Print this page
    
3946 ::gcore
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
    
      
        | Split | Close | 
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/lib/libproc/common/Psymtab.c
          +++ new/usr/src/lib/libproc/common/Psymtab.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  
    | ↓ open down ↓ | 14 lines elided | ↑ open up ↑ | 
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
  24   24   * Copyright (c) 2013, Joyent, Inc. All rights reserved.
       25 + * Copyright (c) 2013 by Delphix. All rights reserved.
  25   26   */
  26   27  
  27   28  #include <assert.h>
  28   29  #include <stdio.h>
  29   30  #include <stdlib.h>
  30   31  #include <stddef.h>
  31   32  #include <unistd.h>
  32   33  #include <ctype.h>
  33   34  #include <fcntl.h>
  34   35  #include <string.h>
  35   36  #include <strings.h>
  36   37  #include <memory.h>
  37   38  #include <errno.h>
  38   39  #include <dirent.h>
  39   40  #include <signal.h>
  40   41  #include <limits.h>
  41   42  #include <libgen.h>
  42   43  #include <sys/types.h>
  43   44  #include <sys/stat.h>
  44      -#include <sys/systeminfo.h>
  45   45  #include <sys/sysmacros.h>
  46   46  
  47   47  #include "libproc.h"
  48   48  #include "Pcontrol.h"
  49   49  #include "Putil.h"
  50   50  #include "Psymtab_machelf.h"
  51   51  
  52   52  static file_info_t *build_map_symtab(struct ps_prochandle *, map_info_t *);
  53   53  static map_info_t *exec_map(struct ps_prochandle *);
  54   54  static map_info_t *object_to_map(struct ps_prochandle *, Lmid_t, const char *);
  55   55  static map_info_t *object_name_to_map(struct ps_prochandle *,
  56   56          Lmid_t, const char *);
  57   57  static GElf_Sym *sym_by_name(sym_tbl_t *, const char *, GElf_Sym *, uint_t *);
  58   58  static int read_ehdr32(struct ps_prochandle *, Elf32_Ehdr *, uint_t *,
  59   59      uintptr_t);
  60   60  #ifdef _LP64
  61   61  static int read_ehdr64(struct ps_prochandle *, Elf64_Ehdr *, uint_t *,
  62   62      uintptr_t);
  63   63  #endif
  64   64  
  65   65  #define DATA_TYPES      \
  66   66          ((1 << STT_OBJECT) | (1 << STT_FUNC) | \
  67   67          (1 << STT_COMMON) | (1 << STT_TLS))
  68   68  #define IS_DATA_TYPE(tp)        (((1 << (tp)) & DATA_TYPES) != 0)
  69   69  
  70   70  #define MA_RWX  (MA_READ | MA_WRITE | MA_EXEC)
  71   71  
  72   72  typedef enum {
  73   73          PRO_NATURAL,
  74   74          PRO_BYADDR,
  75   75          PRO_BYNAME
  76   76  } pr_order_t;
  77   77  
  78   78  static int
  79   79  addr_cmp(const void *aa, const void *bb)
  80   80  {
  81   81          uintptr_t a = *((uintptr_t *)aa);
  82   82          uintptr_t b = *((uintptr_t *)bb);
  83   83  
  84   84          if (a > b)
  85   85                  return (1);
  86   86          if (a < b)
  87   87                  return (-1);
  88   88          return (0);
  89   89  }
  90   90  
  91   91  /*
  92   92   * This function creates a list of addresses for a load object's sections.
  93   93   * The list is in ascending address order and alternates start address
  94   94   * then end address for each section we're interested in. The function
  95   95   * returns a pointer to the list, which must be freed by the caller.
  96   96   */
  97   97  static uintptr_t *
  98   98  get_saddrs(struct ps_prochandle *P, uintptr_t ehdr_start, uint_t *n)
  99   99  {
 100  100          uintptr_t a, addr, *addrs, last = 0;
 101  101          uint_t i, naddrs = 0, unordered = 0;
 102  102  
 103  103          if (P->status.pr_dmodel == PR_MODEL_ILP32) {
 104  104                  Elf32_Ehdr ehdr;
 105  105                  Elf32_Phdr phdr;
 106  106                  uint_t phnum;
 107  107  
 108  108                  if (read_ehdr32(P, &ehdr, &phnum, ehdr_start) != 0)
 109  109                          return (NULL);
 110  110  
 111  111                  addrs = malloc(sizeof (uintptr_t) * phnum * 2);
 112  112                  a = ehdr_start + ehdr.e_phoff;
 113  113                  for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
 114  114                          if (Pread(P, &phdr, sizeof (phdr), a) !=
 115  115                              sizeof (phdr)) {
 116  116                                  free(addrs);
 117  117                                  return (NULL);
 118  118                          }
 119  119                          if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
 120  120                                  continue;
 121  121  
 122  122                          addr = phdr.p_vaddr;
 123  123                          if (ehdr.e_type == ET_DYN)
 124  124                                  addr += ehdr_start;
 125  125                          if (last > addr)
 126  126                                  unordered = 1;
 127  127                          addrs[naddrs++] = addr;
 128  128                          addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
 129  129                  }
 130  130  #ifdef _LP64
 131  131          } else {
 132  132                  Elf64_Ehdr ehdr;
 133  133                  Elf64_Phdr phdr;
 134  134                  uint_t phnum;
 135  135  
 136  136                  if (read_ehdr64(P, &ehdr, &phnum, ehdr_start) != 0)
 137  137                          return (NULL);
 138  138  
 139  139                  addrs = malloc(sizeof (uintptr_t) * phnum * 2);
 140  140                  a = ehdr_start + ehdr.e_phoff;
 141  141                  for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
 142  142                          if (Pread(P, &phdr, sizeof (phdr), a) !=
 143  143                              sizeof (phdr)) {
 144  144                                  free(addrs);
 145  145                                  return (NULL);
 146  146                          }
 147  147                          if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
 148  148                                  continue;
 149  149  
 150  150                          addr = phdr.p_vaddr;
 151  151                          if (ehdr.e_type == ET_DYN)
 152  152                                  addr += ehdr_start;
 153  153                          if (last > addr)
 154  154                                  unordered = 1;
 155  155                          addrs[naddrs++] = addr;
 156  156                          addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
 157  157                  }
 158  158  #endif
 159  159          }
 160  160  
 161  161          if (unordered)
 162  162                  qsort(addrs, naddrs, sizeof (uintptr_t), addr_cmp);
 163  163  
 164  164          *n = naddrs;
 165  165          return (addrs);
 166  166  }
 167  167  
 168  168  /*
 169  169   * Allocation function for a new file_info_t
 170  170   */
 171  171  file_info_t *
 172  172  file_info_new(struct ps_prochandle *P, map_info_t *mptr)
 173  173  {
 174  174          file_info_t *fptr;
 175  175          map_info_t *mp;
 176  176          uintptr_t mstart, mend, sstart, send;
 177  177          uint_t i;
 178  178  
 179  179          if ((fptr = calloc(1, sizeof (file_info_t))) == NULL)
 180  180                  return (NULL);
 181  181  
 182  182          list_link(fptr, &P->file_head);
 183  183          (void) strcpy(fptr->file_pname, mptr->map_pmap.pr_mapname);
 184  184          mptr->map_file = fptr;
 185  185          fptr->file_ref = 1;
 186  186          fptr->file_fd = -1;
 187  187          P->num_files++;
 188  188  
 189  189          /*
 190  190           * To figure out which map_info_t instances correspond to the mappings
 191  191           * for this load object we try to obtain the start and end address
 192  192           * for each section of our in-memory ELF image. If successful, we
 193  193           * walk down the list of addresses and the list of map_info_t
 194  194           * instances in lock step to correctly find the mappings that
 195  195           * correspond to this load object.
 196  196           */
 197  197          if ((fptr->file_saddrs = get_saddrs(P, mptr->map_pmap.pr_vaddr,
 198  198              &fptr->file_nsaddrs)) == NULL)
 199  199                  return (fptr);
 200  200  
 201  201          mp = P->mappings;
 202  202          i = 0;
 203  203          while (mp < P->mappings + P->map_count && i < fptr->file_nsaddrs) {
 204  204  
 205  205                  /* Calculate the start and end of the mapping and section */
 206  206                  mstart = mp->map_pmap.pr_vaddr;
 207  207                  mend = mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size;
 208  208                  sstart = fptr->file_saddrs[i];
 209  209                  send = fptr->file_saddrs[i + 1];
 210  210  
 211  211                  if (mend <= sstart) {
 212  212                          /* This mapping is below the current section */
 213  213                          mp++;
 214  214                  } else if (mstart >= send) {
 215  215                          /* This mapping is above the current section */
 216  216                          i += 2;
 217  217                  } else {
 218  218                          /* This mapping overlaps the current section */
 219  219                          if (mp->map_file == NULL) {
 220  220                                  dprintf("file_info_new: associating "
 221  221                                      "segment at %p\n",
 222  222                                      (void *)mp->map_pmap.pr_vaddr);
 223  223                                  mp->map_file = fptr;
 224  224                                  fptr->file_ref++;
 225  225                          } else {
 226  226                                  dprintf("file_info_new: segment at %p "
 227  227                                      "already associated with %s\n",
 228  228                                      (void *)mp->map_pmap.pr_vaddr,
 229  229                                      (mp == mptr ? "this file" :
 230  230                                      mp->map_file->file_pname));
 231  231                          }
 232  232                          mp++;
 233  233                  }
 234  234          }
 235  235  
 236  236          return (fptr);
 237  237  }
 238  238  
 239  239  /*
 240  240   * Deallocation function for a file_info_t
 241  241   */
 242  242  static void
 243  243  file_info_free(struct ps_prochandle *P, file_info_t *fptr)
 244  244  {
 245  245          if (--fptr->file_ref == 0) {
 246  246                  list_unlink(fptr);
 247  247                  if (fptr->file_symtab.sym_elf) {
 248  248                          (void) elf_end(fptr->file_symtab.sym_elf);
 249  249                          free(fptr->file_symtab.sym_elfmem);
 250  250                  }
 251  251                  if (fptr->file_symtab.sym_byname)
 252  252                          free(fptr->file_symtab.sym_byname);
 253  253                  if (fptr->file_symtab.sym_byaddr)
 254  254                          free(fptr->file_symtab.sym_byaddr);
 255  255  
 256  256                  if (fptr->file_dynsym.sym_elf) {
 257  257                          (void) elf_end(fptr->file_dynsym.sym_elf);
 258  258                          free(fptr->file_dynsym.sym_elfmem);
 259  259                  }
 260  260                  if (fptr->file_dynsym.sym_byname)
 261  261                          free(fptr->file_dynsym.sym_byname);
 262  262                  if (fptr->file_dynsym.sym_byaddr)
 263  263                          free(fptr->file_dynsym.sym_byaddr);
 264  264  
 265  265                  if (fptr->file_lo)
 266  266                          free(fptr->file_lo);
 267  267                  if (fptr->file_lname)
 268  268                          free(fptr->file_lname);
 269  269                  if (fptr->file_rname)
 270  270                          free(fptr->file_rname);
 271  271                  if (fptr->file_elf)
 272  272                          (void) elf_end(fptr->file_elf);
 273  273                  if (fptr->file_elfmem != NULL)
 274  274                          free(fptr->file_elfmem);
 275  275                  if (fptr->file_fd >= 0)
 276  276                          (void) close(fptr->file_fd);
 277  277                  if (fptr->file_ctfp) {
 278  278                          ctf_close(fptr->file_ctfp);
 279  279                          free(fptr->file_ctf_buf);
 280  280                  }
 281  281                  if (fptr->file_saddrs)
 282  282                          free(fptr->file_saddrs);
 283  283                  free(fptr);
 284  284                  P->num_files--;
 285  285          }
 286  286  }
 287  287  
 288  288  /*
 289  289   * Deallocation function for a map_info_t
 290  290   */
 291  291  static void
 292  292  map_info_free(struct ps_prochandle *P, map_info_t *mptr)
 293  293  {
 294  294          file_info_t *fptr;
 295  295  
 296  296          if ((fptr = mptr->map_file) != NULL) {
 297  297                  if (fptr->file_map == mptr)
 298  298                          fptr->file_map = NULL;
 299  299                  file_info_free(P, fptr);
 300  300          }
 301  301          if (P->execname && mptr == P->map_exec) {
 302  302                  free(P->execname);
 303  303                  P->execname = NULL;
 304  304          }
 305  305          if (P->auxv && (mptr == P->map_exec || mptr == P->map_ldso)) {
 306  306                  free(P->auxv);
 307  307                  P->auxv = NULL;
 308  308                  P->nauxv = 0;
 309  309          }
 310  310          if (mptr == P->map_exec)
 311  311                  P->map_exec = NULL;
 312  312          if (mptr == P->map_ldso)
 313  313                  P->map_ldso = NULL;
 314  314  }
 315  315  
 316  316  /*
 317  317   * Call-back function for librtld_db to iterate through all of its shared
 318  318   * libraries.  We use this to get the load object names for the mappings.
 319  319   */
 320  320  static int
 321  321  map_iter(const rd_loadobj_t *lop, void *cd)
 322  322  {
 323  323          char buf[PATH_MAX];
 324  324          struct ps_prochandle *P = cd;
 325  325          map_info_t *mptr;
 326  326          file_info_t *fptr;
 327  327  
 328  328          dprintf("encountered rd object at %p\n", (void *)lop->rl_base);
 329  329  
 330  330          if ((mptr = Paddr2mptr(P, lop->rl_base)) == NULL) {
 331  331                  dprintf("map_iter: base address doesn't match any mapping\n");
 332  332                  return (1); /* Base address does not match any mapping */
 333  333          }
 334  334  
 335  335          if ((fptr = mptr->map_file) == NULL &&
 336  336              (fptr = file_info_new(P, mptr)) == NULL) {
 337  337                  dprintf("map_iter: failed to allocate a new file_info_t\n");
 338  338                  return (1); /* Failed to allocate a new file_info_t */
 339  339          }
 340  340  
 341  341          if ((fptr->file_lo == NULL) &&
 342  342              (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
 343  343                  dprintf("map_iter: failed to allocate rd_loadobj_t\n");
 344  344                  file_info_free(P, fptr);
 345  345                  return (1); /* Failed to allocate rd_loadobj_t */
 346  346          }
 347  347  
 348  348          fptr->file_map = mptr;
 349  349          *fptr->file_lo = *lop;
 350  350  
 351  351          fptr->file_lo->rl_plt_base = fptr->file_plt_base;
 352  352          fptr->file_lo->rl_plt_size = fptr->file_plt_size;
 353  353  
 354  354          if (fptr->file_lname) {
 355  355                  free(fptr->file_lname);
 356  356                  fptr->file_lname = NULL;
 357  357                  fptr->file_lbase = NULL;
 358  358          }
 359  359          if (fptr->file_rname) {
 360  360                  free(fptr->file_rname);
 361  361                  fptr->file_rname = NULL;
 362  362                  fptr->file_rbase = NULL;
 363  363          }
 364  364  
 365  365          if (Pread_string(P, buf, sizeof (buf), lop->rl_nameaddr) > 0) {
 366  366                  if ((fptr->file_lname = strdup(buf)) != NULL)
 367  367                          fptr->file_lbase = basename(fptr->file_lname);
 368  368          } else {
 369  369                  dprintf("map_iter: failed to read string at %p\n",
 370  370                      (void *)lop->rl_nameaddr);
 371  371          }
 372  372  
 373  373          if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) &&
 374  374              ((fptr->file_rname = strdup(buf)) != NULL))
 375  375                  fptr->file_rbase = basename(fptr->file_rname);
 376  376  
 377  377          dprintf("loaded rd object %s lmid %lx\n",
 378  378              fptr->file_lname ? buf : "<NULL>", lop->rl_lmident);
 379  379          return (1);
 380  380  }
 381  381  
 382  382  static void
 383  383  map_set(struct ps_prochandle *P, map_info_t *mptr, const char *lname)
 384  384  {
 385  385          file_info_t *fptr;
 386  386          char buf[PATH_MAX];
 387  387  
 388  388          if ((fptr = mptr->map_file) == NULL &&
 389  389              (fptr = file_info_new(P, mptr)) == NULL)
 390  390                  return; /* Failed to allocate a new file_info_t */
 391  391  
 392  392          fptr->file_map = mptr;
 393  393  
 394  394          if ((fptr->file_lo == NULL) &&
 395  395              (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
 396  396                  file_info_free(P, fptr);
 397  397                  return; /* Failed to allocate rd_loadobj_t */
 398  398          }
 399  399  
 400  400          (void) memset(fptr->file_lo, 0, sizeof (rd_loadobj_t));
 401  401          fptr->file_lo->rl_base = mptr->map_pmap.pr_vaddr;
 402  402          fptr->file_lo->rl_bend =
 403  403              mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
 404  404  
 405  405          fptr->file_lo->rl_plt_base = fptr->file_plt_base;
 406  406          fptr->file_lo->rl_plt_size = fptr->file_plt_size;
 407  407  
 408  408          if ((fptr->file_lname == NULL) &&
 409  409              (fptr->file_lname = strdup(lname)) != NULL)
 410  410                  fptr->file_lbase = basename(fptr->file_lname);
 411  411  
 412  412          if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) &&
 413  413              ((fptr->file_rname = strdup(buf)) != NULL))
 414  414                  fptr->file_rbase = basename(fptr->file_rname);
 415  415  }
 416  416  
 417  417  static void
 418  418  load_static_maps(struct ps_prochandle *P)
 419  419  {
 420  420          map_info_t *mptr;
 421  421  
 422  422          /*
 423  423           * Construct the map for the a.out.
 424  424           */
 425  425          if ((mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_EXEC)) != NULL)
 426  426                  map_set(P, mptr, "a.out");
  
    | ↓ open down ↓ | 372 lines elided | ↑ open up ↑ | 
 427  427  
 428  428          /*
 429  429           * If the dynamic linker exists for this process,
 430  430           * construct the map for it.
 431  431           */
 432  432          if (Pgetauxval(P, AT_BASE) != -1L &&
 433  433              (mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_LDSO)) != NULL)
 434  434                  map_set(P, mptr, "ld.so.1");
 435  435  }
 436  436  
      437 +int
      438 +Preadmaps(struct ps_prochandle *P, prmap_t **Pmapp, ssize_t *nmapp)
      439 +{
      440 +        return (P->ops.pop_read_maps(P, Pmapp, nmapp, P->data));
      441 +}
      442 +
 437  443  /*
 438  444   * Go through all the address space mappings, validating or updating
 439  445   * the information already gathered, or gathering new information.
 440  446   *
 441  447   * This function is only called when we suspect that the mappings have changed
 442  448   * because this is the first time we're calling it or because of rtld activity.
 443  449   */
 444  450  void
 445  451  Pupdate_maps(struct ps_prochandle *P)
 446  452  {
 447      -        char mapfile[PATH_MAX];
 448      -        int mapfd;
 449      -        struct stat statb;
 450  453          prmap_t *Pmap = NULL;
 451  454          prmap_t *pmap;
 452  455          ssize_t nmap;
 453  456          int i;
 454  457          uint_t oldmapcount;
 455  458          map_info_t *newmap, *newp;
 456  459          map_info_t *mptr;
 457  460  
 458  461          if (P->info_valid || P->state == PS_UNDEAD)
 459  462                  return;
 460  463  
 461  464          Preadauxvec(P);
 462  465  
 463      -        (void) snprintf(mapfile, sizeof (mapfile), "%s/%d/map",
 464      -            procfs_path, (int)P->pid);
 465      -        if ((mapfd = open(mapfile, O_RDONLY)) < 0 ||
 466      -            fstat(mapfd, &statb) != 0 ||
 467      -            statb.st_size < sizeof (prmap_t) ||
 468      -            (Pmap = malloc(statb.st_size)) == NULL ||
 469      -            (nmap = pread(mapfd, Pmap, statb.st_size, 0L)) <= 0 ||
 470      -            (nmap /= sizeof (prmap_t)) == 0) {
 471      -                if (Pmap != NULL)
 472      -                        free(Pmap);
 473      -                if (mapfd >= 0)
 474      -                        (void) close(mapfd);
 475      -                Preset_maps(P); /* utter failure; destroy tables */
      466 +        if (Preadmaps(P, &Pmap, &nmap) != 0)
 476  467                  return;
 477      -        }
 478      -        (void) close(mapfd);
 479  468  
 480  469          if ((newmap = calloc(1, nmap * sizeof (map_info_t))) == NULL)
 481  470                  return;
 482  471  
 483  472          /*
 484  473           * We try to merge any file information we may have for existing
 485  474           * mappings, to avoid having to rebuild the file info.
 486  475           */
 487  476          mptr = P->mappings;
 488  477          pmap = Pmap;
 489  478          newp = newmap;
 490  479          oldmapcount = P->map_count;
 491  480          for (i = 0; i < nmap; i++, pmap++, newp++) {
 492  481  
 493  482                  if (oldmapcount == 0) {
 494  483                          /*
 495  484                           * We've exhausted all the old mappings.  Every new
 496  485                           * mapping should be added.
 497  486                           */
 498  487                          newp->map_pmap = *pmap;
 499  488  
 500  489                  } else if (pmap->pr_vaddr == mptr->map_pmap.pr_vaddr &&
 501  490                      pmap->pr_size == mptr->map_pmap.pr_size &&
 502  491                      pmap->pr_offset == mptr->map_pmap.pr_offset &&
 503  492                      (pmap->pr_mflags & ~(MA_BREAK | MA_STACK)) ==
 504  493                      (mptr->map_pmap.pr_mflags & ~(MA_BREAK | MA_STACK)) &&
 505  494                      pmap->pr_pagesize == mptr->map_pmap.pr_pagesize &&
 506  495                      pmap->pr_shmid == mptr->map_pmap.pr_shmid &&
 507  496                      strcmp(pmap->pr_mapname, mptr->map_pmap.pr_mapname) == 0) {
 508  497  
 509  498                          /*
 510  499                           * This mapping matches exactly.  Copy over the old
 511  500                           * mapping, taking care to get the latest flags.
 512  501                           * Make sure the associated file_info_t is updated
 513  502                           * appropriately.
 514  503                           */
 515  504                          *newp = *mptr;
 516  505                          if (P->map_exec == mptr)
 517  506                                  P->map_exec = newp;
 518  507                          if (P->map_ldso == mptr)
 519  508                                  P->map_ldso = newp;
 520  509                          newp->map_pmap.pr_mflags = pmap->pr_mflags;
 521  510                          if (mptr->map_file != NULL &&
 522  511                              mptr->map_file->file_map == mptr)
 523  512                                  mptr->map_file->file_map = newp;
 524  513                          oldmapcount--;
 525  514                          mptr++;
 526  515  
 527  516                  } else if (pmap->pr_vaddr + pmap->pr_size >
 528  517                      mptr->map_pmap.pr_vaddr) {
 529  518  
 530  519                          /*
 531  520                           * The old mapping doesn't exist any more, remove it
 532  521                           * from the list.
 533  522                           */
 534  523                          map_info_free(P, mptr);
 535  524                          oldmapcount--;
 536  525                          i--;
 537  526                          newp--;
 538  527                          pmap--;
 539  528                          mptr++;
 540  529  
 541  530                  } else {
 542  531  
 543  532                          /*
 544  533                           * This is a new mapping, add it directly.
 545  534                           */
 546  535                          newp->map_pmap = *pmap;
 547  536                  }
 548  537          }
 549  538  
 550  539          /*
 551  540           * Free any old maps
 552  541           */
 553  542          while (oldmapcount) {
 554  543                  map_info_free(P, mptr);
 555  544                  oldmapcount--;
 556  545                  mptr++;
 557  546          }
 558  547  
 559  548          free(Pmap);
 560  549          if (P->mappings != NULL)
 561  550                  free(P->mappings);
 562  551          P->mappings = newmap;
 563  552          P->map_count = P->map_alloc = nmap;
 564  553          P->info_valid = 1;
 565  554  
 566  555          /*
 567  556           * Consult librtld_db to get the load object
 568  557           * names for all of the shared libraries.
 569  558           */
 570  559          if (P->rap != NULL)
 571  560                  (void) rd_loadobj_iter(P->rap, map_iter, P);
 572  561  }
 573  562  
 574  563  /*
 575  564   * Update all of the mappings and rtld_db as if by Pupdate_maps(), and then
 576  565   * forcibly cache all of the symbol tables associated with all object files.
 577  566   */
 578  567  void
 579  568  Pupdate_syms(struct ps_prochandle *P)
 580  569  {
 581  570          file_info_t *fptr;
 582  571          int i;
 583  572  
 584  573          Pupdate_maps(P);
 585  574  
 586  575          for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
 587  576              i++, fptr = list_next(fptr)) {
 588  577                  Pbuild_file_symtab(P, fptr);
 589  578                  (void) Pbuild_file_ctf(P, fptr);
 590  579          }
 591  580  }
 592  581  
 593  582  /*
 594  583   * Return the librtld_db agent handle for the victim process.
 595  584   * The handle will become invalid at the next successful exec() and the
 596  585   * client (caller of proc_rd_agent()) must not use it beyond that point.
 597  586   * If the process is already dead, we've already tried our best to
 598  587   * create the agent during core file initialization.
 599  588   */
 600  589  rd_agent_t *
 601  590  Prd_agent(struct ps_prochandle *P)
 602  591  {
 603  592          if (P->rap == NULL && P->state != PS_DEAD && P->state != PS_IDLE) {
 604  593                  Pupdate_maps(P);
 605  594                  if (P->num_files == 0)
 606  595                          load_static_maps(P);
 607  596                  rd_log(_libproc_debug);
 608  597                  if ((P->rap = rd_new(P)) != NULL)
 609  598                          (void) rd_loadobj_iter(P->rap, map_iter, P);
 610  599          }
 611  600          return (P->rap);
 612  601  }
 613  602  
 614  603  /*
 615  604   * Return the prmap_t structure containing 'addr', but only if it
 616  605   * is in the dynamic linker's link map and is the text section.
 617  606   */
 618  607  const prmap_t *
 619  608  Paddr_to_text_map(struct ps_prochandle *P, uintptr_t addr)
 620  609  {
 621  610          map_info_t *mptr;
 622  611  
 623  612          if (!P->info_valid)
 624  613                  Pupdate_maps(P);
 625  614  
 626  615          if ((mptr = Paddr2mptr(P, addr)) != NULL) {
 627  616                  file_info_t *fptr = build_map_symtab(P, mptr);
 628  617                  const prmap_t *pmp = &mptr->map_pmap;
 629  618  
 630  619                  /*
 631  620                   * Assume that if rl_data_base is NULL, it means that no
 632  621                   * data section was found for this load object, and that
 633  622                   * a section must be text. Otherwise, a section will be
 634  623                   * text unless it ends above the start of the data
 635  624                   * section.
 636  625                   */
 637  626                  if (fptr != NULL && fptr->file_lo != NULL &&
 638  627                      (fptr->file_lo->rl_data_base == NULL ||
 639  628                      pmp->pr_vaddr + pmp->pr_size <=
 640  629                      fptr->file_lo->rl_data_base))
 641  630                          return (pmp);
 642  631          }
 643  632  
 644  633          return (NULL);
 645  634  }
 646  635  
 647  636  /*
 648  637   * Return the prmap_t structure containing 'addr' (no restrictions on
 649  638   * the type of mapping).
 650  639   */
 651  640  const prmap_t *
 652  641  Paddr_to_map(struct ps_prochandle *P, uintptr_t addr)
 653  642  {
 654  643          map_info_t *mptr;
 655  644  
 656  645          if (!P->info_valid)
 657  646                  Pupdate_maps(P);
 658  647  
 659  648          if ((mptr = Paddr2mptr(P, addr)) != NULL)
 660  649                  return (&mptr->map_pmap);
 661  650  
 662  651          return (NULL);
 663  652  }
 664  653  
 665  654  /*
 666  655   * Convert a full or partial load object name to the prmap_t for its
 667  656   * corresponding primary text mapping.
 668  657   */
 669  658  const prmap_t *
 670  659  Plmid_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
 671  660  {
 672  661          map_info_t *mptr;
 673  662  
 674  663          if (name == PR_OBJ_EVERY)
 675  664                  return (NULL); /* A reasonable mistake */
 676  665  
 677  666          if ((mptr = object_name_to_map(P, lmid, name)) != NULL)
 678  667                  return (&mptr->map_pmap);
 679  668  
 680  669          return (NULL);
 681  670  }
 682  671  
 683  672  const prmap_t *
 684  673  Pname_to_map(struct ps_prochandle *P, const char *name)
 685  674  {
 686  675          return (Plmid_to_map(P, PR_LMID_EVERY, name));
 687  676  }
 688  677  
 689  678  const rd_loadobj_t *
 690  679  Paddr_to_loadobj(struct ps_prochandle *P, uintptr_t addr)
 691  680  {
 692  681          map_info_t *mptr;
 693  682  
 694  683          if (!P->info_valid)
 695  684                  Pupdate_maps(P);
 696  685  
 697  686          if ((mptr = Paddr2mptr(P, addr)) == NULL)
 698  687                  return (NULL);
 699  688  
 700  689          /*
 701  690           * By building the symbol table, we implicitly bring the PLT
 702  691           * information up to date in the load object.
 703  692           */
 704  693          (void) build_map_symtab(P, mptr);
 705  694  
 706  695          return (mptr->map_file->file_lo);
 707  696  }
 708  697  
 709  698  const rd_loadobj_t *
 710  699  Plmid_to_loadobj(struct ps_prochandle *P, Lmid_t lmid, const char *name)
 711  700  {
 712  701          map_info_t *mptr;
 713  702  
 714  703          if (name == PR_OBJ_EVERY)
 715  704                  return (NULL);
 716  705  
 717  706          if ((mptr = object_name_to_map(P, lmid, name)) == NULL)
 718  707                  return (NULL);
 719  708  
 720  709          /*
 721  710           * By building the symbol table, we implicitly bring the PLT
 722  711           * information up to date in the load object.
 723  712           */
 724  713          (void) build_map_symtab(P, mptr);
 725  714  
 726  715          return (mptr->map_file->file_lo);
 727  716  }
 728  717  
 729  718  const rd_loadobj_t *
 730  719  Pname_to_loadobj(struct ps_prochandle *P, const char *name)
 731  720  {
 732  721          return (Plmid_to_loadobj(P, PR_LMID_EVERY, name));
 733  722  }
 734  723  
 735  724  ctf_file_t *
 736  725  Pbuild_file_ctf(struct ps_prochandle *P, file_info_t *fptr)
 737  726  {
 738  727          ctf_sect_t ctdata, symtab, strtab;
 739  728          sym_tbl_t *symp;
 740  729          int err;
 741  730  
 742  731          if (fptr->file_ctfp != NULL)
 743  732                  return (fptr->file_ctfp);
 744  733  
 745  734          Pbuild_file_symtab(P, fptr);
 746  735  
 747  736          if (fptr->file_ctf_size == 0)
 748  737                  return (NULL);
 749  738  
 750  739          symp = fptr->file_ctf_dyn ? &fptr->file_dynsym : &fptr->file_symtab;
 751  740          if (symp->sym_data_pri == NULL)
 752  741                  return (NULL);
 753  742  
 754  743          /*
 755  744           * The buffer may alread be allocated if this is a core file that
 756  745           * contained CTF data for this file.
 757  746           */
 758  747          if (fptr->file_ctf_buf == NULL) {
 759  748                  fptr->file_ctf_buf = malloc(fptr->file_ctf_size);
 760  749                  if (fptr->file_ctf_buf == NULL) {
 761  750                          dprintf("failed to allocate ctf buffer\n");
 762  751                          return (NULL);
 763  752                  }
 764  753  
 765  754                  if (pread(fptr->file_fd, fptr->file_ctf_buf,
 766  755                      fptr->file_ctf_size, fptr->file_ctf_off) !=
 767  756                      fptr->file_ctf_size) {
 768  757                          free(fptr->file_ctf_buf);
 769  758                          fptr->file_ctf_buf = NULL;
 770  759                          dprintf("failed to read ctf data\n");
 771  760                          return (NULL);
 772  761                  }
 773  762          }
 774  763  
 775  764          ctdata.cts_name = ".SUNW_ctf";
 776  765          ctdata.cts_type = SHT_PROGBITS;
 777  766          ctdata.cts_flags = 0;
 778  767          ctdata.cts_data = fptr->file_ctf_buf;
 779  768          ctdata.cts_size = fptr->file_ctf_size;
 780  769          ctdata.cts_entsize = 1;
 781  770          ctdata.cts_offset = 0;
 782  771  
 783  772          symtab.cts_name = fptr->file_ctf_dyn ? ".dynsym" : ".symtab";
 784  773          symtab.cts_type = symp->sym_hdr_pri.sh_type;
 785  774          symtab.cts_flags = symp->sym_hdr_pri.sh_flags;
 786  775          symtab.cts_data = symp->sym_data_pri->d_buf;
 787  776          symtab.cts_size = symp->sym_hdr_pri.sh_size;
 788  777          symtab.cts_entsize = symp->sym_hdr_pri.sh_entsize;
 789  778          symtab.cts_offset = symp->sym_hdr_pri.sh_offset;
 790  779  
 791  780          strtab.cts_name = fptr->file_ctf_dyn ? ".dynstr" : ".strtab";
 792  781          strtab.cts_type = symp->sym_strhdr.sh_type;
 793  782          strtab.cts_flags = symp->sym_strhdr.sh_flags;
 794  783          strtab.cts_data = symp->sym_strs;
 795  784          strtab.cts_size = symp->sym_strhdr.sh_size;
 796  785          strtab.cts_entsize = symp->sym_strhdr.sh_entsize;
 797  786          strtab.cts_offset = symp->sym_strhdr.sh_offset;
 798  787  
 799  788          fptr->file_ctfp = ctf_bufopen(&ctdata, &symtab, &strtab, &err);
 800  789          if (fptr->file_ctfp == NULL) {
 801  790                  dprintf("ctf_bufopen() failed, error code %d\n", err);
 802  791                  free(fptr->file_ctf_buf);
 803  792                  fptr->file_ctf_buf = NULL;
 804  793                  return (NULL);
 805  794          }
 806  795  
 807  796          dprintf("loaded %lu bytes of CTF data for %s\n",
 808  797              (ulong_t)fptr->file_ctf_size, fptr->file_pname);
 809  798  
 810  799          return (fptr->file_ctfp);
 811  800  }
 812  801  
 813  802  ctf_file_t *
 814  803  Paddr_to_ctf(struct ps_prochandle *P, uintptr_t addr)
 815  804  {
 816  805          map_info_t *mptr;
 817  806          file_info_t *fptr;
 818  807  
 819  808          if (!P->info_valid)
 820  809                  Pupdate_maps(P);
 821  810  
 822  811          if ((mptr = Paddr2mptr(P, addr)) == NULL ||
 823  812              (fptr = mptr->map_file) == NULL)
 824  813                  return (NULL);
 825  814  
 826  815          return (Pbuild_file_ctf(P, fptr));
 827  816  }
 828  817  
 829  818  ctf_file_t *
 830  819  Plmid_to_ctf(struct ps_prochandle *P, Lmid_t lmid, const char *name)
 831  820  {
 832  821          map_info_t *mptr;
 833  822          file_info_t *fptr;
 834  823  
 835  824          if (name == PR_OBJ_EVERY)
 836  825                  return (NULL);
 837  826  
 838  827          if ((mptr = object_name_to_map(P, lmid, name)) == NULL ||
 839  828              (fptr = mptr->map_file) == NULL)
 840  829                  return (NULL);
  
    | ↓ open down ↓ | 352 lines elided | ↑ open up ↑ | 
 841  830  
 842  831          return (Pbuild_file_ctf(P, fptr));
 843  832  }
 844  833  
 845  834  ctf_file_t *
 846  835  Pname_to_ctf(struct ps_prochandle *P, const char *name)
 847  836  {
 848  837          return (Plmid_to_ctf(P, PR_LMID_EVERY, name));
 849  838  }
 850  839  
 851      -/*
 852      - * If we're not a core file, re-read the /proc/<pid>/auxv file and store
 853      - * its contents in P->auxv.  In the case of a core file, we either
 854      - * initialized P->auxv in Pcore() from the NT_AUXV, or we don't have an
 855      - * auxv because the note was missing.
 856      - */
 857  840  void
 858  841  Preadauxvec(struct ps_prochandle *P)
 859  842  {
 860      -        char auxfile[64];
 861      -        struct stat statb;
 862      -        ssize_t naux;
 863      -        int fd;
 864      -
 865      -        if (P->state == PS_DEAD)
 866      -                return; /* Already read during Pgrab_core() */
 867      -        if (P->state == PS_IDLE)
 868      -                return; /* No aux vec for Pgrab_file() */
 869      -
 870  843          if (P->auxv != NULL) {
 871  844                  free(P->auxv);
 872  845                  P->auxv = NULL;
 873  846                  P->nauxv = 0;
 874  847          }
 875  848  
 876      -        (void) snprintf(auxfile, sizeof (auxfile), "%s/%d/auxv",
 877      -            procfs_path, (int)P->pid);
 878      -        if ((fd = open(auxfile, O_RDONLY)) < 0)
 879      -                return;
 880      -
 881      -        if (fstat(fd, &statb) == 0 &&
 882      -            statb.st_size >= sizeof (auxv_t) &&
 883      -            (P->auxv = malloc(statb.st_size + sizeof (auxv_t))) != NULL) {
 884      -                if ((naux = read(fd, P->auxv, statb.st_size)) < 0 ||
 885      -                    (naux /= sizeof (auxv_t)) < 1) {
 886      -                        free(P->auxv);
 887      -                        P->auxv = NULL;
 888      -                } else {
 889      -                        P->auxv[naux].a_type = AT_NULL;
 890      -                        P->auxv[naux].a_un.a_val = 0L;
 891      -                        P->nauxv = (int)naux;
 892      -                }
 893      -        }
 894      -
 895      -        (void) close(fd);
      849 +        P->ops.pop_read_aux(P, &P->auxv, &P->nauxv, P->data);
 896  850  }
 897  851  
 898  852  /*
 899  853   * Return a requested element from the process's aux vector.
 900  854   * Return -1 on failure (this is adequate for our purposes).
 901  855   */
 902  856  long
 903  857  Pgetauxval(struct ps_prochandle *P, int type)
 904  858  {
 905  859          auxv_t *auxv;
 906  860  
 907  861          if (P->auxv == NULL)
 908  862                  Preadauxvec(P);
 909  863  
 910  864          if (P->auxv == NULL)
 911  865                  return (-1);
 912  866  
 913  867          for (auxv = P->auxv; auxv->a_type != AT_NULL; auxv++) {
 914  868                  if (auxv->a_type == type)
 915  869                          return (auxv->a_un.a_val);
 916  870          }
 917  871  
 918  872          return (-1);
 919  873  }
 920  874  
 921  875  /*
 922  876   * Return a pointer to our internal copy of the process's aux vector.
 923  877   * The caller should not hold on to this pointer across any libproc calls.
 924  878   */
 925  879  const auxv_t *
 926  880  Pgetauxvec(struct ps_prochandle *P)
 927  881  {
 928  882          static const auxv_t empty = { AT_NULL, 0L };
 929  883  
 930  884          if (P->auxv == NULL)
 931  885                  Preadauxvec(P);
 932  886  
 933  887          if (P->auxv == NULL)
 934  888                  return (&empty);
 935  889  
 936  890          return (P->auxv);
 937  891  }
 938  892  
 939  893  /*
 940  894   * Return 1 if the given mapping corresponds to the given file_info_t's
 941  895   * load object; return 0 otherwise.
 942  896   */
 943  897  static int
 944  898  is_mapping_in_file(struct ps_prochandle *P, map_info_t *mptr, file_info_t *fptr)
 945  899  {
 946  900          prmap_t *pmap = &mptr->map_pmap;
 947  901          rd_loadobj_t *lop = fptr->file_lo;
 948  902          uint_t i;
 949  903          uintptr_t mstart, mend, sstart, send;
 950  904  
 951  905          /*
 952  906           * We can get for free the start address of the text and data
 953  907           * sections of the load object. Start by seeing if the mapping
 954  908           * encloses either of these.
 955  909           */
 956  910          if ((pmap->pr_vaddr <= lop->rl_base &&
 957  911              lop->rl_base < pmap->pr_vaddr + pmap->pr_size) ||
 958  912              (pmap->pr_vaddr <= lop->rl_data_base &&
 959  913              lop->rl_data_base < pmap->pr_vaddr + pmap->pr_size))
 960  914                  return (1);
 961  915  
 962  916          /*
 963  917           * It's still possible that this mapping correponds to the load
 964  918           * object. Consider the example of a mapping whose start and end
 965  919           * addresses correspond to those of the load object's text section.
 966  920           * If the mapping splits, e.g. as a result of a segment demotion,
 967  921           * then although both mappings are still backed by the same section,
 968  922           * only one will be seen to enclose that section's start address.
 969  923           * Thus, to be rigorous, we ask not whether this mapping encloses
 970  924           * the start of a section, but whether there exists a section that
 971  925           * overlaps this mapping.
 972  926           *
 973  927           * If we don't already have the section addresses, and we successfully
 974  928           * get them, then we cache them in case we come here again.
 975  929           */
 976  930          if (fptr->file_saddrs == NULL &&
 977  931              (fptr->file_saddrs = get_saddrs(P,
 978  932              fptr->file_map->map_pmap.pr_vaddr, &fptr->file_nsaddrs)) == NULL)
 979  933                  return (0);
 980  934  
 981  935          mstart = mptr->map_pmap.pr_vaddr;
 982  936          mend = mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
 983  937          for (i = 0; i < fptr->file_nsaddrs; i += 2) {
 984  938                  /* Does this section overlap the mapping? */
 985  939                  sstart = fptr->file_saddrs[i];
 986  940                  send = fptr->file_saddrs[i + 1];
 987  941                  if (!(mend <= sstart || mstart >= send))
 988  942                          return (1);
 989  943          }
 990  944  
 991  945          return (0);
 992  946  }
 993  947  
 994  948  /*
 995  949   * Find or build the symbol table for the given mapping.
 996  950   */
 997  951  static file_info_t *
 998  952  build_map_symtab(struct ps_prochandle *P, map_info_t *mptr)
 999  953  {
1000  954          prmap_t *pmap = &mptr->map_pmap;
1001  955          file_info_t *fptr;
1002  956          uint_t i;
1003  957  
1004  958          if ((fptr = mptr->map_file) != NULL) {
1005  959                  Pbuild_file_symtab(P, fptr);
1006  960                  return (fptr);
1007  961          }
1008  962  
1009  963          if (pmap->pr_mapname[0] == '\0')
1010  964                  return (NULL);
1011  965  
1012  966          /*
1013  967           * Attempt to find a matching file.
1014  968           * (A file can be mapped at several different addresses.)
1015  969           */
1016  970          for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
1017  971              i++, fptr = list_next(fptr)) {
1018  972                  if (strcmp(fptr->file_pname, pmap->pr_mapname) == 0 &&
1019  973                      fptr->file_lo && is_mapping_in_file(P, mptr, fptr)) {
1020  974                          mptr->map_file = fptr;
1021  975                          fptr->file_ref++;
1022  976                          Pbuild_file_symtab(P, fptr);
1023  977                          return (fptr);
1024  978                  }
1025  979          }
1026  980  
1027  981          /*
1028  982           * If we need to create a new file_info structure, iterate
1029  983           * through the load objects in order to attempt to connect
1030  984           * this new file with its primary text mapping.  We again
1031  985           * need to handle ld.so as a special case because we need
1032  986           * to be able to bootstrap librtld_db.
1033  987           */
1034  988          if ((fptr = file_info_new(P, mptr)) == NULL)
1035  989                  return (NULL);
1036  990  
1037  991          if (P->map_ldso != mptr) {
1038  992                  if (P->rap != NULL)
1039  993                          (void) rd_loadobj_iter(P->rap, map_iter, P);
1040  994                  else
1041  995                          (void) Prd_agent(P);
1042  996          } else {
1043  997                  fptr->file_map = mptr;
1044  998          }
1045  999  
1046 1000          /*
1047 1001           * If librtld_db wasn't able to help us connect the file to a primary
1048 1002           * text mapping, set file_map to the current mapping because we require
1049 1003           * fptr->file_map to be set in Pbuild_file_symtab.  librtld_db may be
1050 1004           * unaware of what's going on in the rare case that a legitimate ELF
1051 1005           * file has been mmap(2)ed into the process address space *without*
1052 1006           * the use of dlopen(3x).
1053 1007           */
1054 1008          if (fptr->file_map == NULL)
1055 1009                  fptr->file_map = mptr;
1056 1010  
1057 1011          Pbuild_file_symtab(P, fptr);
1058 1012  
1059 1013          return (fptr);
1060 1014  }
1061 1015  
1062 1016  static int
1063 1017  read_ehdr32(struct ps_prochandle *P, Elf32_Ehdr *ehdr, uint_t *phnum,
1064 1018      uintptr_t addr)
1065 1019  {
1066 1020          if (Pread(P, ehdr, sizeof (*ehdr), addr) != sizeof (*ehdr))
1067 1021                  return (-1);
1068 1022  
1069 1023          if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1070 1024              ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1071 1025              ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1072 1026              ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1073 1027              ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
1074 1028  #ifdef _BIG_ENDIAN
1075 1029              ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1076 1030  #else
1077 1031              ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1078 1032  #endif
1079 1033              ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1080 1034                  return (-1);
1081 1035  
1082 1036          if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1083 1037                  Elf32_Shdr shdr0;
1084 1038  
1085 1039                  if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1086 1040                      Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1087 1041                      sizeof (shdr0))
1088 1042                          return (-1);
1089 1043  
1090 1044                  if (shdr0.sh_info != 0)
1091 1045                          *phnum = shdr0.sh_info;
1092 1046          }
1093 1047  
1094 1048          return (0);
1095 1049  }
1096 1050  
1097 1051  static int
1098 1052  read_dynamic_phdr32(struct ps_prochandle *P, const Elf32_Ehdr *ehdr,
1099 1053      uint_t phnum, Elf32_Phdr *phdr, uintptr_t addr)
1100 1054  {
1101 1055          uint_t i;
1102 1056  
1103 1057          for (i = 0; i < phnum; i++) {
1104 1058                  uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1105 1059                  if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1106 1060                          return (-1);
1107 1061  
1108 1062                  if (phdr->p_type == PT_DYNAMIC)
1109 1063                          return (0);
1110 1064          }
1111 1065  
1112 1066          return (-1);
1113 1067  }
1114 1068  
1115 1069  #ifdef _LP64
1116 1070  static int
1117 1071  read_ehdr64(struct ps_prochandle *P, Elf64_Ehdr *ehdr, uint_t *phnum,
1118 1072      uintptr_t addr)
1119 1073  {
1120 1074          if (Pread(P, ehdr, sizeof (Elf64_Ehdr), addr) != sizeof (Elf64_Ehdr))
1121 1075                  return (-1);
1122 1076  
1123 1077          if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1124 1078              ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1125 1079              ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1126 1080              ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1127 1081              ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
1128 1082  #ifdef _BIG_ENDIAN
1129 1083              ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1130 1084  #else
1131 1085              ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1132 1086  #endif
1133 1087              ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1134 1088                  return (-1);
1135 1089  
1136 1090          if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1137 1091                  Elf64_Shdr shdr0;
1138 1092  
1139 1093                  if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1140 1094                      Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1141 1095                      sizeof (shdr0))
1142 1096                          return (-1);
1143 1097  
1144 1098                  if (shdr0.sh_info != 0)
1145 1099                          *phnum = shdr0.sh_info;
1146 1100          }
1147 1101  
1148 1102          return (0);
1149 1103  }
1150 1104  
1151 1105  static int
1152 1106  read_dynamic_phdr64(struct ps_prochandle *P, const Elf64_Ehdr *ehdr,
1153 1107      uint_t phnum, Elf64_Phdr *phdr, uintptr_t addr)
1154 1108  {
1155 1109          uint_t i;
1156 1110  
1157 1111          for (i = 0; i < phnum; i++) {
1158 1112                  uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1159 1113                  if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1160 1114                          return (-1);
1161 1115  
1162 1116                  if (phdr->p_type == PT_DYNAMIC)
1163 1117                          return (0);
1164 1118          }
1165 1119  
1166 1120          return (-1);
1167 1121  }
1168 1122  #endif  /* _LP64 */
1169 1123  
1170 1124  /*
1171 1125   * The text segment for each load object contains the elf header and
1172 1126   * program headers. We can use this information to determine if the
1173 1127   * file that corresponds to the load object is the same file that
1174 1128   * was loaded into the process's address space. There can be a discrepency
1175 1129   * if a file is recompiled after the process is started or if the target
1176 1130   * represents a core file from a differently configured system -- two
1177 1131   * common examples. The DT_CHECKSUM entry in the dynamic section
1178 1132   * provides an easy method of comparison. It is important to note that
1179 1133   * the dynamic section usually lives in the data segment, but the meta
1180 1134   * data we use to find the dynamic section lives in the text segment so
1181 1135   * if either of those segments is absent we can't proceed.
1182 1136   *
1183 1137   * We're looking through the elf file for several items: the symbol tables
1184 1138   * (both dynsym and symtab), the procedure linkage table (PLT) base,
1185 1139   * size, and relocation base, and the CTF information. Most of this can
1186 1140   * be recovered from the loaded image of the file itself, the exceptions
1187 1141   * being the symtab and CTF data.
1188 1142   *
1189 1143   * First we try to open the file that we think corresponds to the load
1190 1144   * object, if the DT_CHECKSUM values match, we're all set, and can simply
1191 1145   * recover all the information we need from the file. If the values of
1192 1146   * DT_CHECKSUM don't match, or if we can't access the file for whatever
1193 1147   * reasaon, we fake up a elf file to use in its stead. If we can't read
1194 1148   * the elf data in the process's address space, we fall back to using
1195 1149   * the file even though it may give inaccurate information.
1196 1150   *
1197 1151   * The elf file that we fake up has to consist of sections for the
1198 1152   * dynsym, the PLT and the dynamic section. Note that in the case of a
1199 1153   * core file, we'll get the CTF data in the file_info_t later on from
1200 1154   * a section embedded the core file (if it's present).
1201 1155   *
1202 1156   * file_differs() conservatively looks for mismatched files, identifying
1203 1157   * a match when there is any ambiguity (since that's the legacy behavior).
1204 1158   */
1205 1159  static int
1206 1160  file_differs(struct ps_prochandle *P, Elf *elf, file_info_t *fptr)
1207 1161  {
1208 1162          Elf_Scn *scn;
1209 1163          GElf_Shdr shdr;
1210 1164          GElf_Dyn dyn;
1211 1165          Elf_Data *data;
1212 1166          uint_t i, ndyn;
1213 1167          GElf_Xword cksum;
1214 1168          uintptr_t addr;
1215 1169  
1216 1170          if (fptr->file_map == NULL)
1217 1171                  return (0);
1218 1172  
1219 1173          if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1220 1174              (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1221 1175                  return (0);
1222 1176  
1223 1177          /*
1224 1178           * First, we find the checksum value in the elf file.
1225 1179           */
1226 1180          scn = NULL;
1227 1181          while ((scn = elf_nextscn(elf, scn)) != NULL) {
1228 1182                  if (gelf_getshdr(scn, &shdr) != NULL &&
1229 1183                      shdr.sh_type == SHT_DYNAMIC)
1230 1184                          goto found_shdr;
1231 1185          }
1232 1186          return (0);
1233 1187  
1234 1188  found_shdr:
1235 1189          if ((data = elf_getdata(scn, NULL)) == NULL)
1236 1190                  return (0);
1237 1191  
1238 1192          if (P->status.pr_dmodel == PR_MODEL_ILP32)
1239 1193                  ndyn = shdr.sh_size / sizeof (Elf32_Dyn);
1240 1194  #ifdef _LP64
1241 1195          else if (P->status.pr_dmodel == PR_MODEL_LP64)
1242 1196                  ndyn = shdr.sh_size / sizeof (Elf64_Dyn);
1243 1197  #endif
1244 1198          else
1245 1199                  return (0);
1246 1200  
1247 1201          for (i = 0; i < ndyn; i++) {
1248 1202                  if (gelf_getdyn(data, i, &dyn) != NULL &&
1249 1203                      dyn.d_tag == DT_CHECKSUM)
1250 1204                          goto found_cksum;
1251 1205          }
1252 1206  
1253 1207          /*
1254 1208           * The in-memory ELF has no DT_CHECKSUM section, but we will report it
1255 1209           * as matching the file anyhow.
1256 1210           */
1257 1211          return (0);
1258 1212  
1259 1213  found_cksum:
1260 1214          cksum = dyn.d_un.d_val;
1261 1215          dprintf("elf cksum value is %llx\n", (u_longlong_t)cksum);
1262 1216  
1263 1217          /*
1264 1218           * Get the base of the text mapping that corresponds to this file.
1265 1219           */
1266 1220          addr = fptr->file_map->map_pmap.pr_vaddr;
1267 1221  
1268 1222          if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1269 1223                  Elf32_Ehdr ehdr;
1270 1224                  Elf32_Phdr phdr;
1271 1225                  Elf32_Dyn dync, *dynp;
1272 1226                  uint_t phnum, i;
1273 1227  
1274 1228                  if (read_ehdr32(P, &ehdr, &phnum, addr) != 0 ||
1275 1229                      read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1276 1230                          return (0);
1277 1231  
1278 1232                  if (ehdr.e_type == ET_DYN)
1279 1233                          phdr.p_vaddr += addr;
1280 1234                  if ((dynp = malloc(phdr.p_filesz)) == NULL)
1281 1235                          return (0);
1282 1236                  dync.d_tag = DT_NULL;
1283 1237                  if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1284 1238                      phdr.p_filesz) {
1285 1239                          free(dynp);
1286 1240                          return (0);
1287 1241                  }
1288 1242  
1289 1243                  for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) {
1290 1244                          if (dynp[i].d_tag == DT_CHECKSUM)
1291 1245                                  dync = dynp[i];
1292 1246                  }
1293 1247  
1294 1248                  free(dynp);
1295 1249  
1296 1250                  if (dync.d_tag != DT_CHECKSUM)
1297 1251                          return (0);
1298 1252  
1299 1253                  dprintf("image cksum value is %llx\n",
1300 1254                      (u_longlong_t)dync.d_un.d_val);
1301 1255                  return (dync.d_un.d_val != cksum);
1302 1256  #ifdef _LP64
1303 1257          } else if (P->status.pr_dmodel == PR_MODEL_LP64) {
1304 1258                  Elf64_Ehdr ehdr;
1305 1259                  Elf64_Phdr phdr;
1306 1260                  Elf64_Dyn dync, *dynp;
1307 1261                  uint_t phnum, i;
1308 1262  
1309 1263                  if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1310 1264                      read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1311 1265                          return (0);
1312 1266  
1313 1267                  if (ehdr.e_type == ET_DYN)
1314 1268                          phdr.p_vaddr += addr;
1315 1269                  if ((dynp = malloc(phdr.p_filesz)) == NULL)
1316 1270                          return (0);
1317 1271                  dync.d_tag = DT_NULL;
1318 1272                  if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1319 1273                      phdr.p_filesz) {
1320 1274                          free(dynp);
1321 1275                          return (0);
1322 1276                  }
1323 1277  
1324 1278                  for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) {
1325 1279                          if (dynp[i].d_tag == DT_CHECKSUM)
1326 1280                                  dync = dynp[i];
1327 1281                  }
1328 1282  
1329 1283                  free(dynp);
1330 1284  
1331 1285                  if (dync.d_tag != DT_CHECKSUM)
1332 1286                          return (0);
1333 1287  
1334 1288                  dprintf("image cksum value is %llx\n",
1335 1289                      (u_longlong_t)dync.d_un.d_val);
1336 1290                  return (dync.d_un.d_val != cksum);
1337 1291  #endif  /* _LP64 */
1338 1292          }
1339 1293  
1340 1294          return (0);
1341 1295  }
1342 1296  
1343 1297  /*
1344 1298   * Read data from the specified process and construct an in memory
1345 1299   * image of an ELF file that represents it well enough to let
1346 1300   * us probe it for information.
1347 1301   */
1348 1302  static Elf *
1349 1303  fake_elf(struct ps_prochandle *P, file_info_t *fptr)
1350 1304  {
1351 1305          Elf *elf;
1352 1306          uintptr_t addr;
1353 1307          uint_t phnum;
1354 1308  
1355 1309          if (fptr->file_map == NULL)
1356 1310                  return (NULL);
1357 1311  
1358 1312          if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1359 1313              (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1360 1314                  return (NULL);
1361 1315  
1362 1316          addr = fptr->file_map->map_pmap.pr_vaddr;
1363 1317  
1364 1318          if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1365 1319                  Elf32_Ehdr ehdr;
1366 1320                  Elf32_Phdr phdr;
1367 1321  
1368 1322                  if ((read_ehdr32(P, &ehdr, &phnum, addr) != 0) ||
1369 1323                      read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1370 1324                          return (NULL);
1371 1325  
1372 1326                  elf = fake_elf32(P, fptr, addr, &ehdr, phnum, &phdr);
1373 1327  #ifdef _LP64
1374 1328          } else {
1375 1329                  Elf64_Ehdr ehdr;
1376 1330                  Elf64_Phdr phdr;
1377 1331  
1378 1332                  if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1379 1333                      read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1380 1334                          return (NULL);
1381 1335  
1382 1336                  elf = fake_elf64(P, fptr, addr, &ehdr, phnum, &phdr);
1383 1337  #endif
1384 1338          }
1385 1339  
1386 1340          return (elf);
1387 1341  }
1388 1342  
1389 1343  /*
1390 1344   * We wouldn't need these if qsort(3C) took an argument for the callback...
1391 1345   */
1392 1346  static mutex_t sort_mtx = DEFAULTMUTEX;
1393 1347  static char *sort_strs;
1394 1348  static GElf_Sym *sort_syms;
1395 1349  
1396 1350  int
1397 1351  byaddr_cmp_common(GElf_Sym *a, char *aname, GElf_Sym *b, char *bname)
1398 1352  {
1399 1353          if (a->st_value < b->st_value)
1400 1354                  return (-1);
1401 1355          if (a->st_value > b->st_value)
1402 1356                  return (1);
1403 1357  
1404 1358          /*
1405 1359           * Prefer the function to the non-function.
1406 1360           */
1407 1361          if (GELF_ST_TYPE(a->st_info) != GELF_ST_TYPE(b->st_info)) {
1408 1362                  if (GELF_ST_TYPE(a->st_info) == STT_FUNC)
1409 1363                          return (-1);
1410 1364                  if (GELF_ST_TYPE(b->st_info) == STT_FUNC)
1411 1365                          return (1);
1412 1366          }
1413 1367  
1414 1368          /*
1415 1369           * Prefer the weak or strong global symbol to the local symbol.
1416 1370           */
1417 1371          if (GELF_ST_BIND(a->st_info) != GELF_ST_BIND(b->st_info)) {
1418 1372                  if (GELF_ST_BIND(b->st_info) == STB_LOCAL)
1419 1373                          return (-1);
1420 1374                  if (GELF_ST_BIND(a->st_info) == STB_LOCAL)
1421 1375                          return (1);
1422 1376          }
1423 1377  
1424 1378          /*
1425 1379           * Prefer the symbol that doesn't begin with a '$' since compilers and
1426 1380           * other symbol generators often use it as a prefix.
1427 1381           */
1428 1382          if (*bname == '$')
1429 1383                  return (-1);
1430 1384          if (*aname == '$')
1431 1385                  return (1);
1432 1386  
1433 1387          /*
1434 1388           * Prefer the name with fewer leading underscores in the name.
1435 1389           */
1436 1390          while (*aname == '_' && *bname == '_') {
1437 1391                  aname++;
1438 1392                  bname++;
1439 1393          }
1440 1394  
1441 1395          if (*bname == '_')
1442 1396                  return (-1);
1443 1397          if (*aname == '_')
1444 1398                  return (1);
1445 1399  
1446 1400          /*
1447 1401           * Prefer the symbol with the smaller size.
1448 1402           */
1449 1403          if (a->st_size < b->st_size)
1450 1404                  return (-1);
1451 1405          if (a->st_size > b->st_size)
1452 1406                  return (1);
1453 1407  
1454 1408          /*
1455 1409           * All other factors being equal, fall back to lexicographic order.
1456 1410           */
1457 1411          return (strcmp(aname, bname));
1458 1412  }
1459 1413  
1460 1414  static int
1461 1415  byaddr_cmp(const void *aa, const void *bb)
1462 1416  {
1463 1417          GElf_Sym *a = &sort_syms[*(uint_t *)aa];
1464 1418          GElf_Sym *b = &sort_syms[*(uint_t *)bb];
1465 1419          char *aname = sort_strs + a->st_name;
1466 1420          char *bname = sort_strs + b->st_name;
1467 1421  
1468 1422          return (byaddr_cmp_common(a, aname, b, bname));
1469 1423  }
1470 1424  
1471 1425  static int
1472 1426  byname_cmp(const void *aa, const void *bb)
1473 1427  {
1474 1428          GElf_Sym *a = &sort_syms[*(uint_t *)aa];
1475 1429          GElf_Sym *b = &sort_syms[*(uint_t *)bb];
1476 1430          char *aname = sort_strs + a->st_name;
1477 1431          char *bname = sort_strs + b->st_name;
1478 1432  
1479 1433          return (strcmp(aname, bname));
1480 1434  }
1481 1435  
1482 1436  /*
1483 1437   * Given a symbol index, look up the corresponding symbol from the
1484 1438   * given symbol table.
1485 1439   *
1486 1440   * This function allows the caller to treat the symbol table as a single
1487 1441   * logical entity even though there may be 2 actual ELF symbol tables
1488 1442   * involved. See the comments in Pcontrol.h for details.
1489 1443   */
1490 1444  static GElf_Sym *
1491 1445  symtab_getsym(sym_tbl_t *symtab, int ndx, GElf_Sym *dst)
1492 1446  {
1493 1447          /* If index is in range of primary symtab, look it up there */
1494 1448          if (ndx >= symtab->sym_symn_aux) {
1495 1449                  return (gelf_getsym(symtab->sym_data_pri,
1496 1450                      ndx - symtab->sym_symn_aux, dst));
1497 1451          }
1498 1452  
1499 1453          /* Not in primary: Look it up in the auxiliary symtab */
1500 1454          return (gelf_getsym(symtab->sym_data_aux, ndx, dst));
1501 1455  }
1502 1456  
1503 1457  void
1504 1458  optimize_symtab(sym_tbl_t *symtab)
1505 1459  {
1506 1460          GElf_Sym *symp, *syms;
1507 1461          uint_t i, *indexa, *indexb;
1508 1462          size_t symn, strsz, count;
1509 1463  
1510 1464          if (symtab == NULL || symtab->sym_data_pri == NULL ||
1511 1465              symtab->sym_byaddr != NULL)
1512 1466                  return;
1513 1467  
1514 1468          symn = symtab->sym_symn;
1515 1469          strsz = symtab->sym_strsz;
1516 1470  
1517 1471          symp = syms = malloc(sizeof (GElf_Sym) * symn);
1518 1472          if (symp == NULL) {
1519 1473                  dprintf("optimize_symtab: failed to malloc symbol array");
1520 1474                  return;
1521 1475          }
1522 1476  
1523 1477          /*
1524 1478           * First record all the symbols into a table and count up the ones
1525 1479           * that we're interested in. We mark symbols as invalid by setting
1526 1480           * the st_name to an illegal value.
1527 1481           */
1528 1482          for (i = 0, count = 0; i < symn; i++, symp++) {
1529 1483                  if (symtab_getsym(symtab, i, symp) != NULL &&
1530 1484                      symp->st_name < strsz &&
1531 1485                      IS_DATA_TYPE(GELF_ST_TYPE(symp->st_info)))
1532 1486                          count++;
1533 1487                  else
1534 1488                          symp->st_name = strsz;
1535 1489          }
1536 1490  
1537 1491          /*
1538 1492           * Allocate sufficient space for both tables and populate them
1539 1493           * with the same symbols we just counted.
1540 1494           */
1541 1495          symtab->sym_count = count;
1542 1496          indexa = symtab->sym_byaddr = calloc(sizeof (uint_t), count);
1543 1497          indexb = symtab->sym_byname = calloc(sizeof (uint_t), count);
1544 1498          if (indexa == NULL || indexb == NULL) {
1545 1499                  dprintf(
1546 1500                      "optimize_symtab: failed to malloc symbol index arrays");
1547 1501                  symtab->sym_count = 0;
1548 1502                  if (indexa != NULL) {   /* First alloc succeeded. Free it */
1549 1503                          free(indexa);
1550 1504                          symtab->sym_byaddr = NULL;
1551 1505                  }
1552 1506                  free(syms);
1553 1507                  return;
1554 1508          }
1555 1509          for (i = 0, symp = syms; i < symn; i++, symp++) {
1556 1510                  if (symp->st_name < strsz)
1557 1511                          *indexa++ = *indexb++ = i;
1558 1512          }
1559 1513  
1560 1514          /*
1561 1515           * Sort the two tables according to the appropriate criteria,
1562 1516           * unless the user has overridden this behaviour.
1563 1517           *
1564 1518           * An example where we might not sort the tables is the relatively
1565 1519           * unusual case of a process with very large symbol tables in which
1566 1520           * we perform few lookups. In such a case the total time would be
1567 1521           * dominated by the sort. It is difficult to determine a priori
1568 1522           * how many lookups an arbitrary client will perform, and
1569 1523           * hence whether the symbol tables should be sorted. We therefore
1570 1524           * sort the tables by default, but provide the user with a
1571 1525           * "chicken switch" in the form of the LIBPROC_NO_QSORT
1572 1526           * environment variable.
1573 1527           */
1574 1528          if (!_libproc_no_qsort) {
1575 1529                  (void) mutex_lock(&sort_mtx);
1576 1530                  sort_strs = symtab->sym_strs;
1577 1531                  sort_syms = syms;
1578 1532  
1579 1533                  qsort(symtab->sym_byaddr, count, sizeof (uint_t), byaddr_cmp);
1580 1534                  qsort(symtab->sym_byname, count, sizeof (uint_t), byname_cmp);
1581 1535  
1582 1536                  sort_strs = NULL;
1583 1537                  sort_syms = NULL;
1584 1538                  (void) mutex_unlock(&sort_mtx);
1585 1539          }
1586 1540  
1587 1541          free(syms);
1588 1542  }
1589 1543  
1590 1544  
1591 1545  static Elf *
1592 1546  build_fake_elf(struct ps_prochandle *P, file_info_t *fptr, GElf_Ehdr *ehdr,
1593 1547          size_t *nshdrs, Elf_Data **shdata)
1594 1548  {
1595 1549          size_t shstrndx;
1596 1550          Elf_Scn *scn;
1597 1551          Elf *elf;
1598 1552  
1599 1553          if ((elf = fake_elf(P, fptr)) == NULL ||
1600 1554              elf_kind(elf) != ELF_K_ELF ||
1601 1555              gelf_getehdr(elf, ehdr) == NULL ||
1602 1556              elf_getshdrnum(elf, nshdrs) == -1 ||
1603 1557              elf_getshdrstrndx(elf, &shstrndx) == -1 ||
1604 1558              (scn = elf_getscn(elf, shstrndx)) == NULL ||
1605 1559              (*shdata = elf_getdata(scn, NULL)) == NULL) {
1606 1560                  if (elf != NULL)
1607 1561                          (void) elf_end(elf);
1608 1562                  dprintf("failed to fake up ELF file\n");
1609 1563                  return (NULL);
1610 1564          }
1611 1565  
1612 1566          return (elf);
1613 1567  }
1614 1568  
1615 1569  /*
1616 1570   * Build the symbol table for the given mapped file.
1617 1571   */
1618 1572  void
1619 1573  Pbuild_file_symtab(struct ps_prochandle *P, file_info_t *fptr)
1620 1574  {
1621 1575          char objectfile[PATH_MAX];
1622 1576          uint_t i;
1623 1577  
1624 1578          GElf_Ehdr ehdr;
1625 1579          GElf_Sym s;
1626 1580  
1627 1581          Elf_Data *shdata;
1628 1582          Elf_Scn *scn;
1629 1583          Elf *elf;
1630 1584          size_t nshdrs, shstrndx;
1631 1585  
1632 1586          struct {
1633 1587                  GElf_Shdr c_shdr;
1634 1588                  Elf_Data *c_data;
1635 1589                  const char *c_name;
1636 1590          } *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL;
1637 1591  
1638 1592          if (fptr->file_init)
1639 1593                  return; /* We've already processed this file */
1640 1594  
1641 1595          /*
1642 1596           * Mark the file_info struct as having the symbol table initialized
1643 1597           * even if we fail below.  We tried once; we don't try again.
1644 1598           */
1645 1599          fptr->file_init = 1;
1646 1600  
1647 1601          if (elf_version(EV_CURRENT) == EV_NONE) {
1648 1602                  dprintf("libproc ELF version is more recent than libelf\n");
1649 1603                  return;
1650 1604          }
1651 1605  
1652 1606          if (P->state == PS_DEAD || P->state == PS_IDLE) {
1653 1607                  char *name;
1654 1608                  /*
1655 1609                   * If we're a not live, we can't open files from the /proc
1656 1610                   * object directory; we have only the mapping and file names
1657 1611                   * to guide us.  We prefer the file_lname, but need to handle
1658 1612                   * the case of it being NULL in order to bootstrap: we first
1659 1613                   * come here during rd_new() when the only information we have
1660 1614                   * is interpreter name associated with the AT_BASE mapping.
1661 1615                   *
1662 1616                   * Also, if the zone associated with the core file seems
1663 1617                   * to exists on this machine we'll try to open the object
1664 1618                   * file within the zone.
1665 1619                   */
1666 1620                  if (fptr->file_rname != NULL)
1667 1621                          name = fptr->file_rname;
1668 1622                  else if (fptr->file_lname != NULL)
1669 1623                          name = fptr->file_lname;
1670 1624                  else
1671 1625                          name = fptr->file_pname;
1672 1626                  (void) strlcpy(objectfile, name, sizeof (objectfile));
1673 1627          } else {
1674 1628                  (void) snprintf(objectfile, sizeof (objectfile),
1675 1629                      "%s/%d/object/%s",
  
    | ↓ open down ↓ | 770 lines elided | ↑ open up ↑ | 
1676 1630                      procfs_path, (int)P->pid, fptr->file_pname);
1677 1631          }
1678 1632  
1679 1633          /*
1680 1634           * Open the object file, create the elf file, and then get the elf
1681 1635           * header and .shstrtab data buffer so we can process sections by
1682 1636           * name. If anything goes wrong try to fake up an elf file from
1683 1637           * the in-core elf image.
1684 1638           */
1685 1639  
1686      -        if (_libproc_incore_elf) {
     1640 +        if (_libproc_incore_elf || (P->flags & INCORE)) {
1687 1641                  dprintf("Pbuild_file_symtab: using in-core data for: %s\n",
1688 1642                      fptr->file_pname);
1689 1643  
1690 1644                  if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1691 1645                      NULL)
1692 1646                          return;
1693 1647  
1694 1648          } else if ((fptr->file_fd = open(objectfile, O_RDONLY)) < 0) {
1695 1649                  dprintf("Pbuild_file_symtab: failed to open %s: %s\n",
1696 1650                      objectfile, strerror(errno));
1697 1651  
1698 1652                  if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1699 1653                      NULL)
1700 1654                          return;
1701 1655  
1702 1656          } else if ((elf = elf_begin(fptr->file_fd, ELF_C_READ, NULL)) == NULL ||
1703 1657              elf_kind(elf) != ELF_K_ELF ||
1704 1658              gelf_getehdr(elf, &ehdr) == NULL ||
1705 1659              elf_getshdrnum(elf, &nshdrs) == -1 ||
1706 1660              elf_getshdrstrndx(elf, &shstrndx) == -1 ||
1707 1661              (scn = elf_getscn(elf, shstrndx)) == NULL ||
1708 1662              (shdata = elf_getdata(scn, NULL)) == NULL) {
1709 1663                  int err = elf_errno();
1710 1664  
1711 1665                  dprintf("failed to process ELF file %s: %s\n",
1712 1666                      objectfile, (err == 0) ? "<null>" : elf_errmsg(err));
1713 1667                  (void) elf_end(elf);
1714 1668  
1715 1669                  if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1716 1670                      NULL)
1717 1671                          return;
1718 1672  
1719 1673          } else if (file_differs(P, elf, fptr)) {
1720 1674                  Elf *newelf;
1721 1675  
1722 1676                  /*
1723 1677                   * Before we get too excited about this elf file, we'll check
1724 1678                   * its checksum value against the value we have in memory. If
1725 1679                   * they don't agree, we try to fake up a new elf file and
1726 1680                   * proceed with that instead.
1727 1681                   */
1728 1682                  dprintf("ELF file %s (%lx) doesn't match in-core image\n",
1729 1683                      fptr->file_pname,
1730 1684                      (ulong_t)fptr->file_map->map_pmap.pr_vaddr);
1731 1685  
1732 1686                  if ((newelf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata))
1733 1687                      != NULL) {
1734 1688                          (void) elf_end(elf);
1735 1689                          elf = newelf;
1736 1690                          dprintf("switched to faked up ELF file\n");
1737 1691  
1738 1692                          /*
1739 1693                           * Check to see if the file that we just discovered
1740 1694                           * to be an imposter matches the execname that was
1741 1695                           * determined by Pfindexec().  If it does, we (clearly)
1742 1696                           * don't have the right binary, and we zero out
1743 1697                           * execname before anyone gets hurt.
1744 1698                           */
1745 1699                          if (fptr->file_rname != NULL && P->execname != NULL &&
1746 1700                              strcmp(fptr->file_rname, P->execname) == 0) {
1747 1701                                  dprintf("file/in-core image mismatch was "
1748 1702                                      "on P->execname; discarding\n");
1749 1703                                  free(P->execname);
1750 1704                                  P->execname = NULL;
1751 1705                          }
1752 1706                  }
1753 1707          }
1754 1708  
1755 1709          if ((cache = malloc(nshdrs * sizeof (*cache))) == NULL) {
1756 1710                  dprintf("failed to malloc section cache for %s\n", objectfile);
1757 1711                  goto bad;
1758 1712          }
1759 1713  
1760 1714          dprintf("processing ELF file %s\n", objectfile);
1761 1715          fptr->file_class = ehdr.e_ident[EI_CLASS];
1762 1716          fptr->file_etype = ehdr.e_type;
1763 1717          fptr->file_elf = elf;
1764 1718          fptr->file_shstrs = shdata->d_buf;
1765 1719          fptr->file_shstrsz = shdata->d_size;
1766 1720  
1767 1721          /*
1768 1722           * Iterate through each section, caching its section header, data
1769 1723           * pointer, and name.  We use this for handling sh_link values below.
1770 1724           */
1771 1725          for (cp = cache + 1, scn = NULL; scn = elf_nextscn(elf, scn); cp++) {
1772 1726                  if (gelf_getshdr(scn, &cp->c_shdr) == NULL) {
1773 1727                          dprintf("Pbuild_file_symtab: Failed to get section "
1774 1728                              "header\n");
1775 1729                          goto bad; /* Failed to get section header */
1776 1730                  }
1777 1731  
1778 1732                  if ((cp->c_data = elf_getdata(scn, NULL)) == NULL) {
1779 1733                          dprintf("Pbuild_file_symtab: Failed to get section "
1780 1734                              "data\n");
1781 1735                          goto bad; /* Failed to get section data */
1782 1736                  }
1783 1737  
1784 1738                  if (cp->c_shdr.sh_name >= shdata->d_size) {
1785 1739                          dprintf("Pbuild_file_symtab: corrupt section name");
1786 1740                          goto bad; /* Corrupt section name */
1787 1741                  }
1788 1742  
1789 1743                  cp->c_name = (const char *)shdata->d_buf + cp->c_shdr.sh_name;
1790 1744          }
1791 1745  
1792 1746          /*
1793 1747           * Now iterate through the section cache in order to locate info
1794 1748           * for the .symtab, .dynsym, .SUNW_ldynsym, .dynamic, .plt,
1795 1749           * and .SUNW_ctf sections:
1796 1750           */
1797 1751          for (i = 1, cp = cache + 1; i < nshdrs; i++, cp++) {
1798 1752                  GElf_Shdr *shp = &cp->c_shdr;
1799 1753  
1800 1754                  if (shp->sh_type == SHT_SYMTAB || shp->sh_type == SHT_DYNSYM) {
1801 1755                          sym_tbl_t *symp = shp->sh_type == SHT_SYMTAB ?
1802 1756                              &fptr->file_symtab : &fptr->file_dynsym;
1803 1757                          /*
1804 1758                           * It's possible that the we already got the symbol
1805 1759                           * table from the core file itself. Either the file
1806 1760                           * differs in which case our faked up elf file will
1807 1761                           * only contain the dynsym (not the symtab) or the
1808 1762                           * file matches in which case we'll just be replacing
1809 1763                           * the symbol table we pulled out of the core file
1810 1764                           * with an equivalent one. In either case, this
1811 1765                           * check isn't essential, but it's a good idea.
1812 1766                           */
1813 1767                          if (symp->sym_data_pri == NULL) {
1814 1768                                  dprintf("Symbol table found for %s\n",
1815 1769                                      objectfile);
1816 1770                                  symp->sym_data_pri = cp->c_data;
1817 1771                                  symp->sym_symn +=
1818 1772                                      shp->sh_size / shp->sh_entsize;
1819 1773                                  symp->sym_strs =
1820 1774                                      cache[shp->sh_link].c_data->d_buf;
1821 1775                                  symp->sym_strsz =
1822 1776                                      cache[shp->sh_link].c_data->d_size;
1823 1777                                  symp->sym_hdr_pri = cp->c_shdr;
1824 1778                                  symp->sym_strhdr = cache[shp->sh_link].c_shdr;
1825 1779                          } else {
1826 1780                                  dprintf("Symbol table already there for %s\n",
1827 1781                                      objectfile);
1828 1782                          }
1829 1783                  } else if (shp->sh_type == SHT_SUNW_LDYNSYM) {
1830 1784                          /* .SUNW_ldynsym section is auxiliary to .dynsym */
1831 1785                          if (fptr->file_dynsym.sym_data_aux == NULL) {
1832 1786                                  dprintf(".SUNW_ldynsym symbol table"
1833 1787                                      " found for %s\n", objectfile);
1834 1788                                  fptr->file_dynsym.sym_data_aux = cp->c_data;
1835 1789                                  fptr->file_dynsym.sym_symn_aux =
1836 1790                                      shp->sh_size / shp->sh_entsize;
1837 1791                                  fptr->file_dynsym.sym_symn +=
1838 1792                                      fptr->file_dynsym.sym_symn_aux;
1839 1793                                  fptr->file_dynsym.sym_hdr_aux = cp->c_shdr;
1840 1794                          } else {
1841 1795                                  dprintf(".SUNW_ldynsym symbol table already"
1842 1796                                      " there for %s\n", objectfile);
1843 1797                          }
1844 1798                  } else if (shp->sh_type == SHT_DYNAMIC) {
1845 1799                          dyn = cp;
1846 1800                  } else if (strcmp(cp->c_name, ".plt") == 0) {
1847 1801                          plt = cp;
1848 1802                  } else if (strcmp(cp->c_name, ".SUNW_ctf") == 0) {
1849 1803                          /*
1850 1804                           * Skip over bogus CTF sections so they don't come back
1851 1805                           * to haunt us later.
1852 1806                           */
1853 1807                          if (shp->sh_link == 0 ||
1854 1808                              shp->sh_link >= nshdrs ||
1855 1809                              (cache[shp->sh_link].c_shdr.sh_type != SHT_DYNSYM &&
1856 1810                              cache[shp->sh_link].c_shdr.sh_type != SHT_SYMTAB)) {
1857 1811                                  dprintf("Bad sh_link %d for "
1858 1812                                      "CTF\n", shp->sh_link);
1859 1813                                  continue;
1860 1814                          }
1861 1815                          ctf = cp;
1862 1816                  }
1863 1817          }
1864 1818  
1865 1819          /*
1866 1820           * At this point, we've found all the symbol tables we're ever going
1867 1821           * to find: the ones in the loop above and possibly the symtab that
1868 1822           * was included in the core file. Before we perform any lookups, we
1869 1823           * create sorted versions to optimize for lookups.
1870 1824           */
1871 1825          optimize_symtab(&fptr->file_symtab);
1872 1826          optimize_symtab(&fptr->file_dynsym);
1873 1827  
1874 1828          /*
1875 1829           * Fill in the base address of the text mapping for shared libraries.
1876 1830           * This allows us to translate symbols before librtld_db is ready.
1877 1831           */
1878 1832          if (fptr->file_etype == ET_DYN) {
1879 1833                  fptr->file_dyn_base = fptr->file_map->map_pmap.pr_vaddr -
1880 1834                      fptr->file_map->map_pmap.pr_offset;
1881 1835                  dprintf("setting file_dyn_base for %s to %lx\n",
1882 1836                      objectfile, (long)fptr->file_dyn_base);
1883 1837          }
1884 1838  
1885 1839          /*
1886 1840           * Record the CTF section information in the file info structure.
1887 1841           */
1888 1842          if (ctf != NULL) {
1889 1843                  fptr->file_ctf_off = ctf->c_shdr.sh_offset;
1890 1844                  fptr->file_ctf_size = ctf->c_shdr.sh_size;
1891 1845                  if (ctf->c_shdr.sh_link != 0 &&
1892 1846                      cache[ctf->c_shdr.sh_link].c_shdr.sh_type == SHT_DYNSYM)
1893 1847                          fptr->file_ctf_dyn = 1;
1894 1848          }
1895 1849  
1896 1850          if (fptr->file_lo == NULL)
1897 1851                  goto done; /* Nothing else to do if no load object info */
1898 1852  
1899 1853          /*
1900 1854           * If the object is a shared library and we have a different rl_base
1901 1855           * value, reset file_dyn_base according to librtld_db's information.
1902 1856           */
1903 1857          if (fptr->file_etype == ET_DYN &&
1904 1858              fptr->file_lo->rl_base != fptr->file_dyn_base) {
1905 1859                  dprintf("resetting file_dyn_base for %s to %lx\n",
1906 1860                      objectfile, (long)fptr->file_lo->rl_base);
1907 1861                  fptr->file_dyn_base = fptr->file_lo->rl_base;
1908 1862          }
1909 1863  
1910 1864          /*
1911 1865           * Fill in the PLT information for this file if a PLT symbol is found.
1912 1866           */
1913 1867          if (sym_by_name(&fptr->file_dynsym, "_PROCEDURE_LINKAGE_TABLE_", &s,
1914 1868              NULL) != NULL) {
1915 1869                  fptr->file_plt_base = s.st_value + fptr->file_dyn_base;
1916 1870                  fptr->file_plt_size = (plt != NULL) ? plt->c_shdr.sh_size : 0;
1917 1871  
1918 1872                  /*
1919 1873                   * Bring the load object up to date; it is the only way the
1920 1874                   * user has to access the PLT data. The PLT information in the
1921 1875                   * rd_loadobj_t is not set in the call to map_iter() (the
1922 1876                   * callback for rd_loadobj_iter) where we set file_lo.
1923 1877                   */
1924 1878                  fptr->file_lo->rl_plt_base = fptr->file_plt_base;
1925 1879                  fptr->file_lo->rl_plt_size = fptr->file_plt_size;
1926 1880  
1927 1881                  dprintf("PLT found at %p, size = %lu\n",
1928 1882                      (void *)fptr->file_plt_base, (ulong_t)fptr->file_plt_size);
1929 1883          }
1930 1884  
1931 1885          /*
1932 1886           * Fill in the PLT information.
1933 1887           */
1934 1888          if (dyn != NULL) {
1935 1889                  uintptr_t dynaddr = dyn->c_shdr.sh_addr + fptr->file_dyn_base;
1936 1890                  size_t ndyn = dyn->c_shdr.sh_size / dyn->c_shdr.sh_entsize;
1937 1891                  GElf_Dyn d;
1938 1892  
1939 1893                  for (i = 0; i < ndyn; i++) {
1940 1894                          if (gelf_getdyn(dyn->c_data, i, &d) == NULL)
1941 1895                                  continue;
1942 1896  
1943 1897                          switch (d.d_tag) {
1944 1898                          case DT_JMPREL:
1945 1899                                  dprintf("DT_JMPREL is %p\n",
1946 1900                                      (void *)(uintptr_t)d.d_un.d_ptr);
1947 1901                                  fptr->file_jmp_rel =
1948 1902                                      d.d_un.d_ptr + fptr->file_dyn_base;
1949 1903                                  break;
1950 1904                          case DT_STRTAB:
1951 1905                                  dprintf("DT_STRTAB is %p\n",
1952 1906                                      (void *)(uintptr_t)d.d_un.d_ptr);
1953 1907                                  break;
1954 1908                          case DT_PLTGOT:
1955 1909                                  dprintf("DT_PLTGOT is %p\n",
1956 1910                                      (void *)(uintptr_t)d.d_un.d_ptr);
1957 1911                                  break;
1958 1912                          case DT_SUNW_SYMTAB:
1959 1913                                  dprintf("DT_SUNW_SYMTAB is %p\n",
1960 1914                                      (void *)(uintptr_t)d.d_un.d_ptr);
1961 1915                                  break;
1962 1916                          case DT_SYMTAB:
1963 1917                                  dprintf("DT_SYMTAB is %p\n",
1964 1918                                      (void *)(uintptr_t)d.d_un.d_ptr);
1965 1919                                  break;
1966 1920                          case DT_HASH:
1967 1921                                  dprintf("DT_HASH is %p\n",
1968 1922                                      (void *)(uintptr_t)d.d_un.d_ptr);
1969 1923                                  break;
1970 1924                          }
1971 1925                  }
1972 1926  
1973 1927                  dprintf("_DYNAMIC found at %p, %lu entries, DT_JMPREL = %p\n",
1974 1928                      (void *)dynaddr, (ulong_t)ndyn, (void *)fptr->file_jmp_rel);
1975 1929          }
1976 1930  
1977 1931  done:
1978 1932          free(cache);
1979 1933          return;
1980 1934  
1981 1935  bad:
1982 1936          if (cache != NULL)
1983 1937                  free(cache);
1984 1938  
1985 1939          (void) elf_end(elf);
1986 1940          fptr->file_elf = NULL;
1987 1941          if (fptr->file_elfmem != NULL) {
1988 1942                  free(fptr->file_elfmem);
1989 1943                  fptr->file_elfmem = NULL;
1990 1944          }
1991 1945          (void) close(fptr->file_fd);
1992 1946          fptr->file_fd = -1;
1993 1947  }
1994 1948  
1995 1949  /*
1996 1950   * Given a process virtual address, return the map_info_t containing it.
1997 1951   * If none found, return NULL.
1998 1952   */
1999 1953  map_info_t *
2000 1954  Paddr2mptr(struct ps_prochandle *P, uintptr_t addr)
2001 1955  {
2002 1956          int lo = 0;
2003 1957          int hi = P->map_count - 1;
2004 1958          int mid;
2005 1959          map_info_t *mp;
2006 1960  
2007 1961          while (lo <= hi) {
2008 1962  
2009 1963                  mid = (lo + hi) / 2;
2010 1964                  mp = &P->mappings[mid];
2011 1965  
2012 1966                  /* check that addr is in [vaddr, vaddr + size) */
2013 1967                  if ((addr - mp->map_pmap.pr_vaddr) < mp->map_pmap.pr_size)
2014 1968                          return (mp);
2015 1969  
2016 1970                  if (addr < mp->map_pmap.pr_vaddr)
2017 1971                          hi = mid - 1;
2018 1972                  else
2019 1973                          lo = mid + 1;
2020 1974          }
2021 1975  
2022 1976          return (NULL);
2023 1977  }
2024 1978  
2025 1979  /*
2026 1980   * Return the map_info_t for the executable file.
2027 1981   * If not found, return NULL.
2028 1982   */
2029 1983  static map_info_t *
2030 1984  exec_map(struct ps_prochandle *P)
2031 1985  {
2032 1986          uint_t i;
2033 1987          map_info_t *mptr;
2034 1988          map_info_t *mold = NULL;
2035 1989          file_info_t *fptr;
2036 1990          uintptr_t base;
2037 1991  
2038 1992          for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
2039 1993                  if (mptr->map_pmap.pr_mapname[0] == '\0')
2040 1994                          continue;
2041 1995                  if (strcmp(mptr->map_pmap.pr_mapname, "a.out") == 0) {
2042 1996                          if ((fptr = mptr->map_file) != NULL &&
2043 1997                              fptr->file_lo != NULL) {
2044 1998                                  base = fptr->file_lo->rl_base;
2045 1999                                  if (base >= mptr->map_pmap.pr_vaddr &&
2046 2000                                      base < mptr->map_pmap.pr_vaddr +
2047 2001                                      mptr->map_pmap.pr_size)     /* text space */
2048 2002                                          return (mptr);
2049 2003                                  mold = mptr;    /* must be the data */
2050 2004                                  continue;
2051 2005                          }
2052 2006                          /* This is a poor way to test for text space */
2053 2007                          if (!(mptr->map_pmap.pr_mflags & MA_EXEC) ||
2054 2008                              (mptr->map_pmap.pr_mflags & MA_WRITE)) {
2055 2009                                  mold = mptr;
2056 2010                                  continue;
2057 2011                          }
2058 2012                          return (mptr);
2059 2013                  }
2060 2014          }
2061 2015  
2062 2016          return (mold);
2063 2017  }
2064 2018  
2065 2019  /*
2066 2020   * Given a shared object name, return the map_info_t for it.  If no matching
2067 2021   * object is found, return NULL.  Normally, the link maps contain the full
2068 2022   * object pathname, e.g. /usr/lib/libc.so.1.  We allow the object name to
2069 2023   * take one of the following forms:
2070 2024   *
2071 2025   * 1. An exact match (i.e. a full pathname): "/usr/lib/libc.so.1"
2072 2026   * 2. An exact basename match: "libc.so.1"
2073 2027   * 3. An initial basename match up to a '.' suffix: "libc.so" or "libc"
2074 2028   * 4. The literal string "a.out" is an alias for the executable mapping
2075 2029   *
2076 2030   * The third case is a convenience for callers and may not be necessary.
2077 2031   *
2078 2032   * As the exact same object name may be loaded on different link maps (see
2079 2033   * dlmopen(3DL)), we also allow the caller to resolve the object name by
2080 2034   * specifying a particular link map id.  If lmid is PR_LMID_EVERY, the
2081 2035   * first matching name will be returned, regardless of the link map id.
2082 2036   */
2083 2037  static map_info_t *
2084 2038  object_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *objname)
2085 2039  {
2086 2040          map_info_t *mp;
2087 2041          file_info_t *fp;
2088 2042          size_t objlen;
2089 2043          uint_t i;
2090 2044  
2091 2045          /*
2092 2046           * If we have no rtld_db, then always treat a request as one for all
2093 2047           * link maps.
2094 2048           */
2095 2049          if (P->rap == NULL)
2096 2050                  lmid = PR_LMID_EVERY;
2097 2051  
2098 2052          /*
2099 2053           * First pass: look for exact matches of the entire pathname or
2100 2054           * basename (cases 1 and 2 above):
2101 2055           */
2102 2056          for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2103 2057  
2104 2058                  if (mp->map_pmap.pr_mapname[0] == '\0' ||
2105 2059                      (fp = mp->map_file) == NULL ||
2106 2060                      ((fp->file_lname == NULL) && (fp->file_rname == NULL)))
2107 2061                          continue;
2108 2062  
2109 2063                  if (lmid != PR_LMID_EVERY &&
2110 2064                      (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2111 2065                          continue;
2112 2066  
2113 2067                  /*
2114 2068                   * If we match, return the primary text mapping; otherwise
2115 2069                   * just return the mapping we matched.
2116 2070                   */
2117 2071                  if ((fp->file_lbase && strcmp(fp->file_lbase, objname) == 0) ||
2118 2072                      (fp->file_rbase && strcmp(fp->file_rbase, objname) == 0) ||
2119 2073                      (fp->file_lname && strcmp(fp->file_lname, objname) == 0) ||
2120 2074                      (fp->file_rname && strcmp(fp->file_rname, objname) == 0))
2121 2075                          return (fp->file_map ? fp->file_map : mp);
2122 2076          }
2123 2077  
2124 2078          objlen = strlen(objname);
2125 2079  
2126 2080          /*
2127 2081           * Second pass: look for partial matches (case 3 above):
2128 2082           */
2129 2083          for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2130 2084  
2131 2085                  if (mp->map_pmap.pr_mapname[0] == '\0' ||
2132 2086                      (fp = mp->map_file) == NULL ||
2133 2087                      ((fp->file_lname == NULL) && (fp->file_rname == NULL)))
2134 2088                          continue;
2135 2089  
2136 2090                  if (lmid != PR_LMID_EVERY &&
2137 2091                      (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2138 2092                          continue;
2139 2093  
2140 2094                  /*
2141 2095                   * If we match, return the primary text mapping; otherwise
2142 2096                   * just return the mapping we matched.
2143 2097                   */
2144 2098                  if ((fp->file_lbase != NULL) &&
2145 2099                      (strncmp(fp->file_lbase, objname, objlen) == 0) &&
2146 2100                      (fp->file_lbase[objlen] == '.'))
2147 2101                          return (fp->file_map ? fp->file_map : mp);
2148 2102                  if ((fp->file_rbase != NULL) &&
2149 2103                      (strncmp(fp->file_rbase, objname, objlen) == 0) &&
2150 2104                      (fp->file_rbase[objlen] == '.'))
2151 2105                          return (fp->file_map ? fp->file_map : mp);
2152 2106          }
2153 2107  
2154 2108          /*
2155 2109           * One last check: we allow "a.out" to always alias the executable,
2156 2110           * assuming this name was not in use for something else.
2157 2111           */
2158 2112          if ((lmid == PR_LMID_EVERY || lmid == LM_ID_BASE) &&
2159 2113              (strcmp(objname, "a.out") == 0))
2160 2114                  return (P->map_exec);
2161 2115  
2162 2116          return (NULL);
2163 2117  }
2164 2118  
2165 2119  static map_info_t *
2166 2120  object_name_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
2167 2121  {
2168 2122          map_info_t *mptr;
2169 2123  
2170 2124          if (!P->info_valid)
2171 2125                  Pupdate_maps(P);
2172 2126  
2173 2127          if (P->map_exec == NULL && ((mptr = Paddr2mptr(P,
2174 2128              Pgetauxval(P, AT_ENTRY))) != NULL || (mptr = exec_map(P)) != NULL))
2175 2129                  P->map_exec = mptr;
2176 2130  
2177 2131          if (P->map_ldso == NULL && (mptr = Paddr2mptr(P,
2178 2132              Pgetauxval(P, AT_BASE))) != NULL)
2179 2133                  P->map_ldso = mptr;
2180 2134  
2181 2135          if (name == PR_OBJ_EXEC)
2182 2136                  mptr = P->map_exec;
2183 2137          else if (name == PR_OBJ_LDSO)
2184 2138                  mptr = P->map_ldso;
2185 2139          else if (Prd_agent(P) != NULL || P->state == PS_IDLE)
2186 2140                  mptr = object_to_map(P, lmid, name);
2187 2141          else
2188 2142                  mptr = NULL;
2189 2143  
2190 2144          return (mptr);
2191 2145  }
2192 2146  
2193 2147  /*
2194 2148   * When two symbols are found by address, decide which one is to be preferred.
2195 2149   */
2196 2150  static GElf_Sym *
2197 2151  sym_prefer(GElf_Sym *sym1, char *name1, GElf_Sym *sym2, char *name2)
2198 2152  {
2199 2153          /*
2200 2154           * Prefer the non-NULL symbol.
2201 2155           */
2202 2156          if (sym1 == NULL)
2203 2157                  return (sym2);
2204 2158          if (sym2 == NULL)
2205 2159                  return (sym1);
2206 2160  
2207 2161          /*
2208 2162           * Defer to the sort ordering...
2209 2163           */
2210 2164          return (byaddr_cmp_common(sym1, name1, sym2, name2) <= 0 ? sym1 : sym2);
2211 2165  }
2212 2166  
2213 2167  /*
2214 2168   * Use a binary search to do the work of sym_by_addr().
2215 2169   */
2216 2170  static GElf_Sym *
2217 2171  sym_by_addr_binary(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp,
2218 2172      uint_t *idp)
2219 2173  {
2220 2174          GElf_Sym sym, osym;
2221 2175          uint_t i, oid, *byaddr = symtab->sym_byaddr;
2222 2176          int min, max, mid, omid, found = 0;
2223 2177  
2224 2178          if (symtab->sym_data_pri == NULL || symtab->sym_count == 0)
2225 2179                  return (NULL);
2226 2180  
2227 2181          min = 0;
2228 2182          max = symtab->sym_count - 1;
2229 2183          osym.st_value = 0;
2230 2184  
2231 2185          /*
2232 2186           * We can't return when we've found a match, we have to continue
2233 2187           * searching for the closest matching symbol.
2234 2188           */
2235 2189          while (min <= max) {
2236 2190                  mid = (max + min) / 2;
2237 2191  
2238 2192                  i = byaddr[mid];
2239 2193                  (void) symtab_getsym(symtab, i, &sym);
2240 2194  
2241 2195                  if (addr >= sym.st_value &&
2242 2196                      addr < sym.st_value + sym.st_size &&
2243 2197                      (!found || sym.st_value > osym.st_value)) {
2244 2198                          osym = sym;
2245 2199                          omid = mid;
2246 2200                          oid = i;
2247 2201                          found = 1;
2248 2202                  }
2249 2203  
2250 2204                  if (addr < sym.st_value)
2251 2205                          max = mid - 1;
2252 2206                  else
2253 2207                          min = mid + 1;
2254 2208          }
2255 2209  
2256 2210          if (!found)
2257 2211                  return (NULL);
2258 2212  
2259 2213          /*
2260 2214           * There may be many symbols with identical values so we walk
2261 2215           * backward in the byaddr table to find the best match.
2262 2216           */
2263 2217          do {
2264 2218                  sym = osym;
2265 2219                  i = oid;
2266 2220  
2267 2221                  if (omid == 0)
2268 2222                          break;
2269 2223  
2270 2224                  oid = byaddr[--omid];
2271 2225                  (void) symtab_getsym(symtab, oid, &osym);
2272 2226          } while (addr >= osym.st_value &&
2273 2227              addr < sym.st_value + osym.st_size &&
2274 2228              osym.st_value == sym.st_value);
2275 2229  
2276 2230          *symp = sym;
2277 2231          if (idp != NULL)
2278 2232                  *idp = i;
2279 2233          return (symp);
2280 2234  }
2281 2235  
2282 2236  /*
2283 2237   * Use a linear search to do the work of sym_by_addr().
2284 2238   */
2285 2239  static GElf_Sym *
2286 2240  sym_by_addr_linear(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symbolp,
2287 2241      uint_t *idp)
2288 2242  {
2289 2243          size_t symn = symtab->sym_symn;
2290 2244          char *strs = symtab->sym_strs;
2291 2245          GElf_Sym sym, *symp = NULL;
2292 2246          GElf_Sym osym, *osymp = NULL;
2293 2247          int i, id;
2294 2248  
2295 2249          if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL)
2296 2250                  return (NULL);
2297 2251  
2298 2252          for (i = 0; i < symn; i++) {
2299 2253                  if ((symp = symtab_getsym(symtab, i, &sym)) != NULL) {
2300 2254                          if (addr >= sym.st_value &&
2301 2255                              addr < sym.st_value + sym.st_size) {
2302 2256                                  if (osymp)
2303 2257                                          symp = sym_prefer(
2304 2258                                              symp, strs + symp->st_name,
2305 2259                                              osymp, strs + osymp->st_name);
2306 2260                                  if (symp != osymp) {
2307 2261                                          osym = sym;
2308 2262                                          osymp = &osym;
2309 2263                                          id = i;
2310 2264                                  }
2311 2265                          }
2312 2266                  }
2313 2267          }
2314 2268          if (osymp) {
2315 2269                  *symbolp = osym;
2316 2270                  if (idp)
2317 2271                          *idp = id;
2318 2272                  return (symbolp);
2319 2273          }
2320 2274          return (NULL);
2321 2275  }
2322 2276  
2323 2277  /*
2324 2278   * Look up a symbol by address in the specified symbol table.
2325 2279   * Adjustment to 'addr' must already have been made for the
2326 2280   * offset of the symbol if this is a dynamic library symbol table.
2327 2281   *
2328 2282   * Use a linear or a binary search depending on whether or not we
2329 2283   * chose to sort the table in optimize_symtab().
2330 2284   */
2331 2285  static GElf_Sym *
2332 2286  sym_by_addr(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, uint_t *idp)
2333 2287  {
2334 2288          if (_libproc_no_qsort) {
2335 2289                  return (sym_by_addr_linear(symtab, addr, symp, idp));
2336 2290          } else {
2337 2291                  return (sym_by_addr_binary(symtab, addr, symp, idp));
2338 2292          }
2339 2293  }
2340 2294  
2341 2295  /*
2342 2296   * Use a binary search to do the work of sym_by_name().
2343 2297   */
2344 2298  static GElf_Sym *
2345 2299  sym_by_name_binary(sym_tbl_t *symtab, const char *name, GElf_Sym *symp,
2346 2300      uint_t *idp)
2347 2301  {
2348 2302          char *strs = symtab->sym_strs;
2349 2303          uint_t i, *byname = symtab->sym_byname;
2350 2304          int min, mid, max, cmp;
2351 2305  
2352 2306          if (symtab->sym_data_pri == NULL || strs == NULL ||
2353 2307              symtab->sym_count == 0)
2354 2308                  return (NULL);
2355 2309  
2356 2310          min = 0;
2357 2311          max = symtab->sym_count - 1;
2358 2312  
2359 2313          while (min <= max) {
2360 2314                  mid = (max + min) / 2;
2361 2315  
2362 2316                  i = byname[mid];
2363 2317                  (void) symtab_getsym(symtab, i, symp);
2364 2318  
2365 2319                  if ((cmp = strcmp(name, strs + symp->st_name)) == 0) {
2366 2320                          if (idp != NULL)
2367 2321                                  *idp = i;
2368 2322                          return (symp);
2369 2323                  }
2370 2324  
2371 2325                  if (cmp < 0)
2372 2326                          max = mid - 1;
2373 2327                  else
2374 2328                          min = mid + 1;
2375 2329          }
2376 2330  
2377 2331          return (NULL);
2378 2332  }
2379 2333  
2380 2334  /*
2381 2335   * Use a linear search to do the work of sym_by_name().
2382 2336   */
2383 2337  static GElf_Sym *
2384 2338  sym_by_name_linear(sym_tbl_t *symtab, const char *name, GElf_Sym *symp,
2385 2339      uint_t *idp)
2386 2340  {
2387 2341          size_t symn = symtab->sym_symn;
2388 2342          char *strs = symtab->sym_strs;
2389 2343          int i;
2390 2344  
2391 2345          if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL)
2392 2346                  return (NULL);
2393 2347  
2394 2348          for (i = 0; i < symn; i++) {
2395 2349                  if (symtab_getsym(symtab, i, symp) &&
2396 2350                      strcmp(name, strs + symp->st_name) == 0) {
2397 2351                          if (idp)
2398 2352                                  *idp = i;
2399 2353                          return (symp);
2400 2354                  }
2401 2355          }
2402 2356  
2403 2357          return (NULL);
2404 2358  }
2405 2359  
2406 2360  /*
2407 2361   * Look up a symbol by name in the specified symbol table.
2408 2362   *
2409 2363   * Use a linear or a binary search depending on whether or not we
2410 2364   * chose to sort the table in optimize_symtab().
2411 2365   */
2412 2366  static GElf_Sym *
2413 2367  sym_by_name(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, uint_t *idp)
2414 2368  {
2415 2369          if (_libproc_no_qsort) {
2416 2370                  return (sym_by_name_linear(symtab, name, symp, idp));
2417 2371          } else {
2418 2372                  return (sym_by_name_binary(symtab, name, symp, idp));
2419 2373          }
2420 2374  }
2421 2375  
2422 2376  /*
2423 2377   * Search the process symbol tables looking for a symbol whose
2424 2378   * value to value+size contain the address specified by addr.
2425 2379   * Return values are:
2426 2380   *      sym_name_buffer containing the symbol name
2427 2381   *      GElf_Sym symbol table entry
2428 2382   *      prsyminfo_t ancillary symbol information
2429 2383   * Returns 0 on success, -1 on failure.
2430 2384   */
2431 2385  static int
2432 2386  i_Pxlookup_by_addr(
2433 2387          struct ps_prochandle *P,
2434 2388          int lmresolve,                  /* use resolve linker object names */
2435 2389          uintptr_t addr,                 /* process address being sought */
2436 2390          char *sym_name_buffer,          /* buffer for the symbol name */
2437 2391          size_t bufsize,                 /* size of sym_name_buffer */
2438 2392          GElf_Sym *symbolp,              /* returned symbol table entry */
2439 2393          prsyminfo_t *sip)               /* returned symbol info */
2440 2394  {
2441 2395          GElf_Sym        *symp;
2442 2396          char            *name;
2443 2397          GElf_Sym        sym1, *sym1p = NULL;
2444 2398          GElf_Sym        sym2, *sym2p = NULL;
2445 2399          char            *name1 = NULL;
2446 2400          char            *name2 = NULL;
2447 2401          uint_t          i1;
2448 2402          uint_t          i2;
2449 2403          map_info_t      *mptr;
2450 2404          file_info_t     *fptr;
2451 2405  
2452 2406          (void) Prd_agent(P);
2453 2407  
2454 2408          if ((mptr = Paddr2mptr(P, addr)) == NULL ||     /* no such address */
2455 2409              (fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
2456 2410              fptr->file_elf == NULL)                     /* not an ELF file */
2457 2411                  return (-1);
2458 2412  
2459 2413          /*
2460 2414           * Adjust the address by the load object base address in
2461 2415           * case the address turns out to be in a shared library.
2462 2416           */
2463 2417          addr -= fptr->file_dyn_base;
2464 2418  
2465 2419          /*
2466 2420           * Search both symbol tables, symtab first, then dynsym.
2467 2421           */
2468 2422          if ((sym1p = sym_by_addr(&fptr->file_symtab, addr, &sym1, &i1)) != NULL)
2469 2423                  name1 = fptr->file_symtab.sym_strs + sym1.st_name;
2470 2424          if ((sym2p = sym_by_addr(&fptr->file_dynsym, addr, &sym2, &i2)) != NULL)
2471 2425                  name2 = fptr->file_dynsym.sym_strs + sym2.st_name;
2472 2426  
2473 2427          if ((symp = sym_prefer(sym1p, name1, sym2p, name2)) == NULL)
2474 2428                  return (-1);
2475 2429  
2476 2430          name = (symp == sym1p) ? name1 : name2;
2477 2431          if (bufsize > 0) {
2478 2432                  (void) strncpy(sym_name_buffer, name, bufsize);
2479 2433                  sym_name_buffer[bufsize - 1] = '\0';
2480 2434          }
2481 2435  
2482 2436          *symbolp = *symp;
2483 2437          if (sip != NULL) {
2484 2438                  sip->prs_name = bufsize == 0 ? NULL : sym_name_buffer;
2485 2439                  if (lmresolve && (fptr->file_rname != NULL))
2486 2440                          sip->prs_object = fptr->file_rbase;
2487 2441                  else
2488 2442                          sip->prs_object = fptr->file_lbase;
2489 2443                  sip->prs_id = (symp == sym1p) ? i1 : i2;
2490 2444                  sip->prs_table = (symp == sym1p) ? PR_SYMTAB : PR_DYNSYM;
2491 2445                  sip->prs_lmid = (fptr->file_lo == NULL) ? LM_ID_BASE :
2492 2446                      fptr->file_lo->rl_lmident;
2493 2447          }
2494 2448  
2495 2449          if (GELF_ST_TYPE(symbolp->st_info) != STT_TLS)
2496 2450                  symbolp->st_value += fptr->file_dyn_base;
2497 2451  
2498 2452          return (0);
2499 2453  }
2500 2454  
2501 2455  int
2502 2456  Pxlookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf,
2503 2457      size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip)
2504 2458  {
2505 2459          return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, bufsize, symp, sip));
2506 2460  }
2507 2461  
2508 2462  int
2509 2463  Pxlookup_by_addr_resolved(struct ps_prochandle *P, uintptr_t addr, char *buf,
2510 2464      size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip)
2511 2465  {
2512 2466          return (i_Pxlookup_by_addr(P, B_TRUE, addr, buf, bufsize, symp, sip));
2513 2467  }
2514 2468  
2515 2469  int
2516 2470  Plookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf,
2517 2471      size_t size, GElf_Sym *symp)
2518 2472  {
2519 2473          return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, size, symp, NULL));
2520 2474  }
2521 2475  
2522 2476  /*
2523 2477   * Search the process symbol tables looking for a symbol whose name matches the
2524 2478   * specified name and whose object and link map optionally match the specified
2525 2479   * parameters.  On success, the function returns 0 and fills in the GElf_Sym
2526 2480   * symbol table entry.  On failure, -1 is returned.
2527 2481   */
2528 2482  int
2529 2483  Pxlookup_by_name(
2530 2484          struct ps_prochandle *P,
2531 2485          Lmid_t lmid,                    /* link map to match, or -1 for any */
2532 2486          const char *oname,              /* load object name */
2533 2487          const char *sname,              /* symbol name */
2534 2488          GElf_Sym *symp,                 /* returned symbol table entry */
2535 2489          prsyminfo_t *sip)               /* returned symbol info */
2536 2490  {
2537 2491          map_info_t *mptr;
2538 2492          file_info_t *fptr;
2539 2493          int cnt;
2540 2494  
2541 2495          GElf_Sym sym;
2542 2496          prsyminfo_t si;
2543 2497          int rv = -1;
2544 2498          uint_t id;
2545 2499  
2546 2500          if (oname == PR_OBJ_EVERY) {
2547 2501                  /* create all the file_info_t's for all the mappings */
2548 2502                  (void) Prd_agent(P);
2549 2503                  cnt = P->num_files;
2550 2504                  fptr = list_next(&P->file_head);
2551 2505          } else {
2552 2506                  cnt = 1;
2553 2507                  if ((mptr = object_name_to_map(P, lmid, oname)) == NULL ||
2554 2508                      (fptr = build_map_symtab(P, mptr)) == NULL)
2555 2509                          return (-1);
2556 2510          }
2557 2511  
2558 2512          /*
2559 2513           * Iterate through the loaded object files and look for the symbol
2560 2514           * name in the .symtab and .dynsym of each.  If we encounter a match
2561 2515           * with SHN_UNDEF, keep looking in hopes of finding a better match.
2562 2516           * This means that a name such as "puts" will match the puts function
2563 2517           * in libc instead of matching the puts PLT entry in the a.out file.
2564 2518           */
2565 2519          for (; cnt > 0; cnt--, fptr = list_next(fptr)) {
2566 2520                  Pbuild_file_symtab(P, fptr);
2567 2521  
2568 2522                  if (fptr->file_elf == NULL)
2569 2523                          continue;
2570 2524  
2571 2525                  if (lmid != PR_LMID_EVERY && fptr->file_lo != NULL &&
2572 2526                      lmid != fptr->file_lo->rl_lmident)
2573 2527                          continue;
2574 2528  
2575 2529                  if (fptr->file_symtab.sym_data_pri != NULL &&
2576 2530                      sym_by_name(&fptr->file_symtab, sname, symp, &id)) {
2577 2531                          if (sip != NULL) {
2578 2532                                  sip->prs_id = id;
2579 2533                                  sip->prs_table = PR_SYMTAB;
2580 2534                                  sip->prs_object = oname;
2581 2535                                  sip->prs_name = sname;
2582 2536                                  sip->prs_lmid = fptr->file_lo == NULL ?
2583 2537                                      LM_ID_BASE : fptr->file_lo->rl_lmident;
2584 2538                          }
2585 2539                  } else if (fptr->file_dynsym.sym_data_pri != NULL &&
2586 2540                      sym_by_name(&fptr->file_dynsym, sname, symp, &id)) {
2587 2541                          if (sip != NULL) {
2588 2542                                  sip->prs_id = id;
2589 2543                                  sip->prs_table = PR_DYNSYM;
2590 2544                                  sip->prs_object = oname;
2591 2545                                  sip->prs_name = sname;
2592 2546                                  sip->prs_lmid = fptr->file_lo == NULL ?
2593 2547                                      LM_ID_BASE : fptr->file_lo->rl_lmident;
2594 2548                          }
2595 2549                  } else {
2596 2550                          continue;
2597 2551                  }
2598 2552  
2599 2553                  if (GELF_ST_TYPE(symp->st_info) != STT_TLS)
2600 2554                          symp->st_value += fptr->file_dyn_base;
2601 2555  
2602 2556                  if (symp->st_shndx != SHN_UNDEF)
2603 2557                          return (0);
2604 2558  
2605 2559                  if (rv != 0) {
2606 2560                          if (sip != NULL)
2607 2561                                  si = *sip;
2608 2562                          sym = *symp;
2609 2563                          rv = 0;
2610 2564                  }
2611 2565          }
2612 2566  
2613 2567          if (rv == 0) {
2614 2568                  if (sip != NULL)
2615 2569                          *sip = si;
2616 2570                  *symp = sym;
2617 2571          }
2618 2572  
2619 2573          return (rv);
2620 2574  }
2621 2575  
2622 2576  /*
2623 2577   * Search the process symbol tables looking for a symbol whose name matches the
2624 2578   * specified name, but without any restriction on the link map id.
2625 2579   */
2626 2580  int
2627 2581  Plookup_by_name(struct ps_prochandle *P, const char *object,
2628 2582          const char *symbol, GElf_Sym *symp)
2629 2583  {
2630 2584          return (Pxlookup_by_name(P, PR_LMID_EVERY, object, symbol, symp, NULL));
2631 2585  }
2632 2586  
2633 2587  /*
2634 2588   * Iterate over the process's address space mappings.
2635 2589   */
2636 2590  static int
2637 2591  i_Pmapping_iter(struct ps_prochandle *P, boolean_t lmresolve,
2638 2592      proc_map_f *func, void *cd)
2639 2593  {
2640 2594          map_info_t *mptr;
2641 2595          file_info_t *fptr;
2642 2596          char *object_name;
2643 2597          int rc = 0;
2644 2598          int i;
2645 2599  
2646 2600          /* create all the file_info_t's for all the mappings */
2647 2601          (void) Prd_agent(P);
2648 2602  
2649 2603          for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
2650 2604                  if ((fptr = mptr->map_file) == NULL)
2651 2605                          object_name = NULL;
2652 2606                  else if (lmresolve && (fptr->file_rname != NULL))
2653 2607                          object_name = fptr->file_rname;
2654 2608                  else
2655 2609                          object_name = fptr->file_lname;
2656 2610                  if ((rc = func(cd, &mptr->map_pmap, object_name)) != 0)
2657 2611                          return (rc);
2658 2612          }
2659 2613          return (0);
2660 2614  }
2661 2615  
2662 2616  int
2663 2617  Pmapping_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
2664 2618  {
2665 2619          return (i_Pmapping_iter(P, B_FALSE, func, cd));
2666 2620  }
2667 2621  
2668 2622  int
2669 2623  Pmapping_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd)
2670 2624  {
2671 2625          return (i_Pmapping_iter(P, B_TRUE, func, cd));
2672 2626  }
2673 2627  
2674 2628  /*
2675 2629   * Iterate over the process's mapped objects.
2676 2630   */
2677 2631  static int
2678 2632  i_Pobject_iter(struct ps_prochandle *P, boolean_t lmresolve,
2679 2633      proc_map_f *func, void *cd)
2680 2634  {
2681 2635          map_info_t *mptr;
2682 2636          file_info_t *fptr;
2683 2637          uint_t cnt;
2684 2638          int rc = 0;
2685 2639  
2686 2640          (void) Prd_agent(P); /* create file_info_t's for all the mappings */
2687 2641          Pupdate_maps(P);
2688 2642  
2689 2643          for (cnt = P->num_files, fptr = list_next(&P->file_head);
2690 2644              cnt; cnt--, fptr = list_next(fptr)) {
2691 2645                  const char *lname;
2692 2646  
2693 2647                  if (lmresolve && (fptr->file_rname != NULL))
2694 2648                          lname = fptr->file_rname;
2695 2649                  else if (fptr->file_lname != NULL)
2696 2650                          lname = fptr->file_lname;
2697 2651                  else
2698 2652                          lname = "";
2699 2653  
2700 2654                  if ((mptr = fptr->file_map) == NULL)
2701 2655                          continue;
2702 2656  
2703 2657                  if ((rc = func(cd, &mptr->map_pmap, lname)) != 0)
2704 2658                          return (rc);
2705 2659  
2706 2660                  if (!P->info_valid)
2707 2661                          Pupdate_maps(P);
2708 2662          }
2709 2663          return (0);
2710 2664  }
2711 2665  
2712 2666  int
2713 2667  Pobject_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
2714 2668  {
2715 2669          return (i_Pobject_iter(P, B_FALSE, func, cd));
2716 2670  }
2717 2671  
2718 2672  int
2719 2673  Pobject_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd)
2720 2674  {
2721 2675          return (i_Pobject_iter(P, B_TRUE, func, cd));
2722 2676  }
2723 2677  
2724 2678  static char *
2725 2679  i_Pobjname(struct ps_prochandle *P, boolean_t lmresolve, uintptr_t addr,
2726 2680          char *buffer, size_t bufsize)
2727 2681  {
2728 2682          map_info_t *mptr;
2729 2683          file_info_t *fptr;
2730 2684  
2731 2685          /* create all the file_info_t's for all the mappings */
2732 2686          (void) Prd_agent(P);
2733 2687  
2734 2688          if ((mptr = Paddr2mptr(P, addr)) == NULL)
2735 2689                  return (NULL);
2736 2690  
2737 2691          if (!lmresolve) {
2738 2692                  if (((fptr = mptr->map_file) == NULL) ||
2739 2693                      (fptr->file_lname == NULL))
2740 2694                          return (NULL);
2741 2695                  (void) strlcpy(buffer, fptr->file_lname, bufsize);
2742 2696                  return (buffer);
2743 2697          }
2744 2698  
2745 2699          /* Check for a cached copy of the resolved path */
2746 2700          if (Pfindmap(P, mptr, buffer, bufsize) != NULL)
2747 2701                  return (buffer);
2748 2702  
2749 2703          return (NULL);
2750 2704  }
2751 2705  
2752 2706  /*
2753 2707   * Given a virtual address, return the name of the underlying
2754 2708   * mapped object (file) as provided by the dynamic linker.
2755 2709   * Return NULL if we can't find any name information for the object.
2756 2710   */
2757 2711  char *
2758 2712  Pobjname(struct ps_prochandle *P, uintptr_t addr,
2759 2713          char *buffer, size_t bufsize)
2760 2714  {
2761 2715          return (i_Pobjname(P, B_FALSE, addr, buffer, bufsize));
2762 2716  }
2763 2717  
2764 2718  /*
2765 2719   * Given a virtual address, try to return a filesystem path to the
2766 2720   * underlying mapped object (file).  If we're in the global zone,
2767 2721   * this path could resolve to an object in another zone.  If we're
2768 2722   * unable return a valid filesystem path, we'll fall back to providing
2769 2723   * the mapped object (file) name provided by the dynamic linker in
2770 2724   * the target process (ie, the object reported by Pobjname()).
2771 2725   */
2772 2726  char *
2773 2727  Pobjname_resolved(struct ps_prochandle *P, uintptr_t addr,
2774 2728          char *buffer, size_t bufsize)
2775 2729  {
2776 2730          return (i_Pobjname(P, B_TRUE, addr, buffer, bufsize));
2777 2731  }
2778 2732  
2779 2733  /*
2780 2734   * Given a virtual address, return the link map id of the underlying mapped
2781 2735   * object (file), as provided by the dynamic linker.  Return -1 on failure.
2782 2736   */
2783 2737  int
2784 2738  Plmid(struct ps_prochandle *P, uintptr_t addr, Lmid_t *lmidp)
2785 2739  {
2786 2740          map_info_t *mptr;
2787 2741          file_info_t *fptr;
2788 2742  
2789 2743          /* create all the file_info_t's for all the mappings */
2790 2744          (void) Prd_agent(P);
2791 2745  
2792 2746          if ((mptr = Paddr2mptr(P, addr)) != NULL &&
2793 2747              (fptr = mptr->map_file) != NULL && fptr->file_lo != NULL) {
2794 2748                  *lmidp = fptr->file_lo->rl_lmident;
2795 2749                  return (0);
2796 2750          }
2797 2751  
2798 2752          return (-1);
2799 2753  }
2800 2754  
2801 2755  /*
2802 2756   * Given an object name and optional lmid, iterate over the object's symbols.
2803 2757   * If which == PR_SYMTAB, search the normal symbol table.
2804 2758   * If which == PR_DYNSYM, search the dynamic symbol table.
2805 2759   */
2806 2760  static int
2807 2761  Psymbol_iter_com(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
2808 2762      int which, int mask, pr_order_t order, proc_xsym_f *func, void *cd)
2809 2763  {
2810 2764  #if STT_NUM != (STT_TLS + 1)
2811 2765  #error "STT_NUM has grown. update Psymbol_iter_com()"
2812 2766  #endif
2813 2767  
2814 2768          GElf_Sym sym;
2815 2769          GElf_Shdr shdr;
2816 2770          map_info_t *mptr;
2817 2771          file_info_t *fptr;
2818 2772          sym_tbl_t *symtab;
2819 2773          size_t symn;
2820 2774          const char *strs;
2821 2775          size_t strsz;
2822 2776          prsyminfo_t si;
2823 2777          int rv;
2824 2778          uint_t *map, i, count, ndx;
2825 2779  
2826 2780          if ((mptr = object_name_to_map(P, lmid, object_name)) == NULL)
2827 2781                  return (-1);
2828 2782  
2829 2783          if ((fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
2830 2784              fptr->file_elf == NULL)                     /* not an ELF file */
2831 2785                  return (-1);
2832 2786  
2833 2787          /*
2834 2788           * Search the specified symbol table.
2835 2789           */
2836 2790          switch (which) {
2837 2791          case PR_SYMTAB:
2838 2792                  symtab = &fptr->file_symtab;
2839 2793                  si.prs_table = PR_SYMTAB;
2840 2794                  break;
2841 2795          case PR_DYNSYM:
2842 2796                  symtab = &fptr->file_dynsym;
2843 2797                  si.prs_table = PR_DYNSYM;
2844 2798                  break;
2845 2799          default:
2846 2800                  return (-1);
2847 2801          }
2848 2802  
2849 2803          si.prs_object = object_name;
2850 2804          si.prs_lmid = fptr->file_lo == NULL ?
2851 2805              LM_ID_BASE : fptr->file_lo->rl_lmident;
2852 2806  
2853 2807          symn = symtab->sym_symn;
2854 2808          strs = symtab->sym_strs;
2855 2809          strsz = symtab->sym_strsz;
2856 2810  
2857 2811          switch (order) {
2858 2812          case PRO_NATURAL:
2859 2813                  map = NULL;
2860 2814                  count = symn;
2861 2815                  break;
2862 2816          case PRO_BYNAME:
2863 2817                  map = symtab->sym_byname;
2864 2818                  count = symtab->sym_count;
2865 2819                  break;
2866 2820          case PRO_BYADDR:
2867 2821                  map = symtab->sym_byaddr;
2868 2822                  count = symtab->sym_count;
2869 2823                  break;
2870 2824          default:
2871 2825                  return (-1);
2872 2826          }
2873 2827  
2874 2828          if (symtab->sym_data_pri == NULL || strs == NULL || count == 0)
2875 2829                  return (-1);
2876 2830  
2877 2831          rv = 0;
2878 2832  
2879 2833          for (i = 0; i < count; i++) {
2880 2834                  ndx = map == NULL ? i : map[i];
2881 2835                  if (symtab_getsym(symtab, ndx, &sym) != NULL) {
2882 2836                          uint_t s_bind, s_type, type;
2883 2837  
2884 2838                          if (sym.st_name >= strsz)       /* invalid st_name */
2885 2839                                  continue;
2886 2840  
2887 2841                          s_bind = GELF_ST_BIND(sym.st_info);
2888 2842                          s_type = GELF_ST_TYPE(sym.st_info);
2889 2843  
2890 2844                          /*
2891 2845                           * In case you haven't already guessed, this relies on
2892 2846                           * the bitmask used in <libproc.h> for encoding symbol
2893 2847                           * type and binding matching the order of STB and STT
2894 2848                           * constants in <sys/elf.h>.  Changes to ELF must
2895 2849                           * maintain binary compatibility, so I think this is
2896 2850                           * reasonably fair game.
2897 2851                           */
2898 2852                          if (s_bind < STB_NUM && s_type < STT_NUM) {
2899 2853                                  type = (1 << (s_type + 8)) | (1 << s_bind);
2900 2854                                  if ((type & ~mask) != 0)
2901 2855                                          continue;
2902 2856                          } else
2903 2857                                  continue; /* Invalid type or binding */
2904 2858  
2905 2859                          if (GELF_ST_TYPE(sym.st_info) != STT_TLS)
2906 2860                                  sym.st_value += fptr->file_dyn_base;
2907 2861  
2908 2862                          si.prs_name = strs + sym.st_name;
2909 2863  
2910 2864                          /*
2911 2865                           * If symbol's type is STT_SECTION, then try to lookup
2912 2866                           * the name of the corresponding section.
2913 2867                           */
2914 2868                          if (GELF_ST_TYPE(sym.st_info) == STT_SECTION &&
2915 2869                              fptr->file_shstrs != NULL &&
2916 2870                              gelf_getshdr(elf_getscn(fptr->file_elf,
2917 2871                              sym.st_shndx), &shdr) != NULL &&
2918 2872                              shdr.sh_name != 0 &&
2919 2873                              shdr.sh_name < fptr->file_shstrsz)
2920 2874                                  si.prs_name = fptr->file_shstrs + shdr.sh_name;
2921 2875  
2922 2876                          si.prs_id = ndx;
2923 2877                          if ((rv = func(cd, &sym, si.prs_name, &si)) != 0)
2924 2878                                  break;
2925 2879                  }
2926 2880          }
2927 2881  
2928 2882          return (rv);
2929 2883  }
2930 2884  
2931 2885  int
2932 2886  Pxsymbol_iter(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
2933 2887      int which, int mask, proc_xsym_f *func, void *cd)
2934 2888  {
2935 2889          return (Psymbol_iter_com(P, lmid, object_name, which, mask,
2936 2890              PRO_NATURAL, func, cd));
2937 2891  }
2938 2892  
2939 2893  int
2940 2894  Psymbol_iter_by_lmid(struct ps_prochandle *P, Lmid_t lmid,
2941 2895      const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2942 2896  {
2943 2897          return (Psymbol_iter_com(P, lmid, object_name, which, mask,
2944 2898              PRO_NATURAL, (proc_xsym_f *)func, cd));
2945 2899  }
2946 2900  
2947 2901  int
2948 2902  Psymbol_iter(struct ps_prochandle *P,
2949 2903      const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2950 2904  {
2951 2905          return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2952 2906              PRO_NATURAL, (proc_xsym_f *)func, cd));
2953 2907  }
2954 2908  
2955 2909  int
2956 2910  Psymbol_iter_by_addr(struct ps_prochandle *P,
2957 2911      const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2958 2912  {
2959 2913          return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2960 2914              PRO_BYADDR, (proc_xsym_f *)func, cd));
2961 2915  }
  
    | ↓ open down ↓ | 1265 lines elided | ↑ open up ↑ | 
2962 2916  
2963 2917  int
2964 2918  Psymbol_iter_by_name(struct ps_prochandle *P,
2965 2919      const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2966 2920  {
2967 2921          return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2968 2922              PRO_BYNAME, (proc_xsym_f *)func, cd));
2969 2923  }
2970 2924  
2971 2925  /*
2972      - * Get the platform string from the core file if we have it;
2973      - * just perform the system call for the caller if this is a live process.
     2926 + * Get the platform string.
2974 2927   */
2975 2928  char *
2976 2929  Pplatform(struct ps_prochandle *P, char *s, size_t n)
2977 2930  {
2978      -        if (P->state == PS_IDLE) {
2979      -                errno = ENODATA;
2980      -                return (NULL);
2981      -        }
2982      -
2983      -        if (P->state == PS_DEAD) {
2984      -                if (P->core->core_platform == NULL) {
2985      -                        errno = ENODATA;
2986      -                        return (NULL);
2987      -                }
2988      -                (void) strncpy(s, P->core->core_platform, n - 1);
2989      -                s[n - 1] = '\0';
2990      -
2991      -        } else if (sysinfo(SI_PLATFORM, s, n) == -1)
2992      -                return (NULL);
2993      -
2994      -        return (s);
     2931 +        return (P->ops.pop_platform(P, s, n, P->data));
2995 2932  }
2996 2933  
2997 2934  /*
2998      - * Get the uname(2) information from the core file if we have it;
2999      - * just perform the system call for the caller if this is a live process.
     2935 + * Get the uname(2) information.
3000 2936   */
3001 2937  int
3002 2938  Puname(struct ps_prochandle *P, struct utsname *u)
3003 2939  {
3004      -        if (P->state == PS_IDLE) {
3005      -                errno = ENODATA;
3006      -                return (-1);
3007      -        }
3008      -
3009      -        if (P->state == PS_DEAD) {
3010      -                if (P->core->core_uts == NULL) {
3011      -                        errno = ENODATA;
3012      -                        return (-1);
3013      -                }
3014      -                (void) memcpy(u, P->core->core_uts, sizeof (struct utsname));
3015      -                return (0);
3016      -        }
3017      -        return (uname(u));
     2940 +        return (P->ops.pop_uname(P, u, P->data));
3018 2941  }
3019 2942  
3020 2943  /*
3021 2944   * Called from Pcreate(), Pgrab(), and Pfgrab_core() to initialize
3022 2945   * the symbol table heads in the new ps_prochandle.
3023 2946   */
3024 2947  void
3025 2948  Pinitsym(struct ps_prochandle *P)
3026 2949  {
3027 2950          P->num_files = 0;
3028 2951          list_link(&P->file_head, NULL);
3029 2952  }
3030 2953  
3031 2954  /*
3032 2955   * Called from Prelease() to destroy the symbol tables.
3033 2956   * Must be called by the client after an exec() in the victim process.
3034 2957   */
3035 2958  void
3036 2959  Preset_maps(struct ps_prochandle *P)
3037 2960  {
3038 2961          int i;
3039 2962  
3040 2963          if (P->rap != NULL) {
3041 2964                  rd_delete(P->rap);
3042 2965                  P->rap = NULL;
3043 2966          }
3044 2967  
3045 2968          if (P->execname != NULL) {
3046 2969                  free(P->execname);
3047 2970                  P->execname = NULL;
3048 2971          }
3049 2972  
3050 2973          if (P->auxv != NULL) {
3051 2974                  free(P->auxv);
3052 2975                  P->auxv = NULL;
3053 2976                  P->nauxv = 0;
3054 2977          }
3055 2978  
3056 2979          for (i = 0; i < P->map_count; i++)
3057 2980                  map_info_free(P, &P->mappings[i]);
3058 2981  
3059 2982          if (P->mappings != NULL) {
3060 2983                  free(P->mappings);
3061 2984                  P->mappings = NULL;
3062 2985          }
3063 2986          P->map_count = P->map_alloc = 0;
3064 2987  
3065 2988          P->info_valid = 0;
3066 2989  }
3067 2990  
3068 2991  typedef struct getenv_data {
3069 2992          char *buf;
3070 2993          size_t bufsize;
3071 2994          const char *search;
3072 2995          size_t searchlen;
3073 2996  } getenv_data_t;
3074 2997  
3075 2998  /*ARGSUSED*/
3076 2999  static int
3077 3000  getenv_func(void *data, struct ps_prochandle *P, uintptr_t addr,
3078 3001      const char *nameval)
3079 3002  {
3080 3003          getenv_data_t *d = data;
3081 3004          size_t len;
3082 3005  
3083 3006          if (nameval == NULL)
3084 3007                  return (0);
3085 3008  
3086 3009          if (d->searchlen < strlen(nameval) &&
3087 3010              strncmp(nameval, d->search, d->searchlen) == 0 &&
3088 3011              nameval[d->searchlen] == '=') {
3089 3012                  len = MIN(strlen(nameval), d->bufsize - 1);
3090 3013                  (void) strncpy(d->buf, nameval, len);
3091 3014                  d->buf[len] = '\0';
3092 3015                  return (1);
3093 3016          }
3094 3017  
3095 3018          return (0);
3096 3019  }
3097 3020  
3098 3021  char *
3099 3022  Pgetenv(struct ps_prochandle *P, const char *name, char *buf, size_t buflen)
3100 3023  {
3101 3024          getenv_data_t d;
3102 3025  
3103 3026          d.buf = buf;
3104 3027          d.bufsize = buflen;
3105 3028          d.search = name;
3106 3029          d.searchlen = strlen(name);
3107 3030  
3108 3031          if (Penv_iter(P, getenv_func, &d) == 1) {
3109 3032                  char *equals = strchr(d.buf, '=');
3110 3033  
3111 3034                  if (equals != NULL) {
3112 3035                          (void) memmove(d.buf, equals + 1,
3113 3036                              d.buf + buflen - equals - 1);
3114 3037                          d.buf[d.buf + buflen - equals] = '\0';
3115 3038  
3116 3039                          return (buf);
3117 3040                  }
3118 3041          }
3119 3042  
3120 3043          return (NULL);
3121 3044  }
3122 3045  
3123 3046  /* number of argument or environment pointers to read all at once */
3124 3047  #define NARG    100
3125 3048  
3126 3049  int
3127 3050  Penv_iter(struct ps_prochandle *P, proc_env_f *func, void *data)
3128 3051  {
3129 3052          const psinfo_t *psp;
3130 3053          uintptr_t envpoff;
3131 3054          GElf_Sym sym;
3132 3055          int ret;
3133 3056          char *buf, *nameval;
3134 3057          size_t buflen;
3135 3058  
3136 3059          int nenv = NARG;
3137 3060          long envp[NARG];
3138 3061  
3139 3062          /*
3140 3063           * Attempt to find the "_environ" variable in the process.
3141 3064           * Failing that, use the original value provided by Ppsinfo().
3142 3065           */
3143 3066          if ((psp = Ppsinfo(P)) == NULL)
3144 3067                  return (-1);
3145 3068  
3146 3069          envpoff = psp->pr_envp; /* Default if no _environ found */
3147 3070  
3148 3071          if (Plookup_by_name(P, PR_OBJ_EXEC, "_environ", &sym) == 0) {
3149 3072                  if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3150 3073                          if (Pread(P, &envpoff, sizeof (envpoff),
3151 3074                              sym.st_value) != sizeof (envpoff))
3152 3075                                  envpoff = psp->pr_envp;
3153 3076                  } else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3154 3077                          uint32_t envpoff32;
3155 3078  
3156 3079                          if (Pread(P, &envpoff32, sizeof (envpoff32),
3157 3080                              sym.st_value) != sizeof (envpoff32))
3158 3081                                  envpoff = psp->pr_envp;
3159 3082                          else
3160 3083                                  envpoff = envpoff32;
3161 3084                  }
3162 3085          }
3163 3086  
3164 3087          buflen = 128;
3165 3088          buf = malloc(buflen);
3166 3089  
3167 3090          ret = 0;
3168 3091          for (;;) {
3169 3092                  uintptr_t envoff;
3170 3093  
3171 3094                  if (nenv == NARG) {
3172 3095                          (void) memset(envp, 0, sizeof (envp));
3173 3096                          if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3174 3097                                  if (Pread(P, envp,
3175 3098                                      sizeof (envp), envpoff) <= 0) {
3176 3099                                          ret = -1;
3177 3100                                          break;
3178 3101                                  }
3179 3102                          } else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3180 3103                                  uint32_t e32[NARG];
3181 3104                                  int i;
3182 3105  
3183 3106                                  (void) memset(e32, 0, sizeof (e32));
3184 3107                                  if (Pread(P, e32, sizeof (e32), envpoff) <= 0) {
3185 3108                                          ret = -1;
3186 3109                                          break;
3187 3110                                  }
3188 3111                                  for (i = 0; i < NARG; i++)
3189 3112                                          envp[i] = e32[i];
3190 3113                          }
3191 3114                          nenv = 0;
3192 3115                  }
3193 3116  
3194 3117                  if ((envoff = envp[nenv++]) == NULL)
3195 3118                          break;
3196 3119  
3197 3120                  /*
3198 3121                   * Attempt to read the string from the process.
3199 3122                   */
3200 3123  again:
3201 3124                  ret = Pread_string(P, buf, buflen, envoff);
3202 3125  
3203 3126                  if (ret <= 0) {
3204 3127                          nameval = NULL;
3205 3128                  } else if (ret == buflen - 1) {
3206 3129                          free(buf);
3207 3130                          /*
3208 3131                           * Bail if we have a corrupted environment
3209 3132                           */
3210 3133                          if (buflen >= ARG_MAX)
3211 3134                                  return (-1);
3212 3135                          buflen *= 2;
3213 3136                          buf = malloc(buflen);
3214 3137                          goto again;
3215 3138                  } else {
3216 3139                          nameval = buf;
3217 3140                  }
3218 3141  
3219 3142                  if ((ret = func(data, P, envoff, nameval)) != 0)
3220 3143                          break;
3221 3144  
3222 3145                  envpoff += (P->status.pr_dmodel == PR_MODEL_LP64)? 8 : 4;
3223 3146          }
3224 3147  
3225 3148          free(buf);
3226 3149  
3227 3150          return (ret);
3228 3151  }
  
    | ↓ open down ↓ | 201 lines elided | ↑ open up ↑ | 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX