1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 /*
  26  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
  27  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
  28  */
  29 
  30 #include <sys/types.h>
  31 #include <sys/utsname.h>
  32 #include <sys/sysmacros.h>
  33 #include <sys/proc.h>
  34 
  35 #include <alloca.h>
  36 #include <rtld_db.h>
  37 #include <libgen.h>
  38 #include <limits.h>
  39 #include <string.h>
  40 #include <stdlib.h>
  41 #include <unistd.h>
  42 #include <errno.h>
  43 #include <gelf.h>
  44 #include <stddef.h>
  45 #include <signal.h>
  46 
  47 #include "libproc.h"
  48 #include "Pcontrol.h"
  49 #include "P32ton.h"
  50 #include "Putil.h"
  51 
  52 /*
  53  * Pcore.c - Code to initialize a ps_prochandle from a core dump.  We
  54  * allocate an additional structure to hold information from the core
  55  * file, and attach this to the standard ps_prochandle in place of the
  56  * ability to examine /proc/<pid>/ files.
  57  */
  58 
  59 /*
  60  * Basic i/o function for reading and writing from the process address space
  61  * stored in the core file and associated shared libraries.  We compute the
  62  * appropriate fd and offsets, and let the provided prw function do the rest.
  63  */
  64 static ssize_t
  65 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
  66     ssize_t (*prw)(int, void *, size_t, off64_t))
  67 {
  68         ssize_t resid = n;
  69 
  70         while (resid != 0) {
  71                 map_info_t *mp = Paddr2mptr(P, addr);
  72 
  73                 uintptr_t mapoff;
  74                 ssize_t len;
  75                 off64_t off;
  76                 int fd;
  77 
  78                 if (mp == NULL)
  79                         break;  /* No mapping for this address */
  80 
  81                 if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
  82                         if (mp->map_file == NULL || mp->map_file->file_fd < 0)
  83                                 break;  /* No file or file not open */
  84 
  85                         fd = mp->map_file->file_fd;
  86                 } else
  87                         fd = P->asfd;
  88 
  89                 mapoff = addr - mp->map_pmap.pr_vaddr;
  90                 len = MIN(resid, mp->map_pmap.pr_size - mapoff);
  91                 off = mp->map_offset + mapoff;
  92 
  93                 if ((len = prw(fd, buf, len, off)) <= 0)
  94                         break;
  95 
  96                 resid -= len;
  97                 addr += len;
  98                 buf = (char *)buf + len;
  99         }
 100 
 101         /*
 102          * Important: Be consistent with the behavior of i/o on the as file:
 103          * writing to an invalid address yields EIO; reading from an invalid
 104          * address falls through to returning success and zero bytes.
 105          */
 106         if (resid == n && n != 0 && prw != pread64) {
 107                 errno = EIO;
 108                 return (-1);
 109         }
 110 
 111         return (n - resid);
 112 }
 113 
 114 static ssize_t
 115 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr)
 116 {
 117         return (core_rw(P, buf, n, addr, pread64));
 118 }
 119 
 120 static ssize_t
 121 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr)
 122 {
 123         return (core_rw(P, (void *)buf, n, addr,
 124             (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64));
 125 }
 126 
 127 static const ps_rwops_t P_core_ops = { Pread_core, Pwrite_core };
 128 
 129 /*
 130  * Return the lwp_info_t for the given lwpid.  If no such lwpid has been
 131  * encountered yet, allocate a new structure and return a pointer to it.
 132  * Create a list of lwp_info_t structures sorted in decreasing lwp_id order.
 133  */
 134 static lwp_info_t *
 135 lwpid2info(struct ps_prochandle *P, lwpid_t id)
 136 {
 137         lwp_info_t *lwp = list_next(&P->core->core_lwp_head);
 138         lwp_info_t *next;
 139         uint_t i;
 140 
 141         for (i = 0; i < P->core->core_nlwp; i++, lwp = list_next(lwp)) {
 142                 if (lwp->lwp_id == id) {
 143                         P->core->core_lwp = lwp;
 144                         return (lwp);
 145                 }
 146                 if (lwp->lwp_id < id) {
 147                         break;
 148                 }
 149         }
 150 
 151         next = lwp;
 152         if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL)
 153                 return (NULL);
 154 
 155         list_link(lwp, next);
 156         lwp->lwp_id = id;
 157 
 158         P->core->core_lwp = lwp;
 159         P->core->core_nlwp++;
 160 
 161         return (lwp);
 162 }
 163 
 164 /*
 165  * The core file itself contains a series of NOTE segments containing saved
 166  * structures from /proc at the time the process died.  For each note we
 167  * comprehend, we define a function to read it in from the core file,
 168  * convert it to our native data model if necessary, and store it inside
 169  * the ps_prochandle.  Each function is invoked by Pfgrab_core() with the
 170  * seek pointer on P->asfd positioned appropriately.  We populate a table
 171  * of pointers to these note functions below.
 172  */
 173 
 174 static int
 175 note_pstatus(struct ps_prochandle *P, size_t nbytes)
 176 {
 177 #ifdef _LP64
 178         if (P->core->core_dmodel == PR_MODEL_ILP32) {
 179                 pstatus32_t ps32;
 180 
 181                 if (nbytes < sizeof (pstatus32_t) ||
 182                     read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
 183                         goto err;
 184 
 185                 pstatus_32_to_n(&ps32, &P->status);
 186 
 187         } else
 188 #endif
 189         if (nbytes < sizeof (pstatus_t) ||
 190             read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t))
 191                 goto err;
 192 
 193         P->orig_status = P->status;
 194         P->pid = P->status.pr_pid;
 195 
 196         return (0);
 197 
 198 err:
 199         dprintf("Pgrab_core: failed to read NT_PSTATUS\n");
 200         return (-1);
 201 }
 202 
 203 static int
 204 note_lwpstatus(struct ps_prochandle *P, size_t nbytes)
 205 {
 206         lwp_info_t *lwp;
 207         lwpstatus_t lps;
 208 
 209 #ifdef _LP64
 210         if (P->core->core_dmodel == PR_MODEL_ILP32) {
 211                 lwpstatus32_t l32;
 212 
 213                 if (nbytes < sizeof (lwpstatus32_t) ||
 214                     read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
 215                         goto err;
 216 
 217                 lwpstatus_32_to_n(&l32, &lps);
 218         } else
 219 #endif
 220         if (nbytes < sizeof (lwpstatus_t) ||
 221             read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
 222                 goto err;
 223 
 224         if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
 225                 dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n");
 226                 return (-1);
 227         }
 228 
 229         /*
 230          * Erase a useless and confusing artifact of the kernel implementation:
 231          * the lwps which did *not* create the core will show SIGKILL.  We can
 232          * be assured this is bogus because SIGKILL can't produce core files.
 233          */
 234         if (lps.pr_cursig == SIGKILL)
 235                 lps.pr_cursig = 0;
 236 
 237         (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps));
 238         return (0);
 239 
 240 err:
 241         dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n");
 242         return (-1);
 243 }
 244 
 245 static int
 246 note_psinfo(struct ps_prochandle *P, size_t nbytes)
 247 {
 248 #ifdef _LP64
 249         if (P->core->core_dmodel == PR_MODEL_ILP32) {
 250                 psinfo32_t ps32;
 251 
 252                 if (nbytes < sizeof (psinfo32_t) ||
 253                     read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
 254                         goto err;
 255 
 256                 psinfo_32_to_n(&ps32, &P->psinfo);
 257         } else
 258 #endif
 259         if (nbytes < sizeof (psinfo_t) ||
 260             read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
 261                 goto err;
 262 
 263         dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
 264         dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
 265         dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
 266 
 267         return (0);
 268 
 269 err:
 270         dprintf("Pgrab_core: failed to read NT_PSINFO\n");
 271         return (-1);
 272 }
 273 
 274 static int
 275 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes)
 276 {
 277         lwp_info_t *lwp;
 278         lwpsinfo_t lps;
 279 
 280 #ifdef _LP64
 281         if (P->core->core_dmodel == PR_MODEL_ILP32) {
 282                 lwpsinfo32_t l32;
 283 
 284                 if (nbytes < sizeof (lwpsinfo32_t) ||
 285                     read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
 286                         goto err;
 287 
 288                 lwpsinfo_32_to_n(&l32, &lps);
 289         } else
 290 #endif
 291         if (nbytes < sizeof (lwpsinfo_t) ||
 292             read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
 293                 goto err;
 294 
 295         if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
 296                 dprintf("Pgrab_core: failed to add NT_LWPSINFO\n");
 297                 return (-1);
 298         }
 299 
 300         (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps));
 301         return (0);
 302 
 303 err:
 304         dprintf("Pgrab_core: failed to read NT_LWPSINFO\n");
 305         return (-1);
 306 }
 307 
 308 static int
 309 note_fdinfo(struct ps_prochandle *P, size_t nbytes)
 310 {
 311         prfdinfo_t prfd;
 312         fd_info_t *fip;
 313 
 314         if ((nbytes < sizeof (prfd)) ||
 315             (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) {
 316                 dprintf("Pgrab_core: failed to read NT_FDINFO\n");
 317                 return (-1);
 318         }
 319 
 320         if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) {
 321                 dprintf("Pgrab_core: failed to add NT_FDINFO\n");
 322                 return (-1);
 323         }
 324         (void) memcpy(&fip->fd_info, &prfd, sizeof (prfd));
 325         return (0);
 326 }
 327 
 328 static int
 329 note_platform(struct ps_prochandle *P, size_t nbytes)
 330 {
 331         char *plat;
 332 
 333         if (P->core->core_platform != NULL)
 334                 return (0);     /* Already seen */
 335 
 336         if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) {
 337                 if (read(P->asfd, plat, nbytes) != nbytes) {
 338                         dprintf("Pgrab_core: failed to read NT_PLATFORM\n");
 339                         free(plat);
 340                         return (-1);
 341                 }
 342                 plat[nbytes - 1] = '\0';
 343                 P->core->core_platform = plat;
 344         }
 345 
 346         return (0);
 347 }
 348 
 349 static int
 350 note_utsname(struct ps_prochandle *P, size_t nbytes)
 351 {
 352         size_t ubytes = sizeof (struct utsname);
 353         struct utsname *utsp;
 354 
 355         if (P->core->core_uts != NULL || nbytes < ubytes)
 356                 return (0);     /* Already seen or bad size */
 357 
 358         if ((utsp = malloc(ubytes)) == NULL)
 359                 return (-1);
 360 
 361         if (read(P->asfd, utsp, ubytes) != ubytes) {
 362                 dprintf("Pgrab_core: failed to read NT_UTSNAME\n");
 363                 free(utsp);
 364                 return (-1);
 365         }
 366 
 367         if (_libproc_debug) {
 368                 dprintf("uts.sysname = \"%s\"\n", utsp->sysname);
 369                 dprintf("uts.nodename = \"%s\"\n", utsp->nodename);
 370                 dprintf("uts.release = \"%s\"\n", utsp->release);
 371                 dprintf("uts.version = \"%s\"\n", utsp->version);
 372                 dprintf("uts.machine = \"%s\"\n", utsp->machine);
 373         }
 374 
 375         P->core->core_uts = utsp;
 376         return (0);
 377 }
 378 
 379 static int
 380 note_content(struct ps_prochandle *P, size_t nbytes)
 381 {
 382         core_content_t content;
 383 
 384         if (sizeof (P->core->core_content) != nbytes)
 385                 return (-1);
 386 
 387         if (read(P->asfd, &content, sizeof (content)) != sizeof (content))
 388                 return (-1);
 389 
 390         P->core->core_content = content;
 391 
 392         dprintf("core content = %llx\n", content);
 393 
 394         return (0);
 395 }
 396 
 397 static int
 398 note_cred(struct ps_prochandle *P, size_t nbytes)
 399 {
 400         prcred_t *pcrp;
 401         int ngroups;
 402         const size_t min_size = sizeof (prcred_t) - sizeof (gid_t);
 403 
 404         /*
 405          * We allow for prcred_t notes that are actually smaller than a
 406          * prcred_t since the last member isn't essential if there are
 407          * no group memberships. This allows for more flexibility when it
 408          * comes to slightly malformed -- but still valid -- notes.
 409          */
 410         if (P->core->core_cred != NULL || nbytes < min_size)
 411                 return (0);     /* Already seen or bad size */
 412 
 413         ngroups = (nbytes - min_size) / sizeof (gid_t);
 414         nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t);
 415 
 416         if ((pcrp = malloc(nbytes)) == NULL)
 417                 return (-1);
 418 
 419         if (read(P->asfd, pcrp, nbytes) != nbytes) {
 420                 dprintf("Pgrab_core: failed to read NT_PRCRED\n");
 421                 free(pcrp);
 422                 return (-1);
 423         }
 424 
 425         if (pcrp->pr_ngroups > ngroups) {
 426                 dprintf("pr_ngroups = %d; resetting to %d based on note size\n",
 427                     pcrp->pr_ngroups, ngroups);
 428                 pcrp->pr_ngroups = ngroups;
 429         }
 430 
 431         P->core->core_cred = pcrp;
 432         return (0);
 433 }
 434 
 435 #if defined(__i386) || defined(__amd64)
 436 static int
 437 note_ldt(struct ps_prochandle *P, size_t nbytes)
 438 {
 439         struct ssd *pldt;
 440         uint_t nldt;
 441 
 442         if (P->core->core_ldt != NULL || nbytes < sizeof (struct ssd))
 443                 return (0);     /* Already seen or bad size */
 444 
 445         nldt = nbytes / sizeof (struct ssd);
 446         nbytes = nldt * sizeof (struct ssd);
 447 
 448         if ((pldt = malloc(nbytes)) == NULL)
 449                 return (-1);
 450 
 451         if (read(P->asfd, pldt, nbytes) != nbytes) {
 452                 dprintf("Pgrab_core: failed to read NT_LDT\n");
 453                 free(pldt);
 454                 return (-1);
 455         }
 456 
 457         P->core->core_ldt = pldt;
 458         P->core->core_nldt = nldt;
 459         return (0);
 460 }
 461 #endif  /* __i386 */
 462 
 463 static int
 464 note_priv(struct ps_prochandle *P, size_t nbytes)
 465 {
 466         prpriv_t *pprvp;
 467 
 468         if (P->core->core_priv != NULL || nbytes < sizeof (prpriv_t))
 469                 return (0);     /* Already seen or bad size */
 470 
 471         if ((pprvp = malloc(nbytes)) == NULL)
 472                 return (-1);
 473 
 474         if (read(P->asfd, pprvp, nbytes) != nbytes) {
 475                 dprintf("Pgrab_core: failed to read NT_PRPRIV\n");
 476                 free(pprvp);
 477                 return (-1);
 478         }
 479 
 480         P->core->core_priv = pprvp;
 481         P->core->core_priv_size = nbytes;
 482         return (0);
 483 }
 484 
 485 static int
 486 note_priv_info(struct ps_prochandle *P, size_t nbytes)
 487 {
 488         extern void *__priv_parse_info();
 489         priv_impl_info_t *ppii;
 490 
 491         if (P->core->core_privinfo != NULL ||
 492             nbytes < sizeof (priv_impl_info_t))
 493                 return (0);     /* Already seen or bad size */
 494 
 495         if ((ppii = malloc(nbytes)) == NULL)
 496                 return (-1);
 497 
 498         if (read(P->asfd, ppii, nbytes) != nbytes ||
 499             PRIV_IMPL_INFO_SIZE(ppii) != nbytes) {
 500                 dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n");
 501                 free(ppii);
 502                 return (-1);
 503         }
 504 
 505         P->core->core_privinfo = __priv_parse_info(ppii);
 506         P->core->core_ppii = ppii;
 507         return (0);
 508 }
 509 
 510 static int
 511 note_zonename(struct ps_prochandle *P, size_t nbytes)
 512 {
 513         char *zonename;
 514 
 515         if (P->core->core_zonename != NULL)
 516                 return (0);     /* Already seen */
 517 
 518         if (nbytes != 0) {
 519                 if ((zonename = malloc(nbytes)) == NULL)
 520                         return (-1);
 521                 if (read(P->asfd, zonename, nbytes) != nbytes) {
 522                         dprintf("Pgrab_core: failed to read NT_ZONENAME\n");
 523                         free(zonename);
 524                         return (-1);
 525                 }
 526                 zonename[nbytes - 1] = '\0';
 527                 P->core->core_zonename = zonename;
 528         }
 529 
 530         return (0);
 531 }
 532 
 533 static int
 534 note_auxv(struct ps_prochandle *P, size_t nbytes)
 535 {
 536         size_t n, i;
 537 
 538 #ifdef _LP64
 539         if (P->core->core_dmodel == PR_MODEL_ILP32) {
 540                 auxv32_t *a32;
 541 
 542                 n = nbytes / sizeof (auxv32_t);
 543                 nbytes = n * sizeof (auxv32_t);
 544                 a32 = alloca(nbytes);
 545 
 546                 if (read(P->asfd, a32, nbytes) != nbytes) {
 547                         dprintf("Pgrab_core: failed to read NT_AUXV\n");
 548                         return (-1);
 549                 }
 550 
 551                 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL)
 552                         return (-1);
 553 
 554                 for (i = 0; i < n; i++)
 555                         auxv_32_to_n(&a32[i], &P->auxv[i]);
 556 
 557         } else {
 558 #endif
 559                 n = nbytes / sizeof (auxv_t);
 560                 nbytes = n * sizeof (auxv_t);
 561 
 562                 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL)
 563                         return (-1);
 564 
 565                 if (read(P->asfd, P->auxv, nbytes) != nbytes) {
 566                         free(P->auxv);
 567                         P->auxv = NULL;
 568                         return (-1);
 569                 }
 570 #ifdef _LP64
 571         }
 572 #endif
 573 
 574         if (_libproc_debug) {
 575                 for (i = 0; i < n; i++) {
 576                         dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i,
 577                             P->auxv[i].a_type, P->auxv[i].a_un.a_val);
 578                 }
 579         }
 580 
 581         /*
 582          * Defensive coding for loops which depend upon the auxv array being
 583          * terminated by an AT_NULL element; in each case, we've allocated
 584          * P->auxv to have an additional element which we force to be AT_NULL.
 585          */
 586         P->auxv[n].a_type = AT_NULL;
 587         P->auxv[n].a_un.a_val = 0L;
 588         P->nauxv = (int)n;
 589 
 590         return (0);
 591 }
 592 
 593 #ifdef __sparc
 594 static int
 595 note_xreg(struct ps_prochandle *P, size_t nbytes)
 596 {
 597         lwp_info_t *lwp = P->core->core_lwp;
 598         size_t xbytes = sizeof (prxregset_t);
 599         prxregset_t *xregs;
 600 
 601         if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes)
 602                 return (0);     /* No lwp yet, already seen, or bad size */
 603 
 604         if ((xregs = malloc(xbytes)) == NULL)
 605                 return (-1);
 606 
 607         if (read(P->asfd, xregs, xbytes) != xbytes) {
 608                 dprintf("Pgrab_core: failed to read NT_PRXREG\n");
 609                 free(xregs);
 610                 return (-1);
 611         }
 612 
 613         lwp->lwp_xregs = xregs;
 614         return (0);
 615 }
 616 
 617 static int
 618 note_gwindows(struct ps_prochandle *P, size_t nbytes)
 619 {
 620         lwp_info_t *lwp = P->core->core_lwp;
 621 
 622         if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
 623                 return (0);     /* No lwp yet or already seen or no data */
 624 
 625         if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
 626                 return (-1);
 627 
 628         /*
 629          * Since the amount of gwindows data varies with how many windows were
 630          * actually saved, we just read up to the minimum of the note size
 631          * and the size of the gwindows_t type.  It doesn't matter if the read
 632          * fails since we have to zero out gwindows first anyway.
 633          */
 634 #ifdef _LP64
 635         if (P->core->core_dmodel == PR_MODEL_ILP32) {
 636                 gwindows32_t g32;
 637 
 638                 (void) memset(&g32, 0, sizeof (g32));
 639                 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
 640                 gwindows_32_to_n(&g32, lwp->lwp_gwins);
 641 
 642         } else {
 643 #endif
 644                 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));
 645                 (void) read(P->asfd, lwp->lwp_gwins,
 646                     MIN(nbytes, sizeof (gwindows_t)));
 647 #ifdef _LP64
 648         }
 649 #endif
 650         return (0);
 651 }
 652 
 653 #ifdef __sparcv9
 654 static int
 655 note_asrs(struct ps_prochandle *P, size_t nbytes)
 656 {
 657         lwp_info_t *lwp = P->core->core_lwp;
 658         int64_t *asrs;
 659 
 660         if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
 661                 return (0);     /* No lwp yet, already seen, or bad size */
 662 
 663         if ((asrs = malloc(sizeof (asrset_t))) == NULL)
 664                 return (-1);
 665 
 666         if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
 667                 dprintf("Pgrab_core: failed to read NT_ASRS\n");
 668                 free(asrs);
 669                 return (-1);
 670         }
 671 
 672         lwp->lwp_asrs = asrs;
 673         return (0);
 674 }
 675 #endif  /* __sparcv9 */
 676 #endif  /* __sparc */
 677 
 678 static int
 679 note_spymaster(struct ps_prochandle *P, size_t nbytes)
 680 {
 681 #ifdef _LP64
 682         if (P->core->core_dmodel == PR_MODEL_ILP32) {
 683                 psinfo32_t ps32;
 684 
 685                 if (nbytes < sizeof (psinfo32_t) ||
 686                     read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
 687                         goto err;
 688 
 689                 psinfo_32_to_n(&ps32, &P->spymaster);
 690         } else
 691 #endif
 692         if (nbytes < sizeof (psinfo_t) || read(P->asfd,
 693             &P->spymaster, sizeof (psinfo_t)) != sizeof (psinfo_t))
 694                 goto err;
 695 
 696         dprintf("spymaster pr_fname = <%s>\n", P->psinfo.pr_fname);
 697         dprintf("spymaster pr_psargs = <%s>\n", P->psinfo.pr_psargs);
 698         dprintf("spymaster pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
 699 
 700         return (0);
 701 
 702 err:
 703         dprintf("Pgrab_core: failed to read NT_SPYMASTER\n");
 704         return (-1);
 705 }
 706 
 707 /*ARGSUSED*/
 708 static int
 709 note_notsup(struct ps_prochandle *P, size_t nbytes)
 710 {
 711         dprintf("skipping unsupported note type\n");
 712         return (0);
 713 }
 714 
 715 /*
 716  * Populate a table of function pointers indexed by Note type with our
 717  * functions to process each type of core file note:
 718  */
 719 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = {
 720         note_notsup,            /*  0   unassigned              */
 721         note_notsup,            /*  1   NT_PRSTATUS (old)       */
 722         note_notsup,            /*  2   NT_PRFPREG (old)        */
 723         note_notsup,            /*  3   NT_PRPSINFO (old)       */
 724 #ifdef __sparc
 725         note_xreg,              /*  4   NT_PRXREG               */
 726 #else
 727         note_notsup,            /*  4   NT_PRXREG               */
 728 #endif
 729         note_platform,          /*  5   NT_PLATFORM             */
 730         note_auxv,              /*  6   NT_AUXV                 */
 731 #ifdef __sparc
 732         note_gwindows,          /*  7   NT_GWINDOWS             */
 733 #ifdef __sparcv9
 734         note_asrs,              /*  8   NT_ASRS                 */
 735 #else
 736         note_notsup,            /*  8   NT_ASRS                 */
 737 #endif
 738 #else
 739         note_notsup,            /*  7   NT_GWINDOWS             */
 740         note_notsup,            /*  8   NT_ASRS                 */
 741 #endif
 742 #if defined(__i386) || defined(__amd64)
 743         note_ldt,               /*  9   NT_LDT                  */
 744 #else
 745         note_notsup,            /*  9   NT_LDT                  */
 746 #endif
 747         note_pstatus,           /* 10   NT_PSTATUS              */
 748         note_notsup,            /* 11   unassigned              */
 749         note_notsup,            /* 12   unassigned              */
 750         note_psinfo,            /* 13   NT_PSINFO               */
 751         note_cred,              /* 14   NT_PRCRED               */
 752         note_utsname,           /* 15   NT_UTSNAME              */
 753         note_lwpstatus,         /* 16   NT_LWPSTATUS            */
 754         note_lwpsinfo,          /* 17   NT_LWPSINFO             */
 755         note_priv,              /* 18   NT_PRPRIV               */
 756         note_priv_info,         /* 19   NT_PRPRIVINFO           */
 757         note_content,           /* 20   NT_CONTENT              */
 758         note_zonename,          /* 21   NT_ZONENAME             */
 759         note_fdinfo,            /* 22   NT_FDINFO               */
 760         note_spymaster,         /* 23   NT_SPYMASTER            */
 761 };
 762 
 763 static void
 764 core_report_mapping(struct ps_prochandle *P, GElf_Phdr *php)
 765 {
 766         prkillinfo_t killinfo;
 767         siginfo_t *si = &killinfo.prk_info;
 768         char signame[SIG2STR_MAX], sig[64], info[64];
 769         void *addr = (void *)(uintptr_t)php->p_vaddr;
 770 
 771         const char *errfmt = "core file data for mapping at %p not saved: %s\n";
 772         const char *incfmt = "core file incomplete due to %s%s\n";
 773         const char *msgfmt = "mappings at and above %p are missing\n";
 774 
 775         if (!(php->p_flags & PF_SUNW_KILLED)) {
 776                 int err = 0;
 777 
 778                 (void) pread64(P->asfd, &err,
 779                     sizeof (err), (off64_t)php->p_offset);
 780 
 781                 Perror_printf(P, errfmt, addr, strerror(err));
 782                 dprintf(errfmt, addr, strerror(err));
 783                 return;
 784         }
 785 
 786         if (!(php->p_flags & PF_SUNW_SIGINFO))
 787                 return;
 788 
 789         (void) memset(&killinfo, 0, sizeof (killinfo));
 790 
 791         (void) pread64(P->asfd, &killinfo,
 792             sizeof (killinfo), (off64_t)php->p_offset);
 793 
 794         /*
 795          * While there is (or at least should be) only one segment that has
 796          * PF_SUNW_SIGINFO set, the signal information there is globally
 797          * useful (even if only to those debugging libproc consumers); we hang
 798          * the signal information gleaned here off of the ps_prochandle.
 799          */
 800         P->map_missing = php->p_vaddr;
 801         P->killinfo = killinfo.prk_info;
 802 
 803         if (sig2str(si->si_signo, signame) == -1) {
 804                 (void) snprintf(sig, sizeof (sig),
 805                     "<Unknown signal: 0x%x>, ", si->si_signo);
 806         } else {
 807                 (void) snprintf(sig, sizeof (sig), "SIG%s, ", signame);
 808         }
 809 
 810         if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
 811                 (void) snprintf(info, sizeof (info),
 812                     "pid=%d uid=%d zone=%d ctid=%d",
 813                     si->si_pid, si->si_uid, si->si_zoneid, si->si_ctid);
 814         } else {
 815                 (void) snprintf(info, sizeof (info),
 816                     "code=%d", si->si_code);
 817         }
 818 
 819         Perror_printf(P, incfmt, sig, info);
 820         Perror_printf(P, msgfmt, addr);
 821 
 822         dprintf(incfmt, sig, info);
 823         dprintf(msgfmt, addr);
 824 }
 825 
 826 /*
 827  * Add information on the address space mapping described by the given
 828  * PT_LOAD program header.  We fill in more information on the mapping later.
 829  */
 830 static int
 831 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php)
 832 {
 833         prmap_t pmap;
 834 
 835         dprintf("mapping base %llx filesz %llu memsz %llu offset %llu\n",
 836             (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz,
 837             (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset);
 838 
 839         pmap.pr_vaddr = (uintptr_t)php->p_vaddr;
 840         pmap.pr_size = php->p_memsz;
 841 
 842         /*
 843          * If Pgcore() or elfcore() fail to write a mapping, they will set
 844          * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us.
 845          */
 846         if (php->p_flags & PF_SUNW_FAILURE) {
 847                 core_report_mapping(P, php);
 848         } else if (php->p_filesz != 0 && php->p_offset >= P->core->core_size) {
 849                 Perror_printf(P, "core file may be corrupt -- data for mapping "
 850                     "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
 851                 dprintf("core file may be corrupt -- data for mapping "
 852                     "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
 853         }
 854 
 855         /*
 856          * The mapping name and offset will hopefully be filled in
 857          * by the librtld_db agent.  Unfortunately, if it isn't a
 858          * shared library mapping, this information is gone forever.
 859          */
 860         pmap.pr_mapname[0] = '\0';
 861         pmap.pr_offset = 0;
 862 
 863         pmap.pr_mflags = 0;
 864         if (php->p_flags & PF_R)
 865                 pmap.pr_mflags |= MA_READ;
 866         if (php->p_flags & PF_W)
 867                 pmap.pr_mflags |= MA_WRITE;
 868         if (php->p_flags & PF_X)
 869                 pmap.pr_mflags |= MA_EXEC;
 870 
 871         if (php->p_filesz == 0)
 872                 pmap.pr_mflags |= MA_RESERVED1;
 873 
 874         /*
 875          * At the time of adding this mapping, we just zero the pagesize.
 876          * Once we've processed more of the core file, we'll have the
 877          * pagesize from the auxv's AT_PAGESZ element and we can fill this in.
 878          */
 879         pmap.pr_pagesize = 0;
 880 
 881         /*
 882          * Unfortunately whether or not the mapping was a System V
 883          * shared memory segment is lost.  We use -1 to mark it as not shm.
 884          */
 885         pmap.pr_shmid = -1;
 886 
 887         return (Padd_mapping(P, php->p_offset, NULL, &pmap));
 888 }
 889 
 890 /*
 891  * Given a virtual address, name the mapping at that address using the
 892  * specified name, and return the map_info_t pointer.
 893  */
 894 static map_info_t *
 895 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name)
 896 {
 897         map_info_t *mp = Paddr2mptr(P, addr);
 898 
 899         if (mp != NULL) {
 900                 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ);
 901                 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
 902         }
 903 
 904         return (mp);
 905 }
 906 
 907 /*
 908  * libproc uses libelf for all of its symbol table manipulation. This function
 909  * takes a symbol table and string table from a core file and places them
 910  * in a memory backed elf file.
 911  */
 912 static void
 913 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr,
 914     GElf_Shdr *symtab, GElf_Shdr *strtab)
 915 {
 916         size_t size;
 917         off64_t off, base;
 918         map_info_t *mp;
 919         file_info_t *fp;
 920         Elf_Scn *scn;
 921         Elf_Data *data;
 922 
 923         if (symtab->sh_addr == 0 ||
 924             (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL ||
 925             (fp = mp->map_file) == NULL) {
 926                 dprintf("fake_up_symtab: invalid section\n");
 927                 return;
 928         }
 929 
 930         if (fp->file_symtab.sym_data_pri != NULL) {
 931                 dprintf("Symbol table already loaded (sh_addr 0x%lx)\n",
 932                     (long)symtab->sh_addr);
 933                 return;
 934         }
 935 
 936         if (P->status.pr_dmodel == PR_MODEL_ILP32) {
 937                 struct {
 938                         Elf32_Ehdr ehdr;
 939                         Elf32_Shdr shdr[3];
 940                         char data[1];
 941                 } *b;
 942 
 943                 base = sizeof (b->ehdr) + sizeof (b->shdr);
 944                 size = base + symtab->sh_size + strtab->sh_size;
 945 
 946                 if ((b = calloc(1, size)) == NULL)
 947                         return;
 948 
 949                 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
 950                     sizeof (ehdr->e_ident));
 951                 b->ehdr.e_type = ehdr->e_type;
 952                 b->ehdr.e_machine = ehdr->e_machine;
 953                 b->ehdr.e_version = ehdr->e_version;
 954                 b->ehdr.e_flags = ehdr->e_flags;
 955                 b->ehdr.e_ehsize = sizeof (b->ehdr);
 956                 b->ehdr.e_shoff = sizeof (b->ehdr);
 957                 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
 958                 b->ehdr.e_shnum = 3;
 959                 off = 0;
 960 
 961                 b->shdr[1].sh_size = symtab->sh_size;
 962                 b->shdr[1].sh_type = SHT_SYMTAB;
 963                 b->shdr[1].sh_offset = off + base;
 964                 b->shdr[1].sh_entsize = sizeof (Elf32_Sym);
 965                 b->shdr[1].sh_link = 2;
 966                 b->shdr[1].sh_info =  symtab->sh_info;
 967                 b->shdr[1].sh_addralign = symtab->sh_addralign;
 968 
 969                 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
 970                     symtab->sh_offset) != b->shdr[1].sh_size) {
 971                         dprintf("fake_up_symtab: pread of symtab[1] failed\n");
 972                         free(b);
 973                         return;
 974                 }
 975 
 976                 off += b->shdr[1].sh_size;
 977 
 978                 b->shdr[2].sh_flags = SHF_STRINGS;
 979                 b->shdr[2].sh_size = strtab->sh_size;
 980                 b->shdr[2].sh_type = SHT_STRTAB;
 981                 b->shdr[2].sh_offset = off + base;
 982                 b->shdr[2].sh_info =  strtab->sh_info;
 983                 b->shdr[2].sh_addralign = 1;
 984 
 985                 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
 986                     strtab->sh_offset) != b->shdr[2].sh_size) {
 987                         dprintf("fake_up_symtab: pread of symtab[2] failed\n");
 988                         free(b);
 989                         return;
 990                 }
 991 
 992                 off += b->shdr[2].sh_size;
 993 
 994                 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
 995                 if (fp->file_symtab.sym_elf == NULL) {
 996                         free(b);
 997                         return;
 998                 }
 999 
1000                 fp->file_symtab.sym_elfmem = b;
1001 #ifdef _LP64
1002         } else {
1003                 struct {
1004                         Elf64_Ehdr ehdr;
1005                         Elf64_Shdr shdr[3];
1006                         char data[1];
1007                 } *b;
1008 
1009                 base = sizeof (b->ehdr) + sizeof (b->shdr);
1010                 size = base + symtab->sh_size + strtab->sh_size;
1011 
1012                 if ((b = calloc(1, size)) == NULL)
1013                         return;
1014 
1015                 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1016                     sizeof (ehdr->e_ident));
1017                 b->ehdr.e_type = ehdr->e_type;
1018                 b->ehdr.e_machine = ehdr->e_machine;
1019                 b->ehdr.e_version = ehdr->e_version;
1020                 b->ehdr.e_flags = ehdr->e_flags;
1021                 b->ehdr.e_ehsize = sizeof (b->ehdr);
1022                 b->ehdr.e_shoff = sizeof (b->ehdr);
1023                 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1024                 b->ehdr.e_shnum = 3;
1025                 off = 0;
1026 
1027                 b->shdr[1].sh_size = symtab->sh_size;
1028                 b->shdr[1].sh_type = SHT_SYMTAB;
1029                 b->shdr[1].sh_offset = off + base;
1030                 b->shdr[1].sh_entsize = sizeof (Elf64_Sym);
1031                 b->shdr[1].sh_link = 2;
1032                 b->shdr[1].sh_info =  symtab->sh_info;
1033                 b->shdr[1].sh_addralign = symtab->sh_addralign;
1034 
1035                 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1036                     symtab->sh_offset) != b->shdr[1].sh_size) {
1037                         free(b);
1038                         return;
1039                 }
1040 
1041                 off += b->shdr[1].sh_size;
1042 
1043                 b->shdr[2].sh_flags = SHF_STRINGS;
1044                 b->shdr[2].sh_size = strtab->sh_size;
1045                 b->shdr[2].sh_type = SHT_STRTAB;
1046                 b->shdr[2].sh_offset = off + base;
1047                 b->shdr[2].sh_info =  strtab->sh_info;
1048                 b->shdr[2].sh_addralign = 1;
1049 
1050                 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1051                     strtab->sh_offset) != b->shdr[2].sh_size) {
1052                         free(b);
1053                         return;
1054                 }
1055 
1056                 off += b->shdr[2].sh_size;
1057 
1058                 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1059                 if (fp->file_symtab.sym_elf == NULL) {
1060                         free(b);
1061                         return;
1062                 }
1063 
1064                 fp->file_symtab.sym_elfmem = b;
1065 #endif
1066         }
1067 
1068         if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL ||
1069             (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL ||
1070             (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL ||
1071             (data = elf_getdata(scn, NULL)) == NULL) {
1072                 dprintf("fake_up_symtab: failed to get section data at %p\n",
1073                     (void *)scn);
1074                 goto err;
1075         }
1076 
1077         fp->file_symtab.sym_strs = data->d_buf;
1078         fp->file_symtab.sym_strsz = data->d_size;
1079         fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize;
1080         fp->file_symtab.sym_hdr_pri = *symtab;
1081         fp->file_symtab.sym_strhdr = *strtab;
1082 
1083         optimize_symtab(&fp->file_symtab);
1084 
1085         return;
1086 err:
1087         (void) elf_end(fp->file_symtab.sym_elf);
1088         free(fp->file_symtab.sym_elfmem);
1089         fp->file_symtab.sym_elf = NULL;
1090         fp->file_symtab.sym_elfmem = NULL;
1091 }
1092 
1093 static void
1094 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst)
1095 {
1096         dst->p_type = src->p_type;
1097         dst->p_flags = src->p_flags;
1098         dst->p_offset = (Elf64_Off)src->p_offset;
1099         dst->p_vaddr = (Elf64_Addr)src->p_vaddr;
1100         dst->p_paddr = (Elf64_Addr)src->p_paddr;
1101         dst->p_filesz = (Elf64_Xword)src->p_filesz;
1102         dst->p_memsz = (Elf64_Xword)src->p_memsz;
1103         dst->p_align = (Elf64_Xword)src->p_align;
1104 }
1105 
1106 static void
1107 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
1108 {
1109         dst->sh_name = src->sh_name;
1110         dst->sh_type = src->sh_type;
1111         dst->sh_flags = (Elf64_Xword)src->sh_flags;
1112         dst->sh_addr = (Elf64_Addr)src->sh_addr;
1113         dst->sh_offset = (Elf64_Off)src->sh_offset;
1114         dst->sh_size = (Elf64_Xword)src->sh_size;
1115         dst->sh_link = src->sh_link;
1116         dst->sh_info = src->sh_info;
1117         dst->sh_addralign = (Elf64_Xword)src->sh_addralign;
1118         dst->sh_entsize = (Elf64_Xword)src->sh_entsize;
1119 }
1120 
1121 /*
1122  * Perform elf_begin on efp->e_fd and verify the ELF file's type and class.
1123  */
1124 static int
1125 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr)
1126 {
1127 #ifdef _BIG_ENDIAN
1128         uchar_t order = ELFDATA2MSB;
1129 #else
1130         uchar_t order = ELFDATA2LSB;
1131 #endif
1132         Elf32_Ehdr e32;
1133         int is_noelf = -1;
1134         int isa_err = 0;
1135 
1136         /*
1137          * Because 32-bit libelf cannot deal with large files, we need to read,
1138          * check, and convert the file header manually in case type == ET_CORE.
1139          */
1140         if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) {
1141                 if (perr != NULL)
1142                         *perr = G_FORMAT;
1143                 goto err;
1144         }
1145         if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 ||
1146             e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) ||
1147             e32.e_version != EV_CURRENT) {
1148                 if (perr != NULL) {
1149                         if (is_noelf == 0 && isa_err) {
1150                                 *perr = G_ISAINVAL;
1151                         } else {
1152                                 *perr = G_FORMAT;
1153                         }
1154                 }
1155                 goto err;
1156         }
1157 
1158         /*
1159          * If the file is 64-bit and we are 32-bit, fail with G_LP64.  If the
1160          * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr,
1161          * and convert it to a elf_file_header_t.  Otherwise, the file is
1162          * 32-bit, so convert e32 to a elf_file_header_t.
1163          */
1164         if (e32.e_ident[EI_CLASS] == ELFCLASS64) {
1165 #ifdef _LP64
1166                 Elf64_Ehdr e64;
1167 
1168                 if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) {
1169                         if (perr != NULL)
1170                                 *perr = G_FORMAT;
1171                         goto err;
1172                 }
1173 
1174                 (void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT);
1175                 efp->e_hdr.e_type = e64.e_type;
1176                 efp->e_hdr.e_machine = e64.e_machine;
1177                 efp->e_hdr.e_version = e64.e_version;
1178                 efp->e_hdr.e_entry = e64.e_entry;
1179                 efp->e_hdr.e_phoff = e64.e_phoff;
1180                 efp->e_hdr.e_shoff = e64.e_shoff;
1181                 efp->e_hdr.e_flags = e64.e_flags;
1182                 efp->e_hdr.e_ehsize = e64.e_ehsize;
1183                 efp->e_hdr.e_phentsize = e64.e_phentsize;
1184                 efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum;
1185                 efp->e_hdr.e_shentsize = e64.e_shentsize;
1186                 efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum;
1187                 efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx;
1188 #else   /* _LP64 */
1189                 if (perr != NULL)
1190                         *perr = G_LP64;
1191                 goto err;
1192 #endif  /* _LP64 */
1193         } else {
1194                 (void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT);
1195                 efp->e_hdr.e_type = e32.e_type;
1196                 efp->e_hdr.e_machine = e32.e_machine;
1197                 efp->e_hdr.e_version = e32.e_version;
1198                 efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry;
1199                 efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff;
1200                 efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff;
1201                 efp->e_hdr.e_flags = e32.e_flags;
1202                 efp->e_hdr.e_ehsize = e32.e_ehsize;
1203                 efp->e_hdr.e_phentsize = e32.e_phentsize;
1204                 efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum;
1205                 efp->e_hdr.e_shentsize = e32.e_shentsize;
1206                 efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum;
1207                 efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx;
1208         }
1209 
1210         /*
1211          * If the number of section headers or program headers or the section
1212          * header string table index would overflow their respective fields
1213          * in the ELF header, they're stored in the section header at index
1214          * zero. To simplify use elsewhere, we look for those sentinel values
1215          * here.
1216          */
1217         if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) ||
1218             efp->e_hdr.e_shstrndx == SHN_XINDEX ||
1219             efp->e_hdr.e_phnum == PN_XNUM) {
1220                 GElf_Shdr shdr;
1221 
1222                 dprintf("extended ELF header\n");
1223 
1224                 if (efp->e_hdr.e_shoff == 0) {
1225                         if (perr != NULL)
1226                                 *perr = G_FORMAT;
1227                         goto err;
1228                 }
1229 
1230                 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1231                         Elf32_Shdr shdr32;
1232 
1233                         if (pread64(efp->e_fd, &shdr32, sizeof (shdr32),
1234                             efp->e_hdr.e_shoff) != sizeof (shdr32)) {
1235                                 if (perr != NULL)
1236                                         *perr = G_FORMAT;
1237                                 goto err;
1238                         }
1239 
1240                         core_shdr_to_gelf(&shdr32, &shdr);
1241                 } else {
1242                         if (pread64(efp->e_fd, &shdr, sizeof (shdr),
1243                             efp->e_hdr.e_shoff) != sizeof (shdr)) {
1244                                 if (perr != NULL)
1245                                         *perr = G_FORMAT;
1246                                 goto err;
1247                         }
1248                 }
1249 
1250                 if (efp->e_hdr.e_shnum == 0) {
1251                         efp->e_hdr.e_shnum = shdr.sh_size;
1252                         dprintf("section header count %lu\n",
1253                             (ulong_t)shdr.sh_size);
1254                 }
1255 
1256                 if (efp->e_hdr.e_shstrndx == SHN_XINDEX) {
1257                         efp->e_hdr.e_shstrndx = shdr.sh_link;
1258                         dprintf("section string index %u\n", shdr.sh_link);
1259                 }
1260 
1261                 if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) {
1262                         efp->e_hdr.e_phnum = shdr.sh_info;
1263                         dprintf("program header count %u\n", shdr.sh_info);
1264                 }
1265 
1266         } else if (efp->e_hdr.e_phoff != 0) {
1267                 GElf_Phdr phdr;
1268                 uint64_t phnum;
1269 
1270                 /*
1271                  * It's possible this core file came from a system that
1272                  * accidentally truncated the e_phnum field without correctly
1273                  * using the extended format in the section header at index
1274                  * zero. We try to detect and correct that specific type of
1275                  * corruption by using the knowledge that the core dump
1276                  * routines usually place the data referenced by the first
1277                  * program header immediately after the last header element.
1278                  */
1279                 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1280                         Elf32_Phdr phdr32;
1281 
1282                         if (pread64(efp->e_fd, &phdr32, sizeof (phdr32),
1283                             efp->e_hdr.e_phoff) != sizeof (phdr32)) {
1284                                 if (perr != NULL)
1285                                         *perr = G_FORMAT;
1286                                 goto err;
1287                         }
1288 
1289                         core_phdr_to_gelf(&phdr32, &phdr);
1290                 } else {
1291                         if (pread64(efp->e_fd, &phdr, sizeof (phdr),
1292                             efp->e_hdr.e_phoff) != sizeof (phdr)) {
1293                                 if (perr != NULL)
1294                                         *perr = G_FORMAT;
1295                                 goto err;
1296                         }
1297                 }
1298 
1299                 phnum = phdr.p_offset - efp->e_hdr.e_ehsize -
1300                     (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1301                 phnum /= efp->e_hdr.e_phentsize;
1302 
1303                 if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) {
1304                         dprintf("suspicious program header count %u %u\n",
1305                             (uint_t)phnum, efp->e_hdr.e_phnum);
1306 
1307                         /*
1308                          * If the new program header count we computed doesn't
1309                          * jive with count in the ELF header, we'll use the
1310                          * data that's there and hope for the best.
1311                          *
1312                          * If it does, it's also possible that the section
1313                          * header offset is incorrect; we'll check that and
1314                          * possibly try to fix it.
1315                          */
1316                         if (phnum <= INT_MAX &&
1317                             (uint16_t)phnum == efp->e_hdr.e_phnum) {
1318 
1319                                 if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff +
1320                                     efp->e_hdr.e_phentsize *
1321                                     (uint_t)efp->e_hdr.e_phnum) {
1322                                         efp->e_hdr.e_shoff =
1323                                             efp->e_hdr.e_phoff +
1324                                             efp->e_hdr.e_phentsize * phnum;
1325                                 }
1326 
1327                                 efp->e_hdr.e_phnum = (Elf64_Word)phnum;
1328                                 dprintf("using new program header count\n");
1329                         } else {
1330                                 dprintf("inconsistent program header count\n");
1331                         }
1332                 }
1333         }
1334 
1335         /*
1336          * The libelf implementation was never ported to be large-file aware.
1337          * This is typically not a problem for your average executable or
1338          * shared library, but a large 32-bit core file can exceed 2GB in size.
1339          * So if type is ET_CORE, we don't bother doing elf_begin; the code
1340          * in Pfgrab_core() below will do its own i/o and struct conversion.
1341          */
1342 
1343         if (type == ET_CORE) {
1344                 efp->e_elf = NULL;
1345                 return (0);
1346         }
1347 
1348         if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) {
1349                 if (perr != NULL)
1350                         *perr = G_ELF;
1351                 goto err;
1352         }
1353 
1354         return (0);
1355 
1356 err:
1357         efp->e_elf = NULL;
1358         return (-1);
1359 }
1360 
1361 /*
1362  * Open the specified file and then do a core_elf_fdopen on it.
1363  */
1364 static int
1365 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr)
1366 {
1367         (void) memset(efp, 0, sizeof (elf_file_t));
1368 
1369         if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) {
1370                 if (core_elf_fdopen(efp, type, perr) == 0)
1371                         return (0);
1372 
1373                 (void) close(efp->e_fd);
1374                 efp->e_fd = -1;
1375         }
1376 
1377         return (-1);
1378 }
1379 
1380 /*
1381  * Close the ELF handle and file descriptor.
1382  */
1383 static void
1384 core_elf_close(elf_file_t *efp)
1385 {
1386         if (efp->e_elf != NULL) {
1387                 (void) elf_end(efp->e_elf);
1388                 efp->e_elf = NULL;
1389         }
1390 
1391         if (efp->e_fd != -1) {
1392                 (void) close(efp->e_fd);
1393                 efp->e_fd = -1;
1394         }
1395 }
1396 
1397 /*
1398  * Given an ELF file for a statically linked executable, locate the likely
1399  * primary text section and fill in rl_base with its virtual address.
1400  */
1401 static map_info_t *
1402 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1403 {
1404         GElf_Phdr phdr;
1405         uint_t i;
1406         size_t nphdrs;
1407 
1408         if (elf_getphdrnum(elf, &nphdrs) == -1)
1409                 return (NULL);
1410 
1411         for (i = 0; i < nphdrs; i++) {
1412                 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1413                     phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
1414                         rlp->rl_base = phdr.p_vaddr;
1415                         return (Paddr2mptr(P, rlp->rl_base));
1416                 }
1417         }
1418 
1419         return (NULL);
1420 }
1421 
1422 /*
1423  * Given an ELF file and the librtld_db structure corresponding to its primary
1424  * text mapping, deduce where its data segment was loaded and fill in
1425  * rl_data_base and prmap_t.pr_offset accordingly.
1426  */
1427 static map_info_t *
1428 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1429 {
1430         GElf_Ehdr ehdr;
1431         GElf_Phdr phdr;
1432         map_info_t *mp;
1433         uint_t i, pagemask;
1434         size_t nphdrs;
1435 
1436         rlp->rl_data_base = NULL;
1437 
1438         /*
1439          * Find the first loadable, writeable Phdr and compute rl_data_base
1440          * as the virtual address at which is was loaded.
1441          */
1442         if (gelf_getehdr(elf, &ehdr) == NULL ||
1443             elf_getphdrnum(elf, &nphdrs) == -1)
1444                 return (NULL);
1445 
1446         for (i = 0; i < nphdrs; i++) {
1447                 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1448                     phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) {
1449                         rlp->rl_data_base = phdr.p_vaddr;
1450                         if (ehdr.e_type == ET_DYN)
1451                                 rlp->rl_data_base += rlp->rl_base;
1452                         break;
1453                 }
1454         }
1455 
1456         /*
1457          * If we didn't find an appropriate phdr or if the address we
1458          * computed has no mapping, return NULL.
1459          */
1460         if (rlp->rl_data_base == NULL ||
1461             (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL)
1462                 return (NULL);
1463 
1464         /*
1465          * It wouldn't be procfs-related code if we didn't make use of
1466          * unclean knowledge of segvn, even in userland ... the prmap_t's
1467          * pr_offset field will be the segvn offset from mmap(2)ing the
1468          * data section, which will be the file offset & PAGEMASK.
1469          */
1470         pagemask = ~(mp->map_pmap.pr_pagesize - 1);
1471         mp->map_pmap.pr_offset = phdr.p_offset & pagemask;
1472 
1473         return (mp);
1474 }
1475 
1476 /*
1477  * Librtld_db agent callback for iterating over load object mappings.
1478  * For each load object, we allocate a new file_info_t, perform naming,
1479  * and attempt to construct a symbol table for the load object.
1480  */
1481 static int
1482 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P)
1483 {
1484         char lname[PATH_MAX], buf[PATH_MAX];
1485         file_info_t *fp;
1486         map_info_t *mp;
1487 
1488         if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) {
1489                 dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr);
1490                 return (1); /* Keep going; forget this if we can't get a name */
1491         }
1492 
1493         dprintf("rd_loadobj name = \"%s\" rl_base = %p\n",
1494             lname, (void *)rlp->rl_base);
1495 
1496         if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) {
1497                 dprintf("no mapping for %p\n", (void *)rlp->rl_base);
1498                 return (1); /* No mapping; advance to next mapping */
1499         }
1500 
1501         /*
1502          * Create a new file_info_t for this mapping, and therefore for
1503          * this load object.
1504          *
1505          * If there's an ELF header at the beginning of this mapping,
1506          * file_info_new() will try to use its section headers to
1507          * identify any other mappings that belong to this load object.
1508          */
1509         if ((fp = mp->map_file) == NULL &&
1510             (fp = file_info_new(P, mp)) == NULL) {
1511                 P->core->core_errno = errno;
1512                 dprintf("failed to malloc mapping data\n");
1513                 return (0); /* Abort */
1514         }
1515         fp->file_map = mp;
1516 
1517         /* Create a local copy of the load object representation */
1518         if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) {
1519                 P->core->core_errno = errno;
1520                 dprintf("failed to malloc mapping data\n");
1521                 return (0); /* Abort */
1522         }
1523         *fp->file_lo = *rlp;
1524 
1525         if (lname[0] != '\0') {
1526                 /*
1527                  * Naming dance part 1: if we got a name from librtld_db, then
1528                  * copy this name to the prmap_t if it is unnamed.  If the
1529                  * file_info_t is unnamed, name it after the lname.
1530                  */
1531                 if (mp->map_pmap.pr_mapname[0] == '\0') {
1532                         (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ);
1533                         mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1534                 }
1535 
1536                 if (fp->file_lname == NULL)
1537                         fp->file_lname = strdup(lname);
1538 
1539         } else if (fp->file_lname == NULL &&
1540             mp->map_pmap.pr_mapname[0] != '\0') {
1541                 /*
1542                  * Naming dance part 2: if the mapping is named and the
1543                  * file_info_t is not, name the file after the mapping.
1544                  */
1545                 fp->file_lname = strdup(mp->map_pmap.pr_mapname);
1546         }
1547 
1548         if ((fp->file_rname == NULL) &&
1549             (Pfindmap(P, mp, buf, sizeof (buf)) != NULL))
1550                 fp->file_rname = strdup(buf);
1551 
1552         if (fp->file_lname != NULL)
1553                 fp->file_lbase = basename(fp->file_lname);
1554         if (fp->file_rname != NULL)
1555                 fp->file_rbase = basename(fp->file_rname);
1556 
1557         /* Associate the file and the mapping. */
1558         (void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ);
1559         fp->file_pname[PRMAPSZ - 1] = '\0';
1560 
1561         /*
1562          * If no section headers were available then we'll have to
1563          * identify this load object's other mappings with what we've
1564          * got: the start and end of the object's corresponding
1565          * address space.
1566          */
1567         if (fp->file_saddrs == NULL) {
1568                 for (mp = fp->file_map + 1; mp < P->mappings + P->map_count &&
1569                     mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) {
1570 
1571                         if (mp->map_file == NULL) {
1572                                 dprintf("core_iter_mapping %s: associating "
1573                                     "segment at %p\n",
1574                                     fp->file_pname,
1575                                     (void *)mp->map_pmap.pr_vaddr);
1576                                 mp->map_file = fp;
1577                                 fp->file_ref++;
1578                         } else {
1579                                 dprintf("core_iter_mapping %s: segment at "
1580                                     "%p already associated with %s\n",
1581                                     fp->file_pname,
1582                                     (void *)mp->map_pmap.pr_vaddr,
1583                                     (mp == fp->file_map ? "this file" :
1584                                     mp->map_file->file_pname));
1585                         }
1586                 }
1587         }
1588 
1589         /* Ensure that all this file's mappings are named. */
1590         for (mp = fp->file_map; mp < P->mappings + P->map_count &&
1591             mp->map_file == fp; mp++) {
1592                 if (mp->map_pmap.pr_mapname[0] == '\0' &&
1593                     !(mp->map_pmap.pr_mflags & MA_BREAK)) {
1594                         (void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname,
1595                             PRMAPSZ);
1596                         mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1597                 }
1598         }
1599 
1600         /* Attempt to build a symbol table for this file. */
1601         Pbuild_file_symtab(P, fp);
1602         if (fp->file_elf == NULL)
1603                 dprintf("core_iter_mapping: no symtab for %s\n",
1604                     fp->file_pname);
1605 
1606         /* Locate the start of a data segment associated with this file. */
1607         if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) {
1608                 dprintf("found data for %s at %p (pr_offset 0x%llx)\n",
1609                     fp->file_pname, (void *)fp->file_lo->rl_data_base,
1610                     mp->map_pmap.pr_offset);
1611         } else {
1612                 dprintf("core_iter_mapping: no data found for %s\n",
1613                     fp->file_pname);
1614         }
1615 
1616         return (1); /* Advance to next mapping */
1617 }
1618 
1619 /*
1620  * Callback function for Pfindexec().  In order to confirm a given pathname,
1621  * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN.
1622  */
1623 static int
1624 core_exec_open(const char *path, void *efp)
1625 {
1626         if (core_elf_open(efp, path, ET_EXEC, NULL) == 0)
1627                 return (1);
1628         if (core_elf_open(efp, path, ET_DYN, NULL) == 0)
1629                 return (1);
1630         return (0);
1631 }
1632 
1633 /*
1634  * Attempt to load any section headers found in the core file.  If present,
1635  * this will refer to non-loadable data added to the core file by the kernel
1636  * based on coreadm(1M) settings, including CTF data and the symbol table.
1637  */
1638 static void
1639 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp)
1640 {
1641         GElf_Shdr *shp, *shdrs = NULL;
1642         char *shstrtab = NULL;
1643         ulong_t shstrtabsz;
1644         const char *name;
1645         map_info_t *mp;
1646 
1647         size_t nbytes;
1648         void *buf;
1649         int i;
1650 
1651         if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) {
1652                 dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n",
1653                     efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum);
1654                 return;
1655         }
1656 
1657         /*
1658          * Read the section header table from the core file and then iterate
1659          * over the section headers, converting each to a GElf_Shdr.
1660          */
1661         if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) {
1662                 dprintf("failed to malloc %u section headers: %s\n",
1663                     (uint_t)efp->e_hdr.e_shnum, strerror(errno));
1664                 return;
1665         }
1666 
1667         nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1668         if ((buf = malloc(nbytes)) == NULL) {
1669                 dprintf("failed to malloc %d bytes: %s\n", (int)nbytes,
1670                     strerror(errno));
1671                 free(shdrs);
1672                 goto out;
1673         }
1674 
1675         if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) {
1676                 dprintf("failed to read section headers at off %lld: %s\n",
1677                     (longlong_t)efp->e_hdr.e_shoff, strerror(errno));
1678                 free(buf);
1679                 goto out;
1680         }
1681 
1682         for (i = 0; i < efp->e_hdr.e_shnum; i++) {
1683                 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i;
1684 
1685                 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32)
1686                         core_shdr_to_gelf(p, &shdrs[i]);
1687                 else
1688                         (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr));
1689         }
1690 
1691         free(buf);
1692         buf = NULL;
1693 
1694         /*
1695          * Read the .shstrtab section from the core file, terminating it with
1696          * an extra \0 so that a corrupt section will not cause us to die.
1697          */
1698         shp = &shdrs[efp->e_hdr.e_shstrndx];
1699         shstrtabsz = shp->sh_size;
1700 
1701         if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) {
1702                 dprintf("failed to allocate %lu bytes for shstrtab\n",
1703                     (ulong_t)shstrtabsz);
1704                 goto out;
1705         }
1706 
1707         if (pread64(efp->e_fd, shstrtab, shstrtabsz,
1708             shp->sh_offset) != shstrtabsz) {
1709                 dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n",
1710                     shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno));
1711                 goto out;
1712         }
1713 
1714         shstrtab[shstrtabsz] = '\0';
1715 
1716         /*
1717          * Now iterate over each section in the section header table, locating
1718          * sections of interest and initializing more of the ps_prochandle.
1719          */
1720         for (i = 0; i < efp->e_hdr.e_shnum; i++) {
1721                 shp = &shdrs[i];
1722                 name = shstrtab + shp->sh_name;
1723 
1724                 if (shp->sh_name >= shstrtabsz) {
1725                         dprintf("skipping section [%d]: corrupt sh_name\n", i);
1726                         continue;
1727                 }
1728 
1729                 if (shp->sh_link >= efp->e_hdr.e_shnum) {
1730                         dprintf("skipping section [%d]: corrupt sh_link\n", i);
1731                         continue;
1732                 }
1733 
1734                 dprintf("found section header %s (sh_addr 0x%llx)\n",
1735                     name, (u_longlong_t)shp->sh_addr);
1736 
1737                 if (strcmp(name, ".SUNW_ctf") == 0) {
1738                         if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) {
1739                                 dprintf("no map at addr 0x%llx for %s [%d]\n",
1740                                     (u_longlong_t)shp->sh_addr, name, i);
1741                                 continue;
1742                         }
1743 
1744                         if (mp->map_file == NULL ||
1745                             mp->map_file->file_ctf_buf != NULL) {
1746                                 dprintf("no mapping file or duplicate buffer "
1747                                     "for %s [%d]\n", name, i);
1748                                 continue;
1749                         }
1750 
1751                         if ((buf = malloc(shp->sh_size)) == NULL ||
1752                             pread64(efp->e_fd, buf, shp->sh_size,
1753                             shp->sh_offset) != shp->sh_size) {
1754                                 dprintf("skipping section %s [%d]: %s\n",
1755                                     name, i, strerror(errno));
1756                                 free(buf);
1757                                 continue;
1758                         }
1759 
1760                         mp->map_file->file_ctf_size = shp->sh_size;
1761                         mp->map_file->file_ctf_buf = buf;
1762 
1763                         if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM)
1764                                 mp->map_file->file_ctf_dyn = 1;
1765 
1766                 } else if (strcmp(name, ".symtab") == 0) {
1767                         fake_up_symtab(P, &efp->e_hdr,
1768                             shp, &shdrs[shp->sh_link]);
1769                 }
1770         }
1771 out:
1772         free(shstrtab);
1773         free(shdrs);
1774 }
1775 
1776 /*
1777  * Main engine for core file initialization: given an fd for the core file
1778  * and an optional pathname, construct the ps_prochandle.  The aout_path can
1779  * either be a suggested executable pathname, or a suggested directory to
1780  * use as a possible current working directory.
1781  */
1782 struct ps_prochandle *
1783 Pfgrab_core(int core_fd, const char *aout_path, int *perr)
1784 {
1785         struct ps_prochandle *P;
1786         map_info_t *stk_mp, *brk_mp;
1787         const char *execname;
1788         char *interp;
1789         int i, notes, pagesize;
1790         uintptr_t addr, base_addr;
1791         struct stat64 stbuf;
1792         void *phbuf, *php;
1793         size_t nbytes;
1794 
1795         elf_file_t aout;
1796         elf_file_t core;
1797 
1798         Elf_Scn *scn, *intp_scn = NULL;
1799         Elf_Data *dp;
1800 
1801         GElf_Phdr phdr, note_phdr;
1802         GElf_Shdr shdr;
1803         GElf_Xword nleft;
1804 
1805         if (elf_version(EV_CURRENT) == EV_NONE) {
1806                 dprintf("libproc ELF version is more recent than libelf\n");
1807                 *perr = G_ELF;
1808                 return (NULL);
1809         }
1810 
1811         aout.e_elf = NULL;
1812         aout.e_fd = -1;
1813 
1814         core.e_elf = NULL;
1815         core.e_fd = core_fd;
1816 
1817         /*
1818          * Allocate and initialize a ps_prochandle structure for the core.
1819          * There are several key pieces of initialization here:
1820          *
1821          * 1. The PS_DEAD state flag marks this prochandle as a core file.
1822          *    PS_DEAD also thus prevents all operations which require state
1823          *    to be PS_STOP from operating on this handle.
1824          *
1825          * 2. We keep the core file fd in P->asfd since the core file contains
1826          *    the remnants of the process address space.
1827          *
1828          * 3. We set the P->info_valid bit because all information about the
1829          *    core is determined by the end of this function; there is no need
1830          *    for proc_update_maps() to reload mappings at any later point.
1831          *
1832          * 4. The read/write ops vector uses our core_rw() function defined
1833          *    above to handle i/o requests.
1834          */
1835         if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
1836                 *perr = G_STRANGE;
1837                 return (NULL);
1838         }
1839 
1840         (void) memset(P, 0, sizeof (struct ps_prochandle));
1841         (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
1842         P->state = PS_DEAD;
1843         P->pid = (pid_t)-1;
1844         P->asfd = core.e_fd;
1845         P->ctlfd = -1;
1846         P->statfd = -1;
1847         P->agentctlfd = -1;
1848         P->agentstatfd = -1;
1849         P->zoneroot = NULL;
1850         P->info_valid = 1;
1851         P->ops = &P_core_ops;
1852 
1853         Pinitsym(P);
1854 
1855         /*
1856          * Fstat and open the core file and make sure it is a valid ELF core.
1857          */
1858         if (fstat64(P->asfd, &stbuf) == -1) {
1859                 *perr = G_STRANGE;
1860                 goto err;
1861         }
1862 
1863         if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
1864                 goto err;
1865 
1866         /*
1867          * Allocate and initialize a core_info_t to hang off the ps_prochandle
1868          * structure.  We keep all core-specific information in this structure.
1869          */
1870         if ((P->core = calloc(1, sizeof (core_info_t))) == NULL) {
1871                 *perr = G_STRANGE;
1872                 goto err;
1873         }
1874 
1875         list_link(&P->core->core_lwp_head, NULL);
1876         P->core->core_size = stbuf.st_size;
1877         /*
1878          * In the days before adjustable core file content, this was the
1879          * default core file content. For new core files, this value will
1880          * be overwritten by the NT_CONTENT note section.
1881          */
1882         P->core->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
1883             CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
1884             CC_CONTENT_SHANON;
1885 
1886         switch (core.e_hdr.e_ident[EI_CLASS]) {
1887         case ELFCLASS32:
1888                 P->core->core_dmodel = PR_MODEL_ILP32;
1889                 break;
1890         case ELFCLASS64:
1891                 P->core->core_dmodel = PR_MODEL_LP64;
1892                 break;
1893         default:
1894                 *perr = G_FORMAT;
1895                 goto err;
1896         }
1897 
1898         /*
1899          * Because the core file may be a large file, we can't use libelf to
1900          * read the Phdrs.  We use e_phnum and e_phentsize to simplify things.
1901          */
1902         nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;
1903 
1904         if ((phbuf = malloc(nbytes)) == NULL) {
1905                 *perr = G_STRANGE;
1906                 goto err;
1907         }
1908 
1909         if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
1910                 *perr = G_STRANGE;
1911                 free(phbuf);
1912                 goto err;
1913         }
1914 
1915         /*
1916          * Iterate through the program headers in the core file.
1917          * We're interested in two types of Phdrs: PT_NOTE (which
1918          * contains a set of saved /proc structures), and PT_LOAD (which
1919          * represents a memory mapping from the process's address space).
1920          * In the case of PT_NOTE, we're interested in the last PT_NOTE
1921          * in the core file; currently the first PT_NOTE (if present)
1922          * contains /proc structs in the pre-2.6 unstructured /proc format.
1923          */
1924         for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
1925                 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
1926                         (void) memcpy(&phdr, php, sizeof (GElf_Phdr));
1927                 else
1928                         core_phdr_to_gelf(php, &phdr);
1929 
1930                 switch (phdr.p_type) {
1931                 case PT_NOTE:
1932                         note_phdr = phdr;
1933                         notes++;
1934                         break;
1935 
1936                 case PT_LOAD:
1937                         if (core_add_mapping(P, &phdr) == -1) {
1938                                 *perr = G_STRANGE;
1939                                 free(phbuf);
1940                                 goto err;
1941                         }
1942                         break;
1943                 }
1944 
1945                 php = (char *)php + core.e_hdr.e_phentsize;
1946         }
1947 
1948         free(phbuf);
1949 
1950         Psort_mappings(P);
1951 
1952         /*
1953          * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE
1954          * was present, abort.  The core file is either corrupt or too old.
1955          */
1956         if (notes == 0 || notes == 1) {
1957                 *perr = G_NOTE;
1958                 goto err;
1959         }
1960 
1961         /*
1962          * Advance the seek pointer to the start of the PT_NOTE data
1963          */
1964         if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
1965                 dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
1966                 *perr = G_STRANGE;
1967                 goto err;
1968         }
1969 
1970         /*
1971          * Now process the PT_NOTE structures.  Each one is preceded by
1972          * an Elf{32/64}_Nhdr structure describing its type and size.
1973          *
1974          *  +--------+
1975          *  | header |
1976          *  +--------+
1977          *  | name   |
1978          *  | ...    |
1979          *  +--------+
1980          *  | desc   |
1981          *  | ...    |
1982          *  +--------+
1983          */
1984         for (nleft = note_phdr.p_filesz; nleft > 0; ) {
1985                 Elf64_Nhdr nhdr;
1986                 off64_t off, namesz;
1987 
1988                 /*
1989                  * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
1990                  * as different types, they are both of the same content and
1991                  * size, so we don't need to worry about 32/64 conversion here.
1992                  */
1993                 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
1994                         dprintf("Pgrab_core: failed to read ELF note header\n");
1995                         *perr = G_NOTE;
1996                         goto err;
1997                 }
1998 
1999                 /*
2000                  * According to the System V ABI, the amount of padding
2001                  * following the name field should align the description
2002                  * field on a 4 byte boundary for 32-bit binaries or on an 8
2003                  * byte boundary for 64-bit binaries. However, this change
2004                  * was not made correctly during the 64-bit port so all
2005                  * descriptions can assume only 4-byte alignment. We ignore
2006                  * the name field and the padding to 4-byte alignment.
2007                  */
2008                 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);
2009                 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
2010                         dprintf("failed to seek past name and padding\n");
2011                         *perr = G_STRANGE;
2012                         goto err;
2013                 }
2014 
2015                 dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
2016                     nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);
2017 
2018                 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);
2019 
2020                 /*
2021                  * Invoke the note handler function from our table
2022                  */
2023                 if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) {
2024                         if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
2025                                 *perr = G_NOTE;
2026                                 goto err;
2027                         }
2028                 } else
2029                         (void) note_notsup(P, nhdr.n_descsz);
2030 
2031                 /*
2032                  * Seek past the current note data to the next Elf_Nhdr
2033                  */
2034                 if (lseek64(P->asfd, off + nhdr.n_descsz,
2035                     SEEK_SET) == (off64_t)-1) {
2036                         dprintf("Pgrab_core: failed to seek to next nhdr\n");
2037                         *perr = G_STRANGE;
2038                         goto err;
2039                 }
2040 
2041                 /*
2042                  * Subtract the size of the header and its data from what
2043                  * we have left to process.
2044                  */
2045                 nleft -= sizeof (nhdr) + namesz + nhdr.n_descsz;
2046         }
2047 
2048         if (nleft != 0) {
2049                 dprintf("Pgrab_core: note section malformed\n");
2050                 *perr = G_STRANGE;
2051                 goto err;
2052         }
2053 
2054         if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
2055                 pagesize = getpagesize();
2056                 dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
2057         }
2058 
2059         /*
2060          * Locate and label the mappings corresponding to the end of the
2061          * heap (MA_BREAK) and the base of the stack (MA_STACK).
2062          */
2063         if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
2064             (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
2065             P->status.pr_brksize - 1)) != NULL)
2066                 brk_mp->map_pmap.pr_mflags |= MA_BREAK;
2067         else
2068                 brk_mp = NULL;
2069 
2070         if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
2071                 stk_mp->map_pmap.pr_mflags |= MA_STACK;
2072 
2073         /*
2074          * At this point, we have enough information to look for the
2075          * executable and open it: we have access to the auxv, a psinfo_t,
2076          * and the ability to read from mappings provided by the core file.
2077          */
2078         (void) Pfindexec(P, aout_path, core_exec_open, &aout);
2079         dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
2080         execname = P->execname ? P->execname : "a.out";
2081 
2082         /*
2083          * Iterate through the sections, looking for the .dynamic and .interp
2084          * sections.  If we encounter them, remember their section pointers.
2085          */
2086         for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) {
2087                 char *sname;
2088 
2089                 if ((gelf_getshdr(scn, &shdr) == NULL) ||
2090                     (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
2091                     (size_t)shdr.sh_name)) == NULL)
2092                         continue;
2093 
2094                 if (strcmp(sname, ".interp") == 0)
2095                         intp_scn = scn;
2096         }
2097 
2098         /*
2099          * Get the AT_BASE auxv element.  If this is missing (-1), then
2100          * we assume this is a statically-linked executable.
2101          */
2102         base_addr = Pgetauxval(P, AT_BASE);
2103 
2104         /*
2105          * In order to get librtld_db initialized, we'll need to identify
2106          * and name the mapping corresponding to the run-time linker.  The
2107          * AT_BASE auxv element tells us the address where it was mapped,
2108          * and the .interp section of the executable tells us its path.
2109          * If for some reason that doesn't pan out, just use ld.so.1.
2110          */
2111         if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2112             dp->d_size != 0) {
2113                 dprintf(".interp = <%s>\n", (char *)dp->d_buf);
2114                 interp = dp->d_buf;
2115 
2116         } else if (base_addr != (uintptr_t)-1L) {
2117                 if (P->core->core_dmodel == PR_MODEL_LP64)
2118                         interp = "/usr/lib/64/ld.so.1";
2119                 else
2120                         interp = "/usr/lib/ld.so.1";
2121 
2122                 dprintf(".interp section is missing or could not be read; "
2123                     "defaulting to %s\n", interp);
2124         } else
2125                 dprintf("detected statically linked executable\n");
2126 
2127         /*
2128          * If we have an AT_BASE element, name the mapping at that address
2129          * using the interpreter pathname.  Name the corresponding data
2130          * mapping after the interpreter as well.
2131          */
2132         if (base_addr != (uintptr_t)-1L) {
2133                 elf_file_t intf;
2134 
2135                 P->map_ldso = core_name_mapping(P, base_addr, interp);
2136 
2137                 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2138                         rd_loadobj_t rl;
2139                         map_info_t *dmp;
2140 
2141                         rl.rl_base = base_addr;
2142                         dmp = core_find_data(P, intf.e_elf, &rl);
2143 
2144                         if (dmp != NULL) {
2145                                 dprintf("renamed data at %p to %s\n",
2146                                     (void *)rl.rl_data_base, interp);
2147                                 (void) strncpy(dmp->map_pmap.pr_mapname,
2148                                     interp, PRMAPSZ);
2149                                 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2150                         }
2151                 }
2152 
2153                 core_elf_close(&intf);
2154         }
2155 
2156         /*
2157          * If we have an AT_ENTRY element, name the mapping at that address
2158          * using the special name "a.out" just like /proc does.
2159          */
2160         if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2161                 P->map_exec = core_name_mapping(P, addr, "a.out");
2162 
2163         /*
2164          * If we're a statically linked executable, then just locate the
2165          * executable's text and data and name them after the executable.
2166          */
2167         if (base_addr == (uintptr_t)-1L) {
2168                 map_info_t *tmp, *dmp;
2169                 file_info_t *fp;
2170                 rd_loadobj_t rl;
2171 
2172                 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2173                     (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2174                         (void) strncpy(tmp->map_pmap.pr_mapname,
2175                             execname, PRMAPSZ);
2176                         tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2177                         (void) strncpy(dmp->map_pmap.pr_mapname,
2178                             execname, PRMAPSZ);
2179                         dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2180                 }
2181 
2182                 if ((P->map_exec = tmp) != NULL &&
2183                     (fp = malloc(sizeof (file_info_t))) != NULL) {
2184 
2185                         (void) memset(fp, 0, sizeof (file_info_t));
2186 
2187                         list_link(fp, &P->file_head);
2188                         tmp->map_file = fp;
2189                         P->num_files++;
2190 
2191                         fp->file_ref = 1;
2192                         fp->file_fd = -1;
2193 
2194                         fp->file_lo = malloc(sizeof (rd_loadobj_t));
2195                         fp->file_lname = strdup(execname);
2196 
2197                         if (fp->file_lo)
2198                                 *fp->file_lo = rl;
2199                         if (fp->file_lname)
2200                                 fp->file_lbase = basename(fp->file_lname);
2201                         if (fp->file_rname)
2202                                 fp->file_rbase = basename(fp->file_rname);
2203 
2204                         (void) strcpy(fp->file_pname,
2205                             P->mappings[0].map_pmap.pr_mapname);
2206                         fp->file_map = tmp;
2207 
2208                         Pbuild_file_symtab(P, fp);
2209 
2210                         if (dmp != NULL) {
2211                                 dmp->map_file = fp;
2212                                 fp->file_ref++;
2213                         }
2214                 }
2215         }
2216 
2217         core_elf_close(&aout);
2218 
2219         /*
2220          * We now have enough information to initialize librtld_db.
2221          * After it warms up, we can iterate through the load object chain
2222          * in the core, which will allow us to construct the file info
2223          * we need to provide symbol information for the other shared
2224          * libraries, and also to fill in the missing mapping names.
2225          */
2226         rd_log(_libproc_debug);
2227 
2228         if ((P->rap = rd_new(P)) != NULL) {
2229                 (void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2230                     core_iter_mapping, P);
2231 
2232                 if (P->core->core_errno != 0) {
2233                         errno = P->core->core_errno;
2234                         *perr = G_STRANGE;
2235                         goto err;
2236                 }
2237         } else
2238                 dprintf("failed to initialize rtld_db agent\n");
2239 
2240         /*
2241          * If there are sections, load them and process the data from any
2242          * sections that we can use to annotate the file_info_t's.
2243          */
2244         core_load_shdrs(P, &core);
2245 
2246         /*
2247          * If we previously located a stack or break mapping, and they are
2248          * still anonymous, we now assume that they were MAP_ANON mappings.
2249          * If brk_mp turns out to now have a name, then the heap is still
2250          * sitting at the end of the executable's data+bss mapping: remove
2251          * the previous MA_BREAK setting to be consistent with /proc.
2252          */
2253         if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0')
2254                 stk_mp->map_pmap.pr_mflags |= MA_ANON;
2255         if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0')
2256                 brk_mp->map_pmap.pr_mflags |= MA_ANON;
2257         else if (brk_mp != NULL)
2258                 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;
2259 
2260         *perr = 0;
2261         return (P);
2262 
2263 err:
2264         Pfree(P);
2265         core_elf_close(&aout);
2266         return (NULL);
2267 }
2268 
2269 /*
2270  * Grab a core file using a pathname.  We just open it and call Pfgrab_core().
2271  */
2272 struct ps_prochandle *
2273 Pgrab_core(const char *core, const char *aout, int gflag, int *perr)
2274 {
2275         int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
2276 
2277         if ((fd = open64(core, oflag)) >= 0)
2278                 return (Pfgrab_core(fd, aout, perr));
2279 
2280         if (errno != ENOENT)
2281                 *perr = G_STRANGE;
2282         else
2283                 *perr = G_NOCORE;
2284 
2285         return (NULL);
2286 }