config, check the state of the
2578 * root vdev. If it can't be opened, it indicates one or
2579 * more toplevel vdevs are faulted.
2580 */
2581 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2582 return (SET_ERROR(ENXIO));
2583
2584 if (spa_check_logs(spa)) {
2585 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2586 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2587 }
2588 }
2589
2590 if (missing_feat_write) {
2591 ASSERT(state == SPA_LOAD_TRYIMPORT);
2592
2593 /*
2594 * At this point, we know that we can open the pool in
2595 * read-only mode but not read-write mode. We now have enough
2596 * information and can return to userland.
2597 */
2598 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2599 }
2600
2601 /*
2602 * We've successfully opened the pool, verify that we're ready
2603 * to start pushing transactions.
2604 */
2605 if (state != SPA_LOAD_TRYIMPORT) {
2606 if (error = spa_load_verify(spa))
2607 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2608 error));
2609 }
2610
2611 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2612 spa->spa_load_max_txg == UINT64_MAX)) {
2613 dmu_tx_t *tx;
2614 int need_update = B_FALSE;
2615
2616 ASSERT(state != SPA_LOAD_TRYIMPORT);
2617
2618 /*
2619 * Claim log blocks that haven't been committed yet.
2620 * This must all happen in a single txg.
2621 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2622 * invoked from zil_claim_log_block()'s i/o done callback.
2623 * Price of rollback is that we abandon the log.
2624 */
2625 spa->spa_claiming = B_TRUE;
2626
2627 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2628 spa_first_txg(spa));
2629 (void) dmu_objset_find(spa_name(spa),
2630 zil_claim, tx, DS_FIND_CHILDREN);
2631 dmu_tx_commit(tx);
2632
2633 spa->spa_claiming = B_FALSE;
2634
2635 spa_set_log_state(spa, SPA_LOG_GOOD);
2636 spa->spa_sync_on = B_TRUE;
2637 txg_sync_start(spa->spa_dsl_pool);
2638
2639 /*
2640 * Wait for all claims to sync. We sync up to the highest
2641 * claimed log block birth time so that claimed log blocks
2642 * don't appear to be from the future. spa_claim_max_txg
2643 * will have been set for us by either zil_check_log_chain()
2644 * (invoked from spa_check_logs()) or zil_claim() above.
2645 */
2646 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2647
2648 /*
2649 * If the config cache is stale, or we have uninitialized
2650 * metaslabs (see spa_vdev_add()), then update the config.
2651 *
2652 * If this is a verbatim import, trust the current
2653 * in-core spa_config and update the disk labels.
2654 */
2655 if (config_cache_txg != spa->spa_config_txg ||
2656 state == SPA_LOAD_IMPORT ||
2657 state == SPA_LOAD_RECOVER ||
2658 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2659 need_update = B_TRUE;
2660
2661 for (int c = 0; c < rvd->vdev_children; c++)
2662 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2663 need_update = B_TRUE;
2664
2665 /*
2666 * Update the config cache asychronously in case we're the
2667 * root pool, in which case the config cache isn't writable yet.
2668 */
2669 if (need_update)
2670 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2671
2672 /*
2673 * Check all DTLs to see if anything needs resilvering.
2674 */
2675 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2676 vdev_resilver_needed(rvd, NULL, NULL))
2677 spa_async_request(spa, SPA_ASYNC_RESILVER);
2678
2679 /*
2680 * Log the fact that we booted up (so that we can detect if
2681 * we rebooted in the middle of an operation).
2682 */
2683 spa_history_log_version(spa, "open");
2684
2685 /*
2686 * Delete any inconsistent datasets.
2687 */
2688 (void) dmu_objset_find(spa_name(spa),
2689 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2690
2691 /*
2692 * Clean up any stale temporary dataset userrefs.
2693 */
2694 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2695 }
2696
2697 return (0);
2698 }
2699
2700 static int
2701 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2702 {
2703 int mode = spa->spa_mode;
2704
2705 spa_unload(spa);
2706 spa_deactivate(spa);
2707
2708 spa->spa_load_max_txg--;
2709
2710 spa_activate(spa, mode);
2711 spa_async_suspend(spa);
2712
2713 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2714 }
2715
2716 /*
2717 * If spa_load() fails this function will try loading prior txg's. If
2718 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2719 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2720 * function will not rewind the pool and will return the same error as
2721 * spa_load().
2722 */
2723 static int
2724 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2725 uint64_t max_request, int rewind_flags)
2726 {
2727 nvlist_t *loadinfo = NULL;
2728 nvlist_t *config = NULL;
2729 int load_error, rewind_error;
2730 uint64_t safe_rewind_txg;
2731 uint64_t min_txg;
2732
2733 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2734 spa->spa_load_max_txg = spa->spa_load_txg;
2735 spa_set_log_state(spa, SPA_LOG_CLEAR);
2736 } else {
2737 spa->spa_load_max_txg = max_request;
2738 }
2739
2740 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2741 mosconfig);
2742 if (load_error == 0)
2743 return (0);
2744
2745 if (spa->spa_root_vdev != NULL)
2746 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2747
2748 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2749 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2750
2751 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2752 nvlist_free(config);
2753 return (load_error);
2754 }
2755
2756 if (state == SPA_LOAD_RECOVER) {
2757 /* Price of rolling back is discarding txgs, including log */
2758 spa_set_log_state(spa, SPA_LOG_CLEAR);
2759 } else {
2760 /*
2761 * If we aren't rolling back save the load info from our first
2762 * import attempt so that we can restore it after attempting
2763 * to rewind.
2764 */
2765 loadinfo = spa->spa_load_info;
2766 spa->spa_load_info = fnvlist_alloc();
2767 }
2768
2769 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2770 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2771 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2772 TXG_INITIAL : safe_rewind_txg;
2773
2774 /*
2775 * Continue as long as we're finding errors, we're still within
2776 * the acceptable rewind range, and we're still finding uberblocks
2777 */
2778 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2779 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2780 if (spa->spa_load_max_txg < safe_rewind_txg)
2781 spa->spa_extreme_rewind = B_TRUE;
2782 rewind_error = spa_load_retry(spa, state, mosconfig);
2783 }
2784
2785 spa->spa_extreme_rewind = B_FALSE;
2786 spa->spa_load_max_txg = UINT64_MAX;
2787
2788 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2789 spa_config_set(spa, config);
2790
2791 if (state == SPA_LOAD_RECOVER) {
2792 ASSERT3P(loadinfo, ==, NULL);
2793 return (rewind_error);
2794 } else {
2795 /* Store the rewind info as part of the initial load info */
2796 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2797 spa->spa_load_info);
2798
2799 /* Restore the initial load info */
2800 fnvlist_free(spa->spa_load_info);
2801 spa->spa_load_info = loadinfo;
2802
2803 return (load_error);
2804 }
2805 }
2806
2807 /*
2808 * Pool Open/Import
2809 *
2810 * The import case is identical to an open except that the configuration is sent
2811 * down from userland, instead of grabbed from the configuration cache. For the
2812 * case of an open, the pool configuration will exist in the
2813 * POOL_STATE_UNINITIALIZED state.
2814 *
2815 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2816 * the same time open the pool, without having to keep around the spa_t in some
2817 * ambiguous state.
2818 */
2819 static int
2820 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2821 nvlist_t **config)
2822 {
2823 spa_t *spa;
2824 spa_load_state_t state = SPA_LOAD_OPEN;
2825 int error;
2826 int locked = B_FALSE;
2827
2828 *spapp = NULL;
2829
2830 /*
2831 * As disgusting as this is, we need to support recursive calls to this
2832 * function because dsl_dir_open() is called during spa_load(), and ends
2833 * up calling spa_open() again. The real fix is to figure out how to
2834 * avoid dsl_dir_open() calling this in the first place.
2835 */
2836 if (mutex_owner(&spa_namespace_lock) != curthread) {
2837 mutex_enter(&spa_namespace_lock);
2838 locked = B_TRUE;
2839 }
2840
2841 if ((spa = spa_lookup(pool)) == NULL) {
2842 if (locked)
2843 mutex_exit(&spa_namespace_lock);
2844 return (SET_ERROR(ENOENT));
2845 }
2846
2847 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2848 zpool_rewind_policy_t policy;
2849
2850 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2851 &policy);
2852 if (policy.zrp_request & ZPOOL_DO_REWIND)
2853 state = SPA_LOAD_RECOVER;
2854
2855 spa_activate(spa, spa_mode_global);
2856
2857 if (state != SPA_LOAD_RECOVER)
2858 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2859
2860 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2861 policy.zrp_request);
2862
2863 if (error == EBADF) {
2864 /*
2865 * If vdev_validate() returns failure (indicated by
2866 * EBADF), it indicates that one of the vdevs indicates
2867 * that the pool has been exported or destroyed. If
2868 * this is the case, the config cache is out of sync and
2869 * we should remove the pool from the namespace.
2870 */
2871 spa_unload(spa);
2872 spa_deactivate(spa);
2873 spa_config_sync(spa, B_TRUE, B_TRUE);
2874 spa_remove(spa);
2875 if (locked)
2876 mutex_exit(&spa_namespace_lock);
2877 return (SET_ERROR(ENOENT));
2878 }
2879
2880 if (error) {
2881 /*
2882 * We can't open the pool, but we still have useful
2883 * information: the state of each vdev after the
2884 * attempted vdev_open(). Return this to the user.
2885 */
2886 if (config != NULL && spa->spa_config) {
2887 VERIFY(nvlist_dup(spa->spa_config, config,
2888 KM_SLEEP) == 0);
2889 VERIFY(nvlist_add_nvlist(*config,
2890 ZPOOL_CONFIG_LOAD_INFO,
2891 spa->spa_load_info) == 0);
2892 }
2893 spa_unload(spa);
2894 spa_deactivate(spa);
2895 spa->spa_last_open_failed = error;
2896 if (locked)
2897 mutex_exit(&spa_namespace_lock);
2898 *spapp = NULL;
2899 return (error);
2900 }
2901 }
2902
2903 spa_open_ref(spa, tag);
2904
2905 if (config != NULL)
2906 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2907
2908 /*
2909 * If we've recovered the pool, pass back any information we
2910 * gathered while doing the load.
2911 */
2912 if (state == SPA_LOAD_RECOVER) {
2913 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2914 spa->spa_load_info) == 0);
2915 }
2916
2917 if (locked) {
2918 spa->spa_last_open_failed = 0;
2919 spa->spa_last_ubsync_txg = 0;
2920 spa->spa_load_txg = 0;
2921 mutex_exit(&spa_namespace_lock);
2922 }
2923
2924 *spapp = spa;
2925
2926 return (0);
2927 }
2928
2929 int
2930 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2931 nvlist_t **config)
2932 {
2933 return (spa_open_common(name, spapp, tag, policy, config));
2934 }
2935
2936 int
2937 spa_open(const char *name, spa_t **spapp, void *tag)
2938 {
2939 return (spa_open_common(name, spapp, tag, NULL, NULL));
2940 }
2941
2942 /*
2943 * Lookup the given spa_t, incrementing the inject count in the process,
2944 * preventing it from being exported or destroyed.
2945 */
2946 spa_t *
2947 spa_inject_addref(char *name)
2948 {
2949 spa_t *spa;
2950
2951 mutex_enter(&spa_namespace_lock);
2952 if ((spa = spa_lookup(name)) == NULL) {
2953 mutex_exit(&spa_namespace_lock);
2954 return (NULL);
2955 }
2956 spa->spa_inject_ref++;
2957 mutex_exit(&spa_namespace_lock);
2958
2959 return (spa);
2960 }
2961
2962 void
2963 spa_inject_delref(spa_t *spa)
2964 {
2965 mutex_enter(&spa_namespace_lock);
2966 spa->spa_inject_ref--;
2967 mutex_exit(&spa_namespace_lock);
2968 }
2969
2970 /*
2971 * Add spares device information to the nvlist.
2972 */
2973 static void
2974 spa_add_spares(spa_t *spa, nvlist_t *config)
2975 {
2976 nvlist_t **spares;
2977 uint_t i, nspares;
2978 nvlist_t *nvroot;
2979 uint64_t guid;
2980 vdev_stat_t *vs;
2981 uint_t vsc;
2982 uint64_t pool;
2983
2984 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2985
2986 if (spa->spa_spares.sav_count == 0)
2987 return;
2988
2989 VERIFY(nvlist_lookup_nvlist(config,
2990 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2991 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2992 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2993 if (nspares != 0) {
2994 VERIFY(nvlist_add_nvlist_array(nvroot,
2995 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2996 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2997 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2998
2999 /*
3000 * Go through and find any spares which have since been
3001 * repurposed as an active spare. If this is the case, update
3002 * their status appropriately.
3003 */
3004 for (i = 0; i < nspares; i++) {
3005 VERIFY(nvlist_lookup_uint64(spares[i],
3006 ZPOOL_CONFIG_GUID, &guid) == 0);
3007 if (spa_spare_exists(guid, &pool, NULL) &&
3008 pool != 0ULL) {
3009 VERIFY(nvlist_lookup_uint64_array(
3010 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3011 (uint64_t **)&vs, &vsc) == 0);
3012 vs->vs_state = VDEV_STATE_CANT_OPEN;
3013 vs->vs_aux = VDEV_AUX_SPARED;
3014 }
3015 }
3016 }
3017 }
3018
3019 /*
3020 * Add l2cache device information to the nvlist, including vdev stats.
3021 */
3022 static void
3023 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3024 {
3025 nvlist_t **l2cache;
3026 uint_t i, j, nl2cache;
3027 nvlist_t *nvroot;
3028 uint64_t guid;
3029 vdev_t *vd;
3030 vdev_stat_t *vs;
3031 uint_t vsc;
3032
3033 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3034
3035 if (spa->spa_l2cache.sav_count == 0)
3036 return;
3037
3038 VERIFY(nvlist_lookup_nvlist(config,
3039 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3040 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3041 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3042 if (nl2cache != 0) {
3043 VERIFY(nvlist_add_nvlist_array(nvroot,
3044 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3045 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3046 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3047
3048 /*
3049 * Update level 2 cache device stats.
3050 */
3051
3052 for (i = 0; i < nl2cache; i++) {
3053 VERIFY(nvlist_lookup_uint64(l2cache[i],
3054 ZPOOL_CONFIG_GUID, &guid) == 0);
3055
3056 vd = NULL;
3057 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3058 if (guid ==
3059 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3060 vd = spa->spa_l2cache.sav_vdevs[j];
3061 break;
3062 }
3063 }
3064 ASSERT(vd != NULL);
3065
3066 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3067 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3068 == 0);
3069 vdev_get_stats(vd, vs);
3070 }
3071 }
3072 }
3073
3074 static void
3075 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3076 {
3077 nvlist_t *features;
3078 zap_cursor_t zc;
3079 zap_attribute_t za;
3080
3081 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3082 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3083
3084 if (spa->spa_feat_for_read_obj != 0) {
3085 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3086 spa->spa_feat_for_read_obj);
3087 zap_cursor_retrieve(&zc, &za) == 0;
3088 zap_cursor_advance(&zc)) {
3089 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3090 za.za_num_integers == 1);
3091 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3092 za.za_first_integer));
3093 }
3094 zap_cursor_fini(&zc);
3095 }
3096
3097 if (spa->spa_feat_for_write_obj != 0) {
3098 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3099 spa->spa_feat_for_write_obj);
3100 zap_cursor_retrieve(&zc, &za) == 0;
3101 zap_cursor_advance(&zc)) {
3102 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3103 za.za_num_integers == 1);
3104 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3105 za.za_first_integer));
3106 }
3107 zap_cursor_fini(&zc);
3108 }
3109
3110 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3111 features) == 0);
3112 nvlist_free(features);
3113 }
3114
3115 int
3116 spa_get_stats(const char *name, nvlist_t **config,
3117 char *altroot, size_t buflen)
3118 {
3119 int error;
3120 spa_t *spa;
3121
3122 *config = NULL;
3123 error = spa_open_common(name, &spa, FTAG, NULL, config);
3124
3125 if (spa != NULL) {
3126 /*
3127 * This still leaves a window of inconsistency where the spares
3128 * or l2cache devices could change and the config would be
3129 * self-inconsistent.
3130 */
3131 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3132
3133 if (*config != NULL) {
3134 uint64_t loadtimes[2];
3135
3136 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3137 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3138 VERIFY(nvlist_add_uint64_array(*config,
3139 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3140
3141 VERIFY(nvlist_add_uint64(*config,
3142 ZPOOL_CONFIG_ERRCOUNT,
3143 spa_get_errlog_size(spa)) == 0);
3144
3145 if (spa_suspended(spa))
3146 VERIFY(nvlist_add_uint64(*config,
3147 ZPOOL_CONFIG_SUSPENDED,
3148 spa->spa_failmode) == 0);
3149
3150 spa_add_spares(spa, *config);
3151 spa_add_l2cache(spa, *config);
3152 spa_add_feature_stats(spa, *config);
3153 }
3154 }
3155
3156 /*
3157 * We want to get the alternate root even for faulted pools, so we cheat
3158 * and call spa_lookup() directly.
3159 */
3160 if (altroot) {
3161 if (spa == NULL) {
3162 mutex_enter(&spa_namespace_lock);
3163 spa = spa_lookup(name);
3164 if (spa)
3165 spa_altroot(spa, altroot, buflen);
3166 else
3167 altroot[0] = '\0';
3168 spa = NULL;
3169 mutex_exit(&spa_namespace_lock);
3170 } else {
3171 spa_altroot(spa, altroot, buflen);
3172 }
3173 }
3174
3175 if (spa != NULL) {
3176 spa_config_exit(spa, SCL_CONFIG, FTAG);
3177 spa_close(spa, FTAG);
3178 }
3179
3180 return (error);
3181 }
3182
3183 /*
3184 * Validate that the auxiliary device array is well formed. We must have an
3185 * array of nvlists, each which describes a valid leaf vdev. If this is an
3186 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3187 * specified, as long as they are well-formed.
3188 */
3189 static int
3190 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3191 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3192 vdev_labeltype_t label)
3193 {
3194 nvlist_t **dev;
3195 uint_t i, ndev;
3196 vdev_t *vd;
3197 int error;
3198
3199 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3200
3201 /*
3202 * It's acceptable to have no devs specified.
3203 */
3204 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3205 return (0);
3206
3207 if (ndev == 0)
3208 return (SET_ERROR(EINVAL));
3209
3210 /*
3211 * Make sure the pool is formatted with a version that supports this
3212 * device type.
3213 */
3214 if (spa_version(spa) < version)
3215 return (SET_ERROR(ENOTSUP));
3216
3217 /*
3218 * Set the pending device list so we correctly handle device in-use
3219 * checking.
3220 */
3221 sav->sav_pending = dev;
3222 sav->sav_npending = ndev;
3223
3224 for (i = 0; i < ndev; i++) {
3225 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3226 mode)) != 0)
3227 goto out;
3228
3229 if (!vd->vdev_ops->vdev_op_leaf) {
3230 vdev_free(vd);
3231 error = SET_ERROR(EINVAL);
3232 goto out;
3233 }
3234
3235 /*
3236 * The L2ARC currently only supports disk devices in
3237 * kernel context. For user-level testing, we allow it.
3238 */
3239 #ifdef _KERNEL
3240 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3241 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3242 error = SET_ERROR(ENOTBLK);
3243 vdev_free(vd);
3244 goto out;
3245 }
3246 #endif
3247 vd->vdev_top = vd;
3248
3249 if ((error = vdev_open(vd)) == 0 &&
3250 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3251 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3252 vd->vdev_guid) == 0);
3253 }
3254
3255 vdev_free(vd);
3256
3257 if (error &&
3258 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3259 goto out;
3260 else
3261 error = 0;
3262 }
3263
3264 out:
3265 sav->sav_pending = NULL;
3266 sav->sav_npending = 0;
3267 return (error);
3268 }
3269
3270 static int
3271 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3272 {
3273 int error;
3274
3275 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3276
3277 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3278 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3279 VDEV_LABEL_SPARE)) != 0) {
3280 return (error);
3281 }
3282
3283 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3284 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3285 VDEV_LABEL_L2CACHE));
3286 }
3287
3288 static void
3289 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3290 const char *config)
3291 {
3292 int i;
3293
3294 if (sav->sav_config != NULL) {
3295 nvlist_t **olddevs;
3296 uint_t oldndevs;
3297 nvlist_t **newdevs;
3298
3299 /*
3300 * Generate new dev list by concatentating with the
3301 * current dev list.
3302 */
3303 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3304 &olddevs, &oldndevs) == 0);
3305
3306 newdevs = kmem_alloc(sizeof (void *) *
3307 (ndevs + oldndevs), KM_SLEEP);
3308 for (i = 0; i < oldndevs; i++)
3309 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3310 KM_SLEEP) == 0);
3311 for (i = 0; i < ndevs; i++)
3312 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3313 KM_SLEEP) == 0);
3314
3315 VERIFY(nvlist_remove(sav->sav_config, config,
3316 DATA_TYPE_NVLIST_ARRAY) == 0);
3317
3318 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3319 config, newdevs, ndevs + oldndevs) == 0);
3320 for (i = 0; i < oldndevs + ndevs; i++)
3321 nvlist_free(newdevs[i]);
3322 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3323 } else {
3324 /*
3325 * Generate a new dev list.
3326 */
3327 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3328 KM_SLEEP) == 0);
3329 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3330 devs, ndevs) == 0);
3331 }
3332 }
3333
3334 /*
3335 * Stop and drop level 2 ARC devices
3336 */
3337 void
3338 spa_l2cache_drop(spa_t *spa)
3339 {
3340 vdev_t *vd;
3341 int i;
3342 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3343
3344 for (i = 0; i < sav->sav_count; i++) {
3345 uint64_t pool;
3346
3347 vd = sav->sav_vdevs[i];
3348 ASSERT(vd != NULL);
3349
3350 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3351 pool != 0ULL && l2arc_vdev_present(vd))
3352 l2arc_remove_vdev(vd);
3353 }
3354 }
3355
3356 /*
3357 * Pool Creation
3358 */
3359 int
3360 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3361 nvlist_t *zplprops)
3362 {
3363 spa_t *spa;
3364 char *altroot = NULL;
3365 vdev_t *rvd;
3366 dsl_pool_t *dp;
3367 dmu_tx_t *tx;
3368 int error = 0;
3369 uint64_t txg = TXG_INITIAL;
3370 nvlist_t **spares, **l2cache;
3371 uint_t nspares, nl2cache;
3372 uint64_t version, obj;
3373 boolean_t has_features;
3374
3375 /*
3376 * If this pool already exists, return failure.
3377 */
3378 mutex_enter(&spa_namespace_lock);
3379 if (spa_lookup(pool) != NULL) {
3380 mutex_exit(&spa_namespace_lock);
3381 return (SET_ERROR(EEXIST));
3382 }
3383
3384 /*
3385 * Allocate a new spa_t structure.
3386 */
3387 (void) nvlist_lookup_string(props,
3388 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3389 spa = spa_add(pool, NULL, altroot);
3390 spa_activate(spa, spa_mode_global);
3391
3392 if (props && (error = spa_prop_validate(spa, props))) {
3393 spa_deactivate(spa);
3394 spa_remove(spa);
3395 mutex_exit(&spa_namespace_lock);
3396 return (error);
3397 }
3398
3399 has_features = B_FALSE;
3400 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3401 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3402 if (zpool_prop_feature(nvpair_name(elem)))
3403 has_features = B_TRUE;
3404 }
3405
3406 if (has_features || nvlist_lookup_uint64(props,
3407 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3408 version = SPA_VERSION;
3409 }
3410 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3411
3412 spa->spa_first_txg = txg;
3413 spa->spa_uberblock.ub_txg = txg - 1;
3414 spa->spa_uberblock.ub_version = version;
3415 spa->spa_ubsync = spa->spa_uberblock;
3416
3417 /*
3418 * Create "The Godfather" zio to hold all async IOs
3419 */
3420 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3421 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3422
3423 /*
3424 * Create the root vdev.
3425 */
3426 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3427
3428 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3429
3430 ASSERT(error != 0 || rvd != NULL);
3431 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3432
3433 if (error == 0 && !zfs_allocatable_devs(nvroot))
3434 error = SET_ERROR(EINVAL);
3435
3436 if (error == 0 &&
3437 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3438 (error = spa_validate_aux(spa, nvroot, txg,
3439 VDEV_ALLOC_ADD)) == 0) {
3440 for (int c = 0; c < rvd->vdev_children; c++) {
3441 vdev_metaslab_set_size(rvd->vdev_child[c]);
3442 vdev_expand(rvd->vdev_child[c], txg);
3443 }
3444 }
3445
3446 spa_config_exit(spa, SCL_ALL, FTAG);
3447
3448 if (error != 0) {
3449 spa_unload(spa);
3450 spa_deactivate(spa);
3451 spa_remove(spa);
3452 mutex_exit(&spa_namespace_lock);
3453 return (error);
3454 }
3455
3456 /*
3457 * Get the list of spares, if specified.
3458 */
3459 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3460 &spares, &nspares) == 0) {
3461 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3462 KM_SLEEP) == 0);
3463 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3464 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3465 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3466 spa_load_spares(spa);
3467 spa_config_exit(spa, SCL_ALL, FTAG);
3468 spa->spa_spares.sav_sync = B_TRUE;
3469 }
3470
3471 /*
3472 * Get the list of level 2 cache devices, if specified.
3473 */
3474 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3475 &l2cache, &nl2cache) == 0) {
3476 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3477 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3478 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3479 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3480 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3481 spa_load_l2cache(spa);
3482 spa_config_exit(spa, SCL_ALL, FTAG);
3483 spa->spa_l2cache.sav_sync = B_TRUE;
3484 }
3485
3486 spa->spa_is_initializing = B_TRUE;
3487 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3488 spa->spa_meta_objset = dp->dp_meta_objset;
3489 spa->spa_is_initializing = B_FALSE;
3490
3491 /*
3492 * Create DDTs (dedup tables).
3493 */
3494 ddt_create(spa);
3495
3496 spa_update_dspace(spa);
3497
3498 tx = dmu_tx_create_assigned(dp, txg);
3499
3500 /*
3501 * Create the pool config object.
3502 */
3503 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3504 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3505 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3506
3507 if (zap_add(spa->spa_meta_objset,
3508 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3509 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3510 cmn_err(CE_PANIC, "failed to add pool config");
3511 }
3512
3513 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3514 spa_feature_create_zap_objects(spa, tx);
3515
3516 if (zap_add(spa->spa_meta_objset,
3517 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3518 sizeof (uint64_t), 1, &version, tx) != 0) {
3519 cmn_err(CE_PANIC, "failed to add pool version");
3520 }
3521
3522 /* Newly created pools with the right version are always deflated. */
3523 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3524 spa->spa_deflate = TRUE;
3525 if (zap_add(spa->spa_meta_objset,
3526 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3527 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3528 cmn_err(CE_PANIC, "failed to add deflate");
3529 }
3530 }
3531
3532 /*
3533 * Create the deferred-free bpobj. Turn off compression
3534 * because sync-to-convergence takes longer if the blocksize
3535 * keeps changing.
3536 */
3537 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3538 dmu_object_set_compress(spa->spa_meta_objset, obj,
3539 ZIO_COMPRESS_OFF, tx);
3540 if (zap_add(spa->spa_meta_objset,
3541 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3542 sizeof (uint64_t), 1, &obj, tx) != 0) {
3543 cmn_err(CE_PANIC, "failed to add bpobj");
3544 }
3545 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3546 spa->spa_meta_objset, obj));
3547
3548 /*
3549 * Create the pool's history object.
3550 */
3551 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3552 spa_history_create_obj(spa, tx);
3553
3554 /*
3555 * Set pool properties.
3556 */
3557 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3558 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3559 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3560 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3561
3562 if (props != NULL) {
3563 spa_configfile_set(spa, props, B_FALSE);
3564 spa_sync_props(props, tx);
3565 }
3566
3567 dmu_tx_commit(tx);
3568
3569 spa->spa_sync_on = B_TRUE;
3570 txg_sync_start(spa->spa_dsl_pool);
3571
3572 /*
3573 * We explicitly wait for the first transaction to complete so that our
3574 * bean counters are appropriately updated.
3575 */
3576 txg_wait_synced(spa->spa_dsl_pool, txg);
3577
3578 spa_config_sync(spa, B_FALSE, B_TRUE);
3579
3580 spa_history_log_version(spa, "create");
3581
3582 spa->spa_minref = refcount_count(&spa->spa_refcount);
3583
3584 mutex_exit(&spa_namespace_lock);
3585
3586 return (0);
3587 }
3588
3589 #ifdef _KERNEL
3590 /*
3591 * Get the root pool information from the root disk, then import the root pool
3592 * during the system boot up time.
3593 */
3594 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3595
3596 static nvlist_t *
3597 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3598 {
3599 nvlist_t *config;
3600 nvlist_t *nvtop, *nvroot;
3601 uint64_t pgid;
3602
3603 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3604 return (NULL);
3605
3606 /*
3607 * Add this top-level vdev to the child array.
3608 */
3609 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3610 &nvtop) == 0);
3611 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3612 &pgid) == 0);
3613 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3614
3615 /*
3616 * Put this pool's top-level vdevs into a root vdev.
3617 */
3618 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3619 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3620 VDEV_TYPE_ROOT) == 0);
3621 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3622 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3623 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3624 &nvtop, 1) == 0);
3625
3626 /*
3627 * Replace the existing vdev_tree with the new root vdev in
3628 * this pool's configuration (remove the old, add the new).
3629 */
3630 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3631 nvlist_free(nvroot);
3632 return (config);
3633 }
3634
3635 /*
3636 * Walk the vdev tree and see if we can find a device with "better"
3637 * configuration. A configuration is "better" if the label on that
3638 * device has a more recent txg.
3639 */
3640 static void
3641 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3642 {
3643 for (int c = 0; c < vd->vdev_children; c++)
3644 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3645
3646 if (vd->vdev_ops->vdev_op_leaf) {
3647 nvlist_t *label;
3648 uint64_t label_txg;
3649
3650 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3651 &label) != 0)
3652 return;
3653
3654 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3655 &label_txg) == 0);
3656
3657 /*
3658 * Do we have a better boot device?
3659 */
3660 if (label_txg > *txg) {
3661 *txg = label_txg;
3662 *avd = vd;
3663 }
3664 nvlist_free(label);
3665 }
3666 }
3667
3668 /*
3669 * Import a root pool.
3670 *
3671 * For x86. devpath_list will consist of devid and/or physpath name of
3672 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3673 * The GRUB "findroot" command will return the vdev we should boot.
3674 *
3675 * For Sparc, devpath_list consists the physpath name of the booting device
3676 * no matter the rootpool is a single device pool or a mirrored pool.
3677 * e.g.
3678 * "/pci@1f,0/ide@d/disk@0,0:a"
3679 */
3680 int
3681 spa_import_rootpool(char *devpath, char *devid)
3682 {
3683 spa_t *spa;
3684 vdev_t *rvd, *bvd, *avd = NULL;
3685 nvlist_t *config, *nvtop;
3686 uint64_t guid, txg;
3687 char *pname;
3688 int error;
3689
3690 /*
3691 * Read the label from the boot device and generate a configuration.
3692 */
3693 config = spa_generate_rootconf(devpath, devid, &guid);
3694 #if defined(_OBP) && defined(_KERNEL)
3695 if (config == NULL) {
3696 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3697 /* iscsi boot */
3698 get_iscsi_bootpath_phy(devpath);
3699 config = spa_generate_rootconf(devpath, devid, &guid);
3700 }
3701 }
3702 #endif
3703 if (config == NULL) {
3704 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3705 devpath);
3706 return (SET_ERROR(EIO));
3707 }
3708
3709 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3710 &pname) == 0);
3711 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3712
3713 mutex_enter(&spa_namespace_lock);
3714 if ((spa = spa_lookup(pname)) != NULL) {
3715 /*
3716 * Remove the existing root pool from the namespace so that we
3717 * can replace it with the correct config we just read in.
3718 */
3719 spa_remove(spa);
3720 }
3721
3722 spa = spa_add(pname, config, NULL);
3723 spa->spa_is_root = B_TRUE;
3724 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3725
3726 /*
3727 * Build up a vdev tree based on the boot device's label config.
3728 */
3729 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3730 &nvtop) == 0);
3731 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3732 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3733 VDEV_ALLOC_ROOTPOOL);
3734 spa_config_exit(spa, SCL_ALL, FTAG);
3735 if (error) {
3736 mutex_exit(&spa_namespace_lock);
3737 nvlist_free(config);
3738 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3739 pname);
3740 return (error);
3741 }
3742
3743 /*
3744 * Get the boot vdev.
3745 */
3746 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3747 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3748 (u_longlong_t)guid);
3749 error = SET_ERROR(ENOENT);
3750 goto out;
3751 }
3752
3753 /*
3754 * Determine if there is a better boot device.
3755 */
3756 avd = bvd;
3757 spa_alt_rootvdev(rvd, &avd, &txg);
3758 if (avd != bvd) {
3759 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3760 "try booting from '%s'", avd->vdev_path);
3761 error = SET_ERROR(EINVAL);
3762 goto out;
3763 }
3764
3765 /*
3766 * If the boot device is part of a spare vdev then ensure that
3767 * we're booting off the active spare.
3768 */
3769 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3770 !bvd->vdev_isspare) {
3771 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3772 "try booting from '%s'",
3773 bvd->vdev_parent->
3774 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3775 error = SET_ERROR(EINVAL);
3776 goto out;
3777 }
3778
3779 error = 0;
3780 out:
3781 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3782 vdev_free(rvd);
3783 spa_config_exit(spa, SCL_ALL, FTAG);
3784 mutex_exit(&spa_namespace_lock);
3785
3786 nvlist_free(config);
3787 return (error);
3788 }
3789
3790 #endif
3791
3792 /*
3793 * Import a non-root pool into the system.
3794 */
3795 int
3796 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3797 {
3798 spa_t *spa;
3799 char *altroot = NULL;
3800 spa_load_state_t state = SPA_LOAD_IMPORT;
3801 zpool_rewind_policy_t policy;
3802 uint64_t mode = spa_mode_global;
3803 uint64_t readonly = B_FALSE;
3804 int error;
3805 nvlist_t *nvroot;
3806 nvlist_t **spares, **l2cache;
3807 uint_t nspares, nl2cache;
3808
3809 /*
3810 * If a pool with this name exists, return failure.
3811 */
3812 mutex_enter(&spa_namespace_lock);
3813 if (spa_lookup(pool) != NULL) {
3814 mutex_exit(&spa_namespace_lock);
3815 return (SET_ERROR(EEXIST));
3816 }
3817
3818 /*
3819 * Create and initialize the spa structure.
3820 */
3821 (void) nvlist_lookup_string(props,
3822 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3823 (void) nvlist_lookup_uint64(props,
3824 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3825 if (readonly)
3826 mode = FREAD;
3827 spa = spa_add(pool, config, altroot);
3828 spa->spa_import_flags = flags;
3829
3830 /*
3831 * Verbatim import - Take a pool and insert it into the namespace
3832 * as if it had been loaded at boot.
3833 */
3834 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3835 if (props != NULL)
3836 spa_configfile_set(spa, props, B_FALSE);
3837
3838 spa_config_sync(spa, B_FALSE, B_TRUE);
3839
3840 mutex_exit(&spa_namespace_lock);
3841 spa_history_log_version(spa, "import");
3842
3843 return (0);
3844 }
3845
3846 spa_activate(spa, mode);
3847
3848 /*
3849 * Don't start async tasks until we know everything is healthy.
3850 */
3851 spa_async_suspend(spa);
3852
3853 zpool_get_rewind_policy(config, &policy);
3854 if (policy.zrp_request & ZPOOL_DO_REWIND)
3855 state = SPA_LOAD_RECOVER;
3856
3857 /*
3858 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3859 * because the user-supplied config is actually the one to trust when
3860 * doing an import.
3861 */
3862 if (state != SPA_LOAD_RECOVER)
3863 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3864
3865 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3866 policy.zrp_request);
3867
3868 /*
3869 * Propagate anything learned while loading the pool and pass it
3870 * back to caller (i.e. rewind info, missing devices, etc).
3871 */
3872 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3873 spa->spa_load_info) == 0);
3874
3875 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3876 /*
3877 * Toss any existing sparelist, as it doesn't have any validity
3878 * anymore, and conflicts with spa_has_spare().
3879 */
3880 if (spa->spa_spares.sav_config) {
3881 nvlist_free(spa->spa_spares.sav_config);
3882 spa->spa_spares.sav_config = NULL;
3883 spa_load_spares(spa);
3884 }
3885 if (spa->spa_l2cache.sav_config) {
3886 nvlist_free(spa->spa_l2cache.sav_config);
3887 spa->spa_l2cache.sav_config = NULL;
3888 spa_load_l2cache(spa);
3889 }
3890
3891 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3892 &nvroot) == 0);
3893 if (error == 0)
3894 error = spa_validate_aux(spa, nvroot, -1ULL,
3895 VDEV_ALLOC_SPARE);
3896 if (error == 0)
3897 error = spa_validate_aux(spa, nvroot, -1ULL,
3898 VDEV_ALLOC_L2CACHE);
3899 spa_config_exit(spa, SCL_ALL, FTAG);
3900
3901 if (props != NULL)
3902 spa_configfile_set(spa, props, B_FALSE);
3903
3904 if (error != 0 || (props && spa_writeable(spa) &&
3905 (error = spa_prop_set(spa, props)))) {
3906 spa_unload(spa);
3907 spa_deactivate(spa);
3908 spa_remove(spa);
3909 mutex_exit(&spa_namespace_lock);
3910 return (error);
3911 }
3912
3913 spa_async_resume(spa);
3914
3915 /*
3916 * Override any spares and level 2 cache devices as specified by
3917 * the user, as these may have correct device names/devids, etc.
3918 */
3919 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3920 &spares, &nspares) == 0) {
3921 if (spa->spa_spares.sav_config)
3922 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3923 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3924 else
3925 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3926 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3927 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3928 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3929 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3930 spa_load_spares(spa);
3931 spa_config_exit(spa, SCL_ALL, FTAG);
3932 spa->spa_spares.sav_sync = B_TRUE;
3933 }
3934 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3935 &l2cache, &nl2cache) == 0) {
3936 if (spa->spa_l2cache.sav_config)
3937 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3938 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3939 else
3940 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3941 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3942 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3943 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3944 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3945 spa_load_l2cache(spa);
3946 spa_config_exit(spa, SCL_ALL, FTAG);
3947 spa->spa_l2cache.sav_sync = B_TRUE;
3948 }
3949
3950 /*
3951 * Check for any removed devices.
3952 */
3953 if (spa->spa_autoreplace) {
3954 spa_aux_check_removed(&spa->spa_spares);
3955 spa_aux_check_removed(&spa->spa_l2cache);
3956 }
3957
3958 if (spa_writeable(spa)) {
3959 /*
3960 * Update the config cache to include the newly-imported pool.
3961 */
3962 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3963 }
3964
3965 /*
3966 * It's possible that the pool was expanded while it was exported.
3967 * We kick off an async task to handle this for us.
3968 */
3969 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3970
3971 mutex_exit(&spa_namespace_lock);
3972 spa_history_log_version(spa, "import");
3973
3974 return (0);
3975 }
3976
3977 nvlist_t *
3978 spa_tryimport(nvlist_t *tryconfig)
3979 {
3980 nvlist_t *config = NULL;
3981 char *poolname;
3982 spa_t *spa;
3983 uint64_t state;
3984 int error;
3985
3986 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3987 return (NULL);
3988
3989 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3990 return (NULL);
3991
3992 /*
3993 * Create and initialize the spa structure.
3994 */
3995 mutex_enter(&spa_namespace_lock);
3996 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3997 spa_activate(spa, FREAD);
3998
3999 /*
4000 * Pass off the heavy lifting to spa_load().
4001 * Pass TRUE for mosconfig because the user-supplied config
4002 * is actually the one to trust when doing an import.
4003 */
4004 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4005
4006 /*
4007 * If 'tryconfig' was at least parsable, return the current config.
4008 */
4009 if (spa->spa_root_vdev != NULL) {
4010 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4011 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4012 poolname) == 0);
4013 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4014 state) == 0);
4015 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4016 spa->spa_uberblock.ub_timestamp) == 0);
4017 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4018 spa->spa_load_info) == 0);
4019
4020 /*
4021 * If the bootfs property exists on this pool then we
4022 * copy it out so that external consumers can tell which
4023 * pools are bootable.
4024 */
4025 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4026 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4027
4028 /*
4029 * We have to play games with the name since the
4030 * pool was opened as TRYIMPORT_NAME.
4031 */
4032 if (dsl_dsobj_to_dsname(spa_name(spa),
4033 spa->spa_bootfs, tmpname) == 0) {
4034 char *cp;
4035 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4036
4037 cp = strchr(tmpname, '/');
4038 if (cp == NULL) {
4039 (void) strlcpy(dsname, tmpname,
4040 MAXPATHLEN);
4041 } else {
4042 (void) snprintf(dsname, MAXPATHLEN,
4043 "%s/%s", poolname, ++cp);
4044 }
4045 VERIFY(nvlist_add_string(config,
4046 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4047 kmem_free(dsname, MAXPATHLEN);
4048 }
4049 kmem_free(tmpname, MAXPATHLEN);
4050 }
4051
4052 /*
4053 * Add the list of hot spares and level 2 cache devices.
4054 */
4055 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4056 spa_add_spares(spa, config);
4057 spa_add_l2cache(spa, config);
4058 spa_config_exit(spa, SCL_CONFIG, FTAG);
4059 }
4060
4061 spa_unload(spa);
4062 spa_deactivate(spa);
4063 spa_remove(spa);
4064 mutex_exit(&spa_namespace_lock);
4065
4066 return (config);
4067 }
4068
4069 /*
4070 * Pool export/destroy
4071 *
4072 * The act of destroying or exporting a pool is very simple. We make sure there
4073 * is no more pending I/O and any references to the pool are gone. Then, we
4074 * update the pool state and sync all the labels to disk, removing the
4075 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4076 * we don't sync the labels or remove the configuration cache.
4077 */
4078 static int
4079 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4080 boolean_t force, boolean_t hardforce)
4081 {
4082 spa_t *spa;
4083
4084 if (oldconfig)
4085 *oldconfig = NULL;
4086
4087 if (!(spa_mode_global & FWRITE))
4088 return (SET_ERROR(EROFS));
4089
4090 mutex_enter(&spa_namespace_lock);
4091 if ((spa = spa_lookup(pool)) == NULL) {
4092 mutex_exit(&spa_namespace_lock);
4093 return (SET_ERROR(ENOENT));
4094 }
4095
4096 /*
4097 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4098 * reacquire the namespace lock, and see if we can export.
4099 */
4100 spa_open_ref(spa, FTAG);
4101 mutex_exit(&spa_namespace_lock);
4102 spa_async_suspend(spa);
4103 mutex_enter(&spa_namespace_lock);
4104 spa_close(spa, FTAG);
4105
4106 /*
4107 * The pool will be in core if it's openable,
4108 * in which case we can modify its state.
4109 */
4110 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4111 /*
4112 * Objsets may be open only because they're dirty, so we
4113 * have to force it to sync before checking spa_refcnt.
4114 */
4115 txg_wait_synced(spa->spa_dsl_pool, 0);
4116
4117 /*
4118 * A pool cannot be exported or destroyed if there are active
4119 * references. If we are resetting a pool, allow references by
4120 * fault injection handlers.
4121 */
4122 if (!spa_refcount_zero(spa) ||
4123 (spa->spa_inject_ref != 0 &&
4124 new_state != POOL_STATE_UNINITIALIZED)) {
4125 spa_async_resume(spa);
4126 mutex_exit(&spa_namespace_lock);
4127 return (SET_ERROR(EBUSY));
4128 }
4129
4130 /*
4131 * A pool cannot be exported if it has an active shared spare.
4132 * This is to prevent other pools stealing the active spare
4133 * from an exported pool. At user's own will, such pool can
4134 * be forcedly exported.
4135 */
4136 if (!force && new_state == POOL_STATE_EXPORTED &&
4137 spa_has_active_shared_spare(spa)) {
4138 spa_async_resume(spa);
4139 mutex_exit(&spa_namespace_lock);
4140 return (SET_ERROR(EXDEV));
4141 }
4142
4143 /*
4144 * We want this to be reflected on every label,
4145 * so mark them all dirty. spa_unload() will do the
4146 * final sync that pushes these changes out.
4147 */
4148 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4149 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4150 spa->spa_state = new_state;
4151 spa->spa_final_txg = spa_last_synced_txg(spa) +
4152 TXG_DEFER_SIZE + 1;
4153 vdev_config_dirty(spa->spa_root_vdev);
4154 spa_config_exit(spa, SCL_ALL, FTAG);
4155 }
4156 }
4157
4158 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4159
4160 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4161 spa_unload(spa);
4162 spa_deactivate(spa);
4163 }
4164
4165 if (oldconfig && spa->spa_config)
4166 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4167
4168 if (new_state != POOL_STATE_UNINITIALIZED) {
4169 if (!hardforce)
4170 spa_config_sync(spa, B_TRUE, B_TRUE);
4171 spa_remove(spa);
4172 }
4173 mutex_exit(&spa_namespace_lock);
4174
4175 return (0);
4176 }
4177
4178 /*
4179 * Destroy a storage pool.
4180 */
4181 int
4182 spa_destroy(char *pool)
4183 {
4184 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4185 B_FALSE, B_FALSE));
4186 }
4187
4188 /*
4189 * Export a storage pool.
4190 */
4191 int
4192 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4193 boolean_t hardforce)
4194 {
4195 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4196 force, hardforce));
4197 }
4198
4199 /*
4200 * Similar to spa_export(), this unloads the spa_t without actually removing it
4201 * from the namespace in any way.
4202 */
4203 int
4204 spa_reset(char *pool)
4205 {
4206 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4207 B_FALSE, B_FALSE));
4208 }
4209
4210 /*
4211 * ==========================================================================
4212 * Device manipulation
4213 * ==========================================================================
4214 */
4215
4216 /*
4217 * Add a device to a storage pool.
4218 */
4219 int
4220 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4221 {
4222 uint64_t txg, id;
4223 int error;
4224 vdev_t *rvd = spa->spa_root_vdev;
4225 vdev_t *vd, *tvd;
4226 nvlist_t **spares, **l2cache;
4227 uint_t nspares, nl2cache;
4228
4229 ASSERT(spa_writeable(spa));
4230
4231 txg = spa_vdev_enter(spa);
4232
4233 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4234 VDEV_ALLOC_ADD)) != 0)
4235 return (spa_vdev_exit(spa, NULL, txg, error));
4236
4237 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4238
4239 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4240 &nspares) != 0)
4241 nspares = 0;
4242
4243 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4244 &nl2cache) != 0)
4245 nl2cache = 0;
4246
4247 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4248 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4249
4250 if (vd->vdev_children != 0 &&
4251 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4252 return (spa_vdev_exit(spa, vd, txg, error));
4253
4254 /*
4255 * We must validate the spares and l2cache devices after checking the
4256 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4257 */
4258 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4259 return (spa_vdev_exit(spa, vd, txg, error));
4260
4261 /*
4262 * Transfer each new top-level vdev from vd to rvd.
4263 */
4264 for (int c = 0; c < vd->vdev_children; c++) {
4265
4266 /*
4267 * Set the vdev id to the first hole, if one exists.
4268 */
4269 for (id = 0; id < rvd->vdev_children; id++) {
4270 if (rvd->vdev_child[id]->vdev_ishole) {
4271 vdev_free(rvd->vdev_child[id]);
4272 break;
4273 }
4274 }
4275 tvd = vd->vdev_child[c];
4276 vdev_remove_child(vd, tvd);
4277 tvd->vdev_id = id;
4278 vdev_add_child(rvd, tvd);
4279 vdev_config_dirty(tvd);
4280 }
4281
4282 if (nspares != 0) {
4283 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4284 ZPOOL_CONFIG_SPARES);
4285 spa_load_spares(spa);
4286 spa->spa_spares.sav_sync = B_TRUE;
4287 }
4288
4289 if (nl2cache != 0) {
4290 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4291 ZPOOL_CONFIG_L2CACHE);
4292 spa_load_l2cache(spa);
4293 spa->spa_l2cache.sav_sync = B_TRUE;
4294 }
4295
4296 /*
4297 * We have to be careful when adding new vdevs to an existing pool.
4298 * If other threads start allocating from these vdevs before we
4299 * sync the config cache, and we lose power, then upon reboot we may
4300 * fail to open the pool because there are DVAs that the config cache
4301 * can't translate. Therefore, we first add the vdevs without
4302 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4303 * and then let spa_config_update() initialize the new metaslabs.
4304 *
4305 * spa_load() checks for added-but-not-initialized vdevs, so that
4306 * if we lose power at any point in this sequence, the remaining
4307 * steps will be completed the next time we load the pool.
4308 */
4309 (void) spa_vdev_exit(spa, vd, txg, 0);
4310
4311 mutex_enter(&spa_namespace_lock);
4312 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4313 mutex_exit(&spa_namespace_lock);
4314
4315 return (0);
4316 }
4317
4318 /*
4319 * Attach a device to a mirror. The arguments are the path to any device
4320 * in the mirror, and the nvroot for the new device. If the path specifies
4321 * a device that is not mirrored, we automatically insert the mirror vdev.
4322 *
4323 * If 'replacing' is specified, the new device is intended to replace the
4324 * existing device; in this case the two devices are made into their own
4325 * mirror using the 'replacing' vdev, which is functionally identical to
4326 * the mirror vdev (it actually reuses all the same ops) but has a few
4327 * extra rules: you can't attach to it after it's been created, and upon
4328 * completion of resilvering, the first disk (the one being replaced)
4329 * is automatically detached.
4330 */
4331 int
4332 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4333 {
4334 uint64_t txg, dtl_max_txg;
4335 vdev_t *rvd = spa->spa_root_vdev;
4336 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4337 vdev_ops_t *pvops;
4338 char *oldvdpath, *newvdpath;
4339 int newvd_isspare;
4340 int error;
4341
4342 ASSERT(spa_writeable(spa));
4343
4344 txg = spa_vdev_enter(spa);
4345
4346 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4347
4348 if (oldvd == NULL)
4349 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4350
4351 if (!oldvd->vdev_ops->vdev_op_leaf)
4352 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4353
4354 pvd = oldvd->vdev_parent;
4355
4356 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4357 VDEV_ALLOC_ATTACH)) != 0)
4358 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4359
4360 if (newrootvd->vdev_children != 1)
4361 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4362
4363 newvd = newrootvd->vdev_child[0];
4364
4365 if (!newvd->vdev_ops->vdev_op_leaf)
4366 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4367
4368 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4369 return (spa_vdev_exit(spa, newrootvd, txg, error));
4370
4371 /*
4372 * Spares can't replace logs
4373 */
4374 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4375 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4376
4377 if (!replacing) {
4378 /*
4379 * For attach, the only allowable parent is a mirror or the root
4380 * vdev.
4381 */
4382 if (pvd->vdev_ops != &vdev_mirror_ops &&
4383 pvd->vdev_ops != &vdev_root_ops)
4384 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4385
4386 pvops = &vdev_mirror_ops;
4387 } else {
4388 /*
4389 * Active hot spares can only be replaced by inactive hot
4390 * spares.
4391 */
4392 if (pvd->vdev_ops == &vdev_spare_ops &&
4393 oldvd->vdev_isspare &&
4394 !spa_has_spare(spa, newvd->vdev_guid))
4395 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4396
4397 /*
4398 * If the source is a hot spare, and the parent isn't already a
4399 * spare, then we want to create a new hot spare. Otherwise, we
4400 * want to create a replacing vdev. The user is not allowed to
4401 * attach to a spared vdev child unless the 'isspare' state is
4402 * the same (spare replaces spare, non-spare replaces
4403 * non-spare).
4404 */
4405 if (pvd->vdev_ops == &vdev_replacing_ops &&
4406 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4407 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4408 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4409 newvd->vdev_isspare != oldvd->vdev_isspare) {
4410 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4411 }
4412
4413 if (newvd->vdev_isspare)
4414 pvops = &vdev_spare_ops;
4415 else
4416 pvops = &vdev_replacing_ops;
4417 }
4418
4419 /*
4420 * Make sure the new device is big enough.
4421 */
4422 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4423 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4424
4425 /*
4426 * The new device cannot have a higher alignment requirement
4427 * than the top-level vdev.
4428 */
4429 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4430 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4431
4432 /*
4433 * If this is an in-place replacement, update oldvd's path and devid
4434 * to make it distinguishable from newvd, and unopenable from now on.
4435 */
4436 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4437 spa_strfree(oldvd->vdev_path);
4438 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4439 KM_SLEEP);
4440 (void) sprintf(oldvd->vdev_path, "%s/%s",
4441 newvd->vdev_path, "old");
4442 if (oldvd->vdev_devid != NULL) {
4443 spa_strfree(oldvd->vdev_devid);
4444 oldvd->vdev_devid = NULL;
4445 }
4446 }
4447
4448 /* mark the device being resilvered */
4449 newvd->vdev_resilvering = B_TRUE;
4450
4451 /*
4452 * If the parent is not a mirror, or if we're replacing, insert the new
4453 * mirror/replacing/spare vdev above oldvd.
4454 */
4455 if (pvd->vdev_ops != pvops)
4456 pvd = vdev_add_parent(oldvd, pvops);
4457
4458 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4459 ASSERT(pvd->vdev_ops == pvops);
4460 ASSERT(oldvd->vdev_parent == pvd);
4461
4462 /*
4463 * Extract the new device from its root and add it to pvd.
4464 */
4465 vdev_remove_child(newrootvd, newvd);
4466 newvd->vdev_id = pvd->vdev_children;
4467 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4468 vdev_add_child(pvd, newvd);
4469
4470 tvd = newvd->vdev_top;
4471 ASSERT(pvd->vdev_top == tvd);
4472 ASSERT(tvd->vdev_parent == rvd);
4473
4474 vdev_config_dirty(tvd);
4475
4476 /*
4477 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4478 * for any dmu_sync-ed blocks. It will propagate upward when
4479 * spa_vdev_exit() calls vdev_dtl_reassess().
4480 */
4481 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4482
4483 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4484 dtl_max_txg - TXG_INITIAL);
4485
4486 if (newvd->vdev_isspare) {
4487 spa_spare_activate(newvd);
4488 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4489 }
4490
4491 oldvdpath = spa_strdup(oldvd->vdev_path);
4492 newvdpath = spa_strdup(newvd->vdev_path);
4493 newvd_isspare = newvd->vdev_isspare;
4494
4495 /*
4496 * Mark newvd's DTL dirty in this txg.
4497 */
4498 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4499
4500 /*
4501 * Restart the resilver
4502 */
4503 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4504
4505 /*
4506 * Commit the config
4507 */
4508 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4509
4510 spa_history_log_internal(spa, "vdev attach", NULL,
4511 "%s vdev=%s %s vdev=%s",
4512 replacing && newvd_isspare ? "spare in" :
4513 replacing ? "replace" : "attach", newvdpath,
4514 replacing ? "for" : "to", oldvdpath);
4515
4516 spa_strfree(oldvdpath);
4517 spa_strfree(newvdpath);
4518
4519 if (spa->spa_bootfs)
4520 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4521
4522 return (0);
4523 }
4524
4525 /*
4526 * Detach a device from a mirror or replacing vdev.
4527 *
4528 * If 'replace_done' is specified, only detach if the parent
4529 * is a replacing vdev.
4530 */
4531 int
4532 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4533 {
4534 uint64_t txg;
4535 int error;
4536 vdev_t *rvd = spa->spa_root_vdev;
4537 vdev_t *vd, *pvd, *cvd, *tvd;
4538 boolean_t unspare = B_FALSE;
4539 uint64_t unspare_guid = 0;
4540 char *vdpath;
4541
4542 ASSERT(spa_writeable(spa));
4543
4544 txg = spa_vdev_enter(spa);
4545
4546 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4547
4548 if (vd == NULL)
4549 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4550
4551 if (!vd->vdev_ops->vdev_op_leaf)
4552 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4553
4554 pvd = vd->vdev_parent;
4555
4556 /*
4557 * If the parent/child relationship is not as expected, don't do it.
4558 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4559 * vdev that's replacing B with C. The user's intent in replacing
4560 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4561 * the replace by detaching C, the expected behavior is to end up
4562 * M(A,B). But suppose that right after deciding to detach C,
4563 * the replacement of B completes. We would have M(A,C), and then
4564 * ask to detach C, which would leave us with just A -- not what
4565 * the user wanted. To prevent this, we make sure that the
4566 * parent/child relationship hasn't changed -- in this example,
4567 * that C's parent is still the replacing vdev R.
4568 */
4569 if (pvd->vdev_guid != pguid && pguid != 0)
4570 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4571
4572 /*
4573 * Only 'replacing' or 'spare' vdevs can be replaced.
4574 */
4575 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4576 pvd->vdev_ops != &vdev_spare_ops)
4577 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4578
4579 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4580 spa_version(spa) >= SPA_VERSION_SPARES);
4581
4582 /*
4583 * Only mirror, replacing, and spare vdevs support detach.
4584 */
4585 if (pvd->vdev_ops != &vdev_replacing_ops &&
4586 pvd->vdev_ops != &vdev_mirror_ops &&
4587 pvd->vdev_ops != &vdev_spare_ops)
4588 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4589
4590 /*
4591 * If this device has the only valid copy of some data,
4592 * we cannot safely detach it.
4593 */
4594 if (vdev_dtl_required(vd))
4595 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4596
4597 ASSERT(pvd->vdev_children >= 2);
4598
4599 /*
4600 * If we are detaching the second disk from a replacing vdev, then
4601 * check to see if we changed the original vdev's path to have "/old"
4602 * at the end in spa_vdev_attach(). If so, undo that change now.
4603 */
4604 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4605 vd->vdev_path != NULL) {
4606 size_t len = strlen(vd->vdev_path);
4607
4608 for (int c = 0; c < pvd->vdev_children; c++) {
4609 cvd = pvd->vdev_child[c];
4610
4611 if (cvd == vd || cvd->vdev_path == NULL)
4612 continue;
4613
4614 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4615 strcmp(cvd->vdev_path + len, "/old") == 0) {
4616 spa_strfree(cvd->vdev_path);
4617 cvd->vdev_path = spa_strdup(vd->vdev_path);
4618 break;
4619 }
4620 }
4621 }
4622
4623 /*
4624 * If we are detaching the original disk from a spare, then it implies
4625 * that the spare should become a real disk, and be removed from the
4626 * active spare list for the pool.
4627 */
4628 if (pvd->vdev_ops == &vdev_spare_ops &&
4629 vd->vdev_id == 0 &&
4630 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4631 unspare = B_TRUE;
4632
4633 /*
4634 * Erase the disk labels so the disk can be used for other things.
4635 * This must be done after all other error cases are handled,
4636 * but before we disembowel vd (so we can still do I/O to it).
4637 * But if we can't do it, don't treat the error as fatal --
4638 * it may be that the unwritability of the disk is the reason
4639 * it's being detached!
4640 */
4641 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4642
4643 /*
4644 * Remove vd from its parent and compact the parent's children.
4645 */
4646 vdev_remove_child(pvd, vd);
4647 vdev_compact_children(pvd);
4648
4649 /*
4650 * Remember one of the remaining children so we can get tvd below.
4651 */
4652 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4653
4654 /*
4655 * If we need to remove the remaining child from the list of hot spares,
4656 * do it now, marking the vdev as no longer a spare in the process.
4657 * We must do this before vdev_remove_parent(), because that can
4658 * change the GUID if it creates a new toplevel GUID. For a similar
4659 * reason, we must remove the spare now, in the same txg as the detach;
4660 * otherwise someone could attach a new sibling, change the GUID, and
4661 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4662 */
4663 if (unspare) {
4664 ASSERT(cvd->vdev_isspare);
4665 spa_spare_remove(cvd);
4666 unspare_guid = cvd->vdev_guid;
4667 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4668 cvd->vdev_unspare = B_TRUE;
4669 }
4670
4671 /*
4672 * If the parent mirror/replacing vdev only has one child,
4673 * the parent is no longer needed. Remove it from the tree.
4674 */
4675 if (pvd->vdev_children == 1) {
4676 if (pvd->vdev_ops == &vdev_spare_ops)
4677 cvd->vdev_unspare = B_FALSE;
4678 vdev_remove_parent(cvd);
4679 }
4680
4681
4682 /*
4683 * We don't set tvd until now because the parent we just removed
4684 * may have been the previous top-level vdev.
4685 */
4686 tvd = cvd->vdev_top;
4687 ASSERT(tvd->vdev_parent == rvd);
4688
4689 /*
4690 * Reevaluate the parent vdev state.
4691 */
4692 vdev_propagate_state(cvd);
4693
4694 /*
4695 * If the 'autoexpand' property is set on the pool then automatically
4696 * try to expand the size of the pool. For example if the device we
4697 * just detached was smaller than the others, it may be possible to
4698 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4699 * first so that we can obtain the updated sizes of the leaf vdevs.
4700 */
4701 if (spa->spa_autoexpand) {
4702 vdev_reopen(tvd);
4703 vdev_expand(tvd, txg);
4704 }
4705
4706 vdev_config_dirty(tvd);
4707
4708 /*
4709 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4710 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4711 * But first make sure we're not on any *other* txg's DTL list, to
4712 * prevent vd from being accessed after it's freed.
4713 */
4714 vdpath = spa_strdup(vd->vdev_path);
4715 for (int t = 0; t < TXG_SIZE; t++)
4716 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4717 vd->vdev_detached = B_TRUE;
4718 vdev_dirty(tvd, VDD_DTL, vd, txg);
4719
4720 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4721
4722 /* hang on to the spa before we release the lock */
4723 spa_open_ref(spa, FTAG);
4724
4725 error = spa_vdev_exit(spa, vd, txg, 0);
4726
4727 spa_history_log_internal(spa, "detach", NULL,
4728 "vdev=%s", vdpath);
4729 spa_strfree(vdpath);
4730
4731 /*
4732 * If this was the removal of the original device in a hot spare vdev,
4733 * then we want to go through and remove the device from the hot spare
4734 * list of every other pool.
4735 */
4736 if (unspare) {
4737 spa_t *altspa = NULL;
4738
4739 mutex_enter(&spa_namespace_lock);
4740 while ((altspa = spa_next(altspa)) != NULL) {
4741 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4742 altspa == spa)
4743 continue;
4744
4745 spa_open_ref(altspa, FTAG);
4746 mutex_exit(&spa_namespace_lock);
4747 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4748 mutex_enter(&spa_namespace_lock);
4749 spa_close(altspa, FTAG);
4750 }
4751 mutex_exit(&spa_namespace_lock);
4752
4753 /* search the rest of the vdevs for spares to remove */
4754 spa_vdev_resilver_done(spa);
4755 }
4756
4757 /* all done with the spa; OK to release */
4758 mutex_enter(&spa_namespace_lock);
4759 spa_close(spa, FTAG);
4760 mutex_exit(&spa_namespace_lock);
4761
4762 return (error);
4763 }
4764
4765 /*
4766 * Split a set of devices from their mirrors, and create a new pool from them.
4767 */
4768 int
4769 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4770 nvlist_t *props, boolean_t exp)
4771 {
4772 int error = 0;
4773 uint64_t txg, *glist;
4774 spa_t *newspa;
4775 uint_t c, children, lastlog;
4776 nvlist_t **child, *nvl, *tmp;
4777 dmu_tx_t *tx;
4778 char *altroot = NULL;
4779 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4780 boolean_t activate_slog;
4781
4782 ASSERT(spa_writeable(spa));
4783
4784 txg = spa_vdev_enter(spa);
4785
4786 /* clear the log and flush everything up to now */
4787 activate_slog = spa_passivate_log(spa);
4788 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4789 error = spa_offline_log(spa);
4790 txg = spa_vdev_config_enter(spa);
4791
4792 if (activate_slog)
4793 spa_activate_log(spa);
4794
4795 if (error != 0)
4796 return (spa_vdev_exit(spa, NULL, txg, error));
4797
4798 /* check new spa name before going any further */
4799 if (spa_lookup(newname) != NULL)
4800 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4801
4802 /*
4803 * scan through all the children to ensure they're all mirrors
4804 */
4805 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4806 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4807 &children) != 0)
4808 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4809
4810 /* first, check to ensure we've got the right child count */
4811 rvd = spa->spa_root_vdev;
4812 lastlog = 0;
4813 for (c = 0; c < rvd->vdev_children; c++) {
4814 vdev_t *vd = rvd->vdev_child[c];
4815
4816 /* don't count the holes & logs as children */
4817 if (vd->vdev_islog || vd->vdev_ishole) {
4818 if (lastlog == 0)
4819 lastlog = c;
4820 continue;
4821 }
4822
4823 lastlog = 0;
4824 }
4825 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4826 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4827
4828 /* next, ensure no spare or cache devices are part of the split */
4829 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4830 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4831 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4832
4833 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4834 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4835
4836 /* then, loop over each vdev and validate it */
4837 for (c = 0; c < children; c++) {
4838 uint64_t is_hole = 0;
4839
4840 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4841 &is_hole);
4842
4843 if (is_hole != 0) {
4844 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4845 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4846 continue;
4847 } else {
4848 error = SET_ERROR(EINVAL);
4849 break;
4850 }
4851 }
4852
4853 /* which disk is going to be split? */
4854 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4855 &glist[c]) != 0) {
4856 error = SET_ERROR(EINVAL);
4857 break;
4858 }
4859
4860 /* look it up in the spa */
4861 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4862 if (vml[c] == NULL) {
4863 error = SET_ERROR(ENODEV);
4864 break;
4865 }
4866
4867 /* make sure there's nothing stopping the split */
4868 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4869 vml[c]->vdev_islog ||
4870 vml[c]->vdev_ishole ||
4871 vml[c]->vdev_isspare ||
4872 vml[c]->vdev_isl2cache ||
4873 !vdev_writeable(vml[c]) ||
4874 vml[c]->vdev_children != 0 ||
4875 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4876 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4877 error = SET_ERROR(EINVAL);
4878 break;
4879 }
4880
4881 if (vdev_dtl_required(vml[c])) {
4882 error = SET_ERROR(EBUSY);
4883 break;
4884 }
4885
4886 /* we need certain info from the top level */
4887 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4888 vml[c]->vdev_top->vdev_ms_array) == 0);
4889 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4890 vml[c]->vdev_top->vdev_ms_shift) == 0);
4891 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4892 vml[c]->vdev_top->vdev_asize) == 0);
4893 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4894 vml[c]->vdev_top->vdev_ashift) == 0);
4895 }
4896
4897 if (error != 0) {
4898 kmem_free(vml, children * sizeof (vdev_t *));
4899 kmem_free(glist, children * sizeof (uint64_t));
4900 return (spa_vdev_exit(spa, NULL, txg, error));
4901 }
4902
4903 /* stop writers from using the disks */
4904 for (c = 0; c < children; c++) {
4905 if (vml[c] != NULL)
4906 vml[c]->vdev_offline = B_TRUE;
4907 }
4908 vdev_reopen(spa->spa_root_vdev);
4909
4910 /*
4911 * Temporarily record the splitting vdevs in the spa config. This
4912 * will disappear once the config is regenerated.
4913 */
4914 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4915 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4916 glist, children) == 0);
4917 kmem_free(glist, children * sizeof (uint64_t));
4918
4919 mutex_enter(&spa->spa_props_lock);
4920 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4921 nvl) == 0);
4922 mutex_exit(&spa->spa_props_lock);
4923 spa->spa_config_splitting = nvl;
4924 vdev_config_dirty(spa->spa_root_vdev);
4925
4926 /* configure and create the new pool */
4927 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4928 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4929 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4930 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4931 spa_version(spa)) == 0);
4932 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4933 spa->spa_config_txg) == 0);
4934 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4935 spa_generate_guid(NULL)) == 0);
4936 (void) nvlist_lookup_string(props,
4937 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4938
4939 /* add the new pool to the namespace */
4940 newspa = spa_add(newname, config, altroot);
4941 newspa->spa_config_txg = spa->spa_config_txg;
4942 spa_set_log_state(newspa, SPA_LOG_CLEAR);
4943
4944 /* release the spa config lock, retaining the namespace lock */
4945 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4946
4947 if (zio_injection_enabled)
4948 zio_handle_panic_injection(spa, FTAG, 1);
4949
4950 spa_activate(newspa, spa_mode_global);
4951 spa_async_suspend(newspa);
4952
4953 /* create the new pool from the disks of the original pool */
4954 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4955 if (error)
4956 goto out;
4957
4958 /* if that worked, generate a real config for the new pool */
4959 if (newspa->spa_root_vdev != NULL) {
4960 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4961 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4962 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4963 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4964 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4965 B_TRUE));
4966 }
4967
4968 /* set the props */
4969 if (props != NULL) {
4970 spa_configfile_set(newspa, props, B_FALSE);
4971 error = spa_prop_set(newspa, props);
4972 if (error)
4973 goto out;
4974 }
4975
4976 /* flush everything */
4977 txg = spa_vdev_config_enter(newspa);
4978 vdev_config_dirty(newspa->spa_root_vdev);
4979 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4980
4981 if (zio_injection_enabled)
4982 zio_handle_panic_injection(spa, FTAG, 2);
4983
4984 spa_async_resume(newspa);
4985
4986 /* finally, update the original pool's config */
4987 txg = spa_vdev_config_enter(spa);
4988 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4989 error = dmu_tx_assign(tx, TXG_WAIT);
4990 if (error != 0)
4991 dmu_tx_abort(tx);
4992 for (c = 0; c < children; c++) {
4993 if (vml[c] != NULL) {
4994 vdev_split(vml[c]);
4995 if (error == 0)
4996 spa_history_log_internal(spa, "detach", tx,
4997 "vdev=%s", vml[c]->vdev_path);
4998 vdev_free(vml[c]);
4999 }
5000 }
5001 vdev_config_dirty(spa->spa_root_vdev);
5002 spa->spa_config_splitting = NULL;
5003 nvlist_free(nvl);
5004 if (error == 0)
5005 dmu_tx_commit(tx);
5006 (void) spa_vdev_exit(spa, NULL, txg, 0);
5007
5008 if (zio_injection_enabled)
5009 zio_handle_panic_injection(spa, FTAG, 3);
5010
5011 /* split is complete; log a history record */
5012 spa_history_log_internal(newspa, "split", NULL,
5013 "from pool %s", spa_name(spa));
5014
5015 kmem_free(vml, children * sizeof (vdev_t *));
5016
5017 /* if we're not going to mount the filesystems in userland, export */
5018 if (exp)
5019 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5020 B_FALSE, B_FALSE);
5021
5022 return (error);
5023
5024 out:
5025 spa_unload(newspa);
5026 spa_deactivate(newspa);
5027 spa_remove(newspa);
5028
5029 txg = spa_vdev_config_enter(spa);
5030
5031 /* re-online all offlined disks */
5032 for (c = 0; c < children; c++) {
5033 if (vml[c] != NULL)
5034 vml[c]->vdev_offline = B_FALSE;
5035 }
5036 vdev_reopen(spa->spa_root_vdev);
5037
5038 nvlist_free(spa->spa_config_splitting);
5039 spa->spa_config_splitting = NULL;
5040 (void) spa_vdev_exit(spa, NULL, txg, error);
5041
5042 kmem_free(vml, children * sizeof (vdev_t *));
5043 return (error);
5044 }
5045
5046 static nvlist_t *
5047 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5048 {
5049 for (int i = 0; i < count; i++) {
5050 uint64_t guid;
5051
5052 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5053 &guid) == 0);
5054
5055 if (guid == target_guid)
5056 return (nvpp[i]);
5057 }
5058
5059 return (NULL);
5060 }
5061
5062 static void
5063 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5064 nvlist_t *dev_to_remove)
5065 {
5066 nvlist_t **newdev = NULL;
5067
5068 if (count > 1)
5069 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5070
5071 for (int i = 0, j = 0; i < count; i++) {
5072 if (dev[i] == dev_to_remove)
5073 continue;
5074 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5075 }
5076
5077 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5078 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5079
5080 for (int i = 0; i < count - 1; i++)
5081 nvlist_free(newdev[i]);
5082
5083 if (count > 1)
5084 kmem_free(newdev, (count - 1) * sizeof (void *));
5085 }
5086
5087 /*
5088 * Evacuate the device.
5089 */
5090 static int
5091 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5092 {
5093 uint64_t txg;
5094 int error = 0;
5095
5096 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5097 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5098 ASSERT(vd == vd->vdev_top);
5099
5100 /*
5101 * Evacuate the device. We don't hold the config lock as writer
5102 * since we need to do I/O but we do keep the
5103 * spa_namespace_lock held. Once this completes the device
5104 * should no longer have any blocks allocated on it.
5105 */
5106 if (vd->vdev_islog) {
5107 if (vd->vdev_stat.vs_alloc != 0)
5108 error = spa_offline_log(spa);
5109 } else {
5110 error = SET_ERROR(ENOTSUP);
5111 }
5112
5113 if (error)
5114 return (error);
5115
5116 /*
5117 * The evacuation succeeded. Remove any remaining MOS metadata
5118 * associated with this vdev, and wait for these changes to sync.
5119 */
5120 ASSERT0(vd->vdev_stat.vs_alloc);
5121 txg = spa_vdev_config_enter(spa);
5122 vd->vdev_removing = B_TRUE;
5123 vdev_dirty(vd, 0, NULL, txg);
5124 vdev_config_dirty(vd);
5125 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5126
5127 return (0);
5128 }
5129
5130 /*
5131 * Complete the removal by cleaning up the namespace.
5132 */
5133 static void
5134 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5135 {
5136 vdev_t *rvd = spa->spa_root_vdev;
5137 uint64_t id = vd->vdev_id;
5138 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5139
5140 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5141 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5142 ASSERT(vd == vd->vdev_top);
5143
5144 /*
5145 * Only remove any devices which are empty.
5146 */
5147 if (vd->vdev_stat.vs_alloc != 0)
5148 return;
5149
5150 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5151
5152 if (list_link_active(&vd->vdev_state_dirty_node))
5153 vdev_state_clean(vd);
5154 if (list_link_active(&vd->vdev_config_dirty_node))
5155 vdev_config_clean(vd);
5156
5157 vdev_free(vd);
5158
5159 if (last_vdev) {
5160 vdev_compact_children(rvd);
5161 } else {
5162 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5163 vdev_add_child(rvd, vd);
5164 }
5165 vdev_config_dirty(rvd);
5166
5167 /*
5168 * Reassess the health of our root vdev.
5169 */
5170 vdev_reopen(rvd);
5171 }
5172
5173 /*
5174 * Remove a device from the pool -
5175 *
5176 * Removing a device from the vdev namespace requires several steps
5177 * and can take a significant amount of time. As a result we use
5178 * the spa_vdev_config_[enter/exit] functions which allow us to
5179 * grab and release the spa_config_lock while still holding the namespace
5180 * lock. During each step the configuration is synced out.
5181 *
5182 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5183 * devices.
5184 */
5185 int
5186 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5187 {
5188 vdev_t *vd;
5189 metaslab_group_t *mg;
5190 nvlist_t **spares, **l2cache, *nv;
5191 uint64_t txg = 0;
5192 uint_t nspares, nl2cache;
5193 int error = 0;
5194 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5195
5196 ASSERT(spa_writeable(spa));
5197
5198 if (!locked)
5199 txg = spa_vdev_enter(spa);
5200
5201 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5202
5203 if (spa->spa_spares.sav_vdevs != NULL &&
5204 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5205 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5206 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5207 /*
5208 * Only remove the hot spare if it's not currently in use
5209 * in this pool.
5210 */
5211 if (vd == NULL || unspare) {
5212 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5213 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5214 spa_load_spares(spa);
5215 spa->spa_spares.sav_sync = B_TRUE;
5216 } else {
5217 error = SET_ERROR(EBUSY);
5218 }
5219 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5220 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5221 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5222 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5223 /*
5224 * Cache devices can always be removed.
5225 */
5226 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5227 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5228 spa_load_l2cache(spa);
5229 spa->spa_l2cache.sav_sync = B_TRUE;
5230 } else if (vd != NULL && vd->vdev_islog) {
5231 ASSERT(!locked);
5232 ASSERT(vd == vd->vdev_top);
5233
5234 /*
5235 * XXX - Once we have bp-rewrite this should
5236 * become the common case.
5237 */
5238
5239 mg = vd->vdev_mg;
5240
5241 /*
5242 * Stop allocating from this vdev.
5243 */
5244 metaslab_group_passivate(mg);
5245
5246 /*
5247 * Wait for the youngest allocations and frees to sync,
5248 * and then wait for the deferral of those frees to finish.
5249 */
5250 spa_vdev_config_exit(spa, NULL,
5251 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5252
5253 /*
5254 * Attempt to evacuate the vdev.
5255 */
5256 error = spa_vdev_remove_evacuate(spa, vd);
5257
5258 txg = spa_vdev_config_enter(spa);
5259
5260 /*
5261 * If we couldn't evacuate the vdev, unwind.
5262 */
5263 if (error) {
5264 metaslab_group_activate(mg);
5265 return (spa_vdev_exit(spa, NULL, txg, error));
5266 }
5267
5268 /*
5269 * Clean up the vdev namespace.
5270 */
5271 spa_vdev_remove_from_namespace(spa, vd);
5272
5273 } else if (vd != NULL) {
5274 /*
5275 * Normal vdevs cannot be removed (yet).
5276 */
5277 error = SET_ERROR(ENOTSUP);
5278 } else {
5279 /*
5280 * There is no vdev of any kind with the specified guid.
5281 */
5282 error = SET_ERROR(ENOENT);
5283 }
5284
5285 if (!locked)
5286 return (spa_vdev_exit(spa, NULL, txg, error));
5287
5288 return (error);
5289 }
5290
5291 /*
5292 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5293 * currently spared, so we can detach it.
5294 */
5295 static vdev_t *
5296 spa_vdev_resilver_done_hunt(vdev_t *vd)
5297 {
5298 vdev_t *newvd, *oldvd;
5299
5300 for (int c = 0; c < vd->vdev_children; c++) {
5301 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5302 if (oldvd != NULL)
5303 return (oldvd);
5304 }
5305
5306 if (vd->vdev_resilvering && vdev_dtl_empty(vd, DTL_MISSING) &&
5307 vdev_dtl_empty(vd, DTL_OUTAGE)) {
5308 ASSERT(vd->vdev_ops->vdev_op_leaf);
5309 vd->vdev_resilvering = B_FALSE;
5310 vdev_config_dirty(vd->vdev_top);
5311 }
5312
5313 /*
5314 * Check for a completed replacement. We always consider the first
5315 * vdev in the list to be the oldest vdev, and the last one to be
5316 * the newest (see spa_vdev_attach() for how that works). In
5317 * the case where the newest vdev is faulted, we will not automatically
5318 * remove it after a resilver completes. This is OK as it will require
5319 * user intervention to determine which disk the admin wishes to keep.
5320 */
5321 if (vd->vdev_ops == &vdev_replacing_ops) {
5322 ASSERT(vd->vdev_children > 1);
5323
5324 newvd = vd->vdev_child[vd->vdev_children - 1];
5325 oldvd = vd->vdev_child[0];
5326
5327 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5328 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5329 !vdev_dtl_required(oldvd))
5330 return (oldvd);
5331 }
5332
5333 /*
5334 * Check for a completed resilver with the 'unspare' flag set.
5335 */
5336 if (vd->vdev_ops == &vdev_spare_ops) {
5337 vdev_t *first = vd->vdev_child[0];
5338 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5339
5340 if (last->vdev_unspare) {
5341 oldvd = first;
5342 newvd = last;
5343 } else if (first->vdev_unspare) {
5344 oldvd = last;
5345 newvd = first;
5346 } else {
5347 oldvd = NULL;
5348 }
5349
5350 if (oldvd != NULL &&
5351 vdev_dtl_empty(newvd, DTL_MISSING) &&
5352 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5353 !vdev_dtl_required(oldvd))
5354 return (oldvd);
5355
5356 /*
5357 * If there are more than two spares attached to a disk,
5358 * and those spares are not required, then we want to
5359 * attempt to free them up now so that they can be used
5360 * by other pools. Once we're back down to a single
5361 * disk+spare, we stop removing them.
5362 */
5363 if (vd->vdev_children > 2) {
5364 newvd = vd->vdev_child[1];
5365
5366 if (newvd->vdev_isspare && last->vdev_isspare &&
5367 vdev_dtl_empty(last, DTL_MISSING) &&
5368 vdev_dtl_empty(last, DTL_OUTAGE) &&
5369 !vdev_dtl_required(newvd))
5370 return (newvd);
5371 }
5372 }
5373
5374 return (NULL);
5375 }
5376
5377 static void
5378 spa_vdev_resilver_done(spa_t *spa)
5379 {
5380 vdev_t *vd, *pvd, *ppvd;
5381 uint64_t guid, sguid, pguid, ppguid;
5382
5383 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5384
5385 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5386 pvd = vd->vdev_parent;
5387 ppvd = pvd->vdev_parent;
5388 guid = vd->vdev_guid;
5389 pguid = pvd->vdev_guid;
5390 ppguid = ppvd->vdev_guid;
5391 sguid = 0;
5392 /*
5393 * If we have just finished replacing a hot spared device, then
5394 * we need to detach the parent's first child (the original hot
5395 * spare) as well.
5396 */
5397 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5398 ppvd->vdev_children == 2) {
5399 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5400 sguid = ppvd->vdev_child[1]->vdev_guid;
5401 }
5402 spa_config_exit(spa, SCL_ALL, FTAG);
5403 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5404 return;
5405 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5406 return;
5407 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5408 }
5409
5410 spa_config_exit(spa, SCL_ALL, FTAG);
5411 }
5412
5413 /*
5414 * Update the stored path or FRU for this vdev.
5415 */
5416 int
5417 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5418 boolean_t ispath)
5419 {
5420 vdev_t *vd;
5421 boolean_t sync = B_FALSE;
5422
5423 ASSERT(spa_writeable(spa));
5424
5425 spa_vdev_state_enter(spa, SCL_ALL);
5426
5427 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5428 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5429
5430 if (!vd->vdev_ops->vdev_op_leaf)
5431 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5432
5433 if (ispath) {
5434 if (strcmp(value, vd->vdev_path) != 0) {
5435 spa_strfree(vd->vdev_path);
5436 vd->vdev_path = spa_strdup(value);
5437 sync = B_TRUE;
5438 }
5439 } else {
5440 if (vd->vdev_fru == NULL) {
5441 vd->vdev_fru = spa_strdup(value);
5442 sync = B_TRUE;
5443 } else if (strcmp(value, vd->vdev_fru) != 0) {
5444 spa_strfree(vd->vdev_fru);
5445 vd->vdev_fru = spa_strdup(value);
5446 sync = B_TRUE;
5447 }
5448 }
5449
5450 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5451 }
5452
5453 int
5454 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5455 {
5456 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5457 }
5458
5459 int
5460 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5461 {
5462 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5463 }
5464
5465 /*
5466 * ==========================================================================
5467 * SPA Scanning
5468 * ==========================================================================
5469 */
5470
5471 int
5472 spa_scan_stop(spa_t *spa)
5473 {
5474 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5475 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5476 return (SET_ERROR(EBUSY));
5477 return (dsl_scan_cancel(spa->spa_dsl_pool));
5478 }
5479
5480 int
5481 spa_scan(spa_t *spa, pool_scan_func_t func)
5482 {
5483 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5484
5485 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5486 return (SET_ERROR(ENOTSUP));
5487
5488 /*
5489 * If a resilver was requested, but there is no DTL on a
5490 * writeable leaf device, we have nothing to do.
5491 */
5492 if (func == POOL_SCAN_RESILVER &&
5493 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5494 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5495 return (0);
5496 }
5497
5498 return (dsl_scan(spa->spa_dsl_pool, func));
5499 }
5500
5501 /*
5502 * ==========================================================================
5503 * SPA async task processing
5504 * ==========================================================================
5505 */
5506
5507 static void
5508 spa_async_remove(spa_t *spa, vdev_t *vd)
5509 {
5510 if (vd->vdev_remove_wanted) {
5511 vd->vdev_remove_wanted = B_FALSE;
5512 vd->vdev_delayed_close = B_FALSE;
5513 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5514
5515 /*
5516 * We want to clear the stats, but we don't want to do a full
5517 * vdev_clear() as that will cause us to throw away
5518 * degraded/faulted state as well as attempt to reopen the
5519 * device, all of which is a waste.
5520 */
5521 vd->vdev_stat.vs_read_errors = 0;
5522 vd->vdev_stat.vs_write_errors = 0;
5523 vd->vdev_stat.vs_checksum_errors = 0;
5524
5525 vdev_state_dirty(vd->vdev_top);
5526 }
5527
5528 for (int c = 0; c < vd->vdev_children; c++)
5529 spa_async_remove(spa, vd->vdev_child[c]);
5530 }
5531
5532 static void
5533 spa_async_probe(spa_t *spa, vdev_t *vd)
5534 {
5535 if (vd->vdev_probe_wanted) {
5536 vd->vdev_probe_wanted = B_FALSE;
5537 vdev_reopen(vd); /* vdev_open() does the actual probe */
5538 }
5539
5540 for (int c = 0; c < vd->vdev_children; c++)
5541 spa_async_probe(spa, vd->vdev_child[c]);
5542 }
5543
5544 static void
5545 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5546 {
5547 sysevent_id_t eid;
5548 nvlist_t *attr;
5549 char *physpath;
5550
5551 if (!spa->spa_autoexpand)
5552 return;
5553
5554 for (int c = 0; c < vd->vdev_children; c++) {
5555 vdev_t *cvd = vd->vdev_child[c];
5556 spa_async_autoexpand(spa, cvd);
5557 }
5558
5559 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5560 return;
5561
5562 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5563 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5564
5565 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5566 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5567
5568 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5569 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5570
5571 nvlist_free(attr);
5572 kmem_free(physpath, MAXPATHLEN);
5573 }
5574
5575 static void
5576 spa_async_thread(spa_t *spa)
5577 {
5578 int tasks;
5579
5580 ASSERT(spa->spa_sync_on);
5581
5582 mutex_enter(&spa->spa_async_lock);
5583 tasks = spa->spa_async_tasks;
5584 spa->spa_async_tasks = 0;
5585 mutex_exit(&spa->spa_async_lock);
5586
5587 /*
5588 * See if the config needs to be updated.
5589 */
5590 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5591 uint64_t old_space, new_space;
5592
5593 mutex_enter(&spa_namespace_lock);
5594 old_space = metaslab_class_get_space(spa_normal_class(spa));
5595 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5596 new_space = metaslab_class_get_space(spa_normal_class(spa));
5597 mutex_exit(&spa_namespace_lock);
5598
5599 /*
5600 * If the pool grew as a result of the config update,
5601 * then log an internal history event.
5602 */
5603 if (new_space != old_space) {
5604 spa_history_log_internal(spa, "vdev online", NULL,
5605 "pool '%s' size: %llu(+%llu)",
5606 spa_name(spa), new_space, new_space - old_space);
5607 }
5608 }
5609
5610 /*
5611 * See if any devices need to be marked REMOVED.
5612 */
5613 if (tasks & SPA_ASYNC_REMOVE) {
5614 spa_vdev_state_enter(spa, SCL_NONE);
5615 spa_async_remove(spa, spa->spa_root_vdev);
5616 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5617 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5618 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5619 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5620 (void) spa_vdev_state_exit(spa, NULL, 0);
5621 }
5622
5623 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5624 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5625 spa_async_autoexpand(spa, spa->spa_root_vdev);
5626 spa_config_exit(spa, SCL_CONFIG, FTAG);
5627 }
5628
5629 /*
5630 * See if any devices need to be probed.
5631 */
5632 if (tasks & SPA_ASYNC_PROBE) {
5633 spa_vdev_state_enter(spa, SCL_NONE);
5634 spa_async_probe(spa, spa->spa_root_vdev);
5635 (void) spa_vdev_state_exit(spa, NULL, 0);
5636 }
5637
5638 /*
5639 * If any devices are done replacing, detach them.
5640 */
5641 if (tasks & SPA_ASYNC_RESILVER_DONE)
5642 spa_vdev_resilver_done(spa);
5643
5644 /*
5645 * Kick off a resilver.
5646 */
5647 if (tasks & SPA_ASYNC_RESILVER)
5648 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5649
5650 /*
5651 * Let the world know that we're done.
5652 */
5653 mutex_enter(&spa->spa_async_lock);
5654 spa->spa_async_thread = NULL;
5655 cv_broadcast(&spa->spa_async_cv);
5656 mutex_exit(&spa->spa_async_lock);
5657 thread_exit();
5658 }
5659
5660 void
5661 spa_async_suspend(spa_t *spa)
5662 {
5663 mutex_enter(&spa->spa_async_lock);
5664 spa->spa_async_suspended++;
5665 while (spa->spa_async_thread != NULL)
5666 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5667 mutex_exit(&spa->spa_async_lock);
5668 }
5669
5670 void
5671 spa_async_resume(spa_t *spa)
5672 {
5673 mutex_enter(&spa->spa_async_lock);
5674 ASSERT(spa->spa_async_suspended != 0);
5675 spa->spa_async_suspended--;
5676 mutex_exit(&spa->spa_async_lock);
5677 }
5678
5679 static boolean_t
5680 spa_async_tasks_pending(spa_t *spa)
5681 {
5682 uint_t non_config_tasks;
5683 uint_t config_task;
5684 boolean_t config_task_suspended;
5685
5686 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5687 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5688 if (spa->spa_ccw_fail_time == 0) {
5689 config_task_suspended = B_FALSE;
5690 } else {
5691 config_task_suspended =
5692 (gethrtime() - spa->spa_ccw_fail_time) <
5693 (zfs_ccw_retry_interval * NANOSEC);
5694 }
5695
5696 return (non_config_tasks || (config_task && !config_task_suspended));
5697 }
5698
5699 static void
5700 spa_async_dispatch(spa_t *spa)
5701 {
5702 mutex_enter(&spa->spa_async_lock);
5703 if (spa_async_tasks_pending(spa) &&
5704 !spa->spa_async_suspended &&
5705 spa->spa_async_thread == NULL &&
5706 rootdir != NULL)
5707 spa->spa_async_thread = thread_create(NULL, 0,
5708 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5709 mutex_exit(&spa->spa_async_lock);
5710 }
5711
5712 void
5713 spa_async_request(spa_t *spa, int task)
5714 {
5715 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5716 mutex_enter(&spa->spa_async_lock);
5717 spa->spa_async_tasks |= task;
5718 mutex_exit(&spa->spa_async_lock);
5719 }
5720
5721 /*
5722 * ==========================================================================
5723 * SPA syncing routines
5724 * ==========================================================================
5725 */
5726
5727 static int
5728 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5729 {
5730 bpobj_t *bpo = arg;
5731 bpobj_enqueue(bpo, bp, tx);
5732 return (0);
5733 }
5734
5735 static int
5736 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5737 {
5738 zio_t *zio = arg;
5739
5740 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5741 zio->io_flags));
5742 return (0);
5743 }
5744
5745 static void
5746 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5747 {
5748 char *packed = NULL;
5749 size_t bufsize;
5750 size_t nvsize = 0;
5751 dmu_buf_t *db;
5752
5753 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5754
5755 /*
5756 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5757 * information. This avoids the dbuf_will_dirty() path and
5758 * saves us a pre-read to get data we don't actually care about.
5759 */
5760 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5761 packed = kmem_alloc(bufsize, KM_SLEEP);
5762
5763 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5764 KM_SLEEP) == 0);
5765 bzero(packed + nvsize, bufsize - nvsize);
5766
5767 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5768
5769 kmem_free(packed, bufsize);
5770
5771 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5772 dmu_buf_will_dirty(db, tx);
5773 *(uint64_t *)db->db_data = nvsize;
5774 dmu_buf_rele(db, FTAG);
5775 }
5776
5777 static void
5778 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5779 const char *config, const char *entry)
5780 {
5781 nvlist_t *nvroot;
5782 nvlist_t **list;
5783 int i;
5784
5785 if (!sav->sav_sync)
5786 return;
5787
5788 /*
5789 * Update the MOS nvlist describing the list of available devices.
5790 * spa_validate_aux() will have already made sure this nvlist is
5791 * valid and the vdevs are labeled appropriately.
5792 */
5793 if (sav->sav_object == 0) {
5794 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5795 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5796 sizeof (uint64_t), tx);
5797 VERIFY(zap_update(spa->spa_meta_objset,
5798 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5799 &sav->sav_object, tx) == 0);
5800 }
5801
5802 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5803 if (sav->sav_count == 0) {
5804 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5805 } else {
5806 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5807 for (i = 0; i < sav->sav_count; i++)
5808 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5809 B_FALSE, VDEV_CONFIG_L2CACHE);
5810 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5811 sav->sav_count) == 0);
5812 for (i = 0; i < sav->sav_count; i++)
5813 nvlist_free(list[i]);
5814 kmem_free(list, sav->sav_count * sizeof (void *));
5815 }
5816
5817 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5818 nvlist_free(nvroot);
5819
5820 sav->sav_sync = B_FALSE;
5821 }
5822
5823 static void
5824 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5825 {
5826 nvlist_t *config;
5827
5828 if (list_is_empty(&spa->spa_config_dirty_list))
5829 return;
5830
5831 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5832
5833 config = spa_config_generate(spa, spa->spa_root_vdev,
5834 dmu_tx_get_txg(tx), B_FALSE);
5835
5836 /*
5837 * If we're upgrading the spa version then make sure that
5838 * the config object gets updated with the correct version.
5839 */
5840 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5841 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5842 spa->spa_uberblock.ub_version);
5843
5844 spa_config_exit(spa, SCL_STATE, FTAG);
5845
5846 if (spa->spa_config_syncing)
5847 nvlist_free(spa->spa_config_syncing);
5848 spa->spa_config_syncing = config;
5849
5850 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5851 }
5852
5853 static void
5854 spa_sync_version(void *arg, dmu_tx_t *tx)
5855 {
5856 uint64_t *versionp = arg;
5857 uint64_t version = *versionp;
5858 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5859
5860 /*
5861 * Setting the version is special cased when first creating the pool.
5862 */
5863 ASSERT(tx->tx_txg != TXG_INITIAL);
5864
5865 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5866 ASSERT(version >= spa_version(spa));
5867
5868 spa->spa_uberblock.ub_version = version;
5869 vdev_config_dirty(spa->spa_root_vdev);
5870 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5871 }
5872
5873 /*
5874 * Set zpool properties.
5875 */
5876 static void
5877 spa_sync_props(void *arg, dmu_tx_t *tx)
5878 {
5879 nvlist_t *nvp = arg;
5880 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5881 objset_t *mos = spa->spa_meta_objset;
5882 nvpair_t *elem = NULL;
5883
5884 mutex_enter(&spa->spa_props_lock);
5885
5886 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5887 uint64_t intval;
5888 char *strval, *fname;
5889 zpool_prop_t prop;
5890 const char *propname;
5891 zprop_type_t proptype;
5892 zfeature_info_t *feature;
5893
5894 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5895 case ZPROP_INVAL:
5896 /*
5897 * We checked this earlier in spa_prop_validate().
5898 */
5899 ASSERT(zpool_prop_feature(nvpair_name(elem)));
5900
5901 fname = strchr(nvpair_name(elem), '@') + 1;
5902 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5903
5904 spa_feature_enable(spa, feature, tx);
5905 spa_history_log_internal(spa, "set", tx,
5906 "%s=enabled", nvpair_name(elem));
5907 break;
5908
5909 case ZPOOL_PROP_VERSION:
5910 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5911 /*
5912 * The version is synced seperatly before other
5913 * properties and should be correct by now.
5914 */
5915 ASSERT3U(spa_version(spa), >=, intval);
5916 break;
5917
5918 case ZPOOL_PROP_ALTROOT:
5919 /*
5920 * 'altroot' is a non-persistent property. It should
5921 * have been set temporarily at creation or import time.
5922 */
5923 ASSERT(spa->spa_root != NULL);
5924 break;
5925
5926 case ZPOOL_PROP_READONLY:
5927 case ZPOOL_PROP_CACHEFILE:
5928 /*
5929 * 'readonly' and 'cachefile' are also non-persisitent
5930 * properties.
5931 */
5932 break;
5933 case ZPOOL_PROP_COMMENT:
5934 VERIFY(nvpair_value_string(elem, &strval) == 0);
5935 if (spa->spa_comment != NULL)
5936 spa_strfree(spa->spa_comment);
5937 spa->spa_comment = spa_strdup(strval);
5938 /*
5939 * We need to dirty the configuration on all the vdevs
5940 * so that their labels get updated. It's unnecessary
5941 * to do this for pool creation since the vdev's
5942 * configuratoin has already been dirtied.
5943 */
5944 if (tx->tx_txg != TXG_INITIAL)
5945 vdev_config_dirty(spa->spa_root_vdev);
5946 spa_history_log_internal(spa, "set", tx,
5947 "%s=%s", nvpair_name(elem), strval);
5948 break;
5949 default:
5950 /*
5951 * Set pool property values in the poolprops mos object.
5952 */
5953 if (spa->spa_pool_props_object == 0) {
5954 spa->spa_pool_props_object =
5955 zap_create_link(mos, DMU_OT_POOL_PROPS,
5956 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5957 tx);
5958 }
5959
5960 /* normalize the property name */
5961 propname = zpool_prop_to_name(prop);
5962 proptype = zpool_prop_get_type(prop);
5963
5964 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5965 ASSERT(proptype == PROP_TYPE_STRING);
5966 VERIFY(nvpair_value_string(elem, &strval) == 0);
5967 VERIFY(zap_update(mos,
5968 spa->spa_pool_props_object, propname,
5969 1, strlen(strval) + 1, strval, tx) == 0);
5970 spa_history_log_internal(spa, "set", tx,
5971 "%s=%s", nvpair_name(elem), strval);
5972 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5973 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5974
5975 if (proptype == PROP_TYPE_INDEX) {
5976 const char *unused;
5977 VERIFY(zpool_prop_index_to_string(
5978 prop, intval, &unused) == 0);
5979 }
5980 VERIFY(zap_update(mos,
5981 spa->spa_pool_props_object, propname,
5982 8, 1, &intval, tx) == 0);
5983 spa_history_log_internal(spa, "set", tx,
5984 "%s=%lld", nvpair_name(elem), intval);
5985 } else {
5986 ASSERT(0); /* not allowed */
5987 }
5988
5989 switch (prop) {
5990 case ZPOOL_PROP_DELEGATION:
5991 spa->spa_delegation = intval;
5992 break;
5993 case ZPOOL_PROP_BOOTFS:
5994 spa->spa_bootfs = intval;
5995 break;
5996 case ZPOOL_PROP_FAILUREMODE:
5997 spa->spa_failmode = intval;
5998 break;
5999 case ZPOOL_PROP_AUTOEXPAND:
6000 spa->spa_autoexpand = intval;
6001 if (tx->tx_txg != TXG_INITIAL)
6002 spa_async_request(spa,
6003 SPA_ASYNC_AUTOEXPAND);
6004 break;
6005 case ZPOOL_PROP_DEDUPDITTO:
6006 spa->spa_dedup_ditto = intval;
6007 break;
6008 default:
6009 break;
6010 }
6011 }
6012
6013 }
6014
6015 mutex_exit(&spa->spa_props_lock);
6016 }
6017
6018 /*
6019 * Perform one-time upgrade on-disk changes. spa_version() does not
6020 * reflect the new version this txg, so there must be no changes this
6021 * txg to anything that the upgrade code depends on after it executes.
6022 * Therefore this must be called after dsl_pool_sync() does the sync
6023 * tasks.
6024 */
6025 static void
6026 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6027 {
6028 dsl_pool_t *dp = spa->spa_dsl_pool;
6029
6030 ASSERT(spa->spa_sync_pass == 1);
6031
6032 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6033
6034 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6035 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6036 dsl_pool_create_origin(dp, tx);
6037
6038 /* Keeping the origin open increases spa_minref */
6039 spa->spa_minref += 3;
6040 }
6041
6042 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6043 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6044 dsl_pool_upgrade_clones(dp, tx);
6045 }
6046
6047 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6048 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6049 dsl_pool_upgrade_dir_clones(dp, tx);
6050
6051 /* Keeping the freedir open increases spa_minref */
6052 spa->spa_minref += 3;
6053 }
6054
6055 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6056 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6057 spa_feature_create_zap_objects(spa, tx);
6058 }
6059 rrw_exit(&dp->dp_config_rwlock, FTAG);
6060 }
6061
6062 /*
6063 * Sync the specified transaction group. New blocks may be dirtied as
6064 * part of the process, so we iterate until it converges.
6065 */
6066 void
6067 spa_sync(spa_t *spa, uint64_t txg)
6068 {
6069 dsl_pool_t *dp = spa->spa_dsl_pool;
6070 objset_t *mos = spa->spa_meta_objset;
6071 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
6072 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6073 vdev_t *rvd = spa->spa_root_vdev;
6074 vdev_t *vd;
6075 dmu_tx_t *tx;
6076 int error;
6077
6078 VERIFY(spa_writeable(spa));
6079
6080 /*
6081 * Lock out configuration changes.
6082 */
6083 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6084
6085 spa->spa_syncing_txg = txg;
6086 spa->spa_sync_pass = 0;
6087
6088 /*
6089 * If there are any pending vdev state changes, convert them
6090 * into config changes that go out with this transaction group.
6091 */
6092 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6093 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6094 /*
6095 * We need the write lock here because, for aux vdevs,
6096 * calling vdev_config_dirty() modifies sav_config.
6097 * This is ugly and will become unnecessary when we
6098 * eliminate the aux vdev wart by integrating all vdevs
6099 * into the root vdev tree.
6100 */
6101 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6102 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6103 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6104 vdev_state_clean(vd);
6105 vdev_config_dirty(vd);
6106 }
6107 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6108 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6109 }
6110 spa_config_exit(spa, SCL_STATE, FTAG);
6111
6112 tx = dmu_tx_create_assigned(dp, txg);
6113
6114 spa->spa_sync_starttime = gethrtime();
6115 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6116 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6117
6118 /*
6119 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6120 * set spa_deflate if we have no raid-z vdevs.
6121 */
6122 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6123 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6124 int i;
6125
6126 for (i = 0; i < rvd->vdev_children; i++) {
6127 vd = rvd->vdev_child[i];
6128 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6129 break;
6130 }
6131 if (i == rvd->vdev_children) {
6132 spa->spa_deflate = TRUE;
6133 VERIFY(0 == zap_add(spa->spa_meta_objset,
6134 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6135 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6136 }
6137 }
6138
6139 /*
6140 * If anything has changed in this txg, or if someone is waiting
6141 * for this txg to sync (eg, spa_vdev_remove()), push the
6142 * deferred frees from the previous txg. If not, leave them
6143 * alone so that we don't generate work on an otherwise idle
6144 * system.
6145 */
6146 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6147 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6148 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6149 ((dsl_scan_active(dp->dp_scan) ||
6150 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6151 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6152 VERIFY3U(bpobj_iterate(defer_bpo,
6153 spa_free_sync_cb, zio, tx), ==, 0);
6154 VERIFY0(zio_wait(zio));
6155 }
6156
6157 /*
6158 * Iterate to convergence.
6159 */
6160 do {
6161 int pass = ++spa->spa_sync_pass;
6162
6163 spa_sync_config_object(spa, tx);
6164 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6165 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6166 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6167 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6168 spa_errlog_sync(spa, txg);
6169 dsl_pool_sync(dp, txg);
6170
6171 if (pass < zfs_sync_pass_deferred_free) {
6172 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6173 bplist_iterate(free_bpl, spa_free_sync_cb,
6174 zio, tx);
6175 VERIFY(zio_wait(zio) == 0);
6176 } else {
6177 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6178 defer_bpo, tx);
6179 }
6180
6181 ddt_sync(spa, txg);
6182 dsl_scan_sync(dp, tx);
6183
6184 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6185 vdev_sync(vd, txg);
6186
6187 if (pass == 1)
6188 spa_sync_upgrades(spa, tx);
6189
6190 } while (dmu_objset_is_dirty(mos, txg));
6191
6192 /*
6193 * Rewrite the vdev configuration (which includes the uberblock)
6194 * to commit the transaction group.
6195 *
6196 * If there are no dirty vdevs, we sync the uberblock to a few
6197 * random top-level vdevs that are known to be visible in the
6198 * config cache (see spa_vdev_add() for a complete description).
6199 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6200 */
6201 for (;;) {
6202 /*
6203 * We hold SCL_STATE to prevent vdev open/close/etc.
6204 * while we're attempting to write the vdev labels.
6205 */
6206 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6207
6208 if (list_is_empty(&spa->spa_config_dirty_list)) {
6209 vdev_t *svd[SPA_DVAS_PER_BP];
6210 int svdcount = 0;
6211 int children = rvd->vdev_children;
6212 int c0 = spa_get_random(children);
6213
6214 for (int c = 0; c < children; c++) {
6215 vd = rvd->vdev_child[(c0 + c) % children];
6216 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6217 continue;
6218 svd[svdcount++] = vd;
6219 if (svdcount == SPA_DVAS_PER_BP)
6220 break;
6221 }
6222 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6223 if (error != 0)
6224 error = vdev_config_sync(svd, svdcount, txg,
6225 B_TRUE);
6226 } else {
6227 error = vdev_config_sync(rvd->vdev_child,
6228 rvd->vdev_children, txg, B_FALSE);
6229 if (error != 0)
6230 error = vdev_config_sync(rvd->vdev_child,
6231 rvd->vdev_children, txg, B_TRUE);
6232 }
6233
6234 if (error == 0)
6235 spa->spa_last_synced_guid = rvd->vdev_guid;
6236
6237 spa_config_exit(spa, SCL_STATE, FTAG);
6238
6239 if (error == 0)
6240 break;
6241 zio_suspend(spa, NULL);
6242 zio_resume_wait(spa);
6243 }
6244 dmu_tx_commit(tx);
6245
6246 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6247
6248 /*
6249 * Clear the dirty config list.
6250 */
6251 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6252 vdev_config_clean(vd);
6253
6254 /*
6255 * Now that the new config has synced transactionally,
6256 * let it become visible to the config cache.
6257 */
6258 if (spa->spa_config_syncing != NULL) {
6259 spa_config_set(spa, spa->spa_config_syncing);
6260 spa->spa_config_txg = txg;
6261 spa->spa_config_syncing = NULL;
6262 }
6263
6264 spa->spa_ubsync = spa->spa_uberblock;
6265
6266 dsl_pool_sync_done(dp, txg);
6267
6268 /*
6269 * Update usable space statistics.
6270 */
6271 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6272 vdev_sync_done(vd, txg);
6273
6274 spa_update_dspace(spa);
6275
6276 /*
6277 * It had better be the case that we didn't dirty anything
6278 * since vdev_config_sync().
6279 */
6280 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6281 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6282 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6283
6284 spa->spa_sync_pass = 0;
6285
6286 spa_config_exit(spa, SCL_CONFIG, FTAG);
6287
6288 spa_handle_ignored_writes(spa);
6289
6290 /*
6291 * If any async tasks have been requested, kick them off.
6292 */
6293 spa_async_dispatch(spa);
6294 }
6295
6296 /*
6297 * Sync all pools. We don't want to hold the namespace lock across these
6298 * operations, so we take a reference on the spa_t and drop the lock during the
6299 * sync.
6300 */
6301 void
6302 spa_sync_allpools(void)
6303 {
6304 spa_t *spa = NULL;
6305 mutex_enter(&spa_namespace_lock);
6306 while ((spa = spa_next(spa)) != NULL) {
6307 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6308 !spa_writeable(spa) || spa_suspended(spa))
6309 continue;
6310 spa_open_ref(spa, FTAG);
6311 mutex_exit(&spa_namespace_lock);
6312 txg_wait_synced(spa_get_dsl(spa), 0);
6313 mutex_enter(&spa_namespace_lock);
6314 spa_close(spa, FTAG);
6315 }
6316 mutex_exit(&spa_namespace_lock);
6317 }
6318
6319 /*
6320 * ==========================================================================
6321 * Miscellaneous routines
6322 * ==========================================================================
6323 */
6324
6325 /*
6326 * Remove all pools in the system.
6327 */
6328 void
6329 spa_evict_all(void)
6330 {
6331 spa_t *spa;
6332
6333 /*
6334 * Remove all cached state. All pools should be closed now,
6335 * so every spa in the AVL tree should be unreferenced.
6336 */
6337 mutex_enter(&spa_namespace_lock);
6338 while ((spa = spa_next(NULL)) != NULL) {
6339 /*
6340 * Stop async tasks. The async thread may need to detach
6341 * a device that's been replaced, which requires grabbing
6342 * spa_namespace_lock, so we must drop it here.
6343 */
6344 spa_open_ref(spa, FTAG);
6345 mutex_exit(&spa_namespace_lock);
6346 spa_async_suspend(spa);
6347 mutex_enter(&spa_namespace_lock);
6348 spa_close(spa, FTAG);
6349
6350 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6351 spa_unload(spa);
6352 spa_deactivate(spa);
6353 }
6354 spa_remove(spa);
6355 }
6356 mutex_exit(&spa_namespace_lock);
6357 }
6358
6359 vdev_t *
6360 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6361 {
6362 vdev_t *vd;
6363 int i;
6364
6365 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6366 return (vd);
6367
6368 if (aux) {
6369 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6370 vd = spa->spa_l2cache.sav_vdevs[i];
6371 if (vd->vdev_guid == guid)
6372 return (vd);
6373 }
6374
6375 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6376 vd = spa->spa_spares.sav_vdevs[i];
6377 if (vd->vdev_guid == guid)
6378 return (vd);
6379 }
6380 }
6381
6382 return (NULL);
6383 }
6384
6385 void
6386 spa_upgrade(spa_t *spa, uint64_t version)
6387 {
6388 ASSERT(spa_writeable(spa));
6389
6390 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6391
6392 /*
6393 * This should only be called for a non-faulted pool, and since a
6394 * future version would result in an unopenable pool, this shouldn't be
6395 * possible.
6396 */
6397 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6398 ASSERT(version >= spa->spa_uberblock.ub_version);
6399
6400 spa->spa_uberblock.ub_version = version;
6401 vdev_config_dirty(spa->spa_root_vdev);
6402
6403 spa_config_exit(spa, SCL_ALL, FTAG);
6404
6405 txg_wait_synced(spa_get_dsl(spa), 0);
6406 }
6407
6408 boolean_t
6409 spa_has_spare(spa_t *spa, uint64_t guid)
6410 {
6411 int i;
6412 uint64_t spareguid;
6413 spa_aux_vdev_t *sav = &spa->spa_spares;
6414
6415 for (i = 0; i < sav->sav_count; i++)
6416 if (sav->sav_vdevs[i]->vdev_guid == guid)
6417 return (B_TRUE);
6418
6419 for (i = 0; i < sav->sav_npending; i++) {
6420 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6421 &spareguid) == 0 && spareguid == guid)
6422 return (B_TRUE);
6423 }
6424
6425 return (B_FALSE);
6426 }
6427
6428 /*
6429 * Check if a pool has an active shared spare device.
6430 * Note: reference count of an active spare is 2, as a spare and as a replace
6431 */
6432 static boolean_t
6433 spa_has_active_shared_spare(spa_t *spa)
6434 {
6435 int i, refcnt;
6436 uint64_t pool;
6437 spa_aux_vdev_t *sav = &spa->spa_spares;
6438
6439 for (i = 0; i < sav->sav_count; i++) {
6440 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6441 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6442 refcnt > 2)
6443 return (B_TRUE);
6444 }
6445
6446 return (B_FALSE);
6447 }
6448
6449 /*
6450 * Post a sysevent corresponding to the given event. The 'name' must be one of
6451 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6452 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6453 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6454 * or zdb as real changes.
6455 */
6456 void
6457 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6458 {
6459 #ifdef _KERNEL
6460 sysevent_t *ev;
6461 sysevent_attr_list_t *attr = NULL;
6462 sysevent_value_t value;
6463 sysevent_id_t eid;
6464
6465 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6466 SE_SLEEP);
6467
6468 value.value_type = SE_DATA_TYPE_STRING;
6469 value.value.sv_string = spa_name(spa);
6470 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6471 goto done;
6472
6473 value.value_type = SE_DATA_TYPE_UINT64;
6474 value.value.sv_uint64 = spa_guid(spa);
6475 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6476 goto done;
6477
6478 if (vd) {
6479 value.value_type = SE_DATA_TYPE_UINT64;
6480 value.value.sv_uint64 = vd->vdev_guid;
6481 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6482 SE_SLEEP) != 0)
6483 goto done;
6484
6485 if (vd->vdev_path) {
6486 value.value_type = SE_DATA_TYPE_STRING;
6487 value.value.sv_string = vd->vdev_path;
6488 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6489 &value, SE_SLEEP) != 0)
6490 goto done;
6491 }
6492 }
6493
6494 if (sysevent_attach_attributes(ev, attr) != 0)
6495 goto done;
6496 attr = NULL;
6497
6498 (void) log_sysevent(ev, SE_SLEEP, &eid);
6499
6500 done:
6501 if (attr)
6502 sysevent_free_attr(attr);
6503 sysevent_free(ev);
6504 #endif
6505 }