1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 */
27
28 /*
29 * The objective of this program is to provide a DMU/ZAP/SPA stress test
30 * that runs entirely in userland, is easy to use, and easy to extend.
31 *
32 * The overall design of the ztest program is as follows:
33 *
34 * (1) For each major functional area (e.g. adding vdevs to a pool,
35 * creating and destroying datasets, reading and writing objects, etc)
36 * we have a simple routine to test that functionality. These
37 * individual routines do not have to do anything "stressful".
38 *
39 * (2) We turn these simple functionality tests into a stress test by
40 * running them all in parallel, with as many threads as desired,
41 * and spread across as many datasets, objects, and vdevs as desired.
42 *
43 * (3) While all this is happening, we inject faults into the pool to
44 * verify that self-healing data really works.
45 *
46 * (4) Every time we open a dataset, we change its checksum and compression
47 * functions. Thus even individual objects vary from block to block
48 * in which checksum they use and whether they're compressed.
49 *
50 * (5) To verify that we never lose on-disk consistency after a crash,
51 * we run the entire test in a child of the main process.
52 * At random times, the child self-immolates with a SIGKILL.
53 * This is the software equivalent of pulling the power cord.
54 * The parent then runs the test again, using the existing
55 * storage pool, as many times as desired. If backwards compatability
56 * testing is enabled ztest will sometimes run the "older" version
57 * of ztest after a SIGKILL.
58 *
59 * (6) To verify that we don't have future leaks or temporal incursions,
60 * many of the functional tests record the transaction group number
61 * as part of their data. When reading old data, they verify that
62 * the transaction group number is less than the current, open txg.
63 * If you add a new test, please do this if applicable.
64 *
65 * When run with no arguments, ztest runs for about five minutes and
66 * produces no output if successful. To get a little bit of information,
67 * specify -V. To get more information, specify -VV, and so on.
68 *
69 * To turn this into an overnight stress test, use -T to specify run time.
70 *
71 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
72 * to increase the pool capacity, fanout, and overall stress level.
73 *
74 * Use the -k option to set the desired frequency of kills.
75 *
76 * When ztest invokes itself it passes all relevant information through a
77 * temporary file which is mmap-ed in the child process. This allows shared
78 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
79 * stored at offset 0 of this file and contains information on the size and
80 * number of shared structures in the file. The information stored in this file
81 * must remain backwards compatible with older versions of ztest so that
82 * ztest can invoke them during backwards compatibility testing (-B).
83 */
84
85 #include <sys/zfs_context.h>
86 #include <sys/spa.h>
87 #include <sys/dmu.h>
88 #include <sys/txg.h>
89 #include <sys/dbuf.h>
90 #include <sys/zap.h>
91 #include <sys/dmu_objset.h>
92 #include <sys/poll.h>
93 #include <sys/stat.h>
94 #include <sys/time.h>
95 #include <sys/wait.h>
96 #include <sys/mman.h>
97 #include <sys/resource.h>
98 #include <sys/zio.h>
99 #include <sys/zil.h>
100 #include <sys/zil_impl.h>
101 #include <sys/vdev_impl.h>
102 #include <sys/vdev_file.h>
103 #include <sys/spa_impl.h>
104 #include <sys/metaslab_impl.h>
105 #include <sys/dsl_prop.h>
106 #include <sys/dsl_dataset.h>
107 #include <sys/dsl_destroy.h>
108 #include <sys/dsl_scan.h>
109 #include <sys/zio_checksum.h>
110 #include <sys/refcount.h>
111 #include <sys/zfeature.h>
112 #include <sys/dsl_userhold.h>
113 #include <stdio.h>
114 #include <stdio_ext.h>
115 #include <stdlib.h>
116 #include <unistd.h>
117 #include <signal.h>
118 #include <umem.h>
119 #include <dlfcn.h>
120 #include <ctype.h>
121 #include <math.h>
122 #include <sys/fs/zfs.h>
123 #include <libnvpair.h>
124
125 static int ztest_fd_data = -1;
126 static int ztest_fd_rand = -1;
127
128 typedef struct ztest_shared_hdr {
129 uint64_t zh_hdr_size;
130 uint64_t zh_opts_size;
131 uint64_t zh_size;
132 uint64_t zh_stats_size;
133 uint64_t zh_stats_count;
134 uint64_t zh_ds_size;
135 uint64_t zh_ds_count;
136 } ztest_shared_hdr_t;
137
138 static ztest_shared_hdr_t *ztest_shared_hdr;
139
140 typedef struct ztest_shared_opts {
141 char zo_pool[MAXNAMELEN];
142 char zo_dir[MAXNAMELEN];
143 char zo_alt_ztest[MAXNAMELEN];
144 char zo_alt_libpath[MAXNAMELEN];
145 uint64_t zo_vdevs;
146 uint64_t zo_vdevtime;
147 size_t zo_vdev_size;
148 int zo_ashift;
149 int zo_mirrors;
150 int zo_raidz;
151 int zo_raidz_parity;
152 int zo_datasets;
153 int zo_threads;
154 uint64_t zo_passtime;
155 uint64_t zo_killrate;
156 int zo_verbose;
157 int zo_init;
158 uint64_t zo_time;
159 uint64_t zo_maxloops;
160 uint64_t zo_metaslab_gang_bang;
161 } ztest_shared_opts_t;
162
163 static const ztest_shared_opts_t ztest_opts_defaults = {
164 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
165 .zo_dir = { '/', 't', 'm', 'p', '\0' },
166 .zo_alt_ztest = { '\0' },
167 .zo_alt_libpath = { '\0' },
168 .zo_vdevs = 5,
169 .zo_ashift = SPA_MINBLOCKSHIFT,
170 .zo_mirrors = 2,
171 .zo_raidz = 4,
172 .zo_raidz_parity = 1,
173 .zo_vdev_size = SPA_MINDEVSIZE,
174 .zo_datasets = 7,
175 .zo_threads = 23,
176 .zo_passtime = 60, /* 60 seconds */
177 .zo_killrate = 70, /* 70% kill rate */
178 .zo_verbose = 0,
179 .zo_init = 1,
180 .zo_time = 300, /* 5 minutes */
181 .zo_maxloops = 50, /* max loops during spa_freeze() */
182 .zo_metaslab_gang_bang = 32 << 10
183 };
184
185 extern uint64_t metaslab_gang_bang;
186 extern uint64_t metaslab_df_alloc_threshold;
187
188 static ztest_shared_opts_t *ztest_shared_opts;
189 static ztest_shared_opts_t ztest_opts;
190
191 typedef struct ztest_shared_ds {
192 uint64_t zd_seq;
193 } ztest_shared_ds_t;
194
195 static ztest_shared_ds_t *ztest_shared_ds;
196 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
197
198 #define BT_MAGIC 0x123456789abcdefULL
199 #define MAXFAULTS() \
200 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
201
202 enum ztest_io_type {
203 ZTEST_IO_WRITE_TAG,
204 ZTEST_IO_WRITE_PATTERN,
205 ZTEST_IO_WRITE_ZEROES,
206 ZTEST_IO_TRUNCATE,
207 ZTEST_IO_SETATTR,
208 ZTEST_IO_REWRITE,
209 ZTEST_IO_TYPES
210 };
211
212 typedef struct ztest_block_tag {
213 uint64_t bt_magic;
214 uint64_t bt_objset;
215 uint64_t bt_object;
216 uint64_t bt_offset;
217 uint64_t bt_gen;
218 uint64_t bt_txg;
219 uint64_t bt_crtxg;
220 } ztest_block_tag_t;
221
222 typedef struct bufwad {
223 uint64_t bw_index;
224 uint64_t bw_txg;
225 uint64_t bw_data;
226 } bufwad_t;
227
228 /*
229 * XXX -- fix zfs range locks to be generic so we can use them here.
230 */
231 typedef enum {
232 RL_READER,
233 RL_WRITER,
234 RL_APPEND
235 } rl_type_t;
236
237 typedef struct rll {
238 void *rll_writer;
239 int rll_readers;
240 mutex_t rll_lock;
241 cond_t rll_cv;
242 } rll_t;
243
244 typedef struct rl {
245 uint64_t rl_object;
246 uint64_t rl_offset;
247 uint64_t rl_size;
248 rll_t *rl_lock;
249 } rl_t;
250
251 #define ZTEST_RANGE_LOCKS 64
252 #define ZTEST_OBJECT_LOCKS 64
253
254 /*
255 * Object descriptor. Used as a template for object lookup/create/remove.
256 */
257 typedef struct ztest_od {
258 uint64_t od_dir;
259 uint64_t od_object;
260 dmu_object_type_t od_type;
261 dmu_object_type_t od_crtype;
262 uint64_t od_blocksize;
263 uint64_t od_crblocksize;
264 uint64_t od_gen;
265 uint64_t od_crgen;
266 char od_name[MAXNAMELEN];
267 } ztest_od_t;
268
269 /*
270 * Per-dataset state.
271 */
272 typedef struct ztest_ds {
273 ztest_shared_ds_t *zd_shared;
274 objset_t *zd_os;
275 rwlock_t zd_zilog_lock;
276 zilog_t *zd_zilog;
277 ztest_od_t *zd_od; /* debugging aid */
278 char zd_name[MAXNAMELEN];
279 mutex_t zd_dirobj_lock;
280 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
281 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
282 } ztest_ds_t;
283
284 /*
285 * Per-iteration state.
286 */
287 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
288
289 typedef struct ztest_info {
290 ztest_func_t *zi_func; /* test function */
291 uint64_t zi_iters; /* iterations per execution */
292 uint64_t *zi_interval; /* execute every <interval> seconds */
293 } ztest_info_t;
294
295 typedef struct ztest_shared_callstate {
296 uint64_t zc_count; /* per-pass count */
297 uint64_t zc_time; /* per-pass time */
298 uint64_t zc_next; /* next time to call this function */
299 } ztest_shared_callstate_t;
300
301 static ztest_shared_callstate_t *ztest_shared_callstate;
302 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
303
304 /*
305 * Note: these aren't static because we want dladdr() to work.
306 */
307 ztest_func_t ztest_dmu_read_write;
308 ztest_func_t ztest_dmu_write_parallel;
309 ztest_func_t ztest_dmu_object_alloc_free;
310 ztest_func_t ztest_dmu_commit_callbacks;
311 ztest_func_t ztest_zap;
312 ztest_func_t ztest_zap_parallel;
313 ztest_func_t ztest_zil_commit;
314 ztest_func_t ztest_zil_remount;
315 ztest_func_t ztest_dmu_read_write_zcopy;
316 ztest_func_t ztest_dmu_objset_create_destroy;
317 ztest_func_t ztest_dmu_prealloc;
318 ztest_func_t ztest_fzap;
319 ztest_func_t ztest_dmu_snapshot_create_destroy;
320 ztest_func_t ztest_dsl_prop_get_set;
321 ztest_func_t ztest_spa_prop_get_set;
322 ztest_func_t ztest_spa_create_destroy;
323 ztest_func_t ztest_fault_inject;
324 ztest_func_t ztest_ddt_repair;
325 ztest_func_t ztest_dmu_snapshot_hold;
326 ztest_func_t ztest_spa_rename;
327 ztest_func_t ztest_scrub;
328 ztest_func_t ztest_dsl_dataset_promote_busy;
329 ztest_func_t ztest_vdev_attach_detach;
330 ztest_func_t ztest_vdev_LUN_growth;
331 ztest_func_t ztest_vdev_add_remove;
332 ztest_func_t ztest_vdev_aux_add_remove;
333 ztest_func_t ztest_split_pool;
334 ztest_func_t ztest_reguid;
335 ztest_func_t ztest_spa_upgrade;
336
337 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
338 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
339 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
340 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
341 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
342
343 ztest_info_t ztest_info[] = {
344 { ztest_dmu_read_write, 1, &zopt_always },
345 { ztest_dmu_write_parallel, 10, &zopt_always },
346 { ztest_dmu_object_alloc_free, 1, &zopt_always },
347 { ztest_dmu_commit_callbacks, 1, &zopt_always },
348 { ztest_zap, 30, &zopt_always },
349 { ztest_zap_parallel, 100, &zopt_always },
350 { ztest_split_pool, 1, &zopt_always },
351 { ztest_zil_commit, 1, &zopt_incessant },
352 { ztest_zil_remount, 1, &zopt_sometimes },
353 { ztest_dmu_read_write_zcopy, 1, &zopt_often },
354 { ztest_dmu_objset_create_destroy, 1, &zopt_often },
355 { ztest_dsl_prop_get_set, 1, &zopt_often },
356 { ztest_spa_prop_get_set, 1, &zopt_sometimes },
357 #if 0
358 { ztest_dmu_prealloc, 1, &zopt_sometimes },
359 #endif
360 { ztest_fzap, 1, &zopt_sometimes },
361 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes },
362 { ztest_spa_create_destroy, 1, &zopt_sometimes },
363 { ztest_fault_inject, 1, &zopt_sometimes },
364 { ztest_ddt_repair, 1, &zopt_sometimes },
365 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes },
366 { ztest_reguid, 1, &zopt_sometimes },
367 { ztest_spa_rename, 1, &zopt_rarely },
368 { ztest_scrub, 1, &zopt_rarely },
369 { ztest_spa_upgrade, 1, &zopt_rarely },
370 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely },
371 { ztest_vdev_attach_detach, 1, &zopt_sometimes },
372 { ztest_vdev_LUN_growth, 1, &zopt_rarely },
373 { ztest_vdev_add_remove, 1,
374 &ztest_opts.zo_vdevtime },
375 { ztest_vdev_aux_add_remove, 1,
376 &ztest_opts.zo_vdevtime },
377 };
378
379 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
380
381 /*
382 * The following struct is used to hold a list of uncalled commit callbacks.
383 * The callbacks are ordered by txg number.
384 */
385 typedef struct ztest_cb_list {
386 mutex_t zcl_callbacks_lock;
387 list_t zcl_callbacks;
388 } ztest_cb_list_t;
389
390 /*
391 * Stuff we need to share writably between parent and child.
392 */
393 typedef struct ztest_shared {
394 boolean_t zs_do_init;
395 hrtime_t zs_proc_start;
396 hrtime_t zs_proc_stop;
397 hrtime_t zs_thread_start;
398 hrtime_t zs_thread_stop;
399 hrtime_t zs_thread_kill;
400 uint64_t zs_enospc_count;
401 uint64_t zs_vdev_next_leaf;
402 uint64_t zs_vdev_aux;
403 uint64_t zs_alloc;
404 uint64_t zs_space;
405 uint64_t zs_splits;
406 uint64_t zs_mirrors;
407 uint64_t zs_metaslab_sz;
408 uint64_t zs_metaslab_df_alloc_threshold;
409 uint64_t zs_guid;
410 } ztest_shared_t;
411
412 #define ID_PARALLEL -1ULL
413
414 static char ztest_dev_template[] = "%s/%s.%llua";
415 static char ztest_aux_template[] = "%s/%s.%s.%llu";
416 ztest_shared_t *ztest_shared;
417
418 static spa_t *ztest_spa = NULL;
419 static ztest_ds_t *ztest_ds;
420
421 static mutex_t ztest_vdev_lock;
422
423 /*
424 * The ztest_name_lock protects the pool and dataset namespace used by
425 * the individual tests. To modify the namespace, consumers must grab
426 * this lock as writer. Grabbing the lock as reader will ensure that the
427 * namespace does not change while the lock is held.
428 */
429 static rwlock_t ztest_name_lock;
430
431 static boolean_t ztest_dump_core = B_TRUE;
432 static boolean_t ztest_exiting;
433
434 /* Global commit callback list */
435 static ztest_cb_list_t zcl;
436
437 enum ztest_object {
438 ZTEST_META_DNODE = 0,
439 ZTEST_DIROBJ,
440 ZTEST_OBJECTS
441 };
442
443 static void usage(boolean_t) __NORETURN;
444
445 /*
446 * These libumem hooks provide a reasonable set of defaults for the allocator's
447 * debugging facilities.
448 */
449 const char *
450 _umem_debug_init()
451 {
452 return ("default,verbose"); /* $UMEM_DEBUG setting */
453 }
454
455 const char *
456 _umem_logging_init(void)
457 {
458 return ("fail,contents"); /* $UMEM_LOGGING setting */
459 }
460
461 #define FATAL_MSG_SZ 1024
462
463 char *fatal_msg;
464
465 static void
466 fatal(int do_perror, char *message, ...)
467 {
468 va_list args;
469 int save_errno = errno;
470 char buf[FATAL_MSG_SZ];
471
472 (void) fflush(stdout);
473
474 va_start(args, message);
475 (void) sprintf(buf, "ztest: ");
476 /* LINTED */
477 (void) vsprintf(buf + strlen(buf), message, args);
478 va_end(args);
479 if (do_perror) {
480 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
481 ": %s", strerror(save_errno));
482 }
483 (void) fprintf(stderr, "%s\n", buf);
484 fatal_msg = buf; /* to ease debugging */
485 if (ztest_dump_core)
486 abort();
487 exit(3);
488 }
489
490 static int
491 str2shift(const char *buf)
492 {
493 const char *ends = "BKMGTPEZ";
494 int i;
495
496 if (buf[0] == '\0')
497 return (0);
498 for (i = 0; i < strlen(ends); i++) {
499 if (toupper(buf[0]) == ends[i])
500 break;
501 }
502 if (i == strlen(ends)) {
503 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
504 buf);
505 usage(B_FALSE);
506 }
507 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
508 return (10*i);
509 }
510 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
511 usage(B_FALSE);
512 /* NOTREACHED */
513 }
514
515 static uint64_t
516 nicenumtoull(const char *buf)
517 {
518 char *end;
519 uint64_t val;
520
521 val = strtoull(buf, &end, 0);
522 if (end == buf) {
523 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
524 usage(B_FALSE);
525 } else if (end[0] == '.') {
526 double fval = strtod(buf, &end);
527 fval *= pow(2, str2shift(end));
528 if (fval > UINT64_MAX) {
529 (void) fprintf(stderr, "ztest: value too large: %s\n",
530 buf);
531 usage(B_FALSE);
532 }
533 val = (uint64_t)fval;
534 } else {
535 int shift = str2shift(end);
536 if (shift >= 64 || (val << shift) >> shift != val) {
537 (void) fprintf(stderr, "ztest: value too large: %s\n",
538 buf);
539 usage(B_FALSE);
540 }
541 val <<= shift;
542 }
543 return (val);
544 }
545
546 static void
547 usage(boolean_t requested)
548 {
549 const ztest_shared_opts_t *zo = &ztest_opts_defaults;
550
551 char nice_vdev_size[10];
552 char nice_gang_bang[10];
553 FILE *fp = requested ? stdout : stderr;
554
555 nicenum(zo->zo_vdev_size, nice_vdev_size);
556 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang);
557
558 (void) fprintf(fp, "Usage: %s\n"
559 "\t[-v vdevs (default: %llu)]\n"
560 "\t[-s size_of_each_vdev (default: %s)]\n"
561 "\t[-a alignment_shift (default: %d)] use 0 for random\n"
562 "\t[-m mirror_copies (default: %d)]\n"
563 "\t[-r raidz_disks (default: %d)]\n"
564 "\t[-R raidz_parity (default: %d)]\n"
565 "\t[-d datasets (default: %d)]\n"
566 "\t[-t threads (default: %d)]\n"
567 "\t[-g gang_block_threshold (default: %s)]\n"
568 "\t[-i init_count (default: %d)] initialize pool i times\n"
569 "\t[-k kill_percentage (default: %llu%%)]\n"
570 "\t[-p pool_name (default: %s)]\n"
571 "\t[-f dir (default: %s)] file directory for vdev files\n"
572 "\t[-V] verbose (use multiple times for ever more blather)\n"
573 "\t[-E] use existing pool instead of creating new one\n"
574 "\t[-T time (default: %llu sec)] total run time\n"
575 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
576 "\t[-P passtime (default: %llu sec)] time per pass\n"
577 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
578 "\t[-h] (print help)\n"
579 "",
580 zo->zo_pool,
581 (u_longlong_t)zo->zo_vdevs, /* -v */
582 nice_vdev_size, /* -s */
583 zo->zo_ashift, /* -a */
584 zo->zo_mirrors, /* -m */
585 zo->zo_raidz, /* -r */
586 zo->zo_raidz_parity, /* -R */
587 zo->zo_datasets, /* -d */
588 zo->zo_threads, /* -t */
589 nice_gang_bang, /* -g */
590 zo->zo_init, /* -i */
591 (u_longlong_t)zo->zo_killrate, /* -k */
592 zo->zo_pool, /* -p */
593 zo->zo_dir, /* -f */
594 (u_longlong_t)zo->zo_time, /* -T */
595 (u_longlong_t)zo->zo_maxloops, /* -F */
596 (u_longlong_t)zo->zo_passtime);
597 exit(requested ? 0 : 1);
598 }
599
600 static void
601 process_options(int argc, char **argv)
602 {
603 char *path;
604 ztest_shared_opts_t *zo = &ztest_opts;
605
606 int opt;
607 uint64_t value;
608 char altdir[MAXNAMELEN] = { 0 };
609
610 bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
611
612 while ((opt = getopt(argc, argv,
613 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) {
614 value = 0;
615 switch (opt) {
616 case 'v':
617 case 's':
618 case 'a':
619 case 'm':
620 case 'r':
621 case 'R':
622 case 'd':
623 case 't':
624 case 'g':
625 case 'i':
626 case 'k':
627 case 'T':
628 case 'P':
629 case 'F':
630 value = nicenumtoull(optarg);
631 }
632 switch (opt) {
633 case 'v':
634 zo->zo_vdevs = value;
635 break;
636 case 's':
637 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
638 break;
639 case 'a':
640 zo->zo_ashift = value;
641 break;
642 case 'm':
643 zo->zo_mirrors = value;
644 break;
645 case 'r':
646 zo->zo_raidz = MAX(1, value);
647 break;
648 case 'R':
649 zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
650 break;
651 case 'd':
652 zo->zo_datasets = MAX(1, value);
653 break;
654 case 't':
655 zo->zo_threads = MAX(1, value);
656 break;
657 case 'g':
658 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1,
659 value);
660 break;
661 case 'i':
662 zo->zo_init = value;
663 break;
664 case 'k':
665 zo->zo_killrate = value;
666 break;
667 case 'p':
668 (void) strlcpy(zo->zo_pool, optarg,
669 sizeof (zo->zo_pool));
670 break;
671 case 'f':
672 path = realpath(optarg, NULL);
673 if (path == NULL) {
674 (void) fprintf(stderr, "error: %s: %s\n",
675 optarg, strerror(errno));
676 usage(B_FALSE);
677 } else {
678 (void) strlcpy(zo->zo_dir, path,
679 sizeof (zo->zo_dir));
680 }
681 break;
682 case 'V':
683 zo->zo_verbose++;
684 break;
685 case 'E':
686 zo->zo_init = 0;
687 break;
688 case 'T':
689 zo->zo_time = value;
690 break;
691 case 'P':
692 zo->zo_passtime = MAX(1, value);
693 break;
694 case 'F':
695 zo->zo_maxloops = MAX(1, value);
696 break;
697 case 'B':
698 (void) strlcpy(altdir, optarg, sizeof (altdir));
699 break;
700 case 'h':
701 usage(B_TRUE);
702 break;
703 case '?':
704 default:
705 usage(B_FALSE);
706 break;
707 }
708 }
709
710 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
711
712 zo->zo_vdevtime =
713 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
714 UINT64_MAX >> 2);
715
716 if (strlen(altdir) > 0) {
717 char *cmd;
718 char *realaltdir;
719 char *bin;
720 char *ztest;
721 char *isa;
722 int isalen;
723
724 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
725 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
726
727 VERIFY(NULL != realpath(getexecname(), cmd));
728 if (0 != access(altdir, F_OK)) {
729 ztest_dump_core = B_FALSE;
730 fatal(B_TRUE, "invalid alternate ztest path: %s",
731 altdir);
732 }
733 VERIFY(NULL != realpath(altdir, realaltdir));
734
735 /*
736 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
737 * We want to extract <isa> to determine if we should use
738 * 32 or 64 bit binaries.
739 */
740 bin = strstr(cmd, "/usr/bin/");
741 ztest = strstr(bin, "/ztest");
742 isa = bin + 9;
743 isalen = ztest - isa;
744 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
745 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
746 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
747 "%s/usr/lib/%.*s", realaltdir, isalen, isa);
748
749 if (0 != access(zo->zo_alt_ztest, X_OK)) {
750 ztest_dump_core = B_FALSE;
751 fatal(B_TRUE, "invalid alternate ztest: %s",
752 zo->zo_alt_ztest);
753 } else if (0 != access(zo->zo_alt_libpath, X_OK)) {
754 ztest_dump_core = B_FALSE;
755 fatal(B_TRUE, "invalid alternate lib directory %s",
756 zo->zo_alt_libpath);
757 }
758
759 umem_free(cmd, MAXPATHLEN);
760 umem_free(realaltdir, MAXPATHLEN);
761 }
762 }
763
764 static void
765 ztest_kill(ztest_shared_t *zs)
766 {
767 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
768 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
769 (void) kill(getpid(), SIGKILL);
770 }
771
772 static uint64_t
773 ztest_random(uint64_t range)
774 {
775 uint64_t r;
776
777 ASSERT3S(ztest_fd_rand, >=, 0);
778
779 if (range == 0)
780 return (0);
781
782 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
783 fatal(1, "short read from /dev/urandom");
784
785 return (r % range);
786 }
787
788 /* ARGSUSED */
789 static void
790 ztest_record_enospc(const char *s)
791 {
792 ztest_shared->zs_enospc_count++;
793 }
794
795 static uint64_t
796 ztest_get_ashift(void)
797 {
798 if (ztest_opts.zo_ashift == 0)
799 return (SPA_MINBLOCKSHIFT + ztest_random(3));
800 return (ztest_opts.zo_ashift);
801 }
802
803 static nvlist_t *
804 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
805 {
806 char pathbuf[MAXPATHLEN];
807 uint64_t vdev;
808 nvlist_t *file;
809
810 if (ashift == 0)
811 ashift = ztest_get_ashift();
812
813 if (path == NULL) {
814 path = pathbuf;
815
816 if (aux != NULL) {
817 vdev = ztest_shared->zs_vdev_aux;
818 (void) snprintf(path, sizeof (pathbuf),
819 ztest_aux_template, ztest_opts.zo_dir,
820 pool == NULL ? ztest_opts.zo_pool : pool,
821 aux, vdev);
822 } else {
823 vdev = ztest_shared->zs_vdev_next_leaf++;
824 (void) snprintf(path, sizeof (pathbuf),
825 ztest_dev_template, ztest_opts.zo_dir,
826 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
827 }
828 }
829
830 if (size != 0) {
831 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
832 if (fd == -1)
833 fatal(1, "can't open %s", path);
834 if (ftruncate(fd, size) != 0)
835 fatal(1, "can't ftruncate %s", path);
836 (void) close(fd);
837 }
838
839 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
840 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
841 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
842 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
843
844 return (file);
845 }
846
847 static nvlist_t *
848 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
849 uint64_t ashift, int r)
850 {
851 nvlist_t *raidz, **child;
852 int c;
853
854 if (r < 2)
855 return (make_vdev_file(path, aux, pool, size, ashift));
856 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
857
858 for (c = 0; c < r; c++)
859 child[c] = make_vdev_file(path, aux, pool, size, ashift);
860
861 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
862 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
863 VDEV_TYPE_RAIDZ) == 0);
864 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
865 ztest_opts.zo_raidz_parity) == 0);
866 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
867 child, r) == 0);
868
869 for (c = 0; c < r; c++)
870 nvlist_free(child[c]);
871
872 umem_free(child, r * sizeof (nvlist_t *));
873
874 return (raidz);
875 }
876
877 static nvlist_t *
878 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
879 uint64_t ashift, int r, int m)
880 {
881 nvlist_t *mirror, **child;
882 int c;
883
884 if (m < 1)
885 return (make_vdev_raidz(path, aux, pool, size, ashift, r));
886
887 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
888
889 for (c = 0; c < m; c++)
890 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
891
892 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
893 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
894 VDEV_TYPE_MIRROR) == 0);
895 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
896 child, m) == 0);
897
898 for (c = 0; c < m; c++)
899 nvlist_free(child[c]);
900
901 umem_free(child, m * sizeof (nvlist_t *));
902
903 return (mirror);
904 }
905
906 static nvlist_t *
907 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
908 int log, int r, int m, int t)
909 {
910 nvlist_t *root, **child;
911 int c;
912
913 ASSERT(t > 0);
914
915 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
916
917 for (c = 0; c < t; c++) {
918 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
919 r, m);
920 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
921 log) == 0);
922 }
923
924 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
925 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
926 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
927 child, t) == 0);
928
929 for (c = 0; c < t; c++)
930 nvlist_free(child[c]);
931
932 umem_free(child, t * sizeof (nvlist_t *));
933
934 return (root);
935 }
936
937 /*
938 * Find a random spa version. Returns back a random spa version in the
939 * range [initial_version, SPA_VERSION_FEATURES].
940 */
941 static uint64_t
942 ztest_random_spa_version(uint64_t initial_version)
943 {
944 uint64_t version = initial_version;
945
946 if (version <= SPA_VERSION_BEFORE_FEATURES) {
947 version = version +
948 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
949 }
950
951 if (version > SPA_VERSION_BEFORE_FEATURES)
952 version = SPA_VERSION_FEATURES;
953
954 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
955 return (version);
956 }
957
958 static int
959 ztest_random_blocksize(void)
960 {
961 return (1 << (SPA_MINBLOCKSHIFT +
962 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1)));
963 }
964
965 static int
966 ztest_random_ibshift(void)
967 {
968 return (DN_MIN_INDBLKSHIFT +
969 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
970 }
971
972 static uint64_t
973 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
974 {
975 uint64_t top;
976 vdev_t *rvd = spa->spa_root_vdev;
977 vdev_t *tvd;
978
979 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
980
981 do {
982 top = ztest_random(rvd->vdev_children);
983 tvd = rvd->vdev_child[top];
984 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) ||
985 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
986
987 return (top);
988 }
989
990 static uint64_t
991 ztest_random_dsl_prop(zfs_prop_t prop)
992 {
993 uint64_t value;
994
995 do {
996 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
997 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
998
999 return (value);
1000 }
1001
1002 static int
1003 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1004 boolean_t inherit)
1005 {
1006 const char *propname = zfs_prop_to_name(prop);
1007 const char *valname;
1008 char setpoint[MAXPATHLEN];
1009 uint64_t curval;
1010 int error;
1011
1012 error = dsl_prop_set_int(osname, propname,
1013 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1014
1015 if (error == ENOSPC) {
1016 ztest_record_enospc(FTAG);
1017 return (error);
1018 }
1019 ASSERT0(error);
1020
1021 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1022
1023 if (ztest_opts.zo_verbose >= 6) {
1024 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
1025 (void) printf("%s %s = %s at '%s'\n",
1026 osname, propname, valname, setpoint);
1027 }
1028
1029 return (error);
1030 }
1031
1032 static int
1033 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1034 {
1035 spa_t *spa = ztest_spa;
1036 nvlist_t *props = NULL;
1037 int error;
1038
1039 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1040 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1041
1042 error = spa_prop_set(spa, props);
1043
1044 nvlist_free(props);
1045
1046 if (error == ENOSPC) {
1047 ztest_record_enospc(FTAG);
1048 return (error);
1049 }
1050 ASSERT0(error);
1051
1052 return (error);
1053 }
1054
1055 static void
1056 ztest_rll_init(rll_t *rll)
1057 {
1058 rll->rll_writer = NULL;
1059 rll->rll_readers = 0;
1060 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0);
1061 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0);
1062 }
1063
1064 static void
1065 ztest_rll_destroy(rll_t *rll)
1066 {
1067 ASSERT(rll->rll_writer == NULL);
1068 ASSERT(rll->rll_readers == 0);
1069 VERIFY(_mutex_destroy(&rll->rll_lock) == 0);
1070 VERIFY(cond_destroy(&rll->rll_cv) == 0);
1071 }
1072
1073 static void
1074 ztest_rll_lock(rll_t *rll, rl_type_t type)
1075 {
1076 VERIFY(mutex_lock(&rll->rll_lock) == 0);
1077
1078 if (type == RL_READER) {
1079 while (rll->rll_writer != NULL)
1080 (void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1081 rll->rll_readers++;
1082 } else {
1083 while (rll->rll_writer != NULL || rll->rll_readers)
1084 (void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1085 rll->rll_writer = curthread;
1086 }
1087
1088 VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1089 }
1090
1091 static void
1092 ztest_rll_unlock(rll_t *rll)
1093 {
1094 VERIFY(mutex_lock(&rll->rll_lock) == 0);
1095
1096 if (rll->rll_writer) {
1097 ASSERT(rll->rll_readers == 0);
1098 rll->rll_writer = NULL;
1099 } else {
1100 ASSERT(rll->rll_readers != 0);
1101 ASSERT(rll->rll_writer == NULL);
1102 rll->rll_readers--;
1103 }
1104
1105 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1106 VERIFY(cond_broadcast(&rll->rll_cv) == 0);
1107
1108 VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1109 }
1110
1111 static void
1112 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1113 {
1114 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1115
1116 ztest_rll_lock(rll, type);
1117 }
1118
1119 static void
1120 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1121 {
1122 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1123
1124 ztest_rll_unlock(rll);
1125 }
1126
1127 static rl_t *
1128 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1129 uint64_t size, rl_type_t type)
1130 {
1131 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1132 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1133 rl_t *rl;
1134
1135 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1136 rl->rl_object = object;
1137 rl->rl_offset = offset;
1138 rl->rl_size = size;
1139 rl->rl_lock = rll;
1140
1141 ztest_rll_lock(rll, type);
1142
1143 return (rl);
1144 }
1145
1146 static void
1147 ztest_range_unlock(rl_t *rl)
1148 {
1149 rll_t *rll = rl->rl_lock;
1150
1151 ztest_rll_unlock(rll);
1152
1153 umem_free(rl, sizeof (*rl));
1154 }
1155
1156 static void
1157 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1158 {
1159 zd->zd_os = os;
1160 zd->zd_zilog = dmu_objset_zil(os);
1161 zd->zd_shared = szd;
1162 dmu_objset_name(os, zd->zd_name);
1163
1164 if (zd->zd_shared != NULL)
1165 zd->zd_shared->zd_seq = 0;
1166
1167 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0);
1168 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0);
1169
1170 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1171 ztest_rll_init(&zd->zd_object_lock[l]);
1172
1173 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1174 ztest_rll_init(&zd->zd_range_lock[l]);
1175 }
1176
1177 static void
1178 ztest_zd_fini(ztest_ds_t *zd)
1179 {
1180 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0);
1181
1182 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1183 ztest_rll_destroy(&zd->zd_object_lock[l]);
1184
1185 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1186 ztest_rll_destroy(&zd->zd_range_lock[l]);
1187 }
1188
1189 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1190
1191 static uint64_t
1192 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1193 {
1194 uint64_t txg;
1195 int error;
1196
1197 /*
1198 * Attempt to assign tx to some transaction group.
1199 */
1200 error = dmu_tx_assign(tx, txg_how);
1201 if (error) {
1202 if (error == ERESTART) {
1203 ASSERT(txg_how == TXG_NOWAIT);
1204 dmu_tx_wait(tx);
1205 } else {
1206 ASSERT3U(error, ==, ENOSPC);
1207 ztest_record_enospc(tag);
1208 }
1209 dmu_tx_abort(tx);
1210 return (0);
1211 }
1212 txg = dmu_tx_get_txg(tx);
1213 ASSERT(txg != 0);
1214 return (txg);
1215 }
1216
1217 static void
1218 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1219 {
1220 uint64_t *ip = buf;
1221 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1222
1223 while (ip < ip_end)
1224 *ip++ = value;
1225 }
1226
1227 static boolean_t
1228 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1229 {
1230 uint64_t *ip = buf;
1231 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1232 uint64_t diff = 0;
1233
1234 while (ip < ip_end)
1235 diff |= (value - *ip++);
1236
1237 return (diff == 0);
1238 }
1239
1240 static void
1241 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1242 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1243 {
1244 bt->bt_magic = BT_MAGIC;
1245 bt->bt_objset = dmu_objset_id(os);
1246 bt->bt_object = object;
1247 bt->bt_offset = offset;
1248 bt->bt_gen = gen;
1249 bt->bt_txg = txg;
1250 bt->bt_crtxg = crtxg;
1251 }
1252
1253 static void
1254 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1255 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1256 {
1257 ASSERT(bt->bt_magic == BT_MAGIC);
1258 ASSERT(bt->bt_objset == dmu_objset_id(os));
1259 ASSERT(bt->bt_object == object);
1260 ASSERT(bt->bt_offset == offset);
1261 ASSERT(bt->bt_gen <= gen);
1262 ASSERT(bt->bt_txg <= txg);
1263 ASSERT(bt->bt_crtxg == crtxg);
1264 }
1265
1266 static ztest_block_tag_t *
1267 ztest_bt_bonus(dmu_buf_t *db)
1268 {
1269 dmu_object_info_t doi;
1270 ztest_block_tag_t *bt;
1271
1272 dmu_object_info_from_db(db, &doi);
1273 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1274 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1275 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1276
1277 return (bt);
1278 }
1279
1280 /*
1281 * ZIL logging ops
1282 */
1283
1284 #define lrz_type lr_mode
1285 #define lrz_blocksize lr_uid
1286 #define lrz_ibshift lr_gid
1287 #define lrz_bonustype lr_rdev
1288 #define lrz_bonuslen lr_crtime[1]
1289
1290 static void
1291 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1292 {
1293 char *name = (void *)(lr + 1); /* name follows lr */
1294 size_t namesize = strlen(name) + 1;
1295 itx_t *itx;
1296
1297 if (zil_replaying(zd->zd_zilog, tx))
1298 return;
1299
1300 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1301 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1302 sizeof (*lr) + namesize - sizeof (lr_t));
1303
1304 zil_itx_assign(zd->zd_zilog, itx, tx);
1305 }
1306
1307 static void
1308 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1309 {
1310 char *name = (void *)(lr + 1); /* name follows lr */
1311 size_t namesize = strlen(name) + 1;
1312 itx_t *itx;
1313
1314 if (zil_replaying(zd->zd_zilog, tx))
1315 return;
1316
1317 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1318 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1319 sizeof (*lr) + namesize - sizeof (lr_t));
1320
1321 itx->itx_oid = object;
1322 zil_itx_assign(zd->zd_zilog, itx, tx);
1323 }
1324
1325 static void
1326 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1327 {
1328 itx_t *itx;
1329 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1330
1331 if (zil_replaying(zd->zd_zilog, tx))
1332 return;
1333
1334 if (lr->lr_length > ZIL_MAX_LOG_DATA)
1335 write_state = WR_INDIRECT;
1336
1337 itx = zil_itx_create(TX_WRITE,
1338 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1339
1340 if (write_state == WR_COPIED &&
1341 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1342 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1343 zil_itx_destroy(itx);
1344 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1345 write_state = WR_NEED_COPY;
1346 }
1347 itx->itx_private = zd;
1348 itx->itx_wr_state = write_state;
1349 itx->itx_sync = (ztest_random(8) == 0);
1350 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0);
1351
1352 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1353 sizeof (*lr) - sizeof (lr_t));
1354
1355 zil_itx_assign(zd->zd_zilog, itx, tx);
1356 }
1357
1358 static void
1359 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1360 {
1361 itx_t *itx;
1362
1363 if (zil_replaying(zd->zd_zilog, tx))
1364 return;
1365
1366 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1367 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1368 sizeof (*lr) - sizeof (lr_t));
1369
1370 itx->itx_sync = B_FALSE;
1371 zil_itx_assign(zd->zd_zilog, itx, tx);
1372 }
1373
1374 static void
1375 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1376 {
1377 itx_t *itx;
1378
1379 if (zil_replaying(zd->zd_zilog, tx))
1380 return;
1381
1382 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1383 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1384 sizeof (*lr) - sizeof (lr_t));
1385
1386 itx->itx_sync = B_FALSE;
1387 zil_itx_assign(zd->zd_zilog, itx, tx);
1388 }
1389
1390 /*
1391 * ZIL replay ops
1392 */
1393 static int
1394 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap)
1395 {
1396 char *name = (void *)(lr + 1); /* name follows lr */
1397 objset_t *os = zd->zd_os;
1398 ztest_block_tag_t *bbt;
1399 dmu_buf_t *db;
1400 dmu_tx_t *tx;
1401 uint64_t txg;
1402 int error = 0;
1403
1404 if (byteswap)
1405 byteswap_uint64_array(lr, sizeof (*lr));
1406
1407 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1408 ASSERT(name[0] != '\0');
1409
1410 tx = dmu_tx_create(os);
1411
1412 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1413
1414 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1415 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1416 } else {
1417 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1418 }
1419
1420 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1421 if (txg == 0)
1422 return (ENOSPC);
1423
1424 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1425
1426 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1427 if (lr->lr_foid == 0) {
1428 lr->lr_foid = zap_create(os,
1429 lr->lrz_type, lr->lrz_bonustype,
1430 lr->lrz_bonuslen, tx);
1431 } else {
1432 error = zap_create_claim(os, lr->lr_foid,
1433 lr->lrz_type, lr->lrz_bonustype,
1434 lr->lrz_bonuslen, tx);
1435 }
1436 } else {
1437 if (lr->lr_foid == 0) {
1438 lr->lr_foid = dmu_object_alloc(os,
1439 lr->lrz_type, 0, lr->lrz_bonustype,
1440 lr->lrz_bonuslen, tx);
1441 } else {
1442 error = dmu_object_claim(os, lr->lr_foid,
1443 lr->lrz_type, 0, lr->lrz_bonustype,
1444 lr->lrz_bonuslen, tx);
1445 }
1446 }
1447
1448 if (error) {
1449 ASSERT3U(error, ==, EEXIST);
1450 ASSERT(zd->zd_zilog->zl_replay);
1451 dmu_tx_commit(tx);
1452 return (error);
1453 }
1454
1455 ASSERT(lr->lr_foid != 0);
1456
1457 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1458 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1459 lr->lrz_blocksize, lr->lrz_ibshift, tx));
1460
1461 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1462 bbt = ztest_bt_bonus(db);
1463 dmu_buf_will_dirty(db, tx);
1464 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1465 dmu_buf_rele(db, FTAG);
1466
1467 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1468 &lr->lr_foid, tx));
1469
1470 (void) ztest_log_create(zd, tx, lr);
1471
1472 dmu_tx_commit(tx);
1473
1474 return (0);
1475 }
1476
1477 static int
1478 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap)
1479 {
1480 char *name = (void *)(lr + 1); /* name follows lr */
1481 objset_t *os = zd->zd_os;
1482 dmu_object_info_t doi;
1483 dmu_tx_t *tx;
1484 uint64_t object, txg;
1485
1486 if (byteswap)
1487 byteswap_uint64_array(lr, sizeof (*lr));
1488
1489 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1490 ASSERT(name[0] != '\0');
1491
1492 VERIFY3U(0, ==,
1493 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1494 ASSERT(object != 0);
1495
1496 ztest_object_lock(zd, object, RL_WRITER);
1497
1498 VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1499
1500 tx = dmu_tx_create(os);
1501
1502 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1503 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1504
1505 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1506 if (txg == 0) {
1507 ztest_object_unlock(zd, object);
1508 return (ENOSPC);
1509 }
1510
1511 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1512 VERIFY3U(0, ==, zap_destroy(os, object, tx));
1513 } else {
1514 VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1515 }
1516
1517 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1518
1519 (void) ztest_log_remove(zd, tx, lr, object);
1520
1521 dmu_tx_commit(tx);
1522
1523 ztest_object_unlock(zd, object);
1524
1525 return (0);
1526 }
1527
1528 static int
1529 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap)
1530 {
1531 objset_t *os = zd->zd_os;
1532 void *data = lr + 1; /* data follows lr */
1533 uint64_t offset, length;
1534 ztest_block_tag_t *bt = data;
1535 ztest_block_tag_t *bbt;
1536 uint64_t gen, txg, lrtxg, crtxg;
1537 dmu_object_info_t doi;
1538 dmu_tx_t *tx;
1539 dmu_buf_t *db;
1540 arc_buf_t *abuf = NULL;
1541 rl_t *rl;
1542
1543 if (byteswap)
1544 byteswap_uint64_array(lr, sizeof (*lr));
1545
1546 offset = lr->lr_offset;
1547 length = lr->lr_length;
1548
1549 /* If it's a dmu_sync() block, write the whole block */
1550 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1551 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1552 if (length < blocksize) {
1553 offset -= offset % blocksize;
1554 length = blocksize;
1555 }
1556 }
1557
1558 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1559 byteswap_uint64_array(bt, sizeof (*bt));
1560
1561 if (bt->bt_magic != BT_MAGIC)
1562 bt = NULL;
1563
1564 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1565 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1566
1567 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1568
1569 dmu_object_info_from_db(db, &doi);
1570
1571 bbt = ztest_bt_bonus(db);
1572 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1573 gen = bbt->bt_gen;
1574 crtxg = bbt->bt_crtxg;
1575 lrtxg = lr->lr_common.lrc_txg;
1576
1577 tx = dmu_tx_create(os);
1578
1579 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1580
1581 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1582 P2PHASE(offset, length) == 0)
1583 abuf = dmu_request_arcbuf(db, length);
1584
1585 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1586 if (txg == 0) {
1587 if (abuf != NULL)
1588 dmu_return_arcbuf(abuf);
1589 dmu_buf_rele(db, FTAG);
1590 ztest_range_unlock(rl);
1591 ztest_object_unlock(zd, lr->lr_foid);
1592 return (ENOSPC);
1593 }
1594
1595 if (bt != NULL) {
1596 /*
1597 * Usually, verify the old data before writing new data --
1598 * but not always, because we also want to verify correct
1599 * behavior when the data was not recently read into cache.
1600 */
1601 ASSERT(offset % doi.doi_data_block_size == 0);
1602 if (ztest_random(4) != 0) {
1603 int prefetch = ztest_random(2) ?
1604 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1605 ztest_block_tag_t rbt;
1606
1607 VERIFY(dmu_read(os, lr->lr_foid, offset,
1608 sizeof (rbt), &rbt, prefetch) == 0);
1609 if (rbt.bt_magic == BT_MAGIC) {
1610 ztest_bt_verify(&rbt, os, lr->lr_foid,
1611 offset, gen, txg, crtxg);
1612 }
1613 }
1614
1615 /*
1616 * Writes can appear to be newer than the bonus buffer because
1617 * the ztest_get_data() callback does a dmu_read() of the
1618 * open-context data, which may be different than the data
1619 * as it was when the write was generated.
1620 */
1621 if (zd->zd_zilog->zl_replay) {
1622 ztest_bt_verify(bt, os, lr->lr_foid, offset,
1623 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1624 bt->bt_crtxg);
1625 }
1626
1627 /*
1628 * Set the bt's gen/txg to the bonus buffer's gen/txg
1629 * so that all of the usual ASSERTs will work.
1630 */
1631 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1632 }
1633
1634 if (abuf == NULL) {
1635 dmu_write(os, lr->lr_foid, offset, length, data, tx);
1636 } else {
1637 bcopy(data, abuf->b_data, length);
1638 dmu_assign_arcbuf(db, offset, abuf, tx);
1639 }
1640
1641 (void) ztest_log_write(zd, tx, lr);
1642
1643 dmu_buf_rele(db, FTAG);
1644
1645 dmu_tx_commit(tx);
1646
1647 ztest_range_unlock(rl);
1648 ztest_object_unlock(zd, lr->lr_foid);
1649
1650 return (0);
1651 }
1652
1653 static int
1654 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap)
1655 {
1656 objset_t *os = zd->zd_os;
1657 dmu_tx_t *tx;
1658 uint64_t txg;
1659 rl_t *rl;
1660
1661 if (byteswap)
1662 byteswap_uint64_array(lr, sizeof (*lr));
1663
1664 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1665 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1666 RL_WRITER);
1667
1668 tx = dmu_tx_create(os);
1669
1670 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1671
1672 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1673 if (txg == 0) {
1674 ztest_range_unlock(rl);
1675 ztest_object_unlock(zd, lr->lr_foid);
1676 return (ENOSPC);
1677 }
1678
1679 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1680 lr->lr_length, tx) == 0);
1681
1682 (void) ztest_log_truncate(zd, tx, lr);
1683
1684 dmu_tx_commit(tx);
1685
1686 ztest_range_unlock(rl);
1687 ztest_object_unlock(zd, lr->lr_foid);
1688
1689 return (0);
1690 }
1691
1692 static int
1693 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap)
1694 {
1695 objset_t *os = zd->zd_os;
1696 dmu_tx_t *tx;
1697 dmu_buf_t *db;
1698 ztest_block_tag_t *bbt;
1699 uint64_t txg, lrtxg, crtxg;
1700
1701 if (byteswap)
1702 byteswap_uint64_array(lr, sizeof (*lr));
1703
1704 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1705
1706 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1707
1708 tx = dmu_tx_create(os);
1709 dmu_tx_hold_bonus(tx, lr->lr_foid);
1710
1711 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1712 if (txg == 0) {
1713 dmu_buf_rele(db, FTAG);
1714 ztest_object_unlock(zd, lr->lr_foid);
1715 return (ENOSPC);
1716 }
1717
1718 bbt = ztest_bt_bonus(db);
1719 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1720 crtxg = bbt->bt_crtxg;
1721 lrtxg = lr->lr_common.lrc_txg;
1722
1723 if (zd->zd_zilog->zl_replay) {
1724 ASSERT(lr->lr_size != 0);
1725 ASSERT(lr->lr_mode != 0);
1726 ASSERT(lrtxg != 0);
1727 } else {
1728 /*
1729 * Randomly change the size and increment the generation.
1730 */
1731 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1732 sizeof (*bbt);
1733 lr->lr_mode = bbt->bt_gen + 1;
1734 ASSERT(lrtxg == 0);
1735 }
1736
1737 /*
1738 * Verify that the current bonus buffer is not newer than our txg.
1739 */
1740 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1741 MAX(txg, lrtxg), crtxg);
1742
1743 dmu_buf_will_dirty(db, tx);
1744
1745 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1746 ASSERT3U(lr->lr_size, <=, db->db_size);
1747 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
1748 bbt = ztest_bt_bonus(db);
1749
1750 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
1751
1752 dmu_buf_rele(db, FTAG);
1753
1754 (void) ztest_log_setattr(zd, tx, lr);
1755
1756 dmu_tx_commit(tx);
1757
1758 ztest_object_unlock(zd, lr->lr_foid);
1759
1760 return (0);
1761 }
1762
1763 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
1764 NULL, /* 0 no such transaction type */
1765 ztest_replay_create, /* TX_CREATE */
1766 NULL, /* TX_MKDIR */
1767 NULL, /* TX_MKXATTR */
1768 NULL, /* TX_SYMLINK */
1769 ztest_replay_remove, /* TX_REMOVE */
1770 NULL, /* TX_RMDIR */
1771 NULL, /* TX_LINK */
1772 NULL, /* TX_RENAME */
1773 ztest_replay_write, /* TX_WRITE */
1774 ztest_replay_truncate, /* TX_TRUNCATE */
1775 ztest_replay_setattr, /* TX_SETATTR */
1776 NULL, /* TX_ACL */
1777 NULL, /* TX_CREATE_ACL */
1778 NULL, /* TX_CREATE_ATTR */
1779 NULL, /* TX_CREATE_ACL_ATTR */
1780 NULL, /* TX_MKDIR_ACL */
1781 NULL, /* TX_MKDIR_ATTR */
1782 NULL, /* TX_MKDIR_ACL_ATTR */
1783 NULL, /* TX_WRITE2 */
1784 };
1785
1786 /*
1787 * ZIL get_data callbacks
1788 */
1789
1790 static void
1791 ztest_get_done(zgd_t *zgd, int error)
1792 {
1793 ztest_ds_t *zd = zgd->zgd_private;
1794 uint64_t object = zgd->zgd_rl->rl_object;
1795
1796 if (zgd->zgd_db)
1797 dmu_buf_rele(zgd->zgd_db, zgd);
1798
1799 ztest_range_unlock(zgd->zgd_rl);
1800 ztest_object_unlock(zd, object);
1801
1802 if (error == 0 && zgd->zgd_bp)
1803 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1804
1805 umem_free(zgd, sizeof (*zgd));
1806 }
1807
1808 static int
1809 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1810 {
1811 ztest_ds_t *zd = arg;
1812 objset_t *os = zd->zd_os;
1813 uint64_t object = lr->lr_foid;
1814 uint64_t offset = lr->lr_offset;
1815 uint64_t size = lr->lr_length;
1816 blkptr_t *bp = &lr->lr_blkptr;
1817 uint64_t txg = lr->lr_common.lrc_txg;
1818 uint64_t crtxg;
1819 dmu_object_info_t doi;
1820 dmu_buf_t *db;
1821 zgd_t *zgd;
1822 int error;
1823
1824 ztest_object_lock(zd, object, RL_READER);
1825 error = dmu_bonus_hold(os, object, FTAG, &db);
1826 if (error) {
1827 ztest_object_unlock(zd, object);
1828 return (error);
1829 }
1830
1831 crtxg = ztest_bt_bonus(db)->bt_crtxg;
1832
1833 if (crtxg == 0 || crtxg > txg) {
1834 dmu_buf_rele(db, FTAG);
1835 ztest_object_unlock(zd, object);
1836 return (ENOENT);
1837 }
1838
1839 dmu_object_info_from_db(db, &doi);
1840 dmu_buf_rele(db, FTAG);
1841 db = NULL;
1842
1843 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1844 zgd->zgd_zilog = zd->zd_zilog;
1845 zgd->zgd_private = zd;
1846
1847 if (buf != NULL) { /* immediate write */
1848 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1849 RL_READER);
1850
1851 error = dmu_read(os, object, offset, size, buf,
1852 DMU_READ_NO_PREFETCH);
1853 ASSERT(error == 0);
1854 } else {
1855 size = doi.doi_data_block_size;
1856 if (ISP2(size)) {
1857 offset = P2ALIGN(offset, size);
1858 } else {
1859 ASSERT(offset < size);
1860 offset = 0;
1861 }
1862
1863 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1864 RL_READER);
1865
1866 error = dmu_buf_hold(os, object, offset, zgd, &db,
1867 DMU_READ_NO_PREFETCH);
1868
1869 if (error == 0) {
1870 blkptr_t *obp = dmu_buf_get_blkptr(db);
1871 if (obp) {
1872 ASSERT(BP_IS_HOLE(bp));
1873 *bp = *obp;
1874 }
1875
1876 zgd->zgd_db = db;
1877 zgd->zgd_bp = bp;
1878
1879 ASSERT(db->db_offset == offset);
1880 ASSERT(db->db_size == size);
1881
1882 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1883 ztest_get_done, zgd);
1884
1885 if (error == 0)
1886 return (0);
1887 }
1888 }
1889
1890 ztest_get_done(zgd, error);
1891
1892 return (error);
1893 }
1894
1895 static void *
1896 ztest_lr_alloc(size_t lrsize, char *name)
1897 {
1898 char *lr;
1899 size_t namesize = name ? strlen(name) + 1 : 0;
1900
1901 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
1902
1903 if (name)
1904 bcopy(name, lr + lrsize, namesize);
1905
1906 return (lr);
1907 }
1908
1909 void
1910 ztest_lr_free(void *lr, size_t lrsize, char *name)
1911 {
1912 size_t namesize = name ? strlen(name) + 1 : 0;
1913
1914 umem_free(lr, lrsize + namesize);
1915 }
1916
1917 /*
1918 * Lookup a bunch of objects. Returns the number of objects not found.
1919 */
1920 static int
1921 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
1922 {
1923 int missing = 0;
1924 int error;
1925
1926 ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1927
1928 for (int i = 0; i < count; i++, od++) {
1929 od->od_object = 0;
1930 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
1931 sizeof (uint64_t), 1, &od->od_object);
1932 if (error) {
1933 ASSERT(error == ENOENT);
1934 ASSERT(od->od_object == 0);
1935 missing++;
1936 } else {
1937 dmu_buf_t *db;
1938 ztest_block_tag_t *bbt;
1939 dmu_object_info_t doi;
1940
1941 ASSERT(od->od_object != 0);
1942 ASSERT(missing == 0); /* there should be no gaps */
1943
1944 ztest_object_lock(zd, od->od_object, RL_READER);
1945 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
1946 od->od_object, FTAG, &db));
1947 dmu_object_info_from_db(db, &doi);
1948 bbt = ztest_bt_bonus(db);
1949 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1950 od->od_type = doi.doi_type;
1951 od->od_blocksize = doi.doi_data_block_size;
1952 od->od_gen = bbt->bt_gen;
1953 dmu_buf_rele(db, FTAG);
1954 ztest_object_unlock(zd, od->od_object);
1955 }
1956 }
1957
1958 return (missing);
1959 }
1960
1961 static int
1962 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
1963 {
1964 int missing = 0;
1965
1966 ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1967
1968 for (int i = 0; i < count; i++, od++) {
1969 if (missing) {
1970 od->od_object = 0;
1971 missing++;
1972 continue;
1973 }
1974
1975 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
1976
1977 lr->lr_doid = od->od_dir;
1978 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
1979 lr->lrz_type = od->od_crtype;
1980 lr->lrz_blocksize = od->od_crblocksize;
1981 lr->lrz_ibshift = ztest_random_ibshift();
1982 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
1983 lr->lrz_bonuslen = dmu_bonus_max();
1984 lr->lr_gen = od->od_crgen;
1985 lr->lr_crtime[0] = time(NULL);
1986
1987 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
1988 ASSERT(missing == 0);
1989 od->od_object = 0;
1990 missing++;
1991 } else {
1992 od->od_object = lr->lr_foid;
1993 od->od_type = od->od_crtype;
1994 od->od_blocksize = od->od_crblocksize;
1995 od->od_gen = od->od_crgen;
1996 ASSERT(od->od_object != 0);
1997 }
1998
1999 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2000 }
2001
2002 return (missing);
2003 }
2004
2005 static int
2006 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2007 {
2008 int missing = 0;
2009 int error;
2010
2011 ASSERT(_mutex_held(&zd->zd_dirobj_lock));
2012
2013 od += count - 1;
2014
2015 for (int i = count - 1; i >= 0; i--, od--) {
2016 if (missing) {
2017 missing++;
2018 continue;
2019 }
2020
2021 /*
2022 * No object was found.
2023 */
2024 if (od->od_object == 0)
2025 continue;
2026
2027 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2028
2029 lr->lr_doid = od->od_dir;
2030
2031 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2032 ASSERT3U(error, ==, ENOSPC);
2033 missing++;
2034 } else {
2035 od->od_object = 0;
2036 }
2037 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2038 }
2039
2040 return (missing);
2041 }
2042
2043 static int
2044 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2045 void *data)
2046 {
2047 lr_write_t *lr;
2048 int error;
2049
2050 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2051
2052 lr->lr_foid = object;
2053 lr->lr_offset = offset;
2054 lr->lr_length = size;
2055 lr->lr_blkoff = 0;
2056 BP_ZERO(&lr->lr_blkptr);
2057
2058 bcopy(data, lr + 1, size);
2059
2060 error = ztest_replay_write(zd, lr, B_FALSE);
2061
2062 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2063
2064 return (error);
2065 }
2066
2067 static int
2068 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2069 {
2070 lr_truncate_t *lr;
2071 int error;
2072
2073 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2074
2075 lr->lr_foid = object;
2076 lr->lr_offset = offset;
2077 lr->lr_length = size;
2078
2079 error = ztest_replay_truncate(zd, lr, B_FALSE);
2080
2081 ztest_lr_free(lr, sizeof (*lr), NULL);
2082
2083 return (error);
2084 }
2085
2086 static int
2087 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2088 {
2089 lr_setattr_t *lr;
2090 int error;
2091
2092 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2093
2094 lr->lr_foid = object;
2095 lr->lr_size = 0;
2096 lr->lr_mode = 0;
2097
2098 error = ztest_replay_setattr(zd, lr, B_FALSE);
2099
2100 ztest_lr_free(lr, sizeof (*lr), NULL);
2101
2102 return (error);
2103 }
2104
2105 static void
2106 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2107 {
2108 objset_t *os = zd->zd_os;
2109 dmu_tx_t *tx;
2110 uint64_t txg;
2111 rl_t *rl;
2112
2113 txg_wait_synced(dmu_objset_pool(os), 0);
2114
2115 ztest_object_lock(zd, object, RL_READER);
2116 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2117
2118 tx = dmu_tx_create(os);
2119
2120 dmu_tx_hold_write(tx, object, offset, size);
2121
2122 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2123
2124 if (txg != 0) {
2125 dmu_prealloc(os, object, offset, size, tx);
2126 dmu_tx_commit(tx);
2127 txg_wait_synced(dmu_objset_pool(os), txg);
2128 } else {
2129 (void) dmu_free_long_range(os, object, offset, size);
2130 }
2131
2132 ztest_range_unlock(rl);
2133 ztest_object_unlock(zd, object);
2134 }
2135
2136 static void
2137 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2138 {
2139 int err;
2140 ztest_block_tag_t wbt;
2141 dmu_object_info_t doi;
2142 enum ztest_io_type io_type;
2143 uint64_t blocksize;
2144 void *data;
2145
2146 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2147 blocksize = doi.doi_data_block_size;
2148 data = umem_alloc(blocksize, UMEM_NOFAIL);
2149
2150 /*
2151 * Pick an i/o type at random, biased toward writing block tags.
2152 */
2153 io_type = ztest_random(ZTEST_IO_TYPES);
2154 if (ztest_random(2) == 0)
2155 io_type = ZTEST_IO_WRITE_TAG;
2156
2157 (void) rw_rdlock(&zd->zd_zilog_lock);
2158
2159 switch (io_type) {
2160
2161 case ZTEST_IO_WRITE_TAG:
2162 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
2163 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2164 break;
2165
2166 case ZTEST_IO_WRITE_PATTERN:
2167 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2168 if (ztest_random(2) == 0) {
2169 /*
2170 * Induce fletcher2 collisions to ensure that
2171 * zio_ddt_collision() detects and resolves them
2172 * when using fletcher2-verify for deduplication.
2173 */
2174 ((uint64_t *)data)[0] ^= 1ULL << 63;
2175 ((uint64_t *)data)[4] ^= 1ULL << 63;
2176 }
2177 (void) ztest_write(zd, object, offset, blocksize, data);
2178 break;
2179
2180 case ZTEST_IO_WRITE_ZEROES:
2181 bzero(data, blocksize);
2182 (void) ztest_write(zd, object, offset, blocksize, data);
2183 break;
2184
2185 case ZTEST_IO_TRUNCATE:
2186 (void) ztest_truncate(zd, object, offset, blocksize);
2187 break;
2188
2189 case ZTEST_IO_SETATTR:
2190 (void) ztest_setattr(zd, object);
2191 break;
2192
2193 case ZTEST_IO_REWRITE:
2194 (void) rw_rdlock(&ztest_name_lock);
2195 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2196 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2197 B_FALSE);
2198 VERIFY(err == 0 || err == ENOSPC);
2199 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2200 ZFS_PROP_COMPRESSION,
2201 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2202 B_FALSE);
2203 VERIFY(err == 0 || err == ENOSPC);
2204 (void) rw_unlock(&ztest_name_lock);
2205
2206 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2207 DMU_READ_NO_PREFETCH));
2208
2209 (void) ztest_write(zd, object, offset, blocksize, data);
2210 break;
2211 }
2212
2213 (void) rw_unlock(&zd->zd_zilog_lock);
2214
2215 umem_free(data, blocksize);
2216 }
2217
2218 /*
2219 * Initialize an object description template.
2220 */
2221 static void
2222 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2223 dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
2224 {
2225 od->od_dir = ZTEST_DIROBJ;
2226 od->od_object = 0;
2227
2228 od->od_crtype = type;
2229 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2230 od->od_crgen = gen;
2231
2232 od->od_type = DMU_OT_NONE;
2233 od->od_blocksize = 0;
2234 od->od_gen = 0;
2235
2236 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2237 tag, (int64_t)id, index);
2238 }
2239
2240 /*
2241 * Lookup or create the objects for a test using the od template.
2242 * If the objects do not all exist, or if 'remove' is specified,
2243 * remove any existing objects and create new ones. Otherwise,
2244 * use the existing objects.
2245 */
2246 static int
2247 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2248 {
2249 int count = size / sizeof (*od);
2250 int rv = 0;
2251
2252 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0);
2253 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2254 (ztest_remove(zd, od, count) != 0 ||
2255 ztest_create(zd, od, count) != 0))
2256 rv = -1;
2257 zd->zd_od = od;
2258 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2259
2260 return (rv);
2261 }
2262
2263 /* ARGSUSED */
2264 void
2265 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2266 {
2267 zilog_t *zilog = zd->zd_zilog;
2268
2269 (void) rw_rdlock(&zd->zd_zilog_lock);
2270
2271 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2272
2273 /*
2274 * Remember the committed values in zd, which is in parent/child
2275 * shared memory. If we die, the next iteration of ztest_run()
2276 * will verify that the log really does contain this record.
2277 */
2278 mutex_enter(&zilog->zl_lock);
2279 ASSERT(zd->zd_shared != NULL);
2280 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2281 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2282 mutex_exit(&zilog->zl_lock);
2283
2284 (void) rw_unlock(&zd->zd_zilog_lock);
2285 }
2286
2287 /*
2288 * This function is designed to simulate the operations that occur during a
2289 * mount/unmount operation. We hold the dataset across these operations in an
2290 * attempt to expose any implicit assumptions about ZIL management.
2291 */
2292 /* ARGSUSED */
2293 void
2294 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2295 {
2296 objset_t *os = zd->zd_os;
2297
2298 /*
2299 * We grab the zd_dirobj_lock to ensure that no other thread is
2300 * updating the zil (i.e. adding in-memory log records) and the
2301 * zd_zilog_lock to block any I/O.
2302 */
2303 VERIFY0(mutex_lock(&zd->zd_dirobj_lock));
2304 (void) rw_wrlock(&zd->zd_zilog_lock);
2305
2306 /* zfsvfs_teardown() */
2307 zil_close(zd->zd_zilog);
2308
2309 /* zfsvfs_setup() */
2310 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2311 zil_replay(os, zd, ztest_replay_vector);
2312
2313 (void) rw_unlock(&zd->zd_zilog_lock);
2314 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2315 }
2316
2317 /*
2318 * Verify that we can't destroy an active pool, create an existing pool,
2319 * or create a pool with a bad vdev spec.
2320 */
2321 /* ARGSUSED */
2322 void
2323 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2324 {
2325 ztest_shared_opts_t *zo = &ztest_opts;
2326 spa_t *spa;
2327 nvlist_t *nvroot;
2328
2329 /*
2330 * Attempt to create using a bad file.
2331 */
2332 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2333 VERIFY3U(ENOENT, ==,
2334 spa_create("ztest_bad_file", nvroot, NULL, NULL));
2335 nvlist_free(nvroot);
2336
2337 /*
2338 * Attempt to create using a bad mirror.
2339 */
2340 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1);
2341 VERIFY3U(ENOENT, ==,
2342 spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2343 nvlist_free(nvroot);
2344
2345 /*
2346 * Attempt to create an existing pool. It shouldn't matter
2347 * what's in the nvroot; we should fail with EEXIST.
2348 */
2349 (void) rw_rdlock(&ztest_name_lock);
2350 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2351 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2352 nvlist_free(nvroot);
2353 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2354 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2355 spa_close(spa, FTAG);
2356
2357 (void) rw_unlock(&ztest_name_lock);
2358 }
2359
2360 /* ARGSUSED */
2361 void
2362 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2363 {
2364 spa_t *spa;
2365 uint64_t initial_version = SPA_VERSION_INITIAL;
2366 uint64_t version, newversion;
2367 nvlist_t *nvroot, *props;
2368 char *name;
2369
2370 VERIFY0(mutex_lock(&ztest_vdev_lock));
2371 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2372
2373 /*
2374 * Clean up from previous runs.
2375 */
2376 (void) spa_destroy(name);
2377
2378 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2379 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2380
2381 /*
2382 * If we're configuring a RAIDZ device then make sure that the
2383 * the initial version is capable of supporting that feature.
2384 */
2385 switch (ztest_opts.zo_raidz_parity) {
2386 case 0:
2387 case 1:
2388 initial_version = SPA_VERSION_INITIAL;
2389 break;
2390 case 2:
2391 initial_version = SPA_VERSION_RAIDZ2;
2392 break;
2393 case 3:
2394 initial_version = SPA_VERSION_RAIDZ3;
2395 break;
2396 }
2397
2398 /*
2399 * Create a pool with a spa version that can be upgraded. Pick
2400 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2401 */
2402 do {
2403 version = ztest_random_spa_version(initial_version);
2404 } while (version > SPA_VERSION_BEFORE_FEATURES);
2405
2406 props = fnvlist_alloc();
2407 fnvlist_add_uint64(props,
2408 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2409 VERIFY0(spa_create(name, nvroot, props, NULL));
2410 fnvlist_free(nvroot);
2411 fnvlist_free(props);
2412
2413 VERIFY0(spa_open(name, &spa, FTAG));
2414 VERIFY3U(spa_version(spa), ==, version);
2415 newversion = ztest_random_spa_version(version + 1);
2416
2417 if (ztest_opts.zo_verbose >= 4) {
2418 (void) printf("upgrading spa version from %llu to %llu\n",
2419 (u_longlong_t)version, (u_longlong_t)newversion);
2420 }
2421
2422 spa_upgrade(spa, newversion);
2423 VERIFY3U(spa_version(spa), >, version);
2424 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2425 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2426 spa_close(spa, FTAG);
2427
2428 strfree(name);
2429 VERIFY0(mutex_unlock(&ztest_vdev_lock));
2430 }
2431
2432 static vdev_t *
2433 vdev_lookup_by_path(vdev_t *vd, const char *path)
2434 {
2435 vdev_t *mvd;
2436
2437 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2438 return (vd);
2439
2440 for (int c = 0; c < vd->vdev_children; c++)
2441 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2442 NULL)
2443 return (mvd);
2444
2445 return (NULL);
2446 }
2447
2448 /*
2449 * Find the first available hole which can be used as a top-level.
2450 */
2451 int
2452 find_vdev_hole(spa_t *spa)
2453 {
2454 vdev_t *rvd = spa->spa_root_vdev;
2455 int c;
2456
2457 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2458
2459 for (c = 0; c < rvd->vdev_children; c++) {
2460 vdev_t *cvd = rvd->vdev_child[c];
2461
2462 if (cvd->vdev_ishole)
2463 break;
2464 }
2465 return (c);
2466 }
2467
2468 /*
2469 * Verify that vdev_add() works as expected.
2470 */
2471 /* ARGSUSED */
2472 void
2473 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2474 {
2475 ztest_shared_t *zs = ztest_shared;
2476 spa_t *spa = ztest_spa;
2477 uint64_t leaves;
2478 uint64_t guid;
2479 nvlist_t *nvroot;
2480 int error;
2481
2482 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2483 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2484
2485 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2486
2487 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2488
2489 /*
2490 * If we have slogs then remove them 1/4 of the time.
2491 */
2492 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2493 /*
2494 * Grab the guid from the head of the log class rotor.
2495 */
2496 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2497
2498 spa_config_exit(spa, SCL_VDEV, FTAG);
2499
2500 /*
2501 * We have to grab the zs_name_lock as writer to
2502 * prevent a race between removing a slog (dmu_objset_find)
2503 * and destroying a dataset. Removing the slog will
2504 * grab a reference on the dataset which may cause
2505 * dmu_objset_destroy() to fail with EBUSY thus
2506 * leaving the dataset in an inconsistent state.
2507 */
2508 VERIFY(rw_wrlock(&ztest_name_lock) == 0);
2509 error = spa_vdev_remove(spa, guid, B_FALSE);
2510 VERIFY(rw_unlock(&ztest_name_lock) == 0);
2511
2512 if (error && error != EEXIST)
2513 fatal(0, "spa_vdev_remove() = %d", error);
2514 } else {
2515 spa_config_exit(spa, SCL_VDEV, FTAG);
2516
2517 /*
2518 * Make 1/4 of the devices be log devices.
2519 */
2520 nvroot = make_vdev_root(NULL, NULL, NULL,
2521 ztest_opts.zo_vdev_size, 0,
2522 ztest_random(4) == 0, ztest_opts.zo_raidz,
2523 zs->zs_mirrors, 1);
2524
2525 error = spa_vdev_add(spa, nvroot);
2526 nvlist_free(nvroot);
2527
2528 if (error == ENOSPC)
2529 ztest_record_enospc("spa_vdev_add");
2530 else if (error != 0)
2531 fatal(0, "spa_vdev_add() = %d", error);
2532 }
2533
2534 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2535 }
2536
2537 /*
2538 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2539 */
2540 /* ARGSUSED */
2541 void
2542 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2543 {
2544 ztest_shared_t *zs = ztest_shared;
2545 spa_t *spa = ztest_spa;
2546 vdev_t *rvd = spa->spa_root_vdev;
2547 spa_aux_vdev_t *sav;
2548 char *aux;
2549 uint64_t guid = 0;
2550 int error;
2551
2552 if (ztest_random(2) == 0) {
2553 sav = &spa->spa_spares;
2554 aux = ZPOOL_CONFIG_SPARES;
2555 } else {
2556 sav = &spa->spa_l2cache;
2557 aux = ZPOOL_CONFIG_L2CACHE;
2558 }
2559
2560 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2561
2562 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2563
2564 if (sav->sav_count != 0 && ztest_random(4) == 0) {
2565 /*
2566 * Pick a random device to remove.
2567 */
2568 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2569 } else {
2570 /*
2571 * Find an unused device we can add.
2572 */
2573 zs->zs_vdev_aux = 0;
2574 for (;;) {
2575 char path[MAXPATHLEN];
2576 int c;
2577 (void) snprintf(path, sizeof (path), ztest_aux_template,
2578 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2579 zs->zs_vdev_aux);
2580 for (c = 0; c < sav->sav_count; c++)
2581 if (strcmp(sav->sav_vdevs[c]->vdev_path,
2582 path) == 0)
2583 break;
2584 if (c == sav->sav_count &&
2585 vdev_lookup_by_path(rvd, path) == NULL)
2586 break;
2587 zs->zs_vdev_aux++;
2588 }
2589 }
2590
2591 spa_config_exit(spa, SCL_VDEV, FTAG);
2592
2593 if (guid == 0) {
2594 /*
2595 * Add a new device.
2596 */
2597 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
2598 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2599 error = spa_vdev_add(spa, nvroot);
2600 if (error != 0)
2601 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2602 nvlist_free(nvroot);
2603 } else {
2604 /*
2605 * Remove an existing device. Sometimes, dirty its
2606 * vdev state first to make sure we handle removal
2607 * of devices that have pending state changes.
2608 */
2609 if (ztest_random(2) == 0)
2610 (void) vdev_online(spa, guid, 0, NULL);
2611
2612 error = spa_vdev_remove(spa, guid, B_FALSE);
2613 if (error != 0 && error != EBUSY)
2614 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2615 }
2616
2617 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2618 }
2619
2620 /*
2621 * split a pool if it has mirror tlvdevs
2622 */
2623 /* ARGSUSED */
2624 void
2625 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2626 {
2627 ztest_shared_t *zs = ztest_shared;
2628 spa_t *spa = ztest_spa;
2629 vdev_t *rvd = spa->spa_root_vdev;
2630 nvlist_t *tree, **child, *config, *split, **schild;
2631 uint_t c, children, schildren = 0, lastlogid = 0;
2632 int error = 0;
2633
2634 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2635
2636 /* ensure we have a useable config; mirrors of raidz aren't supported */
2637 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
2638 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2639 return;
2640 }
2641
2642 /* clean up the old pool, if any */
2643 (void) spa_destroy("splitp");
2644
2645 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2646
2647 /* generate a config from the existing config */
2648 mutex_enter(&spa->spa_props_lock);
2649 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2650 &tree) == 0);
2651 mutex_exit(&spa->spa_props_lock);
2652
2653 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2654 &children) == 0);
2655
2656 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2657 for (c = 0; c < children; c++) {
2658 vdev_t *tvd = rvd->vdev_child[c];
2659 nvlist_t **mchild;
2660 uint_t mchildren;
2661
2662 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2663 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2664 0) == 0);
2665 VERIFY(nvlist_add_string(schild[schildren],
2666 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2667 VERIFY(nvlist_add_uint64(schild[schildren],
2668 ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2669 if (lastlogid == 0)
2670 lastlogid = schildren;
2671 ++schildren;
2672 continue;
2673 }
2674 lastlogid = 0;
2675 VERIFY(nvlist_lookup_nvlist_array(child[c],
2676 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2677 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2678 }
2679
2680 /* OK, create a config that can be used to split */
2681 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2682 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2683 VDEV_TYPE_ROOT) == 0);
2684 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2685 lastlogid != 0 ? lastlogid : schildren) == 0);
2686
2687 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2688 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2689
2690 for (c = 0; c < schildren; c++)
2691 nvlist_free(schild[c]);
2692 free(schild);
2693 nvlist_free(split);
2694
2695 spa_config_exit(spa, SCL_VDEV, FTAG);
2696
2697 (void) rw_wrlock(&ztest_name_lock);
2698 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2699 (void) rw_unlock(&ztest_name_lock);
2700
2701 nvlist_free(config);
2702
2703 if (error == 0) {
2704 (void) printf("successful split - results:\n");
2705 mutex_enter(&spa_namespace_lock);
2706 show_pool_stats(spa);
2707 show_pool_stats(spa_lookup("splitp"));
2708 mutex_exit(&spa_namespace_lock);
2709 ++zs->zs_splits;
2710 --zs->zs_mirrors;
2711 }
2712 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2713
2714 }
2715
2716 /*
2717 * Verify that we can attach and detach devices.
2718 */
2719 /* ARGSUSED */
2720 void
2721 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2722 {
2723 ztest_shared_t *zs = ztest_shared;
2724 spa_t *spa = ztest_spa;
2725 spa_aux_vdev_t *sav = &spa->spa_spares;
2726 vdev_t *rvd = spa->spa_root_vdev;
2727 vdev_t *oldvd, *newvd, *pvd;
2728 nvlist_t *root;
2729 uint64_t leaves;
2730 uint64_t leaf, top;
2731 uint64_t ashift = ztest_get_ashift();
2732 uint64_t oldguid, pguid;
2733 size_t oldsize, newsize;
2734 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
2735 int replacing;
2736 int oldvd_has_siblings = B_FALSE;
2737 int newvd_is_spare = B_FALSE;
2738 int oldvd_is_log;
2739 int error, expected_error;
2740
2741 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2742 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
2743
2744 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2745
2746 /*
2747 * Decide whether to do an attach or a replace.
2748 */
2749 replacing = ztest_random(2);
2750
2751 /*
2752 * Pick a random top-level vdev.
2753 */
2754 top = ztest_random_vdev_top(spa, B_TRUE);
2755
2756 /*
2757 * Pick a random leaf within it.
2758 */
2759 leaf = ztest_random(leaves);
2760
2761 /*
2762 * Locate this vdev.
2763 */
2764 oldvd = rvd->vdev_child[top];
2765 if (zs->zs_mirrors >= 1) {
2766 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
2767 ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
2768 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
2769 }
2770 if (ztest_opts.zo_raidz > 1) {
2771 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
2772 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
2773 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
2774 }
2775
2776 /*
2777 * If we're already doing an attach or replace, oldvd may be a
2778 * mirror vdev -- in which case, pick a random child.
2779 */
2780 while (oldvd->vdev_children != 0) {
2781 oldvd_has_siblings = B_TRUE;
2782 ASSERT(oldvd->vdev_children >= 2);
2783 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
2784 }
2785
2786 oldguid = oldvd->vdev_guid;
2787 oldsize = vdev_get_min_asize(oldvd);
2788 oldvd_is_log = oldvd->vdev_top->vdev_islog;
2789 (void) strcpy(oldpath, oldvd->vdev_path);
2790 pvd = oldvd->vdev_parent;
2791 pguid = pvd->vdev_guid;
2792
2793 /*
2794 * If oldvd has siblings, then half of the time, detach it.
2795 */
2796 if (oldvd_has_siblings && ztest_random(2) == 0) {
2797 spa_config_exit(spa, SCL_VDEV, FTAG);
2798 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
2799 if (error != 0 && error != ENODEV && error != EBUSY &&
2800 error != ENOTSUP)
2801 fatal(0, "detach (%s) returned %d", oldpath, error);
2802 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2803 return;
2804 }
2805
2806 /*
2807 * For the new vdev, choose with equal probability between the two
2808 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2809 */
2810 if (sav->sav_count != 0 && ztest_random(3) == 0) {
2811 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
2812 newvd_is_spare = B_TRUE;
2813 (void) strcpy(newpath, newvd->vdev_path);
2814 } else {
2815 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
2816 ztest_opts.zo_dir, ztest_opts.zo_pool,
2817 top * leaves + leaf);
2818 if (ztest_random(2) == 0)
2819 newpath[strlen(newpath) - 1] = 'b';
2820 newvd = vdev_lookup_by_path(rvd, newpath);
2821 }
2822
2823 if (newvd) {
2824 newsize = vdev_get_min_asize(newvd);
2825 } else {
2826 /*
2827 * Make newsize a little bigger or smaller than oldsize.
2828 * If it's smaller, the attach should fail.
2829 * If it's larger, and we're doing a replace,
2830 * we should get dynamic LUN growth when we're done.
2831 */
2832 newsize = 10 * oldsize / (9 + ztest_random(3));
2833 }
2834
2835 /*
2836 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2837 * unless it's a replace; in that case any non-replacing parent is OK.
2838 *
2839 * If newvd is already part of the pool, it should fail with EBUSY.
2840 *
2841 * If newvd is too small, it should fail with EOVERFLOW.
2842 */
2843 if (pvd->vdev_ops != &vdev_mirror_ops &&
2844 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
2845 pvd->vdev_ops == &vdev_replacing_ops ||
2846 pvd->vdev_ops == &vdev_spare_ops))
2847 expected_error = ENOTSUP;
2848 else if (newvd_is_spare && (!replacing || oldvd_is_log))
2849 expected_error = ENOTSUP;
2850 else if (newvd == oldvd)
2851 expected_error = replacing ? 0 : EBUSY;
2852 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
2853 expected_error = EBUSY;
2854 else if (newsize < oldsize)
2855 expected_error = EOVERFLOW;
2856 else if (ashift > oldvd->vdev_top->vdev_ashift)
2857 expected_error = EDOM;
2858 else
2859 expected_error = 0;
2860
2861 spa_config_exit(spa, SCL_VDEV, FTAG);
2862
2863 /*
2864 * Build the nvlist describing newpath.
2865 */
2866 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
2867 ashift, 0, 0, 0, 1);
2868
2869 error = spa_vdev_attach(spa, oldguid, root, replacing);
2870
2871 nvlist_free(root);
2872
2873 /*
2874 * If our parent was the replacing vdev, but the replace completed,
2875 * then instead of failing with ENOTSUP we may either succeed,
2876 * fail with ENODEV, or fail with EOVERFLOW.
2877 */
2878 if (expected_error == ENOTSUP &&
2879 (error == 0 || error == ENODEV || error == EOVERFLOW))
2880 expected_error = error;
2881
2882 /*
2883 * If someone grew the LUN, the replacement may be too small.
2884 */
2885 if (error == EOVERFLOW || error == EBUSY)
2886 expected_error = error;
2887
2888 /* XXX workaround 6690467 */
2889 if (error != expected_error && expected_error != EBUSY) {
2890 fatal(0, "attach (%s %llu, %s %llu, %d) "
2891 "returned %d, expected %d",
2892 oldpath, (longlong_t)oldsize, newpath,
2893 (longlong_t)newsize, replacing, error, expected_error);
2894 }
2895
2896 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2897 }
2898
2899 /*
2900 * Callback function which expands the physical size of the vdev.
2901 */
2902 vdev_t *
2903 grow_vdev(vdev_t *vd, void *arg)
2904 {
2905 spa_t *spa = vd->vdev_spa;
2906 size_t *newsize = arg;
2907 size_t fsize;
2908 int fd;
2909
2910 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2911 ASSERT(vd->vdev_ops->vdev_op_leaf);
2912
2913 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
2914 return (vd);
2915
2916 fsize = lseek(fd, 0, SEEK_END);
2917 (void) ftruncate(fd, *newsize);
2918
2919 if (ztest_opts.zo_verbose >= 6) {
2920 (void) printf("%s grew from %lu to %lu bytes\n",
2921 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
2922 }
2923 (void) close(fd);
2924 return (NULL);
2925 }
2926
2927 /*
2928 * Callback function which expands a given vdev by calling vdev_online().
2929 */
2930 /* ARGSUSED */
2931 vdev_t *
2932 online_vdev(vdev_t *vd, void *arg)
2933 {
2934 spa_t *spa = vd->vdev_spa;
2935 vdev_t *tvd = vd->vdev_top;
2936 uint64_t guid = vd->vdev_guid;
2937 uint64_t generation = spa->spa_config_generation + 1;
2938 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
2939 int error;
2940
2941 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2942 ASSERT(vd->vdev_ops->vdev_op_leaf);
2943
2944 /* Calling vdev_online will initialize the new metaslabs */
2945 spa_config_exit(spa, SCL_STATE, spa);
2946 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
2947 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2948
2949 /*
2950 * If vdev_online returned an error or the underlying vdev_open
2951 * failed then we abort the expand. The only way to know that
2952 * vdev_open fails is by checking the returned newstate.
2953 */
2954 if (error || newstate != VDEV_STATE_HEALTHY) {
2955 if (ztest_opts.zo_verbose >= 5) {
2956 (void) printf("Unable to expand vdev, state %llu, "
2957 "error %d\n", (u_longlong_t)newstate, error);
2958 }
2959 return (vd);
2960 }
2961 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
2962
2963 /*
2964 * Since we dropped the lock we need to ensure that we're
2965 * still talking to the original vdev. It's possible this
2966 * vdev may have been detached/replaced while we were
2967 * trying to online it.
2968 */
2969 if (generation != spa->spa_config_generation) {
2970 if (ztest_opts.zo_verbose >= 5) {
2971 (void) printf("vdev configuration has changed, "
2972 "guid %llu, state %llu, expected gen %llu, "
2973 "got gen %llu\n",
2974 (u_longlong_t)guid,
2975 (u_longlong_t)tvd->vdev_state,
2976 (u_longlong_t)generation,
2977 (u_longlong_t)spa->spa_config_generation);
2978 }
2979 return (vd);
2980 }
2981 return (NULL);
2982 }
2983
2984 /*
2985 * Traverse the vdev tree calling the supplied function.
2986 * We continue to walk the tree until we either have walked all
2987 * children or we receive a non-NULL return from the callback.
2988 * If a NULL callback is passed, then we just return back the first
2989 * leaf vdev we encounter.
2990 */
2991 vdev_t *
2992 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
2993 {
2994 if (vd->vdev_ops->vdev_op_leaf) {
2995 if (func == NULL)
2996 return (vd);
2997 else
2998 return (func(vd, arg));
2999 }
3000
3001 for (uint_t c = 0; c < vd->vdev_children; c++) {
3002 vdev_t *cvd = vd->vdev_child[c];
3003 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3004 return (cvd);
3005 }
3006 return (NULL);
3007 }
3008
3009 /*
3010 * Verify that dynamic LUN growth works as expected.
3011 */
3012 /* ARGSUSED */
3013 void
3014 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3015 {
3016 spa_t *spa = ztest_spa;
3017 vdev_t *vd, *tvd;
3018 metaslab_class_t *mc;
3019 metaslab_group_t *mg;
3020 size_t psize, newsize;
3021 uint64_t top;
3022 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3023
3024 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
3025 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3026
3027 top = ztest_random_vdev_top(spa, B_TRUE);
3028
3029 tvd = spa->spa_root_vdev->vdev_child[top];
3030 mg = tvd->vdev_mg;
3031 mc = mg->mg_class;
3032 old_ms_count = tvd->vdev_ms_count;
3033 old_class_space = metaslab_class_get_space(mc);
3034
3035 /*
3036 * Determine the size of the first leaf vdev associated with
3037 * our top-level device.
3038 */
3039 vd = vdev_walk_tree(tvd, NULL, NULL);
3040 ASSERT3P(vd, !=, NULL);
3041 ASSERT(vd->vdev_ops->vdev_op_leaf);
3042
3043 psize = vd->vdev_psize;
3044
3045 /*
3046 * We only try to expand the vdev if it's healthy, less than 4x its
3047 * original size, and it has a valid psize.
3048 */
3049 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3050 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3051 spa_config_exit(spa, SCL_STATE, spa);
3052 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3053 return;
3054 }
3055 ASSERT(psize > 0);
3056 newsize = psize + psize / 8;
3057 ASSERT3U(newsize, >, psize);
3058
3059 if (ztest_opts.zo_verbose >= 6) {
3060 (void) printf("Expanding LUN %s from %lu to %lu\n",
3061 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3062 }
3063
3064 /*
3065 * Growing the vdev is a two step process:
3066 * 1). expand the physical size (i.e. relabel)
3067 * 2). online the vdev to create the new metaslabs
3068 */
3069 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3070 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3071 tvd->vdev_state != VDEV_STATE_HEALTHY) {
3072 if (ztest_opts.zo_verbose >= 5) {
3073 (void) printf("Could not expand LUN because "
3074 "the vdev configuration changed.\n");
3075 }
3076 spa_config_exit(spa, SCL_STATE, spa);
3077 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3078 return;
3079 }
3080
3081 spa_config_exit(spa, SCL_STATE, spa);
3082
3083 /*
3084 * Expanding the LUN will update the config asynchronously,
3085 * thus we must wait for the async thread to complete any
3086 * pending tasks before proceeding.
3087 */
3088 for (;;) {
3089 boolean_t done;
3090 mutex_enter(&spa->spa_async_lock);
3091 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3092 mutex_exit(&spa->spa_async_lock);
3093 if (done)
3094 break;
3095 txg_wait_synced(spa_get_dsl(spa), 0);
3096 (void) poll(NULL, 0, 100);
3097 }
3098
3099 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3100
3101 tvd = spa->spa_root_vdev->vdev_child[top];
3102 new_ms_count = tvd->vdev_ms_count;
3103 new_class_space = metaslab_class_get_space(mc);
3104
3105 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3106 if (ztest_opts.zo_verbose >= 5) {
3107 (void) printf("Could not verify LUN expansion due to "
3108 "intervening vdev offline or remove.\n");
3109 }
3110 spa_config_exit(spa, SCL_STATE, spa);
3111 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3112 return;
3113 }
3114
3115 /*
3116 * Make sure we were able to grow the vdev.
3117 */
3118 if (new_ms_count <= old_ms_count)
3119 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
3120 old_ms_count, new_ms_count);
3121
3122 /*
3123 * Make sure we were able to grow the pool.
3124 */
3125 if (new_class_space <= old_class_space)
3126 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
3127 old_class_space, new_class_space);
3128
3129 if (ztest_opts.zo_verbose >= 5) {
3130 char oldnumbuf[6], newnumbuf[6];
3131
3132 nicenum(old_class_space, oldnumbuf);
3133 nicenum(new_class_space, newnumbuf);
3134 (void) printf("%s grew from %s to %s\n",
3135 spa->spa_name, oldnumbuf, newnumbuf);
3136 }
3137
3138 spa_config_exit(spa, SCL_STATE, spa);
3139 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3140 }
3141
3142 /*
3143 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3144 */
3145 /* ARGSUSED */
3146 static void
3147 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3148 {
3149 /*
3150 * Create the objects common to all ztest datasets.
3151 */
3152 VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3153 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3154 }
3155
3156 static int
3157 ztest_dataset_create(char *dsname)
3158 {
3159 uint64_t zilset = ztest_random(100);
3160 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3161 ztest_objset_create_cb, NULL);
3162
3163 if (err || zilset < 80)
3164 return (err);
3165
3166 if (ztest_opts.zo_verbose >= 6)
3167 (void) printf("Setting dataset %s to sync always\n", dsname);
3168 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3169 ZFS_SYNC_ALWAYS, B_FALSE));
3170 }
3171
3172 /* ARGSUSED */
3173 static int
3174 ztest_objset_destroy_cb(const char *name, void *arg)
3175 {
3176 objset_t *os;
3177 dmu_object_info_t doi;
3178 int error;
3179
3180 /*
3181 * Verify that the dataset contains a directory object.
3182 */
3183 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os));
3184 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3185 if (error != ENOENT) {
3186 /* We could have crashed in the middle of destroying it */
3187 ASSERT0(error);
3188 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3189 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3190 }
3191 dmu_objset_disown(os, FTAG);
3192
3193 /*
3194 * Destroy the dataset.
3195 */
3196 if (strchr(name, '@') != NULL) {
3197 VERIFY0(dsl_destroy_snapshot(name, B_FALSE));
3198 } else {
3199 VERIFY0(dsl_destroy_head(name));
3200 }
3201 return (0);
3202 }
3203
3204 static boolean_t
3205 ztest_snapshot_create(char *osname, uint64_t id)
3206 {
3207 char snapname[MAXNAMELEN];
3208 int error;
3209
3210 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3211
3212 error = dmu_objset_snapshot_one(osname, snapname);
3213 if (error == ENOSPC) {
3214 ztest_record_enospc(FTAG);
3215 return (B_FALSE);
3216 }
3217 if (error != 0 && error != EEXIST) {
3218 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3219 snapname, error);
3220 }
3221 return (B_TRUE);
3222 }
3223
3224 static boolean_t
3225 ztest_snapshot_destroy(char *osname, uint64_t id)
3226 {
3227 char snapname[MAXNAMELEN];
3228 int error;
3229
3230 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname,
3231 (u_longlong_t)id);
3232
3233 error = dsl_destroy_snapshot(snapname, B_FALSE);
3234 if (error != 0 && error != ENOENT)
3235 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3236 return (B_TRUE);
3237 }
3238
3239 /* ARGSUSED */
3240 void
3241 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3242 {
3243 ztest_ds_t zdtmp;
3244 int iters;
3245 int error;
3246 objset_t *os, *os2;
3247 char name[MAXNAMELEN];
3248 zilog_t *zilog;
3249
3250 (void) rw_rdlock(&ztest_name_lock);
3251
3252 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu",
3253 ztest_opts.zo_pool, (u_longlong_t)id);
3254
3255 /*
3256 * If this dataset exists from a previous run, process its replay log
3257 * half of the time. If we don't replay it, then dmu_objset_destroy()
3258 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3259 */
3260 if (ztest_random(2) == 0 &&
3261 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3262 ztest_zd_init(&zdtmp, NULL, os);
3263 zil_replay(os, &zdtmp, ztest_replay_vector);
3264 ztest_zd_fini(&zdtmp);
3265 dmu_objset_disown(os, FTAG);
3266 }
3267
3268 /*
3269 * There may be an old instance of the dataset we're about to
3270 * create lying around from a previous run. If so, destroy it
3271 * and all of its snapshots.
3272 */
3273 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3274 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3275
3276 /*
3277 * Verify that the destroyed dataset is no longer in the namespace.
3278 */
3279 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3280 FTAG, &os));
3281
3282 /*
3283 * Verify that we can create a new dataset.
3284 */
3285 error = ztest_dataset_create(name);
3286 if (error) {
3287 if (error == ENOSPC) {
3288 ztest_record_enospc(FTAG);
3289 (void) rw_unlock(&ztest_name_lock);
3290 return;
3291 }
3292 fatal(0, "dmu_objset_create(%s) = %d", name, error);
3293 }
3294
3295 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3296
3297 ztest_zd_init(&zdtmp, NULL, os);
3298
3299 /*
3300 * Open the intent log for it.
3301 */
3302 zilog = zil_open(os, ztest_get_data);
3303
3304 /*
3305 * Put some objects in there, do a little I/O to them,
3306 * and randomly take a couple of snapshots along the way.
3307 */
3308 iters = ztest_random(5);
3309 for (int i = 0; i < iters; i++) {
3310 ztest_dmu_object_alloc_free(&zdtmp, id);
3311 if (ztest_random(iters) == 0)
3312 (void) ztest_snapshot_create(name, i);
3313 }
3314
3315 /*
3316 * Verify that we cannot create an existing dataset.
3317 */
3318 VERIFY3U(EEXIST, ==,
3319 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3320
3321 /*
3322 * Verify that we can hold an objset that is also owned.
3323 */
3324 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3325 dmu_objset_rele(os2, FTAG);
3326
3327 /*
3328 * Verify that we cannot own an objset that is already owned.
3329 */
3330 VERIFY3U(EBUSY, ==,
3331 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3332
3333 zil_close(zilog);
3334 dmu_objset_disown(os, FTAG);
3335 ztest_zd_fini(&zdtmp);
3336
3337 (void) rw_unlock(&ztest_name_lock);
3338 }
3339
3340 /*
3341 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3342 */
3343 void
3344 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3345 {
3346 (void) rw_rdlock(&ztest_name_lock);
3347 (void) ztest_snapshot_destroy(zd->zd_name, id);
3348 (void) ztest_snapshot_create(zd->zd_name, id);
3349 (void) rw_unlock(&ztest_name_lock);
3350 }
3351
3352 /*
3353 * Cleanup non-standard snapshots and clones.
3354 */
3355 void
3356 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3357 {
3358 char snap1name[MAXNAMELEN];
3359 char clone1name[MAXNAMELEN];
3360 char snap2name[MAXNAMELEN];
3361 char clone2name[MAXNAMELEN];
3362 char snap3name[MAXNAMELEN];
3363 int error;
3364
3365 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id);
3366 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id);
3367 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id);
3368 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id);
3369 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id);
3370
3371 error = dsl_destroy_head(clone2name);
3372 if (error && error != ENOENT)
3373 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
3374 error = dsl_destroy_snapshot(snap3name, B_FALSE);
3375 if (error && error != ENOENT)
3376 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
3377 error = dsl_destroy_snapshot(snap2name, B_FALSE);
3378 if (error && error != ENOENT)
3379 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
3380 error = dsl_destroy_head(clone1name);
3381 if (error && error != ENOENT)
3382 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
3383 error = dsl_destroy_snapshot(snap1name, B_FALSE);
3384 if (error && error != ENOENT)
3385 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
3386 }
3387
3388 /*
3389 * Verify dsl_dataset_promote handles EBUSY
3390 */
3391 void
3392 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3393 {
3394 objset_t *os;
3395 char snap1name[MAXNAMELEN];
3396 char clone1name[MAXNAMELEN];
3397 char snap2name[MAXNAMELEN];
3398 char clone2name[MAXNAMELEN];
3399 char snap3name[MAXNAMELEN];
3400 char *osname = zd->zd_name;
3401 int error;
3402
3403 (void) rw_rdlock(&ztest_name_lock);
3404
3405 ztest_dsl_dataset_cleanup(osname, id);
3406
3407 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id);
3408 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id);
3409 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id);
3410 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id);
3411 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id);
3412
3413 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3414 if (error && error != EEXIST) {
3415 if (error == ENOSPC) {
3416 ztest_record_enospc(FTAG);
3417 goto out;
3418 }
3419 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3420 }
3421
3422 error = dmu_objset_clone(clone1name, snap1name);
3423 if (error) {
3424 if (error == ENOSPC) {
3425 ztest_record_enospc(FTAG);
3426 goto out;
3427 }
3428 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3429 }
3430
3431 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
3432 if (error && error != EEXIST) {
3433 if (error == ENOSPC) {
3434 ztest_record_enospc(FTAG);
3435 goto out;
3436 }
3437 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3438 }
3439
3440 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
3441 if (error && error != EEXIST) {
3442 if (error == ENOSPC) {
3443 ztest_record_enospc(FTAG);
3444 goto out;
3445 }
3446 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3447 }
3448
3449 error = dmu_objset_clone(clone2name, snap3name);
3450 if (error) {
3451 if (error == ENOSPC) {
3452 ztest_record_enospc(FTAG);
3453 goto out;
3454 }
3455 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3456 }
3457
3458 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os);
3459 if (error)
3460 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
3461 error = dsl_dataset_promote(clone2name, NULL);
3462 if (error != EBUSY)
3463 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3464 error);
3465 dmu_objset_disown(os, FTAG);
3466
3467 out:
3468 ztest_dsl_dataset_cleanup(osname, id);
3469
3470 (void) rw_unlock(&ztest_name_lock);
3471 }
3472
3473 /*
3474 * Verify that dmu_object_{alloc,free} work as expected.
3475 */
3476 void
3477 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3478 {
3479 ztest_od_t od[4];
3480 int batchsize = sizeof (od) / sizeof (od[0]);
3481
3482 for (int b = 0; b < batchsize; b++)
3483 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
3484
3485 /*
3486 * Destroy the previous batch of objects, create a new batch,
3487 * and do some I/O on the new objects.
3488 */
3489 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0)
3490 return;
3491
3492 while (ztest_random(4 * batchsize) != 0)
3493 ztest_io(zd, od[ztest_random(batchsize)].od_object,
3494 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3495 }
3496
3497 /*
3498 * Verify that dmu_{read,write} work as expected.
3499 */
3500 void
3501 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3502 {
3503 objset_t *os = zd->zd_os;
3504 ztest_od_t od[2];
3505 dmu_tx_t *tx;
3506 int i, freeit, error;
3507 uint64_t n, s, txg;
3508 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3509 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3510 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3511 uint64_t regions = 997;
3512 uint64_t stride = 123456789ULL;
3513 uint64_t width = 40;
3514 int free_percent = 5;
3515
3516 /*
3517 * This test uses two objects, packobj and bigobj, that are always
3518 * updated together (i.e. in the same tx) so that their contents are
3519 * in sync and can be compared. Their contents relate to each other
3520 * in a simple way: packobj is a dense array of 'bufwad' structures,
3521 * while bigobj is a sparse array of the same bufwads. Specifically,
3522 * for any index n, there are three bufwads that should be identical:
3523 *
3524 * packobj, at offset n * sizeof (bufwad_t)
3525 * bigobj, at the head of the nth chunk
3526 * bigobj, at the tail of the nth chunk
3527 *
3528 * The chunk size is arbitrary. It doesn't have to be a power of two,
3529 * and it doesn't have any relation to the object blocksize.
3530 * The only requirement is that it can hold at least two bufwads.
3531 *
3532 * Normally, we write the bufwad to each of these locations.
3533 * However, free_percent of the time we instead write zeroes to
3534 * packobj and perform a dmu_free_range() on bigobj. By comparing
3535 * bigobj to packobj, we can verify that the DMU is correctly
3536 * tracking which parts of an object are allocated and free,
3537 * and that the contents of the allocated blocks are correct.
3538 */
3539
3540 /*
3541 * Read the directory info. If it's the first time, set things up.
3542 */
3543 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3544 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3545
3546 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3547 return;
3548
3549 bigobj = od[0].od_object;
3550 packobj = od[1].od_object;
3551 chunksize = od[0].od_gen;
3552 ASSERT(chunksize == od[1].od_gen);
3553
3554 /*
3555 * Prefetch a random chunk of the big object.
3556 * Our aim here is to get some async reads in flight
3557 * for blocks that we may free below; the DMU should
3558 * handle this race correctly.
3559 */
3560 n = ztest_random(regions) * stride + ztest_random(width);
3561 s = 1 + ztest_random(2 * width - 1);
3562 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize);
3563
3564 /*
3565 * Pick a random index and compute the offsets into packobj and bigobj.
3566 */
3567 n = ztest_random(regions) * stride + ztest_random(width);
3568 s = 1 + ztest_random(width - 1);
3569
3570 packoff = n * sizeof (bufwad_t);
3571 packsize = s * sizeof (bufwad_t);
3572
3573 bigoff = n * chunksize;
3574 bigsize = s * chunksize;
3575
3576 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3577 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3578
3579 /*
3580 * free_percent of the time, free a range of bigobj rather than
3581 * overwriting it.
3582 */
3583 freeit = (ztest_random(100) < free_percent);
3584
3585 /*
3586 * Read the current contents of our objects.
3587 */
3588 error = dmu_read(os, packobj, packoff, packsize, packbuf,
3589 DMU_READ_PREFETCH);
3590 ASSERT0(error);
3591 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3592 DMU_READ_PREFETCH);
3593 ASSERT0(error);
3594
3595 /*
3596 * Get a tx for the mods to both packobj and bigobj.
3597 */
3598 tx = dmu_tx_create(os);
3599
3600 dmu_tx_hold_write(tx, packobj, packoff, packsize);
3601
3602 if (freeit)
3603 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3604 else
3605 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3606
3607 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3608 if (txg == 0) {
3609 umem_free(packbuf, packsize);
3610 umem_free(bigbuf, bigsize);
3611 return;
3612 }
3613
3614 dmu_object_set_checksum(os, bigobj,
3615 (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx);
3616
3617 dmu_object_set_compress(os, bigobj,
3618 (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx);
3619
3620 /*
3621 * For each index from n to n + s, verify that the existing bufwad
3622 * in packobj matches the bufwads at the head and tail of the
3623 * corresponding chunk in bigobj. Then update all three bufwads
3624 * with the new values we want to write out.
3625 */
3626 for (i = 0; i < s; i++) {
3627 /* LINTED */
3628 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3629 /* LINTED */
3630 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3631 /* LINTED */
3632 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3633
3634 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3635 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3636
3637 if (pack->bw_txg > txg)
3638 fatal(0, "future leak: got %llx, open txg is %llx",
3639 pack->bw_txg, txg);
3640
3641 if (pack->bw_data != 0 && pack->bw_index != n + i)
3642 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3643 pack->bw_index, n, i);
3644
3645 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3646 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3647
3648 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3649 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3650
3651 if (freeit) {
3652 bzero(pack, sizeof (bufwad_t));
3653 } else {
3654 pack->bw_index = n + i;
3655 pack->bw_txg = txg;
3656 pack->bw_data = 1 + ztest_random(-2ULL);
3657 }
3658 *bigH = *pack;
3659 *bigT = *pack;
3660 }
3661
3662 /*
3663 * We've verified all the old bufwads, and made new ones.
3664 * Now write them out.
3665 */
3666 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3667
3668 if (freeit) {
3669 if (ztest_opts.zo_verbose >= 7) {
3670 (void) printf("freeing offset %llx size %llx"
3671 " txg %llx\n",
3672 (u_longlong_t)bigoff,
3673 (u_longlong_t)bigsize,
3674 (u_longlong_t)txg);
3675 }
3676 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3677 } else {
3678 if (ztest_opts.zo_verbose >= 7) {
3679 (void) printf("writing offset %llx size %llx"
3680 " txg %llx\n",
3681 (u_longlong_t)bigoff,
3682 (u_longlong_t)bigsize,
3683 (u_longlong_t)txg);
3684 }
3685 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3686 }
3687
3688 dmu_tx_commit(tx);
3689
3690 /*
3691 * Sanity check the stuff we just wrote.
3692 */
3693 {
3694 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3695 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3696
3697 VERIFY(0 == dmu_read(os, packobj, packoff,
3698 packsize, packcheck, DMU_READ_PREFETCH));
3699 VERIFY(0 == dmu_read(os, bigobj, bigoff,
3700 bigsize, bigcheck, DMU_READ_PREFETCH));
3701
3702 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3703 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3704
3705 umem_free(packcheck, packsize);
3706 umem_free(bigcheck, bigsize);
3707 }
3708
3709 umem_free(packbuf, packsize);
3710 umem_free(bigbuf, bigsize);
3711 }
3712
3713 void
3714 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3715 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
3716 {
3717 uint64_t i;
3718 bufwad_t *pack;
3719 bufwad_t *bigH;
3720 bufwad_t *bigT;
3721
3722 /*
3723 * For each index from n to n + s, verify that the existing bufwad
3724 * in packobj matches the bufwads at the head and tail of the
3725 * corresponding chunk in bigobj. Then update all three bufwads
3726 * with the new values we want to write out.
3727 */
3728 for (i = 0; i < s; i++) {
3729 /* LINTED */
3730 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3731 /* LINTED */
3732 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3733 /* LINTED */
3734 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3735
3736 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3737 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3738
3739 if (pack->bw_txg > txg)
3740 fatal(0, "future leak: got %llx, open txg is %llx",
3741 pack->bw_txg, txg);
3742
3743 if (pack->bw_data != 0 && pack->bw_index != n + i)
3744 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3745 pack->bw_index, n, i);
3746
3747 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3748 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3749
3750 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3751 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3752
3753 pack->bw_index = n + i;
3754 pack->bw_txg = txg;
3755 pack->bw_data = 1 + ztest_random(-2ULL);
3756
3757 *bigH = *pack;
3758 *bigT = *pack;
3759 }
3760 }
3761
3762 void
3763 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
3764 {
3765 objset_t *os = zd->zd_os;
3766 ztest_od_t od[2];
3767 dmu_tx_t *tx;
3768 uint64_t i;
3769 int error;
3770 uint64_t n, s, txg;
3771 bufwad_t *packbuf, *bigbuf;
3772 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3773 uint64_t blocksize = ztest_random_blocksize();
3774 uint64_t chunksize = blocksize;
3775 uint64_t regions = 997;
3776 uint64_t stride = 123456789ULL;
3777 uint64_t width = 9;
3778 dmu_buf_t *bonus_db;
3779 arc_buf_t **bigbuf_arcbufs;
3780 dmu_object_info_t doi;
3781
3782 /*
3783 * This test uses two objects, packobj and bigobj, that are always
3784 * updated together (i.e. in the same tx) so that their contents are
3785 * in sync and can be compared. Their contents relate to each other
3786 * in a simple way: packobj is a dense array of 'bufwad' structures,
3787 * while bigobj is a sparse array of the same bufwads. Specifically,
3788 * for any index n, there are three bufwads that should be identical:
3789 *
3790 * packobj, at offset n * sizeof (bufwad_t)
3791 * bigobj, at the head of the nth chunk
3792 * bigobj, at the tail of the nth chunk
3793 *
3794 * The chunk size is set equal to bigobj block size so that
3795 * dmu_assign_arcbuf() can be tested for object updates.
3796 */
3797
3798 /*
3799 * Read the directory info. If it's the first time, set things up.
3800 */
3801 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3802 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3803
3804 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3805 return;
3806
3807 bigobj = od[0].od_object;
3808 packobj = od[1].od_object;
3809 blocksize = od[0].od_blocksize;
3810 chunksize = blocksize;
3811 ASSERT(chunksize == od[1].od_gen);
3812
3813 VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
3814 VERIFY(ISP2(doi.doi_data_block_size));
3815 VERIFY(chunksize == doi.doi_data_block_size);
3816 VERIFY(chunksize >= 2 * sizeof (bufwad_t));
3817
3818 /*
3819 * Pick a random index and compute the offsets into packobj and bigobj.
3820 */
3821 n = ztest_random(regions) * stride + ztest_random(width);
3822 s = 1 + ztest_random(width - 1);
3823
3824 packoff = n * sizeof (bufwad_t);
3825 packsize = s * sizeof (bufwad_t);
3826
3827 bigoff = n * chunksize;
3828 bigsize = s * chunksize;
3829
3830 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
3831 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
3832
3833 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
3834
3835 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
3836
3837 /*
3838 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
3839 * Iteration 1 test zcopy to already referenced dbufs.
3840 * Iteration 2 test zcopy to dirty dbuf in the same txg.
3841 * Iteration 3 test zcopy to dbuf dirty in previous txg.
3842 * Iteration 4 test zcopy when dbuf is no longer dirty.
3843 * Iteration 5 test zcopy when it can't be done.
3844 * Iteration 6 one more zcopy write.
3845 */
3846 for (i = 0; i < 7; i++) {
3847 uint64_t j;
3848 uint64_t off;
3849
3850 /*
3851 * In iteration 5 (i == 5) use arcbufs
3852 * that don't match bigobj blksz to test
3853 * dmu_assign_arcbuf() when it can't directly
3854 * assign an arcbuf to a dbuf.
3855 */
3856 for (j = 0; j < s; j++) {
3857 if (i != 5) {
3858 bigbuf_arcbufs[j] =
3859 dmu_request_arcbuf(bonus_db, chunksize);
3860 } else {
3861 bigbuf_arcbufs[2 * j] =
3862 dmu_request_arcbuf(bonus_db, chunksize / 2);
3863 bigbuf_arcbufs[2 * j + 1] =
3864 dmu_request_arcbuf(bonus_db, chunksize / 2);
3865 }
3866 }
3867
3868 /*
3869 * Get a tx for the mods to both packobj and bigobj.
3870 */
3871 tx = dmu_tx_create(os);
3872
3873 dmu_tx_hold_write(tx, packobj, packoff, packsize);
3874 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3875
3876 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3877 if (txg == 0) {
3878 umem_free(packbuf, packsize);
3879 umem_free(bigbuf, bigsize);
3880 for (j = 0; j < s; j++) {
3881 if (i != 5) {
3882 dmu_return_arcbuf(bigbuf_arcbufs[j]);
3883 } else {
3884 dmu_return_arcbuf(
3885 bigbuf_arcbufs[2 * j]);
3886 dmu_return_arcbuf(
3887 bigbuf_arcbufs[2 * j + 1]);
3888 }
3889 }
3890 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3891 dmu_buf_rele(bonus_db, FTAG);
3892 return;
3893 }
3894
3895 /*
3896 * 50% of the time don't read objects in the 1st iteration to
3897 * test dmu_assign_arcbuf() for the case when there're no
3898 * existing dbufs for the specified offsets.
3899 */
3900 if (i != 0 || ztest_random(2) != 0) {
3901 error = dmu_read(os, packobj, packoff,
3902 packsize, packbuf, DMU_READ_PREFETCH);
3903 ASSERT0(error);
3904 error = dmu_read(os, bigobj, bigoff, bigsize,
3905 bigbuf, DMU_READ_PREFETCH);
3906 ASSERT0(error);
3907 }
3908 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
3909 n, chunksize, txg);
3910
3911 /*
3912 * We've verified all the old bufwads, and made new ones.
3913 * Now write them out.
3914 */
3915 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3916 if (ztest_opts.zo_verbose >= 7) {
3917 (void) printf("writing offset %llx size %llx"
3918 " txg %llx\n",
3919 (u_longlong_t)bigoff,
3920 (u_longlong_t)bigsize,
3921 (u_longlong_t)txg);
3922 }
3923 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
3924 dmu_buf_t *dbt;
3925 if (i != 5) {
3926 bcopy((caddr_t)bigbuf + (off - bigoff),
3927 bigbuf_arcbufs[j]->b_data, chunksize);
3928 } else {
3929 bcopy((caddr_t)bigbuf + (off - bigoff),
3930 bigbuf_arcbufs[2 * j]->b_data,
3931 chunksize / 2);
3932 bcopy((caddr_t)bigbuf + (off - bigoff) +
3933 chunksize / 2,
3934 bigbuf_arcbufs[2 * j + 1]->b_data,
3935 chunksize / 2);
3936 }
3937
3938 if (i == 1) {
3939 VERIFY(dmu_buf_hold(os, bigobj, off,
3940 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
3941 }
3942 if (i != 5) {
3943 dmu_assign_arcbuf(bonus_db, off,
3944 bigbuf_arcbufs[j], tx);
3945 } else {
3946 dmu_assign_arcbuf(bonus_db, off,
3947 bigbuf_arcbufs[2 * j], tx);
3948 dmu_assign_arcbuf(bonus_db,
3949 off + chunksize / 2,
3950 bigbuf_arcbufs[2 * j + 1], tx);
3951 }
3952 if (i == 1) {
3953 dmu_buf_rele(dbt, FTAG);
3954 }
3955 }
3956 dmu_tx_commit(tx);
3957
3958 /*
3959 * Sanity check the stuff we just wrote.
3960 */
3961 {
3962 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3963 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3964
3965 VERIFY(0 == dmu_read(os, packobj, packoff,
3966 packsize, packcheck, DMU_READ_PREFETCH));
3967 VERIFY(0 == dmu_read(os, bigobj, bigoff,
3968 bigsize, bigcheck, DMU_READ_PREFETCH));
3969
3970 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3971 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3972
3973 umem_free(packcheck, packsize);
3974 umem_free(bigcheck, bigsize);
3975 }
3976 if (i == 2) {
3977 txg_wait_open(dmu_objset_pool(os), 0);
3978 } else if (i == 3) {
3979 txg_wait_synced(dmu_objset_pool(os), 0);
3980 }
3981 }
3982
3983 dmu_buf_rele(bonus_db, FTAG);
3984 umem_free(packbuf, packsize);
3985 umem_free(bigbuf, bigsize);
3986 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3987 }
3988
3989 /* ARGSUSED */
3990 void
3991 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
3992 {
3993 ztest_od_t od[1];
3994 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
3995 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3996
3997 /*
3998 * Have multiple threads write to large offsets in an object
3999 * to verify that parallel writes to an object -- even to the
4000 * same blocks within the object -- doesn't cause any trouble.
4001 */
4002 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4003
4004 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4005 return;
4006
4007 while (ztest_random(10) != 0)
4008 ztest_io(zd, od[0].od_object, offset);
4009 }
4010
4011 void
4012 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4013 {
4014 ztest_od_t od[1];
4015 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4016 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4017 uint64_t count = ztest_random(20) + 1;
4018 uint64_t blocksize = ztest_random_blocksize();
4019 void *data;
4020
4021 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4022
4023 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4024 return;
4025
4026 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0)
4027 return;
4028
4029 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize);
4030
4031 data = umem_zalloc(blocksize, UMEM_NOFAIL);
4032
4033 while (ztest_random(count) != 0) {
4034 uint64_t randoff = offset + (ztest_random(count) * blocksize);
4035 if (ztest_write(zd, od[0].od_object, randoff, blocksize,
4036 data) != 0)
4037 break;
4038 while (ztest_random(4) != 0)
4039 ztest_io(zd, od[0].od_object, randoff);
4040 }
4041
4042 umem_free(data, blocksize);
4043 }
4044
4045 /*
4046 * Verify that zap_{create,destroy,add,remove,update} work as expected.
4047 */
4048 #define ZTEST_ZAP_MIN_INTS 1
4049 #define ZTEST_ZAP_MAX_INTS 4
4050 #define ZTEST_ZAP_MAX_PROPS 1000
4051
4052 void
4053 ztest_zap(ztest_ds_t *zd, uint64_t id)
4054 {
4055 objset_t *os = zd->zd_os;
4056 ztest_od_t od[1];
4057 uint64_t object;
4058 uint64_t txg, last_txg;
4059 uint64_t value[ZTEST_ZAP_MAX_INTS];
4060 uint64_t zl_ints, zl_intsize, prop;
4061 int i, ints;
4062 dmu_tx_t *tx;
4063 char propname[100], txgname[100];
4064 int error;
4065 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4066
4067 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4068
4069 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4070 return;
4071
4072 object = od[0].od_object;
4073
4074 /*
4075 * Generate a known hash collision, and verify that
4076 * we can lookup and remove both entries.
4077 */
4078 tx = dmu_tx_create(os);
4079 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4080 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4081 if (txg == 0)
4082 return;
4083 for (i = 0; i < 2; i++) {
4084 value[i] = i;
4085 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4086 1, &value[i], tx));
4087 }
4088 for (i = 0; i < 2; i++) {
4089 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4090 sizeof (uint64_t), 1, &value[i], tx));
4091 VERIFY3U(0, ==,
4092 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4093 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4094 ASSERT3U(zl_ints, ==, 1);
4095 }
4096 for (i = 0; i < 2; i++) {
4097 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4098 }
4099 dmu_tx_commit(tx);
4100
4101 /*
4102 * Generate a buch of random entries.
4103 */
4104 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4105
4106 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4107 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4108 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4109 bzero(value, sizeof (value));
4110 last_txg = 0;
4111
4112 /*
4113 * If these zap entries already exist, validate their contents.
4114 */
4115 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4116 if (error == 0) {
4117 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4118 ASSERT3U(zl_ints, ==, 1);
4119
4120 VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4121 zl_ints, &last_txg) == 0);
4122
4123 VERIFY(zap_length(os, object, propname, &zl_intsize,
4124 &zl_ints) == 0);
4125
4126 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4127 ASSERT3U(zl_ints, ==, ints);
4128
4129 VERIFY(zap_lookup(os, object, propname, zl_intsize,
4130 zl_ints, value) == 0);
4131
4132 for (i = 0; i < ints; i++) {
4133 ASSERT3U(value[i], ==, last_txg + object + i);
4134 }
4135 } else {
4136 ASSERT3U(error, ==, ENOENT);
4137 }
4138
4139 /*
4140 * Atomically update two entries in our zap object.
4141 * The first is named txg_%llu, and contains the txg
4142 * in which the property was last updated. The second
4143 * is named prop_%llu, and the nth element of its value
4144 * should be txg + object + n.
4145 */
4146 tx = dmu_tx_create(os);
4147 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4148 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4149 if (txg == 0)
4150 return;
4151
4152 if (last_txg > txg)
4153 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4154
4155 for (i = 0; i < ints; i++)
4156 value[i] = txg + object + i;
4157
4158 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4159 1, &txg, tx));
4160 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4161 ints, value, tx));
4162
4163 dmu_tx_commit(tx);
4164
4165 /*
4166 * Remove a random pair of entries.
4167 */
4168 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4169 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4170 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4171
4172 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4173
4174 if (error == ENOENT)
4175 return;
4176
4177 ASSERT0(error);
4178
4179 tx = dmu_tx_create(os);
4180 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4181 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4182 if (txg == 0)
4183 return;
4184 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4185 VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4186 dmu_tx_commit(tx);
4187 }
4188
4189 /*
4190 * Testcase to test the upgrading of a microzap to fatzap.
4191 */
4192 void
4193 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4194 {
4195 objset_t *os = zd->zd_os;
4196 ztest_od_t od[1];
4197 uint64_t object, txg;
4198
4199 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4200
4201 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4202 return;
4203
4204 object = od[0].od_object;
4205
4206 /*
4207 * Add entries to this ZAP and make sure it spills over
4208 * and gets upgraded to a fatzap. Also, since we are adding
4209 * 2050 entries we should see ptrtbl growth and leaf-block split.
4210 */
4211 for (int i = 0; i < 2050; i++) {
4212 char name[MAXNAMELEN];
4213 uint64_t value = i;
4214 dmu_tx_t *tx;
4215 int error;
4216
4217 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4218 id, value);
4219
4220 tx = dmu_tx_create(os);
4221 dmu_tx_hold_zap(tx, object, B_TRUE, name);
4222 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4223 if (txg == 0)
4224 return;
4225 error = zap_add(os, object, name, sizeof (uint64_t), 1,
4226 &value, tx);
4227 ASSERT(error == 0 || error == EEXIST);
4228 dmu_tx_commit(tx);
4229 }
4230 }
4231
4232 /* ARGSUSED */
4233 void
4234 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4235 {
4236 objset_t *os = zd->zd_os;
4237 ztest_od_t od[1];
4238 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4239 dmu_tx_t *tx;
4240 int i, namelen, error;
4241 int micro = ztest_random(2);
4242 char name[20], string_value[20];
4243 void *data;
4244
4245 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
4246
4247 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4248 return;
4249
4250 object = od[0].od_object;
4251
4252 /*
4253 * Generate a random name of the form 'xxx.....' where each
4254 * x is a random printable character and the dots are dots.
4255 * There are 94 such characters, and the name length goes from
4256 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4257 */
4258 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4259
4260 for (i = 0; i < 3; i++)
4261 name[i] = '!' + ztest_random('~' - '!' + 1);
4262 for (; i < namelen - 1; i++)
4263 name[i] = '.';
4264 name[i] = '\0';
4265
4266 if ((namelen & 1) || micro) {
4267 wsize = sizeof (txg);
4268 wc = 1;
4269 data = &txg;
4270 } else {
4271 wsize = 1;
4272 wc = namelen;
4273 data = string_value;
4274 }
4275
4276 count = -1ULL;
4277 VERIFY0(zap_count(os, object, &count));
4278 ASSERT(count != -1ULL);
4279
4280 /*
4281 * Select an operation: length, lookup, add, update, remove.
4282 */
4283 i = ztest_random(5);
4284
4285 if (i >= 2) {
4286 tx = dmu_tx_create(os);
4287 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4288 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4289 if (txg == 0)
4290 return;
4291 bcopy(name, string_value, namelen);
4292 } else {
4293 tx = NULL;
4294 txg = 0;
4295 bzero(string_value, namelen);
4296 }
4297
4298 switch (i) {
4299
4300 case 0:
4301 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4302 if (error == 0) {
4303 ASSERT3U(wsize, ==, zl_wsize);
4304 ASSERT3U(wc, ==, zl_wc);
4305 } else {
4306 ASSERT3U(error, ==, ENOENT);
4307 }
4308 break;
4309
4310 case 1:
4311 error = zap_lookup(os, object, name, wsize, wc, data);
4312 if (error == 0) {
4313 if (data == string_value &&
4314 bcmp(name, data, namelen) != 0)
4315 fatal(0, "name '%s' != val '%s' len %d",
4316 name, data, namelen);
4317 } else {
4318 ASSERT3U(error, ==, ENOENT);
4319 }
4320 break;
4321
4322 case 2:
4323 error = zap_add(os, object, name, wsize, wc, data, tx);
4324 ASSERT(error == 0 || error == EEXIST);
4325 break;
4326
4327 case 3:
4328 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4329 break;
4330
4331 case 4:
4332 error = zap_remove(os, object, name, tx);
4333 ASSERT(error == 0 || error == ENOENT);
4334 break;
4335 }
4336
4337 if (tx != NULL)
4338 dmu_tx_commit(tx);
4339 }
4340
4341 /*
4342 * Commit callback data.
4343 */
4344 typedef struct ztest_cb_data {
4345 list_node_t zcd_node;
4346 uint64_t zcd_txg;
4347 int zcd_expected_err;
4348 boolean_t zcd_added;
4349 boolean_t zcd_called;
4350 spa_t *zcd_spa;
4351 } ztest_cb_data_t;
4352
4353 /* This is the actual commit callback function */
4354 static void
4355 ztest_commit_callback(void *arg, int error)
4356 {
4357 ztest_cb_data_t *data = arg;
4358 uint64_t synced_txg;
4359
4360 VERIFY(data != NULL);
4361 VERIFY3S(data->zcd_expected_err, ==, error);
4362 VERIFY(!data->zcd_called);
4363
4364 synced_txg = spa_last_synced_txg(data->zcd_spa);
4365 if (data->zcd_txg > synced_txg)
4366 fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4367 ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4368 synced_txg);
4369
4370 data->zcd_called = B_TRUE;
4371
4372 if (error == ECANCELED) {
4373 ASSERT0(data->zcd_txg);
4374 ASSERT(!data->zcd_added);
4375
4376 /*
4377 * The private callback data should be destroyed here, but
4378 * since we are going to check the zcd_called field after
4379 * dmu_tx_abort(), we will destroy it there.
4380 */
4381 return;
4382 }
4383
4384 /* Was this callback added to the global callback list? */
4385 if (!data->zcd_added)
4386 goto out;
4387
4388 ASSERT3U(data->zcd_txg, !=, 0);
4389
4390 /* Remove our callback from the list */
4391 (void) mutex_lock(&zcl.zcl_callbacks_lock);
4392 list_remove(&zcl.zcl_callbacks, data);
4393 (void) mutex_unlock(&zcl.zcl_callbacks_lock);
4394
4395 out:
4396 umem_free(data, sizeof (ztest_cb_data_t));
4397 }
4398
4399 /* Allocate and initialize callback data structure */
4400 static ztest_cb_data_t *
4401 ztest_create_cb_data(objset_t *os, uint64_t txg)
4402 {
4403 ztest_cb_data_t *cb_data;
4404
4405 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4406
4407 cb_data->zcd_txg = txg;
4408 cb_data->zcd_spa = dmu_objset_spa(os);
4409
4410 return (cb_data);
4411 }
4412
4413 /*
4414 * If a number of txgs equal to this threshold have been created after a commit
4415 * callback has been registered but not called, then we assume there is an
4416 * implementation bug.
4417 */
4418 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2)
4419
4420 /*
4421 * Commit callback test.
4422 */
4423 void
4424 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4425 {
4426 objset_t *os = zd->zd_os;
4427 ztest_od_t od[1];
4428 dmu_tx_t *tx;
4429 ztest_cb_data_t *cb_data[3], *tmp_cb;
4430 uint64_t old_txg, txg;
4431 int i, error;
4432
4433 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4434
4435 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4436 return;
4437
4438 tx = dmu_tx_create(os);
4439
4440 cb_data[0] = ztest_create_cb_data(os, 0);
4441 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4442
4443 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t));
4444
4445 /* Every once in a while, abort the transaction on purpose */
4446 if (ztest_random(100) == 0)
4447 error = -1;
4448
4449 if (!error)
4450 error = dmu_tx_assign(tx, TXG_NOWAIT);
4451
4452 txg = error ? 0 : dmu_tx_get_txg(tx);
4453
4454 cb_data[0]->zcd_txg = txg;
4455 cb_data[1] = ztest_create_cb_data(os, txg);
4456 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4457
4458 if (error) {
4459 /*
4460 * It's not a strict requirement to call the registered
4461 * callbacks from inside dmu_tx_abort(), but that's what
4462 * it's supposed to happen in the current implementation
4463 * so we will check for that.
4464 */
4465 for (i = 0; i < 2; i++) {
4466 cb_data[i]->zcd_expected_err = ECANCELED;
4467 VERIFY(!cb_data[i]->zcd_called);
4468 }
4469
4470 dmu_tx_abort(tx);
4471
4472 for (i = 0; i < 2; i++) {
4473 VERIFY(cb_data[i]->zcd_called);
4474 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4475 }
4476
4477 return;
4478 }
4479
4480 cb_data[2] = ztest_create_cb_data(os, txg);
4481 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4482
4483 /*
4484 * Read existing data to make sure there isn't a future leak.
4485 */
4486 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t),
4487 &old_txg, DMU_READ_PREFETCH));
4488
4489 if (old_txg > txg)
4490 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4491 old_txg, txg);
4492
4493 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx);
4494
4495 (void) mutex_lock(&zcl.zcl_callbacks_lock);
4496
4497 /*
4498 * Since commit callbacks don't have any ordering requirement and since
4499 * it is theoretically possible for a commit callback to be called
4500 * after an arbitrary amount of time has elapsed since its txg has been
4501 * synced, it is difficult to reliably determine whether a commit
4502 * callback hasn't been called due to high load or due to a flawed
4503 * implementation.
4504 *
4505 * In practice, we will assume that if after a certain number of txgs a
4506 * commit callback hasn't been called, then most likely there's an
4507 * implementation bug..
4508 */
4509 tmp_cb = list_head(&zcl.zcl_callbacks);
4510 if (tmp_cb != NULL &&
4511 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) {
4512 fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4513 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4514 }
4515
4516 /*
4517 * Let's find the place to insert our callbacks.
4518 *
4519 * Even though the list is ordered by txg, it is possible for the
4520 * insertion point to not be the end because our txg may already be
4521 * quiescing at this point and other callbacks in the open txg
4522 * (from other objsets) may have sneaked in.
4523 */
4524 tmp_cb = list_tail(&zcl.zcl_callbacks);
4525 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4526 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4527
4528 /* Add the 3 callbacks to the list */
4529 for (i = 0; i < 3; i++) {
4530 if (tmp_cb == NULL)
4531 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4532 else
4533 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4534 cb_data[i]);
4535
4536 cb_data[i]->zcd_added = B_TRUE;
4537 VERIFY(!cb_data[i]->zcd_called);
4538
4539 tmp_cb = cb_data[i];
4540 }
4541
4542 (void) mutex_unlock(&zcl.zcl_callbacks_lock);
4543
4544 dmu_tx_commit(tx);
4545 }
4546
4547 /* ARGSUSED */
4548 void
4549 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4550 {
4551 zfs_prop_t proplist[] = {
4552 ZFS_PROP_CHECKSUM,
4553 ZFS_PROP_COMPRESSION,
4554 ZFS_PROP_COPIES,
4555 ZFS_PROP_DEDUP
4556 };
4557
4558 (void) rw_rdlock(&ztest_name_lock);
4559
4560 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4561 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4562 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4563
4564 (void) rw_unlock(&ztest_name_lock);
4565 }
4566
4567 /* ARGSUSED */
4568 void
4569 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4570 {
4571 nvlist_t *props = NULL;
4572
4573 (void) rw_rdlock(&ztest_name_lock);
4574
4575 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
4576 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4577
4578 VERIFY0(spa_prop_get(ztest_spa, &props));
4579
4580 if (ztest_opts.zo_verbose >= 6)
4581 dump_nvlist(props, 4);
4582
4583 nvlist_free(props);
4584
4585 (void) rw_unlock(&ztest_name_lock);
4586 }
4587
4588 static int
4589 user_release_one(const char *snapname, const char *holdname)
4590 {
4591 nvlist_t *snaps, *holds;
4592 int error;
4593
4594 snaps = fnvlist_alloc();
4595 holds = fnvlist_alloc();
4596 fnvlist_add_boolean(holds, holdname);
4597 fnvlist_add_nvlist(snaps, snapname, holds);
4598 fnvlist_free(holds);
4599 error = dsl_dataset_user_release(snaps, NULL);
4600 fnvlist_free(snaps);
4601 return (error);
4602 }
4603
4604 /*
4605 * Test snapshot hold/release and deferred destroy.
4606 */
4607 void
4608 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
4609 {
4610 int error;
4611 objset_t *os = zd->zd_os;
4612 objset_t *origin;
4613 char snapname[100];
4614 char fullname[100];
4615 char clonename[100];
4616 char tag[100];
4617 char osname[MAXNAMELEN];
4618 nvlist_t *holds;
4619
4620 (void) rw_rdlock(&ztest_name_lock);
4621
4622 dmu_objset_name(os, osname);
4623
4624 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id);
4625 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
4626 (void) snprintf(clonename, sizeof (clonename),
4627 "%s/ch1_%llu", osname, id);
4628 (void) snprintf(tag, sizeof (tag), "tag_%llu", id);
4629
4630 /*
4631 * Clean up from any previous run.
4632 */
4633 error = dsl_destroy_head(clonename);
4634 if (error != ENOENT)
4635 ASSERT0(error);
4636 error = user_release_one(fullname, tag);
4637 if (error != ESRCH && error != ENOENT)
4638 ASSERT0(error);
4639 error = dsl_destroy_snapshot(fullname, B_FALSE);
4640 if (error != ENOENT)
4641 ASSERT0(error);
4642
4643 /*
4644 * Create snapshot, clone it, mark snap for deferred destroy,
4645 * destroy clone, verify snap was also destroyed.
4646 */
4647 error = dmu_objset_snapshot_one(osname, snapname);
4648 if (error) {
4649 if (error == ENOSPC) {
4650 ztest_record_enospc("dmu_objset_snapshot");
4651 goto out;
4652 }
4653 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4654 }
4655
4656 error = dmu_objset_clone(clonename, fullname);
4657 if (error) {
4658 if (error == ENOSPC) {
4659 ztest_record_enospc("dmu_objset_clone");
4660 goto out;
4661 }
4662 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
4663 }
4664
4665 error = dsl_destroy_snapshot(fullname, B_TRUE);
4666 if (error) {
4667 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4668 fullname, error);
4669 }
4670
4671 error = dsl_destroy_head(clonename);
4672 if (error)
4673 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
4674
4675 error = dmu_objset_hold(fullname, FTAG, &origin);
4676 if (error != ENOENT)
4677 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4678
4679 /*
4680 * Create snapshot, add temporary hold, verify that we can't
4681 * destroy a held snapshot, mark for deferred destroy,
4682 * release hold, verify snapshot was destroyed.
4683 */
4684 error = dmu_objset_snapshot_one(osname, snapname);
4685 if (error) {
4686 if (error == ENOSPC) {
4687 ztest_record_enospc("dmu_objset_snapshot");
4688 goto out;
4689 }
4690 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4691 }
4692
4693 holds = fnvlist_alloc();
4694 fnvlist_add_string(holds, fullname, tag);
4695 error = dsl_dataset_user_hold(holds, 0, NULL);
4696 fnvlist_free(holds);
4697
4698 if (error)
4699 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag);
4700
4701 error = dsl_destroy_snapshot(fullname, B_FALSE);
4702 if (error != EBUSY) {
4703 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
4704 fullname, error);
4705 }
4706
4707 error = dsl_destroy_snapshot(fullname, B_TRUE);
4708 if (error) {
4709 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4710 fullname, error);
4711 }
4712
4713 error = user_release_one(fullname, tag);
4714 if (error)
4715 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
4716
4717 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
4718
4719 out:
4720 (void) rw_unlock(&ztest_name_lock);
4721 }
4722
4723 /*
4724 * Inject random faults into the on-disk data.
4725 */
4726 /* ARGSUSED */
4727 void
4728 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
4729 {
4730 ztest_shared_t *zs = ztest_shared;
4731 spa_t *spa = ztest_spa;
4732 int fd;
4733 uint64_t offset;
4734 uint64_t leaves;
4735 uint64_t bad = 0x1990c0ffeedecade;
4736 uint64_t top, leaf;
4737 char path0[MAXPATHLEN];
4738 char pathrand[MAXPATHLEN];
4739 size_t fsize;
4740 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */
4741 int iters = 1000;
4742 int maxfaults;
4743 int mirror_save;
4744 vdev_t *vd0 = NULL;
4745 uint64_t guid0 = 0;
4746 boolean_t islog = B_FALSE;
4747
4748 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4749 maxfaults = MAXFAULTS();
4750 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
4751 mirror_save = zs->zs_mirrors;
4752 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4753
4754 ASSERT(leaves >= 1);
4755
4756 /*
4757 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
4758 */
4759 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4760
4761 if (ztest_random(2) == 0) {
4762 /*
4763 * Inject errors on a normal data device or slog device.
4764 */
4765 top = ztest_random_vdev_top(spa, B_TRUE);
4766 leaf = ztest_random(leaves) + zs->zs_splits;
4767
4768 /*
4769 * Generate paths to the first leaf in this top-level vdev,
4770 * and to the random leaf we selected. We'll induce transient
4771 * write failures and random online/offline activity on leaf 0,
4772 * and we'll write random garbage to the randomly chosen leaf.
4773 */
4774 (void) snprintf(path0, sizeof (path0), ztest_dev_template,
4775 ztest_opts.zo_dir, ztest_opts.zo_pool,
4776 top * leaves + zs->zs_splits);
4777 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
4778 ztest_opts.zo_dir, ztest_opts.zo_pool,
4779 top * leaves + leaf);
4780
4781 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
4782 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
4783 islog = B_TRUE;
4784
4785 if (vd0 != NULL && maxfaults != 1) {
4786 /*
4787 * Make vd0 explicitly claim to be unreadable,
4788 * or unwriteable, or reach behind its back
4789 * and close the underlying fd. We can do this if
4790 * maxfaults == 0 because we'll fail and reexecute,
4791 * and we can do it if maxfaults >= 2 because we'll
4792 * have enough redundancy. If maxfaults == 1, the
4793 * combination of this with injection of random data
4794 * corruption below exceeds the pool's fault tolerance.
4795 */
4796 vdev_file_t *vf = vd0->vdev_tsd;
4797
4798 if (vf != NULL && ztest_random(3) == 0) {
4799 (void) close(vf->vf_vnode->v_fd);
4800 vf->vf_vnode->v_fd = -1;
4801 } else if (ztest_random(2) == 0) {
4802 vd0->vdev_cant_read = B_TRUE;
4803 } else {
4804 vd0->vdev_cant_write = B_TRUE;
4805 }
4806 guid0 = vd0->vdev_guid;
4807 }
4808 } else {
4809 /*
4810 * Inject errors on an l2cache device.
4811 */
4812 spa_aux_vdev_t *sav = &spa->spa_l2cache;
4813
4814 if (sav->sav_count == 0) {
4815 spa_config_exit(spa, SCL_STATE, FTAG);
4816 return;
4817 }
4818 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
4819 guid0 = vd0->vdev_guid;
4820 (void) strcpy(path0, vd0->vdev_path);
4821 (void) strcpy(pathrand, vd0->vdev_path);
4822
4823 leaf = 0;
4824 leaves = 1;
4825 maxfaults = INT_MAX; /* no limit on cache devices */
4826 }
4827
4828 spa_config_exit(spa, SCL_STATE, FTAG);
4829
4830 /*
4831 * If we can tolerate two or more faults, or we're dealing
4832 * with a slog, randomly online/offline vd0.
4833 */
4834 if ((maxfaults >= 2 || islog) && guid0 != 0) {
4835 if (ztest_random(10) < 6) {
4836 int flags = (ztest_random(2) == 0 ?
4837 ZFS_OFFLINE_TEMPORARY : 0);
4838
4839 /*
4840 * We have to grab the zs_name_lock as writer to
4841 * prevent a race between offlining a slog and
4842 * destroying a dataset. Offlining the slog will
4843 * grab a reference on the dataset which may cause
4844 * dmu_objset_destroy() to fail with EBUSY thus
4845 * leaving the dataset in an inconsistent state.
4846 */
4847 if (islog)
4848 (void) rw_wrlock(&ztest_name_lock);
4849
4850 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
4851
4852 if (islog)
4853 (void) rw_unlock(&ztest_name_lock);
4854 } else {
4855 /*
4856 * Ideally we would like to be able to randomly
4857 * call vdev_[on|off]line without holding locks
4858 * to force unpredictable failures but the side
4859 * effects of vdev_[on|off]line prevent us from
4860 * doing so. We grab the ztest_vdev_lock here to
4861 * prevent a race between injection testing and
4862 * aux_vdev removal.
4863 */
4864 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4865 (void) vdev_online(spa, guid0, 0, NULL);
4866 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4867 }
4868 }
4869
4870 if (maxfaults == 0)
4871 return;
4872
4873 /*
4874 * We have at least single-fault tolerance, so inject data corruption.
4875 */
4876 fd = open(pathrand, O_RDWR);
4877
4878 if (fd == -1) /* we hit a gap in the device namespace */
4879 return;
4880
4881 fsize = lseek(fd, 0, SEEK_END);
4882
4883 while (--iters != 0) {
4884 offset = ztest_random(fsize / (leaves << bshift)) *
4885 (leaves << bshift) + (leaf << bshift) +
4886 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
4887
4888 if (offset >= fsize)
4889 continue;
4890
4891 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4892 if (mirror_save != zs->zs_mirrors) {
4893 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4894 (void) close(fd);
4895 return;
4896 }
4897
4898 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
4899 fatal(1, "can't inject bad word at 0x%llx in %s",
4900 offset, pathrand);
4901
4902 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4903
4904 if (ztest_opts.zo_verbose >= 7)
4905 (void) printf("injected bad word into %s,"
4906 " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
4907 }
4908
4909 (void) close(fd);
4910 }
4911
4912 /*
4913 * Verify that DDT repair works as expected.
4914 */
4915 void
4916 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
4917 {
4918 ztest_shared_t *zs = ztest_shared;
4919 spa_t *spa = ztest_spa;
4920 objset_t *os = zd->zd_os;
4921 ztest_od_t od[1];
4922 uint64_t object, blocksize, txg, pattern, psize;
4923 enum zio_checksum checksum = spa_dedup_checksum(spa);
4924 dmu_buf_t *db;
4925 dmu_tx_t *tx;
4926 void *buf;
4927 blkptr_t blk;
4928 int copies = 2 * ZIO_DEDUPDITTO_MIN;
4929
4930 blocksize = ztest_random_blocksize();
4931 blocksize = MIN(blocksize, 2048); /* because we write so many */
4932
4933 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4934
4935 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4936 return;
4937
4938 /*
4939 * Take the name lock as writer to prevent anyone else from changing
4940 * the pool and dataset properies we need to maintain during this test.
4941 */
4942 (void) rw_wrlock(&ztest_name_lock);
4943
4944 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
4945 B_FALSE) != 0 ||
4946 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
4947 B_FALSE) != 0) {
4948 (void) rw_unlock(&ztest_name_lock);
4949 return;
4950 }
4951
4952 object = od[0].od_object;
4953 blocksize = od[0].od_blocksize;
4954 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os);
4955
4956 ASSERT(object != 0);
4957
4958 tx = dmu_tx_create(os);
4959 dmu_tx_hold_write(tx, object, 0, copies * blocksize);
4960 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
4961 if (txg == 0) {
4962 (void) rw_unlock(&ztest_name_lock);
4963 return;
4964 }
4965
4966 /*
4967 * Write all the copies of our block.
4968 */
4969 for (int i = 0; i < copies; i++) {
4970 uint64_t offset = i * blocksize;
4971 int error = dmu_buf_hold(os, object, offset, FTAG, &db,
4972 DMU_READ_NO_PREFETCH);
4973 if (error != 0) {
4974 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
4975 os, (long long)object, (long long) offset, error);
4976 }
4977 ASSERT(db->db_offset == offset);
4978 ASSERT(db->db_size == blocksize);
4979 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
4980 ztest_pattern_match(db->db_data, db->db_size, 0ULL));
4981 dmu_buf_will_fill(db, tx);
4982 ztest_pattern_set(db->db_data, db->db_size, pattern);
4983 dmu_buf_rele(db, FTAG);
4984 }
4985
4986 dmu_tx_commit(tx);
4987 txg_wait_synced(spa_get_dsl(spa), txg);
4988
4989 /*
4990 * Find out what block we got.
4991 */
4992 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
4993 DMU_READ_NO_PREFETCH));
4994 blk = *((dmu_buf_impl_t *)db)->db_blkptr;
4995 dmu_buf_rele(db, FTAG);
4996
4997 /*
4998 * Damage the block. Dedup-ditto will save us when we read it later.
4999 */
5000 psize = BP_GET_PSIZE(&blk);
5001 buf = zio_buf_alloc(psize);
5002 ztest_pattern_set(buf, psize, ~pattern);
5003
5004 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5005 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5006 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5007
5008 zio_buf_free(buf, psize);
5009
5010 (void) rw_unlock(&ztest_name_lock);
5011 }
5012
5013 /*
5014 * Scrub the pool.
5015 */
5016 /* ARGSUSED */
5017 void
5018 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5019 {
5020 spa_t *spa = ztest_spa;
5021
5022 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5023 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5024 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5025 }
5026
5027 /*
5028 * Change the guid for the pool.
5029 */
5030 /* ARGSUSED */
5031 void
5032 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5033 {
5034 spa_t *spa = ztest_spa;
5035 uint64_t orig, load;
5036 int error;
5037
5038 orig = spa_guid(spa);
5039 load = spa_load_guid(spa);
5040
5041 (void) rw_wrlock(&ztest_name_lock);
5042 error = spa_change_guid(spa);
5043 (void) rw_unlock(&ztest_name_lock);
5044
5045 if (error != 0)
5046 return;
5047
5048 if (ztest_opts.zo_verbose >= 4) {
5049 (void) printf("Changed guid old %llu -> %llu\n",
5050 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5051 }
5052
5053 VERIFY3U(orig, !=, spa_guid(spa));
5054 VERIFY3U(load, ==, spa_load_guid(spa));
5055 }
5056
5057 /*
5058 * Rename the pool to a different name and then rename it back.
5059 */
5060 /* ARGSUSED */
5061 void
5062 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
5063 {
5064 char *oldname, *newname;
5065 spa_t *spa;
5066
5067 (void) rw_wrlock(&ztest_name_lock);
5068
5069 oldname = ztest_opts.zo_pool;
5070 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
5071 (void) strcpy(newname, oldname);
5072 (void) strcat(newname, "_tmp");
5073
5074 /*
5075 * Do the rename
5076 */
5077 VERIFY3U(0, ==, spa_rename(oldname, newname));
5078
5079 /*
5080 * Try to open it under the old name, which shouldn't exist
5081 */
5082 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5083
5084 /*
5085 * Open it under the new name and make sure it's still the same spa_t.
5086 */
5087 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5088
5089 ASSERT(spa == ztest_spa);
5090 spa_close(spa, FTAG);
5091
5092 /*
5093 * Rename it back to the original
5094 */
5095 VERIFY3U(0, ==, spa_rename(newname, oldname));
5096
5097 /*
5098 * Make sure it can still be opened
5099 */
5100 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5101
5102 ASSERT(spa == ztest_spa);
5103 spa_close(spa, FTAG);
5104
5105 umem_free(newname, strlen(newname) + 1);
5106
5107 (void) rw_unlock(&ztest_name_lock);
5108 }
5109
5110 /*
5111 * Verify pool integrity by running zdb.
5112 */
5113 static void
5114 ztest_run_zdb(char *pool)
5115 {
5116 int status;
5117 char zdb[MAXPATHLEN + MAXNAMELEN + 20];
5118 char zbuf[1024];
5119 char *bin;
5120 char *ztest;
5121 char *isa;
5122 int isalen;
5123 FILE *fp;
5124
5125 (void) realpath(getexecname(), zdb);
5126
5127 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
5128 bin = strstr(zdb, "/usr/bin/");
5129 ztest = strstr(bin, "/ztest");
5130 isa = bin + 8;
5131 isalen = ztest - isa;
5132 isa = strdup(isa);
5133 /* LINTED */
5134 (void) sprintf(bin,
5135 "/usr/sbin%.*s/zdb -bcc%s%s -U %s %s",
5136 isalen,
5137 isa,
5138 ztest_opts.zo_verbose >= 3 ? "s" : "",
5139 ztest_opts.zo_verbose >= 4 ? "v" : "",
5140 spa_config_path,
5141 pool);
5142 free(isa);
5143
5144 if (ztest_opts.zo_verbose >= 5)
5145 (void) printf("Executing %s\n", strstr(zdb, "zdb "));
5146
5147 fp = popen(zdb, "r");
5148
5149 while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
5150 if (ztest_opts.zo_verbose >= 3)
5151 (void) printf("%s", zbuf);
5152
5153 status = pclose(fp);
5154
5155 if (status == 0)
5156 return;
5157
5158 ztest_dump_core = 0;
5159 if (WIFEXITED(status))
5160 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5161 else
5162 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5163 }
5164
5165 static void
5166 ztest_walk_pool_directory(char *header)
5167 {
5168 spa_t *spa = NULL;
5169
5170 if (ztest_opts.zo_verbose >= 6)
5171 (void) printf("%s\n", header);
5172
5173 mutex_enter(&spa_namespace_lock);
5174 while ((spa = spa_next(spa)) != NULL)
5175 if (ztest_opts.zo_verbose >= 6)
5176 (void) printf("\t%s\n", spa_name(spa));
5177 mutex_exit(&spa_namespace_lock);
5178 }
5179
5180 static void
5181 ztest_spa_import_export(char *oldname, char *newname)
5182 {
5183 nvlist_t *config, *newconfig;
5184 uint64_t pool_guid;
5185 spa_t *spa;
5186 int error;
5187
5188 if (ztest_opts.zo_verbose >= 4) {
5189 (void) printf("import/export: old = %s, new = %s\n",
5190 oldname, newname);
5191 }
5192
5193 /*
5194 * Clean up from previous runs.
5195 */
5196 (void) spa_destroy(newname);
5197
5198 /*
5199 * Get the pool's configuration and guid.
5200 */
5201 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5202
5203 /*
5204 * Kick off a scrub to tickle scrub/export races.
5205 */
5206 if (ztest_random(2) == 0)
5207 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5208
5209 pool_guid = spa_guid(spa);
5210 spa_close(spa, FTAG);
5211
5212 ztest_walk_pool_directory("pools before export");
5213
5214 /*
5215 * Export it.
5216 */
5217 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
5218
5219 ztest_walk_pool_directory("pools after export");
5220
5221 /*
5222 * Try to import it.
5223 */
5224 newconfig = spa_tryimport(config);
5225 ASSERT(newconfig != NULL);
5226 nvlist_free(newconfig);
5227
5228 /*
5229 * Import it under the new name.
5230 */
5231 error = spa_import(newname, config, NULL, 0);
5232 if (error != 0) {
5233 dump_nvlist(config, 0);
5234 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
5235 oldname, newname, error);
5236 }
5237
5238 ztest_walk_pool_directory("pools after import");
5239
5240 /*
5241 * Try to import it again -- should fail with EEXIST.
5242 */
5243 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5244
5245 /*
5246 * Try to import it under a different name -- should fail with EEXIST.
5247 */
5248 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5249
5250 /*
5251 * Verify that the pool is no longer visible under the old name.
5252 */
5253 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5254
5255 /*
5256 * Verify that we can open and close the pool using the new name.
5257 */
5258 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5259 ASSERT(pool_guid == spa_guid(spa));
5260 spa_close(spa, FTAG);
5261
5262 nvlist_free(config);
5263 }
5264
5265 static void
5266 ztest_resume(spa_t *spa)
5267 {
5268 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
5269 (void) printf("resuming from suspended state\n");
5270 spa_vdev_state_enter(spa, SCL_NONE);
5271 vdev_clear(spa, NULL);
5272 (void) spa_vdev_state_exit(spa, NULL, 0);
5273 (void) zio_resume(spa);
5274 }
5275
5276 static void *
5277 ztest_resume_thread(void *arg)
5278 {
5279 spa_t *spa = arg;
5280
5281 while (!ztest_exiting) {
5282 if (spa_suspended(spa))
5283 ztest_resume(spa);
5284 (void) poll(NULL, 0, 100);
5285 }
5286 return (NULL);
5287 }
5288
5289 static void *
5290 ztest_deadman_thread(void *arg)
5291 {
5292 ztest_shared_t *zs = arg;
5293 int grace = 300;
5294 hrtime_t delta;
5295
5296 delta = (zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + grace;
5297
5298 (void) poll(NULL, 0, (int)(1000 * delta));
5299
5300 fatal(0, "failed to complete within %d seconds of deadline", grace);
5301
5302 return (NULL);
5303 }
5304
5305 static void
5306 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
5307 {
5308 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
5309 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
5310 hrtime_t functime = gethrtime();
5311
5312 for (int i = 0; i < zi->zi_iters; i++)
5313 zi->zi_func(zd, id);
5314
5315 functime = gethrtime() - functime;
5316
5317 atomic_add_64(&zc->zc_count, 1);
5318 atomic_add_64(&zc->zc_time, functime);
5319
5320 if (ztest_opts.zo_verbose >= 4) {
5321 Dl_info dli;
5322 (void) dladdr((void *)zi->zi_func, &dli);
5323 (void) printf("%6.2f sec in %s\n",
5324 (double)functime / NANOSEC, dli.dli_sname);
5325 }
5326 }
5327
5328 static void *
5329 ztest_thread(void *arg)
5330 {
5331 int rand;
5332 uint64_t id = (uintptr_t)arg;
5333 ztest_shared_t *zs = ztest_shared;
5334 uint64_t call_next;
5335 hrtime_t now;
5336 ztest_info_t *zi;
5337 ztest_shared_callstate_t *zc;
5338
5339 while ((now = gethrtime()) < zs->zs_thread_stop) {
5340 /*
5341 * See if it's time to force a crash.
5342 */
5343 if (now > zs->zs_thread_kill)
5344 ztest_kill(zs);
5345
5346 /*
5347 * If we're getting ENOSPC with some regularity, stop.
5348 */
5349 if (zs->zs_enospc_count > 10)
5350 break;
5351
5352 /*
5353 * Pick a random function to execute.
5354 */
5355 rand = ztest_random(ZTEST_FUNCS);
5356 zi = &ztest_info[rand];
5357 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
5358 call_next = zc->zc_next;
5359
5360 if (now >= call_next &&
5361 atomic_cas_64(&zc->zc_next, call_next, call_next +
5362 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
5363 ztest_execute(rand, zi, id);
5364 }
5365 }
5366
5367 return (NULL);
5368 }
5369
5370 static void
5371 ztest_dataset_name(char *dsname, char *pool, int d)
5372 {
5373 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d);
5374 }
5375
5376 static void
5377 ztest_dataset_destroy(int d)
5378 {
5379 char name[MAXNAMELEN];
5380
5381 ztest_dataset_name(name, ztest_opts.zo_pool, d);
5382
5383 if (ztest_opts.zo_verbose >= 3)
5384 (void) printf("Destroying %s to free up space\n", name);
5385
5386 /*
5387 * Cleanup any non-standard clones and snapshots. In general,
5388 * ztest thread t operates on dataset (t % zopt_datasets),
5389 * so there may be more than one thing to clean up.
5390 */
5391 for (int t = d; t < ztest_opts.zo_threads;
5392 t += ztest_opts.zo_datasets) {
5393 ztest_dsl_dataset_cleanup(name, t);
5394 }
5395
5396 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5397 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5398 }
5399
5400 static void
5401 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5402 {
5403 uint64_t usedobjs, dirobjs, scratch;
5404
5405 /*
5406 * ZTEST_DIROBJ is the object directory for the entire dataset.
5407 * Therefore, the number of objects in use should equal the
5408 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5409 * If not, we have an object leak.
5410 *
5411 * Note that we can only check this in ztest_dataset_open(),
5412 * when the open-context and syncing-context values agree.
5413 * That's because zap_count() returns the open-context value,
5414 * while dmu_objset_space() returns the rootbp fill count.
5415 */
5416 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5417 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5418 ASSERT3U(dirobjs + 1, ==, usedobjs);
5419 }
5420
5421 static int
5422 ztest_dataset_open(int d)
5423 {
5424 ztest_ds_t *zd = &ztest_ds[d];
5425 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
5426 objset_t *os;
5427 zilog_t *zilog;
5428 char name[MAXNAMELEN];
5429 int error;
5430
5431 ztest_dataset_name(name, ztest_opts.zo_pool, d);
5432
5433 (void) rw_rdlock(&ztest_name_lock);
5434
5435 error = ztest_dataset_create(name);
5436 if (error == ENOSPC) {
5437 (void) rw_unlock(&ztest_name_lock);
5438 ztest_record_enospc(FTAG);
5439 return (error);
5440 }
5441 ASSERT(error == 0 || error == EEXIST);
5442
5443 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os));
5444 (void) rw_unlock(&ztest_name_lock);
5445
5446 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
5447
5448 zilog = zd->zd_zilog;
5449
5450 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5451 zilog->zl_header->zh_claim_lr_seq < committed_seq)
5452 fatal(0, "missing log records: claimed %llu < committed %llu",
5453 zilog->zl_header->zh_claim_lr_seq, committed_seq);
5454
5455 ztest_dataset_dirobj_verify(zd);
5456
5457 zil_replay(os, zd, ztest_replay_vector);
5458
5459 ztest_dataset_dirobj_verify(zd);
5460
5461 if (ztest_opts.zo_verbose >= 6)
5462 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5463 zd->zd_name,
5464 (u_longlong_t)zilog->zl_parse_blk_count,
5465 (u_longlong_t)zilog->zl_parse_lr_count,
5466 (u_longlong_t)zilog->zl_replaying_seq);
5467
5468 zilog = zil_open(os, ztest_get_data);
5469
5470 if (zilog->zl_replaying_seq != 0 &&
5471 zilog->zl_replaying_seq < committed_seq)
5472 fatal(0, "missing log records: replayed %llu < committed %llu",
5473 zilog->zl_replaying_seq, committed_seq);
5474
5475 return (0);
5476 }
5477
5478 static void
5479 ztest_dataset_close(int d)
5480 {
5481 ztest_ds_t *zd = &ztest_ds[d];
5482
5483 zil_close(zd->zd_zilog);
5484 dmu_objset_disown(zd->zd_os, zd);
5485
5486 ztest_zd_fini(zd);
5487 }
5488
5489 /*
5490 * Kick off threads to run tests on all datasets in parallel.
5491 */
5492 static void
5493 ztest_run(ztest_shared_t *zs)
5494 {
5495 thread_t *tid;
5496 spa_t *spa;
5497 objset_t *os;
5498 thread_t resume_tid;
5499 int error;
5500
5501 ztest_exiting = B_FALSE;
5502
5503 /*
5504 * Initialize parent/child shared state.
5505 */
5506 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5507 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5508
5509 zs->zs_thread_start = gethrtime();
5510 zs->zs_thread_stop =
5511 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
5512 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5513 zs->zs_thread_kill = zs->zs_thread_stop;
5514 if (ztest_random(100) < ztest_opts.zo_killrate) {
5515 zs->zs_thread_kill -=
5516 ztest_random(ztest_opts.zo_passtime * NANOSEC);
5517 }
5518
5519 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL);
5520
5521 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5522 offsetof(ztest_cb_data_t, zcd_node));
5523
5524 /*
5525 * Open our pool.
5526 */
5527 kernel_init(FREAD | FWRITE);
5528 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5529 spa->spa_debug = B_TRUE;
5530 ztest_spa = spa;
5531
5532 VERIFY0(dmu_objset_own(ztest_opts.zo_pool,
5533 DMU_OST_ANY, B_TRUE, FTAG, &os));
5534 zs->zs_guid = dmu_objset_fsid_guid(os);
5535 dmu_objset_disown(os, FTAG);
5536
5537 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
5538
5539 /*
5540 * We don't expect the pool to suspend unless maxfaults == 0,
5541 * in which case ztest_fault_inject() temporarily takes away
5542 * the only valid replica.
5543 */
5544 if (MAXFAULTS() == 0)
5545 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5546 else
5547 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
5548
5549 /*
5550 * Create a thread to periodically resume suspended I/O.
5551 */
5552 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
5553 &resume_tid) == 0);
5554
5555 /*
5556 * Create a deadman thread to abort() if we hang.
5557 */
5558 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND,
5559 NULL) == 0);
5560
5561 /*
5562 * Verify that we can safely inquire about about any object,
5563 * whether it's allocated or not. To make it interesting,
5564 * we probe a 5-wide window around each power of two.
5565 * This hits all edge cases, including zero and the max.
5566 */
5567 for (int t = 0; t < 64; t++) {
5568 for (int d = -5; d <= 5; d++) {
5569 error = dmu_object_info(spa->spa_meta_objset,
5570 (1ULL << t) + d, NULL);
5571 ASSERT(error == 0 || error == ENOENT ||
5572 error == EINVAL);
5573 }
5574 }
5575
5576 /*
5577 * If we got any ENOSPC errors on the previous run, destroy something.
5578 */
5579 if (zs->zs_enospc_count != 0) {
5580 int d = ztest_random(ztest_opts.zo_datasets);
5581 ztest_dataset_destroy(d);
5582 }
5583 zs->zs_enospc_count = 0;
5584
5585 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t),
5586 UMEM_NOFAIL);
5587
5588 if (ztest_opts.zo_verbose >= 4)
5589 (void) printf("starting main threads...\n");
5590
5591 /*
5592 * Kick off all the tests that run in parallel.
5593 */
5594 for (int t = 0; t < ztest_opts.zo_threads; t++) {
5595 if (t < ztest_opts.zo_datasets &&
5596 ztest_dataset_open(t) != 0)
5597 return;
5598 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t,
5599 THR_BOUND, &tid[t]) == 0);
5600 }
5601
5602 /*
5603 * Wait for all of the tests to complete. We go in reverse order
5604 * so we don't close datasets while threads are still using them.
5605 */
5606 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) {
5607 VERIFY(thr_join(tid[t], NULL, NULL) == 0);
5608 if (t < ztest_opts.zo_datasets)
5609 ztest_dataset_close(t);
5610 }
5611
5612 txg_wait_synced(spa_get_dsl(spa), 0);
5613
5614 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
5615 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
5616
5617 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t));
5618
5619 /* Kill the resume thread */
5620 ztest_exiting = B_TRUE;
5621 VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
5622 ztest_resume(spa);
5623
5624 /*
5625 * Right before closing the pool, kick off a bunch of async I/O;
5626 * spa_close() should wait for it to complete.
5627 */
5628 for (uint64_t object = 1; object < 50; object++)
5629 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20);
5630
5631 spa_close(spa, FTAG);
5632
5633 /*
5634 * Verify that we can loop over all pools.
5635 */
5636 mutex_enter(&spa_namespace_lock);
5637 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
5638 if (ztest_opts.zo_verbose > 3)
5639 (void) printf("spa_next: found %s\n", spa_name(spa));
5640 mutex_exit(&spa_namespace_lock);
5641
5642 /*
5643 * Verify that we can export the pool and reimport it under a
5644 * different name.
5645 */
5646 if (ztest_random(2) == 0) {
5647 char name[MAXNAMELEN];
5648 (void) snprintf(name, MAXNAMELEN, "%s_import",
5649 ztest_opts.zo_pool);
5650 ztest_spa_import_export(ztest_opts.zo_pool, name);
5651 ztest_spa_import_export(name, ztest_opts.zo_pool);
5652 }
5653
5654 kernel_fini();
5655
5656 list_destroy(&zcl.zcl_callbacks);
5657
5658 (void) _mutex_destroy(&zcl.zcl_callbacks_lock);
5659
5660 (void) rwlock_destroy(&ztest_name_lock);
5661 (void) _mutex_destroy(&ztest_vdev_lock);
5662 }
5663
5664 static void
5665 ztest_freeze(void)
5666 {
5667 ztest_ds_t *zd = &ztest_ds[0];
5668 spa_t *spa;
5669 int numloops = 0;
5670
5671 if (ztest_opts.zo_verbose >= 3)
5672 (void) printf("testing spa_freeze()...\n");
5673
5674 kernel_init(FREAD | FWRITE);
5675 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5676 VERIFY3U(0, ==, ztest_dataset_open(0));
5677 spa->spa_debug = B_TRUE;
5678 ztest_spa = spa;
5679
5680 /*
5681 * Force the first log block to be transactionally allocated.
5682 * We have to do this before we freeze the pool -- otherwise
5683 * the log chain won't be anchored.
5684 */
5685 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
5686 ztest_dmu_object_alloc_free(zd, 0);
5687 zil_commit(zd->zd_zilog, 0);
5688 }
5689
5690 txg_wait_synced(spa_get_dsl(spa), 0);
5691
5692 /*
5693 * Freeze the pool. This stops spa_sync() from doing anything,
5694 * so that the only way to record changes from now on is the ZIL.
5695 */
5696 spa_freeze(spa);
5697
5698 /*
5699 * Run tests that generate log records but don't alter the pool config
5700 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5701 * We do a txg_wait_synced() after each iteration to force the txg
5702 * to increase well beyond the last synced value in the uberblock.
5703 * The ZIL should be OK with that.
5704 */
5705 while (ztest_random(10) != 0 &&
5706 numloops++ < ztest_opts.zo_maxloops) {
5707 ztest_dmu_write_parallel(zd, 0);
5708 ztest_dmu_object_alloc_free(zd, 0);
5709 txg_wait_synced(spa_get_dsl(spa), 0);
5710 }
5711
5712 /*
5713 * Commit all of the changes we just generated.
5714 */
5715 zil_commit(zd->zd_zilog, 0);
5716 txg_wait_synced(spa_get_dsl(spa), 0);
5717
5718 /*
5719 * Close our dataset and close the pool.
5720 */
5721 ztest_dataset_close(0);
5722 spa_close(spa, FTAG);
5723 kernel_fini();
5724
5725 /*
5726 * Open and close the pool and dataset to induce log replay.
5727 */
5728 kernel_init(FREAD | FWRITE);
5729 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5730 ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
5731 VERIFY3U(0, ==, ztest_dataset_open(0));
5732 ztest_dataset_close(0);
5733
5734 spa->spa_debug = B_TRUE;
5735 ztest_spa = spa;
5736 txg_wait_synced(spa_get_dsl(spa), 0);
5737 ztest_reguid(NULL, 0);
5738
5739 spa_close(spa, FTAG);
5740 kernel_fini();
5741 }
5742
5743 void
5744 print_time(hrtime_t t, char *timebuf)
5745 {
5746 hrtime_t s = t / NANOSEC;
5747 hrtime_t m = s / 60;
5748 hrtime_t h = m / 60;
5749 hrtime_t d = h / 24;
5750
5751 s -= m * 60;
5752 m -= h * 60;
5753 h -= d * 24;
5754
5755 timebuf[0] = '\0';
5756
5757 if (d)
5758 (void) sprintf(timebuf,
5759 "%llud%02lluh%02llum%02llus", d, h, m, s);
5760 else if (h)
5761 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
5762 else if (m)
5763 (void) sprintf(timebuf, "%llum%02llus", m, s);
5764 else
5765 (void) sprintf(timebuf, "%llus", s);
5766 }
5767
5768 static nvlist_t *
5769 make_random_props()
5770 {
5771 nvlist_t *props;
5772
5773 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
5774 if (ztest_random(2) == 0)
5775 return (props);
5776 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
5777
5778 return (props);
5779 }
5780
5781 /*
5782 * Create a storage pool with the given name and initial vdev size.
5783 * Then test spa_freeze() functionality.
5784 */
5785 static void
5786 ztest_init(ztest_shared_t *zs)
5787 {
5788 spa_t *spa;
5789 nvlist_t *nvroot, *props;
5790
5791 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5792 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5793
5794 kernel_init(FREAD | FWRITE);
5795
5796 /*
5797 * Create the storage pool.
5798 */
5799 (void) spa_destroy(ztest_opts.zo_pool);
5800 ztest_shared->zs_vdev_next_leaf = 0;
5801 zs->zs_splits = 0;
5802 zs->zs_mirrors = ztest_opts.zo_mirrors;
5803 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
5804 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
5805 props = make_random_props();
5806 for (int i = 0; i < SPA_FEATURES; i++) {
5807 char buf[1024];
5808 (void) snprintf(buf, sizeof (buf), "feature@%s",
5809 spa_feature_table[i].fi_uname);
5810 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
5811 }
5812 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
5813 nvlist_free(nvroot);
5814
5815 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5816 zs->zs_metaslab_sz =
5817 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
5818
5819 spa_close(spa, FTAG);
5820
5821 kernel_fini();
5822
5823 ztest_run_zdb(ztest_opts.zo_pool);
5824
5825 ztest_freeze();
5826
5827 ztest_run_zdb(ztest_opts.zo_pool);
5828
5829 (void) rwlock_destroy(&ztest_name_lock);
5830 (void) _mutex_destroy(&ztest_vdev_lock);
5831 }
5832
5833 static void
5834 setup_data_fd(void)
5835 {
5836 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
5837
5838 ztest_fd_data = mkstemp(ztest_name_data);
5839 ASSERT3S(ztest_fd_data, >=, 0);
5840 (void) unlink(ztest_name_data);
5841 }
5842
5843
5844 static int
5845 shared_data_size(ztest_shared_hdr_t *hdr)
5846 {
5847 int size;
5848
5849 size = hdr->zh_hdr_size;
5850 size += hdr->zh_opts_size;
5851 size += hdr->zh_size;
5852 size += hdr->zh_stats_size * hdr->zh_stats_count;
5853 size += hdr->zh_ds_size * hdr->zh_ds_count;
5854
5855 return (size);
5856 }
5857
5858 static void
5859 setup_hdr(void)
5860 {
5861 int size;
5862 ztest_shared_hdr_t *hdr;
5863
5864 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
5865 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
5866 ASSERT(hdr != MAP_FAILED);
5867
5868 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
5869
5870 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
5871 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
5872 hdr->zh_size = sizeof (ztest_shared_t);
5873 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
5874 hdr->zh_stats_count = ZTEST_FUNCS;
5875 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
5876 hdr->zh_ds_count = ztest_opts.zo_datasets;
5877
5878 size = shared_data_size(hdr);
5879 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
5880
5881 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
5882 }
5883
5884 static void
5885 setup_data(void)
5886 {
5887 int size, offset;
5888 ztest_shared_hdr_t *hdr;
5889 uint8_t *buf;
5890
5891 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
5892 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
5893 ASSERT(hdr != MAP_FAILED);
5894
5895 size = shared_data_size(hdr);
5896
5897 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
5898 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
5899 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
5900 ASSERT(hdr != MAP_FAILED);
5901 buf = (uint8_t *)hdr;
5902
5903 offset = hdr->zh_hdr_size;
5904 ztest_shared_opts = (void *)&buf[offset];
5905 offset += hdr->zh_opts_size;
5906 ztest_shared = (void *)&buf[offset];
5907 offset += hdr->zh_size;
5908 ztest_shared_callstate = (void *)&buf[offset];
5909 offset += hdr->zh_stats_size * hdr->zh_stats_count;
5910 ztest_shared_ds = (void *)&buf[offset];
5911 }
5912
5913 static boolean_t
5914 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
5915 {
5916 pid_t pid;
5917 int status;
5918 char *cmdbuf = NULL;
5919
5920 pid = fork();
5921
5922 if (cmd == NULL) {
5923 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
5924 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
5925 cmd = cmdbuf;
5926 }
5927
5928 if (pid == -1)
5929 fatal(1, "fork failed");
5930
5931 if (pid == 0) { /* child */
5932 char *emptyargv[2] = { cmd, NULL };
5933 char fd_data_str[12];
5934
5935 struct rlimit rl = { 1024, 1024 };
5936 (void) setrlimit(RLIMIT_NOFILE, &rl);
5937
5938 (void) close(ztest_fd_rand);
5939 VERIFY3U(11, >=,
5940 snprintf(fd_data_str, 12, "%d", ztest_fd_data));
5941 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
5942
5943 (void) enable_extended_FILE_stdio(-1, -1);
5944 if (libpath != NULL)
5945 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
5946 (void) execv(cmd, emptyargv);
5947 ztest_dump_core = B_FALSE;
5948 fatal(B_TRUE, "exec failed: %s", cmd);
5949 }
5950
5951 if (cmdbuf != NULL) {
5952 umem_free(cmdbuf, MAXPATHLEN);
5953 cmd = NULL;
5954 }
5955
5956 while (waitpid(pid, &status, 0) != pid)
5957 continue;
5958 if (statusp != NULL)
5959 *statusp = status;
5960
5961 if (WIFEXITED(status)) {
5962 if (WEXITSTATUS(status) != 0) {
5963 (void) fprintf(stderr, "child exited with code %d\n",
5964 WEXITSTATUS(status));
5965 exit(2);
5966 }
5967 return (B_FALSE);
5968 } else if (WIFSIGNALED(status)) {
5969 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
5970 (void) fprintf(stderr, "child died with signal %d\n",
5971 WTERMSIG(status));
5972 exit(3);
5973 }
5974 return (B_TRUE);
5975 } else {
5976 (void) fprintf(stderr, "something strange happened to child\n");
5977 exit(4);
5978 /* NOTREACHED */
5979 }
5980 }
5981
5982 static void
5983 ztest_run_init(void)
5984 {
5985 ztest_shared_t *zs = ztest_shared;
5986
5987 ASSERT(ztest_opts.zo_init != 0);
5988
5989 /*
5990 * Blow away any existing copy of zpool.cache
5991 */
5992 (void) remove(spa_config_path);
5993
5994 /*
5995 * Create and initialize our storage pool.
5996 */
5997 for (int i = 1; i <= ztest_opts.zo_init; i++) {
5998 bzero(zs, sizeof (ztest_shared_t));
5999 if (ztest_opts.zo_verbose >= 3 &&
6000 ztest_opts.zo_init != 1) {
6001 (void) printf("ztest_init(), pass %d\n", i);
6002 }
6003 ztest_init(zs);
6004 }
6005 }
6006
6007 int
6008 main(int argc, char **argv)
6009 {
6010 int kills = 0;
6011 int iters = 0;
6012 int older = 0;
6013 int newer = 0;
6014 ztest_shared_t *zs;
6015 ztest_info_t *zi;
6016 ztest_shared_callstate_t *zc;
6017 char timebuf[100];
6018 char numbuf[6];
6019 spa_t *spa;
6020 char *cmd;
6021 boolean_t hasalt;
6022 char *fd_data_str = getenv("ZTEST_FD_DATA");
6023
6024 (void) setvbuf(stdout, NULL, _IOLBF, 0);
6025
6026 dprintf_setup(&argc, argv);
6027
6028 ztest_fd_rand = open("/dev/urandom", O_RDONLY);
6029 ASSERT3S(ztest_fd_rand, >=, 0);
6030
6031 if (!fd_data_str) {
6032 process_options(argc, argv);
6033
6034 setup_data_fd();
6035 setup_hdr();
6036 setup_data();
6037 bcopy(&ztest_opts, ztest_shared_opts,
6038 sizeof (*ztest_shared_opts));
6039 } else {
6040 ztest_fd_data = atoi(fd_data_str);
6041 setup_data();
6042 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
6043 }
6044 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
6045
6046 /* Override location of zpool.cache */
6047 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache",
6048 ztest_opts.zo_dir), !=, -1);
6049
6050 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
6051 UMEM_NOFAIL);
6052 zs = ztest_shared;
6053
6054 if (fd_data_str) {
6055 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang;
6056 metaslab_df_alloc_threshold =
6057 zs->zs_metaslab_df_alloc_threshold;
6058
6059 if (zs->zs_do_init)
6060 ztest_run_init();
6061 else
6062 ztest_run(zs);
6063 exit(0);
6064 }
6065
6066 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
6067
6068 if (ztest_opts.zo_verbose >= 1) {
6069 (void) printf("%llu vdevs, %d datasets, %d threads,"
6070 " %llu seconds...\n",
6071 (u_longlong_t)ztest_opts.zo_vdevs,
6072 ztest_opts.zo_datasets,
6073 ztest_opts.zo_threads,
6074 (u_longlong_t)ztest_opts.zo_time);
6075 }
6076
6077 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
6078 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
6079
6080 zs->zs_do_init = B_TRUE;
6081 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
6082 if (ztest_opts.zo_verbose >= 1) {
6083 (void) printf("Executing older ztest for "
6084 "initialization: %s\n", ztest_opts.zo_alt_ztest);
6085 }
6086 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
6087 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
6088 } else {
6089 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
6090 }
6091 zs->zs_do_init = B_FALSE;
6092
6093 zs->zs_proc_start = gethrtime();
6094 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
6095
6096 for (int f = 0; f < ZTEST_FUNCS; f++) {
6097 zi = &ztest_info[f];
6098 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6099 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
6100 zc->zc_next = UINT64_MAX;
6101 else
6102 zc->zc_next = zs->zs_proc_start +
6103 ztest_random(2 * zi->zi_interval[0] + 1);
6104 }
6105
6106 /*
6107 * Run the tests in a loop. These tests include fault injection
6108 * to verify that self-healing data works, and forced crashes
6109 * to verify that we never lose on-disk consistency.
6110 */
6111 while (gethrtime() < zs->zs_proc_stop) {
6112 int status;
6113 boolean_t killed;
6114
6115 /*
6116 * Initialize the workload counters for each function.
6117 */
6118 for (int f = 0; f < ZTEST_FUNCS; f++) {
6119 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6120 zc->zc_count = 0;
6121 zc->zc_time = 0;
6122 }
6123
6124 /* Set the allocation switch size */
6125 zs->zs_metaslab_df_alloc_threshold =
6126 ztest_random(zs->zs_metaslab_sz / 4) + 1;
6127
6128 if (!hasalt || ztest_random(2) == 0) {
6129 if (hasalt && ztest_opts.zo_verbose >= 1) {
6130 (void) printf("Executing newer ztest: %s\n",
6131 cmd);
6132 }
6133 newer++;
6134 killed = exec_child(cmd, NULL, B_TRUE, &status);
6135 } else {
6136 if (hasalt && ztest_opts.zo_verbose >= 1) {
6137 (void) printf("Executing older ztest: %s\n",
6138 ztest_opts.zo_alt_ztest);
6139 }
6140 older++;
6141 killed = exec_child(ztest_opts.zo_alt_ztest,
6142 ztest_opts.zo_alt_libpath, B_TRUE, &status);
6143 }
6144
6145 if (killed)
6146 kills++;
6147 iters++;
6148
6149 if (ztest_opts.zo_verbose >= 1) {
6150 hrtime_t now = gethrtime();
6151
6152 now = MIN(now, zs->zs_proc_stop);
6153 print_time(zs->zs_proc_stop - now, timebuf);
6154 nicenum(zs->zs_space, numbuf);
6155
6156 (void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6157 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6158 iters,
6159 WIFEXITED(status) ? "Complete" : "SIGKILL",
6160 (u_longlong_t)zs->zs_enospc_count,
6161 100.0 * zs->zs_alloc / zs->zs_space,
6162 numbuf,
6163 100.0 * (now - zs->zs_proc_start) /
6164 (ztest_opts.zo_time * NANOSEC), timebuf);
6165 }
6166
6167 if (ztest_opts.zo_verbose >= 2) {
6168 (void) printf("\nWorkload summary:\n\n");
6169 (void) printf("%7s %9s %s\n",
6170 "Calls", "Time", "Function");
6171 (void) printf("%7s %9s %s\n",
6172 "-----", "----", "--------");
6173 for (int f = 0; f < ZTEST_FUNCS; f++) {
6174 Dl_info dli;
6175
6176 zi = &ztest_info[f];
6177 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6178 print_time(zc->zc_time, timebuf);
6179 (void) dladdr((void *)zi->zi_func, &dli);
6180 (void) printf("%7llu %9s %s\n",
6181 (u_longlong_t)zc->zc_count, timebuf,
6182 dli.dli_sname);
6183 }
6184 (void) printf("\n");
6185 }
6186
6187 /*
6188 * It's possible that we killed a child during a rename test,
6189 * in which case we'll have a 'ztest_tmp' pool lying around
6190 * instead of 'ztest'. Do a blind rename in case this happened.
6191 */
6192 kernel_init(FREAD);
6193 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
6194 spa_close(spa, FTAG);
6195 } else {
6196 char tmpname[MAXNAMELEN];
6197 kernel_fini();
6198 kernel_init(FREAD | FWRITE);
6199 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
6200 ztest_opts.zo_pool);
6201 (void) spa_rename(tmpname, ztest_opts.zo_pool);
6202 }
6203 kernel_fini();
6204
6205 ztest_run_zdb(ztest_opts.zo_pool);
6206 }
6207
6208 if (ztest_opts.zo_verbose >= 1) {
6209 if (hasalt) {
6210 (void) printf("%d runs of older ztest: %s\n", older,
6211 ztest_opts.zo_alt_ztest);
6212 (void) printf("%d runs of newer ztest: %s\n", newer,
6213 cmd);
6214 }
6215 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6216 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
6217 }
6218
6219 umem_free(cmd, MAXNAMELEN);
6220
6221 return (0);
6222 }