
new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_nlm.c 1

**
 23855 Sun Aug 25 23:50:44 2013
new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_nlm.c
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 1991, 1998, 2001 by Sun Microsystems, Inc.
24 * All rights reserved.
25 */

27 /*
28 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
29 * Copyright (c) 2012 by Delphix. All rights reserved.
30 */

32 #include <sys/types.h>
33 #include <setjmp.h>
34 #include <string.h>

36 #ifdef notdef
37 #include <rpc/xdr.h>
38 #include <rpc/auth.h>
39 #include <rpc/rpc_msg.h>
40 #endif /* notdef */
41 #include <rpcsvc/nlm_prot.h>
42 #include "snoop.h"

44 extern char *dlc_header;
45 extern jmp_buf xdr_err;

47 extern void check_retransmit();
48 static void interpret_nlm_1();
49 static void interpret_nlm_3();
50 static void interpret_nlm_4();
51 static char *nameof_access();
52 static char *nameof_mode();
53 static char *nameof_stat();
54 static char *nameof_stat4();
55 static void show_cancargs();
56 static void show_cancargs4();
57 static void show_lock();
58 static void show_lock4();

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_nlm.c 2

59 static void show_lockargs();
60 static void show_lockargs4();
61 static void show_netobj();
62 static void show_nlm_access();
63 static void show_nlm_mode();
64 static void show_notify();
65 static void show_res();
66 static void show_res4();
67 static void show_share();
68 static void show_shareargs();
69 static void show_shareres();
70 static void show_shareres4();
71 static enum nlm_stats show_stat();
72 static enum nlm4_stats show_stat4();
73 static void show_testargs();
74 static void show_testargs4();
75 static void show_testres();
76 static void show_testres4();
77 static void show_unlockargs();
78 static void show_unlockargs4();
79 static void skip_netobj();
80 static char *sum_lock();
81 static char *sum_lock4();
82 static char *sum_netobj();
83 static char *sum_notify();
84 static char *sum_share();

86 void
87 interpret_nlm(flags, type, xid, vers, proc, data, len)
88 int flags, type, xid, vers, proc;
89 char *data;
90 int len;
91 {
92 switch (vers) {
93 case 1: interpret_nlm_1(flags, type, xid, vers, proc, data, len);
94 break;
95 case 3: interpret_nlm_3(flags, type, xid, vers, proc, data, len);
96 break;
97 case 4: interpret_nlm_4(flags, type, xid, vers, proc, data, len);
98 break;
99 }
100 }

______unchanged_portion_omitted_

796 /* Maximum procedure number for version 4. */
797 #define MAXPROC_4 23

799 /* ARGSUSED */
800 static void
801 interpret_nlm_4(flags, type, xid, vers, proc, data, len)
802 int flags, type, xid, vers, proc;
803 char *data;
804 int len;
805 {
806 char *line;
807 char *pl;
808 ulong_t i;

810 if (proc < 0 || proc > MAXPROC_4)
811 return;

813 if (flags & F_SUM) {
814 if (setjmp(xdr_err)) {
815 return;
816 }

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_nlm.c 3

818 line = get_sum_line();

820 if (type == CALL) {
821 (void) sprintf(line,
822 "NLM C %s",
823 procnames_short_4[proc]);
824 line += strlen(line);
825 switch (proc) {
826 case NLM4_TEST:
827 case NLM4_GRANTED:
828 case NLM4_TEST_MSG:
829 case NLM4_GRANTED_MSG:
821 case NLMPROC4_TEST:
822 case NLMPROC4_GRANTED:
823 case NLMPROC4_TEST_MSG:
824 case NLMPROC4_GRANTED_MSG:
830 /* testargs */
831 (void) strcat(line, sum_netobj("OH"));
832 (void) getxdr_bool(); /* Excl */
833 (void) strcat(line, sum_lock4());
834 break;
835 case NLM4_LOCK:
836 case NLM4_LOCK_MSG:
830 case NLMPROC4_LOCK:
831 case NLMPROC4_LOCK_MSG:
837 /* lockargs */
838 (void) strcat(line, sum_netobj("OH"));
839 (void) getxdr_bool(); /* Block */
840 (void) getxdr_bool(); /* Excl */
841 (void) strcat(line, sum_lock4());
842 /* ignore reclaim, state fields */
843 break;
844 case NLM4_CANCEL:
845 case NLM4_CANCEL_MSG:
839 case NLMPROC4_CANCEL:
840 case NLMPROC4_CANCEL_MSG:
846 /* cancargs */
847 (void) strcat(line, sum_netobj("OH"));
848 (void) getxdr_bool(); /* Block */
849 (void) getxdr_bool(); /* Excl */
850 (void) strcat(line, sum_lock4());
851 break;
852 case NLM4_UNLOCK:
853 case NLM4_UNLOCK_MSG:
847 case NLMPROC4_UNLOCK:
848 case NLMPROC4_UNLOCK_MSG:
854 /* unlockargs */
855 (void) strcat(line, sum_netobj("OH"));
856 (void) strcat(line, sum_lock4());
857 break;
858 case NLM4_TEST_RES:
853 case NLMPROC4_TEST_RES:
859 /* testres */
860 (void) strcat(line, sum_netobj("OH"));
861 (void) strcat(line, " ");
862 (void) strcat(line,
863 nameof_stat4(getxdr_u_long()));
864 break;
865 case NLM4_LOCK_RES:
866 case NLM4_CANCEL_RES:
867 case NLM4_UNLOCK_RES:
868 case NLM4_GRANTED_RES:
860 case NLMPROC4_LOCK_RES:
861 case NLMPROC4_CANCEL_RES:
862 case NLMPROC4_UNLOCK_RES:
863 case NLMPROC4_GRANTED_RES:

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_nlm.c 4

869 /* res */
870 (void) strcat(line, sum_netobj("OH"));
871 (void) strcat(line, " ");
872 (void) strcat(line,
873 nameof_stat4(getxdr_u_long()));
874 break;
875 case NLM4_SHARE:
876 case NLM4_UNSHARE:
870 case NLMPROC4_SHARE:
871 case NLMPROC4_UNSHARE:
877 (void) strcat(line, sum_netobj("OH"));
878 (void) strcat(line, sum_share());
879 break;
880 case NLM4_NM_LOCK:
875 case NLMPROC4_NM_LOCK:
881 /* lockargs */
882 skip_netobj(); /* Cookie */
883 (void) getxdr_bool(); /* Block */
884 (void) getxdr_bool(); /* Excl */
885 (void) strcat(line, sum_lock4());
886 /* skip reclaim & state fields */
887 break;
888 case NLM4_FREE_ALL:
883 case NLMPROC4_FREE_ALL:
889 (void) sprintf(line,
890 " %s", sum_notify());
891 break;
892 }
893 check_retransmit(line, (ulong_t)xid);
894 } else {
895 (void) sprintf(line, "NLM R %s",
896 procnames_short_4[proc]);
897 line += strlen(line);
898 switch (proc) {
899 case NLM4_TEST:
894 case NLMPROC4_TEST:
900 /* testres */
901 (void) strcat(line, sum_netobj("OH"));
902 (void) strcat(line, " ");
903 (void) strcat(line,
904 nameof_stat4(getxdr_u_long()));
905 break;
906 case NLM4_LOCK:
907 case NLM4_CANCEL:
908 case NLM4_UNLOCK:
909 case NLM4_GRANTED:
910 case NLM4_NM_LOCK:
901 case NLMPROC4_LOCK:
902 case NLMPROC4_CANCEL:
903 case NLMPROC4_UNLOCK:
904 case NLMPROC4_GRANTED:
905 case NLMPROC4_NM_LOCK:
911 /* res */
912 (void) strcat(line, sum_netobj("OH"));
913 (void) strcat(line, " ");
914 (void) strcat(line,
915 nameof_stat4(getxdr_u_long()));
916 break;
917 case NLM4_SHARE:
918 case NLM4_UNSHARE:
912 case NLMPROC4_SHARE:
913 case NLMPROC4_UNSHARE:
919 /* shareres */
920 pl = sum_netobj("OH");
921 i = getxdr_u_long();
922 sprintf(line, "%s %s %ld",

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_nlm.c 5

923 pl, nameof_stat4(i), getxdr_long());
924 break;
925 case NLM4_FREE_ALL:
920 case NLMPROC4_FREE_ALL:
926 break;
927 }
928 }
929 }

931 if (flags & F_DTAIL) {
932 show_header("NLM: ", "Network Lock Manager", len);
933 show_space();
934 if (setjmp(xdr_err)) {
935 return;
936 }
937 (void) sprintf(get_line(0, 0),
938 "Proc = %d (%s)",
939 proc, procnames_long_4[proc]);
940 if (type == CALL) {
941 switch (proc) {
942 case NLM4_TEST:
943 case NLM4_GRANTED:
944 case NLM4_TEST_MSG:
945 case NLM4_GRANTED_MSG:
937 case NLMPROC4_TEST:
938 case NLMPROC4_GRANTED:
939 case NLMPROC4_TEST_MSG:
940 case NLMPROC4_GRANTED_MSG:
946 show_testargs4();
947 break;
948 case NLM4_LOCK:
949 case NLM4_LOCK_MSG:
950 case NLM4_NM_LOCK:
943 case NLMPROC4_LOCK:
944 case NLMPROC4_LOCK_MSG:
945 case NLMPROC4_NM_LOCK:
951 show_lockargs4();
952 break;
953 case NLM4_CANCEL:
954 case NLM4_CANCEL_MSG:
948 case NLMPROC4_CANCEL:
949 case NLMPROC4_CANCEL_MSG:
955 show_cancargs4();
956 break;
957 case NLM4_UNLOCK:
958 case NLM4_UNLOCK_MSG:
952 case NLMPROC4_UNLOCK:
953 case NLMPROC4_UNLOCK_MSG:
959 show_unlockargs4();
960 break;
961 case NLM4_TEST_RES:
956 case NLMPROC4_TEST_RES:
962 show_testres4();
963 break;
964 case NLM4_LOCK_RES:
965 case NLM4_CANCEL_RES:
966 case NLM4_UNLOCK_RES:
967 case NLM4_GRANTED_RES:
959 case NLMPROC4_LOCK_RES:
960 case NLMPROC4_CANCEL_RES:
961 case NLMPROC4_UNLOCK_RES:
962 case NLMPROC4_GRANTED_RES:
968 show_res4();
969 break;
970 case NLM4_SHARE:
971 case NLM4_UNSHARE:

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_nlm.c 6

965 case NLMPROC4_SHARE:
966 case NLMPROC4_UNSHARE:
972 show_shareargs();
973 break;
974 case NLM4_FREE_ALL:
969 case NLMPROC4_FREE_ALL:
975 show_notify();
976 break;
977 }
978 } else {
979 switch (proc) {
980 case NLM4_TEST:
975 case NLMPROC4_TEST:
981 show_testres4();
982 break;
983 case NLM4_LOCK:
984 case NLM4_CANCEL:
985 case NLM4_UNLOCK:
986 case NLM4_GRANTED:
978 case NLMPROC4_LOCK:
979 case NLMPROC4_CANCEL:
980 case NLMPROC4_UNLOCK:
981 case NLMPROC4_GRANTED:
987 case NLM_NM_LOCK:
988 show_res4();
989 break;
990 case NLM4_TEST_MSG:
991 case NLM4_LOCK_MSG:
992 case NLM4_CANCEL_MSG:
993 case NLM4_UNLOCK_MSG:
994 case NLM4_GRANTED_MSG:
995 case NLM4_TEST_RES:
996 case NLM4_LOCK_RES:
997 case NLM4_CANCEL_RES:
998 case NLM4_UNLOCK_RES:
999 case NLM4_GRANTED_RES:
985 case NLMPROC4_TEST_MSG:
986 case NLMPROC4_LOCK_MSG:
987 case NLMPROC4_CANCEL_MSG:
988 case NLMPROC4_UNLOCK_MSG:
989 case NLMPROC4_GRANTED_MSG:
990 case NLMPROC4_TEST_RES:
991 case NLMPROC4_LOCK_RES:
992 case NLMPROC4_CANCEL_RES:
993 case NLMPROC4_UNLOCK_RES:
994 case NLMPROC4_GRANTED_RES:
1000 break;
1001 case NLM_SHARE:
1002 case NLM_UNSHARE:
1003 show_shareres4();
1004 break;
1005 case NLM_FREE_ALL:
1006 break;
1007 }
1008 }
1009 show_trailer();
1010 }
1011 }
______unchanged_portion_omitted_

1085 static char *
1086 nameof_stat4(s)
1087 ulong_t s;
1088 {
1089 switch ((enum nlm4_stats) s) {
1090 case nlm4_granted: return ("granted");

new/usr/src/cmd/cmd-inet/usr.sbin/snoop/snoop_nlm.c 7

1091 case nlm4_denied: return ("denied");
1092 case nlm4_denied_nolocks:return ("denied (no locks)");
1093 case nlm4_blocked: return ("blocked");
1094 case nlm4_denied_grace_period: return ("denied (grace period)");
1095 case nlm4_deadlck: return ("deadlock");
1096 case nlm4_rofs: return ("read-only fs");
1097 case nlm4_stale_fh: return ("stale fh");
1098 case nlm4_fbig: return ("file too big");
1099 case nlm4_failed: return ("failed");
1085 case NLM4_GRANTED: return ("granted");
1086 case NLM4_DENIED: return ("denied");
1087 case NLM4_DENIED_NOLOCKS:return ("denied (no locks)");
1088 case NLM4_BLOCKED: return ("blocked");
1089 case NLM4_DENIED_GRACE_PERIOD: return ("denied (grace period)");
1090 case NLM4_DEADLCK: return ("deadlock");
1091 case NLM4_ROFS: return ("read-only fs");
1092 case NLM4_STALE_FH: return ("stale fh");
1093 case NLM4_FBIG: return ("file too big");
1094 case NLM4_FAILED: return ("failed");
1100 default: return ("?");
1101 }
1102 }
______unchanged_portion_omitted_

new/usr/src/cmd/fs.d/nfs/Makefile 1

**
 1801 Sun Aug 25 23:50:46 2013
new/usr/src/cmd/fs.d/nfs/Makefile
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 #
23 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # cmd/fs.d/nfs/Makefile
27 #
28 # cmd/fs.d/nfs is the directory of all nfs specific commands
29 # whose executable reside in $(INSDIR1) and $(INSDIR2).
30 #

32 include $(SRC)/Makefile.master

34 SUBDIR1= exportfs nfsd rquotad \
35 statd nfsstat mountd dfshares \
36 nfsfind nfs4cbd share

38 # These do "make catalog"
39 SUBDIR2= clear_locks lockd umount showmount \
37 SUBDIR2= clear_locks umount showmount \
40 mount dfmounts nfslog nfsmapid \
41 nfsref rp_basic

43 SUBDIR3= etc svc
44 SUBDIRS= $(SUBDIR1) $(SUBDIR2) $(SUBDIR3)

46 # for messaging catalog files
47 #
48 POFILES= $(SUBDIR2:%=%/%.po)
49 POFILE= nfs.po

49 LOCKD= $(CLOSED)/cmd/fs.d/nfs/lockd
50 $(CLOSED_BUILD)CLOSED_SUBDIR2= $(LOCKD)
51 $(CLOSED_BUILD)POFILES += $(LOCKD)/lockd.po
52 $(CLOSED_BUILD)SUBDIRS += $(CLOSED_SUBDIR2)

51 all:= TARGET= all
52 install:= TARGET= install

new/usr/src/cmd/fs.d/nfs/Makefile 2

53 clean:= TARGET= clean
54 clobber:= TARGET= clobber
55 lint:= TARGET= lint
56 catalog:= TARGET= catalog

58 .KEEP_STATE:

60 .PARALLEL: $(SUBDIRS)

62 all install clean clobber lint: $(SUBDIRS)

64 catalog: $(SUBDIR2)
67 catalog: $(SUBDIR2) $(CLOSED_SUBDIR2)
65 $(RM) $(POFILE)
66 cat $(POFILES) > $(POFILE)

68 $(SUBDIRS): FRC
69 @cd $@; pwd; $(MAKE) $(TARGET)

71 FRC:

new/usr/src/cmd/fs.d/nfs/lib/nfs_tbind.c 1

**
 44643 Sun Aug 25 23:50:47 2013
new/usr/src/cmd/fs.d/nfs/lib/nfs_tbind.c
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 1996, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24 /*
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 */

29 /*
30 * nfs_tbind.c, common part for nfsd and lockd.
31 */

33 #include <tiuser.h>
34 #include <fcntl.h>
35 #include <netconfig.h>
36 #include <stropts.h>
37 #include <errno.h>
38 #include <syslog.h>
39 #include <rpc/rpc.h>
40 #include <sys/time.h>
41 #include <sys/resource.h>
42 #include <signal.h>
43 #include <netdir.h>
44 #include <unistd.h>
45 #include <string.h>
46 #include <netinet/tcp.h>
47 #include <malloc.h>
48 #include <stdlib.h>
49 #include "nfs_tbind.h"
50 #include <nfs/nfs.h>
51 #include <nfs/nfs_acl.h>
52 #include <nfs/nfssys.h>
53 #include <nfs/nfs4.h>
54 #include <zone.h>
55 #include <sys/socket.h>
56 #include <tsol/label.h>

new/usr/src/cmd/fs.d/nfs/lib/nfs_tbind.c 2

58 /*
59 * Determine valid semantics for most applications.
60 */
61 #define OK_TPI_TYPE(_nconf) \
62 (_nconf->nc_semantics == NC_TPI_CLTS || \
63 _nconf->nc_semantics == NC_TPI_COTS || \
64 _nconf->nc_semantics == NC_TPI_COTS_ORD)

66 #define BE32_TO_U32(a) \
67 ((((ulong_t)((uchar_t *)a)[0] & 0xFF) << (ulong_t)24) | \
68 (((ulong_t)((uchar_t *)a)[1] & 0xFF) << (ulong_t)16) | \
69 (((ulong_t)((uchar_t *)a)[2] & 0xFF) << (ulong_t)8) | \
70 ((ulong_t)((uchar_t *)a)[3] & 0xFF))

72 /*
73 * Number of elements to add to the poll array on each allocation.
74 */
75 #define POLL_ARRAY_INC_SIZE 64

77 /*
78 * Number of file descriptors by which the process soft limit may be
79 * increased on each call to nofile_increase(0).
80 */
81 #define NOFILE_INC_SIZE 64

83 /*
84 * Default TCP send and receive buffer size of NFS server.
85 */
86 #define NFSD_TCP_BUFSZ (1024*1024)

88 struct conn_ind {
89 struct conn_ind *conn_next;
90 struct conn_ind *conn_prev;
91 struct t_call *conn_call;
92 };

______unchanged_portion_omitted_

1690 #include <netinet/in.h>

1692 /*
1693 * Create an address mask appropriate for the transport.
1694 * The mask is used to obtain the host-specific part of
1695 * a network address when comparing addresses.
1696 * For an internet address the host-specific part is just
1697 * the 32 bit IP address and this part of the mask is set
1698 * to all-ones. The port number part of the mask is zeroes.
1699 */
1700 static int
1701 set_addrmask(int fd,
1702 struct netconfig *nconf,
1703 struct netbuf *mask)
1701 set_addrmask(fd, nconf, mask)
1702 struct netconfig *nconf;
1703 struct netbuf *mask;
1704 {
1705 struct t_info info;

1707 /*
1708 * Find the size of the address we need to mask.
1709 */
1710 if (t_getinfo(fd, &info) < 0) {
1711 t_error("t_getinfo");
1712 return (-1);
1713 }
1714 mask->len = mask->maxlen = info.addr;

new/usr/src/cmd/fs.d/nfs/lib/nfs_tbind.c 3

1715 if (info.addr <= 0) {
1716 /*
1717 * loopback devices have infinite addr size
1718 * (it is identified by -1 in addr field of t_info structure),
1719 * so don’t build the netmask for them. It’s a special case
1720 * that should be handled properly.
1721 */
1722 if ((info.addr == -1) &&
1723 (0 == strcmp(nconf->nc_protofmly, NC_LOOPBACK))) {
1724 memset(mask, 0, sizeof (*mask));
1725 return (0);
1726 }

1728 syslog(LOG_ERR, "set_addrmask: address size: %ld", info.addr);
1728 syslog(LOG_ERR, "set_addrmask: address size: %ld",
1729 info.addr);
1729 return (-1);
1730 }

1732 mask->buf = (char *)malloc(mask->len);
1733 if (mask->buf == NULL) {
1734 syslog(LOG_ERR, "set_addrmask: no memory");
1735 return (-1);
1736 }
1737 (void) memset(mask->buf, 0, mask->len); /* reset all mask bits */

1739 if (strcmp(nconf->nc_protofmly, NC_INET) == 0) {
1740 /*
1741 * Set the mask so that the port is ignored.
1742 */
1743 /* LINTED pointer alignment */
1744 ((struct sockaddr_in *)mask->buf)->sin_addr.s_addr =
1745 (ulong_t)~0;
1746 /* LINTED pointer alignment */
1747 ((struct sockaddr_in *)mask->buf)->sin_family =
1748 (ushort_t)~0;
1749 } else if (strcmp(nconf->nc_protofmly, NC_INET6) == 0) {
1750 /* LINTED pointer alignment */
1751 (void) memset(&((struct sockaddr_in6 *)mask->buf)->sin6_addr,
1752 (uchar_t)~0, sizeof (struct in6_addr));
1753 /* LINTED pointer alignment */
1754 ((struct sockaddr_in6 *)mask->buf)->sin6_family =
1755 (ushort_t)~0;
1756 } else {

1758 /*
1759 * Set all mask bits.
1760 */
1761 (void) memset(mask->buf, 0xFF, mask->len);
1762 }
1763 return (0);
1764 }
______unchanged_portion_omitted_

new/usr/src/cmd/fs.d/nfs/lib/smfcfg.c 1

**
 10383 Sun Aug 25 23:50:48 2013
new/usr/src/cmd/fs.d/nfs/lib/smfcfg.c
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <syslog.h>
29 #include <stdarg.h>
30 #include "smfcfg.h"

32 fs_smfhandle_t *
33 fs_smf_init(char *fmri, char *instance)
34 {
35 fs_smfhandle_t *handle = NULL;
36 char *svcname, srv[MAXPATHLEN];

38 /*
39 * svc name is of the form svc://network/fs/server:instance1
40 * FMRI portion is /network/fs/server
41 */
42 snprintf(srv, MAXPATHLEN, "%s", fmri + strlen("svc:/"));
43 svcname = strrchr(srv, ’:’);
44 if (svcname != NULL)
45 *svcname = ’\0’;
46 svcname = srv;

48 handle = calloc(1, sizeof (fs_smfhandle_t));
49 if (handle != NULL) {
50 handle->fs_handle = scf_handle_create(SCF_VERSION);
51 if (handle->fs_handle == NULL)
52 goto out;
53 if (scf_handle_bind(handle->fs_handle) != 0)
54 goto out;
55 handle->fs_service =
56 scf_service_create(handle->fs_handle);
57 handle->fs_scope =
58 scf_scope_create(handle->fs_handle);

new/usr/src/cmd/fs.d/nfs/lib/smfcfg.c 2

59 if (scf_handle_get_local_scope(handle->fs_handle,
60 handle->fs_scope) != 0)
61 goto out;
62 if (scf_scope_get_service(handle->fs_scope,
63 svcname, handle->fs_service) != SCF_SUCCESS) {
64 goto out;
65 }
66 handle->fs_pg =
67 scf_pg_create(handle->fs_handle);
68 handle->fs_instance =
69 scf_instance_create(handle->fs_handle);
70 handle->fs_property =
71 scf_property_create(handle->fs_handle);
72 handle->fs_value =
73 scf_value_create(handle->fs_handle);
74 } else {
75 fprintf(stderr,
76 gettext("Cannot access SMF repository: %s\n"), fmri);
77 }
78 return (handle);

80 out:
81 fs_smf_fini(handle);
82 fprintf(stderr, gettext("SMF Initialization problems..%s\n"), fmri);
83 return (NULL);
84 }

______unchanged_portion_omitted_

363 /* Get an integer (base 10) property */
364 int
365 nfs_smf_get_iprop(char *prop_name, int *rvp, char *instance,
366 scf_type_t sctype, char *svc_name)
367 {
368 char propbuf[32];
369 int bufsz, rc, val;

371 bufsz = sizeof (propbuf);
372 rc = fs_smf_get_prop(NFS_SMF, prop_name, propbuf,
373 instance, sctype, svc_name, &bufsz);
374 if (rc != SA_OK)
375 return (rc);
376 errno = 0;
377 val = strtol(propbuf, NULL, 10);
378 if (errno != 0)
379 return (SA_BAD_VALUE);
380 *rvp = val;
381 return (SA_OK);
382 }

384 int
385 nfs_smf_set_prop(char *prop_name, char *value, char *instance,
386 scf_type_t type, char *svc_name)
387 {
388 return (fs_smf_set_prop(NFS_SMF, prop_name, value, instance,
389 type, svc_name));
390 }

______unchanged_portion_omitted_

new/usr/src/cmd/fs.d/nfs/lib/smfcfg.h 1

**
 3044 Sun Aug 25 23:50:49 2013
new/usr/src/cmd/fs.d/nfs/lib/smfcfg.h
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**
______unchanged_portion_omitted_

65 #define DEFAULT_INSTANCE "default"

67 /*
68 * NFS Property Group names.
69 */
70 #define SMF_PG_NFSPROPS ((const char *)"com.oracle.nfs,props")
71 #define NFS_PROPS_PGNAME ((const char *)"nfs-props")
72 #define SVC_NFS_CLIENT "svc:/network/nfs/client"

74 /*
75 * AUTOFS Property Group Names.
76 */
77 #define SMF_PG_AUTOFS ((const char *)"com.oracle.autofs,props")
78 #define AUTOFS_PROPS_PGNAME ((const char *)"autofs-props")

80 #define AUTOFS_FMRI "svc:/system/filesystem/autofs"
81 #define AUTOFS_DEFAULT_FMRI "svc:/system/filesystem/autofs:default"
82 #define MAXDIGITS 32

84 /*
85 * ERRORS
86 */
87 #define SMF_OK 0
88 #define SMF_SYSTEM_ERR -1
89 #define STATE_INITIALIZING 1
90 #define SMF_NO_PERMISSION 2
91 #define SMF_NO_PGTYPE 3

93 extern int nfs_smf_get_iprop(char *, int *, char *, scf_type_t, char *);
94 extern int nfs_smf_get_prop(char *, char *, char *, scf_type_t, char *, int *);
95 extern int fs_smf_get_prop(smf_fstype_t, char *, char *, char *, scf_type_t,
96 char *, int *);
97 extern int nfs_smf_set_prop(char *, char *, char *, scf_type_t, char *);
98 extern int fs_smf_set_prop(smf_fstype_t, char *, char *,
99 char *, scf_type_t, char *);
100 extern int autofs_smf_set_prop(char *, char *, char *, scf_type_t, char *);
101 extern int autofs_smf_get_prop(char *, char *, char *, scf_type_t,
102 char *, int *);
103 extern void fs_smf_fini(fs_smfhandle_t *);
104 extern boolean_t string_to_boolean(const char *);

106 #ifdef __cplusplus
107 }

______unchanged_portion_omitted_

new/usr/src/cmd/fs.d/nfs/lockd/Makefile 1

**
 2092 Sun Aug 25 23:50:51 2013
new/usr/src/cmd/fs.d/nfs/lockd/Makefile
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
23 # Copyright (c) 2012 by Delphix. All rights reserved.
24 #

26 FSTYPE = nfs
27 TYPEPROG = lockd
28 ATTMK = $(TYPEPROG)

30 include ../../Makefile.fstype

32 LOCAL = lockd.o
33 OBJS = $(LOCAL) daemon.o nfs_tbind.o smfcfg.o thrpool.o

35 POFILE = lockd.po

37 SRCS = $(LOCAL:%.o=%.c) ../lib/daemon.c ../lib/nfs_tbind.c \
38 ../lib/smfcfg.c ../lib/thrpool.c
39 LDLIBS += -lnsl -lscf
40 CPPFLAGS += -I../lib
41 C99MODE = $(C99_ENABLE)

43 CERRWARN += -_gcc=-Wno-parentheses
44 CERRWARN += -_gcc=-Wno-switch
45 CERRWARN += -_gcc=-Wno-unused-variable
46 CERRWARN += -_gcc=-Wno-uninitialized

48 $(TYPEPROG): $(OBJS)
49 $(LINK.c) -o $@ $(OBJS) $(LDLIBS)
50 $(POST_PROCESS)

52 lockd.o: lockd.c
53 $(COMPILE.c) lockd.c

55 nfs_tbind.o: ../lib/nfs_tbind.c
56 $(COMPILE.c) ../lib/nfs_tbind.c

58 thrpool.o: ../lib/thrpool.c

new/usr/src/cmd/fs.d/nfs/lockd/Makefile 2

59 $(COMPILE.c) ../lib/thrpool.c

61 daemon.o: ../lib/daemon.c
62 $(COMPILE.c) ../lib/daemon.c

64 smfcfg.o: ../lib/smfcfg.c
65 $(COMPILE.c) ../lib/smfcfg.c

67 #
68 # message catalog
69 #
70 catalog: $(POFILE)

72 $(POFILE): $(SRCS)
73 $(RM) $@
74 $(COMPILE.cpp) $(SRCS) > $(POFILE).i
75 $(XGETTEXT) $(XGETFLAGS) $(POFILE).i
76 sed "/^domain/d" messages.po > $@
77 $(RM) $(POFILE).i messages.po

79 lint:
80 $(LINT.c) $(SRCS) $(LDLIBS)

82 clean:
83 $(RM) $(OBJS) $(DOBJ)

new/usr/src/cmd/fs.d/nfs/lockd/lockd.c 1

**
 12718 Sun Aug 25 23:50:51 2013
new/usr/src/cmd/fs.d/nfs/lockd/lockd.c
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 */

28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
29 /* All Rights Reserved */

31 /*
32 * University Copyright- Copyright (c) 1982, 1986, 1988
33 * The Regents of the University of California
34 * All Rights Reserved
35 *
36 * University Acknowledgment- Portions of this document are derived from
37 * software developed by the University of California, Berkeley, and its
38 * contributors.
39 */

41 /* LINTLIBRARY */
42 /* PROTOLIB1 */

44 /*
45 * NLM server
46 *
47 * Most of this copied from ../nfsd/nfsd.c
48 * and then s:NFS:NLM: applied, etc.
49 */

51 #include <sys/param.h>
52 #include <sys/types.h>
53 #include <sys/stat.h>
54 #include <syslog.h>
55 #include <tiuser.h>
56 #include <rpc/rpc.h>
57 #include <errno.h>
58 #include <thread.h>

new/usr/src/cmd/fs.d/nfs/lockd/lockd.c 2

59 #include <sys/time.h>
60 #include <sys/file.h>
61 #include <nfs/nfs.h>
62 #include <nfs/nfssys.h>
63 #include <stdio.h>
64 #include <stdio_ext.h>
65 #include <stdlib.h>
66 #include <signal.h>
67 #include <netconfig.h>
68 #include <netdir.h>
69 #include <string.h>
70 #include <unistd.h>
71 #include <stropts.h>
72 #include <sys/tihdr.h>
73 #include <poll.h>
74 #include <priv_utils.h>
75 #include <sys/tiuser.h>
76 #include <netinet/tcp.h>
77 #include <deflt.h>
78 #include <rpcsvc/daemon_utils.h>
79 #include <rpcsvc/nlm_prot.h>
80 #include <libintl.h>
81 #include <libscf.h>
82 #include <libshare.h>
83 #include "nfs_tbind.h"
84 #include "thrpool.h"
85 #include "smfcfg.h"

87 /* Option defaults. See nfssys.h */
88 struct lm_svc_args lmargs = {
89 .version = LM_SVC_CUR_VERS,
90 /* fd, n_fmly, n_proto, n_rdev (below) */
91 .debug = 0,
92 .timout = 5 * 60,
93 .grace = 60,
94 .retransmittimeout = 15
95 };
96 int max_servers = 20;

99 #define RET_OK 0 /* return code for no error */
100 #define RET_ERR 33 /* return code for error(s) */

102 static int nlmsvc(int fd, struct netbuf addrmask,
103 struct netconfig *nconf);
104 static int nlmsvcpool(int max_servers);
105 static void usage(void);

107 extern int _nfssys(int, void *);
108 static void sigterm_handler(void);
109 static void shutdown_lockd(void);

111 extern int daemonize_init(void);
112 extern void daemonize_fini(int fd);

114 static char *MyName;

116 /*
117 * We want to bind to these TLI providers, and in this order,
118 * because the kernel NLM needs the loopback first for its
119 * initialization. (It uses it to talk to statd.)
120 */
121 static NETSELDECL(defaultproviders)[] = {
122 "/dev/ticotsord",
123 "/dev/tcp",
124 "/dev/udp",

new/usr/src/cmd/fs.d/nfs/lockd/lockd.c 3

125 "/dev/tcp6",
126 "/dev/udp6",
127 NULL
128 };

130 /*
131 * The following are all globals used by routines in nfs_tbind.c.
132 */
133 size_t end_listen_fds; /* used by conn_close_oldest() */
134 size_t num_fds = 0; /* used by multiple routines */
135 int listen_backlog = 32; /* used by bind_to_{provider,proto}() */
136 int (*Mysvc)(int, struct netbuf, struct netconfig *) = nlmsvc;
137 /* used by cots_listen_event() */
138 int max_conns_allowed = -1; /* used by cots_listen_event() */

140 int
141 main(int ac, char *av[])
142 {
143 char *propname = NULL;
144 char *dir = "/";
145 char *provider = (char *)NULL;
146 struct protob *protobp;
147 NETSELPDECL(providerp);
148 sigset_t sgset;
149 int i, c, pid, ret, val;
150 int pipe_fd = -1;
151 struct sigaction act;

153 MyName = *av;

155 /*
156 * Initializations that require more privileges than we need to run.
157 */
158 (void) _create_daemon_lock(LOCKD, DAEMON_UID, DAEMON_GID);
159 svcsetprio();

161 if (__init_daemon_priv(PU_RESETGROUPS|PU_CLEARLIMITSET,
162 DAEMON_UID, DAEMON_GID, PRIV_SYS_NFS, NULL) == -1) {
163 (void) fprintf(stderr, "%s should be run with"
164 " sufficient privileges\n", av[0]);
165 exit(1);
166 }

168 (void) enable_extended_FILE_stdio(-1, -1);

170 /*
171 * Read in the values from SMF first before we check
172 * command line options so the options override SMF values.
173 */

175 /* How long to keep idle connections. */
176 propname = "conn_idle_timeout"; /* also -t */
177 ret = nfs_smf_get_iprop(propname, &val,
178 DEFAULT_INSTANCE, SCF_TYPE_INTEGER, LOCKD);
179 if (ret == SA_OK) {
180 if (val <= 0)
181 fprintf(stderr, gettext(
182 "Invalid %s from SMF"), propname);
183 else
184 lmargs.timout = val;
185 }

187 /* Note: debug_level can only be set by args. */

189 /* How long to wait for clients to re-establish locks. */
190 propname = "grace_period"; /* also -g */

new/usr/src/cmd/fs.d/nfs/lockd/lockd.c 4

191 ret = nfs_smf_get_iprop(propname, &val,
192 DEFAULT_INSTANCE, SCF_TYPE_INTEGER, LOCKD);
193 if (ret == SA_OK) {
194 if (val <= 0)
195 fprintf(stderr, gettext(
196 "Invalid %s from SMF"), propname);
197 else
198 lmargs.grace = val;
199 }

201 propname = "listen_backlog"; /* also -l */
202 ret = nfs_smf_get_iprop(propname, &val,
203 DEFAULT_INSTANCE, SCF_TYPE_INTEGER, LOCKD);
204 if (ret == SA_OK) {
205 if (val <= 0)
206 fprintf(stderr, gettext(
207 "Invalid %s from SMF"), propname);
208 else
209 listen_backlog = val;
210 }

212 propname = "max_connections"; /* also -c */
213 ret = nfs_smf_get_iprop(propname, &val,
214 DEFAULT_INSTANCE, SCF_TYPE_INTEGER, LOCKD);
215 if (ret == SA_OK) {
216 if (val <= 0)
217 fprintf(stderr, gettext(
218 "Invalid %s from SMF"), propname);
219 else
220 max_conns_allowed = val;
221 }

223 propname = "max_servers"; /* also argv[1] */
224 ret = nfs_smf_get_iprop(propname, &val,
225 DEFAULT_INSTANCE, SCF_TYPE_INTEGER, LOCKD);
226 if (ret == SA_OK) {
227 if (val <= 0)
228 fprintf(stderr, gettext(
229 "Invalid %s from SMF"), propname);
230 else
231 max_servers = val;
232 }

234 propname = "retrans_timeout"; /* also -r */
235 ret = nfs_smf_get_iprop(propname, &val,
236 DEFAULT_INSTANCE, SCF_TYPE_INTEGER, LOCKD);
237 if (ret == SA_OK) {
238 if (val <= 0)
239 fprintf(stderr, gettext(
240 "Invalid %s from SMF"), propname);
241 else
242 lmargs.retransmittimeout = val;
243 }

246 while ((c = getopt(ac, av, "c:d:g:l:r:t:")) != EOF)
247 switch (c) {
248 case ’c’: /* max_connections */
249 if ((val = atoi(optarg)) <= 0)
250 goto badval;
251 max_conns_allowed = val;
252 break;

254 case ’d’: /* debug */
255 lmargs.debug = atoi(optarg);
256 break;

new/usr/src/cmd/fs.d/nfs/lockd/lockd.c 5

258 case ’g’: /* grace_period */
259 if ((val = atoi(optarg)) <= 0)
260 goto badval;
261 lmargs.grace = val;
262 break;

264 case ’l’: /* listen_backlog */
265 if ((val = atoi(optarg)) <= 0)
266 goto badval;
267 listen_backlog = val;
268 break;

270 case ’r’: /* retrans_timeout */
271 if ((val = atoi(optarg)) <= 0)
272 goto badval;
273 lmargs.retransmittimeout = val;
274 break;

276 case ’t’: /* conn_idle_timeout */
277 if ((val = atoi(optarg)) <= 0)
278 goto badval;
279 lmargs.timout = val;
280 break;

282 badval:
283 fprintf(stderr, gettext(
284 "Invalid -%c option value"), c);
285 /* FALLTHROUGH */
286 default:
287 usage();
288 /* NOTREACHED */
289 }

291 /*
292 * If there is exactly one more argument, it is the number of
293 * servers.
294 */
295 if (optind < ac) {
296 val = atoi(av[optind]);
297 if (val <= 0) {
298 fprintf(stderr, gettext(
299 "Invalid max_servers argument"));
300 usage();
301 }
302 max_servers = val;
303 optind++;
304 }
305 /*
306 * If there are two or more arguments, then this is a usage error.
307 */
308 if (optind != ac)
309 usage();

311 if (lmargs.debug) {
312 printf("%s: debug= %d, conn_idle_timout= %d,"
313 " grace_period= %d, listen_backlog= %d,"
314 " max_connections= %d, max_servers= %d,"
315 " retrans_timeout= %d\n",
316 MyName, lmargs.debug, lmargs.timout,
317 lmargs.grace, listen_backlog,
318 max_conns_allowed, max_servers,
319 lmargs.retransmittimeout);
320 }

322 /*

new/usr/src/cmd/fs.d/nfs/lockd/lockd.c 6

323 * Set current dir to server root
324 */
325 if (chdir(dir) < 0) {
326 (void) fprintf(stderr, "%s: ", MyName);
327 perror(dir);
328 exit(1);
329 }

331 /* Daemonize, if not debug. */
332 if (lmargs.debug == 0)
333 pipe_fd = daemonize_init();

335 openlog(MyName, LOG_PID | LOG_NDELAY, LOG_DAEMON);

337 /*
338 * establish our lock on the lock file and write our pid to it.
339 * exit if some other process holds the lock, or if there’s any
340 * error in writing/locking the file.
341 */
342 pid = _enter_daemon_lock(LOCKD);
343 switch (pid) {
344 case 0:
345 break;
346 case -1:
347 fprintf(stderr, "error locking for %s: %s", LOCKD,
348 strerror(errno));
349 exit(2);
350 default:
351 /* daemon was already running */
352 exit(0);
353 }

355 /*
356 * Block all signals till we spawn other
357 * threads.
358 */
359 (void) sigfillset(&sgset);
360 (void) thr_sigsetmask(SIG_BLOCK, &sgset, NULL);

362 /* Unregister any previous versions. */
363 for (i = NLM_VERS; i < NLM4_VERS; i++) {
364 svc_unreg(NLM_PROG, i);
365 }

367 /*
368 * Set up kernel RPC thread pool for the NLM server.
369 */
370 if (nlmsvcpool(max_servers)) {
371 fprintf(stderr, "Can’t set up kernel NLM service: %s. Exiting",
372 strerror(errno));
373 exit(1);
374 }

376 /*
377 * Set up blocked thread to do LWP creation on behalf of the kernel.
378 */
379 if (svcwait(NLM_SVCPOOL_ID)) {
380 fprintf(stderr, "Can’t set up NLM pool creator: %s. Exiting",
381 strerror(errno));
382 exit(1);
383 }

385 /*
386 * Install atexit and sigterm handlers
387 */
388 act.sa_handler = sigterm_handler;

new/usr/src/cmd/fs.d/nfs/lockd/lockd.c 7

389 act.sa_flags = 0;

391 (void) sigaction(SIGTERM, &act, NULL);
392 (void) atexit(shutdown_lockd);

394 /*
395 * Now open up for signal delivery
396 */
397 (void) thr_sigsetmask(SIG_UNBLOCK, &sgset, NULL);

399 /*
400 * Build a protocol block list for registration.
401 */
402 protobp = (struct protob *)malloc(sizeof (struct protob));
403 protobp->serv = "NLM";
404 protobp->versmin = NLM_VERS;
405 protobp->versmax = NLM4_VERS;
406 protobp->program = NLM_PROG;
407 protobp->next = (struct protob *)NULL;

409 for (providerp = defaultproviders;
410 *providerp != NULL; providerp++) {
411 provider = *providerp;
412 do_one(provider, NULL, protobp, nlmsvc);
413 }

415 free(protobp);

417 if (num_fds == 0) {
418 fprintf(stderr, "Could not start NLM service for any protocol."
419 " Exiting");
420 exit(1);
421 }

423 end_listen_fds = num_fds;

425 /*
426 * lockd is up and running as far as we are concerned.
427 */
428 if (lmargs.debug == 0)
429 daemonize_fini(pipe_fd);

431 /*
432 * Get rid of unneeded privileges.
433 */
434 __fini_daemon_priv(PRIV_PROC_FORK, PRIV_PROC_EXEC, PRIV_PROC_SESSION,
435 PRIV_FILE_LINK_ANY, PRIV_PROC_INFO, (char *)NULL);

437 /*
438 * Poll for non-data control events on the transport descriptors.
439 */
440 poll_for_action();

442 /*
443 * If we get here, something failed in poll_for_action().
444 */
445 return (1);
446 }

448 static int
449 nlmsvcpool(int maxservers)
450 {
451 struct svcpool_args npa;

453 npa.id = NLM_SVCPOOL_ID;
454 npa.maxthreads = maxservers;

new/usr/src/cmd/fs.d/nfs/lockd/lockd.c 8

455 npa.redline = 0;
456 npa.qsize = 0;
457 npa.timeout = 0;
458 npa.stksize = 0;
459 npa.max_same_xprt = 0;
460 return (_nfssys(SVCPOOL_CREATE, &npa));
461 }

463 static int
464 ncfmly_to_lmfmly(const char *ncfmly)
465 {
466 if (0 == strcmp(ncfmly, NC_INET))
467 return (LM_INET);
468 if (0 == strcmp(ncfmly, NC_INET6))
469 return (LM_INET6);
470 if (0 == strcmp(ncfmly, NC_LOOPBACK))
471 return (LM_LOOPBACK);
472 return (-1);
473 }

475 static int
476 nctype_to_lmprot(uint_t semantics)
477 {
478 switch (semantics) {
479 case NC_TPI_CLTS:
480 return (LM_UDP);
481 case NC_TPI_COTS_ORD:
482 return (LM_TCP);
483 }
484 return (-1);
485 }

487 static dev_t
488 ncdev_to_rdev(const char *ncdev)
489 {
490 struct stat st;

492 if (stat(ncdev, &st) < 0)
493 return (NODEV);
494 return (st.st_rdev);
495 }

497 static void
498 sigterm_handler(void)
499 {
500 /* to call atexit handler */
501 exit(0);
502 }

504 static void
505 shutdown_lockd(void)
506 {
507 (void) _nfssys(KILL_LOCKMGR, NULL);
508 }

511 /*
512 * Establish NLM service thread.
513 */
514 static int
515 nlmsvc(int fd, struct netbuf addrmask, struct netconfig *nconf)
516 {
517 struct lm_svc_args lma;

519 lma = lmargs; /* init by struct copy */

new/usr/src/cmd/fs.d/nfs/lockd/lockd.c 9

521 /*
522 * The kernel code needs to reconstruct a complete
523 * knetconfig from n_fmly, n_proto. We use these
524 * two fields to convey the family and semantics.
525 */
526 lma.fd = fd;
527 lma.n_fmly = ncfmly_to_lmfmly(nconf->nc_protofmly);
528 lma.n_proto = nctype_to_lmprot(nconf->nc_semantics);
529 lma.n_rdev = ncdev_to_rdev(nconf->nc_device);

531 return (_nfssys(LM_SVC, &lma));
532 }

534 static void
535 usage(void)
536 {
537 (void) fprintf(stderr, gettext(
538 "usage: %s [options] [max_servers]\n"), MyName);
539 (void) fprintf(stderr, gettext(
540 "options: (see SMF property descriptions)\n"));
541 /* Note: don’t translate these */
542 (void) fprintf(stderr, "\t-c max_connections\n");
543 (void) fprintf(stderr, "\t-d debug_level\n");
544 (void) fprintf(stderr, "\t-g grace_period\n");
545 (void) fprintf(stderr, "\t-l listen_backlog\n");
546 (void) fprintf(stderr, "\t-r retrans_timeout\n");
547 (void) fprintf(stderr, "\t-t conn_idle_timeout\n");

549 exit(1);
550 }

new/usr/src/cmd/fs.d/nfs/mount/Makefile 1

**
 3154 Sun Aug 25 23:50:52 2013
new/usr/src/cmd/fs.d/nfs/mount/Makefile
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**
______unchanged_portion_omitted_

new/usr/src/cmd/fs.d/nfs/statd/sm_proc.c 1

**
 33855 Sun Aug 25 23:50:53 2013
new/usr/src/cmd/fs.d/nfs/statd/sm_proc.c
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26 /*
27 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
28 * Copyright (c) 2012 by Delphix. All rights reserved.
29 */

31 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
32 /* All Rights Reserved */

34 /*
35 * University Copyright- Copyright (c) 1982, 1986, 1988
36 * The Regents of the University of California
37 * All Rights Reserved
38 *
39 * University Acknowledgment- Portions of this document are derived from
40 * software developed by the University of California, Berkeley, and its
41 * contributors.
42 */

44 #include <stdio.h>
45 #include <sys/types.h>
46 #include <stdlib.h>
47 #include <unistd.h>
48 #include <string.h>
49 #include <syslog.h>
50 #include <rpc/rpc.h>
51 #include <rpcsvc/sm_inter.h>
52 #include <rpcsvc/nsm_addr.h>
53 #include <memory.h>
54 #include <net/if.h>
55 #include <sys/sockio.h>
56 #include <sys/socket.h>
57 #include <netinet/in.h>
58 #include <arpa/inet.h>

new/usr/src/cmd/fs.d/nfs/statd/sm_proc.c 2

59 #include <netdb.h>
60 #include <netdir.h>
61 #include <synch.h>
62 #include <thread.h>
63 #include <ifaddrs.h>
64 #include <errno.h>
65 #include <assert.h>
66 #include "sm_statd.h"

68 static int local_state; /* fake local sm state */
69 /* client name-to-address translation table */
70 static name_addr_entry_t *name_addr = NULL;

73 #define LOGHOST "loghost"

75 static void delete_mon(char *mon_name, my_id *my_idp);
76 static void insert_mon(mon *monp);
77 static void pr_mon(char *);
78 static int statd_call_lockd(mon *monp, int state);
79 static int hostname_eq(char *host1, char *host2);
80 static char *get_system_id(char *hostname);
81 static void add_aliases(struct hostent *phost);
82 static void *thr_send_notice(void *);
83 static void delete_onemon(char *mon_name, my_id *my_idp,
84 mon_entry **monitor_q);
85 static void send_notice(char *mon_name, int state);
86 static void add_to_host_array(char *host);
87 static int in_host_array(char *host);
88 static void pr_name_addr(name_addr_entry_t *name_addr);

90 extern int self_check(char *hostname);
91 extern struct lifconf *getmyaddrs(void);

93 /* ARGSUSED */
94 void
95 sm_stat_svc(sm_name *namep, sm_stat_res *resp)
92 sm_status(namep, resp)
93 sm_name *namep;
94 sm_stat_res *resp;
96 {

98 if (debug)
99 (void) printf("proc sm_stat: mon_name = %s\n",
100 namep->mon_name);

102 resp->res_stat = stat_succ;
103 resp->state = LOCAL_STATE;
104 }

106 /* ARGSUSED */
107 void
108 sm_mon_svc(mon *monp, sm_stat_res *resp)
107 sm_mon(monp, resp)
108 mon *monp;
109 sm_stat_res *resp;
109 {
110 mon_id *monidp;
111 monidp = &monp->mon_id;

113 rw_rdlock(&thr_rwlock);
114 if (debug) {
115 (void) printf("proc sm_mon: mon_name = %s, id = %d\n",
116 monidp->mon_name, * ((int *)monp->priv));
117 pr_mon(monp->mon_id.mon_name);
118 }

new/usr/src/cmd/fs.d/nfs/statd/sm_proc.c 3

120 /* only monitor other hosts */
121 if (self_check(monp->mon_id.mon_name) == 0) {
122 /* store monitor request into monitor_q */
123 insert_mon(monp);
124 }

126 pr_mon(monp->mon_id.mon_name);
127 resp->res_stat = stat_succ;
128 resp->state = local_state;
129 rw_unlock(&thr_rwlock);
130 }

132 /* ARGSUSED */
133 void
134 sm_unmon_svc(mon_id *monidp, sm_stat *resp)
135 sm_unmon(monidp, resp)
136 mon_id *monidp;
137 sm_stat *resp;
135 {
136 rw_rdlock(&thr_rwlock);
137 if (debug) {
138 (void) printf(
139 "proc sm_unmon: mon_name = %s, [%s, %d, %d, %d]\n",
140 monidp->mon_name, monidp->my_id.my_name,
141 monidp->my_id.my_prog, monidp->my_id.my_vers,
142 monidp->my_id.my_proc);
143 pr_mon(monidp->mon_name);
144 }

146 delete_mon(monidp->mon_name, &monidp->my_id);
147 pr_mon(monidp->mon_name);
148 resp->state = local_state;
149 rw_unlock(&thr_rwlock);
150 }

152 /* ARGSUSED */
153 void
154 sm_unmon_all_svc(my_id *myidp, sm_stat *resp)
157 sm_unmon_all(myidp, resp)
158 my_id *myidp;
159 sm_stat *resp;
155 {
156 rw_rdlock(&thr_rwlock);
157 if (debug)
158 (void) printf("proc sm_unmon_all: [%s, %d, %d, %d]\n",
159 myidp->my_name,
160 myidp->my_prog, myidp->my_vers,
161 myidp->my_proc);
162 delete_mon((char *)NULL, myidp);
163 pr_mon(NULL);
164 resp->state = local_state;
165 rw_unlock(&thr_rwlock);
166 }

168 /*
169 * Notifies lockd specified by name that state has changed for this server.
170 */
171 void
172 sm_notify_svc(stat_chge *ntfp)
177 sm_notify(ntfp)
178 stat_chge *ntfp;
173 {
174 rw_rdlock(&thr_rwlock);
175 if (debug)
176 (void) printf("sm_notify: %s state =%d\n",

new/usr/src/cmd/fs.d/nfs/statd/sm_proc.c 4

177 ntfp->mon_name, ntfp->state);
178 send_notice(ntfp->mon_name, ntfp->state);
179 rw_unlock(&thr_rwlock);
180 }

182 /* ARGSUSED */
183 void
184 sm_simu_crash_svc(void *myidp)
190 sm_simu_crash(myidp)
191 void *myidp;
185 {
186 int i;
187 struct mon_entry *monitor_q;
188 int found = 0;

190 /* Only one crash should be running at a time. */
191 mutex_lock(&crash_lock);
192 if (debug)
193 (void) printf("proc sm_simu_crash\n");
194 if (in_crash) {
195 cond_wait(&crash_finish, &crash_lock);
196 mutex_unlock(&crash_lock);
197 return;
198 } else {
199 in_crash = 1;
200 }
201 mutex_unlock(&crash_lock);

203 for (i = 0; i < MAX_HASHSIZE; i++) {
204 mutex_lock(&mon_table[i].lock);
205 monitor_q = mon_table[i].sm_monhdp;
206 if (monitor_q != (struct mon_entry *)NULL) {
207 mutex_unlock(&mon_table[i].lock);
208 found = 1;
209 break;
210 }
211 mutex_unlock(&mon_table[i].lock);
212 }
213 /*
214 * If there are entries found in the monitor table,
215 * initiate a crash, else zero out the in_crash variable.
216 */
217 if (found) {
218 mutex_lock(&crash_lock);
219 die = 1;
220 /* Signal sm_retry() thread if sleeping. */
221 cond_signal(&retrywait);
222 mutex_unlock(&crash_lock);
223 rw_wrlock(&thr_rwlock);
224 sm_crash();
225 rw_unlock(&thr_rwlock);
226 } else {
227 mutex_lock(&crash_lock);
228 in_crash = 0;
229 mutex_unlock(&crash_lock);
230 }
231 }

______unchanged_portion_omitted_

714 /*
715 * Work thread created to do the actual statd_call_lockd
716 */
717 static void *
718 thr_send_notice(void *arg)
719 {
720 moninfo_t *minfop;

new/usr/src/cmd/fs.d/nfs/statd/sm_proc.c 5

722 minfop = (moninfo_t *)arg;

723 if (statd_call_lockd(&minfop->id, minfop->state) == -1) {
724 if (debug && minfop->id.mon_id.mon_name)
725 (void) printf("problem with notifying %s failure, "
726 "give up\n", minfop->id.mon_id.mon_name);
727 } else {
728 if (debug)
729 (void) printf("send_notice: %s, %d notified.\n",
730 minfop->id.mon_id.mon_name, minfop->state);
731 }

733 free(minfop->id.mon_id.mon_name);
734 free(minfop->id.mon_id.my_id.my_name);
735 free(minfop);

737 thr_exit((void *) 0);
738 #ifdef lint
739 /*NOTREACHED*/
740 return ((void *)0);
741 #endif
742 }

744 /*
745 * Contact lockd specified by monp.
746 */
747 static int
748 statd_call_lockd(monp, state)
749 mon *monp;
750 int state;
751 {
752 enum clnt_stat clnt_stat;
753 struct timeval tottimeout;
754 struct sm_status stat;
762 struct status stat;
755 my_id *my_idp;
756 char *mon_name;
757 int i;
758 int rc = 0;
759 CLIENT *clnt;

761 mon_name = monp->mon_id.mon_name;
762 my_idp = &monp->mon_id.my_id;
763 (void) memset(&stat, 0, sizeof (stat));
771 (void) memset(&stat, 0, sizeof (struct status));
764 stat.mon_name = mon_name;
765 stat.state = state;
766 for (i = 0; i < 16; i++) {
767 stat.priv[i] = monp->priv[i];
768 }
769 if (debug)
770 (void) printf("statd_call_lockd: %s state = %d\n",
771 stat.mon_name, stat.state);

773 tottimeout.tv_sec = SM_RPC_TIMEOUT;
774 tottimeout.tv_usec = 0;

776 clnt = create_client(my_idp->my_name, my_idp->my_prog, my_idp->my_vers,
777 "ticotsord", &tottimeout);
778 if (clnt == NULL) {
784 if ((clnt = create_client(my_idp->my_name, my_idp->my_prog,
785 my_idp->my_vers, &tottimeout)) == (CLIENT *) NULL) {
779 return (-1);
780 }

new/usr/src/cmd/fs.d/nfs/statd/sm_proc.c 6

782 clnt_stat = clnt_call(clnt, my_idp->my_proc,
783 xdr_sm_status, (char *)&stat,
789 clnt_stat = clnt_call(clnt, my_idp->my_proc, xdr_status, (char *)&stat,
784 xdr_void, NULL, tottimeout);
785 if (debug) {
786 (void) printf("clnt_stat=%s(%d)\n",
787 clnt_sperrno(clnt_stat), clnt_stat);
788 }
789 if (clnt_stat != (int)RPC_SUCCESS) {
790 syslog(LOG_WARNING,
791 "statd: cannot talk to lockd at %s, %s(%d)\n",
792 my_idp->my_name, clnt_sperrno(clnt_stat), clnt_stat);
793 rc = -1;
794 }

796 clnt_destroy(clnt);
797 return (rc);

799 }

801 /*
802 * Client handle created.
803 */
804 CLIENT *
805 create_client(char *host, int prognum, int versnum, char *netid,
806 struct timeval *utimeout)
811 create_client(host, prognum, versnum, utimeout)
812 char *host;
813 int prognum;
814 int versnum;
815 struct timeval *utimeout;
807 {
808 int fd;
809 struct timeval timeout;
810 CLIENT *client;
811 struct t_info tinfo;

813 if (netid == NULL) {
814 client = clnt_create_timed(host, prognum, versnum,
815 "netpath", utimeout);
816 } else {
817 struct netconfig *nconf;

819 nconf = getnetconfigent(netid);
820 if (nconf == NULL) {
822 if ((client = clnt_create_timed(host, prognum, versnum,
823 "netpath", utimeout)) == NULL) {
821 return (NULL);
822 }

824 client = clnt_tp_create_timed(host, prognum, versnum, nconf,
825 utimeout);

827 freenetconfigent(nconf);
828 }

830 if (client == NULL) {
831 return (NULL);
832 }

834 (void) CLNT_CONTROL(client, CLGET_FD, (caddr_t)&fd);
835 if (t_getinfo(fd, &tinfo) != -1) {
836 if (tinfo.servtype == T_CLTS) {
837 /*
838 * Set time outs for connectionless case
839 */

new/usr/src/cmd/fs.d/nfs/statd/sm_proc.c 7

840 timeout.tv_usec = 0;
841 timeout.tv_sec = SM_CLTS_TIMEOUT;
842 (void) CLNT_CONTROL(client,
843 CLSET_RETRY_TIMEOUT, (caddr_t)&timeout);
844 }
845 } else
846 return (NULL);

848 return (client);
849 }

______unchanged_portion_omitted_

1248 /*
1249 * Compares <family>.<address-specifier> ASCII names for hosts. Returns
1250 * 0 if the addresses match, and 1 if the addresses fail to match.
1251 * If the args are indeed specifiers, they should look like this:
1252 *
1253 * ipv4.192.9.200.1 or ipv6.::C009:C801
1254 */
1255 int
1256 str_cmp_address_specifier(char *specifier1, char *specifier2)
1257 {
1258 size_t unq_len1, unq_len2;
1259 char *rawaddr1, *rawaddr2;
1260 int af1, af2, len;

1262 if (debug) {
1263 (void) printf("str_cmp_addr: specifier1= %s, specifier2= %s\n",
1264 specifier1, specifier2);
1265 }

1267 /*
1268 * Verify that:
1269 * 1. The family tokens match;
1270 * 2. The IP addresses following the ‘.’ are legal; and
1271 * 3. These addresses match.
1272 */
1273 unq_len1 = strcspn(specifier1, ".");
1274 unq_len2 = strcspn(specifier2, ".");
1275 rawaddr1 = strchr(specifier1, ’.’);
1276 rawaddr2 = strchr(specifier2, ’.’);

1278 if (strncmp(specifier1, SM_ADDR_IPV4, unq_len1) == 0) {
1279 af1 = AF_INET;
1280 len = 4;
1281 } else if (strncmp(specifier1, SM_ADDR_IPV6, unq_len1) == 0) {
1282 af1 = AF_INET6;
1283 len = 16;
1284 }
1285 else
1286 return (1);

1288 if (strncmp(specifier2, SM_ADDR_IPV4, unq_len2) == 0)
1289 af2 = AF_INET;
1290 else if (strncmp(specifier2, SM_ADDR_IPV6, unq_len2) == 0)
1291 af2 = AF_INET6;
1292 else
1293 return (1);

1295 if (af1 != af2)
1296 return (1);

1298 if (rawaddr1 != NULL && rawaddr2 != NULL) {
1299 char dst1[16];
1300 char dst2[16];
1301 ++rawaddr1;

new/usr/src/cmd/fs.d/nfs/statd/sm_proc.c 8

1302 ++rawaddr2;

1304 if (inet_pton(af1, rawaddr1, dst1) == 1 &&
1305 inet_pton(af2, rawaddr1, dst2) == 1 &&
1306 memcmp(dst1, dst2, len) == 0) {
1307 return (0);
1308 }
1309 }
1310 return (1);
1311 }

1313 /*
1314 * Add IP address strings to the host_name list.
1315 */
1316 void
1317 merge_ips(void)
1318 {
1319 struct ifaddrs *ifap, *cifap;
1320 int error;

1322 error = getifaddrs(&ifap);
1323 if (error) {
1324 syslog(LOG_WARNING, "getifaddrs error: ’%s’",
1325 strerror(errno));
1326 return;
1327 }

1329 for (cifap = ifap; cifap != NULL; cifap = cifap->ifa_next) {
1330 struct sockaddr *sa = cifap->ifa_addr;
1331 char addr_str[INET6_ADDRSTRLEN];
1332 void *addr = NULL;

1334 switch (sa->sa_family) {
1335 case AF_INET: {
1336 struct sockaddr_in *sin = (struct sockaddr_in *)sa;

1338 /* Skip loopback addresses. */
1339 if (sin->sin_addr.s_addr == htonl(INADDR_LOOPBACK)) {
1340 continue;
1341 }

1343 addr = &sin->sin_addr;
1344 break;
1345 }

1347 case AF_INET6: {
1348 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;

1350 /* Skip loopback addresses. */
1351 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) {
1352 continue;
1353 }

1355 addr = &sin6->sin6_addr;
1356 break;
1357 }

1359 default:
1360 syslog(LOG_WARNING, "Unknown address family %d for "
1361 "interface %s", sa->sa_family, cifap->ifa_name);
1362 continue;
1363 }

1365 if (inet_ntop(sa->sa_family, addr, addr_str, sizeof (addr_str))
1366 == NULL) {
1367 syslog(LOG_WARNING, "Failed to convert address into "

new/usr/src/cmd/fs.d/nfs/statd/sm_proc.c 9

1368 "string representation for interface ’%s’ "
1369 "address family %d", cifap->ifa_name,
1370 sa->sa_family);
1371 continue;
1372 }

1374 if (!in_host_array(addr_str)) {
1375 add_to_host_array(addr_str);
1376 }
1377 }

1379 freeifaddrs(ifap);
1380 }
______unchanged_portion_omitted_

new/usr/src/cmd/fs.d/nfs/statd/sm_statd.c 1

**
 36885 Sun Aug 25 23:50:54 2013
new/usr/src/cmd/fs.d/nfs/statd/sm_statd.c
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
27 /* All Rights Reserved */

29 /*
30 * University Copyright- Copyright (c) 1982, 1986, 1988
31 * The Regents of the University of California
32 * All Rights Reserved
33 *
34 * University Acknowledgment- Portions of this document are derived from
35 * software developed by the University of California, Berkeley, and its
36 * contributors.
37 */

39 /*
40 * Copyright (c) 2012 by Delphix. All rights reserved.
41 */
39 #pragma ident "%Z%%M% %I% %E% SMI"

43 /*
44 * sm_statd.c consists of routines used for the intermediate
45 * statd implementation(3.2 rpc.statd);
46 * it creates an entry in "current" directory for each site that it monitors;
47 * after crash and recovery, it moves all entries in "current"
48 * to "backup" directory, and notifies the corresponding statd of its recovery.
49 */

51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <unistd.h>
54 #include <string.h>
55 #include <syslog.h>
56 #include <netdb.h>
57 #include <sys/types.h>

new/usr/src/cmd/fs.d/nfs/statd/sm_statd.c 2

58 #include <sys/stat.h>
59 #include <sys/file.h>
60 #include <sys/param.h>
61 #include <arpa/inet.h>
62 #include <dirent.h>
63 #include <rpc/rpc.h>
64 #include <rpcsvc/sm_inter.h>
65 #include <rpcsvc/nsm_addr.h>
66 #include <errno.h>
67 #include <memory.h>
68 #include <signal.h>
69 #include <synch.h>
70 #include <thread.h>
71 #include <limits.h>
72 #include <strings.h>
73 #include "sm_statd.h"

76 int LOCAL_STATE;

78 sm_hash_t mon_table[MAX_HASHSIZE];
79 static sm_hash_t record_table[MAX_HASHSIZE];
80 static sm_hash_t recov_q;

82 static name_entry *find_name(name_entry **namepp, char *name);
83 static name_entry *insert_name(name_entry **namepp, char *name,
84 int need_alloc);
85 static void delete_name(name_entry **namepp, char *name);
86 static void remove_name(char *name, int op, int startup);
87 static int statd_call_statd(char *name);
88 static void pr_name(char *name, int flag);
89 static void *thr_statd_init();
90 static void *sm_try();
91 static void *thr_call_statd(void *);
92 static void remove_single_name(char *name, char *dir1, char *dir2);
93 static int move_file(char *fromdir, char *file, char *todir);
94 static int count_symlinks(char *dir, char *name, int *count);
95 static char *family2string(sa_family_t family);

97 /*
98 * called when statd first comes up; it searches /etc/sm to gather
99 * all entries to notify its own failure
100 */
101 void
102 statd_init()
103 {
104 struct dirent *dirp;
105 DIR *dp;
106 FILE *fp, *fp_tmp;
107 int i, tmp_state;
108 char state_file[MAXPATHLEN+SM_MAXPATHLEN];

110 if (debug)
111 (void) printf("enter statd_init\n");

113 /*
114 * First try to open the file. If that fails, try to create it.
115 * If that fails, give up.
116 */
117 if ((fp = fopen(STATE, "r+")) == (FILE *)NULL)
118 if ((fp = fopen(STATE, "w+")) == (FILE *)NULL) {
119 syslog(LOG_ERR, "can’t open %s: %m", STATE);
120 exit(1);
121 } else
122 (void) chmod(STATE, 0644);
123 if ((fscanf(fp, "%d", &LOCAL_STATE)) == EOF) {

new/usr/src/cmd/fs.d/nfs/statd/sm_statd.c 3

124 if (debug >= 2)
125 (void) printf("empty file\n");
126 LOCAL_STATE = 0;
127 }

129 /*
130 * Scan alternate paths for largest "state" number
131 */
132 for (i = 0; i < pathix; i++) {
133 (void) sprintf(state_file, "%s/statmon/state", path_name[i]);
134 if ((fp_tmp = fopen(state_file, "r+")) == (FILE *)NULL) {
135 if ((fp_tmp = fopen(state_file, "w+")) ==
136 (FILE *)NULL) {
133 if ((fp_tmp = fopen(state_file, "w+"))
134 == (FILE *)NULL) {
137 if (debug)
138 syslog(LOG_ERR,
139 "can’t open %s: %m",
140 state_file);
141 continue;
142 } else
143 (void) chmod(state_file, 0644);
144 }
145 if ((fscanf(fp_tmp, "%d", &tmp_state)) == EOF) {
146 if (debug)
147 syslog(LOG_ERR,
148 "statd: %s: file empty\n", state_file);
149 (void) fclose(fp_tmp);
150 continue;
151 }
152 if (tmp_state > LOCAL_STATE) {
153 LOCAL_STATE = tmp_state;
154 if (debug)
155 (void) printf("Update LOCAL STATE: %d\n",
156 tmp_state);
157 }
158 (void) fclose(fp_tmp);
159 }

161 LOCAL_STATE = ((LOCAL_STATE%2) == 0) ? LOCAL_STATE+1 : LOCAL_STATE+2;

163 /* IF local state overflows, reset to value 1 */
164 if (LOCAL_STATE < 0) {
165 LOCAL_STATE = 1;
166 }

168 /* Copy the LOCAL_STATE value back to all stat files */
169 if (fseek(fp, 0, 0) == -1) {
170 syslog(LOG_ERR, "statd: fseek failed\n");
171 exit(1);
172 }

174 (void) fprintf(fp, "%-10d", LOCAL_STATE);
175 (void) fflush(fp);
176 if (fsync(fileno(fp)) == -1) {
177 syslog(LOG_ERR, "statd: fsync failed\n");
178 exit(1);
179 }
180 (void) fclose(fp);

182 for (i = 0; i < pathix; i++) {
183 (void) sprintf(state_file, "%s/statmon/state", path_name[i]);
184 if ((fp_tmp = fopen(state_file, "r+")) == (FILE *)NULL) {
185 if ((fp_tmp = fopen(state_file, "w+")) ==
186 (FILE *)NULL) {
183 if ((fp_tmp = fopen(state_file, "w+"))

new/usr/src/cmd/fs.d/nfs/statd/sm_statd.c 4

184 == (FILE *)NULL) {
187 syslog(LOG_ERR,
188 "can’t open %s: %m", state_file);
189 continue;
190 } else
191 (void) chmod(state_file, 0644);
192 }
193 (void) fprintf(fp_tmp, "%-10d", LOCAL_STATE);
194 (void) fflush(fp_tmp);
195 if (fsync(fileno(fp_tmp)) == -1) {
196 syslog(LOG_ERR,
197 "statd: %s: fsync failed\n", state_file);
198 (void) fclose(fp_tmp);
199 exit(1);
200 }
201 (void) fclose(fp_tmp);
202 }

204 if (debug)
205 (void) printf("local state = %d\n", LOCAL_STATE);

207 if ((mkdir(CURRENT, SM_DIRECTORY_MODE)) == -1) {
208 if (errno != EEXIST) {
209 syslog(LOG_ERR, "statd: mkdir current, error %m\n");
210 exit(1);
211 }
212 }
213 if ((mkdir(BACKUP, SM_DIRECTORY_MODE)) == -1) {
214 if (errno != EEXIST) {
215 syslog(LOG_ERR, "statd: mkdir backup, error %m\n");
216 exit(1);
217 }
218 }

220 /* get all entries in CURRENT into BACKUP */
221 if ((dp = opendir(CURRENT)) == (DIR *)NULL) {
222 syslog(LOG_ERR, "statd: open current directory, error %m\n");
223 exit(1);
224 }

226 while ((dirp = readdir(dp)) != NULL) {
227 if (strcmp(dirp->d_name, ".") != 0 &&
228 strcmp(dirp->d_name, "..") != 0) {
229 /* rename all entries from CURRENT to BACKUP */
230 (void) move_file(CURRENT, dirp->d_name, BACKUP);
231 }
232 }

234 (void) closedir(dp);

236 /* Contact hosts’ statd */
237 if (thr_create(NULL, NULL, thr_statd_init, NULL, THR_DETACHED, 0)) {
238 syslog(LOG_ERR,
239 "statd: unable to create thread for thr_statd_init\n");
240 exit(1);
241 }
242 }

244 /*
245 * Work thread which contacts hosts’ statd.
246 */
247 void *
248 thr_statd_init()
249 {
250 struct dirent *dirp;
251 DIR *dp;

new/usr/src/cmd/fs.d/nfs/statd/sm_statd.c 5

252 int num_threads;
253 int num_join;
254 int i;
255 char *name;
256 char buf[MAXPATHLEN+SM_MAXPATHLEN];

258 /* Go thru backup directory and contact hosts */
259 if ((dp = opendir(BACKUP)) == (DIR *)NULL) {
260 syslog(LOG_ERR, "statd: open backup directory, error %m\n");
261 exit(1);
262 }

264 /*
265 * Create "UNDETACHED" threads for each symlink and (unlinked)
266 * regular file in backup directory to initiate statd_call_statd.
267 * NOTE: These threads are the only undetached threads in this
268 * program and thus, the thread id is not needed to join the threads.
269 */
270 num_threads = 0;
271 while ((dirp = readdir(dp)) != NULL) {
272 /*
273 * If host file is not a symlink, don’t bother to
274 * spawn a thread for it. If any link(s) refer to
275 * it, the host will be contacted using the link(s).
276 * If not, we’ll deal with it during the legacy pass.
277 */
278 (void) sprintf(buf, "%s/%s", BACKUP, dirp->d_name);
279 if (is_symlink(buf) == 0) {
280 continue;
281 }

283 /*
284 * If the num_threads has exceeded, wait until
285 * a certain amount of threads have finished.
286 * Currently, 10% of threads created should be joined.
287 */
288 if (num_threads > MAX_THR) {
289 num_join = num_threads/PERCENT_MINJOIN;
290 for (i = 0; i < num_join; i++)
291 thr_join(0, 0, 0);
292 num_threads -= num_join;
293 }

295 /*
296 * If can’t alloc name then print error msg and
297 * continue to next item on list.
298 */
299 name = strdup(dirp->d_name);
300 if (name == (char *)NULL) {
301 syslog(LOG_ERR,
302 "statd: unable to allocate space for name %s\n",
303 dirp->d_name);
304 continue;
305 }

307 /* Create a thread to do a statd_call_statd for name */
308 if (thr_create(NULL, NULL, thr_call_statd,
309 (void *) name, 0, 0)) {
310 syslog(LOG_ERR,
311 "statd: unable to create thr_call_statd() "
312 "for name %s.\n", dirp->d_name);
309 "statd: unable to create thr_call_statd() for name %s.\n",
310 dirp->d_name);
313 free(name);
314 continue;
315 }

new/usr/src/cmd/fs.d/nfs/statd/sm_statd.c 6

316 num_threads++;
317 }

319 /*
320 * Join the other threads created above before processing the
321 * legacies. This allows all symlinks and the regular files
322 * to which they correspond to be processed and deleted.
323 */
324 for (i = 0; i < num_threads; i++) {
325 thr_join(0, 0, 0);
326 }

328 /*
329 * The second pass checks for ‘legacies’: regular files which
330 * never had symlinks pointing to them at all, just like in the
331 * good old (pre-1184192 fix) days. Once a machine has cleaned
332 * up its legacies they should only reoccur due to catastrophes
333 * (e.g., severed symlinks).
334 */
335 rewinddir(dp);
336 num_threads = 0;
337 while ((dirp = readdir(dp)) != NULL) {
338 if (strcmp(dirp->d_name, ".") == 0 ||
339 strcmp(dirp->d_name, "..") == 0) {
340 continue;
341 }

343 (void) sprintf(buf, "%s/%s", BACKUP, dirp->d_name);
344 if (is_symlink(buf)) {
345 /*
346 * We probably couldn’t reach this host and it’s
347 * been put on the recovery queue for retry.
348 * Skip it and keep looking for regular files.
349 */
350 continue;
351 }

353 if (debug) {
354 (void) printf("thr_statd_init: legacy %s\n",
355 dirp->d_name);
356 }

358 /*
359 * If the number of threads exceeds the maximum, wait
360 * for some fraction of them to finish before
361 * continuing.
362 */
363 if (num_threads > MAX_THR) {
364 num_join = num_threads/PERCENT_MINJOIN;
365 for (i = 0; i < num_join; i++)
366 thr_join(0, 0, 0);
367 num_threads -= num_join;
368 }

370 /*
371 * If can’t alloc name then print error msg and
372 * continue to next item on list.
373 */
374 name = strdup(dirp->d_name);
375 if (name == (char *)NULL) {
376 syslog(LOG_ERR,
377 "statd: unable to allocate space for name %s\n",
378 dirp->d_name);
379 continue;
380 }

new/usr/src/cmd/fs.d/nfs/statd/sm_statd.c 7

382 /* Create a thread to do a statd_call_statd for name */
383 if (thr_create(NULL, NULL, thr_call_statd,
384 (void *) name, 0, 0)) {
385 syslog(LOG_ERR,
386 "statd: unable to create thr_call_statd() "
387 "for name %s.\n", dirp->d_name);
384 "statd: unable to create thr_call_statd() for name %s.\n",
385 dirp->d_name);
388 free(name);
389 continue;
390 }
391 num_threads++;
392 }

394 (void) closedir(dp);

396 /*
397 * Join the other threads created above before creating thread
398 * to process items in recovery table.
399 */
400 for (i = 0; i < num_threads; i++) {
401 thr_join(0, 0, 0);
402 }

404 /*
405 * Need to only copy /var/statmon/sm.bak to alternate paths, since
406 * the only hosts in /var/statmon/sm should be the ones currently
407 * being monitored and already should be in alternate paths as part
408 * of insert_mon().
409 */
410 for (i = 0; i < pathix; i++) {
411 (void) sprintf(buf, "%s/statmon/sm.bak", path_name[i]);
412 if ((mkdir(buf, SM_DIRECTORY_MODE)) == -1) {
413 if (errno != EEXIST)
414 syslog(LOG_ERR, "statd: mkdir %s error %m\n",
415 buf);
416 else
417 copydir_from_to(BACKUP, buf);
418 } else
419 copydir_from_to(BACKUP, buf);
420 }

423 /*
424 * Reset the die and in_crash variable and signal other threads
425 * that have issued an sm_crash and are waiting.
426 */
427 mutex_lock(&crash_lock);
428 die = 0;
429 in_crash = 0;
430 mutex_unlock(&crash_lock);
431 cond_broadcast(&crash_finish);

433 if (debug)
434 (void) printf("Creating thread for sm_try\n");

436 /* Continue to notify statd on hosts that were unreachable. */
437 if (thr_create(NULL, NULL, sm_try, NULL, THR_DETACHED, 0))
438 syslog(LOG_ERR,
439 "statd: unable to create thread for sm_try().\n");
440 thr_exit((void *) 0);
441 #ifdef lint
442 return (0);
443 #endif
444 }

new/usr/src/cmd/fs.d/nfs/statd/sm_statd.c 8

446 /*
447 * Work thread to make call to statd_call_statd.
448 */
449 void *
450 thr_call_statd(void *namep)
451 {
452 char *name = (char *)namep;

454 /*
455 * If statd of name is unreachable, add name to recovery table
456 * otherwise if statd_call_statd was successful, remove from backup.
457 */
458 if (statd_call_statd(name) != 0) {
459 int n;
460 char *tail;
461 char path[MAXPATHLEN];
462 /*
463 * since we are constructing this pathname below we add
464 * another space for the terminating NULL so we don’t
465 * overflow our buffer when we do the readlink
466 */
467 char rname[MAXNAMELEN + 1];

469 if (debug) {
470 (void) printf(
471 "statd call failed, inserting %s in recov_q\n", name);
472 }
473 mutex_lock(&recov_q.lock);
474 (void) insert_name(&recov_q.sm_recovhdp, name, 0);
475 mutex_unlock(&recov_q.lock);

477 /*
478 * If we queued a symlink name in the recovery queue,
479 * we now clean up the regular file to which it referred.
480 * This may leave a severed symlink if multiple links
481 * referred to one regular file; this is unaesthetic but
482 * it works. The big benefit is that it prevents us
483 * from recovering the same host twice (as symlink and
484 * as regular file) needlessly, usually on separate reboots.
485 */
486 (void) strcpy(path, BACKUP);
487 (void) strcat(path, "/");
488 (void) strcat(path, name);
489 if (is_symlink(path)) {
490 n = readlink(path, rname, MAXNAMELEN);
491 if (n <= 0) {
492 if (debug >= 2) {
493 (void) printf(
494 "thr_call_statd: can’t read "
495 "link %s\n", path);
492 "thr_call_statd: can’t read link %s\n",
493 path);
496 }
497 } else {
498 rname[n] = ’\0’;

500 tail = strrchr(path, ’/’) + 1;

502 if ((strlen(BACKUP) + strlen(rname) + 2) <=
503 MAXPATHLEN) {
504 (void) strcpy(tail, rname);
505 delete_file(path);
506 } else if (debug) {
507 printf("thr_call_statd: path over"
508 "maxpathlen!\n");
509 }

new/usr/src/cmd/fs.d/nfs/statd/sm_statd.c 9

510 }

512 }

514 if (debug)
515 pr_name(name, 0);

517 } else {
518 /*
519 * If ‘name’ is an IP address symlink to a name file,
520 * remove it now. If it is the last such symlink,
521 * remove the name file as well. Regular files with
522 * no symlinks to them are assumed to be legacies and
523 * are removed as well.
524 */
525 remove_name(name, 1, 1);
526 free(name);
527 }
528 thr_exit((void *) 0);
529 #ifdef lint
530 return (0);
531 #endif
532 }

534 /*
535 * Notifies the statd of host specified by name to indicate that
536 * state has changed for this server.
537 */
538 static int
539 statd_call_statd(name)
540 char *name;
541 {
542 enum clnt_stat clnt_stat;
543 struct timeval tottimeout;
544 CLIENT *clnt;
545 char *name_or_addr;
546 stat_chge ntf;
547 int i;
548 int rc;
549 int dummy1, dummy2, dummy3, dummy4;
550 char ascii_addr[MAXNAMELEN];
551 size_t unq_len;

553 ntf.mon_name = hostname;
554 ntf.state = LOCAL_STATE;
555 if (debug)
556 (void) printf("statd_call_statd at %s\n", name);

558 /*
559 * If it looks like an ASCII <address family>.<address> specifier,
560 * strip off the family - we just want the address when obtaining
561 * a client handle.
562 * If it’s anything else, just pass it on to create_client().
563 */
564 unq_len = strcspn(name, ".");

566 if ((strncmp(name, SM_ADDR_IPV4, unq_len) == 0) ||
567 (strncmp(name, SM_ADDR_IPV6, unq_len) == 0)) {
568 name_or_addr = strchr(name, ’.’) + 1;
569 } else {
570 name_or_addr = name;
571 }

573 /*
574 * NOTE: We depend here upon the fact that the RPC client code
575 * allows us to use ASCII dotted quad ‘names’, i.e. "192.9.200.1".

new/usr/src/cmd/fs.d/nfs/statd/sm_statd.c 10

576 * This may change in a future release.
577 */
578 if (debug) {
579 (void) printf("statd_call_statd: calling create_client(%s)\n",
580 name_or_addr);
581 }

583 tottimeout.tv_sec = SM_RPC_TIMEOUT;
584 tottimeout.tv_usec = 0;

586 if ((clnt = create_client(name_or_addr, SM_PROG, SM_VERS, NULL,
587 &tottimeout)) == NULL) {
584 if ((clnt = create_client(name_or_addr, SM_PROG, SM_VERS,
585 &tottimeout)) == (CLIENT *) NULL) {
588 return (-1);
589 }

591 /* Perform notification to client */
592 rc = 0;
593 clnt_stat = clnt_call(clnt, SM_NOTIFY, xdr_stat_chge, (char *)&ntf,
594 xdr_void, NULL, tottimeout);
595 if (debug) {
596 (void) printf("clnt_stat=%s(%d)\n",
597 clnt_sperrno(clnt_stat), clnt_stat);
598 }
599 if (clnt_stat != (int)RPC_SUCCESS) {
600 syslog(LOG_WARNING,
601 "statd: cannot talk to statd at %s, %s(%d)\n",
602 name_or_addr, clnt_sperrno(clnt_stat), clnt_stat);
603 rc = -1;
604 }

606 /* For HA systems and multi-homed hosts */
607 ntf.state = LOCAL_STATE;
608 for (i = 0; i < addrix; i++) {
609 ntf.mon_name = host_name[i];
610 if (debug)
611 (void) printf("statd_call_statd at %s\n", name_or_addr);
612 clnt_stat = clnt_call(clnt, SM_NOTIFY, xdr_stat_chge,
613 (char *)&ntf, xdr_void, NULL,
614 tottimeout);
615 if (clnt_stat != (int)RPC_SUCCESS) {
616 syslog(LOG_WARNING,
617 "statd: cannot talk to statd at %s, %s(%d)\n",
618 name_or_addr, clnt_sperrno(clnt_stat), clnt_stat);
619 rc = -1;
620 }
621 }
622 clnt_destroy(clnt);
623 return (rc);
624 }

626 /*
627 * Continues to contact hosts in recovery table that were unreachable.
628 * NOTE: There should only be one sm_try thread executing and
629 * thus locks are not needed for recovery table. Die is only cleared
630 * after all the hosts has at least been contacted once. The reader/writer
631 * lock ensures to finish this code before an sm_crash is started. Die
632 * variable will signal it.
633 */
634 void *
635 sm_try()
636 {
637 name_entry *nl, *next;
638 timestruc_t wtime;
639 int delay = 0;

new/usr/src/cmd/fs.d/nfs/statd/sm_statd.c 11

641 rw_rdlock(&thr_rwlock);
642 if (mutex_trylock(&sm_trylock))
643 goto out;
644 mutex_lock(&crash_lock);

646 while (!die) {
647 wtime.tv_sec = delay;
648 wtime.tv_nsec = 0;
649 /*
650 * Wait until signalled to wakeup or time expired.
651 * If signalled to be awoken, then a crash has occurred
652 * or otherwise time expired.
653 */
654 if (cond_reltimedwait(&retrywait, &crash_lock, &wtime) == 0) {
655 break;
656 }

658 /* Exit loop if queue is empty */
659 if ((next = recov_q.sm_recovhdp) == NULL)
660 break;

662 mutex_unlock(&crash_lock);

664 while (((nl = next) != (name_entry *)NULL) && (!die)) {
665 next = next->nxt;
666 if (statd_call_statd(nl->name) == 0) {
667 /* remove name from BACKUP */
668 remove_name(nl->name, 1, 0);
669 mutex_lock(&recov_q.lock);
670 /* remove entry from recovery_q */
671 delete_name(&recov_q.sm_recovhdp, nl->name);
672 mutex_unlock(&recov_q.lock);
673 } else {
674 /*
675 * Print message only once since unreachable
676 * host can be contacted forever.
677 */
678 if (delay == 0)
679 syslog(LOG_WARNING,
680 "statd: host %s is not "
681 "responding\n", nl->name);
678 "statd: host %s is not responding\n",
679 nl->name);
682 }
683 }
684 /*
685 * Increment the amount of delay before restarting again.
686 * The amount of delay should not exceed the MAX_DELAYTIME.
687 */
688 if (delay <= MAX_DELAYTIME)
689 delay += INC_DELAYTIME;
690 mutex_lock(&crash_lock);
691 }

693 mutex_unlock(&crash_lock);
694 mutex_unlock(&sm_trylock);
695 out:
696 rw_unlock(&thr_rwlock);
697 if (debug)
698 (void) printf("EXITING sm_try\n");
699 thr_exit((void *) 0);
700 #ifdef lint
701 return (0);
702 #endif
703 }

______unchanged_portion_omitted_

new/usr/src/cmd/fs.d/nfs/statd/sm_statd.c 12

1028 /*
1029 * Remove the name from the specified directory, which is dir1/dir2 or
1030 * dir1, depending on whether dir2 is NULL.
1031 */
1032 static void
1033 remove_single_name(char *name, char *dir1, char *dir2)
1034 {
1035 int n, error;
1036 char path[MAXPATHLEN+MAXNAMELEN+SM_MAXPATHLEN]; /* why > MAXPATHLEN? */
1037 char dirpath[MAXPATHLEN];
1038 char rname[MAXNAMELEN + 1]; /* +1 for NULL term */

1040 if (strlen(name) + strlen(dir1) + (dir2 != NULL ? strlen(dir2) : 0) +
1041 3 > MAXPATHLEN) {
1038 if (strlen(name) + strlen(dir1) + (dir2 != NULL ? strlen(dir2) : 0)
1039 + 3 > MAXPATHLEN) {
1042 if (dir2 != NULL)
1043 syslog(LOG_ERR,
1044 "statd: pathname too long: %s/%s/%s\n",
1045 dir1, dir2, name);
1046 else
1047 syslog(LOG_ERR,
1048 "statd: pathname too long: %s/%s\n",
1049 dir1, name);

1051 return;
1052 }

1054 (void) strcpy(path, dir1);
1055 (void) strcat(path, "/");
1056 if (dir2 != NULL) {
1057 (void) strcat(path, dir2);
1058 (void) strcat(path, "/");
1059 }
1060 (void) strcpy(dirpath, path); /* save here - we may need it shortly */
1061 (void) strcat(path, name);

1063 /*
1064 * Despite the name of this routine :-@), ‘path’ may be a symlink
1065 * to a regular file. If it is, and if that file has no other
1066 * links to it, we must remove it now as well.
1067 */
1068 if (is_symlink(path)) {
1069 n = readlink(path, rname, MAXNAMELEN);
1070 if (n > 0) {
1071 rname[n] = ’\0’;

1073 if (count_symlinks(dirpath, rname, &n) < 0) {
1074 return;
1075 }

1077 if (n == 1) {
1078 (void) strcat(dirpath, rname);
1079 error = unlink(dirpath);
1080 if (debug >= 2) {
1081 if (error < 0) {
1082 (void) printf(
1083 "remove_name: can’t "
1084 "unlink %s\n",
1081 "remove_name: can’t unlink %s\n",
1085 dirpath);
1086 } else {
1087 (void) printf(
1088 "remove_name: unlinked ",
1089 "%s\n", dirpath);

new/usr/src/cmd/fs.d/nfs/statd/sm_statd.c 13

1085 "remove_name: unlinked %s\n",
1086 dirpath);
1090 }
1091 }
1092 }
1093 } else {
1094 /*
1095 * Policy: if we can’t read the symlink, leave it
1096 * here for analysis by the system administrator.
1097 */
1098 syslog(LOG_ERR,
1099 "statd: can’t read link %s: %m\n", path);
1100 }
1101 }

1103 /*
1104 * If it’s a regular file, we can assume all symlinks and the
1105 * files to which they refer have been processed already - just
1106 * fall through to here to remove it.
1107 */
1108 delete_file(path);
1109 }

1111 /*
1112 * Count the number of symlinks in ‘dir’ which point to ‘name’ (also in dir).
1113 * Passes back symlink count in ‘count’.
1114 * Returns 0 for success, < 0 for failure.
1115 */
1116 static int
1117 count_symlinks(char *dir, char *name, int *count)
1118 {
1119 int cnt = 0;
1120 int n;
1121 DIR *dp;
1122 struct dirent *dirp;
1123 char lpath[MAXPATHLEN];
1124 char rname[MAXNAMELEN + 1]; /* +1 for term NULL */

1126 if ((dp = opendir(dir)) == (DIR *)NULL) {
1127 syslog(LOG_ERR, "count_symlinks: open %s dir, error %m\n",
1128 dir);
1129 return (-1);
1130 }

1132 while ((dirp = readdir(dp)) != NULL) {
1133 if (strcmp(dirp->d_name, ".") == 0 ||
1134 strcmp(dirp->d_name, "..") == 0) {
1135 continue;
1136 }

1138 (void) sprintf(lpath, "%s%s", dir, dirp->d_name);
1139 if (is_symlink(lpath)) {
1140 /*
1141 * Fetch the name of the file the symlink refers to.
1142 */
1143 n = readlink(lpath, rname, MAXNAMELEN);
1144 if (n <= 0) {
1145 if (debug >= 2) {
1146 (void) printf(
1147 "count_symlinks: can’t read link "
1148 "%s\n", lpath);
1144 "count_symlinks: can’t read link %s\n",
1145 lpath);
1149 }
1150 continue;
1151 }

new/usr/src/cmd/fs.d/nfs/statd/sm_statd.c 14

1152 rname[n] = ’\0’;

1154 /*
1155 * If ‘rname’ matches ‘name’, bump the count. There
1156 * may well be multiple symlinks to the same name, so
1157 * we must continue to process the entire directory.
1158 */
1159 if (strcmp(rname, name) == 0) {
1160 cnt++;
1161 }
1162 }
1163 }

1165 (void) closedir(dp);

1167 if (debug) {
1168 (void) printf("count_symlinks: found %d symlinks\n", cnt);
1169 }
1170 *count = cnt;
1171 return (0);
1172 }
______unchanged_portion_omitted_

1296 /*
1297 * This routine adds a symlink in the form of an ASCII dotted quad
1298 * IP address that is linked to the name already recorded in the
1299 * filesystem name space by record_name(). Enough information is
1300 * (hopefully) provided to support other address types in the future.
1301 * The purpose of this is to cache enough information to contact
1302 * hosts in other domains during server crash recovery (see bugid
1303 * 1184192).
1304 *
1305 * The worst failure mode here is that the symlink is not made, and
1306 * statd falls back to the old buggy behavior.
1307 */
1308 void
1309 record_addr(char *name, sa_family_t family, struct netobj *ah)
1310 {
1311 int i;
1312 int path_len;
1313 char *famstr;
1314 struct in_addr addr;
1315 char *addr6;
1316 char ascii_addr[MAXNAMELEN];
1317 char path[MAXPATHLEN];

1319 if (family == AF_INET) {
1320 if (ah->n_len != sizeof (struct in_addr))
1321 return;
1322 addr = *(struct in_addr *)ah->n_bytes;
1323 } else if (family == AF_INET6) {
1324 if (ah->n_len != sizeof (struct in6_addr))
1325 return;
1326 addr6 = (char *)ah->n_bytes;
1327 } else
1328 return;

1330 if (debug) {
1331 if (family == AF_INET)
1332 (void) printf("record_addr: addr= %x\n", addr.s_addr);
1333 else if (family == AF_INET6)
1334 (void) printf("record_addr: addr= %x\n", \
1335 ((struct in6_addr *)addr6)->s6_addr);
1336 }

1338 if (family == AF_INET) {

new/usr/src/cmd/fs.d/nfs/statd/sm_statd.c 15

1339 if (addr.s_addr == INADDR_ANY ||
1340 ((addr.s_addr && 0xff000000) == 0)) {
1341 syslog(LOG_DEBUG,
1342 "record_addr: illegal IP address %x\n",
1343 addr.s_addr);
1344 return;
1345 }
1346 }

1348 /* convert address to ASCII */
1349 famstr = family2string(family);
1350 if (famstr == NULL) {
1351 syslog(LOG_DEBUG,
1352 "record_addr: unsupported address family %d\n",
1353 family);
1354 return;
1355 }

1357 switch (family) {
1358 char abuf[INET6_ADDRSTRLEN];
1359 case AF_INET:
1360 (void) sprintf(ascii_addr, "%s.%s", famstr, inet_ntoa(addr));
1361 break;

1363 case AF_INET6:
1364 (void) sprintf(ascii_addr, "%s.%s", famstr,\
1365 inet_ntop(family, addr6, abuf, sizeof (abuf)));
1366 break;

1368 default:
1369 if (debug) {
1370 (void) printf(
1371 "record_addr: family2string supports unknown "
1372 "family %d (%s)\n", family, famstr);
1368 "record_addr: family2string supports unknown family %d (%s)\n",
1369 family,
1370 famstr);
1373 }
1374 free(famstr);
1375 return;
1376 }

1378 if (debug) {
1379 (void) printf("record_addr: ascii_addr= %s\n", ascii_addr);
1380 }
1381 free(famstr);

1383 /*
1384 * Make the symlink in CURRENT. The ‘name’ file should have
1385 * been created previously by record_name().
1386 */
1387 (void) create_symlink(CURRENT, name, ascii_addr);

1389 /*
1390 * Similarly for alternate paths.
1391 */
1392 for (i = 0; i < pathix; i++) {
1393 path_len = strlen(path_name[i]) +
1394 strlen("/statmon/sm/") +
1395 strlen(name) + 1;

1397 if (path_len > MAXPATHLEN) {
1398 syslog(LOG_ERR,
1399 "statd: pathname too long: %s/statmon/sm/%s\n",
1400 path_name[i], name);
1401 continue;

new/usr/src/cmd/fs.d/nfs/statd/sm_statd.c 16

1402 }
1403 (void) strcpy(path, path_name[i]);
1404 (void) strcat(path, "/statmon/sm");
1405 (void) create_symlink(path, name, ascii_addr);
1406 }
1407 }
______unchanged_portion_omitted_

new/usr/src/cmd/fs.d/nfs/statd/sm_statd.h 1

**
 6976 Sun Aug 25 23:50:55 2013
new/usr/src/cmd/fs.d/nfs/statd/sm_statd.h
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */

30 /*
31 * University Copyright- Copyright (c) 1982, 1986, 1988
32 * The Regents of the University of California
33 * All Rights Reserved
34 *
35 * University Acknowledgment- Portions of this document are derived from
36 * software developed by the University of California, Berkeley, and its
37 * contributors.
38 */

40 /*
41 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
42 * Copyright (c) 2012 by Delphix. All rights reserved.
43 */

45 #ifndef _SM_STATD_H
46 #define _SM_STATD_H

43 #pragma ident "%Z%%M% %I% %E% SMI"

48 #ifdef __cplusplus
49 extern "C" {
50 #endif

52 /* Limit defines */
53 #define SM_DIRECTORY_MODE 00755
54 #define MAX_HASHSIZE 50
55 #define SM_RPC_TIMEOUT 15
56 #define PERCENT_MINJOIN 10

new/usr/src/cmd/fs.d/nfs/statd/sm_statd.h 2

57 #define MAX_FDS 256
58 #define MAX_THR 25
59 #define INC_DELAYTIME 30
60 #define MAX_DELAYTIME 300
61 #define SM_CLTS_TIMEOUT 15
62 /* max strlen of /statmon/state, /statmon/sm.bak, /statmon/sm */
63 #define SM_MAXPATHLEN 17
64 /* Increment size for realloc of array host_name */
65 #define HOST_NAME_INCR 5

67 /* supported address family names in /var/statmon symlinks */
68 #define SM_ADDR_IPV4 "ipv4"
69 #define SM_ADDR_IPV6 "ipv6"

71 /* Supported for readdir_r() */
72 #define MAXDIRENT (sizeof (struct dirent) + _POSIX_PATH_MAX + 1)

74 /* Structure entry for monitor table (mon_table) */
75 struct mon_entry {
76 mon id; /* mon information: mon_name, my_id */
77 struct mon_entry *prev; /* Prev ptr to prev entry in hash */
78 struct mon_entry *nxt; /* Next ptr to next entry in hash */
79 };

______unchanged_portion_omitted_

163 extern int debug; /* Prints out debug information if set. */

165 extern char hostname[MAXHOSTNAMELEN];

167 /*
168 * These variables will be used to store all the
169 * alias names for the host, as well as the -a
170 * command line hostnames.
171 */
172 extern char **host_name; /* store -a opts */
173 extern int host_name_count;
174 extern int addrix; /* # of -a entries */

176 /*
177 * The following 2 variables are meaningful
178 * only under a HA configuration.
179 */
180 extern char **path_name; /* store -p opts */
181 extern int pathix; /* # of -p entries */

183 /* Function prototypes used in program */
184 extern int create_file(char *name);
185 extern void delete_file(char *name);
186 extern void record_name(char *name, int op);
187 extern void sm_crash(void);
185 extern void sm_notify(stat_chge *ntfp);
188 extern void statd_init();
189 extern void merge_hosts(void);
190 extern void merge_ips(void);
191 extern CLIENT *create_client(char *, int, int, char *, struct timeval *);
188 extern CLIENT *create_client(char *, int, int, struct timeval *);
192 extern char *xmalloc(unsigned);

194 /*
195 * RPC service functions, slightly different here than the
196 * generated ones in sm_inter.h
197 */
198 extern void nsmaddrproc1_reg(reg1args *, reg1res *);
199 extern void sm_stat_svc(sm_name *namep, sm_stat_res *resp);
200 extern void sm_mon_svc(mon *monp, sm_stat_res *resp);
201 extern void sm_unmon_svc(mon_id *monidp, sm_stat *resp);

new/usr/src/cmd/fs.d/nfs/statd/sm_statd.h 3

202 extern void sm_unmon_all_svc(my_id *myidp, sm_stat *resp);
203 extern void sm_simu_crash_svc(void *myidp);
204 extern void sm_notify_svc(stat_chge *ntfp);

190 extern void sm_status(sm_name *namep, sm_stat_res *resp);
191 extern void sm_mon(mon *monp, sm_stat_res *resp);
192 extern void sm_unmon(mon_id *monidp, sm_stat *resp);
193 extern void sm_unmon_all(my_id *myidp, sm_stat *resp);
194 extern void sm_simu_crash(void *myidp);
206 extern void sm_inithash();
207 extern void copydir_from_to(char *from_dir, char *to_dir);
208 extern int str_cmp_unqual_hostname(char *, char *);
198 extern void nsmaddrproc1_reg(reg1args *, reg1res *);
209 extern void record_addr(char *name, sa_family_t family, struct netobj *ah);
210 extern int is_symlink(char *file);
211 extern int create_symlink(char *todir, char *rname, char *lname);
212 extern int str_cmp_address_specifier(char *specifier1, char *specifier2);

214 #ifdef __cplusplus
215 }

______unchanged_portion_omitted_

new/usr/src/cmd/fs.d/nfs/statd/sm_svc.c 1

**
 21174 Sun Aug 25 23:50:56 2013
new/usr/src/cmd/fs.d/nfs/statd/sm_svc.c
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */

26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
27 /* All Rights Reserved */

29 /*
30 * University Copyright- Copyright (c) 1982, 1986, 1988
31 * The Regents of the University of California
32 * All Rights Reserved
33 *
34 * University Acknowledgment- Portions of this document are derived from
35 * software developed by the University of California, Berkeley, and its
36 * contributors.
37 */

39 /*
40 * Copyright (c) 2012 by Delphix. All rights reserved.
41 */

43 #include <stdio.h>
44 #include <stdio_ext.h>
45 #include <stdlib.h>
46 #include <ftw.h>
47 #include <signal.h>
48 #include <string.h>
49 #include <syslog.h>
50 #include <netconfig.h>
51 #include <unistd.h>
52 #include <netdb.h>
53 #include <rpc/rpc.h>
54 #include <netinet/in.h>
55 #include <sys/param.h>
56 #include <sys/resource.h>
57 #include <sys/file.h>
58 #include <sys/types.h>

new/usr/src/cmd/fs.d/nfs/statd/sm_svc.c 2

59 #include <sys/stat.h>
60 #include <sys/sockio.h>
61 #include <dirent.h>
62 #include <errno.h>
63 #include <rpcsvc/sm_inter.h>
64 #include <rpcsvc/nsm_addr.h>
65 #include <thread.h>
66 #include <synch.h>
67 #include <net/if.h>
68 #include <limits.h>
69 #include <rpcsvc/daemon_utils.h>
70 #include <priv_utils.h>
71 #include "sm_statd.h"

74 #define home0 "/var/statmon"
75 #define current0 "/var/statmon/sm"
76 #define backup0 "/var/statmon/sm.bak"
77 #define state0 "/var/statmon/state"

79 #define home1 "statmon"
80 #define current1 "statmon/sm/"
81 #define backup1 "statmon/sm.bak/"
82 #define state1 "statmon/state"

84 /*
85 * User and group IDs to run as. These are hardwired, rather than looked
86 * up at runtime, because they are very unlikely to change and because they
87 * provide some protection against bogus changes to the passwd and group
88 * files.
89 */
90 uid_t daemon_uid = DAEMON_UID;
91 gid_t daemon_gid = DAEMON_GID;

93 char STATE[MAXPATHLEN], CURRENT[MAXPATHLEN], BACKUP[MAXPATHLEN];
94 static char statd_home[MAXPATHLEN];

96 int debug;
97 int regfiles_only = 0; /* 1 => use symlinks in statmon, 0 => don’t */
98 char hostname[MAXHOSTNAMELEN];

100 /*
101 * These variables will be used to store all the
102 * alias names for the host, as well as the -a
103 * command line hostnames.
104 */
105 int host_name_count;
106 char **host_name; /* store -a opts */
107 int addrix; /* # of -a entries */

110 /*
111 * The following 2 variables are meaningful
112 * only under a HA configuration.
113 * The path_name array is dynamically allocated in main() during
114 * command line argument processing for the -p options.
115 */
116 char **path_name = NULL; /* store -p opts */
117 int pathix = 0; /* # of -p entries */

119 /* Global variables. Refer to sm_statd.h for description */
120 mutex_t crash_lock;
121 int die;
122 int in_crash;
123 cond_t crash_finish;
124 mutex_t sm_trylock;

new/usr/src/cmd/fs.d/nfs/statd/sm_svc.c 3

125 rwlock_t thr_rwlock;
126 cond_t retrywait;
127 mutex_t name_addrlock;

129 /* forward references */
130 static void set_statmon_owner(void);
131 static void copy_client_names(void);
132 static void one_statmon_owner(const char *);
133 static int nftw_owner(const char *, const struct stat *, int, struct FTW *);

135 /*
136 * statd protocol
137 * commands:
138 * SM_STAT
139 * returns stat_fail to caller
140 * SM_MON
141 * adds an entry to the monitor_q and the record_q
142 * This message is sent by the server lockd to the server
143 * statd, to indicate that a new client is to be monitored.
144 * It is also sent by the server lockd to the client statd
145 * to indicate that a new server is to be monitored.
146 * SM_UNMON
147 * removes an entry from the monitor_q and the record_q
148 * SM_UNMON_ALL
149 * removes all entries from a particular host from the
150 * monitor_q and the record_q. Our statd has this
151 * disabled.
152 * SM_SIMU_CRASH
153 * simulate a crash. removes everything from the
154 * record_q and the recovery_q, then calls statd_init()
155 * to restart things. This message is sent by the server
156 * lockd to the server statd to have all clients notified
157 * that they should reclaim locks.
158 * SM_NOTIFY
159 * Sent by statd on server to statd on client during
160 * crash recovery. The client statd passes the info
161 * to its lockd so it can attempt to reclaim the locks
162 * held on the server.
163 *
164 * There are three main hash tables used to keep track of things.
165 * mon_table
166 * table that keeps track hosts statd must watch. If one of
167 * these hosts crashes, then any locks held by that host must
168 * be released.
169 * record_table
170 * used to keep track of all the hostname files stored in
171 * the directory /var/statmon/sm. These are client hosts who
172 * are holding or have held a lock at some point. Needed
173 * to determine if a file needs to be created for host in
174 * /var/statmon/sm.
175 * recov_q
176 * used to keep track hostnames during a recovery
177 *
178 * The entries are hashed based upon the name.
179 *
180 * There is a directory /var/statmon/sm which holds a file named
181 * for each host that is holding (or has held) a lock. This is
182 * used during initialization on startup, or after a simulated
183 * crash.
184 */

186 static void
187 sm_prog_1(rqstp, transp)
188 struct svc_req *rqstp;
189 SVCXPRT *transp;
190 {

new/usr/src/cmd/fs.d/nfs/statd/sm_svc.c 4

191 union {
192 struct sm_name sm_stat_1_arg;
193 struct mon sm_mon_1_arg;
194 struct mon_id sm_unmon_1_arg;
195 struct my_id sm_unmon_all_1_arg;
196 struct stat_chge ntf_arg;
197 struct reg1args reg1_arg;
198 } argument;

200 union {
201 sm_stat_res stat_resp;
202 sm_stat mon_resp;
203 struct reg1res reg1_resp;
204 } result;

206 bool_t (*xdr_argument)(), (*xdr_result)();
207 char *(*local)();

209 /*
210 * Dispatch according to which protocol is being used:
211 * NSM_ADDR_PROGRAM is the private lockd address
212 * registration protocol.
213 * SM_PROG is the normal statd (NSM) protocol.
214 */
215 if (rqstp->rq_prog == NSM_ADDR_PROGRAM) {
216 switch (rqstp->rq_proc) {
217 case NULLPROC:
218 svc_sendreply(transp, xdr_void, (caddr_t)NULL);
219 return;

221 case NSMADDRPROC1_REG:
222 xdr_argument = xdr_reg1args;
223 xdr_result = xdr_reg1res;
224 local = (char *(*)()) nsmaddrproc1_reg;
225 break;

227 case NSMADDRPROC1_UNREG: /* Not impl. */
228 default:
229 svcerr_noproc(transp);
230 return;
231 }
232 } else {
233 /* Must be SM_PROG */
234 switch (rqstp->rq_proc) {
235 case NULLPROC:
236 svc_sendreply(transp, xdr_void, (caddr_t)NULL);
237 return;

239 case SM_STAT:
240 xdr_argument = xdr_sm_name;
241 xdr_result = xdr_sm_stat_res;
242 local = (char *(*)()) sm_stat_svc;
235 local = (char *(*)()) sm_status;
243 break;

245 case SM_MON:
246 xdr_argument = xdr_mon;
247 xdr_result = xdr_sm_stat_res;
248 local = (char *(*)()) sm_mon_svc;
241 local = (char *(*)()) sm_mon;
249 break;

251 case SM_UNMON:
252 xdr_argument = xdr_mon_id;
253 xdr_result = xdr_sm_stat;
254 local = (char *(*)()) sm_unmon_svc;

new/usr/src/cmd/fs.d/nfs/statd/sm_svc.c 5

247 local = (char *(*)()) sm_unmon;
255 break;

257 case SM_UNMON_ALL:
258 xdr_argument = xdr_my_id;
259 xdr_result = xdr_sm_stat;
260 local = (char *(*)()) sm_unmon_all_svc;
253 local = (char *(*)()) sm_unmon_all;
261 break;

263 case SM_SIMU_CRASH:
264 xdr_argument = xdr_void;
265 xdr_result = xdr_void;
266 local = (char *(*)()) sm_simu_crash_svc;
259 local = (char *(*)()) sm_simu_crash;
267 break;

269 case SM_NOTIFY:
270 xdr_argument = xdr_stat_chge;
271 xdr_result = xdr_void;
272 local = (char *(*)()) sm_notify_svc;
265 local = (char *(*)()) sm_notify;
273 break;

275 default:
276 svcerr_noproc(transp);
277 return;
278 }
279 }

281 (void) memset(&argument, 0, sizeof (argument));
282 if (!svc_getargs(transp, xdr_argument, (caddr_t)&argument)) {
283 svcerr_decode(transp);
284 return;
285 }

287 (void) memset(&result, 0, sizeof (result));
288 (*local)(&argument, &result);
289 if (!svc_sendreply(transp, xdr_result, (caddr_t)&result)) {
290 svcerr_systemerr(transp);
291 }

293 if (!svc_freeargs(transp, xdr_argument, (caddr_t)&argument)) {
294 syslog(LOG_ERR, "statd: unable to free arguments\n");
295 }
296 }

______unchanged_portion_omitted_

435 int
436 main(int argc, char *argv[])
437 {
438 int c;
439 int ppid;
440 extern char *optarg;
441 int choice = 0;
442 struct rlimit rl;
443 int mode;
444 int sz;
445 int connmaxrec = RPC_MAXDATASIZE;

447 addrix = 0;
448 pathix = 0;

450 (void) gethostname(hostname, MAXHOSTNAMELEN);
451 if (init_hostname() < 0)
452 exit(1);

new/usr/src/cmd/fs.d/nfs/statd/sm_svc.c 6

454 while ((c = getopt(argc, argv, "Dd:a:G:p:rU:")) != EOF)
455 switch (c) {
456 case ’d’:
457 (void) sscanf(optarg, "%d", &debug);
458 break;
459 case ’D’:
460 choice = 1;
461 break;
462 case ’a’:
463 if (addrix < host_name_count) {
464 if (strcmp(hostname, optarg) != 0) {
465 sz = strlen(optarg);
466 if (sz < MAXHOSTNAMELEN) {
467 host_name[addrix] =
468 (char *)xmalloc(sz+1);
469 if (host_name[addrix] !=
470 NULL) {
471 (void) sscanf(optarg, "%s",
472 host_name[addrix]);
473 addrix++;
474 }
475 } else
476 (void) fprintf(stderr,
477 "statd: -a name of host is too long.\n");
478 }
479 } else
480 (void) fprintf(stderr,
481 "statd: -a exceeding maximum hostnames\n");
482 break;
483 case ’U’:
484 (void) sscanf(optarg, "%d", &daemon_uid);
485 break;
486 case ’G’:
487 (void) sscanf(optarg, "%d", &daemon_gid);
488 break;
489 case ’p’:
490 if (strlen(optarg) < MAXPATHLEN) {
491 /* If the path_name array has not yet */
492 /* been malloc’ed, do that. The array */
493 /* should be big enough to hold all of the */
494 /* -p options we might have. An upper */
495 /* bound on the number of -p options is */
496 /* argc/2, because each -p option consumes */
497 /* two arguments. Here the upper bound */
498 /* is supposing that all the command line */
499 /* arguments are -p options, which would */
500 /* actually never be the case. */
501 if (path_name == NULL) {
502 size_t sz = (argc/2) * sizeof (char *);

504 path_name = (char **)malloc(sz);
505 if (path_name == NULL) {
506 (void) fprintf(stderr,
507 "statd: malloc failed\n");
508 exit(1);
509 }
510 (void) memset(path_name, 0, sz);
511 }
512 path_name[pathix] = optarg;
513 pathix++;
514 } else {
515 (void) fprintf(stderr,
516 "statd: -p pathname is too long.\n");
517 }
518 break;

new/usr/src/cmd/fs.d/nfs/statd/sm_svc.c 7

519 case ’r’:
520 regfiles_only = 1;
521 break;
522 default:
523 (void) fprintf(stderr,
524 "statd [-d level] [-D]\n");
525 return (1);
526 }

528 if (choice == 0) {
529 (void) strcpy(statd_home, home0);
530 (void) strcpy(CURRENT, current0);
531 (void) strcpy(BACKUP, backup0);
532 (void) strcpy(STATE, state0);
533 } else {
534 (void) strcpy(statd_home, home1);
535 (void) strcpy(CURRENT, current1);
536 (void) strcpy(BACKUP, backup1);
537 (void) strcpy(STATE, state1);
538 }
539 if (debug)
540 (void) printf("debug is on, create entry: %s, %s, %s\n",
541 CURRENT, BACKUP, STATE);

543 if (getrlimit(RLIMIT_NOFILE, &rl))
544 (void) printf("statd: getrlimit failed. \n");

546 /* Set maxfdlimit current soft limit */
547 rl.rlim_cur = rl.rlim_max;
548 if (setrlimit(RLIMIT_NOFILE, &rl) != 0)
549 syslog(LOG_ERR, "statd: unable to set RLIMIT_NOFILE to %d\n",
550 rl.rlim_cur);

552 (void) enable_extended_FILE_stdio(-1, -1);

554 if (!debug) {
555 ppid = fork();
556 if (ppid == -1) {
557 (void) fprintf(stderr, "statd: fork failure\n");
558 (void) fflush(stderr);
559 abort();
560 }
561 if (ppid != 0) {
562 exit(0);
563 }
564 closefrom(0);
565 (void) open("/dev/null", O_RDONLY);
566 (void) open("/dev/null", O_WRONLY);
567 (void) dup(1);
568 (void) setsid();
569 openlog("statd", LOG_PID, LOG_DAEMON);
570 }

572 (void) _create_daemon_lock(STATD, daemon_uid, daemon_gid);
573 /*
574 * establish our lock on the lock file and write our pid to it.
575 * exit if some other process holds the lock, or if there’s any
576 * error in writing/locking the file.
577 */
578 ppid = _enter_daemon_lock(STATD);
579 switch (ppid) {
580 case 0:
581 break;
582 case -1:
583 syslog(LOG_ERR, "error locking for %s: %s", STATD,
584 strerror(errno));

new/usr/src/cmd/fs.d/nfs/statd/sm_svc.c 8

585 exit(2);
586 default:
587 /* daemon was already running */
588 exit(0);
589 }

591 /* Get other aliases from each interface. */
592 merge_hosts();

594 /* Get all of the configured IP addresses. */
595 merge_ips();

597 /*
598 * Set to automatic mode such that threads are automatically
599 * created
600 */
601 mode = RPC_SVC_MT_AUTO;
602 if (!rpc_control(RPC_SVC_MTMODE_SET, &mode)) {
603 syslog(LOG_ERR,
604 "statd:unable to set automatic MT mode.");
605 exit(1);
606 }

608 /*
609 * Set non-blocking mode and maximum record size for
610 * connection oriented RPC transports.
611 */
612 if (!rpc_control(RPC_SVC_CONNMAXREC_SET, &connmaxrec)) {
613 syslog(LOG_INFO, "unable to set maximum RPC record size");
614 }

616 if (!svc_create(sm_prog_1, SM_PROG, SM_VERS, "netpath")) {
617 syslog(LOG_ERR,
618 "statd: unable to create (SM_PROG, SM_VERS) for netpath.");
619 exit(1);
620 }

622 if (!svc_create(sm_prog_1, NSM_ADDR_PROGRAM, NSM_ADDR_V1, "netpath")) {
623 syslog(LOG_ERR,
624 "statd: unable to create (NSM_ADDR_PROGRAM, NSM_ADDR_V1) for netpath.");
625 }

627 /*
628 * Make sure /var/statmon and any alternate (-p) statmon
629 * directories exist and are owned by daemon. Then change our uid
630 * to daemon. The uid change is to prevent attacks against local
631 * daemons that trust any call from a local root process.
632 */

634 set_statmon_owner();

636 /*
637 *
638 * statd now runs as a daemon rather than root and can not
639 * dump core under / because of the permission. It is
640 * important that current working directory of statd be
641 * changed to writable directory /var/statmon so that it
642 * can dump the core upon the receipt of the signal.
643 * One still need to set allow_setid_core to non-zero in
644 * /etc/system to get the core dump.
645 *
646 */

648 if (chdir(statd_home) < 0) {
649 syslog(LOG_ERR, "can’t chdir %s: %m", statd_home);
650 exit(1);

new/usr/src/cmd/fs.d/nfs/statd/sm_svc.c 9

651 }

653 copy_client_names();

655 rwlock_init(&thr_rwlock, USYNC_THREAD, NULL);
656 mutex_init(&crash_lock, USYNC_THREAD, NULL);
657 mutex_init(&name_addrlock, USYNC_THREAD, NULL);
658 cond_init(&crash_finish, USYNC_THREAD, NULL);
659 cond_init(&retrywait, USYNC_THREAD, NULL);
660 sm_inithash();
661 die = 0;
662 /*
663 * This variable is set to ensure that an sm_crash
664 * request will not be done at the same time
665 * when a statd_init is being done, since sm_crash
666 * can reset some variables that statd_init will be using.
667 */
668 in_crash = 1;
669 statd_init();

671 if (debug)
672 (void) printf("Starting svc_run\n");
673 svc_run();
674 syslog(LOG_ERR, "statd: svc_run returned\n");
675 /* NOTREACHED */
676 thr_exit((void *) 1);
677 return (0);

679 }
______unchanged_portion_omitted_

new/usr/src/head/Makefile 1

**
 10978 Sun Aug 25 23:50:58 2013
new/usr/src/head/Makefile
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # head/Makefile
26 #
27 # include global definitions
28 include ../Makefile.master

30 sparc_HDRS=
31 i386_HDRS= stack_unwind.h

33 # Headers are listed one per line so that TeamWare can auto-merge most changes

35 KRB5HDRS= mit_copyright.h mit-sipb-copyright.h

37 ATTRDB_HDRS= secdb.h auth_attr.h exec_attr.h prof_attr.h user_attr.h \
38 auth_list.h

40 HDRS= $($(MACH)_HDRS) $(ATTRDB_HDRS) \
41 aio.h \
42 alloca.h \
43 apptrace.h \
44 apptrace_impl.h \
45 ar.h \
46 archives.h \
47 assert.h \
48 atomic.h \
49 attr.h \
50 config_admin.h \
51 cpio.h \
52 crypt.h \
53 ctype.h \
54 deflt.h \
55 devid.h \
56 devmgmt.h \
57 devpoll.h \
58 dial.h \

new/usr/src/head/Makefile 2

59 dirent.h \
60 dlfcn.h \
61 door.h \
62 elf.h \
63 err.h \
64 errno.h \
65 euc.h \
66 exacct.h \
67 exacct_impl.h \
68 execinfo.h \
69 fatal.h \
70 fcntl.h \
71 float.h \
72 fmtmsg.h \
73 fnmatch.h \
74 ftw.h \
75 gelf.h \
76 getopt.h \
77 getwidth.h \
78 glob.h \
79 grp.h \
80 iconv.h \
81 ieeefp.h \
82 ifaddrs.h \
83 inttypes.h \
84 iso646.h \
85 klpd.h \
86 langinfo.h \
87 lastlog.h \
88 lber.h \
89 ldap.h \
90 libelf.h \
91 libgen.h \
92 libintl.h \
93 libw.h \
94 libzonecfg.h \
95 limits.h \
96 linenum.h \
97 link.h \
98 listen.h \
99 locale.h \
100 macros.h \
101 malloc.h \
102 mdmn_changelog.h \
103 memory.h \
104 meta.h \
105 meta_runtime.h \
106 metadyn.h \
107 mon.h \
108 monetary.h \
109 mp.h \
110 mqueue.h \
111 nan.h \
112 ndbm.h \
113 ndpd.h \
114 netconfig.h \
115 netdb.h \
116 netdir.h \
117 nl_types.h \
118 nlist.h \
119 note.h \
120 nsctl.h \
121 nsswitch.h \
122 nss_common.h \
123 nss_dbdefs.h \
124 nss_netdir.h \

new/usr/src/head/Makefile 3

125 paths.h \
126 pcsample.h \
127 pfmt.h \
128 pkgdev.h \
129 pkginfo.h \
130 pkglocs.h \
131 pkgstrct.h \
132 pkgtrans.h \
133 poll.h \
134 port.h \
135 priv.h \
136 priv_utils.h \
137 proc_service.h \
138 procfs.h \
139 prof.h \
140 project.h \
141 pthread.h \
142 pw.h \
143 pwd.h \
144 rctl.h \
145 re_comp.h \
146 regex.h \
147 regexp.h \
148 resolv.h \
149 rje.h \
150 rtld_db.h \
151 sac.h \
152 sched.h \
153 schedctl.h \
154 sdssc.h \
155 search.h \
156 semaphore.h \
157 setjmp.h \
158 sgtty.h \
159 shadow.h \
160 siginfo.h \
161 signal.h \
162 spawn.h \
163 stdarg.h \
164 stdbool.h \
165 stddef.h \
166 stdint.h \
167 stdio.h \
168 stdio_ext.h \
169 stdio_tag.h \
170 stdio_impl.h \
171 stdlib.h \
172 storclass.h \
173 string.h \
174 strings.h \
175 stropts.h \
176 synch.h \
177 sysexits.h \
178 syslog.h \
179 syms.h \
180 tar.h \
181 termio.h \
182 termios.h \
183 thread.h \
184 thread_db.h \
185 time.h \
186 tiuser.h \
187 tzfile.h \
188 ucontext.h \
189 ucred.h \
190 ulimit.h \

new/usr/src/head/Makefile 4

191 unistd.h \
192 userdefs.h \
193 ustat.h \
194 utime.h \
195 utmp.h \
196 utmpx.h \
197 valtools.h \
198 values.h \
199 varargs.h \
200 wait.h \
201 wchar.h \
202 wchar_impl.h \
203 wctype.h \
204 widec.h \
205 wordexp.h \
206 xti.h \
207 xti_inet.h \
208 zone.h

210 ISOHDRS = \
211 ctype_c99.h \
212 ctype_iso.h \
213 limits_iso.h \
214 locale_iso.h \
215 setjmp_iso.h \
216 signal_iso.h \
217 stdarg_c99.h \
218 stdarg_iso.h \
219 stddef_iso.h \
220 stdio_c99.h \
221 stdio_iso.h \
222 stdlib_c99.h \
223 stdlib_iso.h \
224 string_iso.h \
225 time_iso.h \
226 wchar_c99.h \
227 wchar_iso.h \
228 wctype_c99.h \
229 wctype_iso.h

231 ARPAHDRS = \
232 ftp.h \
233 inet.h \
234 nameser.h \
235 telnet.h \
236 tftp.h \
237 nameser_compat.h

239 AUDIOHDRS = \
240 au.h

242 UUIDHDRS = \
243 uuid.h

245 # rpcsvc headers which are just headers (not derived from a .x file)
246 RPCSVC_SRC_HDRS = \
247 bootparam.h \
248 daemon_utils.h \
249 dbm.h \
250 nis_db.h \
251 nislib.h \
252 svc_dg_priv.h \
253 yp_prot.h \
254 ypclnt.h \
255 yppasswd.h \
256 ypupd.h \

new/usr/src/head/Makefile 5

257 rpc_sztypes.h

259 # rpcsvc headers which are generated from .x files
260 RPCSVC_GEN_HDRS = \
261 bootparam_prot.h \
262 mount.h \
263 nfs_prot.h \
264 nfs4_prot.h \
265 nis.h \
266 nlm_prot.h \
266 rex.h \
267 rquota.h \
268 rstat.h \
269 rusers.h \
270 rwall.h \
271 spray.h \
272 ufs_prot.h \
273 nfs_acl.h

275 LVMRPCHDRS = \
276 mhdx.h mdiox.h meta_basic.h metad.h metamed.h metamhd.h metacl.h

278 SYMHDRASSERT = $(ROOT)/usr/include/iso/assert_iso.h
279 SYMHDRERRNO = $(ROOT)/usr/include/iso/errno_iso.h
280 SYMHDRFLOAT = $(ROOT)/usr/include/iso/float_iso.h
281 SYMHDRISO646 = $(ROOT)/usr/include/iso/iso646_iso.h

283 RPCGENFLAGS = -C -h
284 rpcsvc/rwall.h := RPCGENFLAGS += -M
285 meta_basic.h := RPCGENFLAGS += -M
286 metad.h := RPCGENFLAGS += -M
287 metamed.h := RPCGENFLAGS += -M
288 mhdx.h := RPCGENFLAGS += -M
289 mdiox.h := RPCGENFLAGS += -M
290 metamhd.h := RPCGENFLAGS += -M
291 metacl.h := RPCGENFLAGS += -M

293 # rpcsvc rpcgen source (.x files)
294 #
295 # yp.x is an attempt at codifying what was hand coded in RPCL.
296 # Unfortunately it doesn’t quite work. (The handcoded stuff isn’t
297 # expressable in RPCL) this is due to the fact that YP was written
298 # before rpcgen existed. Hence, yp_prot.h cannot be derived from yp.x
299 #
300 # There is no ‘.h’ for nis_object.x because it is included by nis.x and
301 # the resulting .h is nis.h.

303 RPCSVCPROTS = \
304 $(RPCSVC_GEN_HDRS:%.h=%.x) nis_object.x yp.x

306 LVMSVCPROTS = \
307 $(LVMRPCHDRS:%.h=%.x)

309 RPCSVCHDRS= $(RPCSVC_SRC_HDRS) $(RPCSVC_GEN_HDRS)

311 PROTOHDRS= dumprestore.h routed.h ripngd.h rwhod.h timed.h

313 ROOTHDRS= $(HDRS:%=$(ROOT)/usr/include/%) \
314 $(KRB5HDRS:%=$(ROOT)/usr/include/kerberosv5/%) \
315 $(ISOHDRS:%=$(ROOT)/usr/include/iso/%) \
316 $(ARPAHDRS:%=$(ROOT)/usr/include/arpa/%) \
317 $(AUDIOHDRS:%=$(ROOT)/usr/include/audio/%) \
318 $(UUIDHDRS:%=$(ROOT)/usr/include/uuid/%) \
319 $(RPCSVCHDRS:%=$(ROOT)/usr/include/rpcsvc/%) \
320 $(RPCSVCPROTS:%=$(ROOT)/usr/include/rpcsvc/%) \
321 $(LVMRPCHDRS:%=$(ROOT)/usr/include/%) \

new/usr/src/head/Makefile 6

322 $(PROTOHDRS:%=$(ROOT)/usr/include/protocols/%)

324 DIRS= iso arpa audio rpcsvc protocols security uuid kerberosv5
325 ROOTDIRS= $(DIRS:%=$(ROOT)/usr/include/%)

327 SED= sed

329 # check files really don’t exist
330 #
331 # should do something with the rpcsvc headers

333 iso/%.check: iso/%.h
334 $(DOT_H_CHECK)

336 arpa/%.check: arpa/%.h
337 $(DOT_H_CHECK)

339 audio/%.check: audio/%.h
340 $(DOT_H_CHECK)

342 rpcsvc/%.check: rpcsvc/%.h
343 $(DOT_H_CHECK)

345 rpcsvc/%.check: rpcsvc/%.x
346 $(DOT_X_CHECK)

348 protocols/%.check: protocols/%.h
349 $(DOT_H_CHECK)

351 kerberosv5/%.check: kerberosv5/%.h
352 $(DOT_H_CHECK)

354 uuid/%.check: uuid/%.h
355 $(DOT_H_CHECK)

357 # Note that the derived headers (rpcgen) are not checked at this time. These
358 # need work at the source level and rpcgen itself has a bug which causes a
359 # cstyle violation. Furthermore, there seems to be good reasons for the
360 # generated headers to not pass all of the hdrchk rules.
361 #
362 # Add the following to the CHECKHDRS list to activate the .x checks:
363 # $(RPCSVCPROTS:%.x=rpcsvc/%.check) \
364 #
365 CHECKHDRS= $(HDRS:%.h=%.check) \
366 $(KRB5HDRS:%.h=kerberosv5/%.check) \
367 $(ISOHDRS:%.h=iso/%.check) \
368 $(ARPAHDRS:%.h=arpa/%.check) \
369 $(AUDIOHDRS:%.h=audio/%.check) \
370 $(UUIDHDRS:%.h=uuid/%.check) \
371 $(RPCSVC_SRC_HDRS:%.h=rpcsvc/%.check) \
372 $(PROTOHDRS:%.h=protocols/%.check)

374 # headers which won’t quite meet the standards...
375 #
376 # assert.h is required by ansi-c to *not* be idempotent (section 4.1.2).
377 # Hence the trailing guard is not the last thing in the file nor can it
378 # be without playing silly games.

380 assert.check := HDRCHK_TAIL = | grep -v "end guard wrong" | true

382 # install rules

384 $(ROOT)/usr/include/security/%: security/%
385 $(INS.file)

387 $(ROOT)/usr/include/protocols/%: protocols/%

new/usr/src/head/Makefile 7

388 $(INS.file)

390 $(ROOT)/usr/include/rpcsvc/%: rpcsvc/%
391 $(INS.file)

393 $(ROOT)/usr/include/kerberosv5/%: kerberosv5/%
394 $(INS.file)

396 $(ROOT)/usr/include/arpa/%: arpa/%
397 $(INS.file)

399 $(ROOT)/usr/include/audio/%: audio/%
400 $(INS.file)

402 $(ROOT)/usr/include/iso/%: iso/%
403 $(INS.file)

405 $(ROOT)/usr/include/uuid/%: uuid/%
406 $(INS.file)

408 $(ROOT)/usr/include/%: %
409 $(INS.file)

411 .KEEP_STATE:

413 .PARALLEL: $(ROOTHDRS) $(CHECKHDRS)

415 install_h: $(ROOTDIRS) .WAIT $(ROOTHDRS) $(SYMHDRASSERT) $(SYMHDRERRNO) \
416 $(SYMHDRFLOAT) $(SYMHDRISO646)

418 check: $(CHECKHDRS)

420 clean clobber:
421 $(RM) $(LVMRPCHDRS);
422 cd rpcsvc ; $(RM) $(RPCSVC_GEN_HDRS)

424 $(ROOTDIRS):
425 $(INS.dir)

427 $(SYMHDRASSERT):
428 -$(RM) $@; $(SYMLINK) ../assert.h $@

430 $(SYMHDRERRNO):
431 -$(RM) $@; $(SYMLINK) ../errno.h $@

433 $(SYMHDRFLOAT):
434 -$(RM) $@; $(SYMLINK) ../float.h $@

436 $(SYMHDRISO646):
437 -$(RM) $@; $(SYMLINK) ../iso646.h $@

439 rpcsvc/%.h: rpcsvc/%.x
440 $(RPCGEN) $(RPCGENFLAGS) $< -o $@

442 rpcsvc/nis.h: rpcsvc/nis.x
443 $(RPCGEN) $(RPCGENFLAGS) rpcsvc/nis.x |\
444 $(SED) -e ’/EDIT_START/,$$ d’ > $@

446 meta_basic.h: ../uts/common/sys/lvm/meta_basic.x
447 $(RPCGEN) $(RPCGENFLAGS) ../uts/common/sys/lvm/meta_basic.x | \
448 awk ’/<synch.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t
449 /<thread.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t/* _
450 { print $0 } \
451 ’ > $@

453 metad.h: metad.x

new/usr/src/head/Makefile 8

454 $(RPCGEN) $(RPCGENFLAGS) metad.x | \
455 awk ’/<synch.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t
456 /<thread.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t/* _
457 { print $0 } \
458 ’ > $@

460 mhdx.h: ../uts/common/sys/lvm/mhdx.x
461 $(RPCGEN) $(RPCGENFLAGS) ../uts/common/sys/lvm/mhdx.x | \
462 awk ’/<synch.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t
463 /<thread.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t/* _
464 { print $0 } \
465 ’ > $@

467 mdiox.h: ../uts/common/sys/lvm/mdiox.x
468 $(RPCGEN) $(RPCGENFLAGS) ../uts/common/sys/lvm/mdiox.x | \
469 nawk ’{sub(/sys\/lvm\/md_mhdx/, "mhdx"); print $$0}’ | \
470 nawk ’{sub(/sys\/lvm\/md_basic/, "meta_basic"); print $$0}’ | \
471 awk ’/<synch.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t
472 /<thread.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t/* _
473 { print $0 } \
474 ’ > $@

476 metamed.h: ../uts/common/sys/lvm/metamed.x
477 $(RPCGEN) $(RPCGENFLAGS) ../uts/common/sys/lvm/metamed.x | \
478 nawk ’{sub(/sys\/lvm\/md_basic/, "meta_basic"); print $$0}’ | \
479 awk ’/<synch.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t
480 /<thread.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t/* _
481 { print $0 } \
482 ’ > $@

484 metamhd.h: metamhd.x
485 $(RPCGEN) $(RPCGENFLAGS) metamhd.x | \
486 awk ’/<synch.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t
487 /<thread.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t/* _
488 { print $0 } \
489 ’ > $@

491 metacl.h: metacl.x
492 $(RPCGEN) $(RPCGENFLAGS) metacl.x | \
493 awk ’/<synch.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t
494 /<thread.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t/* _
495 { print $0 } \
496 ’ > $@

new/usr/src/lib/librpcsvc/common/mapfile-vers 1

**
 3113 Sun Aug 25 23:50:59 2013
new/usr/src/lib/librpcsvc/common/mapfile-vers
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
23 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 #

26 #
27 # MAPFILE HEADER START
28 #
29 # WARNING: STOP NOW. DO NOT MODIFY THIS FILE.
30 # Object versioning must comply with the rules detailed in
31 #
32 # usr/src/lib/README.mapfiles
33 #
34 # You should not be making modifications here until you’ve read the most current
35 # copy of that file. If you need help, contact a gatekeeper for guidance.
36 #
37 # MAPFILE HEADER END
38 #

40 # Due to mistakes made early in the history of this library, there are
41 # no SUNW_1.1 symbols, but the version is now kept as a placeholder.
42 # Don’t add any symbols to this version.

44 $mapfile_version 2

46 SYMBOL_VERSION SUNW_1.1 {
47 global:
48 SUNW_1.1;
49 } SUNW_0.7;

______unchanged_portion_omitted_

63 SYMBOL_VERSION SUNWprivate_1.1 {
64 global:
65 __clnt_bindresvport;
66 xdr_bp_address;
67 xdr_bp_fileid_t;
68 xdr_bp_getfile_arg;
69 xdr_bp_getfile_res;

new/usr/src/lib/librpcsvc/common/mapfile-vers 2

70 xdr_bp_machine_name_t;
71 xdr_bp_path_t;
72 xdr_bp_whoami_arg;
73 xdr_bp_whoami_res;
74 xdr_dirpath;
75 xdr_exportnode;
76 xdr_exports;
77 xdr_fhandle;
78 xdr_fhandle3;
79 xdr_fhstatus;
79 xdr_fsh4_access;
80 xdr_fsh4_mode;
80 xdr_fsh_access;
81 xdr_fsh_mode;
82 xdr_groupnode;
83 xdr_groups;
84 xdr_int32;
85 xdr_int64;
86 xdr_ip_addr_t;
87 xdr_mon;
88 xdr_mon_id;
89 xdr_mountbody;
90 xdr_mountlist;
91 xdr_mountres3;
92 xdr_mountres3_ok;
93 xdr_mountstat3;
94 xdr_my_id;
95 xdr_name;
96 xdr_nlm4_cancargs;
97 xdr_nlm4_holder;
98 xdr_nlm4_lock;
99 xdr_nlm4_lockargs;
100 xdr_nlm4_notify;
101 xdr_nlm4_res;
102 xdr_nlm4_share;
103 xdr_nlm4_shareargs;
104 xdr_nlm4_shareres;
105 xdr_nlm4_stat;
106 xdr_nlm4_stats;
107 xdr_nlm4_testargs;
108 xdr_nlm4_testres;
109 xdr_nlm4_testrply;
110 xdr_nlm4_unlockargs;
111 xdr_nlm_cancargs;
112 xdr_nlm_holder;
113 xdr_nlm_lock;
114 xdr_nlm_lockargs;
115 xdr_nlm_notify;
116 xdr_nlm_res;
117 xdr_nlm_share;
118 xdr_nlm_shareargs;
119 xdr_nlm_shareres;
120 xdr_nlm_stat;
121 xdr_nlm_stats;
122 xdr_nlm_testargs;
123 xdr_nlm_testres;
124 xdr_nlm_testrply;
125 xdr_nlm_unlockargs;
126 xdr_ppathcnf;
127 xdr_reg1args;
128 xdr_reg1res;
130 xdr_res;
129 xdr_rstat_timeval;
130 xdr_rusers_utmp;
131 xdr_sm_name;
132 xdr_sm_res;

new/usr/src/lib/librpcsvc/common/mapfile-vers 3

133 xdr_sm_stat;
134 xdr_sm_stat_res;
135 xdr_sm_status;
136 xdr_sprayarr;
137 xdr_spraycumul;
138 xdr_spraytimeval;
139 xdr_stat_chge;
140 xdr_status;
140 xdr_timeval;
141 xdr_uint32;
142 xdr_uint64;
143 xdr_unreg1args;
144 xdr_unreg1res;
145 xdr_utmp_array;
146 local:
147 *;
148 };

______unchanged_portion_omitted_

new/usr/src/uts/Makefile 1

**
 6994 Sun Aug 25 23:51:00 2013
new/usr/src/uts/Makefile
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
23 #
24 # include global definitions
25 include ../Makefile.master

27 #
28 # List of architectures to build as part of the standard build.
29 #
30 # Some of these architectures are built in parallel (see i386_PARALLEL and
31 # sparc_PARALLEL). This requires building some parts first before parallel build
32 # can start. Platform make files know what should be built as a prerequisite for
33 # the parallel build to work. The i386_PREREQ and sparc_PREREQ variables tell
34 # which platform directory to enter to start making prerequisite dependencies.
35 #
36 sparc_ARCHITECTURES = sun4v sun4u sparc

38 i386_ARCHITECTURES = i86pc i86xpv intel

40 #
41 # For i386 all architectures can be compiled in parallel.
42 #
43 # intel/Makefile knows how to build prerequisites needed for parallel build.
44 #
45 i386_PREREQ = intel
46 i386_PARALLEL = $(i386_ARCHITECTURES)

48 #
49 # For sparc all architectures can be compiled in parallel.
50 #
51 # sun4/Makefile knows how to build prerequisites needed for parallel build.
52 # can start.
53 #
54 sparc_PREREQ = sun4
55 sparc_PARALLEL = $(sparc_ARCHITECTURES)

57 #
58 # Platforms defined in $(MACH)_PARALLEL are built in parallel. DUMMY is placed

new/usr/src/uts/Makefile 2

59 # at the end in case $(MACH)_PARALLEL is empty to prevent everything going in
60 # parallel.
61 #
62 .PARALLEL: $($(MACH)_PARALLEL) DUMMY

64 #
65 # For build prerequisites we use a special target which is constructed by adding
66 # ’.prereq’ suffix to the $(MACH)_PREREQ.
67 #
68 PREREQ_TARGET = $($(MACH)_PREREQ:%=%.prereq)

71 def := TARGET= def
72 all := TARGET= all
73 install := TARGET= install
74 install_h := TARGET= install_h
75 clean := TARGET= clean
76 clobber := TARGET= clobber
77 lint := TARGET= lint
78 clean.lint := TARGET= clean.lint
79 check := TARGET= check
80 modlist := TARGET= modlist
81 modlist := NO_STATE= -K $$MODSTATE$$$$

83 .KEEP_STATE:

85 def all lint: all_h $(PMTMO_FILE) $($(MACH)_ARCHITECTURES)

87 install: all_h install_dirs $(PMTMO_FILE) $($(MACH)_ARCHITECTURES)

89 install_dirs:
90 @cd ..; pwd; $(MAKE) rootdirs
91 @pwd

93 #
94 # Rule to build prerequisites. The left part of the pattern will match
95 # PREREQ_TARGET.
96 #
97 # The location of the Makefile is determined by strippinng ’.prereq’ suffix from
98 # the target name. We add ’.prereq’ suffix to the target passed to the child
99 # Makefile so that it can distinguish prerequisite build from the regular one.
100 #
101 #
102 %.prereq:
103 @cd $(@:%.prereq=%); pwd; $(MAKE) $(NO_STATE) $(TARGET).prereq

105 #
106 # Rule to build architecture files. Build all required prerequisites and then
107 # build the rest (potentially in parallel).
108 #
109 $($(MACH)_ARCHITECTURES): $(PREREQ_TARGET) FRC
110 @cd $@; pwd; $(MAKE) $(NO_STATE) $(TARGET)

112 $(PMTMO_FILE) pmtmo_file: $(PATCH_MAKEUP_TABLE)
113 @if [-z "$(PATCH_MAKEUP_TABLE)"] ; then \
114 echo ’ERROR: $$(PATCH_MAKEUP_TABLE) not set’ \
115 ’in environment’ >&2 ; \
116 exit 1 ; \
117 fi
118 RELEASE="$(RELEASE)" MACH="$(MACH)" \
119 $(CTFCVTPTBL) -o $(PMTMO_FILE) $(PATCH_MAKEUP_TABLE)

121 #
122 # The following is the list of directories which contain Makefiles with
123 # targets to install header file. The machine independent headers are
124 # installed by invoking the Makefile in the directory containing the

new/usr/src/uts/Makefile 3

125 # header files. Machine and architecture dependent headers are installed
126 # by invoking the main makefile for that architecture/machine which,
127 # in turn, is responsible for invoking the Makefiles which install headers.
128 # It is done this way so as not to assume that all of the header files in
129 # the architecture/machine dependent subdirectories are in completely
130 # isomorphic locations.
131 #
132 COMMON_HDRDIRS= common/avs \
133 common/c2 \
134 common/des \
135 common/fs \
136 common/gssapi \
137 common/idmap \
138 common/klm \
139 common/inet \
140 common/inet/ipf/netinet \
141 common/inet/kssl \
142 common/inet/nca \
143 common/inet/sockmods/netpacket \
144 common/io/bpf/net \
145 common/ipp \
146 common/net \
147 common/netinet \
148 common/nfs \
149 common/pcmcia/sys \
150 common/rpc \
151 common/rpcsvc \
152 common/sharefs \
153 common/smb \
154 common/smbsrv \
155 common/sys \
156 common/vm

159 # These aren’t the only headers in closed. But the other directories
160 # are simple enough that they can be driven from the src tree.
161 $(CLOSED_BUILD)COMMON_HDRDIRS += $(CLOSED)/uts/common/sys

163 #
164 # Subset of COMMON_HDRDIRS in which at least one header is generated
165 # at runtime (e.g., rpcgen), and in which "make clean" should run.
166 # Other directories should be included here, but do not yet have the
167 # necessary Makefile support (make clean). See 6414855.
164 # at runtime (e.g., rpcgen). (This is a partial list; there are
165 # other directories that should be included and do not yet have the
166 # necessary Makefile support. See 6414855.)
168 #
169 DYNHDRDIRS = common/idmap \
170 common/klm \
171 common/rpcsvc \
172 common/sys
168 DYNHDRDIRS = common/rpcsvc common/idmap common/sys

174 sparc_HDRDIRS= sun/sys
175 i386_HDRDIRS= i86pc/vm i86xpv/vm

177 HDRDIRS= $(COMMON_HDRDIRS) $($(MACH)_HDRDIRS)
178 install_h check: $(HDRDIRS) $($(MACH)_ARCHITECTURES)

180 $(HDRDIRS): FRC
181 @cd $@; pwd; $(MAKE) $(TARGET)

183 # ensures that headers made by rpcgen and others are available in uts source
184 # for kernel builds to reference without building install_h
185 #
186 all_h: FRC

new/usr/src/uts/Makefile 4

187 @cd common/sys; pwd; $(MAKE) $@
188 @cd common/rpc; pwd; $(MAKE) $@
189 @cd common/rpcsvc; pwd; $(MAKE) $@
190 @cd common/gssapi; pwd; $(MAKE) $@
191 @cd common/idmap; pwd; $(MAKE) $@
192 @cd common/klm; pwd; $(MAKE) $@

194 clean clobber: $($(MACH)_ARCHITECTURES) $(DYNHDRDIRS)
195 @if [’$(PATCH_BUILD)’ != ’#’] ; then \
196 echo $(RM) $(PMTMO_FILE) ; \
197 $(RM) $(PMTMO_FILE) ; \
198 fi

200 EXTRA_CLOBBER_TARGETS= common/avs/ns/rdc
201 clobber: $(EXTRA_CLOBBER_TARGETS)

204 clean.lint modlist: $($(MACH)_ARCHITECTURES)

206 #
207 # Cross-reference customization: build a cross-reference over all of
208 # the supported architectures. Although there’s no correct way to set
209 # the include path (since we don’t know what architecture is the one
210 # the user will be interested in), it’s historically been set to
211 # mirror the $(XRDIRS) list, and that works kinda sorta okay.
212 #
213 # We need to manually prune usr/closed/uts/{i86xpv|sfmmu|i86pc} since
214 # none of them exist.
215 #
216 SHARED_XRDIRS = $(sparc_ARCHITECTURES) $(i386_ARCHITECTURES) sun4 sfmmu \
217 sun common
218 CLOSED_XRDIRS = $(SHARED_XRDIRS:%=% ../../closed/uts/%)
219 XRDIRS = $(SHARED_XRDIRS)
220 CLOSED_XRDIRS_XEN = $(CLOSED_XRDIRS:../../closed/uts/i86xpv=)
221 CLOSED_XRDIRS_1 = $(CLOSED_XRDIRS_XEN:../../closed/uts/i86pc=)
222 $(CLOSED_BUILD)XRDIRS = $(CLOSED_XRDIRS_1:../../closed/uts/sfmmu=)

224 XRINCDIRS = $(XRDIRS)

226 cscope.out tags: FRC
227 $(XREF) -x $@

229 FRC:

new/usr/src/uts/common/Makefile.files 1

**
 43663 Sun Aug 25 23:51:01 2013
new/usr/src/uts/common/Makefile.files
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved.
25 # Copyright (c) 2012 by Delphix. All rights reserved.
26 # Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
27 #

29 #
30 # This Makefile defines all file modules for the directory uts/common
31 # and its children. These are the source files which may be considered
32 # common to all SunOS systems.

34 i386_CORE_OBJS += \
35 atomic.o \
36 avintr.o \
37 pic.o

39 sparc_CORE_OBJS +=

41 COMMON_CORE_OBJS += \
42 beep.o \
43 bitset.o \
44 bp_map.o \
45 brand.o \
46 cpucaps.o \
47 cmt.o \
48 cmt_policy.o \
49 cpu.o \
50 cpu_event.o \
51 cpu_intr.o \
52 cpu_pm.o \
53 cpupart.o \
54 cap_util.o \
55 disp.o \
56 group.o \
57 kstat_fr.o \
58 iscsiboot_prop.o \

new/usr/src/uts/common/Makefile.files 2

59 lgrp.o \
60 lgrp_topo.o \
61 mmapobj.o \
62 mutex.o \
63 page_lock.o \
64 page_retire.o \
65 panic.o \
66 param.o \
67 pg.o \
68 pghw.o \
69 putnext.o \
70 rctl_proc.o \
71 rwlock.o \
72 seg_kmem.o \
73 softint.o \
74 string.o \
75 strtol.o \
76 strtoul.o \
77 strtoll.o \
78 strtoull.o \
79 thread_intr.o \
80 vm_page.o \
81 vm_pagelist.o \
82 zlib_obj.o \
83 clock_tick.o

85 CORE_OBJS += $(COMMON_CORE_OBJS) $($(MACH)_CORE_OBJS)

87 ZLIB_OBJS = zutil.o zmod.o zmod_subr.o \
88 adler32.o crc32.o deflate.o inffast.o \
89 inflate.o inftrees.o trees.o

91 GENUNIX_OBJS += \
92 access.o \
93 acl.o \
94 acl_common.o \
95 adjtime.o \
96 alarm.o \
97 aio_subr.o \
98 auditsys.o \
99 audit_core.o \
100 audit_zone.o \
101 audit_memory.o \
102 autoconf.o \
103 avl.o \
104 bdev_dsort.o \
105 bio.o \
106 bitmap.o \
107 blabel.o \
108 brandsys.o \
109 bz2blocksort.o \
110 bz2compress.o \
111 bz2decompress.o \
112 bz2randtable.o \
113 bz2bzlib.o \
114 bz2crctable.o \
115 bz2huffman.o \
116 callb.o \
117 callout.o \
118 chdir.o \
119 chmod.o \
120 chown.o \
121 cladm.o \
122 class.o \
123 clock.o \
124 clock_highres.o \

new/usr/src/uts/common/Makefile.files 3

125 clock_realtime.o\
126 close.o \
127 compress.o \
128 condvar.o \
129 conf.o \
130 console.o \
131 contract.o \
132 copyops.o \
133 core.o \
134 corectl.o \
135 cred.o \
136 cs_stubs.o \
137 dacf.o \
138 dacf_clnt.o \
139 damap.o \
140 cyclic.o \
141 ddi.o \
142 ddifm.o \
143 ddi_hp_impl.o \
144 ddi_hp_ndi.o \
145 ddi_intr.o \
146 ddi_intr_impl.o \
147 ddi_intr_irm.o \
148 ddi_nodeid.o \
149 ddi_periodic.o \
150 devcfg.o \
151 devcache.o \
152 device.o \
153 devid.o \
154 devid_cache.o \
155 devid_scsi.o \
156 devid_smp.o \
157 devpolicy.o \
158 disp_lock.o \
159 dnlc.o \
160 driver.o \
161 dumpsubr.o \
162 driver_lyr.o \
163 dtrace_subr.o \
164 errorq.o \
165 etheraddr.o \
166 evchannels.o \
167 exacct.o \
168 exacct_core.o \
169 exec.o \
170 exit.o \
171 fbio.o \
172 fcntl.o \
173 fdbuffer.o \
174 fdsync.o \
175 fem.o \
176 ffs.o \
177 fio.o \
178 flock.o \
179 fm.o \
180 fork.o \
181 vpm.o \
182 fs_reparse.o \
183 fs_subr.o \
184 fsflush.o \
185 ftrace.o \
186 getcwd.o \
187 getdents.o \
188 getloadavg.o \
189 getpagesizes.o \
190 getpid.o \

new/usr/src/uts/common/Makefile.files 4

191 gfs.o \
192 rusagesys.o \
193 gid.o \
194 groups.o \
195 grow.o \
196 hat_refmod.o \
197 id32.o \
198 id_space.o \
199 inet_ntop.o \
200 instance.o \
201 ioctl.o \
202 ip_cksum.o \
203 issetugid.o \
204 ippconf.o \
205 kcpc.o \
206 kdi.o \
207 kiconv.o \
208 klpd.o \
209 kmem.o \
210 ksyms_snapshot.o \
211 l_strplumb.o \
212 labelsys.o \
213 link.o \
214 list.o \
215 lockstat_subr.o \
216 log_sysevent.o \
217 logsubr.o \
218 lookup.o \
219 lseek.o \
220 ltos.o \
221 lwp.o \
222 lwp_create.o \
223 lwp_info.o \
224 lwp_self.o \
225 lwp_sobj.o \
226 lwp_timer.o \
227 lwpsys.o \
228 main.o \
229 mmapobjsys.o \
230 memcntl.o \
231 memstr.o \
232 lgrpsys.o \
233 mkdir.o \
234 mknod.o \
235 mount.o \
236 move.o \
237 msacct.o \
238 multidata.o \
239 nbmlock.o \
240 ndifm.o \
241 nice.o \
242 netstack.o \
243 ntptime.o \
244 nvpair.o \
245 nvpair_alloc_system.o \
246 nvpair_alloc_fixed.o \
247 fnvpair.o \
248 octet.o \
249 open.o \
250 p_online.o \
251 pathconf.o \
252 pathname.o \
253 pause.o \
254 serializer.o \
255 pci_intr_lib.o \
256 pci_cap.o \

new/usr/src/uts/common/Makefile.files 5

257 pcifm.o \
258 pgrp.o \
259 pgrpsys.o \
260 pid.o \
261 pkp_hash.o \
262 policy.o \
263 poll.o \
264 pool.o \
265 pool_pset.o \
266 port_subr.o \
267 ppriv.o \
268 printf.o \
269 priocntl.o \
270 priv.o \
271 priv_const.o \
272 proc.o \
273 procset.o \
274 processor_bind.o \
275 processor_info.o \
276 profil.o \
277 project.o \
278 qsort.o \
279 rctl.o \
280 rctlsys.o \
281 readlink.o \
282 refstr.o \
283 rename.o \
284 resolvepath.o \
285 retire_store.o \
286 process.o \
287 rlimit.o \
288 rmap.o \
289 rw.o \
290 rwstlock.o \
291 sad_conf.o \
292 sid.o \
293 sidsys.o \
294 sched.o \
295 schedctl.o \
296 sctp_crc32.o \
297 seg_dev.o \
298 seg_kp.o \
299 seg_kpm.o \
300 seg_map.o \
301 seg_vn.o \
302 seg_spt.o \
303 semaphore.o \
304 sendfile.o \
305 session.o \
306 share.o \
307 shuttle.o \
308 sig.o \
309 sigaction.o \
310 sigaltstack.o \
311 signotify.o \
312 sigpending.o \
313 sigprocmask.o \
314 sigqueue.o \
315 sigsendset.o \
316 sigsuspend.o \
317 sigtimedwait.o \
318 sleepq.o \
319 sock_conf.o \
320 space.o \
321 sscanf.o \
322 stat.o \

new/usr/src/uts/common/Makefile.files 6

323 statfs.o \
324 statvfs.o \
325 stol.o \
326 str_conf.o \
327 strcalls.o \
328 stream.o \
329 streamio.o \
330 strext.o \
331 strsubr.o \
332 strsun.o \
333 subr.o \
334 sunddi.o \
335 sunmdi.o \
336 sunndi.o \
337 sunpci.o \
338 sunpm.o \
339 sundlpi.o \
340 suntpi.o \
341 swap_subr.o \
342 swap_vnops.o \
343 symlink.o \
344 sync.o \
345 sysclass.o \
346 sysconfig.o \
347 sysent.o \
348 sysfs.o \
349 systeminfo.o \
350 task.o \
351 taskq.o \
352 tasksys.o \
353 time.o \
354 timer.o \
355 times.o \
356 timers.o \
357 thread.o \
358 tlabel.o \
359 tnf_res.o \
360 turnstile.o \
361 tty_common.o \
362 u8_textprep.o \
363 uadmin.o \
364 uconv.o \
365 ucredsys.o \
366 uid.o \
367 umask.o \
368 umount.o \
369 uname.o \
370 unix_bb.o \
371 unlink.o \
372 urw.o \
373 utime.o \
374 utssys.o \
375 uucopy.o \
376 vfs.o \
377 vfs_conf.o \
378 vmem.o \
379 vm_anon.o \
380 vm_as.o \
381 vm_meter.o \
382 vm_pageout.o \
383 vm_pvn.o \
384 vm_rm.o \
385 vm_seg.o \
386 vm_subr.o \
387 vm_swap.o \
388 vm_usage.o \

new/usr/src/uts/common/Makefile.files 7

389 vnode.o \
390 vuid_queue.o \
391 vuid_store.o \
392 waitq.o \
393 watchpoint.o \
394 yield.o \
395 scsi_confdata.o \
396 xattr.o \
397 xattr_common.o \
398 xdr_mblk.o \
399 xdr_mem.o \
400 xdr.o \
401 xdr_array.o \
402 xdr_refer.o \
403 xhat.o \
404 zone.o

406 #
407 # Stubs for the stand-alone linker/loader
408 #
409 sparc_GENSTUBS_OBJS = \
410 kobj_stubs.o

412 i386_GENSTUBS_OBJS =

414 COMMON_GENSTUBS_OBJS =

416 GENSTUBS_OBJS += $(COMMON_GENSTUBS_OBJS) $($(MACH)_GENSTUBS_OBJS)

418 #
419 # DTrace and DTrace Providers
420 #
421 DTRACE_OBJS += dtrace.o dtrace_isa.o dtrace_asm.o

423 SDT_OBJS += sdt_subr.o

425 PROFILE_OBJS += profile.o

427 SYSTRACE_OBJS += systrace.o

429 LOCKSTAT_OBJS += lockstat.o

431 FASTTRAP_OBJS += fasttrap.o fasttrap_isa.o

433 DCPC_OBJS += dcpc.o

435 #
436 # Driver (pseudo-driver) Modules
437 #
438 IPP_OBJS += ippctl.o

440 AUDIO_OBJS += audio_client.o audio_ddi.o audio_engine.o \
441 audio_fltdata.o audio_format.o audio_ctrl.o \
442 audio_grc3.o audio_output.o audio_input.o \
443 audio_oss.o audio_sun.o

445 AUDIOEMU10K_OBJS += audioemu10k.o

447 AUDIOENS_OBJS += audioens.o

449 AUDIOVIA823X_OBJS += audiovia823x.o

451 AUDIOVIA97_OBJS += audiovia97.o

453 AUDIO1575_OBJS += audio1575.o

new/usr/src/uts/common/Makefile.files 8

455 AUDIO810_OBJS += audio810.o

457 AUDIOCMI_OBJS += audiocmi.o

459 AUDIOCMIHD_OBJS += audiocmihd.o

461 AUDIOHD_OBJS += audiohd.o

463 AUDIOIXP_OBJS += audioixp.o

465 AUDIOLS_OBJS += audiols.o

467 AUDIOP16X_OBJS += audiop16x.o

469 AUDIOPCI_OBJS += audiopci.o

471 AUDIOSOLO_OBJS += audiosolo.o

473 AUDIOTS_OBJS += audiots.o

475 AC97_OBJS += ac97.o ac97_ad.o ac97_alc.o ac97_cmi.o

477 BLKDEV_OBJS += blkdev.o

479 CARDBUS_OBJS += cardbus.o cardbus_hp.o cardbus_cfg.o

481 CONSKBD_OBJS += conskbd.o

483 CONSMS_OBJS += consms.o

485 OLDPTY_OBJS += tty_ptyconf.o

487 PTC_OBJS += tty_pty.o

489 PTSL_OBJS += tty_pts.o

491 PTM_OBJS += ptm.o

493 MII_OBJS += mii.o mii_cicada.o mii_natsemi.o mii_intel.o mii_qualsemi.o \
494 mii_marvell.o mii_realtek.o mii_other.o

496 PTS_OBJS += pts.o

498 PTY_OBJS += ptms_conf.o

500 SAD_OBJS += sad.o

502 MD4_OBJS += md4.o md4_mod.o

504 MD5_OBJS += md5.o md5_mod.o

506 SHA1_OBJS += sha1.o sha1_mod.o

508 SHA2_OBJS += sha2.o sha2_mod.o

510 IPGPC_OBJS += classifierddi.o classifier.o filters.o trie.o table.o \
511 ba_table.o

513 DSCPMK_OBJS += dscpmk.o dscpmkddi.o

515 DLCOSMK_OBJS += dlcosmk.o dlcosmkddi.o

517 FLOWACCT_OBJS += flowacctddi.o flowacct.o

519 TOKENMT_OBJS += tokenmt.o tokenmtddi.o

new/usr/src/uts/common/Makefile.files 9

521 TSWTCL_OBJS += tswtcl.o tswtclddi.o

523 ARP_OBJS += arpddi.o

525 ICMP_OBJS += icmpddi.o

527 ICMP6_OBJS += icmp6ddi.o

529 RTS_OBJS += rtsddi.o

531 IP_ICMP_OBJS = icmp.o icmp_opt_data.o
532 IP_RTS_OBJS = rts.o rts_opt_data.o
533 IP_TCP_OBJS = tcp.o tcp_fusion.o tcp_opt_data.o tcp_sack.o tcp_stats.o \
534 tcp_misc.o tcp_timers.o tcp_time_wait.o tcp_tpi.o tcp_output.o \
535 tcp_input.o tcp_socket.o tcp_bind.o tcp_cluster.o tcp_tunables.o
536 IP_UDP_OBJS = udp.o udp_opt_data.o udp_tunables.o udp_stats.o
537 IP_SCTP_OBJS = sctp.o sctp_opt_data.o sctp_output.o \
538 sctp_init.o sctp_input.o sctp_cookie.o \
539 sctp_conn.o sctp_error.o sctp_snmp.o \
540 sctp_tunables.o sctp_shutdown.o sctp_common.o \
541 sctp_timer.o sctp_heartbeat.o sctp_hash.o \
542 sctp_bind.o sctp_notify.o sctp_asconf.o \
543 sctp_addr.o tn_ipopt.o tnet.o ip_netinfo.o \
544 sctp_misc.o
545 IP_ILB_OBJS = ilb.o ilb_nat.o ilb_conn.o ilb_alg_hash.o ilb_alg_rr.o

547 IP_OBJS += igmp.o ipmp.o ip.o ip6.o ip6_asp.o ip6_if.o ip6_ire.o \
548 ip6_rts.o ip_if.o ip_ire.o ip_listutils.o ip_mroute.o \
549 ip_multi.o ip2mac.o ip_ndp.o ip_rts.o ip_srcid.o \
550 ipddi.o ipdrop.o mi.o nd.o tunables.o optcom.o snmpcom.o \
551 ipsec_loader.o spd.o ipclassifier.o inet_common.o ip_squeue.o \
552 squeue.o ip_sadb.o ip_ftable.o proto_set.o radix.o ip_dummy.o \
553 ip_helper_stream.o ip_tunables.o \
554 ip_output.o ip_input.o ip6_input.o ip6_output.o ip_arp.o \
555 conn_opt.o ip_attr.o ip_dce.o \
556 $(IP_ICMP_OBJS) \
557 $(IP_RTS_OBJS) \
558 $(IP_TCP_OBJS) \
559 $(IP_UDP_OBJS) \
560 $(IP_SCTP_OBJS) \
561 $(IP_ILB_OBJS)

563 IP6_OBJS += ip6ddi.o

565 HOOK_OBJS += hook.o

567 NETI_OBJS += neti_impl.o neti_mod.o neti_stack.o

569 KEYSOCK_OBJS += keysockddi.o keysock.o keysock_opt_data.o

571 IPNET_OBJS += ipnet.o ipnet_bpf.o

573 SPDSOCK_OBJS += spdsockddi.o spdsock.o spdsock_opt_data.o

575 IPSECESP_OBJS += ipsecespddi.o ipsecesp.o

577 IPSECAH_OBJS += ipsecahddi.o ipsecah.o sadb.o

579 SPPP_OBJS += sppp.o sppp_dlpi.o sppp_mod.o s_common.o

581 SPPPTUN_OBJS += sppptun.o sppptun_mod.o

583 SPPPASYN_OBJS += spppasyn.o spppasyn_mod.o

585 SPPPCOMP_OBJS += spppcomp.o spppcomp_mod.o deflate.o bsd-comp.o vjcompress.o \
586 zlib.o

new/usr/src/uts/common/Makefile.files 10

588 TCP_OBJS += tcpddi.o

590 TCP6_OBJS += tcp6ddi.o

592 NCA_OBJS += ncaddi.o

594 SDP_SOCK_MOD_OBJS += sockmod_sdp.o socksdp.o socksdpsubr.o

596 SCTP_SOCK_MOD_OBJS += sockmod_sctp.o socksctp.o socksctpsubr.o

598 PFP_SOCK_MOD_OBJS += sockmod_pfp.o

600 RDS_SOCK_MOD_OBJS += sockmod_rds.o

602 RDS_OBJS += rdsddi.o rdssubr.o rds_opt.o rds_ioctl.o

604 RDSIB_OBJS += rdsib.o rdsib_ib.o rdsib_cm.o rdsib_ep.o rdsib_buf.o \
605 rdsib_debug.o rdsib_sc.o

607 RDSV3_OBJS += af_rds.o rdsv3_ddi.o bind.o loop.o threads.o connection.o \
608 transport.o cong.o sysctl.o message.o rds_recv.o send.o \
609 stats.o info.o page.o rdma_transport.o ib_ring.o ib_rdma.o \
610 ib_recv.o ib.o ib_send.o ib_sysctl.o ib_stats.o ib_cm.o \
611 rdsv3_sc.o rdsv3_debug.o rdsv3_impl.o rdma.o rdsv3_af_thr.o

613 ISER_OBJS += iser.o iser_cm.o iser_cq.o iser_ib.o iser_idm.o \
614 iser_resource.o iser_xfer.o

616 UDP_OBJS += udpddi.o

618 UDP6_OBJS += udp6ddi.o

620 SY_OBJS += gentty.o

622 TCO_OBJS += ticots.o

624 TCOO_OBJS += ticotsord.o

626 TCL_OBJS += ticlts.o

628 TL_OBJS += tl.o

630 DUMP_OBJS += dump.o

632 BPF_OBJS += bpf.o bpf_filter.o bpf_mod.o bpf_dlt.o bpf_mac.o

634 CLONE_OBJS += clone.o

636 CN_OBJS += cons.o

638 DLD_OBJS += dld_drv.o dld_proto.o dld_str.o dld_flow.o

640 DLS_OBJS += dls.o dls_link.o dls_mod.o dls_stat.o dls_mgmt.o

642 GLD_OBJS += gld.o gldutil.o

644 MAC_OBJS += mac.o mac_bcast.o mac_client.o mac_datapath_setup.o mac_flow.o
645 mac_hio.o mac_mod.o mac_ndd.o mac_provider.o mac_sched.o \
646 mac_protect.o mac_soft_ring.o mac_stat.o mac_util.o

648 MAC_6TO4_OBJS += mac_6to4.o

650 MAC_ETHER_OBJS += mac_ether.o

652 MAC_IPV4_OBJS += mac_ipv4.o

new/usr/src/uts/common/Makefile.files 11

654 MAC_IPV6_OBJS += mac_ipv6.o

656 MAC_WIFI_OBJS += mac_wifi.o

658 MAC_IB_OBJS += mac_ib.o

660 IPTUN_OBJS += iptun_dev.o iptun_ctl.o iptun.o

662 AGGR_OBJS += aggr_dev.o aggr_ctl.o aggr_grp.o aggr_port.o \
663 aggr_send.o aggr_recv.o aggr_lacp.o

665 SOFTMAC_OBJS += softmac_main.o softmac_ctl.o softmac_capab.o \
666 softmac_dev.o softmac_stat.o softmac_pkt.o softmac_fp.o

668 NET80211_OBJS += net80211.o net80211_proto.o net80211_input.o \
669 net80211_output.o net80211_node.o net80211_crypto.o \
670 net80211_crypto_none.o net80211_crypto_wep.o net80211_ioctl.o \
671 net80211_crypto_tkip.o net80211_crypto_ccmp.o \
672 net80211_ht.o

674 VNIC_OBJS += vnic_ctl.o vnic_dev.o

676 SIMNET_OBJS += simnet.o

678 IB_OBJS += ibnex.o ibnex_ioctl.o ibnex_hca.o

680 IBCM_OBJS += ibcm_impl.o ibcm_sm.o ibcm_ti.o ibcm_utils.o ibcm_path.o \
681 ibcm_arp.o ibcm_arp_link.o

683 IBDM_OBJS += ibdm.o

685 IBDMA_OBJS += ibdma.o

687 IBMF_OBJS += ibmf.o ibmf_impl.o ibmf_dr.o ibmf_wqe.o ibmf_ud_dest.o ibmf_mod.
688 ibmf_send.o ibmf_recv.o ibmf_handlers.o ibmf_trans.o \
689 ibmf_timers.o ibmf_msg.o ibmf_utils.o ibmf_rmpp.o \
690 ibmf_saa.o ibmf_saa_impl.o ibmf_saa_utils.o ibmf_saa_events.o

692 IBTL_OBJS += ibtl_impl.o ibtl_util.o ibtl_mem.o ibtl_handlers.o ibtl_qp.o \
693 ibtl_cq.o ibtl_wr.o ibtl_hca.o ibtl_chan.o ibtl_cm.o \
694 ibtl_mcg.o ibtl_ibnex.o ibtl_srq.o ibtl_part.o

696 TAVOR_OBJS += tavor.o tavor_agents.o tavor_cfg.o tavor_ci.o tavor_cmd.o \
697 tavor_cq.o tavor_event.o tavor_ioctl.o tavor_misc.o \
698 tavor_mr.o tavor_qp.o tavor_qpmod.o tavor_rsrc.o \
699 tavor_srq.o tavor_stats.o tavor_umap.o tavor_wr.o

701 HERMON_OBJS += hermon.o hermon_agents.o hermon_cfg.o hermon_ci.o hermon_cmd.o \
702 hermon_cq.o hermon_event.o hermon_ioctl.o hermon_misc.o \
703 hermon_mr.o hermon_qp.o hermon_qpmod.o hermon_rsrc.o \
704 hermon_srq.o hermon_stats.o hermon_umap.o hermon_wr.o \
705 hermon_fcoib.o hermon_fm.o

707 DAPLT_OBJS += daplt.o

709 SOL_OFS_OBJS += sol_cma.o sol_ib_cma.o sol_uobj.o \
710 sol_ofs_debug_util.o sol_ofs_gen_util.o \
711 sol_kverbs.o

713 SOL_UCMA_OBJS += sol_ucma.o

715 SOL_UVERBS_OBJS += sol_uverbs.o sol_uverbs_comp.o sol_uverbs_event.o \
716 sol_uverbs_hca.o sol_uverbs_qp.o

718 SOL_UMAD_OBJS += sol_umad.o

new/usr/src/uts/common/Makefile.files 12

720 KSTAT_OBJS += kstat.o

722 KSYMS_OBJS += ksyms.o

724 INSTANCE_OBJS += inst_sync.o

726 IWSCN_OBJS += iwscons.o

728 LOFI_OBJS += lofi.o LzmaDec.o

730 FSSNAP_OBJS += fssnap.o

732 FSSNAPIF_OBJS += fssnap_if.o

734 MM_OBJS += mem.o

736 PHYSMEM_OBJS += physmem.o

738 OPTIONS_OBJS += options.o

740 WINLOCK_OBJS += winlockio.o

742 PM_OBJS += pm.o
743 SRN_OBJS += srn.o

745 PSEUDO_OBJS += pseudonex.o

747 RAMDISK_OBJS += ramdisk.o

749 LLC1_OBJS += llc1.o

751 USBKBM_OBJS += usbkbm.o

753 USBWCM_OBJS += usbwcm.o

755 BOFI_OBJS += bofi.o

757 HID_OBJS += hid.o

759 HWA_RC_OBJS += hwarc.o

761 USBSKEL_OBJS += usbskel.o

763 USBVC_OBJS += usbvc.o usbvc_v4l2.o

765 HIDPARSER_OBJS += hidparser.o

767 USB_AC_OBJS += usb_ac.o

769 USB_AS_OBJS += usb_as.o

771 USB_AH_OBJS += usb_ah.o

773 USBMS_OBJS += usbms.o

775 USBPRN_OBJS += usbprn.o

777 UGEN_OBJS += ugen.o

779 USBSER_OBJS += usbser.o usbser_rseq.o

781 USBSACM_OBJS += usbsacm.o

783 USBSER_KEYSPAN_OBJS += usbser_keyspan.o keyspan_dsd.o keyspan_pipe.o

new/usr/src/uts/common/Makefile.files 13

785 USBS49_FW_OBJS += keyspan_49fw.o

787 USBSPRL_OBJS += usbser_pl2303.o pl2303_dsd.o

789 WUSB_CA_OBJS += wusb_ca.o

791 USBFTDI_OBJS += usbser_uftdi.o uftdi_dsd.o

793 USBECM_OBJS += usbecm.o

795 WC_OBJS += wscons.o vcons.o

797 VCONS_CONF_OBJS += vcons_conf.o

799 SCSI_OBJS += scsi_capabilities.o scsi_confsubr.o scsi_control.o \
800 scsi_data.o scsi_fm.o scsi_hba.o scsi_reset_notify.o \
801 scsi_resource.o scsi_subr.o scsi_transport.o scsi_watch.o \
802 smp_transport.o

804 SCSI_VHCI_OBJS += scsi_vhci.o mpapi_impl.o scsi_vhci_tpgs.o

806 SCSI_VHCI_F_SYM_OBJS += sym.o

808 SCSI_VHCI_F_TPGS_OBJS += tpgs.o

810 SCSI_VHCI_F_ASYM_SUN_OBJS += asym_sun.o

812 SCSI_VHCI_F_SYM_HDS_OBJS += sym_hds.o

814 SCSI_VHCI_F_TAPE_OBJS += tape.o

816 SCSI_VHCI_F_TPGS_TAPE_OBJS += tpgs_tape.o

818 SGEN_OBJS += sgen.o

820 SMP_OBJS += smp.o

822 SATA_OBJS += sata.o

824 USBA_OBJS += hcdi.o usba.o usbai.o hubdi.o parser.o genconsole.o \
825 usbai_pipe_mgmt.o usbai_req.o usbai_util.o usbai_register.o \
826 usba_devdb.o usba10_calls.o usba_ugen.o whcdi.o wa.o
827 USBA_WITHOUT_WUSB_OBJS += hcdi.o usba.o usbai.o hubdi.o parser.o gencons
828 usbai_pipe_mgmt.o usbai_req.o usbai_util.o usbai_register.o \
829 usba_devdb.o usba10_calls.o usba_ugen.o

831 USBA10_OBJS += usba10.o

833 RSM_OBJS += rsm.o rsmka_pathmanager.o rsmka_util.o

835 RSMOPS_OBJS += rsmops.o

837 S1394_OBJS += t1394.o t1394_errmsg.o s1394.o s1394_addr.o s1394_asynch.o \
838 s1394_bus_reset.o s1394_cmp.o s1394_csr.o s1394_dev_disc.o \
839 s1394_fa.o s1394_fcp.o \
840 s1394_hotplug.o s1394_isoch.o s1394_misc.o h1394.o nx1394.o

842 HCI1394_OBJS += hci1394.o hci1394_async.o hci1394_attach.o hci1394_buf.o \
843 hci1394_csr.o hci1394_detach.o hci1394_extern.o \
844 hci1394_ioctl.o hci1394_isoch.o hci1394_isr.o \
845 hci1394_ixl_comp.o hci1394_ixl_isr.o hci1394_ixl_misc.o \
846 hci1394_ixl_update.o hci1394_misc.o hci1394_ohci.o \
847 hci1394_q.o hci1394_s1394if.o hci1394_tlabel.o \
848 hci1394_tlist.o hci1394_vendor.o

850 AV1394_OBJS += av1394.o av1394_as.o av1394_async.o av1394_cfgrom.o \

new/usr/src/uts/common/Makefile.files 14

851 av1394_cmp.o av1394_fcp.o av1394_isoch.o av1394_isoch_chan.o \
852 av1394_isoch_recv.o av1394_isoch_xmit.o av1394_list.o \
853 av1394_queue.o

855 DCAM1394_OBJS += dcam.o dcam_frame.o dcam_param.o dcam_reg.o \
856 dcam_ring_buff.o

858 SCSA1394_OBJS += hba.o sbp2_driver.o sbp2_bus.o

860 SBP2_OBJS += cfgrom.o sbp2.o

862 PMODEM_OBJS += pmodem.o pmodem_cis.o cis.o cis_callout.o cis_handlers.o cis_para

864 DSW_OBJS += dsw.o dsw_dev.o ii_tree.o

866 NCALL_OBJS += ncall.o \
867 ncall_stub.o

869 RDC_OBJS += rdc.o \
870 rdc_dev.o \
871 rdc_io.o \
872 rdc_clnt.o \
873 rdc_prot_xdr.o \
874 rdc_svc.o \
875 rdc_bitmap.o \
876 rdc_health.o \
877 rdc_subr.o \
878 rdc_diskq.o

880 RDCSRV_OBJS += rdcsrv.o

882 RDCSTUB_OBJS += rdc_stub.o

884 SDBC_OBJS += sd_bcache.o \
885 sd_bio.o \
886 sd_conf.o \
887 sd_ft.o \
888 sd_hash.o \
889 sd_io.o \
890 sd_misc.o \
891 sd_pcu.o \
892 sd_tdaemon.o \
893 sd_trace.o \
894 sd_iob_impl0.o \
895 sd_iob_impl1.o \
896 sd_iob_impl2.o \
897 sd_iob_impl3.o \
898 sd_iob_impl4.o \
899 sd_iob_impl5.o \
900 sd_iob_impl6.o \
901 sd_iob_impl7.o \
902 safestore.o \
903 safestore_ram.o

905 NSCTL_OBJS += nsctl.o \
906 nsc_cache.o \
907 nsc_disk.o \
908 nsc_dev.o \
909 nsc_freeze.o \
910 nsc_gen.o \
911 nsc_mem.o \
912 nsc_ncallio.o \
913 nsc_power.o \
914 nsc_resv.o \
915 nsc_rmspin.o \
916 nsc_solaris.o \

new/usr/src/uts/common/Makefile.files 15

917 nsc_trap.o \
918 nsc_list.o
919 UNISTAT_OBJS += spuni.o \
920 spcs_s_k.o

922 NSKERN_OBJS += nsc_ddi.o \
923 nsc_proc.o \
924 nsc_raw.o \
925 nsc_thread.o \
926 nskernd.o

928 SV_OBJS += sv.o

930 PMCS_OBJS += pmcs_attach.o pmcs_ds.o pmcs_intr.o pmcs_nvram.o pmcs_sata.o \
931 pmcs_scsa.o pmcs_smhba.o pmcs_subr.o pmcs_fwlog.o

933 PMCS8001FW_C_OBJS += pmcs_fw_hdr.o
934 PMCS8001FW_OBJS += $(PMCS8001FW_C_OBJS) SPCBoot.o ila.o firmware.o

936 #
937 # Build up defines and paths.

939 ST_OBJS += st.o st_conf.o

941 EMLXS_OBJS += emlxs_clock.o emlxs_dfc.o emlxs_dhchap.o emlxs_diag.o \
942 emlxs_download.o emlxs_dump.o emlxs_els.o emlxs_event.o \
943 emlxs_fcf.o emlxs_fcp.o emlxs_fct.o emlxs_hba.o emlxs_ip.o \
944 emlxs_mbox.o emlxs_mem.o emlxs_msg.o emlxs_node.o \
945 emlxs_pkt.o emlxs_sli3.o emlxs_sli4.o emlxs_solaris.o \
946 emlxs_thread.o

948 EMLXS_FW_OBJS += emlxs_fw.o

950 OCE_OBJS += oce_buf.o oce_fm.o oce_gld.o oce_hw.o oce_intr.o oce_main.o \
951 oce_mbx.o oce_mq.o oce_queue.o oce_rx.o oce_stat.o oce_tx.o \
952 oce_utils.o

954 FCT_OBJS += discovery.o fct.o

956 QLT_OBJS += 2400.o 2500.o 8100.o qlt.o qlt_dma.o

958 SRPT_OBJS += srpt_mod.o srpt_ch.o srpt_cm.o srpt_ioc.o srpt_stp.o

960 FCOE_OBJS += fcoe.o fcoe_eth.o fcoe_fc.o

962 FCOET_OBJS += fcoet.o fcoet_eth.o fcoet_fc.o

964 FCOEI_OBJS += fcoei.o fcoei_eth.o fcoei_lv.o

966 ISCSIT_SHARED_OBJS += \
967 iscsit_common.o

969 ISCSIT_OBJS += $(ISCSIT_SHARED_OBJS) \
970 iscsit.o iscsit_tgt.o iscsit_sess.o iscsit_login.o \
971 iscsit_text.o iscsit_isns.o iscsit_radiusauth.o \
972 iscsit_radiuspacket.o iscsit_auth.o iscsit_authclient.o

974 PPPT_OBJS += alua_ic_if.o pppt.o pppt_msg.o pppt_tgt.o

976 STMF_OBJS += lun_map.o stmf.o

978 STMF_SBD_OBJS += sbd.o sbd_scsi.o sbd_pgr.o sbd_zvol.o

980 SYSMSG_OBJS += sysmsg.o

982 SES_OBJS += ses.o ses_sen.o ses_safte.o ses_ses.o

new/usr/src/uts/common/Makefile.files 16

984 TNF_OBJS += tnf_buf.o tnf_trace.o tnf_writer.o trace_init.o \
985 trace_funcs.o tnf_probe.o tnf.o

987 LOGINDMUX_OBJS += logindmux.o

989 DEVINFO_OBJS += devinfo.o

991 DEVPOLL_OBJS += devpoll.o

993 DEVPOOL_OBJS += devpool.o

995 I8042_OBJS += i8042.o

997 KB8042_OBJS += \
998 at_keyprocess.o \
999 kb8042.o \

1000 kb8042_keytables.o

1002 MOUSE8042_OBJS += mouse8042.o

1004 FDC_OBJS += fdc.o

1006 ASY_OBJS += asy.o

1008 ECPP_OBJS += ecpp.o

1010 VUIDM3P_OBJS += vuidmice.o vuidm3p.o

1012 VUIDM4P_OBJS += vuidmice.o vuidm4p.o

1014 VUIDM5P_OBJS += vuidmice.o vuidm5p.o

1016 VUIDPS2_OBJS += vuidmice.o vuidps2.o

1018 HPCSVC_OBJS += hpcsvc.o

1020 PCIE_MISC_OBJS += pcie.o pcie_fault.o pcie_hp.o pciehpc.o pcishpc.o pcie_pwr.o p

1022 PCIHPNEXUS_OBJS += pcihp.o

1024 OPENEEPR_OBJS += openprom.o

1026 RANDOM_OBJS += random.o

1028 PSHOT_OBJS += pshot.o

1030 GEN_DRV_OBJS += gen_drv.o

1032 TCLIENT_OBJS += tclient.o

1034 TPHCI_OBJS += tphci.o

1036 TVHCI_OBJS += tvhci.o

1038 EMUL64_OBJS += emul64.o emul64_bsd.o

1040 FCP_OBJS += fcp.o

1042 FCIP_OBJS += fcip.o

1044 FCSM_OBJS += fcsm.o

1046 FCTL_OBJS += fctl.o

1048 FP_OBJS += fp.o

new/usr/src/uts/common/Makefile.files 17

1050 QLC_OBJS += ql_api.o ql_debug.o ql_hba_fru.o ql_init.o ql_iocb.o ql_ioctl.o \
1051 ql_isr.o ql_mbx.o ql_nx.o ql_xioctl.o ql_fw_table.o

1053 QLC_FW_2200_OBJS += ql_fw_2200.o

1055 QLC_FW_2300_OBJS += ql_fw_2300.o

1057 QLC_FW_2400_OBJS += ql_fw_2400.o

1059 QLC_FW_2500_OBJS += ql_fw_2500.o

1061 QLC_FW_6322_OBJS += ql_fw_6322.o

1063 QLC_FW_8100_OBJS += ql_fw_8100.o

1065 QLGE_OBJS += qlge.o qlge_dbg.o qlge_flash.o qlge_fm.o qlge_gld.o qlge_mpi.o

1067 ZCONS_OBJS += zcons.o

1069 NV_SATA_OBJS += nv_sata.o

1071 SI3124_OBJS += si3124.o

1073 AHCI_OBJS += ahci.o

1075 PCIIDE_OBJS += pci-ide.o

1077 PCEPP_OBJS += pcepp.o

1079 CPC_OBJS += cpc.o

1081 CPUID_OBJS += cpuid_drv.o

1083 SYSEVENT_OBJS += sysevent.o

1085 BL_OBJS += bl.o

1087 DRM_OBJS += drm_sunmod.o drm_kstat.o drm_agpsupport.o \
1088 drm_auth.o drm_bufs.o drm_context.o drm_dma.o \
1089 drm_drawable.o drm_drv.o drm_fops.o drm_ioctl.o drm_irq.o \
1090 drm_lock.o drm_memory.o drm_msg.o drm_pci.o drm_scatter.o \
1091 drm_cache.o drm_gem.o drm_mm.o ati_pcigart.o

1093 FM_OBJS += devfm.o devfm_machdep.o

1095 RTLS_OBJS += rtls.o

1097 #
1098 # exec modules
1099 #
1100 AOUTEXEC_OBJS +=aout.o

1102 ELFEXEC_OBJS += elf.o elf_notes.o old_notes.o

1104 INTPEXEC_OBJS +=intp.o

1106 SHBINEXEC_OBJS +=shbin.o

1108 JAVAEXEC_OBJS +=java.o

1110 #
1111 # file system modules
1112 #
1113 AUTOFS_OBJS += auto_vfsops.o auto_vnops.o auto_subr.o auto_xdr.o auto_sys.o

new/usr/src/uts/common/Makefile.files 18

1115 CACHEFS_OBJS += cachefs_cnode.o cachefs_cod.o \
1116 cachefs_dir.o cachefs_dlog.o cachefs_filegrp.o \
1117 cachefs_fscache.o cachefs_ioctl.o cachefs_log.o \
1118 cachefs_module.o \
1119 cachefs_noopc.o cachefs_resource.o \
1120 cachefs_strict.o \
1121 cachefs_subr.o cachefs_vfsops.o \
1122 cachefs_vnops.o

1124 DCFS_OBJS += dc_vnops.o

1126 DEVFS_OBJS += devfs_subr.o devfs_vfsops.o devfs_vnops.o

1128 DEV_OBJS += sdev_subr.o sdev_vfsops.o sdev_vnops.o \
1129 sdev_ptsops.o sdev_zvolops.o sdev_comm.o \
1130 sdev_profile.o sdev_ncache.o sdev_netops.o \
1131 sdev_ipnetops.o \
1132 sdev_vtops.o

1134 CTFS_OBJS += ctfs_all.o ctfs_cdir.o ctfs_ctl.o ctfs_event.o \
1135 ctfs_latest.o ctfs_root.o ctfs_sym.o ctfs_tdir.o ctfs_tmpl.o

1137 OBJFS_OBJS += objfs_vfs.o objfs_root.o objfs_common.o \
1138 objfs_odir.o objfs_data.o

1140 FDFS_OBJS += fdops.o

1142 FIFO_OBJS += fifosubr.o fifovnops.o

1144 PIPE_OBJS += pipe.o

1146 HSFS_OBJS += hsfs_node.o hsfs_subr.o hsfs_vfsops.o hsfs_vnops.o \
1147 hsfs_susp.o hsfs_rrip.o hsfs_susp_subr.o

1149 LOFS_OBJS += lofs_subr.o lofs_vfsops.o lofs_vnops.o

1151 NAMEFS_OBJS += namevfs.o namevno.o

1153 NFS_OBJS += nfs_client.o nfs_common.o nfs_dump.o \
1154 nfs_subr.o nfs_vfsops.o nfs_vnops.o \
1155 nfs_xdr.o nfs_sys.o nfs_strerror.o \
1156 nfs3_vfsops.o nfs3_vnops.o nfs3_xdr.o \
1157 nfs_acl_vnops.o nfs_acl_xdr.o nfs4_vfsops.o \
1158 nfs4_vnops.o nfs4_xdr.o nfs4_idmap.o \
1159 nfs4_shadow.o nfs4_subr.o \
1160 nfs4_attr.o nfs4_rnode.o nfs4_client.o \
1161 nfs4_acache.o nfs4_common.o nfs4_client_state.o \
1162 nfs4_callback.o nfs4_recovery.o nfs4_client_secinfo.o \
1163 nfs4_client_debug.o nfs_stats.o \
1164 nfs4_acl.o nfs4_stub_vnops.o nfs_cmd.o

1166 NFSSRV_OBJS += nfs_server.o nfs_srv.o nfs3_srv.o \
1167 nfs_acl_srv.o nfs_auth.o nfs_auth_xdr.o \
1168 nfs_export.o nfs_log.o nfs_log_xdr.o \
1169 nfs4_srv.o nfs4_state.o nfs4_srv_attr.o \
1170 nfs4_srv_ns.o nfs4_db.o nfs4_srv_deleg.o \
1171 nfs4_deleg_ops.o nfs4_srv_readdir.o nfs4_dispatch.o

1173 SMBSRV_SHARED_OBJS += \
1174 smb_inet.o \
1175 smb_match.o \
1176 smb_msgbuf.o \
1177 smb_oem.o \
1178 smb_string.o \
1179 smb_utf8.o \
1180 smb_door_legacy.o \

new/usr/src/uts/common/Makefile.files 19

1181 smb_xdr.o \
1182 smb_token.o \
1183 smb_token_xdr.o \
1184 smb_sid.o \
1185 smb_native.o \
1186 smb_netbios_util.o

1188 SMBSRV_OBJS += $(SMBSRV_SHARED_OBJS) \
1189 smb_acl.o \
1190 smb_alloc.o \
1191 smb_close.o \
1192 smb_common_open.o \
1193 smb_common_transact.o \
1194 smb_create.o \
1195 smb_delete.o \
1196 smb_directory.o \
1197 smb_dispatch.o \
1198 smb_echo.o \
1199 smb_fem.o \
1200 smb_find.o \
1201 smb_flush.o \
1202 smb_fsinfo.o \
1203 smb_fsops.o \
1204 smb_init.o \
1205 smb_kdoor.o \
1206 smb_kshare.o \
1207 smb_kutil.o \
1208 smb_lock.o \
1209 smb_lock_byte_range.o \
1210 smb_locking_andx.o \
1211 smb_logoff_andx.o \
1212 smb_mangle_name.o \
1213 smb_mbuf_marshaling.o \
1214 smb_mbuf_util.o \
1215 smb_negotiate.o \
1216 smb_net.o \
1217 smb_node.o \
1218 smb_nt_cancel.o \
1219 smb_nt_create_andx.o \
1220 smb_nt_transact_create.o \
1221 smb_nt_transact_ioctl.o \
1222 smb_nt_transact_notify_change.o \
1223 smb_nt_transact_quota.o \
1224 smb_nt_transact_security.o \
1225 smb_odir.o \
1226 smb_ofile.o \
1227 smb_open_andx.o \
1228 smb_opipe.o \
1229 smb_oplock.o \
1230 smb_pathname.o \
1231 smb_print.o \
1232 smb_process_exit.o \
1233 smb_query_fileinfo.o \
1234 smb_read.o \
1235 smb_rename.o \
1236 smb_sd.o \
1237 smb_seek.o \
1238 smb_server.o \
1239 smb_session.o \
1240 smb_session_setup_andx.o \
1241 smb_set_fileinfo.o \
1242 smb_signing.o \
1243 smb_tree.o \
1244 smb_trans2_create_directory.o \
1245 smb_trans2_dfs.o \
1246 smb_trans2_find.o \

new/usr/src/uts/common/Makefile.files 20

1247 smb_tree_connect.o \
1248 smb_unlock_byte_range.o \
1249 smb_user.o \
1250 smb_vfs.o \
1251 smb_vops.o \
1252 smb_vss.o \
1253 smb_write.o \
1254 smb_write_raw.o

1256 PCFS_OBJS += pc_alloc.o pc_dir.o pc_node.o pc_subr.o \
1257 pc_vfsops.o pc_vnops.o

1259 PROC_OBJS += prcontrol.o prioctl.o prsubr.o prusrio.o \
1260 prvfsops.o prvnops.o

1262 MNTFS_OBJS += mntvfsops.o mntvnops.o

1264 SHAREFS_OBJS += sharetab.o sharefs_vfsops.o sharefs_vnops.o

1266 SPEC_OBJS += specsubr.o specvfsops.o specvnops.o

1268 SOCK_OBJS += socksubr.o sockvfsops.o sockparams.o \
1269 socksyscalls.o socktpi.o sockstr.o \
1270 sockcommon_vnops.o sockcommon_subr.o \
1271 sockcommon_sops.o sockcommon.o \
1272 sock_notsupp.o socknotify.o \
1273 nl7c.o nl7curi.o nl7chttp.o nl7clogd.o \
1274 nl7cnca.o sodirect.o sockfilter.o

1276 TMPFS_OBJS += tmp_dir.o tmp_subr.o tmp_tnode.o tmp_vfsops.o \
1277 tmp_vnops.o

1279 UDFS_OBJS += udf_alloc.o udf_bmap.o udf_dir.o \
1280 udf_inode.o udf_subr.o udf_vfsops.o \
1281 udf_vnops.o

1283 UFS_OBJS += ufs_alloc.o ufs_bmap.o ufs_dir.o ufs_xattr.o \
1284 ufs_inode.o ufs_subr.o ufs_tables.o ufs_vfsops.o \
1285 ufs_vnops.o quota.o quotacalls.o quota_ufs.o \
1286 ufs_filio.o ufs_lockfs.o ufs_thread.o ufs_trans.o \
1287 ufs_acl.o ufs_panic.o ufs_directio.o ufs_log.o \
1288 ufs_extvnops.o ufs_snap.o lufs.o lufs_thread.o \
1289 lufs_log.o lufs_map.o lufs_top.o lufs_debug.o
1290 VSCAN_OBJS += vscan_drv.o vscan_svc.o vscan_door.o

1292 NSMB_OBJS += smb_conn.o smb_dev.o smb_iod.o smb_pass.o \
1293 smb_rq.o smb_sign.o smb_smb.o smb_subrs.o \
1294 smb_time.o smb_tran.o smb_trantcp.o smb_usr.o \
1295 subr_mchain.o

1297 SMBFS_COMMON_OBJS += smbfs_ntacl.o
1298 SMBFS_OBJS += smbfs_vfsops.o smbfs_vnops.o smbfs_node.o \
1299 smbfs_acl.o smbfs_client.o smbfs_smb.o \
1300 smbfs_subr.o smbfs_subr2.o \
1301 smbfs_rwlock.o smbfs_xattr.o \
1302 $(SMBFS_COMMON_OBJS)

1305 #
1306 # LVM modules
1307 #
1308 MD_OBJS += md.o md_error.o md_ioctl.o md_mddb.o md_names.o \
1309 md_med.o md_rename.o md_subr.o

1311 MD_COMMON_OBJS = md_convert.o md_crc.o md_revchk.o

new/usr/src/uts/common/Makefile.files 21

1313 MD_DERIVED_OBJS = metamed_xdr.o meta_basic_xdr.o

1315 SOFTPART_OBJS += sp.o sp_ioctl.o

1317 STRIPE_OBJS += stripe.o stripe_ioctl.o

1319 HOTSPARES_OBJS += hotspares.o

1321 RAID_OBJS += raid.o raid_ioctl.o raid_replay.o raid_resync.o raid_hotspare.o

1323 MIRROR_OBJS += mirror.o mirror_ioctl.o mirror_resync.o

1325 NOTIFY_OBJS += md_notify.o

1327 TRANS_OBJS += mdtrans.o trans_ioctl.o trans_log.o

1329 ZFS_COMMON_OBJS += \
1330 arc.o \
1331 bplist.o \
1332 bpobj.o \
1333 bptree.o \
1334 dbuf.o \
1335 ddt.o \
1336 ddt_zap.o \
1337 dmu.o \
1338 dmu_diff.o \
1339 dmu_send.o \
1340 dmu_object.o \
1341 dmu_objset.o \
1342 dmu_traverse.o \
1343 dmu_tx.o \
1344 dnode.o \
1345 dnode_sync.o \
1346 dsl_dir.o \
1347 dsl_dataset.o \
1348 dsl_deadlist.o \
1349 dsl_destroy.o \
1350 dsl_pool.o \
1351 dsl_synctask.o \
1352 dsl_userhold.o \
1353 dmu_zfetch.o \
1354 dsl_deleg.o \
1355 dsl_prop.o \
1356 dsl_scan.o \
1357 zfeature.o \
1358 gzip.o \
1359 lz4.o \
1360 lzjb.o \
1361 metaslab.o \
1362 refcount.o \
1363 rrwlock.o \
1364 sa.o \
1365 sha256.o \
1366 spa.o \
1367 spa_config.o \
1368 spa_errlog.o \
1369 spa_history.o \
1370 spa_misc.o \
1371 space_map.o \
1372 txg.o \
1373 uberblock.o \
1374 unique.o \
1375 vdev.o \
1376 vdev_cache.o \
1377 vdev_file.o \
1378 vdev_label.o \

new/usr/src/uts/common/Makefile.files 22

1379 vdev_mirror.o \
1380 vdev_missing.o \
1381 vdev_queue.o \
1382 vdev_raidz.o \
1383 vdev_root.o \
1384 zap.o \
1385 zap_leaf.o \
1386 zap_micro.o \
1387 zfs_byteswap.o \
1388 zfs_debug.o \
1389 zfs_fm.o \
1390 zfs_fuid.o \
1391 zfs_sa.o \
1392 zfs_znode.o \
1393 zil.o \
1394 zio.o \
1395 zio_checksum.o \
1396 zio_compress.o \
1397 zio_inject.o \
1398 zle.o \
1399 zrlock.o

1401 ZFS_SHARED_OBJS += \
1402 zfeature_common.o \
1403 zfs_comutil.o \
1404 zfs_deleg.o \
1405 zfs_fletcher.o \
1406 zfs_namecheck.o \
1407 zfs_prop.o \
1408 zpool_prop.o \
1409 zprop_common.o

1411 ZFS_OBJS += \
1412 $(ZFS_COMMON_OBJS) \
1413 $(ZFS_SHARED_OBJS) \
1414 vdev_disk.o \
1415 zfs_acl.o \
1416 zfs_ctldir.o \
1417 zfs_dir.o \
1418 zfs_ioctl.o \
1419 zfs_log.o \
1420 zfs_onexit.o \
1421 zfs_replay.o \
1422 zfs_rlock.o \
1423 zfs_vfsops.o \
1424 zfs_vnops.o \
1425 zvol.o

1427 ZUT_OBJS += \
1428 zut.o

1430 #
1431 # streams modules
1432 #
1433 BUFMOD_OBJS += bufmod.o

1435 CONNLD_OBJS += connld.o

1437 DEDUMP_OBJS += dedump.o

1439 DRCOMPAT_OBJS += drcompat.o

1441 LDLINUX_OBJS += ldlinux.o

1443 LDTERM_OBJS += ldterm.o uwidth.o

new/usr/src/uts/common/Makefile.files 23

1445 PCKT_OBJS += pckt.o

1447 PFMOD_OBJS += pfmod.o

1449 PTEM_OBJS += ptem.o

1451 REDIRMOD_OBJS += strredirm.o

1453 TIMOD_OBJS += timod.o

1455 TIRDWR_OBJS += tirdwr.o

1457 TTCOMPAT_OBJS +=ttcompat.o

1459 LOG_OBJS += log.o

1461 PIPEMOD_OBJS += pipemod.o

1463 RPCMOD_OBJS += rpcmod.o clnt_cots.o clnt_clts.o \
1464 clnt_gen.o clnt_perr.o mt_rpcinit.o rpc_calmsg.o \
1465 rpc_prot.o rpc_sztypes.o rpc_subr.o rpcb_prot.o \
1466 svc.o svc_clts.o svc_gen.o svc_cots.o \
1467 rpcsys.o xdr_sizeof.o clnt_rdma.o svc_rdma.o \
1468 xdr_rdma.o rdma_subr.o xdrrdma_sizeof.o

1470 KLMMOD_OBJS += klmmod.o \
1471 nlm_impl.o \
1472 nlm_rpc_handle.o \
1473 nlm_dispatch.o \
1474 nlm_rpc_svc.o \
1475 nlm_client.o \
1476 nlm_service.o \
1477 nlm_prot_clnt.o \
1478 nlm_prot_xdr.o \
1479 nlm_rpc_clnt.o \
1480 nsm_addr_clnt.o \
1481 nsm_addr_xdr.o \
1482 sm_inter_clnt.o \
1483 sm_inter_xdr.o

1485 KLMOPS_OBJS += klmops.o

1487 TLIMOD_OBJS += tlimod.o t_kalloc.o t_kbind.o t_kclose.o \
1488 t_kconnect.o t_kfree.o t_kgtstate.o t_kopen.o \
1489 t_krcvudat.o t_ksndudat.o t_kspoll.o t_kunbind.o \
1490 t_kutil.o

1492 RLMOD_OBJS += rlmod.o

1494 TELMOD_OBJS += telmod.o

1496 CRYPTMOD_OBJS += cryptmod.o

1498 KB_OBJS += kbd.o keytables.o

1500 #
1501 # ID mapping module
1502 #
1503 IDMAP_OBJS += idmap_mod.o idmap_kapi.o idmap_xdr.o idmap_cache.o

1505 #
1506 # scheduling class modules
1507 #
1508 SDC_OBJS += sysdc.o

1510 RT_OBJS += rt.o

new/usr/src/uts/common/Makefile.files 24

1511 RT_DPTBL_OBJS += rt_dptbl.o

1513 TS_OBJS += ts.o
1514 TS_DPTBL_OBJS += ts_dptbl.o

1516 IA_OBJS += ia.o

1518 FSS_OBJS += fss.o

1520 FX_OBJS += fx.o
1521 FX_DPTBL_OBJS += fx_dptbl.o

1523 #
1524 # Inter-Process Communication (IPC) modules
1525 #
1526 IPC_OBJS += ipc.o

1528 IPCMSG_OBJS += msg.o

1530 IPCSEM_OBJS += sem.o

1532 IPCSHM_OBJS += shm.o

1534 #
1535 # bignum module
1536 #
1537 COMMON_BIGNUM_OBJS += bignum_mod.o bignumimpl.o

1539 BIGNUM_OBJS += $(COMMON_BIGNUM_OBJS) $(BIGNUM_PSR_OBJS)

1541 #
1542 # kernel cryptographic framework
1543 #
1544 KCF_OBJS += kcf.o kcf_callprov.o kcf_cbufcall.o kcf_cipher.o kcf_crypto.o \
1545 kcf_cryptoadm.o kcf_ctxops.o kcf_digest.o kcf_dual.o \
1546 kcf_keys.o kcf_mac.o kcf_mech_tabs.o kcf_miscapi.o \
1547 kcf_object.o kcf_policy.o kcf_prov_lib.o kcf_prov_tabs.o \
1548 kcf_sched.o kcf_session.o kcf_sign.o kcf_spi.o kcf_verify.o \
1549 kcf_random.o modes.o ecb.o cbc.o ctr.o ccm.o gcm.o \
1550 fips_random.o

1552 CRYPTOADM_OBJS += cryptoadm.o

1554 CRYPTO_OBJS += crypto.o

1556 DPROV_OBJS += dprov.o

1558 DCA_OBJS += dca.o dca_3des.o dca_debug.o dca_dsa.o dca_kstat.o dca_rng.o \
1559 dca_rsa.o

1561 AESPROV_OBJS += aes.o aes_impl.o aes_modes.o

1563 ARCFOURPROV_OBJS += arcfour.o arcfour_crypt.o

1565 BLOWFISHPROV_OBJS += blowfish.o blowfish_impl.o

1567 ECCPROV_OBJS += ecc.o ec.o ec2_163.o ec2_mont.o ecdecode.o ecl_mult.o \
1568 ecp_384.o ecp_jac.o ec2_193.o ecl.o ecp_192.o ecp_521.o \
1569 ecp_jm.o ec2_233.o ecl_curve.o ecp_224.o ecp_aff.o \
1570 ecp_mont.o ec2_aff.o ec_naf.o ecl_gf.o ecp_256.o mp_gf2m.o \
1571 mpi.o mplogic.o mpmontg.o mpprime.o oid.o \
1572 secitem.o ec2_test.o ecp_test.o

1574 RSAPROV_OBJS += rsa.o rsa_impl.o pkcs1.o

1576 SWRANDPROV_OBJS += swrand.o

new/usr/src/uts/common/Makefile.files 25

1578 #
1579 # kernel SSL
1580 #
1581 KSSL_OBJS += kssl.o ksslioctl.o

1583 KSSL_SOCKFIL_MOD_OBJS += ksslfilter.o ksslapi.o ksslrec.o

1585 #
1586 # misc. modules
1587 #

1589 C2AUDIT_OBJS += adr.o audit.o audit_event.o audit_io.o \
1590 audit_path.o audit_start.o audit_syscalls.o audit_token.o \
1591 audit_mem.o

1593 PCIC_OBJS += pcic.o

1595 RPCSEC_OBJS += secmod.o sec_clnt.o sec_svc.o sec_gen.o \
1596 auth_des.o auth_kern.o auth_none.o auth_loopb.o\
1597 authdesprt.o authdesubr.o authu_prot.o \
1598 key_call.o key_prot.o svc_authu.o svcauthdes.o

1600 RPCSEC_GSS_OBJS += rpcsec_gssmod.o rpcsec_gss.o rpcsec_gss_misc.o \
1601 rpcsec_gss_utils.o svc_rpcsec_gss.o

1603 CONSCONFIG_OBJS += consconfig.o

1605 CONSCONFIG_DACF_OBJS += consconfig_dacf.o consplat.o

1607 TEM_OBJS += tem.o tem_safe.o 6x10.o 7x14.o 12x22.o

1609 KBTRANS_OBJS += \
1610 kbtrans.o \
1611 kbtrans_keytables.o \
1612 kbtrans_polled.o \
1613 kbtrans_streams.o \
1614 usb_keytables.o

1616 KGSSD_OBJS += gssd_clnt_stubs.o gssd_handle.o gssd_prot.o \
1617 gss_display_name.o gss_release_name.o gss_import_name.o \
1618 gss_release_buffer.o gss_release_oid_set.o gen_oids.o gssdmod.o

1620 KGSSD_DERIVED_OBJS = gssd_xdr.o

1622 KGSS_DUMMY_OBJS += dmech.o

1624 KSOCKET_OBJS += ksocket.o ksocket_mod.o

1626 CRYPTO= cksumtypes.o decrypt.o encrypt.o encrypt_length.o etypes.o \
1627 nfold.o verify_checksum.o prng.o block_size.o make_checksum.o\
1628 checksum_length.o hmac.o default_state.o mandatory_sumtype.o

1630 # crypto/des
1631 CRYPTO_DES= f_cbc.o f_cksum.o f_parity.o weak_key.o d3_cbc.o ef_crypto.o

1633 CRYPTO_DK= checksum.o derive.o dk_decrypt.o dk_encrypt.o

1635 CRYPTO_ARCFOUR= k5_arcfour.o

1637 # crypto/enc_provider
1638 CRYPTO_ENC= des.o des3.o arcfour_provider.o aes_provider.o

1640 # crypto/hash_provider
1641 CRYPTO_HASH= hash_kef_generic.o hash_kmd5.o hash_crc32.o hash_ksha1.o

new/usr/src/uts/common/Makefile.files 26

1643 # crypto/keyhash_provider
1644 CRYPTO_KEYHASH= descbc.o k5_kmd5des.o k_hmac_md5.o

1646 # crypto/crc32
1647 CRYPTO_CRC32= crc32.o

1649 # crypto/old
1650 CRYPTO_OLD= old_decrypt.o old_encrypt.o

1652 # crypto/raw
1653 CRYPTO_RAW= raw_decrypt.o raw_encrypt.o

1655 K5_KRB= kfree.o copy_key.o \
1656 parse.o init_ctx.o \
1657 ser_adata.o ser_addr.o \
1658 ser_auth.o ser_cksum.o \
1659 ser_key.o ser_princ.o \
1660 serialize.o unparse.o \
1661 ser_actx.o

1663 K5_OS= timeofday.o toffset.o \
1664 init_os_ctx.o c_ustime.o

1666 SEAL= seal.o unseal.o

1668 MECH= delete_sec_context.o \
1669 import_sec_context.o \
1670 gssapi_krb5.o \
1671 k5seal.o k5unseal.o k5sealv3.o \
1672 ser_sctx.o \
1673 sign.o \
1674 util_crypt.o \
1675 util_validate.o util_ordering.o \
1676 util_seqnum.o util_set.o util_seed.o \
1677 wrap_size_limit.o verify.o

1681 MECH_GEN= util_token.o

1684 KGSS_KRB5_OBJS += krb5mech.o \
1685 $(MECH) $(SEAL) $(MECH_GEN) \
1686 $(CRYPTO) $(CRYPTO_DES) $(CRYPTO_DK) $(CRYPTO_ARCFOUR) \
1687 $(CRYPTO_ENC) $(CRYPTO_HASH) \
1688 $(CRYPTO_KEYHASH) $(CRYPTO_CRC32) \
1689 $(CRYPTO_OLD) \
1690 $(CRYPTO_RAW) $(K5_KRB) $(K5_OS)

1692 DES_OBJS += des_crypt.o des_impl.o des_ks.o des_soft.o

1694 DLBOOT_OBJS += bootparam_xdr.o nfs_dlinet.o scan.o

1696 KRTLD_OBJS += kobj_bootflags.o getoptstr.o \
1697 kobj.o kobj_kdi.o kobj_lm.o kobj_subr.o

1699 MOD_OBJS += modctl.o modsubr.o modsysfile.o modconf.o modhash.o

1701 STRPLUMB_OBJS += strplumb.o

1703 CPR_OBJS += cpr_driver.o cpr_dump.o \
1704 cpr_main.o cpr_misc.o cpr_mod.o cpr_stat.o \
1705 cpr_uthread.o

1707 PROF_OBJS += prf.o

new/usr/src/uts/common/Makefile.files 27

1709 SE_OBJS += se_driver.o

1711 SYSACCT_OBJS += acct.o

1713 ACCTCTL_OBJS += acctctl.o

1715 EXACCTSYS_OBJS += exacctsys.o

1717 KAIO_OBJS += aio.o

1719 PCMCIA_OBJS += pcmcia.o cs.o cis.o cis_callout.o cis_handlers.o cis_params.o

1721 BUSRA_OBJS += busra.o

1723 PCS_OBJS += pcs.o

1725 PCAN_OBJS += pcan.o

1727 PCATA_OBJS += pcide.o pcdisk.o pclabel.o pcata.o

1729 PCSER_OBJS += pcser.o pcser_cis.o

1731 PCWL_OBJS += pcwl.o

1733 PSET_OBJS += pset.o

1735 OHCI_OBJS += ohci.o ohci_hub.o ohci_polled.o

1737 UHCI_OBJS += uhci.o uhciutil.o uhcitgt.o uhcihub.o uhcipolled.o

1739 EHCI_OBJS += ehci.o ehci_hub.o ehci_xfer.o ehci_intr.o ehci_util.o ehci_polled.o

1741 HUBD_OBJS += hubd.o

1743 USB_MID_OBJS += usb_mid.o

1745 USB_IA_OBJS += usb_ia.o

1747 UWBA_OBJS += uwba.o uwbai.o

1749 SCSA2USB_OBJS += scsa2usb.o usb_ms_bulkonly.o usb_ms_cbi.o

1751 HWAHC_OBJS += hwahc.o hwahc_util.o

1753 WUSB_DF_OBJS += wusb_df.o
1754 WUSB_FWMOD_OBJS += wusb_fwmod.o

1756 IPF_OBJS += ip_fil_solaris.o fil.o solaris.o ip_state.o ip_frag.o ip_nat.o \
1757 ip_proxy.o ip_auth.o ip_pool.o ip_htable.o ip_lookup.o \
1758 ip_log.o misc.o ip_compat.o ip_nat6.o drand48.o

1760 IBD_OBJS += ibd.o ibd_cm.o

1762 EIBNX_OBJS += enx_main.o enx_hdlrs.o enx_ibt.o enx_log.o enx_fip.o \
1763 enx_misc.o enx_q.o enx_ctl.o

1765 EOIB_OBJS += eib_adm.o eib_chan.o eib_cmn.o eib_ctl.o eib_data.o \
1766 eib_fip.o eib_ibt.o eib_log.o eib_mac.o eib_main.o \
1767 eib_rsrc.o eib_svc.o eib_vnic.o

1769 DLPISTUB_OBJS += dlpistub.o

1771 SDP_OBJS += sdpddi.o

1773 TRILL_OBJS += trill.o

new/usr/src/uts/common/Makefile.files 28

1775 CTF_OBJS += ctf_create.o ctf_decl.o ctf_error.o ctf_hash.o ctf_labels.o \
1776 ctf_lookup.o ctf_open.o ctf_types.o ctf_util.o ctf_subr.o ctf_mod.o

1778 SMBIOS_OBJS += smb_error.o smb_info.o smb_open.o smb_subr.o smb_dev.o

1780 RPCIB_OBJS += rpcib.o

1782 KMDB_OBJS += kdrv.o

1784 AFE_OBJS += afe.o

1786 BGE_OBJS += bge_main2.o bge_chip2.o bge_kstats.o bge_log.o bge_ndd.o \
1787 bge_atomic.o bge_mii.o bge_send.o bge_recv2.o bge_mii_5906.o

1789 DMFE_OBJS += dmfe_log.o dmfe_main.o dmfe_mii.o

1791 EFE_OBJS += efe.o

1793 ELXL_OBJS += elxl.o

1795 HME_OBJS += hme.o

1797 IXGB_OBJS += ixgb.o ixgb_atomic.o ixgb_chip.o ixgb_gld.o ixgb_kstats.o \
1798 ixgb_log.o ixgb_ndd.o ixgb_rx.o ixgb_tx.o ixgb_xmii.o

1800 NGE_OBJS += nge_main.o nge_atomic.o nge_chip.o nge_ndd.o nge_kstats.o \
1801 nge_log.o nge_rx.o nge_tx.o nge_xmii.o

1803 PCN_OBJS += pcn.o

1805 RGE_OBJS += rge_main.o rge_chip.o rge_ndd.o rge_kstats.o rge_log.o rge_rxtx.o

1807 URTW_OBJS += urtw.o

1809 ARN_OBJS += arn_hw.o arn_eeprom.o arn_mac.o arn_calib.o arn_ani.o arn_phy.o arn_
1810 arn_main.o arn_recv.o arn_xmit.o arn_rc.o

1812 ATH_OBJS += ath_aux.o ath_main.o ath_osdep.o ath_rate.o

1814 ATU_OBJS += atu.o

1816 IPW_OBJS += ipw2100_hw.o ipw2100.o

1818 IWI_OBJS += ipw2200_hw.o ipw2200.o

1820 IWH_OBJS += iwh.o

1822 IWK_OBJS += iwk2.o

1824 IWP_OBJS += iwp.o

1826 MWL_OBJS += mwl.o

1828 MWLFW_OBJS += mwlfw_mode.o

1830 WPI_OBJS += wpi.o

1832 RAL_OBJS += rt2560.o ral_rate.o

1834 RUM_OBJS += rum.o

1836 RWD_OBJS += rt2661.o

1838 RWN_OBJS += rt2860.o

1840 UATH_OBJS += uath.o

new/usr/src/uts/common/Makefile.files 29

1842 UATHFW_OBJS += uathfw_mod.o

1844 URAL_OBJS += ural.o

1846 RTW_OBJS += rtw.o smc93cx6.o rtwphy.o rtwphyio.o

1848 ZYD_OBJS += zyd.o zyd_usb.o zyd_hw.o zyd_fw.o

1850 MXFE_OBJS += mxfe.o

1852 MPTSAS_OBJS += mptsas.o mptsas_impl.o mptsas_init.o mptsas_raid.o mptsas_smhba.o

1854 SFE_OBJS += sfe.o sfe_util.o

1856 BFE_OBJS += bfe.o

1858 BRIDGE_OBJS += bridge.o

1860 IDM_SHARED_OBJS += base64.o

1862 IDM_OBJS += $(IDM_SHARED_OBJS) \
1863 idm.o idm_impl.o idm_text.o idm_conn_sm.o idm_so.o

1865 VR_OBJS += vr.o

1867 ATGE_OBJS += atge_main.o atge_l1e.o atge_mii.o atge_l1.o atge_l1c.o

1869 YGE_OBJS = yge.o

1871 #
1872 # Build up defines and paths.
1873 #
1874 LINT_DEFS += -Dunix

1876 #
1877 # This duality can be removed when the native and target compilers
1878 # are the same (or at least recognize the same command line syntax!)
1879 # It is a bug in the current compilation system that the assember
1880 # can’t process the -Y I, flag.
1881 #
1882 NATIVE_INC_PATH += $(INC_PATH) $(CCYFLAG)$(UTSBASE)/common
1883 AS_INC_PATH += $(INC_PATH) -I$(UTSBASE)/common
1884 INCLUDE_PATH += $(INC_PATH) $(CCYFLAG)$(UTSBASE)/common

1886 PCIEB_OBJS += pcieb.o

1888 # Chelsio N110 10G NIC driver module
1889 #
1890 CH_OBJS = ch.o glue.o pe.o sge.o

1892 CH_COM_OBJS = ch_mac.o ch_subr.o cspi.o espi.o ixf1010.o mc3.o mc4.o mc5.o \
1893 mv88e1xxx.o mv88x201x.o my3126.o pm3393.o tp.o ulp.o \
1894 vsc7321.o vsc7326.o xpak.o

1896 #
1897 # Chelsio Terminator 4 10G NIC nexus driver module
1898 #
1899 CXGBE_FW_OBJS = t4_fw.o t4_cfg.o
1900 CXGBE_COM_OBJS = t4_hw.o common.o
1901 CXGBE_NEX_OBJS = t4_nexus.o t4_sge.o t4_mac.o t4_ioctl.o shared.o \
1902 t4_l2t.o adapter.o osdep.o

1904 #
1905 # Chelsio Terminator 4 10G NIC driver module
1906 #

new/usr/src/uts/common/Makefile.files 30

1907 CXGBE_OBJS = cxgbe.o

1909 #
1910 # PCI strings file
1911 #
1912 PCI_STRING_OBJS = pci_strings.o

1914 NET_DACF_OBJS += net_dacf.o

1916 #
1917 # Xframe 10G NIC driver module
1918 #
1919 XGE_OBJS = xge.o xgell.o

1921 XGE_HAL_OBJS = xgehal-channel.o xgehal-fifo.o xgehal-ring.o xgehal-config.o \
1922 xgehal-driver.o xgehal-mm.o xgehal-stats.o xgehal-device.o \
1923 xge-queue.o xgehal-mgmt.o xgehal-mgmtaux.o

1925 #
1926 # e1000g module
1927 #
1928 E1000G_OBJS += e1000_80003es2lan.o e1000_82540.o e1000_82541.o e1000_82542.o \
1929 e1000_82543.o e1000_82571.o e1000_api.o e1000_ich8lan.o \
1930 e1000_mac.o e1000_manage.o e1000_nvm.o e1000_osdep.o \
1931 e1000_phy.o e1000g_debug.o e1000g_main.o e1000g_alloc.o \
1932 e1000g_tx.o e1000g_rx.o e1000g_stat.o

1934 #
1935 # Intel 82575 1G NIC driver module
1936 #
1937 IGB_OBJS = igb_82575.o igb_api.o igb_mac.o igb_manage.o \
1938 igb_nvm.o igb_osdep.o igb_phy.o igb_buf.o \
1939 igb_debug.o igb_gld.o igb_log.o igb_main.o \
1940 igb_rx.o igb_stat.o igb_tx.o

1942 #
1943 # Intel Pro/100 NIC driver module
1944 #
1945 IPRB_OBJS = iprb.o

1947 #
1948 # Intel 10GbE PCIE NIC driver module
1949 #
1950 IXGBE_OBJS = ixgbe_82598.o ixgbe_82599.o ixgbe_api.o \
1951 ixgbe_common.o ixgbe_phy.o \
1952 ixgbe_buf.o ixgbe_debug.o ixgbe_gld.o \
1953 ixgbe_log.o ixgbe_main.o \
1954 ixgbe_osdep.o ixgbe_rx.o ixgbe_stat.o \
1955 ixgbe_tx.o ixgbe_x540.o ixgbe_mbx.o

1957 #
1958 # NIU 10G/1G driver module
1959 #
1960 NXGE_OBJS = nxge_mac.o nxge_ipp.o nxge_rxdma.o \
1961 nxge_txdma.o nxge_txc.o nxge_main.o \
1962 nxge_hw.o nxge_fzc.o nxge_virtual.o \
1963 nxge_send.o nxge_classify.o nxge_fflp.o \
1964 nxge_fflp_hash.o nxge_ndd.o nxge_kstats.o \
1965 nxge_zcp.o nxge_fm.o nxge_espc.o nxge_hv.o \
1966 nxge_hio.o nxge_hio_guest.o nxge_intr.o

1968 NXGE_NPI_OBJS = \
1969 npi.o npi_mac.o npi_ipp.o \
1970 npi_txdma.o npi_rxdma.o npi_txc.o \
1971 npi_zcp.o npi_espc.o npi_fflp.o \
1972 npi_vir.o

new/usr/src/uts/common/Makefile.files 31

1974 NXGE_HCALL_OBJS = \
1975 nxge_hcall.o

1977 #
1978 # Virtio modules
1979 #

1981 # Virtio core
1982 VIRTIO_OBJS = virtio.o

1984 # Virtio block driver
1985 VIOBLK_OBJS = vioblk.o

1987 #
1988 # kiconv modules
1989 #
1990 KICONV_EMEA_OBJS += kiconv_emea.o

1992 KICONV_JA_OBJS += kiconv_ja.o

1994 KICONV_KO_OBJS += kiconv_cck_common.o kiconv_ko.o

1996 KICONV_SC_OBJS += kiconv_cck_common.o kiconv_sc.o

1998 KICONV_TC_OBJS += kiconv_cck_common.o kiconv_tc.o

2000 #
2001 # AAC module
2002 #
2003 AAC_OBJS = aac.o aac_ioctl.o

2005 #
2006 # sdcard modules
2007 #
2008 SDA_OBJS = sda_cmd.o sda_host.o sda_init.o sda_mem.o sda_mod.o sda_slot.o
2009 SDHOST_OBJS = sdhost.o

2011 #
2012 # hxge 10G driver module
2013 #
2014 HXGE_OBJS = hxge_main.o hxge_vmac.o hxge_send.o \
2015 hxge_txdma.o hxge_rxdma.o hxge_virtual.o \
2016 hxge_fm.o hxge_fzc.o hxge_hw.o hxge_kstats.o \
2017 hxge_ndd.o hxge_pfc.o \
2018 hpi.o hpi_vmac.o hpi_rxdma.o hpi_txdma.o \
2019 hpi_vir.o hpi_pfc.o

2021 #
2022 # MEGARAID_SAS module
2023 #
2024 MEGA_SAS_OBJS = megaraid_sas.o

2026 #
2027 # MR_SAS module
2028 #
2029 MR_SAS_OBJS = ld_pd_map.o mr_sas.o mr_sas_tbolt.o mr_sas_list.o

2031 #
2032 # ISCSI_INITIATOR module
2033 #
2034 ISCSI_INITIATOR_OBJS = chap.o iscsi_io.o iscsi_thread.o \
2035 iscsi_ioctl.o iscsid.o iscsi.o \
2036 iscsi_login.o isns_client.o iscsiAuthClient.o \
2037 iscsi_lun.o iscsiAuthClientGlue.o \
2038 iscsi_net.o nvfile.o iscsi_cmd.o \

new/usr/src/uts/common/Makefile.files 32

2039 iscsi_queue.o persistent.o iscsi_conn.o \
2040 iscsi_sess.o radius_auth.o iscsi_crc.o \
2041 iscsi_stats.o radius_packet.o iscsi_doorclt.o \
2042 iscsi_targetparam.o utils.o kifconf.o

2044 #
2045 # ntxn 10Gb/1Gb NIC driver module
2046 #
2047 NTXN_OBJS = unm_nic_init.o unm_gem.o unm_nic_hw.o unm_ndd.o \
2048 unm_nic_main.o unm_nic_isr.o unm_nic_ctx.o niu.o

2050 #
2051 # Myricom 10Gb NIC driver module
2052 #
2053 MYRI10GE_OBJS = myri10ge.o myri10ge_lro.o

2055 # nulldriver module
2056 #
2057 NULLDRIVER_OBJS = nulldriver.o

2059 TPM_OBJS = tpm.o tpm_hcall.o

new/usr/src/uts/common/Makefile.rules 1

**
 73698 Sun Aug 25 23:51:02 2013
new/usr/src/uts/common/Makefile.rules
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved.
25 #

27 #
28 # uts/common/Makefile.rules
29 #
30 # This Makefile defines all the file build rules for the directory
31 # uts/common and its children. These are the source files which may
32 # be considered common to all SunOS systems.
33 #
34 # The following two-level ordering must be maintained in this file.
35 # Lines are sorted first in order of decreasing specificity based on
36 # the first directory component. That is, sun4u rules come before
37 # sparc rules come before common rules.
38 #
39 # Lines whose initial directory components are equal are sorted
40 # alphabetically by the remaining components.

42 #
43 # Section 1a: C objects build rules
44 #
45 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/aes/%.c
46 $(COMPILE.c) -o $@ $<
47 $(CTFCONVERT_O)

49 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/arcfour/%.c
50 $(COMPILE.c) -o $@ $<
51 $(CTFCONVERT_O)

53 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/blowfish/%.c
54 $(COMPILE.c) -o $@ $<
55 $(CTFCONVERT_O)

57 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/ecc/%.c
58 $(COMPILE.c) -o $@ $<

new/usr/src/uts/common/Makefile.rules 2

59 $(CTFCONVERT_O)

61 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/modes/%.c
62 $(COMPILE.c) -o $@ $<
63 $(CTFCONVERT_O)

65 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/padding/%.c
66 $(COMPILE.c) -o $@ $<
67 $(CTFCONVERT_O)

69 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/rng/%.c
70 $(COMPILE.c) -o $@ $<
71 $(CTFCONVERT_O)

73 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/rsa/%.c
74 $(COMPILE.c) -o $@ $<
75 $(CTFCONVERT_O)

77 $(OBJS_DIR)/%.o: $(COMMONBASE)/bignum/%.c
78 $(COMPILE.c) -o $@ $<
79 $(CTFCONVERT_O)

81 $(OBJS_DIR)/%.o: $(UTSBASE)/common/bignum/%.c
82 $(COMPILE.c) -o $@ $<
83 $(CTFCONVERT_O)

85 $(OBJS_DIR)/%.o: $(COMMONBASE)/mpi/%.c
86 $(COMPILE.c) -o $@ $<
87 $(CTFCONVERT_O)

89 $(OBJS_DIR)/%.o: $(COMMONBASE)/acl/%.c
90 $(COMPILE.c) -o $@ $<
91 $(CTFCONVERT_O)

93 $(OBJS_DIR)/%.o: $(COMMONBASE)/avl/%.c
94 $(COMPILE.c) -o $@ $<
95 $(CTFCONVERT_O)

97 $(OBJS_DIR)/%.o: $(COMMONBASE)/ucode/%.c
98 $(COMPILE.c) -o $@ $<
99 $(CTFCONVERT_O)

101 $(OBJS_DIR)/%.o: $(UTSBASE)/common/brand/sn1/%.c
102 $(COMPILE.c) -o $@ $<
103 $(CTFCONVERT_O)

105 $(OBJS_DIR)/%.o: $(UTSBASE)/common/brand/solaris10/%.c
106 $(COMPILE.c) -o $@ $<
107 $(CTFCONVERT_O)

109 $(OBJS_DIR)/%.o: $(UTSBASE)/common/c2/%.c
110 $(COMPILE.c) -o $@ $<
111 $(CTFCONVERT_O)

113 $(OBJS_DIR)/%.o: $(UTSBASE)/common/conf/%.c
114 $(COMPILE.c) -o $@ $<
115 $(CTFCONVERT_O)

117 $(OBJS_DIR)/%.o: $(UTSBASE)/common/contract/%.c
118 $(COMPILE.c) -o $@ $<
119 $(CTFCONVERT_O)

121 $(OBJS_DIR)/%.o: $(UTSBASE)/common/cpr/%.c
122 $(COMPILE.c) -o $@ $<
123 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 3

125 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ctf/%.c
126 $(COMPILE.c) -o $@ $<
127 $(CTFCONVERT_O)

129 $(OBJS_DIR)/%.o: $(COMMONBASE)/ctf/%.c
130 $(COMPILE.c) -o $@ $<
131 $(CTFCONVERT_O)

133 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/des/%.c
134 $(COMPILE.c) -o $@ $<
135 $(CTFCONVERT_O)

137 $(OBJS_DIR)/%.o: $(COMMONBASE)/smbios/%.c
138 $(COMPILE.c) -o $@ $<
139 $(CTFCONVERT_O)

141 $(OBJS_DIR)/%.o: $(UTSBASE)/common/des/%.c
142 $(COMPILE.c) -o $@ $<
143 $(CTFCONVERT_O)

145 $(OBJS_DIR)/%.o: $(UTSBASE)/common/crypto/api/%.c
146 $(COMPILE.c) -o $@ $<
147 $(CTFCONVERT_O)

149 $(OBJS_DIR)/%.o: $(UTSBASE)/common/crypto/core/%.c
150 $(COMPILE.c) -o $@ $<
151 $(CTFCONVERT_O)

153 $(OBJS_DIR)/%.o: $(UTSBASE)/common/crypto/io/%.c
154 $(COMPILE.c) -o $@ $<
155 $(CTFCONVERT_O)

157 $(OBJS_DIR)/%.o: $(UTSBASE)/common/crypto/spi/%.c
158 $(COMPILE.c) -o $@ $<
159 $(CTFCONVERT_O)

161 $(OBJS_DIR)/%.o: $(COMMONBASE)/pci/%.c
162 $(COMPILE.c) -o $@ $<
163 $(CTFCONVERT_O)

165 $(OBJS_DIR)/%.o: $(COMMONBASE)/devid/%.c
166 $(COMPILE.c) -o $@ $<
167 $(CTFCONVERT_O)

169 $(OBJS_DIR)/%.o: $(UTSBASE)/common/disp/%.c
170 $(COMPILE.c) -o $@ $<
171 $(CTFCONVERT_O)

173 $(OBJS_DIR)/%.o: $(UTSBASE)/common/dtrace/%.c
174 $(COMPILE.c) -o $@ $<
175 $(CTFCONVERT_O)

177 $(OBJS_DIR)/%.o: $(COMMONBASE)/exacct/%.c
178 $(COMPILE.c) -o $@ $<
179 $(CTFCONVERT_O)

181 $(OBJS_DIR)/%.o: $(UTSBASE)/common/exec/aout/%.c
182 $(COMPILE.c) -o $@ $<
183 $(CTFCONVERT_O)

185 $(OBJS_DIR)/%.o: $(UTSBASE)/common/exec/elf/%.c
186 $(COMPILE.c) -o $@ $<
187 $(CTFCONVERT_O)

189 $(OBJS_DIR)/%.o: $(UTSBASE)/common/exec/intp/%.c
190 $(COMPILE.c) -o $@ $<

new/usr/src/uts/common/Makefile.rules 4

191 $(CTFCONVERT_O)

193 $(OBJS_DIR)/%.o: $(UTSBASE)/common/exec/shbin/%.c
194 $(COMPILE.c) -o $@ $<
195 $(CTFCONVERT_O)

197 $(OBJS_DIR)/%.o: $(UTSBASE)/common/exec/java/%.c
198 $(COMPILE.c) -o $@ $<
199 $(CTFCONVERT_O)

201 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/%.c
202 $(COMPILE.c) -o $@ $<
203 $(CTFCONVERT_O)

205 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/autofs/%.c
206 $(COMPILE.c) -o $@ $<
207 $(CTFCONVERT_O)

209 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/cachefs/%.c
210 $(COMPILE.c) -o $@ $<
211 $(CTFCONVERT_O)

213 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/dcfs/%.c
214 $(COMPILE.c) -o $@ $<
215 $(CTFCONVERT_O)

217 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/devfs/%.c
218 $(COMPILE.c) -o $@ $<
219 $(CTFCONVERT_O)

221 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/ctfs/%.c
222 $(COMPILE.c) -o $@ $<
223 $(CTFCONVERT_O)

225 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/doorfs/%.c
226 $(COMPILE.c) -o $@ $<
227 $(CTFCONVERT_O)

229 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/dev/%.c
230 $(COMPILE.c) -o $@ $<
231 $(CTFCONVERT_O)

233 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/fd/%.c
234 $(COMPILE.c) -o $@ $<
235 $(CTFCONVERT_O)

237 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/fifofs/%.c
238 $(COMPILE.c) -o $@ $<
239 $(CTFCONVERT_O)

241 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/hsfs/%.c
242 $(COMPILE.c) -o $@ $<
243 $(CTFCONVERT_O)

245 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/lofs/%.c
246 $(COMPILE.c) -o $@ $<
247 $(CTFCONVERT_O)

249 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/mntfs/%.c
250 $(COMPILE.c) -o $@ $<
251 $(CTFCONVERT_O)

253 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/namefs/%.c
254 $(COMPILE.c) -o $@ $<
255 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 5

257 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/nfs/%.c
258 $(COMPILE.c) -o $@ $<
259 $(CTFCONVERT_O)

261 $(OBJS_DIR)/%.o: $(COMMONBASE)/smbsrv/%.c
262 $(COMPILE.c) -o $@ $<
263 $(CTFCONVERT_O)

265 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/smbsrv/%.c
266 $(COMPILE.c) -o $@ $<
267 $(CTFCONVERT_O)

269 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/objfs/%.c
270 $(COMPILE.c) -o $@ $<
271 $(CTFCONVERT_O)

273 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/pcfs/%.c
274 $(COMPILE.c) -o $@ $<
275 $(CTFCONVERT_O)

277 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/portfs/%.c
278 $(COMPILE.c) -o $@ $<
279 $(CTFCONVERT_O)

281 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/proc/%.c
282 $(COMPILE.c) -o $@ $<
283 $(CTFCONVERT_O)

285 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/sharefs/%.c
286 $(COMPILE.c) -o $@ $<
287 $(CTFCONVERT_O)

289 $(OBJS_DIR)/%.o: $(COMMONBASE)/smbclnt/%.c
290 $(COMPILE.c) -o $@ $<
291 $(CTFCONVERT_O)

293 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/smbclnt/netsmb/%.c
294 $(COMPILE.c) -o $@ $<
295 $(CTFCONVERT_O)

297 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/smbclnt/smbfs/%.c
298 $(COMPILE.c) -o $@ $<
299 $(CTFCONVERT_O)

301 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/sockfs/%.c
302 $(COMPILE.c) -o $@ $<
303 $(CTFCONVERT_O)

305 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/specfs/%.c
306 $(COMPILE.c) -o $@ $<
307 $(CTFCONVERT_O)

309 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/swapfs/%.c
310 $(COMPILE.c) -o $@ $<
311 $(CTFCONVERT_O)

313 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/tmpfs/%.c
314 $(COMPILE.c) -o $@ $<
315 $(CTFCONVERT_O)

317 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/udfs/%.c
318 $(COMPILE.c) -o $@ $<
319 $(CTFCONVERT_O)

321 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/ufs/%.c
322 $(COMPILE.c) -o $@ $<

new/usr/src/uts/common/Makefile.rules 6

323 $(CTFCONVERT_O)

325 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/vscan/%.c
326 $(COMPILE.c) -o $@ $<
327 $(CTFCONVERT_O)

329 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/zfs/%.c
330 $(COMPILE.c) -o $@ $<
331 $(CTFCONVERT_O)

333 $(OBJS_DIR)/%.o: $(UTSBASE)/common/fs/zut/%.c
334 $(COMPILE.c) -o $@ $<
335 $(CTFCONVERT_O)

337 $(OBJS_DIR)/%.o: $(COMMONBASE)/xattr/%.c
338 $(COMPILE.c) -o $@ $<
339 $(CTFCONVERT_O)

341 $(OBJS_DIR)/%.o: $(COMMONBASE)/zfs/%.c
342 $(COMPILE.c) -o $@ $<
343 $(CTFCONVERT_O)

345 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/pmcs/%.c
346 $(COMPILE.c) -o $@ $<
347 $(CTFCONVERT_O)

349 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/pmcs/%.bin
350 $(COMPILE.b) -o $@ $<
351 $(CTFCONVERT_O)

353 $(OBJS_DIR)/%.o: $(COMMONBASE)/fsreparse/%.c
354 $(COMPILE.c) -o $@ $<
355 $(CTFCONVERT_O)

357 KMECHKRB5_BASE=$(UTSBASE)/common/gssapi/mechs/krb5

359 KGSSDFLAGS=-I $(UTSBASE)/common/gssapi/include

361 # Note, KRB5_DEFS can be assigned various preprocessor flags,
362 # typically -D defines on the make invocation. The standard compiler
363 # flags will not be overwritten.
364 KGSSDFLAGS += $(KRB5_DEFS)

366 $(OBJS_DIR)/%.o: $(UTSBASE)/common/gssapi/%.c
367 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
368 $(CTFCONVERT_O)

370 $(OBJS_DIR)/%.o: $(UTSBASE)/common/gssapi/mechs/dummy/%.c
371 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
372 $(CTFCONVERT_O)

374 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/%.c
375 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
376 $(CTFCONVERT_O)

378 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/%.c
379 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
380 $(CTFCONVERT_O)

382 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/des/%.c
383 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
384 $(CTFCONVERT_O)

386 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/arcfour/%.c
387 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
388 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 7

390 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/dk/%.c
391 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
392 $(CTFCONVERT_O)

394 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/enc_provider/%.c
395 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
396 $(CTFCONVERT_O)

398 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/hash_provider/%.c
399 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
400 $(CTFCONVERT_O)

402 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/keyhash_provider/%.c
403 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
404 $(CTFCONVERT_O)

406 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/raw/%.c
407 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
408 $(CTFCONVERT_O)

410 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/crypto/old/%.c
411 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
412 $(CTFCONVERT_O)

414 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/krb5/krb/%.c
415 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
416 $(CTFCONVERT_O)

418 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/krb5/os/%.c
419 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
420 $(CTFCONVERT_O)

422 $(OBJS_DIR)/ser_sctx.o := CPPFLAGS += -DPROVIDE_KERNEL_IMPORT=1

424 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/mech/%.c
425 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
426 $(CTFCONVERT_O)

428 $(OBJS_DIR)/%.o: $(KMECHKRB5_BASE)/profile/%.c
429 $(COMPILE.c) $(KGSSDFLAGS) -o $@ $<
430 $(CTFCONVERT_O)

432 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ncall/%.c
433 $(COMPILE.c) -o $@ $<
434 $(CTFCONVERT_O)

436 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/dsw/%.c
437 $(COMPILE.c) -o $@ $<
438 $(CTFCONVERT_O)

440 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/nsctl/%.c
441 $(COMPILE.c) -o $@ $<
442 $(CTFCONVERT_O)

444 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/rdc/%.c
445 $(COMPILE.c) -o $@ $<
446 $(CTFCONVERT_O)

448 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/sdbc/%.c
449 $(COMPILE.c) -o $@ $<
450 $(CTFCONVERT_O)

452 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/solaris/%.c
453 $(COMPILE.c) -o $@ $<
454 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 8

456 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/sv/%.c
457 $(COMPILE.c) -o $@ $<
458 $(CTFCONVERT_O)

460 $(OBJS_DIR)/%.o: $(UTSBASE)/common/avs/ns/unistat/%.c
461 $(COMPILE.c) -o $@ $<
462 $(CTFCONVERT_O)

464 $(OBJS_DIR)/%.o: $(UTSBASE)/common/idmap/%.c
465 $(COMPILE.c) -o $@ $<
466 $(CTFCONVERT_O)

468 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/%.c
469 $(COMPILE.c) -o $@ $<
470 $(CTFCONVERT_O)

472 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/arp/%.c
473 $(COMPILE.c) -o $@ $<
474 $(CTFCONVERT_O)

476 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/ip/%.c
477 $(COMPILE.c) -o $@ $<
478 $(CTFCONVERT_O)

480 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/ipnet/%.c
481 $(COMPILE.c) -o $@ $<
482 $(CTFCONVERT_O)

484 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/iptun/%.c
485 $(COMPILE.c) -o $@ $<
486 $(CTFCONVERT_O)

488 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/kssl/%.c
489 $(COMPILE.c) -o $@ $<
490 $(CTFCONVERT_O)

492 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/sctp/%.c
493 $(COMPILE.c) -o $@ $<
494 $(CTFCONVERT_O)

496 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/tcp/%.c
497 $(COMPILE.c) -o $@ $<
498 $(CTFCONVERT_O)

500 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/ilb/%.c
501 $(COMPILE.c) -o $@ $<
502 $(CTFCONVERT_O)

504 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/ipf/%.c
505 $(COMPILE.c) -o $@ $<
506 $(CTFCONVERT_O)

508 $(OBJS_DIR)/%.o: $(COMMONBASE)/net/patricia/%.c
509 $(COMPILE.c) -o $@ $<
510 $(CTFCONVERT_O)

512 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/udp/%.c
513 $(COMPILE.c) -o $@ $<
514 $(CTFCONVERT_O)

516 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/nca/%.c
517 $(COMPILE.c) -o $@ $<
518 $(CTFCONVERT_O)

520 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/sockmods/%.c

new/usr/src/uts/common/Makefile.rules 9

521 $(COMPILE.c) -o $@ $<
522 $(CTFCONVERT_O)

524 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/dlpistub/%.c
525 $(COMPILE.c) -o $@ $<
526 $(CTFCONVERT_O)

528 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/%.c
529 $(COMPILE.c) -o $@ $<
530 $(CTFCONVERT_O)

532 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/1394/%.c
533 $(COMPILE.c) -o $@ $<
534 $(CTFCONVERT_O)

536 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/1394/adapters/%.c
537 $(COMPILE.c) -o $@ $<
538 $(CTFCONVERT_O)

540 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/1394/targets/av1394/%.c
541 $(COMPILE.c) -o $@ $<
542 $(CTFCONVERT_O)

544 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/1394/targets/dcam1394/%.c
545 $(COMPILE.c) -o $@ $<
546 $(CTFCONVERT_O)

548 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/1394/targets/scsa1394/%.c
549 $(COMPILE.c) -o $@ $<
550 $(CTFCONVERT_O)

552 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sbp2/%.c
553 $(COMPILE.c) -o $@ $<
554 $(CTFCONVERT_O)

556 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/aac/%.c
557 $(COMPILE.c) -o $@ $<
558 $(CTFCONVERT_O)

560 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/afe/%.c
561 $(COMPILE.c) -o $@ $<
562 $(CTFCONVERT_O)

564 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/atge/%.c
565 $(COMPILE.c) -o $@ $<
566 $(CTFCONVERT_O)

568 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/arn/%.c
569 $(COMPILE.c) -o $@ $<
570 $(CTFCONVERT_O)

572 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ath/%.c
573 $(COMPILE.c) -o $@ $<
574 $(CTFCONVERT_O)

576 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/atu/%.c
577 $(COMPILE.c) -o $@ $<
578 $(CTFCONVERT_O)

580 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/impl/%.c
581 $(COMPILE.c) -o $@ $<
582 $(CTFCONVERT_O)

584 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/ac97/%.c
585 $(COMPILE.c) -o $@ $<
586 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 10

588 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audioens/%.c
589 $(COMPILE.c) -o $@ $<
590 $(CTFCONVERT_O)

592 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audioemu10k/%.c
593 $(COMPILE.c) -o $@ $<
594 $(CTFCONVERT_O)

596 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audio1575/%.c
597 $(COMPILE.c) -o $@ $<
598 $(CTFCONVERT_O)

600 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audio810/%.c
601 $(COMPILE.c) -o $@ $<
602 $(CTFCONVERT_O)

604 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiocmi/%.c
605 $(COMPILE.c) -o $@ $<
606 $(CTFCONVERT_O)

608 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiocmihd/%.c
609 $(COMPILE.c) -o $@ $<
610 $(CTFCONVERT_O)

612 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiohd/%.c
613 $(COMPILE.c) -o $@ $<
614 $(CTFCONVERT_O)

616 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audioixp/%.c
617 $(COMPILE.c) -o $@ $<
618 $(CTFCONVERT_O)

620 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiols/%.c
621 $(COMPILE.c) -o $@ $<
622 $(CTFCONVERT_O)

624 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiopci/%.c
625 $(COMPILE.c) -o $@ $<
626 $(CTFCONVERT_O)

628 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiop16x/%.c
629 $(COMPILE.c) -o $@ $<
630 $(CTFCONVERT_O)

632 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiosolo/%.c
633 $(COMPILE.c) -o $@ $<
634 $(CTFCONVERT_O)

636 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiots/%.c
637 $(COMPILE.c) -o $@ $<
638 $(CTFCONVERT_O)

640 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiovia823x/%.c
641 $(COMPILE.c) -o $@ $<
642 $(CTFCONVERT_O)

644 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/audio/drv/audiovia97/%.c
645 $(COMPILE.c) -o $@ $<
646 $(CTFCONVERT_O)

648 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/bfe/%.c
649 $(COMPILE.c) -o $@ $<
650 $(CTFCONVERT_O)

652 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/bge/%.c

new/usr/src/uts/common/Makefile.rules 11

653 $(COMPILE.c) -o $@ $<
654 $(CTFCONVERT_O)

656 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/blkdev/%.c
657 $(COMPILE.c) -o $@ $<
658 $(CTFCONVERT_O)

660 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/bpf/%.c
661 $(COMPILE.c) -o $@ $<
662 $(CTFCONVERT_O)

664 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/cardbus/%.c
665 $(COMPILE.c) -o $@ $<
666 $(CTFCONVERT_O)

668 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/stmf/%.c
669 $(COMPILE.c) -o $@ $<
670 $(CTFCONVERT_O)

672 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/port/fct/%.c
673 $(COMPILE.c) -o $@ $<
674 $(CTFCONVERT_O)

676 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/port/qlt/%.c
677 $(COMPILE.c) -o $@ $<
678 $(CTFCONVERT_O)

680 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/port/srpt/%.c
681 $(COMPILE.c) -o $@ $<
682 $(CTFCONVERT_O)

684 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/port/fcoet/%.c
685 $(COMPILE.c) -o $@ $<
686 $(CTFCONVERT_O)

688 $(OBJS_DIR)/%.o: $(COMMONBASE)/iscsit/%.c
689 $(COMPILE.c) -o $@ $<
690 $(CTFCONVERT_O)

692 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/port/iscsit/%.c
693 $(COMPILE.c) -o $@ $<
694 $(CTFCONVERT_O)

696 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/port/pppt/%.c
697 $(COMPILE.c) -o $@ $<
698 $(CTFCONVERT_O)

700 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/comstar/lu/stmf_sbd/%.c
701 $(COMPILE.c) -o $@ $<
702 $(CTFCONVERT_O)

704 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/dld/%.c
705 $(COMPILE.c) -o $@ $<
706 $(CTFCONVERT_O)

708 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/dls/%.c
709 $(COMPILE.c) -o $@ $<
710 $(CTFCONVERT_O)

712 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/dmfe/%.c
713 $(COMPILE.c) -o $@ $<
714 $(CTFCONVERT_O)

716 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/drm/%.c
717 $(COMPILE.c) -o $@ $<
718 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 12

720 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/efe/%.c
721 $(COMPILE.c) -o $@ $<
722 $(CTFCONVERT_O)

724 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/elxl/%.c
725 $(COMPILE.c) -o $@ $<
726 $(CTFCONVERT_O)

728 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fcoe/%.c
729 $(COMPILE.c) -o $@ $<
730 $(CTFCONVERT_O)

732 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/hme/%.c
733 $(COMPILE.c) -o $@ $<
734 $(CTFCONVERT_O)

736 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pciex/%.c
737 $(COMPILE.c) -o $@ $<
738 $(CTFCONVERT_O)

740 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/hotplug/hpcsvc/%.c
741 $(COMPILE.c) -o $@ $<
742 $(CTFCONVERT_O)

744 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pciex/hotplug/%.c
745 $(COMPILE.c) -o $@ $<
746 $(CTFCONVERT_O)

748 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/hotplug/pcihp/%.c
749 $(COMPILE.c) -o $@ $<
750 $(CTFCONVERT_O)

752 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/rds/%.c
753 $(COMPILE.c) -o $@ $<
754 $(CTFCONVERT_O)

756 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/rdsv3/%.c
757 $(COMPILE.c) -o $@ $<
758 $(CTFCONVERT_O)

760 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/iser/%.c
761 $(COMPILE.c) -o $@ $<
762 $(CTFCONVERT_O)

764 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/ibd/%.c
765 $(COMPILE.c) -o $@ $<
766 $(CTFCONVERT_O)

768 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/eoib/%.c
769 $(COMPILE.c) -o $@ $<
770 $(CTFCONVERT_O)

772 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/of/sol_ofs/%.c
773 $(COMPILE.c) -o $@ $<
774 $(CTFCONVERT_O)

776 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/of/sol_ucma/%.c
777 $(COMPILE.c) -o $@ $<
778 $(CTFCONVERT_O)

780 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/of/sol_umad/%.c
781 $(COMPILE.c) -o $@ $<
782 $(CTFCONVERT_O)

784 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/of/sol_uverbs/%.

new/usr/src/uts/common/Makefile.rules 13

785 $(COMPILE.c) -o $@ $<
786 $(CTFCONVERT_O)

788 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/sdp/%.c
789 $(COMPILE.c) -o $@ $<
790 $(CTFCONVERT_O)

792 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/mgt/ibcm/%.c
793 $(COMPILE.c) -o $@ $<
794 $(CTFCONVERT_O)

796 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/mgt/ibdm/%.c
797 $(COMPILE.c) -o $@ $<
798 $(CTFCONVERT_O)

800 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/mgt/ibdma/%.c
801 $(COMPILE.c) -o $@ $<
802 $(CTFCONVERT_O)

804 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/mgt/ibmf/%.c
805 $(COMPILE.c) -o $@ $<
806 $(CTFCONVERT_O)

808 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/ibnex/%.c
809 $(COMPILE.c) -o $@ $<
810 $(CTFCONVERT_O)

812 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/ibtl/%.c
813 $(COMPILE.c) -o $@ $<
814 $(CTFCONVERT_O)

816 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/adapters/tavor/%.c
817 $(COMPILE.c) -o $@ $<
818 $(CTFCONVERT_O)

820 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/adapters/hermon/%.c
821 $(COMPILE.c) -o $@ $<
822 $(CTFCONVERT_O)

824 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ib/clients/daplt/%.c
825 $(COMPILE.c) -o $@ $<
826 $(CTFCONVERT_O)

828 $(OBJS_DIR)/%.o: $(COMMONBASE)/iscsi/%.c
829 $(COMPILE.c) -o $@ $<
830 $(CTFCONVERT_O)

832 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/idm/%.c
833 $(COMPILE.c) -o $@ $<
834 $(CTFCONVERT_O)

836 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ipw/%.c
837 $(COMPILE.c) -o $@ $<
838 $(CTFCONVERT_O)

840 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/iwh/%.c
841 $(COMPILE.c) -o $@ $<
842 $(CTFCONVERT_O)

844 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/iwi/%.c
845 $(COMPILE.c) -o $@ $<
846 $(CTFCONVERT_O)

848 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/iwk/%.c
849 $(COMPILE.c) -o $@ $<
850 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 14

852 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/iwp/%.c
853 $(COMPILE.c) -o $@ $<
854 $(CTFCONVERT_O)

856 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/kb8042/%.c
857 $(COMPILE.c) -o $@ $<
858 $(CTFCONVERT_O)

860 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/kbtrans/%.c
861 $(COMPILE.c) -o $@ $<
862 $(CTFCONVERT_O)

864 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ksocket/%.c
865 $(COMPILE.c) -o $@ $<
866 $(CTFCONVERT_O)

868 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/aggr/%.c
869 $(COMPILE.c) -o $@ $<
870 $(CTFCONVERT_O)

872 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lp/%.c
873 $(COMPILE.c) -o $@ $<
874 $(CTFCONVERT_O)

876 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/hotspares/%.c
877 $(COMPILE.c) -o $@ $<
878 $(CTFCONVERT_O)

880 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/md/%.c
881 $(COMPILE.c) -o $@ $<
882 $(CTFCONVERT_O)

884 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/mirror/%.c
885 $(COMPILE.c) -o $@ $<
886 $(CTFCONVERT_O)

888 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/notify/%.c
889 $(COMPILE.c) -o $@ $<
890 $(CTFCONVERT_O)

892 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/raid/%.c
893 $(COMPILE.c) -o $@ $<
894 $(CTFCONVERT_O)

896 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/softpart/%.c
897 $(COMPILE.c) -o $@ $<
898 $(CTFCONVERT_O)

900 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/stripe/%.c
901 $(COMPILE.c) -o $@ $<
902 $(CTFCONVERT_O)

904 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/lvm/trans/%.c
905 $(COMPILE.c) -o $@ $<
906 $(CTFCONVERT_O)

908 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mac/%.c
909 $(COMPILE.c) -o $@ $<
910 $(CTFCONVERT_O)

912 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mac/plugins/%.c
913 $(COMPILE.c) -o $@ $<
914 $(CTFCONVERT_O)

916 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mega_sas/%.c

new/usr/src/uts/common/Makefile.rules 15

917 $(COMPILE.c) -o $@ $<
918 $(CTFCONVERT_O)

920 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mii/%.c
921 $(COMPILE.c) -o $@ $<
922 $(CTFCONVERT_O)

924 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mr_sas/%.c
925 $(COMPILE.c) -o $@ $<
926 $(CTFCONVERT_O)

928 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/mpt_sas/%.c
929 $(COMPILE.c) -o $@ $<
930 $(CTFCONVERT_O)

932 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mxfe/%.c
933 $(COMPILE.c) -o $@ $<
934 $(CTFCONVERT_O)

936 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mwl/%.c
937 $(COMPILE.c) -o $@ $<
938 $(CTFCONVERT_O)

940 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/mwl/mwl_fw/%.c
941 $(COMPILE.c) -o $@ $<
942 $(CTFCONVERT_O)

944 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/net80211/%.c
945 $(COMPILE.c) -o $@ $<
946 $(CTFCONVERT_O)

948 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/nge/%.c
949 $(COMPILE.c) -o $@ $<
950 $(CTFCONVERT_O)

952 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/nxge/%.c
953 $(COMPILE.c) -o $@ $<
954 $(CTFCONVERT_O)

956 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/nxge/npi/%.c
957 $(COMPILE.c) -o $@ $<
958 $(CTFCONVERT_O)

960 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/nxge/%.s
961 $(COMPILE.s) -o $@ $<

963 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pci-ide/%.c
964 $(COMPILE.c) -o $@ $<
965 $(CTFCONVERT_O)

967 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pcmcia/%.c
968 $(COMPILE.c) -o $@ $<
969 $(CTFCONVERT_O)

971 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pcan/%.c
972 $(COMPILE.c) -o $@ $<
973 $(CTFCONVERT_O)

975 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pcn/%.c
976 $(COMPILE.c) -o $@ $<
977 $(CTFCONVERT_O)

979 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/pcwl/%.c
980 $(COMPILE.c) -o $@ $<
981 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 16

983 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ppp/sppp/%.c
984 $(COMPILE.c) -o $@ $<
985 $(CTFCONVERT_O)

987 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ppp/spppasyn/%.c
988 $(COMPILE.c) -o $@ $<
989 $(CTFCONVERT_O)

991 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ppp/sppptun/%.c
992 $(COMPILE.c) -o $@ $<
993 $(CTFCONVERT_O)

995 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ral/%.c
996 $(COMPILE.c) -o $@ $<
997 $(CTFCONVERT_O)

999 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rge/%.c
1000 $(COMPILE.c) -o $@ $<
1001 $(CTFCONVERT_O)

1003 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rtls/%.c
1004 $(COMPILE.c) -o $@ $<
1005 $(CTFCONVERT_O)

1007 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rsm/%.c
1008 $(COMPILE.c) -o $@ $<
1009 $(CTFCONVERT_O)

1011 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rtw/%.c
1012 $(COMPILE.c) -o $@ $<
1013 $(CTFCONVERT_O)

1015 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rum/%.c
1016 $(COMPILE.c) -o $@ $<
1017 $(CTFCONVERT_O)

1019 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rwd/%.c
1020 $(COMPILE.c) -o $@ $<
1021 $(CTFCONVERT_O)

1023 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/rwn/%.c
1024 $(COMPILE.c) -o $@ $<
1025 $(CTFCONVERT_O)

1027 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sata/adapters/ahci/%.c
1028 $(COMPILE.c) -o $@ $<
1029 $(CTFCONVERT_O)

1031 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sata/adapters/nv_sata/%.c
1032 $(COMPILE.c) -o $@ $<
1033 $(CTFCONVERT_O)

1035 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sata/adapters/si3124/%.c
1036 $(COMPILE.c) -o $@ $<
1037 $(CTFCONVERT_O)

1039 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sata/impl/%.c
1040 $(COMPILE.c) -o $@ $<
1041 $(CTFCONVERT_O)

1043 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/conf/%.c
1044 $(COMPILE.c) -o $@ $<
1045 $(CTFCONVERT_O)

1047 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/impl/%.c
1048 $(COMPILE.c) -o $@ $<

new/usr/src/uts/common/Makefile.rules 17

1049 $(CTFCONVERT_O)

1051 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/targets/%.c
1052 $(COMPILE.c) -o $@ $<
1053 $(CTFCONVERT_O)

1055 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/%.c
1056 $(COMPILE.c) -o $@ $<
1057 $(CTFCONVERT_O)

1059 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/blk2scsa/%.c
1060 $(COMPILE.c) -o $@ $<
1061 $(CTFCONVERT_O)

1063 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/scsi_vhci/%.c
1064 $(COMPILE.c) -o $@ $<
1065 $(CTFCONVERT_O)

1067 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/scsi_vhci/fop
1068 $(COMPILE.c) -o $@ $<
1069 $(CTFCONVERT_O)

1071 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/ulp/%.c
1072 $(COMPILE.c) -o $@ $<
1073 $(CTFCONVERT_O)

1075 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/impl/%.c
1076 $(COMPILE.c) -o $@ $<
1077 $(CTFCONVERT_O)

1079 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/fca/qlc/%.c
1080 $(COMPILE.c) -o $@ $<
1081 $(CTFCONVERT_O)

1083 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/fca/qlge/%.c
1084 $(COMPILE.c) -o $@ $<
1085 $(CTFCONVERT_O)

1087 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/fca/emlxs/%.c
1088 $(COMPILE.c) -o $@ $<
1089 $(CTFCONVERT_O)

1091 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/fca/oce/%.c
1092 $(COMPILE.c) -o $@ $<
1093 $(CTFCONVERT_O)

1095 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/fibre-channel/fca/fcoei/%.c
1096 $(COMPILE.c) -o $@ $<
1097 $(CTFCONVERT_O)

1099 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sdcard/adapters/sdhost/%.c
1100 $(COMPILE.c) -o $@ $<
1101 $(CTFCONVERT_O)

1103 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sdcard/impl/%.c
1104 $(COMPILE.c) -o $@ $<
1105 $(CTFCONVERT_O)

1107 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sdcard/targets/sdcard/%.c
1108 $(COMPILE.c) -o $@ $<
1109 $(CTFCONVERT_O)

1111 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/sfe/%.c
1112 $(COMPILE.c) -o $@ $<
1113 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 18

1115 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/simnet/%.c
1116 $(COMPILE.c) -o $@ $<
1117 $(CTFCONVERT_O)

1119 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/softmac/%.c
1120 $(COMPILE.c) -o $@ $<
1121 $(CTFCONVERT_O)

1123 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/uath/%.c
1124 $(COMPILE.c) -o $@ $<
1125 $(CTFCONVERT_O)

1127 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/uath/uath_fw/%.c
1128 $(COMPILE.c) -o $@ $<
1129 $(CTFCONVERT_O)

1131 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ural/%.c
1132 $(COMPILE.c) -o $@ $<
1133 $(CTFCONVERT_O)

1135 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/urtw/%.c
1136 $(COMPILE.c) -o $@ $<
1137 $(CTFCONVERT_O)

1139 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/audio/usb_ac/%.
1140 $(COMPILE.c) -o $@ $<
1141 $(CTFCONVERT_O)

1143 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/audio/usb_as/%.
1144 $(COMPILE.c) -o $@ $<
1145 $(CTFCONVERT_O)

1147 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/audio/usb_ah/%.
1148 $(COMPILE.c) -o $@ $<
1149 $(CTFCONVERT_O)

1151 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbskel/%.c
1152 $(COMPILE.c) -o $@ $<
1153 $(CTFCONVERT_O)

1155 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/video/usbvc/%.c
1156 $(COMPILE.c) -o $@ $<
1157 $(CTFCONVERT_O)

1159 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/hwarc/%.c
1160 $(COMPILE.c) -o $@ $<
1161 $(CTFCONVERT_O)

1163 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/hid/%.c
1164 $(COMPILE.c) -o $@ $<
1165 $(CTFCONVERT_O)

1167 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/hidparser/%.c
1168 $(COMPILE.c) -o $@ $<
1169 $(CTFCONVERT_O)

1171 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/printer/%.c
1172 $(COMPILE.c) -o $@ $<
1173 $(CTFCONVERT_O)

1175 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbkbm/%.c
1176 $(COMPILE.c) -o $@ $<
1177 $(CTFCONVERT_O)

1179 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbms/%.c
1180 $(COMPILE.c) -o $@ $<

new/usr/src/uts/common/Makefile.rules 19

1181 $(CTFCONVERT_O)

1183 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbinput/usbwcm
1184 $(COMPILE.c) -o $@ $<
1185 $(CTFCONVERT_O)

1187 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/ugen/%.c
1188 $(COMPILE.c) -o $@ $<
1189 $(CTFCONVERT_O)

1191 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbser/%.c
1192 $(COMPILE.c) -o $@ $<
1193 $(CTFCONVERT_O)

1195 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbser/usbsacm/
1196 $(COMPILE.c) -o $@ $<
1197 $(CTFCONVERT_O)

1199 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbser/usbftdi/
1200 $(COMPILE.c) -o $@ $<
1201 $(CTFCONVERT_O)

1203 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbser/usbser_k
1204 $(COMPILE.c) -o $@ $<
1205 $(CTFCONVERT_O)

1207 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbser/usbsprl/
1208 $(COMPILE.c) -o $@ $<
1209 $(CTFCONVERT_O)

1211 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/wusb_df/%.c
1212 $(COMPILE.c) -o $@ $<
1213 $(CTFCONVERT_O)

1215 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/hwa1480_fw/%.c
1216 $(COMPILE.c) -o $@ $<
1217 $(CTFCONVERT_O)

1219 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/wusb_ca/%.c
1220 $(COMPILE.c) -o $@ $<
1221 $(CTFCONVERT_O)

1223 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/clients/usbecm/%.c
1224 $(COMPILE.c) -o $@ $<
1225 $(CTFCONVERT_O)

1227 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/hcd/openhci/%.c
1228 $(COMPILE.c) -o $@ $<
1229 $(CTFCONVERT_O)

1231 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/hcd/ehci/%.c
1232 $(COMPILE.c) -o $@ $<
1233 $(CTFCONVERT_O)

1235 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/hcd/uhci/%.c
1236 $(COMPILE.c) -I../../common -o $@ $<
1237 $(CTFCONVERT_O)

1239 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/hubd/%.c
1240 $(COMPILE.c) -o $@ $<
1241 $(CTFCONVERT_O)

1243 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/scsa2usb/%.c
1244 $(COMPILE.c) -o $@ $<
1245 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 20

1247 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/usb_mid/%.c
1248 $(COMPILE.c) -o $@ $<
1249 $(CTFCONVERT_O)

1251 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/usb_ia/%.c
1252 $(COMPILE.c) -o $@ $<
1253 $(CTFCONVERT_O)

1255 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/usba/%.c
1256 $(COMPILE.c) -o $@ $<
1257 $(CTFCONVERT_O)

1259 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/usba10/%.c
1260 $(COMPILE.c) -o $@ $<
1261 $(CTFCONVERT_O)

1263 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/usb/hwa/hwahc/%.c
1264 $(COMPILE.c) -o $@ $<
1265 $(CTFCONVERT_O)

1267 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/uwb/uwba/%.c
1268 $(COMPILE.c) -o $@ $<
1269 $(CTFCONVERT_O)

1271 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/vuidmice/%.c
1272 $(COMPILE.c) -o $@ $<
1273 $(CTFCONVERT_O)

1275 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/vnic/%.c
1276 $(COMPILE.c) -o $@ $<
1277 $(CTFCONVERT_O)

1279 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/wpi/%.c
1280 $(COMPILE.c) -o $@ $<
1281 $(CTFCONVERT_O)

1283 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/zyd/%.c
1284 $(COMPILE.c) -o $@ $<
1285 $(CTFCONVERT_O)

1287 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/chxge/com/%.c
1288 $(COMPILE.c) -o $@ $<
1289 $(CTFCONVERT_O)

1291 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/chxge/%.c
1292 $(COMPILE.c) -o $@ $<
1293 $(CTFCONVERT_O)

1295 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/cxgbe/common/%.c
1296 $(COMPILE.c) -o $@ $<
1297 $(CTFCONVERT_O)

1299 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/cxgbe/shared/%.c
1300 $(COMPILE.c) -o $@ $<
1301 $(CTFCONVERT_O)

1303 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/cxgbe/firmware/%.c
1304 $(COMPILE.c) -o $@ $<
1305 $(CTFCONVERT_O)

1307 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/cxgbe/t4nex/%.c
1308 $(COMPILE.c) -o $@ $<
1309 $(CTFCONVERT_O)

1311 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/cxgbe/cxgbe/%.c
1312 $(COMPILE.c) -o $@ $<

new/usr/src/uts/common/Makefile.rules 21

1313 $(CTFCONVERT_O)

1315 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ixgb/%.c
1316 $(COMPILE.c) -o $@ $<
1317 $(CTFCONVERT_O)

1319 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/xge/drv/%.c
1320 $(COMPILE.c) -o $@ $<
1321 $(CTFCONVERT_O)

1323 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/xge/hal/xgehal/%.c
1324 $(COMPILE.c) -o $@ $<
1325 $(CTFCONVERT_O)

1327 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/e1000g/%.c
1328 $(COMPILE.c) -o $@ $<
1329 $(CTFCONVERT_O)

1331 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/igb/%.c
1332 $(COMPILE.c) -o $@ $<
1333 $(CTFCONVERT_O)

1335 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/iprb/%.c
1336 $(COMPILE.c) -o $@ $<
1337 $(CTFCONVERT_O)

1339 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ixgbe/%.c
1340 $(COMPILE.c) -o $@ $<
1341 $(CTFCONVERT_O)

1343 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/ntxn/%.c
1344 $(COMPILE.c) -o $@ $<
1345 $(CTFCONVERT_O)

1347 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/myri10ge/drv/%.c
1348 $(COMPILE.c) -o $@ $<
1349 $(CTFCONVERT_O)

1351 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ipp/%.c
1352 $(COMPILE.c) -o $@ $<
1353 $(CTFCONVERT_O)

1355 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ipp/ipgpc/%.c
1356 $(COMPILE.c) -o $@ $<
1357 $(CTFCONVERT_O)

1359 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ipp/dlcosmk/%.c
1360 $(COMPILE.c) -o $@ $<
1361 $(CTFCONVERT_O)

1363 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ipp/flowacct/%.c
1364 $(COMPILE.c) -o $@ $<
1365 $(CTFCONVERT_O)

1367 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ipp/dscpmk/%.c
1368 $(COMPILE.c) -o $@ $<
1369 $(CTFCONVERT_O)

1371 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ipp/meters/%.c
1372 $(COMPILE.c) -o $@ $<
1373 $(CTFCONVERT_O)

1375 $(OBJS_DIR)/%.o: $(UTSBASE)/common/kiconv/kiconv_emea/%.c
1376 $(COMPILE.c) -o $@ $<
1377 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 22

1379 $(OBJS_DIR)/%.o: $(UTSBASE)/common/kiconv/kiconv_ja/%.c
1380 $(COMPILE.c) -o $@ $<
1381 $(CTFCONVERT_O)

1383 $(OBJS_DIR)/%.o: $(UTSBASE)/common/kiconv/kiconv_ko/%.c
1384 $(COMPILE.c) -o $@ $<
1385 $(CTFCONVERT_O)

1387 $(OBJS_DIR)/%.o: $(UTSBASE)/common/kiconv/kiconv_sc/%.c
1388 $(COMPILE.c) -o $@ $<
1389 $(CTFCONVERT_O)

1391 $(OBJS_DIR)/%.o: $(UTSBASE)/common/kiconv/kiconv_tc/%.c
1392 $(COMPILE.c) -o $@ $<
1393 $(CTFCONVERT_O)

1395 $(OBJS_DIR)/%.o: $(UTSBASE)/common/klm/%.c
1396 $(COMPILE.c) -o $@ $<
1397 $(CTFCONVERT_O)

1399 $(OBJS_DIR)/%.o: $(UTSBASE)/common/kmdb/%.c
1400 $(COMPILE.c) -o $@ $<
1401 $(CTFCONVERT_O)

1403 $(OBJS_DIR)/%.o: $(UTSBASE)/common/ktli/%.c
1404 $(COMPILE.c) -o $@ $<
1405 $(CTFCONVERT_O)

1407 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/scsi/adapters/iscsi/%.c
1408 $(COMPILE.c) -o $@ $<
1409 $(CTFCONVERT_O)

1411 $(OBJS_DIR)/%.o: $(COMMONBASE)/iscsi/%.c
1412 $(COMPILE.c) -o $@ $<
1413 $(CTFCONVERT_O)

1415 $(OBJS_DIR)/%.o: $(UTSBASE)/common/inet/kifconf/%.c
1416 $(COMPILE.c) -o $@ $<
1417 $(CTFCONVERT_O)

1419 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/vr/%.c
1420 $(COMPILE.c) -o $@ $<
1421 $(CTFCONVERT_O)

1423 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/yge/%.c
1424 $(COMPILE.c) -o $@ $<
1425 $(CTFCONVERT_O)

1427 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/virtio/%.c
1428 $(COMPILE.c) -o $@ $<
1429 $(CTFCONVERT_O)

1431 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/vioblk/%.c
1432 $(COMPILE.c) -o $@ $<
1433 $(CTFCONVERT_O)

1435 #
1436 # krtld must refer to its own bzero/bcopy until the kernel is fully linked
1437 #
1438 $(OBJS_DIR)/bootrd.o := CPPFLAGS += -DKOBJ_OVERRIDES
1439 $(OBJS_DIR)/doreloc.o := CPPFLAGS += -DKOBJ_OVERRIDES
1440 $(OBJS_DIR)/kobj.o := CPPFLAGS += -DKOBJ_OVERRIDES
1441 $(OBJS_DIR)/kobj_boot.o := CPPFLAGS += -DKOBJ_OVERRIDES
1442 $(OBJS_DIR)/kobj_bootflags.o := CPPFLAGS += -DKOBJ_OVERRIDES
1443 $(OBJS_DIR)/kobj_convrelstr.o := CPPFLAGS += -DKOBJ_OVERRIDES
1444 $(OBJS_DIR)/kobj_isa.o := CPPFLAGS += -DKOBJ_OVERRIDES

new/usr/src/uts/common/Makefile.rules 23

1445 $(OBJS_DIR)/kobj_kdi.o := CPPFLAGS += -DKOBJ_OVERRIDES
1446 $(OBJS_DIR)/kobj_lm.o := CPPFLAGS += -DKOBJ_OVERRIDES
1447 $(OBJS_DIR)/kobj_reloc.o := CPPFLAGS += -DKOBJ_OVERRIDES
1448 $(OBJS_DIR)/kobj_stubs.o := CPPFLAGS += -DKOBJ_OVERRIDES
1449 $(OBJS_DIR)/kobj_subr.o := CPPFLAGS += -DKOBJ_OVERRIDES

1451 $(OBJS_DIR)/%.o: $(UTSBASE)/common/krtld/%.c
1452 $(COMPILE.c) -o $@ $<
1453 $(CTFCONVERT_O)

1455 $(OBJS_DIR)/%.o: $(COMMONBASE)/list/%.c
1456 $(COMPILE.c) -o $@ $<
1457 $(CTFCONVERT_O)

1459 $(OBJS_DIR)/%.o: $(COMMONBASE)/lvm/%.c
1460 $(COMPILE.c) -o $@ $<
1461 $(CTFCONVERT_O)

1463 $(OBJS_DIR)/%.o: $(COMMONBASE)/lzma/%.c
1464 $(COMPILE.c) -o $@ $<
1465 $(CTFCONVERT_O)

1467 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/md4/%.c
1468 $(COMPILE.c) -o $@ $<
1469 $(CTFCONVERT_O)

1471 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/md5/%.c
1472 $(COMPILE.c) -o $@ $<
1473 $(CTFCONVERT_O)

1475 $(OBJS_DIR)/%.o: $(COMMONBASE)/net/dhcp/%.c
1476 $(COMPILE.c) -o $@ $<
1477 $(CTFCONVERT_O)

1479 $(OBJS_DIR)/%.o: $(COMMONBASE)/nvpair/%.c
1480 $(COMPILE.c) -o $@ $<
1481 $(CTFCONVERT_O)

1483 $(OBJS_DIR)/%.o: $(UTSBASE)/common/os/%.c
1484 $(COMPILE.c) -o $@ $<
1485 $(CTFCONVERT_O)

1487 $(OBJS_DIR)/%.o: $(UTSBASE)/common/pcmcia/cis/%.c
1488 $(COMPILE.c) -o $@ $<
1489 $(CTFCONVERT_O)

1491 $(OBJS_DIR)/%.o: $(UTSBASE)/common/pcmcia/cs/%.c
1492 $(COMPILE.c) -o $@ $<
1493 $(CTFCONVERT_O)

1495 $(OBJS_DIR)/%.o: $(UTSBASE)/common/pcmcia/nexus/%.c
1496 $(COMPILE.c) -o $@ $<
1497 $(CTFCONVERT_O)

1499 $(OBJS_DIR)/%.o: $(UTSBASE)/common/pcmcia/pcs/%.c
1500 $(COMPILE.c) -o $@ $<
1501 $(CTFCONVERT_O)

1503 $(OBJS_DIR)/%.o: $(UTSBASE)/common/rpc/%.c
1504 $(COMPILE.c) -o $@ $<
1505 $(CTFCONVERT_O)

1507 $(OBJS_DIR)/%.o: $(UTSBASE)/common/rpc/sec/%.c
1508 $(COMPILE.c) -o $@ $<
1509 $(CTFCONVERT_O)

new/usr/src/uts/common/Makefile.rules 24

1511 $(OBJS_DIR)/%.o: $(UTSBASE)/common/rpc/sec_gss/%.c
1512 $(COMPILE.c) -o $@ $<
1513 $(CTFCONVERT_O)

1515 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/sha1/%.c
1516 $(COMPILE.c) -o $@ $<
1517 $(CTFCONVERT_O)

1519 $(OBJS_DIR)/%.o: $(COMMONBASE)/crypto/sha2/%.c
1520 $(COMPILE.c) -o $@ $<
1521 $(CTFCONVERT_O)

1523 $(OBJS_DIR)/%.o: $(UTSBASE)/common/syscall/%.c
1524 $(COMPILE.c) -o $@ $<
1525 $(CTFCONVERT_O)

1527 $(OBJS_DIR)/%.o: $(UTSBASE)/common/tnf/%.c
1528 $(COMPILE.c) -o $@ $<
1529 $(CTFCONVERT_O)

1531 $(OBJS_DIR)/%.o: $(COMMONBASE)/tsol/%.c
1532 $(COMPILE.c) -o $@ $<
1533 $(CTFCONVERT_O)

1535 $(OBJS_DIR)/%.o: $(COMMONBASE)/util/%.c
1536 $(COMPILE.c) -o $@ $<
1537 $(CTFCONVERT_O)

1539 $(OBJS_DIR)/%.o: $(COMMONBASE)/unicode/%.c
1540 $(COMPILE.c) -o $@ $<
1541 $(CTFCONVERT_O)

1543 $(OBJS_DIR)/%.o: $(UTSBASE)/common/vm/%.c
1544 $(COMPILE.c) -o $@ $<
1545 $(CTFCONVERT_O)

1547 $(OBJS_DIR)/%.o: $(UTSBASE)/common/zmod/%.c
1548 $(COMPILE.c) -o $@ $<
1549 $(CTFCONVERT_O)

1551 $(OBJS_DIR)/zlib_obj.o: $(ZLIB_OBJS:%=$(OBJS_DIR)/%)
1552 $(LD) -r -Breduce -M$(UTSBASE)/common/zmod/mapfile -o $@ \
1553 $(ZLIB_OBJS:%=$(OBJS_DIR)/%)
1554 $(CTFMERGE) -t -f -L VERSION -o $@ $(ZLIB_OBJS:%=$(OBJS_DIR)/%)

1556 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/hxge/%.c
1557 $(COMPILE.c) -o $@ $<
1558 $(CTFCONVERT_O)

1560 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/tpm/%.c
1561 $(COMPILE.c) -o $@ $<
1562 $(CTFCONVERT_O)

1564 $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/tpm/%.s
1565 $(COMPILE.s) -o $@ $<

1567 $(OBJS_DIR)/bz2%.o: $(COMMONBASE)/bzip2/%.c
1568 $(COMPILE.c) -o $@ -I$(COMMONBASE)/bzip2 $<
1569 $(CTFCONVERT_O)

1571 BZ2LINT = -erroff=%all -I$(UTSBASE)/common/bzip2

1573 $(LINTS_DIR)/bz2%.ln: $(COMMONBASE)/bzip2/%.c
1574 @($(LHEAD) $(LINT.c) -C $(LINTS_DIR)/‘basename $@ .ln‘ $(BZ2LINT) $< $(

1576 #

new/usr/src/uts/common/Makefile.rules 25

1577 # SVM
1578 #

1580 MD_XDR_CSRC = $(UTSBASE)/common/io/lvm/md
1581 MD_XDR_XSRC = $(UTSBASE)/common/sys/lvm
1582 RPCGENFLAGS += -C -M -D_KERNEL -DSYSV

1584 $(MD_XDR_CSRC)/meta_basic_xdr.c: $(MD_XDR_XSRC)/meta_basic.x
1585 $(RPCGEN) $(RPCGENFLAGS) -c -i 100 $(MD_XDR_XSRC)/meta_basic.x | \
1586 nawk ’{sub(/^#include "(\.\.\/\.\.\/)/,"#include \"\.\.\/\.\.\/\.\.\/\.\
1587 nawk ’{sub(/meta_basic.h/, "md_basic.h"); print $$0}’ >$@

1589 $(MD_XDR_CSRC)/metamed_xdr.c: $(MD_XDR_XSRC)/metamed.x
1590 $(RPCGEN) $(RPCGENFLAGS) -c -i 100 $(MD_XDR_XSRC)/metamed.x | \
1591 nawk ’{sub(/^#include "(\.\.\/\.\.\/)/,"#include \"\.\.\/\.\.\/\.\.\/\.\
1592 nawk ’{sub(/metamed.h/, "mdmed.h"); print $$0}’ >$@

1594 #
1595 # Section 1b: Lint ‘objects’
1596 #
1597 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/aes/%.c
1598 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1600 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/arcfour/%.c
1601 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1603 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/blowfish/%.c
1604 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1606 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/ecc/%.c
1607 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1609 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/modes/%.c
1610 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1612 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/padding/%.c
1613 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1615 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/rng/%.c
1616 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1618 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/rsa/%.c
1619 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1621 $(LINTS_DIR)/%.ln: $(COMMONBASE)/bignum/%.c
1622 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1624 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/bignum/%.c
1625 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1627 $(LINTS_DIR)/%.ln: $(COMMONBASE)/mpi/%.c
1628 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1630 $(LINTS_DIR)/%.ln: $(COMMONBASE)/acl/%.c
1631 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1633 $(LINTS_DIR)/%.ln: $(COMMONBASE)/avl/%.c
1634 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1636 $(LINTS_DIR)/%.ln: $(COMMONBASE)/ucode/%.c
1637 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1639 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/brand/sn1/%.c
1640 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1642 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/brand/solaris10/%.c

new/usr/src/uts/common/Makefile.rules 26

1643 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1645 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/c2/%.c
1646 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1648 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/conf/%.c
1649 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1651 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/contract/%.c
1652 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1654 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/cpr/%.c
1655 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1657 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ctf/%.c
1658 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1660 $(LINTS_DIR)/%.ln: $(COMMONBASE)/ctf/%.c
1661 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1663 $(LINTS_DIR)/%.ln: $(COMMONBASE)/pci/%.c
1664 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1666 $(LINTS_DIR)/%.ln: $(COMMONBASE)/devid/%.c
1667 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1669 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/des/%.c
1670 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1672 $(LINTS_DIR)/%.ln: $(COMMONBASE)/smbios/%.c
1673 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1675 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ncall/%.c
1676 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1678 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/dsw/%.c
1679 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1681 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/nsctl/%.c
1682 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1684 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/rdc/%.c
1685 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1687 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/sdbc/%.c
1688 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1690 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/solaris/%.c
1691 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1693 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/sv/%.c
1694 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1696 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/avs/ns/unistat/%.c
1697 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1699 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/des/%.c
1700 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1702 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/crypto/api/%.c
1703 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1705 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/crypto/core/%.c
1706 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1708 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/crypto/io/%.c

new/usr/src/uts/common/Makefile.rules 27

1709 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1711 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/crypto/spi/%.c
1712 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1714 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/disp/%.c
1715 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1717 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/dtrace/%.c
1718 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1720 $(LINTS_DIR)/%.ln: $(COMMONBASE)/exacct/%.c
1721 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1723 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/exec/aout/%.c
1724 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1726 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/exec/elf/%.c
1727 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1729 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/exec/intp/%.c
1730 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1732 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/exec/shbin/%.c
1733 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1735 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/exec/java/%.c
1736 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1738 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/%.c
1739 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1741 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/autofs/%.c
1742 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1744 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/cachefs/%.c
1745 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1747 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/ctfs/%.c
1748 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1750 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/doorfs/%.c
1751 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1753 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/dcfs/%.c
1754 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1756 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/devfs/%.c
1757 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1759 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/dev/%.c
1760 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1762 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/fd/%.c
1763 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1765 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/fifofs/%.c
1766 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1768 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/hsfs/%.c
1769 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1771 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/lofs/%.c
1772 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1774 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/mntfs/%.c

new/usr/src/uts/common/Makefile.rules 28

1775 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1777 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/namefs/%.c
1778 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1780 $(LINTS_DIR)/%.ln: $(COMMONBASE)/smbsrv/%.c
1781 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1783 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/smbsrv/%.c
1784 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1786 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/nfs/%.c
1787 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1789 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/objfs/%.c
1790 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1792 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/pcfs/%.c
1793 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1795 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/portfs/%.c
1796 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1798 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/proc/%.c
1799 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1801 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/sharefs/%.c
1802 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1804 $(LINTS_DIR)/%.ln: $(COMMONBASE)/smbclnt/%.c
1805 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1807 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/smbclnt/netsmb/%.c
1808 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1810 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/smbclnt/smbfs/%.c
1811 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1813 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/sockfs/%.c
1814 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1816 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/specfs/%.c
1817 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1819 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/swapfs/%.c
1820 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1822 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/tmpfs/%.c
1823 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1825 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/udfs/%.c
1826 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1828 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/ufs/%.c
1829 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1831 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/ufs_log/%.c
1832 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1834 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/vscan/%.c
1835 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1837 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/zfs/%.c
1838 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1840 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/fs/zut/%.c

new/usr/src/uts/common/Makefile.rules 29

1841 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1843 $(LINTS_DIR)/%.ln: $(COMMONBASE)/xattr/%.c
1844 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1846 $(LINTS_DIR)/%.ln: $(COMMONBASE)/zfs/%.c
1847 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1849 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/gssapi/%.c
1850 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1852 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/gssapi/mechs/dummy/%.c
1853 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1855 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/%.c
1856 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1858 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/%.c
1859 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1861 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/des/%.c
1862 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1864 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/dk/%.c
1865 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1867 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/os/%.c
1868 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1870 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/arcfour/%.c
1871 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1873 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/enc_provider/%.c
1874 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1876 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/hash_provider/%.c
1877 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1879 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/keyhash_provider/%.c
1880 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1882 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/raw/%.c
1883 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1885 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/crypto/old/%.c
1886 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1888 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/krb5/krb/%.c
1889 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1891 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/krb5/os/%.c
1892 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1894 $(LINTS_DIR)/%.ln: $(KMECHKRB5_BASE)/mech/%.c
1895 @($(LHEAD) $(LINT.c) $(KGSSDFLAGS) $< $(LTAIL))

1897 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/idmap/%.c
1898 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1900 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/%.c
1901 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1903 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/sockmods/%.c
1904 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1906 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/arp/%.c

new/usr/src/uts/common/Makefile.rules 30

1907 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1909 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/ip/%.c
1910 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1912 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/ipnet/%.c
1913 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1915 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/iptun/%.c
1916 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1918 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/ipf/%.c
1919 @($(LHEAD) $(LINT.c) $(IPFFLAGS) $< $(LTAIL))

1921 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/kssl/%.c
1922 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1924 $(LINTS_DIR)/%.ln: $(COMMONBASE)/net/patricia/%.c
1925 @($(LHEAD) $(LINT.c) $(IPFFLAGS) $< $(LTAIL))

1927 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/udp/%.c
1928 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1930 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/sctp/%.c
1931 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1933 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/tcp/%.c
1934 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1936 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/ilb/%.c
1937 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1939 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/nca/%.c
1940 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1942 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/dlpistub/%.c
1943 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1945 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/%.c
1946 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1948 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/1394/%.c
1949 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1951 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/1394/adapters/%.c
1952 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1954 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/1394/targets/av1394/%.c
1955 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1957 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/1394/targets/dcam1394/%.c
1958 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1960 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/1394/targets/scsa1394/%.c
1961 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1963 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sbp2/%.c
1964 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1966 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/aac/%.c
1967 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1969 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/afe/%.c
1970 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1972 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/atge/%.c

new/usr/src/uts/common/Makefile.rules 31

1973 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1975 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/arn/%.c
1976 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1978 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ath/%.c
1979 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1981 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/atu/%.c
1982 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1984 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/impl/%.c
1985 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1987 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/ac97/%.c
1988 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1990 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audio1575/%.c
1991 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1993 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audio810/%.c
1994 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1996 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiocmi/%.c
1997 @($(LHEAD) $(LINT.c) $< $(LTAIL))

1999 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiocmihd/%.c
2000 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2002 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audioens/%.c
2003 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2005 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audioemu10k/%.c
2006 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2008 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiohd/%.c
2009 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2011 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audioixp/%.c
2012 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2014 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiols/%.c
2015 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2017 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiopci/%.c
2018 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2020 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiop16x/%.c
2021 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2023 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiosolo/%.c
2024 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2026 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiots/%.c
2027 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2029 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiovia823x/%.c
2030 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2032 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/audio/drv/audiovia97/%.c
2033 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2035 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/bfe/%.c
2036 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2038 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/bpf/%.c

new/usr/src/uts/common/Makefile.rules 32

2039 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2041 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/bge/%.c
2042 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2044 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/blkdev/%.c
2045 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2047 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/cardbus/%.c
2048 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2050 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/lu/stmf_sbd/%.c
2051 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2053 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/port/fct/%.c
2054 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2056 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/port/qlt/%.c
2057 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2059 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/port/srpt/%.c
2060 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2062 $(LINTS_DIR)/%.ln: $(COMMONBASE)/iscsit/%.c
2063 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2065 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/port/fcoet/%.c
2066 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2068 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/port/iscsit/%.c
2069 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2071 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/port/pppt/%.c
2072 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2074 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/comstar/stmf/%.c
2075 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2077 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/dld/%.c
2078 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2080 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/dls/%.c
2081 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2083 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/dmfe/%.c
2084 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2086 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/drm/%.c
2087 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2089 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/efe/%.c
2090 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2092 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/elxl/%.c
2093 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2095 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fcoe/%.c
2096 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2098 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/hme/%.c
2099 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2101 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pciex/%.c
2102 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2104 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/hotplug/hpcsvc/%.c

new/usr/src/uts/common/Makefile.rules 33

2105 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2107 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pciex/hotplug/%.c
2108 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2110 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/hotplug/pcihp/%.c
2111 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2113 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/rds/%.c
2114 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2116 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/rdsv3/%.c
2117 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2119 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/iser/%.c
2120 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2122 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/ibd/%.c
2123 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2125 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/eoib/%.c
2126 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2128 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/of/sol_ofs/%.c
2129 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2131 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/of/sol_ucma/%.c
2132 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2134 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/of/sol_umad/%.c
2135 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2137 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/of/sol_uverbs/%.
2138 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2140 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/sdp/%.c
2141 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2143 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/mgt/ibcm/%.c
2144 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2146 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/mgt/ibdm/%.c
2147 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2149 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/mgt/ibdma/%.c
2150 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2152 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/mgt/ibmf/%.c
2153 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2155 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/ibnex/%.c
2156 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2158 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/ibtl/%.c
2159 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2161 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/adapters/tavor/%.c
2162 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2164 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/adapters/hermon/%.c
2165 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2167 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ib/clients/daplt/%.c
2168 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2170 $(LINTS_DIR)/%.ln: $(COMMONBASE)/iscsi/%.c

new/usr/src/uts/common/Makefile.rules 34

2171 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2173 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/idm/%.c
2174 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2176 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ipw/%.c
2177 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2179 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/iwh/%.c
2180 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2182 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/iwi/%.c
2183 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2185 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/iwk/%.c
2186 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2188 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/iwp/%.c
2189 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2191 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/kb8042/%.c
2192 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2194 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/kbtrans/%.c
2195 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2197 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ksocket/%.c
2198 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2200 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/aggr/%.c
2201 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2203 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lp/%.c
2204 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2206 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/hotspares/%.c
2207 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2209 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/md/%.c
2210 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2212 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/mirror/%.c
2213 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2215 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/raid/%.c
2216 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2218 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/softpart/%.c
2219 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2221 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/stripe/%.c
2222 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2224 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/notify/%.c
2225 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2227 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/lvm/trans/%.c
2228 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2230 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mac/%.c
2231 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2233 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mac/plugins/%.c
2234 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2236 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mega_sas/%.c

new/usr/src/uts/common/Makefile.rules 35

2237 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2239 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mii/%.c
2240 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2242 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mr_sas/%.c
2243 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2245 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/mpt_sas/%.c
2246 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2248 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mxfe/%.c
2249 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2251 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mwl/%.c
2252 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2254 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/mwl/mwl_fw/%.c
2255 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2257 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/net80211/%.c
2258 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2260 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/nge/%.c
2261 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2263 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/nxge/%.c
2264 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2266 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/nxge/%.s
2267 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2269 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/nxge/npi/%.c
2270 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2272 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pci-ide/%.c
2273 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2275 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pcmcia/%.c
2276 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2278 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pcan/%.c
2279 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2281 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pcn/%.c
2282 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2284 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/pcwl/%.c
2285 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2287 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ppp/sppp/%.c
2288 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2290 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ppp/spppasyn/%.c
2291 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2293 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ppp/sppptun/%.c
2294 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2296 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ral/%.c
2297 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2299 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rge/%.c
2300 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2302 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rtls/%.c

new/usr/src/uts/common/Makefile.rules 36

2303 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2305 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rsm/%.c
2306 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2308 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rtw/%.c
2309 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2311 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rum/%.c
2312 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2314 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rwd/%.c
2315 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2317 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/rwn/%.c
2318 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2320 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sata/adapters/ahci/%.c
2321 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2323 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sata/adapters/nv_sata/%.c
2324 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2326 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sata/adapters/si3124/%.c
2327 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2329 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sata/impl/%.c
2330 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2332 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/%.c
2333 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2335 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/blk2scsa/%.c
2336 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2338 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/pmcs/%.c
2339 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2341 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/scsi_vhci/%.c
2342 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2344 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/scsi_vhci/fop
2345 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2347 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/ulp/%.c
2348 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2350 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/impl/%.c
2351 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2353 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/fca/qlc/%.c
2354 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2356 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/fca/qlge/%.c
2357 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2359 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/fca/emlxs/%.c
2360 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2362 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/fca/oce/%.c
2363 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2365 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/fibre-channel/fca/fcoei/%.c
2366 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2368 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/conf/%.c

new/usr/src/uts/common/Makefile.rules 37

2369 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2371 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/impl/%.c
2372 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2374 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/targets/%.c
2375 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2377 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sdcard/adapters/sdhost/%.c
2378 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2380 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sdcard/impl/%.c
2381 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2383 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sdcard/targets/sdcard/%.c
2384 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2386 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/sfe/%.c
2387 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2389 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/simnet/%.c
2390 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2392 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/softmac/%.c
2393 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2395 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/uath/%.c
2396 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2398 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/uath/uath_fw/%.c
2399 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2401 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ural/%.c
2402 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2404 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/urtw/%.c
2405 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2407 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/audio/usb_ac/%.
2408 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2410 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/audio/usb_as/%.
2411 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2413 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/audio/usb_ah/%.
2414 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2416 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbskel/%.c
2417 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2419 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/video/usbvc/%.c
2420 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2422 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/hwarc/%.c
2423 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2425 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/hid/%.c
2426 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2428 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/hidparser/%.c
2429 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2431 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbkbm/%.c
2432 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2434 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbms/%.c

new/usr/src/uts/common/Makefile.rules 38

2435 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2437 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbinput/usbwcm
2438 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2440 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/ugen/%.c
2441 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2443 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/printer/%.c
2444 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2446 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbser/%.c
2447 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2449 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbser/usbsacm/
2450 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2452 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbser/usbftdi/
2453 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2455 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbser/usbser_k
2456 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2458 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbser/usbsprl/
2459 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2461 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/wusb_df/%.c
2462 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2464 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/hwa1480_fw/%.c
2465 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2467 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/wusb_ca/%.c
2468 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2470 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/clients/usbecm/%.c
2471 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2473 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/hcd/openhci/%.c
2474 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2476 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/hcd/ehci/%.c
2477 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2479 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/hcd/uhci/%.c
2480 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2482 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/hubd/%.c
2483 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2485 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/scsa2usb/%.c
2486 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2488 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/usb_mid/%.c
2489 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2491 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/usb_ia/%.c
2492 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2494 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/usba/%.c
2495 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2497 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/usba10/%.c
2498 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2500 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/uwb/uwba/%.c

new/usr/src/uts/common/Makefile.rules 39

2501 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2503 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/usb/hwa/hwahc/%.c
2504 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2506 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/vuidmice/%.c
2507 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2509 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/vnic/%.c
2510 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2512 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/wpi/%.c
2513 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2515 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/zyd/%.c
2516 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2518 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/chxge/com/%.c
2519 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2521 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/chxge/%.c
2522 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2524 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/cxgbe/common/%.c
2525 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2527 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/cxgbe/shared/%.c
2528 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2530 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/cxgbe/firmware/%.c
2531 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2533 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/cxgbe/t4nex/%.c
2534 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2536 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/cxgbe/cxgbe/%.c
2537 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2539 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ixgb/%.c
2540 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2542 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/xge/drv/%.c
2543 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2545 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/xge/hal/xgehal/%.c
2546 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2548 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/e1000g/%.c
2549 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2551 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/igb/%.c
2552 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2554 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/iprb/%.c
2555 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2557 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ixgbe/%.c
2558 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2560 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/ntxn/%.c
2561 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2563 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/myri10ge/drv/%.c
2564 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2566 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ipp/%.c

new/usr/src/uts/common/Makefile.rules 40

2567 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2569 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ipp/ipgpc/%.c
2570 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2572 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ipp/dlcosmk/%.c
2573 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2575 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ipp/flowacct/%.c
2576 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2578 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ipp/dscpmk/%.c
2579 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2581 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ipp/meters/%.c
2582 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2584 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/kiconv/kiconv_emea/%.c
2585 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2587 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/kiconv/kiconv_ja/%.c
2588 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2590 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/kiconv/kiconv_ko/%.c
2591 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2593 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/kiconv/kiconv_sc/%.c
2594 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2596 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/kiconv/kiconv_tc/%.c
2597 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2599 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/klm/%.c
2600 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2602 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/kmdb/%.c
2603 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2605 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/krtld/%.c
2606 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2608 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/ktli/%.c
2609 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2611 $(LINTS_DIR)/%.ln: $(COMMONBASE)/list/%.c
2612 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2614 $(LINTS_DIR)/%.ln: $(COMMONBASE)/lvm/%.c
2615 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2617 $(LINTS_DIR)/%.ln: $(COMMONBASE)/lzma/%.c
2618 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2620 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/md4/%.c
2621 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2623 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/md5/%.c
2624 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2626 $(LINTS_DIR)/%.ln: $(COMMONBASE)/net/dhcp/%.c
2627 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2629 $(LINTS_DIR)/%.ln: $(COMMONBASE)/nvpair/%.c
2630 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2632 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/os/%.c

new/usr/src/uts/common/Makefile.rules 41

2633 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2635 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/rpc/%.c
2636 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2638 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/pcmcia/cs/%.c
2639 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2641 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/pcmcia/cis/%.c
2642 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2644 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/pcmcia/nexus/%.c
2645 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2647 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/pcmcia/pcs/%.c
2648 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2650 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/rpc/%.c
2651 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2653 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/rpc/sec/%.c
2654 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2656 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/rpc/sec_gss/%.c
2657 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2659 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/sha1/%.c
2660 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2662 $(LINTS_DIR)/%.ln: $(COMMONBASE)/crypto/sha2/%.c
2663 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2665 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/syscall/%.c
2666 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2668 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/tnf/%.c
2669 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2671 $(LINTS_DIR)/%.ln: $(COMMONBASE)/tsol/%.c
2672 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2674 $(LINTS_DIR)/%.ln: $(COMMONBASE)/util/%.c
2675 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2677 $(LINTS_DIR)/%.ln: $(COMMONBASE)/unicode/%.c
2678 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2680 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/vm/%.c
2681 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2683 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/scsi/adapters/iscsi/%.c
2684 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2686 $(LINTS_DIR)/%.ln: $(COMMONBASE)/iscsi/%.c
2687 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2689 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/inet/kifconf/%.c
2690 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2692 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/virtio/%.c
2693 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2695 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/vioblk/%.c
2696 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2698 ZMODLINTFLAGS = -erroff=E_CONSTANT_CONDITION

new/usr/src/uts/common/Makefile.rules 42

2700 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/zmod/%.c
2701 @($(LHEAD) $(LINT.c) $(ZMODLINTFLAGS) $< $(LTAIL))

2703 $(LINTS_DIR)/zlib_obj.ln: $(ZLIB_OBJS:%.o=$(LINTS_DIR)/%.ln) \
2704 $(UTSBASE)/common/zmod/zlib_lint.c
2705 @($(LHEAD) $(LINT.c) -C $(LINTS_DIR)/zlib_obj \
2706 $(UTSBASE)/common/zmod/zlib_lint.c $(LTAIL))

2708 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/hxge/%.c
2709 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2711 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/tpm/%.c
2712 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2714 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/tpm/%.s
2715 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2717 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/vr/%.c
2718 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2720 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/yge/%.c
2721 @($(LHEAD) $(LINT.c) $< $(LTAIL))

2723 $(LINTS_DIR)/%.ln: $(COMMONBASE)/fsreparse/%.c
2724 @($(LHEAD) $(LINT.c) $< $(LTAIL))

new/usr/src/uts/common/io/tl.c 1

**
 161686 Sun Aug 25 23:51:03 2013
new/usr/src/uts/common/io/tl.c
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2012 by Delphix. All rights reserved.
28 */

30 /*
31 * Multithreaded STREAMS Local Transport Provider.
32 *
33 * OVERVIEW
34 * ========
35 *
36 * This driver provides TLI as well as socket semantics. It provides
37 * connectionless, connection oriented, and connection oriented with orderly
38 * release transports for TLI and sockets. Each transport type has separate name
39 * spaces (i.e. it is not possible to connect from a socket to a TLI endpoint) -
40 * this removes any name space conflicts when binding to socket style transport
41 * addresses.
42 *
43 * NOTE: There is one exception: Socket ticots and ticotsord transports share
44 * the same namespace. In fact, sockets always use ticotsord type transport.
45 *
46 * The driver mode is specified during open() by the minor number used for
47 * open.
48 *
49 * The sockets in addition have the following semantic differences:
50 * No support for passing up credentials (TL_SET[U]CRED).
51 *
52 * Options are passed through transparently on T_CONN_REQ to T_CONN_IND,
53 * from T_UNITDATA_REQ to T_UNIDATA_IND, and from T_OPTDATA_REQ to
54 * T_OPTDATA_IND.
55 *
56 * The T_CONN_CON is generated when processing the T_CONN_REQ i.e. before
57 * a T_CONN_RES is received from the acceptor. This means that a socket
58 * connect will complete before the peer has called accept.

new/usr/src/uts/common/io/tl.c 2

59 *
60 *
61 * MULTITHREADING
62 * ==============
63 *
64 * The driver does not use STREAMS protection mechanisms. Instead it uses a
65 * generic "serializer" abstraction. Most of the operations are executed behind
66 * the serializer and are, essentially single-threaded. All functions executed
67 * behind the same serializer are strictly serialized. So if one thread calls
68 * serializer_enter(serializer, foo, mp1, arg1); and another thread calls
69 * serializer_enter(serializer, bar, mp2, arg1); then (depending on which one
70 * was called) the actual sequence will be foo(mp1, arg1); bar(mp1, arg2) or
71 * bar(mp1, arg2); foo(mp1, arg1); But foo() and bar() will never run at the
72 * same time.
73 *
74 * Connectionless transport use a single serializer per transport type (one for
75 * TLI and one for sockets. Connection-oriented transports use finer-grained
76 * serializers.
77 *
78 * All COTS-type endpoints start their life with private serializers. During
79 * connection request processing the endpoint serializer is switched to the
80 * listener’s serializer and the rest of T_CONN_REQ processing is done on the
81 * listener serializer. During T_CONN_RES processing the eager serializer is
82 * switched from listener to acceptor serializer and after that point all
83 * processing for eager and acceptor happens on this serializer. To avoid races
84 * with endpoint closes while its serializer may be changing closes are blocked
85 * while serializers are manipulated.
86 *
87 * References accounting
88 * ---------------------
89 *
90 * Endpoints are reference counted and freed when the last reference is
91 * dropped. Functions within the serializer may access an endpoint state even
92 * after an endpoint closed. The te_closing being set on the endpoint indicates
93 * that the endpoint entered its close routine.
94 *
95 * One reference is held for each opened endpoint instance. The reference
96 * counter is incremented when the endpoint is linked to another endpoint and
97 * decremented when the link disappears. It is also incremented when the
98 * endpoint is found by the hash table lookup. This increment is atomic with the
99 * lookup itself and happens while the hash table read lock is held.
100 *
101 * Close synchronization
102 * ---------------------
103 *
104 * During close the endpoint as marked as closing using te_closing flag. It is
105 * usually enough to check for te_closing flag since all other state changes
106 * happen after this flag is set and the close entered serializer. Immediately
107 * after setting te_closing flag tl_close() enters serializer and waits until
108 * the callback finishes. This allows all functions called within serializer to
109 * simply check te_closing without any locks.
110 *
111 * Serializer management.
112 * ---------------------
113 *
114 * For COTS transports serializers are created when the endpoint is constructed
115 * and destroyed when the endpoint is destructed. CLTS transports use global
116 * serializers - one for sockets and one for TLI.
117 *
118 * COTS serializers have separate reference counts to deal with several
119 * endpoints sharing the same serializer. There is a subtle problem related to
120 * the serializer destruction. The serializer should never be destroyed by any
121 * function executed inside serializer. This means that close has to wait till
122 * all serializer activity for this endpoint is finished before it can drop the
123 * last reference on the endpoint (which may as well free the serializer). This
124 * is only relevant for COTS transports which manage serializers

new/usr/src/uts/common/io/tl.c 3

125 * dynamically. For CLTS transports close may complete without waiting for all
126 * serializer activity to finish since serializer is only destroyed at driver
127 * detach time.
128 *
129 * COTS endpoints keep track of the number of outstanding requests on the
130 * serializer for the endpoint. The code handling accept() avoids changing
131 * client serializer if it has any pending messages on the serializer and
132 * instead moves acceptor to listener’s serializer.
133 *
134 *
135 * Use of hash tables
136 * ------------------
137 *
138 * The driver uses modhash hash table implementation. Each transport uses two
139 * hash tables - one for finding endpoints by acceptor ID and another one for
140 * finding endpoints by address. For sockets TICOTS and TICOTSORD share the same
141 * pair of hash tables since sockets only use TICOTSORD.
142 *
143 * All hash tables lookups increment a reference count for returned endpoints,
144 * so we may safely check the endpoint state even when the endpoint is removed
145 * from the hash by another thread immediately after it is found.
146 *
147 *
148 * CLOSE processing
149 * ================
150 *
151 * The driver enters serializer twice on close(). The close sequence is the
152 * following:
153 *
154 * 1) Wait until closing is safe (te_closewait becomes zero)
155 * This step is needed to prevent close during serializer switches. In most
156 * cases (close happening after connection establishment) te_closewait is
157 * zero.
158 * 1) Set te_closing.
159 * 2) Call tl_close_ser() within serializer and wait for it to complete.
160 *
161 * te_close_ser simply marks endpoint and wakes up waiting tl_close().
162 * It also needs to clear write-side q_next pointers - this should be done
163 * before qprocsoff().
164 *
165 * This synchronous serializer entry during close is needed to ensure that
166 * the queue is valid everywhere inside the serializer.
167 *
168 * Note that in many cases close will execute tl_close_ser() synchronously,
169 * so it will not wait at all.
170 *
171 * 3) Calls qprocsoff().
172 * 4) Calls tl_close_finish_ser() within the serializer and waits for it to
173 * complete (for COTS transports). For CLTS transport there is no wait.
174 *
175 * tl_close_finish_ser() Finishes the close process and wakes up waiting
176 * close if there is any.
177 *
178 * Note that in most cases close will enter te_close_ser_finish()
179 * synchronously and will not wait at all.
180 *
181 *
182 * Flow Control
183 * ============
184 *
185 * The driver implements both read and write side service routines. No one calls
186 * putq() on the read queue. The read side service routine tl_rsrv() is called
187 * when the read side stream is back-enabled. It enters serializer synchronously
188 * (waits till serializer processing is complete). Within serializer it
189 * back-enables all endpoints blocked by the queue for connection-less
190 * transports and enables write side service processing for the peer for

new/usr/src/uts/common/io/tl.c 4

191 * connection-oriented transports.
192 *
193 * Read and write side service routines use special mblk_sized space in the
194 * endpoint structure to enter perimeter.
195 *
196 * Write-side flow control
197 * -----------------------
198 *
199 * Write side flow control is a bit tricky. The driver needs to deal with two
200 * message queues - the explicit STREAMS message queue maintained by
201 * putq()/getq()/putbq() and the implicit queue within the serializer. These two
202 * queues should be synchronized to preserve message ordering and should
203 * maintain a single order determined by the order in which messages enter
204 * tl_wput(). In order to maintain the ordering between these two queues the
205 * STREAMS queue is only manipulated within the serializer, so the ordering is
206 * provided by the serializer.
207 *
208 * Functions called from the tl_wsrv() sometimes may call putbq(). To
209 * immediately stop any further processing of the STREAMS message queues the
210 * code calling putbq() also sets the te_nowsrv flag in the endpoint. The write
211 * side service processing stops when the flag is set.
212 *
213 * The tl_wsrv() function enters serializer synchronously and waits for it to
214 * complete. The serializer call-back tl_wsrv_ser() either drains all messages
215 * on the STREAMS queue or terminates when it notices the te_nowsrv flag
216 * set. Note that the maximum amount of messages processed by tl_wput_ser() is
217 * always bounded by the amount of messages on the STREAMS queue at the time
218 * tl_wsrv_ser() is entered. Any new messages may only appear on the STREAMS
219 * queue from another serialized entry which can’t happen in parallel. This
220 * guarantees that tl_wput_ser() is complete in bounded time (there is no risk
221 * of it draining forever while writer places new messages on the STREAMS
222 * queue).
223 *
224 * Note that a closing endpoint never sets te_nowsrv and never calls putbq().
225 *
226 *
227 * Unix Domain Sockets
228 * ===================
229 *
230 * The driver knows the structure of Unix Domain sockets addresses and treats
231 * them differently from generic TLI addresses. For sockets implicit binds are
232 * requested by setting SOU_MAGIC_IMPLICIT in the soua_magic part of the address
233 * instead of using address length of zero. Explicit binds specify
234 * SOU_MAGIC_EXPLICIT as magic.
235 *
236 * For implicit binds we always use minor number as soua_vp part of the address
237 * and avoid any hash table lookups. This saves two hash tables lookups per
238 * anonymous bind.
239 *
240 * For explicit address we hash the vnode pointer instead of hashing the
241 * full-scale address+zone+length. Hashing by pointer is more efficient then
242 * hashing by the full address.
243 *
244 * For unix domain sockets the te_ap is always pointing to te_uxaddr part of the
245 * tep structure, so it should be never freed.
246 *
247 * Also for sockets the driver always uses minor number as acceptor id.
248 *
249 * TPI VIOLATIONS
250 * --------------
251 *
252 * This driver violates TPI in several respects for Unix Domain Sockets:
253 *
254 * 1) It treats O_T_BIND_REQ as T_BIND_REQ and refuses bind if an explicit bind
255 * is requested and the endpoint is already in use. There is no point in
256 * generating an unused address since this address will be rejected by

new/usr/src/uts/common/io/tl.c 5

257 * sockfs anyway. For implicit binds it always generates a new address
258 * (sets soua_vp to its minor number).
259 *
260 * 2) It always uses minor number as acceptor ID and never uses queue
261 * pointer. It is ok since sockets get acceptor ID from T_CAPABILITY_REQ
262 * message and they do not use the queue pointer.
263 *
264 * 3) For Listener sockets the usual sequence is to issue bind() zero backlog
265 * followed by listen(). The listen() should be issued with non-zero
266 * backlog, so sotpi_listen() issues unbind request followed by bind
267 * request to the same address but with a non-zero qlen value. Both
268 * tl_bind() and tl_unbind() require write lock on the hash table to
269 * insert/remove the address. The driver does not remove the address from
270 * the hash for endpoints that are bound to the explicit address and have
271 * backlog of zero. During T_BIND_REQ processing if the address requested
272 * is equal to the address the endpoint already has it updates the backlog
273 * without reinserting the address in the hash table. This optimization
274 * avoids two hash table updates for each listener created. It always
275 * avoids the problem of a "stolen" address when another listener may use
276 * the same address between the unbind and bind and suddenly listen() fails
277 * because address is in use even though the bind() succeeded.
278 *
279 *
280 * CONNECTIONLESS TRANSPORTS
281 * =========================
282 *
283 * Connectionless transports all share the same serializer (one for TLI and one
284 * for Sockets). Functions executing behind serializer can check or modify state
285 * of any endpoint.
286 *
287 * When endpoint X talks to another endpoint Y it caches the pointer to Y in the
288 * te_lastep field. The next time X talks to some address A it checks whether A
289 * is the same as Y’s address and if it is there is no need to lookup Y. If the
290 * address is different or the state of Y is not appropriate (e.g. closed or not
291 * idle) X does a lookup using tl_find_peer() and caches the new address.
292 * NOTE: tl_find_peer() never returns closing endpoint and it places a refhold
293 * on the endpoint found.
294 *
295 * During close of endpoint Y it doesn’t try to remove itself from other
296 * endpoints caches. They will detect that Y is gone and will search the peer
297 * endpoint again.
298 *
299 * Flow Control Handling.
300 * ----------------------
301 *
302 * Each connectionless endpoint keeps a list of endpoints which are
303 * flow-controlled by its queue. It also keeps a pointer to the queue which
304 * flow-controls itself. Whenever flow control releases for endpoint X it
305 * enables all queues from the list. During close it also back-enables everyone
306 * in the list. If X is flow-controlled when it is closing it removes it from
307 * the peers list.
308 *
309 * DATA STRUCTURES
310 * ===============
311 *
312 * Each endpoint is represented by the tl_endpt_t structure which keeps all the
313 * endpoint state. For connection-oriented transports it has a keeps a list
314 * of pending connections (tl_icon_t). For connectionless transports it keeps a
315 * list of endpoints flow controlled by this one.
316 *
317 * Each transport type is represented by a per-transport data structure
318 * tl_transport_state_t. It contains a pointer to an acceptor ID hash and the
319 * endpoint address hash tables for each transport. It also contains pointer to
320 * transport serializer for connectionless transports.
321 *
322 * Each endpoint keeps a link to its transport structure, so the code can find

new/usr/src/uts/common/io/tl.c 6

323 * all per-transport information quickly.
324 */

326 #include <sys/types.h>
327 #include <sys/inttypes.h>
328 #include <sys/stream.h>
329 #include <sys/stropts.h>
330 #define _SUN_TPI_VERSION 2
331 #include <sys/tihdr.h>
332 #include <sys/strlog.h>
333 #include <sys/debug.h>
334 #include <sys/cred.h>
335 #include <sys/errno.h>
336 #include <sys/kmem.h>
337 #include <sys/id_space.h>
338 #include <sys/modhash.h>
339 #include <sys/mkdev.h>
340 #include <sys/tl.h>
341 #include <sys/stat.h>
342 #include <sys/conf.h>
343 #include <sys/modctl.h>
344 #include <sys/strsun.h>
345 #include <sys/socket.h>
346 #include <sys/socketvar.h>
347 #include <sys/sysmacros.h>
348 #include <sys/xti_xtiopt.h>
349 #include <sys/ddi.h>
350 #include <sys/sunddi.h>
351 #include <sys/zone.h>
352 #include <inet/common.h> /* typedef int (*pfi_t)() for inet/optcom.h */
353 #include <inet/optcom.h>
354 #include <sys/strsubr.h>
355 #include <sys/ucred.h>
356 #include <sys/suntpi.h>
357 #include <sys/list.h>
358 #include <sys/serializer.h>

360 /*
361 * TBD List
362 * 14 Eliminate state changes through table
363 * 16. AF_UNIX socket options
364 * 17. connect() for ticlts
365 * 18. support for "netstat" to show AF_UNIX plus TLI local
366 * transport connections
367 * 21. sanity check to flushing on sending M_ERROR
368 */

370 /*
371 * CONSTANT DECLARATIONS
372 * --------------------
373 */

375 /*
376 * Local declarations
377 */
378 #define NEXTSTATE(EV, ST) ti_statetbl[EV][ST]

380 #define BADSEQNUM (-1) /* initial seq number used by T_DISCON_IND */
381 #define TL_BUFWAIT (10000) /* usecs to wait for allocb buffer timeout */
382 #define TL_TIDUSZ (64*1024) /* tidu size when "strmsgz" is unlimited (0) */
383 /*
384 * Hash tables size.
385 */
386 #define TL_HASH_SIZE 311

388 /*

new/usr/src/uts/common/io/tl.c 7

389 * Definitions for module_info
390 */
391 #define TL_ID (104) /* module ID number */
392 #define TL_NAME "tl" /* module name */
393 #define TL_MINPSZ (0) /* min packet size */
394 #define TL_MAXPSZ INFPSZ /* max packet size ZZZ */
395 #define TL_HIWAT (16*1024) /* hi water mark */
396 #define TL_LOWAT (256) /* lo water mark */
397 /*
398 * Definition of minor numbers/modes for new transport provider modes.
399 * We view the socket use as a separate mode to get a separate name space.
400 */
401 #define TL_TICOTS 0 /* connection oriented transport */
402 #define TL_TICOTSORD 1 /* COTS w/ orderly release */
403 #define TL_TICLTS 2 /* connectionless transport */
404 #define TL_UNUSED 3
405 #define TL_SOCKET 4 /* Socket */
406 #define TL_SOCK_COTS (TL_SOCKET|TL_TICOTS)
407 #define TL_SOCK_COTSORD (TL_SOCKET|TL_TICOTSORD)
408 #define TL_SOCK_CLTS (TL_SOCKET|TL_TICLTS)

410 #define TL_MINOR_MASK 0x7
411 #define TL_MINOR_START (TL_TICLTS + 1)

413 /*
414 * LOCAL MACROS
415 */
416 #define T_ALIGN(p) P2ROUNDUP((p), sizeof (t_scalar_t))

418 /*
419 * EXTERNAL VARIABLE DECLARATIONS
420 * -----------------------------
421 */
422 /*
423 * state table defined in the OS space.c
424 */
425 extern char ti_statetbl[TE_NOEVENTS][TS_NOSTATES];

427 /*
428 * STREAMS DRIVER ENTRY POINTS PROTOTYPES
429 */
430 static int tl_open(queue_t *, dev_t *, int, int, cred_t *);
431 static int tl_close(queue_t *, int, cred_t *);
432 static void tl_wput(queue_t *, mblk_t *);
433 static void tl_wsrv(queue_t *);
434 static void tl_rsrv(queue_t *);

436 static int tl_attach(dev_info_t *, ddi_attach_cmd_t);
437 static int tl_detach(dev_info_t *, ddi_detach_cmd_t);
438 static int tl_info(dev_info_t *, ddi_info_cmd_t, void *, void **);

441 /*
442 * GLOBAL DATA STRUCTURES AND VARIABLES
443 * -----------------------------------
444 */

446 /*
447 * Table representing database of all options managed by T_SVR4_OPTMGMT_REQ
448 * For now, we only manage the SO_RECVUCRED option but we also have
449 * harmless dummy options to make things work with some common code we access.
450 */
451 opdes_t tl_opt_arr[] = {
452 /* The SO_TYPE is needed for the hack below */
453 {
454 SO_TYPE,

new/usr/src/uts/common/io/tl.c 8

455 SOL_SOCKET,
456 OA_R,
457 OA_R,
458 OP_NP,
459 0,
460 sizeof (t_scalar_t),
461 0
462 },
463 {
464 SO_RECVUCRED,
465 SOL_SOCKET,
466 OA_RW,
467 OA_RW,
468 OP_NP,
469 0,
470 sizeof (int),
471 0
472 }
473 };

______unchanged_portion_omitted_

4253 static void
4254 tl_connected_cots_addr_req(mblk_t *mp, tl_endpt_t *tep)
4255 {
4256 tl_endpt_t *peer_tep = tep->te_conp;
4255 tl_endpt_t *peer_tep;
4257 size_t ack_sz;
4258 mblk_t *ackmp;
4259 struct T_addr_ack *taa;
4260 uchar_t *addr_startp;

4262 if (tep->te_closing) {
4263 freemsg(mp);
4264 return;
4265 }

4267 if (peer_tep == NULL || peer_tep->te_closing) {
4268 tl_error_ack(tep->te_wq, mp, TSYSERR, ECONNRESET, T_ADDR_REQ);
4269 return;
4270 }

4272 ASSERT(tep->te_state >= TS_IDLE);

4274 ack_sz = sizeof (struct T_addr_ack);
4275 ack_sz += T_ALIGN(tep->te_alen);
4270 peer_tep = tep->te_conp;
4276 ack_sz += peer_tep->te_alen;

4278 ackmp = tpi_ack_alloc(mp, ack_sz, M_PCPROTO, T_ADDR_ACK);
4279 if (ackmp == NULL) {
4280 (void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4281 "tl_connected_cots_addr_req: reallocb failed"));
4282 tl_memrecover(tep->te_wq, mp, ack_sz);
4283 return;
4284 }

4286 taa = (struct T_addr_ack *)ackmp->b_rptr;

4288 /* endpoint is bound */
4289 taa->LOCADDR_length = tep->te_alen;
4290 taa->LOCADDR_offset = (t_scalar_t)sizeof (*taa);

4292 addr_startp = (uchar_t *)&taa[1];

4294 bcopy(tep->te_abuf, addr_startp,

new/usr/src/uts/common/io/tl.c 9

4295 tep->te_alen);

4297 taa->REMADDR_length = peer_tep->te_alen;
4298 taa->REMADDR_offset = (t_scalar_t)T_ALIGN(taa->LOCADDR_offset +
4299 taa->LOCADDR_length);
4300 addr_startp = ackmp->b_rptr + taa->REMADDR_offset;
4301 bcopy(peer_tep->te_abuf, addr_startp,
4302 peer_tep->te_alen);
4303 ackmp->b_wptr = (uchar_t *)ackmp->b_rptr +
4304 taa->REMADDR_offset + peer_tep->te_alen;
4305 ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);

4307 putnext(tep->te_rq, ackmp);
4308 }
______unchanged_portion_omitted_

new/usr/src/uts/common/klm/Makefile 1

**
 1859 Sun Aug 25 23:51:05 2013
new/usr/src/uts/common/klm/Makefile
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy is of the CDDL is also available via the Internet
9 # at http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2010 Nexenta Systems, Inc. All rights reserved.
14 # Copyright (c) 2012 by Delphix. All rights reserved.
15 #

17 include ../../../Makefile.master

19 NLM_PROT_X= ../rpcsvc/nlm_prot.x
20 SM_INTER_X= ../rpcsvc/sm_inter.x
21 NSM_ADDR_X= ../rpcsvc/nsm_addr.x

23 RPCGENFLAGS = -C -M -i 0
24 SED_INCL=’/^.include/s:\.\..*/rpcsvc:rpcsvc:’

26 DERIVED_FILES= nlm_prot_clnt.c nlm_prot_xdr.c \
27 sm_inter_clnt.c sm_inter_xdr.c \
28 nsm_addr_clnt.c nsm_addr_xdr.c

30 install_h: all_h

32 all_h: $(DERIVED_FILES)

34 nlm_prot_clnt.c : $(NLM_PROT_X) nlm_prot_clnt.sed
35 $(RPCGEN) $(RPCGENFLAGS) -l -o $@.tmp $(NLM_PROT_X)
36 sed -f nlm_prot_clnt.sed < $@.tmp > $@
37 $(RM) -f $@.tmp

39 nlm_prot_xdr.c : $(NLM_PROT_X)
40 $(RPCGEN) $(RPCGENFLAGS) -c -o $@.tmp $(NLM_PROT_X)
41 sed -e $(SED_INCL) < $@.tmp > $@
42 $(RM) -f $@.tmp

44 sm_inter_clnt.c : $(SM_INTER_X) sm_inter_clnt.sed
45 $(RPCGEN) $(RPCGENFLAGS) -l -o $@.tmp $(SM_INTER_X)
46 sed -f sm_inter_clnt.sed < $@.tmp > $@
47 $(RM) -f $@.tmp

49 sm_inter_xdr.c : $(SM_INTER_X)
50 $(RPCGEN) $(RPCGENFLAGS) -c -o $@.tmp $(SM_INTER_X)
51 sed -e $(SED_INCL) < $@.tmp > $@
52 $(RM) -f $@.tmp

54 nsm_addr_clnt.c : $(NSM_ADDR_X) nsm_addr_clnt.sed
55 $(RPCGEN) $(RPCGENFLAGS) -l -o $@.tmp $(NSM_ADDR_X)
56 sed -f nsm_addr_clnt.sed < $@.tmp > $@
57 $(RM) -f $@.tmp

new/usr/src/uts/common/klm/Makefile 2

59 nsm_addr_xdr.c : $(NSM_ADDR_X)
60 $(RPCGEN) $(RPCGENFLAGS) -c -o $@.tmp $(NSM_ADDR_X)
61 sed -e $(SED_INCL) < $@.tmp > $@
62 $(RM) -f $@.tmp

64 check:

66 clean:
67 $(RM) $(DERIVED_FILES)

69 clobber: clean

71 lint:

73 .KEEP_STATE:

new/usr/src/uts/common/klm/klmmod.c 1

**
 11343 Sun Aug 25 23:51:06 2013
new/usr/src/uts/common/klm/klmmod.c
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy is of the CDDL is also available via the Internet
9 * at http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
14 * Copyright (c) 2012 by Delphix. All rights reserved.
15 */

17 /*
18 * NFS Lock Manager, server-side and common.
19 *
20 * This file contains all the external entry points of klmmod.
21 * Basically, this is the "glue" to the BSD nlm code.
22 */

24 #include <sys/types.h>
25 #include <sys/errno.h>
26 #include <sys/modctl.h>
27 #include <sys/flock.h>

29 #include <nfs/nfs.h>
30 #include <nfs/nfssys.h>
31 #include <nfs/lm.h>
32 #include <rpcsvc/nlm_prot.h>
33 #include "nlm_impl.h"

35 static struct modlmisc modlmisc = {
36 &mod_miscops, "lock mgr common module"
37 };

39 static struct modlinkage modlinkage = {
40 MODREV_1, &modlmisc, NULL
41 };

43 /*
44 * Cluster node ID. Zero unless we’re part of a cluster.
45 * Set by lm_set_nlmid_flk. Pass to lm_set_nlm_status.
46 * We’re not yet doing "clustered" NLM stuff.
47 */
48 int lm_global_nlmid = 0;

50 /*
51 * Call-back hook for clusters: Set lock manager status.
52 * If this hook is set, call this instead of the ususal
53 * flk_set_lockmgr_status(FLK_LOCKMGR_UP / DOWN);
54 */
55 void (*lm_set_nlm_status)(int nlm_id, flk_nlm_status_t) = NULL;

57 /*
58 * Call-back hook for clusters: Delete all locks held by sysid.

new/usr/src/uts/common/klm/klmmod.c 2

59 * Call from code that drops all client locks (for which we’re
60 * the server) i.e. after the SM tells us a client has crashed.
61 */
62 void (*lm_remove_file_locks)(int) = NULL;

64 krwlock_t lm_lck;
65 zone_key_t nlm_zone_key;

67 /*
68 * Init/fini per-zone stuff for klm
69 */
70 /* ARGSUSED */
71 void *
72 lm_zone_init(zoneid_t zoneid)
73 {
74 struct nlm_globals *g;

76 g = kmem_zalloc(sizeof (*g), KM_SLEEP);

78 avl_create(&g->nlm_hosts_tree, nlm_host_cmp,
79 sizeof (struct nlm_host),
80 offsetof(struct nlm_host, nh_by_addr));

82 g->nlm_hosts_hash = mod_hash_create_idhash("nlm_host_by_sysid",
83 64, mod_hash_null_valdtor);

85 TAILQ_INIT(&g->nlm_idle_hosts);
86 TAILQ_INIT(&g->nlm_slocks);

88 mutex_init(&g->lock, NULL, MUTEX_DEFAULT, NULL);
89 cv_init(&g->nlm_gc_sched_cv, NULL, CV_DEFAULT, NULL);
90 cv_init(&g->nlm_gc_finish_cv, NULL, CV_DEFAULT, NULL);
91 mutex_init(&g->clean_lock, NULL, MUTEX_DEFAULT, NULL);

93 g->lockd_pid = 0;
94 g->run_status = NLM_ST_DOWN;

96 nlm_globals_register(g);
97 return (g);
98 }

100 /* ARGSUSED */
101 void
102 lm_zone_fini(zoneid_t zoneid, void *data)
103 {
104 struct nlm_globals *g = data;

106 ASSERT(avl_is_empty(&g->nlm_hosts_tree));
107 avl_destroy(&g->nlm_hosts_tree);
108 mod_hash_destroy_idhash(g->nlm_hosts_hash);

110 ASSERT(g->nlm_gc_thread == NULL);
111 mutex_destroy(&g->lock);
112 cv_destroy(&g->nlm_gc_sched_cv);
113 cv_destroy(&g->nlm_gc_finish_cv);
114 mutex_destroy(&g->clean_lock);

116 nlm_globals_unregister(g);
117 kmem_free(g, sizeof (*g));
118 }

122 /*
123 * **
124 * module init, fini, info

new/usr/src/uts/common/klm/klmmod.c 3

125 */
126 int
127 _init()
128 {
129 int retval;

131 rw_init(&lm_lck, NULL, RW_DEFAULT, NULL);
132 nlm_init();

134 zone_key_create(&nlm_zone_key, lm_zone_init, NULL, lm_zone_fini);
135 /* Per-zone lockmgr data. See: os/flock.c */
136 zone_key_create(&flock_zone_key, flk_zone_init, NULL, flk_zone_fini);

138 retval = mod_install(&modlinkage);
139 if (retval == 0)
140 return (0);

142 /*
143 * mod_install failed! undo above, reverse order
144 */

146 (void) zone_key_delete(flock_zone_key);
147 flock_zone_key = ZONE_KEY_UNINITIALIZED;
148 (void) zone_key_delete(nlm_zone_key);
149 rw_destroy(&lm_lck);

151 return (retval);
152 }

154 int
155 _fini()
156 {
157 /* Don’t unload. */
158 return (EBUSY);
159 }

161 int
162 _info(struct modinfo *modinfop)
163 {
164 return (mod_info(&modlinkage, modinfop));
165 }

169 /*
170 * **
171 * Stubs listed in modstubs.s
172 */

174 /*
175 * klm system calls. Start service on some endpoint.
176 * Called by nfssys() LM_SVC, from lockd.
177 */
178 int
179 lm_svc(struct lm_svc_args *args)
180 {
181 struct knetconfig knc;
182 const char *netid;
183 struct nlm_globals *g;
184 struct file *fp = NULL;
185 int err = 0;

187 /* Get our "globals" */
188 g = zone_getspecific(nlm_zone_key, curzone);

190 /*

new/usr/src/uts/common/klm/klmmod.c 4

191 * Check version of lockd calling.
192 */
193 if (args->version != LM_SVC_CUR_VERS) {
194 NLM_ERR("lm_svc: Version mismatch "
195 "(given 0x%x, expected 0x%x)\n",
196 args->version, LM_SVC_CUR_VERS);
197 return (EINVAL);
198 }

200 /*
201 * Build knetconfig, checking arg values.
202 * Also come up with the "netid" string.
203 * (With some knowledge of /etc/netconfig)
204 */
205 bzero(&knc, sizeof (knc));
206 switch (args->n_proto) {
207 case LM_TCP:
208 knc.knc_semantics = NC_TPI_COTS_ORD;
209 knc.knc_proto = NC_TCP;
210 break;
211 case LM_UDP:
212 knc.knc_semantics = NC_TPI_CLTS;
213 knc.knc_proto = NC_UDP;
214 break;
215 default:
216 NLM_ERR("nlm_build_knetconfig: Unknown "
217 "lm_proto=0x%x\n", args->n_proto);
218 return (EINVAL);
219 }

221 switch (args->n_fmly) {
222 case LM_INET:
223 knc.knc_protofmly = NC_INET;
224 break;
225 case LM_INET6:
226 knc.knc_protofmly = NC_INET6;
227 break;
228 case LM_LOOPBACK:
229 knc.knc_protofmly = NC_LOOPBACK;
230 /* Override what we set above. */
231 knc.knc_proto = NC_NOPROTO;
232 break;
233 default:
234 NLM_ERR("nlm_build_knetconfig: Unknown "
235 "lm_fmly=0x%x\n", args->n_fmly);
236 return (EINVAL);
237 }

239 knc.knc_rdev = args->n_rdev;
240 netid = nlm_knc_to_netid(&knc);
241 if (!netid)
242 return (EINVAL);

244 /*
245 * Setup service on the passed transport.
246 * NB: must releasef(fp) after this.
247 */
248 if ((fp = getf(args->fd)) == NULL)
249 return (EBADF);

251 mutex_enter(&g->lock);
252 /*
253 * Don’t try to start while still shutting down,
254 * or lots of things will fail...
255 */
256 if (g->run_status == NLM_ST_STOPPING) {

new/usr/src/uts/common/klm/klmmod.c 5

257 err = EAGAIN;
258 goto out;
259 }

261 /*
262 * There is no separate "initialize" sub-call for nfssys,
263 * and we want to do some one-time work when the first
264 * binding comes in from lockd.
265 */
266 if (g->run_status == NLM_ST_DOWN) {
267 g->run_status = NLM_ST_STARTING;
268 g->lockd_pid = curproc->p_pid;

270 /* Save the options. */
271 g->cn_idle_tmo = args->timout;
272 g->grace_period = args->grace;
273 g->retrans_tmo = args->retransmittimeout;

275 /* See nfs_sys.c (not yet per-zone) */
276 if (INGLOBALZONE(curproc)) {
277 rfs4_grace_period = args->grace;
278 rfs4_lease_time = args->grace;
279 }

281 mutex_exit(&g->lock);
282 err = nlm_svc_starting(g, fp, netid, &knc);
283 mutex_enter(&g->lock);
284 } else {
285 /*
286 * If KLM is not started and the very first endpoint lockd
287 * tries to add is not a loopback device, report an error.
288 */
289 if (g->run_status != NLM_ST_UP) {
290 err = ENOTACTIVE;
291 goto out;
292 }
293 if (g->lockd_pid != curproc->p_pid) {
294 /* Check if caller has the same PID lockd does */
295 err = EPERM;
296 goto out;
297 }

299 err = nlm_svc_add_ep(fp, netid, &knc);
300 }

302 out:
303 mutex_exit(&g->lock);
304 if (fp != NULL)
305 releasef(args->fd);

307 return (err);
308 }

310 /*
311 * klm system calls. Kill the lock manager.
312 * Called by nfssys() KILL_LOCKMGR,
313 * liblm:lm_shutdown() <- unused?
314 */
315 int
316 lm_shutdown(void)
317 {
318 struct nlm_globals *g;
319 proc_t *p;
320 pid_t pid;

322 /* Get our "globals" */

new/usr/src/uts/common/klm/klmmod.c 6

323 g = zone_getspecific(nlm_zone_key, curzone);

325 mutex_enter(&g->lock);
326 if (g->run_status != NLM_ST_UP) {
327 mutex_exit(&g->lock);
328 return (EBUSY);
329 }

331 g->run_status = NLM_ST_STOPPING;
332 pid = g->lockd_pid;
333 mutex_exit(&g->lock);
334 nlm_svc_stopping(g);

336 mutex_enter(&pidlock);
337 p = prfind(pid);
338 if (p != NULL)
339 psignal(p, SIGTERM);

341 mutex_exit(&pidlock);
342 return (0);
343 }

345 /*
346 * Cleanup remote locks on FS un-export.
347 *
348 * NOTE: called from nfs_export.c:unexport()
349 * right before the share is going to
350 * be unexported.
351 */
352 void
353 lm_unexport(struct exportinfo *exi)
354 {
355 nlm_unexport(exi);
356 }

358 /*
359 * CPR suspend/resume hooks.
360 * See:cpr_suspend, cpr_resume
361 *
362 * Before suspend, get current state from "statd" on
363 * all remote systems for which we have locks.
364 *
365 * After resume, check with those systems again,
366 * and either reclaim locks, or do SIGLOST.
367 */
368 void
369 lm_cprsuspend(void)
370 {
371 nlm_cprsuspend();
372 }

374 void
375 lm_cprresume(void)
376 {
377 nlm_cprresume();
378 }

380 /*
381 * Add the nlm_id bits to the sysid (by ref).
382 */
383 void
384 lm_set_nlmid_flk(int *new_sysid)
385 {
386 if (lm_global_nlmid != 0)
387 *new_sysid |= (lm_global_nlmid << BITS_IN_SYSID);
388 }

new/usr/src/uts/common/klm/klmmod.c 7

390 /*
391 * It seems that closed source klmmod used
392 * this function to release knetconfig stored
393 * in mntinfo structure (see mntinfo’s mi_klmconfig
394 * field).
395 * We store knetconfigs differently, thus we don’t
396 * need this function.
397 */
398 void
399 lm_free_config(struct knetconfig *knc)
400 {
401 _NOTE(ARGUNUSED(knc));
402 }

404 /*
405 * Called by NFS4 delegation code to check if there are any
406 * NFSv2/v3 locks for the file, so it should not delegate.
407 *
408 * NOTE: called from NFSv4 code
409 * (see nfs4_srv_deleg.c:rfs4_bgrant_delegation())
410 */
411 int
412 lm_vp_active(const vnode_t *vp)
413 {
414 return (nlm_vp_active(vp));
415 }

417 /*
418 * Find or create a "sysid" for given knc+addr.
419 * name is optional. Sets nc_changed if the
420 * found knc_proto is different from passed.
421 * Increments the reference count.
422 *
423 * Called internally, and in nfs4_find_sysid()
424 */
425 struct lm_sysid *
426 lm_get_sysid(struct knetconfig *knc, struct netbuf *addr,
427 char *name, bool_t *nc_changed)
428 {
429 struct nlm_globals *g;
430 const char *netid;
431 struct nlm_host *hostp;

433 _NOTE(ARGUNUSED(nc_changed));
434 netid = nlm_knc_to_netid(knc);
435 if (netid == NULL)
436 return (NULL);

438 g = zone_getspecific(nlm_zone_key, curzone);

440 hostp = nlm_host_findcreate(g, name, netid, addr);
441 if (hostp == NULL)
442 return (NULL);

444 return ((struct lm_sysid *)hostp);
445 }

447 /*
448 * Release a reference on a "sysid".
449 */
450 void
451 lm_rel_sysid(struct lm_sysid *sysid)
452 {
453 struct nlm_globals *g;

new/usr/src/uts/common/klm/klmmod.c 8

455 g = zone_getspecific(nlm_zone_key, curzone);
456 nlm_host_release(g, (struct nlm_host *)sysid);
457 }

459 /*
460 * Alloc/free a sysid_t (a unique number between
461 * LM_SYSID and LM_SYSID_MAX).
462 *
463 * Used by NFSv4 rfs4_op_lockt and smbsrv/smb_fsop_frlock,
464 * both to represent non-local locks outside of klm.
465 *
466 * NOTE: called from NFSv4 and SMBFS to allocate unique
467 * sysid.
468 */
469 sysid_t
470 lm_alloc_sysidt(void)
471 {
472 return (nlm_sysid_alloc());
473 }

475 void
476 lm_free_sysidt(sysid_t sysid)
477 {
478 nlm_sysid_free(sysid);
479 }

481 /* Access private member lms->sysid */
482 sysid_t
483 lm_sysidt(struct lm_sysid *lms)
484 {
485 return (((struct nlm_host *)lms)->nh_sysid);
486 }

488 /*
489 * Called by nfs_frlock to check lock constraints.
490 * Return non-zero if the lock request is "safe", i.e.
491 * the range is not mapped, not MANDLOCK, etc.
492 *
493 * NOTE: callde from NFSv3/NFSv2 frlock() functions to
494 * determine whether it’s safe to add new lock.
495 */
496 int
497 lm_safelock(vnode_t *vp, const struct flock64 *fl, cred_t *cr)
498 {
499 return (nlm_safelock(vp, fl, cr));
500 }

502 /*
503 * Called by nfs_lockcompletion to check whether it’s "safe"
504 * to map the file (and cache it’s data). Walks the list of
505 * file locks looking for any that are not "whole file".
506 *
507 * NOTE: called from nfs_client.c:nfs_lockcompletion()
508 */
509 int
510 lm_safemap(const vnode_t *vp)
511 {
512 return (nlm_safemap(vp));
513 }

515 /*
516 * Called by nfs_map() for the MANDLOCK case.
517 * Return non-zero if the file has any locks with a
518 * blocked request (sleep).
519 *
520 * NOTE: called from NFSv3/NFSv2 map() functions in

new/usr/src/uts/common/klm/klmmod.c 9

521 * order to determine whether it’s safe to add new
522 * mapping.
523 */
524 int
525 lm_has_sleep(const vnode_t *vp)
526 {
527 return (nlm_has_sleep(vp));
528 }

530 /*
531 * **
532 * Stuff needed by klmops?
533 */

new/usr/src/uts/common/klm/klmops.c 1

**
 3641 Sun Aug 25 23:51:06 2013
new/usr/src/uts/common/klm/klmops.c
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy is of the CDDL is also available via the Internet
9 * at http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
14 */

16 /*
17 * NFS Lock Manager, client-side
18 * Note: depends on (links with) klmmod
19 *
20 * This file contains all the external entry points of klmops.
21 * Basically, this is the "glue" to the BSD nlm code.
22 */

24 #include <sys/types.h>
25 #include <sys/errno.h>
26 #include <sys/modctl.h>
27 #include <sys/flock.h>

29 #include <nfs/lm.h>
30 #include <rpcsvc/nlm_prot.h>
31 #include "nlm_impl.h"

34 static struct modlmisc modlmisc = {
35 &mod_miscops, "lock mgr calls"
36 };

38 static struct modlinkage modlinkage = {
39 MODREV_1, &modlmisc, NULL
40 };

44 /*
45 * **
46 * module init, fini, info
47 */
48 int
49 _init()
50 {
51 return (mod_install(&modlinkage));
52 }

54 int
55 _fini()
56 {
57 /* Don’t unload. */
58 return (EBUSY);

new/usr/src/uts/common/klm/klmops.c 2

59 }

61 int
62 _info(struct modinfo *modinfop)
63 {
64 return (mod_info(&modlinkage, modinfop));
65 }

69 /*
70 * **
71 * Stubs listed in modstubs.s
72 * These are called from fs/nfs
73 */

75 /*
76 * NFSv2 lock/unlock. Called by nfs_frlock()
77 * Uses NLM version 1 (NLM_VERS)
78 */
79 int
80 lm_frlock(struct vnode *vp, int cmd, struct flock64 *flk, int flags,
81 u_offset_t off, struct cred *cr, struct netobj *fh,
82 struct flk_callback *flcb)
83 {
84 return (nlm_frlock(vp, cmd, flk, flags, off,
85 cr, fh, flcb, NLM_VERS));
86 }

88 /*
89 * NFSv3 lock/unlock. Called by nfs3_frlock()
90 * Uses NLM version 4 (NLM4_VERS)
91 */
92 int
93 lm4_frlock(struct vnode *vp, int cmd, struct flock64 *flk, int flags,
94 u_offset_t off, struct cred *cr, struct netobj *fh,
95 struct flk_callback *flcb)
96 {
97 int err;
98 err = nlm_frlock(vp, cmd, flk, flags, off,
99 cr, fh, flcb, NLM4_VERS);
100 return (err);
101 }

103 /*
104 * NFSv2 shrlk/unshrlk. See nfs_shrlock
105 * Uses NLM version 3 (NLM_VERSX)
106 */
107 int
108 lm_shrlock(struct vnode *vp, int cmd,
109 struct shrlock *shr, int flags, struct netobj *fh)
110 {
111 return (nlm_shrlock(vp, cmd, shr, flags, fh, NLM_VERSX));
112 }

114 /*
115 * NFSv3 shrlk/unshrlk. See nfs3_shrlock
116 * Uses NLM version 4 (NLM4_VERS)
117 */
118 int
119 lm4_shrlock(struct vnode *vp, int cmd,
120 struct shrlock *shr, int flags, struct netobj *fh)
121 {
122 return (nlm_shrlock(vp, cmd, shr, flags, fh, NLM4_VERS));
123 }

new/usr/src/uts/common/klm/klmops.c 3

125 /*
126 * Helper for lm_frlock, lm4_frlock, nfs_lockrelease
127 * After getting a lock from a remote lock manager,
128 * register the lock locally.
129 */
130 void
131 lm_register_lock_locally(struct vnode *vp, struct lm_sysid *ls,
132 struct flock64 *flk, int flags, u_offset_t offset)
133 {
134 nlm_register_lock_locally(vp, (struct nlm_host *)ls,
135 flk, flags, offset);
136 }

138 /*
139 * Old RPC service dispatch functions, no longer used.
140 * Here only to satisfy modstubs.s references.
141 */
142 void
143 lm_nlm_dispatch(struct svc_req *req, SVCXPRT *xprt)
144 {
145 _NOTE(ARGUNUSED(req, xprt))
146 }

148 void
149 lm_nlm4_dispatch(struct svc_req *req, SVCXPRT *xprt)
150 {
151 _NOTE(ARGUNUSED(req, xprt))
152 }

154 /*
155 * Old internal functions used for reclaiming locks
156 * our NFS client holds after some server restarts.
157 * The new NLM code does this differently, so these
158 * are here only to satisfy modstubs.s references.
159 */
160 void
161 lm_nlm_reclaim(struct vnode *vp, struct flock64 *flkp)
162 {
163 _NOTE(ARGUNUSED(vp, flkp))
164 }

166 void
167 lm_nlm4_reclaim(struct vnode *vp, struct flock64 *flkp)
168 {
169 _NOTE(ARGUNUSED(vp, flkp))
170 }

new/usr/src/uts/common/klm/mapfile-mod 1

**
 1260 Sun Aug 25 23:51:07 2013
new/usr/src/uts/common/klm/mapfile-mod
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy is of the CDDL is also available via the Internet
9 # at http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
14 #

17 $mapfile_version 2

19 SYMBOL_SCOPE {
20 global:
21 # loadable module linkage
22 _fini;
23 _info;
24 _init;
25 # These are all the symbols referenced in ml/modstubs.s
26 # If we want to remain a drop-in replacment for the old
27 # (closed source) klm, we need to define all of these.
28 lm_alloc_sysidt;
29 lm_cprresume;
30 lm_cprsuspend;
31 lm_free_config;
32 lm_free_sysidt;
33 lm_get_sysid;
34 lm_global_nlmid;
35 lm_has_sleep;
36 lm_rel_sysid;
37 lm_remove_file_locks;
38 lm_safelock;
39 lm_safemap;
40 lm_set_nlmid_flk;
41 lm_shutdown;
42 lm_svc;
43 lm_sysidt;
44 lm_unexport;
45 lm_vp_active;
46 # The following three functions are not mentioned in modstubs.s
47 # files, because they are not an entry points to KLM. They
48 # are called from klmops only.
49 nlm_frlock;
50 nlm_register_lock_locally;
51 nlm_shrlock;

53 local:
54 *;
55 };

new/usr/src/uts/common/klm/mapfile-ops 1

**
 898 Sun Aug 25 23:51:07 2013
new/usr/src/uts/common/klm/mapfile-ops
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy is of the CDDL is also available via the Internet
9 # at http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
14 #

17 $mapfile_version 2

19 SYMBOL_SCOPE {
20 global:
21 # loadable module linkage
22 _fini;
23 _info;
24 _init;
25 # These are all the symbols referenced in ml/modstubs.s
26 # If we want to remain a drop-in replacment for the old
27 # (closed source) klm, we need to define all of these.

29 lm4_frlock;
30 lm4_shrlock;
31 lm_frlock;
32 lm_nlm4_dispatch;
33 lm_nlm4_reclaim;
34 lm_nlm_dispatch;
35 lm_nlm_reclaim;
36 lm_register_lock_locally;

38 local:
39 *;
40 };

new/usr/src/uts/common/klm/nlm_client.c 1

**
 38688 Sun Aug 25 23:51:08 2013
new/usr/src/uts/common/klm/nlm_client.c
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3 * Authors: Doug Rabson <dfr@rabson.org>
4 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright

10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */

28 /*
29 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
30 * Copyright (c) 2012 by Delphix. All rights reserved.
31 */

33 /*
34 * Client-side support for (NFS) VOP_FRLOCK, VOP_SHRLOCK.
35 * (called via klmops.c: lm_frlock, lm4_frlock)
36 *
37 * Source code derived from FreeBSD nlm_advlock.c
38 */

40 #include <sys/param.h>
41 #include <sys/fcntl.h>
42 #include <sys/lock.h>
43 #include <sys/flock.h>
44 #include <sys/mount.h>
45 #include <sys/mutex.h>
46 #include <sys/proc.h>
47 #include <sys/share.h>
48 #include <sys/syslog.h>
49 #include <sys/systm.h>
50 #include <sys/unistd.h>
51 #include <sys/vnode.h>
52 #include <sys/queue.h>
53 #include <sys/sdt.h>
54 #include <netinet/in.h>

56 #include <fs/fs_subr.h>
57 #include <rpcsvc/nlm_prot.h>

new/usr/src/uts/common/klm/nlm_client.c 2

59 #include <nfs/nfs.h>
60 #include <nfs/nfs_clnt.h>
61 #include <nfs/export.h>
62 #include <nfs/rnode.h>
63 #include <nfs/lm.h>

65 #include "nlm_impl.h"

67 /* Extra flags for nlm_call_lock() - xflags */
68 #define NLM_X_RECLAIM 1
69 #define NLM_X_BLOCKING 2

71 /*
72 * Max. number of retries nlm_call_cancel() does
73 * when NLM server is in grace period or doesn’t
74 * respond correctly.
75 */
76 #define NLM_CANCEL_NRETRS 5

78 /*
79 * Determines wether given lock "flp" is safe.
80 * The lock is considered to be safe when it
81 * acquires the whole file (i.e. its start
82 * and len are zeroes).
83 */
84 #define NLM_FLOCK_IS_SAFE(flp) \
85 ((flp)->l_start == 0 && (flp)->l_len == 0)

87 static volatile uint32_t nlm_xid = 1;

89 static int nlm_init_fh_by_vp(vnode_t *, struct netobj *, rpcvers_t *);
90 static int nlm_map_status(nlm4_stats);
91 static int nlm_map_clnt_stat(enum clnt_stat);
92 static void nlm_send_siglost(pid_t);

94 static int nlm_frlock_getlk(struct nlm_host *, vnode_t *,
95 struct flock64 *, int, u_offset_t, struct netobj *, int);

97 static int nlm_frlock_setlk(struct nlm_host *, vnode_t *,
98 struct flock64 *, int, u_offset_t, struct netobj *,
99 struct flk_callback *, int, bool_t);

101 static int nlm_reclaim_lock(struct nlm_host *, vnode_t *,
102 struct flock64 *, int32_t);

104 static void nlm_init_lock(struct nlm4_lock *,
105 const struct flock64 *, struct netobj *,
106 struct nlm_owner_handle *);

108 static int nlm_call_lock(vnode_t *, struct flock64 *,
109 struct nlm_host *, struct netobj *,
110 struct flk_callback *, int, int);
111 static int nlm_call_unlock(struct flock64 *, struct nlm_host *,
112 struct netobj *, int);
113 static int nlm_call_test(struct flock64 *, struct nlm_host *,
114 struct netobj *, int);
115 static int nlm_call_cancel(struct nlm4_lockargs *,
116 struct nlm_host *, int);

118 static int nlm_local_getlk(vnode_t *, struct flock64 *, int);
119 static int nlm_local_setlk(vnode_t *, struct flock64 *, int);
120 static void nlm_local_cancelk(vnode_t *, struct flock64 *);

122 static void nlm_init_share(struct nlm4_share *,
123 const struct shrlock *, struct netobj *);

new/usr/src/uts/common/klm/nlm_client.c 3

125 static int nlm_call_share(struct shrlock *, struct nlm_host *,
126 struct netobj *, int, int);
127 static int nlm_call_unshare(struct shrlock *, struct nlm_host *,
128 struct netobj *, int);
129 static int nlm_reclaim_share(struct nlm_host *, vnode_t *,
130 struct shrlock *, uint32_t);
131 static int nlm_local_shrlock(vnode_t *, struct shrlock *, int, int);
132 static void nlm_local_shrcancel(vnode_t *, struct shrlock *);

134 /*
135 * Reclaim locks/shares acquired by the client side
136 * on the given server represented by hostp.
137 * The function is called from a dedicated thread
138 * when server reports us that it’s entered grace
139 * period.
140 */
141 void
142 nlm_reclaim_client(struct nlm_globals *g, struct nlm_host *hostp)
143 {
144 int32_t state;
145 int error, sysid;
146 struct locklist *llp_head, *llp;
147 struct nlm_shres *nsp_head, *nsp;
148 bool_t restart;

150 sysid = hostp->nh_sysid | LM_SYSID_CLIENT;
151 do {
152 error = 0;
153 restart = FALSE;
154 state = nlm_host_get_state(hostp);

156 DTRACE_PROBE3(reclaim__iter, struct nlm_globals *, g,
157 struct nlm_host *, hostp, int, state);

159 /*
160 * We cancel all sleeping locks that were
161 * done by the host, because we don’t allow
162 * reclamation of sleeping locks. The reason
163 * we do this is that allowing of sleeping locks
164 * reclamation can potentially break locks recovery
165 * order.
166 *
167 * Imagine that we have two client machines A and B
168 * and an NLM server machine. A adds a non sleeping
169 * lock to the file F and aquires this file. Machine
170 * B in its turn adds sleeping lock to the file
171 * F and blocks because F is already aquired by
172 * the machine A. Then server crashes and after the
173 * reboot it notifies its clients about the crash.
174 * If we would allow sleeping locks reclamation,
175 * there would be possible that machine B recovers
176 * its lock faster than machine A (by some reason).
177 * So that B aquires the file F after server crash and
178 * machine A (that by some reason recovers slower) fails
179 * to recover its non sleeping lock. Thus the original
180 * locks order becames broken.
181 */
182 nlm_host_cancel_slocks(g, hostp);

184 /*
185 * Try to reclaim all active locks we have
186 */
187 llp_head = llp = flk_get_active_locks(sysid, NOPID);
188 while (llp != NULL) {
189 error = nlm_reclaim_lock(hostp, llp->ll_vp,
190 &llp->ll_flock, state);

new/usr/src/uts/common/klm/nlm_client.c 4

192 if (error == 0) {
193 llp = llp->ll_next;
194 continue;
195 } else if (error == ERESTART) {
196 restart = TRUE;
197 break;
198 } else {
199 /*
200 * Critical error occurred, the lock
201 * can not be recovered, just take it away.
202 */
203 nlm_local_cancelk(llp->ll_vp, &llp->ll_flock);
204 }

206 llp = llp->ll_next;
207 }

209 flk_free_locklist(llp_head);
210 if (restart) {
211 /*
212 * Lock reclamation fucntion reported us that
213 * the server state was changed (again), so
214 * try to repeat the whole reclamation process.
215 */
216 continue;
217 }

219 nsp_head = nsp = nlm_get_active_shres(hostp);
220 while (nsp != NULL) {
221 error = nlm_reclaim_share(hostp, nsp->ns_vp,
222 nsp->ns_shr, state);

224 if (error == 0) {
225 nsp = nsp->ns_next;
226 continue;
227 } else if (error == ERESTART) {
228 break;
229 } else {
230 /* Failed to reclaim share */
231 nlm_shres_untrack(hostp, nsp->ns_vp,
232 nsp->ns_shr);
233 nlm_local_shrcancel(nsp->ns_vp,
234 nsp->ns_shr);
235 }

237 nsp = nsp->ns_next;
238 }

240 nlm_free_shrlist(nsp_head);
241 } while (state != nlm_host_get_state(hostp));
242 }

244 /*
245 * nlm_frlock --
246 * NFS advisory byte-range locks.
247 * Called in klmops.c
248 *
249 * Note that the local locking code (os/flock.c) is used to
250 * keep track of remote locks granted by some server, so we
251 * can reclaim those locks after a server restarts. We can
252 * also sometimes use this as a cache of lock information.
253 *
254 * Was: nlm_advlock()
255 */
256 /* ARGSUSED */

new/usr/src/uts/common/klm/nlm_client.c 5

257 int
258 nlm_frlock(struct vnode *vp, int cmd, struct flock64 *flkp,
259 int flags, u_offset_t offset, struct cred *crp,
260 struct netobj *fhp, struct flk_callback *flcb, int vers)
261 {
262 mntinfo_t *mi;
263 servinfo_t *sv;
264 const char *netid;
265 struct nlm_host *hostp;
266 int error;
267 struct nlm_globals *g;

269 mi = VTOMI(vp);
270 sv = mi->mi_curr_serv;

272 netid = nlm_knc_to_netid(sv->sv_knconf);
273 if (netid == NULL) {
274 NLM_ERR("nlm_frlock: unknown NFS netid");
275 return (ENOSYS);
276 }

278 g = zone_getspecific(nlm_zone_key, curzone);
279 hostp = nlm_host_findcreate(g, sv->sv_hostname, netid, &sv->sv_addr);
280 if (hostp == NULL)
281 return (ENOSYS);

283 /*
284 * Purge cached attributes in order to make sure that
285 * future calls of convoff()/VOP_GETATTR() will get the
286 * latest data.
287 */
288 if (flkp->l_whence == SEEK_END)
289 PURGE_ATTRCACHE(vp);

291 /* Now flk0 is the zero-based lock request. */
292 switch (cmd) {
293 case F_GETLK:
294 error = nlm_frlock_getlk(hostp, vp, flkp, flags,
295 offset, fhp, vers);
296 break;

298 case F_SETLK:
299 case F_SETLKW:
300 error = nlm_frlock_setlk(hostp, vp, flkp, flags,
301 offset, fhp, flcb, vers, (cmd == F_SETLKW));
302 if (error == 0)
303 nlm_host_monitor(g, hostp, 0);
304 break;

306 default:
307 error = EINVAL;
308 break;
309 }

311 nlm_host_release(g, hostp);
312 return (error);
313 }

315 static int
316 nlm_frlock_getlk(struct nlm_host *hostp, vnode_t *vp,
317 struct flock64 *flkp, int flags, u_offset_t offset,
318 struct netobj *fhp, int vers)
319 {
320 struct flock64 flk0;
321 int error;

new/usr/src/uts/common/klm/nlm_client.c 6

323 /*
324 * Check local (cached) locks first.
325 * If we find one, no need for RPC.
326 */
327 flk0 = *flkp;
328 flk0.l_pid = curproc->p_pid;
329 error = nlm_local_getlk(vp, &flk0, flags);
330 if (error != 0)
331 return (error);
332 if (flk0.l_type != F_UNLCK) {
333 *flkp = flk0;
334 return (0);
335 }

337 /* Not found locally. Try remote. */
338 flk0 = *flkp;
339 flk0.l_pid = curproc->p_pid;
340 error = convoff(vp, &flk0, 0, (offset_t)offset);
341 if (error != 0)
342 return (error);

344 error = nlm_call_test(&flk0, hostp, fhp, vers);
345 if (error != 0)
346 return (error);

348 if (flk0.l_type == F_UNLCK) {
349 /*
350 * Update the caller’s *flkp with information
351 * on the conflicting lock (or lack thereof).
352 */
353 flkp->l_type = F_UNLCK;
354 } else {
355 /*
356 * Found a conflicting lock. Set the
357 * caller’s *flkp with the info, first
358 * converting to the caller’s whence.
359 */
360 (void) convoff(vp, &flk0, flkp->l_whence, (offset_t)offset);
361 *flkp = flk0;
362 }

364 return (0);
365 }

367 static int
368 nlm_frlock_setlk(struct nlm_host *hostp, vnode_t *vp,
369 struct flock64 *flkp, int flags, u_offset_t offset,
370 struct netobj *fhp, struct flk_callback *flcb,
371 int vers, bool_t do_block)
372 {
373 int error, xflags;

375 error = convoff(vp, flkp, 0, (offset_t)offset);
376 if (error != 0)
377 return (error);

379 /*
380 * NFS v2 clients should not request locks where any part
381 * of the lock range is beyond 0xffffffff. The NFS code
382 * checks that (see nfs_frlock, flk_check_lock_data), but
383 * as that’s outside this module, let’s check here too.
384 * This check ensures that we will be able to convert this
385 * lock request into 32-bit form without change, and that
386 * (more importantly) when the granted call back arrives,
387 * it’s unchanged when converted back into 64-bit form.
388 * If this lock range were to change in any way during

new/usr/src/uts/common/klm/nlm_client.c 7

389 * either of those conversions, the "granted" call back
390 * from the NLM server would not find our sleeping lock.
391 */
392 if (vers < NLM4_VERS) {
393 if (flkp->l_start > MAX_UOFF32 ||
394 flkp->l_start + flkp->l_len > MAX_UOFF32 + 1)
395 return (EINVAL);
396 }

398 /*
399 * Fill in l_sysid for the local locking calls.
400 * Also, let’s not trust the caller’s l_pid.
401 */
402 flkp->l_sysid = hostp->nh_sysid | LM_SYSID_CLIENT;
403 flkp->l_pid = curproc->p_pid;

405 if (flkp->l_type == F_UNLCK) {
406 /*
407 * Purge local (cached) lock information first,
408 * then clear the remote lock.
409 */
410 (void) nlm_local_setlk(vp, flkp, flags);
411 error = nlm_call_unlock(flkp, hostp, fhp, vers);

413 return (error);
414 }

416 if (!do_block) {
417 /*
418 * This is a non-blocking "set" request,
419 * so we can check locally first, and
420 * sometimes avoid an RPC call.
421 */
422 struct flock64 flk0;

424 flk0 = *flkp;
425 error = nlm_local_getlk(vp, &flk0, flags);
426 if (error != 0 && flk0.l_type != F_UNLCK) {
427 /* Found a conflicting lock. */
428 return (EAGAIN);
429 }

431 xflags = 0;
432 } else {
433 xflags = NLM_X_BLOCKING;
434 }

436 nfs_add_locking_id(vp, curproc->p_pid, RLMPL_PID,
437 (char *)&curproc->p_pid, sizeof (pid_t));

439 error = nlm_call_lock(vp, flkp, hostp, fhp, flcb, vers, xflags);
440 if (error != 0)
441 return (error);

443 /*
444 * Save the lock locally. This should not fail,
445 * because the server is authoritative about locks
446 * and it just told us we have the lock!
447 */
448 error = nlm_local_setlk(vp, flkp, flags);
449 if (error != 0) {
450 /*
451 * That’s unexpected situation. Just ignore the error.
452 */
453 NLM_WARN("nlm_frlock_setlk: Failed to set local lock. "
454 "[err=%d]\n", error);

new/usr/src/uts/common/klm/nlm_client.c 8

455 error = 0;
456 }

458 return (error);
459 }

461 /*
462 * Cancel all client side remote locks/shares on the
463 * given host. Report to the processes that own
464 * cancelled locks that they are removed by force
465 * by sending SIGLOST.
466 */
467 void
468 nlm_client_cancel_all(struct nlm_globals *g, struct nlm_host *hostp)
469 {
470 struct locklist *llp_head, *llp;
471 struct nlm_shres *nsp_head, *nsp;
472 struct netobj lm_fh;
473 rpcvers_t vers;
474 int error, sysid;

476 sysid = hostp->nh_sysid | LM_SYSID_CLIENT;
477 nlm_host_cancel_slocks(g, hostp);

479 /*
480 * Destroy all active locks
481 */
482 llp_head = llp = flk_get_active_locks(sysid, NOPID);
483 while (llp != NULL) {
484 llp->ll_flock.l_type = F_UNLCK;

486 error = nlm_init_fh_by_vp(llp->ll_vp, &lm_fh, &vers);
487 if (error == 0)
488 (void) nlm_call_unlock(&llp->ll_flock, hostp,
489 &lm_fh, vers);

491 nlm_local_cancelk(llp->ll_vp, &llp->ll_flock);
492 llp = llp->ll_next;
493 }

495 flk_free_locklist(llp_head);

497 /*
498 * Destroy all active share reservations
499 */
500 nsp_head = nsp = nlm_get_active_shres(hostp);
501 while (nsp != NULL) {
502 error = nlm_init_fh_by_vp(nsp->ns_vp, &lm_fh, &vers);
503 if (error == 0)
504 (void) nlm_call_unshare(nsp->ns_shr, hostp,
505 &lm_fh, vers);

507 nlm_local_shrcancel(nsp->ns_vp, nsp->ns_shr);
508 nlm_shres_untrack(hostp, nsp->ns_vp, nsp->ns_shr);
509 nsp = nsp->ns_next;
510 }

512 nlm_free_shrlist(nsp_head);
513 }

515 /*
516 * The function determines whether the lock "fl" can
517 * be safely applied to the file vnode "vp" corresponds to.
518 * The lock can be "safely" applied if all the conditions
519 * above are held:
520 * - It’s not a mandatory lock

new/usr/src/uts/common/klm/nlm_client.c 9

521 * - The vnode wasn’t mapped by anyone
522 * - The vnode was mapped, but it hasn’t any locks on it.
523 * - The vnode was mapped and all locks it has occupies
524 * the whole file.
525 */
526 int
527 nlm_safelock(vnode_t *vp, const struct flock64 *fl, cred_t *cr)
528 {
529 rnode_t *rp = VTOR(vp);
530 struct vattr va;
531 int err;

533 if ((rp->r_mapcnt > 0) && (fl->l_start != 0 || fl->l_len != 0))
534 return (0);

536 va.va_mask = AT_MODE;
537 err = VOP_GETATTR(vp, &va, 0, cr, NULL);
538 if (err != 0)
539 return (0);

541 /* NLM4 doesn’t allow mandatory file locking */
542 if (MANDLOCK(vp, va.va_mode))
543 return (0);

545 return (1);
546 }

548 /*
549 * The function determines whether it’s safe to map
550 * a file correspoding to vnode vp.
551 * The mapping is considered to be "safe" if file
552 * either has no any locks on it or all locks it
553 * has occupy the whole file.
554 */
555 int
556 nlm_safemap(const vnode_t *vp)
557 {
558 struct locklist *llp, *llp_next;
559 struct nlm_slock *nslp;
560 struct nlm_globals *g;
561 int safe = 1;

563 /* Check active locks at first */
564 llp = flk_active_locks_for_vp(vp);
565 while (llp != NULL) {
566 if ((llp->ll_vp == vp) &&
567 !NLM_FLOCK_IS_SAFE(&llp->ll_flock))
568 safe = 0;

570 llp_next = llp->ll_next;
571 VN_RELE(llp->ll_vp);
572 kmem_free(llp, sizeof (*llp));
573 llp = llp_next;
574 }
575 if (!safe)
576 return (safe);

578 /* Then check sleeping locks if any */
579 g = zone_getspecific(nlm_zone_key, curzone);
580 mutex_enter(&g->lock);
581 TAILQ_FOREACH(nslp, &g->nlm_slocks, nsl_link) {
582 if (nslp->nsl_state == NLM_SL_BLOCKED &&
583 nslp->nsl_vp == vp &&
584 (nslp->nsl_lock.l_offset != 0 ||
585 nslp->nsl_lock.l_len != 0)) {
586 safe = 0;

new/usr/src/uts/common/klm/nlm_client.c 10

587 break;
588 }
589 }

591 mutex_exit(&g->lock);
592 return (safe);
593 }

595 int
596 nlm_has_sleep(const vnode_t *vp)
597 {
598 struct nlm_globals *g;
599 struct nlm_slock *nslp;
600 int has_slocks = FALSE;

602 g = zone_getspecific(nlm_zone_key, curzone);
603 mutex_enter(&g->lock);
604 TAILQ_FOREACH(nslp, &g->nlm_slocks, nsl_link) {
605 if (nslp->nsl_state == NLM_SL_BLOCKED &&
606 nslp->nsl_vp == vp) {
607 has_slocks = TRUE;
608 break;
609 }
610 }

612 mutex_exit(&g->lock);
613 return (has_slocks);
614 }

616 void
617 nlm_register_lock_locally(struct vnode *vp, struct nlm_host *hostp,
618 struct flock64 *flk, int flags, u_offset_t offset)
619 {
620 int sysid = 0;

622 if (hostp != NULL) {
623 sysid = hostp->nh_sysid | LM_SYSID_CLIENT;
624 }

626 flk->l_sysid = sysid;
627 (void) convoff(vp, flk, 0, (offset_t)offset);
628 (void) nlm_local_setlk(vp, flk, flags);
629 }

632 /*
633 * The BSD code had functions here to "reclaim" (destroy)
634 * remote locks when a vnode is being forcibly destroyed.
635 * We just keep vnodes around until statd tells us the
636 * client has gone away.
637 */

639 static int
640 nlm_reclaim_lock(struct nlm_host *hostp, vnode_t *vp,
641 struct flock64 *flp, int32_t orig_state)
642 {
643 struct netobj lm_fh;
644 int error, state;
645 rpcvers_t vers;

647 /*
648 * If the remote NSM state changes during recovery, the host
649 * must have rebooted a second time. In that case, we must
650 * restart the recovery.
651 */
652 state = nlm_host_get_state(hostp);

new/usr/src/uts/common/klm/nlm_client.c 11

653 if (state != orig_state)
654 return (ERESTART);

656 error = nlm_init_fh_by_vp(vp, &lm_fh, &vers);
657 if (error != 0)
658 return (error);

660 return (nlm_call_lock(vp, flp, hostp, &lm_fh,
661 NULL, vers, NLM_X_RECLAIM));
662 }

664 /*
665 * Get local lock information for some NFS server.
666 *
667 * This gets (checks for) a local conflicting lock.
668 * Note: Modifies passed flock, if a conflict is found,
669 * but the caller expects that.
670 */
671 static int
672 nlm_local_getlk(vnode_t *vp, struct flock64 *fl, int flags)
673 {
674 VERIFY(fl->l_whence == SEEK_SET);
675 return (reclock(vp, fl, 0, flags, 0, NULL));
676 }

678 /*
679 * Set local lock information for some NFS server.
680 *
681 * Called after a lock request (set or clear) succeeded. We record the
682 * details in the local lock manager. Note that since the remote
683 * server has granted the lock, we can be sure that it doesn’t
684 * conflict with any other locks we have in the local lock manager.
685 *
686 * Since it is possible that host may also make NLM client requests to
687 * our NLM server, we use a different sysid value to record our own
688 * client locks.
689 *
690 * Note that since it is possible for us to receive replies from the
691 * server in a different order than the locks were granted (e.g. if
692 * many local threads are contending for the same lock), we must use a
693 * blocking operation when registering with the local lock manager.
694 * We expect that any actual wait will be rare and short hence we
695 * ignore signals for this.
696 */
697 static int
698 nlm_local_setlk(vnode_t *vp, struct flock64 *fl, int flags)
699 {
700 VERIFY(fl->l_whence == SEEK_SET);
701 return (reclock(vp, fl, SETFLCK, flags, 0, NULL));
702 }

704 /*
705 * Cancel local lock and send send SIGLOST signal
706 * to the lock owner.
707 *
708 * NOTE: modifies flp
709 */
710 static void
711 nlm_local_cancelk(vnode_t *vp, struct flock64 *flp)
712 {
713 flp->l_type = F_UNLCK;
714 (void) nlm_local_setlk(vp, flp, FREAD | FWRITE);
715 nlm_send_siglost(flp->l_pid);
716 }

718 /*

new/usr/src/uts/common/klm/nlm_client.c 12

719 * Do NLM_LOCK call.
720 * Was: nlm_setlock()
721 *
722 * NOTE: nlm_call_lock() function should care about locking/unlocking
723 * of rnode->r_lkserlock which should be released before nlm_call_lock()
724 * sleeps on waiting lock and acquired when it wakes up.
725 */
726 static int
727 nlm_call_lock(vnode_t *vp, struct flock64 *flp,
728 struct nlm_host *hostp, struct netobj *fhp,
729 struct flk_callback *flcb, int vers, int xflags)
730 {
731 struct nlm4_lockargs args;
732 struct nlm_owner_handle oh;
733 struct nlm_globals *g;
734 rnode_t *rnp = VTOR(vp);
735 struct nlm_slock *nslp = NULL;
736 uint32_t xid;
737 int error = 0;

739 bzero(&args, sizeof (args));
740 g = zone_getspecific(nlm_zone_key, curzone);
741 nlm_init_lock(&args.alock, flp, fhp, &oh);

743 args.exclusive = (flp->l_type == F_WRLCK);
744 args.reclaim = xflags & NLM_X_RECLAIM;
745 args.state = g->nsm_state;
746 args.cookie.n_len = sizeof (xid);
747 args.cookie.n_bytes = (char *)&xid;

749 oh.oh_sysid = hostp->nh_sysid;
750 xid = atomic_inc_32_nv(&nlm_xid);

752 if (xflags & NLM_X_BLOCKING) {
753 args.block = TRUE;
754 nslp = nlm_slock_register(g, hostp, &args.alock, vp);
755 }

757 for (;;) {
758 nlm_rpc_t *rpcp;
759 enum clnt_stat stat;
760 struct nlm4_res res;
761 enum nlm4_stats nlm_err;

763 error = nlm_host_get_rpc(hostp, vers, &rpcp);
764 if (error != 0) {
765 error = ENOLCK;
766 goto out;
767 }

769 bzero(&res, sizeof (res));
770 stat = nlm_lock_rpc(&args, &res, rpcp->nr_handle, vers);
771 nlm_host_rele_rpc(hostp, rpcp);

773 error = nlm_map_clnt_stat(stat);
774 if (error != 0) {
775 if (error == EAGAIN)
776 continue;

778 goto out;
779 }

781 DTRACE_PROBE1(lock__res, enum nlm4_stats, res.stat.stat);
782 nlm_err = res.stat.stat;
783 xdr_free((xdrproc_t)xdr_nlm4_res, (void *)&res);
784 if (nlm_err == nlm4_denied_grace_period) {

new/usr/src/uts/common/klm/nlm_client.c 13

785 if (args.reclaim) {
786 error = ENOLCK;
787 goto out;
788 }

790 error = nlm_host_wait_grace(hostp);
791 if (error != 0)
792 goto out;

794 continue;
795 }

797 switch (nlm_err) {
798 case nlm4_granted:
799 case nlm4_blocked:
800 error = 0;
801 break;

803 case nlm4_denied:
804 if (nslp != NULL) {
805 NLM_WARN("nlm_call_lock: got nlm4_denied for "
806 "blocking lock\n");
807 }

809 error = EAGAIN;
810 break;

812 default:
813 error = nlm_map_status(nlm_err);
814 }

816 /*
817 * If we deal with either non-blocking lock or
818 * with a blocking locks that wasn’t blocked on
819 * the server side (by some reason), our work
820 * is finished.
821 */
822 if (nslp == NULL ||
823 nlm_err != nlm4_blocked ||
824 error != 0)
825 goto out;

827 /*
828 * Before releasing the r_lkserlock of rnode, we should
829 * check whether the new lock is "safe". If it’s not
830 * safe, disable caching for the given vnode. That is done
831 * for sleeping locks only that are waiting for a GRANT reply
832 * from the NLM server.
833 *
834 * NOTE: the vnode cache can be enabled back later if an
835 * unsafe lock will be merged with existent locks so that
836 * it will become safe. This condition is checked in the
837 * NFSv3 code (see nfs_lockcompletion).
838 */
839 if (!NLM_FLOCK_IS_SAFE(flp)) {
840 mutex_enter(&vp->v_lock);
841 vp->v_flag &= ~VNOCACHE;
842 mutex_exit(&vp->v_lock);
843 }

845 /*
846 * The server should call us back with a
847 * granted message when the lock succeeds.
848 * In order to deal with broken servers,
849 * lost granted messages, or server reboots,
850 * we will also re-try every few seconds.

new/usr/src/uts/common/klm/nlm_client.c 14

851 *
852 * Note: We’re supposed to call these
853 * flk_invoke_callbacks when blocking.
854 * Take care on rnode->r_lkserlock, we should
855 * release it before going to sleep.
856 */
857 (void) flk_invoke_callbacks(flcb, FLK_BEFORE_SLEEP);
858 nfs_rw_exit(&rnp->r_lkserlock);

860 error = nlm_slock_wait(g, nslp, g->retrans_tmo);

862 /*
863 * NFS expects that we return with rnode->r_lkserlock
864 * locked on write, lock it back.
865 *
866 * NOTE: nfs_rw_enter_sig() can be either interruptible
867 * or not. It depends on options of NFS mount. Here
868 * we’re _always_ uninterruptible (independently of mount
869 * options), because nfs_frlock/nfs3_frlock expects that
870 * we return with rnode->r_lkserlock acquired. So we don’t
871 * want our lock attempt to be interrupted by a signal.
872 */
873 (void) nfs_rw_enter_sig(&rnp->r_lkserlock, RW_WRITER, 0);
874 (void) flk_invoke_callbacks(flcb, FLK_AFTER_SLEEP);

876 if (error == 0) {
877 break;
878 } else if (error == EINTR) {
879 /*
880 * We need to call the server to cancel our
881 * lock request.
882 */
883 DTRACE_PROBE1(cancel__lock, int, error);
884 (void) nlm_call_cancel(&args, hostp, vers);
885 break;
886 } else {
887 /*
888 * Timeout happened, resend the lock request to
889 * the server. Well, we’re a bit paranoid here,
890 * but keep in mind previous request could lost
891 * (especially with conectionless transport).
892 */

894 ASSERT(error == ETIMEDOUT);
895 continue;
896 }
897 }

899 /*
900 * We could disable the vnode cache for the given _sleeping_
901 * (codition: nslp != NULL) lock if it was unsafe. Normally,
902 * nfs_lockcompletion() function can enable the vnode cache
903 * back if the lock becomes safe after activativation. But it
904 * will not happen if any error occurs on the locking path.
905 *
906 * Here we enable the vnode cache back if the error occurred
907 * and if there aren’t any unsafe locks on the given vnode.
908 * Note that if error happened, sleeping lock was derigistered.
909 */
910 if (error != 0 && nslp != NULL && nlm_safemap(vp)) {
911 mutex_enter(&vp->v_lock);
912 vp->v_flag |= VNOCACHE;
913 mutex_exit(&vp->v_lock);
914 }

916 out:

new/usr/src/uts/common/klm/nlm_client.c 15

917 if (nslp != NULL)
918 nlm_slock_unregister(g, nslp);

920 return (error);
921 }

923 /*
924 * Do NLM_CANCEL call.
925 * Helper for nlm_call_lock() error recovery.
926 */
927 static int
928 nlm_call_cancel(struct nlm4_lockargs *largs,
929 struct nlm_host *hostp, int vers)
930 {
931 nlm4_cancargs cargs;
932 uint32_t xid;
933 int error, retries;

935 bzero(&cargs, sizeof (cargs));

937 xid = atomic_inc_32_nv(&nlm_xid);
938 cargs.cookie.n_len = sizeof (xid);
939 cargs.cookie.n_bytes = (char *)&xid;
940 cargs.block = largs->block;
941 cargs.exclusive = largs->exclusive;
942 cargs.alock = largs->alock;

944 /*
945 * Unlike all other nlm_call_* functions, nlm_call_cancel
946 * doesn’t spin forever until it gets reasonable response
947 * from NLM server. It makes limited number of retries and
948 * if server doesn’t send a reasonable reply, it returns an
949 * error. It behaves like that because it’s called from nlm_call_lock
950 * with blocked signals and thus it can not be interrupted from
951 * user space.
952 */
953 for (retries = 0; retries < NLM_CANCEL_NRETRS; retries++) {
954 nlm_rpc_t *rpcp;
955 enum clnt_stat stat;
956 struct nlm4_res res;

958 error = nlm_host_get_rpc(hostp, vers, &rpcp);
959 if (error != 0)
960 return (ENOLCK);

962 bzero(&res, sizeof (res));
963 stat = nlm_cancel_rpc(&cargs, &res, rpcp->nr_handle, vers);
964 nlm_host_rele_rpc(hostp, rpcp);

966 DTRACE_PROBE1(cancel__rloop_end, enum clnt_stat, stat);
967 error = nlm_map_clnt_stat(stat);
968 if (error != 0) {
969 if (error == EAGAIN)
970 continue;

972 return (error);
973 }

975 DTRACE_PROBE1(cancel__res, enum nlm4_stats, res.stat.stat);
976 switch (res.stat.stat) {
977 /*
978 * There was nothing to cancel. We are going to go ahead
979 * and assume we got the lock.
980 */
981 case nlm_denied:
982 /*

new/usr/src/uts/common/klm/nlm_client.c 16

983 * The server has recently rebooted. Treat this as a
984 * successful cancellation.
985 */
986 case nlm4_denied_grace_period:
987 /*
988 * We managed to cancel.
989 */
990 case nlm4_granted:
991 error = 0;
992 break;

994 default:
995 /*
996 * Broken server implementation. Can’t really do
997 * anything here.
998 */
999 error = EIO;

1000 break;
1001 }

1003 xdr_free((xdrproc_t)xdr_nlm4_res, (void *)&res);
1004 break;
1005 }

1007 return (error);
1008 }

1010 /*
1011 * Do NLM_UNLOCK call.
1012 * Was: nlm_clearlock
1013 */
1014 static int
1015 nlm_call_unlock(struct flock64 *flp, struct nlm_host *hostp,
1016 struct netobj *fhp, int vers)
1017 {
1018 struct nlm4_unlockargs args;
1019 struct nlm_owner_handle oh;
1020 enum nlm4_stats nlm_err;
1021 uint32_t xid;
1022 int error;

1024 bzero(&args, sizeof (args));
1025 nlm_init_lock(&args.alock, flp, fhp, &oh);

1027 oh.oh_sysid = hostp->nh_sysid;
1028 xid = atomic_inc_32_nv(&nlm_xid);
1029 args.cookie.n_len = sizeof (xid);
1030 args.cookie.n_bytes = (char *)&xid;

1032 for (;;) {
1033 nlm_rpc_t *rpcp;
1034 struct nlm4_res res;
1035 enum clnt_stat stat;

1037 error = nlm_host_get_rpc(hostp, vers, &rpcp);
1038 if (error != 0)
1039 return (ENOLCK);

1041 bzero(&res, sizeof (res));
1042 stat = nlm_unlock_rpc(&args, &res, rpcp->nr_handle, vers);
1043 nlm_host_rele_rpc(hostp, rpcp);

1045 error = nlm_map_clnt_stat(stat);
1046 if (error != 0) {
1047 if (error == EAGAIN)
1048 continue;

new/usr/src/uts/common/klm/nlm_client.c 17

1050 return (error);
1051 }

1053 DTRACE_PROBE1(unlock__res, enum nlm4_stats, res.stat.stat);
1054 nlm_err = res.stat.stat;
1055 xdr_free((xdrproc_t)xdr_nlm4_res, (void *)&res);
1056 if (nlm_err == nlm4_denied_grace_period) {
1057 error = nlm_host_wait_grace(hostp);
1058 if (error != 0)
1059 return (error);

1061 continue;
1062 }

1064 break;
1065 }

1067 /* special cases */
1068 switch (nlm_err) {
1069 case nlm4_denied:
1070 error = EINVAL;
1071 break;
1072 default:
1073 error = nlm_map_status(nlm_err);
1074 break;
1075 }

1077 return (error);
1078 }

1080 /*
1081 * Do NLM_TEST call.
1082 * Was: nlm_getlock()
1083 */
1084 static int
1085 nlm_call_test(struct flock64 *flp, struct nlm_host *hostp,
1086 struct netobj *fhp, int vers)
1087 {
1088 struct nlm4_testargs args;
1089 struct nlm4_holder h;
1090 struct nlm_owner_handle oh;
1091 enum nlm4_stats nlm_err;
1092 uint32_t xid;
1093 int error;

1095 bzero(&args, sizeof (args));
1096 nlm_init_lock(&args.alock, flp, fhp, &oh);

1098 args.exclusive = (flp->l_type == F_WRLCK);
1099 oh.oh_sysid = hostp->nh_sysid;
1100 xid = atomic_inc_32_nv(&nlm_xid);
1101 args.cookie.n_len = sizeof (xid);
1102 args.cookie.n_bytes = (char *)&xid;

1104 for (;;) {
1105 nlm_rpc_t *rpcp;
1106 struct nlm4_testres res;
1107 enum clnt_stat stat;

1109 error = nlm_host_get_rpc(hostp, vers, &rpcp);
1110 if (error != 0)
1111 return (ENOLCK);

1113 bzero(&res, sizeof (res));
1114 stat = nlm_test_rpc(&args, &res, rpcp->nr_handle, vers);

new/usr/src/uts/common/klm/nlm_client.c 18

1115 nlm_host_rele_rpc(hostp, rpcp);

1117 error = nlm_map_clnt_stat(stat);
1118 if (error != 0) {
1119 if (error == EAGAIN)
1120 continue;

1122 return (error);
1123 }

1125 DTRACE_PROBE1(test__res, enum nlm4_stats, res.stat.stat);
1126 nlm_err = res.stat.stat;
1127 bcopy(&res.stat.nlm4_testrply_u.holder, &h, sizeof (h));
1128 xdr_free((xdrproc_t)xdr_nlm4_testres, (void *)&res);
1129 if (nlm_err == nlm4_denied_grace_period) {
1130 error = nlm_host_wait_grace(hostp);
1131 if (error != 0)
1132 return (error);

1134 continue;
1135 }

1137 break;
1138 }

1140 switch (nlm_err) {
1141 case nlm4_granted:
1142 flp->l_type = F_UNLCK;
1143 error = 0;
1144 break;

1146 case nlm4_denied:
1147 flp->l_start = h.l_offset;
1148 flp->l_len = h.l_len;
1149 flp->l_pid = h.svid;
1150 flp->l_type = (h.exclusive) ? F_WRLCK : F_RDLCK;
1151 flp->l_whence = SEEK_SET;
1152 flp->l_sysid = 0;
1153 error = 0;
1154 break;

1156 default:
1157 error = nlm_map_status(nlm_err);
1158 break;
1159 }

1161 return (error);
1162 }

1165 static void
1166 nlm_init_lock(struct nlm4_lock *lock,
1167 const struct flock64 *fl, struct netobj *fh,
1168 struct nlm_owner_handle *oh)
1169 {

1171 /* Caller converts to zero-base. */
1172 VERIFY(fl->l_whence == SEEK_SET);
1173 bzero(lock, sizeof (*lock));
1174 bzero(oh, sizeof (*oh));

1176 lock->caller_name = uts_nodename();
1177 lock->fh.n_len = fh->n_len;
1178 lock->fh.n_bytes = fh->n_bytes;
1179 lock->oh.n_len = sizeof (*oh);
1180 lock->oh.n_bytes = (void *)oh;

new/usr/src/uts/common/klm/nlm_client.c 19

1181 lock->svid = fl->l_pid;
1182 lock->l_offset = fl->l_start;
1183 lock->l_len = fl->l_len;
1184 }

1186 /* ** */

1188 int
1189 nlm_shrlock(struct vnode *vp, int cmd, struct shrlock *shr,
1190 int flags, struct netobj *fh, int vers)
1191 {
1192 struct shrlock shlk;
1193 mntinfo_t *mi;
1194 servinfo_t *sv;
1195 const char *netid;
1196 struct nlm_host *host = NULL;
1197 int error;
1198 struct nlm_globals *g;

1200 mi = VTOMI(vp);
1201 sv = mi->mi_curr_serv;

1203 netid = nlm_knc_to_netid(sv->sv_knconf);
1204 if (netid == NULL) {
1205 NLM_ERR("nlm_shrlock: unknown NFS netid\n");
1206 return (ENOSYS);
1207 }

1209 g = zone_getspecific(nlm_zone_key, curzone);
1210 host = nlm_host_findcreate(g, sv->sv_hostname, netid, &sv->sv_addr);
1211 if (host == NULL)
1212 return (ENOSYS);

1214 /*
1215 * Fill in s_sysid for the local locking calls.
1216 * Also, let’s not trust the caller’s l_pid.
1217 */
1218 shlk = *shr;
1219 shlk.s_sysid = host->nh_sysid | LM_SYSID_CLIENT;
1220 shlk.s_pid = curproc->p_pid;

1222 if (cmd == F_UNSHARE) {
1223 /*
1224 * Purge local (cached) share information first,
1225 * then clear the remote share.
1226 */
1227 (void) nlm_local_shrlock(vp, &shlk, cmd, flags);
1228 nlm_shres_untrack(host, vp, &shlk);
1229 error = nlm_call_unshare(&shlk, host, fh, vers);
1230 goto out;
1231 }

1233 nfs_add_locking_id(vp, curproc->p_pid, RLMPL_OWNER,
1234 shr->s_owner, shr->s_own_len);

1236 error = nlm_call_share(&shlk, host, fh, vers, FALSE);
1237 if (error != 0)
1238 goto out;

1240 /*
1241 * Save the share locally. This should not fail,
1242 * because the server is authoritative about shares
1243 * and it just told us we have the share reservation!
1244 */
1245 error = nlm_local_shrlock(vp, shr, cmd, flags);
1246 if (error != 0) {

new/usr/src/uts/common/klm/nlm_client.c 20

1247 /*
1248 * Oh oh, we really don’t expect an error here.
1249 */
1250 NLM_WARN("nlm_shrlock: set locally, err %d\n", error);
1251 error = 0;
1252 }

1254 nlm_shres_track(host, vp, &shlk);
1255 nlm_host_monitor(g, host, 0);

1257 out:
1258 nlm_host_release(g, host);

1260 return (error);
1261 }

1263 static int
1264 nlm_reclaim_share(struct nlm_host *hostp, vnode_t *vp,
1265 struct shrlock *shr, uint32_t orig_state)
1266 {
1267 struct netobj lm_fh;
1268 int error, state;
1269 rpcvers_t vers;

1271 state = nlm_host_get_state(hostp);
1272 if (state != orig_state) {
1273 /*
1274 * It seems that NLM server rebooted while
1275 * we were busy with recovery.
1276 */
1277 return (ERESTART);
1278 }

1280 error = nlm_init_fh_by_vp(vp, &lm_fh, &vers);
1281 if (error != 0)
1282 return (error);

1284 return (nlm_call_share(shr, hostp, &lm_fh, vers, 1));
1285 }

1287 /*
1288 * Set local share information for some NFS server.
1289 *
1290 * Called after a share request (set or clear) succeeded. We record
1291 * the details in the local lock manager. Note that since the remote
1292 * server has granted the share, we can be sure that it doesn’t
1293 * conflict with any other shares we have in the local lock manager.
1294 *
1295 * Since it is possible that host may also make NLM client requests to
1296 * our NLM server, we use a different sysid value to record our own
1297 * client shares.
1298 */
1299 int
1300 nlm_local_shrlock(vnode_t *vp, struct shrlock *shr, int cmd, int flags)
1301 {
1302 return (fs_shrlock(vp, cmd, shr, flags, CRED(), NULL));
1303 }

1305 static void
1306 nlm_local_shrcancel(vnode_t *vp, struct shrlock *shr)
1307 {
1308 (void) nlm_local_shrlock(vp, shr, F_UNSHARE, FREAD | FWRITE);
1309 nlm_send_siglost(shr->s_pid);
1310 }

1312 /*

new/usr/src/uts/common/klm/nlm_client.c 21

1313 * Do NLM_SHARE call.
1314 * Was: nlm_setshare()
1315 */
1316 static int
1317 nlm_call_share(struct shrlock *shr, struct nlm_host *host,
1318 struct netobj *fh, int vers, int reclaim)
1319 {
1320 struct nlm4_shareargs args;
1321 enum nlm4_stats nlm_err;
1322 uint32_t xid;
1323 int error;

1325 bzero(&args, sizeof (args));
1326 nlm_init_share(&args.share, shr, fh);

1328 args.reclaim = reclaim;
1329 xid = atomic_inc_32_nv(&nlm_xid);
1330 args.cookie.n_len = sizeof (xid);
1331 args.cookie.n_bytes = (char *)&xid;

1334 for (;;) {
1335 nlm_rpc_t *rpcp;
1336 struct nlm4_shareres res;
1337 enum clnt_stat stat;

1339 error = nlm_host_get_rpc(host, vers, &rpcp);
1340 if (error != 0)
1341 return (ENOLCK);

1343 bzero(&res, sizeof (res));
1344 stat = nlm_share_rpc(&args, &res, rpcp->nr_handle, vers);
1345 nlm_host_rele_rpc(host, rpcp);

1347 error = nlm_map_clnt_stat(stat);
1348 if (error != 0) {
1349 if (error == EAGAIN)
1350 continue;

1352 return (error);
1353 }

1355 DTRACE_PROBE1(share__res, enum nlm4_stats, res.stat);
1356 nlm_err = res.stat;
1357 xdr_free((xdrproc_t)xdr_nlm4_shareres, (void *)&res);
1358 if (nlm_err == nlm4_denied_grace_period) {
1359 if (args.reclaim)
1360 return (ENOLCK);

1362 error = nlm_host_wait_grace(host);
1363 if (error != 0)
1364 return (error);

1366 continue;
1367 }

1369 break;
1370 }

1372 switch (nlm_err) {
1373 case nlm4_granted:
1374 error = 0;
1375 break;
1376 case nlm4_blocked:
1377 case nlm4_denied:
1378 error = EAGAIN;

new/usr/src/uts/common/klm/nlm_client.c 22

1379 break;
1380 case nlm4_denied_nolocks:
1381 case nlm4_deadlck:
1382 error = ENOLCK;
1383 break;
1384 default:
1385 error = EINVAL;
1386 break;
1387 }

1389 return (error);
1390 }

1392 /*
1393 * Do NLM_UNSHARE call.
1394 */
1395 static int
1396 nlm_call_unshare(struct shrlock *shr, struct nlm_host *host,
1397 struct netobj *fh, int vers)
1398 {
1399 struct nlm4_shareargs args;
1400 enum nlm4_stats nlm_err;
1401 uint32_t xid;
1402 int error;

1404 bzero(&args, sizeof (args));
1405 nlm_init_share(&args.share, shr, fh);

1407 xid = atomic_inc_32_nv(&nlm_xid);
1408 args.cookie.n_len = sizeof (xid);
1409 args.cookie.n_bytes = (char *)&xid;

1411 for (;;) {
1412 nlm_rpc_t *rpcp;
1413 struct nlm4_shareres res;
1414 enum clnt_stat stat;

1416 error = nlm_host_get_rpc(host, vers, &rpcp);
1417 if (error != 0)
1418 return (ENOLCK);

1420 bzero(&res, sizeof (res));
1421 stat = nlm_unshare_rpc(&args, &res, rpcp->nr_handle, vers);
1422 nlm_host_rele_rpc(host, rpcp);

1424 error = nlm_map_clnt_stat(stat);
1425 if (error != 0) {
1426 if (error == EAGAIN)
1427 continue;

1429 return (error);
1430 }

1432 DTRACE_PROBE1(unshare__res, enum nlm4_stats, res.stat);
1433 nlm_err = res.stat;
1434 xdr_free((xdrproc_t)xdr_nlm4_res, (void *)&res);
1435 if (nlm_err == nlm4_denied_grace_period) {
1436 error = nlm_host_wait_grace(host);
1437 if (error != 0)
1438 return (error);

1440 continue;
1441 }

1443 break;
1444 }

new/usr/src/uts/common/klm/nlm_client.c 23

1446 switch (nlm_err) {
1447 case nlm4_granted:
1448 error = 0;
1449 break;
1450 case nlm4_denied:
1451 error = EAGAIN;
1452 break;
1453 case nlm4_denied_nolocks:
1454 error = ENOLCK;
1455 break;
1456 default:
1457 error = EINVAL;
1458 break;
1459 }

1461 return (error);
1462 }

1464 static void
1465 nlm_init_share(struct nlm4_share *args,
1466 const struct shrlock *shr, struct netobj *fh)
1467 {

1469 bzero(args, sizeof (*args));

1471 args->caller_name = uts_nodename();
1472 args->fh.n_len = fh->n_len;
1473 args->fh.n_bytes = fh->n_bytes;
1474 args->oh.n_len = shr->s_own_len;
1475 args->oh.n_bytes = (void *)shr->s_owner;

1477 switch (shr->s_deny) {
1478 default:
1479 case F_NODNY:
1480 args->mode = fsm_DN;
1481 break;
1482 case F_RDDNY:
1483 args->mode = fsm_DR;
1484 break;
1485 case F_WRDNY:
1486 args->mode = fsm_DW;
1487 break;
1488 case F_RWDNY:
1489 args->mode = fsm_DRW;
1490 break;
1491 }

1493 switch (shr->s_access) {
1494 default:
1495 case 0: /* seen with F_UNSHARE */
1496 args->access = fsa_NONE;
1497 break;
1498 case F_RDACC:
1499 args->access = fsa_R;
1500 break;
1501 case F_WRACC:
1502 args->access = fsa_W;
1503 break;
1504 case F_RWACC:
1505 args->access = fsa_RW;
1506 break;
1507 }
1508 }

1510 /*

new/usr/src/uts/common/klm/nlm_client.c 24

1511 * Initialize filehandle according to the version
1512 * of NFS vnode was created on. The version of
1513 * NLM that can be used with given NFS version
1514 * is saved to lm_vers.
1515 */
1516 static int
1517 nlm_init_fh_by_vp(vnode_t *vp, struct netobj *fh, rpcvers_t *lm_vers)
1518 {
1519 mntinfo_t *mi = VTOMI(vp);

1521 /*
1522 * Too bad the NFS code doesn’t just carry the FH
1523 * in a netobj or a netbuf.
1524 */
1525 switch (mi->mi_vers) {
1526 case NFS_V3:
1527 /* See nfs3_frlock() */
1528 *lm_vers = NLM4_VERS;
1529 fh->n_len = VTOFH3(vp)->fh3_length;
1530 fh->n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data);
1531 break;

1533 case NFS_VERSION:
1534 /* See nfs_frlock() */
1535 *lm_vers = NLM_VERS;
1536 fh->n_len = sizeof (fhandle_t);
1537 /* LINTED E_BAD_PTR_CAST_ALIGN */
1538 fh->n_bytes = (char *)VTOFH(vp);
1539 break;
1540 default:
1541 return (ENOSYS);
1542 }

1544 return (0);
1545 }

1547 /*
1548 * Send SIGLOST to the process identified by pid.
1549 * NOTE: called when NLM decides to remove lock
1550 * or share reservation ownder by the process
1551 * by force.
1552 */
1553 static void
1554 nlm_send_siglost(pid_t pid)
1555 {
1556 proc_t *p;

1558 mutex_enter(&pidlock);
1559 p = prfind(pid);
1560 if (p != NULL)
1561 psignal(p, SIGLOST);

1563 mutex_exit(&pidlock);
1564 }

1566 static int
1567 nlm_map_clnt_stat(enum clnt_stat stat)
1568 {
1569 switch (stat) {
1570 case RPC_SUCCESS:
1571 return (0);

1573 case RPC_TIMEDOUT:
1574 case RPC_PROGUNAVAIL:
1575 return (EAGAIN);

new/usr/src/uts/common/klm/nlm_client.c 25

1577 case RPC_INTR:
1578 return (EINTR);

1580 default:
1581 return (EINVAL);
1582 }
1583 }

1585 static int
1586 nlm_map_status(enum nlm4_stats stat)
1587 {
1588 switch (stat) {
1589 case nlm4_granted:
1590 return (0);

1592 case nlm4_denied:
1593 return (EAGAIN);

1595 case nlm4_denied_nolocks:
1596 return (ENOLCK);

1598 case nlm4_blocked:
1599 return (EAGAIN);

1601 case nlm4_denied_grace_period:
1602 return (EAGAIN);

1604 case nlm4_deadlck:
1605 return (EDEADLK);

1607 case nlm4_rofs:
1608 return (EROFS);

1610 case nlm4_stale_fh:
1611 return (ESTALE);

1613 case nlm4_fbig:
1614 return (EFBIG);

1616 case nlm4_failed:
1617 return (EACCES);

1619 default:
1620 return (EINVAL);
1621 }
1622 }

new/usr/src/uts/common/klm/nlm_dispatch.c 1

**
 15379 Sun Aug 25 23:51:09 2013
new/usr/src/uts/common/klm/nlm_dispatch.c
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy is of the CDDL is also available via the Internet
9 * at http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
14 */

16 /*
17 * NFS Lock Manager, server-side dispatch tables and
18 * dispatch programs: nlm_prog_3, nlm_prog4
19 *
20 * These are called by RPC framework after the RPC service
21 * endpoints setup done in nlm_impl.c: nlm_svc_add_ep().
22 *
23 * Originally from rpcgen, then reduced.
24 */

26 #include <sys/param.h>
27 #include <sys/systm.h>
28 #include <sys/sdt.h>
29 #include <rpcsvc/nlm_prot.h>
30 #include "nlm_impl.h"

32 /*
33 * Dispatch entry function pointers.
34 */
35 typedef bool_t (*nlm_svc_func_t)(void *, void *, struct svc_req *);
36 typedef void (*nlm_freeres_func_t)(void *);

38 /*
39 * Entries in the dispatch tables below.
40 */
41 struct dispatch_entry {
42 nlm_svc_func_t de_svc; /* service routine function */
43 xdrproc_t de_xargs; /* XDR args decode function */
44 xdrproc_t de_xres; /* XDR res encode function */
45 nlm_freeres_func_t de_resfree; /* free res function */
46 int de_ressz; /* size of result */
47 uint_t de_flags; /* flags */
48 };

50 /* Flag bits in de_flags */
51 #define NLM_DISP_NOREMOTE 1 /* Local calls only */

53 /*
54 * Cast macros for dispatch table function pointers.
55 */
56 #define NLM_SVC_FUNC(func) (nlm_svc_func_t)func
57 #define NLM_FREERES_FUNC(func) (nlm_freeres_func_t)func

new/usr/src/uts/common/klm/nlm_dispatch.c 2

59 /* ARGSUSED */
60 static bool_t
61 nlm_null_svc(void *args, void *resp, struct svc_req *sr)
62 {
63 return (TRUE);
64 }

66 /*
67 * The common NLM service dispatch function, used by
68 * both: nlm_prog_3, nlm_prog_4
69 */
70 void
71 nlm_dispatch(
72 struct svc_req *rqstp,
73 SVCXPRT *transp,
74 const struct dispatch_entry *de)
75 {
76 union {
77 /* All the arg types */
78 nlm_cancargs au_cancargs;
79 nlm_lockargs au_lockargs;
80 nlm_notify au_notify;
81 nlm_res au_res;
82 nlm_shareargs au_shareargs;
83 nlm_sm_status au_sm_status;
84 nlm_testargs au_testargs;
85 nlm_testres au_testres;
86 nlm_unlockargs au_unlockargs;
87 nlm4_cancargs au_cancargs4;
88 nlm4_lockargs au_lockargs4;
89 nlm4_notify au_notify4;
90 nlm4_res au_res4;
91 nlm4_shareargs au_shareargs4;
92 nlm4_testargs au_testargs4;
93 nlm4_testres au_testres4;
94 nlm4_unlockargs au_unlockargs4;
95 } argu;
96 void *args = &argu;
97 union {
98 /* All the ret types */
99 int ru_int;
100 nlm_res ru_res;
101 nlm_shareres ru_shareres;
102 nlm_testres ru_testres;
103 nlm4_res ru_res4;
104 nlm4_shareres ru_shareres4;
105 nlm4_testres ru_testres4;

107 } resu;
108 void *res = &resu;
109 nlm_svc_func_t func;
110 bool_t do_reply = FALSE;
111 bool_t dupcached = FALSE;
112 struct dupreq *dr;
113 int dupstat;

115 if ((func = de->de_svc) == NULL) {
116 svcerr_noproc(transp);
117 return;
118 }

120 if ((de->de_flags & NLM_DISP_NOREMOTE) &&
121 !nlm_caller_is_local(transp)) {
122 svcerr_noproc(transp);
123 return;
124 }

new/usr/src/uts/common/klm/nlm_dispatch.c 3

126 /*
127 * This section from rpcgen, and then modified slightly.
128 *
129 * Dispatch entries that should _never_ send a response
130 * (i.e. all the _MSG and _RES entries) put NULL in the
131 * de_xres field to indicate that. For such entries, we
132 * will NOT call svc_sendreply nor xdr_free(). Normal
133 * dispatch entries skip svc_sendreply if the dispatch
134 * function returns zero, but always call xdr_free().
135 *
136 * There are more complex cases where some dispatch
137 * functions need to send their own reply. We chose
138 * to indicate those by returning false from the
139 * service routine.
140 */
141 bzero(&argu, sizeof (argu));
142 if (!SVC_GETARGS(transp, de->de_xargs, args)) {
143 svcerr_decode(transp);
144 return;
145 }

147 /*
148 * Duplicate request cache.
149 *
150 * Since none of the NLM replies are very large we have simplified the
151 * DRC by not distinguishing between idempotent and non-idempotent
152 * requests.
153 */
154 dupstat = SVC_DUP_EXT(transp, rqstp, res, de->de_ressz, &dr,
155 &dupcached);

157 switch (dupstat) {
158 case DUP_ERROR:
159 svcerr_systemerr(transp);
160 break;
161 case DUP_INPROGRESS:
162 break;
163 case DUP_NEW:
164 case DUP_DROP:
165 /*
166 * When UFS is quiescing it uses lockfs to block vnode
167 * operations until it has finished quiescing. Set the
168 * thread’s T_DONTPEND flag to prevent the service routine
169 * from blocking due to a lockfs lock. (See ufs_check_lockfs)
170 */
171 curthread->t_flag |= T_DONTPEND;

173 bzero(&resu, sizeof (resu));
174 do_reply = (*func)(args, res, rqstp);

176 curthread->t_flag &= ~T_DONTPEND;
177 if (curthread->t_flag & T_WOULDBLOCK) {
178 curthread->t_flag &= ~T_WOULDBLOCK;
179 SVC_DUPDONE_EXT(transp, dr, res, NULL,
180 de->de_ressz, DUP_DROP);
181 do_reply = FALSE;
182 break;
183 }
184 SVC_DUPDONE_EXT(transp, dr, res, de->de_resfree,
185 de->de_ressz, DUP_DONE);
186 dupcached = TRUE;
187 break;
188 case DUP_DONE:
189 /*
190 * The service routine may have been responsible for sending

new/usr/src/uts/common/klm/nlm_dispatch.c 4

191 * the reply for the original request but for a re-xmitted
192 * request we don’t invoke the service routine so we must
193 * re-xmit the reply from the dispatch function.
194 *
195 * If de_xres is NULL this is a one-way message so no reply is
196 * needed.
197 */
198 if (de->de_xres != NULL_xdrproc_t) {
199 do_reply = TRUE;
200 }
201 break;
202 }

204 if (do_reply) {
205 ASSERT(de->de_xres != NULL_xdrproc_t);
206 DTRACE_PROBE3(sendreply, struct svc_req *, rqstp,
207 SVCXPRT *, transp, struct dispatch_entry *, de);

209 if (!svc_sendreply(transp, de->de_xres, res)) {
210 svcerr_systemerr(transp);
211 NLM_ERR("nlm_dispatch(): svc_sendreply() failed!\n");
212 }

214 if (!dupcached) {
215 xdr_free(de->de_xres, res);
216 }
217 }

219 if (!SVC_FREEARGS(transp, de->de_xargs, args))
220 NLM_WARN("nlm_dispatch(): unable to free arguments");
221 }

223 /*
224 * Result free functions. The functions are called by the RPC duplicate
225 * request cache code when an entry is being evicted from the cache.
226 */
227 static void
228 nlm_res_free(nlm_res *resp)
229 {
230 xdr_free(xdr_nlm_res, (char *)resp);
231 }

233 static void
234 nlm_shareres_free(nlm_shareres *resp)
235 {
236 xdr_free(xdr_nlm_shareres, (char *)resp);
237 }

239 static void
240 nlm_testres_free(nlm_testres *resp)
241 {
242 xdr_free(xdr_nlm_testres, (char *)resp);
243 }

245 static void
246 nlm4_res_free(nlm4_res *resp)
247 {
248 xdr_free(xdr_nlm4_res, (char *)resp);
249 }

251 static void
252 nlm4_shareres_free(nlm4_shareres *resp)
253 {
254 xdr_free(xdr_nlm4_shareres, (char *)resp);
255 }

new/usr/src/uts/common/klm/nlm_dispatch.c 5

257 static void
258 nlm4_testres_free(nlm4_testres *resp)
259 {
260 xdr_free(xdr_nlm4_testres, (char *)resp);
261 }

263 /*
264 * Dispatch tables for each program version.
265 *
266 * The tables here were all originally from rpcgen,
267 * but then arg/resp sizes removed, flags added.
268 */

270 /*
271 * Dispatch table for versions 1, 2, 3
272 * (NLM_VERS, NLM_SM, NLM_VERSX)
273 */
274 static const struct dispatch_entry
275 nlm_prog_3_dtable[] = {

277 /*
278 * Version 1 (NLM_VERS) entries.
279 */

281 { /* 0: NULLPROC */
282 NLM_SVC_FUNC(nlm_null_svc),
283 (xdrproc_t)xdr_void,
284 (xdrproc_t)xdr_void,
285 NULL,
286 0,
287 0 },

289 { /* 1: NLM_TEST */
290 NLM_SVC_FUNC(nlm_test_1_svc),
291 (xdrproc_t)xdr_nlm_testargs,
292 (xdrproc_t)xdr_nlm_testres,
293 NLM_FREERES_FUNC(nlm_testres_free),
294 sizeof (nlm_testres),
295 0 },

297 { /* 2: NLM_LOCK */
298 NLM_SVC_FUNC(nlm_lock_1_svc),
299 (xdrproc_t)xdr_nlm_lockargs,
300 (xdrproc_t)xdr_nlm_res,
301 NLM_FREERES_FUNC(nlm_res_free),
302 sizeof (nlm_res),
303 0 },

305 { /* 3: NLM_CANCEL */
306 NLM_SVC_FUNC(nlm_cancel_1_svc),
307 (xdrproc_t)xdr_nlm_cancargs,
308 (xdrproc_t)xdr_nlm_res,
309 NLM_FREERES_FUNC(nlm_res_free),
310 sizeof (nlm_res),
311 0 },

313 { /* 4: NLM_UNLOCK */
314 NLM_SVC_FUNC(nlm_unlock_1_svc),
315 (xdrproc_t)xdr_nlm_unlockargs,
316 (xdrproc_t)xdr_nlm_res,
317 NLM_FREERES_FUNC(nlm_res_free),
318 sizeof (nlm_res),
319 0 },

321 { /* 5: NLM_GRANTED */
322 NLM_SVC_FUNC(nlm_granted_1_svc),

new/usr/src/uts/common/klm/nlm_dispatch.c 6

323 (xdrproc_t)xdr_nlm_testargs,
324 (xdrproc_t)xdr_nlm_res,
325 NLM_FREERES_FUNC(nlm_res_free),
326 sizeof (nlm_res),
327 0 },

329 /*
330 * All the _MSG and _RES entries are "one way" calls that
331 * skip the usual RPC reply. We give them a null xdr_res
332 * function so the dispatcher will not send a reply.
333 */

335 { /* 6: NLM_TEST_MSG */
336 NLM_SVC_FUNC(nlm_test_msg_1_svc),
337 (xdrproc_t)xdr_nlm_testargs,
338 (xdrproc_t)0,
339 NULL,
340 0,
341 0 },

343 { /* 7: NLM_LOCK_MSG */
344 NLM_SVC_FUNC(nlm_lock_msg_1_svc),
345 (xdrproc_t)xdr_nlm_lockargs,
346 (xdrproc_t)0,
347 NULL,
348 0,
349 0 },

351 { /* 8: NLM_CANCEL_MSG */
352 NLM_SVC_FUNC(nlm_cancel_msg_1_svc),
353 (xdrproc_t)xdr_nlm_cancargs,
354 (xdrproc_t)0,
355 NULL,
356 0,
357 0 },

359 { /* 9: NLM_UNLOCK_MSG */
360 NLM_SVC_FUNC(nlm_unlock_msg_1_svc),
361 (xdrproc_t)xdr_nlm_unlockargs,
362 (xdrproc_t)0,
363 NULL,
364 0,
365 0 },

367 { /* 10: NLM_GRANTED_MSG */
368 NLM_SVC_FUNC(nlm_granted_msg_1_svc),
369 (xdrproc_t)xdr_nlm_testargs,
370 (xdrproc_t)0,
371 NULL,
372 0,
373 0 },

375 { /* 11: NLM_TEST_RES */
376 NLM_SVC_FUNC(nlm_test_res_1_svc),
377 (xdrproc_t)xdr_nlm_testres,
378 (xdrproc_t)0,
379 NULL,
380 0,
381 0 },

383 { /* 12: NLM_LOCK_RES */
384 NLM_SVC_FUNC(nlm_lock_res_1_svc),
385 (xdrproc_t)xdr_nlm_res,
386 (xdrproc_t)0,
387 NULL,
388 0,

new/usr/src/uts/common/klm/nlm_dispatch.c 7

389 0 },

391 { /* 13: NLM_CANCEL_RES */
392 NLM_SVC_FUNC(nlm_cancel_res_1_svc),
393 (xdrproc_t)xdr_nlm_res,
394 (xdrproc_t)0,
395 NULL,
396 0,
397 0 },

399 { /* 14: NLM_UNLOCK_RES */
400 NLM_SVC_FUNC(nlm_unlock_res_1_svc),
401 (xdrproc_t)xdr_nlm_res,
402 (xdrproc_t)0,
403 NULL,
404 0,
405 0 },

407 { /* 15: NLM_GRANTED_RES */
408 NLM_SVC_FUNC(nlm_granted_res_1_svc),
409 (xdrproc_t)xdr_nlm_res,
410 (xdrproc_t)0,
411 NULL,
412 0,
413 0 },

415 { /* 16: not used */
416 NLM_SVC_FUNC(0),
417 (xdrproc_t)0,
418 (xdrproc_t)0,
419 NULL,
420 0,
421 0 },

423 { /* 17: NLM_SM_NOTIFY1 */
424 NLM_SVC_FUNC(nlm_sm_notify1_2_svc),
425 (xdrproc_t)xdr_nlm_sm_status,
426 (xdrproc_t)xdr_void,
427 NULL,
428 0,
429 NLM_DISP_NOREMOTE },

431 { /* 18: NLM_SM_NOTIFY2 */
432 NLM_SVC_FUNC(nlm_sm_notify2_2_svc),
433 (xdrproc_t)xdr_nlm_sm_status,
434 (xdrproc_t)xdr_void,
435 NULL,
436 0,
437 NLM_DISP_NOREMOTE },

439 /*
440 * Version 3 (NLM_VERSX) entries.
441 */

443 { /* 19: not used */
444 NLM_SVC_FUNC(0),
445 (xdrproc_t)0,
446 (xdrproc_t)0,
447 NULL,
448 0,
449 0 },

451 { /* 20: NLM_SHARE */
452 NLM_SVC_FUNC(nlm_share_3_svc),
453 (xdrproc_t)xdr_nlm_shareargs,
454 (xdrproc_t)xdr_nlm_shareres,

new/usr/src/uts/common/klm/nlm_dispatch.c 8

455 NLM_FREERES_FUNC(nlm_shareres_free),
456 sizeof (nlm_shareres),
457 0 },

459 { /* 21: NLM_UNSHARE */
460 NLM_SVC_FUNC(nlm_unshare_3_svc),
461 (xdrproc_t)xdr_nlm_shareargs,
462 (xdrproc_t)xdr_nlm_shareres,
463 NLM_FREERES_FUNC(nlm_shareres_free),
464 sizeof (nlm_shareres),
465 0 },

467 { /* 22: NLM_NM_LOCK */
468 NLM_SVC_FUNC(nlm_nm_lock_3_svc),
469 (xdrproc_t)xdr_nlm_lockargs,
470 (xdrproc_t)xdr_nlm_res,
471 NLM_FREERES_FUNC(nlm_res_free),
472 sizeof (nlm_res),
473 0 },

475 { /* 23: NLM_FREE_ALL */
476 NLM_SVC_FUNC(nlm_free_all_3_svc),
477 (xdrproc_t)xdr_nlm_notify,
478 (xdrproc_t)xdr_void,
479 NULL,
480 0,
481 0 },
482 };
483 static int nlm_prog_3_dtsize =
484 sizeof (nlm_prog_3_dtable) /
485 sizeof (nlm_prog_3_dtable[0]);

487 /*
488 * RPC dispatch function for nlm_prot versions: 1,2,3
489 */
490 void
491 nlm_prog_3(struct svc_req *rqstp, register SVCXPRT *transp)
492 {
493 const struct dispatch_entry *de;
494 rpcproc_t max_proc;

496 switch (rqstp->rq_vers) {
497 case NLM_VERS:
498 max_proc = NLM_GRANTED_RES;
499 break;
500 case NLM_SM:
501 max_proc = NLM_SM_NOTIFY2;
502 break;
503 case NLM_VERSX:
504 max_proc = NLM_FREE_ALL;
505 break;
506 default:
507 /* Our svc registration should prevent this. */
508 ASSERT(0); /* paranoid */
509 svcerr_noprog(transp);
510 return;
511 }
512 ASSERT(max_proc < nlm_prog_3_dtsize);

514 if (rqstp->rq_proc > max_proc) {
515 svcerr_noproc(transp);
516 return;
517 }

519 de = &nlm_prog_3_dtable[rqstp->rq_proc];

new/usr/src/uts/common/klm/nlm_dispatch.c 9

521 nlm_dispatch(rqstp, transp, de);
522 }

524 /*
525 * Dispatch table for version 4 (NLM4_VERS)
526 */
527 static const struct dispatch_entry
528 nlm_prog_4_dtable[] = {

530 { /* 0: NULLPROC */
531 NLM_SVC_FUNC(nlm_null_svc),
532 (xdrproc_t)xdr_void,
533 (xdrproc_t)xdr_void,
534 NULL,
535 0,
536 0 },

538 { /* 1: NLM4_TEST */
539 NLM_SVC_FUNC(nlm4_test_4_svc),
540 (xdrproc_t)xdr_nlm4_testargs,
541 (xdrproc_t)xdr_nlm4_testres,
542 NLM_FREERES_FUNC(nlm4_testres_free),
543 sizeof (nlm4_testres),
544 0 },

546 { /* 2: NLM4_LOCK */
547 NLM_SVC_FUNC(nlm4_lock_4_svc),
548 (xdrproc_t)xdr_nlm4_lockargs,
549 (xdrproc_t)xdr_nlm4_res,
550 NLM_FREERES_FUNC(nlm4_res_free),
551 sizeof (nlm4_res),
552 0 },

554 { /* 3: NLM4_CANCEL */
555 NLM_SVC_FUNC(nlm4_cancel_4_svc),
556 (xdrproc_t)xdr_nlm4_cancargs,
557 (xdrproc_t)xdr_nlm4_res,
558 NLM_FREERES_FUNC(nlm4_res_free),
559 sizeof (nlm4_res),
560 0 },

562 { /* 4: NLM4_UNLOCK */
563 NLM_SVC_FUNC(nlm4_unlock_4_svc),
564 (xdrproc_t)xdr_nlm4_unlockargs,
565 (xdrproc_t)xdr_nlm4_res,
566 NLM_FREERES_FUNC(nlm4_res_free),
567 sizeof (nlm4_res),
568 0 },

570 { /* 5: NLM4_GRANTED */
571 NLM_SVC_FUNC(nlm4_granted_4_svc),
572 (xdrproc_t)xdr_nlm4_testargs,
573 (xdrproc_t)xdr_nlm4_res,
574 NLM_FREERES_FUNC(nlm4_res_free),
575 sizeof (nlm4_res),
576 0 },

578 /*
579 * All the _MSG and _RES entries are "one way" calls that
580 * skip the usual RPC reply. We give them a null xdr_res
581 * function so the dispatcher will not send a reply.
582 */

584 { /* 6: NLM4_TEST_MSG */
585 NLM_SVC_FUNC(nlm4_test_msg_4_svc),
586 (xdrproc_t)xdr_nlm4_testargs,

new/usr/src/uts/common/klm/nlm_dispatch.c 10

587 (xdrproc_t)0,
588 NULL,
589 0,
590 0 },

592 { /* 7: NLM4_LOCK_MSG */
593 NLM_SVC_FUNC(nlm4_lock_msg_4_svc),
594 (xdrproc_t)xdr_nlm4_lockargs,
595 (xdrproc_t)0,
596 NULL,
597 0,
598 0 },

600 { /* 8: NLM4_CANCEL_MSG */
601 NLM_SVC_FUNC(nlm4_cancel_msg_4_svc),
602 (xdrproc_t)xdr_nlm4_cancargs,
603 (xdrproc_t)0,
604 NULL,
605 0,
606 0 },

608 { /* 9: NLM4_UNLOCK_MSG */
609 NLM_SVC_FUNC(nlm4_unlock_msg_4_svc),
610 (xdrproc_t)xdr_nlm4_unlockargs,
611 (xdrproc_t)0,
612 NULL,
613 0,
614 0 },

616 { /* 10: NLM4_GRANTED_MSG */
617 NLM_SVC_FUNC(nlm4_granted_msg_4_svc),
618 (xdrproc_t)xdr_nlm4_testargs,
619 (xdrproc_t)0,
620 NULL,
621 0,
622 0 },

624 { /* 11: NLM4_TEST_RES */
625 NLM_SVC_FUNC(nlm4_test_res_4_svc),
626 (xdrproc_t)xdr_nlm4_testres,
627 (xdrproc_t)0,
628 NULL,
629 0,
630 0 },

632 { /* 12: NLM4_LOCK_RES */
633 NLM_SVC_FUNC(nlm4_lock_res_4_svc),
634 (xdrproc_t)xdr_nlm4_res,
635 (xdrproc_t)0,
636 NULL,
637 0,
638 0 },

640 { /* 13: NLM4_CANCEL_RES */
641 NLM_SVC_FUNC(nlm4_cancel_res_4_svc),
642 (xdrproc_t)xdr_nlm4_res,
643 (xdrproc_t)0,
644 NULL,
645 0,
646 0 },

648 { /* 14: NLM4_UNLOCK_RES */
649 NLM_SVC_FUNC(nlm4_unlock_res_4_svc),
650 (xdrproc_t)xdr_nlm4_res,
651 (xdrproc_t)0,
652 NULL,

new/usr/src/uts/common/klm/nlm_dispatch.c 11

653 0,
654 0 },

656 { /* 15: NLM4_GRANTED_RES */
657 NLM_SVC_FUNC(nlm4_granted_res_4_svc),
658 (xdrproc_t)xdr_nlm4_res,
659 (xdrproc_t)0,
660 NULL,
661 0,
662 0 },

664 { /* 16: not used */
665 NLM_SVC_FUNC(0),
666 (xdrproc_t)0,
667 (xdrproc_t)0,
668 NULL,
669 0,
670 0 },

672 { /* 17: NLM_SM_NOTIFY1 (not in v4) */
673 NLM_SVC_FUNC(0),
674 (xdrproc_t)0,
675 (xdrproc_t)0,
676 NULL,
677 0,
678 0 },

680 { /* 18: NLM_SM_NOTIFY2 (not in v4) */
681 NLM_SVC_FUNC(0),
682 (xdrproc_t)0,
683 (xdrproc_t)0,
684 NULL,
685 0,
686 0 },

688 { /* 19: not used */
689 NLM_SVC_FUNC(0),
690 (xdrproc_t)0,
691 (xdrproc_t)0,
692 NULL,
693 0,
694 0 },

696 { /* 20: NLM4_SHARE */
697 NLM_SVC_FUNC(nlm4_share_4_svc),
698 (xdrproc_t)xdr_nlm4_shareargs,
699 (xdrproc_t)xdr_nlm4_shareres,
700 NLM_FREERES_FUNC(nlm4_shareres_free),
701 sizeof (nlm4_shareres),
702 0 },

704 { /* 21: NLM4_UNSHARE */
705 NLM_SVC_FUNC(nlm4_unshare_4_svc),
706 (xdrproc_t)xdr_nlm4_shareargs,
707 (xdrproc_t)xdr_nlm4_shareres,
708 NLM_FREERES_FUNC(nlm4_shareres_free),
709 sizeof (nlm4_shareres),
710 0 },

712 { /* 22: NLM4_NM_LOCK */
713 NLM_SVC_FUNC(nlm4_nm_lock_4_svc),
714 (xdrproc_t)xdr_nlm4_lockargs,
715 (xdrproc_t)xdr_nlm4_res,
716 NLM_FREERES_FUNC(nlm4_res_free),
717 sizeof (nlm4_res),
718 0 },

new/usr/src/uts/common/klm/nlm_dispatch.c 12

720 { /* 23: NLM4_FREE_ALL */
721 NLM_SVC_FUNC(nlm4_free_all_4_svc),
722 (xdrproc_t)xdr_nlm4_notify,
723 (xdrproc_t)xdr_void,
724 NULL,
725 0,
726 0 },
727 };
728 static int nlm_prog_4_dtsize =
729 sizeof (nlm_prog_4_dtable) /
730 sizeof (nlm_prog_4_dtable[0]);

732 /*
733 * RPC dispatch function for nlm_prot version 4.
734 */
735 void
736 nlm_prog_4(struct svc_req *rqstp, register SVCXPRT *transp)
737 {
738 const struct dispatch_entry *de;

740 if (rqstp->rq_vers != NLM4_VERS) {
741 /* Our svc registration should prevent this. */
742 ASSERT(0); /* paranoid */
743 svcerr_noprog(transp);
744 return;
745 }

747 if (rqstp->rq_proc >= nlm_prog_4_dtsize) {
748 svcerr_noproc(transp);
749 return;
750 }

752 de = &nlm_prog_4_dtable[rqstp->rq_proc];

754 nlm_dispatch(rqstp, transp, de);
755 }

new/usr/src/uts/common/klm/nlm_impl.c 1

**
 65841 Sun Aug 25 23:51:09 2013
new/usr/src/uts/common/klm/nlm_impl.c
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3 * Authors: Doug Rabson <dfr@rabson.org>
4 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright

10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */

28 /*
29 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
30 * Copyright (c) 2012 by Delphix. All rights reserved.
31 */

33 /*
34 * NFS LockManager, start/stop, support functions, etc.
35 * Most of the interesting code is here.
36 *
37 * Source code derived from FreeBSD nlm_prot_impl.c
38 */

40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/thread.h>
43 #include <sys/fcntl.h>
44 #include <sys/flock.h>
45 #include <sys/mount.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/share.h>
49 #include <sys/socket.h>
50 #include <sys/syscall.h>
51 #include <sys/syslog.h>
52 #include <sys/systm.h>
53 #include <sys/class.h>
54 #include <sys/unistd.h>
55 #include <sys/vnode.h>
56 #include <sys/vfs.h>
57 #include <sys/queue.h>
58 #include <sys/bitmap.h>

new/usr/src/uts/common/klm/nlm_impl.c 2

59 #include <sys/sdt.h>
60 #include <netinet/in.h>

62 #include <rpc/rpc.h>
63 #include <rpc/xdr.h>
64 #include <rpc/pmap_prot.h>
65 #include <rpc/pmap_clnt.h>
66 #include <rpc/rpcb_prot.h>

68 #include <rpcsvc/nlm_prot.h>
69 #include <rpcsvc/sm_inter.h>
70 #include <rpcsvc/nsm_addr.h>

72 #include <nfs/nfs.h>
73 #include <nfs/nfs_clnt.h>
74 #include <nfs/export.h>
75 #include <nfs/rnode.h>
76 #include <nfs/lm.h>

78 #include "nlm_impl.h"

80 struct nlm_knc {
81 struct knetconfig n_knc;
82 const char *n_netid;
83 };

85 /*
86 * Number of attempts NLM tries to obtain RPC binding
87 * of local statd.
88 */
89 #define NLM_NSM_RPCBIND_RETRIES 10

91 /*
92 * Timeout (in seconds) NLM waits before making another
93 * attempt to obtain RPC binding of local statd.
94 */
95 #define NLM_NSM_RPCBIND_TIMEOUT 5

97 /*
98 * Total number of sysids in NLM sysid bitmap
99 */
100 #define NLM_BMAP_NITEMS (LM_SYSID_MAX + 1)

102 /*
103 * Number of ulong_t words in bitmap that is used
104 * for allocation of sysid numbers.
105 */
106 #define NLM_BMAP_WORDS (NLM_BMAP_NITEMS / BT_NBIPUL)

108 /*
109 * Given an integer x, the macro returns
110 * -1 if x is negative,
111 * 0 if x is zero
112 * 1 if x is positive
113 */
114 #define SIGN(x) (((x) > 0) - ((x) < 0))

116 #define ARRSIZE(arr) (sizeof (arr) / sizeof ((arr)[0]))
117 #define NLM_KNCS ARRSIZE(nlm_netconfigs)

119 krwlock_t lm_lck;

121 /*
122 * Zero timeout for asynchronous NLM RPC operations
123 */
124 static const struct timeval nlm_rpctv_zero = { 0, 0 };

new/usr/src/uts/common/klm/nlm_impl.c 3

126 /*
127 * List of all Zone globals nlm_globals instences
128 * linked together.
129 */
130 static struct nlm_globals_list nlm_zones_list; /* (g) */

132 /*
133 * NLM kmem caches
134 */
135 static struct kmem_cache *nlm_hosts_cache = NULL;
136 static struct kmem_cache *nlm_vhold_cache = NULL;

138 /*
139 * A bitmap for allocation of new sysids.
140 * Sysid is a unique number between LM_SYSID
141 * and LM_SYSID_MAX. Sysid represents unique remote
142 * host that does file locks on the given host.
143 */
144 static ulong_t nlm_sysid_bmap[NLM_BMAP_WORDS]; /* (g) */
145 static int nlm_sysid_nidx; /* (g) */

147 /*
148 * RPC service registration for all transports
149 */
150 static SVC_CALLOUT nlm_svcs[] = {
151 { NLM_PROG, 4, 4, nlm_prog_4 }, /* NLM4_VERS */
152 { NLM_PROG, 1, 3, nlm_prog_3 } /* NLM_VERS - NLM_VERSX */
153 };

155 static SVC_CALLOUT_TABLE nlm_sct = {
156 ARRSIZE(nlm_svcs),
157 FALSE,
158 nlm_svcs
159 };

161 /*
162 * Static table of all netid/knetconfig network
163 * lock manager can work with. nlm_netconfigs table
164 * is used when we need to get valid knetconfig by
165 * netid and vice versa.
166 *
167 * Knetconfigs are activated either by the call from
168 * user-space lockd daemon (server side) or by taking
169 * knetconfig from NFS mountinfo (client side)
170 */
171 static struct nlm_knc nlm_netconfigs[] = { /* (g) */
172 /* UDP */
173 {
174 { NC_TPI_CLTS, NC_INET, NC_UDP, NODEV },
175 "udp",
176 },
177 /* TCP */
178 {
179 { NC_TPI_COTS_ORD, NC_INET, NC_TCP, NODEV },
180 "tcp",
181 },
182 /* UDP over IPv6 */
183 {
184 { NC_TPI_CLTS, NC_INET6, NC_UDP, NODEV },
185 "udp6",
186 },
187 /* TCP over IPv6 */
188 {
189 { NC_TPI_COTS_ORD, NC_INET6, NC_TCP, NODEV },
190 "tcp6",

new/usr/src/uts/common/klm/nlm_impl.c 4

191 },
192 /* ticlts (loopback over UDP) */
193 {
194 { NC_TPI_CLTS, NC_LOOPBACK, NC_NOPROTO, NODEV },
195 "ticlts",
196 },
197 /* ticotsord (loopback over TCP) */
198 {
199 { NC_TPI_COTS_ORD, NC_LOOPBACK, NC_NOPROTO, NODEV },
200 "ticotsord",
201 },
202 };

204 /*
205 * NLM misc. function
206 */
207 static void nlm_copy_netbuf(struct netbuf *, struct netbuf *);
208 static int nlm_netbuf_addrs_cmp(struct netbuf *, struct netbuf *);
209 static void nlm_kmem_reclaim(void *);
210 static void nlm_pool_shutdown(void);
211 static void nlm_suspend_zone(struct nlm_globals *);
212 static void nlm_resume_zone(struct nlm_globals *);
213 static void nlm_nsm_clnt_init(CLIENT *, struct nlm_nsm *);
214 static void nlm_netbuf_to_netobj(struct netbuf *, int *, netobj *);

216 /*
217 * NLM thread functions
218 */
219 static void nlm_gc(struct nlm_globals *);
220 static void nlm_reclaimer(struct nlm_host *);

222 /*
223 * NLM NSM functions
224 */
225 static int nlm_init_local_knc(struct knetconfig *);
226 static int nlm_nsm_init_local(struct nlm_nsm *);
227 static int nlm_nsm_init(struct nlm_nsm *, struct knetconfig *, struct netbuf *);
228 static void nlm_nsm_fini(struct nlm_nsm *);
229 static enum clnt_stat nlm_nsm_simu_crash(struct nlm_nsm *);
230 static enum clnt_stat nlm_nsm_stat(struct nlm_nsm *, int32_t *);
231 static enum clnt_stat nlm_nsm_mon(struct nlm_nsm *, char *, uint16_t);
232 static enum clnt_stat nlm_nsm_unmon(struct nlm_nsm *, char *);

234 /*
235 * NLM host functions
236 */
237 static int nlm_host_ctor(void *, void *, int);
238 static void nlm_host_dtor(void *, void *);
239 static void nlm_host_destroy(struct nlm_host *);
240 static struct nlm_host *nlm_host_create(char *, const char *,
241 struct knetconfig *, struct netbuf *);
242 static struct nlm_host *nlm_host_find_locked(struct nlm_globals *,
243 const char *, struct netbuf *, avl_index_t *);
244 static void nlm_host_unregister(struct nlm_globals *, struct nlm_host *);
245 static void nlm_host_gc_vholds(struct nlm_host *);
246 static bool_t nlm_host_has_srv_locks(struct nlm_host *);
247 static bool_t nlm_host_has_cli_locks(struct nlm_host *);
248 static bool_t nlm_host_has_locks(struct nlm_host *);

250 /*
251 * NLM vhold functions
252 */
253 static int nlm_vhold_ctor(void *, void *, int);
254 static void nlm_vhold_dtor(void *, void *);
255 static void nlm_vhold_destroy(struct nlm_host *,
256 struct nlm_vhold *);

new/usr/src/uts/common/klm/nlm_impl.c 5

257 static bool_t nlm_vhold_busy(struct nlm_host *, struct nlm_vhold *);
258 static void nlm_vhold_clean(struct nlm_vhold *, int);

260 /*
261 * NLM client/server sleeping locks/share reservation functions
262 */
263 struct nlm_slreq *nlm_slreq_find_locked(struct nlm_host *,
264 struct nlm_vhold *, struct flock64 *);
265 static struct nlm_shres *nlm_shres_create_item(struct shrlock *, vnode_t *);
266 static void nlm_shres_destroy_item(struct nlm_shres *);
267 static bool_t nlm_shres_equal(struct shrlock *, struct shrlock *);

269 /*
270 * NLM initialization functions.
271 */
272 void
273 nlm_init(void)
274 {
275 nlm_hosts_cache = kmem_cache_create("nlm_host_cache",
276 sizeof (struct nlm_host), 0, nlm_host_ctor, nlm_host_dtor,
277 nlm_kmem_reclaim, NULL, NULL, 0);

279 nlm_vhold_cache = kmem_cache_create("nlm_vhold_cache",
280 sizeof (struct nlm_vhold), 0, nlm_vhold_ctor, nlm_vhold_dtor,
281 NULL, NULL, NULL, 0);

283 nlm_rpc_init();
284 TAILQ_INIT(&nlm_zones_list);

286 /* initialize sysids bitmap */
287 bzero(nlm_sysid_bmap, sizeof (nlm_sysid_bmap));
288 nlm_sysid_nidx = 1;

290 /*
291 * Reserv the sysid #0, because it’s associated
292 * with local locks only. Don’t let to allocate
293 * it for remote locks.
294 */
295 BT_SET(nlm_sysid_bmap, 0);
296 }

298 void
299 nlm_globals_register(struct nlm_globals *g)
300 {
301 rw_enter(&lm_lck, RW_WRITER);
302 TAILQ_INSERT_TAIL(&nlm_zones_list, g, nlm_link);
303 rw_exit(&lm_lck);
304 }

306 void
307 nlm_globals_unregister(struct nlm_globals *g)
308 {
309 rw_enter(&lm_lck, RW_WRITER);
310 TAILQ_REMOVE(&nlm_zones_list, g, nlm_link);
311 rw_exit(&lm_lck);
312 }

314 /* ARGSUSED */
315 static void
316 nlm_kmem_reclaim(void *cdrarg)
317 {
318 struct nlm_globals *g;

320 rw_enter(&lm_lck, RW_READER);
321 TAILQ_FOREACH(g, &nlm_zones_list, nlm_link)
322 cv_broadcast(&g->nlm_gc_sched_cv);

new/usr/src/uts/common/klm/nlm_impl.c 6

324 rw_exit(&lm_lck);
325 }

327 /*
328 * NLM garbage collector thread (GC).
329 *
330 * NLM GC periodically checks whether there’re any host objects
331 * that can be cleaned up. It also releases stale vnodes that
332 * live on the server side (under protection of vhold objects).
333 *
334 * NLM host objects are cleaned up from GC thread because
335 * operations helping us to determine whether given host has
336 * any locks can be quite expensive and it’s not good to call
337 * them every time the very last reference to the host is dropped.
338 * Thus we use "lazy" approach for hosts cleanup.
339 *
340 * The work of GC is to release stale vnodes on the server side
341 * and destroy hosts that haven’t any locks and any activity for
342 * some time (i.e. idle hosts).
343 */
344 static void
345 nlm_gc(struct nlm_globals *g)
346 {
347 struct nlm_host *hostp;
348 clock_t now, idle_period;

350 idle_period = SEC_TO_TICK(g->cn_idle_tmo);
351 mutex_enter(&g->lock);
352 for (;;) {
353 /*
354 * GC thread can be explicitly scheduled from
355 * memory reclamation function.
356 */
357 (void) cv_timedwait(&g->nlm_gc_sched_cv, &g->lock,
358 ddi_get_lbolt() + idle_period);

360 /*
361 * NLM is shutting down, time to die.
362 */
363 if (g->run_status == NLM_ST_STOPPING)
364 break;

366 now = ddi_get_lbolt();
367 DTRACE_PROBE2(gc__start, struct nlm_globals *, g,
368 clock_t, now);

370 /*
371 * Handle all hosts that are unused at the moment
372 * until we meet one with idle timeout in future.
373 */
374 while ((hostp = TAILQ_FIRST(&g->nlm_idle_hosts)) != NULL) {
375 bool_t has_locks = FALSE;

377 if (hostp->nh_idle_timeout > now)
378 break;

380 /*
381 * Drop global lock while doing expensive work
382 * on this host. We’ll re-check any conditions
383 * that might change after retaking the global
384 * lock.
385 */
386 mutex_exit(&g->lock);
387 mutex_enter(&hostp->nh_lock);

new/usr/src/uts/common/klm/nlm_impl.c 7

389 /*
390 * nlm_globals lock was dropped earlier because
391 * garbage collecting of vholds and checking whether
392 * host has any locks/shares are expensive operations.
393 */
394 nlm_host_gc_vholds(hostp);
395 has_locks = nlm_host_has_locks(hostp);

397 mutex_exit(&hostp->nh_lock);
398 mutex_enter(&g->lock);

400 /*
401 * While we were doing expensive operations outside of
402 * nlm_globals critical section, somebody could
403 * take the host, add lock/share to one of its vnodes
404 * and release the host back. If so, host’s idle timeout
405 * is renewed and our information about locks on the
406 * given host is outdated.
407 */
408 if (hostp->nh_idle_timeout > now)
409 continue;

411 /*
412 * If either host has locks or somebody has began to
413 * use it while we were outside the nlm_globals critical
414 * section. In both cases we have to renew host’s
415 * timeout and put it to the end of LRU list.
416 */
417 if (has_locks || hostp->nh_refs > 0) {
418 TAILQ_REMOVE(&g->nlm_idle_hosts,
419 hostp, nh_link);
420 hostp->nh_idle_timeout = now + idle_period;
421 TAILQ_INSERT_TAIL(&g->nlm_idle_hosts,
422 hostp, nh_link);
423 continue;
424 }

426 /*
427 * We’re here if all the following conditions hold:
428 * 1) Host hasn’t any locks or share reservations
429 * 2) Host is unused
430 * 3) Host wasn’t touched by anyone at least for
431 * g->cn_idle_tmo seconds.
432 *
433 * So, now we can destroy it.
434 */
435 nlm_host_unregister(g, hostp);
436 mutex_exit(&g->lock);

438 nlm_host_unmonitor(g, hostp);
439 nlm_host_destroy(hostp);
440 mutex_enter(&g->lock);
441 if (g->run_status == NLM_ST_STOPPING)
442 break;

444 }

446 DTRACE_PROBE(gc__end);
447 }

449 DTRACE_PROBE1(gc__exit, struct nlm_globals *, g);

451 /* Let others know that GC has died */
452 g->nlm_gc_thread = NULL;
453 mutex_exit(&g->lock);

new/usr/src/uts/common/klm/nlm_impl.c 8

455 cv_broadcast(&g->nlm_gc_finish_cv);
456 zthread_exit();
457 }

459 /*
460 * Thread reclaim locks/shares acquired by the client side
461 * on the given server represented by hostp.
462 */
463 static void
464 nlm_reclaimer(struct nlm_host *hostp)
465 {
466 struct nlm_globals *g;

468 mutex_enter(&hostp->nh_lock);
469 hostp->nh_reclaimer = curthread;
470 mutex_exit(&hostp->nh_lock);

472 g = zone_getspecific(nlm_zone_key, curzone);
473 nlm_reclaim_client(g, hostp);

475 mutex_enter(&hostp->nh_lock);
476 hostp->nh_flags &= ~NLM_NH_RECLAIM;
477 hostp->nh_reclaimer = NULL;
478 cv_broadcast(&hostp->nh_recl_cv);
479 mutex_exit(&hostp->nh_lock);

481 /*
482 * Host was explicitly referenced before
483 * nlm_reclaim() was called, release it
484 * here.
485 */
486 nlm_host_release(g, hostp);
487 zthread_exit();
488 }

490 /*
491 * Copy a struct netobj. (see xdr.h)
492 */
493 void
494 nlm_copy_netobj(struct netobj *dst, struct netobj *src)
495 {
496 dst->n_len = src->n_len;
497 dst->n_bytes = kmem_alloc(src->n_len, KM_SLEEP);
498 bcopy(src->n_bytes, dst->n_bytes, src->n_len);
499 }

501 /*
502 * An NLM specificw replacement for clnt_call().
503 * nlm_clnt_call() is used by all RPC functions generated
504 * from nlm_prot.x specification. The function is aware
505 * about some pitfalls of NLM RPC procedures and has a logic
506 * that handles them properly.
507 */
508 enum clnt_stat
509 nlm_clnt_call(CLIENT *clnt, rpcproc_t procnum, xdrproc_t xdr_args,
510 caddr_t argsp, xdrproc_t xdr_result, caddr_t resultp, struct timeval wait)
511 {
512 k_sigset_t oldmask;
513 enum clnt_stat stat;
514 bool_t sig_blocked = FALSE;

516 /*
517 * If NLM RPC procnum is one of the NLM _RES procedures
518 * that are used to reply to asynchronous NLM RPC
519 * (MSG calls), explicitly set RPC timeout to zero.
520 * Client doesn’t send a reply to RES procedures, so

new/usr/src/uts/common/klm/nlm_impl.c 9

521 * we don’t need to wait anything.
522 *
523 * NOTE: we ignore NLM4_*_RES procnums because they are
524 * equal to NLM_*_RES numbers.
525 */
526 if (procnum >= NLM_TEST_RES && procnum <= NLM_GRANTED_RES)
527 wait = nlm_rpctv_zero;

529 /*
530 * We need to block signals in case of NLM_CANCEL RPC
531 * in order to prevent interruption of network RPC
532 * calls.
533 */
534 if (procnum == NLM_CANCEL) {
535 k_sigset_t newmask;

537 sigfillset(&newmask);
538 sigreplace(&newmask, &oldmask);
539 sig_blocked = TRUE;
540 }

542 stat = clnt_call(clnt, procnum, xdr_args,
543 argsp, xdr_result, resultp, wait);

545 /*
546 * Restore signal mask back if signals were blocked
547 */
548 if (sig_blocked)
549 sigreplace(&oldmask, (k_sigset_t *)NULL);

551 return (stat);
552 }

554 /*
555 * Suspend NLM client/server in the given zone.
556 *
557 * During suspend operation we mark those hosts
558 * that have any locks with NLM_NH_SUSPEND flags,
559 * so that they can be checked later, when resume
560 * operation occurs.
561 */
562 static void
563 nlm_suspend_zone(struct nlm_globals *g)
564 {
565 struct nlm_host *hostp;
566 struct nlm_host_list all_hosts;

568 /*
569 * Note that while we’re doing suspend, GC thread is active
570 * and it can destroy some hosts while we’re walking through
571 * the hosts tree. To prevent that and make suspend logic
572 * a bit more simple we put all hosts to local "all_hosts"
573 * list and increment reference counter of each host.
574 * This guaranties that no hosts will be released while
575 * we’re doing suspend.
576 * NOTE: reference of each host must be dropped during
577 * resume operation.
578 */
579 TAILQ_INIT(&all_hosts);
580 mutex_enter(&g->lock);
581 for (hostp = avl_first(&g->nlm_hosts_tree); hostp != NULL;
582 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp)) {
583 /*
584 * If host is idle, remove it from idle list and
585 * clear idle flag. That is done to prevent GC
586 * from touching this host.

new/usr/src/uts/common/klm/nlm_impl.c 10

587 */
588 if (hostp->nh_flags & NLM_NH_INIDLE) {
589 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link);
590 hostp->nh_flags &= ~NLM_NH_INIDLE;
591 }

593 hostp->nh_refs++;
594 TAILQ_INSERT_TAIL(&all_hosts, hostp, nh_link);
595 }

597 /*
598 * Now we can walk through all hosts on the system
599 * with zone globals lock released. The fact the
600 * we have taken a reference to each host guaranties
601 * that no hosts can be destroyed during that process.
602 */
603 mutex_exit(&g->lock);
604 while ((hostp = TAILQ_FIRST(&all_hosts)) != NULL) {
605 mutex_enter(&hostp->nh_lock);
606 if (nlm_host_has_locks(hostp))
607 hostp->nh_flags |= NLM_NH_SUSPEND;

609 mutex_exit(&hostp->nh_lock);
610 TAILQ_REMOVE(&all_hosts, hostp, nh_link);
611 }
612 }

614 /*
615 * Resume NLM hosts for the given zone.
616 *
617 * nlm_resume_zone() is called after hosts were suspended
618 * (see nlm_suspend_zone) and its main purpose to check
619 * whether remote locks owned by hosts are still in consistent
620 * state. If they aren’t, resume function tries to reclaim
621 * reclaim locks (for client side hosts) and clean locks (for
622 * server side hosts).
623 */
624 static void
625 nlm_resume_zone(struct nlm_globals *g)
626 {
627 struct nlm_host *hostp, *h_next;

629 mutex_enter(&g->lock);
630 hostp = avl_first(&g->nlm_hosts_tree);

632 /*
633 * In nlm_suspend_zone() the reference counter of each
634 * host was incremented, so we can safely iterate through
635 * all hosts without worrying that any host we touch will
636 * be removed at the moment.
637 */
638 while (hostp != NULL) {
639 struct nlm_nsm nsm;
640 enum clnt_stat stat;
641 int32_t sm_state;
642 int error;
643 bool_t resume_failed = FALSE;

645 h_next = AVL_NEXT(&g->nlm_hosts_tree, hostp);
646 mutex_exit(&g->lock);

648 DTRACE_PROBE1(resume__host, struct nlm_host *, hostp);

650 /*
651 * Suspend operation marked that the host doesn’t
652 * have any locks. Skip it.

new/usr/src/uts/common/klm/nlm_impl.c 11

653 */
654 if (!(hostp->nh_flags & NLM_NH_SUSPEND))
655 goto cycle_end;

657 error = nlm_nsm_init(&nsm, &hostp->nh_knc, &hostp->nh_addr);
658 if (error != 0) {
659 NLM_ERR("Resume: Failed to contact to NSM of host %s "
660 "[error=%d]\n", hostp->nh_name, error);
661 resume_failed = TRUE;
662 goto cycle_end;
663 }

665 stat = nlm_nsm_stat(&nsm, &sm_state);
666 if (stat != RPC_SUCCESS) {
667 NLM_ERR("Resume: Failed to call SM_STAT operation for "
668 "host %s [stat=%d]\n", hostp->nh_name, stat);
669 resume_failed = TRUE;
670 nlm_nsm_fini(&nsm);
671 goto cycle_end;
672 }

674 if (sm_state != hostp->nh_state) {
675 /*
676 * Current SM state of the host isn’t equal
677 * to the one host had when it was suspended.
678 * Probably it was rebooted. Try to reclaim
679 * locks if the host has any on its client side.
680 * Also try to clean up its server side locks
681 * (if the host has any).
682 */
683 nlm_host_notify_client(hostp, sm_state);
684 nlm_host_notify_server(hostp, sm_state);
685 }

687 nlm_nsm_fini(&nsm);

689 cycle_end:
690 if (resume_failed) {
691 /*
692 * Resume failed for the given host.
693 * Just clean up all resources it owns.
694 */
695 nlm_host_notify_server(hostp, 0);
696 nlm_client_cancel_all(g, hostp);
697 }

699 hostp->nh_flags &= ~NLM_NH_SUSPEND;
700 nlm_host_release(g, hostp);
701 hostp = h_next;
702 mutex_enter(&g->lock);
703 }

705 mutex_exit(&g->lock);
706 }

708 /*
709 * NLM functions responsible for operations on NSM handle.
710 */

712 /*
713 * Initialize knetconfig that is used for communication
714 * with local statd via loopback interface.
715 */
716 static int
717 nlm_init_local_knc(struct knetconfig *knc)
718 {

new/usr/src/uts/common/klm/nlm_impl.c 12

719 int error;
720 vnode_t *vp;

722 bzero(knc, sizeof (*knc));
723 error = lookupname("/dev/tcp", UIO_SYSSPACE,
724 FOLLOW, NULLVPP, &vp);
725 if (error != 0)
726 return (error);

728 knc->knc_semantics = NC_TPI_COTS;
729 knc->knc_protofmly = NC_INET;
730 knc->knc_proto = NC_TCP;
731 knc->knc_rdev = vp->v_rdev;
732 VN_RELE(vp);

735 return (0);
736 }

738 /*
739 * Initialize NSM handle that will be used to talk
740 * to local statd via loopback interface.
741 */
742 static int
743 nlm_nsm_init_local(struct nlm_nsm *nsm)
744 {
745 int error;
746 struct knetconfig knc;
747 struct sockaddr_in sin;
748 struct netbuf nb;

750 error = nlm_init_local_knc(&knc);
751 if (error != 0)
752 return (error);

754 bzero(&sin, sizeof (sin));
755 sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
756 sin.sin_family = AF_INET;

758 nb.buf = (char *)&sin;
759 nb.len = nb.maxlen = sizeof (sin);

761 return (nlm_nsm_init(nsm, &knc, &nb));
762 }

764 /*
765 * Initialize NSM handle used for talking to statd
766 */
767 static int
768 nlm_nsm_init(struct nlm_nsm *nsm, struct knetconfig *knc, struct netbuf *nb)
769 {
770 enum clnt_stat stat;
771 int error, retries;

773 bzero(nsm, sizeof (*nsm));
774 nsm->ns_knc = *knc;
775 nlm_copy_netbuf(&nsm->ns_addr, nb);

777 /*
778 * Try several times to get the port of statd service,
779 * If rpcbind_getaddr returns RPC_PROGNOTREGISTERED,
780 * retry an attempt, but wait for NLM_NSM_RPCBIND_TIMEOUT
781 * seconds berofore.
782 */
783 for (retries = 0; retries < NLM_NSM_RPCBIND_RETRIES; retries++) {
784 stat = rpcbind_getaddr(&nsm->ns_knc, SM_PROG,

new/usr/src/uts/common/klm/nlm_impl.c 13

785 SM_VERS, &nsm->ns_addr);
786 if (stat != RPC_SUCCESS) {
787 if (stat == RPC_PROGNOTREGISTERED) {
788 delay(SEC_TO_TICK(NLM_NSM_RPCBIND_TIMEOUT));
789 continue;
790 }
791 }

793 break;
794 }

796 if (stat != RPC_SUCCESS) {
797 DTRACE_PROBE2(rpcbind__error, enum clnt_stat, stat,
798 int, retries);
799 error = ENOENT;
800 goto error;
801 }

803 /*
804 * Create an RPC handle that’ll be used for communication with local
805 * statd using the status monitor protocol.
806 */
807 error = clnt_tli_kcreate(&nsm->ns_knc, &nsm->ns_addr, SM_PROG, SM_VERS,
808 0, NLM_RPC_RETRIES, kcred, &nsm->ns_handle);
809 if (error != 0)
810 goto error;

812 /*
813 * Create an RPC handle that’ll be used for communication with the
814 * local statd using the address registration protocol.
815 */
816 error = clnt_tli_kcreate(&nsm->ns_knc, &nsm->ns_addr, NSM_ADDR_PROGRAM,
817 NSM_ADDR_V1, 0, NLM_RPC_RETRIES, kcred, &nsm->ns_addr_handle);
818 if (error != 0)
819 goto error;

821 sema_init(&nsm->ns_sem, 1, NULL, SEMA_DEFAULT, NULL);
822 return (0);

824 error:
825 kmem_free(nsm->ns_addr.buf, nsm->ns_addr.maxlen);
826 if (nsm->ns_handle)
827 CLNT_DESTROY(nsm->ns_handle);

829 return (error);
830 }

832 static void
833 nlm_nsm_fini(struct nlm_nsm *nsm)
834 {
835 kmem_free(nsm->ns_addr.buf, nsm->ns_addr.maxlen);
836 CLNT_DESTROY(nsm->ns_addr_handle);
837 nsm->ns_addr_handle = NULL;
838 CLNT_DESTROY(nsm->ns_handle);
839 nsm->ns_handle = NULL;
840 sema_destroy(&nsm->ns_sem);
841 }

843 static enum clnt_stat
844 nlm_nsm_simu_crash(struct nlm_nsm *nsm)
845 {
846 enum clnt_stat stat;

848 sema_p(&nsm->ns_sem);
849 nlm_nsm_clnt_init(nsm->ns_handle, nsm);
850 stat = sm_simu_crash_1(NULL, NULL, nsm->ns_handle);

new/usr/src/uts/common/klm/nlm_impl.c 14

851 sema_v(&nsm->ns_sem);

853 return (stat);
854 }

856 static enum clnt_stat
857 nlm_nsm_stat(struct nlm_nsm *nsm, int32_t *out_stat)
858 {
859 struct sm_name args;
860 struct sm_stat_res res;
861 enum clnt_stat stat;

863 args.mon_name = uts_nodename();
864 bzero(&res, sizeof (res));

866 sema_p(&nsm->ns_sem);
867 nlm_nsm_clnt_init(nsm->ns_handle, nsm);
868 stat = sm_stat_1(&args, &res, nsm->ns_handle);
869 sema_v(&nsm->ns_sem);

871 if (stat == RPC_SUCCESS)
872 *out_stat = res.state;

874 return (stat);
875 }

877 static enum clnt_stat
878 nlm_nsm_mon(struct nlm_nsm *nsm, char *hostname, uint16_t priv)
879 {
880 struct mon args;
881 struct sm_stat_res res;
882 enum clnt_stat stat;

884 bzero(&args, sizeof (args));
885 bzero(&res, sizeof (res));

887 args.mon_id.mon_name = hostname;
888 args.mon_id.my_id.my_name = uts_nodename();
889 args.mon_id.my_id.my_prog = NLM_PROG;
890 args.mon_id.my_id.my_vers = NLM_SM;
891 args.mon_id.my_id.my_proc = NLM_SM_NOTIFY1;
892 bcopy(&priv, args.priv, sizeof (priv));

894 sema_p(&nsm->ns_sem);
895 nlm_nsm_clnt_init(nsm->ns_handle, nsm);
896 stat = sm_mon_1(&args, &res, nsm->ns_handle);
897 sema_v(&nsm->ns_sem);

899 return (stat);
900 }

902 static enum clnt_stat
903 nlm_nsm_unmon(struct nlm_nsm *nsm, char *hostname)
904 {
905 struct mon_id args;
906 struct sm_stat res;
907 enum clnt_stat stat;

909 bzero(&args, sizeof (args));
910 bzero(&res, sizeof (res));

912 args.mon_name = hostname;
913 args.my_id.my_name = uts_nodename();
914 args.my_id.my_prog = NLM_PROG;
915 args.my_id.my_vers = NLM_SM;
916 args.my_id.my_proc = NLM_SM_NOTIFY1;

new/usr/src/uts/common/klm/nlm_impl.c 15

918 sema_p(&nsm->ns_sem);
919 nlm_nsm_clnt_init(nsm->ns_handle, nsm);
920 stat = sm_unmon_1(&args, &res, nsm->ns_handle);
921 sema_v(&nsm->ns_sem);

923 return (stat);
924 }

926 static enum clnt_stat
927 nlm_nsmaddr_reg(struct nlm_nsm *nsm, char *name, int family, netobj *address)
928 {
929 struct reg1args args = { 0 };
930 struct reg1res res = { 0 };
931 enum clnt_stat stat;

933 args.family = family;
934 args.name = name;
935 args.address = *address;

937 sema_p(&nsm->ns_sem);
938 nlm_nsm_clnt_init(nsm->ns_addr_handle, nsm);
939 stat = nsmaddrproc1_reg_1(&args, &res, nsm->ns_addr_handle);
940 sema_v(&nsm->ns_sem);

942 return (stat);
943 }

945 /*
946 * Get NLM vhold object corresponding to vnode "vp".
947 * If no such object was found, create a new one.
948 *
949 * The purpose of this function is to associate vhold
950 * object with given vnode, so that:
951 * 1) vnode is hold (VN_HOLD) while vhold object is alive.
952 * 2) host has a track of all vnodes it touched by lock
953 * or share operations. These vnodes are accessible
954 * via collection of vhold objects.
955 */
956 struct nlm_vhold *
957 nlm_vhold_get(struct nlm_host *hostp, vnode_t *vp)
958 {
959 struct nlm_vhold *nvp, *new_nvp = NULL;

961 mutex_enter(&hostp->nh_lock);
962 nvp = nlm_vhold_find_locked(hostp, vp);
963 if (nvp != NULL)
964 goto out;

966 /* nlm_vhold wasn’t found, then create a new one */
967 mutex_exit(&hostp->nh_lock);
968 new_nvp = kmem_cache_alloc(nlm_vhold_cache, KM_SLEEP);

970 /*
971 * Check if another thread has already
972 * created the same nlm_vhold.
973 */
974 mutex_enter(&hostp->nh_lock);
975 nvp = nlm_vhold_find_locked(hostp, vp);
976 if (nvp == NULL) {
977 nvp = new_nvp;
978 new_nvp = NULL;

980 TAILQ_INIT(&nvp->nv_slreqs);
981 nvp->nv_vp = vp;
982 nvp->nv_refcnt = 1;

new/usr/src/uts/common/klm/nlm_impl.c 16

983 VN_HOLD(nvp->nv_vp);

985 VERIFY(mod_hash_insert(hostp->nh_vholds_by_vp,
986 (mod_hash_key_t)vp, (mod_hash_val_t)nvp) == 0);
987 TAILQ_INSERT_TAIL(&hostp->nh_vholds_list, nvp, nv_link);
988 }

990 out:
991 mutex_exit(&hostp->nh_lock);
992 if (new_nvp != NULL)
993 kmem_cache_free(nlm_vhold_cache, new_nvp);

995 return (nvp);
996 }

998 /*
999 * Drop a reference to vhold object nvp.

1000 */
1001 void
1002 nlm_vhold_release(struct nlm_host *hostp, struct nlm_vhold *nvp)
1003 {
1004 if (nvp == NULL)
1005 return;

1007 mutex_enter(&hostp->nh_lock);
1008 ASSERT(nvp->nv_refcnt > 0);
1009 nvp->nv_refcnt--;
1010 mutex_exit(&hostp->nh_lock);
1011 }

1013 /*
1014 * Clean all locks and share reservations on the
1015 * given vhold object that were acquired by the
1016 * given sysid
1017 */
1018 static void
1019 nlm_vhold_clean(struct nlm_vhold *nvp, int sysid)
1020 {
1021 cleanlocks(nvp->nv_vp, IGN_PID, sysid);
1022 cleanshares_by_sysid(nvp->nv_vp, sysid);
1023 }

1025 static void
1026 nlm_vhold_destroy(struct nlm_host *hostp, struct nlm_vhold *nvp)
1027 {
1028 ASSERT(MUTEX_HELD(&hostp->nh_lock));

1030 VERIFY(mod_hash_remove(hostp->nh_vholds_by_vp,
1031 (mod_hash_key_t)nvp->nv_vp,
1032 (mod_hash_val_t)&nvp) == 0);

1034 TAILQ_REMOVE(&hostp->nh_vholds_list, nvp, nv_link);
1035 VN_RELE(nvp->nv_vp);
1036 nvp->nv_vp = NULL;

1038 kmem_cache_free(nlm_vhold_cache, nvp);
1039 }

1041 /*
1042 * Return TRUE if the given vhold is busy.
1043 * Vhold object is considered to be "busy" when
1044 * all the following conditions hold:
1045 * 1) No one uses it at the moment;
1046 * 2) It hasn’t any locks;
1047 * 3) It hasn’t any share reservations;
1048 */

new/usr/src/uts/common/klm/nlm_impl.c 17

1049 static bool_t
1050 nlm_vhold_busy(struct nlm_host *hostp, struct nlm_vhold *nvp)
1051 {
1052 vnode_t *vp;
1053 int sysid;

1055 ASSERT(MUTEX_HELD(&hostp->nh_lock));

1057 if (nvp->nv_refcnt > 0)
1058 return (TRUE);

1060 vp = nvp->nv_vp;
1061 sysid = hostp->nh_sysid;
1062 if (flk_has_remote_locks_for_sysid(vp, sysid) ||
1063 shr_has_remote_shares(vp, sysid))
1064 return (TRUE);

1066 return (FALSE);
1067 }

1069 /* ARGSUSED */
1070 static int
1071 nlm_vhold_ctor(void *datap, void *cdrarg, int kmflags)
1072 {
1073 struct nlm_vhold *nvp = (struct nlm_vhold *)datap;

1075 bzero(nvp, sizeof (*nvp));
1076 return (0);
1077 }

1079 /* ARGSUSED */
1080 static void
1081 nlm_vhold_dtor(void *datap, void *cdrarg)
1082 {
1083 struct nlm_vhold *nvp = (struct nlm_vhold *)datap;

1085 ASSERT(nvp->nv_refcnt == 0);
1086 ASSERT(TAILQ_EMPTY(&nvp->nv_slreqs));
1087 ASSERT(nvp->nv_vp == NULL);
1088 }

1090 struct nlm_vhold *
1091 nlm_vhold_find_locked(struct nlm_host *hostp, const vnode_t *vp)
1092 {
1093 struct nlm_vhold *nvp = NULL;

1095 ASSERT(MUTEX_HELD(&hostp->nh_lock));
1096 (void) mod_hash_find(hostp->nh_vholds_by_vp,
1097 (mod_hash_key_t)vp,
1098 (mod_hash_val_t)&nvp);

1100 if (nvp != NULL)
1101 nvp->nv_refcnt++;

1103 return (nvp);
1104 }

1106 /*
1107 * NLM host functions
1108 */
1109 static void
1110 nlm_copy_netbuf(struct netbuf *dst, struct netbuf *src)
1111 {
1112 ASSERT(src->len <= src->maxlen);

1114 dst->maxlen = src->maxlen;

new/usr/src/uts/common/klm/nlm_impl.c 18

1115 dst->len = src->len;
1116 dst->buf = kmem_zalloc(src->maxlen, KM_SLEEP);
1117 bcopy(src->buf, dst->buf, src->len);
1118 }

1120 /* ARGSUSED */
1121 static int
1122 nlm_host_ctor(void *datap, void *cdrarg, int kmflags)
1123 {
1124 struct nlm_host *hostp = (struct nlm_host *)datap;

1126 bzero(hostp, sizeof (*hostp));
1127 return (0);
1128 }

1130 /* ARGSUSED */
1131 static void
1132 nlm_host_dtor(void *datap, void *cdrarg)
1133 {
1134 struct nlm_host *hostp = (struct nlm_host *)datap;
1135 ASSERT(hostp->nh_refs == 0);
1136 }

1138 static void
1139 nlm_host_unregister(struct nlm_globals *g, struct nlm_host *hostp)
1140 {
1141 ASSERT(hostp->nh_refs == 0);

1143 avl_remove(&g->nlm_hosts_tree, hostp);
1144 VERIFY(mod_hash_remove(g->nlm_hosts_hash,
1145 (mod_hash_key_t)(uintptr_t)hostp->nh_sysid,
1146 (mod_hash_val_t)&hostp) == 0);
1147 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link);
1148 hostp->nh_flags &= ~NLM_NH_INIDLE;
1149 }

1151 /*
1152 * Free resources used by a host. This is called after the reference
1153 * count has reached zero so it doesn’t need to worry about locks.
1154 */
1155 static void
1156 nlm_host_destroy(struct nlm_host *hostp)
1157 {
1158 ASSERT(hostp->nh_name != NULL);
1159 ASSERT(hostp->nh_netid != NULL);
1160 ASSERT(TAILQ_EMPTY(&hostp->nh_vholds_list));

1162 strfree(hostp->nh_name);
1163 strfree(hostp->nh_netid);
1164 kmem_free(hostp->nh_addr.buf, hostp->nh_addr.maxlen);

1166 if (hostp->nh_sysid != LM_NOSYSID)
1167 nlm_sysid_free(hostp->nh_sysid);

1169 nlm_rpc_cache_destroy(hostp);

1171 ASSERT(TAILQ_EMPTY(&hostp->nh_vholds_list));
1172 mod_hash_destroy_ptrhash(hostp->nh_vholds_by_vp);

1174 mutex_destroy(&hostp->nh_lock);
1175 cv_destroy(&hostp->nh_rpcb_cv);
1176 cv_destroy(&hostp->nh_recl_cv);

1178 kmem_cache_free(nlm_hosts_cache, hostp);
1179 }

new/usr/src/uts/common/klm/nlm_impl.c 19

1181 /*
1182 * Cleanup SERVER-side state after a client restarts,
1183 * or becomes unresponsive, or whatever.
1184 *
1185 * We unlock any active locks owned by the host.
1186 * When rpc.lockd is shutting down,
1187 * this function is called with newstate set to zero
1188 * which allows us to cancel any pending async locks
1189 * and clear the locking state.
1190 *
1191 * When "state" is 0, we don’t update host’s state,
1192 * but cleanup all remote locks on the host.
1193 * It’s useful to call this function for resources
1194 * cleanup.
1195 */
1196 void
1197 nlm_host_notify_server(struct nlm_host *hostp, int32_t state)
1198 {
1199 struct nlm_vhold *nvp;
1200 struct nlm_slreq *slr;
1201 struct nlm_slreq_list slreqs2free;

1203 TAILQ_INIT(&slreqs2free);
1204 mutex_enter(&hostp->nh_lock);
1205 if (state != 0)
1206 hostp->nh_state = state;

1208 TAILQ_FOREACH(nvp, &hostp->nh_vholds_list, nv_link) {

1210 /* cleanup sleeping requests at first */
1211 while ((slr = TAILQ_FIRST(&nvp->nv_slreqs)) != NULL) {
1212 TAILQ_REMOVE(&nvp->nv_slreqs, slr, nsr_link);

1214 /*
1215 * Instead of freeing cancelled sleeping request
1216 * here, we add it to the linked list created
1217 * on the stack in order to do all frees outside
1218 * the critical section.
1219 */
1220 TAILQ_INSERT_TAIL(&slreqs2free, slr, nsr_link);
1221 }

1223 nvp->nv_refcnt++;
1224 mutex_exit(&hostp->nh_lock);

1226 nlm_vhold_clean(nvp, hostp->nh_sysid);

1228 mutex_enter(&hostp->nh_lock);
1229 nvp->nv_refcnt--;
1230 }

1232 mutex_exit(&hostp->nh_lock);
1233 while ((slr = TAILQ_FIRST(&slreqs2free)) != NULL) {
1234 TAILQ_REMOVE(&slreqs2free, slr, nsr_link);
1235 kmem_free(slr, sizeof (*slr));
1236 }
1237 }

1239 /*
1240 * Cleanup CLIENT-side state after a server restarts,
1241 * or becomes unresponsive, or whatever.
1242 *
1243 * This is called by the local NFS statd when we receive a
1244 * host state change notification. (also nlm_svc_stopping)
1245 *
1246 * Deal with a server restart. If we are stopping the

new/usr/src/uts/common/klm/nlm_impl.c 20

1247 * NLM service, we’ll have newstate == 0, and will just
1248 * cancel all our client-side lock requests. Otherwise,
1249 * start the "recovery" process to reclaim any locks
1250 * we hold on this server.
1251 */
1252 void
1253 nlm_host_notify_client(struct nlm_host *hostp, int32_t state)
1254 {
1255 mutex_enter(&hostp->nh_lock);
1256 hostp->nh_state = state;
1257 if (hostp->nh_flags & NLM_NH_RECLAIM) {
1258 /*
1259 * Either host’s state is up to date or
1260 * host is already in recovery.
1261 */
1262 mutex_exit(&hostp->nh_lock);
1263 return;
1264 }

1266 hostp->nh_flags |= NLM_NH_RECLAIM;

1268 /*
1269 * Host will be released by the recovery thread,
1270 * thus we need to increment refcount.
1271 */
1272 hostp->nh_refs++;
1273 mutex_exit(&hostp->nh_lock);

1275 (void) zthread_create(NULL, 0, nlm_reclaimer,
1276 hostp, 0, minclsyspri);
1277 }

1279 /*
1280 * The function is called when NLM client detects that
1281 * server has entered in grace period and client needs
1282 * to wait until reclamation process (if any) does
1283 * its job.
1284 */
1285 int
1286 nlm_host_wait_grace(struct nlm_host *hostp)
1287 {
1288 struct nlm_globals *g;
1289 int error = 0;

1291 g = zone_getspecific(nlm_zone_key, curzone);
1292 mutex_enter(&hostp->nh_lock);

1294 do {
1295 int rc;

1297 rc = cv_timedwait_sig(&hostp->nh_recl_cv,
1298 &hostp->nh_lock, ddi_get_lbolt() +
1299 SEC_TO_TICK(g->retrans_tmo));

1301 if (rc == 0) {
1302 error = EINTR;
1303 break;
1304 }
1305 } while (hostp->nh_flags & NLM_NH_RECLAIM);

1307 mutex_exit(&hostp->nh_lock);
1308 return (error);
1309 }

1311 /*
1312 * Create a new NLM host.

new/usr/src/uts/common/klm/nlm_impl.c 21

1313 *
1314 * NOTE: The in-kernel RPC (kRPC) subsystem uses TLI/XTI,
1315 * which needs both a knetconfig and an address when creating
1316 * endpoints. Thus host object stores both knetconfig and
1317 * netid.
1318 */
1319 static struct nlm_host *
1320 nlm_host_create(char *name, const char *netid,
1321 struct knetconfig *knc, struct netbuf *naddr)
1322 {
1323 struct nlm_host *host;

1325 host = kmem_cache_alloc(nlm_hosts_cache, KM_SLEEP);

1327 mutex_init(&host->nh_lock, NULL, MUTEX_DEFAULT, NULL);
1328 cv_init(&host->nh_rpcb_cv, NULL, CV_DEFAULT, NULL);
1329 cv_init(&host->nh_recl_cv, NULL, CV_DEFAULT, NULL);

1331 host->nh_sysid = LM_NOSYSID;
1332 host->nh_refs = 1;
1333 host->nh_name = strdup(name);
1334 host->nh_netid = strdup(netid);
1335 host->nh_knc = *knc;
1336 nlm_copy_netbuf(&host->nh_addr, naddr);

1338 host->nh_state = 0;
1339 host->nh_rpcb_state = NRPCB_NEED_UPDATE;
1340 host->nh_flags = 0;

1342 host->nh_vholds_by_vp = mod_hash_create_ptrhash("nlm vholds hash",
1343 32, mod_hash_null_valdtor, sizeof (vnode_t));

1345 TAILQ_INIT(&host->nh_vholds_list);
1346 TAILQ_INIT(&host->nh_rpchc);

1348 return (host);
1349 }

1351 /*
1352 * Cancel all client side sleeping locks owned by given host.
1353 */
1354 void
1355 nlm_host_cancel_slocks(struct nlm_globals *g, struct nlm_host *hostp)
1356 {
1357 struct nlm_slock *nslp;

1359 mutex_enter(&g->lock);
1360 TAILQ_FOREACH(nslp, &g->nlm_slocks, nsl_link) {
1361 if (nslp->nsl_host == hostp) {
1362 nslp->nsl_state = NLM_SL_CANCELLED;
1363 cv_broadcast(&nslp->nsl_cond);
1364 }
1365 }

1367 mutex_exit(&g->lock);
1368 }

1370 /*
1371 * Garbage collect stale vhold objects.
1372 *
1373 * In other words check whether vnodes that are
1374 * held by vhold objects still have any locks
1375 * or shares or still in use. If they aren’t,
1376 * just destroy them.
1377 */
1378 static void

new/usr/src/uts/common/klm/nlm_impl.c 22

1379 nlm_host_gc_vholds(struct nlm_host *hostp)
1380 {
1381 struct nlm_vhold *nvp;

1383 ASSERT(MUTEX_HELD(&hostp->nh_lock));

1385 nvp = TAILQ_FIRST(&hostp->nh_vholds_list);
1386 while (nvp != NULL) {
1387 struct nlm_vhold *nvp_tmp;

1389 if (nlm_vhold_busy(hostp, nvp)) {
1390 nvp = TAILQ_NEXT(nvp, nv_link);
1391 continue;
1392 }

1394 nvp_tmp = TAILQ_NEXT(nvp, nv_link);
1395 nlm_vhold_destroy(hostp, nvp);
1396 nvp = nvp_tmp;
1397 }
1398 }

1400 /*
1401 * Check whether the given host has any
1402 * server side locks or share reservations.
1403 */
1404 static bool_t
1405 nlm_host_has_srv_locks(struct nlm_host *hostp)
1406 {
1407 /*
1408 * It’s cheap and simple: if server has
1409 * any locks/shares there must be vhold
1410 * object storing the affected vnode.
1411 *
1412 * NOTE: We don’t need to check sleeping
1413 * locks on the server side, because if
1414 * server side sleeping lock is alive,
1415 * there must be a vhold object corresponding
1416 * to target vnode.
1417 */
1418 ASSERT(MUTEX_HELD(&hostp->nh_lock));
1419 if (!TAILQ_EMPTY(&hostp->nh_vholds_list))
1420 return (TRUE);

1422 return (FALSE);
1423 }

1425 /*
1426 * Check whether the given host has any client side
1427 * locks or share reservations.
1428 */
1429 static bool_t
1430 nlm_host_has_cli_locks(struct nlm_host *hostp)
1431 {
1432 ASSERT(MUTEX_HELD(&hostp->nh_lock));

1434 /*
1435 * XXX: It’s not the way I’d like to do the check,
1436 * because flk_sysid_has_locks() can be very
1437 * expensive by design. Unfortunatelly it iterates
1438 * through all locks on the system, doesn’t matter
1439 * were they made on remote system via NLM or
1440 * on local system via reclock. To understand the
1441 * problem, consider that there’re dozens of thousands
1442 * of locks that are made on some ZFS dataset. And there’s
1443 * another dataset shared by NFS where NLM client had locks
1444 * some time ago, but doesn’t have them now.

new/usr/src/uts/common/klm/nlm_impl.c 23

1445 * In this case flk_sysid_has_locks() will iterate
1446 * thrught dozens of thousands locks until it returns us
1447 * FALSE.
1448 * Oh, I hope that in shiny future somebody will make
1449 * local lock manager (os/flock.c) better, so that
1450 * it’d be more friedly to remote locks and
1451 * flk_sysid_has_locks() wouldn’t be so expensive.
1452 */
1453 if (flk_sysid_has_locks(hostp->nh_sysid |
1454 LM_SYSID_CLIENT, FLK_QUERY_ACTIVE))
1455 return (TRUE);

1457 /*
1458 * Check whether host has any share reservations
1459 * registered on the client side.
1460 */
1461 if (hostp->nh_shrlist != NULL)
1462 return (TRUE);

1464 return (FALSE);
1465 }

1467 /*
1468 * Determine whether the given host owns any
1469 * locks or share reservations.
1470 */
1471 static bool_t
1472 nlm_host_has_locks(struct nlm_host *hostp)
1473 {
1474 if (nlm_host_has_srv_locks(hostp))
1475 return (TRUE);

1477 return (nlm_host_has_cli_locks(hostp));
1478 }

1480 /*
1481 * This function compares only addresses of two netbufs
1482 * that belong to NC_TCP[6] or NC_UDP[6] protofamily.
1483 * Port part of netbuf is ignored.
1484 *
1485 * Return values:
1486 * -1: nb1’s address is "smaller" than nb2’s
1487 * 0: addresses are equal
1488 * 1: nb1’s address is "greater" than nb2’s
1489 */
1490 static int
1491 nlm_netbuf_addrs_cmp(struct netbuf *nb1, struct netbuf *nb2)
1492 {
1493 union nlm_addr {
1494 struct sockaddr sa;
1495 struct sockaddr_in sin;
1496 struct sockaddr_in6 sin6;
1497 } *na1, *na2;
1498 int res;

1500 /* LINTED E_BAD_PTR_CAST_ALIGN */
1501 na1 = (union nlm_addr *)nb1->buf;
1502 /* LINTED E_BAD_PTR_CAST_ALIGN */
1503 na2 = (union nlm_addr *)nb2->buf;

1505 if (na1->sa.sa_family < na2->sa.sa_family)
1506 return (-1);
1507 if (na1->sa.sa_family > na2->sa.sa_family)
1508 return (1);

1510 switch (na1->sa.sa_family) {

new/usr/src/uts/common/klm/nlm_impl.c 24

1511 case AF_INET:
1512 res = memcmp(&na1->sin.sin_addr, &na2->sin.sin_addr,
1513 sizeof (na1->sin.sin_addr));
1514 break;
1515 case AF_INET6:
1516 res = memcmp(&na1->sin6.sin6_addr, &na2->sin6.sin6_addr,
1517 sizeof (na1->sin6.sin6_addr));
1518 break;
1519 default:
1520 VERIFY(0);
1521 return (0);
1522 }

1524 return (SIGN(res));
1525 }

1527 /*
1528 * Compare two nlm hosts.
1529 * Return values:
1530 * -1: host1 is "smaller" than host2
1531 * 0: host1 is equal to host2
1532 * 1: host1 is "greater" than host2
1533 */
1534 int
1535 nlm_host_cmp(const void *p1, const void *p2)
1536 {
1537 struct nlm_host *h1 = (struct nlm_host *)p1;
1538 struct nlm_host *h2 = (struct nlm_host *)p2;
1539 int res;

1541 res = strcmp(h1->nh_netid, h2->nh_netid);
1542 if (res != 0)
1543 return (SIGN(res));

1545 res = nlm_netbuf_addrs_cmp(&h1->nh_addr, &h2->nh_addr);
1546 return (res);
1547 }

1549 /*
1550 * Find the host specified by... (see below)
1551 * If found, increment the ref count.
1552 */
1553 static struct nlm_host *
1554 nlm_host_find_locked(struct nlm_globals *g, const char *netid,
1555 struct netbuf *naddr, avl_index_t *wherep)
1556 {
1557 struct nlm_host *hostp, key;
1558 avl_index_t pos;

1560 ASSERT(MUTEX_HELD(&g->lock));

1562 key.nh_netid = (char *)netid;
1563 key.nh_addr.buf = naddr->buf;
1564 key.nh_addr.len = naddr->len;
1565 key.nh_addr.maxlen = naddr->maxlen;

1567 hostp = avl_find(&g->nlm_hosts_tree, &key, &pos);

1569 if (hostp != NULL) {
1570 /*
1571 * Host is inuse now. Remove it from idle
1572 * hosts list if needed.
1573 */
1574 if (hostp->nh_flags & NLM_NH_INIDLE) {
1575 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link);
1576 hostp->nh_flags &= ~NLM_NH_INIDLE;

new/usr/src/uts/common/klm/nlm_impl.c 25

1577 }

1579 hostp->nh_refs++;
1580 }
1581 if (wherep != NULL)
1582 *wherep = pos;

1584 return (hostp);
1585 }

1587 /*
1588 * Find NLM host for the given name and address.
1589 */
1590 struct nlm_host *
1591 nlm_host_find(struct nlm_globals *g, const char *netid,
1592 struct netbuf *addr)
1593 {
1594 struct nlm_host *hostp = NULL;

1596 mutex_enter(&g->lock);
1597 if (g->run_status != NLM_ST_UP)
1598 goto out;

1600 hostp = nlm_host_find_locked(g, netid, addr, NULL);

1602 out:
1603 mutex_exit(&g->lock);
1604 return (hostp);
1605 }

1608 /*
1609 * Find or create an NLM host for the given name and address.
1610 *
1611 * The remote host is determined by all of: name, netidd, address.
1612 * Note that the netid is whatever nlm_svc_add_ep() gave to
1613 * svc_tli_kcreate() for the service binding. If any of these
1614 * are different, allocate a new host (new sysid).
1615 */
1616 struct nlm_host *
1617 nlm_host_findcreate(struct nlm_globals *g, char *name,
1618 const char *netid, struct netbuf *addr)
1619 {
1620 int err;
1621 struct nlm_host *host, *newhost = NULL;
1622 struct knetconfig knc;
1623 avl_index_t where;

1625 mutex_enter(&g->lock);
1626 if (g->run_status != NLM_ST_UP) {
1627 mutex_exit(&g->lock);
1628 return (NULL);
1629 }

1631 host = nlm_host_find_locked(g, netid, addr, NULL);
1632 mutex_exit(&g->lock);
1633 if (host != NULL)
1634 return (host);

1636 err = nlm_knc_from_netid(netid, &knc);
1637 if (err != 0)
1638 return (NULL);
1639 /*
1640 * Do allocations (etc.) outside of mutex,
1641 * and then check again before inserting.
1642 */

new/usr/src/uts/common/klm/nlm_impl.c 26

1643 newhost = nlm_host_create(name, netid, &knc, addr);
1644 newhost->nh_sysid = nlm_sysid_alloc();
1645 if (newhost->nh_sysid == LM_NOSYSID)
1646 goto out;

1648 mutex_enter(&g->lock);
1649 host = nlm_host_find_locked(g, netid, addr, &where);
1650 if (host == NULL) {
1651 host = newhost;
1652 newhost = NULL;

1654 /*
1655 * Insert host to the hosts AVL tree that is
1656 * used to lookup by <netid, address> pair.
1657 */
1658 avl_insert(&g->nlm_hosts_tree, host, where);

1660 /*
1661 * Insert host ot the hosts hash table that is
1662 * used to lookup host by sysid.
1663 */
1664 VERIFY(mod_hash_insert(g->nlm_hosts_hash,
1665 (mod_hash_key_t)(uintptr_t)host->nh_sysid,
1666 (mod_hash_val_t)host) == 0);
1667 }

1669 mutex_exit(&g->lock);

1671 out:
1672 if (newhost != NULL)
1673 nlm_host_destroy(newhost);

1675 return (host);
1676 }

1678 /*
1679 * Find the NLM host that matches the value of ’sysid’.
1680 * If found, return it with a new ref,
1681 * else return NULL.
1682 */
1683 struct nlm_host *
1684 nlm_host_find_by_sysid(struct nlm_globals *g, sysid_t sysid)
1685 {
1686 struct nlm_host *hostp = NULL;

1688 mutex_enter(&g->lock);
1689 if (g->run_status != NLM_ST_UP)
1690 goto out;

1692 (void) mod_hash_find(g->nlm_hosts_hash,
1693 (mod_hash_key_t)(uintptr_t)sysid,
1694 (mod_hash_val_t)&hostp);

1696 if (hostp == NULL)
1697 goto out;

1699 /*
1700 * Host is inuse now. Remove it
1701 * from idle hosts list if needed.
1702 */
1703 if (hostp->nh_flags & NLM_NH_INIDLE) {
1704 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link);
1705 hostp->nh_flags &= ~NLM_NH_INIDLE;
1706 }

1708 hostp->nh_refs++;

new/usr/src/uts/common/klm/nlm_impl.c 27

1710 out:
1711 mutex_exit(&g->lock);
1712 return (hostp);
1713 }

1715 /*
1716 * Release the given host.
1717 * I.e. drop a reference that was taken earlier by one of
1718 * the following functions: nlm_host_findcreate(), nlm_host_find(),
1719 * nlm_host_find_by_sysid().
1720 *
1721 * When the very last reference is dropped, host is moved to
1722 * so-called "idle state". All hosts that are in idle state
1723 * have an idle timeout. If timeout is expired, GC thread
1724 * checks whether hosts have any locks and if they heven’t
1725 * any, it removes them.
1726 * NOTE: only unused hosts can be in idle state.
1727 */
1728 void
1729 nlm_host_release(struct nlm_globals *g, struct nlm_host *hostp)
1730 {
1731 if (hostp == NULL)
1732 return;

1734 mutex_enter(&g->lock);
1735 ASSERT(hostp->nh_refs > 0);

1737 hostp->nh_refs--;
1738 if (hostp->nh_refs != 0) {
1739 mutex_exit(&g->lock);
1740 return;
1741 }

1743 /*
1744 * The very last reference to the host was dropped,
1745 * thus host is unused now. Set its idle timeout
1746 * and move it to the idle hosts LRU list.
1747 */
1748 hostp->nh_idle_timeout = ddi_get_lbolt() +
1749 SEC_TO_TICK(g->cn_idle_tmo);

1751 ASSERT((hostp->nh_flags & NLM_NH_INIDLE) == 0);
1752 TAILQ_INSERT_TAIL(&g->nlm_idle_hosts, hostp, nh_link);
1753 hostp->nh_flags |= NLM_NH_INIDLE;
1754 mutex_exit(&g->lock);
1755 }

1757 /*
1758 * Unregister this NLM host (NFS client) with the local statd
1759 * due to idleness (no locks held for a while).
1760 */
1761 void
1762 nlm_host_unmonitor(struct nlm_globals *g, struct nlm_host *host)
1763 {
1764 enum clnt_stat stat;

1766 VERIFY(host->nh_refs == 0);
1767 if (!(host->nh_flags & NLM_NH_MONITORED))
1768 return;

1770 host->nh_flags &= ~NLM_NH_MONITORED;
1771 stat = nlm_nsm_unmon(&g->nlm_nsm, host->nh_name);
1772 if (stat != RPC_SUCCESS) {
1773 NLM_WARN("NLM: Failed to contact statd, stat=%d\n", stat);
1774 return;

new/usr/src/uts/common/klm/nlm_impl.c 28

1775 }
1776 }

1778 /*
1779 * Ask the local NFS statd to begin monitoring this host.
1780 * It will call us back when that host restarts, using the
1781 * prog,vers,proc specified below, i.e. NLM_SM_NOTIFY1,
1782 * which is handled in nlm_do_notify1().
1783 */
1784 void
1785 nlm_host_monitor(struct nlm_globals *g, struct nlm_host *host, int state)
1786 {
1787 int family;
1788 netobj obj;
1789 enum clnt_stat stat;

1791 if (state != 0 && host->nh_state == 0) {
1792 /*
1793 * This is the first time we have seen an NSM state
1794 * Value for this host. We record it here to help
1795 * detect host reboots.
1796 */
1797 host->nh_state = state;
1798 }

1800 mutex_enter(&host->nh_lock);
1801 if (host->nh_flags & NLM_NH_MONITORED) {
1802 mutex_exit(&host->nh_lock);
1803 return;
1804 }

1806 host->nh_flags |= NLM_NH_MONITORED;
1807 mutex_exit(&host->nh_lock);

1809 /*
1810 * Before we begin monitoring the host register the network address
1811 * associated with this hostname.
1812 */
1813 nlm_netbuf_to_netobj(&host->nh_addr, &family, &obj);
1814 stat = nlm_nsmaddr_reg(&g->nlm_nsm, host->nh_name, family, &obj);
1815 if (stat != RPC_SUCCESS) {
1816 NLM_WARN("Failed to register address, stat=%d\n", stat);
1817 mutex_enter(&g->lock);
1818 host->nh_flags &= ~NLM_NH_MONITORED;
1819 mutex_exit(&g->lock);

1821 return;
1822 }

1824 /*
1825 * Tell statd how to call us with status updates for
1826 * this host. Updates arrive via nlm_do_notify1().
1827 *
1828 * We put our assigned system ID value in the priv field to
1829 * make it simpler to find the host if we are notified of a
1830 * host restart.
1831 */
1832 stat = nlm_nsm_mon(&g->nlm_nsm, host->nh_name, host->nh_sysid);
1833 if (stat != RPC_SUCCESS) {
1834 NLM_WARN("Failed to contact local NSM, stat=%d\n", stat);
1835 mutex_enter(&g->lock);
1836 host->nh_flags &= ~NLM_NH_MONITORED;
1837 mutex_exit(&g->lock);

1839 return;
1840 }

new/usr/src/uts/common/klm/nlm_impl.c 29

1841 }

1843 int
1844 nlm_host_get_state(struct nlm_host *hostp)
1845 {

1847 return (hostp->nh_state);
1848 }

1850 /*
1851 * NLM client/server sleeping locks
1852 */

1854 /*
1855 * Register client side sleeping lock.
1856 *
1857 * Our client code calls this to keep information
1858 * about sleeping lock somewhere. When it receives
1859 * grant callback from server or when it just
1860 * needs to remove all sleeping locks from vnode,
1861 * it uses this information for remove/apply lock
1862 * properly.
1863 */
1864 struct nlm_slock *
1865 nlm_slock_register(
1866 struct nlm_globals *g,
1867 struct nlm_host *host,
1868 struct nlm4_lock *lock,
1869 struct vnode *vp)
1870 {
1871 struct nlm_slock *nslp;

1873 nslp = kmem_zalloc(sizeof (*nslp), KM_SLEEP);
1874 cv_init(&nslp->nsl_cond, NULL, CV_DEFAULT, NULL);
1875 nslp->nsl_lock = *lock;
1876 nlm_copy_netobj(&nslp->nsl_fh, &nslp->nsl_lock.fh);
1877 nslp->nsl_state = NLM_SL_BLOCKED;
1878 nslp->nsl_host = host;
1879 nslp->nsl_vp = vp;

1881 mutex_enter(&g->lock);
1882 TAILQ_INSERT_TAIL(&g->nlm_slocks, nslp, nsl_link);
1883 mutex_exit(&g->lock);

1885 return (nslp);
1886 }

1888 /*
1889 * Remove this lock from the wait list and destroy it.
1890 */
1891 void
1892 nlm_slock_unregister(struct nlm_globals *g, struct nlm_slock *nslp)
1893 {
1894 mutex_enter(&g->lock);
1895 TAILQ_REMOVE(&g->nlm_slocks, nslp, nsl_link);
1896 mutex_exit(&g->lock);

1898 kmem_free(nslp->nsl_fh.n_bytes, nslp->nsl_fh.n_len);
1899 cv_destroy(&nslp->nsl_cond);
1900 kmem_free(nslp, sizeof (*nslp));
1901 }

1903 /*
1904 * Wait for a granted callback or cancellation event
1905 * for a sleeping lock.
1906 *

new/usr/src/uts/common/klm/nlm_impl.c 30

1907 * If a signal interrupted the wait or if the lock
1908 * was cancelled, return EINTR - the caller must arrange to send
1909 * a cancellation to the server.
1910 *
1911 * If timeout occurred, return ETIMEDOUT - the caller must
1912 * resend the lock request to the server.
1913 *
1914 * On success return 0.
1915 */
1916 int
1917 nlm_slock_wait(struct nlm_globals *g,
1918 struct nlm_slock *nslp, uint_t timeo_secs)
1919 {
1920 clock_t timeo_ticks;
1921 int cv_res, error;

1923 /*
1924 * If the granted message arrived before we got here,
1925 * nw->nw_state will be GRANTED - in that case, don’t sleep.
1926 */
1927 cv_res = 1;
1928 timeo_ticks = ddi_get_lbolt() + SEC_TO_TICK(timeo_secs);

1930 mutex_enter(&g->lock);
1931 if (nslp->nsl_state == NLM_SL_BLOCKED) {
1932 cv_res = cv_timedwait_sig(&nslp->nsl_cond,
1933 &g->lock, timeo_ticks);
1934 }

1936 /*
1937 * No matter why we wake up, if the lock was
1938 * cancelled, let the function caller to know
1939 * about it by returning EINTR.
1940 */
1941 if (nslp->nsl_state == NLM_SL_CANCELLED) {
1942 error = EINTR;
1943 goto out;
1944 }

1946 if (cv_res <= 0) {
1947 /* We was woken up either by timeout or interrupt */
1948 error = (cv_res < 0) ? ETIMEDOUT : EINTR;

1950 /*
1951 * The granted message may arrive after the
1952 * interrupt/timeout but before we manage to lock the
1953 * mutex. Detect this by examining nslp.
1954 */
1955 if (nslp->nsl_state == NLM_SL_GRANTED)
1956 error = 0;
1957 } else { /* awaken via cv_signal or didn’t block */
1958 error = 0;
1959 VERIFY(nslp->nsl_state == NLM_SL_GRANTED);
1960 }

1962 out:
1963 mutex_exit(&g->lock);
1964 return (error);
1965 }

1967 /*
1968 * Mark client side sleeping lock as granted
1969 * and wake up a process blocked on the lock.
1970 * Called from server side NLM_GRANT handler.
1971 *
1972 * If sleeping lock is found return 0, otherwise

new/usr/src/uts/common/klm/nlm_impl.c 31

1973 * return ENOENT.
1974 */
1975 int
1976 nlm_slock_grant(struct nlm_globals *g,
1977 struct nlm_host *hostp, struct nlm4_lock *alock)
1978 {
1979 struct nlm_slock *nslp;
1980 int error = ENOENT;

1982 mutex_enter(&g->lock);
1983 TAILQ_FOREACH(nslp, &g->nlm_slocks, nsl_link) {
1984 if ((nslp->nsl_state != NLM_SL_BLOCKED) ||
1985 (nslp->nsl_host != hostp))
1986 continue;

1988 if (alock->svid == nslp->nsl_lock.svid &&
1989 alock->l_offset == nslp->nsl_lock.l_offset &&
1990 alock->l_len == nslp->nsl_lock.l_len &&
1991 alock->fh.n_len == nslp->nsl_lock.fh.n_len &&
1992 bcmp(alock->fh.n_bytes, nslp->nsl_lock.fh.n_bytes,
1993 nslp->nsl_lock.fh.n_len) == 0) {
1994 nslp->nsl_state = NLM_SL_GRANTED;
1995 cv_broadcast(&nslp->nsl_cond);
1996 error = 0;
1997 break;
1998 }
1999 }

2001 mutex_exit(&g->lock);
2002 return (error);
2003 }

2005 /*
2006 * Register sleeping lock request corresponding to
2007 * flp on the given vhold object.
2008 * On success function returns 0, otherwise (if
2009 * lock request with the same flp is already
2010 * registered) function returns EEXIST.
2011 */
2012 int
2013 nlm_slreq_register(struct nlm_host *hostp, struct nlm_vhold *nvp,
2014 struct flock64 *flp)
2015 {
2016 struct nlm_slreq *slr, *new_slr = NULL;
2017 int ret = EEXIST;

2019 mutex_enter(&hostp->nh_lock);
2020 slr = nlm_slreq_find_locked(hostp, nvp, flp);
2021 if (slr != NULL)
2022 goto out;

2024 mutex_exit(&hostp->nh_lock);
2025 new_slr = kmem_zalloc(sizeof (*slr), KM_SLEEP);
2026 bcopy(flp, &new_slr->nsr_fl, sizeof (*flp));

2028 mutex_enter(&hostp->nh_lock);
2029 slr = nlm_slreq_find_locked(hostp, nvp, flp);
2030 if (slr == NULL) {
2031 slr = new_slr;
2032 new_slr = NULL;
2033 ret = 0;

2035 TAILQ_INSERT_TAIL(&nvp->nv_slreqs, slr, nsr_link);
2036 }

2038 out:

new/usr/src/uts/common/klm/nlm_impl.c 32

2039 mutex_exit(&hostp->nh_lock);
2040 if (new_slr != NULL)
2041 kmem_free(new_slr, sizeof (*new_slr));

2043 return (ret);
2044 }

2046 /*
2047 * Unregister sleeping lock request corresponding
2048 * to flp from the given vhold object.
2049 * On success function returns 0, otherwise (if
2050 * lock request corresponding to flp isn’t found
2051 * on the given vhold) function returns ENOENT.
2052 */
2053 int
2054 nlm_slreq_unregister(struct nlm_host *hostp, struct nlm_vhold *nvp,
2055 struct flock64 *flp)
2056 {
2057 struct nlm_slreq *slr;

2059 mutex_enter(&hostp->nh_lock);
2060 slr = nlm_slreq_find_locked(hostp, nvp, flp);
2061 if (slr == NULL) {
2062 mutex_exit(&hostp->nh_lock);
2063 return (ENOENT);
2064 }

2066 TAILQ_REMOVE(&nvp->nv_slreqs, slr, nsr_link);
2067 mutex_exit(&hostp->nh_lock);

2069 kmem_free(slr, sizeof (*slr));
2070 return (0);
2071 }

2073 /*
2074 * Find sleeping lock request on the given vhold object by flp.
2075 */
2076 struct nlm_slreq *
2077 nlm_slreq_find_locked(struct nlm_host *hostp, struct nlm_vhold *nvp,
2078 struct flock64 *flp)
2079 {
2080 struct nlm_slreq *slr = NULL;

2082 ASSERT(MUTEX_HELD(&hostp->nh_lock));
2083 TAILQ_FOREACH(slr, &nvp->nv_slreqs, nsr_link) {
2084 if (slr->nsr_fl.l_start == flp->l_start &&
2085 slr->nsr_fl.l_len == flp->l_len &&
2086 slr->nsr_fl.l_pid == flp->l_pid &&
2087 slr->nsr_fl.l_type == flp->l_type)
2088 break;
2089 }

2091 return (slr);
2092 }

2094 /*
2095 * NLM tracks active share reservations made on the client side.
2096 * It needs to have a track of share reservations for two purposes
2097 * 1) to determine if nlm_host is busy (if it has active locks and/or
2098 * share reservations, it is)
2099 * 2) to recover active share reservations when NLM server reports
2100 * that it has rebooted.
2101 *
2102 * Unfortunately Illumos local share reservations manager (see os/share.c)
2103 * doesn’t have an ability to lookup all reservations on the system
2104 * by sysid (like local lock manager) or get all reservations by sysid.

new/usr/src/uts/common/klm/nlm_impl.c 33

2105 * It tracks reservations per vnode and is able to get/looup them
2106 * on particular vnode. It’s not what NLM needs. Thus it has that ugly
2107 * share reservations tracking scheme.
2108 */

2110 void
2111 nlm_shres_track(struct nlm_host *hostp, vnode_t *vp, struct shrlock *shrp)
2112 {
2113 struct nlm_shres *nsp, *nsp_new;

2115 /*
2116 * NFS code must fill the s_owner, so that
2117 * s_own_len is never 0.
2118 */
2119 ASSERT(shrp->s_own_len > 0);
2120 nsp_new = nlm_shres_create_item(shrp, vp);

2122 mutex_enter(&hostp->nh_lock);
2123 for (nsp = hostp->nh_shrlist; nsp != NULL; nsp = nsp->ns_next)
2124 if (nsp->ns_vp == vp && nlm_shres_equal(shrp, nsp->ns_shr))
2125 break;

2127 if (nsp != NULL) {
2128 /*
2129 * Found a duplicate. Do nothing.
2130 */

2132 goto out;
2133 }

2135 nsp = nsp_new;
2136 nsp_new = NULL;
2137 nsp->ns_next = hostp->nh_shrlist;
2138 hostp->nh_shrlist = nsp;

2140 out:
2141 mutex_exit(&hostp->nh_lock);
2142 if (nsp_new != NULL)
2143 nlm_shres_destroy_item(nsp_new);
2144 }

2146 void
2147 nlm_shres_untrack(struct nlm_host *hostp, vnode_t *vp, struct shrlock *shrp)
2148 {
2149 struct nlm_shres *nsp, *nsp_prev = NULL;

2151 mutex_enter(&hostp->nh_lock);
2152 nsp = hostp->nh_shrlist;
2153 while (nsp != NULL) {
2154 if (nsp->ns_vp == vp && nlm_shres_equal(shrp, nsp->ns_shr)) {
2155 struct nlm_shres *nsp_del;

2157 nsp_del = nsp;
2158 nsp = nsp->ns_next;
2159 if (nsp_prev != NULL)
2160 nsp_prev->ns_next = nsp;
2161 else
2162 hostp->nh_shrlist = nsp;

2164 nlm_shres_destroy_item(nsp_del);
2165 continue;
2166 }

2168 nsp_prev = nsp;
2169 nsp = nsp->ns_next;
2170 }

new/usr/src/uts/common/klm/nlm_impl.c 34

2172 mutex_exit(&hostp->nh_lock);
2173 }

2175 /*
2176 * Get a _copy_ of the list of all active share reservations
2177 * made by the given host.
2178 * NOTE: the list function returns _must_ be released using
2179 * nlm_free_shrlist().
2180 */
2181 struct nlm_shres *
2182 nlm_get_active_shres(struct nlm_host *hostp)
2183 {
2184 struct nlm_shres *nsp, *nslist = NULL;

2186 mutex_enter(&hostp->nh_lock);
2187 for (nsp = hostp->nh_shrlist; nsp != NULL; nsp = nsp->ns_next) {
2188 struct nlm_shres *nsp_new;

2190 nsp_new = nlm_shres_create_item(nsp->ns_shr, nsp->ns_vp);
2191 nsp_new->ns_next = nslist;
2192 nslist = nsp_new;
2193 }

2195 mutex_exit(&hostp->nh_lock);
2196 return (nslist);
2197 }

2199 /*
2200 * Free memory allocated for the active share reservations
2201 * list created by nlm_get_active_shres() function.
2202 */
2203 void
2204 nlm_free_shrlist(struct nlm_shres *nslist)
2205 {
2206 struct nlm_shres *nsp;

2208 while (nslist != NULL) {
2209 nsp = nslist;
2210 nslist = nslist->ns_next;

2212 nlm_shres_destroy_item(nsp);
2213 }
2214 }

2216 static bool_t
2217 nlm_shres_equal(struct shrlock *shrp1, struct shrlock *shrp2)
2218 {
2219 if (shrp1->s_sysid == shrp2->s_sysid &&
2220 shrp1->s_pid == shrp2->s_pid &&
2221 shrp1->s_own_len == shrp2->s_own_len &&
2222 bcmp(shrp1->s_owner, shrp2->s_owner,
2223 shrp1->s_own_len) == 0)
2224 return (TRUE);

2226 return (FALSE);
2227 }

2229 static struct nlm_shres *
2230 nlm_shres_create_item(struct shrlock *shrp, vnode_t *vp)
2231 {
2232 struct nlm_shres *nsp;

2234 nsp = kmem_alloc(sizeof (*nsp), KM_SLEEP);
2235 nsp->ns_shr = kmem_alloc(sizeof (*shrp), KM_SLEEP);
2236 bcopy(shrp, nsp->ns_shr, sizeof (*shrp));

new/usr/src/uts/common/klm/nlm_impl.c 35

2237 nsp->ns_shr->s_owner = kmem_alloc(shrp->s_own_len, KM_SLEEP);
2238 bcopy(shrp->s_owner, nsp->ns_shr->s_owner, shrp->s_own_len);
2239 nsp->ns_vp = vp;

2241 return (nsp);
2242 }

2244 static void
2245 nlm_shres_destroy_item(struct nlm_shres *nsp)
2246 {
2247 kmem_free(nsp->ns_shr->s_owner,
2248 nsp->ns_shr->s_own_len);
2249 kmem_free(nsp->ns_shr, sizeof (struct shrlock));
2250 kmem_free(nsp, sizeof (*nsp));
2251 }

2253 /*
2254 * Called by klmmod.c when lockd adds a network endpoint
2255 * on which we should begin RPC services.
2256 */
2257 int
2258 nlm_svc_add_ep(struct file *fp, const char *netid, struct knetconfig *knc)
2259 {
2260 SVCMASTERXPRT *xprt = NULL;
2261 int error;

2263 error = svc_tli_kcreate(fp, 0, (char *)netid, NULL, &xprt,
2264 &nlm_sct, NULL, NLM_SVCPOOL_ID, FALSE);
2265 if (error != 0)
2266 return (error);

2268 (void) nlm_knc_to_netid(knc);
2269 return (0);
2270 }

2272 /*
2273 * Start NLM service.
2274 */
2275 int
2276 nlm_svc_starting(struct nlm_globals *g, struct file *fp,
2277 const char *netid, struct knetconfig *knc)
2278 {
2279 int error;
2280 enum clnt_stat stat;

2282 VERIFY(g->run_status == NLM_ST_STARTING);
2283 VERIFY(g->nlm_gc_thread == NULL);

2285 error = nlm_nsm_init_local(&g->nlm_nsm);
2286 if (error != 0) {
2287 NLM_ERR("Failed to initialize NSM handler "
2288 "(error=%d)\n", error);
2289 g->run_status = NLM_ST_DOWN;
2290 return (error);
2291 }

2293 error = EIO;

2295 /*
2296 * Create an NLM garbage collector thread that will
2297 * clean up stale vholds and hosts objects.
2298 */
2299 g->nlm_gc_thread = zthread_create(NULL, 0, nlm_gc,
2300 g, 0, minclsyspri);

2302 /*

new/usr/src/uts/common/klm/nlm_impl.c 36

2303 * Send SIMU_CRASH to local statd to report that
2304 * NLM started, so that statd can report other hosts
2305 * about NLM state change.
2306 */

2308 stat = nlm_nsm_simu_crash(&g->nlm_nsm);
2309 if (stat != RPC_SUCCESS) {
2310 NLM_ERR("Failed to connect to local statd "
2311 "(rpcerr=%d)\n", stat);
2312 goto shutdown_lm;
2313 }

2315 stat = nlm_nsm_stat(&g->nlm_nsm, &g->nsm_state);
2316 if (stat != RPC_SUCCESS) {
2317 NLM_ERR("Failed to get the status of local statd "
2318 "(rpcerr=%d)\n", stat);
2319 goto shutdown_lm;
2320 }

2322 g->grace_threshold = ddi_get_lbolt() +
2323 SEC_TO_TICK(g->grace_period);

2325 /* Register endpoint used for communications with local NLM */
2326 error = nlm_svc_add_ep(fp, netid, knc);
2327 if (error != 0)
2328 goto shutdown_lm;

2330 (void) svc_pool_control(NLM_SVCPOOL_ID,
2331 SVCPSET_SHUTDOWN_PROC, (void *)nlm_pool_shutdown);
2332 g->run_status = NLM_ST_UP;
2333 return (0);

2335 shutdown_lm:
2336 mutex_enter(&g->lock);
2337 g->run_status = NLM_ST_STOPPING;
2338 mutex_exit(&g->lock);

2340 nlm_svc_stopping(g);
2341 return (error);
2342 }

2344 /*
2345 * Called when the server pool is destroyed, so that
2346 * all transports are closed and no any server threads
2347 * exist.
2348 *
2349 * Just call lm_shutdown() to shut NLM down properly.
2350 */
2351 static void
2352 nlm_pool_shutdown(void)
2353 {
2354 (void) lm_shutdown();
2355 }

2357 /*
2358 * Stop NLM service, cleanup all resources
2359 * NLM owns at the moment.
2360 *
2361 * NOTE: NFS code can call NLM while it’s
2362 * stopping or even if it’s shut down. Any attempt
2363 * to lock file either on client or on the server
2364 * will fail if NLM isn’t in NLM_ST_UP state.
2365 */
2366 void
2367 nlm_svc_stopping(struct nlm_globals *g)
2368 {

new/usr/src/uts/common/klm/nlm_impl.c 37

2369 mutex_enter(&g->lock);
2370 ASSERT(g->run_status == NLM_ST_STOPPING);

2372 /*
2373 * Ask NLM GC thread to exit and wait until it dies.
2374 */
2375 cv_signal(&g->nlm_gc_sched_cv);
2376 while (g->nlm_gc_thread != NULL)
2377 cv_wait(&g->nlm_gc_finish_cv, &g->lock);

2379 mutex_exit(&g->lock);

2381 /*
2382 * Cleanup locks owned by NLM hosts.
2383 * NOTE: New hosts won’t be created while
2384 * NLM is stopping.
2385 */
2386 while (!avl_is_empty(&g->nlm_hosts_tree)) {
2387 struct nlm_host *hostp;
2388 int busy_hosts = 0;

2390 /*
2391 * Iterate through all NLM hosts in the system
2392 * and drop the locks they own by force.
2393 */
2394 hostp = avl_first(&g->nlm_hosts_tree);
2395 while (hostp != NULL) {
2396 /* Cleanup all client and server side locks */
2397 nlm_client_cancel_all(g, hostp);
2398 nlm_host_notify_server(hostp, 0);

2400 mutex_enter(&hostp->nh_lock);
2401 nlm_host_gc_vholds(hostp);
2402 if (hostp->nh_refs > 0 || nlm_host_has_locks(hostp)) {
2403 /*
2404 * Oh, it seems the host is still busy, let
2405 * it some time to release and go to the
2406 * next one.
2407 */

2409 mutex_exit(&hostp->nh_lock);
2410 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp);
2411 busy_hosts++;
2412 continue;
2413 }

2415 mutex_exit(&hostp->nh_lock);
2416 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp);
2417 }

2419 /*
2420 * All hosts go to nlm_idle_hosts list after
2421 * all locks they own are cleaned up and last refereces
2422 * were dropped. Just destroy all hosts in nlm_idle_hosts
2423 * list, they can not be removed from there while we’re
2424 * in stopping state.
2425 */
2426 while ((hostp = TAILQ_FIRST(&g->nlm_idle_hosts)) != NULL) {
2427 nlm_host_unregister(g, hostp);
2428 nlm_host_destroy(hostp);
2429 }

2431 if (busy_hosts > 0) {
2432 /*
2433 * There’re some hosts that weren’t cleaned
2434 * up. Probably they’re in resource cleanup

new/usr/src/uts/common/klm/nlm_impl.c 38

2435 * process. Give them some time to do drop
2436 * references.
2437 */
2438 delay(MSEC_TO_TICK(500));
2439 }
2440 }

2442 ASSERT(TAILQ_EMPTY(&g->nlm_slocks));

2444 nlm_nsm_fini(&g->nlm_nsm);
2445 g->lockd_pid = 0;
2446 g->run_status = NLM_ST_DOWN;
2447 }

2449 /*
2450 * Returns TRUE if the given vnode has
2451 * any active or sleeping locks.
2452 */
2453 int
2454 nlm_vp_active(const vnode_t *vp)
2455 {
2456 struct nlm_globals *g;
2457 struct nlm_host *hostp;
2458 struct nlm_vhold *nvp;
2459 int active = 0;

2461 g = zone_getspecific(nlm_zone_key, curzone);

2463 /*
2464 * Server side NLM has locks on the given vnode
2465 * if there exist a vhold object that holds
2466 * the given vnode "vp" in one of NLM hosts.
2467 */
2468 mutex_enter(&g->lock);
2469 hostp = avl_first(&g->nlm_hosts_tree);
2470 while (hostp != NULL) {
2471 mutex_enter(&hostp->nh_lock);
2472 nvp = nlm_vhold_find_locked(hostp, vp);
2473 mutex_exit(&hostp->nh_lock);
2474 if (nvp != NULL) {
2475 active = 1;
2476 break;
2477 }

2479 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp);
2480 }

2482 mutex_exit(&g->lock);
2483 return (active);
2484 }

2486 /*
2487 * Called right before NFS export is going to
2488 * dissapear. The function finds all vnodes
2489 * belonging to the given export and cleans
2490 * all remote locks and share reservations
2491 * on them.
2492 */
2493 void
2494 nlm_unexport(struct exportinfo *exi)
2495 {
2496 struct nlm_globals *g;
2497 struct nlm_host *hostp;

2499 g = zone_getspecific(nlm_zone_key, curzone);

new/usr/src/uts/common/klm/nlm_impl.c 39

2501 mutex_enter(&g->lock);
2502 hostp = avl_first(&g->nlm_hosts_tree);
2503 while (hostp != NULL) {
2504 struct nlm_vhold *nvp;

2506 mutex_enter(&hostp->nh_lock);
2507 TAILQ_FOREACH(nvp, &hostp->nh_vholds_list, nv_link) {
2508 vnode_t *vp;

2510 nvp->nv_refcnt++;
2511 mutex_exit(&hostp->nh_lock);

2513 vp = nvp->nv_vp;

2515 if (!EQFSID(&exi->exi_fsid, &vp->v_vfsp->vfs_fsid))
2516 goto next_iter;

2518 /*
2519 * Ok, it we found out that vnode vp is under
2520 * control by the exportinfo exi, now we need
2521 * to drop all locks from this vnode, let’s
2522 * do it.
2523 */
2524 nlm_vhold_clean(nvp, hostp->nh_sysid);

2526 next_iter:
2527 mutex_enter(&hostp->nh_lock);
2528 nvp->nv_refcnt--;
2529 }

2531 mutex_exit(&hostp->nh_lock);
2532 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp);
2533 }

2535 mutex_exit(&g->lock);
2536 }

2538 /*
2539 * Allocate new unique sysid.
2540 * In case of failure (no available sysids)
2541 * return LM_NOSYSID.
2542 */
2543 sysid_t
2544 nlm_sysid_alloc(void)
2545 {
2546 sysid_t ret_sysid = LM_NOSYSID;

2548 rw_enter(&lm_lck, RW_WRITER);
2549 if (nlm_sysid_nidx > LM_SYSID_MAX)
2550 nlm_sysid_nidx = LM_SYSID;

2552 if (!BT_TEST(nlm_sysid_bmap, nlm_sysid_nidx)) {
2553 BT_SET(nlm_sysid_bmap, nlm_sysid_nidx);
2554 ret_sysid = nlm_sysid_nidx++;
2555 } else {
2556 index_t id;

2558 id = bt_availbit(nlm_sysid_bmap, NLM_BMAP_NITEMS);
2559 if (id > 0) {
2560 nlm_sysid_nidx = id + 1;
2561 ret_sysid = id;
2562 BT_SET(nlm_sysid_bmap, id);
2563 }
2564 }

2566 rw_exit(&lm_lck);

new/usr/src/uts/common/klm/nlm_impl.c 40

2567 return (ret_sysid);
2568 }

2570 void
2571 nlm_sysid_free(sysid_t sysid)
2572 {
2573 ASSERT(sysid >= LM_SYSID && sysid <= LM_SYSID_MAX);

2575 rw_enter(&lm_lck, RW_WRITER);
2576 ASSERT(BT_TEST(nlm_sysid_bmap, sysid));
2577 BT_CLEAR(nlm_sysid_bmap, sysid);
2578 rw_exit(&lm_lck);
2579 }

2581 /*
2582 * Return true if the request came from a local caller.
2583 * By necessity, this "knows" the netid names invented
2584 * in lm_svc() and nlm_netid_from_knetconfig().
2585 */
2586 bool_t
2587 nlm_caller_is_local(SVCXPRT *transp)
2588 {
2589 char *netid;
2590 struct netbuf *rtaddr;

2592 netid = svc_getnetid(transp);
2593 rtaddr = svc_getrpccaller(transp);

2595 if (netid == NULL)
2596 return (FALSE);

2598 if (strcmp(netid, "ticlts") == 0 ||
2599 strcmp(netid, "ticotsord") == 0)
2600 return (TRUE);

2602 if (strcmp(netid, "tcp") == 0 || strcmp(netid, "udp") == 0) {
2603 struct sockaddr_in *sin = (void *)rtaddr->buf;
2604 if (sin->sin_addr.s_addr == htonl(INADDR_LOOPBACK))
2605 return (TRUE);
2606 }
2607 if (strcmp(netid, "tcp6") == 0 || strcmp(netid, "udp6") == 0) {
2608 struct sockaddr_in6 *sin6 = (void *)rtaddr->buf;
2609 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
2610 return (TRUE);
2611 }

2613 return (FALSE); /* unknown transport */
2614 }

2616 /*
2617 * Get netid string correspondig to the given knetconfig.
2618 * If not done already, save knc->knc_rdev in our table.
2619 */
2620 const char *
2621 nlm_knc_to_netid(struct knetconfig *knc)
2622 {
2623 int i;
2624 dev_t rdev;
2625 struct nlm_knc *nc;
2626 const char *netid = NULL;

2628 rw_enter(&lm_lck, RW_READER);
2629 for (i = 0; i < NLM_KNCS; i++) {
2630 nc = &nlm_netconfigs[i];

2632 if (nc->n_knc.knc_semantics == knc->knc_semantics &&

new/usr/src/uts/common/klm/nlm_impl.c 41

2633 strcmp(nc->n_knc.knc_protofmly,
2634 knc->knc_protofmly) == 0) {
2635 netid = nc->n_netid;
2636 rdev = nc->n_knc.knc_rdev;
2637 break;
2638 }
2639 }
2640 rw_exit(&lm_lck);

2642 if (netid != NULL && rdev == NODEV) {
2643 rw_enter(&lm_lck, RW_WRITER);
2644 if (nc->n_knc.knc_rdev == NODEV)
2645 nc->n_knc.knc_rdev = knc->knc_rdev;
2646 rw_exit(&lm_lck);
2647 }

2649 return (netid);
2650 }

2652 /*
2653 * Get a knetconfig corresponding to the given netid.
2654 * If there’s no knetconfig for this netid, ENOENT
2655 * is returned.
2656 */
2657 int
2658 nlm_knc_from_netid(const char *netid, struct knetconfig *knc)
2659 {
2660 int i, ret;

2662 ret = ENOENT;
2663 for (i = 0; i < NLM_KNCS; i++) {
2664 struct nlm_knc *nknc;

2666 nknc = &nlm_netconfigs[i];
2667 if (strcmp(netid, nknc->n_netid) == 0 &&
2668 nknc->n_knc.knc_rdev != NODEV) {
2669 *knc = nknc->n_knc;
2670 ret = 0;
2671 break;
2672 }
2673 }

2675 return (ret);
2676 }

2678 void
2679 nlm_cprsuspend(void)
2680 {
2681 struct nlm_globals *g;

2683 rw_enter(&lm_lck, RW_READER);
2684 TAILQ_FOREACH(g, &nlm_zones_list, nlm_link)
2685 nlm_suspend_zone(g);

2687 rw_exit(&lm_lck);
2688 }

2690 void
2691 nlm_cprresume(void)
2692 {
2693 struct nlm_globals *g;

2695 rw_enter(&lm_lck, RW_READER);
2696 TAILQ_FOREACH(g, &nlm_zones_list, nlm_link)
2697 nlm_resume_zone(g);

new/usr/src/uts/common/klm/nlm_impl.c 42

2699 rw_exit(&lm_lck);
2700 }

2702 static void
2703 nlm_nsm_clnt_init(CLIENT *clnt, struct nlm_nsm *nsm)
2704 {
2705 (void) clnt_tli_kinit(clnt, &nsm->ns_knc, &nsm->ns_addr, 0,
2706 NLM_RPC_RETRIES, kcred);
2707 }

2709 static void
2710 nlm_netbuf_to_netobj(struct netbuf *addr, int *family, netobj *obj)
2711 {
2712 /* LINTED pointer alignment */
2713 struct sockaddr *sa = (struct sockaddr *)addr->buf;

2715 *family = sa->sa_family;

2717 switch (sa->sa_family) {
2718 case AF_INET: {
2719 /* LINTED pointer alignment */
2720 struct sockaddr_in *sin = (struct sockaddr_in *)sa;

2722 obj->n_len = sizeof (sin->sin_addr);
2723 obj->n_bytes = (char *)&sin->sin_addr;
2724 break;
2725 }

2727 case AF_INET6: {
2728 /* LINTED pointer alignment */
2729 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;

2731 obj->n_len = sizeof (sin6->sin6_addr);
2732 obj->n_bytes = (char *)&sin6->sin6_addr;
2733 break;
2734 }

2736 default:
2737 VERIFY(0);
2738 break;
2739 }
2740 }

new/usr/src/uts/common/klm/nlm_impl.h 1

**
 23395 Sun Aug 25 23:51:10 2013
new/usr/src/uts/common/klm/nlm_impl.h
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3 * Authors: Doug Rabson <dfr@rabson.org>
4 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright

10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 * $FreeBSD$
28 */

30 /*
31 * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
32 * Copyright (c) 2012 by Delphix. All rights reserved.
33 */

35 /*
36 * NFS Lock Manager (NLM) private declarations, etc.
37 *
38 * Source code derived from FreeBSD nlm.h
39 */

41 #ifndef _NLM_NLM_H_
42 #define _NLM_NLM_H_

44 #include <sys/cmn_err.h>
45 #include <sys/queue.h>
46 #include <sys/modhash.h>
47 #include <sys/avl.h>

49 #define RPC_MSGOUT(args...) cmn_err(CE_NOTE, args)
50 #define NLM_ERR(...) cmn_err(CE_NOTE, __VA_ARGS__)
51 #define NLM_WARN(...) cmn_err(CE_WARN, __VA_ARGS__)

53 #ifndef SEEK_SET
54 #define SEEK_SET 0
55 #endif
56 #ifndef SEEK_CUR
57 #define SEEK_CUR 1
58 #endif

new/usr/src/uts/common/klm/nlm_impl.h 2

59 #ifndef SEEK_END
60 #define SEEK_END 2
61 #endif

63 /*
64 * Maximum offset supported by NLM calls using the older
65 * (32-bit) versions of the protocol.
66 */
67 #define MAX_UOFF32 0xffffffffULL

69 struct nlm_host;
70 struct vnode;
71 struct exportinfo;
72 struct shrlock;
73 struct _kthread;

75 /*
76 * How to read the code: probably the best point to start
77 * it the nlm_host structure that is sort of most major
78 * structure in klmmod. nlm_host is closely tied with all
79 * other NLM structures.
80 *
81 * There’re three major locks we use inside NLM:
82 * 1) Global read-write lock (lm_lck) that is used to
83 * protect operations with sysid allocation and
84 * management of zone globals structures for each
85 * zone.
86 * 2) Zone global lock: (nlm_globals->lock) is a mutex
87 * used to protect all operations inside particular
88 * zone.
89 * 3) Host’s lock: (nlm_host->nh_lock) is per-host mutex
90 * used to protect host’s internal fields and all
91 * operations with the given host.
92 *
93 * Locks order _must_ obey the following scheme:
94 * lm_lck then nlm_globals->lock then nlm_host->nh_lock
95 *
96 * Locks:
97 * (g) locked by lm_lck
98 * (z) locked by nlm_globals->lock
99 * (l) locked by host->nh_lock
100 * (c) const until freeing
101 */

103 /*
104 * Callback functions for nlm_do_lock() and others.
105 *
106 * Calls to nlm_do_lock are unusual, because it needs to handle
107 * the reply itself, instead of letting it happen the normal way.
108 * It also needs to make an RPC call _back_ to the client when a
109 * blocked lock request completes.
110 *
111 * We pass three callback functions to nlm_do_lock:
112 * nlm_reply_cb: send a normal RPC reply
113 * nlm_res_cb: do a _res (message style) RPC (call)
114 * nlm_testargs_cb: do a "granted" RPC call (after blocking)
115 * Only one of the 1st or 2nd is used.
116 * The 3rd is used only for blocking
117 *
118 * We also use callback functions for all the _msg variants
119 * of the NLM svc calls, where the reply is a reverse call.
120 * The nlm_testres_cb is used by the _test_msg svc calls.
121 * The nlm_res_cb type is used by the other _msg calls.
122 */
123 typedef bool_t (*nlm_reply_cb)(SVCXPRT *, nlm4_res *);
124 typedef enum clnt_stat (*nlm_res_cb)(nlm4_res *, void *, CLIENT *);

new/usr/src/uts/common/klm/nlm_impl.h 3

125 typedef enum clnt_stat (*nlm_testargs_cb)(nlm4_testargs *, void *, CLIENT *);
126 typedef enum clnt_stat (*nlm_testres_cb)(nlm4_testres *, void *, CLIENT *);

128 /*
129 * NLM sleeping lock request.
130 *
131 * Sleeping lock requests are server side only objects
132 * that are created when client asks server to add new
133 * sleeping lock and when this lock needs to block.
134 * Server keeps a track of these requests in order to be
135 * able to cancel them or clean them up.
136 *
137 * Sleeping lock requests are closely tiled with particular
138 * vnode or, strictly speaking, NLM vhold object that holds
139 * the vnode.
140 *
141 * struct nlm_slreq:
142 * nsr_fl: an information about file lock
143 * nsr_link: a list node to store lock requests
144 * in vhold object.
145 */
146 struct nlm_slreq {
147 struct flock64 nsr_fl;
148 TAILQ_ENTRY(nlm_slreq) nsr_link;
149 };
150 TAILQ_HEAD(nlm_slreq_list, nlm_slreq);

152 /*
153 * NLM vhold object is a sort of wrapper on vnodes remote
154 * clients have locked (or added share reservation)
155 * on NLM server. Vhold keeps vnode held (by VN_HOLD())
156 * while vnode has any locks or shares made by parent host.
157 * Vholds are used for two purposes:
158 * 1) Hold vnode (with VN_HOLD) while it has any locks;
159 * 2) Keep a track of all vnodes remote host touched
160 * with lock/share operations on NLM server, so that NLM
161 * can know what vnodes are potentially locked;
162 *
163 * Vholds are used on server side only. For server side it’s really
164 * important to keep vnodes held while they potentially have
165 * any locks/shares. In contrast, it’s not important for clinet
166 * side at all. When particular vnode comes to the NLM client side
167 * code, it’s already held (VN_HOLD) by the process calling
168 * lock/share function (it’s referenced because client calls open()
169 * before making locks or shares).
170 *
171 * Each NLM host object has a collection of vholds associated
172 * with vnodes host touched earlier by adding locks or shares.
173 * Having this collection allows us to decide if host is still
174 * in use. When it has any vhold objects it’s considered to be
175 * in use. Otherwise we’re free to destroy it.
176 *
177 * Vholds are destroyed by the NLM garbage collecter thread that
178 * periodically checks whether they have any locks or shares.
179 * Checking occures when parent host is untouched by client
180 * or server for some period of time.
181 *
182 * struct nlm_vhold:
183 * nv_vp: a pointer to vnode that is hold by given nlm_vhold
184 * nv_refcnt: reference counter (non zero when vhold is inuse)
185 * nv_slreqs: sleeping lock requests that were made on the nv_vp
186 * nv_link: list node to store vholds in host’s nh_vnodes_list
187 */
188 struct nlm_vhold {
189 vnode_t *nv_vp; /* (c) */
190 int nv_refcnt; /* (l) */

new/usr/src/uts/common/klm/nlm_impl.h 4

191 struct nlm_slreq_list nv_slreqs; /* (l) */
192 TAILQ_ENTRY(nlm_vhold) nv_link; /* (l) */
193 };
194 TAILQ_HEAD(nlm_vhold_list, nlm_vhold);

196 /*
197 * Client side sleeping lock state.
198 * - NLM_SL_BLOCKED: some thread is blocked on this lock
199 * - NLM_SL_GRANTED: server granted us the lock
200 * - NLM_SL_CANCELLED: the lock is cancelled (i.e. invalid/inactive)
201 */
202 typedef enum nlm_slock_state {
203 NLM_SL_UNKNOWN = 0,
204 NLM_SL_BLOCKED,
205 NLM_SL_GRANTED,
206 NLM_SL_CANCELLED
207 } nlm_slock_state_t;

209 /*
210 * A client side sleeping lock request (set by F_SETLKW)
211 * stored in nlm_slocks collection of nlm_globals.
212 *
213 * struct nlm_slock
214 * nsl_state: Sleeping lock state.
215 * (see nlm_slock_state for more information)
216 * nsl_cond: Condvar that is used when sleeping lock
217 * needs to wait for a GRANT callback
218 * or cancellation event.
219 * nsl_lock: nlm4_lock structure that is sent to the server
220 * nsl_fh: Filehandle that corresponds to nw_vp
221 * nsl_host: A host owning this sleeping lock
222 * nsl_vp: A vnode sleeping lock is waiting on.
223 * nsl_link: A list node for nlm_globals->nlm_slocks list.
224 */
225 struct nlm_slock {
226 nlm_slock_state_t nsl_state; /* (z) */
227 kcondvar_t nsl_cond; /* (z) */
228 nlm4_lock nsl_lock; /* (c) */
229 struct netobj nsl_fh; /* (c) */
230 struct nlm_host *nsl_host; /* (c) */
231 struct vnode *nsl_vp; /* (c) */
232 TAILQ_ENTRY(nlm_slock) nsl_link; /* (z) */
233 };
234 TAILQ_HEAD(nlm_slock_list, nlm_slock);

236 /*
237 * Share reservation description. NLM tracks all active
238 * share reservations made by the client side, so that
239 * they can be easily recovered if remote NLM server
240 * reboots. Share reservations tracking is also useful
241 * when NLM needs to determine whether host owns any
242 * resources on the system and can’t be destroyed.
243 *
244 * nlm_shres:
245 * ns_shr: share reservation description
246 * ns_vp: a pointer to vnode where share reservation is located
247 * ns_next: next nlm_shres instance (or NULL if next item isn’t
248 * present).
249 */
250 struct nlm_shres {
251 struct shrlock *ns_shr;
252 vnode_t *ns_vp;
253 struct nlm_shres *ns_next;
254 };

256 /*

new/usr/src/uts/common/klm/nlm_impl.h 5

257 * NLM RPC handle object.
258 *
259 * In kRPC subsystem it’s unsafe to use one RPC handle by
260 * several threads simultaneously. It was designed so that
261 * each thread has to create an RPC handle that it’ll use.
262 * RPC handle creation can be quite expensive operation, especially
263 * with session oriented protocols (such as TCP) that need to
264 * establish session at first. NLM RPC handle object is a sort of
265 * wrapper on kRPC handle object that can be cached and used in
266 * future. We store all created RPC handles for given host in a
267 * host’s RPC handles cache, so that to make new requests threads
268 * can simply take ready objects from the cache. That improves
269 * NLM performance.
270 *
271 * nlm_rpc_t:
272 * nr_handle: a kRPC handle itself.
273 * nr_vers: a version of NLM protocol kRPC handle was
274 * created for.
275 * nr_link: a list node to store NLM RPC handles in the host
276 * RPC handles cache.
277 */
278 typedef struct nlm_rpc {
279 CLIENT *nr_handle; /* (l) */
280 rpcvers_t nr_vers; /* (c) */
281 TAILQ_ENTRY(nlm_rpc) nr_link; /* (l) */
282 } nlm_rpc_t;
283 TAILQ_HEAD(nlm_rpch_list, nlm_rpc);

285 /*
286 * Describes the state of NLM host’s RPC binding.
287 * RPC binding can be in one of three states:
288 * 1) NRPCB_NEED_UPDATE:
289 * Binding is either not initialized or stale.
290 * 2) NRPCB_UPDATE_INPROGRESS:
291 * When some thread updates host’s RPC binding,
292 * it sets binding’s state to NRPCB_UPDATE_INPROGRESS
293 * which denotes that other threads must wait until
294 * update process is finished.
295 * 3) NRPCB_UPDATED:
296 * Denotes that host’s RPC binding is both initialized
297 * and fresh.
298 */
299 enum nlm_rpcb_state {
300 NRPCB_NEED_UPDATE = 0,
301 NRPCB_UPDATE_INPROGRESS,
302 NRPCB_UPDATED
303 };

305 /*
306 * NLM host flags
307 */
308 #define NLM_NH_MONITORED 0x01
309 #define NLM_NH_RECLAIM 0x02
310 #define NLM_NH_INIDLE 0x04
311 #define NLM_NH_SUSPEND 0x08

313 /*
314 * NLM host object is the most major structure in NLM.
315 * It identifies remote client or remote server or both.
316 * NLM host object keep a track of all vnodes client/server
317 * locked and all sleeping locks it has. All lock/unlock
318 * operations are done using host object.
319 *
320 * nlm_host:
321 * nh_lock: a mutex protecting host object fields
322 * nh_refs: reference counter. Identifies how many threads

new/usr/src/uts/common/klm/nlm_impl.h 6

323 * uses this host object.
324 * nh_link: a list node for keeping host in zone-global list.
325 * nh_by_addr: an AVL tree node for keeping host in zone-global tree.
326 * Host can be looked up in the tree by <netid, address>
327 * pair.
328 * nh_name: host name.
329 * nh_netid: netid string identifying type of transport host uses.
330 * nh_knc: host’s knetconfig (used by kRPC subsystem).
331 * nh_addr: host’s address (either IPv4 or IPv6).
332 * nh_sysid: unique sysid associated with this host.
333 * nh_state: last seen host’s state reported by NSM.
334 * nh_flags: ORed host flags.
335 * nh_idle_timeout: host idle timeout. When expired host is freed.
336 * nh_recl_cv: condition variable used for reporting that reclamation
337 * process is finished.
338 * nh_rpcb_cv: condition variable that is used to make sure
339 * that only one thread renews host’s RPC binding.
340 * nh_rpcb_ustat: error code returned by RPC binding update operation.
341 * nh_rpcb_state: host’s RPC binding state (see enum nlm_rpcb_state
342 * for more details).
343 * nh_rpchc: host’s RPC handles cache.
344 * nh_vholds_by_vp: a hash table of all vholds host owns. (used for lookup)
345 * nh_vholds_list: a linked list of all vholds host owns. (used for iteration)
346 * nh_shrlist: a list of all active share resevations on the client side.
347 * nh_reclaimer: a pointer to reclamation thread (kthread_t)
348 * NULL if reclamation thread doesn’t exist
349 */
350 struct nlm_host {
351 kmutex_t nh_lock; /* (c) */
352 volatile uint_t nh_refs; /* (z) */
353 TAILQ_ENTRY(nlm_host) nh_link; /* (z) */
354 avl_node_t nh_by_addr; /* (z) */
355 char *nh_name; /* (c) */
356 char *nh_netid; /* (c) */
357 struct knetconfig nh_knc; /* (c) */
358 struct netbuf nh_addr; /* (c) */
359 sysid_t nh_sysid; /* (c) */
360 int32_t nh_state; /* (z) */
361 clock_t nh_idle_timeout; /* (z) */
362 uint8_t nh_flags; /* (z) */
363 kcondvar_t nh_recl_cv; /* (z) */
364 kcondvar_t nh_rpcb_cv; /* (l) */
365 enum clnt_stat nh_rpcb_ustat; /* (l) */
366 enum nlm_rpcb_state nh_rpcb_state; /* (l) */
367 struct nlm_rpch_list nh_rpchc; /* (l) */
368 mod_hash_t *nh_vholds_by_vp; /* (l) */
369 struct nlm_vhold_list nh_vholds_list; /* (l) */
370 struct nlm_shres *nh_shrlist; /* (l) */
371 kthread_t *nh_reclaimer; /* (l) */
372 };
373 TAILQ_HEAD(nlm_host_list, nlm_host);

375 /*
376 * nlm_nsm structure describes RPC client handle that can be
377 * used to communicate with local NSM via kRPC.
378 *
379 * We need to wrap handle with nlm_nsm structure because kRPC
380 * can not share one handle between several threads. It’s assumed
381 * that NLM uses only one NSM handle per zone, thus all RPC operations
382 * on NSM’s handle are serialized using nlm_nsm->sem semaphore.
383 *
384 * nlm_nsm also contains refcnt field used for reference counting.
385 * It’s used because there exist a possibility of simultaneous
386 * execution of NLM shutdown operation and host monitor/unmonitor
387 * operations.
388 *

new/usr/src/uts/common/klm/nlm_impl.h 7

389 * struct nlm_nsm:
390 * ns_sem: a semaphore for serialization network operations to statd
391 * ns_knc: a kneconfig describing transport that is used for communication
392 * ns_addr: an address of local statd we’re talking to
393 * ns_handle: an RPC handle used for talking to local statd using the status
394 * monitor protocol (SM_PROG)
395 * ns_addr_handle: an RPC handle used for talking to local statd using the
396 * address registration protocol (NSM_ADDR_PROGRAM)
397 */
398 struct nlm_nsm {
399 ksema_t ns_sem;
400 struct knetconfig ns_knc; /* (c) */
401 struct netbuf ns_addr; /* (c) */
402 CLIENT *ns_handle; /* (c) */
403 CLIENT *ns_addr_handle; /* (c) */
404 };

406 /*
407 * Could use flock.h flk_nlm_status_t instead, but
408 * prefer our own enum with initial zero...
409 */
410 typedef enum {
411 NLM_ST_DOWN = 0,
412 NLM_ST_STOPPING,
413 NLM_ST_UP,
414 NLM_ST_STARTING
415 } nlm_run_status_t;

417 /*
418 * nlm_globals structure allows NLM be zone aware. The structure
419 * collects all "global variables" NLM has for each zone.
420 *
421 * struct nlm_globals:
422 * lock: mutex protecting all operations inside given zone
423 * grace_threshold: grace period expiration time (in ticks)
424 * lockd_pid: PID of lockd user space daemon
425 * run_status: run status of klmmod inside given zone
426 * nsm_state: state obtained from local statd during klmmod startup
427 * nlm_gc_thread: garbage collector thread
428 * nlm_gc_sched_cv: condvar that can be signalled to wakeup GC
429 * nlm_gc_finish_cv: condvar that is signalled just before GC thread exits
430 * nlm_nsm: an object describing RPC handle used for talking to local statd
431 * nlm_hosts_tree: an AVL tree of all hosts in the given zone
432 * (used for hosts lookup by <netid, address> pair)
433 * nlm_hosts_hash: a hash table of all hosts in the given zone
434 * (used for hosts lookup by sysid)
435 * nlm_idle_hosts: a list of all hosts that are idle state (i.e. unused)
436 * nlm_slocks: a list of all client-side sleeping locks in the zone
437 * cn_idle_tmo: a value of idle timeout (in seconds) obtained from lockd
438 * grace_period: a value of grace period (in seconds) obtained from lockd
439 * retrans_tmo: a value of retransmission timeout (in seconds) obtained
440 * from lockd.
441 * clean_lock: mutex used to serialize clear_locks calls.
442 * nlm_link: a list node used for keeping all nlm_globals objects
443 * in one global linked list.
444 */
445 struct nlm_globals {
446 kmutex_t lock;
447 clock_t grace_threshold; /* (z) */
448 pid_t lockd_pid; /* (z) */
449 nlm_run_status_t run_status; /* (z) */
450 int32_t nsm_state; /* (z) */
451 kthread_t *nlm_gc_thread; /* (z) */
452 kcondvar_t nlm_gc_sched_cv; /* (z) */
453 kcondvar_t nlm_gc_finish_cv; /* (z) */
454 struct nlm_nsm nlm_nsm; /* (z) */

new/usr/src/uts/common/klm/nlm_impl.h 8

455 avl_tree_t nlm_hosts_tree; /* (z) */
456 mod_hash_t *nlm_hosts_hash; /* (z) */
457 struct nlm_host_list nlm_idle_hosts; /* (z) */
458 struct nlm_slock_list nlm_slocks; /* (z) */
459 int cn_idle_tmo; /* (z) */
460 int grace_period; /* (z) */
461 int retrans_tmo; /* (z) */
462 kmutex_t clean_lock; /* (c) */
463 TAILQ_ENTRY(nlm_globals) nlm_link; /* (g) */
464 };
465 TAILQ_HEAD(nlm_globals_list, nlm_globals);

468 /*
469 * This is what we pass as the "owner handle" for NLM_LOCK.
470 * This lets us find the blocked lock in NLM_GRANTED.
471 * It also exposes on the wire what we’re using as the
472 * sysid for any server, which can be very helpful for
473 * problem diagnosis. (Observability is good).
474 */
475 struct nlm_owner_handle {
476 sysid_t oh_sysid; /* of remote host */
477 };

479 /*
480 * Number retries NLM RPC call is repeatead in case of failure.
481 * (used in case of conectionless transport).
482 */
483 #define NLM_RPC_RETRIES 5

485 /*
486 * Klmmod global variables
487 */
488 extern krwlock_t lm_lck;
489 extern zone_key_t nlm_zone_key;

491 /*
492 * NLM interface functions (called directly by
493 * either klmmod or klmpos)
494 */
495 extern int nlm_frlock(struct vnode *, int, struct flock64 *, int, u_offset_t,
496 struct cred *, struct netobj *, struct flk_callback *, int);
497 extern int nlm_shrlock(struct vnode *, int, struct shrlock *, int,
498 struct netobj *, int);
499 extern int nlm_safemap(const vnode_t *);
500 extern int nlm_safelock(vnode_t *, const struct flock64 *, cred_t *);
501 extern int nlm_has_sleep(const vnode_t *);
502 extern void nlm_register_lock_locally(struct vnode *, struct nlm_host *,
503 struct flock64 *, int, u_offset_t);
504 int nlm_vp_active(const vnode_t *vp);
505 void nlm_sysid_free(sysid_t);
506 int nlm_vp_active(const vnode_t *);
507 void nlm_unexport(struct exportinfo *);

509 /*
510 * NLM startup/shutdown
511 */
512 int nlm_svc_starting(struct nlm_globals *, struct file *,
513 const char *, struct knetconfig *);
514 void nlm_svc_stopping(struct nlm_globals *);
515 int nlm_svc_add_ep(struct file *, const char *, struct knetconfig *);

517 /*
518 * NLM suspend/resume
519 */
520 void nlm_cprsuspend(void);

new/usr/src/uts/common/klm/nlm_impl.h 9

521 void nlm_cprresume(void);

523 /*
524 * NLM internal functions for initialization.
525 */
526 void nlm_init(void);
527 void nlm_rpc_init(void);
528 void nlm_rpc_cache_destroy(struct nlm_host *);
529 void nlm_globals_register(struct nlm_globals *);
530 void nlm_globals_unregister(struct nlm_globals *);
531 sysid_t nlm_sysid_alloc(void);

533 /*
534 * Client reclamation/cancelation
535 */
536 void nlm_reclaim_client(struct nlm_globals *, struct nlm_host *);
537 void nlm_client_cancel_all(struct nlm_globals *, struct nlm_host *);

539 /* (nlm_rpc_clnt.c) */
540 enum clnt_stat nlm_null_rpc(CLIENT *, rpcvers_t);
541 enum clnt_stat nlm_test_rpc(nlm4_testargs *, nlm4_testres *,
542 CLIENT *, rpcvers_t);
543 enum clnt_stat nlm_lock_rpc(nlm4_lockargs *, nlm4_res *,
544 CLIENT *, rpcvers_t);
545 enum clnt_stat nlm_cancel_rpc(nlm4_cancargs *, nlm4_res *,
546 CLIENT *, rpcvers_t);
547 enum clnt_stat nlm_unlock_rpc(nlm4_unlockargs *, nlm4_res *,
548 CLIENT *, rpcvers_t);
549 enum clnt_stat nlm_share_rpc(nlm4_shareargs *, nlm4_shareres *,
550 CLIENT *, rpcvers_t);
551 enum clnt_stat nlm_unshare_rpc(nlm4_shareargs *, nlm4_shareres *,
552 CLIENT *, rpcvers_t);

555 /*
556 * RPC service functions.
557 * nlm_dispatch.c
558 */
559 void nlm_prog_3(struct svc_req *rqstp, SVCXPRT *transp);
560 void nlm_prog_4(struct svc_req *rqstp, SVCXPRT *transp);

562 /*
563 * Functions for working with knetconfigs (nlm_netconfig.c)
564 */
565 const char *nlm_knc_to_netid(struct knetconfig *);
566 int nlm_knc_from_netid(const char *, struct knetconfig *);

568 /*
569 * NLM host functions (nlm_impl.c)
570 */
571 struct nlm_host *nlm_host_findcreate(struct nlm_globals *, char *,
572 const char *, struct netbuf *);
573 struct nlm_host *nlm_host_find(struct nlm_globals *,
574 const char *, struct netbuf *);
575 struct nlm_host *nlm_host_find_by_sysid(struct nlm_globals *, sysid_t);
576 void nlm_host_release(struct nlm_globals *, struct nlm_host *);

578 void nlm_host_monitor(struct nlm_globals *, struct nlm_host *, int);
579 void nlm_host_unmonitor(struct nlm_globals *, struct nlm_host *);

581 void nlm_host_notify_server(struct nlm_host *, int32_t);
582 void nlm_host_notify_client(struct nlm_host *, int32_t);

584 int nlm_host_get_state(struct nlm_host *);

586 struct nlm_vhold *nlm_vhold_get(struct nlm_host *, vnode_t *);

new/usr/src/uts/common/klm/nlm_impl.h 10

587 void nlm_vhold_release(struct nlm_host *, struct nlm_vhold *);
588 struct nlm_vhold *nlm_vhold_find_locked(struct nlm_host *, const vnode_t *);

590 struct nlm_slock *nlm_slock_register(struct nlm_globals *,
591 struct nlm_host *, struct nlm4_lock *, struct vnode *);
592 void nlm_slock_unregister(struct nlm_globals *, struct nlm_slock *);
593 int nlm_slock_wait(struct nlm_globals *, struct nlm_slock *, uint_t);
594 int nlm_slock_grant(struct nlm_globals *,
595 struct nlm_host *, struct nlm4_lock *);
596 void nlm_host_cancel_slocks(struct nlm_globals *, struct nlm_host *);

598 int nlm_slreq_register(struct nlm_host *,
599 struct nlm_vhold *, struct flock64 *);
600 int nlm_slreq_unregister(struct nlm_host *,
601 struct nlm_vhold *, struct flock64 *);

603 void nlm_shres_track(struct nlm_host *, vnode_t *, struct shrlock *);
604 void nlm_shres_untrack(struct nlm_host *, vnode_t *, struct shrlock *);
605 struct nlm_shres *nlm_get_active_shres(struct nlm_host *);
606 void nlm_free_shrlist(struct nlm_shres *);

608 int nlm_host_wait_grace(struct nlm_host *);
609 int nlm_host_cmp(const void *, const void *);
610 void nlm_copy_netobj(struct netobj *, struct netobj *);

612 int nlm_host_get_rpc(struct nlm_host *, int, nlm_rpc_t **);
613 void nlm_host_rele_rpc(struct nlm_host *, nlm_rpc_t *);

615 /*
616 * NLM server functions (nlm_service.c)
617 */
618 int nlm_vp_active(const vnode_t *vp);
619 void nlm_do_notify1(nlm_sm_status *, void *, struct svc_req *);
620 void nlm_do_notify2(nlm_sm_status *, void *, struct svc_req *);
621 void nlm_do_test(nlm4_testargs *, nlm4_testres *,
622 struct svc_req *, nlm_testres_cb);
623 void nlm_do_lock(nlm4_lockargs *, nlm4_res *, struct svc_req *,
624 nlm_reply_cb, nlm_res_cb, nlm_testargs_cb);
625 void nlm_do_cancel(nlm4_cancargs *, nlm4_res *,
626 struct svc_req *, nlm_res_cb);
627 void nlm_do_unlock(nlm4_unlockargs *, nlm4_res *,
628 struct svc_req *, nlm_res_cb);
629 void nlm_do_granted(nlm4_testargs *, nlm4_res *,
630 struct svc_req *, nlm_res_cb);
631 void nlm_do_share(nlm4_shareargs *, nlm4_shareres *, struct svc_req *);
632 void nlm_do_unshare(nlm4_shareargs *, nlm4_shareres *, struct svc_req *);
633 void nlm_do_free_all(nlm4_notify *, void *, struct svc_req *);

635 /*
636 * NLM RPC functions
637 */
638 enum clnt_stat nlm_clnt_call(CLIENT *, rpcproc_t, xdrproc_t,
639 caddr_t, xdrproc_t, caddr_t, struct timeval);
640 bool_t nlm_caller_is_local(SVCXPRT *);

642 #endif /* _NLM_NLM_H_ */

new/usr/src/uts/common/klm/nlm_prot_clnt.sed 1

**
 746 Sun Aug 25 23:51:10 2013
new/usr/src/uts/common/klm/nlm_prot_clnt.sed
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy is of the CDDL is also available via the Internet
9 # at http://www.illumos.org/license/CDDL.

10 #
11 #
12 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
13 #

15 #
16 # This sed script is run on the client code generated by rpcgen
17 # from nlm_prot.x before it is compiled.
18 #

20 6{
21 i\
22 #include <sys/param.h>
23 i\
24 #include <sys/systm.h>
25 i\
26 #include <rpcsvc/nlm_prot.h>
27 i\
28 #include "nlm_impl.h"
29 }
30 /^.include/,/^.endif/d
31 s/clnt_call/nlm_clnt_call/g

new/usr/src/uts/common/klm/nlm_rpc_clnt.c 1

**
 6993 Sun Aug 25 23:51:11 2013
new/usr/src/uts/common/klm/nlm_rpc_clnt.c
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3 * Authors: Doug Rabson <dfr@rabson.org>
4 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright

10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */

28 /*
29 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
30 */

32 /*
33 * Client-side RPC wrappers (nlm_..._rpc)
34 * Called from nlm_client.c
35 *
36 * Source code derived from FreeBSD nlm_advlock.c
37 */

39 #include <sys/param.h>
40 #include <sys/fcntl.h>
41 #include <sys/lock.h>
42 #include <sys/flock.h>
43 #include <sys/mount.h>
44 #include <sys/mutex.h>
45 #include <sys/proc.h>
46 #include <sys/syslog.h>
47 #include <sys/systm.h>
48 #include <sys/unistd.h>
49 #include <sys/vnode.h>
50 #include <sys/queue.h>

52 #include <rpcsvc/nlm_prot.h>

54 #include <nfs/nfs.h>
55 #include <nfs/nfs_clnt.h>
56 #include <nfs/export.h>
57 #include <nfs/rnode.h>

new/usr/src/uts/common/klm/nlm_rpc_clnt.c 2

59 #include "nlm_impl.h"

61 static void
62 nlm_convert_to_nlm_lock(struct nlm_lock *dst, struct nlm4_lock *src)
63 {
64 dst->caller_name = src->caller_name;
65 dst->fh = src->fh;
66 dst->oh = src->oh;
67 dst->svid = src->svid;
68 dst->l_offset = src->l_offset;
69 dst->l_len = src->l_len;
70 }

72 static void
73 nlm_convert_to_nlm4_holder(struct nlm4_holder *dst, struct nlm_holder *src)
74 {
75 dst->exclusive = src->exclusive;
76 dst->svid = src->svid;
77 dst->oh = src->oh;
78 dst->l_offset = src->l_offset;
79 dst->l_len = src->l_len;
80 }

82 static void
83 nlm_convert_to_nlm4_res(struct nlm4_res *dst, struct nlm_res *src)
84 {
85 dst->cookie = src->cookie;
86 dst->stat.stat = (enum nlm4_stats) src->stat.stat;
87 }

89 enum clnt_stat
90 nlm_test_rpc(nlm4_testargs *args, nlm4_testres *res,
91 CLIENT *client, rpcvers_t vers)
92 {
93 if (vers == NLM4_VERS) {
94 return (nlm4_test_4(args, res, client));
95 } else {
96 nlm_testargs args1;
97 nlm_testres res1;
98 enum clnt_stat stat;

100 args1.cookie = args->cookie;
101 args1.exclusive = args->exclusive;
102 nlm_convert_to_nlm_lock(&args1.alock, &args->alock);
103 (void) memset(&res1, 0, sizeof (res1));

105 stat = nlm_test_1(&args1, &res1, client);

107 if (stat == RPC_SUCCESS) {
108 res->cookie = res1.cookie;
109 res->stat.stat = (enum nlm4_stats) res1.stat.stat;
110 if (res1.stat.stat == nlm_denied)
111 nlm_convert_to_nlm4_holder(
112 &res->stat.nlm4_testrply_u.holder,
113 &res1.stat.nlm_testrply_u.holder);
114 }

116 return (stat);
117 }
118 }

120 enum clnt_stat
121 nlm_lock_rpc(nlm4_lockargs *args, nlm4_res *res,
122 CLIENT *client, rpcvers_t vers)
123 {
124 if (vers == NLM4_VERS) {

new/usr/src/uts/common/klm/nlm_rpc_clnt.c 3

125 return (nlm4_lock_4(args, res, client));
126 } else {
127 nlm_lockargs args1;
128 nlm_res res1;
129 enum clnt_stat stat;

131 args1.cookie = args->cookie;
132 args1.block = args->block;
133 args1.exclusive = args->exclusive;
134 nlm_convert_to_nlm_lock(&args1.alock, &args->alock);
135 args1.reclaim = args->reclaim;
136 args1.state = args->state;
137 (void) memset(&res1, 0, sizeof (res1));

139 stat = nlm_lock_1(&args1, &res1, client);

141 if (stat == RPC_SUCCESS) {
142 nlm_convert_to_nlm4_res(res, &res1);
143 }

145 return (stat);
146 }
147 }

149 enum clnt_stat
150 nlm_cancel_rpc(nlm4_cancargs *args, nlm4_res *res,
151 CLIENT *client, rpcvers_t vers)
152 {
153 if (vers == NLM4_VERS) {
154 return (nlm4_cancel_4(args, res, client));
155 } else {
156 nlm_cancargs args1;
157 nlm_res res1;
158 enum clnt_stat stat;

160 args1.cookie = args->cookie;
161 args1.block = args->block;
162 args1.exclusive = args->exclusive;
163 nlm_convert_to_nlm_lock(&args1.alock, &args->alock);
164 (void) memset(&res1, 0, sizeof (res1));

166 stat = nlm_cancel_1(&args1, &res1, client);

168 if (stat == RPC_SUCCESS) {
169 nlm_convert_to_nlm4_res(res, &res1);
170 }

172 return (stat);
173 }
174 }

176 enum clnt_stat
177 nlm_unlock_rpc(nlm4_unlockargs *args, nlm4_res *res,
178 CLIENT *client, rpcvers_t vers)
179 {
180 if (vers == NLM4_VERS) {
181 return (nlm4_unlock_4(args, res, client));
182 } else {
183 nlm_unlockargs args1;
184 nlm_res res1;
185 enum clnt_stat stat;

187 args1.cookie = args->cookie;
188 nlm_convert_to_nlm_lock(&args1.alock, &args->alock);
189 (void) memset(&res1, 0, sizeof (res1));

new/usr/src/uts/common/klm/nlm_rpc_clnt.c 4

191 stat = nlm_unlock_1(&args1, &res1, client);

193 if (stat == RPC_SUCCESS) {
194 nlm_convert_to_nlm4_res(res, &res1);
195 }

197 return (stat);
198 }
199 }

201 enum clnt_stat
202 nlm_null_rpc(CLIENT *client, rpcvers_t vers)
203 {
204 if (vers == NLM4_VERS)
205 return (nlm4_null_4(NULL, NULL, client));

207 return (nlm_null_1(NULL, NULL, client));
208 }

210 /*
211 * Share reservations
212 */

214 static void
215 nlm_convert_to_nlm_share(struct nlm_share *dst, struct nlm4_share *src)
216 {

218 dst->caller_name = src->caller_name;
219 dst->fh = src->fh;
220 dst->oh = src->oh;
221 dst->mode = src->mode;
222 dst->access = src->access;
223 }

225 static void
226 nlm_convert_to_nlm4_shres(struct nlm4_shareres *dst,
227 struct nlm_shareres *src)
228 {
229 dst->cookie = src->cookie;
230 dst->stat = (enum nlm4_stats) src->stat;
231 dst->sequence = src->sequence;
232 }

235 enum clnt_stat
236 nlm_share_rpc(nlm4_shareargs *args, nlm4_shareres *res,
237 CLIENT *client, rpcvers_t vers)
238 {
239 if (vers == NLM4_VERS) {
240 return (nlm4_share_4(args, res, client));
241 } else {
242 nlm_shareargs args3;
243 nlm_shareres res3;
244 enum clnt_stat stat;

246 args3.cookie = args->cookie;
247 nlm_convert_to_nlm_share(&args3.share, &args->share);
248 args3.reclaim = args->reclaim;
249 (void) memset(&res3, 0, sizeof (res3));

251 stat = nlm_share_3(&args3, &res3, client);

253 if (stat == RPC_SUCCESS) {
254 nlm_convert_to_nlm4_shres(res, &res3);
255 }

new/usr/src/uts/common/klm/nlm_rpc_clnt.c 5

257 return (stat);
258 }
259 }

261 enum clnt_stat
262 nlm_unshare_rpc(nlm4_shareargs *args, nlm4_shareres *res,
263 CLIENT *client, rpcvers_t vers)
264 {
265 if (vers == NLM4_VERS) {
266 return (nlm4_unshare_4(args, res, client));
267 } else {
268 nlm_shareargs args3;
269 nlm_shareres res3;
270 enum clnt_stat stat;

272 args3.cookie = args->cookie;
273 nlm_convert_to_nlm_share(&args3.share, &args->share);
274 args3.reclaim = args->reclaim;
275 (void) memset(&res3, 0, sizeof (res3));

277 stat = nlm_unshare_3(&args3, &res3, client);

279 if (stat == RPC_SUCCESS) {
280 nlm_convert_to_nlm4_shres(res, &res3);
281 }

283 return (stat);
284 }
285 }

new/usr/src/uts/common/klm/nlm_rpc_handle.c 1

**
 9353 Sun Aug 25 23:51:12 2013
new/usr/src/uts/common/klm/nlm_rpc_handle.c
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012 by Delphix. All rights reserved.
25 */

27 #include <sys/param.h>
28 #include <sys/systm.h>
29 #include <sys/socket.h>
30 #include <sys/syslog.h>
31 #include <sys/systm.h>
32 #include <sys/unistd.h>
33 #include <sys/queue.h>
34 #include <sys/sdt.h>
35 #include <netinet/in.h>

37 #include <rpc/rpc.h>
38 #include <rpc/xdr.h>
39 #include <rpc/pmap_prot.h>
40 #include <rpc/pmap_clnt.h>
41 #include <rpc/rpcb_prot.h>

43 #include <rpcsvc/nlm_prot.h>
44 #include <rpcsvc/sm_inter.h>

46 #include "nlm_impl.h"

48 /*
49 * The following errors codes from nlm_null_rpc indicate that the port we have
50 * cached for the client’s NLM service is stale and that we need to establish
51 * a new RPC client.
52 */
53 #define NLM_STALE_CLNT(_status) \
54 ((_status) == RPC_PROGUNAVAIL || \
55 (_status) == RPC_PROGVERSMISMATCH || \
56 (_status) == RPC_PROCUNAVAIL || \
57 (_status) == RPC_CANTCONNECT || \
58 (_status) == RPC_XPRTFAILED)

new/usr/src/uts/common/klm/nlm_rpc_handle.c 2

60 static struct kmem_cache *nlm_rpch_cache = NULL;

62 static int nlm_rpch_ctor(void *, void *, int);
63 static void nlm_rpch_dtor(void *, void *);
64 static void destroy_rpch(nlm_rpc_t *);
65 static nlm_rpc_t *get_nlm_rpc_fromcache(struct nlm_host *, int);
66 static void update_host_rpcbinding(struct nlm_host *, int);
67 static int refresh_nlm_rpc(struct nlm_host *, nlm_rpc_t *);
68 static void nlm_host_rele_rpc_locked(struct nlm_host *, nlm_rpc_t *);

70 static nlm_rpc_t *
71 get_nlm_rpc_fromcache(struct nlm_host *hostp, int vers)
72 {
73 nlm_rpc_t *rpcp;
74 bool_t found = FALSE;

76 ASSERT(MUTEX_HELD(&hostp->nh_lock));
77 if (TAILQ_EMPTY(&hostp->nh_rpchc))
78 return (NULL);

80 TAILQ_FOREACH(rpcp, &hostp->nh_rpchc, nr_link) {
81 if (rpcp->nr_vers == vers) {
82 found = TRUE;
83 break;
84 }
85 }

87 if (!found)
88 return (NULL);

90 TAILQ_REMOVE(&hostp->nh_rpchc, rpcp, nr_link);
91 return (rpcp);
92 }

94 /*
95 * Update host’s RPC binding (host->nh_addr).
96 * The function is executed by only one thread at time.
97 */
98 static void
99 update_host_rpcbinding(struct nlm_host *hostp, int vers)
100 {
101 enum clnt_stat stat;

103 ASSERT(MUTEX_HELD(&hostp->nh_lock));

105 /*
106 * Mark RPC binding state as "update in progress" in order
107 * to say other threads that they need to wait until binding
108 * is fully updated.
109 */
110 hostp->nh_rpcb_state = NRPCB_UPDATE_INPROGRESS;
111 hostp->nh_rpcb_ustat = RPC_SUCCESS;
112 mutex_exit(&hostp->nh_lock);

114 stat = rpcbind_getaddr(&hostp->nh_knc, NLM_PROG, vers, &hostp->nh_addr);
115 mutex_enter(&hostp->nh_lock);

117 hostp->nh_rpcb_state = ((stat == RPC_SUCCESS) ?
118 NRPCB_UPDATED : NRPCB_NEED_UPDATE);

120 hostp->nh_rpcb_ustat = stat;
121 cv_broadcast(&hostp->nh_rpcb_cv);
122 }

124 /*

new/usr/src/uts/common/klm/nlm_rpc_handle.c 3

125 * Refresh RPC handle taken from host handles cache.
126 * This function is called when an RPC handle is either
127 * uninitialized or was initialized using a binding that’s
128 * no longer current.
129 */
130 static int
131 refresh_nlm_rpc(struct nlm_host *hostp, nlm_rpc_t *rpcp)
132 {
133 int ret;

135 if (rpcp->nr_handle == NULL) {
136 bool_t clset = TRUE;

138 ret = clnt_tli_kcreate(&hostp->nh_knc, &hostp->nh_addr,
139 NLM_PROG, rpcp->nr_vers, 0, NLM_RPC_RETRIES,
140 CRED(), &rpcp->nr_handle);

142 /*
143 * Set the client’s CLSET_NODELAYONERR option to true. The
144 * RPC clnt_call interface creates an artificial delay for
145 * certain call errors in order to prevent RPC consumers
146 * from getting into tight retry loops. Since this function is
147 * called by the NLM service routines we would like to avoid
148 * this artificial delay when possible. We do not retry if the
149 * NULL request fails so it is safe for us to turn this option
150 * on.
151 */
152 if (clnt_control(rpcp->nr_handle, CLSET_NODELAYONERR,
153 (char *)&clset)) {
154 NLM_ERR("Unable to set CLSET_NODELAYONERR\n");
155 }
156 } else {
157 ret = clnt_tli_kinit(rpcp->nr_handle, &hostp->nh_knc,
158 &hostp->nh_addr, 0, NLM_RPC_RETRIES, CRED());
159 if (ret == 0) {
160 enum clnt_stat stat;

162 /*
163 * Check whether host’s RPC binding is still
164 * fresh, i.e. if remote program is still sits
165 * on the same port we assume. Call NULL proc
166 * to do it.
167 *
168 * Note: Even though we set no delay on error on the
169 * client handle the call to nlm_null_rpc can still
170 * delay for 10 seconds before returning an error. For
171 * example the no delay on error option is not honored
172 * for RPC_XPRTFAILED errors (see clnt_cots_kcallit).
173 */
174 stat = nlm_null_rpc(rpcp->nr_handle, rpcp->nr_vers);
175 if (NLM_STALE_CLNT(stat)) {
176 ret = ESTALE;
177 }
178 }
179 }

181 return (ret);
182 }

184 /*
185 * Get RPC handle that can be used to talk to the NLM
186 * of given version running on given host.
187 * Saves obtained RPC handle to rpcpp argument.
188 *
189 * If error occures, return nonzero error code.
190 */

new/usr/src/uts/common/klm/nlm_rpc_handle.c 4

191 int
192 nlm_host_get_rpc(struct nlm_host *hostp, int vers, nlm_rpc_t **rpcpp)
193 {
194 nlm_rpc_t *rpcp = NULL;
195 int rc;

197 mutex_enter(&hostp->nh_lock);

199 /*
200 * If this handle is either uninitialized, or was
201 * initialized using binding that’s now stale
202 * do the init or re-init.
203 * See comments to enum nlm_rpcb_state for more
204 * details.
205 */
206 again:
207 while (hostp->nh_rpcb_state != NRPCB_UPDATED) {
208 if (hostp->nh_rpcb_state == NRPCB_UPDATE_INPROGRESS) {
209 rc = cv_wait_sig(&hostp->nh_rpcb_cv, &hostp->nh_lock);
210 if (rc == 0) {
211 mutex_exit(&hostp->nh_lock);
212 return (EINTR);
213 }
214 }

216 /*
217 * Check if RPC binding was marked for update.
218 * If so, start RPC binding update operation.
219 * NOTE: the operation can be executed by only
220 * one thread at time.
221 */
222 if (hostp->nh_rpcb_state == NRPCB_NEED_UPDATE)
223 update_host_rpcbinding(hostp, vers);

225 /*
226 * Check if RPC error occured during RPC binding
227 * update operation. If so, report a correspoding
228 * error.
229 */
230 if (hostp->nh_rpcb_ustat != RPC_SUCCESS) {
231 mutex_exit(&hostp->nh_lock);
232 return (ENOENT);
233 }
234 }

236 rpcp = get_nlm_rpc_fromcache(hostp, vers);
237 mutex_exit(&hostp->nh_lock);
238 if (rpcp == NULL) {
239 /*
240 * There weren’t any RPC handles in a host
241 * cache. No luck, just create a new one.
242 */
243 rpcp = kmem_cache_alloc(nlm_rpch_cache, KM_SLEEP);
244 rpcp->nr_vers = vers;
245 }

247 /*
248 * Refresh RPC binding
249 */
250 rc = refresh_nlm_rpc(hostp, rpcp);
251 if (rc != 0) {
252 if (rc == ESTALE) {
253 /*
254 * Host’s RPC binding is stale, we have
255 * to update it. Put the RPC handle back
256 * to the cache and mark the host as

new/usr/src/uts/common/klm/nlm_rpc_handle.c 5

257 * "need update".
258 */
259 mutex_enter(&hostp->nh_lock);
260 hostp->nh_rpcb_state = NRPCB_NEED_UPDATE;
261 nlm_host_rele_rpc_locked(hostp, rpcp);
262 goto again;
263 }

265 destroy_rpch(rpcp);
266 return (rc);
267 }

269 DTRACE_PROBE2(end, struct nlm_host *, hostp,
270 nlm_rpc_t *, rpcp);

272 *rpcpp = rpcp;
273 return (0);
274 }

276 void
277 nlm_host_rele_rpc(struct nlm_host *hostp, nlm_rpc_t *rpcp)
278 {
279 mutex_enter(&hostp->nh_lock);
280 nlm_host_rele_rpc_locked(hostp, rpcp);
281 mutex_exit(&hostp->nh_lock);
282 }

284 static void
285 nlm_host_rele_rpc_locked(struct nlm_host *hostp, nlm_rpc_t *rpcp)
286 {
287 ASSERT(mutex_owned(&hostp->nh_lock));
288 TAILQ_INSERT_HEAD(&hostp->nh_rpchc, rpcp, nr_link);
289 }

291 /*
292 * The function invalidates host’s RPC binding by marking it
293 * as not fresh. In this case another time thread tries to
294 * get RPC handle from host’s handles cache, host’s RPC binding
295 * will be updated.
296 *
297 * The function should be executed when RPC call invoked via
298 * handle taken from RPC cache returns RPC_PROCUNAVAIL.
299 */
300 void
301 nlm_host_invalidate_binding(struct nlm_host *hostp)
302 {
303 mutex_enter(&hostp->nh_lock);
304 hostp->nh_rpcb_state = NRPCB_NEED_UPDATE;
305 mutex_exit(&hostp->nh_lock);
306 }

308 void
309 nlm_rpc_init(void)
310 {
311 nlm_rpch_cache = kmem_cache_create("nlm_rpch_cache",
312 sizeof (nlm_rpc_t), 0, nlm_rpch_ctor, nlm_rpch_dtor,
313 NULL, NULL, NULL, 0);
314 }

316 void
317 nlm_rpc_cache_destroy(struct nlm_host *hostp)
318 {
319 nlm_rpc_t *rpcp;

321 /*
322 * There’s no need to lock host’s mutex here,

new/usr/src/uts/common/klm/nlm_rpc_handle.c 6

323 * nlm_rpc_cache_destroy() should be called from
324 * only one place: nlm_host_destroy, when all
325 * resources host owns are already cleaned up.
326 * So there shouldn’t be any raises.
327 */
328 while ((rpcp = TAILQ_FIRST(&hostp->nh_rpchc)) != NULL) {
329 TAILQ_REMOVE(&hostp->nh_rpchc, rpcp, nr_link);
330 destroy_rpch(rpcp);
331 }
332 }

334 /* ARGSUSED */
335 static int
336 nlm_rpch_ctor(void *datap, void *cdrarg, int kmflags)
337 {
338 nlm_rpc_t *rpcp = (nlm_rpc_t *)datap;

340 bzero(rpcp, sizeof (*rpcp));
341 return (0);
342 }

344 /* ARGSUSED */
345 static void
346 nlm_rpch_dtor(void *datap, void *cdrarg)
347 {
348 nlm_rpc_t *rpcp = (nlm_rpc_t *)datap;
349 ASSERT(rpcp->nr_handle == NULL);
350 }

352 static void
353 destroy_rpch(nlm_rpc_t *rpcp)
354 {
355 if (rpcp->nr_handle != NULL) {
356 AUTH_DESTROY(rpcp->nr_handle->cl_auth);
357 CLNT_DESTROY(rpcp->nr_handle);
358 rpcp->nr_handle = NULL;
359 }

361 kmem_cache_free(nlm_rpch_cache, rpcp);
362 }

new/usr/src/uts/common/klm/nlm_rpc_svc.c 1

**
 21456 Sun Aug 25 23:51:12 2013
new/usr/src/uts/common/klm/nlm_rpc_svc.c
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3 * Authors: Doug Rabson <dfr@rabson.org>
4 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright

10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */

28 /*
29 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
30 * Copyright (c) 2012 by Delphix. All rights reserved.
31 */

33 /*
34 * NFS Lock Manager, RPC service functions (nlm_..._svc)
35 * Called via nlm_dispatch.c tables.
36 *
37 * Source code derived from FreeBSD nlm_prot_server.c
38 *
39 * The real service functions all use nlm4_... args and return
40 * data types. These wrappers convert older forms to and from
41 * the new forms and call the nlm_do_... service functions.
42 */

44 #include <sys/param.h>
45 #include <sys/systm.h>

47 #include <rpcsvc/nlm_prot.h>
48 #include "nlm_impl.h"

50 /*
51 * Convert between various versions of the protocol structures.
52 */

54 /*
55 * Down-convert, for granted_1 call
56 *
57 * This converts a 64-bit lock to 32-bit form for our granted
58 * call-back when we’re dealing with a 32-bit NLM client.

new/usr/src/uts/common/klm/nlm_rpc_svc.c 2

59 * Our NLM_LOCK handler ensures that any lock we grant to a
60 * 32-bit client can be represented in 32-bits. If the
61 * ASSERTs here fire, then the call to nlm_init_flock in
62 * nlm_do_lock has failed to restrict a 32-bit client to
63 * 32-bit lock ranges.
64 */
65 static void
66 nlm_convert_to_nlm_lock(struct nlm_lock *dst, struct nlm4_lock *src)
67 {
68 dst->caller_name = src->caller_name;
69 dst->fh = src->fh;
70 dst->oh = src->oh;
71 dst->svid = src->svid;
72 ASSERT(src->l_offset <= MAX_UOFF32);
73 dst->l_offset = (uint32_t)src->l_offset;
74 ASSERT(src->l_len <= MAX_UOFF32);
75 dst->l_len = (uint32_t)src->l_len;
76 }

78 /*
79 * Up-convert for v1 svc functions with a 32-bit lock range arg.
80 * Note that lock range checks (like overflow) are done later,
81 * in nlm_init_flock().
82 */
83 static void
84 nlm_convert_to_nlm4_lock(struct nlm4_lock *dst, struct nlm_lock *src)
85 {

87 dst->caller_name = src->caller_name;
88 dst->fh = src->fh;
89 dst->oh = src->oh;
90 dst->svid = src->svid;
91 dst->l_offset = src->l_offset;
92 dst->l_len = src->l_len;
93 }

95 static void
96 nlm_convert_to_nlm4_share(struct nlm4_share *dst, struct nlm_share *src)
97 {

99 dst->caller_name = src->caller_name;
100 dst->fh = src->fh;
101 dst->oh = src->oh;
102 dst->mode = src->mode;
103 dst->access = src->access;
104 }

106 /*
107 * Down-convert for v1 NLM_TEST or NLM_TEST_MSG response.
108 * Note that nlm_do_test is careful to give us lock ranges
109 * that can be represented with 32-bit values. If the
110 * ASSERTs here fire, then the code in nlm_do_test that
111 * builds an nlm4_holder for a 32-bit client has failed to
112 * restrict the reported conflicting lock range so it’s a
113 * valid 32-bit lock range.
114 */
115 static void
116 nlm_convert_to_nlm_holder(struct nlm_holder *dst, struct nlm4_holder *src)
117 {
118 dst->exclusive = src->exclusive;
119 dst->svid = src->svid;
120 dst->oh = src->oh;
121 ASSERT(src->l_offset <= MAX_UOFF32);
122 dst->l_offset = (uint32_t)src->l_offset;
123 ASSERT(src->l_len <= MAX_UOFF32);
124 dst->l_len = (uint32_t)src->l_len;

new/usr/src/uts/common/klm/nlm_rpc_svc.c 3

125 }

127 static enum nlm_stats
128 nlm_convert_to_nlm_stats(enum nlm4_stats src)
129 {
130 if (src > nlm4_deadlck)
131 return (nlm_denied);
132 return ((enum nlm_stats)src);
133 }

135 static void
136 nlm_convert_to_nlm_res(struct nlm_res *dst, struct nlm4_res *src)
137 {
138 dst->cookie = src->cookie;
139 dst->stat.stat = nlm_convert_to_nlm_stats(src->stat.stat);
140 }

142 /* ** */

144 /*
145 * Version 1 svc functions
146 */

148 bool_t
149 nlm_test_1_svc(struct nlm_testargs *argp, nlm_testres *resp,
150 struct svc_req *sr)
151 {
152 nlm4_testargs args4;
153 nlm4_testres res4;

155 bzero(&args4, sizeof (args4));
156 bzero(&res4, sizeof (res4));

158 args4.cookie = argp->cookie;
159 args4.exclusive = argp->exclusive;
160 nlm_convert_to_nlm4_lock(&args4.alock, &argp->alock);

162 nlm_do_test(&args4, &res4, sr, NULL);

164 resp->cookie = res4.cookie;
165 resp->stat.stat = nlm_convert_to_nlm_stats(res4.stat.stat);
166 if (resp->stat.stat == nlm_denied)
167 nlm_convert_to_nlm_holder(
168 &resp->stat.nlm_testrply_u.holder,
169 &res4.stat.nlm4_testrply_u.holder);

171 return (TRUE);
172 }

174 /*
175 * Callback functions for nlm_lock_1_svc
176 */
177 static bool_t nlm_lock_1_reply(SVCXPRT *, nlm4_res *);
178 static enum clnt_stat nlm_granted_1_cb(nlm4_testargs *, void *, CLIENT *);

180 bool_t
181 nlm_lock_1_svc(nlm_lockargs *argp, nlm_res *resp,
182 struct svc_req *sr)
183 {
184 nlm4_lockargs args4;
185 nlm4_res res4;

187 bzero(&res4, sizeof (res4));

189 args4.cookie = argp->cookie;
190 args4.block = argp->block;

new/usr/src/uts/common/klm/nlm_rpc_svc.c 4

191 args4.exclusive = argp->exclusive;
192 nlm_convert_to_nlm4_lock(&args4.alock, &argp->alock);
193 args4.reclaim = argp->reclaim;
194 args4.state = argp->state;

196 /* NLM_LOCK */
197 nlm_do_lock(&args4, &res4, sr,
198 nlm_lock_1_reply, NULL,
199 nlm_granted_1_cb);

201 /* for freeresult */
202 nlm_convert_to_nlm_res(resp, &res4);

204 /* above does its own reply */
205 return (FALSE);
206 }

208 static bool_t
209 nlm_lock_1_reply(SVCXPRT *transp, nlm4_res *resp)
210 {
211 nlm_res res1;

213 nlm_convert_to_nlm_res(&res1, resp);
214 return (svc_sendreply(transp, xdr_nlm_res, (char *)&res1));
215 }

217 static enum clnt_stat
218 nlm_granted_1_cb(nlm4_testargs *argp, void *resp, CLIENT *clnt)
219 {
220 nlm_testargs args1;
221 nlm_res res1;
222 int rv;

224 bzero(&res1, sizeof (res1));

226 args1.cookie = argp->cookie;
227 args1.exclusive = argp->exclusive;
228 nlm_convert_to_nlm_lock(&args1.alock, &argp->alock);

230 rv = nlm_granted_1(&args1, &res1, clnt);

232 /* NB: We have a result our caller will not free. */
233 xdr_free((xdrproc_t)xdr_nlm_res, (void *)&res1);
234 (void) resp;

236 return (rv);
237 }

239 bool_t
240 nlm_cancel_1_svc(struct nlm_cancargs *argp, nlm_res *resp,
241 struct svc_req *sr)
242 {
243 nlm4_cancargs args4;
244 nlm4_res res4;

246 bzero(&res4, sizeof (res4));

248 args4.cookie = argp->cookie;
249 args4.block = argp->block;
250 args4.exclusive = argp->exclusive;
251 nlm_convert_to_nlm4_lock(&args4.alock, &argp->alock);

253 nlm_do_cancel(&args4, &res4, sr, NULL);

255 nlm_convert_to_nlm_res(resp, &res4);

new/usr/src/uts/common/klm/nlm_rpc_svc.c 5

257 return (TRUE);
258 }

260 bool_t
261 nlm_unlock_1_svc(struct nlm_unlockargs *argp, nlm_res *resp,
262 struct svc_req *sr)
263 {
264 nlm4_unlockargs args4;
265 nlm4_res res4;

267 bzero(&res4, sizeof (res4));

269 args4.cookie = argp->cookie;
270 nlm_convert_to_nlm4_lock(&args4.alock, &argp->alock);

272 nlm_do_unlock(&args4, &res4, sr, NULL);

274 nlm_convert_to_nlm_res(resp, &res4);

276 return (TRUE);
277 }

279 bool_t
280 nlm_granted_1_svc(struct nlm_testargs *argp, nlm_res *resp,
281 struct svc_req *sr)
282 {
283 nlm4_testargs args4;
284 nlm4_res res4;

286 bzero(&res4, sizeof (res4));

288 args4.cookie = argp->cookie;
289 args4.exclusive = argp->exclusive;
290 nlm_convert_to_nlm4_lock(&args4.alock, &argp->alock);

292 nlm_do_granted(&args4, &res4, sr, NULL);

294 nlm_convert_to_nlm_res(resp, &res4);

296 return (TRUE);
297 }

299 /*
300 * The _msg_ calls get no reply. Instead, these callers
301 * expect an RPC call to the corresponding _res function.
302 * We pass this callback function to nlm_do_test so it will
303 * use it to do the RPC callback, with the correct res type.
304 *
305 * The callback functions have nearly the same arg signature
306 * as the client call functions so that many of those can be
307 * optimized to nothing by the compiler. Also, passing the
308 * null result arg for these just to reduce warnings.
309 *
310 * See similar callbacks for other _msg functions below.
311 */

313 static enum clnt_stat nlm_test_res_1_cb(nlm4_testres *, void *, CLIENT *);

315 bool_t
316 nlm_test_msg_1_svc(struct nlm_testargs *argp, void *resp,
317 struct svc_req *sr)
318 {
319 nlm4_testargs args4;
320 nlm4_testres res4;

322 bzero(&res4, sizeof (res4));

new/usr/src/uts/common/klm/nlm_rpc_svc.c 6

324 args4.cookie = argp->cookie;
325 args4.exclusive = argp->exclusive;
326 nlm_convert_to_nlm4_lock(&args4.alock, &argp->alock);

328 nlm_do_test(&args4, &res4, sr,
329 nlm_test_res_1_cb);

331 /* NB: We have a result our caller will not free. */
332 xdr_free((xdrproc_t)xdr_nlm4_testres, (void *)&res4);
333 (void) resp;

335 /* The _msg_ calls get no reply. */
336 return (FALSE);
337 }

339 static enum clnt_stat
340 nlm_test_res_1_cb(nlm4_testres *res4, void *null, CLIENT *clnt)
341 {
342 nlm_testres res1;

344 res1.cookie = res4->cookie;
345 res1.stat.stat = nlm_convert_to_nlm_stats(res4->stat.stat);
346 if (res1.stat.stat == nlm_denied)
347 nlm_convert_to_nlm_holder(
348 &res1.stat.nlm_testrply_u.holder,
349 &res4->stat.nlm4_testrply_u.holder);

351 return (nlm_test_res_1(&res1, null, clnt));
352 }

354 /*
355 * Callback functions for nlm_lock_msg_1_svc
356 */
357 static enum clnt_stat nlm_lock_res_1_cb(nlm4_res *, void *, CLIENT *);
358 static enum clnt_stat nlm_granted_msg_1_cb(nlm4_testargs *, void *, CLIENT *);

360 bool_t
361 nlm_lock_msg_1_svc(nlm_lockargs *argp, void *resp,
362 struct svc_req *sr)
363 {
364 nlm4_lockargs args4;
365 nlm4_res res4;

367 bzero(&res4, sizeof (res4));

369 args4.cookie = argp->cookie;
370 args4.block = argp->block;
371 args4.exclusive = argp->exclusive;
372 nlm_convert_to_nlm4_lock(&args4.alock, &argp->alock);
373 args4.reclaim = argp->reclaim;
374 args4.state = argp->state;

376 /* NLM_LOCK_MSG */
377 nlm_do_lock(&args4, &res4, sr,
378 NULL, nlm_lock_res_1_cb,
379 nlm_granted_msg_1_cb);

381 /* NB: We have a result our caller will not free. */
382 xdr_free((xdrproc_t)xdr_nlm4_res, (void *)&res4);
383 (void) resp;

385 /* The _msg_ calls get no reply. */
386 return (FALSE);
387 }

new/usr/src/uts/common/klm/nlm_rpc_svc.c 7

389 static enum clnt_stat
390 nlm_lock_res_1_cb(nlm4_res *resp, void *null, CLIENT *clnt)
391 {
392 nlm_res res1;

394 nlm_convert_to_nlm_res(&res1, resp);
395 return (nlm_lock_res_1(&res1, null, clnt));
396 }

398 static enum clnt_stat
399 nlm_granted_msg_1_cb(nlm4_testargs *argp, void *null, CLIENT *clnt)
400 {
401 nlm_testargs args1;

403 args1.cookie = argp->cookie;
404 args1.exclusive = argp->exclusive;
405 nlm_convert_to_nlm_lock(&args1.alock, &argp->alock);

407 return (nlm_granted_msg_1(&args1, null, clnt));

409 }

412 static enum clnt_stat nlm_cancel_res_1_cb(nlm4_res *, void *, CLIENT *);

414 bool_t
415 nlm_cancel_msg_1_svc(struct nlm_cancargs *argp, void *resp,
416 struct svc_req *sr)
417 {
418 nlm4_cancargs args4;
419 nlm4_res res4;

421 bzero(&res4, sizeof (res4));

423 args4.cookie = argp->cookie;
424 args4.block = argp->block;
425 args4.exclusive = argp->exclusive;
426 nlm_convert_to_nlm4_lock(&args4.alock, &argp->alock);

428 nlm_do_cancel(&args4, &res4, sr,
429 nlm_cancel_res_1_cb);

431 /* NB: We have a result our caller will not free. */
432 xdr_free((xdrproc_t)xdr_nlm4_res, (void *)&res4);
433 (void) resp;

435 /* The _msg_ calls get no reply. */
436 return (FALSE);
437 }

439 static enum clnt_stat
440 nlm_cancel_res_1_cb(nlm4_res *res4, void *null, CLIENT *clnt)
441 {
442 nlm_res res1;

444 nlm_convert_to_nlm_res(&res1, res4);
445 return (nlm_cancel_res_1(&res1, null, clnt));
446 }

449 static enum clnt_stat nlm_unlock_res_1_cb(nlm4_res *, void *, CLIENT *);

451 bool_t
452 nlm_unlock_msg_1_svc(struct nlm_unlockargs *argp, void *resp,
453 struct svc_req *sr)
454 {

new/usr/src/uts/common/klm/nlm_rpc_svc.c 8

455 nlm4_unlockargs args4;
456 nlm4_res res4;

458 bzero(&res4, sizeof (res4));

460 args4.cookie = argp->cookie;
461 nlm_convert_to_nlm4_lock(&args4.alock, &argp->alock);

463 nlm_do_unlock(&args4, &res4, sr,
464 nlm_unlock_res_1_cb);

466 /* NB: We have a result our caller will not free. */
467 xdr_free((xdrproc_t)xdr_nlm4_res, (void *)&res4);
468 (void) resp;

470 /* The _msg_ calls get no reply. */
471 return (FALSE);
472 }

474 static enum clnt_stat
475 nlm_unlock_res_1_cb(nlm4_res *res4, void *null, CLIENT *clnt)
476 {
477 nlm_res res1;

479 nlm_convert_to_nlm_res(&res1, res4);
480 return (nlm_unlock_res_1(&res1, null, clnt));
481 }

484 static enum clnt_stat nlm_granted_res_1_cb(nlm4_res *, void *, CLIENT *);

486 bool_t
487 nlm_granted_msg_1_svc(struct nlm_testargs *argp, void *resp,
488 struct svc_req *sr)
489 {
490 nlm4_testargs args4;
491 nlm4_res res4;

493 bzero(&res4, sizeof (res4));

495 args4.cookie = argp->cookie;
496 args4.exclusive = argp->exclusive;
497 nlm_convert_to_nlm4_lock(&args4.alock, &argp->alock);

499 nlm_do_granted(&args4, &res4, sr,
500 nlm_granted_res_1_cb);

502 /* NB: We have a result our caller will not free. */
503 xdr_free((xdrproc_t)xdr_nlm4_res, (void *)&res4);
504 (void) resp;

506 /* The _msg_ calls get no reply. */
507 return (FALSE);
508 }

510 static enum clnt_stat
511 nlm_granted_res_1_cb(nlm4_res *res4, void *null, CLIENT *clnt)
512 {
513 nlm_res res1;

515 nlm_convert_to_nlm_res(&res1, res4);
516 return (nlm_granted_res_1(&res1, null, clnt));
517 }

519 /*
520 * The _res_ calls get no reply. These RPC calls are

new/usr/src/uts/common/klm/nlm_rpc_svc.c 9

521 * "call backs" in response to RPC _msg_ calls.
522 * We don’t care about these responses.
523 */

525 /* ARGSUSED */
526 bool_t
527 nlm_test_res_1_svc(nlm_testres *argp, void *resp, struct svc_req *sr)
528 {
529 /* The _res_ calls get no reply. */
530 return (FALSE);
531 }

533 /* ARGSUSED */
534 bool_t
535 nlm_lock_res_1_svc(nlm_res *argp, void *resp, struct svc_req *sr)
536 {
537 /* The _res_ calls get no reply. */
538 return (FALSE);
539 }

541 /* ARGSUSED */
542 bool_t
543 nlm_cancel_res_1_svc(nlm_res *argp, void *resp, struct svc_req *sr)
544 {
545 /* The _res_ calls get no reply. */
546 return (FALSE);
547 }

549 /* ARGSUSED */
550 bool_t
551 nlm_unlock_res_1_svc(nlm_res *argp, void *resp, struct svc_req *sr)
552 {
553 /* The _res_ calls get no reply. */
554 return (FALSE);
555 }

557 /* ARGSUSED */
558 bool_t
559 nlm_granted_res_1_svc(nlm_res *argp, void *resp, struct svc_req *sr)
560 {
561 /* The _res_ calls get no reply. */
562 return (FALSE);
563 }

565 /*
566 * Version 2 svc functions (used by local statd)
567 */

569 bool_t
570 nlm_sm_notify1_2_svc(struct nlm_sm_status *argp, void *resp,
571 struct svc_req *sr)
572 {
573 nlm_do_notify1(argp, resp, sr);
574 return (TRUE);
575 }

577 bool_t
578 nlm_sm_notify2_2_svc(struct nlm_sm_status *argp, void *resp,
579 struct svc_req *sr)
580 {
581 nlm_do_notify2(argp, resp, sr);
582 return (TRUE);
583 }

585 /*
586 * Version 3 svc functions

new/usr/src/uts/common/klm/nlm_rpc_svc.c 10

587 */

589 bool_t
590 nlm_share_3_svc(nlm_shareargs *argp, nlm_shareres *resp,
591 struct svc_req *sr)
592 {
593 nlm4_shareargs args4;
594 nlm4_shareres res4;

596 bzero(&res4, sizeof (res4));

598 args4.cookie = argp->cookie;
599 nlm_convert_to_nlm4_share(&args4.share, &argp->share);
600 args4.reclaim = argp->reclaim;

602 nlm_do_share(&args4, &res4, sr);

604 resp->cookie = res4.cookie;
605 resp->stat = nlm_convert_to_nlm_stats(res4.stat);
606 resp->sequence = res4.sequence;

608 return (TRUE);
609 }

611 bool_t
612 nlm_unshare_3_svc(nlm_shareargs *argp, nlm_shareres *resp,
613 struct svc_req *sr)
614 {
615 nlm4_shareargs args4;
616 nlm4_shareres res4;

618 bzero(&res4, sizeof (res4));

620 args4.cookie = argp->cookie;
621 nlm_convert_to_nlm4_share(&args4.share, &argp->share);
622 args4.reclaim = argp->reclaim;

624 nlm_do_unshare(&args4, &res4, sr);

626 resp->cookie = res4.cookie;
627 resp->stat = nlm_convert_to_nlm_stats(res4.stat);
628 resp->sequence = res4.sequence;

630 return (TRUE);
631 }

633 bool_t
634 nlm_nm_lock_3_svc(nlm_lockargs *argp, nlm_res *resp, struct svc_req *sr)
635 {
636 nlm4_lockargs args4;
637 nlm4_res res4;

639 bzero(&res4, sizeof (res4));

641 args4.cookie = argp->cookie;
642 args4.block = argp->block;
643 args4.exclusive = argp->exclusive;
644 nlm_convert_to_nlm4_lock(&args4.alock, &argp->alock);
645 args4.reclaim = argp->reclaim;
646 args4.state = argp->state;

648 /*
649 * Don’t allow blocking for non-monitored (nm_lock) calls.
650 * These clients don’t handle any callbacks, including
651 * the granted call we make after a blocking lock.
652 * Same reply callback as nlm_lock_1_svc

new/usr/src/uts/common/klm/nlm_rpc_svc.c 11

653 */
654 args4.block = FALSE;

656 /* NLM_NM_LOCK */
657 nlm_do_lock(&args4, &res4, sr,
658 nlm_lock_1_reply, NULL,
659 NULL); /* indicates non-monitored */

661 /* for freeresult */
662 nlm_convert_to_nlm_res(resp, &res4);

664 /* above does its own reply */
665 return (FALSE);
666 }

668 bool_t
669 nlm_free_all_3_svc(nlm_notify *argp, void *resp, struct svc_req *sr)
670 {
671 struct nlm4_notify args4;

673 args4.name = argp->name;
674 args4.state = argp->state;

676 nlm_do_free_all(&args4, resp, sr);

678 return (TRUE);
679 }

681 /*
682 * Version 4 svc functions
683 */

685 bool_t
686 nlm4_test_4_svc(nlm4_testargs *argp, nlm4_testres *resp, struct svc_req *sr)
687 {
688 nlm_do_test(argp, resp, sr, NULL);
689 return (TRUE);
690 }

692 /*
693 * Callback functions for nlm4_lock_4_svc
694 */
695 static bool_t nlm4_lock_4_reply(SVCXPRT *, nlm4_res *);
696 static enum clnt_stat nlm4_granted_4_cb(nlm4_testargs *, void *, CLIENT *);

698 bool_t
699 nlm4_lock_4_svc(nlm4_lockargs *argp, nlm4_res *resp,
700 struct svc_req *sr)
701 {

703 /* NLM4_LOCK */
704 nlm_do_lock(argp, resp, sr,
705 nlm4_lock_4_reply, NULL,
706 nlm4_granted_4_cb);

708 /* above does its own reply */
709 return (FALSE);
710 }

712 static bool_t
713 nlm4_lock_4_reply(SVCXPRT *transp, nlm4_res *resp)
714 {
715 return (svc_sendreply(transp, xdr_nlm4_res, (char *)resp));
716 }

718 static enum clnt_stat

new/usr/src/uts/common/klm/nlm_rpc_svc.c 12

719 nlm4_granted_4_cb(nlm4_testargs *argp, void *resp, CLIENT *clnt)
720 {
721 nlm4_res res4;
722 int rv;

724 bzero(&res4, sizeof (res4));
725 rv = nlm4_granted_4(argp, &res4, clnt);

727 /* NB: We have a result our caller will not free. */
728 xdr_free((xdrproc_t)xdr_nlm4_res, (void *)&res4);
729 (void) resp;

731 return (rv);
732 }

734 bool_t
735 nlm4_cancel_4_svc(nlm4_cancargs *argp, nlm4_res *resp, struct svc_req *sr)
736 {
737 nlm_do_cancel(argp, resp, sr, NULL);
738 return (TRUE);
739 }

741 bool_t
742 nlm4_unlock_4_svc(nlm4_unlockargs *argp, nlm4_res *resp, struct svc_req *sr)
743 {
744 nlm_do_unlock(argp, resp, sr, NULL);
745 return (TRUE);
746 }

748 bool_t
749 nlm4_granted_4_svc(nlm4_testargs *argp, nlm4_res *resp, struct svc_req *sr)
750 {
751 nlm_do_granted(argp, resp, sr, NULL);
752 return (TRUE);
753 }

755 bool_t
756 nlm4_test_msg_4_svc(nlm4_testargs *argp, void *resp, struct svc_req *sr)
757 {
758 nlm4_testres res4;

760 bzero(&res4, sizeof (res4));
761 nlm_do_test(argp, &res4, sr,
762 nlm4_test_res_4);

764 /* NB: We have a result our caller will not free. */
765 xdr_free((xdrproc_t)xdr_nlm4_testres, (void *)&res4);
766 (void) resp;

768 /* The _msg_ calls get no reply. */
769 return (FALSE);
770 }

772 /*
773 * Callback functions for nlm4_lock_msg_4_svc
774 * (using the RPC client stubs directly)
775 */

777 bool_t
778 nlm4_lock_msg_4_svc(nlm4_lockargs *argp, void *resp,
779 struct svc_req *sr)
780 {
781 nlm4_res res4;

783 /* NLM4_LOCK_MSG */
784 bzero(&res4, sizeof (res4));

new/usr/src/uts/common/klm/nlm_rpc_svc.c 13

785 nlm_do_lock(argp, &res4, sr,
786 NULL, nlm4_lock_res_4,
787 nlm4_granted_msg_4);

789 /* NB: We have a result our caller will not free. */
790 xdr_free((xdrproc_t)xdr_nlm4_res, (void *)&res4);
791 (void) resp;

793 /* The _msg_ calls get no reply. */
794 return (FALSE);
795 }

797 bool_t
798 nlm4_cancel_msg_4_svc(nlm4_cancargs *argp, void *resp, struct svc_req *sr)
799 {
800 nlm4_res res4;

802 bzero(&res4, sizeof (res4));
803 nlm_do_cancel(argp, &res4, sr,
804 nlm4_cancel_res_4);

806 /* NB: We have a result our caller will not free. */
807 xdr_free((xdrproc_t)xdr_nlm4_res, (void *)&res4);
808 (void) resp;

810 /* The _msg_ calls get no reply. */
811 return (FALSE);
812 }

814 bool_t
815 nlm4_unlock_msg_4_svc(nlm4_unlockargs *argp, void *resp, struct svc_req *sr)
816 {
817 nlm4_res res4;

819 bzero(&res4, sizeof (res4));
820 nlm_do_unlock(argp, &res4, sr,
821 nlm4_unlock_res_4);

823 /* NB: We have a result our caller will not free. */
824 xdr_free((xdrproc_t)xdr_nlm4_res, (void *)&res4);
825 (void) resp;

827 /* The _msg_ calls get no reply. */
828 return (FALSE);
829 }

831 bool_t
832 nlm4_granted_msg_4_svc(nlm4_testargs *argp, void *resp, struct svc_req *sr)
833 {
834 nlm4_res res4;

836 bzero(&res4, sizeof (res4));
837 nlm_do_granted(argp, &res4, sr,
838 nlm4_granted_res_4);

840 /* NB: We have a result our caller will not free. */
841 xdr_free((xdrproc_t)xdr_nlm4_res, (void *)&res4);
842 (void) resp;

844 /* The _msg_ calls get no reply. */
845 return (FALSE);
846 }

848 /* ARGSUSED */
849 bool_t
850 nlm4_test_res_4_svc(nlm4_testres *argp, void *resp, struct svc_req *sr)

new/usr/src/uts/common/klm/nlm_rpc_svc.c 14

851 {
852 /* The _res_ calls get no reply. */
853 return (FALSE);
854 }

856 /* ARGSUSED */
857 bool_t
858 nlm4_lock_res_4_svc(nlm4_res *argp, void *resp, struct svc_req *sr)
859 {
860 /* The _res_ calls get no reply. */
861 return (FALSE);
862 }

864 /* ARGSUSED */
865 bool_t
866 nlm4_cancel_res_4_svc(nlm4_res *argp, void *resp, struct svc_req *sr)
867 {
868 /* The _res_ calls get no reply. */
869 return (FALSE);
870 }

872 /* ARGSUSED */
873 bool_t
874 nlm4_unlock_res_4_svc(nlm4_res *argp, void *resp, struct svc_req *sr)
875 {
876 /* The _res_ calls get no reply. */
877 return (FALSE);
878 }

880 /* ARGSUSED */
881 bool_t
882 nlm4_granted_res_4_svc(nlm4_res *argp, void *resp, struct svc_req *sr)
883 {
884 /* The _res_ calls get no reply. */
885 return (FALSE);
886 }

888 /* ARGSUSED */
889 bool_t
890 nlm4_share_4_svc(nlm4_shareargs *argp, nlm4_shareres *resp,
891 struct svc_req *sr)
892 {
893 nlm_do_share(argp, resp, sr);
894 return (TRUE);
895 }

897 /* ARGSUSED */
898 bool_t
899 nlm4_unshare_4_svc(nlm4_shareargs *argp, nlm4_shareres *resp,
900 struct svc_req *sr)
901 {
902 nlm_do_unshare(argp, resp, sr);
903 return (TRUE);
904 }

906 bool_t
907 nlm4_nm_lock_4_svc(nlm4_lockargs *argp, nlm4_res *resp, struct svc_req *sr)
908 {

910 /*
911 * Don’t allow blocking for non-monitored (nm_lock) calls.
912 * These clients don’t handle any callbacks, including
913 * the granted call we make after a blocking lock.
914 * Same reply callback as nlm4_lock_4_svc
915 */
916 argp->block = FALSE;

new/usr/src/uts/common/klm/nlm_rpc_svc.c 15

918 /* NLM4_NM_LOCK */
919 nlm_do_lock(argp, resp, sr,
920 nlm4_lock_4_reply, NULL,
921 NULL); /* indicates non-monitored */

923 /* above does its own reply */
924 return (FALSE);
925 }

927 bool_t
928 nlm4_free_all_4_svc(nlm4_notify *argp, void *resp, struct svc_req *sr)
929 {
930 nlm_do_free_all(argp, resp, sr);
931 return (TRUE);
932 }

new/usr/src/uts/common/klm/nlm_service.c 1

**
 30556 Sun Aug 25 23:51:13 2013
new/usr/src/uts/common/klm/nlm_service.c
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3 * Authors: Doug Rabson <dfr@rabson.org>
4 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright

10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */

28 /*
29 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
30 * Copyright (c) 2012 by Delphix. All rights reserved.
31 */

33 /*
34 * NFS Lock Manager service functions (nlm_do_...)
35 * Called from nlm_rpc_svc.c wrappers.
36 *
37 * Source code derived from FreeBSD nlm_prot_impl.c
38 */

40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/thread.h>
43 #include <sys/fcntl.h>
44 #include <sys/flock.h>
45 #include <sys/mount.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/share.h>
49 #include <sys/socket.h>
50 #include <sys/syscall.h>
51 #include <sys/syslog.h>
52 #include <sys/systm.h>
53 #include <sys/taskq.h>
54 #include <sys/unistd.h>
55 #include <sys/vnode.h>
56 #include <sys/vfs.h>
57 #include <sys/queue.h>
58 #include <sys/sdt.h>

new/usr/src/uts/common/klm/nlm_service.c 2

59 #include <netinet/in.h>

61 #include <rpc/rpc.h>
62 #include <rpc/xdr.h>
63 #include <rpc/pmap_prot.h>
64 #include <rpc/pmap_clnt.h>
65 #include <rpc/rpcb_prot.h>

67 #include <rpcsvc/nlm_prot.h>
68 #include <rpcsvc/sm_inter.h>

70 #include <nfs/nfs.h>
71 #include <nfs/nfs_clnt.h>
72 #include <nfs/export.h>
73 #include <nfs/rnode.h>

75 #include "nlm_impl.h"

77 #define NLM_IN_GRACE(g) (ddi_get_lbolt() < (g)->grace_threshold)

79 struct nlm_block_cb_data {
80 struct nlm_host *hostp;
81 struct nlm_vhold *nvp;
82 struct flock64 *flp;
83 };

85 /*
86 * Invoke an asyncronous RPC callbeck
87 * (used when NLM server needs to reply to MSG NLM procedure).
88 */
89 #define NLM_INVOKE_CALLBACK(descr, rpcp, resp, callb) \
90 do { \
91 enum clnt_stat _stat; \
92 \
93 _stat = (*(callb))(resp, NULL, (rpcp)->nr_handle); \
94 if (_stat != RPC_SUCCESS && _stat != RPC_TIMEDOUT) { \
95 struct rpc_err _err; \
96 \
97 CLNT_GETERR((rpcp)->nr_handle, &_err); \
98 NLM_ERR("NLM: %s callback failed: " \
99 "stat %d, err %d\n", descr, _stat, \
100 _err.re_errno); \
101 } \
102 \
103 _NOTE(CONSTCOND) } while (0)

105 static void nlm_block(
106 nlm4_lockargs *lockargs,
107 struct nlm_host *host,
108 struct nlm_vhold *nvp,
109 nlm_rpc_t *rpcp,
110 struct flock64 *fl,
111 nlm_testargs_cb grant_cb);

113 static vnode_t *nlm_fh_to_vp(struct netobj *);
114 static struct nlm_vhold *nlm_fh_to_vhold(struct nlm_host *, struct netobj *);
115 static void nlm_init_shrlock(struct shrlock *, nlm4_share *, struct nlm_host *);
116 static callb_cpr_t *nlm_block_callback(flk_cb_when_t, void *);
117 static int nlm_vop_frlock(vnode_t *, int, flock64_t *, int, offset_t,
118 struct flk_callback *, cred_t *, caller_context_t *);

120 /*
121 * Convert a lock from network to local form, and
122 * check for valid range (no overflow).
123 */
124 static int

new/usr/src/uts/common/klm/nlm_service.c 3

125 nlm_init_flock(struct flock64 *fl, struct nlm4_lock *nl,
126 struct nlm_host *host, rpcvers_t vers, short type)
127 {
128 uint64_t off, len;

130 bzero(fl, sizeof (*fl));
131 off = nl->l_offset;
132 len = nl->l_len;

134 if (vers < NLM4_VERS) {
135 if (off > MAX_UOFF32 || len > MAX_UOFF32)
136 return (EINVAL);
137 if (off + len > MAX_UOFF32 + 1)
138 return (EINVAL);
139 } else {
140 /*
141 * Check range for 64-bit client (no overflow).
142 * Again allow len == ~0 to mean lock to EOF.
143 */
144 if (len == MAX_U_OFFSET_T)
145 len = 0;
146 if (len != 0 && off + (len - 1) < off)
147 return (EINVAL);
148 }

150 fl->l_type = type;
151 fl->l_whence = SEEK_SET;
152 fl->l_start = off;
153 fl->l_len = len;
154 fl->l_sysid = host->nh_sysid;
155 fl->l_pid = nl->svid;
156 /* l_pad */

158 return (0);
159 }

161 /*
162 * Gets vnode from client’s filehandle
163 * NOTE: Holds vnode, it _must_ be explicitly
164 * released by VN_RELE().
165 */
166 static vnode_t *
167 nlm_fh_to_vp(struct netobj *fh)
168 {
169 fhandle_t *fhp;

171 /*
172 * Get a vnode pointer for the given NFS file handle.
173 * Note that it could be an NFSv2 for NFSv3 handle,
174 * which means the size might vary. (don’t copy)
175 */
176 if (fh->n_len < sizeof (*fhp))
177 return (NULL);

179 /* We know this is aligned (kmem_alloc) */
180 /* LINTED E_BAD_PTR_CAST_ALIGN */
181 fhp = (fhandle_t *)fh->n_bytes;
182 return (lm_fhtovp(fhp));
183 }

185 /*
186 * Get vhold from client’s filehandle, but in contrast to
187 * The function tries to check some access rights as well.
188 *
189 * NOTE: vhold object _must_ be explicitly released by
190 * nlm_vhold_release().

new/usr/src/uts/common/klm/nlm_service.c 4

191 */
192 static struct nlm_vhold *
193 nlm_fh_to_vhold(struct nlm_host *hostp, struct netobj *fh)
194 {
195 vnode_t *vp;
196 struct nlm_vhold *nvp;

198 vp = nlm_fh_to_vp(fh);
199 if (vp == NULL)
200 return (NULL);

203 nvp = nlm_vhold_get(hostp, vp);

205 /*
206 * Both nlm_fh_to_vp() and nlm_vhold_get()
207 * do VN_HOLD(), so we need to drop one
208 * reference on vnode.
209 */
210 VN_RELE(vp);
211 return (nvp);
212 }

214 /* *** */

216 /*
217 * NLM implementation details, called from the RPC svc code.
218 */

220 /*
221 * Call-back from NFS statd, used to notify that one of our
222 * hosts had a status change. The host can be either an
223 * NFS client, NFS server or both.
224 * According to NSM protocol description, the state is a
225 * number that is increases monotonically each time the
226 * state of host changes. An even number indicates that
227 * the host is down, while an odd number indicates that
228 * the host is up.
229 *
230 * Here we ignore this even/odd difference of status number
231 * reported by the NSM, we launch notification handlers
232 * every time the state is changed. The reason we why do so
233 * is that client and server can talk to each other using
234 * connectionless transport and it’s easy to lose packet
235 * containing NSM notification with status number update.
236 *
237 * In nlm_host_monitor(), we put the sysid in the private data
238 * that statd carries in this callback, so we can easliy find
239 * the host this call applies to.
240 */
241 /* ARGSUSED */
242 void
243 nlm_do_notify1(nlm_sm_status *argp, void *res, struct svc_req *sr)
244 {
245 struct nlm_globals *g;
246 struct nlm_host *host;
247 uint16_t sysid;

249 g = zone_getspecific(nlm_zone_key, curzone);
250 bcopy(&argp->priv, &sysid, sizeof (sysid));

252 DTRACE_PROBE2(nsm__notify, uint16_t, sysid,
253 int, argp->state);

255 host = nlm_host_find_by_sysid(g, (sysid_t)sysid);
256 if (host == NULL)

new/usr/src/uts/common/klm/nlm_service.c 5

257 return;

259 nlm_host_notify_server(host, argp->state);
260 nlm_host_notify_client(host, argp->state);
261 nlm_host_release(g, host);
262 }

264 /*
265 * Another available call-back for NFS statd.
266 * Not currently used.
267 */
268 /* ARGSUSED */
269 void
270 nlm_do_notify2(nlm_sm_status *argp, void *res, struct svc_req *sr)
271 {
272 ASSERT(0);
273 }

276 /*
277 * NLM_TEST, NLM_TEST_MSG,
278 * NLM4_TEST, NLM4_TEST_MSG,
279 * Client inquiry about locks, non-blocking.
280 */
281 void
282 nlm_do_test(nlm4_testargs *argp, nlm4_testres *resp,
283 struct svc_req *sr, nlm_testres_cb cb)
284 {
285 struct nlm_globals *g;
286 struct nlm_host *host;
287 struct nlm4_holder *lh;
288 struct nlm_owner_handle *oh;
289 nlm_rpc_t *rpcp = NULL;
290 vnode_t *vp = NULL;
291 struct netbuf *addr;
292 char *netid;
293 char *name;
294 int error;
295 struct flock64 fl;

297 nlm_copy_netobj(&resp->cookie, &argp->cookie);

299 name = argp->alock.caller_name;
300 netid = svc_getnetid(sr->rq_xprt);
301 addr = svc_getrpccaller(sr->rq_xprt);

303 g = zone_getspecific(nlm_zone_key, curzone);
304 host = nlm_host_findcreate(g, name, netid, addr);
305 if (host == NULL) {
306 resp->stat.stat = nlm4_denied_nolocks;
307 return;
308 }
309 if (cb != NULL) {
310 error = nlm_host_get_rpc(host, sr->rq_vers, &rpcp);
311 if (error != 0) {
312 resp->stat.stat = nlm4_denied_nolocks;
313 goto out;
314 }
315 }

317 vp = nlm_fh_to_vp(&argp->alock.fh);
318 if (vp == NULL) {
319 resp->stat.stat = nlm4_stale_fh;
320 goto out;
321 }

new/usr/src/uts/common/klm/nlm_service.c 6

323 if (NLM_IN_GRACE(g)) {
324 resp->stat.stat = nlm4_denied_grace_period;
325 goto out;
326 }

328 /* Convert to local form. */
329 error = nlm_init_flock(&fl, &argp->alock, host, sr->rq_vers,
330 (argp->exclusive) ? F_WRLCK : F_RDLCK);
331 if (error) {
332 resp->stat.stat = nlm4_failed;
333 goto out;
334 }

336 /* BSD: VOP_ADVLOCK(nv->nv_vp, NULL, F_GETLK, &fl, F_REMOTE); */
337 error = nlm_vop_frlock(vp, F_GETLK, &fl,
338 F_REMOTELOCK | FREAD | FWRITE,
339 (u_offset_t)0, NULL, CRED(), NULL);
340 if (error) {
341 resp->stat.stat = nlm4_failed;
342 goto out;
343 }

345 if (fl.l_type == F_UNLCK) {
346 resp->stat.stat = nlm4_granted;
347 goto out;
348 }
349 resp->stat.stat = nlm4_denied;

351 /*
352 * This lock "test" fails due to a conflicting lock.
353 *
354 * If this is a v1 client, make sure the conflicting
355 * lock range we report can be expressed with 32-bit
356 * offsets. The lock range requested was expressed
357 * as 32-bit offset and length, so at least part of
358 * the conflicting lock should lie below MAX_UOFF32.
359 * If the conflicting lock extends past that, we’ll
360 * trim the range to end at MAX_UOFF32 so this lock
361 * can be represented in a 32-bit response. Check
362 * the start also (paranoid, but a low cost check).
363 */
364 if (sr->rq_vers < NLM4_VERS) {
365 uint64 maxlen;
366 if (fl.l_start > MAX_UOFF32)
367 fl.l_start = MAX_UOFF32;
368 maxlen = MAX_UOFF32 + 1 - fl.l_start;
369 if (fl.l_len > maxlen)
370 fl.l_len = maxlen;
371 }

373 /*
374 * Build the nlm4_holder result structure.
375 *
376 * Note that lh->oh is freed via xdr_free,
377 * xdr_nlm4_holder, xdr_netobj, xdr_bytes.
378 */
379 oh = kmem_zalloc(sizeof (*oh), KM_SLEEP);
380 oh->oh_sysid = (sysid_t)fl.l_sysid;
381 lh = &resp->stat.nlm4_testrply_u.holder;
382 lh->exclusive = (fl.l_type == F_WRLCK);
383 lh->svid = fl.l_pid;
384 lh->oh.n_len = sizeof (*oh);
385 lh->oh.n_bytes = (void *)oh;
386 lh->l_offset = fl.l_start;
387 lh->l_len = fl.l_len;

new/usr/src/uts/common/klm/nlm_service.c 7

389 out:
390 /*
391 * If we have a callback funtion, use that to
392 * deliver the response via another RPC call.
393 */
394 if (cb != NULL && rpcp != NULL)
395 NLM_INVOKE_CALLBACK("test", rpcp, resp, cb);

397 if (vp != NULL)
398 VN_RELE(vp);
399 if (rpcp != NULL)
400 nlm_host_rele_rpc(host, rpcp);

402 nlm_host_release(g, host);
403 }

405 /*
406 * NLM_LOCK, NLM_LOCK_MSG, NLM_NM_LOCK
407 * NLM4_LOCK, NLM4_LOCK_MSG, NLM4_NM_LOCK
408 *
409 * Client request to set a lock, possibly blocking.
410 *
411 * If the lock needs to block, we return status blocked to
412 * this RPC call, and then later call back the client with
413 * a "granted" callback. Tricky aspects of this include:
414 * sending a reply before this function returns, and then
415 * borrowing this thread from the RPC service pool for the
416 * wait on the lock and doing the later granted callback.
417 *
418 * We also have to keep a list of locks (pending + granted)
419 * both to handle retransmitted requests, and to keep the
420 * vnodes for those locks active.
421 */
422 void
423 nlm_do_lock(nlm4_lockargs *argp, nlm4_res *resp, struct svc_req *sr,
424 nlm_reply_cb reply_cb, nlm_res_cb res_cb, nlm_testargs_cb grant_cb)
425 {
426 struct nlm_globals *g;
427 struct flock64 fl;
428 struct nlm_host *host = NULL;
429 struct netbuf *addr;
430 struct nlm_vhold *nvp = NULL;
431 nlm_rpc_t *rpcp = NULL;
432 char *netid;
433 char *name;
434 int error, flags;
435 bool_t do_blocking = FALSE;
436 bool_t do_mon_req = FALSE;
437 enum nlm4_stats status;

439 nlm_copy_netobj(&resp->cookie, &argp->cookie);

441 name = argp->alock.caller_name;
442 netid = svc_getnetid(sr->rq_xprt);
443 addr = svc_getrpccaller(sr->rq_xprt);

445 g = zone_getspecific(nlm_zone_key, curzone);
446 host = nlm_host_findcreate(g, name, netid, addr);
447 if (host == NULL) {
448 DTRACE_PROBE4(no__host, struct nlm_globals *, g,
449 char *, name, char *, netid, struct netbuf *, addr);
450 status = nlm4_denied_nolocks;
451 goto doreply;
452 }

454 DTRACE_PROBE3(start, struct nlm_globals *, g,

new/usr/src/uts/common/klm/nlm_service.c 8

455 struct nlm_host *, host, nlm4_lockargs *, argp);

457 /*
458 * If we may need to do _msg_ call needing an RPC
459 * callback, get the RPC client handle now,
460 * so we know if we can bind to the NLM service on
461 * this client.
462 *
463 * Note: host object carries transport type.
464 * One client using multiple transports gets
465 * separate sysids for each of its transports.
466 */
467 if (res_cb != NULL || (grant_cb != NULL && argp->block == TRUE)) {
468 error = nlm_host_get_rpc(host, sr->rq_vers, &rpcp);
469 if (error != 0) {
470 status = nlm4_denied_nolocks;
471 goto doreply;
472 }
473 }

475 /*
476 * During the "grace period", only allow reclaim.
477 */
478 if (argp->reclaim == 0 && NLM_IN_GRACE(g)) {
479 status = nlm4_denied_grace_period;
480 goto doreply;
481 }

483 /*
484 * Check whether we missed host shutdown event
485 */
486 if (nlm_host_get_state(host) != argp->state)
487 nlm_host_notify_server(host, argp->state);

489 /*
490 * Get a hold on the vnode for a lock operation.
491 * Only lock() and share() need vhold objects.
492 */
493 nvp = nlm_fh_to_vhold(host, &argp->alock.fh);
494 if (nvp == NULL) {
495 status = nlm4_stale_fh;
496 goto doreply;
497 }

499 /* Convert to local form. */
500 error = nlm_init_flock(&fl, &argp->alock, host, sr->rq_vers,
501 (argp->exclusive) ? F_WRLCK : F_RDLCK);
502 if (error) {
503 status = nlm4_failed;
504 goto doreply;
505 }

507 /*
508 * Try to lock non-blocking first. If we succeed
509 * getting the lock, we can reply with the granted
510 * status directly and avoid the complications of
511 * making the "granted" RPC callback later.
512 *
513 * This also let’s us find out now about some
514 * possible errors like EROFS, etc.
515 */
516 flags = F_REMOTELOCK | FREAD | FWRITE;
517 error = nlm_vop_frlock(nvp->nv_vp, F_SETLK, &fl, flags,
518 (u_offset_t)0, NULL, CRED(), NULL);

520 DTRACE_PROBE3(setlk__res, struct flock64 *, &fl,

new/usr/src/uts/common/klm/nlm_service.c 9

521 int, flags, int, error);

523 switch (error) {
524 case 0:
525 /* Got it without waiting! */
526 status = nlm4_granted;
527 do_mon_req = TRUE;
528 break;

530 /* EINPROGRESS too? */
531 case EAGAIN:
532 /* We did not get the lock. Should we block? */
533 if (argp->block == FALSE || grant_cb == NULL) {
534 status = nlm4_denied;
535 break;
536 }
537 /*
538 * Should block. Try to reserve this thread
539 * so we can use it to wait for the lock and
540 * later send the granted message. If this
541 * reservation fails, say "no resources".
542 */
543 if (!svc_reserve_thread(sr->rq_xprt)) {
544 status = nlm4_denied_nolocks;
545 break;
546 }
547 /*
548 * OK, can detach this thread, so this call
549 * will block below (after we reply).
550 */
551 status = nlm4_blocked;
552 do_blocking = TRUE;
553 do_mon_req = TRUE;
554 break;

556 case ENOLCK:
557 /* Failed for lack of resources. */
558 status = nlm4_denied_nolocks;
559 break;

561 case EROFS:
562 /* read-only file system */
563 status = nlm4_rofs;
564 break;

566 case EFBIG:
567 /* file too big */
568 status = nlm4_fbig;
569 break;

571 case EDEADLK:
572 /* dead lock condition */
573 status = nlm4_deadlck;
574 break;

576 default:
577 status = nlm4_denied;
578 break;
579 }

581 doreply:
582 resp->stat.stat = status;

584 /*
585 * We get one of two function pointers; one for a
586 * normal RPC reply, and another for doing an RPC

new/usr/src/uts/common/klm/nlm_service.c 10

587 * "callback" _res reply for a _msg function.
588 * Use either of those to send the reply now.
589 *
590 * If sending this reply fails, just leave the
591 * lock in the list for retransmitted requests.
592 * Cleanup is via unlock or host rele (statmon).
593 */
594 if (reply_cb != NULL) {
595 /* i.e. nlm_lock_1_reply */
596 if (!(*reply_cb)(sr->rq_xprt, resp))
597 svcerr_systemerr(sr->rq_xprt);
598 }
599 if (res_cb != NULL && rpcp != NULL)
600 NLM_INVOKE_CALLBACK("lock", rpcp, resp, res_cb);

602 /*
603 * The reply has been sent to the client.
604 * Start monitoring this client (maybe).
605 *
606 * Note that the non-monitored (NM) calls pass grant_cb=NULL
607 * indicating that the client doesn’t support RPC callbacks.
608 * No monitoring for these (lame) clients.
609 */
610 if (do_mon_req && grant_cb != NULL)
611 nlm_host_monitor(g, host, argp->state);

613 if (do_blocking) {
614 /*
615 * We need to block on this lock, and when that
616 * completes, do the granted RPC call. Note that
617 * we "reserved" this thread above, so we can now
618 * "detach" it from the RPC SVC pool, allowing it
619 * to block indefinitely if needed.
620 */
621 ASSERT(rpcp != NULL);
622 (void) svc_detach_thread(sr->rq_xprt);
623 nlm_block(argp, host, nvp, rpcp, &fl, grant_cb);
624 }

626 DTRACE_PROBE3(lock__end, struct nlm_globals *, g,
627 struct nlm_host *, host, nlm4_res *, resp);

629 if (rpcp != NULL)
630 nlm_host_rele_rpc(host, rpcp);

632 nlm_vhold_release(host, nvp);
633 nlm_host_release(g, host);
634 }

636 /*
637 * Helper for nlm_do_lock(), partly for observability,
638 * (we’ll see a call blocked in this function) and
639 * because nlm_do_lock() was getting quite long.
640 */
641 static void
642 nlm_block(nlm4_lockargs *lockargs,
643 struct nlm_host *host,
644 struct nlm_vhold *nvp,
645 nlm_rpc_t *rpcp,
646 struct flock64 *flp,
647 nlm_testargs_cb grant_cb)
648 {
649 nlm4_testargs args;
650 int error;
651 flk_callback_t flk_cb;
652 struct nlm_block_cb_data cb_data;

new/usr/src/uts/common/klm/nlm_service.c 11

654 /*
655 * Keep a list of blocked locks on nh_pending, and use it
656 * to cancel these threads in nlm_destroy_client_pending.
657 *
658 * Check to see if this lock is already in the list
659 * and if not, add an entry for it. Allocate first,
660 * then if we don’t insert, free the new one.
661 * Caller already has vp held.
662 */

664 error = nlm_slreq_register(host, nvp, flp);
665 if (error != 0) {
666 /*
667 * Sleeping lock request with given fl is already
668 * registered by someone else. This means that
669 * some other thread is handling the request, let
670 * him to do its work.
671 */
672 ASSERT(error == EEXIST);
673 return;
674 }

676 cb_data.hostp = host;
677 cb_data.nvp = nvp;
678 cb_data.flp = flp;
679 flk_init_callback(&flk_cb, nlm_block_callback, &cb_data);

681 /* BSD: VOP_ADVLOCK(vp, NULL, F_SETLK, fl, F_REMOTE); */
682 error = nlm_vop_frlock(nvp->nv_vp, F_SETLKW, flp,
683 F_REMOTELOCK | FREAD | FWRITE,
684 (u_offset_t)0, &flk_cb, CRED(), NULL);

686 if (error != 0) {
687 /*
688 * We failed getting the lock, but have no way to
689 * tell the client about that. Let ’em time out.
690 */
691 (void) nlm_slreq_unregister(host, nvp, flp);
692 return;
693 }

695 /*
696 * Do the "granted" call-back to the client.
697 */
698 args.cookie = lockargs->cookie;
699 args.exclusive = lockargs->exclusive;
700 args.alock = lockargs->alock;

702 NLM_INVOKE_CALLBACK("grant", rpcp, &args, grant_cb);
703 }

705 /*
706 * The function that is used as flk callback when NLM server
707 * sets new sleeping lock. The function unregisters NLM
708 * sleeping lock request (nlm_slreq) associated with the
709 * sleeping lock _before_ lock becomes active. It prevents
710 * potential race condition between nlm_block() and
711 * nlm_do_cancel().
712 */
713 static callb_cpr_t *
714 nlm_block_callback(flk_cb_when_t when, void *data)
715 {
716 struct nlm_block_cb_data *cb_data;

718 cb_data = (struct nlm_block_cb_data *)data;

new/usr/src/uts/common/klm/nlm_service.c 12

719 if (when == FLK_AFTER_SLEEP) {
720 (void) nlm_slreq_unregister(cb_data->hostp,
721 cb_data->nvp, cb_data->flp);
722 }

724 return (0);
725 }

727 /*
728 * NLM_CANCEL, NLM_CANCEL_MSG,
729 * NLM4_CANCEL, NLM4_CANCEL_MSG,
730 * Client gives up waiting for a blocking lock.
731 */
732 void
733 nlm_do_cancel(nlm4_cancargs *argp, nlm4_res *resp,
734 struct svc_req *sr, nlm_res_cb cb)
735 {
736 struct nlm_globals *g;
737 struct nlm_host *host;
738 struct netbuf *addr;
739 struct nlm_vhold *nvp = NULL;
740 nlm_rpc_t *rpcp = NULL;
741 char *netid;
742 char *name;
743 int error;
744 struct flock64 fl;

746 nlm_copy_netobj(&resp->cookie, &argp->cookie);
747 netid = svc_getnetid(sr->rq_xprt);
748 addr = svc_getrpccaller(sr->rq_xprt);
749 name = argp->alock.caller_name;

751 g = zone_getspecific(nlm_zone_key, curzone);
752 host = nlm_host_findcreate(g, name, netid, addr);
753 if (host == NULL) {
754 resp->stat.stat = nlm4_denied_nolocks;
755 return;
756 }
757 if (cb != NULL) {
758 error = nlm_host_get_rpc(host, sr->rq_vers, &rpcp);
759 if (error != 0) {
760 resp->stat.stat = nlm4_denied_nolocks;
761 return;
762 }
763 }

765 DTRACE_PROBE3(start, struct nlm_globals *, g,
766 struct nlm_host *, host, nlm4_cancargs *, argp);

768 if (NLM_IN_GRACE(g)) {
769 resp->stat.stat = nlm4_denied_grace_period;
770 goto out;
771 }

773 nvp = nlm_fh_to_vhold(host, &argp->alock.fh);
774 if (nvp == NULL) {
775 resp->stat.stat = nlm4_stale_fh;
776 goto out;
777 }

779 /* Convert to local form. */
780 error = nlm_init_flock(&fl, &argp->alock, host, sr->rq_vers,
781 (argp->exclusive) ? F_WRLCK : F_RDLCK);
782 if (error) {
783 resp->stat.stat = nlm4_failed;
784 goto out;

new/usr/src/uts/common/klm/nlm_service.c 13

785 }

787 error = nlm_slreq_unregister(host, nvp, &fl);
788 if (error != 0) {
789 /*
790 * There’s no sleeping lock request corresponding
791 * to the lock. Then requested sleeping lock
792 * doesn’t exist.
793 */
794 resp->stat.stat = nlm4_denied;
795 goto out;
796 }

798 fl.l_type = F_UNLCK;
799 error = nlm_vop_frlock(nvp->nv_vp, F_SETLK, &fl,
800 F_REMOTELOCK | FREAD | FWRITE,
801 (u_offset_t)0, NULL, CRED(), NULL);

803 resp->stat.stat = (error == 0) ?
804 nlm4_granted : nlm4_denied;

806 out:
807 /*
808 * If we have a callback funtion, use that to
809 * deliver the response via another RPC call.
810 */
811 if (cb != NULL && rpcp != NULL)
812 NLM_INVOKE_CALLBACK("cancel", rpcp, resp, cb);

814 DTRACE_PROBE3(cancel__end, struct nlm_globals *, g,
815 struct nlm_host *, host, nlm4_res *, resp);

817 if (rpcp != NULL)
818 nlm_host_rele_rpc(host, rpcp);

820 nlm_vhold_release(host, nvp);
821 nlm_host_release(g, host);
822 }

824 /*
825 * NLM_UNLOCK, NLM_UNLOCK_MSG,
826 * NLM4_UNLOCK, NLM4_UNLOCK_MSG,
827 * Client removes one of their locks.
828 */
829 void
830 nlm_do_unlock(nlm4_unlockargs *argp, nlm4_res *resp,
831 struct svc_req *sr, nlm_res_cb cb)
832 {
833 struct nlm_globals *g;
834 struct nlm_host *host;
835 struct netbuf *addr;
836 nlm_rpc_t *rpcp = NULL;
837 vnode_t *vp = NULL;
838 char *netid;
839 char *name;
840 int error;
841 struct flock64 fl;

843 nlm_copy_netobj(&resp->cookie, &argp->cookie);

845 netid = svc_getnetid(sr->rq_xprt);
846 addr = svc_getrpccaller(sr->rq_xprt);
847 name = argp->alock.caller_name;

849 /*
850 * NLM_UNLOCK operation doesn’t have an error code

new/usr/src/uts/common/klm/nlm_service.c 14

851 * denoting that operation failed, so we always
852 * return nlm4_granted except when the server is
853 * in a grace period.
854 */
855 resp->stat.stat = nlm4_granted;

857 g = zone_getspecific(nlm_zone_key, curzone);
858 host = nlm_host_findcreate(g, name, netid, addr);
859 if (host == NULL)
860 return;

862 if (cb != NULL) {
863 error = nlm_host_get_rpc(host, sr->rq_vers, &rpcp);
864 if (error != 0)
865 goto out;
866 }

868 DTRACE_PROBE3(start, struct nlm_globals *, g,
869 struct nlm_host *, host, nlm4_unlockargs *, argp);

871 if (NLM_IN_GRACE(g)) {
872 resp->stat.stat = nlm4_denied_grace_period;
873 goto out;
874 }

876 vp = nlm_fh_to_vp(&argp->alock.fh);
877 if (vp == NULL)
878 goto out;

880 /* Convert to local form. */
881 error = nlm_init_flock(&fl, &argp->alock, host, sr->rq_vers, F_UNLCK);
882 if (error)
883 goto out;

885 /* BSD: VOP_ADVLOCK(nv->nv_vp, NULL, F_UNLCK, &fl, F_REMOTE); */
886 error = nlm_vop_frlock(vp, F_SETLK, &fl,
887 F_REMOTELOCK | FREAD | FWRITE,
888 (u_offset_t)0, NULL, CRED(), NULL);

890 DTRACE_PROBE1(unlock__res, int, error);
891 out:
892 /*
893 * If we have a callback funtion, use that to
894 * deliver the response via another RPC call.
895 */
896 if (cb != NULL && rpcp != NULL)
897 NLM_INVOKE_CALLBACK("unlock", rpcp, resp, cb);

899 DTRACE_PROBE3(unlock__end, struct nlm_globals *, g,
900 struct nlm_host *, host, nlm4_res *, resp);

902 if (vp != NULL)
903 VN_RELE(vp);
904 if (rpcp != NULL)
905 nlm_host_rele_rpc(host, rpcp);

907 nlm_host_release(g, host);
908 }

910 /*
911 * NLM_GRANTED, NLM_GRANTED_MSG,
912 * NLM4_GRANTED, NLM4_GRANTED_MSG,
913 *
914 * This service routine is special. It’s the only one that’s
915 * really part of our NLM _client_ support, used by _servers_
916 * to "call back" when a blocking lock from this NLM client

new/usr/src/uts/common/klm/nlm_service.c 15

917 * is granted by the server. In this case, we _know_ there is
918 * already an nlm_host allocated and held by the client code.
919 * We want to find that nlm_host here.
920 *
921 * Over in nlm_call_lock(), the client encoded the sysid for this
922 * server in the "owner handle" netbuf sent with our lock request.
923 * We can now use that to find the nlm_host object we used there.
924 * (NB: The owner handle is opaque to the server.)
925 */
926 void
927 nlm_do_granted(nlm4_testargs *argp, nlm4_res *resp,
928 struct svc_req *sr, nlm_res_cb cb)
929 {
930 struct nlm_globals *g;
931 struct nlm_owner_handle *oh;
932 struct nlm_host *host;
933 nlm_rpc_t *rpcp = NULL;
934 int error;

936 nlm_copy_netobj(&resp->cookie, &argp->cookie);
937 resp->stat.stat = nlm4_denied;

939 g = zone_getspecific(nlm_zone_key, curzone);
940 oh = (void *) argp->alock.oh.n_bytes;
941 if (oh == NULL)
942 return;

944 host = nlm_host_find_by_sysid(g, oh->oh_sysid);
945 if (host == NULL)
946 return;

948 if (cb != NULL) {
949 error = nlm_host_get_rpc(host, sr->rq_vers, &rpcp);
950 if (error != 0)
951 goto out;
952 }

954 if (NLM_IN_GRACE(g)) {
955 resp->stat.stat = nlm4_denied_grace_period;
956 goto out;
957 }

959 error = nlm_slock_grant(g, host, &argp->alock);
960 if (error == 0)
961 resp->stat.stat = nlm4_granted;

963 out:
964 /*
965 * If we have a callback funtion, use that to
966 * deliver the response via another RPC call.
967 */
968 if (cb != NULL && rpcp != NULL)
969 NLM_INVOKE_CALLBACK("do_granted", rpcp, resp, cb);

971 if (rpcp != NULL)
972 nlm_host_rele_rpc(host, rpcp);

974 nlm_host_release(g, host);
975 }

977 /*
978 * NLM_FREE_ALL, NLM4_FREE_ALL
979 *
980 * Destroy all lock state for the calling client.
981 */
982 void

new/usr/src/uts/common/klm/nlm_service.c 16

983 nlm_do_free_all(nlm4_notify *argp, void *res, struct svc_req *sr)
984 {
985 struct nlm_globals *g;
986 struct nlm_host_list host_list;
987 struct nlm_host *hostp;

989 TAILQ_INIT(&host_list);
990 g = zone_getspecific(nlm_zone_key, curzone);

992 /* Serialize calls to clean locks. */
993 mutex_enter(&g->clean_lock);

995 /*
996 * Find all hosts that have the given node name and put them on a
997 * local list.
998 */
999 mutex_enter(&g->lock);

1000 for (hostp = avl_first(&g->nlm_hosts_tree); hostp != NULL;
1001 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp)) {
1002 if (strcasecmp(hostp->nh_name, argp->name) == 0) {
1003 /*
1004 * If needed take the host out of the idle list since
1005 * we are taking a reference.
1006 */
1007 if (hostp->nh_flags & NLM_NH_INIDLE) {
1008 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp,
1009 nh_link);
1010 hostp->nh_flags &= ~NLM_NH_INIDLE;
1011 }
1012 hostp->nh_refs++;

1014 TAILQ_INSERT_TAIL(&host_list, hostp, nh_link);
1015 }
1016 }
1017 mutex_exit(&g->lock);

1019 /* Free locks for all hosts on the local list. */
1020 while (!TAILQ_EMPTY(&host_list)) {
1021 hostp = TAILQ_FIRST(&host_list);
1022 TAILQ_REMOVE(&host_list, hostp, nh_link);

1024 /*
1025 * Note that this does not do client-side cleanup.
1026 * We want to do that ONLY if statd tells us the
1027 * server has restarted.
1028 */
1029 nlm_host_notify_server(hostp, argp->state);
1030 nlm_host_release(g, hostp);
1031 }

1033 mutex_exit(&g->clean_lock);

1035 (void) res;
1036 (void) sr;
1037 }

1039 static void
1040 nlm_init_shrlock(struct shrlock *shr,
1041 nlm4_share *nshare, struct nlm_host *host)
1042 {

1044 switch (nshare->access) {
1045 default:
1046 case fsa_NONE:
1047 shr->s_access = 0;
1048 break;

new/usr/src/uts/common/klm/nlm_service.c 17

1049 case fsa_R:
1050 shr->s_access = F_RDACC;
1051 break;
1052 case fsa_W:
1053 shr->s_access = F_WRACC;
1054 break;
1055 case fsa_RW:
1056 shr->s_access = F_RWACC;
1057 break;
1058 }

1060 switch (nshare->mode) {
1061 default:
1062 case fsm_DN:
1063 shr->s_deny = F_NODNY;
1064 break;
1065 case fsm_DR:
1066 shr->s_deny = F_RDDNY;
1067 break;
1068 case fsm_DW:
1069 shr->s_deny = F_WRDNY;
1070 break;
1071 case fsm_DRW:
1072 shr->s_deny = F_RWDNY;
1073 break;
1074 }

1076 shr->s_sysid = host->nh_sysid;
1077 shr->s_pid = 0;
1078 shr->s_own_len = nshare->oh.n_len;
1079 shr->s_owner = nshare->oh.n_bytes;
1080 }

1082 /*
1083 * NLM_SHARE, NLM4_SHARE
1084 *
1085 * Request a DOS-style share reservation
1086 */
1087 void
1088 nlm_do_share(nlm4_shareargs *argp, nlm4_shareres *resp, struct svc_req *sr)
1089 {
1090 struct nlm_globals *g;
1091 struct nlm_host *host;
1092 struct netbuf *addr;
1093 struct nlm_vhold *nvp = NULL;
1094 char *netid;
1095 char *name;
1096 int error;
1097 struct shrlock shr;

1099 nlm_copy_netobj(&resp->cookie, &argp->cookie);

1101 name = argp->share.caller_name;
1102 netid = svc_getnetid(sr->rq_xprt);
1103 addr = svc_getrpccaller(sr->rq_xprt);

1105 g = zone_getspecific(nlm_zone_key, curzone);
1106 host = nlm_host_findcreate(g, name, netid, addr);
1107 if (host == NULL) {
1108 resp->stat = nlm4_denied_nolocks;
1109 return;
1110 }

1112 DTRACE_PROBE3(share__start, struct nlm_globals *, g,
1113 struct nlm_host *, host, nlm4_shareargs *, argp);

new/usr/src/uts/common/klm/nlm_service.c 18

1115 if (argp->reclaim == 0 && NLM_IN_GRACE(g)) {
1116 resp->stat = nlm4_denied_grace_period;
1117 goto out;
1118 }

1120 /*
1121 * Get holded vnode when on lock operation.
1122 * Only lock() and share() need vhold objects.
1123 */
1124 nvp = nlm_fh_to_vhold(host, &argp->share.fh);
1125 if (nvp == NULL) {
1126 resp->stat = nlm4_stale_fh;
1127 goto out;
1128 }

1130 /* Convert to local form. */
1131 nlm_init_shrlock(&shr, &argp->share, host);
1132 error = VOP_SHRLOCK(nvp->nv_vp, F_SHARE, &shr,
1133 FREAD | FWRITE, CRED(), NULL);

1135 if (error == 0) {
1136 resp->stat = nlm4_granted;
1137 nlm_host_monitor(g, host, 0);
1138 } else {
1139 resp->stat = nlm4_denied;
1140 }

1142 out:
1143 DTRACE_PROBE3(share__end, struct nlm_globals *, g,
1144 struct nlm_host *, host, nlm4_shareres *, resp);

1146 nlm_vhold_release(host, nvp);
1147 nlm_host_release(g, host);
1148 }

1150 /*
1151 * NLM_UNSHARE, NLM4_UNSHARE
1152 *
1153 * Release a DOS-style share reservation
1154 */
1155 void
1156 nlm_do_unshare(nlm4_shareargs *argp, nlm4_shareres *resp, struct svc_req *sr)
1157 {
1158 struct nlm_globals *g;
1159 struct nlm_host *host;
1160 struct netbuf *addr;
1161 vnode_t *vp = NULL;
1162 char *netid;
1163 int error;
1164 struct shrlock shr;

1166 nlm_copy_netobj(&resp->cookie, &argp->cookie);

1168 netid = svc_getnetid(sr->rq_xprt);
1169 addr = svc_getrpccaller(sr->rq_xprt);

1171 g = zone_getspecific(nlm_zone_key, curzone);
1172 host = nlm_host_find(g, netid, addr);
1173 if (host == NULL) {
1174 resp->stat = nlm4_denied_nolocks;
1175 return;
1176 }

1178 DTRACE_PROBE3(unshare__start, struct nlm_globals *, g,
1179 struct nlm_host *, host, nlm4_shareargs *, argp);

new/usr/src/uts/common/klm/nlm_service.c 19

1181 if (NLM_IN_GRACE(g)) {
1182 resp->stat = nlm4_denied_grace_period;
1183 goto out;
1184 }

1186 vp = nlm_fh_to_vp(&argp->share.fh);
1187 if (vp == NULL) {
1188 resp->stat = nlm4_stale_fh;
1189 goto out;
1190 }

1192 /* Convert to local form. */
1193 nlm_init_shrlock(&shr, &argp->share, host);
1194 error = VOP_SHRLOCK(vp, F_UNSHARE, &shr,
1195 FREAD | FWRITE, CRED(), NULL);

1197 (void) error;
1198 resp->stat = nlm4_granted;

1200 out:
1201 DTRACE_PROBE3(unshare__end, struct nlm_globals *, g,
1202 struct nlm_host *, host, nlm4_shareres *, resp);

1204 if (vp != NULL)
1205 VN_RELE(vp);

1207 nlm_host_release(g, host);
1208 }

1210 /*
1211 * NLM wrapper to VOP_FRLOCK that checks the validity of the lock before
1212 * invoking the vnode operation.
1213 */
1214 static int
1215 nlm_vop_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
1216 struct flk_callback *flk_cbp, cred_t *cr, caller_context_t *ct)
1217 {
1218 if (bfp->l_len != 0 && bfp->l_start + (bfp->l_len - 1) < bfp->l_start) {
1219 return (EOVERFLOW);
1220 }

1222 return (VOP_FRLOCK(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
1223 }

new/usr/src/uts/common/klm/nsm_addr_clnt.sed 1

**
 687 Sun Aug 25 23:51:13 2013
new/usr/src/uts/common/klm/nsm_addr_clnt.sed
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy is of the CDDL is also available via the Internet
9 # at http://www.illumos.org/license/CDDL.

10 #
11 #
12 # Copyright (c) 2012 by Delphix. All rights reserved.
13 #

15 #
16 # This sed script is run on the client code generated by rpcgen
17 # from nsm_addr.x before it is compiled.
18 #

20 6{
21 i\
22 #include <sys/param.h>
23 i\
24 #include <sys/systm.h>
25 i\
26 #include <rpcsvc/nsm_addr.h>
27 }
28 /^.include/,/^.endif/d

new/usr/src/uts/common/klm/sm_inter_clnt.sed 1

**
 693 Sun Aug 25 23:51:14 2013
new/usr/src/uts/common/klm/sm_inter_clnt.sed
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy is of the CDDL is also available via the Internet
9 # at http://www.illumos.org/license/CDDL.

10 #
11 #
12 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
13 #

15 #
16 # This sed script is run on the client code generated by rpcgen
17 # from sm_inter.x before it is compiled.
18 #

20 6{
21 i\
22 #include <sys/param.h>
23 i\
24 #include <sys/systm.h>
25 i\
26 #include <rpcsvc/sm_inter.h>
27 }
28 /^.include/,/^.endif/d

new/usr/src/uts/common/nfs/lm.h 1

**
 4867 Sun Aug 25 23:51:14 2013
new/usr/src/uts/common/nfs/lm.h
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
29 */

31 #ifndef _NFS_LM_H
32 #define _NFS_LM_H

30 #pragma ident "%Z%%M% %I% %E% SMI"

34 /*
35 * Interface definitions for the NFSv2/v3 lock manager.
36 */

38 #ifdef __cplusplus
39 extern "C" {
40 #endif

42 #include <sys/cred.h>
43 #include <sys/fcntl.h>
44 #include <sys/types.h>
45 #include <sys/vnode.h>
46 #include <rpc/rpc.h>
45 #include <nfs/export.h>

48 #ifdef _KERNEL

50 /*
51 * Common interfaces.
52 */

54 struct exportinfo;

new/usr/src/uts/common/nfs/lm.h 2

56 /*
57 * The numeric sysid is used to identify a host and transport.
58 *
59 * The local locking code uses (pid, sysid) to uniquely identify a process.
60 * This means that the client-side code must doctor up the sysid before
61 * registering a lock, so that the local locking code doesn’t confuse a
62 * remote process with a local process just because they have the same pid.
63 * We currently do this by ORing LM_SYSID_CLIENT into the sysid before
64 * registering a lock.
65 *
66 * If you change LM_SYSID and LM_SYSID_MAX, be sure to pick values so that
67 * LM_SYSID_MAX > LM_SYSID using signed arithmetic, and don’t use zero.
68 * You may also need a different way to tag lock manager locks that are
69 * registered locally.
70 */
71 #define LM_SYSID ((sysid_t)0x0001)
72 #define LM_SYSID_MAX ((sysid_t)0x3FFF)
73 #define LM_SYSID_CLIENT ((sysid_t)0x4000)
74 #define LM_NOSYSID ((sysid_t)-1)

76 /*
77 * Struct used to represent a host.
78 */
79 struct lm_sysid;

81 /*
82 * Given a knetconfig and network address, returns a reference to the
83 * associated lm_sysid. The 3rd argument is the hostname to assign to the
84 * lm_sysid. The 4th argument is an output parameter. It is set non-zero
85 * if the returned lm_sysid has a different protocol
86 * (knetconfig::knc_proto) than what was requested.
87 */
88 extern struct lm_sysid *lm_get_sysid(struct knetconfig *, struct netbuf *,
89 char *, bool_t *);
90 extern void lm_rel_sysid(struct lm_sysid *);

92 /*
93 * Return the integer sysid for the given lm_sysid.
94 */
95 extern sysid_t lm_sysidt(struct lm_sysid *);

97 extern void lm_free_config(struct knetconfig *);

99 extern void lm_cprsuspend(void);
100 extern void lm_cprresume(void);

102 /*
103 * Client-side interfaces.
104 */

106 extern int lm_frlock(struct vnode *vp, int cmd,
107 struct flock64 *flk, int flag,
108 u_offset_t offset, struct cred *cr,
109 netobj *fh, struct flk_callback *);
110 extern int lm_has_sleep(const struct vnode *);
111 extern void lm_register_lock_locally(vnode_t *,
112 struct lm_sysid *, struct flock64 *, int,
113 u_offset_t);
114 extern int lm_safelock(vnode_t *, const struct flock64 *,
115 cred_t *);
116 extern int lm_safemap(const vnode_t *);
117 extern int lm_shrlock(struct vnode *vp, int cmd,
118 struct shrlock *shr, int flag, netobj *fh);
119 extern int lm4_frlock(struct vnode *vp, int cmd,
120 struct flock64 *flk, int flag,
121 u_offset_t offset, struct cred *cr,

new/usr/src/uts/common/nfs/lm.h 3

122 netobj *fh, struct flk_callback *);
123 extern int lm4_shrlock(struct vnode *vp, int cmd,
124 struct shrlock *shr, int flag, netobj *fh);

126 /*
127 * Server-side interfaces.
128 */

130 extern void lm_unexport(struct exportinfo *);

132 /*
133 * Clustering: functions to encode the nlmid of the node where this NLM
134 * server is running in the l_sysid of the flock struct or the s_sysid
135 * field of the shrlock struct (respectively).
136 */
137 extern void lm_set_nlmid_flk(int *);
138 extern void lm_set_nlmid_shr(int32_t *);
139 /* Hook for deleting all mandatory NFSv4 file locks held by a remote client */
140 extern void (*lm_remove_file_locks)(int);

142 /*
143 * The following global variable is the node id of the node where this
144 * NLM server is running.
145 */
146 extern int lm_global_nlmid;

148 /*
149 * End of clustering hooks.
150 */

152 /*
153 * Return non-zero if the given local vnode is in use.
154 */
155 extern int lm_vp_active(const struct vnode *);

157 extern sysid_t lm_alloc_sysidt(void);
158 extern void lm_free_sysidt(sysid_t);

160 #endif /* _KERNEL */
157 #else /* _KERNEL */

162 #ifdef __STDC__
163 extern int lm_shutdown(void);
164 #else
165 extern int lm_shutdown();
166 #endif /* __STDC__ */

165 #endif /* _KERNEL */

168 #ifdef __cplusplus
169 }

______unchanged_portion_omitted_

new/usr/src/uts/common/os/flock.c 1

**
 107231 Sun Aug 25 23:51:16 2013
new/usr/src/uts/common/os/flock.c
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */

30 /*
31 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
32 */

34 #include <sys/flock_impl.h>
35 #include <sys/vfs.h>
36 #include <sys/t_lock.h> /* for <sys/callb.h> */
37 #include <sys/callb.h>
38 #include <sys/clconf.h>
39 #include <sys/cladm.h>
40 #include <sys/nbmlock.h>
41 #include <sys/cred.h>
42 #include <sys/policy.h>

44 /*
45 * The following four variables are for statistics purposes and they are
46 * not protected by locks. They may not be accurate but will at least be
47 * close to the actual value.
48 */

50 int flk_lock_allocs;
51 int flk_lock_frees;
52 int edge_allocs;
53 int edge_frees;
54 int flk_proc_vertex_allocs;
55 int flk_proc_edge_allocs;
56 int flk_proc_vertex_frees;
57 int flk_proc_edge_frees;

new/usr/src/uts/common/os/flock.c 2

59 static kmutex_t flock_lock;

61 #ifdef DEBUG
62 int check_debug = 0;
63 #define CHECK_ACTIVE_LOCKS(gp) if (check_debug) \
64 check_active_locks(gp);
65 #define CHECK_SLEEPING_LOCKS(gp) if (check_debug) \
66 check_sleeping_locks(gp);
67 #define CHECK_OWNER_LOCKS(gp, pid, sysid, vp) \
68 if (check_debug) \
69 check_owner_locks(gp, pid, sysid, vp);
70 #define CHECK_LOCK_TRANSITION(old_state, new_state) \
71 { \
72 if (check_lock_transition(old_state, new_state)) { \
73 cmn_err(CE_PANIC, "Illegal lock transition \
74 from %d to %d", old_state, new_state); \
75 } \
76 }
77 #else

79 #define CHECK_ACTIVE_LOCKS(gp)
80 #define CHECK_SLEEPING_LOCKS(gp)
81 #define CHECK_OWNER_LOCKS(gp, pid, sysid, vp)
82 #define CHECK_LOCK_TRANSITION(old_state, new_state)

84 #endif /* DEBUG */

86 struct kmem_cache *flk_edge_cache;

88 graph_t *lock_graph[HASH_SIZE];
89 proc_graph_t pgraph;

91 /*
92 * Clustering.
93 *
94 * NLM REGISTRY TYPE IMPLEMENTATION
95 *
96 * Assumptions:
97 * 1. Nodes in a cluster are numbered starting at 1; always non-negative
98 * integers; maximum node id is returned by clconf_maximum_nodeid().
99 * 2. We use this node id to identify the node an NLM server runs on.
100 */

102 /*
103 * NLM registry object keeps track of NLM servers via their
104 * nlmids (which are the node ids of the node in the cluster they run on)
105 * that have requested locks at this LLM with which this registry is
106 * associated.
107 *
108 * Representation of abstraction:
109 * rep = record[states: array[nlm_state],
110 * lock: mutex]
111 *
112 * Representation invariants:
113 * 1. index i of rep.states is between 0 and n - 1 where n is number
114 * of elements in the array, which happen to be the maximum number
115 * of nodes in the cluster configuration + 1.
116 * 2. map nlmid to index i of rep.states
117 * 0 -> 0
118 * 1 -> 1
119 * 2 -> 2
120 * n-1 -> clconf_maximum_nodeid()+1
121 * 3. This 1-1 mapping is quite convenient and it avoids errors resulting
122 * from forgetting to subtract 1 from the index.
123 * 4. The reason we keep the 0th index is the following. A legitimate
124 * cluster configuration includes making a UFS file system NFS

new/usr/src/uts/common/os/flock.c 3

125 * exportable. The code is structured so that if you’re in a cluster
126 * you do one thing; otherwise, you do something else. The problem
127 * is what to do if you think you’re in a cluster with PXFS loaded,
128 * but you’re using UFS not PXFS? The upper two bytes of the sysid
129 * encode the node id of the node where NLM server runs; these bytes
130 * are zero for UFS. Since the nodeid is used to index into the
131 * registry, we can record the NLM server state information at index
132 * 0 using the same mechanism used for PXFS file locks!
133 */
134 static flk_nlm_status_t *nlm_reg_status = NULL; /* state array 0..N-1 */
135 static kmutex_t nlm_reg_lock; /* lock to protect arrary */
136 static uint_t nlm_status_size; /* size of state array */

138 /*
139 * Although we need a global lock dependency graph (and associated data
140 * structures), we also need a per-zone notion of whether the lock manager is
141 * running, and so whether to allow lock manager requests or not.
142 *
143 * Thus, on a per-zone basis we maintain a ‘‘global’’ variable
144 * (flk_lockmgr_status), protected by flock_lock, and set when the lock
145 * manager is determined to be changing state (starting or stopping).
146 *
147 * Each graph/zone pair also has a copy of this variable, which is protected by
148 * the graph’s mutex.
149 *
150 * The per-graph copies are used to synchronize lock requests with shutdown
151 * requests. The global copy is used to initialize the per-graph field when a
152 * new graph is created.
153 */
154 struct flock_globals {
155 flk_lockmgr_status_t flk_lockmgr_status;
156 flk_lockmgr_status_t lockmgr_status[HASH_SIZE];
157 };

______unchanged_portion_omitted_

2244 /*
2245 * Determine whether there are any locks for the given vnode with a remote
2246 * sysid. Returns zero if not, non-zero if there are.
2247 *
2248 * Note that the return value from this function is potentially invalid
2249 * once it has been returned. The caller is responsible for providing its
2250 * own synchronization mechanism to ensure that the return value is useful
2251 * (e.g., see nfs_lockcompletion()).
2252 */
2253 int
2254 flk_has_remote_locks(vnode_t *vp)
2255 {
2256 lock_descriptor_t *lock;
2257 int result = 0;
2258 graph_t *gp;

2260 gp = flk_get_lock_graph(vp, FLK_USE_GRAPH);
2261 if (gp == NULL) {
2262 return (0);
2263 }

2265 mutex_enter(&gp->gp_mutex);

2267 SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);

2269 if (lock) {
2270 while (lock->l_vnode == vp) {
2271 if (IS_REMOTE(lock)) {
2272 result = 1;
2273 goto done;
2274 }

new/usr/src/uts/common/os/flock.c 4

2275 lock = lock->l_next;
2276 }
2277 }

2279 SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);

2281 if (lock) {
2282 while (lock->l_vnode == vp) {
2283 if (IS_REMOTE(lock)) {
2284 result = 1;
2285 goto done;
2286 }
2287 lock = lock->l_next;
2288 }
2289 }

2291 done:
2292 mutex_exit(&gp->gp_mutex);
2293 return (result);
2294 }

2296 /*
2297 * Determine whether there are any locks for the given vnode with a remote
2298 * sysid matching given sysid.
2299 * Used by the new (open source) NFS Lock Manager (NLM)
2300 */
2301 int
2302 flk_has_remote_locks_for_sysid(vnode_t *vp, int sysid)
2303 {
2304 lock_descriptor_t *lock;
2305 int result = 0;
2306 graph_t *gp;

2308 if (sysid == 0)
2309 return (0);

2311 gp = flk_get_lock_graph(vp, FLK_USE_GRAPH);
2312 if (gp == NULL) {
2313 return (0);
2314 }

2316 mutex_enter(&gp->gp_mutex);

2318 SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);

2320 if (lock) {
2321 while (lock->l_vnode == vp) {
2322 if (lock->l_flock.l_sysid == sysid) {
2323 result = 1;
2324 goto done;
2325 }
2326 lock = lock->l_next;
2327 }
2328 }

2330 SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);

2332 if (lock) {
2333 while (lock->l_vnode == vp) {
2334 if (lock->l_flock.l_sysid == sysid) {
2335 result = 1;
2336 goto done;
2337 }
2338 lock = lock->l_next;
2339 }
2340 }

new/usr/src/uts/common/os/flock.c 5

2342 done:
2343 mutex_exit(&gp->gp_mutex);
2344 return (result);
2345 }
______unchanged_portion_omitted_

new/usr/src/uts/common/os/share.c 1

**
 16601 Sun Aug 25 23:51:17 2013
new/usr/src/uts/common/os/share.c
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
28 */

30 #include <sys/types.h>
31 #include <sys/sysmacros.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/fcntl.h>
35 #include <sys/vfs.h>
36 #include <sys/vnode.h>
37 #include <sys/share.h>
38 #include <sys/cmn_err.h>
39 #include <sys/kmem.h>
40 #include <sys/debug.h>
41 #include <sys/t_lock.h>
42 #include <sys/errno.h>
43 #include <sys/nbmlock.h>

45 int share_debug = 0;

47 #ifdef DEBUG
48 static void print_shares(struct vnode *);
49 static void print_share(struct shrlock *);
50 #endif

52 static int isreadonly(struct vnode *);
53 static void do_cleanshares(struct vnode *, pid_t, int32_t);

56 /*
57 * Add the share reservation shr to vp.
58 */

new/usr/src/uts/common/os/share.c 2

59 int
60 add_share(struct vnode *vp, struct shrlock *shr)
61 {
62 struct shrlocklist *shrl;

64 /*
65 * An access of zero is not legal, however some older clients
66 * generate it anyways. Allow the request only if it is
67 * coming from a remote system. Be generous in what you
68 * accept and strict in what you send.
69 */
70 if ((shr->s_access == 0) && (GETSYSID(shr->s_sysid) == 0)) {
71 return (EINVAL);
72 }

74 /*
75 * Sanity check to make sure we have valid options.
76 * There is known overlap but it doesn’t hurt to be careful.
77 */
78 if (shr->s_access & ~(F_RDACC|F_WRACC|F_RWACC|F_RMACC|F_MDACC)) {
79 return (EINVAL);
80 }
81 if (shr->s_deny & ~(F_NODNY|F_RDDNY|F_WRDNY|F_RWDNY|F_COMPAT|
82 F_MANDDNY|F_RMDNY)) {
83 return (EINVAL);
84 }

86 mutex_enter(&vp->v_lock);
87 for (shrl = vp->v_shrlocks; shrl != NULL; shrl = shrl->next) {
88 /*
89 * If the share owner matches previous request
90 * do special handling.
91 */
92 if ((shrl->shr->s_sysid == shr->s_sysid) &&
93 (shrl->shr->s_pid == shr->s_pid) &&
94 (shrl->shr->s_own_len == shr->s_own_len) &&
95 bcmp(shrl->shr->s_owner, shr->s_owner,
96 shr->s_own_len) == 0) {

98 /*
99 * If the existing request is F_COMPAT and
100 * is the first share then allow any F_COMPAT
101 * from the same process. Trick: If the existing
102 * F_COMPAT is write access then it must have
103 * the same owner as the first.
104 */
105 if ((shrl->shr->s_deny & F_COMPAT) &&
106 (shr->s_deny & F_COMPAT) &&
107 ((shrl->next == NULL) ||
108 (shrl->shr->s_access & F_WRACC)))
109 break;
110 }

112 /*
113 * If a first share has been done in compatibility mode
114 * handle the special cases.
115 */
116 if ((shrl->shr->s_deny & F_COMPAT) && (shrl->next == NULL)) {

118 if (!(shr->s_deny & F_COMPAT)) {
119 /*
120 * If not compat and want write access or
121 * want to deny read or
122 * write exists, fails
123 */
124 if ((shr->s_access & F_WRACC) ||

new/usr/src/uts/common/os/share.c 3

125 (shr->s_deny & F_RDDNY) ||
126 (shrl->shr->s_access & F_WRACC)) {
127 mutex_exit(&vp->v_lock);
128 return (EAGAIN);
129 }
130 /*
131 * If read only file allow, this may allow
132 * a deny write but that is meaningless on
133 * a read only file.
134 */
135 if (isreadonly(vp))
136 break;
137 mutex_exit(&vp->v_lock);
138 return (EAGAIN);
139 }
140 /*
141 * This is a compat request and read access
142 * and the first was also read access
143 * we always allow it, otherwise we reject because
144 * we have handled the only valid write case above.
145 */
146 if ((shr->s_access == F_RDACC) &&
147 (shrl->shr->s_access == F_RDACC))
148 break;
149 mutex_exit(&vp->v_lock);
150 return (EAGAIN);
151 }

153 /*
154 * If we are trying to share in compatibility mode
155 * and the current share is compat (and not the first)
156 * we don’t know enough.
157 */
158 if ((shrl->shr->s_deny & F_COMPAT) && (shr->s_deny & F_COMPAT))
159 continue;

161 /*
162 * If this is a compat we check for what can’t succeed.
163 */
164 if (shr->s_deny & F_COMPAT) {
165 /*
166 * If we want write access or
167 * if anyone is denying read or
168 * if anyone has write access we fail
169 */
170 if ((shr->s_access & F_WRACC) ||
171 (shrl->shr->s_deny & F_RDDNY) ||
172 (shrl->shr->s_access & F_WRACC)) {
173 mutex_exit(&vp->v_lock);
174 return (EAGAIN);
175 }
176 /*
177 * If the first was opened with only read access
178 * and is a read only file we allow.
179 */
180 if (shrl->next == NULL) {
181 if ((shrl->shr->s_access == F_RDACC) &&
182 isreadonly(vp)) {
183 break;
184 }
185 mutex_exit(&vp->v_lock);
186 return (EAGAIN);
187 }
188 /*
189 * We still can’t determine our fate so continue
190 */

new/usr/src/uts/common/os/share.c 4

191 continue;
192 }

194 /*
195 * Simple bitwise test, if we are trying to access what
196 * someone else is denying or we are trying to deny
197 * what someone else is accessing we fail.
198 */
199 if ((shr->s_access & shrl->shr->s_deny) ||
200 (shr->s_deny & shrl->shr->s_access)) {
201 mutex_exit(&vp->v_lock);
202 return (EAGAIN);
203 }
204 }

206 shrl = kmem_alloc(sizeof (struct shrlocklist), KM_SLEEP);
207 shrl->shr = kmem_alloc(sizeof (struct shrlock), KM_SLEEP);
208 shrl->shr->s_access = shr->s_access;
209 shrl->shr->s_deny = shr->s_deny;

211 /*
212 * Make sure no other deny modes are also set with F_COMPAT
213 */
214 if (shrl->shr->s_deny & F_COMPAT)
215 shrl->shr->s_deny = F_COMPAT;
216 shrl->shr->s_sysid = shr->s_sysid; /* XXX ref cnt? */
217 shrl->shr->s_pid = shr->s_pid;
218 shrl->shr->s_own_len = shr->s_own_len;
219 shrl->shr->s_owner = kmem_alloc(shr->s_own_len, KM_SLEEP);
220 bcopy(shr->s_owner, shrl->shr->s_owner, shr->s_own_len);
221 shrl->next = vp->v_shrlocks;
222 vp->v_shrlocks = shrl;
223 #ifdef DEBUG
224 if (share_debug)
225 print_shares(vp);
226 #endif

228 mutex_exit(&vp->v_lock);

230 return (0);
231 }

______unchanged_portion_omitted_

337 /*
338 * Clean up all local share reservations that the given process has with
339 * the given file.
340 */
341 void
342 cleanshares(struct vnode *vp, pid_t pid)
343 {
344 do_cleanshares(vp, pid, 0);
345 }

347 /*
348 * Cleanup all remote share reservations that
349 * were made by the given sysid on given vnode.
350 */
351 void
352 cleanshares_by_sysid(struct vnode *vp, int32_t sysid)
353 {
354 if (sysid == 0)
355 return;

357 do_cleanshares(vp, 0, sysid);
358 }

new/usr/src/uts/common/os/share.c 5

360 /*
361 * Cleanup share reservations on given vnode made
362 * by the either given pid or sysid.
363 * If sysid is 0, remove all shares made by given pid,
364 * otherwise all shares made by the given sysid will
365 * be removed.
366 */
367 static void
368 do_cleanshares(struct vnode *vp, pid_t pid, int32_t sysid)
369 {
370 struct shrlock shr;

372 if (vp->v_shrlocks == NULL)
373 return;

375 shr.s_access = 0;
376 shr.s_deny = 0;
377 shr.s_pid = pid;
378 shr.s_sysid = sysid;
346 shr.s_sysid = 0;
379 shr.s_own_len = 0;
380 shr.s_owner = NULL;

382 (void) del_share(vp, &shr);
383 }

______unchanged_portion_omitted_

new/usr/src/uts/common/rpcsvc/Makefile 1

**
 2205 Sun Aug 25 23:51:18 2013
new/usr/src/uts/common/rpcsvc/Makefile
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # Copyright (c) 2012 by Delphix. All rights reserved.
26 #
27 # uts/common/rpcsvc/Makefile
28 # This makefile installs system header files that go into
29 # /usr/include/rpcsvc.
30 #
31 # include global definitions
32 include ../../../Makefile.master

34 # Protocol descriptions. Alas, the NFS protocol cannot be expressed
35 # completely via rpcgen. The NLM description should go here some day.
36 # Also, the v3 headers have been hacked so that they no longer
37 # quite reflect what goes over the wire.
38 IDMAP_PROT_X= idmap_prot.x
39 RPCGEN_SRC= autofs_prot.x nlm_prot.x sm_inter.x nsm_addr.x \
40 $(IDMAP_PROT_X)
37 RPCGEN_SRC= autofs_prot.x sm_inter.x nsm_addr.x $(IDMAP_PROT_X)

42 DERIVED_HDRS= $(RPCGEN_SRC:%.x=%.h)

44 ALLHDRS= $(RPCGEN_SRC) $(DERIVED_HDRS)

46 ROOTDIRS= $(ROOT)/usr/include/rpcsvc

48 ROOTHDRS= $(ALLHDRS:%=$(ROOTDIRS)/%)

50 RPCGENFLAGS = -C
51 idmap_prot.h := RPCGENFLAGS += -MN
52 nlm_prot.h := RPCGENFLAGS += -M
53 sm_inter.h := RPCGENFLAGS += -M
54 nsm_addr.h := RPCGENFLAGS += -M

56 $(ROOTDIRS)/%: %
57 $(INS.file)

new/usr/src/uts/common/rpcsvc/Makefile 2

59 .KEEP_STATE:

61 # all_h permits derived headers to be built here in the uts source area
62 # for the kernel to reference, without going so far as to install them.
63 #
64 all_h: $(DERIVED_HDRS)

66 install_h: all_h $(ROOTDIRS) $(ROOTHDRS)

68 clean:
69 $(RM) $(DERIVED_HDRS)

71 clobber: clean

73 # Don’t check rpcgen-derived files.
74 check:

76 $(ROOTDIRS):
77 $(INS.dir)

79 %.h: %.x
80 $(RPCGEN) $(RPCGENFLAGS) -h $< -o $@
71 $(RPCGEN) -C -h $< -o $@

73 idmap_prot.h: $(IDMAP_PROT_X)
74 $(RPCGEN) -CMNh -o $@ $(IDMAP_PROT_X)

new/usr/src/uts/common/rpcsvc/nlm_prot.x 1

**
 9615 Sun Aug 25 23:51:19 2013
new/usr/src/uts/common/rpcsvc/nlm_prot.x
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Network lock manager protocol definition
23 * Copyright (C) 1986, 1992, 1993, 1997, 1999 by Sun Microsystems, Inc.
24 * All rights reserved.
25 *
26 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
27 *
28 * Protocol used between local lock manager and remote lock manager.
29 *
30 * There are currently 3 versions of the protocol in use. Versions 1
31 * and 3 are used with NFS version 2. Version 4 is used with NFS
32 * version 3.
33 *
34 * (Note: there is also a version 2, but it defines an orthogonal set of
35 * procedures that the status monitor uses to notify the lock manager of
36 * changes in monitored systems.)
37 */

38 %#pragma ident "%Z%%M% %I% %E% SMI"

39 #if RPC_HDR
40 %
41 %#include <rpc/rpc_sztypes.h>
42 %
43 #endif

45 #ifdef RPC_HDR
46 %#define LM_MAXSTRLEN 1024
47 %#define LM_MAXNAMELEN (LM_MAXSTRLEN + 1)
48 #endif

50 /*
51 * Types for versions 1 and 3.
52 */

54 /*
55 * Status of a call to the lock manager. The lower case enums violate the

new/usr/src/uts/common/rpcsvc/nlm_prot.x 2

56 * current style guide, but we’re stuck with ’em.
57 */

59 enum nlm_stats {
60 nlm_granted = 0,
61 nlm_denied = 1,
62 nlm_denied_nolocks = 2,
63 nlm_blocked = 3,
64 nlm_denied_grace_period = 4,
65 nlm_deadlck = 5
66 };

______unchanged_portion_omitted_

185 /*
186 * Types for version 4.
187 *
188 * This revision is designed to work with NFS V3. The main changes from
189 * NFS V2 to V3 that affect the NLM protocol are that all file offsets
190 * and sizes are now unsigned 64-bit ints, and file handles are now
191 * variable length. In NLM V1 and V3, the fixed-length V2 file handle
192 * was encoded as a ’netobj’, which is a count followed by the data
193 * bytes. For NLM 4, the file handle is already a count followed by
194 * data bytes, so the handle is copied directly into the netobj, rather
195 * than being encoded with an additional byte count.
196 */

198 /*
199 * Status of a call to the lock manager.
200 */

202 enum nlm4_stats {
203 nlm4_granted = 0, /* lock was granted */
204 nlm4_denied = 1, /* lock was not granted, usually */
204 NLM4_GRANTED = 0, /* lock was granted */
205 NLM4_DENIED = 1, /* lock was not granted, usually */
205 /* due to conflicting lock */
206 nlm4_denied_nolocks = 2, /* not granted: out of resources */
207 nlm4_blocked = 3, /* not granted: expect callback */
207 NLM4_DENIED_NOLOCKS = 2, /* not granted: out of resources */
208 NLM4_BLOCKED = 3, /* not granted: expect callback */
208 /* when granted */
209 nlm4_denied_grace_period = 4, /* not granted: server is */
210 NLM4_DENIED_GRACE_PERIOD = 4, /* not granted: server is */
210 /* reestablishing old locks */
211 nlm4_deadlck = 5, /* not granted: deadlock detected */
212 nlm4_rofs = 6, /* not granted: read-only filesystem */
213 nlm4_stale_fh = 7, /* not granted: stale file handle */
214 nlm4_fbig = 8, /* not granted: offset or length */
212 NLM4_DEADLCK = 5, /* not granted: deadlock detected */
213 NLM4_ROFS = 6, /* not granted: read-only filesystem */
214 NLM4_STALE_FH = 7, /* not granted: stale file handle */
215 NLM4_FBIG = 8, /* not granted: offset or length */
215 /* too big */
216 nlm4_failed = 9 /* not granted: some other error */
217 NLM4_FAILED = 9 /* not granted: some other error */
217 };

______unchanged_portion_omitted_

231 union nlm4_testrply switch (nlm4_stats stat) {
232 case nlm4_denied:
233 case NLM4_DENIED:
233 struct nlm4_holder holder;
234 default:
235 void;
236 };

______unchanged_portion_omitted_

new/usr/src/uts/common/rpcsvc/nlm_prot.x 3

289 #ifdef RPC_HDR
290 %/*
291 % * The following enums are actually bit encoded for efficient
292 % * boolean algebra.... DON’T change them.....
293 % */
294 #endif

296 enum fsh4_mode {
297 FSM_DN = 0, /* deny none */
298 FSM_DR = 1, /* deny read */
299 FSM_DW = 2, /* deny write */
300 FSM_DRW = 3 /* deny read/write */
301 };

303 enum fsh4_access {
304 FSA_NONE = 0, /* for completeness */
305 FSA_R = 1, /* read only */
306 FSA_W = 2, /* write only */
307 FSA_RW = 3 /* read/write */
308 };

288 struct nlm4_share {
289 string caller_name<LM_MAXSTRLEN>;
290 netobj fh;
291 netobj oh;
292 fsh_mode mode;
293 fsh_access access;
314 fsh4_mode mode;
315 fsh4_access access;
294 };

______unchanged_portion_omitted_

313 /*
314 * Argument for the NLM call-back procedure called by rpc.statd
315 * when a monitored host status changes. The statd calls the
316 * NLM prog,vers,proc specified in the SM_MON call.
317 * NB: This struct must exactly match sm_inter.x:sm_status
318 * and requires LM_MAXSTRLEN == SM_MAXSTRLEN
319 */
320 struct nlm_sm_status {
321 string mon_name<LM_MAXSTRLEN>; /* name of host */
322 int32 state; /* new state */
323 opaque priv[16]; /* private data */
324 };

326 /*
327 * Over-the-wire protocol used between the network lock managers
328 */

330 program NLM_PROG {

332 version NLM_VERS {

334 void
335 NLM_NULL(void) = 0;

337 nlm_testres
338 NLM_TEST(nlm_testargs) = 1;

340 nlm_res
341 NLM_LOCK(nlm_lockargs) = 2;

343 nlm_res
344 NLM_CANCEL(nlm_cancargs) = 3;

new/usr/src/uts/common/rpcsvc/nlm_prot.x 4

346 nlm_res
347 NLM_UNLOCK(nlm_unlockargs) = 4;
348 /*
349 * remote lock manager call-back to grant lock
350 */
351 nlm_res
352 NLM_GRANTED(nlm_testargs) = 5;

354 /*
355 * message passing style of requesting lock
356 */

358 void
359 NLM_TEST_MSG(nlm_testargs) = 6;
360 void
361 NLM_LOCK_MSG(nlm_lockargs) = 7;
362 void
363 NLM_CANCEL_MSG(nlm_cancargs) = 8;
364 void
365 NLM_UNLOCK_MSG(nlm_unlockargs) = 9;
366 void
367 NLM_GRANTED_MSG(nlm_testargs) = 10;
368 void
369 NLM_TEST_RES(nlm_testres) = 11;
370 void
371 NLM_LOCK_RES(nlm_res) = 12;
372 void
373 NLM_CANCEL_RES(nlm_res) = 13;
374 void
375 NLM_UNLOCK_RES(nlm_res) = 14;
376 void
377 NLM_GRANTED_RES(nlm_res) = 15;
378 } = 1;

380 /*
381 * Private (loopback-only) call-backs from statd,
382 * used to notify that some machine has restarted.
383 * The meaning of these is up to the lock manager
384 * implemenation. (See the SM_MON calls.)
385 */
386 version NLM_SM {
387 void NLM_SM_NOTIFY1(struct nlm_sm_status) = 17;
388 void NLM_SM_NOTIFY2(struct nlm_sm_status) = 18;
389 } = 2;

391 version NLM_VERSX {
392 nlm_shareres
393 NLM_SHARE(nlm_shareargs) = 20;
394 nlm_shareres
395 NLM_UNSHARE(nlm_shareargs) = 21;
396 nlm_res
397 NLM_NM_LOCK(nlm_lockargs) = 22;
398 void
399 NLM_FREE_ALL(nlm_notify) = 23;
400 } = 3;

402 version NLM4_VERS {
403 void
404 NLM4_NULL(void) = 0;
398 NLMPROC4_NULL(void) = 0;
405 nlm4_testres
406 NLM4_TEST(nlm4_testargs) = 1;
400 NLMPROC4_TEST(nlm4_testargs) = 1;
407 nlm4_res
408 NLM4_LOCK(nlm4_lockargs) = 2;
402 NLMPROC4_LOCK(nlm4_lockargs) = 2;

new/usr/src/uts/common/rpcsvc/nlm_prot.x 5

409 nlm4_res
410 NLM4_CANCEL(nlm4_cancargs) = 3;
404 NLMPROC4_CANCEL(nlm4_cancargs) = 3;
411 nlm4_res
412 NLM4_UNLOCK(nlm4_unlockargs) = 4;
406 NLMPROC4_UNLOCK(nlm4_unlockargs) = 4;
413 /*
414 * remote lock manager call-back to grant lock
415 */
416 nlm4_res
417 NLM4_GRANTED(nlm4_testargs) = 5;
411 NLMPROC4_GRANTED(nlm4_testargs) = 5;

419 /*
420 * message passing style of requesting lock
421 */

423 void
424 NLM4_TEST_MSG(nlm4_testargs) = 6;
418 NLMPROC4_TEST_MSG(nlm4_testargs) = 6;
425 void
426 NLM4_LOCK_MSG(nlm4_lockargs) = 7;
420 NLMPROC4_LOCK_MSG(nlm4_lockargs) = 7;
427 void
428 NLM4_CANCEL_MSG(nlm4_cancargs) = 8;
422 NLMPROC4_CANCEL_MSG(nlm4_cancargs) = 8;
429 void
430 NLM4_UNLOCK_MSG(nlm4_unlockargs) = 9;
424 NLMPROC4_UNLOCK_MSG(nlm4_unlockargs) = 9;
431 void
432 NLM4_GRANTED_MSG(nlm4_testargs) = 10;
426 NLMPROC4_GRANTED_MSG(nlm4_testargs) = 10;
433 void
434 NLM4_TEST_RES(nlm4_testres) = 11;
428 NLMPROC4_TEST_RES(nlm4_testres) = 11;
435 void
436 NLM4_LOCK_RES(nlm4_res) = 12;
430 NLMPROC4_LOCK_RES(nlm4_res) = 12;
437 void
438 NLM4_CANCEL_RES(nlm4_res) = 13;
432 NLMPROC4_CANCEL_RES(nlm4_res) = 13;
439 void
440 NLM4_UNLOCK_RES(nlm4_res) = 14;
434 NLMPROC4_UNLOCK_RES(nlm4_res) = 14;
441 void
442 NLM4_GRANTED_RES(nlm4_res) = 15;
436 NLMPROC4_GRANTED_RES(nlm4_res) = 15;

444 /*
445 * DOS-style file sharing
446 */

448 nlm4_shareres
449 NLM4_SHARE(nlm4_shareargs) = 20;
443 NLMPROC4_SHARE(nlm4_shareargs) = 20;
450 nlm4_shareres
451 NLM4_UNSHARE(nlm4_shareargs) = 21;
445 NLMPROC4_UNSHARE(nlm4_shareargs) = 21;
452 nlm4_res
453 NLM4_NM_LOCK(nlm4_lockargs) = 22;
447 NLMPROC4_NM_LOCK(nlm4_lockargs) = 22;
454 void
455 NLM4_FREE_ALL(nlm4_notify) = 23;
449 NLMPROC4_FREE_ALL(nlm4_notify) = 23;
456 } = 4;

new/usr/src/uts/common/rpcsvc/nlm_prot.x 6

458 } = 100021;
______unchanged_portion_omitted_

new/usr/src/uts/common/rpcsvc/sm_inter.x 1

**
 3331 Sun Aug 25 23:51:21 2013
new/usr/src/uts/common/rpcsvc/sm_inter.x
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 %/*
23 % * Copyright (c) 1986, 1994 by Sun Microsystems, Inc.
24 % * All rights reserved.
25 % */

27 %/* from sm_inter.x */

29 #ifdef RPC_HDR
30 %
31 %#pragma ident "%Z%%M% %I% %E% SMI"
32 %
33 #endif

29 /*
30 * Status monitor protocol specification
31 */

33 program SM_PROG {
34 version SM_VERS {
35 /* res_stat = stat_succ if status monitor agrees to monitor */
36 /* res_stat = stat_fail if status monitor cannot monitor */
37 /* if res_stat == stat_succ, state = state number of site */
38 /* sm_name */
39 struct sm_stat_res SM_STAT(struct sm_name) = 1;

41 /* res_stat = stat_succ if status monitor agrees to monitor */
42 /* res_stat = stat_fail if status monitor cannot monitor */
43 /* stat consists of state number of local site */
44 struct sm_stat_res SM_MON(struct mon) = 2;

46 /* stat consists of state number of local site */
47 struct sm_stat SM_UNMON(struct mon_id) = 3;

49 /* stat consists of state number of local site */
50 struct sm_stat SM_UNMON_ALL(struct my_id) = 4;

52 void SM_SIMU_CRASH(void) = 5;

new/usr/src/uts/common/rpcsvc/sm_inter.x 2

54 void SM_NOTIFY(struct stat_chge) = 6;
55 } = 1;
56 } = 100024;

______unchanged_portion_omitted_

95 enum sm_res {
101 enum res {
96 stat_succ = 0, /* status monitor agrees to monitor */
97 stat_fail = 1 /* status monitor cannot monitor */
98 };

100 struct sm_stat_res {
101 sm_res res_stat;
107 res res_stat;
102 int state;
103 };

105 /*
106 * structure of the status message sent by the status monitor to the
107 * requesting program when a monitored site changes status.
108 */
109 struct sm_status {
115 struct status {
110 string mon_name<SM_MAXSTRLEN>;
111 int state;
112 opaque priv[16]; /* stored private information */
113 };

______unchanged_portion_omitted_

new/usr/src/uts/common/sys/flock.h 1

**
 8612 Sun Aug 25 23:51:22 2013
new/usr/src/uts/common/sys/flock.h
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
23 /* All Rights Reserved */

26 /*
27 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
28 * Use is subject to license terms.
29 */
30 /*
31 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
32 */

34 #ifndef _SYS_FLOCK_H
35 #define _SYS_FLOCK_H

34 #pragma ident "%Z%%M% %I% %E% SMI"

37 #include <sys/types.h>
38 #include <sys/fcntl.h>
39 #include <sys/vnode.h>
40 #include <sys/t_lock.h> /* for <sys/callb.h> */
41 #include <sys/callb.h>
42 #include <sys/param.h>
43 #include <sys/zone.h>

45 #ifdef __cplusplus
46 extern "C" {
47 #endif

49 /*
50 * Private declarations and instrumentation for local locking.
51 */

53 /*
54 * The flag passed to fs_frlock() may be ORed together with either
55 * ‘F_REMOTELOCK’ or ‘F_PXFSLOCK’. Since this flag is initialized using the
56 * ‘f_flag’ field in the ‘file’ structure, and that field is an unsigned short,

new/usr/src/uts/common/sys/flock.h 2

57 * we do not use the first 2 bytes.
58 */
59 #define F_REMOTELOCK (0x01 << 16) /* Set if NLM lock */
60 #define F_PXFSLOCK (0x02 << 16) /* Clustering: set if PXFS lock */

62 /*
63 * The command passed to reclock() is made by ORing together one or more of
64 * the following values.
65 */

67 #define INOFLCK 0x01 /* Vnode is locked when reclock() is called. */
68 #define SETFLCK 0x02 /* Set a file lock. */
69 #define SLPFLCK 0x04 /* Wait if blocked. */
70 #define RCMDLCK 0x08 /* F_REMOTELOCK specified */
71 #define PCMDLCK 0x10 /* Clustering: F_PXFSLOCK specified */
72 #define NBMLCK 0x20 /* non-blocking mandatory locking */

74 /*
75 * Special pid value that can be passed to cleanlocks(). It means that
76 * cleanlocks() should flush all locks for the given sysid, not just the
77 * locks owned by a specific process.
78 */

80 #define IGN_PID (-1)

82 /* file locking structure (connected to vnode) */

84 #define l_end l_len

86 /*
87 * The lock manager is allowed to use unsigned offsets and lengths, though
88 * regular Unix processes are still required to use signed offsets and
89 * lengths.
90 */
91 typedef ulong_t u_off_t;

93 #define MAX_U_OFF_T ((u_off_t)~0)
94 #define MAX_U_OFFSET_T ((u_offset_t)~0)

96 /*
97 * define MAXEND as the largest positive value the signed offset_t will hold.
98 */
99 #define MAXEND MAXOFFSET_T

101 /*
102 * Definitions for accessing the l_pad area of struct flock. The
103 * descriminant of the pad_info_t union is the fcntl command used in
104 * conjunction with the flock struct.
105 */

107 typedef union {
108 int pi_pad[4]; /* (original pad area) */
109 int pi_has_rmt; /* F_HASREMOTELOCKS */
110 } pad_info_t;

______unchanged_portion_omitted_

221 #define FLK_QUERY_ACTIVE 0x1
222 #define FLK_QUERY_SLEEPING 0x2

224 int reclock(struct vnode *, struct flock64 *, int, int, u_offset_t,
225 flk_callback_t *);
226 int chklock(struct vnode *, int, u_offset_t, ssize_t, int,
227 caller_context_t *);
228 int convoff(struct vnode *, struct flock64 *, int, offset_t);
229 void cleanlocks(struct vnode *, pid_t, int);
230 locklist_t *flk_get_sleeping_locks(int sysid, pid_t pid);

new/usr/src/uts/common/sys/flock.h 3

231 locklist_t *flk_get_active_locks(int sysid, pid_t pid);
232 locklist_t *flk_active_locks_for_vp(const struct vnode *vp);
233 locklist_t *flk_active_nbmand_locks_for_vp(const struct vnode *vp);
234 locklist_t *flk_active_nbmand_locks(pid_t pid);
235 void flk_free_locklist(locklist_t *);
236 int flk_convert_lock_data(struct vnode *, struct flock64 *,
237 u_offset_t *, u_offset_t *, offset_t);
238 int flk_check_lock_data(u_offset_t, u_offset_t, offset_t);
239 int flk_has_remote_locks(struct vnode *vp);
240 void flk_set_lockmgr_status(flk_lockmgr_status_t status);
241 int flk_sysid_has_locks(int sysid, int chklck);
242 int flk_has_remote_locks_for_sysid(vnode_t *vp, int);
243 void flk_init_callback(flk_callback_t *,
244 callb_cpr_t *(*)(flk_cb_when_t, void *), void *);
245 void flk_add_callback(flk_callback_t *,
246 callb_cpr_t *(*)(flk_cb_when_t, void *), void *,
247 flk_callback_t *);
248 callb_cpr_t *flk_invoke_callbacks(flk_callback_t *, flk_cb_when_t);

250 /* Zones hooks */
251 extern zone_key_t flock_zone_key;

253 void *flk_zone_init(zoneid_t);
254 void flk_zone_fini(zoneid_t, void *);

256 /* Clustering hooks */
257 void cl_flk_set_nlm_status(int nlmid, flk_nlm_status_t nlm_state);
258 void cl_flk_remove_locks_by_sysid(int sysid);
259 int cl_flk_has_remote_locks_for_nlmid(struct vnode *vp, int nlmid);
260 void cl_flk_change_nlm_state_to_unknown(int nlmid);
261 void cl_flk_delete_pxfs_locks(struct vfs *vfsp, int pxfsid);
262 #endif /* _KERNEL */

264 #ifdef __cplusplus
265 }

______unchanged_portion_omitted_

new/usr/src/uts/common/sys/share.h 1

**
 2135 Sun Aug 25 23:51:23 2013
new/usr/src/uts/common/sys/share.h
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 */
24 /*
25 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
26 * Use is subject to license terms.
27 */

29 #ifndef _SYS_SHARE_H
30 #define _SYS_SHARE_H

32 #include <sys/types.h>

34 #ifdef __cplusplus
35 extern "C" {
36 #endif

38 /*
39 * Maximum size of a shrlock owner.
40 * Must be large enough to handle a netobj.
41 */
42 #define MAX_SHR_OWNER_LEN 1024

44 /*
45 * Contents of shrlock owner field for local share requests
46 */
47 struct shr_locowner {
48 pid_t sl_pid;
49 int sl_id;
50 };

______unchanged_portion_omitted_

66 #if defined(_KERNEL)
67 struct flock64;

69 extern int add_share(struct vnode *, struct shrlock *);
70 extern int del_share(struct vnode *, struct shrlock *);
71 extern void cleanshares(struct vnode *, pid_t);

new/usr/src/uts/common/sys/share.h 2

72 extern void cleanshares_by_sysid(struct vnode *, int32_t);
73 extern int shr_has_remote_shares(vnode_t *, int32_t);
74 extern int proc_has_nbmand_share_on_vp(vnode_t *, pid_t);
75 #endif /* _KERNEL */

77 #ifdef __cplusplus
78 }

______unchanged_portion_omitted_

new/usr/src/uts/intel/Makefile.intel.shared 1

**
 16919 Sun Aug 25 23:51:24 2013
new/usr/src/uts/intel/Makefile.intel.shared
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 # CDDL HEADER START
2 #
3 # The contents of this file are subject to the terms of the
4 # Common Development and Distribution License (the "License").
5 # You may not use this file except in compliance with the License.
6 #
7 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
8 # or http://www.opensolaris.org/os/licensing.
9 # See the License for the specific language governing permissions

10 # and limitations under the License.
11 #
12 # When distributing Covered Code, include this CDDL HEADER in each
13 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
14 # If applicable, add the following below this CDDL HEADER, with the
15 # fields enclosed by brackets "[]" replaced with your own identifying
16 # information: Portions Copyright [yyyy] [name of copyright owner]
17 #
18 # CDDL HEADER END
19 #

21 # Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
22 # Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved.

24 #
25 # This makefile contains the common definitions for all intel
26 # implementation architecture independent modules.
27 #

29 #
30 # Machine type (implementation architecture):
31 #
32 PLATFORM = i86pc

34 #
35 # Everybody needs to know how to build modstubs.o and to locate unix.o.
36 # Note that unix.o must currently be selected from among the possible
37 # "implementation architectures". Note further, that unix.o is only
38 # used as an optional error check for undefines so (theoretically)
39 # any "implementation architectures" could be used. We choose i86pc
40 # because it is the reference port.
41 #
42 UNIX_DIR = $(UTSBASE)/i86pc/unix
43 GENLIB_DIR = $(UTSBASE)/intel/genunix
44 IPDRV_DIR = $(UTSBASE)/intel/ip
45 MODSTUBS_DIR = $(UNIX_DIR)
46 DSF_DIR = $(UTSBASE)/$(PLATFORM)/genassym
47 LINTS_DIR = $(OBJS_DIR)
48 LINT_LIB_DIR = $(UTSBASE)/intel/lint-libs/$(OBJS_DIR)

50 UNIX_O = $(UNIX_DIR)/$(OBJS_DIR)/unix.o
51 GENLIB = $(GENLIB_DIR)/$(OBJS_DIR)/libgenunix.so
52 MODSTUBS_O = $(MODSTUBS_DIR)/$(OBJS_DIR)/modstubs.o
53 LINT_LIB = $(UTSBASE)/i86pc/lint-libs/$(OBJS_DIR)/llib-lunix.ln
54 GEN_LINT_LIB = $(UTSBASE)/intel/lint-libs/$(OBJS_DIR)/llib-lgenunix.ln

56 #
57 # Include the makefiles which define build rule templates, the
58 # collection of files per module, and a few specific flags. Note

new/usr/src/uts/intel/Makefile.intel.shared 2

59 # that order is significant, just as with an include path. The
60 # first build rule template which matches the files name will be
61 # used. By including these in order from most machine dependent
62 # to most machine independent, we allow a machine dependent file
63 # to be used in preference over a machine independent version
64 # (Such as a machine specific optimization, which preserves the
65 # interfaces.)
66 #
67 include $(UTSTREE)/intel/Makefile.files
68 include $(UTSTREE)/common/Makefile.files

70 #
71 # ----- TRANSITIONAL SECTION --
72 #

74 #
75 # Not everything which *should* be a module is a module yet. The
76 # following is a list of such objects which are currently part of
77 # genunix but which might someday become kmods. This must be
78 # defined before we include Makefile.uts, or else genunix’s build
79 # won’t be as parallel as we might like.
80 #
81 NOT_YET_KMODS = $(OLDPTY_OBJS) $(PTY_OBJS) $(VCONS_CONF_OBJS) $(MOD_OBJS)

83 #
84 # ----- END OF TRANSITIONAL SECTION ---
85 #
86 # Include machine independent rules. Note that this does not imply
87 # that the resulting module from rules in Makefile.uts is machine
88 # independent. Only that the build rules are machine independent.
89 #
90 include $(UTSBASE)/Makefile.uts

92 #
93 # The following must be defined for all implementations:
94 #
95 MODSTUBS = $(UTSBASE)/intel/ia32/ml/modstubs.s

97 #
98 # Define supported builds
99 #
100 DEF_BUILDS = $(DEF_BUILDS64) $(DEF_BUILDS32)
101 ALL_BUILDS = $(ALL_BUILDS64) $(ALL_BUILDS32)

103 #
104 # x86 or amd64 inline templates
105 #
106 INLINES_32 = $(UTSBASE)/intel/ia32/ml/ia32.il
107 INLINES_64 = $(UTSBASE)/intel/amd64/ml/amd64.il
108 INLINES += $(INLINES_$(CLASS))

110 #
111 # kernel-specific optimizations; override default in Makefile.master
112 #

114 CFLAGS_XARCH_32 = $(i386_CFLAGS)
115 CFLAGS_XARCH_64 = $(amd64_CFLAGS)
116 CFLAGS_XARCH = $(CFLAGS_XARCH_$(CLASS))

118 COPTFLAG_32 = $(COPTFLAG)
119 COPTFLAG_64 = $(COPTFLAG64)
120 COPTIMIZE = $(COPTFLAG_$(CLASS))

122 CFLAGS = $(CFLAGS_XARCH)
123 CFLAGS += $(COPTIMIZE)
124 CFLAGS += $(INLINES) -D_ASM_INLINES

new/usr/src/uts/intel/Makefile.intel.shared 3

125 CFLAGS += $(CCMODE)
126 CFLAGS += $(SPACEFLAG)
127 CFLAGS += $(CCUNBOUND)
128 CFLAGS += $(CFLAGS_uts)
129 CFLAGS += -xstrconst

131 ASFLAGS_XARCH_32 = $(i386_ASFLAGS)
132 ASFLAGS_XARCH_64 = $(amd64_ASFLAGS)
133 ASFLAGS_XARCH = $(ASFLAGS_XARCH_$(CLASS))

135 ASFLAGS += $(ASFLAGS_XARCH)

137 #
138 # Define the base directory for installation.
139 #
140 BASE_INS_DIR = $(ROOT)

142 #
143 # Debugging level
144 #
145 # Special knowledge of which special debugging options affect which
146 # file is used to optimize the build if these flags are changed.
147 #
148 DEBUG_DEFS_OBJ32 =
149 DEBUG_DEFS_DBG32 = -DDEBUG
150 DEBUG_DEFS_OBJ64 =
151 DEBUG_DEFS_DBG64 = -DDEBUG
152 DEBUG_DEFS = $(DEBUG_DEFS_$(BUILD_TYPE))

154 DEBUG_COND_OBJ32 :sh = echo \\043
155 DEBUG_COND_DBG32 =
156 DEBUG_COND_OBJ64 :sh = echo \\043
157 DEBUG_COND_DBG64 =
158 IF_DEBUG_OBJ = $(DEBUG_COND_$(BUILD_TYPE))$(OBJS_DIR)/

160 $(IF_DEBUG_OBJ)syscall.o := DEBUG_DEFS += -DSYSCALLTRACE
161 $(IF_DEBUG_OBJ)clock.o := DEBUG_DEFS += -DKSLICE=1

163 #
164 # Collect the preprocessor definitions to be associated with *all*
165 # files.
166 #
167 ALL_DEFS = $(DEBUG_DEFS) $(OPTION_DEFS)

169 #
170 # The kernels modules which are "implementation architecture"
171 # specific for this machine are enumerated below. Note that most
172 # of these modules must exist (in one form or another) for each
173 # architecture.
174 #
175 # Common Drivers (usually pseudo drivers) (/kernel/drv)
176 # DRV_KMODS are built both 32-bit and 64-bit
177 # DRV_KMODS_32 are built only 32-bit
178 # DRV_KMODS_64 are built only 64-bit
179 #
180 DRV_KMODS += aac
181 DRV_KMODS += aggr
182 DRV_KMODS += ahci
183 DRV_KMODS += amd64_gart
184 DRV_KMODS += amr
185 DRV_KMODS += agpgart
186 DRV_KMODS += srn
187 DRV_KMODS += agptarget
188 DRV_KMODS += arn
189 DRV_KMODS += arp
190 DRV_KMODS += asy

new/usr/src/uts/intel/Makefile.intel.shared 4

191 DRV_KMODS += ata
192 DRV_KMODS += ath
193 DRV_KMODS += atu
194 DRV_KMODS += audio
195 DRV_KMODS += audio1575
196 DRV_KMODS += audio810
197 DRV_KMODS += audiocmi
198 DRV_KMODS += audiocmihd
199 DRV_KMODS += audioemu10k
200 DRV_KMODS += audioens
201 DRV_KMODS += audiohd
202 DRV_KMODS += audioixp
203 DRV_KMODS += audiols
204 DRV_KMODS += audiop16x
205 DRV_KMODS += audiopci
206 DRV_KMODS += audiosolo
207 DRV_KMODS += audiots
208 DRV_KMODS += audiovia823x
209 DRV_KMODS_32 += audiovia97
210 DRV_KMODS += bl
211 DRV_KMODS += blkdev
212 DRV_KMODS += bge
213 DRV_KMODS += bofi
214 DRV_KMODS += bpf
215 DRV_KMODS += bridge
216 DRV_KMODS += bscbus
217 DRV_KMODS += bscv
218 DRV_KMODS += chxge
219 DRV_KMODS += cxgbe
220 DRV_KMODS += ntxn
221 DRV_KMODS += myri10ge
222 DRV_KMODS += clone
223 DRV_KMODS += cmdk
224 DRV_KMODS += cn
225 DRV_KMODS += conskbd
226 DRV_KMODS += consms
227 DRV_KMODS += cpuid
228 DRV_KMODS += cpunex
229 DRV_KMODS += crypto
230 DRV_KMODS += cryptoadm
231 DRV_KMODS += dca
232 DRV_KMODS += devinfo
233 DRV_KMODS += dld
234 DRV_KMODS += dlpistub
235 DRV_KMODS_32 += dnet
236 DRV_KMODS += dump
237 DRV_KMODS += ecpp
238 DRV_KMODS += emlxs
239 DRV_KMODS += fd
240 DRV_KMODS += fdc
241 DRV_KMODS += fm
242 DRV_KMODS += fssnap
243 DRV_KMODS += hxge
244 DRV_KMODS += i8042
245 DRV_KMODS += i915
246 DRV_KMODS += icmp
247 DRV_KMODS += icmp6
248 DRV_KMODS += intel_nb5000
249 DRV_KMODS += intel_nhm
250 DRV_KMODS += ip
251 DRV_KMODS += ip6
252 DRV_KMODS += ipf
253 DRV_KMODS += ipnet
254 DRV_KMODS += ippctl
255 DRV_KMODS += ipsecah
256 DRV_KMODS += ipsecesp

new/usr/src/uts/intel/Makefile.intel.shared 5

257 DRV_KMODS += ipw
258 DRV_KMODS += iwh
259 DRV_KMODS += iwi
260 DRV_KMODS += iwk
261 DRV_KMODS += iwp
262 DRV_KMODS += iwscn
263 DRV_KMODS += kb8042
264 DRV_KMODS += keysock
265 DRV_KMODS += kssl
266 DRV_KMODS += kstat
267 DRV_KMODS += ksyms
268 DRV_KMODS += kmdb
269 DRV_KMODS += llc1
270 DRV_KMODS += lofi
271 DRV_KMODS += log
272 DRV_KMODS += logindmux
273 DRV_KMODS += mega_sas
274 DRV_KMODS += mc-amd
275 DRV_KMODS += mm
276 DRV_KMODS += mouse8042
277 DRV_KMODS += mpt_sas
278 DRV_KMODS += mr_sas
279 DRV_KMODS += mwl
280 DRV_KMODS += nca
281 DRV_KMODS += nsmb
282 DRV_KMODS += nulldriver
283 DRV_KMODS += nv_sata
284 DRV_KMODS += nxge
285 DRV_KMODS += oce
286 DRV_KMODS += openeepr
287 DRV_KMODS += pci_pci
288 DRV_KMODS += pcic
289 DRV_KMODS += pcieb
290 DRV_KMODS += physmem
291 DRV_KMODS += pcan
292 DRV_KMODS += pcwl
293 DRV_KMODS += pit_beep
294 DRV_KMODS += pm
295 DRV_KMODS += poll
296 DRV_KMODS += pool
297 DRV_KMODS += power
298 DRV_KMODS += pseudo
299 DRV_KMODS += ptc
300 DRV_KMODS += ptm
301 DRV_KMODS += pts
302 DRV_KMODS += ptsl
303 DRV_KMODS += qlge
304 DRV_KMODS += radeon
305 DRV_KMODS += ral
306 DRV_KMODS += ramdisk
307 DRV_KMODS += random
308 DRV_KMODS += rds
309 DRV_KMODS += rdsv3
310 DRV_KMODS += rpcib
311 DRV_KMODS += rsm
312 DRV_KMODS += rts
313 DRV_KMODS += rtw
314 DRV_KMODS += rum
315 DRV_KMODS += rwd
316 DRV_KMODS += rwn
317 DRV_KMODS += sad
318 DRV_KMODS += sd
319 DRV_KMODS += sdhost
320 DRV_KMODS += sgen
321 DRV_KMODS += si3124
322 DRV_KMODS += smbios

new/usr/src/uts/intel/Makefile.intel.shared 6

323 DRV_KMODS += softmac
324 DRV_KMODS += spdsock
325 DRV_KMODS += smbsrv
326 DRV_KMODS += smp
327 DRV_KMODS += sppp
328 DRV_KMODS += sppptun
329 DRV_KMODS += srpt
330 DRV_KMODS += st
331 DRV_KMODS += sy
332 DRV_KMODS += sysevent
333 DRV_KMODS += sysmsg
334 DRV_KMODS += tcp
335 DRV_KMODS += tcp6
336 DRV_KMODS += tl
337 DRV_KMODS += tnf
338 DRV_KMODS += tpm
339 DRV_KMODS += trill
340 DRV_KMODS += udp
341 DRV_KMODS += udp6
342 DRV_KMODS += ucode
343 DRV_KMODS += ural
344 DRV_KMODS += uath
345 DRV_KMODS += urtw
346 DRV_KMODS += vgatext
347 DRV_KMODS += heci
348 DRV_KMODS += vnic
349 DRV_KMODS += vscan
350 DRV_KMODS += wc
351 DRV_KMODS += winlock
352 DRV_KMODS += wpi
353 DRV_KMODS += xge
354 DRV_KMODS += yge
355 DRV_KMODS += zcons
356 DRV_KMODS += zyd
357 DRV_KMODS += simnet
358 DRV_KMODS += stmf
359 DRV_KMODS += stmf_sbd
360 DRV_KMODS += fct
361 DRV_KMODS += fcoe
362 DRV_KMODS += fcoet
363 DRV_KMODS += fcoei
364 DRV_KMODS += qlt
365 DRV_KMODS += iscsit
366 DRV_KMODS += pppt
367 DRV_KMODS += ncall nsctl sdbc nskern sv
368 DRV_KMODS += ii rdc rdcsrv rdcstub
369 DRV_KMODS += iptun

371 $(CLOSED_BUILD)CLOSED_DRV_KMODS += bmc
372 $(CLOSED_BUILD)CLOSED_DRV_KMODS += glm
373 $(CLOSED_BUILD)CLOSED_DRV_KMODS += intel_nhmex
374 $(CLOSED_BUILD)CLOSED_DRV_KMODS += cpqary3
375 $(CLOSED_BUILD)CLOSED_DRV_KMODS += marvell88sx
376 $(CLOSED_BUILD)CLOSED_DRV_KMODS += bcm_sata
377 $(CLOSED_BUILD)CLOSED_DRV_KMODS += memtest
378 $(CLOSED_BUILD)CLOSED_DRV_KMODS += mpt
379 $(CLOSED_BUILD)CLOSED_DRV_KMODS += atiatom
380 $(CLOSED_BUILD)CLOSED_DRV_KMODS += acpi_toshiba

382 #
383 # Common code drivers
384 #

386 DRV_KMODS += afe
387 DRV_KMODS += atge
388 DRV_KMODS += bfe

new/usr/src/uts/intel/Makefile.intel.shared 7

389 DRV_KMODS += dmfe
390 DRV_KMODS += e1000g
391 DRV_KMODS += efe
392 DRV_KMODS += elxl
393 DRV_KMODS += hme
394 DRV_KMODS += mxfe
395 DRV_KMODS += nge
396 DRV_KMODS += pcn
397 DRV_KMODS += rge
398 DRV_KMODS += rtls
399 DRV_KMODS += sfe
400 DRV_KMODS += amd8111s
401 DRV_KMODS += igb
402 DRV_KMODS += ipmi
403 DRV_KMODS += iprb
404 DRV_KMODS += ixgbe
405 DRV_KMODS += vr
406 $(CLOSED_BUILD)CLOSED_DRV_KMODS += ixgb

408 #
409 # Virtio drivers
410 #

412 # Virtio core
413 DRV_KMODS += virtio

415 # Virtio block driver
416 DRV_KMODS += vioblk

418 #
419 # DTrace and DTrace Providers
420 #
421 DRV_KMODS += dtrace
422 DRV_KMODS += fbt
423 DRV_KMODS += lockstat
424 DRV_KMODS += profile
425 DRV_KMODS += sdt
426 DRV_KMODS += systrace
427 DRV_KMODS += fasttrap
428 DRV_KMODS += dcpc

430 #
431 # I/O framework test drivers
432 #
433 DRV_KMODS += pshot
434 DRV_KMODS += gen_drv
435 DRV_KMODS += tvhci tphci tclient
436 DRV_KMODS += emul64

438 #
439 # Machine Specific Driver Modules (/kernel/drv):
440 #
441 DRV_KMODS += options
442 DRV_KMODS += scsi_vhci
443 DRV_KMODS += pmcs
444 DRV_KMODS += pmcs8001fw
445 DRV_KMODS += arcmsr
446 DRV_KMODS += fcp
447 DRV_KMODS += fcip
448 DRV_KMODS += fcsm
449 DRV_KMODS += fp
450 DRV_KMODS += qlc
451 DRV_KMODS += iscsi

453 #
454 # PCMCIA specific module(s)

new/usr/src/uts/intel/Makefile.intel.shared 8

455 #
456 DRV_KMODS += pcs
457 DRV_KMODS += pcata
458 MISC_KMODS += cardbus
459 $(CLOSED_BUILD)CLOSED_DRV_KMODS += pcser

461 #
462 # SCSI Enclosure Services driver
463 #
464 DRV_KMODS += ses

466 #
467 # USB specific modules
468 #
469 DRV_KMODS += hid
470 DRV_KMODS += hwarc hwahc
471 DRV_KMODS += hubd
472 DRV_KMODS += uhci
473 DRV_KMODS += ehci
474 DRV_KMODS += ohci
475 DRV_KMODS += usb_mid
476 DRV_KMODS += usb_ia
477 DRV_KMODS += scsa2usb
478 DRV_KMODS += usbprn
479 DRV_KMODS += ugen
480 DRV_KMODS += usbser
481 DRV_KMODS += usbsacm
482 DRV_KMODS += usbsksp
483 DRV_KMODS += usbsprl
484 DRV_KMODS += usb_ac
485 DRV_KMODS += usb_as
486 DRV_KMODS += usbskel
487 DRV_KMODS += usbvc
488 DRV_KMODS += usbftdi
489 DRV_KMODS += wusb_df
490 DRV_KMODS += wusb_ca
491 DRV_KMODS += usbecm

493 $(CLOSED_BUILD)CLOSED_DRV_KMODS += usbser_edge

495 #
496 # 1394 modules
497 #
498 MISC_KMODS += s1394 sbp2
499 DRV_KMODS += hci1394 scsa1394
500 DRV_KMODS += av1394
501 DRV_KMODS += dcam1394

503 #
504 # InfiniBand pseudo drivers
505 #
506 DRV_KMODS += ib ibp eibnx eoib rdsib sdp iser daplt hermon tavor sol_ucma
507 DRV_KMODS += sol_umad

509 #
510 # LVM modules
511 #
512 DRV_KMODS += md
513 MISC_KMODS += md_stripe md_hotspares md_mirror md_raid md_trans md_notify
514 MISC_KMODS += md_sp

516 #
517 # Brand modules
518 #
519 BRAND_KMODS += sn1_brand s10_brand

new/usr/src/uts/intel/Makefile.intel.shared 9

521 #
522 # Exec Class Modules (/kernel/exec):
523 #
524 EXEC_KMODS += elfexec intpexec shbinexec javaexec

526 #
527 # Scheduling Class Modules (/kernel/sched):
528 #
529 SCHED_KMODS += IA RT TS RT_DPTBL TS_DPTBL FSS FX FX_DPTBL SDC

531 #
532 # File System Modules (/kernel/fs):
533 #
534 FS_KMODS += autofs cachefs ctfs dcfs dev devfs fdfs fifofs hsfs lofs
535 FS_KMODS += mntfs namefs nfs objfs zfs zut
536 FS_KMODS += pcfs procfs sockfs specfs tmpfs udfs ufs sharefs
537 FS_KMODS += smbfs

539 #
540 # Streams Modules (/kernel/strmod):
541 #
542 STRMOD_KMODS += bufmod connld dedump ldterm pckt pfmod pipemod
543 STRMOD_KMODS += ptem redirmod rpcmod rlmod telmod timod
544 STRMOD_KMODS += spppasyn spppcomp
545 STRMOD_KMODS += tirdwr ttcompat
546 STRMOD_KMODS += usbkbm
547 STRMOD_KMODS += usbms
548 STRMOD_KMODS += usbwcm
549 STRMOD_KMODS += usb_ah
550 STRMOD_KMODS += drcompat
551 STRMOD_KMODS += cryptmod
552 STRMOD_KMODS += vuid2ps2
553 STRMOD_KMODS += vuid3ps2
554 STRMOD_KMODS += vuidm3p
555 STRMOD_KMODS += vuidm4p
556 STRMOD_KMODS += vuidm5p

558 #
559 # ’System’ Modules (/kernel/sys):
560 #
561 SYS_KMODS += c2audit
562 SYS_KMODS += doorfs
563 SYS_KMODS += exacctsys
564 SYS_KMODS += inst_sync
565 SYS_KMODS += kaio
566 SYS_KMODS += msgsys
567 SYS_KMODS += pipe
568 SYS_KMODS += portfs
569 SYS_KMODS += pset
570 SYS_KMODS += semsys
571 SYS_KMODS += shmsys
572 SYS_KMODS += sysacct
573 SYS_KMODS += acctctl

575 #
576 # ’Misc’ Modules (/kernel/misc)
577 # MISC_KMODS are built both 32-bit and 64-bit
578 # MISC_KMODS_32 are built only 32-bit
579 # MISC_KMODS_64 are built only 64-bit
580 #
581 MISC_KMODS += ac97
582 MISC_KMODS += acpica
583 MISC_KMODS += agpmaster
584 MISC_KMODS += bignum
585 MISC_KMODS += bootdev
586 MISC_KMODS += busra

new/usr/src/uts/intel/Makefile.intel.shared 10

587 MISC_KMODS += cmlb
588 MISC_KMODS += consconfig
589 MISC_KMODS += ctf
590 MISC_KMODS += dadk
591 MISC_KMODS += dcopy
592 MISC_KMODS += dls
593 MISC_KMODS += drm
594 MISC_KMODS += fssnap_if
595 MISC_KMODS += gda
596 MISC_KMODS += gld
597 MISC_KMODS += hidparser
598 MISC_KMODS += hook
599 MISC_KMODS += hpcsvc
600 MISC_KMODS += ibcm
601 MISC_KMODS += ibdm
602 MISC_KMODS += ibdma
603 MISC_KMODS += ibmf
604 MISC_KMODS += ibtl
605 MISC_KMODS += idm
606 MISC_KMODS += idmap
607 MISC_KMODS += iommulib
608 MISC_KMODS += ipc
609 MISC_KMODS += kbtrans
610 MISC_KMODS += kcf
611 MISC_KMODS += kgssapi
612 MISC_KMODS += kmech_dummy
613 MISC_KMODS += kmech_krb5
614 MISC_KMODS += ksocket
615 MISC_KMODS += mac
616 MISC_KMODS += mii
617 MISC_KMODS += mwlfw
618 MISC_KMODS += net80211
619 MISC_KMODS += nfs_dlboot
620 MISC_KMODS += nfssrv
621 MISC_KMODS += neti
622 MISC_KMODS += pci_autoconfig
623 MISC_KMODS += pcicfg
624 MISC_KMODS += pcihp
625 MISC_KMODS += pcmcia
626 MISC_KMODS += rpcsec
627 MISC_KMODS += rpcsec_gss
628 MISC_KMODS += rsmops
629 MISC_KMODS += sata
630 MISC_KMODS += scsi
631 MISC_KMODS += sda
632 MISC_KMODS += sol_ofs
633 MISC_KMODS += spuni
634 MISC_KMODS += strategy
635 MISC_KMODS += strplumb
636 MISC_KMODS += tem
637 MISC_KMODS += tlimod
638 MISC_KMODS += usba usba10 usbs49_fw
639 MISC_KMODS += scsi_vhci_f_sym_hds
640 MISC_KMODS += scsi_vhci_f_sym
641 MISC_KMODS += scsi_vhci_f_tpgs
642 MISC_KMODS += scsi_vhci_f_asym_sun
643 MISC_KMODS += scsi_vhci_f_tape
644 MISC_KMODS += scsi_vhci_f_tpgs_tape
645 MISC_KMODS += fctl
646 MISC_KMODS += emlxs_fw
647 MISC_KMODS += qlc_fw_2200
648 MISC_KMODS += qlc_fw_2300
649 MISC_KMODS += qlc_fw_2400
650 MISC_KMODS += qlc_fw_2500
651 MISC_KMODS += qlc_fw_6322
652 MISC_KMODS += qlc_fw_8100

new/usr/src/uts/intel/Makefile.intel.shared 11

653 MISC_KMODS += hwa1480_fw
654 MISC_KMODS += uathfw
655 MISC_KMODS += uwba

657 MISC_KMODS += klmmod klmops

657 $(CLOSED_BUILD)CLOSED_MISC_KMODS += klmmod klmops
659 $(CLOSED_BUILD)CLOSED_MISC_KMODS += scsi_vhci_f_asym_lsi
660 $(CLOSED_BUILD)CLOSED_MISC_KMODS += scsi_vhci_f_asym_emc
661 $(CLOSED_BUILD)CLOSED_MISC_KMODS += scsi_vhci_f_sym_emc

663 #
664 # Software Cryptographic Providers (/kernel/crypto):
665 #
666 CRYPTO_KMODS += aes
667 CRYPTO_KMODS += arcfour
668 CRYPTO_KMODS += blowfish
669 CRYPTO_KMODS += des
670 CRYPTO_KMODS += ecc
671 CRYPTO_KMODS += md4
672 CRYPTO_KMODS += md5
673 CRYPTO_KMODS += rsa
674 CRYPTO_KMODS += sha1
675 CRYPTO_KMODS += sha2
676 CRYPTO_KMODS += swrand

678 #
679 # IP Policy Modules (/kernel/ipp)
680 #
681 IPP_KMODS += dlcosmk
682 IPP_KMODS += flowacct
683 IPP_KMODS += ipgpc
684 IPP_KMODS += dscpmk
685 IPP_KMODS += tokenmt
686 IPP_KMODS += tswtclmt

688 #
689 # generic-unix module (/kernel/genunix):
690 #
691 GENUNIX_KMODS += genunix

693 #
694 # SVVS Testing Modules (/kernel/strmod):
695 #
696 # These are streams and driver modules which are not to be
697 # delivered with a released system. However, during development
698 # it is convenient to build and install the SVVS kernel modules.
699 #
700 SVVS_KMODS += lmodb lmode lmodr lmodt svvslo tidg tivc tmux

702 $(CLOSED_BUILD)SVVS += svvs

704 #
705 # Modules eXcluded from the product:
706 #
707 $(CLOSED_BUILD)CLOSED_XMODS = \
708 adpu320 \
709 bnx \
710 bnxe \
711 lsimega \
712 sdpib

715 #
716 # ’Dacf’ Modules (/kernel/dacf):
717 #

new/usr/src/uts/intel/Makefile.intel.shared 12

719 #
720 # Performance Counter BackEnd modules (/usr/kernel/pcbe)
721 #
722 PCBE_KMODS += p123_pcbe p4_pcbe opteron_pcbe core_pcbe

724 #
725 # MAC-Type Plugin Modules (/kernel/mac)
726 #
727 MAC_KMODS += mac_6to4
728 MAC_KMODS += mac_ether
729 MAC_KMODS += mac_ipv4
730 MAC_KMODS += mac_ipv6
731 MAC_KMODS += mac_wifi
732 MAC_KMODS += mac_ib

734 #
735 # socketmod (kernel/socketmod)
736 #
737 SOCKET_KMODS += sockpfp
738 SOCKET_KMODS += socksctp
739 SOCKET_KMODS += socksdp
740 SOCKET_KMODS += sockrds
741 SOCKET_KMODS += ksslf

743 #
744 # kiconv modules (/kernel/kiconv):
745 #
746 KICONV_KMODS += kiconv_emea kiconv_ja kiconv_ko kiconv_sc kiconv_tc

748 #
749 # ’Dacf’ Modules (/kernel/dacf):
750 #
751 DACF_KMODS += net_dacf

new/usr/src/uts/intel/klmmod/Makefile 1

**
 2101 Sun Aug 25 23:51:25 2013
new/usr/src/uts/intel/klmmod/Makefile
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # Copyright (c) 2012 by Delphix. All rights reserved.
26 #
27 # This makefile drives the production of the network lock manager server
28 # specific kernel module.
29 #
30 # intel implementation architecture dependent
31 #

33 #
34 # Path to the base of the uts directory tree (usually /usr/src/uts).
35 #
36 UTSBASE = ../..

38 #
39 # Define the module and object file sets.
40 #
41 MODULE = klmmod
42 OBJECTS = $(KLMMOD_OBJS:%=$(OBJS_DIR)/%)
43 LINTS = $(KLMMOD_OBJS:%.o=$(LINTS_DIR)/%.ln)
44 ROOTMODULE = $(ROOT_MISC_DIR)/$(MODULE)

46 #
47 # Include common rules.
48 #
49 include $(UTSBASE)/intel/Makefile.intel

51 #
52 # Define targets
53 #
54 ALL_TARGET = $(BINARY)
55 LINT_TARGET = $(MODULE).lint
56 INSTALL_TARGET = $(BINARY) $(ROOTMODULE)

58 #

new/usr/src/uts/intel/klmmod/Makefile 2

59 # Overrides.
60 #
61 LDFLAGS += -dy -Nstrmod/rpcmod -Nfs/nfs
62 LDFLAGS += -M $(UTSBASE)/common/klm/mapfile-mod
63 CTFMRGFLAGS += -f

65 #
66 # Code generated by rpcgen triggers the -Wswitch warning.
67 #
68 CERRWARN += -_gcc=-Wno-switch

70 #
71 # Default build targets.
72 #
73 .KEEP_STATE:

75 def: $(DEF_DEPS)

77 all: $(ALL_DEPS)

79 clean: $(CLEAN_DEPS)

81 clobber: $(CLOBBER_DEPS)

83 lint: $(LINT_DEPS)

85 modlintlib: $(MODLINTLIB_DEPS)

87 clean.lint: $(CLEAN_LINT_DEPS)

89 install: $(INSTALL_DEPS)

91 #
92 # Include common targets.
93 #
94 include $(UTSBASE)/intel/Makefile.targ

new/usr/src/uts/intel/klmops/Makefile 1

**
 2011 Sun Aug 25 23:51:26 2013
new/usr/src/uts/intel/klmops/Makefile
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # Copyright (c) 2012 by Delphix. All rights reserved.
26 #
27 # This makefile drives the production of the network lock manager client
28 # side module.
29 #
30 # intel implementation architecture dependent
31 #

33 #
34 # Path to the base of the uts directory tree (usually /usr/src/uts).
35 #
36 UTSBASE = ../..

38 #
39 # Define the module and object file sets.
40 #
41 MODULE = klmops
42 OBJECTS = $(KLMOPS_OBJS:%=$(OBJS_DIR)/%)
43 LINTS = $(KLMOPS_OBJS:%.o=$(LINTS_DIR)/%.ln)
44 ROOTMODULE = $(ROOT_MISC_DIR)/$(MODULE)

46 #
47 # Include common rules.
48 #
49 include $(UTSBASE)/intel/Makefile.intel

51 #
52 # Define targets
53 #
54 ALL_TARGET = $(BINARY)
55 LINT_TARGET = $(MODULE).lint
56 INSTALL_TARGET = $(BINARY) $(ROOTMODULE)

58 #

new/usr/src/uts/intel/klmops/Makefile 2

59 # Overrides.
60 #
61 LDFLAGS += -dy -Nstrmod/rpcmod -Nfs/nfs -Nmisc/klmmod
62 LDFLAGS += -M $(UTSBASE)/common/klm/mapfile-ops
63 CTFMRGFLAGS += -f

65 #
66 # Default build targets.
67 #
68 .KEEP_STATE:

70 def: $(DEF_DEPS)

72 all: $(ALL_DEPS)

74 clean: $(CLEAN_DEPS)

76 clobber: $(CLOBBER_DEPS)

78 lint: $(LINT_DEPS)

80 modlintlib: $(MODLINTLIB_DEPS)

82 clean.lint: $(CLEAN_LINT_DEPS)

84 install: $(INSTALL_DEPS)

86 #
87 # Include common targets.
88 #
89 include $(UTSBASE)/intel/Makefile.targ

new/usr/src/uts/sparc/Makefile.sparc.shared 1

**
 13709 Sun Aug 25 23:51:27 2013
new/usr/src/uts/sparc/Makefile.sparc.shared
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 # Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.

25 #
26 # This makefile contains the common definitions for all sparc
27 # implementation architecture independent modules.
28 #

30 #
31 # Define supported builds
32 #
33 DEF_BUILDS = $(DEF_BUILDS64)
34 ALL_BUILDS = $(ALL_BUILDS64)

36 #
37 # Everybody needs to know how to build modstubs.o and to locate unix.o.
38 # Note that unix.o must currently be selected from among the possible
39 # "implementation architectures". Note further, that unix.o is only
40 # used as an optional error check for undefines so (theoretically)
41 # any "implementation architectures" could be used. We choose sun4u
42 # because it is the reference port.
43 #
44 UNIX_DIR = $(UTSBASE)/sun4u/unix
45 GENLIB_DIR = $(UTSBASE)/sun4u/genunix
46 IPDRV_DIR = $(UTSBASE)/sparc/ip
47 MODSTUBS_DIR = $(UNIX_DIR)
48 DSF_DIR = $(UNIX_DIR)
49 LINTS_DIR = $(OBJS_DIR)
50 LINT_LIB_DIR = $(UTSBASE)/sparc/lint-libs/$(OBJS_DIR)

52 UNIX_O = $(UNIX_DIR)/$(OBJS_DIR)/unix.o
53 MODSTUBS_O = $(MODSTUBS_DIR)/$(OBJS_DIR)/modstubs.o
54 GENLIB = $(UTSBASE)/sun4u/lint-libs/$(OBJS_DIR)/libgenunix.so

56 LINT_LIB_32 = $(UTSBASE)/sun4u/lint-libs/$(OBJS_DIR)/llib-lunix.ln
57 GEN_LINT_LIB_32 = $(UTSBASE)/sun4u/lint-libs/$(OBJS_DIR)/llib-lgenunix.ln

new/usr/src/uts/sparc/Makefile.sparc.shared 2

59 LINT_LIB_64 = $(UTSBASE)/sun4u/lint-libs/$(OBJS_DIR)/llib-lunix.ln
60 GEN_LINT_LIB_64 = $(UTSBASE)/sun4u/lint-libs/$(OBJS_DIR)/llib-lgenunix.ln

62 LINT_LIB = $(LINT_LIB_$(CLASS))
63 GEN_LINT_LIB = $(GEN_LINT_LIB_$(CLASS))

65 LINT32_DIRS = $(LINT32_BUILDS:%=$(UTSBASE)/sparc/lint-libs/%)
66 LINT32_FILES = $(LINT32_DIRS:%=%/llib-l$(MODULE).ln)

68 LINT64_DIRS = $(LINT64_BUILDS:%=$(UTSBASE)/sparc/lint-libs/%)
69 LINT64_FILES = $(LINT64_DIRS:%=%/llib-l$(MODULE).ln)

71 #
72 # Include the makefiles which define build rule templates, the
73 # collection of files per module, and a few specific flags. Note
74 # that order is significant, just as with an include path. The
75 # first build rule template which matches the files name will be
76 # used. By including these in order from most machine dependent
77 # to most machine independent, we allow a machine dependent file
78 # to be used in preference over a machine independent version
79 # (Such as a machine specific optimization, which preserves the
80 # interfaces.)
81 #
82 include $(UTSBASE)/sparc/Makefile.files
83 include $(UTSBASE)/sparc/v9/Makefile.files
84 include $(UTSTREE)/sun/Makefile.files
85 include $(UTSTREE)/common/Makefile.files

87 #
88 # ----- TRANSITIONAL SECTION --
89 #

91 #
92 # Not everything which *should* be a module is a module yet. The
93 # following is a list of such objects which are currently part of
94 # genunix but which might someday become kmods. This must be
95 # defined before we include Makefile.uts, or else genunix’s build
96 # won’t be as parallel as we might like.
97 #
98 NOT_YET_KMODS = $(OLDPTY_OBJS) $(PTY_OBJS) $(VCONS_CONF_OBJS) $(MOD_OBJS)

100 #
101 # ----- END OF TRANSITIONAL SECTION ---
102 #
103 # Include machine independent rules. Note that this does not imply
104 # that the resulting module from rules in Makefile.uts is machine
105 # independent. Only that the build rules are machine independent.
106 #
107 include $(UTSBASE)/Makefile.uts

109 #
110 # machine specific optimization, override default in Makefile.master
111 #
112 XARCH_32 = -xarch=v8
113 XARCH_64 = -m64
114 XARCH = $(XARCH_$(CLASS))

116 COPTIMIZE_32 = -xO3
117 COPTIMIZE_64 = -xO3
118 COPTIMIZE = $(COPTIMIZE_$(CLASS))

120 CCMODE = -Xa

122 CFLAGS_32 = -xcg92
123 CFLAGS_64 = -xchip=ultra $(CCABS32) $(CCREGSYM)
124 CFLAGS = $(CFLAGS_$(CLASS))

new/usr/src/uts/sparc/Makefile.sparc.shared 3

126 CFLAGS += $(XARCH)
127 CFLAGS += $(COPTIMIZE)
128 CFLAGS += $(EXTRA_CFLAGS)
129 CFLAGS += $(XAOPT)
130 CFLAGS += $(INLINES) -D_ASM_INLINES
131 CFLAGS += $(CCMODE)
132 CFLAGS += $(SPACEFLAG)
133 CFLAGS += $(CERRWARN)
134 CFLAGS += $(CTF_FLAGS_$(CLASS))
135 CFLAGS += $(C99MODE)
136 CFLAGS += $(CCUNBOUND)
137 CFLAGS += $(CCSTATICSYM)
138 CFLAGS += $(CC32BITCALLERS)
139 CFLAGS += $(CCNOAUTOINLINE)
140 CFLAGS += $(IROPTFLAG)
141 CFLAGS += $(CGLOBALSTATIC)
142 CFLAGS += -xregs=no%float
143 CFLAGS += -xstrconst
144 CFLAGS += $(CSOURCEDEBUGFLAGS)
145 CFLAGS += $(CUSERFLAGS)

147 ASFLAGS += $(XARCH)

149 LINT_DEFS_32 =
150 LINT_DEFS_64 = -m64
151 LINT_DEFS += $(LINT_DEFS_$(CLASS))

153 #
154 # The following must be defined for all implementations:
155 #
156 # MODSTUBS: Module stubs source file.
157 #
158 MODSTUBS = $(UTSBASE)/sparc/ml/modstubs.s

160 #
161 # Define the actual specific platforms - obviously none.
162 #
163 MACHINE_DEFS =

165 #
166 # Debugging level
167 #
168 # Special knowledge of which special debugging options effect which
169 # file is used to optimize the build if these flags are changed.
170 #
171 # XXX: The above could possibly be done for more flags and files, but
172 # is left as an experiment to the interested reader. Be forewarned,
173 # that excessive use could lead to maintenance difficulties.
174 #
175 DEBUG_DEFS_OBJ32 =
176 DEBUG_DEFS_DBG32 = -DDEBUG
177 DEBUG_DEFS_OBJ64 =
178 DEBUG_DEFS_DBG64 = -DDEBUG
179 DEBUG_DEFS = $(DEBUG_DEFS_$(BUILD_TYPE))

181 DEBUG_COND_OBJ32 :sh = echo \\043
182 DEBUG_COND_DBG32 =
183 DEBUG_COND_OBJ64 :sh = echo \\043
184 DEBUG_COND_DBG64 =
185 IF_DEBUG_OBJ = $(DEBUG_COND_$(BUILD_TYPE))$(OBJS_DIR)/

187 $(IF_DEBUG_OBJ)syscall.o := DEBUG_DEFS += -DSYSCALLTRACE
188 $(IF_DEBUG_OBJ)clock.o := DEBUG_DEFS += -DKSLICE=1

190 # Comment these out if you don’t want dispatcher lock statistics.

new/usr/src/uts/sparc/Makefile.sparc.shared 4

192 # $(IF_DEBUG_OBJ)disp_lock.o := DEBUG_DEFS += -DDISP_LOCK_STATS

194 #
195 # Collect the preprocessor definitions to be associated with *all*
196 # files.
197 #
198 ALL_DEFS = $(MACHINE_DEFS) $(DEBUG_DEFS) $(OPTION_DEFS)
199 #
200 #
201 # The kernels modules which are "implementation architecture"
202 # specific for this machine are enumerated below. Note that most
203 # of these modules must exist (in one form or another) for each
204 # architecture.
205 #
206 # Common Drivers (usually pseudo drivers) (/kernel/drv):
207 #
208 DRV_KMODS += aggr arp audio bl blkdev bofi clone cn conskbd consms cpuid
209 DRV_KMODS += crypto cryptoadm devinfo dump
210 DRV_KMODS += dtrace fasttrap fbt lockstat profile sdt systrace dcpc
211 DRV_KMODS += fssnap icmp icmp6 ip ip6 ipnet ipsecah
212 DRV_KMODS += ipsecesp iptun iwscn keysock kmdb kstat ksyms llc1
213 DRV_KMODS += lofi
214 DRV_KMODS += log logindmux kssl mm nca physmem pm poll pool
215 DRV_KMODS += pseudo ptc ptm pts ptsl ramdisk random rsm rts sad
216 DRV_KMODS += simnet softmac sppp sppptun sy sysevent sysmsg
217 DRV_KMODS += spdsock
218 DRV_KMODS += tcp tcp6 tl tnf ttymux udp udp6 wc winlock zcons
219 DRV_KMODS += ippctl
220 DRV_KMODS += dld
221 DRV_KMODS += ipf
222 DRV_KMODS += rpcib
223 DRV_KMODS += dlpistub
224 DRV_KMODS += vnic
225 DRV_KMODS += xge
226 DRV_KMODS += rds
227 DRV_KMODS += rdsv3
228 DRV_KMODS += chxge
229 DRV_KMODS += smbsrv
230 DRV_KMODS += vscan
231 DRV_KMODS += nsmb
232 DRV_KMODS += fm
233 DRV_KMODS += nulldriver
234 DRV_KMODS += bridge trill
235 DRV_KMODS += bpf
236 DRV_KMODS += dca

238 $(CLOSED_BUILD)CLOSED_DRV_KMODS += glm
239 $(CLOSED_BUILD)CLOSED_DRV_KMODS += isp
240 $(CLOSED_BUILD)CLOSED_DRV_KMODS += mpt
241 $(CLOSED_BUILD)CLOSED_DRV_KMODS += qus
242 $(CLOSED_BUILD)CLOSED_DRV_KMODS += se

244 #
245 # Hardware Drivers in common space
246 #

248 DRV_KMODS += afe
249 DRV_KMODS += audio1575
250 DRV_KMODS += audioens
251 DRV_KMODS += audiols
252 DRV_KMODS += audiop16x
253 DRV_KMODS += audiopci
254 DRV_KMODS += audiots
255 DRV_KMODS += e1000g
256 DRV_KMODS += efe

new/usr/src/uts/sparc/Makefile.sparc.shared 5

257 DRV_KMODS += hxge
258 DRV_KMODS += mxfe
259 DRV_KMODS += pcan
260 DRV_KMODS += pcwl
261 DRV_KMODS += rge
262 DRV_KMODS += rtls
263 DRV_KMODS += sfe
264 DRV_KMODS += aac
265 DRV_KMODS += igb
266 DRV_KMODS += ixgbe
267 DRV_KMODS += vr
268 DRV_KMODS += mr_sas
269 $(CLOSED_BUILD)CLOSED_DRV_KMODS += ixgb
270 DRV_KMODS += yge

272 #
273 # Machine Specific Driver Modules (/kernel/drv):
274 #
275 DRV_KMODS += audiocs
276 DRV_KMODS += bge dmfe eri fas hme qfe
277 DRV_KMODS += openeepr options sd ses st
278 DRV_KMODS += ssd
279 DRV_KMODS += ecpp
280 DRV_KMODS += hid hubd ehci ohci uhci usb_mid usb_ia scsa2usb usbprn ugen
281 DRV_KMODS += usbser usbsacm usbsksp usbsprl
282 DRV_KMODS += usb_as usb_ac
283 DRV_KMODS += usbskel
284 DRV_KMODS += usbvc
285 DRV_KMODS += usbftdi
286 DRV_KMODS += wusb_df hwahc hwarc wusb_ca
287 DRV_KMODS += usbecm
288 DRV_KMODS += hci1394 av1394 scsa1394 dcam1394
289 DRV_KMODS += sbp2
290 DRV_KMODS += ib ibp eibnx eoib rdsib sdp iser daplt hermon tavor sol_ucma
291 DRV_KMODS += sol_umad
292 DRV_KMODS += pci_pci pcieb pcieb_bcm
293 DRV_KMODS += i8042 kb8042 mouse8042
294 DRV_KMODS += fcode
295 DRV_KMODS += mpt_sas
296 DRV_KMODS += socal
297 DRV_KMODS += sgen
298 DRV_KMODS += myri10ge
299 DRV_KMODS += smp
300 DRV_KMODS += dad
301 DRV_KMODS += scsi_vhci
302 DRV_KMODS += fcp
303 DRV_KMODS += fcip
304 DRV_KMODS += fcsm
305 DRV_KMODS += fp
306 DRV_KMODS += qlc
307 DRV_KMODS += qlge
308 DRV_KMODS += stmf
309 DRV_KMODS += stmf_sbd
310 DRV_KMODS += fct
311 DRV_KMODS += fcoe
312 DRV_KMODS += fcoet
313 DRV_KMODS += fcoei
314 DRV_KMODS += qlt
315 DRV_KMODS += iscsit
316 DRV_KMODS += pppt
317 DRV_KMODS += ncall nsctl sdbc nskern sv
318 DRV_KMODS += ii rdc rdcsrv rdcstub
319 DRV_KMODS += iscsi
320 DRV_KMODS += emlxs
321 DRV_KMODS += oce
322 DRV_KMODS += srpt

new/usr/src/uts/sparc/Makefile.sparc.shared 6

323 DRV_KMODS += pmcs
324 DRV_KMODS += pmcs8001fw

326 $(CLOSED_BUILD)CLOSED_DRV_KMODS += ifp
327 $(CLOSED_BUILD)CLOSED_DRV_KMODS += uata
328 $(CLOSED_BUILD)CLOSED_DRV_KMODS += usbser_edge

330 #
331 # I/O framework test drivers
332 #
333 DRV_KMODS += pshot
334 DRV_KMODS += gen_drv
335 DRV_KMODS += tvhci tphci tclient
336 DRV_KMODS += emul64

338 #
339 # PCMCIA specific module(s)
340 #
341 DRV_KMODS += pcs
342 MISC_KMODS += busra cardbus dada pcmcia
343 DRV_KMODS += pcata
344 DRV_KMODS += pcic

346 $(CLOSED_BUILD)CLOSED_DRV_KMODS += pcser

348 # Add lvm
349 #
350 DRV_KMODS += md
351 MISC_KMODS += md_mirror md_stripe md_hotspares md_raid md_trans md_notify
352 MISC_KMODS += md_sp

354 #
355 # Exec Class Modules (/kernel/exec):
356 #
357 EXEC_KMODS += aoutexec elfexec intpexec shbinexec javaexec

359 #
360 # Scheduling Class Modules (/kernel/sched):
361 #
362 SCHED_KMODS += RT TS RT_DPTBL TS_DPTBL IA FSS FX FX_DPTBL SDC

364 #
365 # File System Modules (/kernel/fs):
366 #
367 FS_KMODS += dev devfs fdfs fifofs hsfs lofs namefs nfs pcfs tmpfs zfs
368 FS_KMODS += zut specfs udfs ufs autofs cachefs procfs sockfs mntfs
369 FS_KMODS += ctfs objfs sharefs dcfs smbfs

371 #
372 # Streams Modules (/kernel/strmod):
373 #
374 STRMOD_KMODS += bufmod connld dedump ldterm ms pckt pfmod
375 STRMOD_KMODS += pipemod ptem redirmod rpcmod rlmod telmod timod
376 STRMOD_KMODS += spppasyn spppcomp
377 STRMOD_KMODS += tirdwr ttcompat
378 STRMOD_KMODS += usbkbm usbms usbwcm usb_ah
379 STRMOD_KMODS += drcompat
380 STRMOD_KMODS += cryptmod
381 STRMOD_KMODS += vuid3ps2

383 #
384 # ’System’ Modules (/kernel/sys):
385 #
386 SYS_KMODS += c2audit
387 SYS_KMODS += exacctsys
388 SYS_KMODS += inst_sync kaio msgsys semsys shmsys sysacct pipe

new/usr/src/uts/sparc/Makefile.sparc.shared 7

389 SYS_KMODS += doorfs pset acctctl portfs

391 #
392 # ’User’ Modules (/kernel/misc):
393 #
394 MISC_KMODS += ac97
395 MISC_KMODS += bignum
396 MISC_KMODS += consconfig gld ipc nfs_dlboot nfssrv scsi
397 MISC_KMODS += strplumb swapgeneric tlimod
398 MISC_KMODS += rpcsec rpcsec_gss kgssapi kmech_dummy
399 MISC_KMODS += kmech_krb5
400 MISC_KMODS += fssnap_if
401 MISC_KMODS += hidparser kbtrans usba usba10 usbs49_fw
402 MISC_KMODS += s1394
403 MISC_KMODS += hpcsvc pcihp
404 MISC_KMODS += rsmops
405 MISC_KMODS += kcf
406 MISC_KMODS += ksocket
407 MISC_KMODS += ibcm
408 MISC_KMODS += ibdm
409 MISC_KMODS += ibdma
410 MISC_KMODS += ibmf
411 MISC_KMODS += ibtl
412 MISC_KMODS += sol_ofs
413 MISC_KMODS += idm
414 MISC_KMODS += idmap
415 MISC_KMODS += hook
416 MISC_KMODS += neti
417 MISC_KMODS += ctf
418 MISC_KMODS += mac dls
419 MISC_KMODS += cmlb
420 MISC_KMODS += tem
421 MISC_KMODS += pcicfg fcodem fcpci
422 MISC_KMODS += scsi_vhci_f_sym scsi_vhci_f_tpgs scsi_vhci_f_asym_sun
423 MISC_KMODS += scsi_vhci_f_sym_hds
424 MISC_KMODS += scsi_vhci_f_tape scsi_vhci_f_tpgs_tape
425 MISC_KMODS += fctl
426 MISC_KMODS += emlxs_fw
427 MISC_KMODS += qlc_fw_2200
428 MISC_KMODS += qlc_fw_2300
429 MISC_KMODS += qlc_fw_2400
430 MISC_KMODS += qlc_fw_2500
431 MISC_KMODS += qlc_fw_6322
432 MISC_KMODS += qlc_fw_8100
433 MISC_KMODS += spuni
434 MISC_KMODS += hwa1480_fw uwba
435 MISC_KMODS += mii

437 MISC_KMODS += klmmod klmops

437 $(CLOSED_BUILD)CLOSED_MISC_KMODS += klmmod klmops
439 $(CLOSED_BUILD)CLOSED_MISC_KMODS += scsi_vhci_f_asym_lsi
440 $(CLOSED_BUILD)CLOSED_MISC_KMODS += scsi_vhci_f_asym_emc
441 $(CLOSED_BUILD)CLOSED_MISC_KMODS += scsi_vhci_f_sym_emc

443 #
444 # Software Cryptographic Providers (/kernel/crypto):
445 #
446 CRYPTO_KMODS += aes
447 CRYPTO_KMODS += arcfour
448 CRYPTO_KMODS += blowfish
449 CRYPTO_KMODS += des
450 CRYPTO_KMODS += md4
451 CRYPTO_KMODS += md5
452 CRYPTO_KMODS += ecc
453 CRYPTO_KMODS += rsa

new/usr/src/uts/sparc/Makefile.sparc.shared 8

454 CRYPTO_KMODS += sha1
455 CRYPTO_KMODS += sha2
456 CRYPTO_KMODS += swrand

458 #
459 # IP Policy Modules (/kernel/ipp):
460 #
461 IPP_KMODS += dlcosmk
462 IPP_KMODS += flowacct
463 IPP_KMODS += ipgpc
464 IPP_KMODS += dscpmk
465 IPP_KMODS += tokenmt
466 IPP_KMODS += tswtclmt

468 #
469 # ’Dacf’ modules (/kernel/dacf)
470 DACF_KMODS += consconfig_dacf

472 #
473 # SVVS Testing Modules (/kernel/strmod):
474 #
475 # These are streams and driver modules which are not to be
476 # delivered with a released system. However, during development
477 # it is convenient to build and install the SVVS kernel modules.
478 #
479 SVVS_KMODS += lmodb lmode lmodr lmodt svvslo tidg tivc tmux

481 $(CLOSED_BUILD)SVVS += svvs

483 #
484 # Modules eXcluded from the product:
485 #
486 XMODS +=
487 $(CLOSED_BUILD)CLOSED_XMODS = \
488 sdpib \
489 wsdrv

491 #
492 # ’Dacf’ Modules (/kernel/dacf):
493 #
494 DACF_KMODS += net_dacf

496 #
497 # MAC-Type Plugin Modules (/kernel/mac)
498 #
499 MAC_KMODS += mac_6to4
500 MAC_KMODS += mac_ether
501 MAC_KMODS += mac_ipv4
502 MAC_KMODS += mac_ipv6
503 MAC_KMODS += mac_wifi
504 MAC_KMODS += mac_ib

506 #
507 # socketmod (kernel/socketmod)
508 #
509 SOCKET_KMODS += sockpfp
510 SOCKET_KMODS += socksctp
511 SOCKET_KMODS += socksdp
512 SOCKET_KMODS += sockrds
513 SOCKET_KMODS += ksslf

515 #
516 # kiconv modules (/kernel/kiconv):
517 #
518 KICONV_KMODS += kiconv_emea kiconv_ja kiconv_ko kiconv_sc kiconv_tc

new/usr/src/uts/sparc/klmmod/Makefile 1

**
 2106 Sun Aug 25 23:51:28 2013
new/usr/src/uts/sparc/klmmod/Makefile
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # Copyright (c) 2012 by Delphix. All rights reserved.
26 #
27 # This makefile drives the production of the server-side network lock
28 # manager kernel module.
29 #
30 # sparc architecture dependent
31 #

33 #
34 # Path to the base of the uts directory tree (usually /usr/src/uts).
35 #
36 UTSBASE = ../..

38 #
39 # Define the module and object file sets.
40 #
41 MODULE = klmmod
42 OBJECTS = $(KLMMOD_OBJS:%=$(OBJS_DIR)/%)
43 LINTS = $(KLMMOD_OBJS:%.o=$(LINTS_DIR)/%.ln)
44 ROOTMODULE = $(ROOT_MISC_DIR)/$(MODULE)

46 #
47 # Include common rules.
48 #
49 include $(UTSBASE)/sparc/Makefile.sparc

51 #
52 # Define targets
53 #
54 ALL_TARGET = $(BINARY)
55 LINT_TARGET = $(MODULE).lint
56 INSTALL_TARGET = $(BINARY) $(ROOTMODULE)

58 #

new/usr/src/uts/sparc/klmmod/Makefile 2

59 # Overrides.
60 #
61 CFLAGS += $(CCVERBOSE)
62 LDFLAGS += -dy -Nstrmod/rpcmod -Nfs/nfs
63 LDFLAGS += -M $(UTSBASE)/common/klm/mapfile-mod
64 CTFMRGFLAGS += -f

66 #
67 # Code generated by rpcgen triggers the -Wswitch warning.
68 #
69 CERRWARN += -_gcc=-Wno-switch

71 #
72 # Default build targets.
73 #
74 .KEEP_STATE:

76 def: $(DEF_DEPS)

78 all: $(ALL_DEPS)

80 clean: $(CLEAN_DEPS)

82 clobber: $(CLOBBER_DEPS)

84 lint: $(LINT_DEPS)

86 modlintlib: $(MODLINTLIB_DEPS)

88 clean.lint: $(CLEAN_LINT_DEPS)

90 install: $(INSTALL_DEPS)

92 #
93 # Include common targets.
94 #
95 include $(UTSBASE)/sparc/Makefile.targ

new/usr/src/uts/sparc/klmops/Makefile 1

**
 2013 Sun Aug 25 23:51:28 2013
new/usr/src/uts/sparc/klmops/Makefile
195 Need replacement for nfs/lockd+klm
Reviewed by: Gordon Ross <gordon.ross@nexenta.com>
Reviewed by: Jeremy Jones <jeremy@delphix.com>
Reviewed by: Jeff Biseda <jbiseda@delphix.com>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # Copyright (c) 2012 by Delphix. All rights reserved.
26 #
27 # This makefile drives the production of the client-side network lock
28 # manager kernel module.
29 #
30 # sparc architecture dependent
31 #

33 #
34 # Path to the base of the uts directory tree (usually /usr/src/uts).
35 #
36 UTSBASE = ../..

38 #
39 # Define the module and object file sets.
40 #
41 MODULE = klmops
42 OBJECTS = $(KLMOPS_OBJS:%=$(OBJS_DIR)/%)
43 LINTS = $(KLMOPS_OBJS:%.o=$(LINTS_DIR)/%.ln)
44 ROOTMODULE = $(ROOT_MISC_DIR)/$(MODULE)

46 #
47 # Include common rules.
48 #
49 include $(UTSBASE)/sparc/Makefile.sparc

51 #
52 # Define targets
53 #
54 ALL_TARGET = $(BINARY)
55 LINT_TARGET = $(MODULE).lint
56 INSTALL_TARGET = $(BINARY) $(ROOTMODULE)

58 #

new/usr/src/uts/sparc/klmops/Makefile 2

59 # Overrides.
60 #
61 CFLAGS += $(CCVERBOSE)
62 LDFLAGS += -dy -Nstrmod/rpcmod -Nfs/nfs
63 LDFLAGS += -M $(UTSBASE)/common/klm/mapfile-ops
64 CTFMRGFLAGS += -f

66 #
67 # Default build targets.
68 #
69 .KEEP_STATE:

71 def: $(DEF_DEPS)

73 all: $(ALL_DEPS)

75 clean: $(CLEAN_DEPS)

77 clobber: $(CLOBBER_DEPS)

79 lint: $(LINT_DEPS)

81 modlintlib: $(MODLINTLIB_DEPS)

83 clean.lint: $(CLEAN_LINT_DEPS)

85 install: $(INSTALL_DEPS)

87 #
88 # Include common targets.
89 #
90 include $(UTSBASE)/sparc/Makefile.targ

