1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 2013 by Delphix. All rights reserved. 27 */ 28 29 #include <sys/conf.h> 30 #include <sys/stat.h> 31 #include <sys/file.h> 32 #include <sys/ddi.h> 33 #include <sys/sunddi.h> 34 #include <sys/modctl.h> 35 #include <sys/priv.h> 36 #include <sys/cpuvar.h> 37 #include <sys/socket.h> 38 #include <sys/strsubr.h> 39 #include <sys/sysmacros.h> 40 #include <sys/sdt.h> 41 #include <netinet/tcp.h> 42 #include <inet/tcp.h> 43 #include <sys/socketvar.h> 44 #include <sys/pathname.h> 45 #include <sys/fs/snode.h> 46 #include <sys/fs/dv_node.h> 47 #include <sys/vnode.h> 48 #include <netinet/in.h> 49 #include <net/if.h> 50 #include <sys/sockio.h> 51 #include <sys/ksocket.h> 52 #include <sys/filio.h> /* FIONBIO */ 53 #include <sys/iscsi_protocol.h> 54 #include <sys/idm/idm.h> 55 #include <sys/idm/idm_so.h> 56 #include <sys/idm/idm_text.h> 57 58 #define IN_PROGRESS_DELAY 1 59 60 /* 61 * in6addr_any is currently all zeroes, but use the macro in case this 62 * ever changes. 63 */ 64 static const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 65 66 static void idm_sorx_cache_pdu_cb(idm_pdu_t *pdu, idm_status_t status); 67 static void idm_sorx_addl_pdu_cb(idm_pdu_t *pdu, idm_status_t status); 68 static void idm_sotx_cache_pdu_cb(idm_pdu_t *pdu, idm_status_t status); 69 70 static idm_status_t idm_so_conn_create_common(idm_conn_t *ic, ksocket_t new_so); 71 static void idm_so_conn_destroy_common(idm_conn_t *ic); 72 static void idm_so_conn_connect_common(idm_conn_t *ic); 73 74 static void idm_set_ini_preconnect_options(idm_so_conn_t *sc, 75 boolean_t boot_conn); 76 static void idm_set_postconnect_options(ksocket_t so); 77 static idm_status_t idm_i_so_tx(idm_pdu_t *pdu); 78 79 static idm_status_t idm_sorecvdata(idm_conn_t *ic, idm_pdu_t *pdu); 80 static void idm_so_send_rtt_data(idm_conn_t *ic, idm_task_t *idt, 81 idm_buf_t *idb, uint32_t offset, uint32_t length); 82 static void idm_so_send_rtt_data_done(idm_task_t *idt, idm_buf_t *idb); 83 static idm_status_t idm_so_send_buf_region(idm_task_t *idt, 84 idm_buf_t *idb, uint32_t buf_region_offset, uint32_t buf_region_length); 85 86 static uint32_t idm_fill_iov(idm_pdu_t *pdu, idm_buf_t *idb, 87 uint32_t ro, uint32_t dlength); 88 89 static idm_status_t idm_so_handle_digest(idm_conn_t *it, 90 nvpair_t *digest_choice, const idm_kv_xlate_t *ikvx); 91 92 static void idm_so_socket_set_nonblock(struct sonode *node); 93 static void idm_so_socket_set_block(struct sonode *node); 94 95 /* 96 * Transport ops prototypes 97 */ 98 static void idm_so_tx(idm_conn_t *ic, idm_pdu_t *pdu); 99 static idm_status_t idm_so_buf_tx_to_ini(idm_task_t *idt, idm_buf_t *idb); 100 static idm_status_t idm_so_buf_rx_from_ini(idm_task_t *idt, idm_buf_t *idb); 101 static void idm_so_rx_datain(idm_conn_t *ic, idm_pdu_t *pdu); 102 static void idm_so_rx_rtt(idm_conn_t *ic, idm_pdu_t *pdu); 103 static void idm_so_rx_dataout(idm_conn_t *ic, idm_pdu_t *pdu); 104 static idm_status_t idm_so_free_task_rsrc(idm_task_t *idt); 105 static kv_status_t idm_so_negotiate_key_values(idm_conn_t *it, 106 nvlist_t *request_nvl, nvlist_t *response_nvl, nvlist_t *negotiated_nvl); 107 static void idm_so_notice_key_values(idm_conn_t *it, 108 nvlist_t *negotiated_nvl); 109 static kv_status_t idm_so_declare_key_values(idm_conn_t *it, 110 nvlist_t *config_nvl, nvlist_t *outgoing_nvl); 111 static boolean_t idm_so_conn_is_capable(idm_conn_req_t *ic, 112 idm_transport_caps_t *caps); 113 static idm_status_t idm_so_buf_alloc(idm_buf_t *idb, uint64_t buflen); 114 static void idm_so_buf_free(idm_buf_t *idb); 115 static idm_status_t idm_so_buf_setup(idm_buf_t *idb); 116 static void idm_so_buf_teardown(idm_buf_t *idb); 117 static idm_status_t idm_so_tgt_svc_create(idm_svc_req_t *sr, idm_svc_t *is); 118 static void idm_so_tgt_svc_destroy(idm_svc_t *is); 119 static idm_status_t idm_so_tgt_svc_online(idm_svc_t *is); 120 static void idm_so_tgt_svc_offline(idm_svc_t *is); 121 static void idm_so_tgt_conn_destroy(idm_conn_t *ic); 122 static idm_status_t idm_so_tgt_conn_connect(idm_conn_t *ic); 123 static void idm_so_conn_disconnect(idm_conn_t *ic); 124 static idm_status_t idm_so_ini_conn_create(idm_conn_req_t *cr, idm_conn_t *ic); 125 static void idm_so_ini_conn_destroy(idm_conn_t *ic); 126 static idm_status_t idm_so_ini_conn_connect(idm_conn_t *ic); 127 128 /* 129 * IDM Native Sockets transport operations 130 */ 131 static 132 idm_transport_ops_t idm_so_transport_ops = { 133 idm_so_tx, /* it_tx_pdu */ 134 idm_so_buf_tx_to_ini, /* it_buf_tx_to_ini */ 135 idm_so_buf_rx_from_ini, /* it_buf_rx_from_ini */ 136 idm_so_rx_datain, /* it_rx_datain */ 137 idm_so_rx_rtt, /* it_rx_rtt */ 138 idm_so_rx_dataout, /* it_rx_dataout */ 139 NULL, /* it_alloc_conn_rsrc */ 140 NULL, /* it_free_conn_rsrc */ 141 NULL, /* it_tgt_enable_datamover */ 142 NULL, /* it_ini_enable_datamover */ 143 NULL, /* it_conn_terminate */ 144 idm_so_free_task_rsrc, /* it_free_task_rsrc */ 145 idm_so_negotiate_key_values, /* it_negotiate_key_values */ 146 idm_so_notice_key_values, /* it_notice_key_values */ 147 idm_so_conn_is_capable, /* it_conn_is_capable */ 148 idm_so_buf_alloc, /* it_buf_alloc */ 149 idm_so_buf_free, /* it_buf_free */ 150 idm_so_buf_setup, /* it_buf_setup */ 151 idm_so_buf_teardown, /* it_buf_teardown */ 152 idm_so_tgt_svc_create, /* it_tgt_svc_create */ 153 idm_so_tgt_svc_destroy, /* it_tgt_svc_destroy */ 154 idm_so_tgt_svc_online, /* it_tgt_svc_online */ 155 idm_so_tgt_svc_offline, /* it_tgt_svc_offline */ 156 idm_so_tgt_conn_destroy, /* it_tgt_conn_destroy */ 157 idm_so_tgt_conn_connect, /* it_tgt_conn_connect */ 158 idm_so_conn_disconnect, /* it_tgt_conn_disconnect */ 159 idm_so_ini_conn_create, /* it_ini_conn_create */ 160 idm_so_ini_conn_destroy, /* it_ini_conn_destroy */ 161 idm_so_ini_conn_connect, /* it_ini_conn_connect */ 162 idm_so_conn_disconnect, /* it_ini_conn_disconnect */ 163 idm_so_declare_key_values /* it_declare_key_values */ 164 }; 165 166 kmutex_t idm_so_timed_socket_mutex; 167 168 int32_t idm_so_sndbuf = IDM_SNDBUF_SIZE; 169 int32_t idm_so_rcvbuf = IDM_RCVBUF_SIZE; 170 171 /* 172 * idm_so_init() 173 * Sockets transport initialization 174 */ 175 void 176 idm_so_init(idm_transport_t *it) 177 { 178 /* Cache for IDM Data and R2T Transmit PDU's */ 179 idm.idm_sotx_pdu_cache = kmem_cache_create("idm_tx_pdu_cache", 180 sizeof (idm_pdu_t) + sizeof (iscsi_hdr_t), 8, 181 &idm_sotx_pdu_constructor, NULL, NULL, NULL, NULL, KM_SLEEP); 182 183 /* Cache for IDM Receive PDU's */ 184 idm.idm_sorx_pdu_cache = kmem_cache_create("idm_rx_pdu_cache", 185 sizeof (idm_pdu_t) + IDM_SORX_CACHE_HDRLEN, 8, 186 &idm_sorx_pdu_constructor, NULL, NULL, NULL, NULL, KM_SLEEP); 187 188 /* 128k buffer cache */ 189 idm.idm_so_128k_buf_cache = kmem_cache_create("idm_128k_buf_cache", 190 IDM_SO_BUF_CACHE_UB, 8, NULL, NULL, NULL, NULL, NULL, KM_SLEEP); 191 192 /* Set the sockets transport ops */ 193 it->it_ops = &idm_so_transport_ops; 194 195 mutex_init(&idm_so_timed_socket_mutex, NULL, MUTEX_DEFAULT, NULL); 196 197 } 198 199 /* 200 * idm_so_fini() 201 * Sockets transport teardown 202 */ 203 void 204 idm_so_fini(void) 205 { 206 kmem_cache_destroy(idm.idm_so_128k_buf_cache); 207 kmem_cache_destroy(idm.idm_sotx_pdu_cache); 208 kmem_cache_destroy(idm.idm_sorx_pdu_cache); 209 mutex_destroy(&idm_so_timed_socket_mutex); 210 } 211 212 ksocket_t 213 idm_socreate(int domain, int type, int protocol) 214 { 215 ksocket_t ks; 216 217 if (!ksocket_socket(&ks, domain, type, protocol, KSOCKET_NOSLEEP, 218 CRED())) { 219 return (ks); 220 } else { 221 return (NULL); 222 } 223 } 224 225 /* 226 * idm_soshutdown will disconnect the socket and prevent subsequent PDU 227 * reception and transmission. The sonode still exists but its state 228 * gets modified to indicate it is no longer connected. Calls to 229 * idm_sorecv/idm_iov_sorecv will return so idm_soshutdown can be used 230 * regain control of a thread stuck in idm_sorecv. 231 */ 232 void 233 idm_soshutdown(ksocket_t so) 234 { 235 (void) ksocket_shutdown(so, SHUT_RDWR, CRED()); 236 } 237 238 /* 239 * idm_sodestroy releases all resources associated with a socket previously 240 * created with idm_socreate. The socket must be shutdown using 241 * idm_soshutdown before the socket is destroyed with idm_sodestroy, 242 * otherwise undefined behavior will result. 243 */ 244 void 245 idm_sodestroy(ksocket_t ks) 246 { 247 (void) ksocket_close(ks, CRED()); 248 } 249 250 /* 251 * Function to compare two addresses in sockaddr_storage format 252 */ 253 254 int 255 idm_ss_compare(const struct sockaddr_storage *cmp_ss1, 256 const struct sockaddr_storage *cmp_ss2, 257 boolean_t v4_mapped_as_v4, 258 boolean_t compare_ports) 259 { 260 struct sockaddr_storage mapped_v4_ss1, mapped_v4_ss2; 261 const struct sockaddr_storage *ss1, *ss2; 262 struct in_addr *in1, *in2; 263 struct in6_addr *in61, *in62; 264 int i; 265 266 /* 267 * Normalize V4-mapped IPv6 addresses into V4 format if 268 * v4_mapped_as_v4 is B_TRUE. 269 */ 270 ss1 = cmp_ss1; 271 ss2 = cmp_ss2; 272 if (v4_mapped_as_v4 && (ss1->ss_family == AF_INET6)) { 273 in61 = &((struct sockaddr_in6 *)ss1)->sin6_addr; 274 if (IN6_IS_ADDR_V4MAPPED(in61)) { 275 bzero(&mapped_v4_ss1, sizeof (mapped_v4_ss1)); 276 mapped_v4_ss1.ss_family = AF_INET; 277 ((struct sockaddr_in *)&mapped_v4_ss1)->sin_port = 278 ((struct sockaddr_in *)ss1)->sin_port; 279 IN6_V4MAPPED_TO_INADDR(in61, 280 &((struct sockaddr_in *)&mapped_v4_ss1)->sin_addr); 281 ss1 = &mapped_v4_ss1; 282 } 283 } 284 ss2 = cmp_ss2; 285 if (v4_mapped_as_v4 && (ss2->ss_family == AF_INET6)) { 286 in62 = &((struct sockaddr_in6 *)ss2)->sin6_addr; 287 if (IN6_IS_ADDR_V4MAPPED(in62)) { 288 bzero(&mapped_v4_ss2, sizeof (mapped_v4_ss2)); 289 mapped_v4_ss2.ss_family = AF_INET; 290 ((struct sockaddr_in *)&mapped_v4_ss2)->sin_port = 291 ((struct sockaddr_in *)ss2)->sin_port; 292 IN6_V4MAPPED_TO_INADDR(in62, 293 &((struct sockaddr_in *)&mapped_v4_ss2)->sin_addr); 294 ss2 = &mapped_v4_ss2; 295 } 296 } 297 298 /* 299 * Compare ports, then address family, then ip address 300 */ 301 if (compare_ports && 302 (((struct sockaddr_in *)ss1)->sin_port != 303 ((struct sockaddr_in *)ss2)->sin_port)) { 304 if (((struct sockaddr_in *)ss1)->sin_port > 305 ((struct sockaddr_in *)ss2)->sin_port) 306 return (1); 307 else 308 return (-1); 309 } 310 311 /* 312 * ports are the same 313 */ 314 if (ss1->ss_family != ss2->ss_family) { 315 if (ss1->ss_family == AF_INET) 316 return (1); 317 else 318 return (-1); 319 } 320 321 /* 322 * address families are the same 323 */ 324 if (ss1->ss_family == AF_INET) { 325 in1 = &((struct sockaddr_in *)ss1)->sin_addr; 326 in2 = &((struct sockaddr_in *)ss2)->sin_addr; 327 328 if (in1->s_addr > in2->s_addr) 329 return (1); 330 else if (in1->s_addr < in2->s_addr) 331 return (-1); 332 else 333 return (0); 334 } else if (ss1->ss_family == AF_INET6) { 335 in61 = &((struct sockaddr_in6 *)ss1)->sin6_addr; 336 in62 = &((struct sockaddr_in6 *)ss2)->sin6_addr; 337 338 for (i = 0; i < 4; i++) { 339 if (in61->s6_addr32[i] > in62->s6_addr32[i]) 340 return (1); 341 else if (in61->s6_addr32[i] < in62->s6_addr32[i]) 342 return (-1); 343 } 344 return (0); 345 } 346 347 return (1); 348 } 349 350 /* 351 * IP address filter functions to flag addresses that should not 352 * go out to initiators through discovery. 353 */ 354 static boolean_t 355 idm_v4_addr_okay(struct in_addr *in_addr) 356 { 357 in_addr_t addr = ntohl(in_addr->s_addr); 358 359 if ((INADDR_NONE == addr) || 360 (IN_MULTICAST(addr)) || 361 ((addr >> IN_CLASSA_NSHIFT) == 0) || 362 ((addr >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) { 363 return (B_FALSE); 364 } 365 return (B_TRUE); 366 } 367 368 static boolean_t 369 idm_v6_addr_okay(struct in6_addr *addr6) 370 { 371 372 if ((IN6_IS_ADDR_UNSPECIFIED(addr6)) || 373 (IN6_IS_ADDR_LOOPBACK(addr6)) || 374 (IN6_IS_ADDR_MULTICAST(addr6)) || 375 (IN6_IS_ADDR_V4MAPPED(addr6)) || 376 (IN6_IS_ADDR_V4COMPAT(addr6)) || 377 (IN6_IS_ADDR_LINKLOCAL(addr6))) { 378 return (B_FALSE); 379 } 380 return (B_TRUE); 381 } 382 383 /* 384 * idm_get_ipaddr will retrieve a list of IP Addresses which the host is 385 * configured with by sending down a sequence of kernel ioctl to IP STREAMS. 386 */ 387 int 388 idm_get_ipaddr(idm_addr_list_t **ipaddr_p) 389 { 390 ksocket_t so4, so6; 391 struct lifnum lifn; 392 struct lifconf lifc; 393 struct lifreq *lp; 394 int rval; 395 int numifs; 396 int bufsize; 397 void *buf; 398 int i, j, n, rc; 399 struct sockaddr_storage ss; 400 struct sockaddr_in *sin; 401 struct sockaddr_in6 *sin6; 402 idm_addr_t *ip; 403 idm_addr_list_t *ipaddr = NULL; 404 int size_ipaddr; 405 406 *ipaddr_p = NULL; 407 size_ipaddr = 0; 408 buf = NULL; 409 410 /* create an ipv4 and ipv6 UDP socket */ 411 if ((so6 = idm_socreate(PF_INET6, SOCK_DGRAM, 0)) == NULL) 412 return (0); 413 if ((so4 = idm_socreate(PF_INET, SOCK_DGRAM, 0)) == NULL) { 414 idm_sodestroy(so6); 415 return (0); 416 } 417 418 419 retry_count: 420 /* snapshot the current number of interfaces */ 421 lifn.lifn_family = PF_UNSPEC; 422 lifn.lifn_flags = LIFC_NOXMIT | LIFC_TEMPORARY | LIFC_ALLZONES; 423 lifn.lifn_count = 0; 424 /* use vp6 for ioctls with unspecified families by default */ 425 if (ksocket_ioctl(so6, SIOCGLIFNUM, (intptr_t)&lifn, &rval, CRED()) 426 != 0) { 427 goto cleanup; 428 } 429 430 numifs = lifn.lifn_count; 431 if (numifs <= 0) { 432 goto cleanup; 433 } 434 435 /* allocate extra room in case more interfaces appear */ 436 numifs += 10; 437 438 /* get the interface names and ip addresses */ 439 bufsize = numifs * sizeof (struct lifreq); 440 buf = kmem_alloc(bufsize, KM_SLEEP); 441 442 lifc.lifc_family = AF_UNSPEC; 443 lifc.lifc_flags = LIFC_NOXMIT | LIFC_TEMPORARY | LIFC_ALLZONES; 444 lifc.lifc_len = bufsize; 445 lifc.lifc_buf = buf; 446 rc = ksocket_ioctl(so6, SIOCGLIFCONF, (intptr_t)&lifc, &rval, CRED()); 447 if (rc != 0) { 448 goto cleanup; 449 } 450 /* if our extra room is used up, try again */ 451 if (bufsize <= lifc.lifc_len) { 452 kmem_free(buf, bufsize); 453 buf = NULL; 454 goto retry_count; 455 } 456 /* calc actual number of ifconfs */ 457 n = lifc.lifc_len / sizeof (struct lifreq); 458 459 /* get ip address */ 460 if (n > 0) { 461 size_ipaddr = sizeof (idm_addr_list_t) + 462 (n - 1) * sizeof (idm_addr_t); 463 ipaddr = kmem_zalloc(size_ipaddr, KM_SLEEP); 464 } else { 465 goto cleanup; 466 } 467 468 /* 469 * Examine the array of interfaces and filter uninteresting ones 470 */ 471 for (i = 0, j = 0, lp = lifc.lifc_req; i < n; i++, lp++) { 472 473 /* 474 * Copy the address as the SIOCGLIFFLAGS ioctl is destructive 475 */ 476 ss = lp->lifr_addr; 477 /* 478 * fetch the flags using the socket of the correct family 479 */ 480 switch (ss.ss_family) { 481 case AF_INET: 482 rc = ksocket_ioctl(so4, SIOCGLIFFLAGS, (intptr_t)lp, 483 &rval, CRED()); 484 break; 485 case AF_INET6: 486 rc = ksocket_ioctl(so6, SIOCGLIFFLAGS, (intptr_t)lp, 487 &rval, CRED()); 488 break; 489 default: 490 continue; 491 } 492 if (rc == 0) { 493 /* 494 * If we got the flags, skip uninteresting 495 * interfaces based on flags 496 */ 497 if ((lp->lifr_flags & IFF_UP) != IFF_UP) 498 continue; 499 if (lp->lifr_flags & 500 (IFF_ANYCAST|IFF_NOLOCAL|IFF_DEPRECATED)) 501 continue; 502 } 503 504 /* save ip address */ 505 ip = &ipaddr->al_addrs[j]; 506 switch (ss.ss_family) { 507 case AF_INET: 508 sin = (struct sockaddr_in *)&ss; 509 if (!idm_v4_addr_okay(&sin->sin_addr)) 510 continue; 511 ip->a_addr.i_addr.in4 = sin->sin_addr; 512 ip->a_addr.i_insize = sizeof (struct in_addr); 513 break; 514 case AF_INET6: 515 sin6 = (struct sockaddr_in6 *)&ss; 516 if (!idm_v6_addr_okay(&sin6->sin6_addr)) 517 continue; 518 ip->a_addr.i_addr.in6 = sin6->sin6_addr; 519 ip->a_addr.i_insize = sizeof (struct in6_addr); 520 break; 521 default: 522 continue; 523 } 524 j++; 525 } 526 527 if (j == 0) { 528 /* no valid ifaddr */ 529 kmem_free(ipaddr, size_ipaddr); 530 size_ipaddr = 0; 531 ipaddr = NULL; 532 } else { 533 ipaddr->al_out_cnt = j; 534 } 535 536 537 cleanup: 538 idm_sodestroy(so6); 539 idm_sodestroy(so4); 540 541 if (buf != NULL) 542 kmem_free(buf, bufsize); 543 544 *ipaddr_p = ipaddr; 545 return (size_ipaddr); 546 } 547 548 int 549 idm_sorecv(ksocket_t so, void *msg, size_t len) 550 { 551 iovec_t iov; 552 553 ASSERT(so != NULL); 554 ASSERT(len != 0); 555 556 /* 557 * Fill in iovec and receive data 558 */ 559 iov.iov_base = msg; 560 iov.iov_len = len; 561 562 return (idm_iov_sorecv(so, &iov, 1, len)); 563 } 564 565 /* 566 * idm_sosendto - Sends a buffered data on a non-connected socket. 567 * 568 * This function puts the data provided on the wire by calling sosendmsg. 569 * It will return only when all the data has been sent or if an error 570 * occurs. 571 * 572 * Returns 0 for success, the socket errno value if sosendmsg fails, and 573 * -1 if sosendmsg returns success but uio_resid != 0 574 */ 575 int 576 idm_sosendto(ksocket_t so, void *buff, size_t len, 577 struct sockaddr *name, socklen_t namelen) 578 { 579 struct msghdr msg; 580 struct iovec iov[1]; 581 int error; 582 size_t sent = 0; 583 584 iov[0].iov_base = buff; 585 iov[0].iov_len = len; 586 587 /* Initialization of the message header. */ 588 bzero(&msg, sizeof (msg)); 589 msg.msg_iov = iov; 590 msg.msg_iovlen = 1; 591 msg.msg_name = name; 592 msg.msg_namelen = namelen; 593 594 if ((error = ksocket_sendmsg(so, &msg, 0, &sent, CRED())) == 0) { 595 /* Data sent */ 596 if (sent == len) { 597 /* All data sent. Success. */ 598 return (0); 599 } else { 600 /* Not all data was sent. Failure */ 601 return (-1); 602 } 603 } 604 605 /* Send failed */ 606 return (error); 607 } 608 609 /* 610 * idm_iov_sosend - Sends an iovec on a connection. 611 * 612 * This function puts the data provided on the wire by calling sosendmsg. 613 * It will return only when all the data has been sent or if an error 614 * occurs. 615 * 616 * Returns 0 for success, the socket errno value if sosendmsg fails, and 617 * -1 if sosendmsg returns success but uio_resid != 0 618 */ 619 int 620 idm_iov_sosend(ksocket_t so, iovec_t *iop, int iovlen, size_t total_len) 621 { 622 struct msghdr msg; 623 int error; 624 size_t sent = 0; 625 626 ASSERT(iop != NULL); 627 628 /* Initialization of the message header. */ 629 bzero(&msg, sizeof (msg)); 630 msg.msg_iov = iop; 631 msg.msg_iovlen = iovlen; 632 633 if ((error = ksocket_sendmsg(so, &msg, 0, &sent, CRED())) 634 == 0) { 635 /* Data sent */ 636 if (sent == total_len) { 637 /* All data sent. Success. */ 638 return (0); 639 } else { 640 /* Not all data was sent. Failure */ 641 return (-1); 642 } 643 } 644 645 /* Send failed */ 646 return (error); 647 } 648 649 /* 650 * idm_iov_sorecv - Receives an iovec from a connection 651 * 652 * This function gets the data asked for from the socket. It will return 653 * only when all the requested data has been retrieved or if an error 654 * occurs. 655 * 656 * Returns 0 for success, the socket errno value if sorecvmsg fails, and 657 * -1 if sorecvmsg returns success but uio_resid != 0 658 */ 659 int 660 idm_iov_sorecv(ksocket_t so, iovec_t *iop, int iovlen, size_t total_len) 661 { 662 struct msghdr msg; 663 int error; 664 size_t recv; 665 int flags; 666 667 ASSERT(iop != NULL); 668 669 /* Initialization of the message header. */ 670 bzero(&msg, sizeof (msg)); 671 msg.msg_iov = iop; 672 msg.msg_iovlen = iovlen; 673 flags = MSG_WAITALL; 674 675 if ((error = ksocket_recvmsg(so, &msg, flags, &recv, CRED())) 676 == 0) { 677 /* Received data */ 678 if (recv == total_len) { 679 /* All requested data received. Success */ 680 return (0); 681 } else { 682 /* 683 * Not all data was received. The connection has 684 * probably failed. 685 */ 686 return (-1); 687 } 688 } 689 690 /* Receive failed */ 691 return (error); 692 } 693 694 static void 695 idm_set_ini_preconnect_options(idm_so_conn_t *sc, boolean_t boot_conn) 696 { 697 int conn_abort = 10000; 698 int conn_notify = 2000; 699 int abort = 30000; 700 701 /* Pre-connect socket options */ 702 (void) ksocket_setsockopt(sc->ic_so, IPPROTO_TCP, 703 TCP_CONN_NOTIFY_THRESHOLD, (char *)&conn_notify, sizeof (int), 704 CRED()); 705 if (boot_conn == B_FALSE) { 706 (void) ksocket_setsockopt(sc->ic_so, IPPROTO_TCP, 707 TCP_CONN_ABORT_THRESHOLD, (char *)&conn_abort, sizeof (int), 708 CRED()); 709 (void) ksocket_setsockopt(sc->ic_so, IPPROTO_TCP, 710 TCP_ABORT_THRESHOLD, 711 (char *)&abort, sizeof (int), CRED()); 712 } 713 } 714 715 static void 716 idm_set_postconnect_options(ksocket_t ks) 717 { 718 const int on = 1; 719 720 /* Set connect options */ 721 (void) ksocket_setsockopt(ks, SOL_SOCKET, SO_RCVBUF, 722 (char *)&idm_so_rcvbuf, sizeof (int), CRED()); 723 (void) ksocket_setsockopt(ks, SOL_SOCKET, SO_SNDBUF, 724 (char *)&idm_so_sndbuf, sizeof (int), CRED()); 725 (void) ksocket_setsockopt(ks, IPPROTO_TCP, TCP_NODELAY, 726 (char *)&on, sizeof (on), CRED()); 727 } 728 729 static uint32_t 730 n2h24(const uchar_t *ptr) 731 { 732 return ((ptr[0] << 16) | (ptr[1] << 8) | ptr[2]); 733 } 734 735 736 static idm_status_t 737 idm_sorecvhdr(idm_conn_t *ic, idm_pdu_t *pdu) 738 { 739 iscsi_hdr_t *bhs; 740 uint32_t hdr_digest_crc; 741 uint32_t crc_calculated; 742 void *new_hdr; 743 int ahslen = 0; 744 int total_len = 0; 745 int iovlen = 0; 746 struct iovec iov[2]; 747 idm_so_conn_t *so_conn; 748 int rc; 749 750 so_conn = ic->ic_transport_private; 751 752 /* 753 * Read BHS 754 */ 755 bhs = pdu->isp_hdr; 756 rc = idm_sorecv(so_conn->ic_so, pdu->isp_hdr, sizeof (iscsi_hdr_t)); 757 if (rc != IDM_STATUS_SUCCESS) { 758 return (IDM_STATUS_FAIL); 759 } 760 761 /* 762 * Check actual AHS length against the amount available in the buffer 763 */ 764 pdu->isp_hdrlen = sizeof (iscsi_hdr_t) + 765 (bhs->hlength * sizeof (uint32_t)); 766 pdu->isp_datalen = n2h24(bhs->dlength); 767 if (ic->ic_conn_type == CONN_TYPE_TGT && 768 pdu->isp_datalen > ic->ic_conn_params.max_recv_dataseglen) { 769 IDM_CONN_LOG(CE_WARN, 770 "idm_sorecvhdr: exceeded the max data segment length"); 771 return (IDM_STATUS_FAIL); 772 } 773 if (bhs->hlength > IDM_SORX_CACHE_AHSLEN) { 774 /* Allocate a new header segment and change the callback */ 775 new_hdr = kmem_alloc(pdu->isp_hdrlen, KM_SLEEP); 776 bcopy(pdu->isp_hdr, new_hdr, sizeof (iscsi_hdr_t)); 777 pdu->isp_hdr = new_hdr; 778 pdu->isp_flags |= IDM_PDU_ADDL_HDR; 779 780 /* 781 * This callback will restore the expected values after 782 * the RX PDU has been processed. 783 */ 784 pdu->isp_callback = idm_sorx_addl_pdu_cb; 785 } 786 787 /* 788 * Setup receipt of additional header and header digest (if enabled). 789 */ 790 if (bhs->hlength > 0) { 791 iov[iovlen].iov_base = (caddr_t)(pdu->isp_hdr + 1); 792 ahslen = pdu->isp_hdrlen - sizeof (iscsi_hdr_t); 793 iov[iovlen].iov_len = ahslen; 794 total_len += iov[iovlen].iov_len; 795 iovlen++; 796 } 797 798 if (ic->ic_conn_flags & IDM_CONN_HEADER_DIGEST) { 799 iov[iovlen].iov_base = (caddr_t)&hdr_digest_crc; 800 iov[iovlen].iov_len = sizeof (hdr_digest_crc); 801 total_len += iov[iovlen].iov_len; 802 iovlen++; 803 } 804 805 if ((iovlen != 0) && 806 (idm_iov_sorecv(so_conn->ic_so, &iov[0], iovlen, 807 total_len) != 0)) { 808 return (IDM_STATUS_FAIL); 809 } 810 811 /* 812 * Validate header digest if enabled 813 */ 814 if (ic->ic_conn_flags & IDM_CONN_HEADER_DIGEST) { 815 crc_calculated = idm_crc32c(pdu->isp_hdr, 816 sizeof (iscsi_hdr_t) + ahslen); 817 if (crc_calculated != hdr_digest_crc) { 818 /* Invalid Header Digest */ 819 return (IDM_STATUS_HEADER_DIGEST); 820 } 821 } 822 823 return (0); 824 } 825 826 /* 827 * idm_so_ini_conn_create() 828 * Allocate the sockets transport connection resources. 829 */ 830 static idm_status_t 831 idm_so_ini_conn_create(idm_conn_req_t *cr, idm_conn_t *ic) 832 { 833 ksocket_t so; 834 idm_so_conn_t *so_conn; 835 idm_status_t idmrc; 836 837 so = idm_socreate(cr->cr_domain, cr->cr_type, 838 cr->cr_protocol); 839 if (so == NULL) { 840 return (IDM_STATUS_FAIL); 841 } 842 843 /* Bind the socket if configured to do so */ 844 if (cr->cr_bound) { 845 if (ksocket_bind(so, &cr->cr_bound_addr.sin, 846 SIZEOF_SOCKADDR(&cr->cr_bound_addr.sin), CRED()) != 0) { 847 idm_sodestroy(so); 848 return (IDM_STATUS_FAIL); 849 } 850 } 851 852 idmrc = idm_so_conn_create_common(ic, so); 853 if (idmrc != IDM_STATUS_SUCCESS) { 854 idm_soshutdown(so); 855 idm_sodestroy(so); 856 return (IDM_STATUS_FAIL); 857 } 858 859 so_conn = ic->ic_transport_private; 860 /* Set up socket options */ 861 idm_set_ini_preconnect_options(so_conn, cr->cr_boot_conn); 862 863 return (IDM_STATUS_SUCCESS); 864 } 865 866 /* 867 * idm_so_ini_conn_destroy() 868 * Tear down the sockets transport connection resources. 869 */ 870 static void 871 idm_so_ini_conn_destroy(idm_conn_t *ic) 872 { 873 idm_so_conn_destroy_common(ic); 874 } 875 876 /* 877 * idm_so_ini_conn_connect() 878 * Establish the connection referred to by the handle previously allocated via 879 * idm_so_ini_conn_create(). 880 */ 881 static idm_status_t 882 idm_so_ini_conn_connect(idm_conn_t *ic) 883 { 884 idm_so_conn_t *so_conn; 885 struct sonode *node = NULL; 886 int rc; 887 clock_t lbolt, conn_login_max, conn_login_interval; 888 boolean_t nonblock; 889 890 so_conn = ic->ic_transport_private; 891 nonblock = ic->ic_conn_params.nonblock_socket; 892 conn_login_max = ic->ic_conn_params.conn_login_max; 893 conn_login_interval = ddi_get_lbolt() + 894 SEC_TO_TICK(ic->ic_conn_params.conn_login_interval); 895 896 if (nonblock == B_TRUE) { 897 node = ((struct sonode *)(so_conn->ic_so)); 898 /* Set to none block socket mode */ 899 idm_so_socket_set_nonblock(node); 900 do { 901 rc = ksocket_connect(so_conn->ic_so, 902 &ic->ic_ini_dst_addr.sin, 903 (SIZEOF_SOCKADDR(&ic->ic_ini_dst_addr.sin)), 904 CRED()); 905 if (rc == 0 || rc == EISCONN) { 906 /* socket success or already success */ 907 rc = IDM_STATUS_SUCCESS; 908 break; 909 } 910 if ((rc == ETIMEDOUT) || (rc == ECONNREFUSED) || 911 (rc == ECONNRESET)) { 912 /* socket connection timeout or refuse */ 913 break; 914 } 915 lbolt = ddi_get_lbolt(); 916 if (lbolt > conn_login_max) { 917 /* 918 * Connection retry timeout, 919 * failed connect to target. 920 */ 921 break; 922 } 923 if (lbolt < conn_login_interval) { 924 if ((rc == EINPROGRESS) || (rc == EALREADY)) { 925 /* TCP connect still in progress */ 926 delay(SEC_TO_TICK(IN_PROGRESS_DELAY)); 927 continue; 928 } else { 929 delay(conn_login_interval - lbolt); 930 } 931 } 932 conn_login_interval = ddi_get_lbolt() + 933 SEC_TO_TICK(ic->ic_conn_params.conn_login_interval); 934 } while (rc != 0); 935 /* resume to nonblock mode */ 936 if (rc == IDM_STATUS_SUCCESS) { 937 idm_so_socket_set_block(node); 938 } 939 } else { 940 rc = ksocket_connect(so_conn->ic_so, &ic->ic_ini_dst_addr.sin, 941 (SIZEOF_SOCKADDR(&ic->ic_ini_dst_addr.sin)), CRED()); 942 } 943 944 if (rc != 0) { 945 idm_soshutdown(so_conn->ic_so); 946 return (IDM_STATUS_FAIL); 947 } 948 949 idm_so_conn_connect_common(ic); 950 951 idm_set_postconnect_options(so_conn->ic_so); 952 953 return (IDM_STATUS_SUCCESS); 954 } 955 956 idm_status_t 957 idm_so_tgt_conn_create(idm_conn_t *ic, ksocket_t new_so) 958 { 959 idm_status_t idmrc; 960 961 idm_set_postconnect_options(new_so); 962 idmrc = idm_so_conn_create_common(ic, new_so); 963 964 return (idmrc); 965 } 966 967 static void 968 idm_so_tgt_conn_destroy(idm_conn_t *ic) 969 { 970 idm_so_conn_destroy_common(ic); 971 } 972 973 /* 974 * idm_so_tgt_conn_connect() 975 * Establish the connection in ic, passed from idm_tgt_conn_finish(), which 976 * is invoked from the SM as a result of an inbound connection request. 977 */ 978 static idm_status_t 979 idm_so_tgt_conn_connect(idm_conn_t *ic) 980 { 981 idm_so_conn_connect_common(ic); 982 983 return (IDM_STATUS_SUCCESS); 984 } 985 986 static idm_status_t 987 idm_so_conn_create_common(idm_conn_t *ic, ksocket_t new_so) 988 { 989 idm_so_conn_t *so_conn; 990 991 so_conn = kmem_zalloc(sizeof (idm_so_conn_t), KM_SLEEP); 992 so_conn->ic_so = new_so; 993 994 ic->ic_transport_private = so_conn; 995 ic->ic_transport_hdrlen = 0; 996 997 /* Set the scoreboarding flag on this connection */ 998 ic->ic_conn_flags |= IDM_CONN_USE_SCOREBOARD; 999 ic->ic_conn_params.max_recv_dataseglen = 1000 ISCSI_DEFAULT_MAX_RECV_SEG_LEN; 1001 ic->ic_conn_params.max_xmit_dataseglen = 1002 ISCSI_DEFAULT_MAX_XMIT_SEG_LEN; 1003 1004 /* 1005 * Initialize tx thread mutex and list 1006 */ 1007 mutex_init(&so_conn->ic_tx_mutex, NULL, MUTEX_DEFAULT, NULL); 1008 cv_init(&so_conn->ic_tx_cv, NULL, CV_DEFAULT, NULL); 1009 list_create(&so_conn->ic_tx_list, sizeof (idm_pdu_t), 1010 offsetof(idm_pdu_t, idm_tx_link)); 1011 1012 return (IDM_STATUS_SUCCESS); 1013 } 1014 1015 static void 1016 idm_so_conn_destroy_common(idm_conn_t *ic) 1017 { 1018 idm_so_conn_t *so_conn = ic->ic_transport_private; 1019 1020 ic->ic_transport_private = NULL; 1021 idm_sodestroy(so_conn->ic_so); 1022 list_destroy(&so_conn->ic_tx_list); 1023 mutex_destroy(&so_conn->ic_tx_mutex); 1024 cv_destroy(&so_conn->ic_tx_cv); 1025 1026 kmem_free(so_conn, sizeof (idm_so_conn_t)); 1027 } 1028 1029 static void 1030 idm_so_conn_connect_common(idm_conn_t *ic) 1031 { 1032 idm_so_conn_t *so_conn; 1033 struct sockaddr_in6 t_addr; 1034 socklen_t t_addrlen = 0; 1035 1036 so_conn = ic->ic_transport_private; 1037 bzero(&t_addr, sizeof (struct sockaddr_in6)); 1038 t_addrlen = sizeof (struct sockaddr_in6); 1039 1040 /* Set the local and remote addresses in the idm conn handle */ 1041 (void) ksocket_getsockname(so_conn->ic_so, (struct sockaddr *)&t_addr, 1042 &t_addrlen, CRED()); 1043 bcopy(&t_addr, &ic->ic_laddr, t_addrlen); 1044 (void) ksocket_getpeername(so_conn->ic_so, (struct sockaddr *)&t_addr, 1045 &t_addrlen, CRED()); 1046 bcopy(&t_addr, &ic->ic_raddr, t_addrlen); 1047 1048 mutex_enter(&ic->ic_mutex); 1049 so_conn->ic_tx_thread = thread_create(NULL, 0, idm_sotx_thread, ic, 0, 1050 &p0, TS_RUN, minclsyspri); 1051 so_conn->ic_rx_thread = thread_create(NULL, 0, idm_sorx_thread, ic, 0, 1052 &p0, TS_RUN, minclsyspri); 1053 1054 while (so_conn->ic_rx_thread_did == 0 || 1055 so_conn->ic_tx_thread_did == 0) 1056 cv_wait(&ic->ic_cv, &ic->ic_mutex); 1057 mutex_exit(&ic->ic_mutex); 1058 } 1059 1060 /* 1061 * idm_so_conn_disconnect() 1062 * Shutdown the socket connection and stop the thread 1063 */ 1064 static void 1065 idm_so_conn_disconnect(idm_conn_t *ic) 1066 { 1067 idm_so_conn_t *so_conn; 1068 1069 so_conn = ic->ic_transport_private; 1070 1071 mutex_enter(&ic->ic_mutex); 1072 so_conn->ic_rx_thread_running = B_FALSE; 1073 so_conn->ic_tx_thread_running = B_FALSE; 1074 /* We need to wakeup the TX thread */ 1075 mutex_enter(&so_conn->ic_tx_mutex); 1076 cv_signal(&so_conn->ic_tx_cv); 1077 mutex_exit(&so_conn->ic_tx_mutex); 1078 mutex_exit(&ic->ic_mutex); 1079 1080 /* This should wakeup the RX thread if it is sleeping */ 1081 idm_soshutdown(so_conn->ic_so); 1082 1083 thread_join(so_conn->ic_tx_thread_did); 1084 thread_join(so_conn->ic_rx_thread_did); 1085 } 1086 1087 /* 1088 * idm_so_tgt_svc_create() 1089 * Establish a service on an IP address and port. idm_svc_req_t contains 1090 * the service parameters. 1091 */ 1092 /*ARGSUSED*/ 1093 static idm_status_t 1094 idm_so_tgt_svc_create(idm_svc_req_t *sr, idm_svc_t *is) 1095 { 1096 idm_so_svc_t *so_svc; 1097 1098 so_svc = kmem_zalloc(sizeof (idm_so_svc_t), KM_SLEEP); 1099 1100 /* Set the new sockets service in svc handle */ 1101 is->is_so_svc = (void *)so_svc; 1102 1103 return (IDM_STATUS_SUCCESS); 1104 } 1105 1106 /* 1107 * idm_so_tgt_svc_destroy() 1108 * Teardown sockets resources allocated in idm_so_tgt_svc_create() 1109 */ 1110 static void 1111 idm_so_tgt_svc_destroy(idm_svc_t *is) 1112 { 1113 /* the socket will have been torn down; free the service */ 1114 kmem_free(is->is_so_svc, sizeof (idm_so_svc_t)); 1115 } 1116 1117 /* 1118 * idm_so_tgt_svc_online() 1119 * Launch a watch thread on the svc allocated in idm_so_tgt_svc_create() 1120 */ 1121 1122 static idm_status_t 1123 idm_so_tgt_svc_online(idm_svc_t *is) 1124 { 1125 idm_so_svc_t *so_svc; 1126 idm_svc_req_t *sr = &is->is_svc_req; 1127 struct sockaddr_in6 sin6_ip; 1128 const uint32_t on = 1; 1129 const uint32_t off = 0; 1130 1131 mutex_enter(&is->is_mutex); 1132 so_svc = (idm_so_svc_t *)is->is_so_svc; 1133 1134 /* 1135 * Try creating an IPv6 socket first 1136 */ 1137 if ((so_svc->is_so = idm_socreate(PF_INET6, SOCK_STREAM, 0)) == NULL) { 1138 mutex_exit(&is->is_mutex); 1139 return (IDM_STATUS_FAIL); 1140 } else { 1141 bzero(&sin6_ip, sizeof (sin6_ip)); 1142 sin6_ip.sin6_family = AF_INET6; 1143 sin6_ip.sin6_port = htons(sr->sr_port); 1144 sin6_ip.sin6_addr = in6addr_any; 1145 1146 (void) ksocket_setsockopt(so_svc->is_so, SOL_SOCKET, 1147 SO_REUSEADDR, (char *)&on, sizeof (on), CRED()); 1148 /* 1149 * Turn off SO_MAC_EXEMPT so future sobinds succeed 1150 */ 1151 (void) ksocket_setsockopt(so_svc->is_so, SOL_SOCKET, 1152 SO_MAC_EXEMPT, (char *)&off, sizeof (off), CRED()); 1153 1154 if (ksocket_bind(so_svc->is_so, (struct sockaddr *)&sin6_ip, 1155 sizeof (sin6_ip), CRED()) != 0) { 1156 mutex_exit(&is->is_mutex); 1157 idm_sodestroy(so_svc->is_so); 1158 return (IDM_STATUS_FAIL); 1159 } 1160 } 1161 1162 idm_set_postconnect_options(so_svc->is_so); 1163 1164 if (ksocket_listen(so_svc->is_so, 5, CRED()) != 0) { 1165 mutex_exit(&is->is_mutex); 1166 idm_soshutdown(so_svc->is_so); 1167 idm_sodestroy(so_svc->is_so); 1168 return (IDM_STATUS_FAIL); 1169 } 1170 1171 /* Launch a watch thread */ 1172 so_svc->is_thread = thread_create(NULL, 0, idm_so_svc_port_watcher, 1173 is, 0, &p0, TS_RUN, minclsyspri); 1174 1175 if (so_svc->is_thread == NULL) { 1176 /* Failure to launch; teardown the socket */ 1177 mutex_exit(&is->is_mutex); 1178 idm_soshutdown(so_svc->is_so); 1179 idm_sodestroy(so_svc->is_so); 1180 return (IDM_STATUS_FAIL); 1181 } 1182 ksocket_hold(so_svc->is_so); 1183 /* Wait for the port watcher thread to start */ 1184 while (!so_svc->is_thread_running) 1185 cv_wait(&is->is_cv, &is->is_mutex); 1186 mutex_exit(&is->is_mutex); 1187 1188 return (IDM_STATUS_SUCCESS); 1189 } 1190 1191 /* 1192 * idm_so_tgt_svc_offline 1193 * 1194 * Stop listening on the IP address and port identified by idm_svc_t. 1195 */ 1196 static void 1197 idm_so_tgt_svc_offline(idm_svc_t *is) 1198 { 1199 idm_so_svc_t *so_svc; 1200 mutex_enter(&is->is_mutex); 1201 so_svc = (idm_so_svc_t *)is->is_so_svc; 1202 so_svc->is_thread_running = B_FALSE; 1203 mutex_exit(&is->is_mutex); 1204 1205 /* 1206 * Teardown socket 1207 */ 1208 idm_sodestroy(so_svc->is_so); 1209 1210 /* 1211 * Now we expect the port watcher thread to terminate 1212 */ 1213 thread_join(so_svc->is_thread_did); 1214 } 1215 1216 /* 1217 * Watch thread for target service connection establishment. 1218 */ 1219 void 1220 idm_so_svc_port_watcher(void *arg) 1221 { 1222 idm_svc_t *svc = arg; 1223 ksocket_t new_so; 1224 idm_conn_t *ic; 1225 idm_status_t idmrc; 1226 idm_so_svc_t *so_svc; 1227 int rc; 1228 const uint32_t off = 0; 1229 struct sockaddr_in6 t_addr; 1230 socklen_t t_addrlen; 1231 1232 bzero(&t_addr, sizeof (struct sockaddr_in6)); 1233 t_addrlen = sizeof (struct sockaddr_in6); 1234 mutex_enter(&svc->is_mutex); 1235 1236 so_svc = svc->is_so_svc; 1237 so_svc->is_thread_running = B_TRUE; 1238 so_svc->is_thread_did = so_svc->is_thread->t_did; 1239 1240 cv_signal(&svc->is_cv); 1241 1242 IDM_SVC_LOG(CE_NOTE, "iSCSI service (%p/%d) online", (void *)svc, 1243 svc->is_svc_req.sr_port); 1244 1245 while (so_svc->is_thread_running) { 1246 mutex_exit(&svc->is_mutex); 1247 1248 if ((rc = ksocket_accept(so_svc->is_so, 1249 (struct sockaddr *)&t_addr, &t_addrlen, 1250 &new_so, CRED())) != 0) { 1251 mutex_enter(&svc->is_mutex); 1252 if (rc != ECONNABORTED && rc != EINTR) { 1253 IDM_SVC_LOG(CE_NOTE, "idm_so_svc_port_watcher:" 1254 " ksocket_accept failed %d", rc); 1255 } 1256 /* 1257 * Unclean shutdown of this thread is not handled 1258 * wait for !is_thread_running. 1259 */ 1260 continue; 1261 } 1262 /* 1263 * Turn off SO_MAC_EXEMPT so future sobinds succeed 1264 */ 1265 (void) ksocket_setsockopt(new_so, SOL_SOCKET, SO_MAC_EXEMPT, 1266 (char *)&off, sizeof (off), CRED()); 1267 1268 idmrc = idm_svc_conn_create(svc, IDM_TRANSPORT_TYPE_SOCKETS, 1269 &ic); 1270 if (idmrc != IDM_STATUS_SUCCESS) { 1271 /* Drop connection */ 1272 idm_soshutdown(new_so); 1273 idm_sodestroy(new_so); 1274 mutex_enter(&svc->is_mutex); 1275 continue; 1276 } 1277 1278 idmrc = idm_so_tgt_conn_create(ic, new_so); 1279 if (idmrc != IDM_STATUS_SUCCESS) { 1280 idm_svc_conn_destroy(ic); 1281 idm_soshutdown(new_so); 1282 idm_sodestroy(new_so); 1283 mutex_enter(&svc->is_mutex); 1284 continue; 1285 } 1286 1287 /* 1288 * Kick the state machine. At CS_S3_XPT_UP the state machine 1289 * will notify the client (target) about the new connection. 1290 */ 1291 idm_conn_event(ic, CE_CONNECT_ACCEPT, NULL); 1292 1293 mutex_enter(&svc->is_mutex); 1294 } 1295 ksocket_rele(so_svc->is_so); 1296 so_svc->is_thread_running = B_FALSE; 1297 mutex_exit(&svc->is_mutex); 1298 1299 IDM_SVC_LOG(CE_NOTE, "iSCSI service (%p/%d) offline", (void *)svc, 1300 svc->is_svc_req.sr_port); 1301 1302 thread_exit(); 1303 } 1304 1305 /* 1306 * idm_so_free_task_rsrc() stops any ongoing processing of the task and 1307 * frees resources associated with the task. 1308 * 1309 * It's not clear that this should return idm_status_t. What do we do 1310 * if it fails? 1311 */ 1312 static idm_status_t 1313 idm_so_free_task_rsrc(idm_task_t *idt) 1314 { 1315 idm_buf_t *idb, *next_idb; 1316 1317 /* 1318 * There is nothing to cleanup on initiator connections 1319 */ 1320 if (IDM_CONN_ISINI(idt->idt_ic)) 1321 return (IDM_STATUS_SUCCESS); 1322 1323 /* 1324 * If this is a target connection, call idm_buf_rx_from_ini_done for 1325 * any buffer on the "outbufv" list with idb->idb_in_transport==B_TRUE. 1326 * 1327 * In addition, remove any buffers associated with this task from 1328 * the ic_tx_list. We'll do this by walking the idt_inbufv list, but 1329 * items don't actually get removed from that list (and completion 1330 * routines called) until idm_task_cleanup. 1331 */ 1332 mutex_enter(&idt->idt_mutex); 1333 1334 for (idb = list_head(&idt->idt_outbufv); idb != NULL; idb = next_idb) { 1335 next_idb = list_next(&idt->idt_outbufv, idb); 1336 if (idb->idb_in_transport) { 1337 /* 1338 * idm_buf_rx_from_ini_done releases idt->idt_mutex 1339 */ 1340 DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic, 1341 uintptr_t, idb->idb_buf, 1342 uint32_t, idb->idb_bufoffset, 1343 uint64_t, 0, uint32_t, 0, uint32_t, 0, 1344 uint32_t, idb->idb_xfer_len, 1345 int, XFER_BUF_RX_FROM_INI); 1346 idm_buf_rx_from_ini_done(idt, idb, IDM_STATUS_ABORTED); 1347 mutex_enter(&idt->idt_mutex); 1348 } 1349 } 1350 1351 for (idb = list_head(&idt->idt_inbufv); idb != NULL; idb = next_idb) { 1352 next_idb = list_next(&idt->idt_inbufv, idb); 1353 /* 1354 * We want to remove these items from the tx_list as well, 1355 * but knowing it's in the idt_inbufv list is not a guarantee 1356 * that it's in the tx_list. If it's on the tx list then 1357 * let idm_sotx_thread() clean it up. 1358 */ 1359 if (idb->idb_in_transport && !idb->idb_tx_thread) { 1360 /* 1361 * idm_buf_tx_to_ini_done releases idt->idt_mutex 1362 */ 1363 DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic, 1364 uintptr_t, idb->idb_buf, 1365 uint32_t, idb->idb_bufoffset, 1366 uint64_t, 0, uint32_t, 0, uint32_t, 0, 1367 uint32_t, idb->idb_xfer_len, 1368 int, XFER_BUF_TX_TO_INI); 1369 idm_buf_tx_to_ini_done(idt, idb, IDM_STATUS_ABORTED); 1370 mutex_enter(&idt->idt_mutex); 1371 } 1372 } 1373 1374 mutex_exit(&idt->idt_mutex); 1375 1376 return (IDM_STATUS_SUCCESS); 1377 } 1378 1379 /* 1380 * idm_so_negotiate_key_values() validates the key values for this connection 1381 */ 1382 /* ARGSUSED */ 1383 static kv_status_t 1384 idm_so_negotiate_key_values(idm_conn_t *it, nvlist_t *request_nvl, 1385 nvlist_t *response_nvl, nvlist_t *negotiated_nvl) 1386 { 1387 /* All parameters are negotiated at the iscsit level */ 1388 return (KV_HANDLED); 1389 } 1390 1391 /* 1392 * idm_so_notice_key_values() activates the negotiated key values for 1393 * this connection. 1394 */ 1395 static void 1396 idm_so_notice_key_values(idm_conn_t *it, nvlist_t *negotiated_nvl) 1397 { 1398 char *nvp_name; 1399 nvpair_t *nvp; 1400 nvpair_t *next_nvp; 1401 int nvrc; 1402 idm_status_t idm_status; 1403 const idm_kv_xlate_t *ikvx; 1404 uint64_t num_val; 1405 1406 for (nvp = nvlist_next_nvpair(negotiated_nvl, NULL); 1407 nvp != NULL; nvp = next_nvp) { 1408 next_nvp = nvlist_next_nvpair(negotiated_nvl, nvp); 1409 nvp_name = nvpair_name(nvp); 1410 1411 ikvx = idm_lookup_kv_xlate(nvp_name, strlen(nvp_name)); 1412 switch (ikvx->ik_key_id) { 1413 case KI_HEADER_DIGEST: 1414 case KI_DATA_DIGEST: 1415 idm_status = idm_so_handle_digest(it, nvp, ikvx); 1416 ASSERT(idm_status == 0); 1417 1418 /* Remove processed item from negotiated_nvl list */ 1419 nvrc = nvlist_remove_all( 1420 negotiated_nvl, ikvx->ik_key_name); 1421 ASSERT(nvrc == 0); 1422 break; 1423 case KI_MAX_RECV_DATA_SEGMENT_LENGTH: 1424 /* 1425 * Just pass the value down to idm layer. 1426 * No need to remove it from negotiated_nvl list here. 1427 */ 1428 nvrc = nvpair_value_uint64(nvp, &num_val); 1429 ASSERT(nvrc == 0); 1430 it->ic_conn_params.max_xmit_dataseglen = 1431 (uint32_t)num_val; 1432 break; 1433 default: 1434 break; 1435 } 1436 } 1437 } 1438 1439 /* 1440 * idm_so_declare_key_values() declares the key values for this connection 1441 */ 1442 /* ARGSUSED */ 1443 static kv_status_t 1444 idm_so_declare_key_values(idm_conn_t *it, nvlist_t *config_nvl, 1445 nvlist_t *outgoing_nvl) 1446 { 1447 char *nvp_name; 1448 nvpair_t *nvp; 1449 nvpair_t *next_nvp; 1450 kv_status_t kvrc; 1451 int nvrc = 0; 1452 const idm_kv_xlate_t *ikvx; 1453 uint64_t num_val; 1454 1455 for (nvp = nvlist_next_nvpair(config_nvl, NULL); 1456 nvp != NULL && nvrc == 0; nvp = next_nvp) { 1457 next_nvp = nvlist_next_nvpair(config_nvl, nvp); 1458 nvp_name = nvpair_name(nvp); 1459 1460 ikvx = idm_lookup_kv_xlate(nvp_name, strlen(nvp_name)); 1461 switch (ikvx->ik_key_id) { 1462 case KI_MAX_RECV_DATA_SEGMENT_LENGTH: 1463 if ((nvrc = nvpair_value_uint64(nvp, &num_val)) != 0) { 1464 break; 1465 } 1466 if (outgoing_nvl && 1467 (nvrc = nvlist_add_uint64(outgoing_nvl, 1468 nvp_name, num_val)) != 0) { 1469 break; 1470 } 1471 it->ic_conn_params.max_recv_dataseglen = 1472 (uint32_t)num_val; 1473 break; 1474 default: 1475 break; 1476 } 1477 } 1478 kvrc = idm_nvstat_to_kvstat(nvrc); 1479 return (kvrc); 1480 } 1481 1482 static idm_status_t 1483 idm_so_handle_digest(idm_conn_t *it, nvpair_t *digest_choice, 1484 const idm_kv_xlate_t *ikvx) 1485 { 1486 int nvrc; 1487 char *digest_choice_string; 1488 1489 nvrc = nvpair_value_string(digest_choice, 1490 &digest_choice_string); 1491 ASSERT(nvrc == 0); 1492 if (strcasecmp(digest_choice_string, "crc32c") == 0) { 1493 switch (ikvx->ik_key_id) { 1494 case KI_HEADER_DIGEST: 1495 it->ic_conn_flags |= IDM_CONN_HEADER_DIGEST; 1496 break; 1497 case KI_DATA_DIGEST: 1498 it->ic_conn_flags |= IDM_CONN_DATA_DIGEST; 1499 break; 1500 default: 1501 ASSERT(0); 1502 break; 1503 } 1504 } else if (strcasecmp(digest_choice_string, "none") == 0) { 1505 switch (ikvx->ik_key_id) { 1506 case KI_HEADER_DIGEST: 1507 it->ic_conn_flags &= ~IDM_CONN_HEADER_DIGEST; 1508 break; 1509 case KI_DATA_DIGEST: 1510 it->ic_conn_flags &= ~IDM_CONN_DATA_DIGEST; 1511 break; 1512 default: 1513 ASSERT(0); 1514 break; 1515 } 1516 } else { 1517 ASSERT(0); 1518 } 1519 1520 return (IDM_STATUS_SUCCESS); 1521 } 1522 1523 1524 /* 1525 * idm_so_conn_is_capable() verifies that the passed connection is provided 1526 * for by the sockets interface. 1527 */ 1528 /* ARGSUSED */ 1529 static boolean_t 1530 idm_so_conn_is_capable(idm_conn_req_t *ic, idm_transport_caps_t *caps) 1531 { 1532 return (B_TRUE); 1533 } 1534 1535 /* 1536 * idm_so_rx_datain() validates the Data Sequence number of the PDU. The 1537 * idm_sorecv_scsidata() function invoked earlier actually reads the data 1538 * off the socket into the appropriate buffers. 1539 */ 1540 static void 1541 idm_so_rx_datain(idm_conn_t *ic, idm_pdu_t *pdu) 1542 { 1543 iscsi_data_hdr_t *bhs; 1544 idm_task_t *idt; 1545 idm_buf_t *idb; 1546 uint32_t datasn; 1547 size_t offset; 1548 iscsi_hdr_t *ihp = (iscsi_hdr_t *)pdu->isp_hdr; 1549 iscsi_data_rsp_hdr_t *idrhp = (iscsi_data_rsp_hdr_t *)ihp; 1550 1551 ASSERT(ic != NULL); 1552 ASSERT(pdu != NULL); 1553 1554 bhs = (iscsi_data_hdr_t *)pdu->isp_hdr; 1555 datasn = ntohl(bhs->datasn); 1556 offset = ntohl(bhs->offset); 1557 1558 ASSERT(bhs->opcode == ISCSI_OP_SCSI_DATA_RSP); 1559 1560 /* 1561 * Look up the task corresponding to the initiator task tag 1562 * to get the buffers affiliated with the task. 1563 */ 1564 idt = idm_task_find(ic, bhs->itt, bhs->ttt); 1565 if (idt == NULL) { 1566 IDM_CONN_LOG(CE_WARN, "idm_so_rx_datain: failed to find task"); 1567 idm_pdu_rx_protocol_error(ic, pdu); 1568 return; 1569 } 1570 1571 idb = pdu->isp_sorx_buf; 1572 if (idb == NULL) { 1573 IDM_CONN_LOG(CE_WARN, 1574 "idm_so_rx_datain: failed to find buffer"); 1575 idm_task_rele(idt); 1576 idm_pdu_rx_protocol_error(ic, pdu); 1577 return; 1578 } 1579 1580 /* 1581 * DataSN values should be sequential and should not have any gaps or 1582 * repetitions. Check the DataSN with the one stored in the task. 1583 */ 1584 if (datasn == idt->idt_exp_datasn) { 1585 idt->idt_exp_datasn++; /* keep track of DataSN received */ 1586 } else { 1587 IDM_CONN_LOG(CE_WARN, "idm_so_rx_datain: datasn out of order"); 1588 idm_task_rele(idt); 1589 idm_pdu_rx_protocol_error(ic, pdu); 1590 return; 1591 } 1592 1593 /* 1594 * PDUs in a sequence should be in continuously increasing 1595 * address offset 1596 */ 1597 if (offset != idb->idb_exp_offset) { 1598 IDM_CONN_LOG(CE_WARN, "idm_so_rx_datain: unexpected offset"); 1599 idm_task_rele(idt); 1600 idm_pdu_rx_protocol_error(ic, pdu); 1601 return; 1602 } 1603 /* Expected next relative buffer offset */ 1604 idb->idb_exp_offset += n2h24(bhs->dlength); 1605 idt->idt_rx_bytes += n2h24(bhs->dlength); 1606 1607 idm_task_rele(idt); 1608 1609 /* 1610 * For now call scsi_rsp which will process the data rsp 1611 * Revisit, need to provide an explicit client entry point for 1612 * phase collapse completions. 1613 */ 1614 if (((ihp->opcode & ISCSI_OPCODE_MASK) == ISCSI_OP_SCSI_DATA_RSP) && 1615 (idrhp->flags & ISCSI_FLAG_DATA_STATUS)) { 1616 (*ic->ic_conn_ops.icb_rx_scsi_rsp)(ic, pdu); 1617 } 1618 1619 idm_pdu_complete(pdu, IDM_STATUS_SUCCESS); 1620 } 1621 1622 /* 1623 * The idm_so_rx_dataout() function is used by the iSCSI target to read 1624 * data from the Data-Out PDU sent by the iSCSI initiator. 1625 * 1626 * This function gets the Initiator Task Tag from the PDU BHS and looks up the 1627 * task to get the buffers associated with the PDU. A PDU might span buffers. 1628 * The data is then read into the respective buffer. 1629 */ 1630 static void 1631 idm_so_rx_dataout(idm_conn_t *ic, idm_pdu_t *pdu) 1632 { 1633 1634 iscsi_data_hdr_t *bhs; 1635 idm_task_t *idt; 1636 idm_buf_t *idb; 1637 size_t offset; 1638 1639 ASSERT(ic != NULL); 1640 ASSERT(pdu != NULL); 1641 1642 bhs = (iscsi_data_hdr_t *)pdu->isp_hdr; 1643 offset = ntohl(bhs->offset); 1644 ASSERT(bhs->opcode == ISCSI_OP_SCSI_DATA); 1645 1646 /* 1647 * Look up the task corresponding to the initiator task tag 1648 * to get the buffers affiliated with the task. 1649 */ 1650 idt = idm_task_find(ic, bhs->itt, bhs->ttt); 1651 if (idt == NULL) { 1652 IDM_CONN_LOG(CE_WARN, 1653 "idm_so_rx_dataout: failed to find task"); 1654 idm_pdu_rx_protocol_error(ic, pdu); 1655 return; 1656 } 1657 1658 idb = pdu->isp_sorx_buf; 1659 if (idb == NULL) { 1660 IDM_CONN_LOG(CE_WARN, 1661 "idm_so_rx_dataout: failed to find buffer"); 1662 idm_task_rele(idt); 1663 idm_pdu_rx_protocol_error(ic, pdu); 1664 return; 1665 } 1666 1667 /* Keep track of data transferred - check data offsets */ 1668 if (offset != idb->idb_exp_offset) { 1669 IDM_CONN_LOG(CE_NOTE, "idm_so_rx_dataout: offset out of seq: " 1670 "%ld, %d", offset, idb->idb_exp_offset); 1671 idm_task_rele(idt); 1672 idm_pdu_rx_protocol_error(ic, pdu); 1673 return; 1674 } 1675 /* Expected next relative offset */ 1676 idb->idb_exp_offset += ntoh24(bhs->dlength); 1677 idt->idt_rx_bytes += n2h24(bhs->dlength); 1678 1679 /* 1680 * Call the buffer callback when the transfer is complete 1681 * 1682 * The connection state machine should only abort tasks after 1683 * shutting down the connection so we are assured that there 1684 * won't be a simultaneous attempt to abort this task at the 1685 * same time as we are processing this PDU (due to a connection 1686 * state change). 1687 */ 1688 if (bhs->flags & ISCSI_FLAG_FINAL) { 1689 /* 1690 * We only want to call idm_buf_rx_from_ini_done once 1691 * per transfer. It's possible that this task has 1692 * already been aborted in which case 1693 * idm_so_free_task_rsrc will call idm_buf_rx_from_ini_done 1694 * for each buffer with idb_in_transport==B_TRUE. To 1695 * close this window and ensure that this doesn't happen, 1696 * we'll clear idb->idb_in_transport now while holding 1697 * the task mutex. This is only really an issue for 1698 * SCSI task abort -- if tasks were being aborted because 1699 * of a connection state change the state machine would 1700 * have already stopped the receive thread. 1701 */ 1702 mutex_enter(&idt->idt_mutex); 1703 1704 /* 1705 * Release the task hold here (obtained in idm_task_find) 1706 * because the task may complete synchronously during 1707 * idm_buf_rx_from_ini_done. Since we still have an active 1708 * buffer we know there is at least one additional hold on idt. 1709 */ 1710 idm_task_rele(idt); 1711 1712 /* 1713 * idm_buf_rx_from_ini_done releases idt->idt_mutex 1714 */ 1715 DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic, 1716 uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset, 1717 uint64_t, 0, uint32_t, 0, uint32_t, 0, 1718 uint32_t, idb->idb_xfer_len, 1719 int, XFER_BUF_RX_FROM_INI); 1720 idm_buf_rx_from_ini_done(idt, idb, IDM_STATUS_SUCCESS); 1721 idm_pdu_complete(pdu, IDM_STATUS_SUCCESS); 1722 return; 1723 } 1724 1725 idm_task_rele(idt); 1726 idm_pdu_complete(pdu, IDM_STATUS_SUCCESS); 1727 } 1728 1729 /* 1730 * The idm_so_rx_rtt() function is used by the iSCSI initiator to handle 1731 * the R2T PDU sent by the iSCSI target indicating that it is ready to 1732 * accept data. This gets the Initiator Task Tag (itt) from the PDU BHS 1733 * and looks up the task in the task tree using the itt to get the output 1734 * buffers associated the task. The R2T PDU contains the offset of the 1735 * requested data and the data length. This function then constructs a 1736 * sequence of iSCSI PDUs and outputs the requested data. Each Data-Out 1737 * PDU is associated with the R2T by the Target Transfer Tag (ttt). 1738 */ 1739 1740 static void 1741 idm_so_rx_rtt(idm_conn_t *ic, idm_pdu_t *pdu) 1742 { 1743 idm_task_t *idt; 1744 idm_buf_t *idb; 1745 iscsi_rtt_hdr_t *rtt_hdr; 1746 uint32_t data_offset; 1747 uint32_t data_length; 1748 1749 ASSERT(ic != NULL); 1750 ASSERT(pdu != NULL); 1751 1752 rtt_hdr = (iscsi_rtt_hdr_t *)pdu->isp_hdr; 1753 data_offset = ntohl(rtt_hdr->data_offset); 1754 data_length = ntohl(rtt_hdr->data_length); 1755 idt = idm_task_find(ic, rtt_hdr->itt, rtt_hdr->ttt); 1756 1757 if (idt == NULL) { 1758 IDM_CONN_LOG(CE_WARN, "idm_so_rx_rtt: could not find task"); 1759 idm_pdu_rx_protocol_error(ic, pdu); 1760 return; 1761 } 1762 1763 /* Find the buffer bound to the task by the iSCSI initiator */ 1764 mutex_enter(&idt->idt_mutex); 1765 idb = idm_buf_find(&idt->idt_outbufv, data_offset); 1766 if (idb == NULL) { 1767 mutex_exit(&idt->idt_mutex); 1768 idm_task_rele(idt); 1769 IDM_CONN_LOG(CE_WARN, "idm_so_rx_rtt: could not find buffer"); 1770 idm_pdu_rx_protocol_error(ic, pdu); 1771 return; 1772 } 1773 1774 /* return buffer contains this data */ 1775 if (data_offset + data_length > idb->idb_buflen) { 1776 /* Overflow */ 1777 mutex_exit(&idt->idt_mutex); 1778 idm_task_rele(idt); 1779 IDM_CONN_LOG(CE_WARN, "idm_so_rx_rtt: read from outside " 1780 "buffer"); 1781 idm_pdu_rx_protocol_error(ic, pdu); 1782 return; 1783 } 1784 1785 idt->idt_r2t_ttt = rtt_hdr->ttt; 1786 idt->idt_exp_datasn = 0; 1787 1788 idm_so_send_rtt_data(ic, idt, idb, data_offset, 1789 ntohl(rtt_hdr->data_length)); 1790 /* 1791 * the idt_mutex is released in idm_so_send_rtt_data 1792 */ 1793 1794 idm_pdu_complete(pdu, IDM_STATUS_SUCCESS); 1795 idm_task_rele(idt); 1796 1797 } 1798 1799 idm_status_t 1800 idm_sorecvdata(idm_conn_t *ic, idm_pdu_t *pdu) 1801 { 1802 uint8_t pad[ISCSI_PAD_WORD_LEN]; 1803 int pad_len; 1804 uint32_t data_digest_crc; 1805 uint32_t crc_calculated; 1806 int total_len; 1807 idm_so_conn_t *so_conn; 1808 1809 so_conn = ic->ic_transport_private; 1810 1811 pad_len = ((ISCSI_PAD_WORD_LEN - 1812 (pdu->isp_datalen & (ISCSI_PAD_WORD_LEN - 1))) & 1813 (ISCSI_PAD_WORD_LEN - 1)); 1814 1815 ASSERT(pdu->isp_iovlen < (PDU_MAX_IOVLEN - 2)); /* pad + data digest */ 1816 1817 total_len = pdu->isp_datalen; 1818 1819 if (pad_len) { 1820 pdu->isp_iov[pdu->isp_iovlen].iov_base = (char *)&pad; 1821 pdu->isp_iov[pdu->isp_iovlen].iov_len = pad_len; 1822 total_len += pad_len; 1823 pdu->isp_iovlen++; 1824 } 1825 1826 /* setup data digest */ 1827 if ((ic->ic_conn_flags & IDM_CONN_DATA_DIGEST) != 0) { 1828 pdu->isp_iov[pdu->isp_iovlen].iov_base = 1829 (char *)&data_digest_crc; 1830 pdu->isp_iov[pdu->isp_iovlen].iov_len = 1831 sizeof (data_digest_crc); 1832 total_len += sizeof (data_digest_crc); 1833 pdu->isp_iovlen++; 1834 } 1835 1836 pdu->isp_data = (uint8_t *)(uintptr_t)pdu->isp_iov[0].iov_base; 1837 1838 if (idm_iov_sorecv(so_conn->ic_so, &pdu->isp_iov[0], 1839 pdu->isp_iovlen, total_len) != 0) { 1840 return (IDM_STATUS_IO); 1841 } 1842 1843 if ((ic->ic_conn_flags & IDM_CONN_DATA_DIGEST) != 0) { 1844 crc_calculated = idm_crc32c(pdu->isp_data, 1845 pdu->isp_datalen); 1846 if (pad_len) { 1847 crc_calculated = idm_crc32c_continued((char *)&pad, 1848 pad_len, crc_calculated); 1849 } 1850 if (crc_calculated != data_digest_crc) { 1851 IDM_CONN_LOG(CE_WARN, 1852 "idm_sorecvdata: " 1853 "CRC error: actual 0x%x, calc 0x%x", 1854 data_digest_crc, crc_calculated); 1855 1856 /* Invalid Data Digest */ 1857 return (IDM_STATUS_DATA_DIGEST); 1858 } 1859 } 1860 1861 return (IDM_STATUS_SUCCESS); 1862 } 1863 1864 /* 1865 * idm_sorecv_scsidata() is used to receive scsi data from the socket. The 1866 * Data-type PDU header must be read into the idm_pdu_t structure prior to 1867 * calling this function. 1868 */ 1869 idm_status_t 1870 idm_sorecv_scsidata(idm_conn_t *ic, idm_pdu_t *pdu) 1871 { 1872 iscsi_data_hdr_t *bhs; 1873 idm_task_t *task; 1874 uint32_t offset; 1875 uint8_t opcode; 1876 uint32_t dlength; 1877 list_t *buflst; 1878 uint32_t xfer_bytes; 1879 idm_status_t status; 1880 1881 ASSERT(ic != NULL); 1882 ASSERT(pdu != NULL); 1883 1884 bhs = (iscsi_data_hdr_t *)pdu->isp_hdr; 1885 1886 offset = ntohl(bhs->offset); 1887 opcode = bhs->opcode; 1888 dlength = n2h24(bhs->dlength); 1889 1890 ASSERT((opcode == ISCSI_OP_SCSI_DATA_RSP) || 1891 (opcode == ISCSI_OP_SCSI_DATA)); 1892 1893 /* 1894 * Successful lookup implicitly gets a "hold" on the task. This 1895 * hold must be released before leaving this function. At one 1896 * point we were caching this task context and retaining the hold 1897 * but it turned out to be very difficult to release the hold properly. 1898 * The task can be aborted and the connection shutdown between this 1899 * call and the subsequent expected call to idm_so_rx_datain/ 1900 * idm_so_rx_dataout (in which case those functions are not called). 1901 * Releasing the hold in the PDU callback doesn't work well either 1902 * because the whole task may be completed by then at which point 1903 * it is too late to release the hold -- for better or worse this 1904 * code doesn't wait on the refcnts during normal operation. 1905 * idm_task_find() is very fast and it is not a huge burden if we 1906 * have to do it twice. 1907 */ 1908 task = idm_task_find(ic, bhs->itt, bhs->ttt); 1909 if (task == NULL) { 1910 IDM_CONN_LOG(CE_WARN, 1911 "idm_sorecv_scsidata: could not find task"); 1912 return (IDM_STATUS_FAIL); 1913 } 1914 1915 mutex_enter(&task->idt_mutex); 1916 buflst = (opcode == ISCSI_OP_SCSI_DATA_RSP) ? 1917 &task->idt_inbufv : &task->idt_outbufv; 1918 pdu->isp_sorx_buf = idm_buf_find(buflst, offset); 1919 mutex_exit(&task->idt_mutex); 1920 1921 if (pdu->isp_sorx_buf == NULL) { 1922 idm_task_rele(task); 1923 IDM_CONN_LOG(CE_WARN, "idm_sorecv_scsidata: could not find " 1924 "buffer for offset %x opcode=%x", 1925 offset, opcode); 1926 return (IDM_STATUS_FAIL); 1927 } 1928 1929 xfer_bytes = idm_fill_iov(pdu, pdu->isp_sorx_buf, offset, dlength); 1930 ASSERT(xfer_bytes != 0); 1931 if (xfer_bytes != dlength) { 1932 idm_task_rele(task); 1933 /* 1934 * Buffer overflow, connection error. The PDU data is still 1935 * sitting in the socket so we can't use the connection 1936 * again until that data is drained. 1937 */ 1938 return (IDM_STATUS_FAIL); 1939 } 1940 1941 status = idm_sorecvdata(ic, pdu); 1942 1943 idm_task_rele(task); 1944 1945 return (status); 1946 } 1947 1948 static uint32_t 1949 idm_fill_iov(idm_pdu_t *pdu, idm_buf_t *idb, uint32_t ro, uint32_t dlength) 1950 { 1951 uint32_t buf_ro = ro - idb->idb_bufoffset; 1952 uint32_t xfer_len = min(dlength, idb->idb_buflen - buf_ro); 1953 1954 ASSERT(ro >= idb->idb_bufoffset); 1955 1956 pdu->isp_iov[pdu->isp_iovlen].iov_base = 1957 (caddr_t)idb->idb_buf + buf_ro; 1958 pdu->isp_iov[pdu->isp_iovlen].iov_len = xfer_len; 1959 pdu->isp_iovlen++; 1960 1961 return (xfer_len); 1962 } 1963 1964 int 1965 idm_sorecv_nonscsidata(idm_conn_t *ic, idm_pdu_t *pdu) 1966 { 1967 pdu->isp_data = kmem_alloc(pdu->isp_datalen, KM_SLEEP); 1968 ASSERT(pdu->isp_data != NULL); 1969 1970 pdu->isp_databuflen = pdu->isp_datalen; 1971 pdu->isp_iov[0].iov_base = (caddr_t)pdu->isp_data; 1972 pdu->isp_iov[0].iov_len = pdu->isp_datalen; 1973 pdu->isp_iovlen = 1; 1974 /* 1975 * Since we are associating a new data buffer with this received 1976 * PDU we need to set a specific callback to free the data 1977 * after the PDU is processed. 1978 */ 1979 pdu->isp_flags |= IDM_PDU_ADDL_DATA; 1980 pdu->isp_callback = idm_sorx_addl_pdu_cb; 1981 1982 return (idm_sorecvdata(ic, pdu)); 1983 } 1984 1985 void 1986 idm_sorx_thread(void *arg) 1987 { 1988 boolean_t conn_failure = B_FALSE; 1989 idm_conn_t *ic = (idm_conn_t *)arg; 1990 idm_so_conn_t *so_conn; 1991 idm_pdu_t *pdu; 1992 idm_status_t rc; 1993 1994 idm_conn_hold(ic); 1995 1996 mutex_enter(&ic->ic_mutex); 1997 1998 so_conn = ic->ic_transport_private; 1999 so_conn->ic_rx_thread_running = B_TRUE; 2000 so_conn->ic_rx_thread_did = so_conn->ic_rx_thread->t_did; 2001 cv_signal(&ic->ic_cv); 2002 2003 while (so_conn->ic_rx_thread_running) { 2004 mutex_exit(&ic->ic_mutex); 2005 2006 /* 2007 * Get PDU with default header size (large enough for 2008 * BHS plus any anticipated AHS). PDU from 2009 * the cache will have all values set correctly 2010 * for sockets RX including callback. 2011 */ 2012 pdu = kmem_cache_alloc(idm.idm_sorx_pdu_cache, KM_SLEEP); 2013 pdu->isp_ic = ic; 2014 pdu->isp_flags = 0; 2015 pdu->isp_transport_hdrlen = 0; 2016 2017 if ((rc = idm_sorecvhdr(ic, pdu)) != 0) { 2018 /* 2019 * Call idm_pdu_complete so that we call the callback 2020 * and ensure any memory allocated in idm_sorecvhdr 2021 * gets freed up. 2022 */ 2023 idm_pdu_complete(pdu, IDM_STATUS_FAIL); 2024 2025 /* 2026 * If ic_rx_thread_running is still set then 2027 * this is some kind of connection problem 2028 * on the socket. In this case we want to 2029 * generate an event. Otherwise some other 2030 * thread closed the socket due to another 2031 * issue in which case we don't need to 2032 * generate an event. 2033 */ 2034 mutex_enter(&ic->ic_mutex); 2035 if (so_conn->ic_rx_thread_running) { 2036 conn_failure = B_TRUE; 2037 so_conn->ic_rx_thread_running = B_FALSE; 2038 } 2039 2040 continue; 2041 } 2042 2043 /* 2044 * Header has been read and validated. Now we need 2045 * to read the PDU data payload (if present). SCSI data 2046 * need to be transferred from the socket directly into 2047 * the associated transfer buffer for the SCSI task. 2048 */ 2049 if (pdu->isp_datalen != 0) { 2050 if ((IDM_PDU_OPCODE(pdu) == ISCSI_OP_SCSI_DATA) || 2051 (IDM_PDU_OPCODE(pdu) == ISCSI_OP_SCSI_DATA_RSP)) { 2052 rc = idm_sorecv_scsidata(ic, pdu); 2053 /* 2054 * All SCSI errors are fatal to the 2055 * connection right now since we have no 2056 * place to put the data. What we need 2057 * is some kind of sink to dispose of unwanted 2058 * SCSI data. For example an invalid task tag 2059 * should not kill the connection (although 2060 * we may want to drop the connection). 2061 */ 2062 } else { 2063 /* 2064 * Not data PDUs so allocate a buffer for the 2065 * data segment and read the remaining data. 2066 */ 2067 rc = idm_sorecv_nonscsidata(ic, pdu); 2068 } 2069 if (rc != 0) { 2070 /* 2071 * Call idm_pdu_complete so that we call the 2072 * callback and ensure any memory allocated 2073 * in idm_sorecvhdr gets freed up. 2074 */ 2075 idm_pdu_complete(pdu, IDM_STATUS_FAIL); 2076 2077 /* 2078 * If ic_rx_thread_running is still set then 2079 * this is some kind of connection problem 2080 * on the socket. In this case we want to 2081 * generate an event. Otherwise some other 2082 * thread closed the socket due to another 2083 * issue in which case we don't need to 2084 * generate an event. 2085 */ 2086 mutex_enter(&ic->ic_mutex); 2087 if (so_conn->ic_rx_thread_running) { 2088 conn_failure = B_TRUE; 2089 so_conn->ic_rx_thread_running = B_FALSE; 2090 } 2091 continue; 2092 } 2093 } 2094 2095 /* 2096 * Process RX PDU 2097 */ 2098 idm_pdu_rx(ic, pdu); 2099 2100 mutex_enter(&ic->ic_mutex); 2101 } 2102 2103 mutex_exit(&ic->ic_mutex); 2104 2105 /* 2106 * If we dropped out of the RX processing loop because of 2107 * a socket problem or other connection failure (including 2108 * digest errors) then we need to generate a state machine 2109 * event to shut the connection down. 2110 * If the state machine is already in, for example, INIT_ERROR, this 2111 * event will get dropped, and the TX thread will never be notified 2112 * to shut down. To be safe, we'll just notify it here. 2113 */ 2114 if (conn_failure) { 2115 if (so_conn->ic_tx_thread_running) { 2116 so_conn->ic_tx_thread_running = B_FALSE; 2117 mutex_enter(&so_conn->ic_tx_mutex); 2118 cv_signal(&so_conn->ic_tx_cv); 2119 mutex_exit(&so_conn->ic_tx_mutex); 2120 } 2121 2122 idm_conn_event(ic, CE_TRANSPORT_FAIL, rc); 2123 } 2124 2125 idm_conn_rele(ic); 2126 2127 thread_exit(); 2128 } 2129 2130 /* 2131 * idm_so_tx 2132 * 2133 * This is the implementation of idm_transport_ops_t's it_tx_pdu entry 2134 * point. By definition, it is supposed to be fast. So, simply queue 2135 * the entry and return. The real work is done by idm_i_so_tx() via 2136 * idm_sotx_thread(). 2137 */ 2138 2139 static void 2140 idm_so_tx(idm_conn_t *ic, idm_pdu_t *pdu) 2141 { 2142 idm_so_conn_t *so_conn = ic->ic_transport_private; 2143 2144 ASSERT(pdu->isp_ic == ic); 2145 mutex_enter(&so_conn->ic_tx_mutex); 2146 2147 if (!so_conn->ic_tx_thread_running) { 2148 mutex_exit(&so_conn->ic_tx_mutex); 2149 idm_pdu_complete(pdu, IDM_STATUS_ABORTED); 2150 return; 2151 } 2152 2153 list_insert_tail(&so_conn->ic_tx_list, (void *)pdu); 2154 cv_signal(&so_conn->ic_tx_cv); 2155 mutex_exit(&so_conn->ic_tx_mutex); 2156 } 2157 2158 static idm_status_t 2159 idm_i_so_tx(idm_pdu_t *pdu) 2160 { 2161 idm_conn_t *ic = pdu->isp_ic; 2162 idm_status_t status = IDM_STATUS_SUCCESS; 2163 uint8_t pad[ISCSI_PAD_WORD_LEN]; 2164 int pad_len; 2165 uint32_t hdr_digest_crc; 2166 uint32_t data_digest_crc = 0; 2167 int total_len = 0; 2168 int iovlen = 0; 2169 struct iovec iov[6]; 2170 idm_so_conn_t *so_conn; 2171 2172 so_conn = ic->ic_transport_private; 2173 2174 /* Setup BHS */ 2175 iov[iovlen].iov_base = (caddr_t)pdu->isp_hdr; 2176 iov[iovlen].iov_len = pdu->isp_hdrlen; 2177 total_len += iov[iovlen].iov_len; 2178 iovlen++; 2179 2180 /* Setup header digest */ 2181 if (((pdu->isp_flags & IDM_PDU_LOGIN_TX) == 0) && 2182 (ic->ic_conn_flags & IDM_CONN_HEADER_DIGEST)) { 2183 hdr_digest_crc = idm_crc32c(pdu->isp_hdr, pdu->isp_hdrlen); 2184 2185 iov[iovlen].iov_base = (caddr_t)&hdr_digest_crc; 2186 iov[iovlen].iov_len = sizeof (hdr_digest_crc); 2187 total_len += iov[iovlen].iov_len; 2188 iovlen++; 2189 } 2190 2191 /* Setup the data */ 2192 if (pdu->isp_datalen) { 2193 idm_task_t *idt; 2194 idm_buf_t *idb; 2195 iscsi_data_hdr_t *ihp; 2196 ihp = (iscsi_data_hdr_t *)pdu->isp_hdr; 2197 /* Write of immediate data */ 2198 if (ic->ic_ffp && 2199 (ihp->opcode == ISCSI_OP_SCSI_CMD || 2200 ihp->opcode == ISCSI_OP_SCSI_DATA)) { 2201 idt = idm_task_find(ic, ihp->itt, ihp->ttt); 2202 if (idt) { 2203 mutex_enter(&idt->idt_mutex); 2204 idb = idm_buf_find(&idt->idt_outbufv, 0); 2205 mutex_exit(&idt->idt_mutex); 2206 /* 2207 * If the initiator call to idm_buf_alloc 2208 * failed then we can get to this point 2209 * without a bound buffer. The associated 2210 * connection failure will clean things up 2211 * later. It would be nice to come up with 2212 * a cleaner way to handle this. In 2213 * particular it seems absurd to look up 2214 * the task and the buffer just to update 2215 * this counter. 2216 */ 2217 if (idb) 2218 idb->idb_xfer_len += pdu->isp_datalen; 2219 idm_task_rele(idt); 2220 } 2221 } 2222 2223 iov[iovlen].iov_base = (caddr_t)pdu->isp_data; 2224 iov[iovlen].iov_len = pdu->isp_datalen; 2225 total_len += iov[iovlen].iov_len; 2226 iovlen++; 2227 } 2228 2229 /* Setup the data pad if necessary */ 2230 pad_len = ((ISCSI_PAD_WORD_LEN - 2231 (pdu->isp_datalen & (ISCSI_PAD_WORD_LEN - 1))) & 2232 (ISCSI_PAD_WORD_LEN - 1)); 2233 2234 if (pad_len) { 2235 bzero(pad, sizeof (pad)); 2236 iov[iovlen].iov_base = (void *)&pad; 2237 iov[iovlen].iov_len = pad_len; 2238 total_len += iov[iovlen].iov_len; 2239 iovlen++; 2240 } 2241 2242 /* 2243 * Setup the data digest if enabled. Data-digest is not sent 2244 * for login-phase PDUs. 2245 */ 2246 if ((ic->ic_conn_flags & IDM_CONN_DATA_DIGEST) && 2247 ((pdu->isp_flags & IDM_PDU_LOGIN_TX) == 0) && 2248 (pdu->isp_datalen || pad_len)) { 2249 /* 2250 * RFC3720/10.2.3: A zero-length Data Segment also 2251 * implies a zero-length data digest. 2252 */ 2253 if (pdu->isp_datalen) { 2254 data_digest_crc = idm_crc32c(pdu->isp_data, 2255 pdu->isp_datalen); 2256 } 2257 if (pad_len) { 2258 data_digest_crc = idm_crc32c_continued(&pad, 2259 pad_len, data_digest_crc); 2260 } 2261 2262 iov[iovlen].iov_base = (caddr_t)&data_digest_crc; 2263 iov[iovlen].iov_len = sizeof (data_digest_crc); 2264 total_len += iov[iovlen].iov_len; 2265 iovlen++; 2266 } 2267 2268 /* Transmit the PDU */ 2269 if (idm_iov_sosend(so_conn->ic_so, &iov[0], iovlen, 2270 total_len) != 0) { 2271 /* Set error status */ 2272 IDM_CONN_LOG(CE_WARN, 2273 "idm_so_tx: failed to transmit the PDU, so: %p ic: %p " 2274 "data: %p", (void *) so_conn->ic_so, (void *) ic, 2275 (void *) pdu->isp_data); 2276 status = IDM_STATUS_IO; 2277 } 2278 2279 /* 2280 * Success does not mean that the PDU actually reached the 2281 * remote node since it could get dropped along the way. 2282 */ 2283 idm_pdu_complete(pdu, status); 2284 2285 return (status); 2286 } 2287 2288 /* 2289 * The idm_so_buf_tx_to_ini() is used by the target iSCSI layer to transmit the 2290 * Data-In PDUs using sockets. Based on the negotiated MaxRecvDataSegmentLength, 2291 * the buffer is segmented into a sequence of Data-In PDUs, ordered by DataSN. 2292 * A target can invoke this function multiple times for a single read command 2293 * (identified by the same ITT) to split the input into several sequences. 2294 * 2295 * DataSN starts with 0 for the first data PDU of an input command and advances 2296 * by 1 for each subsequent data PDU. Each sequence will have its own F bit, 2297 * which is set to 1 for the last data PDU of a sequence. 2298 * If the initiator supports phase collapse, the status bit must be set along 2299 * with the F bit to indicate that the status is shipped together with the last 2300 * Data-In PDU. 2301 * 2302 * The data PDUs within a sequence will be sent in order with the buffer offset 2303 * in increasing order. i.e. initiator and target must have negotiated the 2304 * "DataPDUInOrder" to "Yes". The order between sequences is not enforced. 2305 * 2306 * Caller holds idt->idt_mutex 2307 */ 2308 static idm_status_t 2309 idm_so_buf_tx_to_ini(idm_task_t *idt, idm_buf_t *idb) 2310 { 2311 idm_so_conn_t *so_conn = idb->idb_ic->ic_transport_private; 2312 idm_pdu_t tmppdu; 2313 2314 ASSERT(mutex_owned(&idt->idt_mutex)); 2315 2316 /* 2317 * Put the idm_buf_t on the tx queue. It will be transmitted by 2318 * idm_sotx_thread. 2319 */ 2320 mutex_enter(&so_conn->ic_tx_mutex); 2321 2322 DTRACE_ISCSI_8(xfer__start, idm_conn_t *, idt->idt_ic, 2323 uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset, 2324 uint64_t, 0, uint32_t, 0, uint32_t, 0, 2325 uint32_t, idb->idb_xfer_len, int, XFER_BUF_TX_TO_INI); 2326 2327 if (!so_conn->ic_tx_thread_running) { 2328 mutex_exit(&so_conn->ic_tx_mutex); 2329 /* 2330 * Don't release idt->idt_mutex since we're supposed to hold 2331 * in when calling idm_buf_tx_to_ini_done 2332 */ 2333 DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic, 2334 uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset, 2335 uint64_t, 0, uint32_t, 0, uint32_t, 0, 2336 uint32_t, idb->idb_xfer_len, 2337 int, XFER_BUF_TX_TO_INI); 2338 idm_buf_tx_to_ini_done(idt, idb, IDM_STATUS_ABORTED); 2339 return (IDM_STATUS_FAIL); 2340 } 2341 2342 /* 2343 * Build a template for the data PDU headers we will use so that 2344 * the SN values will stay consistent with other PDU's we are 2345 * transmitting like R2T and SCSI status. 2346 */ 2347 bzero(&idb->idb_data_hdr_tmpl, sizeof (iscsi_hdr_t)); 2348 tmppdu.isp_hdr = &idb->idb_data_hdr_tmpl; 2349 (*idt->idt_ic->ic_conn_ops.icb_build_hdr)(idt, &tmppdu, 2350 ISCSI_OP_SCSI_DATA_RSP); 2351 idb->idb_tx_thread = B_TRUE; 2352 list_insert_tail(&so_conn->ic_tx_list, (void *)idb); 2353 cv_signal(&so_conn->ic_tx_cv); 2354 mutex_exit(&so_conn->ic_tx_mutex); 2355 mutex_exit(&idt->idt_mutex); 2356 2357 /* 2358 * Returning success here indicates the transfer was successfully 2359 * dispatched -- it does not mean that the transfer completed 2360 * successfully. 2361 */ 2362 return (IDM_STATUS_SUCCESS); 2363 } 2364 2365 /* 2366 * The idm_so_buf_rx_from_ini() is used by the target iSCSI layer to specify the 2367 * data blocks it is ready to receive from the initiator in response to a WRITE 2368 * SCSI command. The target iSCSI layer passes the information about the desired 2369 * data blocks to the initiator in one R2T PDU. The receiving buffer, the buffer 2370 * offset and datalen are passed via the 'idb' argument. 2371 * 2372 * Scope for Prototype build: 2373 * R2Ts are required for any Data-Out PDU, i.e. initiator and target must have 2374 * negotiated the "InitialR2T" to "Yes". 2375 * 2376 * Caller holds idt->idt_mutex 2377 */ 2378 static idm_status_t 2379 idm_so_buf_rx_from_ini(idm_task_t *idt, idm_buf_t *idb) 2380 { 2381 idm_pdu_t *pdu; 2382 iscsi_rtt_hdr_t *rtt; 2383 2384 ASSERT(mutex_owned(&idt->idt_mutex)); 2385 2386 DTRACE_ISCSI_8(xfer__start, idm_conn_t *, idt->idt_ic, 2387 uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset, 2388 uint64_t, 0, uint32_t, 0, uint32_t, 0, 2389 uint32_t, idb->idb_xfer_len, int, XFER_BUF_RX_FROM_INI); 2390 2391 pdu = kmem_cache_alloc(idm.idm_sotx_pdu_cache, KM_SLEEP); 2392 pdu->isp_ic = idt->idt_ic; 2393 pdu->isp_flags = IDM_PDU_SET_STATSN; 2394 bzero(pdu->isp_hdr, sizeof (iscsi_rtt_hdr_t)); 2395 2396 /* iSCSI layer fills the TTT, ITT, ExpCmdSN, MaxCmdSN */ 2397 (*idt->idt_ic->ic_conn_ops.icb_build_hdr)(idt, pdu, ISCSI_OP_RTT_RSP); 2398 2399 /* set the rttsn, rtt.flags, rtt.data_offset and rtt.data_length */ 2400 rtt = (iscsi_rtt_hdr_t *)(pdu->isp_hdr); 2401 2402 rtt->opcode = ISCSI_OP_RTT_RSP; 2403 rtt->flags = ISCSI_FLAG_FINAL; 2404 rtt->data_offset = htonl(idb->idb_bufoffset); 2405 rtt->data_length = htonl(idb->idb_xfer_len); 2406 rtt->rttsn = htonl(idt->idt_exp_rttsn++); 2407 2408 /* Keep track of buffer offsets */ 2409 idb->idb_exp_offset = idb->idb_bufoffset; 2410 mutex_exit(&idt->idt_mutex); 2411 2412 /* 2413 * Transmit the PDU. 2414 */ 2415 idm_pdu_tx(pdu); 2416 2417 return (IDM_STATUS_SUCCESS); 2418 } 2419 2420 static idm_status_t 2421 idm_so_buf_alloc(idm_buf_t *idb, uint64_t buflen) 2422 { 2423 if ((buflen > IDM_SO_BUF_CACHE_LB) && (buflen <= IDM_SO_BUF_CACHE_UB)) { 2424 idb->idb_buf = kmem_cache_alloc(idm.idm_so_128k_buf_cache, 2425 KM_NOSLEEP); 2426 idb->idb_buf_private = idm.idm_so_128k_buf_cache; 2427 } else { 2428 idb->idb_buf = kmem_alloc(buflen, KM_NOSLEEP); 2429 idb->idb_buf_private = NULL; 2430 } 2431 2432 if (idb->idb_buf == NULL) { 2433 IDM_CONN_LOG(CE_NOTE, 2434 "idm_so_buf_alloc: failed buffer allocation"); 2435 return (IDM_STATUS_FAIL); 2436 } 2437 2438 return (IDM_STATUS_SUCCESS); 2439 } 2440 2441 /* ARGSUSED */ 2442 static idm_status_t 2443 idm_so_buf_setup(idm_buf_t *idb) 2444 { 2445 /* Ensure bufalloc'd flag is unset */ 2446 idb->idb_bufalloc = B_FALSE; 2447 2448 return (IDM_STATUS_SUCCESS); 2449 } 2450 2451 /* ARGSUSED */ 2452 static void 2453 idm_so_buf_teardown(idm_buf_t *idb) 2454 { 2455 /* nothing to do here */ 2456 } 2457 2458 static void 2459 idm_so_buf_free(idm_buf_t *idb) 2460 { 2461 if (idb->idb_buf_private == NULL) { 2462 kmem_free(idb->idb_buf, idb->idb_buflen); 2463 } else { 2464 kmem_cache_free(idb->idb_buf_private, idb->idb_buf); 2465 } 2466 } 2467 2468 static void 2469 idm_so_send_rtt_data(idm_conn_t *ic, idm_task_t *idt, idm_buf_t *idb, 2470 uint32_t offset, uint32_t length) 2471 { 2472 idm_so_conn_t *so_conn = ic->ic_transport_private; 2473 idm_pdu_t tmppdu; 2474 idm_buf_t *rtt_buf; 2475 2476 ASSERT(mutex_owned(&idt->idt_mutex)); 2477 2478 /* 2479 * Allocate a buffer to represent the RTT transfer. We could further 2480 * optimize this by allocating the buffers internally from an rtt 2481 * specific buffer cache since this is socket-specific code but for 2482 * now we will keep it simple. 2483 */ 2484 rtt_buf = idm_buf_alloc(ic, (uint8_t *)idb->idb_buf + offset, length); 2485 if (rtt_buf == NULL) { 2486 /* 2487 * If we're in FFP then the failure was likely a resource 2488 * allocation issue and we should close the connection by 2489 * sending a CE_TRANSPORT_FAIL event. 2490 * 2491 * If we're not in FFP then idm_buf_alloc will always 2492 * fail and the state is transitioning to "complete" anyway 2493 * so we won't bother to send an event. 2494 */ 2495 mutex_enter(&ic->ic_state_mutex); 2496 if (ic->ic_ffp) 2497 idm_conn_event_locked(ic, CE_TRANSPORT_FAIL, 2498 NULL, CT_NONE); 2499 mutex_exit(&ic->ic_state_mutex); 2500 mutex_exit(&idt->idt_mutex); 2501 return; 2502 } 2503 2504 rtt_buf->idb_buf_cb = NULL; 2505 rtt_buf->idb_cb_arg = NULL; 2506 rtt_buf->idb_bufoffset = offset; 2507 rtt_buf->idb_xfer_len = length; 2508 rtt_buf->idb_ic = idt->idt_ic; 2509 rtt_buf->idb_task_binding = idt; 2510 2511 /* 2512 * The new buffer (if any) represents an additional 2513 * reference on the task 2514 */ 2515 idm_task_hold(idt); 2516 mutex_exit(&idt->idt_mutex); 2517 2518 /* 2519 * Put the idm_buf_t on the tx queue. It will be transmitted by 2520 * idm_sotx_thread. 2521 */ 2522 mutex_enter(&so_conn->ic_tx_mutex); 2523 2524 if (!so_conn->ic_tx_thread_running) { 2525 idm_buf_free(rtt_buf); 2526 mutex_exit(&so_conn->ic_tx_mutex); 2527 idm_task_rele(idt); 2528 return; 2529 } 2530 2531 /* 2532 * Build a template for the data PDU headers we will use so that 2533 * the SN values will stay consistent with other PDU's we are 2534 * transmitting like R2T and SCSI status. 2535 */ 2536 bzero(&rtt_buf->idb_data_hdr_tmpl, sizeof (iscsi_hdr_t)); 2537 tmppdu.isp_hdr = &rtt_buf->idb_data_hdr_tmpl; 2538 (*idt->idt_ic->ic_conn_ops.icb_build_hdr)(idt, &tmppdu, 2539 ISCSI_OP_SCSI_DATA); 2540 rtt_buf->idb_tx_thread = B_TRUE; 2541 rtt_buf->idb_in_transport = B_TRUE; 2542 list_insert_tail(&so_conn->ic_tx_list, (void *)rtt_buf); 2543 cv_signal(&so_conn->ic_tx_cv); 2544 mutex_exit(&so_conn->ic_tx_mutex); 2545 } 2546 2547 static void 2548 idm_so_send_rtt_data_done(idm_task_t *idt, idm_buf_t *idb) 2549 { 2550 /* 2551 * Don't worry about status -- we assume any error handling 2552 * is performed by the caller (idm_sotx_thread). 2553 */ 2554 idb->idb_in_transport = B_FALSE; 2555 idm_task_rele(idt); 2556 idm_buf_free(idb); 2557 } 2558 2559 static idm_status_t 2560 idm_so_send_buf_region(idm_task_t *idt, idm_buf_t *idb, 2561 uint32_t buf_region_offset, uint32_t buf_region_length) 2562 { 2563 idm_conn_t *ic; 2564 uint32_t max_dataseglen; 2565 size_t remainder, chunk; 2566 uint32_t data_offset = buf_region_offset; 2567 iscsi_data_hdr_t *bhs; 2568 idm_pdu_t *pdu; 2569 idm_status_t tx_status; 2570 2571 ASSERT(mutex_owned(&idt->idt_mutex)); 2572 2573 ic = idt->idt_ic; 2574 2575 max_dataseglen = ic->ic_conn_params.max_xmit_dataseglen; 2576 remainder = buf_region_length; 2577 2578 while (remainder) { 2579 if (idt->idt_state != TASK_ACTIVE) { 2580 ASSERT((idt->idt_state != TASK_IDLE) && 2581 (idt->idt_state != TASK_COMPLETE)); 2582 return (IDM_STATUS_ABORTED); 2583 } 2584 2585 /* check to see if we need to chunk the data */ 2586 if (remainder > max_dataseglen) { 2587 chunk = max_dataseglen; 2588 } else { 2589 chunk = remainder; 2590 } 2591 2592 /* Data PDU headers will always be sizeof (iscsi_hdr_t) */ 2593 pdu = kmem_cache_alloc(idm.idm_sotx_pdu_cache, KM_SLEEP); 2594 pdu->isp_ic = ic; 2595 pdu->isp_flags = 0; /* initialize isp_flags */ 2596 2597 /* 2598 * We've already built a build a header template 2599 * to use during the transfer. Use this template so that 2600 * the SN values stay consistent with any unrelated PDU's 2601 * being transmitted. 2602 */ 2603 bcopy(&idb->idb_data_hdr_tmpl, pdu->isp_hdr, 2604 sizeof (iscsi_hdr_t)); 2605 2606 /* 2607 * Set DataSN, data offset, and flags in BHS 2608 * For the prototype build, A = 0, S = 0, U = 0 2609 */ 2610 bhs = (iscsi_data_hdr_t *)(pdu->isp_hdr); 2611 2612 bhs->datasn = htonl(idt->idt_exp_datasn++); 2613 2614 hton24(bhs->dlength, chunk); 2615 bhs->offset = htonl(idb->idb_bufoffset + data_offset); 2616 2617 /* setup data */ 2618 pdu->isp_data = (uint8_t *)idb->idb_buf + data_offset; 2619 pdu->isp_datalen = (uint_t)chunk; 2620 2621 if (chunk == remainder) { 2622 bhs->flags = ISCSI_FLAG_FINAL; /* F bit set to 1 */ 2623 /* Piggyback the status with the last data PDU */ 2624 if (idt->idt_flags & IDM_TASK_PHASECOLLAPSE_REQ) { 2625 pdu->isp_flags |= IDM_PDU_SET_STATSN | 2626 IDM_PDU_ADVANCE_STATSN; 2627 (*idt->idt_ic->ic_conn_ops.icb_update_statsn) 2628 (idt, pdu); 2629 idt->idt_flags |= 2630 IDM_TASK_PHASECOLLAPSE_SUCCESS; 2631 2632 } 2633 } 2634 2635 remainder -= chunk; 2636 data_offset += chunk; 2637 2638 /* Instrument the data-send DTrace probe. */ 2639 if (IDM_PDU_OPCODE(pdu) == ISCSI_OP_SCSI_DATA_RSP) { 2640 DTRACE_ISCSI_2(data__send, 2641 idm_conn_t *, idt->idt_ic, 2642 iscsi_data_rsp_hdr_t *, 2643 (iscsi_data_rsp_hdr_t *)pdu->isp_hdr); 2644 } 2645 2646 /* 2647 * Now that we're done working with idt_exp_datasn, 2648 * idt->idt_state and idb->idb_bufoffset we can release 2649 * the task lock -- don't want to hold it across the 2650 * call to idm_i_so_tx since we could block. 2651 */ 2652 mutex_exit(&idt->idt_mutex); 2653 2654 /* 2655 * Transmit the PDU. Call the internal routine directly 2656 * as there is already implicit ordering. 2657 */ 2658 if ((tx_status = idm_i_so_tx(pdu)) != IDM_STATUS_SUCCESS) { 2659 mutex_enter(&idt->idt_mutex); 2660 return (tx_status); 2661 } 2662 2663 mutex_enter(&idt->idt_mutex); 2664 idt->idt_tx_bytes += chunk; 2665 } 2666 2667 return (IDM_STATUS_SUCCESS); 2668 } 2669 2670 /* 2671 * TX PDU cache 2672 */ 2673 /* ARGSUSED */ 2674 int 2675 idm_sotx_pdu_constructor(void *hdl, void *arg, int flags) 2676 { 2677 idm_pdu_t *pdu = hdl; 2678 2679 bzero(pdu, sizeof (idm_pdu_t)); 2680 pdu->isp_hdr = (iscsi_hdr_t *)(pdu + 1); /* Ptr arithmetic */ 2681 pdu->isp_hdrlen = sizeof (iscsi_hdr_t); 2682 pdu->isp_callback = idm_sotx_cache_pdu_cb; 2683 pdu->isp_magic = IDM_PDU_MAGIC; 2684 bzero(pdu->isp_hdr, sizeof (iscsi_hdr_t)); 2685 2686 return (0); 2687 } 2688 2689 /* ARGSUSED */ 2690 void 2691 idm_sotx_cache_pdu_cb(idm_pdu_t *pdu, idm_status_t status) 2692 { 2693 /* reset values between use */ 2694 pdu->isp_datalen = 0; 2695 2696 kmem_cache_free(idm.idm_sotx_pdu_cache, pdu); 2697 } 2698 2699 /* 2700 * RX PDU cache 2701 */ 2702 /* ARGSUSED */ 2703 int 2704 idm_sorx_pdu_constructor(void *hdl, void *arg, int flags) 2705 { 2706 idm_pdu_t *pdu = hdl; 2707 2708 bzero(pdu, sizeof (idm_pdu_t)); 2709 pdu->isp_magic = IDM_PDU_MAGIC; 2710 pdu->isp_hdr = (iscsi_hdr_t *)(pdu + 1); /* Ptr arithmetic */ 2711 pdu->isp_callback = idm_sorx_cache_pdu_cb; 2712 2713 return (0); 2714 } 2715 2716 /* ARGSUSED */ 2717 static void 2718 idm_sorx_cache_pdu_cb(idm_pdu_t *pdu, idm_status_t status) 2719 { 2720 pdu->isp_iovlen = 0; 2721 pdu->isp_sorx_buf = 0; 2722 kmem_cache_free(idm.idm_sorx_pdu_cache, pdu); 2723 } 2724 2725 static void 2726 idm_sorx_addl_pdu_cb(idm_pdu_t *pdu, idm_status_t status) 2727 { 2728 /* 2729 * We had to modify our cached RX PDU with a longer header buffer 2730 * and/or a longer data buffer. Release the new buffers and fix 2731 * the fields back to what we would expect for a cached RX PDU. 2732 */ 2733 if (pdu->isp_flags & IDM_PDU_ADDL_HDR) { 2734 kmem_free(pdu->isp_hdr, pdu->isp_hdrlen); 2735 } 2736 if (pdu->isp_flags & IDM_PDU_ADDL_DATA) { 2737 kmem_free(pdu->isp_data, pdu->isp_datalen); 2738 } 2739 pdu->isp_hdr = (iscsi_hdr_t *)(pdu + 1); 2740 pdu->isp_hdrlen = sizeof (iscsi_hdr_t); 2741 pdu->isp_data = NULL; 2742 pdu->isp_datalen = 0; 2743 pdu->isp_sorx_buf = 0; 2744 pdu->isp_callback = idm_sorx_cache_pdu_cb; 2745 idm_sorx_cache_pdu_cb(pdu, status); 2746 } 2747 2748 /* 2749 * This thread is only active when I/O is queued for transmit 2750 * because the socket is busy. 2751 */ 2752 void 2753 idm_sotx_thread(void *arg) 2754 { 2755 idm_conn_t *ic = arg; 2756 idm_tx_obj_t *object, *next; 2757 idm_so_conn_t *so_conn; 2758 idm_status_t status = IDM_STATUS_SUCCESS; 2759 2760 idm_conn_hold(ic); 2761 2762 mutex_enter(&ic->ic_mutex); 2763 so_conn = ic->ic_transport_private; 2764 so_conn->ic_tx_thread_running = B_TRUE; 2765 so_conn->ic_tx_thread_did = so_conn->ic_tx_thread->t_did; 2766 cv_signal(&ic->ic_cv); 2767 mutex_exit(&ic->ic_mutex); 2768 2769 mutex_enter(&so_conn->ic_tx_mutex); 2770 2771 while (so_conn->ic_tx_thread_running) { 2772 while (list_is_empty(&so_conn->ic_tx_list)) { 2773 DTRACE_PROBE1(soconn__tx__sleep, idm_conn_t *, ic); 2774 cv_wait(&so_conn->ic_tx_cv, &so_conn->ic_tx_mutex); 2775 DTRACE_PROBE1(soconn__tx__wakeup, idm_conn_t *, ic); 2776 2777 if (!so_conn->ic_tx_thread_running) { 2778 goto tx_bail; 2779 } 2780 } 2781 2782 object = (idm_tx_obj_t *)list_head(&so_conn->ic_tx_list); 2783 list_remove(&so_conn->ic_tx_list, object); 2784 mutex_exit(&so_conn->ic_tx_mutex); 2785 2786 switch (object->idm_tx_obj_magic) { 2787 case IDM_PDU_MAGIC: { 2788 idm_pdu_t *pdu = (idm_pdu_t *)object; 2789 DTRACE_PROBE2(soconn__tx__pdu, idm_conn_t *, ic, 2790 idm_pdu_t *, (idm_pdu_t *)object); 2791 2792 if (pdu->isp_flags & IDM_PDU_SET_STATSN) { 2793 /* No IDM task */ 2794 (ic->ic_conn_ops.icb_update_statsn)(NULL, pdu); 2795 } 2796 status = idm_i_so_tx((idm_pdu_t *)object); 2797 break; 2798 } 2799 case IDM_BUF_MAGIC: { 2800 idm_buf_t *idb = (idm_buf_t *)object; 2801 idm_task_t *idt = idb->idb_task_binding; 2802 2803 DTRACE_PROBE2(soconn__tx__buf, idm_conn_t *, ic, 2804 idm_buf_t *, idb); 2805 2806 mutex_enter(&idt->idt_mutex); 2807 status = idm_so_send_buf_region(idt, 2808 idb, 0, idb->idb_xfer_len); 2809 2810 /* 2811 * TX thread owns the buffer so we expect it to 2812 * be "in transport" 2813 */ 2814 ASSERT(idb->idb_in_transport); 2815 if (IDM_CONN_ISTGT(ic)) { 2816 /* 2817 * idm_buf_tx_to_ini_done releases 2818 * idt->idt_mutex 2819 */ 2820 DTRACE_ISCSI_8(xfer__done, 2821 idm_conn_t *, idt->idt_ic, 2822 uintptr_t, idb->idb_buf, 2823 uint32_t, idb->idb_bufoffset, 2824 uint64_t, 0, uint32_t, 0, uint32_t, 0, 2825 uint32_t, idb->idb_xfer_len, 2826 int, XFER_BUF_TX_TO_INI); 2827 idm_buf_tx_to_ini_done(idt, idb, status); 2828 } else { 2829 idm_so_send_rtt_data_done(idt, idb); 2830 mutex_exit(&idt->idt_mutex); 2831 } 2832 break; 2833 } 2834 2835 default: 2836 IDM_CONN_LOG(CE_WARN, "idm_sotx_thread: Unknown magic " 2837 "(0x%08x)", object->idm_tx_obj_magic); 2838 status = IDM_STATUS_FAIL; 2839 } 2840 2841 mutex_enter(&so_conn->ic_tx_mutex); 2842 2843 if (status != IDM_STATUS_SUCCESS) { 2844 so_conn->ic_tx_thread_running = B_FALSE; 2845 idm_conn_event(ic, CE_TRANSPORT_FAIL, status); 2846 } 2847 } 2848 2849 /* 2850 * Before we leave, we need to abort every item remaining in the 2851 * TX list. 2852 */ 2853 2854 tx_bail: 2855 object = (idm_tx_obj_t *)list_head(&so_conn->ic_tx_list); 2856 2857 while (object != NULL) { 2858 next = list_next(&so_conn->ic_tx_list, object); 2859 2860 list_remove(&so_conn->ic_tx_list, object); 2861 switch (object->idm_tx_obj_magic) { 2862 case IDM_PDU_MAGIC: 2863 idm_pdu_complete((idm_pdu_t *)object, 2864 IDM_STATUS_ABORTED); 2865 break; 2866 2867 case IDM_BUF_MAGIC: { 2868 idm_buf_t *idb = (idm_buf_t *)object; 2869 idm_task_t *idt = idb->idb_task_binding; 2870 mutex_exit(&so_conn->ic_tx_mutex); 2871 mutex_enter(&idt->idt_mutex); 2872 /* 2873 * TX thread owns the buffer so we expect it to 2874 * be "in transport" 2875 */ 2876 ASSERT(idb->idb_in_transport); 2877 if (IDM_CONN_ISTGT(ic)) { 2878 /* 2879 * idm_buf_tx_to_ini_done releases 2880 * idt->idt_mutex 2881 */ 2882 DTRACE_ISCSI_8(xfer__done, 2883 idm_conn_t *, idt->idt_ic, 2884 uintptr_t, idb->idb_buf, 2885 uint32_t, idb->idb_bufoffset, 2886 uint64_t, 0, uint32_t, 0, uint32_t, 0, 2887 uint32_t, idb->idb_xfer_len, 2888 int, XFER_BUF_TX_TO_INI); 2889 idm_buf_tx_to_ini_done(idt, idb, 2890 IDM_STATUS_ABORTED); 2891 } else { 2892 idm_so_send_rtt_data_done(idt, idb); 2893 mutex_exit(&idt->idt_mutex); 2894 } 2895 mutex_enter(&so_conn->ic_tx_mutex); 2896 break; 2897 } 2898 default: 2899 IDM_CONN_LOG(CE_WARN, 2900 "idm_sotx_thread: Unexpected magic " 2901 "(0x%08x)", object->idm_tx_obj_magic); 2902 } 2903 2904 object = next; 2905 } 2906 2907 mutex_exit(&so_conn->ic_tx_mutex); 2908 idm_conn_rele(ic); 2909 thread_exit(); 2910 /*NOTREACHED*/ 2911 } 2912 2913 static void 2914 idm_so_socket_set_nonblock(struct sonode *node) 2915 { 2916 (void) VOP_SETFL(node->so_vnode, node->so_flag, 2917 (node->so_state | FNONBLOCK), CRED(), NULL); 2918 } 2919 2920 static void 2921 idm_so_socket_set_block(struct sonode *node) 2922 { 2923 (void) VOP_SETFL(node->so_vnode, node->so_flag, 2924 (node->so_state & (~FNONBLOCK)), CRED(), NULL); 2925 } 2926 2927 2928 /* 2929 * Called by kernel sockets when the connection has been accepted or 2930 * rejected. In early volo, a "disconnect" callback was sent instead of 2931 * "connectfailed", so we check for both. 2932 */ 2933 /* ARGSUSED */ 2934 void 2935 idm_so_timed_socket_connect_cb(ksocket_t ks, 2936 ksocket_callback_event_t ev, void *arg, uintptr_t info) 2937 { 2938 idm_so_timed_socket_t *itp = arg; 2939 ASSERT(itp != NULL); 2940 ASSERT(ev == KSOCKET_EV_CONNECTED || 2941 ev == KSOCKET_EV_CONNECTFAILED || 2942 ev == KSOCKET_EV_DISCONNECTED); 2943 2944 mutex_enter(&idm_so_timed_socket_mutex); 2945 itp->it_callback_called = B_TRUE; 2946 if (ev == KSOCKET_EV_CONNECTED) { 2947 itp->it_socket_error_code = 0; 2948 } else { 2949 /* Make sure the error code is non-zero on error */ 2950 if (info == 0) 2951 info = ECONNRESET; 2952 itp->it_socket_error_code = (int)info; 2953 } 2954 cv_signal(&itp->it_cv); 2955 mutex_exit(&idm_so_timed_socket_mutex); 2956 } 2957 2958 int 2959 idm_so_timed_socket_connect(ksocket_t ks, 2960 struct sockaddr_storage *sa, int sa_sz, int login_max_usec) 2961 { 2962 clock_t conn_login_max; 2963 int rc, nonblocking, rval; 2964 idm_so_timed_socket_t it; 2965 ksocket_callbacks_t ks_cb; 2966 2967 conn_login_max = ddi_get_lbolt() + drv_usectohz(login_max_usec); 2968 2969 /* 2970 * Set to non-block socket mode, with callback on connect 2971 * Early volo used "disconnected" instead of "connectfailed", 2972 * so set callback to look for both. 2973 */ 2974 bzero(&it, sizeof (it)); 2975 ks_cb.ksock_cb_flags = KSOCKET_CB_CONNECTED | 2976 KSOCKET_CB_CONNECTFAILED | KSOCKET_CB_DISCONNECTED; 2977 ks_cb.ksock_cb_connected = idm_so_timed_socket_connect_cb; 2978 ks_cb.ksock_cb_connectfailed = idm_so_timed_socket_connect_cb; 2979 ks_cb.ksock_cb_disconnected = idm_so_timed_socket_connect_cb; 2980 cv_init(&it.it_cv, NULL, CV_DEFAULT, NULL); 2981 rc = ksocket_setcallbacks(ks, &ks_cb, &it, CRED()); 2982 if (rc != 0) 2983 return (rc); 2984 2985 /* Set to non-blocking mode */ 2986 nonblocking = 1; 2987 rc = ksocket_ioctl(ks, FIONBIO, (intptr_t)&nonblocking, &rval, 2988 CRED()); 2989 if (rc != 0) 2990 goto cleanup; 2991 2992 bzero(&it, sizeof (it)); 2993 for (;;) { 2994 /* 2995 * Warning -- in a loopback scenario, the call to 2996 * the connect_cb can occur inside the call to 2997 * ksocket_connect. Do not hold the mutex around the 2998 * call to ksocket_connect. 2999 */ 3000 rc = ksocket_connect(ks, (struct sockaddr *)sa, sa_sz, CRED()); 3001 if (rc == 0 || rc == EISCONN) { 3002 /* socket success or already success */ 3003 rc = 0; 3004 break; 3005 } 3006 if ((rc != EINPROGRESS) && (rc != EALREADY)) { 3007 break; 3008 } 3009 3010 /* TCP connect still in progress. See if out of time. */ 3011 if (ddi_get_lbolt() > conn_login_max) { 3012 /* 3013 * Connection retry timeout, 3014 * failed connect to target. 3015 */ 3016 rc = ETIMEDOUT; 3017 break; 3018 } 3019 3020 /* 3021 * TCP connect still in progress. Sleep until callback. 3022 * Do NOT go to sleep if the callback already occurred! 3023 */ 3024 mutex_enter(&idm_so_timed_socket_mutex); 3025 if (!it.it_callback_called) { 3026 (void) cv_timedwait(&it.it_cv, 3027 &idm_so_timed_socket_mutex, conn_login_max); 3028 } 3029 if (it.it_callback_called) { 3030 rc = it.it_socket_error_code; 3031 mutex_exit(&idm_so_timed_socket_mutex); 3032 break; 3033 } 3034 /* If timer expires, go call ksocket_connect one last time. */ 3035 mutex_exit(&idm_so_timed_socket_mutex); 3036 } 3037 3038 /* resume blocking mode */ 3039 nonblocking = 0; 3040 (void) ksocket_ioctl(ks, FIONBIO, (intptr_t)&nonblocking, &rval, 3041 CRED()); 3042 cleanup: 3043 (void) ksocket_setcallbacks(ks, NULL, NULL, CRED()); 3044 cv_destroy(&it.it_cv); 3045 if (rc != 0) { 3046 idm_soshutdown(ks); 3047 } 3048 return (rc); 3049 } 3050 3051 3052 void 3053 idm_addr_to_sa(idm_addr_t *dportal, struct sockaddr_storage *sa) 3054 { 3055 int dp_addr_size; 3056 struct sockaddr_in *sin; 3057 struct sockaddr_in6 *sin6; 3058 3059 /* Build sockaddr_storage for this portal (idm_addr_t) */ 3060 bzero(sa, sizeof (*sa)); 3061 dp_addr_size = dportal->a_addr.i_insize; 3062 if (dp_addr_size == sizeof (struct in_addr)) { 3063 /* IPv4 */ 3064 sa->ss_family = AF_INET; 3065 sin = (struct sockaddr_in *)sa; 3066 sin->sin_port = htons(dportal->a_port); 3067 bcopy(&dportal->a_addr.i_addr.in4, 3068 &sin->sin_addr, sizeof (struct in_addr)); 3069 } else if (dp_addr_size == sizeof (struct in6_addr)) { 3070 /* IPv6 */ 3071 sa->ss_family = AF_INET6; 3072 sin6 = (struct sockaddr_in6 *)sa; 3073 sin6->sin6_port = htons(dportal->a_port); 3074 bcopy(&dportal->a_addr.i_addr.in6, 3075 &sin6->sin6_addr, sizeof (struct in6_addr)); 3076 } else { 3077 ASSERT(0); 3078 } 3079 } 3080 3081 3082 /* 3083 * return a human-readable form of a sockaddr_storage, in the form 3084 * [ip-address]:port. This is used in calls to logging functions. 3085 * If several calls to idm_sa_ntop are made within the same invocation 3086 * of a logging function, then each one needs its own buf. 3087 */ 3088 const char * 3089 idm_sa_ntop(const struct sockaddr_storage *sa, 3090 char *buf, size_t size) 3091 { 3092 static const char bogus_ip[] = "[0].-1"; 3093 char tmp[INET6_ADDRSTRLEN]; 3094 3095 switch (sa->ss_family) { 3096 case AF_INET6: 3097 { 3098 const struct sockaddr_in6 *in6 = 3099 (const struct sockaddr_in6 *) sa; 3100 3101 if (inet_ntop(in6->sin6_family, 3102 &in6->sin6_addr, tmp, sizeof (tmp)) == NULL) { 3103 goto err; 3104 } 3105 if (strlen(tmp) + sizeof ("[].65535") > size) { 3106 goto err; 3107 } 3108 /* struct sockaddr_storage gets port info from v4 loc */ 3109 (void) snprintf(buf, size, "[%s].%u", tmp, 3110 ntohs(in6->sin6_port)); 3111 return (buf); 3112 } 3113 case AF_INET: 3114 { 3115 const struct sockaddr_in *in = 3116 (const struct sockaddr_in *) sa; 3117 3118 if (inet_ntop(in->sin_family, &in->sin_addr, 3119 tmp, sizeof (tmp)) == NULL) { 3120 goto err; 3121 } 3122 if (strlen(tmp) + sizeof ("[].65535") > size) { 3123 goto err; 3124 } 3125 (void) snprintf(buf, size, "[%s].%u", tmp, 3126 ntohs(in->sin_port)); 3127 return (buf); 3128 } 3129 default: 3130 break; 3131 } 3132 err: 3133 (void) snprintf(buf, size, "%s", bogus_ip); 3134 return (buf); 3135 }