1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved. 27 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 28 * Copyright (c) 2013 by Delphix. All rights reserved. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/utsname.h> 33 #include <sys/sysmacros.h> 34 #include <sys/proc.h> 35 36 #include <alloca.h> 37 #include <rtld_db.h> 38 #include <libgen.h> 39 #include <limits.h> 40 #include <string.h> 41 #include <stdlib.h> 42 #include <unistd.h> 43 #include <errno.h> 44 #include <gelf.h> 45 #include <stddef.h> 46 #include <signal.h> 47 48 #include "libproc.h" 49 #include "Pcontrol.h" 50 #include "P32ton.h" 51 #include "Putil.h" 52 53 /* 54 * Pcore.c - Code to initialize a ps_prochandle from a core dump. We 55 * allocate an additional structure to hold information from the core 56 * file, and attach this to the standard ps_prochandle in place of the 57 * ability to examine /proc/<pid>/ files. 58 */ 59 60 /* 61 * Basic i/o function for reading and writing from the process address space 62 * stored in the core file and associated shared libraries. We compute the 63 * appropriate fd and offsets, and let the provided prw function do the rest. 64 */ 65 static ssize_t 66 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr, 67 ssize_t (*prw)(int, void *, size_t, off64_t)) 68 { 69 ssize_t resid = n; 70 71 while (resid != 0) { 72 map_info_t *mp = Paddr2mptr(P, addr); 73 74 uintptr_t mapoff; 75 ssize_t len; 76 off64_t off; 77 int fd; 78 79 if (mp == NULL) 80 break; /* No mapping for this address */ 81 82 if (mp->map_pmap.pr_mflags & MA_RESERVED1) { 83 if (mp->map_file == NULL || mp->map_file->file_fd < 0) 84 break; /* No file or file not open */ 85 86 fd = mp->map_file->file_fd; 87 } else 88 fd = P->asfd; 89 90 mapoff = addr - mp->map_pmap.pr_vaddr; 91 len = MIN(resid, mp->map_pmap.pr_size - mapoff); 92 off = mp->map_offset + mapoff; 93 94 if ((len = prw(fd, buf, len, off)) <= 0) 95 break; 96 97 resid -= len; 98 addr += len; 99 buf = (char *)buf + len; 100 } 101 102 /* 103 * Important: Be consistent with the behavior of i/o on the as file: 104 * writing to an invalid address yields EIO; reading from an invalid 105 * address falls through to returning success and zero bytes. 106 */ 107 if (resid == n && n != 0 && prw != pread64) { 108 errno = EIO; 109 return (-1); 110 } 111 112 return (n - resid); 113 } 114 115 /*ARGSUSED*/ 116 static ssize_t 117 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr, 118 void *data) 119 { 120 return (core_rw(P, buf, n, addr, pread64)); 121 } 122 123 /*ARGSUSED*/ 124 static ssize_t 125 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr, 126 void *data) 127 { 128 return (core_rw(P, (void *)buf, n, addr, 129 (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64)); 130 } 131 132 /*ARGSUSED*/ 133 static int 134 Pcred_core(struct ps_prochandle *P, prcred_t *pcrp, int ngroups, void *data) 135 { 136 core_info_t *core = data; 137 138 if (core->core_cred != NULL) { 139 /* 140 * Avoid returning more supplementary group data than the 141 * caller has allocated in their buffer. We expect them to 142 * check pr_ngroups afterward and potentially call us again. 143 */ 144 ngroups = MIN(ngroups, core->core_cred->pr_ngroups); 145 146 (void) memcpy(pcrp, core->core_cred, 147 sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t)); 148 149 return (0); 150 } 151 152 errno = ENODATA; 153 return (-1); 154 } 155 156 /*ARGSUSED*/ 157 static int 158 Ppriv_core(struct ps_prochandle *P, prpriv_t **pprv, void *data) 159 { 160 core_info_t *core = data; 161 162 if (core->core_priv == NULL) { 163 errno = ENODATA; 164 return (-1); 165 } 166 167 *pprv = malloc(core->core_priv_size); 168 if (*pprv == NULL) { 169 return (-1); 170 } 171 172 (void) memcpy(*pprv, core->core_priv, core->core_priv_size); 173 return (0); 174 } 175 176 /*ARGSUSED*/ 177 static const psinfo_t * 178 Ppsinfo_core(struct ps_prochandle *P, psinfo_t *psinfo, void *data) 179 { 180 return (&P->psinfo); 181 } 182 183 /*ARGSUSED*/ 184 static void 185 Pfini_core(struct ps_prochandle *P, void *data) 186 { 187 core_info_t *core = data; 188 189 if (core != NULL) { 190 extern void __priv_free_info(void *); 191 lwp_info_t *nlwp, *lwp = list_next(&core->core_lwp_head); 192 int i; 193 194 for (i = 0; i < core->core_nlwp; i++, lwp = nlwp) { 195 nlwp = list_next(lwp); 196 #ifdef __sparc 197 if (lwp->lwp_gwins != NULL) 198 free(lwp->lwp_gwins); 199 if (lwp->lwp_xregs != NULL) 200 free(lwp->lwp_xregs); 201 if (lwp->lwp_asrs != NULL) 202 free(lwp->lwp_asrs); 203 #endif 204 free(lwp); 205 } 206 207 if (core->core_platform != NULL) 208 free(core->core_platform); 209 if (core->core_uts != NULL) 210 free(core->core_uts); 211 if (core->core_cred != NULL) 212 free(core->core_cred); 213 if (core->core_priv != NULL) 214 free(core->core_priv); 215 if (core->core_privinfo != NULL) 216 __priv_free_info(core->core_privinfo); 217 if (core->core_ppii != NULL) 218 free(core->core_ppii); 219 if (core->core_zonename != NULL) 220 free(core->core_zonename); 221 #if defined(__i386) || defined(__amd64) 222 if (core->core_ldt != NULL) 223 free(core->core_ldt); 224 #endif 225 226 free(core); 227 } 228 } 229 230 /*ARGSUSED*/ 231 static char * 232 Pplatform_core(struct ps_prochandle *P, char *s, size_t n, void *data) 233 { 234 core_info_t *core = data; 235 236 if (core->core_platform == NULL) { 237 errno = ENODATA; 238 return (NULL); 239 } 240 (void) strncpy(s, core->core_platform, n - 1); 241 s[n - 1] = '\0'; 242 return (s); 243 } 244 245 /*ARGSUSED*/ 246 static int 247 Puname_core(struct ps_prochandle *P, struct utsname *u, void *data) 248 { 249 core_info_t *core = data; 250 251 if (core->core_uts == NULL) { 252 errno = ENODATA; 253 return (-1); 254 } 255 (void) memcpy(u, core->core_uts, sizeof (struct utsname)); 256 return (0); 257 } 258 259 /*ARGSUSED*/ 260 static char * 261 Pzonename_core(struct ps_prochandle *P, char *s, size_t n, void *data) 262 { 263 core_info_t *core = data; 264 265 if (core->core_zonename == NULL) { 266 errno = ENODATA; 267 return (NULL); 268 } 269 (void) strlcpy(s, core->core_zonename, n); 270 return (s); 271 } 272 273 #if defined(__i386) || defined(__amd64) 274 /*ARGSUSED*/ 275 static int 276 Pldt_core(struct ps_prochandle *P, struct ssd *pldt, int nldt, void *data) 277 { 278 core_info_t *core = data; 279 280 if (pldt == NULL || nldt == 0) 281 return (core->core_nldt); 282 283 if (core->core_ldt != NULL) { 284 nldt = MIN(nldt, core->core_nldt); 285 286 (void) memcpy(pldt, core->core_ldt, 287 nldt * sizeof (struct ssd)); 288 289 return (nldt); 290 } 291 292 errno = ENODATA; 293 return (-1); 294 } 295 #endif 296 297 static const ps_ops_t P_core_ops = { 298 .pop_pread = Pread_core, 299 .pop_pwrite = Pwrite_core, 300 .pop_cred = Pcred_core, 301 .pop_priv = Ppriv_core, 302 .pop_psinfo = Ppsinfo_core, 303 .pop_fini = Pfini_core, 304 .pop_platform = Pplatform_core, 305 .pop_uname = Puname_core, 306 .pop_zonename = Pzonename_core, 307 #if defined(__i386) || defined(__amd64) 308 .pop_ldt = Pldt_core 309 #endif 310 }; 311 312 /* 313 * Return the lwp_info_t for the given lwpid. If no such lwpid has been 314 * encountered yet, allocate a new structure and return a pointer to it. 315 * Create a list of lwp_info_t structures sorted in decreasing lwp_id order. 316 */ 317 static lwp_info_t * 318 lwpid2info(struct ps_prochandle *P, lwpid_t id) 319 { 320 core_info_t *core = P->data; 321 lwp_info_t *lwp = list_next(&core->core_lwp_head); 322 lwp_info_t *next; 323 uint_t i; 324 325 for (i = 0; i < core->core_nlwp; i++, lwp = list_next(lwp)) { 326 if (lwp->lwp_id == id) { 327 core->core_lwp = lwp; 328 return (lwp); 329 } 330 if (lwp->lwp_id < id) { 331 break; 332 } 333 } 334 335 next = lwp; 336 if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL) 337 return (NULL); 338 339 list_link(lwp, next); 340 lwp->lwp_id = id; 341 342 core->core_lwp = lwp; 343 core->core_nlwp++; 344 345 return (lwp); 346 } 347 348 /* 349 * The core file itself contains a series of NOTE segments containing saved 350 * structures from /proc at the time the process died. For each note we 351 * comprehend, we define a function to read it in from the core file, 352 * convert it to our native data model if necessary, and store it inside 353 * the ps_prochandle. Each function is invoked by Pfgrab_core() with the 354 * seek pointer on P->asfd positioned appropriately. We populate a table 355 * of pointers to these note functions below. 356 */ 357 358 static int 359 note_pstatus(struct ps_prochandle *P, size_t nbytes) 360 { 361 #ifdef _LP64 362 core_info_t *core = P->data; 363 364 if (core->core_dmodel == PR_MODEL_ILP32) { 365 pstatus32_t ps32; 366 367 if (nbytes < sizeof (pstatus32_t) || 368 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32)) 369 goto err; 370 371 pstatus_32_to_n(&ps32, &P->status); 372 373 } else 374 #endif 375 if (nbytes < sizeof (pstatus_t) || 376 read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t)) 377 goto err; 378 379 P->orig_status = P->status; 380 P->pid = P->status.pr_pid; 381 382 return (0); 383 384 err: 385 dprintf("Pgrab_core: failed to read NT_PSTATUS\n"); 386 return (-1); 387 } 388 389 static int 390 note_lwpstatus(struct ps_prochandle *P, size_t nbytes) 391 { 392 lwp_info_t *lwp; 393 lwpstatus_t lps; 394 395 #ifdef _LP64 396 core_info_t *core = P->data; 397 398 if (core->core_dmodel == PR_MODEL_ILP32) { 399 lwpstatus32_t l32; 400 401 if (nbytes < sizeof (lwpstatus32_t) || 402 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32)) 403 goto err; 404 405 lwpstatus_32_to_n(&l32, &lps); 406 } else 407 #endif 408 if (nbytes < sizeof (lwpstatus_t) || 409 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps)) 410 goto err; 411 412 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) { 413 dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n"); 414 return (-1); 415 } 416 417 /* 418 * Erase a useless and confusing artifact of the kernel implementation: 419 * the lwps which did *not* create the core will show SIGKILL. We can 420 * be assured this is bogus because SIGKILL can't produce core files. 421 */ 422 if (lps.pr_cursig == SIGKILL) 423 lps.pr_cursig = 0; 424 425 (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps)); 426 return (0); 427 428 err: 429 dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n"); 430 return (-1); 431 } 432 433 static int 434 note_psinfo(struct ps_prochandle *P, size_t nbytes) 435 { 436 #ifdef _LP64 437 core_info_t *core = P->data; 438 439 if (core->core_dmodel == PR_MODEL_ILP32) { 440 psinfo32_t ps32; 441 442 if (nbytes < sizeof (psinfo32_t) || 443 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32)) 444 goto err; 445 446 psinfo_32_to_n(&ps32, &P->psinfo); 447 } else 448 #endif 449 if (nbytes < sizeof (psinfo_t) || 450 read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t)) 451 goto err; 452 453 dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname); 454 dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs); 455 dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat); 456 457 return (0); 458 459 err: 460 dprintf("Pgrab_core: failed to read NT_PSINFO\n"); 461 return (-1); 462 } 463 464 static int 465 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes) 466 { 467 lwp_info_t *lwp; 468 lwpsinfo_t lps; 469 470 #ifdef _LP64 471 core_info_t *core = P->data; 472 473 if (core->core_dmodel == PR_MODEL_ILP32) { 474 lwpsinfo32_t l32; 475 476 if (nbytes < sizeof (lwpsinfo32_t) || 477 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32)) 478 goto err; 479 480 lwpsinfo_32_to_n(&l32, &lps); 481 } else 482 #endif 483 if (nbytes < sizeof (lwpsinfo_t) || 484 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps)) 485 goto err; 486 487 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) { 488 dprintf("Pgrab_core: failed to add NT_LWPSINFO\n"); 489 return (-1); 490 } 491 492 (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps)); 493 return (0); 494 495 err: 496 dprintf("Pgrab_core: failed to read NT_LWPSINFO\n"); 497 return (-1); 498 } 499 500 static int 501 note_fdinfo(struct ps_prochandle *P, size_t nbytes) 502 { 503 prfdinfo_t prfd; 504 fd_info_t *fip; 505 506 if ((nbytes < sizeof (prfd)) || 507 (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) { 508 dprintf("Pgrab_core: failed to read NT_FDINFO\n"); 509 return (-1); 510 } 511 512 if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) { 513 dprintf("Pgrab_core: failed to add NT_FDINFO\n"); 514 return (-1); 515 } 516 (void) memcpy(&fip->fd_info, &prfd, sizeof (prfd)); 517 return (0); 518 } 519 520 static int 521 note_platform(struct ps_prochandle *P, size_t nbytes) 522 { 523 core_info_t *core = P->data; 524 char *plat; 525 526 if (core->core_platform != NULL) 527 return (0); /* Already seen */ 528 529 if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) { 530 if (read(P->asfd, plat, nbytes) != nbytes) { 531 dprintf("Pgrab_core: failed to read NT_PLATFORM\n"); 532 free(plat); 533 return (-1); 534 } 535 plat[nbytes - 1] = '\0'; 536 core->core_platform = plat; 537 } 538 539 return (0); 540 } 541 542 static int 543 note_utsname(struct ps_prochandle *P, size_t nbytes) 544 { 545 core_info_t *core = P->data; 546 size_t ubytes = sizeof (struct utsname); 547 struct utsname *utsp; 548 549 if (core->core_uts != NULL || nbytes < ubytes) 550 return (0); /* Already seen or bad size */ 551 552 if ((utsp = malloc(ubytes)) == NULL) 553 return (-1); 554 555 if (read(P->asfd, utsp, ubytes) != ubytes) { 556 dprintf("Pgrab_core: failed to read NT_UTSNAME\n"); 557 free(utsp); 558 return (-1); 559 } 560 561 if (_libproc_debug) { 562 dprintf("uts.sysname = \"%s\"\n", utsp->sysname); 563 dprintf("uts.nodename = \"%s\"\n", utsp->nodename); 564 dprintf("uts.release = \"%s\"\n", utsp->release); 565 dprintf("uts.version = \"%s\"\n", utsp->version); 566 dprintf("uts.machine = \"%s\"\n", utsp->machine); 567 } 568 569 core->core_uts = utsp; 570 return (0); 571 } 572 573 static int 574 note_content(struct ps_prochandle *P, size_t nbytes) 575 { 576 core_info_t *core = P->data; 577 core_content_t content; 578 579 if (sizeof (core->core_content) != nbytes) 580 return (-1); 581 582 if (read(P->asfd, &content, sizeof (content)) != sizeof (content)) 583 return (-1); 584 585 core->core_content = content; 586 587 dprintf("core content = %llx\n", content); 588 589 return (0); 590 } 591 592 static int 593 note_cred(struct ps_prochandle *P, size_t nbytes) 594 { 595 core_info_t *core = P->data; 596 prcred_t *pcrp; 597 int ngroups; 598 const size_t min_size = sizeof (prcred_t) - sizeof (gid_t); 599 600 /* 601 * We allow for prcred_t notes that are actually smaller than a 602 * prcred_t since the last member isn't essential if there are 603 * no group memberships. This allows for more flexibility when it 604 * comes to slightly malformed -- but still valid -- notes. 605 */ 606 if (core->core_cred != NULL || nbytes < min_size) 607 return (0); /* Already seen or bad size */ 608 609 ngroups = (nbytes - min_size) / sizeof (gid_t); 610 nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t); 611 612 if ((pcrp = malloc(nbytes)) == NULL) 613 return (-1); 614 615 if (read(P->asfd, pcrp, nbytes) != nbytes) { 616 dprintf("Pgrab_core: failed to read NT_PRCRED\n"); 617 free(pcrp); 618 return (-1); 619 } 620 621 if (pcrp->pr_ngroups > ngroups) { 622 dprintf("pr_ngroups = %d; resetting to %d based on note size\n", 623 pcrp->pr_ngroups, ngroups); 624 pcrp->pr_ngroups = ngroups; 625 } 626 627 core->core_cred = pcrp; 628 return (0); 629 } 630 631 #if defined(__i386) || defined(__amd64) 632 static int 633 note_ldt(struct ps_prochandle *P, size_t nbytes) 634 { 635 core_info_t *core = P->data; 636 struct ssd *pldt; 637 uint_t nldt; 638 639 if (core->core_ldt != NULL || nbytes < sizeof (struct ssd)) 640 return (0); /* Already seen or bad size */ 641 642 nldt = nbytes / sizeof (struct ssd); 643 nbytes = nldt * sizeof (struct ssd); 644 645 if ((pldt = malloc(nbytes)) == NULL) 646 return (-1); 647 648 if (read(P->asfd, pldt, nbytes) != nbytes) { 649 dprintf("Pgrab_core: failed to read NT_LDT\n"); 650 free(pldt); 651 return (-1); 652 } 653 654 core->core_ldt = pldt; 655 core->core_nldt = nldt; 656 return (0); 657 } 658 #endif /* __i386 */ 659 660 static int 661 note_priv(struct ps_prochandle *P, size_t nbytes) 662 { 663 core_info_t *core = P->data; 664 prpriv_t *pprvp; 665 666 if (core->core_priv != NULL || nbytes < sizeof (prpriv_t)) 667 return (0); /* Already seen or bad size */ 668 669 if ((pprvp = malloc(nbytes)) == NULL) 670 return (-1); 671 672 if (read(P->asfd, pprvp, nbytes) != nbytes) { 673 dprintf("Pgrab_core: failed to read NT_PRPRIV\n"); 674 free(pprvp); 675 return (-1); 676 } 677 678 core->core_priv = pprvp; 679 core->core_priv_size = nbytes; 680 return (0); 681 } 682 683 static int 684 note_priv_info(struct ps_prochandle *P, size_t nbytes) 685 { 686 core_info_t *core = P->data; 687 extern void *__priv_parse_info(); 688 priv_impl_info_t *ppii; 689 690 if (core->core_privinfo != NULL || 691 nbytes < sizeof (priv_impl_info_t)) 692 return (0); /* Already seen or bad size */ 693 694 if ((ppii = malloc(nbytes)) == NULL) 695 return (-1); 696 697 if (read(P->asfd, ppii, nbytes) != nbytes || 698 PRIV_IMPL_INFO_SIZE(ppii) != nbytes) { 699 dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n"); 700 free(ppii); 701 return (-1); 702 } 703 704 core->core_privinfo = __priv_parse_info(ppii); 705 core->core_ppii = ppii; 706 return (0); 707 } 708 709 static int 710 note_zonename(struct ps_prochandle *P, size_t nbytes) 711 { 712 core_info_t *core = P->data; 713 char *zonename; 714 715 if (core->core_zonename != NULL) 716 return (0); /* Already seen */ 717 718 if (nbytes != 0) { 719 if ((zonename = malloc(nbytes)) == NULL) 720 return (-1); 721 if (read(P->asfd, zonename, nbytes) != nbytes) { 722 dprintf("Pgrab_core: failed to read NT_ZONENAME\n"); 723 free(zonename); 724 return (-1); 725 } 726 zonename[nbytes - 1] = '\0'; 727 core->core_zonename = zonename; 728 } 729 730 return (0); 731 } 732 733 static int 734 note_auxv(struct ps_prochandle *P, size_t nbytes) 735 { 736 size_t n, i; 737 738 #ifdef _LP64 739 core_info_t *core = P->data; 740 741 if (core->core_dmodel == PR_MODEL_ILP32) { 742 auxv32_t *a32; 743 744 n = nbytes / sizeof (auxv32_t); 745 nbytes = n * sizeof (auxv32_t); 746 a32 = alloca(nbytes); 747 748 if (read(P->asfd, a32, nbytes) != nbytes) { 749 dprintf("Pgrab_core: failed to read NT_AUXV\n"); 750 return (-1); 751 } 752 753 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL) 754 return (-1); 755 756 for (i = 0; i < n; i++) 757 auxv_32_to_n(&a32[i], &P->auxv[i]); 758 759 } else { 760 #endif 761 n = nbytes / sizeof (auxv_t); 762 nbytes = n * sizeof (auxv_t); 763 764 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL) 765 return (-1); 766 767 if (read(P->asfd, P->auxv, nbytes) != nbytes) { 768 free(P->auxv); 769 P->auxv = NULL; 770 return (-1); 771 } 772 #ifdef _LP64 773 } 774 #endif 775 776 if (_libproc_debug) { 777 for (i = 0; i < n; i++) { 778 dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i, 779 P->auxv[i].a_type, P->auxv[i].a_un.a_val); 780 } 781 } 782 783 /* 784 * Defensive coding for loops which depend upon the auxv array being 785 * terminated by an AT_NULL element; in each case, we've allocated 786 * P->auxv to have an additional element which we force to be AT_NULL. 787 */ 788 P->auxv[n].a_type = AT_NULL; 789 P->auxv[n].a_un.a_val = 0L; 790 P->nauxv = (int)n; 791 792 return (0); 793 } 794 795 #ifdef __sparc 796 static int 797 note_xreg(struct ps_prochandle *P, size_t nbytes) 798 { 799 core_info_t *core = P->data; 800 lwp_info_t *lwp = core->core_lwp; 801 size_t xbytes = sizeof (prxregset_t); 802 prxregset_t *xregs; 803 804 if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes) 805 return (0); /* No lwp yet, already seen, or bad size */ 806 807 if ((xregs = malloc(xbytes)) == NULL) 808 return (-1); 809 810 if (read(P->asfd, xregs, xbytes) != xbytes) { 811 dprintf("Pgrab_core: failed to read NT_PRXREG\n"); 812 free(xregs); 813 return (-1); 814 } 815 816 lwp->lwp_xregs = xregs; 817 return (0); 818 } 819 820 static int 821 note_gwindows(struct ps_prochandle *P, size_t nbytes) 822 { 823 core_info_t *core = P->data; 824 lwp_info_t *lwp = core->core_lwp; 825 826 if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0) 827 return (0); /* No lwp yet or already seen or no data */ 828 829 if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL) 830 return (-1); 831 832 /* 833 * Since the amount of gwindows data varies with how many windows were 834 * actually saved, we just read up to the minimum of the note size 835 * and the size of the gwindows_t type. It doesn't matter if the read 836 * fails since we have to zero out gwindows first anyway. 837 */ 838 #ifdef _LP64 839 if (core->core_dmodel == PR_MODEL_ILP32) { 840 gwindows32_t g32; 841 842 (void) memset(&g32, 0, sizeof (g32)); 843 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32))); 844 gwindows_32_to_n(&g32, lwp->lwp_gwins); 845 846 } else { 847 #endif 848 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t)); 849 (void) read(P->asfd, lwp->lwp_gwins, 850 MIN(nbytes, sizeof (gwindows_t))); 851 #ifdef _LP64 852 } 853 #endif 854 return (0); 855 } 856 857 #ifdef __sparcv9 858 static int 859 note_asrs(struct ps_prochandle *P, size_t nbytes) 860 { 861 core_info_t *core = P->data; 862 lwp_info_t *lwp = core->core_lwp; 863 int64_t *asrs; 864 865 if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t)) 866 return (0); /* No lwp yet, already seen, or bad size */ 867 868 if ((asrs = malloc(sizeof (asrset_t))) == NULL) 869 return (-1); 870 871 if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) { 872 dprintf("Pgrab_core: failed to read NT_ASRS\n"); 873 free(asrs); 874 return (-1); 875 } 876 877 lwp->lwp_asrs = asrs; 878 return (0); 879 } 880 #endif /* __sparcv9 */ 881 #endif /* __sparc */ 882 883 static int 884 note_spymaster(struct ps_prochandle *P, size_t nbytes) 885 { 886 #ifdef _LP64 887 core_info_t *core = P->data; 888 889 if (core->core_dmodel == PR_MODEL_ILP32) { 890 psinfo32_t ps32; 891 892 if (nbytes < sizeof (psinfo32_t) || 893 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32)) 894 goto err; 895 896 psinfo_32_to_n(&ps32, &P->spymaster); 897 } else 898 #endif 899 if (nbytes < sizeof (psinfo_t) || read(P->asfd, 900 &P->spymaster, sizeof (psinfo_t)) != sizeof (psinfo_t)) 901 goto err; 902 903 dprintf("spymaster pr_fname = <%s>\n", P->psinfo.pr_fname); 904 dprintf("spymaster pr_psargs = <%s>\n", P->psinfo.pr_psargs); 905 dprintf("spymaster pr_wstat = 0x%x\n", P->psinfo.pr_wstat); 906 907 return (0); 908 909 err: 910 dprintf("Pgrab_core: failed to read NT_SPYMASTER\n"); 911 return (-1); 912 } 913 914 /*ARGSUSED*/ 915 static int 916 note_notsup(struct ps_prochandle *P, size_t nbytes) 917 { 918 dprintf("skipping unsupported note type\n"); 919 return (0); 920 } 921 922 /* 923 * Populate a table of function pointers indexed by Note type with our 924 * functions to process each type of core file note: 925 */ 926 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = { 927 note_notsup, /* 0 unassigned */ 928 note_notsup, /* 1 NT_PRSTATUS (old) */ 929 note_notsup, /* 2 NT_PRFPREG (old) */ 930 note_notsup, /* 3 NT_PRPSINFO (old) */ 931 #ifdef __sparc 932 note_xreg, /* 4 NT_PRXREG */ 933 #else 934 note_notsup, /* 4 NT_PRXREG */ 935 #endif 936 note_platform, /* 5 NT_PLATFORM */ 937 note_auxv, /* 6 NT_AUXV */ 938 #ifdef __sparc 939 note_gwindows, /* 7 NT_GWINDOWS */ 940 #ifdef __sparcv9 941 note_asrs, /* 8 NT_ASRS */ 942 #else 943 note_notsup, /* 8 NT_ASRS */ 944 #endif 945 #else 946 note_notsup, /* 7 NT_GWINDOWS */ 947 note_notsup, /* 8 NT_ASRS */ 948 #endif 949 #if defined(__i386) || defined(__amd64) 950 note_ldt, /* 9 NT_LDT */ 951 #else 952 note_notsup, /* 9 NT_LDT */ 953 #endif 954 note_pstatus, /* 10 NT_PSTATUS */ 955 note_notsup, /* 11 unassigned */ 956 note_notsup, /* 12 unassigned */ 957 note_psinfo, /* 13 NT_PSINFO */ 958 note_cred, /* 14 NT_PRCRED */ 959 note_utsname, /* 15 NT_UTSNAME */ 960 note_lwpstatus, /* 16 NT_LWPSTATUS */ 961 note_lwpsinfo, /* 17 NT_LWPSINFO */ 962 note_priv, /* 18 NT_PRPRIV */ 963 note_priv_info, /* 19 NT_PRPRIVINFO */ 964 note_content, /* 20 NT_CONTENT */ 965 note_zonename, /* 21 NT_ZONENAME */ 966 note_fdinfo, /* 22 NT_FDINFO */ 967 note_spymaster, /* 23 NT_SPYMASTER */ 968 }; 969 970 static void 971 core_report_mapping(struct ps_prochandle *P, GElf_Phdr *php) 972 { 973 prkillinfo_t killinfo; 974 siginfo_t *si = &killinfo.prk_info; 975 char signame[SIG2STR_MAX], sig[64], info[64]; 976 void *addr = (void *)(uintptr_t)php->p_vaddr; 977 978 const char *errfmt = "core file data for mapping at %p not saved: %s\n"; 979 const char *incfmt = "core file incomplete due to %s%s\n"; 980 const char *msgfmt = "mappings at and above %p are missing\n"; 981 982 if (!(php->p_flags & PF_SUNW_KILLED)) { 983 int err = 0; 984 985 (void) pread64(P->asfd, &err, 986 sizeof (err), (off64_t)php->p_offset); 987 988 Perror_printf(P, errfmt, addr, strerror(err)); 989 dprintf(errfmt, addr, strerror(err)); 990 return; 991 } 992 993 if (!(php->p_flags & PF_SUNW_SIGINFO)) 994 return; 995 996 (void) memset(&killinfo, 0, sizeof (killinfo)); 997 998 (void) pread64(P->asfd, &killinfo, 999 sizeof (killinfo), (off64_t)php->p_offset); 1000 1001 /* 1002 * While there is (or at least should be) only one segment that has 1003 * PF_SUNW_SIGINFO set, the signal information there is globally 1004 * useful (even if only to those debugging libproc consumers); we hang 1005 * the signal information gleaned here off of the ps_prochandle. 1006 */ 1007 P->map_missing = php->p_vaddr; 1008 P->killinfo = killinfo.prk_info; 1009 1010 if (sig2str(si->si_signo, signame) == -1) { 1011 (void) snprintf(sig, sizeof (sig), 1012 "<Unknown signal: 0x%x>, ", si->si_signo); 1013 } else { 1014 (void) snprintf(sig, sizeof (sig), "SIG%s, ", signame); 1015 } 1016 1017 if (si->si_code == SI_USER || si->si_code == SI_QUEUE) { 1018 (void) snprintf(info, sizeof (info), 1019 "pid=%d uid=%d zone=%d ctid=%d", 1020 si->si_pid, si->si_uid, si->si_zoneid, si->si_ctid); 1021 } else { 1022 (void) snprintf(info, sizeof (info), 1023 "code=%d", si->si_code); 1024 } 1025 1026 Perror_printf(P, incfmt, sig, info); 1027 Perror_printf(P, msgfmt, addr); 1028 1029 dprintf(incfmt, sig, info); 1030 dprintf(msgfmt, addr); 1031 } 1032 1033 /* 1034 * Add information on the address space mapping described by the given 1035 * PT_LOAD program header. We fill in more information on the mapping later. 1036 */ 1037 static int 1038 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php) 1039 { 1040 core_info_t *core = P->data; 1041 prmap_t pmap; 1042 1043 dprintf("mapping base %llx filesz %llu memsz %llu offset %llu\n", 1044 (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz, 1045 (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset); 1046 1047 pmap.pr_vaddr = (uintptr_t)php->p_vaddr; 1048 pmap.pr_size = php->p_memsz; 1049 1050 /* 1051 * If Pgcore() or elfcore() fail to write a mapping, they will set 1052 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us. 1053 */ 1054 if (php->p_flags & PF_SUNW_FAILURE) { 1055 core_report_mapping(P, php); 1056 } else if (php->p_filesz != 0 && php->p_offset >= core->core_size) { 1057 Perror_printf(P, "core file may be corrupt -- data for mapping " 1058 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr); 1059 dprintf("core file may be corrupt -- data for mapping " 1060 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr); 1061 } 1062 1063 /* 1064 * The mapping name and offset will hopefully be filled in 1065 * by the librtld_db agent. Unfortunately, if it isn't a 1066 * shared library mapping, this information is gone forever. 1067 */ 1068 pmap.pr_mapname[0] = '\0'; 1069 pmap.pr_offset = 0; 1070 1071 pmap.pr_mflags = 0; 1072 if (php->p_flags & PF_R) 1073 pmap.pr_mflags |= MA_READ; 1074 if (php->p_flags & PF_W) 1075 pmap.pr_mflags |= MA_WRITE; 1076 if (php->p_flags & PF_X) 1077 pmap.pr_mflags |= MA_EXEC; 1078 1079 if (php->p_filesz == 0) 1080 pmap.pr_mflags |= MA_RESERVED1; 1081 1082 /* 1083 * At the time of adding this mapping, we just zero the pagesize. 1084 * Once we've processed more of the core file, we'll have the 1085 * pagesize from the auxv's AT_PAGESZ element and we can fill this in. 1086 */ 1087 pmap.pr_pagesize = 0; 1088 1089 /* 1090 * Unfortunately whether or not the mapping was a System V 1091 * shared memory segment is lost. We use -1 to mark it as not shm. 1092 */ 1093 pmap.pr_shmid = -1; 1094 1095 return (Padd_mapping(P, php->p_offset, NULL, &pmap)); 1096 } 1097 1098 /* 1099 * Given a virtual address, name the mapping at that address using the 1100 * specified name, and return the map_info_t pointer. 1101 */ 1102 static map_info_t * 1103 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name) 1104 { 1105 map_info_t *mp = Paddr2mptr(P, addr); 1106 1107 if (mp != NULL) { 1108 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ); 1109 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 1110 } 1111 1112 return (mp); 1113 } 1114 1115 /* 1116 * libproc uses libelf for all of its symbol table manipulation. This function 1117 * takes a symbol table and string table from a core file and places them 1118 * in a memory backed elf file. 1119 */ 1120 static void 1121 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr, 1122 GElf_Shdr *symtab, GElf_Shdr *strtab) 1123 { 1124 size_t size; 1125 off64_t off, base; 1126 map_info_t *mp; 1127 file_info_t *fp; 1128 Elf_Scn *scn; 1129 Elf_Data *data; 1130 1131 if (symtab->sh_addr == 0 || 1132 (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL || 1133 (fp = mp->map_file) == NULL) { 1134 dprintf("fake_up_symtab: invalid section\n"); 1135 return; 1136 } 1137 1138 if (fp->file_symtab.sym_data_pri != NULL) { 1139 dprintf("Symbol table already loaded (sh_addr 0x%lx)\n", 1140 (long)symtab->sh_addr); 1141 return; 1142 } 1143 1144 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 1145 struct { 1146 Elf32_Ehdr ehdr; 1147 Elf32_Shdr shdr[3]; 1148 char data[1]; 1149 } *b; 1150 1151 base = sizeof (b->ehdr) + sizeof (b->shdr); 1152 size = base + symtab->sh_size + strtab->sh_size; 1153 1154 if ((b = calloc(1, size)) == NULL) 1155 return; 1156 1157 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident, 1158 sizeof (ehdr->e_ident)); 1159 b->ehdr.e_type = ehdr->e_type; 1160 b->ehdr.e_machine = ehdr->e_machine; 1161 b->ehdr.e_version = ehdr->e_version; 1162 b->ehdr.e_flags = ehdr->e_flags; 1163 b->ehdr.e_ehsize = sizeof (b->ehdr); 1164 b->ehdr.e_shoff = sizeof (b->ehdr); 1165 b->ehdr.e_shentsize = sizeof (b->shdr[0]); 1166 b->ehdr.e_shnum = 3; 1167 off = 0; 1168 1169 b->shdr[1].sh_size = symtab->sh_size; 1170 b->shdr[1].sh_type = SHT_SYMTAB; 1171 b->shdr[1].sh_offset = off + base; 1172 b->shdr[1].sh_entsize = sizeof (Elf32_Sym); 1173 b->shdr[1].sh_link = 2; 1174 b->shdr[1].sh_info = symtab->sh_info; 1175 b->shdr[1].sh_addralign = symtab->sh_addralign; 1176 1177 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size, 1178 symtab->sh_offset) != b->shdr[1].sh_size) { 1179 dprintf("fake_up_symtab: pread of symtab[1] failed\n"); 1180 free(b); 1181 return; 1182 } 1183 1184 off += b->shdr[1].sh_size; 1185 1186 b->shdr[2].sh_flags = SHF_STRINGS; 1187 b->shdr[2].sh_size = strtab->sh_size; 1188 b->shdr[2].sh_type = SHT_STRTAB; 1189 b->shdr[2].sh_offset = off + base; 1190 b->shdr[2].sh_info = strtab->sh_info; 1191 b->shdr[2].sh_addralign = 1; 1192 1193 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size, 1194 strtab->sh_offset) != b->shdr[2].sh_size) { 1195 dprintf("fake_up_symtab: pread of symtab[2] failed\n"); 1196 free(b); 1197 return; 1198 } 1199 1200 off += b->shdr[2].sh_size; 1201 1202 fp->file_symtab.sym_elf = elf_memory((char *)b, size); 1203 if (fp->file_symtab.sym_elf == NULL) { 1204 free(b); 1205 return; 1206 } 1207 1208 fp->file_symtab.sym_elfmem = b; 1209 #ifdef _LP64 1210 } else { 1211 struct { 1212 Elf64_Ehdr ehdr; 1213 Elf64_Shdr shdr[3]; 1214 char data[1]; 1215 } *b; 1216 1217 base = sizeof (b->ehdr) + sizeof (b->shdr); 1218 size = base + symtab->sh_size + strtab->sh_size; 1219 1220 if ((b = calloc(1, size)) == NULL) 1221 return; 1222 1223 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident, 1224 sizeof (ehdr->e_ident)); 1225 b->ehdr.e_type = ehdr->e_type; 1226 b->ehdr.e_machine = ehdr->e_machine; 1227 b->ehdr.e_version = ehdr->e_version; 1228 b->ehdr.e_flags = ehdr->e_flags; 1229 b->ehdr.e_ehsize = sizeof (b->ehdr); 1230 b->ehdr.e_shoff = sizeof (b->ehdr); 1231 b->ehdr.e_shentsize = sizeof (b->shdr[0]); 1232 b->ehdr.e_shnum = 3; 1233 off = 0; 1234 1235 b->shdr[1].sh_size = symtab->sh_size; 1236 b->shdr[1].sh_type = SHT_SYMTAB; 1237 b->shdr[1].sh_offset = off + base; 1238 b->shdr[1].sh_entsize = sizeof (Elf64_Sym); 1239 b->shdr[1].sh_link = 2; 1240 b->shdr[1].sh_info = symtab->sh_info; 1241 b->shdr[1].sh_addralign = symtab->sh_addralign; 1242 1243 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size, 1244 symtab->sh_offset) != b->shdr[1].sh_size) { 1245 free(b); 1246 return; 1247 } 1248 1249 off += b->shdr[1].sh_size; 1250 1251 b->shdr[2].sh_flags = SHF_STRINGS; 1252 b->shdr[2].sh_size = strtab->sh_size; 1253 b->shdr[2].sh_type = SHT_STRTAB; 1254 b->shdr[2].sh_offset = off + base; 1255 b->shdr[2].sh_info = strtab->sh_info; 1256 b->shdr[2].sh_addralign = 1; 1257 1258 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size, 1259 strtab->sh_offset) != b->shdr[2].sh_size) { 1260 free(b); 1261 return; 1262 } 1263 1264 off += b->shdr[2].sh_size; 1265 1266 fp->file_symtab.sym_elf = elf_memory((char *)b, size); 1267 if (fp->file_symtab.sym_elf == NULL) { 1268 free(b); 1269 return; 1270 } 1271 1272 fp->file_symtab.sym_elfmem = b; 1273 #endif 1274 } 1275 1276 if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL || 1277 (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL || 1278 (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL || 1279 (data = elf_getdata(scn, NULL)) == NULL) { 1280 dprintf("fake_up_symtab: failed to get section data at %p\n", 1281 (void *)scn); 1282 goto err; 1283 } 1284 1285 fp->file_symtab.sym_strs = data->d_buf; 1286 fp->file_symtab.sym_strsz = data->d_size; 1287 fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize; 1288 fp->file_symtab.sym_hdr_pri = *symtab; 1289 fp->file_symtab.sym_strhdr = *strtab; 1290 1291 optimize_symtab(&fp->file_symtab); 1292 1293 return; 1294 err: 1295 (void) elf_end(fp->file_symtab.sym_elf); 1296 free(fp->file_symtab.sym_elfmem); 1297 fp->file_symtab.sym_elf = NULL; 1298 fp->file_symtab.sym_elfmem = NULL; 1299 } 1300 1301 static void 1302 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst) 1303 { 1304 dst->p_type = src->p_type; 1305 dst->p_flags = src->p_flags; 1306 dst->p_offset = (Elf64_Off)src->p_offset; 1307 dst->p_vaddr = (Elf64_Addr)src->p_vaddr; 1308 dst->p_paddr = (Elf64_Addr)src->p_paddr; 1309 dst->p_filesz = (Elf64_Xword)src->p_filesz; 1310 dst->p_memsz = (Elf64_Xword)src->p_memsz; 1311 dst->p_align = (Elf64_Xword)src->p_align; 1312 } 1313 1314 static void 1315 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst) 1316 { 1317 dst->sh_name = src->sh_name; 1318 dst->sh_type = src->sh_type; 1319 dst->sh_flags = (Elf64_Xword)src->sh_flags; 1320 dst->sh_addr = (Elf64_Addr)src->sh_addr; 1321 dst->sh_offset = (Elf64_Off)src->sh_offset; 1322 dst->sh_size = (Elf64_Xword)src->sh_size; 1323 dst->sh_link = src->sh_link; 1324 dst->sh_info = src->sh_info; 1325 dst->sh_addralign = (Elf64_Xword)src->sh_addralign; 1326 dst->sh_entsize = (Elf64_Xword)src->sh_entsize; 1327 } 1328 1329 /* 1330 * Perform elf_begin on efp->e_fd and verify the ELF file's type and class. 1331 */ 1332 static int 1333 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr) 1334 { 1335 #ifdef _BIG_ENDIAN 1336 uchar_t order = ELFDATA2MSB; 1337 #else 1338 uchar_t order = ELFDATA2LSB; 1339 #endif 1340 Elf32_Ehdr e32; 1341 int is_noelf = -1; 1342 int isa_err = 0; 1343 1344 /* 1345 * Because 32-bit libelf cannot deal with large files, we need to read, 1346 * check, and convert the file header manually in case type == ET_CORE. 1347 */ 1348 if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) { 1349 if (perr != NULL) 1350 *perr = G_FORMAT; 1351 goto err; 1352 } 1353 if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 || 1354 e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) || 1355 e32.e_version != EV_CURRENT) { 1356 if (perr != NULL) { 1357 if (is_noelf == 0 && isa_err) { 1358 *perr = G_ISAINVAL; 1359 } else { 1360 *perr = G_FORMAT; 1361 } 1362 } 1363 goto err; 1364 } 1365 1366 /* 1367 * If the file is 64-bit and we are 32-bit, fail with G_LP64. If the 1368 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr, 1369 * and convert it to a elf_file_header_t. Otherwise, the file is 1370 * 32-bit, so convert e32 to a elf_file_header_t. 1371 */ 1372 if (e32.e_ident[EI_CLASS] == ELFCLASS64) { 1373 #ifdef _LP64 1374 Elf64_Ehdr e64; 1375 1376 if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) { 1377 if (perr != NULL) 1378 *perr = G_FORMAT; 1379 goto err; 1380 } 1381 1382 (void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT); 1383 efp->e_hdr.e_type = e64.e_type; 1384 efp->e_hdr.e_machine = e64.e_machine; 1385 efp->e_hdr.e_version = e64.e_version; 1386 efp->e_hdr.e_entry = e64.e_entry; 1387 efp->e_hdr.e_phoff = e64.e_phoff; 1388 efp->e_hdr.e_shoff = e64.e_shoff; 1389 efp->e_hdr.e_flags = e64.e_flags; 1390 efp->e_hdr.e_ehsize = e64.e_ehsize; 1391 efp->e_hdr.e_phentsize = e64.e_phentsize; 1392 efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum; 1393 efp->e_hdr.e_shentsize = e64.e_shentsize; 1394 efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum; 1395 efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx; 1396 #else /* _LP64 */ 1397 if (perr != NULL) 1398 *perr = G_LP64; 1399 goto err; 1400 #endif /* _LP64 */ 1401 } else { 1402 (void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT); 1403 efp->e_hdr.e_type = e32.e_type; 1404 efp->e_hdr.e_machine = e32.e_machine; 1405 efp->e_hdr.e_version = e32.e_version; 1406 efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry; 1407 efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff; 1408 efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff; 1409 efp->e_hdr.e_flags = e32.e_flags; 1410 efp->e_hdr.e_ehsize = e32.e_ehsize; 1411 efp->e_hdr.e_phentsize = e32.e_phentsize; 1412 efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum; 1413 efp->e_hdr.e_shentsize = e32.e_shentsize; 1414 efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum; 1415 efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx; 1416 } 1417 1418 /* 1419 * If the number of section headers or program headers or the section 1420 * header string table index would overflow their respective fields 1421 * in the ELF header, they're stored in the section header at index 1422 * zero. To simplify use elsewhere, we look for those sentinel values 1423 * here. 1424 */ 1425 if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) || 1426 efp->e_hdr.e_shstrndx == SHN_XINDEX || 1427 efp->e_hdr.e_phnum == PN_XNUM) { 1428 GElf_Shdr shdr; 1429 1430 dprintf("extended ELF header\n"); 1431 1432 if (efp->e_hdr.e_shoff == 0) { 1433 if (perr != NULL) 1434 *perr = G_FORMAT; 1435 goto err; 1436 } 1437 1438 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) { 1439 Elf32_Shdr shdr32; 1440 1441 if (pread64(efp->e_fd, &shdr32, sizeof (shdr32), 1442 efp->e_hdr.e_shoff) != sizeof (shdr32)) { 1443 if (perr != NULL) 1444 *perr = G_FORMAT; 1445 goto err; 1446 } 1447 1448 core_shdr_to_gelf(&shdr32, &shdr); 1449 } else { 1450 if (pread64(efp->e_fd, &shdr, sizeof (shdr), 1451 efp->e_hdr.e_shoff) != sizeof (shdr)) { 1452 if (perr != NULL) 1453 *perr = G_FORMAT; 1454 goto err; 1455 } 1456 } 1457 1458 if (efp->e_hdr.e_shnum == 0) { 1459 efp->e_hdr.e_shnum = shdr.sh_size; 1460 dprintf("section header count %lu\n", 1461 (ulong_t)shdr.sh_size); 1462 } 1463 1464 if (efp->e_hdr.e_shstrndx == SHN_XINDEX) { 1465 efp->e_hdr.e_shstrndx = shdr.sh_link; 1466 dprintf("section string index %u\n", shdr.sh_link); 1467 } 1468 1469 if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) { 1470 efp->e_hdr.e_phnum = shdr.sh_info; 1471 dprintf("program header count %u\n", shdr.sh_info); 1472 } 1473 1474 } else if (efp->e_hdr.e_phoff != 0) { 1475 GElf_Phdr phdr; 1476 uint64_t phnum; 1477 1478 /* 1479 * It's possible this core file came from a system that 1480 * accidentally truncated the e_phnum field without correctly 1481 * using the extended format in the section header at index 1482 * zero. We try to detect and correct that specific type of 1483 * corruption by using the knowledge that the core dump 1484 * routines usually place the data referenced by the first 1485 * program header immediately after the last header element. 1486 */ 1487 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) { 1488 Elf32_Phdr phdr32; 1489 1490 if (pread64(efp->e_fd, &phdr32, sizeof (phdr32), 1491 efp->e_hdr.e_phoff) != sizeof (phdr32)) { 1492 if (perr != NULL) 1493 *perr = G_FORMAT; 1494 goto err; 1495 } 1496 1497 core_phdr_to_gelf(&phdr32, &phdr); 1498 } else { 1499 if (pread64(efp->e_fd, &phdr, sizeof (phdr), 1500 efp->e_hdr.e_phoff) != sizeof (phdr)) { 1501 if (perr != NULL) 1502 *perr = G_FORMAT; 1503 goto err; 1504 } 1505 } 1506 1507 phnum = phdr.p_offset - efp->e_hdr.e_ehsize - 1508 (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize; 1509 phnum /= efp->e_hdr.e_phentsize; 1510 1511 if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) { 1512 dprintf("suspicious program header count %u %u\n", 1513 (uint_t)phnum, efp->e_hdr.e_phnum); 1514 1515 /* 1516 * If the new program header count we computed doesn't 1517 * jive with count in the ELF header, we'll use the 1518 * data that's there and hope for the best. 1519 * 1520 * If it does, it's also possible that the section 1521 * header offset is incorrect; we'll check that and 1522 * possibly try to fix it. 1523 */ 1524 if (phnum <= INT_MAX && 1525 (uint16_t)phnum == efp->e_hdr.e_phnum) { 1526 1527 if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff + 1528 efp->e_hdr.e_phentsize * 1529 (uint_t)efp->e_hdr.e_phnum) { 1530 efp->e_hdr.e_shoff = 1531 efp->e_hdr.e_phoff + 1532 efp->e_hdr.e_phentsize * phnum; 1533 } 1534 1535 efp->e_hdr.e_phnum = (Elf64_Word)phnum; 1536 dprintf("using new program header count\n"); 1537 } else { 1538 dprintf("inconsistent program header count\n"); 1539 } 1540 } 1541 } 1542 1543 /* 1544 * The libelf implementation was never ported to be large-file aware. 1545 * This is typically not a problem for your average executable or 1546 * shared library, but a large 32-bit core file can exceed 2GB in size. 1547 * So if type is ET_CORE, we don't bother doing elf_begin; the code 1548 * in Pfgrab_core() below will do its own i/o and struct conversion. 1549 */ 1550 1551 if (type == ET_CORE) { 1552 efp->e_elf = NULL; 1553 return (0); 1554 } 1555 1556 if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) { 1557 if (perr != NULL) 1558 *perr = G_ELF; 1559 goto err; 1560 } 1561 1562 return (0); 1563 1564 err: 1565 efp->e_elf = NULL; 1566 return (-1); 1567 } 1568 1569 /* 1570 * Open the specified file and then do a core_elf_fdopen on it. 1571 */ 1572 static int 1573 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr) 1574 { 1575 (void) memset(efp, 0, sizeof (elf_file_t)); 1576 1577 if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) { 1578 if (core_elf_fdopen(efp, type, perr) == 0) 1579 return (0); 1580 1581 (void) close(efp->e_fd); 1582 efp->e_fd = -1; 1583 } 1584 1585 return (-1); 1586 } 1587 1588 /* 1589 * Close the ELF handle and file descriptor. 1590 */ 1591 static void 1592 core_elf_close(elf_file_t *efp) 1593 { 1594 if (efp->e_elf != NULL) { 1595 (void) elf_end(efp->e_elf); 1596 efp->e_elf = NULL; 1597 } 1598 1599 if (efp->e_fd != -1) { 1600 (void) close(efp->e_fd); 1601 efp->e_fd = -1; 1602 } 1603 } 1604 1605 /* 1606 * Given an ELF file for a statically linked executable, locate the likely 1607 * primary text section and fill in rl_base with its virtual address. 1608 */ 1609 static map_info_t * 1610 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp) 1611 { 1612 GElf_Phdr phdr; 1613 uint_t i; 1614 size_t nphdrs; 1615 1616 if (elf_getphdrnum(elf, &nphdrs) == -1) 1617 return (NULL); 1618 1619 for (i = 0; i < nphdrs; i++) { 1620 if (gelf_getphdr(elf, i, &phdr) != NULL && 1621 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) { 1622 rlp->rl_base = phdr.p_vaddr; 1623 return (Paddr2mptr(P, rlp->rl_base)); 1624 } 1625 } 1626 1627 return (NULL); 1628 } 1629 1630 /* 1631 * Given an ELF file and the librtld_db structure corresponding to its primary 1632 * text mapping, deduce where its data segment was loaded and fill in 1633 * rl_data_base and prmap_t.pr_offset accordingly. 1634 */ 1635 static map_info_t * 1636 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp) 1637 { 1638 GElf_Ehdr ehdr; 1639 GElf_Phdr phdr; 1640 map_info_t *mp; 1641 uint_t i, pagemask; 1642 size_t nphdrs; 1643 1644 rlp->rl_data_base = NULL; 1645 1646 /* 1647 * Find the first loadable, writeable Phdr and compute rl_data_base 1648 * as the virtual address at which is was loaded. 1649 */ 1650 if (gelf_getehdr(elf, &ehdr) == NULL || 1651 elf_getphdrnum(elf, &nphdrs) == -1) 1652 return (NULL); 1653 1654 for (i = 0; i < nphdrs; i++) { 1655 if (gelf_getphdr(elf, i, &phdr) != NULL && 1656 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) { 1657 rlp->rl_data_base = phdr.p_vaddr; 1658 if (ehdr.e_type == ET_DYN) 1659 rlp->rl_data_base += rlp->rl_base; 1660 break; 1661 } 1662 } 1663 1664 /* 1665 * If we didn't find an appropriate phdr or if the address we 1666 * computed has no mapping, return NULL. 1667 */ 1668 if (rlp->rl_data_base == NULL || 1669 (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL) 1670 return (NULL); 1671 1672 /* 1673 * It wouldn't be procfs-related code if we didn't make use of 1674 * unclean knowledge of segvn, even in userland ... the prmap_t's 1675 * pr_offset field will be the segvn offset from mmap(2)ing the 1676 * data section, which will be the file offset & PAGEMASK. 1677 */ 1678 pagemask = ~(mp->map_pmap.pr_pagesize - 1); 1679 mp->map_pmap.pr_offset = phdr.p_offset & pagemask; 1680 1681 return (mp); 1682 } 1683 1684 /* 1685 * Librtld_db agent callback for iterating over load object mappings. 1686 * For each load object, we allocate a new file_info_t, perform naming, 1687 * and attempt to construct a symbol table for the load object. 1688 */ 1689 static int 1690 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P) 1691 { 1692 core_info_t *core = P->data; 1693 char lname[PATH_MAX], buf[PATH_MAX]; 1694 file_info_t *fp; 1695 map_info_t *mp; 1696 1697 if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) { 1698 dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr); 1699 return (1); /* Keep going; forget this if we can't get a name */ 1700 } 1701 1702 dprintf("rd_loadobj name = \"%s\" rl_base = %p\n", 1703 lname, (void *)rlp->rl_base); 1704 1705 if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) { 1706 dprintf("no mapping for %p\n", (void *)rlp->rl_base); 1707 return (1); /* No mapping; advance to next mapping */ 1708 } 1709 1710 /* 1711 * Create a new file_info_t for this mapping, and therefore for 1712 * this load object. 1713 * 1714 * If there's an ELF header at the beginning of this mapping, 1715 * file_info_new() will try to use its section headers to 1716 * identify any other mappings that belong to this load object. 1717 */ 1718 if ((fp = mp->map_file) == NULL && 1719 (fp = file_info_new(P, mp)) == NULL) { 1720 core->core_errno = errno; 1721 dprintf("failed to malloc mapping data\n"); 1722 return (0); /* Abort */ 1723 } 1724 fp->file_map = mp; 1725 1726 /* Create a local copy of the load object representation */ 1727 if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) { 1728 core->core_errno = errno; 1729 dprintf("failed to malloc mapping data\n"); 1730 return (0); /* Abort */ 1731 } 1732 *fp->file_lo = *rlp; 1733 1734 if (lname[0] != '\0') { 1735 /* 1736 * Naming dance part 1: if we got a name from librtld_db, then 1737 * copy this name to the prmap_t if it is unnamed. If the 1738 * file_info_t is unnamed, name it after the lname. 1739 */ 1740 if (mp->map_pmap.pr_mapname[0] == '\0') { 1741 (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ); 1742 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 1743 } 1744 1745 if (fp->file_lname == NULL) 1746 fp->file_lname = strdup(lname); 1747 1748 } else if (fp->file_lname == NULL && 1749 mp->map_pmap.pr_mapname[0] != '\0') { 1750 /* 1751 * Naming dance part 2: if the mapping is named and the 1752 * file_info_t is not, name the file after the mapping. 1753 */ 1754 fp->file_lname = strdup(mp->map_pmap.pr_mapname); 1755 } 1756 1757 if ((fp->file_rname == NULL) && 1758 (Pfindmap(P, mp, buf, sizeof (buf)) != NULL)) 1759 fp->file_rname = strdup(buf); 1760 1761 if (fp->file_lname != NULL) 1762 fp->file_lbase = basename(fp->file_lname); 1763 if (fp->file_rname != NULL) 1764 fp->file_rbase = basename(fp->file_rname); 1765 1766 /* Associate the file and the mapping. */ 1767 (void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ); 1768 fp->file_pname[PRMAPSZ - 1] = '\0'; 1769 1770 /* 1771 * If no section headers were available then we'll have to 1772 * identify this load object's other mappings with what we've 1773 * got: the start and end of the object's corresponding 1774 * address space. 1775 */ 1776 if (fp->file_saddrs == NULL) { 1777 for (mp = fp->file_map + 1; mp < P->mappings + P->map_count && 1778 mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) { 1779 1780 if (mp->map_file == NULL) { 1781 dprintf("core_iter_mapping %s: associating " 1782 "segment at %p\n", 1783 fp->file_pname, 1784 (void *)mp->map_pmap.pr_vaddr); 1785 mp->map_file = fp; 1786 fp->file_ref++; 1787 } else { 1788 dprintf("core_iter_mapping %s: segment at " 1789 "%p already associated with %s\n", 1790 fp->file_pname, 1791 (void *)mp->map_pmap.pr_vaddr, 1792 (mp == fp->file_map ? "this file" : 1793 mp->map_file->file_pname)); 1794 } 1795 } 1796 } 1797 1798 /* Ensure that all this file's mappings are named. */ 1799 for (mp = fp->file_map; mp < P->mappings + P->map_count && 1800 mp->map_file == fp; mp++) { 1801 if (mp->map_pmap.pr_mapname[0] == '\0' && 1802 !(mp->map_pmap.pr_mflags & MA_BREAK)) { 1803 (void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname, 1804 PRMAPSZ); 1805 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 1806 } 1807 } 1808 1809 /* Attempt to build a symbol table for this file. */ 1810 Pbuild_file_symtab(P, fp); 1811 if (fp->file_elf == NULL) 1812 dprintf("core_iter_mapping: no symtab for %s\n", 1813 fp->file_pname); 1814 1815 /* Locate the start of a data segment associated with this file. */ 1816 if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) { 1817 dprintf("found data for %s at %p (pr_offset 0x%llx)\n", 1818 fp->file_pname, (void *)fp->file_lo->rl_data_base, 1819 mp->map_pmap.pr_offset); 1820 } else { 1821 dprintf("core_iter_mapping: no data found for %s\n", 1822 fp->file_pname); 1823 } 1824 1825 return (1); /* Advance to next mapping */ 1826 } 1827 1828 /* 1829 * Callback function for Pfindexec(). In order to confirm a given pathname, 1830 * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN. 1831 */ 1832 static int 1833 core_exec_open(const char *path, void *efp) 1834 { 1835 if (core_elf_open(efp, path, ET_EXEC, NULL) == 0) 1836 return (1); 1837 if (core_elf_open(efp, path, ET_DYN, NULL) == 0) 1838 return (1); 1839 return (0); 1840 } 1841 1842 /* 1843 * Attempt to load any section headers found in the core file. If present, 1844 * this will refer to non-loadable data added to the core file by the kernel 1845 * based on coreadm(1M) settings, including CTF data and the symbol table. 1846 */ 1847 static void 1848 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp) 1849 { 1850 GElf_Shdr *shp, *shdrs = NULL; 1851 char *shstrtab = NULL; 1852 ulong_t shstrtabsz; 1853 const char *name; 1854 map_info_t *mp; 1855 1856 size_t nbytes; 1857 void *buf; 1858 int i; 1859 1860 if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) { 1861 dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n", 1862 efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum); 1863 return; 1864 } 1865 1866 /* 1867 * Read the section header table from the core file and then iterate 1868 * over the section headers, converting each to a GElf_Shdr. 1869 */ 1870 if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) { 1871 dprintf("failed to malloc %u section headers: %s\n", 1872 (uint_t)efp->e_hdr.e_shnum, strerror(errno)); 1873 return; 1874 } 1875 1876 nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize; 1877 if ((buf = malloc(nbytes)) == NULL) { 1878 dprintf("failed to malloc %d bytes: %s\n", (int)nbytes, 1879 strerror(errno)); 1880 free(shdrs); 1881 goto out; 1882 } 1883 1884 if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) { 1885 dprintf("failed to read section headers at off %lld: %s\n", 1886 (longlong_t)efp->e_hdr.e_shoff, strerror(errno)); 1887 free(buf); 1888 goto out; 1889 } 1890 1891 for (i = 0; i < efp->e_hdr.e_shnum; i++) { 1892 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i; 1893 1894 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) 1895 core_shdr_to_gelf(p, &shdrs[i]); 1896 else 1897 (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr)); 1898 } 1899 1900 free(buf); 1901 buf = NULL; 1902 1903 /* 1904 * Read the .shstrtab section from the core file, terminating it with 1905 * an extra \0 so that a corrupt section will not cause us to die. 1906 */ 1907 shp = &shdrs[efp->e_hdr.e_shstrndx]; 1908 shstrtabsz = shp->sh_size; 1909 1910 if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) { 1911 dprintf("failed to allocate %lu bytes for shstrtab\n", 1912 (ulong_t)shstrtabsz); 1913 goto out; 1914 } 1915 1916 if (pread64(efp->e_fd, shstrtab, shstrtabsz, 1917 shp->sh_offset) != shstrtabsz) { 1918 dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n", 1919 shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno)); 1920 goto out; 1921 } 1922 1923 shstrtab[shstrtabsz] = '\0'; 1924 1925 /* 1926 * Now iterate over each section in the section header table, locating 1927 * sections of interest and initializing more of the ps_prochandle. 1928 */ 1929 for (i = 0; i < efp->e_hdr.e_shnum; i++) { 1930 shp = &shdrs[i]; 1931 name = shstrtab + shp->sh_name; 1932 1933 if (shp->sh_name >= shstrtabsz) { 1934 dprintf("skipping section [%d]: corrupt sh_name\n", i); 1935 continue; 1936 } 1937 1938 if (shp->sh_link >= efp->e_hdr.e_shnum) { 1939 dprintf("skipping section [%d]: corrupt sh_link\n", i); 1940 continue; 1941 } 1942 1943 dprintf("found section header %s (sh_addr 0x%llx)\n", 1944 name, (u_longlong_t)shp->sh_addr); 1945 1946 if (strcmp(name, ".SUNW_ctf") == 0) { 1947 if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) { 1948 dprintf("no map at addr 0x%llx for %s [%d]\n", 1949 (u_longlong_t)shp->sh_addr, name, i); 1950 continue; 1951 } 1952 1953 if (mp->map_file == NULL || 1954 mp->map_file->file_ctf_buf != NULL) { 1955 dprintf("no mapping file or duplicate buffer " 1956 "for %s [%d]\n", name, i); 1957 continue; 1958 } 1959 1960 if ((buf = malloc(shp->sh_size)) == NULL || 1961 pread64(efp->e_fd, buf, shp->sh_size, 1962 shp->sh_offset) != shp->sh_size) { 1963 dprintf("skipping section %s [%d]: %s\n", 1964 name, i, strerror(errno)); 1965 free(buf); 1966 continue; 1967 } 1968 1969 mp->map_file->file_ctf_size = shp->sh_size; 1970 mp->map_file->file_ctf_buf = buf; 1971 1972 if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM) 1973 mp->map_file->file_ctf_dyn = 1; 1974 1975 } else if (strcmp(name, ".symtab") == 0) { 1976 fake_up_symtab(P, &efp->e_hdr, 1977 shp, &shdrs[shp->sh_link]); 1978 } 1979 } 1980 out: 1981 free(shstrtab); 1982 free(shdrs); 1983 } 1984 1985 /* 1986 * Main engine for core file initialization: given an fd for the core file 1987 * and an optional pathname, construct the ps_prochandle. The aout_path can 1988 * either be a suggested executable pathname, or a suggested directory to 1989 * use as a possible current working directory. 1990 */ 1991 struct ps_prochandle * 1992 Pfgrab_core(int core_fd, const char *aout_path, int *perr) 1993 { 1994 struct ps_prochandle *P; 1995 core_info_t *core_info; 1996 map_info_t *stk_mp, *brk_mp; 1997 const char *execname; 1998 char *interp; 1999 int i, notes, pagesize; 2000 uintptr_t addr, base_addr; 2001 struct stat64 stbuf; 2002 void *phbuf, *php; 2003 size_t nbytes; 2004 2005 elf_file_t aout; 2006 elf_file_t core; 2007 2008 Elf_Scn *scn, *intp_scn = NULL; 2009 Elf_Data *dp; 2010 2011 GElf_Phdr phdr, note_phdr; 2012 GElf_Shdr shdr; 2013 GElf_Xword nleft; 2014 2015 if (elf_version(EV_CURRENT) == EV_NONE) { 2016 dprintf("libproc ELF version is more recent than libelf\n"); 2017 *perr = G_ELF; 2018 return (NULL); 2019 } 2020 2021 aout.e_elf = NULL; 2022 aout.e_fd = -1; 2023 2024 core.e_elf = NULL; 2025 core.e_fd = core_fd; 2026 2027 /* 2028 * Allocate and initialize a ps_prochandle structure for the core. 2029 * There are several key pieces of initialization here: 2030 * 2031 * 1. The PS_DEAD state flag marks this prochandle as a core file. 2032 * PS_DEAD also thus prevents all operations which require state 2033 * to be PS_STOP from operating on this handle. 2034 * 2035 * 2. We keep the core file fd in P->asfd since the core file contains 2036 * the remnants of the process address space. 2037 * 2038 * 3. We set the P->info_valid bit because all information about the 2039 * core is determined by the end of this function; there is no need 2040 * for proc_update_maps() to reload mappings at any later point. 2041 * 2042 * 4. The read/write ops vector uses our core_rw() function defined 2043 * above to handle i/o requests. 2044 */ 2045 if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) { 2046 *perr = G_STRANGE; 2047 return (NULL); 2048 } 2049 2050 (void) memset(P, 0, sizeof (struct ps_prochandle)); 2051 (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL); 2052 P->state = PS_DEAD; 2053 P->pid = (pid_t)-1; 2054 P->asfd = core.e_fd; 2055 P->ctlfd = -1; 2056 P->statfd = -1; 2057 P->agentctlfd = -1; 2058 P->agentstatfd = -1; 2059 P->zoneroot = NULL; 2060 P->info_valid = 1; 2061 Pinit_ops(&P->ops, &P_core_ops); 2062 2063 Pinitsym(P); 2064 2065 /* 2066 * Fstat and open the core file and make sure it is a valid ELF core. 2067 */ 2068 if (fstat64(P->asfd, &stbuf) == -1) { 2069 *perr = G_STRANGE; 2070 goto err; 2071 } 2072 2073 if (core_elf_fdopen(&core, ET_CORE, perr) == -1) 2074 goto err; 2075 2076 /* 2077 * Allocate and initialize a core_info_t to hang off the ps_prochandle 2078 * structure. We keep all core-specific information in this structure. 2079 */ 2080 if ((core_info = calloc(1, sizeof (core_info_t))) == NULL) { 2081 *perr = G_STRANGE; 2082 goto err; 2083 } 2084 2085 P->data = core_info; 2086 list_link(&core_info->core_lwp_head, NULL); 2087 core_info->core_size = stbuf.st_size; 2088 /* 2089 * In the days before adjustable core file content, this was the 2090 * default core file content. For new core files, this value will 2091 * be overwritten by the NT_CONTENT note section. 2092 */ 2093 core_info->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP | 2094 CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON | 2095 CC_CONTENT_SHANON; 2096 2097 switch (core.e_hdr.e_ident[EI_CLASS]) { 2098 case ELFCLASS32: 2099 core_info->core_dmodel = PR_MODEL_ILP32; 2100 break; 2101 case ELFCLASS64: 2102 core_info->core_dmodel = PR_MODEL_LP64; 2103 break; 2104 default: 2105 *perr = G_FORMAT; 2106 goto err; 2107 } 2108 2109 /* 2110 * Because the core file may be a large file, we can't use libelf to 2111 * read the Phdrs. We use e_phnum and e_phentsize to simplify things. 2112 */ 2113 nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize; 2114 2115 if ((phbuf = malloc(nbytes)) == NULL) { 2116 *perr = G_STRANGE; 2117 goto err; 2118 } 2119 2120 if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) { 2121 *perr = G_STRANGE; 2122 free(phbuf); 2123 goto err; 2124 } 2125 2126 /* 2127 * Iterate through the program headers in the core file. 2128 * We're interested in two types of Phdrs: PT_NOTE (which 2129 * contains a set of saved /proc structures), and PT_LOAD (which 2130 * represents a memory mapping from the process's address space). 2131 * In the case of PT_NOTE, we're interested in the last PT_NOTE 2132 * in the core file; currently the first PT_NOTE (if present) 2133 * contains /proc structs in the pre-2.6 unstructured /proc format. 2134 */ 2135 for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) { 2136 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64) 2137 (void) memcpy(&phdr, php, sizeof (GElf_Phdr)); 2138 else 2139 core_phdr_to_gelf(php, &phdr); 2140 2141 switch (phdr.p_type) { 2142 case PT_NOTE: 2143 note_phdr = phdr; 2144 notes++; 2145 break; 2146 2147 case PT_LOAD: 2148 if (core_add_mapping(P, &phdr) == -1) { 2149 *perr = G_STRANGE; 2150 free(phbuf); 2151 goto err; 2152 } 2153 break; 2154 } 2155 2156 php = (char *)php + core.e_hdr.e_phentsize; 2157 } 2158 2159 free(phbuf); 2160 2161 Psort_mappings(P); 2162 2163 /* 2164 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE 2165 * was present, abort. The core file is either corrupt or too old. 2166 */ 2167 if (notes == 0 || notes == 1) { 2168 *perr = G_NOTE; 2169 goto err; 2170 } 2171 2172 /* 2173 * Advance the seek pointer to the start of the PT_NOTE data 2174 */ 2175 if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) { 2176 dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n"); 2177 *perr = G_STRANGE; 2178 goto err; 2179 } 2180 2181 /* 2182 * Now process the PT_NOTE structures. Each one is preceded by 2183 * an Elf{32/64}_Nhdr structure describing its type and size. 2184 * 2185 * +--------+ 2186 * | header | 2187 * +--------+ 2188 * | name | 2189 * | ... | 2190 * +--------+ 2191 * | desc | 2192 * | ... | 2193 * +--------+ 2194 */ 2195 for (nleft = note_phdr.p_filesz; nleft > 0; ) { 2196 Elf64_Nhdr nhdr; 2197 off64_t off, namesz; 2198 2199 /* 2200 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr 2201 * as different types, they are both of the same content and 2202 * size, so we don't need to worry about 32/64 conversion here. 2203 */ 2204 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) { 2205 dprintf("Pgrab_core: failed to read ELF note header\n"); 2206 *perr = G_NOTE; 2207 goto err; 2208 } 2209 2210 /* 2211 * According to the System V ABI, the amount of padding 2212 * following the name field should align the description 2213 * field on a 4 byte boundary for 32-bit binaries or on an 8 2214 * byte boundary for 64-bit binaries. However, this change 2215 * was not made correctly during the 64-bit port so all 2216 * descriptions can assume only 4-byte alignment. We ignore 2217 * the name field and the padding to 4-byte alignment. 2218 */ 2219 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4); 2220 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) { 2221 dprintf("failed to seek past name and padding\n"); 2222 *perr = G_STRANGE; 2223 goto err; 2224 } 2225 2226 dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n", 2227 nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz); 2228 2229 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR); 2230 2231 /* 2232 * Invoke the note handler function from our table 2233 */ 2234 if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) { 2235 if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) { 2236 *perr = G_NOTE; 2237 goto err; 2238 } 2239 } else 2240 (void) note_notsup(P, nhdr.n_descsz); 2241 2242 /* 2243 * Seek past the current note data to the next Elf_Nhdr 2244 */ 2245 if (lseek64(P->asfd, off + nhdr.n_descsz, 2246 SEEK_SET) == (off64_t)-1) { 2247 dprintf("Pgrab_core: failed to seek to next nhdr\n"); 2248 *perr = G_STRANGE; 2249 goto err; 2250 } 2251 2252 /* 2253 * Subtract the size of the header and its data from what 2254 * we have left to process. 2255 */ 2256 nleft -= sizeof (nhdr) + namesz + nhdr.n_descsz; 2257 } 2258 2259 if (nleft != 0) { 2260 dprintf("Pgrab_core: note section malformed\n"); 2261 *perr = G_STRANGE; 2262 goto err; 2263 } 2264 2265 if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) { 2266 pagesize = getpagesize(); 2267 dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize); 2268 } 2269 2270 /* 2271 * Locate and label the mappings corresponding to the end of the 2272 * heap (MA_BREAK) and the base of the stack (MA_STACK). 2273 */ 2274 if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) && 2275 (brk_mp = Paddr2mptr(P, P->status.pr_brkbase + 2276 P->status.pr_brksize - 1)) != NULL) 2277 brk_mp->map_pmap.pr_mflags |= MA_BREAK; 2278 else 2279 brk_mp = NULL; 2280 2281 if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL) 2282 stk_mp->map_pmap.pr_mflags |= MA_STACK; 2283 2284 /* 2285 * At this point, we have enough information to look for the 2286 * executable and open it: we have access to the auxv, a psinfo_t, 2287 * and the ability to read from mappings provided by the core file. 2288 */ 2289 (void) Pfindexec(P, aout_path, core_exec_open, &aout); 2290 dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL"); 2291 execname = P->execname ? P->execname : "a.out"; 2292 2293 /* 2294 * Iterate through the sections, looking for the .dynamic and .interp 2295 * sections. If we encounter them, remember their section pointers. 2296 */ 2297 for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) { 2298 char *sname; 2299 2300 if ((gelf_getshdr(scn, &shdr) == NULL) || 2301 (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx, 2302 (size_t)shdr.sh_name)) == NULL) 2303 continue; 2304 2305 if (strcmp(sname, ".interp") == 0) 2306 intp_scn = scn; 2307 } 2308 2309 /* 2310 * Get the AT_BASE auxv element. If this is missing (-1), then 2311 * we assume this is a statically-linked executable. 2312 */ 2313 base_addr = Pgetauxval(P, AT_BASE); 2314 2315 /* 2316 * In order to get librtld_db initialized, we'll need to identify 2317 * and name the mapping corresponding to the run-time linker. The 2318 * AT_BASE auxv element tells us the address where it was mapped, 2319 * and the .interp section of the executable tells us its path. 2320 * If for some reason that doesn't pan out, just use ld.so.1. 2321 */ 2322 if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL && 2323 dp->d_size != 0) { 2324 dprintf(".interp = <%s>\n", (char *)dp->d_buf); 2325 interp = dp->d_buf; 2326 2327 } else if (base_addr != (uintptr_t)-1L) { 2328 if (core_info->core_dmodel == PR_MODEL_LP64) 2329 interp = "/usr/lib/64/ld.so.1"; 2330 else 2331 interp = "/usr/lib/ld.so.1"; 2332 2333 dprintf(".interp section is missing or could not be read; " 2334 "defaulting to %s\n", interp); 2335 } else 2336 dprintf("detected statically linked executable\n"); 2337 2338 /* 2339 * If we have an AT_BASE element, name the mapping at that address 2340 * using the interpreter pathname. Name the corresponding data 2341 * mapping after the interpreter as well. 2342 */ 2343 if (base_addr != (uintptr_t)-1L) { 2344 elf_file_t intf; 2345 2346 P->map_ldso = core_name_mapping(P, base_addr, interp); 2347 2348 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) { 2349 rd_loadobj_t rl; 2350 map_info_t *dmp; 2351 2352 rl.rl_base = base_addr; 2353 dmp = core_find_data(P, intf.e_elf, &rl); 2354 2355 if (dmp != NULL) { 2356 dprintf("renamed data at %p to %s\n", 2357 (void *)rl.rl_data_base, interp); 2358 (void) strncpy(dmp->map_pmap.pr_mapname, 2359 interp, PRMAPSZ); 2360 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2361 } 2362 } 2363 2364 core_elf_close(&intf); 2365 } 2366 2367 /* 2368 * If we have an AT_ENTRY element, name the mapping at that address 2369 * using the special name "a.out" just like /proc does. 2370 */ 2371 if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L) 2372 P->map_exec = core_name_mapping(P, addr, "a.out"); 2373 2374 /* 2375 * If we're a statically linked executable, then just locate the 2376 * executable's text and data and name them after the executable. 2377 */ 2378 if (base_addr == (uintptr_t)-1L) { 2379 map_info_t *tmp, *dmp; 2380 file_info_t *fp; 2381 rd_loadobj_t rl; 2382 2383 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL && 2384 (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) { 2385 (void) strncpy(tmp->map_pmap.pr_mapname, 2386 execname, PRMAPSZ); 2387 tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2388 (void) strncpy(dmp->map_pmap.pr_mapname, 2389 execname, PRMAPSZ); 2390 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2391 } 2392 2393 if ((P->map_exec = tmp) != NULL && 2394 (fp = malloc(sizeof (file_info_t))) != NULL) { 2395 2396 (void) memset(fp, 0, sizeof (file_info_t)); 2397 2398 list_link(fp, &P->file_head); 2399 tmp->map_file = fp; 2400 P->num_files++; 2401 2402 fp->file_ref = 1; 2403 fp->file_fd = -1; 2404 2405 fp->file_lo = malloc(sizeof (rd_loadobj_t)); 2406 fp->file_lname = strdup(execname); 2407 2408 if (fp->file_lo) 2409 *fp->file_lo = rl; 2410 if (fp->file_lname) 2411 fp->file_lbase = basename(fp->file_lname); 2412 if (fp->file_rname) 2413 fp->file_rbase = basename(fp->file_rname); 2414 2415 (void) strcpy(fp->file_pname, 2416 P->mappings[0].map_pmap.pr_mapname); 2417 fp->file_map = tmp; 2418 2419 Pbuild_file_symtab(P, fp); 2420 2421 if (dmp != NULL) { 2422 dmp->map_file = fp; 2423 fp->file_ref++; 2424 } 2425 } 2426 } 2427 2428 core_elf_close(&aout); 2429 2430 /* 2431 * We now have enough information to initialize librtld_db. 2432 * After it warms up, we can iterate through the load object chain 2433 * in the core, which will allow us to construct the file info 2434 * we need to provide symbol information for the other shared 2435 * libraries, and also to fill in the missing mapping names. 2436 */ 2437 rd_log(_libproc_debug); 2438 2439 if ((P->rap = rd_new(P)) != NULL) { 2440 (void) rd_loadobj_iter(P->rap, (rl_iter_f *) 2441 core_iter_mapping, P); 2442 2443 if (core_info->core_errno != 0) { 2444 errno = core_info->core_errno; 2445 *perr = G_STRANGE; 2446 goto err; 2447 } 2448 } else 2449 dprintf("failed to initialize rtld_db agent\n"); 2450 2451 /* 2452 * If there are sections, load them and process the data from any 2453 * sections that we can use to annotate the file_info_t's. 2454 */ 2455 core_load_shdrs(P, &core); 2456 2457 /* 2458 * If we previously located a stack or break mapping, and they are 2459 * still anonymous, we now assume that they were MAP_ANON mappings. 2460 * If brk_mp turns out to now have a name, then the heap is still 2461 * sitting at the end of the executable's data+bss mapping: remove 2462 * the previous MA_BREAK setting to be consistent with /proc. 2463 */ 2464 if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0') 2465 stk_mp->map_pmap.pr_mflags |= MA_ANON; 2466 if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0') 2467 brk_mp->map_pmap.pr_mflags |= MA_ANON; 2468 else if (brk_mp != NULL) 2469 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK; 2470 2471 *perr = 0; 2472 return (P); 2473 2474 err: 2475 Pfree(P); 2476 core_elf_close(&aout); 2477 return (NULL); 2478 } 2479 2480 /* 2481 * Grab a core file using a pathname. We just open it and call Pfgrab_core(). 2482 */ 2483 struct ps_prochandle * 2484 Pgrab_core(const char *core, const char *aout, int gflag, int *perr) 2485 { 2486 int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR; 2487 2488 if ((fd = open64(core, oflag)) >= 0) 2489 return (Pfgrab_core(fd, aout, perr)); 2490 2491 if (errno != ENOENT) 2492 *perr = G_STRANGE; 2493 else 2494 *perr = G_NOCORE; 2495 2496 return (NULL); 2497 }