1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 Joyent, Inc. All rights reserved.
25 */
26
27 #include <mdb/mdb_param.h>
28 #include <mdb/mdb_modapi.h>
29 #include <mdb/mdb_ks.h>
30 #include <mdb/mdb_ctf.h>
31
32 #include <sys/types.h>
33 #include <sys/thread.h>
34 #include <sys/session.h>
35 #include <sys/user.h>
36 #include <sys/proc.h>
37 #include <sys/var.h>
38 #include <sys/t_lock.h>
39 #include <sys/callo.h>
40 #include <sys/priocntl.h>
41 #include <sys/class.h>
42 #include <sys/regset.h>
43 #include <sys/stack.h>
44 #include <sys/cpuvar.h>
45 #include <sys/vnode.h>
46 #include <sys/vfs.h>
47 #include <sys/flock_impl.h>
48 #include <sys/kmem_impl.h>
49 #include <sys/vmem_impl.h>
50 #include <sys/kstat.h>
51 #include <sys/dditypes.h>
52 #include <sys/ddi_impldefs.h>
53 #include <sys/sysmacros.h>
54 #include <sys/sysconf.h>
55 #include <sys/task.h>
56 #include <sys/project.h>
57 #include <sys/errorq_impl.h>
58 #include <sys/cred_impl.h>
59 #include <sys/zone.h>
60 #include <sys/panic.h>
61 #include <regex.h>
62 #include <sys/port_impl.h>
63
64 #include "avl.h"
65 #include "bio.h"
66 #include "bitset.h"
67 #include "combined.h"
68 #include "contract.h"
69 #include "cpupart_mdb.h"
70 #include "cred.h"
71 #include "ctxop.h"
72 #include "cyclic.h"
73 #include "damap.h"
74 #include "ddi_periodic.h"
75 #include "devinfo.h"
76 #include "findstack.h"
77 #include "fm.h"
78 #include "group.h"
79 #include "irm.h"
80 #include "kgrep.h"
81 #include "kmem.h"
82 #include "ldi.h"
83 #include "leaky.h"
84 #include "lgrp.h"
85 #include "list.h"
86 #include "log.h"
87 #include "mdi.h"
88 #include "memory.h"
89 #include "mmd.h"
90 #include "modhash.h"
91 #include "ndievents.h"
92 #include "net.h"
93 #include "netstack.h"
94 #include "nvpair.h"
95 #include "pg.h"
96 #include "rctl.h"
97 #include "sobj.h"
98 #include "streams.h"
99 #include "sysevent.h"
100 #include "taskq.h"
101 #include "thread.h"
102 #include "tsd.h"
103 #include "tsol.h"
104 #include "typegraph.h"
105 #include "vfs.h"
106 #include "zone.h"
107 #include "hotplug.h"
108
109 /*
110 * Surely this is defined somewhere...
111 */
112 #define NINTR 16
113
114 #define KILOS 10
115 #define MEGS 20
116 #define GIGS 30
117
118 #ifndef STACK_BIAS
119 #define STACK_BIAS 0
120 #endif
121
122 static char
123 pstat2ch(uchar_t state)
124 {
125 switch (state) {
126 case SSLEEP: return ('S');
127 case SRUN: return ('R');
128 case SZOMB: return ('Z');
129 case SIDL: return ('I');
130 case SONPROC: return ('O');
131 case SSTOP: return ('T');
132 case SWAIT: return ('W');
133 default: return ('?');
134 }
135 }
136
137 #define PS_PRTTHREADS 0x1
138 #define PS_PRTLWPS 0x2
139 #define PS_PSARGS 0x4
140 #define PS_TASKS 0x8
141 #define PS_PROJECTS 0x10
142 #define PS_ZONES 0x20
143
144 static int
145 ps_threadprint(uintptr_t addr, const void *data, void *private)
146 {
147 const kthread_t *t = (const kthread_t *)data;
148 uint_t prt_flags = *((uint_t *)private);
149
150 static const mdb_bitmask_t t_state_bits[] = {
151 { "TS_FREE", UINT_MAX, TS_FREE },
152 { "TS_SLEEP", TS_SLEEP, TS_SLEEP },
153 { "TS_RUN", TS_RUN, TS_RUN },
154 { "TS_ONPROC", TS_ONPROC, TS_ONPROC },
155 { "TS_ZOMB", TS_ZOMB, TS_ZOMB },
156 { "TS_STOPPED", TS_STOPPED, TS_STOPPED },
157 { "TS_WAIT", TS_WAIT, TS_WAIT },
158 { NULL, 0, 0 }
159 };
160
161 if (prt_flags & PS_PRTTHREADS)
162 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits);
163
164 if (prt_flags & PS_PRTLWPS)
165 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid);
166
167 return (WALK_NEXT);
168 }
169
170 int
171 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
172 {
173 uint_t prt_flags = 0;
174 proc_t pr;
175 struct pid pid, pgid, sid;
176 sess_t session;
177 cred_t cred;
178 task_t tk;
179 kproject_t pj;
180 zone_t zn;
181
182 if (!(flags & DCMD_ADDRSPEC)) {
183 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
184 mdb_warn("can't walk 'proc'");
185 return (DCMD_ERR);
186 }
187 return (DCMD_OK);
188 }
189
190 if (mdb_getopts(argc, argv,
191 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
192 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
193 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
194 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
195 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
196 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
197 return (DCMD_USAGE);
198
199 if (DCMD_HDRSPEC(flags)) {
200 mdb_printf("%<u>%1s %6s %6s %6s %6s ",
201 "S", "PID", "PPID", "PGID", "SID");
202 if (prt_flags & PS_TASKS)
203 mdb_printf("%5s ", "TASK");
204 if (prt_flags & PS_PROJECTS)
205 mdb_printf("%5s ", "PROJ");
206 if (prt_flags & PS_ZONES)
207 mdb_printf("%5s ", "ZONE");
208 mdb_printf("%6s %10s %?s %s%</u>\n",
209 "UID", "FLAGS", "ADDR", "NAME");
210 }
211
212 mdb_vread(&pr, sizeof (pr), addr);
213 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
214 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
215 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
216 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
217 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
218 if (prt_flags & (PS_TASKS | PS_PROJECTS))
219 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
220 if (prt_flags & PS_PROJECTS)
221 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
222 if (prt_flags & PS_ZONES)
223 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone);
224
225 mdb_printf("%c %6d %6d %6d %6d ",
226 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
227 sid.pid_id);
228 if (prt_flags & PS_TASKS)
229 mdb_printf("%5d ", tk.tk_tkid);
230 if (prt_flags & PS_PROJECTS)
231 mdb_printf("%5d ", pj.kpj_id);
232 if (prt_flags & PS_ZONES)
233 mdb_printf("%5d ", zn.zone_id);
234 mdb_printf("%6d 0x%08x %0?p %s\n",
235 cred.cr_uid, pr.p_flag, addr,
236 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
237
238 if (prt_flags & ~PS_PSARGS)
239 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
240
241 return (DCMD_OK);
242 }
243
244 #define PG_NEWEST 0x0001
245 #define PG_OLDEST 0x0002
246 #define PG_PIPE_OUT 0x0004
247 #define PG_EXACT_MATCH 0x0008
248
249 typedef struct pgrep_data {
250 uint_t pg_flags;
251 uint_t pg_psflags;
252 uintptr_t pg_xaddr;
253 hrtime_t pg_xstart;
254 const char *pg_pat;
255 #ifndef _KMDB
256 regex_t pg_reg;
257 #endif
258 } pgrep_data_t;
259
260 /*ARGSUSED*/
261 static int
262 pgrep_cb(uintptr_t addr, const void *pdata, void *data)
263 {
264 const proc_t *prp = pdata;
265 pgrep_data_t *pgp = data;
266 #ifndef _KMDB
267 regmatch_t pmatch;
268 #endif
269
270 /*
271 * kmdb doesn't have access to the reg* functions, so we fall back
272 * to strstr/strcmp.
273 */
274 #ifdef _KMDB
275 if ((pgp->pg_flags & PG_EXACT_MATCH) ?
276 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) :
277 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL))
278 return (WALK_NEXT);
279 #else
280 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0)
281 return (WALK_NEXT);
282
283 if ((pgp->pg_flags & PG_EXACT_MATCH) &&
284 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0'))
285 return (WALK_NEXT);
286 #endif
287
288 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
289 hrtime_t start;
290
291 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC +
292 prp->p_user.u_start.tv_nsec;
293
294 if (pgp->pg_flags & PG_NEWEST) {
295 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) {
296 pgp->pg_xaddr = addr;
297 pgp->pg_xstart = start;
298 }
299 } else {
300 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) {
301 pgp->pg_xaddr = addr;
302 pgp->pg_xstart = start;
303 }
304 }
305
306 } else if (pgp->pg_flags & PG_PIPE_OUT) {
307 mdb_printf("%p\n", addr);
308
309 } else {
310 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
311 mdb_warn("can't invoke 'ps'");
312 return (WALK_DONE);
313 }
314 pgp->pg_psflags &= ~DCMD_LOOPFIRST;
315 }
316
317 return (WALK_NEXT);
318 }
319
320 /*ARGSUSED*/
321 int
322 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
323 {
324 pgrep_data_t pg;
325 int i;
326 #ifndef _KMDB
327 int err;
328 #endif
329
330 if (flags & DCMD_ADDRSPEC)
331 return (DCMD_USAGE);
332
333 pg.pg_flags = 0;
334 pg.pg_xaddr = 0;
335
336 i = mdb_getopts(argc, argv,
337 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
338 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
339 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
340 NULL);
341
342 argc -= i;
343 argv += i;
344
345 if (argc != 1)
346 return (DCMD_USAGE);
347
348 /*
349 * -n and -o are mutually exclusive.
350 */
351 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
352 return (DCMD_USAGE);
353
354 if (argv->a_type != MDB_TYPE_STRING)
355 return (DCMD_USAGE);
356
357 if (flags & DCMD_PIPE_OUT)
358 pg.pg_flags |= PG_PIPE_OUT;
359
360 pg.pg_pat = argv->a_un.a_str;
361 if (DCMD_HDRSPEC(flags))
362 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
363 else
364 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
365
366 #ifndef _KMDB
367 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
368 size_t nbytes;
369 char *buf;
370
371 nbytes = regerror(err, &pg.pg_reg, NULL, 0);
372 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
373 (void) regerror(err, &pg.pg_reg, buf, nbytes);
374 mdb_warn("%s\n", buf);
375
376 return (DCMD_ERR);
377 }
378 #endif
379
380 if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
381 mdb_warn("can't walk 'proc'");
382 return (DCMD_ERR);
383 }
384
385 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
386 if (pg.pg_flags & PG_PIPE_OUT) {
387 mdb_printf("%p\n", pg.pg_xaddr);
388 } else {
389 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
390 0, NULL) != 0) {
391 mdb_warn("can't invoke 'ps'");
392 return (DCMD_ERR);
393 }
394 }
395 }
396
397 return (DCMD_OK);
398 }
399
400 int
401 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
402 {
403 task_t tk;
404 kproject_t pj;
405
406 if (!(flags & DCMD_ADDRSPEC)) {
407 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
408 mdb_warn("can't walk task_cache");
409 return (DCMD_ERR);
410 }
411 return (DCMD_OK);
412 }
413 if (DCMD_HDRSPEC(flags)) {
414 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
415 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
416 }
417 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
418 mdb_warn("can't read task_t structure at %p", addr);
419 return (DCMD_ERR);
420 }
421 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
422 mdb_warn("can't read project_t structure at %p", addr);
423 return (DCMD_ERR);
424 }
425 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
426 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
427 tk.tk_flags);
428 return (DCMD_OK);
429 }
430
431 int
432 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
433 {
434 kproject_t pj;
435
436 if (!(flags & DCMD_ADDRSPEC)) {
437 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
438 mdb_warn("can't walk projects");
439 return (DCMD_ERR);
440 }
441 return (DCMD_OK);
442 }
443 if (DCMD_HDRSPEC(flags)) {
444 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
445 "ADDR", "PROJID", "ZONEID", "REFCNT");
446 }
447 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
448 mdb_warn("can't read kproject_t structure at %p", addr);
449 return (DCMD_ERR);
450 }
451 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
452 pj.kpj_count);
453 return (DCMD_OK);
454 }
455
456 /* walk callouts themselves, either by list or id hash. */
457 int
458 callout_walk_init(mdb_walk_state_t *wsp)
459 {
460 if (wsp->walk_addr == NULL) {
461 mdb_warn("callout doesn't support global walk");
462 return (WALK_ERR);
463 }
464 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP);
465 return (WALK_NEXT);
466 }
467
468 #define CALLOUT_WALK_BYLIST 0
469 #define CALLOUT_WALK_BYID 1
470
471 /* the walker arg switches between walking by list (0) and walking by id (1). */
472 int
473 callout_walk_step(mdb_walk_state_t *wsp)
474 {
475 int retval;
476
477 if (wsp->walk_addr == NULL) {
478 return (WALK_DONE);
479 }
480 if (mdb_vread(wsp->walk_data, sizeof (callout_t),
481 wsp->walk_addr) == -1) {
482 mdb_warn("failed to read callout at %p", wsp->walk_addr);
483 return (WALK_DONE);
484 }
485 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
486 wsp->walk_cbdata);
487
488 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) {
489 wsp->walk_addr =
490 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext);
491 } else {
492 wsp->walk_addr =
493 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext);
494 }
495
496 return (retval);
497 }
498
499 void
500 callout_walk_fini(mdb_walk_state_t *wsp)
501 {
502 mdb_free(wsp->walk_data, sizeof (callout_t));
503 }
504
505 /*
506 * walker for callout lists. This is different from hashes and callouts.
507 * Thankfully, it's also simpler.
508 */
509 int
510 callout_list_walk_init(mdb_walk_state_t *wsp)
511 {
512 if (wsp->walk_addr == NULL) {
513 mdb_warn("callout list doesn't support global walk");
514 return (WALK_ERR);
515 }
516 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP);
517 return (WALK_NEXT);
518 }
519
520 int
521 callout_list_walk_step(mdb_walk_state_t *wsp)
522 {
523 int retval;
524
525 if (wsp->walk_addr == NULL) {
526 return (WALK_DONE);
527 }
528 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t),
529 wsp->walk_addr) != sizeof (callout_list_t)) {
530 mdb_warn("failed to read callout_list at %p", wsp->walk_addr);
531 return (WALK_ERR);
532 }
533 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
534 wsp->walk_cbdata);
535
536 wsp->walk_addr = (uintptr_t)
537 (((callout_list_t *)wsp->walk_data)->cl_next);
538
539 return (retval);
540 }
541
542 void
543 callout_list_walk_fini(mdb_walk_state_t *wsp)
544 {
545 mdb_free(wsp->walk_data, sizeof (callout_list_t));
546 }
547
548 /* routines/structs to walk callout table(s) */
549 typedef struct cot_data {
550 callout_table_t *ct0;
551 callout_table_t ct;
552 callout_hash_t cot_idhash[CALLOUT_BUCKETS];
553 callout_hash_t cot_clhash[CALLOUT_BUCKETS];
554 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS];
555 int cotndx;
556 int cotsize;
557 } cot_data_t;
558
559 int
560 callout_table_walk_init(mdb_walk_state_t *wsp)
561 {
562 int max_ncpus;
563 cot_data_t *cot_walk_data;
564
565 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP);
566
567 if (wsp->walk_addr == NULL) {
568 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) {
569 mdb_warn("failed to read 'callout_table'");
570 return (WALK_ERR);
571 }
572 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
573 mdb_warn("failed to get callout_table array size");
574 return (WALK_ERR);
575 }
576 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus;
577 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0;
578 } else {
579 /* not a global walk */
580 cot_walk_data->cotsize = 1;
581 }
582
583 cot_walk_data->cotndx = 0;
584 wsp->walk_data = cot_walk_data;
585
586 return (WALK_NEXT);
587 }
588
589 int
590 callout_table_walk_step(mdb_walk_state_t *wsp)
591 {
592 int retval;
593 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data;
594 size_t size;
595
596 if (cotwd->cotndx >= cotwd->cotsize) {
597 return (WALK_DONE);
598 }
599 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t),
600 wsp->walk_addr) != sizeof (callout_table_t)) {
601 mdb_warn("failed to read callout_table at %p", wsp->walk_addr);
602 return (WALK_ERR);
603 }
604
605 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
606 if (cotwd->ct.ct_idhash != NULL) {
607 if (mdb_vread(cotwd->cot_idhash, size,
608 (uintptr_t)(cotwd->ct.ct_idhash)) != size) {
609 mdb_warn("failed to read id_hash at %p",
610 cotwd->ct.ct_idhash);
611 return (WALK_ERR);
612 }
613 }
614 if (cotwd->ct.ct_clhash != NULL) {
615 if (mdb_vread(&(cotwd->cot_clhash), size,
616 (uintptr_t)cotwd->ct.ct_clhash) == -1) {
617 mdb_warn("failed to read cl_hash at %p",
618 cotwd->ct.ct_clhash);
619 return (WALK_ERR);
620 }
621 }
622 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS;
623 if (cotwd->ct.ct_kstat_data != NULL) {
624 if (mdb_vread(&(cotwd->ct_kstat_data), size,
625 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) {
626 mdb_warn("failed to read kstats at %p",
627 cotwd->ct.ct_kstat_data);
628 return (WALK_ERR);
629 }
630 }
631 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd,
632 wsp->walk_cbdata);
633
634 cotwd->cotndx++;
635 if (cotwd->cotndx >= cotwd->cotsize) {
636 return (WALK_DONE);
637 }
638 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr +
639 sizeof (callout_table_t));
640
641 return (retval);
642 }
643
644 void
645 callout_table_walk_fini(mdb_walk_state_t *wsp)
646 {
647 mdb_free(wsp->walk_data, sizeof (cot_data_t));
648 }
649
650 static const char *co_typenames[] = { "R", "N" };
651
652 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK)
653
654 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS)
655
656 /* callout flags, in no particular order */
657 #define COF_REAL 0x00000001
658 #define COF_NORM 0x00000002
659 #define COF_LONG 0x00000004
660 #define COF_SHORT 0x00000008
661 #define COF_EMPTY 0x00000010
662 #define COF_TIME 0x00000020
663 #define COF_BEFORE 0x00000040
664 #define COF_AFTER 0x00000080
665 #define COF_SEQID 0x00000100
666 #define COF_FUNC 0x00000200
667 #define COF_ADDR 0x00000400
668 #define COF_EXEC 0x00000800
669 #define COF_HIRES 0x00001000
670 #define COF_ABS 0x00002000
671 #define COF_TABLE 0x00004000
672 #define COF_BYIDH 0x00008000
673 #define COF_FREE 0x00010000
674 #define COF_LIST 0x00020000
675 #define COF_EXPREL 0x00040000
676 #define COF_HDR 0x00080000
677 #define COF_VERBOSE 0x00100000
678 #define COF_LONGLIST 0x00200000
679 #define COF_THDR 0x00400000
680 #define COF_LHDR 0x00800000
681 #define COF_CHDR 0x01000000
682 #define COF_PARAM 0x02000000
683 #define COF_DECODE 0x04000000
684 #define COF_HEAP 0x08000000
685 #define COF_QUEUE 0x10000000
686
687 /* show real and normal, short and long, expired and unexpired. */
688 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT)
689
690 #define COF_LIST_FLAGS \
691 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE)
692
693 /* private callout data for callback functions */
694 typedef struct callout_data {
695 uint_t flags; /* COF_* */
696 cpu_t *cpu; /* cpu pointer if given */
697 int seqid; /* cpu seqid, or -1 */
698 hrtime_t time; /* expiration time value */
699 hrtime_t atime; /* expiration before value */
700 hrtime_t btime; /* expiration after value */
701 uintptr_t funcaddr; /* function address or NULL */
702 uintptr_t param; /* parameter to function or NULL */
703 hrtime_t now; /* current system time */
704 int nsec_per_tick; /* for conversions */
705 ulong_t ctbits; /* for decoding xid */
706 callout_table_t *co_table; /* top of callout table array */
707 int ndx; /* table index. */
708 int bucket; /* which list/id bucket are we in */
709 hrtime_t exp; /* expire time */
710 int list_flags; /* copy of cl_flags */
711 } callout_data_t;
712
713 /* this callback does the actual callback itself (finally). */
714 /*ARGSUSED*/
715 static int
716 callouts_cb(uintptr_t addr, const void *data, void *priv)
717 {
718 callout_data_t *coargs = (callout_data_t *)priv;
719 callout_t *co = (callout_t *)data;
720 int tableid, list_flags;
721 callout_id_t coid;
722
723 if ((coargs == NULL) || (co == NULL)) {
724 return (WALK_ERR);
725 }
726
727 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) {
728 /*
729 * The callout must have been reallocated. No point in
730 * walking any more.
731 */
732 return (WALK_DONE);
733 }
734 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) {
735 /*
736 * The callout must have been freed. No point in
737 * walking any more.
738 */
739 return (WALK_DONE);
740 }
741 if ((coargs->flags & COF_FUNC) &&
742 (coargs->funcaddr != (uintptr_t)co->c_func)) {
743 return (WALK_NEXT);
744 }
745 if ((coargs->flags & COF_PARAM) &&
746 (coargs->param != (uintptr_t)co->c_arg)) {
747 return (WALK_NEXT);
748 }
749 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) {
750 return (WALK_NEXT);
751 }
752 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) {
753 return (WALK_NEXT);
754 }
755 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) {
756 return (WALK_NEXT);
757 }
758 /* it is possible we don't have the exp time or flags */
759 if (coargs->flags & COF_BYIDH) {
760 if (!(coargs->flags & COF_FREE)) {
761 /* we have to fetch the expire time ourselves. */
762 if (mdb_vread(&coargs->exp, sizeof (hrtime_t),
763 (uintptr_t)co->c_list + offsetof(callout_list_t,
764 cl_expiration)) == -1) {
765 mdb_warn("failed to read expiration "
766 "time from %p", co->c_list);
767 coargs->exp = 0;
768 }
769 /* and flags. */
770 if (mdb_vread(&coargs->list_flags, sizeof (int),
771 (uintptr_t)co->c_list + offsetof(callout_list_t,
772 cl_flags)) == -1) {
773 mdb_warn("failed to read list flags"
774 "from %p", co->c_list);
775 coargs->list_flags = 0;
776 }
777 } else {
778 /* free callouts can't use list pointer. */
779 coargs->exp = 0;
780 coargs->list_flags = 0;
781 }
782 if (coargs->exp != 0) {
783 if ((coargs->flags & COF_TIME) &&
784 (coargs->exp != coargs->time)) {
785 return (WALK_NEXT);
786 }
787 if ((coargs->flags & COF_BEFORE) &&
788 (coargs->exp > coargs->btime)) {
789 return (WALK_NEXT);
790 }
791 if ((coargs->flags & COF_AFTER) &&
792 (coargs->exp < coargs->atime)) {
793 return (WALK_NEXT);
794 }
795 }
796 /* tricky part, since both HIRES and ABS can be set */
797 list_flags = coargs->list_flags;
798 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
799 /* both flags are set, only skip "regular" ones */
800 if (! (list_flags & COF_LIST_FLAGS)) {
801 return (WALK_NEXT);
802 }
803 } else {
804 /* individual flags, or no flags */
805 if ((coargs->flags & COF_HIRES) &&
806 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
807 return (WALK_NEXT);
808 }
809 if ((coargs->flags & COF_ABS) &&
810 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
811 return (WALK_NEXT);
812 }
813 }
814 /*
815 * We do the checks for COF_HEAP and COF_QUEUE here only if we
816 * are traversing BYIDH. If the traversal is by callout list,
817 * we do this check in callout_list_cb() to be more
818 * efficient.
819 */
820 if ((coargs->flags & COF_HEAP) &&
821 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
822 return (WALK_NEXT);
823 }
824
825 if ((coargs->flags & COF_QUEUE) &&
826 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
827 return (WALK_NEXT);
828 }
829 }
830
831 #define callout_table_mask ((1 << coargs->ctbits) - 1)
832 tableid = CALLOUT_ID_TO_TABLE(co->c_xid);
833 #undef callout_table_mask
834 coid = CO_PLAIN_ID(co->c_xid);
835
836 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) {
837 /*
838 * We need to print the headers. If walking by id, then
839 * the list header isn't printed, so we must include
840 * that info here.
841 */
842 if (!(coargs->flags & COF_VERBOSE)) {
843 mdb_printf("%<u>%3s %-1s %-14s %</u>",
844 "SEQ", "T", "EXP");
845 } else if (coargs->flags & COF_BYIDH) {
846 mdb_printf("%<u>%-14s %</u>", "EXP");
847 }
848 mdb_printf("%<u>%-4s %-?s %-20s%</u>",
849 "XHAL", "XID", "FUNC(ARG)");
850 if (coargs->flags & COF_LONGLIST) {
851 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>",
852 "PREVID", "NEXTID", "PREVL", "NEXTL");
853 mdb_printf("%<u> %-?s %-4s %-?s%</u>",
854 "DONE", "UTOS", "THREAD");
855 }
856 mdb_printf("\n");
857 coargs->flags &= ~COF_CHDR;
858 coargs->flags |= (COF_THDR | COF_LHDR);
859 }
860
861 if (!(coargs->flags & COF_ADDR)) {
862 if (!(coargs->flags & COF_VERBOSE)) {
863 mdb_printf("%-3d %1s %-14llx ",
864 TABLE_TO_SEQID(tableid),
865 co_typenames[tableid & CALLOUT_TYPE_MASK],
866 (coargs->flags & COF_EXPREL) ?
867 coargs->exp - coargs->now : coargs->exp);
868 } else if (coargs->flags & COF_BYIDH) {
869 mdb_printf("%-14x ",
870 (coargs->flags & COF_EXPREL) ?
871 coargs->exp - coargs->now : coargs->exp);
872 }
873 list_flags = coargs->list_flags;
874 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)",
875 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ",
876 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ",
877 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ",
878 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ",
879 (long long)coid, co->c_func, co->c_arg);
880 if (coargs->flags & COF_LONGLIST) {
881 mdb_printf(" %-?p %-?p %-?p %-?p",
882 co->c_idprev, co->c_idnext, co->c_clprev,
883 co->c_clnext);
884 mdb_printf(" %-?p %-4d %-0?p",
885 co->c_done, co->c_waiting, co->c_executor);
886 }
887 } else {
888 /* address only */
889 mdb_printf("%-0p", addr);
890 }
891 mdb_printf("\n");
892 return (WALK_NEXT);
893 }
894
895 /* this callback is for callout list handling. idhash is done by callout_t_cb */
896 /*ARGSUSED*/
897 static int
898 callout_list_cb(uintptr_t addr, const void *data, void *priv)
899 {
900 callout_data_t *coargs = (callout_data_t *)priv;
901 callout_list_t *cl = (callout_list_t *)data;
902 callout_t *coptr;
903 int list_flags;
904
905 if ((coargs == NULL) || (cl == NULL)) {
906 return (WALK_ERR);
907 }
908
909 coargs->exp = cl->cl_expiration;
910 coargs->list_flags = cl->cl_flags;
911 if ((coargs->flags & COF_FREE) &&
912 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
913 /*
914 * The callout list must have been reallocated. No point in
915 * walking any more.
916 */
917 return (WALK_DONE);
918 }
919 if (!(coargs->flags & COF_FREE) &&
920 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
921 /*
922 * The callout list must have been freed. No point in
923 * walking any more.
924 */
925 return (WALK_DONE);
926 }
927 if ((coargs->flags & COF_TIME) &&
928 (cl->cl_expiration != coargs->time)) {
929 return (WALK_NEXT);
930 }
931 if ((coargs->flags & COF_BEFORE) &&
932 (cl->cl_expiration > coargs->btime)) {
933 return (WALK_NEXT);
934 }
935 if ((coargs->flags & COF_AFTER) &&
936 (cl->cl_expiration < coargs->atime)) {
937 return (WALK_NEXT);
938 }
939 if (!(coargs->flags & COF_EMPTY) &&
940 (cl->cl_callouts.ch_head == NULL)) {
941 return (WALK_NEXT);
942 }
943 /* FOUR cases, each different, !A!B, !AB, A!B, AB */
944 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
945 /* both flags are set, only skip "regular" ones */
946 if (! (cl->cl_flags & COF_LIST_FLAGS)) {
947 return (WALK_NEXT);
948 }
949 } else {
950 if ((coargs->flags & COF_HIRES) &&
951 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
952 return (WALK_NEXT);
953 }
954 if ((coargs->flags & COF_ABS) &&
955 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
956 return (WALK_NEXT);
957 }
958 }
959
960 if ((coargs->flags & COF_HEAP) &&
961 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
962 return (WALK_NEXT);
963 }
964
965 if ((coargs->flags & COF_QUEUE) &&
966 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
967 return (WALK_NEXT);
968 }
969
970 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) &&
971 (coargs->flags & (COF_LIST | COF_VERBOSE))) {
972 if (!(coargs->flags & COF_VERBOSE)) {
973 /* don't be redundant again */
974 mdb_printf("%<u>SEQ T %</u>");
975 }
976 mdb_printf("%<u>EXP HA BUCKET "
977 "CALLOUTS %</u>");
978
979 if (coargs->flags & COF_LONGLIST) {
980 mdb_printf("%<u> %-?s %-?s%</u>",
981 "PREV", "NEXT");
982 }
983 mdb_printf("\n");
984 coargs->flags &= ~COF_LHDR;
985 coargs->flags |= (COF_THDR | COF_CHDR);
986 }
987 if (coargs->flags & (COF_LIST | COF_VERBOSE)) {
988 if (!(coargs->flags & COF_ADDR)) {
989 if (!(coargs->flags & COF_VERBOSE)) {
990 mdb_printf("%3d %1s ",
991 TABLE_TO_SEQID(coargs->ndx),
992 co_typenames[coargs->ndx &
993 CALLOUT_TYPE_MASK]);
994 }
995
996 list_flags = coargs->list_flags;
997 mdb_printf("%-14llx %1s%1s %-6d %-0?p ",
998 (coargs->flags & COF_EXPREL) ?
999 coargs->exp - coargs->now : coargs->exp,
1000 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ?
1001 "H" : " ",
1002 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ?
1003 "A" : " ",
1004 coargs->bucket, cl->cl_callouts.ch_head);
1005
1006 if (coargs->flags & COF_LONGLIST) {
1007 mdb_printf(" %-?p %-?p",
1008 cl->cl_prev, cl->cl_next);
1009 }
1010 } else {
1011 /* address only */
1012 mdb_printf("%-0p", addr);
1013 }
1014 mdb_printf("\n");
1015 if (coargs->flags & COF_LIST) {
1016 return (WALK_NEXT);
1017 }
1018 }
1019 /* yet another layer as we walk the actual callouts via list. */
1020 if (cl->cl_callouts.ch_head == NULL) {
1021 return (WALK_NEXT);
1022 }
1023 /* free list structures do not have valid callouts off of them. */
1024 if (coargs->flags & COF_FREE) {
1025 return (WALK_NEXT);
1026 }
1027 coptr = (callout_t *)cl->cl_callouts.ch_head;
1028
1029 if (coargs->flags & COF_VERBOSE) {
1030 mdb_inc_indent(4);
1031 }
1032 /*
1033 * walk callouts using yet another callback routine.
1034 * we use callouts_bytime because id hash is handled via
1035 * the callout_t_cb callback.
1036 */
1037 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs,
1038 (uintptr_t)coptr) == -1) {
1039 mdb_warn("cannot walk callouts at %p", coptr);
1040 return (WALK_ERR);
1041 }
1042 if (coargs->flags & COF_VERBOSE) {
1043 mdb_dec_indent(4);
1044 }
1045
1046 return (WALK_NEXT);
1047 }
1048
1049 /* this callback handles the details of callout table walking. */
1050 static int
1051 callout_t_cb(uintptr_t addr, const void *data, void *priv)
1052 {
1053 callout_data_t *coargs = (callout_data_t *)priv;
1054 cot_data_t *cotwd = (cot_data_t *)data;
1055 callout_table_t *ct = &(cotwd->ct);
1056 int index, seqid, cotype;
1057 int i;
1058 callout_list_t *clptr;
1059 callout_t *coptr;
1060
1061 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) {
1062 return (WALK_ERR);
1063 }
1064
1065 index = ((char *)addr - (char *)coargs->co_table) /
1066 sizeof (callout_table_t);
1067 cotype = index & CALLOUT_TYPE_MASK;
1068 seqid = TABLE_TO_SEQID(index);
1069
1070 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) {
1071 return (WALK_NEXT);
1072 }
1073
1074 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) {
1075 return (WALK_NEXT);
1076 }
1077
1078 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) {
1079 return (WALK_NEXT);
1080 }
1081
1082 if (!(coargs->flags & COF_EMPTY) && (
1083 (ct->ct_heap == NULL) || (ct->ct_cyclic == NULL))) {
1084 return (WALK_NEXT);
1085 }
1086
1087 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) &&
1088 (coargs->flags & (COF_TABLE | COF_VERBOSE))) {
1089 /* print table hdr */
1090 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>",
1091 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP");
1092 coargs->flags &= ~COF_THDR;
1093 coargs->flags |= (COF_LHDR | COF_CHDR);
1094 if (coargs->flags & COF_LONGLIST) {
1095 /* more info! */
1096 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s"
1097 " %-?s %-?s %-?s%</u>",
1098 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE",
1099 "PEND", "FREE", "LOCK");
1100 }
1101 mdb_printf("\n");
1102 }
1103 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) {
1104 if (!(coargs->flags & COF_ADDR)) {
1105 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p",
1106 seqid, co_typenames[cotype],
1107 ct->ct_free, ct->ct_lfree, ct->ct_cyclic,
1108 ct->ct_heap);
1109 if (coargs->flags & COF_LONGLIST) {
1110 /* more info! */
1111 mdb_printf(" %-7d %-7d %-?p %-?p %-?p"
1112 " %-?lld %-?lld %-?p",
1113 ct->ct_heap_num, ct->ct_heap_max,
1114 ct->ct_taskq, ct->ct_expired.ch_head,
1115 ct->ct_queue.ch_head,
1116 cotwd->ct_timeouts_pending,
1117 cotwd->ct_allocations -
1118 cotwd->ct_timeouts_pending,
1119 ct->ct_mutex);
1120 }
1121 } else {
1122 /* address only */
1123 mdb_printf("%-0?p", addr);
1124 }
1125 mdb_printf("\n");
1126 if (coargs->flags & COF_TABLE) {
1127 return (WALK_NEXT);
1128 }
1129 }
1130
1131 coargs->ndx = index;
1132 if (coargs->flags & COF_VERBOSE) {
1133 mdb_inc_indent(4);
1134 }
1135 /* keep digging. */
1136 if (!(coargs->flags & COF_BYIDH)) {
1137 /* walk the list hash table */
1138 if (coargs->flags & COF_FREE) {
1139 clptr = ct->ct_lfree;
1140 coargs->bucket = 0;
1141 if (clptr == NULL) {
1142 return (WALK_NEXT);
1143 }
1144 if (mdb_pwalk("callout_list", callout_list_cb, coargs,
1145 (uintptr_t)clptr) == -1) {
1146 mdb_warn("cannot walk callout free list at %p",
1147 clptr);
1148 return (WALK_ERR);
1149 }
1150 } else {
1151 /* first print the expired list. */
1152 clptr = (callout_list_t *)ct->ct_expired.ch_head;
1153 if (clptr != NULL) {
1154 coargs->bucket = -1;
1155 if (mdb_pwalk("callout_list", callout_list_cb,
1156 coargs, (uintptr_t)clptr) == -1) {
1157 mdb_warn("cannot walk callout_list"
1158 " at %p", clptr);
1159 return (WALK_ERR);
1160 }
1161 }
1162 /* then, print the callout queue */
1163 clptr = (callout_list_t *)ct->ct_queue.ch_head;
1164 if (clptr != NULL) {
1165 coargs->bucket = -1;
1166 if (mdb_pwalk("callout_list", callout_list_cb,
1167 coargs, (uintptr_t)clptr) == -1) {
1168 mdb_warn("cannot walk callout_list"
1169 " at %p", clptr);
1170 return (WALK_ERR);
1171 }
1172 }
1173 for (i = 0; i < CALLOUT_BUCKETS; i++) {
1174 if (ct->ct_clhash == NULL) {
1175 /* nothing to do */
1176 break;
1177 }
1178 if (cotwd->cot_clhash[i].ch_head == NULL) {
1179 continue;
1180 }
1181 clptr = (callout_list_t *)
1182 cotwd->cot_clhash[i].ch_head;
1183 coargs->bucket = i;
1184 /* walk list with callback routine. */
1185 if (mdb_pwalk("callout_list", callout_list_cb,
1186 coargs, (uintptr_t)clptr) == -1) {
1187 mdb_warn("cannot walk callout_list"
1188 " at %p", clptr);
1189 return (WALK_ERR);
1190 }
1191 }
1192 }
1193 } else {
1194 /* walk the id hash table. */
1195 if (coargs->flags & COF_FREE) {
1196 coptr = ct->ct_free;
1197 coargs->bucket = 0;
1198 if (coptr == NULL) {
1199 return (WALK_NEXT);
1200 }
1201 if (mdb_pwalk("callouts_byid", callouts_cb, coargs,
1202 (uintptr_t)coptr) == -1) {
1203 mdb_warn("cannot walk callout id free list"
1204 " at %p", coptr);
1205 return (WALK_ERR);
1206 }
1207 } else {
1208 for (i = 0; i < CALLOUT_BUCKETS; i++) {
1209 if (ct->ct_idhash == NULL) {
1210 break;
1211 }
1212 coptr = (callout_t *)
1213 cotwd->cot_idhash[i].ch_head;
1214 if (coptr == NULL) {
1215 continue;
1216 }
1217 coargs->bucket = i;
1218
1219 /*
1220 * walk callouts directly by id. For id
1221 * chain, the callout list is just a header,
1222 * so there's no need to walk it.
1223 */
1224 if (mdb_pwalk("callouts_byid", callouts_cb,
1225 coargs, (uintptr_t)coptr) == -1) {
1226 mdb_warn("cannot walk callouts at %p",
1227 coptr);
1228 return (WALK_ERR);
1229 }
1230 }
1231 }
1232 }
1233 if (coargs->flags & COF_VERBOSE) {
1234 mdb_dec_indent(4);
1235 }
1236 return (WALK_NEXT);
1237 }
1238
1239 /*
1240 * initialize some common info for both callout dcmds.
1241 */
1242 int
1243 callout_common_init(callout_data_t *coargs)
1244 {
1245 /* we need a couple of things */
1246 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) {
1247 mdb_warn("failed to read 'callout_table'");
1248 return (DCMD_ERR);
1249 }
1250 /* need to get now in nsecs. Approximate with hrtime vars */
1251 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") !=
1252 sizeof (hrtime_t)) {
1253 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t),
1254 "hrtime_base") != sizeof (hrtime_t)) {
1255 mdb_warn("Could not determine current system time");
1256 return (DCMD_ERR);
1257 }
1258 }
1259
1260 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) {
1261 mdb_warn("failed to read 'callout_table_bits'");
1262 return (DCMD_ERR);
1263 }
1264 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) {
1265 mdb_warn("failed to read 'nsec_per_tick'");
1266 return (DCMD_ERR);
1267 }
1268 return (DCMD_OK);
1269 }
1270
1271 /*
1272 * dcmd to print callouts. Optional addr limits to specific table.
1273 * Parses lots of options that get passed to callbacks for walkers.
1274 * Has it's own help function.
1275 */
1276 /*ARGSUSED*/
1277 int
1278 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1279 {
1280 callout_data_t coargs;
1281 /* getopts doesn't help much with stuff like this */
1282 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag;
1283 char *funcname = NULL;
1284 char *paramstr = NULL;
1285 uintptr_t Stmp, Ctmp; /* for getopt. */
1286 int retval;
1287
1288 coargs.flags = COF_DEFAULT;
1289 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE;
1290 coargs.seqid = -1;
1291
1292 if (mdb_getopts(argc, argv,
1293 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags,
1294 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags,
1295 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags,
1296 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags,
1297 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags,
1298 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags,
1299 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags,
1300 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags,
1301 'd', MDB_OPT_SETBITS, 1, &dflag,
1302 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp,
1303 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp,
1304 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time,
1305 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime,
1306 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime,
1307 'k', MDB_OPT_SETBITS, 1, &kflag,
1308 'f', MDB_OPT_STR, &funcname,
1309 'p', MDB_OPT_STR, ¶mstr,
1310 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags,
1311 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags,
1312 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags,
1313 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags,
1314 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1315 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags,
1316 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags,
1317 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags,
1318 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags,
1319 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags,
1320 NULL) != argc) {
1321 return (DCMD_USAGE);
1322 }
1323
1324 /* initialize from kernel variables */
1325 if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1326 return (retval);
1327 }
1328
1329 /* do some option post-processing */
1330 if (kflag) {
1331 coargs.time *= coargs.nsec_per_tick;
1332 coargs.atime *= coargs.nsec_per_tick;
1333 coargs.btime *= coargs.nsec_per_tick;
1334 }
1335
1336 if (dflag) {
1337 coargs.time += coargs.now;
1338 coargs.atime += coargs.now;
1339 coargs.btime += coargs.now;
1340 }
1341 if (Sflag) {
1342 if (flags & DCMD_ADDRSPEC) {
1343 mdb_printf("-S option conflicts with explicit"
1344 " address\n");
1345 return (DCMD_USAGE);
1346 }
1347 coargs.flags |= COF_SEQID;
1348 coargs.seqid = (int)Stmp;
1349 }
1350 if (Cflag) {
1351 if (flags & DCMD_ADDRSPEC) {
1352 mdb_printf("-C option conflicts with explicit"
1353 " address\n");
1354 return (DCMD_USAGE);
1355 }
1356 if (coargs.flags & COF_SEQID) {
1357 mdb_printf("-C and -S are mutually exclusive\n");
1358 return (DCMD_USAGE);
1359 }
1360 coargs.cpu = (cpu_t *)Ctmp;
1361 if (mdb_vread(&coargs.seqid, sizeof (processorid_t),
1362 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) {
1363 mdb_warn("failed to read cpu_t at %p", Ctmp);
1364 return (DCMD_ERR);
1365 }
1366 coargs.flags |= COF_SEQID;
1367 }
1368 /* avoid null outputs. */
1369 if (!(coargs.flags & (COF_REAL | COF_NORM))) {
1370 coargs.flags |= COF_REAL | COF_NORM;
1371 }
1372 if (!(coargs.flags & (COF_LONG | COF_SHORT))) {
1373 coargs.flags |= COF_LONG | COF_SHORT;
1374 }
1375 if (tflag) {
1376 if (aflag || bflag) {
1377 mdb_printf("-t and -a|b are mutually exclusive\n");
1378 return (DCMD_USAGE);
1379 }
1380 coargs.flags |= COF_TIME;
1381 }
1382 if (aflag) {
1383 coargs.flags |= COF_AFTER;
1384 }
1385 if (bflag) {
1386 coargs.flags |= COF_BEFORE;
1387 }
1388 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) {
1389 mdb_printf("value for -a must be earlier than the value"
1390 " for -b.\n");
1391 return (DCMD_USAGE);
1392 }
1393
1394 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) {
1395 mdb_printf("-H and -Q are mutually exclusive\n");
1396 return (DCMD_USAGE);
1397 }
1398
1399 if (funcname != NULL) {
1400 GElf_Sym sym;
1401
1402 if (mdb_lookup_by_name(funcname, &sym) != 0) {
1403 coargs.funcaddr = mdb_strtoull(funcname);
1404 } else {
1405 coargs.funcaddr = sym.st_value;
1406 }
1407 coargs.flags |= COF_FUNC;
1408 }
1409
1410 if (paramstr != NULL) {
1411 GElf_Sym sym;
1412
1413 if (mdb_lookup_by_name(paramstr, &sym) != 0) {
1414 coargs.param = mdb_strtoull(paramstr);
1415 } else {
1416 coargs.param = sym.st_value;
1417 }
1418 coargs.flags |= COF_PARAM;
1419 }
1420
1421 if (!(flags & DCMD_ADDRSPEC)) {
1422 /* don't pass "dot" if no addr. */
1423 addr = NULL;
1424 }
1425 if (addr != NULL) {
1426 /*
1427 * a callout table was specified. Ignore -r|n option
1428 * to avoid null output.
1429 */
1430 coargs.flags |= (COF_REAL | COF_NORM);
1431 }
1432
1433 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) {
1434 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR;
1435 }
1436 if (coargs.flags & COF_FREE) {
1437 coargs.flags |= COF_EMPTY;
1438 /* -F = free callouts, -FL = free lists */
1439 if (!(coargs.flags & COF_LIST)) {
1440 coargs.flags |= COF_BYIDH;
1441 }
1442 }
1443
1444 /* walk table, using specialized callback routine. */
1445 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) {
1446 mdb_warn("cannot walk callout_table");
1447 return (DCMD_ERR);
1448 }
1449 return (DCMD_OK);
1450 }
1451
1452
1453 /*
1454 * Given an extended callout id, dump its information.
1455 */
1456 /*ARGSUSED*/
1457 int
1458 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1459 {
1460 callout_data_t coargs;
1461 callout_table_t *ctptr;
1462 callout_table_t ct;
1463 callout_id_t coid;
1464 callout_t *coptr;
1465 int tableid;
1466 callout_id_t xid;
1467 ulong_t idhash;
1468 int i, retval;
1469 const mdb_arg_t *arg;
1470 size_t size;
1471 callout_hash_t cot_idhash[CALLOUT_BUCKETS];
1472
1473 coargs.flags = COF_DEFAULT | COF_BYIDH;
1474 i = mdb_getopts(argc, argv,
1475 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags,
1476 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1477 NULL);
1478 argc -= i;
1479 argv += i;
1480
1481 if (argc != 1) {
1482 return (DCMD_USAGE);
1483 }
1484 arg = &argv[0];
1485
1486 if (arg->a_type == MDB_TYPE_IMMEDIATE) {
1487 xid = arg->a_un.a_val;
1488 } else {
1489 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str);
1490 }
1491
1492 if (DCMD_HDRSPEC(flags)) {
1493 coargs.flags |= COF_CHDR;
1494 }
1495
1496
1497 /* initialize from kernel variables */
1498 if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1499 return (retval);
1500 }
1501
1502 /* we must massage the environment so that the macros will play nice */
1503 #define callout_table_mask ((1 << coargs.ctbits) - 1)
1504 #define callout_table_bits coargs.ctbits
1505 #define nsec_per_tick coargs.nsec_per_tick
1506 tableid = CALLOUT_ID_TO_TABLE(xid);
1507 idhash = CALLOUT_IDHASH(xid);
1508 #undef callouts_table_bits
1509 #undef callout_table_mask
1510 #undef nsec_per_tick
1511 coid = CO_PLAIN_ID(xid);
1512
1513 if (flags & DCMD_ADDRSPEC) {
1514 mdb_printf("calloutid does not accept explicit address.\n");
1515 return (DCMD_USAGE);
1516 }
1517
1518 if (coargs.flags & COF_DECODE) {
1519 if (DCMD_HDRSPEC(flags)) {
1520 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n",
1521 "SEQ", "T", "XL", "XID", "IDHASH");
1522 }
1523 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n",
1524 TABLE_TO_SEQID(tableid),
1525 co_typenames[tableid & CALLOUT_TYPE_MASK],
1526 (xid & CALLOUT_EXECUTING) ? "X" : " ",
1527 (xid & CALLOUT_LONGTERM) ? "L" : " ",
1528 (long long)coid, idhash);
1529 return (DCMD_OK);
1530 }
1531
1532 /* get our table. Note this relies on the types being correct */
1533 ctptr = coargs.co_table + tableid;
1534 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) {
1535 mdb_warn("failed to read callout_table at %p", ctptr);
1536 return (DCMD_ERR);
1537 }
1538 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
1539 if (ct.ct_idhash != NULL) {
1540 if (mdb_vread(&(cot_idhash), size,
1541 (uintptr_t)ct.ct_idhash) == -1) {
1542 mdb_warn("failed to read id_hash at %p",
1543 ct.ct_idhash);
1544 return (WALK_ERR);
1545 }
1546 }
1547
1548 /* callout at beginning of hash chain */
1549 if (ct.ct_idhash == NULL) {
1550 mdb_printf("id hash chain for this xid is empty\n");
1551 return (DCMD_ERR);
1552 }
1553 coptr = (callout_t *)cot_idhash[idhash].ch_head;
1554 if (coptr == NULL) {
1555 mdb_printf("id hash chain for this xid is empty\n");
1556 return (DCMD_ERR);
1557 }
1558
1559 coargs.ndx = tableid;
1560 coargs.bucket = idhash;
1561
1562 /* use the walker, luke */
1563 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs,
1564 (uintptr_t)coptr) == -1) {
1565 mdb_warn("cannot walk callouts at %p", coptr);
1566 return (WALK_ERR);
1567 }
1568
1569 return (DCMD_OK);
1570 }
1571
1572 void
1573 callout_help(void)
1574 {
1575 mdb_printf("callout: display callouts.\n"
1576 "Given a callout table address, display callouts from table.\n"
1577 "Without an address, display callouts from all tables.\n"
1578 "options:\n"
1579 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n"
1580 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n"
1581 " -x : limit display to callouts which are executing\n"
1582 " -h : limit display to callouts based on hrestime\n"
1583 " -B : limit display to callouts based on absolute time\n"
1584 " -t|a|b nsec: limit display to callouts that expire a(t) time,"
1585 " (a)fter time,\n or (b)efore time. Use -a and -b together "
1586 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n"
1587 " -d : interpret time option to -t|a|b as delta from current time\n"
1588 " -k : use ticks instead of nanoseconds as arguments to"
1589 " -t|a|b. Note that\n ticks are less accurate and may not"
1590 " match other tick times (ie: lbolt).\n"
1591 " -D : display exiration time as delta from current time\n"
1592 " -S seqid : limit display to callouts for this cpu sequence id\n"
1593 " -C addr : limit display to callouts for this cpu pointer\n"
1594 " -f name|addr : limit display to callouts with this function\n"
1595 " -p name|addr : limit display to callouts functions with this"
1596 " parameter\n"
1597 " -T : display the callout table itself, instead of callouts\n"
1598 " -L : display callout lists instead of callouts\n"
1599 " -E : with -T or L, display empty data structures.\n"
1600 " -i : traverse callouts by id hash instead of list hash\n"
1601 " -F : walk free callout list (free list with -i) instead\n"
1602 " -v : display more info for each item\n"
1603 " -V : show details of each level of info as it is traversed\n"
1604 " -H : limit display to callouts in the callout heap\n"
1605 " -Q : limit display to callouts in the callout queue\n"
1606 " -A : show only addresses. Useful for pipelines.\n");
1607 }
1608
1609 void
1610 calloutid_help(void)
1611 {
1612 mdb_printf("calloutid: display callout by id.\n"
1613 "Given an extended callout id, display the callout infomation.\n"
1614 "options:\n"
1615 " -d : do not dereference callout, just decode the id.\n"
1616 " -v : verbose display more info about the callout\n");
1617 }
1618
1619 /*ARGSUSED*/
1620 int
1621 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1622 {
1623 long num_classes, i;
1624 sclass_t *class_tbl;
1625 GElf_Sym g_sclass;
1626 char class_name[PC_CLNMSZ];
1627 size_t tbl_size;
1628
1629 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
1630 mdb_warn("failed to find symbol sclass\n");
1631 return (DCMD_ERR);
1632 }
1633
1634 tbl_size = (size_t)g_sclass.st_size;
1635 num_classes = tbl_size / (sizeof (sclass_t));
1636 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
1637
1638 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
1639 mdb_warn("failed to read sclass");
1640 return (DCMD_ERR);
1641 }
1642
1643 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
1644 "INIT FCN", "CLASS FCN");
1645
1646 for (i = 0; i < num_classes; i++) {
1647 if (mdb_vread(class_name, sizeof (class_name),
1648 (uintptr_t)class_tbl[i].cl_name) == -1)
1649 (void) strcpy(class_name, "???");
1650
1651 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
1652 class_tbl[i].cl_init, class_tbl[i].cl_funcs);
1653 }
1654
1655 return (DCMD_OK);
1656 }
1657
1658 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */
1659
1660 int
1661 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1662 {
1663 uintptr_t rootdir;
1664 vnode_t vn;
1665 char buf[MAXPATHLEN];
1666
1667 uint_t opt_F = FALSE;
1668
1669 if (mdb_getopts(argc, argv,
1670 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
1671 return (DCMD_USAGE);
1672
1673 if (!(flags & DCMD_ADDRSPEC)) {
1674 mdb_warn("expected explicit vnode_t address before ::\n");
1675 return (DCMD_USAGE);
1676 }
1677
1678 if (mdb_readvar(&rootdir, "rootdir") == -1) {
1679 mdb_warn("failed to read rootdir");
1680 return (DCMD_ERR);
1681 }
1682
1683 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
1684 return (DCMD_ERR);
1685
1686 if (*buf == '\0') {
1687 mdb_printf("??\n");
1688 return (DCMD_OK);
1689 }
1690
1691 mdb_printf("%s", buf);
1692 if (opt_F && buf[strlen(buf)-1] != '/' &&
1693 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
1694 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
1695 mdb_printf("\n");
1696
1697 return (DCMD_OK);
1698 }
1699
1700 int
1701 ld_walk_init(mdb_walk_state_t *wsp)
1702 {
1703 wsp->walk_data = (void *)wsp->walk_addr;
1704 return (WALK_NEXT);
1705 }
1706
1707 int
1708 ld_walk_step(mdb_walk_state_t *wsp)
1709 {
1710 int status;
1711 lock_descriptor_t ld;
1712
1713 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
1714 mdb_warn("couldn't read lock_descriptor_t at %p\n",
1715 wsp->walk_addr);
1716 return (WALK_ERR);
1717 }
1718
1719 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
1720 if (status == WALK_ERR)
1721 return (WALK_ERR);
1722
1723 wsp->walk_addr = (uintptr_t)ld.l_next;
1724 if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
1725 return (WALK_DONE);
1726
1727 return (status);
1728 }
1729
1730 int
1731 lg_walk_init(mdb_walk_state_t *wsp)
1732 {
1733 GElf_Sym sym;
1734
1735 if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
1736 mdb_warn("failed to find symbol 'lock_graph'\n");
1737 return (WALK_ERR);
1738 }
1739
1740 wsp->walk_addr = (uintptr_t)sym.st_value;
1741 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
1742
1743 return (WALK_NEXT);
1744 }
1745
1746 typedef struct lg_walk_data {
1747 uintptr_t startaddr;
1748 mdb_walk_cb_t callback;
1749 void *data;
1750 } lg_walk_data_t;
1751
1752 /*
1753 * We can't use ::walk lock_descriptor directly, because the head of each graph
1754 * is really a dummy lock. Rather than trying to dynamically determine if this
1755 * is a dummy node or not, we just filter out the initial element of the
1756 * list.
1757 */
1758 static int
1759 lg_walk_cb(uintptr_t addr, const void *data, void *priv)
1760 {
1761 lg_walk_data_t *lw = priv;
1762
1763 if (addr != lw->startaddr)
1764 return (lw->callback(addr, data, lw->data));
1765
1766 return (WALK_NEXT);
1767 }
1768
1769 int
1770 lg_walk_step(mdb_walk_state_t *wsp)
1771 {
1772 graph_t *graph;
1773 lg_walk_data_t lw;
1774
1775 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
1776 return (WALK_DONE);
1777
1778 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
1779 mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
1780 return (WALK_ERR);
1781 }
1782
1783 wsp->walk_addr += sizeof (graph);
1784
1785 if (graph == NULL)
1786 return (WALK_NEXT);
1787
1788 lw.callback = wsp->walk_callback;
1789 lw.data = wsp->walk_cbdata;
1790
1791 lw.startaddr = (uintptr_t)&(graph->active_locks);
1792 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1793 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1794 return (WALK_ERR);
1795 }
1796
1797 lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
1798 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1799 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1800 return (WALK_ERR);
1801 }
1802
1803 return (WALK_NEXT);
1804 }
1805
1806 /*
1807 * The space available for the path corresponding to the locked vnode depends
1808 * on whether we are printing 32- or 64-bit addresses.
1809 */
1810 #ifdef _LP64
1811 #define LM_VNPATHLEN 20
1812 #else
1813 #define LM_VNPATHLEN 30
1814 #endif
1815
1816 /*ARGSUSED*/
1817 static int
1818 lminfo_cb(uintptr_t addr, const void *data, void *priv)
1819 {
1820 const lock_descriptor_t *ld = data;
1821 char buf[LM_VNPATHLEN];
1822 proc_t p;
1823
1824 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
1825 addr, ld->l_type == F_RDLCK ? "RD" :
1826 ld->l_type == F_WRLCK ? "WR" : "??",
1827 ld->l_state, ld->l_flock.l_pid,
1828 ld->l_flock.l_pid == 0 ? "<kernel>" :
1829 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ?
1830 "<defunct>" : p.p_user.u_comm,
1831 ld->l_vnode);
1832
1833 mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
1834 sizeof (buf));
1835 mdb_printf("%s\n", buf);
1836
1837 return (WALK_NEXT);
1838 }
1839
1840 /*ARGSUSED*/
1841 int
1842 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1843 {
1844 if (DCMD_HDRSPEC(flags))
1845 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
1846 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
1847
1848 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL));
1849 }
1850
1851 /*ARGSUSED*/
1852 int
1853 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target)
1854 {
1855 if ((uintptr_t)f->f_vnode == *target) {
1856 mdb_printf("file %p\n", addr);
1857 *target = NULL;
1858 }
1859
1860 return (WALK_NEXT);
1861 }
1862
1863 /*ARGSUSED*/
1864 int
1865 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target)
1866 {
1867 uintptr_t t = *target;
1868
1869 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) {
1870 mdb_warn("couldn't file walk proc %p", addr);
1871 return (WALK_ERR);
1872 }
1873
1874 if (t == NULL)
1875 mdb_printf("%p\n", addr);
1876
1877 return (WALK_NEXT);
1878 }
1879
1880 /*ARGSUSED*/
1881 int
1882 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1883 {
1884 uintptr_t target = addr;
1885
1886 if (!(flags & DCMD_ADDRSPEC) || addr == NULL)
1887 return (DCMD_USAGE);
1888
1889 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) {
1890 mdb_warn("can't proc walk");
1891 return (DCMD_ERR);
1892 }
1893
1894 return (DCMD_OK);
1895 }
1896
1897 typedef struct datafmt {
1898 char *hdr1;
1899 char *hdr2;
1900 char *dashes;
1901 char *fmt;
1902 } datafmt_t;
1903
1904 static datafmt_t kmemfmt[] = {
1905 { "cache ", "name ",
1906 "-------------------------", "%-25s " },
1907 { " buf", " size", "------", "%6u " },
1908 { " buf", "in use", "------", "%6u " },
1909 { " buf", " total", "------", "%6u " },
1910 { " memory", " in use", "----------", "%10lu%c " },
1911 { " alloc", " succeed", "---------", "%9u " },
1912 { "alloc", " fail", "-----", "%5u " },
1913 { NULL, NULL, NULL, NULL }
1914 };
1915
1916 static datafmt_t vmemfmt[] = {
1917 { "vmem ", "name ",
1918 "-------------------------", "%-*s " },
1919 { " memory", " in use", "----------", "%9llu%c " },
1920 { " memory", " total", "-----------", "%10llu%c " },
1921 { " memory", " import", "----------", "%9llu%c " },
1922 { " alloc", " succeed", "---------", "%9llu " },
1923 { "alloc", " fail", "-----", "%5llu " },
1924 { NULL, NULL, NULL, NULL }
1925 };
1926
1927 /*ARGSUSED*/
1928 static int
1929 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
1930 {
1931 short rounds, prounds;
1932
1933 if (KMEM_DUMPCC(ccp)) {
1934 rounds = ccp->cc_dump_rounds;
1935 prounds = ccp->cc_dump_prounds;
1936 } else {
1937 rounds = ccp->cc_rounds;
1938 prounds = ccp->cc_prounds;
1939 }
1940 if (rounds > 0)
1941 *avail += rounds;
1942 if (prounds > 0)
1943 *avail += prounds;
1944
1945 return (WALK_NEXT);
1946 }
1947
1948 /*ARGSUSED*/
1949 static int
1950 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
1951 {
1952 *alloc += ccp->cc_alloc;
1953
1954 return (WALK_NEXT);
1955 }
1956
1957 /*ARGSUSED*/
1958 static int
1959 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
1960 {
1961 *avail += sp->slab_chunks - sp->slab_refcnt;
1962
1963 return (WALK_NEXT);
1964 }
1965
1966 typedef struct kmastat_vmem {
1967 uintptr_t kv_addr;
1968 struct kmastat_vmem *kv_next;
1969 size_t kv_meminuse;
1970 int kv_alloc;
1971 int kv_fail;
1972 } kmastat_vmem_t;
1973
1974 typedef struct kmastat_args {
1975 kmastat_vmem_t **ka_kvpp;
1976 uint_t ka_shift;
1977 } kmastat_args_t;
1978
1979 static int
1980 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
1981 {
1982 kmastat_vmem_t **kvpp = kap->ka_kvpp;
1983 kmastat_vmem_t *kv;
1984 datafmt_t *dfp = kmemfmt;
1985 int magsize;
1986
1987 int avail, alloc, total;
1988 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
1989 cp->cache_slabsize;
1990
1991 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
1992 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
1993 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
1994
1995 magsize = kmem_get_magsize(cp);
1996
1997 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
1998 avail = cp->cache_full.ml_total * magsize;
1999 total = cp->cache_buftotal;
2000
2001 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
2002 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
2003 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
2004
2005 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) {
2006 if (kv->kv_addr == (uintptr_t)cp->cache_arena)
2007 goto out;
2008 }
2009
2010 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
2011 kv->kv_next = *kvpp;
2012 kv->kv_addr = (uintptr_t)cp->cache_arena;
2013 *kvpp = kv;
2014 out:
2015 kv->kv_meminuse += meminuse;
2016 kv->kv_alloc += alloc;
2017 kv->kv_fail += cp->cache_alloc_fail;
2018
2019 mdb_printf((dfp++)->fmt, cp->cache_name);
2020 mdb_printf((dfp++)->fmt, cp->cache_bufsize);
2021 mdb_printf((dfp++)->fmt, total - avail);
2022 mdb_printf((dfp++)->fmt, total);
2023 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift,
2024 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2025 kap->ka_shift == KILOS ? 'K' : 'B');
2026 mdb_printf((dfp++)->fmt, alloc);
2027 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
2028 mdb_printf("\n");
2029
2030 return (WALK_NEXT);
2031 }
2032
2033 static int
2034 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
2035 {
2036 kmastat_vmem_t *kv = *kap->ka_kvpp;
2037 size_t len;
2038
2039 while (kv != NULL && kv->kv_addr != addr)
2040 kv = kv->kv_next;
2041
2042 if (kv == NULL || kv->kv_alloc == 0)
2043 return (WALK_NEXT);
2044
2045 len = MIN(17, strlen(v->vm_name));
2046
2047 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name,
2048 17 - len, "", "", "", "",
2049 kv->kv_meminuse >> kap->ka_shift,
2050 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2051 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail);
2052
2053 return (WALK_NEXT);
2054 }
2055
2056 /*ARGSUSED*/
2057 static int
2058 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
2059 {
2060 datafmt_t *dfp = vmemfmt;
2061 const vmem_kstat_t *vkp = &v->vm_kstat;
2062 uintptr_t paddr;
2063 vmem_t parent;
2064 int ident = 0;
2065
2066 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) {
2067 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
2068 mdb_warn("couldn't trace %p's ancestry", addr);
2069 ident = 0;
2070 break;
2071 }
2072 paddr = (uintptr_t)parent.vm_source;
2073 }
2074
2075 mdb_printf("%*s", ident, "");
2076 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
2077 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp,
2078 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2079 *shiftp == KILOS ? 'K' : 'B');
2080 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp,
2081 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2082 *shiftp == KILOS ? 'K' : 'B');
2083 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp,
2084 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2085 *shiftp == KILOS ? 'K' : 'B');
2086 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
2087 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
2088
2089 mdb_printf("\n");
2090
2091 return (WALK_NEXT);
2092 }
2093
2094 /*ARGSUSED*/
2095 int
2096 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2097 {
2098 kmastat_vmem_t *kv = NULL;
2099 datafmt_t *dfp;
2100 kmastat_args_t ka;
2101
2102 ka.ka_shift = 0;
2103 if (mdb_getopts(argc, argv,
2104 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift,
2105 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift,
2106 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc)
2107 return (DCMD_USAGE);
2108
2109 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2110 mdb_printf("%s ", dfp->hdr1);
2111 mdb_printf("\n");
2112
2113 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2114 mdb_printf("%s ", dfp->hdr2);
2115 mdb_printf("\n");
2116
2117 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2118 mdb_printf("%s ", dfp->dashes);
2119 mdb_printf("\n");
2120
2121 ka.ka_kvpp = &kv;
2122 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
2123 mdb_warn("can't walk 'kmem_cache'");
2124 return (DCMD_ERR);
2125 }
2126
2127 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2128 mdb_printf("%s ", dfp->dashes);
2129 mdb_printf("\n");
2130
2131 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
2132 mdb_warn("can't walk 'vmem'");
2133 return (DCMD_ERR);
2134 }
2135
2136 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2137 mdb_printf("%s ", dfp->dashes);
2138 mdb_printf("\n");
2139
2140 mdb_printf("\n");
2141
2142 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2143 mdb_printf("%s ", dfp->hdr1);
2144 mdb_printf("\n");
2145
2146 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2147 mdb_printf("%s ", dfp->hdr2);
2148 mdb_printf("\n");
2149
2150 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2151 mdb_printf("%s ", dfp->dashes);
2152 mdb_printf("\n");
2153
2154 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
2155 mdb_warn("can't walk 'vmem'");
2156 return (DCMD_ERR);
2157 }
2158
2159 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2160 mdb_printf("%s ", dfp->dashes);
2161 mdb_printf("\n");
2162 return (DCMD_OK);
2163 }
2164
2165 /*
2166 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made
2167 * up of a set of 'struct seg's. We could just scan each seg en masse, but
2168 * unfortunately, a few of the segs are both large and sparse, so we could
2169 * spend quite a bit of time scanning VAs which have no backing pages.
2170 *
2171 * So for the few very sparse segs, we skip the segment itself, and scan
2172 * the allocated vmem_segs in the vmem arena which manages that part of kas.
2173 * Currently, we do this for:
2174 *
2175 * SEG VMEM ARENA
2176 * kvseg heap_arena
2177 * kvseg32 heap32_arena
2178 * kvseg_core heap_core_arena
2179 *
2180 * In addition, we skip the segkpm segment in its entirety, since it is very
2181 * sparse, and contains no new kernel data.
2182 */
2183 typedef struct kgrep_walk_data {
2184 kgrep_cb_func *kg_cb;
2185 void *kg_cbdata;
2186 uintptr_t kg_kvseg;
2187 uintptr_t kg_kvseg32;
2188 uintptr_t kg_kvseg_core;
2189 uintptr_t kg_segkpm;
2190 uintptr_t kg_heap_lp_base;
2191 uintptr_t kg_heap_lp_end;
2192 } kgrep_walk_data_t;
2193
2194 static int
2195 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
2196 {
2197 uintptr_t base = (uintptr_t)seg->s_base;
2198
2199 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
2200 addr == kg->kg_kvseg_core)
2201 return (WALK_NEXT);
2202
2203 if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
2204 return (WALK_NEXT);
2205
2206 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
2207 }
2208
2209 /*ARGSUSED*/
2210 static int
2211 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2212 {
2213 /*
2214 * skip large page heap address range - it is scanned by walking
2215 * allocated vmem_segs in the heap_lp_arena
2216 */
2217 if (seg->vs_start == kg->kg_heap_lp_base &&
2218 seg->vs_end == kg->kg_heap_lp_end)
2219 return (WALK_NEXT);
2220
2221 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2222 }
2223
2224 /*ARGSUSED*/
2225 static int
2226 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2227 {
2228 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2229 }
2230
2231 static int
2232 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
2233 {
2234 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
2235
2236 if (strcmp(vmem->vm_name, "heap") != 0 &&
2237 strcmp(vmem->vm_name, "heap32") != 0 &&
2238 strcmp(vmem->vm_name, "heap_core") != 0 &&
2239 strcmp(vmem->vm_name, "heap_lp") != 0)
2240 return (WALK_NEXT);
2241
2242 if (strcmp(vmem->vm_name, "heap_lp") == 0)
2243 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
2244
2245 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
2246 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
2247 return (WALK_ERR);
2248 }
2249
2250 return (WALK_NEXT);
2251 }
2252
2253 int
2254 kgrep_subr(kgrep_cb_func *cb, void *cbdata)
2255 {
2256 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
2257 kgrep_walk_data_t kg;
2258
2259 if (mdb_get_state() == MDB_STATE_RUNNING) {
2260 mdb_warn("kgrep can only be run on a system "
2261 "dump or under kmdb; see dumpadm(1M)\n");
2262 return (DCMD_ERR);
2263 }
2264
2265 if (mdb_lookup_by_name("kas", &kas) == -1) {
2266 mdb_warn("failed to locate 'kas' symbol\n");
2267 return (DCMD_ERR);
2268 }
2269
2270 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
2271 mdb_warn("failed to locate 'kvseg' symbol\n");
2272 return (DCMD_ERR);
2273 }
2274
2275 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
2276 mdb_warn("failed to locate 'kvseg32' symbol\n");
2277 return (DCMD_ERR);
2278 }
2279
2280 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
2281 mdb_warn("failed to locate 'kvseg_core' symbol\n");
2282 return (DCMD_ERR);
2283 }
2284
2285 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
2286 mdb_warn("failed to locate 'segkpm_ops' symbol\n");
2287 return (DCMD_ERR);
2288 }
2289
2290 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
2291 mdb_warn("failed to read 'heap_lp_base'\n");
2292 return (DCMD_ERR);
2293 }
2294
2295 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
2296 mdb_warn("failed to read 'heap_lp_end'\n");
2297 return (DCMD_ERR);
2298 }
2299
2300 kg.kg_cb = cb;
2301 kg.kg_cbdata = cbdata;
2302 kg.kg_kvseg = (uintptr_t)kvseg.st_value;
2303 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
2304 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
2305 kg.kg_segkpm = (uintptr_t)segkpm.st_value;
2306
2307 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
2308 &kg, kas.st_value) == -1) {
2309 mdb_warn("failed to walk kas segments");
2310 return (DCMD_ERR);
2311 }
2312
2313 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
2314 mdb_warn("failed to walk heap/heap32 vmem arenas");
2315 return (DCMD_ERR);
2316 }
2317
2318 return (DCMD_OK);
2319 }
2320
2321 size_t
2322 kgrep_subr_pagesize(void)
2323 {
2324 return (PAGESIZE);
2325 }
2326
2327 typedef struct file_walk_data {
2328 struct uf_entry *fw_flist;
2329 int fw_flistsz;
2330 int fw_ndx;
2331 int fw_nofiles;
2332 } file_walk_data_t;
2333
2334 int
2335 file_walk_init(mdb_walk_state_t *wsp)
2336 {
2337 file_walk_data_t *fw;
2338 proc_t p;
2339
2340 if (wsp->walk_addr == NULL) {
2341 mdb_warn("file walk doesn't support global walks\n");
2342 return (WALK_ERR);
2343 }
2344
2345 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
2346
2347 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) {
2348 mdb_free(fw, sizeof (file_walk_data_t));
2349 mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
2350 return (WALK_ERR);
2351 }
2352
2353 if (p.p_user.u_finfo.fi_nfiles == 0) {
2354 mdb_free(fw, sizeof (file_walk_data_t));
2355 return (WALK_DONE);
2356 }
2357
2358 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
2359 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
2360 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
2361
2362 if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
2363 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
2364 mdb_warn("failed to read file array at %p",
2365 p.p_user.u_finfo.fi_list);
2366 mdb_free(fw->fw_flist, fw->fw_flistsz);
2367 mdb_free(fw, sizeof (file_walk_data_t));
2368 return (WALK_ERR);
2369 }
2370
2371 fw->fw_ndx = 0;
2372 wsp->walk_data = fw;
2373
2374 return (WALK_NEXT);
2375 }
2376
2377 int
2378 file_walk_step(mdb_walk_state_t *wsp)
2379 {
2380 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2381 struct file file;
2382 uintptr_t fp;
2383
2384 again:
2385 if (fw->fw_ndx == fw->fw_nofiles)
2386 return (WALK_DONE);
2387
2388 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL)
2389 goto again;
2390
2391 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2392 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2393 }
2394
2395 int
2396 allfile_walk_step(mdb_walk_state_t *wsp)
2397 {
2398 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2399 struct file file;
2400 uintptr_t fp;
2401
2402 if (fw->fw_ndx == fw->fw_nofiles)
2403 return (WALK_DONE);
2404
2405 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL)
2406 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2407 else
2408 bzero(&file, sizeof (file));
2409
2410 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2411 }
2412
2413 void
2414 file_walk_fini(mdb_walk_state_t *wsp)
2415 {
2416 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2417
2418 mdb_free(fw->fw_flist, fw->fw_flistsz);
2419 mdb_free(fw, sizeof (file_walk_data_t));
2420 }
2421
2422 int
2423 port_walk_init(mdb_walk_state_t *wsp)
2424 {
2425 if (wsp->walk_addr == NULL) {
2426 mdb_warn("port walk doesn't support global walks\n");
2427 return (WALK_ERR);
2428 }
2429
2430 if (mdb_layered_walk("file", wsp) == -1) {
2431 mdb_warn("couldn't walk 'file'");
2432 return (WALK_ERR);
2433 }
2434 return (WALK_NEXT);
2435 }
2436
2437 int
2438 port_walk_step(mdb_walk_state_t *wsp)
2439 {
2440 struct vnode vn;
2441 uintptr_t vp;
2442 uintptr_t pp;
2443 struct port port;
2444
2445 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
2446 if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2447 mdb_warn("failed to read vnode_t at %p", vp);
2448 return (WALK_ERR);
2449 }
2450 if (vn.v_type != VPORT)
2451 return (WALK_NEXT);
2452
2453 pp = (uintptr_t)vn.v_data;
2454 if (mdb_vread(&port, sizeof (port), pp) == -1) {
2455 mdb_warn("failed to read port_t at %p", pp);
2456 return (WALK_ERR);
2457 }
2458 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
2459 }
2460
2461 typedef struct portev_walk_data {
2462 list_node_t *pev_node;
2463 list_node_t *pev_last;
2464 size_t pev_offset;
2465 } portev_walk_data_t;
2466
2467 int
2468 portev_walk_init(mdb_walk_state_t *wsp)
2469 {
2470 portev_walk_data_t *pevd;
2471 struct port port;
2472 struct vnode vn;
2473 struct list *list;
2474 uintptr_t vp;
2475
2476 if (wsp->walk_addr == NULL) {
2477 mdb_warn("portev walk doesn't support global walks\n");
2478 return (WALK_ERR);
2479 }
2480
2481 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
2482
2483 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
2484 mdb_free(pevd, sizeof (portev_walk_data_t));
2485 mdb_warn("failed to read port structure at %p", wsp->walk_addr);
2486 return (WALK_ERR);
2487 }
2488
2489 vp = (uintptr_t)port.port_vnode;
2490 if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2491 mdb_free(pevd, sizeof (portev_walk_data_t));
2492 mdb_warn("failed to read vnode_t at %p", vp);
2493 return (WALK_ERR);
2494 }
2495
2496 if (vn.v_type != VPORT) {
2497 mdb_free(pevd, sizeof (portev_walk_data_t));
2498 mdb_warn("input address (%p) does not point to an event port",
2499 wsp->walk_addr);
2500 return (WALK_ERR);
2501 }
2502
2503 if (port.port_queue.portq_nent == 0) {
2504 mdb_free(pevd, sizeof (portev_walk_data_t));
2505 return (WALK_DONE);
2506 }
2507 list = &port.port_queue.portq_list;
2508 pevd->pev_offset = list->list_offset;
2509 pevd->pev_last = list->list_head.list_prev;
2510 pevd->pev_node = list->list_head.list_next;
2511 wsp->walk_data = pevd;
2512 return (WALK_NEXT);
2513 }
2514
2515 int
2516 portev_walk_step(mdb_walk_state_t *wsp)
2517 {
2518 portev_walk_data_t *pevd;
2519 struct port_kevent ev;
2520 uintptr_t evp;
2521
2522 pevd = (portev_walk_data_t *)wsp->walk_data;
2523
2524 if (pevd->pev_last == NULL)
2525 return (WALK_DONE);
2526 if (pevd->pev_node == pevd->pev_last)
2527 pevd->pev_last = NULL; /* last round */
2528
2529 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
2530 if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
2531 mdb_warn("failed to read port_kevent at %p", evp);
2532 return (WALK_DONE);
2533 }
2534 pevd->pev_node = ev.portkev_node.list_next;
2535 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
2536 }
2537
2538 void
2539 portev_walk_fini(mdb_walk_state_t *wsp)
2540 {
2541 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
2542
2543 if (pevd != NULL)
2544 mdb_free(pevd, sizeof (portev_walk_data_t));
2545 }
2546
2547 typedef struct proc_walk_data {
2548 uintptr_t *pw_stack;
2549 int pw_depth;
2550 int pw_max;
2551 } proc_walk_data_t;
2552
2553 int
2554 proc_walk_init(mdb_walk_state_t *wsp)
2555 {
2556 GElf_Sym sym;
2557 proc_walk_data_t *pw;
2558
2559 if (wsp->walk_addr == NULL) {
2560 if (mdb_lookup_by_name("p0", &sym) == -1) {
2561 mdb_warn("failed to read 'practive'");
2562 return (WALK_ERR);
2563 }
2564 wsp->walk_addr = (uintptr_t)sym.st_value;
2565 }
2566
2567 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
2568
2569 if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
2570 mdb_warn("failed to read 'nproc'");
2571 mdb_free(pw, sizeof (pw));
2572 return (WALK_ERR);
2573 }
2574
2575 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
2576 wsp->walk_data = pw;
2577
2578 return (WALK_NEXT);
2579 }
2580
2581 int
2582 proc_walk_step(mdb_walk_state_t *wsp)
2583 {
2584 proc_walk_data_t *pw = wsp->walk_data;
2585 uintptr_t addr = wsp->walk_addr;
2586 uintptr_t cld, sib;
2587
2588 int status;
2589 proc_t pr;
2590
2591 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) {
2592 mdb_warn("failed to read proc at %p", addr);
2593 return (WALK_DONE);
2594 }
2595
2596 cld = (uintptr_t)pr.p_child;
2597 sib = (uintptr_t)pr.p_sibling;
2598
2599 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
2600 pw->pw_depth--;
2601 goto sib;
2602 }
2603
2604 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata);
2605
2606 if (status != WALK_NEXT)
2607 return (status);
2608
2609 if ((wsp->walk_addr = cld) != NULL) {
2610 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) {
2611 mdb_warn("proc %p has invalid p_child %p; skipping\n",
2612 addr, cld);
2613 goto sib;
2614 }
2615
2616 pw->pw_stack[pw->pw_depth++] = addr;
2617
2618 if (pw->pw_depth == pw->pw_max) {
2619 mdb_warn("depth %d exceeds max depth; try again\n",
2620 pw->pw_depth);
2621 return (WALK_DONE);
2622 }
2623 return (WALK_NEXT);
2624 }
2625
2626 sib:
2627 /*
2628 * We know that p0 has no siblings, and if another starting proc
2629 * was given, we don't want to walk its siblings anyway.
2630 */
2631 if (pw->pw_depth == 0)
2632 return (WALK_DONE);
2633
2634 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) {
2635 mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
2636 addr, sib);
2637 sib = NULL;
2638 }
2639
2640 if ((wsp->walk_addr = sib) == NULL) {
2641 if (pw->pw_depth > 0) {
2642 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
2643 return (WALK_NEXT);
2644 }
2645 return (WALK_DONE);
2646 }
2647
2648 return (WALK_NEXT);
2649 }
2650
2651 void
2652 proc_walk_fini(mdb_walk_state_t *wsp)
2653 {
2654 proc_walk_data_t *pw = wsp->walk_data;
2655
2656 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
2657 mdb_free(pw, sizeof (proc_walk_data_t));
2658 }
2659
2660 int
2661 task_walk_init(mdb_walk_state_t *wsp)
2662 {
2663 task_t task;
2664
2665 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
2666 mdb_warn("failed to read task at %p", wsp->walk_addr);
2667 return (WALK_ERR);
2668 }
2669 wsp->walk_addr = (uintptr_t)task.tk_memb_list;
2670 wsp->walk_data = task.tk_memb_list;
2671 return (WALK_NEXT);
2672 }
2673
2674 int
2675 task_walk_step(mdb_walk_state_t *wsp)
2676 {
2677 proc_t proc;
2678 int status;
2679
2680 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) {
2681 mdb_warn("failed to read proc at %p", wsp->walk_addr);
2682 return (WALK_DONE);
2683 }
2684
2685 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
2686
2687 if (proc.p_tasknext == wsp->walk_data)
2688 return (WALK_DONE);
2689
2690 wsp->walk_addr = (uintptr_t)proc.p_tasknext;
2691 return (status);
2692 }
2693
2694 int
2695 project_walk_init(mdb_walk_state_t *wsp)
2696 {
2697 if (wsp->walk_addr == NULL) {
2698 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
2699 mdb_warn("failed to read 'proj0p'");
2700 return (WALK_ERR);
2701 }
2702 }
2703 wsp->walk_data = (void *)wsp->walk_addr;
2704 return (WALK_NEXT);
2705 }
2706
2707 int
2708 project_walk_step(mdb_walk_state_t *wsp)
2709 {
2710 uintptr_t addr = wsp->walk_addr;
2711 kproject_t pj;
2712 int status;
2713
2714 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
2715 mdb_warn("failed to read project at %p", addr);
2716 return (WALK_DONE);
2717 }
2718 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
2719 if (status != WALK_NEXT)
2720 return (status);
2721 wsp->walk_addr = (uintptr_t)pj.kpj_next;
2722 if ((void *)wsp->walk_addr == wsp->walk_data)
2723 return (WALK_DONE);
2724 return (WALK_NEXT);
2725 }
2726
2727 static int
2728 generic_walk_step(mdb_walk_state_t *wsp)
2729 {
2730 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2731 wsp->walk_cbdata));
2732 }
2733
2734 static int
2735 cpu_walk_cmp(const void *l, const void *r)
2736 {
2737 uintptr_t lhs = *((uintptr_t *)l);
2738 uintptr_t rhs = *((uintptr_t *)r);
2739 cpu_t lcpu, rcpu;
2740
2741 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
2742 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
2743
2744 if (lcpu.cpu_id < rcpu.cpu_id)
2745 return (-1);
2746
2747 if (lcpu.cpu_id > rcpu.cpu_id)
2748 return (1);
2749
2750 return (0);
2751 }
2752
2753 typedef struct cpu_walk {
2754 uintptr_t *cw_array;
2755 int cw_ndx;
2756 } cpu_walk_t;
2757
2758 int
2759 cpu_walk_init(mdb_walk_state_t *wsp)
2760 {
2761 cpu_walk_t *cw;
2762 int max_ncpus, i = 0;
2763 uintptr_t current, first;
2764 cpu_t cpu, panic_cpu;
2765 uintptr_t panicstr, addr;
2766 GElf_Sym sym;
2767
2768 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
2769
2770 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
2771 mdb_warn("failed to read 'max_ncpus'");
2772 return (WALK_ERR);
2773 }
2774
2775 if (mdb_readvar(&panicstr, "panicstr") == -1) {
2776 mdb_warn("failed to read 'panicstr'");
2777 return (WALK_ERR);
2778 }
2779
2780 if (panicstr != NULL) {
2781 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
2782 mdb_warn("failed to find 'panic_cpu'");
2783 return (WALK_ERR);
2784 }
2785
2786 addr = (uintptr_t)sym.st_value;
2787
2788 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
2789 mdb_warn("failed to read 'panic_cpu'");
2790 return (WALK_ERR);
2791 }
2792 }
2793
2794 /*
2795 * Unfortunately, there is no platform-independent way to walk
2796 * CPUs in ID order. We therefore loop through in cpu_next order,
2797 * building an array of CPU pointers which will subsequently be
2798 * sorted.
2799 */
2800 cw->cw_array =
2801 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
2802
2803 if (mdb_readvar(&first, "cpu_list") == -1) {
2804 mdb_warn("failed to read 'cpu_list'");
2805 return (WALK_ERR);
2806 }
2807
2808 current = first;
2809 do {
2810 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
2811 mdb_warn("failed to read cpu at %p", current);
2812 return (WALK_ERR);
2813 }
2814
2815 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) {
2816 cw->cw_array[i++] = addr;
2817 } else {
2818 cw->cw_array[i++] = current;
2819 }
2820 } while ((current = (uintptr_t)cpu.cpu_next) != first);
2821
2822 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
2823 wsp->walk_data = cw;
2824
2825 return (WALK_NEXT);
2826 }
2827
2828 int
2829 cpu_walk_step(mdb_walk_state_t *wsp)
2830 {
2831 cpu_walk_t *cw = wsp->walk_data;
2832 cpu_t cpu;
2833 uintptr_t addr = cw->cw_array[cw->cw_ndx++];
2834
2835 if (addr == NULL)
2836 return (WALK_DONE);
2837
2838 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
2839 mdb_warn("failed to read cpu at %p", addr);
2840 return (WALK_DONE);
2841 }
2842
2843 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
2844 }
2845
2846 typedef struct cpuinfo_data {
2847 intptr_t cid_cpu;
2848 uintptr_t **cid_ithr;
2849 char cid_print_head;
2850 char cid_print_thr;
2851 char cid_print_ithr;
2852 char cid_print_flags;
2853 } cpuinfo_data_t;
2854
2855 int
2856 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
2857 {
2858 cpu_t c;
2859 int id;
2860 uint8_t pil;
2861
2862 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
2863 return (WALK_NEXT);
2864
2865 if (thr->t_bound_cpu == NULL) {
2866 mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
2867 return (WALK_NEXT);
2868 }
2869
2870 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
2871
2872 if ((id = c.cpu_id) >= NCPU) {
2873 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
2874 thr->t_bound_cpu, id, NCPU);
2875 return (WALK_NEXT);
2876 }
2877
2878 if ((pil = thr->t_pil) >= NINTR) {
2879 mdb_warn("thread %p has pil (%d) greater than %d\n",
2880 addr, pil, NINTR);
2881 return (WALK_NEXT);
2882 }
2883
2884 if (cid->cid_ithr[id][pil] != NULL) {
2885 mdb_warn("CPU %d has multiple threads at pil %d (at least "
2886 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
2887 return (WALK_NEXT);
2888 }
2889
2890 cid->cid_ithr[id][pil] = addr;
2891
2892 return (WALK_NEXT);
2893 }
2894
2895 #define CPUINFO_IDWIDTH 3
2896 #define CPUINFO_FLAGWIDTH 9
2897
2898 #ifdef _LP64
2899 #if defined(__amd64)
2900 #define CPUINFO_TWIDTH 16
2901 #define CPUINFO_CPUWIDTH 16
2902 #else
2903 #define CPUINFO_CPUWIDTH 11
2904 #define CPUINFO_TWIDTH 11
2905 #endif
2906 #else
2907 #define CPUINFO_CPUWIDTH 8
2908 #define CPUINFO_TWIDTH 8
2909 #endif
2910
2911 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
2912 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
2913 #define CPUINFO_ITHRDELT 4
2914
2915 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \
2916 flagline < nflaglines ? flagbuf[flagline++] : "")
2917
2918 int
2919 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
2920 {
2921 kthread_t t;
2922 disp_t disp;
2923 proc_t p;
2924 uintptr_t pinned;
2925 char **flagbuf;
2926 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
2927
2928 const char *flags[] = {
2929 "RUNNING", "READY", "QUIESCED", "EXISTS",
2930 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
2931 "SPARE", "FAULTED", NULL
2932 };
2933
2934 if (cid->cid_cpu != -1) {
2935 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
2936 return (WALK_NEXT);
2937
2938 /*
2939 * Set cid_cpu to -1 to indicate that we found a matching CPU.
2940 */
2941 cid->cid_cpu = -1;
2942 rval = WALK_DONE;
2943 }
2944
2945 if (cid->cid_print_head) {
2946 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
2947 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
2948 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
2949 "PROC");
2950 cid->cid_print_head = FALSE;
2951 }
2952
2953 bspl = cpu->cpu_base_spl;
2954
2955 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
2956 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
2957 return (WALK_ERR);
2958 }
2959
2960 mdb_printf("%3d %0*p %3x %4d %4d ",
2961 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
2962 disp.disp_nrunnable, bspl);
2963
2964 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
2965 mdb_printf("%3d ", t.t_pri);
2966 } else {
2967 mdb_printf("%3s ", "-");
2968 }
2969
2970 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
2971 cpu->cpu_kprunrun ? "yes" : "no");
2972
2973 if (cpu->cpu_last_swtch) {
2974 mdb_printf("t-%-4d ",
2975 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch);
2976 } else {
2977 mdb_printf("%-6s ", "-");
2978 }
2979
2980 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
2981
2982 if (cpu->cpu_thread == cpu->cpu_idle_thread)
2983 mdb_printf(" (idle)\n");
2984 else if (cpu->cpu_thread == NULL)
2985 mdb_printf(" -\n");
2986 else {
2987 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) {
2988 mdb_printf(" %s\n", p.p_user.u_comm);
2989 } else {
2990 mdb_printf(" ?\n");
2991 }
2992 }
2993
2994 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
2995
2996 if (cid->cid_print_flags) {
2997 int first = 1, i, j, k;
2998 char *s;
2999
3000 cid->cid_print_head = TRUE;
3001
3002 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
3003 if (!(cpu->cpu_flags & i))
3004 continue;
3005
3006 if (first) {
3007 s = mdb_alloc(CPUINFO_THRDELT + 1,
3008 UM_GC | UM_SLEEP);
3009
3010 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
3011 "%*s|%*s", CPUINFO_FLAGDELT, "",
3012 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
3013 flagbuf[nflaglines++] = s;
3014 }
3015
3016 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
3017 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
3018 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
3019 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
3020 first ? "<--+" : "");
3021
3022 for (k = strlen(s); k < CPUINFO_THRDELT; k++)
3023 s[k] = ' ';
3024 s[k] = '\0';
3025
3026 flagbuf[nflaglines++] = s;
3027 first = 0;
3028 }
3029 }
3030
3031 if (cid->cid_print_ithr) {
3032 int i, found_one = FALSE;
3033 int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
3034
3035 for (i = NINTR - 1; i >= 0; i--) {
3036 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
3037
3038 if (iaddr == NULL)
3039 continue;
3040
3041 if (!found_one) {
3042 found_one = TRUE;
3043
3044 CPUINFO_INDENT;
3045 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
3046 CPUINFO_ITHRDELT, "");
3047
3048 CPUINFO_INDENT;
3049 mdb_printf("%c%*s+--> %3s %s\n",
3050 print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
3051 "", "PIL", "THREAD");
3052 }
3053
3054 if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
3055 mdb_warn("failed to read kthread_t at %p",
3056 iaddr);
3057 return (WALK_ERR);
3058 }
3059
3060 CPUINFO_INDENT;
3061 mdb_printf("%c%*s %3d %0*p\n",
3062 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
3063 t.t_pil, CPUINFO_TWIDTH, iaddr);
3064
3065 pinned = (uintptr_t)t.t_intr;
3066 }
3067
3068 if (found_one && pinned != NULL) {
3069 cid->cid_print_head = TRUE;
3070 (void) strcpy(p.p_user.u_comm, "?");
3071
3072 if (mdb_vread(&t, sizeof (t),
3073 (uintptr_t)pinned) == -1) {
3074 mdb_warn("failed to read kthread_t at %p",
3075 pinned);
3076 return (WALK_ERR);
3077 }
3078 if (mdb_vread(&p, sizeof (p),
3079 (uintptr_t)t.t_procp) == -1) {
3080 mdb_warn("failed to read proc_t at %p",
3081 t.t_procp);
3082 return (WALK_ERR);
3083 }
3084
3085 CPUINFO_INDENT;
3086 mdb_printf("%c%*s %3s %0*p %s\n",
3087 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
3088 CPUINFO_TWIDTH, pinned,
3089 pinned == (uintptr_t)cpu->cpu_idle_thread ?
3090 "(idle)" : p.p_user.u_comm);
3091 }
3092 }
3093
3094 if (disp.disp_nrunnable && cid->cid_print_thr) {
3095 dispq_t *dq;
3096
3097 int i, npri = disp.disp_npri;
3098
3099 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
3100
3101 if (mdb_vread(dq, sizeof (dispq_t) * npri,
3102 (uintptr_t)disp.disp_q) == -1) {
3103 mdb_warn("failed to read dispq_t at %p", disp.disp_q);
3104 return (WALK_ERR);
3105 }
3106
3107 CPUINFO_INDENT;
3108 mdb_printf("|\n");
3109
3110 CPUINFO_INDENT;
3111 mdb_printf("+--> %3s %-*s %s\n", "PRI",
3112 CPUINFO_TWIDTH, "THREAD", "PROC");
3113
3114 for (i = npri - 1; i >= 0; i--) {
3115 uintptr_t taddr = (uintptr_t)dq[i].dq_first;
3116
3117 while (taddr != NULL) {
3118 if (mdb_vread(&t, sizeof (t), taddr) == -1) {
3119 mdb_warn("failed to read kthread_t "
3120 "at %p", taddr);
3121 return (WALK_ERR);
3122 }
3123 if (mdb_vread(&p, sizeof (p),
3124 (uintptr_t)t.t_procp) == -1) {
3125 mdb_warn("failed to read proc_t at %p",
3126 t.t_procp);
3127 return (WALK_ERR);
3128 }
3129
3130 CPUINFO_INDENT;
3131 mdb_printf(" %3d %0*p %s\n", t.t_pri,
3132 CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
3133
3134 taddr = (uintptr_t)t.t_link;
3135 }
3136 }
3137 cid->cid_print_head = TRUE;
3138 }
3139
3140 while (flagline < nflaglines)
3141 mdb_printf("%s\n", flagbuf[flagline++]);
3142
3143 if (cid->cid_print_head)
3144 mdb_printf("\n");
3145
3146 return (rval);
3147 }
3148
3149 int
3150 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3151 {
3152 uint_t verbose = FALSE;
3153 cpuinfo_data_t cid;
3154
3155 cid.cid_print_ithr = FALSE;
3156 cid.cid_print_thr = FALSE;
3157 cid.cid_print_flags = FALSE;
3158 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
3159 cid.cid_cpu = -1;
3160
3161 if (flags & DCMD_ADDRSPEC)
3162 cid.cid_cpu = addr;
3163
3164 if (mdb_getopts(argc, argv,
3165 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3166 return (DCMD_USAGE);
3167
3168 if (verbose) {
3169 cid.cid_print_ithr = TRUE;
3170 cid.cid_print_thr = TRUE;
3171 cid.cid_print_flags = TRUE;
3172 cid.cid_print_head = TRUE;
3173 }
3174
3175 if (cid.cid_print_ithr) {
3176 int i;
3177
3178 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
3179 * NCPU, UM_SLEEP | UM_GC);
3180
3181 for (i = 0; i < NCPU; i++)
3182 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
3183 NINTR, UM_SLEEP | UM_GC);
3184
3185 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
3186 &cid) == -1) {
3187 mdb_warn("couldn't walk thread");
3188 return (DCMD_ERR);
3189 }
3190 }
3191
3192 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
3193 mdb_warn("can't walk cpus");
3194 return (DCMD_ERR);
3195 }
3196
3197 if (cid.cid_cpu != -1) {
3198 /*
3199 * We didn't find this CPU when we walked through the CPUs
3200 * (i.e. the address specified doesn't show up in the "cpu"
3201 * walk). However, the specified address may still correspond
3202 * to a valid cpu_t (for example, if the specified address is
3203 * the actual panicking cpu_t and not the cached panic_cpu).
3204 * Point is: even if we didn't find it, we still want to try
3205 * to print the specified address as a cpu_t.
3206 */
3207 cpu_t cpu;
3208
3209 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
3210 mdb_warn("%p is neither a valid CPU ID nor a "
3211 "valid cpu_t address\n", cid.cid_cpu);
3212 return (DCMD_ERR);
3213 }
3214
3215 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
3216 }
3217
3218 return (DCMD_OK);
3219 }
3220
3221 /*ARGSUSED*/
3222 int
3223 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3224 {
3225 int i;
3226
3227 if (!(flags & DCMD_ADDRSPEC))
3228 return (DCMD_USAGE);
3229
3230 for (i = 0; i < sizeof (addr) * NBBY; i++)
3231 mdb_printf("%p\n", addr ^ (1UL << i));
3232
3233 return (DCMD_OK);
3234 }
3235
3236 int
3237 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp)
3238 {
3239 if (p->p_as == *asp)
3240 mdb_printf("%p\n", addr);
3241 return (WALK_NEXT);
3242 }
3243
3244 /*ARGSUSED*/
3245 int
3246 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3247 {
3248 if (!(flags & DCMD_ADDRSPEC) || argc != 0)
3249 return (DCMD_USAGE);
3250
3251 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
3252 mdb_warn("failed to walk proc");
3253 return (DCMD_ERR);
3254 }
3255
3256 return (DCMD_OK);
3257 }
3258
3259 /*ARGSUSED*/
3260 int
3261 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored)
3262 {
3263 proc_t parent;
3264 int ident = 0;
3265 uintptr_t paddr;
3266
3267 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) {
3268 mdb_vread(&parent, sizeof (parent), paddr);
3269 paddr = (uintptr_t)parent.p_parent;
3270 }
3271
3272 mdb_inc_indent(ident);
3273 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm);
3274 mdb_dec_indent(ident);
3275
3276 return (WALK_NEXT);
3277 }
3278
3279 void
3280 ptree_ancestors(uintptr_t addr, uintptr_t start)
3281 {
3282 proc_t p;
3283
3284 if (mdb_vread(&p, sizeof (p), addr) == -1) {
3285 mdb_warn("couldn't read ancestor at %p", addr);
3286 return;
3287 }
3288
3289 if (p.p_parent != NULL)
3290 ptree_ancestors((uintptr_t)p.p_parent, start);
3291
3292 if (addr != start)
3293 (void) ptree_walk(addr, &p, NULL);
3294 }
3295
3296 /*ARGSUSED*/
3297 int
3298 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3299 {
3300 if (!(flags & DCMD_ADDRSPEC))
3301 addr = NULL;
3302 else
3303 ptree_ancestors(addr, addr);
3304
3305 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
3306 mdb_warn("couldn't walk 'proc'");
3307 return (DCMD_ERR);
3308 }
3309
3310 return (DCMD_OK);
3311 }
3312
3313 /*ARGSUSED*/
3314 static int
3315 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3316 {
3317 int fdnum;
3318 const mdb_arg_t *argp = &argv[0];
3319 proc_t p;
3320 uf_entry_t uf;
3321
3322 if ((flags & DCMD_ADDRSPEC) == 0) {
3323 mdb_warn("fd doesn't give global information\n");
3324 return (DCMD_ERR);
3325 }
3326 if (argc != 1)
3327 return (DCMD_USAGE);
3328
3329 if (argp->a_type == MDB_TYPE_IMMEDIATE)
3330 fdnum = argp->a_un.a_val;
3331 else
3332 fdnum = mdb_strtoull(argp->a_un.a_str);
3333
3334 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) {
3335 mdb_warn("couldn't read proc_t at %p", addr);
3336 return (DCMD_ERR);
3337 }
3338 if (fdnum > p.p_user.u_finfo.fi_nfiles) {
3339 mdb_warn("process %p only has %d files open.\n",
3340 addr, p.p_user.u_finfo.fi_nfiles);
3341 return (DCMD_ERR);
3342 }
3343 if (mdb_vread(&uf, sizeof (uf_entry_t),
3344 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
3345 mdb_warn("couldn't read uf_entry_t at %p",
3346 &p.p_user.u_finfo.fi_list[fdnum]);
3347 return (DCMD_ERR);
3348 }
3349
3350 mdb_printf("%p\n", uf.uf_file);
3351 return (DCMD_OK);
3352 }
3353
3354 /*ARGSUSED*/
3355 static int
3356 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3357 {
3358 pid_t pid = (pid_t)addr;
3359
3360 if (argc != 0)
3361 return (DCMD_USAGE);
3362
3363 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) {
3364 mdb_warn("PID 0t%d not found\n", pid);
3365 return (DCMD_ERR);
3366 }
3367
3368 mdb_printf("%p\n", addr);
3369 return (DCMD_OK);
3370 }
3371
3372 static char *sysfile_cmd[] = {
3373 "exclude:",
3374 "include:",
3375 "forceload:",
3376 "rootdev:",
3377 "rootfs:",
3378 "swapdev:",
3379 "swapfs:",
3380 "moddir:",
3381 "set",
3382 "unknown",
3383 };
3384
3385 static char *sysfile_ops[] = { "", "=", "&", "|" };
3386
3387 /*ARGSUSED*/
3388 static int
3389 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
3390 {
3391 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
3392 *target = NULL;
3393 return (WALK_DONE);
3394 }
3395 return (WALK_NEXT);
3396 }
3397
3398 /*ARGSUSED*/
3399 static int
3400 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3401 {
3402 struct sysparam *sysp, sys;
3403 char var[256];
3404 char modname[256];
3405 char val[256];
3406 char strval[256];
3407 vmem_t *mod_sysfile_arena;
3408 void *straddr;
3409
3410 if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
3411 mdb_warn("failed to read sysparam_hd");
3412 return (DCMD_ERR);
3413 }
3414
3415 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
3416 mdb_warn("failed to read mod_sysfile_arena");
3417 return (DCMD_ERR);
3418 }
3419
3420 while (sysp != NULL) {
3421 var[0] = '\0';
3422 val[0] = '\0';
3423 modname[0] = '\0';
3424 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
3425 mdb_warn("couldn't read sysparam %p", sysp);
3426 return (DCMD_ERR);
3427 }
3428 if (sys.sys_modnam != NULL &&
3429 mdb_readstr(modname, 256,
3430 (uintptr_t)sys.sys_modnam) == -1) {
3431 mdb_warn("couldn't read modname in %p", sysp);
3432 return (DCMD_ERR);
3433 }
3434 if (sys.sys_ptr != NULL &&
3435 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
3436 mdb_warn("couldn't read ptr in %p", sysp);
3437 return (DCMD_ERR);
3438 }
3439 if (sys.sys_op != SETOP_NONE) {
3440 /*
3441 * Is this an int or a string? We determine this
3442 * by checking whether straddr is contained in
3443 * mod_sysfile_arena. If so, the walker will set
3444 * straddr to NULL.
3445 */
3446 straddr = (void *)(uintptr_t)sys.sys_info;
3447 if (sys.sys_op == SETOP_ASSIGN &&
3448 sys.sys_info != 0 &&
3449 mdb_pwalk("vmem_seg",
3450 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
3451 (uintptr_t)mod_sysfile_arena) == 0 &&
3452 straddr == NULL &&
3453 mdb_readstr(strval, 256,
3454 (uintptr_t)sys.sys_info) != -1) {
3455 (void) mdb_snprintf(val, sizeof (val), "\"%s\"",
3456 strval);
3457 } else {
3458 (void) mdb_snprintf(val, sizeof (val),
3459 "0x%llx [0t%llu]", sys.sys_info,
3460 sys.sys_info);
3461 }
3462 }
3463 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
3464 modname, modname[0] == '\0' ? "" : ":",
3465 var, sysfile_ops[sys.sys_op], val);
3466
3467 sysp = sys.sys_next;
3468 }
3469
3470 return (DCMD_OK);
3471 }
3472
3473 int
3474 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
3475 {
3476
3477 if (*didp == thr->t_did) {
3478 mdb_printf("%p\n", addr);
3479 return (WALK_DONE);
3480 } else
3481 return (WALK_NEXT);
3482 }
3483
3484 /*ARGSUSED*/
3485 int
3486 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3487 {
3488 const mdb_arg_t *argp = &argv[0];
3489 kt_did_t did;
3490
3491 if (argc != 1)
3492 return (DCMD_USAGE);
3493
3494 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str);
3495
3496 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
3497 mdb_warn("failed to walk thread");
3498 return (DCMD_ERR);
3499
3500 }
3501 return (DCMD_OK);
3502
3503 }
3504
3505 static int
3506 errorq_walk_init(mdb_walk_state_t *wsp)
3507 {
3508 if (wsp->walk_addr == NULL &&
3509 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
3510 mdb_warn("failed to read errorq_list");
3511 return (WALK_ERR);
3512 }
3513
3514 return (WALK_NEXT);
3515 }
3516
3517 static int
3518 errorq_walk_step(mdb_walk_state_t *wsp)
3519 {
3520 uintptr_t addr = wsp->walk_addr;
3521 errorq_t eq;
3522
3523 if (addr == NULL)
3524 return (WALK_DONE);
3525
3526 if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
3527 mdb_warn("failed to read errorq at %p", addr);
3528 return (WALK_ERR);
3529 }
3530
3531 wsp->walk_addr = (uintptr_t)eq.eq_next;
3532 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
3533 }
3534
3535 typedef struct eqd_walk_data {
3536 uintptr_t *eqd_stack;
3537 void *eqd_buf;
3538 ulong_t eqd_qpos;
3539 ulong_t eqd_qlen;
3540 size_t eqd_size;
3541 } eqd_walk_data_t;
3542
3543 /*
3544 * In order to walk the list of pending error queue elements, we push the
3545 * addresses of the corresponding data buffers in to the eqd_stack array.
3546 * The error lists are in reverse chronological order when iterating using
3547 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the
3548 * walker client gets addresses in order from oldest error to newest error.
3549 */
3550 static void
3551 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
3552 {
3553 errorq_elem_t eqe;
3554
3555 while (addr != NULL) {
3556 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
3557 mdb_warn("failed to read errorq element at %p", addr);
3558 break;
3559 }
3560
3561 if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
3562 mdb_warn("errorq is overfull -- more than %lu "
3563 "elems found\n", eqdp->eqd_qlen);
3564 break;
3565 }
3566
3567 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
3568 addr = (uintptr_t)eqe.eqe_prev;
3569 }
3570 }
3571
3572 static int
3573 eqd_walk_init(mdb_walk_state_t *wsp)
3574 {
3575 eqd_walk_data_t *eqdp;
3576 errorq_elem_t eqe, *addr;
3577 errorq_t eq;
3578 ulong_t i;
3579
3580 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
3581 mdb_warn("failed to read errorq at %p", wsp->walk_addr);
3582 return (WALK_ERR);
3583 }
3584
3585 if (eq.eq_ptail != NULL &&
3586 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
3587 mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
3588 return (WALK_ERR);
3589 }
3590
3591 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
3592 wsp->walk_data = eqdp;
3593
3594 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
3595 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
3596 eqdp->eqd_qlen = eq.eq_qlen;
3597 eqdp->eqd_qpos = 0;
3598 eqdp->eqd_size = eq.eq_size;
3599
3600 /*
3601 * The newest elements in the queue are on the pending list, so we
3602 * push those on to our stack first.
3603 */
3604 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
3605
3606 /*
3607 * If eq_ptail is set, it may point to a subset of the errors on the
3608 * pending list in the event a casptr() failed; if ptail's data is
3609 * already in our stack, NULL out eq_ptail and ignore it.
3610 */
3611 if (eq.eq_ptail != NULL) {
3612 for (i = 0; i < eqdp->eqd_qpos; i++) {
3613 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
3614 eq.eq_ptail = NULL;
3615 break;
3616 }
3617 }
3618 }
3619
3620 /*
3621 * If eq_phead is set, it has the processing list in order from oldest
3622 * to newest. Use this to recompute eq_ptail as best we can and then
3623 * we nicely fall into eqd_push_list() of eq_ptail below.
3624 */
3625 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
3626 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
3627 eq.eq_ptail = addr;
3628
3629 /*
3630 * The oldest elements in the queue are on the processing list, subject
3631 * to machinations in the if-clauses above. Push any such elements.
3632 */
3633 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
3634 return (WALK_NEXT);
3635 }
3636
3637 static int
3638 eqd_walk_step(mdb_walk_state_t *wsp)
3639 {
3640 eqd_walk_data_t *eqdp = wsp->walk_data;
3641 uintptr_t addr;
3642
3643 if (eqdp->eqd_qpos == 0)
3644 return (WALK_DONE);
3645
3646 addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
3647
3648 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
3649 mdb_warn("failed to read errorq data at %p", addr);
3650 return (WALK_ERR);
3651 }
3652
3653 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
3654 }
3655
3656 static void
3657 eqd_walk_fini(mdb_walk_state_t *wsp)
3658 {
3659 eqd_walk_data_t *eqdp = wsp->walk_data;
3660
3661 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
3662 mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
3663 mdb_free(eqdp, sizeof (eqd_walk_data_t));
3664 }
3665
3666 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
3667
3668 static int
3669 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3670 {
3671 int i;
3672 errorq_t eq;
3673 uint_t opt_v = FALSE;
3674
3675 if (!(flags & DCMD_ADDRSPEC)) {
3676 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
3677 mdb_warn("can't walk 'errorq'");
3678 return (DCMD_ERR);
3679 }
3680 return (DCMD_OK);
3681 }
3682
3683 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
3684 argc -= i;
3685 argv += i;
3686
3687 if (argc != 0)
3688 return (DCMD_USAGE);
3689
3690 if (opt_v || DCMD_HDRSPEC(flags)) {
3691 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
3692 "ADDR", "NAME", "S", "V", "N");
3693 if (!opt_v) {
3694 mdb_printf("%7s %7s %7s%</u>\n",
3695 "ACCEPT", "DROP", "LOG");
3696 } else {
3697 mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
3698 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
3699 }
3700 }
3701
3702 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
3703 mdb_warn("failed to read errorq at %p", addr);
3704 return (DCMD_ERR);
3705 }
3706
3707 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
3708 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
3709 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
3710 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
3711
3712 if (!opt_v) {
3713 mdb_printf("%7llu %7llu %7llu\n",
3714 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
3715 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
3716 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
3717 } else {
3718 mdb_printf("%5s %6lu %6lu %3u %a\n",
3719 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
3720 mdb_printf("%38s\n%41s"
3721 "%12s %llu\n"
3722 "%53s %llu\n"
3723 "%53s %llu\n"
3724 "%53s %llu\n"
3725 "%53s %llu\n"
3726 "%53s %llu\n"
3727 "%53s %llu\n"
3728 "%53s %llu\n\n",
3729 "|", "+-> ",
3730 "DISPATCHED", EQKSVAL(eq, eqk_dispatched),
3731 "DROPPED", EQKSVAL(eq, eqk_dropped),
3732 "LOGGED", EQKSVAL(eq, eqk_logged),
3733 "RESERVED", EQKSVAL(eq, eqk_reserved),
3734 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail),
3735 "COMMITTED", EQKSVAL(eq, eqk_committed),
3736 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail),
3737 "CANCELLED", EQKSVAL(eq, eqk_cancelled));
3738 }
3739
3740 return (DCMD_OK);
3741 }
3742
3743 /*ARGSUSED*/
3744 static int
3745 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3746 {
3747 cpu_t panic_cpu;
3748 kthread_t *panic_thread;
3749 void *buf;
3750 panic_data_t *pd;
3751 int i, n;
3752
3753 if (!mdb_prop_postmortem) {
3754 mdb_warn("panicinfo can only be run on a system "
3755 "dump; see dumpadm(1M)\n");
3756 return (DCMD_ERR);
3757 }
3758
3759 if (flags & DCMD_ADDRSPEC || argc != 0)
3760 return (DCMD_USAGE);
3761
3762 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
3763 mdb_warn("failed to read 'panic_cpu'");
3764 else
3765 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
3766
3767 if (mdb_readvar(&panic_thread, "panic_thread") == -1)
3768 mdb_warn("failed to read 'panic_thread'");
3769 else
3770 mdb_printf("%16s %?p\n", "thread", panic_thread);
3771
3772 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
3773 pd = (panic_data_t *)buf;
3774
3775 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 ||
3776 pd->pd_version != PANICBUFVERS) {
3777 mdb_warn("failed to read 'panicbuf'");
3778 mdb_free(buf, PANICBUFSIZE);
3779 return (DCMD_ERR);
3780 }
3781
3782 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff);
3783
3784 n = (pd->pd_msgoff - (sizeof (panic_data_t) -
3785 sizeof (panic_nv_t))) / sizeof (panic_nv_t);
3786
3787 for (i = 0; i < n; i++)
3788 mdb_printf("%16s %?llx\n",
3789 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
3790
3791 mdb_free(buf, PANICBUFSIZE);
3792 return (DCMD_OK);
3793 }
3794
3795 /*
3796 * ::time dcmd, which will print a hires timestamp of when we entered the
3797 * debugger, or the lbolt value if used with the -l option.
3798 *
3799 */
3800 /*ARGSUSED*/
3801 static int
3802 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3803 {
3804 uint_t opt_dec = FALSE;
3805 uint_t opt_lbolt = FALSE;
3806 uint_t opt_hex = FALSE;
3807 const char *fmt;
3808 hrtime_t result;
3809
3810 if (mdb_getopts(argc, argv,
3811 'd', MDB_OPT_SETBITS, TRUE, &opt_dec,
3812 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt,
3813 'x', MDB_OPT_SETBITS, TRUE, &opt_hex,
3814 NULL) != argc)
3815 return (DCMD_USAGE);
3816
3817 if (opt_dec && opt_hex)
3818 return (DCMD_USAGE);
3819
3820 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime();
3821 fmt =
3822 opt_hex ? "0x%llx\n" :
3823 opt_dec ? "0t%lld\n" : "%#llr\n";
3824
3825 mdb_printf(fmt, result);
3826 return (DCMD_OK);
3827 }
3828
3829 void
3830 time_help(void)
3831 {
3832 mdb_printf("Prints the system time in nanoseconds.\n\n"
3833 "::time will return the timestamp at which we dropped into, \n"
3834 "if called from, kmdb(1); the core dump's high resolution \n"
3835 "time if inspecting one; or the running hires time if we're \n"
3836 "looking at a live system.\n\n"
3837 "Switches:\n"
3838 " -d report times in decimal\n"
3839 " -l prints the number of clock ticks since system boot\n"
3840 " -x report times in hexadecimal\n");
3841 }
3842
3843 static const mdb_dcmd_t dcmds[] = {
3844
3845 /* from genunix.c */
3846 { "as2proc", ":", "convert as to proc_t address", as2proc },
3847 { "binding_hash_entry", ":", "print driver names hash table entry",
3848 binding_hash_entry },
3849 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]"
3850 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]"
3851 " [-FivVA]",
3852 "display callouts", callout, callout_help },
3853 { "calloutid", "[-d|v] xid", "print callout by extended id",
3854 calloutid, calloutid_help },
3855 { "class", NULL, "print process scheduler classes", class },
3856 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
3857 { "did2thread", "? kt_did", "find kernel thread for this id",
3858 did2thread },
3859 { "errorq", "?[-v]", "display kernel error queues", errorq },
3860 { "fd", ":[fd num]", "get a file pointer from an fd", fd },
3861 { "flipone", ":", "the vik_rev_level 2 special", flipone },
3862 { "lminfo", NULL, "print lock manager information", lminfo },
3863 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
3864 { "panicinfo", NULL, "print panic information", panicinfo },
3865 { "pid2proc", "?", "convert PID to proc_t address", pid2proc },
3866 { "project", NULL, "display kernel project(s)", project },
3867 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps },
3868 { "pgrep", "[-x] [-n | -o] pattern",
3869 "pattern match against all processes", pgrep },
3870 { "ptree", NULL, "print process tree", ptree },
3871 { "sysevent", "?[-sv]", "print sysevent pending or sent queue",
3872 sysevent},
3873 { "sysevent_channel", "?", "print sysevent channel database",
3874 sysevent_channel},
3875 { "sysevent_class_list", ":", "print sysevent class list",
3876 sysevent_class_list},
3877 { "sysevent_subclass_list", ":",
3878 "print sysevent subclass list", sysevent_subclass_list},
3879 { "system", NULL, "print contents of /etc/system file", sysfile },
3880 { "task", NULL, "display kernel task(s)", task },
3881 { "time", "[-dlx]", "display system time", time, time_help },
3882 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
3883 { "whereopen", ":", "given a vnode, dumps procs which have it open",
3884 whereopen },
3885
3886 /* from bio.c */
3887 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
3888
3889 /* from bitset.c */
3890 { "bitset", ":", "display a bitset", bitset, bitset_help },
3891
3892 /* from contract.c */
3893 { "contract", "?", "display a contract", cmd_contract },
3894 { "ctevent", ":", "display a contract event", cmd_ctevent },
3895 { "ctid", ":", "convert id to a contract pointer", cmd_ctid },
3896
3897 /* from cpupart.c */
3898 { "cpupart", "?[-v]", "print cpu partition info", cpupart },
3899
3900 /* from cred.c */
3901 { "cred", ":[-v]", "display a credential", cmd_cred },
3902 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp },
3903 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid },
3904 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist },
3905
3906 /* from cyclic.c */
3907 { "cyccover", NULL, "dump cyclic coverage information", cyccover },
3908 { "cycid", "?", "dump a cyclic id", cycid },
3909 { "cycinfo", "?", "dump cyc_cpu info", cycinfo },
3910 { "cyclic", ":", "developer information", cyclic },
3911 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
3912
3913 /* from damap.c */
3914 { "damap", ":", "display a damap_t", damap, damap_help },
3915
3916 /* from ddi_periodic.c */
3917 { "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo },
3918
3919 /* from devinfo.c */
3920 { "devbindings", "?[-qs] [device-name | major-num]",
3921 "print devinfo nodes bound to device-name or major-num",
3922 devbindings, devinfo_help },
3923 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo,
3924 devinfo_help },
3925 { "devinfo_audit", ":[-v]", "devinfo configuration audit record",
3926 devinfo_audit },
3927 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
3928 devinfo_audit_log },
3929 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
3930 devinfo_audit_node },
3931 { "devinfo2driver", ":", "find driver name for this devinfo node",
3932 devinfo2driver },
3933 { "devnames", "?[-vm] [num]", "print devnames array", devnames },
3934 { "dev2major", "?<dev_t>", "convert dev_t to a major number",
3935 dev2major },
3936 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
3937 dev2minor },
3938 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
3939 devt },
3940 { "major2name", "?<major-num>", "convert major number to dev name",
3941 major2name },
3942 { "minornodes", ":", "given a devinfo node, print its minor nodes",
3943 minornodes },
3944 { "modctl2devinfo", ":", "given a modctl, list its devinfos",
3945 modctl2devinfo },
3946 { "name2major", "<dev-name>", "convert dev name to major number",
3947 name2major },
3948 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help },
3949 { "softstate", ":<instance>", "retrieve soft-state pointer",
3950 softstate },
3951 { "devinfo_fm", ":", "devinfo fault managment configuration",
3952 devinfo_fm },
3953 { "devinfo_fmce", ":", "devinfo fault managment cache entry",
3954 devinfo_fmce},
3955
3956 /* from findstack.c */
3957 { "findstack", ":[-v]", "find kernel thread stack", findstack },
3958 { "findstack_debug", NULL, "toggle findstack debugging",
3959 findstack_debug },
3960 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] "
3961 "[-s sobj | -S sobj] [-t tstate | -T tstate]",
3962 "print unique kernel thread stacks",
3963 stacks, stacks_help },
3964
3965 /* from fm.c */
3966 { "ereport", "[-v]", "print ereports logged in dump",
3967 ereport },
3968
3969 /* from group.c */
3970 { "group", "?[-q]", "display a group", group},
3971
3972 /* from hotplug.c */
3973 { "hotplug", "?[-p]", "display a registered hotplug attachment",
3974 hotplug, hotplug_help },
3975
3976 /* from irm.c */
3977 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd },
3978 { "irmreqs", NULL, "display interrupt requests in an interrupt pool",
3979 irmreqs_dcmd },
3980 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd },
3981
3982 /* from kgrep.c + genunix.c */
3983 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
3984 kgrep_help },
3985
3986 /* from kmem.c */
3987 { "allocdby", ":", "given a thread, print its allocated buffers",
3988 allocdby },
3989 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
3990 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
3991 { "freedby", ":", "given a thread, print its freed buffers", freedby },
3992 { "kmalog", "?[ fail | slab ]",
3993 "display kmem transaction log and stack traces", kmalog },
3994 { "kmastat", "[-kmg]", "kernel memory allocator stats",
3995 kmastat },
3996 { "kmausers", "?[-ef] [cache ...]", "current medium and large users "
3997 "of the kmem allocator", kmausers, kmausers_help },
3998 { "kmem_cache", "?[-n name]",
3999 "print kernel memory caches", kmem_cache, kmem_cache_help},
4000 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] "
4001 "[-B minbinsize]", "display slab usage per kmem cache",
4002 kmem_slabs, kmem_slabs_help },
4003 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
4004 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
4005 { "kmem_verify", "?", "check integrity of kmem-managed memory",
4006 kmem_verify },
4007 { "vmem", "?", "print a vmem_t", vmem },
4008 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
4009 "[-m minsize] [-M maxsize] [-t thread] [-T type]",
4010 "print or filter a vmem_seg", vmem_seg, vmem_seg_help },
4011 { "whatthread", ":[-v]", "print threads whose stack contains the "
4012 "given address", whatthread },
4013
4014 /* from ldi.c */
4015 { "ldi_handle", "?[-i]", "display a layered driver handle",
4016 ldi_handle, ldi_handle_help },
4017 { "ldi_ident", NULL, "display a layered driver identifier",
4018 ldi_ident, ldi_ident_help },
4019
4020 /* from leaky.c + leaky_subr.c */
4021 { "findleaks", FINDLEAKS_USAGE,
4022 "search for potential kernel memory leaks", findleaks,
4023 findleaks_help },
4024
4025 /* from lgrp.c */
4026 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
4027 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},
4028
4029 /* from log.c */
4030 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf },
4031
4032 /* from mdi.c */
4033 { "mdipi", NULL, "given a path, dump mdi_pathinfo "
4034 "and detailed pi_prop list", mdipi },
4035 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
4036 mdiprops },
4037 { "mdiphci", NULL, "given a phci, dump mdi_phci and "
4038 "list all paths", mdiphci },
4039 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
4040 "all phcis", mdivhci },
4041 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
4042 "client links", mdiclient_paths },
4043 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
4044 "phci links", mdiphci_paths },
4045 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
4046 mdiphcis },
4047
4048 /* from memory.c */
4049 { "addr2smap", ":[offset]", "translate address to smap", addr2smap },
4050 { "memlist", "?[-iav]", "display a struct memlist", memlist },
4051 { "memstat", NULL, "display memory usage summary", memstat },
4052 { "page", "?", "display a summarized page_t", page },
4053 { "pagelookup", "?[-v vp] [-o offset]",
4054 "find the page_t with the name {vp, offset}",
4055 pagelookup, pagelookup_help },
4056 { "page_num2pp", ":", "find the page_t for a given page frame number",
4057 page_num2pp },
4058 { "pmap", ":[-q]", "print process memory map", pmap },
4059 { "seg", ":", "print address space segment", seg },
4060 { "swapinfo", "?", "display a struct swapinfo", swapinfof },
4061 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
4062
4063 /* from mmd.c */
4064 { "multidata", ":[-sv]", "display a summarized multidata_t",
4065 multidata },
4066 { "pattbl", ":", "display a summarized multidata attribute table",
4067 pattbl },
4068 { "pattr2multidata", ":", "print multidata pointer from pattr_t",
4069 pattr2multidata },
4070 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t",
4071 pdesc2slab },
4072 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
4073 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t",
4074 slab2multidata },
4075
4076 /* from modhash.c */
4077 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
4078 "display information about one or all mod_hash structures",
4079 modhash, modhash_help },
4080 { "modent", ":[-k | -v | -t type]",
4081 "display information about a mod_hash_entry", modent,
4082 modent_help },
4083
4084 /* from net.c */
4085 { "dladm", "?<sub-command> [flags]", "show data link information",
4086 dladm, dladm_help },
4087 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
4088 mi },
4089 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]",
4090 "show network statistics", netstat },
4091 { "sonode", "?[-f inet | inet6 | unix | #] "
4092 "[-t stream | dgram | raw | #] [-p #]",
4093 "filter and display sonode", sonode },
4094
4095 /* from netstack.c */
4096 { "netstack", "", "show stack instances", netstack },
4097
4098 /* from nvpair.c */
4099 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
4100 nvpair_print },
4101 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,
4102 print_nvlist },
4103
4104 /* from pg.c */
4105 { "pg", "?[-q]", "display a pg", pg},
4106
4107 /* from rctl.c */
4108 { "rctl_dict", "?", "print systemwide default rctl definitions",
4109 rctl_dict },
4110 { "rctl_list", ":[handle]", "print rctls for the given proc",
4111 rctl_list },
4112 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
4113 rctl },
4114 { "rctl_validate", ":[-v] [-n #]", "test resource control value "
4115 "sequence", rctl_validate },
4116
4117 /* from sobj.c */
4118 { "rwlock", ":", "dump out a readers/writer lock", rwlock },
4119 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
4120 mutex_help },
4121 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
4122 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
4123 { "turnstile", "?", "display a turnstile", turnstile },
4124
4125 /* from stream.c */
4126 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
4127 "print an mblk", mblk_prt, mblk_help },
4128 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
4129 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
4130 mblk2dblk },
4131 { "q2otherq", ":", "print peer queue for a given queue", q2otherq },
4132 { "q2rdq", ":", "print read queue for a given queue", q2rdq },
4133 { "q2syncq", ":", "print syncq for a given queue", q2syncq },
4134 { "q2stream", ":", "print stream pointer for a given queue", q2stream },
4135 { "q2wrq", ":", "print write queue for a given queue", q2wrq },
4136 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
4137 "filter and display STREAM queue", queue, queue_help },
4138 { "stdata", ":[-q|v] [-f flag] [-F flag]",
4139 "filter and display STREAM head", stdata, stdata_help },
4140 { "str2mate", ":", "print mate of this stream", str2mate },
4141 { "str2wrq", ":", "print write queue of this stream", str2wrq },
4142 { "stream", ":", "display STREAM", stream },
4143 { "strftevent", ":", "print STREAMS flow trace event", strftevent },
4144 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
4145 "filter and display STREAM sync queue", syncq, syncq_help },
4146 { "syncq2q", ":", "print queue for a given syncq", syncq2q },
4147
4148 /* from taskq.c */
4149 { "taskq", ":[-atT] [-m min_maxq] [-n name]",
4150 "display a taskq", taskq, taskq_help },
4151 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
4152
4153 /* from thread.c */
4154 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
4155 thread_help },
4156 { "threadlist", "?[-t] [-v [count]]",
4157 "display threads and associated C stack traces", threadlist,
4158 threadlist_help },
4159 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo,
4160 stackinfo_help },
4161
4162 /* from tsd.c */
4163 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
4164 { "tsdtot", ":", "find thread with this tsd", tsdtot },
4165
4166 /*
4167 * typegraph does not work under kmdb, as it requires too much memory
4168 * for its internal data structures.
4169 */
4170 #ifndef _KMDB
4171 /* from typegraph.c */
4172 { "findlocks", ":", "find locks held by specified thread", findlocks },
4173 { "findfalse", "?[-v]", "find potentially falsely shared structures",
4174 findfalse },
4175 { "typegraph", NULL, "build type graph", typegraph },
4176 { "istype", ":type", "manually set object type", istype },
4177 { "notype", ":", "manually clear object type", notype },
4178 { "whattype", ":", "determine object type", whattype },
4179 #endif
4180
4181 /* from vfs.c */
4182 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
4183 { "pfiles", ":[-fp]", "print process file information", pfiles,
4184 pfiles_help },
4185
4186 /* from zone.c */
4187 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt },
4188 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for "
4189 "selected zones", zsd },
4190
4191 { NULL }
4192 };
4193
4194 static const mdb_walker_t walkers[] = {
4195
4196 /* from genunix.c */
4197 { "callouts_bytime", "walk callouts by list chain (expiration time)",
4198 callout_walk_init, callout_walk_step, callout_walk_fini,
4199 (void *)CALLOUT_WALK_BYLIST },
4200 { "callouts_byid", "walk callouts by id hash chain",
4201 callout_walk_init, callout_walk_step, callout_walk_fini,
4202 (void *)CALLOUT_WALK_BYID },
4203 { "callout_list", "walk a callout list", callout_list_walk_init,
4204 callout_list_walk_step, callout_list_walk_fini },
4205 { "callout_table", "walk callout table array", callout_table_walk_init,
4206 callout_table_walk_step, callout_table_walk_fini },
4207 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
4208 { "ereportq_dump", "walk list of ereports in dump error queue",
4209 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
4210 { "ereportq_pend", "walk list of ereports in pending error queue",
4211 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
4212 { "errorq", "walk list of system error queues",
4213 errorq_walk_init, errorq_walk_step, NULL },
4214 { "errorq_data", "walk pending error queue data buffers",
4215 eqd_walk_init, eqd_walk_step, eqd_walk_fini },
4216 { "allfile", "given a proc pointer, list all file pointers",
4217 file_walk_init, allfile_walk_step, file_walk_fini },
4218 { "file", "given a proc pointer, list of open file pointers",
4219 file_walk_init, file_walk_step, file_walk_fini },
4220 { "lock_descriptor", "walk lock_descriptor_t structures",
4221 ld_walk_init, ld_walk_step, NULL },
4222 { "lock_graph", "walk lock graph",
4223 lg_walk_init, lg_walk_step, NULL },
4224 { "port", "given a proc pointer, list of created event ports",
4225 port_walk_init, port_walk_step, NULL },
4226 { "portev", "given a port pointer, list of events in the queue",
4227 portev_walk_init, portev_walk_step, portev_walk_fini },
4228 { "proc", "list of active proc_t structures",
4229 proc_walk_init, proc_walk_step, proc_walk_fini },
4230 { "projects", "walk a list of kernel projects",
4231 project_walk_init, project_walk_step, NULL },
4232 { "sysevent_pend", "walk sysevent pending queue",
4233 sysevent_pend_walk_init, sysevent_walk_step,
4234 sysevent_walk_fini},
4235 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
4236 sysevent_walk_step, sysevent_walk_fini},
4237 { "sysevent_channel", "walk sysevent channel subscriptions",
4238 sysevent_channel_walk_init, sysevent_channel_walk_step,
4239 sysevent_channel_walk_fini},
4240 { "sysevent_class_list", "walk sysevent subscription's class list",
4241 sysevent_class_list_walk_init, sysevent_class_list_walk_step,
4242 sysevent_class_list_walk_fini},
4243 { "sysevent_subclass_list",
4244 "walk sysevent subscription's subclass list",
4245 sysevent_subclass_list_walk_init,
4246 sysevent_subclass_list_walk_step,
4247 sysevent_subclass_list_walk_fini},
4248 { "task", "given a task pointer, walk its processes",
4249 task_walk_init, task_walk_step, NULL },
4250
4251 /* from avl.c */
4252 { AVL_WALK_NAME, AVL_WALK_DESC,
4253 avl_walk_init, avl_walk_step, avl_walk_fini },
4254
4255 /* from bio.c */
4256 { "buf", "walk the bio buf hash",
4257 buf_walk_init, buf_walk_step, buf_walk_fini },
4258
4259 /* from contract.c */
4260 { "contract", "walk all contracts, or those of the specified type",
4261 ct_walk_init, generic_walk_step, NULL },
4262 { "ct_event", "walk events on a contract event queue",
4263 ct_event_walk_init, generic_walk_step, NULL },
4264 { "ct_listener", "walk contract event queue listeners",
4265 ct_listener_walk_init, generic_walk_step, NULL },
4266
4267 /* from cpupart.c */
4268 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
4269 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
4270 NULL },
4271 { "cpupart_walk", "walk the set of cpu partitions",
4272 cpupart_walk_init, cpupart_walk_step, NULL },
4273
4274 /* from ctxop.c */
4275 { "ctxop", "walk list of context ops on a thread",
4276 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
4277
4278 /* from cyclic.c */
4279 { "cyccpu", "walk per-CPU cyc_cpu structures",
4280 cyccpu_walk_init, cyccpu_walk_step, NULL },
4281 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
4282 cycomni_walk_init, cycomni_walk_step, NULL },
4283 { "cyctrace", "walk cyclic trace buffer",
4284 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
4285
4286 /* from devinfo.c */
4287 { "binding_hash", "walk all entries in binding hash table",
4288 binding_hash_walk_init, binding_hash_walk_step, NULL },
4289 { "devinfo", "walk devinfo tree or subtree",
4290 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
4291 { "devinfo_audit_log", "walk devinfo audit system-wide log",
4292 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
4293 devinfo_audit_log_walk_fini},
4294 { "devinfo_audit_node", "walk per-devinfo audit history",
4295 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
4296 devinfo_audit_node_walk_fini},
4297 { "devinfo_children", "walk children of devinfo node",
4298 devinfo_children_walk_init, devinfo_children_walk_step,
4299 devinfo_children_walk_fini },
4300 { "devinfo_parents", "walk ancestors of devinfo node",
4301 devinfo_parents_walk_init, devinfo_parents_walk_step,
4302 devinfo_parents_walk_fini },
4303 { "devinfo_siblings", "walk siblings of devinfo node",
4304 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
4305 { "devi_next", "walk devinfo list",
4306 NULL, devi_next_walk_step, NULL },
4307 { "devnames", "walk devnames array",
4308 devnames_walk_init, devnames_walk_step, devnames_walk_fini },
4309 { "minornode", "given a devinfo node, walk minor nodes",
4310 minornode_walk_init, minornode_walk_step, NULL },
4311 { "softstate",
4312 "given an i_ddi_soft_state*, list all in-use driver stateps",
4313 soft_state_walk_init, soft_state_walk_step,
4314 NULL, NULL },
4315 { "softstate_all",
4316 "given an i_ddi_soft_state*, list all driver stateps",
4317 soft_state_walk_init, soft_state_all_walk_step,
4318 NULL, NULL },
4319 { "devinfo_fmc",
4320 "walk a fault management handle cache active list",
4321 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
4322
4323 /* from group.c */
4324 { "group", "walk all elements of a group",
4325 group_walk_init, group_walk_step, NULL },
4326
4327 /* from irm.c */
4328 { "irmpools", "walk global list of interrupt pools",
4329 irmpools_walk_init, list_walk_step, list_walk_fini },
4330 { "irmreqs", "walk list of interrupt requests in an interrupt pool",
4331 irmreqs_walk_init, list_walk_step, list_walk_fini },
4332
4333 /* from kmem.c */
4334 { "allocdby", "given a thread, walk its allocated bufctls",
4335 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4336 { "bufctl", "walk a kmem cache's bufctls",
4337 bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
4338 { "bufctl_history", "walk the available history of a bufctl",
4339 bufctl_history_walk_init, bufctl_history_walk_step,
4340 bufctl_history_walk_fini },
4341 { "freedby", "given a thread, walk its freed bufctls",
4342 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4343 { "freectl", "walk a kmem cache's free bufctls",
4344 freectl_walk_init, kmem_walk_step, kmem_walk_fini },
4345 { "freectl_constructed", "walk a kmem cache's constructed free bufctls",
4346 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4347 { "freemem", "walk a kmem cache's free memory",
4348 freemem_walk_init, kmem_walk_step, kmem_walk_fini },
4349 { "freemem_constructed", "walk a kmem cache's constructed free memory",
4350 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4351 { "kmem", "walk a kmem cache",
4352 kmem_walk_init, kmem_walk_step, kmem_walk_fini },
4353 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
4354 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
4355 { "kmem_hash", "given a kmem cache, walk its allocated hash table",
4356 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
4357 { "kmem_log", "walk the kmem transaction log",
4358 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
4359 { "kmem_slab", "given a kmem cache, walk its slabs",
4360 kmem_slab_walk_init, combined_walk_step, combined_walk_fini },
4361 { "kmem_slab_partial",
4362 "given a kmem cache, walk its partially allocated slabs (min 1)",
4363 kmem_slab_walk_partial_init, combined_walk_step,
4364 combined_walk_fini },
4365 { "vmem", "walk vmem structures in pre-fix, depth-first order",
4366 vmem_walk_init, vmem_walk_step, vmem_walk_fini },
4367 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
4368 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4369 { "vmem_free", "given a vmem_t, walk its free vmem_segs",
4370 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4371 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
4372 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
4373 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
4374 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4375 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
4376 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4377
4378 /* from ldi.c */
4379 { "ldi_handle", "walk the layered driver handle hash",
4380 ldi_handle_walk_init, ldi_handle_walk_step, NULL },
4381 { "ldi_ident", "walk the layered driver identifier hash",
4382 ldi_ident_walk_init, ldi_ident_walk_step, NULL },
4383
4384 /* from leaky.c + leaky_subr.c */
4385 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
4386 "stack trace",
4387 leaky_walk_init, leaky_walk_step, leaky_walk_fini },
4388 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
4389 "leaks w/ same stack trace",
4390 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
4391
4392 /* from lgrp.c */
4393 { "lgrp_cpulist", "walk CPUs in a given lgroup",
4394 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
4395 { "lgrptbl", "walk lgroup table",
4396 lgrp_walk_init, lgrp_walk_step, NULL },
4397 { "lgrp_parents", "walk up lgroup lineage from given lgroup",
4398 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
4399 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
4400 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
4401 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
4402 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },
4403
4404 /* from list.c */
4405 { LIST_WALK_NAME, LIST_WALK_DESC,
4406 list_walk_init, list_walk_step, list_walk_fini },
4407
4408 /* from mdi.c */
4409 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
4410 mdi_pi_client_link_walk_init,
4411 mdi_pi_client_link_walk_step,
4412 mdi_pi_client_link_walk_fini },
4413 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
4414 mdi_pi_phci_link_walk_init,
4415 mdi_pi_phci_link_walk_step,
4416 mdi_pi_phci_link_walk_fini },
4417 { "mdiphci_list", "Walker for mdi_phci ph_next link",
4418 mdi_phci_ph_next_walk_init,
4419 mdi_phci_ph_next_walk_step,
4420 mdi_phci_ph_next_walk_fini },
4421
4422 /* from memory.c */
4423 { "allpages", "walk all pages, including free pages",
4424 allpages_walk_init, allpages_walk_step, allpages_walk_fini },
4425 { "anon", "given an amp, list allocated anon structures",
4426 anon_walk_init, anon_walk_step, anon_walk_fini,
4427 ANON_WALK_ALLOC },
4428 { "anon_all", "given an amp, list contents of all anon slots",
4429 anon_walk_init, anon_walk_step, anon_walk_fini,
4430 ANON_WALK_ALL },
4431 { "memlist", "walk specified memlist",
4432 NULL, memlist_walk_step, NULL },
4433 { "page", "walk all pages, or those from the specified vnode",
4434 page_walk_init, page_walk_step, page_walk_fini },
4435 { "seg", "given an as, list of segments",
4436 seg_walk_init, avl_walk_step, avl_walk_fini },
4437 { "segvn_anon",
4438 "given a struct segvn_data, list allocated anon structures",
4439 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4440 ANON_WALK_ALLOC },
4441 { "segvn_anon_all",
4442 "given a struct segvn_data, list contents of all anon slots",
4443 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4444 ANON_WALK_ALL },
4445 { "segvn_pages",
4446 "given a struct segvn_data, list resident pages in "
4447 "offset order",
4448 segvn_pages_walk_init, segvn_pages_walk_step,
4449 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT },
4450 { "segvn_pages_all",
4451 "for each offset in a struct segvn_data, give page_t pointer "
4452 "(if resident), or NULL.",
4453 segvn_pages_walk_init, segvn_pages_walk_step,
4454 segvn_pages_walk_fini, SEGVN_PAGES_ALL },
4455 { "swapinfo", "walk swapinfo structures",
4456 swap_walk_init, swap_walk_step, NULL },
4457
4458 /* from mmd.c */
4459 { "pattr", "walk pattr_t structures", pattr_walk_init,
4460 mmdq_walk_step, mmdq_walk_fini },
4461 { "pdesc", "walk pdesc_t structures",
4462 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini },
4463 { "pdesc_slab", "walk pdesc_slab_t structures",
4464 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini },
4465
4466 /* from modhash.c */
4467 { "modhash", "walk list of mod_hash structures", modhash_walk_init,
4468 modhash_walk_step, NULL },
4469 { "modent", "walk list of entries in a given mod_hash",
4470 modent_walk_init, modent_walk_step, modent_walk_fini },
4471 { "modchain", "walk list of entries in a given mod_hash_entry",
4472 NULL, modchain_walk_step, NULL },
4473
4474 /* from net.c */
4475 { "icmp", "walk ICMP control structures using MI for all stacks",
4476 mi_payload_walk_init, mi_payload_walk_step, NULL,
4477 &mi_icmp_arg },
4478 { "mi", "given a MI_O, walk the MI",
4479 mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
4480 { "sonode", "given a sonode, walk its children",
4481 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
4482 { "icmp_stacks", "walk all the icmp_stack_t",
4483 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL },
4484 { "tcp_stacks", "walk all the tcp_stack_t",
4485 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL },
4486 { "udp_stacks", "walk all the udp_stack_t",
4487 udp_stacks_walk_init, udp_stacks_walk_step, NULL },
4488
4489 /* from netstack.c */
4490 { "netstack", "walk a list of kernel netstacks",
4491 netstack_walk_init, netstack_walk_step, NULL },
4492
4493 /* from nvpair.c */
4494 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
4495 nvpair_walk_init, nvpair_walk_step, NULL },
4496
4497 /* from rctl.c */
4498 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
4499 rctl_dict_walk_init, rctl_dict_walk_step, NULL },
4500 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
4501 rctl_set_walk_step, NULL },
4502 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
4503 rctl_val_walk_init, rctl_val_walk_step },
4504
4505 /* from sobj.c */
4506 { "blocked", "walk threads blocked on a given sobj",
4507 blocked_walk_init, blocked_walk_step, NULL },
4508 { "wchan", "given a wchan, list of blocked threads",
4509 wchan_walk_init, wchan_walk_step, wchan_walk_fini },
4510
4511 /* from stream.c */
4512 { "b_cont", "walk mblk_t list using b_cont",
4513 mblk_walk_init, b_cont_step, mblk_walk_fini },
4514 { "b_next", "walk mblk_t list using b_next",
4515 mblk_walk_init, b_next_step, mblk_walk_fini },
4516 { "qlink", "walk queue_t list using q_link",
4517 queue_walk_init, queue_link_step, queue_walk_fini },
4518 { "qnext", "walk queue_t list using q_next",
4519 queue_walk_init, queue_next_step, queue_walk_fini },
4520 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
4521 strftblk_walk_init, strftblk_step, strftblk_walk_fini },
4522 { "readq", "walk read queue side of stdata",
4523 str_walk_init, strr_walk_step, str_walk_fini },
4524 { "writeq", "walk write queue side of stdata",
4525 str_walk_init, strw_walk_step, str_walk_fini },
4526
4527 /* from taskq.c */
4528 { "taskq_thread", "given a taskq_t, list all of its threads",
4529 taskq_thread_walk_init,
4530 taskq_thread_walk_step,
4531 taskq_thread_walk_fini },
4532 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
4533 taskq_ent_walk_init, taskq_ent_walk_step, NULL },
4534
4535 /* from thread.c */
4536 { "deathrow", "walk threads on both lwp_ and thread_deathrow",
4537 deathrow_walk_init, deathrow_walk_step, NULL },
4538 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
4539 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4540 { "cpupart_dispq",
4541 "given a cpupart_t, walk threads in dispatcher queues",
4542 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4543 { "lwp_deathrow", "walk lwp_deathrow",
4544 lwp_deathrow_walk_init, deathrow_walk_step, NULL },
4545 { "thread", "global or per-process kthread_t structures",
4546 thread_walk_init, thread_walk_step, thread_walk_fini },
4547 { "thread_deathrow", "walk threads on thread_deathrow",
4548 thread_deathrow_walk_init, deathrow_walk_step, NULL },
4549
4550 /* from tsd.c */
4551 { "tsd", "walk list of thread-specific data",
4552 tsd_walk_init, tsd_walk_step, tsd_walk_fini },
4553
4554 /* from tsol.c */
4555 { "tnrh", "walk remote host cache structures",
4556 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
4557 { "tnrhtp", "walk remote host template structures",
4558 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },
4559
4560 /*
4561 * typegraph does not work under kmdb, as it requires too much memory
4562 * for its internal data structures.
4563 */
4564 #ifndef _KMDB
4565 /* from typegraph.c */
4566 { "typeconflict", "walk buffers with conflicting type inferences",
4567 typegraph_walk_init, typeconflict_walk_step },
4568 { "typeunknown", "walk buffers with unknown types",
4569 typegraph_walk_init, typeunknown_walk_step },
4570 #endif
4571
4572 /* from vfs.c */
4573 { "vfs", "walk file system list",
4574 vfs_walk_init, vfs_walk_step },
4575
4576 /* from zone.c */
4577 { "zone", "walk a list of kernel zones",
4578 zone_walk_init, zone_walk_step, NULL },
4579 { "zsd", "walk list of zsd entries for a zone",
4580 zsd_walk_init, zsd_walk_step, NULL },
4581
4582 { NULL }
4583 };
4584
4585 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
4586
4587 /*ARGSUSED*/
4588 static void
4589 genunix_statechange_cb(void *ignored)
4590 {
4591 /*
4592 * Force ::findleaks and ::stacks to let go any cached state.
4593 */
4594 leaky_cleanup(1);
4595 stacks_cleanup(1);
4596
4597 kmem_statechange(); /* notify kmem */
4598 }
4599
4600 const mdb_modinfo_t *
4601 _mdb_init(void)
4602 {
4603 kmem_init();
4604
4605 (void) mdb_callback_add(MDB_CALLBACK_STCHG,
4606 genunix_statechange_cb, NULL);
4607
4608 return (&modinfo);
4609 }
4610
4611 void
4612 _mdb_fini(void)
4613 {
4614 leaky_cleanup(1);
4615 stacks_cleanup(1);
4616 }