1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013 Joyent, Inc. All rights reserved. 25 */ 26 27 #include <mdb/mdb_param.h> 28 #include <mdb/mdb_modapi.h> 29 #include <mdb/mdb_ks.h> 30 #include <mdb/mdb_ctf.h> 31 32 #include <sys/types.h> 33 #include <sys/thread.h> 34 #include <sys/session.h> 35 #include <sys/user.h> 36 #include <sys/proc.h> 37 #include <sys/var.h> 38 #include <sys/t_lock.h> 39 #include <sys/callo.h> 40 #include <sys/priocntl.h> 41 #include <sys/class.h> 42 #include <sys/regset.h> 43 #include <sys/stack.h> 44 #include <sys/cpuvar.h> 45 #include <sys/vnode.h> 46 #include <sys/vfs.h> 47 #include <sys/flock_impl.h> 48 #include <sys/kmem_impl.h> 49 #include <sys/vmem_impl.h> 50 #include <sys/kstat.h> 51 #include <sys/dditypes.h> 52 #include <sys/ddi_impldefs.h> 53 #include <sys/sysmacros.h> 54 #include <sys/sysconf.h> 55 #include <sys/task.h> 56 #include <sys/project.h> 57 #include <sys/errorq_impl.h> 58 #include <sys/cred_impl.h> 59 #include <sys/zone.h> 60 #include <sys/panic.h> 61 #include <regex.h> 62 #include <sys/port_impl.h> 63 64 #include "avl.h" 65 #include "bio.h" 66 #include "bitset.h" 67 #include "combined.h" 68 #include "contract.h" 69 #include "cpupart_mdb.h" 70 #include "cred.h" 71 #include "ctxop.h" 72 #include "cyclic.h" 73 #include "damap.h" 74 #include "ddi_periodic.h" 75 #include "devinfo.h" 76 #include "findstack.h" 77 #include "fm.h" 78 #include "group.h" 79 #include "irm.h" 80 #include "kgrep.h" 81 #include "kmem.h" 82 #include "ldi.h" 83 #include "leaky.h" 84 #include "lgrp.h" 85 #include "list.h" 86 #include "log.h" 87 #include "mdi.h" 88 #include "memory.h" 89 #include "mmd.h" 90 #include "modhash.h" 91 #include "ndievents.h" 92 #include "net.h" 93 #include "netstack.h" 94 #include "nvpair.h" 95 #include "pg.h" 96 #include "rctl.h" 97 #include "sobj.h" 98 #include "streams.h" 99 #include "sysevent.h" 100 #include "taskq.h" 101 #include "thread.h" 102 #include "tsd.h" 103 #include "tsol.h" 104 #include "typegraph.h" 105 #include "vfs.h" 106 #include "zone.h" 107 #include "hotplug.h" 108 109 /* 110 * Surely this is defined somewhere... 111 */ 112 #define NINTR 16 113 114 #define KILOS 10 115 #define MEGS 20 116 #define GIGS 30 117 118 #ifndef STACK_BIAS 119 #define STACK_BIAS 0 120 #endif 121 122 static char 123 pstat2ch(uchar_t state) 124 { 125 switch (state) { 126 case SSLEEP: return ('S'); 127 case SRUN: return ('R'); 128 case SZOMB: return ('Z'); 129 case SIDL: return ('I'); 130 case SONPROC: return ('O'); 131 case SSTOP: return ('T'); 132 case SWAIT: return ('W'); 133 default: return ('?'); 134 } 135 } 136 137 #define PS_PRTTHREADS 0x1 138 #define PS_PRTLWPS 0x2 139 #define PS_PSARGS 0x4 140 #define PS_TASKS 0x8 141 #define PS_PROJECTS 0x10 142 #define PS_ZONES 0x20 143 144 static int 145 ps_threadprint(uintptr_t addr, const void *data, void *private) 146 { 147 const kthread_t *t = (const kthread_t *)data; 148 uint_t prt_flags = *((uint_t *)private); 149 150 static const mdb_bitmask_t t_state_bits[] = { 151 { "TS_FREE", UINT_MAX, TS_FREE }, 152 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 153 { "TS_RUN", TS_RUN, TS_RUN }, 154 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 155 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 156 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 157 { "TS_WAIT", TS_WAIT, TS_WAIT }, 158 { NULL, 0, 0 } 159 }; 160 161 if (prt_flags & PS_PRTTHREADS) 162 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 163 164 if (prt_flags & PS_PRTLWPS) 165 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 166 167 return (WALK_NEXT); 168 } 169 170 int 171 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 172 { 173 uint_t prt_flags = 0; 174 proc_t pr; 175 struct pid pid, pgid, sid; 176 sess_t session; 177 cred_t cred; 178 task_t tk; 179 kproject_t pj; 180 zone_t zn; 181 182 if (!(flags & DCMD_ADDRSPEC)) { 183 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 184 mdb_warn("can't walk 'proc'"); 185 return (DCMD_ERR); 186 } 187 return (DCMD_OK); 188 } 189 190 if (mdb_getopts(argc, argv, 191 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 192 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 193 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 194 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 195 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 196 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 197 return (DCMD_USAGE); 198 199 if (DCMD_HDRSPEC(flags)) { 200 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 201 "S", "PID", "PPID", "PGID", "SID"); 202 if (prt_flags & PS_TASKS) 203 mdb_printf("%5s ", "TASK"); 204 if (prt_flags & PS_PROJECTS) 205 mdb_printf("%5s ", "PROJ"); 206 if (prt_flags & PS_ZONES) 207 mdb_printf("%5s ", "ZONE"); 208 mdb_printf("%6s %10s %?s %s%</u>\n", 209 "UID", "FLAGS", "ADDR", "NAME"); 210 } 211 212 mdb_vread(&pr, sizeof (pr), addr); 213 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 214 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 215 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 216 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 217 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 218 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 219 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 220 if (prt_flags & PS_PROJECTS) 221 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 222 if (prt_flags & PS_ZONES) 223 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 224 225 mdb_printf("%c %6d %6d %6d %6d ", 226 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 227 sid.pid_id); 228 if (prt_flags & PS_TASKS) 229 mdb_printf("%5d ", tk.tk_tkid); 230 if (prt_flags & PS_PROJECTS) 231 mdb_printf("%5d ", pj.kpj_id); 232 if (prt_flags & PS_ZONES) 233 mdb_printf("%5d ", zn.zone_id); 234 mdb_printf("%6d 0x%08x %0?p %s\n", 235 cred.cr_uid, pr.p_flag, addr, 236 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 237 238 if (prt_flags & ~PS_PSARGS) 239 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 240 241 return (DCMD_OK); 242 } 243 244 #define PG_NEWEST 0x0001 245 #define PG_OLDEST 0x0002 246 #define PG_PIPE_OUT 0x0004 247 #define PG_EXACT_MATCH 0x0008 248 249 typedef struct pgrep_data { 250 uint_t pg_flags; 251 uint_t pg_psflags; 252 uintptr_t pg_xaddr; 253 hrtime_t pg_xstart; 254 const char *pg_pat; 255 #ifndef _KMDB 256 regex_t pg_reg; 257 #endif 258 } pgrep_data_t; 259 260 /*ARGSUSED*/ 261 static int 262 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 263 { 264 const proc_t *prp = pdata; 265 pgrep_data_t *pgp = data; 266 #ifndef _KMDB 267 regmatch_t pmatch; 268 #endif 269 270 /* 271 * kmdb doesn't have access to the reg* functions, so we fall back 272 * to strstr/strcmp. 273 */ 274 #ifdef _KMDB 275 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 276 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 277 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 278 return (WALK_NEXT); 279 #else 280 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 281 return (WALK_NEXT); 282 283 if ((pgp->pg_flags & PG_EXACT_MATCH) && 284 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 285 return (WALK_NEXT); 286 #endif 287 288 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 289 hrtime_t start; 290 291 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 292 prp->p_user.u_start.tv_nsec; 293 294 if (pgp->pg_flags & PG_NEWEST) { 295 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 296 pgp->pg_xaddr = addr; 297 pgp->pg_xstart = start; 298 } 299 } else { 300 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 301 pgp->pg_xaddr = addr; 302 pgp->pg_xstart = start; 303 } 304 } 305 306 } else if (pgp->pg_flags & PG_PIPE_OUT) { 307 mdb_printf("%p\n", addr); 308 309 } else { 310 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 311 mdb_warn("can't invoke 'ps'"); 312 return (WALK_DONE); 313 } 314 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 315 } 316 317 return (WALK_NEXT); 318 } 319 320 /*ARGSUSED*/ 321 int 322 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 323 { 324 pgrep_data_t pg; 325 int i; 326 #ifndef _KMDB 327 int err; 328 #endif 329 330 if (flags & DCMD_ADDRSPEC) 331 return (DCMD_USAGE); 332 333 pg.pg_flags = 0; 334 pg.pg_xaddr = 0; 335 336 i = mdb_getopts(argc, argv, 337 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 338 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 339 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 340 NULL); 341 342 argc -= i; 343 argv += i; 344 345 if (argc != 1) 346 return (DCMD_USAGE); 347 348 /* 349 * -n and -o are mutually exclusive. 350 */ 351 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 352 return (DCMD_USAGE); 353 354 if (argv->a_type != MDB_TYPE_STRING) 355 return (DCMD_USAGE); 356 357 if (flags & DCMD_PIPE_OUT) 358 pg.pg_flags |= PG_PIPE_OUT; 359 360 pg.pg_pat = argv->a_un.a_str; 361 if (DCMD_HDRSPEC(flags)) 362 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 363 else 364 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 365 366 #ifndef _KMDB 367 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 368 size_t nbytes; 369 char *buf; 370 371 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 372 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 373 (void) regerror(err, &pg.pg_reg, buf, nbytes); 374 mdb_warn("%s\n", buf); 375 376 return (DCMD_ERR); 377 } 378 #endif 379 380 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 381 mdb_warn("can't walk 'proc'"); 382 return (DCMD_ERR); 383 } 384 385 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 386 if (pg.pg_flags & PG_PIPE_OUT) { 387 mdb_printf("%p\n", pg.pg_xaddr); 388 } else { 389 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 390 0, NULL) != 0) { 391 mdb_warn("can't invoke 'ps'"); 392 return (DCMD_ERR); 393 } 394 } 395 } 396 397 return (DCMD_OK); 398 } 399 400 int 401 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 402 { 403 task_t tk; 404 kproject_t pj; 405 406 if (!(flags & DCMD_ADDRSPEC)) { 407 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 408 mdb_warn("can't walk task_cache"); 409 return (DCMD_ERR); 410 } 411 return (DCMD_OK); 412 } 413 if (DCMD_HDRSPEC(flags)) { 414 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 415 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 416 } 417 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 418 mdb_warn("can't read task_t structure at %p", addr); 419 return (DCMD_ERR); 420 } 421 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 422 mdb_warn("can't read project_t structure at %p", addr); 423 return (DCMD_ERR); 424 } 425 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 426 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 427 tk.tk_flags); 428 return (DCMD_OK); 429 } 430 431 int 432 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 433 { 434 kproject_t pj; 435 436 if (!(flags & DCMD_ADDRSPEC)) { 437 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 438 mdb_warn("can't walk projects"); 439 return (DCMD_ERR); 440 } 441 return (DCMD_OK); 442 } 443 if (DCMD_HDRSPEC(flags)) { 444 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 445 "ADDR", "PROJID", "ZONEID", "REFCNT"); 446 } 447 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 448 mdb_warn("can't read kproject_t structure at %p", addr); 449 return (DCMD_ERR); 450 } 451 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 452 pj.kpj_count); 453 return (DCMD_OK); 454 } 455 456 /* walk callouts themselves, either by list or id hash. */ 457 int 458 callout_walk_init(mdb_walk_state_t *wsp) 459 { 460 if (wsp->walk_addr == NULL) { 461 mdb_warn("callout doesn't support global walk"); 462 return (WALK_ERR); 463 } 464 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP); 465 return (WALK_NEXT); 466 } 467 468 #define CALLOUT_WALK_BYLIST 0 469 #define CALLOUT_WALK_BYID 1 470 471 /* the walker arg switches between walking by list (0) and walking by id (1). */ 472 int 473 callout_walk_step(mdb_walk_state_t *wsp) 474 { 475 int retval; 476 477 if (wsp->walk_addr == NULL) { 478 return (WALK_DONE); 479 } 480 if (mdb_vread(wsp->walk_data, sizeof (callout_t), 481 wsp->walk_addr) == -1) { 482 mdb_warn("failed to read callout at %p", wsp->walk_addr); 483 return (WALK_DONE); 484 } 485 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 486 wsp->walk_cbdata); 487 488 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) { 489 wsp->walk_addr = 490 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext); 491 } else { 492 wsp->walk_addr = 493 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext); 494 } 495 496 return (retval); 497 } 498 499 void 500 callout_walk_fini(mdb_walk_state_t *wsp) 501 { 502 mdb_free(wsp->walk_data, sizeof (callout_t)); 503 } 504 505 /* 506 * walker for callout lists. This is different from hashes and callouts. 507 * Thankfully, it's also simpler. 508 */ 509 int 510 callout_list_walk_init(mdb_walk_state_t *wsp) 511 { 512 if (wsp->walk_addr == NULL) { 513 mdb_warn("callout list doesn't support global walk"); 514 return (WALK_ERR); 515 } 516 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP); 517 return (WALK_NEXT); 518 } 519 520 int 521 callout_list_walk_step(mdb_walk_state_t *wsp) 522 { 523 int retval; 524 525 if (wsp->walk_addr == NULL) { 526 return (WALK_DONE); 527 } 528 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t), 529 wsp->walk_addr) != sizeof (callout_list_t)) { 530 mdb_warn("failed to read callout_list at %p", wsp->walk_addr); 531 return (WALK_ERR); 532 } 533 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 534 wsp->walk_cbdata); 535 536 wsp->walk_addr = (uintptr_t) 537 (((callout_list_t *)wsp->walk_data)->cl_next); 538 539 return (retval); 540 } 541 542 void 543 callout_list_walk_fini(mdb_walk_state_t *wsp) 544 { 545 mdb_free(wsp->walk_data, sizeof (callout_list_t)); 546 } 547 548 /* routines/structs to walk callout table(s) */ 549 typedef struct cot_data { 550 callout_table_t *ct0; 551 callout_table_t ct; 552 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 553 callout_hash_t cot_clhash[CALLOUT_BUCKETS]; 554 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS]; 555 int cotndx; 556 int cotsize; 557 } cot_data_t; 558 559 int 560 callout_table_walk_init(mdb_walk_state_t *wsp) 561 { 562 int max_ncpus; 563 cot_data_t *cot_walk_data; 564 565 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP); 566 567 if (wsp->walk_addr == NULL) { 568 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) { 569 mdb_warn("failed to read 'callout_table'"); 570 return (WALK_ERR); 571 } 572 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 573 mdb_warn("failed to get callout_table array size"); 574 return (WALK_ERR); 575 } 576 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus; 577 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0; 578 } else { 579 /* not a global walk */ 580 cot_walk_data->cotsize = 1; 581 } 582 583 cot_walk_data->cotndx = 0; 584 wsp->walk_data = cot_walk_data; 585 586 return (WALK_NEXT); 587 } 588 589 int 590 callout_table_walk_step(mdb_walk_state_t *wsp) 591 { 592 int retval; 593 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data; 594 size_t size; 595 596 if (cotwd->cotndx >= cotwd->cotsize) { 597 return (WALK_DONE); 598 } 599 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t), 600 wsp->walk_addr) != sizeof (callout_table_t)) { 601 mdb_warn("failed to read callout_table at %p", wsp->walk_addr); 602 return (WALK_ERR); 603 } 604 605 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 606 if (cotwd->ct.ct_idhash != NULL) { 607 if (mdb_vread(cotwd->cot_idhash, size, 608 (uintptr_t)(cotwd->ct.ct_idhash)) != size) { 609 mdb_warn("failed to read id_hash at %p", 610 cotwd->ct.ct_idhash); 611 return (WALK_ERR); 612 } 613 } 614 if (cotwd->ct.ct_clhash != NULL) { 615 if (mdb_vread(&(cotwd->cot_clhash), size, 616 (uintptr_t)cotwd->ct.ct_clhash) == -1) { 617 mdb_warn("failed to read cl_hash at %p", 618 cotwd->ct.ct_clhash); 619 return (WALK_ERR); 620 } 621 } 622 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS; 623 if (cotwd->ct.ct_kstat_data != NULL) { 624 if (mdb_vread(&(cotwd->ct_kstat_data), size, 625 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) { 626 mdb_warn("failed to read kstats at %p", 627 cotwd->ct.ct_kstat_data); 628 return (WALK_ERR); 629 } 630 } 631 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd, 632 wsp->walk_cbdata); 633 634 cotwd->cotndx++; 635 if (cotwd->cotndx >= cotwd->cotsize) { 636 return (WALK_DONE); 637 } 638 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr + 639 sizeof (callout_table_t)); 640 641 return (retval); 642 } 643 644 void 645 callout_table_walk_fini(mdb_walk_state_t *wsp) 646 { 647 mdb_free(wsp->walk_data, sizeof (cot_data_t)); 648 } 649 650 static const char *co_typenames[] = { "R", "N" }; 651 652 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK) 653 654 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS) 655 656 /* callout flags, in no particular order */ 657 #define COF_REAL 0x00000001 658 #define COF_NORM 0x00000002 659 #define COF_LONG 0x00000004 660 #define COF_SHORT 0x00000008 661 #define COF_EMPTY 0x00000010 662 #define COF_TIME 0x00000020 663 #define COF_BEFORE 0x00000040 664 #define COF_AFTER 0x00000080 665 #define COF_SEQID 0x00000100 666 #define COF_FUNC 0x00000200 667 #define COF_ADDR 0x00000400 668 #define COF_EXEC 0x00000800 669 #define COF_HIRES 0x00001000 670 #define COF_ABS 0x00002000 671 #define COF_TABLE 0x00004000 672 #define COF_BYIDH 0x00008000 673 #define COF_FREE 0x00010000 674 #define COF_LIST 0x00020000 675 #define COF_EXPREL 0x00040000 676 #define COF_HDR 0x00080000 677 #define COF_VERBOSE 0x00100000 678 #define COF_LONGLIST 0x00200000 679 #define COF_THDR 0x00400000 680 #define COF_LHDR 0x00800000 681 #define COF_CHDR 0x01000000 682 #define COF_PARAM 0x02000000 683 #define COF_DECODE 0x04000000 684 #define COF_HEAP 0x08000000 685 #define COF_QUEUE 0x10000000 686 687 /* show real and normal, short and long, expired and unexpired. */ 688 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT) 689 690 #define COF_LIST_FLAGS \ 691 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE) 692 693 /* private callout data for callback functions */ 694 typedef struct callout_data { 695 uint_t flags; /* COF_* */ 696 cpu_t *cpu; /* cpu pointer if given */ 697 int seqid; /* cpu seqid, or -1 */ 698 hrtime_t time; /* expiration time value */ 699 hrtime_t atime; /* expiration before value */ 700 hrtime_t btime; /* expiration after value */ 701 uintptr_t funcaddr; /* function address or NULL */ 702 uintptr_t param; /* parameter to function or NULL */ 703 hrtime_t now; /* current system time */ 704 int nsec_per_tick; /* for conversions */ 705 ulong_t ctbits; /* for decoding xid */ 706 callout_table_t *co_table; /* top of callout table array */ 707 int ndx; /* table index. */ 708 int bucket; /* which list/id bucket are we in */ 709 hrtime_t exp; /* expire time */ 710 int list_flags; /* copy of cl_flags */ 711 } callout_data_t; 712 713 /* this callback does the actual callback itself (finally). */ 714 /*ARGSUSED*/ 715 static int 716 callouts_cb(uintptr_t addr, const void *data, void *priv) 717 { 718 callout_data_t *coargs = (callout_data_t *)priv; 719 callout_t *co = (callout_t *)data; 720 int tableid, list_flags; 721 callout_id_t coid; 722 723 if ((coargs == NULL) || (co == NULL)) { 724 return (WALK_ERR); 725 } 726 727 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) { 728 /* 729 * The callout must have been reallocated. No point in 730 * walking any more. 731 */ 732 return (WALK_DONE); 733 } 734 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) { 735 /* 736 * The callout must have been freed. No point in 737 * walking any more. 738 */ 739 return (WALK_DONE); 740 } 741 if ((coargs->flags & COF_FUNC) && 742 (coargs->funcaddr != (uintptr_t)co->c_func)) { 743 return (WALK_NEXT); 744 } 745 if ((coargs->flags & COF_PARAM) && 746 (coargs->param != (uintptr_t)co->c_arg)) { 747 return (WALK_NEXT); 748 } 749 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) { 750 return (WALK_NEXT); 751 } 752 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) { 753 return (WALK_NEXT); 754 } 755 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) { 756 return (WALK_NEXT); 757 } 758 /* it is possible we don't have the exp time or flags */ 759 if (coargs->flags & COF_BYIDH) { 760 if (!(coargs->flags & COF_FREE)) { 761 /* we have to fetch the expire time ourselves. */ 762 if (mdb_vread(&coargs->exp, sizeof (hrtime_t), 763 (uintptr_t)co->c_list + offsetof(callout_list_t, 764 cl_expiration)) == -1) { 765 mdb_warn("failed to read expiration " 766 "time from %p", co->c_list); 767 coargs->exp = 0; 768 } 769 /* and flags. */ 770 if (mdb_vread(&coargs->list_flags, sizeof (int), 771 (uintptr_t)co->c_list + offsetof(callout_list_t, 772 cl_flags)) == -1) { 773 mdb_warn("failed to read list flags" 774 "from %p", co->c_list); 775 coargs->list_flags = 0; 776 } 777 } else { 778 /* free callouts can't use list pointer. */ 779 coargs->exp = 0; 780 coargs->list_flags = 0; 781 } 782 if (coargs->exp != 0) { 783 if ((coargs->flags & COF_TIME) && 784 (coargs->exp != coargs->time)) { 785 return (WALK_NEXT); 786 } 787 if ((coargs->flags & COF_BEFORE) && 788 (coargs->exp > coargs->btime)) { 789 return (WALK_NEXT); 790 } 791 if ((coargs->flags & COF_AFTER) && 792 (coargs->exp < coargs->atime)) { 793 return (WALK_NEXT); 794 } 795 } 796 /* tricky part, since both HIRES and ABS can be set */ 797 list_flags = coargs->list_flags; 798 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 799 /* both flags are set, only skip "regular" ones */ 800 if (! (list_flags & COF_LIST_FLAGS)) { 801 return (WALK_NEXT); 802 } 803 } else { 804 /* individual flags, or no flags */ 805 if ((coargs->flags & COF_HIRES) && 806 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 807 return (WALK_NEXT); 808 } 809 if ((coargs->flags & COF_ABS) && 810 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 811 return (WALK_NEXT); 812 } 813 } 814 /* 815 * We do the checks for COF_HEAP and COF_QUEUE here only if we 816 * are traversing BYIDH. If the traversal is by callout list, 817 * we do this check in callout_list_cb() to be more 818 * efficient. 819 */ 820 if ((coargs->flags & COF_HEAP) && 821 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 822 return (WALK_NEXT); 823 } 824 825 if ((coargs->flags & COF_QUEUE) && 826 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 827 return (WALK_NEXT); 828 } 829 } 830 831 #define callout_table_mask ((1 << coargs->ctbits) - 1) 832 tableid = CALLOUT_ID_TO_TABLE(co->c_xid); 833 #undef callout_table_mask 834 coid = CO_PLAIN_ID(co->c_xid); 835 836 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) { 837 /* 838 * We need to print the headers. If walking by id, then 839 * the list header isn't printed, so we must include 840 * that info here. 841 */ 842 if (!(coargs->flags & COF_VERBOSE)) { 843 mdb_printf("%<u>%3s %-1s %-14s %</u>", 844 "SEQ", "T", "EXP"); 845 } else if (coargs->flags & COF_BYIDH) { 846 mdb_printf("%<u>%-14s %</u>", "EXP"); 847 } 848 mdb_printf("%<u>%-4s %-?s %-20s%</u>", 849 "XHAL", "XID", "FUNC(ARG)"); 850 if (coargs->flags & COF_LONGLIST) { 851 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>", 852 "PREVID", "NEXTID", "PREVL", "NEXTL"); 853 mdb_printf("%<u> %-?s %-4s %-?s%</u>", 854 "DONE", "UTOS", "THREAD"); 855 } 856 mdb_printf("\n"); 857 coargs->flags &= ~COF_CHDR; 858 coargs->flags |= (COF_THDR | COF_LHDR); 859 } 860 861 if (!(coargs->flags & COF_ADDR)) { 862 if (!(coargs->flags & COF_VERBOSE)) { 863 mdb_printf("%-3d %1s %-14llx ", 864 TABLE_TO_SEQID(tableid), 865 co_typenames[tableid & CALLOUT_TYPE_MASK], 866 (coargs->flags & COF_EXPREL) ? 867 coargs->exp - coargs->now : coargs->exp); 868 } else if (coargs->flags & COF_BYIDH) { 869 mdb_printf("%-14x ", 870 (coargs->flags & COF_EXPREL) ? 871 coargs->exp - coargs->now : coargs->exp); 872 } 873 list_flags = coargs->list_flags; 874 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)", 875 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ", 876 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ", 877 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ", 878 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ", 879 (long long)coid, co->c_func, co->c_arg); 880 if (coargs->flags & COF_LONGLIST) { 881 mdb_printf(" %-?p %-?p %-?p %-?p", 882 co->c_idprev, co->c_idnext, co->c_clprev, 883 co->c_clnext); 884 mdb_printf(" %-?p %-4d %-0?p", 885 co->c_done, co->c_waiting, co->c_executor); 886 } 887 } else { 888 /* address only */ 889 mdb_printf("%-0p", addr); 890 } 891 mdb_printf("\n"); 892 return (WALK_NEXT); 893 } 894 895 /* this callback is for callout list handling. idhash is done by callout_t_cb */ 896 /*ARGSUSED*/ 897 static int 898 callout_list_cb(uintptr_t addr, const void *data, void *priv) 899 { 900 callout_data_t *coargs = (callout_data_t *)priv; 901 callout_list_t *cl = (callout_list_t *)data; 902 callout_t *coptr; 903 int list_flags; 904 905 if ((coargs == NULL) || (cl == NULL)) { 906 return (WALK_ERR); 907 } 908 909 coargs->exp = cl->cl_expiration; 910 coargs->list_flags = cl->cl_flags; 911 if ((coargs->flags & COF_FREE) && 912 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 913 /* 914 * The callout list must have been reallocated. No point in 915 * walking any more. 916 */ 917 return (WALK_DONE); 918 } 919 if (!(coargs->flags & COF_FREE) && 920 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 921 /* 922 * The callout list must have been freed. No point in 923 * walking any more. 924 */ 925 return (WALK_DONE); 926 } 927 if ((coargs->flags & COF_TIME) && 928 (cl->cl_expiration != coargs->time)) { 929 return (WALK_NEXT); 930 } 931 if ((coargs->flags & COF_BEFORE) && 932 (cl->cl_expiration > coargs->btime)) { 933 return (WALK_NEXT); 934 } 935 if ((coargs->flags & COF_AFTER) && 936 (cl->cl_expiration < coargs->atime)) { 937 return (WALK_NEXT); 938 } 939 if (!(coargs->flags & COF_EMPTY) && 940 (cl->cl_callouts.ch_head == NULL)) { 941 return (WALK_NEXT); 942 } 943 /* FOUR cases, each different, !A!B, !AB, A!B, AB */ 944 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 945 /* both flags are set, only skip "regular" ones */ 946 if (! (cl->cl_flags & COF_LIST_FLAGS)) { 947 return (WALK_NEXT); 948 } 949 } else { 950 if ((coargs->flags & COF_HIRES) && 951 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 952 return (WALK_NEXT); 953 } 954 if ((coargs->flags & COF_ABS) && 955 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 956 return (WALK_NEXT); 957 } 958 } 959 960 if ((coargs->flags & COF_HEAP) && 961 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 962 return (WALK_NEXT); 963 } 964 965 if ((coargs->flags & COF_QUEUE) && 966 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 967 return (WALK_NEXT); 968 } 969 970 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) && 971 (coargs->flags & (COF_LIST | COF_VERBOSE))) { 972 if (!(coargs->flags & COF_VERBOSE)) { 973 /* don't be redundant again */ 974 mdb_printf("%<u>SEQ T %</u>"); 975 } 976 mdb_printf("%<u>EXP HA BUCKET " 977 "CALLOUTS %</u>"); 978 979 if (coargs->flags & COF_LONGLIST) { 980 mdb_printf("%<u> %-?s %-?s%</u>", 981 "PREV", "NEXT"); 982 } 983 mdb_printf("\n"); 984 coargs->flags &= ~COF_LHDR; 985 coargs->flags |= (COF_THDR | COF_CHDR); 986 } 987 if (coargs->flags & (COF_LIST | COF_VERBOSE)) { 988 if (!(coargs->flags & COF_ADDR)) { 989 if (!(coargs->flags & COF_VERBOSE)) { 990 mdb_printf("%3d %1s ", 991 TABLE_TO_SEQID(coargs->ndx), 992 co_typenames[coargs->ndx & 993 CALLOUT_TYPE_MASK]); 994 } 995 996 list_flags = coargs->list_flags; 997 mdb_printf("%-14llx %1s%1s %-6d %-0?p ", 998 (coargs->flags & COF_EXPREL) ? 999 coargs->exp - coargs->now : coargs->exp, 1000 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? 1001 "H" : " ", 1002 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? 1003 "A" : " ", 1004 coargs->bucket, cl->cl_callouts.ch_head); 1005 1006 if (coargs->flags & COF_LONGLIST) { 1007 mdb_printf(" %-?p %-?p", 1008 cl->cl_prev, cl->cl_next); 1009 } 1010 } else { 1011 /* address only */ 1012 mdb_printf("%-0p", addr); 1013 } 1014 mdb_printf("\n"); 1015 if (coargs->flags & COF_LIST) { 1016 return (WALK_NEXT); 1017 } 1018 } 1019 /* yet another layer as we walk the actual callouts via list. */ 1020 if (cl->cl_callouts.ch_head == NULL) { 1021 return (WALK_NEXT); 1022 } 1023 /* free list structures do not have valid callouts off of them. */ 1024 if (coargs->flags & COF_FREE) { 1025 return (WALK_NEXT); 1026 } 1027 coptr = (callout_t *)cl->cl_callouts.ch_head; 1028 1029 if (coargs->flags & COF_VERBOSE) { 1030 mdb_inc_indent(4); 1031 } 1032 /* 1033 * walk callouts using yet another callback routine. 1034 * we use callouts_bytime because id hash is handled via 1035 * the callout_t_cb callback. 1036 */ 1037 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs, 1038 (uintptr_t)coptr) == -1) { 1039 mdb_warn("cannot walk callouts at %p", coptr); 1040 return (WALK_ERR); 1041 } 1042 if (coargs->flags & COF_VERBOSE) { 1043 mdb_dec_indent(4); 1044 } 1045 1046 return (WALK_NEXT); 1047 } 1048 1049 /* this callback handles the details of callout table walking. */ 1050 static int 1051 callout_t_cb(uintptr_t addr, const void *data, void *priv) 1052 { 1053 callout_data_t *coargs = (callout_data_t *)priv; 1054 cot_data_t *cotwd = (cot_data_t *)data; 1055 callout_table_t *ct = &(cotwd->ct); 1056 int index, seqid, cotype; 1057 int i; 1058 callout_list_t *clptr; 1059 callout_t *coptr; 1060 1061 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) { 1062 return (WALK_ERR); 1063 } 1064 1065 index = ((char *)addr - (char *)coargs->co_table) / 1066 sizeof (callout_table_t); 1067 cotype = index & CALLOUT_TYPE_MASK; 1068 seqid = TABLE_TO_SEQID(index); 1069 1070 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) { 1071 return (WALK_NEXT); 1072 } 1073 1074 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) { 1075 return (WALK_NEXT); 1076 } 1077 1078 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) { 1079 return (WALK_NEXT); 1080 } 1081 1082 if (!(coargs->flags & COF_EMPTY) && ( 1083 (ct->ct_heap == NULL) || (ct->ct_cyclic == NULL))) { 1084 return (WALK_NEXT); 1085 } 1086 1087 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) && 1088 (coargs->flags & (COF_TABLE | COF_VERBOSE))) { 1089 /* print table hdr */ 1090 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>", 1091 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP"); 1092 coargs->flags &= ~COF_THDR; 1093 coargs->flags |= (COF_LHDR | COF_CHDR); 1094 if (coargs->flags & COF_LONGLIST) { 1095 /* more info! */ 1096 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s" 1097 " %-?s %-?s %-?s%</u>", 1098 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE", 1099 "PEND", "FREE", "LOCK"); 1100 } 1101 mdb_printf("\n"); 1102 } 1103 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) { 1104 if (!(coargs->flags & COF_ADDR)) { 1105 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p", 1106 seqid, co_typenames[cotype], 1107 ct->ct_free, ct->ct_lfree, ct->ct_cyclic, 1108 ct->ct_heap); 1109 if (coargs->flags & COF_LONGLIST) { 1110 /* more info! */ 1111 mdb_printf(" %-7d %-7d %-?p %-?p %-?p" 1112 " %-?lld %-?lld %-?p", 1113 ct->ct_heap_num, ct->ct_heap_max, 1114 ct->ct_taskq, ct->ct_expired.ch_head, 1115 ct->ct_queue.ch_head, 1116 cotwd->ct_timeouts_pending, 1117 cotwd->ct_allocations - 1118 cotwd->ct_timeouts_pending, 1119 ct->ct_mutex); 1120 } 1121 } else { 1122 /* address only */ 1123 mdb_printf("%-0?p", addr); 1124 } 1125 mdb_printf("\n"); 1126 if (coargs->flags & COF_TABLE) { 1127 return (WALK_NEXT); 1128 } 1129 } 1130 1131 coargs->ndx = index; 1132 if (coargs->flags & COF_VERBOSE) { 1133 mdb_inc_indent(4); 1134 } 1135 /* keep digging. */ 1136 if (!(coargs->flags & COF_BYIDH)) { 1137 /* walk the list hash table */ 1138 if (coargs->flags & COF_FREE) { 1139 clptr = ct->ct_lfree; 1140 coargs->bucket = 0; 1141 if (clptr == NULL) { 1142 return (WALK_NEXT); 1143 } 1144 if (mdb_pwalk("callout_list", callout_list_cb, coargs, 1145 (uintptr_t)clptr) == -1) { 1146 mdb_warn("cannot walk callout free list at %p", 1147 clptr); 1148 return (WALK_ERR); 1149 } 1150 } else { 1151 /* first print the expired list. */ 1152 clptr = (callout_list_t *)ct->ct_expired.ch_head; 1153 if (clptr != NULL) { 1154 coargs->bucket = -1; 1155 if (mdb_pwalk("callout_list", callout_list_cb, 1156 coargs, (uintptr_t)clptr) == -1) { 1157 mdb_warn("cannot walk callout_list" 1158 " at %p", clptr); 1159 return (WALK_ERR); 1160 } 1161 } 1162 /* then, print the callout queue */ 1163 clptr = (callout_list_t *)ct->ct_queue.ch_head; 1164 if (clptr != NULL) { 1165 coargs->bucket = -1; 1166 if (mdb_pwalk("callout_list", callout_list_cb, 1167 coargs, (uintptr_t)clptr) == -1) { 1168 mdb_warn("cannot walk callout_list" 1169 " at %p", clptr); 1170 return (WALK_ERR); 1171 } 1172 } 1173 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1174 if (ct->ct_clhash == NULL) { 1175 /* nothing to do */ 1176 break; 1177 } 1178 if (cotwd->cot_clhash[i].ch_head == NULL) { 1179 continue; 1180 } 1181 clptr = (callout_list_t *) 1182 cotwd->cot_clhash[i].ch_head; 1183 coargs->bucket = i; 1184 /* walk list with callback routine. */ 1185 if (mdb_pwalk("callout_list", callout_list_cb, 1186 coargs, (uintptr_t)clptr) == -1) { 1187 mdb_warn("cannot walk callout_list" 1188 " at %p", clptr); 1189 return (WALK_ERR); 1190 } 1191 } 1192 } 1193 } else { 1194 /* walk the id hash table. */ 1195 if (coargs->flags & COF_FREE) { 1196 coptr = ct->ct_free; 1197 coargs->bucket = 0; 1198 if (coptr == NULL) { 1199 return (WALK_NEXT); 1200 } 1201 if (mdb_pwalk("callouts_byid", callouts_cb, coargs, 1202 (uintptr_t)coptr) == -1) { 1203 mdb_warn("cannot walk callout id free list" 1204 " at %p", coptr); 1205 return (WALK_ERR); 1206 } 1207 } else { 1208 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1209 if (ct->ct_idhash == NULL) { 1210 break; 1211 } 1212 coptr = (callout_t *) 1213 cotwd->cot_idhash[i].ch_head; 1214 if (coptr == NULL) { 1215 continue; 1216 } 1217 coargs->bucket = i; 1218 1219 /* 1220 * walk callouts directly by id. For id 1221 * chain, the callout list is just a header, 1222 * so there's no need to walk it. 1223 */ 1224 if (mdb_pwalk("callouts_byid", callouts_cb, 1225 coargs, (uintptr_t)coptr) == -1) { 1226 mdb_warn("cannot walk callouts at %p", 1227 coptr); 1228 return (WALK_ERR); 1229 } 1230 } 1231 } 1232 } 1233 if (coargs->flags & COF_VERBOSE) { 1234 mdb_dec_indent(4); 1235 } 1236 return (WALK_NEXT); 1237 } 1238 1239 /* 1240 * initialize some common info for both callout dcmds. 1241 */ 1242 int 1243 callout_common_init(callout_data_t *coargs) 1244 { 1245 /* we need a couple of things */ 1246 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) { 1247 mdb_warn("failed to read 'callout_table'"); 1248 return (DCMD_ERR); 1249 } 1250 /* need to get now in nsecs. Approximate with hrtime vars */ 1251 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") != 1252 sizeof (hrtime_t)) { 1253 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), 1254 "hrtime_base") != sizeof (hrtime_t)) { 1255 mdb_warn("Could not determine current system time"); 1256 return (DCMD_ERR); 1257 } 1258 } 1259 1260 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) { 1261 mdb_warn("failed to read 'callout_table_bits'"); 1262 return (DCMD_ERR); 1263 } 1264 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) { 1265 mdb_warn("failed to read 'nsec_per_tick'"); 1266 return (DCMD_ERR); 1267 } 1268 return (DCMD_OK); 1269 } 1270 1271 /* 1272 * dcmd to print callouts. Optional addr limits to specific table. 1273 * Parses lots of options that get passed to callbacks for walkers. 1274 * Has it's own help function. 1275 */ 1276 /*ARGSUSED*/ 1277 int 1278 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1279 { 1280 callout_data_t coargs; 1281 /* getopts doesn't help much with stuff like this */ 1282 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag; 1283 char *funcname = NULL; 1284 char *paramstr = NULL; 1285 uintptr_t Stmp, Ctmp; /* for getopt. */ 1286 int retval; 1287 1288 coargs.flags = COF_DEFAULT; 1289 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE; 1290 coargs.seqid = -1; 1291 1292 if (mdb_getopts(argc, argv, 1293 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags, 1294 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags, 1295 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags, 1296 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags, 1297 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags, 1298 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags, 1299 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags, 1300 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags, 1301 'd', MDB_OPT_SETBITS, 1, &dflag, 1302 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp, 1303 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp, 1304 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time, 1305 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime, 1306 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime, 1307 'k', MDB_OPT_SETBITS, 1, &kflag, 1308 'f', MDB_OPT_STR, &funcname, 1309 'p', MDB_OPT_STR, ¶mstr, 1310 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags, 1311 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags, 1312 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags, 1313 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags, 1314 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1315 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags, 1316 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags, 1317 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags, 1318 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags, 1319 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags, 1320 NULL) != argc) { 1321 return (DCMD_USAGE); 1322 } 1323 1324 /* initialize from kernel variables */ 1325 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1326 return (retval); 1327 } 1328 1329 /* do some option post-processing */ 1330 if (kflag) { 1331 coargs.time *= coargs.nsec_per_tick; 1332 coargs.atime *= coargs.nsec_per_tick; 1333 coargs.btime *= coargs.nsec_per_tick; 1334 } 1335 1336 if (dflag) { 1337 coargs.time += coargs.now; 1338 coargs.atime += coargs.now; 1339 coargs.btime += coargs.now; 1340 } 1341 if (Sflag) { 1342 if (flags & DCMD_ADDRSPEC) { 1343 mdb_printf("-S option conflicts with explicit" 1344 " address\n"); 1345 return (DCMD_USAGE); 1346 } 1347 coargs.flags |= COF_SEQID; 1348 coargs.seqid = (int)Stmp; 1349 } 1350 if (Cflag) { 1351 if (flags & DCMD_ADDRSPEC) { 1352 mdb_printf("-C option conflicts with explicit" 1353 " address\n"); 1354 return (DCMD_USAGE); 1355 } 1356 if (coargs.flags & COF_SEQID) { 1357 mdb_printf("-C and -S are mutually exclusive\n"); 1358 return (DCMD_USAGE); 1359 } 1360 coargs.cpu = (cpu_t *)Ctmp; 1361 if (mdb_vread(&coargs.seqid, sizeof (processorid_t), 1362 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) { 1363 mdb_warn("failed to read cpu_t at %p", Ctmp); 1364 return (DCMD_ERR); 1365 } 1366 coargs.flags |= COF_SEQID; 1367 } 1368 /* avoid null outputs. */ 1369 if (!(coargs.flags & (COF_REAL | COF_NORM))) { 1370 coargs.flags |= COF_REAL | COF_NORM; 1371 } 1372 if (!(coargs.flags & (COF_LONG | COF_SHORT))) { 1373 coargs.flags |= COF_LONG | COF_SHORT; 1374 } 1375 if (tflag) { 1376 if (aflag || bflag) { 1377 mdb_printf("-t and -a|b are mutually exclusive\n"); 1378 return (DCMD_USAGE); 1379 } 1380 coargs.flags |= COF_TIME; 1381 } 1382 if (aflag) { 1383 coargs.flags |= COF_AFTER; 1384 } 1385 if (bflag) { 1386 coargs.flags |= COF_BEFORE; 1387 } 1388 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) { 1389 mdb_printf("value for -a must be earlier than the value" 1390 " for -b.\n"); 1391 return (DCMD_USAGE); 1392 } 1393 1394 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) { 1395 mdb_printf("-H and -Q are mutually exclusive\n"); 1396 return (DCMD_USAGE); 1397 } 1398 1399 if (funcname != NULL) { 1400 GElf_Sym sym; 1401 1402 if (mdb_lookup_by_name(funcname, &sym) != 0) { 1403 coargs.funcaddr = mdb_strtoull(funcname); 1404 } else { 1405 coargs.funcaddr = sym.st_value; 1406 } 1407 coargs.flags |= COF_FUNC; 1408 } 1409 1410 if (paramstr != NULL) { 1411 GElf_Sym sym; 1412 1413 if (mdb_lookup_by_name(paramstr, &sym) != 0) { 1414 coargs.param = mdb_strtoull(paramstr); 1415 } else { 1416 coargs.param = sym.st_value; 1417 } 1418 coargs.flags |= COF_PARAM; 1419 } 1420 1421 if (!(flags & DCMD_ADDRSPEC)) { 1422 /* don't pass "dot" if no addr. */ 1423 addr = NULL; 1424 } 1425 if (addr != NULL) { 1426 /* 1427 * a callout table was specified. Ignore -r|n option 1428 * to avoid null output. 1429 */ 1430 coargs.flags |= (COF_REAL | COF_NORM); 1431 } 1432 1433 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) { 1434 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR; 1435 } 1436 if (coargs.flags & COF_FREE) { 1437 coargs.flags |= COF_EMPTY; 1438 /* -F = free callouts, -FL = free lists */ 1439 if (!(coargs.flags & COF_LIST)) { 1440 coargs.flags |= COF_BYIDH; 1441 } 1442 } 1443 1444 /* walk table, using specialized callback routine. */ 1445 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) { 1446 mdb_warn("cannot walk callout_table"); 1447 return (DCMD_ERR); 1448 } 1449 return (DCMD_OK); 1450 } 1451 1452 1453 /* 1454 * Given an extended callout id, dump its information. 1455 */ 1456 /*ARGSUSED*/ 1457 int 1458 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1459 { 1460 callout_data_t coargs; 1461 callout_table_t *ctptr; 1462 callout_table_t ct; 1463 callout_id_t coid; 1464 callout_t *coptr; 1465 int tableid; 1466 callout_id_t xid; 1467 ulong_t idhash; 1468 int i, retval; 1469 const mdb_arg_t *arg; 1470 size_t size; 1471 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 1472 1473 coargs.flags = COF_DEFAULT | COF_BYIDH; 1474 i = mdb_getopts(argc, argv, 1475 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags, 1476 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1477 NULL); 1478 argc -= i; 1479 argv += i; 1480 1481 if (argc != 1) { 1482 return (DCMD_USAGE); 1483 } 1484 arg = &argv[0]; 1485 1486 if (arg->a_type == MDB_TYPE_IMMEDIATE) { 1487 xid = arg->a_un.a_val; 1488 } else { 1489 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str); 1490 } 1491 1492 if (DCMD_HDRSPEC(flags)) { 1493 coargs.flags |= COF_CHDR; 1494 } 1495 1496 1497 /* initialize from kernel variables */ 1498 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1499 return (retval); 1500 } 1501 1502 /* we must massage the environment so that the macros will play nice */ 1503 #define callout_table_mask ((1 << coargs.ctbits) - 1) 1504 #define callout_table_bits coargs.ctbits 1505 #define nsec_per_tick coargs.nsec_per_tick 1506 tableid = CALLOUT_ID_TO_TABLE(xid); 1507 idhash = CALLOUT_IDHASH(xid); 1508 #undef callouts_table_bits 1509 #undef callout_table_mask 1510 #undef nsec_per_tick 1511 coid = CO_PLAIN_ID(xid); 1512 1513 if (flags & DCMD_ADDRSPEC) { 1514 mdb_printf("calloutid does not accept explicit address.\n"); 1515 return (DCMD_USAGE); 1516 } 1517 1518 if (coargs.flags & COF_DECODE) { 1519 if (DCMD_HDRSPEC(flags)) { 1520 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n", 1521 "SEQ", "T", "XL", "XID", "IDHASH"); 1522 } 1523 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n", 1524 TABLE_TO_SEQID(tableid), 1525 co_typenames[tableid & CALLOUT_TYPE_MASK], 1526 (xid & CALLOUT_EXECUTING) ? "X" : " ", 1527 (xid & CALLOUT_LONGTERM) ? "L" : " ", 1528 (long long)coid, idhash); 1529 return (DCMD_OK); 1530 } 1531 1532 /* get our table. Note this relies on the types being correct */ 1533 ctptr = coargs.co_table + tableid; 1534 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) { 1535 mdb_warn("failed to read callout_table at %p", ctptr); 1536 return (DCMD_ERR); 1537 } 1538 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 1539 if (ct.ct_idhash != NULL) { 1540 if (mdb_vread(&(cot_idhash), size, 1541 (uintptr_t)ct.ct_idhash) == -1) { 1542 mdb_warn("failed to read id_hash at %p", 1543 ct.ct_idhash); 1544 return (WALK_ERR); 1545 } 1546 } 1547 1548 /* callout at beginning of hash chain */ 1549 if (ct.ct_idhash == NULL) { 1550 mdb_printf("id hash chain for this xid is empty\n"); 1551 return (DCMD_ERR); 1552 } 1553 coptr = (callout_t *)cot_idhash[idhash].ch_head; 1554 if (coptr == NULL) { 1555 mdb_printf("id hash chain for this xid is empty\n"); 1556 return (DCMD_ERR); 1557 } 1558 1559 coargs.ndx = tableid; 1560 coargs.bucket = idhash; 1561 1562 /* use the walker, luke */ 1563 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs, 1564 (uintptr_t)coptr) == -1) { 1565 mdb_warn("cannot walk callouts at %p", coptr); 1566 return (WALK_ERR); 1567 } 1568 1569 return (DCMD_OK); 1570 } 1571 1572 void 1573 callout_help(void) 1574 { 1575 mdb_printf("callout: display callouts.\n" 1576 "Given a callout table address, display callouts from table.\n" 1577 "Without an address, display callouts from all tables.\n" 1578 "options:\n" 1579 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n" 1580 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n" 1581 " -x : limit display to callouts which are executing\n" 1582 " -h : limit display to callouts based on hrestime\n" 1583 " -B : limit display to callouts based on absolute time\n" 1584 " -t|a|b nsec: limit display to callouts that expire a(t) time," 1585 " (a)fter time,\n or (b)efore time. Use -a and -b together " 1586 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n" 1587 " -d : interpret time option to -t|a|b as delta from current time\n" 1588 " -k : use ticks instead of nanoseconds as arguments to" 1589 " -t|a|b. Note that\n ticks are less accurate and may not" 1590 " match other tick times (ie: lbolt).\n" 1591 " -D : display exiration time as delta from current time\n" 1592 " -S seqid : limit display to callouts for this cpu sequence id\n" 1593 " -C addr : limit display to callouts for this cpu pointer\n" 1594 " -f name|addr : limit display to callouts with this function\n" 1595 " -p name|addr : limit display to callouts functions with this" 1596 " parameter\n" 1597 " -T : display the callout table itself, instead of callouts\n" 1598 " -L : display callout lists instead of callouts\n" 1599 " -E : with -T or L, display empty data structures.\n" 1600 " -i : traverse callouts by id hash instead of list hash\n" 1601 " -F : walk free callout list (free list with -i) instead\n" 1602 " -v : display more info for each item\n" 1603 " -V : show details of each level of info as it is traversed\n" 1604 " -H : limit display to callouts in the callout heap\n" 1605 " -Q : limit display to callouts in the callout queue\n" 1606 " -A : show only addresses. Useful for pipelines.\n"); 1607 } 1608 1609 void 1610 calloutid_help(void) 1611 { 1612 mdb_printf("calloutid: display callout by id.\n" 1613 "Given an extended callout id, display the callout infomation.\n" 1614 "options:\n" 1615 " -d : do not dereference callout, just decode the id.\n" 1616 " -v : verbose display more info about the callout\n"); 1617 } 1618 1619 /*ARGSUSED*/ 1620 int 1621 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1622 { 1623 long num_classes, i; 1624 sclass_t *class_tbl; 1625 GElf_Sym g_sclass; 1626 char class_name[PC_CLNMSZ]; 1627 size_t tbl_size; 1628 1629 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 1630 mdb_warn("failed to find symbol sclass\n"); 1631 return (DCMD_ERR); 1632 } 1633 1634 tbl_size = (size_t)g_sclass.st_size; 1635 num_classes = tbl_size / (sizeof (sclass_t)); 1636 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 1637 1638 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 1639 mdb_warn("failed to read sclass"); 1640 return (DCMD_ERR); 1641 } 1642 1643 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 1644 "INIT FCN", "CLASS FCN"); 1645 1646 for (i = 0; i < num_classes; i++) { 1647 if (mdb_vread(class_name, sizeof (class_name), 1648 (uintptr_t)class_tbl[i].cl_name) == -1) 1649 (void) strcpy(class_name, "???"); 1650 1651 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 1652 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 1653 } 1654 1655 return (DCMD_OK); 1656 } 1657 1658 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 1659 1660 int 1661 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1662 { 1663 uintptr_t rootdir; 1664 vnode_t vn; 1665 char buf[MAXPATHLEN]; 1666 1667 uint_t opt_F = FALSE; 1668 1669 if (mdb_getopts(argc, argv, 1670 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 1671 return (DCMD_USAGE); 1672 1673 if (!(flags & DCMD_ADDRSPEC)) { 1674 mdb_warn("expected explicit vnode_t address before ::\n"); 1675 return (DCMD_USAGE); 1676 } 1677 1678 if (mdb_readvar(&rootdir, "rootdir") == -1) { 1679 mdb_warn("failed to read rootdir"); 1680 return (DCMD_ERR); 1681 } 1682 1683 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 1684 return (DCMD_ERR); 1685 1686 if (*buf == '\0') { 1687 mdb_printf("??\n"); 1688 return (DCMD_OK); 1689 } 1690 1691 mdb_printf("%s", buf); 1692 if (opt_F && buf[strlen(buf)-1] != '/' && 1693 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 1694 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 1695 mdb_printf("\n"); 1696 1697 return (DCMD_OK); 1698 } 1699 1700 int 1701 ld_walk_init(mdb_walk_state_t *wsp) 1702 { 1703 wsp->walk_data = (void *)wsp->walk_addr; 1704 return (WALK_NEXT); 1705 } 1706 1707 int 1708 ld_walk_step(mdb_walk_state_t *wsp) 1709 { 1710 int status; 1711 lock_descriptor_t ld; 1712 1713 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 1714 mdb_warn("couldn't read lock_descriptor_t at %p\n", 1715 wsp->walk_addr); 1716 return (WALK_ERR); 1717 } 1718 1719 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 1720 if (status == WALK_ERR) 1721 return (WALK_ERR); 1722 1723 wsp->walk_addr = (uintptr_t)ld.l_next; 1724 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 1725 return (WALK_DONE); 1726 1727 return (status); 1728 } 1729 1730 int 1731 lg_walk_init(mdb_walk_state_t *wsp) 1732 { 1733 GElf_Sym sym; 1734 1735 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 1736 mdb_warn("failed to find symbol 'lock_graph'\n"); 1737 return (WALK_ERR); 1738 } 1739 1740 wsp->walk_addr = (uintptr_t)sym.st_value; 1741 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 1742 1743 return (WALK_NEXT); 1744 } 1745 1746 typedef struct lg_walk_data { 1747 uintptr_t startaddr; 1748 mdb_walk_cb_t callback; 1749 void *data; 1750 } lg_walk_data_t; 1751 1752 /* 1753 * We can't use ::walk lock_descriptor directly, because the head of each graph 1754 * is really a dummy lock. Rather than trying to dynamically determine if this 1755 * is a dummy node or not, we just filter out the initial element of the 1756 * list. 1757 */ 1758 static int 1759 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 1760 { 1761 lg_walk_data_t *lw = priv; 1762 1763 if (addr != lw->startaddr) 1764 return (lw->callback(addr, data, lw->data)); 1765 1766 return (WALK_NEXT); 1767 } 1768 1769 int 1770 lg_walk_step(mdb_walk_state_t *wsp) 1771 { 1772 graph_t *graph; 1773 lg_walk_data_t lw; 1774 1775 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 1776 return (WALK_DONE); 1777 1778 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 1779 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 1780 return (WALK_ERR); 1781 } 1782 1783 wsp->walk_addr += sizeof (graph); 1784 1785 if (graph == NULL) 1786 return (WALK_NEXT); 1787 1788 lw.callback = wsp->walk_callback; 1789 lw.data = wsp->walk_cbdata; 1790 1791 lw.startaddr = (uintptr_t)&(graph->active_locks); 1792 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1793 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1794 return (WALK_ERR); 1795 } 1796 1797 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 1798 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1799 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1800 return (WALK_ERR); 1801 } 1802 1803 return (WALK_NEXT); 1804 } 1805 1806 /* 1807 * The space available for the path corresponding to the locked vnode depends 1808 * on whether we are printing 32- or 64-bit addresses. 1809 */ 1810 #ifdef _LP64 1811 #define LM_VNPATHLEN 20 1812 #else 1813 #define LM_VNPATHLEN 30 1814 #endif 1815 1816 /*ARGSUSED*/ 1817 static int 1818 lminfo_cb(uintptr_t addr, const void *data, void *priv) 1819 { 1820 const lock_descriptor_t *ld = data; 1821 char buf[LM_VNPATHLEN]; 1822 proc_t p; 1823 1824 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 1825 addr, ld->l_type == F_RDLCK ? "RD" : 1826 ld->l_type == F_WRLCK ? "WR" : "??", 1827 ld->l_state, ld->l_flock.l_pid, 1828 ld->l_flock.l_pid == 0 ? "<kernel>" : 1829 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 1830 "<defunct>" : p.p_user.u_comm, 1831 ld->l_vnode); 1832 1833 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 1834 sizeof (buf)); 1835 mdb_printf("%s\n", buf); 1836 1837 return (WALK_NEXT); 1838 } 1839 1840 /*ARGSUSED*/ 1841 int 1842 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1843 { 1844 if (DCMD_HDRSPEC(flags)) 1845 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 1846 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 1847 1848 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 1849 } 1850 1851 /*ARGSUSED*/ 1852 int 1853 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1854 { 1855 if ((uintptr_t)f->f_vnode == *target) { 1856 mdb_printf("file %p\n", addr); 1857 *target = NULL; 1858 } 1859 1860 return (WALK_NEXT); 1861 } 1862 1863 /*ARGSUSED*/ 1864 int 1865 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1866 { 1867 uintptr_t t = *target; 1868 1869 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1870 mdb_warn("couldn't file walk proc %p", addr); 1871 return (WALK_ERR); 1872 } 1873 1874 if (t == NULL) 1875 mdb_printf("%p\n", addr); 1876 1877 return (WALK_NEXT); 1878 } 1879 1880 /*ARGSUSED*/ 1881 int 1882 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1883 { 1884 uintptr_t target = addr; 1885 1886 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1887 return (DCMD_USAGE); 1888 1889 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1890 mdb_warn("can't proc walk"); 1891 return (DCMD_ERR); 1892 } 1893 1894 return (DCMD_OK); 1895 } 1896 1897 typedef struct datafmt { 1898 char *hdr1; 1899 char *hdr2; 1900 char *dashes; 1901 char *fmt; 1902 } datafmt_t; 1903 1904 static datafmt_t kmemfmt[] = { 1905 { "cache ", "name ", 1906 "-------------------------", "%-25s " }, 1907 { " buf", " size", "------", "%6u " }, 1908 { " buf", "in use", "------", "%6u " }, 1909 { " buf", " total", "------", "%6u " }, 1910 { " memory", " in use", "----------", "%10lu%c " }, 1911 { " alloc", " succeed", "---------", "%9u " }, 1912 { "alloc", " fail", "-----", "%5u " }, 1913 { NULL, NULL, NULL, NULL } 1914 }; 1915 1916 static datafmt_t vmemfmt[] = { 1917 { "vmem ", "name ", 1918 "-------------------------", "%-*s " }, 1919 { " memory", " in use", "----------", "%9llu%c " }, 1920 { " memory", " total", "-----------", "%10llu%c " }, 1921 { " memory", " import", "----------", "%9llu%c " }, 1922 { " alloc", " succeed", "---------", "%9llu " }, 1923 { "alloc", " fail", "-----", "%5llu " }, 1924 { NULL, NULL, NULL, NULL } 1925 }; 1926 1927 /*ARGSUSED*/ 1928 static int 1929 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1930 { 1931 short rounds, prounds; 1932 1933 if (KMEM_DUMPCC(ccp)) { 1934 rounds = ccp->cc_dump_rounds; 1935 prounds = ccp->cc_dump_prounds; 1936 } else { 1937 rounds = ccp->cc_rounds; 1938 prounds = ccp->cc_prounds; 1939 } 1940 if (rounds > 0) 1941 *avail += rounds; 1942 if (prounds > 0) 1943 *avail += prounds; 1944 1945 return (WALK_NEXT); 1946 } 1947 1948 /*ARGSUSED*/ 1949 static int 1950 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1951 { 1952 *alloc += ccp->cc_alloc; 1953 1954 return (WALK_NEXT); 1955 } 1956 1957 /*ARGSUSED*/ 1958 static int 1959 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1960 { 1961 *avail += sp->slab_chunks - sp->slab_refcnt; 1962 1963 return (WALK_NEXT); 1964 } 1965 1966 typedef struct kmastat_vmem { 1967 uintptr_t kv_addr; 1968 struct kmastat_vmem *kv_next; 1969 size_t kv_meminuse; 1970 int kv_alloc; 1971 int kv_fail; 1972 } kmastat_vmem_t; 1973 1974 typedef struct kmastat_args { 1975 kmastat_vmem_t **ka_kvpp; 1976 uint_t ka_shift; 1977 } kmastat_args_t; 1978 1979 static int 1980 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 1981 { 1982 kmastat_vmem_t **kvpp = kap->ka_kvpp; 1983 kmastat_vmem_t *kv; 1984 datafmt_t *dfp = kmemfmt; 1985 int magsize; 1986 1987 int avail, alloc, total; 1988 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1989 cp->cache_slabsize; 1990 1991 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1992 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1993 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1994 1995 magsize = kmem_get_magsize(cp); 1996 1997 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 1998 avail = cp->cache_full.ml_total * magsize; 1999 total = cp->cache_buftotal; 2000 2001 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 2002 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 2003 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 2004 2005 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) { 2006 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 2007 goto out; 2008 } 2009 2010 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 2011 kv->kv_next = *kvpp; 2012 kv->kv_addr = (uintptr_t)cp->cache_arena; 2013 *kvpp = kv; 2014 out: 2015 kv->kv_meminuse += meminuse; 2016 kv->kv_alloc += alloc; 2017 kv->kv_fail += cp->cache_alloc_fail; 2018 2019 mdb_printf((dfp++)->fmt, cp->cache_name); 2020 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 2021 mdb_printf((dfp++)->fmt, total - avail); 2022 mdb_printf((dfp++)->fmt, total); 2023 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift, 2024 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2025 kap->ka_shift == KILOS ? 'K' : 'B'); 2026 mdb_printf((dfp++)->fmt, alloc); 2027 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 2028 mdb_printf("\n"); 2029 2030 return (WALK_NEXT); 2031 } 2032 2033 static int 2034 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 2035 { 2036 kmastat_vmem_t *kv = *kap->ka_kvpp; 2037 size_t len; 2038 2039 while (kv != NULL && kv->kv_addr != addr) 2040 kv = kv->kv_next; 2041 2042 if (kv == NULL || kv->kv_alloc == 0) 2043 return (WALK_NEXT); 2044 2045 len = MIN(17, strlen(v->vm_name)); 2046 2047 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name, 2048 17 - len, "", "", "", "", 2049 kv->kv_meminuse >> kap->ka_shift, 2050 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2051 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail); 2052 2053 return (WALK_NEXT); 2054 } 2055 2056 /*ARGSUSED*/ 2057 static int 2058 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 2059 { 2060 datafmt_t *dfp = vmemfmt; 2061 const vmem_kstat_t *vkp = &v->vm_kstat; 2062 uintptr_t paddr; 2063 vmem_t parent; 2064 int ident = 0; 2065 2066 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 2067 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 2068 mdb_warn("couldn't trace %p's ancestry", addr); 2069 ident = 0; 2070 break; 2071 } 2072 paddr = (uintptr_t)parent.vm_source; 2073 } 2074 2075 mdb_printf("%*s", ident, ""); 2076 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 2077 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp, 2078 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2079 *shiftp == KILOS ? 'K' : 'B'); 2080 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp, 2081 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2082 *shiftp == KILOS ? 'K' : 'B'); 2083 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp, 2084 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2085 *shiftp == KILOS ? 'K' : 'B'); 2086 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 2087 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 2088 2089 mdb_printf("\n"); 2090 2091 return (WALK_NEXT); 2092 } 2093 2094 /*ARGSUSED*/ 2095 int 2096 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2097 { 2098 kmastat_vmem_t *kv = NULL; 2099 datafmt_t *dfp; 2100 kmastat_args_t ka; 2101 2102 ka.ka_shift = 0; 2103 if (mdb_getopts(argc, argv, 2104 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift, 2105 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift, 2106 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc) 2107 return (DCMD_USAGE); 2108 2109 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2110 mdb_printf("%s ", dfp->hdr1); 2111 mdb_printf("\n"); 2112 2113 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2114 mdb_printf("%s ", dfp->hdr2); 2115 mdb_printf("\n"); 2116 2117 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2118 mdb_printf("%s ", dfp->dashes); 2119 mdb_printf("\n"); 2120 2121 ka.ka_kvpp = &kv; 2122 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 2123 mdb_warn("can't walk 'kmem_cache'"); 2124 return (DCMD_ERR); 2125 } 2126 2127 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2128 mdb_printf("%s ", dfp->dashes); 2129 mdb_printf("\n"); 2130 2131 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 2132 mdb_warn("can't walk 'vmem'"); 2133 return (DCMD_ERR); 2134 } 2135 2136 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2137 mdb_printf("%s ", dfp->dashes); 2138 mdb_printf("\n"); 2139 2140 mdb_printf("\n"); 2141 2142 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2143 mdb_printf("%s ", dfp->hdr1); 2144 mdb_printf("\n"); 2145 2146 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2147 mdb_printf("%s ", dfp->hdr2); 2148 mdb_printf("\n"); 2149 2150 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2151 mdb_printf("%s ", dfp->dashes); 2152 mdb_printf("\n"); 2153 2154 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 2155 mdb_warn("can't walk 'vmem'"); 2156 return (DCMD_ERR); 2157 } 2158 2159 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2160 mdb_printf("%s ", dfp->dashes); 2161 mdb_printf("\n"); 2162 return (DCMD_OK); 2163 } 2164 2165 /* 2166 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 2167 * up of a set of 'struct seg's. We could just scan each seg en masse, but 2168 * unfortunately, a few of the segs are both large and sparse, so we could 2169 * spend quite a bit of time scanning VAs which have no backing pages. 2170 * 2171 * So for the few very sparse segs, we skip the segment itself, and scan 2172 * the allocated vmem_segs in the vmem arena which manages that part of kas. 2173 * Currently, we do this for: 2174 * 2175 * SEG VMEM ARENA 2176 * kvseg heap_arena 2177 * kvseg32 heap32_arena 2178 * kvseg_core heap_core_arena 2179 * 2180 * In addition, we skip the segkpm segment in its entirety, since it is very 2181 * sparse, and contains no new kernel data. 2182 */ 2183 typedef struct kgrep_walk_data { 2184 kgrep_cb_func *kg_cb; 2185 void *kg_cbdata; 2186 uintptr_t kg_kvseg; 2187 uintptr_t kg_kvseg32; 2188 uintptr_t kg_kvseg_core; 2189 uintptr_t kg_segkpm; 2190 uintptr_t kg_heap_lp_base; 2191 uintptr_t kg_heap_lp_end; 2192 } kgrep_walk_data_t; 2193 2194 static int 2195 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 2196 { 2197 uintptr_t base = (uintptr_t)seg->s_base; 2198 2199 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 2200 addr == kg->kg_kvseg_core) 2201 return (WALK_NEXT); 2202 2203 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 2204 return (WALK_NEXT); 2205 2206 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 2207 } 2208 2209 /*ARGSUSED*/ 2210 static int 2211 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2212 { 2213 /* 2214 * skip large page heap address range - it is scanned by walking 2215 * allocated vmem_segs in the heap_lp_arena 2216 */ 2217 if (seg->vs_start == kg->kg_heap_lp_base && 2218 seg->vs_end == kg->kg_heap_lp_end) 2219 return (WALK_NEXT); 2220 2221 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2222 } 2223 2224 /*ARGSUSED*/ 2225 static int 2226 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2227 { 2228 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2229 } 2230 2231 static int 2232 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 2233 { 2234 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 2235 2236 if (strcmp(vmem->vm_name, "heap") != 0 && 2237 strcmp(vmem->vm_name, "heap32") != 0 && 2238 strcmp(vmem->vm_name, "heap_core") != 0 && 2239 strcmp(vmem->vm_name, "heap_lp") != 0) 2240 return (WALK_NEXT); 2241 2242 if (strcmp(vmem->vm_name, "heap_lp") == 0) 2243 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 2244 2245 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 2246 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 2247 return (WALK_ERR); 2248 } 2249 2250 return (WALK_NEXT); 2251 } 2252 2253 int 2254 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 2255 { 2256 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 2257 kgrep_walk_data_t kg; 2258 2259 if (mdb_get_state() == MDB_STATE_RUNNING) { 2260 mdb_warn("kgrep can only be run on a system " 2261 "dump or under kmdb; see dumpadm(1M)\n"); 2262 return (DCMD_ERR); 2263 } 2264 2265 if (mdb_lookup_by_name("kas", &kas) == -1) { 2266 mdb_warn("failed to locate 'kas' symbol\n"); 2267 return (DCMD_ERR); 2268 } 2269 2270 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 2271 mdb_warn("failed to locate 'kvseg' symbol\n"); 2272 return (DCMD_ERR); 2273 } 2274 2275 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 2276 mdb_warn("failed to locate 'kvseg32' symbol\n"); 2277 return (DCMD_ERR); 2278 } 2279 2280 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 2281 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 2282 return (DCMD_ERR); 2283 } 2284 2285 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 2286 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 2287 return (DCMD_ERR); 2288 } 2289 2290 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 2291 mdb_warn("failed to read 'heap_lp_base'\n"); 2292 return (DCMD_ERR); 2293 } 2294 2295 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 2296 mdb_warn("failed to read 'heap_lp_end'\n"); 2297 return (DCMD_ERR); 2298 } 2299 2300 kg.kg_cb = cb; 2301 kg.kg_cbdata = cbdata; 2302 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 2303 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 2304 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 2305 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 2306 2307 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 2308 &kg, kas.st_value) == -1) { 2309 mdb_warn("failed to walk kas segments"); 2310 return (DCMD_ERR); 2311 } 2312 2313 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 2314 mdb_warn("failed to walk heap/heap32 vmem arenas"); 2315 return (DCMD_ERR); 2316 } 2317 2318 return (DCMD_OK); 2319 } 2320 2321 size_t 2322 kgrep_subr_pagesize(void) 2323 { 2324 return (PAGESIZE); 2325 } 2326 2327 typedef struct file_walk_data { 2328 struct uf_entry *fw_flist; 2329 int fw_flistsz; 2330 int fw_ndx; 2331 int fw_nofiles; 2332 } file_walk_data_t; 2333 2334 int 2335 file_walk_init(mdb_walk_state_t *wsp) 2336 { 2337 file_walk_data_t *fw; 2338 proc_t p; 2339 2340 if (wsp->walk_addr == NULL) { 2341 mdb_warn("file walk doesn't support global walks\n"); 2342 return (WALK_ERR); 2343 } 2344 2345 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 2346 2347 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 2348 mdb_free(fw, sizeof (file_walk_data_t)); 2349 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 2350 return (WALK_ERR); 2351 } 2352 2353 if (p.p_user.u_finfo.fi_nfiles == 0) { 2354 mdb_free(fw, sizeof (file_walk_data_t)); 2355 return (WALK_DONE); 2356 } 2357 2358 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 2359 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 2360 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 2361 2362 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 2363 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 2364 mdb_warn("failed to read file array at %p", 2365 p.p_user.u_finfo.fi_list); 2366 mdb_free(fw->fw_flist, fw->fw_flistsz); 2367 mdb_free(fw, sizeof (file_walk_data_t)); 2368 return (WALK_ERR); 2369 } 2370 2371 fw->fw_ndx = 0; 2372 wsp->walk_data = fw; 2373 2374 return (WALK_NEXT); 2375 } 2376 2377 int 2378 file_walk_step(mdb_walk_state_t *wsp) 2379 { 2380 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2381 struct file file; 2382 uintptr_t fp; 2383 2384 again: 2385 if (fw->fw_ndx == fw->fw_nofiles) 2386 return (WALK_DONE); 2387 2388 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 2389 goto again; 2390 2391 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2392 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2393 } 2394 2395 int 2396 allfile_walk_step(mdb_walk_state_t *wsp) 2397 { 2398 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2399 struct file file; 2400 uintptr_t fp; 2401 2402 if (fw->fw_ndx == fw->fw_nofiles) 2403 return (WALK_DONE); 2404 2405 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 2406 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2407 else 2408 bzero(&file, sizeof (file)); 2409 2410 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2411 } 2412 2413 void 2414 file_walk_fini(mdb_walk_state_t *wsp) 2415 { 2416 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2417 2418 mdb_free(fw->fw_flist, fw->fw_flistsz); 2419 mdb_free(fw, sizeof (file_walk_data_t)); 2420 } 2421 2422 int 2423 port_walk_init(mdb_walk_state_t *wsp) 2424 { 2425 if (wsp->walk_addr == NULL) { 2426 mdb_warn("port walk doesn't support global walks\n"); 2427 return (WALK_ERR); 2428 } 2429 2430 if (mdb_layered_walk("file", wsp) == -1) { 2431 mdb_warn("couldn't walk 'file'"); 2432 return (WALK_ERR); 2433 } 2434 return (WALK_NEXT); 2435 } 2436 2437 int 2438 port_walk_step(mdb_walk_state_t *wsp) 2439 { 2440 struct vnode vn; 2441 uintptr_t vp; 2442 uintptr_t pp; 2443 struct port port; 2444 2445 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 2446 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2447 mdb_warn("failed to read vnode_t at %p", vp); 2448 return (WALK_ERR); 2449 } 2450 if (vn.v_type != VPORT) 2451 return (WALK_NEXT); 2452 2453 pp = (uintptr_t)vn.v_data; 2454 if (mdb_vread(&port, sizeof (port), pp) == -1) { 2455 mdb_warn("failed to read port_t at %p", pp); 2456 return (WALK_ERR); 2457 } 2458 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 2459 } 2460 2461 typedef struct portev_walk_data { 2462 list_node_t *pev_node; 2463 list_node_t *pev_last; 2464 size_t pev_offset; 2465 } portev_walk_data_t; 2466 2467 int 2468 portev_walk_init(mdb_walk_state_t *wsp) 2469 { 2470 portev_walk_data_t *pevd; 2471 struct port port; 2472 struct vnode vn; 2473 struct list *list; 2474 uintptr_t vp; 2475 2476 if (wsp->walk_addr == NULL) { 2477 mdb_warn("portev walk doesn't support global walks\n"); 2478 return (WALK_ERR); 2479 } 2480 2481 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 2482 2483 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 2484 mdb_free(pevd, sizeof (portev_walk_data_t)); 2485 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 2486 return (WALK_ERR); 2487 } 2488 2489 vp = (uintptr_t)port.port_vnode; 2490 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2491 mdb_free(pevd, sizeof (portev_walk_data_t)); 2492 mdb_warn("failed to read vnode_t at %p", vp); 2493 return (WALK_ERR); 2494 } 2495 2496 if (vn.v_type != VPORT) { 2497 mdb_free(pevd, sizeof (portev_walk_data_t)); 2498 mdb_warn("input address (%p) does not point to an event port", 2499 wsp->walk_addr); 2500 return (WALK_ERR); 2501 } 2502 2503 if (port.port_queue.portq_nent == 0) { 2504 mdb_free(pevd, sizeof (portev_walk_data_t)); 2505 return (WALK_DONE); 2506 } 2507 list = &port.port_queue.portq_list; 2508 pevd->pev_offset = list->list_offset; 2509 pevd->pev_last = list->list_head.list_prev; 2510 pevd->pev_node = list->list_head.list_next; 2511 wsp->walk_data = pevd; 2512 return (WALK_NEXT); 2513 } 2514 2515 int 2516 portev_walk_step(mdb_walk_state_t *wsp) 2517 { 2518 portev_walk_data_t *pevd; 2519 struct port_kevent ev; 2520 uintptr_t evp; 2521 2522 pevd = (portev_walk_data_t *)wsp->walk_data; 2523 2524 if (pevd->pev_last == NULL) 2525 return (WALK_DONE); 2526 if (pevd->pev_node == pevd->pev_last) 2527 pevd->pev_last = NULL; /* last round */ 2528 2529 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 2530 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 2531 mdb_warn("failed to read port_kevent at %p", evp); 2532 return (WALK_DONE); 2533 } 2534 pevd->pev_node = ev.portkev_node.list_next; 2535 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 2536 } 2537 2538 void 2539 portev_walk_fini(mdb_walk_state_t *wsp) 2540 { 2541 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 2542 2543 if (pevd != NULL) 2544 mdb_free(pevd, sizeof (portev_walk_data_t)); 2545 } 2546 2547 typedef struct proc_walk_data { 2548 uintptr_t *pw_stack; 2549 int pw_depth; 2550 int pw_max; 2551 } proc_walk_data_t; 2552 2553 int 2554 proc_walk_init(mdb_walk_state_t *wsp) 2555 { 2556 GElf_Sym sym; 2557 proc_walk_data_t *pw; 2558 2559 if (wsp->walk_addr == NULL) { 2560 if (mdb_lookup_by_name("p0", &sym) == -1) { 2561 mdb_warn("failed to read 'practive'"); 2562 return (WALK_ERR); 2563 } 2564 wsp->walk_addr = (uintptr_t)sym.st_value; 2565 } 2566 2567 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 2568 2569 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 2570 mdb_warn("failed to read 'nproc'"); 2571 mdb_free(pw, sizeof (pw)); 2572 return (WALK_ERR); 2573 } 2574 2575 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 2576 wsp->walk_data = pw; 2577 2578 return (WALK_NEXT); 2579 } 2580 2581 int 2582 proc_walk_step(mdb_walk_state_t *wsp) 2583 { 2584 proc_walk_data_t *pw = wsp->walk_data; 2585 uintptr_t addr = wsp->walk_addr; 2586 uintptr_t cld, sib; 2587 2588 int status; 2589 proc_t pr; 2590 2591 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 2592 mdb_warn("failed to read proc at %p", addr); 2593 return (WALK_DONE); 2594 } 2595 2596 cld = (uintptr_t)pr.p_child; 2597 sib = (uintptr_t)pr.p_sibling; 2598 2599 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 2600 pw->pw_depth--; 2601 goto sib; 2602 } 2603 2604 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 2605 2606 if (status != WALK_NEXT) 2607 return (status); 2608 2609 if ((wsp->walk_addr = cld) != NULL) { 2610 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 2611 mdb_warn("proc %p has invalid p_child %p; skipping\n", 2612 addr, cld); 2613 goto sib; 2614 } 2615 2616 pw->pw_stack[pw->pw_depth++] = addr; 2617 2618 if (pw->pw_depth == pw->pw_max) { 2619 mdb_warn("depth %d exceeds max depth; try again\n", 2620 pw->pw_depth); 2621 return (WALK_DONE); 2622 } 2623 return (WALK_NEXT); 2624 } 2625 2626 sib: 2627 /* 2628 * We know that p0 has no siblings, and if another starting proc 2629 * was given, we don't want to walk its siblings anyway. 2630 */ 2631 if (pw->pw_depth == 0) 2632 return (WALK_DONE); 2633 2634 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 2635 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 2636 addr, sib); 2637 sib = NULL; 2638 } 2639 2640 if ((wsp->walk_addr = sib) == NULL) { 2641 if (pw->pw_depth > 0) { 2642 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 2643 return (WALK_NEXT); 2644 } 2645 return (WALK_DONE); 2646 } 2647 2648 return (WALK_NEXT); 2649 } 2650 2651 void 2652 proc_walk_fini(mdb_walk_state_t *wsp) 2653 { 2654 proc_walk_data_t *pw = wsp->walk_data; 2655 2656 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 2657 mdb_free(pw, sizeof (proc_walk_data_t)); 2658 } 2659 2660 int 2661 task_walk_init(mdb_walk_state_t *wsp) 2662 { 2663 task_t task; 2664 2665 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 2666 mdb_warn("failed to read task at %p", wsp->walk_addr); 2667 return (WALK_ERR); 2668 } 2669 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 2670 wsp->walk_data = task.tk_memb_list; 2671 return (WALK_NEXT); 2672 } 2673 2674 int 2675 task_walk_step(mdb_walk_state_t *wsp) 2676 { 2677 proc_t proc; 2678 int status; 2679 2680 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 2681 mdb_warn("failed to read proc at %p", wsp->walk_addr); 2682 return (WALK_DONE); 2683 } 2684 2685 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 2686 2687 if (proc.p_tasknext == wsp->walk_data) 2688 return (WALK_DONE); 2689 2690 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 2691 return (status); 2692 } 2693 2694 int 2695 project_walk_init(mdb_walk_state_t *wsp) 2696 { 2697 if (wsp->walk_addr == NULL) { 2698 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 2699 mdb_warn("failed to read 'proj0p'"); 2700 return (WALK_ERR); 2701 } 2702 } 2703 wsp->walk_data = (void *)wsp->walk_addr; 2704 return (WALK_NEXT); 2705 } 2706 2707 int 2708 project_walk_step(mdb_walk_state_t *wsp) 2709 { 2710 uintptr_t addr = wsp->walk_addr; 2711 kproject_t pj; 2712 int status; 2713 2714 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 2715 mdb_warn("failed to read project at %p", addr); 2716 return (WALK_DONE); 2717 } 2718 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 2719 if (status != WALK_NEXT) 2720 return (status); 2721 wsp->walk_addr = (uintptr_t)pj.kpj_next; 2722 if ((void *)wsp->walk_addr == wsp->walk_data) 2723 return (WALK_DONE); 2724 return (WALK_NEXT); 2725 } 2726 2727 static int 2728 generic_walk_step(mdb_walk_state_t *wsp) 2729 { 2730 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 2731 wsp->walk_cbdata)); 2732 } 2733 2734 static int 2735 cpu_walk_cmp(const void *l, const void *r) 2736 { 2737 uintptr_t lhs = *((uintptr_t *)l); 2738 uintptr_t rhs = *((uintptr_t *)r); 2739 cpu_t lcpu, rcpu; 2740 2741 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 2742 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 2743 2744 if (lcpu.cpu_id < rcpu.cpu_id) 2745 return (-1); 2746 2747 if (lcpu.cpu_id > rcpu.cpu_id) 2748 return (1); 2749 2750 return (0); 2751 } 2752 2753 typedef struct cpu_walk { 2754 uintptr_t *cw_array; 2755 int cw_ndx; 2756 } cpu_walk_t; 2757 2758 int 2759 cpu_walk_init(mdb_walk_state_t *wsp) 2760 { 2761 cpu_walk_t *cw; 2762 int max_ncpus, i = 0; 2763 uintptr_t current, first; 2764 cpu_t cpu, panic_cpu; 2765 uintptr_t panicstr, addr; 2766 GElf_Sym sym; 2767 2768 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 2769 2770 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 2771 mdb_warn("failed to read 'max_ncpus'"); 2772 return (WALK_ERR); 2773 } 2774 2775 if (mdb_readvar(&panicstr, "panicstr") == -1) { 2776 mdb_warn("failed to read 'panicstr'"); 2777 return (WALK_ERR); 2778 } 2779 2780 if (panicstr != NULL) { 2781 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 2782 mdb_warn("failed to find 'panic_cpu'"); 2783 return (WALK_ERR); 2784 } 2785 2786 addr = (uintptr_t)sym.st_value; 2787 2788 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 2789 mdb_warn("failed to read 'panic_cpu'"); 2790 return (WALK_ERR); 2791 } 2792 } 2793 2794 /* 2795 * Unfortunately, there is no platform-independent way to walk 2796 * CPUs in ID order. We therefore loop through in cpu_next order, 2797 * building an array of CPU pointers which will subsequently be 2798 * sorted. 2799 */ 2800 cw->cw_array = 2801 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 2802 2803 if (mdb_readvar(&first, "cpu_list") == -1) { 2804 mdb_warn("failed to read 'cpu_list'"); 2805 return (WALK_ERR); 2806 } 2807 2808 current = first; 2809 do { 2810 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 2811 mdb_warn("failed to read cpu at %p", current); 2812 return (WALK_ERR); 2813 } 2814 2815 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 2816 cw->cw_array[i++] = addr; 2817 } else { 2818 cw->cw_array[i++] = current; 2819 } 2820 } while ((current = (uintptr_t)cpu.cpu_next) != first); 2821 2822 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 2823 wsp->walk_data = cw; 2824 2825 return (WALK_NEXT); 2826 } 2827 2828 int 2829 cpu_walk_step(mdb_walk_state_t *wsp) 2830 { 2831 cpu_walk_t *cw = wsp->walk_data; 2832 cpu_t cpu; 2833 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2834 2835 if (addr == NULL) 2836 return (WALK_DONE); 2837 2838 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2839 mdb_warn("failed to read cpu at %p", addr); 2840 return (WALK_DONE); 2841 } 2842 2843 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2844 } 2845 2846 typedef struct cpuinfo_data { 2847 intptr_t cid_cpu; 2848 uintptr_t **cid_ithr; 2849 char cid_print_head; 2850 char cid_print_thr; 2851 char cid_print_ithr; 2852 char cid_print_flags; 2853 } cpuinfo_data_t; 2854 2855 int 2856 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2857 { 2858 cpu_t c; 2859 int id; 2860 uint8_t pil; 2861 2862 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2863 return (WALK_NEXT); 2864 2865 if (thr->t_bound_cpu == NULL) { 2866 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2867 return (WALK_NEXT); 2868 } 2869 2870 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2871 2872 if ((id = c.cpu_id) >= NCPU) { 2873 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2874 thr->t_bound_cpu, id, NCPU); 2875 return (WALK_NEXT); 2876 } 2877 2878 if ((pil = thr->t_pil) >= NINTR) { 2879 mdb_warn("thread %p has pil (%d) greater than %d\n", 2880 addr, pil, NINTR); 2881 return (WALK_NEXT); 2882 } 2883 2884 if (cid->cid_ithr[id][pil] != NULL) { 2885 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2886 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2887 return (WALK_NEXT); 2888 } 2889 2890 cid->cid_ithr[id][pil] = addr; 2891 2892 return (WALK_NEXT); 2893 } 2894 2895 #define CPUINFO_IDWIDTH 3 2896 #define CPUINFO_FLAGWIDTH 9 2897 2898 #ifdef _LP64 2899 #if defined(__amd64) 2900 #define CPUINFO_TWIDTH 16 2901 #define CPUINFO_CPUWIDTH 16 2902 #else 2903 #define CPUINFO_CPUWIDTH 11 2904 #define CPUINFO_TWIDTH 11 2905 #endif 2906 #else 2907 #define CPUINFO_CPUWIDTH 8 2908 #define CPUINFO_TWIDTH 8 2909 #endif 2910 2911 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2912 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2913 #define CPUINFO_ITHRDELT 4 2914 2915 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2916 flagline < nflaglines ? flagbuf[flagline++] : "") 2917 2918 int 2919 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2920 { 2921 kthread_t t; 2922 disp_t disp; 2923 proc_t p; 2924 uintptr_t pinned; 2925 char **flagbuf; 2926 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2927 2928 const char *flags[] = { 2929 "RUNNING", "READY", "QUIESCED", "EXISTS", 2930 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2931 "SPARE", "FAULTED", NULL 2932 }; 2933 2934 if (cid->cid_cpu != -1) { 2935 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2936 return (WALK_NEXT); 2937 2938 /* 2939 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2940 */ 2941 cid->cid_cpu = -1; 2942 rval = WALK_DONE; 2943 } 2944 2945 if (cid->cid_print_head) { 2946 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2947 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2948 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2949 "PROC"); 2950 cid->cid_print_head = FALSE; 2951 } 2952 2953 bspl = cpu->cpu_base_spl; 2954 2955 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2956 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2957 return (WALK_ERR); 2958 } 2959 2960 mdb_printf("%3d %0*p %3x %4d %4d ", 2961 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2962 disp.disp_nrunnable, bspl); 2963 2964 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2965 mdb_printf("%3d ", t.t_pri); 2966 } else { 2967 mdb_printf("%3s ", "-"); 2968 } 2969 2970 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2971 cpu->cpu_kprunrun ? "yes" : "no"); 2972 2973 if (cpu->cpu_last_swtch) { 2974 mdb_printf("t-%-4d ", 2975 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch); 2976 } else { 2977 mdb_printf("%-6s ", "-"); 2978 } 2979 2980 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2981 2982 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2983 mdb_printf(" (idle)\n"); 2984 else if (cpu->cpu_thread == NULL) 2985 mdb_printf(" -\n"); 2986 else { 2987 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2988 mdb_printf(" %s\n", p.p_user.u_comm); 2989 } else { 2990 mdb_printf(" ?\n"); 2991 } 2992 } 2993 2994 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2995 2996 if (cid->cid_print_flags) { 2997 int first = 1, i, j, k; 2998 char *s; 2999 3000 cid->cid_print_head = TRUE; 3001 3002 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 3003 if (!(cpu->cpu_flags & i)) 3004 continue; 3005 3006 if (first) { 3007 s = mdb_alloc(CPUINFO_THRDELT + 1, 3008 UM_GC | UM_SLEEP); 3009 3010 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 3011 "%*s|%*s", CPUINFO_FLAGDELT, "", 3012 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 3013 flagbuf[nflaglines++] = s; 3014 } 3015 3016 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 3017 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 3018 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 3019 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 3020 first ? "<--+" : ""); 3021 3022 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 3023 s[k] = ' '; 3024 s[k] = '\0'; 3025 3026 flagbuf[nflaglines++] = s; 3027 first = 0; 3028 } 3029 } 3030 3031 if (cid->cid_print_ithr) { 3032 int i, found_one = FALSE; 3033 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 3034 3035 for (i = NINTR - 1; i >= 0; i--) { 3036 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 3037 3038 if (iaddr == NULL) 3039 continue; 3040 3041 if (!found_one) { 3042 found_one = TRUE; 3043 3044 CPUINFO_INDENT; 3045 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 3046 CPUINFO_ITHRDELT, ""); 3047 3048 CPUINFO_INDENT; 3049 mdb_printf("%c%*s+--> %3s %s\n", 3050 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 3051 "", "PIL", "THREAD"); 3052 } 3053 3054 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 3055 mdb_warn("failed to read kthread_t at %p", 3056 iaddr); 3057 return (WALK_ERR); 3058 } 3059 3060 CPUINFO_INDENT; 3061 mdb_printf("%c%*s %3d %0*p\n", 3062 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 3063 t.t_pil, CPUINFO_TWIDTH, iaddr); 3064 3065 pinned = (uintptr_t)t.t_intr; 3066 } 3067 3068 if (found_one && pinned != NULL) { 3069 cid->cid_print_head = TRUE; 3070 (void) strcpy(p.p_user.u_comm, "?"); 3071 3072 if (mdb_vread(&t, sizeof (t), 3073 (uintptr_t)pinned) == -1) { 3074 mdb_warn("failed to read kthread_t at %p", 3075 pinned); 3076 return (WALK_ERR); 3077 } 3078 if (mdb_vread(&p, sizeof (p), 3079 (uintptr_t)t.t_procp) == -1) { 3080 mdb_warn("failed to read proc_t at %p", 3081 t.t_procp); 3082 return (WALK_ERR); 3083 } 3084 3085 CPUINFO_INDENT; 3086 mdb_printf("%c%*s %3s %0*p %s\n", 3087 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 3088 CPUINFO_TWIDTH, pinned, 3089 pinned == (uintptr_t)cpu->cpu_idle_thread ? 3090 "(idle)" : p.p_user.u_comm); 3091 } 3092 } 3093 3094 if (disp.disp_nrunnable && cid->cid_print_thr) { 3095 dispq_t *dq; 3096 3097 int i, npri = disp.disp_npri; 3098 3099 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 3100 3101 if (mdb_vread(dq, sizeof (dispq_t) * npri, 3102 (uintptr_t)disp.disp_q) == -1) { 3103 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 3104 return (WALK_ERR); 3105 } 3106 3107 CPUINFO_INDENT; 3108 mdb_printf("|\n"); 3109 3110 CPUINFO_INDENT; 3111 mdb_printf("+--> %3s %-*s %s\n", "PRI", 3112 CPUINFO_TWIDTH, "THREAD", "PROC"); 3113 3114 for (i = npri - 1; i >= 0; i--) { 3115 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 3116 3117 while (taddr != NULL) { 3118 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 3119 mdb_warn("failed to read kthread_t " 3120 "at %p", taddr); 3121 return (WALK_ERR); 3122 } 3123 if (mdb_vread(&p, sizeof (p), 3124 (uintptr_t)t.t_procp) == -1) { 3125 mdb_warn("failed to read proc_t at %p", 3126 t.t_procp); 3127 return (WALK_ERR); 3128 } 3129 3130 CPUINFO_INDENT; 3131 mdb_printf(" %3d %0*p %s\n", t.t_pri, 3132 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 3133 3134 taddr = (uintptr_t)t.t_link; 3135 } 3136 } 3137 cid->cid_print_head = TRUE; 3138 } 3139 3140 while (flagline < nflaglines) 3141 mdb_printf("%s\n", flagbuf[flagline++]); 3142 3143 if (cid->cid_print_head) 3144 mdb_printf("\n"); 3145 3146 return (rval); 3147 } 3148 3149 int 3150 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3151 { 3152 uint_t verbose = FALSE; 3153 cpuinfo_data_t cid; 3154 3155 cid.cid_print_ithr = FALSE; 3156 cid.cid_print_thr = FALSE; 3157 cid.cid_print_flags = FALSE; 3158 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 3159 cid.cid_cpu = -1; 3160 3161 if (flags & DCMD_ADDRSPEC) 3162 cid.cid_cpu = addr; 3163 3164 if (mdb_getopts(argc, argv, 3165 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 3166 return (DCMD_USAGE); 3167 3168 if (verbose) { 3169 cid.cid_print_ithr = TRUE; 3170 cid.cid_print_thr = TRUE; 3171 cid.cid_print_flags = TRUE; 3172 cid.cid_print_head = TRUE; 3173 } 3174 3175 if (cid.cid_print_ithr) { 3176 int i; 3177 3178 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 3179 * NCPU, UM_SLEEP | UM_GC); 3180 3181 for (i = 0; i < NCPU; i++) 3182 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 3183 NINTR, UM_SLEEP | UM_GC); 3184 3185 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 3186 &cid) == -1) { 3187 mdb_warn("couldn't walk thread"); 3188 return (DCMD_ERR); 3189 } 3190 } 3191 3192 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 3193 mdb_warn("can't walk cpus"); 3194 return (DCMD_ERR); 3195 } 3196 3197 if (cid.cid_cpu != -1) { 3198 /* 3199 * We didn't find this CPU when we walked through the CPUs 3200 * (i.e. the address specified doesn't show up in the "cpu" 3201 * walk). However, the specified address may still correspond 3202 * to a valid cpu_t (for example, if the specified address is 3203 * the actual panicking cpu_t and not the cached panic_cpu). 3204 * Point is: even if we didn't find it, we still want to try 3205 * to print the specified address as a cpu_t. 3206 */ 3207 cpu_t cpu; 3208 3209 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 3210 mdb_warn("%p is neither a valid CPU ID nor a " 3211 "valid cpu_t address\n", cid.cid_cpu); 3212 return (DCMD_ERR); 3213 } 3214 3215 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 3216 } 3217 3218 return (DCMD_OK); 3219 } 3220 3221 /*ARGSUSED*/ 3222 int 3223 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3224 { 3225 int i; 3226 3227 if (!(flags & DCMD_ADDRSPEC)) 3228 return (DCMD_USAGE); 3229 3230 for (i = 0; i < sizeof (addr) * NBBY; i++) 3231 mdb_printf("%p\n", addr ^ (1UL << i)); 3232 3233 return (DCMD_OK); 3234 } 3235 3236 int 3237 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 3238 { 3239 if (p->p_as == *asp) 3240 mdb_printf("%p\n", addr); 3241 return (WALK_NEXT); 3242 } 3243 3244 /*ARGSUSED*/ 3245 int 3246 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3247 { 3248 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 3249 return (DCMD_USAGE); 3250 3251 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 3252 mdb_warn("failed to walk proc"); 3253 return (DCMD_ERR); 3254 } 3255 3256 return (DCMD_OK); 3257 } 3258 3259 /*ARGSUSED*/ 3260 int 3261 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 3262 { 3263 proc_t parent; 3264 int ident = 0; 3265 uintptr_t paddr; 3266 3267 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 3268 mdb_vread(&parent, sizeof (parent), paddr); 3269 paddr = (uintptr_t)parent.p_parent; 3270 } 3271 3272 mdb_inc_indent(ident); 3273 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 3274 mdb_dec_indent(ident); 3275 3276 return (WALK_NEXT); 3277 } 3278 3279 void 3280 ptree_ancestors(uintptr_t addr, uintptr_t start) 3281 { 3282 proc_t p; 3283 3284 if (mdb_vread(&p, sizeof (p), addr) == -1) { 3285 mdb_warn("couldn't read ancestor at %p", addr); 3286 return; 3287 } 3288 3289 if (p.p_parent != NULL) 3290 ptree_ancestors((uintptr_t)p.p_parent, start); 3291 3292 if (addr != start) 3293 (void) ptree_walk(addr, &p, NULL); 3294 } 3295 3296 /*ARGSUSED*/ 3297 int 3298 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3299 { 3300 if (!(flags & DCMD_ADDRSPEC)) 3301 addr = NULL; 3302 else 3303 ptree_ancestors(addr, addr); 3304 3305 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 3306 mdb_warn("couldn't walk 'proc'"); 3307 return (DCMD_ERR); 3308 } 3309 3310 return (DCMD_OK); 3311 } 3312 3313 /*ARGSUSED*/ 3314 static int 3315 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3316 { 3317 int fdnum; 3318 const mdb_arg_t *argp = &argv[0]; 3319 proc_t p; 3320 uf_entry_t uf; 3321 3322 if ((flags & DCMD_ADDRSPEC) == 0) { 3323 mdb_warn("fd doesn't give global information\n"); 3324 return (DCMD_ERR); 3325 } 3326 if (argc != 1) 3327 return (DCMD_USAGE); 3328 3329 if (argp->a_type == MDB_TYPE_IMMEDIATE) 3330 fdnum = argp->a_un.a_val; 3331 else 3332 fdnum = mdb_strtoull(argp->a_un.a_str); 3333 3334 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 3335 mdb_warn("couldn't read proc_t at %p", addr); 3336 return (DCMD_ERR); 3337 } 3338 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 3339 mdb_warn("process %p only has %d files open.\n", 3340 addr, p.p_user.u_finfo.fi_nfiles); 3341 return (DCMD_ERR); 3342 } 3343 if (mdb_vread(&uf, sizeof (uf_entry_t), 3344 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 3345 mdb_warn("couldn't read uf_entry_t at %p", 3346 &p.p_user.u_finfo.fi_list[fdnum]); 3347 return (DCMD_ERR); 3348 } 3349 3350 mdb_printf("%p\n", uf.uf_file); 3351 return (DCMD_OK); 3352 } 3353 3354 /*ARGSUSED*/ 3355 static int 3356 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3357 { 3358 pid_t pid = (pid_t)addr; 3359 3360 if (argc != 0) 3361 return (DCMD_USAGE); 3362 3363 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 3364 mdb_warn("PID 0t%d not found\n", pid); 3365 return (DCMD_ERR); 3366 } 3367 3368 mdb_printf("%p\n", addr); 3369 return (DCMD_OK); 3370 } 3371 3372 static char *sysfile_cmd[] = { 3373 "exclude:", 3374 "include:", 3375 "forceload:", 3376 "rootdev:", 3377 "rootfs:", 3378 "swapdev:", 3379 "swapfs:", 3380 "moddir:", 3381 "set", 3382 "unknown", 3383 }; 3384 3385 static char *sysfile_ops[] = { "", "=", "&", "|" }; 3386 3387 /*ARGSUSED*/ 3388 static int 3389 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 3390 { 3391 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 3392 *target = NULL; 3393 return (WALK_DONE); 3394 } 3395 return (WALK_NEXT); 3396 } 3397 3398 /*ARGSUSED*/ 3399 static int 3400 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3401 { 3402 struct sysparam *sysp, sys; 3403 char var[256]; 3404 char modname[256]; 3405 char val[256]; 3406 char strval[256]; 3407 vmem_t *mod_sysfile_arena; 3408 void *straddr; 3409 3410 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 3411 mdb_warn("failed to read sysparam_hd"); 3412 return (DCMD_ERR); 3413 } 3414 3415 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 3416 mdb_warn("failed to read mod_sysfile_arena"); 3417 return (DCMD_ERR); 3418 } 3419 3420 while (sysp != NULL) { 3421 var[0] = '\0'; 3422 val[0] = '\0'; 3423 modname[0] = '\0'; 3424 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 3425 mdb_warn("couldn't read sysparam %p", sysp); 3426 return (DCMD_ERR); 3427 } 3428 if (sys.sys_modnam != NULL && 3429 mdb_readstr(modname, 256, 3430 (uintptr_t)sys.sys_modnam) == -1) { 3431 mdb_warn("couldn't read modname in %p", sysp); 3432 return (DCMD_ERR); 3433 } 3434 if (sys.sys_ptr != NULL && 3435 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 3436 mdb_warn("couldn't read ptr in %p", sysp); 3437 return (DCMD_ERR); 3438 } 3439 if (sys.sys_op != SETOP_NONE) { 3440 /* 3441 * Is this an int or a string? We determine this 3442 * by checking whether straddr is contained in 3443 * mod_sysfile_arena. If so, the walker will set 3444 * straddr to NULL. 3445 */ 3446 straddr = (void *)(uintptr_t)sys.sys_info; 3447 if (sys.sys_op == SETOP_ASSIGN && 3448 sys.sys_info != 0 && 3449 mdb_pwalk("vmem_seg", 3450 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 3451 (uintptr_t)mod_sysfile_arena) == 0 && 3452 straddr == NULL && 3453 mdb_readstr(strval, 256, 3454 (uintptr_t)sys.sys_info) != -1) { 3455 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 3456 strval); 3457 } else { 3458 (void) mdb_snprintf(val, sizeof (val), 3459 "0x%llx [0t%llu]", sys.sys_info, 3460 sys.sys_info); 3461 } 3462 } 3463 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 3464 modname, modname[0] == '\0' ? "" : ":", 3465 var, sysfile_ops[sys.sys_op], val); 3466 3467 sysp = sys.sys_next; 3468 } 3469 3470 return (DCMD_OK); 3471 } 3472 3473 int 3474 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 3475 { 3476 3477 if (*didp == thr->t_did) { 3478 mdb_printf("%p\n", addr); 3479 return (WALK_DONE); 3480 } else 3481 return (WALK_NEXT); 3482 } 3483 3484 /*ARGSUSED*/ 3485 int 3486 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3487 { 3488 const mdb_arg_t *argp = &argv[0]; 3489 kt_did_t did; 3490 3491 if (argc != 1) 3492 return (DCMD_USAGE); 3493 3494 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 3495 3496 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 3497 mdb_warn("failed to walk thread"); 3498 return (DCMD_ERR); 3499 3500 } 3501 return (DCMD_OK); 3502 3503 } 3504 3505 static int 3506 errorq_walk_init(mdb_walk_state_t *wsp) 3507 { 3508 if (wsp->walk_addr == NULL && 3509 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 3510 mdb_warn("failed to read errorq_list"); 3511 return (WALK_ERR); 3512 } 3513 3514 return (WALK_NEXT); 3515 } 3516 3517 static int 3518 errorq_walk_step(mdb_walk_state_t *wsp) 3519 { 3520 uintptr_t addr = wsp->walk_addr; 3521 errorq_t eq; 3522 3523 if (addr == NULL) 3524 return (WALK_DONE); 3525 3526 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 3527 mdb_warn("failed to read errorq at %p", addr); 3528 return (WALK_ERR); 3529 } 3530 3531 wsp->walk_addr = (uintptr_t)eq.eq_next; 3532 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 3533 } 3534 3535 typedef struct eqd_walk_data { 3536 uintptr_t *eqd_stack; 3537 void *eqd_buf; 3538 ulong_t eqd_qpos; 3539 ulong_t eqd_qlen; 3540 size_t eqd_size; 3541 } eqd_walk_data_t; 3542 3543 /* 3544 * In order to walk the list of pending error queue elements, we push the 3545 * addresses of the corresponding data buffers in to the eqd_stack array. 3546 * The error lists are in reverse chronological order when iterating using 3547 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 3548 * walker client gets addresses in order from oldest error to newest error. 3549 */ 3550 static void 3551 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3552 { 3553 errorq_elem_t eqe; 3554 3555 while (addr != NULL) { 3556 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3557 mdb_warn("failed to read errorq element at %p", addr); 3558 break; 3559 } 3560 3561 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3562 mdb_warn("errorq is overfull -- more than %lu " 3563 "elems found\n", eqdp->eqd_qlen); 3564 break; 3565 } 3566 3567 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3568 addr = (uintptr_t)eqe.eqe_prev; 3569 } 3570 } 3571 3572 static int 3573 eqd_walk_init(mdb_walk_state_t *wsp) 3574 { 3575 eqd_walk_data_t *eqdp; 3576 errorq_elem_t eqe, *addr; 3577 errorq_t eq; 3578 ulong_t i; 3579 3580 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3581 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3582 return (WALK_ERR); 3583 } 3584 3585 if (eq.eq_ptail != NULL && 3586 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3587 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3588 return (WALK_ERR); 3589 } 3590 3591 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3592 wsp->walk_data = eqdp; 3593 3594 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3595 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3596 eqdp->eqd_qlen = eq.eq_qlen; 3597 eqdp->eqd_qpos = 0; 3598 eqdp->eqd_size = eq.eq_size; 3599 3600 /* 3601 * The newest elements in the queue are on the pending list, so we 3602 * push those on to our stack first. 3603 */ 3604 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3605 3606 /* 3607 * If eq_ptail is set, it may point to a subset of the errors on the 3608 * pending list in the event a casptr() failed; if ptail's data is 3609 * already in our stack, NULL out eq_ptail and ignore it. 3610 */ 3611 if (eq.eq_ptail != NULL) { 3612 for (i = 0; i < eqdp->eqd_qpos; i++) { 3613 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3614 eq.eq_ptail = NULL; 3615 break; 3616 } 3617 } 3618 } 3619 3620 /* 3621 * If eq_phead is set, it has the processing list in order from oldest 3622 * to newest. Use this to recompute eq_ptail as best we can and then 3623 * we nicely fall into eqd_push_list() of eq_ptail below. 3624 */ 3625 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3626 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3627 eq.eq_ptail = addr; 3628 3629 /* 3630 * The oldest elements in the queue are on the processing list, subject 3631 * to machinations in the if-clauses above. Push any such elements. 3632 */ 3633 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3634 return (WALK_NEXT); 3635 } 3636 3637 static int 3638 eqd_walk_step(mdb_walk_state_t *wsp) 3639 { 3640 eqd_walk_data_t *eqdp = wsp->walk_data; 3641 uintptr_t addr; 3642 3643 if (eqdp->eqd_qpos == 0) 3644 return (WALK_DONE); 3645 3646 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3647 3648 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3649 mdb_warn("failed to read errorq data at %p", addr); 3650 return (WALK_ERR); 3651 } 3652 3653 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3654 } 3655 3656 static void 3657 eqd_walk_fini(mdb_walk_state_t *wsp) 3658 { 3659 eqd_walk_data_t *eqdp = wsp->walk_data; 3660 3661 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3662 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3663 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3664 } 3665 3666 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3667 3668 static int 3669 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3670 { 3671 int i; 3672 errorq_t eq; 3673 uint_t opt_v = FALSE; 3674 3675 if (!(flags & DCMD_ADDRSPEC)) { 3676 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3677 mdb_warn("can't walk 'errorq'"); 3678 return (DCMD_ERR); 3679 } 3680 return (DCMD_OK); 3681 } 3682 3683 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3684 argc -= i; 3685 argv += i; 3686 3687 if (argc != 0) 3688 return (DCMD_USAGE); 3689 3690 if (opt_v || DCMD_HDRSPEC(flags)) { 3691 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3692 "ADDR", "NAME", "S", "V", "N"); 3693 if (!opt_v) { 3694 mdb_printf("%7s %7s %7s%</u>\n", 3695 "ACCEPT", "DROP", "LOG"); 3696 } else { 3697 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3698 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3699 } 3700 } 3701 3702 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3703 mdb_warn("failed to read errorq at %p", addr); 3704 return (DCMD_ERR); 3705 } 3706 3707 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3708 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3709 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3710 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3711 3712 if (!opt_v) { 3713 mdb_printf("%7llu %7llu %7llu\n", 3714 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3715 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3716 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3717 } else { 3718 mdb_printf("%5s %6lu %6lu %3u %a\n", 3719 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3720 mdb_printf("%38s\n%41s" 3721 "%12s %llu\n" 3722 "%53s %llu\n" 3723 "%53s %llu\n" 3724 "%53s %llu\n" 3725 "%53s %llu\n" 3726 "%53s %llu\n" 3727 "%53s %llu\n" 3728 "%53s %llu\n\n", 3729 "|", "+-> ", 3730 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3731 "DROPPED", EQKSVAL(eq, eqk_dropped), 3732 "LOGGED", EQKSVAL(eq, eqk_logged), 3733 "RESERVED", EQKSVAL(eq, eqk_reserved), 3734 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3735 "COMMITTED", EQKSVAL(eq, eqk_committed), 3736 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3737 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3738 } 3739 3740 return (DCMD_OK); 3741 } 3742 3743 /*ARGSUSED*/ 3744 static int 3745 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3746 { 3747 cpu_t panic_cpu; 3748 kthread_t *panic_thread; 3749 void *buf; 3750 panic_data_t *pd; 3751 int i, n; 3752 3753 if (!mdb_prop_postmortem) { 3754 mdb_warn("panicinfo can only be run on a system " 3755 "dump; see dumpadm(1M)\n"); 3756 return (DCMD_ERR); 3757 } 3758 3759 if (flags & DCMD_ADDRSPEC || argc != 0) 3760 return (DCMD_USAGE); 3761 3762 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3763 mdb_warn("failed to read 'panic_cpu'"); 3764 else 3765 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3766 3767 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3768 mdb_warn("failed to read 'panic_thread'"); 3769 else 3770 mdb_printf("%16s %?p\n", "thread", panic_thread); 3771 3772 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3773 pd = (panic_data_t *)buf; 3774 3775 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 3776 pd->pd_version != PANICBUFVERS) { 3777 mdb_warn("failed to read 'panicbuf'"); 3778 mdb_free(buf, PANICBUFSIZE); 3779 return (DCMD_ERR); 3780 } 3781 3782 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 3783 3784 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3785 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3786 3787 for (i = 0; i < n; i++) 3788 mdb_printf("%16s %?llx\n", 3789 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3790 3791 mdb_free(buf, PANICBUFSIZE); 3792 return (DCMD_OK); 3793 } 3794 3795 /* 3796 * ::time dcmd, which will print a hires timestamp of when we entered the 3797 * debugger, or the lbolt value if used with the -l option. 3798 * 3799 */ 3800 /*ARGSUSED*/ 3801 static int 3802 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3803 { 3804 uint_t opt_dec = FALSE; 3805 uint_t opt_lbolt = FALSE; 3806 uint_t opt_hex = FALSE; 3807 const char *fmt; 3808 hrtime_t result; 3809 3810 if (mdb_getopts(argc, argv, 3811 'd', MDB_OPT_SETBITS, TRUE, &opt_dec, 3812 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt, 3813 'x', MDB_OPT_SETBITS, TRUE, &opt_hex, 3814 NULL) != argc) 3815 return (DCMD_USAGE); 3816 3817 if (opt_dec && opt_hex) 3818 return (DCMD_USAGE); 3819 3820 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime(); 3821 fmt = 3822 opt_hex ? "0x%llx\n" : 3823 opt_dec ? "0t%lld\n" : "%#llr\n"; 3824 3825 mdb_printf(fmt, result); 3826 return (DCMD_OK); 3827 } 3828 3829 void 3830 time_help(void) 3831 { 3832 mdb_printf("Prints the system time in nanoseconds.\n\n" 3833 "::time will return the timestamp at which we dropped into, \n" 3834 "if called from, kmdb(1); the core dump's high resolution \n" 3835 "time if inspecting one; or the running hires time if we're \n" 3836 "looking at a live system.\n\n" 3837 "Switches:\n" 3838 " -d report times in decimal\n" 3839 " -l prints the number of clock ticks since system boot\n" 3840 " -x report times in hexadecimal\n"); 3841 } 3842 3843 static const mdb_dcmd_t dcmds[] = { 3844 3845 /* from genunix.c */ 3846 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3847 { "binding_hash_entry", ":", "print driver names hash table entry", 3848 binding_hash_entry }, 3849 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]" 3850 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]" 3851 " [-FivVA]", 3852 "display callouts", callout, callout_help }, 3853 { "calloutid", "[-d|v] xid", "print callout by extended id", 3854 calloutid, calloutid_help }, 3855 { "class", NULL, "print process scheduler classes", class }, 3856 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3857 { "did2thread", "? kt_did", "find kernel thread for this id", 3858 did2thread }, 3859 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3860 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3861 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3862 { "lminfo", NULL, "print lock manager information", lminfo }, 3863 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3864 { "panicinfo", NULL, "print panic information", panicinfo }, 3865 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3866 { "project", NULL, "display kernel project(s)", project }, 3867 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3868 { "pgrep", "[-x] [-n | -o] pattern", 3869 "pattern match against all processes", pgrep }, 3870 { "ptree", NULL, "print process tree", ptree }, 3871 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3872 sysevent}, 3873 { "sysevent_channel", "?", "print sysevent channel database", 3874 sysevent_channel}, 3875 { "sysevent_class_list", ":", "print sysevent class list", 3876 sysevent_class_list}, 3877 { "sysevent_subclass_list", ":", 3878 "print sysevent subclass list", sysevent_subclass_list}, 3879 { "system", NULL, "print contents of /etc/system file", sysfile }, 3880 { "task", NULL, "display kernel task(s)", task }, 3881 { "time", "[-dlx]", "display system time", time, time_help }, 3882 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3883 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3884 whereopen }, 3885 3886 /* from bio.c */ 3887 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3888 3889 /* from bitset.c */ 3890 { "bitset", ":", "display a bitset", bitset, bitset_help }, 3891 3892 /* from contract.c */ 3893 { "contract", "?", "display a contract", cmd_contract }, 3894 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3895 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3896 3897 /* from cpupart.c */ 3898 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3899 3900 /* from cred.c */ 3901 { "cred", ":[-v]", "display a credential", cmd_cred }, 3902 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp }, 3903 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid }, 3904 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist }, 3905 3906 /* from cyclic.c */ 3907 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3908 { "cycid", "?", "dump a cyclic id", cycid }, 3909 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3910 { "cyclic", ":", "developer information", cyclic }, 3911 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3912 3913 /* from damap.c */ 3914 { "damap", ":", "display a damap_t", damap, damap_help }, 3915 3916 /* from ddi_periodic.c */ 3917 { "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo }, 3918 3919 /* from devinfo.c */ 3920 { "devbindings", "?[-qs] [device-name | major-num]", 3921 "print devinfo nodes bound to device-name or major-num", 3922 devbindings, devinfo_help }, 3923 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3924 devinfo_help }, 3925 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3926 devinfo_audit }, 3927 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3928 devinfo_audit_log }, 3929 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3930 devinfo_audit_node }, 3931 { "devinfo2driver", ":", "find driver name for this devinfo node", 3932 devinfo2driver }, 3933 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3934 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3935 dev2major }, 3936 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3937 dev2minor }, 3938 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3939 devt }, 3940 { "major2name", "?<major-num>", "convert major number to dev name", 3941 major2name }, 3942 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3943 minornodes }, 3944 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3945 modctl2devinfo }, 3946 { "name2major", "<dev-name>", "convert dev name to major number", 3947 name2major }, 3948 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3949 { "softstate", ":<instance>", "retrieve soft-state pointer", 3950 softstate }, 3951 { "devinfo_fm", ":", "devinfo fault managment configuration", 3952 devinfo_fm }, 3953 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3954 devinfo_fmce}, 3955 3956 /* from findstack.c */ 3957 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3958 { "findstack_debug", NULL, "toggle findstack debugging", 3959 findstack_debug }, 3960 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] " 3961 "[-s sobj | -S sobj] [-t tstate | -T tstate]", 3962 "print unique kernel thread stacks", 3963 stacks, stacks_help }, 3964 3965 /* from fm.c */ 3966 { "ereport", "[-v]", "print ereports logged in dump", 3967 ereport }, 3968 3969 /* from group.c */ 3970 { "group", "?[-q]", "display a group", group}, 3971 3972 /* from hotplug.c */ 3973 { "hotplug", "?[-p]", "display a registered hotplug attachment", 3974 hotplug, hotplug_help }, 3975 3976 /* from irm.c */ 3977 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd }, 3978 { "irmreqs", NULL, "display interrupt requests in an interrupt pool", 3979 irmreqs_dcmd }, 3980 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd }, 3981 3982 /* from kgrep.c + genunix.c */ 3983 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 3984 kgrep_help }, 3985 3986 /* from kmem.c */ 3987 { "allocdby", ":", "given a thread, print its allocated buffers", 3988 allocdby }, 3989 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3990 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3991 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3992 { "kmalog", "?[ fail | slab ]", 3993 "display kmem transaction log and stack traces", kmalog }, 3994 { "kmastat", "[-kmg]", "kernel memory allocator stats", 3995 kmastat }, 3996 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3997 "of the kmem allocator", kmausers, kmausers_help }, 3998 { "kmem_cache", "?[-n name]", 3999 "print kernel memory caches", kmem_cache, kmem_cache_help}, 4000 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] " 4001 "[-B minbinsize]", "display slab usage per kmem cache", 4002 kmem_slabs, kmem_slabs_help }, 4003 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 4004 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 4005 { "kmem_verify", "?", "check integrity of kmem-managed memory", 4006 kmem_verify }, 4007 { "vmem", "?", "print a vmem_t", vmem }, 4008 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 4009 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 4010 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 4011 { "whatthread", ":[-v]", "print threads whose stack contains the " 4012 "given address", whatthread }, 4013 4014 /* from ldi.c */ 4015 { "ldi_handle", "?[-i]", "display a layered driver handle", 4016 ldi_handle, ldi_handle_help }, 4017 { "ldi_ident", NULL, "display a layered driver identifier", 4018 ldi_ident, ldi_ident_help }, 4019 4020 /* from leaky.c + leaky_subr.c */ 4021 { "findleaks", FINDLEAKS_USAGE, 4022 "search for potential kernel memory leaks", findleaks, 4023 findleaks_help }, 4024 4025 /* from lgrp.c */ 4026 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 4027 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 4028 4029 /* from log.c */ 4030 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 4031 4032 /* from mdi.c */ 4033 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 4034 "and detailed pi_prop list", mdipi }, 4035 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 4036 mdiprops }, 4037 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 4038 "list all paths", mdiphci }, 4039 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 4040 "all phcis", mdivhci }, 4041 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 4042 "client links", mdiclient_paths }, 4043 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 4044 "phci links", mdiphci_paths }, 4045 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 4046 mdiphcis }, 4047 4048 /* from memory.c */ 4049 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 4050 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 4051 { "memstat", NULL, "display memory usage summary", memstat }, 4052 { "page", "?", "display a summarized page_t", page }, 4053 { "pagelookup", "?[-v vp] [-o offset]", 4054 "find the page_t with the name {vp, offset}", 4055 pagelookup, pagelookup_help }, 4056 { "page_num2pp", ":", "find the page_t for a given page frame number", 4057 page_num2pp }, 4058 { "pmap", ":[-q]", "print process memory map", pmap }, 4059 { "seg", ":", "print address space segment", seg }, 4060 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 4061 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 4062 4063 /* from mmd.c */ 4064 { "multidata", ":[-sv]", "display a summarized multidata_t", 4065 multidata }, 4066 { "pattbl", ":", "display a summarized multidata attribute table", 4067 pattbl }, 4068 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 4069 pattr2multidata }, 4070 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 4071 pdesc2slab }, 4072 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 4073 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 4074 slab2multidata }, 4075 4076 /* from modhash.c */ 4077 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 4078 "display information about one or all mod_hash structures", 4079 modhash, modhash_help }, 4080 { "modent", ":[-k | -v | -t type]", 4081 "display information about a mod_hash_entry", modent, 4082 modent_help }, 4083 4084 /* from net.c */ 4085 { "dladm", "?<sub-command> [flags]", "show data link information", 4086 dladm, dladm_help }, 4087 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 4088 mi }, 4089 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]", 4090 "show network statistics", netstat }, 4091 { "sonode", "?[-f inet | inet6 | unix | #] " 4092 "[-t stream | dgram | raw | #] [-p #]", 4093 "filter and display sonode", sonode }, 4094 4095 /* from netstack.c */ 4096 { "netstack", "", "show stack instances", netstack }, 4097 4098 /* from nvpair.c */ 4099 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 4100 nvpair_print }, 4101 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 4102 print_nvlist }, 4103 4104 /* from pg.c */ 4105 { "pg", "?[-q]", "display a pg", pg}, 4106 4107 /* from rctl.c */ 4108 { "rctl_dict", "?", "print systemwide default rctl definitions", 4109 rctl_dict }, 4110 { "rctl_list", ":[handle]", "print rctls for the given proc", 4111 rctl_list }, 4112 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 4113 rctl }, 4114 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 4115 "sequence", rctl_validate }, 4116 4117 /* from sobj.c */ 4118 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 4119 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 4120 mutex_help }, 4121 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 4122 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 4123 { "turnstile", "?", "display a turnstile", turnstile }, 4124 4125 /* from stream.c */ 4126 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 4127 "print an mblk", mblk_prt, mblk_help }, 4128 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 4129 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 4130 mblk2dblk }, 4131 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 4132 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 4133 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 4134 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 4135 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 4136 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 4137 "filter and display STREAM queue", queue, queue_help }, 4138 { "stdata", ":[-q|v] [-f flag] [-F flag]", 4139 "filter and display STREAM head", stdata, stdata_help }, 4140 { "str2mate", ":", "print mate of this stream", str2mate }, 4141 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 4142 { "stream", ":", "display STREAM", stream }, 4143 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 4144 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 4145 "filter and display STREAM sync queue", syncq, syncq_help }, 4146 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 4147 4148 /* from taskq.c */ 4149 { "taskq", ":[-atT] [-m min_maxq] [-n name]", 4150 "display a taskq", taskq, taskq_help }, 4151 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 4152 4153 /* from thread.c */ 4154 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 4155 thread_help }, 4156 { "threadlist", "?[-t] [-v [count]]", 4157 "display threads and associated C stack traces", threadlist, 4158 threadlist_help }, 4159 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo, 4160 stackinfo_help }, 4161 4162 /* from tsd.c */ 4163 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 4164 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 4165 4166 /* 4167 * typegraph does not work under kmdb, as it requires too much memory 4168 * for its internal data structures. 4169 */ 4170 #ifndef _KMDB 4171 /* from typegraph.c */ 4172 { "findlocks", ":", "find locks held by specified thread", findlocks }, 4173 { "findfalse", "?[-v]", "find potentially falsely shared structures", 4174 findfalse }, 4175 { "typegraph", NULL, "build type graph", typegraph }, 4176 { "istype", ":type", "manually set object type", istype }, 4177 { "notype", ":", "manually clear object type", notype }, 4178 { "whattype", ":", "determine object type", whattype }, 4179 #endif 4180 4181 /* from vfs.c */ 4182 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 4183 { "pfiles", ":[-fp]", "print process file information", pfiles, 4184 pfiles_help }, 4185 4186 /* from zone.c */ 4187 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt }, 4188 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for " 4189 "selected zones", zsd }, 4190 4191 { NULL } 4192 }; 4193 4194 static const mdb_walker_t walkers[] = { 4195 4196 /* from genunix.c */ 4197 { "callouts_bytime", "walk callouts by list chain (expiration time)", 4198 callout_walk_init, callout_walk_step, callout_walk_fini, 4199 (void *)CALLOUT_WALK_BYLIST }, 4200 { "callouts_byid", "walk callouts by id hash chain", 4201 callout_walk_init, callout_walk_step, callout_walk_fini, 4202 (void *)CALLOUT_WALK_BYID }, 4203 { "callout_list", "walk a callout list", callout_list_walk_init, 4204 callout_list_walk_step, callout_list_walk_fini }, 4205 { "callout_table", "walk callout table array", callout_table_walk_init, 4206 callout_table_walk_step, callout_table_walk_fini }, 4207 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 4208 { "ereportq_dump", "walk list of ereports in dump error queue", 4209 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 4210 { "ereportq_pend", "walk list of ereports in pending error queue", 4211 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 4212 { "errorq", "walk list of system error queues", 4213 errorq_walk_init, errorq_walk_step, NULL }, 4214 { "errorq_data", "walk pending error queue data buffers", 4215 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 4216 { "allfile", "given a proc pointer, list all file pointers", 4217 file_walk_init, allfile_walk_step, file_walk_fini }, 4218 { "file", "given a proc pointer, list of open file pointers", 4219 file_walk_init, file_walk_step, file_walk_fini }, 4220 { "lock_descriptor", "walk lock_descriptor_t structures", 4221 ld_walk_init, ld_walk_step, NULL }, 4222 { "lock_graph", "walk lock graph", 4223 lg_walk_init, lg_walk_step, NULL }, 4224 { "port", "given a proc pointer, list of created event ports", 4225 port_walk_init, port_walk_step, NULL }, 4226 { "portev", "given a port pointer, list of events in the queue", 4227 portev_walk_init, portev_walk_step, portev_walk_fini }, 4228 { "proc", "list of active proc_t structures", 4229 proc_walk_init, proc_walk_step, proc_walk_fini }, 4230 { "projects", "walk a list of kernel projects", 4231 project_walk_init, project_walk_step, NULL }, 4232 { "sysevent_pend", "walk sysevent pending queue", 4233 sysevent_pend_walk_init, sysevent_walk_step, 4234 sysevent_walk_fini}, 4235 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 4236 sysevent_walk_step, sysevent_walk_fini}, 4237 { "sysevent_channel", "walk sysevent channel subscriptions", 4238 sysevent_channel_walk_init, sysevent_channel_walk_step, 4239 sysevent_channel_walk_fini}, 4240 { "sysevent_class_list", "walk sysevent subscription's class list", 4241 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 4242 sysevent_class_list_walk_fini}, 4243 { "sysevent_subclass_list", 4244 "walk sysevent subscription's subclass list", 4245 sysevent_subclass_list_walk_init, 4246 sysevent_subclass_list_walk_step, 4247 sysevent_subclass_list_walk_fini}, 4248 { "task", "given a task pointer, walk its processes", 4249 task_walk_init, task_walk_step, NULL }, 4250 4251 /* from avl.c */ 4252 { AVL_WALK_NAME, AVL_WALK_DESC, 4253 avl_walk_init, avl_walk_step, avl_walk_fini }, 4254 4255 /* from bio.c */ 4256 { "buf", "walk the bio buf hash", 4257 buf_walk_init, buf_walk_step, buf_walk_fini }, 4258 4259 /* from contract.c */ 4260 { "contract", "walk all contracts, or those of the specified type", 4261 ct_walk_init, generic_walk_step, NULL }, 4262 { "ct_event", "walk events on a contract event queue", 4263 ct_event_walk_init, generic_walk_step, NULL }, 4264 { "ct_listener", "walk contract event queue listeners", 4265 ct_listener_walk_init, generic_walk_step, NULL }, 4266 4267 /* from cpupart.c */ 4268 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 4269 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 4270 NULL }, 4271 { "cpupart_walk", "walk the set of cpu partitions", 4272 cpupart_walk_init, cpupart_walk_step, NULL }, 4273 4274 /* from ctxop.c */ 4275 { "ctxop", "walk list of context ops on a thread", 4276 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 4277 4278 /* from cyclic.c */ 4279 { "cyccpu", "walk per-CPU cyc_cpu structures", 4280 cyccpu_walk_init, cyccpu_walk_step, NULL }, 4281 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 4282 cycomni_walk_init, cycomni_walk_step, NULL }, 4283 { "cyctrace", "walk cyclic trace buffer", 4284 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 4285 4286 /* from devinfo.c */ 4287 { "binding_hash", "walk all entries in binding hash table", 4288 binding_hash_walk_init, binding_hash_walk_step, NULL }, 4289 { "devinfo", "walk devinfo tree or subtree", 4290 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 4291 { "devinfo_audit_log", "walk devinfo audit system-wide log", 4292 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 4293 devinfo_audit_log_walk_fini}, 4294 { "devinfo_audit_node", "walk per-devinfo audit history", 4295 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 4296 devinfo_audit_node_walk_fini}, 4297 { "devinfo_children", "walk children of devinfo node", 4298 devinfo_children_walk_init, devinfo_children_walk_step, 4299 devinfo_children_walk_fini }, 4300 { "devinfo_parents", "walk ancestors of devinfo node", 4301 devinfo_parents_walk_init, devinfo_parents_walk_step, 4302 devinfo_parents_walk_fini }, 4303 { "devinfo_siblings", "walk siblings of devinfo node", 4304 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 4305 { "devi_next", "walk devinfo list", 4306 NULL, devi_next_walk_step, NULL }, 4307 { "devnames", "walk devnames array", 4308 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 4309 { "minornode", "given a devinfo node, walk minor nodes", 4310 minornode_walk_init, minornode_walk_step, NULL }, 4311 { "softstate", 4312 "given an i_ddi_soft_state*, list all in-use driver stateps", 4313 soft_state_walk_init, soft_state_walk_step, 4314 NULL, NULL }, 4315 { "softstate_all", 4316 "given an i_ddi_soft_state*, list all driver stateps", 4317 soft_state_walk_init, soft_state_all_walk_step, 4318 NULL, NULL }, 4319 { "devinfo_fmc", 4320 "walk a fault management handle cache active list", 4321 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 4322 4323 /* from group.c */ 4324 { "group", "walk all elements of a group", 4325 group_walk_init, group_walk_step, NULL }, 4326 4327 /* from irm.c */ 4328 { "irmpools", "walk global list of interrupt pools", 4329 irmpools_walk_init, list_walk_step, list_walk_fini }, 4330 { "irmreqs", "walk list of interrupt requests in an interrupt pool", 4331 irmreqs_walk_init, list_walk_step, list_walk_fini }, 4332 4333 /* from kmem.c */ 4334 { "allocdby", "given a thread, walk its allocated bufctls", 4335 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4336 { "bufctl", "walk a kmem cache's bufctls", 4337 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 4338 { "bufctl_history", "walk the available history of a bufctl", 4339 bufctl_history_walk_init, bufctl_history_walk_step, 4340 bufctl_history_walk_fini }, 4341 { "freedby", "given a thread, walk its freed bufctls", 4342 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4343 { "freectl", "walk a kmem cache's free bufctls", 4344 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 4345 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 4346 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4347 { "freemem", "walk a kmem cache's free memory", 4348 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 4349 { "freemem_constructed", "walk a kmem cache's constructed free memory", 4350 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4351 { "kmem", "walk a kmem cache", 4352 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 4353 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 4354 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 4355 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 4356 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 4357 { "kmem_log", "walk the kmem transaction log", 4358 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 4359 { "kmem_slab", "given a kmem cache, walk its slabs", 4360 kmem_slab_walk_init, combined_walk_step, combined_walk_fini }, 4361 { "kmem_slab_partial", 4362 "given a kmem cache, walk its partially allocated slabs (min 1)", 4363 kmem_slab_walk_partial_init, combined_walk_step, 4364 combined_walk_fini }, 4365 { "vmem", "walk vmem structures in pre-fix, depth-first order", 4366 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 4367 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 4368 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4369 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 4370 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4371 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 4372 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 4373 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 4374 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4375 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 4376 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4377 4378 /* from ldi.c */ 4379 { "ldi_handle", "walk the layered driver handle hash", 4380 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 4381 { "ldi_ident", "walk the layered driver identifier hash", 4382 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 4383 4384 /* from leaky.c + leaky_subr.c */ 4385 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 4386 "stack trace", 4387 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 4388 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 4389 "leaks w/ same stack trace", 4390 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 4391 4392 /* from lgrp.c */ 4393 { "lgrp_cpulist", "walk CPUs in a given lgroup", 4394 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 4395 { "lgrptbl", "walk lgroup table", 4396 lgrp_walk_init, lgrp_walk_step, NULL }, 4397 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 4398 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 4399 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 4400 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 4401 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 4402 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 4403 4404 /* from list.c */ 4405 { LIST_WALK_NAME, LIST_WALK_DESC, 4406 list_walk_init, list_walk_step, list_walk_fini }, 4407 4408 /* from mdi.c */ 4409 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 4410 mdi_pi_client_link_walk_init, 4411 mdi_pi_client_link_walk_step, 4412 mdi_pi_client_link_walk_fini }, 4413 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 4414 mdi_pi_phci_link_walk_init, 4415 mdi_pi_phci_link_walk_step, 4416 mdi_pi_phci_link_walk_fini }, 4417 { "mdiphci_list", "Walker for mdi_phci ph_next link", 4418 mdi_phci_ph_next_walk_init, 4419 mdi_phci_ph_next_walk_step, 4420 mdi_phci_ph_next_walk_fini }, 4421 4422 /* from memory.c */ 4423 { "allpages", "walk all pages, including free pages", 4424 allpages_walk_init, allpages_walk_step, allpages_walk_fini }, 4425 { "anon", "given an amp, list allocated anon structures", 4426 anon_walk_init, anon_walk_step, anon_walk_fini, 4427 ANON_WALK_ALLOC }, 4428 { "anon_all", "given an amp, list contents of all anon slots", 4429 anon_walk_init, anon_walk_step, anon_walk_fini, 4430 ANON_WALK_ALL }, 4431 { "memlist", "walk specified memlist", 4432 NULL, memlist_walk_step, NULL }, 4433 { "page", "walk all pages, or those from the specified vnode", 4434 page_walk_init, page_walk_step, page_walk_fini }, 4435 { "seg", "given an as, list of segments", 4436 seg_walk_init, avl_walk_step, avl_walk_fini }, 4437 { "segvn_anon", 4438 "given a struct segvn_data, list allocated anon structures", 4439 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4440 ANON_WALK_ALLOC }, 4441 { "segvn_anon_all", 4442 "given a struct segvn_data, list contents of all anon slots", 4443 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4444 ANON_WALK_ALL }, 4445 { "segvn_pages", 4446 "given a struct segvn_data, list resident pages in " 4447 "offset order", 4448 segvn_pages_walk_init, segvn_pages_walk_step, 4449 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT }, 4450 { "segvn_pages_all", 4451 "for each offset in a struct segvn_data, give page_t pointer " 4452 "(if resident), or NULL.", 4453 segvn_pages_walk_init, segvn_pages_walk_step, 4454 segvn_pages_walk_fini, SEGVN_PAGES_ALL }, 4455 { "swapinfo", "walk swapinfo structures", 4456 swap_walk_init, swap_walk_step, NULL }, 4457 4458 /* from mmd.c */ 4459 { "pattr", "walk pattr_t structures", pattr_walk_init, 4460 mmdq_walk_step, mmdq_walk_fini }, 4461 { "pdesc", "walk pdesc_t structures", 4462 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4463 { "pdesc_slab", "walk pdesc_slab_t structures", 4464 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4465 4466 /* from modhash.c */ 4467 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 4468 modhash_walk_step, NULL }, 4469 { "modent", "walk list of entries in a given mod_hash", 4470 modent_walk_init, modent_walk_step, modent_walk_fini }, 4471 { "modchain", "walk list of entries in a given mod_hash_entry", 4472 NULL, modchain_walk_step, NULL }, 4473 4474 /* from net.c */ 4475 { "icmp", "walk ICMP control structures using MI for all stacks", 4476 mi_payload_walk_init, mi_payload_walk_step, NULL, 4477 &mi_icmp_arg }, 4478 { "mi", "given a MI_O, walk the MI", 4479 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 4480 { "sonode", "given a sonode, walk its children", 4481 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 4482 { "icmp_stacks", "walk all the icmp_stack_t", 4483 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 4484 { "tcp_stacks", "walk all the tcp_stack_t", 4485 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 4486 { "udp_stacks", "walk all the udp_stack_t", 4487 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 4488 4489 /* from netstack.c */ 4490 { "netstack", "walk a list of kernel netstacks", 4491 netstack_walk_init, netstack_walk_step, NULL }, 4492 4493 /* from nvpair.c */ 4494 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 4495 nvpair_walk_init, nvpair_walk_step, NULL }, 4496 4497 /* from rctl.c */ 4498 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 4499 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 4500 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 4501 rctl_set_walk_step, NULL }, 4502 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 4503 rctl_val_walk_init, rctl_val_walk_step }, 4504 4505 /* from sobj.c */ 4506 { "blocked", "walk threads blocked on a given sobj", 4507 blocked_walk_init, blocked_walk_step, NULL }, 4508 { "wchan", "given a wchan, list of blocked threads", 4509 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 4510 4511 /* from stream.c */ 4512 { "b_cont", "walk mblk_t list using b_cont", 4513 mblk_walk_init, b_cont_step, mblk_walk_fini }, 4514 { "b_next", "walk mblk_t list using b_next", 4515 mblk_walk_init, b_next_step, mblk_walk_fini }, 4516 { "qlink", "walk queue_t list using q_link", 4517 queue_walk_init, queue_link_step, queue_walk_fini }, 4518 { "qnext", "walk queue_t list using q_next", 4519 queue_walk_init, queue_next_step, queue_walk_fini }, 4520 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 4521 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 4522 { "readq", "walk read queue side of stdata", 4523 str_walk_init, strr_walk_step, str_walk_fini }, 4524 { "writeq", "walk write queue side of stdata", 4525 str_walk_init, strw_walk_step, str_walk_fini }, 4526 4527 /* from taskq.c */ 4528 { "taskq_thread", "given a taskq_t, list all of its threads", 4529 taskq_thread_walk_init, 4530 taskq_thread_walk_step, 4531 taskq_thread_walk_fini }, 4532 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 4533 taskq_ent_walk_init, taskq_ent_walk_step, NULL }, 4534 4535 /* from thread.c */ 4536 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 4537 deathrow_walk_init, deathrow_walk_step, NULL }, 4538 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 4539 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4540 { "cpupart_dispq", 4541 "given a cpupart_t, walk threads in dispatcher queues", 4542 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4543 { "lwp_deathrow", "walk lwp_deathrow", 4544 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 4545 { "thread", "global or per-process kthread_t structures", 4546 thread_walk_init, thread_walk_step, thread_walk_fini }, 4547 { "thread_deathrow", "walk threads on thread_deathrow", 4548 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 4549 4550 /* from tsd.c */ 4551 { "tsd", "walk list of thread-specific data", 4552 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 4553 4554 /* from tsol.c */ 4555 { "tnrh", "walk remote host cache structures", 4556 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 4557 { "tnrhtp", "walk remote host template structures", 4558 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 4559 4560 /* 4561 * typegraph does not work under kmdb, as it requires too much memory 4562 * for its internal data structures. 4563 */ 4564 #ifndef _KMDB 4565 /* from typegraph.c */ 4566 { "typeconflict", "walk buffers with conflicting type inferences", 4567 typegraph_walk_init, typeconflict_walk_step }, 4568 { "typeunknown", "walk buffers with unknown types", 4569 typegraph_walk_init, typeunknown_walk_step }, 4570 #endif 4571 4572 /* from vfs.c */ 4573 { "vfs", "walk file system list", 4574 vfs_walk_init, vfs_walk_step }, 4575 4576 /* from zone.c */ 4577 { "zone", "walk a list of kernel zones", 4578 zone_walk_init, zone_walk_step, NULL }, 4579 { "zsd", "walk list of zsd entries for a zone", 4580 zsd_walk_init, zsd_walk_step, NULL }, 4581 4582 { NULL } 4583 }; 4584 4585 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 4586 4587 /*ARGSUSED*/ 4588 static void 4589 genunix_statechange_cb(void *ignored) 4590 { 4591 /* 4592 * Force ::findleaks and ::stacks to let go any cached state. 4593 */ 4594 leaky_cleanup(1); 4595 stacks_cleanup(1); 4596 4597 kmem_statechange(); /* notify kmem */ 4598 } 4599 4600 const mdb_modinfo_t * 4601 _mdb_init(void) 4602 { 4603 kmem_init(); 4604 4605 (void) mdb_callback_add(MDB_CALLBACK_STCHG, 4606 genunix_statechange_cb, NULL); 4607 4608 return (&modinfo); 4609 } 4610 4611 void 4612 _mdb_fini(void) 4613 { 4614 leaky_cleanup(1); 4615 stacks_cleanup(1); 4616 }