1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 1990 Mentat Inc. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strsubr.h> 38 #include <sys/strlog.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/kstat.h> 43 #include <sys/debug.h> 44 #include <sys/zone.h> 45 #include <sys/sunldi.h> 46 #include <sys/file.h> 47 #include <sys/bitmap.h> 48 #include <sys/cpuvar.h> 49 #include <sys/time.h> 50 #include <sys/ctype.h> 51 #include <sys/kmem.h> 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/socket.h> 55 #include <sys/isa_defs.h> 56 #include <net/if.h> 57 #include <net/if_arp.h> 58 #include <net/if_types.h> 59 #include <net/if_dl.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <netinet/ip6.h> 64 #include <netinet/icmp6.h> 65 #include <netinet/igmp_var.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 #include <sys/callb.h> 69 #include <sys/md5.h> 70 71 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 72 #include <inet/mi.h> 73 #include <inet/nd.h> 74 #include <inet/tunables.h> 75 #include <inet/arp.h> 76 #include <inet/ip_arp.h> 77 #include <inet/mib2.h> 78 #include <inet/ip.h> 79 #include <inet/ip6.h> 80 #include <inet/ip6_asp.h> 81 #include <inet/tcp.h> 82 #include <inet/ip_multi.h> 83 #include <inet/ip_ire.h> 84 #include <inet/ip_ftable.h> 85 #include <inet/ip_rts.h> 86 #include <inet/ip_ndp.h> 87 #include <inet/ip_if.h> 88 #include <inet/ip_impl.h> 89 #include <inet/sctp_ip.h> 90 #include <inet/ip_netinfo.h> 91 #include <inet/ilb_ip.h> 92 93 #include <netinet/igmp.h> 94 #include <inet/ip_listutils.h> 95 #include <inet/ipclassifier.h> 96 #include <sys/mac_client.h> 97 #include <sys/dld.h> 98 #include <sys/mac_flow.h> 99 100 #include <sys/systeminfo.h> 101 #include <sys/bootconf.h> 102 103 #include <sys/tsol/tndb.h> 104 #include <sys/tsol/tnet.h> 105 106 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */ 107 #include <inet/udp_impl.h> /* needed for udp_stack_t */ 108 109 /* The character which tells where the ill_name ends */ 110 #define IPIF_SEPARATOR_CHAR ':' 111 112 /* IP ioctl function table entry */ 113 typedef struct ipft_s { 114 int ipft_cmd; 115 pfi_t ipft_pfi; 116 int ipft_min_size; 117 int ipft_flags; 118 } ipft_t; 119 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 120 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 121 122 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 123 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 124 char *value, caddr_t cp, cred_t *ioc_cr); 125 126 static boolean_t ill_is_quiescent(ill_t *); 127 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 128 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 129 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 130 mblk_t *mp, boolean_t need_up); 131 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 132 mblk_t *mp, boolean_t need_up); 133 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 134 queue_t *q, mblk_t *mp, boolean_t need_up); 135 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 136 mblk_t *mp); 137 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp); 139 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 140 queue_t *q, mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 142 int ioccmd, struct linkblk *li); 143 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 144 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 145 static void ipsq_flush(ill_t *ill); 146 147 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 148 queue_t *q, mblk_t *mp, boolean_t need_up); 149 static void ipsq_delete(ipsq_t *); 150 151 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 152 boolean_t initialize, boolean_t insert, int *errorp); 153 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 154 static void ipif_delete_bcast_ires(ipif_t *ipif); 155 static int ipif_add_ires_v4(ipif_t *, boolean_t); 156 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 157 boolean_t isv6); 158 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 159 static void ipif_free(ipif_t *ipif); 160 static void ipif_free_tail(ipif_t *ipif); 161 static void ipif_set_default(ipif_t *ipif); 162 static int ipif_set_values(queue_t *q, mblk_t *mp, 163 char *interf_name, uint_t *ppa); 164 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 165 queue_t *q); 166 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 167 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 168 ip_stack_t *); 169 static ipif_t *ipif_lookup_on_name_async(char *name, size_t namelen, 170 boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, 171 int *error, ip_stack_t *); 172 173 static int ill_alloc_ppa(ill_if_t *, ill_t *); 174 static void ill_delete_interface_type(ill_if_t *); 175 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 176 static void ill_dl_down(ill_t *ill); 177 static void ill_down(ill_t *ill); 178 static void ill_down_ipifs(ill_t *, boolean_t); 179 static void ill_free_mib(ill_t *ill); 180 static void ill_glist_delete(ill_t *); 181 static void ill_phyint_reinit(ill_t *ill); 182 static void ill_set_nce_router_flags(ill_t *, boolean_t); 183 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 184 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 185 186 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 187 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 188 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 189 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 190 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 191 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 192 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 193 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 194 static ip_v4mapinfo_func_t ip_mbcast_mapping; 195 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 196 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 197 static void phyint_free(phyint_t *); 198 199 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 200 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 201 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 202 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 203 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 204 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 205 dl_capability_sub_t *); 206 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 207 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 208 static void ill_capability_dld_ack(ill_t *, mblk_t *, 209 dl_capability_sub_t *); 210 static void ill_capability_dld_enable(ill_t *); 211 static void ill_capability_ack_thr(void *); 212 static void ill_capability_lso_enable(ill_t *); 213 214 static ill_t *ill_prev_usesrc(ill_t *); 215 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 216 static void ill_disband_usesrc_group(ill_t *); 217 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 218 219 #ifdef DEBUG 220 static void ill_trace_cleanup(const ill_t *); 221 static void ipif_trace_cleanup(const ipif_t *); 222 #endif 223 224 static void ill_dlpi_clear_deferred(ill_t *ill); 225 226 /* 227 * if we go over the memory footprint limit more than once in this msec 228 * interval, we'll start pruning aggressively. 229 */ 230 int ip_min_frag_prune_time = 0; 231 232 static ipft_t ip_ioctl_ftbl[] = { 233 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 234 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 235 IPFT_F_NO_REPLY }, 236 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 237 { 0 } 238 }; 239 240 /* Simple ICMP IP Header Template */ 241 static ipha_t icmp_ipha = { 242 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 243 }; 244 245 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 246 247 static ip_m_t ip_m_tbl[] = { 248 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 249 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 250 ip_nodef_v6intfid }, 251 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 252 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 253 ip_nodef_v6intfid }, 254 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 255 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 256 ip_nodef_v6intfid }, 257 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 258 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 259 ip_nodef_v6intfid }, 260 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 261 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 262 ip_nodef_v6intfid }, 263 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 264 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 265 ip_nodef_v6intfid }, 266 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 267 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 268 ip_ipv4_v6destintfid }, 269 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 270 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 271 ip_ipv6_v6destintfid }, 272 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 273 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 274 ip_nodef_v6intfid }, 275 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 276 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 277 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 278 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 279 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 280 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 281 ip_nodef_v6intfid } 282 }; 283 284 static ill_t ill_null; /* Empty ILL for init. */ 285 char ipif_loopback_name[] = "lo0"; 286 287 /* These are used by all IP network modules. */ 288 sin6_t sin6_null; /* Zero address for quick clears */ 289 sin_t sin_null; /* Zero address for quick clears */ 290 291 /* When set search for unused ipif_seqid */ 292 static ipif_t ipif_zero; 293 294 /* 295 * ppa arena is created after these many 296 * interfaces have been plumbed. 297 */ 298 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 299 300 /* 301 * Allocate per-interface mibs. 302 * Returns true if ok. False otherwise. 303 * ipsq may not yet be allocated (loopback case ). 304 */ 305 static boolean_t 306 ill_allocate_mibs(ill_t *ill) 307 { 308 /* Already allocated? */ 309 if (ill->ill_ip_mib != NULL) { 310 if (ill->ill_isv6) 311 ASSERT(ill->ill_icmp6_mib != NULL); 312 return (B_TRUE); 313 } 314 315 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 316 KM_NOSLEEP); 317 if (ill->ill_ip_mib == NULL) { 318 return (B_FALSE); 319 } 320 321 /* Setup static information */ 322 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 323 sizeof (mib2_ipIfStatsEntry_t)); 324 if (ill->ill_isv6) { 325 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 326 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 327 sizeof (mib2_ipv6AddrEntry_t)); 328 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 329 sizeof (mib2_ipv6RouteEntry_t)); 330 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 331 sizeof (mib2_ipv6NetToMediaEntry_t)); 332 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 333 sizeof (ipv6_member_t)); 334 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 335 sizeof (ipv6_grpsrc_t)); 336 } else { 337 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 338 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 339 sizeof (mib2_ipAddrEntry_t)); 340 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 341 sizeof (mib2_ipRouteEntry_t)); 342 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 343 sizeof (mib2_ipNetToMediaEntry_t)); 344 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 345 sizeof (ip_member_t)); 346 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 347 sizeof (ip_grpsrc_t)); 348 349 /* 350 * For a v4 ill, we are done at this point, because per ill 351 * icmp mibs are only used for v6. 352 */ 353 return (B_TRUE); 354 } 355 356 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 357 KM_NOSLEEP); 358 if (ill->ill_icmp6_mib == NULL) { 359 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 360 ill->ill_ip_mib = NULL; 361 return (B_FALSE); 362 } 363 /* static icmp info */ 364 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 365 sizeof (mib2_ipv6IfIcmpEntry_t); 366 /* 367 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 368 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 369 * -> ill_phyint_reinit 370 */ 371 return (B_TRUE); 372 } 373 374 /* 375 * Completely vaporize a lower level tap and all associated interfaces. 376 * ill_delete is called only out of ip_close when the device control 377 * stream is being closed. 378 */ 379 void 380 ill_delete(ill_t *ill) 381 { 382 ipif_t *ipif; 383 ill_t *prev_ill; 384 ip_stack_t *ipst = ill->ill_ipst; 385 386 /* 387 * ill_delete may be forcibly entering the ipsq. The previous 388 * ioctl may not have completed and may need to be aborted. 389 * ipsq_flush takes care of it. If we don't need to enter the 390 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 391 * ill_delete_tail is sufficient. 392 */ 393 ipsq_flush(ill); 394 395 /* 396 * Nuke all interfaces. ipif_free will take down the interface, 397 * remove it from the list, and free the data structure. 398 * Walk down the ipif list and remove the logical interfaces 399 * first before removing the main ipif. We can't unplumb 400 * zeroth interface first in the case of IPv6 as update_conn_ill 401 * -> ip_ll_multireq de-references ill_ipif for checking 402 * POINTOPOINT. 403 * 404 * If ill_ipif was not properly initialized (i.e low on memory), 405 * then no interfaces to clean up. In this case just clean up the 406 * ill. 407 */ 408 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 409 ipif_free(ipif); 410 411 /* 412 * clean out all the nce_t entries that depend on this 413 * ill for the ill_phys_addr. 414 */ 415 nce_flush(ill, B_TRUE); 416 417 /* Clean up msgs on pending upcalls for mrouted */ 418 reset_mrt_ill(ill); 419 420 update_conn_ill(ill, ipst); 421 422 /* 423 * Remove multicast references added as a result of calls to 424 * ip_join_allmulti(). 425 */ 426 ip_purge_allmulti(ill); 427 428 /* 429 * If the ill being deleted is under IPMP, boot it out of the illgrp. 430 */ 431 if (IS_UNDER_IPMP(ill)) 432 ipmp_ill_leave_illgrp(ill); 433 434 /* 435 * ill_down will arrange to blow off any IRE's dependent on this 436 * ILL, and shut down fragmentation reassembly. 437 */ 438 ill_down(ill); 439 440 /* Let SCTP know, so that it can remove this from its list. */ 441 sctp_update_ill(ill, SCTP_ILL_REMOVE); 442 443 /* 444 * Walk all CONNs that can have a reference on an ire or nce for this 445 * ill (we actually walk all that now have stale references). 446 */ 447 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 448 449 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 450 if (ill->ill_isv6) 451 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 452 453 /* 454 * If an address on this ILL is being used as a source address then 455 * clear out the pointers in other ILLs that point to this ILL. 456 */ 457 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 458 if (ill->ill_usesrc_grp_next != NULL) { 459 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 460 ill_disband_usesrc_group(ill); 461 } else { /* consumer of the usesrc ILL */ 462 prev_ill = ill_prev_usesrc(ill); 463 prev_ill->ill_usesrc_grp_next = 464 ill->ill_usesrc_grp_next; 465 } 466 } 467 rw_exit(&ipst->ips_ill_g_usesrc_lock); 468 } 469 470 static void 471 ipif_non_duplicate(ipif_t *ipif) 472 { 473 ill_t *ill = ipif->ipif_ill; 474 mutex_enter(&ill->ill_lock); 475 if (ipif->ipif_flags & IPIF_DUPLICATE) { 476 ipif->ipif_flags &= ~IPIF_DUPLICATE; 477 ASSERT(ill->ill_ipif_dup_count > 0); 478 ill->ill_ipif_dup_count--; 479 } 480 mutex_exit(&ill->ill_lock); 481 } 482 483 /* 484 * ill_delete_tail is called from ip_modclose after all references 485 * to the closing ill are gone. The wait is done in ip_modclose 486 */ 487 void 488 ill_delete_tail(ill_t *ill) 489 { 490 mblk_t **mpp; 491 ipif_t *ipif; 492 ip_stack_t *ipst = ill->ill_ipst; 493 494 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 495 ipif_non_duplicate(ipif); 496 (void) ipif_down_tail(ipif); 497 } 498 499 ASSERT(ill->ill_ipif_dup_count == 0); 500 501 /* 502 * If polling capability is enabled (which signifies direct 503 * upcall into IP and driver has ill saved as a handle), 504 * we need to make sure that unbind has completed before we 505 * let the ill disappear and driver no longer has any reference 506 * to this ill. 507 */ 508 mutex_enter(&ill->ill_lock); 509 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 510 cv_wait(&ill->ill_cv, &ill->ill_lock); 511 mutex_exit(&ill->ill_lock); 512 ASSERT(!(ill->ill_capabilities & 513 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 514 515 if (ill->ill_net_type != IRE_LOOPBACK) 516 qprocsoff(ill->ill_rq); 517 518 /* 519 * We do an ipsq_flush once again now. New messages could have 520 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 521 * could also have landed up if an ioctl thread had looked up 522 * the ill before we set the ILL_CONDEMNED flag, but not yet 523 * enqueued the ioctl when we did the ipsq_flush last time. 524 */ 525 ipsq_flush(ill); 526 527 /* 528 * Free capabilities. 529 */ 530 if (ill->ill_hcksum_capab != NULL) { 531 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 532 ill->ill_hcksum_capab = NULL; 533 } 534 535 if (ill->ill_zerocopy_capab != NULL) { 536 kmem_free(ill->ill_zerocopy_capab, 537 sizeof (ill_zerocopy_capab_t)); 538 ill->ill_zerocopy_capab = NULL; 539 } 540 541 if (ill->ill_lso_capab != NULL) { 542 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 543 ill->ill_lso_capab = NULL; 544 } 545 546 if (ill->ill_dld_capab != NULL) { 547 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 548 ill->ill_dld_capab = NULL; 549 } 550 551 /* Clean up ill_allowed_ips* related state */ 552 if (ill->ill_allowed_ips != NULL) { 553 ASSERT(ill->ill_allowed_ips_cnt > 0); 554 kmem_free(ill->ill_allowed_ips, 555 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 556 ill->ill_allowed_ips = NULL; 557 ill->ill_allowed_ips_cnt = 0; 558 } 559 560 while (ill->ill_ipif != NULL) 561 ipif_free_tail(ill->ill_ipif); 562 563 /* 564 * We have removed all references to ilm from conn and the ones joined 565 * within the kernel. 566 * 567 * We don't walk conns, mrts and ires because 568 * 569 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 570 * 2) ill_down ->ill_downi walks all the ires and cleans up 571 * ill references. 572 */ 573 574 /* 575 * If this ill is an IPMP meta-interface, blow away the illgrp. This 576 * is safe to do because the illgrp has already been unlinked from the 577 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 578 */ 579 if (IS_IPMP(ill)) { 580 ipmp_illgrp_destroy(ill->ill_grp); 581 ill->ill_grp = NULL; 582 } 583 584 if (ill->ill_mphysaddr_list != NULL) { 585 multiphysaddr_t *mpa, *tmpa; 586 587 mpa = ill->ill_mphysaddr_list; 588 ill->ill_mphysaddr_list = NULL; 589 while (mpa) { 590 tmpa = mpa->mpa_next; 591 kmem_free(mpa, sizeof (*mpa)); 592 mpa = tmpa; 593 } 594 } 595 /* 596 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 597 * could free the phyint. No more reference to the phyint after this 598 * point. 599 */ 600 (void) ill_glist_delete(ill); 601 602 if (ill->ill_frag_ptr != NULL) { 603 uint_t count; 604 605 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 606 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 607 } 608 mi_free(ill->ill_frag_ptr); 609 ill->ill_frag_ptr = NULL; 610 ill->ill_frag_hash_tbl = NULL; 611 } 612 613 freemsg(ill->ill_nd_lla_mp); 614 /* Free all retained control messages. */ 615 mpp = &ill->ill_first_mp_to_free; 616 do { 617 while (mpp[0]) { 618 mblk_t *mp; 619 mblk_t *mp1; 620 621 mp = mpp[0]; 622 mpp[0] = mp->b_next; 623 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 624 mp1->b_next = NULL; 625 mp1->b_prev = NULL; 626 } 627 freemsg(mp); 628 } 629 } while (mpp++ != &ill->ill_last_mp_to_free); 630 631 ill_free_mib(ill); 632 633 #ifdef DEBUG 634 ill_trace_cleanup(ill); 635 #endif 636 637 /* The default multicast interface might have changed */ 638 ire_increment_multicast_generation(ipst, ill->ill_isv6); 639 640 /* Drop refcnt here */ 641 netstack_rele(ill->ill_ipst->ips_netstack); 642 ill->ill_ipst = NULL; 643 } 644 645 static void 646 ill_free_mib(ill_t *ill) 647 { 648 ip_stack_t *ipst = ill->ill_ipst; 649 650 /* 651 * MIB statistics must not be lost, so when an interface 652 * goes away the counter values will be added to the global 653 * MIBs. 654 */ 655 if (ill->ill_ip_mib != NULL) { 656 if (ill->ill_isv6) { 657 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 658 ill->ill_ip_mib); 659 } else { 660 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 661 ill->ill_ip_mib); 662 } 663 664 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 665 ill->ill_ip_mib = NULL; 666 } 667 if (ill->ill_icmp6_mib != NULL) { 668 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 669 ill->ill_icmp6_mib); 670 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 671 ill->ill_icmp6_mib = NULL; 672 } 673 } 674 675 /* 676 * Concatenate together a physical address and a sap. 677 * 678 * Sap_lengths are interpreted as follows: 679 * sap_length == 0 ==> no sap 680 * sap_length > 0 ==> sap is at the head of the dlpi address 681 * sap_length < 0 ==> sap is at the tail of the dlpi address 682 */ 683 static void 684 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 685 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 686 { 687 uint16_t sap_addr = (uint16_t)sap_src; 688 689 if (sap_length == 0) { 690 if (phys_src == NULL) 691 bzero(dst, phys_length); 692 else 693 bcopy(phys_src, dst, phys_length); 694 } else if (sap_length < 0) { 695 if (phys_src == NULL) 696 bzero(dst, phys_length); 697 else 698 bcopy(phys_src, dst, phys_length); 699 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 700 } else { 701 bcopy(&sap_addr, dst, sizeof (sap_addr)); 702 if (phys_src == NULL) 703 bzero((char *)dst + sap_length, phys_length); 704 else 705 bcopy(phys_src, (char *)dst + sap_length, phys_length); 706 } 707 } 708 709 /* 710 * Generate a dl_unitdata_req mblk for the device and address given. 711 * addr_length is the length of the physical portion of the address. 712 * If addr is NULL include an all zero address of the specified length. 713 * TRUE? In any case, addr_length is taken to be the entire length of the 714 * dlpi address, including the absolute value of sap_length. 715 */ 716 mblk_t * 717 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 718 t_scalar_t sap_length) 719 { 720 dl_unitdata_req_t *dlur; 721 mblk_t *mp; 722 t_scalar_t abs_sap_length; /* absolute value */ 723 724 abs_sap_length = ABS(sap_length); 725 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 726 DL_UNITDATA_REQ); 727 if (mp == NULL) 728 return (NULL); 729 dlur = (dl_unitdata_req_t *)mp->b_rptr; 730 /* HACK: accomodate incompatible DLPI drivers */ 731 if (addr_length == 8) 732 addr_length = 6; 733 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 734 dlur->dl_dest_addr_offset = sizeof (*dlur); 735 dlur->dl_priority.dl_min = 0; 736 dlur->dl_priority.dl_max = 0; 737 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 738 (uchar_t *)&dlur[1]); 739 return (mp); 740 } 741 742 /* 743 * Add the pending mp to the list. There can be only 1 pending mp 744 * in the list. Any exclusive ioctl that needs to wait for a response 745 * from another module or driver needs to use this function to set 746 * the ipx_pending_mp to the ioctl mblk and wait for the response from 747 * the other module/driver. This is also used while waiting for the 748 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 749 */ 750 boolean_t 751 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 752 int waitfor) 753 { 754 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 755 756 ASSERT(IAM_WRITER_IPIF(ipif)); 757 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 758 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 759 ASSERT(ipx->ipx_pending_mp == NULL); 760 /* 761 * The caller may be using a different ipif than the one passed into 762 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 763 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 764 * that `ipx_current_ipif == ipif'. 765 */ 766 ASSERT(ipx->ipx_current_ipif != NULL); 767 768 /* 769 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 770 * driver. 771 */ 772 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 773 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 774 (DB_TYPE(add_mp) == M_PCPROTO)); 775 776 if (connp != NULL) { 777 ASSERT(MUTEX_HELD(&connp->conn_lock)); 778 /* 779 * Return error if the conn has started closing. The conn 780 * could have finished cleaning up the pending mp list, 781 * If so we should not add another mp to the list negating 782 * the cleanup. 783 */ 784 if (connp->conn_state_flags & CONN_CLOSING) 785 return (B_FALSE); 786 } 787 mutex_enter(&ipx->ipx_lock); 788 ipx->ipx_pending_ipif = ipif; 789 /* 790 * Note down the queue in b_queue. This will be returned by 791 * ipsq_pending_mp_get. Caller will then use these values to restart 792 * the processing 793 */ 794 add_mp->b_next = NULL; 795 add_mp->b_queue = q; 796 ipx->ipx_pending_mp = add_mp; 797 ipx->ipx_waitfor = waitfor; 798 mutex_exit(&ipx->ipx_lock); 799 800 if (connp != NULL) 801 connp->conn_oper_pending_ill = ipif->ipif_ill; 802 803 return (B_TRUE); 804 } 805 806 /* 807 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 808 * queued in the list. 809 */ 810 mblk_t * 811 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 812 { 813 mblk_t *curr = NULL; 814 ipxop_t *ipx = ipsq->ipsq_xop; 815 816 *connpp = NULL; 817 mutex_enter(&ipx->ipx_lock); 818 if (ipx->ipx_pending_mp == NULL) { 819 mutex_exit(&ipx->ipx_lock); 820 return (NULL); 821 } 822 823 /* There can be only 1 such excl message */ 824 curr = ipx->ipx_pending_mp; 825 ASSERT(curr->b_next == NULL); 826 ipx->ipx_pending_ipif = NULL; 827 ipx->ipx_pending_mp = NULL; 828 ipx->ipx_waitfor = 0; 829 mutex_exit(&ipx->ipx_lock); 830 831 if (CONN_Q(curr->b_queue)) { 832 /* 833 * This mp did a refhold on the conn, at the start of the ioctl. 834 * So we can safely return a pointer to the conn to the caller. 835 */ 836 *connpp = Q_TO_CONN(curr->b_queue); 837 } else { 838 *connpp = NULL; 839 } 840 curr->b_next = NULL; 841 curr->b_prev = NULL; 842 return (curr); 843 } 844 845 /* 846 * Cleanup the ioctl mp queued in ipx_pending_mp 847 * - Called in the ill_delete path 848 * - Called in the M_ERROR or M_HANGUP path on the ill. 849 * - Called in the conn close path. 850 * 851 * Returns success on finding the pending mblk associated with the ioctl or 852 * exclusive operation in progress, failure otherwise. 853 */ 854 boolean_t 855 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 856 { 857 mblk_t *mp; 858 ipxop_t *ipx; 859 queue_t *q; 860 ipif_t *ipif; 861 int cmd; 862 863 ASSERT(IAM_WRITER_ILL(ill)); 864 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 865 866 mutex_enter(&ipx->ipx_lock); 867 mp = ipx->ipx_pending_mp; 868 if (connp != NULL) { 869 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) { 870 /* 871 * Nothing to clean since the conn that is closing 872 * does not have a matching pending mblk in 873 * ipx_pending_mp. 874 */ 875 mutex_exit(&ipx->ipx_lock); 876 return (B_FALSE); 877 } 878 } else { 879 /* 880 * A non-zero ill_error signifies we are called in the 881 * M_ERROR or M_HANGUP path and we need to unconditionally 882 * abort any current ioctl and do the corresponding cleanup. 883 * A zero ill_error means we are in the ill_delete path and 884 * we do the cleanup only if there is a pending mp. 885 */ 886 if (mp == NULL && ill->ill_error == 0) { 887 mutex_exit(&ipx->ipx_lock); 888 return (B_FALSE); 889 } 890 } 891 892 /* Now remove from the ipx_pending_mp */ 893 ipx->ipx_pending_mp = NULL; 894 ipif = ipx->ipx_pending_ipif; 895 ipx->ipx_pending_ipif = NULL; 896 ipx->ipx_waitfor = 0; 897 ipx->ipx_current_ipif = NULL; 898 cmd = ipx->ipx_current_ioctl; 899 ipx->ipx_current_ioctl = 0; 900 ipx->ipx_current_done = B_TRUE; 901 mutex_exit(&ipx->ipx_lock); 902 903 if (mp == NULL) 904 return (B_FALSE); 905 906 q = mp->b_queue; 907 mp->b_next = NULL; 908 mp->b_prev = NULL; 909 mp->b_queue = NULL; 910 911 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 912 DTRACE_PROBE4(ipif__ioctl, 913 char *, "ipsq_pending_mp_cleanup", 914 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 915 ipif_t *, ipif); 916 if (connp == NULL) { 917 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 918 } else { 919 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 920 mutex_enter(&ipif->ipif_ill->ill_lock); 921 ipif->ipif_state_flags &= ~IPIF_CHANGING; 922 mutex_exit(&ipif->ipif_ill->ill_lock); 923 } 924 } else { 925 inet_freemsg(mp); 926 } 927 return (B_TRUE); 928 } 929 930 /* 931 * Called in the conn close path and ill delete path 932 */ 933 static void 934 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 935 { 936 ipsq_t *ipsq; 937 mblk_t *prev; 938 mblk_t *curr; 939 mblk_t *next; 940 queue_t *wq, *rq = NULL; 941 mblk_t *tmp_list = NULL; 942 943 ASSERT(IAM_WRITER_ILL(ill)); 944 if (connp != NULL) 945 wq = CONNP_TO_WQ(connp); 946 else 947 wq = ill->ill_wq; 948 949 /* 950 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard 951 * against this here. 952 */ 953 if (wq != NULL) 954 rq = RD(wq); 955 956 ipsq = ill->ill_phyint->phyint_ipsq; 957 /* 958 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 959 * In the case of ioctl from a conn, there can be only 1 mp 960 * queued on the ipsq. If an ill is being unplumbed flush all 961 * the messages. 962 */ 963 mutex_enter(&ipsq->ipsq_lock); 964 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 965 curr = next) { 966 next = curr->b_next; 967 if (connp == NULL || 968 (curr->b_queue == wq || curr->b_queue == rq)) { 969 /* Unlink the mblk from the pending mp list */ 970 if (prev != NULL) { 971 prev->b_next = curr->b_next; 972 } else { 973 ASSERT(ipsq->ipsq_xopq_mphead == curr); 974 ipsq->ipsq_xopq_mphead = curr->b_next; 975 } 976 if (ipsq->ipsq_xopq_mptail == curr) 977 ipsq->ipsq_xopq_mptail = prev; 978 /* 979 * Create a temporary list and release the ipsq lock 980 * New elements are added to the head of the tmp_list 981 */ 982 curr->b_next = tmp_list; 983 tmp_list = curr; 984 } else { 985 prev = curr; 986 } 987 } 988 mutex_exit(&ipsq->ipsq_lock); 989 990 while (tmp_list != NULL) { 991 curr = tmp_list; 992 tmp_list = curr->b_next; 993 curr->b_next = NULL; 994 curr->b_prev = NULL; 995 wq = curr->b_queue; 996 curr->b_queue = NULL; 997 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 998 DTRACE_PROBE4(ipif__ioctl, 999 char *, "ipsq_xopq_mp_cleanup", 1000 int, 0, ill_t *, NULL, ipif_t *, NULL); 1001 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? 1002 CONN_CLOSE : NO_COPYOUT, NULL); 1003 } else { 1004 /* 1005 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1006 * this can't be just inet_freemsg. we have to 1007 * restart it otherwise the thread will be stuck. 1008 */ 1009 inet_freemsg(curr); 1010 } 1011 } 1012 } 1013 1014 /* 1015 * This conn has started closing. Cleanup any pending ioctl from this conn. 1016 * STREAMS ensures that there can be at most 1 active ioctl on a stream. 1017 */ 1018 void 1019 conn_ioctl_cleanup(conn_t *connp) 1020 { 1021 ipsq_t *ipsq; 1022 ill_t *ill; 1023 boolean_t refheld; 1024 1025 /* 1026 * Check for a queued ioctl. If the ioctl has not yet started, the mp 1027 * is pending in the list headed by ipsq_xopq_head. If the ioctl has 1028 * started the mp could be present in ipx_pending_mp. Note that if 1029 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and 1030 * not yet queued anywhere. In this case, the conn close code will wait 1031 * until the conn_ref is dropped. If the stream was a tcp stream, then 1032 * tcp_close will wait first until all ioctls have completed for this 1033 * conn. 1034 */ 1035 mutex_enter(&connp->conn_lock); 1036 ill = connp->conn_oper_pending_ill; 1037 if (ill == NULL) { 1038 mutex_exit(&connp->conn_lock); 1039 return; 1040 } 1041 1042 /* 1043 * We may not be able to refhold the ill if the ill/ipif 1044 * is changing. But we need to make sure that the ill will 1045 * not vanish. So we just bump up the ill_waiter count. 1046 */ 1047 refheld = ill_waiter_inc(ill); 1048 mutex_exit(&connp->conn_lock); 1049 if (refheld) { 1050 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1051 ill_waiter_dcr(ill); 1052 /* 1053 * Check whether this ioctl has started and is 1054 * pending. If it is not found there then check 1055 * whether this ioctl has not even started and is in 1056 * the ipsq_xopq list. 1057 */ 1058 if (!ipsq_pending_mp_cleanup(ill, connp)) 1059 ipsq_xopq_mp_cleanup(ill, connp); 1060 ipsq = ill->ill_phyint->phyint_ipsq; 1061 ipsq_exit(ipsq); 1062 return; 1063 } 1064 } 1065 1066 /* 1067 * The ill is also closing and we could not bump up the 1068 * ill_waiter_count or we could not enter the ipsq. Leave 1069 * the cleanup to ill_delete 1070 */ 1071 mutex_enter(&connp->conn_lock); 1072 while (connp->conn_oper_pending_ill != NULL) 1073 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1074 mutex_exit(&connp->conn_lock); 1075 if (refheld) 1076 ill_waiter_dcr(ill); 1077 } 1078 1079 /* 1080 * ipcl_walk function for cleaning up conn_*_ill fields. 1081 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1082 * conn_bound_if in place. We prefer dropping 1083 * packets instead of sending them out the wrong interface, or accepting 1084 * packets from the wrong ifindex. 1085 */ 1086 static void 1087 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1088 { 1089 ill_t *ill = (ill_t *)arg; 1090 1091 mutex_enter(&connp->conn_lock); 1092 if (connp->conn_dhcpinit_ill == ill) { 1093 connp->conn_dhcpinit_ill = NULL; 1094 ASSERT(ill->ill_dhcpinit != 0); 1095 atomic_dec_32(&ill->ill_dhcpinit); 1096 ill_set_inputfn(ill); 1097 } 1098 mutex_exit(&connp->conn_lock); 1099 } 1100 1101 static int 1102 ill_down_ipifs_tail(ill_t *ill) 1103 { 1104 ipif_t *ipif; 1105 int err; 1106 1107 ASSERT(IAM_WRITER_ILL(ill)); 1108 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1109 ipif_non_duplicate(ipif); 1110 /* 1111 * ipif_down_tail will call arp_ll_down on the last ipif 1112 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1113 */ 1114 if ((err = ipif_down_tail(ipif)) != 0) 1115 return (err); 1116 } 1117 return (0); 1118 } 1119 1120 /* ARGSUSED */ 1121 void 1122 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1123 { 1124 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1125 (void) ill_down_ipifs_tail(q->q_ptr); 1126 freemsg(mp); 1127 ipsq_current_finish(ipsq); 1128 } 1129 1130 /* 1131 * ill_down_start is called when we want to down this ill and bring it up again 1132 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1133 * all interfaces, but don't tear down any plumbing. 1134 */ 1135 boolean_t 1136 ill_down_start(queue_t *q, mblk_t *mp) 1137 { 1138 ill_t *ill = q->q_ptr; 1139 ipif_t *ipif; 1140 1141 ASSERT(IAM_WRITER_ILL(ill)); 1142 /* 1143 * It is possible that some ioctl is already in progress while we 1144 * received the M_ERROR / M_HANGUP in which case, we need to abort 1145 * the ioctl. ill_down_start() is being processed as CUR_OP rather 1146 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent 1147 * the in progress ioctl from ever completing. 1148 * 1149 * The thread that started the ioctl (if any) must have returned, 1150 * since we are now executing as writer. After the 2 calls below, 1151 * the state of the ipsq and the ill would reflect no trace of any 1152 * pending operation. Subsequently if there is any response to the 1153 * original ioctl from the driver, it would be discarded as an 1154 * unsolicited message from the driver. 1155 */ 1156 (void) ipsq_pending_mp_cleanup(ill, NULL); 1157 ill_dlpi_clear_deferred(ill); 1158 1159 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1160 (void) ipif_down(ipif, NULL, NULL); 1161 1162 ill_down(ill); 1163 1164 /* 1165 * Walk all CONNs that can have a reference on an ire or nce for this 1166 * ill (we actually walk all that now have stale references). 1167 */ 1168 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1169 1170 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1171 if (ill->ill_isv6) 1172 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1173 1174 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1175 1176 /* 1177 * Atomically test and add the pending mp if references are active. 1178 */ 1179 mutex_enter(&ill->ill_lock); 1180 if (!ill_is_quiescent(ill)) { 1181 /* call cannot fail since `conn_t *' argument is NULL */ 1182 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1183 mp, ILL_DOWN); 1184 mutex_exit(&ill->ill_lock); 1185 return (B_FALSE); 1186 } 1187 mutex_exit(&ill->ill_lock); 1188 return (B_TRUE); 1189 } 1190 1191 static void 1192 ill_down(ill_t *ill) 1193 { 1194 mblk_t *mp; 1195 ip_stack_t *ipst = ill->ill_ipst; 1196 1197 /* 1198 * Blow off any IREs dependent on this ILL. 1199 * The caller needs to handle conn_ixa_cleanup 1200 */ 1201 ill_delete_ires(ill); 1202 1203 ire_walk_ill(0, 0, ill_downi, ill, ill); 1204 1205 /* Remove any conn_*_ill depending on this ill */ 1206 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1207 1208 /* 1209 * Free state for additional IREs. 1210 */ 1211 mutex_enter(&ill->ill_saved_ire_lock); 1212 mp = ill->ill_saved_ire_mp; 1213 ill->ill_saved_ire_mp = NULL; 1214 ill->ill_saved_ire_cnt = 0; 1215 mutex_exit(&ill->ill_saved_ire_lock); 1216 freemsg(mp); 1217 } 1218 1219 /* 1220 * ire_walk routine used to delete every IRE that depends on 1221 * 'ill'. (Always called as writer, and may only be called from ire_walk.) 1222 * 1223 * Note: since the routes added by the kernel are deleted separately, 1224 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1225 * 1226 * We also remove references on ire_nce_cache entries that refer to the ill. 1227 */ 1228 void 1229 ill_downi(ire_t *ire, char *ill_arg) 1230 { 1231 ill_t *ill = (ill_t *)ill_arg; 1232 nce_t *nce; 1233 1234 mutex_enter(&ire->ire_lock); 1235 nce = ire->ire_nce_cache; 1236 if (nce != NULL && nce->nce_ill == ill) 1237 ire->ire_nce_cache = NULL; 1238 else 1239 nce = NULL; 1240 mutex_exit(&ire->ire_lock); 1241 if (nce != NULL) 1242 nce_refrele(nce); 1243 if (ire->ire_ill == ill) { 1244 /* 1245 * The existing interface binding for ire must be 1246 * deleted before trying to bind the route to another 1247 * interface. However, since we are using the contents of the 1248 * ire after ire_delete, the caller has to ensure that 1249 * CONDEMNED (deleted) ire's are not removed from the list 1250 * when ire_delete() returns. Currently ill_downi() is 1251 * only called as part of ire_walk*() routines, so that 1252 * the irb_refhold() done by ire_walk*() will ensure that 1253 * ire_delete() does not lead to ire_inactive(). 1254 */ 1255 ASSERT(ire->ire_bucket->irb_refcnt > 0); 1256 ire_delete(ire); 1257 if (ire->ire_unbound) 1258 ire_rebind(ire); 1259 } 1260 } 1261 1262 /* Remove IRE_IF_CLONE on this ill */ 1263 void 1264 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1265 { 1266 ill_t *ill = (ill_t *)ill_arg; 1267 1268 ASSERT(ire->ire_type & IRE_IF_CLONE); 1269 if (ire->ire_ill == ill) 1270 ire_delete(ire); 1271 } 1272 1273 /* Consume an M_IOCACK of the fastpath probe. */ 1274 void 1275 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1276 { 1277 mblk_t *mp1 = mp; 1278 1279 /* 1280 * If this was the first attempt turn on the fastpath probing. 1281 */ 1282 mutex_enter(&ill->ill_lock); 1283 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1284 ill->ill_dlpi_fastpath_state = IDS_OK; 1285 mutex_exit(&ill->ill_lock); 1286 1287 /* Free the M_IOCACK mblk, hold on to the data */ 1288 mp = mp->b_cont; 1289 freeb(mp1); 1290 if (mp == NULL) 1291 return; 1292 if (mp->b_cont != NULL) 1293 nce_fastpath_update(ill, mp); 1294 else 1295 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1296 freemsg(mp); 1297 } 1298 1299 /* 1300 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1301 * The data portion of the request is a dl_unitdata_req_t template for 1302 * what we would send downstream in the absence of a fastpath confirmation. 1303 */ 1304 int 1305 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1306 { 1307 struct iocblk *ioc; 1308 mblk_t *mp; 1309 1310 if (dlur_mp == NULL) 1311 return (EINVAL); 1312 1313 mutex_enter(&ill->ill_lock); 1314 switch (ill->ill_dlpi_fastpath_state) { 1315 case IDS_FAILED: 1316 /* 1317 * Driver NAKed the first fastpath ioctl - assume it doesn't 1318 * support it. 1319 */ 1320 mutex_exit(&ill->ill_lock); 1321 return (ENOTSUP); 1322 case IDS_UNKNOWN: 1323 /* This is the first probe */ 1324 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1325 break; 1326 default: 1327 break; 1328 } 1329 mutex_exit(&ill->ill_lock); 1330 1331 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1332 return (EAGAIN); 1333 1334 mp->b_cont = copyb(dlur_mp); 1335 if (mp->b_cont == NULL) { 1336 freeb(mp); 1337 return (EAGAIN); 1338 } 1339 1340 ioc = (struct iocblk *)mp->b_rptr; 1341 ioc->ioc_count = msgdsize(mp->b_cont); 1342 1343 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1344 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1345 putnext(ill->ill_wq, mp); 1346 return (0); 1347 } 1348 1349 void 1350 ill_capability_probe(ill_t *ill) 1351 { 1352 mblk_t *mp; 1353 1354 ASSERT(IAM_WRITER_ILL(ill)); 1355 1356 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1357 ill->ill_dlpi_capab_state != IDCS_FAILED) 1358 return; 1359 1360 /* 1361 * We are starting a new cycle of capability negotiation. 1362 * Free up the capab reset messages of any previous incarnation. 1363 * We will do a fresh allocation when we get the response to our probe 1364 */ 1365 if (ill->ill_capab_reset_mp != NULL) { 1366 freemsg(ill->ill_capab_reset_mp); 1367 ill->ill_capab_reset_mp = NULL; 1368 } 1369 1370 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1371 1372 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1373 if (mp == NULL) 1374 return; 1375 1376 ill_capability_send(ill, mp); 1377 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1378 } 1379 1380 void 1381 ill_capability_reset(ill_t *ill, boolean_t reneg) 1382 { 1383 ASSERT(IAM_WRITER_ILL(ill)); 1384 1385 if (ill->ill_dlpi_capab_state != IDCS_OK) 1386 return; 1387 1388 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1389 1390 ill_capability_send(ill, ill->ill_capab_reset_mp); 1391 ill->ill_capab_reset_mp = NULL; 1392 /* 1393 * We turn off all capabilities except those pertaining to 1394 * direct function call capabilities viz. ILL_CAPAB_DLD* 1395 * which will be turned off by the corresponding reset functions. 1396 */ 1397 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1398 } 1399 1400 static void 1401 ill_capability_reset_alloc(ill_t *ill) 1402 { 1403 mblk_t *mp; 1404 size_t size = 0; 1405 int err; 1406 dl_capability_req_t *capb; 1407 1408 ASSERT(IAM_WRITER_ILL(ill)); 1409 ASSERT(ill->ill_capab_reset_mp == NULL); 1410 1411 if (ILL_HCKSUM_CAPABLE(ill)) { 1412 size += sizeof (dl_capability_sub_t) + 1413 sizeof (dl_capab_hcksum_t); 1414 } 1415 1416 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1417 size += sizeof (dl_capability_sub_t) + 1418 sizeof (dl_capab_zerocopy_t); 1419 } 1420 1421 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1422 size += sizeof (dl_capability_sub_t) + 1423 sizeof (dl_capab_dld_t); 1424 } 1425 1426 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1427 STR_NOSIG, &err); 1428 1429 mp->b_datap->db_type = M_PROTO; 1430 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1431 1432 capb = (dl_capability_req_t *)mp->b_rptr; 1433 capb->dl_primitive = DL_CAPABILITY_REQ; 1434 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1435 capb->dl_sub_length = size; 1436 1437 mp->b_wptr += sizeof (dl_capability_req_t); 1438 1439 /* 1440 * Each handler fills in the corresponding dl_capability_sub_t 1441 * inside the mblk, 1442 */ 1443 ill_capability_hcksum_reset_fill(ill, mp); 1444 ill_capability_zerocopy_reset_fill(ill, mp); 1445 ill_capability_dld_reset_fill(ill, mp); 1446 1447 ill->ill_capab_reset_mp = mp; 1448 } 1449 1450 static void 1451 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1452 { 1453 dl_capab_id_t *id_ic; 1454 uint_t sub_dl_cap = outers->dl_cap; 1455 dl_capability_sub_t *inners; 1456 uint8_t *capend; 1457 1458 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1459 1460 /* 1461 * Note: range checks here are not absolutely sufficient to 1462 * make us robust against malformed messages sent by drivers; 1463 * this is in keeping with the rest of IP's dlpi handling. 1464 * (Remember, it's coming from something else in the kernel 1465 * address space) 1466 */ 1467 1468 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1469 if (capend > mp->b_wptr) { 1470 cmn_err(CE_WARN, "ill_capability_id_ack: " 1471 "malformed sub-capability too long for mblk"); 1472 return; 1473 } 1474 1475 id_ic = (dl_capab_id_t *)(outers + 1); 1476 1477 if (outers->dl_length < sizeof (*id_ic) || 1478 (inners = &id_ic->id_subcap, 1479 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1480 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1481 "encapsulated capab type %d too long for mblk", 1482 inners->dl_cap); 1483 return; 1484 } 1485 1486 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1487 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1488 "isn't as expected; pass-thru module(s) detected, " 1489 "discarding capability\n", inners->dl_cap)); 1490 return; 1491 } 1492 1493 /* Process the encapsulated sub-capability */ 1494 ill_capability_dispatch(ill, mp, inners); 1495 } 1496 1497 static void 1498 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1499 { 1500 dl_capability_sub_t *dl_subcap; 1501 1502 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1503 return; 1504 1505 /* 1506 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1507 * initialized below since it is not used by DLD. 1508 */ 1509 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1510 dl_subcap->dl_cap = DL_CAPAB_DLD; 1511 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1512 1513 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1514 } 1515 1516 static void 1517 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1518 { 1519 /* 1520 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1521 * is only to get the VRRP capability. 1522 * 1523 * Note that we cannot check ill_ipif_up_count here since 1524 * ill_ipif_up_count is only incremented when the resolver is setup. 1525 * That is done asynchronously, and can race with this function. 1526 */ 1527 if (!ill->ill_dl_up) { 1528 if (subp->dl_cap == DL_CAPAB_VRRP) 1529 ill_capability_vrrp_ack(ill, mp, subp); 1530 return; 1531 } 1532 1533 switch (subp->dl_cap) { 1534 case DL_CAPAB_HCKSUM: 1535 ill_capability_hcksum_ack(ill, mp, subp); 1536 break; 1537 case DL_CAPAB_ZEROCOPY: 1538 ill_capability_zerocopy_ack(ill, mp, subp); 1539 break; 1540 case DL_CAPAB_DLD: 1541 ill_capability_dld_ack(ill, mp, subp); 1542 break; 1543 case DL_CAPAB_VRRP: 1544 break; 1545 default: 1546 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1547 subp->dl_cap)); 1548 } 1549 } 1550 1551 /* 1552 * Process the vrrp capability received from a DLS Provider. isub must point 1553 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1554 */ 1555 static void 1556 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1557 { 1558 dl_capab_vrrp_t *vrrp; 1559 uint_t sub_dl_cap = isub->dl_cap; 1560 uint8_t *capend; 1561 1562 ASSERT(IAM_WRITER_ILL(ill)); 1563 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1564 1565 /* 1566 * Note: range checks here are not absolutely sufficient to 1567 * make us robust against malformed messages sent by drivers; 1568 * this is in keeping with the rest of IP's dlpi handling. 1569 * (Remember, it's coming from something else in the kernel 1570 * address space) 1571 */ 1572 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1573 if (capend > mp->b_wptr) { 1574 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1575 "malformed sub-capability too long for mblk"); 1576 return; 1577 } 1578 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1579 1580 /* 1581 * Compare the IP address family and set ILLF_VRRP for the right ill. 1582 */ 1583 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1584 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1585 ill->ill_flags |= ILLF_VRRP; 1586 } 1587 } 1588 1589 /* 1590 * Process a hardware checksum offload capability negotiation ack received 1591 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1592 * of a DL_CAPABILITY_ACK message. 1593 */ 1594 static void 1595 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1596 { 1597 dl_capability_req_t *ocap; 1598 dl_capab_hcksum_t *ihck, *ohck; 1599 ill_hcksum_capab_t **ill_hcksum; 1600 mblk_t *nmp = NULL; 1601 uint_t sub_dl_cap = isub->dl_cap; 1602 uint8_t *capend; 1603 1604 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1605 1606 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1607 1608 /* 1609 * Note: range checks here are not absolutely sufficient to 1610 * make us robust against malformed messages sent by drivers; 1611 * this is in keeping with the rest of IP's dlpi handling. 1612 * (Remember, it's coming from something else in the kernel 1613 * address space) 1614 */ 1615 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1616 if (capend > mp->b_wptr) { 1617 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1618 "malformed sub-capability too long for mblk"); 1619 return; 1620 } 1621 1622 /* 1623 * There are two types of acks we process here: 1624 * 1. acks in reply to a (first form) generic capability req 1625 * (no ENABLE flag set) 1626 * 2. acks in reply to a ENABLE capability req. 1627 * (ENABLE flag set) 1628 */ 1629 ihck = (dl_capab_hcksum_t *)(isub + 1); 1630 1631 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1632 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1633 "unsupported hardware checksum " 1634 "sub-capability (version %d, expected %d)", 1635 ihck->hcksum_version, HCKSUM_VERSION_1); 1636 return; 1637 } 1638 1639 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1640 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1641 "checksum capability isn't as expected; pass-thru " 1642 "module(s) detected, discarding capability\n")); 1643 return; 1644 } 1645 1646 #define CURR_HCKSUM_CAPAB \ 1647 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1648 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1649 1650 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1651 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1652 /* do ENABLE processing */ 1653 if (*ill_hcksum == NULL) { 1654 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1655 KM_NOSLEEP); 1656 1657 if (*ill_hcksum == NULL) { 1658 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1659 "could not enable hcksum version %d " 1660 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1661 ill->ill_name); 1662 return; 1663 } 1664 } 1665 1666 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1667 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1668 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1669 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1670 "has enabled hardware checksumming\n ", 1671 ill->ill_name)); 1672 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1673 /* 1674 * Enabling hardware checksum offload 1675 * Currently IP supports {TCP,UDP}/IPv4 1676 * partial and full cksum offload and 1677 * IPv4 header checksum offload. 1678 * Allocate new mblk which will 1679 * contain a new capability request 1680 * to enable hardware checksum offload. 1681 */ 1682 uint_t size; 1683 uchar_t *rptr; 1684 1685 size = sizeof (dl_capability_req_t) + 1686 sizeof (dl_capability_sub_t) + isub->dl_length; 1687 1688 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1689 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1690 "could not enable hardware cksum for %s (ENOMEM)\n", 1691 ill->ill_name); 1692 return; 1693 } 1694 1695 rptr = nmp->b_rptr; 1696 /* initialize dl_capability_req_t */ 1697 ocap = (dl_capability_req_t *)nmp->b_rptr; 1698 ocap->dl_sub_offset = 1699 sizeof (dl_capability_req_t); 1700 ocap->dl_sub_length = 1701 sizeof (dl_capability_sub_t) + 1702 isub->dl_length; 1703 nmp->b_rptr += sizeof (dl_capability_req_t); 1704 1705 /* initialize dl_capability_sub_t */ 1706 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1707 nmp->b_rptr += sizeof (*isub); 1708 1709 /* initialize dl_capab_hcksum_t */ 1710 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1711 bcopy(ihck, ohck, sizeof (*ihck)); 1712 1713 nmp->b_rptr = rptr; 1714 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1715 1716 /* Set ENABLE flag */ 1717 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1718 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1719 1720 /* 1721 * nmp points to a DL_CAPABILITY_REQ message to enable 1722 * hardware checksum acceleration. 1723 */ 1724 ill_capability_send(ill, nmp); 1725 } else { 1726 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1727 "advertised %x hardware checksum capability flags\n", 1728 ill->ill_name, ihck->hcksum_txflags)); 1729 } 1730 } 1731 1732 static void 1733 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1734 { 1735 dl_capab_hcksum_t *hck_subcap; 1736 dl_capability_sub_t *dl_subcap; 1737 1738 if (!ILL_HCKSUM_CAPABLE(ill)) 1739 return; 1740 1741 ASSERT(ill->ill_hcksum_capab != NULL); 1742 1743 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1744 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1745 dl_subcap->dl_length = sizeof (*hck_subcap); 1746 1747 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1748 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1749 hck_subcap->hcksum_txflags = 0; 1750 1751 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1752 } 1753 1754 static void 1755 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1756 { 1757 mblk_t *nmp = NULL; 1758 dl_capability_req_t *oc; 1759 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1760 ill_zerocopy_capab_t **ill_zerocopy_capab; 1761 uint_t sub_dl_cap = isub->dl_cap; 1762 uint8_t *capend; 1763 1764 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1765 1766 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1767 1768 /* 1769 * Note: range checks here are not absolutely sufficient to 1770 * make us robust against malformed messages sent by drivers; 1771 * this is in keeping with the rest of IP's dlpi handling. 1772 * (Remember, it's coming from something else in the kernel 1773 * address space) 1774 */ 1775 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1776 if (capend > mp->b_wptr) { 1777 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1778 "malformed sub-capability too long for mblk"); 1779 return; 1780 } 1781 1782 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1783 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1784 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1785 "unsupported ZEROCOPY sub-capability (version %d, " 1786 "expected %d)", zc_ic->zerocopy_version, 1787 ZEROCOPY_VERSION_1); 1788 return; 1789 } 1790 1791 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1792 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1793 "capability isn't as expected; pass-thru module(s) " 1794 "detected, discarding capability\n")); 1795 return; 1796 } 1797 1798 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1799 if (*ill_zerocopy_capab == NULL) { 1800 *ill_zerocopy_capab = 1801 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1802 KM_NOSLEEP); 1803 1804 if (*ill_zerocopy_capab == NULL) { 1805 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1806 "could not enable Zero-copy version %d " 1807 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1808 ill->ill_name); 1809 return; 1810 } 1811 } 1812 1813 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1814 "supports Zero-copy version %d\n", ill->ill_name, 1815 ZEROCOPY_VERSION_1)); 1816 1817 (*ill_zerocopy_capab)->ill_zerocopy_version = 1818 zc_ic->zerocopy_version; 1819 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1820 zc_ic->zerocopy_flags; 1821 1822 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1823 } else { 1824 uint_t size; 1825 uchar_t *rptr; 1826 1827 size = sizeof (dl_capability_req_t) + 1828 sizeof (dl_capability_sub_t) + 1829 sizeof (dl_capab_zerocopy_t); 1830 1831 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1832 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1833 "could not enable zerocopy for %s (ENOMEM)\n", 1834 ill->ill_name); 1835 return; 1836 } 1837 1838 rptr = nmp->b_rptr; 1839 /* initialize dl_capability_req_t */ 1840 oc = (dl_capability_req_t *)rptr; 1841 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1842 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1843 sizeof (dl_capab_zerocopy_t); 1844 rptr += sizeof (dl_capability_req_t); 1845 1846 /* initialize dl_capability_sub_t */ 1847 bcopy(isub, rptr, sizeof (*isub)); 1848 rptr += sizeof (*isub); 1849 1850 /* initialize dl_capab_zerocopy_t */ 1851 zc_oc = (dl_capab_zerocopy_t *)rptr; 1852 *zc_oc = *zc_ic; 1853 1854 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1855 "to enable zero-copy version %d\n", ill->ill_name, 1856 ZEROCOPY_VERSION_1)); 1857 1858 /* set VMSAFE_MEM flag */ 1859 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1860 1861 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1862 ill_capability_send(ill, nmp); 1863 } 1864 } 1865 1866 static void 1867 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1868 { 1869 dl_capab_zerocopy_t *zerocopy_subcap; 1870 dl_capability_sub_t *dl_subcap; 1871 1872 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1873 return; 1874 1875 ASSERT(ill->ill_zerocopy_capab != NULL); 1876 1877 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1878 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1879 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1880 1881 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1882 zerocopy_subcap->zerocopy_version = 1883 ill->ill_zerocopy_capab->ill_zerocopy_version; 1884 zerocopy_subcap->zerocopy_flags = 0; 1885 1886 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1887 } 1888 1889 /* 1890 * DLD capability 1891 * Refer to dld.h for more information regarding the purpose and usage 1892 * of this capability. 1893 */ 1894 static void 1895 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1896 { 1897 dl_capab_dld_t *dld_ic, dld; 1898 uint_t sub_dl_cap = isub->dl_cap; 1899 uint8_t *capend; 1900 ill_dld_capab_t *idc; 1901 1902 ASSERT(IAM_WRITER_ILL(ill)); 1903 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1904 1905 /* 1906 * Note: range checks here are not absolutely sufficient to 1907 * make us robust against malformed messages sent by drivers; 1908 * this is in keeping with the rest of IP's dlpi handling. 1909 * (Remember, it's coming from something else in the kernel 1910 * address space) 1911 */ 1912 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1913 if (capend > mp->b_wptr) { 1914 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1915 "malformed sub-capability too long for mblk"); 1916 return; 1917 } 1918 dld_ic = (dl_capab_dld_t *)(isub + 1); 1919 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1920 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1921 "unsupported DLD sub-capability (version %d, " 1922 "expected %d)", dld_ic->dld_version, 1923 DLD_CURRENT_VERSION); 1924 return; 1925 } 1926 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1927 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1928 "capability isn't as expected; pass-thru module(s) " 1929 "detected, discarding capability\n")); 1930 return; 1931 } 1932 1933 /* 1934 * Copy locally to ensure alignment. 1935 */ 1936 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1937 1938 if ((idc = ill->ill_dld_capab) == NULL) { 1939 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1940 if (idc == NULL) { 1941 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1942 "could not enable DLD version %d " 1943 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1944 ill->ill_name); 1945 return; 1946 } 1947 ill->ill_dld_capab = idc; 1948 } 1949 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1950 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1951 ip1dbg(("ill_capability_dld_ack: interface %s " 1952 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1953 1954 ill_capability_dld_enable(ill); 1955 } 1956 1957 /* 1958 * Typically capability negotiation between IP and the driver happens via 1959 * DLPI message exchange. However GLD also offers a direct function call 1960 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1961 * But arbitrary function calls into IP or GLD are not permitted, since both 1962 * of them are protected by their own perimeter mechanism. The perimeter can 1963 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1964 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1965 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1966 * to enter the mac perimeter and then do the direct function calls into 1967 * GLD to enable squeue polling. The ring related callbacks from the mac into 1968 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1969 * protected by the mac perimeter. 1970 */ 1971 static void 1972 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1973 { 1974 ill_dld_capab_t *idc = ill->ill_dld_capab; 1975 int err; 1976 1977 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1978 DLD_ENABLE); 1979 ASSERT(err == 0); 1980 } 1981 1982 static void 1983 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1984 { 1985 ill_dld_capab_t *idc = ill->ill_dld_capab; 1986 int err; 1987 1988 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1989 DLD_DISABLE); 1990 ASSERT(err == 0); 1991 } 1992 1993 boolean_t 1994 ill_mac_perim_held(ill_t *ill) 1995 { 1996 ill_dld_capab_t *idc = ill->ill_dld_capab; 1997 1998 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 1999 DLD_QUERY)); 2000 } 2001 2002 static void 2003 ill_capability_direct_enable(ill_t *ill) 2004 { 2005 ill_dld_capab_t *idc = ill->ill_dld_capab; 2006 ill_dld_direct_t *idd = &idc->idc_direct; 2007 dld_capab_direct_t direct; 2008 int rc; 2009 2010 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2011 2012 bzero(&direct, sizeof (direct)); 2013 direct.di_rx_cf = (uintptr_t)ip_input; 2014 direct.di_rx_ch = ill; 2015 2016 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 2017 DLD_ENABLE); 2018 if (rc == 0) { 2019 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 2020 idd->idd_tx_dh = direct.di_tx_dh; 2021 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 2022 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 2023 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 2024 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 2025 ASSERT(idd->idd_tx_cb_df != NULL); 2026 ASSERT(idd->idd_tx_fctl_df != NULL); 2027 ASSERT(idd->idd_tx_df != NULL); 2028 /* 2029 * One time registration of flow enable callback function 2030 */ 2031 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 2032 ill_flow_enable, ill); 2033 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 2034 DTRACE_PROBE1(direct_on, (ill_t *), ill); 2035 } else { 2036 cmn_err(CE_WARN, "warning: could not enable DIRECT " 2037 "capability, rc = %d\n", rc); 2038 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 2039 } 2040 } 2041 2042 static void 2043 ill_capability_poll_enable(ill_t *ill) 2044 { 2045 ill_dld_capab_t *idc = ill->ill_dld_capab; 2046 dld_capab_poll_t poll; 2047 int rc; 2048 2049 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2050 2051 bzero(&poll, sizeof (poll)); 2052 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 2053 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 2054 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 2055 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 2056 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 2057 poll.poll_ring_ch = ill; 2058 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 2059 DLD_ENABLE); 2060 if (rc == 0) { 2061 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 2062 DTRACE_PROBE1(poll_on, (ill_t *), ill); 2063 } else { 2064 ip1dbg(("warning: could not enable POLL " 2065 "capability, rc = %d\n", rc)); 2066 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 2067 } 2068 } 2069 2070 /* 2071 * Enable the LSO capability. 2072 */ 2073 static void 2074 ill_capability_lso_enable(ill_t *ill) 2075 { 2076 ill_dld_capab_t *idc = ill->ill_dld_capab; 2077 dld_capab_lso_t lso; 2078 int rc; 2079 2080 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2081 2082 if (ill->ill_lso_capab == NULL) { 2083 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2084 KM_NOSLEEP); 2085 if (ill->ill_lso_capab == NULL) { 2086 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2087 "could not enable LSO for %s (ENOMEM)\n", 2088 ill->ill_name); 2089 return; 2090 } 2091 } 2092 2093 bzero(&lso, sizeof (lso)); 2094 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2095 DLD_ENABLE)) == 0) { 2096 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2097 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 2098 ill->ill_capabilities |= ILL_CAPAB_LSO; 2099 ip1dbg(("ill_capability_lso_enable: interface %s " 2100 "has enabled LSO\n ", ill->ill_name)); 2101 } else { 2102 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2103 ill->ill_lso_capab = NULL; 2104 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2105 } 2106 } 2107 2108 static void 2109 ill_capability_dld_enable(ill_t *ill) 2110 { 2111 mac_perim_handle_t mph; 2112 2113 ASSERT(IAM_WRITER_ILL(ill)); 2114 2115 if (ill->ill_isv6) 2116 return; 2117 2118 ill_mac_perim_enter(ill, &mph); 2119 if (!ill->ill_isv6) { 2120 ill_capability_direct_enable(ill); 2121 ill_capability_poll_enable(ill); 2122 ill_capability_lso_enable(ill); 2123 } 2124 ill->ill_capabilities |= ILL_CAPAB_DLD; 2125 ill_mac_perim_exit(ill, mph); 2126 } 2127 2128 static void 2129 ill_capability_dld_disable(ill_t *ill) 2130 { 2131 ill_dld_capab_t *idc; 2132 ill_dld_direct_t *idd; 2133 mac_perim_handle_t mph; 2134 2135 ASSERT(IAM_WRITER_ILL(ill)); 2136 2137 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2138 return; 2139 2140 ill_mac_perim_enter(ill, &mph); 2141 2142 idc = ill->ill_dld_capab; 2143 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2144 /* 2145 * For performance we avoid locks in the transmit data path 2146 * and don't maintain a count of the number of threads using 2147 * direct calls. Thus some threads could be using direct 2148 * transmit calls to GLD, even after the capability mechanism 2149 * turns it off. This is still safe since the handles used in 2150 * the direct calls continue to be valid until the unplumb is 2151 * completed. Remove the callback that was added (1-time) at 2152 * capab enable time. 2153 */ 2154 mutex_enter(&ill->ill_lock); 2155 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2156 mutex_exit(&ill->ill_lock); 2157 if (ill->ill_flownotify_mh != NULL) { 2158 idd = &idc->idc_direct; 2159 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2160 ill->ill_flownotify_mh); 2161 ill->ill_flownotify_mh = NULL; 2162 } 2163 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2164 NULL, DLD_DISABLE); 2165 } 2166 2167 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2168 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2169 ip_squeue_clean_all(ill); 2170 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2171 NULL, DLD_DISABLE); 2172 } 2173 2174 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2175 ASSERT(ill->ill_lso_capab != NULL); 2176 /* 2177 * Clear the capability flag for LSO but retain the 2178 * ill_lso_capab structure since it's possible that another 2179 * thread is still referring to it. The structure only gets 2180 * deallocated when we destroy the ill. 2181 */ 2182 2183 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2184 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2185 NULL, DLD_DISABLE); 2186 } 2187 2188 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2189 ill_mac_perim_exit(ill, mph); 2190 } 2191 2192 /* 2193 * Capability Negotiation protocol 2194 * 2195 * We don't wait for DLPI capability operations to finish during interface 2196 * bringup or teardown. Doing so would introduce more asynchrony and the 2197 * interface up/down operations will need multiple return and restarts. 2198 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2199 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2200 * exclusive operation won't start until the DLPI operations of the previous 2201 * exclusive operation complete. 2202 * 2203 * The capability state machine is shown below. 2204 * 2205 * state next state event, action 2206 * 2207 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2208 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2209 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2210 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2211 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2212 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2213 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2214 * ill_capability_probe. 2215 */ 2216 2217 /* 2218 * Dedicated thread started from ip_stack_init that handles capability 2219 * disable. This thread ensures the taskq dispatch does not fail by waiting 2220 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2221 * that direct calls to DLD are done in a cv_waitable context. 2222 */ 2223 void 2224 ill_taskq_dispatch(ip_stack_t *ipst) 2225 { 2226 callb_cpr_t cprinfo; 2227 char name[64]; 2228 mblk_t *mp; 2229 2230 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2231 ipst->ips_netstack->netstack_stackid); 2232 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2233 name); 2234 mutex_enter(&ipst->ips_capab_taskq_lock); 2235 2236 for (;;) { 2237 mp = ipst->ips_capab_taskq_head; 2238 while (mp != NULL) { 2239 ipst->ips_capab_taskq_head = mp->b_next; 2240 if (ipst->ips_capab_taskq_head == NULL) 2241 ipst->ips_capab_taskq_tail = NULL; 2242 mutex_exit(&ipst->ips_capab_taskq_lock); 2243 mp->b_next = NULL; 2244 2245 VERIFY(taskq_dispatch(system_taskq, 2246 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 2247 mutex_enter(&ipst->ips_capab_taskq_lock); 2248 mp = ipst->ips_capab_taskq_head; 2249 } 2250 2251 if (ipst->ips_capab_taskq_quit) 2252 break; 2253 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2254 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2255 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2256 } 2257 VERIFY(ipst->ips_capab_taskq_head == NULL); 2258 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2259 CALLB_CPR_EXIT(&cprinfo); 2260 thread_exit(); 2261 } 2262 2263 /* 2264 * Consume a new-style hardware capabilities negotiation ack. 2265 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2266 */ 2267 static void 2268 ill_capability_ack_thr(void *arg) 2269 { 2270 mblk_t *mp = arg; 2271 dl_capability_ack_t *capp; 2272 dl_capability_sub_t *subp, *endp; 2273 ill_t *ill; 2274 boolean_t reneg; 2275 2276 ill = (ill_t *)mp->b_prev; 2277 mp->b_prev = NULL; 2278 2279 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2280 2281 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2282 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2283 /* 2284 * We have received the ack for our DL_CAPAB reset request. 2285 * There isnt' anything in the message that needs processing. 2286 * All message based capabilities have been disabled, now 2287 * do the function call based capability disable. 2288 */ 2289 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2290 ill_capability_dld_disable(ill); 2291 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2292 if (reneg) 2293 ill_capability_probe(ill); 2294 goto done; 2295 } 2296 2297 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2298 ill->ill_dlpi_capab_state = IDCS_OK; 2299 2300 capp = (dl_capability_ack_t *)mp->b_rptr; 2301 2302 if (capp->dl_sub_length == 0) { 2303 /* no new-style capabilities */ 2304 goto done; 2305 } 2306 2307 /* make sure the driver supplied correct dl_sub_length */ 2308 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2309 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2310 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2311 goto done; 2312 } 2313 2314 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2315 /* 2316 * There are sub-capabilities. Process the ones we know about. 2317 * Loop until we don't have room for another sub-cap header.. 2318 */ 2319 for (subp = SC(capp, capp->dl_sub_offset), 2320 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2321 subp <= endp; 2322 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2323 2324 switch (subp->dl_cap) { 2325 case DL_CAPAB_ID_WRAPPER: 2326 ill_capability_id_ack(ill, mp, subp); 2327 break; 2328 default: 2329 ill_capability_dispatch(ill, mp, subp); 2330 break; 2331 } 2332 } 2333 #undef SC 2334 done: 2335 inet_freemsg(mp); 2336 ill_capability_done(ill); 2337 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2338 } 2339 2340 /* 2341 * This needs to be started in a taskq thread to provide a cv_waitable 2342 * context. 2343 */ 2344 void 2345 ill_capability_ack(ill_t *ill, mblk_t *mp) 2346 { 2347 ip_stack_t *ipst = ill->ill_ipst; 2348 2349 mp->b_prev = (mblk_t *)ill; 2350 ASSERT(mp->b_next == NULL); 2351 2352 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2353 TQ_NOSLEEP) != 0) 2354 return; 2355 2356 /* 2357 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2358 * which will do the dispatch using TQ_SLEEP to guarantee success. 2359 */ 2360 mutex_enter(&ipst->ips_capab_taskq_lock); 2361 if (ipst->ips_capab_taskq_head == NULL) { 2362 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2363 ipst->ips_capab_taskq_head = mp; 2364 } else { 2365 ipst->ips_capab_taskq_tail->b_next = mp; 2366 } 2367 ipst->ips_capab_taskq_tail = mp; 2368 2369 cv_signal(&ipst->ips_capab_taskq_cv); 2370 mutex_exit(&ipst->ips_capab_taskq_lock); 2371 } 2372 2373 /* 2374 * This routine is called to scan the fragmentation reassembly table for 2375 * the specified ILL for any packets that are starting to smell. 2376 * dead_interval is the maximum time in seconds that will be tolerated. It 2377 * will either be the value specified in ip_g_frag_timeout, or zero if the 2378 * ILL is shutting down and it is time to blow everything off. 2379 * 2380 * It returns the number of seconds (as a time_t) that the next frag timer 2381 * should be scheduled for, 0 meaning that the timer doesn't need to be 2382 * re-started. Note that the method of calculating next_timeout isn't 2383 * entirely accurate since time will flow between the time we grab 2384 * current_time and the time we schedule the next timeout. This isn't a 2385 * big problem since this is the timer for sending an ICMP reassembly time 2386 * exceeded messages, and it doesn't have to be exactly accurate. 2387 * 2388 * This function is 2389 * sometimes called as writer, although this is not required. 2390 */ 2391 time_t 2392 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2393 { 2394 ipfb_t *ipfb; 2395 ipfb_t *endp; 2396 ipf_t *ipf; 2397 ipf_t *ipfnext; 2398 mblk_t *mp; 2399 time_t current_time = gethrestime_sec(); 2400 time_t next_timeout = 0; 2401 uint32_t hdr_length; 2402 mblk_t *send_icmp_head; 2403 mblk_t *send_icmp_head_v6; 2404 ip_stack_t *ipst = ill->ill_ipst; 2405 ip_recv_attr_t iras; 2406 2407 bzero(&iras, sizeof (iras)); 2408 iras.ira_flags = 0; 2409 iras.ira_ill = iras.ira_rill = ill; 2410 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2411 iras.ira_rifindex = iras.ira_ruifindex; 2412 2413 ipfb = ill->ill_frag_hash_tbl; 2414 if (ipfb == NULL) 2415 return (B_FALSE); 2416 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2417 /* Walk the frag hash table. */ 2418 for (; ipfb < endp; ipfb++) { 2419 send_icmp_head = NULL; 2420 send_icmp_head_v6 = NULL; 2421 mutex_enter(&ipfb->ipfb_lock); 2422 while ((ipf = ipfb->ipfb_ipf) != 0) { 2423 time_t frag_time = current_time - ipf->ipf_timestamp; 2424 time_t frag_timeout; 2425 2426 if (frag_time < dead_interval) { 2427 /* 2428 * There are some outstanding fragments 2429 * that will timeout later. Make note of 2430 * the time so that we can reschedule the 2431 * next timeout appropriately. 2432 */ 2433 frag_timeout = dead_interval - frag_time; 2434 if (next_timeout == 0 || 2435 frag_timeout < next_timeout) { 2436 next_timeout = frag_timeout; 2437 } 2438 break; 2439 } 2440 /* Time's up. Get it out of here. */ 2441 hdr_length = ipf->ipf_nf_hdr_len; 2442 ipfnext = ipf->ipf_hash_next; 2443 if (ipfnext) 2444 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2445 *ipf->ipf_ptphn = ipfnext; 2446 mp = ipf->ipf_mp->b_cont; 2447 for (; mp; mp = mp->b_cont) { 2448 /* Extra points for neatness. */ 2449 IP_REASS_SET_START(mp, 0); 2450 IP_REASS_SET_END(mp, 0); 2451 } 2452 mp = ipf->ipf_mp->b_cont; 2453 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2454 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2455 ipfb->ipfb_count -= ipf->ipf_count; 2456 ASSERT(ipfb->ipfb_frag_pkts > 0); 2457 ipfb->ipfb_frag_pkts--; 2458 /* 2459 * We do not send any icmp message from here because 2460 * we currently are holding the ipfb_lock for this 2461 * hash chain. If we try and send any icmp messages 2462 * from here we may end up via a put back into ip 2463 * trying to get the same lock, causing a recursive 2464 * mutex panic. Instead we build a list and send all 2465 * the icmp messages after we have dropped the lock. 2466 */ 2467 if (ill->ill_isv6) { 2468 if (hdr_length != 0) { 2469 mp->b_next = send_icmp_head_v6; 2470 send_icmp_head_v6 = mp; 2471 } else { 2472 freemsg(mp); 2473 } 2474 } else { 2475 if (hdr_length != 0) { 2476 mp->b_next = send_icmp_head; 2477 send_icmp_head = mp; 2478 } else { 2479 freemsg(mp); 2480 } 2481 } 2482 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2483 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2484 freeb(ipf->ipf_mp); 2485 } 2486 mutex_exit(&ipfb->ipfb_lock); 2487 /* 2488 * Now need to send any icmp messages that we delayed from 2489 * above. 2490 */ 2491 while (send_icmp_head_v6 != NULL) { 2492 ip6_t *ip6h; 2493 2494 mp = send_icmp_head_v6; 2495 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2496 mp->b_next = NULL; 2497 ip6h = (ip6_t *)mp->b_rptr; 2498 iras.ira_flags = 0; 2499 /* 2500 * This will result in an incorrect ALL_ZONES zoneid 2501 * for multicast packets, but we 2502 * don't send ICMP errors for those in any case. 2503 */ 2504 iras.ira_zoneid = 2505 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2506 ill, ipst); 2507 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2508 icmp_time_exceeded_v6(mp, 2509 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2510 &iras); 2511 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2512 } 2513 while (send_icmp_head != NULL) { 2514 ipaddr_t dst; 2515 2516 mp = send_icmp_head; 2517 send_icmp_head = send_icmp_head->b_next; 2518 mp->b_next = NULL; 2519 2520 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2521 2522 iras.ira_flags = IRAF_IS_IPV4; 2523 /* 2524 * This will result in an incorrect ALL_ZONES zoneid 2525 * for broadcast and multicast packets, but we 2526 * don't send ICMP errors for those in any case. 2527 */ 2528 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2529 ill, ipst); 2530 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2531 icmp_time_exceeded(mp, 2532 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2533 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2534 } 2535 } 2536 /* 2537 * A non-dying ILL will use the return value to decide whether to 2538 * restart the frag timer, and for how long. 2539 */ 2540 return (next_timeout); 2541 } 2542 2543 /* 2544 * This routine is called when the approximate count of mblk memory used 2545 * for the specified ILL has exceeded max_count. 2546 */ 2547 void 2548 ill_frag_prune(ill_t *ill, uint_t max_count) 2549 { 2550 ipfb_t *ipfb; 2551 ipf_t *ipf; 2552 size_t count; 2553 clock_t now; 2554 2555 /* 2556 * If we are here within ip_min_frag_prune_time msecs remove 2557 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2558 * ill_frag_free_num_pkts. 2559 */ 2560 mutex_enter(&ill->ill_lock); 2561 now = ddi_get_lbolt(); 2562 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2563 (ip_min_frag_prune_time != 0 ? 2564 ip_min_frag_prune_time : msec_per_tick)) { 2565 2566 ill->ill_frag_free_num_pkts++; 2567 2568 } else { 2569 ill->ill_frag_free_num_pkts = 0; 2570 } 2571 ill->ill_last_frag_clean_time = now; 2572 mutex_exit(&ill->ill_lock); 2573 2574 /* 2575 * free ill_frag_free_num_pkts oldest packets from each bucket. 2576 */ 2577 if (ill->ill_frag_free_num_pkts != 0) { 2578 int ix; 2579 2580 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2581 ipfb = &ill->ill_frag_hash_tbl[ix]; 2582 mutex_enter(&ipfb->ipfb_lock); 2583 if (ipfb->ipfb_ipf != NULL) { 2584 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2585 ill->ill_frag_free_num_pkts); 2586 } 2587 mutex_exit(&ipfb->ipfb_lock); 2588 } 2589 } 2590 /* 2591 * While the reassembly list for this ILL is too big, prune a fragment 2592 * queue by age, oldest first. 2593 */ 2594 while (ill->ill_frag_count > max_count) { 2595 int ix; 2596 ipfb_t *oipfb = NULL; 2597 uint_t oldest = UINT_MAX; 2598 2599 count = 0; 2600 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2601 ipfb = &ill->ill_frag_hash_tbl[ix]; 2602 mutex_enter(&ipfb->ipfb_lock); 2603 ipf = ipfb->ipfb_ipf; 2604 if (ipf != NULL && ipf->ipf_gen < oldest) { 2605 oldest = ipf->ipf_gen; 2606 oipfb = ipfb; 2607 } 2608 count += ipfb->ipfb_count; 2609 mutex_exit(&ipfb->ipfb_lock); 2610 } 2611 if (oipfb == NULL) 2612 break; 2613 2614 if (count <= max_count) 2615 return; /* Somebody beat us to it, nothing to do */ 2616 mutex_enter(&oipfb->ipfb_lock); 2617 ipf = oipfb->ipfb_ipf; 2618 if (ipf != NULL) { 2619 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2620 } 2621 mutex_exit(&oipfb->ipfb_lock); 2622 } 2623 } 2624 2625 /* 2626 * free 'free_cnt' fragmented packets starting at ipf. 2627 */ 2628 void 2629 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2630 { 2631 size_t count; 2632 mblk_t *mp; 2633 mblk_t *tmp; 2634 ipf_t **ipfp = ipf->ipf_ptphn; 2635 2636 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2637 ASSERT(ipfp != NULL); 2638 ASSERT(ipf != NULL); 2639 2640 while (ipf != NULL && free_cnt-- > 0) { 2641 count = ipf->ipf_count; 2642 mp = ipf->ipf_mp; 2643 ipf = ipf->ipf_hash_next; 2644 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2645 IP_REASS_SET_START(tmp, 0); 2646 IP_REASS_SET_END(tmp, 0); 2647 } 2648 atomic_add_32(&ill->ill_frag_count, -count); 2649 ASSERT(ipfb->ipfb_count >= count); 2650 ipfb->ipfb_count -= count; 2651 ASSERT(ipfb->ipfb_frag_pkts > 0); 2652 ipfb->ipfb_frag_pkts--; 2653 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2654 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2655 freemsg(mp); 2656 } 2657 2658 if (ipf) 2659 ipf->ipf_ptphn = ipfp; 2660 ipfp[0] = ipf; 2661 } 2662 2663 /* 2664 * Helper function for ill_forward_set(). 2665 */ 2666 static void 2667 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2668 { 2669 ip_stack_t *ipst = ill->ill_ipst; 2670 2671 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2672 2673 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2674 (enable ? "Enabling" : "Disabling"), 2675 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2676 mutex_enter(&ill->ill_lock); 2677 if (enable) 2678 ill->ill_flags |= ILLF_ROUTER; 2679 else 2680 ill->ill_flags &= ~ILLF_ROUTER; 2681 mutex_exit(&ill->ill_lock); 2682 if (ill->ill_isv6) 2683 ill_set_nce_router_flags(ill, enable); 2684 /* Notify routing socket listeners of this change. */ 2685 if (ill->ill_ipif != NULL) 2686 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2687 } 2688 2689 /* 2690 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2691 * socket messages for each interface whose flags we change. 2692 */ 2693 int 2694 ill_forward_set(ill_t *ill, boolean_t enable) 2695 { 2696 ipmp_illgrp_t *illg; 2697 ip_stack_t *ipst = ill->ill_ipst; 2698 2699 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2700 2701 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2702 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2703 return (0); 2704 2705 if (IS_LOOPBACK(ill)) 2706 return (EINVAL); 2707 2708 if (enable && ill->ill_allowed_ips_cnt > 0) 2709 return (EPERM); 2710 2711 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2712 /* 2713 * Update all of the interfaces in the group. 2714 */ 2715 illg = ill->ill_grp; 2716 ill = list_head(&illg->ig_if); 2717 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2718 ill_forward_set_on_ill(ill, enable); 2719 2720 /* 2721 * Update the IPMP meta-interface. 2722 */ 2723 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2724 return (0); 2725 } 2726 2727 ill_forward_set_on_ill(ill, enable); 2728 return (0); 2729 } 2730 2731 /* 2732 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2733 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2734 * set or clear. 2735 */ 2736 static void 2737 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2738 { 2739 ipif_t *ipif; 2740 ncec_t *ncec; 2741 nce_t *nce; 2742 2743 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2744 /* 2745 * NOTE: we match across the illgrp because nce's for 2746 * addresses on IPMP interfaces have an nce_ill that points to 2747 * the bound underlying ill. 2748 */ 2749 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2750 if (nce != NULL) { 2751 ncec = nce->nce_common; 2752 mutex_enter(&ncec->ncec_lock); 2753 if (enable) 2754 ncec->ncec_flags |= NCE_F_ISROUTER; 2755 else 2756 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2757 mutex_exit(&ncec->ncec_lock); 2758 nce_refrele(nce); 2759 } 2760 } 2761 } 2762 2763 /* 2764 * Intializes the context structure and returns the first ill in the list 2765 * cuurently start_list and end_list can have values: 2766 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2767 * IP_V4_G_HEAD Traverse IPV4 list only. 2768 * IP_V6_G_HEAD Traverse IPV6 list only. 2769 */ 2770 2771 /* 2772 * We don't check for CONDEMNED ills here. Caller must do that if 2773 * necessary under the ill lock. 2774 */ 2775 ill_t * 2776 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2777 ip_stack_t *ipst) 2778 { 2779 ill_if_t *ifp; 2780 ill_t *ill; 2781 avl_tree_t *avl_tree; 2782 2783 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2784 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2785 2786 /* 2787 * setup the lists to search 2788 */ 2789 if (end_list != MAX_G_HEADS) { 2790 ctx->ctx_current_list = start_list; 2791 ctx->ctx_last_list = end_list; 2792 } else { 2793 ctx->ctx_last_list = MAX_G_HEADS - 1; 2794 ctx->ctx_current_list = 0; 2795 } 2796 2797 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2798 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2799 if (ifp != (ill_if_t *) 2800 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2801 avl_tree = &ifp->illif_avl_by_ppa; 2802 ill = avl_first(avl_tree); 2803 /* 2804 * ill is guaranteed to be non NULL or ifp should have 2805 * not existed. 2806 */ 2807 ASSERT(ill != NULL); 2808 return (ill); 2809 } 2810 ctx->ctx_current_list++; 2811 } 2812 2813 return (NULL); 2814 } 2815 2816 /* 2817 * returns the next ill in the list. ill_first() must have been called 2818 * before calling ill_next() or bad things will happen. 2819 */ 2820 2821 /* 2822 * We don't check for CONDEMNED ills here. Caller must do that if 2823 * necessary under the ill lock. 2824 */ 2825 ill_t * 2826 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2827 { 2828 ill_if_t *ifp; 2829 ill_t *ill; 2830 ip_stack_t *ipst = lastill->ill_ipst; 2831 2832 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2833 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2834 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2835 AVL_AFTER)) != NULL) { 2836 return (ill); 2837 } 2838 2839 /* goto next ill_ifp in the list. */ 2840 ifp = lastill->ill_ifptr->illif_next; 2841 2842 /* make sure not at end of circular list */ 2843 while (ifp == 2844 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2845 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2846 return (NULL); 2847 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2848 } 2849 2850 return (avl_first(&ifp->illif_avl_by_ppa)); 2851 } 2852 2853 /* 2854 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2855 * The final number (PPA) must not have any leading zeros. Upon success, a 2856 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2857 */ 2858 static char * 2859 ill_get_ppa_ptr(char *name) 2860 { 2861 int namelen = strlen(name); 2862 int end_ndx = namelen - 1; 2863 int ppa_ndx, i; 2864 2865 /* 2866 * Check that the first character is [a-zA-Z], and that the last 2867 * character is [0-9]. 2868 */ 2869 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2870 return (NULL); 2871 2872 /* 2873 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2874 */ 2875 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2876 if (!isdigit(name[ppa_ndx - 1])) 2877 break; 2878 2879 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2880 return (NULL); 2881 2882 /* 2883 * Check that the intermediate characters are [a-z0-9.] 2884 */ 2885 for (i = 1; i < ppa_ndx; i++) { 2886 if (!isalpha(name[i]) && !isdigit(name[i]) && 2887 name[i] != '.' && name[i] != '_') { 2888 return (NULL); 2889 } 2890 } 2891 2892 return (name + ppa_ndx); 2893 } 2894 2895 /* 2896 * use avl tree to locate the ill. 2897 */ 2898 static ill_t * 2899 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2900 { 2901 char *ppa_ptr = NULL; 2902 int len; 2903 uint_t ppa; 2904 ill_t *ill = NULL; 2905 ill_if_t *ifp; 2906 int list; 2907 2908 /* 2909 * get ppa ptr 2910 */ 2911 if (isv6) 2912 list = IP_V6_G_HEAD; 2913 else 2914 list = IP_V4_G_HEAD; 2915 2916 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2917 return (NULL); 2918 } 2919 2920 len = ppa_ptr - name + 1; 2921 2922 ppa = stoi(&ppa_ptr); 2923 2924 ifp = IP_VX_ILL_G_LIST(list, ipst); 2925 2926 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2927 /* 2928 * match is done on len - 1 as the name is not null 2929 * terminated it contains ppa in addition to the interface 2930 * name. 2931 */ 2932 if ((ifp->illif_name_len == len) && 2933 bcmp(ifp->illif_name, name, len - 1) == 0) { 2934 break; 2935 } else { 2936 ifp = ifp->illif_next; 2937 } 2938 } 2939 2940 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2941 /* 2942 * Even the interface type does not exist. 2943 */ 2944 return (NULL); 2945 } 2946 2947 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 2948 if (ill != NULL) { 2949 mutex_enter(&ill->ill_lock); 2950 if (ILL_CAN_LOOKUP(ill)) { 2951 ill_refhold_locked(ill); 2952 mutex_exit(&ill->ill_lock); 2953 return (ill); 2954 } 2955 mutex_exit(&ill->ill_lock); 2956 } 2957 return (NULL); 2958 } 2959 2960 /* 2961 * comparison function for use with avl. 2962 */ 2963 static int 2964 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 2965 { 2966 uint_t ppa; 2967 uint_t ill_ppa; 2968 2969 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 2970 2971 ppa = *((uint_t *)ppa_ptr); 2972 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 2973 /* 2974 * We want the ill with the lowest ppa to be on the 2975 * top. 2976 */ 2977 if (ill_ppa < ppa) 2978 return (1); 2979 if (ill_ppa > ppa) 2980 return (-1); 2981 return (0); 2982 } 2983 2984 /* 2985 * remove an interface type from the global list. 2986 */ 2987 static void 2988 ill_delete_interface_type(ill_if_t *interface) 2989 { 2990 ASSERT(interface != NULL); 2991 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 2992 2993 avl_destroy(&interface->illif_avl_by_ppa); 2994 if (interface->illif_ppa_arena != NULL) 2995 vmem_destroy(interface->illif_ppa_arena); 2996 2997 remque(interface); 2998 2999 mi_free(interface); 3000 } 3001 3002 /* 3003 * remove ill from the global list. 3004 */ 3005 static void 3006 ill_glist_delete(ill_t *ill) 3007 { 3008 ip_stack_t *ipst; 3009 phyint_t *phyi; 3010 3011 if (ill == NULL) 3012 return; 3013 ipst = ill->ill_ipst; 3014 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3015 3016 /* 3017 * If the ill was never inserted into the AVL tree 3018 * we skip the if branch. 3019 */ 3020 if (ill->ill_ifptr != NULL) { 3021 /* 3022 * remove from AVL tree and free ppa number 3023 */ 3024 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3025 3026 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3027 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3028 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3029 } 3030 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3031 ill_delete_interface_type(ill->ill_ifptr); 3032 } 3033 3034 /* 3035 * Indicate ill is no longer in the list. 3036 */ 3037 ill->ill_ifptr = NULL; 3038 ill->ill_name_length = 0; 3039 ill->ill_name[0] = '\0'; 3040 ill->ill_ppa = UINT_MAX; 3041 } 3042 3043 /* Generate one last event for this ill. */ 3044 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3045 ill->ill_name_length); 3046 3047 ASSERT(ill->ill_phyint != NULL); 3048 phyi = ill->ill_phyint; 3049 ill->ill_phyint = NULL; 3050 3051 /* 3052 * ill_init allocates a phyint always to store the copy 3053 * of flags relevant to phyint. At that point in time, we could 3054 * not assign the name and hence phyint_illv4/v6 could not be 3055 * initialized. Later in ipif_set_values, we assign the name to 3056 * the ill, at which point in time we assign phyint_illv4/v6. 3057 * Thus we don't rely on phyint_illv6 to be initialized always. 3058 */ 3059 if (ill->ill_flags & ILLF_IPV6) 3060 phyi->phyint_illv6 = NULL; 3061 else 3062 phyi->phyint_illv4 = NULL; 3063 3064 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3065 rw_exit(&ipst->ips_ill_g_lock); 3066 return; 3067 } 3068 3069 /* 3070 * There are no ills left on this phyint; pull it out of the phyint 3071 * avl trees, and free it. 3072 */ 3073 if (phyi->phyint_ifindex > 0) { 3074 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3075 phyi); 3076 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3077 phyi); 3078 } 3079 rw_exit(&ipst->ips_ill_g_lock); 3080 3081 phyint_free(phyi); 3082 } 3083 3084 /* 3085 * allocate a ppa, if the number of plumbed interfaces of this type are 3086 * less than ill_no_arena do a linear search to find a unused ppa. 3087 * When the number goes beyond ill_no_arena switch to using an arena. 3088 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3089 * is the return value for an error condition, so allocation starts at one 3090 * and is decremented by one. 3091 */ 3092 static int 3093 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3094 { 3095 ill_t *tmp_ill; 3096 uint_t start, end; 3097 int ppa; 3098 3099 if (ifp->illif_ppa_arena == NULL && 3100 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3101 /* 3102 * Create an arena. 3103 */ 3104 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3105 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3106 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3107 /* allocate what has already been assigned */ 3108 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3109 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3110 tmp_ill, AVL_AFTER)) { 3111 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3112 1, /* size */ 3113 1, /* align/quantum */ 3114 0, /* phase */ 3115 0, /* nocross */ 3116 /* minaddr */ 3117 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3118 /* maxaddr */ 3119 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3120 VM_NOSLEEP|VM_FIRSTFIT); 3121 if (ppa == 0) { 3122 ip1dbg(("ill_alloc_ppa: ppa allocation" 3123 " failed while switching")); 3124 vmem_destroy(ifp->illif_ppa_arena); 3125 ifp->illif_ppa_arena = NULL; 3126 break; 3127 } 3128 } 3129 } 3130 3131 if (ifp->illif_ppa_arena != NULL) { 3132 if (ill->ill_ppa == UINT_MAX) { 3133 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3134 1, VM_NOSLEEP|VM_FIRSTFIT); 3135 if (ppa == 0) 3136 return (EAGAIN); 3137 ill->ill_ppa = --ppa; 3138 } else { 3139 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3140 1, /* size */ 3141 1, /* align/quantum */ 3142 0, /* phase */ 3143 0, /* nocross */ 3144 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3145 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3146 VM_NOSLEEP|VM_FIRSTFIT); 3147 /* 3148 * Most likely the allocation failed because 3149 * the requested ppa was in use. 3150 */ 3151 if (ppa == 0) 3152 return (EEXIST); 3153 } 3154 return (0); 3155 } 3156 3157 /* 3158 * No arena is in use and not enough (>ill_no_arena) interfaces have 3159 * been plumbed to create one. Do a linear search to get a unused ppa. 3160 */ 3161 if (ill->ill_ppa == UINT_MAX) { 3162 end = UINT_MAX - 1; 3163 start = 0; 3164 } else { 3165 end = start = ill->ill_ppa; 3166 } 3167 3168 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3169 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3170 if (start++ >= end) { 3171 if (ill->ill_ppa == UINT_MAX) 3172 return (EAGAIN); 3173 else 3174 return (EEXIST); 3175 } 3176 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3177 } 3178 ill->ill_ppa = start; 3179 return (0); 3180 } 3181 3182 /* 3183 * Insert ill into the list of configured ill's. Once this function completes, 3184 * the ill is globally visible and is available through lookups. More precisely 3185 * this happens after the caller drops the ill_g_lock. 3186 */ 3187 static int 3188 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3189 { 3190 ill_if_t *ill_interface; 3191 avl_index_t where = 0; 3192 int error; 3193 int name_length; 3194 int index; 3195 boolean_t check_length = B_FALSE; 3196 ip_stack_t *ipst = ill->ill_ipst; 3197 3198 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3199 3200 name_length = mi_strlen(name) + 1; 3201 3202 if (isv6) 3203 index = IP_V6_G_HEAD; 3204 else 3205 index = IP_V4_G_HEAD; 3206 3207 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3208 /* 3209 * Search for interface type based on name 3210 */ 3211 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3212 if ((ill_interface->illif_name_len == name_length) && 3213 (strcmp(ill_interface->illif_name, name) == 0)) { 3214 break; 3215 } 3216 ill_interface = ill_interface->illif_next; 3217 } 3218 3219 /* 3220 * Interface type not found, create one. 3221 */ 3222 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3223 ill_g_head_t ghead; 3224 3225 /* 3226 * allocate ill_if_t structure 3227 */ 3228 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3229 if (ill_interface == NULL) { 3230 return (ENOMEM); 3231 } 3232 3233 (void) strcpy(ill_interface->illif_name, name); 3234 ill_interface->illif_name_len = name_length; 3235 3236 avl_create(&ill_interface->illif_avl_by_ppa, 3237 ill_compare_ppa, sizeof (ill_t), 3238 offsetof(struct ill_s, ill_avl_byppa)); 3239 3240 /* 3241 * link the structure in the back to maintain order 3242 * of configuration for ifconfig output. 3243 */ 3244 ghead = ipst->ips_ill_g_heads[index]; 3245 insque(ill_interface, ghead.ill_g_list_tail); 3246 } 3247 3248 if (ill->ill_ppa == UINT_MAX) 3249 check_length = B_TRUE; 3250 3251 error = ill_alloc_ppa(ill_interface, ill); 3252 if (error != 0) { 3253 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3254 ill_delete_interface_type(ill->ill_ifptr); 3255 return (error); 3256 } 3257 3258 /* 3259 * When the ppa is choosen by the system, check that there is 3260 * enough space to insert ppa. if a specific ppa was passed in this 3261 * check is not required as the interface name passed in will have 3262 * the right ppa in it. 3263 */ 3264 if (check_length) { 3265 /* 3266 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3267 */ 3268 char buf[sizeof (uint_t) * 3]; 3269 3270 /* 3271 * convert ppa to string to calculate the amount of space 3272 * required for it in the name. 3273 */ 3274 numtos(ill->ill_ppa, buf); 3275 3276 /* Do we have enough space to insert ppa ? */ 3277 3278 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3279 /* Free ppa and interface type struct */ 3280 if (ill_interface->illif_ppa_arena != NULL) { 3281 vmem_free(ill_interface->illif_ppa_arena, 3282 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3283 } 3284 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3285 ill_delete_interface_type(ill->ill_ifptr); 3286 3287 return (EINVAL); 3288 } 3289 } 3290 3291 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3292 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3293 3294 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3295 &where); 3296 ill->ill_ifptr = ill_interface; 3297 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3298 3299 ill_phyint_reinit(ill); 3300 return (0); 3301 } 3302 3303 /* Initialize the per phyint ipsq used for serialization */ 3304 static boolean_t 3305 ipsq_init(ill_t *ill, boolean_t enter) 3306 { 3307 ipsq_t *ipsq; 3308 ipxop_t *ipx; 3309 3310 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3311 return (B_FALSE); 3312 3313 ill->ill_phyint->phyint_ipsq = ipsq; 3314 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3315 ipx->ipx_ipsq = ipsq; 3316 ipsq->ipsq_next = ipsq; 3317 ipsq->ipsq_phyint = ill->ill_phyint; 3318 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3319 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3320 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3321 if (enter) { 3322 ipx->ipx_writer = curthread; 3323 ipx->ipx_forced = B_FALSE; 3324 ipx->ipx_reentry_cnt = 1; 3325 #ifdef DEBUG 3326 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3327 #endif 3328 } 3329 return (B_TRUE); 3330 } 3331 3332 /* 3333 * ill_init is called by ip_open when a device control stream is opened. 3334 * It does a few initializations, and shoots a DL_INFO_REQ message down 3335 * to the driver. The response is later picked up in ip_rput_dlpi and 3336 * used to set up default mechanisms for talking to the driver. (Always 3337 * called as writer.) 3338 * 3339 * If this function returns error, ip_open will call ip_close which in 3340 * turn will call ill_delete to clean up any memory allocated here that 3341 * is not yet freed. 3342 */ 3343 int 3344 ill_init(queue_t *q, ill_t *ill) 3345 { 3346 int count; 3347 dl_info_req_t *dlir; 3348 mblk_t *info_mp; 3349 uchar_t *frag_ptr; 3350 3351 /* 3352 * The ill is initialized to zero by mi_alloc*(). In addition 3353 * some fields already contain valid values, initialized in 3354 * ip_open(), before we reach here. 3355 */ 3356 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3357 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3358 ill->ill_saved_ire_cnt = 0; 3359 3360 ill->ill_rq = q; 3361 ill->ill_wq = WR(q); 3362 3363 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3364 BPRI_HI); 3365 if (info_mp == NULL) 3366 return (ENOMEM); 3367 3368 /* 3369 * Allocate sufficient space to contain our fragment hash table and 3370 * the device name. 3371 */ 3372 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ); 3373 if (frag_ptr == NULL) { 3374 freemsg(info_mp); 3375 return (ENOMEM); 3376 } 3377 ill->ill_frag_ptr = frag_ptr; 3378 ill->ill_frag_free_num_pkts = 0; 3379 ill->ill_last_frag_clean_time = 0; 3380 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3381 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3382 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3383 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3384 NULL, MUTEX_DEFAULT, NULL); 3385 } 3386 3387 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3388 if (ill->ill_phyint == NULL) { 3389 freemsg(info_mp); 3390 mi_free(frag_ptr); 3391 return (ENOMEM); 3392 } 3393 3394 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3395 /* 3396 * For now pretend this is a v4 ill. We need to set phyint_ill* 3397 * at this point because of the following reason. If we can't 3398 * enter the ipsq at some point and cv_wait, the writer that 3399 * wakes us up tries to locate us using the list of all phyints 3400 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3401 * If we don't set it now, we risk a missed wakeup. 3402 */ 3403 ill->ill_phyint->phyint_illv4 = ill; 3404 ill->ill_ppa = UINT_MAX; 3405 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3406 3407 ill_set_inputfn(ill); 3408 3409 if (!ipsq_init(ill, B_TRUE)) { 3410 freemsg(info_mp); 3411 mi_free(frag_ptr); 3412 mi_free(ill->ill_phyint); 3413 return (ENOMEM); 3414 } 3415 3416 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3417 3418 /* Frag queue limit stuff */ 3419 ill->ill_frag_count = 0; 3420 ill->ill_ipf_gen = 0; 3421 3422 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3423 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3424 ill->ill_global_timer = INFINITY; 3425 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3426 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3427 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3428 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3429 3430 /* 3431 * Initialize IPv6 configuration variables. The IP module is always 3432 * opened as an IPv4 module. Instead tracking down the cases where 3433 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3434 * here for convenience, this has no effect until the ill is set to do 3435 * IPv6. 3436 */ 3437 ill->ill_reachable_time = ND_REACHABLE_TIME; 3438 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3439 ill->ill_max_buf = ND_MAX_Q; 3440 ill->ill_refcnt = 0; 3441 3442 /* Send down the Info Request to the driver. */ 3443 info_mp->b_datap->db_type = M_PCPROTO; 3444 dlir = (dl_info_req_t *)info_mp->b_rptr; 3445 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3446 dlir->dl_primitive = DL_INFO_REQ; 3447 3448 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3449 3450 qprocson(q); 3451 ill_dlpi_send(ill, info_mp); 3452 3453 return (0); 3454 } 3455 3456 /* 3457 * ill_dls_info 3458 * creates datalink socket info from the device. 3459 */ 3460 int 3461 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3462 { 3463 size_t len; 3464 3465 sdl->sdl_family = AF_LINK; 3466 sdl->sdl_index = ill_get_upper_ifindex(ill); 3467 sdl->sdl_type = ill->ill_type; 3468 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3469 len = strlen(sdl->sdl_data); 3470 ASSERT(len < 256); 3471 sdl->sdl_nlen = (uchar_t)len; 3472 sdl->sdl_alen = ill->ill_phys_addr_length; 3473 sdl->sdl_slen = 0; 3474 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3475 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3476 3477 return (sizeof (struct sockaddr_dl)); 3478 } 3479 3480 /* 3481 * ill_xarp_info 3482 * creates xarp info from the device. 3483 */ 3484 static int 3485 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3486 { 3487 sdl->sdl_family = AF_LINK; 3488 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3489 sdl->sdl_type = ill->ill_type; 3490 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3491 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3492 sdl->sdl_alen = ill->ill_phys_addr_length; 3493 sdl->sdl_slen = 0; 3494 return (sdl->sdl_nlen); 3495 } 3496 3497 static int 3498 loopback_kstat_update(kstat_t *ksp, int rw) 3499 { 3500 kstat_named_t *kn; 3501 netstackid_t stackid; 3502 netstack_t *ns; 3503 ip_stack_t *ipst; 3504 3505 if (ksp == NULL || ksp->ks_data == NULL) 3506 return (EIO); 3507 3508 if (rw == KSTAT_WRITE) 3509 return (EACCES); 3510 3511 kn = KSTAT_NAMED_PTR(ksp); 3512 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3513 3514 ns = netstack_find_by_stackid(stackid); 3515 if (ns == NULL) 3516 return (-1); 3517 3518 ipst = ns->netstack_ip; 3519 if (ipst == NULL) { 3520 netstack_rele(ns); 3521 return (-1); 3522 } 3523 kn[0].value.ui32 = ipst->ips_loopback_packets; 3524 kn[1].value.ui32 = ipst->ips_loopback_packets; 3525 netstack_rele(ns); 3526 return (0); 3527 } 3528 3529 /* 3530 * Has ifindex been plumbed already? 3531 */ 3532 static boolean_t 3533 phyint_exists(uint_t index, ip_stack_t *ipst) 3534 { 3535 ASSERT(index != 0); 3536 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3537 3538 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3539 &index, NULL) != NULL); 3540 } 3541 3542 /* 3543 * Pick a unique ifindex. 3544 * When the index counter passes IF_INDEX_MAX for the first time, the wrap 3545 * flag is set so that next time time ip_assign_ifindex() is called, it 3546 * falls through and resets the index counter back to 1, the minimum value 3547 * for the interface index. The logic below assumes that ips_ill_index 3548 * can hold a value of IF_INDEX_MAX+1 without there being any loss 3549 * (i.e. reset back to 0.) 3550 */ 3551 boolean_t 3552 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3553 { 3554 uint_t loops; 3555 3556 if (!ipst->ips_ill_index_wrap) { 3557 *indexp = ipst->ips_ill_index++; 3558 if (ipst->ips_ill_index > IF_INDEX_MAX) { 3559 /* 3560 * Reached the maximum ifindex value, set the wrap 3561 * flag to indicate that it is no longer possible 3562 * to assume that a given index is unallocated. 3563 */ 3564 ipst->ips_ill_index_wrap = B_TRUE; 3565 } 3566 return (B_TRUE); 3567 } 3568 3569 if (ipst->ips_ill_index > IF_INDEX_MAX) 3570 ipst->ips_ill_index = 1; 3571 3572 /* 3573 * Start reusing unused indexes. Note that we hold the ill_g_lock 3574 * at this point and don't want to call any function that attempts 3575 * to get the lock again. 3576 */ 3577 for (loops = IF_INDEX_MAX; loops > 0; loops--) { 3578 if (!phyint_exists(ipst->ips_ill_index, ipst)) { 3579 /* found unused index - use it */ 3580 *indexp = ipst->ips_ill_index; 3581 return (B_TRUE); 3582 } 3583 3584 ipst->ips_ill_index++; 3585 if (ipst->ips_ill_index > IF_INDEX_MAX) 3586 ipst->ips_ill_index = 1; 3587 } 3588 3589 /* 3590 * all interface indicies are inuse. 3591 */ 3592 return (B_FALSE); 3593 } 3594 3595 /* 3596 * Assign a unique interface index for the phyint. 3597 */ 3598 static boolean_t 3599 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3600 { 3601 ASSERT(phyi->phyint_ifindex == 0); 3602 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3603 } 3604 3605 /* 3606 * Initialize the flags on `phyi' as per the provided mactype. 3607 */ 3608 static void 3609 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3610 { 3611 uint64_t flags = 0; 3612 3613 /* 3614 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3615 * we always presume the underlying hardware is working and set 3616 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3617 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3618 * there are no active interfaces in the group so we set PHYI_FAILED. 3619 */ 3620 if (mactype == SUNW_DL_IPMP) 3621 flags |= PHYI_FAILED; 3622 else 3623 flags |= PHYI_RUNNING; 3624 3625 switch (mactype) { 3626 case SUNW_DL_VNI: 3627 flags |= PHYI_VIRTUAL; 3628 break; 3629 case SUNW_DL_IPMP: 3630 flags |= PHYI_IPMP; 3631 break; 3632 case DL_LOOP: 3633 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3634 break; 3635 } 3636 3637 mutex_enter(&phyi->phyint_lock); 3638 phyi->phyint_flags |= flags; 3639 mutex_exit(&phyi->phyint_lock); 3640 } 3641 3642 /* 3643 * Return a pointer to the ill which matches the supplied name. Note that 3644 * the ill name length includes the null termination character. (May be 3645 * called as writer.) 3646 * If do_alloc and the interface is "lo0" it will be automatically created. 3647 * Cannot bump up reference on condemned ills. So dup detect can't be done 3648 * using this func. 3649 */ 3650 ill_t * 3651 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3652 boolean_t *did_alloc, ip_stack_t *ipst) 3653 { 3654 ill_t *ill; 3655 ipif_t *ipif; 3656 ipsq_t *ipsq; 3657 kstat_named_t *kn; 3658 boolean_t isloopback; 3659 in6_addr_t ov6addr; 3660 3661 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3662 3663 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3664 ill = ill_find_by_name(name, isv6, ipst); 3665 rw_exit(&ipst->ips_ill_g_lock); 3666 if (ill != NULL) 3667 return (ill); 3668 3669 /* 3670 * Couldn't find it. Does this happen to be a lookup for the 3671 * loopback device and are we allowed to allocate it? 3672 */ 3673 if (!isloopback || !do_alloc) 3674 return (NULL); 3675 3676 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3677 ill = ill_find_by_name(name, isv6, ipst); 3678 if (ill != NULL) { 3679 rw_exit(&ipst->ips_ill_g_lock); 3680 return (ill); 3681 } 3682 3683 /* Create the loopback device on demand */ 3684 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3685 sizeof (ipif_loopback_name), BPRI_MED)); 3686 if (ill == NULL) 3687 goto done; 3688 3689 *ill = ill_null; 3690 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 3691 ill->ill_ipst = ipst; 3692 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3693 netstack_hold(ipst->ips_netstack); 3694 /* 3695 * For exclusive stacks we set the zoneid to zero 3696 * to make IP operate as if in the global zone. 3697 */ 3698 ill->ill_zoneid = GLOBAL_ZONEID; 3699 3700 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3701 if (ill->ill_phyint == NULL) 3702 goto done; 3703 3704 if (isv6) 3705 ill->ill_phyint->phyint_illv6 = ill; 3706 else 3707 ill->ill_phyint->phyint_illv4 = ill; 3708 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3709 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3710 3711 if (isv6) { 3712 ill->ill_isv6 = B_TRUE; 3713 ill->ill_max_frag = ip_loopback_mtu_v6plus; 3714 } else { 3715 ill->ill_max_frag = ip_loopback_mtuplus; 3716 } 3717 if (!ill_allocate_mibs(ill)) 3718 goto done; 3719 ill->ill_current_frag = ill->ill_max_frag; 3720 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3721 ill->ill_mc_mtu = ill->ill_mtu; 3722 /* 3723 * ipif_loopback_name can't be pointed at directly because its used 3724 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3725 * from the glist, ill_glist_delete() sets the first character of 3726 * ill_name to '\0'. 3727 */ 3728 ill->ill_name = (char *)ill + sizeof (*ill); 3729 (void) strcpy(ill->ill_name, ipif_loopback_name); 3730 ill->ill_name_length = sizeof (ipif_loopback_name); 3731 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3732 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3733 3734 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3735 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3736 ill->ill_global_timer = INFINITY; 3737 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3738 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3739 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3740 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3741 3742 /* No resolver here. */ 3743 ill->ill_net_type = IRE_LOOPBACK; 3744 3745 /* Initialize the ipsq */ 3746 if (!ipsq_init(ill, B_FALSE)) 3747 goto done; 3748 3749 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); 3750 if (ipif == NULL) 3751 goto done; 3752 3753 ill->ill_flags = ILLF_MULTICAST; 3754 3755 ov6addr = ipif->ipif_v6lcl_addr; 3756 /* Set up default loopback address and mask. */ 3757 if (!isv6) { 3758 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3759 3760 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3761 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3762 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3763 ipif->ipif_v6subnet); 3764 ill->ill_flags |= ILLF_IPV4; 3765 } else { 3766 ipif->ipif_v6lcl_addr = ipv6_loopback; 3767 ipif->ipif_v6net_mask = ipv6_all_ones; 3768 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3769 ipif->ipif_v6subnet); 3770 ill->ill_flags |= ILLF_IPV6; 3771 } 3772 3773 /* 3774 * Chain us in at the end of the ill list. hold the ill 3775 * before we make it globally visible. 1 for the lookup. 3776 */ 3777 ill->ill_refcnt = 0; 3778 ill_refhold(ill); 3779 3780 ill->ill_frag_count = 0; 3781 ill->ill_frag_free_num_pkts = 0; 3782 ill->ill_last_frag_clean_time = 0; 3783 3784 ipsq = ill->ill_phyint->phyint_ipsq; 3785 3786 ill_set_inputfn(ill); 3787 3788 if (ill_glist_insert(ill, "lo", isv6) != 0) 3789 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3790 3791 /* Let SCTP know so that it can add this to its list */ 3792 sctp_update_ill(ill, SCTP_ILL_INSERT); 3793 3794 /* 3795 * We have already assigned ipif_v6lcl_addr above, but we need to 3796 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3797 * requires to be after ill_glist_insert() since we need the 3798 * ill_index set. Pass on ipv6_loopback as the old address. 3799 */ 3800 sctp_update_ipif_addr(ipif, ov6addr); 3801 3802 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3803 3804 /* 3805 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3806 * If so, free our original one. 3807 */ 3808 if (ipsq != ill->ill_phyint->phyint_ipsq) 3809 ipsq_delete(ipsq); 3810 3811 if (ipst->ips_loopback_ksp == NULL) { 3812 /* Export loopback interface statistics */ 3813 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3814 ipif_loopback_name, "net", 3815 KSTAT_TYPE_NAMED, 2, 0, 3816 ipst->ips_netstack->netstack_stackid); 3817 if (ipst->ips_loopback_ksp != NULL) { 3818 ipst->ips_loopback_ksp->ks_update = 3819 loopback_kstat_update; 3820 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3821 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3822 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3823 ipst->ips_loopback_ksp->ks_private = 3824 (void *)(uintptr_t)ipst->ips_netstack-> 3825 netstack_stackid; 3826 kstat_install(ipst->ips_loopback_ksp); 3827 } 3828 } 3829 3830 *did_alloc = B_TRUE; 3831 rw_exit(&ipst->ips_ill_g_lock); 3832 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3833 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3834 return (ill); 3835 done: 3836 if (ill != NULL) { 3837 if (ill->ill_phyint != NULL) { 3838 ipsq = ill->ill_phyint->phyint_ipsq; 3839 if (ipsq != NULL) { 3840 ipsq->ipsq_phyint = NULL; 3841 ipsq_delete(ipsq); 3842 } 3843 mi_free(ill->ill_phyint); 3844 } 3845 ill_free_mib(ill); 3846 if (ill->ill_ipst != NULL) 3847 netstack_rele(ill->ill_ipst->ips_netstack); 3848 mi_free(ill); 3849 } 3850 rw_exit(&ipst->ips_ill_g_lock); 3851 return (NULL); 3852 } 3853 3854 /* 3855 * For IPP calls - use the ip_stack_t for global stack. 3856 */ 3857 ill_t * 3858 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3859 { 3860 ip_stack_t *ipst; 3861 ill_t *ill; 3862 3863 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 3864 if (ipst == NULL) { 3865 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3866 return (NULL); 3867 } 3868 3869 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3870 netstack_rele(ipst->ips_netstack); 3871 return (ill); 3872 } 3873 3874 /* 3875 * Return a pointer to the ill which matches the index and IP version type. 3876 */ 3877 ill_t * 3878 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3879 { 3880 ill_t *ill; 3881 phyint_t *phyi; 3882 3883 /* 3884 * Indexes are stored in the phyint - a common structure 3885 * to both IPv4 and IPv6. 3886 */ 3887 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3888 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3889 (void *) &index, NULL); 3890 if (phyi != NULL) { 3891 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3892 if (ill != NULL) { 3893 mutex_enter(&ill->ill_lock); 3894 if (!ILL_IS_CONDEMNED(ill)) { 3895 ill_refhold_locked(ill); 3896 mutex_exit(&ill->ill_lock); 3897 rw_exit(&ipst->ips_ill_g_lock); 3898 return (ill); 3899 } 3900 mutex_exit(&ill->ill_lock); 3901 } 3902 } 3903 rw_exit(&ipst->ips_ill_g_lock); 3904 return (NULL); 3905 } 3906 3907 /* 3908 * Verify whether or not an interface index is valid for the specified zoneid 3909 * to transmit packets. 3910 * It can be zero (meaning "reset") or an interface index assigned 3911 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3912 */ 3913 boolean_t 3914 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, 3915 ip_stack_t *ipst) 3916 { 3917 ill_t *ill; 3918 3919 if (ifindex == 0) 3920 return (B_TRUE); 3921 3922 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); 3923 if (ill == NULL) 3924 return (B_FALSE); 3925 if (IS_VNI(ill)) { 3926 ill_refrele(ill); 3927 return (B_FALSE); 3928 } 3929 ill_refrele(ill); 3930 return (B_TRUE); 3931 } 3932 3933 /* 3934 * Return the ifindex next in sequence after the passed in ifindex. 3935 * If there is no next ifindex for the given protocol, return 0. 3936 */ 3937 uint_t 3938 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3939 { 3940 phyint_t *phyi; 3941 phyint_t *phyi_initial; 3942 uint_t ifindex; 3943 3944 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3945 3946 if (index == 0) { 3947 phyi = avl_first( 3948 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 3949 } else { 3950 phyi = phyi_initial = avl_find( 3951 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3952 (void *) &index, NULL); 3953 } 3954 3955 for (; phyi != NULL; 3956 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3957 phyi, AVL_AFTER)) { 3958 /* 3959 * If we're not returning the first interface in the tree 3960 * and we still haven't moved past the phyint_t that 3961 * corresponds to index, avl_walk needs to be called again 3962 */ 3963 if (!((index != 0) && (phyi == phyi_initial))) { 3964 if (isv6) { 3965 if ((phyi->phyint_illv6) && 3966 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 3967 (phyi->phyint_illv6->ill_isv6 == 1)) 3968 break; 3969 } else { 3970 if ((phyi->phyint_illv4) && 3971 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 3972 (phyi->phyint_illv4->ill_isv6 == 0)) 3973 break; 3974 } 3975 } 3976 } 3977 3978 rw_exit(&ipst->ips_ill_g_lock); 3979 3980 if (phyi != NULL) 3981 ifindex = phyi->phyint_ifindex; 3982 else 3983 ifindex = 0; 3984 3985 return (ifindex); 3986 } 3987 3988 /* 3989 * Return the ifindex for the named interface. 3990 * If there is no next ifindex for the interface, return 0. 3991 */ 3992 uint_t 3993 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 3994 { 3995 phyint_t *phyi; 3996 avl_index_t where = 0; 3997 uint_t ifindex; 3998 3999 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4000 4001 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4002 name, &where)) == NULL) { 4003 rw_exit(&ipst->ips_ill_g_lock); 4004 return (0); 4005 } 4006 4007 ifindex = phyi->phyint_ifindex; 4008 4009 rw_exit(&ipst->ips_ill_g_lock); 4010 4011 return (ifindex); 4012 } 4013 4014 /* 4015 * Return the ifindex to be used by upper layer protocols for instance 4016 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 4017 */ 4018 uint_t 4019 ill_get_upper_ifindex(const ill_t *ill) 4020 { 4021 if (IS_UNDER_IPMP(ill)) 4022 return (ipmp_ill_get_ipmp_ifindex(ill)); 4023 else 4024 return (ill->ill_phyint->phyint_ifindex); 4025 } 4026 4027 4028 /* 4029 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4030 * that gives a running thread a reference to the ill. This reference must be 4031 * released by the thread when it is done accessing the ill and related 4032 * objects. ill_refcnt can not be used to account for static references 4033 * such as other structures pointing to an ill. Callers must generally 4034 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4035 * or be sure that the ill is not being deleted or changing state before 4036 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4037 * ill won't change any of its critical state such as address, netmask etc. 4038 */ 4039 void 4040 ill_refhold(ill_t *ill) 4041 { 4042 mutex_enter(&ill->ill_lock); 4043 ill->ill_refcnt++; 4044 ILL_TRACE_REF(ill); 4045 mutex_exit(&ill->ill_lock); 4046 } 4047 4048 void 4049 ill_refhold_locked(ill_t *ill) 4050 { 4051 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4052 ill->ill_refcnt++; 4053 ILL_TRACE_REF(ill); 4054 } 4055 4056 /* Returns true if we managed to get a refhold */ 4057 boolean_t 4058 ill_check_and_refhold(ill_t *ill) 4059 { 4060 mutex_enter(&ill->ill_lock); 4061 if (!ILL_IS_CONDEMNED(ill)) { 4062 ill_refhold_locked(ill); 4063 mutex_exit(&ill->ill_lock); 4064 return (B_TRUE); 4065 } 4066 mutex_exit(&ill->ill_lock); 4067 return (B_FALSE); 4068 } 4069 4070 /* 4071 * Must not be called while holding any locks. Otherwise if this is 4072 * the last reference to be released, there is a chance of recursive mutex 4073 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4074 * to restart an ioctl. 4075 */ 4076 void 4077 ill_refrele(ill_t *ill) 4078 { 4079 mutex_enter(&ill->ill_lock); 4080 ASSERT(ill->ill_refcnt != 0); 4081 ill->ill_refcnt--; 4082 ILL_UNTRACE_REF(ill); 4083 if (ill->ill_refcnt != 0) { 4084 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4085 mutex_exit(&ill->ill_lock); 4086 return; 4087 } 4088 4089 /* Drops the ill_lock */ 4090 ipif_ill_refrele_tail(ill); 4091 } 4092 4093 /* 4094 * Obtain a weak reference count on the ill. This reference ensures the 4095 * ill won't be freed, but the ill may change any of its critical state 4096 * such as netmask, address etc. Returns an error if the ill has started 4097 * closing. 4098 */ 4099 boolean_t 4100 ill_waiter_inc(ill_t *ill) 4101 { 4102 mutex_enter(&ill->ill_lock); 4103 if (ill->ill_state_flags & ILL_CONDEMNED) { 4104 mutex_exit(&ill->ill_lock); 4105 return (B_FALSE); 4106 } 4107 ill->ill_waiters++; 4108 mutex_exit(&ill->ill_lock); 4109 return (B_TRUE); 4110 } 4111 4112 void 4113 ill_waiter_dcr(ill_t *ill) 4114 { 4115 mutex_enter(&ill->ill_lock); 4116 ill->ill_waiters--; 4117 if (ill->ill_waiters == 0) 4118 cv_broadcast(&ill->ill_cv); 4119 mutex_exit(&ill->ill_lock); 4120 } 4121 4122 /* 4123 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4124 * driver. We construct best guess defaults for lower level information that 4125 * we need. If an interface is brought up without injection of any overriding 4126 * information from outside, we have to be ready to go with these defaults. 4127 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4128 * we primarely want the dl_provider_style. 4129 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4130 * at which point we assume the other part of the information is valid. 4131 */ 4132 void 4133 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4134 { 4135 uchar_t *brdcst_addr; 4136 uint_t brdcst_addr_length, phys_addr_length; 4137 t_scalar_t sap_length; 4138 dl_info_ack_t *dlia; 4139 ip_m_t *ipm; 4140 dl_qos_cl_sel1_t *sel1; 4141 int min_mtu; 4142 4143 ASSERT(IAM_WRITER_ILL(ill)); 4144 4145 /* 4146 * Till the ill is fully up the ill is not globally visible. 4147 * So no need for a lock. 4148 */ 4149 dlia = (dl_info_ack_t *)mp->b_rptr; 4150 ill->ill_mactype = dlia->dl_mac_type; 4151 4152 ipm = ip_m_lookup(dlia->dl_mac_type); 4153 if (ipm == NULL) { 4154 ipm = ip_m_lookup(DL_OTHER); 4155 ASSERT(ipm != NULL); 4156 } 4157 ill->ill_media = ipm; 4158 4159 /* 4160 * When the new DLPI stuff is ready we'll pull lengths 4161 * from dlia. 4162 */ 4163 if (dlia->dl_version == DL_VERSION_2) { 4164 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4165 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4166 brdcst_addr_length); 4167 if (brdcst_addr == NULL) { 4168 brdcst_addr_length = 0; 4169 } 4170 sap_length = dlia->dl_sap_length; 4171 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4172 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4173 brdcst_addr_length, sap_length, phys_addr_length)); 4174 } else { 4175 brdcst_addr_length = 6; 4176 brdcst_addr = ip_six_byte_all_ones; 4177 sap_length = -2; 4178 phys_addr_length = brdcst_addr_length; 4179 } 4180 4181 ill->ill_bcast_addr_length = brdcst_addr_length; 4182 ill->ill_phys_addr_length = phys_addr_length; 4183 ill->ill_sap_length = sap_length; 4184 4185 /* 4186 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4187 * but we must ensure a minimum IP MTU is used since other bits of 4188 * IP will fly apart otherwise. 4189 */ 4190 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4191 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4192 ill->ill_current_frag = ill->ill_max_frag; 4193 ill->ill_mtu = ill->ill_max_frag; 4194 ill->ill_mc_mtu = ill->ill_mtu; /* Overridden by DL_NOTE_SDU_SIZE2 */ 4195 4196 ill->ill_type = ipm->ip_m_type; 4197 4198 if (!ill->ill_dlpi_style_set) { 4199 if (dlia->dl_provider_style == DL_STYLE2) 4200 ill->ill_needs_attach = 1; 4201 4202 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4203 4204 /* 4205 * Allocate the first ipif on this ill. We don't delay it 4206 * further as ioctl handling assumes at least one ipif exists. 4207 * 4208 * At this point we don't know whether the ill is v4 or v6. 4209 * We will know this whan the SIOCSLIFNAME happens and 4210 * the correct value for ill_isv6 will be assigned in 4211 * ipif_set_values(). We need to hold the ill lock and 4212 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4213 * the wakeup. 4214 */ 4215 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4216 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); 4217 mutex_enter(&ill->ill_lock); 4218 ASSERT(ill->ill_dlpi_style_set == 0); 4219 ill->ill_dlpi_style_set = 1; 4220 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4221 cv_broadcast(&ill->ill_cv); 4222 mutex_exit(&ill->ill_lock); 4223 freemsg(mp); 4224 return; 4225 } 4226 ASSERT(ill->ill_ipif != NULL); 4227 /* 4228 * We know whether it is IPv4 or IPv6 now, as this is the 4229 * second DL_INFO_ACK we are recieving in response to the 4230 * DL_INFO_REQ sent in ipif_set_values. 4231 */ 4232 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4233 /* 4234 * Clear all the flags that were set based on ill_bcast_addr_length 4235 * and ill_phys_addr_length (in ipif_set_values) as these could have 4236 * changed now and we need to re-evaluate. 4237 */ 4238 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4239 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4240 4241 /* 4242 * Free ill_bcast_mp as things could have changed now. 4243 * 4244 * NOTE: The IPMP meta-interface is special-cased because it starts 4245 * with no underlying interfaces (and thus an unknown broadcast 4246 * address length), but we enforce that an interface is broadcast- 4247 * capable as part of allowing it to join a group. 4248 */ 4249 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4250 if (ill->ill_bcast_mp != NULL) 4251 freemsg(ill->ill_bcast_mp); 4252 ill->ill_net_type = IRE_IF_NORESOLVER; 4253 4254 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4255 ill->ill_phys_addr_length, 4256 ill->ill_sap, 4257 ill->ill_sap_length); 4258 4259 if (ill->ill_isv6) 4260 /* 4261 * Note: xresolv interfaces will eventually need NOARP 4262 * set here as well, but that will require those 4263 * external resolvers to have some knowledge of 4264 * that flag and act appropriately. Not to be changed 4265 * at present. 4266 */ 4267 ill->ill_flags |= ILLF_NONUD; 4268 else 4269 ill->ill_flags |= ILLF_NOARP; 4270 4271 if (ill->ill_mactype == SUNW_DL_VNI) { 4272 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4273 } else if (ill->ill_phys_addr_length == 0 || 4274 ill->ill_mactype == DL_IPV4 || 4275 ill->ill_mactype == DL_IPV6) { 4276 /* 4277 * The underying link is point-to-point, so mark the 4278 * interface as such. We can do IP multicast over 4279 * such a link since it transmits all network-layer 4280 * packets to the remote side the same way. 4281 */ 4282 ill->ill_flags |= ILLF_MULTICAST; 4283 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4284 } 4285 } else { 4286 ill->ill_net_type = IRE_IF_RESOLVER; 4287 if (ill->ill_bcast_mp != NULL) 4288 freemsg(ill->ill_bcast_mp); 4289 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4290 ill->ill_bcast_addr_length, ill->ill_sap, 4291 ill->ill_sap_length); 4292 /* 4293 * Later detect lack of DLPI driver multicast 4294 * capability by catching DL_ENABMULTI errors in 4295 * ip_rput_dlpi. 4296 */ 4297 ill->ill_flags |= ILLF_MULTICAST; 4298 if (!ill->ill_isv6) 4299 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4300 } 4301 4302 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4303 if (ill->ill_mactype == SUNW_DL_IPMP) 4304 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4305 4306 /* By default an interface does not support any CoS marking */ 4307 ill->ill_flags &= ~ILLF_COS_ENABLED; 4308 4309 /* 4310 * If we get QoS information in DL_INFO_ACK, the device supports 4311 * some form of CoS marking, set ILLF_COS_ENABLED. 4312 */ 4313 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4314 dlia->dl_qos_length); 4315 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4316 ill->ill_flags |= ILLF_COS_ENABLED; 4317 } 4318 4319 /* Clear any previous error indication. */ 4320 ill->ill_error = 0; 4321 freemsg(mp); 4322 } 4323 4324 /* 4325 * Perform various checks to verify that an address would make sense as a 4326 * local, remote, or subnet interface address. 4327 */ 4328 static boolean_t 4329 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4330 { 4331 ipaddr_t net_mask; 4332 4333 /* 4334 * Don't allow all zeroes, or all ones, but allow 4335 * all ones netmask. 4336 */ 4337 if ((net_mask = ip_net_mask(addr)) == 0) 4338 return (B_FALSE); 4339 /* A given netmask overrides the "guess" netmask */ 4340 if (subnet_mask != 0) 4341 net_mask = subnet_mask; 4342 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4343 (addr == (addr | ~net_mask)))) { 4344 return (B_FALSE); 4345 } 4346 4347 /* 4348 * Even if the netmask is all ones, we do not allow address to be 4349 * 255.255.255.255 4350 */ 4351 if (addr == INADDR_BROADCAST) 4352 return (B_FALSE); 4353 4354 if (CLASSD(addr)) 4355 return (B_FALSE); 4356 4357 return (B_TRUE); 4358 } 4359 4360 #define V6_IPIF_LINKLOCAL(p) \ 4361 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4362 4363 /* 4364 * Compare two given ipifs and check if the second one is better than 4365 * the first one using the order of preference (not taking deprecated 4366 * into acount) specified in ipif_lookup_multicast(). 4367 */ 4368 static boolean_t 4369 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4370 { 4371 /* Check the least preferred first. */ 4372 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4373 /* If both ipifs are the same, use the first one. */ 4374 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4375 return (B_FALSE); 4376 else 4377 return (B_TRUE); 4378 } 4379 4380 /* For IPv6, check for link local address. */ 4381 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4382 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4383 V6_IPIF_LINKLOCAL(new_ipif)) { 4384 /* The second one is equal or less preferred. */ 4385 return (B_FALSE); 4386 } else { 4387 return (B_TRUE); 4388 } 4389 } 4390 4391 /* Then check for point to point interface. */ 4392 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4393 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4394 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4395 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4396 return (B_FALSE); 4397 } else { 4398 return (B_TRUE); 4399 } 4400 } 4401 4402 /* old_ipif is a normal interface, so no need to use the new one. */ 4403 return (B_FALSE); 4404 } 4405 4406 /* 4407 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4408 * The ipif must be up, and its ill must multicast-capable, not 4409 * condemned, not an underlying interface in an IPMP group, and 4410 * not a VNI interface. Order of preference: 4411 * 4412 * 1a. normal 4413 * 1b. normal, but deprecated 4414 * 2a. point to point 4415 * 2b. point to point, but deprecated 4416 * 3a. link local 4417 * 3b. link local, but deprecated 4418 * 4. loopback. 4419 */ 4420 static ipif_t * 4421 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4422 { 4423 ill_t *ill; 4424 ill_walk_context_t ctx; 4425 ipif_t *ipif; 4426 ipif_t *saved_ipif = NULL; 4427 ipif_t *dep_ipif = NULL; 4428 4429 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4430 if (isv6) 4431 ill = ILL_START_WALK_V6(&ctx, ipst); 4432 else 4433 ill = ILL_START_WALK_V4(&ctx, ipst); 4434 4435 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4436 mutex_enter(&ill->ill_lock); 4437 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4438 ILL_IS_CONDEMNED(ill) || 4439 !(ill->ill_flags & ILLF_MULTICAST)) { 4440 mutex_exit(&ill->ill_lock); 4441 continue; 4442 } 4443 for (ipif = ill->ill_ipif; ipif != NULL; 4444 ipif = ipif->ipif_next) { 4445 if (zoneid != ipif->ipif_zoneid && 4446 zoneid != ALL_ZONES && 4447 ipif->ipif_zoneid != ALL_ZONES) { 4448 continue; 4449 } 4450 if (!(ipif->ipif_flags & IPIF_UP) || 4451 IPIF_IS_CONDEMNED(ipif)) { 4452 continue; 4453 } 4454 4455 /* 4456 * Found one candidate. If it is deprecated, 4457 * remember it in dep_ipif. If it is not deprecated, 4458 * remember it in saved_ipif. 4459 */ 4460 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4461 if (dep_ipif == NULL) { 4462 dep_ipif = ipif; 4463 } else if (ipif_comp_multi(dep_ipif, ipif, 4464 isv6)) { 4465 /* 4466 * If the previous dep_ipif does not 4467 * belong to the same ill, we've done 4468 * a ipif_refhold() on it. So we need 4469 * to release it. 4470 */ 4471 if (dep_ipif->ipif_ill != ill) 4472 ipif_refrele(dep_ipif); 4473 dep_ipif = ipif; 4474 } 4475 continue; 4476 } 4477 if (saved_ipif == NULL) { 4478 saved_ipif = ipif; 4479 } else { 4480 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4481 if (saved_ipif->ipif_ill != ill) 4482 ipif_refrele(saved_ipif); 4483 saved_ipif = ipif; 4484 } 4485 } 4486 } 4487 /* 4488 * Before going to the next ill, do a ipif_refhold() on the 4489 * saved ones. 4490 */ 4491 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4492 ipif_refhold_locked(saved_ipif); 4493 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4494 ipif_refhold_locked(dep_ipif); 4495 mutex_exit(&ill->ill_lock); 4496 } 4497 rw_exit(&ipst->ips_ill_g_lock); 4498 4499 /* 4500 * If we have only the saved_ipif, return it. But if we have both 4501 * saved_ipif and dep_ipif, check to see which one is better. 4502 */ 4503 if (saved_ipif != NULL) { 4504 if (dep_ipif != NULL) { 4505 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4506 ipif_refrele(saved_ipif); 4507 return (dep_ipif); 4508 } else { 4509 ipif_refrele(dep_ipif); 4510 return (saved_ipif); 4511 } 4512 } 4513 return (saved_ipif); 4514 } else { 4515 return (dep_ipif); 4516 } 4517 } 4518 4519 ill_t * 4520 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4521 { 4522 ipif_t *ipif; 4523 ill_t *ill; 4524 4525 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4526 if (ipif == NULL) 4527 return (NULL); 4528 4529 ill = ipif->ipif_ill; 4530 ill_refhold(ill); 4531 ipif_refrele(ipif); 4532 return (ill); 4533 } 4534 4535 /* 4536 * This function is called when an application does not specify an interface 4537 * to be used for multicast traffic (joining a group/sending data). It 4538 * calls ire_lookup_multi() to look for an interface route for the 4539 * specified multicast group. Doing this allows the administrator to add 4540 * prefix routes for multicast to indicate which interface to be used for 4541 * multicast traffic in the above scenario. The route could be for all 4542 * multicast (224.0/4), for a single multicast group (a /32 route) or 4543 * anything in between. If there is no such multicast route, we just find 4544 * any multicast capable interface and return it. The returned ipif 4545 * is refhold'ed. 4546 * 4547 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4548 * unicast table. This is used by CGTP. 4549 */ 4550 ill_t * 4551 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4552 boolean_t *multirtp, ipaddr_t *setsrcp) 4553 { 4554 ill_t *ill; 4555 4556 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4557 if (ill != NULL) 4558 return (ill); 4559 4560 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4561 } 4562 4563 /* 4564 * Look for an ipif with the specified interface address and destination. 4565 * The destination address is used only for matching point-to-point interfaces. 4566 */ 4567 ipif_t * 4568 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4569 { 4570 ipif_t *ipif; 4571 ill_t *ill; 4572 ill_walk_context_t ctx; 4573 4574 /* 4575 * First match all the point-to-point interfaces 4576 * before looking at non-point-to-point interfaces. 4577 * This is done to avoid returning non-point-to-point 4578 * ipif instead of unnumbered point-to-point ipif. 4579 */ 4580 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4581 ill = ILL_START_WALK_V4(&ctx, ipst); 4582 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4583 mutex_enter(&ill->ill_lock); 4584 for (ipif = ill->ill_ipif; ipif != NULL; 4585 ipif = ipif->ipif_next) { 4586 /* Allow the ipif to be down */ 4587 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4588 (ipif->ipif_lcl_addr == if_addr) && 4589 (ipif->ipif_pp_dst_addr == dst)) { 4590 if (!IPIF_IS_CONDEMNED(ipif)) { 4591 ipif_refhold_locked(ipif); 4592 mutex_exit(&ill->ill_lock); 4593 rw_exit(&ipst->ips_ill_g_lock); 4594 return (ipif); 4595 } 4596 } 4597 } 4598 mutex_exit(&ill->ill_lock); 4599 } 4600 rw_exit(&ipst->ips_ill_g_lock); 4601 4602 /* lookup the ipif based on interface address */ 4603 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4604 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4605 return (ipif); 4606 } 4607 4608 /* 4609 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4610 */ 4611 static ipif_t * 4612 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4613 zoneid_t zoneid, ip_stack_t *ipst) 4614 { 4615 ipif_t *ipif; 4616 ill_t *ill; 4617 boolean_t ptp = B_FALSE; 4618 ill_walk_context_t ctx; 4619 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4620 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4621 4622 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4623 /* 4624 * Repeat twice, first based on local addresses and 4625 * next time for pointopoint. 4626 */ 4627 repeat: 4628 ill = ILL_START_WALK_V4(&ctx, ipst); 4629 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4630 if (match_ill != NULL && ill != match_ill && 4631 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4632 continue; 4633 } 4634 mutex_enter(&ill->ill_lock); 4635 for (ipif = ill->ill_ipif; ipif != NULL; 4636 ipif = ipif->ipif_next) { 4637 if (zoneid != ALL_ZONES && 4638 zoneid != ipif->ipif_zoneid && 4639 ipif->ipif_zoneid != ALL_ZONES) 4640 continue; 4641 4642 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4643 continue; 4644 4645 /* Allow the ipif to be down */ 4646 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4647 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4648 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4649 (ipif->ipif_pp_dst_addr == addr))) { 4650 if (!IPIF_IS_CONDEMNED(ipif)) { 4651 ipif_refhold_locked(ipif); 4652 mutex_exit(&ill->ill_lock); 4653 rw_exit(&ipst->ips_ill_g_lock); 4654 return (ipif); 4655 } 4656 } 4657 } 4658 mutex_exit(&ill->ill_lock); 4659 } 4660 4661 /* If we already did the ptp case, then we are done */ 4662 if (ptp) { 4663 rw_exit(&ipst->ips_ill_g_lock); 4664 return (NULL); 4665 } 4666 ptp = B_TRUE; 4667 goto repeat; 4668 } 4669 4670 /* 4671 * Lookup an ipif with the specified address. For point-to-point links we 4672 * look for matches on either the destination address or the local address, 4673 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4674 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4675 * (or illgrp if `match_ill' is in an IPMP group). 4676 */ 4677 ipif_t * 4678 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4679 ip_stack_t *ipst) 4680 { 4681 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4682 zoneid, ipst)); 4683 } 4684 4685 /* 4686 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4687 * except that we will only return an address if it is not marked as 4688 * IPIF_DUPLICATE 4689 */ 4690 ipif_t * 4691 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4692 ip_stack_t *ipst) 4693 { 4694 return (ipif_lookup_addr_common(addr, match_ill, 4695 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4696 zoneid, ipst)); 4697 } 4698 4699 /* 4700 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4701 * `match_ill' across the IPMP group. This function is only needed in some 4702 * corner-cases; almost everything should use ipif_lookup_addr(). 4703 */ 4704 ipif_t * 4705 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4706 { 4707 ASSERT(match_ill != NULL); 4708 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4709 ipst)); 4710 } 4711 4712 /* 4713 * Look for an ipif with the specified address. For point-point links 4714 * we look for matches on either the destination address and the local 4715 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4716 * is set. 4717 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4718 * ill (or illgrp if `match_ill' is in an IPMP group). 4719 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4720 */ 4721 zoneid_t 4722 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4723 { 4724 zoneid_t zoneid; 4725 ipif_t *ipif; 4726 ill_t *ill; 4727 boolean_t ptp = B_FALSE; 4728 ill_walk_context_t ctx; 4729 4730 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4731 /* 4732 * Repeat twice, first based on local addresses and 4733 * next time for pointopoint. 4734 */ 4735 repeat: 4736 ill = ILL_START_WALK_V4(&ctx, ipst); 4737 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4738 if (match_ill != NULL && ill != match_ill && 4739 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4740 continue; 4741 } 4742 mutex_enter(&ill->ill_lock); 4743 for (ipif = ill->ill_ipif; ipif != NULL; 4744 ipif = ipif->ipif_next) { 4745 /* Allow the ipif to be down */ 4746 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4747 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4748 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4749 (ipif->ipif_pp_dst_addr == addr)) && 4750 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4751 zoneid = ipif->ipif_zoneid; 4752 mutex_exit(&ill->ill_lock); 4753 rw_exit(&ipst->ips_ill_g_lock); 4754 /* 4755 * If ipif_zoneid was ALL_ZONES then we have 4756 * a trusted extensions shared IP address. 4757 * In that case GLOBAL_ZONEID works to send. 4758 */ 4759 if (zoneid == ALL_ZONES) 4760 zoneid = GLOBAL_ZONEID; 4761 return (zoneid); 4762 } 4763 } 4764 mutex_exit(&ill->ill_lock); 4765 } 4766 4767 /* If we already did the ptp case, then we are done */ 4768 if (ptp) { 4769 rw_exit(&ipst->ips_ill_g_lock); 4770 return (ALL_ZONES); 4771 } 4772 ptp = B_TRUE; 4773 goto repeat; 4774 } 4775 4776 /* 4777 * Look for an ipif that matches the specified remote address i.e. the 4778 * ipif that would receive the specified packet. 4779 * First look for directly connected interfaces and then do a recursive 4780 * IRE lookup and pick the first ipif corresponding to the source address in the 4781 * ire. 4782 * Returns: held ipif 4783 * 4784 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4785 */ 4786 ipif_t * 4787 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4788 { 4789 ipif_t *ipif; 4790 4791 ASSERT(!ill->ill_isv6); 4792 4793 /* 4794 * Someone could be changing this ipif currently or change it 4795 * after we return this. Thus a few packets could use the old 4796 * old values. However structure updates/creates (ire, ilg, ilm etc) 4797 * will atomically be updated or cleaned up with the new value 4798 * Thus we don't need a lock to check the flags or other attrs below. 4799 */ 4800 mutex_enter(&ill->ill_lock); 4801 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4802 if (IPIF_IS_CONDEMNED(ipif)) 4803 continue; 4804 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4805 ipif->ipif_zoneid != ALL_ZONES) 4806 continue; 4807 /* Allow the ipif to be down */ 4808 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4809 if ((ipif->ipif_pp_dst_addr == addr) || 4810 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4811 ipif->ipif_lcl_addr == addr)) { 4812 ipif_refhold_locked(ipif); 4813 mutex_exit(&ill->ill_lock); 4814 return (ipif); 4815 } 4816 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4817 ipif_refhold_locked(ipif); 4818 mutex_exit(&ill->ill_lock); 4819 return (ipif); 4820 } 4821 } 4822 mutex_exit(&ill->ill_lock); 4823 /* 4824 * For a remote destination it isn't possible to nail down a particular 4825 * ipif. 4826 */ 4827 4828 /* Pick the first interface */ 4829 ipif = ipif_get_next_ipif(NULL, ill); 4830 return (ipif); 4831 } 4832 4833 /* 4834 * This func does not prevent refcnt from increasing. But if 4835 * the caller has taken steps to that effect, then this func 4836 * can be used to determine whether the ill has become quiescent 4837 */ 4838 static boolean_t 4839 ill_is_quiescent(ill_t *ill) 4840 { 4841 ipif_t *ipif; 4842 4843 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4844 4845 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4846 if (ipif->ipif_refcnt != 0) 4847 return (B_FALSE); 4848 } 4849 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4850 return (B_FALSE); 4851 } 4852 return (B_TRUE); 4853 } 4854 4855 boolean_t 4856 ill_is_freeable(ill_t *ill) 4857 { 4858 ipif_t *ipif; 4859 4860 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4861 4862 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4863 if (ipif->ipif_refcnt != 0) { 4864 return (B_FALSE); 4865 } 4866 } 4867 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4868 return (B_FALSE); 4869 } 4870 return (B_TRUE); 4871 } 4872 4873 /* 4874 * This func does not prevent refcnt from increasing. But if 4875 * the caller has taken steps to that effect, then this func 4876 * can be used to determine whether the ipif has become quiescent 4877 */ 4878 static boolean_t 4879 ipif_is_quiescent(ipif_t *ipif) 4880 { 4881 ill_t *ill; 4882 4883 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4884 4885 if (ipif->ipif_refcnt != 0) 4886 return (B_FALSE); 4887 4888 ill = ipif->ipif_ill; 4889 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4890 ill->ill_logical_down) { 4891 return (B_TRUE); 4892 } 4893 4894 /* This is the last ipif going down or being deleted on this ill */ 4895 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4896 return (B_FALSE); 4897 } 4898 4899 return (B_TRUE); 4900 } 4901 4902 /* 4903 * return true if the ipif can be destroyed: the ipif has to be quiescent 4904 * with zero references from ire/ilm to it. 4905 */ 4906 static boolean_t 4907 ipif_is_freeable(ipif_t *ipif) 4908 { 4909 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4910 ASSERT(ipif->ipif_id != 0); 4911 return (ipif->ipif_refcnt == 0); 4912 } 4913 4914 /* 4915 * The ipif/ill/ire has been refreled. Do the tail processing. 4916 * Determine if the ipif or ill in question has become quiescent and if so 4917 * wakeup close and/or restart any queued pending ioctl that is waiting 4918 * for the ipif_down (or ill_down) 4919 */ 4920 void 4921 ipif_ill_refrele_tail(ill_t *ill) 4922 { 4923 mblk_t *mp; 4924 conn_t *connp; 4925 ipsq_t *ipsq; 4926 ipxop_t *ipx; 4927 ipif_t *ipif; 4928 dl_notify_ind_t *dlindp; 4929 4930 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4931 4932 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4933 /* ip_modclose() may be waiting */ 4934 cv_broadcast(&ill->ill_cv); 4935 } 4936 4937 ipsq = ill->ill_phyint->phyint_ipsq; 4938 mutex_enter(&ipsq->ipsq_lock); 4939 ipx = ipsq->ipsq_xop; 4940 mutex_enter(&ipx->ipx_lock); 4941 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 4942 goto unlock; 4943 4944 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 4945 4946 ipif = ipx->ipx_pending_ipif; 4947 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 4948 goto unlock; 4949 4950 switch (ipx->ipx_waitfor) { 4951 case IPIF_DOWN: 4952 if (!ipif_is_quiescent(ipif)) 4953 goto unlock; 4954 break; 4955 case IPIF_FREE: 4956 if (!ipif_is_freeable(ipif)) 4957 goto unlock; 4958 break; 4959 case ILL_DOWN: 4960 if (!ill_is_quiescent(ill)) 4961 goto unlock; 4962 break; 4963 case ILL_FREE: 4964 /* 4965 * ILL_FREE is only for loopback; normal ill teardown waits 4966 * synchronously in ip_modclose() without using ipx_waitfor, 4967 * handled by the cv_broadcast() at the top of this function. 4968 */ 4969 if (!ill_is_freeable(ill)) 4970 goto unlock; 4971 break; 4972 default: 4973 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 4974 (void *)ipsq, ipx->ipx_waitfor); 4975 } 4976 4977 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 4978 mutex_exit(&ipx->ipx_lock); 4979 mp = ipsq_pending_mp_get(ipsq, &connp); 4980 mutex_exit(&ipsq->ipsq_lock); 4981 mutex_exit(&ill->ill_lock); 4982 4983 ASSERT(mp != NULL); 4984 /* 4985 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 4986 * we can only get here when the current operation decides it 4987 * it needs to quiesce via ipsq_pending_mp_add(). 4988 */ 4989 switch (mp->b_datap->db_type) { 4990 case M_PCPROTO: 4991 case M_PROTO: 4992 /* 4993 * For now, only DL_NOTIFY_IND messages can use this facility. 4994 */ 4995 dlindp = (dl_notify_ind_t *)mp->b_rptr; 4996 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 4997 4998 switch (dlindp->dl_notification) { 4999 case DL_NOTE_PHYS_ADDR: 5000 qwriter_ip(ill, ill->ill_rq, mp, 5001 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 5002 return; 5003 case DL_NOTE_REPLUMB: 5004 qwriter_ip(ill, ill->ill_rq, mp, 5005 ill_replumb_tail, CUR_OP, B_TRUE); 5006 return; 5007 default: 5008 ASSERT(0); 5009 ill_refrele(ill); 5010 } 5011 break; 5012 5013 case M_ERROR: 5014 case M_HANGUP: 5015 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 5016 B_TRUE); 5017 return; 5018 5019 case M_IOCTL: 5020 case M_IOCDATA: 5021 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 5022 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 5023 return; 5024 5025 default: 5026 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5027 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5028 } 5029 return; 5030 unlock: 5031 mutex_exit(&ipsq->ipsq_lock); 5032 mutex_exit(&ipx->ipx_lock); 5033 mutex_exit(&ill->ill_lock); 5034 } 5035 5036 #ifdef DEBUG 5037 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5038 static void 5039 th_trace_rrecord(th_trace_t *th_trace) 5040 { 5041 tr_buf_t *tr_buf; 5042 uint_t lastref; 5043 5044 lastref = th_trace->th_trace_lastref; 5045 lastref++; 5046 if (lastref == TR_BUF_MAX) 5047 lastref = 0; 5048 th_trace->th_trace_lastref = lastref; 5049 tr_buf = &th_trace->th_trbuf[lastref]; 5050 tr_buf->tr_time = ddi_get_lbolt(); 5051 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5052 } 5053 5054 static void 5055 th_trace_free(void *value) 5056 { 5057 th_trace_t *th_trace = value; 5058 5059 ASSERT(th_trace->th_refcnt == 0); 5060 kmem_free(th_trace, sizeof (*th_trace)); 5061 } 5062 5063 /* 5064 * Find or create the per-thread hash table used to track object references. 5065 * The ipst argument is NULL if we shouldn't allocate. 5066 * 5067 * Accesses per-thread data, so there's no need to lock here. 5068 */ 5069 static mod_hash_t * 5070 th_trace_gethash(ip_stack_t *ipst) 5071 { 5072 th_hash_t *thh; 5073 5074 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5075 mod_hash_t *mh; 5076 char name[256]; 5077 size_t objsize, rshift; 5078 int retv; 5079 5080 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5081 return (NULL); 5082 (void) snprintf(name, sizeof (name), "th_trace_%p", 5083 (void *)curthread); 5084 5085 /* 5086 * We use mod_hash_create_extended here rather than the more 5087 * obvious mod_hash_create_ptrhash because the latter has a 5088 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5089 * block. 5090 */ 5091 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5092 MAX(sizeof (ire_t), sizeof (ncec_t))); 5093 rshift = highbit(objsize); 5094 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5095 th_trace_free, mod_hash_byptr, (void *)rshift, 5096 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5097 if (mh == NULL) { 5098 kmem_free(thh, sizeof (*thh)); 5099 return (NULL); 5100 } 5101 thh->thh_hash = mh; 5102 thh->thh_ipst = ipst; 5103 /* 5104 * We trace ills, ipifs, ires, and nces. All of these are 5105 * per-IP-stack, so the lock on the thread list is as well. 5106 */ 5107 rw_enter(&ip_thread_rwlock, RW_WRITER); 5108 list_insert_tail(&ip_thread_list, thh); 5109 rw_exit(&ip_thread_rwlock); 5110 retv = tsd_set(ip_thread_data, thh); 5111 ASSERT(retv == 0); 5112 } 5113 return (thh != NULL ? thh->thh_hash : NULL); 5114 } 5115 5116 boolean_t 5117 th_trace_ref(const void *obj, ip_stack_t *ipst) 5118 { 5119 th_trace_t *th_trace; 5120 mod_hash_t *mh; 5121 mod_hash_val_t val; 5122 5123 if ((mh = th_trace_gethash(ipst)) == NULL) 5124 return (B_FALSE); 5125 5126 /* 5127 * Attempt to locate the trace buffer for this obj and thread. 5128 * If it does not exist, then allocate a new trace buffer and 5129 * insert into the hash. 5130 */ 5131 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5132 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5133 if (th_trace == NULL) 5134 return (B_FALSE); 5135 5136 th_trace->th_id = curthread; 5137 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5138 (mod_hash_val_t)th_trace) != 0) { 5139 kmem_free(th_trace, sizeof (th_trace_t)); 5140 return (B_FALSE); 5141 } 5142 } else { 5143 th_trace = (th_trace_t *)val; 5144 } 5145 5146 ASSERT(th_trace->th_refcnt >= 0 && 5147 th_trace->th_refcnt < TR_BUF_MAX - 1); 5148 5149 th_trace->th_refcnt++; 5150 th_trace_rrecord(th_trace); 5151 return (B_TRUE); 5152 } 5153 5154 /* 5155 * For the purpose of tracing a reference release, we assume that global 5156 * tracing is always on and that the same thread initiated the reference hold 5157 * is releasing. 5158 */ 5159 void 5160 th_trace_unref(const void *obj) 5161 { 5162 int retv; 5163 mod_hash_t *mh; 5164 th_trace_t *th_trace; 5165 mod_hash_val_t val; 5166 5167 mh = th_trace_gethash(NULL); 5168 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5169 ASSERT(retv == 0); 5170 th_trace = (th_trace_t *)val; 5171 5172 ASSERT(th_trace->th_refcnt > 0); 5173 th_trace->th_refcnt--; 5174 th_trace_rrecord(th_trace); 5175 } 5176 5177 /* 5178 * If tracing has been disabled, then we assume that the reference counts are 5179 * now useless, and we clear them out before destroying the entries. 5180 */ 5181 void 5182 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5183 { 5184 th_hash_t *thh; 5185 mod_hash_t *mh; 5186 mod_hash_val_t val; 5187 th_trace_t *th_trace; 5188 int retv; 5189 5190 rw_enter(&ip_thread_rwlock, RW_READER); 5191 for (thh = list_head(&ip_thread_list); thh != NULL; 5192 thh = list_next(&ip_thread_list, thh)) { 5193 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5194 &val) == 0) { 5195 th_trace = (th_trace_t *)val; 5196 if (trace_disable) 5197 th_trace->th_refcnt = 0; 5198 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5199 ASSERT(retv == 0); 5200 } 5201 } 5202 rw_exit(&ip_thread_rwlock); 5203 } 5204 5205 void 5206 ipif_trace_ref(ipif_t *ipif) 5207 { 5208 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5209 5210 if (ipif->ipif_trace_disable) 5211 return; 5212 5213 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5214 ipif->ipif_trace_disable = B_TRUE; 5215 ipif_trace_cleanup(ipif); 5216 } 5217 } 5218 5219 void 5220 ipif_untrace_ref(ipif_t *ipif) 5221 { 5222 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5223 5224 if (!ipif->ipif_trace_disable) 5225 th_trace_unref(ipif); 5226 } 5227 5228 void 5229 ill_trace_ref(ill_t *ill) 5230 { 5231 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5232 5233 if (ill->ill_trace_disable) 5234 return; 5235 5236 if (!th_trace_ref(ill, ill->ill_ipst)) { 5237 ill->ill_trace_disable = B_TRUE; 5238 ill_trace_cleanup(ill); 5239 } 5240 } 5241 5242 void 5243 ill_untrace_ref(ill_t *ill) 5244 { 5245 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5246 5247 if (!ill->ill_trace_disable) 5248 th_trace_unref(ill); 5249 } 5250 5251 /* 5252 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5253 * failure, ipif_trace_disable is set. 5254 */ 5255 static void 5256 ipif_trace_cleanup(const ipif_t *ipif) 5257 { 5258 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5259 } 5260 5261 /* 5262 * Called when ill is unplumbed or when memory alloc fails. Note that on 5263 * failure, ill_trace_disable is set. 5264 */ 5265 static void 5266 ill_trace_cleanup(const ill_t *ill) 5267 { 5268 th_trace_cleanup(ill, ill->ill_trace_disable); 5269 } 5270 #endif /* DEBUG */ 5271 5272 void 5273 ipif_refhold_locked(ipif_t *ipif) 5274 { 5275 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5276 ipif->ipif_refcnt++; 5277 IPIF_TRACE_REF(ipif); 5278 } 5279 5280 void 5281 ipif_refhold(ipif_t *ipif) 5282 { 5283 ill_t *ill; 5284 5285 ill = ipif->ipif_ill; 5286 mutex_enter(&ill->ill_lock); 5287 ipif->ipif_refcnt++; 5288 IPIF_TRACE_REF(ipif); 5289 mutex_exit(&ill->ill_lock); 5290 } 5291 5292 /* 5293 * Must not be called while holding any locks. Otherwise if this is 5294 * the last reference to be released there is a chance of recursive mutex 5295 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5296 * to restart an ioctl. 5297 */ 5298 void 5299 ipif_refrele(ipif_t *ipif) 5300 { 5301 ill_t *ill; 5302 5303 ill = ipif->ipif_ill; 5304 5305 mutex_enter(&ill->ill_lock); 5306 ASSERT(ipif->ipif_refcnt != 0); 5307 ipif->ipif_refcnt--; 5308 IPIF_UNTRACE_REF(ipif); 5309 if (ipif->ipif_refcnt != 0) { 5310 mutex_exit(&ill->ill_lock); 5311 return; 5312 } 5313 5314 /* Drops the ill_lock */ 5315 ipif_ill_refrele_tail(ill); 5316 } 5317 5318 ipif_t * 5319 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5320 { 5321 ipif_t *ipif; 5322 5323 mutex_enter(&ill->ill_lock); 5324 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5325 ipif != NULL; ipif = ipif->ipif_next) { 5326 if (IPIF_IS_CONDEMNED(ipif)) 5327 continue; 5328 ipif_refhold_locked(ipif); 5329 mutex_exit(&ill->ill_lock); 5330 return (ipif); 5331 } 5332 mutex_exit(&ill->ill_lock); 5333 return (NULL); 5334 } 5335 5336 /* 5337 * TODO: make this table extendible at run time 5338 * Return a pointer to the mac type info for 'mac_type' 5339 */ 5340 static ip_m_t * 5341 ip_m_lookup(t_uscalar_t mac_type) 5342 { 5343 ip_m_t *ipm; 5344 5345 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5346 if (ipm->ip_m_mac_type == mac_type) 5347 return (ipm); 5348 return (NULL); 5349 } 5350 5351 /* 5352 * Make a link layer address from the multicast IP address *addr. 5353 * To form the link layer address, invoke the ip_m_v*mapping function 5354 * associated with the link-layer type. 5355 */ 5356 void 5357 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5358 { 5359 ip_m_t *ipm; 5360 5361 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5362 return; 5363 5364 ASSERT(addr != NULL); 5365 5366 ipm = ip_m_lookup(ill->ill_mactype); 5367 if (ipm == NULL || 5368 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5369 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5370 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5371 ill->ill_name, ill->ill_mactype)); 5372 return; 5373 } 5374 if (ill->ill_isv6) 5375 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5376 else 5377 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5378 } 5379 5380 /* 5381 * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous. 5382 * Otherwise returns B_TRUE. 5383 * 5384 * The netmask can be verified to be contiguous with 32 shifts and or 5385 * operations. Take the contiguous mask (in host byte order) and compute 5386 * mask | mask << 1 | mask << 2 | ... | mask << 31 5387 * the result will be the same as the 'mask' for contiguous mask. 5388 */ 5389 static boolean_t 5390 ip_contiguous_mask(uint32_t mask) 5391 { 5392 uint32_t m = mask; 5393 int i; 5394 5395 for (i = 1; i < 32; i++) 5396 m |= (mask << i); 5397 5398 return (m == mask); 5399 } 5400 5401 /* 5402 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5403 * ill is passed in to associate it with the correct interface. 5404 * If ire_arg is set, then we return the held IRE in that location. 5405 */ 5406 int 5407 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5408 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5409 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5410 { 5411 ire_t *ire, *nire; 5412 ire_t *gw_ire = NULL; 5413 ipif_t *ipif = NULL; 5414 uint_t type; 5415 int match_flags = MATCH_IRE_TYPE; 5416 tsol_gc_t *gc = NULL; 5417 tsol_gcgrp_t *gcgrp = NULL; 5418 boolean_t gcgrp_xtraref = B_FALSE; 5419 boolean_t cgtp_broadcast; 5420 boolean_t unbound = B_FALSE; 5421 5422 ip1dbg(("ip_rt_add:")); 5423 5424 if (ire_arg != NULL) 5425 *ire_arg = NULL; 5426 5427 /* disallow non-contiguous netmasks */ 5428 if (!ip_contiguous_mask(ntohl(mask))) 5429 return (ENOTSUP); 5430 5431 /* 5432 * If this is the case of RTF_HOST being set, then we set the netmask 5433 * to all ones (regardless if one was supplied). 5434 */ 5435 if (flags & RTF_HOST) 5436 mask = IP_HOST_MASK; 5437 5438 /* 5439 * Prevent routes with a zero gateway from being created (since 5440 * interfaces can currently be plumbed and brought up no assigned 5441 * address). 5442 */ 5443 if (gw_addr == 0) 5444 return (ENETUNREACH); 5445 /* 5446 * Get the ipif, if any, corresponding to the gw_addr 5447 * If -ifp was specified we restrict ourselves to the ill, otherwise 5448 * we match on the gatway and destination to handle unnumbered pt-pt 5449 * interfaces. 5450 */ 5451 if (ill != NULL) 5452 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5453 else 5454 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5455 if (ipif != NULL) { 5456 if (IS_VNI(ipif->ipif_ill)) { 5457 ipif_refrele(ipif); 5458 return (EINVAL); 5459 } 5460 } 5461 5462 /* 5463 * GateD will attempt to create routes with a loopback interface 5464 * address as the gateway and with RTF_GATEWAY set. We allow 5465 * these routes to be added, but create them as interface routes 5466 * since the gateway is an interface address. 5467 */ 5468 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5469 flags &= ~RTF_GATEWAY; 5470 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5471 mask == IP_HOST_MASK) { 5472 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5473 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5474 NULL); 5475 if (ire != NULL) { 5476 ire_refrele(ire); 5477 ipif_refrele(ipif); 5478 return (EEXIST); 5479 } 5480 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5481 "for 0x%x\n", (void *)ipif, 5482 ipif->ipif_ire_type, 5483 ntohl(ipif->ipif_lcl_addr))); 5484 ire = ire_create( 5485 (uchar_t *)&dst_addr, /* dest address */ 5486 (uchar_t *)&mask, /* mask */ 5487 NULL, /* no gateway */ 5488 ipif->ipif_ire_type, /* LOOPBACK */ 5489 ipif->ipif_ill, 5490 zoneid, 5491 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5492 NULL, 5493 ipst); 5494 5495 if (ire == NULL) { 5496 ipif_refrele(ipif); 5497 return (ENOMEM); 5498 } 5499 /* src address assigned by the caller? */ 5500 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5501 ire->ire_setsrc_addr = src_addr; 5502 5503 nire = ire_add(ire); 5504 if (nire == NULL) { 5505 /* 5506 * In the result of failure, ire_add() will have 5507 * already deleted the ire in question, so there 5508 * is no need to do that here. 5509 */ 5510 ipif_refrele(ipif); 5511 return (ENOMEM); 5512 } 5513 /* 5514 * Check if it was a duplicate entry. This handles 5515 * the case of two racing route adds for the same route 5516 */ 5517 if (nire != ire) { 5518 ASSERT(nire->ire_identical_ref > 1); 5519 ire_delete(nire); 5520 ire_refrele(nire); 5521 ipif_refrele(ipif); 5522 return (EEXIST); 5523 } 5524 ire = nire; 5525 goto save_ire; 5526 } 5527 } 5528 5529 /* 5530 * The routes for multicast with CGTP are quite special in that 5531 * the gateway is the local interface address, yet RTF_GATEWAY 5532 * is set. We turn off RTF_GATEWAY to provide compatibility with 5533 * this undocumented and unusual use of multicast routes. 5534 */ 5535 if ((flags & RTF_MULTIRT) && ipif != NULL) 5536 flags &= ~RTF_GATEWAY; 5537 5538 /* 5539 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5540 * and the gateway address provided is one of the system's interface 5541 * addresses. By using the routing socket interface and supplying an 5542 * RTA_IFP sockaddr with an interface index, an alternate method of 5543 * specifying an interface route to be created is available which uses 5544 * the interface index that specifies the outgoing interface rather than 5545 * the address of an outgoing interface (which may not be able to 5546 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5547 * flag, routes can be specified which not only specify the next-hop to 5548 * be used when routing to a certain prefix, but also which outgoing 5549 * interface should be used. 5550 * 5551 * Previously, interfaces would have unique addresses assigned to them 5552 * and so the address assigned to a particular interface could be used 5553 * to identify a particular interface. One exception to this was the 5554 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5555 * 5556 * With the advent of IPv6 and its link-local addresses, this 5557 * restriction was relaxed and interfaces could share addresses between 5558 * themselves. In fact, typically all of the link-local interfaces on 5559 * an IPv6 node or router will have the same link-local address. In 5560 * order to differentiate between these interfaces, the use of an 5561 * interface index is necessary and this index can be carried inside a 5562 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5563 * of using the interface index, however, is that all of the ipif's that 5564 * are part of an ill have the same index and so the RTA_IFP sockaddr 5565 * cannot be used to differentiate between ipif's (or logical 5566 * interfaces) that belong to the same ill (physical interface). 5567 * 5568 * For example, in the following case involving IPv4 interfaces and 5569 * logical interfaces 5570 * 5571 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5572 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5573 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5574 * 5575 * the ipif's corresponding to each of these interface routes can be 5576 * uniquely identified by the "gateway" (actually interface address). 5577 * 5578 * In this case involving multiple IPv6 default routes to a particular 5579 * link-local gateway, the use of RTA_IFP is necessary to specify which 5580 * default route is of interest: 5581 * 5582 * default fe80::123:4567:89ab:cdef U if0 5583 * default fe80::123:4567:89ab:cdef U if1 5584 */ 5585 5586 /* RTF_GATEWAY not set */ 5587 if (!(flags & RTF_GATEWAY)) { 5588 if (sp != NULL) { 5589 ip2dbg(("ip_rt_add: gateway security attributes " 5590 "cannot be set with interface route\n")); 5591 if (ipif != NULL) 5592 ipif_refrele(ipif); 5593 return (EINVAL); 5594 } 5595 5596 /* 5597 * Whether or not ill (RTA_IFP) is set, we require that 5598 * the gateway is one of our local addresses. 5599 */ 5600 if (ipif == NULL) 5601 return (ENETUNREACH); 5602 5603 /* 5604 * We use MATCH_IRE_ILL here. If the caller specified an 5605 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5606 * we use the ill derived from the gateway address. 5607 * We can always match the gateway address since we record it 5608 * in ire_gateway_addr. 5609 * We don't allow RTA_IFP to specify a different ill than the 5610 * one matching the ipif to make sure we can delete the route. 5611 */ 5612 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5613 if (ill == NULL) { 5614 ill = ipif->ipif_ill; 5615 } else if (ill != ipif->ipif_ill) { 5616 ipif_refrele(ipif); 5617 return (EINVAL); 5618 } 5619 5620 /* 5621 * We check for an existing entry at this point. 5622 * 5623 * Since a netmask isn't passed in via the ioctl interface 5624 * (SIOCADDRT), we don't check for a matching netmask in that 5625 * case. 5626 */ 5627 if (!ioctl_msg) 5628 match_flags |= MATCH_IRE_MASK; 5629 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5630 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5631 NULL); 5632 if (ire != NULL) { 5633 ire_refrele(ire); 5634 ipif_refrele(ipif); 5635 return (EEXIST); 5636 } 5637 5638 /* 5639 * Some software (for example, GateD and Sun Cluster) attempts 5640 * to create (what amount to) IRE_PREFIX routes with the 5641 * loopback address as the gateway. This is primarily done to 5642 * set up prefixes with the RTF_REJECT flag set (for example, 5643 * when generating aggregate routes.) 5644 * 5645 * If the IRE type (as defined by ill->ill_net_type) would be 5646 * IRE_LOOPBACK, then we map the request into a 5647 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5648 * these interface routes, by definition, can only be that. 5649 * 5650 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5651 * routine, but rather using ire_create() directly. 5652 * 5653 */ 5654 type = ill->ill_net_type; 5655 if (type == IRE_LOOPBACK) { 5656 type = IRE_IF_NORESOLVER; 5657 flags |= RTF_BLACKHOLE; 5658 } 5659 5660 /* 5661 * Create a copy of the IRE_IF_NORESOLVER or 5662 * IRE_IF_RESOLVER with the modified address, netmask, and 5663 * gateway. 5664 */ 5665 ire = ire_create( 5666 (uchar_t *)&dst_addr, 5667 (uint8_t *)&mask, 5668 (uint8_t *)&gw_addr, 5669 type, 5670 ill, 5671 zoneid, 5672 flags, 5673 NULL, 5674 ipst); 5675 if (ire == NULL) { 5676 ipif_refrele(ipif); 5677 return (ENOMEM); 5678 } 5679 5680 /* src address assigned by the caller? */ 5681 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5682 ire->ire_setsrc_addr = src_addr; 5683 5684 nire = ire_add(ire); 5685 if (nire == NULL) { 5686 /* 5687 * In the result of failure, ire_add() will have 5688 * already deleted the ire in question, so there 5689 * is no need to do that here. 5690 */ 5691 ipif_refrele(ipif); 5692 return (ENOMEM); 5693 } 5694 /* 5695 * Check if it was a duplicate entry. This handles 5696 * the case of two racing route adds for the same route 5697 */ 5698 if (nire != ire) { 5699 ire_delete(nire); 5700 ire_refrele(nire); 5701 ipif_refrele(ipif); 5702 return (EEXIST); 5703 } 5704 ire = nire; 5705 goto save_ire; 5706 } 5707 5708 /* 5709 * Get an interface IRE for the specified gateway. 5710 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5711 * gateway, it is currently unreachable and we fail the request 5712 * accordingly. We reject any RTF_GATEWAY routes where the gateway 5713 * is an IRE_LOCAL or IRE_LOOPBACK. 5714 * If RTA_IFP was specified we look on that particular ill. 5715 */ 5716 if (ill != NULL) 5717 match_flags |= MATCH_IRE_ILL; 5718 5719 /* Check whether the gateway is reachable. */ 5720 again: 5721 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; 5722 if (flags & RTF_INDIRECT) 5723 type |= IRE_OFFLINK; 5724 5725 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5726 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5727 if (gw_ire == NULL) { 5728 /* 5729 * With IPMP, we allow host routes to influence in.mpathd's 5730 * target selection. However, if the test addresses are on 5731 * their own network, the above lookup will fail since the 5732 * underlying IRE_INTERFACEs are marked hidden. So allow 5733 * hidden test IREs to be found and try again. 5734 */ 5735 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5736 match_flags |= MATCH_IRE_TESTHIDDEN; 5737 goto again; 5738 } 5739 if (ipif != NULL) 5740 ipif_refrele(ipif); 5741 return (ENETUNREACH); 5742 } 5743 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 5744 ire_refrele(gw_ire); 5745 if (ipif != NULL) 5746 ipif_refrele(ipif); 5747 return (ENETUNREACH); 5748 } 5749 5750 if (ill == NULL && !(flags & RTF_INDIRECT)) { 5751 unbound = B_TRUE; 5752 if (ipst->ips_ip_strict_src_multihoming > 0) 5753 ill = gw_ire->ire_ill; 5754 } 5755 5756 /* 5757 * We create one of three types of IREs as a result of this request 5758 * based on the netmask. A netmask of all ones (which is automatically 5759 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5760 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5761 * created. Otherwise, an IRE_PREFIX route is created for the 5762 * destination prefix. 5763 */ 5764 if (mask == IP_HOST_MASK) 5765 type = IRE_HOST; 5766 else if (mask == 0) 5767 type = IRE_DEFAULT; 5768 else 5769 type = IRE_PREFIX; 5770 5771 /* check for a duplicate entry */ 5772 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5773 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5774 0, ipst, NULL); 5775 if (ire != NULL) { 5776 if (ipif != NULL) 5777 ipif_refrele(ipif); 5778 ire_refrele(gw_ire); 5779 ire_refrele(ire); 5780 return (EEXIST); 5781 } 5782 5783 /* Security attribute exists */ 5784 if (sp != NULL) { 5785 tsol_gcgrp_addr_t ga; 5786 5787 /* find or create the gateway credentials group */ 5788 ga.ga_af = AF_INET; 5789 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5790 5791 /* we hold reference to it upon success */ 5792 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5793 if (gcgrp == NULL) { 5794 if (ipif != NULL) 5795 ipif_refrele(ipif); 5796 ire_refrele(gw_ire); 5797 return (ENOMEM); 5798 } 5799 5800 /* 5801 * Create and add the security attribute to the group; a 5802 * reference to the group is made upon allocating a new 5803 * entry successfully. If it finds an already-existing 5804 * entry for the security attribute in the group, it simply 5805 * returns it and no new reference is made to the group. 5806 */ 5807 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5808 if (gc == NULL) { 5809 if (ipif != NULL) 5810 ipif_refrele(ipif); 5811 /* release reference held by gcgrp_lookup */ 5812 GCGRP_REFRELE(gcgrp); 5813 ire_refrele(gw_ire); 5814 return (ENOMEM); 5815 } 5816 } 5817 5818 /* Create the IRE. */ 5819 ire = ire_create( 5820 (uchar_t *)&dst_addr, /* dest address */ 5821 (uchar_t *)&mask, /* mask */ 5822 (uchar_t *)&gw_addr, /* gateway address */ 5823 (ushort_t)type, /* IRE type */ 5824 ill, 5825 zoneid, 5826 flags, 5827 gc, /* security attribute */ 5828 ipst); 5829 5830 /* 5831 * The ire holds a reference to the 'gc' and the 'gc' holds a 5832 * reference to the 'gcgrp'. We can now release the extra reference 5833 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5834 */ 5835 if (gcgrp_xtraref) 5836 GCGRP_REFRELE(gcgrp); 5837 if (ire == NULL) { 5838 if (gc != NULL) 5839 GC_REFRELE(gc); 5840 if (ipif != NULL) 5841 ipif_refrele(ipif); 5842 ire_refrele(gw_ire); 5843 return (ENOMEM); 5844 } 5845 5846 /* Before we add, check if an extra CGTP broadcast is needed */ 5847 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5848 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5849 5850 /* src address assigned by the caller? */ 5851 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5852 ire->ire_setsrc_addr = src_addr; 5853 5854 ire->ire_unbound = unbound; 5855 5856 /* 5857 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5858 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5859 */ 5860 5861 /* Add the new IRE. */ 5862 nire = ire_add(ire); 5863 if (nire == NULL) { 5864 /* 5865 * In the result of failure, ire_add() will have 5866 * already deleted the ire in question, so there 5867 * is no need to do that here. 5868 */ 5869 if (ipif != NULL) 5870 ipif_refrele(ipif); 5871 ire_refrele(gw_ire); 5872 return (ENOMEM); 5873 } 5874 /* 5875 * Check if it was a duplicate entry. This handles 5876 * the case of two racing route adds for the same route 5877 */ 5878 if (nire != ire) { 5879 ire_delete(nire); 5880 ire_refrele(nire); 5881 if (ipif != NULL) 5882 ipif_refrele(ipif); 5883 ire_refrele(gw_ire); 5884 return (EEXIST); 5885 } 5886 ire = nire; 5887 5888 if (flags & RTF_MULTIRT) { 5889 /* 5890 * Invoke the CGTP (multirouting) filtering module 5891 * to add the dst address in the filtering database. 5892 * Replicated inbound packets coming from that address 5893 * will be filtered to discard the duplicates. 5894 * It is not necessary to call the CGTP filter hook 5895 * when the dst address is a broadcast or multicast, 5896 * because an IP source address cannot be a broadcast 5897 * or a multicast. 5898 */ 5899 if (cgtp_broadcast) { 5900 ip_cgtp_bcast_add(ire, ipst); 5901 goto save_ire; 5902 } 5903 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5904 !CLASSD(ire->ire_addr)) { 5905 int res; 5906 ipif_t *src_ipif; 5907 5908 /* Find the source address corresponding to gw_ire */ 5909 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5910 NULL, zoneid, ipst); 5911 if (src_ipif != NULL) { 5912 res = ipst->ips_ip_cgtp_filter_ops-> 5913 cfo_add_dest_v4( 5914 ipst->ips_netstack->netstack_stackid, 5915 ire->ire_addr, 5916 ire->ire_gateway_addr, 5917 ire->ire_setsrc_addr, 5918 src_ipif->ipif_lcl_addr); 5919 ipif_refrele(src_ipif); 5920 } else { 5921 res = EADDRNOTAVAIL; 5922 } 5923 if (res != 0) { 5924 if (ipif != NULL) 5925 ipif_refrele(ipif); 5926 ire_refrele(gw_ire); 5927 ire_delete(ire); 5928 ire_refrele(ire); /* Held in ire_add */ 5929 return (res); 5930 } 5931 } 5932 } 5933 5934 save_ire: 5935 if (gw_ire != NULL) { 5936 ire_refrele(gw_ire); 5937 gw_ire = NULL; 5938 } 5939 if (ill != NULL) { 5940 /* 5941 * Save enough information so that we can recreate the IRE if 5942 * the interface goes down and then up. The metrics associated 5943 * with the route will be saved as well when rts_setmetrics() is 5944 * called after the IRE has been created. In the case where 5945 * memory cannot be allocated, none of this information will be 5946 * saved. 5947 */ 5948 ill_save_ire(ill, ire); 5949 } 5950 if (ioctl_msg) 5951 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5952 if (ire_arg != NULL) { 5953 /* 5954 * Store the ire that was successfully added into where ire_arg 5955 * points to so that callers don't have to look it up 5956 * themselves (but they are responsible for ire_refrele()ing 5957 * the ire when they are finished with it). 5958 */ 5959 *ire_arg = ire; 5960 } else { 5961 ire_refrele(ire); /* Held in ire_add */ 5962 } 5963 if (ipif != NULL) 5964 ipif_refrele(ipif); 5965 return (0); 5966 } 5967 5968 /* 5969 * ip_rt_delete is called to delete an IPv4 route. 5970 * ill is passed in to associate it with the correct interface. 5971 */ 5972 /* ARGSUSED4 */ 5973 int 5974 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5975 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 5976 ip_stack_t *ipst, zoneid_t zoneid) 5977 { 5978 ire_t *ire = NULL; 5979 ipif_t *ipif; 5980 uint_t type; 5981 uint_t match_flags = MATCH_IRE_TYPE; 5982 int err = 0; 5983 5984 ip1dbg(("ip_rt_delete:")); 5985 /* 5986 * If this is the case of RTF_HOST being set, then we set the netmask 5987 * to all ones. Otherwise, we use the netmask if one was supplied. 5988 */ 5989 if (flags & RTF_HOST) { 5990 mask = IP_HOST_MASK; 5991 match_flags |= MATCH_IRE_MASK; 5992 } else if (rtm_addrs & RTA_NETMASK) { 5993 match_flags |= MATCH_IRE_MASK; 5994 } 5995 5996 /* 5997 * Note that RTF_GATEWAY is never set on a delete, therefore 5998 * we check if the gateway address is one of our interfaces first, 5999 * and fall back on RTF_GATEWAY routes. 6000 * 6001 * This makes it possible to delete an original 6002 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6003 * However, we have RTF_KERNEL set on the ones created by ipif_up 6004 * and those can not be deleted here. 6005 * 6006 * We use MATCH_IRE_ILL if we know the interface. If the caller 6007 * specified an interface (from the RTA_IFP sockaddr) we use it, 6008 * otherwise we use the ill derived from the gateway address. 6009 * We can always match the gateway address since we record it 6010 * in ire_gateway_addr. 6011 * 6012 * For more detail on specifying routes by gateway address and by 6013 * interface index, see the comments in ip_rt_add(). 6014 */ 6015 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 6016 if (ipif != NULL) { 6017 ill_t *ill_match; 6018 6019 if (ill != NULL) 6020 ill_match = ill; 6021 else 6022 ill_match = ipif->ipif_ill; 6023 6024 match_flags |= MATCH_IRE_ILL; 6025 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6026 ire = ire_ftable_lookup_v4(dst_addr, mask, 0, 6027 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL, 6028 match_flags, 0, ipst, NULL); 6029 } 6030 if (ire == NULL) { 6031 match_flags |= MATCH_IRE_GW; 6032 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 6033 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 6034 match_flags, 0, ipst, NULL); 6035 } 6036 /* Avoid deleting routes created by kernel from an ipif */ 6037 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 6038 ire_refrele(ire); 6039 ire = NULL; 6040 } 6041 6042 /* Restore in case we didn't find a match */ 6043 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6044 } 6045 6046 if (ire == NULL) { 6047 /* 6048 * At this point, the gateway address is not one of our own 6049 * addresses or a matching interface route was not found. We 6050 * set the IRE type to lookup based on whether 6051 * this is a host route, a default route or just a prefix. 6052 * 6053 * If an ill was passed in, then the lookup is based on an 6054 * interface index so MATCH_IRE_ILL is added to match_flags. 6055 */ 6056 match_flags |= MATCH_IRE_GW; 6057 if (ill != NULL) 6058 match_flags |= MATCH_IRE_ILL; 6059 if (mask == IP_HOST_MASK) 6060 type = IRE_HOST; 6061 else if (mask == 0) 6062 type = IRE_DEFAULT; 6063 else 6064 type = IRE_PREFIX; 6065 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6066 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6067 } 6068 6069 if (ipif != NULL) { 6070 ipif_refrele(ipif); 6071 ipif = NULL; 6072 } 6073 6074 if (ire == NULL) 6075 return (ESRCH); 6076 6077 if (ire->ire_flags & RTF_MULTIRT) { 6078 /* 6079 * Invoke the CGTP (multirouting) filtering module 6080 * to remove the dst address from the filtering database. 6081 * Packets coming from that address will no longer be 6082 * filtered to remove duplicates. 6083 */ 6084 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6085 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6086 ipst->ips_netstack->netstack_stackid, 6087 ire->ire_addr, ire->ire_gateway_addr); 6088 } 6089 ip_cgtp_bcast_delete(ire, ipst); 6090 } 6091 6092 ill = ire->ire_ill; 6093 if (ill != NULL) 6094 ill_remove_saved_ire(ill, ire); 6095 if (ioctl_msg) 6096 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6097 ire_delete(ire); 6098 ire_refrele(ire); 6099 return (err); 6100 } 6101 6102 /* 6103 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6104 */ 6105 /* ARGSUSED */ 6106 int 6107 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6108 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6109 { 6110 ipaddr_t dst_addr; 6111 ipaddr_t gw_addr; 6112 ipaddr_t mask; 6113 int error = 0; 6114 mblk_t *mp1; 6115 struct rtentry *rt; 6116 ipif_t *ipif = NULL; 6117 ip_stack_t *ipst; 6118 6119 ASSERT(q->q_next == NULL); 6120 ipst = CONNQ_TO_IPST(q); 6121 6122 ip1dbg(("ip_siocaddrt:")); 6123 /* Existence of mp1 verified in ip_wput_nondata */ 6124 mp1 = mp->b_cont->b_cont; 6125 rt = (struct rtentry *)mp1->b_rptr; 6126 6127 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6128 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6129 6130 /* 6131 * If the RTF_HOST flag is on, this is a request to assign a gateway 6132 * to a particular host address. In this case, we set the netmask to 6133 * all ones for the particular destination address. Otherwise, 6134 * determine the netmask to be used based on dst_addr and the interfaces 6135 * in use. 6136 */ 6137 if (rt->rt_flags & RTF_HOST) { 6138 mask = IP_HOST_MASK; 6139 } else { 6140 /* 6141 * Note that ip_subnet_mask returns a zero mask in the case of 6142 * default (an all-zeroes address). 6143 */ 6144 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6145 } 6146 6147 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6148 B_TRUE, NULL, ipst, ALL_ZONES); 6149 if (ipif != NULL) 6150 ipif_refrele(ipif); 6151 return (error); 6152 } 6153 6154 /* 6155 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6156 */ 6157 /* ARGSUSED */ 6158 int 6159 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6160 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6161 { 6162 ipaddr_t dst_addr; 6163 ipaddr_t gw_addr; 6164 ipaddr_t mask; 6165 int error; 6166 mblk_t *mp1; 6167 struct rtentry *rt; 6168 ipif_t *ipif = NULL; 6169 ip_stack_t *ipst; 6170 6171 ASSERT(q->q_next == NULL); 6172 ipst = CONNQ_TO_IPST(q); 6173 6174 ip1dbg(("ip_siocdelrt:")); 6175 /* Existence of mp1 verified in ip_wput_nondata */ 6176 mp1 = mp->b_cont->b_cont; 6177 rt = (struct rtentry *)mp1->b_rptr; 6178 6179 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6180 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6181 6182 /* 6183 * If the RTF_HOST flag is on, this is a request to delete a gateway 6184 * to a particular host address. In this case, we set the netmask to 6185 * all ones for the particular destination address. Otherwise, 6186 * determine the netmask to be used based on dst_addr and the interfaces 6187 * in use. 6188 */ 6189 if (rt->rt_flags & RTF_HOST) { 6190 mask = IP_HOST_MASK; 6191 } else { 6192 /* 6193 * Note that ip_subnet_mask returns a zero mask in the case of 6194 * default (an all-zeroes address). 6195 */ 6196 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6197 } 6198 6199 error = ip_rt_delete(dst_addr, mask, gw_addr, 6200 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6201 ipst, ALL_ZONES); 6202 if (ipif != NULL) 6203 ipif_refrele(ipif); 6204 return (error); 6205 } 6206 6207 /* 6208 * Enqueue the mp onto the ipsq, chained by b_next. 6209 * b_prev stores the function to be executed later, and b_queue the queue 6210 * where this mp originated. 6211 */ 6212 void 6213 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6214 ill_t *pending_ill) 6215 { 6216 conn_t *connp; 6217 ipxop_t *ipx = ipsq->ipsq_xop; 6218 6219 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6220 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6221 ASSERT(func != NULL); 6222 6223 mp->b_queue = q; 6224 mp->b_prev = (void *)func; 6225 mp->b_next = NULL; 6226 6227 switch (type) { 6228 case CUR_OP: 6229 if (ipx->ipx_mptail != NULL) { 6230 ASSERT(ipx->ipx_mphead != NULL); 6231 ipx->ipx_mptail->b_next = mp; 6232 } else { 6233 ASSERT(ipx->ipx_mphead == NULL); 6234 ipx->ipx_mphead = mp; 6235 } 6236 ipx->ipx_mptail = mp; 6237 break; 6238 6239 case NEW_OP: 6240 if (ipsq->ipsq_xopq_mptail != NULL) { 6241 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6242 ipsq->ipsq_xopq_mptail->b_next = mp; 6243 } else { 6244 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6245 ipsq->ipsq_xopq_mphead = mp; 6246 } 6247 ipsq->ipsq_xopq_mptail = mp; 6248 ipx->ipx_ipsq_queued = B_TRUE; 6249 break; 6250 6251 case SWITCH_OP: 6252 ASSERT(ipsq->ipsq_swxop != NULL); 6253 /* only one switch operation is currently allowed */ 6254 ASSERT(ipsq->ipsq_switch_mp == NULL); 6255 ipsq->ipsq_switch_mp = mp; 6256 ipx->ipx_ipsq_queued = B_TRUE; 6257 break; 6258 default: 6259 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6260 } 6261 6262 if (CONN_Q(q) && pending_ill != NULL) { 6263 connp = Q_TO_CONN(q); 6264 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6265 connp->conn_oper_pending_ill = pending_ill; 6266 } 6267 } 6268 6269 /* 6270 * Dequeue the next message that requested exclusive access to this IPSQ's 6271 * xop. Specifically: 6272 * 6273 * 1. If we're still processing the current operation on `ipsq', then 6274 * dequeue the next message for the operation (from ipx_mphead), or 6275 * return NULL if there are no queued messages for the operation. 6276 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6277 * 6278 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6279 * not set) see if the ipsq has requested an xop switch. If so, switch 6280 * `ipsq' to a different xop. Xop switches only happen when joining or 6281 * leaving IPMP groups and require a careful dance -- see the comments 6282 * in-line below for details. If we're leaving a group xop or if we're 6283 * joining a group xop and become writer on it, then we proceed to (3). 6284 * Otherwise, we return NULL and exit the xop. 6285 * 6286 * 3. For each IPSQ in the xop, return any switch operation stored on 6287 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6288 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6289 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6290 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6291 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6292 * each phyint in the group, including the IPMP meta-interface phyint. 6293 */ 6294 static mblk_t * 6295 ipsq_dq(ipsq_t *ipsq) 6296 { 6297 ill_t *illv4, *illv6; 6298 mblk_t *mp; 6299 ipsq_t *xopipsq; 6300 ipsq_t *leftipsq = NULL; 6301 ipxop_t *ipx; 6302 phyint_t *phyi = ipsq->ipsq_phyint; 6303 ip_stack_t *ipst = ipsq->ipsq_ipst; 6304 boolean_t emptied = B_FALSE; 6305 6306 /* 6307 * Grab all the locks we need in the defined order (ill_g_lock -> 6308 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6309 */ 6310 rw_enter(&ipst->ips_ill_g_lock, 6311 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6312 mutex_enter(&ipsq->ipsq_lock); 6313 ipx = ipsq->ipsq_xop; 6314 mutex_enter(&ipx->ipx_lock); 6315 6316 /* 6317 * Dequeue the next message associated with the current exclusive 6318 * operation, if any. 6319 */ 6320 if ((mp = ipx->ipx_mphead) != NULL) { 6321 ipx->ipx_mphead = mp->b_next; 6322 if (ipx->ipx_mphead == NULL) 6323 ipx->ipx_mptail = NULL; 6324 mp->b_next = (void *)ipsq; 6325 goto out; 6326 } 6327 6328 if (ipx->ipx_current_ipif != NULL) 6329 goto empty; 6330 6331 if (ipsq->ipsq_swxop != NULL) { 6332 /* 6333 * The exclusive operation that is now being completed has 6334 * requested a switch to a different xop. This happens 6335 * when an interface joins or leaves an IPMP group. Joins 6336 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6337 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6338 * (phyint_free()), or interface plumb for an ill type 6339 * not in the IPMP group (ip_rput_dlpi_writer()). 6340 * 6341 * Xop switches are not allowed on the IPMP meta-interface. 6342 */ 6343 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6344 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6345 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6346 6347 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6348 /* 6349 * We're switching back to our own xop, so we have two 6350 * xop's to drain/exit: our own, and the group xop 6351 * that we are leaving. 6352 * 6353 * First, pull ourselves out of the group ipsq list. 6354 * This is safe since we're writer on ill_g_lock. 6355 */ 6356 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6357 6358 xopipsq = ipx->ipx_ipsq; 6359 while (xopipsq->ipsq_next != ipsq) 6360 xopipsq = xopipsq->ipsq_next; 6361 6362 xopipsq->ipsq_next = ipsq->ipsq_next; 6363 ipsq->ipsq_next = ipsq; 6364 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6365 ipsq->ipsq_swxop = NULL; 6366 6367 /* 6368 * Second, prepare to exit the group xop. The actual 6369 * ipsq_exit() is done at the end of this function 6370 * since we cannot hold any locks across ipsq_exit(). 6371 * Note that although we drop the group's ipx_lock, no 6372 * threads can proceed since we're still ipx_writer. 6373 */ 6374 leftipsq = xopipsq; 6375 mutex_exit(&ipx->ipx_lock); 6376 6377 /* 6378 * Third, set ipx to point to our own xop (which was 6379 * inactive and therefore can be entered). 6380 */ 6381 ipx = ipsq->ipsq_xop; 6382 mutex_enter(&ipx->ipx_lock); 6383 ASSERT(ipx->ipx_writer == NULL); 6384 ASSERT(ipx->ipx_current_ipif == NULL); 6385 } else { 6386 /* 6387 * We're switching from our own xop to a group xop. 6388 * The requestor of the switch must ensure that the 6389 * group xop cannot go away (e.g. by ensuring the 6390 * phyint associated with the xop cannot go away). 6391 * 6392 * If we can become writer on our new xop, then we'll 6393 * do the drain. Otherwise, the current writer of our 6394 * new xop will do the drain when it exits. 6395 * 6396 * First, splice ourselves into the group IPSQ list. 6397 * This is safe since we're writer on ill_g_lock. 6398 */ 6399 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6400 6401 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6402 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6403 xopipsq = xopipsq->ipsq_next; 6404 6405 xopipsq->ipsq_next = ipsq; 6406 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6407 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6408 ipsq->ipsq_swxop = NULL; 6409 6410 /* 6411 * Second, exit our own xop, since it's now unused. 6412 * This is safe since we've got the only reference. 6413 */ 6414 ASSERT(ipx->ipx_writer == curthread); 6415 ipx->ipx_writer = NULL; 6416 VERIFY(--ipx->ipx_reentry_cnt == 0); 6417 ipx->ipx_ipsq_queued = B_FALSE; 6418 mutex_exit(&ipx->ipx_lock); 6419 6420 /* 6421 * Third, set ipx to point to our new xop, and check 6422 * if we can become writer on it. If we cannot, then 6423 * the current writer will drain the IPSQ group when 6424 * it exits. Our ipsq_xop is guaranteed to be stable 6425 * because we're still holding ipsq_lock. 6426 */ 6427 ipx = ipsq->ipsq_xop; 6428 mutex_enter(&ipx->ipx_lock); 6429 if (ipx->ipx_writer != NULL || 6430 ipx->ipx_current_ipif != NULL) { 6431 goto out; 6432 } 6433 } 6434 6435 /* 6436 * Fourth, become writer on our new ipx before we continue 6437 * with the drain. Note that we never dropped ipsq_lock 6438 * above, so no other thread could've raced with us to 6439 * become writer first. Also, we're holding ipx_lock, so 6440 * no other thread can examine the ipx right now. 6441 */ 6442 ASSERT(ipx->ipx_current_ipif == NULL); 6443 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6444 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6445 ipx->ipx_writer = curthread; 6446 ipx->ipx_forced = B_FALSE; 6447 #ifdef DEBUG 6448 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6449 #endif 6450 } 6451 6452 xopipsq = ipsq; 6453 do { 6454 /* 6455 * So that other operations operate on a consistent and 6456 * complete phyint, a switch message on an IPSQ must be 6457 * handled prior to any other operations on that IPSQ. 6458 */ 6459 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6460 xopipsq->ipsq_switch_mp = NULL; 6461 ASSERT(mp->b_next == NULL); 6462 mp->b_next = (void *)xopipsq; 6463 goto out; 6464 } 6465 6466 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6467 xopipsq->ipsq_xopq_mphead = mp->b_next; 6468 if (xopipsq->ipsq_xopq_mphead == NULL) 6469 xopipsq->ipsq_xopq_mptail = NULL; 6470 mp->b_next = (void *)xopipsq; 6471 goto out; 6472 } 6473 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6474 empty: 6475 /* 6476 * There are no messages. Further, we are holding ipx_lock, hence no 6477 * new messages can end up on any IPSQ in the xop. 6478 */ 6479 ipx->ipx_writer = NULL; 6480 ipx->ipx_forced = B_FALSE; 6481 VERIFY(--ipx->ipx_reentry_cnt == 0); 6482 ipx->ipx_ipsq_queued = B_FALSE; 6483 emptied = B_TRUE; 6484 #ifdef DEBUG 6485 ipx->ipx_depth = 0; 6486 #endif 6487 out: 6488 mutex_exit(&ipx->ipx_lock); 6489 mutex_exit(&ipsq->ipsq_lock); 6490 6491 /* 6492 * If we completely emptied the xop, then wake up any threads waiting 6493 * to enter any of the IPSQ's associated with it. 6494 */ 6495 if (emptied) { 6496 xopipsq = ipsq; 6497 do { 6498 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6499 continue; 6500 6501 illv4 = phyi->phyint_illv4; 6502 illv6 = phyi->phyint_illv6; 6503 6504 GRAB_ILL_LOCKS(illv4, illv6); 6505 if (illv4 != NULL) 6506 cv_broadcast(&illv4->ill_cv); 6507 if (illv6 != NULL) 6508 cv_broadcast(&illv6->ill_cv); 6509 RELEASE_ILL_LOCKS(illv4, illv6); 6510 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6511 } 6512 rw_exit(&ipst->ips_ill_g_lock); 6513 6514 /* 6515 * Now that all locks are dropped, exit the IPSQ we left. 6516 */ 6517 if (leftipsq != NULL) 6518 ipsq_exit(leftipsq); 6519 6520 return (mp); 6521 } 6522 6523 /* 6524 * Return completion status of previously initiated DLPI operations on 6525 * ills in the purview of an ipsq. 6526 */ 6527 static boolean_t 6528 ipsq_dlpi_done(ipsq_t *ipsq) 6529 { 6530 ipsq_t *ipsq_start; 6531 phyint_t *phyi; 6532 ill_t *ill; 6533 6534 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6535 ipsq_start = ipsq; 6536 6537 do { 6538 /* 6539 * The only current users of this function are ipsq_try_enter 6540 * and ipsq_enter which have made sure that ipsq_writer is 6541 * NULL before we reach here. ill_dlpi_pending is modified 6542 * only by an ipsq writer 6543 */ 6544 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6545 phyi = ipsq->ipsq_phyint; 6546 /* 6547 * phyi could be NULL if a phyint that is part of an 6548 * IPMP group is being unplumbed. A more detailed 6549 * comment is in ipmp_grp_update_kstats() 6550 */ 6551 if (phyi != NULL) { 6552 ill = phyi->phyint_illv4; 6553 if (ill != NULL && 6554 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6555 ill->ill_arl_dlpi_pending)) 6556 return (B_FALSE); 6557 6558 ill = phyi->phyint_illv6; 6559 if (ill != NULL && 6560 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6561 return (B_FALSE); 6562 } 6563 6564 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6565 6566 return (B_TRUE); 6567 } 6568 6569 /* 6570 * Enter the ipsq corresponding to ill, by waiting synchronously till 6571 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6572 * will have to drain completely before ipsq_enter returns success. 6573 * ipx_current_ipif will be set if some exclusive op is in progress, 6574 * and the ipsq_exit logic will start the next enqueued op after 6575 * completion of the current op. If 'force' is used, we don't wait 6576 * for the enqueued ops. This is needed when a conn_close wants to 6577 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6578 * of an ill can also use this option. But we dont' use it currently. 6579 */ 6580 #define ENTER_SQ_WAIT_TICKS 100 6581 boolean_t 6582 ipsq_enter(ill_t *ill, boolean_t force, int type) 6583 { 6584 ipsq_t *ipsq; 6585 ipxop_t *ipx; 6586 boolean_t waited_enough = B_FALSE; 6587 ip_stack_t *ipst = ill->ill_ipst; 6588 6589 /* 6590 * Note that the relationship between ill and ipsq is fixed as long as 6591 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6592 * relationship between the IPSQ and xop cannot change. However, 6593 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6594 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6595 * waking up all ills in the xop when it becomes available. 6596 */ 6597 for (;;) { 6598 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6599 mutex_enter(&ill->ill_lock); 6600 if (ill->ill_state_flags & ILL_CONDEMNED) { 6601 mutex_exit(&ill->ill_lock); 6602 rw_exit(&ipst->ips_ill_g_lock); 6603 return (B_FALSE); 6604 } 6605 6606 ipsq = ill->ill_phyint->phyint_ipsq; 6607 mutex_enter(&ipsq->ipsq_lock); 6608 ipx = ipsq->ipsq_xop; 6609 mutex_enter(&ipx->ipx_lock); 6610 6611 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6612 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6613 waited_enough)) 6614 break; 6615 6616 rw_exit(&ipst->ips_ill_g_lock); 6617 6618 if (!force || ipx->ipx_writer != NULL) { 6619 mutex_exit(&ipx->ipx_lock); 6620 mutex_exit(&ipsq->ipsq_lock); 6621 cv_wait(&ill->ill_cv, &ill->ill_lock); 6622 } else { 6623 mutex_exit(&ipx->ipx_lock); 6624 mutex_exit(&ipsq->ipsq_lock); 6625 (void) cv_reltimedwait(&ill->ill_cv, 6626 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6627 waited_enough = B_TRUE; 6628 } 6629 mutex_exit(&ill->ill_lock); 6630 } 6631 6632 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6633 ASSERT(ipx->ipx_reentry_cnt == 0); 6634 ipx->ipx_writer = curthread; 6635 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6636 ipx->ipx_reentry_cnt++; 6637 #ifdef DEBUG 6638 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6639 #endif 6640 mutex_exit(&ipx->ipx_lock); 6641 mutex_exit(&ipsq->ipsq_lock); 6642 mutex_exit(&ill->ill_lock); 6643 rw_exit(&ipst->ips_ill_g_lock); 6644 6645 return (B_TRUE); 6646 } 6647 6648 /* 6649 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6650 * across the call to the core interface ipsq_try_enter() and hence calls this 6651 * function directly. This is explained more fully in ipif_set_values(). 6652 * In order to support the above constraint, ipsq_try_enter is implemented as 6653 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6654 */ 6655 static ipsq_t * 6656 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6657 int type, boolean_t reentry_ok) 6658 { 6659 ipsq_t *ipsq; 6660 ipxop_t *ipx; 6661 ip_stack_t *ipst = ill->ill_ipst; 6662 6663 /* 6664 * lock ordering: 6665 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6666 * 6667 * ipx of an ipsq can't change when ipsq_lock is held. 6668 */ 6669 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6670 GRAB_CONN_LOCK(q); 6671 mutex_enter(&ill->ill_lock); 6672 ipsq = ill->ill_phyint->phyint_ipsq; 6673 mutex_enter(&ipsq->ipsq_lock); 6674 ipx = ipsq->ipsq_xop; 6675 mutex_enter(&ipx->ipx_lock); 6676 6677 /* 6678 * 1. Enter the ipsq if we are already writer and reentry is ok. 6679 * (Note: If the caller does not specify reentry_ok then neither 6680 * 'func' nor any of its callees must ever attempt to enter the ipsq 6681 * again. Otherwise it can lead to an infinite loop 6682 * 2. Enter the ipsq if there is no current writer and this attempted 6683 * entry is part of the current operation 6684 * 3. Enter the ipsq if there is no current writer and this is a new 6685 * operation and the operation queue is empty and there is no 6686 * operation currently in progress and if all previously initiated 6687 * DLPI operations have completed. 6688 */ 6689 if ((ipx->ipx_writer == curthread && reentry_ok) || 6690 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6691 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6692 ipsq_dlpi_done(ipsq))))) { 6693 /* Success. */ 6694 ipx->ipx_reentry_cnt++; 6695 ipx->ipx_writer = curthread; 6696 ipx->ipx_forced = B_FALSE; 6697 mutex_exit(&ipx->ipx_lock); 6698 mutex_exit(&ipsq->ipsq_lock); 6699 mutex_exit(&ill->ill_lock); 6700 RELEASE_CONN_LOCK(q); 6701 #ifdef DEBUG 6702 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6703 #endif 6704 return (ipsq); 6705 } 6706 6707 if (func != NULL) 6708 ipsq_enq(ipsq, q, mp, func, type, ill); 6709 6710 mutex_exit(&ipx->ipx_lock); 6711 mutex_exit(&ipsq->ipsq_lock); 6712 mutex_exit(&ill->ill_lock); 6713 RELEASE_CONN_LOCK(q); 6714 return (NULL); 6715 } 6716 6717 /* 6718 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6719 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6720 * There is one ipsq per phyint. The ipsq 6721 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6722 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6723 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6724 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6725 * up the interface) and are enqueued in ipx_mphead. 6726 * 6727 * If a thread does not want to reenter the ipsq when it is already writer, 6728 * it must make sure that the specified reentry point to be called later 6729 * when the ipsq is empty, nor any code path starting from the specified reentry 6730 * point must never ever try to enter the ipsq again. Otherwise it can lead 6731 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6732 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6733 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6734 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6735 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6736 * ioctl if the current ioctl has completed. If the current ioctl is still 6737 * in progress it simply returns. The current ioctl could be waiting for 6738 * a response from another module (the driver or could be waiting for 6739 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6740 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6741 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6742 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6743 * all associated DLPI operations have completed. 6744 */ 6745 6746 /* 6747 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6748 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6749 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6750 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6751 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6752 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6753 */ 6754 ipsq_t * 6755 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6756 ipsq_func_t func, int type, boolean_t reentry_ok) 6757 { 6758 ip_stack_t *ipst; 6759 ipsq_t *ipsq; 6760 6761 /* Only 1 of ipif or ill can be specified */ 6762 ASSERT((ipif != NULL) ^ (ill != NULL)); 6763 6764 if (ipif != NULL) 6765 ill = ipif->ipif_ill; 6766 ipst = ill->ill_ipst; 6767 6768 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6769 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6770 rw_exit(&ipst->ips_ill_g_lock); 6771 6772 return (ipsq); 6773 } 6774 6775 /* 6776 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6777 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6778 * cannot be entered, the mp is queued for completion. 6779 */ 6780 void 6781 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6782 boolean_t reentry_ok) 6783 { 6784 ipsq_t *ipsq; 6785 6786 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6787 6788 /* 6789 * Drop the caller's refhold on the ill. This is safe since we either 6790 * entered the IPSQ (and thus are exclusive), or failed to enter the 6791 * IPSQ, in which case we return without accessing ill anymore. This 6792 * is needed because func needs to see the correct refcount. 6793 * e.g. removeif can work only then. 6794 */ 6795 ill_refrele(ill); 6796 if (ipsq != NULL) { 6797 (*func)(ipsq, q, mp, NULL); 6798 ipsq_exit(ipsq); 6799 } 6800 } 6801 6802 /* 6803 * Exit the specified IPSQ. If this is the final exit on it then drain it 6804 * prior to exiting. Caller must be writer on the specified IPSQ. 6805 */ 6806 void 6807 ipsq_exit(ipsq_t *ipsq) 6808 { 6809 mblk_t *mp; 6810 ipsq_t *mp_ipsq; 6811 queue_t *q; 6812 phyint_t *phyi; 6813 ipsq_func_t func; 6814 6815 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6816 6817 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6818 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6819 ipsq->ipsq_xop->ipx_reentry_cnt--; 6820 return; 6821 } 6822 6823 for (;;) { 6824 phyi = ipsq->ipsq_phyint; 6825 mp = ipsq_dq(ipsq); 6826 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6827 6828 /* 6829 * If we've changed to a new IPSQ, and the phyint associated 6830 * with the old one has gone away, free the old IPSQ. Note 6831 * that this cannot happen while the IPSQ is in a group. 6832 */ 6833 if (mp_ipsq != ipsq && phyi == NULL) { 6834 ASSERT(ipsq->ipsq_next == ipsq); 6835 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6836 ipsq_delete(ipsq); 6837 } 6838 6839 if (mp == NULL) 6840 break; 6841 6842 q = mp->b_queue; 6843 func = (ipsq_func_t)mp->b_prev; 6844 ipsq = mp_ipsq; 6845 mp->b_next = mp->b_prev = NULL; 6846 mp->b_queue = NULL; 6847 6848 /* 6849 * If 'q' is an conn queue, it is valid, since we did a 6850 * a refhold on the conn at the start of the ioctl. 6851 * If 'q' is an ill queue, it is valid, since close of an 6852 * ill will clean up its IPSQ. 6853 */ 6854 (*func)(ipsq, q, mp, NULL); 6855 } 6856 } 6857 6858 /* 6859 * Used to start any igmp or mld timers that could not be started 6860 * while holding ill_mcast_lock. The timers can't be started while holding 6861 * the lock, since mld/igmp_start_timers may need to call untimeout() 6862 * which can't be done while holding the lock which the timeout handler 6863 * acquires. Otherwise 6864 * there could be a deadlock since the timeout handlers 6865 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6866 * ill_mcast_lock. 6867 */ 6868 void 6869 ill_mcast_timer_start(ip_stack_t *ipst) 6870 { 6871 int next; 6872 6873 mutex_enter(&ipst->ips_igmp_timer_lock); 6874 next = ipst->ips_igmp_deferred_next; 6875 ipst->ips_igmp_deferred_next = INFINITY; 6876 mutex_exit(&ipst->ips_igmp_timer_lock); 6877 6878 if (next != INFINITY) 6879 igmp_start_timers(next, ipst); 6880 6881 mutex_enter(&ipst->ips_mld_timer_lock); 6882 next = ipst->ips_mld_deferred_next; 6883 ipst->ips_mld_deferred_next = INFINITY; 6884 mutex_exit(&ipst->ips_mld_timer_lock); 6885 6886 if (next != INFINITY) 6887 mld_start_timers(next, ipst); 6888 } 6889 6890 /* 6891 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6892 * and `ioccmd'. 6893 */ 6894 void 6895 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6896 { 6897 ill_t *ill = ipif->ipif_ill; 6898 ipxop_t *ipx = ipsq->ipsq_xop; 6899 6900 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6901 ASSERT(ipx->ipx_current_ipif == NULL); 6902 ASSERT(ipx->ipx_current_ioctl == 0); 6903 6904 ipx->ipx_current_done = B_FALSE; 6905 ipx->ipx_current_ioctl = ioccmd; 6906 mutex_enter(&ipx->ipx_lock); 6907 ipx->ipx_current_ipif = ipif; 6908 mutex_exit(&ipx->ipx_lock); 6909 6910 /* 6911 * Set IPIF_CHANGING on one or more ipifs associated with the 6912 * current exclusive operation. IPIF_CHANGING prevents any new 6913 * references to the ipif (so that the references will eventually 6914 * drop to zero) and also prevents any "get" operations (e.g., 6915 * SIOCGLIFFLAGS) from being able to access the ipif until the 6916 * operation has completed and the ipif is again in a stable state. 6917 * 6918 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6919 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6920 * on the ill are marked with IPIF_CHANGING since it's unclear which 6921 * ipifs will be affected. 6922 * 6923 * Note that SIOCLIFREMOVEIF is a special case as it sets 6924 * IPIF_CONDEMNED internally after identifying the right ipif to 6925 * operate on. 6926 */ 6927 switch (ioccmd) { 6928 case SIOCLIFREMOVEIF: 6929 break; 6930 case 0: 6931 mutex_enter(&ill->ill_lock); 6932 ipif = ipif->ipif_ill->ill_ipif; 6933 for (; ipif != NULL; ipif = ipif->ipif_next) 6934 ipif->ipif_state_flags |= IPIF_CHANGING; 6935 mutex_exit(&ill->ill_lock); 6936 break; 6937 default: 6938 mutex_enter(&ill->ill_lock); 6939 ipif->ipif_state_flags |= IPIF_CHANGING; 6940 mutex_exit(&ill->ill_lock); 6941 } 6942 } 6943 6944 /* 6945 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6946 * the next exclusive operation to begin once we ipsq_exit(). However, if 6947 * pending DLPI operations remain, then we will wait for the queue to drain 6948 * before allowing the next exclusive operation to begin. This ensures that 6949 * DLPI operations from one exclusive operation are never improperly processed 6950 * as part of a subsequent exclusive operation. 6951 */ 6952 void 6953 ipsq_current_finish(ipsq_t *ipsq) 6954 { 6955 ipxop_t *ipx = ipsq->ipsq_xop; 6956 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6957 ipif_t *ipif = ipx->ipx_current_ipif; 6958 6959 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6960 6961 /* 6962 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6963 * (but in that case, IPIF_CHANGING will already be clear and no 6964 * pending DLPI messages can remain). 6965 */ 6966 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6967 ill_t *ill = ipif->ipif_ill; 6968 6969 mutex_enter(&ill->ill_lock); 6970 dlpi_pending = ill->ill_dlpi_pending; 6971 if (ipx->ipx_current_ioctl == 0) { 6972 ipif = ill->ill_ipif; 6973 for (; ipif != NULL; ipif = ipif->ipif_next) 6974 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6975 } else { 6976 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6977 } 6978 mutex_exit(&ill->ill_lock); 6979 } 6980 6981 ASSERT(!ipx->ipx_current_done); 6982 ipx->ipx_current_done = B_TRUE; 6983 ipx->ipx_current_ioctl = 0; 6984 if (dlpi_pending == DL_PRIM_INVAL) { 6985 mutex_enter(&ipx->ipx_lock); 6986 ipx->ipx_current_ipif = NULL; 6987 mutex_exit(&ipx->ipx_lock); 6988 } 6989 } 6990 6991 /* 6992 * The ill is closing. Flush all messages on the ipsq that originated 6993 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 6994 * for this ill since ipsq_enter could not have entered until then. 6995 * New messages can't be queued since the CONDEMNED flag is set. 6996 */ 6997 static void 6998 ipsq_flush(ill_t *ill) 6999 { 7000 queue_t *q; 7001 mblk_t *prev; 7002 mblk_t *mp; 7003 mblk_t *mp_next; 7004 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 7005 7006 ASSERT(IAM_WRITER_ILL(ill)); 7007 7008 /* 7009 * Flush any messages sent up by the driver. 7010 */ 7011 mutex_enter(&ipx->ipx_lock); 7012 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 7013 mp_next = mp->b_next; 7014 q = mp->b_queue; 7015 if (q == ill->ill_rq || q == ill->ill_wq) { 7016 /* dequeue mp */ 7017 if (prev == NULL) 7018 ipx->ipx_mphead = mp->b_next; 7019 else 7020 prev->b_next = mp->b_next; 7021 if (ipx->ipx_mptail == mp) { 7022 ASSERT(mp_next == NULL); 7023 ipx->ipx_mptail = prev; 7024 } 7025 inet_freemsg(mp); 7026 } else { 7027 prev = mp; 7028 } 7029 } 7030 mutex_exit(&ipx->ipx_lock); 7031 (void) ipsq_pending_mp_cleanup(ill, NULL); 7032 ipsq_xopq_mp_cleanup(ill, NULL); 7033 } 7034 7035 /* 7036 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7037 * and return the associated ipif. 7038 * Return value: 7039 * Non zero: An error has occurred. ci may not be filled out. 7040 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7041 * a held ipif in ci.ci_ipif. 7042 */ 7043 int 7044 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7045 cmd_info_t *ci) 7046 { 7047 char *name; 7048 struct ifreq *ifr; 7049 struct lifreq *lifr; 7050 ipif_t *ipif = NULL; 7051 ill_t *ill; 7052 conn_t *connp; 7053 boolean_t isv6; 7054 int err; 7055 mblk_t *mp1; 7056 zoneid_t zoneid; 7057 ip_stack_t *ipst; 7058 7059 if (q->q_next != NULL) { 7060 ill = (ill_t *)q->q_ptr; 7061 isv6 = ill->ill_isv6; 7062 connp = NULL; 7063 zoneid = ALL_ZONES; 7064 ipst = ill->ill_ipst; 7065 } else { 7066 ill = NULL; 7067 connp = Q_TO_CONN(q); 7068 isv6 = (connp->conn_family == AF_INET6); 7069 zoneid = connp->conn_zoneid; 7070 if (zoneid == GLOBAL_ZONEID) { 7071 /* global zone can access ipifs in all zones */ 7072 zoneid = ALL_ZONES; 7073 } 7074 ipst = connp->conn_netstack->netstack_ip; 7075 } 7076 7077 /* Has been checked in ip_wput_nondata */ 7078 mp1 = mp->b_cont->b_cont; 7079 7080 if (ipip->ipi_cmd_type == IF_CMD) { 7081 /* This a old style SIOC[GS]IF* command */ 7082 ifr = (struct ifreq *)mp1->b_rptr; 7083 /* 7084 * Null terminate the string to protect against buffer 7085 * overrun. String was generated by user code and may not 7086 * be trusted. 7087 */ 7088 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7089 name = ifr->ifr_name; 7090 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7091 ci->ci_sin6 = NULL; 7092 ci->ci_lifr = (struct lifreq *)ifr; 7093 } else { 7094 /* This a new style SIOC[GS]LIF* command */ 7095 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7096 lifr = (struct lifreq *)mp1->b_rptr; 7097 /* 7098 * Null terminate the string to protect against buffer 7099 * overrun. String was generated by user code and may not 7100 * be trusted. 7101 */ 7102 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7103 name = lifr->lifr_name; 7104 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7105 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7106 ci->ci_lifr = lifr; 7107 } 7108 7109 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7110 /* 7111 * The ioctl will be failed if the ioctl comes down 7112 * an conn stream 7113 */ 7114 if (ill == NULL) { 7115 /* 7116 * Not an ill queue, return EINVAL same as the 7117 * old error code. 7118 */ 7119 return (ENXIO); 7120 } 7121 ipif = ill->ill_ipif; 7122 ipif_refhold(ipif); 7123 } else { 7124 /* 7125 * Ensure that ioctls don't see any internal state changes 7126 * caused by set ioctls by deferring them if IPIF_CHANGING is 7127 * set. 7128 */ 7129 ipif = ipif_lookup_on_name_async(name, mi_strlen(name), 7130 isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst); 7131 if (ipif == NULL) { 7132 if (err == EINPROGRESS) 7133 return (err); 7134 err = 0; /* Ensure we don't use it below */ 7135 } 7136 } 7137 7138 /* 7139 * Old style [GS]IFCMD does not admit IPv6 ipif 7140 */ 7141 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7142 ipif_refrele(ipif); 7143 return (ENXIO); 7144 } 7145 7146 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7147 name[0] == '\0') { 7148 /* 7149 * Handle a or a SIOC?IF* with a null name 7150 * during plumb (on the ill queue before the I_PLINK). 7151 */ 7152 ipif = ill->ill_ipif; 7153 ipif_refhold(ipif); 7154 } 7155 7156 if (ipif == NULL) 7157 return (ENXIO); 7158 7159 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7160 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7161 7162 ci->ci_ipif = ipif; 7163 return (0); 7164 } 7165 7166 /* 7167 * Return the total number of ipifs. 7168 */ 7169 static uint_t 7170 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7171 { 7172 uint_t numifs = 0; 7173 ill_t *ill; 7174 ill_walk_context_t ctx; 7175 ipif_t *ipif; 7176 7177 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7178 ill = ILL_START_WALK_V4(&ctx, ipst); 7179 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7180 if (IS_UNDER_IPMP(ill)) 7181 continue; 7182 for (ipif = ill->ill_ipif; ipif != NULL; 7183 ipif = ipif->ipif_next) { 7184 if (ipif->ipif_zoneid == zoneid || 7185 ipif->ipif_zoneid == ALL_ZONES) 7186 numifs++; 7187 } 7188 } 7189 rw_exit(&ipst->ips_ill_g_lock); 7190 return (numifs); 7191 } 7192 7193 /* 7194 * Return the total number of ipifs. 7195 */ 7196 static uint_t 7197 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7198 { 7199 uint_t numifs = 0; 7200 ill_t *ill; 7201 ipif_t *ipif; 7202 ill_walk_context_t ctx; 7203 7204 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7205 7206 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7207 if (family == AF_INET) 7208 ill = ILL_START_WALK_V4(&ctx, ipst); 7209 else if (family == AF_INET6) 7210 ill = ILL_START_WALK_V6(&ctx, ipst); 7211 else 7212 ill = ILL_START_WALK_ALL(&ctx, ipst); 7213 7214 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7215 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7216 continue; 7217 7218 for (ipif = ill->ill_ipif; ipif != NULL; 7219 ipif = ipif->ipif_next) { 7220 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7221 !(lifn_flags & LIFC_NOXMIT)) 7222 continue; 7223 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7224 !(lifn_flags & LIFC_TEMPORARY)) 7225 continue; 7226 if (((ipif->ipif_flags & 7227 (IPIF_NOXMIT|IPIF_NOLOCAL| 7228 IPIF_DEPRECATED)) || 7229 IS_LOOPBACK(ill) || 7230 !(ipif->ipif_flags & IPIF_UP)) && 7231 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7232 continue; 7233 7234 if (zoneid != ipif->ipif_zoneid && 7235 ipif->ipif_zoneid != ALL_ZONES && 7236 (zoneid != GLOBAL_ZONEID || 7237 !(lifn_flags & LIFC_ALLZONES))) 7238 continue; 7239 7240 numifs++; 7241 } 7242 } 7243 rw_exit(&ipst->ips_ill_g_lock); 7244 return (numifs); 7245 } 7246 7247 uint_t 7248 ip_get_lifsrcofnum(ill_t *ill) 7249 { 7250 uint_t numifs = 0; 7251 ill_t *ill_head = ill; 7252 ip_stack_t *ipst = ill->ill_ipst; 7253 7254 /* 7255 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7256 * other thread may be trying to relink the ILLs in this usesrc group 7257 * and adjusting the ill_usesrc_grp_next pointers 7258 */ 7259 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7260 if ((ill->ill_usesrc_ifindex == 0) && 7261 (ill->ill_usesrc_grp_next != NULL)) { 7262 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7263 ill = ill->ill_usesrc_grp_next) 7264 numifs++; 7265 } 7266 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7267 7268 return (numifs); 7269 } 7270 7271 /* Null values are passed in for ipif, sin, and ifreq */ 7272 /* ARGSUSED */ 7273 int 7274 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7275 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7276 { 7277 int *nump; 7278 conn_t *connp = Q_TO_CONN(q); 7279 7280 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7281 7282 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7283 nump = (int *)mp->b_cont->b_cont->b_rptr; 7284 7285 *nump = ip_get_numifs(connp->conn_zoneid, 7286 connp->conn_netstack->netstack_ip); 7287 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7288 return (0); 7289 } 7290 7291 /* Null values are passed in for ipif, sin, and ifreq */ 7292 /* ARGSUSED */ 7293 int 7294 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7295 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7296 { 7297 struct lifnum *lifn; 7298 mblk_t *mp1; 7299 conn_t *connp = Q_TO_CONN(q); 7300 7301 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7302 7303 /* Existence checked in ip_wput_nondata */ 7304 mp1 = mp->b_cont->b_cont; 7305 7306 lifn = (struct lifnum *)mp1->b_rptr; 7307 switch (lifn->lifn_family) { 7308 case AF_UNSPEC: 7309 case AF_INET: 7310 case AF_INET6: 7311 break; 7312 default: 7313 return (EAFNOSUPPORT); 7314 } 7315 7316 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7317 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7318 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7319 return (0); 7320 } 7321 7322 /* ARGSUSED */ 7323 int 7324 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7325 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7326 { 7327 STRUCT_HANDLE(ifconf, ifc); 7328 mblk_t *mp1; 7329 struct iocblk *iocp; 7330 struct ifreq *ifr; 7331 ill_walk_context_t ctx; 7332 ill_t *ill; 7333 ipif_t *ipif; 7334 struct sockaddr_in *sin; 7335 int32_t ifclen; 7336 zoneid_t zoneid; 7337 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7338 7339 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7340 7341 ip1dbg(("ip_sioctl_get_ifconf")); 7342 /* Existence verified in ip_wput_nondata */ 7343 mp1 = mp->b_cont->b_cont; 7344 iocp = (struct iocblk *)mp->b_rptr; 7345 zoneid = Q_TO_CONN(q)->conn_zoneid; 7346 7347 /* 7348 * The original SIOCGIFCONF passed in a struct ifconf which specified 7349 * the user buffer address and length into which the list of struct 7350 * ifreqs was to be copied. Since AT&T Streams does not seem to 7351 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7352 * the SIOCGIFCONF operation was redefined to simply provide 7353 * a large output buffer into which we are supposed to jam the ifreq 7354 * array. The same ioctl command code was used, despite the fact that 7355 * both the applications and the kernel code had to change, thus making 7356 * it impossible to support both interfaces. 7357 * 7358 * For reasons not good enough to try to explain, the following 7359 * algorithm is used for deciding what to do with one of these: 7360 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7361 * form with the output buffer coming down as the continuation message. 7362 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7363 * and we have to copy in the ifconf structure to find out how big the 7364 * output buffer is and where to copy out to. Sure no problem... 7365 * 7366 */ 7367 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7368 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7369 int numifs = 0; 7370 size_t ifc_bufsize; 7371 7372 /* 7373 * Must be (better be!) continuation of a TRANSPARENT 7374 * IOCTL. We just copied in the ifconf structure. 7375 */ 7376 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7377 (struct ifconf *)mp1->b_rptr); 7378 7379 /* 7380 * Allocate a buffer to hold requested information. 7381 * 7382 * If ifc_len is larger than what is needed, we only 7383 * allocate what we will use. 7384 * 7385 * If ifc_len is smaller than what is needed, return 7386 * EINVAL. 7387 * 7388 * XXX: the ill_t structure can hava 2 counters, for 7389 * v4 and v6 (not just ill_ipif_up_count) to store the 7390 * number of interfaces for a device, so we don't need 7391 * to count them here... 7392 */ 7393 numifs = ip_get_numifs(zoneid, ipst); 7394 7395 ifclen = STRUCT_FGET(ifc, ifc_len); 7396 ifc_bufsize = numifs * sizeof (struct ifreq); 7397 if (ifc_bufsize > ifclen) { 7398 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7399 /* old behaviour */ 7400 return (EINVAL); 7401 } else { 7402 ifc_bufsize = ifclen; 7403 } 7404 } 7405 7406 mp1 = mi_copyout_alloc(q, mp, 7407 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7408 if (mp1 == NULL) 7409 return (ENOMEM); 7410 7411 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7412 } 7413 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7414 /* 7415 * the SIOCGIFCONF ioctl only knows about 7416 * IPv4 addresses, so don't try to tell 7417 * it about interfaces with IPv6-only 7418 * addresses. (Last parm 'isv6' is B_FALSE) 7419 */ 7420 7421 ifr = (struct ifreq *)mp1->b_rptr; 7422 7423 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7424 ill = ILL_START_WALK_V4(&ctx, ipst); 7425 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7426 if (IS_UNDER_IPMP(ill)) 7427 continue; 7428 for (ipif = ill->ill_ipif; ipif != NULL; 7429 ipif = ipif->ipif_next) { 7430 if (zoneid != ipif->ipif_zoneid && 7431 ipif->ipif_zoneid != ALL_ZONES) 7432 continue; 7433 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7434 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7435 /* old behaviour */ 7436 rw_exit(&ipst->ips_ill_g_lock); 7437 return (EINVAL); 7438 } else { 7439 goto if_copydone; 7440 } 7441 } 7442 ipif_get_name(ipif, ifr->ifr_name, 7443 sizeof (ifr->ifr_name)); 7444 sin = (sin_t *)&ifr->ifr_addr; 7445 *sin = sin_null; 7446 sin->sin_family = AF_INET; 7447 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7448 ifr++; 7449 } 7450 } 7451 if_copydone: 7452 rw_exit(&ipst->ips_ill_g_lock); 7453 mp1->b_wptr = (uchar_t *)ifr; 7454 7455 if (STRUCT_BUF(ifc) != NULL) { 7456 STRUCT_FSET(ifc, ifc_len, 7457 (int)((uchar_t *)ifr - mp1->b_rptr)); 7458 } 7459 return (0); 7460 } 7461 7462 /* 7463 * Get the interfaces using the address hosted on the interface passed in, 7464 * as a source adddress 7465 */ 7466 /* ARGSUSED */ 7467 int 7468 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7469 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7470 { 7471 mblk_t *mp1; 7472 ill_t *ill, *ill_head; 7473 ipif_t *ipif, *orig_ipif; 7474 int numlifs = 0; 7475 size_t lifs_bufsize, lifsmaxlen; 7476 struct lifreq *lifr; 7477 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7478 uint_t ifindex; 7479 zoneid_t zoneid; 7480 boolean_t isv6 = B_FALSE; 7481 struct sockaddr_in *sin; 7482 struct sockaddr_in6 *sin6; 7483 STRUCT_HANDLE(lifsrcof, lifs); 7484 ip_stack_t *ipst; 7485 7486 ipst = CONNQ_TO_IPST(q); 7487 7488 ASSERT(q->q_next == NULL); 7489 7490 zoneid = Q_TO_CONN(q)->conn_zoneid; 7491 7492 /* Existence verified in ip_wput_nondata */ 7493 mp1 = mp->b_cont->b_cont; 7494 7495 /* 7496 * Must be (better be!) continuation of a TRANSPARENT 7497 * IOCTL. We just copied in the lifsrcof structure. 7498 */ 7499 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7500 (struct lifsrcof *)mp1->b_rptr); 7501 7502 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7503 return (EINVAL); 7504 7505 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7506 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7507 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7508 if (ipif == NULL) { 7509 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7510 ifindex)); 7511 return (ENXIO); 7512 } 7513 7514 /* Allocate a buffer to hold requested information */ 7515 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7516 lifs_bufsize = numlifs * sizeof (struct lifreq); 7517 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7518 /* The actual size needed is always returned in lifs_len */ 7519 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7520 7521 /* If the amount we need is more than what is passed in, abort */ 7522 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7523 ipif_refrele(ipif); 7524 return (0); 7525 } 7526 7527 mp1 = mi_copyout_alloc(q, mp, 7528 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7529 if (mp1 == NULL) { 7530 ipif_refrele(ipif); 7531 return (ENOMEM); 7532 } 7533 7534 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7535 bzero(mp1->b_rptr, lifs_bufsize); 7536 7537 lifr = (struct lifreq *)mp1->b_rptr; 7538 7539 ill = ill_head = ipif->ipif_ill; 7540 orig_ipif = ipif; 7541 7542 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7543 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7544 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7545 7546 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7547 for (; (ill != NULL) && (ill != ill_head); 7548 ill = ill->ill_usesrc_grp_next) { 7549 7550 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7551 break; 7552 7553 ipif = ill->ill_ipif; 7554 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7555 if (ipif->ipif_isv6) { 7556 sin6 = (sin6_t *)&lifr->lifr_addr; 7557 *sin6 = sin6_null; 7558 sin6->sin6_family = AF_INET6; 7559 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7560 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7561 &ipif->ipif_v6net_mask); 7562 } else { 7563 sin = (sin_t *)&lifr->lifr_addr; 7564 *sin = sin_null; 7565 sin->sin_family = AF_INET; 7566 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7567 lifr->lifr_addrlen = ip_mask_to_plen( 7568 ipif->ipif_net_mask); 7569 } 7570 lifr++; 7571 } 7572 rw_exit(&ipst->ips_ill_g_lock); 7573 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7574 ipif_refrele(orig_ipif); 7575 mp1->b_wptr = (uchar_t *)lifr; 7576 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7577 7578 return (0); 7579 } 7580 7581 /* ARGSUSED */ 7582 int 7583 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7584 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7585 { 7586 mblk_t *mp1; 7587 int list; 7588 ill_t *ill; 7589 ipif_t *ipif; 7590 int flags; 7591 int numlifs = 0; 7592 size_t lifc_bufsize; 7593 struct lifreq *lifr; 7594 sa_family_t family; 7595 struct sockaddr_in *sin; 7596 struct sockaddr_in6 *sin6; 7597 ill_walk_context_t ctx; 7598 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7599 int32_t lifclen; 7600 zoneid_t zoneid; 7601 STRUCT_HANDLE(lifconf, lifc); 7602 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7603 7604 ip1dbg(("ip_sioctl_get_lifconf")); 7605 7606 ASSERT(q->q_next == NULL); 7607 7608 zoneid = Q_TO_CONN(q)->conn_zoneid; 7609 7610 /* Existence verified in ip_wput_nondata */ 7611 mp1 = mp->b_cont->b_cont; 7612 7613 /* 7614 * An extended version of SIOCGIFCONF that takes an 7615 * additional address family and flags field. 7616 * AF_UNSPEC retrieve both IPv4 and IPv6. 7617 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7618 * interfaces are omitted. 7619 * Similarly, IPIF_TEMPORARY interfaces are omitted 7620 * unless LIFC_TEMPORARY is specified. 7621 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7622 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7623 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7624 * has priority over LIFC_NOXMIT. 7625 */ 7626 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7627 7628 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7629 return (EINVAL); 7630 7631 /* 7632 * Must be (better be!) continuation of a TRANSPARENT 7633 * IOCTL. We just copied in the lifconf structure. 7634 */ 7635 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7636 7637 family = STRUCT_FGET(lifc, lifc_family); 7638 flags = STRUCT_FGET(lifc, lifc_flags); 7639 7640 switch (family) { 7641 case AF_UNSPEC: 7642 /* 7643 * walk all ILL's. 7644 */ 7645 list = MAX_G_HEADS; 7646 break; 7647 case AF_INET: 7648 /* 7649 * walk only IPV4 ILL's. 7650 */ 7651 list = IP_V4_G_HEAD; 7652 break; 7653 case AF_INET6: 7654 /* 7655 * walk only IPV6 ILL's. 7656 */ 7657 list = IP_V6_G_HEAD; 7658 break; 7659 default: 7660 return (EAFNOSUPPORT); 7661 } 7662 7663 /* 7664 * Allocate a buffer to hold requested information. 7665 * 7666 * If lifc_len is larger than what is needed, we only 7667 * allocate what we will use. 7668 * 7669 * If lifc_len is smaller than what is needed, return 7670 * EINVAL. 7671 */ 7672 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7673 lifc_bufsize = numlifs * sizeof (struct lifreq); 7674 lifclen = STRUCT_FGET(lifc, lifc_len); 7675 if (lifc_bufsize > lifclen) { 7676 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7677 return (EINVAL); 7678 else 7679 lifc_bufsize = lifclen; 7680 } 7681 7682 mp1 = mi_copyout_alloc(q, mp, 7683 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7684 if (mp1 == NULL) 7685 return (ENOMEM); 7686 7687 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7688 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7689 7690 lifr = (struct lifreq *)mp1->b_rptr; 7691 7692 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7693 ill = ill_first(list, list, &ctx, ipst); 7694 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7695 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7696 continue; 7697 7698 for (ipif = ill->ill_ipif; ipif != NULL; 7699 ipif = ipif->ipif_next) { 7700 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7701 !(flags & LIFC_NOXMIT)) 7702 continue; 7703 7704 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7705 !(flags & LIFC_TEMPORARY)) 7706 continue; 7707 7708 if (((ipif->ipif_flags & 7709 (IPIF_NOXMIT|IPIF_NOLOCAL| 7710 IPIF_DEPRECATED)) || 7711 IS_LOOPBACK(ill) || 7712 !(ipif->ipif_flags & IPIF_UP)) && 7713 (flags & LIFC_EXTERNAL_SOURCE)) 7714 continue; 7715 7716 if (zoneid != ipif->ipif_zoneid && 7717 ipif->ipif_zoneid != ALL_ZONES && 7718 (zoneid != GLOBAL_ZONEID || 7719 !(flags & LIFC_ALLZONES))) 7720 continue; 7721 7722 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7723 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7724 rw_exit(&ipst->ips_ill_g_lock); 7725 return (EINVAL); 7726 } else { 7727 goto lif_copydone; 7728 } 7729 } 7730 7731 ipif_get_name(ipif, lifr->lifr_name, 7732 sizeof (lifr->lifr_name)); 7733 lifr->lifr_type = ill->ill_type; 7734 if (ipif->ipif_isv6) { 7735 sin6 = (sin6_t *)&lifr->lifr_addr; 7736 *sin6 = sin6_null; 7737 sin6->sin6_family = AF_INET6; 7738 sin6->sin6_addr = 7739 ipif->ipif_v6lcl_addr; 7740 lifr->lifr_addrlen = 7741 ip_mask_to_plen_v6( 7742 &ipif->ipif_v6net_mask); 7743 } else { 7744 sin = (sin_t *)&lifr->lifr_addr; 7745 *sin = sin_null; 7746 sin->sin_family = AF_INET; 7747 sin->sin_addr.s_addr = 7748 ipif->ipif_lcl_addr; 7749 lifr->lifr_addrlen = 7750 ip_mask_to_plen( 7751 ipif->ipif_net_mask); 7752 } 7753 lifr++; 7754 } 7755 } 7756 lif_copydone: 7757 rw_exit(&ipst->ips_ill_g_lock); 7758 7759 mp1->b_wptr = (uchar_t *)lifr; 7760 if (STRUCT_BUF(lifc) != NULL) { 7761 STRUCT_FSET(lifc, lifc_len, 7762 (int)((uchar_t *)lifr - mp1->b_rptr)); 7763 } 7764 return (0); 7765 } 7766 7767 static void 7768 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7769 { 7770 ip6_asp_t *table; 7771 size_t table_size; 7772 mblk_t *data_mp; 7773 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7774 ip_stack_t *ipst; 7775 7776 if (q->q_next == NULL) 7777 ipst = CONNQ_TO_IPST(q); 7778 else 7779 ipst = ILLQ_TO_IPST(q); 7780 7781 /* These two ioctls are I_STR only */ 7782 if (iocp->ioc_count == TRANSPARENT) { 7783 miocnak(q, mp, 0, EINVAL); 7784 return; 7785 } 7786 7787 data_mp = mp->b_cont; 7788 if (data_mp == NULL) { 7789 /* The user passed us a NULL argument */ 7790 table = NULL; 7791 table_size = iocp->ioc_count; 7792 } else { 7793 /* 7794 * The user provided a table. The stream head 7795 * may have copied in the user data in chunks, 7796 * so make sure everything is pulled up 7797 * properly. 7798 */ 7799 if (MBLKL(data_mp) < iocp->ioc_count) { 7800 mblk_t *new_data_mp; 7801 if ((new_data_mp = msgpullup(data_mp, -1)) == 7802 NULL) { 7803 miocnak(q, mp, 0, ENOMEM); 7804 return; 7805 } 7806 freemsg(data_mp); 7807 data_mp = new_data_mp; 7808 mp->b_cont = data_mp; 7809 } 7810 table = (ip6_asp_t *)data_mp->b_rptr; 7811 table_size = iocp->ioc_count; 7812 } 7813 7814 switch (iocp->ioc_cmd) { 7815 case SIOCGIP6ADDRPOLICY: 7816 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7817 if (iocp->ioc_rval == -1) 7818 iocp->ioc_error = EINVAL; 7819 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7820 else if (table != NULL && 7821 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7822 ip6_asp_t *src = table; 7823 ip6_asp32_t *dst = (void *)table; 7824 int count = table_size / sizeof (ip6_asp_t); 7825 int i; 7826 7827 /* 7828 * We need to do an in-place shrink of the array 7829 * to match the alignment attributes of the 7830 * 32-bit ABI looking at it. 7831 */ 7832 /* LINTED: logical expression always true: op "||" */ 7833 ASSERT(sizeof (*src) > sizeof (*dst)); 7834 for (i = 1; i < count; i++) 7835 bcopy(src + i, dst + i, sizeof (*dst)); 7836 } 7837 #endif 7838 break; 7839 7840 case SIOCSIP6ADDRPOLICY: 7841 ASSERT(mp->b_prev == NULL); 7842 mp->b_prev = (void *)q; 7843 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7844 /* 7845 * We pass in the datamodel here so that the ip6_asp_replace() 7846 * routine can handle converting from 32-bit to native formats 7847 * where necessary. 7848 * 7849 * A better way to handle this might be to convert the inbound 7850 * data structure here, and hang it off a new 'mp'; thus the 7851 * ip6_asp_replace() logic would always be dealing with native 7852 * format data structures.. 7853 * 7854 * (An even simpler way to handle these ioctls is to just 7855 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7856 * and just recompile everything that depends on it.) 7857 */ 7858 #endif 7859 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7860 iocp->ioc_flag & IOC_MODELS); 7861 return; 7862 } 7863 7864 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7865 qreply(q, mp); 7866 } 7867 7868 static void 7869 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7870 { 7871 mblk_t *data_mp; 7872 struct dstinforeq *dir; 7873 uint8_t *end, *cur; 7874 in6_addr_t *daddr, *saddr; 7875 ipaddr_t v4daddr; 7876 ire_t *ire; 7877 ipaddr_t v4setsrc; 7878 in6_addr_t v6setsrc; 7879 char *slabel, *dlabel; 7880 boolean_t isipv4; 7881 int match_ire; 7882 ill_t *dst_ill; 7883 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7884 conn_t *connp = Q_TO_CONN(q); 7885 zoneid_t zoneid = IPCL_ZONEID(connp); 7886 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7887 uint64_t ipif_flags; 7888 7889 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7890 7891 /* 7892 * This ioctl is I_STR only, and must have a 7893 * data mblk following the M_IOCTL mblk. 7894 */ 7895 data_mp = mp->b_cont; 7896 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7897 miocnak(q, mp, 0, EINVAL); 7898 return; 7899 } 7900 7901 if (MBLKL(data_mp) < iocp->ioc_count) { 7902 mblk_t *new_data_mp; 7903 7904 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7905 miocnak(q, mp, 0, ENOMEM); 7906 return; 7907 } 7908 freemsg(data_mp); 7909 data_mp = new_data_mp; 7910 mp->b_cont = data_mp; 7911 } 7912 match_ire = MATCH_IRE_DSTONLY; 7913 7914 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7915 end - cur >= sizeof (struct dstinforeq); 7916 cur += sizeof (struct dstinforeq)) { 7917 dir = (struct dstinforeq *)cur; 7918 daddr = &dir->dir_daddr; 7919 saddr = &dir->dir_saddr; 7920 7921 /* 7922 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7923 * v4 mapped addresses; ire_ftable_lookup_v6() 7924 * and ip_select_source_v6() do not. 7925 */ 7926 dir->dir_dscope = ip_addr_scope_v6(daddr); 7927 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7928 7929 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7930 if (isipv4) { 7931 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7932 v4setsrc = INADDR_ANY; 7933 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7934 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, 7935 NULL, NULL); 7936 } else { 7937 v6setsrc = ipv6_all_zeros; 7938 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7939 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, 7940 NULL, NULL); 7941 } 7942 ASSERT(ire != NULL); 7943 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7944 ire_refrele(ire); 7945 dir->dir_dreachable = 0; 7946 7947 /* move on to next dst addr */ 7948 continue; 7949 } 7950 dir->dir_dreachable = 1; 7951 7952 dst_ill = ire_nexthop_ill(ire); 7953 if (dst_ill == NULL) { 7954 ire_refrele(ire); 7955 continue; 7956 } 7957 7958 /* With ipmp we most likely look at the ipmp ill here */ 7959 dir->dir_dmactype = dst_ill->ill_mactype; 7960 7961 if (isipv4) { 7962 ipaddr_t v4saddr; 7963 7964 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 7965 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 7966 &v4saddr, NULL, &ipif_flags) != 0) { 7967 v4saddr = INADDR_ANY; 7968 ipif_flags = 0; 7969 } 7970 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 7971 } else { 7972 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 7973 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 7974 saddr, NULL, &ipif_flags) != 0) { 7975 *saddr = ipv6_all_zeros; 7976 ipif_flags = 0; 7977 } 7978 } 7979 7980 dir->dir_sscope = ip_addr_scope_v6(saddr); 7981 slabel = ip6_asp_lookup(saddr, NULL, ipst); 7982 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 7983 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 7984 ire_refrele(ire); 7985 ill_refrele(dst_ill); 7986 } 7987 miocack(q, mp, iocp->ioc_count, 0); 7988 } 7989 7990 /* 7991 * Check if this is an address assigned to this machine. 7992 * Skips interfaces that are down by using ire checks. 7993 * Translates mapped addresses to v4 addresses and then 7994 * treats them as such, returning true if the v4 address 7995 * associated with this mapped address is configured. 7996 * Note: Applications will have to be careful what they do 7997 * with the response; use of mapped addresses limits 7998 * what can be done with the socket, especially with 7999 * respect to socket options and ioctls - neither IPv4 8000 * options nor IPv6 sticky options/ancillary data options 8001 * may be used. 8002 */ 8003 /* ARGSUSED */ 8004 int 8005 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8006 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8007 { 8008 struct sioc_addrreq *sia; 8009 sin_t *sin; 8010 ire_t *ire; 8011 mblk_t *mp1; 8012 zoneid_t zoneid; 8013 ip_stack_t *ipst; 8014 8015 ip1dbg(("ip_sioctl_tmyaddr")); 8016 8017 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8018 zoneid = Q_TO_CONN(q)->conn_zoneid; 8019 ipst = CONNQ_TO_IPST(q); 8020 8021 /* Existence verified in ip_wput_nondata */ 8022 mp1 = mp->b_cont->b_cont; 8023 sia = (struct sioc_addrreq *)mp1->b_rptr; 8024 sin = (sin_t *)&sia->sa_addr; 8025 switch (sin->sin_family) { 8026 case AF_INET6: { 8027 sin6_t *sin6 = (sin6_t *)sin; 8028 8029 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8030 ipaddr_t v4_addr; 8031 8032 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8033 v4_addr); 8034 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 8035 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8036 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8037 } else { 8038 in6_addr_t v6addr; 8039 8040 v6addr = sin6->sin6_addr; 8041 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 8042 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8043 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8044 } 8045 break; 8046 } 8047 case AF_INET: { 8048 ipaddr_t v4addr; 8049 8050 v4addr = sin->sin_addr.s_addr; 8051 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8052 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8053 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8054 break; 8055 } 8056 default: 8057 return (EAFNOSUPPORT); 8058 } 8059 if (ire != NULL) { 8060 sia->sa_res = 1; 8061 ire_refrele(ire); 8062 } else { 8063 sia->sa_res = 0; 8064 } 8065 return (0); 8066 } 8067 8068 /* 8069 * Check if this is an address assigned on-link i.e. neighbor, 8070 * and makes sure it's reachable from the current zone. 8071 * Returns true for my addresses as well. 8072 * Translates mapped addresses to v4 addresses and then 8073 * treats them as such, returning true if the v4 address 8074 * associated with this mapped address is configured. 8075 * Note: Applications will have to be careful what they do 8076 * with the response; use of mapped addresses limits 8077 * what can be done with the socket, especially with 8078 * respect to socket options and ioctls - neither IPv4 8079 * options nor IPv6 sticky options/ancillary data options 8080 * may be used. 8081 */ 8082 /* ARGSUSED */ 8083 int 8084 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8085 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8086 { 8087 struct sioc_addrreq *sia; 8088 sin_t *sin; 8089 mblk_t *mp1; 8090 ire_t *ire = NULL; 8091 zoneid_t zoneid; 8092 ip_stack_t *ipst; 8093 8094 ip1dbg(("ip_sioctl_tonlink")); 8095 8096 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8097 zoneid = Q_TO_CONN(q)->conn_zoneid; 8098 ipst = CONNQ_TO_IPST(q); 8099 8100 /* Existence verified in ip_wput_nondata */ 8101 mp1 = mp->b_cont->b_cont; 8102 sia = (struct sioc_addrreq *)mp1->b_rptr; 8103 sin = (sin_t *)&sia->sa_addr; 8104 8105 /* 8106 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8107 * to make sure we only look at on-link unicast address. 8108 */ 8109 switch (sin->sin_family) { 8110 case AF_INET6: { 8111 sin6_t *sin6 = (sin6_t *)sin; 8112 8113 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8114 ipaddr_t v4_addr; 8115 8116 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8117 v4_addr); 8118 if (!CLASSD(v4_addr)) { 8119 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8120 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8121 0, ipst, NULL); 8122 } 8123 } else { 8124 in6_addr_t v6addr; 8125 8126 v6addr = sin6->sin6_addr; 8127 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8128 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8129 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8130 ipst, NULL); 8131 } 8132 } 8133 break; 8134 } 8135 case AF_INET: { 8136 ipaddr_t v4addr; 8137 8138 v4addr = sin->sin_addr.s_addr; 8139 if (!CLASSD(v4addr)) { 8140 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8141 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8142 } 8143 break; 8144 } 8145 default: 8146 return (EAFNOSUPPORT); 8147 } 8148 sia->sa_res = 0; 8149 if (ire != NULL) { 8150 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8151 8152 if ((ire->ire_type & IRE_ONLINK) && 8153 !(ire->ire_type & IRE_BROADCAST)) 8154 sia->sa_res = 1; 8155 ire_refrele(ire); 8156 } 8157 return (0); 8158 } 8159 8160 /* 8161 * TBD: implement when kernel maintaines a list of site prefixes. 8162 */ 8163 /* ARGSUSED */ 8164 int 8165 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8166 ip_ioctl_cmd_t *ipip, void *ifreq) 8167 { 8168 return (ENXIO); 8169 } 8170 8171 /* ARP IOCTLs. */ 8172 /* ARGSUSED */ 8173 int 8174 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8175 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8176 { 8177 int err; 8178 ipaddr_t ipaddr; 8179 struct iocblk *iocp; 8180 conn_t *connp; 8181 struct arpreq *ar; 8182 struct xarpreq *xar; 8183 int arp_flags, flags, alength; 8184 uchar_t *lladdr; 8185 ip_stack_t *ipst; 8186 ill_t *ill = ipif->ipif_ill; 8187 ill_t *proxy_ill = NULL; 8188 ipmp_arpent_t *entp = NULL; 8189 boolean_t proxyarp = B_FALSE; 8190 boolean_t if_arp_ioctl = B_FALSE; 8191 ncec_t *ncec = NULL; 8192 nce_t *nce; 8193 8194 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8195 connp = Q_TO_CONN(q); 8196 ipst = connp->conn_netstack->netstack_ip; 8197 iocp = (struct iocblk *)mp->b_rptr; 8198 8199 if (ipip->ipi_cmd_type == XARP_CMD) { 8200 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8201 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8202 ar = NULL; 8203 8204 arp_flags = xar->xarp_flags; 8205 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8206 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8207 /* 8208 * Validate against user's link layer address length 8209 * input and name and addr length limits. 8210 */ 8211 alength = ill->ill_phys_addr_length; 8212 if (ipip->ipi_cmd == SIOCSXARP) { 8213 if (alength != xar->xarp_ha.sdl_alen || 8214 (alength + xar->xarp_ha.sdl_nlen > 8215 sizeof (xar->xarp_ha.sdl_data))) 8216 return (EINVAL); 8217 } 8218 } else { 8219 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8220 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8221 xar = NULL; 8222 8223 arp_flags = ar->arp_flags; 8224 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8225 /* 8226 * Theoretically, the sa_family could tell us what link 8227 * layer type this operation is trying to deal with. By 8228 * common usage AF_UNSPEC means ethernet. We'll assume 8229 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8230 * for now. Our new SIOC*XARP ioctls can be used more 8231 * generally. 8232 * 8233 * If the underlying media happens to have a non 6 byte 8234 * address, arp module will fail set/get, but the del 8235 * operation will succeed. 8236 */ 8237 alength = 6; 8238 if ((ipip->ipi_cmd != SIOCDARP) && 8239 (alength != ill->ill_phys_addr_length)) { 8240 return (EINVAL); 8241 } 8242 } 8243 8244 /* Translate ATF* flags to NCE* flags */ 8245 flags = 0; 8246 if (arp_flags & ATF_AUTHORITY) 8247 flags |= NCE_F_AUTHORITY; 8248 if (arp_flags & ATF_PERM) 8249 flags |= NCE_F_NONUD; /* not subject to aging */ 8250 if (arp_flags & ATF_PUBL) 8251 flags |= NCE_F_PUBLISH; 8252 8253 /* 8254 * IPMP ARP special handling: 8255 * 8256 * 1. Since ARP mappings must appear consistent across the group, 8257 * prohibit changing ARP mappings on the underlying interfaces. 8258 * 8259 * 2. Since ARP mappings for IPMP data addresses are maintained by 8260 * IP itself, prohibit changing them. 8261 * 8262 * 3. For proxy ARP, use a functioning hardware address in the group, 8263 * provided one exists. If one doesn't, just add the entry as-is; 8264 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8265 */ 8266 if (IS_UNDER_IPMP(ill)) { 8267 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8268 return (EPERM); 8269 } 8270 if (IS_IPMP(ill)) { 8271 ipmp_illgrp_t *illg = ill->ill_grp; 8272 8273 switch (ipip->ipi_cmd) { 8274 case SIOCSARP: 8275 case SIOCSXARP: 8276 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8277 if (proxy_ill != NULL) { 8278 proxyarp = B_TRUE; 8279 if (!ipmp_ill_is_active(proxy_ill)) 8280 proxy_ill = ipmp_illgrp_next_ill(illg); 8281 if (proxy_ill != NULL) 8282 lladdr = proxy_ill->ill_phys_addr; 8283 } 8284 /* FALLTHRU */ 8285 } 8286 } 8287 8288 ipaddr = sin->sin_addr.s_addr; 8289 /* 8290 * don't match across illgrp per case (1) and (2). 8291 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8292 */ 8293 nce = nce_lookup_v4(ill, &ipaddr); 8294 if (nce != NULL) 8295 ncec = nce->nce_common; 8296 8297 switch (iocp->ioc_cmd) { 8298 case SIOCDARP: 8299 case SIOCDXARP: { 8300 /* 8301 * Delete the NCE if any. 8302 */ 8303 if (ncec == NULL) { 8304 iocp->ioc_error = ENXIO; 8305 break; 8306 } 8307 /* Don't allow changes to arp mappings of local addresses. */ 8308 if (NCE_MYADDR(ncec)) { 8309 nce_refrele(nce); 8310 return (ENOTSUP); 8311 } 8312 iocp->ioc_error = 0; 8313 8314 /* 8315 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8316 * This will delete all the nce entries on the under_ills. 8317 */ 8318 ncec_delete(ncec); 8319 /* 8320 * Once the NCE has been deleted, then the ire_dep* consistency 8321 * mechanism will find any IRE which depended on the now 8322 * condemned NCE (as part of sending packets). 8323 * That mechanism handles redirects by deleting redirects 8324 * that refer to UNREACHABLE nces. 8325 */ 8326 break; 8327 } 8328 case SIOCGARP: 8329 case SIOCGXARP: 8330 if (ncec != NULL) { 8331 lladdr = ncec->ncec_lladdr; 8332 flags = ncec->ncec_flags; 8333 iocp->ioc_error = 0; 8334 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8335 } else { 8336 iocp->ioc_error = ENXIO; 8337 } 8338 break; 8339 case SIOCSARP: 8340 case SIOCSXARP: 8341 /* Don't allow changes to arp mappings of local addresses. */ 8342 if (ncec != NULL && NCE_MYADDR(ncec)) { 8343 nce_refrele(nce); 8344 return (ENOTSUP); 8345 } 8346 8347 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8348 flags |= NCE_F_STATIC; 8349 if (!if_arp_ioctl) { 8350 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8351 lladdr, alength, flags); 8352 } else { 8353 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8354 if (ipif != NULL) { 8355 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8356 lladdr, alength, flags); 8357 ipif_refrele(ipif); 8358 } 8359 } 8360 if (nce != NULL) { 8361 nce_refrele(nce); 8362 nce = NULL; 8363 } 8364 /* 8365 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8366 * by nce_add_common() 8367 */ 8368 err = nce_lookup_then_add_v4(ill, lladdr, 8369 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8370 &nce); 8371 if (err == EEXIST) { 8372 ncec = nce->nce_common; 8373 mutex_enter(&ncec->ncec_lock); 8374 ncec->ncec_state = ND_REACHABLE; 8375 ncec->ncec_flags = flags; 8376 nce_update(ncec, ND_UNCHANGED, lladdr); 8377 mutex_exit(&ncec->ncec_lock); 8378 err = 0; 8379 } 8380 if (nce != NULL) { 8381 nce_refrele(nce); 8382 nce = NULL; 8383 } 8384 if (IS_IPMP(ill) && err == 0) { 8385 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8386 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8387 flags); 8388 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8389 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8390 break; 8391 } 8392 } 8393 iocp->ioc_error = err; 8394 } 8395 8396 if (nce != NULL) { 8397 nce_refrele(nce); 8398 } 8399 8400 /* 8401 * If we created an IPMP ARP entry, mark that we've notified ARP. 8402 */ 8403 if (entp != NULL) 8404 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8405 8406 return (iocp->ioc_error); 8407 } 8408 8409 /* 8410 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8411 * the associated sin and refhold and return the associated ipif via `ci'. 8412 */ 8413 int 8414 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8415 cmd_info_t *ci) 8416 { 8417 mblk_t *mp1; 8418 sin_t *sin; 8419 conn_t *connp; 8420 ipif_t *ipif; 8421 ire_t *ire = NULL; 8422 ill_t *ill = NULL; 8423 boolean_t exists; 8424 ip_stack_t *ipst; 8425 struct arpreq *ar; 8426 struct xarpreq *xar; 8427 struct sockaddr_dl *sdl; 8428 8429 /* ioctl comes down on a conn */ 8430 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8431 connp = Q_TO_CONN(q); 8432 if (connp->conn_family == AF_INET6) 8433 return (ENXIO); 8434 8435 ipst = connp->conn_netstack->netstack_ip; 8436 8437 /* Verified in ip_wput_nondata */ 8438 mp1 = mp->b_cont->b_cont; 8439 8440 if (ipip->ipi_cmd_type == XARP_CMD) { 8441 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8442 xar = (struct xarpreq *)mp1->b_rptr; 8443 sin = (sin_t *)&xar->xarp_pa; 8444 sdl = &xar->xarp_ha; 8445 8446 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8447 return (ENXIO); 8448 if (sdl->sdl_nlen >= LIFNAMSIZ) 8449 return (EINVAL); 8450 } else { 8451 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8452 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8453 ar = (struct arpreq *)mp1->b_rptr; 8454 sin = (sin_t *)&ar->arp_pa; 8455 } 8456 8457 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8458 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8459 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8460 if (ipif == NULL) 8461 return (ENXIO); 8462 if (ipif->ipif_id != 0) { 8463 ipif_refrele(ipif); 8464 return (ENXIO); 8465 } 8466 } else { 8467 /* 8468 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8469 * of 0: use the IP address to find the ipif. If the IP 8470 * address is an IPMP test address, ire_ftable_lookup() will 8471 * find the wrong ill, so we first do an ipif_lookup_addr(). 8472 */ 8473 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8474 ipst); 8475 if (ipif == NULL) { 8476 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8477 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8478 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8479 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8480 if (ire != NULL) 8481 ire_refrele(ire); 8482 return (ENXIO); 8483 } 8484 ASSERT(ire != NULL && ill != NULL); 8485 ipif = ill->ill_ipif; 8486 ipif_refhold(ipif); 8487 ire_refrele(ire); 8488 } 8489 } 8490 8491 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8492 ipif_refrele(ipif); 8493 return (ENXIO); 8494 } 8495 8496 ci->ci_sin = sin; 8497 ci->ci_ipif = ipif; 8498 return (0); 8499 } 8500 8501 /* 8502 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8503 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8504 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8505 * up and thus an ill can join that illgrp. 8506 * 8507 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8508 * open()/close() primarily because close() is not allowed to fail or block 8509 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8510 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8511 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8512 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8513 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8514 * state if I_UNLINK didn't occur. 8515 * 8516 * Note that for each plumb/unplumb operation, we may end up here more than 8517 * once because of the way ifconfig works. However, it's OK to link the same 8518 * illgrp more than once, or unlink an illgrp that's already unlinked. 8519 */ 8520 static int 8521 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8522 { 8523 int err; 8524 ip_stack_t *ipst = ill->ill_ipst; 8525 8526 ASSERT(IS_IPMP(ill)); 8527 ASSERT(IAM_WRITER_ILL(ill)); 8528 8529 switch (ioccmd) { 8530 case I_LINK: 8531 return (ENOTSUP); 8532 8533 case I_PLINK: 8534 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8535 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8536 rw_exit(&ipst->ips_ipmp_lock); 8537 break; 8538 8539 case I_PUNLINK: 8540 /* 8541 * Require all UP ipifs be brought down prior to unlinking the 8542 * illgrp so any associated IREs (and other state) is torched. 8543 */ 8544 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8545 return (EBUSY); 8546 8547 /* 8548 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8549 * with an SIOCSLIFGROUPNAME request from an ill trying to 8550 * join this group. Specifically: ills trying to join grab 8551 * ipmp_lock and bump a "pending join" counter checked by 8552 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8553 * joins can occur (since we have ipmp_lock). Once we drop 8554 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8555 * find the illgrp (since we unlinked it) and will return 8556 * EAFNOSUPPORT. This will then take them back through the 8557 * IPMP meta-interface plumbing logic in ifconfig, and thus 8558 * back through I_PLINK above. 8559 */ 8560 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8561 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8562 rw_exit(&ipst->ips_ipmp_lock); 8563 return (err); 8564 default: 8565 break; 8566 } 8567 return (0); 8568 } 8569 8570 /* 8571 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8572 * atomically set/clear the muxids. Also complete the ioctl by acking or 8573 * naking it. Note that the code is structured such that the link type, 8574 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8575 * its clones use the persistent link, while pppd(1M) and perhaps many 8576 * other daemons may use non-persistent link. When combined with some 8577 * ill_t states, linking and unlinking lower streams may be used as 8578 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8579 */ 8580 /* ARGSUSED */ 8581 void 8582 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8583 { 8584 mblk_t *mp1; 8585 struct linkblk *li; 8586 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8587 int err = 0; 8588 8589 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8590 ioccmd == I_LINK || ioccmd == I_UNLINK); 8591 8592 mp1 = mp->b_cont; /* This is the linkblk info */ 8593 li = (struct linkblk *)mp1->b_rptr; 8594 8595 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8596 if (err == EINPROGRESS) 8597 return; 8598 if (err == 0) 8599 miocack(q, mp, 0, 0); 8600 else 8601 miocnak(q, mp, 0, err); 8602 8603 /* Conn was refheld in ip_sioctl_copyin_setup */ 8604 if (CONN_Q(q)) { 8605 CONN_DEC_IOCTLREF(Q_TO_CONN(q)); 8606 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8607 } 8608 } 8609 8610 /* 8611 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8612 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8613 * module stream). 8614 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8615 * an error code on failure. 8616 */ 8617 static int 8618 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8619 struct linkblk *li) 8620 { 8621 int err = 0; 8622 ill_t *ill; 8623 queue_t *ipwq, *dwq; 8624 const char *name; 8625 struct qinit *qinfo; 8626 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8627 boolean_t entered_ipsq = B_FALSE; 8628 boolean_t is_ip = B_FALSE; 8629 arl_t *arl; 8630 8631 /* 8632 * Walk the lower stream to verify it's the IP module stream. 8633 * The IP module is identified by its name, wput function, 8634 * and non-NULL q_next. STREAMS ensures that the lower stream 8635 * (li->l_qbot) will not vanish until this ioctl completes. 8636 */ 8637 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8638 qinfo = ipwq->q_qinfo; 8639 name = qinfo->qi_minfo->mi_idname; 8640 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8641 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8642 is_ip = B_TRUE; 8643 break; 8644 } 8645 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8646 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8647 break; 8648 } 8649 } 8650 8651 /* 8652 * If this isn't an IP module stream, bail. 8653 */ 8654 if (ipwq == NULL) 8655 return (0); 8656 8657 if (!is_ip) { 8658 arl = (arl_t *)ipwq->q_ptr; 8659 ill = arl_to_ill(arl); 8660 if (ill == NULL) 8661 return (0); 8662 } else { 8663 ill = ipwq->q_ptr; 8664 } 8665 ASSERT(ill != NULL); 8666 8667 if (ipsq == NULL) { 8668 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8669 NEW_OP, B_FALSE); 8670 if (ipsq == NULL) { 8671 if (!is_ip) 8672 ill_refrele(ill); 8673 return (EINPROGRESS); 8674 } 8675 entered_ipsq = B_TRUE; 8676 } 8677 ASSERT(IAM_WRITER_ILL(ill)); 8678 mutex_enter(&ill->ill_lock); 8679 if (!is_ip) { 8680 if (islink && ill->ill_muxid == 0) { 8681 /* 8682 * Plumbing has to be done with IP plumbed first, arp 8683 * second, but here we have arp being plumbed first. 8684 */ 8685 mutex_exit(&ill->ill_lock); 8686 if (entered_ipsq) 8687 ipsq_exit(ipsq); 8688 ill_refrele(ill); 8689 return (EINVAL); 8690 } 8691 } 8692 mutex_exit(&ill->ill_lock); 8693 if (!is_ip) { 8694 arl->arl_muxid = islink ? li->l_index : 0; 8695 ill_refrele(ill); 8696 goto done; 8697 } 8698 8699 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8700 goto done; 8701 8702 /* 8703 * As part of I_{P}LINKing, stash the number of downstream modules and 8704 * the read queue of the module immediately below IP in the ill. 8705 * These are used during the capability negotiation below. 8706 */ 8707 ill->ill_lmod_rq = NULL; 8708 ill->ill_lmod_cnt = 0; 8709 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8710 ill->ill_lmod_rq = RD(dwq); 8711 for (; dwq != NULL; dwq = dwq->q_next) 8712 ill->ill_lmod_cnt++; 8713 } 8714 8715 ill->ill_muxid = islink ? li->l_index : 0; 8716 8717 /* 8718 * Mark the ipsq busy until the capability operations initiated below 8719 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8720 * returns, but the capability operation may complete asynchronously 8721 * much later. 8722 */ 8723 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8724 /* 8725 * If there's at least one up ipif on this ill, then we're bound to 8726 * the underlying driver via DLPI. In that case, renegotiate 8727 * capabilities to account for any possible change in modules 8728 * interposed between IP and the driver. 8729 */ 8730 if (ill->ill_ipif_up_count > 0) { 8731 if (islink) 8732 ill_capability_probe(ill); 8733 else 8734 ill_capability_reset(ill, B_FALSE); 8735 } 8736 ipsq_current_finish(ipsq); 8737 done: 8738 if (entered_ipsq) 8739 ipsq_exit(ipsq); 8740 8741 return (err); 8742 } 8743 8744 /* 8745 * Search the ioctl command in the ioctl tables and return a pointer 8746 * to the ioctl command information. The ioctl command tables are 8747 * static and fully populated at compile time. 8748 */ 8749 ip_ioctl_cmd_t * 8750 ip_sioctl_lookup(int ioc_cmd) 8751 { 8752 int index; 8753 ip_ioctl_cmd_t *ipip; 8754 ip_ioctl_cmd_t *ipip_end; 8755 8756 if (ioc_cmd == IPI_DONTCARE) 8757 return (NULL); 8758 8759 /* 8760 * Do a 2 step search. First search the indexed table 8761 * based on the least significant byte of the ioctl cmd. 8762 * If we don't find a match, then search the misc table 8763 * serially. 8764 */ 8765 index = ioc_cmd & 0xFF; 8766 if (index < ip_ndx_ioctl_count) { 8767 ipip = &ip_ndx_ioctl_table[index]; 8768 if (ipip->ipi_cmd == ioc_cmd) { 8769 /* Found a match in the ndx table */ 8770 return (ipip); 8771 } 8772 } 8773 8774 /* Search the misc table */ 8775 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8776 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8777 if (ipip->ipi_cmd == ioc_cmd) 8778 /* Found a match in the misc table */ 8779 return (ipip); 8780 } 8781 8782 return (NULL); 8783 } 8784 8785 /* 8786 * helper function for ip_sioctl_getsetprop(), which does some sanity checks 8787 */ 8788 static boolean_t 8789 getset_ioctl_checks(mblk_t *mp) 8790 { 8791 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8792 mblk_t *mp1 = mp->b_cont; 8793 mod_ioc_prop_t *pioc; 8794 uint_t flags; 8795 uint_t pioc_size; 8796 8797 /* do sanity checks on various arguments */ 8798 if (mp1 == NULL || iocp->ioc_count == 0 || 8799 iocp->ioc_count == TRANSPARENT) { 8800 return (B_FALSE); 8801 } 8802 if (msgdsize(mp1) < iocp->ioc_count) { 8803 if (!pullupmsg(mp1, iocp->ioc_count)) 8804 return (B_FALSE); 8805 } 8806 8807 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8808 8809 /* sanity checks on mpr_valsize */ 8810 pioc_size = sizeof (mod_ioc_prop_t); 8811 if (pioc->mpr_valsize != 0) 8812 pioc_size += pioc->mpr_valsize - 1; 8813 8814 if (iocp->ioc_count != pioc_size) 8815 return (B_FALSE); 8816 8817 flags = pioc->mpr_flags; 8818 if (iocp->ioc_cmd == SIOCSETPROP) { 8819 /* 8820 * One can either reset the value to it's default value or 8821 * change the current value or append/remove the value from 8822 * a multi-valued properties. 8823 */ 8824 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8825 flags != MOD_PROP_ACTIVE && 8826 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) && 8827 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE)) 8828 return (B_FALSE); 8829 } else { 8830 ASSERT(iocp->ioc_cmd == SIOCGETPROP); 8831 8832 /* 8833 * One can retrieve only one kind of property information 8834 * at a time. 8835 */ 8836 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE && 8837 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8838 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE && 8839 (flags & MOD_PROP_PERM) != MOD_PROP_PERM) 8840 return (B_FALSE); 8841 } 8842 8843 return (B_TRUE); 8844 } 8845 8846 /* 8847 * process the SIOC{SET|GET}PROP ioctl's 8848 */ 8849 /* ARGSUSED */ 8850 static void 8851 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp) 8852 { 8853 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8854 mblk_t *mp1 = mp->b_cont; 8855 mod_ioc_prop_t *pioc; 8856 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8857 ip_stack_t *ipst; 8858 netstack_t *stack; 8859 cred_t *cr; 8860 boolean_t set; 8861 int err; 8862 8863 ASSERT(q->q_next == NULL); 8864 ASSERT(CONN_Q(q)); 8865 8866 if (!getset_ioctl_checks(mp)) { 8867 miocnak(q, mp, 0, EINVAL); 8868 return; 8869 } 8870 ipst = CONNQ_TO_IPST(q); 8871 stack = ipst->ips_netstack; 8872 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8873 8874 switch (pioc->mpr_proto) { 8875 case MOD_PROTO_IP: 8876 case MOD_PROTO_IPV4: 8877 case MOD_PROTO_IPV6: 8878 ptbl = ipst->ips_propinfo_tbl; 8879 break; 8880 case MOD_PROTO_RAWIP: 8881 ptbl = stack->netstack_icmp->is_propinfo_tbl; 8882 break; 8883 case MOD_PROTO_TCP: 8884 ptbl = stack->netstack_tcp->tcps_propinfo_tbl; 8885 break; 8886 case MOD_PROTO_UDP: 8887 ptbl = stack->netstack_udp->us_propinfo_tbl; 8888 break; 8889 case MOD_PROTO_SCTP: 8890 ptbl = stack->netstack_sctp->sctps_propinfo_tbl; 8891 break; 8892 default: 8893 miocnak(q, mp, 0, EINVAL); 8894 return; 8895 } 8896 8897 pinfo = mod_prop_lookup(ptbl, pioc->mpr_name, pioc->mpr_proto); 8898 if (pinfo == NULL) { 8899 miocnak(q, mp, 0, ENOENT); 8900 return; 8901 } 8902 8903 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE; 8904 if (set && pinfo->mpi_setf != NULL) { 8905 cr = msg_getcred(mp, NULL); 8906 if (cr == NULL) 8907 cr = iocp->ioc_cr; 8908 err = pinfo->mpi_setf(stack, cr, pinfo, pioc->mpr_ifname, 8909 pioc->mpr_val, pioc->mpr_flags); 8910 } else if (!set && pinfo->mpi_getf != NULL) { 8911 err = pinfo->mpi_getf(stack, pinfo, pioc->mpr_ifname, 8912 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags); 8913 } else { 8914 err = EPERM; 8915 } 8916 8917 if (err != 0) { 8918 miocnak(q, mp, 0, err); 8919 } else { 8920 if (set) 8921 miocack(q, mp, 0, 0); 8922 else /* For get, we need to return back the data */ 8923 miocack(q, mp, iocp->ioc_count, 0); 8924 } 8925 } 8926 8927 /* 8928 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding 8929 * as several routing daemons have unfortunately used this 'unpublished' 8930 * but well-known ioctls. 8931 */ 8932 /* ARGSUSED */ 8933 static void 8934 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp) 8935 { 8936 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8937 mblk_t *mp1 = mp->b_cont; 8938 char *pname, *pval, *buf; 8939 uint_t bufsize, proto; 8940 mod_prop_info_t *pinfo = NULL; 8941 ip_stack_t *ipst; 8942 int err = 0; 8943 8944 ASSERT(CONN_Q(q)); 8945 ipst = CONNQ_TO_IPST(q); 8946 8947 if (iocp->ioc_count == 0 || mp1 == NULL) { 8948 miocnak(q, mp, 0, EINVAL); 8949 return; 8950 } 8951 8952 mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */ 8953 pval = buf = pname = (char *)mp1->b_rptr; 8954 bufsize = MBLKL(mp1); 8955 8956 if (strcmp(pname, "ip_forwarding") == 0) { 8957 pname = "forwarding"; 8958 proto = MOD_PROTO_IPV4; 8959 } else if (strcmp(pname, "ip6_forwarding") == 0) { 8960 pname = "forwarding"; 8961 proto = MOD_PROTO_IPV6; 8962 } else { 8963 miocnak(q, mp, 0, EINVAL); 8964 return; 8965 } 8966 8967 pinfo = mod_prop_lookup(ipst->ips_propinfo_tbl, pname, proto); 8968 8969 switch (iocp->ioc_cmd) { 8970 case ND_GET: 8971 if ((err = pinfo->mpi_getf(ipst->ips_netstack, pinfo, NULL, buf, 8972 bufsize, 0)) == 0) { 8973 miocack(q, mp, iocp->ioc_count, 0); 8974 return; 8975 } 8976 break; 8977 case ND_SET: 8978 /* 8979 * buffer will have property name and value in the following 8980 * format, 8981 * <property name>'\0'<property value>'\0', extract them; 8982 */ 8983 while (*pval++) 8984 noop; 8985 8986 if (!*pval || pval >= (char *)mp1->b_wptr) { 8987 err = EINVAL; 8988 } else if ((err = pinfo->mpi_setf(ipst->ips_netstack, NULL, 8989 pinfo, NULL, pval, 0)) == 0) { 8990 miocack(q, mp, 0, 0); 8991 return; 8992 } 8993 break; 8994 default: 8995 err = EINVAL; 8996 break; 8997 } 8998 miocnak(q, mp, 0, err); 8999 } 9000 9001 /* 9002 * Wrapper function for resuming deferred ioctl processing 9003 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9004 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9005 */ 9006 /* ARGSUSED */ 9007 void 9008 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9009 void *dummy_arg) 9010 { 9011 ip_sioctl_copyin_setup(q, mp); 9012 } 9013 9014 /* 9015 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 9016 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9017 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9018 * We establish here the size of the block to be copied in. mi_copyin 9019 * arranges for this to happen, an processing continues in ip_wput_nondata with 9020 * an M_IOCDATA message. 9021 */ 9022 void 9023 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9024 { 9025 int copyin_size; 9026 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9027 ip_ioctl_cmd_t *ipip; 9028 cred_t *cr; 9029 ip_stack_t *ipst; 9030 9031 if (CONN_Q(q)) 9032 ipst = CONNQ_TO_IPST(q); 9033 else 9034 ipst = ILLQ_TO_IPST(q); 9035 9036 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9037 if (ipip == NULL) { 9038 /* 9039 * The ioctl is not one we understand or own. 9040 * Pass it along to be processed down stream, 9041 * if this is a module instance of IP, else nak 9042 * the ioctl. 9043 */ 9044 if (q->q_next == NULL) { 9045 goto nak; 9046 } else { 9047 putnext(q, mp); 9048 return; 9049 } 9050 } 9051 9052 /* 9053 * If this is deferred, then we will do all the checks when we 9054 * come back. 9055 */ 9056 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9057 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 9058 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9059 return; 9060 } 9061 9062 /* 9063 * Only allow a very small subset of IP ioctls on this stream if 9064 * IP is a module and not a driver. Allowing ioctls to be processed 9065 * in this case may cause assert failures or data corruption. 9066 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9067 * ioctls allowed on an IP module stream, after which this stream 9068 * normally becomes a multiplexor (at which time the stream head 9069 * will fail all ioctls). 9070 */ 9071 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9072 goto nak; 9073 } 9074 9075 /* Make sure we have ioctl data to process. */ 9076 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9077 goto nak; 9078 9079 /* 9080 * Prefer dblk credential over ioctl credential; some synthesized 9081 * ioctls have kcred set because there's no way to crhold() 9082 * a credential in some contexts. (ioc_cr is not crfree() by 9083 * the framework; the caller of ioctl needs to hold the reference 9084 * for the duration of the call). 9085 */ 9086 cr = msg_getcred(mp, NULL); 9087 if (cr == NULL) 9088 cr = iocp->ioc_cr; 9089 9090 /* Make sure normal users don't send down privileged ioctls */ 9091 if ((ipip->ipi_flags & IPI_PRIV) && 9092 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 9093 /* We checked the privilege earlier but log it here */ 9094 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 9095 return; 9096 } 9097 9098 /* 9099 * The ioctl command tables can only encode fixed length 9100 * ioctl data. If the length is variable, the table will 9101 * encode the length as zero. Such special cases are handled 9102 * below in the switch. 9103 */ 9104 if (ipip->ipi_copyin_size != 0) { 9105 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9106 return; 9107 } 9108 9109 switch (iocp->ioc_cmd) { 9110 case O_SIOCGIFCONF: 9111 case SIOCGIFCONF: 9112 /* 9113 * This IOCTL is hilarious. See comments in 9114 * ip_sioctl_get_ifconf for the story. 9115 */ 9116 if (iocp->ioc_count == TRANSPARENT) 9117 copyin_size = SIZEOF_STRUCT(ifconf, 9118 iocp->ioc_flag); 9119 else 9120 copyin_size = iocp->ioc_count; 9121 mi_copyin(q, mp, NULL, copyin_size); 9122 return; 9123 9124 case O_SIOCGLIFCONF: 9125 case SIOCGLIFCONF: 9126 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9127 mi_copyin(q, mp, NULL, copyin_size); 9128 return; 9129 9130 case SIOCGLIFSRCOF: 9131 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9132 mi_copyin(q, mp, NULL, copyin_size); 9133 return; 9134 9135 case SIOCGIP6ADDRPOLICY: 9136 ip_sioctl_ip6addrpolicy(q, mp); 9137 ip6_asp_table_refrele(ipst); 9138 return; 9139 9140 case SIOCSIP6ADDRPOLICY: 9141 ip_sioctl_ip6addrpolicy(q, mp); 9142 return; 9143 9144 case SIOCGDSTINFO: 9145 ip_sioctl_dstinfo(q, mp); 9146 ip6_asp_table_refrele(ipst); 9147 return; 9148 9149 case ND_SET: 9150 case ND_GET: 9151 ip_process_legacy_nddprop(q, mp); 9152 return; 9153 9154 case SIOCSETPROP: 9155 case SIOCGETPROP: 9156 ip_sioctl_getsetprop(q, mp); 9157 return; 9158 9159 case I_PLINK: 9160 case I_PUNLINK: 9161 case I_LINK: 9162 case I_UNLINK: 9163 /* 9164 * We treat non-persistent link similarly as the persistent 9165 * link case, in terms of plumbing/unplumbing, as well as 9166 * dynamic re-plumbing events indicator. See comments 9167 * in ip_sioctl_plink() for more. 9168 * 9169 * Request can be enqueued in the 'ipsq' while waiting 9170 * to become exclusive. So bump up the conn ref. 9171 */ 9172 if (CONN_Q(q)) { 9173 CONN_INC_REF(Q_TO_CONN(q)); 9174 CONN_INC_IOCTLREF(Q_TO_CONN(q)) 9175 } 9176 ip_sioctl_plink(NULL, q, mp, NULL); 9177 return; 9178 9179 case IP_IOCTL: 9180 ip_wput_ioctl(q, mp); 9181 return; 9182 9183 case SIOCILB: 9184 /* The ioctl length varies depending on the ILB command. */ 9185 copyin_size = iocp->ioc_count; 9186 if (copyin_size < sizeof (ilb_cmd_t)) 9187 goto nak; 9188 mi_copyin(q, mp, NULL, copyin_size); 9189 return; 9190 9191 default: 9192 cmn_err(CE_PANIC, "should not happen "); 9193 } 9194 nak: 9195 if (mp->b_cont != NULL) { 9196 freemsg(mp->b_cont); 9197 mp->b_cont = NULL; 9198 } 9199 iocp->ioc_error = EINVAL; 9200 mp->b_datap->db_type = M_IOCNAK; 9201 iocp->ioc_count = 0; 9202 qreply(q, mp); 9203 } 9204 9205 static void 9206 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 9207 { 9208 struct arpreq *ar; 9209 struct xarpreq *xar; 9210 mblk_t *tmp; 9211 struct iocblk *iocp; 9212 int x_arp_ioctl = B_FALSE; 9213 int *flagsp; 9214 char *storage = NULL; 9215 9216 ASSERT(ill != NULL); 9217 9218 iocp = (struct iocblk *)mp->b_rptr; 9219 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9220 9221 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9222 if ((iocp->ioc_cmd == SIOCGXARP) || 9223 (iocp->ioc_cmd == SIOCSXARP)) { 9224 x_arp_ioctl = B_TRUE; 9225 xar = (struct xarpreq *)tmp->b_rptr; 9226 flagsp = &xar->xarp_flags; 9227 storage = xar->xarp_ha.sdl_data; 9228 } else { 9229 ar = (struct arpreq *)tmp->b_rptr; 9230 flagsp = &ar->arp_flags; 9231 storage = ar->arp_ha.sa_data; 9232 } 9233 9234 /* 9235 * We're done if this is not an SIOCG{X}ARP 9236 */ 9237 if (x_arp_ioctl) { 9238 storage += ill_xarp_info(&xar->xarp_ha, ill); 9239 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9240 sizeof (xar->xarp_ha.sdl_data)) { 9241 iocp->ioc_error = EINVAL; 9242 return; 9243 } 9244 } 9245 *flagsp = ATF_INUSE; 9246 /* 9247 * If /sbin/arp told us we are the authority using the "permanent" 9248 * flag, or if this is one of my addresses print "permanent" 9249 * in the /sbin/arp output. 9250 */ 9251 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9252 *flagsp |= ATF_AUTHORITY; 9253 if (flags & NCE_F_NONUD) 9254 *flagsp |= ATF_PERM; /* not subject to aging */ 9255 if (flags & NCE_F_PUBLISH) 9256 *flagsp |= ATF_PUBL; 9257 if (hwaddr != NULL) { 9258 *flagsp |= ATF_COM; 9259 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9260 } 9261 } 9262 9263 /* 9264 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9265 * interface) create the next available logical interface for this 9266 * physical interface. 9267 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9268 * ipif with the specified name. 9269 * 9270 * If the address family is not AF_UNSPEC then set the address as well. 9271 * 9272 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9273 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9274 * 9275 * Executed as a writer on the ill. 9276 * So no lock is needed to traverse the ipif chain, or examine the 9277 * phyint flags. 9278 */ 9279 /* ARGSUSED */ 9280 int 9281 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9282 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9283 { 9284 mblk_t *mp1; 9285 struct lifreq *lifr; 9286 boolean_t isv6; 9287 boolean_t exists; 9288 char *name; 9289 char *endp; 9290 char *cp; 9291 int namelen; 9292 ipif_t *ipif; 9293 long id; 9294 ipsq_t *ipsq; 9295 ill_t *ill; 9296 sin_t *sin; 9297 int err = 0; 9298 boolean_t found_sep = B_FALSE; 9299 conn_t *connp; 9300 zoneid_t zoneid; 9301 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9302 9303 ASSERT(q->q_next == NULL); 9304 ip1dbg(("ip_sioctl_addif\n")); 9305 /* Existence of mp1 has been checked in ip_wput_nondata */ 9306 mp1 = mp->b_cont->b_cont; 9307 /* 9308 * Null terminate the string to protect against buffer 9309 * overrun. String was generated by user code and may not 9310 * be trusted. 9311 */ 9312 lifr = (struct lifreq *)mp1->b_rptr; 9313 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9314 name = lifr->lifr_name; 9315 ASSERT(CONN_Q(q)); 9316 connp = Q_TO_CONN(q); 9317 isv6 = (connp->conn_family == AF_INET6); 9318 zoneid = connp->conn_zoneid; 9319 namelen = mi_strlen(name); 9320 if (namelen == 0) 9321 return (EINVAL); 9322 9323 exists = B_FALSE; 9324 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9325 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9326 /* 9327 * Allow creating lo0 using SIOCLIFADDIF. 9328 * can't be any other writer thread. So can pass null below 9329 * for the last 4 args to ipif_lookup_name. 9330 */ 9331 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9332 &exists, isv6, zoneid, ipst); 9333 /* Prevent any further action */ 9334 if (ipif == NULL) { 9335 return (ENOBUFS); 9336 } else if (!exists) { 9337 /* We created the ipif now and as writer */ 9338 ipif_refrele(ipif); 9339 return (0); 9340 } else { 9341 ill = ipif->ipif_ill; 9342 ill_refhold(ill); 9343 ipif_refrele(ipif); 9344 } 9345 } else { 9346 /* Look for a colon in the name. */ 9347 endp = &name[namelen]; 9348 for (cp = endp; --cp > name; ) { 9349 if (*cp == IPIF_SEPARATOR_CHAR) { 9350 found_sep = B_TRUE; 9351 /* 9352 * Reject any non-decimal aliases for plumbing 9353 * of logical interfaces. Aliases with leading 9354 * zeroes are also rejected as they introduce 9355 * ambiguity in the naming of the interfaces. 9356 * Comparing with "0" takes care of all such 9357 * cases. 9358 */ 9359 if ((strncmp("0", cp+1, 1)) == 0) 9360 return (EINVAL); 9361 9362 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9363 id <= 0 || *endp != '\0') { 9364 return (EINVAL); 9365 } 9366 *cp = '\0'; 9367 break; 9368 } 9369 } 9370 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9371 if (found_sep) 9372 *cp = IPIF_SEPARATOR_CHAR; 9373 if (ill == NULL) 9374 return (ENXIO); 9375 } 9376 9377 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9378 B_TRUE); 9379 9380 /* 9381 * Release the refhold due to the lookup, now that we are excl 9382 * or we are just returning 9383 */ 9384 ill_refrele(ill); 9385 9386 if (ipsq == NULL) 9387 return (EINPROGRESS); 9388 9389 /* We are now exclusive on the IPSQ */ 9390 ASSERT(IAM_WRITER_ILL(ill)); 9391 9392 if (found_sep) { 9393 /* Now see if there is an IPIF with this unit number. */ 9394 for (ipif = ill->ill_ipif; ipif != NULL; 9395 ipif = ipif->ipif_next) { 9396 if (ipif->ipif_id == id) { 9397 err = EEXIST; 9398 goto done; 9399 } 9400 } 9401 } 9402 9403 /* 9404 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9405 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9406 * instead. 9407 */ 9408 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9409 B_TRUE, B_TRUE, &err)) == NULL) { 9410 goto done; 9411 } 9412 9413 /* Return created name with ioctl */ 9414 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9415 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9416 ip1dbg(("created %s\n", lifr->lifr_name)); 9417 9418 /* Set address */ 9419 sin = (sin_t *)&lifr->lifr_addr; 9420 if (sin->sin_family != AF_UNSPEC) { 9421 err = ip_sioctl_addr(ipif, sin, q, mp, 9422 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9423 } 9424 9425 done: 9426 ipsq_exit(ipsq); 9427 return (err); 9428 } 9429 9430 /* 9431 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9432 * interface) delete it based on the IP address (on this physical interface). 9433 * Otherwise delete it based on the ipif_id. 9434 * Also, special handling to allow a removeif of lo0. 9435 */ 9436 /* ARGSUSED */ 9437 int 9438 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9439 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9440 { 9441 conn_t *connp; 9442 ill_t *ill = ipif->ipif_ill; 9443 boolean_t success; 9444 ip_stack_t *ipst; 9445 9446 ipst = CONNQ_TO_IPST(q); 9447 9448 ASSERT(q->q_next == NULL); 9449 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9450 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9451 ASSERT(IAM_WRITER_IPIF(ipif)); 9452 9453 connp = Q_TO_CONN(q); 9454 /* 9455 * Special case for unplumbing lo0 (the loopback physical interface). 9456 * If unplumbing lo0, the incoming address structure has been 9457 * initialized to all zeros. When unplumbing lo0, all its logical 9458 * interfaces must be removed too. 9459 * 9460 * Note that this interface may be called to remove a specific 9461 * loopback logical interface (eg, lo0:1). But in that case 9462 * ipif->ipif_id != 0 so that the code path for that case is the 9463 * same as any other interface (meaning it skips the code directly 9464 * below). 9465 */ 9466 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9467 if (sin->sin_family == AF_UNSPEC && 9468 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9469 /* 9470 * Mark it condemned. No new ref. will be made to ill. 9471 */ 9472 mutex_enter(&ill->ill_lock); 9473 ill->ill_state_flags |= ILL_CONDEMNED; 9474 for (ipif = ill->ill_ipif; ipif != NULL; 9475 ipif = ipif->ipif_next) { 9476 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9477 } 9478 mutex_exit(&ill->ill_lock); 9479 9480 ipif = ill->ill_ipif; 9481 /* unplumb the loopback interface */ 9482 ill_delete(ill); 9483 mutex_enter(&connp->conn_lock); 9484 mutex_enter(&ill->ill_lock); 9485 9486 /* Are any references to this ill active */ 9487 if (ill_is_freeable(ill)) { 9488 mutex_exit(&ill->ill_lock); 9489 mutex_exit(&connp->conn_lock); 9490 ill_delete_tail(ill); 9491 mi_free(ill); 9492 return (0); 9493 } 9494 success = ipsq_pending_mp_add(connp, ipif, 9495 CONNP_TO_WQ(connp), mp, ILL_FREE); 9496 mutex_exit(&connp->conn_lock); 9497 mutex_exit(&ill->ill_lock); 9498 if (success) 9499 return (EINPROGRESS); 9500 else 9501 return (EINTR); 9502 } 9503 } 9504 9505 if (ipif->ipif_id == 0) { 9506 ipsq_t *ipsq; 9507 9508 /* Find based on address */ 9509 if (ipif->ipif_isv6) { 9510 sin6_t *sin6; 9511 9512 if (sin->sin_family != AF_INET6) 9513 return (EAFNOSUPPORT); 9514 9515 sin6 = (sin6_t *)sin; 9516 /* We are a writer, so we should be able to lookup */ 9517 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9518 ipst); 9519 } else { 9520 if (sin->sin_family != AF_INET) 9521 return (EAFNOSUPPORT); 9522 9523 /* We are a writer, so we should be able to lookup */ 9524 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9525 ipst); 9526 } 9527 if (ipif == NULL) { 9528 return (EADDRNOTAVAIL); 9529 } 9530 9531 /* 9532 * It is possible for a user to send an SIOCLIFREMOVEIF with 9533 * lifr_name of the physical interface but with an ip address 9534 * lifr_addr of a logical interface plumbed over it. 9535 * So update ipx_current_ipif now that ipif points to the 9536 * correct one. 9537 */ 9538 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9539 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9540 9541 /* This is a writer */ 9542 ipif_refrele(ipif); 9543 } 9544 9545 /* 9546 * Can not delete instance zero since it is tied to the ill. 9547 */ 9548 if (ipif->ipif_id == 0) 9549 return (EBUSY); 9550 9551 mutex_enter(&ill->ill_lock); 9552 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9553 mutex_exit(&ill->ill_lock); 9554 9555 ipif_free(ipif); 9556 9557 mutex_enter(&connp->conn_lock); 9558 mutex_enter(&ill->ill_lock); 9559 9560 /* Are any references to this ipif active */ 9561 if (ipif_is_freeable(ipif)) { 9562 mutex_exit(&ill->ill_lock); 9563 mutex_exit(&connp->conn_lock); 9564 ipif_non_duplicate(ipif); 9565 (void) ipif_down_tail(ipif); 9566 ipif_free_tail(ipif); /* frees ipif */ 9567 return (0); 9568 } 9569 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9570 IPIF_FREE); 9571 mutex_exit(&ill->ill_lock); 9572 mutex_exit(&connp->conn_lock); 9573 if (success) 9574 return (EINPROGRESS); 9575 else 9576 return (EINTR); 9577 } 9578 9579 /* 9580 * Restart the removeif ioctl. The refcnt has gone down to 0. 9581 * The ipif is already condemned. So can't find it thru lookups. 9582 */ 9583 /* ARGSUSED */ 9584 int 9585 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9586 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9587 { 9588 ill_t *ill = ipif->ipif_ill; 9589 9590 ASSERT(IAM_WRITER_IPIF(ipif)); 9591 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9592 9593 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9594 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9595 9596 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9597 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9598 ill_delete_tail(ill); 9599 mi_free(ill); 9600 return (0); 9601 } 9602 9603 ipif_non_duplicate(ipif); 9604 (void) ipif_down_tail(ipif); 9605 ipif_free_tail(ipif); 9606 9607 return (0); 9608 } 9609 9610 /* 9611 * Set the local interface address using the given prefix and ill_token. 9612 */ 9613 /* ARGSUSED */ 9614 int 9615 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9616 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9617 { 9618 int err; 9619 in6_addr_t v6addr; 9620 sin6_t *sin6; 9621 ill_t *ill; 9622 int i; 9623 9624 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n", 9625 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9626 9627 ASSERT(IAM_WRITER_IPIF(ipif)); 9628 9629 if (!ipif->ipif_isv6) 9630 return (EINVAL); 9631 9632 if (sin->sin_family != AF_INET6) 9633 return (EAFNOSUPPORT); 9634 9635 sin6 = (sin6_t *)sin; 9636 v6addr = sin6->sin6_addr; 9637 ill = ipif->ipif_ill; 9638 9639 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) || 9640 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 9641 return (EADDRNOTAVAIL); 9642 9643 for (i = 0; i < 4; i++) 9644 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i]; 9645 9646 err = ip_sioctl_addr(ipif, sin, q, mp, 9647 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq); 9648 return (err); 9649 } 9650 9651 /* 9652 * Restart entry point to restart the address set operation after the 9653 * refcounts have dropped to zero. 9654 */ 9655 /* ARGSUSED */ 9656 int 9657 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9658 ip_ioctl_cmd_t *ipip, void *ifreq) 9659 { 9660 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n", 9661 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9662 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq)); 9663 } 9664 9665 /* 9666 * Set the local interface address. 9667 * Allow an address of all zero when the interface is down. 9668 */ 9669 /* ARGSUSED */ 9670 int 9671 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9672 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9673 { 9674 int err = 0; 9675 in6_addr_t v6addr; 9676 boolean_t need_up = B_FALSE; 9677 ill_t *ill; 9678 int i; 9679 9680 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9681 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9682 9683 ASSERT(IAM_WRITER_IPIF(ipif)); 9684 9685 ill = ipif->ipif_ill; 9686 if (ipif->ipif_isv6) { 9687 sin6_t *sin6; 9688 phyint_t *phyi; 9689 9690 if (sin->sin_family != AF_INET6) 9691 return (EAFNOSUPPORT); 9692 9693 sin6 = (sin6_t *)sin; 9694 v6addr = sin6->sin6_addr; 9695 phyi = ill->ill_phyint; 9696 9697 /* 9698 * Enforce that true multicast interfaces have a link-local 9699 * address for logical unit 0. 9700 * 9701 * However for those ipif's for which link-local address was 9702 * not created by default, also allow setting :: as the address. 9703 * This scenario would arise, when we delete an address on ipif 9704 * with logical unit 0, we would want to set :: as the address. 9705 */ 9706 if (ipif->ipif_id == 0 && 9707 (ill->ill_flags & ILLF_MULTICAST) && 9708 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9709 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9710 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9711 9712 /* 9713 * if default link-local was not created by kernel for 9714 * this ill, allow setting :: as the address on ipif:0. 9715 */ 9716 if (ill->ill_flags & ILLF_NOLINKLOCAL) { 9717 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) 9718 return (EADDRNOTAVAIL); 9719 } else { 9720 return (EADDRNOTAVAIL); 9721 } 9722 } 9723 9724 /* 9725 * up interfaces shouldn't have the unspecified address 9726 * unless they also have the IPIF_NOLOCAL flags set and 9727 * have a subnet assigned. 9728 */ 9729 if ((ipif->ipif_flags & IPIF_UP) && 9730 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9731 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9732 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9733 return (EADDRNOTAVAIL); 9734 } 9735 9736 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9737 return (EADDRNOTAVAIL); 9738 } else { 9739 ipaddr_t addr; 9740 9741 if (sin->sin_family != AF_INET) 9742 return (EAFNOSUPPORT); 9743 9744 addr = sin->sin_addr.s_addr; 9745 9746 /* Allow INADDR_ANY as the local address. */ 9747 if (addr != INADDR_ANY && 9748 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9749 return (EADDRNOTAVAIL); 9750 9751 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9752 } 9753 /* 9754 * verify that the address being configured is permitted by the 9755 * ill_allowed_ips[] for the interface. 9756 */ 9757 if (ill->ill_allowed_ips_cnt > 0) { 9758 for (i = 0; i < ill->ill_allowed_ips_cnt; i++) { 9759 if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i], 9760 &v6addr)) 9761 break; 9762 } 9763 if (i == ill->ill_allowed_ips_cnt) { 9764 pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr); 9765 return (EPERM); 9766 } 9767 } 9768 /* 9769 * Even if there is no change we redo things just to rerun 9770 * ipif_set_default. 9771 */ 9772 if (ipif->ipif_flags & IPIF_UP) { 9773 /* 9774 * Setting a new local address, make sure 9775 * we have net and subnet bcast ire's for 9776 * the old address if we need them. 9777 */ 9778 /* 9779 * If the interface is already marked up, 9780 * we call ipif_down which will take care 9781 * of ditching any IREs that have been set 9782 * up based on the old interface address. 9783 */ 9784 err = ipif_logical_down(ipif, q, mp); 9785 if (err == EINPROGRESS) 9786 return (err); 9787 (void) ipif_down_tail(ipif); 9788 need_up = 1; 9789 } 9790 9791 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9792 return (err); 9793 } 9794 9795 int 9796 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9797 boolean_t need_up) 9798 { 9799 in6_addr_t v6addr; 9800 in6_addr_t ov6addr; 9801 ipaddr_t addr; 9802 sin6_t *sin6; 9803 int sinlen; 9804 int err = 0; 9805 ill_t *ill = ipif->ipif_ill; 9806 boolean_t need_dl_down; 9807 boolean_t need_arp_down; 9808 struct iocblk *iocp; 9809 9810 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9811 9812 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9813 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9814 ASSERT(IAM_WRITER_IPIF(ipif)); 9815 9816 /* Must cancel any pending timer before taking the ill_lock */ 9817 if (ipif->ipif_recovery_id != 0) 9818 (void) untimeout(ipif->ipif_recovery_id); 9819 ipif->ipif_recovery_id = 0; 9820 9821 if (ipif->ipif_isv6) { 9822 sin6 = (sin6_t *)sin; 9823 v6addr = sin6->sin6_addr; 9824 sinlen = sizeof (struct sockaddr_in6); 9825 } else { 9826 addr = sin->sin_addr.s_addr; 9827 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9828 sinlen = sizeof (struct sockaddr_in); 9829 } 9830 mutex_enter(&ill->ill_lock); 9831 ov6addr = ipif->ipif_v6lcl_addr; 9832 ipif->ipif_v6lcl_addr = v6addr; 9833 sctp_update_ipif_addr(ipif, ov6addr); 9834 ipif->ipif_addr_ready = 0; 9835 9836 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9837 9838 /* 9839 * If the interface was previously marked as a duplicate, then since 9840 * we've now got a "new" address, it should no longer be considered a 9841 * duplicate -- even if the "new" address is the same as the old one. 9842 * Note that if all ipifs are down, we may have a pending ARP down 9843 * event to handle. This is because we want to recover from duplicates 9844 * and thus delay tearing down ARP until the duplicates have been 9845 * removed or disabled. 9846 */ 9847 need_dl_down = need_arp_down = B_FALSE; 9848 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9849 need_arp_down = !need_up; 9850 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9851 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9852 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9853 need_dl_down = B_TRUE; 9854 } 9855 } 9856 9857 ipif_set_default(ipif); 9858 9859 /* 9860 * If we've just manually set the IPv6 link-local address (0th ipif), 9861 * tag the ill so that future updates to the interface ID don't result 9862 * in this address getting automatically reconfigured from under the 9863 * administrator. 9864 */ 9865 if (ipif->ipif_isv6 && ipif->ipif_id == 0) { 9866 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR && 9867 !IN6_IS_ADDR_UNSPECIFIED(&v6addr))) 9868 ill->ill_manual_linklocal = 1; 9869 } 9870 9871 /* 9872 * When publishing an interface address change event, we only notify 9873 * the event listeners of the new address. It is assumed that if they 9874 * actively care about the addresses assigned that they will have 9875 * already discovered the previous address assigned (if there was one.) 9876 * 9877 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9878 */ 9879 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9880 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9881 NE_ADDRESS_CHANGE, sin, sinlen); 9882 } 9883 9884 mutex_exit(&ill->ill_lock); 9885 9886 if (need_up) { 9887 /* 9888 * Now bring the interface back up. If this 9889 * is the only IPIF for the ILL, ipif_up 9890 * will have to re-bind to the device, so 9891 * we may get back EINPROGRESS, in which 9892 * case, this IOCTL will get completed in 9893 * ip_rput_dlpi when we see the DL_BIND_ACK. 9894 */ 9895 err = ipif_up(ipif, q, mp); 9896 } else { 9897 /* Perhaps ilgs should use this ill */ 9898 update_conn_ill(NULL, ill->ill_ipst); 9899 } 9900 9901 if (need_dl_down) 9902 ill_dl_down(ill); 9903 9904 if (need_arp_down && !ill->ill_isv6) 9905 (void) ipif_arp_down(ipif); 9906 9907 /* 9908 * The default multicast interface might have changed (for 9909 * instance if the IPv6 scope of the address changed) 9910 */ 9911 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9912 9913 return (err); 9914 } 9915 9916 /* 9917 * Restart entry point to restart the address set operation after the 9918 * refcounts have dropped to zero. 9919 */ 9920 /* ARGSUSED */ 9921 int 9922 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9923 ip_ioctl_cmd_t *ipip, void *ifreq) 9924 { 9925 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9926 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9927 ASSERT(IAM_WRITER_IPIF(ipif)); 9928 (void) ipif_down_tail(ipif); 9929 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9930 } 9931 9932 /* ARGSUSED */ 9933 int 9934 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9935 ip_ioctl_cmd_t *ipip, void *if_req) 9936 { 9937 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9938 struct lifreq *lifr = (struct lifreq *)if_req; 9939 9940 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9941 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9942 /* 9943 * The net mask and address can't change since we have a 9944 * reference to the ipif. So no lock is necessary. 9945 */ 9946 if (ipif->ipif_isv6) { 9947 *sin6 = sin6_null; 9948 sin6->sin6_family = AF_INET6; 9949 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9950 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9951 lifr->lifr_addrlen = 9952 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9953 } else { 9954 *sin = sin_null; 9955 sin->sin_family = AF_INET; 9956 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9957 if (ipip->ipi_cmd_type == LIF_CMD) { 9958 lifr->lifr_addrlen = 9959 ip_mask_to_plen(ipif->ipif_net_mask); 9960 } 9961 } 9962 return (0); 9963 } 9964 9965 /* 9966 * Set the destination address for a pt-pt interface. 9967 */ 9968 /* ARGSUSED */ 9969 int 9970 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9971 ip_ioctl_cmd_t *ipip, void *if_req) 9972 { 9973 int err = 0; 9974 in6_addr_t v6addr; 9975 boolean_t need_up = B_FALSE; 9976 9977 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 9978 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9979 ASSERT(IAM_WRITER_IPIF(ipif)); 9980 9981 if (ipif->ipif_isv6) { 9982 sin6_t *sin6; 9983 9984 if (sin->sin_family != AF_INET6) 9985 return (EAFNOSUPPORT); 9986 9987 sin6 = (sin6_t *)sin; 9988 v6addr = sin6->sin6_addr; 9989 9990 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9991 return (EADDRNOTAVAIL); 9992 } else { 9993 ipaddr_t addr; 9994 9995 if (sin->sin_family != AF_INET) 9996 return (EAFNOSUPPORT); 9997 9998 addr = sin->sin_addr.s_addr; 9999 if (addr != INADDR_ANY && 10000 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) { 10001 return (EADDRNOTAVAIL); 10002 } 10003 10004 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10005 } 10006 10007 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10008 return (0); /* No change */ 10009 10010 if (ipif->ipif_flags & IPIF_UP) { 10011 /* 10012 * If the interface is already marked up, 10013 * we call ipif_down which will take care 10014 * of ditching any IREs that have been set 10015 * up based on the old pp dst address. 10016 */ 10017 err = ipif_logical_down(ipif, q, mp); 10018 if (err == EINPROGRESS) 10019 return (err); 10020 (void) ipif_down_tail(ipif); 10021 need_up = B_TRUE; 10022 } 10023 /* 10024 * could return EINPROGRESS. If so ioctl will complete in 10025 * ip_rput_dlpi_writer 10026 */ 10027 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10028 return (err); 10029 } 10030 10031 static int 10032 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10033 boolean_t need_up) 10034 { 10035 in6_addr_t v6addr; 10036 ill_t *ill = ipif->ipif_ill; 10037 int err = 0; 10038 boolean_t need_dl_down; 10039 boolean_t need_arp_down; 10040 10041 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 10042 ipif->ipif_id, (void *)ipif)); 10043 10044 /* Must cancel any pending timer before taking the ill_lock */ 10045 if (ipif->ipif_recovery_id != 0) 10046 (void) untimeout(ipif->ipif_recovery_id); 10047 ipif->ipif_recovery_id = 0; 10048 10049 if (ipif->ipif_isv6) { 10050 sin6_t *sin6; 10051 10052 sin6 = (sin6_t *)sin; 10053 v6addr = sin6->sin6_addr; 10054 } else { 10055 ipaddr_t addr; 10056 10057 addr = sin->sin_addr.s_addr; 10058 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10059 } 10060 mutex_enter(&ill->ill_lock); 10061 /* Set point to point destination address. */ 10062 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10063 /* 10064 * Allow this as a means of creating logical 10065 * pt-pt interfaces on top of e.g. an Ethernet. 10066 * XXX Undocumented HACK for testing. 10067 * pt-pt interfaces are created with NUD disabled. 10068 */ 10069 ipif->ipif_flags |= IPIF_POINTOPOINT; 10070 ipif->ipif_flags &= ~IPIF_BROADCAST; 10071 if (ipif->ipif_isv6) 10072 ill->ill_flags |= ILLF_NONUD; 10073 } 10074 10075 /* 10076 * If the interface was previously marked as a duplicate, then since 10077 * we've now got a "new" address, it should no longer be considered a 10078 * duplicate -- even if the "new" address is the same as the old one. 10079 * Note that if all ipifs are down, we may have a pending ARP down 10080 * event to handle. 10081 */ 10082 need_dl_down = need_arp_down = B_FALSE; 10083 if (ipif->ipif_flags & IPIF_DUPLICATE) { 10084 need_arp_down = !need_up; 10085 ipif->ipif_flags &= ~IPIF_DUPLICATE; 10086 if (--ill->ill_ipif_dup_count == 0 && !need_up && 10087 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 10088 need_dl_down = B_TRUE; 10089 } 10090 } 10091 10092 /* 10093 * If we've just manually set the IPv6 destination link-local address 10094 * (0th ipif), tag the ill so that future updates to the destination 10095 * interface ID (as can happen with interfaces over IP tunnels) don't 10096 * result in this address getting automatically reconfigured from 10097 * under the administrator. 10098 */ 10099 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 10100 ill->ill_manual_dst_linklocal = 1; 10101 10102 /* Set the new address. */ 10103 ipif->ipif_v6pp_dst_addr = v6addr; 10104 /* Make sure subnet tracks pp_dst */ 10105 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10106 mutex_exit(&ill->ill_lock); 10107 10108 if (need_up) { 10109 /* 10110 * Now bring the interface back up. If this 10111 * is the only IPIF for the ILL, ipif_up 10112 * will have to re-bind to the device, so 10113 * we may get back EINPROGRESS, in which 10114 * case, this IOCTL will get completed in 10115 * ip_rput_dlpi when we see the DL_BIND_ACK. 10116 */ 10117 err = ipif_up(ipif, q, mp); 10118 } 10119 10120 if (need_dl_down) 10121 ill_dl_down(ill); 10122 if (need_arp_down && !ipif->ipif_isv6) 10123 (void) ipif_arp_down(ipif); 10124 10125 return (err); 10126 } 10127 10128 /* 10129 * Restart entry point to restart the dstaddress set operation after the 10130 * refcounts have dropped to zero. 10131 */ 10132 /* ARGSUSED */ 10133 int 10134 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10135 ip_ioctl_cmd_t *ipip, void *ifreq) 10136 { 10137 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10138 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10139 (void) ipif_down_tail(ipif); 10140 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10141 } 10142 10143 /* ARGSUSED */ 10144 int 10145 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10146 ip_ioctl_cmd_t *ipip, void *if_req) 10147 { 10148 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10149 10150 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10151 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10152 /* 10153 * Get point to point destination address. The addresses can't 10154 * change since we hold a reference to the ipif. 10155 */ 10156 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10157 return (EADDRNOTAVAIL); 10158 10159 if (ipif->ipif_isv6) { 10160 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10161 *sin6 = sin6_null; 10162 sin6->sin6_family = AF_INET6; 10163 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10164 } else { 10165 *sin = sin_null; 10166 sin->sin_family = AF_INET; 10167 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10168 } 10169 return (0); 10170 } 10171 10172 /* 10173 * Check which flags will change by the given flags being set 10174 * silently ignore flags which userland is not allowed to control. 10175 * (Because these flags may change between SIOCGLIFFLAGS and 10176 * SIOCSLIFFLAGS, and that's outside of userland's control, 10177 * we need to silently ignore them rather than fail.) 10178 */ 10179 static void 10180 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 10181 uint64_t *offp) 10182 { 10183 ill_t *ill = ipif->ipif_ill; 10184 phyint_t *phyi = ill->ill_phyint; 10185 uint64_t cantchange_flags, intf_flags; 10186 uint64_t turn_on, turn_off; 10187 10188 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10189 cantchange_flags = IFF_CANTCHANGE; 10190 if (IS_IPMP(ill)) 10191 cantchange_flags |= IFF_IPMP_CANTCHANGE; 10192 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 10193 turn_off = intf_flags & turn_on; 10194 turn_on ^= turn_off; 10195 *onp = turn_on; 10196 *offp = turn_off; 10197 } 10198 10199 /* 10200 * Set interface flags. Many flags require special handling (e.g., 10201 * bringing the interface down); see below for details. 10202 * 10203 * NOTE : We really don't enforce that ipif_id zero should be used 10204 * for setting any flags other than IFF_LOGINT_FLAGS. This 10205 * is because applications generally does SICGLIFFLAGS and 10206 * ORs in the new flags (that affects the logical) and does a 10207 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10208 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10209 * flags that will be turned on is correct with respect to 10210 * ipif_id 0. For backward compatibility reasons, it is not done. 10211 */ 10212 /* ARGSUSED */ 10213 int 10214 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10215 ip_ioctl_cmd_t *ipip, void *if_req) 10216 { 10217 uint64_t turn_on; 10218 uint64_t turn_off; 10219 int err = 0; 10220 phyint_t *phyi; 10221 ill_t *ill; 10222 conn_t *connp; 10223 uint64_t intf_flags; 10224 boolean_t phyint_flags_modified = B_FALSE; 10225 uint64_t flags; 10226 struct ifreq *ifr; 10227 struct lifreq *lifr; 10228 boolean_t set_linklocal = B_FALSE; 10229 10230 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10231 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10232 10233 ASSERT(IAM_WRITER_IPIF(ipif)); 10234 10235 ill = ipif->ipif_ill; 10236 phyi = ill->ill_phyint; 10237 10238 if (ipip->ipi_cmd_type == IF_CMD) { 10239 ifr = (struct ifreq *)if_req; 10240 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10241 } else { 10242 lifr = (struct lifreq *)if_req; 10243 flags = lifr->lifr_flags; 10244 } 10245 10246 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10247 10248 /* 10249 * Have the flags been set correctly until now? 10250 */ 10251 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10252 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10253 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10254 /* 10255 * Compare the new flags to the old, and partition 10256 * into those coming on and those going off. 10257 * For the 16 bit command keep the bits above bit 16 unchanged. 10258 */ 10259 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10260 flags |= intf_flags & ~0xFFFF; 10261 10262 /* 10263 * Explicitly fail attempts to change flags that are always invalid on 10264 * an IPMP meta-interface. 10265 */ 10266 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 10267 return (EINVAL); 10268 10269 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10270 if ((turn_on|turn_off) == 0) 10271 return (0); /* No change */ 10272 10273 /* 10274 * All test addresses must be IFF_DEPRECATED (to ensure source address 10275 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 10276 * allow it to be turned off. 10277 */ 10278 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 10279 (turn_on|intf_flags) & IFF_NOFAILOVER) 10280 return (EINVAL); 10281 10282 if ((connp = Q_TO_CONN(q)) == NULL) 10283 return (EINVAL); 10284 10285 /* 10286 * Only vrrp control socket is allowed to change IFF_UP and 10287 * IFF_NOACCEPT flags when IFF_VRRP is set. 10288 */ 10289 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 10290 if (!connp->conn_isvrrp) 10291 return (EINVAL); 10292 } 10293 10294 /* 10295 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 10296 * VRRP control socket. 10297 */ 10298 if ((turn_off | turn_on) & IFF_NOACCEPT) { 10299 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 10300 return (EINVAL); 10301 } 10302 10303 if (turn_on & IFF_NOFAILOVER) { 10304 turn_on |= IFF_DEPRECATED; 10305 flags |= IFF_DEPRECATED; 10306 } 10307 10308 /* 10309 * On underlying interfaces, only allow applications to manage test 10310 * addresses -- otherwise, they may get confused when the address 10311 * moves as part of being brought up. Likewise, prevent an 10312 * application-managed test address from being converted to a data 10313 * address. To prevent migration of administratively up addresses in 10314 * the kernel, we don't allow them to be converted either. 10315 */ 10316 if (IS_UNDER_IPMP(ill)) { 10317 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10318 10319 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10320 return (EINVAL); 10321 10322 if ((turn_off & IFF_NOFAILOVER) && 10323 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10324 return (EINVAL); 10325 } 10326 10327 /* 10328 * Only allow IFF_TEMPORARY flag to be set on 10329 * IPv6 interfaces. 10330 */ 10331 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10332 return (EINVAL); 10333 10334 /* 10335 * cannot turn off IFF_NOXMIT on VNI interfaces. 10336 */ 10337 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10338 return (EINVAL); 10339 10340 /* 10341 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10342 * interfaces. It makes no sense in that context. 10343 */ 10344 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10345 return (EINVAL); 10346 10347 /* 10348 * For IPv6 ipif_id 0, don't allow the interface to be up without 10349 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10350 * If the link local address isn't set, and can be set, it will get 10351 * set later on in this function. 10352 */ 10353 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10354 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10355 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10356 if (ipif_cant_setlinklocal(ipif)) 10357 return (EINVAL); 10358 set_linklocal = B_TRUE; 10359 } 10360 10361 /* 10362 * If we modify physical interface flags, we'll potentially need to 10363 * send up two routing socket messages for the changes (one for the 10364 * IPv4 ill, and another for the IPv6 ill). Note that here. 10365 */ 10366 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10367 phyint_flags_modified = B_TRUE; 10368 10369 /* 10370 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10371 * (otherwise, we'd immediately use them, defeating standby). Also, 10372 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10373 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10374 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10375 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10376 * will not be honored. 10377 */ 10378 if (turn_on & PHYI_STANDBY) { 10379 /* 10380 * No need to grab ill_g_usesrc_lock here; see the 10381 * synchronization notes in ip.c. 10382 */ 10383 if (ill->ill_usesrc_grp_next != NULL || 10384 intf_flags & PHYI_INACTIVE) 10385 return (EINVAL); 10386 if (!(flags & PHYI_FAILED)) { 10387 flags |= PHYI_INACTIVE; 10388 turn_on |= PHYI_INACTIVE; 10389 } 10390 } 10391 10392 if (turn_off & PHYI_STANDBY) { 10393 flags &= ~PHYI_INACTIVE; 10394 turn_off |= PHYI_INACTIVE; 10395 } 10396 10397 /* 10398 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10399 * would end up on. 10400 */ 10401 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10402 (PHYI_FAILED | PHYI_INACTIVE)) 10403 return (EINVAL); 10404 10405 /* 10406 * If ILLF_ROUTER changes, we need to change the ip forwarding 10407 * status of the interface. 10408 */ 10409 if ((turn_on | turn_off) & ILLF_ROUTER) { 10410 err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10411 if (err != 0) 10412 return (err); 10413 } 10414 10415 /* 10416 * If the interface is not UP and we are not going to 10417 * bring it UP, record the flags and return. When the 10418 * interface comes UP later, the right actions will be 10419 * taken. 10420 */ 10421 if (!(ipif->ipif_flags & IPIF_UP) && 10422 !(turn_on & IPIF_UP)) { 10423 /* Record new flags in their respective places. */ 10424 mutex_enter(&ill->ill_lock); 10425 mutex_enter(&ill->ill_phyint->phyint_lock); 10426 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10427 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10428 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10429 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10430 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10431 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10432 mutex_exit(&ill->ill_lock); 10433 mutex_exit(&ill->ill_phyint->phyint_lock); 10434 10435 /* 10436 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10437 * same to the kernel: if any of them has been set by 10438 * userland, the interface cannot be used for data traffic. 10439 */ 10440 if ((turn_on|turn_off) & 10441 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10442 ASSERT(!IS_IPMP(ill)); 10443 /* 10444 * It's possible the ill is part of an "anonymous" 10445 * IPMP group rather than a real group. In that case, 10446 * there are no other interfaces in the group and thus 10447 * no need to call ipmp_phyint_refresh_active(). 10448 */ 10449 if (IS_UNDER_IPMP(ill)) 10450 ipmp_phyint_refresh_active(phyi); 10451 } 10452 10453 if (phyint_flags_modified) { 10454 if (phyi->phyint_illv4 != NULL) { 10455 ip_rts_ifmsg(phyi->phyint_illv4-> 10456 ill_ipif, RTSQ_DEFAULT); 10457 } 10458 if (phyi->phyint_illv6 != NULL) { 10459 ip_rts_ifmsg(phyi->phyint_illv6-> 10460 ill_ipif, RTSQ_DEFAULT); 10461 } 10462 } 10463 /* The default multicast interface might have changed */ 10464 ire_increment_multicast_generation(ill->ill_ipst, 10465 ill->ill_isv6); 10466 10467 return (0); 10468 } else if (set_linklocal) { 10469 mutex_enter(&ill->ill_lock); 10470 if (set_linklocal) 10471 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10472 mutex_exit(&ill->ill_lock); 10473 } 10474 10475 /* 10476 * Disallow IPv6 interfaces coming up that have the unspecified address, 10477 * or point-to-point interfaces with an unspecified destination. We do 10478 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10479 * have a subnet assigned, which is how in.ndpd currently manages its 10480 * onlink prefix list when no addresses are configured with those 10481 * prefixes. 10482 */ 10483 if (ipif->ipif_isv6 && 10484 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10485 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10486 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10487 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10488 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10489 return (EINVAL); 10490 } 10491 10492 /* 10493 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10494 * from being brought up. 10495 */ 10496 if (!ipif->ipif_isv6 && 10497 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10498 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10499 return (EINVAL); 10500 } 10501 10502 /* 10503 * If we are going to change one or more of the flags that are 10504 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10505 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10506 * IPIF_NOFAILOVER, we will take special action. This is 10507 * done by bring the ipif down, changing the flags and bringing 10508 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10509 * back up will trigger the address to be moved. 10510 * 10511 * If we are going to change IFF_NOACCEPT, we need to bring 10512 * all the ipifs down then bring them up again. The act of 10513 * bringing all the ipifs back up will trigger the local 10514 * ires being recreated with "no_accept" set/cleared. 10515 * 10516 * Note that ILLF_NOACCEPT is always set separately from the 10517 * other flags. 10518 */ 10519 if ((turn_on|turn_off) & 10520 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10521 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10522 IPIF_NOFAILOVER)) { 10523 /* 10524 * ipif_down() will ire_delete bcast ire's for the subnet, 10525 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10526 * entries shared between multiple ipifs on the same subnet. 10527 */ 10528 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10529 !(turn_off & IPIF_UP)) { 10530 if (ipif->ipif_flags & IPIF_UP) 10531 ill->ill_logical_down = 1; 10532 turn_on &= ~IPIF_UP; 10533 } 10534 err = ipif_down(ipif, q, mp); 10535 ip1dbg(("ipif_down returns %d err ", err)); 10536 if (err == EINPROGRESS) 10537 return (err); 10538 (void) ipif_down_tail(ipif); 10539 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10540 /* 10541 * If we can quiesce the ill, then continue. If not, then 10542 * ip_sioctl_flags_tail() will be called from 10543 * ipif_ill_refrele_tail(). 10544 */ 10545 ill_down_ipifs(ill, B_TRUE); 10546 10547 mutex_enter(&connp->conn_lock); 10548 mutex_enter(&ill->ill_lock); 10549 if (!ill_is_quiescent(ill)) { 10550 boolean_t success; 10551 10552 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10553 q, mp, ILL_DOWN); 10554 mutex_exit(&ill->ill_lock); 10555 mutex_exit(&connp->conn_lock); 10556 return (success ? EINPROGRESS : EINTR); 10557 } 10558 mutex_exit(&ill->ill_lock); 10559 mutex_exit(&connp->conn_lock); 10560 } 10561 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10562 } 10563 10564 static int 10565 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10566 { 10567 ill_t *ill; 10568 phyint_t *phyi; 10569 uint64_t turn_on, turn_off; 10570 boolean_t phyint_flags_modified = B_FALSE; 10571 int err = 0; 10572 boolean_t set_linklocal = B_FALSE; 10573 10574 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10575 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10576 10577 ASSERT(IAM_WRITER_IPIF(ipif)); 10578 10579 ill = ipif->ipif_ill; 10580 phyi = ill->ill_phyint; 10581 10582 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10583 10584 /* 10585 * IFF_UP is handled separately. 10586 */ 10587 turn_on &= ~IFF_UP; 10588 turn_off &= ~IFF_UP; 10589 10590 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10591 phyint_flags_modified = B_TRUE; 10592 10593 /* 10594 * Now we change the flags. Track current value of 10595 * other flags in their respective places. 10596 */ 10597 mutex_enter(&ill->ill_lock); 10598 mutex_enter(&phyi->phyint_lock); 10599 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10600 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10601 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10602 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10603 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10604 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10605 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10606 set_linklocal = B_TRUE; 10607 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10608 } 10609 10610 mutex_exit(&ill->ill_lock); 10611 mutex_exit(&phyi->phyint_lock); 10612 10613 if (set_linklocal) 10614 (void) ipif_setlinklocal(ipif); 10615 10616 /* 10617 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10618 * the kernel: if any of them has been set by userland, the interface 10619 * cannot be used for data traffic. 10620 */ 10621 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10622 ASSERT(!IS_IPMP(ill)); 10623 /* 10624 * It's possible the ill is part of an "anonymous" IPMP group 10625 * rather than a real group. In that case, there are no other 10626 * interfaces in the group and thus no need for us to call 10627 * ipmp_phyint_refresh_active(). 10628 */ 10629 if (IS_UNDER_IPMP(ill)) 10630 ipmp_phyint_refresh_active(phyi); 10631 } 10632 10633 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10634 /* 10635 * If the ILLF_NOACCEPT flag is changed, bring up all the 10636 * ipifs that were brought down. 10637 * 10638 * The routing sockets messages are sent as the result 10639 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10640 * as well. 10641 */ 10642 err = ill_up_ipifs(ill, q, mp); 10643 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10644 /* 10645 * XXX ipif_up really does not know whether a phyint flags 10646 * was modified or not. So, it sends up information on 10647 * only one routing sockets message. As we don't bring up 10648 * the interface and also set PHYI_ flags simultaneously 10649 * it should be okay. 10650 */ 10651 err = ipif_up(ipif, q, mp); 10652 } else { 10653 /* 10654 * Make sure routing socket sees all changes to the flags. 10655 * ipif_up_done* handles this when we use ipif_up. 10656 */ 10657 if (phyint_flags_modified) { 10658 if (phyi->phyint_illv4 != NULL) { 10659 ip_rts_ifmsg(phyi->phyint_illv4-> 10660 ill_ipif, RTSQ_DEFAULT); 10661 } 10662 if (phyi->phyint_illv6 != NULL) { 10663 ip_rts_ifmsg(phyi->phyint_illv6-> 10664 ill_ipif, RTSQ_DEFAULT); 10665 } 10666 } else { 10667 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10668 } 10669 /* 10670 * Update the flags in SCTP's IPIF list, ipif_up() will do 10671 * this in need_up case. 10672 */ 10673 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10674 } 10675 10676 /* The default multicast interface might have changed */ 10677 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10678 return (err); 10679 } 10680 10681 /* 10682 * Restart the flags operation now that the refcounts have dropped to zero. 10683 */ 10684 /* ARGSUSED */ 10685 int 10686 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10687 ip_ioctl_cmd_t *ipip, void *if_req) 10688 { 10689 uint64_t flags; 10690 struct ifreq *ifr = if_req; 10691 struct lifreq *lifr = if_req; 10692 uint64_t turn_on, turn_off; 10693 10694 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10695 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10696 10697 if (ipip->ipi_cmd_type == IF_CMD) { 10698 /* cast to uint16_t prevents unwanted sign extension */ 10699 flags = (uint16_t)ifr->ifr_flags; 10700 } else { 10701 flags = lifr->lifr_flags; 10702 } 10703 10704 /* 10705 * If this function call is a result of the ILLF_NOACCEPT flag 10706 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10707 */ 10708 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10709 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10710 (void) ipif_down_tail(ipif); 10711 10712 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10713 } 10714 10715 /* 10716 * Can operate on either a module or a driver queue. 10717 */ 10718 /* ARGSUSED */ 10719 int 10720 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10721 ip_ioctl_cmd_t *ipip, void *if_req) 10722 { 10723 /* 10724 * Has the flags been set correctly till now ? 10725 */ 10726 ill_t *ill = ipif->ipif_ill; 10727 phyint_t *phyi = ill->ill_phyint; 10728 10729 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10730 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10731 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10732 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10733 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10734 10735 /* 10736 * Need a lock since some flags can be set even when there are 10737 * references to the ipif. 10738 */ 10739 mutex_enter(&ill->ill_lock); 10740 if (ipip->ipi_cmd_type == IF_CMD) { 10741 struct ifreq *ifr = (struct ifreq *)if_req; 10742 10743 /* Get interface flags (low 16 only). */ 10744 ifr->ifr_flags = ((ipif->ipif_flags | 10745 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10746 } else { 10747 struct lifreq *lifr = (struct lifreq *)if_req; 10748 10749 /* Get interface flags. */ 10750 lifr->lifr_flags = ipif->ipif_flags | 10751 ill->ill_flags | phyi->phyint_flags; 10752 } 10753 mutex_exit(&ill->ill_lock); 10754 return (0); 10755 } 10756 10757 /* 10758 * We allow the MTU to be set on an ILL, but not have it be different 10759 * for different IPIFs since we don't actually send packets on IPIFs. 10760 */ 10761 /* ARGSUSED */ 10762 int 10763 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10764 ip_ioctl_cmd_t *ipip, void *if_req) 10765 { 10766 int mtu; 10767 int ip_min_mtu; 10768 struct ifreq *ifr; 10769 struct lifreq *lifr; 10770 ill_t *ill; 10771 10772 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10773 ipif->ipif_id, (void *)ipif)); 10774 if (ipip->ipi_cmd_type == IF_CMD) { 10775 ifr = (struct ifreq *)if_req; 10776 mtu = ifr->ifr_metric; 10777 } else { 10778 lifr = (struct lifreq *)if_req; 10779 mtu = lifr->lifr_mtu; 10780 } 10781 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10782 if (ipif->ipif_id != 0) 10783 return (EINVAL); 10784 10785 ill = ipif->ipif_ill; 10786 if (ipif->ipif_isv6) 10787 ip_min_mtu = IPV6_MIN_MTU; 10788 else 10789 ip_min_mtu = IP_MIN_MTU; 10790 10791 mutex_enter(&ill->ill_lock); 10792 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10793 mutex_exit(&ill->ill_lock); 10794 return (EINVAL); 10795 } 10796 /* Avoid increasing ill_mc_mtu */ 10797 if (ill->ill_mc_mtu > mtu) 10798 ill->ill_mc_mtu = mtu; 10799 10800 /* 10801 * The dce and fragmentation code can handle changes to ill_mtu 10802 * concurrent with sending/fragmenting packets. 10803 */ 10804 ill->ill_mtu = mtu; 10805 ill->ill_flags |= ILLF_FIXEDMTU; 10806 mutex_exit(&ill->ill_lock); 10807 10808 /* 10809 * Make sure all dce_generation checks find out 10810 * that ill_mtu/ill_mc_mtu has changed. 10811 */ 10812 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10813 10814 /* 10815 * Refresh IPMP meta-interface MTU if necessary. 10816 */ 10817 if (IS_UNDER_IPMP(ill)) 10818 ipmp_illgrp_refresh_mtu(ill->ill_grp); 10819 10820 /* Update the MTU in SCTP's list */ 10821 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10822 return (0); 10823 } 10824 10825 /* Get interface MTU. */ 10826 /* ARGSUSED */ 10827 int 10828 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10829 ip_ioctl_cmd_t *ipip, void *if_req) 10830 { 10831 struct ifreq *ifr; 10832 struct lifreq *lifr; 10833 10834 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10835 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10836 10837 /* 10838 * We allow a get on any logical interface even though the set 10839 * can only be done on logical unit 0. 10840 */ 10841 if (ipip->ipi_cmd_type == IF_CMD) { 10842 ifr = (struct ifreq *)if_req; 10843 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10844 } else { 10845 lifr = (struct lifreq *)if_req; 10846 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10847 } 10848 return (0); 10849 } 10850 10851 /* Set interface broadcast address. */ 10852 /* ARGSUSED2 */ 10853 int 10854 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10855 ip_ioctl_cmd_t *ipip, void *if_req) 10856 { 10857 ipaddr_t addr; 10858 ire_t *ire; 10859 ill_t *ill = ipif->ipif_ill; 10860 ip_stack_t *ipst = ill->ill_ipst; 10861 10862 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10863 ipif->ipif_id)); 10864 10865 ASSERT(IAM_WRITER_IPIF(ipif)); 10866 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10867 return (EADDRNOTAVAIL); 10868 10869 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10870 10871 if (sin->sin_family != AF_INET) 10872 return (EAFNOSUPPORT); 10873 10874 addr = sin->sin_addr.s_addr; 10875 10876 if (ipif->ipif_flags & IPIF_UP) { 10877 /* 10878 * If we are already up, make sure the new 10879 * broadcast address makes sense. If it does, 10880 * there should be an IRE for it already. 10881 */ 10882 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10883 ill, ipif->ipif_zoneid, NULL, 10884 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10885 if (ire == NULL) { 10886 return (EINVAL); 10887 } else { 10888 ire_refrele(ire); 10889 } 10890 } 10891 /* 10892 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10893 * needs to already exist we never need to change the set of 10894 * IRE_BROADCASTs when we are UP. 10895 */ 10896 if (addr != ipif->ipif_brd_addr) 10897 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10898 10899 return (0); 10900 } 10901 10902 /* Get interface broadcast address. */ 10903 /* ARGSUSED */ 10904 int 10905 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10906 ip_ioctl_cmd_t *ipip, void *if_req) 10907 { 10908 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10909 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10910 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10911 return (EADDRNOTAVAIL); 10912 10913 /* IPIF_BROADCAST not possible with IPv6 */ 10914 ASSERT(!ipif->ipif_isv6); 10915 *sin = sin_null; 10916 sin->sin_family = AF_INET; 10917 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10918 return (0); 10919 } 10920 10921 /* 10922 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10923 */ 10924 /* ARGSUSED */ 10925 int 10926 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10927 ip_ioctl_cmd_t *ipip, void *if_req) 10928 { 10929 int err = 0; 10930 in6_addr_t v6mask; 10931 10932 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10933 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10934 10935 ASSERT(IAM_WRITER_IPIF(ipif)); 10936 10937 if (ipif->ipif_isv6) { 10938 sin6_t *sin6; 10939 10940 if (sin->sin_family != AF_INET6) 10941 return (EAFNOSUPPORT); 10942 10943 sin6 = (sin6_t *)sin; 10944 v6mask = sin6->sin6_addr; 10945 } else { 10946 ipaddr_t mask; 10947 10948 if (sin->sin_family != AF_INET) 10949 return (EAFNOSUPPORT); 10950 10951 mask = sin->sin_addr.s_addr; 10952 if (!ip_contiguous_mask(ntohl(mask))) 10953 return (ENOTSUP); 10954 V4MASK_TO_V6(mask, v6mask); 10955 } 10956 10957 /* 10958 * No big deal if the interface isn't already up, or the mask 10959 * isn't really changing, or this is pt-pt. 10960 */ 10961 if (!(ipif->ipif_flags & IPIF_UP) || 10962 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10963 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10964 ipif->ipif_v6net_mask = v6mask; 10965 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10966 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10967 ipif->ipif_v6net_mask, 10968 ipif->ipif_v6subnet); 10969 } 10970 return (0); 10971 } 10972 /* 10973 * Make sure we have valid net and subnet broadcast ire's 10974 * for the old netmask, if needed by other logical interfaces. 10975 */ 10976 err = ipif_logical_down(ipif, q, mp); 10977 if (err == EINPROGRESS) 10978 return (err); 10979 (void) ipif_down_tail(ipif); 10980 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 10981 return (err); 10982 } 10983 10984 static int 10985 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 10986 { 10987 in6_addr_t v6mask; 10988 int err = 0; 10989 10990 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 10991 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10992 10993 if (ipif->ipif_isv6) { 10994 sin6_t *sin6; 10995 10996 sin6 = (sin6_t *)sin; 10997 v6mask = sin6->sin6_addr; 10998 } else { 10999 ipaddr_t mask; 11000 11001 mask = sin->sin_addr.s_addr; 11002 V4MASK_TO_V6(mask, v6mask); 11003 } 11004 11005 ipif->ipif_v6net_mask = v6mask; 11006 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11007 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11008 ipif->ipif_v6subnet); 11009 } 11010 err = ipif_up(ipif, q, mp); 11011 11012 if (err == 0 || err == EINPROGRESS) { 11013 /* 11014 * The interface must be DL_BOUND if this packet has to 11015 * go out on the wire. Since we only go through a logical 11016 * down and are bound with the driver during an internal 11017 * down/up that is satisfied. 11018 */ 11019 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11020 /* Potentially broadcast an address mask reply. */ 11021 ipif_mask_reply(ipif); 11022 } 11023 } 11024 return (err); 11025 } 11026 11027 /* ARGSUSED */ 11028 int 11029 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11030 ip_ioctl_cmd_t *ipip, void *if_req) 11031 { 11032 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11033 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11034 (void) ipif_down_tail(ipif); 11035 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11036 } 11037 11038 /* Get interface net mask. */ 11039 /* ARGSUSED */ 11040 int 11041 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11042 ip_ioctl_cmd_t *ipip, void *if_req) 11043 { 11044 struct lifreq *lifr = (struct lifreq *)if_req; 11045 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11046 11047 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11048 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11049 11050 /* 11051 * net mask can't change since we have a reference to the ipif. 11052 */ 11053 if (ipif->ipif_isv6) { 11054 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11055 *sin6 = sin6_null; 11056 sin6->sin6_family = AF_INET6; 11057 sin6->sin6_addr = ipif->ipif_v6net_mask; 11058 lifr->lifr_addrlen = 11059 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11060 } else { 11061 *sin = sin_null; 11062 sin->sin_family = AF_INET; 11063 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11064 if (ipip->ipi_cmd_type == LIF_CMD) { 11065 lifr->lifr_addrlen = 11066 ip_mask_to_plen(ipif->ipif_net_mask); 11067 } 11068 } 11069 return (0); 11070 } 11071 11072 /* ARGSUSED */ 11073 int 11074 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11075 ip_ioctl_cmd_t *ipip, void *if_req) 11076 { 11077 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11078 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11079 11080 /* 11081 * Since no applications should ever be setting metrics on underlying 11082 * interfaces, we explicitly fail to smoke 'em out. 11083 */ 11084 if (IS_UNDER_IPMP(ipif->ipif_ill)) 11085 return (EINVAL); 11086 11087 /* 11088 * Set interface metric. We don't use this for 11089 * anything but we keep track of it in case it is 11090 * important to routing applications or such. 11091 */ 11092 if (ipip->ipi_cmd_type == IF_CMD) { 11093 struct ifreq *ifr; 11094 11095 ifr = (struct ifreq *)if_req; 11096 ipif->ipif_ill->ill_metric = ifr->ifr_metric; 11097 } else { 11098 struct lifreq *lifr; 11099 11100 lifr = (struct lifreq *)if_req; 11101 ipif->ipif_ill->ill_metric = lifr->lifr_metric; 11102 } 11103 return (0); 11104 } 11105 11106 /* ARGSUSED */ 11107 int 11108 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11109 ip_ioctl_cmd_t *ipip, void *if_req) 11110 { 11111 /* Get interface metric. */ 11112 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11113 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11114 11115 if (ipip->ipi_cmd_type == IF_CMD) { 11116 struct ifreq *ifr; 11117 11118 ifr = (struct ifreq *)if_req; 11119 ifr->ifr_metric = ipif->ipif_ill->ill_metric; 11120 } else { 11121 struct lifreq *lifr; 11122 11123 lifr = (struct lifreq *)if_req; 11124 lifr->lifr_metric = ipif->ipif_ill->ill_metric; 11125 } 11126 11127 return (0); 11128 } 11129 11130 /* ARGSUSED */ 11131 int 11132 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11133 ip_ioctl_cmd_t *ipip, void *if_req) 11134 { 11135 int arp_muxid; 11136 11137 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11138 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11139 /* 11140 * Set the muxid returned from I_PLINK. 11141 */ 11142 if (ipip->ipi_cmd_type == IF_CMD) { 11143 struct ifreq *ifr = (struct ifreq *)if_req; 11144 11145 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 11146 arp_muxid = ifr->ifr_arp_muxid; 11147 } else { 11148 struct lifreq *lifr = (struct lifreq *)if_req; 11149 11150 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 11151 arp_muxid = lifr->lifr_arp_muxid; 11152 } 11153 arl_set_muxid(ipif->ipif_ill, arp_muxid); 11154 return (0); 11155 } 11156 11157 /* ARGSUSED */ 11158 int 11159 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11160 ip_ioctl_cmd_t *ipip, void *if_req) 11161 { 11162 int arp_muxid = 0; 11163 11164 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11165 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11166 /* 11167 * Get the muxid saved in ill for I_PUNLINK. 11168 */ 11169 arp_muxid = arl_get_muxid(ipif->ipif_ill); 11170 if (ipip->ipi_cmd_type == IF_CMD) { 11171 struct ifreq *ifr = (struct ifreq *)if_req; 11172 11173 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11174 ifr->ifr_arp_muxid = arp_muxid; 11175 } else { 11176 struct lifreq *lifr = (struct lifreq *)if_req; 11177 11178 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11179 lifr->lifr_arp_muxid = arp_muxid; 11180 } 11181 return (0); 11182 } 11183 11184 /* 11185 * Set the subnet prefix. Does not modify the broadcast address. 11186 */ 11187 /* ARGSUSED */ 11188 int 11189 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11190 ip_ioctl_cmd_t *ipip, void *if_req) 11191 { 11192 int err = 0; 11193 in6_addr_t v6addr; 11194 in6_addr_t v6mask; 11195 boolean_t need_up = B_FALSE; 11196 int addrlen; 11197 11198 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11199 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11200 11201 ASSERT(IAM_WRITER_IPIF(ipif)); 11202 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11203 11204 if (ipif->ipif_isv6) { 11205 sin6_t *sin6; 11206 11207 if (sin->sin_family != AF_INET6) 11208 return (EAFNOSUPPORT); 11209 11210 sin6 = (sin6_t *)sin; 11211 v6addr = sin6->sin6_addr; 11212 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11213 return (EADDRNOTAVAIL); 11214 } else { 11215 ipaddr_t addr; 11216 11217 if (sin->sin_family != AF_INET) 11218 return (EAFNOSUPPORT); 11219 11220 addr = sin->sin_addr.s_addr; 11221 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11222 return (EADDRNOTAVAIL); 11223 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11224 /* Add 96 bits */ 11225 addrlen += IPV6_ABITS - IP_ABITS; 11226 } 11227 11228 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11229 return (EINVAL); 11230 11231 /* Check if bits in the address is set past the mask */ 11232 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11233 return (EINVAL); 11234 11235 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11236 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11237 return (0); /* No change */ 11238 11239 if (ipif->ipif_flags & IPIF_UP) { 11240 /* 11241 * If the interface is already marked up, 11242 * we call ipif_down which will take care 11243 * of ditching any IREs that have been set 11244 * up based on the old interface address. 11245 */ 11246 err = ipif_logical_down(ipif, q, mp); 11247 if (err == EINPROGRESS) 11248 return (err); 11249 (void) ipif_down_tail(ipif); 11250 need_up = B_TRUE; 11251 } 11252 11253 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11254 return (err); 11255 } 11256 11257 static int 11258 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11259 queue_t *q, mblk_t *mp, boolean_t need_up) 11260 { 11261 ill_t *ill = ipif->ipif_ill; 11262 int err = 0; 11263 11264 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11265 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11266 11267 /* Set the new address. */ 11268 mutex_enter(&ill->ill_lock); 11269 ipif->ipif_v6net_mask = v6mask; 11270 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11271 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11272 ipif->ipif_v6subnet); 11273 } 11274 mutex_exit(&ill->ill_lock); 11275 11276 if (need_up) { 11277 /* 11278 * Now bring the interface back up. If this 11279 * is the only IPIF for the ILL, ipif_up 11280 * will have to re-bind to the device, so 11281 * we may get back EINPROGRESS, in which 11282 * case, this IOCTL will get completed in 11283 * ip_rput_dlpi when we see the DL_BIND_ACK. 11284 */ 11285 err = ipif_up(ipif, q, mp); 11286 if (err == EINPROGRESS) 11287 return (err); 11288 } 11289 return (err); 11290 } 11291 11292 /* ARGSUSED */ 11293 int 11294 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11295 ip_ioctl_cmd_t *ipip, void *if_req) 11296 { 11297 int addrlen; 11298 in6_addr_t v6addr; 11299 in6_addr_t v6mask; 11300 struct lifreq *lifr = (struct lifreq *)if_req; 11301 11302 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11303 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11304 (void) ipif_down_tail(ipif); 11305 11306 addrlen = lifr->lifr_addrlen; 11307 if (ipif->ipif_isv6) { 11308 sin6_t *sin6; 11309 11310 sin6 = (sin6_t *)sin; 11311 v6addr = sin6->sin6_addr; 11312 } else { 11313 ipaddr_t addr; 11314 11315 addr = sin->sin_addr.s_addr; 11316 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11317 addrlen += IPV6_ABITS - IP_ABITS; 11318 } 11319 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11320 11321 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11322 } 11323 11324 /* ARGSUSED */ 11325 int 11326 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11327 ip_ioctl_cmd_t *ipip, void *if_req) 11328 { 11329 struct lifreq *lifr = (struct lifreq *)if_req; 11330 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11331 11332 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11333 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11334 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11335 11336 if (ipif->ipif_isv6) { 11337 *sin6 = sin6_null; 11338 sin6->sin6_family = AF_INET6; 11339 sin6->sin6_addr = ipif->ipif_v6subnet; 11340 lifr->lifr_addrlen = 11341 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11342 } else { 11343 *sin = sin_null; 11344 sin->sin_family = AF_INET; 11345 sin->sin_addr.s_addr = ipif->ipif_subnet; 11346 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11347 } 11348 return (0); 11349 } 11350 11351 /* 11352 * Set the IPv6 address token. 11353 */ 11354 /* ARGSUSED */ 11355 int 11356 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11357 ip_ioctl_cmd_t *ipi, void *if_req) 11358 { 11359 ill_t *ill = ipif->ipif_ill; 11360 int err; 11361 in6_addr_t v6addr; 11362 in6_addr_t v6mask; 11363 boolean_t need_up = B_FALSE; 11364 int i; 11365 sin6_t *sin6 = (sin6_t *)sin; 11366 struct lifreq *lifr = (struct lifreq *)if_req; 11367 int addrlen; 11368 11369 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11370 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11371 ASSERT(IAM_WRITER_IPIF(ipif)); 11372 11373 addrlen = lifr->lifr_addrlen; 11374 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11375 if (ipif->ipif_id != 0) 11376 return (EINVAL); 11377 11378 if (!ipif->ipif_isv6) 11379 return (EINVAL); 11380 11381 if (addrlen > IPV6_ABITS) 11382 return (EINVAL); 11383 11384 v6addr = sin6->sin6_addr; 11385 11386 /* 11387 * The length of the token is the length from the end. To get 11388 * the proper mask for this, compute the mask of the bits not 11389 * in the token; ie. the prefix, and then xor to get the mask. 11390 */ 11391 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11392 return (EINVAL); 11393 for (i = 0; i < 4; i++) { 11394 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11395 } 11396 11397 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11398 ill->ill_token_length == addrlen) 11399 return (0); /* No change */ 11400 11401 if (ipif->ipif_flags & IPIF_UP) { 11402 err = ipif_logical_down(ipif, q, mp); 11403 if (err == EINPROGRESS) 11404 return (err); 11405 (void) ipif_down_tail(ipif); 11406 need_up = B_TRUE; 11407 } 11408 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11409 return (err); 11410 } 11411 11412 static int 11413 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11414 mblk_t *mp, boolean_t need_up) 11415 { 11416 in6_addr_t v6addr; 11417 in6_addr_t v6mask; 11418 ill_t *ill = ipif->ipif_ill; 11419 int i; 11420 int err = 0; 11421 11422 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11423 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11424 v6addr = sin6->sin6_addr; 11425 /* 11426 * The length of the token is the length from the end. To get 11427 * the proper mask for this, compute the mask of the bits not 11428 * in the token; ie. the prefix, and then xor to get the mask. 11429 */ 11430 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11431 for (i = 0; i < 4; i++) 11432 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11433 11434 mutex_enter(&ill->ill_lock); 11435 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11436 ill->ill_token_length = addrlen; 11437 ill->ill_manual_token = 1; 11438 11439 /* Reconfigure the link-local address based on this new token */ 11440 ipif_setlinklocal(ill->ill_ipif); 11441 11442 mutex_exit(&ill->ill_lock); 11443 11444 if (need_up) { 11445 /* 11446 * Now bring the interface back up. If this 11447 * is the only IPIF for the ILL, ipif_up 11448 * will have to re-bind to the device, so 11449 * we may get back EINPROGRESS, in which 11450 * case, this IOCTL will get completed in 11451 * ip_rput_dlpi when we see the DL_BIND_ACK. 11452 */ 11453 err = ipif_up(ipif, q, mp); 11454 if (err == EINPROGRESS) 11455 return (err); 11456 } 11457 return (err); 11458 } 11459 11460 /* ARGSUSED */ 11461 int 11462 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11463 ip_ioctl_cmd_t *ipi, void *if_req) 11464 { 11465 ill_t *ill; 11466 sin6_t *sin6 = (sin6_t *)sin; 11467 struct lifreq *lifr = (struct lifreq *)if_req; 11468 11469 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11470 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11471 if (ipif->ipif_id != 0) 11472 return (EINVAL); 11473 11474 ill = ipif->ipif_ill; 11475 if (!ill->ill_isv6) 11476 return (ENXIO); 11477 11478 *sin6 = sin6_null; 11479 sin6->sin6_family = AF_INET6; 11480 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11481 sin6->sin6_addr = ill->ill_token; 11482 lifr->lifr_addrlen = ill->ill_token_length; 11483 return (0); 11484 } 11485 11486 /* 11487 * Set (hardware) link specific information that might override 11488 * what was acquired through the DL_INFO_ACK. 11489 */ 11490 /* ARGSUSED */ 11491 int 11492 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11493 ip_ioctl_cmd_t *ipi, void *if_req) 11494 { 11495 ill_t *ill = ipif->ipif_ill; 11496 int ip_min_mtu; 11497 struct lifreq *lifr = (struct lifreq *)if_req; 11498 lif_ifinfo_req_t *lir; 11499 11500 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11501 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11502 lir = &lifr->lifr_ifinfo; 11503 ASSERT(IAM_WRITER_IPIF(ipif)); 11504 11505 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11506 if (ipif->ipif_id != 0) 11507 return (EINVAL); 11508 11509 /* Set interface MTU. */ 11510 if (ipif->ipif_isv6) 11511 ip_min_mtu = IPV6_MIN_MTU; 11512 else 11513 ip_min_mtu = IP_MIN_MTU; 11514 11515 /* 11516 * Verify values before we set anything. Allow zero to 11517 * mean unspecified. 11518 * 11519 * XXX We should be able to set the user-defined lir_mtu to some value 11520 * that is greater than ill_current_frag but less than ill_max_frag- the 11521 * ill_max_frag value tells us the max MTU that can be handled by the 11522 * datalink, whereas the ill_current_frag is dynamically computed for 11523 * some link-types like tunnels, based on the tunnel PMTU. However, 11524 * since there is currently no way of distinguishing between 11525 * administratively fixed link mtu values (e.g., those set via 11526 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11527 * for tunnels) we conservatively choose the ill_current_frag as the 11528 * upper-bound. 11529 */ 11530 if (lir->lir_maxmtu != 0 && 11531 (lir->lir_maxmtu > ill->ill_current_frag || 11532 lir->lir_maxmtu < ip_min_mtu)) 11533 return (EINVAL); 11534 if (lir->lir_reachtime != 0 && 11535 lir->lir_reachtime > ND_MAX_REACHTIME) 11536 return (EINVAL); 11537 if (lir->lir_reachretrans != 0 && 11538 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11539 return (EINVAL); 11540 11541 mutex_enter(&ill->ill_lock); 11542 /* 11543 * The dce and fragmentation code can handle changes to ill_mtu 11544 * concurrent with sending/fragmenting packets. 11545 */ 11546 if (lir->lir_maxmtu != 0) 11547 ill->ill_user_mtu = lir->lir_maxmtu; 11548 11549 if (lir->lir_reachtime != 0) 11550 ill->ill_reachable_time = lir->lir_reachtime; 11551 11552 if (lir->lir_reachretrans != 0) 11553 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11554 11555 ill->ill_max_hops = lir->lir_maxhops; 11556 ill->ill_max_buf = ND_MAX_Q; 11557 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11558 /* 11559 * ill_mtu is the actual interface MTU, obtained as the min 11560 * of user-configured mtu and the value announced by the 11561 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11562 * we have already made the choice of requiring 11563 * ill_user_mtu < ill_current_frag by the time we get here, 11564 * the ill_mtu effectively gets assigned to the ill_user_mtu 11565 * here. 11566 */ 11567 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11568 ill->ill_mc_mtu = MIN(ill->ill_mc_mtu, ill->ill_user_mtu); 11569 } 11570 mutex_exit(&ill->ill_lock); 11571 11572 /* 11573 * Make sure all dce_generation checks find out 11574 * that ill_mtu/ill_mc_mtu has changed. 11575 */ 11576 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11577 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11578 11579 /* 11580 * Refresh IPMP meta-interface MTU if necessary. 11581 */ 11582 if (IS_UNDER_IPMP(ill)) 11583 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11584 11585 return (0); 11586 } 11587 11588 /* ARGSUSED */ 11589 int 11590 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11591 ip_ioctl_cmd_t *ipi, void *if_req) 11592 { 11593 struct lif_ifinfo_req *lir; 11594 ill_t *ill = ipif->ipif_ill; 11595 11596 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11597 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11598 if (ipif->ipif_id != 0) 11599 return (EINVAL); 11600 11601 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11602 lir->lir_maxhops = ill->ill_max_hops; 11603 lir->lir_reachtime = ill->ill_reachable_time; 11604 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11605 lir->lir_maxmtu = ill->ill_mtu; 11606 11607 return (0); 11608 } 11609 11610 /* 11611 * Return best guess as to the subnet mask for the specified address. 11612 * Based on the subnet masks for all the configured interfaces. 11613 * 11614 * We end up returning a zero mask in the case of default, multicast or 11615 * experimental. 11616 */ 11617 static ipaddr_t 11618 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11619 { 11620 ipaddr_t net_mask; 11621 ill_t *ill; 11622 ipif_t *ipif; 11623 ill_walk_context_t ctx; 11624 ipif_t *fallback_ipif = NULL; 11625 11626 net_mask = ip_net_mask(addr); 11627 if (net_mask == 0) { 11628 *ipifp = NULL; 11629 return (0); 11630 } 11631 11632 /* Let's check to see if this is maybe a local subnet route. */ 11633 /* this function only applies to IPv4 interfaces */ 11634 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11635 ill = ILL_START_WALK_V4(&ctx, ipst); 11636 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11637 mutex_enter(&ill->ill_lock); 11638 for (ipif = ill->ill_ipif; ipif != NULL; 11639 ipif = ipif->ipif_next) { 11640 if (IPIF_IS_CONDEMNED(ipif)) 11641 continue; 11642 if (!(ipif->ipif_flags & IPIF_UP)) 11643 continue; 11644 if ((ipif->ipif_subnet & net_mask) == 11645 (addr & net_mask)) { 11646 /* 11647 * Don't trust pt-pt interfaces if there are 11648 * other interfaces. 11649 */ 11650 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11651 if (fallback_ipif == NULL) { 11652 ipif_refhold_locked(ipif); 11653 fallback_ipif = ipif; 11654 } 11655 continue; 11656 } 11657 11658 /* 11659 * Fine. Just assume the same net mask as the 11660 * directly attached subnet interface is using. 11661 */ 11662 ipif_refhold_locked(ipif); 11663 mutex_exit(&ill->ill_lock); 11664 rw_exit(&ipst->ips_ill_g_lock); 11665 if (fallback_ipif != NULL) 11666 ipif_refrele(fallback_ipif); 11667 *ipifp = ipif; 11668 return (ipif->ipif_net_mask); 11669 } 11670 } 11671 mutex_exit(&ill->ill_lock); 11672 } 11673 rw_exit(&ipst->ips_ill_g_lock); 11674 11675 *ipifp = fallback_ipif; 11676 return ((fallback_ipif != NULL) ? 11677 fallback_ipif->ipif_net_mask : net_mask); 11678 } 11679 11680 /* 11681 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11682 */ 11683 static void 11684 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11685 { 11686 IOCP iocp; 11687 ipft_t *ipft; 11688 ipllc_t *ipllc; 11689 mblk_t *mp1; 11690 cred_t *cr; 11691 int error = 0; 11692 conn_t *connp; 11693 11694 ip1dbg(("ip_wput_ioctl")); 11695 iocp = (IOCP)mp->b_rptr; 11696 mp1 = mp->b_cont; 11697 if (mp1 == NULL) { 11698 iocp->ioc_error = EINVAL; 11699 mp->b_datap->db_type = M_IOCNAK; 11700 iocp->ioc_count = 0; 11701 qreply(q, mp); 11702 return; 11703 } 11704 11705 /* 11706 * These IOCTLs provide various control capabilities to 11707 * upstream agents such as ULPs and processes. There 11708 * are currently two such IOCTLs implemented. They 11709 * are used by TCP to provide update information for 11710 * existing IREs and to forcibly delete an IRE for a 11711 * host that is not responding, thereby forcing an 11712 * attempt at a new route. 11713 */ 11714 iocp->ioc_error = EINVAL; 11715 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11716 goto done; 11717 11718 ipllc = (ipllc_t *)mp1->b_rptr; 11719 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11720 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11721 break; 11722 } 11723 /* 11724 * prefer credential from mblk over ioctl; 11725 * see ip_sioctl_copyin_setup 11726 */ 11727 cr = msg_getcred(mp, NULL); 11728 if (cr == NULL) 11729 cr = iocp->ioc_cr; 11730 11731 /* 11732 * Refhold the conn in case the request gets queued up in some lookup 11733 */ 11734 ASSERT(CONN_Q(q)); 11735 connp = Q_TO_CONN(q); 11736 CONN_INC_REF(connp); 11737 CONN_INC_IOCTLREF(connp); 11738 if (ipft->ipft_pfi && 11739 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11740 pullupmsg(mp1, ipft->ipft_min_size))) { 11741 error = (*ipft->ipft_pfi)(q, 11742 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11743 } 11744 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11745 /* 11746 * CONN_OPER_PENDING_DONE happens in the function called 11747 * through ipft_pfi above. 11748 */ 11749 return; 11750 } 11751 11752 CONN_DEC_IOCTLREF(connp); 11753 CONN_OPER_PENDING_DONE(connp); 11754 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11755 freemsg(mp); 11756 return; 11757 } 11758 iocp->ioc_error = error; 11759 11760 done: 11761 mp->b_datap->db_type = M_IOCACK; 11762 if (iocp->ioc_error) 11763 iocp->ioc_count = 0; 11764 qreply(q, mp); 11765 } 11766 11767 /* 11768 * Assign a unique id for the ipif. This is used by sctp_addr.c 11769 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11770 */ 11771 static void 11772 ipif_assign_seqid(ipif_t *ipif) 11773 { 11774 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11775 11776 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 11777 } 11778 11779 /* 11780 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11781 * administratively down (i.e., no DAD), of the same type, and locked. Note 11782 * that the clone is complete -- including the seqid -- and the expectation is 11783 * that the caller will either free or overwrite `sipif' before it's unlocked. 11784 */ 11785 static void 11786 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11787 { 11788 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11789 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11790 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11791 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11792 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11793 11794 dipif->ipif_flags = sipif->ipif_flags; 11795 dipif->ipif_zoneid = sipif->ipif_zoneid; 11796 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11797 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11798 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11799 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11800 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11801 11802 /* 11803 * As per the comment atop the function, we assume that these sipif 11804 * fields will be changed before sipif is unlocked. 11805 */ 11806 dipif->ipif_seqid = sipif->ipif_seqid; 11807 dipif->ipif_state_flags = sipif->ipif_state_flags; 11808 } 11809 11810 /* 11811 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11812 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11813 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11814 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11815 * down (i.e., no DAD), of the same type, and unlocked. 11816 */ 11817 static void 11818 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11819 { 11820 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11821 ipxop_t *ipx = ipsq->ipsq_xop; 11822 11823 ASSERT(sipif != dipif); 11824 ASSERT(sipif != virgipif); 11825 11826 /* 11827 * Grab all of the locks that protect the ipif in a defined order. 11828 */ 11829 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11830 11831 ipif_clone(sipif, dipif); 11832 if (virgipif != NULL) { 11833 ipif_clone(virgipif, sipif); 11834 mi_free(virgipif); 11835 } 11836 11837 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11838 11839 /* 11840 * Transfer ownership of the current xop, if necessary. 11841 */ 11842 if (ipx->ipx_current_ipif == sipif) { 11843 ASSERT(ipx->ipx_pending_ipif == NULL); 11844 mutex_enter(&ipx->ipx_lock); 11845 ipx->ipx_current_ipif = dipif; 11846 mutex_exit(&ipx->ipx_lock); 11847 } 11848 11849 if (virgipif == NULL) 11850 mi_free(sipif); 11851 } 11852 11853 /* 11854 * checks if: 11855 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and 11856 * - logical interface is within the allowed range 11857 */ 11858 static int 11859 is_lifname_valid(ill_t *ill, unsigned int ipif_id) 11860 { 11861 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) 11862 return (ENAMETOOLONG); 11863 11864 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) 11865 return (ERANGE); 11866 return (0); 11867 } 11868 11869 /* 11870 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11871 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11872 * be inserted into the first space available in the list. The value of 11873 * ipif_id will then be set to the appropriate value for its position. 11874 */ 11875 static int 11876 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11877 { 11878 ill_t *ill; 11879 ipif_t *tipif; 11880 ipif_t **tipifp; 11881 int id, err; 11882 ip_stack_t *ipst; 11883 11884 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11885 IAM_WRITER_IPIF(ipif)); 11886 11887 ill = ipif->ipif_ill; 11888 ASSERT(ill != NULL); 11889 ipst = ill->ill_ipst; 11890 11891 /* 11892 * In the case of lo0:0 we already hold the ill_g_lock. 11893 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11894 * ipif_insert. 11895 */ 11896 if (acquire_g_lock) 11897 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11898 mutex_enter(&ill->ill_lock); 11899 id = ipif->ipif_id; 11900 tipifp = &(ill->ill_ipif); 11901 if (id == -1) { /* need to find a real id */ 11902 id = 0; 11903 while ((tipif = *tipifp) != NULL) { 11904 ASSERT(tipif->ipif_id >= id); 11905 if (tipif->ipif_id != id) 11906 break; /* non-consecutive id */ 11907 id++; 11908 tipifp = &(tipif->ipif_next); 11909 } 11910 if ((err = is_lifname_valid(ill, id)) != 0) { 11911 mutex_exit(&ill->ill_lock); 11912 if (acquire_g_lock) 11913 rw_exit(&ipst->ips_ill_g_lock); 11914 return (err); 11915 } 11916 ipif->ipif_id = id; /* assign new id */ 11917 } else if ((err = is_lifname_valid(ill, id)) == 0) { 11918 /* we have a real id; insert ipif in the right place */ 11919 while ((tipif = *tipifp) != NULL) { 11920 ASSERT(tipif->ipif_id != id); 11921 if (tipif->ipif_id > id) 11922 break; /* found correct location */ 11923 tipifp = &(tipif->ipif_next); 11924 } 11925 } else { 11926 mutex_exit(&ill->ill_lock); 11927 if (acquire_g_lock) 11928 rw_exit(&ipst->ips_ill_g_lock); 11929 return (err); 11930 } 11931 11932 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11933 11934 ipif->ipif_next = tipif; 11935 *tipifp = ipif; 11936 mutex_exit(&ill->ill_lock); 11937 if (acquire_g_lock) 11938 rw_exit(&ipst->ips_ill_g_lock); 11939 11940 return (0); 11941 } 11942 11943 static void 11944 ipif_remove(ipif_t *ipif) 11945 { 11946 ipif_t **ipifp; 11947 ill_t *ill = ipif->ipif_ill; 11948 11949 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11950 11951 mutex_enter(&ill->ill_lock); 11952 ipifp = &ill->ill_ipif; 11953 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11954 if (*ipifp == ipif) { 11955 *ipifp = ipif->ipif_next; 11956 break; 11957 } 11958 } 11959 mutex_exit(&ill->ill_lock); 11960 } 11961 11962 /* 11963 * Allocate and initialize a new interface control structure. (Always 11964 * called as writer.) 11965 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11966 * is not part of the global linked list of ills. ipif_seqid is unique 11967 * in the system and to preserve the uniqueness, it is assigned only 11968 * when ill becomes part of the global list. At that point ill will 11969 * have a name. If it doesn't get assigned here, it will get assigned 11970 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11971 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11972 * the interface flags or any other information from the DL_INFO_ACK for 11973 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11974 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11975 * second DL_INFO_ACK comes in from the driver. 11976 */ 11977 static ipif_t * 11978 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11979 boolean_t insert, int *errorp) 11980 { 11981 int err; 11982 ipif_t *ipif; 11983 ip_stack_t *ipst = ill->ill_ipst; 11984 11985 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 11986 ill->ill_name, id, (void *)ill)); 11987 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 11988 11989 if (errorp != NULL) 11990 *errorp = 0; 11991 11992 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { 11993 if (errorp != NULL) 11994 *errorp = ENOMEM; 11995 return (NULL); 11996 } 11997 *ipif = ipif_zero; /* start clean */ 11998 11999 ipif->ipif_ill = ill; 12000 ipif->ipif_id = id; /* could be -1 */ 12001 /* 12002 * Inherit the zoneid from the ill; for the shared stack instance 12003 * this is always the global zone 12004 */ 12005 ipif->ipif_zoneid = ill->ill_zoneid; 12006 12007 ipif->ipif_refcnt = 0; 12008 12009 if (insert) { 12010 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { 12011 mi_free(ipif); 12012 if (errorp != NULL) 12013 *errorp = err; 12014 return (NULL); 12015 } 12016 /* -1 id should have been replaced by real id */ 12017 id = ipif->ipif_id; 12018 ASSERT(id >= 0); 12019 } 12020 12021 if (ill->ill_name[0] != '\0') 12022 ipif_assign_seqid(ipif); 12023 12024 /* 12025 * If this is the zeroth ipif on the IPMP ill, create the illgrp 12026 * (which must not exist yet because the zeroth ipif is created once 12027 * per ill). However, do not not link it to the ipmp_grp_t until 12028 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 12029 */ 12030 if (id == 0 && IS_IPMP(ill)) { 12031 if (ipmp_illgrp_create(ill) == NULL) { 12032 if (insert) { 12033 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 12034 ipif_remove(ipif); 12035 rw_exit(&ipst->ips_ill_g_lock); 12036 } 12037 mi_free(ipif); 12038 if (errorp != NULL) 12039 *errorp = ENOMEM; 12040 return (NULL); 12041 } 12042 } 12043 12044 /* 12045 * We grab ill_lock to protect the flag changes. The ipif is still 12046 * not up and can't be looked up until the ioctl completes and the 12047 * IPIF_CHANGING flag is cleared. 12048 */ 12049 mutex_enter(&ill->ill_lock); 12050 12051 ipif->ipif_ire_type = ire_type; 12052 12053 if (ipif->ipif_isv6) { 12054 ill->ill_flags |= ILLF_IPV6; 12055 } else { 12056 ipaddr_t inaddr_any = INADDR_ANY; 12057 12058 ill->ill_flags |= ILLF_IPV4; 12059 12060 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12061 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12062 &ipif->ipif_v6lcl_addr); 12063 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12064 &ipif->ipif_v6subnet); 12065 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12066 &ipif->ipif_v6net_mask); 12067 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12068 &ipif->ipif_v6brd_addr); 12069 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12070 &ipif->ipif_v6pp_dst_addr); 12071 } 12072 12073 /* 12074 * Don't set the interface flags etc. now, will do it in 12075 * ip_ll_subnet_defaults. 12076 */ 12077 if (!initialize) 12078 goto out; 12079 12080 /* 12081 * NOTE: The IPMP meta-interface is special-cased because it starts 12082 * with no underlying interfaces (and thus an unknown broadcast 12083 * address length), but all interfaces that can be placed into an IPMP 12084 * group are required to be broadcast-capable. 12085 */ 12086 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 12087 /* 12088 * Later detect lack of DLPI driver multicast capability by 12089 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 12090 */ 12091 ill->ill_flags |= ILLF_MULTICAST; 12092 if (!ipif->ipif_isv6) 12093 ipif->ipif_flags |= IPIF_BROADCAST; 12094 } else { 12095 if (ill->ill_net_type != IRE_LOOPBACK) { 12096 if (ipif->ipif_isv6) 12097 /* 12098 * Note: xresolv interfaces will eventually need 12099 * NOARP set here as well, but that will require 12100 * those external resolvers to have some 12101 * knowledge of that flag and act appropriately. 12102 * Not to be changed at present. 12103 */ 12104 ill->ill_flags |= ILLF_NONUD; 12105 else 12106 ill->ill_flags |= ILLF_NOARP; 12107 } 12108 if (ill->ill_phys_addr_length == 0) { 12109 if (IS_VNI(ill)) { 12110 ipif->ipif_flags |= IPIF_NOXMIT; 12111 } else { 12112 /* pt-pt supports multicast. */ 12113 ill->ill_flags |= ILLF_MULTICAST; 12114 if (ill->ill_net_type != IRE_LOOPBACK) 12115 ipif->ipif_flags |= IPIF_POINTOPOINT; 12116 } 12117 } 12118 } 12119 out: 12120 mutex_exit(&ill->ill_lock); 12121 return (ipif); 12122 } 12123 12124 /* 12125 * Remove the neighbor cache entries associated with this logical 12126 * interface. 12127 */ 12128 int 12129 ipif_arp_down(ipif_t *ipif) 12130 { 12131 ill_t *ill = ipif->ipif_ill; 12132 int err = 0; 12133 12134 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 12135 ASSERT(IAM_WRITER_IPIF(ipif)); 12136 12137 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 12138 ill_t *, ill, ipif_t *, ipif); 12139 ipif_nce_down(ipif); 12140 12141 /* 12142 * If this is the last ipif that is going down and there are no 12143 * duplicate addresses we may yet attempt to re-probe, then we need to 12144 * clean up ARP completely. 12145 */ 12146 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 12147 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 12148 /* 12149 * If this was the last ipif on an IPMP interface, purge any 12150 * static ARP entries associated with it. 12151 */ 12152 if (IS_IPMP(ill)) 12153 ipmp_illgrp_refresh_arpent(ill->ill_grp); 12154 12155 /* UNBIND, DETACH */ 12156 err = arp_ll_down(ill); 12157 } 12158 12159 return (err); 12160 } 12161 12162 /* 12163 * Get the resolver set up for a new IP address. (Always called as writer.) 12164 * Called both for IPv4 and IPv6 interfaces, though it only does some 12165 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 12166 * 12167 * The enumerated value res_act tunes the behavior: 12168 * * Res_act_initial: set up all the resolver structures for a new 12169 * IP address. 12170 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 12171 * ARP message in defense of the address. 12172 * * Res_act_rebind: tell ARP to change the hardware address for an IP 12173 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 12174 * 12175 * Returns zero on success, or an errno upon failure. 12176 */ 12177 int 12178 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 12179 { 12180 ill_t *ill = ipif->ipif_ill; 12181 int err; 12182 boolean_t was_dup; 12183 12184 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12185 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 12186 ASSERT(IAM_WRITER_IPIF(ipif)); 12187 12188 was_dup = B_FALSE; 12189 if (res_act == Res_act_initial) { 12190 ipif->ipif_addr_ready = 0; 12191 /* 12192 * We're bringing an interface up here. There's no way that we 12193 * should need to shut down ARP now. 12194 */ 12195 mutex_enter(&ill->ill_lock); 12196 if (ipif->ipif_flags & IPIF_DUPLICATE) { 12197 ipif->ipif_flags &= ~IPIF_DUPLICATE; 12198 ill->ill_ipif_dup_count--; 12199 was_dup = B_TRUE; 12200 } 12201 mutex_exit(&ill->ill_lock); 12202 } 12203 if (ipif->ipif_recovery_id != 0) 12204 (void) untimeout(ipif->ipif_recovery_id); 12205 ipif->ipif_recovery_id = 0; 12206 if (ill->ill_net_type != IRE_IF_RESOLVER) { 12207 ipif->ipif_addr_ready = 1; 12208 return (0); 12209 } 12210 /* NDP will set the ipif_addr_ready flag when it's ready */ 12211 if (ill->ill_isv6) 12212 return (0); 12213 12214 err = ipif_arp_up(ipif, res_act, was_dup); 12215 return (err); 12216 } 12217 12218 /* 12219 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 12220 * when a link has just gone back up. 12221 */ 12222 static void 12223 ipif_nce_start_dad(ipif_t *ipif) 12224 { 12225 ncec_t *ncec; 12226 ill_t *ill = ipif->ipif_ill; 12227 boolean_t isv6 = ill->ill_isv6; 12228 12229 if (isv6) { 12230 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 12231 &ipif->ipif_v6lcl_addr); 12232 } else { 12233 ipaddr_t v4addr; 12234 12235 if (ill->ill_net_type != IRE_IF_RESOLVER || 12236 (ipif->ipif_flags & IPIF_UNNUMBERED) || 12237 ipif->ipif_lcl_addr == INADDR_ANY) { 12238 /* 12239 * If we can't contact ARP for some reason, 12240 * that's not really a problem. Just send 12241 * out the routing socket notification that 12242 * DAD completion would have done, and continue. 12243 */ 12244 ipif_mask_reply(ipif); 12245 ipif_up_notify(ipif); 12246 ipif->ipif_addr_ready = 1; 12247 return; 12248 } 12249 12250 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 12251 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 12252 } 12253 12254 if (ncec == NULL) { 12255 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 12256 (void *)ipif)); 12257 return; 12258 } 12259 if (!nce_restart_dad(ncec)) { 12260 /* 12261 * If we can't restart DAD for some reason, that's not really a 12262 * problem. Just send out the routing socket notification that 12263 * DAD completion would have done, and continue. 12264 */ 12265 ipif_up_notify(ipif); 12266 ipif->ipif_addr_ready = 1; 12267 } 12268 ncec_refrele(ncec); 12269 } 12270 12271 /* 12272 * Restart duplicate address detection on all interfaces on the given ill. 12273 * 12274 * This is called when an interface transitions from down to up 12275 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 12276 * 12277 * Note that since the underlying physical link has transitioned, we must cause 12278 * at least one routing socket message to be sent here, either via DAD 12279 * completion or just by default on the first ipif. (If we don't do this, then 12280 * in.mpathd will see long delays when doing link-based failure recovery.) 12281 */ 12282 void 12283 ill_restart_dad(ill_t *ill, boolean_t went_up) 12284 { 12285 ipif_t *ipif; 12286 12287 if (ill == NULL) 12288 return; 12289 12290 /* 12291 * If layer two doesn't support duplicate address detection, then just 12292 * send the routing socket message now and be done with it. 12293 */ 12294 if (!ill->ill_isv6 && arp_no_defense) { 12295 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12296 return; 12297 } 12298 12299 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12300 if (went_up) { 12301 12302 if (ipif->ipif_flags & IPIF_UP) { 12303 ipif_nce_start_dad(ipif); 12304 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 12305 /* 12306 * kick off the bring-up process now. 12307 */ 12308 ipif_do_recovery(ipif); 12309 } else { 12310 /* 12311 * Unfortunately, the first ipif is "special" 12312 * and represents the underlying ill in the 12313 * routing socket messages. Thus, when this 12314 * one ipif is down, we must still notify so 12315 * that the user knows the IFF_RUNNING status 12316 * change. (If the first ipif is up, then 12317 * we'll handle eventual routing socket 12318 * notification via DAD completion.) 12319 */ 12320 if (ipif == ill->ill_ipif) { 12321 ip_rts_ifmsg(ill->ill_ipif, 12322 RTSQ_DEFAULT); 12323 } 12324 } 12325 } else { 12326 /* 12327 * After link down, we'll need to send a new routing 12328 * message when the link comes back, so clear 12329 * ipif_addr_ready. 12330 */ 12331 ipif->ipif_addr_ready = 0; 12332 } 12333 } 12334 12335 /* 12336 * If we've torn down links, then notify the user right away. 12337 */ 12338 if (!went_up) 12339 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12340 } 12341 12342 static void 12343 ipsq_delete(ipsq_t *ipsq) 12344 { 12345 ipxop_t *ipx = ipsq->ipsq_xop; 12346 12347 ipsq->ipsq_ipst = NULL; 12348 ASSERT(ipsq->ipsq_phyint == NULL); 12349 ASSERT(ipsq->ipsq_xop != NULL); 12350 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 12351 ASSERT(ipx->ipx_pending_mp == NULL); 12352 kmem_free(ipsq, sizeof (ipsq_t)); 12353 } 12354 12355 static int 12356 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 12357 { 12358 int err = 0; 12359 ipif_t *ipif; 12360 12361 if (ill == NULL) 12362 return (0); 12363 12364 ASSERT(IAM_WRITER_ILL(ill)); 12365 ill->ill_up_ipifs = B_TRUE; 12366 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12367 if (ipif->ipif_was_up) { 12368 if (!(ipif->ipif_flags & IPIF_UP)) 12369 err = ipif_up(ipif, q, mp); 12370 ipif->ipif_was_up = B_FALSE; 12371 if (err != 0) { 12372 ASSERT(err == EINPROGRESS); 12373 return (err); 12374 } 12375 } 12376 } 12377 ill->ill_up_ipifs = B_FALSE; 12378 return (0); 12379 } 12380 12381 /* 12382 * This function is called to bring up all the ipifs that were up before 12383 * bringing the ill down via ill_down_ipifs(). 12384 */ 12385 int 12386 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12387 { 12388 int err; 12389 12390 ASSERT(IAM_WRITER_ILL(ill)); 12391 12392 if (ill->ill_replumbing) { 12393 ill->ill_replumbing = 0; 12394 /* 12395 * Send down REPLUMB_DONE notification followed by the 12396 * BIND_REQ on the arp stream. 12397 */ 12398 if (!ill->ill_isv6) 12399 arp_send_replumb_conf(ill); 12400 } 12401 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12402 if (err != 0) 12403 return (err); 12404 12405 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12406 } 12407 12408 /* 12409 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12410 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12411 */ 12412 static void 12413 ill_down_ipifs(ill_t *ill, boolean_t logical) 12414 { 12415 ipif_t *ipif; 12416 12417 ASSERT(IAM_WRITER_ILL(ill)); 12418 12419 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12420 /* 12421 * We go through the ipif_down logic even if the ipif 12422 * is already down, since routes can be added based 12423 * on down ipifs. Going through ipif_down once again 12424 * will delete any IREs created based on these routes. 12425 */ 12426 if (ipif->ipif_flags & IPIF_UP) 12427 ipif->ipif_was_up = B_TRUE; 12428 12429 if (logical) { 12430 (void) ipif_logical_down(ipif, NULL, NULL); 12431 ipif_non_duplicate(ipif); 12432 (void) ipif_down_tail(ipif); 12433 } else { 12434 (void) ipif_down(ipif, NULL, NULL); 12435 } 12436 } 12437 } 12438 12439 /* 12440 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12441 * a look again at valid source addresses. 12442 * This should be called each time after the set of source addresses has been 12443 * changed. 12444 */ 12445 void 12446 ip_update_source_selection(ip_stack_t *ipst) 12447 { 12448 /* We skip past SRC_GENERATION_VERIFY */ 12449 if (atomic_add_32_nv(&ipst->ips_src_generation, 1) == 12450 SRC_GENERATION_VERIFY) 12451 atomic_add_32(&ipst->ips_src_generation, 1); 12452 } 12453 12454 /* 12455 * Finish the group join started in ip_sioctl_groupname(). 12456 */ 12457 /* ARGSUSED */ 12458 static void 12459 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12460 { 12461 ill_t *ill = q->q_ptr; 12462 phyint_t *phyi = ill->ill_phyint; 12463 ipmp_grp_t *grp = phyi->phyint_grp; 12464 ip_stack_t *ipst = ill->ill_ipst; 12465 12466 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12467 ASSERT(!IS_IPMP(ill) && grp != NULL); 12468 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12469 12470 if (phyi->phyint_illv4 != NULL) { 12471 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12472 VERIFY(grp->gr_pendv4-- > 0); 12473 rw_exit(&ipst->ips_ipmp_lock); 12474 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12475 } 12476 if (phyi->phyint_illv6 != NULL) { 12477 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12478 VERIFY(grp->gr_pendv6-- > 0); 12479 rw_exit(&ipst->ips_ipmp_lock); 12480 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12481 } 12482 freemsg(mp); 12483 } 12484 12485 /* 12486 * Process an SIOCSLIFGROUPNAME request. 12487 */ 12488 /* ARGSUSED */ 12489 int 12490 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12491 ip_ioctl_cmd_t *ipip, void *ifreq) 12492 { 12493 struct lifreq *lifr = ifreq; 12494 ill_t *ill = ipif->ipif_ill; 12495 ip_stack_t *ipst = ill->ill_ipst; 12496 phyint_t *phyi = ill->ill_phyint; 12497 ipmp_grp_t *grp = phyi->phyint_grp; 12498 mblk_t *ipsq_mp; 12499 int err = 0; 12500 12501 /* 12502 * Note that phyint_grp can only change here, where we're exclusive. 12503 */ 12504 ASSERT(IAM_WRITER_ILL(ill)); 12505 12506 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12507 (phyi->phyint_flags & PHYI_VIRTUAL)) 12508 return (EINVAL); 12509 12510 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12511 12512 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12513 12514 /* 12515 * If the name hasn't changed, there's nothing to do. 12516 */ 12517 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12518 goto unlock; 12519 12520 /* 12521 * Handle requests to rename an IPMP meta-interface. 12522 * 12523 * Note that creation of the IPMP meta-interface is handled in 12524 * userland through the standard plumbing sequence. As part of the 12525 * plumbing the IPMP meta-interface, its initial groupname is set to 12526 * the name of the interface (see ipif_set_values_tail()). 12527 */ 12528 if (IS_IPMP(ill)) { 12529 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12530 goto unlock; 12531 } 12532 12533 /* 12534 * Handle requests to add or remove an IP interface from a group. 12535 */ 12536 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12537 /* 12538 * Moves are handled by first removing the interface from 12539 * its existing group, and then adding it to another group. 12540 * So, fail if it's already in a group. 12541 */ 12542 if (IS_UNDER_IPMP(ill)) { 12543 err = EALREADY; 12544 goto unlock; 12545 } 12546 12547 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12548 if (grp == NULL) { 12549 err = ENOENT; 12550 goto unlock; 12551 } 12552 12553 /* 12554 * Check if the phyint and its ills are suitable for 12555 * inclusion into the group. 12556 */ 12557 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12558 goto unlock; 12559 12560 /* 12561 * Checks pass; join the group, and enqueue the remaining 12562 * illgrp joins for when we've become part of the group xop 12563 * and are exclusive across its IPSQs. Since qwriter_ip() 12564 * requires an mblk_t to scribble on, and since `mp' will be 12565 * freed as part of completing the ioctl, allocate another. 12566 */ 12567 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12568 err = ENOMEM; 12569 goto unlock; 12570 } 12571 12572 /* 12573 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12574 * IPMP meta-interface ills needed by `phyi' cannot go away 12575 * before ip_join_illgrps() is called back. See the comments 12576 * in ip_sioctl_plink_ipmp() for more. 12577 */ 12578 if (phyi->phyint_illv4 != NULL) 12579 grp->gr_pendv4++; 12580 if (phyi->phyint_illv6 != NULL) 12581 grp->gr_pendv6++; 12582 12583 rw_exit(&ipst->ips_ipmp_lock); 12584 12585 ipmp_phyint_join_grp(phyi, grp); 12586 ill_refhold(ill); 12587 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12588 SWITCH_OP, B_FALSE); 12589 return (0); 12590 } else { 12591 /* 12592 * Request to remove the interface from a group. If the 12593 * interface is not in a group, this trivially succeeds. 12594 */ 12595 rw_exit(&ipst->ips_ipmp_lock); 12596 if (IS_UNDER_IPMP(ill)) 12597 ipmp_phyint_leave_grp(phyi); 12598 return (0); 12599 } 12600 unlock: 12601 rw_exit(&ipst->ips_ipmp_lock); 12602 return (err); 12603 } 12604 12605 /* 12606 * Process an SIOCGLIFBINDING request. 12607 */ 12608 /* ARGSUSED */ 12609 int 12610 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12611 ip_ioctl_cmd_t *ipip, void *ifreq) 12612 { 12613 ill_t *ill; 12614 struct lifreq *lifr = ifreq; 12615 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12616 12617 if (!IS_IPMP(ipif->ipif_ill)) 12618 return (EINVAL); 12619 12620 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12621 if ((ill = ipif->ipif_bound_ill) == NULL) 12622 lifr->lifr_binding[0] = '\0'; 12623 else 12624 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12625 rw_exit(&ipst->ips_ipmp_lock); 12626 return (0); 12627 } 12628 12629 /* 12630 * Process an SIOCGLIFGROUPNAME request. 12631 */ 12632 /* ARGSUSED */ 12633 int 12634 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12635 ip_ioctl_cmd_t *ipip, void *ifreq) 12636 { 12637 ipmp_grp_t *grp; 12638 struct lifreq *lifr = ifreq; 12639 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12640 12641 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12642 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12643 lifr->lifr_groupname[0] = '\0'; 12644 else 12645 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12646 rw_exit(&ipst->ips_ipmp_lock); 12647 return (0); 12648 } 12649 12650 /* 12651 * Process an SIOCGLIFGROUPINFO request. 12652 */ 12653 /* ARGSUSED */ 12654 int 12655 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12656 ip_ioctl_cmd_t *ipip, void *dummy) 12657 { 12658 ipmp_grp_t *grp; 12659 lifgroupinfo_t *lifgr; 12660 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12661 12662 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12663 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12664 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12665 12666 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12667 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12668 rw_exit(&ipst->ips_ipmp_lock); 12669 return (ENOENT); 12670 } 12671 ipmp_grp_info(grp, lifgr); 12672 rw_exit(&ipst->ips_ipmp_lock); 12673 return (0); 12674 } 12675 12676 static void 12677 ill_dl_down(ill_t *ill) 12678 { 12679 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12680 12681 /* 12682 * The ill is down; unbind but stay attached since we're still 12683 * associated with a PPA. If we have negotiated DLPI capabilites 12684 * with the data link service provider (IDS_OK) then reset them. 12685 * The interval between unbinding and rebinding is potentially 12686 * unbounded hence we cannot assume things will be the same. 12687 * The DLPI capabilities will be probed again when the data link 12688 * is brought up. 12689 */ 12690 mblk_t *mp = ill->ill_unbind_mp; 12691 12692 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12693 12694 if (!ill->ill_replumbing) { 12695 /* Free all ilms for this ill */ 12696 update_conn_ill(ill, ill->ill_ipst); 12697 } else { 12698 ill_leave_multicast(ill); 12699 } 12700 12701 ill->ill_unbind_mp = NULL; 12702 if (mp != NULL) { 12703 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12704 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12705 ill->ill_name)); 12706 mutex_enter(&ill->ill_lock); 12707 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12708 mutex_exit(&ill->ill_lock); 12709 /* 12710 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12711 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12712 * ill_capability_dld_disable disable rightaway. If this is not 12713 * an unplumb operation then the disable happens on receipt of 12714 * the capab ack via ip_rput_dlpi_writer -> 12715 * ill_capability_ack_thr. In both cases the order of 12716 * the operations seen by DLD is capability disable followed 12717 * by DL_UNBIND. Also the DLD capability disable needs a 12718 * cv_wait'able context. 12719 */ 12720 if (ill->ill_state_flags & ILL_CONDEMNED) 12721 ill_capability_dld_disable(ill); 12722 ill_capability_reset(ill, B_FALSE); 12723 ill_dlpi_send(ill, mp); 12724 } 12725 mutex_enter(&ill->ill_lock); 12726 ill->ill_dl_up = 0; 12727 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12728 mutex_exit(&ill->ill_lock); 12729 } 12730 12731 void 12732 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12733 { 12734 union DL_primitives *dlp; 12735 t_uscalar_t prim; 12736 boolean_t waitack = B_FALSE; 12737 12738 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12739 12740 dlp = (union DL_primitives *)mp->b_rptr; 12741 prim = dlp->dl_primitive; 12742 12743 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12744 dl_primstr(prim), prim, ill->ill_name)); 12745 12746 switch (prim) { 12747 case DL_PHYS_ADDR_REQ: 12748 { 12749 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12750 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12751 break; 12752 } 12753 case DL_BIND_REQ: 12754 mutex_enter(&ill->ill_lock); 12755 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12756 mutex_exit(&ill->ill_lock); 12757 break; 12758 } 12759 12760 /* 12761 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12762 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12763 * we only wait for the ACK of the DL_UNBIND_REQ. 12764 */ 12765 mutex_enter(&ill->ill_lock); 12766 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12767 (prim == DL_UNBIND_REQ)) { 12768 ill->ill_dlpi_pending = prim; 12769 waitack = B_TRUE; 12770 } 12771 12772 mutex_exit(&ill->ill_lock); 12773 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12774 char *, dl_primstr(prim), ill_t *, ill); 12775 putnext(ill->ill_wq, mp); 12776 12777 /* 12778 * There is no ack for DL_NOTIFY_CONF messages 12779 */ 12780 if (waitack && prim == DL_NOTIFY_CONF) 12781 ill_dlpi_done(ill, prim); 12782 } 12783 12784 /* 12785 * Helper function for ill_dlpi_send(). 12786 */ 12787 /* ARGSUSED */ 12788 static void 12789 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12790 { 12791 ill_dlpi_send(q->q_ptr, mp); 12792 } 12793 12794 /* 12795 * Send a DLPI control message to the driver but make sure there 12796 * is only one outstanding message. Uses ill_dlpi_pending to tell 12797 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12798 * when an ACK or a NAK is received to process the next queued message. 12799 */ 12800 void 12801 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12802 { 12803 mblk_t **mpp; 12804 12805 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12806 12807 /* 12808 * To ensure that any DLPI requests for current exclusive operation 12809 * are always completely sent before any DLPI messages for other 12810 * operations, require writer access before enqueuing. 12811 */ 12812 if (!IAM_WRITER_ILL(ill)) { 12813 ill_refhold(ill); 12814 /* qwriter_ip() does the ill_refrele() */ 12815 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12816 NEW_OP, B_TRUE); 12817 return; 12818 } 12819 12820 mutex_enter(&ill->ill_lock); 12821 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12822 /* Must queue message. Tail insertion */ 12823 mpp = &ill->ill_dlpi_deferred; 12824 while (*mpp != NULL) 12825 mpp = &((*mpp)->b_next); 12826 12827 ip1dbg(("ill_dlpi_send: deferring request for %s " 12828 "while %s pending\n", ill->ill_name, 12829 dl_primstr(ill->ill_dlpi_pending))); 12830 12831 *mpp = mp; 12832 mutex_exit(&ill->ill_lock); 12833 return; 12834 } 12835 mutex_exit(&ill->ill_lock); 12836 ill_dlpi_dispatch(ill, mp); 12837 } 12838 12839 void 12840 ill_capability_send(ill_t *ill, mblk_t *mp) 12841 { 12842 ill->ill_capab_pending_cnt++; 12843 ill_dlpi_send(ill, mp); 12844 } 12845 12846 void 12847 ill_capability_done(ill_t *ill) 12848 { 12849 ASSERT(ill->ill_capab_pending_cnt != 0); 12850 12851 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12852 12853 ill->ill_capab_pending_cnt--; 12854 if (ill->ill_capab_pending_cnt == 0 && 12855 ill->ill_dlpi_capab_state == IDCS_OK) 12856 ill_capability_reset_alloc(ill); 12857 } 12858 12859 /* 12860 * Send all deferred DLPI messages without waiting for their ACKs. 12861 */ 12862 void 12863 ill_dlpi_send_deferred(ill_t *ill) 12864 { 12865 mblk_t *mp, *nextmp; 12866 12867 /* 12868 * Clear ill_dlpi_pending so that the message is not queued in 12869 * ill_dlpi_send(). 12870 */ 12871 mutex_enter(&ill->ill_lock); 12872 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12873 mp = ill->ill_dlpi_deferred; 12874 ill->ill_dlpi_deferred = NULL; 12875 mutex_exit(&ill->ill_lock); 12876 12877 for (; mp != NULL; mp = nextmp) { 12878 nextmp = mp->b_next; 12879 mp->b_next = NULL; 12880 ill_dlpi_send(ill, mp); 12881 } 12882 } 12883 12884 /* 12885 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR 12886 * or M_HANGUP 12887 */ 12888 static void 12889 ill_dlpi_clear_deferred(ill_t *ill) 12890 { 12891 mblk_t *mp, *nextmp; 12892 12893 mutex_enter(&ill->ill_lock); 12894 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12895 mp = ill->ill_dlpi_deferred; 12896 ill->ill_dlpi_deferred = NULL; 12897 mutex_exit(&ill->ill_lock); 12898 12899 for (; mp != NULL; mp = nextmp) { 12900 nextmp = mp->b_next; 12901 inet_freemsg(mp); 12902 } 12903 } 12904 12905 /* 12906 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12907 */ 12908 boolean_t 12909 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12910 { 12911 t_uscalar_t pending; 12912 12913 mutex_enter(&ill->ill_lock); 12914 if (ill->ill_dlpi_pending == prim) { 12915 mutex_exit(&ill->ill_lock); 12916 return (B_TRUE); 12917 } 12918 12919 /* 12920 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12921 * without waiting, so don't print any warnings in that case. 12922 */ 12923 if (ill->ill_state_flags & ILL_CONDEMNED) { 12924 mutex_exit(&ill->ill_lock); 12925 return (B_FALSE); 12926 } 12927 pending = ill->ill_dlpi_pending; 12928 mutex_exit(&ill->ill_lock); 12929 12930 if (pending == DL_PRIM_INVAL) { 12931 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12932 "received unsolicited ack for %s on %s\n", 12933 dl_primstr(prim), ill->ill_name); 12934 } else { 12935 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12936 "received unexpected ack for %s on %s (expecting %s)\n", 12937 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12938 } 12939 return (B_FALSE); 12940 } 12941 12942 /* 12943 * Complete the current DLPI operation associated with `prim' on `ill' and 12944 * start the next queued DLPI operation (if any). If there are no queued DLPI 12945 * operations and the ill's current exclusive IPSQ operation has finished 12946 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12947 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12948 * the comments above ipsq_current_finish() for details. 12949 */ 12950 void 12951 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12952 { 12953 mblk_t *mp; 12954 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12955 ipxop_t *ipx = ipsq->ipsq_xop; 12956 12957 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12958 mutex_enter(&ill->ill_lock); 12959 12960 ASSERT(prim != DL_PRIM_INVAL); 12961 ASSERT(ill->ill_dlpi_pending == prim); 12962 12963 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12964 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12965 12966 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12967 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12968 if (ipx->ipx_current_done) { 12969 mutex_enter(&ipx->ipx_lock); 12970 ipx->ipx_current_ipif = NULL; 12971 mutex_exit(&ipx->ipx_lock); 12972 } 12973 cv_signal(&ill->ill_cv); 12974 mutex_exit(&ill->ill_lock); 12975 return; 12976 } 12977 12978 ill->ill_dlpi_deferred = mp->b_next; 12979 mp->b_next = NULL; 12980 mutex_exit(&ill->ill_lock); 12981 12982 ill_dlpi_dispatch(ill, mp); 12983 } 12984 12985 /* 12986 * Queue a (multicast) DLPI control message to be sent to the driver by 12987 * later calling ill_dlpi_send_queued. 12988 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12989 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 12990 * for the same group to race. 12991 * We send DLPI control messages in order using ill_lock. 12992 * For IPMP we should be called on the cast_ill. 12993 */ 12994 void 12995 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 12996 { 12997 mblk_t **mpp; 12998 12999 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 13000 13001 mutex_enter(&ill->ill_lock); 13002 /* Must queue message. Tail insertion */ 13003 mpp = &ill->ill_dlpi_deferred; 13004 while (*mpp != NULL) 13005 mpp = &((*mpp)->b_next); 13006 13007 *mpp = mp; 13008 mutex_exit(&ill->ill_lock); 13009 } 13010 13011 /* 13012 * Send the messages that were queued. Make sure there is only 13013 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 13014 * when an ACK or a NAK is received to process the next queued message. 13015 * For IPMP we are called on the upper ill, but when send what is queued 13016 * on the cast_ill. 13017 */ 13018 void 13019 ill_dlpi_send_queued(ill_t *ill) 13020 { 13021 mblk_t *mp; 13022 union DL_primitives *dlp; 13023 t_uscalar_t prim; 13024 ill_t *release_ill = NULL; 13025 13026 if (IS_IPMP(ill)) { 13027 /* On the upper IPMP ill. */ 13028 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13029 if (release_ill == NULL) { 13030 /* Avoid ever sending anything down to the ipmpstub */ 13031 return; 13032 } 13033 ill = release_ill; 13034 } 13035 mutex_enter(&ill->ill_lock); 13036 while ((mp = ill->ill_dlpi_deferred) != NULL) { 13037 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 13038 /* Can't send. Somebody else will send it */ 13039 mutex_exit(&ill->ill_lock); 13040 goto done; 13041 } 13042 ill->ill_dlpi_deferred = mp->b_next; 13043 mp->b_next = NULL; 13044 if (!ill->ill_dl_up) { 13045 /* 13046 * Nobody there. All multicast addresses will be 13047 * re-joined when we get the DL_BIND_ACK bringing the 13048 * interface up. 13049 */ 13050 freemsg(mp); 13051 continue; 13052 } 13053 dlp = (union DL_primitives *)mp->b_rptr; 13054 prim = dlp->dl_primitive; 13055 13056 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 13057 (prim == DL_UNBIND_REQ)) { 13058 ill->ill_dlpi_pending = prim; 13059 } 13060 mutex_exit(&ill->ill_lock); 13061 13062 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 13063 char *, dl_primstr(prim), ill_t *, ill); 13064 putnext(ill->ill_wq, mp); 13065 mutex_enter(&ill->ill_lock); 13066 } 13067 mutex_exit(&ill->ill_lock); 13068 done: 13069 if (release_ill != NULL) 13070 ill_refrele(release_ill); 13071 } 13072 13073 /* 13074 * Queue an IP (IGMP/MLD) message to be sent by IP from 13075 * ill_mcast_send_queued 13076 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 13077 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 13078 * group to race. 13079 * We send them in order using ill_lock. 13080 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 13081 */ 13082 void 13083 ill_mcast_queue(ill_t *ill, mblk_t *mp) 13084 { 13085 mblk_t **mpp; 13086 ill_t *release_ill = NULL; 13087 13088 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 13089 13090 if (IS_IPMP(ill)) { 13091 /* On the upper IPMP ill. */ 13092 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13093 if (release_ill == NULL) { 13094 /* Discard instead of queuing for the ipmp interface */ 13095 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13096 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 13097 mp, ill); 13098 freemsg(mp); 13099 return; 13100 } 13101 ill = release_ill; 13102 } 13103 13104 mutex_enter(&ill->ill_lock); 13105 /* Must queue message. Tail insertion */ 13106 mpp = &ill->ill_mcast_deferred; 13107 while (*mpp != NULL) 13108 mpp = &((*mpp)->b_next); 13109 13110 *mpp = mp; 13111 mutex_exit(&ill->ill_lock); 13112 if (release_ill != NULL) 13113 ill_refrele(release_ill); 13114 } 13115 13116 /* 13117 * Send the IP packets that were queued by ill_mcast_queue. 13118 * These are IGMP/MLD packets. 13119 * 13120 * For IPMP we are called on the upper ill, but when send what is queued 13121 * on the cast_ill. 13122 * 13123 * Request loopback of the report if we are acting as a multicast 13124 * router, so that the process-level routing demon can hear it. 13125 * This will run multiple times for the same group if there are members 13126 * on the same group for multiple ipif's on the same ill. The 13127 * igmp_input/mld_input code will suppress this due to the loopback thus we 13128 * always loopback membership report. 13129 * 13130 * We also need to make sure that this does not get load balanced 13131 * by IPMP. We do this by passing an ill to ip_output_simple. 13132 */ 13133 void 13134 ill_mcast_send_queued(ill_t *ill) 13135 { 13136 mblk_t *mp; 13137 ip_xmit_attr_t ixas; 13138 ill_t *release_ill = NULL; 13139 13140 if (IS_IPMP(ill)) { 13141 /* On the upper IPMP ill. */ 13142 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13143 if (release_ill == NULL) { 13144 /* 13145 * We should have no messages on the ipmp interface 13146 * but no point in trying to send them. 13147 */ 13148 return; 13149 } 13150 ill = release_ill; 13151 } 13152 bzero(&ixas, sizeof (ixas)); 13153 ixas.ixa_zoneid = ALL_ZONES; 13154 ixas.ixa_cred = kcred; 13155 ixas.ixa_cpid = NOPID; 13156 ixas.ixa_tsl = NULL; 13157 /* 13158 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 13159 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 13160 * That is necessary to handle IGMP/MLD snooping switches. 13161 */ 13162 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 13163 ixas.ixa_ipst = ill->ill_ipst; 13164 13165 mutex_enter(&ill->ill_lock); 13166 while ((mp = ill->ill_mcast_deferred) != NULL) { 13167 ill->ill_mcast_deferred = mp->b_next; 13168 mp->b_next = NULL; 13169 if (!ill->ill_dl_up) { 13170 /* 13171 * Nobody there. Just drop the ip packets. 13172 * IGMP/MLD will resend later, if this is a replumb. 13173 */ 13174 freemsg(mp); 13175 continue; 13176 } 13177 mutex_enter(&ill->ill_phyint->phyint_lock); 13178 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 13179 /* 13180 * When the ill is getting deactivated, we only want to 13181 * send the DLPI messages, so drop IGMP/MLD packets. 13182 * DLPI messages are handled by ill_dlpi_send_queued() 13183 */ 13184 mutex_exit(&ill->ill_phyint->phyint_lock); 13185 freemsg(mp); 13186 continue; 13187 } 13188 mutex_exit(&ill->ill_phyint->phyint_lock); 13189 mutex_exit(&ill->ill_lock); 13190 13191 /* Check whether we are sending IPv4 or IPv6. */ 13192 if (ill->ill_isv6) { 13193 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 13194 13195 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 13196 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 13197 } else { 13198 ipha_t *ipha = (ipha_t *)mp->b_rptr; 13199 13200 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 13201 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13202 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 13203 } 13204 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE; 13205 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 13206 (void) ip_output_simple(mp, &ixas); 13207 ixa_cleanup(&ixas); 13208 13209 mutex_enter(&ill->ill_lock); 13210 } 13211 mutex_exit(&ill->ill_lock); 13212 13213 done: 13214 if (release_ill != NULL) 13215 ill_refrele(release_ill); 13216 } 13217 13218 /* 13219 * Take down a specific interface, but don't lose any information about it. 13220 * (Always called as writer.) 13221 * This function goes through the down sequence even if the interface is 13222 * already down. There are 2 reasons. 13223 * a. Currently we permit interface routes that depend on down interfaces 13224 * to be added. This behaviour itself is questionable. However it appears 13225 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 13226 * time. We go thru the cleanup in order to remove these routes. 13227 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 13228 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 13229 * down, but we need to cleanup i.e. do ill_dl_down and 13230 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 13231 * 13232 * IP-MT notes: 13233 * 13234 * Model of reference to interfaces. 13235 * 13236 * The following members in ipif_t track references to the ipif. 13237 * int ipif_refcnt; Active reference count 13238 * 13239 * The following members in ill_t track references to the ill. 13240 * int ill_refcnt; active refcnt 13241 * uint_t ill_ire_cnt; Number of ires referencing ill 13242 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 13243 * uint_t ill_nce_cnt; Number of nces referencing ill 13244 * uint_t ill_ilm_cnt; Number of ilms referencing ill 13245 * 13246 * Reference to an ipif or ill can be obtained in any of the following ways. 13247 * 13248 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 13249 * Pointers to ipif / ill from other data structures viz ire and conn. 13250 * Implicit reference to the ipif / ill by holding a reference to the ire. 13251 * 13252 * The ipif/ill lookup functions return a reference held ipif / ill. 13253 * ipif_refcnt and ill_refcnt track the reference counts respectively. 13254 * This is a purely dynamic reference count associated with threads holding 13255 * references to the ipif / ill. Pointers from other structures do not 13256 * count towards this reference count. 13257 * 13258 * ill_ire_cnt is the number of ire's associated with the 13259 * ill. This is incremented whenever a new ire is created referencing the 13260 * ill. This is done atomically inside ire_add_v[46] where the ire is 13261 * actually added to the ire hash table. The count is decremented in 13262 * ire_inactive where the ire is destroyed. 13263 * 13264 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 13265 * This is incremented atomically in 13266 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 13267 * table. Similarly it is decremented in ncec_inactive() where the ncec 13268 * is destroyed. 13269 * 13270 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 13271 * incremented atomically in nce_add() where the nce is actually added to the 13272 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 13273 * is destroyed. 13274 * 13275 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 13276 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 13277 * 13278 * Flow of ioctls involving interface down/up 13279 * 13280 * The following is the sequence of an attempt to set some critical flags on an 13281 * up interface. 13282 * ip_sioctl_flags 13283 * ipif_down 13284 * wait for ipif to be quiescent 13285 * ipif_down_tail 13286 * ip_sioctl_flags_tail 13287 * 13288 * All set ioctls that involve down/up sequence would have a skeleton similar 13289 * to the above. All the *tail functions are called after the refcounts have 13290 * dropped to the appropriate values. 13291 * 13292 * SIOC ioctls during the IPIF_CHANGING interval. 13293 * 13294 * Threads handling SIOC set ioctls serialize on the squeue, but this 13295 * is not done for SIOC get ioctls. Since a set ioctl can cause several 13296 * steps of internal changes to the state, some of which are visible in 13297 * ipif_flags (such as IFF_UP being cleared and later set), and we want 13298 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 13299 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 13300 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 13301 * the current exclusive operation completes. The IPIF_CHANGING check 13302 * and enqueue is atomic using the ill_lock and ipsq_lock. The 13303 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 13304 * change while the ill_lock is held. Before dropping the ill_lock we acquire 13305 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 13306 * until we release the ipsq_lock, even though the ill/ipif state flags 13307 * can change after we drop the ill_lock. 13308 */ 13309 int 13310 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13311 { 13312 ill_t *ill = ipif->ipif_ill; 13313 conn_t *connp; 13314 boolean_t success; 13315 boolean_t ipif_was_up = B_FALSE; 13316 ip_stack_t *ipst = ill->ill_ipst; 13317 13318 ASSERT(IAM_WRITER_IPIF(ipif)); 13319 13320 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13321 13322 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 13323 ill_t *, ill, ipif_t *, ipif); 13324 13325 if (ipif->ipif_flags & IPIF_UP) { 13326 mutex_enter(&ill->ill_lock); 13327 ipif->ipif_flags &= ~IPIF_UP; 13328 ASSERT(ill->ill_ipif_up_count > 0); 13329 --ill->ill_ipif_up_count; 13330 mutex_exit(&ill->ill_lock); 13331 ipif_was_up = B_TRUE; 13332 /* Update status in SCTP's list */ 13333 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 13334 ill_nic_event_dispatch(ipif->ipif_ill, 13335 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 13336 } 13337 13338 /* 13339 * Removal of the last ipif from an ill may result in a DL_UNBIND 13340 * being sent to the driver, and we must not send any data packets to 13341 * the driver after the DL_UNBIND_REQ. To ensure this, all the 13342 * ire and nce entries used in the data path will be cleaned 13343 * up, and we also set the ILL_DOWN_IN_PROGRESS bit to make 13344 * sure on new entries will be added until the ill is bound 13345 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon 13346 * receipt of a DL_BIND_ACK. 13347 */ 13348 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13349 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13350 ill->ill_dl_up) { 13351 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 13352 } 13353 13354 /* 13355 * Blow away memberships we established in ipif_multicast_up(). 13356 */ 13357 ipif_multicast_down(ipif); 13358 13359 /* 13360 * Remove from the mapping for __sin6_src_id. We insert only 13361 * when the address is not INADDR_ANY. As IPv4 addresses are 13362 * stored as mapped addresses, we need to check for mapped 13363 * INADDR_ANY also. 13364 */ 13365 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 13366 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 13367 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13368 int err; 13369 13370 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 13371 ipif->ipif_zoneid, ipst); 13372 if (err != 0) { 13373 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 13374 } 13375 } 13376 13377 if (ipif_was_up) { 13378 /* only delete if we'd added ire's before */ 13379 if (ipif->ipif_isv6) 13380 ipif_delete_ires_v6(ipif); 13381 else 13382 ipif_delete_ires_v4(ipif); 13383 } 13384 13385 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 13386 /* 13387 * Since the interface is now down, it may have just become 13388 * inactive. Note that this needs to be done even for a 13389 * lll_logical_down(), or ARP entries will not get correctly 13390 * restored when the interface comes back up. 13391 */ 13392 if (IS_UNDER_IPMP(ill)) 13393 ipmp_ill_refresh_active(ill); 13394 } 13395 13396 /* 13397 * neighbor-discovery or arp entries for this interface. The ipif 13398 * has to be quiesced, so we walk all the nce's and delete those 13399 * that point at the ipif->ipif_ill. At the same time, we also 13400 * update IPMP so that ipifs for data addresses are unbound. We dont 13401 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13402 * that for ipif_down_tail() 13403 */ 13404 ipif_nce_down(ipif); 13405 13406 /* 13407 * If this is the last ipif on the ill, we also need to remove 13408 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13409 * never succeed. 13410 */ 13411 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13412 ire_walk_ill(0, 0, ill_downi, ill, ill); 13413 13414 /* 13415 * Walk all CONNs that can have a reference on an ire for this 13416 * ipif (we actually walk all that now have stale references). 13417 */ 13418 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13419 13420 /* 13421 * If mp is NULL the caller will wait for the appropriate refcnt. 13422 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13423 * and ill_delete -> ipif_free -> ipif_down 13424 */ 13425 if (mp == NULL) { 13426 ASSERT(q == NULL); 13427 return (0); 13428 } 13429 13430 if (CONN_Q(q)) { 13431 connp = Q_TO_CONN(q); 13432 mutex_enter(&connp->conn_lock); 13433 } else { 13434 connp = NULL; 13435 } 13436 mutex_enter(&ill->ill_lock); 13437 /* 13438 * Are there any ire's pointing to this ipif that are still active ? 13439 * If this is the last ipif going down, are there any ire's pointing 13440 * to this ill that are still active ? 13441 */ 13442 if (ipif_is_quiescent(ipif)) { 13443 mutex_exit(&ill->ill_lock); 13444 if (connp != NULL) 13445 mutex_exit(&connp->conn_lock); 13446 return (0); 13447 } 13448 13449 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13450 ill->ill_name, (void *)ill)); 13451 /* 13452 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13453 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13454 * which in turn is called by the last refrele on the ipif/ill/ire. 13455 */ 13456 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13457 if (!success) { 13458 /* The conn is closing. So just return */ 13459 ASSERT(connp != NULL); 13460 mutex_exit(&ill->ill_lock); 13461 mutex_exit(&connp->conn_lock); 13462 return (EINTR); 13463 } 13464 13465 mutex_exit(&ill->ill_lock); 13466 if (connp != NULL) 13467 mutex_exit(&connp->conn_lock); 13468 return (EINPROGRESS); 13469 } 13470 13471 int 13472 ipif_down_tail(ipif_t *ipif) 13473 { 13474 ill_t *ill = ipif->ipif_ill; 13475 int err = 0; 13476 13477 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13478 ill_t *, ill, ipif_t *, ipif); 13479 13480 /* 13481 * Skip any loopback interface (null wq). 13482 * If this is the last logical interface on the ill 13483 * have ill_dl_down tell the driver we are gone (unbind) 13484 * Note that lun 0 can ipif_down even though 13485 * there are other logical units that are up. 13486 * This occurs e.g. when we change a "significant" IFF_ flag. 13487 */ 13488 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13489 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13490 ill->ill_dl_up) { 13491 ill_dl_down(ill); 13492 } 13493 if (!ipif->ipif_isv6) 13494 err = ipif_arp_down(ipif); 13495 13496 ill->ill_logical_down = 0; 13497 13498 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13499 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13500 return (err); 13501 } 13502 13503 /* 13504 * Bring interface logically down without bringing the physical interface 13505 * down e.g. when the netmask is changed. This avoids long lasting link 13506 * negotiations between an ethernet interface and a certain switches. 13507 */ 13508 static int 13509 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13510 { 13511 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13512 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13513 13514 /* 13515 * The ill_logical_down flag is a transient flag. It is set here 13516 * and is cleared once the down has completed in ipif_down_tail. 13517 * This flag does not indicate whether the ill stream is in the 13518 * DL_BOUND state with the driver. Instead this flag is used by 13519 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13520 * the driver. The state of the ill stream i.e. whether it is 13521 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13522 */ 13523 ipif->ipif_ill->ill_logical_down = 1; 13524 return (ipif_down(ipif, q, mp)); 13525 } 13526 13527 /* 13528 * Initiate deallocate of an IPIF. Always called as writer. Called by 13529 * ill_delete or ip_sioctl_removeif. 13530 */ 13531 static void 13532 ipif_free(ipif_t *ipif) 13533 { 13534 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13535 13536 ASSERT(IAM_WRITER_IPIF(ipif)); 13537 13538 if (ipif->ipif_recovery_id != 0) 13539 (void) untimeout(ipif->ipif_recovery_id); 13540 ipif->ipif_recovery_id = 0; 13541 13542 /* 13543 * Take down the interface. We can be called either from ill_delete 13544 * or from ip_sioctl_removeif. 13545 */ 13546 (void) ipif_down(ipif, NULL, NULL); 13547 13548 /* 13549 * Now that the interface is down, there's no chance it can still 13550 * become a duplicate. Cancel any timer that may have been set while 13551 * tearing down. 13552 */ 13553 if (ipif->ipif_recovery_id != 0) 13554 (void) untimeout(ipif->ipif_recovery_id); 13555 ipif->ipif_recovery_id = 0; 13556 13557 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13558 /* Remove pointers to this ill in the multicast routing tables */ 13559 reset_mrt_vif_ipif(ipif); 13560 /* If necessary, clear the cached source ipif rotor. */ 13561 if (ipif->ipif_ill->ill_src_ipif == ipif) 13562 ipif->ipif_ill->ill_src_ipif = NULL; 13563 rw_exit(&ipst->ips_ill_g_lock); 13564 } 13565 13566 static void 13567 ipif_free_tail(ipif_t *ipif) 13568 { 13569 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13570 13571 /* 13572 * Need to hold both ill_g_lock and ill_lock while 13573 * inserting or removing an ipif from the linked list 13574 * of ipifs hanging off the ill. 13575 */ 13576 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13577 13578 #ifdef DEBUG 13579 ipif_trace_cleanup(ipif); 13580 #endif 13581 13582 /* Ask SCTP to take it out of it list */ 13583 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13584 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13585 13586 /* Get it out of the ILL interface list. */ 13587 ipif_remove(ipif); 13588 rw_exit(&ipst->ips_ill_g_lock); 13589 13590 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13591 ASSERT(ipif->ipif_recovery_id == 0); 13592 ASSERT(ipif->ipif_ire_local == NULL); 13593 ASSERT(ipif->ipif_ire_if == NULL); 13594 13595 /* Free the memory. */ 13596 mi_free(ipif); 13597 } 13598 13599 /* 13600 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13601 * is zero. 13602 */ 13603 void 13604 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13605 { 13606 char lbuf[LIFNAMSIZ]; 13607 char *name; 13608 size_t name_len; 13609 13610 buf[0] = '\0'; 13611 name = ipif->ipif_ill->ill_name; 13612 name_len = ipif->ipif_ill->ill_name_length; 13613 if (ipif->ipif_id != 0) { 13614 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13615 ipif->ipif_id); 13616 name = lbuf; 13617 name_len = mi_strlen(name) + 1; 13618 } 13619 len -= 1; 13620 buf[len] = '\0'; 13621 len = MIN(len, name_len); 13622 bcopy(name, buf, len); 13623 } 13624 13625 /* 13626 * Sets `buf' to an ill name. 13627 */ 13628 void 13629 ill_get_name(const ill_t *ill, char *buf, int len) 13630 { 13631 char *name; 13632 size_t name_len; 13633 13634 name = ill->ill_name; 13635 name_len = ill->ill_name_length; 13636 len -= 1; 13637 buf[len] = '\0'; 13638 len = MIN(len, name_len); 13639 bcopy(name, buf, len); 13640 } 13641 13642 /* 13643 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13644 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13645 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13646 * (May be called as writer.) 13647 */ 13648 static ipif_t * 13649 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13650 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13651 { 13652 char *cp; 13653 char *endp; 13654 long id; 13655 ill_t *ill; 13656 ipif_t *ipif; 13657 uint_t ire_type; 13658 boolean_t did_alloc = B_FALSE; 13659 char last; 13660 13661 /* 13662 * If the caller wants to us to create the ipif, make sure we have a 13663 * valid zoneid 13664 */ 13665 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13666 13667 if (namelen == 0) { 13668 return (NULL); 13669 } 13670 13671 *exists = B_FALSE; 13672 /* Look for a colon in the name. */ 13673 endp = &name[namelen]; 13674 for (cp = endp; --cp > name; ) { 13675 if (*cp == IPIF_SEPARATOR_CHAR) 13676 break; 13677 } 13678 13679 if (*cp == IPIF_SEPARATOR_CHAR) { 13680 /* 13681 * Reject any non-decimal aliases for logical 13682 * interfaces. Aliases with leading zeroes 13683 * are also rejected as they introduce ambiguity 13684 * in the naming of the interfaces. 13685 * In order to confirm with existing semantics, 13686 * and to not break any programs/script relying 13687 * on that behaviour, if<0>:0 is considered to be 13688 * a valid interface. 13689 * 13690 * If alias has two or more digits and the first 13691 * is zero, fail. 13692 */ 13693 if (&cp[2] < endp && cp[1] == '0') { 13694 return (NULL); 13695 } 13696 } 13697 13698 if (cp <= name) { 13699 cp = endp; 13700 } 13701 last = *cp; 13702 *cp = '\0'; 13703 13704 /* 13705 * Look up the ILL, based on the portion of the name 13706 * before the slash. ill_lookup_on_name returns a held ill. 13707 * Temporary to check whether ill exists already. If so 13708 * ill_lookup_on_name will clear it. 13709 */ 13710 ill = ill_lookup_on_name(name, do_alloc, isv6, 13711 &did_alloc, ipst); 13712 *cp = last; 13713 if (ill == NULL) 13714 return (NULL); 13715 13716 /* Establish the unit number in the name. */ 13717 id = 0; 13718 if (cp < endp && *endp == '\0') { 13719 /* If there was a colon, the unit number follows. */ 13720 cp++; 13721 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13722 ill_refrele(ill); 13723 return (NULL); 13724 } 13725 } 13726 13727 mutex_enter(&ill->ill_lock); 13728 /* Now see if there is an IPIF with this unit number. */ 13729 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13730 if (ipif->ipif_id == id) { 13731 if (zoneid != ALL_ZONES && 13732 zoneid != ipif->ipif_zoneid && 13733 ipif->ipif_zoneid != ALL_ZONES) { 13734 mutex_exit(&ill->ill_lock); 13735 ill_refrele(ill); 13736 return (NULL); 13737 } 13738 if (IPIF_CAN_LOOKUP(ipif)) { 13739 ipif_refhold_locked(ipif); 13740 mutex_exit(&ill->ill_lock); 13741 if (!did_alloc) 13742 *exists = B_TRUE; 13743 /* 13744 * Drop locks before calling ill_refrele 13745 * since it can potentially call into 13746 * ipif_ill_refrele_tail which can end up 13747 * in trying to acquire any lock. 13748 */ 13749 ill_refrele(ill); 13750 return (ipif); 13751 } 13752 } 13753 } 13754 13755 if (!do_alloc) { 13756 mutex_exit(&ill->ill_lock); 13757 ill_refrele(ill); 13758 return (NULL); 13759 } 13760 13761 /* 13762 * If none found, atomically allocate and return a new one. 13763 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13764 * to support "receive only" use of lo0:1 etc. as is still done 13765 * below as an initial guess. 13766 * However, this is now likely to be overriden later in ipif_up_done() 13767 * when we know for sure what address has been configured on the 13768 * interface, since we might have more than one loopback interface 13769 * with a loopback address, e.g. in the case of zones, and all the 13770 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13771 */ 13772 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13773 ire_type = IRE_LOOPBACK; 13774 else 13775 ire_type = IRE_LOCAL; 13776 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); 13777 if (ipif != NULL) 13778 ipif_refhold_locked(ipif); 13779 mutex_exit(&ill->ill_lock); 13780 ill_refrele(ill); 13781 return (ipif); 13782 } 13783 13784 /* 13785 * Variant of the above that queues the request on the ipsq when 13786 * IPIF_CHANGING is set. 13787 */ 13788 static ipif_t * 13789 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6, 13790 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 13791 ip_stack_t *ipst) 13792 { 13793 char *cp; 13794 char *endp; 13795 long id; 13796 ill_t *ill; 13797 ipif_t *ipif; 13798 boolean_t did_alloc = B_FALSE; 13799 ipsq_t *ipsq; 13800 13801 if (error != NULL) 13802 *error = 0; 13803 13804 if (namelen == 0) { 13805 if (error != NULL) 13806 *error = ENXIO; 13807 return (NULL); 13808 } 13809 13810 /* Look for a colon in the name. */ 13811 endp = &name[namelen]; 13812 for (cp = endp; --cp > name; ) { 13813 if (*cp == IPIF_SEPARATOR_CHAR) 13814 break; 13815 } 13816 13817 if (*cp == IPIF_SEPARATOR_CHAR) { 13818 /* 13819 * Reject any non-decimal aliases for logical 13820 * interfaces. Aliases with leading zeroes 13821 * are also rejected as they introduce ambiguity 13822 * in the naming of the interfaces. 13823 * In order to confirm with existing semantics, 13824 * and to not break any programs/script relying 13825 * on that behaviour, if<0>:0 is considered to be 13826 * a valid interface. 13827 * 13828 * If alias has two or more digits and the first 13829 * is zero, fail. 13830 */ 13831 if (&cp[2] < endp && cp[1] == '0') { 13832 if (error != NULL) 13833 *error = EINVAL; 13834 return (NULL); 13835 } 13836 } 13837 13838 if (cp <= name) { 13839 cp = endp; 13840 } else { 13841 *cp = '\0'; 13842 } 13843 13844 /* 13845 * Look up the ILL, based on the portion of the name 13846 * before the slash. ill_lookup_on_name returns a held ill. 13847 * Temporary to check whether ill exists already. If so 13848 * ill_lookup_on_name will clear it. 13849 */ 13850 ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst); 13851 if (cp != endp) 13852 *cp = IPIF_SEPARATOR_CHAR; 13853 if (ill == NULL) 13854 return (NULL); 13855 13856 /* Establish the unit number in the name. */ 13857 id = 0; 13858 if (cp < endp && *endp == '\0') { 13859 /* If there was a colon, the unit number follows. */ 13860 cp++; 13861 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13862 ill_refrele(ill); 13863 if (error != NULL) 13864 *error = ENXIO; 13865 return (NULL); 13866 } 13867 } 13868 13869 GRAB_CONN_LOCK(q); 13870 mutex_enter(&ill->ill_lock); 13871 /* Now see if there is an IPIF with this unit number. */ 13872 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13873 if (ipif->ipif_id == id) { 13874 if (zoneid != ALL_ZONES && 13875 zoneid != ipif->ipif_zoneid && 13876 ipif->ipif_zoneid != ALL_ZONES) { 13877 mutex_exit(&ill->ill_lock); 13878 RELEASE_CONN_LOCK(q); 13879 ill_refrele(ill); 13880 if (error != NULL) 13881 *error = ENXIO; 13882 return (NULL); 13883 } 13884 13885 if (!(IPIF_IS_CHANGING(ipif) || 13886 IPIF_IS_CONDEMNED(ipif)) || 13887 IAM_WRITER_IPIF(ipif)) { 13888 ipif_refhold_locked(ipif); 13889 mutex_exit(&ill->ill_lock); 13890 /* 13891 * Drop locks before calling ill_refrele 13892 * since it can potentially call into 13893 * ipif_ill_refrele_tail which can end up 13894 * in trying to acquire any lock. 13895 */ 13896 RELEASE_CONN_LOCK(q); 13897 ill_refrele(ill); 13898 return (ipif); 13899 } else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) { 13900 ipsq = ill->ill_phyint->phyint_ipsq; 13901 mutex_enter(&ipsq->ipsq_lock); 13902 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 13903 mutex_exit(&ill->ill_lock); 13904 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 13905 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 13906 mutex_exit(&ipsq->ipsq_lock); 13907 RELEASE_CONN_LOCK(q); 13908 ill_refrele(ill); 13909 if (error != NULL) 13910 *error = EINPROGRESS; 13911 return (NULL); 13912 } 13913 } 13914 } 13915 RELEASE_CONN_LOCK(q); 13916 mutex_exit(&ill->ill_lock); 13917 ill_refrele(ill); 13918 if (error != NULL) 13919 *error = ENXIO; 13920 return (NULL); 13921 } 13922 13923 /* 13924 * This routine is called whenever a new address comes up on an ipif. If 13925 * we are configured to respond to address mask requests, then we are supposed 13926 * to broadcast an address mask reply at this time. This routine is also 13927 * called if we are already up, but a netmask change is made. This is legal 13928 * but might not make the system manager very popular. (May be called 13929 * as writer.) 13930 */ 13931 void 13932 ipif_mask_reply(ipif_t *ipif) 13933 { 13934 icmph_t *icmph; 13935 ipha_t *ipha; 13936 mblk_t *mp; 13937 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13938 ip_xmit_attr_t ixas; 13939 13940 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13941 13942 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13943 return; 13944 13945 /* ICMP mask reply is IPv4 only */ 13946 ASSERT(!ipif->ipif_isv6); 13947 /* ICMP mask reply is not for a loopback interface */ 13948 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13949 13950 if (ipif->ipif_lcl_addr == INADDR_ANY) 13951 return; 13952 13953 mp = allocb(REPLY_LEN, BPRI_HI); 13954 if (mp == NULL) 13955 return; 13956 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13957 13958 ipha = (ipha_t *)mp->b_rptr; 13959 bzero(ipha, REPLY_LEN); 13960 *ipha = icmp_ipha; 13961 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13962 ipha->ipha_src = ipif->ipif_lcl_addr; 13963 ipha->ipha_dst = ipif->ipif_brd_addr; 13964 ipha->ipha_length = htons(REPLY_LEN); 13965 ipha->ipha_ident = 0; 13966 13967 icmph = (icmph_t *)&ipha[1]; 13968 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13969 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13970 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13971 13972 bzero(&ixas, sizeof (ixas)); 13973 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13974 ixas.ixa_zoneid = ALL_ZONES; 13975 ixas.ixa_ifindex = 0; 13976 ixas.ixa_ipst = ipst; 13977 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13978 (void) ip_output_simple(mp, &ixas); 13979 ixa_cleanup(&ixas); 13980 #undef REPLY_LEN 13981 } 13982 13983 /* 13984 * Join the ipif specific multicast groups. 13985 * Must be called after a mapping has been set up in the resolver. (Always 13986 * called as writer.) 13987 */ 13988 void 13989 ipif_multicast_up(ipif_t *ipif) 13990 { 13991 int err; 13992 ill_t *ill; 13993 ilm_t *ilm; 13994 13995 ASSERT(IAM_WRITER_IPIF(ipif)); 13996 13997 ill = ipif->ipif_ill; 13998 13999 ip1dbg(("ipif_multicast_up\n")); 14000 if (!(ill->ill_flags & ILLF_MULTICAST) || 14001 ipif->ipif_allhosts_ilm != NULL) 14002 return; 14003 14004 if (ipif->ipif_isv6) { 14005 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 14006 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 14007 14008 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 14009 14010 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 14011 return; 14012 14013 ip1dbg(("ipif_multicast_up - addmulti\n")); 14014 14015 /* 14016 * Join the all hosts multicast address. We skip this for 14017 * underlying IPMP interfaces since they should be invisible. 14018 */ 14019 if (!IS_UNDER_IPMP(ill)) { 14020 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 14021 &err); 14022 if (ilm == NULL) { 14023 ASSERT(err != 0); 14024 ip0dbg(("ipif_multicast_up: " 14025 "all_hosts_mcast failed %d\n", err)); 14026 return; 14027 } 14028 ipif->ipif_allhosts_ilm = ilm; 14029 } 14030 14031 /* 14032 * Enable multicast for the solicited node multicast address. 14033 * If IPMP we need to put the membership on the upper ill. 14034 */ 14035 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 14036 ill_t *mcast_ill = NULL; 14037 boolean_t need_refrele; 14038 14039 if (IS_UNDER_IPMP(ill) && 14040 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 14041 need_refrele = B_TRUE; 14042 } else { 14043 mcast_ill = ill; 14044 need_refrele = B_FALSE; 14045 } 14046 14047 ilm = ip_addmulti(&v6solmc, mcast_ill, 14048 ipif->ipif_zoneid, &err); 14049 if (need_refrele) 14050 ill_refrele(mcast_ill); 14051 14052 if (ilm == NULL) { 14053 ASSERT(err != 0); 14054 ip0dbg(("ipif_multicast_up: solicited MC" 14055 " failed %d\n", err)); 14056 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 14057 ipif->ipif_allhosts_ilm = NULL; 14058 (void) ip_delmulti(ilm); 14059 } 14060 return; 14061 } 14062 ipif->ipif_solmulti_ilm = ilm; 14063 } 14064 } else { 14065 in6_addr_t v6group; 14066 14067 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 14068 return; 14069 14070 /* Join the all hosts multicast address */ 14071 ip1dbg(("ipif_multicast_up - addmulti\n")); 14072 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 14073 14074 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 14075 if (ilm == NULL) { 14076 ASSERT(err != 0); 14077 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 14078 return; 14079 } 14080 ipif->ipif_allhosts_ilm = ilm; 14081 } 14082 } 14083 14084 /* 14085 * Blow away any multicast groups that we joined in ipif_multicast_up(). 14086 * (ilms from explicit memberships are handled in conn_update_ill.) 14087 */ 14088 void 14089 ipif_multicast_down(ipif_t *ipif) 14090 { 14091 ASSERT(IAM_WRITER_IPIF(ipif)); 14092 14093 ip1dbg(("ipif_multicast_down\n")); 14094 14095 if (ipif->ipif_allhosts_ilm != NULL) { 14096 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 14097 ipif->ipif_allhosts_ilm = NULL; 14098 } 14099 if (ipif->ipif_solmulti_ilm != NULL) { 14100 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 14101 ipif->ipif_solmulti_ilm = NULL; 14102 } 14103 } 14104 14105 /* 14106 * Used when an interface comes up to recreate any extra routes on this 14107 * interface. 14108 */ 14109 int 14110 ill_recover_saved_ire(ill_t *ill) 14111 { 14112 mblk_t *mp; 14113 ip_stack_t *ipst = ill->ill_ipst; 14114 14115 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 14116 14117 mutex_enter(&ill->ill_saved_ire_lock); 14118 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 14119 ire_t *ire, *nire; 14120 ifrt_t *ifrt; 14121 14122 ifrt = (ifrt_t *)mp->b_rptr; 14123 /* 14124 * Create a copy of the IRE with the saved address and netmask. 14125 */ 14126 if (ill->ill_isv6) { 14127 ire = ire_create_v6( 14128 &ifrt->ifrt_v6addr, 14129 &ifrt->ifrt_v6mask, 14130 &ifrt->ifrt_v6gateway_addr, 14131 ifrt->ifrt_type, 14132 ill, 14133 ifrt->ifrt_zoneid, 14134 ifrt->ifrt_flags, 14135 NULL, 14136 ipst); 14137 } else { 14138 ire = ire_create( 14139 (uint8_t *)&ifrt->ifrt_addr, 14140 (uint8_t *)&ifrt->ifrt_mask, 14141 (uint8_t *)&ifrt->ifrt_gateway_addr, 14142 ifrt->ifrt_type, 14143 ill, 14144 ifrt->ifrt_zoneid, 14145 ifrt->ifrt_flags, 14146 NULL, 14147 ipst); 14148 } 14149 if (ire == NULL) { 14150 mutex_exit(&ill->ill_saved_ire_lock); 14151 return (ENOMEM); 14152 } 14153 14154 if (ifrt->ifrt_flags & RTF_SETSRC) { 14155 if (ill->ill_isv6) { 14156 ire->ire_setsrc_addr_v6 = 14157 ifrt->ifrt_v6setsrc_addr; 14158 } else { 14159 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 14160 } 14161 } 14162 14163 /* 14164 * Some software (for example, GateD and Sun Cluster) attempts 14165 * to create (what amount to) IRE_PREFIX routes with the 14166 * loopback address as the gateway. This is primarily done to 14167 * set up prefixes with the RTF_REJECT flag set (for example, 14168 * when generating aggregate routes.) 14169 * 14170 * If the IRE type (as defined by ill->ill_net_type) is 14171 * IRE_LOOPBACK, then we map the request into a 14172 * IRE_IF_NORESOLVER. 14173 */ 14174 if (ill->ill_net_type == IRE_LOOPBACK) 14175 ire->ire_type = IRE_IF_NORESOLVER; 14176 14177 /* 14178 * ire held by ire_add, will be refreled' towards the 14179 * the end of ipif_up_done 14180 */ 14181 nire = ire_add(ire); 14182 /* 14183 * Check if it was a duplicate entry. This handles 14184 * the case of two racing route adds for the same route 14185 */ 14186 if (nire == NULL) { 14187 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 14188 } else if (nire != ire) { 14189 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 14190 (void *)nire)); 14191 ire_delete(nire); 14192 } else { 14193 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 14194 (void *)nire)); 14195 } 14196 if (nire != NULL) 14197 ire_refrele(nire); 14198 } 14199 mutex_exit(&ill->ill_saved_ire_lock); 14200 return (0); 14201 } 14202 14203 /* 14204 * Used to set the netmask and broadcast address to default values when the 14205 * interface is brought up. (Always called as writer.) 14206 */ 14207 static void 14208 ipif_set_default(ipif_t *ipif) 14209 { 14210 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14211 14212 if (!ipif->ipif_isv6) { 14213 /* 14214 * Interface holds an IPv4 address. Default 14215 * mask is the natural netmask. 14216 */ 14217 if (!ipif->ipif_net_mask) { 14218 ipaddr_t v4mask; 14219 14220 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 14221 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 14222 } 14223 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14224 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14225 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14226 } else { 14227 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14228 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14229 } 14230 /* 14231 * NOTE: SunOS 4.X does this even if the broadcast address 14232 * has been already set thus we do the same here. 14233 */ 14234 if (ipif->ipif_flags & IPIF_BROADCAST) { 14235 ipaddr_t v4addr; 14236 14237 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 14238 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 14239 } 14240 } else { 14241 /* 14242 * Interface holds an IPv6-only address. Default 14243 * mask is all-ones. 14244 */ 14245 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 14246 ipif->ipif_v6net_mask = ipv6_all_ones; 14247 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14248 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14249 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14250 } else { 14251 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14252 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14253 } 14254 } 14255 } 14256 14257 /* 14258 * Return 0 if this address can be used as local address without causing 14259 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 14260 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 14261 * Note that the same IPv6 link-local address is allowed as long as the ills 14262 * are not on the same link. 14263 */ 14264 int 14265 ip_addr_availability_check(ipif_t *new_ipif) 14266 { 14267 in6_addr_t our_v6addr; 14268 ill_t *ill; 14269 ipif_t *ipif; 14270 ill_walk_context_t ctx; 14271 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 14272 14273 ASSERT(IAM_WRITER_IPIF(new_ipif)); 14274 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 14275 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 14276 14277 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 14278 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 14279 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 14280 return (0); 14281 14282 our_v6addr = new_ipif->ipif_v6lcl_addr; 14283 14284 if (new_ipif->ipif_isv6) 14285 ill = ILL_START_WALK_V6(&ctx, ipst); 14286 else 14287 ill = ILL_START_WALK_V4(&ctx, ipst); 14288 14289 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 14290 for (ipif = ill->ill_ipif; ipif != NULL; 14291 ipif = ipif->ipif_next) { 14292 if ((ipif == new_ipif) || 14293 !(ipif->ipif_flags & IPIF_UP) || 14294 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14295 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 14296 &our_v6addr)) 14297 continue; 14298 14299 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 14300 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 14301 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 14302 ipif->ipif_flags |= IPIF_UNNUMBERED; 14303 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 14304 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 14305 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 14306 continue; 14307 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 14308 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 14309 continue; 14310 else if (new_ipif->ipif_ill == ill) 14311 return (EADDRINUSE); 14312 else 14313 return (EADDRNOTAVAIL); 14314 } 14315 } 14316 14317 return (0); 14318 } 14319 14320 /* 14321 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 14322 * IREs for the ipif. 14323 * When the routine returns EINPROGRESS then mp has been consumed and 14324 * the ioctl will be acked from ip_rput_dlpi. 14325 */ 14326 int 14327 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 14328 { 14329 ill_t *ill = ipif->ipif_ill; 14330 boolean_t isv6 = ipif->ipif_isv6; 14331 int err = 0; 14332 boolean_t success; 14333 uint_t ipif_orig_id; 14334 ip_stack_t *ipst = ill->ill_ipst; 14335 14336 ASSERT(IAM_WRITER_IPIF(ipif)); 14337 14338 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14339 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 14340 ill_t *, ill, ipif_t *, ipif); 14341 14342 /* Shouldn't get here if it is already up. */ 14343 if (ipif->ipif_flags & IPIF_UP) 14344 return (EALREADY); 14345 14346 /* 14347 * If this is a request to bring up a data address on an interface 14348 * under IPMP, then move the address to its IPMP meta-interface and 14349 * try to bring it up. One complication is that the zeroth ipif for 14350 * an ill is special, in that every ill always has one, and that code 14351 * throughout IP deferences ill->ill_ipif without holding any locks. 14352 */ 14353 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 14354 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 14355 ipif_t *stubipif = NULL, *moveipif = NULL; 14356 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 14357 14358 /* 14359 * The ipif being brought up should be quiesced. If it's not, 14360 * something has gone amiss and we need to bail out. (If it's 14361 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 14362 */ 14363 mutex_enter(&ill->ill_lock); 14364 if (!ipif_is_quiescent(ipif)) { 14365 mutex_exit(&ill->ill_lock); 14366 return (EINVAL); 14367 } 14368 mutex_exit(&ill->ill_lock); 14369 14370 /* 14371 * If we're going to need to allocate ipifs, do it prior 14372 * to starting the move (and grabbing locks). 14373 */ 14374 if (ipif->ipif_id == 0) { 14375 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14376 B_FALSE, &err)) == NULL) { 14377 return (err); 14378 } 14379 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14380 B_FALSE, &err)) == NULL) { 14381 mi_free(moveipif); 14382 return (err); 14383 } 14384 } 14385 14386 /* 14387 * Grab or transfer the ipif to move. During the move, keep 14388 * ill_g_lock held to prevent any ill walker threads from 14389 * seeing things in an inconsistent state. 14390 */ 14391 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14392 if (ipif->ipif_id != 0) { 14393 ipif_remove(ipif); 14394 } else { 14395 ipif_transfer(ipif, moveipif, stubipif); 14396 ipif = moveipif; 14397 } 14398 14399 /* 14400 * Place the ipif on the IPMP ill. If the zeroth ipif on 14401 * the IPMP ill is a stub (0.0.0.0 down address) then we 14402 * replace that one. Otherwise, pick the next available slot. 14403 */ 14404 ipif->ipif_ill = ipmp_ill; 14405 ipif_orig_id = ipif->ipif_id; 14406 14407 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 14408 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 14409 ipif = ipmp_ill->ill_ipif; 14410 } else { 14411 ipif->ipif_id = -1; 14412 if ((err = ipif_insert(ipif, B_FALSE)) != 0) { 14413 /* 14414 * No more available ipif_id's -- put it back 14415 * on the original ill and fail the operation. 14416 * Since we're writer on the ill, we can be 14417 * sure our old slot is still available. 14418 */ 14419 ipif->ipif_id = ipif_orig_id; 14420 ipif->ipif_ill = ill; 14421 if (ipif_orig_id == 0) { 14422 ipif_transfer(ipif, ill->ill_ipif, 14423 NULL); 14424 } else { 14425 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 14426 } 14427 rw_exit(&ipst->ips_ill_g_lock); 14428 return (err); 14429 } 14430 } 14431 rw_exit(&ipst->ips_ill_g_lock); 14432 14433 /* 14434 * Tell SCTP that the ipif has moved. Note that even if we 14435 * had to allocate a new ipif, the original sequence id was 14436 * preserved and therefore SCTP won't know. 14437 */ 14438 sctp_move_ipif(ipif, ill, ipmp_ill); 14439 14440 /* 14441 * If the ipif being brought up was on slot zero, then we 14442 * first need to bring up the placeholder we stuck there. In 14443 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 14444 * call to ipif_up() itself, if we successfully bring up the 14445 * placeholder, we'll check ill_move_ipif and bring it up too. 14446 */ 14447 if (ipif_orig_id == 0) { 14448 ASSERT(ill->ill_move_ipif == NULL); 14449 ill->ill_move_ipif = ipif; 14450 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 14451 ASSERT(ill->ill_move_ipif == NULL); 14452 if (err != EINPROGRESS) 14453 ill->ill_move_ipif = NULL; 14454 return (err); 14455 } 14456 14457 /* 14458 * Bring it up on the IPMP ill. 14459 */ 14460 return (ipif_up(ipif, q, mp)); 14461 } 14462 14463 /* Skip arp/ndp for any loopback interface. */ 14464 if (ill->ill_wq != NULL) { 14465 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14466 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14467 14468 if (!ill->ill_dl_up) { 14469 /* 14470 * ill_dl_up is not yet set. i.e. we are yet to 14471 * DL_BIND with the driver and this is the first 14472 * logical interface on the ill to become "up". 14473 * Tell the driver to get going (via DL_BIND_REQ). 14474 * Note that changing "significant" IFF_ flags 14475 * address/netmask etc cause a down/up dance, but 14476 * does not cause an unbind (DL_UNBIND) with the driver 14477 */ 14478 return (ill_dl_up(ill, ipif, mp, q)); 14479 } 14480 14481 /* 14482 * ipif_resolver_up may end up needeing to bind/attach 14483 * the ARP stream, which in turn necessitates a 14484 * DLPI message exchange with the driver. ioctls are 14485 * serialized and so we cannot send more than one 14486 * interface up message at a time. If ipif_resolver_up 14487 * does need to wait for the DLPI handshake for the ARP stream, 14488 * we get EINPROGRESS and we will complete in arp_bringup_done. 14489 */ 14490 14491 ASSERT(connp != NULL || !CONN_Q(q)); 14492 if (connp != NULL) 14493 mutex_enter(&connp->conn_lock); 14494 mutex_enter(&ill->ill_lock); 14495 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14496 mutex_exit(&ill->ill_lock); 14497 if (connp != NULL) 14498 mutex_exit(&connp->conn_lock); 14499 if (!success) 14500 return (EINTR); 14501 14502 /* 14503 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 14504 * complete when ipif_ndp_up returns. 14505 */ 14506 err = ipif_resolver_up(ipif, Res_act_initial); 14507 if (err == EINPROGRESS) { 14508 /* We will complete it in arp_bringup_done() */ 14509 return (err); 14510 } 14511 14512 if (isv6 && err == 0) 14513 err = ipif_ndp_up(ipif, B_TRUE); 14514 14515 ASSERT(err != EINPROGRESS); 14516 mp = ipsq_pending_mp_get(ipsq, &connp); 14517 ASSERT(mp != NULL); 14518 if (err != 0) 14519 return (err); 14520 } else { 14521 /* 14522 * Interfaces without underlying hardware don't do duplicate 14523 * address detection. 14524 */ 14525 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 14526 ipif->ipif_addr_ready = 1; 14527 err = ill_add_ires(ill); 14528 /* allocation failure? */ 14529 if (err != 0) 14530 return (err); 14531 } 14532 14533 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14534 if (err == 0 && ill->ill_move_ipif != NULL) { 14535 ipif = ill->ill_move_ipif; 14536 ill->ill_move_ipif = NULL; 14537 return (ipif_up(ipif, q, mp)); 14538 } 14539 return (err); 14540 } 14541 14542 /* 14543 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14544 * The identical set of IREs need to be removed in ill_delete_ires(). 14545 */ 14546 int 14547 ill_add_ires(ill_t *ill) 14548 { 14549 ire_t *ire; 14550 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14551 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14552 14553 if (ill->ill_ire_multicast != NULL) 14554 return (0); 14555 14556 /* 14557 * provide some dummy ire_addr for creating the ire. 14558 */ 14559 if (ill->ill_isv6) { 14560 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14561 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14562 } else { 14563 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14564 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14565 } 14566 if (ire == NULL) 14567 return (ENOMEM); 14568 14569 ill->ill_ire_multicast = ire; 14570 return (0); 14571 } 14572 14573 void 14574 ill_delete_ires(ill_t *ill) 14575 { 14576 if (ill->ill_ire_multicast != NULL) { 14577 /* 14578 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14579 * which was taken without any th_tracing enabled. 14580 * We also mark it as condemned (note that it was never added) 14581 * so that caching conn's can move off of it. 14582 */ 14583 ire_make_condemned(ill->ill_ire_multicast); 14584 ire_refrele_notr(ill->ill_ire_multicast); 14585 ill->ill_ire_multicast = NULL; 14586 } 14587 } 14588 14589 /* 14590 * Perform a bind for the physical device. 14591 * When the routine returns EINPROGRESS then mp has been consumed and 14592 * the ioctl will be acked from ip_rput_dlpi. 14593 * Allocate an unbind message and save it until ipif_down. 14594 */ 14595 static int 14596 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14597 { 14598 mblk_t *bind_mp = NULL; 14599 mblk_t *unbind_mp = NULL; 14600 conn_t *connp; 14601 boolean_t success; 14602 int err; 14603 14604 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14605 14606 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14607 ASSERT(IAM_WRITER_ILL(ill)); 14608 ASSERT(mp != NULL); 14609 14610 /* 14611 * Make sure we have an IRE_MULTICAST in case we immediately 14612 * start receiving packets. 14613 */ 14614 err = ill_add_ires(ill); 14615 if (err != 0) 14616 goto bad; 14617 14618 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14619 DL_BIND_REQ); 14620 if (bind_mp == NULL) 14621 goto bad; 14622 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14623 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14624 14625 /* 14626 * ill_unbind_mp would be non-null if the following sequence had 14627 * happened: 14628 * - send DL_BIND_REQ to driver, wait for response 14629 * - multiple ioctls that need to bring the ipif up are encountered, 14630 * but they cannot enter the ipsq due to the outstanding DL_BIND_REQ. 14631 * These ioctls will then be enqueued on the ipsq 14632 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ 14633 * At this point, the pending ioctls in the ipsq will be drained, and 14634 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with 14635 * a non-null ill->ill_unbind_mp 14636 */ 14637 if (ill->ill_unbind_mp == NULL) { 14638 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), 14639 DL_UNBIND_REQ); 14640 if (unbind_mp == NULL) 14641 goto bad; 14642 } 14643 /* 14644 * Record state needed to complete this operation when the 14645 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14646 */ 14647 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14648 ASSERT(connp != NULL || !CONN_Q(q)); 14649 GRAB_CONN_LOCK(q); 14650 mutex_enter(&ipif->ipif_ill->ill_lock); 14651 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14652 mutex_exit(&ipif->ipif_ill->ill_lock); 14653 RELEASE_CONN_LOCK(q); 14654 if (!success) 14655 goto bad; 14656 14657 /* 14658 * Save the unbind message for ill_dl_down(); it will be consumed when 14659 * the interface goes down. 14660 */ 14661 if (ill->ill_unbind_mp == NULL) 14662 ill->ill_unbind_mp = unbind_mp; 14663 14664 ill_dlpi_send(ill, bind_mp); 14665 /* Send down link-layer capabilities probe if not already done. */ 14666 ill_capability_probe(ill); 14667 14668 /* 14669 * Sysid used to rely on the fact that netboots set domainname 14670 * and the like. Now that miniroot boots aren't strictly netboots 14671 * and miniroot network configuration is driven from userland 14672 * these things still need to be set. This situation can be detected 14673 * by comparing the interface being configured here to the one 14674 * dhcifname was set to reference by the boot loader. Once sysid is 14675 * converted to use dhcp_ipc_getinfo() this call can go away. 14676 */ 14677 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14678 (strcmp(ill->ill_name, dhcifname) == 0) && 14679 (strlen(srpc_domain) == 0)) { 14680 if (dhcpinit() != 0) 14681 cmn_err(CE_WARN, "no cached dhcp response"); 14682 } 14683 14684 /* 14685 * This operation will complete in ip_rput_dlpi with either 14686 * a DL_BIND_ACK or DL_ERROR_ACK. 14687 */ 14688 return (EINPROGRESS); 14689 bad: 14690 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14691 14692 freemsg(bind_mp); 14693 freemsg(unbind_mp); 14694 return (ENOMEM); 14695 } 14696 14697 /* Add room for tcp+ip headers */ 14698 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14699 14700 /* 14701 * DLPI and ARP is up. 14702 * Create all the IREs associated with an interface. Bring up multicast. 14703 * Set the interface flag and finish other initialization 14704 * that potentially had to be deferred to after DL_BIND_ACK. 14705 */ 14706 int 14707 ipif_up_done(ipif_t *ipif) 14708 { 14709 ill_t *ill = ipif->ipif_ill; 14710 int err = 0; 14711 boolean_t loopback = B_FALSE; 14712 boolean_t update_src_selection = B_TRUE; 14713 ipif_t *tmp_ipif; 14714 14715 ip1dbg(("ipif_up_done(%s:%u)\n", 14716 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14717 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14718 ill_t *, ill, ipif_t *, ipif); 14719 14720 /* Check if this is a loopback interface */ 14721 if (ipif->ipif_ill->ill_wq == NULL) 14722 loopback = B_TRUE; 14723 14724 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14725 14726 /* 14727 * If all other interfaces for this ill are down or DEPRECATED, 14728 * or otherwise unsuitable for source address selection, 14729 * reset the src generation numbers to make sure source 14730 * address selection gets to take this new ipif into account. 14731 * No need to hold ill_lock while traversing the ipif list since 14732 * we are writer 14733 */ 14734 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14735 tmp_ipif = tmp_ipif->ipif_next) { 14736 if (((tmp_ipif->ipif_flags & 14737 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14738 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14739 (tmp_ipif == ipif)) 14740 continue; 14741 /* first useable pre-existing interface */ 14742 update_src_selection = B_FALSE; 14743 break; 14744 } 14745 if (update_src_selection) 14746 ip_update_source_selection(ill->ill_ipst); 14747 14748 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14749 nce_t *loop_nce = NULL; 14750 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14751 14752 /* 14753 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14754 * ipif_lookup_on_name(), but in the case of zones we can have 14755 * several loopback addresses on lo0. So all the interfaces with 14756 * loopback addresses need to be marked IRE_LOOPBACK. 14757 */ 14758 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14759 htonl(INADDR_LOOPBACK)) 14760 ipif->ipif_ire_type = IRE_LOOPBACK; 14761 else 14762 ipif->ipif_ire_type = IRE_LOCAL; 14763 if (ill->ill_net_type != IRE_LOOPBACK) 14764 flags |= NCE_F_PUBLISH; 14765 14766 /* add unicast nce for the local addr */ 14767 err = nce_lookup_then_add_v4(ill, NULL, 14768 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14769 ND_REACHABLE, &loop_nce); 14770 /* A shared-IP zone sees EEXIST for lo0:N */ 14771 if (err == 0 || err == EEXIST) { 14772 ipif->ipif_added_nce = 1; 14773 loop_nce->nce_ipif_cnt++; 14774 nce_refrele(loop_nce); 14775 err = 0; 14776 } else { 14777 ASSERT(loop_nce == NULL); 14778 return (err); 14779 } 14780 } 14781 14782 /* Create all the IREs associated with this interface */ 14783 err = ipif_add_ires_v4(ipif, loopback); 14784 if (err != 0) { 14785 /* 14786 * see comments about return value from 14787 * ip_addr_availability_check() in ipif_add_ires_v4(). 14788 */ 14789 if (err != EADDRINUSE) { 14790 (void) ipif_arp_down(ipif); 14791 } else { 14792 /* 14793 * Make IPMP aware of the deleted ipif so that 14794 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14795 * can be completed. Note that we do not want to 14796 * destroy the nce that was created on the ipmp_ill 14797 * for the active copy of the duplicate address in 14798 * use. 14799 */ 14800 if (IS_IPMP(ill)) 14801 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14802 err = EADDRNOTAVAIL; 14803 } 14804 return (err); 14805 } 14806 14807 if (ill->ill_ipif_up_count == 1 && !loopback) { 14808 /* Recover any additional IREs entries for this ill */ 14809 (void) ill_recover_saved_ire(ill); 14810 } 14811 14812 if (ill->ill_need_recover_multicast) { 14813 /* 14814 * Need to recover all multicast memberships in the driver. 14815 * This had to be deferred until we had attached. The same 14816 * code exists in ipif_up_done_v6() to recover IPv6 14817 * memberships. 14818 * 14819 * Note that it would be preferable to unconditionally do the 14820 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14821 * that since ill_join_allmulti() depends on ill_dl_up being 14822 * set, and it is not set until we receive a DL_BIND_ACK after 14823 * having called ill_dl_up(). 14824 */ 14825 ill_recover_multicast(ill); 14826 } 14827 14828 if (ill->ill_ipif_up_count == 1) { 14829 /* 14830 * Since the interface is now up, it may now be active. 14831 */ 14832 if (IS_UNDER_IPMP(ill)) 14833 ipmp_ill_refresh_active(ill); 14834 14835 /* 14836 * If this is an IPMP interface, we may now be able to 14837 * establish ARP entries. 14838 */ 14839 if (IS_IPMP(ill)) 14840 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14841 } 14842 14843 /* Join the allhosts multicast address */ 14844 ipif_multicast_up(ipif); 14845 14846 if (!loopback && !update_src_selection && 14847 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14848 ip_update_source_selection(ill->ill_ipst); 14849 14850 if (!loopback && ipif->ipif_addr_ready) { 14851 /* Broadcast an address mask reply. */ 14852 ipif_mask_reply(ipif); 14853 } 14854 /* Perhaps ilgs should use this ill */ 14855 update_conn_ill(NULL, ill->ill_ipst); 14856 14857 /* 14858 * This had to be deferred until we had bound. Tell routing sockets and 14859 * others that this interface is up if it looks like the address has 14860 * been validated. Otherwise, if it isn't ready yet, wait for 14861 * duplicate address detection to do its thing. 14862 */ 14863 if (ipif->ipif_addr_ready) 14864 ipif_up_notify(ipif); 14865 return (0); 14866 } 14867 14868 /* 14869 * Add the IREs associated with the ipif. 14870 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14871 */ 14872 static int 14873 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14874 { 14875 ill_t *ill = ipif->ipif_ill; 14876 ip_stack_t *ipst = ill->ill_ipst; 14877 ire_t *ire_array[20]; 14878 ire_t **irep = ire_array; 14879 ire_t **irep1; 14880 ipaddr_t net_mask = 0; 14881 ipaddr_t subnet_mask, route_mask; 14882 int err; 14883 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14884 ire_t *ire_if = NULL; 14885 uchar_t *gw; 14886 14887 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14888 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14889 /* 14890 * If we're on a labeled system then make sure that zone- 14891 * private addresses have proper remote host database entries. 14892 */ 14893 if (is_system_labeled() && 14894 ipif->ipif_ire_type != IRE_LOOPBACK && 14895 !tsol_check_interface_address(ipif)) 14896 return (EINVAL); 14897 14898 /* Register the source address for __sin6_src_id */ 14899 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14900 ipif->ipif_zoneid, ipst); 14901 if (err != 0) { 14902 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14903 return (err); 14904 } 14905 14906 if (loopback) 14907 gw = (uchar_t *)&ipif->ipif_lcl_addr; 14908 else 14909 gw = NULL; 14910 14911 /* If the interface address is set, create the local IRE. */ 14912 ire_local = ire_create( 14913 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14914 (uchar_t *)&ip_g_all_ones, /* mask */ 14915 gw, /* gateway */ 14916 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14917 ipif->ipif_ill, 14918 ipif->ipif_zoneid, 14919 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14920 RTF_PRIVATE : 0) | RTF_KERNEL, 14921 NULL, 14922 ipst); 14923 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14924 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14925 ipif->ipif_ire_type, 14926 ntohl(ipif->ipif_lcl_addr))); 14927 if (ire_local == NULL) { 14928 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14929 err = ENOMEM; 14930 goto bad; 14931 } 14932 } else { 14933 ip1dbg(( 14934 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14935 ipif->ipif_ire_type, 14936 ntohl(ipif->ipif_lcl_addr), 14937 (uint_t)ipif->ipif_flags)); 14938 } 14939 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14940 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14941 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14942 } else { 14943 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14944 } 14945 14946 subnet_mask = ipif->ipif_net_mask; 14947 14948 /* 14949 * If mask was not specified, use natural netmask of 14950 * interface address. Also, store this mask back into the 14951 * ipif struct. 14952 */ 14953 if (subnet_mask == 0) { 14954 subnet_mask = net_mask; 14955 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14956 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14957 ipif->ipif_v6subnet); 14958 } 14959 14960 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14961 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14962 ipif->ipif_subnet != INADDR_ANY) { 14963 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14964 14965 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14966 route_mask = IP_HOST_MASK; 14967 } else { 14968 route_mask = subnet_mask; 14969 } 14970 14971 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14972 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14973 (void *)ipif, (void *)ill, ill->ill_net_type, 14974 ntohl(ipif->ipif_subnet))); 14975 ire_if = ire_create( 14976 (uchar_t *)&ipif->ipif_subnet, 14977 (uchar_t *)&route_mask, 14978 (uchar_t *)&ipif->ipif_lcl_addr, 14979 ill->ill_net_type, 14980 ill, 14981 ipif->ipif_zoneid, 14982 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14983 RTF_PRIVATE: 0) | RTF_KERNEL, 14984 NULL, 14985 ipst); 14986 if (ire_if == NULL) { 14987 ip1dbg(("ipif_up_done: NULL ire_if\n")); 14988 err = ENOMEM; 14989 goto bad; 14990 } 14991 } 14992 14993 /* 14994 * Create any necessary broadcast IREs. 14995 */ 14996 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14997 !(ipif->ipif_flags & IPIF_NOXMIT)) 14998 irep = ipif_create_bcast_ires(ipif, irep); 14999 15000 /* If an earlier ire_create failed, get out now */ 15001 for (irep1 = irep; irep1 > ire_array; ) { 15002 irep1--; 15003 if (*irep1 == NULL) { 15004 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 15005 err = ENOMEM; 15006 goto bad; 15007 } 15008 } 15009 15010 /* 15011 * Need to atomically check for IP address availability under 15012 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 15013 * ills or new ipifs can be added while we are checking availability. 15014 */ 15015 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15016 mutex_enter(&ipst->ips_ip_addr_avail_lock); 15017 /* Mark it up, and increment counters. */ 15018 ipif->ipif_flags |= IPIF_UP; 15019 ill->ill_ipif_up_count++; 15020 err = ip_addr_availability_check(ipif); 15021 mutex_exit(&ipst->ips_ip_addr_avail_lock); 15022 rw_exit(&ipst->ips_ill_g_lock); 15023 15024 if (err != 0) { 15025 /* 15026 * Our address may already be up on the same ill. In this case, 15027 * the ARP entry for our ipif replaced the one for the other 15028 * ipif. So we don't want to delete it (otherwise the other ipif 15029 * would be unable to send packets). 15030 * ip_addr_availability_check() identifies this case for us and 15031 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 15032 * which is the expected error code. 15033 */ 15034 ill->ill_ipif_up_count--; 15035 ipif->ipif_flags &= ~IPIF_UP; 15036 goto bad; 15037 } 15038 15039 /* 15040 * Add in all newly created IREs. ire_create_bcast() has 15041 * already checked for duplicates of the IRE_BROADCAST type. 15042 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 15043 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 15044 * a /32 route. 15045 */ 15046 if (ire_if != NULL) { 15047 ire_if = ire_add(ire_if); 15048 if (ire_if == NULL) { 15049 err = ENOMEM; 15050 goto bad2; 15051 } 15052 #ifdef DEBUG 15053 ire_refhold_notr(ire_if); 15054 ire_refrele(ire_if); 15055 #endif 15056 } 15057 if (ire_local != NULL) { 15058 ire_local = ire_add(ire_local); 15059 if (ire_local == NULL) { 15060 err = ENOMEM; 15061 goto bad2; 15062 } 15063 #ifdef DEBUG 15064 ire_refhold_notr(ire_local); 15065 ire_refrele(ire_local); 15066 #endif 15067 } 15068 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15069 if (ire_local != NULL) 15070 ipif->ipif_ire_local = ire_local; 15071 if (ire_if != NULL) 15072 ipif->ipif_ire_if = ire_if; 15073 rw_exit(&ipst->ips_ill_g_lock); 15074 ire_local = NULL; 15075 ire_if = NULL; 15076 15077 /* 15078 * We first add all of them, and if that succeeds we refrele the 15079 * bunch. That enables us to delete all of them should any of the 15080 * ire_adds fail. 15081 */ 15082 for (irep1 = irep; irep1 > ire_array; ) { 15083 irep1--; 15084 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 15085 *irep1 = ire_add(*irep1); 15086 if (*irep1 == NULL) { 15087 err = ENOMEM; 15088 goto bad2; 15089 } 15090 } 15091 15092 for (irep1 = irep; irep1 > ire_array; ) { 15093 irep1--; 15094 /* refheld by ire_add. */ 15095 if (*irep1 != NULL) { 15096 ire_refrele(*irep1); 15097 *irep1 = NULL; 15098 } 15099 } 15100 15101 if (!loopback) { 15102 /* 15103 * If the broadcast address has been set, make sure it makes 15104 * sense based on the interface address. 15105 * Only match on ill since we are sharing broadcast addresses. 15106 */ 15107 if ((ipif->ipif_brd_addr != INADDR_ANY) && 15108 (ipif->ipif_flags & IPIF_BROADCAST)) { 15109 ire_t *ire; 15110 15111 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 15112 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 15113 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 15114 15115 if (ire == NULL) { 15116 /* 15117 * If there isn't a matching broadcast IRE, 15118 * revert to the default for this netmask. 15119 */ 15120 ipif->ipif_v6brd_addr = ipv6_all_zeros; 15121 mutex_enter(&ipif->ipif_ill->ill_lock); 15122 ipif_set_default(ipif); 15123 mutex_exit(&ipif->ipif_ill->ill_lock); 15124 } else { 15125 ire_refrele(ire); 15126 } 15127 } 15128 15129 } 15130 return (0); 15131 15132 bad2: 15133 ill->ill_ipif_up_count--; 15134 ipif->ipif_flags &= ~IPIF_UP; 15135 15136 bad: 15137 ip1dbg(("ipif_add_ires: FAILED \n")); 15138 if (ire_local != NULL) 15139 ire_delete(ire_local); 15140 if (ire_if != NULL) 15141 ire_delete(ire_if); 15142 15143 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15144 ire_local = ipif->ipif_ire_local; 15145 ipif->ipif_ire_local = NULL; 15146 ire_if = ipif->ipif_ire_if; 15147 ipif->ipif_ire_if = NULL; 15148 rw_exit(&ipst->ips_ill_g_lock); 15149 if (ire_local != NULL) { 15150 ire_delete(ire_local); 15151 ire_refrele_notr(ire_local); 15152 } 15153 if (ire_if != NULL) { 15154 ire_delete(ire_if); 15155 ire_refrele_notr(ire_if); 15156 } 15157 15158 while (irep > ire_array) { 15159 irep--; 15160 if (*irep != NULL) { 15161 ire_delete(*irep); 15162 } 15163 } 15164 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 15165 15166 return (err); 15167 } 15168 15169 /* Remove all the IREs created by ipif_add_ires_v4 */ 15170 void 15171 ipif_delete_ires_v4(ipif_t *ipif) 15172 { 15173 ill_t *ill = ipif->ipif_ill; 15174 ip_stack_t *ipst = ill->ill_ipst; 15175 ire_t *ire; 15176 15177 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15178 ire = ipif->ipif_ire_local; 15179 ipif->ipif_ire_local = NULL; 15180 rw_exit(&ipst->ips_ill_g_lock); 15181 if (ire != NULL) { 15182 /* 15183 * Move count to ipif so we don't loose the count due to 15184 * a down/up dance. 15185 */ 15186 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 15187 15188 ire_delete(ire); 15189 ire_refrele_notr(ire); 15190 } 15191 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15192 ire = ipif->ipif_ire_if; 15193 ipif->ipif_ire_if = NULL; 15194 rw_exit(&ipst->ips_ill_g_lock); 15195 if (ire != NULL) { 15196 ire_delete(ire); 15197 ire_refrele_notr(ire); 15198 } 15199 15200 /* 15201 * Delete the broadcast IREs. 15202 */ 15203 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15204 !(ipif->ipif_flags & IPIF_NOXMIT)) 15205 ipif_delete_bcast_ires(ipif); 15206 } 15207 15208 /* 15209 * Checks for availbility of a usable source address (if there is one) when the 15210 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 15211 * this selection is done regardless of the destination. 15212 */ 15213 boolean_t 15214 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 15215 ip_stack_t *ipst) 15216 { 15217 ipif_t *ipif = NULL; 15218 ill_t *uill; 15219 15220 ASSERT(ifindex != 0); 15221 15222 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15223 if (uill == NULL) 15224 return (B_FALSE); 15225 15226 mutex_enter(&uill->ill_lock); 15227 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15228 if (IPIF_IS_CONDEMNED(ipif)) 15229 continue; 15230 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15231 continue; 15232 if (!(ipif->ipif_flags & IPIF_UP)) 15233 continue; 15234 if (ipif->ipif_zoneid != zoneid) 15235 continue; 15236 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15237 ipif->ipif_lcl_addr == INADDR_ANY) 15238 continue; 15239 mutex_exit(&uill->ill_lock); 15240 ill_refrele(uill); 15241 return (B_TRUE); 15242 } 15243 mutex_exit(&uill->ill_lock); 15244 ill_refrele(uill); 15245 return (B_FALSE); 15246 } 15247 15248 /* 15249 * Find an ipif with a good local address on the ill+zoneid. 15250 */ 15251 ipif_t * 15252 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 15253 { 15254 ipif_t *ipif; 15255 15256 mutex_enter(&ill->ill_lock); 15257 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15258 if (IPIF_IS_CONDEMNED(ipif)) 15259 continue; 15260 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15261 continue; 15262 if (!(ipif->ipif_flags & IPIF_UP)) 15263 continue; 15264 if (ipif->ipif_zoneid != zoneid && 15265 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 15266 continue; 15267 if (ill->ill_isv6 ? 15268 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15269 ipif->ipif_lcl_addr == INADDR_ANY) 15270 continue; 15271 ipif_refhold_locked(ipif); 15272 mutex_exit(&ill->ill_lock); 15273 return (ipif); 15274 } 15275 mutex_exit(&ill->ill_lock); 15276 return (NULL); 15277 } 15278 15279 /* 15280 * IP source address type, sorted from worst to best. For a given type, 15281 * always prefer IP addresses on the same subnet. All-zones addresses are 15282 * suboptimal because they pose problems with unlabeled destinations. 15283 */ 15284 typedef enum { 15285 IPIF_NONE, 15286 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 15287 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 15288 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 15289 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 15290 IPIF_DIFFNET, /* normal and different subnet */ 15291 IPIF_SAMENET, /* normal and same subnet */ 15292 IPIF_LOCALADDR /* local loopback */ 15293 } ipif_type_t; 15294 15295 /* 15296 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 15297 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 15298 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 15299 * the first one, unless IPMP is used in which case we round-robin among them; 15300 * see below for more. 15301 * 15302 * Returns NULL if there is no suitable source address for the ill. 15303 * This only occurs when there is no valid source address for the ill. 15304 */ 15305 ipif_t * 15306 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 15307 boolean_t allow_usesrc, boolean_t *notreadyp) 15308 { 15309 ill_t *usill = NULL; 15310 ill_t *ipmp_ill = NULL; 15311 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 15312 ipif_type_t type, best_type; 15313 tsol_tpc_t *src_rhtp, *dst_rhtp; 15314 ip_stack_t *ipst = ill->ill_ipst; 15315 boolean_t samenet; 15316 15317 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 15318 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 15319 B_FALSE, ipst); 15320 if (usill != NULL) 15321 ill = usill; /* Select source from usesrc ILL */ 15322 else 15323 return (NULL); 15324 } 15325 15326 /* 15327 * Test addresses should never be used for source address selection, 15328 * so if we were passed one, switch to the IPMP meta-interface. 15329 */ 15330 if (IS_UNDER_IPMP(ill)) { 15331 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 15332 ill = ipmp_ill; /* Select source from IPMP ill */ 15333 else 15334 return (NULL); 15335 } 15336 15337 /* 15338 * If we're dealing with an unlabeled destination on a labeled system, 15339 * make sure that we ignore source addresses that are incompatible with 15340 * the destination's default label. That destination's default label 15341 * must dominate the minimum label on the source address. 15342 */ 15343 dst_rhtp = NULL; 15344 if (is_system_labeled()) { 15345 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 15346 if (dst_rhtp == NULL) 15347 return (NULL); 15348 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 15349 TPC_RELE(dst_rhtp); 15350 dst_rhtp = NULL; 15351 } 15352 } 15353 15354 /* 15355 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 15356 * can be deleted. But an ipif/ill can get CONDEMNED any time. 15357 * After selecting the right ipif, under ill_lock make sure ipif is 15358 * not condemned, and increment refcnt. If ipif is CONDEMNED, 15359 * we retry. Inside the loop we still need to check for CONDEMNED, 15360 * but not under a lock. 15361 */ 15362 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15363 retry: 15364 /* 15365 * For source address selection, we treat the ipif list as circular 15366 * and continue until we get back to where we started. This allows 15367 * IPMP to vary source address selection (which improves inbound load 15368 * spreading) by caching its last ending point and starting from 15369 * there. NOTE: we don't have to worry about ill_src_ipif changing 15370 * ills since that can't happen on the IPMP ill. 15371 */ 15372 start_ipif = ill->ill_ipif; 15373 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 15374 start_ipif = ill->ill_src_ipif; 15375 15376 ipif = start_ipif; 15377 best_ipif = NULL; 15378 best_type = IPIF_NONE; 15379 do { 15380 if ((next_ipif = ipif->ipif_next) == NULL) 15381 next_ipif = ill->ill_ipif; 15382 15383 if (IPIF_IS_CONDEMNED(ipif)) 15384 continue; 15385 /* Always skip NOLOCAL and ANYCAST interfaces */ 15386 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15387 continue; 15388 /* Always skip NOACCEPT interfaces */ 15389 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 15390 continue; 15391 if (!(ipif->ipif_flags & IPIF_UP)) 15392 continue; 15393 15394 if (!ipif->ipif_addr_ready) { 15395 if (notreadyp != NULL) 15396 *notreadyp = B_TRUE; 15397 continue; 15398 } 15399 15400 if (zoneid != ALL_ZONES && 15401 ipif->ipif_zoneid != zoneid && 15402 ipif->ipif_zoneid != ALL_ZONES) 15403 continue; 15404 15405 /* 15406 * Interfaces with 0.0.0.0 address are allowed to be UP, but 15407 * are not valid as source addresses. 15408 */ 15409 if (ipif->ipif_lcl_addr == INADDR_ANY) 15410 continue; 15411 15412 /* 15413 * Check compatibility of local address for destination's 15414 * default label if we're on a labeled system. Incompatible 15415 * addresses can't be used at all. 15416 */ 15417 if (dst_rhtp != NULL) { 15418 boolean_t incompat; 15419 15420 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 15421 IPV4_VERSION, B_FALSE); 15422 if (src_rhtp == NULL) 15423 continue; 15424 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 15425 src_rhtp->tpc_tp.tp_doi != 15426 dst_rhtp->tpc_tp.tp_doi || 15427 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 15428 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 15429 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 15430 src_rhtp->tpc_tp.tp_sl_set_cipso)); 15431 TPC_RELE(src_rhtp); 15432 if (incompat) 15433 continue; 15434 } 15435 15436 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 15437 15438 if (ipif->ipif_lcl_addr == dst) { 15439 type = IPIF_LOCALADDR; 15440 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 15441 type = samenet ? IPIF_SAMENET_DEPRECATED : 15442 IPIF_DIFFNET_DEPRECATED; 15443 } else if (ipif->ipif_zoneid == ALL_ZONES) { 15444 type = samenet ? IPIF_SAMENET_ALLZONES : 15445 IPIF_DIFFNET_ALLZONES; 15446 } else { 15447 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 15448 } 15449 15450 if (type > best_type) { 15451 best_type = type; 15452 best_ipif = ipif; 15453 if (best_type == IPIF_LOCALADDR) 15454 break; /* can't get better */ 15455 } 15456 } while ((ipif = next_ipif) != start_ipif); 15457 15458 if ((ipif = best_ipif) != NULL) { 15459 mutex_enter(&ipif->ipif_ill->ill_lock); 15460 if (IPIF_IS_CONDEMNED(ipif)) { 15461 mutex_exit(&ipif->ipif_ill->ill_lock); 15462 goto retry; 15463 } 15464 ipif_refhold_locked(ipif); 15465 15466 /* 15467 * For IPMP, update the source ipif rotor to the next ipif, 15468 * provided we can look it up. (We must not use it if it's 15469 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 15470 * ipif_free() checked ill_src_ipif.) 15471 */ 15472 if (IS_IPMP(ill) && ipif != NULL) { 15473 next_ipif = ipif->ipif_next; 15474 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 15475 ill->ill_src_ipif = next_ipif; 15476 else 15477 ill->ill_src_ipif = NULL; 15478 } 15479 mutex_exit(&ipif->ipif_ill->ill_lock); 15480 } 15481 15482 rw_exit(&ipst->ips_ill_g_lock); 15483 if (usill != NULL) 15484 ill_refrele(usill); 15485 if (ipmp_ill != NULL) 15486 ill_refrele(ipmp_ill); 15487 if (dst_rhtp != NULL) 15488 TPC_RELE(dst_rhtp); 15489 15490 #ifdef DEBUG 15491 if (ipif == NULL) { 15492 char buf1[INET6_ADDRSTRLEN]; 15493 15494 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 15495 ill->ill_name, 15496 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 15497 } else { 15498 char buf1[INET6_ADDRSTRLEN]; 15499 char buf2[INET6_ADDRSTRLEN]; 15500 15501 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 15502 ipif->ipif_ill->ill_name, 15503 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 15504 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 15505 buf2, sizeof (buf2)))); 15506 } 15507 #endif /* DEBUG */ 15508 return (ipif); 15509 } 15510 15511 /* 15512 * Pick a source address based on the destination ill and an optional setsrc 15513 * address. 15514 * The result is stored in srcp. If generation is set, then put the source 15515 * generation number there before we look for the source address (to avoid 15516 * missing changes in the set of source addresses. 15517 * If flagsp is set, then us it to pass back ipif_flags. 15518 * 15519 * If the caller wants to cache the returned source address and detect when 15520 * that might be stale, the caller should pass in a generation argument, 15521 * which the caller can later compare against ips_src_generation 15522 * 15523 * The precedence order for selecting an IPv4 source address is: 15524 * - RTF_SETSRC on the offlink ire always wins. 15525 * - If usrsrc is set, swap the ill to be the usesrc one. 15526 * - If IPMP is used on the ill, select a random address from the most 15527 * preferred ones below: 15528 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 15529 * 2. Not deprecated, not ALL_ZONES 15530 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 15531 * 4. Not deprecated, ALL_ZONES 15532 * 5. If onlink destination, same subnet and deprecated 15533 * 6. Deprecated. 15534 * 15535 * We have lower preference for ALL_ZONES IP addresses, 15536 * as they pose problems with unlabeled destinations. 15537 * 15538 * Note that when multiple IP addresses match e.g., #1 we pick 15539 * the first one if IPMP is not in use. With IPMP we randomize. 15540 */ 15541 int 15542 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 15543 ipaddr_t multicast_ifaddr, 15544 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 15545 uint32_t *generation, uint64_t *flagsp) 15546 { 15547 ipif_t *ipif; 15548 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 15549 15550 if (flagsp != NULL) 15551 *flagsp = 0; 15552 15553 /* 15554 * Need to grab the generation number before we check to 15555 * avoid a race with a change to the set of local addresses. 15556 * No lock needed since the thread which updates the set of local 15557 * addresses use ipif/ill locks and exit those (hence a store memory 15558 * barrier) before doing the atomic increase of ips_src_generation. 15559 */ 15560 if (generation != NULL) { 15561 *generation = ipst->ips_src_generation; 15562 } 15563 15564 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15565 *srcp = multicast_ifaddr; 15566 return (0); 15567 } 15568 15569 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15570 if (setsrc != INADDR_ANY) { 15571 *srcp = setsrc; 15572 return (0); 15573 } 15574 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15575 if (ipif == NULL) { 15576 if (notready) 15577 return (ENETDOWN); 15578 else 15579 return (EADDRNOTAVAIL); 15580 } 15581 *srcp = ipif->ipif_lcl_addr; 15582 if (flagsp != NULL) 15583 *flagsp = ipif->ipif_flags; 15584 ipif_refrele(ipif); 15585 return (0); 15586 } 15587 15588 /* ARGSUSED */ 15589 int 15590 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15591 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15592 { 15593 /* 15594 * ill_phyint_reinit merged the v4 and v6 into a single 15595 * ipsq. We might not have been able to complete the 15596 * operation in ipif_set_values, if we could not become 15597 * exclusive. If so restart it here. 15598 */ 15599 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15600 } 15601 15602 /* 15603 * Can operate on either a module or a driver queue. 15604 * Returns an error if not a module queue. 15605 */ 15606 /* ARGSUSED */ 15607 int 15608 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15609 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15610 { 15611 queue_t *q1 = q; 15612 char *cp; 15613 char interf_name[LIFNAMSIZ]; 15614 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15615 15616 if (q->q_next == NULL) { 15617 ip1dbg(( 15618 "if_unitsel: IF_UNITSEL: no q_next\n")); 15619 return (EINVAL); 15620 } 15621 15622 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15623 return (EALREADY); 15624 15625 do { 15626 q1 = q1->q_next; 15627 } while (q1->q_next); 15628 cp = q1->q_qinfo->qi_minfo->mi_idname; 15629 (void) sprintf(interf_name, "%s%d", cp, ppa); 15630 15631 /* 15632 * Here we are not going to delay the ioack until after 15633 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15634 * original ioctl message before sending the requests. 15635 */ 15636 return (ipif_set_values(q, mp, interf_name, &ppa)); 15637 } 15638 15639 /* ARGSUSED */ 15640 int 15641 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15642 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15643 { 15644 return (ENXIO); 15645 } 15646 15647 /* 15648 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15649 * `irep'. Returns a pointer to the next free `irep' entry 15650 * A mirror exists in ipif_delete_bcast_ires(). 15651 * 15652 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15653 * done in ire_add. 15654 */ 15655 static ire_t ** 15656 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15657 { 15658 ipaddr_t addr; 15659 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15660 ipaddr_t subnetmask = ipif->ipif_net_mask; 15661 ill_t *ill = ipif->ipif_ill; 15662 zoneid_t zoneid = ipif->ipif_zoneid; 15663 15664 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15665 15666 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15667 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15668 15669 if (ipif->ipif_lcl_addr == INADDR_ANY || 15670 (ipif->ipif_flags & IPIF_NOLOCAL)) 15671 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15672 15673 irep = ire_create_bcast(ill, 0, zoneid, irep); 15674 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15675 15676 /* 15677 * For backward compatibility, we create net broadcast IREs based on 15678 * the old "IP address class system", since some old machines only 15679 * respond to these class derived net broadcast. However, we must not 15680 * create these net broadcast IREs if the subnetmask is shorter than 15681 * the IP address class based derived netmask. Otherwise, we may 15682 * create a net broadcast address which is the same as an IP address 15683 * on the subnet -- and then TCP will refuse to talk to that address. 15684 */ 15685 if (netmask < subnetmask) { 15686 addr = netmask & ipif->ipif_subnet; 15687 irep = ire_create_bcast(ill, addr, zoneid, irep); 15688 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15689 } 15690 15691 /* 15692 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15693 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15694 * created. Creating these broadcast IREs will only create confusion 15695 * as `addr' will be the same as the IP address. 15696 */ 15697 if (subnetmask != 0xFFFFFFFF) { 15698 addr = ipif->ipif_subnet; 15699 irep = ire_create_bcast(ill, addr, zoneid, irep); 15700 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15701 } 15702 15703 return (irep); 15704 } 15705 15706 /* 15707 * Mirror of ipif_create_bcast_ires() 15708 */ 15709 static void 15710 ipif_delete_bcast_ires(ipif_t *ipif) 15711 { 15712 ipaddr_t addr; 15713 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15714 ipaddr_t subnetmask = ipif->ipif_net_mask; 15715 ill_t *ill = ipif->ipif_ill; 15716 zoneid_t zoneid = ipif->ipif_zoneid; 15717 ire_t *ire; 15718 15719 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15720 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15721 15722 if (ipif->ipif_lcl_addr == INADDR_ANY || 15723 (ipif->ipif_flags & IPIF_NOLOCAL)) 15724 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15725 15726 ire = ire_lookup_bcast(ill, 0, zoneid); 15727 ASSERT(ire != NULL); 15728 ire_delete(ire); ire_refrele(ire); 15729 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15730 ASSERT(ire != NULL); 15731 ire_delete(ire); ire_refrele(ire); 15732 15733 /* 15734 * For backward compatibility, we create net broadcast IREs based on 15735 * the old "IP address class system", since some old machines only 15736 * respond to these class derived net broadcast. However, we must not 15737 * create these net broadcast IREs if the subnetmask is shorter than 15738 * the IP address class based derived netmask. Otherwise, we may 15739 * create a net broadcast address which is the same as an IP address 15740 * on the subnet -- and then TCP will refuse to talk to that address. 15741 */ 15742 if (netmask < subnetmask) { 15743 addr = netmask & ipif->ipif_subnet; 15744 ire = ire_lookup_bcast(ill, addr, zoneid); 15745 ASSERT(ire != NULL); 15746 ire_delete(ire); ire_refrele(ire); 15747 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15748 ASSERT(ire != NULL); 15749 ire_delete(ire); ire_refrele(ire); 15750 } 15751 15752 /* 15753 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15754 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15755 * created. Creating these broadcast IREs will only create confusion 15756 * as `addr' will be the same as the IP address. 15757 */ 15758 if (subnetmask != 0xFFFFFFFF) { 15759 addr = ipif->ipif_subnet; 15760 ire = ire_lookup_bcast(ill, addr, zoneid); 15761 ASSERT(ire != NULL); 15762 ire_delete(ire); ire_refrele(ire); 15763 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15764 ASSERT(ire != NULL); 15765 ire_delete(ire); ire_refrele(ire); 15766 } 15767 } 15768 15769 /* 15770 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15771 * from lifr_flags and the name from lifr_name. 15772 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15773 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15774 * Returns EINPROGRESS when mp has been consumed by queueing it on 15775 * ipx_pending_mp and the ioctl will complete in ip_rput. 15776 * 15777 * Can operate on either a module or a driver queue. 15778 * Returns an error if not a module queue. 15779 */ 15780 /* ARGSUSED */ 15781 int 15782 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15783 ip_ioctl_cmd_t *ipip, void *if_req) 15784 { 15785 ill_t *ill = q->q_ptr; 15786 phyint_t *phyi; 15787 ip_stack_t *ipst; 15788 struct lifreq *lifr = if_req; 15789 uint64_t new_flags; 15790 15791 ASSERT(ipif != NULL); 15792 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15793 15794 if (q->q_next == NULL) { 15795 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15796 return (EINVAL); 15797 } 15798 15799 /* 15800 * If we are not writer on 'q' then this interface exists already 15801 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15802 * so return EALREADY. 15803 */ 15804 if (ill != ipif->ipif_ill) 15805 return (EALREADY); 15806 15807 if (ill->ill_name[0] != '\0') 15808 return (EALREADY); 15809 15810 /* 15811 * If there's another ill already with the requested name, ensure 15812 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15813 * fuse together two unrelated ills, which will cause chaos. 15814 */ 15815 ipst = ill->ill_ipst; 15816 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15817 lifr->lifr_name, NULL); 15818 if (phyi != NULL) { 15819 ill_t *ill_mate = phyi->phyint_illv4; 15820 15821 if (ill_mate == NULL) 15822 ill_mate = phyi->phyint_illv6; 15823 ASSERT(ill_mate != NULL); 15824 15825 if (ill_mate->ill_media->ip_m_mac_type != 15826 ill->ill_media->ip_m_mac_type) { 15827 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15828 "use the same ill name on differing media\n")); 15829 return (EINVAL); 15830 } 15831 } 15832 15833 /* 15834 * We start off as IFF_IPV4 in ipif_allocate and become 15835 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15836 * The only flags that we read from user space are IFF_IPV4, 15837 * IFF_IPV6, and IFF_BROADCAST. 15838 * 15839 * This ill has not been inserted into the global list. 15840 * So we are still single threaded and don't need any lock 15841 * 15842 * Saniy check the flags. 15843 */ 15844 15845 if ((lifr->lifr_flags & IFF_BROADCAST) && 15846 ((lifr->lifr_flags & IFF_IPV6) || 15847 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15848 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15849 "or IPv6 i.e., no broadcast \n")); 15850 return (EINVAL); 15851 } 15852 15853 new_flags = 15854 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15855 15856 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15857 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15858 "IFF_IPV4 or IFF_IPV6\n")); 15859 return (EINVAL); 15860 } 15861 15862 /* 15863 * We always start off as IPv4, so only need to check for IPv6. 15864 */ 15865 if ((new_flags & IFF_IPV6) != 0) { 15866 ill->ill_flags |= ILLF_IPV6; 15867 ill->ill_flags &= ~ILLF_IPV4; 15868 15869 if (lifr->lifr_flags & IFF_NOLINKLOCAL) 15870 ill->ill_flags |= ILLF_NOLINKLOCAL; 15871 } 15872 15873 if ((new_flags & IFF_BROADCAST) != 0) 15874 ipif->ipif_flags |= IPIF_BROADCAST; 15875 else 15876 ipif->ipif_flags &= ~IPIF_BROADCAST; 15877 15878 /* We started off as V4. */ 15879 if (ill->ill_flags & ILLF_IPV6) { 15880 ill->ill_phyint->phyint_illv6 = ill; 15881 ill->ill_phyint->phyint_illv4 = NULL; 15882 } 15883 15884 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15885 } 15886 15887 /* ARGSUSED */ 15888 int 15889 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15890 ip_ioctl_cmd_t *ipip, void *if_req) 15891 { 15892 /* 15893 * ill_phyint_reinit merged the v4 and v6 into a single 15894 * ipsq. We might not have been able to complete the 15895 * slifname in ipif_set_values, if we could not become 15896 * exclusive. If so restart it here 15897 */ 15898 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15899 } 15900 15901 /* 15902 * Return a pointer to the ipif which matches the index, IP version type and 15903 * zoneid. 15904 */ 15905 ipif_t * 15906 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15907 ip_stack_t *ipst) 15908 { 15909 ill_t *ill; 15910 ipif_t *ipif = NULL; 15911 15912 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15913 if (ill != NULL) { 15914 mutex_enter(&ill->ill_lock); 15915 for (ipif = ill->ill_ipif; ipif != NULL; 15916 ipif = ipif->ipif_next) { 15917 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15918 zoneid == ipif->ipif_zoneid || 15919 ipif->ipif_zoneid == ALL_ZONES)) { 15920 ipif_refhold_locked(ipif); 15921 break; 15922 } 15923 } 15924 mutex_exit(&ill->ill_lock); 15925 ill_refrele(ill); 15926 } 15927 return (ipif); 15928 } 15929 15930 /* 15931 * Change an existing physical interface's index. If the new index 15932 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15933 * Finally, we update other systems which may have a dependence on the 15934 * index value. 15935 */ 15936 /* ARGSUSED */ 15937 int 15938 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15939 ip_ioctl_cmd_t *ipip, void *ifreq) 15940 { 15941 ill_t *ill; 15942 phyint_t *phyi; 15943 struct ifreq *ifr = (struct ifreq *)ifreq; 15944 struct lifreq *lifr = (struct lifreq *)ifreq; 15945 uint_t old_index, index; 15946 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15947 avl_index_t where; 15948 15949 if (ipip->ipi_cmd_type == IF_CMD) 15950 index = ifr->ifr_index; 15951 else 15952 index = lifr->lifr_index; 15953 15954 /* 15955 * Only allow on physical interface. Also, index zero is illegal. 15956 */ 15957 ill = ipif->ipif_ill; 15958 phyi = ill->ill_phyint; 15959 if (ipif->ipif_id != 0 || index == 0 || index > IF_INDEX_MAX) { 15960 return (EINVAL); 15961 } 15962 15963 /* If the index is not changing, no work to do */ 15964 if (phyi->phyint_ifindex == index) 15965 return (0); 15966 15967 /* 15968 * Use phyint_exists() to determine if the new interface index 15969 * is already in use. If the index is unused then we need to 15970 * change the phyint's position in the phyint_list_avl_by_index 15971 * tree. If we do not do this, subsequent lookups (using the new 15972 * index value) will not find the phyint. 15973 */ 15974 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15975 if (phyint_exists(index, ipst)) { 15976 rw_exit(&ipst->ips_ill_g_lock); 15977 return (EEXIST); 15978 } 15979 15980 /* 15981 * The new index is unused. Set it in the phyint. However we must not 15982 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 15983 * changes. The event must be bound to old ifindex value. 15984 */ 15985 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 15986 &index, sizeof (index)); 15987 15988 old_index = phyi->phyint_ifindex; 15989 phyi->phyint_ifindex = index; 15990 15991 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 15992 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15993 &index, &where); 15994 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15995 phyi, where); 15996 rw_exit(&ipst->ips_ill_g_lock); 15997 15998 /* Update SCTP's ILL list */ 15999 sctp_ill_reindex(ill, old_index); 16000 16001 /* Send the routing sockets message */ 16002 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 16003 if (ILL_OTHER(ill)) 16004 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 16005 16006 /* Perhaps ilgs should use this ill */ 16007 update_conn_ill(NULL, ill->ill_ipst); 16008 return (0); 16009 } 16010 16011 /* ARGSUSED */ 16012 int 16013 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16014 ip_ioctl_cmd_t *ipip, void *ifreq) 16015 { 16016 struct ifreq *ifr = (struct ifreq *)ifreq; 16017 struct lifreq *lifr = (struct lifreq *)ifreq; 16018 16019 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 16020 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16021 /* Get the interface index */ 16022 if (ipip->ipi_cmd_type == IF_CMD) { 16023 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16024 } else { 16025 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16026 } 16027 return (0); 16028 } 16029 16030 /* ARGSUSED */ 16031 int 16032 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16033 ip_ioctl_cmd_t *ipip, void *ifreq) 16034 { 16035 struct lifreq *lifr = (struct lifreq *)ifreq; 16036 16037 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 16038 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16039 /* Get the interface zone */ 16040 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16041 lifr->lifr_zoneid = ipif->ipif_zoneid; 16042 return (0); 16043 } 16044 16045 /* 16046 * Set the zoneid of an interface. 16047 */ 16048 /* ARGSUSED */ 16049 int 16050 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16051 ip_ioctl_cmd_t *ipip, void *ifreq) 16052 { 16053 struct lifreq *lifr = (struct lifreq *)ifreq; 16054 int err = 0; 16055 boolean_t need_up = B_FALSE; 16056 zone_t *zptr; 16057 zone_status_t status; 16058 zoneid_t zoneid; 16059 16060 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16061 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 16062 if (!is_system_labeled()) 16063 return (ENOTSUP); 16064 zoneid = GLOBAL_ZONEID; 16065 } 16066 16067 /* cannot assign instance zero to a non-global zone */ 16068 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 16069 return (ENOTSUP); 16070 16071 /* 16072 * Cannot assign to a zone that doesn't exist or is shutting down. In 16073 * the event of a race with the zone shutdown processing, since IP 16074 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 16075 * interface will be cleaned up even if the zone is shut down 16076 * immediately after the status check. If the interface can't be brought 16077 * down right away, and the zone is shut down before the restart 16078 * function is called, we resolve the possible races by rechecking the 16079 * zone status in the restart function. 16080 */ 16081 if ((zptr = zone_find_by_id(zoneid)) == NULL) 16082 return (EINVAL); 16083 status = zone_status_get(zptr); 16084 zone_rele(zptr); 16085 16086 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 16087 return (EINVAL); 16088 16089 if (ipif->ipif_flags & IPIF_UP) { 16090 /* 16091 * If the interface is already marked up, 16092 * we call ipif_down which will take care 16093 * of ditching any IREs that have been set 16094 * up based on the old interface address. 16095 */ 16096 err = ipif_logical_down(ipif, q, mp); 16097 if (err == EINPROGRESS) 16098 return (err); 16099 (void) ipif_down_tail(ipif); 16100 need_up = B_TRUE; 16101 } 16102 16103 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 16104 return (err); 16105 } 16106 16107 static int 16108 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 16109 queue_t *q, mblk_t *mp, boolean_t need_up) 16110 { 16111 int err = 0; 16112 ip_stack_t *ipst; 16113 16114 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 16115 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16116 16117 if (CONN_Q(q)) 16118 ipst = CONNQ_TO_IPST(q); 16119 else 16120 ipst = ILLQ_TO_IPST(q); 16121 16122 /* 16123 * For exclusive stacks we don't allow a different zoneid than 16124 * global. 16125 */ 16126 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 16127 zoneid != GLOBAL_ZONEID) 16128 return (EINVAL); 16129 16130 /* Set the new zone id. */ 16131 ipif->ipif_zoneid = zoneid; 16132 16133 /* Update sctp list */ 16134 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 16135 16136 /* The default multicast interface might have changed */ 16137 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 16138 16139 if (need_up) { 16140 /* 16141 * Now bring the interface back up. If this 16142 * is the only IPIF for the ILL, ipif_up 16143 * will have to re-bind to the device, so 16144 * we may get back EINPROGRESS, in which 16145 * case, this IOCTL will get completed in 16146 * ip_rput_dlpi when we see the DL_BIND_ACK. 16147 */ 16148 err = ipif_up(ipif, q, mp); 16149 } 16150 return (err); 16151 } 16152 16153 /* ARGSUSED */ 16154 int 16155 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16156 ip_ioctl_cmd_t *ipip, void *if_req) 16157 { 16158 struct lifreq *lifr = (struct lifreq *)if_req; 16159 zoneid_t zoneid; 16160 zone_t *zptr; 16161 zone_status_t status; 16162 16163 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16164 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 16165 zoneid = GLOBAL_ZONEID; 16166 16167 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 16168 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16169 16170 /* 16171 * We recheck the zone status to resolve the following race condition: 16172 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 16173 * 2) hme0:1 is up and can't be brought down right away; 16174 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 16175 * 3) zone "myzone" is halted; the zone status switches to 16176 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 16177 * the interfaces to remove - hme0:1 is not returned because it's not 16178 * yet in "myzone", so it won't be removed; 16179 * 4) the restart function for SIOCSLIFZONE is called; without the 16180 * status check here, we would have hme0:1 in "myzone" after it's been 16181 * destroyed. 16182 * Note that if the status check fails, we need to bring the interface 16183 * back to its state prior to ip_sioctl_slifzone(), hence the call to 16184 * ipif_up_done[_v6](). 16185 */ 16186 status = ZONE_IS_UNINITIALIZED; 16187 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 16188 status = zone_status_get(zptr); 16189 zone_rele(zptr); 16190 } 16191 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 16192 if (ipif->ipif_isv6) { 16193 (void) ipif_up_done_v6(ipif); 16194 } else { 16195 (void) ipif_up_done(ipif); 16196 } 16197 return (EINVAL); 16198 } 16199 16200 (void) ipif_down_tail(ipif); 16201 16202 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 16203 B_TRUE)); 16204 } 16205 16206 /* 16207 * Return the number of addresses on `ill' with one or more of the values 16208 * in `set' set and all of the values in `clear' clear. 16209 */ 16210 static uint_t 16211 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 16212 { 16213 ipif_t *ipif; 16214 uint_t cnt = 0; 16215 16216 ASSERT(IAM_WRITER_ILL(ill)); 16217 16218 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 16219 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 16220 cnt++; 16221 16222 return (cnt); 16223 } 16224 16225 /* 16226 * Return the number of migratable addresses on `ill' that are under 16227 * application control. 16228 */ 16229 uint_t 16230 ill_appaddr_cnt(const ill_t *ill) 16231 { 16232 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 16233 IPIF_NOFAILOVER)); 16234 } 16235 16236 /* 16237 * Return the number of point-to-point addresses on `ill'. 16238 */ 16239 uint_t 16240 ill_ptpaddr_cnt(const ill_t *ill) 16241 { 16242 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 16243 } 16244 16245 /* ARGSUSED */ 16246 int 16247 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16248 ip_ioctl_cmd_t *ipip, void *ifreq) 16249 { 16250 struct lifreq *lifr = ifreq; 16251 16252 ASSERT(q->q_next == NULL); 16253 ASSERT(CONN_Q(q)); 16254 16255 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 16256 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16257 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 16258 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 16259 16260 return (0); 16261 } 16262 16263 /* Find the previous ILL in this usesrc group */ 16264 static ill_t * 16265 ill_prev_usesrc(ill_t *uill) 16266 { 16267 ill_t *ill; 16268 16269 for (ill = uill->ill_usesrc_grp_next; 16270 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 16271 ill = ill->ill_usesrc_grp_next) 16272 /* do nothing */; 16273 return (ill); 16274 } 16275 16276 /* 16277 * Release all members of the usesrc group. This routine is called 16278 * from ill_delete when the interface being unplumbed is the 16279 * group head. 16280 * 16281 * This silently clears the usesrc that ifconfig setup. 16282 * An alternative would be to keep that ifindex, and drop packets on the floor 16283 * since no source address can be selected. 16284 * Even if we keep the current semantics, don't need a lock and a linked list. 16285 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 16286 * the one that is being removed. Issue is how we return the usesrc users 16287 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 16288 * ill_usesrc_ifindex matching a target ill. We could also do that with an 16289 * ill walk, but the walker would need to insert in the ioctl response. 16290 */ 16291 static void 16292 ill_disband_usesrc_group(ill_t *uill) 16293 { 16294 ill_t *next_ill, *tmp_ill; 16295 ip_stack_t *ipst = uill->ill_ipst; 16296 16297 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16298 next_ill = uill->ill_usesrc_grp_next; 16299 16300 do { 16301 ASSERT(next_ill != NULL); 16302 tmp_ill = next_ill->ill_usesrc_grp_next; 16303 ASSERT(tmp_ill != NULL); 16304 next_ill->ill_usesrc_grp_next = NULL; 16305 next_ill->ill_usesrc_ifindex = 0; 16306 next_ill = tmp_ill; 16307 } while (next_ill->ill_usesrc_ifindex != 0); 16308 uill->ill_usesrc_grp_next = NULL; 16309 } 16310 16311 /* 16312 * Remove the client usesrc ILL from the list and relink to a new list 16313 */ 16314 int 16315 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 16316 { 16317 ill_t *ill, *tmp_ill; 16318 ip_stack_t *ipst = ucill->ill_ipst; 16319 16320 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 16321 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16322 16323 /* 16324 * Check if the usesrc client ILL passed in is not already 16325 * in use as a usesrc ILL i.e one whose source address is 16326 * in use OR a usesrc ILL is not already in use as a usesrc 16327 * client ILL 16328 */ 16329 if ((ucill->ill_usesrc_ifindex == 0) || 16330 (uill->ill_usesrc_ifindex != 0)) { 16331 return (-1); 16332 } 16333 16334 ill = ill_prev_usesrc(ucill); 16335 ASSERT(ill->ill_usesrc_grp_next != NULL); 16336 16337 /* Remove from the current list */ 16338 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 16339 /* Only two elements in the list */ 16340 ASSERT(ill->ill_usesrc_ifindex == 0); 16341 ill->ill_usesrc_grp_next = NULL; 16342 } else { 16343 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 16344 } 16345 16346 if (ifindex == 0) { 16347 ucill->ill_usesrc_ifindex = 0; 16348 ucill->ill_usesrc_grp_next = NULL; 16349 return (0); 16350 } 16351 16352 ucill->ill_usesrc_ifindex = ifindex; 16353 tmp_ill = uill->ill_usesrc_grp_next; 16354 uill->ill_usesrc_grp_next = ucill; 16355 ucill->ill_usesrc_grp_next = 16356 (tmp_ill != NULL) ? tmp_ill : uill; 16357 return (0); 16358 } 16359 16360 /* 16361 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 16362 * ip.c for locking details. 16363 */ 16364 /* ARGSUSED */ 16365 int 16366 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16367 ip_ioctl_cmd_t *ipip, void *ifreq) 16368 { 16369 struct lifreq *lifr = (struct lifreq *)ifreq; 16370 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 16371 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 16372 int err = 0, ret; 16373 uint_t ifindex; 16374 ipsq_t *ipsq = NULL; 16375 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16376 16377 ASSERT(IAM_WRITER_IPIF(ipif)); 16378 ASSERT(q->q_next == NULL); 16379 ASSERT(CONN_Q(q)); 16380 16381 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 16382 16383 ifindex = lifr->lifr_index; 16384 if (ifindex == 0) { 16385 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 16386 /* non usesrc group interface, nothing to reset */ 16387 return (0); 16388 } 16389 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 16390 /* valid reset request */ 16391 reset_flg = B_TRUE; 16392 } 16393 16394 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 16395 if (usesrc_ill == NULL) 16396 return (ENXIO); 16397 if (usesrc_ill == ipif->ipif_ill) { 16398 ill_refrele(usesrc_ill); 16399 return (EINVAL); 16400 } 16401 16402 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 16403 NEW_OP, B_TRUE); 16404 if (ipsq == NULL) { 16405 err = EINPROGRESS; 16406 /* Operation enqueued on the ipsq of the usesrc ILL */ 16407 goto done; 16408 } 16409 16410 /* USESRC isn't currently supported with IPMP */ 16411 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 16412 err = ENOTSUP; 16413 goto done; 16414 } 16415 16416 /* 16417 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 16418 * used by IPMP underlying interfaces, but someone might think it's 16419 * more general and try to use it independently with VNI.) 16420 */ 16421 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 16422 err = ENOTSUP; 16423 goto done; 16424 } 16425 16426 /* 16427 * If the client is already in use as a usesrc_ill or a usesrc_ill is 16428 * already a client then return EINVAL 16429 */ 16430 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 16431 err = EINVAL; 16432 goto done; 16433 } 16434 16435 /* 16436 * If the ill_usesrc_ifindex field is already set to what it needs to 16437 * be then this is a duplicate operation. 16438 */ 16439 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 16440 err = 0; 16441 goto done; 16442 } 16443 16444 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 16445 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 16446 usesrc_ill->ill_isv6)); 16447 16448 /* 16449 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 16450 * and the ill_usesrc_ifindex fields 16451 */ 16452 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 16453 16454 if (reset_flg) { 16455 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 16456 if (ret != 0) { 16457 err = EINVAL; 16458 } 16459 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16460 goto done; 16461 } 16462 16463 /* 16464 * Four possibilities to consider: 16465 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 16466 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 16467 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 16468 * 4. Both are part of their respective usesrc groups 16469 */ 16470 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 16471 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16472 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 16473 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16474 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16475 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 16476 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 16477 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16478 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16479 /* Insert at head of list */ 16480 usesrc_cli_ill->ill_usesrc_grp_next = 16481 usesrc_ill->ill_usesrc_grp_next; 16482 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16483 } else { 16484 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 16485 ifindex); 16486 if (ret != 0) 16487 err = EINVAL; 16488 } 16489 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16490 16491 done: 16492 if (ipsq != NULL) 16493 ipsq_exit(ipsq); 16494 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 16495 ill_refrele(usesrc_ill); 16496 16497 /* Let conn_ixa caching know that source address selection changed */ 16498 ip_update_source_selection(ipst); 16499 16500 return (err); 16501 } 16502 16503 /* ARGSUSED */ 16504 int 16505 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16506 ip_ioctl_cmd_t *ipip, void *if_req) 16507 { 16508 struct lifreq *lifr = (struct lifreq *)if_req; 16509 ill_t *ill = ipif->ipif_ill; 16510 16511 /* 16512 * Need a lock since IFF_UP can be set even when there are 16513 * references to the ipif. 16514 */ 16515 mutex_enter(&ill->ill_lock); 16516 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0) 16517 lifr->lifr_dadstate = DAD_IN_PROGRESS; 16518 else 16519 lifr->lifr_dadstate = DAD_DONE; 16520 mutex_exit(&ill->ill_lock); 16521 return (0); 16522 } 16523 16524 /* 16525 * comparison function used by avl. 16526 */ 16527 static int 16528 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 16529 { 16530 16531 uint_t index; 16532 16533 ASSERT(phyip != NULL && index_ptr != NULL); 16534 16535 index = *((uint_t *)index_ptr); 16536 /* 16537 * let the phyint with the lowest index be on top. 16538 */ 16539 if (((phyint_t *)phyip)->phyint_ifindex < index) 16540 return (1); 16541 if (((phyint_t *)phyip)->phyint_ifindex > index) 16542 return (-1); 16543 return (0); 16544 } 16545 16546 /* 16547 * comparison function used by avl. 16548 */ 16549 static int 16550 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 16551 { 16552 ill_t *ill; 16553 int res = 0; 16554 16555 ASSERT(phyip != NULL && name_ptr != NULL); 16556 16557 if (((phyint_t *)phyip)->phyint_illv4) 16558 ill = ((phyint_t *)phyip)->phyint_illv4; 16559 else 16560 ill = ((phyint_t *)phyip)->phyint_illv6; 16561 ASSERT(ill != NULL); 16562 16563 res = strcmp(ill->ill_name, (char *)name_ptr); 16564 if (res > 0) 16565 return (1); 16566 else if (res < 0) 16567 return (-1); 16568 return (0); 16569 } 16570 16571 /* 16572 * This function is called on the unplumb path via ill_glist_delete() when 16573 * there are no ills left on the phyint and thus the phyint can be freed. 16574 */ 16575 static void 16576 phyint_free(phyint_t *phyi) 16577 { 16578 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 16579 16580 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16581 16582 /* 16583 * If this phyint was an IPMP meta-interface, blow away the group. 16584 * This is safe to do because all of the illgrps have already been 16585 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16586 * If we're cleaning up as a result of failed initialization, 16587 * phyint_grp may be NULL. 16588 */ 16589 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16590 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16591 ipmp_grp_destroy(phyi->phyint_grp); 16592 phyi->phyint_grp = NULL; 16593 rw_exit(&ipst->ips_ipmp_lock); 16594 } 16595 16596 /* 16597 * If this interface was under IPMP, take it out of the group. 16598 */ 16599 if (phyi->phyint_grp != NULL) 16600 ipmp_phyint_leave_grp(phyi); 16601 16602 /* 16603 * Delete the phyint and disassociate its ipsq. The ipsq itself 16604 * will be freed in ipsq_exit(). 16605 */ 16606 phyi->phyint_ipsq->ipsq_phyint = NULL; 16607 phyi->phyint_name[0] = '\0'; 16608 16609 mi_free(phyi); 16610 } 16611 16612 /* 16613 * Attach the ill to the phyint structure which can be shared by both 16614 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16615 * function is called from ipif_set_values and ill_lookup_on_name (for 16616 * loopback) where we know the name of the ill. We lookup the ill and if 16617 * there is one present already with the name use that phyint. Otherwise 16618 * reuse the one allocated by ill_init. 16619 */ 16620 static void 16621 ill_phyint_reinit(ill_t *ill) 16622 { 16623 boolean_t isv6 = ill->ill_isv6; 16624 phyint_t *phyi_old; 16625 phyint_t *phyi; 16626 avl_index_t where = 0; 16627 ill_t *ill_other = NULL; 16628 ip_stack_t *ipst = ill->ill_ipst; 16629 16630 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16631 16632 phyi_old = ill->ill_phyint; 16633 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16634 phyi_old->phyint_illv6 == NULL)); 16635 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16636 phyi_old->phyint_illv4 == NULL)); 16637 ASSERT(phyi_old->phyint_ifindex == 0); 16638 16639 /* 16640 * Now that our ill has a name, set it in the phyint. 16641 */ 16642 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16643 16644 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16645 ill->ill_name, &where); 16646 16647 /* 16648 * 1. We grabbed the ill_g_lock before inserting this ill into 16649 * the global list of ills. So no other thread could have located 16650 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16651 * 2. Now locate the other protocol instance of this ill. 16652 * 3. Now grab both ill locks in the right order, and the phyint lock of 16653 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16654 * of neither ill can change. 16655 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16656 * other ill. 16657 * 5. Release all locks. 16658 */ 16659 16660 /* 16661 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16662 * we are initializing IPv4. 16663 */ 16664 if (phyi != NULL) { 16665 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16666 ASSERT(ill_other->ill_phyint != NULL); 16667 ASSERT((isv6 && !ill_other->ill_isv6) || 16668 (!isv6 && ill_other->ill_isv6)); 16669 GRAB_ILL_LOCKS(ill, ill_other); 16670 /* 16671 * We are potentially throwing away phyint_flags which 16672 * could be different from the one that we obtain from 16673 * ill_other->ill_phyint. But it is okay as we are assuming 16674 * that the state maintained within IP is correct. 16675 */ 16676 mutex_enter(&phyi->phyint_lock); 16677 if (isv6) { 16678 ASSERT(phyi->phyint_illv6 == NULL); 16679 phyi->phyint_illv6 = ill; 16680 } else { 16681 ASSERT(phyi->phyint_illv4 == NULL); 16682 phyi->phyint_illv4 = ill; 16683 } 16684 16685 /* 16686 * Delete the old phyint and make its ipsq eligible 16687 * to be freed in ipsq_exit(). 16688 */ 16689 phyi_old->phyint_illv4 = NULL; 16690 phyi_old->phyint_illv6 = NULL; 16691 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16692 phyi_old->phyint_name[0] = '\0'; 16693 mi_free(phyi_old); 16694 } else { 16695 mutex_enter(&ill->ill_lock); 16696 /* 16697 * We don't need to acquire any lock, since 16698 * the ill is not yet visible globally and we 16699 * have not yet released the ill_g_lock. 16700 */ 16701 phyi = phyi_old; 16702 mutex_enter(&phyi->phyint_lock); 16703 /* XXX We need a recovery strategy here. */ 16704 if (!phyint_assign_ifindex(phyi, ipst)) 16705 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16706 16707 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16708 (void *)phyi, where); 16709 16710 (void) avl_find(&ipst->ips_phyint_g_list-> 16711 phyint_list_avl_by_index, 16712 &phyi->phyint_ifindex, &where); 16713 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16714 (void *)phyi, where); 16715 } 16716 16717 /* 16718 * Reassigning ill_phyint automatically reassigns the ipsq also. 16719 * pending mp is not affected because that is per ill basis. 16720 */ 16721 ill->ill_phyint = phyi; 16722 16723 /* 16724 * Now that the phyint's ifindex has been assigned, complete the 16725 * remaining 16726 */ 16727 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16728 if (ill->ill_isv6) { 16729 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16730 ill->ill_phyint->phyint_ifindex; 16731 ill->ill_mcast_type = ipst->ips_mld_max_version; 16732 } else { 16733 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16734 } 16735 16736 /* 16737 * Generate an event within the hooks framework to indicate that 16738 * a new interface has just been added to IP. For this event to 16739 * be generated, the network interface must, at least, have an 16740 * ifindex assigned to it. (We don't generate the event for 16741 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16742 * 16743 * This needs to be run inside the ill_g_lock perimeter to ensure 16744 * that the ordering of delivered events to listeners matches the 16745 * order of them in the kernel. 16746 */ 16747 if (!IS_LOOPBACK(ill)) { 16748 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16749 ill->ill_name_length); 16750 } 16751 RELEASE_ILL_LOCKS(ill, ill_other); 16752 mutex_exit(&phyi->phyint_lock); 16753 } 16754 16755 /* 16756 * Notify any downstream modules of the name of this interface. 16757 * An M_IOCTL is used even though we don't expect a successful reply. 16758 * Any reply message from the driver (presumably an M_IOCNAK) will 16759 * eventually get discarded somewhere upstream. The message format is 16760 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16761 * to IP. 16762 */ 16763 static void 16764 ip_ifname_notify(ill_t *ill, queue_t *q) 16765 { 16766 mblk_t *mp1, *mp2; 16767 struct iocblk *iocp; 16768 struct lifreq *lifr; 16769 16770 mp1 = mkiocb(SIOCSLIFNAME); 16771 if (mp1 == NULL) 16772 return; 16773 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16774 if (mp2 == NULL) { 16775 freeb(mp1); 16776 return; 16777 } 16778 16779 mp1->b_cont = mp2; 16780 iocp = (struct iocblk *)mp1->b_rptr; 16781 iocp->ioc_count = sizeof (struct lifreq); 16782 16783 lifr = (struct lifreq *)mp2->b_rptr; 16784 mp2->b_wptr += sizeof (struct lifreq); 16785 bzero(lifr, sizeof (struct lifreq)); 16786 16787 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16788 lifr->lifr_ppa = ill->ill_ppa; 16789 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16790 16791 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16792 char *, "SIOCSLIFNAME", ill_t *, ill); 16793 putnext(q, mp1); 16794 } 16795 16796 static int 16797 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16798 { 16799 int err; 16800 ip_stack_t *ipst = ill->ill_ipst; 16801 phyint_t *phyi = ill->ill_phyint; 16802 16803 /* 16804 * Now that ill_name is set, the configuration for the IPMP 16805 * meta-interface can be performed. 16806 */ 16807 if (IS_IPMP(ill)) { 16808 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16809 /* 16810 * If phyi->phyint_grp is NULL, then this is the first IPMP 16811 * meta-interface and we need to create the IPMP group. 16812 */ 16813 if (phyi->phyint_grp == NULL) { 16814 /* 16815 * If someone has renamed another IPMP group to have 16816 * the same name as our interface, bail. 16817 */ 16818 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16819 rw_exit(&ipst->ips_ipmp_lock); 16820 return (EEXIST); 16821 } 16822 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16823 if (phyi->phyint_grp == NULL) { 16824 rw_exit(&ipst->ips_ipmp_lock); 16825 return (ENOMEM); 16826 } 16827 } 16828 rw_exit(&ipst->ips_ipmp_lock); 16829 } 16830 16831 /* Tell downstream modules where they are. */ 16832 ip_ifname_notify(ill, q); 16833 16834 /* 16835 * ill_dl_phys returns EINPROGRESS in the usual case. 16836 * Error cases are ENOMEM ... 16837 */ 16838 err = ill_dl_phys(ill, ipif, mp, q); 16839 16840 if (ill->ill_isv6) { 16841 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16842 if (ipst->ips_mld_slowtimeout_id == 0) { 16843 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16844 (void *)ipst, 16845 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16846 } 16847 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16848 } else { 16849 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16850 if (ipst->ips_igmp_slowtimeout_id == 0) { 16851 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16852 (void *)ipst, 16853 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16854 } 16855 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16856 } 16857 16858 return (err); 16859 } 16860 16861 /* 16862 * Common routine for ppa and ifname setting. Should be called exclusive. 16863 * 16864 * Returns EINPROGRESS when mp has been consumed by queueing it on 16865 * ipx_pending_mp and the ioctl will complete in ip_rput. 16866 * 16867 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16868 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16869 * For SLIFNAME, we pass these values back to the userland. 16870 */ 16871 static int 16872 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16873 { 16874 ill_t *ill; 16875 ipif_t *ipif; 16876 ipsq_t *ipsq; 16877 char *ppa_ptr; 16878 char *old_ptr; 16879 char old_char; 16880 int error; 16881 ip_stack_t *ipst; 16882 16883 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16884 ASSERT(q->q_next != NULL); 16885 ASSERT(interf_name != NULL); 16886 16887 ill = (ill_t *)q->q_ptr; 16888 ipst = ill->ill_ipst; 16889 16890 ASSERT(ill->ill_ipst != NULL); 16891 ASSERT(ill->ill_name[0] == '\0'); 16892 ASSERT(IAM_WRITER_ILL(ill)); 16893 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16894 ASSERT(ill->ill_ppa == UINT_MAX); 16895 16896 ill->ill_defend_start = ill->ill_defend_count = 0; 16897 /* The ppa is sent down by ifconfig or is chosen */ 16898 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16899 return (EINVAL); 16900 } 16901 16902 /* 16903 * make sure ppa passed in is same as ppa in the name. 16904 * This check is not made when ppa == UINT_MAX in that case ppa 16905 * in the name could be anything. System will choose a ppa and 16906 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16907 */ 16908 if (*new_ppa_ptr != UINT_MAX) { 16909 /* stoi changes the pointer */ 16910 old_ptr = ppa_ptr; 16911 /* 16912 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16913 * (they don't have an externally visible ppa). We assign one 16914 * here so that we can manage the interface. Note that in 16915 * the past this value was always 0 for DLPI 1 drivers. 16916 */ 16917 if (*new_ppa_ptr == 0) 16918 *new_ppa_ptr = stoi(&old_ptr); 16919 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16920 return (EINVAL); 16921 } 16922 /* 16923 * terminate string before ppa 16924 * save char at that location. 16925 */ 16926 old_char = ppa_ptr[0]; 16927 ppa_ptr[0] = '\0'; 16928 16929 ill->ill_ppa = *new_ppa_ptr; 16930 /* 16931 * Finish as much work now as possible before calling ill_glist_insert 16932 * which makes the ill globally visible and also merges it with the 16933 * other protocol instance of this phyint. The remaining work is 16934 * done after entering the ipsq which may happen sometime later. 16935 */ 16936 ipif = ill->ill_ipif; 16937 16938 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16939 ipif_assign_seqid(ipif); 16940 16941 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16942 ill->ill_flags |= ILLF_IPV4; 16943 16944 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16945 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16946 16947 if (ill->ill_flags & ILLF_IPV6) { 16948 16949 ill->ill_isv6 = B_TRUE; 16950 ill_set_inputfn(ill); 16951 if (ill->ill_rq != NULL) { 16952 ill->ill_rq->q_qinfo = &iprinitv6; 16953 } 16954 16955 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16956 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16957 ipif->ipif_v6subnet = ipv6_all_zeros; 16958 ipif->ipif_v6net_mask = ipv6_all_zeros; 16959 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16960 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16961 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16962 /* 16963 * point-to-point or Non-mulicast capable 16964 * interfaces won't do NUD unless explicitly 16965 * configured to do so. 16966 */ 16967 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16968 !(ill->ill_flags & ILLF_MULTICAST)) { 16969 ill->ill_flags |= ILLF_NONUD; 16970 } 16971 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16972 if (ill->ill_flags & ILLF_NOARP) { 16973 /* 16974 * Note: xresolv interfaces will eventually need 16975 * NOARP set here as well, but that will require 16976 * those external resolvers to have some 16977 * knowledge of that flag and act appropriately. 16978 * Not to be changed at present. 16979 */ 16980 ill->ill_flags &= ~ILLF_NOARP; 16981 } 16982 /* 16983 * Set the ILLF_ROUTER flag according to the global 16984 * IPv6 forwarding policy. 16985 */ 16986 if (ipst->ips_ipv6_forwarding != 0) 16987 ill->ill_flags |= ILLF_ROUTER; 16988 } else if (ill->ill_flags & ILLF_IPV4) { 16989 ill->ill_isv6 = B_FALSE; 16990 ill_set_inputfn(ill); 16991 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 16992 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 16993 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 16994 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 16995 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 16996 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 16997 /* 16998 * Set the ILLF_ROUTER flag according to the global 16999 * IPv4 forwarding policy. 17000 */ 17001 if (ipst->ips_ip_forwarding != 0) 17002 ill->ill_flags |= ILLF_ROUTER; 17003 } 17004 17005 ASSERT(ill->ill_phyint != NULL); 17006 17007 /* 17008 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 17009 * be completed in ill_glist_insert -> ill_phyint_reinit 17010 */ 17011 if (!ill_allocate_mibs(ill)) 17012 return (ENOMEM); 17013 17014 /* 17015 * Pick a default sap until we get the DL_INFO_ACK back from 17016 * the driver. 17017 */ 17018 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 17019 ill->ill_media->ip_m_ipv4sap; 17020 17021 ill->ill_ifname_pending = 1; 17022 ill->ill_ifname_pending_err = 0; 17023 17024 /* 17025 * When the first ipif comes up in ipif_up_done(), multicast groups 17026 * that were joined while this ill was not bound to the DLPI link need 17027 * to be recovered by ill_recover_multicast(). 17028 */ 17029 ill->ill_need_recover_multicast = 1; 17030 17031 ill_refhold(ill); 17032 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17033 if ((error = ill_glist_insert(ill, interf_name, 17034 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 17035 ill->ill_ppa = UINT_MAX; 17036 ill->ill_name[0] = '\0'; 17037 /* 17038 * undo null termination done above. 17039 */ 17040 ppa_ptr[0] = old_char; 17041 rw_exit(&ipst->ips_ill_g_lock); 17042 ill_refrele(ill); 17043 return (error); 17044 } 17045 17046 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 17047 17048 /* 17049 * When we return the buffer pointed to by interf_name should contain 17050 * the same name as in ill_name. 17051 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 17052 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 17053 * so copy full name and update the ppa ptr. 17054 * When ppa passed in != UINT_MAX all values are correct just undo 17055 * null termination, this saves a bcopy. 17056 */ 17057 if (*new_ppa_ptr == UINT_MAX) { 17058 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 17059 *new_ppa_ptr = ill->ill_ppa; 17060 } else { 17061 /* 17062 * undo null termination done above. 17063 */ 17064 ppa_ptr[0] = old_char; 17065 } 17066 17067 /* Let SCTP know about this ILL */ 17068 sctp_update_ill(ill, SCTP_ILL_INSERT); 17069 17070 /* 17071 * ill_glist_insert has made the ill visible globally, and 17072 * ill_phyint_reinit could have changed the ipsq. At this point, 17073 * we need to hold the ips_ill_g_lock across the call to enter the 17074 * ipsq to enforce atomicity and prevent reordering. In the event 17075 * the ipsq has changed, and if the new ipsq is currently busy, 17076 * we need to make sure that this half-completed ioctl is ahead of 17077 * any subsequent ioctl. We achieve this by not dropping the 17078 * ips_ill_g_lock which prevents any ill lookup itself thereby 17079 * ensuring that new ioctls can't start. 17080 */ 17081 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 17082 B_TRUE); 17083 17084 rw_exit(&ipst->ips_ill_g_lock); 17085 ill_refrele(ill); 17086 if (ipsq == NULL) 17087 return (EINPROGRESS); 17088 17089 /* 17090 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 17091 */ 17092 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 17093 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 17094 else 17095 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 17096 17097 error = ipif_set_values_tail(ill, ipif, mp, q); 17098 ipsq_exit(ipsq); 17099 if (error != 0 && error != EINPROGRESS) { 17100 /* 17101 * restore previous values 17102 */ 17103 ill->ill_isv6 = B_FALSE; 17104 ill_set_inputfn(ill); 17105 } 17106 return (error); 17107 } 17108 17109 void 17110 ipif_init(ip_stack_t *ipst) 17111 { 17112 int i; 17113 17114 for (i = 0; i < MAX_G_HEADS; i++) { 17115 ipst->ips_ill_g_heads[i].ill_g_list_head = 17116 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17117 ipst->ips_ill_g_heads[i].ill_g_list_tail = 17118 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17119 } 17120 17121 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17122 ill_phyint_compare_index, 17123 sizeof (phyint_t), 17124 offsetof(struct phyint, phyint_avl_by_index)); 17125 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17126 ill_phyint_compare_name, 17127 sizeof (phyint_t), 17128 offsetof(struct phyint, phyint_avl_by_name)); 17129 } 17130 17131 /* 17132 * Save enough information so that we can recreate the IRE if 17133 * the interface goes down and then up. 17134 */ 17135 void 17136 ill_save_ire(ill_t *ill, ire_t *ire) 17137 { 17138 mblk_t *save_mp; 17139 17140 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 17141 if (save_mp != NULL) { 17142 ifrt_t *ifrt; 17143 17144 save_mp->b_wptr += sizeof (ifrt_t); 17145 ifrt = (ifrt_t *)save_mp->b_rptr; 17146 bzero(ifrt, sizeof (ifrt_t)); 17147 ifrt->ifrt_type = ire->ire_type; 17148 if (ire->ire_ipversion == IPV4_VERSION) { 17149 ASSERT(!ill->ill_isv6); 17150 ifrt->ifrt_addr = ire->ire_addr; 17151 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 17152 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 17153 ifrt->ifrt_mask = ire->ire_mask; 17154 } else { 17155 ASSERT(ill->ill_isv6); 17156 ifrt->ifrt_v6addr = ire->ire_addr_v6; 17157 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 17158 mutex_enter(&ire->ire_lock); 17159 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 17160 mutex_exit(&ire->ire_lock); 17161 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 17162 ifrt->ifrt_v6mask = ire->ire_mask_v6; 17163 } 17164 ifrt->ifrt_flags = ire->ire_flags; 17165 ifrt->ifrt_zoneid = ire->ire_zoneid; 17166 mutex_enter(&ill->ill_saved_ire_lock); 17167 save_mp->b_cont = ill->ill_saved_ire_mp; 17168 ill->ill_saved_ire_mp = save_mp; 17169 ill->ill_saved_ire_cnt++; 17170 mutex_exit(&ill->ill_saved_ire_lock); 17171 } 17172 } 17173 17174 /* 17175 * Remove one entry from ill_saved_ire_mp. 17176 */ 17177 void 17178 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 17179 { 17180 mblk_t **mpp; 17181 mblk_t *mp; 17182 ifrt_t *ifrt; 17183 17184 /* Remove from ill_saved_ire_mp list if it is there */ 17185 mutex_enter(&ill->ill_saved_ire_lock); 17186 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 17187 mpp = &(*mpp)->b_cont) { 17188 in6_addr_t gw_addr_v6; 17189 17190 /* 17191 * On a given ill, the tuple of address, gateway, mask, 17192 * ire_type, and zoneid is unique for each saved IRE. 17193 */ 17194 mp = *mpp; 17195 ifrt = (ifrt_t *)mp->b_rptr; 17196 /* ire_gateway_addr_v6 can change - need lock */ 17197 mutex_enter(&ire->ire_lock); 17198 gw_addr_v6 = ire->ire_gateway_addr_v6; 17199 mutex_exit(&ire->ire_lock); 17200 17201 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 17202 ifrt->ifrt_type != ire->ire_type) 17203 continue; 17204 17205 if (ill->ill_isv6 ? 17206 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 17207 &ire->ire_addr_v6) && 17208 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 17209 &gw_addr_v6) && 17210 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 17211 &ire->ire_mask_v6)) : 17212 (ifrt->ifrt_addr == ire->ire_addr && 17213 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 17214 ifrt->ifrt_mask == ire->ire_mask)) { 17215 *mpp = mp->b_cont; 17216 ill->ill_saved_ire_cnt--; 17217 freeb(mp); 17218 break; 17219 } 17220 } 17221 mutex_exit(&ill->ill_saved_ire_lock); 17222 } 17223 17224 /* 17225 * IP multirouting broadcast routes handling 17226 * Append CGTP broadcast IREs to regular ones created 17227 * at ifconfig time. 17228 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 17229 * the destination and the gateway are broadcast addresses. 17230 * The caller has verified that the destination is an IRE_BROADCAST and that 17231 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 17232 * we create a MULTIRT IRE_BROADCAST. 17233 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 17234 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 17235 */ 17236 static void 17237 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 17238 { 17239 ire_t *ire_prim; 17240 17241 ASSERT(ire != NULL); 17242 17243 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17244 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 17245 NULL); 17246 if (ire_prim != NULL) { 17247 /* 17248 * We are in the special case of broadcasts for 17249 * CGTP. We add an IRE_BROADCAST that holds 17250 * the RTF_MULTIRT flag, the destination 17251 * address and the low level 17252 * info of ire_prim. In other words, CGTP 17253 * broadcast is added to the redundant ipif. 17254 */ 17255 ill_t *ill_prim; 17256 ire_t *bcast_ire; 17257 17258 ill_prim = ire_prim->ire_ill; 17259 17260 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 17261 (void *)ire_prim, (void *)ill_prim)); 17262 17263 bcast_ire = ire_create( 17264 (uchar_t *)&ire->ire_addr, 17265 (uchar_t *)&ip_g_all_ones, 17266 (uchar_t *)&ire->ire_gateway_addr, 17267 IRE_BROADCAST, 17268 ill_prim, 17269 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 17270 ire->ire_flags | RTF_KERNEL, 17271 NULL, 17272 ipst); 17273 17274 /* 17275 * Here we assume that ire_add does head insertion so that 17276 * the added IRE_BROADCAST comes before the existing IRE_HOST. 17277 */ 17278 if (bcast_ire != NULL) { 17279 if (ire->ire_flags & RTF_SETSRC) { 17280 bcast_ire->ire_setsrc_addr = 17281 ire->ire_setsrc_addr; 17282 } 17283 bcast_ire = ire_add(bcast_ire); 17284 if (bcast_ire != NULL) { 17285 ip2dbg(("ip_cgtp_filter_bcast_add: " 17286 "added bcast_ire %p\n", 17287 (void *)bcast_ire)); 17288 17289 ill_save_ire(ill_prim, bcast_ire); 17290 ire_refrele(bcast_ire); 17291 } 17292 } 17293 ire_refrele(ire_prim); 17294 } 17295 } 17296 17297 /* 17298 * IP multirouting broadcast routes handling 17299 * Remove the broadcast ire. 17300 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 17301 * the destination and the gateway are broadcast addresses. 17302 * The caller has only verified that RTF_MULTIRT was set. We check 17303 * that the destination is broadcast and that the gateway is a broadcast 17304 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 17305 */ 17306 static void 17307 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 17308 { 17309 ASSERT(ire != NULL); 17310 17311 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 17312 ire_t *ire_prim; 17313 17314 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17315 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 17316 ipst, NULL); 17317 if (ire_prim != NULL) { 17318 ill_t *ill_prim; 17319 ire_t *bcast_ire; 17320 17321 ill_prim = ire_prim->ire_ill; 17322 17323 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17324 "ire_prim %p, ill_prim %p\n", 17325 (void *)ire_prim, (void *)ill_prim)); 17326 17327 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 17328 ire->ire_gateway_addr, IRE_BROADCAST, 17329 ill_prim, ALL_ZONES, NULL, 17330 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 17331 MATCH_IRE_MASK, 0, ipst, NULL); 17332 17333 if (bcast_ire != NULL) { 17334 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17335 "looked up bcast_ire %p\n", 17336 (void *)bcast_ire)); 17337 ill_remove_saved_ire(bcast_ire->ire_ill, 17338 bcast_ire); 17339 ire_delete(bcast_ire); 17340 ire_refrele(bcast_ire); 17341 } 17342 ire_refrele(ire_prim); 17343 } 17344 } 17345 } 17346 17347 /* 17348 * Derive an interface id from the link layer address. 17349 * Knows about IEEE 802 and IEEE EUI-64 mappings. 17350 */ 17351 static void 17352 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17353 { 17354 char *addr; 17355 17356 /* 17357 * Note that some IPv6 interfaces get plumbed over links that claim to 17358 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 17359 * PPP links). The ETHERADDRL check here ensures that we only set the 17360 * interface ID on IPv6 interfaces above links that actually have real 17361 * Ethernet addresses. 17362 */ 17363 if (ill->ill_phys_addr_length == ETHERADDRL) { 17364 /* Form EUI-64 like address */ 17365 addr = (char *)&v6addr->s6_addr32[2]; 17366 bcopy(ill->ill_phys_addr, addr, 3); 17367 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 17368 addr[3] = (char)0xff; 17369 addr[4] = (char)0xfe; 17370 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 17371 } 17372 } 17373 17374 /* ARGSUSED */ 17375 static void 17376 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17377 { 17378 } 17379 17380 typedef struct ipmp_ifcookie { 17381 uint32_t ic_hostid; 17382 char ic_ifname[LIFNAMSIZ]; 17383 char ic_zonename[ZONENAME_MAX]; 17384 } ipmp_ifcookie_t; 17385 17386 /* 17387 * Construct a pseudo-random interface ID for the IPMP interface that's both 17388 * predictable and (almost) guaranteed to be unique. 17389 */ 17390 static void 17391 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17392 { 17393 zone_t *zp; 17394 uint8_t *addr; 17395 uchar_t hash[16]; 17396 ulong_t hostid; 17397 MD5_CTX ctx; 17398 ipmp_ifcookie_t ic = { 0 }; 17399 17400 ASSERT(IS_IPMP(ill)); 17401 17402 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 17403 ic.ic_hostid = htonl((uint32_t)hostid); 17404 17405 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 17406 17407 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 17408 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 17409 zone_rele(zp); 17410 } 17411 17412 MD5Init(&ctx); 17413 MD5Update(&ctx, &ic, sizeof (ic)); 17414 MD5Final(hash, &ctx); 17415 17416 /* 17417 * Map the hash to an interface ID per the basic approach in RFC3041. 17418 */ 17419 addr = &v6addr->s6_addr8[8]; 17420 bcopy(hash + 8, addr, sizeof (uint64_t)); 17421 addr[0] &= ~0x2; /* set local bit */ 17422 } 17423 17424 /* 17425 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 17426 */ 17427 static void 17428 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 17429 { 17430 phyint_t *phyi = ill->ill_phyint; 17431 17432 /* 17433 * Check PHYI_MULTI_BCAST and length of physical 17434 * address to determine if we use the mapping or the 17435 * broadcast address. 17436 */ 17437 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17438 ill->ill_phys_addr_length != ETHERADDRL) { 17439 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 17440 return; 17441 } 17442 m_physaddr[0] = 0x33; 17443 m_physaddr[1] = 0x33; 17444 m_physaddr[2] = m_ip6addr[12]; 17445 m_physaddr[3] = m_ip6addr[13]; 17446 m_physaddr[4] = m_ip6addr[14]; 17447 m_physaddr[5] = m_ip6addr[15]; 17448 } 17449 17450 /* 17451 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 17452 */ 17453 static void 17454 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17455 { 17456 phyint_t *phyi = ill->ill_phyint; 17457 17458 /* 17459 * Check PHYI_MULTI_BCAST and length of physical 17460 * address to determine if we use the mapping or the 17461 * broadcast address. 17462 */ 17463 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17464 ill->ill_phys_addr_length != ETHERADDRL) { 17465 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 17466 return; 17467 } 17468 m_physaddr[0] = 0x01; 17469 m_physaddr[1] = 0x00; 17470 m_physaddr[2] = 0x5e; 17471 m_physaddr[3] = m_ipaddr[1] & 0x7f; 17472 m_physaddr[4] = m_ipaddr[2]; 17473 m_physaddr[5] = m_ipaddr[3]; 17474 } 17475 17476 /* ARGSUSED */ 17477 static void 17478 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17479 { 17480 /* 17481 * for the MULTI_BCAST case and other cases when we want to 17482 * use the link-layer broadcast address for multicast. 17483 */ 17484 uint8_t *bphys_addr; 17485 dl_unitdata_req_t *dlur; 17486 17487 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17488 if (ill->ill_sap_length < 0) { 17489 bphys_addr = (uchar_t *)dlur + 17490 dlur->dl_dest_addr_offset; 17491 } else { 17492 bphys_addr = (uchar_t *)dlur + 17493 dlur->dl_dest_addr_offset + ill->ill_sap_length; 17494 } 17495 17496 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 17497 } 17498 17499 /* 17500 * Derive IPoIB interface id from the link layer address. 17501 */ 17502 static void 17503 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17504 { 17505 char *addr; 17506 17507 ASSERT(ill->ill_phys_addr_length == 20); 17508 addr = (char *)&v6addr->s6_addr32[2]; 17509 bcopy(ill->ill_phys_addr + 12, addr, 8); 17510 /* 17511 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 17512 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 17513 * rules. In these cases, the IBA considers these GUIDs to be in 17514 * "Modified EUI-64" format, and thus toggling the u/l bit is not 17515 * required; vendors are required not to assign global EUI-64's 17516 * that differ only in u/l bit values, thus guaranteeing uniqueness 17517 * of the interface identifier. Whether the GUID is in modified 17518 * or proper EUI-64 format, the ipv6 identifier must have the u/l 17519 * bit set to 1. 17520 */ 17521 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 17522 } 17523 17524 /* 17525 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 17526 * Note on mapping from multicast IP addresses to IPoIB multicast link 17527 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 17528 * The format of an IPoIB multicast address is: 17529 * 17530 * 4 byte QPN Scope Sign. Pkey 17531 * +--------------------------------------------+ 17532 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 17533 * +--------------------------------------------+ 17534 * 17535 * The Scope and Pkey components are properties of the IBA port and 17536 * network interface. They can be ascertained from the broadcast address. 17537 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 17538 */ 17539 static void 17540 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17541 { 17542 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17543 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 17544 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17545 uint8_t *bphys_addr; 17546 dl_unitdata_req_t *dlur; 17547 17548 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17549 17550 /* 17551 * RFC 4391: IPv4 MGID is 28-bit long. 17552 */ 17553 m_physaddr[16] = m_ipaddr[0] & 0x0f; 17554 m_physaddr[17] = m_ipaddr[1]; 17555 m_physaddr[18] = m_ipaddr[2]; 17556 m_physaddr[19] = m_ipaddr[3]; 17557 17558 17559 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17560 if (ill->ill_sap_length < 0) { 17561 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17562 } else { 17563 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17564 ill->ill_sap_length; 17565 } 17566 /* 17567 * Now fill in the IBA scope/Pkey values from the broadcast address. 17568 */ 17569 m_physaddr[5] = bphys_addr[5]; 17570 m_physaddr[8] = bphys_addr[8]; 17571 m_physaddr[9] = bphys_addr[9]; 17572 } 17573 17574 static void 17575 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17576 { 17577 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17578 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17579 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17580 uint8_t *bphys_addr; 17581 dl_unitdata_req_t *dlur; 17582 17583 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17584 17585 /* 17586 * RFC 4391: IPv4 MGID is 80-bit long. 17587 */ 17588 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17589 17590 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17591 if (ill->ill_sap_length < 0) { 17592 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17593 } else { 17594 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17595 ill->ill_sap_length; 17596 } 17597 /* 17598 * Now fill in the IBA scope/Pkey values from the broadcast address. 17599 */ 17600 m_physaddr[5] = bphys_addr[5]; 17601 m_physaddr[8] = bphys_addr[8]; 17602 m_physaddr[9] = bphys_addr[9]; 17603 } 17604 17605 /* 17606 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17607 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17608 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17609 * of RFC4213. 17610 */ 17611 static void 17612 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17613 { 17614 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17615 v6addr->s6_addr32[2] = 0; 17616 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17617 } 17618 17619 /* 17620 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17621 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17622 * id. 17623 */ 17624 static void 17625 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17626 { 17627 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17628 17629 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17630 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17631 } 17632 17633 static void 17634 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17635 { 17636 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17637 } 17638 17639 static void 17640 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17641 { 17642 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17643 } 17644 17645 static void 17646 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17647 { 17648 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17649 } 17650 17651 static void 17652 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17653 { 17654 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17655 } 17656 17657 /* 17658 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17659 * Returns an held ill, or NULL. 17660 */ 17661 ill_t * 17662 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17663 ip_stack_t *ipst) 17664 { 17665 ill_t *ill; 17666 ipif_t *ipif; 17667 17668 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17669 if (ill == NULL) 17670 return (NULL); 17671 17672 mutex_enter(&ill->ill_lock); 17673 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17674 if (IPIF_IS_CONDEMNED(ipif)) 17675 continue; 17676 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17677 ipif->ipif_zoneid != ALL_ZONES) 17678 continue; 17679 17680 mutex_exit(&ill->ill_lock); 17681 return (ill); 17682 } 17683 mutex_exit(&ill->ill_lock); 17684 ill_refrele(ill); 17685 return (NULL); 17686 } 17687 17688 /* 17689 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17690 * If a pointer to an ipif_t is returned then the caller will need to do 17691 * an ill_refrele(). 17692 */ 17693 ipif_t * 17694 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17695 ip_stack_t *ipst) 17696 { 17697 ipif_t *ipif; 17698 ill_t *ill; 17699 17700 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17701 if (ill == NULL) 17702 return (NULL); 17703 17704 mutex_enter(&ill->ill_lock); 17705 if (ill->ill_state_flags & ILL_CONDEMNED) { 17706 mutex_exit(&ill->ill_lock); 17707 ill_refrele(ill); 17708 return (NULL); 17709 } 17710 17711 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17712 if (!IPIF_CAN_LOOKUP(ipif)) 17713 continue; 17714 if (lifidx == ipif->ipif_id) { 17715 ipif_refhold_locked(ipif); 17716 break; 17717 } 17718 } 17719 17720 mutex_exit(&ill->ill_lock); 17721 ill_refrele(ill); 17722 return (ipif); 17723 } 17724 17725 /* 17726 * Set ill_inputfn based on the current know state. 17727 * This needs to be called when any of the factors taken into 17728 * account changes. 17729 */ 17730 void 17731 ill_set_inputfn(ill_t *ill) 17732 { 17733 ip_stack_t *ipst = ill->ill_ipst; 17734 17735 if (ill->ill_isv6) { 17736 if (is_system_labeled()) 17737 ill->ill_inputfn = ill_input_full_v6; 17738 else 17739 ill->ill_inputfn = ill_input_short_v6; 17740 } else { 17741 if (is_system_labeled()) 17742 ill->ill_inputfn = ill_input_full_v4; 17743 else if (ill->ill_dhcpinit != 0) 17744 ill->ill_inputfn = ill_input_full_v4; 17745 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17746 != NULL) 17747 ill->ill_inputfn = ill_input_full_v4; 17748 else if (ipst->ips_ip_cgtp_filter && 17749 ipst->ips_ip_cgtp_filter_ops != NULL) 17750 ill->ill_inputfn = ill_input_full_v4; 17751 else 17752 ill->ill_inputfn = ill_input_short_v4; 17753 } 17754 } 17755 17756 /* 17757 * Re-evaluate ill_inputfn for all the IPv4 ills. 17758 * Used when RSVP and CGTP comes and goes. 17759 */ 17760 void 17761 ill_set_inputfn_all(ip_stack_t *ipst) 17762 { 17763 ill_walk_context_t ctx; 17764 ill_t *ill; 17765 17766 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17767 ill = ILL_START_WALK_V4(&ctx, ipst); 17768 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17769 ill_set_inputfn(ill); 17770 17771 rw_exit(&ipst->ips_ill_g_lock); 17772 } 17773 17774 /* 17775 * Set the physical address information for `ill' to the contents of the 17776 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17777 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17778 * EINPROGRESS will be returned. 17779 */ 17780 int 17781 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17782 { 17783 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17784 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17785 17786 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17787 17788 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17789 dlindp->dl_data != DL_CURR_DEST_ADDR && 17790 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17791 /* Changing DL_IPV6_TOKEN is not yet supported */ 17792 return (0); 17793 } 17794 17795 /* 17796 * We need to store up to two copies of `mp' in `ill'. Due to the 17797 * design of ipsq_pending_mp_add(), we can't pass them as separate 17798 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17799 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17800 */ 17801 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17802 freemsg(mp); 17803 return (ENOMEM); 17804 } 17805 17806 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17807 17808 /* 17809 * Since we'll only do a logical down, we can't rely on ipif_down 17810 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset 17811 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this 17812 * case, to quiesce ire's and nce's for ill_is_quiescent. 17813 */ 17814 mutex_enter(&ill->ill_lock); 17815 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17816 /* no more ire/nce addition allowed */ 17817 mutex_exit(&ill->ill_lock); 17818 17819 /* 17820 * If we can quiesce the ill, then set the address. If not, then 17821 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17822 */ 17823 ill_down_ipifs(ill, B_TRUE); 17824 mutex_enter(&ill->ill_lock); 17825 if (!ill_is_quiescent(ill)) { 17826 /* call cannot fail since `conn_t *' argument is NULL */ 17827 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17828 mp, ILL_DOWN); 17829 mutex_exit(&ill->ill_lock); 17830 return (EINPROGRESS); 17831 } 17832 mutex_exit(&ill->ill_lock); 17833 17834 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17835 return (0); 17836 } 17837 17838 /* 17839 * When the allowed-ips link property is set on the datalink, IP receives a 17840 * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips() 17841 * to initialize the ill_allowed_ips[] array in the ill_t. This array is then 17842 * used to vet addresses passed to ip_sioctl_addr() and to ensure that the 17843 * only IP addresses configured on the ill_t are those in the ill_allowed_ips[] 17844 * array. 17845 */ 17846 void 17847 ill_set_allowed_ips(ill_t *ill, mblk_t *mp) 17848 { 17849 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17850 dl_notify_ind_t *dlip = (dl_notify_ind_t *)mp->b_rptr; 17851 mac_protect_t *mrp; 17852 int i; 17853 17854 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17855 mrp = (mac_protect_t *)&dlip[1]; 17856 17857 if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */ 17858 kmem_free(ill->ill_allowed_ips, 17859 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17860 ill->ill_allowed_ips_cnt = 0; 17861 ill->ill_allowed_ips = NULL; 17862 mutex_enter(&ill->ill_phyint->phyint_lock); 17863 ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT; 17864 mutex_exit(&ill->ill_phyint->phyint_lock); 17865 return; 17866 } 17867 17868 if (ill->ill_allowed_ips != NULL) { 17869 kmem_free(ill->ill_allowed_ips, 17870 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17871 } 17872 ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt; 17873 ill->ill_allowed_ips = kmem_alloc( 17874 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP); 17875 for (i = 0; i < mrp->mp_ipaddrcnt; i++) 17876 ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr; 17877 17878 mutex_enter(&ill->ill_phyint->phyint_lock); 17879 ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT; 17880 mutex_exit(&ill->ill_phyint->phyint_lock); 17881 } 17882 17883 /* 17884 * Once the ill associated with `q' has quiesced, set its physical address 17885 * information to the values in `addrmp'. Note that two copies of `addrmp' 17886 * are passed (linked by b_cont), since we sometimes need to save two distinct 17887 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17888 * failure (we'll free the other copy if it's not needed). Since the ill_t 17889 * is quiesced, we know any stale nce's with the old address information have 17890 * already been removed, so we don't need to call nce_flush(). 17891 */ 17892 /* ARGSUSED */ 17893 static void 17894 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17895 { 17896 ill_t *ill = q->q_ptr; 17897 mblk_t *addrmp2 = unlinkb(addrmp); 17898 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17899 uint_t addrlen, addroff; 17900 int status; 17901 17902 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17903 17904 addroff = dlindp->dl_addr_offset; 17905 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17906 17907 switch (dlindp->dl_data) { 17908 case DL_IPV6_LINK_LAYER_ADDR: 17909 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17910 freemsg(addrmp2); 17911 break; 17912 17913 case DL_CURR_DEST_ADDR: 17914 freemsg(ill->ill_dest_addr_mp); 17915 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17916 ill->ill_dest_addr_mp = addrmp; 17917 if (ill->ill_isv6) { 17918 ill_setdesttoken(ill); 17919 ipif_setdestlinklocal(ill->ill_ipif); 17920 } 17921 freemsg(addrmp2); 17922 break; 17923 17924 case DL_CURR_PHYS_ADDR: 17925 freemsg(ill->ill_phys_addr_mp); 17926 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17927 ill->ill_phys_addr_mp = addrmp; 17928 ill->ill_phys_addr_length = addrlen; 17929 if (ill->ill_isv6) 17930 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17931 else 17932 freemsg(addrmp2); 17933 if (ill->ill_isv6) { 17934 ill_setdefaulttoken(ill); 17935 ipif_setlinklocal(ill->ill_ipif); 17936 } 17937 break; 17938 default: 17939 ASSERT(0); 17940 } 17941 17942 /* 17943 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires 17944 * as we bring the ipifs up again. 17945 */ 17946 mutex_enter(&ill->ill_lock); 17947 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17948 mutex_exit(&ill->ill_lock); 17949 /* 17950 * If there are ipifs to bring up, ill_up_ipifs() will return 17951 * EINPROGRESS, and ipsq_current_finish() will be called by 17952 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17953 * brought up. 17954 */ 17955 status = ill_up_ipifs(ill, q, addrmp); 17956 if (status != EINPROGRESS) 17957 ipsq_current_finish(ipsq); 17958 } 17959 17960 /* 17961 * Helper routine for setting the ill_nd_lla fields. 17962 */ 17963 void 17964 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17965 { 17966 freemsg(ill->ill_nd_lla_mp); 17967 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17968 ill->ill_nd_lla_mp = ndmp; 17969 ill->ill_nd_lla_len = addrlen; 17970 } 17971 17972 /* 17973 * Replumb the ill. 17974 */ 17975 int 17976 ill_replumb(ill_t *ill, mblk_t *mp) 17977 { 17978 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17979 17980 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17981 17982 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17983 17984 /* 17985 * If we can quiesce the ill, then continue. If not, then 17986 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 17987 */ 17988 ill_down_ipifs(ill, B_FALSE); 17989 17990 mutex_enter(&ill->ill_lock); 17991 if (!ill_is_quiescent(ill)) { 17992 /* call cannot fail since `conn_t *' argument is NULL */ 17993 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17994 mp, ILL_DOWN); 17995 mutex_exit(&ill->ill_lock); 17996 return (EINPROGRESS); 17997 } 17998 mutex_exit(&ill->ill_lock); 17999 18000 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 18001 return (0); 18002 } 18003 18004 /* ARGSUSED */ 18005 static void 18006 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 18007 { 18008 ill_t *ill = q->q_ptr; 18009 int err; 18010 conn_t *connp = NULL; 18011 18012 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18013 freemsg(ill->ill_replumb_mp); 18014 ill->ill_replumb_mp = copyb(mp); 18015 18016 if (ill->ill_replumb_mp == NULL) { 18017 /* out of memory */ 18018 ipsq_current_finish(ipsq); 18019 return; 18020 } 18021 18022 mutex_enter(&ill->ill_lock); 18023 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 18024 ill->ill_rq, ill->ill_replumb_mp, 0); 18025 mutex_exit(&ill->ill_lock); 18026 18027 if (!ill->ill_up_ipifs) { 18028 /* already closing */ 18029 ipsq_current_finish(ipsq); 18030 return; 18031 } 18032 ill->ill_replumbing = 1; 18033 err = ill_down_ipifs_tail(ill); 18034 18035 /* 18036 * Successfully quiesced and brought down the interface, now we send 18037 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 18038 * DL_NOTE_REPLUMB message. 18039 */ 18040 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 18041 DL_NOTIFY_CONF); 18042 ASSERT(mp != NULL); 18043 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 18044 DL_NOTE_REPLUMB_DONE; 18045 ill_dlpi_send(ill, mp); 18046 18047 /* 18048 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 18049 * streams have to be unbound. When all the DLPI exchanges are done, 18050 * ipsq_current_finish() will be called by arp_bringup_done(). The 18051 * remainder of ipif bringup via ill_up_ipifs() will also be done in 18052 * arp_bringup_done(). 18053 */ 18054 ASSERT(ill->ill_replumb_mp != NULL); 18055 if (err == EINPROGRESS) 18056 return; 18057 else 18058 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 18059 ASSERT(connp == NULL); 18060 if (err == 0 && ill->ill_replumb_mp != NULL && 18061 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 18062 return; 18063 } 18064 ipsq_current_finish(ipsq); 18065 } 18066 18067 /* 18068 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 18069 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 18070 * as per the ioctl. On failure, an errno is returned. 18071 */ 18072 static int 18073 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 18074 { 18075 int rval; 18076 struct strioctl iocb; 18077 18078 iocb.ic_cmd = cmd; 18079 iocb.ic_timout = 15; 18080 iocb.ic_len = bufsize; 18081 iocb.ic_dp = buf; 18082 18083 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 18084 } 18085 18086 /* 18087 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 18088 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 18089 */ 18090 static int 18091 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 18092 uint_t *bufsizep, cred_t *cr) 18093 { 18094 int err; 18095 struct lifnum lifn; 18096 18097 bzero(&lifn, sizeof (lifn)); 18098 lifn.lifn_family = af; 18099 lifn.lifn_flags = LIFC_UNDER_IPMP; 18100 18101 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 18102 return (err); 18103 18104 /* 18105 * Pad the interface count to account for additional interfaces that 18106 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 18107 */ 18108 lifn.lifn_count += 4; 18109 bzero(lifcp, sizeof (*lifcp)); 18110 lifcp->lifc_flags = LIFC_UNDER_IPMP; 18111 lifcp->lifc_family = af; 18112 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 18113 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 18114 18115 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 18116 if (err != 0) { 18117 kmem_free(lifcp->lifc_buf, *bufsizep); 18118 return (err); 18119 } 18120 18121 return (0); 18122 } 18123 18124 /* 18125 * Helper for ip_interface_cleanup() that removes the loopback interface. 18126 */ 18127 static void 18128 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18129 { 18130 int err; 18131 struct lifreq lifr; 18132 18133 bzero(&lifr, sizeof (lifr)); 18134 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 18135 18136 /* 18137 * Attempt to remove the interface. It may legitimately not exist 18138 * (e.g. the zone administrator unplumbed it), so ignore ENXIO. 18139 */ 18140 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 18141 if (err != 0 && err != ENXIO) { 18142 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 18143 "error %d\n", isv6 ? "v6" : "v4", err)); 18144 } 18145 } 18146 18147 /* 18148 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 18149 * groups and that IPMP data addresses are down. These conditions must be met 18150 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 18151 */ 18152 static void 18153 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18154 { 18155 int af = isv6 ? AF_INET6 : AF_INET; 18156 int i, nifs; 18157 int err; 18158 uint_t bufsize; 18159 uint_t lifrsize = sizeof (struct lifreq); 18160 struct lifconf lifc; 18161 struct lifreq *lifrp; 18162 18163 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 18164 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 18165 "(error %d); any IPMP interfaces cannot be shutdown", err); 18166 return; 18167 } 18168 18169 nifs = lifc.lifc_len / lifrsize; 18170 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 18171 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18172 if (err != 0) { 18173 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 18174 "flags: error %d", lifrp->lifr_name, err); 18175 continue; 18176 } 18177 18178 if (lifrp->lifr_flags & IFF_IPMP) { 18179 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 18180 continue; 18181 18182 lifrp->lifr_flags &= ~IFF_UP; 18183 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 18184 if (err != 0) { 18185 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18186 "bring down (error %d); IPMP interface may " 18187 "not be shutdown", lifrp->lifr_name, err); 18188 } 18189 18190 /* 18191 * Check if IFF_DUPLICATE is still set -- and if so, 18192 * reset the address to clear it. 18193 */ 18194 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18195 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 18196 continue; 18197 18198 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 18199 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 18200 lifrp, lifrsize, cr)) != 0) { 18201 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18202 "reset DAD (error %d); IPMP interface may " 18203 "not be shutdown", lifrp->lifr_name, err); 18204 } 18205 continue; 18206 } 18207 18208 if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) { 18209 lifrp->lifr_groupname[0] = '\0'; 18210 if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, 18211 lifrsize, cr)) != 0) { 18212 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18213 "leave IPMP group (error %d); associated " 18214 "IPMP interface may not be shutdown", 18215 lifrp->lifr_name, err); 18216 continue; 18217 } 18218 } 18219 } 18220 18221 kmem_free(lifc.lifc_buf, bufsize); 18222 } 18223 18224 #define UDPDEV "/devices/pseudo/udp@0:udp" 18225 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 18226 18227 /* 18228 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 18229 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 18230 * when the user-level processes in the zone are killed and the latter are 18231 * cleaned up by str_stack_shutdown(). 18232 */ 18233 void 18234 ip_interface_cleanup(ip_stack_t *ipst) 18235 { 18236 ldi_handle_t lh; 18237 ldi_ident_t li; 18238 cred_t *cr; 18239 int err; 18240 int i; 18241 char *devs[] = { UDP6DEV, UDPDEV }; 18242 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 18243 18244 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 18245 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 18246 " error %d", err); 18247 return; 18248 } 18249 18250 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 18251 ASSERT(cr != NULL); 18252 18253 /* 18254 * NOTE: loop executes exactly twice and is hardcoded to know that the 18255 * first iteration is IPv6. (Unrolling yields repetitious code, hence 18256 * the loop.) 18257 */ 18258 for (i = 0; i < 2; i++) { 18259 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 18260 if (err != 0) { 18261 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 18262 " error %d", devs[i], err); 18263 continue; 18264 } 18265 18266 ip_loopback_removeif(lh, i == 0, cr); 18267 ip_ipmp_cleanup(lh, i == 0, cr); 18268 18269 (void) ldi_close(lh, FREAD|FWRITE, cr); 18270 } 18271 18272 ldi_ident_release(li); 18273 crfree(cr); 18274 } 18275 18276 /* 18277 * This needs to be in-sync with nic_event_t definition 18278 */ 18279 static const char * 18280 ill_hook_event2str(nic_event_t event) 18281 { 18282 switch (event) { 18283 case NE_PLUMB: 18284 return ("PLUMB"); 18285 case NE_UNPLUMB: 18286 return ("UNPLUMB"); 18287 case NE_UP: 18288 return ("UP"); 18289 case NE_DOWN: 18290 return ("DOWN"); 18291 case NE_ADDRESS_CHANGE: 18292 return ("ADDRESS_CHANGE"); 18293 case NE_LIF_UP: 18294 return ("LIF_UP"); 18295 case NE_LIF_DOWN: 18296 return ("LIF_DOWN"); 18297 case NE_IFINDEX_CHANGE: 18298 return ("IFINDEX_CHANGE"); 18299 default: 18300 return ("UNKNOWN"); 18301 } 18302 } 18303 18304 void 18305 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 18306 nic_event_data_t data, size_t datalen) 18307 { 18308 ip_stack_t *ipst = ill->ill_ipst; 18309 hook_nic_event_int_t *info; 18310 const char *str = NULL; 18311 18312 /* create a new nic event info */ 18313 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 18314 goto fail; 18315 18316 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 18317 info->hnei_event.hne_lif = lif; 18318 info->hnei_event.hne_event = event; 18319 info->hnei_event.hne_protocol = ill->ill_isv6 ? 18320 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18321 info->hnei_event.hne_data = NULL; 18322 info->hnei_event.hne_datalen = 0; 18323 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 18324 18325 if (data != NULL && datalen != 0) { 18326 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 18327 if (info->hnei_event.hne_data == NULL) 18328 goto fail; 18329 bcopy(data, info->hnei_event.hne_data, datalen); 18330 info->hnei_event.hne_datalen = datalen; 18331 } 18332 18333 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 18334 DDI_NOSLEEP) == DDI_SUCCESS) 18335 return; 18336 18337 fail: 18338 if (info != NULL) { 18339 if (info->hnei_event.hne_data != NULL) { 18340 kmem_free(info->hnei_event.hne_data, 18341 info->hnei_event.hne_datalen); 18342 } 18343 kmem_free(info, sizeof (hook_nic_event_t)); 18344 } 18345 str = ill_hook_event2str(event); 18346 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 18347 "information for %s (ENOMEM)\n", str, ill->ill_name)); 18348 } 18349 18350 static int 18351 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 18352 { 18353 int err = 0; 18354 const in_addr_t *addr = NULL; 18355 nce_t *nce = NULL; 18356 ill_t *ill = ipif->ipif_ill; 18357 ill_t *bound_ill; 18358 boolean_t added_ipif = B_FALSE; 18359 uint16_t state; 18360 uint16_t flags; 18361 18362 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 18363 ill_t *, ill, ipif_t *, ipif); 18364 if (ipif->ipif_lcl_addr != INADDR_ANY) { 18365 addr = &ipif->ipif_lcl_addr; 18366 } 18367 18368 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 18369 if (res_act != Res_act_initial) 18370 return (EINVAL); 18371 } 18372 18373 if (addr != NULL) { 18374 ipmp_illgrp_t *illg = ill->ill_grp; 18375 18376 /* add unicast nce for the local addr */ 18377 18378 if (IS_IPMP(ill)) { 18379 /* 18380 * If we're here via ipif_up(), then the ipif 18381 * won't be bound yet -- add it to the group, 18382 * which will bind it if possible. (We would 18383 * add it in ipif_up(), but deleting on failure 18384 * there is gruesome.) If we're here via 18385 * ipmp_ill_bind_ipif(), then the ipif has 18386 * already been added to the group and we 18387 * just need to use the binding. 18388 */ 18389 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 18390 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 18391 if (bound_ill == NULL) { 18392 /* 18393 * We couldn't bind the ipif to an ill 18394 * yet, so we have nothing to publish. 18395 * Mark the address as ready and return. 18396 */ 18397 ipif->ipif_addr_ready = 1; 18398 return (0); 18399 } 18400 added_ipif = B_TRUE; 18401 } 18402 } else { 18403 bound_ill = ill; 18404 } 18405 18406 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 18407 NCE_F_NONUD); 18408 /* 18409 * If this is an initial bring-up (or the ipif was never 18410 * completely brought up), do DAD. Otherwise, we're here 18411 * because IPMP has rebound an address to this ill: send 18412 * unsolicited advertisements (ARP announcements) to 18413 * inform others. 18414 */ 18415 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 18416 state = ND_UNCHANGED; /* compute in nce_add_common() */ 18417 } else { 18418 state = ND_REACHABLE; 18419 flags |= NCE_F_UNSOL_ADV; 18420 } 18421 18422 retry: 18423 err = nce_lookup_then_add_v4(ill, 18424 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 18425 addr, flags, state, &nce); 18426 18427 /* 18428 * note that we may encounter EEXIST if we are moving 18429 * the nce as a result of a rebind operation. 18430 */ 18431 switch (err) { 18432 case 0: 18433 ipif->ipif_added_nce = 1; 18434 nce->nce_ipif_cnt++; 18435 break; 18436 case EEXIST: 18437 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 18438 ill->ill_name)); 18439 if (!NCE_MYADDR(nce->nce_common)) { 18440 /* 18441 * A leftover nce from before this address 18442 * existed 18443 */ 18444 ncec_delete(nce->nce_common); 18445 nce_refrele(nce); 18446 nce = NULL; 18447 goto retry; 18448 } 18449 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 18450 nce_refrele(nce); 18451 nce = NULL; 18452 ip1dbg(("ipif_arp_up: NCE already exists " 18453 "for %s:%u\n", ill->ill_name, 18454 ipif->ipif_id)); 18455 goto arp_up_done; 18456 } 18457 /* 18458 * Duplicate local addresses are permissible for 18459 * IPIF_POINTOPOINT interfaces which will get marked 18460 * IPIF_UNNUMBERED later in 18461 * ip_addr_availability_check(). 18462 * 18463 * The nce_ipif_cnt field tracks the number of 18464 * ipifs that have nce_addr as their local address. 18465 */ 18466 ipif->ipif_addr_ready = 1; 18467 ipif->ipif_added_nce = 1; 18468 nce->nce_ipif_cnt++; 18469 err = 0; 18470 break; 18471 default: 18472 ASSERT(nce == NULL); 18473 goto arp_up_done; 18474 } 18475 if (arp_no_defense) { 18476 if ((ipif->ipif_flags & IPIF_UP) && 18477 !ipif->ipif_addr_ready) 18478 ipif_up_notify(ipif); 18479 ipif->ipif_addr_ready = 1; 18480 } 18481 } else { 18482 /* zero address. nothing to publish */ 18483 ipif->ipif_addr_ready = 1; 18484 } 18485 if (nce != NULL) 18486 nce_refrele(nce); 18487 arp_up_done: 18488 if (added_ipif && err != 0) 18489 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18490 return (err); 18491 } 18492 18493 int 18494 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 18495 { 18496 int err = 0; 18497 ill_t *ill = ipif->ipif_ill; 18498 boolean_t first_interface, wait_for_dlpi = B_FALSE; 18499 18500 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 18501 ill_t *, ill, ipif_t *, ipif); 18502 18503 /* 18504 * need to bring up ARP or setup mcast mapping only 18505 * when the first interface is coming UP. 18506 */ 18507 first_interface = (ill->ill_ipif_up_count == 0 && 18508 ill->ill_ipif_dup_count == 0 && !was_dup); 18509 18510 if (res_act == Res_act_initial && first_interface) { 18511 /* 18512 * Send ATTACH + BIND 18513 */ 18514 err = arp_ll_up(ill); 18515 if (err != EINPROGRESS && err != 0) 18516 return (err); 18517 18518 /* 18519 * Add NCE for local address. Start DAD. 18520 * we'll wait to hear that DAD has finished 18521 * before using the interface. 18522 */ 18523 if (err == EINPROGRESS) 18524 wait_for_dlpi = B_TRUE; 18525 } 18526 18527 if (!wait_for_dlpi) 18528 (void) ipif_arp_up_done_tail(ipif, res_act); 18529 18530 return (!wait_for_dlpi ? 0 : EINPROGRESS); 18531 } 18532 18533 /* 18534 * Finish processing of "arp_up" after all the DLPI message 18535 * exchanges have completed between arp and the driver. 18536 */ 18537 void 18538 arp_bringup_done(ill_t *ill, int err) 18539 { 18540 mblk_t *mp1; 18541 ipif_t *ipif; 18542 conn_t *connp = NULL; 18543 ipsq_t *ipsq; 18544 queue_t *q; 18545 18546 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 18547 18548 ASSERT(IAM_WRITER_ILL(ill)); 18549 18550 ipsq = ill->ill_phyint->phyint_ipsq; 18551 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18552 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18553 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18554 if (mp1 == NULL) /* bringup was aborted by the user */ 18555 return; 18556 18557 /* 18558 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18559 * must have an associated conn_t. Otherwise, we're bringing this 18560 * interface back up as part of handling an asynchronous event (e.g., 18561 * physical address change). 18562 */ 18563 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18564 ASSERT(connp != NULL); 18565 q = CONNP_TO_WQ(connp); 18566 } else { 18567 ASSERT(connp == NULL); 18568 q = ill->ill_rq; 18569 } 18570 if (err == 0) { 18571 if (ipif->ipif_isv6) { 18572 if ((err = ipif_up_done_v6(ipif)) != 0) 18573 ip0dbg(("arp_bringup_done: init failed\n")); 18574 } else { 18575 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 18576 if (err != 0 || 18577 (err = ipif_up_done(ipif)) != 0) { 18578 ip0dbg(("arp_bringup_done: " 18579 "init failed err %x\n", err)); 18580 (void) ipif_arp_down(ipif); 18581 } 18582 18583 } 18584 } else { 18585 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 18586 } 18587 18588 if ((err == 0) && (ill->ill_up_ipifs)) { 18589 err = ill_up_ipifs(ill, q, mp1); 18590 if (err == EINPROGRESS) 18591 return; 18592 } 18593 18594 /* 18595 * If we have a moved ipif to bring up, and everything has succeeded 18596 * to this point, bring it up on the IPMP ill. Otherwise, leave it 18597 * down -- the admin can try to bring it up by hand if need be. 18598 */ 18599 if (ill->ill_move_ipif != NULL) { 18600 ipif = ill->ill_move_ipif; 18601 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 18602 ipif->ipif_ill->ill_name)); 18603 ill->ill_move_ipif = NULL; 18604 if (err == 0) { 18605 err = ipif_up(ipif, q, mp1); 18606 if (err == EINPROGRESS) 18607 return; 18608 } 18609 } 18610 18611 /* 18612 * The operation must complete without EINPROGRESS since 18613 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18614 * Otherwise, the operation will be stuck forever in the ipsq. 18615 */ 18616 ASSERT(err != EINPROGRESS); 18617 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18618 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 18619 int, ipsq->ipsq_xop->ipx_current_ioctl, 18620 ill_t *, ill, ipif_t *, ipif); 18621 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18622 } else { 18623 ipsq_current_finish(ipsq); 18624 } 18625 } 18626 18627 /* 18628 * Finish processing of arp replumb after all the DLPI message 18629 * exchanges have completed between arp and the driver. 18630 */ 18631 void 18632 arp_replumb_done(ill_t *ill, int err) 18633 { 18634 mblk_t *mp1; 18635 ipif_t *ipif; 18636 conn_t *connp = NULL; 18637 ipsq_t *ipsq; 18638 queue_t *q; 18639 18640 ASSERT(IAM_WRITER_ILL(ill)); 18641 18642 ipsq = ill->ill_phyint->phyint_ipsq; 18643 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18644 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18645 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18646 if (mp1 == NULL) { 18647 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18648 ipsq->ipsq_xop->ipx_current_ioctl)); 18649 /* bringup was aborted by the user */ 18650 return; 18651 } 18652 /* 18653 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18654 * must have an associated conn_t. Otherwise, we're bringing this 18655 * interface back up as part of handling an asynchronous event (e.g., 18656 * physical address change). 18657 */ 18658 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18659 ASSERT(connp != NULL); 18660 q = CONNP_TO_WQ(connp); 18661 } else { 18662 ASSERT(connp == NULL); 18663 q = ill->ill_rq; 18664 } 18665 if ((err == 0) && (ill->ill_up_ipifs)) { 18666 err = ill_up_ipifs(ill, q, mp1); 18667 if (err == EINPROGRESS) 18668 return; 18669 } 18670 /* 18671 * The operation must complete without EINPROGRESS since 18672 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18673 * Otherwise, the operation will be stuck forever in the ipsq. 18674 */ 18675 ASSERT(err != EINPROGRESS); 18676 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18677 DTRACE_PROBE4(ipif__ioctl, char *, 18678 "arp_replumb_done finish", 18679 int, ipsq->ipsq_xop->ipx_current_ioctl, 18680 ill_t *, ill, ipif_t *, ipif); 18681 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18682 } else { 18683 ipsq_current_finish(ipsq); 18684 } 18685 } 18686 18687 void 18688 ipif_up_notify(ipif_t *ipif) 18689 { 18690 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18691 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18692 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18693 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18694 NE_LIF_UP, NULL, 0); 18695 } 18696 18697 /* 18698 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18699 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18700 * TPI end points with STREAMS modules pushed above. This is assured by not 18701 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18702 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18703 * while unwinding from the ispq and that could be a thread from the bottom. 18704 */ 18705 /* ARGSUSED */ 18706 int 18707 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18708 ip_ioctl_cmd_t *ipip, void *arg) 18709 { 18710 mblk_t *cmd_mp = mp->b_cont->b_cont; 18711 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18712 int ret = 0; 18713 int i; 18714 size_t size; 18715 ip_stack_t *ipst; 18716 zoneid_t zoneid; 18717 ilb_stack_t *ilbs; 18718 18719 ipst = CONNQ_TO_IPST(q); 18720 ilbs = ipst->ips_netstack->netstack_ilb; 18721 zoneid = Q_TO_CONN(q)->conn_zoneid; 18722 18723 switch (command) { 18724 case ILB_CREATE_RULE: { 18725 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18726 18727 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18728 ret = EINVAL; 18729 break; 18730 } 18731 18732 ret = ilb_rule_add(ilbs, zoneid, cmd); 18733 break; 18734 } 18735 case ILB_DESTROY_RULE: 18736 case ILB_ENABLE_RULE: 18737 case ILB_DISABLE_RULE: { 18738 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18739 18740 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18741 ret = EINVAL; 18742 break; 18743 } 18744 18745 if (cmd->flags & ILB_RULE_ALLRULES) { 18746 if (command == ILB_DESTROY_RULE) { 18747 ilb_rule_del_all(ilbs, zoneid); 18748 break; 18749 } else if (command == ILB_ENABLE_RULE) { 18750 ilb_rule_enable_all(ilbs, zoneid); 18751 break; 18752 } else if (command == ILB_DISABLE_RULE) { 18753 ilb_rule_disable_all(ilbs, zoneid); 18754 break; 18755 } 18756 } else { 18757 if (command == ILB_DESTROY_RULE) { 18758 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18759 } else if (command == ILB_ENABLE_RULE) { 18760 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18761 NULL); 18762 } else if (command == ILB_DISABLE_RULE) { 18763 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18764 NULL); 18765 } 18766 } 18767 break; 18768 } 18769 case ILB_NUM_RULES: { 18770 ilb_num_rules_cmd_t *cmd; 18771 18772 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18773 ret = EINVAL; 18774 break; 18775 } 18776 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18777 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18778 break; 18779 } 18780 case ILB_RULE_NAMES: { 18781 ilb_rule_names_cmd_t *cmd; 18782 18783 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18784 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18785 cmd->num_names == 0) { 18786 ret = EINVAL; 18787 break; 18788 } 18789 size = cmd->num_names * ILB_RULE_NAMESZ; 18790 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18791 size != cmd_mp->b_wptr) { 18792 ret = EINVAL; 18793 break; 18794 } 18795 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18796 break; 18797 } 18798 case ILB_NUM_SERVERS: { 18799 ilb_num_servers_cmd_t *cmd; 18800 18801 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18802 ret = EINVAL; 18803 break; 18804 } 18805 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18806 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18807 &(cmd->num)); 18808 break; 18809 } 18810 case ILB_LIST_RULE: { 18811 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18812 18813 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18814 ret = EINVAL; 18815 break; 18816 } 18817 ret = ilb_rule_list(ilbs, zoneid, cmd); 18818 break; 18819 } 18820 case ILB_LIST_SERVERS: { 18821 ilb_servers_info_cmd_t *cmd; 18822 18823 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18824 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18825 cmd->num_servers == 0) { 18826 ret = EINVAL; 18827 break; 18828 } 18829 size = cmd->num_servers * sizeof (ilb_server_info_t); 18830 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18831 size != cmd_mp->b_wptr) { 18832 ret = EINVAL; 18833 break; 18834 } 18835 18836 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18837 &cmd->num_servers); 18838 break; 18839 } 18840 case ILB_ADD_SERVERS: { 18841 ilb_servers_info_cmd_t *cmd; 18842 ilb_rule_t *rule; 18843 18844 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18845 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18846 ret = EINVAL; 18847 break; 18848 } 18849 size = cmd->num_servers * sizeof (ilb_server_info_t); 18850 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18851 size != cmd_mp->b_wptr) { 18852 ret = EINVAL; 18853 break; 18854 } 18855 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18856 if (rule == NULL) { 18857 ASSERT(ret != 0); 18858 break; 18859 } 18860 for (i = 0; i < cmd->num_servers; i++) { 18861 ilb_server_info_t *s; 18862 18863 s = &cmd->servers[i]; 18864 s->err = ilb_server_add(ilbs, rule, s); 18865 } 18866 ILB_RULE_REFRELE(rule); 18867 break; 18868 } 18869 case ILB_DEL_SERVERS: 18870 case ILB_ENABLE_SERVERS: 18871 case ILB_DISABLE_SERVERS: { 18872 ilb_servers_cmd_t *cmd; 18873 ilb_rule_t *rule; 18874 int (*f)(); 18875 18876 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18877 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18878 ret = EINVAL; 18879 break; 18880 } 18881 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18882 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18883 size != cmd_mp->b_wptr) { 18884 ret = EINVAL; 18885 break; 18886 } 18887 18888 if (command == ILB_DEL_SERVERS) 18889 f = ilb_server_del; 18890 else if (command == ILB_ENABLE_SERVERS) 18891 f = ilb_server_enable; 18892 else if (command == ILB_DISABLE_SERVERS) 18893 f = ilb_server_disable; 18894 18895 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18896 if (rule == NULL) { 18897 ASSERT(ret != 0); 18898 break; 18899 } 18900 18901 for (i = 0; i < cmd->num_servers; i++) { 18902 ilb_server_arg_t *s; 18903 18904 s = &cmd->servers[i]; 18905 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18906 } 18907 ILB_RULE_REFRELE(rule); 18908 break; 18909 } 18910 case ILB_LIST_NAT_TABLE: { 18911 ilb_list_nat_cmd_t *cmd; 18912 18913 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18914 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18915 ret = EINVAL; 18916 break; 18917 } 18918 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18919 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18920 size != cmd_mp->b_wptr) { 18921 ret = EINVAL; 18922 break; 18923 } 18924 18925 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18926 &cmd->flags); 18927 break; 18928 } 18929 case ILB_LIST_STICKY_TABLE: { 18930 ilb_list_sticky_cmd_t *cmd; 18931 18932 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18933 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18934 ret = EINVAL; 18935 break; 18936 } 18937 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18938 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18939 size != cmd_mp->b_wptr) { 18940 ret = EINVAL; 18941 break; 18942 } 18943 18944 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18945 &cmd->num_sticky, &cmd->flags); 18946 break; 18947 } 18948 default: 18949 ret = EINVAL; 18950 break; 18951 } 18952 done: 18953 return (ret); 18954 } 18955 18956 /* Remove all cache entries for this logical interface */ 18957 void 18958 ipif_nce_down(ipif_t *ipif) 18959 { 18960 ill_t *ill = ipif->ipif_ill; 18961 nce_t *nce; 18962 18963 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18964 ill_t *, ill, ipif_t *, ipif); 18965 if (ipif->ipif_added_nce) { 18966 if (ipif->ipif_isv6) 18967 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18968 else 18969 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18970 if (nce != NULL) { 18971 if (--nce->nce_ipif_cnt == 0) 18972 ncec_delete(nce->nce_common); 18973 ipif->ipif_added_nce = 0; 18974 nce_refrele(nce); 18975 } else { 18976 /* 18977 * nce may already be NULL because it was already 18978 * flushed, e.g., due to a call to nce_flush 18979 */ 18980 ipif->ipif_added_nce = 0; 18981 } 18982 } 18983 /* 18984 * Make IPMP aware of the deleted data address. 18985 */ 18986 if (IS_IPMP(ill)) 18987 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18988 18989 /* 18990 * Remove all other nces dependent on this ill when the last ipif 18991 * is going away. 18992 */ 18993 if (ill->ill_ipif_up_count == 0) { 18994 ncec_walk(ill, (pfi_t)ncec_delete_per_ill, 18995 (uchar_t *)ill, ill->ill_ipst); 18996 if (IS_UNDER_IPMP(ill)) 18997 nce_flush(ill, B_TRUE); 18998 } 18999 } 19000 19001 /* 19002 * find the first interface that uses usill for its source address. 19003 */ 19004 ill_t * 19005 ill_lookup_usesrc(ill_t *usill) 19006 { 19007 ip_stack_t *ipst = usill->ill_ipst; 19008 ill_t *ill; 19009 19010 ASSERT(usill != NULL); 19011 19012 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 19013 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 19014 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19015 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill; 19016 ill = ill->ill_usesrc_grp_next) { 19017 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) && 19018 !ILL_IS_CONDEMNED(ill)) { 19019 ill_refhold(ill); 19020 break; 19021 } 19022 } 19023 rw_exit(&ipst->ips_ill_g_lock); 19024 rw_exit(&ipst->ips_ill_g_usesrc_lock); 19025 return (ill); 19026 } 19027 19028 /* 19029 * This comment applies to both ip_sioctl_get_ifhwaddr and 19030 * ip_sioctl_get_lifhwaddr as the basic function of these two functions 19031 * is the same. 19032 * 19033 * The goal here is to find an IP interface that corresponds to the name 19034 * provided by the caller in the ifreq/lifreq structure held in the mblk_t 19035 * chain and to fill out a sockaddr/sockaddr_storage structure with the 19036 * mac address. 19037 * 19038 * The SIOCGIFHWADDR/SIOCGLIFHWADDR ioctl may return an error for a number 19039 * of different reasons: 19040 * ENXIO - the device name is not known to IP. 19041 * EADDRNOTAVAIL - the device has no hardware address. This is indicated 19042 * by ill_phys_addr not pointing to an actual address. 19043 * EPFNOSUPPORT - this will indicate that a request is being made for a 19044 * mac address that will not fit in the data structure supplier (struct 19045 * sockaddr). 19046 * 19047 */ 19048 /* ARGSUSED */ 19049 int 19050 ip_sioctl_get_ifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19051 ip_ioctl_cmd_t *ipip, void *if_req) 19052 { 19053 struct sockaddr *sock; 19054 struct ifreq *ifr; 19055 mblk_t *mp1; 19056 ill_t *ill; 19057 19058 ASSERT(ipif != NULL); 19059 ill = ipif->ipif_ill; 19060 19061 if (ill->ill_phys_addr == NULL) { 19062 return (EADDRNOTAVAIL); 19063 } 19064 if (ill->ill_phys_addr_length > sizeof (sock->sa_data)) { 19065 return (EPFNOSUPPORT); 19066 } 19067 19068 ip1dbg(("ip_sioctl_get_hwaddr(%s)\n", ill->ill_name)); 19069 19070 /* Existence of mp1 has been checked in ip_wput_nondata */ 19071 mp1 = mp->b_cont->b_cont; 19072 ifr = (struct ifreq *)mp1->b_rptr; 19073 19074 sock = &ifr->ifr_addr; 19075 /* 19076 * The "family" field in the returned structure is set to a value 19077 * that represents the type of device to which the address belongs. 19078 * The value returned may differ to that on Linux but it will still 19079 * represent the correct symbol on Solaris. 19080 */ 19081 sock->sa_family = arp_hw_type(ill->ill_mactype); 19082 bcopy(ill->ill_phys_addr, &sock->sa_data, ill->ill_phys_addr_length); 19083 19084 return (0); 19085 } 19086 19087 /* 19088 * The expection of applications using SIOCGIFHWADDR is that data will 19089 * be returned in the sa_data field of the sockaddr structure. With 19090 * SIOCGLIFHWADDR, we're breaking new ground as there is no Linux 19091 * equivalent. In light of this, struct sockaddr_dl is used as it 19092 * offers more space for address storage in sll_data. 19093 */ 19094 /* ARGSUSED */ 19095 int 19096 ip_sioctl_get_lifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19097 ip_ioctl_cmd_t *ipip, void *if_req) 19098 { 19099 struct sockaddr_dl *sock; 19100 struct lifreq *lifr; 19101 mblk_t *mp1; 19102 ill_t *ill; 19103 19104 ASSERT(ipif != NULL); 19105 ill = ipif->ipif_ill; 19106 19107 if (ill->ill_phys_addr == NULL) { 19108 return (EADDRNOTAVAIL); 19109 } 19110 if (ill->ill_phys_addr_length > sizeof (sock->sdl_data)) { 19111 return (EPFNOSUPPORT); 19112 } 19113 19114 ip1dbg(("ip_sioctl_get_lifhwaddr(%s)\n", ill->ill_name)); 19115 19116 /* Existence of mp1 has been checked in ip_wput_nondata */ 19117 mp1 = mp->b_cont->b_cont; 19118 lifr = (struct lifreq *)mp1->b_rptr; 19119 19120 /* 19121 * sockaddr_ll is used here because it is also the structure used in 19122 * responding to the same ioctl in sockpfp. The only other choice is 19123 * sockaddr_dl which contains fields that are not required here 19124 * because its purpose is different. 19125 */ 19126 lifr->lifr_type = ill->ill_type; 19127 sock = (struct sockaddr_dl *)&lifr->lifr_addr; 19128 sock->sdl_family = AF_LINK; 19129 sock->sdl_index = ill->ill_phyint->phyint_ifindex; 19130 sock->sdl_type = ill->ill_mactype; 19131 sock->sdl_nlen = 0; 19132 sock->sdl_slen = 0; 19133 sock->sdl_alen = ill->ill_phys_addr_length; 19134 bcopy(ill->ill_phys_addr, sock->sdl_data, ill->ill_phys_addr_length); 19135 19136 return (0); 19137 }