new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_nl mc

R R R R

23855 Sun Aug 25 23:50:44 2013
new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_nl m ¢
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1/*

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN

28 *

29 *
*/

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License, Version 1.0 only
(the "License"). You may not use this file except in conpliance
with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END

Copyright (c) 1991, 1998, 2001 by Sun M crosystens, Inc.
Al rights reserved.

Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
Copyright (c) 2012 by Del phix. Al rights reserved.

32 #include <sys/types. h>
33 #include <setjnp. h>
34 #include <string.h>

36 #ifdef notdef

37 #include <rpc/xdr.h>

38 #include <rpc/auth. h>

39 #include <rpc/rpc_nsg. h>

40 #endif /* notdef */

41 #include <rpcsvc/nl mprot. h>
42 #incl ude "snoop. h"

44 extern char *dl c_header;
45 extern jnp_buf xdr_err;

47 extern void check_retransmt();
48 static void interpret_nlm1();
49 static void interpret_nlm3();
50 static void interpret_nlmé4();
51 static char *nameof _access();
52 static char *naneof _node();
53 static char *naneof _stat();
54 static char *naneof _stat4();
55 static void show_cancargs();
56 static void show cancargs4(),
57 static void show_ | ock();

58 static void show_| ock4()

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_nl mc

86
87
88

796
797

799
800
801
802
803
804
805
806
807
808

810
811

813
814
815
816

/* Maxi mum procedure nunber for version 4. */
#def i ne MAXPRCC_4 23

/* ARGSUSED */
static void
interpret_nlm4(flags, type, xid, vers, proc, data,
int flags, type, xid, vers, proc;
char *data;
int len;
{ .
char *Ilne;
char pI
ulong_t i;
if (proc < 0 || proc > MAXPROC_4)
return;
if (flags & F_SUM
if (set]r’rp(xdr _err)) {
turn;
}

I en)

static void show_| ockargs();
static void show_| ockargs4();
static void show_netobj();
static void show nl maccess();
static void show_nl mnode();
static void show notify();
static void show res();
static void show res4();
static void show share();
static void show_shareargs();
static void show shareres();
static void show shareres4();
static enumnl mstats show stat();
static enum nl mi_stats show stat4();
static void show testargs();
static void show testargs4();
static void show testres();
static void show_t estres4(),
static void show_unl ockargs();
static void show_ unl ockargs4();
static void skip_netobj();
static char *sum.| ock();
static char *sum| ock4(),
static char *sum netobj();
static char *sumnotify();
static char *sumshare();
voi d
interpret_nln(flags, type, xid, vers, proc, data,
int flags, type, xid, vers, proc;
char *dat a;
int len;
{)
switch (vers) {
case 1: interpret_nlm1(flags, type, xid, vers, proc, data,
break;
case 3: interpret_nlm3(flags, type, xid, vers, proc, data,
br eak;
case 4: interpret_nlm4(flags, type, xid, vers, proc, data,
br eak;
}
__unchanged_portion_om tted_

I en)

I en);
I en);

I en);

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_nl mc

818

820
821
822
823
824
825
826
827
828
829
821
822
823
824
830
831
832
833
834
835
836
830
831
837
838
839
840
841
842
843
844
845
839
840
846
847
848
849
850
851
852
853
847
848
854
855
856
857
858
853
859
860
861
862
863
864
865
866
867
868
860
861
862
863

line = get_sumline();

if (type == CALL) {
(void) sprintf(line,

l'ine

"NLM C %",
procnanes_short_4[proc]);
+= strlen(line);

switch (proc) {

case
case
case
case

case
case

NLM4_TEST:

NLMA_GRANTED:

NLMA_TEST_MSG

NLMi_GRANTED_NMSG

NLMPROC4_TEST:

NLMPROCA_GRANTED:

NLMPROC4_TEST_MBG:

NLMPROCA_GRANTED_MSG
/* testargs */
(void) strcat(line, sumnetobj("CH"));
(voi d) getxdr_bool (); /* Excl */
(void) strcat(line, sumlock4());
br eak;

NLMA_LOCK:

NLM4_LOCK_NMBG

NLMPROC4_LOCK:

NLMPROC4A_LOCK_MSG
/* | ockargs */
(void) strcat(line, sumnetobj("CH"));
(voi d) getxdr_bool (); /* Block */
(voi d) getxdr_bool (); /* Excl */
(void) strcat(line, sumlock4());
/* ignore reclaim state fields */
break;

NLM4_CANCEL:

NLM4_CANCEL_MSG

NLMPROC4_ CANCEL :

NLMPROC4_CANCEL_MBG
/* cancargs */
(void) strcat(line, sumnetobj("OH"));
(voi d) getxdr_bool (); /* Block */
(voi d) getxdr_bool (); /* Excl */
(void) strcat(line, sumlock4());
br eak;

NLM4_UNLOCK:

NLM4_UNLOCK_NMBG:

NLMPROC4_UNLOCK:

NLMPROC4_UNLOCK_MSG:
/* unl ockargs */
(void) strcat(line, sumnetobj("CH"));
(void) strcat(line, sumlock4());
br eak;

NLM4_TEST_RES:

NLMPROC4_TEST_RES:
/* testres */

(void) strcat(line, sumnetobj("OH"));
(void) strcat(line, " ");
(void) strcat(line,

naneof _stat4(getxdr_u_long()));

br eak;
NLMA_LOCK_RES:
NLM4_CANCEL_RES:
NLM4_UNLOCK_RES:
NLM4_GRANTED_RES:
NLMPROC4A_LOCK_RES:
NLMPROC4_CANCEL _RES:
NLMPROC4A_UNLOCK_RES:
NLMPROCA_GRANTED_RES:

new usr/src/cnd/ cnd- i net/ usr. shi n/ snoop/ snoop_nl m ¢

869
870
871
872
873
874
875
876
870
871
877
878
879
880
875
881
882
883
884
885
886
887
888
883
889
890
891
892
893
894
895
896
897
898
899
894
900
901
902
903
904
905
906
907
908
909
910
901
902
903
904
905
911
912
913
914
915
916
917
918
912
913
919
920
921
922

/* res */
(void) strcat
(void) strcat
(void) strcat
nameo

i sum net obj ("CH"));

Tho~—~—

_stat4(getxdr_u_long()));
break;

NLM4_ SHARE:

NLM4_UNSHARE:

NLMPROCA _SHARE:

NLMPROC4_UNSHARE:
(void) strcat(line, sumnetobj("CH"));
(void) strcat(line, sumshare());
br eak;

NLM4_NM LOCK:

NLMPROCA NM LOCK:
/* 1l ockargs */
ski p_netobj (); /* Cookie */
(voi d) getxdr_bool (); /* Block */
(voi d) getxdr_bool (); /* Excl */
(void) strcat(line, sumlock4());
/* skip reclaim& state fields */
br eak;

NLM4_FREE ALL:

NLMPROCA_FREE_ALL:
(void) sprintf(line,

" 98", sumnotify());

br eak;

}
check_retransmt(line, (ulong_t)xid);

} else {

(void) sprintf(line, "NLMR %",

l'ine

procnanes_short_4[proc]);
+= strlen(line);

switch (proc) {

case
case

NLM4_TEST:
NLMPROCA_TEST:
/* testres */
(void) strcat(
(void) strcat(
(void) strcat(
naneof _st a
br eak;
NLMA_LOCK:
NLM4_ CANCEL:
NLM4_UNLOCK:
NLMA_GRANTED:
NLM4_NM LOCK:
NLMPROCA_LOCK:
NLMPROCA_CANCEL :
NLMPROC4_UNL OCK:
NLMPROCA_GRANTED:
NLMPROC4_NM LOCK:
/* res */
(void) strcat(
(void) strcat(
(
f

§ulrln)_pet obj ("OH"));

lin
lin
lin
t4(

e
e
e,
get xdr_u_long()));

§up1)_pet obj ("OH"));

li
li
(void) strcat(li

n
n
n

nameof _st

e
e
e,
at4(getxdr_u_long()));
br eak;
NLM4_SHARE:
NLMA_UNSHARE:
NLMPROCA _SHARE:
NLMPROC4 _UNSHARE:
/* shareres */
pl = sumnetobj ("OH");
I = getxdr_u_long();
sprintf(line, "% % %d",

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_nl mc

923
924
925
920
926
927
928
929

931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
937
938
939
940
946
947
948
949
950
943
944
945
951
952
953
954
948
949
955
956
957
958
952
953
959
960
961
956
962
963
964
965
966
967
959
960
961
962
968
969
970
971

case
case

}

}

if (flags & F_DTAIL)
show header(
show_space

pl, naneof _stat4(i),

break;
NLM4_FREE ALL:
NLMPROC4A_FREE_ALL:
br eak;

{

NLM ", "Network Lock Manager",

if (set]r’rp(xdr _err)) {

turn;
}
(voi d) spr| ntf(get_li ne(O 0),
"Proc = %d (%)"
proc, pr ocnanes_l ong_4[proc]);

if (type == CALL)
switch (proc) {

NLM4_TEST:
NLM4_GRANTED:
NLM4_TEST MSG
NLM:_GRANTED_NMSG
NLMPROC4_TEST:
NLMPROCA_GRANTED:
NLMPROC4A_TEST_MSG:
NLMPROCA_GRANTED_MSG
show_testargs4();
br eak;
NLMA_LOCK:
NLMA_LOCK_MBG:
NLMA_NM_LOCK:
NLMPROCA_L OCK:
NLIMPROC4_LOCK_MSG
NLMPROC4_NM _LOCK:
show Tockar gs4();
br eak;
NLM4_CANCEL:
NLM4_CANCEL_NBG:
NLMPROCA_ CANCEL :
NLMPROC4A_CANCEL _MSG:
show_cancar gs4();
br eak;
NLM4_UNLOCK:
NLM4_UNLOCK_MSG:
NLI\/PR&M UNLOCK:
NLMPROC4_UNLOCK_MSG

show_unl ockar gs4() ;

br eak;
NLMA_TEST_RES:
NLMPROC4_TEST_RES:

show testres4();

br eak;
NLMA_ LOCK_RES:
NLM4_CANCEL_RES:
NLM4_UNLOCK_RES:
NLMA_GRANTED_RES:
NLMPROC4_LOCK_RES:
NLMPROCA4_CANCEL _RES:
NLMPROC4_UNLOCK_RES:
NLMPROC4_GRANTED _RES:

show_res4();

br eak;
NLM4_ SHARE:
NLM4_UNSHARE:

getxdr_long());

I en);

new usr/src/cnd/ cnd- i net/ usr. shi n/ snoop/ snoop_nl m ¢

965 case NLMPROCA_SHARE:

966 case NLMPROCA_UNSHARE:
972 show_shareargs();
973 br eak;

974 case NLM4 FREE ALL:

969 case NLMPROCA_FREE _ALL:
975 show_notify();

976 br eak;

977 }

978 } else {

979 switch (proc) {

980 case NLM4_TEST:

975 case NLMPROCA_TEST:

981 show_testres4();
982 break;

983 case NLM4_LOCK:

984 case NLM4_CANCEL:

985 case NLMA_UNLOCK:

986 case NLM4_GRANTED:

978 case NLMPROCA_LOCK:

979 case NLMPROCA_CANCEL:
980 case NLMPROCA_UNLOCK:
981 case NLMPROCA_GRANTED:
987 case NLM _NM LOCK:

988 show_res4();

989 br eak;

990 case NLMA_TEST_MSG

991 case NLM4_LOCK_MSG

992 case NLM4_CANCEL_MSG
993 case NLM4_UNLOCK_MSG
994 case NLM4_GRANTED MSG
995 case NLMA_TEST_RES:

996 case NLM4_LOCK_RES:

997 case NLMA_CANCEL_RES:
998 case NLMA_UNLOCK_RES:
999 case NLMA_GRANTED RES:
985 case NLMPROCA_TEST MsG
986 case NLMPROC4A_LOCK_MSG
987 case NLMPROCA_CANCEL_MSG
988 case NLMPROCA_UNLOCK_MBSG
989 case NLMPROCA_GRANTED MSG
990 case NLMPROCA_TEST_RES:
991 case NLMPROCA_LOCK_RES:
992 case NLMPROCA_CANCEL_RES:
993 case NLMPROCA_UNLOCK_RES:
994 case NLMPROCA_GRANTED RES:
1000 break;

1001 case NLM_SHARE:

1002 case NLM UNSHARE:

1003 show_shareres4();
1004 br eak;

1005 case NLM FREE_ALL:

1006 br eak;

1007 }

1008 }

1009 show_ trailer();

1010 }

1011 }

__unchanged_portion_omtted_

1085 static char *
1086 naneof _stat 4(s)

1087 ulong_t s;
1088 {
1089 switch ((enumnlmi_stats) s) {

1090 case nl mi_grant ed: return ("granted");

new usr/src/cnd/ cnd-i net/ usr. shi n/ snoop/ snoop_nl mc

1091
1092
1093
1094
1095
1096
1097
1098
1099
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1100
1101
1102 }

case nl mi_deni ed: return ("denied");

case nl mi_deni ed_nol ocks: return (deni ed (no | ocks)");

case nl mi_bl ocked: return ("bl ocked");

case nl m_deni ed_grace_period: return ("deni ed (grace period)");
case nl mi_deadl ck: return ("deadl ock");

case nl mi_rofs: return ("read- onIy fs")

case nlmd_stale_fh: return ("stale fh");

case nl mi_fbig: return ("file too blg")

case nlmi_fail ed: return ('falled")

case NLM4_GRANTED: return ("granted")

case NLMA_DENI ED: return ("denied");

case NLM4_DENI ED NOLOCKS:return ("denied (no I ocks)");

case NLM4_BLOCKED: return ("bl ocked");

case NLM4_DENI ED GRACE PERIOD: return (" deni ed (grace period)");
case NLM4_DEADLCK: return ("deadl ock");

case NLM4_ROFS: return ("read- onIy fs")

case NLM4_STALE FH: return ("st ale fh");

case NLMA_FBI G return ("file too big");

case NLMA_FAI LED: return ("failed");

defaul t: return ("?");

__unchanged_portion_onitted_

new usr/src/cnd/ fs. d/ nfs/ Makefile

R R R R

1801 Sun Aug 25 23:50:46 2013
new usr/src/cnd/ fs. d/ nfs/ Makefile
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel oprent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww.opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perm ssions
11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # If applicable, add the followi ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

21 #

22 #

23 # Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.

24 # Use is subject to license terns.

25 #

26 # crd/ fs.d/nfs/ Makefile

27 #

28 # cnd/fs.d/nfs is the directory of all nfs specific commands

29 # whose executable reside in $(1NSD Rl) and $(!NSD R2).

30 #

32 include $(SRC)/ Makefile. master

34 SUBDI R1= exportfs nfsd rquotad \

35 statd nfsstat nmountd dfshares \
36 nfsfind nfs4cbd share

38 # These do "make catal og"

39 SUBDI R2= cl ear _l ocks | ockd umbunt showmount \
37 SUBDI R2= cl ear _| ocks unmount shownount \

40 mount df mounts nfslog nfsnmapid \
41 nfsref rp_basic

43 SUBDI R3= etc svc

44 SUBDI RS= $(SUBDI R1) $(SUBDI R2) $(SUBDI R3)
46 # for nessaging catalog files

47 #

48 POFI LES= $('SUBDI R2: %% % po)

49 POFI LE= nfs. po

49 LOCKD= $(CLOSED)/ cnd/ fs. d/ nfs/| ockd

50 $(CLOSED BUI LD) CLOSED SUBDI R2= $(LOCKD)

51 $(CLOSED BUI LD) POFI LES += $(LOCKD) / | ockd. po
52 $(CLOSED_BUI LD) SUBDI RS += $(CLOSED_SUBDI R2)
51 all:= TARCET= al |

52 install:= TARCET= install

new usr/src/cnd/ fs.d/ nfs/ Makefile

53 clean: = TARGET= cl ean
54 cl obber: = TARCET= cl obber
55 lint:= TARCET= | i nt
56 catal og: = TARGET= cat al og

58 . KEEP_STATE:
60 . PARALLEL: $(SUBDI RS)
62 all install clean clobber lint: $(SUBD RS)
64 catal og: $(SUBDI R2)
67 catal og: $(SUBDI R2) $(CLOSED_SUBDI R2)
$($(POFI LE)
66 cat $(POFILES) > $(POFILE)

68 $(SUBDIRS): FRC
@d $@ pwd; $(MAKE) $(TARGET)

71 FRC

new usr/src/cmd/fs.d/ nfs/lib/nfs_tbind. c

R R R R

44643 Sun Aug 25 23:50:47 2013

new usr/src/cmd/fs.d/nfs/1ib/nfs_tbind. c

195 Need repl acenment for nfs/l|ockd+kl m

Revi ewed by: Gordon Ross <gordon. ross@exenta. conp

Revi ewed by: Jereny Jones <jereny@lel phi x. con>

Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

IR R R R R R R RS R SR S R RS RS E R E R E RS E R R R R REREREEEEEEEE]
1/*

* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmon Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN

23 * Copyright (c) 1996, 2010, Oracle and/or its affiliates. Al rights reserved.
*
/

24 | *
24 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
25 * Copyright (c) 2012 by Del phix. Al rights reserved.

*

/

26

29 /*

30 * nfs_tbhind.c, common part for nfsd and | ockd.
31 */

33 #include <tiuser.h>

34 #include <fcntl. h>

35 #include <netconfig. h>
36 #include <stropts. h>

37 #include <errno. h>

38 #include <sysl og. h>

39 #include <rpc/rpc. h>

40 #include <sys/tine. h>

41 #incl ude <sys/resource. h>
42 #include <signal . h>

43 #include <netdir.h>

44 #incl ude <unistd. h>

45 #include <string. h>

46 #i nclude <netinet/tcp. h>
47 #include <nall oc. h>

48 #include <stdlib. h>

49 #include "nfs_tbind. h"
50 #include <nfs/nfs.h>

51 #include <nfs/nfs_acl.h>
52 #include <nfs/nfssys. h>
53 #include <nfs/nfs4.h>

54 #include <zone. h>

55 #include <sys/socket. h>
56 #include <tsol/label.h>

new

1690

1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1701
1702
1703
1704
1705

1707
1708
1709
1710
1711
1712
1713
1714

usr/src/cnd/fs.d/nfs/lib/nfs_thind.c

/*
* Determne valid semantics for nost applications.
*

#defi ne OK_TPI _TYPE(_nconf) \

(_nconf->nc_semantics == NC_TPI _CLTS || \
_nconf->nc_semantics == NC_TPI_COTS || \
_nconf->nc_senantics == NC_TPI _COTS_ORD)

#define BE32_TO U32(a) \
((((ulong_t)((uchar_t *)a)[0] & OxFF) << (ulong_t)24) | \
(((ulong_t)((uchar_t *)a)[1] & OxFF) << (ulong_t)16) | \
(((ulong_t)((uchar_t *)a)[2] & OxFF) << (ulong_t)8) | \
((ulong_t)((uchar_t *)a)[3] & OxFF))

/*

* Nunber of elements to add to the poll array on each allocation.

*

/

#define POLL_ARRAY_ I NC SI ZE 64

/*

* Nunber of file descriptors by which the process soft limt may be

* increased on each call to nofile_increase(0).

*

#def i ne NOFI LE_|I NC_SI ZE 64

/*

* Default TCP send and receive buffer size of NFS server.
*

#define NFSD_TCP_BUFSZ (1024*1024)

struct conn_ind {
struct conn_ind *conn_next;
struct conn_ind *conn_prev;
struct t_call *conn_cal | ;

b
__unchanged_portion_onitted_

#i ncl ude <netinet/in.h>

/*

* Create an address mask appropriate for the transport.

* The mask is used to obtain the host-specific part of

* a network address when conparing addresses.

* For an internet address the host-specific part is just
* the 32 bit IP address and this part of the mask is set
* to all-ones. The port nunber part of the mask is zeroes.
*

/
static int

set _addrmask(int fd,
struct netconfig *nconf,
struct netbuf *nask)

set _addrmask(fd, nconf, mask)
struct netconfig *nconf;
struct netbuf *mask;

{

struct t_info info;

/*
* Find the size of the address we need to mask.
*
/
if (t_getinfo(fd, & nfo) < 0) {

t_error("t_getinfo");
return (-1);

mask- >l en = mask->maxl en = info.addr;

new usr/src/cmd/fs.d/ nfs/lib/nfs_tbind. c

1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726

1728
1728
1729
1729
1730

1732
1733
1734
1735
1736
1737

1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756

1758
1759
1760
1761
1762
1763

1764 }
__unchanged_portion_onitted_

if (info.addr <= 0) {
/*

* | oopback devices have infinite addr size
* (it is identified by -1 in addr field of t_info structure),
* so don’t build the netmask for them It’'s a special case
* that should be handl ed properly.
*/
if ((|nfo addr == -1) &&
(0 == strcnp(nconf >nc protofrﬁy, NC_LOOPBACK))) {
menset (mask, 0, sizeof (*mask));
return (0);
}

sysl og(LOG ERR, "set_addrmask: address size: %d", info.addr);
sysl og(LOG ERR, "set_addrmask: address size: %d",

i nfo. addr) ;
return (-1);

}

mask- >buf = (char *)nall oc(nask->len);

if (mask->buf == NULL
sysl og(LOG_ERR, "set_addrmask: no nenory");
return (-1);

}
(voi d) nenset (nmask->buf, 0, nmask->len); /* reset all nmask bits */
if (strcmp(nconf->nc_protofmy, NC_INET) == 0) {

/*

* Set the mask so that the port is ignored.

*/

/* LI NTED poi nter alignnment */
((struct sockaddr_in *)mask->buf)->sin_addr.s_addr =
(ul ong_t) ~0;
/* LINTED pointer alignnent */
((struct sockaddr_in *)nmask->buf)->sin_famly =
(ushort_t)~0;
} elseif (strcrrp(nconf >nc_protofmy, NC_INET6) == 0) {
/* LINTED pointer alignment */
(void) memset (& (struct sockaddr_in6é *)nask->buf)->sin6_addr,
(uchar_t)~0, sizeof (struct in6_addr));
/* LINTED pointer alignnent */
((struct sockaddr_in6é *)mask->buf)->sin6_famly =
(ushort _t)~0;
} else {
/*
* Set all nmask bits.
*/
(voi d) memnset (mask->buf, OxFF, nmask->len);

}
return (0);

new usr/src/cmd/fs.d/nfs/lib/snfcfg.c

R R R R

10383 Sun Aug 25 23:50:48 2013

new usr/src/cmd/fs.d/nfs/lib/snfcfg.c

195 Need repl acenment for nfs/l|ockd+kl m

Revi ewed by: Gordon Ross <gordon. ross@exenta. conp

Revi ewed by: Jereny Jones <jereny@lel phi x. con>

Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

IR R R R R R R RS R SR S R RS RS E R E R E RS E R R R R REREREEEEEEEE]
1/*

* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmon Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN

23 * Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved.

24 * Copyright 2011 Nexenta Systens, Inc. All rights reserved.
*/

26 #include <stdio.h>

27 #include <stdlib. h>
28 #include <sysl og. h>
29 #include <stdarg. h>
30 #include "snfcfg.h"

32 fs_snfhandle_t *
33 fs_snf_init(char *fnri, char *instance)

34 {

35 fs_snfhandl e_t *handl e = NULL;

36 char *svcnane, srv[MAXPATHLEN] ;

38 /*

39 * svc nane is of the formsvc://network/fs/server:instancel
40 * FMRI portion is /network/fs/server

41 */

42 snprintf(srv, MAXPATHLEN, "%", fnri + strlen("svc:/"));
43 svcname = strrchr(srv, ':");

44 if (svcname != NULL)

45 *svcname = '\0;

46 svchame = srv;

48 handl e = calloc(1, sizeof (fs_snfhandle_t));

49 if (handle != NULL)

50 handl e->fs_handl e = scf_handl e_creat e(SCF_VERSI ON) ;
51 if (handl e->fs_handl e == NULL)

52 goto out;

53 if (scf_handl e_bi nd(handl e->fs_handle) != 0)

54 goto out;

55 handl e->fs_service =

56 scf _servi ce_creat e(handl e->f s_handl e) ;

57 handl e->f s_scope =

58 scf _scope_creat e(handl e->f s_handl e) ;

fori);

new usr/src/cmd/fs.d/nfs/lib/snfcfg.c

59 if (scf_handl e_get_l ocal _scope(handl e->fs_handl e,
60 handl e- >f s_scope) != 0)

61 goto out;

62 if (scf_scope_get_service(handl e->fs_scope,

63 svcnanme, handl e->fs_service) != SCF_SUCCESS) {
64 goto out;

65 }

66 handl e->fs_pg =

67 scf_pg_creat e(handl e->f s_handl e) ;

68 handl e->f s_i nstance =

69 scf _i nstance_creat e(handl e->fs_handl e) ;

70 handl e->fs_property =

71 scf_property_create(handl e->fs_handl e);

72 handl e->f s_val ue =

73 scf _val ue_creat e(handl e->f s_handl e) ;

74 } else {

75 fprintf(stderr,

76 gettext (" Cannot access SMF repository: %\n"), fnri);
77 1

78 return (handle);

80 out:

81 fs_snf_fini(handle);

82 fprintf(stderr, gettext("SMF Initialization problens..%\n"),
83 return (NULL);

84 }

____unchanged_portion_onitted_
363 /* Get an integer (base 10) property */
364 int
365 nfs_snf_get_i prop(char *prop_nane, int *rvp, char *instance,
366 scf_type_t sctype, char *svc_nane)
367 {
368 char propbuf[32];
369 int bufsz, rc, val;
371 bufsz = sizeof (propbuf);
372 rc = fs_snf_get_prop(NFS_SMF, prop_nane, propbuf,
373 instance, sctype, svc_nane, &bufsz);
374 if (rc != SA OK)
375 return (rc);
376 errno = 0;
377 val = strtol (propbuf, NULL, 10);
378 if (errno!=0
379 return (SA_BAD VALUE);
380 *rvp = val;
381 return (SA_X);
382 }
384 int
385 nfs_snf_set_prop(char *prop_nane, char *val ue, char *instance,
386 scf_type_t type, char *svc_nane)
387 {
388 return (fs_snf_set_prop(NFS_SM-, prop_nane, value, instance,
389 type, svc_nane));
390 }

____unchanged_portion_onitted_

new usr/src/cmd/fs.d/nfs/lib/snfcfg.h

R R R R

3044 Sun Aug 25 23:50:49 2013
new usr/src/cmd/fs.d/nfs/lib/snfcfg.h
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

__unchanged_portion_omtted_
65 #defi ne DEFAULT_I NSTANCE "defaul t"

67 /*

68 * NFS Property Group names.
*
/

70 #define SMF_PG_NFSPROPS ((const char *)"com oracle.nfs, props")
71 #define NFS_PROPS_PGNAMVE ((const char *)"nfs-props")
72 #define SVC_NFS_CLI ENT "svc:/network/nfs/client”

74 | *

75 * AUTOFS Property G oup Nanes.
*
/

77 #define SMF_PG AUTOFS ((const char *)"com oracl e. aut of s, props")
78 #define AUTOFS_PROPS_PGNAMVE ((const char *)"autofs-props")

80 #define AUTOFS_FMRI "svc:/system fil esysteni aut of s"
81 #define AUTOFS_DEFAULT_FMRI "svc:/system fil esysteni aut of s: defaul t”
82 #define MAXDIA TS 32

84 /*

85 * ERRORS

86 */

87 #define SMF_OK

88 #define SMF_SYSTEM ERR

89 #define STATE_I NI TI ALl ZI NG
90 #define SMF_NO PERM SSI ON
91 #define SMF_NO_PGTYPE

WNER ' O

93 extern int nfs_snf_get_iprop(char *, int *, char *, scf_type_t, char *);

94 extern int nfs_snf_get_prop(char *, char *, char *, scf_type_t, char *, int *);
95 extern int fs_snf_get_prop(snf_fstype_t, char *, char *, char *, scf_type_t,
96 char *, int *);

97 extern int nfs_snf_set_prop(char *, char *, char *, scf_type_t, char *);

98 extern int fs_snf_set_prop(snf_fstype_t, char *, char *,

99 char *, scf_type_t, char *);

100 extern int autofs_snf_set_prop(char *, char *, char *, scf_type_t, char *);
101 extern int autofs_snf_get_prop(char *, char *, char *, scf_type_t,

102 char *, int *);

103 extern void fs_snf_fini(fs_snfhandle_t *);

104 extern bool ean_t string_to_bool ean(const char *);

106 #ifdef cpl uspl us
107 }
unchanged_portion_onitted_

new usr/src/cnd/ fs.d/ nfs/lockd/ Makefile

R R R R

2092 Sun Aug 25 23:50:51 2013
new usr/src/cnd/ fs.d/ nfs/lockd/ Makefile
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbi seda@lel phi x. con»

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opment and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.

7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww.opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perm ssions

11 # and limtations under the License.

12 #

13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # |If applicable, add the followi ng bel ow this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]

18 #

19 # CDDL HEADER END

20 #

21 #

22 # Copyright (c) 1990, 2010, Oracle and/or its affiliates. Al rights reserved.
23 # Copyright (c) 2012 by Del phix. Al rights reserved.

24 #

26 FSTYPE = nfs

27 TYPEPROG = | ockd

28 ATTMWK = $(TYPEPROG)

30 include ../.. /I Makefile. fstype

32 LOCAL = | ockd. o

33 ABIS = $(LOCAL) daenon.o nfs_tbind.o snfcfg.o thrpool.o

35 PCFI LE = | ockd. po

37 SRCS = $(LOCAL: % 0=%c) ../lib/daemon.c ../lib/nfs_tbhind.c \
38 ../libl/snfcfg.c ../lib/thrpool.c

39 LDLIBS += -Insl -1scf

40 CPPFLAGS += -l../1ib

41 CO9MODE = $(C99_ENABLE)

43 CERRWARN += - _gcc=- Who- par ent heses

44 CERRWARN += -_gcc=- Who-swi tch

45 CERRWARN += - _gcc=- Who- unused- vari abl e
46 CERRWARN += - _gcc=-Wio-uninitialized

48 $(TYPEPROG) : $(OBIS)

49 $(LINK c) -0 $@$(0BIS) $(LDLIBS)
50 $(POST_PROCESS)

52 | ockd. o: | ockd. c

53 $(COWPI LE. ¢) | ockd.c

55 nfs_tbind. o: ../lib/nfs_thind.c

56 $(COWPILE.c) ../lib/nfs_thind.c

58 thrpool . o: ../1ib/thrpool.c

new usr/src/cnd/ fs.d/ nfs/|ockd/ Makefile

59 $(COWPILE. c) ../lib/thrpool.c
61 daenon. o: ../1ib/daenon. c

62 $(COWPILE. c) ../lib/daenon.c
64 snfcfg.o: ../lib/snfcfg.c

65 $(COWPILE.c) ../lib/snfcfg.c
67 #

68 # nmessage catal og

69 #

70 catal og: $(POFI LE)
72 $(PCFI LE}$: $(SRCS)

73 $@

74 $(COWPI LE. cpp) $(SRCS) > $(POFI LE) . i
75 $(XCETTEXT) $(XCGETFLAGS) $(PCFILE). i
76 sed "/~donui n/d" messages. po

77 $(RM $(POFILE).i nessages.po

79 lint:

80 $(LINT.c) $(SRCS) $(LDLIBS)

82 cl ean:

83 $(RM $(0BJS) $(DOBJ)

> 3@

new usr/src/cmd/ fs.d/ nfs/lockd/l ockd. c

R R R R

12718 Sun Aug 25 23:50:51 2013
new usr/src/cnd/ fs.d/ nfs/lockd/l ockd. c
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbi seda@lel phi x. con»

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww:.opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.

12 *

13 * \Wen distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |If applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [nane of copyright owner]
18 =

19 * CDDL HEADER END

20 */

22 /*

23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. Al rights reserved.

24 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
25 * Copyright (c) 2012 by Delphix. Al rights reserved.
*/

28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */

29 /* Al Rights Reserved =[]

31 /*

32 * University Copyright- Copyright (c) 1982, 1986, 1988

33 * The Regents of the University of California

34 * Al Rights Reserved

35 *

36 * University Acknow edgnent- Portions of this docunent are derived from
37 * software devel oped by the University of California, Berkeley, and its
38 * contributors.

39 */

41 /* LI NTLI BRARY */

42 /* PROTOLIB1 */

44 | *

45 * NLM server

46 *

47 * Most of this copied from../nfsd/nfsd.c

48 * and then s: NFS:NLM applied, etc.
*/

51 #incl ude <sys/param h>
52 #include <sys/types. h>
53 #include <sys/stat.h>
54 #include <sysl og. h>

55 #include <tiuser.h>

56 #i nclude <rpc/rpc. h>
57 #include <errno. h>

58 #include <thread. h>

new usr/src/cmd/ fs.d/ nfs/lockd/l ockd. c

59 #include <sys/tinme.h>

60 #include <sys/file.h>

61 #include <nfs/nfs.h>

62 #include <nfs/nfssys. h>
63 #i nclude <stdio. h>

64 #include <stdio_ext.h>
65 #include <stdlib. h>

66 #include <signal.h>

67 #include <netconfig. h>
68 #include <netdir.h>

69 #include <string.h>

70 #include <unistd. h>

71 #include <stropts. h>

72 #include <sys/tihdr.h>
73 #include <poll.h>

74 #include <priv_utils.h>
75 #include <sys/tiuser.h>
76 #include <netinet/tcp.h>
77 #include <deflt.h>

78 #include <rpcsvc/daenmon_utils. h>
79 #include <rpcsve/nl mprot. h>
80 #include <libintl.h>

81 #include <libscf.h>

82 #include <libshare. h>

83 #include "nfs_tbind. h"
84 #include "thrpool.h"

85 #include "snfcfg. h"

87 /* Option defaults. See nfssys.h */
88 struct Imsvc_args Imargs = {

89 .version = LM SVC CUR VERS,

90 /* fd, n_fmy, n_proto, n_rdev (below) */
91 debug = 0,

92 tinout = 5 * 60,

93 .grace = 60,

94 .retransmtti meout = 15

95 };

96 int max_servers = 20;

99 #define RET_OK 0 /* return code for no error
/* return code for error(s)

100 #define RET_ERR 33

102 static int nlmeve(int fd, struct netbuf addrnask,

103 struct netconfig *nconf);
104 static int nlmsvcpool (i nt max_servers);
105 static void usage(void);

107 extern int _nfssys(int, void *);
108 static void sigtermhandler(void);
109 static void shutdown_| ockd(void);

111 extern int
112 extern void

daenoni ze_i ni t (voi d);
daenoni ze_fini (int fd);

114 static char *MyNane;

116 /*

117 * We want to bind to these TLI providers, and in this
118 * because the kernel NLM needs the | oopback first for
119 * initialization. (It uses it to talk to statd.)

120 */

121 static NETSELDECL(defaul tproviders)[] = {

122 “/dev/ticotsord",

123 "/dev/tcp",

124 "/ dev/ udp",

*/
*/

order,
its

new usr/src/cmd/ fs.d/ nfs/lockd/l ockd. c

125
126
127
128

130
131
132
133
134
135
136
137
138

140
141

142 {

143
144
145
146
147
148
149
150
151

153

155
156
157
158
159

161
162
163
164
165
166

170
171
172
173

175
176
177
178
179
180
181
182
183
184
185

189
190

}s

/*
* The following are all globals used by routines in nfs_tbind.c.
*/

si ze_t
si ze_t

nt
nt

nt

nt

"/ dev/tcp6",
"/ dev/ udp6",
NULL

end_| i sten_fds; /* used by conn_cl ose_ol dest() *
num fds = 0; /* used by multiple routines */
i sten_backl og = 32; /* used by bind_to_{provider, proto}()
(*Mysve) (int, struct netbuf, struct netconfig *) = ni nBVC;
/* used by cots_listen_event() */
/*

max_conns_al | oned = -1; used by cots_listen_event() */

main(int ac, char *av[])

char *propnane = NULL;

char *dir ="/";

char *provider = (char *)NULL;
struct protob *protobp;
NETSELPDECL(pr ovi der p) ;
sigset_t sgset;

int i, c, pid, ret, val;

int pipe_fd = -1;

struct sigaction act;

M/Name = *av;
/*

* Initializations that require nore privileges than we need to run.
*/

(void) _create_daenon_| ock(LOCKD, DAEMON U D, DAEMON G D);
svesetprio();

if (__init_daenon_priv(PU RESETGROUPS| PU_CLEARLI M TSET,
DAEMON_UI D, DAEMON_G D, PRIV SYS_NFS, NULL) == -1) {
(void) fprintf(stderr, "% should be run with"
" sufficient pri vil eges\n", av[0]);
) exit(1);

(voi d) enabl e_extended_FI LE_stdio(-1, -1);

/*

* Read in the values from SMF first before we check

* comand |ine options so the options override SMF val ues.
*/

/* How | ong to keep idle connecti ons. */
propnanme = "conn_idle_tineout"; /* also -t */
ret = nfs_snf_get |prop(propnarre &val ,
DEFAULT_| NSTANCE, SCF_TYPE INTEGER LOCKD) ;
if (ret == SA OK)
if (val <= 0)
fprintf(stderr, gettext(
"Invalid % from SM"), propnane);
el se
| margs.timout = val;

}
/* Note: debug_|l evel can only be set by args. */

/* How long to wait for clients to re-establish |ocks. */
propnane = "grace_period"; /* also -g */

new usr/src/cnd/ fs.d/ nfs/lockd/I ockd. c

191
192
193
194
195
196
197
198
199

201
202
203
204
205
206
207
208
209
210

212
213
214
215
216
217
218
219
220
221

223
224
225
226
227
228
229
230
231
232

234
235
236
237
238
239
240
241
242
243

246
247
248
249
250
251
252

254
255
256

ret = nfs_snf_get_i prop(propnanme, &val,
DEFAULT_| NSTANCE, SCF_TYPE INTEGER LOCKD) ;
if (ret == SA_OK)
if (val <= 0)
fprintf(stderr, gettext(
"Invalid % from SMF"), propnane);
el se
| margs. grace = val;

}

propnanme = "listen_backlog"; /* also -l */
ret = nfs_snf_get |prop(propnam3 &val ,
DEFAULT_| NSTANCE, SCF_TYPE_ | NTEGER, LOCKD) ;
if (ret == SA_OK)
if (val <= 0)
fprintf(stderr, gettext(
"Invalid % from SM-"), propnane);
el se
|'i sten_backl og = val;

}

propnane = "max_connections"; /* also -c */
ret = nfs_snf_get |prop(propnarm &val ,
DEFAULT_| NSTANCE, SCF_TYPE_ INTEGER LOCKD) ;
if (ret == SA OK) {
if (val <= 0)
fprintf(stderr, gettext(
"Invalid % from SMF"), propnane);
el se
max_conns_al | owed = val ;

}

propnane = "max_servers"; /* also argv[1] */
ret = nfs_snf_get |prop(propnane &val ,
DEFAULT | NSTANCE, SCF_TYPE INTEGER LOCKD) ;

if (ret == SA OK) {
if (val <= 0)
fprintf(stderr, gettext(
"Invalid % from SMF"), propnane);
el se
max_servers = val;
}
propname = "retrans_tineout"; /* also -r */

ret = nfs_snf_get |prop(propnama &val ,
DEFAULT_| NSTANCE, SCF_TYPE_ INTEGER LOCKD) ;
if (ret == SA OK)
if (val <= 0)
fprintf(stderr, gettext(
"Invalid % from SM-"), propnane);
el se
I margs.retransmttimeout = val;

while ((c = getopt(ac, av, "c:d:g:l:r:t:")) != ECF)
switch (c) {

case 'c¢': /* max_connections */
if ((val = atoi(optarg)) <= 0)
got o badval ;
max_conns_al | oned = val ;

br eak;

case 'd’: /* debug */
| mar gs. debug = atoi (optarg);
br eak;

new usr/src/cmd/ fs.d/ nfs/lockd/l ockd. c

258 case 'g’: /* grace_period */

259 if ((val = atoi(optarg)) <= 0)

260 goto badval ;

261 | margs. grace = val;

262 break;

264 case 'I’: /* listen_backlog */

265 if ((val = atoi(optarg)) <= 0)

266 got o badval ;

267 |'i sten_backl og = val;

268 br eak;

270 case 'r’: [/* retrans_timeout */

271 if ((val = atoi(optarg)) <= 0)

272 got o badval ;

273 | margs.retransmtti nmeout = val;

274 break;

276 case 't’: /* conn_idle_tinmeout */

277 if ((val = atoi(optarg)) <= 0)

278 got o badval ;

279 | margs.timut = val;

280 br eak;

282 badval :

283 fprintf(stderr, gettext(

284 "Invalid -% option value"), c);
285 /* FALLTHROUGH */

286 defaul t:

287 usage();

288 /* NOTREACHED */

289 }

291 /*

292 * If there is exactly one nore argunent, it is the nunber of
293 * servers.

294 */

295 if (optind < ac) {

296 val = atoi(av[optind]);

297 if (val <= 0) {

298 fprintf(stderr, gettext(

299 "I nval i d max_servers argunent"));
300 usage();

301 }

302 max_servers = val;

303 opti nd++;

304 1

305 /*

306 */If there are two or nore argunents, then this is a usage error.
307 *

308 if (optind != ac)

309 usage();

311 if (lmargs.debug) {

312 printf("%: debug= %, conn_idle_tinout= 9%,"
313 " grace_period= %, |isten_backlog= %,"
314 " max_connections= %, nmax_servers= %, "
315 " retrans_tinmeout= %\ n",

316 M/Nane, | margs. debug, | margs.tinout,

317 | margs. grace, |isten_backl og,

318 max_conns_al | oned, max_servers,

319 I margs.retransmttimeout);

320 }

322 /*

new usr/src/cnd/ fs.d/ nfs/lockd/I ockd. c

323 * Set current dir to server root

324 */

325 if (chdir(dir) < 0) {

326 (void) fprintf(stderr, "%: ", M/Nane);

327 perror(dir);

328 exit(1);

329 }

331 /* Daenoni ze, if not debug. */

332 if (lmargs.debug == 0)

333 pi pe_fd = daenoni ze_init();

335 openl og(MyNarme, LOG PID | LOG NDELAY, LOG DAEMON);

337 I*

338 * establish our lock on the lock file and wite our pidtoit.
339 * exit if sonme other process holds the lock, or if there' s any
340 * error in witing/locking the file.

341 */

342 pid = _enter_daenon_| ock(LOCKD) ;

343 switch (pid) {

344 case O:

345 br eak;

346 case -1:

347 fprintf(stderr, "error locking for %: %", LOCKD,
348 strerror(errno));

349 exit(2);

350 defaul t:

351 /* daeron was al ready running */

352 exit(0);

353 }

355 /*

356 * Block all signals till we spawn other

357 * threads.

358 */

359 (void) sigfillset(&sgset);

360 (void) thr_sigsetmask(SI G BLOCK, &sgset, NULL);

362 /* Unregister any previous versions. */

363 for (i = NLMVERS; i < NLMA_VERS; i++) {

364 svc_unreg(NLM PROG, i);

365 }

367 /*

368 */Set up kernel RPC thread pool for the NLM server.

369 *

370 if (nlmsvcpool (max_servers)) {

371 fprintf(stderr, "Can’t set up kernel NLM service: %. Exiting",
372 strerror(errno));

373 exit(1);

374 }

376 /*

377 * Set up blocked thread to do LWP creation on behal f of the kernel.
378 */

379 if (svewait(NLM SVCPOOL_ID)) {

380 fprintf(stderr, "Can’t set up NLM pool creator: %. Exiting",
381 strerror(errno));

382 exit(1);

383 1

385 /*

386 * Install atexit and sigterm handl ers

387 */

388 act.sa_handl er = sigtermhandler;

new usr/src/cmd/ fs.d/ nfs/lockd/l ockd. c

389 act.sa_flags = 0;

391 (void) sigaction(SIGTERM &act, NULL);

392 (voi d) atexit(shutdown_| ockd);

394 /*

395 * Now open up for signal delivery

396 *

397 (void) thr_sigsetmask(SI G UNBLOCK, &sgset, NULL);

399 I*

400 * Build a protocol block list for registration.

401 */

402 protobp = (struct protob *)mall oc(sizeof (struct protob));
403 prot obp->serv = "NLM';

404 prot obp->versnm n = NLM VERS;

405 pr ot obp->ver smax = NLM4_VERS;

406 pr ot obp- >pr ogram = NLM_PROG

407 pr ot obp- >next (struct protob *)NULL;

409 for (providerp = defaul tproviders;

410 *providerp !'= NULL; providerp++) {

411 provi der = *provi derp;

412 do_one(provi der, NULL, protobp, nlnsvc);

413 }

415 free(protobp);

417 if (numfds == 0) {

418 fpri ntf(stderr, "Coul d not start NLM service for any protocol."
419 Exiting");

420 exit(1);

421 }

423 end_listen_fds = num fds;

425 *

426 * lockd is up and running as far as we are concerned.
427 */

428 if (lmargs.debug == 0)

429 daenoni ze_fi ni (pi pe_fd);

431 /*

432 * CGet rid of unneeded privil eges.

433 */

434 __fini _daenon_priv(PRIV_PROC FORK, PRIV_PROC EXEC, PRI V_PROC_SESSI ON,
435 PRI'V_FI LE_LI NK_ANY, PRI V_PROC | NFO, ~(char *)NULL);
437 *

438 * Poll for non-data control events on the transport descriptors.
439 */

440 pol | _for_action();

442 /*

443 * |f we get here, something failed in poll_for_action().
444 */

445 return (1);

446 }

448 static int

449 nl nsvcpool (i nt nmaxservers)

450 {

451 struct svcpool _args npa;

453 npa.id = NLM SVCPOOL_I D

454 npa. maxt hreads = maxservers;

new usr/src/cnd/ fs.d/ nfs/lockd/I ockd. c

455 npa.redline = 0;

456 npa. gsi ze = 0;

457 npa.timeout = 0;

458 npa. st ksi ze = 0;

459 npa. max_same_xprt = O;

460 return (_nfssys(SVCPOOL_CREATE, &npa));
461 }

463 static int

464 ncfmy_to_I nfm y(const char *ncfmy)

465 {

466 if (0 == strcnp(ncfmy, NC_INET))
467 return (LM.I NET);

468 if (0 == strcmp(ncfmy, NCINE|'6))
469 return (LM_I NET6);

470 if (0 == strcnp(ncfmy, NC > LOOPBACK))
471 ret urn (LM _LOOPBACK) ;

472 return (-1);

473 }

475 static int

476 nctype_to_l nprot(uint_t semantics)

477 {

478 switch (semantics) {

479 case NC_TPI_CLTS:

480 return (LM UDP);

481 case NC_TPI _COTS_ORD:

482 return (LM._TCP);

483 }

484 return (-1);

485 }

487 static dev_t

488 ncdev_to_rdev(const char *ncdev)

489 {

490 struct stat st;

492 if (stat(ncdev, &st) < 0)

493 return (NCDEV);

494 return (st.st_rdev);

495 }

497 static void

498

si gt erm_handl er (voi d)

499 {

500
501
502

504
505
506
507
508

511
512
513
514
515

/* to call ate
exit(0);

}

static void

shut down_| ockd(voi d)
{

xit handler */

(void) _nfssys(KlILL_LOCKMER, NULL);

}

/*

* Establish NLM servi
*/

static int

nl mevc(int fd, struct

516 {

517
519

struct I msvc

Ima = | margs;

ce thread.

net buf addr mask,

_args | ng;

/* init by struct

struct netconfig *nconf)

copy */

new usr/src/cmd/ fs.d/ nfs/lockd/l ockd. c

521
522
523
524
525
526
527
528
529

531
532 }

*

* The kernel code needs to reconstruct a conplete
* knetconfig fromn_fmy, n_proto. W use these
* two fields to convey the fam |y and semantics.
*

fd = fd;

n_fmy = ncfmy_to_l nfm y(nconf->nc_protofnly);
n_proto = nctype_to_| nprot(nconf->nc_semantics);
n_rdev = ncdev_to_rdev(nconf->nc_device);

return (_nfssys(LM SVC, & m));

534 static void

536
537
538
539
540
541
542
543
544
545
546
547

549
550 }

535 usage(voi d)
{

(void) fprintf(stderr, gettext(

"usage: % [options] [max_servers]\n"), M/Nane);
(void) fprintf(stderr, gettext(

"options: (see SMF property descriptions)\n"));
/* Note: don't translate these */
(void) fprintf(stderr, "\t-c max_connections\n");
(void) fprintf(stderr, "\t-d debug_|l evel\n");
(void) fprintf(stderr, "\t-g grace_period\n");
(void) fprintf(stderr, "\t-1 listen_backlog\n");
(void) fprintf(stderr, "\t-r retrans_timeout\n");
(void) fprintf(stderr, "\t-t conn_idle_tineout\n");

exit(1);

new usr/src/cnd/ fs. d/ nfs/ mount/ Makefile

R R R R

3154 Sun Aug 25 23:50:52 2013
new usr/src/cnd/ fs. d/ nfs/ nount/ Makefile
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

__unchanged_portion_omtted_

new usr/src/cmd/ fs.d/ nfs/statd/ smproc.c 1 new usr/src/cnmd/ fs.d/ nfs/statd/ smproc.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 59 #I ncl ude <net db h>
33855 Sun Aug 25 23:50: 53 2013 60 #include <netdir.h>
new usr/src/cnd/ fs.d/ nfs/statd/smproc.c 61 #include <synch. h>
195 Need repl acenment for nfs/l|ockd+kl m 62 #include <thread. h>
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp 63 #include <ifaddrs. h>
Revi ewed by: Jereny Jones <jereny@lel phi x. con> 64 #include <errno. h>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com 65 #i ncl ude <assert. h>
IR R R R R R R RS R SR S R RS RS E R E R E RS E R R R R REREREEEEEEEE] 66 #' ncl ude "sm st atd h"
1/*
2 * CDDL HEADER START 68 static int |ocal _state; /* fake local smstate */
3 * 69 /* client nane-to-address translation table */
4 * The contents of this file are subject to the terms of the 70 static name_addr_entry_t *name_addr = NULL;
5 * Common Devel opnent and Distribution License, Version 1.0 only
6 * (the "License"). You nmay not use this file except in conpliance
7 * with the License. 73 #define LOGHOST "l oghost™
8 *
9 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 75 static void del ete_non(char *nmon_nanme, ny_id *ny_idp);
10 * or http://ww. opensol aris.org/os/licensing. 76 static void insert_non(nmon *nonp);
11 * See the License for the specific |anguage governi ng perm ssions 77 static void pr_non(char *);
12 * and limtations under the License. 78 static int statd_call_l ockd(non *nonp, int state);
13 * 79 static int hostnane_eq(char *hostl, char *host2);
14 * Wen distributing Covered Code, include this CDDL HEADER in each 80 static char *get_system.id(char *hostnamne);
15 * file and include the License file at usr/src/OPENSOLARI S. LI CENSE. 81 static void add_aliases(struct hostent *phost);
16 * If applicable, add the followi ng below this CDDL HEADER, wth the 82 static void *thr_send_notice(void *);
17 * fields enclosed by brackets "[]" replaced with your own identifying 83 static void del ete_onenon(char *non_nanme, ny_id *ny_idp,
18 * information: Portions Copyright [yyyy] [name of copyright owner] 84 non_entry **nonitor_q);
19 * 85 static void send_notice(char *non_nanme, int state);
20 * CDDL HEADER END 86 static void add_to_host_array(char *host);
21 */ 87 static int in_host_array(char *host);
22 | * 88 static void pr_nanme_addr(nanme_addr_entry_t *nane_addr);
23 * Copyright 2005 Sun Mcrosystens, Inc. Al rights reserved.
24 * Use is subject to license terns. 90 extern int self_check(char *hostnane);
25 /*/ 91 extern struct lifconf *getnyaddrs(void);
26 /*
27 * Copyright 2013 Nexenta Systenms, Inc. Al rights reserved. 93 /* ARGSUSED */
28 * Copyright (c) 2012 by Del phix. Al rights reserved. 94 void
29 */ 95 sm stat_svc(sm.nane *nanep, smstat_res *resp)
92 sm status(nanep, resp)
31 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 93 sm nanme *nanep;
32 /* Al Rights Reserved */ 94 smstat_res *resp;
96 {
34 /*
35 * University Copyright- Copyright (c) 1982, 1986, 1988 98 if (debug)
36 * The Regents of the University of California 99 (void) printf("proc smstat: non_nane = %\n",
37 * Al Rights Reserved 100 nanep- >non_nane) ;
38 *
39 * University Acknow edgnent- Portions of this document are derived from 102 resp->res_stat = stat_succ;
40 * software devel oped by the University of California, Berkeley, and its 103 resp->state = LOCAL_STATE;
41 * contributors. 104 }
42 */
106 /* ARGSUSED */
44 #incl ude <stdio. h> 107 void
45 #include <sys/types. h> 108 sm non_svc(nmon *nonp, smstat_res *resp)
46 #include <stdlib. h> 107 sm non(nonp, resp)
47 #incl ude <unistd. h> 108 non *nonp;
48 #include <string. h> 109 smstat_res *resp;
49 #incl ude <sysl og. h> 109 {
50 #include <rpc/rpc. h> 110 non_i d *roni dp;
51 #include <rpcsvc/sminter. h> 111 noni dp = &monp- >non_i d;
52 #include <rpcsvc/nsm addr. h>
53 #include <nenory. h> 113 rw_rdl ock(& hr_rw ock);
54 #include <net/if.h> 114 if (debug) {
55 #incl ude <sys/sockio. h> 115 (void) printf("proc smnon: non_nane = %, id = %\n",
56 #i nclude <sys/socket.h> 116 noni dp- >non_nane, * ((int *)nonp->priv));
57 #include <netinet/in.h> 117 pr_non(nmonp- >non_i d. non_nane) ;

58 #i ncl ude <arpal/inet.h> 118 }

new usr/src/cmd/ fs.d/ nfs/statd/ smproc.c

120
121
122
123
124

126
127
128
129
130

132
133
134
135
136
137
135
136
137
138
139
140
141
142
143
144

146
147
148
149
150

152
153
154
157
158
159
155
156
157
158
159
160
161
162
163
164
165
166

168
169
170
171
172
177
178
173
174
175
176

}
/*

/* only nonitor other hosts */

if (self_check(nonp->non_id.non_nane) ==
/* store nonitor request into nonitor_q */
i nsert_non(nonp);

}

pr _non(nonp->non_i d. non_nane) ;
resp->res_stat = stat_succ;
resp->state = | ocal _state;
rw_unl ock(& hr_rw ock);

ARGSUSED */

voi d
sm.unnon_svc(non_id *nonidp, smstat *resp)
sm unnmon(noni dp, resp)

mon_i d *noni dp;
smstat *resp;

{
rw_rdl ock(& hr_rw ock);
if (debug) {
(void) printf(
"proc smunnmon: nmon_nhanme = %, [%, %, %, %]\n",
noni dp- >non_nane, noni dp->ny_i d. ny_nane,
noni dp->ny_i d. ny_prog, nonidp->ny_id.ny_vers,
nmoni dp->ny_i d. my_proc);
) pr _non(noni dp- >non_nane) ;
del et e_non(noni dp- >non_nane, &noni dp->ny_id);
pr_non(noni dp- >non_nane) ;
resp->state = | ocal _state;
rw_unl ock(& hr_rw ock) ;
}
/* ARGSUSED */
voi d

sm unnon_al | _sve(ny_id *nyidp, smstat *resp)
sm_unnon_al | (ny| dp, resp)

}
/*

*

*/

ny_id *nyi

rdl ock(& hr_rw ock);
“(debug)
(void) printf("proc smunnon_all: [%, %, %, %l]\n
nyi dp- >ny_nane,
nyi dp- >ny_prog, nyidp->ny_vers,
nyi dp->ny_proc);
del ete_nmon((char *)NULL, nyidp);
pr_nmon(NULL) ;
resp->state = | ocal _state;
rw_unl ock(& hr_rw ock) ;

Notifies |ockd specified by name that state has changed for this server.

voi d
smnotify_svc(stat_chge *ntfp)
smnotify(ntfp)

{

stat _chge *ntfp;

rw_rdl ock(& hr_rw ock);
if (debug)
(void) printf("smnotify: % state =%\ n",

new usr/src/cnmd/ fs.d/ nfs/statd/ smproc.c

177 nt f p- >non_nane, ntfp->state);
178 send_noti ce(ntfp->non_nane, ntfp->state);
179 rw_unl ock(& hr_rw ock);

180 }

182 /* ARGSUSED */

183 voi d

184 sm sinmu_crash svc(v0| d *nyi dp)
190 sm sinmu crash(nyl dp)

191 voi d *nyi dp;
185 {
186 int i;
187 struct nmon_entry *nonitor_q;
188 int found = 0;
190 /* Only one crash should be running at a time. */
191 mut ex_| ock(&crash_l ock);
192 if (debug)
193 (void) printf("proc smsinu_crash\n");
194 if (in_crash)
195 cond_wai t (&crash_finish, &crash_l ock);
196 mut ex_unl ock(&crash_| ock) ;
197 return;
198 } else {
199 in_crash =
200
201 mut ex_unl ock(&crash_| ock);
203 for (i =0; i < MAX_HASHSI ZE; i++) {
204 mut ex_| ock(&ron_tabl e[i]. | ock);
205 nmonitor_g = non_tabl e[i].smnonhdp;
206 if (monitor_q != (struct non _entry *)NULL) {
207 nut ex_unl ock(&mon_tabl e[i] .l ock);
208 found = 1;
209 break;
210 }
211 mut ex_unl ock(&on_t abl e[i]. 1 ock);
212 }
213 /*
214 * |f there are entries found in the nonitor table,
215 * initiate a crash, else zero out the in_crash variable.
216
217 if (found) {
218 nmut ex_| | ock(&crash_l ock) ;
219 die = 1;
220 /* Signal smretry() thread if sleeping. */
221 cond_signal (& etrywait);
222 mut ex_unl ock(&rash_I ock) ;
223 rw_w | ock(& hr_rw ock);
224 smcrash();
225 rw_unl ock(& hr_rw ock);
226 } else {
227 nmut ex Iock(&cr ash_l ock);
228 in_crash = 0;
229 mut ex_unl ock(&cr ash_| ock);
230 }
231 }
__unchanged_portion_omtted_
714 | *
715 * Work thread created to do the actual statd_call_l ockd
716 */

717 static void *

718 thr_send_notice(void *arg)
719 {

720 nmoni nfo_t *m nfop;

new usr/src/cmd/ fs.d/ nfs/statd/ smproc.c

722 mnfop = (moninfo_t *)arg;

723 if (statd_call _|ockd(&m nfop->id, minfop->state) == -1) {

724 i (debug && minf op->i d. mon_i d. mon_nane)

725 (voi d) printf(" probl emw th notifying % failure,
726 "give up\n", m nfop->id.non_id. non_nane);
727 } else {

728 if (debug)

729 (void) printf("send_notice: %, % notified.\n",
730 m nf op->i d. ron_i d. ron_nane, m nfop->state);
731 }

733 free(m nfop->id. non_i d. non_nane) ;

734 free(m nfop->id.non_id. ny_i d. ny_nane) ;

735 free(m nfop);

737 thr_exit((void *) 0);

738 #ifdef lint

739 / * NOTREACHED* /

740 return ((void *)0);

741 #endi f

742 }

744 | *

745 * Contact |ockd specified by nonp.

746 */

747 static int
748 statd_cal | _| ockd(nonp, state)

749 mon *rnonp;

750 int state;

751 {

752 enum cl nt _stat clnt_stat;

753 struct tineval tottineout;

754 struct smstatus stat;

762 struct status stat;

755 nmy_id *ny_idp;

756 char *non_nane;

757 int i;

758 int rc =0;

759 CLI ENT *clnt;

761 non_name = monp- >mon_i d. mon_nare;

762 nmy_idp = &monp->non_id.ny_id;

763 (void) menset(&stat, 0, sizeof (stat));

771 (voi d) memset(&stat 0, sizeof (struct status));

764 stat.nmon_nanme = non_nane;

765 stat.state = state

766 for (i =0; i < 16; i++) {

767 stat.priv[i] = nonp->priv[i];

768 }

769 if (debug)

770 (void) printf("statd_call_lockd: % state = %\ n",
771 stat.nmon_nane, stat.state);

773 tottineout.tv_sec = SM RPC_TI MEQUT;

774 tottineout.tv_usec = 0;

776 clnt = create_client(ny_idp->ny_nanme, ny_idp->ny_prog,
777 "ticotsord", &tottineout);

778 if (clnt == NULL)

784 if ((clnt = create_client(nmy_idp->ny_nane, ny_idp->ny_prog,
785 ny_idp->ny_vers, &ottineout)) == (CLI ENT *) NULL) {
779 return (-1);

780 1

ny_i dp->ny_vers,

new usr/src/cnd/ fs.d/ nfs/statd/ smproc.c

782 clnt_stat = clnt_call(clnt, ny_idp->ny_proc,

783 xdr_sm status, (char *)&stat,

789 clnt_stat = clnt_call(clnt, ny_idp->ny_proc, xdr_st at us, (char *)&stat,
784 xdr_voi d, NULL, tottimeout);

785 if (debug) {

786 (void) printf("clnt_stat=%(%)\n"

787 cl nt_sperrno(clnt_stat), cl nt _stat);

788 }

789 if (clnt_stat |:(|nt)RPC SUCCESS) {

790 sysl og(LCIB WARNI NG,

791 "statd: cannot talk to lockd at %, %(%l)\n",
792 ny_i dp->ny_nane, clnt_sperrno(clnt_stat), clnt_stat);
793 rc = -1;

794 }

796 clnt_destroy(clnt);

797 return (rc);

799 }

801 /*

802 * Client handle created.

803 */

804 CLIENT *

805 create_client(char *host, int prognum int versnum char *netid,
806 struct tineval *utineout)

811 create_client(host, prognum versnum utineout)

812 char *host ;

813 int prognum

814 int ver snum

815 struct tinmeval *utineout;

807 {

808 int fd;

809 struct timeval tineout;

810 CLI ENT *client;

811 struct t_info tinfo;

813 if (netid == NULL) {

814 client = clnt_create_tinmed(host, prognum versnum
815 "netpath", utimeout);

816 } else {

817 struct netconfig *nconf;

819 nconf = getnetconfigent(netid);

820 if (nconf == NULL) {

822 if ((client = clnt_create_tined(host, prognum versnum
823 "netpath", utimeout)) == NULL) {

821 return (NULL);

822 }

824 client = clnt_tp_create_timed(host, prognum versnum nconf,
825 utimeout);

827 freenet confi gent (nconf);

828 }

830 if (client == NULL) {

831 return (NULL);

832 }

834 (void) CLNT_CONTROL(client, CLGET_FD, (caddr_t)&fd);

835 if (t_getinfo(fd, &info) '—-1)

836 if (tinfo.servtype == T_CLTS) {

837 /*

838 * Set time outs for connectionl ess case

839 */

new usr/src/cmd/ fs.d/ nfs/statd/ smproc.c

840 tineout.tv_usec = 0;
841 timeout.tv_sec = SM CLTS_TI
842 (voi d) CLNT_CONTROL(client,
843 CLSET_RETRY_TI MEQUT, (c
844
845 } else
846 return (NULL);
848 return (client);
849 }
__unchanged_portion_onitted_
1248 /*
1249 Conpar es <fam | y>. <address-specifier> ASCI | nane

*
1250 * 0 if the addresses match, and 1 if the addresses
1251 * |If the args are indeed specifiers, they should |
1252 *

*

1253 i pv4.192.9.200.1 or ipv6.::C009: C801

1254 */

1255 int

1256 str_cnp_address_specifier(char *specifierl, char *s
1257 {

1258 size_t unqg_l enl, ung_|l en2;

1259 char *rawaddri1, *rawaddr2;

1260 int afl1, af2, len;

1262 if (debug) {

1263 (void) printf("str_cnp_addr: specif
1264 specifierl, specifier2);

1265 }

1267 I*

1268 * Verify that:

1269 * 1. The fam |y tokens match;

1270 * 2. The I P addresses following the *
1271 * 3. These addresses match.

1272 */

1273 ung_l enl = strcspn(specifierl, ". ")

1274 ung_l en2 = strcspn(specifier2, "),

1275 rawaddr1 = strchr(specifierl, ‘.‘),

1276 rawaddr2 = strchr(specifier2, '.");

1278 if (st rncnp(spem fierl, SM ADDR |PV4, ung_l
1279 af 1 = AF_I NET;

1280 len = 4;

1281 } else if (strncnp(specifierl, SM ADDR | PV6,
1282 af 1 = AF_I NET6;

1283 len = 16;

1284 }

1285 el se

1286 return (1);

1288 if (st rncnp(speu fier2, SM ADDR_| PV4, ung_l
1289 AF_| NET;

1290 else if (st r ncr’rp(speu fier2, SM ADDR | PV6,
1291 af 2 = AF_I NET6;

1292 el se

1293 return (1);

1295 if (afl1 1= af2)

1296 return (1);

1298 if (rawaddrl !'= NULL && rawaddr2 != NULL) {
1299 char dst1[16];

1300 char dst2[16];

1301 ++r anaddr 1;

MECQUT;,
addr _t) &t i nmeout);

s for hosts. Returns
fail to match.
ook like this:

pecifier2)

ierl= %, specifier2= %\n",

are legal; and

enl) == 0) {

ung_l enl) == 0) {

en2) == 0)
ung_|l en2) == 0)

new usr/src/cnmd/ fs.d/ nfs/statd/ smproc.c

1302 ++r awaddr 2;

1304 if (inet_pton(afl, rawaddrl, dstl) == 1 &&

1305 inet_pton(af2, rawaddrl, dst2) == 1 &&

1306 mencnp(dst1, dst2, len) == 0) {

1307 return (0);

1308 }

1309 }

1310 return (1);

1311 }

1313 /*

1314 * Add | P address strings to the host_nanme |ist.

1315 */

1316 void

1317 merge_i ps(voi d)

1318 {

1319 struct ifaddrs *ifap, *cifap;

1320 int error;

1322 error = getifaddrs(& fap);

1323 if (error) {

1324 sysl og(LOG WARNI NG, "getifaddrs error: "% ",

1325 strerror(errno));

1326 return;

1327 }

1329 for (cifap = ifap; cifap !'= NULL; cifap = cifap->ifa_next) {

1330 struct sockaddr *sa = C|fap >j fa_addr;

1331 char addr_str[| NET6_ADDRSTRLEN] ;

1332 void *addr = NULL,;

1334 switch (sa->sa_famly) {

1335 case AF_INET: {

1336 “struct sockaddr_in *sin = (struct sockaddr_in *)sa;
1338 /* Skip | oopback addresses. */

1339 if (sin->sin_addr.s_addr == htonl (1 NADDR_LOOPBACK)) {
1340 cont i nue;

1341 }

1343 addr = &sin->sin_addr;

1344 break;

1345 }

1347 case AF_I NET6: {

1348 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
1350 /* Skip | oopback addresses. */

1351 if (IN6_I'S_ADDR_LOOPBACK(&si n6->sin6_addr)) {

1352 conti nue;

1353 }

1355 addr = &si n6->si n6_addr;

1356 br eak;

1357 }

1359 defaul t:

1360 sysl og(LOG WARNI NG "Unknown address famly %l for "
1361 ‘Interface %", sa->sa_fanmily, cifap->ifa_nane);
1362 conti nue;

1363 }

1365 if (inet_ntop(sa->sa_fanily, addr, addr_str, sizeof (addr_str))
1366 == NULL)

1367 sysl og(LOG WARNING "Failed to convert address into "

new usr/src/cmd/ fs.d/ nfs/statd/ smproc.c 9

1368 "string representation for interface ' %’
1369 "address famly %", cifap->ifa_nang,
1370 sa->sa_famly);

1371 conti nue;

1372 }

1374 if (lin_host_array(addr_str)) {

1375 add_t o_host _array(addr_str);

1376 }

1377 }

1379 freeifaddrs(ifap);

1380 }

__unchanged_portion_onitted_

new usr/src/cnd/fs.d/ nfs/statd/smstatd.c 1 new usr/src/cnd/ fs.d/ nfs/statd/smstatd.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 58 #l ncl ude <SyS/ St at . h>
36885 Sun Aug 25 23:50: 54 2013 59 #include <sys/file.h>
new usr/src/cnmd/fs.d/ nfs/statd/smstatd.c 60 #i ncl ude <sys/param h>
195 Need repl acenment for nfs/l|ockd+kl m 61 #include <arpalinet.h>
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp 62 #include <dirent.h>
Revi ewed by: Jereny Jones <jereny@lel phi x. con> 63 #include <rpc/rpc. h>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com 64 #include <rpcsvc/sminter. h>
IR R R R R R R RS R SR S R RS RS E R E R E RS E R R R R REREREEEEEEEE] 65 #I ncl ude <r pcsvcl nsm addr h>
1/* 66 #i nclude <errno. h>
2 * CDDL HEADER START 67 #include <menory. h>
3 * 68 #incl ude <signal.h>
4 * The contents of this file are subject to the terms of the 69 #include <synch. h>
5 * Common Devel opnent and Distribution License (the "License"). 70 #include <thread. h>
6 * You may not use this file except in conpliance with the License. 71 #include <limts.h>
7 * 72 #include <strings. h>
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 73 #include "smstatd. h"
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governing perm ssions
11 * and linmitations under the License. 76 int LOCAL_STATE;
12 *
13 * Wen distributing Covered Code, include this CDDL HEADER i n each 78 sm hash_t non_t abl e[MAX_HASHSI ZE] ;
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 79 static sm hash_t record_tabl e[NAX HASHSI ZE] ;
15 * If applicable, add the followi ng below this CDDL HEADER, wth the 80 static sm hash_t recov_g;
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [nane of copyright owner] 82 static name_entry *find_nane(name_entry **namepp, char *nane);
18 * 83 static name_entry *insert_nane(nane_entry **nanepp, char *nane,
19 * CDDL HEADER END 84 int need_alloc);
20 */ 85 static void del ete_nane(nane_entry **nanmepp, char *nane);
21 | * 86 static void renpve_nane(char *nane, int op, int startup);
22 * Copyright 2007 Sun M crosystens, Inc. Al rights reserved. 87 static int statd_call_statd(char *name);
23 * Use is subject to license terns. 88 static void pr_nane(char *nane, int flag);
24 */ 89 static void *thr statdinit();
90 static void *smtry
26 [* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 91 static void *thr caII_statd(voi d *);
27 |* Al Rights Reserved */ 92 static void renove_singl e_nane(char *name, char *dirl, char *dir2);
93 static int nove_file(char *fromdir, char *file, char *todir);
29 /* 94 static int count_syminks(char *dir, char *nanme, int *count);
30 * University Copyright- Copyright (c) 1982, 1986, 1988 95 static char *famly2string(sa_famly_t famly);
31 * The Regents of the University of California
32 * Al Rights Reserved 97 I *
33 * 98 * called when statd first comes up; it searches /etc/smto gather
34 * University Acknow edgnment- Portions of this document are derived from 99 * all entries to notify its own failure
35 * software devel oped by the University of California, Berkeley, and its 100 */
36 * contributors. 101 void
37 */ 102 statd_init()
103 {
39 /* 104 struct dirent *dirp;
40 * Copyright (c) 2012 by Del phix. Al rights reserved. 105 DR *dp;
41 */ 106 FILE *fp, *fp_tnp;
39 #pragma ident " %Yo U % %Y SM " 107 int i, tnp_state;
108 char state_fil e[MAXPATHLEN+SM MAXPATHLEN] ;
43 | *
44 * smstatd.c consists of routines used for the internediate 110 if (debug)
45 * statd inplenentation(3.2 rpc.statd); 111 (void) printf("enter statd_init\n");
46 * it creates an entry in "current" directory for each site that it nonitors;
47 * after crash and recovery, it noves all entries in "current” 113 /*
48 * to "backup" directory, and notifies the corresponding statd of its recovery. 114 * First try to open the file. |If that fails, try to create it.
49 */ 115 * |If that fails, give up.
116 */
51 #include <stdio.h> 117 if ((fp fopen(STATE "r+")) == (FILE *)NULL)
52 #include <stdlib. h> 118 ((fp = fopen(STATE, "w+")) == (FILE *)NULL) {
53 #include <unistd. h> 119 sysl og(LOG ERR, "can’t open %: %1, STATE);
54 #include <string.h> 120 exit(1);
55 #i nclude <sysl og. h> 121 } else
56 #i nclude <netdb. h> 122 (voi d) chnod(STATE, 0644);
57 #include <sys/types. h> 123 if ((fscanf(fp, "%l", &LOCAL_STATE)) == EOF) {

new usr/src/cnd/fs.d/ nfs/statd/smstatd.c

124 if (debug >= 2)

125 (void) printf("enmpty file\n");
126 LOCAL_STATE = 0;

127 }

129 /*
130 * Scan alternate paths for |argest "state" nunber
131 */

132 for (i 0

133 (voi
134 if

< pathix; i++)
i
(
136 (FI LE *) NULL)
133 if ((fptnp—fopen(stateflle wt"))
134 == (FILE *)NULL) {
137 if (debug)
138 sysl og(LOG_ERR,
139 "can’'t open %: %,
140 state_file);
141 continue;
142 } else
143 (void) chnod(state_file, 0644);
144 }
145 1 f ((fscanf(fp tm:), "od", & np_state)) == EOF) {
146 if (debug)
147 sysl og(LOG ERR,

148 'statd: %: file enpty\n", state_file);

149 (void) fclose(fp_tnp);
150 conti nue;

151 }

152 1f (tnp_state > LOCAL_STATE) ({
153 LOCAL_STATE = tnp_state;
154 i f (debug)

155 (void) printf("Update LOCAL STATE:

156 tnp_state);
157 }

158 (void) fclose(fp_tnp);

159 }

161 LOCAL_STATE = ((LOCAL_STATE%R) == 0) ? LOCAL_STATE+1 : LOCAL_STATE+2;

163 /* |F local state overflows, reset to value 1 */
164 if (LOCAL_STATE < 0) {

165 LOCAL_STATE = 1,

166 }

168 /* Copy the L&AL_STATE val ue back to all stat files */
169 if (fseek(fp, 0, 0) == -1) {

170 sysl og(LOG ERR, "statd: fseek failed\n");

171 exit(1);

172

P, "% 10d", LOCAL_STATE);

p)) == -1)

175)
(f {
(13 5> ERR, "statd: fsync failed\n");

176
177 sysl og
178 exit(1)
179 }

180 (void) fclose(fp);

}
174 (
.‘

182 for (i = 0;
183 (voi
184 if

< pathix; i++) {

186 (FI LE *) NULL)
183 if ((fp_tmp = fopen(state_file, "wt"))

i {
d) sprlntf(state file, "%;/statnnn/state , path_nane[i]);
(fp fopen(stateflle "r+")) ——(FILE *)NULL) {
135 If ((f tnmp = fopen(state_file, "wt")) ==

{

i
d) sprintf(state file, "l’/slstatrron/state path_nane[i]);
(fp_tmp = fopen(state file, "r+")) = (FILE *)NULL) {
185 if ((fp_tmp = fopen(state_file, W+)) ==

new usr/src/cnd/ fs.d/ nfs/statd/smstatd.c

184 = (FILE *)NULL) {

187 sysl og(LOG ERR,

188 'can't open %: %1, state_file);
189 continue;

190 } else

191 (void) chnod(state_file, 0644);

192 }

193 (void) fpri ntf(fp tnp, "% 10d", LOCAL_STATE);

194 (voi d) ffI ush(fp_tnp);

195 if (fsync(flleno(fptnp)) == -1) {

196 sysl og(LOG_ERR,

197 "statd: %: fsync failed\n", state file);
198 (voi d) fclose(fp_tnp);

199 exit(1);

200 }

201 (void) fclose(fp_tnp);

202 }

204 if (debug)

205 (void) printf("local state = %\ n", LOCAL_STATE);

207 if ((rmkdir(CURRENT, SM DI RECTORY_MODE)) == -1) {

208 if (errno !'= EEXIST) {

209 sysl og(LOG ERR, "statd: nkdir current, error %Min");
210 exit(1);

211 }

212 }

213 i f ((mkdir(BACKUP, SM DI RECTORY_MXDE)) == -1) {

214 if (errno != EEXI ST)

215 sysl og(LOG ERR, "statd: nkdir backup, error %mnn");
216 exit(1);

217 }

218 }

220 /* get all entries in CURRENT into BACKUP */

221 if ((dp = opendir(CURRENT)) == (DIR *)NULL) {

222 sysl og(LOG ERR, "statd: open current directory,

223 exit(1);

224 }

226 while ((dirp = readdir(dp)) != NULL) {

227 if (strenp(dirp->d_nane, ".") 1= 0 &&

228 strenp(dirp->d_nane, "..") !=0)

229 /* rename all entries from CURRENT to BACKUP */
230) (void) nove_file(CURRENT, dirp->d_name, BACKUP);
231

232 }

234 (void) closedir(dp);

236 /* Contact hosts’ statd */

237 if (thr_create(NULL, NULL, thr_statd_init, NULL, THR DETACHED, 0)) {
238 sysl og(LOG_ERR,

239 "statd: unable to create thread for thr_statd_init\n");
240 exit(1);

241 }

242 }

244 | *

245 * Wrk thread which contacts hosts’ statd.

246 */

247 void *

248 thr_statd_init()

249 {

250 struct dirent *dirp;

251 DI R *dp;

new usr/src/cnd/fs.d/ nfs/statd/smstatd.c

252
253
254
255
256

258
259
260
261
262

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

283
284
285
286
287
288
289
290
291
292
293

295
296
297
298
299
300
301
302
303
304
305

307
308
309
310
311
312
309
310
313
314
315

int numt hreads;

int numjoin;

int i;

char *nane;

char buf [MAXPATHLEN+SM_MAXPATHLEN] ;

/* Go thru backup directory and contact hosts */

if ((dp = opendir(BACKUP)) == (DI R *)NULL)
sysl og(LOG ERR, "statd: open backup directory, error %mn");
exit(1);

}

/*

* Create "UNDETACHED' threads for each symink and (unlinked)

* regular file in backup directory to initiate statd_call_statd.
* NOTE: These threads are the only undetached threads in this

* program and thus, the thread id is not needed to join the threads.

num_threads = 0;
whil e ((/dirp = readdir(dp)) I'= NULL) {

* If host file is not a symink, don't bother to

* spawn a thread for it. If any link(s) refer to
* it, the host will be contacted using the link(s).
* |f not, we'll deal with it during the |egacy pass.
*

/

(void) sprintf(buf, "%/%", BACKUP, dirp->d_nane);
if (is_symink(buf) == 0) {

conti nue;
}

/*

* |f the numthreads has exceeded, wait until

* a certain amount of threads have finished.

* Currently, 10% of threads created should be joined.

|f (num_threads > NAX C THR) {
numjoin = numthreads/ PERCENT_M NJO N;

for (i =0; i <numjoin; i++)
thr_|0|n(0 0, 0);
num threads -= numj oin;
}
/*

* If can’t alloc name then print error nsg and
* continue to next itemon list.
*
/
name = strdup(dl rp->d_nane) ;
if (name == (char *)NULL) {
sysl og(LOG_ERR,
"statd: unable to allocate space for name ¥%\n",
di rp->d_nane) ;
conti nue;

}

/* Create a thread to do a statd_call_statd for name */
if (thr_create(NULL, NULL, thr_call_statd
(void *) narme, 0, 0)) {
sysl og(LOGfERR
"statd: unable to create thr_call_statd()
"for name %.\n", dirp->d_nane);
"statd: unable to create thr_call_statd() for name %. \n",
di rp->d_nane);
free(nane);
cont i nue;

new usr/src/cnd/ fs.d/ nfs/statd/smstatd.c

316
317

319
320
321
322
323
324
325
326

328
329
330
331
332
333
334
335
336
337
338
339
340
341

343
344
345
346
347
348
349
350
351

353
354
355
356

358
359
360
361
362
363
364
365
366
367
368

370
371
372
373
374
375
376
377
378
379
380

num t hr eads++;

}

/*

* Join the other threads created above before processing the
* legacies. This allows all syminks and the regular files
* to which they correspond to be processed and del et ed.

*

/
for (i =0; i < numthreads; i++) {

thr_join(0, 0, 0);

}

/*
* The second pass checks for ‘legacies’: regular files which
* never had syminks pointing to themat all, just like in the
* good old (pre-1184192 fix) days. Once a machine has cl eaned
*

up its legacies they should only reoccur due to catastrophes
* (e.g., severed synlinks).

*/

rewi nddi r(dp)

num t hreads = 0;

whiTe ((dirp = readdir(dp)) != NULL) {

if (strenp(dirp->d_nanme, ".") == 0 ||
strenp(dirp->d_nane, "..") == 0) {
conti nue;
}
(void) sprintf(buf, "%/%", BACKUP, dirp->d_nane);
if (is_symink(buf)) {

* \WWe probably couldn’t reach this host and it’'s
* been put on the recovery queue for retry.

* Skip It and keep | ooking for regular files.
*/

conti nue;
}
if (debug) {
(void) printf("thr_statd_init: |egacy %\n",
di rp->d_nane) ;
}
/*

* |f the nunber of threads exceeds the maxi rum wait
* for sonme fraction of themto finish before

* conti nui ng.

*/

if (numthreads > NAX (C THR) {
numj oin = numthreads/ PERCENT_M NJO N;

for (i =0; i < numjoin; i++)
thr_joi n(0, 0, 0);
num threads -= numj oin;
}
/*

* If can’t alloc nane then print error nsg and
* continue to next itemon list.
*
/
nanme = strdup(dirp->d_nane);
if (name == (char *)NULL) {
sysl 0g(LOG_ERR,
"statd: unable to allocate space for name ¥%\n",
di rp->d_nane);
conti nue;

new usr/src/cnd/fs.d/ nfs/statd/smstatd.c

382
383
384
385
386
387
384
385
388
389
390
391
392

394

396
397
398
399
400
401
402

404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

423
424
425
426
427
428
429
430
431

433
434

436

437

438

439

440

441 #if def
442

443 #endi f
444 }

/* Create a thread to do a statd_call_statd for name */
if (thr_create(NULL, NULL, thr_call _statd,
(void *) name, 0, 0)) {
sysl og(LOG_ERR,
"statd: unable to create thr_call_statd() "
"for name %.\n", dirp->d_nane);
"statd: unable to create thr_call_statd() for nane %.\n",
di rp->d_nane) ;
free(nane);
conti nue;

num t hr eads++;

}
(void) closedir(dp);

/*

* Join the other threads created above before creating thread
* to process itens in recovery table.

*

for (i =0; i < numthreads; i++) {
thr_join(0, 0, 0);
}

/*
* Need to only copy /var/statnmon/smbak to alternate paths, since
* the only hosts in /var/statnmon/sm should be the ones currently
* being nonitored and already should be in alternate paths as part
* of insert_non().
*/
for (i =0; i < pathix; i++)

(void) sprintf(buf, "%/ statnon/smbak", path_nane[i]);

if ((nmkdir(buf, SM D RECTORY_MDE)) == -1) {

if (errno !'= EEXI ST)
sysl og(LOG ERR, "statd: nkdir % error %mn",
b .

uf);
el se
copydi r_fromto(BACKUP, buf);
} else
copydi r_fromto(BACKUP, buf);
}
/*

* Reset the die and in_crash variable and signal other threads
*/that have issued an smcrash and are waiting.

*

mut ex_| ock(&crash_l ock);

die = 0;

in_crash = 0;

mut ex_unl ock(&crash_| ock) ;

cond_br oadcast (&crash_fi ni sh);

if (debug)
(void) printf("Creating thread for smtry\n");

/* Continue to notify statd on hosts that were unreachable. */
if (thr_create(NULL, NULL, smtry, NULL, THR _DETACHED, 0))
sysl og(LOG_ERR,
"statd: unable to create thread for smtry().\n");
thr_exit((void *) 0);
int
return (0);

new usr/src/cnd/fs.d/ nfs/statd/smstatd.c

446 | *

447 * Work thread to nake call to statd_call_statd.

448 */
449 void *

450 thr_call _statd(void *namep)

451 {
452

454
455
456
457
458
459
460
461
462
463
464
465
466
467

469
470
471
472
473
474
475

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
492
493
496
497
498

500

502
503
504
505
506
507
508
509

char *nanme = (char *)nanep;

/*

* |f statd of nanme is unreachable, add name to recovery table
* otherwise if statd_call_statd was successful, renove from backup.
*

if (statd_call_statd(name) != 0) {
int

n
char *tail;
char pat h[MAXPATHLEN] ;
/*

* since we are constructing this pathnanme bel ow we add
* another space for the term nating NULL so we don't
* overflow our buffer when we do the readlink

*/
char rnane[MAXNAMELEN + 1];
if (debug) {
(void) printf(
"statd call failed, inserting % in recov_g\n", nane);

}

mut ex_| ock(& ecov_q. | ock);

(void) insert_nane(& ecov_g.smrecovhdp, nanme, 0);
mut ex_unl ock(& ecov_g. | ock);

/
If we queued a symink nane in the recovery queue,
we now clean up the regular file to which it referred.
This may | eave a severed symink if nultiple |inks
referred to one regular file; this is unaesthetic but
it works. The big benefit is that it prevents us
fromrecovering the same host twice (as symink and
* as regular file) needlessly, usually on separate reboots.
*

/

* Ok ok k% k%

(void) strcpy(path, BACKUP);
(void) strcat(path, "/");
(void) strcat(path, nane);
if (is_symink(path))
n = readlink(path, rname, MAXNAMELEN);
if (n<=0)
if (debug >= 2) {
(void) printf(
"thr_call _statd: can't read "
"link %\n", path);
"thr_call _statd: can’'t read link %\n",
path);

} else {
rnane[n] = '\0";

tail = strrchr(path, '/") + 1;

if ((strlen(BACKUP) + strlen(rname) + 2) <=
MAXPATHLEN)
(void) strcpy(tail, rnane);
del ete_file(path);
} else if (debug) {
printf("thr_call_statd: path over"
"maxpat hl en!'\n");

new usr/src/cnd/fs.d/ nfs/statd/smstatd.c 9 new usr/src/cnd/ fs.d/ nfs/statd/smstatd.c 10
510 } 576 * This may change in a future rel ease.
577 */
512 } 578 if (debug)
579 (void) printf("statd_call_statd: calling create_client(%)\n",
514 if (debug) 580 name_or _addr);
515 pr_nane(nane, 0); 581 }
517 } else { 583 tottineout.tv_sec = SM RPC_TI MEQUT;
518 /* 584 tottineout.tv_usec = O;
519 * If ‘name’ is an I P address symink to a nanme file,
520 * remove it now If it is the last such synlink, 586 if ((clnt = create_client(name_or_addr, SM PROG SM VERS, NULL,
521 * renove the nane file as well. Regular files with 587 &ottimeout)) == NULL)
522 * no syminks to themare assuned to be | egacies and 584 if ((clnt = create_client(nanme_or_addr, SM PROG SM VERS,
523 * are renoved as well. 585 &ottinmeout)) == (CLIENT *) NULL) {
524 */ 588 return (-1);
525 renove_nane(nane, 1, 1); 589 }
526 free(nane);
527 } 591 /* Performnotification to client */
528 thr_exit((void *) 0); 592 rc = 0;
529 #ifdef lint 593 clnt_stat = clnt_call(clnt, SMNOTIFY, xdr_stat_chge, (char *)&ntf,
530 return (0); 594 xdr_void, NULL, tottimeout);
531 #endi f 595 if (debug) {
532 } 596 (void) printf("clnt_stat=%(%)\n",
597 clnt_sperrno(clnt_stat), clnt_stat);
534 /| * 598 }
535 * Notifies the statd of host specified by name to indicate that 599 if (clnt_stat != (int)RPC _SUCCESS) {
536 * state has changed for this server. 600 sysl og(LOG_WARNI NG,
537 */ 601 "statd: cannot talk to statd at %, ¥%(%)\n",
538 static int 602 name_or _addr, clnt_sperrno(clnt_stat), clnt_stat);
539 statd_cal | _statd(nane) 603 rc = -1;
540 char *nane; 604 }
541 {
542 enum cl nt _stat clnt_stat; 606 /* For HA systems and nulti-homed hosts */
543 struct tineval tottineout; 607 ntf.state = LOCAL_STATE;
544 CLI ENT *clnt; 608 for (i =0; i < addrix; i++) {
545 char *nane_or _addr; 609 ntf.mon_name = host_nane[i];
546 stat_chge ntf; 610 if (debug)
547 int i; 611 (void) printf("statd_call_statd at %\n", nanme_or_addr);
548 int rc; 612 clnt_stat = clnt_call (clnt, SM NOTIFY, xdr_stat_chge,
549 int dummyl, dummy?2, dummy3, dumy4; 613 (char *)&ntf, xdr_void, NULL,
550 char ascii_addr [MAXNAMELEN ; 614 tottineout);
551 size_t ung_l en; 615 if (clnt_stat != (int)RPC_SUCCESS) {
616 sysl og(LOG_WARNI NG
553 ntf. mon_nanme = host naneg; 617 "statd: cannot talk to statd at %, %(%)\n",
554 ntf.state = LOCAL_STATE; 618 nanme_or _addr, clnt_sperrno(clnt_stat), clnt_stat);
555 if (debug) 619 rc = -1;
556 (void) printf("statd_call_statd at 9%\n", nane); 620 }
621 1
558 /* 622 clnt_destroy(clnt);
559 * |f it looks like an ASCI| <address fam |y>. <address> specifier, 623 return (rc);
560 * strip off the famly - we just want the address when obtaining 624 }
561 * a client handle.
562 * |f it’s anything else, just pass it on to create_client(). 626 /*
563 */ 627 * Continues to contact hosts in recovery table that were unreachabl e.
564 ung_l en = strcspn(nane, "."); 628 * NOTE: There should only be one smtry thread executing and
629 * thus |locks are not needed for recovery table. Die is only cleared
566 if ((strncnp(name, SM ADDR | PV4, unqg_len) == 0) || 630 * after all the hosts has at |east been contacted once. The reader/witer
567 (strncnp(name, SM ADDR | PV6, ung_len) == 0)) { 631 * lock ensures to finish this code before an smcrash is started. D e
568 nane_or_addr = strchr(name, '.") + 1; 632 * variable will signal it.
569 } else { 633 */
570 nanme_or _addr = nane; 634 void *
571 } 635 smtry()
636 {
573 /* 637 name_entry *nl, *next;
574 * NOTE: We depend here upon the fact that the RPC client code 638 tinestruc_t w i ne;
575 * allows us to use ASCI| dotted quad ‘nanes’, i.e. "192.9.200.1". 639 int delay = 0;

new usr/src/cnmd/ fs.d/ nfs/statd/smstatd.c 11 new usr/src/cnmd/fs.d/ nfs/statd/smstatd.c 12
641 rw_rdl ock(& hr_rw ock); 1028 /*
642 if (mutex_trylock(&mtrylock)) 1029 * Renove the name fromthe specified directory, which is dirl/dir2 or
643 goto out; 1030 * dir1, depending on whether dir2 is NULL.
644 mut ex_| ock(&rash_l ock); 1031 */
1032 static void
646 while (!die) { 1033 renove_si ngl e_nane(char *name, char *dirl, char *dir2)
647 winme.tv_sec = delay; 1034 {
648 wine.tv_nsec = 0; 1035 int n, error;
649 /* 1036 char pat h[MVAXPATHLEN+MAXNAVELEN+SM_MAXPATHLEN] ; /* why > MAXPATHLEN? */
650 * Wait until signalled to wakeup or tine expired. 1037 char dirpat h] MAXPATHLEN] ;
651 * |f signalled to be awoken, then a crash has occurred 1038 char rname[MAXNAMELEN + 1]; /* +1 for NULL term */
652 * or otherwi se tine expired.
653 */ 1040 if (strlen(name) + strlen(dirl) + (dir2 !'= NULL ? strlen(dir2) : 0) +
654 if (cond_reltimedwait (& etrywait, &crash_lock, &wtinme) == 0) { 1041 3 > MAXPATHLEN) {
655 br eak; 1038 if (strlen(name) + strlen(dirl) + (dir2 !'= NULL ? strlen(dir2) : 0)
656 } 1039 + 3 > MAXPATHLEN) {
1042 if (dir2 !'= NULL)
658 /* Exit loop if queue is enpty */ 1043 sysl og(LOG_ERR,
659 if ((next = recov_g.smrecovhdp) == NULL) 1044 "statd: pathnanme too |ong: %/ %/ %\n",
660 br eak; 1045 dirl, dir2, name);
1046 el se
662 mut ex_unl ock(&rash_I ock) ; 1047 sysl og(LOG_ERR,
1048 "statd: pathname too long: %/%\n",
664 while (((nl = next) != (nane_entry *)NULL) && (!'die)) { 1049 dirl, nane);
665 next = next->nxt;
666 if (statd_call_statd(nl->name) == 0) { 1051 return;
667 /* renpve nane from BACKUP */ 1052 }
668 renove_nane(nl ->nanme, 1, 0);
669 mut ex_| ock(& ecov_g. | ock); 1054 (void) strcpy(path, dirl);
670 /* renove entry fromrecovery_q */ 1055 (void) strcat(path, "/");
671 del et e_nane(& ecov_qg. smrecovhdp, nl->nane); 1056 if (dir2 !'= NULL)
672 nut ex_unl ock(& ecov_gq. | ock) ; 1057 (void) strcat(path, dir2);
673 } else { 1058 (void) strcat(path, "/");
674 /* 1059 }
675 * Print nessage only once since unreachable 1060 (void) strcpy(dirpath, path); /* save here - we may need it shortly */
676 */host can be contacted forever. 1061 (void) strcat(path, nane);
677 *
678 if (delay == 0) 1063 /*
679 sysl og(LOG_WARNI NG, 1064 * Despite the nane of this routine :-@, ‘path’ may be a synlink
680 "statd: host % is not " 1065 * to aregular file. If it is, and if that file has no other
681 "respondi ng\n", nl->nane); 1066 * links to it, we nust renpve it now as well.
678 "statd: host % is not responding\n", 1067 */
679 nl - >nane) ; 1068 if (is_symink(path)) {
682 } 1069 n = readlink(path, rnane, MAXNAMELEN);
683 } 1070 if (n>0)
684 /* 1071 rname[n] = "\0";
685 * Increment the anount of delay before restarting again.
686 * The ampbunt of delay shoul d not exceed the MAX_DELAYTI ME. 1073 if (count_syminks(dirpath, rname, &n1) < 0) {
687 */ 1074 return;
688 if (delay <= MAX_DELAYTI ME) 1075 }
689 del ay += | NC_DELAYTI ME;
690 mut ex_| ock(&rash_l ock) ; 1077 if (n==1) {
691 } 1078 (void) strcat(dirpath, rnane);
1079 error = unlink(dirpath);
693 mut ex_unl ock(&crash_| ock); 1080 if (debug >= 2) {
694 mut ex_unl ock(&m tryl ock); 1081 if (error <0)
695 out: 1082 (void) printf(
696 rw_unl ock(& hr_rw ock) ; 1083 "renmove_nanme: can't "
697 if (debug) 1084 "unlink %\n",
698 (void) printf("EXITING smtry\n"); 1081 "renove_nane: can’t unlink %\n",
699 thr_exit((void *) 0); 1085 dirpath);
700 #ifdef lint 1086 } else {
701 return (0); 1087 (void) printf(
702 #endif 1088 "renmove_nane: unlinked ",
703 } 1089 "os\n", dirpath);
____unchanged_portion_onitted_

new usr/src/cnd/fs.d/ nfs/statd/smstatd.c 13 new usr/src/cnd/fs.d/ nfs/statd/smstatd.c
1085 "renmove_nane: unlinked %\n", 1152 rname[n] = '\0";
1086 dirpath);
1090 } 1154 /*
1091 } 1155 * |f ‘rname’ matches ‘nane’, bunp the count. There
1092 } 1156 * may well be multiple synmlinks to the same name, so
1093 } else { 1157 * we nust continue to process the entire directory.
1094 /* 1158 */
1095 * Policy: if we can’t read the symink, |eave it 1159 if (strcnp(rnane, nane) == 0) {
1096 * here for analysis by the system adm nistrator. 1160 cnt ++;
1097 */ 1161 }
1098 sysl og(LOG ERR, 1162 }
1099) "statd: can't read link %: %M n", path); 1163 }
1100
1101 } 1165 (void) closedir(dp);
1103 /* 1167 if (debug) {
1104 * |f it'’s aregular file, we can assune all syminks and the 1168 (void) printf("count_synmlinks: found %l syniinks\n", cnt);
1105 * files to which they refer have been processed already - just 1169 }
1106 * fall through to here to renove it. 1170 *count = cnt;
1107 */ 1171 return (0);
1108 delete_file(path); 1172 }
1109 } __unchanged_portion_onitted_
1111 /* 1296 /*
1112 * Count the nunber of syminks in “dir’ which point to ‘name’ (also in dir). 1297 * This routine adds a symink in the formof an ASCI| dotted quad
1113 * Passes back synlink count in ‘count’. 1298 * |P address that is linked to the name already recorded in the
1114 * Returns 0 for success, < 0 for failure. 1299 * filesystem name space by record_nane(). Enough information is
1115 */ 1300 * (hopefully) provided to support other address types in the future.
1116 static int 1301 * The purpose of this is to cache enough information to contact
1117 count _sym i nks(char *dir, char *nanme, int *count) 1302 * hosts in other dommins during server crash recovery (see bugid
1118 { 1303 * 1184192).
1119 int cnt = 0; 1304 *
1120 int n; 1305 * The worst failure nbde here is that the symink is not nmade, and
1121 DI R *dp; 1306 * statd falls back to the old buggy behavior.
1122 struct dirent *dirp; 1307 */
1123 char | pat h[MAXPATHLEN] ; 1308 voi d
1124 char rname[MAXNAMELEN + 1]; /* +1 for term NULL */ 1309 Eecord_addr(char *name, sa_famly_t famly, struct netobj *ah)
1310
1126 if ((dp = opendir(dir)) == (DR *)NULL) { 1311 int i;
1127 sysl og(LOG ERR, "count_sym inks: open % dir, error %in", 1312 int path_len;
1128 dir); 1313 char *fanstr;
1129 return (-1); 1314 struct in_addr addr;
1130 } 1315 char *addr6;
1316 char ascii_addr [MAXNAMVELEN ;
1132 while ((dirp = readdir(dp)) != NULL) { 1317 char pat h[MAXPATHLEN] ;
1133 if (strenp(dirp->d_nane, ".") == 0 ||
1134 strcnp(dirp->d_nanme, "..") == 0) { 1319 if (famly == AF_I NET)
1135 continue; 1320 if (ah->n_len !'= sizeof (struct in_addr))
1136 } 1321 return;
1322 addr = *(struct in_addr *)ah->n_bytes;
1138 (void) sprintf(lpath, "%%", dir, dirp->d_nane); 1323 } else if (famly == AF_I NET6) {
1139 if (is_symink(lpath)) { 1324 if (ah->n_len != sizeof (struct in6_addr))
1140 /* 1325 return;
1141 * Fetch the name of the file the symink refers to. 1326 addr6 = (char *)ah->n_bytes;
1142 */ 1327 } else
1143 n = readlink(lpath, rname, MAXNAMELEN); 1328 return;
1144 if (n <= 0)
1145 if (debug >= 2) { 1330 if (debug) {
1146 (void) printf(1331 if (famly == AF_I NET)
1147 "count _syminks: can't read link " 1332 (void) printf("record_addr: addr= 9%\n", addr.s_addr);
1148 "o%s\n", |path); 1333 else if (famly == AF_I NET6)
1144 "count_syminks: can't read link %\n", 1334 (void) printf("record_addr: addr= %\n", \
1145 | path); 1335 ((struct in6_addr *)addr6)->s6_addr);
1149 } 1336 }
1150 conti nue;
1151 } 1338 if (famly == AF_INET) {

new usr/src/cnd/fs.d/ nfs/statd/smstatd.c 15

1339
1340
1341
1342
1343
1344
1345
1346

1348
1349
1350
1351
1352
1353
1354
1355

1357
1358
1359
1360
1361

1363
1364
1365
1366

1368
1369
1370
1371
1372
1368
1369
1370
1373
1374
1375
1376

1378
1379
1380
1381

1383
1384
1385
1386
1387

1389
1390
1391
1392
1393
1394
1395

1397
1398
1399
1400
1401

if (addr s_addr == | NADDR_ANY | |
((addr.s_addr && Oxff000000) == 0)) {
sysl og(LOG_DEBUG,
“record_addr:
addr. s_addr);

return;

illegal |IP address %&\n",

}

/* convert address to ASCI| */
fanstr = famly2string(fanmly);
if (famstr == NULL) {

sysl og(LOG_DEBUG,

"record_addr: unsupported address famly %\ n",

famly);
return;
}
switch (famly) {
char abuf[l NET6_ADDRSTRLEN] ;
case AF_| NET:
(void) sprintf(ascii_addr, "%.%", fanstr, inet_ntoa(addr));
br eak;
case AF_| NET6:
(void) sprintf(ascii_addr, "%. %", fanmstr,\

inet_ntop(famly, addr6, abuf,
br eak;

si zeof (abuf)));

defaul t:
if (debug) {
(voi d) printf(
"record_addr: family2string supports unknown
"family % (%)\n", fanmily, fanmstr);
fam ly2string supports unknown faml y % (%)\n",

"record_addr:

famly,
fanstr);
}
free(fanstr);
return;
}
if (debug)

{
(void) printf("record_addr: ascii_addr= 9%\n", ascii_addr);

}
free(fanstr);

*

* Make the symlink in CURRENT. The ‘nane’
* been created previously by record_nane().
*

/
(void) create_sym i nk(CURRENT,

file should have

name, ascii_addr);

/*
* Simlarly for alternate paths.
*

for (i =0; i < pathix; i++) {
path_len = strlen(path_nanme[i]) +
strlen("/statmon/sm") +
strlen(name) + 1;

if (path_len > MAXPATHLEN) {
sysl og(LOG_ERR,
"statd: pathnane too |ong:
path_nane[i], nane);
conti nue;

%/ st at nron/ sm %\ n",

new usr/src/cnd/fs.d/ nfs/statd/smstatd.c

1402
1403
1404
1405
1406
1407 }

}

(void) strcpy(path,

(void) strcat(path,
) (void) create_synlink(path,

__unchanged_portion_omtted_

path name[i]);
/statrmn/sm)

nanme,

asci i

_addr);

new usr/src/cmd/fs.d/ nfs/statd/smstatd. h 1 new usr/src/cmd/fs.d/ nfs/statd/smstatd. h

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 57 #defl ne '\/Ax FDS 256
6976 Sun Aug 25 23:50:55 2013 58 #define MAX_THR 25
new usr/src/cmd/fs.d/ nfs/statd/smstatd. h 59 #define | NC_DELAYTIME 30
195 Need repl acenment for nfs/l|ockd+kl m 60 #define MAX_DELAYTIME 300
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp 61 #define SM CLTS_TI MEQUT 15
Revi ewed by: Jereny Jones <jereny@lel phi x. con> 62 /* max strlen of /statnon/state, /statnon/sm bak, /statnon/sm*/
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com 63 #define SM MAXPATHLEN 17
IR R R R R R R RS R SR S R RS RS E R E R E RS E R R R R REREREEEEEEEE] 64 /* Increnent SIZe for real | oc Of array host name */
1/* 65 #define HOST_NAME INCR 5
2 * CDDL HEADER START
3 * 67 /* supported address famly nanes in /var/statnon syminks */
4 * The contents of this file are subject to the terms of the 68 #define SM ADDR | PV4 "ipv4"
5 * Common Devel opnent and Distribution License, Version 1.0 only 69 #define SM ADDR_| PV6 "ipve"
6 * (the "License"). You nmay not use this file except in conpliance
7 * with the License. 71 /* Supported for readdir_r() */
8 * 72 #define MAXDI RENT (sizeof (struct dirent) + _POSI X PATH MAX + 1)
9 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
10 * or http://ww. opensol aris.org/os/licensing. 74 /* Structure entry for nonitor table (non_table) */
11 * See the License for the specific |anguage governi ng perm ssions 75 struct non_entry {
12 * and limtations under the License. 76 nmon id; /* nmon information: non_nane, ny_id */
13 * 77 struct non_entry *prev; /* Prev ptr to prev entry in hash */
14 * Wen distributing Covered Code, include this CDDL HEADER in each 78 struct non_entry *nxt; /* Next ptr to next entry in hash */
15 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 79 };
16 * If applicable, add the followi ng below this CDDL HEADER, wth the __unchanged_portion_onitted_
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner] 163 extern int debug; /* Prints out debug information if set. */
19 =
20 * CDDL HEADER END 165 extern char host name[MAXHOSTNAMELEN ;
21 */
22 /* 167 /*
23 * Copyright 2005 Sun Mcrosystens, Inc. Al rights reserved. 168 * These variables will be used to store all the
24 * Use is subject to license terns. 169 * alias nanes for the host, as well as the -a
25 */ 170 * command |ine hostnanes.
171 */
27 |* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 172 extern char **host_nane; /* store -a opts */
28 /| * Al Rights Reserved */ 173 extern int host _nane_count ;
174 extern int addrix; /* # of -a entries */
30 /*
31 * University Copyright- Copyright (c) 1982, 1986, 1988 176 /*
32 * The Regents of the University of California 177 * The followi ng 2 variabl es are neani ngful
33 * Al Rights Reserved 178 * only under a HA configuration.
34 * 179 */
35 * University Acknow edgnent- Portions of this document are derived from 180 extern char **path_nanme; /* store -p opts */
36 * software devel oped by the University of California, Berkeley, and its 181 extern int pathix; /* # of -p entries */
37 * contributors.
38 */ 183 /* Function prototypes used in program */
184 extern int create_file(char *nane);
40 /* 185 extern void del ete_file(char *nane);
41 * Copyright 2011 Nexenta Systens, Inc. All rights reserved. 186 extern void record_nanme(char *nane, int op);
42 * Copyright (c) 2012 by Del phix. Al rights reserved. 187 extern void sm crash(void);
43 =/ 185 extern void smnotify(stat_chge *ntfp);
188 extern void statd_init();
45 #ifndef _SM STATD H 189 extern void nmer ge_host s(voi d);
46 #define _SM STATD_H 190 extern void nmerge_i ps(voi d);
191 extern CLIENT *create_client(char *, int, int, char *, struct timeval *);
43 #pragne ident " %YW % % %E% SM " 188 extern CLIENT *create_client(char *, int, int, struct tineval *);
192 extern char *xmal | oc(unsi gned) ;
48 #ifdef __cplusplus
49 extern "C' { 194 /*
50 #endif 195 * RPC service functions, slightly different here than the
196 * generated ones in sminter.h
52 /* Limt defines */ 197 */
53 #define SM DI RECTORY_MODE 00755 198 extern void nsmaddr procl_reg(reglargs *, reglres *);
54 #define MAX_HASHSI ZE 50 199 extern void sm stat_svc(smnane *nanep, smstat_res *resp);
55 #define SM RPC TI MEQUT 15 200 extern void sm non_svc(non *nonp, smstat_res *resp);

56 #define PERCENT_M NJO N 10 201 extern void sm unnon_svc(non_i d *rmoni dp, smstat *resp);

new usr/src/cmd/fs.d/ nfs/statd/smstatd. h

202
203
204

190
191
192
193
194
206
207
208
198
209
210
211
212

214

extern void
extern void
extern void

extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern int
extern void
extern void
extern int
extern int
extern int

smunnmon_al | _svc(ny_id *nyidp, smstat *resp);
sm si nu_crash_svc(void *nyidp);
smnnotify_svc(stat_chge *ntfp);

sm status(sm.nane *nanep, smstat_res *resp);

sm non(non *nonp, smstat_res *resp);

smunnon(non_i d *noni dp, smstat *resp);

smunnon_al | (my_id *nmyidp, smstat *resp)

sm simu_crash(void *nyi dp)

sm_i ni thash();

copydir_fromto(char *fromdir, char *to_dir)
str_cnp_unqual _host nane(char *, char *)

nsmaddr procl_reg(reglargs *, reglres *)

record_addr (char *nanme, sa_fanmily_t famly, struct netobj *ah)
is_symink(char *file)

create_sym ink(char *todir, char *rnane, char *Inane)
str_cnp_address_speci fier(char *specifierl, char *specifier2)

#i fdef __cpl uspl us
215 }
__unchanged_portion_omtted_

new usr/src/cnmd/ fs.d/ nfs/statd/ smsvc.c 1 new usr/src/cnmd/ fs.d/ nfs/statd/ smsvc.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 59 #I ncl ude <SyS/ St at . h>
21174 Sun Aug 25 23:50:56 2013 60 #incl ude <sys/sockio. h>
new usr/src/cnd/fs.d/ nfs/statd/ smsvc.c 61 #include <dirent.h>
195 Need repl acenment for nfs/l|ockd+kl m 62 #include <errno. h>
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp 63 #include <rpcsvc/sm.inter. h>
Revi ewed by: Jereny Jones <jereny@lel phi x. con> 64 #include <rpcsvc/ nsm addr. h>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com 65 #i nclude <thread. h>
IR R R R R R R RS R SR S R RS RS E R E R E RS E R R R R REREREEEEEEEE] 66 #I ncl ude <synch h>
1/* 67 #include <net/if.h>
2 * CDDL HEADER START 68 #include <lints.h>
3 * 69 #include <rpcsvc/ daenon_utils. h>
4 * The contents of this file are subject to the terms of the 70 #include <priv_utils.h>
5 * Common Devel opnent and Distribution License (the "License"). 71 #include "smstatd. h"
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 #define honme0 "/var/ st at non"
9 * or http://ww.opensol aris.org/os/licensing. 75 #define currentO "/var/ statnon/snt
10 * See the License for the specific |anguage governing perm ssions 76 #define backupO "/var/ st at mon/ sm bak"
11 * and limtations under the License. 77 #define stateO "/var/ statnon/state"
12 *
13 * Wen distributing Covered Code, include this CDDL HEADER i n each 79 #define honel "stat mon"
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 #define currentl “statmon/sm "
15 * If applicable, add the followi ng below this CDDL HEADER, wth the 81 #define backupl "stat mon/ sm bak/"
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 #define statel "statnon/ st ate"
17 * information: Portions Copyright [yyyy] [nane of copyright owner] ,
18 = 84 /*
19 * CDDL HEADER END 85 * User and group IDs to run as. These are hardw red, rather than | ooked
20 */ 86 * up at runtine, because they are very unlikely to change and because they
21 | * 87 * provide sone protection agai nst bogus changes to the passwd and group
22 * Copyright (c) 1989, 2010, O acle and/or its affiliates. Al rights reserved. 88 * files.
23 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved. 89 */
24 90 uid_t daemon_uid = DAEMON Ul D,

91 gid_t daenon_gi d = DAEMON_G D;
26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */

27 |+ Al Rights Reserved */ 93 char STATE[MAXPATHLEN], CURRENT[MAXPATHLEN], BACKUP[MAXPATHLEN] ;
94 static char statd_hone[MAXPATHLEN] ;

29 /*
30 * University Copyright- Copyright (c) 1982, 1986, 1988 96 i nt debug;
31 * The Regents of the University of California 97 int regfiles_only = 0; /* 1 => use syminks in statnon, 0 => don’t */
32 * Al Rights Reserved 98 char host nanme[MAXHOSTNAMELEN ;
33 *
34 * University Acknow edgnent- Portions of this document are derived from 100 /*
35 * software devel oped by the University of California, Berkeley, and its 101 * These variables will be used to store all the
36 * contributors. 102 * alias nanes for the host, as well as the -a
37 */ 103 * command |ine hostnanes.
104 */
39 /* 105 int host_nanme_count;
40 * Copyright (c) 2012 by Del phix. Al rights reserved. 106 char **host_nane; /* store -a opts */
41 */ 107 int addrix; /* # of -a entries */
43 #include <stdio.h>
44 #include <stdio_ext.h> 110 /*
45 #include <stdlib. h> 111 * The followi ng 2 variabl es are neani ngful
46 #include <ftw h> 112 * only under a HA configuration.
47 #include <signal.h> 113 * The path_nanme array is dynamically allocated in main() during
48 #include <string. h> 114 * command |ine argunment processing for the -p options.
49 #include <sysl og. h> 115 */
50 #i nclude <netconfig. h> 116 char **path_name = NULL; /* store -p opts */
51 #include <unistd. h> 117 int pathix = 0; /* # of -p entries */
52 #incl ude <netdb. h>
53 #include <rpc/rpc. h> 119 /* dobal variables. Refer to smstatd.h for description */
54 #include <netinet/in.h> 120 mutex_t crash_l ock;
55 #incl ude <sys/param h> 121 int die;
56 #i nclude <sys/resource. h> 122 int in_crash;
57 #include <sys/file.h> 123 cond_t crash_finish;

58 #include <sys/types. h> 124 nutex_t smtryl ock;

new usr/src/cnmd/ fs.d/ nfs/statd/ smsvc.c

125 rwock_t thr_rw
126 cond_t retrywait;
127 mutex_t nane_addrl ock;

ock;

129 /* forward references */

130 static void set_statnmon_owner(void);

131 static void copy_client_names(void);

132 static void one_statnmn_owner(const char *);

133 static int nftw owner(const char *, const struct stat *, int, struct FTW*);

135 /
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

I T T T T T T I

statd protocol
commands:

There are thr

SM STAT
returns stat_fail to caller
SM_MON
adds an entry to the nonitor_q and the record_g
This nessage is sent by the server |ockd to the server

statd, to indicate that a newclient is to be nonitored.

It is also sent by the server lockd to the client statd
to indicate that a new server is to be nonitored.
SM_UNMON
renoves an entry fromthe nonitor_q and the record_q
SM_UNMON_ALL
renoves all entries froma particular host fromthe
nonitor_q and the record_g. Qur statd has this
di sabl ed.
SM_SI MJ_CRASH
sinulate a crash. renpves everything fromthe
record_q and the recovery_g, then calls statd_init()
to restart things. This nmessage is sent by the server
I ockd to the server statd to have all clients notified
that they should reclai mlocks.
SM_NOTI FY
Sent by statd on server to statd on client during
crash recovery. The client statd passes the info
toits lockd so it can attenpt to reclaimthe | ocks
held on the server.

ee main hash tables used to keep track of things.

non_t abl e

record_t

recov_g

tabl e that keeps track hosts statd nmust watch. |f one of
these hosts crashes, then any |ocks held by that host nust
be rel eased.

abl e

used to keep track of all the hostnane files stored in
the directory /var/statnon/sm These are client hosts who
are holding or have held a lock at sone point. Needed

to deternmine if a file needs to be created for host in
/var/statnon/sm

used to keep track hostnanes during a recovery

The entries are hashed based upon the name.

There is a di
for each host
used during i
crash.

186 static void
187 sm prog_1(rgstp,

188
189
190 {

struct s
SVCXPRT

rectory /var/statnmon/smwhich holds a file naned
that is holding (or has held) a lock. This is
nitialization on startup, or after a simulated

transp)
vc_req *rqstp;
*transp;

new usr/src/cnmd/ fs.d/ nfs/statd/ smsvc.c

191
192
193
194
195
196
197
198

200
201
202
203
204

206
207

209
210
211
212
213
214
215
216
217
218
219

221
222
223
224
225

227
228
229
230
231
232
233
234
235
236
237

239
240
241
242
235
243

245
246
247
248
241
249

251
252
253
254

uni on {

struct
struct
struct
struct
struct
struct

} argunent;

uni on {

sm st at
sm st at
struct

} result;

smname smstat_1_arg;
non smnon_1_arg;

nmon_i d smunnon_1_arg;
ny_id smunnon_all _1_arg;
stat_chge ntf_arg;
reglargs regl_arg;

_res stat_resp;
non_r esp;
reglres regl_resp;

bool _t (*xdr_argument) (), (*xdr_result)();
char *(*l ocal) ();

/

* ok F ok

*

*/

Di spatch according to which protocol is being used:
NSM_ADDR_

PROGRAM i s the private | ockd address
registration protocol.

SM PROG is the normal statd (NSM protocol.

if (rgstp->rg_prog == NSM ADDR_PROGRAM {

} else {

switch

(rgstp->rg_proc) {

case NULLPRCC:

svc_sendreply(transp, xdr_void, (caddr_t)NULL);
return;

case NSMADDRPROC1_REG

xdr _argunent = xdr_reglargs;

xdr_result = xdr_reglres;

local = (char *(*)()) nsmaddrprocl_reg;
break;

case NSVADDRPROCL_UNREG. /* Not inpl. */
defaul t:

/* Must
switch

svcerr_noproc(transp);
return;

be SM PROG */
(rgstp->rg_proc) {

case NULLPROC:

svc_sendr eply(transp, xdr_void, (caddr_t)NULL);
return;

case SM STAT

xdr _argunent = xdr _sm nane;
xdr_result = xdr_smstat_res;

local = (char *(*)()) smstat_svc;
local = (char *(*)()) smstatus;
br eak;

case SM_MON:

xdr _argunent = xdr _non;
xdr_result = xdr_sm stat_res;

I ocal = (char *(*)()) sm.non_svc;
local = (char *(*)()) sm.non;
break;

case SM_UNMON:

xdr _argunent = xdr_non_i d;
xdr_result = xdr_sm stat;
local = (char *(*)()) sm.unnon_svc;

new usr/src/cnmd/ fs.d/ nfs/statd/ smsvc.c

247 | ocal = (char *(*)()) sm.unnon;
255 break;
257 case SM UNMON_ALL:
258 xdr_argument = xdr_ny_id;
259 xdr _r esult = xdr_smstat;
260 local = (char *(¥)()) sm unnon_al | _svc;
253 local = (char *(*)()) smunmon_all;
261 br eak;
263 case SM S| MJ_CRASH:
264 xdr _argunent = xdr_voi d;
265 xdr_result = xdr_void;
266 local = (char *(*)()) smsimu_crash_svc;
259 local = (char *(*)()) smsimu_crash;
267 br eak;
269 case SM NOTI FY:
270 xdr _argunent = xdr_stat_chge;
271 xdr _result = xdr_void;
272 local = (char *(*)()) smunotify_svc;
265 local = (char *(*)()) smnotify;
273 break;
275 defaul t:
276 svcerr_noproc(transp);
277 return;
278 }
279 }
281 (voi d) menset (&argunent, 0, sizeof (argunent));
282 if (!svc_getargs(transp, xdr_argunent, (caddr_t)&argunent)) {
283 svcerr_decode(transp);
284 return;
285 }
287 (void) menset (& esult, 0, sizeof (result));
288 (*l ocal) (&ar gunent, &result);
289 if (!svc_sendrepl y(transp, xdr_result, (caddr_t)é&result)) {
290 svcerr_systenerr(transp);
291 }
293 if (!svc_freeargs(transp, xdr_argunent, (caddr_t)&argunent)) {
294 sysl og(LOG ERR, "statd: unable to free argunments\n");
295 }
296 }
__unchanged_portion_onitted_
435 int
436 nmin(int argc, char *argv[])
437 {
438 int c;
439 int ppid,
440 extern char *optarg;
441 int choice = 0;
442 struct rlimt rl;
443 int node;
444 int sz;
445 int connmaxrec = RPC_MAXDATASI ZE;
447 addrix = 0;
448 pathix = 0;
450 (voi d) gethostnanme(hostname, MAXHOSTNAMELEN) ;
451 if (init_hostname() < 0)

452 exit(1);

new usr/src/cmd/ fs.d/ nfs/statd/ smsvc.c

454 while ((c = getopt(argc, argv, "Dd:a:Gp:rU ")) 1= EOCF)

455 switch (c) {

456 case 'd:

457 (v0| d) sscanf(optarg, "%l", &debug);

458 br eak;

459 case 'D:

460 choice = 1;

461 br eak;

462 case 'a’:

463 if (addrix < host_nanme_count) {

464 if (strcnp(hostname, optarg) != 0) {

465 sz = strlen(optarg);

466 if (sz < MAXHOSTNAMELEN) {

467 host _nane[addri x] =

468 (char *)xmall oc(sz+1);

469 if (host_nanme[addrix] !=

470 NULLY {

471 (void) sscanf(optarg, "%",
472 host _nane[addri x]) ;

473 addri x++;

474

475 } else

476 (void) fprintf(stderr,

477 "statd: -a name of host is too long.\n");
478

479 } else

480 (v0|d) fprintf(stderr,

481 tatd: -a exceedi ng maxi num host names\ n");
482 br eak;

483 case 'U:

484 (void) sscanf(optarg, "%l", &daenon_uid);

485 br eak;

486 case ' G :

487 (void) sscanf(optarg, "%l", &daenon_gid);

488 break;

489 case 'p’:

490 if (strlen(optarg) < MAXPATHLEN) {

491 /* 1f the path_name array has not yet */
492 /* been nmalloc’ ed, do that. The array */
493 /* shoul d be big enough to hold all of the */
494 /* -p options we mght have. An upper */
495 /* bound on the nunmber of -p options is */
496 /* argc/ 2, because each -p option consunes */
497 /* two argunents. Here the upper bound */
498 /* is supposing that all the command line */
499 /* argunents are -p options, which would */
500 /* actual ly never be the case. */
501 if (path_name == NULL) {

502 size_t sz = (argc/2) * sizeof (char *);
504 pat h_name = (char **)mal | oc(sz);

505 if (path_name == NULL) {

506 (void) fprintf(stderr,

507 "statd: malloc failed\n");
508 exit(1);

509 }

510 (voi d) nenset (path_nane, 0, sz);

511 }

512 pat h_nane[pat hi x] = optarg;

513 pat hi x++;

514 } else {

515 (void) fprintf(stderr,

516 "statd: -p pathnane is too long.\n");

517 }

518 br eak;

new usr/src/cnmd/ fs.d/ nfs/statd/ smsvc.c 7 new usr/src/cnmd/ fs.d/ nfs/statd/ smsvc.c
519 case 'r’: 585 exit(2);
520 regfiles_only = 1; 586 defaul t:
521 br eak; 587 /* daenon was al ready running */
522 defaul t: 588 exit(0);
523 (v0| d) fprintf(stderr, 589 }
524 "statd [-d level] [-]\n)
525 return (1); 591 /* Get other aliases fromeach interface. */
526 } 592 nmer ge_hosts();
528 if (choice == 0) { 594 /* Get all of the configured |P addresses. */
529 (void) strcpy(statd_home, hone0); 595 merge_ips();
530 (void) strcpy(CURRENT, currentO);
531 (voi d) strcpy(BACKUP, backupO); 597 /*
532 (void) strcpy(STATE, stateO); 598 * Set to automatic node such that threads are automatically
533 } else { 599 * created
534 (void) strcpy(statd_home, honel); 600 */
535 (void) strcpy(CURRENT, currentl); 601 node = RPC_SVC _MI_AUTO,
536 (voi d) strcpy(BACKUP, backupl); 602 if (!rpc_control (RPC_SVC_MIMODE_SET, &nmode)) {
537 (void) strcpy(STATE, statel); 603 sysl og(LOG_ERR,
538 } 604 "statd:unable to set automatic Ml node.");
539 if (debug) 605 exit(1);
540 (void) printf("debug is on, create entry: %, %, %\n", 606 }
541 CURRENT, BACKUP, STATE);
608 /*
543 if (getrlimt(RLIMT_NOFILE, &rl)) 609 * Set non-bl ocki ng node and maxi num record size for
544 (void) printf("statd: getrlimt failed. \n"); 610 * connection oriented RPC transports.
611 */
546 /* Set n'axfdl imt current soft limt */ 612 if (!rpc_control (RPC_SVC | CCNNNAXREC SET, &connnaxrec)) {
547 rl.rlimecur =rl.rlimna 613 sysl og(LOG_ I NFO, "unable to set maxi num RPC record size");
548 if (setrlimt(RLIMT_] NG:ILE &rl) 1= 0) 614 }
549 sysl og(LOG ERR, "statd: unable to set RLIMT_NOFILE to %\ n",
550 ri.rlimecur); 616 if (!svc_create(smprog_1, SM PROG SM VERS, "netpath")) {
617 sysl og(LOG_ERR,
552 (voi d) enabl e_extended_FILE stdio(-1, -1); 618 "statd: unable to create (SM PROG SM VERS) for netpath.");
619 exit(1);
554 if (!debug) { 620 }
555 ppid = fork()
556 if (ppid == -1) { 622 if (!svc_create(smprog_1, NSM ADDR PROGRAM NSM ADDR V1, "netpath")) {
557 (void) fprintf(stderr, "statd: fork failure\n"); 623 sysl og(LOG_ERR,
558 (void) fflush(stderr); 624 "statd: unable to create (NSM ADDR PROGRAM NSM ADDR V1) for netpath.");
559 abort(); 625 }
560 }
561 if (ppid!=0) { 627 /*
562 exit(0); 628 * Make sure /var/statnon and any alternate (-p) statnon
563 } 629 * directories exist and are owned by daenon. Then change our uid
564 cl osefron(0); 630 * to daenon. The uid change is to prevent attacks against |ocal
565 (void) open("/dev/null", O RDONLY); 631 * daenons that trust any call froma local root process.
566 (void) open("/dev/null", O WRONLY); 632 */
567 (void) dup(1);
568 (void) setsid(); 634 set _stat mon_owner ();
569 openl og("statd", LOG PID, LOG DAEMN);
570 } 636 /*
637 *
572 (voi d) _create_daenon_| ock(STATD, daenon_ui d, daenon_gid); 638 * statd now runs as a daenon rather than root and can not
573 [* 639 * dunp core under / because of the permission. It is
574 * establish our lock on the lock file and wite our pid to it. 640 * inportant that current working directory of statd be
575 * exit if sone other process holds the lock, or if there's any 641 * changed to witable directory /var/statnon so that it
576 * error in witing/locking the file. 642 * can dunp the core upon the receipt of the signal.
577 */ 643 * One still need to set allow setid _core to non-zero in
578 ppid = _enter_daenon_| ock(STATD); 644 * [etc/systemto get the core dunp.
579 switch (ppid) { 645 *
580 case 0: 646 */
581 br eak;
582 case -1: 648 if (chdir(statd_home) < 0) {
583 sysl og(LOG ERR, "error locking for %: %", STATD, 649 sysl og(LOG ERR, "can't chdir %: %1, statd_hone);
584 strerror(errno)); 650 exit(1);

new usr/src/cnmd/ fs.d/ nfs/statd/ smsvc.c

651 }

653 copy_client_nanes();

655 rwl ock_init(& hr_rw ock, USYNC_THREAD, NULL);

656 mut ex_i ni t (&crash_l ock, USYNC_THREAD, NULL);

657 mut ex_i ni t (&ane_addr| ock, USYNC THREAD, NULL);
658 cond_i ni t(&rash_fini sh, USYNC THREAD, NULL);

659 cond_init(&etrywait, USYNC THREAD, NULL);

660 sm i ni t hash();

661 die = 0;

662 /*

663 * This variable is set to ensure that an smcrash
664 * request will not be done at the sane tine

665 * when a statd_init is being done, since smcrash
666 */can reset sone variables that statd_init will be using.
667 *

668 in_crash = 1;

669 statd_init();

671 if (debug)

672 (void) printf("Starting svc_run\n");

673 sve_run();

674 sysl og(LOG ERR, "statd: svc_run returned\n");

675 /* NOTREACHED */

676 thr_exit((void *) 1);

677 return (0);

679 }

__unchanged_portion_omtted_

new usr/ src/ head/ Makefil e

R R R R

10978 Sun Aug 25 23:50:58 2013
new usr/ src/ head/ Makefile
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

H*

CDDL HEADER START

The contents of this file are subject to the ternms of the
Conmon Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing

See the License for the specific |anguage governi ng perm ssions

and |limtations under the License

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE

If applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END

Copyright 2010 Sun Mcrosystens, Inc. Al rights reserved
Use is subject to |license terns

head/ Makefil e

i ncl ude gl obal definitions
nclude ../ Makefile. master

THHHHFHHHHFHHHHEHFF TR

spar c_HDRS=
i 386_HDRS= stack_unwi nd. h

Headers are |listed one per line so that Team\re can auto-nerge nost

KRB5HDRS= mi t _copyright.h mt-sipb-copyright.h

changes

ATTRDB_HDRS= secdb. h auth_attr.h exec_attr.h prof_attr.h user_attr.h \

auth_list.h

HDRS= $($(MACH) _HDRS) $(ATTRDB_HDRS) \
aio.h
al loca. h
apptrace. h
apptrace_inpl . h
ar. h

archi ves. h
assert.h
atom c. h
attr.h
config_admn.h
cpio.h
crypt.h
ctype. h
deflt.h
devid. h
devignt . h
devpol | . h
dial.h

P

new usr/ src/ head/ Makefil e

dirent.h
dlfcn. h
door. h
elf.h
err.h
errno. h
euc. h
exacct. h
exacct _inpl . h
execinfo. h
fatal.h
fentl.h
float.h
fmnsg. h
fnmat ch. h
ftw h
gelf.h
getopt.h
getw dth. h
gl ob. h
grp.h
iconv. h

i eeefp. h
ifaddrs. h
inttypes. h
i S0646. h
kl pd. h

I angi nfo. h
lastlog. h
| ber.h

nmenory
neta. h
meta_runtine. h
met adyn. h
nmon. h
nonetary. h
np. h
myueue. h
nan. h

ndbm h
ndpd. h
netconfig.h
netdb. h
netdir.h

nl _types.h
nlist.h
note. h
nsctl.h
nsswitch. h
nss_conmmon. h
nss_dbdefs. h
nss_netdir.h

e o e e e e e e e e e e o e e e e e e

P S

new usr/ src/ head/ Makefile 3 new usr/ src/ head/ Makefile
125 paths. h \ 191 uni std. h \
126 pcsanpl e. h \ 192 userdefs. h \
127 pfnt.h \ 193 ustat.h \
128 pkgdev. h \ 194 utine.h \
129 pkgi nfo. h \ 195 utnp. h \
130 pkgl ocs. h \ 196 ut mpx. h \
131 pkgstrct. h \ 197 val tool s. h \
132 pkgtrans. h \ 198 val ues. h \
133 poll.h \ 199 varargs. h \
134 port.h \ 200 wait.h \
135 priv.h \ 201 wchar. h \
136 priv_utils.h \ 202 wchar _i npl . h \
137 proc_service.h \ 203 wetype. h \
138 procfs. h \ 204 wi dec. h \
139 prof.h \ 205 wor dexp. h \
140 project.h \ 206 xti.h \
141 pthread. h \ 207 xti_inet.h \
142 pw. h \ 208 zone. h
143 pwd. h \
144 rctl.h \ 210 1 SOHDRS =\
145 re_conp. h \ 211 ctype_c99.h \
146 regex. h \ 212 ctype_iso.h \
147 regexp. h \ 213 limts_iso.h \
148 resolv. h \ 214 l ocal e_iso.h \
149 rjie.h \ 215 setjnp_iso.h \
150 rtld_db.h \ 216 signal _iso. h \
151 sac. h \ 217 stdarg_c99. h \
152 sched. h \ 218 stdarg_iso.h \
153 schedct!.h \ 219 stddef _iso. h \
154 sdssc. h \ 220 stdio_c99.h \
155 search. h \ 221 stdio_iso.h \
156 semaphore. h \ 222 stdlib_c99.h \
157 setjnp.h \ 223 stdlib_iso.h \
158 sgtty. h \ 224 string_iso.h \
159 shadow. h \ 225 tine_iso.h \
160 siginfo.h \ 226 wchar _c99. h \
161 signal . h \ 227 wchar _i so. h \
162 spawn. h \ 228 wetype_c99. h \
163 stdarg. h \ 229 wet ype_i so. h
164 st dbool . h \
165 stddef. h \ 231 ARPAHDRS = \
166 stdint.h \ 232 ftp.h \
167 stdio.h \ 233 inet.h \
168 stdio_ext.h \ 234 naneser. h \
169 stdio_tag.h \ 235 telnet.h \
170 stdio_inmpl.h \ 236 tftp.h \
171 stdlib.h \ 237 nameser _conpat. h
172 storclass. h \
173 string.h \ 239 AUDI OHDRS = \
174 strings.h \ 240 au. h
175 stropts. h \
176 synch. h \ 242 UUI DHDRS = \
177 sysexits. h \ 243 uui d. h
178 sysl og. h \
179 syns. h \ 245 # rpcsvc headers which are just headers (not derived froma .x file)
180 tar.h \ 246 RPCSVC_SRC HDRS = \
181 termo.h \ 247 boot param h \
182 termos. h \ 248 daermon_utils.h \
183 thread. h \ 249 dbm h \
184 thread_db. h \ 250 ni s_db. h \
185 tine.h \ 251 nislib.h \
186 tiuser.h \ 252 svc_dg_priv.h \
187 tzfile. h \ 253 yp_prot.h \
188 ucontext. h \ 254 ypclnt. h \
189 ucred. h \ 255 yppasswd. h \
190 ulimt.h \ 256 ypupd. h \

new usr/src/ head/ Makefile
257 rpc_sztypes. h

259 # rpcsvc headers which are generated from.x files
260 RPCSVC_GEN_HDRS = \

261 boot param prot. h \
262 nmount . h \
263 nfs_prot.h \
264 nfs4_prot.h \
265 nis.h \
266 nlmprot.h \
266 rex. h \
267 rquota. h \
268 rstat.h \
269 rusers. h \
270 rwall . h \
271 spray. h \
272 ufs_prot.h \
273 nfs_acl.h

275 LVMRPCHDRS = \
276 mhdx. h ndi ox. h nmeta_basic. h netad. h netaned. h netanhd. h netacl.h

278 SYMHDRASSERT = $(ROOT)/usr/include/iso/assert_iso.h
279 SYMHDRERRNO = $(ROQOT)/usr/incl ude/iso/errno_iso. h
280 SYMHDRFLOAT = $(ROOT)/usr/include/iso/float_iso.h
281 SYMHDRI S0646 = $(ROOT)/ usr/include/iso/iso646_iso.h

283 RPCGENFLAGS = -C -h
284 rpcsve/rwall . h : = RPCGENFLAGS += -M
285 neta_basic. h : = RPCGENFLAGS += -M

286 netad. h : = RPCGENFLAGS += -M

287 metaned. h : = RPCGENFLAGS += -M

288 mhdx. h : = RPCCGENFLAGS += -M

289 ndi ox. h : = RPCGENFLAGS += -M

290 netanhd. h : = RPCGENFLAGS += -M

291 nmetacl.h : = RPCCGENFLAGS += -M

293 # rpcsve rpcgen source (.x files)

294 #

295 # yp.x is an attenpt at codifying what was hand coded in RPCL.

296 # Unfortunately it doesn't quite work. (The handcoded stuff isn't

297 # expressable in RPCL) this is due to the fact that YP was witten

298 # before rpcgen existed. Hence, yp_prot.h cannot be derived fromyp.x
299 #

300 # There is no ‘.h” for nis_object.x because it is included by nis.x and
301 # the resultlng his nis.h.

303 RPCSVCPROTS = \

304 $(RPCSVC_GEN_HDRS: % h=% x) ni s_obj ect. x yp. X

306 LVMBVCPROTS = \
307 $(LVNRPCHDRS: % h=% x)

309 RPCSVCHDRS= $(RPCSVC_SRC HDRS) $(RPCSVC_GEN_HDRS)
311 PROTOHDRS= dunprestore. h routed. h ripngd. h rwhod. h tinmed. h
313 ROOTHDRS= $(HDRS: %=$(ROOT) / usr/include/ % \

314 $(KRBSHDRS: %=$(ROOT) / usr /i ncl ude/ ker berosv5/ % \
315 $(| SOHDRS: %=$(ROOT) / usr/include/iso/% \

316 $(ARPAHDRS: %=$(ROOT) / usr /i ncl ude/ arpa/% \

317 $(AUDI OHDRS: %=$(ROOT) / usr /i ncl ude/ audio/ %9 \

318 $(UUI DHDRS: %=$(ROOT) / usr/i ncl ude/ uui d/ % \

319 $(RPCSVCHDRS: %=$(ROOT) / usr/i ncl ude/ rpcsve/ % \
320 $(RPCSVCPROTS: %=$(ROOT) / usr /i ncl ude/ rpcsve/ % \

321 $(LVMRPCHDRS: %=$(ROOT) / usr/incl ude/ %9 \

new usr/src/ head/ Makefile
322 $(PROTOHDRS: %=$(ROCT) / usr /i ncl ude/ pr ot ocol s/ %

324 DIRS= iso arpa audio rpcsvc protocols security uuid kerberosvb
325 ROOTDI RS= $(DI RS: %=$(ROOT) / usr/i ncl ude/ %

327 SED= sed
329 # check files really don't exist

330 #
331 # should do sonething with the rpcsvc headers

333 iso/ % check: iso/%h

334 $(DOT_H_CHECK)

336 arpal/ % check: arpal/ % h

337 $(DOT_H_CHECK)

339 audi o/ % check: audi o/ % h

340 $(DOT_H_CHECK)

342 rpcsve/ % check: rpcsve/ % h

343 $(DOT_H_CHECK)

345 rpcsve/ % check: rpcsvce/ % x

346 $(DOT_X_CHECK)

348 protocol s/ % check: protocol s/ % h

349 $(DOT_H_CHECK)

351 kerberosv5/ % check: ker ber osv5/ % h

352 $(DOT_H_CHECK)

354 uui d/ % check: uui d/ % h

355 $(DOT_H_CHECK)

357 # Note that the derived headers (rpcgen) are not checked at this tine.
358 # need work at the source level and rpcgen itself has a bug which causes
359 # cstyle violation. Furthernore, there seens to be good reasons for the
360 # generated headers to not pass all of the hdrchk rules.

361 #

362 # Add the following to the CHECKHDRS |ist to activate the .x checks:
363 # $(RPCSVCPROTS: % x=r pcsvc/ % check) \

364 #

365 CHECKHDRS= $(HDRS: % h=% check)

366 $(KRB5HDRS: % h=ker ber osv5/ % check) \

367 $(1 SOHDRS: % h=i so/ % check) \

368 $(ARPAHDRS: % h=ar pa/ % check) \

369 $(AUDI OHDRS: % h=audi o/ % check) \

370 $(UUI DHDRS: % h=uui d/ % check) \

371 $(RPCSVC_SRC_HDRS: % h=r pcsvc/ % check) \

372 $(PROTOHDRS: % h=pr ot ocol s/ % check)

374 # headers which won't quite nmeet the standards...

375 #

376 # assert.h is required by ansi-c to *not* be idenpotent (section 4.1.2).
377 # Hence the trailing guard is not the last thing in the file nor can it
378 # be without playing silly ganes.

380 assert.check ;= HDRCHK_TAIL = | grep -v "end guard wong" | true

382 # install rules

384 $(ROCAT)/usr/include/ security/ % security/ %
385 $(INS. file)

387 $(ROOT)/usr/include/ protocol s/ % protocol s/ %

These
a

new usr/ src/ head/ Makefile 7
388 $(INS.file)
390 $(ROOT)/usr/include/rpcsve/ % rpcsvel %
391 $(INS. file)
393 $(ROAT)/usr/incl ude/ ker berosv5/ % ker ber osv5/ %
394 $(INS.file)
396 $(ROAT)/usr/include/ arpa/ % arpal %
397 $(INS.file)
399 $(ROAT)/ usr/include/ audi o/ % audi o/ %
400 $(INS. file)
402 $(ROOT)/usr/i n clude/iso/ % isol%
403 $(INS.file)
405 $(ROOT) /usr/include/ uuid/ % uuid/ %
406 $(INS.file)
408 $(ROOT)/usr/include/ % %
409 $(INS.file)
411 . KEEP_STATE:
413 . PARALLEL: $(ROOTHDRS) $(CHECKHDRS)
415 install _h: $(ROOTDI RS) . WAI T $(ROOTHDRS) $(SYMHDRASSERT) $(SYMHDRERRNO) \
416 $(SYMHDRFLOAT) $(SYMHDRI SC646)
418 check: $(CHECKHDRS)
420 cl ean cl obber:
421 $(RV $(LVVRPCHDRS) ;
422 cd rpesve ; $(RV $(RPCSVC_GEN_HDRS)
424 $(ROOTDI RS) :
425 $(INS. dir)
427 $(SYMHDRASSERT) :
428 -$(RM $@ $(SYMLINK) ../assert.h $@
430 $(SYMHDRERRNO) :
431 -$(RV) $@ S$(SYMLINK) ../errno.h $@
433 $(SYMHDRFLQAT) :
434 -$(RM $@ $(SYMLINK) ../float.h $@
436 $(SYMHDRI S0646)
437 -$(RM $@ $(SYMLINK) ../is0646.h $@
439 rpcsve/ % h: rpcsve/ % x
440 $(RPCGEN) $(RPCGENFLAGS) $< -0 $@
442 rpcsvel/nis. h: rpcsve/ ni s. x
443 $(RPCCEN) $(RPCGENFLAGS) rpcsvc/nis.x |\
444 $(SED) -e '/EDIT_START/,$$ d° > $@
446 net a_basic. h: .. /uts/common/sys/|vm nmeta_basic. x
447 $(RPCCEN) $(RPCGENFLAGS) ./uts/comon/sys/lvm neta_basic.x | \
448 awk '/<synch.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t
449 /<thread.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t/* _
450 { print $0 } \
451 > 3@

453

net ad. h: met ad. x

new usr/ src/ head/ Makefile 8
454 $(RPCGEN) $(RPCGENFLAGS) netad.x | \

455 awk '/<synch.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t
456 /<thread. h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t/* _
457 { print $0 } \

458 > 3@

460 nmhdx. h: ../uts/comon/sys/| v mhdx. x

461 $(RPCGEN) $(RPCGENFLAGS) ../ uts/comon/sys/|vm mhdx.x | \

462 awk '/<synch.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t
463 /<thread. h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t/* _
464 { print $0 } \

465 > 3@

467 ndi ox. h: .. luts/ common/ sys/ | v mdi ox. x

468 $(RPCCEN) $(RPCGENFLAGS) ../uts/common/sys/|vm ndiox.x | \

469 nawk ' {sub(/sys\/lvm/nd_mhdx/, "nmhdx"); print $$0}" | \

470 nawk ' {sub(/sys\/lvm/nd_basic/, "neta_basic"); print $$0}" | \

471 awk ' /<synch.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t
472 /<thread. h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t/* _
473 { print $0 } \

474 > 3@

476 net aned. h: .. /luts/common/sys/ | vni et amed. x

477 $(RPCCGEN) $(RPCGENFLAGS) ../ ut s/commn/ sys/lvm net amed. x

478 nawk ' {sub(/sys\/Ivm/nd_| basi ¢/ , "nmeta_basic"); print $$O} | \

479 awk ' /<synch.h>/ { print "#i f def _REENTRANT"; "print $$0; print "#endif\t
480 /<thread. h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t/* _
481 { print $0 } \

482 > 3@

484 netanhd. h: met amhd. x

485 $(RPCGEN) $(RPCGENFLAGS) netanhd. x | \

486 awk '/<synch.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t
487 /<thread.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t/* _
488 { print $0 } \

489 > 3@

491 netacl . h: netacl . x

492 $(RPCCEN) $(RPCGENFLAGS) nmetacl.x | \

493 awk '/<synch.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t
494 /<thread.h>/ { print "#ifdef _REENTRANT"; print $$0; print "#endif\t/* _
495 { print $0 } \

496 > 3@

new

* ok kK

new
195

Revi
Revi
Revi

* ok ok k

44

46
47
48
49

usr/src/lib/librpcsve/ comon/ mepfile-vers

B R

3113 Sun Aug 25 23:50:59 2013

usr/src/lib/librpcsve/ comon/ maepfile-vers

Need repl acenent for nfs/|ockd+kl m

ewed by: Gordon Ross <gordon. ross@exenta. conp

ewed by: Jereny Jones <jereny@lel phix.con>

ewed by: Jeff Biseda <jbiseda@lel phix.con>

LR R R R R RS R SRS RS SRS RS RS EE R R R R R R R RERREREEEEEEESE]
#

CDDL HEADER START

The contents of this file are subject to the ternms of the
Conmon Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governi ng perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END

Copyright 2011 Nexenta Systens, Inc. All rights reserved.

MAPFI LE HEADER START

WARNI NG STOP NOW DO NOT MODI FY THI'S FI LE.
Obj ect versioning nmust conply with the rules detailed in

usr/src/lib/ READMVE. mapfil es

You shoul d not be making nodifications here until you' ve read the nost
MAPFI LE HEADER END

Due to mistakes made early in the history of this library, there are
no SUNW 1.1 synbols, but the version is now kept as a pl acehol der.
Don’t add any synbols to this version.

HEHH HHHHBHFHFHBHEH HHBFHHFHHHHFHFE R F TR

$mapfile_version 2

SYMBOL_VERSI ON SUNW 1.1 {
gl obal :
SUNW 1. 1;
} SUNWO. 7;

__unchanged_portion_omtted_

63

SYMBOL_VERSI ON SUNWprivate_1.1 {
gl obal :
__clnt_bindresvport;
xdr _bp_addr ess;
xdr_bp_fileid_t;
xdr_bp_getfile_arg;
xdr_bp_getfile_res;

Copyright (c) 2006, 2010, Oracle and/or its affiliates. Al rights reserved.

copy of that file. If you need hel p, contact a gatekeeper for guidance.

new usr/src/lib/librpcsve/ common/ mapfil e-vers

xdr _bp_machi ne_nane_t;
xdr _bp_path_t;

xdr _bp_whoam _arg;
xdr _bp_whoami _res;
xdr _di r pat h;

xdr _export node;
xdr _exports;

xdr _f handl e;

xdr _f handl e3;
xdr _f hst at us;
xdr _fsh4_access;
xdr _f sh4_node;
xdr _fsh_access;
xdr _f sh_node;

xdr _gr oupnode;

xdr _groups;

xdr _i nt 32;
xdr _i nt 64;
xdr _i p_addr _t;
xdr _non;

xdr _nmon_i d;

xdr _mount body;

xdr _mount | i st;

xdr _nount res3;

xdr _mount r es3_ok;
xdr _nmount st at 3;
xdr _ny_id;

xdr _nare;

xdr _nl md_cancar gs;
xdr _nl md_hol der;
xdr _nl md_| ock;

xdr _nl md_I ockar gs;
xdr_nl md_notify;
xdr_nl md_res;

xdr _nl md_share;
xdr _nl md_shar ear gs;
xdr _nl md_shar eres;
xdr _nl mi_stat;
xdr_nl md_stats;
xdr _nl mi_t estargs;
xdr_nl md_testres;
xdr_nlmd_testrply;
xdr _nl md_unl ockar gs;
xdr _nl m_cancar gs;
xdr _nl m_hol der;
xdr _nl m | ock;

xdr _nl m_| ockar gs;
xdr_nl mnotify;
xdr_nl mres;

xdr _nl m share;

xdr _nl m shar ear gs;
xdr _nl m shareres;
xdr_nl mstat;
xdr_nl mstats;

xdr _nl m testargs;
xdr_nl mtestres;
xdr_nlmtestrply;
xdr _nl m_unl ockar gs;
xdr _ppat henf;
xdr _reglargs;
xdr _reglres;
xdr_res;

xdr _rstat_tineval;
xdr _rusers_ut np;
xdr _sm nane;
xdr_smres;

new usr/src/lib/librpcsve/ common/ mapfil e-vers

133
134
135
136
137
138
139
140
140
141
142
143
144
145
146
147
148 };

xdr_sm st at;
xdr_sm stat _res;
xdr _sm st at us;
xdr _sprayarr;
xdr _spraycunul ;
xdr _sprayti neval ;
xdr _st at _chge;
xdr _st at us;

xdr _timeval ;

xdr _ui nt 32;

xdr _ui nt 64;

xdr _unr eglargs;
xdr _unr eglres;
xdr _utmp_array;

|l ocal :
* .

__unchanged_portion_onitted_

new usr/src/uts/ Makefile

R R R R

6994 Sun Aug 25 23:51:00 2013
new usr/src/uts/ Makefile
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel oprent and Distribution License (the "License")

6 # You may not use this file except in conpliance with the License.

7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE

9 # or http://ww.opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perm ssions

11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each

14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

15 # If applicable, add the followi ng below this CDDL HEADER, with the

16 # fields enclosed by brackets "[]" replaced with your own identifying

17 # information: Portions Copyright [yyyy] [nane of copyright owner]

18 #

19 # CDDL HEADER END

20 #

21 #

22 # Copyright (c) 1989, 2010, Oracle and/or its affiliates. Al rights reserved.
23 #

24 # include global definitions

25 include ../ Makefile.naster

27 #

28 # List of architectures to build as part of the standard build.

29 #

30 # Sonme of these architectures are built in parallel (see i386_PARALLEL and

31 # sparc_PARALLEL). This requires building some parts first before parallel build
32 # can start. Platform nake files know what should be built as a prerequisite for
33 # the parallel build to work. The i386_PREREQ and sparc_PREREQ vari ables tell
34 # which platformdirectory to enter to start making prerequisite dependencies.
35 #

36 sparc_ARCH TECTURES = sundv sundu sparc
38 i 386_ARCHI TECTURES = i 86pc i 86xpv intel

#

41 # For 1386 all architectures can be conpiled in parallel.
#

43 # intel/Makefil e knows how to build prerequisites needed for parallel build.
#

45 i 386_PREREQ = intel
46 i386_PARALLEL = $(i 386_ARCH TECTURES)

48 #
49 # For sparc all architectures can be conpiled in parallel.
#

51 # sun4/ Makefile knows how to build prerequisites needed for parallel build.
52 # can start.
#

54 spar c_PREREQ = sun4
55 sparc_PARALLEL = $(spar c_ARCH TECTURES)

57 #

58 # Platforms defined in $(MACH) _PARALLEL are built in parallel. DUMW is placed

new usr/src/uts/ Makefile 2

59

at the end in case $(MACH) _PARALLEL is enpty to prevent everything going in

60 # parallel.

61 #

62 . PARALLEL: $($(MACH) _PARALLEL) DUMWY

64 #

65 # For build prerequisites we use a special target which is constructed by adding
66 # ' .prereq suffix to the $(MACH) _PREREQ

67 #

68 PREREQ TARGET = $($(MACH) _PREREQ %% pr er eq)

71 def = TARGET= def

72 all = TARGET= al |

73 install = TARGET= install

74 install_h = TARGET= install_h

75 cl ean = TARGET= cl ean

76 cl obber = TARGET= cl obber

77 lint = TARGET= lint

78 clean.lint = TARGET= clean.lint

79 check = TARGET= check

80 nodl i st = TARGET= nodl i st

81 nodli st = NO_STATE= - K $$MODSTATE$S$$S

83 . KEEP_STATE:

85 def all lint: all_h $(PMIMO_FILE) $($(MACH) _ARCHI TECTURES)

87 install: all_h install_dirs $(PMIMO_FILE) $($(MACH) _ARCH TECTURES)

89 install_dirs:

90 @d ..; pwd; $(MAKE) rootdirs

91 @wd

93 #

94 # Rule to build prerequisites. The left part of the pattern will natch
95 # PREREQ TARGET.

96 #

97 # The location of the Makefile is determned by strippinng '.prereq suffix from
98 # the target nane. We add '.prereq suffix to the target passed to the child
99 # Makefile so that it can distinguish prerequisite build fromthe regul ar one.
100 #

101 #

102 % prereq:

103 @d $(@% prereq=%; pwd; $(MAKE) $(NO _STATE) $(TARGET).prereq
105 #

106 # Rule to build architecture files. Build all required prerequisites and then
107 # build the rest (potentially in parallel).

108 #

109 $($(NACI—D ARCHI TECTURES) : $(PREREQ_TARGET) FRC

110 $@ pwd; $(MAKE) $(NO_STATE) $(TARGET)

112 $(PMIMO_FI LE) pm no_file: $(PATCH MAKEUP_TABLE)

113 @f [-z "$(PATCH MAKEUP_TABLE)" "] ; then \

114 echo ' ERROR $$(PATCH MAKEUP_TABLE) not set’ \

115 in environnent’ >& ; \

116 exit 1; \

117 fi

118 RELEASE="$(RELEASE) " MACH="$(MACH) " \

119 $(CTFCVTPTBL) -0 $(PMIMO_FI LE) $(PATCH_MAKEUP_TABLE)

121 #

122 # The following is the list of directories which contain Makefiles with
123 # targets to install header file. The nachi ne i ndependent headers are
124 # installed by invoking the Makefile in the directory containing the

new usr/src/uts/ Makefile

125 # header files. Machine and architecture dependent headers are installed
126 # by invoking the main makefile for that architecture/ nmachine which,
127 # in turn, is responsible for invoking the Makefiles which install headers.
128 # It is done this way so as not to assume that all of the header files in
129 # the architecture/ machi ne dependent subdirectories are in conpletely
130 # i sonorphic |ocations.

131 #

132 COVMON_HDRDI RS= common/ avs \

133 comon/c2 \

134 common/ des \

135 comon/fs \

136 common/ gssapi \

137 common/ i dmap \

138 common/ kI m\

139 common/ i net \

140 common/inet/ipf/netinet \

141 comon/ i net/ kssl

142 common/ i net/nca \

143 common/ i net/ socknods/ net packet \

144 common/ i o/ bpf/ net \

145 comnmon/ i pp \

146 comon/ net \

147 common/ neti net \

148 comon/ nfs \

149 conmon/ pcnti a/ sys \

150 conmon/ rpc \

151 common/ rpcsve \

152 common/ sharefs \

153 comon/ snb \

154 comon/ snbsrv \

155 conmmon/ sys \

156 common/ vm

159 # These aren’t the only headers in closed. But the other directories
160 # are sinple enough that they can be driven fromthe src tree.

161 $(CLOSED BUI LD) COMWON_HDRDI RS += $(CLOSED)/ ut s/ cormon/ sys

163 #

164 # Subset of COVMON HDRDIRS in which at |east one header is generated
165 # at runtinme (e.g., rpcgen), and in which "nake clean" should run.
166 # Other directories should be included here, but do not yet have the
167 # necessary Makefile support (make clean). See 6414855.

164 # at runtime (e.g., rpcgen). (This is a partial list; there are

165 # other directories that should be included and do not yet have the
166 # necessary Makefile support. See 6414855.)

168 #

169 DYNHDRDI RS = common/ i dmap \

170 comon/ kl m\

171 conmon/ rpcsve \

172 conmon/ sys

168 DYNHDRDI RS = common/ rpcsve common/i dmap common/ sys

174 spar c_HDRDI RS= sun/sys

175 i 386_HDRDI RS= i 86pc/ vm i 86xpv/vm

177 HDRDI RS= $(COMVON_HDRDI RS) $($(MACH) HDRDI RS)

178 install _h check: $(HDRDI RS) $($(MACH) _ARCHI TECTURES)

180 $(HDRDI RS) FRC

181 d $@ pwd; $(MAKE) $(TARGET)

183 # ensures that headers nade by rpcgen and others are available in uts source
184 # for kernel builds to reference without building install_h

185 #

186

all _h: FRC

new usr/src/uts/ Makefile

187
188
189
190
191
192

194
195
196
197
198

200
201

204

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

224

226
227

@d common/sys; pwd; $(MAKE) $@
@d comon/rpc; pwd; $(MAKE) $@
@d common/rpcsve; pwd; $(MAKE) $@
@d common/ gssapi; pwd; $(MAKE) $@
@d common/idmap; pwd; $(MAKE) $@
@d comon/kl m pwd; $(MAKE) $@

cl ean cl obber: $($(MACH) _ARCH TECTURES) $(DYNHDRDI RS)
@f ['$(PATCHBULD)' '="'#] then \
echo $(RM $(PMIMO_FI LE) A
$(RV) $(PMIMO_FILE) ; \
fi

EXTRA_CLOBBER_TARGETS= common/ avs/ ns/rdc
cl obber: $(EXTRA CLOBBER_TARGETS)

clean.lint nodlist: $($(MACH) _ARCH TECTURES)

#

Cross-reference custom zation: build a cross-reference over all of
the supported architectures. Although there’'s no correct way to set
the include path (since we don't know what architecture is the one
the user will be interested in), it’s historically been set to

mirror the $(XRDIRS) |ist, and that works kinda sorta okay.

#

W need to manual Iy prune usr/closed/ uts/{i86xpv|sfrmu|i86pc} since
none of them exist.

#

SHARED_XRDI RS = $(spar c_ARCH TECTURES) $(i 386_ARCHI TECTURES) sun4 sfnmu \

sun comon
CLOSED_XRDI RS = $(SHARED XRDI RS: %% ../../cl osed/uts/ %

XRDI RS = $(SHARED_XRDI RS)

CLOSED_XRDI RS_XEN = $(CLOSED_XRDI RS: ../ ../ cl osed/ uts/i 86xpv=)
CLOSED_XRDI RS_1 = $(CLOSED_XRDI RS_ XEN ../../closed/ uts/i 86pc=)

$(CLOSED_BUI LD) XRDI RS = $(CLOSED_XRDI RS, 1:../../cl osed! ut s/ sf mu=)

XRI NCDI RS = $(XRDI RS)

cscope. out tags: FRC
$(XREF) -x $@

FRC:

new usr/src/uts/comon/ Makefile.files

R R R R

43663 Sun Aug 25 23:51:01 2013
new usr/src/uts/comon/ Makefile.files
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel oprent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.

7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww.opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perm ssions

11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each

14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # If applicable, add the followi ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]

18 #

19 # CDDL HEADER END

20 #

22 #

23 # Copyright (c) 1991, 2010, Oracle and/or its affiliates. Al rights reserved.
24 # Copyright (c) 2012 Nexenta Systems, Inc. Al rights reserved.

25 # Copyright (c) 2012 by Del phix. Al rights reserved.

26 # Copyright (c) 2013 by Saso Kisel kov. Al rights reserved.

27 #

29 #

30 # This Makefile defines all file nodules for the directory uts/common
31 # and its children. These are the source files which may be considered
32 # common to all SunOS systens.

34 i386_CORE_OBJS += \

35 atonic.o \

36 avintr.o \

37 pic.o

39 sparc_CORE_OBJS +=

41 COMMON_CORE_OBJS += \
42 beep. o \
43 bitset.o \
44 bp_map. o \
45 brand. o \
46 cpucaps. o \
47 cnt.o \
48 cnt_policy.o \
49 cpu.o \
50 cpu_event.o \
51 cpu_intr.o \
52 cpu_pm o \
53 cpupart.o \
54 cap_util.o \
55 di sp.o \
56 group. o \
57 kstat_fr.o \

58 i scsiboot_prop.o \

new usr/src/uts/comon/ Makefile.files

CORE_OBJS +=
ZLIB_OBJS =

GENUNI X_OBJS +=

lgrp.o

I grp_topo.o
mrapobj . o

nut ex. o
page_| ock. o
page_retire.o
panic.o
param o

Pg. o

pghw. o

put next. o
rctl_proc.o
rw ock. o
seg_knmem o
softint.o
string.o
strtol.o
strtoul .o
strtoll.o
strtoull.o
thread_intr.o
vm page. o

vm pagel i st.o
zlib_obj.o
clock_tick.o

$(COMMON_CORE_0BJS) $($(MACH) _CORE_0BJS)

P)

zutil.o znmod.o znod_subr.o \
adl er32.0 crc32.0 deflate.o inffast.o \
inflate.o inftrees.o trees.o

\

access. 0 \
acl .o \
acl _conmmon. o \
adjtinme.o \
alarmo \
ai o_subr.o \
audi tsys. o \
audit_core.o \
audi t _zone. o \
audi t _menory.o \
aut oconf. o \
avl .o \
bdev_dsort.o \
bio.o \
bi t map. o \
bl abel . o \
brandsys. o \
bz2bl ocksort.o \
bz2conpress. o \
bz2deconpress. o \
bz2randtable.o \
bz2bzlib.o \
bz2crctable.o \
bz2huf f man. o \
callb.o \
callout.o \
chdir.o \
chnod. o \
chown. o \
cladm o \
class. o \
cl ock. o \
cl ock_highres.o \

new usr/src/uts/comon/ Makefile.files

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

clock_real tine.o

close. o
conpress. o
condvar. o
conf.o
consol e. o
contract.o
copyops. 0
core.o
corectl.o
cred.o
cs_stubs. o
dacf. o
dacf_clnt.o
damap. o \
cyclic.o

ddi .o

ddifmo

ddi _hp_inpl.o
ddi _hp_ndi .o
ddi _intr.o
ddi _intr_inpl.o
ddi _intr_irmo
ddi _nodei d. o
ddi _periodic.o
devcfg. o
devcache. o
device. o
devid. o

devi d_cache. o
devi d_scsi.o
devi d_snp. o
devpolicy.o
di sp_l ock. o
dnlc.o
driver.o
dunpsubr. o
driver_lyr.o
dtrace_subr.o
errorg. o

et heraddr. o
evchannel s. o
exacct. o
exacct_core. o
exec. 0o

exit.o

fbio.o
fcntl.o
fdbuffer.o

fs_reparse.o
fs_subr.o
fsflush.o
ftrace.o
getcwd. o
getdents.o

get | oadavg. o
get pagesi zes. 0
getpid.o

\
\

P

o e e e e e e e e e e e e o e e e e e —

new usr/src/uts/comon/ Makefile.files

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

gfs.o
rusagesys. o
gid.o

id_space.o
inet_ntop.o
instance. o
ioctl.o

i p_cksum o
issetugid.o

i ppconf. o
kepe. o

kdi . o

ki conv. o

kl pd. o

kmem o
ksynms_snapshot . o
| _strplunb.o

| abel sys. o
link.o

list.o

| ockstat_subr.o
| og_sysevent. o

e e e

mmapobj sys. o
mencntl .o
menstr. o

| grpsys. o
nmkdir.o
nmknod. o
nmount . o
nove. o
nsacct. o

mul tidata.o
nbn ock. o
ndifmo
nice.o
net st ack. o
ntptinme. o
nvpair.o
nvpair_al | oc_sy
nvpair_alloc_fi
fnvpair.o
octet.o

open. o
p_online.o

pat hconf. o

pat hnane. o
pause. o
serializer.o
pci_intr_lib.o
pci _cap.o

e P e —

new usr/src/uts/comon/ Makefile.files

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

pcifmo
pgrp. o

pgr psys. o
pid.o
pkp_hash. o
policy.o
poll.o
pool . o

pool _pset.o
port_subr.o
ppriv.o
printf.o
priocntl.o
priv.o
priv_const.o
proc. o
procset.o
processor_bind. o
processor_info.o
profil.o
project.o
gsort.o
rctl.o
rctlsys.o
readlink. o
refstr.o
renane. o
resol vepath. o
retire_store.o
process. o
rlinmt.o
rmap. o

rw. o

rwstl ock. o
sad_conf. o
sid.o
sidsys.o
sched. o
schedct! .o
sctp_crc32.0
seg_dev. o
seg_kp. o

e e e

senmaphore. o
sendfile.o
session. o
share. o
shuttle.o
sig.o

si gaction.o
si gal tstack. o
signotify.o
si gpendi ng. o
si gpr ocrmask. o
si gqueue. o

si gsendset. 0
si gsuspend. o
sigtinmedwait. o
sl eepqg. o
sock_conf.o
space. 0
sscanf. o
stat.o

%]
®
«
x
=]
o
o o e e e e e e e e e e e

new usr/src/uts/comon/ Makefile.files

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

statfs.o
statvfs.o
stol.o
str_conf.o
strcalls.o
stream o
stream 0.0
strext.o
strsubr.o
strsun.
subr. o
sunddi
sunndi
sunndi
sunpci
sunpm o
sundl pi . o
suntpi.o
swap_subr. o
swap_vnops. o
symink.o
sync. o

syscl ass. o
sysconfig.o
sysent. o
sysfs.o
systeninfo.o
task.o
taskq. o
tasksys. o
tinme.o
tinmer.o
times.o
timers.o
thread. o
tlabel .o
tnf_res.o
turnstile.o
tty_conmon. o
u8_textprep.o
uadmi n. o
uconv. o

ucr edsys. o
uid.o
unask. o
unount . 0
unane. o

uni x_bb. o
unlink.o
urw. o
utine.o

ut ssys. o
uucopy. o
vfs.o
vfs_conf.o
vem o

vm anon. o

vm as. o

vm neter.o
vm pageout . o
vm pvn. o
vmrmo

vm seg. 0

vm subr. o

vm swap. o

vm usage. 0

o

[eNeNoNe]

o e o e e o o o o o o o o o o e e e

new usr/src/uts/comon/ Makefile.files

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

406
407
408
409
410
412
414
416
418
419
420
421
423
425
427
429
431
433
435
436
437
438
440
441
442
443
445
447
449
451

453

vnode. o

vui d_queue. o
vuid_store.o
wai tg. o

wat chpoi nt. o
yield.o
scsi_confdata. o
xattr.o
xattr_conmon. o
xdr _nbl k. o

xdr _nmem o
xdr. o
xdr_array. o
xdr _refer.o
xhat . o

zone. o

e e

ﬁ Stubs for the stand-al one |inker/l|oader
zpar c_CENSTUBS_OBJS = \
kobj _stubs. o
i 386_GENSTUBS_OBJS =
COMMON_GENSTUBS_OBJS =
GENSTUBS_OBJS += $(COVMON_GENSTUBS_OBJS) $($(MACH) _GENSTUBS_OBJS)
#
DTrace and DTrace Providers
gTRACE_CBJS += dtrace.o dtrace_isa.o dtrace_asmo
SDT_OBJS += sdt_subr.o
PROFI LE_OBJS += profile.o
SYSTRACE_OBJS += systrace.o
LOCKSTAT_OBJS += | ockstat.o
FASTTRAP_OBJS += fasttrap.o fasttrap_isa.o

DCPC_0OBJS += dcpc. o

#

Driver (pseudo-driver) Mdul es
#

| PP_OBJS += ippctl.o

AUDI O_OBJS += audi o_client.o audio_ddi.o audio_engine.o \
audi o_fltdata.o audio_fornmat.o audio_ctrl.o \
audi o_grc3. 0 audi o_output.o audio_input.o \
audi o_oss. 0o audi o_sun. o

AUDI OEMJ10K_0OBJS += audi oenul0k. o

AUDI OENS_0OBJS += audi oens. o

AUDI OVl AB23X_0BJS += audi ovi a823x. 0

AUDI OVl A97_0OBJS += audi ovi a97. 0

AUDI O1575_0BJS += audi 01575. 0

new usr/src/uts/comon/ Makefile.files

455
457
459
461
463
465
467
469
471
473
475
477
479
481
483
485
487
489
491

493
494

496
498
500
502
504
506
508

510
511

513
515
517
519

AUDI 0810_0OBJS += audi 0810. 0

AUDI OCM _0OBJS += audi ocm .o

AUDI OCM HD_OBJS += audi ocmi hd. o

AUDI OHD_OBJS += audi ohd. o

AUDI O XP_OBJS += audi oi xp. 0

AUDI OLS_0OBJS += audiols.o

AUDI OP16X_0OBJS += audi opl6x. o

AUDI OPCl _0BJS += audi opci .o

AUDI OSOLO _0BJS += audi osol 0.0

AUDI OTS_OBJS += audiots.o

AC97_0OBJS += ac97.0 ac97_ad.o ac97_alc.o0 ac97_cm .o
BLKDEV_OBJS += bl kdev. o

CARDBUS_OBJS += cardbus. o cardbus_hp.o cardbus_cfg.o
CONSKBD_(OBJS += conskbd. o

CONSMS_0OBJS += consms. 0

OLDPTY_OBJS += tty_ptyconf.o

PTC_OBJS += tty_pty.o

PTSL_OBJS += tty_pts.o

PTM OBJS += ptmo

M1 _0OBJS += mi.o mi_cicada.o mi_natsem .o nii_intel.o mi_qualsem.o \
mi_marvell.o mi_realtek.o nmii_other.o

PTS_OBJS += pts.o

PTY_OBJS += ptms_conf. o

SAD OBJS += sad. o

MD4_OBJS += md4. o nmd4_nod. o

MD5_OBJS += nmd5. o nd5_nod. o

SHA1_OBJS += shal. o shal_nod. o

SHA2_OBJS += sha2. o0 sha2_nod. o

| PGPC_OBJS += classifierddi.o classifier.o filters.o trie.o table.o \
ba_table.o

DSCPMK_OBJS += dscpnk. o dscprkddi . o

DLCOSMK_OBJS += dl cosnk. o dl cosnkddi . o
FLOWACCT_OBJS += flowacctddi .o flowacct.o

TOKENMT_OBJS += tokennt.o tokenntddi.o

new usr/src/uts/common/ Makefile.files 9

521
523
525
527
529

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

547
548
549
550
551
552
553
554
555
556
557
558
559
560
561

563
565
567
569
571
573
575
577
579
581
583

585
586

TSWICL_OBJS += tswtcl.o tswclddi.o

ARP_OBJS += arpddi . o
| CMP_OBJS += i cnpddi . o
| CVP6_0OBJS += i cnpéddi . o
RTS_OBJS += rtsddi.o
IP_ICVWP_0OBJS = icnp.o icnp_opt_data.o
| P_RTS OBJS = rts.o rts_opt_data.o
|P_TCP_OBJS = tcp.o tcp_fusion.o tcp_opt_data.o tcp_sack.o tcp_stats.o \
tcp_msc.o tcp_tiners.o tcp_tinme_wait.o tcp_tpi.o tcp_output.o \
tcp_input.o tcp_socket.o tcp_bind.o tcp_cluster.o tcp_tunables.o
| P_UDP_OBJS = udp. o udp_opt_data.o udp_tunabl es.o udp_stats.o
| P_SCTP_OBJS = sctp.o sctp_opt_data.o sctp_output.o
sctp_init.o sctp_input.o sctp_cookie.o \
sctp_conn.o sctp_error.o sctp_snnp.o \
sctp_tunabl es. o sct p_shutdown.o sctp_conmon. o \
sctp_timer.o sctp_heartbeat.o sctp_hash.o \
sctp_bind.o sctp_notify.o sctp_asconf.o \
sctp_addr.o tn_ipopt.o tnet.o ip_netinfo.o \
sctp_m sc.o
IP_ILB OBJS = ilb.oilb_nat.o ilb_conn.o ilb_alg_hash.o ilb_alg_rr.o
| P_OBJS += ignp.o ipnp.o ip.o ip6.o ip6_asp.o ip6_if.o ip6_ire.o\
ip6_rts.oip_if.oip_ire.oip_listutils.o ip_nroute.o \
ip_nulti.o ip2mac.o ip_ndp.o ip_rts.o ip_srcid.o \
i pddi . o |pdr0p 0 m.o nd.o tunables.o optcomo snnpcomo \
i psec_| oader. o spd.o ipclassifier.o inet_conmmon.o ip_squeue.o \
squeue. 0 ip_sadb.o ip_ftable.o proto_set.o radix.o ip_dumy.o \
i p_hel per _streamo i p_tunables.o \
ip_output.o ip_input.o ip6_input.o ip6_output.o ip_arp.o \
conn_opt.o ip_attr.o ip_dce.o \
$(1P_I COVP_OBIS) \
$(1 P_RTS_OBJS) \
$(1P_TCP_OBJIS) \
$(1 P_UDP_OBJS) \
$(1 P_SCTP_OBIS) \
$(1 P_ILB_OBIS)
| P6_OBJS += i p6éddi . o
HOOK_OBJS += hook. o
NETI _OBJS += neti_inpl.o neti_nod.o neti_stack.o

KEYSOCK_OBJS += keysockddi .o keysock.o keysock_opt _data.o
| PNET_OBJS += ipnet.o ipnet_bpf.o

SPDSOCK_OBJS += spdsockddi .o spdsock. o spdsock_opt_data. o
| PSECESP_OBJS += i psecespddi .o i psecesp. o

| PSECAH _OBJS += ipsecahddi .o ipsecah.o sadb.o

SPPP_OBJS += sppp. o sppp_dl pi.o sppp_nod. o s_common. o
SPPPTUN_OBJS += spppt un. o spppt un_nod. o

SPPPASYN_OBJS += spppasyn. o spppasyn_nod. o

SPPPCOWP_COBJS += spppconp. o spppconp_nod. o defl ate. o bsd-conp.o vjconpress.o \
zlib.o

new usr/src/uts/comon/ Makefile.files 10
588 TCP_OBJS += tcpddi.o
590 TCP6_OBJS += tcp6ddi . o
592 NCA_OBIJS += ncaddi . o
594 SDP_SOCK_MOD_OBJS += socknpd_sdp. o socksdp. o socksdpsubr. o

596
598
600
602

604
605

607
608
609
610
611

613
614

616
618
620
622
624
626
628
630
632
634
636
638
640
642
644
645
646
648
650
652

SCTP_SOCK_MOD_(OBJS += socknod_sctp. o socksctp. o socksctpsubr.o
PFP_SOCK_MOD_0OBJS += socknod_pf p. o
RDS_SOCK_MOD_OBJS += socknod_rds. o

RDS_OBJS += rdsddi.o rdssubr.o rds_opt.o rds_ioctl.o
RDSI B_OBJS += rdsib.o rdsib_ib.o rdsib_cmo rdsib_ep.o rdsib_buf.o \
rdsi b_debug. o rdsib_sc.o
RDSV3_0OBJS += af _rds.o rdsv3_ddi.o bind.o |oop.o threads.o connection.o \

transport.o cong.o sysctl.o nessage.o rds_recv.o send.o \
stats.o info.o page.o rdnma_transport.o ib_ring.o ib_rdm.o \
ib_recv.o ib.o ib_send.o ib_sysctl.o ib_stats.o ib_cmo \
rdsv3_sc.o rdsv3_debug.o rdsv3_inpl.o rdma.o rdsv3_af _thr.o

| SER_OBJS += iser.o iser_cmo iser_cq.o iser_ib.o iser_idmo \
iser_resource.o iser_xfer.o

UDP_OBJS += udpddi . o

UDP6_OBJS += udp6ddi . o

SY_OBJS += gentty.o

TCO OBJS += ticots.o

TCOO OBIS += ticotsord.o

TCL_OBJS += ticlts.o

TL_OBJS += tl.o

DUMP_OBJS += dunp. o

BPF_OBJS += bpf.o bpf_filter.o bpf_nod.o bpf_dlt.o bpf_nac.o

CLONE_COBJS += clone.o

CN_OBJS += cons. o

DLD OBJS += dld_drv.o dld_proto.o dld_str.o dld_flow o

DLS OBJS += dls.o dls_link.o dls_npd.o dls_stat.o dls_ngnt.o

GLD_OBIJS += gld.o gldutil.o

MAC_OBJS += mac. o mac_bcast.o mac_client.o mac_dat apath_setup.o mac_fl ow. o
mac_hi 0. o mac_nod. o mac_ndd. o mac_provi der.o mac sched o\
mac_protect.o mac_soft_ring.o mac_stat.o mac_util.

MAC_6TO4_OBJS += mac_6to4. 0

MAC_ETHER _OBJS += mac_et her. o

MAC_| PV4_0OBJS += nmac_i pv4. o

new usr/src/uts/comon/ Makefile.files 11

654
656
658
660

662
663

665
666

668
669
670
671
672

674
676
678

680
681

683
685

687
688
689
690

692
693
694

696
697
698
699

701
702
703
704
705

709
710
711

713

715
716

MAC_| PV6_OBJS += mac_i pv6. o

MAC W FI_OBJS += mac_wifi.o

MAC_| B_OBJS += mac_i b.o

| PTUN_ OBJS += iptun_dev.o iptun_ctl.o iptun.o

AGGR_OBJS += aggr_dev. o aggr_ctl.o aggr_grp.o aggr_port.o \
aggr_send. o aggr_recv.o aggr_Il acp.o

SOFTMAC _OBJS += softmac_main.o softnmac_ctl.o softnac_capab.o \
sof tmac_dev. o softnmac_stat.o softmac_pkt.o softmac_fp.o

NET80211_0OBJS += net 80211. 0 net80211_proto.o net 80211 i nput.o \
net 80211_out put. o net80211_node. 0o net80211_crypto.o \
net 80211_crypt o_none. o net 80211_crypto_wep. o net 80211 ioctl.o \
net 80211_crypto_tki p. o net80211_crypto_ccnp.o \
net 80211_ht. o

VNI C_OBJS += vnic_ctl.o vnic_dev.o

SIMNET_OBJS += simet.o

I B_OBJS += i bnex. o i bnex_ioctl.o ibnex_hca.o

| BCM OBJS += ibcminmpl.o ibcmsmo ibcmti.o ibcmutils.o ibcmpath.o \
ibcmarp.o ibcmarp_link.o

| BDM _OBJS += ibdm o

| BDVA OBJS += ibdma.o

| BMF_OBJS += ibnf.o ibnf_inpl.o ibnf_dr.o ibnf_wge.o ibnf_ud_dest.o ibnf_nod.
ibnf_send.o ibnf_recv.o ibnf_handlers.o ibnf_trans.o \
ibnf_timers.o ibnf_nmsg.o ibnf_utils.o ibnf_rnpp.o \
ibnf_saa.o ibnf_saa_inpl.o ibnf_saa_utils.o ibnf_saa_events.o

| BTL_OBJS += _inpl.o ibtl_util.o ibtl_memo ibtl_handlers.o ibtl_qgp.o \

ibtl
ibtl_cg.o ibtl_w.o ibtl_hca.o ibtl_chan.o ibtl_cmo \
ibtl_ncg.o ibtl_ibnex.o ibtl_srqg.o ibtl_part.o
TAVOR_OBJS += tavor.o tavor_agents.o tavor_cfg.o tavor_ci.o tavor_cnd.o \
tavor_cq.o tavor_event.o tavor_ioctl.o tavor_misc.o \
tavor_nr.o tavor_gp.o tavor_gpnod.o tavor_rsrc.o \
tavor_srqg.o tavor_stats.o tavor_umap.o tavor_w .o

HERMON_OBJS += hernon. o hernon_agents.o hernon_cfg.o hernon_ci.o hernon_cnd.o \
hernon_cq. o hernon_event.o hernmon_ioctl.o hermon_misc.o \
hermon_nr. o hernon_gp. o hernon_gpnod. o hernon_rsrc.o \
hernon_srqg. o0 hernmon_stats.o hernon_unap.o hernon_w .o \
her non_f coi b. o hermon_fm o

DAPLT_OBJS += daplt.o

SOL_OFS_OBJS += sol _cna. o sol _ib_cna.o sol _uobj.o \
sol _of s_debug_util.o sol _ofs_gen_util.o \
sol _kverbs. o

SOL_UCVA_OBJS += sol _ucna. o

SOL_UVERBS_(OBJS += sol _uverbs. o sol _uverbs_conp.o sol _uverbs_event.o \

sol _uverbs_hca. o sol _uverbs_qgp. o

SOL_UMAD_OBJS += sol _unad. o

new usr/src/uts/comon/ Makefile.files

734
736

740

742
743

745
747
749

KSTAT_OBJS += kstat.o
KSYMS_OBJS += ksyns.o

I NSTANCE_OBJS += inst_sync.o

I WBCN_OBJS += iwscons. o

LOFI _OBJS += lofi.o LzmaDec. o
FSSNAP_OBJS += fssnap.o

FSSNAPI F_OBJS += fssnap_if.o
MM OBJS += mem o
PHYSMEM OBJS += physmem o
OPTI ONS_OBJS += options.o

W NLOCK_OBJS += wi nl ockio.0

PM OBJS += pmo
SRN_OBJS += srn.o
PSEUDO OBJS += pseudonex. o

RAMDI SK_OBJS += rantdi sk. o

LLC1_OBJS +=llcl.0

USBKBM OBJS += usbkbm o

USBWCM OBJS += usbwcm o

BOFI _OBJS += bofi.o

H D_OBJS += hid.o

HWA_RC OBJS += hwarc. o

USBSKEL_OBJS += usbskel . 0

USBVC_OBJS += usbvc. o usbvc_v4l 2.0

HI DPARSER_OBJS += hi dparser. o

USB_AC OBJS += ush_ac.o

USB_AS_OBJS += ushb_as. o

USB_AH OBJS += usb_ah. o

USBMS_OBJS += usbns. o

USBPRN_OBJS += ushprn. o

UGEN_OBJS += ugen. o

USBSER _OBJS += ushser. o usbser_rseq.o
USBSACM OBJS += usbsacm o
USBSER_KEYSPAN _OBJS += usbhser_keyspan. o keyspan_dsd. o keyspan_pi pe. o

12

new usr/src/uts/common/ Makefile.files 13

802
804
806
808
810
812
814
816
818
820
822
824
825
826
827
828
829
831
833
835
837
838
839
840
842
843
844
845
846
847
848

850

USBS49_FW OBJS += keyspan_49f w. o

USBSPRL_CBJS +=
WUSB_CA_OBJS +=
USBFTDI _OBJS +=

usbser_pl 2303. 0 pl 2303_dsd. o
wusb_ca. o

usbser_uftdi.o uftdi_dsd.o

USBECM OBJS += usbecm o

WC OBJS += wsCONs. 0 vcons. o

VCONS_CONF_0BJS += vcons_conf. o

SCSI_OBJS +=

SCSI _VHCI _CBJS +=
SCSI _VHCI _F_SYM OBJS +=
SCSI_VHC _F_TPGS_CBJS +=

SCSI _VHCI _F_ASYM SUN_OBJS +=
SCSI_VHCI _F_SYM HDS_OBJS +=
SCSI _VHCI _F_TAPE_CBJS +=
SCSI_VHCI _F_TPGS_TAPE OBJS +=

SGEN_OBJS +=
SMP_OBJS +=

SATA_OBJS +=
USBA OBJS +=

USBA_W THOUT_WUSB_OBJS +=

USBA10_OBJS +=
RSM OBJS +=

RSMOPS_OBJS +=
S1394_OBJS +=

HCl 1394_0BJS +=

AV1394_OBIS +=

scsi_capabilities.o scsi_confsubr.o scsi_control.o \

scsi _data.o scsi_fmo scsi_hba.o scsi_reset_notify.o \
scsi_resource. 0 scsi_subr.o scsi_transport.o scsi_watch.o \
snp_transport.o

scsi _vhci. o npapi _i npl .o scsi_vhci _tpgs.o
sym o

tpgs. o

asym sun. o

sym hds. o
tape. o
t pgs_t ape. o
sgen. o
snmp. o
sata.o
hcdi.o usba.o wusbai.o hubdi.o parser.o genconsole.o \

usbai _pi pe_ngnt. o usbai _req.o usbai _util.o usbai _register.o \
usba_devdb. o usbalO_calls. o usba_ugen. o whcdi.o wa.o
hcdi.o usba.o usbai.o hubdi.o parser.o gencons

usbai _pi pe_ngnt.o usbai _req.o usbai _util.o usbai _register.o \
usba_devdb. o usbalO_cal I s. o usba_ugen. o

usbalo0. o

rsmo rsnka_pat hmanager . o rsnka_util.o

r smops. o

t1394.0 t1394_errnsg. o0 s1394.0 s1394_addr.o s1394_asynch.o \
s1394_bus_reset. o0 s1394 _cnp. o s1394 _csr.o s1394_dev_disc.o \
s1394_fa. o0 s1394_fcp.o \

s1394_hot pl ug. o s1394_i soch. 0 s1394_mi sc. 0 h1394. 0 nx1394. 0

hci 1394. 0 hci 1394_async. o hci 1394_attach. o hci 1394_buf.o \
hci 1394 _csr. o hci 1394_detach. o hci 1394_extern.o \

hci 1394_ioctl .o hci 1394_i soch. o hci 1394_isr.o \

hci 1394_i x| _conp. o hci 1394_i x| _isr.o hci 1394_i xI _m sc.o \
hci 1394_i x| _update. o hci 1394_m sc. 0o hci 1394_ohci .o \

hci 1394_q. 0 hci 1394_s1394if. o hci 1394_t | abel .0 \

hci 1394_tlist.o hci 1394_vendor. o

av1394.0 av1394_as.o av1394_async.o av1394_cfgromo \

new usr/src/uts/common/ Makefile.files 14
851 av1394 cnp.o av1394 fcp.o avl394 isoch.o av1394_isoch_chan.o \
852 av1394_isoch_recv. o av1l394_isoch_xnit.o avl394_|ist.o \

853 av1394_queue. o

855 DCAML394_OBJS += dcam o dcam franme. o dcam param o dcamreg.o \
856 dcamring_buff.o

858 SCSA1394_0BJS += hba. o sbp2_driver.o sbp2_bus.o

860
862
864

866
867

869
870
871
872
873
874
875
876
877
878

880
882

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903

905
906
907
908
909
910
911
912
913
914
915
916

SBP2_OBJS += cfgrom o sbp2.o0
PMODEM OBJS += pnbdem o pnodemcis.o cis.o cis_callout.o cis_handlers.o cis_para
DSW OBJS += dsw. o dsw_dev.o ii_tree.o

ncall.o \
ncal | _stub.o

NCALL_OBJS +=

RDC_OBJS += rdc.o \
rdc_dev.o \

rdc_io.o \

_l p.o\
rdc_health.o \
rdc_subr.o \
rdc_di skq. o

RDCSRV_OBJS += rdcsrv.o

RDCSTUB_OBJS += rdc_stub. o
SDBC_OBJS += sd_bcache. o \
sd_bio.o \
sd_conf.o \
sd_ft.o \
sd_hash.o \
sd_io.o \
sd_misc.o \
sd_pcu.o \
sd_t daenon. o \
sd_trace.o \
sd_iob_inp
sd_iob_i
sd_iob_i
sd_i ob_i
sd_iob_i
sd_iob_i
sd_i ob_i mp
sd_i ob_i np
safestore.o \
saf estore_ramo

g338838<
NoolhwhRO
ocoooooo0o0
e

nsctl.o \
nsc_cache. o \
nsc_di sk.o \
nsc_dev.o \
nsc_freeze.o \

NSCTL_OBJS +=

nsc_ncallio.o \
nsc_power.o \
nsc_resv.o \
nsc_rmspin.o \
nsc_solaris.o \

new usr/src/uts/common/ Makefile.files 15

917 nsc_trap.o \
918 nsc_list.o
919 UNI STAT_OBJS += spuni.o \

920 spcs_s_k. o

922 NSKERN_OBJS += nsc_ddi.o \
923 nsc_proc.o \
924 nsc_raw. o \
925 nsc_thread. o \
926 nskernd. o

928 SV_0OBJS += SsV. 0

930 PMCS_OBJS += pnts_attach.o pnts_ds.o pnts_intr.o pncs_nvram o pnts_sata.o \
931 pnts_scsa. o pncs_snhba. o pnts_subr.o pnts_fw og. o

933 PMCS8001FW C OBIJS +=
934 PMCS8001FW OBJS +=

pnts_fw_hdr. o
$(PMCS8001FW C 0OBJS) SPCBoot.o ila.o firmmare. o

936 #

937 # Buil d up defines and paths.

939 ST_OBJS += st.o st_conf.o

941 EMLXS_OBIJS += em xs_cl ock. o enl xs_dfc. o em xs_dhchap. o enl xs_di ag. o \

942 enm xs_downl oad. o em xs_dunp.o em xs_els. o enl xs_event.o \
943 em xs_fcf.o em xs_fcp.o enl xs_fct.o enm xs_hba.o em xs_ip.o \
944 em xs_nbox. o em xs_mem o enl xs_nsg. o enl xs_node. o \

945 em xs_pkt.o em xs_sli3.0 em xs_sli4.0 em xs_solaris.o \

946 enm xs_t hread. o

948 EMLXS_FW OBJS += em xs_fw. o

950 OCE_OBJS += oce_buf.o oce_fmo oce_gld.o oce_hw. o oce_intr.o oce_main.o \
951 oce_nbx. 0 oce_ng. 0 oce_queue.0 oce_rx.o oce_stat.o oce_tx.o \
952 oce_utils.o

954 FCT_OBJS += discovery.o fct.o

956 QLT_OBJS += 2400.0 2500.0 8100.0 glt.o glt_dma.o

958 SRPT_OBJS += srpt_nod.o srpt_ch.o srpt_cmo srpt_ioc.o srpt_stp.o

960 FCOE_OBJS += fcoe.o fcoe_eth.o fcoe_fc.o

962 FCOET_OBJS += fcoet.o fcoet_eth.o fcoet_fc.o

964 FCOElI _OBJS += fcoei.o fcoei_eth.o fcoei _Iv.o

966 | SCSI T_SHARED_OBJS += \

967 i scsit_common. o

969 | SCSIT_OBJS += $(1SCSI T_SHARED 0BJS) \

970 iscsit.o iscsit_tgt.o iscsit_sess.o iscsit_login.o\
971 iscsit_text.o iscsit_isns.o iscsit_radiusauth.o \

972 iscsit_radiuspacket.o iscsit_auth.o iscsit_authclient.o

974 PPPT_OBJS += alua_ic_if.o pppt.o pppt_nsg.o pppt_tgt.o
976 STMF_OBJS += lun_nap.o stnf.o

978 STMF_SBD_OBJS += sbd. o sbd_scsi.o sbhd_pgr.o shd_zvol.o
980 SYSMSG OBJS += sysnsg. o0

982 SES_OBJS += ses.0 ses_sen.o ses_safte.o ses_ses. o

new usr/src/uts/common/ Makefile.files 16
984 TNF_OBIJS += tnf_buf.o tnf_trace.o tnf_witer.o trace_init.o \
985 trace_funcs.o tnf_probe.o tnf.o
987 LOG NDMUX_OBJS += | ogi ndnux. o

1000
1002
1004
1006
1008
1010
1012
1014
1016
1018
1020
1022
1024
1026
1028
1030
1032
1034
1036
1038
1040
1042
1044
1046
1048

DEVI NFO_OBJS += devinfo.o
DEVPOLL_OBJS += devpol .o
DEVPOOL_OBJS += devpool . 0
18042_0BJS += i8042.0
KB8042_0OBJS += \
at _keyprocess. o \
kb8042. o \
kb8042_keyt abl es. o

MOUSE8042_0OBJS += npuse8042. 0

FDC_OBJS += fdc.o

ASY_OBJS += asy. o

ECPP_OBJS += ecpp. o

VUl DMBP_OBJS += vui dm ce. o vui dnBp. o

VUl DMAP_OBJS += vui dmi ce. o vui dmip. o
VUl DVBP_OBJS += vui dmice. o vui dnbp. o
VUl DPS2_0OBJS += vui dmi ce. o vuidps2.o0
HPCSVC_0OBJS += hpcsvc. o

PCIE_M SC_OBJS += pcie.o pcie_fault.o pcie_hp.o pciehpc.o pcishpc.o pcie_pw.o p
PCl HPNEXUS_OBJS += pci hp. o
OPENEEPR_OBJS += openprom o

RANDOM OBJS += random o

PSHOT_OBJS += pshot. o

GEN_DRV_COBJS += gen_drv.o

TCLI ENT_OBJS += tclient.o

TPHCI _OBJS += tphci.o

TVHCI _OBJS += tvhci.o

EMUL64_0OBJS += enul 64. 0 enul 64_bsd. o
FCP_OBJS += fcp.o

FCl P_OBJS += fcip.o

FCSM_OBJS += fcsmo

FCTL_OBJS += fctl.o

FP_OBJS += fp.o

new usr/src/uts/comon/ Makefile.files

1050
1051

1053
1055
1057
1059
1061
1063
1065
1067
1069
1071
1073
1075
1077
1079
1081
1083
1085
1087
1088
1089
1090
1091
1093
1095
1097
1098
1099
1100
1102
1104
1106
1108
1110
1111

1112
1113

QLC_OBIJS += gl _api.o ql _debug.o gl _hba_fru.o gl _init.o gl_ioch.o gl _ioctl.o \
gl _isr.o gl _nmbx.o gl _nx.o gl _xioctl.o gl _fw table.o

QLC_FW 2200_0BJS += gl _fw_2200.0
QLC_FW 2300_0BJS += gl _fw_2300.0
QLC_FW 2400_0BJS += gl _fw_2400. 0
QLC_FW 2500_OBJS += gl _fw 2500.0
QLC_FW 6322_0BJS += gl _fw 6322.0
Q.C FW8100_OBJS += gl _fw 8100.0
QLGE_OBJS += glge.o glge_dbg.o glge_flash.o gqlge_fmo qglge_gld.o glge_npi.o
ZCONS_OBJS += zcons. o
NV_SATA _OBJS += nv_sata.o
SI 3124_0OBJS += si 3124.0
AHCI _OBJS += ahci.o
PCl | DE_OBJS += pci-ide.o
PCEPP_OBJS += pcepp. 0
CPC_OBJS += cpc. o
CPUI D_OBJS += cpuid_drv.o
SYSEVENT_OBJS += sysevent.o
BL_OBJS += bl.o
DRM OBJS += drm sunnod. o drmkstat.o drm agpsupport.o \

drmauth.o drmbufs.o drmcontext.o drmdnma.o \

drmdrawable.o drmdrv.o drmfops.o drmioctl.o drmirgqg.

drm | ock.o drmnenory.o drmnsg.o drmpci.o drmscatter.
drm.cache.o drmgemo drmnmmo ati_pcigart.o

o\
o\

FM OBJS += devfm o devfm machdep. o

RTLS_OBJS += rtls.o

#

exec nodul es
#

AQUTEXEC _OBJS +=aout .o

ELFEXEC OBJS += elf.o0 elf_notes.o old_notes.o
| NTPEXEC_OBJS +=intp. o

SHBI NEXEC_OBJS +=shbin. o

JAVAEXEC OBJS +=j ava. o

#

file system nodul es

#

AUTOFS_OBJS += auto_vfsops.o auto_vnops.o auto_subr.o auto_xdr.o auto_sys.o

17

new usr/src/uts/comon/ Makefile.files

1115
1116
1117
1118
1119
1120
1121
1122

1124
1126

1128
1129
1130
1131
1132

1134
1135

1137
1138

1140
1142
1144

1146
1147

1149
1151

1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164

1166
1167
1168
1169
1170
1171

1173
1174
1175
1176
1177
1178
1179
1180

CACHEFS_0OBJS += cachefs_cnode. o cachefs_cod. o \

cachefs_dir.o cachefs_dl og.o cachefs_filegrp.o \
cachefs_fscache. o cachefs_ioctl.o cachefs_log.o \
cachefs_nodule.o \
cachef s_noopc. o cachefs_resource.o \
cachefs_strict.o \
cachefs_subr.o cachefs_vfsops.o \
cachefs_vnops. o
DCFS_OBJS += dc_vnops. o
DEVFS_OBJS += devfs_subr.o devfs_vfsops.o devfs_vnops.o
DEV_OBJS += sdev_subr. o sdev_vfsops. o sdev_vnops. o0 \
sdev_ptsops. o sdev_zvol ops. o sdev_conm o \
sdev_profile.o sdev_ncache.o sdev_netops. o \
sdev_i pnetops. o \
sdev_vtops. o
CTFS_OBJS += ctfs_all.o ctfs_cdir.o ctfs_ctl.o ctfs_event.o \
ctfs_latest.o ctfs_root.o ctfs_symo ctfs_tdir.o ctfs_tnpl.o
OBJFS_OBIJS += objfs_vfs.o objfs_root.o obj fs_common. o \

objfs_odir.o obj fs_data.o
FDFS_OBJS += fdops. o
FI FO_0OBJS += fifosubr.o fifovnops.o
PI PE_OBJS += pi pe. o
HSFS_OBJS += hsfs_node. o hsfs_subr.o hsfs_vfsops. o hsfs_vnops.o \
hsfs_susp.o hsfs_rrip.o hsfs_susp_subr.o
LOFS_OBJS += | of s_subr. o | of s_vfsops. o | of s_vnops. o
NAMEFS_OBJS += nanevfs.o namevno. o
NFS_OBJS += nfs_client.o nfs_conmmon. o nfs_dunmp.o \
nfs_subr.o nfs_vfsops.o nfs_vnops.o \
nfs_xdr.o nfs_sys.o nfs_strerror.o \
nfs3_vfsops. o nfs3_vnops. o nfs3_xdr.o \
nfs_acl _vnops. o nfs_acl _xdr.o nfs4_vfsops.o \
nfs4_vnops. o nfs4_xdr.o nfs4_idmap.o \
nf s4_shadow. o nfs4_subr.o \
nfs4_attr.o nfs4_rnode. o nfs4_client.o \
nfs4_acache. o nfs4_common. o nfs4_client_state.o \
nfs4_cal | back. o nfs4_recovery.o nfs4_client_secinfo.o \
nfs4_client_debug. o nfs_stats.o \
nfs4_acl.o nfs4_stub_vnops. o nfs_cnd. o
NFSSRV_OBJS += nfs_server.o nfs_srv.o nfs3_srv.o \
nfs_acl _srv.o nfs_auth.o nfs_auth_xdr.o \
nfs_export.o nfs_l og.o nfs_log_xdr.o \
nfs4_srv.o nfs4_state.o nfs4_srv_attr.o \
nfs4_srv_ns.o nfs4_db. o nfs4_srv_deleg.o \

nfs4_del eg_ops. 0o nfs4_srv_readdir.o nfs4_dispatch.o

SMBSRV_SHARED_OBJS += \
snb_inet.o \
snmb_match. o \
snb_nsgbuf.o \
snb_oemo \
snb_string.o \
snb_utf8.0 \
snb_door _| egacy. o \

new usr/src/uts/comon/ Makefile.files

1181
1182
1183
1184
1185
1186

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246

SMBSRV_OBJS +=

snmb_xdr.o \

snb_t oken. o \

snb_t oken_xdr.o \
snb_sid.o \
snmb_native.o \
snb_netbios_util.o

$(SMBSRV_SHARED 0OBJS)
snmb_acl . o
snb_al l oc. o

snb_cl ose. o
snb_conmon_open. o
snb_common_transact. o
snb_create. o

snb_del ete. o
snb_directory.o
snmb_di spatch. o
snb_echo. o

snb_femo

snb_find.o
snb_flush.o
snb_fsinfo.o
snb_fsops. o
snb_init.o
snb_kdoor . o
snmb_kshare. o
snb_kutil.o

snb_| ock. o

smb_| ock_byt e_range. o
snmb_| ocki ng_andx. o
snb_| ogof f _andx. o
snb_mangl e_nane. o
snb_nbuf _mar shal i ng. o
smb_nbuf _util.o
snb_negoti ate. o
snb_net. o

snb_node. o

snb_nt _cancel . o
snb_nt _creat e_andx. o

snb_nt _transact_create.o

snb_nt _transact _ioctl.o

snb_nt _transact_notify_change. o
snmb_nt _transact_quota. o

snb_nt _transact _security.o

snb_odir.o
snb_ofile.o
snb_open_andx. o
snb_opi pe. o
snb_opl ock. o
snmb_pat hnane. o
smb_print.o
snb_process_exit.o
smb_query_fileinfo.o
snb_read. o

snmb_r enane. o
snb_sd. o
snb_seek. o
snb_server. o
snb_sessi on. o

snb_sessi on_set up_andx. o

snb_set _fileinfo.o
snmb_si gni ng. o
snb_tree.o

snb_trans2_create_directory.o

smb_trans2_dfs. o
smb_trans2_find. o

o e o e e e e e e e e e e e o e e

19

new usr/src/uts/comon/ Makefile.files

1247
1248
1249
1250
1251
1252
1253
1254

1256
1257

1259
1260

1262
1264
1266

1268
1269
1270
1271
1272
1273
1274

1276
1277

1279
1280
1281

1283
1284
1285
1286
1287
1288
1289
1290

1292
1293
1294
1295

1297
1298
1299
1300
1301
1302

1305
1306
1307
1308
1309

1311

PCFS_OBJS +=

PROC_OBJS +=

MNTFS_CBJS +=
SHAREFS OBJS +=
SPEC_OBJS +=
SOCK_OBJS +=

TMPFS_OBJS +=

UDFS_OBJS +=

UFS_OBJS +=

VSCAN OBJS +=
NSMB_OBJS +=

smb_tree_connect. o

smb_unl ock_byte_

snb_user. o
snb_vfs.o
smb_vops. o
snb_vss. o
snmb_wite.o
smb_wite_raw o

pc_alloc.o
pc_vfsops. o

prcontrol .o
prvfsops. o

mt vfsops. o
sharetab. o
specsubr. o

socksubr. o
socksyscal I s. o

sockconmmmon_vnops. o
sockconmon_sops

sock_not supp. o
nl 7c. o
nl 7cnca. o

tmp_dir.o
t np_vnops. o

udf _al | oc
udf _i node
udf _vnops.

ocoo

ufs_all oc
uf s_i node
uf s_vnops.
ufs_filio.
ufs_acl.o
uf s_extvnops. o
lufs_log.o

vscan_drv. o

oo0ooo

snb_conn. o
snb_rq.o
snb_tine.o
subr_nthain. o

range. o

pc_dir.o
pc_vnops. o

prioctl.o
prvnops. o

mt vnops. o
sharefs_vfsops. o
specvfsops. o

sockvfsops. o
sockt pi . o

20

—— e —

pc_node. o pc_subr.o \

prsubr. o prusrio.o \

sharef s_vnops. o
specvnops. o

sockpar ans. 0 \
sockstr.o \

sockconmmon_subr. o \
\

o sockconmon. o

socknotify.o \
nl 7curi.o
sodirect.o

tp_subr. o

udf _bmap. o
udf _subr. o

ufs_bmap. o
ufs_subr.o
quot a. o
ufs_l ockfs.o
ufs_panic.o
ufs_snap.o

nl 7chttp.o
sockfilter.o

nl 7cl ogd. o \
tmp_t node. o tmp_vfsops.o \

udf _dir.o
udf _vfsops. o

——

ufs_dir.o ufs_xattr.o \
ufs_tables.o ufs_vfsops.o \
quotacal |l s. o quota_ufs.o \
ufs_thread. o ufs_trans.o \
ufs_directio.o ufs_log.o \

lufs.o lufs_thread.o \

I uf s_map. o lufs_top.o | uf s_debug. o
vscan_svc. o vscan_door. o

snb_dev. o snb_iod. o snb_pass. o \
smb_sign. o smb_snb. o snb_subrs. o \

snb_tran. o

SMBFS_COWON_OBJS += snbfs_ntacl.o

SVBFS_OBJS +=

#
#

snbf s_vfsops. o
snbfs_acl .o
snbfs_subr. o
snmbfs_rw ock. o

snbf s_vnops. o
snbfs_client.o
snbf s_subr2. o
snbfs_xattr.o

$(SMBFS_COMMON_OBJ S)

LVM nodul es

smb_trantcp.o snb_usr.o \

snbf s_node. o \
snbfs_snb. o \
\
\

#
MD_OBJS += nd.o nd_error.o nd_ioctl.o nd_nddb. o nd_nanes. o \
md_med. o nd_renane. o nd_subr. o

MD_COMMON_OBJS = nd_convert.o nd_crc.o nd_revchk. o

new usr/src/uts/common/ Makefile.files 21 new usr/src/uts/common/ Makefile.files

1313 MD_DERI VED_OBJS = netaned_xdr.o neta_basic_xdr.o 1379 vdev_nirror.o \
1380 vdev_ni ssing. o \

1315 SOFTPART_OBJS += sp.o sp_ioctl.o 1381 vdev_queue. 0 \
1382 vdev_rai dz. o \

1317 STRIPE_OBJS += stripe.o stripe_ioctl.o 1383 vdev_root. o \
1384 zap. o \

1319 HOTSPARES_OBJS += hot spares. o 1385 zap_leaf.o \
1386 zap_micro.o \

1321 RAID OBJS +=raid.o raid_ioctl.o raid_replay.o raid_resync.o raid_hotspare.o 1387 zfs_byt eswap. o \
1388 zf s_debug. o \

1323 MRROR_OBJS += mirror.o mirror_ioctl.o mirror_resync.o 1389 zfs_fmo \
1390 zfs_fuid.o \

1325 NOTI FY_OBJS += nd_notify.o 1391 zfs_sa.o \
1392 zfs_znode. o \

1327 TRANS OBJS += ndtrans.o trans_ioctl.o trans_| og.o 1393 zil.o \
1394 zio0.0 \

1329 ZFS COMWON _OBJS += \ 1395 zi o_checksum o \

1330 arc.o \ 1396 zi o_conpress. 0 \

1331 bplist.o \ 1397 zio_inject.o \

1332 bpobj . o \ 1398 zle.o \

1333 bptree. o \ 1399 zrl ock. o

1334 dbuf. o \

1335 ddt. o \ 1401 ZFS_SHARED OBJS += \

1336 ddt _zap. o \ 1402 zf eat ur e_conmon. o \

1337 dmu. o \ 1403 zfs_conutil.o \

1338 dmu_diff.o \ 1404 zfs_del eg. 0 \

1339 dmu_send. o \ 1405 zfs_fletcher.o \

1340 dmu_obj ect. o \ 1406 zf s_namecheck. o \

1341 dmu_obj set. o \ 1407 zfs_prop.o \

1342 dmu_traverse. o \ 1408 zpool _prop.o \

1343 drmu_t x. o \ 1409 Zpr op_conmmon. 0

1344 dnode. o \

1345 dnode_sync. o \ 1411 ZFS OBJS += \

1346 dsl _dir.o \ 1412 $(ZFS_COVMON_OBJS) \

1347 dsl _dat aset. o \ 1413 $(ZFS_SHARED_0BJS) \

1348 dsl _deadlist.o \ 1414 vdev_di sk. o \

1349 dsl _destroy.o \ 1415 zfs_acl.o \

1350 dsl _pool . 0 \ 1416 zfs_ctldir.o \

1351 dsl _synctask. o \ 1417 zfs_dir.o \

1352 dsl _userhol d. o \ 1418 zfs_ioctl.o \

1353 drmu_zfetch.o \ 1419 zfs_log.o \

1354 dsl _del eg. o \ 1420 zfs_onexit.o \

1355 dsl _prop.o \ 1421 zfs_replay.o \

1356 dsl _scan. o \ 1422 zfs_rlock.o \

1357 zfeature.o \ 1423 zfs_vfsops.o \

1358 gzip.o \ 1424 zfs_vnops. o \

1359 I'z4. 0 \ 1425 zvol . o

1360 lzjb.o \

1361 net asl ab. o \ 1427 ZUT_OBJS += \

1362 refcount. o \ 1428 zut. o

1363 rrw ock. o \

1364 sa. o \ 1430 #

1365 sha256. o \ 1431 # streams nodul es

1366 spa. o \ 1432 #

1367 spa_config.o \ 1433 BUFMOD_OBJS += buf mod. o

1368 spa_errlog.o \

1369 spa_history.o \ 1435 CONNLD_OBJS += connld.o

1370 spa_mi sc. o \

1371 space_map. 0 \ 1437 DEDUMP_OBJS += dedunp. o

1372 txg. o \

1373 uber bl ock. o \ 1439 DRCOWPAT_OBJS += drconpat. o

1374 uni que. o \

1375 vdev. o \ 1441 LDLI NUX_OBJS += | dlinux.o

1376 vdev_cache. o \

1377 vdev_file.o \ 1443 LDTERM OBJS += |ldtermo uwidth.o

1378 vdev_| abel . o \

new usr/src/uts/common/ Makefile.files
1445 PCKT_OBJS += pckt. o

1447 PFMOD_OBJS += pfrmod. o

1449 PTEM OBJS += ptem o

1451 REDI RMOD_OBJS += strredirmo
1453 TIMOD_OBJS += tinod.o

1455 TIRDWR_OBJS += tirdw.o
1457 TTCOWPAT_OBJS +=ttconpat. o
1459 LOG OBJS += log. o

1461 Pl PEMOD_OBJS += pi penod. o
1463 RPCMOD_OBJS += rpcnod. 0

clnt_cots.o

1464 clnt_gen.o clnt_perr.o
1465 rpc_prot.o rpc_sztypes.o
1466 svc. 0 svc_clts.o
1467 rpcsys. o xdr _si zeof . o
1468 xdr _rdnma. o rdma_subr. o
1470 KLMMOD_OBJS += kI mmod. o \

1471 nlminpl.o \

1472 nlmrpc_handle.o \

1473 nl m.di spatch.o \

1474 nlmrpc_svc.o \

1475 nimclient.o \

1476 nlmservice.o \

1477 nlmprot_clnt.o \

1478 nlmprot_xdr.o \

1479 nimrpc_clnt.o \

1480 nsm addr_clnt.o \

1481 nsm addr_xdr.o \

1482 sminter_clnt.o \

1483 sm.inter_xdr.o

1485 KLMOPS_OBJS += Kkl nops. o
1487 TLIMOD_OBJS += tlinod.o

1488 t _kconnect. o
1489 t _krcvudat. o
1490 t_kutil.o

1492 RLMOD _OBJS += rlnod. o

1494 TELMOD_OBJS += tel nod. o

1496 CRYPTMOD_OBJS += cryptnod. o
1498 KB_OBJS += kbd. o

1500 #

1501 # I D mappi
1502 #

1503 | DMAP_OBJS += idnap_nod. o

1505 #

1506 # schedul i ng cl ass nodul es

1507 #
1508 SDC _OBJS += sysdc. o

1510 RT_OBIS += rt.o

t_kalloc.o
t_kfree.o
t _ksndudat . o

keyt abl es. o

ng nodul e

i dmap_kapi . o

clnt_clts.o \
nt_rpcinit.o
rpc_subr.o
svc_gen. o
clnt_rdma. o

xdrrdma_si zeof . o

t _kbind.o
t_kgtstate.o
t_kspoll.o

i dmap_xdr. o

rpc_cal msg. o \
rpcb_prot.o \
svc_cots.o \
svc_rdma. o \

t_kclose.o \
t _kopen.o \
t _kunbind.o \

i dmap_cache. o

23

new usr/src/uts/comon/ Makefile.files

1511

1513
1514

1516
1518

1520
1521

1523
1524

RT_DPTBL_OBJS +=

TS OBJS +=
TS DPTBL_OBJS +=

I A OBIS +=
FSS_OBJS +=

FX_OBJS +=
FX_DPTBL_OBJS +=

#
#

1525 #

1526
1528
1530
1532

1534
1535
1536
1537

1539

1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

1552
1554
1556

1558
1559

1561
1563
1565
1567
1568
1569
1570
1571
1572
1574

1576

| PC_OBJS += ipc.o
| PCMSG_OBJS += mBQ.0
| PCSEM_ OBJS += semo
| PCSHM OBJS += shmo

#
#

#
COWWON_BI GNUM_OBJS += bi gnum nod. o bi gnuni npl . o
Bl GNUM_OBJS += $(COVMON_BI GNUM_OBJS) $(Bl GNUM_PSR_OBJS)

#
#

#
KCF_OBJS +=

fips_ran
CRYPTOADM OBJS += crypto
CRYPTO OBJS += crypto.o
DPROV_OBJS += dprov.o

DCA OBJS +=
dca_rsa.

AESPROV_OBJS += aes. 0 aes_inpl.o aes_npdes. o
ARCFOURPROV_OBJS += arcfour.o arcfour_crypt.o
BLOWFI SHPROV_OBJS += bl owfi sh. o bl owfi sh_inpl.o

ECCPROV_OBJS += ecc.0 ec.0 ec2_163.0 ec2_nont.o ecdecode.o ecl_nmult.o \
ecp_384.0 ecp_jac.o ec2_193.0 ecl.o ecp_192.0 ecp_521.0 \
ecp_jmo ec2_233.0 ecl _curve.o ecp_224.0 ecp_aff.o \
ecp_nont.o ec2_aff.o ec_naf.o ecl_gf.o ecp
npi .o nplogic.o npnontg.o npprine.o oid.o
secitemo ec2_test.o ecp_test.o

RSAPROV_OBJS += rsa.o rsa_inpl.o pkcsl.o

SWRANDPROV_(OBJS += swran

rt_dpthl.o

ts.o
ts_dpthl.o

ia.o
fss.o

fx.o
fx_dpthbl.o

I nter-Process Conmuni cation (IPC) nodul es

bi gnum nodul e

kernel cryptographic framework

dom o

adm o

dca. o dca_3des. o dca_debug. o dca_dsa.o dca_kstat.o dca_rng.o \

o

d.o

_256.0 np_gf2mo \
\

24

kcf.o kcf_call prov. o kcf_cbufcall.o kcf_cipher.o kcf_crypto.o \
kcf _cryptoadm o kcf _ctxops. o kcf _digest.o kcf_dual.o \

kcf _keys. o kcf _mac. o kcf _nech_tabs. o kcf_nmiscapi.o \

kcf _object.o kcf_policy.o kcf _prov_lib.o kcf_prov_tabs.o \

kcf _sched. o kcf_session.o kcf_sign.o kcf_spi.o kcf_verify.o \
kcf _random o nodes. o ecb.o cbc.o ctr.o ccmo gcmo \

new usr/src/uts/common/ Makefile.files 25

1578 #
1579 # kernel SSL
1580 #
1581 KSSL_OBJS += kssl.o ksslioctl.o

1583 KSSL_SOCKFI L_MOD _OBJS += ksslfilter.o ksslapi.o ksslrec.o

1585 #

1586 # m sc. nodul es

1587 #

1589 C2AUDI T_OBJS += adr.o audit.o audit_event.o audit_io.o \

1590 audit_path.o audit_start.o audit_syscalls.o audit_token.o \
1591 audi t _mem o

1593 PClI C_OBJS += pcic.o

1595 RPCSEC OBJS += secnod. 0 sec_clnt.o sec_svc. 0 sec_gen.o \
1596 aut h_des. o auth_kern. o aut h_none. o aut h_| oopb. o\
1597 aut hdesprt. o aut hdesubr. o authu_prot.o \

1598 key_call.o key_prot.o svc_aut hu. o svcaut hdes. o
1600 RPCSEC _GSS_OBJS += rpcsec_gssnod. 0 rpcsec_gss. 0 rpcsec_gss_msc.o \
1601 rpcsec_gss_utils.o svc_rpcsec_gss. o

1603 CONSCONFI G_OBJS += consconfig.o
1605 CONSCONFI G DACF_OBJS += consconfig_dacf.o consplat.o
1607 TEM OBJS += tem o tem safe.o 6x10.0 7x14.0 12x22.0

1609 KBTRANS_OBJS +=

\
1610 kbtrans. o \
1611 kbt rans_keyt abl es. o \
1612 kbtrans_pol |l ed. o \
1613 kbt rans_streans. o \
1614 usb_keyt abl es. o
1616 KGSSD _OBJS += gssd_cl nt_stubs. o gssd_handle.o gssd_prot.o \
1617 gss_di spl ay_nane. o gss_rel ease_nane. o gss_inport_nane.o \
1618 gss_rel ease_buffer.o gss_rel ease_oid_set.o gen_oids.o gssdnod. o

1620 KGSSD_DERI VED OBJS = gssd_xdr. o

1622 KGSS_DUMW_OBJS += dnech. o

1624 KSOCKET_OBJS += ksocket.o ksocket_nod. o

1626 CRYPTO= cksuntypes.o decrypt.o encrypt.o encrypt_|length.o etypes.o \
1627 nfold.o verify_checksum o prng.o bl ock_size.o make_checksum o\
1628 checksum | ength. o hnac. o default_state. o mandatory_suntype. o

1630 # crypto/ des
1631 CRYPTO DES= f_cbc.o f_cksumo f_parity.o weak_key.o d3_cbc.o ef_crypto.o

1633 CRYPTO DK= checksum o derive.o dk_decrypt.o dk_encrypt.o
1635 CRYPTO ARCFOUR= k5_arcfour.o

1637 # crypto/ enc_provi der
1638 CRYPTO ENC= des. o des3.0 arcfour_provider.o aes_provider.o

1640 # crypto/ hash_provi der
1641 CRYPTO HASH= hash_kef _generic. o hash_knd5. 0 hash_crc32. 0 hash_kshal. o

new usr/src/uts/comon/ Makefile.files

1643
1644

1646
1647

1649
1650

1652
1653

1655
1656
1657
1658
1659
1660
1661

1663
1664

1666

1668
1669
1670
1671
1672
1673
1674
1675
1676
1677

1681

1684
1685
1686
1687
1688
1689
1690

1692
1694

1696
1697

1699
1701
1703
1704
1705

1707

crypt o/ keyhash_provi der
CRYPTO_KEYHASH= descbc. o k5_knd5des. o k_hmac_nd5. o

crypto/crc32
CRYPTO_CRC32= crc32.0

crypto/old
CRYPTO_OLD= ol d_decrypt.o ol d_encrypt.o

crypto/raw
CRYPTO_RAWE raw_decrypt.o raw encrypt. o

K5_KRB= kfree.o copy_key.o \
parse.o init_ctx.o \
ser_adata.o ser_addr.o \
ser_auth. o ser_cksumo \
ser_key.o ser_princ.o \
serialize.o unparse.o \
ser_actx.o

K5_0Os= tineofday.o toffset.o \

init_os_ctx.o c_ustine.o
SEAL= seal .o unseal .o
MECH= del ete_sec_context.o \

i mport_sec_context.o \

gssapi _krb5.0 \

k5seal . 0 k5unseal . 0 k5seal v3.0 \
ser_sctx.o \

sign.o \

util_crypt.o \

util_validate.o wutil_ordering.o \
util_segnumo util_set.o util_seed.o \
wap_size_limt.o verify.o

MECH GEN= util _token.o

KGSS_KRB5_OBJS += krb5mech. o \
$(MECH) $(SEAL) $(MECH GEN) \
$(CRYPTO) $(CRYPTO DES) $(CRYPTO DK) $(CRYPTO ARCFOUR) \
$(CRYPTO ENC) $(CRYPTO HASH) \
$(CRYPTO_KEYHASH) $(CRYPTO CRC32) \
$(CRYPTO OLD) \
$(CRYPTO_ RAW $(K5_KRB) $(K5_OS)

DES OBJS += des_crypt.o des_inpl.o des_ks.o des_soft.o
DLBOOT_OBJS += bootparamxdr.o nfs_dlinet.o scan.o

KRTLD OBJS += kobj _bootflags.o getoptstr.o \
kobj . o kobj _kdi .o kobj _Imo kobj_subr.o

MOD_OBJS += nmodct! . o nmodsubr. o nodsysfile.o nodconf.o nbdhash. o

STRPLUMB_OBJS += strplunb.o

CPR_OBJS += cpr_driver.o cpr_dunp.o \
cpr_main.o cpr_misc.o cpr_nod.o cpr_stat.o \
cpr_uthread. o

PROF_OBJS += prf.o

new usr/src/uts/comon/ Makefile.files 27

1709
1711
1713
1715
1717
1719
1721
1723
1725
1727
1729
1731
1733
1735
1737
1739
1741
1743
1745
1747
1749
1751

1753
1754

1756
1757
1758
1760

1762
1763

1765
1766
1767
1769
1771

1773

SE_OBJS += se_driver.o

SYSACCT_OBJS += acct.o

ACCTCTL_OBJS += acctctl.o

EXACCTSYS_OBJS += exacctsys. o

KAI O_OBJS += aio.o0

PCMCI A_OBJS += pcntia.o cs.o cis.o cis_callout.o cis_handlers.o cis_parans.o
BUSRA OBJS += busra.o

PCS_OBJS += pcs. 0

PCAN_OBJS += pcan. o

PCATA_OBJS += pcide. o pcdi sk.o pcl abel.o pcata.o

PCSER_OBJS += pcser.o pcser_cis.o

PCW._OBJS += pcwW .0

PSET_OBJS += pset.o

OHCI _OBJS += ohci .o ohci _hub. o ohci _polled.o

UHCI _OBJS += uhci.o uhciutil.o uhcitgt.o uhcihub.o uhcipolled.o
EHCl _OBJS += ehci.o ehci_hub. o ehci_xfer.o ehci_intr.o ehci_util.o ehci_polled.o
HUBD_OBJS += hubd. o

USB_M D _OBJS += usb_nid.o

USB | A OBJS += usb_ia.o

UVBA_OBJS += uwba. 0 uwbai.o

SCSA2USB_(OBJS += scsa2usb. o usb_ns_bul konly. o usb_ns_chi.o
HWAHC_OBJS += hwahc. o hwahc_util .o

WUSB_DF_OBJS += wusb_df.o
WUSB_FWMOD_OBJS += wusb_fwrod. o

| PF_OBJS += ip_fil_solaris.o fil.o solaris.o ip_state.o ip_frag.o ip_nat.o \
ip_proxy.o ip_auth.o ip_pool.o ip_htable.o ip_lookup.o \
ip_log.o misc.o ip_conpat.o ip_nat6.o drand48.o
| BD_OBJS += ibd.o ibd_cmo
ElI BNX_OBJS += enx_main.o enx_hdlrs.o enx_ibt.o enx_log.o enx_fip.o \
enx_m sc. o0 enx_g.0 enx_ctl.o
EQ B_OBJS += eib_admo eib_chan.o eib_cm.o eib_ctl.o eib_data.o \

eib fip.o eib_ibt.o eib Tog.o eib_mac.o eib_min.o \
eib_rsrc.o eib_svc.o eib_vnic.o

DLPI STUB_OBJS += dI pi stub. o

SDP_OBJS += sdpddi . o

TRILL_OBJS += trill.o

new usr/src/uts/comon/ Makefile.files 28

1775
1776

1778
1780
1782
1784

1786
1787

1789
1791
1793
1795

1797
1798

1800
1801

1803
1805
1807

1809
1810

1812
1814
1816
1818
1820
1822
1824
1826
1828
1830
1832
1834
1836
1838
1840

CTF_OBJS += ctf_create.o ctf_decl.o ctf_error.o ctf_hash.o ctf_labels.o \
ctf_l ookup.o ctf_open.o ctf_types.o ctf_util.o ctf_subr.o ctf_nod.o

SMBI OS_OBJS += snb_error.o snb_info.o snb_open. o snb_subr.o snb_dev. o
RPCI B_OBJS += rpcib.o

KMDB_OBJS += kdrv. o

AFE_OBJS += afe.o

BGE_OBJS += bge_nmi n2. 0 bge_chi p2. 0 bge_kstats.o bge_l og.o bge_ndd.o \
bge_atomi c.o bge_nmii.o bge_send.o bge_recv2.0 bge_mnii_5906.0

DMFE_OBJS += dnfe_log.o dnfe_main.o dnfe_nii.o
EFE_OBJS += efe. o0

ELXL_OBJS += el xl.o

HVE_OBJS += hne. o

| XGB_OBJS += ixgh.o ixgb_atom c.o ixgb_chip.o ixgb_gld.o ixgbh_kstats.o \
ixgb_l 0g. 0o ixgb_ndd.o ixgb_rx.o ixgbh_tx.o ixgb_xmi.o

NGE_OBJS += nge_mmi n. o nge_atom c.o nge_chip.o nge_ndd. o nge_kstats.o \
nge_l 0g. 0 nge_rx. o0 nge_tx.o nge_xmi.o

PCN_OBJS += pcn.o
RGE_OBJS += rge_main.o rge_chip.o rge_ndd.o rge_kstats.o rge_|l 0g.o0 rge_rxtx.o
URTW. OBJS += urtw. o

ARN_OBJS += arn_hw. o arn_eepromo arn_mac.o arn_calib.o arn_ani.o arn_phy.o arn_
arn_maein.o arn_recv.o arn_xmit.o arn_rc.o

ATH OBJS += ath_aux.o ath_nmain.o ath_osdep.o ath_rate.o
ATU_OBJS += atu.o

| PW OBJS += i pw2100_hw. o i pw2100. o
I W_0OBJS += i pw2200_hw. o i pw2200. 0
IVWH_OBJS += iwh.o

| VK_OBJS += iwk2.0

| WP_OBJS += iwp.o

MAL_OBJS += ml . o

MALFW OBJS += mm fw_nobde. o

WPl _OBJS += wpi .o

RAL_OBJS += rt2560.0 ral _rate.o
RUM OBJS += rum o

RWD_OBJS += rt2661.0

RWN_OBJS += rt2860. 0

UATH OBJS += uath.o

new usr/src/uts/common/ Makefile.files 29

1842 UATHFW OBJS += uat hf w_nod. o

1844 URAL_OBJS += ural.o

1846 RTW OBJS += rtw. o snt93cx6. 0 rtwphy.o rtwphyio.o

1848 ZYD OBJS += zyd.o zyd_usb.o zyd_hw o zyd_fw. o

1850 MXFE_OBJS += nxfe.o

1852 MPTSAS OBJS += nptsas.o nptsas_inpl.o nptsas_init.o nptsas_raid.o nptsas_snhba. o
1854 SFE_OBJS += sfe.o sfe_util.o

1856 BFE_OBJS += bfe.o

1858 BRI DGE_OBJS += bridge. o

1860 | DM SHARED OBJS += base64. 0

1862 | DM OBJS += $(| DM_SHARED OBJS) \

1863 idmo idminpl.o idmtext.o idmconn_smo idmso.o

1865 VR _OBJS += vr.o

1867 ATGE_OBJS += atge_mmin.o atge_l le.o atge_nii.o atge_| 1.0 atge_l1lc.o

1869 YGE_OBJS = yge.o

1871 #

1872 # Build up defines and paths.

1873 #

1874 LI NT_DEFS = - Duni x

1876 #

1877 # This duality can be renpved when the native and target conpilers
1878 # are the sane (or at |east recognize the sane conmand |ine syntax!)
1879 # It is a bug in the current conpilation systemthat the assenber
1880 # can't process the -Y I, flag.

1881 #

1882 NATI VE_I NC_PATH += $(1 NC_PATH) $(CCYFLAG) $(UTSBASE) / conmmon

1883 AS_I NC_PATH = $(I NC_PATH) -1 $(UTSBASE)/common

1884 | NCLUDE_PATH += $(1 NC_PATH) $(CCYFLAG) $(UTSBASE) / commpn

1886 PClEB_OBJS += pcieb.o

1888 # Chel sio N110 10G NI C driver nodul e

1889 #

1890 CH OBJS = ch.o glue.o pe.o sge.o

1892 CH COM OBJS = ch_mac. o ch_subr.o cspi.o espi.o ixf1010.0 nt3.0 nt4.0 nc5.0 \
1893 mv88elxxx. 0 mv88x201x.0 nmy3126.0 pnB393.0 tp.o ulp.o \
1894 vsc7321. 0 vsc7326.0 xpak.o

1896 #

1897 # Chel sio Term nator 4 10G NI C nexus driver nodul e

1898 #

1899 CXGBE_FW OBJS = t4_fwo td_cfg.o

1900 CXGBE_COM OBJS = t4_hw. o common. o

1901 CXGBE_NEX_OBJS = t4_nexus.o t4_sge.o t4_mac.o t4_ioctl.o shared.o \
1902 t4_| 2t. o adapter.o osdep.o

1904 #

1905 # Chel sio Term nator 4 10G NI C driver nodul e

1906 #

new usr/src/uts/common/ Makefile.files

1907 CXGBE_OBJS = cxgbe. o

1909 #

1910 # PCl strings file

1911 #

1912 PCl _STRI NG OBJS = pci_strings.o

1914 NET_DACF_OBJS += net_dacf.o

1916 #

1917 # Xframe 10G NI C driver nodul e

1918 #

1919 XGE_OBJS = xge.o xgell.o

1921 XGE_HAL_OBJS = xgehal -channel .o xgehal -fifo.o xgehal -ring.o xgehal-config.o \
1922 xgehal -driver.o xgehal -nm o xgehal -stats.o xgehal -device.o \
1923 xge- queue. o xgehal -mgnt . o xgehal - ngnt aux. o

1925 #

1926 # e1000g nodul e

1927 #

1928 E1000G OBJS += e1000_80003es2|l an. o e1000_82540. 0 e€1000_82541. 0 e1000_82542.0 \
1929 €1000_82543. 0 e1000_82571. 0 e1000_api .o e1000_ichslan. o \
1930 €1000_nmc. 0o e1000_nanage. 0 €1000_nvm o e1000_osdep. o \
1931 e€1000_phy. o e1000g_debug. o €1000g_n=wi n. o0 €1000g_all oc. 0 \
1932 €1000g_t x. 0 e1000g_rx. o0 el000g_stat.o

1934 #

1935 # Intel 82575 1G NI C driver nodul e

1936 #

1937 1 GB_OBIJS = igh_82575.0 igb_api.o igb_nac.o igb_nanage.o \

1938 igb_nvmo igb_osdep.o igb_phy.o igb_buf.o \

1939 igb_debug.o igh_gld.o igb_log.o igb_nain.o \

1940 igbh_rx.o igb_stat.o igbh_tx.o

1942 #

1943 # Intel Pro/100 NI C driver nodul e

1944 #

1945 | PRB_OBJS = iprb.o

1947 #

1948 # Intel 10GbE PCIE NIC driver nodule

1949 #

1950 | XGBE_OBJS = i xgbe_82598. 0 i xgbe_. 82599 o ixgbe_api. \

1951 i xgbe_conmon. o i xgbe_phy \

1952 i xgbe_buf. o i xgbe_debug. o i xgbe_gl d.o \

1953 i xgbe_l 0og. o i xghbe_main. o \

1954 i xgbe_osdep. o i xgbe_rx. o ixgbe_stat.o \

1955 i xgbe_tx. o0 ixgbe_x540.0 ixgbe_nbx.o

1957 #

1958 # NIU 10G 1G driver nodul e

1959 #

1960 NXGE_OBJS = nxge_mac. 0 nxge_i pp. 0 nxge_r xdma. 0 \

1961 nxge_t xdnma. 0 nxge_t Xxc. 0 nxge_mai n. 0 \

1962 nxge_hw. o nxge_fzc.o nxge_virtual. \
1963 nxge_send. o nxge_cl assify.o nxge_ ffl p.o \

1964 nxge_f fl p_hash. o nxge_ndd. o nxge_kstats. o \
1965 nxge_zcp. o nxge_fm o nxge_espc. o nxge_hv. o \
1966 nxge_hi 0. 0 nxge_hi o_guest.o nxge_intr.o

1968 NXGE_NPI_OBJS =\

1969 npi .o npi _mac.o npi_ipp.o \

1970 npi _t xdma. o npi _rxdma. o npi _txc.o \

1971 npi _zcp. o npi_espc.o npi_fflp.o \

1972 npi _vir.o

30

new usr/src/uts/comon/ Makefile.files

1974
1975

1977
1978
1979

1981
1982

1984
1985

1987
1988
1989
1990

1992
1994
1996
1998

2000
2001
2002
2003

2005
2006
2007
2008
2009

2011
2012
2013
2014
2015
2016
2017
2018
2019

2021
2022
2023
2024

2026
2027
2028
2029

2031
2032
2033
2034
2035
2036
2037
2038

NXGE_HCALL_OBJS = \
nxge_hcal |l . o

#

Virtio nodul es
Virtio core

I RTIO OBJS = virtio.o
Virtio block driver
OBLK_OBJS = vioblk.o

ki conv nodul es

HEHE <HE <H K

KI CONV_EMEA_OBJS += ki conv_enea. 0

KI CONV_JA_OBJS += kiconv_ja.o

KI CONV_KO_OBJS += ki conv_cck_comon. o ki conv_ko. o
KI CONV_SC_OBJS += ki conv_cck_common. o kiconv_sc.o

KI CONV_TC_OBJS += ki conv_cck_common. o ki conv_tc.o

#

AAC nodul e

#

AAC _OBJS = aac.o0 aac_ioctl.o

#

sdcard nodul es

#

SDA_OBJS = sda_cnd. o sda_host.o sda_init.o sda_nem o sda_nod.o sda_slot.o

SDHOST_OBJS = sdhost . o

#

hxge 10G driver nodul e

#

HXGE_OBJS = hxge_mai n. o hxge_vmac. o hxge_send. o \
hxge_t xdma. o hxge_rxdma. o hxge_virtual .o \
hxge_fm o hxge_fzc.o hxge_hw o hxge_kstats.o \
hxge_ndd. o hxge_pfc.o \
hpi .o hpi _vmac. o hpi _rxdma. o hpi _txdna. o \
hpi _vir.o hpi_pfc.o

#

MEGARAI D_SAS nodul e

#

MEGA_SAS _OBJS = negarai d_sas. o

#

MR_SAS nodul e

#

X SAS OBJS = | d_pd_map.o nr_sas.o nr_sas_tbholt.o nr_sas_list.o

#

1 SCSI _I NI TI ATOR nodul e

#

1 SCSI _I NI TI ATOR_OBJS = chap.o iscsi_io.o iscsi_thread.o \
iscsi_ioctl.o iscsid.o iscsi.o \
iscsi_login.oisns_client.o iscsiAuthdient.o \
iscsi_lun.o iscsiAuthCientdue.o
iscsi_net.o nvfile.o iscsi_cnd.o \

31

new usr/src/uts/comon/ Makefile.files

2039 i scsi_queue. o0 persistent.o iscsi_conn.o \
2040 i scsi_sess.o radius_auth.o iscsi_crc.o \
2041 iscsi_stats.o radi us_packet.o iscsi_doorclt.o
2042 iscsi_targetparamo utils.o kifconf.o

2044 #

2045 # ntxn 10Gb/1Go NI C driver nodul e

2046 #

2047 NTXN_OBJS = unmonic_init.o unmgemo unmnnic_hw. o unmndd.o \
2048 unm.ni c_main.o unmnic_iSr.o unmnic_ctx.o0 niu.o
2050 #

2051 # Myricom 10G NI C driver nodul e

2052 #

2053 MYRI 10GE_OBJS = nyri 10ge. o nyri 10ge_lro.o0

2055 # nul I driver nodul e

2056 #

2057 NULLDRI VER_OBJS = nul ldriver.o

2059 TPM OBJS = tpmo tpmhcall.o

\

new usr/src/uts/comon/ Makefile.rul es

R R R R

73698 Sun Aug 25 23:51:02 2013
new usr/src/uts/ comon/ Makefile.rul es
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel oprent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.

7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww.opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perm ssions

11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each

14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

15 # If applicable, add the followi ng below this CDDL HEADER, with the

16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]

18 #

19 # CDDL HEADER END

20 #

22 #

23 # Copyright (c) 1991, 2010, Oracle and/or its affiliates. Al rights reserved.
24 # Copyright (c) 2012 Nexenta Systems, Inc. Al rights reserved.

25 #

27 #

28 # uts/conmmon/ Makefile.rules

29 #

30 # This Makefile defines all the file build rules for the directory
31 # uts/comon and its children. These are the source files which may

32 # be considered common to all SunCS systens.

33 #

34 # The foll owing two-level ordering nmust be maintained in this file.
35 # Lines are sorted first in order of decreasing specificity based on
36 # the first directory conponent. That is, sundu rules cone before
37 # sparc rul es come before common rul es.

38 #

39 # Li nes whose initial directory conponents are equal are sorted
40 # al phabetically by the renaini ng conponents.

42 #

43 # Section la: C objects build rules

44 #

45 $(OBJS DI R)/ % o: $(COMMONBASE) / crypt o/ aes/ % ¢

46 $(COWILE. c) -0 $@ $<

47 $(CTFCONVERT_O)

49 $(OBIS_DIR)/% o: $(COMMONBASE) / crypt o/ arcfour/ % c

50 $(COWILE.c) -0 $@ $<

51 $(CTFCONVERT_O)

53 $(OBIS_ DI R)/ % o: $(COVMONBASE) / cr ypt o/ bl owfi sh/ % ¢

54 $(COWILE.c) -0 $@ $<

55 $(CTFCONVERT_O)

57 $(OBIS_DIR)/ % o: $(COMMONBASE) / crypt o/ ecc/ % ¢

58 $(COWPILE. c) -0 $@ $<

new usr/src/uts/comon/ Makefile.rul es

59 $(CTFCONVERT_O)
61 $(OBIS_ DIR)/ % o: $(COMMONBASE) / cr ypt o/ nodes/ % ¢
62 $(COWPI LE. c) -0 $@ $<
63 $(CTFCONVERT_O)
65 $(O0BJS DI R)/ % o: $(COMMONBASE) / cr ypt o/ paddi ng/ % c
66 $(COWPI LE. c) -0 $@ $<
67 $(CTFCONVERT_O)
69 $(O0BJS DI R)/ % o: $(COMMONBASE) / crypt o/ rng/ % c
70 $(COVPI LE. c) -0 $@ $<
71 $(CTFCONVERT_O)
73 $(OBIS_DI R)/ % o: $(COMMONBASE) / crypto/ rsal/ % c
74 $(COWILE. c) -0 $@ $<
75 $(CTFCONVERT_O)
77 $(OBIS DIR)/ % o: $(COVMMONBASE) / bi gnum % c
78 $(COVPI LE. c) -0 $@ $<
79 $(CTFCONVERT_O)
81 $(OBIS_DIR)/% o: $(UTSBASE) / cormon/ bi gnuni % ¢
82 $(COWPI LE. ¢) -0 $@ $<
83 $(CTFCONVERT_O)
85 $(OBIS_DIR)/ % o: $(COMVONBASE) / npi / % ¢
86 $(COWPI LE. ¢) -0 $@ $<
87 $(CTFCONVERT_O)
89 $(OBIS_DIR)/% o: $(COMVONBASE) / acl / % ¢
90 $(COWPI LE. ¢) -0 $@ $<
91 $(CTFCONVERT_O)
93 $(OBIS_DIR)/ % o: $(COMVONBASE) / avl / % ¢
94 $(COWPILE. ¢) -0 $@ $<
95 $(CTFCONVERT_O)
97 $(OBIS_DIR)/ % o: $(COMMONBASE) / ucode/ % ¢
98 $(COWPILE. ¢) -0 $@ $<
99 $(CTFCONVERT_O)
101 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ br and/ sn1/ % c
102 $(COWPILE.c) -0 $@ $<
103 $(CTFCONVERT_O)
105 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ br and/ sol ari s10/ % c
106 $(COWPILE.c) -0 $@ $<
107 $(CTFCONVERT_O)
109 $(OBIS_ DI R)/ % o: $(UTSBASE) / common/ c2/ % ¢
110 $(COWPI LE. ¢) -0 $@ $<
111 $(CTFCONVERT_O)
113 $(OBIS_DI R/ % o: $(UTSBASE) / cormon/ conf/ % ¢
114 $(COWPI LE. ¢) -0 $@ $<
115 $(CTFCONVERT_O)
117 $(OBIS_DIR)/ % o: $(UTSBASE) / cormpn/ contract/ % ¢
118 $(COVPI LE.¢) -0 $@ $<
119 $(CTFOONVERT_O)
121 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ cpr/ % ¢
122 $(COVPI LE.¢) -0 $@ $<
123 $(CTFCONVERT_O)

new usr/src/uts/comon/ Makefile.rul es

125
126
127

129
130
131

133
134
135

137
138
139

141
142
143

145
146
147

149
150
151

153
154
155

157
158
159

161
162
163

165
166
167

169
170
171

173
174
175

177
178
179

181
182
183

185
186
187

189
190

$(OBIS_DI R)/ % o:

$(COWPILE.c) -0
(CTFCCNVERTO)

$(0BJS | DIR)/%o

$(COWPILE.c) -0
$(CTFCCNVERTO)

$(0BJS | DIR)/%o

$(COWPILE.c) -0
$(CTFOO\IVERTO)

$(0BJS_DI R)/%o

$(COWPILE.c) -0
$(CTFOO\IVERTO)

$(0BJS | DIR)/%o

$(COWPILE.c) -0
$(CTFOCNVERTO)

$(0BJS_DI R)/%o

$(COWPILE.c) -0
$(CTFOCNVERTO)

$(0BIS_ DIR)/%o

$(COWPILE.c) -0
$(CTFCONVERT_O)

$(0BJS | DI?)/%O

COWPI LE.c) -0
$(CTFCONVERT_O)

$(0BIS_ DIR)/%o

$(COWPILE.c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$(COWPILE. c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$(COWPI LE.) -0
$(CTFCOWERT_O)

$(OBJS_DIR)/ % o:

$(COWPILE. c) -0
$(CTFCONVERT_O)

$(OBJS_DIR)/ % o:

$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(OBIS_DIR)/ % o:

$(COWI LE.c) -0

$@ $<

$@ $<

3@ $<

3@ $<

3@ $<

3@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

3@ $<

$@ $<

$@ $<

$@ $<

$(UTSBASE) / common/ ctf/ % ¢

$(COMMONBASE) / ct f/ % ¢

$(COVMONBASE) / crypt o/ des/ % ¢

$(COVMONBASE) / sibi 0s/ % ¢

$(UTSBASE) / common/ des/ % ¢

$(UTSBASE) / cormon/ crypt o/ api / % ¢

$(UTSBASE) / comrmon/ crypt o/ core/ % c

$(UTSBASE) / common/ crypto/i o/ % c

$(UTSBASE) / cormon/ crypt o/ spi / % c

$(COVMONBASE) / pci / % ¢

$(COMMONBASE) / devi d/ % ¢

$(UTSBASE) / common/ di sp/ % ¢

$(UTSBASE) / common/ dt r ace/ % ¢

$(COVMONBASE) / exacct / % ¢

$(UTSBASE) / common/ exec/ aout/ % ¢

$(UTSBASE) / common/ exec/ el f/ % ¢

$(UTSBASE) / common/ exec/intp/ % c

new usr/src/uts/comon/ Makefile.rul es

191

193
194
195

197
198
199

201
202
203

205
206
207

209
210
211

213
214
215

217
218
219

221
222
223

225
226
227

229
230
231

233
234
235

237
238
239

241
242
243

245
246
247

249
250
251

253
254
255

$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COWPI LE. c)
$(CTFCONVERT

$(OBIJS DIR)/ % o:
$(COWPI LE. c)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COMPI LE. c)

$(CTFCONVERT_

$(0BIS DIR)/ % o:
$(COMPI LE. c)

$(CTFCONVERT_

$(0BIS DIR)/ % o:
$(COWPI LE. c¢)

$(CTFCONVERT_

$(0BIS DIR)/ % o:
$(COWPI LE. c¢)

$(CTFCONVERT_

$(OBIS_ DR/ % o:
$(COWPI LE. ¢)

$(CTFCONVERT_

$(OBIS_ DR/ % o:
$(COMPI LE. c¢)
$(CTFCOWERT

$(OBIS_ DR/ % o:
$(COMPI LE. c¢)
$(CTFCONVERT

$(OBIS_ DR/ % o:
$(COMPI LE. c)
$(CTFCONVERT

$(O0BIS_ DR/ % o:
$(COMPI LE. c¢)
$(CTFCONVERT

$(OBIS_ DR/ % o:
$(COWPI LE. c¢)
$(CTFCONVERT

$(O0BIS_ DR/ % o:
$(COWPI LE. c)
$(CTFCONVERT

$(0BJS_DIR)/ % 0:
$(COMPI LE. c)
$(CTFCONVERT

$(0BIS_DIR)/ % 0:
$(COMPI LE. c)
$(CTFCONVERT

$(OBJS DIR)/ % o:
$(COMPI LE. ¢)
$(CTFCONVERT

0

-0

o)

-0

_0

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

_0

-0

e

-0

o)

-0

o)

-0

o)

-0

o)

-0

_0

-0

_0

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

3@ $<

3@ $<

$(UTSBASE) / cormon/ exec/ shbin/ % ¢

$(UTSBASE) / common/ exec/ j aval % ¢

$(UTSBASE) / common/ fs/ % ¢

$(UTSBASE) / common/ f s/ aut of s/ % ¢

$(UTSBASE) / common/ f s/ cachefs/ % ¢

$(UTSBASE) / common/ fs/ dcfs/ % c

$(UTSBASE) / common/ f s/ devfs/ % c

$(UTSBASE) / common/ fs/ctfs/ % c

$(UTSBASE) / common/ f s/ doorfs/ % ¢

$(UTSBASE) / common/ f s/ dev/ % c

$(UTSBASE) / common/ fs/fd/ % c

$(UTSBASE) / common/ fs/fifofs/%c

$(UTSBASE) / common/ fs/ hsfs/ % ¢

$(UTSBASE) / common/ fs/ | of s/ % ¢

$(UTSBASE) / common/ fs/ mtfs/ % c

$(UTSBASE) / common/ f s/ namef s/ % ¢

new usr/ src/uts/ common/ Makefile.rul es 5 new usr/ src/uts/ common/ Makefile.rul es

257 $(O0BJS_DIR)/ % o: $(UTSBASE) / common/ fs/nfs/ % c 323 $(CTFCONVERT_O)

258 $(COWPILE.c) -0 $@ $<

259 $(CTFCONVERT_O) 325 $(O0BIS DIR)/ % o: $(UTSBASE) / commmon/ i o/ vscan/ % ¢
326 $(COWPI LE. c) -0 $@ $<

261 $(0BIS DI R)/% o $(COVMONBASE) / snbsr v/ % ¢ 327 $(CTFCONVERT_O)

262 $(COWPILE.c) -0 $@ $<

263 $(CTFCONVERT_O) 329 $(O0BIJS DIR)/ % o: $(UTSBASE) / common/ fs/ zfs/ % ¢
330 $(COWPI LE. c) -0 $@ $<

265 $(0BJS_DI R) /% o: $(UTSBASE) / common/ f s/ snbsrv/ % c 331 $(CTFCONVERT_O)

266 $(COWPILE.c) -0 $@ $<

267 $(CTFCONVERT_O) 333 $(OBIS DIR)/ % o: $(UTSBASE) / conmon/ f s/ zut/ % ¢
334 $(COVPI LE. c) -0 $@ $<

269 $(OBJS DI R) /% o: $(UTSBASE) / common/ f s/ obj f s/ % ¢ 335 $(CTFCONVERT_O)

270 $(COVPI LE.¢) -0 $@ $<

271 $(CTFCONVERT_O) 337 $(OBIS DIR)/ % o: $(COVMMONBASE) / xat t r/ % c
338 $(COVPI LE. c) -0 $@ $<

273 $(0BJS_DI R) /% o: $(UTSBASE) / common/ f s/ pcfs/ % c 339 $(CTFCONVERT_O)

274 $(COVPI LE.¢) -0 $@ $<

275 $(CTFCONVERT_O) 341 $(OBIS DIR)/ % o: $(COVMONBASE) / zf s/ % ¢
342 $(COWPI LE. ¢) -0 $@ $<

277 $(0BJS_DI R) / % o: $(UTSBASE) / common/ f s/ portfs/%c 343 $(CTFCONVERT_O)

278 $(COVPI LE.¢) -0 $@ $<

279 $(CTFCONVERT_O) 345 $(O0BIJS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ scsi / adapt er s/ pncs/ % ¢
346 $(COWPI LE. ¢) -0 $@ $<

281 $(OBJS DIR)/ % o: $(UTSBASE) / comrmon/ f s/ proc/ % c 347 $(CTFCONVERT_O)

282 $(COVPI LE.¢) -0 $@ $<

283 $(CTFCONVERT O) 349 $(O0BJS DI R)/ % o: $(UTSBASE) / common/ i o/ scsi / adapt er s/ pncs/ % bin
350 $(COWPI LE. b) -0 $@ $<

285 $(O0BJS_DIR)/ % o: $(UTSBASE) / common/ f s/ sharefs/ % c 351 $(CTFCONVERT_O)

286 $(COVPI LE.¢) -0 $@ $<

287 $(CTFCONVERT O) 353 $(O0BIJS_DIR)/ % o: $(COMMONBASE) / f sr epar se/ % ¢
354 $(COWPILE.c) -0 $@ $<

289 $(OBJS DIR)/ % o0: $(COVMONBASE) / snbel nt / % ¢ 355 $(CTFCONVERT_O)

290 $(COVPI LE. ¢) -0 $@ $<

291 $(CTFCONVERT_O) 357 KMECHKRB5_BASE=$(UTSBASE) / common/ gssapi / mechs/ kr b5

293 $(OBIJS_ DI R)/ % o: $(UTSBASE) / common/ f s/ snbcl nt/ net smb/ % ¢ 359 KGSSDFLAGS=-1 $(UTSBASE)/common/ gssapi/incl ude

294 $(COWPI LE. c) -0 $@ $<

295 $(CTFCONVERT_O) 361 # Note, KRB5_DEFS can be assigned various preprocessor flags,
362 # typically -D defines on the nake invocation. The standard conpiler

297 $(OBJS_DIR)/ % o: $(UTSBASE) / common/ f s/ snbcl nt/ snbf s/ % ¢ 363 # flags will not be overwitten.

298 $(COWPI LE. c) -0 $@ $< 364 KGSSDFLAGS += $(KRB5_DEFS)

299 $(CTFCONVERT_0O)
366 $(OBJS DIR)/ % o: $(UTSBASE) / common/ gssapi / % ¢

301 $(OBIS DIR)/ % o: $(UTSBASE) / common/ f s/ sockf s/ % ¢ 367 $(COVPI LE. ¢) $(KGSSDFLAGS) -0 $@$

302 $(COWPI LE. c) -0 $@ $< 368 $(CTFCONVERT_O)

303 $(CTFCONVERT_O)
370 $(OBIJS_DIR)/ % o: $(UTSBASE) / common/ gssapi / nechs/ dumy/ % c

305 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ f s/ specfs/ % c 371 $(COWPI LE. c) $(KGSSDFLAGS) -0 $@$

306 $(COWPI LE. c) -0 $@ $< 372 $(CTFCONVERT_O)

307 $(CTFCONVERT_O)
374 $(OBIS DIR)/ % o: $(KMECHKRB5_BASE) / % ¢

309 $(OBJS DIR)/ % o: $(UTSBASE) / common/ f s/ swapf s/ % ¢ 375 $(COWVPI LE. c) $(KGSSDFLAGS) -0 $@ $<

310 $(COWPI LE. c) -0 $@ $< 376 $(CTFCONVERT_O)

311 $(CTFCONVERT_O)
378 $(OBJS_DIR)/ % o: $(KMECHKRB5_BASE) / crypt o/ % ¢

313 $(OBIS DIR)/ % o: $(UTSBASE) / conmon/ f s/ t npf s/ % ¢ 379 $(COVPI LE. ¢) $(KGSSDFLAGS) -0 $@ $<

314 $(COWPI LE. c) -0 $@ $< 380 $(CTFCONVERT_O)

315 $(CTFCONVERT_O)
382 $(OBIJS DIR)/ % o: $(KMECHKRB5_BASE) / cr ypt o/ des/ % ¢

317 $(OBIS DIR)/ % o: $(UTSBASE) / conmon/ f s/ udf s/ % ¢ 383 $(COVPI LE. ¢) $(KGSSDFLAGS) -0 $@ $<

318 $(COVPI LE. c) -0 $@ $< 384 $(CTFCONVERT_O)

319 $(CTFCONVERT_O)
386 $(0OBJS_DIR)/ % o: $(KMECHKRB5_BASE) / crypt o/ arcfour/ % c

321 $(OBIS DIR)/ % o: $(UTSBASE) / conmon/ f s/ uf s/ % ¢ 387 $(COMVPI LE. ¢) $(KGSSDFLAGS) -0 $@ $<

322 $(COVPI LE. c) -0 $@ $< 388 $(CTFCONVERT_O)

new usr/src/uts/comon/ Makefile.rul es

390 $(OBIS_DIR)/ % 0:

$(KMECHKRB5_BASE) / crypt o/ dk/ % ¢

new usr/src/uts/comon/ Makefile.rul es

456 $(0BJS DIR)/ % o:

$(UTSBASE) / common/ avs/ ns/ sv/ % c

$(UTSBASE) / common/ avs/ ns/ uni stat/ % c

$(UTSBASE) / common/ i dnap/ % ¢

$(UTSBASE) / common/ i net/ % c

457 $(COWPI LE. c) -0 $@ $<
458 $(CTFCONVERT_O)

460 $(OBIS DIR)/ % o:

461 $(COWPILE.c) -0 $@ $<
462 $(CTFCONVERT_O)

464 $(OBIS DIR)/ % o:

465 $(COWPILE.c) -0 $@ $<
466 $(CTFCONVERT_O)

468 $(OBIS DIR)/ % o:

469 $(COWPILE.c) -0 $@ $<
470 $(CTFCONVERT_O)

472 $(OBIS_DIR)/ % o:

$(UTSBASE) / common/ i

net/arp/%c

391 $(COWPI LE. ¢) $(KGSSDFLAGS) -0 $@ $<
392 $(CTFCONVERT_O)

394 $(OBJS DI R)/ % o: $(KMECHKRB5_BASE) / cr ypt o/ enc_provi der/ % c
395 $(COWVPI LE. ¢) $(KGSSDFLAGS) -0 $@ $<

396 $(CTFCONVERT_O)

398 $(0OBJS DI R)/ % o: $(KMECHKRB5_BASE) / cr ypt o/ hash_pr ovi der/ % c
399 $(COMVPI LE. ¢) $(KGSSDFLAGS) -0 $@ $<

400 $(CTFCONVERT_O)

402 $(OBIS_DIR)/ % o: $(KMECHKRB5_BASE) / cr ypt o/ keyhash_provi der/ % c
403 $(COVPI LE. ¢) $(KGSSDFLAGS) -0 $@ $<

404 $(CTFCONVERT_O)

406 $(OBIS_DIR)/ % o: $(KMECHKRB5_BASE) / crypt o/ r aw/ % ¢

407 $(COMVPI LE. ¢) $(KGSSDFLAGS) -0 $@ $<

408 $(CTFCONVERT_O)

410 $(OBIS_DIR)/ % o: $(KMECHKRB5_BASE) / crypt o/ ol d/ % ¢

411 $(COVPI LE. ¢) $(KGSSDFLAGS) -0 $@ $<

412 $(CTFCONVERT_O)

414 $(OBIS_DIR)/ % o: $(KNECHKRB5_BASE) / kr b5/ kr b/ % ¢

415 $(COVPI LE. ¢) $(KGSSDFLAGS) -0 $@ $<

416 $(CTFCONVERT_O)

418 $(0BIS DIR)/ % o: $(KMECHKRB5_BASE) / kr b5/ 0s/ % ¢

419 $(COMPI LE. ¢) $(KGSSDFLAGS) -0 $@ $<

420 $(CTFCONVERT_Q)

422 $(OBJS DIR)/ser_sctx.o := CPPFLAGS += - DPROVI DE_KERNEL_| MPORT=1

424 $(0BIS DIR)/ % o:

$(KMECHKRB5_BASE) / mech/ % ¢

425 $(COVPI LE. ¢) $(KGSSDFLAGS) -0 $@ $<
426 $(CTFCONVERT_O)

428 $(OBIS_DIR)/ % o: $(KMECHKRB5_BASE) / profil e/ % ¢

429 $(COVPI LE. ¢) $(KGSSDFLAGS) -0 $@ $<

430 $(CTFCONVERT_O)

432 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ avs/ ncal | / % ¢
433 $(COWPILE.c) -0 $@ $<

434 $(CTFCONVERT_O)

436 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ avs/ ns/ dsw/ % c
437 $(COWPI LE.c) -0 $@ $<

438 $(CTFCONVERT_O)

440 $(OBIS_DIR)/ % o: $(UTSBASE) / commpn/ avs/ ns/ nsctl/%c
441 $(COWPILE. ¢) -0 $@ $<

442 $(CTFCONVERT_O)

444 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ avs/ ns/rdc/ % c
445 $(COWPILE. ¢) -0 $@ $<

446 $(CTFCONVERT_O)

448 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ avs/ ns/ sdbc/ % ¢
449 $(COWPI LE. ¢) -0 $@ $<

450 $(CTFCONVERT_O)

452 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ avs/ ns/ sol aris/ % c
453 $(COWPILE. ¢) -0 $@ $<

454 $(CTFCONVERT_O)

473 $(COWPI LE. c) -0 $@ $<
474 $(CTFCONVERT_O)

476 $(O0BIS DIR)/ % o:

477 $(COWPI LE. ¢) -0 $@ $<
478 $(CTFCONVERT_O)

480 $(OBIS_DIR)/ % o:

481 $(COWPI LE. ¢) -0 $@ $<
482 $(CTFCONVERT_O)

484 $(0BIS DIR)/ % o:

485 $(COWPI LE. ¢) -0 $@ $<
486 $(CTFCONVERT_O)

488 $(O0BIS DIR)/ % o:

489 $(COWPI LE. c) -0 $@ $<
490 $(CTFCONVERT_O)

492 $(0BIS DIR)/ % o:

493 $(COWPI LE. ¢) -0 $@ $<
494 $(CTFCONVERT_O)

496 $(O0BIS DIR)/ % o:

497 $(COWPI LE. ¢) -0 $@ $<
498 $(CTFCONVERT_O)

500 $(OBJS DIR)/ % o:

501 $(COWPI LE. ¢) -0 $@ $<
502 $(CTFCONVERT_O)

504 $(OBJS DIR)/ % o:

505 $(COWPI LE.) -0 $@ $<
506 $(CTFCONVERT_O)

508 $(OBJS_DIR)/ % o:

509 $(COMWPI LE. c) -0 $@ $<
510 $(CTFCONVERT_O)

512 $(OBIS_DIR)/ % o:

513 $(COWPI LE.c) -0 $@ $<
514 $(CTFCONVERT_O)

516 $(OBIS_DIR)/ % o:

517 $(COWPI LE.c) -0 $@ $<
518 $(CTFCONVERT_O)

520 $(0BJS DIR)/ % o:

$(UTSBASE) / common/ i net/ip/ % c

$(UTSBASE) / common/ i net /i pnet/ % c

$(UTSBASE) / common/ i net /i ptun/ % c

$(UTSBASE) / common/ i net/ kssl /% ¢

$(UTSBASE) / common/ i net/sctp/ % ¢

$(UTSBASE) / common/ i net/tcp/ % c

$(UTSBASE) / common/inet/ilb/%c

$(UTSBASE) / common/ i net/i pf/ % c

$(COMMONBASE) / net / patricial % c

$(UTSBASE) / cormon/ i net / udp/ % ¢

$(UTSBASE) / common/ i net/ ncal % ¢

$(UTSBASE) / common/ i net / socknods/ % ¢

new usr/src/uts/comon/ Makefile.rul es

$(COWPI LE. ¢) -0 $@ $<
$(CTFCONVERT_O)

521
522

524
525
526

528
529
530

532
533
534

536
537
538

540
541
542

544
545
546

548
549
550

552
553
554

556
557
558

560
561
562

564
565
566

568
569
570

572
573
574

576
577
578

580
581
582

584
585
586

$(CBIS_DIR)/ % 0:
2(COWPI LE. ¢)

$(OBJS DIR)/ % o:
2(COWPI LE. ¢)

$(0BIS DIR)/ % o:
$(COWPI LE. c)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COWPI LE. c)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(OBJS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COMPI LE. c)
$(CTFCONVERT _

$(OBJS_DIR)/ % o:
$(COMPI LE. ¢)
$(CTFCONVERT _

$(OBJS_DIR)/ % o:
$(COWPI LE. c¢)
$(CTFCONVERT _

$(OBJS_DIR)/ % o:
$(COWPI LE. c¢)
$(CTFCONVERT _

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(OBIS_ DR/ % o:
$(COWPI LE. c)
$(CTFCONVERT _

$(OBIS_ DR/ % o:
$(COWPI LE. c¢)
$(CTFCONVERT _

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

-0

-0

-0
o)

-0
O]

-0

0

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

°)

-0

°)

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

net/dl pi stub/ % c

o/ %c

0/ 1394/ % c

0/ 1394/ adapters/ % c

0/ 1394/ targets/avl394/ % c

0/ 1394/ t ar get s/ dcanl394/ % c

0/ 1394/t arget s/ scsal394/ % c

o/ shp2/ % c

o/ aac/ % c

o/ afe/ % c

o/ atge/ % c

o/arn/%c

$(UTSBASE) / comrmon/ i o/ ath/ % ¢

$(UTSBASE) / comrmon/ i o/ atu/ % ¢

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

o/ audio/inmpl/%c

o/ audi o/ ac97/ % c

new usr/src/uts/comon/ Makefile.rul es

588
589
590

592
593
594

596
597
598

600
601
602

604
605
606

608
609
610

612
613
614

616
617
618

620
621
622

624
625
626

628
629
630

632
633
634

636
637
638

640
641
642

644
645
646

648
649
650

652

$(OBJS_DIR)/ % o:

$(COVPILE. ¢) -0 $@ $<

$(CTFCONVERT_O)

$(OBIS_ DR/ % o:

$(COVPILE. ¢) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:

$(COWPILE. c) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:

$(COWPILE.c) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:

$(COWPILE.c) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:

$(COWPILE. c) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:

$(COWPILE.c) -0
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:

$(COWPILE.c) -0
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:

$(COWPILE.c) -0
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:

$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:

$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:

$(COMWPI LE. ¢) -
$(CTFCONVERT_O)

$(OBJS_DIR)/ % o:

$(COMPI LE. ¢) -
$(CTFCONVERT_O)

$(OBIS_DIR)/ % o:

$(COMPI LE. ¢) -
$(CTFCONERT_O)

$(OBJS DIR)/ % o:

$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

3@ $<

3@ $<

3@ $<

3@ $<

3@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

o/ audi o/ dr v/ audi

o/ audi o/ dr v/ audi

o/ audi o/ dr v/ audi

o/ audi o/ dr v/ audi

o/ audi o/ dr v/ audi

o/ audi o/ dr v/ audi

o/ audi o/ dr v/ audi

o/ audi o/ dr v/ audi

o/ audi o/ dr v/ audi

o/ audi o/ dr v/ audi

o/ audi o/ dr v/ audi

o/ audi o/ dr v/ audi

o/ audi o/ dr v/ audi

o/ audi o/ dr v/ audi

o/ audi o/ dr v/ audi

o/ bfel/ % c

o/ bge/ % c

10

oens/ % c

oenmulOk/ % c

01575/ % c

0810/ % c

ocm/%c

ocm hd/ % c

ohd/ % c

oi xp/ % c

ols/%c

opci/%c

opl6x/ % c

osol o/ %c

ots/%c

ovi a823x/ % c

ovi ag97/ % c

new usr/src/uts/comon/ Makefile.rul es

653
654

656
657
658

660
661
662

664
665
666

668
669
670

672
673
674

676
677
678

680
681
682

684
685
686

688
689
690

692
693
694

696
697
698

700
701
702

704
705
706

708
709
710

712
713
714

716
717
718

$(COWPI LE. ¢) -0 $@ $<
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:
2(COWPI LE. ¢)

$(OBJS DIR)/ % o:
2(COWPI LE. ¢)

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(OBJS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COMPI LE. c)
$(CTFCONVERT _

$(OBJS_DIR)/ % o:
$(COMPI LE. ¢)
$(CTFCONVERT _

$(OBJS_DIR)/ % o:
$(COWPI LE. c¢)
$(CTFCONVERT _

$(OBJS_DIR)/ % o:
$(COWPI LE. c¢)
$(CTFCONVERT _

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

-0

-0

-0
0

-0
o)

-0

0

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

°)

-0

°)

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$(UTSBASE) / common/ i o/ bl kdev/ % ¢

$(UTSBASE) / cormon/ i o/ bpf/ % ¢

$(UTSBASE) / common/ i o/ car dbus/ % ¢

$(UTSBASE) / cormon/ i o/ constar/stnf/ % c

$(UTSBASE) / cormon/ i o/ const ar/ port/fct/ % c

$(UTSBASE) / cormon/ i o/ constar/port/qglt/%c

$(UTSBASE) / common/ i o/ const ar/ port/srpt/%c

$(UTSBASE) / cormon/ i o/ const ar/ port/fcoet/ % c

$(COVMONBASE) / i scsit/ % c

$(UTSBASE) / cormon/ i o/ const ar/ port/iscsit/%c

$(UTSBASE) / cormon/ i o/ const ar/ port/ pppt/ % c

$(UTSBASE) / common/ i o/ constar/ | u/ st nf _shd/ % c

$(UTSBASE) / common/i o/ dl d/ % c

$(UTSBASE) / common/i o/ dl s/ % ¢

$(UTSBASE) / common/ i o/ dnfe/ % ¢

$(UTSBASE) / common/ i o/ drml % ¢

11

new usr/src/uts/comon/ Makefile.rul es

720
721
722

724
725
726

728
729
730

732
733
734

736
737
738

740
741
742

744
745
746

748
749
750

752
753
754

756
757
758

760
761
762

764
765
766

768
769
770

772
773
774

776
77
778

780
781
782

784

$(OBJS_DIR)/ % o:

$(COVPILE. ¢) -0 $@ $<

$(CTFCONVERT_O)

$(OBIS_ DR/ % o:

$(COVPILE. ¢) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:

$(COWPILE. c) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:

$(COWPILE.c) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:

$(COWPILE.c) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:

$(COWPILE. c) -0
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:

$(COWPILE.c) -0
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:

$(COWPILE.c) -0
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:

$(COWPILE.c) -0
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:

$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:

$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:

$(COMWPI LE. ¢) -
$(CTFCONVERT_O)

$(OBJS_DIR)/ % o:

$(COMPI LE. ¢) -
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:

$(COMPI LE. ¢) -
$(CTFCONERT_O)

$(OBJS DIR)/ % o:

$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

3@ $<

3@ $<

3@ $<

3@ $<

3@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

12

o/efel%c

olelxl/%c

o/ fcoel % c

o/ hme/ % c

o/ pciex/ %c

o/ hot pl ug/ hpcsve/ % ¢

o/ pci ex/ hot pl ug/ % c

o/ hot pl ug/ pci hp/ % c

o/iblcli

o/iblcli

o/iblcli

o/iblcli

o/iblcli

o/iblcli

o/iblcli

o/iblcli

o/iblcli

ents/rds/%c

ents/rdsv3/%c

ents/iser/%c

ents/ibd/ %c

ents/eoi b/ %c

ents/of /sol _ofs/%c

ents/ of /sol _ucma/ % c

ents/ of /sol _umad/ % c

ent s/ of / sol _uverbs/ %

new usr/src/uts/comon/ Makefile.rul es

785
786

788
789
790

792
793
794

796
797
798

800
801
802

804
805
806

808
809
810

812
813
814

816
817
818

820
821
822

824
825
826

828
829
830

832
833
834

836
837
838

840
841
842

844
845
846

848
849
850

$(COWPI LE. ¢) -0 $@ $<
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:
$(COMPI LE. ¢) -0 $@ $<
$(CTFCONERT_O)

$(OBJS DIR)/ % o:
$(COMPI LE. ¢) -0 $@ $<
$(CTFCOWERT_O)

$(0BIS DIR)/ % o:
$(COWPILE. c) -0 $@ $<
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:
$(COWPILE. c) -0 $@ $<
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:
$(COWPILE. c) -0 $@ $<
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:
$(COWPILE. c) -0 $@ $<
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:
$(COVPI LE. c) -0 $@ $<
$(CTFCONVERT_O)

$(OBJS_DIR)/ % o:
$(COWPILE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBJS_DIR)/ % o:
$(COWPILE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBJS_DIR)/ % o:
$(COWPILE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBJS_DIR)/ % o:
$(COWPILE.c) -0 $@ $<
$(CTFCONVERT_O)

$(O0BJS_DIR)/ % o:
$(COWPILE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COVPILE. ¢) -0 $@ $<
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPILE.c) -0 $@ $<
$(CTFCOWERT_O)

$(OBIS_ DR/ % o:
$(COWPILE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COVPI LE.c) -0 $@ $<
$(CTFCONVERT_O)

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / common/ i

$(COVMONBASE) / i scsi

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

o/ib/clients/sdp/ % c

o/ib/mgt/ibcm %c

o/ib/ngt/ibdm %c

o/ib/ngt/ibdmal/ % c

o/ib/mgt/ibnf/%c

o/ i b/ibnex/ % c

o/iblibtl/%c

o/ ib/adapters/tavor/%c

o/ i b/ adapt ers/ hermon/ % c

o/ibl/clients/daplt/%c

/% c

o/idm %c

o/ipw %c

o/iwh/ % c

o/iwi/%c

o/ iwk/ % c

13

new usr/src/uts/comon/ Makefile.rul es

852
853
854

856
857
858

860
861
862

864
865
866

868
869
870

872
873
874

876
877
878

880
881
882

884
885
886

888
889
890

892
893
894

896
897
898

900
901
902

904
905
906

908
909
910

912
913
914

916

$(0BIS_DIR)/ % 0:
$(COVPILE. ¢) -0 $@ $<
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPI LE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPILE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPILE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COVPI LE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COVPI LE.¢) -0 $@ $<
$(CTFCONVERT_O)

$(OBIS_ DR/ % o:
$(COWPI LE.c) -0 $@ $<
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:
$(COMPI LE. ¢) -0 $@ $<
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:
$(COMPI LE. ¢) -0 $@ $<
$(CTFCONVERT_O)

$(0BIS_DIR)/ % 0:
$(COVPI LE. ¢) -0 $@$<
$(CTFCONVERT_O)

$(OBJS DIR)/ % o:
$(COMPI LE. ¢) -0 $@ $<
$(CTFCONERT_0)

$(OBJS DIR)/ % o:
$(COMPI LE. ¢) -0 $@ $<
$(CTFCONERT_O)

$(OBJS_DIR)/ % o:
$(COVPI LE. ¢) -0 $@$<
$(CTFCOWERT_O)

$(OBIS_ DR/ % o:
$(COMPI LE. ¢) -0 $@ $<
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:
$(COMPI LE. ¢) -0 $@ $<
$(CTFCONERT_O)

$(0BIS DIR)/ % o:
$(COWPILE. c) -0 $@ $<
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

14

o/iwp/ %c

o/ kb8042/ % ¢

o/ kbtrans/ % c

o/ ksocket/ % c

o/ aggr/ % c

o/lp/%c

o/ | v hot spares/ % c

o/ I v md/ % c

o/lvmmrror/%c

o/lvm notify/%c

o/lvmraid/ %c

o/l vm softpart/ % c

o/lvm stripel/ %c

o/lvmtrans/ %c

o/ mac/ % c

o/ mac/ pl ugi ns/ % c

o/ mega_sas/ % c

new usr/src/uts/comon/ Makefile.rul es

917
918

920
921
922

924
925
926

928
929
930

932
933
934

936
937
938

940
941
942

944
945
946

948
949
950

952
953
954

956
957
958

960
961

963
964
965

967
968
969

971
972
973

975
976
977

979
980
981

$(COWPI LE. ¢) -0 $@ $<
$(CTFCONVERT_O)

$(CBIS_DIR)/ % 0:
$(COVPI LE. ¢)
$(CTFCONVERT

$(OBJS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)

$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)

$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COWPI LE. c)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COMPI LE. c)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COMPI LE. ¢)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COWPI LE. s)

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(OBJS DIR)/ % o:
$(COMPI LE. ¢)
$(CTFCONVERT

$(OBJS DIR)/ % o
$(COMPI LE. ¢)
$(CTFCONVERT

$(OBJS DIR)/ % o:
$(COMPI LE. ¢)
$(CTFCONVERT

-0

e

-0

e

-0
0

-0
o)

-0

e

-0

_0

-0

_0

-0

0

-0

)

-0

o)

-0

-0

_0

-0

o)

-0

o)

-0

_0

-0

e

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

o/mil%c

o/ nr_sas/%c

o/ scsi/ adapters/ npt_sas/%c

o/ nxfel%c

o/mmM /% c

o/mM/mM _fw %c

o/ net 80211/ % c

o/ nge/ % c

o/ nxgel/ % ¢

o/ nxge/ npi/ %c

o/ nxgel/ % s

o/ pci-ide/%c

o/ pcrtial % c

o/ pcan/ % c

o/ pcn/ % c

o/ pcw /% c

15

new usr/src/uts/comon/ Makefile.rul es

983
984
985

987
988
989

991
992
993

995
996
997

999
1000
1001

1003
1004
1005

1007
1008
1009

1011
1012
1013

1015
1016
1017

1019
1020
1021

1023
1024
1025

1027
1028
1029

1031
1032
1033

1035
1036
1037

1039
1040
1041

1043
1044
1045

1047
1048

$(OBIS_DI R)/ % o:

$(COWPILE. c) -0
(CTFCCNVERTO)

$(0BJS | DIR)/%o

$(COWPILE.c) -0
$(CTFCCNVERTO)

$(0BJS_DI R)/%o

$(COWPILE.Cc) -0
$(CTFOO\IVERTO)

$(0BJS | DIR)/%o

$(COWPILE.c) -0
$(CTFOO\IVERTO)

$(0BJS_DI R)/%o

$(COWPILE.c) -0
$(CTFOCNVERTO)

$(0BJS | DIR)/%o

$(COWPILE.c) -0
$(CTFOCNVERTO)

$(0BIS_ DIR)/%o

$(COWPILE.c) -0
$(CTFCONVERT_O)

$(0BJS_| DI?)/%O

COWPI LE.c) -0
$(CTFCONVERT_O)

$(0BIS_ DIR)/%o

$(COWPILE.c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$(COWPI LE. c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$(COWPILE. c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$(COWPILE. c) -0
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:

$(COWPI LE.) -0
$(CTFCONERT_O)

$(OBJS_DIR)/ % o:

$(COWPILE. c) -0
$(CTFCONVERT_O)

$(OBJS_DIR)/ % o:

$(COWPI LE.c) -0
$(CTFCONVERT_O)

$(OBJS_DIR)/ % o:

$(COWI LE.c) -0

$@ $<

$@ $<

3@ $<

3@ $<

3@ $<

3@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / cormon/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / common/ i

$(UTSBASE) / comon/ i

16

o/ ppp/ sppp/ % ¢

o/ ppp/ spppasyn/ % c

o/ ppp/ sppptun/ % c

o/ral/%c

o/rgel %c

o/rtls/%c

o/rsm%c

o/rtw %c

o/rum %c

o/ rwd/ % c

o/rwn/ % c

o/ sat a/ adapters/ahci/%c

o/ sat a/ adapt ers/nv_satal/ % c

o/ sat a/ adapt ers/si 3124/ % c

o/satalinpl/%c

o/ scsi/conf/%c

o/scsilinmpl/%c

new usr/ src/uts/ common/ Makefile.rul es 17 new usr/ src/uts/ common/ Makefile.rul es 18

1049 $(CTFCONVERT_O) 1115 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ si met/ % c
1116 $(COWPILE.c) -0 $@ $<

1051 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ i o/ scsi/targets/ % c 1117 $(CTFCONVERT_O)

1052 $(COWPI LE. c) -0 $@ $<

1053 $(CTFCONVERT_O) 1119 $(O0BJIS_DI R) /% o: $(UTSBASE) / common/ i o/ sof t mac/ % c
1120 $(COMPILE. ¢) -0 $@ $<

1055 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ scsi / adapters/ % c 1121 $(CTFCONVERT_O)

1056 $(COWPI LE. c) -0 $@ $<

1057 $(CTFCONVERT_O) 1123 $(OBJIS_DI R)/% o: $(UTSBASE) / conmon/ i o/ uat h/ % ¢
1124 $(COWPILE. c) -0 $@ $<

1059 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ scsi / adapt er s/ bl k2scsa/ % ¢ 1125 $(CTFCONVERT_O)

1060 $(COVPI LE. c) -0 $@ $<

1061 $(CTFCONVERT_O) 1127 $(0BIS_DI R) / % o: $(UTSBASE) / cormon/ i o/ uat h/ uat h_fw % c
1128 $(COMPILE. ¢) -0 $@ $<

1063 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ scsi / adapt er s/ scsi _vhci/ % c 1129 $(CTFCONVERT_O)

1064 $(COVPI LE. c) -0 $@ $<

1065 $(CTFCONVERT_O) 1131 $(OBJIS_DI R) / % o: $(UTSBASE) / common/ i o/ ural / % c
1132 $(COMPILE.¢) -0 $@ $<

1067 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ scsi / adapt er s/ scsi _vhci / fop 1133 $(CTFCONVERT_O)

1068 $(COWPI LE. ¢) -0 $@ $<

1069 $(CTFCONVERT_O) 1135 $(OBJIS_DI R) 1 % o: $(UTSBASE) / conmon/ i o/ urt wl % ¢
1136 $(COMPILE.¢) -0 $@ $<

1071 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ fi bre-channel / ul p/ % c 1137 $(CTFCONVERT_O)

1072 $(COWPILE.c) -0 $@ $<

1073 $(CTFCONVERT_O) 1139 $(OBIS_DIR)/ % o: $(UTSBASE) / comrmon/ i o/ usb/ cl i ent s/ audi o/ usb_ac/ %
1140 $(COWPILE.c) -0 $@ $<

1075 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ i o/ fi bre-channel /i npl /% c 1141 $(CTFCONVERT O)

1076 $(COWPILE.c) -0 $@ $<

1077 $(CTFCONVERT_O) 1143 $(OBIS_DI R)/ % o: $(UTSBASE) / comrmon/ i o/ usb/ cl i ent s/ audi o/ usb_as/ %
1144 $(COVPI LE.¢) -0 $@ $<

1079 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ fi bre-channel /fca/glc/%c 1145 $(CTFCONVERT O)

1080 $(COWPI LE. ¢) -0 $@ $<

1081 $(CTFCONVERT_O) 1147 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ usb/ cl i ent s/ audi o/ usb_ah/ %
1148 $(COMPILE.¢) -0 $@ $<

1083 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ fi bre-channel / fcal/ ql ge/ % ¢ 1149 $(CTFCONVERT_O)

1084 $(COWPILE. ¢) -0 $@ $<

1085 $(CTFCONVERT_O) 1151 $(OBIS_DI R)/ % o: $(UTSBASE) / cormon/ i o/ usb/ cl i ent s/ ushskel / % ¢
1152 $(COWPI LE. c) -0 $@ $<

1087 $(OBIS_DIR)/ % o: $(UTSBASE) / comrmon/ i o/ fi bre-channel / fcal/ eml xs/ % c 1153 $(CTFCONVERT_O)

1088 $(COWPI LE. ¢) -0 $@ $<

1089 $(CTFCONVERT_O) 1155 $(OBIS_DI R)/ % o: $(UTSBASE) / common/ i o/ usb/ cl i ent s/ vi deo/ usbvc/ % ¢
1156 $(COWPI LE. c) -0 $@ $<

1091 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ fi bre-channel / fcal/ oce/ % ¢ 1157 $(CTFCONVERT_O)

1092 $(COWPI LE. ¢) -0 $@ $<

1093 $(CTFCONVERT_O) 1159 $(OBJS_DI R)/ % o: $(UTSBASE) / common/ i o/ usb/ cl i ents/ hwarc/ % ¢
1160 $(COWILE. c) -0 $@ $<

1095 $(OBIS_DIR)/ % o: $(UTSBASE) / comrmon/ i o/ fi bre-channel / fcalfcoei/%c 1161 $(CTFCONVERT_O)

1096 $(COWPILE. c) -0 $@ $<

1097 $(CTFCONVERT_O) 1163 $(OBIS_DI R)/ % o: $(UTSBASE) / commmon/ i o/ usb/clients/hid/ %c
1164 $(COWPI LE. c) -0 $@ $<

1099 $(OBIS_DIR)/ % o: $(UTSBASE) / conmon/ i o/ sdcar d/ adapt er s/ sdhost/ % ¢ 1165 $(CTFCONVERT_O)

1100 $(COWPI LE. ¢) -0 $@ $<

1101 $(CTFCONVERT_O) 1167 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ i o/ usb/ cl i ent s/ hi dparser/ % c
1168 $(COWPI LE. c) -0 $@ $<

1103 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ i o/ sdcard/inmpl/%c 1169 $(CTFCONVERT_O)

1104 $(COWPI LE. ¢) -0 $@ $<

1105 $(CTFCONVERT_O) 1171 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ usb/ clients/printer/%c
1172 $(COWPILE.c) -0 $@ $<

1107 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ sdcard/t arget s/ sdcard/ % c 1173 $(CTFCONVERT_O)

1108 $(COVPI LE.¢) -0 $@ $<

1109 $(CTFCONVERT_O) 1175 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ usb/ cl i ent s/ usbkbn % c
1176 $(COVPI LE. c) -0 $@ $<

1111 $(OBJIS_DIR)/ % o: $(UTSBASE) / conmon/ i o/ sfe/ % ¢ 1177 $(CTFCONVERT_O)

1112 $(COWPI LE. ¢) -0 $@ $<

1113 $(CTFCONVERT_O) 1179 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ usb/ cl i ent s/ usbns/ % c
1180 $(COWILE. c) -0 $@ $<

new usr/ src/uts/ common/ Makefile.rul es 19 new usr/ src/uts/ common/ Makefile.rul es 20

1181 $(CTFCONVERT_O) 1247 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ i o/ usb/ usb_mni d/ % ¢
1248 $(COWPILE.c) -0 $@ $<

1183 $(OBIS_DIR)/ % o: $(UTSBASE) / commmon/ i o/ usb/ cl i ent s/ usbi nput / usbwem 1249 $(CTFCONVERT_O)

1184 $(COWPI LE. c) -0 $@ $<

1185 $(CTFCONVERT_O) 1251 $(O0BJS_DI R) /% o: $(UTSBASE) / common/ i o/ usb/ usb_i a/ % c
1252 $(COWPILE. c) -0 $@ $<

1187 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ usb/ cl i ent s/ ugen/ % c 1253 $(CTFCONVERT_O)

1188 $(COWPI LE. c) -0 $@ $<

1189 $(CTFCONVERT_O) 1255 $(O0BJS_DI R) /% o: $(UTSBASE) / common/ i o/ usb/ usbal/ % c
1256 $(COWPILE. c) -0 $@ $<

1191 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ usb/ cl i ent s/ ushser/ % c 1257 $(CTFCONVERT_O)

1192 $(COWPILE.c) -0 $@ $<

1193 $(CTFCONVERT_O) 1259 $(0BIS_DI R) / % o: $(UTSBASE) / common/ i o/ usb/ usbal0/ % c
1260 $(COMPILE. ¢) -0 $@ $<

1195 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ usb/ cl i ent s/ usbser/usbsacm 1261 $(CTFCONVERT_O)

1196 $(COWPILE. c) -0 $@ $<

1197 $(CTFCONVERT_O) 1263 $(O0BJS_DI R) / % o: $(UTSBASE) / common/ i o/ usb/ hwa/ hwahc/ % c
1264 $(COWPILE. c) -0 $@ $<

1199 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ usb/ cl i ent s/ usbser/usbftdi/ 1265 $(CTFCONVERT_O)

1200 $(COWPILE.c) -0 $@ $<

1201 $(CTFCONVERT_O) 1267 $(0BJS_DI R) /% o: $(UTSBASE) / cormon/ i o/ uwb/ uwba/ % c
1268 $(COWPILE.c) -0 $@ $<

1203 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ usb/ cl i ent s/ usbser/ usbser _k 1269 $(CTFCONVERT_O)

1204 $(COWPILE.c) -0 $@ $<

1205 $(CTFCONVERT_O) 1271 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ i o/ vui dni ce/ % ¢
1272 $(COVPI LE.¢) -0 $@ $<

1207 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ usb/ cl i ent s/ usbser/usbsprl/ 1273 $(CTFCONVERT O)

1208 $(COWILE.c) -0 $@ $<

1209 $(CTFCONVERT_O) 1275 $(OBIS_DI R)/ % o: $(UTSBASE) / common/ i o/ vni ¢/ % ¢
1276 $(COVPI LE.¢) -0 $@ $<

1211 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ i o/ usb/ cl i ent's/wusb_df/ % c 1277 $(CTFCONVERT O)

1212 $(COWPI LE. ¢) -0 $@ $<

1213 $(CTFCONVERT_O) 1279 $(OBIS_DIR)/ % o: $(UTSBASE) / comrmon/ i o/ wpi / % ¢
1280 $(COMPILE.¢) -0 $@ $<

1215 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ usb/ cl i ent's/ hwal1480_fw % c 1281 $(CTFCONVERT_O)

1216 $(COWPILE.c) -0 $@ $<

1217 $(CTFCONVERT_O) 1283 $(OBIS_DI R)/ % o: $(UTSBASE) / common/ i o/ zyd/ % ¢
1284 $(COWPI LE. c) -0 $@ $<

1219 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ usb/ cl i ents/wusb_ca/ % c 1285 $(CTFCONVERT_O)

1220 $(COWPI LE. ¢) -0 $@ $<

1221 $(CTFCONVERT_O) 1287 $(0OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ chxge/ coml % ¢
1288 $(COWPI LE. c) -0 $@ $<

1223 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ usb/ cl i ent s/ usbecm % ¢ 1289 $(CTFCONVERT_O)

1224 $(COWPI LE. ¢) -0 $@ $<

1225 $(CTFCONVERT_O) 1291 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ chxge/ % ¢
1292 $(COWILE. c) -0 $@ $<

1227 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ usb/ hcd/ openhci / % ¢ 1293 $(CTFCONVERT_O)

1228 $(COWPILE. c) -0 $@ $<

1229 $(CTFCONVERT_O) 1295 $(OBIS_DIR)/ % o: $(UTSBASE) / commmon/ i o/ cxgbe/ common/ % ¢
1296 $(COWILE. c) -0 $@ $<

1231 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ i o/ usb/ hcd/ ehci /% c 1297 $(CTFCONVERT_O)

1232 $(COVPI LE.c) -0 $@ $<

1233 $(CTFCONVERT _ 1299 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ i o/ cxgbe/ shared/ % ¢
1300 $(COWPI LE. c) -0 $@ $<

1235 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ i o/ usb/ hcd/ uhci /% c 1301 $(CTFCONVERT_O)

1236 $(COWPILE.c) -1../../comon -0 $@ $<

1237 $(CTFCONVERT_O) 1303 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ cxgbe/ firmare/ % c
1304 $(COWPI LE. c) -0 $@ $<

1239 $(OBIS_DIR)/ % o: $(UTSBASE) / common/ i o/ usb/ hubd/ % c 1305 $(CTFCONVERT_O)

1240 $(COWPI LE. ¢) -0 $@ $<

1241 $(CTFCONVERT_O) 1307 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ cxgbe/ t 4nex/ % ¢
1308 $(COVPI LE. c) -0 $@ $<

1243 $(OBIS_DIR)/ % o: $(UTSBASE) / comrmon/ i o/ usb/ scsa2usb/ % c 1309 $(CTFCONVERT_O)

1244 $(COWPI LE. ¢) -0 $@ $<

1245 $(CTFCONVERT_O) 1311 $(OBIS_DIR)/ % o: $(UTSBASE) / cormon/ i o/ cxgbe/ cxgbe/ % ¢
1312 $(COVPI LE. c) -0 $@ $<

new usr/src/uts/comon/ Makefile.rul es

1313

1315
1316
1317

1319
1320
1321

1323
1324
1325

1327
1328
1329

1331
1332
1333

1335
1336
1337

1339
1340
1341

1343
1344
1345

1347
1348
1349

1351
1352
1353

1355
1356
1357

1359
1360
1361

1363
1364
1365

1367
1368
1369

1371
1372
1373

1375
1376
1377

$(CTFCONVERT
$(0BIS DIR)/ % o:

o)

$(COWPI LE.) -0 $@ $<
$(CTFCOWERT_O)

$(OBIJS DIR)/ % o:
$(COWPI LE. c)
$(CTFCONVERT

$(OBIS DIR)/ % 0
$(COMPI LE. c)

$(CTFCONVERT_

$(OBJS_DIR)/ % o:
$(COMPI LE. c)

$(CTFCONVERT_

$(OBJS_DIR)/ % o:
$(COWPI LE. c¢)

$(CTFCONVERT_

$(OBJS_DIR)/ % o:
$(COWPI LE. c¢)

$(CTFCONVERT_

$(OBIS_ DR/ % o:
$(COWPI LE. ¢)

$(CTFCONVERT_

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCOWERT

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(O0BIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(O0BIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(O0BIS_ DR/ % o:
$(COWPI LE. c)
$(CTFCONVERT

$(O0BIS_ DR/ % o:
$(COMPI LE. c¢)
$(CTFCONVERT

$(0BJS_DIR)/ % 0
$(COVPI LE. ¢)
$(CTFCONVERT

$(OBIS DIR)/ % 0
$(COVPI LE. ¢)
$(CTFCONVERT

$(0BIS_DIR)/ % 0:
$(COVPI LE. ¢)
$(CTFCONVERT

-0 $@ $<

_0

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

e

-0

_0

-0

o)

-0

_0

-0

o)

-0

e

-0

_0

-0

_0

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

3@ $<

3@ $<

3@ $<

3@ $<

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / comon/ i

$(UTSBASE) / common/ i

$(UTSBASE) / conmon/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

$(UTSBASE) / common/ i

o/ ixgh/%c

o/ xge/ drv/ % c

o/ xge/ hal / xgehal / % c

0/ €1000g/ % ¢

o/igbh/%c

o/iprb/%c

o/ i xghe/ % c

o/ ntxn/ % c

o/ myri 10ge/ drv/ % c

pp/ % c

pp/ipgpc/ % c

pp/ dl cosnk/ % ¢

pp/ fl owacct/ % c

pp/ dscpnk/ % c

pp/ meters/ % c

$(UTSBASE) / common/ ki conv/ ki conv_enea/ % ¢

21

new usr/src/uts/comon/ Makefile.rul es

1379
1380
1381

1383
1384
1385

1387
1388
1389

1391
1392
1393

1395
1396
1397

1399
1400
1401

1403
1404
1405

1407
1408
1409

1411
1412
1413

1415
1416
1417

1419
1420
1421

1423
1424
1425

1427
1428
1429

1431
1432
1433

1435
1436
1437
1438
1439
1440
1441
1442
1443
1444

$(OBIS_DI R)/ % o:
$(COVPI LE. ¢)
$(CTFCI»NERT

$(OBIS_ DIW/@@O
$(COMPI LE. c¢)
$(CTFCCNVERT

$(0BJS | Dlmlgﬁo
$(COVPI LE. ¢)
$(CTFCEANERT

$(0BJS | Dlm/q@o
$(COVPI LE. ¢)
$(CTFCI»NERT

$(0BJS | D|m/960
$(COMPI LE. ¢)
$(CTFCEBNERT

$(0BJS | D|m/9@o
$(COMPI LE. ¢)
$(CTFCEBNERT

$(0BIS_ D|m/9@o
$(COMPI LE. ¢) -
$(CTFCONVERT _

$(0BJS_| D|m/9@o
$(COMPI LE. ¢) -
$(CTFCONVERT _

$(0BIS_ Dlm/96o
$(COMPI LE. ¢)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COWPI LE. c)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(0BIS DIR)/ % o:
$(COWPI LE. c)
$(CTFOONVERT

$(0BIS DIR)/ % o:
$(COWPI LE. c)
$(CTFCONVERT

$(0BIS DIR)/ % o:
$(COWPI LE. c)
$(CTFCONVERT

#

krtld nust
#

$(CBJS_DI R)/ bootrd. o
$(O0BJS_DI R)/ dorel oc o]
$(O0BJS_DI R)/ kobj .

$(0BJS_DI R)/ kobj _boot .
$(OBIS_DIR)/

$(OBIS DIR)/
$(0BJS_DIR)/ kobj _i sa.

-0

°)

-0

°)

-0

°)

-0

°)

-0

°)

-0

°)

C»

C)

-0
0

-0
o)

-0
O]

$@ $<

$@ $<

3@ $<

3@ $<

$@ $<

3@ $<

0 $@ %<

0 $@ %<

$@ $<

$@ $<

$@ $<

-0 $@3%<

_0

-0 $@3%<

_0

-0

_0

o]

(o]

3@ $<

refer to its own bzero/bcopy until

kobj _bootfl ags. o
kobj _convrel str.o

$(UTSBASE) / common/ ki conv/ ki conv_j a/ % c

$(UTSBASE) / common/ ki conv/ ki conv_ko/ % c

$(UTSBASE) / common/ ki conv/ ki conv_sc/ % c

$(UTSBASE) / common/ ki conv/ ki conv_tc/ % c

$(UTSBASE) / common/ kl ml % c

$(UTSBASE) / common/ kndb/ % c

$(UTSBASE) / common/ kt i/ % ¢

$(UTSBASE) / cormon/ i o/ scsi / adapters/iscsi/%c

$(COMMONBASE) / i scsi/ % ¢

$(UTSBASE) / common/ i net / ki f conf/ % ¢

$(UTSBASE) / common/ i o/ vr/ % ¢

$(UTSBASE) / common/ i o/ yge/ % ¢

$(UTSBASE) / common/io/virtio/ % c

$(UTSBASE) / common/ i o/ vi obl k/ % ¢

the kernel is fully linked
CPPFLAGS += - DKOBJ_OVERRI DES
CPPFLAGS += - DKOBJ_OVERRI DES
CPPFLAGS += - DKOBJ_OVERRI DES
CPPFLAGS += - DKOBJ_OVERRI DES
CPPFLAGS += - DKOBJ_OVERRI DES
CPPFLAGS += - DKOBJ_OVERRI DES
CPPFLAGS += - DKOBJ_OVERRI DES

22

new usr/src/uts/comon/ Makefile.rul es

1445
1446
1447
1448
1449

1451
1452
1453

1455
1456
1457

1459
1460
1461

1463
1464
1465

1467
1468
1469

1471
1472
1473

1475
1476
1477

1479
1480
1481

1483
1484
1485

1487
1488
1489

1491
1492
1493

1495
1496
1497

1499
1500
1501

1503
1504
1505

1507
1508
1509

$(O0BIS_DI R)/ kobj _kdi .
$(03JS DI R)/ kobj _I m o

$(O0BJS_DIR)/ kobj _reloc.o
$(0BJS_DI R)/ kobj _stubs. 0

$(0BJS_DI R)/ kobj _subr.
$(OBJS_DIR)/ % o:

o]

$(COWPILE.c) -0 $@ $<
$(CTFCONVERT_O)

$(0BIS DIR)/ % o:
$(COMPI LE. c)
$(CTFCONVERT _

$(OBJS_DIR)/ % o:
$(COMPI LE. c)
$(CTFCONVERT _

$(OBJS_DIR)/ % o:
$(COWPI LE. c¢)
$(CTFCONVERT _

$(OBJS_DIR)/ % o:
$(COWPI LE. c¢)
$(CTFCONVERT _

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT _

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCOWERT

$(OBIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(O0BIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(O0BIS_ DR/ % o:
$(COVPI LE. ¢)
$(CTFCONVERT

$(O0BIS_ DR/ % o:
$(COWPI LE. c)
$(CTFCONVERT

$(O0BIS_ DR/ % o:
$(COMPI LE. c¢)
$(CTFCONVERT

$(0BJS_DIR)/ % 0:
$(COVPI LE. ¢)
$(CTFCONVERT

$(0BJS_DIR)/ % 0:
$(COVPI LE. ¢)
$(CTFCONVERT

$(0BIS_DIR)/ % 0:
$(COVPI LE. ¢)
$(CTFCONVERT

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

o)

-0

e

-0

_0

-0

o)

-0

_0

-0

o)

-0

e

-0

_0

-0

_0

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

$@ $<

3@ $<

3@ $<

3@ $<

3@ $<

CPPFLAGS += - DKOBJ_OVERRI DES
CPPFLAGS += - DKOBJ_OVERRI DES
CPPFLAGS += - DKOBJ_OVERRI DES
1= CPPFLAGS += - DKOBJ_OVERRI DES
1= CPPFLAGS += - DKOBJ_OVERRI DES

$(UTSBASE) / common/ krtld/ % c

$(COMVONBASE) / | i st/ % ¢

$(COMVONBASE) / | viri % ¢

$(COMVONBASE) / | zna/ % ¢

$(COVMONBASE) / cr ypt o/ md4/ % c

$(COVMONBASE) / cr ypt o/ md5/ % ¢

$(COVMONBASE) / net / dhcp/ % ¢

$(COVMONBASE) / nvpai r/ % c

$(UTSBASE) / common/ os/ % ¢

$(UTSBASE) / common/ pcnti a/ cis/ % ¢
$(UTSBASE) / common/ pcnti a/ cs/ % ¢
$(UTSBASE) / commpn/ pcnti a/ nexus/ % ¢
$(UTSBASE) / common/ pcnti a/ pcs/ % ¢
$(UTSBASE) / common/ rpc/ % ¢

$(UTSBASE) / common/ r pc/ sec/ % ¢

23

new usr/src/uts/comon/ Makefile.rul es

1511
1512
1513

1515
1516
1517

1519
1520
1521

1523
1524
1525

1527
1528
1529

1531
1532
1533

1535
1536
1537

1539
1540
1541

1543
1544
1545

1547
1548
1549

1551
1552
1553
1554

1556
1557
1558

1560
1561
1562

1564
1565

1567
1568
1569
1571

1573
1574

1576

$(OBIS_DI R)/ % o:
$(COVPI LE.¢) -0 $@ $<
(CTFCCNVERTO)

$(0BJS DI R)/%o
$(COVPILE. ¢) -0 $@ $<
$(CTF00NVERT o)

$(OBIS_DI R)/%o
$(COMPILE. ¢) -0 $@ $<
$(CTFOO\NERT 0

$(OBJIS_DI R)/%o
$(COVPILE. ¢) -0 $@ $<
$(CTFOCNVERT 0

$(OBIS_DI R)/%o
$(COMPILE.¢) -0 $@ $<
$(CTFOCNVERT 0

$(0BJS DI R)/%o
$(COVPILE. ¢) -0 $@ $<
$(CTF00NVERT 0

$(0BIS_ DIR)/%o
$(COMPI LE. ¢) -0 $@ $<
$(CTFCONERT_O)

$(0BJS_| DIR)/%o
$(COMPI LE. ¢) -0 $@ $<
$(CTFCOWERT_O)

$(COVMONBASE) / crypt o/ shal/ % c

$(COVMONBASE) / cr ypt o/ sha2/ % c

$(UTSBASE) / common/ syscal | / % ¢

$(UTSBASE) / common/ tnf/ % ¢

$(COMVONBASE) / t sol / % ¢

$(COVVONBASE) / ut i 1/ % c

$(COVMONBASE) / uni code/ % ¢

$(0BIS_ DIR)/%o
$(COMPI LE. ¢) -0 $@ $<
$(CTFCONERT_O)

$(UTSBASE) / cormon/ v % ¢

$(0BIS DIR)/ % o:
$(COWPILE. c) -0 $@ $<
$(CTFCONVERT_O)

$(UTSBASE) / commmon/ zrmod/ % ¢

$(OBIS_ D!$R)/ZI i b_obj . $(ZLI B_OBIS: %=$(0BIS DI R) / %

24

$(UTSBASE) / common/ r pc/ sec_gss/ % ¢

LD) -r -Br educe - MB(UTSBASE) / common/ znod/ mapfile -0 $@\

$(ZLI B_OBIS: %$(OBIS_DI R) / %

$(CTFMERGE) -t -f -L VERSION -0 $@ $(ZLI B_OBJS: %$(OBIJS_DI R)/ %

$(OBJS DIR)/ % o:
$(COMPI LE. ¢) -0 $@ $<
$(CTFCOWERT_O)

$(OBJS DIR)/ % o:
$(COVPI LE. ¢) -0 $@$<
$(CTFCOWERT_O)

$(UTSBASE) / common/ i o/ hxge/ % ¢

$(UTSBASE) / cormon/ i o/ t pml % ¢

$(OBIS_DI R/ % o:
$(COMWPI LE. s) -0 $@ $<

$(OBJS_DI R)/ bz2% o:

$(UTSBASE) / common/ i o/ t pml % s

$(COMVONBASE) / bzi p2/ % ¢

$(COWILE.c) -0 $@-|$(COWONBASE) / bzi p2 $<

$(CTFCONVERT_O)
BZ2LINT = -errof f=%l | -1$(UTSBASE)/conmon/ bzi p2
$(LINTS_DI R)/ bz2% | n: $(COWONBASE) / bzi p2/ % ¢

@ $(LHEAD) $(LINT. c)
#

(
-C $(LINTS_DI R)/* basenane $@.|n*

$(BZ2LINT) $< $(

new usr/src/uts/comon/ Makefile.rul es 25 new usr/src/uts/comon/ Makefile.rul es 26
1577 # SWM 1643 @$(LHEAD) $(LINT.c) $< $(LTAIL))
1578 #

1645 $(LINTS_ DIR)/ %I n: $(UTSBASE) / cormon/ c2/ % ¢

1580 MD_XDR_CSRC = $(UTSBASE) / conmon/ i o/ | vni nd 1646 @S$(LHEAD) $(LINT.c) $< $(LTAIL))

1581 MD_XDR_XSRC = $(UTSBASE) / common/ sys/ | vm

1582 RPCGENFLAGS += -C -M - D_KERNEL - DSYSV 1648 $(LINTS_DIR)/ % | n: $(UTSBASE) / conmon/ conf / % ¢
1649 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

1584 $(MD_XDR _CSRC)/ net a_basi c_xdr. c: $(MD_XDR_XSRC) / et a_basi c.

1585 $(RPCCEN) $(RPCGENFLAGS) -c¢ -i 100 $(I\/D XDR XSRC)/nEta bas ic.x | \ 1651 $(LINTS_DIR)/ %I n: $(UTSBASE)/conTmn/contract/%c

1586 nawk ' {sub(/#include "(\.\.\/\ V), T#include VUV A/ VLY 1652 @S$(LHEAD) $(LINT.c) $< $(LTAIL))

1587 nawk '{sub(/meta_basic.h/, "nd_basic.h"); print $$0}’ >$@

1654 $(LINTS DIR)/ %I n: $(UTSBASE) / common/ cpr/ % ¢

1589 $(MD_XDR CSRC)/ metaned_xdr.c: $(MD_XDR_XSRC)/ net aned. x 1655 @S$(LHEAD) $(LINT.c) $< $(LTAIL))

1590 $(RPCGEN) $(RPCGENFLAGS) -c -i 100 $(MD_XDR XSRC)/metamed. x |\

1591 nawk ' {sub(/#include "(\.\.\/\ N A/, T#include VUV VAV VLY 1657 $(LINTS DIR)/ % I n: $(UTSBASE) / conmon/ ct f/ % ¢

1592 nawk ' {sub(/nmetamed. h/, "mdned.h"); print $$0}' >$@ 1658 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

1594 # 1660 $(LINTS DIR)/% I n: $(COMVONBASE) / ct f/ % ¢

1595 # Section 1b: Lint ‘objects’ 1661 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

1596 #

1597 $(LINTS_DIR)/ %I n: $(COMMONBASE) / crypt o/ aes/ % ¢ 1663 $(LINTS_DIR)/ %I n: $(COVMMONBASE) / pci / % ¢

1598 @ $(LHEAD) $(LINT.c) $< $(LTAIL)) 1664 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

1600 $(LINTS_DI R)/ % 1 n: $(COMMONBASE) / crypt o/ arcfour/ % c 1666 $(LINTS DR/ %I n: $(COVMONBASE) / devi d/ % ¢

1601 @S$(LHEAD) $(LINT.c) $< $(LTAIL)) 1667 @S$(LHEAD) $(LINT.c) $< $(LTAIL))

1603 $(LINTS_DIR)/ %I n: $(COVMONBASE) / cr ypt o/ bl owfi sh/ % c 1669 $(LINTS_DIR)/ %I n: $(COMMONBASE) / cr ypt o/ des/ % ¢

1604 @ $(LHEAD) $(LINT.c) $< $(LTAIL)) 1670 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

1606 $(LINTS_DIR)/ %I n: $(COMMONBASE) / crypt o/ ecc/ % ¢ 1672 $(LINTS_DIR)/ %I n: $(COMMONBASE) / snbi 0os/ % ¢

1607 @ $(LHEAD) $(LINT.c) $< $(LTAIL)) 1673 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

1609 $(LINTS_DIR)/ %I n: $(COMMONBASE) / cr ypt o/ nodes/ % ¢ 1675 $(LINTS_DIR)/ %I n: $(UTSBASE) / common/ avs/ ncal | / % ¢
1610 @S$(LHEAD) $(LINT.c) $< $(LTAIL)) 1676 @S$(LHEAD) $(LINT.c) $< $(LTAIL))

1612 $(LINTS_ DIR)/ %I n: $(COMMONBASE) / cr ypt o/ paddi ng/ % c 1678 $(LINTS_ DIR)/ %I n: $(UTSBASE) / common/ avs/ ns/ dsw/ % c
1613 @$(LHEAD) $(LINT.c) $< $(LTAIL)) 1679 @$(LHEAD) $(LINT.c) $< $(LTAIL))

1615 $(LINTS_DIR)/ %I n: $(COVMONBASE) / crypt o/ rng/ % ¢ 1681 $(LINTS_DIR)/ %I n: $(UTSBASE) / commpn/ avs/ ns/ nsctl/%c
1616 @ $(LHEAD) $(LINT.c) $< $(LTAIL)) 1682 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

1618 $(LINTS_DIR)/ %I n: $(COMMONBASE) / crypt o/ rsa/ % c 1684 $(LINTS_ DIR)/ % In $(UTSBASE) / common/ avs/ ns/rdc/ % c
1619 @ $(LHEAD) $(LINT.c) $< $(LTAIL)) 1685 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

1621 $(LINTS_ DR/ %I n: $(COVMONBASE) / bi gnum % ¢ 1687 $(LINTS DR/ %I n: $(UTSBASE) / common/ avs/ ns/ sdbc/ % ¢
1622 @S$(LHEAD) $(LINT.c) $< $(LTAIL)) 1688 @S$(LHEAD) $(LINT.c) $< $(LTAIL))

1624 $(LINTS_DIR)/ %I n: $(UTSBASE) / common/ bi gnuni % ¢ 1690 $(LINTS_ DIR)/ %I n: $(UTSBASE) / cormon/ avs/ ns/ sol aris/ % c
1625 @$(LHEAD) $(LINT.c) $< $(LTAIL)) 1691 @$(LHEAD) $(LINT.c) $< $(LTAIL))

1627 $(LINTS_DIR)/ %I n: $(COMMONBASE) / npi / % ¢ 1693 $(LINTS_DIR)/ %I n: $(UTSBASE) / common/ avs/ ns/ sv/ % c
1628 @ $(LHEAD) $(LINT.c) $< $(LTAIL)) 1694 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

1630 $(LINTS DR/ % I n: $(COMMONBASE) / acl / % ¢ 1696 $(LINTS DR/ %I n: $(UTSBASE) / common/ avs/ ns/ uni stat/ % c
1631 @S$(LHEAD) $(LINT.c) $< $(LTAIL)) 1697 @S$(LHEAD) $(LINT.c) $< $(LTAIL))

1633 $(LINTS_DIR)/ % | n: $(COVMONBASE) / avl / % ¢ 1699 $(LINTS_DIR)/ % I n: $(UTSBASE) / conmon/ des/ % c

1634 @$(LHEAD) $(LINT.c) $< $(LTAIL)) 1700 @$(LHEAD) $(LINT.c) $< $(LTAIL))

1636 $(LINTS_DI R) % | n: $(COMMONBASE) / ucode/ % ¢ 1702 $(LINTS_DIR)/ %I n: $(UTSBASE) / common/ crypt o/ api / % ¢
1637 @ $(LHEAD) $(LINT.c) $< $(LTAIL)) 1703 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

1639 $(LINTS_DIR)/ %I n: $(UTSBASE) / comrmon/ br and/ sn1/ % c 1705 $(LINTS_DIR)/ %I n: $(UTSBASE) / common/ crypt o/ core/ % ¢
1640 @ $(LHEAD) $(LINT.c) $< $(LTAIL)) 1706 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

1642

$(LINTS. DIR)/ %I n:

$(UTSBASE) / cormon/ br and/ sol ari s10/ % ¢

1708

$(LINTS_ DIR)/ % n:

$(UTSBASE) / common/ crypto/i o/ % c

new usr/src/uts/comon/ Makefile.rul es

1709

1711
1712

1714
1715

1717
1718

1720
1721

1723
1724

1726
1727

1729
1730

1732
1733

1735
1736

1738
1739

1741
1742

1744
1745

1747
1748

1750
1751

1753
1754

1756
1757

1759
1760

1762
1763

1765
1766

1768
1769

1771
1772

1774

@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % I n
@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ %I n:
@ $(LHEAD)

$(LINTS DIR)/ % n:

$(LINT.c) $< $(LTAIL))

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(UTSBASE) / common/ crypt o/ spi / % ¢
$(LTAIL))

$(UTSBASE) / common/ di sp/ % ¢
$(LTAIL))

$(UTSBASE) / common/ dt race/ % ¢
$(LTAIL))

$(COMMONBASE) / exacct/ % ¢
$(LTAIL))

$(UTSBASE) / common/ exec/ aout/ % ¢
$(LTAIL))

$(UTSBASE) / common/ exec/ el f/ % ¢
$(LTAIL))

$(UTSBASE) / common/ exec/ i ntp/ % c
$(LTAIL))

$(UTSBASE) / commmon/ exec/ shbin/ % c
$(LTAIL))

$(UTSBASE) / common/ exec/ j aval % ¢
$(LTAIL))

$(UTSBASE) / common/ fs/ % c
$(LTAIL))

$(UTSBASE) / common/ f s/ aut of s/ % ¢
$(LTAIL))

$(UTSBASE) / common/ f s/ cachefs/ % ¢
$(LTAIL))

$(UTSBASE) / common/ fs/ctfs/ % c
$(LTAIL))

$(UTSBASE) / common/ f s/ door fs/ % c
$(LTAIL))

$(UTSBASE) / common/ f s/ dcfs/ % ¢
$(LTAIL))

$(UTSBASE) / common/ f s/ devfs/ % c
$(LTAIL))

$(UTSBASE) / common/ f s/ dev/ % ¢
$(LTAIL))

$(UTSBASE) / common/ fs/fd/ % c
$(LTAIL))

$(UTSBASE) / common/ fs/fifofs/%c
$(LTAIL))

$(UTSBASE) / common/ fs/ hsfs/ % c
$(LTAIL))

$(UTSBASE) / common/ fs/ | of s/ % ¢
$(LTAIL))

$(UTSBASE) / common/ fs/ mtfs/ % c

27

new usr/src/uts/comon/ Makefile.rul es

$(LINT.

1775

1777
1778

1780
1781

1783
1784

1786
1787

1789
1790

1792
1793

1795
1796

1798
1799

1801
1802

1804
1805

1807
1808

1810
1811

1813
1814

1816
1817

1819
1820

1822
1823

1825
1826

1828
1829

1831
1832

1834
1835

1837
1838

1840

@ $(LHEAD)

$(LINTS_ DIR)/ % n:
@ $(LHEAD)

$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINTS_.DIR) /%I n:
@ $(LHEAD)

$(LINTS_ DIR)/ % n:
@ $(LHEAD)

$(LINTS_DIR) /%I n:
@ $(LHEAD)

$(LINTS_DIR)/ % | n:

@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % n:
@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ %I n:
@ $(LHEAD)

$(LINTS DIR)/ % n:

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(LTAIL))

$(UTSBASE) / common/ f s/ nanef s/ % ¢
$(LTAIL))

$(COVMONBASE) / snbsr v/ % ¢
$(LTAIL))

$(UTSBASE) / common/ f s/ snbsrv/ % c
$(LTAIL))

$(UTSBASE) / common/ f s/ nfs/ % ¢
$(LTAIL))

$(UTSBASE) / common/ f s/ obj fs/ % c
$(LTAIL))

$(UTSBASE) / common/ fs/ pcfs/ % c
$(LTAIL))

$(UTSBASE) / common/ fs/ portfs/ % c
$(LTAIL))

$(UTSBASE) / common/ f s/ proc/ % ¢
$(LTAIL))

$(UTSBASE) / common/ f s/ sharefs/ % ¢
$(LTAIL))

$(COVMONBASE) / snbel nt/ % ¢
$(LTAIL))

$(UTSBASE) / common/ f s/ snbcl nt/ net snb/ % ¢

S(LTAIL))

$(UTSBASE) / common/ f s/ snbcl nt/ snbf s/ % ¢

$(LTAIL))

$(UTSBASE) / common/ f s/ sockf s/ % c
$(LTAIL))

$(UTSBASE) / common/ f s/ specfs/ % c
$(LTAIL))

$(UTSBASE) / common/ f s/ swapf s/ % ¢
$(LTAIL))

$(UTSBASE) / common/ fs/ tnpfs/ % c
$(LTAIL))

$(UTSBASE) / common/ f s/ udf s/ % ¢
$(LTAIL))

$(UTSBASE) / common/ fs/ ufs/ % c
$(LTAIL))

$(UTSBASE) / common/ fs/ ufs_l og/ % ¢
$(LTAIL))

$(UTSBASE) / common/ i o/ vscan/ % ¢
$(LTAIL))

$(UTSBASE) / common/ fs/ zfs/ % ¢
$(LTAIL))

$(UTSBASE) / common/ f s/ zut/ % ¢

new usr/src/uts/comon/ Makefile.rul es

1841

1843
1844

1846
1847

1849
1850

1852
1853

1855
1856

1858
1859

1861
1862

1864
1865

1867
1868

1870
1871

1873
1874

1876
1877

1879
1880

1882
1883

1885
1886

1888
1889

1891
1892

1894
1895

1897
1898

1900
1901

1903
1904

1906

@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % I n
@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ %I n:
@ $(LHEAD)

$(LINTS DIR)/ % n:

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

c)

c)

9

c)

c)

c)

9

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$< $(LTAIL))

$(COVMONBASE) / xattr/ % c
$< $(LTAIL))

$(COVMONBASE) / zf s/ % ¢
$< $(LTAIL))

$(UTSBASE) / common/ gssapi / % ¢
$(KGSSDFLAGS) $< $(LTAIL))

$(UTSBASE) / commmon/ gssapi / mechs/ dunmy/ % c
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / % ¢
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / crypto/ % ¢
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / crypt o/ des/ % ¢
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / cr ypt o/ dk/ % ¢
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / crypt o/ os/ % ¢
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / crypt o/ arcfour/ % ¢
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / cr ypt o/ enc_provi der/ % ¢
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / cr ypt o/ hash_provi der/ % c
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / cr ypt o/ keyhash_provi der/ % c
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / crypt o/ raw % c
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / crypt o/ ol d/ % ¢
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / kr b5/ kr b/ % ¢
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / kr b5/ 0s/ % ¢
$(KGSSDFLAGS) $< $(LTAIL))

$(KMECHKRB5_BASE) / nmech/ % c
$(KGSSDFLAGS) $< $(LTAIL))

$(UTSBASE) / common/ i dnap/ % ¢
$< $(LTAIL))

$(UTSBASE) / common/ i net/ % c
$< $(LTAIL))

$(UTSBASE) / common/ i net / socknods/ % c
$< $(LTAIL))

$(UTSBASE) / common/ i net/ arp/ % ¢

new usr/src/uts/comon/ Makefile.rul es

1907

1909
1910

1912
1913

1915
1916

1918
1919

1921
1922

1924
1925

1927
1928

1930
1931

1933
1934

1936
1937

1939
1940

1942
1943

1945
1946

1948
1949

1951
1952

1954
1955

1957
1958

1960
1961

1963
1964

1966
1967

1969
1970

1972

@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % n:
@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ %I n:
@ $(LHEAD)

$(LINTS DIR)/ % n:

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

c)

c)

c)

c)

c)

c)

9

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$< $(LTAIL))

$(UTSBASE) / common/ i net /i p/ % c
$< $(LTAIL))

$(UTSBASE) / common/ i net /i pnet/ % c
$< $(LTAIL))

$(UTSBASE) / common/ i net/iptun/ %c
$< $(LTAIL))

$(UTSBASE) / common/ i net /i pf/ % c
$(| PFFLAGS) $< $(LTAIL))

$(UTSBASE) / common/ i net/ kssl /% c
$< $(LTAIL))

$(COWONBASE) / net / patricial % c
$(1 PFFLAGS) $< $(LTAIL))

$(UTSBASE) / common/ i net / udp/ % ¢
$< $(LTAIL))

$(UTSBASE) / common/ i net/ sctp/ % ¢
$< $(LTAIL))

$(UTSBASE) / common/ i net/tcp/ % c
$< $(LTAIL))

$(UTSBASE) / common/inet/ilb/%c
$< $(LTAIL))

$(UTSBASE) / cormon/ i net/ ncal/ % ¢
$< $(LTAIL))

$(UTSBASE) / common/ i net / dl pi st ub/ % c
$< $(LTAIL))

$(UTSBASE) / common/ i o/ % ¢
$< $(LTAIL))

$(UTSBASE) / common/ i o/ 1394/ % ¢
$< $(LTAIL))

$(UTSBASE) / common/ i o/ 1394/ adapters/ % c
$< $(LTAIL))

$(UTSBASE) / cormon/ i o/ 1394/ t ar get s/ av1394/ % c
$< $(LTAIL))

$(UTSBASE) / common/ i o/ 1394/ t ar get s/ dcaml394/ % c
$< $(LTAIL))

$(UTSBASE) / cormon/ i o/ 1394/ t ar get s/ scsal394/ % c
$< $(LTAIL))

$(UTSBASE) / common/ i o/ sbp2/ % ¢
$< $(LTAIL))

$(UTSBASE) / common/ i o/ aac/ % ¢
$< $(LTAIL))

$(UTSBASE) / common/ i o/ af e/ % ¢
$< $(LTAIL))

$(UTSBASE) / common/ i o/ atge/ % ¢

new usr/src/uts/comon/ Makefile.rul es

1973

1975
1976

1978
1979

1981
1982

1984
1985

1987
1988

1990
1991

1993
1994

1996
1997

1999
2000

2002
2003

2005
2006

2008
2009

2011
2012

2014
2015

2017
2018

2020
2021

2023
2024

2026
2027

2029
2030

2032
2033

2035
2036

2038

@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % I n
@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ %I n:
@ $(LHEAD)

$(LINTS DIR)/ % n:

$(LINT.c) $< $(LTAIL))

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i

31

o/arn/%c

o/ath/ % c

o/atu/ %c

o/ audi o/ inpl/%c

o/ audi o/ ac97/ % c

o/ audi o/ dr v/ audi 01575/ % c

o/ audi o/ dr v/ audi 0810/ % c

o/ audi o/ dr v/ audi ocm / % c

o/ audi o/ dr v/ audi ocm hd/ % c

o/ audi o/ dr v/ audi oens/ % c

o/ audi o/ dr v/ audi oemu10k/ % c

o/ audi o/ dr v/ audi ohd/ % c

o/ audi o/ dr v/ audi oi xp/ % c

o/ audi o/ drv/ audi ol s/ % c

o/ audi o/ dr v/ audi opci /% c

o/ audi o/ dr v/ audi op16x/ % c

o/ audi o/ dr v/ audi osol o/ % c

o/ audi o/ drv/ audi ots/ % c

o/ audi o/ dr v/ audi ovi a823x/ % c

o/ audi o/ drv/ audi ovi a97/ % c

o/ bfel/ % c

o/ bpf/ % c

new usr/src/uts/comon/ Makefile.rul es

$(LINT.

2039

2041
2042

2044
2045

2047
2048

2050
2051

2053
2054

2056
2057

2059
2060

2062
2063

2065
2066

2068
2069

2071
2072

2074
2075

2077
2078

2080
2081

2083
2084

2086
2087

2089
2090

2092
2093

2095
2096

2098
2099

2101
2102

2104

@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % n:
@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ %I n:
@ $(LHEAD)

$(LINTS DIR)/ % n:

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(COMMONBASE) / i scsi
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i

o/ bge/ % c

o/ bl kdev/ % c

o/ cardbus/ % c

o/ constar/lu/stnf_sbhd/ %c

o/ conmstar/port/fct/%c

o/ comstar/port/qlt/%c

o/ conmstar/port/srpt/%c

t/%c

o/ conmstar/port/fcoet/%c

o/ conmstar/port/iscsit/%c

o/ conmst ar/ port/pppt/ %c

o/ conmstar/stnf/%c

o/dld/%c

o/dls/%c

o/dnfe/%c

o/drm % c

o/efel%c

o/lelxl/%c

o/ fcoel % c

o/ hme/ % c

o/ pci ex/ % c

o/ hot pl ug/ hpcsve/ % c

new usr/src/uts/comon/ Makefile.rul es

2105

2107
2108

2110
2111

2113
2114

2116
2117

2119
2120

2122
2123

2125
2126

2128
2129

2131
2132

2134
2135

2137
2138

2140
2141

2143
2144

2146
2147

2149
2150

2152
2153

2155
2156

2158
2159

2161
2162

2164
2165

2167
2168

2170

@ $(LHEAD)

$(LINTS_ DIR)/ % n:
@ $(LHEAD)

$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINTS_.DIR) /%I n:
@ $(LHEAD)

$(LINTS_ DIR)/ %I n:
@ $(LHEAD)

$(LINTS_DIR) /%I n:
@ $(LHEAD)

$(LINTS_DIR) /%I n:

@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % I n
@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ %I n:
@ $(LHEAD)

$(LINTS DIR)/ % n:

$(LINT.c) $< $(LTAIL))

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

c)

9

c)

c)

c)

9

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(COWONBASE) / i scsi

33

o/ pci ex/ hotplug/ % c

o/ hot pl ug/ pci hp/ % c

o/ib/clients/rds/%c

o/ib/clients/rdsv3/ %c

o/ib/clients/iser/%c

o/ib/clients/ibd/ %c

o/ib/clients/eoibl%c

o/ib/clients/of/sol _ofs/%c

o/ibl/clients/of/sol _ucma/ % c

o/ib/clients/of/sol _umad/ % c

o/ib/clients/of/sol _uverbs/ %

o/ib/clients/sdp/%c

o/ib/mgt/ibcm %c

o/ ib/mgt/ibdm % c

o/ ib/ngt/ibdma/ % c

o/ib/mgt/ibnf/%c

o/ i b/ibnex/ % c

o/iblibtl/%c

o/ ib/adapters/tavor/%c

o/ i b/ adapt er s/ hermon/ % c

o/ib/clients/daplt/%c

/%c

new usr/src/uts/comon/ Makefile.rul es

$(LINT.

2171

2173
2174

2176
2177

2179
2180

2182
2183

2185
2186

2188
2189

2191
2192

2194
2195

2197
2198

2200
2201

2203
2204

2206
2207

2209
2210

2212
2213

2215
2216

2218
2219

2221
2222

2224
2225

2227
2228

2230
2231

2233
2234

2236

@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % n:
@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ %I n:
@ $(LHEAD)

$(LINTS DIR)/ % n:

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

c)

c)

c)

c)

c)

c)

9

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i

o/idm %c

o/ipw %c

o/iwh/%c

oliwi/%c

o/ iwk/ % c

o/ iwp/ % c

o/ kb8042/ % c

o/ kbtrans/ % c

o/ ksocket/ % c

o/ aggr/ % c

o/lp/%c

o/l v hot spares/ % c

o/l v md/ % ¢

o/lvmmrror/%c

o/lvmraid/ %c

o/lvm softpart/ %c

o/lvm stripel %c

o/lvm notify/ %c

o/lvmtrans/%c

o/ mac/ % c

o/ mac/ pl ugi ns/ % c

o/ mega_sas/ % c

34

new usr/src/uts/comon/ Makefile.rul es

2237

2239
2240

2242
2243

2245
2246

2248
2249

2251
2252

2254
2255

2257
2258

2260
2261

2263
2264

2266
2267

2269
2270

2272
2273

2275
2276

2278
2279

2281
2282

2284
2285

2287
2288

2290
2291

2293
2294

2296
2297

2299
2300

2302

@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % I n
@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ %I n:
@ $(LHEAD)

$(LINTS DIR)/ % n:

$(LINT.c) $< $(LTAIL))

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

c)

9

c)

c)

c)

9

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i

o/mil/%c

o/ nr_sas/%c

o/ scsi / adapt ers/ npt _sas/ % c

o/ nxfel%c

o/mM/%c

o/ mM /mM _fw %c

o/ net 80211/ % c

o/ nge/ % c

o/ nxgel/ % c

o/ nxge/ % s

o/ nxge/ npi/ % c

o/pci-ide/%c

o/ pcntial % c

o/ pcan/ % c

o/ pcn/ % c

o/ pcwW /% c

o/ ppp/ sppp/ % ¢

o/ ppp/ spppasyn/ % c

o/ ppp/ sppptun/ % c

o/ral/%c

o/rge/ %c

o/rtls/%c

35

new usr/src/uts/comon/ Makefile.rul es

$(LINT.

2303

2305
2306

2308
2309

2311
2312

2314
2315

2317
2318

2320
2321

2323
2324

2326
2327

2329
2330

2332
2333

2335
2336

2338
2339

2341
2342

2344
2345

2347
2348

2350
2351

2353
2354

2356
2357

2359
2360

2362
2363

2365
2366

2368

@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % n:
@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ %I n:
@ $(LHEAD)

$(LINTS DIR)/ % n:

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

c)

c)

c)

c)

c)

c)

9

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i

36

o/rsm%c

o/rtw %c

o/ rum % c

o/ rwd/ % c

o/rwn/ % c

o/ sat a/ adapters/ahci/%c

o/ sat a/ adapters/nv_sata/ % c

o/ sat a/ adapt ers/si 3124/ % c

o/satalinpl/%c

o/ scsi/ adapters/ % c

o/ scsi / adapt er s/ bl k2scsal/ % ¢

o/ scsi/ adapters/pnts/ %c

o/ scsi/ adapters/scsi_vhci/%c

o/ scsi / adapt er s/ scsi _vhci / f op

o/ fibre-channel /ul p/%c

o/ fibre-channel /inmpl/%c

o/ fibre-channel/fca/qglc/%c

o/ fibre-channel/fcalql ge/%c

o/ fibre-channel /fcal/enm xs/%c

o/ fibre-channel /fcaloce/ %c

o/ fibre-channel /fcal/fcoei/%c

o/ scsi/conf/%c

new usr/src/uts/comon/ Makefile.rul es

2369

2371
2372

2374
2375

2377
2378

2380
2381

2383
2384

2386
2387

2389
2390

2392
2393

2395
2396

2398
2399

2401
2402

2404
2405

2407
2408

2410
2411

2413
2414

2416
2417

2419
2420

2422
2423

2425
2426

2428
2429

2431
2432

2434

@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % I n
@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ %I n:
@ $(LHEAD)

$(LINTS DIR)/ % n:

$(LINT.c) $< $(LTAIL))

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i

37

o/scsilinpl/%c

o/ scsi/targets/%c

o/ sdcar d/ adapt er s/ sdhost/ % c

o/ sdcard/inpl/%c

o/ sdcard/ targets/sdcard/ % c

o/ sfel%c

o/ simet/ % c

o/ sof t mac/ % ¢

o/ uath/ % c

o/ uath/uath_fw % c

o/ural/%c

o/urtw % c

o/ usb/ cl i ent s/ audi o/ usb_ac/ %

o/ usb/ cl i ent s/ audi o/ ush_as/ %

o/ usb/ cl i ent s/ audi o/ usb_ah/ %

o/ usb/ cl i ents/usbskel /% c

o/ usb/ cli ents/video/ usbvc/ % c

o/ usb/clients/hwarc/ % c

o/usb/clients/hid/ %c

o/ usb/ cl i ents/ hidparser/%c

o/ usb/ cli ent s/ usbkbm % c

o/ usb/ clients/usbnms/ % c

new usr/src/uts/comon/ Makefile.rul es

$(LINT.

2435

2437
2438

2440
2441

2443
2444

2446
2447

2449
2450

2452
2453

2455
2456

2458
2459

2461
2462

2464
2465

2467
2468

2470
2471

2473
2474

2476
2477

2479
2480

2482
2483

2485
2486

2488
2489

2491
2492

2494
2495

2497
2498

2500

@ $(LHEAD)

$(LINTS_ DIR)/ % n:
@ $(LHEAD)

$(LINTS DIR)/ % | n:
@ $(LHEAD)

$(LINTS_.DIR) /%I n:
@ $(LHEAD)

$(LINTS_ DIR)/ % n:
@ $(LHEAD)

$(LINTS_DIR) /%I n:
@ $(LHEAD)

$(LINTS_DIR)/ % | n:

@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % n:
@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ %I n:
@ $(LHEAD)

$(LINTS DIR)/ % n:

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i

38

o/ usb/ cl i ent s/ usbi nput/ usbwem

o/ usb/ clients/ugen/%c

o/ usb/clients/printer/%c

o/ usb/ clients/usbser/%c

o/ usb/ cli ents/ usbser/usbsacm

o/ usb/ cl i ents/usbser/usbftdi/

o/ usb/ cl i ent s/ usbser/usbser _k

o/ usb/ cli ents/ usbser/usbsprl/

o/ usb/clients/wisb_df/%c

o/ usb/ clients/ hwal480_fw % c

o/ usb/clients/wish_ca/%c

o/ usb/ cl i ents/usbecm % c

o/ usb/ hcd/ openhci /% c

o/ usb/ hcd/ ehci/ % c

o/ usb/ hcd/ uhci/ % c

o/ usb/ hubd/ % c

o/ usb/ scsa2ush/ % c

o/ usb/usb_m d/ % c

o/ usb/usb_ial %c

o/ usbh/ usbhal/ % c

o/ usb/ usball/ % c

o/ uwb/ uwba/ % c

new usr/src/uts/comon/ Makefile.rul es

2501

2503
2504

2506
2507

2509
2510

2512
2513

2515
2516

2518
2519

2521
2522

2524
2525

2527
2528

2530
2531

2533
2534

2536
2537

2539
2540

2542
2543

2545
2546

2548
2549

2551
2552

2554
2555

2557
2558

2560
2561

2563
2564

2566

@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_ DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % I n
@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ %I n:
@ $(LHEAD)

$(LINTS DIR)/ % n:

$(LINT.c) $< $(LTAIL))

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

c)

9

c)

c)

c)

9

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / comon/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i
$(LTAIL))

$(UTSBASE) / common/ i

o/ usb/ hwa/ hwahc/ % ¢

o/ vui dm ce/ % c

o/vnic/%c

o/ wpi /% c

o/ zyd/ % c

o/ chxge/ com % ¢

o/ chxge/ % c

o/ cxgbe/ common/ % ¢

o/ cxgbe/ shared/ % c

o/ cxgbe/ firmare/ % c

o/ cxgbe/ t 4nex/ % c

o/ cxgbe/ cxgbe/ % c

o/ i xgh/ % c

o/ xge/ drv/ % c

o/ xge/ hal / xgehal / % ¢

0/ €1000g/ % ¢

o/igb/%c

o/iprb/%c

o/ i xghe/ % c

o/ ntxn/ % c

o/ nyri 10ge/ drv/ % c

pp/ % c

39

new usr/src/uts/comon/ Makefile.rul es

$(LINT.

2567

2569
2570

2572
2573

2575
2576

2578
2579

2581
2582

2584
2585

2587
2588

2590
2591

2593
2594

2596
2597

2599
2600

2602
2603

2605
2606

2608
2609

2611
2612

2614
2615

2617
2618

2620
2621

2623
2624

2626
2627

2629
2630

2632

@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ %I n:
@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DIR)/ % n:
@ $(LHEAD)
$(LINTS_. DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ % n:
@ $(LHEAD)
$(LINTS_ DIR) /% I n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS_DIR)/ % | n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS DR/ %I n:
@ $(LHEAD)
$(LINTS DIR)/ % | n:
@ $(LHEAD)
$(LINTS_.DR)/ %I n:
@ $(LHEAD)

$(LINTS_ DIR)/ % n:

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

$(LINT.

$(LI NT.

$(LINT.

$(LINT.

c)

c)

c)

c)

c)

c)

9

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

c)

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$<

$(LTAIL))

$(UTSBASE) / common/ i pp/ i pgpc/ % ¢

S(LTAIL))

$(UTSBASE) / common/ i pp/ dl cosnk/ % ¢

$(LTAIL))

$(UTSBASE) / common/ i pp/ f | owacct/ % ¢

$(LTAIL))

$(UTSBASE) / common/ i pp/ dscpnk/ % ¢

S(LTAIL))

$(UTSBASE) / common/ i pp/ neters/ % c

$(LTAIL))

$(UTSBASE) / cormon/ ki conv/ ki conv_enea/ % ¢

$(LTAIL))

$(UTSBASE) / common/ ki conv/ ki conv_j a/ % c

$(LTAIL))

$(UTSBASE) / common/ ki conv/ ki conv_ko/ % ¢

S(LTAIL))

$(UTSBASE) / cormon/ ki conv/ ki conv_sc/ % c

$(LTAIL))

$(UTSBASE) / common/ ki conv/ ki conv_tc/ % c

$(LTAIL))

$(UTSBASE) / common/ kI ml % ¢
$(LTAIL))

$(UTSBASE) / common/ kndb/ % ¢
$(LTAIL))

$(UTSBASE) / common/ krt 1 d/ % c
$(LTAIL))

$(UTSBASE) / common/ kt i/ % c
$(LTAIL))

$(COVMONBASE) / | i st/ % ¢
$(LTAIL))

$(COMVONBASE) / | viri % ¢
$(LTAIL))

$(COVMONBASE) / | znma/ % ¢
$(LTAIL))

$(COMMONBASE) / cr ypt o/ nd4/ % ¢
$(LTAIL))

$(COVMONBASE) / cr ypt o/ md5/ % ¢
$(LTAIL))

$(COVMONBASE) / net / dhcp/ % ¢
$(LTAIL))

$(COMMONBASE) / nvpai r/ % c
$(LTAIL))

$(UTSBASE) / commmon/ os/ % ¢

new usr/ src/uts/ common/ Makefile.rul es 41 new usr/ src/uts/ common/ Makefile.rul es

2633 @ $(LHEAD) $(LINT.c) $< $(LTAIL))
2700 $(LINTS_DIR)/% | n: $(UTSBASE) / common/ znmod/ % ¢

2635 $(LINTS_ DIR)/ % | n: $(UTSBASE) / common/ r pc/ % ¢ 2701 @ $(LHEAD) $(LINT.c) $(ZMODLI NTFLAGS) $< $(LTAIL))

2636 @S$(LHEAD) $(LINT.c) $< $(LTAIL))
2703 $(LINTS_DIR)/zlib_obj.In: $(ZLI B_OBIS: % 0=$(LI NTS_DIR)/ % I n) \

2638 $(LINTS_DIR)/% I n: $(UTSBASE) / cormon/ pcnti a/ cs/ % ¢ 2704 $(UTSBASE) / common/ znod/ zlib_lint.c

2639 @ $(LHEAD) $(LINT.c) $< $(LTAIL)) 2705 @ $(LHEAD) $(LINT.c) -C $(LINTS_ DIR)/zlib_obj \
2706 $(UTSBASE) / common/ zrmod/ zlib_lint.c $(LTAIL))

2641 $(LINTS_DIR)/% | n: $(UTSBASE) / common/ pcnti a/ cis/ % c

2642 @ $(LHEAD) $(LINT.c) $< $(LTAIL)) 2708 $(LINTS_DIR)/% I n: $(UTSBASE) / common/ i o/ hxge/ % ¢
2709 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

2644 $(LINTS_.DIR)/ %I n: $(UTSBASE) / common/ pcnti a/ nexus/ % ¢

2645 @S$(LHEAD) $(LINT.c) $< $(LTAIL)) 2711 $(LINTS DIR)/ %I n: $(UTSBASE) / conmon/ i o/ t pnf % ¢
2712 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

2647 $(LINTS_DIR)/% I n: $(UTSBASE) / common/ pcnti a/ pcs/ % ¢

2648 @$(LHEAD) $(LINT.c) $< $(LTAIL)) 2714 $(LINTS_ DIR)/ % | n: $(UTSBASE) / common/ i o/ t pm % s
2715 @S$(LHEAD) $(LINT.c) $< $(LTAIL))

2650 $(LINTS_DIR)/% I n: $(UTSBASE) / common/ r pc/ % ¢

2651 @ $(LHEAD) $(LINT.c) $< $(LTAIL)) 2717 $(LINTS_ DIR)/ % | n: $(UTSBASE) / conmon/ i o/ vr/ % ¢
2718 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

2653 $(LINTS_DIR)/% | n: $(UTSBASE) / common/ r pc/ sec/ % ¢

2654 @$(LHEAD) $(LINT.c) $< $(LTAIL)) 2720 $(LINTS_DIR)/% | n: $(UTSBASE) / cormon/ i o/ yge/ % ¢
2721 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

2656 $(LINTS_ DR/ %I n: $(UTSBASE) / common/ r pc/ sec_gss/ % ¢

2657 @S$(LHEAD) $(LINT.c) $< $(LTAIL)) 2723 $(LINTS_ DIR)/ % | n: $(COMMONBASE) / f sr epar se/ % ¢
2724 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

2659 $(LINTS_DIR)/% I n: $(COMMONBASE) / cr ypt o/ shal/ % c

2660 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

2662 $(LINTS_DIR)/% | n: $(COMMONBASE) / cr ypt o/ sha2/ % c

2663 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

2665 $(LINTS_DIR)/% I n: $(UTSBASE) / common/ syscal | / % ¢

2666 @S$(LHEAD) $(LINT.c) $< $(LTAIL))

2668 $(LINTS_DIR)/% I n: $(UTSBASE) / common/ tnf/ % c

2669 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

2671 $(LINTS DIR)/ %I n: $(COMVONBASE) / t sol / % ¢

2672 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

2674 $(LINTS DIR)/ % n: $(COMVONBASE) / ut i | / % ¢

2675 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

2677 $(LINTS_DIR)/ % n: $(COVMONBASE) / uni code/ % ¢

2678 @S$(LHEAD) $(LINT.c) $< $(LTAIL))

2680 $(LINTS_DIR)/% I n: $(UTSBASE) / common/ v % ¢

2681 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

2683 $(LINTS_DIR)/% I n: $(UTSBASE) / common/ i o/ scsi / adapters/iscsi/%c

2684 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

2686 $(LINTS_DIR)/ % n: $(COMMONBASE) / i scsi / % ¢

2687 @S$(LHEAD) $(LINT.c) $< $(LTAIL))

2689 $(LINTS_DIR)/% I n: $(UTSBASE) / common/ i net/ ki f conf/ % ¢

2690 @$(LHEAD) $(LINT.c) $< $(LTAIL))

2692 $(LINTS_DIR)/% I n: $(UTSBASE) / common/ i o/ virtiol/ % c

2693 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

2695 $(LINTS_DIR)/% I n: $(UTSBASE) / cormon/ i o/ vi obl k/ % c

2696 @ $(LHEAD) $(LINT.c) $< $(LTAIL))

2698 ZMODLI NTFLAGS = -errof f =E_CONSTANT_CONDI Tl ON

new usr

*ok ok ok ok ok Kk

/'src/uts/comon/iol/tl.c 1

R R R R

161686 Sun Aug 25 23:51:03 2013

new usr

/src/uts/comon/io/tl.c

195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp

Revi ewed by: Jereny Jones <jereny@lel phi x. con>

Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

IR R R R R R R RS R SR S R RS RS E R E R E RS E R R R R REREREEEEEEEE]
1/*

*

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN

w W
Hw
* %

~
~
L I R R I I I R I

* Ok Sk ok b Sk O F b ok b Rk ok ok ok % Rk Ok % b % b
-~

CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww:.opensolaris.org/os/licensing.

See the License for the specific | anguage governi ng perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

~

Copyright 2010 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to |license terns.

/

Copyri ght 2011 Nexenta Systens, Inc. Al rights reserved.
Copyright (c) 2012 by Del phix. Al rights reserved.

Mil tithreaded STREAMS Local Transport Provider.

This driver provides TLI as well as socket semantics. It provides
connectionl ess, connection oriented, and connection oriented with orderly

rel ease transports for TLI and sockets. Each transport type has separate nane
spaces (i.e. It is not possible to connect froma socket to a TLI endpoint) -
this renoves any nane space conflicts when binding to socket style transport
addr esses.

NOTE: There is one exception:
the sane nanespace. In fact,

Socket ticots and ticotsord transports share
sockets always use ticotsord type transport.

The driver node is specified during open() by the minor nunber used for
open.

The sockets in addition have the follow ng semantic differences:
No support for passing up credentials (TL_SET[U] CRED).

Options are passed through transparently on T_CONN_REQ to T_CONN_I| ND,
from T_UNI TDATA REQ to T_UNI DATA IND, and from T_OPTDATA REQ to
T_OPTDATA_I ND.

The T_CONN_CON is generated when processing the T_CONN_REQ i.e. before
a T_CONN_RES is received fromthe acceptor. This means that a socket
connect will conplete before the peer has called accept.

new usr/src/uts/comon/ioltl.c 2

I T T T T T T T I T T T 2 2 B

MULTI THREADI NG

The driver does not use STREAMS protection nmechanisms. Instead it uses a
generic "serializer" abstraction. Mbst of the operations are executed behind
the serializer and are, essentially single-threaded. Al functions executed
behind the same serializer are strictly serialized. So if one thread calls

serializer_enter(serializer, foo, npl, argl); and another thread calls
serializer_enter(serializer, bar, np2, argl); then (depending on which one
was cal led) the actual sequence will be foo(npl, argl); bar(npl, arg2) or

argl); But foo() and bar() wll never run at the

bar (npl, arg2); foo(npl,

sane tine.

Connectionl ess transport use a single serializer per transport type (one for
TLI and one for sockets. Connection-oriented transports use finer-grained
serializers.

Al'l COTS-type endpoints start their life with private serializers. During
connecti on request processing the endpoint serializer is switched to the
listener's serializer and the rest of T_CONN_REQ processing is done on the
listener serializer. During T_CONN_RES processing the eager serializer is
switched fromlistener to acceptor serializer and after that point all
processing for eager and acceptor happens on this serializer. To avoid races
wi th endpoint closes while its serializer may be changing closes are bl ocked
whil e serializers are mani pul at ed.

Ref erences accounting

Endpoi nts are reference counted and freed when the last reference is
dropped. Functions within the serializer may access an endpoint state even
after an endpoint closed. The te_closing being set on the endpoint indicates
that the endpoint entered its close routine.

One reference is held for each opened endpoint instance. The reference
counter is increnmented when the endpoint is |linked to another endpoint and
decrenmented when the link disappears. It is also incremented when the
endpoint is found by the hash table | ookup. This increment is atomc with the
| ookup itself and happens while the hash table read | ock is held.

Cl ose synchroni zation

During close the endpoint as marked as closing using te_closing flag. It is
usual Iy enough to check for te_closing flag since all other state changes
happen after this flag is set and the close entered serializer. Imediately
after setting te_closing flag tl_close() enters serializer and waits until
the call back finishes. This allows all functions called within serializer to
simply check te_closing without any | ocks.

Serial i zer managenent.

For COTS transports serializers are created when the endpoint is constructed
and destroyed when the endpoint is destructed. CLTS transports use gl obal
serializers - one for sockets and one for TLI.

COTS serializers have separate reference counts to deal with several

endpoi nts sharing the sane serializer. There is a subtle problemrelated to
the serializer destruction. The serializer should never be destroyed by any
function executed inside serializer. This nmeans that close has to wait till
all serializer activity for this endpoint is finished before it can drop the
last reference on the endpoint (which may as well free the serializer). This
is only relevant for COTS transports which nanage serializers

new usr/src/uts/comon/ioltl.c 3

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

R T A 2

R T T R A T

*

* Ok kR ok k¥

dynamical ly. For CLTS transports close may conplete w thout waiting for all
serializer activity to finish since serializer is only destroyed at driver
detach tine.

COTS endpoi nts keep track of the nunber of outstanding requests on the
serializer for the endpoint. The code handling accept() avoids changing
client serializer if it has any pending nessages on the serializer and
instead noves acceptor to |listener’s serializer.

Use of hash tables

The driver uses nodhash hash table inplementation. Each transport uses two
hash tables - one for finding endpoints by acceptor 1D and another one for
findi ng endpoi nts by address. For sockets TICOTS and TlI COTSORD share the sane
pair of hash tables since sockets only use TI COTSORD.

Al'l hash tables | ookups increnent a reference count for returned endpoints,
so we nmay safely check the endpoint state even when the endpoint is renoved
fromthe hash by another thread i mediately after it is found.

CLOSE processing

The driver enters serializer twice on close().
foll ow ng:

The cl ose sequence is the

1) Wait until closing is safe (te_cl osewait beconmes zero)
This step is needed to prevent close during serializer switches. In nost
cases (close happening after connection establishment) te_closewait is

zero.
1) Set te_closing.
2) Call tl_close_ser() within serializer and wait for it to conplete.

te_close_ser sinply marks endpoi nt and wakes up waiting tl
It also needs to clear wite-side q_next
bef ore gprocsoff().

_close().
pointers - this should be done

Thi s synchronous serializer entry during close is needed to ensure that
the queue is valid everywhere inside the serializer.

Not e t hat
so it will

in many cases close will execute tl

not wait at all

_close_ser() synchronously,

3) Calls gprocsoff().
4) Calls tl_close_finish_ser() within the serializer and waits for it to
conplete (for COTS transports). For CLTS transport there is no wait.

tl_close_finish_ser() Finishes the close process and wakes up waiting
close if there is any.

Note that in nbst cases close will enter te_close_ser_finish()
synchronously and will not wait at all.

Fl ow Contr ol

The driver inplenents both read and wite side service routines. No one calls
putqg() on the read queue. The read side service routine tl_rsrv() is called
when the read side streamis back-enabled. It enters serializer synchronously
(waits till serializer processing is conplete). Wthin serializer it
back-enabl es all endpoints bl ocked by the queue for connection-Iess
transports and enables wite side service processing for the peer for

new usr/src/uts/comon/io/tl.c 4
191 * connection-oriented transports.

192 *

193 * Read and wite side service routines use special nblk_sized space in the
194 * endpoint structure to enter perineter.

195 *

196 * Wite-side flow control

197 % ceeeee e

198 *

199 * Wite side flow control is a bit tricky. The driver needs to deal with two
200 * message queues - the explicit STREAMS nessage queue maintai ned by

201 * putq()/getq()/putbqg() and the inplicit queue within the serializer. These two
202 * queues shoul d be synchronized to preserve nessage ordering and shoul d

203 * maintain a single order determ ned by the order in which nmessages enter

204 * tl_wput(). In order to naintain the ordering between these two queues the
205 * STREAMS queue is only nanipulated within the serializer, so the ordering is
206 * provided by the serializer.

207 *

208 * Functions called fromthe tl_wsrv() sonetimes may call putbqg(). To

209 * imediately stop any further processing of the STREAMS nessage queues the
210 * code calling putbq() also sets the te_nowsrv flag in the endpoint. The wite
211 * side service processing stops when the flag is set.

212 *

213 * The tl_wsrv() function enters serializer synchronously and waits for it to
214 * conplete. The serializer call-back tl_wsrv_ser() either drains all nessages
215 * on the STREAMS queue or ternminates when it notices the te_nowsrv flag

216 * set. Note that the maxi mum anount of messages processed by tl_wput_ser() is
217 * always bounded by the anount of nessages on the STREAMS queue at the tinme
218 * tl_wsrv_ser() is entered. Any new nessages nay only appear on the STREAMS
219 * queue from another serialized entry which can’t happen in parallel. This

220 * guarantees that tl_wput_ser() is conplete in bounded tinme (there is no risk
221 * of it draining forever while witer places new nessages on the STREAMS

222 * queue).

223 *

224 * Note that a closing endpoint never sets te_nowsrv and never calls putbq().
225 *

226 *

227 * Unix Domain Sockets

228 *

229 *

230 * The driver knows the structure of Unix Donmmin sockets addresses and treats
231 * themdifferently fromgeneric TLI addresses. For sockets inplicit binds are
232 * requested by setting SOU MMAC IMPLICIT in the soua_magic part of the address
233 * instead of using address length of zero. Explicit binds specify

234 * SOU MAG C EXPLICI T as magic.

235 *

236 * For inplicit binds we always use mnor nunber as soua_vp part of the address
237 * and avoid any hash table | ookups. This saves two hash tabl es | ookups per

238 * anonynous bind.

239 *

240 * For explicit address we hash the vnode pointer instead of hashing the

241 * full-scal e address+zone+l ength. Hashing by pointer is nore efficient then
242 * hashing by the full address.

243 *

244 * For unix domain sockets the te_ap is always pointing to te_uxaddr part of the
245 * tep structure, so it should be never freed.

246 *

247 * Also for sockets the driver always uses mnor nunber as acceptor id.

248 *

249 * TPl VI OLATI ONS

250 * -------o------

251 *

252 * This driver violates TPl in several respects for Uni x Domai n Sockets:

253 *

254 * 1) It treats O T_BIND REQ as T_BIND REQ and refuses bind if an explicit bind
255 * is requested and the endpoint is already in use. There is no point in
256 * generating an unused address since this address will be rejected by

new usr/src/uts/comon/ioltl.c 5

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

B T T . T S I

*

B T

sockfs anyway. For inplicit binds it always generates a new address
(sets soua_vp to its mnor nunber)

2) It always uses mnor nunber as acceptor |ID and never uses queue
pointer. It is ok since sockets get acceptor |D from T_CAPABI LI TY_REQ
message and they do not use the queue pointer

3) For Listener sockets the usual sequence is to issue bind() zero backl og
followed by listen(). The listen() should be issued with non-zero
backl og, so sotpi_listen() issues unbind request followed by bind
request to the same address but with a non-zero gl en value. Both
tl_bind() and tl_unbind() require wite |ock on the hash table to
insert/renove the address. The driver does not renove the address from
the hash for endpoints that are bound to the explicit address and have
backl og of zero. During T_BIND REQ processing if the address requested
is equal to the address the endpoint already has it updates the backl og
wi thout reinserting the address in the hash table. This optim zation
avoi ds two hash table updates for each |istener created. It always
avoi ds the problem of a "stol en" address when another |istener may use
the sane address between the unbind and bind and suddenly listen() fails
because address is in use even though the bind() succeeded

CONNECTI ONLESS TRANSPORTS

Connectionl ess transports all share the sane serializer (one for TLI and one
for Sockets). Functions executing behind serializer can check or nodify state
of any endpoi nt

When endpoint X talks to another endpoint Y it caches the pointer to Y in the
te_lastep field. The next tine X tal ks to some address A it checks whether A
is the same as Y's address and if it is there is no need to |ookup Y. If the
address is different or the state of Y is not appropriate (e.g. closed or not
idle) X does a | ookup using tl_find_peer() and caches the new address

NOTE: tl _find_peer() never returns closing endpoint and it places a refhold
on the endpoint found

During close of endpoint Y it doesn't try to renove itself from other

endpoi nts caches. They will detect that Y is gone and will search the peer
endpoi nt agai n.
Fl ow Control Handling

Each connectionl ess endpoi nt keeps a |ist of endpoints which are
flowcontrolled by its queue. It also keeps a pointer to the queue which
flowcontrols itself. \henever flow control releases for endpoint X it
enabl es all queues fromthe list. During close it al so back-enabl es everyone
inthe list. If Xis flowcontrolled when it is closing it renpves it from
the peers list.

DATA STRUCTURES

Each endpoint is represented by the tl_endpt_t structure which keeps all the
endpoi nt state. For connection-oriented transports it has a keeps a list

of pending connections (tl_icon_t). For connectionless transports it keeps a
list of endpoints flow controlled by this one

Each transport type is represented by a per-transport data structure
tl_transport_state_t. It contains a pointer to an acceptor ID hash and the
endpoi nt address hash tables for each transport. It also contains pointer to
transport serializer for connectionless transports

Each endpoint keeps a link to its transport structure, so the code can find

new usr/src/uts/comon/ioltl.c

323 * all per-transport information quickly

324 */

326 #include <sys/types. h>

327 #include <sys/inttypes. h>

328 #incl ude <sys/stream h>

329 #incl ude <sys/stropts. h>

330 #define _SUN_TPI_VERSI ON 2

331 #include <sys/tihdr. h>

332 #include <sys/strl og. h>

333 #incl ude <sys/ debug. h>

334 #incl ude <sys/cred. h>

335 #incl ude <sys/errno. h>

336 #include <sys/ kmem h>

337 #include <sys/id_space. h>

338 #incl ude <sys/ nmodhash. h>

339 #include <sys/ nkdev. h>

340 #incl ude <sys/tl.h>

341 #incl ude <sys/stat.h>

342 #incl ude <sys/conf. h>

343 #incl ude <sys/nodct! . h>

344 #incl ude <sys/strsun. h>

345 #incl ude <sys/ socket. h>

346 #incl ude <sys/socketvar. h>

347 #include <sys/sysnacr os. h>

348 #incl ude <sys/xti_xtiopt.h>

349 #incl ude <sys/ ddi . h>

350 #i ncl ude <sys/sunddi . h>

351 #include <sys/ zone. h>

352 #incl ude <i net/conmon. h> /* typedef int (*pfi_t)() for inet/optcomh */
353 #i ncl ude <i net/optcom h>

354 #incl ude <sys/strsubr. h>

355 #incl ude <sys/ ucred. h>

356 #incl ude <sys/suntpi.h>

357 #include <sys/list.h>

358 #incl ude <sys/serializer.h>

360 /*

361 * TBD List

362 * 14 Elimnate state changes through table

363 * 16. AF_UNI X socket options

364 * 17. connect() for ticlts

365 * 18. support for "netstat" to show AF_UNI X plus TLI |oca
366 * transport connections

367 * 21. sanity check to flushing on sending M ERROR
368 */

370 /*

371 * CONSTANT DECLARATI ONS

372 * e

373 */

375 [*

376 * Local declarations

377 */

378 #define NEXTSTATE(EV, ST) ti_statetbl [EV][ST]
380 #defi ne BADSEQNUM (-1) /* initial seq nunber used by T_DI SCON_|IND */
381 #define TL_BUFWAIT (10000) /* usecs to wait for allocb buffer timeout */
382 #define TL_TIDUSZ (64*1024) /* tidu size when "strmsgz" is unlimted (0) */
383 /*

384 * Hash tables size

385 */

386 #define TL_HASH SI ZE 311

388 /*

new usr/src/uts/comon/ioltl.c 7 new usr/src/uts/comon/ioltl.c

389 * Definitions for nodule_info 455 SOL_ SOCKET,
390 */ 456 QA R
391 #define TL_ID (104) /* modul e | D nunber */ 457 QA R,
392 #define TL_NAMVE "t /* nmodul e name */ 458 OP_NP,
393 #define TL_M NPSZ (0) /* mn packet size */ 459 0,
394 #define TL_MAXPSZ | NFPSZ /* max packet size zZzZzZ */ 460 sizeof (t_scalar_t),
395 #define TL_H WAT (16*1024) /* hi water mark */ 461 0
396 #define TL_LOWAT (256) /* 1o water mark */ 462 1,
397 [* 463 {
398 * Definition of minor nunbers/nodes for new transport provider nodes. 464 SO_RECVUCRED,
399 * W view the socket use as a separate nbde to get a separate nanme space. 465 SOL_ SOCKET,
400 */ 466 QA _RW
401 #define TL_TI COTS 0 /* connection oriented transport */ 467 OA RW
402 #define TL_TI COTSORD 1 /* COTS w orderly rel ease */ 468 OP_NP,
403 #define TL_TICLTS 2 /* connectionl ess transport */ 469 o0,
404 #define TL_UNUSED 3 470 si zeof (int),
405 #define TL_SOCKET 4 /* Socket */ 471 0
406 #define TL_SOCK_COTS (TL_SOCKET| TL_TI COTS) 472 }
407 #define TL_SOCK_COTSORD (TL_SOCKET| TL_TI COTSORD) 473 };
408 #define TL_SOCK_CLTS (TL_SOCKET| TL_TI CLTS) __unchanged_portion_onitted_
410 #define TL_M NOR_MASK 0x7
411 #define TL_M NOR_START (TL_TICLTS + 1) 4253 static void
4254 tl| _connected_cots_addr_req(nbl k_t *np, tl_endpt_t *tep)
413 [* 4255 {
414 * LOCAL MACROS 4256 tl _endpt _t *peer_tep = tep->te_conp;
415 */ 4255 tl _endpt _t *peer _tep;
416 #define T_ALI GN\(p) P2ROUNDUP((p), sizeof (t_scalar_t)) 4257 size_t ack_sz;
4258 bl k_t *acknp;
418 | * 4259 struct T_addr_ack *taa;
419 * EXTERNAL VARI ABLE DECLARATI ONS 4260 uchar _t *addr _startp;
420 * e i oo m oo
421 */ 4262 if (tep->te_closing) {
422 | * 4263 freensg(nmp);
423 * state table defined in the OS space.c 4264 return;
424 x| 4265 }
425 extern char ti_statetbl [TE_NOEVENTS] [TS_NOSTATES] ;
4267 if (peer_tep == NULL || peer_tep->te_closing) {
427 | * 4268 tl_error_ack(tep->te_wg, np, TSYSERR, ECONNRESET, T_ADDR REQ);
428 * STREAMS DRI VER ENTRY PO NTS PROTOTYPES 4269 return;
429 */ 4270 }
430 static int tl_open(queue_t *, dev_t *, int, int, cred_t *);
431 static int tl_close(queue_t *, int, cred_t *); 4272 ASSERT(tep->te_state >= TS | DLE);
432 static void tl_wput(queue_t *, nmblk_t *);
433 static void tl_wsrv(queue_t *); 4274 ack_sz = sizeof (struct T_addr_ack);
434 static void tl_rsrv(queue_t *); 4275 ack_sz += T_ALIGN(tep->te_al en);
4270 peer_tep = tep->te_conp;
436 static int tl_attach(dev_info_t *, ddi_attach_cnd_t); 4276 ack_sz += peer_tep->te_alen;
437 static int tl_detach(dev_ info_t *, ddi _detach_cnu_t);
438 static int tl_info(dev_info_t *, ddi_info_cmd_t, void *, void **); 4278 acknp = tpi_ack_alloc(np, ack_sz, M PCPROTO, T_ADDR ACK);
4279 if (acknp == NULL)
4280 (void) (STRLOGZ TL_ID, tep->te_minor, 1, SL TRACE| SL_ERROR,
441 | * 4281 "t|1 _connect ed_cots_addr_req: reall ocb failed"”));
442 * GLOBAL DATA STRUCTURES AND VARI ABLES 4282 tl_menrecover(tep->te_wy, mp, ack_sz);
443 K e 4283 return;
444 | 4284 1
446 | * 4286 taa = (struct T_addr_ack *)acknmp->b_rptr;
447 * Tabl e representing database of all options nanaged by T_SVR4_OPTMGMI_REQ
448 * For now, we only manage the SO RECVUCRED option but we al so have 4288 /* endpoi nt is bound */
449 * harm ess durmmy options to make things work with sonme conmon code we access. 4289 taa->LOCADDR | ength = tep->te_alen;
450 */ 4290 t aa- >LOCADDR of fset = (t_scal ar_t)sizeof (*taa);
451 opdes_t tl_opt_arr[] = {
452 /* The SO TYPE is needed for the hack bel ow */ 4292 addr_startp = (uchar_t *)& aa[1];

453 {
454 SO_TYPE, 4294 bcopy(tep->te_abuf, addr_startp,

new usr/src/uts/comon/ioltl.c

4295 tep->te_alen);

4297 taa- >REMADDR | ength = peer_tep->te_al en;

4298 taa- >REMADDR of fset = (t_scal ar_t)T_ALI G\(taa->LOCADDR of f set +
4299 t aa- >LOCADDR | engt h) ;

4300 addr _startp = acknp->b_rptr + taa->REMADDR of fset;
4301 bcopy(peer_tep->te_abuf, addr_startp,

4302 peer _tep->te_alen);

4303 acknp->b_wptr = (uchar_t *)acknp->b_rptr +

4304 t aa- >REMADDR _of f set + peer_tep->te_al en;

4305 ASSERT(acknp->b_wptr <= acknp->b_datap->db_lim;
4307 put next (tep->te_rq, acknp);

4308 }

__unchanged_portion_onitted_

new usr/ src/ uts/comron/ kl m Makefile

R R R R

1859 Sun Aug 25 23:51:05 2013
new usr/ src/ uts/ comon/ kl i Makefile
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbi seda@lel phi x. con»

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1#

2 # This file and its contents are supplied under the terms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terns of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy is of the CDDL is also available via the Internet
9 # at http://ww.illunps.org/license/ CODL.

10 #

12 #

13 # Copyright 2010 Nexenta Systens, Inc. Al rights reserved.

14 # Copyright (c) 2012 by Del phix. Al rights reserved.

15 #

17 include ../../../Makefile. naster
19 NLM PROT_X= ../rpcsvc/ nl mprot.x
20 SMTNTER X= ../rpcsvc/sminter.x
21 NSM ADDR X= ../ rpcsvc/ nsm addr. x

23 RPCGENFLAGS = -C -M-i 0
24 SED I NCL="/”".include/s:\.\..*/rpcsvc: rpcsvce:’

26 DERI VED FI LES= nlmprot_clnt.c nlmprot_xdr.c \
27 sminter_clnt.c sminter_xdr.c \
28 nsm addr_clnt.c nsmaddr_xdr.c
30 install_h: all_h

32 all_h: $(DERI VED FI LES)

34 nimprot_clnt.c : $(NLM PROT_X) nlmprot_clnt.sed

35 $(RPCGEN) $(RPCGENFLAGS) -1 -0 $@tnp $(NLM PROT_X)
36 sed -f nlmprot_clnt.sed < $@tnp > $@

37 $(RM -f $@tnp

39 nimprot_xdr.c : $(NLM PROT_X)

40 $(RPCGEN) $(RPCGENFLAGS) -c -0 $@tnp $(NLM PROT_X)
41 sed -e $(SED_INCL) < $@tnmp > $@

42 $(RM -f $@tnp

44 sminter_clnt.c : $(SM.INTER X) sm.inter_clnt.sed

45 $(RPCGEN) $(RPCGENFLAGS) -1 -0 $@tnp $(SM | NTER X)
46 sed -f sminter_clnt.sed < $@tnp > $@

47 $(RM -f $@tnp

49 sminter_xdr.c : $(SM.INTER X)

50 $(RPCGEN) $(RPCGENFLAGS) -c -0 $@tnp $(SM I NTER X)
51 sed -e $(SED_INCL) < $@tnp > $@

52 $(RM -f $@tnp

54 nsmaddr_clnt.c : $(NSM ADDR X) nsm addr _cl nt. sed

55 $(RPCGEN) $(RPCGENFLAGS) -1 -0 $@tnp $(NSM ADDR X)
56 sed -f nsmaddr_clnt.sed < $@tnp > $@

57 $(RM -f $@tnp

new usr/ src/ uts/comron/ kl m Makefile

59 nsm addr_xdr.c : $(NSM ADDR X)

60 $(RPCGEN) $(RPCGENFLAGS) -Cc -0 $@tnp $(NSM ADDR X)
61 sed -e $(SED INCL) < $@tnp > $@

62 $(RVM -f $@tnp

64 check:

66 cl ean:

67 $(RM $(DERI VED_FI LES)

69 cl obber: cl ean

71 lint:

73 . KEEP_STATE:

new usr/ src/ uts/ comron/ kl ml kl nmod. ¢ 1

R R R R

11343 Sun Aug 25 23:51:06 2013
new usr/ src/ uts/ comon/ kl n kl nmod. ¢
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbi seda@lel phi x. con»
IR R R R R R R RS R SR S R RS RS E R E R E RS E R R R R REREREEEEEEEE]
1/*
* This file and its contents are supplied under the ternms of the
Conmmon Devel opment and Di stribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the terns of version
1.0 of the CDDL.

A full copy of the text of the CDDL should have acconpanied this
source. A copy is of the CDDL is also available via the Internet
at http://ww. illunps.org/license/ CDDL.

/

[
QOWONOUTAWN
* ok kb k% k%

12 /*

13 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
14 * Copyright (c) 2012 by Del phix. Al rights reserved.

15 */

17 [*

18 * NFS Lock Manager, server-side and conmon.

19 =

20 * This file contains all the external entry points of klnmod.
21 * Basically, this is the "glue" to the BSD nl mcode.

22 */

24 #include <sys/types. h>
25 #include <sys/errno. h>
26 #include <sys/nodctl . h>
27 #include <sys/flock. h>

29 #include <nfs/nfs.h>

30 #include <nfs/nfssys. h>

31 #include <nfs/Imh>

32 #incl ude <r pcsvel/ nl m 1 prot. h>
33 #include "nlminpl.

35 static struct nodlmsc nodl misc = {

36 &mod_m scops, "lock ngr common nodul e"
37},

39 static struct nodlinkage nodlinkage = {

40 MODREV_1, &nmodl m sc, NULL

41 };

43 /*

44 * Cluster node ID. Zero unless we're part of a cluster.
45 * Set by Imset_nlmd_ fI k. Pass to I mset_nlmstatus.
46 * W're not yet doing "clustered" NLM stuff.

47 */

48 int Imglobal _nlmd = 0;

50 /*

51 * Call-back hook for clusters: Set |ock manager status.

52 * If this hook is set, call this instead of the ususal

53 * flk_set_Il ockngr_ stat us(FLK_LOCKMGR_UP / DOWN) ;

54 */

55 void (*Imset_nlmstatus)(int nimid, flk_nlmstatus_t) = NULL;
57 /| *

58 * Call-back hook for clusters: Delete all |ocks held by sysid.

new usr/ src/ uts/comon/ Kkl nl kIl nod. ¢

59 * Call fromcode that drops all client |ocks (for which we're
60 * the server) i.e. after the SMtells us a client has crashed.
61 */

62 void (*Imrenove_file_locks)(int) = NULL;

64 krw ock_t I mlck;
65 zone_key_t nl m zone_key;
67 /*
68 * Init/fini per-zone stuff for klm
69 */
70 /* ARGSUSED */
71 void *
72 I m zone_init(zonei d_t zoneid)
73 {
74 struct nlmglobals *g;
76 g = kmem zal | oc(si zeof (*g), KM SLEEP);
78 avl _creat e(&g->nl m hosts_tree, nl mhost_cnp,
79 si zeof (struct nlmhost),
80 of f setof (struct nl mhost, nh_by_addr));
82 g->nl m hosts_hash = nod_hash_creat e_i dhash("nl m host _by_sysi d",
83 64, nod_hash_nul | _valdtor);
85 TAILQ I NI T(&g->nl m_i dl e_host s) ;
86 TAI LQ I NI T(&g- >nl m sl ocks);
88 nut ex_i ni t (&g->l ock, NULL, MJUTEX_DEFAULT, NULL);
89 cv_init(&->nl mgc_sched cv, NULL, CV_DEFAULT, NULL)
90 cv_init(&->nl mgc_finish_cv, NULL CV_DEFAULT, NULL)
91 mut ex_i ni t (&g->cl ean_| ock, NULL MJTEX DEFAULT, NULL);
93 g->l ockd_pid = O;
94 g->run_status = NLM ST_DOW\,
96 nl m gl obal s_register(g);
97 return (g);
98 }
100 /* ARGSUSED */
101 void
102 I m zone_fini (zoneid_t zoneid, void *data)
103 {
104 struct nlmglobals *g = data;
106 ASSERT(avl _i s_enpty(&g->nl m hosts_tree));
107 avl _destroy(&g->nl mhosts_tree);
108 mod_hash_dest roy_i dhash(g->nl m_ host s _hash);
110 ASSERT(g->nl m gc_t hread == NULL);
111 mut ex_dest r oy(&g- >l ock) ;
112 cv_destroy(&g->nl mgc_sched_cv);
113 cv_destroy(&g->nl mgc_finish_cv);
114 mut ex_dest r oy(&g- >cl ean_| ock) ;
116 nl m gl obal s_unregi ster(g);
117 kmem free(g, sizeof (*g))
118 }
122 /*

123 K Kkkkkkkkkkkkkkkkkkkkk Kk kkkkkk Kk kkkkkkkkkkkkhhkkkkhkkkkkkkkkk kK k*x

124 * module init, fini, info

new usr/ src/ uts/common/kl n kIl nod. ¢

125
126
127
128
129

131
132

134
135
136

138
139
140

142
143
144

146
147
148
149

151
152

154
155
156
157
158
159

161
162
163
164
165

169
170
171
172

174
175
176
177
178
179
180
181
182
183
184
185

187
188

*/

int

_init()
int retval;
rw_init(& mlck, NULL, RWDEFAULT, NULL);
nl mi n| t();
zone_key_creat e(&l m zone_key, Imzone_init, NULL, I mzone_fini);
/* Per-zone | ocknmgr data. See: os/flock.c */
zone_key_create(& | ock_zone_key, flk_zone_init, NULL, flk_zone_ fini);
retval = nod_install (&odlinkage);
if (retval == 0)

return (0);
/*
* nod_install failed! undo above, reverse order
*/

(voi d) zone_key_del ete(fl ock_zone_key);
flock_zone_key = ZONE_KEY_UNI NI Tl ALI ZED
(voi d) zone_key_del et e(nl m zone_key);
rw_destroy(& mlck);
return (retval);

}

int

_fini()

{
/* Don’t unload. */
return (EBUSY);

}

int

_info(struct nodinfo *nodi nfop)

return (nod_i nfo(&odl i nkage, nodinfop));

-

| *

k kkkkkkkkkkhhkkhkkhkkhkhkhkhkhkkkhkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkk ok k& k%

* Stubs listed in nodstubs.s

ystemcalls. Start service on sone endpoint.
d by nfssys() LM SVC, from | ockd.

m svc(struct | msvc_args *args)

struct knetconfig knc;
const char *netid;
struct nlmglobals *g;
struct file *fp = NULL;
int err = 0;

/* Get our "globals" */
g = zone_get speci fic(nl mzone_key, curzone);

| *

new usr/ src/ uts/common/ Kkl n kIl nod. ¢

191
192
193
194
195
196
197
198

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

239
240
241
242

244
245
246
247
248
249

251
252
253
254
255
256

* Check version of |ockd calling.
*
/
if (args->version != LM SVC CUR_VERS) {
NLM ERR("| m svc: Version m smatch "
"(given Ox%, expected Ox%)\n",
ar gs- >versi on, LM SVC CUR VERS);
return (EINVAL);
}
/*
* Build knetconfig, checking arg val ues.
* Also conme up with the "netid" string.
* (Wth sone know edge of /etc/netconfig)
*
/

bzero(&knc, sizeof (knc));
switch (args->n_proto) {
case LM TCP:
knc. knc_semanti cs = NC_TPI _COTS_ORD;
knc. knc_proto = NC_TCP;
br eak;
case LM UDP:
knc. knc_semantics = NC_TPI _CLTS;
knc. knc_proto = NC_UDP;
br eak;
defaul t:
NLM_ERR(" nl m bui | d_knet config: Unknown "
"1 m_prot 0=0x%\ n", args->n_proto);
return (EINVAL);
}

switch (args >n_fmy) {
case LM I NET
“knc. knc_prot of My = NC_I NET;
br eak;
case LM | NET6:
knc. knc _protofmy = NC_I NET6;
bre
case LM | LO:PBACK
knc. knc_protof my = NC_LOOPBACK;
/* Override what we set above. */
knc. knc_prot o = NC_NOPROTQ,
br eak;
defaul t:
NLM _ERR("nl m bui | d_knet confi g: Unknown "
"I m fmy=0xo%\n", args->n_fnmy);
) return (EINVAL);

knc. knc_rdev = args->n_rdev;
netid = nlmknc_to netld(&knc)
if (!'netid)

return (EINVAL);

/*
* Setup service on the passed transport.
* NB: nust releasef(fp) after this.
*
/
if ((fp = getf(args->fd)) == NULL)
return (EBADF);

mut ex_ent er (&g- >l ock) ;
*

* Don't try to start while still shutting down,
* or lots of things will fail...
*/

if (g->run_status == NLM ST_STOPPI NG {

new usr/ src/ uts/ comon/ kl n kl nmrod. ¢ 5 new usr/ src/ uts/ comon/ kl n kl nmod. ¢
257 err = EAGAI N 323 g = zone_getspecific(nl mzone_key, curzone);
258 goto out;
259 } 325 mut ex_ent er (&g- >l ock) ;
326 if (g->run_status != NLM ST_UP) {
261 /* 327 mut ex_exi t (&g- >l ock) ;
262 * There is no separate "initialize" sub-call for nfssys, 328 return (EBUSY);
263 * and we want to do sone one-tinme work when the first 329 }
264 * binding cones in from | ockd.
265 */ 331 g->run_status = NLM ST_STOPPI NG,
266 if (g->run_status == NLM ST_DOM) { 332 pid = g->l ockd_pi d;
267 g->run_status = NLM ST_STARTI NG 333 mut ex_exi t (&g- >l ock) ;
268 g- >l ockd_pi d = curproc->p_pid; 334 nl m svc_st oppi ng(g);
270 /* Save the options. */ 336 mut ex_ent er (&pi dl ock) ;
271 g->cn_idle_tnmo = args->tinout; 337 p = prfind(pid);
272 g- >grace_peri od = args->grace; 338 if (p != NULL)
273 g->retrans_tno = args->retransmttineout; 339 psignal (p, SIGTERM;
275 /* See nfs_sys.c (not yet per-zone) */ 341 mut ex_exi t (&pi dl ock) ;
276 if (I NGLOBALZONE(curproc)) { 342 return (0);
277 rfs4_grace_period = args->grace; 343 }
278 rfs4_lease_tine = args- >grace;
279 } 345 | *
346 * Cleanup renote | ocks on FS un-export.
281 mut ex_exi t (&g- >l ock) ; 347 *
282 err = nlmsvc_starting(g, fp, netid, &knc); 348 * NOTE: called fromnfs_export.c:unexport()
283 mut ex_ent er (&g- >l ock) ; 349 * right before the share is going to
284 } else { 350 * be unexported.
285 /* 351 */
286 * |f KLMis not started and the very first endpoint | ockd 352 void
287 * tries to add is not a | oopback device, report an error. 353 | munexport(struct exportinfo *exi)
288 */ 354 {
289 if (g->run_status != NLM ST_UP) { 355 nl m_unexport (exi);
290 err = ENOTACTI VE; 356 }
291 goto out;
292 } 358 /*
293 if (g->lockd_pid != curproc->p_pid) { 359 * CPR suspend/resune hooks.
294 /* Check if caller has the same PID | ockd does */ 360 * See:cpr_suspend, cpr_resume
295 err = EPERM 361 *
296 goto out; 362 * Before suspend, get current state from"statd" on
297 } 363 * all rempte systens for which we have | ocks.
364 *
299 err = nlmsvc_add_ep(fp, netid, &knc); 365 * After resume, check with those systens again,
300 } 366 * and either reclaimlocks, or do SIGOST.
367 */
302 out: 368 void
303 mut ex_exi t (&g- >l ock); 369 | m cprsuspend(voi d)
304 if (fp !'= NULL) 370 {
305 rel easef (args->fd); 371) nl m cprsuspend();
372
307 return (err);
308 } 374 void
375 I m cprresune(void)
310 /* 376 {
311 * kimsystemcalls. Kill the | ock manager. 377 nl mcprresune();
312 * Called by nfssys() KILL_LOCKMZR, 378 }
313 * liblmIlmshutdown() <- unused?
314 */ 380 /*
315 int 381 * Add the nim.id bits to the sysid (by ref).
316 | m shut down(voi d) 382 */
317 { 383 voi d
318 struct nlmaglobals *g; 384 Imset_nlmd_flk(int *new_sysid)
319 proc_t *p; 385 {
320 pid_t pid; 386 if (Imglobal_nlnid!= 0)
387 *new_sysid | = (I mglobal _nlmd << BITS |IN SYSID);
322 /* Get our "globals" */ 388 }

new usr/ src/ uts/common/kl n kIl nod. ¢

390 /*

391 * It seens that closed source klnmmd used

392 * this function to rel ease knetconfig stored

393 * in mtinfo structure (see mtinfo’'s m _klntonfig
394 * field).

395 * W store knetconfigs differently, thus we don’t
396 * need this function.

397 */

398 void

399 Imfree_config(struct knetconfig *knc)

400 {

401 _NOTE(ARGUNUSED(knc)) ;

402 }

404 | *

405 * Called by NFS4 del egation code to check if there are any
406 * NFSv2/v3 locks for the file, so it should not del egate.
407 *

408 * NOTE: called from NFSv4 code

409 * (see nfs4_srv_del eg.c:rfs4_bgrant_del egation())
410 */

411 int

412 | mvp_active(const vnode_t *vp)

413 {

414 return (nl mvp_active(vp));

415 }

417 [*

418 * Find or create a "sysid" for given knc+addr.
419 * pane is optional. Sets nc_changed if the

420 * found knc_proto is different from passed.

421 * Increnents the reference count.

422 =

423 * Called internally, and in nfs4_find_sysid()

424 */

425 struct Imsysid *
426 | m get_sysid(struct knetconfig *knc, struct netbuf *addr,

427 char *name, bool _t *nc_changed)

428 {

429 struct nlmglobals *g;

430 const char *netid;

431 struct nl mhost *hostp;

433 NOTE(ARGUNUSED(nc_changed)) ;

434 netid = nlmknc_to_netid(knc)

435 if (netid == NULL)

436 return (NULL);

438 g = zone_getspecific(nl mzone_key, curzone);
440 hostp = nl mhost_findcreate(g, nane, netid, addr);
441 if (hostp == NULL)

442 return (NULL);

444 return ((struct I msysid *)hostp);
445 }

447 | *

448 * Rel ease a reference on a "sysid".

449 */

450 voi d

451 Imrel _sysid(struct I msysid *sysid)

452 {

453 struct nlmglobals *g;

new usr/ src/ uts/comon/ Kkl nm kIl nod. ¢

455 g = zone_getspecific(nl mzone_key, curzone);
456 nl m host_rel ease(g, (struct nlmhost *)sysid);
457 }

459 [*

460 * Alloc/free a sysid_t (a unique nunber between

461 * LM SYSID and LM SYSI D_MAX).

462 *

463 * Used by NFSv4 rfs4_op_l ockt and snbsrv/snb_fsop_frlock,
464 * both to represent non-local |ocks outside of klm
465 *

466 * NOTE: called from NFSv4 and SMBFS to al |l ocate uni que
467 * sysi

468 */

469 sysid_t

470 I m al I oc_sysi dt (voi d)

471 {

472 return (nlmsysid_alloc());

473 }

475 void

476 | m free_sysidt(sysid_t sysid)

477 {

478 nl msysid_free(sysid);

479 }

481 /* Access private nenber |nms->sysid */

482 sysid_t

483 | m sysidt(struct I msysid *Ins)

484 {

485 return (((struct nlmhost *)Ins)->nh_sysid);
486 }

488 [*

489 * Called by nfs_frlock to check | ock constral nts.

490 * Return non-zero if the |lock request is "safe", i.e.
491 * the range is not nmapped, not MANDLOCK, etc.

492 *

493 * NOTE: callde from NFSv3/NFSv2 frlock() functions to
494 * deternmine whether it’s safe to add new | ock.

495 */

496 int

497 | m saf el ock(vnode_t *vp, const struct flock64 *fl, cred_t *cr)
498 {

499 return (nl msafel ock(vp, fl, cr));

500 }

502 /*

503 * Called by nfs_lockconpletion to check whether it’'s "safe"
504 * to map the file (and cache it’'s data). V\al ks the list of
505 * file locks |ooking for any that are not "whole file".
506 *

507 * NOTE: called fromnfs_client.c:nfs_|ockconpletion()
508 */

509 int

510 | m saf emap(const vnode_t *vp)

511 {

512 return (nl msafenap(vp));

513 }

515 /*

516 * Called by nfs_map() for the MANDLOCK case.

517 * Return non-zero if the file has any locks with a
518 * bl ocked request (sleep).

519 *

520 * NOTE: called from NFSv3/NFSv2 map() functions in

new usr/ src/ uts/common/kl n kIl nod. ¢

521 * order to determ ne whether it’'s safe to add new
522 * mappi ng.

523 */

524
525
526
527

: nt
{
528 }
/

m has_sl eep(const vnode_t *vp)

return (nl mhas_sl eep(vp));

*

530
531 LR R RS RS RS RS ESEEES RS RS EEEE R E R R R R R R R ERERREEEEEEEEEEEEEEESEESES]
532 * Stuff needed by kil nops?

533 */

new usr/src/ uts/common/kl n ki nops. ¢

R R R R

3641 Sun Aug 25 23:51:06 2013

new usr/ src/ uts/comon/ Kkl nm ki nops. ¢

195 Need repl acenment for nfs/l|ockd+kl m

Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbi seda@lel phi x. con»

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1

[
QOWONOUTAWN

/*

* This file and its contents are supplied under the ternms of the

* Common Devel opnent and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terns of version
* 1.0 of the CDDL.

*

* A full copy of the text of the CDDL should have acconpani ed this
* source. A copy is of the CDDL is also available via the Internet
* at http://www il lunmps.org/license/ CDDL.

*/

/*

* Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
*
/

/*

* NFS Lock Manager, client-side

* Note: depends on (links w th) klnmod

*

* This file contains all the external entry points of klnops.
* Basically, this is the "glue" to the BSD nl m code.

*/

#i ncl ude <sys/types. h>

#i ncl ude <sys/errno. h>
#i ncl ude <sys/nodctl.h>
#i ncl ude <sys/fl ock. h>

#i ncl ude <nfs/Im h>

#i ncl ude <rpcsvc/ nl mprot. h>
#i nclude "nl m.inpl.h"

static struct modlm sc nodlmisc = {
&rod_mi scops, "lock ngr calls"
e

static struct nodlinkage nodlinkage = {

MODREV_1, &nodl mi sc, NULL
be
/*
LR R RS RS RS RS S SRS RS RS EEEEEEE R E R R R R R R R R R R R EREEEEREEEEEEEEEEEEESEES]
* module init, fini, info
*/
i nt
_init()
{
return (nod_install (&mwodlinkage));
}
int
_fini()
/* Don’t unload. */
return (EBUSY);

new usr/ src/ uts/comon/ Kkl nl kI nops. ¢

59

119
120

123

}
i nt
_info(struct nodinfo *nodi nfop)
return (nod_i nf o(&nodl i nkage, nodi nfop));
}
/*
R R RS RS RS R SRS RS RS RS EEE RS E R R R R R R R R R R R R R SRR R SRR RS R EEEEEEEES]
* Stubs listed in nodstubs.s
* These are called fromfs/nfs
*/
/*
* NFSv2 | ock/unlock. Called by nfs_frlock()
* Uses NLM version 1 (NLM_VERS)
*/
i nt
Imfrlock(struct vnode *vp, int cnd, struct flock64 *flk, int flags,
u_offset_t off, struct cred *cr, struct netobj *fh,
struct flk_callback *flcb)
return (nlmfrlock(vp, cmd, flk, flags, off,
cr, fh, flcb, NLMVERS));
}
/*
* NFSv3 | ock/unl ock. Called by nfs3_frlock()
* Uses NLM version 4 (NLMA_VERS)
*/
i nt
I md_frlock(struct vnode *vp, int crmd, struct flock64 *flk, int flags,
u_offset_t off, struct cred *cr, struct netobj *fh,
struct flk_callback *flcb)
{ :
int err;
err = nlmfrlock(vp, cnd, flk, flags, off,
cr, fh, flcb, NLM4_VERS);
return (err);
}
*
* NFSv2 shrl k/unshrl k. See nfs_shrlock
* Uses NLM version 3 (NLM VERSX)
*/
i nt
I mshrlock(struct vnode *vp, int cnd,
struct shrlock *shr, int flags, struct netobj *fh)
{
return (nl mshrlock(vp, cmd, shr, flags, fh, NLMVERSX));
}
/*
* NFSv3 shrlk/unshrl k. See nfs3_shrlock
* Uses NLM version 4 (NLM4_VERS)
*/
i nt
| mMi_shrl ock(struct vnode *vp, int cnd,
struct shrlock *shr, int flags, struct netobj *fh)
{
return (nlmshrlock(vp, cnmd, shr, flags, fh, NLM4_VERS));
}

new usr/src/ uts/common/kl n ki nops. ¢

125
126
127
128
129
130
131
132

/*
* Hel per for Im:
* After getting
* register the |
*/

rlock, I md_frlock, nfs_|ockrel ease
ck froma renote | ock nanager,
|

frlo

alo

ock locally.

voi d

I mregister_lock_locally(struct vnode *vp, struct Imsysid *Is,
struct flock64 *flk, int flags, u_offset_t offset)

133 {

134
135
136

138
139
140
141
142
143
144
145
146

148
149
150
151
152

154
155
156
157
158
159
160
161

nlmregister_|l ock_|l ocal l y(vp, (struct nlmhost *)Is,
flk, flags, offset);

d RPC service dispatch functions, no | onger used.
re only to satisfy nodstubs.s references.

S Q gQ

I mdispatch(struct svc_req *req, SVCXPRT *xprt)

i _NOTE(ARGUNUSED(r eq, xprt))

I m_di spatch(struct svc_req *req, SVCXPRT *xprt)

_NOTE(ARGUNUSED(r eq, xprt))

*
* ddinternal functions used for reclaimng | ocks
* our NFS client holds after sone server restarts.
* The new NLM code does this differently, so these
* are here only to satisfy nodstubs.s references.
*

/

voi d
Imnlmreclain(struct vnode *vp, struct flock64 *flkp)

162 {

163
164

166
167

_NOTE(ARGUNUSED(vp, flkp))
}
voi d
I mnl md_reclai m(struct vnode *vp, struct flock64 *flkp)

168 {

169
170

: _ NOTE(ARGUNUSED(vp, flkp))

new usr/ src/ uts/ comon/ kl m mapfil e- nod

R R R R

1260 Sun Aug 25 23:51:07 2013
new usr/ src/ uts/ comon/ kl m mapfil e- nod
195 Need repl acenment for nfs/lockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1#

2 # This file and its contents are supplied under the terms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terns version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy is of the CDDL is also available via the Internet
9 # at http://ww.illunps.org/license/ CODL.

10 #

12 #

13 # Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

14 #

17 $nmapfile_version 2

19 SYMBOL_SCOPE {

20 gl obal :

21 # | oadabl e nodul e |inkage

22 _fini;

23 _info;

24 _init;

25 # These are all the synbols referenced in m/nodstubs.s
26 # If we want to remain a drop-in replacnent for the old
27 # (closed source) kim we need to define all of these.
28 I malloc_sysidt;

29 I m cprresune;

30 | m cprsuspend;

31 Imfree_config;

32 Imfree_sysidt;

33 I m get_sysid;

34 I m gl obal _nl m d;

35 | m has_sl eep;

36 Imrel _sysid;

37 I mrenove_file_| ocks;

38 | m saf el ock;

39 | m saf emap;

40 Imset_nlmd_flk;

41 | m_shut down;

42 I msvc;

43 | m sysidt;

44 | m_unexport;

45 I mvp_active;

46 # The following three functions are not nentioned in nodstubs.s
47 # files, because they are not an entry points to KLM They
48 # are called fromkl nops only.

49 nlmfrlock;

50 nlmregister_|lock_| ocally;
51 nl m shrl ock;

53 | ocal :

54 ;

new usr/ src/ uts/ comon/ kl m mapfil e-ops

R R R R

898 Sun Aug 25 23:51:07 2013
new usr/ src/ uts/ comon/ kl m mapfil e- ops
195 Need repl acenment for nfs/lockd+klm
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1#

2 # This file and its contents are supplied under the terms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terns version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy is of the CDDL is also available via the Internet
9 # at http://ww.illunps.org/license/ CODL.

10 #

12 #

13 # Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

14 #

17 $nmapfile_version 2

19 SYMBOL_SCOPE {

20 gl obal :

21 # | oadabl e nodul e |inkage

22 _fini;

23 _info;

24 _init;

25 # These are all the synbols referenced in m/nodstubs.s
26 # If we want to remain a drop-in replacnent for the old
27 # (closed source) kim we need to define all of these.
29 I md_frlock;

30 | md_shrl ock;

31 I mfrlock;

32 I m nl md_di spat ch;

33 Imnlmd_reclaim

34 I m nl m di spat ch;

35 Imnlmreclaim

36 Imregister_|l ock_|l ocally;

38 | ocal :

39 ;

new usr/src/uts/comon/klminimclient.c 1 new usr/src/uts/comon/klminimclient.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 59 #I ncl ude <nf S/ nfS h>
38688 Sun Aug 25 23:51:08 2013 60 #include <nfs/nfs_clnt.h>
new usr/src/uts/comon/klmnimclient.c 61 #include <nfs/export.h>
195 Need repl acenment for nfs/l|ockd+kl m 62 #include <nfs/rnode. h>
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp 63 #include <nfs/Imh>
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbi seda@lel phi x. con» 65 #include "nl m.inpl.h"
IR R R R R R R RS R SR S R RS RS E R E R E RS E R R R R REREREEEEEEEE]
1/* 67 /* Extra flags for nlmcall_lock() - xflags */
2 * Copyright (c) 2008 Isilon Inc http://ww.isilon.conl 68 #define NLM X RECLAIM 1
3 * Authors: Doug Rabson <dfr @ abson. or g> 69 #define NLM X BLOCKI NG 2
4 * Developed with Red Inc: Alfred Perlstein <alfred@reebsd. org> p
B © 71 [*
6 * Redistribution and use in source and binary forms, with or w thout 72 * Max. nunber of retries nlmcall_cancel () does
7 * nodification, are pernmitted provided that the follow ng conditions 73 * when NLM server is in grace period or doesn’t
8 * are net: 74 * respond correctly.
9 * 1. Redistributions of source code nmust retain the above copyright 75 *
10 * notice, this list of conditions and the follow ng disclainer. 76 #define NLM CANCEL_NRETRS 5
11 * 2. Redistributions in binary form nust reproduce the above copyri ght
12~ notice, this list of conditions and the follow ng disclainmer in the 78 | *
13 * docunentation and/or other materials provided with the distribution. 79 * Determnes wether given lock "flp" is safe.
14 * 80 * The lock is considered to be safe when it
15 * THI' S SOFTWARE | S PROVI DED BY THE AUTHOR AND CONTRI BUTCORS ‘*AS IS’ AND 81 * acquires the whole file (i.e. its start
16 * ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TO, THE 82 * and len are zeroes).
17 * | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE 83 */
18 * ARE DI SCLAIMED. | N NO EVENT SHALL THE AUTHOR OR CONTRI BUTORS BE LI ABLE 84 #define NLM FLOCK_| S_SAFE(flp) \
19 * FOR ANY DI RECT, | NDI RECT, | NCIDENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL 85 ((fTp)-> _start == 0 & (flp)->l_len == 0)
20 * DAMAGES (I NCLUDI NG, BUT NOT LIM TED TO, PROCUREMENT OF SUBSTI TUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON) 87 static volatile uint32_t nimxid = 1;
22 * HOWEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER I N CONTRACT, STRI CT
23 * LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG I N ANY WAY 89 static int nlminit_fh_by_vp(vnode_t *, struct netobj *, rpcvers_t *);
24 * QUT OF THE USE OF THI S SOFTWARE, EVEN | F ADVI SED OF THE PGCSSI BI LI TY OF 90 static int nlmnmap_status(nl m_stats);
25 * SUCH DAMAGE. 91 static int nlmmap_clnt_stat(enumclnt_stat);
26 */ 92 static void nlmsend_siglost(pid_t);
28 /| * 94 static int nlmfrlock_getlk(struct nl mhost *, vnode_t *,
29 * Copyright 2011 Nexenta Systens, Inc. All rights reserved. 95 struct flock64 *, int, u_offset_t, struct netobj *, int);
30 * Copyright (c) 2012 by Del phix. Al rights reserved.
31 */ 97 static int nlmfrlock_setlk(struct nl mhost *, vnode_t *,
98 struct flock64 *, int, u_offset_t, struct netobj *,
33 /* 99 struct flk_callback *, int, bool _t);
34 * dient-side support for (NFS) VOP_FRLOCK, VOP_SHRLOCK.
35 * (called via klnops.c: Imfrlock, |Imi_frlock) 101 static int nlmreclaimlock(struct nl mhost *, vnode_t *,
36 * 102 struct flock64 *, int32_t);
37 * Source code derived from FreeBSD nl m advl ock. c
38 */ 104 static void nlminit_|lock(struct nlmd_|ock *,
105 const struct flock64 *, struct netobj *,
40 #i ncl ude <sys/param h> 106 struct nl mowner_handle *);
41 #include <sys/fcntl. h>
42 #include <sys/| ock. h> 108 static int nlmcall_lock(vnode_t *, struct flock64 *,
43 #incl ude <sys/flock. h> 109 struct nlmhost *, struct netobj *,
44 #incl ude <sys/nount.h> 110 struct flk_callback *, int, int);
45 #incl ude <sys/nutex. h> 111 static int nlmcall _unlock(struct flock64 *, struct nlmhost *,
46 #incl ude <sys/proc. h> 112 struct netobj *, int);
47 #incl ude <sys/share. h> 113 static int nilmcall_test(struct flock64 *, struct nlmhost *,
48 #i ncl ude <sys/sysl og. h> 114 struct netobj *, int);
49 #incl ude <sys/systm h> 115 static int nlmcall_cancel (struct nlmi_| ockargs *,
50 #include <sys/unistd. h> 116 struct nlmhost *, int);
51 #include <sys/vnode. h>
52 #include <sys/queue. h> 118 static int nlmlocal _getlk(vnode_t *, struct flock64 *, int);
53 #include <sys/sdt. h> 119 static int nlmlocal _setlk(vnode_t *, struct flock64 *, int);
54 #include <netinet/in.h> 120 static void nlmlocal _cancel k(vnode_t *, struct flock64 *);
56 #include <fs/fs_subr.h> 122 static void nlminit_share(struct nlmd_share *,
57 #include <rpcsvc/nl mprot. h> 123 const struct shrlock *, struct netobj *);

new usr/src/uts/comon/klminimclient.c 3 new usr/src/uts/comon/klminimclient.c
125 static int nlmcall_share(struct shrlock *, struct nlmhost *,
126 struct netobj *, int, int); 192 if (error == 0) {
127 static int nlmcall_unshare(struct shrlock *, struct nlmhost *, 193 Ilp = 11p->l1_next;
128 struct netobj *, int); 194 conti nue;
129 static int nlmreclai mshare(struct nl mhost *, vnode_t *, 195 } else if (error == ERESTART) {
130 struct shrlock *, uint32_t); 196 restart = TRUE;
131 static int nlmlocal _shrlock(vnode_t *, struct shrlock *, int, int); 197 br eak;
132 static void nlmlocal _shrcancel (vnode_t *, struct shrlock *); 198 } else {/
199 *
134 | * 200 * Critical error occurred, the |ock
135 * Reclaimlocks/shares acquired by the client side 201 * can not be recovered, just take it away.
136 * on the given server represented by hostp. 202 kd
137 * The function is called froma dedicated thread 203 nl m | ocal _cancel k(I p->I1_vp, & Ip->I1_flock);
138 * when server reports us that it’'s entered grace 204 }
139 * period.
140 */ 206 Ilp = 11p->1_next;
141 void 207 }
142 nlmreclaimclient(struct nlmglobals *g, struct nl mhost *hostp)
143 { 209 flk_free_locklist(llp_head);
144 int32_t state; 210 if (restart) {
145 int error, sysid; 211 /*
146 struct locklist *IIp_head, *IIp; 212 * Lock reclanmation fucntion reported us that
147 struct nl mshres *nsp_head, *nsp; 213 * the server state was changed (again), so
148 bool _t restart; 214 */try to repeat the whole reclamati on process.
215 *
150 sysid = hostp->nh_sysid | LM SYSI D CLI ENT; 216 conti nue;
151 do { 217 }
152 error = 0;
153 restart = FALSE; 219 nsp_head = nsp = nl mget_active_shres(hostp);
154 state = nl m host_get_state(hostp); 220 while (nsp !'= NULL) {
221 error = nl mreclai mshare(hostp, nsp->ns_vp,
156 DTRACE_PROBE3(reclaim iter, struct nlmglobals *, g, 222 nsp->ns_shr, state);
157 struct nlmhost *, hostp, int, state);
224 if (error == 0) {
159 /* 225 nsp = nsp->ns_next;
160 * We cancel all sleeping | ocks that were 226 conti nue;
161 * done by the host, because we don’t allow 227 } else if (error == ERESTART) {
162 * reclamation of sleeping | ocks. The reason 228 br eak;
163 * we do this is that allowi ng of sleeping |ocks 229 } else {
164 * reclamation can potentially break |ocks recovery 230 /* Failed to reclaimshare */
165 * order. 231 nl m shres_untrack(hostp, nsp->ns_vp,
166 * 232 nsp->ns_shr);
167 * | magi ne that we have two client nachines A and B 233 nl m | ocal _shrcancel (nsp->ns_vp,
168 * and an NLM server nachine. A adds a non sl eeping 234 nsp- >ns_shr);
169 * lock to the file F and aquires this file. Machine 235 }
170 * Binits turn adds sleeping lock to the file
171 * F and bl ocks because F is already aquired by 237 nsp = nsp->ns_next;
172 * the machine A Then server crashes and after the 238 }
173 * reboot it notifies its clients about the crash.
174 * |f we would allow sleeping | ocks reclamation, 240 nlmfree_shrlist(nsp_head);
175 * there woul d be possible that machine B recovers 241 } while (state !'= nlmhost_get_state(hostp));
176 * its lock faster than nachine A (by some reason). 242 }
177 * So that B aquires the file F after server crash and
178 * machine A (that by sone reason recovers slower) fails 244 | *
179 * to recover its non sleeping |ock. Thus the original 245 * nIlmfrlock --
180 * | ocks order becanes broken. 246 * NFS advi sory byte-range | ocks.
181 */ 247 * Called in klnops.c
182 nl m host _cancel _sl ocks(g, hostp); 248 *
249 * Note that the local |ocking code (os/flock.c) is used to
184 /* 250 * keep track of renote |ocks granted by some server, so we
185 * Try to reclaimall active | ocks we have 251 * can reclaimthose locks after a server restarts. W can
186 */ 252 * also sonetinmes use this as a cache of |ock infornation.
187 Il p_head = Il p = flk_get_active_l ocks(sysid, NOPID); 253 *
188 while (I'Ip !'= NULL) { 254 * \Was: nl m advl ock()
189 error = nlmreclaimlock(hostp, Ilp->I1_vp, 255 */
190 & I p->1_flock, state); 256 /* ARGSUSED */

new usr/src/uts/comon/klminimclient.c

257
258
259
260
261
262
263
264
265
266
267

269
270

272
273
274
275
276

278
279
280
281

283
284
285
286
287
288
289

291
292
293
294
295
296

298
299
300
301
302
303
304

306
307
308
309

311
312
313

315
316
317
318
319
320
321

int

nlmfrlock(struct vnode *vp, int crmd, struct flock64 *flkp,

int flags, u_offset_t offset, struct cred *crp,

struct netobj *fhp, struct flk_callback *flcbh, int vers)

{
mtinfo_t *m;
servinfo_t *sv;
const char *netid;
struct nlmhost *hostp;
int error;
struct nlmglobals *g;
m = VIOM (vp);
SV = m->ni _curr_serv;
netid = nl m| knc_t o_neti d(sv->sv_knconf);
if (neti d == NULL)
NLM _ERR("nl m frlock: unknown NFS netid");
return (ENOSYS);
}
g = zone_get speci fic(nl mzone_key, curzone);
hostp = nlmhost_findcreate(g, sv->sv_hostnanme, netid, &sv->sv_addr);
if (hostp == NULL)
return (ENOSYS);
/*
* Purge cached attributes in order to nmake sure that
* future calls of convoff()/VOP_CETATTR() will get the
* | atest data.
*/
if (flkp->l_whence == SEEK_END)
PURGE_ATTRCACHE(vp) ;
/* Now fl kO is the zero-based | ock request. */
switch (cnd) {
case F_GETLK:
error = nlmfrlock_getlk(hostp, vp, flkp,
of fset, fhp, vers);
br eak;
case F_SETLK:
case F_SETLKW
error = nlmfrlock_setl k(hostp, vp, fI kp,
offset “fhp, flcb, vers, (cmd == F SEI'LKW)
if (error == 0)
nl m host _nonitor(g, hostp, 0);
br eak;
defaul t:
error = ElI NVAL;
br eak;
}
nl m host _rel ease(g, hostp);
return (error);
}
static int

nlmfrlock_getlk(struct nl mhost *hostp, vnode_t *vp,
struct flock64 *flkp, int flags, u_offset_t offset,
struct netobj *fhp, int vers)

—~

struct flock64 flko;
int error;

new usr/src/uts/comon/klminimclient.c

323
324
325
326
327
328
329
330
331
332
333
334
335

337
338
339
340
341
342

344
345
346

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

364
365

367
368
369
370
371
372
373

375
376
377

379
380
381
382
383
384
385
386
387
388

/*
* Check Iocal (cached) |l ocks first.
* |f we find one, no need for RPC
*
/
fl kO = *flkp;
fl k0.l _pid = curproc->p_p
error = nlml ocal getlk(vp, &fIkO, flags);
if (error = 0)
eturn (error);
if (fIkO.I type 1= F UNLCK) {
*flkp = fl kO
return (0);
}
/* Not found locally. Try renote. */
flko = *flkp;
fl1 k0.1 _pid = curproc->p_pid;
error = convoff(vp, & I1kO, 0, (offset_t)offset);
if (error 1= 0)
return (error);
error = nlmcall_test(& kO, hostp, fhp, vers);
if (error 1= 0)
return (error);
if (flkO.I_type == F_UNLCK) {
/*
* Update the caller’s *flkp with information
* on the conflicting lock (or lack thereof).
*/
flkp->l _type = F_UNLCK;
} else {
* Found a conflicting lock. Set the
* caller’s *flkp with the info, first
* converting to the caller’s whence.
*
(void) convoff(vp, & 1kO, flkp->l_whence, (offset_t)offset);
*flkp = flkO;
}
return (0);
}
static int
nl mfrlock_setlk(struct nlmhost *hostp, vnode_t *vp,

struct
struct

flock64 *flkp, int flags, u_offset_t offset,
netobj *fhp, struct flk_callback *flcb,

int vers, bool _t do_bl ock)

int error, xflags;

er
if

* Ok ok ok %k Kk ok ko

ror = convoff(vp, flkp, 0, (offset_t)offset);
(error !'=0)
return (error);

NFS v2 clients should not request |ocks where any part
of the lock range is beyond Oxffffffff. The NFS code
checks that (see nfs_frlock, flk_check_|ock_data), but
as that’s outside this nodule, let’s check here too.
This check ensures that we will be able to convert this
| ock request into 32-bit formw thout change, and that
(rmore inportantly) when the granted call back arrives,
it’'s unchanged when converted back into 64-bit form

If this lock range were to change in any way during

new usr/src/uts/comon/klminimclient.c

new usr/src/uts/comon/klmnimclient.c

389 * either of those conversions, the "granted" call back
390 * fromthe NLM server would not find our sleeping |ock.
391 */

392 if (vers < NLM4_VERS)

393 if (flkp->l_start > MAX_UOFF32 ||

394 flkp->l _start + flkp->l_len > MAX_UOFF32 + 1)
395 return (EI NVAL);

396 }

398 /*

399 * Fill inl_sysid for the local |ocking calls.

400 * Also, let’s not trust the caller’s | _pid.

401 */

402 fl kp->l _sysid = hostp->nh_sysid | LM SYSID_CLI ENT;

403 flkp->l _pid = curproc->p_pid;

405 if (flkp->l_type == F_UNLCK) {

406 /*

407 * Purge local (cached) lock information first,
408 * then clear the rempte | ock.

409 *

410 (void) nlmlocal _setlk(vp, flkp, flags);

411 error = nlmcall _unl ock(flkp, hostp, fhp, vers);
413 return (error);

414 }

416 if (!do_block) {

417 /*

418 * This is a non-blocking "set" request,

419 * so we can check locally first, and

420 * sonetimes avoid an RPC cal |.

421 *

422 struct flock64 flko;

424 flko = *fl kp;

425 error = nlmlocal _getlk(vp, & 1kO0, flags);

426 if (error '=0 & fl1kO.I_type !'= F_UNLCK) {
427 /* Found a conflicting |ock. */

428 return (EAGAIN);

429 }

431 xflags = O;

432 } else {

433 xflags = NLM_X_BLOCKI NG

434 }

436 nfs_add_| ocki ng_i d(vp, curproc->p_pid, RLMPL_PID,

437 (char *)&curproc->p_pid, sizeof (pid_t));

439 error = nlmcall_lock(vp, flkp, hostp, fhp, flch, vers,
440 if (error 1= 0)

441 return (error);

443 /*

444 * Save the lock locally. This should not fail,

445 * because the server is authoritative about |ocks

446 * and it just told us we have the | ock!

447 */

448 error = nlmlocal _setlk(vp, flkp, flags);

449 if (error 1= 0) {

450 /*

451 * That's unexpected situation. Just ignore the error.
452 */

453 NLM WARN("nl m frlock_setl k: Failed to set |ocal

454 “"lerr=%]\n", error);

455 error = 0;
456 1

458 return (error);
459 }

461 /

*
462 * Cancel all client side renote |ocks/shares on the
463 * given host. Report to the processes that own
464 * cancelled | ocks that they are renoved by force

*

465 by sendi ng SI GLOST.

466 */

467 void

468 nl mclient_cancel _all (struct nlmglobals *g, struct nl mhost *hostp)
469 {

470 struct locklist *Ilp_head, *Ilp;

471 struct nlmshres *nsp_head, *nsp;

472 struct netobj Imfh;

473 rpcvers_t vers;

474 int error, sysid;

476 sysid = hostp->nh_sysid | LM SYSI D CLI ENT;

477 nl m host _cancel _sl ocks(g, hostp);

479 /*

480 * Destroy all active |ocks

481 */

482 Il'p_head = I1p = flk_get_active_l ocks(sysid, NOPID);

483 while (I'lp !'= NULL)

484 Il p->1_flock.l_type = F_UNLCK;

486 error = nlminit_fh_by vp(llp->I1_vp, & mfh, &vers);
487 if (error == 0

488 (void) nlmcall _unlock(& Ip->l1_flock, hostp,
489 & mfh, vers);

491 nlmlocal cancel k(lI1p->I1_vp, & Ilp->I1_flock);

492 Ilp = 11p->l1_next;

493 }

495 flk_free_locklist(llp_head);

497 /*

498 * Destroy all active share reservations

499 *

500 nsp_head = nsp = nl mget_active_shres(hostp);

501 while (nsp !'= NULL)

502 error = nlminit_fh_by vp(nsp->ns_vp, & mfh, &vers);
503 if (error == 0)

504 (void) nlmcall_unshare(nsp->ns_shr, hostp,
505 & mfh, vers);

507 nl m | ocal _shrcancel (nsp->ns_vp, nsp->ns_shr);

508 nl m shres_untrack(hostp, nsp->ns_vp, nsp->ns_shr);
509 nsp = nsp->ns_next;

510 }

512 nl mfree_shrlist(nsp_head);

513 }

515 /*

516 * The function determ nes whether the lock "fl" can

517 * be safely applied to the file vnode "vp" corresponds to.

518 * The lock can be "safely" applied if all the conditions

519 * above are hel d:

520 * - It’s not a mandatory | ock

new usr/src/uts/comon/klminimclient.c

521
522
523
524
525
526
527
528
529
530
531

533
534

536
537
538
539

541
542
543

545
546

548
549
550
551
552
553
554
555
556
557
558
559
560
561

563
564
565
566
567
568

570
571
572
573
574
5145]
576

578
579
580
581
582
583
584
585
586

i
n
{

*
*
*
*
*
n
|

/
t
m_

saf el ock(vnode_t *vp, const struct flock64 *fl, cred_t *cr)

The vnode wasn’t mapped by anyone

The vnode was mapped, but it hasn't any |locks on it.

The vnode was mapped and all locks it has occupies
the whole file.

rnode_t *rp = VIOR(vp);
struct vattr va;
int err;

if ((rp->r_mapcnt > 0) && (fl->l_start !'=0 || fl->_len = 0))
urn ;

ret (0);

va.va_nmask = AT_MODE;
err = VOP_GETATTR(vp, &va, 0, cr, NULL);
if (err 1= 0)
return (0);
/* NLM4 doesn’t allow mandatory file |ocking */
if (MANDLOCK(vp, va.va_node))
return (0);

return (1);

The function determ nes whether it’s safe to map
a file correspoding to vnode vp.

The nmapping is considered to be "safe" if file
either has no any locks on it or all locks it
has occupy the whole file.

/
t
m saf emap(const vnode_t *vp)

struct locklist *Ilp, *Ilp_next;
struct nlmslock *nslp;

struct nlmglobals *g;

int safe = 1;

/* Check active |ocks at first */
Ilp = flk_active_l ocks_for_vp(vp);
while (I'lp !'= NULL)
if ((Ilp->1_vp == vp) &&
I'NLM_FLOCK | S_SAFE(& | p->I1 _fl ock))

safe = 0;
Il p_next = I1p->I1_next;
VN_RELE(II p->I1 _vp);
kmem free(llp, sizeof (*IIp));
Ilp = 11p_next;

}
if (!safe)
return (safe);

/* Then check sl eeping locks if any */
g = zone_getspecific(nl mzone_key, curzone);
mut ex_ent er (&g- >l ock) ;
TAI LQ FOREACH(nsl p, &g->nl m sl ocks, nsl_link) {
if (nslp->nsl_state == NLM SL_BLOCKED &&
nsl p->nsl _vp == vp &&

(nslp->nsl _l ock.| _offset !'=0 ||
nsl p->nsl _lock.l_len !'=0)) {
safe = 0;

new usr/src/uts/comon/klminimclient.c

587
588
589

591
592
593

595
596
597
598
599
600

602
603
604
605
606
607
608
609
610

612
613
614

616
617

618 struct flock64 *flk, int flags, u_offset_t offset)
619 {

620 int sysid = 0;

622 if (hostp !'= NULL) {

623 sysid = hostp->nh_sysid | LM SYSID_CLI ENT;
624 }

626 flk->l _sysid = sysid;

627 (void) convoff(vp, flk, 0, (offset_t)offset);

628 (void) nlmlocal _setlk(vp, flk, flags);

629 }

632 /[*

633 * The BSD code had functions here to “reclaint (destroy)
634 * remote | ocks when a vnode is being forcibly destroyed.
635 * W just keep vnodes around until statd tells us the
636 * client has gone away.

637 */

639 static int

640 nl mreclaimlock(struct nl mhost *hostp, vnode_t *vp,

641 struct flock64 *flp, int32_t orig_state)

642 {

643 struct netobj Imfh;

644 int error, state;

645 rpcvers_t vers;

647 /*

648 * |f the renpte NSM state changes during recovery,
649 * nust have rebooted a second tinme. In that case,
650 * restart the recovery.

651 */

652 state = nl m host _get _st at e(hostp);

nsl _Iink) {

br eak;
}
}
mut ex_exi t (&g- >l ock) ;
return (safe);
}
int
nl m has_sl eep(const vnode_t *vp)
{
struct nlmglobals *g;
struct nlmslock *nslp;
int has_sl ocks = FALSE;
g = zone_getspecific(nl mzone_key, curzone);
nmut ex_ent er (&g- >l ock) ;
TAI LQ FOREACH(nsl p, &g->nl m sl ocks, |
if (nslp->nsl_state == NLM SL_BLOCKED &&
nsl p->nsl _vp == vp) {
has_sl ocks = TRUE;
break;
}
}
mut ex_exi t (&g- >l ock);
return (has_sl ocks);
}
voi d
nl mregister_|l ock_|locally(struct vnode *vp,

struct nl mhost

*host p,

the host
we must

10

new usr/src/uts/comon/klminimclient.c

653 if (state != orig_state)

654 return (ERESTART);

656 error = nlminit_fh_by vp(vp, & mfh, &ers);

657 if (error 1= 0)

658 return (error);

660 return (nlmcall _lock(vp, flp, hostp, & mfh,

661 NULL, vers, NLM X RECLAIM);

662 }

664 /*

665 * Cet local lock information for sone NFS server.

666 *

667 * This gets (checks for) a local conflicting |Iock.

668 * Note: Mdifies passed flock, if a conflict is found,

669 * but the caller expects that.

670 */

671 static int

672 nl m|ocal _getlk(vnode_t *vp, struct flock64 *fl, int flags)

673 {

674 VERI FY(fl->I _whence == SEEK SET);

675 return (reclock(vp, fl, 0, flags, 0, NULL));

676 }

678 /[*

679 * Set local lock information for some NFS server.

680 *

681 * Called after a | ock request (set or clear) succeeded. W record the
682 * details in the local |ock manager. Note that since the renote
683 * server has granted the |ock, we can be sure that it doesn't

684 * conflict with any other locks we have in the |ocal |ock manager.
685 *

686 * Since it is possible that host may al so make NLMclient requests to
687 * our NLM server, we use a different sysid value to record our own
688 * client |ocks.

689 *

690 * Note that since it is possible for us to receive replies fromthe
691 * server in a different order than the | ocks were granted (e.g. if
692 * many |local threads are contending for the sanme |ock), we nust use a
693 * bl ocking operation when registering with the Iocal |ock manager.
694 * W expect that any actual wait will be rare and short hence we
695 * ignore signals for this.

696 */

697 static int

698 ?I m | ocal _setl k(vnode_t *vp, struct flock64 *fl, int flags)

699

700 VERI FY(fl->l _whence == SEEK_ SET);

701 return (reclock(vp, fl, SETFLCK, flags, 0, NULL));

702 }

704 | *

705 * Cancel local lock and send send S| GLOST si gnal

706 * to the lock owner.

707 *

708 * NOTE: nodifies flp

709 */

710 static void

711 nl m|ocal _cancel k(vnode_t *vp, struct flock64 *flp)

712 {

713 flp-> _type = F_UNLCK;

714 (void) nlmlocal _setlk(vp, flp, FREAD | FWRI TE);

715 nl m send_si gl ost (fl p->l _pid);

716 }

718 | *

11

new usr/src/uts/comon/klminimclient.c

719 * Do NLM LOCK call.

720 * Was: nImsetlock()

721 *

722 * NOTE: nlmcall_lock() function should care about | ocking/unlocking
723 * of rnode->r_| kserl ock which should be rel eased before nlmcall _I ock()
724 * sleeps on waiting |lock and acquired when it wakes up.

725 */

726 static int

727 nl mcall _l ock(vnode_t *vp, struct flock64 *flp,

728 struct nl mhost *hostp, struct netobj *fhp,

729 struct flk_callback *flch, int vers, int xflags)

730 {

731 struct nl m4_| ockargs args;

732 struct nl m owner_handl e oh;

733 struct nlmaglobals *g;

734 rnode_t *rnp = VIOR(vp);

735 struct nlmslock *nslp = NULL;

736 uint32_t xid;

737 int error = 0;

739 bzero(&args, sizeof (args));

740 g = zone_getspeci fic(nl mzone_key, curzone);

741 nlminit_lock(&args.alock, flp, fhp, &oh);

743 args. exclusive = (flp->l _type == F_WRLCK);

744 args.reclaim= xfl ags & NLM X_RECLAI M

745 args.state = g->nsm state;

746 args.cookie.n_len = si zeof (xid);

747 args. cooki e.n_bytes = (char *)&xid;

749 oh. oh_sysid = host p->nh_sysi d;

750 xid = atom c_inc_32 nv(&nImX|d)

752 if (xflags & NLM X_BLOCKI NG {

753 args. bl ock = TRUE;

754 nslp = nl mslock_register(g, hostp, &args.alock, vp);
755 }

757 for (;;) {

758 nlmrpc_t *rpcp;

759 enum cl nt _stat stat;

760 struct nlmd_res res;

761 enum nl md_stats nlmerr;

763 error = nl mhost_get_rpc(hostp, vers, &r pcp);
764 if (error '=0) {

765 error = ENOLCK;

766 goto out;

767 }

769 bzero(&es, sizeof (res));

770 stat = nl mlock_rpc(&args, &res, rpcp->nr_handle, vers);
771 nl m host _rel e_rpc(hostp, rpcp);

773 error = nlmmap_clnt_stat(stat);

774 if (error 1= 0)

775 if (error == EAGAIN)

776 conti nue;

778 goto out;

779 }

781 DTRACE_PROBE1(l ock__res, enumnlmi_stats, res.stat.stat);
782 nlmerr = res.stat.stat;

783 xdr _free((xdrproc_t)xdr_nlnm4_res, (void *)&es);

784 if (nlmerr == nl m_deni ed_grace_period) {

12

new usr/src/uts/comon/klminimclient.c

785
786
787
788

790
791
792

794
795

797
798
799
800
801

803
804
805
806
807

809
810

812
813
814

816
817
818
819
820
821
822
823
824
825

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843

845
846
847
848
849
850

if (args.reclaim {
error = ENOLCK;
goto out;

}

error = nl mhost_wait_grace(hostp);
if (error I'=0)
goto out;

conti nue;

}

switch (nlmerr) {

case nl md_granted:

case nl md_bl ocked:
error = 0;
br eak;

case nl mi_deni ed:
i (nslp '— NULL) {
V\ARN("nlmcall _|ock: got nlnmi_denied for "
"bl ocki ng 1 ock\'n");
}

error = EAGAIN;
br eak;

defaul t:
error = nlmmap_status(nlmerr);

*
* |f we deal with either non-blocking | ock or
* with a blocking | ocks that wasn't bl ocked on
* the server side (by sone reason), our work

* is finished.

*

f

(nslp == NULL I

nlmerr !'= nlmd_bl ocked
error 1= 0)
goto out;

Before rel easing the r_| kserl ock of rnode, we should
check whether the new lock is "safe". If it’s not

safe, disable caching for the given vnode. That is done
for sleeping locks only that are waiting for a GRANT reply
fromthe NLM server.

NOTE: the vnode cache can be enabled back later if an
unsafe lock will be nerged with existent |ocks so that
it will beconme safe. This condition is checked in the
NFSv3 code (see nfs_| ockconpletion).

(! NLM_FLOCK_| S_SAFE(fl p)) {
mut ex_ent er (& p->v_| ock);
vp->v_fl ag & ~VNOCACHE,
nut ex_exi t (&p->v_I ock);

The server should call us back with a
grant ed message when the | ock succeeds.
In order to deal with broken servers,

| ost granted nessages, or server reboots,
we will also re-try every few seconds.

* ok Ok kX ok

13

new usr/src/uts/common/klmnlmclient.c 14
851 *

852 * Note: We're supposed to call these

853 * flk_i nvoke_cal | backs when bl ocki ng.

854 * Take care on rnode->r_| kserl ock, we shoul d

855 * release it before going to sleep.

856 *

857 (void) flk_invoke_callbacks(flcb, FLK_BEFORE_SLEEP);
858 nfs_rw exit(& np->r_| kserl ock);

860 error = nlmslock_wait(g, nslp, g->retrans_tno);

862 /*

863 * NFS expects that we return with rnode->r_| kserl ock
864 * | ocked on wite, lock it back.

865 *

866 * NOTE: nfs_rw enter_sig() can be either interruptible
867 * or not. It depends on options of NFS nmount. Here
868 * we're _always_ uninterruptible (independently of nount
869 * options), because nfs_frlock/nfs3 frlock expects that
870 * we return with rnode->r_I| kserl ock acquired. So we don't
871 * want our lock attenpt to be interrupted by a signal.
872 */

873 (void) nfs_rw enter_sig(& np->r_| kserl ock, RWWRI TER, 0);
874 (void) flk_invoke_callbacks(flcb, FLK_ AFTER SLEEP) ;

876 if (error == 0) {

877 break;

878 } else if (error == EINTR) {

879 /*

880 * W need to call the server to cancel our

881 * | ock request.

882 */

883 DTRACE_PROBE1(cancel __| ock, int, error);

884 (void) nlmcall_cancel (&rgs, hostp, vers);

885 break;

886 } else {

887 /*

888 * Ti meout happened, resend the |ock request to
889 * the server. Wll, we're a bit paranoid here,
890 * but keep in mind previous request could |ost
891 * (especially with conectionless transport).
892 */

894 ASSERT(error == ETI MEDOUT) ;

895 conti nue;

896 }

897 }

899 /*

900 * We coul d disable the vnode cache for the given _sleeping_
901 * (codition: nslp !'= NULL) lock if it was unsafe. Normally,
902 * nfs_l ockconpl etion() function can enable the vnode cache
903 * back if the lock becomes safe after activativation. But it
904 * will not happen if any error occurs on the |ocking path.

905 *

906 * Here we enabl e the vnode cache back if the error occurred
907 * and if there aren’t any unsafe |ocks on the given vnode.

908 */Note that if error happened, sleeping | ock was derigistered.
909 *

910 if (error =0 & nslp !'= NULL && nl m saf enap(vp)) {

911 mut ex_ent er (& p->v_| ock);

912 vp->v_flag | = VNOCACHE;

913 mut ex_exi t (&p->v_| ock);

914 }

916 out:

new usr/src/uts/comon/klmnlmclient.c 15
917 if (nslp !'= NULL)
918 nl m sl ock_unregi ster(g, nslp);
920 return (error);
921 }
923 [/ *
924 * Do NLM CANCEL call .
925 * Helper for nlmcall_lock() error recovery.
926 */
927 static int
928 nlmcal |l _cancel (struct nl mi_|l ockargs *largs,
929 struct nlmhost *hostp, int vers)
930 {
931 nl mi_cancar gs cargs;
932 uint32_t xid;
933 int error, retries;
935 bzero(&cargs, sizeof (cargs));
937 xid = atom c_inc_32_nv(&nl mxid);
938 cargs. cookie.n_len = sizeof (xid);
939 cargs. cooki e.n_bytes = (char *)&xid;
940 cargs. bl ock = | args- >bl ock;
941 cargs. excl usive = | args->excl usive;
942 cargs. al ock = | args- >al ock;
944 /*
945 * Unlike all other nlmcall_* functions, nlmcall_cancel
946 * doesn’t spin forever until it gets reasonable response
947 * from NLM server. It makes limted nunber of retries and
948 * if server doesn’'t send a reasonable reply, it returns an
949 * error. |t behaves |ike that because it’'s called fromnlmcall_|lock
950 * with bl ocked signals and thus it can not be interrupted from
951 * user space.
952 *
953 for (retries = 0; retries < NLM CANCEL_NRETRS; retries++) {
954 nlmrpc_t *rpcp;
955 enum cl nt _stat stat;
956 struct nlmd_res res;
958 error = nl mhost_get_rpc(hostp, vers, & pcp);
959 if (error 1= 0)
960 return (ENOLCK);
962 bzero(&es, sizeof (res));
963 stat = nl mcancel _rpc(&cargs, &es, rpcp->nr_handle,
964 nl m host_rel e_rpc(hostp, rpcp);
966 DTRACE_PROBE1(cancel __rl oop_end, enum clnt_stat, stat);
967 error = nlmmap_clnt_stat(stat);
968 if (error 1=0) {
969 if (error == EAGAIN)
970 conti nue;
972 return (error);
973 }
975 DTRACE_PROBE1(cancel __res, enumnlmi_stats, res.stat.stat);
976 switch (res.stat.stat) {
977 /*
978 * There was nothing to cancel. W are going to go ahead
979 * and assune we got the |ock.
980 */
981 case nl m deni ed:
982 I*

new usr/src/uts/comon/klminimclient.c

983 * The server has recently rebooted. Treat this as a
984 * successful cancell ation.
985 */
986 case nl mi_deni ed_grace_peri od:
987 /*
988 * \W nmanaged to cancel .
989 */
990 case nl md_granted:
991 error = 0;
992 break;
994 defaul t:
995
996 * Broken server inplenentation. Can't really do
997 * anyt hing here.
998 */
999 error = EIQ
1000 break;
1001 }
1003 xdr_free((xdrproc_t)xdr_nlmi_res, (void *)&res);
1004 br eak;
1005 1
1007 return (error);
1008 }
1010 /*
1011 * Do NLM UNLOCK cal | .
1012 * Was: nlmclearl ock
1013
1014 static int
1015 nl mcal | _unl ock(struct flock64 *flp, struct nlmhost *hostp,
1016 struct netobj *fhp, int vers)
1017 {
1018 struct nl md_unl ockargs args;
1019 struct nl mowner_handl e oh;
1020 enum nl md_stats nlmerr;
1021 uint32_t xid;
1022 int error;
1024 bzero(&args, sizeof (args));
1025 nlminit_| ock(&args.al ock, flp, fhp, &oh);
1027 oh. oh_sysi d = host p->nh_sysi d;
1028 xid = atom c_inc_32_nv(&nl mxid);
1029 args. cookie.n_len = sizeof (xid);
1030 args. cooki e.n_bytes = (char *)&xid;
1032 for (;;)
1033 nlmrpc_t *rpcp;
1034 struct nlmd_res res;
1035 enum cl nt _stat stat;
1037 error = nl mhost_get_rpc(hostp, vers, & pcp);
1038 if (error =0
1039 return (ENOLCK);
1041 bzero(&es, sizeof (res));
1042 stat = nl munl ock_rpc(&args, &res, rpcp->nr_handle, vers);
1043 nl m host_rel e_rpc(hostp, rpcp);
1045 error = nlmmap_clnt_stat(stat);
1046 if (error 1= 0)
1047 if (error == EAGAIN)
1048 conti nue;

16

new usr/src/uts/comon/klminimclient.c

1050 return (error);

1051 }

1053 DTRACE_PROBE1(unl ock__res, enumnlmi_stats, res.stat.stat);
1054 nlmerr = res.stat.stat;

1055 xdr_free((xdrproc_t)xdr_nlmi_res, (void *)&res);
1056 if (nlmerr == nlmi_deni ed_grace_period) {
1057 error = nl mhost_wait_grace(hostp);
1058 if (error = 0)

1059 return (error);

1061 conti nue;

1062 }

1064 br eak;

1065 }

1067 /* special cases */

1068 switch (nimerr) {

1069 case nl m_deni ed:

1070 error = EI NVAL;

1071 br eak;

1072 defaul t:

1073 error = nlmmap_status(nlmerr);

1074 br eak;

1075 1

1077 return (error);

1078 }

1080 /*

1081 * Do NLM TEST cal |

1082 * Was: nlmgetl ock()

1083 */

1084 static int

1085 nlmcal |l _test(struct flock64 *flp, struct nlmhost *hostp,
1086 struct netobj *fhp, int vers)

1087 {

1088 struct nlmd_testargs args;

1089 struct nlmi_hol der h;

1090 struct nl m owner _handl e oh;

1091 enum nl md_stats nlmerr;

1092 uint32_t xid;

1093 int error;

1095 bzero(&args, sizeof (args));

1096 nlminit_lock(&args.alock, flp, fhp, &oh);

1098 args. exclusive = (flp->l _type == F_WRLCK);

1099 oh. oh_sysi d = host p- >nh_sysi d;

1100 xi d = atomic_inc_32_nv(&nl mxid);

1101 args. cookie.n_len = sizeof (xid);

1102 args. cooki e.n_bytes = (char *)&xid;

1104 for (;;) {

1105 nlmrpc_t *rpcp;

1106 struct nlmd_testres res;

1107 enum cl nt _stat stat;

1109 error = nl mhost_get_rpc(hostp, vers, &rpcp);
1110 if (error 1= 0)

1111 return (ENOLCK);

1113 bzero(& es, sizeof (res));

1114 stat = nlmtest_rpc(&rgs, &es, rpcp->nr_handl e,

vers);

17

new usr/src/uts/comon/klmnimclient.c

1115

1117
1118
1119
1120

1122
1123

1125
1126
1127
1128
1129
1130
1131
1132

1134
1135

1137
1138

1140
1141
1142
1143
1144

1146
1147
1148
1149
1150
1151
1152
1153
1154

1156
1157
1158
1159

1161
1162

1165
1166
1167
1168
1169

1171
1172
1173
1174

1176
1177
1178
1179
1180

nl m host _rel e_rpc(hostp, rpcp);

error = nlmmap_clnt_stat(stat);
if (error '=0) {
if (error == EAGAIN)
conti nue;

return (error);

}

DTRACE_PROBE1(test__res, enumnlmi_stats, res.stat.stat);
nilmerr = res.stat.stat;
bcopy(&res.stat.nl md_testrply_u.holder, &, sizeof (h));
xdr _free((xdrproc_t)xdr_nlmi_testres, (void *)&es);
if (nlmerr == nl mM_deni ed_grace_period) {

error = nl mhost_wait_grace(hostp);

if (error !'=0)

return (error);

conti nue;

}

br eak;

}

switch (nimerr) {
case nl mi_grant ed:
flp->_type = F_UNLCK;

error = 0;
br eak;

case nl mi_deni ed:
flp-> _start = h.|_offset;
flp->l_len = h.l_len;
flp->l_pid = h.svid,
flp->l _type = (h.exclusive) ? F VRLCK : F_RDLCK;
fl p->l _whence = SEEK_SET;
flp->l_sysid = 0;
error = 0;
br eak;

defaul t:
error = nl mmap_status(nlmerr);
br eak;

}

return (error);

static void
nlminit_|lock(struct nlmd_| ock *|ock,

const struct flock64 *fl, struct netobj *fh,
struct nl mowner_handl e *oh)

/* Caller converts to zero-base. */
VERI FY(fl-> _whence == SEEK_SET);
bzero(l ock, sizeof (*|ock));
bzero(oh, sizeof (*oh));

| ock->cal | er_nanme = uts_nodenane();
lock->fh.n_len = fh->n_len;

| ock->fh.n_bytes = fh->n_bytes;

| ock->o0h. n_l en = sizeof (*oh);

| ock->o0h. n_bytes = (void *)oh;

new usr/src/uts/comon/klminimclient.c

1181
1182
1183
1184

1186

1188 i

1189
1190
1191
1192
1193
1194
1195
1196
1197
1198

1200
1201

1203
1204
1205
1206
1207

1209
1210
1211
1212

1214
1215
1216
1217
1218
1219
1220

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231

1233
1234

1236
1237
1238

1240
1241
1242
1243
1244
1245
1246

| ock->svid = fl->| _pid;
| ock->| _offset = fl->|_start;
lock->l _len = fl->l_len;

}

[* Kk kkkkkkkkkkkkkkkhk Kk kk kK kkkhkhk Kk hhhkhhkkkhhkhhkkkhhkkkkkkhkk* % [

int

nl mshrlock(struct vnode *vp, int cnd, struct shrlock *shr,
int flags, struct netobj *fh, int vers)

{

struct shrlock shlk;
mtinfo_ t *m;

servinfo_t *sv;

const char *netid;

struct nl mhost *host = NULL;
int error;

struct nlmglobals *g;

m
sv

VTOM (vp);
m->m _curr_serv;

netid = nl mknc_to_netid(sv->sv_knconf);
if (netid == NULL) {
NLM_ERR("nl m shrl ock: unknown NFS netid\n");
return (ENOSYS);

}

g = zone_getspecific(nl mzone_key, curzone);
host = nl m host_findcreate(g, sv->sv_hostnanme, netid, &sv->sv_addr);
if (host == NULL)

return (ENOSYS);

/*
* Fill in s_sysid for the |ocal |ocking calls.
* Also, let’s not trust the caller’s | _pid.
*
/
shl k = *shr;
shl k. s_sysid = host->nh_sysid | LM SYSI D CLI| ENT;
shl k. s_pid = curproc->p_pid;

if (cmd == F_UNSHARE) {
/*

* Purge |local (cached) share information first,
*/then clear the renmote share.

*

(void) nlmlocal _shrlock(vp, &shlk, cnd, flags);
nl m shres_untrack(host, vp, &shlk);

error = nlmcall_unshare(&shl k, host, fh, vers);
goto out;

}

nfs_add_l ocki ng_i d(vp, curproc->p_pid, RLMPL_OMNER,
shr->s_owner, shr->s_own_|en);

error = nlmcall_share(&shl k, host, fh, vers, FALSE);
if (error 1= 0)
goto out;

/*

* Save the share locally. This should not fail,

* because the server is authoritative about shares
* and it just told us we have the share reservation!
*/

error = nlmlocal _shrlock(vp, shr, cnd, flags);

if (error 1= 0)

new usr/src/uts/common/klmnlmclient.c 20
1247 1=

1248 * Ch oh, we really don’t expect an error here.

1249 */

1250 NLM WARN(" nl m shrl ock: set locally, err %\n", error);
1251 error = 0;

1252 }

1254 nl mshres_track(host, vp, &shlk);

1255 nl m host _nonitor(g, host, 0);

1257 out:

1258 nl m host _rel ease(g, host);

1260 return (error);

1261 }

1263 static int

1264 nl mrecl ai mshare(struct nl mhost *hostp, vnode_t *vp,

1265 struct shrlock *shr, uint32_t orig_state)

1266 {

1267 struct netobj Imfh;

1268 int error, state;

1269 rpcvers_t vers;

1271 state = nl m host_get_state(hostp);

1272 if (state != orig_state)

1273 /*

1274 * |t seenms that NLM server rebooted while

1275 * we were busy with recovery.

1276 */

1277 return (ERESTART);

1278 1

1280 error = nlminit_fh_by vp(vp, & mfh, &ers);

1281 if (error 1= 0)

1282 return (error);

1284 return (nlmcall_share(shr, hostp, & mfh, vers, 1));

1285 }

1287 /*

1288 * Set local share information for sone NFS server.

1289 *

1290 * Called after a share request (set or clear) succeeded. W record
1291 * the details in the local |ock nmanager. Note that since the renote
1292 * server has granted the share, we can be sure that it doesn't
1293 * conflict with any other shares we have in the local |ock manager.
1294 *

1295 * Since it is possible that host nay al so nake NLM client requests to
1296 * our NLM server, we use a different sysid value to record our own
1297 * client shares.

1298 */

1299 int

1300 ?I m | ocal _shrl ock(vnode_t *vp, struct shrlock *shr, int cnd, int flags)
1301

1302 return (fs_shrlock(vp, cnmd, shr, flags, CRED(), NULL));

1303

}

1305 static void

1306 nl m| ocal _shrcancel (vhode_t *vp, struct shrlock *shr)

1307 {

1308 (void) nlmlocal _shrlock(vp, shr, F_UNSHARE, FREAD | FWRI TE);
1309 nl m send_si gl ost (shr->s_pid);

1310 }

1312 /*

new usr/src/uts/comon/klminimclient.c 21 new usr/src/uts/comon/klmnimclient.c
1313 * Do NLM SHARE cal | . 1379 br eak;
1314 * Was: nlmsetshare() 1380 case nl mi_deni ed_nol ocks:
1315 */ 1381 case nl md_deadl ck:
1316 static int 1382 error = ENOLCK;
1317 nlmcal | _share(struct shrlock *shr, struct nlmhost *host, 1383 br eak;
1318 struct netobj *fh, int vers, int reclaim 1384 defaul t:
1319 { 1385 error = ElINVAL;
1320 struct nl mi_shareargs args; 1386 br eak;
1321 enum nl md_stats nlmerr; 1387 }
1322 uint32_t xid;
1323 int error; 1389 return (error);
1390 }
1325 bzero(&args, sizeof (args));
1326 nlminit_share(&args.share, shr, fh); 1392 /*
1393 * Do NLM UNSHARE cal | .
1328 args.reclaim= reclaim 1394 */
1329 xid = atom c_inc_32_nv(&nl mxid); 1395 static int
1330 args. cookie.n_len = sizeof (xid); 1396 nlmcall _unshare(struct shrlock *shr, struct nlmhost *host,
1331 args. cooki e.n_bytes = (char *)&xid; 1397 struct netobj *fh, int vers)
1398 {
1399 struct nlmi_shareargs args;
1334 for (;;) { 1400 enum nl md_stats nlmerr;
1335 nlmrpc_t *rpcp; 1401 uint32_t xid;
1336 struct nlmd_shareres res; 1402 int error;
1337 enum cl nt _stat stat;
1404 bzero(&args, sizeof (args));
1339 error = nl mhost_get_rpc(host, vers, & pcp); 1405 nlminit_share(&args.share, shr, fh);
1340 if (error 1=0)
1341 return (ENOLCK); 1407 xid = atom c_inc_32_nv(&nl mxid);
1408 args. cookie.n_len = sizeof (xid);
1343 bzero(& es, sizeof (res)); 1409 args. cooki e.n_bytes = (char *)&xid;
1344 stat = nl mshare_rpc(&args, &es, rpcp->nr_handle, vers);
1345 nl m host _rel e_rpc(host, rpcp); 1411 for (;;) {
1412 nlmrpc_t *rpcp;
1347 error = nlmmap_clnt_stat(stat); 1413 struct nlmd_shareres res;
1348 if (error 1=0) { 1414 enum cl nt _stat stat;
1349 if (error == EAGAIN)
1350 conti nue; 1416 error = nl mhost_get_rpc(host, vers, & pcp);
1417 if (error 1= 0)
1352 return (error); 1418 return (ENOLCK);
1353 }
1420 bzero(&es, sizeof (res));
1355 DTRACE_PROBE1(share__res, enumnlmd_stats, res.stat); 1421 stat = nl munshare_rpc(&args, &es, rpcp->nr_handle, vers);
1356 nimerr = res.stat; 1422 nl m host_rel e_rpc(host, rpcp);
1357 xdr _free((xdrproc_t)xdr_nl mi_shareres, (void *)&res);
1358 if (nlmerr == nl m_deni ed_grace_period) { 1424 error = nlmmap_clnt_stat(stat);
1359 if (args.reclaim 1425 if (error 1= 0)
1360 return (ENOLCK); 1426 if (error == EAGAIN)
1427 continue;
1362 error = nlmhost_wait_grace(host);
1363 if (error !'=0) 1429 return (error);
1364 return (error); 1430 }
1366 conti nue; 1432 DTRACE_PROBEl(unshare__res, enumnlmi_stats, res.stat);
1367 } 1433 nlmerr = res.stat;
1434 xdr _free((xdrproc_t)xdr_nlm4_res, (void *)&es);
1369 br eak; 1435 if (nlmerr == nl mM_deni ed_grace_peri od)
1370 } 1436 error = nlmhost_wait_grace(host);
1437 if (error !'=0)
1372 switch (nlmerr) { 1438 return (error);
1373 case nl mi_grant ed:
1374 error = 0; 1440 conti nue;
1375 br eak; 1441 }
1376 case nl mi_bl ocked:
1377 case nl mi_deni ed: 1443 br eak;
1378 error = EAGAIN; 1444 }

new usr/src/uts/comon/klmnlmclient.c 23

1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459

1461
1462 }

switch (nlmerr) {

case nl md_granted:
error = 0;
br eak;

case nl mi_deni ed:
error = EAGAIN,
br eak;

case nl mi_deni ed_nol ocks:
error = ENOLCK;

br eak;

defaul t:
error = ElI NVAL;
br eak;

}

return (error);

1464 static void
1465 nl m.init_share(struct nlm_share *args,

1466
1467 {

1469

1471
1472
1473
1474
1475

1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491

1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508 }

1510 /*

const struct shrlock *shr, struct netobj *fh)

bzero(args, sizeof (*args));

args->cal | er_nane = uts_nodenane();
args->fh.n_len = fh->n_len;
args->fh.n_bytes = fh->n_bytes;
args->oh.n_l en = shr->s_own_| en;
args->oh. n_bytes = (void *)shr->s_owner;

switch (shr->s_deny) {
defaul t:
case F_NCDNY:
ar gs- >node
br eak;
case F_RDDNY:
ar gs->node = fsmDR;
br eak;
case F_WRDNY:
args- >node = fsm DW
br eak;
case F_RWDNY
ar gs- >node = fsm DRW

f sm_DN;

br eak;
}
switch (shr->s_access) {
defaul t:

case 0: /* seen with F_UNSHARE */
ar gs- >access = fsa_NONE;
br eak;

case F_RDACC:
args->access = fsa_R
br eak;

case F_WRACC:
args- >access = fsa_W
br eak;

case F_RWACC:
ar gs- >access = fsa_RW
br eak;

new usr/src/uts/comon/klminimclient.c

1511 * Initialize filehandl e according to the version
1512 * of NFS vnode was created on. The version of
1513 * NLMthat can be used with given NFS version
1514 * is saved to | mvers.

1515 */

1516 static int

1517 nim.init_fh_by_vp(vnode_t *vp, struct netobj *fh, rpcvers_t *Imvers)
1518 {

1519 mtinfo_t *m = VIOM (vp);

1521 I*

1522 * Too bad the NFS code doesn't just carry the FH
1523 * in a netobj or a netbuf.

1524 */

1525 switch (m->nmi_vers) {

1526 case NFS _V3:

1527 /* See nfs3_frlock() */

1528 *Imvers = NLMA_VERS;

1529 fh->n_l en = VTOFH3(vp) - >f h3_| engt h;
1530 fh->n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data);
1531 br eak;

1533 case NFS_VERSI O\

1534 /* See nfs_frlock() */

1535 *I mvers = NLM VERS;

1536 fh->n_len = sizeof (fhandle_t);
1537 /* LINTED E_BAD PTR CAST ALTGN */
1538 fh->n_bytes = (char *)VTOFH(vp);
1539 br eak;

1540 defaul t:

1541 return (ENOSYS);

1542 1

1544 return (0);

1545 }

1547 | *

1548 * Send SIGLOST to the process identified by pid.
1549 * NOTE: called when NLM decides to renove | ock
1550 * or share reservati on ownder by the process
1551 * by force.

1552 *

1553 static void

1554 nl m send_si gl ost (pid_t pid)

1555 {

1556 proc_t *p;

1558 mut ex_ent er (&pi dl ock) ;

1559 p = prfind(pid);

1560 if (p !'= NULL)

1561 psi gnal (p, SIGLOST);

1563 mut ex_exi t (&pi dl ock) ;

1564 }

1566 static int

1567 nl m map_cl nt _stat (enum cl nt_stat stat)

1568 {

1569 switch (stat) {

1570 case RPC_SUCCESS:

1571 return (0);

53] case RPC_TI MEDOUT:

1574 case RPC_PROGUNAVAI L:

1575 return (EAGAIN);

new usr/src/uts/comon/klminimclient.c

1577 case RPC_INTR

1578 return (EINTR);
1580 defaul t:

1581 return (El NVAL)
1582 }

1583 }

1585 static int
1586 nl m map_status(enum nl md_stats stat)

1587 {

1588 switch (stat) {

1589 case nlmi_granted

1590 return (0);

1592 case nl mi_deni ed

1593 return (EAGAIN);
1595 case nl mi_deni ed_nol ocks
1596 return (ENOLCK);
1598 case nl md_bl ocked

1599 return (EAGAIN);
1601 case nl md_deni ed_grace_peri od
1602 return (EAGAIN);
1604 case nl md_deadl ck

1605 return (EDEADLK);
1607 case nl mi_rofs:

1608 return (EROFS)
1610 case nlmi_stale_fh

1611 return (ESTALE);
1613 case nlmd_fbig

1614 return (EFBIG;
1616 case nlmi_failed

1617 return (EACCES)
1619 defaul t:

1620 return (ElI NVAL)
1621

1622 }

25

new usr

*ok ok ok ok ok Kk

/'src/ uts/ common/ kl m nl m di spatch. c

R R R R

15379 Sun Aug 25 23:51:09 2013

new usr

/'src/ uts/ common/ kl m nl m di spatch. c

195 Need repl acenment for nfs/l|ockd+kl m

Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbi seda@lel phi x. con»

*k ok ok ok kk

Khkkhkhkkhkkhkhkhkhkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkk k*

1/*

2 * This file and its contents are supplied under the terms of the

3 * Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terns of version
5 * 1.0 of the CDDL.

6 *

7 * Afull copy of the text of the CDDL should have acconpanied this
8 * source. A copy is of the CDDL is also available via the Internet
9 * at http://ww.illunps.org/license/ CDDL.

10 */

12 /*

13 * Copyright 2013 Nexenta Systens, Inc. Al rights reserved.

14 */

16 /*

17 * NFS Lock Manager, server-side dispatch tables and

18 * dispatch progranms: nlmprog_3, nlmprog4

19 =

20 * These are called by RPC framework after the RPC service

21 * endpoints setup done in nlm.inpl.c: nlmsvc_add_ep().

22 *

%2 :/Ori ginally fromrpcgen, then reduced.

26 #i

ncl ude <sys/param h>

27 #include <sys/systm h>

28 #include <sys/sdt.h>

29 #include <rpcsvc/nlmprot. h>

30 #include "nlm.inpl.h"

32 /*

33 * Dispatch entry function pointers.
34 */

35 typedef bool _t (*nlmsvc_func_t)(void *, void *, struct svc_req *);
36 typedef void (*nlmfreeres_func_t)(void *);

38 /*

39 * Entries in the dispatch tabl es bel ow

40 */

41 struct dispatch_entry {

42 nl msvc_func_t de_svc; /* service routine function */
43 xdr proc_t de_xargs; /* XDR args decode function */
44 xdr proc_t de_xres; /* XDR res encode function */
45 nl mfreeres_func_t de_resfree; /* free res function */

46 int de_ressz; /* size of result */

47 ui nt _t de_fl ags; /* flags */

48 };

50 /* Flag bits in de_flags */

51 #define NLM DI SP_NOREMOTE 1 /* Local calls only */
53 /*

54 * Cast nacros for dispatch table function pointers.

55 */

56 #define NLM SVC_FUNC(func) (nl msvc_func_t)func

57 #define NLM_FREERES FUNC(func) (nlmfreeres_func_t)func

new usr/src/uts/comon/kl mi nl m di spatch.c

113

115
116
117
118

120
121
122
123
124

/* ARGSUSED */
static bool _t
nl mnull _svec(void *args, void *resp, struct svc_req *sr)

{

}

/*
* The common NLM service dispatch function, used by
* pboth: nlmprog_3, nlmprog_4
*
/
voi d
nl m_di spat ch(

return (TRUE);

struct svc_req *rqgstp,
SVCXPRT *transp,
(const struct dispatch_entry *de)
uni on {
/* Al the arg types */
nl m_cancar gs au_cancar gs;
nl m_ | ockargs au_| ockar gs;
nlmnotify au_notify;
nlmres au_res;
nl m shar ear gs au_shar ear gs;
nlmsmstatus au_sm status;
nl m testargs au_testargs;
nlmtestres au_testres;
nl m unl ockargs au_unl ockar gs;
nl m_cancar gs au_cancar gs4;
nl m_| ockar gs au_| ockar gs4;
nlmd_notify au_noti fy4;
nlmd_res au_res4;
nl mM_shareargs au_shareargs4;
nl mM_t estargs au_t est ar gs4;
nl mi_testres au_t estres4;
nl md_unl ockar gs au_unl ockar gs4;
} argy;
void *args = &argu;
uni on {
/* Al the ret types */
int ru_int;
nlmres ru_res;
nl m shareres ru_shareres;
nlmtestres ru_testres;
nlm_res ru_res4;
nl md_shareres ru_shareres4;
nl mi_testres ru_testres4;
} resu;
void *res = &resu;
nl msvc_func_t func;
bool _t do_reply = FALSE;
bool _t dupcached = FALSE;
struct dupreq *dr;
int dupstat;
if ((func = de->de_svc) == NULL) {
svcerr_noproc(transp);
return;
}
if ((de->de_flags & NLM DI SP_NOREMOTE) &&
I'nlmcaller_is_local (transp)) {
svcerr_noproc(transp);
return;
}

new usr/ src/uts/comon/kl m nl m di spatch.c 3 new usr/ src/uts/comon/kl m nl m di spatch.c
191 * the reply for the original request but for a re-xmtted
126 /* 192 * request we don’t invoke the service routine so we nust
127 * This section fromrpcgen, and then nodified slightly. 193 * re-xmt the reply fromthe dispatch function.
128 * 194 *
129 * D|spatch entries that should _never_ send a response 195 * |f de_xres is NULL this is a one-way nessage so no reply is
130 * (i.e. all the _MSG and _RES entries) put NULL in the 196 * needed.
131 * de_xres field to indicate that. For such entries, we 197 */
132 * will NOT call svc_sendreply nor xdr_free(). Nor mal 198 if (de->de_xres != NULL_xdrproc_t) {
133 * di spatch entries skip svc_sendreply if the dispatch 199 do_reply = TRUE;
134 * function returns zero, but always call xdr_free(). 200 1
135 &3 201 br eak;
136 * There are nore conpl ex cases where sone di spatch 202 }
137 * functions need to send their own reply. W chose
138 * to indicate those by returning false fromthe 204 if (do_reply) {
139 * service routine. 205 ASSERT(de->de_xres != NULL_xdrproc_t);
140 */ 206 DTRACE_PROBE3(sendreply, struct svc_req *, rqstp,
141 bzero(&argu, sizeof (argu)); 207 SVCXPRT *, transp, struct dispatch_entry *, de);
142 if (!SVC GETARGS(transp, de->de_xargs, args)) {
143 svcerr_decode(transp); 209 if (!svc_sendreply(transp, de->de_xres, res)) {
144 return; 210 svcerr_systenmerr(transp);
145 } 211 NLM_ERR(" nl m_di spatch() svc_sendreply() failed!'\n");
212 }
147 I*
148 * Duplicate request cache. 214 if (!dupcached)
149 * 215 xdr free(de >de_xres, res);
150 * Since none of the NLMreplies are very |large we have sinplified the 216 }
151 * DRC by not distinguishing between idenpotent and non-i denpot ent 217 }
152 * requests.
153 */ 219 if (!SVC FREEARGS(transp, de->de_xargs, args))
154 dupstat = SVC _DUP_EXT(transp, rqstp, res, de->de_ressz, &dr, 220 NLM WARN(" nl m di spatch(): unable to free argunents");
155 &dupcached) 221 }
157 switch (dupstat) { 223 | *
158 case 224 * Result free functions. The functions are called by the RPC duplicate
159 svcerr_systerrerr(transp); 225 * request cache code when an entry is being evicted fromthe cache.
160 br eak; 226 */
161 case DUP_| NPROGRESS: 227 static void
162 br eak; 228 nimres_free(nlmres *resp)
163 case DUP_NEW 229 {
164 case DUP_DROP: 230 xdr _free(xdr_nlmres, (char *)resp);
165 /* 231 }
166 * When UFS is quiescing it uses |ockfs to block vnode
167 * operations until it has finished quiescing. Set the 233 static void
168 * thread’s T_DONTPEND flag to prevent the service routine 234 nl mshareres_free(nl mshareres *resp)
169 * fromblocking due to a lockfs | ock. (See ufs_check_ | ockfs) 235 {
170 */ 236 xdr _free(xdr_nl mshareres, (char *)resp);
171 curthread->t_flag | = T_DONTPEND; 237 }
173 bzero(& esu, sizeof (resu)); 239 static void
174 do_reply = (*func)(args, res, rqgstp); 240 ?I mtestres_free(nlmtestres *resp)
241
176 curthread->t_flag & ~T_DONTPEND; 242 xdr_free(xdr_nlmtestres, (char *)resp);
177 if (curthread->t_flag & T_WOULDBLOCK) { 243 }
178 curthread->t _flag & ~T_WOULDBLOCK;
179 SVC_DUPDONE_EXT(transp, dr, res, NULL, 245 static void
180 de->de_ressz, DUP_DROP); 246 nlmi_res_free(nlmi_res *resp)
181 do_reply = FALSE; 247 {
182 br eak; 248 xdr_free(xdr_nlmd_res, (char *)resp);
183 } 249 }
184 SVC_DUPDONE_EXT(transp, dr, res, de->de_resfree,
185 de->de_ressz, DUP_DONE); 251 static void
186 dupcached = TRUE; 252 nl md_shareres_free(nl m_shareres *resp)
187 br eak; 253 {
188 case DUP_DONE: 254 xdr _free(xdr_nl md_shareres, (char *)resp);
189 I* 255 }
190 * The service routine muy have been responsible for sending

new usr/ src/uts/comon/kl m nl m di spatch.c

257
258
259
260
261

263
264
265
266
267
268

270
271
272
273
274
275

277
278
279

281
282
283
284
285
286
287

289
290
291
292
293
294
295

297
298
299
300
301
302
303

305
306
307
308
309
310
311

313
314
315
316
317
318
319

321
322

static void
nlmi_testres_free(nlmi_testres *resp)

{
xdr_free(xdr_nlmi_testres, (char *)resp);
}
/*
* Di spatch tables for each program version.
*
* The tables here were all originally fromrpcgen,
* but then arg/resp sizes renpved, flags added.
*/
/*
* Dispatch table for versions 1, 2, 3
* (NLM_VERS, NLM SM NLM VERSX)
*
static const struct dispatch_entry
nl m

m prog_3_dtable[] = {

/*
* Version 1 (NLM VERS) entries.
*/

{ /* 0: NULLPRCC */
NLM_SVC_FUNC(nl m nul | _svc),
(xdrproc_t)xdr_void,
(xdr proc_t) xdr _voi d,
NULL,
01},

/* 1: NLM TEST */
NLM SVC FUNC(nl m test _1_svc),
(xdrproc_t)xdr_nImtestargs,
(xdrproc_t)xdr_nlmtestres,
NLM FREERES _FUNC(nI'm testres_free),

sizeof (nlmtestres),
01},

{ /* 2: NLM LOCK */
NLM_SVC_FUNC(nl m | ock_1_svc),
(xdrproc_t)xdr_nl m | ockargs,
(xdrproc_t)xdr_nlmres,

NLM FREERES FUNC(nIm res_free),
Si feof (nlmres),

01},

{ /* 3: NLM CANCEL */
NLM_SVC_FUNC(nl m cancel _1_svc),
(xdrproc_t)xdr_nl m cancar gs,
(xdrproc_t)xdr_nlmres,

NLM FREERES _FUNC(nIm res_free),
si zeof (nlmres),

0},

{ /* 4: NLM UNLOCK */
NLM_SVC_FUNC(nl m_unl ock_1_svc),
(xdrproc_t)xdr_nl m unl ockar gs,
(xdrproc_t)xdr_nlmres,

NLM FREERES_FUNC(nImres_free),
sizeof (nlmres),

0},

{ /* 5: NLM GRANTED */
NLM_SVC_FUNC(nl m granted_1_svc),

new usr/src/ uts/comon/kl m nl m di spatch.c

323
324
325
326
327

329
330
331
332
333

335
336
337
338
339
340
341

343
344
345
346
347
348
349

351
352
353
354
355
356
357

359
360
361
362
363
364
365

367
368
369
370
371
372
373

375
376
377
378
379
380
381

383
384
385
386
387
388

(xdrproc_t)xdr_nl mtestargs,
(xdrproc_t)xdr_nlmres,
NLM_FREERES_FUNC(nl m res_free),
Si feof (nlmres),

0},

/
Al the _MSG and _RES entries ar

* ok ok ok ¥

function so the dispatcher wll
/

{ /* 6: NLM TEST_MsSG */

NLM SVC FUNC(nl m test _nsg_1_svc),
(xdrproc_t)xdr_nI'mtestargs,
(xdrproc_t)O0,

I\

D
0},

{ /* 7: NLM LOCK_MsG */

NLM SVC FUNC(nl m | ock_nsg_1_svc),
(xdrproc_t)xdr_nI'm | ockargs,
(xdrproc_t)O0,

I\

D
0},

{ /* 8 NLM CANCEL_MSG */

NLM_SVC _FUNC(nl m cancel _nsg_1_svc),
(xdrproc_t)xdr_nl'm cancargs,
(xdrproc_t)O0,

NULL,

0,

0},

{ /* 9: NLM_UNLOCK_MsG */
NLM_SVC_FUNC(nl m unl ock_nsg_1_svc),
(xdr proc_t)xdr_nl m unl ockar gs,
(xdrproc_t)O0,

NULL,

0,

01},

{ /* 10: NLM GRANTED_MSG */

e "one way" calls that

skip the usual RPC reply. W give thema null xdr_res

not send a reply.

NLM SVC _FUNC(nl m gr ant ed_nsg_1_svc),

(xdrproc_t)xdr_nl mtestargs,
(xdrproc_t)O0,

NULL,

0,

0},

{ /* 11: NLM TEST_RES */
NLM SVC FUNC(nl m test_res_1_svc),
(xdrproc_t)xdr_nlmtestres,
(xdrproc_t)O0,

NULL,

0,

0},

{ /* 12: NLM LOCK RES */
NLM_SVC_FUNC(nl m | ock_res_1_svc),
(xdrproc_t)xdr_nlmres,
(xdrproc_t)O0,

N

0,

new usr/ src/uts/comon/kl m nl m di spatch.c

389 0},

391 { /* 13: NLM CANCEL_RES */

392 NLM_SVC_FUNC(nl m cancel _res_1_svc),
393 (xdrproc_t)xdr_nlmres,

394 (xdrproc_t)O0,

395 NULL,

396 0,

397 01},

399 { /* 14: NLM UNLOCK RES */

400 NLM_SVC_FUNC(nl m unl ock_res_1_svc),
401 (xdrproc_t)xdr_nlmres,

402 (xdrproc_t)O0,

403 NULL,

404 0,

405 01},

407 { /* 15: NLM GRANTED RES */

408 NLM_SVC _FUNC(nl m granted_res_1_svc),
409 (xdrproc_t)xdr_nimres,

410 (xdrproc_t)O0,

411 NULL,

412 0,

413 01},

415 { /* 16: not used */

416 NLM SVC_FUNC(0) ,

417 (xdrproc_t)0,

418 (xdrproc_t)O,

419 NULL,

420 0,

421 0},

423 { /* 17: NLM SM NOTI FY1 */

424 NLM SVC_FUNC(nl m sm notifyl_2_svc),
425 (xdrproc_t)xdr_nl msm status,

426 (xdrproc_t)xdr_void,

427 NULL,

428 0,

429 NLM DI SP_NOREMOTE },

431 { /* 18: NLM SM NOTI FY2 */

432 NLM SVC _FUNC(nl m sm notify2_2_svc),
433 (xdrproc_t)xdr_nl msm status,

434 (xdrproc_t)xdr_void,

435 NULL,

436 0,

437 NLM DI SP_NOREMOTE },

439 /*

440 * Version 3 (NLM_VERSX) entries.
441 */

443 { /* 19: not used */

444 NLM SVC _FUNC(0) ,

445 (xdrproc_t)O0,

446 (xdrproc_t)0,

447 NULL,

448 0,

449 0},

451 { /* 20: NLM SHARE */

452 NLM_SVC_FUNC(nl m share_3_svc),
453 (xdr proc_t) xdr_nl m shar ear gs,

454 (xdrproc_t)xdr_nl m shareres,

new usr/src/ uts/comon/kl m nl m di spatch.c

455
456
457

459
460
461
462
463
464
465

467
468
469
470
471
472
473

475
476
477
478
479
480
481

482 }

483
484
485

487 |

488
489
490
491
492
493
494

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

514
515
516
517

519

static i

*

NLM_FREERES_FUNC(nl m shareres_free),
si zeof (nlmshareres),
01},

{ /* 21: NLM UNSHARE */

NLM_SVC _FUNC(nl m unshare_3_svc),
(xdrproc_t)xdr_nl'm shareargs,

(xdr proc_t) xdr _nl m shar eres,
NLM_FREERES_FUNC(nl m shareres_free),
si zeof (nlmshareres),

01},

{ /* 22: NLM_NM LOCK */

NLM SVC _FUNC(nl m nm | ock_3_svc),
(xdrproc_t)xdr_nI'm T ockargs,
(xdrproc_t)xdr_nlmres,

NLM FREERES_FUNC(nl mres_free),
si zeof (nlmres),

01},

{ /* 23: NLM FREE_ALL */

NLM SVC FUNC(nl m free_all _3_svc),
(xdrproc_t)xdr_nI'mnotify,
(xdrproc_t)xdr_void,

NULL,

0,

0},

nt nlmprog_3_dtsize =
si zeof (nlmprog_3_dtable) /
si zeof (nlmprog_3 dtable[0]);

* RPC di spatch function for nlmprot versions: 1,2,3
*
/

voi d

nl mprog_3(struct svc_req *rqgstp, register SVCXPRT *transp)
{

const struct dispatch_entry *de;
rpcproc_t max_proc;

switch (rqstp >rg_vers) {

case NLM VERS:
max_proc = NLM GRANTED RES;
br eak;

case NLM SM
max_proc = NLM SM NOTI FY2;
br eak;

case NLM _VERSX:
max_proc = NLM FREE_ALL;
br eak;

defaul t:

/* Qur svc registration should prevent this.

ASSERT(0); /* paranoid */
svcerr_noprog(transp);
return;

}
ASSERT(max_proc < nl mprog_3_dtsize);
if (rgstp->rqg_proc > max_proc) {

svcerr_noproc(tr ansp)
return;

}
de = &nl m prog_3_dtabl e[rqgstp->rqg_proc];

*/

new usr/ src/uts/comon/kl m nl m di spatch.c

521
522

524
525
526
527
528

530
531
532
533
534
535
536

538
539
540
541
542
543
544

546
547
548
549
550
551
552

554
555
556
557
558
559
560

562
563
564
565
566
567
568

570
571
572
573
574
5145]
576

578
579
580
581
582

584
585
586

nl m di spatch(rgstp, transp, de);
}

/*

* Dispatch table for version 4 (NLMi_VERS)
*

/

static const struct dispatch_entry
nl mprog_4_dtable[] = {

{ /* 0: NULLPROC */

NLM SVC_FUNC(nl m nul | _svc),
(xdrproc_t)xdr_void,
(xdrproc_t)xdr_void,

N

e
0},

{ /* 1: NLM4_TEST */

NLM SVC_FUNC(nl mA_t est _4_svc),
(xdrproc_t)xdr_nl md_testargs,
(xdrproc_t)xdr_nl mi_testres,

NLM FREERES_FUNC(nl md_testres_free),
sizeof (nlmd_testres),

0},

{ /* 2: NLMA_LOCK */
NLM_SVC_FUNC(nl m4_| ock_4_svc),
(xdrproc_t)xdr_nl md_| ockar gs,
(xdrproc_t)xdr_nlmd_res,
NLM_FREERES_FUNC(nl m4_res_free),
si zeof (nlmd_res),

01},

{ /* 3: NLM4_CANCEL */
NLM_SVC_FUNC(nl md_cancel _4_svc),
(xdr proc_t)xdr_nl md_cancar gs,
(xdrproc_t)xdr_nl md_res,
NLM_FREERES_FUNC(nl m4_res_free),
si zeof (nlmd_res),

01},

{ /* 4: NLMA_UNLOCK */
NLM_SVC_FUNC(nl md_unl ock_4_svc),
(xdr proc_t)xdr_nl md_unl ockar gs,
(xdrproc_t)xdr_nl md_res,
NLM_FREERES_FUNC(nl m4_res_free),
si zeof (nlmi_res),

0},

{ /* 5. NLMi_GRANTED */
NLM_SVC_FUNC(nl mi_gr ant ed_4_svc),
(xdrproc_t)xdr_nl md_testargs,
(xdrproc_t)xdr_nl md_res,

NLM FREERES_FUNC(nl m4_res_free),
sizeof (nlmi_res),

01},

/
Al the _MSG and _RES entries are "one way" calls that
skip the usual RPC reply. W give thema null xdr_res
function so the dispatcher will not send a reply.

/

{ /* 6: NLMA_TEST_MSG */
NLM _SVC_FUNC(nl m4_t est _nmsg_4_svc),
(xdrproc_t)xdr_nl md_testargs,

Y

new usr/ src/ uts/ comron/ kl m nl m di spatch.c 10
587 (xdrproc_t)0,
588 NULL,
589 0,
590 01},
592 { /* 7. NLM4_LOCK_MSG */
593 NLM_SVC_FUNC(nl md_l ock_nsg_4_svc),
594 (xdrproc_t)xdr_nl m4_| ockargs,
595 (xdrproc_t)O,
596 NULL,
597 0,
598 0},
600 { /* 8 NLM4_CANCEL_MSG */
601 NLM _SVC_FUNC(nl md_cancel _nsg_4_svc),
602 (xdrproc_t)xdr_nl md_cancar gs,
603 (xdrproc_t)0,
604 NULL,
605 0,
606 0},
608 { /* 90 NLM4_UNLOCK_MSG */
609 NLM_SVC_FUNC(nl m4_unl ock_nsg_4_svc),
610 (xdrproc_t)xdr_nl md_unl ockar gs,
611 (xdrproc_t)0,
612 NULL,
613 0,
614 0},
616 { /* 10: NLMA_GRANTED_MSG */
617 NLM_SVC_FUNC(nl m4_gr ant ed_nsg_4_svc),
618 (xdrproc_t)xdr_nl md_testargs,
619 (xdrproc_t)0,
620 NULL,
621 0,
622 0},
624 { /* 11: NLMA_TEST_RES */
625 NLM_SVC_FUNC(nl md_t est _res_4_svc),
626 (xdrproc_t)xdr_nl mi_testres,
627 (xdrproc_t)O0,
628 NULL,
629 0,
630 0},
632 { /* 12: NLMA_LOCK RES */
633 NLM_SVC _FUNC(nl m4_l ock_res_4_svc),
634 (xdrproc_t)xdr_nl mi_res,
635 (xdrproc_t)O0,
636 NULL,
637 0,
638 0},
640 { /* 13: NLMA_CANCEL_RES */
641 NLM_SVC_FUNC(nl mi_cancel _res_4_svc),
642 (xdrproc_t)xdr_nl md_res,
643 (xdrproc_t)O0,
644 N s
645 0,
646 0},
648 { /* 14: NLMA_UNLOCK_RES */
649 NLM_SVC_FUNC(nl mi_unl ock_res_4_svc),
650 (xdrproc_t)xdr_nl md_res,
651 (xdrproc_t)O0,
652 I\

new usr/ src/ uts/ comron/ kl m nl m di spatch.c 11

653
654

656
657
658
659
660
661
662

664
665
666
667
668
669
670

672
673
674
675
676
677
678

680
681
682
683
684
685
686

688
689
690
691
692
693
694

696
697
698
699
700
701
702

704
705
706
707
708
709
710

712
713
714
715
716
717
718

0,
01},

{ /* 15: NLMA_GRANTED RES */

NLM SVC FUNC(nl m4_granted_res_4_svc),
(xdrproc_t)xdr_nlmi_res,
(xdrproc_t)O0,

N

0,
0},

{ /* 16: not used */
NLM_SVC_FUNC(0) ,
(xdrproc_t)O0,
(xdrproc_t)O0,

N

0,
0},

{ /* 17: NLM_SM NOTI FY1 (not in v4) */
NLM_SVC_FUNC(0) ,

(xdrproc_t)O0,

(xdrproc_t)O0,

NULL,

0,

0},

{ /* 18: NLM SM NOTIFY2 (not in v4) */
NLM_SVC_FUNC(0) ,

(xdrproc_t)0,

(xdrproc_t)O0,

NULL,

0,

0},

{ /* 19: not used */
NLM SVC_FUNC(0) ,
(xdrproc_t)0,
(xdrproc_t)O0,

NULL,

0,

0},

{ /* 20: NLMA_SHARE */

NLM_SVC _FUNC(nl m4_share_4_svc),
(xdrproc_t)xdr_nl m_shar ear gs,
(xdrproc_t)xdr_nl md_shareres,

NLM _FREERES_FUNC(nl m4_shar er es_f ree),
si zeof (nlmi_shareres),

{ /* 21: NLMA_UNSHARE */
NLM_SVC_FUNC(nl m4_unshare_4_svc),
(xdrproc_t)xdr_nl m4_shar eargs,
(xdrproc_t)xdr_nl md_shareres,

NLM _FREERES_FUNC(nl m4_shar er es_f ree),
si zeof (nlmi_shareres),

0},

{ /* 22: NLMA_NM LOCK */

NLM SVC FUNC(nl mé_nm | ock_4_svc),
(xdrproc_t)xdr_nl m4_Tockargs,
(xdrproc_t)xdr_nlmi_res,

NLM FREERES _FUNC(nl m4_res_free),
si zeof (nlmd_res),

01},

new usr/src/ uts/comon/kl m nl m di spatch.c

720 { /* 23: NLMA_FREE_ALL */

721 NLM SVC FUNC(nl m4_free_all _4_svc),
722 (xdrproc_t)xdr_nl md_notify,
723 (xdrproc_t)xdr_void,

724 NULL,

725 0,

726 0},

727 };

728 static int nlmprog_4_dtsize =

729 si zeof (nlmprog_4_dtable) /
730 si zeof (nlmprog_4 dtable[0]);
732 | *

733 * RPC dispatch function for nl mprot version 4.
734 */

735 void

736 nl mprog_4(struct svc_req *rqstp, register SVCXPRT *transp)
737 {

738 const struct dispatch_entry *de;

740 if (rqstp >rg_vers !'= NLM4_VERS) {

741 * Qur svc registration should prevent this.
742 ASSERT(O) /* paranoid */

743 svcerr_noprog(transp);

744 return;

745 1

747 if (rgstp->rg_proc >= nlmprog_4_dtsize) {
748 svcerr_noproc(transp);

749 return;

750 1

752 de = &1l m prog_4_dtabl e[rqgstp->rq_proc];
754 nl mdi spatch(rgstp, transp, de);

755 }

*/

12

new usr/src/uts/comon/ Kkl minl minpl.c 1 new usr/src/uts/comon/ Kkl minl minpl.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 59 #I ncl ude <SyS/ Sdt . h>
65841 Sun Aug 25 23:51:09 2013 60 #include <netinet/in.h>
new usr/src/uts/comon/ Kkl minl minpl.c
195 Need repl acenment for nfs/l|ockd+kl m 62 #include <rpc/rpc. h>
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp 63 #include <rpc/xdr. h>
Revi ewed by: Jereny Jones <jereny@lel phi x. con> 64 #incl ude <rpc/pmap_prot. h>
Revi ewed by: Jeff Biseda <jbi seda@lel phi x. con» 65 #i ncl ude <rpc/pmap_clnt. h>
IR R R R R R R RS R SR S R RS RS E R E R E RS E R R R R REREREEEEEEEE] 66 #' ﬂCl ude <r pC/ rpcb_prot . h>
1/*
2 * Copyright (c) 2008 Isilon Inc http://ww.isilon.conl 68 #incl ude <rpcsve/ nl mprot. h>
3 * Authors: Doug Rabson <dfr @ abson. or g> 69 #include <rpcsvc/sminter. h>
4 * Developed with Red Inc: Alfred Perlstein <alfred@reebsd. org> 70 #include <rpcsvc/ nsm addr. h>
5 *
6 * Redistribution and use in source and binary forms, with or w thout 72 #include <nfs/nfs.h>
7 * nodification, are pernmitted provided that the follow ng conditions 73 #include <nfs/nfs_clnt.h>
8 * are met: 74 #include <nfs/export.h>
9 * 1. Redistributions of source code nmust retain the above copyright 75 #include <nfs/rnode. h>
10 = notice, this list of conditions and the follow ng disclainer. 76 #include <nfs/Im h>
11 * 2. Redistributions in binary form nust reproduce the above copyri ght
12 * notice, this list of conditions and the follow ng disclainmer in the 78 #include "nl m.inpl.h"
13 * docunentation and/or other materials provided with the distribution.
14 = 80 struct nlmknc {
15 * THI' S SOFTWARE | S PROVI DED BY THE AUTHOR AND CONTRI BUTCORS ‘*AS IS’ AND 81 struct knetconfig n_knc;
16 * ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TO, THE 82 const char *n_netid;
17 * | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE 83 };
18 * ARE DI SCLAIMED. | N NO EVENT SHALL THE AUTHOR OR CONTRI BUTORS BE LI ABLE
19 * FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL 85 /*
20 * DAMAGES (I NCLUDI NG, BUT NOT LIM TED TO, PROCUREMENT OF SUBSTI TUTE GOODS 86 * Nunber of attenpts NLMtries to obtain RPC binding
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON) 87 * of local statd.
22 * HOWEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER I N CONTRACT, STRI CT 88 */
23 * LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG I N ANY WAY 89 #define NLM NSM RPCBI ND_RETRI ES 10
24 * QUT OF THE USE OF THI S SOFTWARE, EVEN | F ADVI SED OF THE PGCSSI BI LI TY OF
25 * SUCH DAMAGE. 91 /*
26 */ 92 * Timeout (in seconds) NLM waits before nmeking another
93 * attenpt to obtain RPC binding of |ocal statd.
28 /| * 94 *
29 * Copyright 2013 Nexenta Systenms, Inc. Al rights reserved. 95 #define NLM NSM RPCBI ND_TI MEQUT 5
30 * Copyright (c) 2012 by Del phix. Al rights reserved.
31 */ 97 /*
98 * Total nunber of sysids in NLM sysid bitmap
33 /* 99 */
34 * NFS LockManager, start/stop, support functions, etc. 100 #define NLM BMAP_NI TEMS (LM SYSID_MAX + 1)
35 * Most of the interesting code is here.
36 * 102 /*
37 * Source code derived from FreeBSD nl mprot_inpl.c 103 * Nunber of ulong_t words in bitmap that is used
38 */ 104 */for al l ocation of sysid nunbers.
105 *
40 #i ncl ude <sys/param h> 106 #define NLM BMAP_WORDS (NLM BVAP_NI TEMS / BT_NBI PUL)
41 #include <sys/systm h>
42 #include <sys/thread. h> 108 /*
43 #include <sys/fcntl. h> 109 * Gven an integer x, the macro returns
44 #include <sys/flock. h> 110 * -1 if x is negative,
45 #incl ude <sys/nount. h> 111 * 0 if x is zero
46 #include <sys/priv.h> 112 * 1 if x is positive
47 #incl ude <sys/proc. h> 113 */
48 #i ncl ude <sys/share. h> 114 #define SIGN(x) (((x) > 0) - ((x) <0))
49 #incl ude <sys/socket. h>
50 #include <sys/syscall.h> 116 #define ARRSIZE(arr) (sizeof (arr) / sizeof ((arr)[0]))
51 #include <sys/sysl og. h> 117 #define NLM_KNCS ARRSI ZE(nl m net confi gs)
52 #include <sys/systm h>
53 #include <sys/class. h> 119 krw ock_t I mlck;
54 #incl ude <sys/unistd. h>
55 #i ncl ude <sys/vnode. h> 121 /*
56 #include <sys/vfs.h> 122 * Zero timeout for asynchronous NLM RPC operations
57 #include <sys/queue. h> 123 */
58 #include <sys/ bitnmap. h> 124 static const struct tinmeval nimrpctv_zero ={ 0, 0 };

new usr/src/uts/comon/ Kkl minl minpl.c

126 /*

127 * List of all Zone gl obals nlmglobals instences

128 * linked together.

129 */

130 static struct nlmglobals_list nlmzones_list; /* (g) */

132 /*

133 * NLM knmem caches

134 */

135 static struct kmem cache *nl m hosts_cache = NULL;

136 static struct knmem cache *nl mvhol d_cache = NULL;

138 /*

139 * A bitmap for allocation of new sysids.

140 * Sysid is a unique nunber between LM SYSID

141 * and LM SYSID MAX. Sysid represents unique renote

142 * host that does file |ocks on the given host.

143 */

144 static ulong_t nlmsysid_brmap[NLM BVAP_WORDS]; /* (g) */
145 static int nl m sysi d_ni dx; I* (g) */
147 | *

148 * RPC service registration for all transports

149 */

150 static SVC CALLOUT nl msves[] = {

151 { NLMPROG, 4, 4, nimprog_4 }, /* NLM4_VERS */
152 { NLMPROG, 1, 3, nimprog_3 } /* NLMVERS - NLM VERSX */
153 };

155 static SVC CALLOUT_TABLE nl msct = {

156 ARRS| ZE(nl m svcs),

157 FALSE,

158 nl msvcs

159 };

161 /*

162 * Static table of all netid/ knetconfig network

163 * |ock manager can work with. nlmnetconfigs table

164 * is used when we need to get valid knetconfig by

165 * netid and vice versa.

166 *

167 * Knetconfigs are activated either by the call from

168 * user-space | ockd daenon (server side) or by taking
169 */knetconf ig fromNFS mountinfo (client side)

170 *

171 static struct nlmknc nlmnetconfigs[] ={ /* (9g)

172 /* UDP */

173 {

174 { NC_TPI _CLTS, NC_I NET, NC_UDP, NOCDEV },
175 "udp",

176 },

177 [* TCP */

178 {

179 { NC_TPI _COTS_ORD, NC_INET, NC TCP, NOCDEV },
180 "tcp",

181 1,

182 /* UDP over |Pv6 */

183 {

184 { NC_TPI _CLTS, NC INET6, NC UDP, NODEV },
185 "udp6",

186 },

187 /* TCP over |Pv6 */

188 {

189 { NC_TPI _COTS ORD, NC | NET6, NC TCP, NCDEV },

190 "tcp6”,

new usr/src/uts/comon/ Kkl minl minpl.c 4
191 1,
192 /* ticlts (loopback over UDP) */
193 {
194 { NC_TPI _CLTS, NC_LOOPBACK, NC _NOPROTO, NCDEV 1},
195 "ticlts",
196 },
197 /* ticotsord (|oopback over TCP) */
198 {
199 { NC_TPI _COTS_ORD, NC_LOOPBACK, NC_NOPROTO, NODEV },
200 "ticotsord"
201 1,
202 };
204 /| *
205 * NLM m sc. function
206 */
207 static void nl mcopy_netbuf(struct netbuf *, struct netbuf *);
208 static int nl mnetbuf_addrs_cnp(struct netbuf *, struct netbuf *);
209 static void nl mknmemreclain(void *);
210 static void nl mpool _shutdown(void);
211 static void nl msuspend_zone(struct nlmglobals *);
212 static void nl mresune_zone(struct nlmglobals *);
213 static void nlmnsmclnt_init(CLIENT *, struct nlmnsm?*);
214 static void nl mnetbuf_to_netobj(struct netbuf *, int *, netobj *);
216 /*
217 * NLMthread functions
218 */

219 static void nlmgc(struct nl mglobals *);
220 static void nlmreclainmer(struct nl mhost *);

222 | *

223 * NLM NSM functions

224 |

225 static int nlminit_|local _knc(struct knetconfig *);

226 static int nlmnsminit_local (struct nl mnsm*);

227 static int nlmnsminit(struct nlmnsm=*, struct knetconfig *, struct netbuf *);
228 static void nlmnsmfini(struct nlmnsm*);

229 static enumclnt_stat nlmnsmsinu_crash(struct nlmnsm*);

230 static enumclnt_stat nlmnsmstat(struct nfmnsm?*, int32_t *);

231 static enumclnt_stat nl mnsmnon(struct nlmnsm?*, char *, uintl6_t);
232 static enumclnt_stat nlmnsmunnon(struct nlmnsm=*, char *);

234 | *

235 * NLM host functions

236 */

237 static int nlmhost_ctor(void *, void *, int);

238 static void nlmhost_dtor(void *, void *);

239 static void nl mhost_destroy(struct nlmhost *);

240 static struct nlmhost *nl mhost_create(char *, const char *,

241 struct knetconfig *, struct netbuf *);
242 static struct nlmhost *nlmhost_find_l| ocked(st ruct nlmglobals *,
243 const char *, struct netbuf *, avl_index_t *);

244 static void nl mhost_unregister(struct nlmglobals *, struct nl mhost *);
245 static void nl mhost_gc_vhol ds(struct nl mhost *);

246 static bool _t nl'm host_has_srv_| ocks(struct nlm host *);

247 static bool _t nlmhost_has cli_| ocks(struct nl mhost *);

248 static bool _t nl mhost_has_l ocks(struct nl mhost *);

250 /*
251 * NLM vhol d functions
252 */

253 static int nlmyvhold_ctor(void *, void *, int);
254 static void nl mvhold_dtor(void *, void *);

255 static void nl mvhol d_destroy(struct nlmhost *,
256 struct nlmvhold ¥);

new usr/src/uts/comon/ Kkl minl minpl.c

257 static bool _t nl mvhol d_busy(struct nlmhost *, struct nlmuvhold *);
258 static void nl mvhold_clean(struct nlmvhold *, int);

260 /*

261 * NLMclient/server sleeping |ocks/share reservation functions
262 */

263 struct nimslreq *nlmslreq_find_| ocked(struct nl mhost *,

264 struct nlmvhold *, struct flock64 *

265 static struct nlmshres *nlmshres_create_iten(struct shrlock *, vnode_t *);
266 static void nl mshres_destroy_iten(struct nl mshres *);

267 static bool _t nlmshres_equal (struct shrlock *, struct shrlock *);
269 /*

270 * NLMinitialization functions.

271 */

272 void

273 nlm.init(void)

274 {

275 nl m hosts_cache = kmem cache_creat e("nl m host _cache",
276 sizeof (struct nlmhost), 0, nlmhost_ctor, nlmhost_dtor,
277 nl mkmemreclaim NULL, NULL, 0);

279 nl m vhol d_cache = kmem cache_creat e("nl m vhol d_cache",
280 si zeof (struct nlmvhold), 0, nlmvhold_ctor, nlmvhol d_dtor,
281 NULL, NULL, NULL, 0);

283 nilmrpc_init();

284 TAILQ I NI T(&l m zones_| i st);

286 /* initialize sysids bitmp */

287 bzero(nl m sysi d_bmap, sizeof (nlmsysid_bnmap));

288 nlmsysid_nidx = 1;

290 /*

291 * Reserv the sysid #0, because it’s associated

292 * with local locks only. Don't let to allocate

293 * it for renote |ocks.

294 */

295 BT_SET(nl m sysi d_bmap, 0);

296 }

298 void

299 nl m gl obal s_regi ster(struct nl mglobals *g)

300 {

301 rw enter(& mlck, RWWR TER);

302 TAILQ_| NSERT_TAI L(&nl m zones_list, g, nlmlink);

303 rw exit(& mTlck);

304 }

306 void

307 nl mgl obal s_unregi ster(struct nl mglobals *g)

308 {

309 rw_enter (& mlck, RWWRI TER);

310 TAI LQ REMOVE(&l m zones_list, g, nlmlink);

311 rw_exit(& mlck);

312 }

314 /* ARGSUSED */

315 static void

316 nl m kmem recl ai m(void *cdrarg)

317 {

318 struct nlmglobals *g;

320 rw_enter (& mlck, RWREADER);

321 TAI LQ FOREACH(g, &nl m zones_| i st, nlmlink)

322 cv_broadcast (&g->nl m gc_ sched “cv);

new usr/src/uts/comon/ Kkl minl minpl.c

324
325

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344 s
345

346 {

347
348

350
351
352
353
354
355
356
357
358

360
361
362
363
364

366
367
368

370
371
372
373
374
375

377
378

380
381
382
383
384
385
386
387

rw_exit(& mlck);

NLM gar bage col |l ector thread (CC).

NLM GC peri odi cal | y checks whether there’re any host objects
that can be cleaned up. It also rel eases stal e vnodes that
live on the server side (under protection of vhold objects).

NLM host objects are cl eaned up from GC thread because
operations hel ping us to determ ne whether given host has

any | ocks can be quite expensive and it’s not good to call
themevery tine the very last reference to the host is dropped.
Thus we use "l azy" approach for hosts cleanup.

The work of GCis to release stale vnodes on the server side
and destroy hosts that haven't any |ocks and any activity for
sonme time (i.e. idle hosts).

atic void
m gc(struct nlmglobals *g)

struct nlmhost *hostp;
clock_t now, idle_period;

idle_period = SEC TO TI CK(g->cn_idl e_t nD);
mut ex_ent er (&g- >l ock);
for (i) {

* GC thread can be explicitly schedul ed from
* menory reclamation function.
*/

(void) cv_timedwait (&g->nl mgc_sched_cv,
ddi _get _Ibolt() + idle_period);

&g- >l ock,

/*
* NLMis shutting down, tine to die.
*/
if (g->run_status == NLM ST_STOPPI NG

br eak;

now = ddi _get _I| bolt();
DTRACE_PROBE2(gc__start,
clock_t, now);

struct nlmglobals *, g,

/*
* Handl e all hosts that are unused at the nonent
* until we neet one with idle timeout in future.
*/

whil e ((hostp

bool

= TAILQ FI RST(&g->nl m.idl e_hosts)) != NULL)
t has ;

| ocks = FALSE;

if (hostp->nh_idle_tinmeout > now)

br eak;
/*
* Drop global |ock while doing expensive work
* on this host. W’ Il re-check any conditions
* that m ght change after retaking the global
* | ock.
*/

mut ex_exi t (&g- >l ock) ;
mut ex_ent er (&host p- >nh _| ock) ;

new usr/src/uts/comon/ Kkl minl minpl.c 7 new usr/src/uts/comon/ Kkl minl minpl.c

389 /* 455 cv_broadcast (&g->nl m gc_finish_cv);
390 * nlmglobals | ock was dropped earlier because 456 zthread_exit();
391 * garbage coll ecting of vholds and checki ng whet her 457 }
392 * host has any | ocks/shares are expensive operations.
393 */ 459 [*
394 nl m_host _gc_vhol ds(host p); 460 * Thread reclaimlocks/shares acquired by the client side
395 has_l ocks = nl m host _has_| ocks(hostp); 461 * on the given server represented by hostp.
462 */
397 nut ex_exi t (&host p- >nh_| ock) ; 463 static void
398 mut ex_ent er (&g- >l ock) ; 464 nl mreclai ner(struct nl mhost *hostp)
465 {
400 7 466 struct nlmglobals *g;
401 * Wi le we were doing expensive operations outside of
402 * nlmglobals critical section, sonebody coul d 468 mut ex_ent er (&host p- >nh_| ock) ;
403 * take the host, add | ock/share to one of its vnodes 469 host p- >nh_r ecl ai mer = curthread;
404 * and rel ease the host back. If so, host’s idle tineout 470 mut ex_exi t (&host p- >nh_I ock) ;
405 * is renewed and our information about |ocks on the
406 * given host is outdated. 472 g = zone_get speci fic(nl mzone_key, curzone);
407 * 473 nilmreclaimclient(g, hostp);
408 if (hostp->nh_idle_tinmout > now)
409 conti nue; 475 nmut ex_ent er (&host p- >nh_| ock) ;
476 host p- >nh_fl ags & ~NLM NH_RECLAI M
411 /* 477 host p- >nh_r ecl ai mer = NULL;
412 * |f either host has |ocks or sonebody has began to 478 cv_broadcast (&ost p- >nh_recl _cv);
413 * use it while we were outside the nlmglobals critical 479 nmut ex_exi t (&host p- >nh_I ock) ;
414 * section. In both cases we have to renew host’s
415 * timeout and put it to the end of LRU |list. 481 /*
416 */ 482 * Host was explicitly referenced before
417 if (has_locks || hostp->nh_refs > 0) { 483 * nilmreclain() was called, release it
418 TAlI LQ REMOVE(&g- >nl m i dl e_host s, 484 * here.
419 hostp, nh_link); 485 */
420 host p->nh_i dl e_ti meout = now + idl e_period; 486 nl m host _rel ease(g, hostp);
421 TAI LQ | NSERT_TAI L(&g->nl m_i dl e_host s, 487 zthread_exit();
422 hostp, nh_link); 488 }
423 conti nue;
424 } 490 /*
491 * Copy a struct netobj. (see xdr.h)
426 /* 492 */
427 * W're here if all the follow ng conditions hold: 493 void
428 * 1) Host hasn’t any |ocks or share reservations 494 nl m copy_netobj (struct netobj *dst, struct netobj *src)
429 * 2) Host is unused 495 {
430 * 3) Host wasn’t touched by anyone at |east for 496 dst->n_len = src->n_len;
431 * g->cn_idl e_tno seconds. 497 dst->n_bytes = knem al | oc(src->n_| en, KM SLEEP);
432 * 498 bcopy(src->n_bytes, dst->n_bytes, src->n_|len);
433 * So, now we can destroy it. 499 }
434 */
435 nl m_host _unregi ster(g, hostp); 501 /*
436 mut ex_exi t (&g- >l ock) ; 502 * An NLM specificw replacenent for clnt_call ().
503 * nlmclnt_call() is used by all RPC functions generated
438 nl m_host _unnoni tor (g, hostp); 504 * fromnlmprot.x specification. The function is aware
439 nl m host _destroy(hostp); 505 * about sone pitfalls of NLM RPC procedures and has a | ogic
440 mut ex_ent er (&g- >l ock) ; 506 * that handl es them properly.
441 if (g->run_status == NLM_ST_STOPPI NG 507 */
442 br eak; 508 enum cl nt _st at
509 nlmclnt_call (CLIENT *clnt, rpcproc_t procnum xdrproc_t xdr_args,
444 } 510 caddr _t argsp, xdrproc_t xdr_result, caddr_t resultp, struct tinmeval wait)
511 {
446 DTRACE_PROBE(gc__end) ; 512 k_si gset _t ol dmask;
447 } 513 enumcl nt_stat stat;
514 bool _t sig_bl ocked = FALSE;
449 DTRACE_PROBE1(gc__exit, struct nlmglobals *, g);
516 /*
451 /* Let others know that GC has died */ 517 * |f NLM RPC procnumis one of the NLM _RES procedures
452 g->nl mgc_thread = NULL; 518 * that are used to reply to asynchronous NLM RPC
453 mut ex_exi t (&g- >l ock) ; 519 * (MG calls), explicitly set RPC timeout to zero.
520 * Cient doesn't send a reply to RES procedures, so

new usr/src/uts/comon/ Kkl minl minpl.c

521
522
523
524
525
526
527

529
530
531
532
533
534
535

537
538
539
540

542
543

545
546
547
548
549

551
552

554
555
556
557
558
559
560
561
562
563

564 {

565
566

568
569
570
571
572
573
574
5145]
576
577
578
579
580
581
582
583
584
585
586

* we don’t need to wait anything.

*

* NOTE: we ignore NLMA_*_RES procnuns because they are
* equal to NLM *_RES nunbers.

*

if

/*
*
*
*
*

if

}

stat = clnt_call(clnt,

| *

*

*/

if

(procnum >= NLM TEST_RES && procnum <= NLM GRANTED_RES)
wait = nlmrpctv_zero;

We need to block signals in case of NLM CANCEL RPC
in order to prevent interruption of network RPC
calls.

(procnum == NLM CANCEL) ({
k_si gset _t newrask;

si gfill set(&newrask);
si grepl ace(&newnask,
si g_bl ocked = TRUE;

&ol dmask) ;

procnum xdr_args,

argsp, xdr_result, resultp, wait);

Restore signal mask back if signals were bl ocked
(si g_bl ocked)

si grepl ace(&ol dmask, (k_sigset_t *)NULL);

return (stat);

so that

atic void
m suspend_zone(struct nlmglobals *g)

Suspend NLM client/server in the given zone.

During suspend operation we mark those hosts
that have any | ocks with NLM NH _SUSPEND fI ags,

they can be checked | ater, when resune

operation occurs.

struct nl mhost *hostp;
struct nlmhost _list all_hosts;

/

* kK ok % ok Kk ok ¥ ok

*/

Note that while we're doing suspend, GC thread is active
and it can destroy sone hosts while we’re wal king through
the hosts tree. To prevent that and make suspend | ogic

a bit nore sinple we put all hosts to local "all_hosts"
list and increment reference counter of each host.

This guaranties that no hosts will be released while

we’ re doi ng suspend.

NOTE: reference of each host nust be dropped during
resune operation.

TAILQ I NI T(&al | _hosts);
mut ex_ent er (&g- >l ock) ;

for

(hostp = avl _first(&g->nl mhosts_tree); hostp != NULL;
hostp = AVL_NEXT(&g->nl m hosts_tree, hostp)) {

/*

* |f host is idle, renmove it fromidle |list and

* clear idle flag. That is done to prevent GC
* fromtouching this host.

new usr/src/uts/comon/ Kkl minl minpl.c

587
588
589
590
591

593
594
595

597
598
599
600
601
602
603
604
605
606
607

609
610
611
612

614
615
616
617
618
619
620
621
622
623
624
625

S
n

626 {

627

629
630

632
633
634
635
636
637
638
639
640
641
642
643

645
646

648
650

651
652

a
m r esune_zone(st ruct

e N I N
-~

*

/

if (hostp->nh_flags & NLM NH I NI DLE) {
TAI LQ REMOVE(&g- >nl m i dl e_hosts, hostp,
host p->nh_flags & ~NLM_NH_| NI DLE;

}

host p- >nh_r ef s++;
TAI LQ I NSERT_TAI L(&l | _host's, hostp, nh_link)

-

B

Now we can wal k through all hosts on the system
with zone globals |ock rel eased. The fact the

we have taken a reference to each host guaranties
t hat

/
t ex_exi t (&g- >l ock);
ile ((hostp = TAILQ FIRST(&al | _hosts))
mut ex_ent er (&host p- >nh_I ock) ;
if (nlmhost_has_| ocks(hostp))
host p->nh_flags | = NLM_NH_SUSPEND,

mu
wh 1= NULL) {

mut ex_exi t (&ost p- >nh_I ock) ;

TAl LQ REMOVE(&l | _host's, hostp, nh_link);

Resume NLM hosts for the given zone.

nlmresunme_zone() is called after hosts were suspended
(see nl msuspend_zone) and its nain purpose to check
whet her renpte | ocks owned by hosts are still
state. If they aren't, resunme function tries to reclaim
reclaimlocks (for client side hosts) and clean |ocks (for
server side hosts).

tic void
nl m gl obal s *g)
struct nlmhost *hostp, *h_next;

mut ex_ent er (&g- >l ock) ;
hostp = avl _first(&g->nl mhosts_tree);

/

host was i ncrenent ed,

* ok k k%

/be renoved at the nonent.

*

while (hostp != NULL) {

struct nlmnsm nsm

enum cl nt _stat stat;

int32_t smstate;

int error;

bool _t resune_failed = FALSE;

h_next = AVL_NEXT(&g->nl m hosts_tree,

_ host p) ;
mut ex_exi t (&g- >l ock) ;

DTRACE_PROBE1(resune__host, struct nlmhost *

| *

no hosts can be destroyed during that process.

in consistent

I'n nl msuspend_zone() the reference counter of each
so we can safely iterate through
all hosts without worrying that any host we touch will

nh_link);

host p) ;

* Suspend operation narked that the host doesn't

* have any locks. Skipit.

10

new usr/src/uts/comon/klm nlminpl.c 11

653 */

654 if (!(hostp->nh_flags & NLM NH SUSPEND))

655 goto cycl e_end;

657 error = nlmnsm.init(&sm &hostp->nh_knc, &hostp->nh_addr);
658 if (error 1= 0)

659 NLM ERR("Resune: Failed to contact to NSM of host % "
660 "[error=%]\n", hostp->nh_nane, error);
661 resune_failed = TRUE

662 goto cycl e_end;

663 }

665 stat = nlmnsmstat(&sm &smstate);

666 if (stat !'= RPC_SUCCESS) {

667 NLM ERR(" Resune: Failed to call SM STAT operation for
668 "host % [stat=%d]\n", hostp->nh_nane, stat);
669 resune_failed = TRUE;

670 nlmnsmfini(&smn;

671 goto cycl e_end;

672 }

674 if (smstate != hostp->nh_state) {

675 /*

676 * Current SM state of the host isn't equal
677 * to the one host had when it was suspended.
678 * Probably it was rebooted. Try to reclaim
679 * locks if the host has any on its client side.
680 * Also try to clean up its server side |ocks
681 * (if the host has any).

682 */

683 nl m host_notify_client(hostp, smstate);

684 nl m host_notify_server(hostp, smstate);

685 }

687 nlmnsmfini(&sm;

689 cycl e_end:

690 if (resune_failed) {

691 /*

692 * Resune failed for the given host.

693 * Just clean up all resources it owns.

694 */

695 nl m host _notify_server(hostp, 0);

696 nlmclient_cancel _all (g, hostp);

697 }

699 host p- >nh_f | ags & ~NLM_NH_SUSPEND,

700 nl m host _rel ease(g, hostp);

701 hostp = h_next;

702 mut ex_ent er (&g- >l ock) ;

703 }

705 mut ex_exi t (&g- >l ock) ;

706 }

708 [/ *

709 * NLM functions responsi ble for operations on NSM handl e.

710 */

712 | *

713 * Initialize knetconfig that is used for conmunication
714 * with local statd via |oopback interface.

715 */

716 static int

717 nlminit_local _knc(struct knetconfig *knc)

718 {

new usr/src/uts/comon/ Kkl minl minpl.c

struct net buf

retries++)

719 int error;

720 vnode_t *vp;

722 bzero(knc, sizeof (*knc));

723 error = | ookupnane("/dev/tcp", U O SYSSPACE,

724 FOLLON NULLVPP, &vp);

725 if (error 1= 0)

726 return (error);

728 knc- >knc_semantics = NC_TPI _COTS;

729 knc->knc_protof My = NC_ I NET;

730 knc- >knc_proto = NC_TCP;

731 knc->knc_rdev = vp->v_rdev;

732 VN_RELE(vp) ;

735 return (0);

736 }

738 [*

739 * Initialize NSMhandle that will be used to talk

740 * to local statd via |oopback interface.

741 */

742 static int

743 nlmnsm.init_local (struct nl mnsm*nsm

744 {

745 int error;

746 struct knetconfig knc;

747 struct sockaddr_in sin;

748 struct netbuf nb;

750 error = nlminit_Ilocal _knc(&knc);

751 if (error '=0)

752 return (error);

754 bzero(&sin, sizeof (sin));

755 sin.sin_addr.s_addr = htonl (1 NADDR_LOOPBACK) ;

756 sin.sin_famly = AF_I NET;

758 nb. buf = (char *)&sin;

759 nb.len = nb. maxl en = sizeof (sin);

761 return (nlmnsminit(nsm &knc, &nb));

762 }

764 [*

765 * Initialize NSM handl e used for talking to statd

766 */

767 static int

768 ?I mnsm.init(struct nlmnsm*nsm struct knetconfig *knc,
769

770 enum cl nt _stat stat;

771 int error, retries;

773 bzero(nsm sizeof (*nsm);

774 nsm >ns_knc = *knc;

775 nl m copy_net buf (& sm >ns_addr, nb);

777 /*

778 * Try several tines to get the port of statd service,
779 * | f rpchind_getaddr returns RPC_PROGNOTREG STERED,
780 * retry an attenpt, but wait for NLM NSM RPCBI ND_TI MEQUT
781 * seconds berofore.

782 *

783 for (retries = 0; retries < NLM NSM RPCBI ND_RETRI ES;
784 stat = rpcbi nd_get addr (&sm >ns_knc, SM PROG,

*nb)

12

new usr/src/uts/comon/klm nlminpl.c 13

785 SM VERS, &nsm >ns_addr);

786 if (stat != RPC_SUCCESS) {

787 if (stat == RPC_PROGNOTREG STERED) {

788 del ay(SEC_TO_TI CK(NLM_NSM_RPCBI ND_TI MEQUT)) ;
789 conti nue;

790 }

791 }

793 br eak;

794 }

796 if (stat != RPC_SUCCESS)

797 DTRACE_PROBE2(rpchind__error, enumclnt_stat, stat,

798 int, retries);

799 error = ENOCENT;

800 goto error;

801 }

803 /*

804 * Create an RPC handle that’ Il be used for communication with |ocal
805 * statd using the status nonitor protocol.

806 */

807 error = clnt_tli_kcreate(&sm >ns_knc, &sm >ns_addr, SM PROG SM VERS,
808 0, NLM RPC RETRIES, kcred, &ism >ns_handl e);

809 if (error 1'=0)

810 goto error;

812 /*

813 * Create an RPC handle that’ || be used for communication with the
814 * |ocal statd using the address registration protocol.

815 */

816 error = clnt_tli_kcreate(&sm >ns_knc, &sm >ns_addr, NSM ADDR_PROGRAM
817 NSM ADDR V1, 0, NLM RPC RETRIES, kcred, &ism >ns_addr_handle);
818 if (error 1= 0)

819 goto error;

821 sema_i ni t (& sm >ns_sem 1, NULL, SEMA DEFAULT, NULL);

822 return (0);

824 error:

825 kmem free(nsm >ns_addr. buf, nsm >ns_addr. nax| en);

826 if (nsm>ns_handl e)

827 CLNT_DESTROY(nsm >ns_handl e) ;

829 return (error);

830 }

832 static void

833 nimnsmfini(struct nl mnsm*nsm

834 {

835 kmem free(nsm >ns_addr. buf, nsm >ns_addr. max| en);

836 CLNT_DESTROY(nsm >ns_addr _handl e) ;

837 nsm >ns_addr _handl e = NULL;

838 CLNT_DESTROY(nsm >ns_handl e) ;

839 nsm >ns_handl e = NULL;

840 sema_destroy(&sm >ns_sen) ;

841 }

843 static enum clnt_stat

844 nl m nsm simu_crash(struct nlmnsm*nsm

845 {

846 enum cl nt _stat stat;

848 sema_p(&nsm >ns_sen) ;

849 nlmnsmclnt_init(nsm>ns_handl e, nsm;

850 stat = smsinu_crash_1(NULL, NULL, nsm >ns_handl e);

new usr/src/uts/comon/ Kkl minl minpl.c

851 sema_v(&1sm >ns_sen) ;

853 return (stat);

854 }

856 static enum cl nt_stat

857 nlmnsmstat(struct nlmnsm*nsm int32_t *out_stat)
858 {

859 struct smnane args;

860 struct smstat_res res;

861 enum cl nt _stat stat;

863 args. non_nane = uts_nodenane();

864 bzero(& es, sizeof (res));

866 sema_p(&nsm >ns_sen) ;

867 nlmnsmclnt_init(nsm>ns_handl e, nsm;

868 stat = smstat_1(&args, & es, nsm >ns_handl e);
869 sema_v(&nsm >ns_sen) ;

871 if (stat == RPC_SUCCESS)

872 *out _stat = res.state;

874 return (stat);

875 }

877 static enumclnt_stat

878

880
881
882

884
885

887
888
889
890
891
892

894
895
896
897

899
900

902

nl mnsm mon(struct nl mnsm*nsm char *hostnanme, uint16_t priv)

struct non args;
struct smstat_res res;
enum cl nt _stat stat;
bzero(&args, sizeof (args));
bzero(& es, sizeof (res));
args. non_i d. non_nane = host nane;
args.mon_id.my_id.ny_nane = uts_nodenane();
args.mon_id.ny_id. ny_prog = NLM PROG
args.mon_id.ny_id.ny_vers = NLM SM
args.mon_id.ny_id.ny_proc = NLM SM NOTI FY1;
bcopy(&priv, args.priv, sizeof (priv));
sema_p(&nsm >ns_sen) ;
nlmnsmclnt_init(nsm>ns_handl e, nsm;
stat = smnon_1(&args, &es, nsm>ns_handl e);
sema_v(&1sm >ns_sen) ;
return (stat);

}

static enum cl nt_stat

903 nl m nsm unnon(struct nl mnsm*nsm char *host nane)
904 {

905 struct non_id args;

906 struct smstat res;

907 enum cl nt _stat stat;

909 bzero(&args, sizeof (args));

910 bzero(& es, sizeof (res));

912 args. non_nane = host name;

913 args.ny_id.ny_nane = uts_nodenane();
914 args.ny_id.ny_prog = NLM PROG

915 args.ny_id.ny_vers = NLM SM

916 args.nmy_id.ny_proc = NLM SM NOTI FY1;

14

new usr/src/uts/comon/ Kkl minl minpl.c

918 sema_p(&nsm >ns_sen) ;

919 nlmnsmclnt_init(nsm>ns_handl e, nsm;

920 stat = smunnmon_1(&args, & es, nsm>ns_handl e);
921 sema_v(&1sm >ns_sen) ;

923 return (stat);

924 }

926 static enum cl nt_stat

927 nl m nsmaddr _reg(struct nl mnsm *nsm char *nanme, int famly, netobj *address)
928 {

929 struct reglargs args = { 0 };

930 struct reglres res = { 0 };

931 enum cl nt _stat stat;

933 args.famly = famly;

934 args. name = nane;

935 args. address = *address;

937 sema_p(&1sm >ns_sen) ;

938 nlmnsmclnt_init(nsm>ns_addr_handl e, nsm;
939 stat = nsmaddrprocl_reg_1(&args, & es, nsm>ns_addr_handl e);
940 sema_v(&sm >ns_sen) ;

942 return (stat);

943 }

945 [*

946 * Get NLM vhol d object corresponding to vnode "vp".
947 * If no such object was found, create a new one.

948 *

949 * The purpose of this function is to associate vhold
950 * object with given vnode, so that:

951 * 1) vnode is hold (VN_HOLD) while vhold object is alive.
952 * 2) host has a track of all vnodes it touched by |ock
953 * or share operations. These vnodes are accessible
954 * via collection of vhold objects.

955 */

956 struct nlmvhold *

957 nl mvhol d_get (struct nl mhost *hostp, vnode_t *vp)

958 {

959 struct nlmvhold *nvp, *new_nvp = NULL;

961 nmut ex_ent er (&host p- >nh_| ock) ;

962 nvp = nl mvhol d_find_| ocked(hostp, vp);

963 if (nvp !'= NULL)

964 goto out;

966 /* nlmvhold wasn’t found, then create a new one */
967 mut ex_exi t (&host p- >nh_| ock) ;

968 new_nvp = knmem cache_al | oc(nl m vhol d_cache, KM SLEEP);
970 /*

971 * Check if another thread has already

972 * created the sane nl mvhol d.

973 */

974 nut ex_ent er (&host p- >nh_| ock) ;

975 nvp = nl mvhol d_find_| ocked(hostp, vp);

976 if (nvp == NULL) {

977 nvp = new_nvp;

978 new_nvp = NULL;

980 TAI LQ I NI T(&nvp->nv_slreqgs);

981 nvp->nv_vp = vp;

982 nvp->nv_refcnt = 1;

15

new usr/src/uts/comon/ Kkl minl minpl.c

983 VN_HOLD(nvp->nv_vp);
985 VERI FY(nod_hash_i nsert (host p- >nh_vhol ds_by_vp,
986 (mod_hash_key_t)vp, (npd_hash_val _t)nvp) == 0);
987 TAI LQ_I NSERT_TAI L(&ost p->nh_vhol ds_l i st, nvp, nv_link);
988 }
990 out:
991 mut ex_exi t (&host p- >nh_I ock) ;
992 if (new_nvp !'= NULL)
993 kmem cache_free(nl mvhol d_cache, new_nvp);
995 return (nvp);
996 }
998 /*
999 * Drop a reference to vhold object nvp.
1000 */
1001 void
1002 nl mvhol d_rel ease(struct nl mhost *hostp, struct nlmvhold *nvp)
1003 {
1004 if (nvp == NULL)
1005 return;
1007 nmut ex_ent er (&host p- >nh_| ock) ;
1008 ASSERT(nvp->nv_refcnt > 0);
1009 nvp->nv_refcnt--;
1010 mut ex_exi t (&host p- >nh_I ock) ;
1011 }
1013 /*
1014 * Cean all locks and share reservations on the
1015 * given vhol d object that were acquired by the
1016 * given sysid
1017 */
1018 static void
1019 nl mvhol d_cl ean(struct nl mvhold *nvp, int sysid)
1020 {
1021 cl eanl ocks(nvp->nv_vp, IGN_PID, sysid);
1022 cl eanshar es_by_sysi d(nvp->nv_vp, sysid);
1023 }
1025 static void
1026 nl mvhol d_destroy(struct nl mhost *hostp, struct nlmvhold *nvp)
1027 {
1028 ASSERT(MUTEX_HELD(&ost p- >nh_I ock)) ;
1030 VERI FY(nod_hash_r enove(host p- >nh_vhol ds_by_vp,
1031 (nod_hash_key_t) nvp->nv_vp,
1032 (nod_hash_val _t) &wvp) == 0);
1034 TAI LQ REMOVE(&host p->nh_vhol ds_I i st, nvp, nv_link);
1035 VN_RELE(nvp->nv_vp);
1036 nvp->nv_vp = NULL;
1038 kmem cache_free(nl mvhol d_cache, nvp);
1039 }
1041 /*
1042 * Return TRUE if the given vhold is busy.
1043 * Vhold object is considered to be "busy" when
1044 * all the follow ng conditions hold:
1045 * 1) No one uses it at the nonent;
1046 * 2) It hasn’t any | ocks;
1047 * 3) It hasn’t any share reservations;
1048 */

16

new usr/src/uts/comon/ Kkl minl minpl.c

*vp)

1049 static bool _t

1050 nl m vhol d_busy(struct nl mhost *hostp, struct nlmvhold *nvp)
1051 {

1052 vnode_t *vp;

1053 int sysid;

1055 ASSERT(MUTEX_HELD(&host p- >nh_l ock)) ;

1057 if (nvp->nv_refcnt > 0)

1058 return (TRUE);

1060 Vp = nvp->nv_vp;

1061 sysid = host p- >nh_sysi d;

1062 if (flk_has_renote_| ocks_for_sysi d(vp, sysid) ||
1063 shr_has_renote_shares(vp, sysid))

1064 return (TRUE);

1066 return (FALSE);

1067 }

1069 /* ARGSUSED */

1070 static int

1071 nl mvhol d_ctor(void *datap, void *cdrarg, int knflags)
1072 {

1073 struct nlmvhold *nvp = (struct nlmvhol d *)datap;
1075 bzero(nvp, sizeof (*nvp));

1076 return (0);

1077 }

1079 /* ARGSUSED */

1080 static void

1081 nl m vhol d_dtor (voi d *datap, void *cdrarg)

1082 {

1083 struct nlmvhold *nvp = (struct nlmvhold *)datap;
1085 ASSERT(nvp->nv_refcnt == 0);

1086 ASSERT(TAI LQ_ENPTY(&nvp >nv_slreqs));

1087 ASSERT(nvp->nv_vp == NULL);

1088 }

1090 struct nlmvhold *

1091 nl mvhol d_find_| ocked(struct nl mhost *hostp, const vnode_t
1092 {

1093 struct nlmvhold *nvp = NULL;

1095 ASSERT(MUTEX_HELD(&host p- >nh_| ock)) ;

1096 (voi d) nod_hash_fi nd(host p->nh_vhol ds _by_vp,
1097 (nmod_hash_key_t)vp,

1098 (nod_hash_val _t) &vp);

1100 if (nvp !'= NULL)

1101 nvp->nv_ref cnt ++;

1103 return (nvp);

1104 }

1106 /*

1107 * NLM host functions

1108 */

1109 static void

1110 nl m copy_net buf (struct netbuf *dst, struct netbuf *src)
1111 {

1112 ASSERT(src->l en <= src->maxl en);

1114 dst - >maxl en = src->nmaxl en;

17

new usr/src/uts/comon/ Kkl minl minpl.c

1115 dst->len = src->len;

1116 dst->buf = knmem zal i oc(src->maxl en, KM SLEEP);
1117 bcopy(src->buf, dst->buf, src->l en)

1118 }

1120 /* ARGSUSED */

1121 static int

1122 nl m host_ctor(void *datap, void *cdrarg, int knflags)
1123 {

1124 struct nlmhost *hostp = (struct nl mhost *)datap;
1126 bzero(hostp, sizeof (*hostp));

1127 return (0);

1128 }

1130 /* ARGSUSED */

1131 static void

1132 nl m host_dtor(void *datap, void *cdrarg)

1133 {

1134 struct nlmhost *hostp = (struct nl mhost *)datap;
1135 ASSERT(host p->nh_refs == 0);

1136 }

1138 static void

1139 nl m host_unregi ster(struct nlmglobals *g, struct nl mhost *hostp)
1140 {

1141 ASSERT(host p->nh_refs == 0);

1143 avl _renmove(&g->nl m hosts_tree, hostp);

1144 VERI FY(nod_hash_r emove(g->nl m host s_hash,

1145 (rmod_hash_key_t) (uintptr t)hostp >nh_sysi d,
1146 (rmod_hash_val _t) &ostp) == 0);

1147 TAI LQ REMOVE(&g- >nl m i dl e_host s, host p, nh_link);
1148 host p->nh_fl ags & ~NLM NH_I NI DLE

1149 }

1151 /*

1152 * Free resources used by a host. This is called after the reference
1153 * count has reached zero so it doesn't need to worry about |ocks.
1154 */

1155 static void

1156 nl m host_destroy(struct nl mhost *hostp)

1157 {

1158 ASSERT(host p- >nh_nane != NULL);

1159 ASSERT(host p->nh_netid !'= NULL);

1160 ASSERT(TAl LQ_EMPTY(&host p- >nh_ vhol ds_list));

1162 strfree(host p->nh_nane);

1163 strfree(hostp->nh_neti d)

1164 kmem f r ee(host p- >nh_addr . buf, host p->nh_addr . maxl en) ;
1166 if (hostp->nh_sysid != LM NOSYSI D)

1167 nl m sysi d_free(host p->nh_sysid);

1169 nl m rpc_cache_destroy(hostp);

1171 ASSERT(TAI LQ EMPTY(&ost p- >nh_vhol ds_l i st))

1172 nod_hash_dest roy_pt rhash(host p- >nh_vhol ds_by_vp) ;
1174 mut ex_dest r oy(&ost p- >nh_| ock) ;

1175 cv_dest r oy(&ost p->nh_rpch_cv);

1176 cv_destroy(&host p->nh_recl _cv);

1178 kmem cache_free(nl m hosts_cache, hostp);

1179 }

new usr/src/uts/comon/ Kkl minl minpl.c

1181 /*

1182 * C eanup SERVER-side state after a client restarts,

1183 * or becones unresponsive, or whatever.

1184 *

1185 * We unlock any active | ocks owned by the host.

1186 * When rpc.lockd is shutting down,

1187 * this function is called with newstate set to zero

1188 * which allows us to cancel any pending async |ocks

1189 * and clear the locking state.

1190 *

1191 * Wen "state" is 0, we don't update host’s state,

1192 * but cleanup all renpte | ocks on the host.

1193 * It's useful to call this function for resources

1194 * cl eanup.

1195 */

1196 void

1197 nl m host_notify_server(struct nl mhost *hostp, int32_t state)

1198 {

1199 struct nlmvhold *nvp;

1200 struct nimslreq *slr;

1201 struct nimslreqg_list slregs2free;

1203 TAILQ I NI T(&sl reqs2free);

1204 nmut ex_ent er (&host p- >nh_| ock) ;

1205 if (state !=0)

1206 host p- >nh_state = state;

1208 TAlI LQ _FOREACH(nvp, &hostp->nh_vholds_list, nv_link) {

1210 /* cleanup sl eeping requests at first */

1211 while ((slr = TAI LQ FI RST(&nvp->nv_slreqgs)) != NULL) {
1212 TAI LQ REMOVE(&vp->nv_slreqgs, slr, nsr_link);
1214 /*

1215 * Instead of freeing cancelled sleeping request
1216 * here, we add it to the linked |ist created
1217 * on the stack in order to do all frees outside
1218 * the critical section.

1219 */

1220 TAI LQ | NSERT_TAI L(&sl reqs2free, slr, nsr_link);
1221

1223 nvp- >nv_r ef cnt ++;

1224 mut ex_exi t (&ost p- >nh_I ock) ;

1226 nl m.vhol d_cl ean(nvp, hostp->nh_sysid);

1228 mut ex_ent er (&ost p- >nh_I ock) ;

1229 nvp->nv_refcnt--;

1230 }

1232 mut ex_exi t (&host p- >nh_| ock) ;

1233 while ((slr = TAILQ FIRST(&slreqs2free)) != NULL) {

1234 TAl LQ REMOVE(&sl reqs2free, slr, nsr_link)

1235 kmem free(slr, sizeof (*slr));

1236 }

1237 }

1239 /*

1240 * Ceanup CLIENT-side state after a server restarts,

1241 * or becones unresponsive, or whatever.

1242 *

1243 * This is called by the | ocal NFS statd when we receive a

1244 * host state change notification. (also nlmsvc_stopping)

1245 *

1246 * Deal with a server restart. |If we are stopping the

19

new us

1247
1248
1249
1250
1251
1252 v
1253 n
1254 {
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

1266

1268
1269
1270
1271
1272
1273

1275

1276

1277 }
/

1279
1280
1281
1282
1283
1284
1285 i
1286 n
1287 {
1288
1289

1291
1292

1294
1295

1297
1298
1299

1301
1302
1303
1304
1305

1307
1308
1309 }

1311 /
1312

r/src/uts/comon/ Kkl minlminpl.c

* NLM service, we'll have newstate == 0, and will just
* cancel all our client-side |ock requests. O herw se,
* start the "recovery" process to reclaimany |ocks
*/we hol d on this server.

*

oid
I m host_notify_client(struct nl mhost *hostp, int32_t state)

mut ex_ent er (&host p- >nh Iock)'

host p->nh_state = state

if (hostp->nh_flags & NLM NH_RECLAIM {
/*

* Either host’s state is up to date or
* host is already in recovery.

*/

nmut ex_exi t (&ost p- >nh_I ock) ;

return;

}
host p->nh_fl ags | = NLM_NH_RECLAI M

/*
* Host will be released by the recovery thread,
* thus we need to increnment refcount.

*

host p- >nh_r ef s++;
mut ex eX|t(&hostp >nh_| ock) ;

(void) zthread_create(NULL, O,
hostp, 0, m nclsyspri);

nl mrecl ai ner,

*

* The function is called when NLM client detects that
* server has entered in grace period and client needs
* to wait until reclamation process (if any) does

* its job.

*/

nt

I m host_wait_grace(struct nlmhost *hostp)

struct nlmglobals *g;
int error = 0;

g = zone_getspecific(nl mzone_key, curzone);
nmut ex_ent er (&host p- >nh_| ock) ;

do {
int rc;

rc = cv_tinmedwait_sig(&host p- >nh_ recl _cv,
&host p->nh_| ock, ddi_get _Ibolt() +
SEC TO TI CK(g->retrans_t rm));

if (rc ==0) {
error = EINTR;
break;
}
} while (hostp->nh_flags & NLM_ NH_RECLAI M) ;
mut ex_exi t (&host p- >nh_| ock) ;
return (error);

*

* Create a new NLM host .

new usr/src/uts/comon/ Kkl minl minpl.c

1313 *

1314 * NOTE: The in-kernel RPC (kRPC) subsystem uses TLI/ XTI,
1315 * which needs both a knetconfig and an address when creating
1316 * endpoints. Thus host object stores both knetconfig and
1317 * netid

1318 *

1319 static struct nlmhost *

1320 nl m host_create(char *nanme, const char *netid,

1321 struct knetconfig *knc, struct netbuf *naddr)

1322 {

1323 struct nlmhost *host;

1325 host = knmem cache_al | oc(nl m hosts_cache, KM SLEEP);
1327 mut ex_i ni t (&ost->nh_| ock, NULL, MJUTEX_DEFAULT, NULL);
1328 cv_i nit (&host->nh_rpcb_cv, NULL, CV_DEFAULT, NULL)
1329 cv_init(&ost->nh_recl _cv, NULL, CV_DEFAULT, NULL);
1331 host - >nh_sysi d = LM NOSYSI D;

1332 host->nh_refs = 1;

1333 host - >nh_nanme = strdup(nane);

1334 host->nh_netid = strdup(netld)

1335 host - >nh_knc = *knc;

1336 nl m_copy_net buf(&host->nh_addr, naddr) ;

1338 host - >nh_state = 0;

1339 host - >nh_rpcb_st ate = NRPCB_NEED UPDATE;

1340 host - >nh_fl ags = 0;

1342 host - >nh_vhol ds_by_vp = nod_hash_creat e_ptrhash("nl mvhol ds hash",
1343 32, nod_hash_nul | _val dtor, sizeof (vnode_t));
1345 TAILQ | NI T(&host - >nh_vhol ds_I i st)

1346 TAI LQ_I NI T(&host - >nh_r pchc) ;

1348 return (host);

1349 }

1351 /*

1352 * Cancel all client side sleeping | ocks owned by given host.
1353 */

1354 voi d

1355 nl m host _cancel _sl ocks(struct nl mglobals *g, struct nlmhost *hostp)
1356 {

1357 struct nlmslock *nslp;

1359 nmut ex_ent er (&g- >l ock) ;

1360 TAlI LQ_FOREACH(nsl p, &g->nl m sl ocks, nsl _link) {
1361 if (nslp->nsl_host == hostp)

1362 nsl p->nsl _state = NLM SL_CANCELLED;
1363 cv_broadcast (&nsl p- >nsl _cond);

1364 }

1365 }

1367 mut ex_exi t (&g- >l ock) ;

1368 }

1370 /*

1371 * Garbage collect stale vhold objects.

1372 *

1373 * In other words check whether vnodes that are

1374 * held by vhold objects still have any | ocks

1375 * or shares or still in use. If they aren't,

1376 * just destroy them

1377 */

1378 static void

21

new usr/src/uts/comon/klm nlminpl.c 22
1379 nl m host_gc_vhol ds(struct nl m host *hostp)

1380 {

1381 struct nlmvhold *nvp;

1383 ASSERT(MUTEX_HELD(&ost p- >nh_I ock)) ;

1385 nvp = TAI LQ FI RST(&ost p->nh_vhol ds_list);

1386 while (nvp !'= NULL)

1387 struct nlmvhold *nvp_tnp;

1389 if (nlmyvhol d_busy(hostp, nvp)) {

1390 nvp = TAILQ NEXT(nvp, nv_link);
1391 conti nue;

1392 }

1394 nvp_tnmp = TAILQ NEXT(nvp, nv_Ilink);

1395 nl m.vhol d_destroy(hostp, nvp);

1396 nvp = nvp_tnp;

1397 1

1398 }

1400 /*

1401 * Check whether the given host has any

1402 * server side |locks or share reservations.

1403 */

1404 static bool _t

1405 nl m host _has_srv_| ocks(struct nl mhost *hostp)

1406 {

1407 /*

1408 * |t's cheap and sinple: if server has

1409 * any | ocks/shares there nmust be vhold

1410 * object storing the affected vnode.

1411 *

1412 * NOTE: We don’t need to check sl eeping

1413 * | ocks on the server side, because if

1414 * server side sleeping lock is alive,

1415 * there nust be a vhol d object correspondi ng
1416 * to target vnode.

1417 */

1418 ASSERT(MUTEX_HELD(&ost p- >nh_| ock)) ;

1419 if (!TAI LQ EMPTY(&host p->nh_vhol ds_ i st))

1420 return (TRUE);

1422 return (FALSE);

1423 }

1425 /| *

1426 * Check whether the given host has any client side

1427 * locks or share reservations.

1428 */

1429 static bool _t

1430 nl m host_has_cli_l ocks(struct nl mhost *hostp)

1431 {

1432 ASSERT(MUTEX_HELD(&ost p- >nh_| ock)) ;

1434 /*

1435 * XXX: It’s not the way 1'd Ii ke to do the check,
1436 * because flk_sysid_has_|l ocks() can be very

1437 * expensive by design. Unfortunatelly it iterates
1438 * through all |ocks on the system doesn’t matter
1439 * were they nade on renpte systemvia NLM or

1440 * on local systemvia reclock. To understand the
1441 * problem consider that there' re dozens of thousands
1442 * of locks that are made on sone ZFS dataset. And there’s
1443 * anot her dataset shared by NFS where NLM client had | ocks
1444 * sone tinme ago, but doesn’'t have them now.

new usr/src/uts/comon/ Kkl minl minpl.c

1445 * In this case flk_sysid_has_locks() will iterate
1446 * thrught dozens of thousands locks until it returns us
1447 * FALSE.

1448 * Ch, | hope that in shiny future sonebody will make
1449 * | ocal |ock manager (os/flock.c) better, so that
1450 * it'd be nore friedly to renote | ocks and

1451 * flk_sysid_has_l ocks() wouldn’'t be so expensive.
1452 */

1453 if (flk_sysid_has_| ocks(hostp->nh_sysid |

1454 LM SYSI D CLI ENT, FLK_QUERY_ACTI VE))

1455 return (TRUE);

1457 *

1458 * Check whet her host has any share reservations
1459 * registered on the client side.

1460 *

1461 if (hostp->nh_shrlist != NULL)

1462 return (TRUE);

1464 return (FALSE);

1465 }

1467 /*

1468 * Deternine whether the given host owns any

1469 * |ocks or share reservations.

1470 */

1471 static bool _t

1472 nl m host _has_| ocks(struct nl mhost *hostp)

1473

1474 if (nlmhost_has_srv_| ocks(hostp))

1475 return (TRUE);

1477 return (nl mhost_has_cli_l ocks(hostp));

1478 }

1480 /*

1481 * This function conpares only addresses of two netbufs
1482 * that belong to NC_TCP[6] or NC_UDP[6] protofamly.
1483 * Port part of netbuf is ignored.

1484 *

1485 * Return val ues:

1486 * -1: nbl's address is "snaller" than nb2's

1487 * 0: addresses are equal

1488 * 1: nbl's address is "greater" than nb2's

1489 */

1490 static int

1491 nl m net buf _addrs_cnp(struct netbuf *nbl, struct netbuf *nb2)
1492 {

1493 uni on nl m addr

1494 struct sockaddr sa;

1495 struct sockaddr_in sin;

1496 struct sockaddr_i n6 sin6;

1497 } *nal, *na2;

1498 int res;

1500 /* LINTED E_BAD PTR CAST_ALI GN */

1501 nal = (union nl maddr *)nbi->buf;

1502 g% LINTED E_BAD PTR CAST_ALI GN */

1503 na2 = (union nl maddr *)nb2->buf;

1505 if (nal->sa.sa_famly < na2->sa.sa_fanily)

1506 return (-1);

1507 if (nal->sa.sa_famly > na2->sa.sa_famly)

1508 return (1);

1510 switch (nal->sa.sa_famly) {

23

new usr/src/uts/comon/ Kkl minl minpl.c

1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522

1524
1525

1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

1541
1542
1543

1545
1546
1547

1549
1550
1551
1552
1553
1554
1555

}
/

1556 {

1557
1558

1560

1562
1563
1564
1565

1567

1569
1570
1571
1572
1573
1574
1575
1576

*
*
*
*/
st
nl

case AF_ INET
res = mencnp(&nal->sin. sin_addr,
si zeof (nal->sin.sin_addr));
br eak;
case AF_| INET6
res = mencnp(&nal- >si n6. si n6_addr,
si zeof (nal->sin6.sin6_addr));

&na2- >si n. si n_addr,

&na2- >si n6. si n6_addr,

br eak;
defaul t:

VERI FY(0) ;

return (0);
}

return (SIG\(res));

Conmpare two nl m hosts.
Ret urn val ues:
-1: hostl is "snaller" than host2

m

ati

0:
1

1h

Fi
I f

i
h
s

to host2
t han host 2

host1l is equal
hostl is "greater”

ost _cnp(const void *pl, const void *p2)
struct nlmhost *hl
struct nlmhost *h2
int res;

(struct nlmhost *)pil;
(struct nlmhost *)p2;

res = strcnp(hl->nh_netid,
if (res!=0
return (SIGN\(res));

h2->nh_netid);

res = nl mnetbuf_addrs_cnp(&hl->nh_addr,
return (res);

&h2->nh_addr);

nd the host specified by... (see below
found, increnent the ref count.

¢ struct nlmhost *
ost_find_|l ocked(struct nlmglobals *g, const char *netid,
truct netbuf *naddr, avl _index_t *wherep)

struct nlmhost *hostp, key;
avl _i ndex_t pos;

ASSERT(MUTEX_HELD(&g- >I ock)) ;
key. nh_netid = (char *)netid;
key. nh_addr. buf = naddr - >buf;
key. nh_addr.|en = naddr- >l en;
key. nh_addr. maxl en = naddr - >max| en;
hostp = avl

if (hostp !'= NULL) {
/*

_find(&g->nl m hosts_tree, &key, &pos);

* Host is inuse now Renpve it fromidle
* hosts list if needed.
*/

if (hostp->nh_flags & NLM NH_ | NI DLE) {
TAI LQ_REMOVE(&g->nl m_i dl e_host's, hostp, nh_link);
host p->nh_fl ags & ~NLM NH_I NI DLE;

new usr/src/uts/comon/ Kkl minl minpl.c 25 new usr/src/uts/comon/ Kkl minl minpl.c 26
1577 } 1643 newhost = nl m host_create(nanme, netid, &nc, addr);
1644 newhost - >nh_sysid = nl msysid_alloc();
1579 host p- >nh_r ef s++; 1645 i f (newhost->nh_sysid == LM NOSYSI D)
1580 } 1646 goto out;
1581 if (wherep !'= NULL)
1582 *wherep = pos; 1648 mut ex_ent er (&g- >l ock) ;
1649 host = nlmhost_find_|l ocked(g, netid, addr, &where);
1584 return (hostp); 1650 if (host == NULL) {
1585 } 1651 host = newhost;
1652 newhost = NULL;
1587 /*
1588 * Find NLM host for the given name and address. 1654 /*
1589 */ 1655 * Insert host to the hosts AVL tree that is
1590 struct nlmhost * 1656 * used to | ookup by <netid, address> pair.
1591 nl m host_find(struct nl mglobals *g, const char *netid, 1657 */
1592 (struct netbuf *addr) 1658 avl _insert(&g->nl mhosts_tree, host, where);
1593
1594 struct nlmhost *hostp = NULL; 1660 /*
1661 * Insert host ot the hosts hash table that is
1596 mut ex_ent er (&g- >l ock) ; 1662 * used to | ookup host by sysid.
1597 if (g->run_status != NLM ST_UP) 1663 */
1598 goto out; 1664 VERI FY(nod_hash_i nsert (g->nl m host s_hash,
1665 (rmod_hash_key_t) (ui ntptr_t)host->nh_sysid,
1600 hostp = nl mhost_find_|l ocked(g, netid, addr, NULL); 1666) (nmod_hash_val _t)host) == 0);
1667
1602 out:
1603 mut ex_exi t (&g- >l ock) ; 1669 mut ex_exi t (&g- >l ock) ;
1604 return (hostp);
1605 } 1671 out:
1672 if (newhost != NULL)
1673 nl m host _destr oy(newhost) ;
1608 /*
1609 * Find or create an NLM host for the given name and address. 1675 return (host);
1610 * 1676 }
1611 * The renote host is determined by all of: nane, netidd, address.
1612 * Note that the netid is whatever nl msvc_add_ep() gave to 1678 /*
1613 * svc_tli_kcreate() for the service binding. |f any of these 1679 * Find the NLM host that matches the value of ’'sysid' .
1614 * are different, allocate a new host (new sysid). 1680 * If found, return it with a new ref,
1615 */ 1681 * else return NULL.
1616 struct nlmhost * 1682 *
1617 nl m host_findcreate(struct nlmglobals *g, char *nane, 1683 struct nlmhost *
1618 const char *netid, struct netbuf *addr) 1684 nl m host_find_by_sysid(struct nl mglobals *g, sysid_t sysid)
1619 { 1685 {
1620 int err; 1686 struct nlmhost *hostp = NULL;
1621 struct nl mhost *host, *newhost = NULL;
1622 struct knetconfig knc; 1688 nmut ex_ent er (&g- >l ock) ;
1623 avl _i ndex_t where; 1689 if (g->run_status != NLM ST_UP)
1690 goto out;
1625 nmut ex_ent er (&g- >l ock) ;
1626 if (g->run_status != NLM ST_UP) { 1692 (voi d) nod_hash_find(g->nl mhosts_hash,
1627 mut ex_exi t (&g- >l ock) ; 1693 (nod_hash_key_t) (uintptr_t)sysid,
1628 return (NULL); 1694 (mod_hash_val _t) &ostp);
1629 }
1696 if (hostp == NULL)
1631 host = nl m host_find_|l ocked(g, netid, addr, NULL); 1697 goto out;
1632 mut ex_exi t (&g- >l ock) ;
1633 if (host != NULL) 1699 I*
1634 return (host); 1700 * Host is inuse now. Renpbve it
1701 * fromidle hosts list if needed.
1636 err = nlmknc_fromnetid(netid, &knc); 1702 */
1637 if (err 1= 0) 1703 if (hostp->nh_flags & NLM NH_ | NI DLE) {
1638 return (NULL); 1704 TAI LQ REMOVE(&g- >nl m.i dl e_hosts, hostp, nh_link);
1639 g 1705 host p->nh_fl ags & ~NLM_NH_| NI DLE;
1640 * Do allocations (etc.) outside of nutex, 1706 }
1641 * and then check again before inserting.
1642 */ 1708 host p- >nh_r ef s++;

new usr/src/uts/comon/ Kkl minl minpl.c 27 new usr/src/uts/comon/ Kkl minl minpl.c
1775 }
1710 out: 1776 }
1711 mut ex_exi t (&g- >l ock) ;
1712 return (hostp); 1778 | *
1713 } 1779 * Ask the local NFS statd to begin nonitoring this host.
1780 * It will call us back when that host restarts, using the
1715 /* 1781 * pr g, vers, proc specified below, i.e. NLM SMNOTIFY1,
1716 * Rel ease the given host. 1782 * which is handled in nlmdo_notifyl().
1717 * l|.e. drop a reference that was taken earlier by one of 1783 */
1718 * the follow ng functions: nlmhost_findcreate(), nlmhost_find(), 1784 void
1719 * nlmhost_find_by_sysid(). 1785 nl m host_nonitor(struct nl mglobals *g, struct nl mhost *host, int state)
1720 * 1786 {
1721 * \Wen the very last reference is dropped, host is noved to 1787 int famly;
1722 * so-called "idle state". Al hosts that are in idle state 1788 net obj obj;
1723 * have an idle timeout. If tineout is expired, GC thread 1789 enum cl nt _stat stat;
1724 * checks whether hosts have any |ocks and if they heven’ t
1725 * any, it renoves them 1791 if (state != 0 & host->nh_state == 0) {
1726 * NOTE: only unused hosts can be in idle state. 1792 /*
1727 */ 1793 * This is the first tinme we have seen an NSM state
1728 void 1794 * Value for this host. We record it here to help
1729 nl m host_rel ease(struct nlmglobals *g, struct nl mhost *hostp) 1795 * detect host reboots.
1730 { 1796 */
1731 if (hostp == NULL) 1797 host->nh_state = state;
1732 return; 1798 }
1734 nmut ex_ent er (&g- >l ock) ; 1800 nmut ex_ent er (&host - >nh_| ock) ;
1735 ASSERT(host p->nh_refs > 0); 1801 if (host->nh _flags & NLM_NH_MONI TORED) {
1802 nmut ex_exi t (&ost->nh_| ock);
1737 host p->nh_refs--; 1803 return;
1738 if (hostp->nh_refs != 0) 1804 }
1739 mut ex_exi t (&g- >l ock) ;
1740 return; 1806 host - >nh_f | ag | = NLM_NH_MONI TORED;
1741 } 1807 mut ex_exi t (&host - >nh_T ock) ;
1743 /* 1809 /*
1744 * The very last reference to the host was dropped, 1810 * Before we begin nonitoring the host register the network address
1745 * thus host is unused now. Set its idle timeout 1811 * associated wth this hostnane.
1746 * and nove it to the idle hosts LRU |ist. 1812 */
1747 */ 1813 nl m net buf _t o_net obj (&ost->nh_addr, & anmily, &obj);
1748 host p->nh_i dl e_ti meout = dd| _get_lbolt() + 1814 stat = nl m nsnaddr _reg(&g->nl m nsm host->nh_nane, fanmly, &obj);
1749 SEC TO Tl CK(g->cn_i dl e_t nD) ; 1815 if (stat !'= RPC_SUCCESS) {
1816 NLM WARN(" Fai |l ed to regi ster address, stat=%l\n", stat);
1751 ASSERT((host p->nh_flags & NLM_ NH | NIDLE) == 0); 1817 mut ex_ent er (&g- >l ock) ;
1752 TAI LQ_I NSERT_TAI L(&g->nl m_i dl e_hosts, hostp, nh_link); 1818 host->nh_fl ags & ~NLM NH_MONI TORED;
1753 host p->nh_flags | = NLM_NH_I NI DLE; 1819 mut ex_exi t (&g- >l ock) ;
1754 nmut ex_exi t (&g- >l ock) ;
1755 } 1821 return;
1822 1
1757 | *
1758 * Unregister this NLM host (NFS client) with the | ocal statd 1824 /*
1759 * due to idleness (no locks held for a while). 1825 * Tell statd howto call us with status updates for
1760 */ 1826 * this host. Updates arrive via nlmdo_notifyl().
1761 void 1827 *
1762 nl m host _unnonitor(struct nlmglobals *g, struct nlmhost *host) 1828 * We put our assigned system|D value in the priv field to
1763 { 1829 * make it sinpler to find the host if we are notified of a
1764 enum cl nt _stat stat; 1830 * host restart.
1831 */
1766 VERI FY(host ->nh_refs == 0); 1832 stat = nl m nsm nmon(&g->nl m nsm host->nh_nane, host->nh_sysid);
1767 if (!(host->nh_flags & NLM NH_MONI TORED)) 1833 if (stat !'= RPC_SUCCESS)
1768 return; 1834 NLM WARN("Fai l ed to contact |ocal NSM stat=%l\n", stat);
1835 mut ex_ent er (&g- >l ock) ;
1770 host->nh_fl ags & ~NLM NH_MONI TORED; 1836 host->nh_flags & ~NLM NH_MONI TORED;
1771 stat = nl m.nsm unnon(&g->nl mnsm host->nh_nane); 1837 mut ex_exi t (&g- >l ock) ;
1772 if (stat !'= RPC_SUCCESS) {
1773 NLM WARN("NLM Failed to contact statd, stat=%\n", stat); 1839 return;
1774 return; 1840 }

new usr/src/uts/comon/ Kkl minl minpl.c

1841 }

1843 int

1844 nl m host_get _state(struct nl mhost *hostp)

1845 {

1847 return (hostp->nh_state);

1848 }

1850 /*

1851 * NLM client/server sleeping |ocks

1852 */

1854 /*

1855 * Register client side sleeping | ock

1856 *

1857 * CQur client code calls this to keep infornmation
1858 * about sl eeping | ock sonewhere. Wien it receives
1859 * grant callback fromserver or when it just

1860 * needs to renmove all sleeping | ocks from vnode
1861 * it uses this information for renove/apply | ock
1862 * properly.

1863 */

1864 struct nlmslock *

1865 nl m sl ock_register(

1866 struct nlmaglobals *g

1867 struct nl mhost *host

1868 struct nlmd_l ock *Iock

1869 struct vnode *vp)

1870 {

1871 struct nlmslock *nslp

1873 nsl p = kmem zal | oc(si zeof (*nslp), KM SLEEP);
1874 cv_init(&nsl p->nsl _cond, NULL, CV_DEFAULT, NULL)
1875 nsl p->nsl _| ock = *| ock

1876 nl m copy_net obj (&nsl p->nsl _fh, &nsl p->nsl _I ock. fh)
1877 nsl p->nsl_state = NLM SL_BLOCKED;

1878 nsl p- >nsl _host = host

1879 nsl p->nsl _vp = vp

1881 mut ex_ent er (&g- >l ock)

1882 TAI LQ_| NSERT_TAI L(&g- >nl m sl ocks, nslp, nsl_link)
1883 mut ex_exi t (&g- >l ock)

1885 return (nslp)

1886 }

1888 /*

1889 * Renpve this lock fromthe wait |ist and destroy it
1890 */

1891 voi d

1892 nl m sl ock_unregi ster(struct nl mglobals *g, struct nlmslock *nslp)
1893 {

1894 nut ex_ent er (&g- >I ock)

1895 TAlI LQ_REMOVE(&g- >nl m sl ocks, nslp, nsl_link)
1896 mut ex_exi t (&g- >l ock)

1898 kmem free(nsl p->nsl _fh.n_bytes, nslp->nsl_fh.n_|len)
1899 cv_dest roy(&nsl p->nsl _cond)

1900 kmem free(nslp, sizeof (*nslp))

1901 }

1903 /*

1904 * Wait for a granted call back or cancellation event
1905 * for a sleeping |ock.

1906 *

29

new usr/src/uts/comon/ Kkl minl minpl.c

1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921

1923
1924
1925
1926
1927
1928

1930
1931
1932
1933
1934

1936
1937
1938
1939
1940
1941
1942
1943
1944

1946
1947
1948

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

1962
1963
1964
1965

1967
1968
1969
1970
1971
1972

*
*
*
*
*
*
*
*
*
in
n

{

If a signal interrupted the wait or if the |ock
was cancelled, return EINTR - the caller nust arrange to send
a cancellation to the server

If tinmeout occurred, return ETI MEDOUT - the caller nust
resend the | ock request to the server.

On success return O

/
t
m sl ock_wait(struct nlmglobals *g

struct nlmslock *nslp, uint_t tineo_secs)

clock_t tinmeo_ticks
int cv_res, error

*

* |If the granted nessage arrived before we got here

* nw>nw _state will be GRANTED - in that case, don't sleep
*/

cv_res =1

tineo_ticks = ddi _get_lbolt() + SEC TO TI CK(ti neo_secs)

mut ex_ent er (&g- >l ock)
if (nslp->nsl_state == NLM SL_BLOCKED) {
cv_res = cv_tinedwait_sig(&nsl p->nsl_cond
&g- >l ock, timeo_ticks)

}

/*
* No matter why we wake up, if the | ock was
* cancelled, let the function caller to know
* about it by returning ElNTR
*/

if (nslp->nsl_state == NLM SL_CANCELLED) {
error = EINTR
goto out

}

if (cv_res <= 0) {
/* We was woken up either by timeout or interrupt */
error = (cv_res < 0) ? ETIMEDOUT : EINTR

/*
* The granted nessage nay arrive after the
* interrupt/timeout but before we manage to | ock the
* mutex. Detect this by examnining nslp

*
/
if (nslp->nsl_state == NLM SL_GRANTED)
error = 0;
} else { /* awaken via cv_signal or didn't block */
error = 0;

VERI FY(nsl p->ns| _state == NLM SL_GRANTED) ;

out :

* Ok Ok ok k%

mut ex_exi t (&g- >l ock)
return (error);

Mark client side sleeping | ock as granted
and wake up a process bl ocked on the | ock.
Call ed from server side NLM GRANT handl er

If sleeping lock is found return O, otherw se

new usr/src/uts/comon/ Kkl minl minpl.c 31 new usr/src/uts/comon/ Kkl minl minpl.c
1973 * return ENCENT. 2039 mut ex_exi t (&host p- >nh_I ock) ;
1974 */ 2040 if (newslr I'= NULL)
1975 int 2041 kmem free(new slr, sizeof (*new.slr));
1976 nl m sl ock_grant (struct nlmglobals *g,
1977 struct nlmhost *hostp, struct nlmi_|l ock *al ock) 2043 return (ret);
1978 { 2044 }
1979 struct nlmslock *nslp;
1980 int error = ENCENT; 2046 /*
2047 * Unregister sleeping |ock request corresponding
1982 mut ex_ent er (&g- >l ock) ; 2048 * to flp fromthe given vhol d object.
1983 TAl LQ_FOREACH(nsl p, &g >nl m sl ocks, nsl_link) { 2049 * On success function returns 0, otherwise (if
1984 if ((nslp->nsl_state !'= NLM SL_BLOCKED) || 2050 * lock request corresponding to flp isn't found
1985 (nsl p->nsl _host != hostp)) 2051 * on the given vhold) function returns ENOENT.
1986 conti nue; 2052 */
2053 int
1988 if (alock->svid == nsl p->nsl _| ock. svid && 2054 nI m sl req_unregi ster(struct nl mhost *hostp, struct nlmvhold *nvp,
1989 al ock->| _of f set == nsl p->nsl _| ock. | _of fset && 2055 struct flock64 *flp)
1990 al ock->l _| en == nsl p->nsl _lock.| _len && 2056 {
1991 al ock->fh.n_l en == nslp->nsl _lock.fh.n_len && 2057 struct nimslreq *slr;
1992 bermp(al ock->fh. n byt es, nslp->nsl_lock.fh.n_bytes,
1993 nsl p- >ns| _| ock. fh.n_| en) == 0) { 2059 nmut ex_ent er (&host p- >nh_| ock) ;
1994 nsl p->nsl _state = NLM SL_GRANTED; 2060 slr = nimslreq_find_| ocked(host p, nvp, flp);
1995 cv_br oadcast (&nsl p->nsl _cond) ; 2061 if (slr == NULL)
1996 error = 0; 2062 nmut ex_exi t (&ost p- >nh_| ock) ;
1997 br eak; 2063 return (ENCENT);
1998 } 2064 }
1999 }
2066 TAI LQ REMOVE(&vp->nv_slreqs, slr, nsr_link);
2001 mut ex_exi t (&g- >l ock) ; 2067 mut ex_exi t (&host p- >nh_I ock);
2002 return (error);
2003 } 2069 kmem free(slr, sizeof (*slr));
2070 return (0);
2005 /* 2071 }
2006 * Register sleeping |ock request corresponding to
2007 * flp on the given vhol d object. 2073 [*
2008 * On success function returns 0, otherw se (if 2074 * Find sleeping | ock request on the given vhold object by flp.
2009 * lock request with the sane flp is already 2075 *
2010 * registered) function returns EEXI ST. 2076 struct nlmslreq *
2011 */ 2077 nl mslreq_find_|l ocked(struct nl mhost *hostp, struct nlmvhold *nvp,
2012 int 2078 struct flock64 *flp)
2013 nlmslreq_register(struct nl mhost *hostp, struct nlmvhold *nvp, 2079 {
2014 struct flock6é4 *flp) 2080 struct nimslreq *slr = NULL;
2015 {
2016 struct nI mslreq *slr, *new slr = NULL; 2082 ASSERT(MUTEX_HELD(&host p- >nh_l| ock)) ;
2017 int ret = EEXI ST, 2083 TAI LQ FOREACH(sl r, &nvp->nv_slreqs, nsr_link) {
2084 if (slr->nsr_fl.l_start == flp->_start &&
2019 nmut ex_ent er (&host p- >nh_| ock) ; 2085 slr->nsr_fl.l_len == flp->_len &&
2020 slr = nlmslreq_find_l ocked(hostp, nvp, flp); 2086 slr->nsr_fl.l_pid == flp->l_pid &&
2021 if (slr !'= NULL) 2087 slr->nsr_fl.l_type == flp->l_type)
2022 goto out; 2088 br eak;
2089 }
2024 mut ex eX|t(&host p- >nh_| ock) ;
2025 new sir = kmem zal | oc(si zeof (*slr), KM SLEEP); 2091 return (slr);
2026 bcopy(flp, &ew slr->nsr_fl, sizeof (*flp)); 2092 }
2028 mut ex ent er (&host p- >nh_| ock) ; 2094 /*
2029 slr = nimslreq_find_| ocked(host p, nvp, flp); 2095 * NLMtracks active share reservations made on the client side.
2030 if (slr == NULL) { 2096 * It needs to have a track of share reservations for two purposes
2031 slr = new.slr; 2097 * 1) to determine if nlmhost is busy (if it has active |ocks and/or
2032 new_slr = NULL; 2098 * share reservations, it is)
2033 ret = 0; 2099 * 2) to recover active share reservati ons when NLM server reports
2100 * that it has rebooted.
2035 TAI LQ_| NSERT_TAI L(&vp->nv_slreqgs, slr, nsr_link); 2101 *
2036 } 2102 * Unfortunately Illunps |ocal share reservati ons manager (see os/share.c)
2103 * doesn’t have an ability to | ookup all reservations on the system
2038 out: 2104 * by sysid (like local |ock manager) or get all reservations by sysid.

new usr/src/uts/comon/ Kkl minl minpl.c

2105 It tracks reservations per vnode and is able to get/|ooup them
2106 * on particular vnode. It’'s not what NLM needs. Thus it has that ugly
2107 * share reservations tracking schene.

2108 */

2110 void

2111 nl mshres_track(struct nl mhost *hostp, vnode_t *vp, struct shrlock *shrp)
2112 {

2113 struct nlmshres *nsp, *nsp_new,

2115 I*

2116 * NFS code nust fill the s_owner, so that

2117 * s_own_len is never 0.

2118 */

2119 ASSERT(shrp->s_own_l en > 0);

2120 nsp_new = nl mshres_create_itenm(shrp, vp);

2122 mut ex_ent er (&host p- >nh_| ock) ;

2123 for (nsp = hostp->nh_shrlist; nsp != NULL; nsp = nsp->ns_next)
2124 if (nsp->ns_vp == vp && nl mshres_equal (shrp, nsp->ns_shr))
2125 br eak;

2127 if (nsp !'= NULL) {

2128 /*

2129 * Found a duplicate. Do nothing.

2130 */

2132 goto out

2133 }

2135 nsp = nsp_new,

2136 nsp_new = NULL

2137 nsp->ns_next = hostp->nh_shrlist;

2138 host p- >nh_shrlist = nsp;

2140 out:

2141 mut ex_exi t (&host p- >nh_I ock) ;

2142 if (nsp_new != NULL)

2143 nl m shres_destroy_item nsp_new);

2144 }

2146 void

2147 nl m shres_untrack(struct nlmhost *hostp, vnode_t *vp, struct shrlock *shrp)
2148 {

2149 struct nlmshres *nsp, *nsp_prev = NULL;

2151 nmut ex_ent er (&host p- >nh_| ock) ;

2152 nsp = host p->nh_shrlist;

2153 while (nsp !'= NULL) {

2154 if (nsp->ns_vp == vp & nl mshres_equal (shrp, nsp->ns_shr)) {
2155 struct nlmshres *nsp_del;

2157 nsp_del = nsp;

2158 nsp = nsp->ns_next;

2159 if (nsp_prev !'= NULL)

2160 nsp_prev->ns_next = nsp;

2161 el se

2162 host p- >nh_shrlist = nsp;

2164 nl m shres_destroy_item nsp_del);

2165 cont i nue;

2166 }

2168 nsp_prev = nsp;

2169 nsp = nsp->ns_next;

2170 }

33

new usr/src/uts/comon/ Kkl minl minpl.c

2172 mut ex_exi t (&host p- >nh_l ock) ;

2173 }

2175 [*

2176 * Cet a _copy_ of the list of all active share reservations
2177 * made by the given host.

2178 * NOTE: the list function returns _nmust_ be rel eased using
2179 * nlmfree_shrlist().

2180 */

2181 struct nlmshres *

2182 nl m get _active_shres(struct nl mhost *hostp)

2183 {

2184 struct nlmshres *nsp, *nslist = NULL;

2186 mut ex_ent er (&host p- >nh_I ock) ;

2187 for (nsp = hostp->nh_shrlist; nsp != NULL; nsp = nsp-
2188 struct nl mshres *nsp_new,

2190 nsp_new = nl mshres_create_iten(nsp->ns_shr,
2191 nsp_new >ns_next = nslist;

2192 nslist = nsp_new,

2193 1

2195 mut ex_exi t (&host p- >nh_I ock) ;

2196 return (nslist);

2197 }

2199 /*

2200 * Free nmenory allocated for the active share reservations
2201 * list created by nl mget_active_shres() function.

2202 */

2203 void

2204 nlmfree_shrlist(struct nlmshres *nslist)

2205 {

2206 struct nlmshres *nsp;

2208 while (nslist !'= NULL) {

2209 nsp = nslist;

2210 nslist = nslist->ns_next;

2212 nl mshres_destroy_iten(nsp);

2213 }

2214 }

2216 static bool _t

2217 nl mshres_equal (struct shrlock *shrpl, struct shrlock *shrp2)
2218 {

2219 if (shrpl->s_sysid == shrp2->s_sysid &&
2220 shrpl->s_pid == shrp2->s_pid &&
2221 shrpl->s_own_| en == shrp2->s_own_| en &&
2222 becmp(shrpl->s_owner, shrp2->s_owner,

2223 shrpl->s_own_l en) == 0)

2224 return (TRUE);

2226 return (FALSE);

2227 }

2229 static struct nl mshres *

2230 nl mshres_create_iten(struct shrlock *shrp, vnode_t *vp)
2231 {

2232 struct nlmshres *nsp;

2234 nsp = kmem al | oc(sizeof (*nsp), KM SLEEP);

2235 nsp->ns_shr = knmem al | oc(si zeof (*shrp), KM SLEEP);
2236 bcopy(shrp, nsp->ns_shr, sizeof (*shrp));

>ns_next) {

nsp- >ns_vp);

new usr/src/uts/comon/ Kkl minl minpl.c

2237 nsp->ns_shr->s_owner = knmem al | oc(shrp->s_own_| en, KM SLEEP);
2238 bcopy(shrp->s_owner, nsp->ns_shr->s_owner, shrp->s_own_|en);
2239 nsp->ns_vp = vp;

2241 return (nsp);

2242 }

2244 static void

2245 nl mshres_destroy_itenm(struct nl mshres *nsp)

2246 {

2247 kmem f ree(nsp- >ns_shr->s_owner,

2248 nsp->ns_shr->s_own_l en);

2249 kmem f ree(nsp->ns_shr, sizeof (struct shrlock));
2250 kmem free(nsp, sizeof (*nsp));

2251 }

2253 [*

2254 * Called by kl mod.c when | ockd adds a network endpoi nt
2255 * on which we shoul d begi n RPC services.

2256 */

2257

2258 nI m svc_add_ep(struct file *fp, const char *netid, struct knetconfig *knc)
2259 {

2260 SVCMASTERXPRT *xprt = NULL;

2261 int error;

2263 error = svc_tli_kcreate(fp, 0, (char *)netid, NULL, &xprt,
2264 &nl msct, NULL, NLM SVCPOOL_ID, FALSE);

2265 if (error = 0)

2266 return (error);

2268 (void) nlmknc_to_netid(knc);

2269 return (0);

2270 }

2272 | *

2273 * Start NLM service.

2274 */

2275 int

2276 nl msvc_starting(struct nl mglobals *g, struct file *fp,
2277 const char *netid, struct knetconfig *knc)

2278 {

2279 int error;

2280 enum cl nt _stat stat;

2282 VERI FY(g->run_status == NLM ST_STARTI NG ;

2283 VERI FY(g->nl m gc_thread == NULL);

2285 error = nlmnsm.init_|local (&->nl mnsm;

2286 if (error = 0)

2287 NLM ERR("Fail ed to initialize NSM handl er
2288 "(error=%l)\n", error);

2289 g->run_status = NLM ST_DOW\;

2290 return (error);

2291 }

2293 error = EIQ

2295 /*

2296 * Create an NLM garbage collector thread that wll
2297 * clean up stale vholds and hosts objects.

2298 */

2299 g->nlmgc_thread = zthread_create(NULL, 0, nlmgc,
2300 g, O, minclsyspri);

2302 /*

35

new usr/src/uts/comon/klm nl minpl.c 36
2303 * Send SIMJ_CRASH to | ocal statd to report that
2304 * NLM started, so that statd can report other hosts
2305 * about NLM state change.

2306 */

2308 stat = nl m_nsm si nu_crash(&g->nl mnsn;

2309 if (stat !'= RPC_SUCCESS) {

2310 NLM ERR("Fai l ed to connect to |ocal statd "
2311 "(rpcerr=%)\n", stat);

2312 got o shutdown_I m

2313 1

2315 stat = nlmnsmstat(&g->nl mnsm &g->nsmstate);

2316 if (stat I'= RPC_SUCCESS

2317 NLM ERR("Failed to get the status of local statd "
2318 "(rpcerr=%l)\n", stat);

2319 goto shutdown_I m

2320 }

2322 g->grace_threshold = ddi _get _|bolt() +

2323 SEC _TO Tl CK(g- >grace_peri od);

2325 /* Regi ster endpoint used for communications with | ocal NLM */
2326 error = nlmsvc_add_ep(fp, netid, knc);

2327 if (error =0

2328 goto shutdown_I m

2330 (voi d) svc_pool _control (NLM SVCPOCL_I D,

2331 SVCPSET_SHUTDOM_PROC, (void *)nl m pool _shut down) ;
2332 g->run_status = NLM ST_UP;

2333 return (0);

2335 shutdown_I m

2336 nmut ex_ent er (&g- >l ock) ;

2337 g->run_status = NLM ST_STOPPI NG,

2338 mut ex_exi t (&g- >l ock) ;

2340 nl m svc_stoppi ng(g);

2341 return (error);

2342 }

2344 | *

2345 * Called when the server pool is destroyed, so that

2346 * all transports are closed and no any server threads

2347 * exist.

2348

2349 * Just call Imshutdown() to shut NLM down properly.

2350 */

2351 static void

2352 nl m pool _shut down(voi d)

2353 {

2354 (void) | mshutdown();

2355 }

2357 [*

2358 * Stop NLM service, cleanup all resources

2359 * NLM owns at the noment

2360 *

2361 * NOTE: NFS code can call NLMwhile it’s

2362 * stopping or even if it’s shut down. Any attenpt
2363 * to lock file either on client or on the server
2364 * will fail if NLMisn't in NLM ST_UP state
2365 */

2366 void

2367 nl m svc_stoppi ng(struct nl mglobals *g)

2368 {

new usr/src/uts/comon/ Kkl minl minpl.c

2369
2370

2372
2373
2374
2375
2376
2377

2379

2381
2382
2383
2384
2385
2386
2387
2388

2390
2391
2392
2393
2394
2395
2396
2397
2398

2400
2401
2402
2403
2404
2405
2406
2407

2409
2410
2411
2412
2413

2415
2416
2417

2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

2431
2432
2433
2434

nmut ex_ent er (&g- >l ock) ;
ASSERT(g->run_status == NLM _ST_STOPPI NG) ;

| *

* Ask NLM GC thread to exit and wait until it dies.
*
/

cv_signal (&->nl m gc_sched_cv);
while (g->nlmgc_thread !'= NULL)
cv_wai t (&3->nl m gc_finish_cv, &g->lock);

mut ex_exi t (&g- >l ock) ;

/*

* O eanup | ocks owned by NLM hosts.

* NOTE: New hosts won’t be created while

* NLMis stopping.

*

while (lavl _is_enmpty(&g->nl mhosts_tree)) {
struct nl mhost *hostp;
int busy_hosts = 0;

/*

* |terate through all NLM hosts in the system
* and drop the locks they own by force.

*/

hostp = avl _first(&g->nl mhosts_tree);
while (hostp !'= NULL)

/* Cleanup all client and server side |ocks */

nl mclient_cancel _all (g, hostp);
nl m host _notify_server(hostp, 0);

nut ex_ent er (&host p- >nh_| ock) ;
nl m host _gc_vhol ds(hostp);

}
| *

*
*
*
*
*
*

wh

}
if

if (hostp->nh_refs > 0 || nlmhost_has_l ocks(hostp)) {
/*

* Ch, it seens the host is still busy, let
* it sonme tine to release and go to the

* next one.
*/

mut ex_exi t (&host p- >nh_I ock) ;

hostp = AVL_NEXT(&g->nl m hosts_tree, hostp);

busy_host s++;
cont i nue;

}

nmut ex_exi t (&host p- >nh_| ock) ;
host p = AVL_NEXT(&g->nl m hosts_tree, hostp);

Al hosts go to nim.idle_hosts list after

all locks they own are cleaned up and | ast refereces
were dropped. Just destroy all hosts in nlm.idle_hosts
list, they can not be renmoved fromthere while we're

in stopping state.
/

ile ((hostp = TAILQ FIRST(&g->nl midle _hosts)) != NULL) {

nl m host _unregi ster(g, hostp);

nl m host _destroy(hostp);
(busy_hosts > 0) {

/*

* There’'re sone hosts that weren't cleaned
* up. Probably they’'re in resource cleanup

37

new usr/src/uts/comon/ Kkl minl minpl.c

2435 * process. Gve themsone time to do
2436 * references.

2437 */

2438 del ay(MSEC_TO_TI CK(500)) ;
2439 }

2440 }

2442 ASSERT(TAI LQ_EMPTY(&g- >nl m sl ocks))

2444 nlmnsmfini(&->nl mnsm;

2445 g->l ockd_pid = 0;

2446 g->run_status = NLM ST_DOW\,

2447 }

2449 | *

2450 * Returns TRUE if the given vnode has

2451 * any active or sleeping |ocks.

2452 */

2453 int

2454 nl mvp_active(const vnode_t *vp)

2455 {

2456 struct nlmglobals *g;

2457 struct nl mhost *hostp;

2458 struct nlmvhold *nvp;

2459 int active = 0;

2461 g = zone_get speci fic(nl mzone_key, curzone);
2463 /*

2464 * Server side NLM has |ocks on the given vnode
2465 * if there exist a vhold object that holds
2466 * the given vnode "vp" in one of NLM hosts.
2467 */

2468 mut ex_ent er (&g- >l ock) ;

2469 hostp = avl _first(&g->nl mhosts_tree);

2470 while (hostp != NULL)

2471 mut ex_ent er (&ost p- >nh_| ock) ;

2472 nvp = nlmvhol d_find_| ocked(hostp, vp);
2473 mut ex_exi t (&ost p- >nh_| ock) ;

2474 if (nvp !'= NULL) {

2475 active = 1;

2476 br eak;

2477 }

2479 hostp = AVL_NEXT(&g->nl m hosts_tree,
2480 }

2482 mut ex_exi t (&g- >l ock) ;

2483 return (active);

2484 }

2486 [*

2487 * Called right before NFS export is going to

2488 * dissapear. The function finds all vnodes

2489 * belonging to the given export and cl eans

2490 * all rempte | ocks and share reservations

2491 * on them

2492 */

2493 voi d

2494 nl m unexport(struct exportinfo *exi)

2495 {

2496 struct nlmglobals *g;

2497 struct nlmhost *hostp;

2499 g = zone_get speci fic(nl mzone_key, curzone);

host p) ;

drop

new usr/src/uts/comon/ Kkl minl minpl.c

2501 mut ex_ent er (&g- >l ock) ;

2502 hostp = avl _first(&g->nl mhosts_tree);

2503 while (hostp != NULL)

2504 struct nlmvhold *nvp;

2506 mut ex_ent er (&ost p- >nh_| ock) ;

2507 TAI LQ FOREACH(nvp, &hostp->nh_vholds_list, nv_link) {
2508 vnode_t *vp;

2510 nvp->nv_r ef cnt ++;

2511 mut ex_exi t (&ost p- >nh_l ock) ;

2513 VP = nvp->nv_vp;

2515 if (!EQFSID(&exi->exi_fsid, &p->v_vfsp->vis_fsid))
2516 goto next_iter;

2518 /*

2519 * Ok, it we found out that vnode vp is under
2520 * control by the exportinfo exi, now we need
2521 * to drop all locks fromthis vnode, let’'s
2522 * doit.

2523 */

2524 nl m.vhol d_cl ean(nvp, host p->nh_sysid);
2526 next _iter:

2527 mut ex_ent er (&host p- >nh_| ock) ;

2528 nvp->nv_refcnt--;

2529 }

2531 mut ex_exi t (&ost p- >nh_| ock) ;

2532 hostp = AVL_NEXT(&g->nl m hosts_tree, hostp);

2533 }

2535 mut ex_exi t (&g- >l ock) ;

2536 }

2538 [*

2539 * All ocate new uni que sysid.

2540 * In case of failure (no avail abl e sysids)

2541 * return LM _NOSYSID.

2542 */

2543 sysid_t

2544 nl m sysid_al |l oc(voi d)

2545 {

2546 sysid_t ret_sysid = LM NOSYSI D,

2548 rw_enter (& mlck, RWWRI TER);

2549 if (nlmsysid_nidx > LM SYSi D) MVAX)

2550 nl m sysid_nidx = LM SYSI D,

2552 if (!BT_TEST(nl msysid_bmap, nlmsysid_nidx)) {

2553 BT_SET(nl m sysi d_bmap, nl msysid_nidx);

2554 ret_sysid = nl msysid_ni dx++;

2555 } else {

2556 index_t id;

2558 id = bt_avail bit(nl msysid_bmap, NLM BMAP_NI TEMS);
2559 if (id>0)

2560 nlmsysid_ nldx =id + 1;

2561 ret_sysid = id;

2562 BT_SET(nl m sysi d_bmap, id);

2563 }

2564 }

2566 rw_exit(& mlck);

39

new usr/src/uts/comon/ Kkl minl minpl.c

2567 return (ret_sysid);

2568 }

2570 void

2571 nl msysid_free(sysid_t sysid)

2572 {

2573 ASSERT(sysid >= LM SYSID & sysid <= LM SYSI D_MAX) ;
2575 rw_enter (& mlck, RWWR TER);

2576 ASSERT(BT_TEST(nl m sysi d bmap, sysid));
2577 BT_CLEAR(nl m sysi d_bmap, sysid);

2578 rw_exit(& mlck);

2579 }

2581 /

*
2582 * Return true if the request came froma local caller.
2583 * By necessity, this "knows" the netid nanmes invented
*

2584 in Imsvc() and nl mnetid_fromknetconfig().

2585 */

2586 bool _t

2587 nlmcaller_is_|ocal (SVYCXPRT *transp)

2588 {

2589 char *netid;

2590 struct netbuf *rtaddr;

2592 netid = svc_getnetid(transp);

2593 rtaddr = svc_getrpccal l er(transp);

2595 if (netid = ULL)

2596 ret urn (FALSE) ;

2598 if (strenp(netid, "ticlts") ——0||

2599 strcnp(netid, "ticotsord") == 0)

2600 return (TR E) ;

2602 if (strcnp(netid, "tcp") == || strcnp(netid, "udp") == 0) {
2603 struct sockaddr_in *sin = (void *)rtaddr->buf;

2604 if (sin->sin_addr.s_addr == htonl (1 NADDR_LOOPBACK))
2605 return (TRUE);

2606 1

2607 if (strcenp(netid, "tcp6") == 0 || strcr'rp(netld "udp6") == 0) {
2608 struct sockaddr_li nG *sin6 = (void *)rtaddr->buf;
2609 if (IN6_IS_ADDR LOOPBACK(&si n6->si n6_addr))

2610 “return (TRUE);

2611 }

2613 return (FALSE); /* unknown transport */

2614 }

2616 /*

2617 * Get netid string correspondig to the given knetconfig.
2618 * |f not done already, save knc->knc_rdev in our table.
2619 */

2620 const char *

2621 nl mknc_to_netid(struct knetconfig *knc)

2622 {

2623 int i;

2624 dev_t rdev;

2625 struct nl mknc *nc;

2626 const char *netid = NULL;

2628 rw_enter (& mlck, RWREADER);

2629 for (i = 0; i < NLMKNCS; i++)

2630 nc = &l mnetconfigs[i];

2632 if (nc->n_knc. knc_semanti cs == knc->knc_senantics &&

new usr/src/uts/comon/ Kkl minl minpl.c

2633 strenp(nc->n_knc. knc_protofmy,
2634 knc->knc_protofmy) == 0) {
2635 netid = nc->n_netid;

2636 rdev = nc->n_knc. knc_rdev;
2637 br eak;

2638 }

2639 }

2640 rw_exit(& mlck);

2642 if (netid != NULL & rdev == NODEV) {

2643 rw enter(& mlck, RWWR TER);

2644 if (nc->n_knc. knc_rdev == NODEV)
2645 nc->n_knc. knc_rdev = knc->knc_rdev;
2646 rw_exit(& mlck);

2647 }

2649 return (netid);

2650 }

2652 /*

2653 * Get a knetconfig corresponding to the given netid.
2654 * If there's no knetconfig for this netid, ENOENT
2655 * is returned.

2656 */

2657 int

2658 nl m knc_from nnetid(const char *netid, struct knetconfig *knc)
2659 {

2660 int i, ret;

2662 ret = ENCENT;

2663 for (i =0; i < NLMKNCS; i++) {

2664 struct nlmknc *nknc;

2666 nknc = &nl m netconfigs[i];

2667 if (strcnp(netid, nknc->n_netid) == 0 &&
2668 nknc->n_knc. knc_rdev = NODEV) {
2669 *knc = nknc->n_knc;

2670 ret = 0;

2671 break;

2672 }

2673 }

2675 return (ret);

2676 }

2678 void

2679 nl m cprsuspend(voi d)

2680 {

2681 struct nlmglobals *g;

2683 rw_enter (& m|ck, RWREADER);

2684 TAI LQ FOREACH(g, &nlm zones_list, nlmlink)
2685 nl m suspend_zone(Q);

2687 rw_exit(& mlck);

2688 }

2690 void

2691 nl m cprresune(void)

2692 {

2693 struct nlmglobals *g;

2695 rw_enter (& m|ck, RWREADER);

2696 TAI LQ FOREACH(g, &nlm zones_list, nlmlink)

2697 nl mresunme_zone(Q);

41

new usr/src/uts/comon/ Kkl minl minpl.c

2699 rw_exit(& mlck);
2700 }

2702 static void
2703 nlmnsmclnt_init(CLIENT *clnt, struct nl mnsm*nsm

2704 {

2705 (void) clnt_tli_kinit(clnt, &sm >ns_knc, &nism >ns_addr, O
2706 NLM RPC_RETRI ES, kcred);

2707 }

2709 static void
2710 nl m net buf _to_netobj (struct netbuf *addr, int *famly, netobj *obj)

2711 {

2712 /* LI NTED poi nter alignment */

2713 struct sockaddr *sa = (struct sockaddr *)addr->buf;
2715 *famly = sa->sa_famly;

2717 switch (sa->sa_famly) {

2718 case AF_I NET:

2719 /* LINTED pointer alignnent */

2720 struct sockaddr_in *sin = (struct sockaddr_in *)sa;
2722 obj->n_len = sizeof (sin->sin_addr);

2723 obj ->n_bytes = (char *)&sin->sin_addr;

2724 br eak;

2725 }

2727 case AF_I NET6: {

2728 /* LINTED poi nter alignment */

2729 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
2731 obj ->n_l en = sizeof (sin6->sin6_addr);

2732 obj ->n_bytes = (char *)&sin6->si n6_addr;
2733 br eak;

2734 1

2736 defaul t:

2737 VERI FY(0);

2738 br eak;

2739

2740 }

42

new usr/src/uts/comon/ Kkl minl minpl.h

R R R R

23395 Sun Aug 25 23:51:10 2013
new usr/src/uts/comon/ Kkl minl minpl.h
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbi seda@lel phi x. con»

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1/*

*

NRERRRERRRER R
COONOUITAWNROOO~NOUTDWN

36 *
*

® Ok Sk ok F b Sk O 3k O 3k b R Ok ok Sk Sk Ok Rk b % b % b
-~

38 *
*/

Copyright (c) 2008 Isilon Inc http://ww.isilon.conl
Aut hors: Doug Rabson <dfr @ abson. or g>
Devel oped with Red Inc: Alfred Perlstein <alfred@reebsd. org>

Redi stribution and use in source and binary fornms, with or wthout

nodi fication, are permtted provided that the follow ng conditions

are met:

1. Redistributions of source code nust retain the above copyri ght
notice, this list of conditions and the follow ng disclainer.

2. Redistributions in binary form nust reproduce the above copyri ght
notice, this list of conditions and the follow ng disclainmer in the
docunentation and/or other materials provided with the distribution.

THI'S SOFTWARE | S PROVI DED BY THE AUTHOR AND CONTRIBUTORS ‘'AS IS’ AND
ANY EXPRESS CR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIMTED TO, THE

I MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPOSE

ARE DI SCLAI MED. I N NO EVENT SHALL THE AUTHOR OR CONTRI BUTORS BE LI ABLE

FOR ANY DI RECT, | NDI RECT, | NCIDENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL

DAMAGES (I NCLUDI NG, BUT NOT LI M TED TO, PROCUREMENT OF SUBSTI TUTE GOODS
OR SERVI CES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON)

HONEVER CAUSED AND ON ANY THECORY OF LI ABILITY, WHETHER | N CONTRACT, STRICT
LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG | N ANY WAY

QUT OF THE USE OF THI S SOFTWARE, EVEN I F ADVI SED OF THE PGCSSI Bl LI TY OF
SUCH DANMAGE.

$Fr eeBSD$

Copyright 2012 Nexenta Systens, Inc. Al rights reserved.

* Copyright (c) 2012 by Del phix. Al rights reserved.
*
/

NFS Lock Manager (NLM private declarations, etc.

Sour ce code derived from FreeBSD nlmh

41 #ifndef _NLM NLM H_
42 #define _NLM_NLM H_

44 #include <sys/cmm_err. h>
45 #incl ude <sys/ queue. h>
46 #include <sys/nodhash. h>
47 #include <sys/avl.h>

49 #define RPC_MSGOUT(args...)
50 #define NLMERR(...)
51 #define NLM WARN(...)

cm_err (CE_NOTE, args)
cmm_err (CE_NOTE, __VA ARGS_)
crm_err (CE_WARN, _ VA ARGS_)

53 #i fndef SEEK_SET

54 #define SEEK_SET 0
55 #endi f

56 #ifndef SEEK_CUR

57 #define SEEK _CUR 1
58 #endi f

new usr/src/uts/comon/ Kkl minl minpl.h

59 #ifndef SEEK_END
60 #defi ne SEEK_END 2
61 #endif

63 /*
64 * Maxi mum of f set supported by NLM calls using the ol der
65 * (32-bit) versions of the protocol.
*
67 #defi ne MAX_UCFF32 OxffffffffULL
69 struct nlmhost;
70 struct vnode;
71 struct exportinfo;
72 struct shrl ock;
73 struct _kthread;

75 [*
76 * How to read the code: probably the best point to start
77 * it the nlmhost structure that is sort of npbst major
78 * structure in klmod. nlmhost is closely tied with all
79 * other NLM structures.
80 *
81 * There're three najor |ocks we use inside NLM
82 * 1) Gobal read-wite lock (Imlck) that is used to
83 * protect operations with sysid allocation and
84 = managenent of zone gl obals structures for each
85 * zone.
86 * 2) Zone global lock: (nlmglobals->ock) is a nutex
87 * used to protect all operations inside particular
88 * zone.
89 * 3) Host’'s lock: (nlmhost->nh_|lock) is per-host mutex
90 * used to protect host’s internal fields and all
91 * operations with the given host.
92 *
93 * Locks order _nust_ obey the follow ng schene:
94 * |Imlck then nl mglobal s->lock then nl mhost->nh_| ock
95 *
96 * Locks
97 * (9) | ocked by I mlck
98 * (z2) | ocked by nl m gl obal s->I ock
99 * (1) | ocked by host->nh_I ock
100 * (c) const until freeing
101 */
103 /*
104 * Call back functions for nlmdo_l ock() and others.
105 *
106 * Calls to nlmdo_l ock are unusual, because it needs to handl e
107 * the reply itself, instead of letting it happen the normal way.
108 * It also needs to nake an RPC call _back_ to the client when a
109 * bl ocked | ock request conpletes.
110 *
111 * W pass three callback functions to nl mdo_l ock:
112~ nlmreply_cb: send a normal RPC reply
113 * nlmres_ch: do a _res (nmessage style) RPC (call)
114 * nimtestargs_ch: do a "granted" RPC call (after bl ocking)
115 * Only one of the 1st or 2nd is used.
116 * The 3rd is used only for bl ocking
117 *
118 * W al so use call back functions for all the _nsg variants
119 * of the NLM svc calls, where the reply is a reverse call.
120 * The nimtestres_cb is used by the _test_nsg svc calls.
*

The nlmres_cb type is used by the other _nsg calls.

122 */

123 typedef bool _t (*nlmreply_cb)(SVCXPRT *, nlmi_res *);

124 typedef enumclnt_stat (*nlmres_cb)(nlmi_res *, void *, CLIENT *);

new usr/src/uts/comon/ Kkl minl minpl.h 3 new usr/src/uts/comon/ Kkl minl minpl.h
125 typedef enumclnt_stat (*nlmtestargs_ch)(nlmi_testargs *, void *, CLIENT *); 191 struct nimslreq_list nv_slregs; /* (1) */
126 typedef enumclnt_stat (*nlmtestres_cb)(nlmi_testres *, void *, CLIENT *); 192 TAI LQ ENTRY(nl m vhol d) nv_Ili nk; [* (1) */
193 };
128 /* 194 TAI LQ HEAD(nl m vhol d_list, nlmuvhold);
129 * NLM sl eepi ng | ock request.
130 * 196 /*
131 * Sleeping lock requests are server side only objects 197 * Client side sleeping |lock state.
132 * that are created when client asks server to add new 198 * - NLM SL_BLOCKED: sone thread is blocked on this |ock
133 * sleeping | ock and when this | ock needs to bl ock. 199 * - NLM SL_GRANTED: server granted us the |ock
134 * Server keeps a track of these requests in order to be 200 * - NLM SL_CANCELLED: the lock is cancelled (i.e. invalid/inactive)
135 * able to cancel themor clean them up. 201 */
136 * 202 typedef enum nl mslock_state {
137 * Sleeping |l ock requests are closely tiled with particular 203 NLM_SL_UNKNOMW = O,
138 * vnode or, strictly speaking, NLM vhold object that holds 204 NLM_SL_BLOCKED,
139 * the vnode. 205 NLM_SL_GRANTED,
140 * 206 NLM_SL_CANCELLED
141 * struct nlmslreq: 207 } nlmslock_state_t;
142 * nsr_fl: an information about file |ock
143 * nsr_link: a list node to store |ock requests 209 /*
144 ~* in vhol d object. 210 * A client side sleeping | ock request (set by F_SETLKW
145 */ 211 * stored in nlmslocks collection of nlmglobals.
146 struct nimslreq { 212 *
147 struct flock64 nsr_fl; 213 * struct nlmslock
148 TAI LQ ENTRY(nl mslreq) nsr_link; 214 * nsl _state: Sleeping lock state.
149 }; 215 * (see nlmslock_state for nore infornation)
150 TAILQ HEAD(nl mslreq_list, nimslreq); 216 * nsl _cond: Condvar that is used when sl eeping | ock
217 * needs to wait for a GRANT cal | back
152 /* 218 * or cancel |l ation event.
153 * NLMvhol d object is a sort of wapper on vnodes renpte 219 * nsl _lock: nlmd_|lock structure that is sent to the server
154 * clients have | ocked (or added share reservation) 220 * nsl _fh: Filehandl e that corresponds to nw_vp
155 * on NLM server. Vhold keeps vnode held (by VN HOLD()) 221 * nsl _host: A host owning this sleeping |ock
156 * while vnode has any | ocks or shares nmade by parent host. 222 * nsl vp A vnode sl eeping lock is waiting on.
157 * Vholds are used for two purposes: 223 * nsl _link: Alist node for nlmglobals->nlmslocks |ist.
158 * 1) Hold vnode (with VN_HOLD) while it has any |ocks; 224 |
159 * 2) Keep a track of all vnodes renote host touched 225 struct nlmslock {
160 * with | ock/share operations on NLM server, so that NLM 226 nl m sl ock_state_t nsl _state; /* (z) */
161 * can know what vnodes are potentially |ocked; 227 kcondvar _t nsl _cond; /* (z) */
162 * 228 nl m_| ock nsl _lock; /* (c) */
163 * Vholds are used on server side only. For server side it’'s really 229 struct netobj nsl _fh; /* (c) */
164 * inportant to keep vnodes held while they potentially have 230 struct nl mhost *nsl _host; /* (c) */
165 * any locks/shares. In contrast, it's not inportant for clinet 231 struct vnode *nsl _vp; /* (c) */
166 * side at all. Wen particular vnode comes to the NLMclient side 232 TAI LQ ENTRY(nl mslock) nsl_link; /* (z) */
167 * code, it’s already held (VN_HOLD) by the process calling 233 };
168 * lock/share function (it's referenced because client calls open() 234 TAI LQ HEAD(nl m sl ock_li st, nlmslock);
169 * before neking | ocks or shares).
170 * 236 /*
171 * Each NLM host object has a collection of vholds associated 237 * Share reservation description. NLMtracks all active
172 * with vnodes host touched earlier by adding | ocks or shares. 238 * share reservations nade by the client side, so that
173 * Having this collection allows us to decide if host is still 239 * they can be easily recovered if renpte NLM server
174 * in use. When it has any vhold objects it’s considered to be 240 * reboots. Share reservations tracking is also useful
175 * in use. Oherwise we're free to destroy it. 241 * when NLM needs to determ ne whether host owns any
176 * 242 * resources on the systemand can’t be destroyed.
177 * Vholds are destroyed by the NLM garbage coll ecter thread that 243 *
178 * periodically checks whether they have any | ocks or shares. 244 * nlmshres:
179 * Checking occures when parent host is untouched by client 245 * ns_shr: share reservation description
180 * or server for some period of tine. 246 * ns_vp: a pointer to vnode where share reservation is |ocated
181 * 247 * ns_next: next nlmshres instance (or NULL if next itemisn't
182 * struct nlm.yvhol d: 248 * present).
183 * nv_vp: a pointer to vnode that is hold by given nlmvhold 249 */
184 * nv_refcnt: reference counter (non zero when vhold is inuse) 250 struct nlmshres {
185 * nv_slreqgs: sleeping |ock requests that were nmade on the nv_vp 251 struct shrlock *ns_shr;
186 * nv_link: list node to store vholds in host’s nh_vnodes_l|i st 252 vnode_t *ns_vp;
187 */ 253 struct nl mshres *ns_next;
188 struct nlmvhold { 254 };
189 vnode_t *nv_vp; /* (c) */
190 int nv_refent; /* (1) */ 256 /*

new usr/src/uts/comon/ Kkl minl minpl.h 5 new usr/src/uts/comon/ Kkl minl minpl.h 6
257 * NLM RPC handl e obj ect. 323 * uses this host object.
258 * 324 * nh_link: a list node for keeping host in zone-global Iist.
259 * |In kKRPC subsystemit’s unsafe to use one RPC handl e by 325 * nh_by_addr: an AVL tree node for keeping host in zone-global tree.
260 * several threads sinmultaneously. It was designed so that 326 * Host can be | ooked up in the tree by <netid, address>
261 * each thread has to create an RPC handle that it'Il use. 327 * pair.
262 * RPC handle creation can be quite expensive operation, especially 328 * nh_nane: host nane.
263 * with session oriented protocols (such as TCP) that need to 329 * nh_netid: netid string identifying type of transport host uses.
264 * establish session at first. NLM RPC handl e object is a sort of 330 * nh_knc: host’s knetconfig (used by kRPC subsysten).
265 * wrapper on kRPC handl e object that can be cached and used in 331 * nh_addr: host’s address (either |Pv4 or |Pv6).
266 * future. We store all created RPC handl es for given host in a 332 * nh_sysi d: uni que sysid associated with this host.
267 * host’s RPC handl es cache, so that to make new requests threads 333 * nh_state: |ast seen host’'s state reported by NSM
268 * can sinply take ready obj ects fromthe cache. That inproves 334 * nh_flags: ORed host flags.
269 * NLM perfornmance. 335 * nh_idle_tinmeout: host idle tineout. Wien expired host is freed.
270 * 336 * nh_recl _cv: condition variable used for reporting that reclamation
271 * nlmrpc_t: 337 * process is finished.
272 * nr_handl e: a kRPC handl e itself. 338 * nh_rpcb_cv: condition variable that is used to nake sure
273 * nr_vers: a version of NLM protocol kRPC handl e was 339 * that only one thread renews host’s RPC binding.
274 * created for. 340 * nh_rpcb_ustat: error code returned by RPC bindi ng update operation.
275 * nr_link: a list node to store NLM RPC handl es in the host 341 * nh_rpcb_state: host’s RPC binding state (see enumnl mrpcbh_state
276 * RPC handl es cache. 342 * for nore details).
277 */ 343 * nh_rpchc: host’s RPC handl es cache.
278 typedef struct nlmrpc { 344 * nh_vhol ds_by_vp: a hash table of all vholds host owns. (used for |ookup)
279 CLI ENT *nr handl e; [* (1) */ 345 * nh_vholds_list: a linked list of all vholds host owns. (used for iteration)
280 rpcvers_t nr_vers /* (c) */ 346 * nh_shrlist: a list of all active share resevations on the client side.
281 TAI LQ ENTRY(nl'm rpc) nr_link; I* (1) */ 347 * nh_reclainer: a pointer to reclamation thread (kthread_t)
282 } nimrpc_t; 348 * NULL if reclamation thread doesn't exist
283 TAI LQ_HEAD(nl'm 1rpch_list, nlmrpc); 349 */
350 struct nlmhost {
285 /* 351 kmut ex_t nh_| ock; I* (c) */
286 * Describes the state of NLM host’s RPC bi ndi ng. 352 volatile uint_t nh_refs; I* (z) */
287 * RPC binding can be in one of three states: 353 TAI LQ ENTRY(nl m_host) nh_l i nk; 1* (z) */
288 * 1) NRPCB_NEED UPDATE: 354 avl _node_t nh_by_addr ; I* (z) */
289 * Binding is either not initialized or stale. 355 char *nh_nane; I* (c) */
290 * 2) NRPCB_UPDATE_| NPROGRESS: 356 char *nh_neti d; /* (c) */
291 * Wien sone thread updates host’s RPC bi nding, 357 struct knetconfig nh_knc; /* (c) */
292 * it sets binding’ s state to NRPCB_UPDATE_| NPROGRESS 358 struct netbuf nh_addr ; I* (c) */
293 * whi ch denotes that other threads nust wait until 359 sysid_t nh_sysi d; /I* (c) */
294 * updat e process is finished. 360 int32_t nh_st at e; I* (z) */
295 * 3) NRPCB_UPDATED: 361 cl ock_t nh_idl e_timeout; I* (z) */
296 * Denotes that host’s RPC binding is both initialized 362 uint8_t nh_f | ags; I* (z) */
297 * and fresh. 363 kcondvar _t nh_recl _cv; I* (z) */
298 */ 364 kcondvar _t nh_rpcb_cv; 1= (1) */
299 enum nl mrpch_state { 365 enum cl nt _st at nh_r pcb_ustat ; I* (1) */
300 NRPCB_NEED UPDATE = 0, 366 enum nl mrpcbh_state nh_r pcb_state; I* (1) */
301 NRPCB_UPDATE _ INPRCX.‘-RESS 367 struct nlmrpch_list nh_r pchc; 1* (1) */
302 NRPCB_UPDATED 368 nod_hash_t *nh_vhol ds_by_vp; I* (1) */
303 }; 369 struct nlmvhold_|ist nh_vhol ds_li st; 1= (1) =/
370 struct nlmshres *nh_shrlist; I* (1) */
305 /* 371 kt hread_t *nh_recl ai ner; I* (1) */
306 * NLM host flags 372 };
307 */ 373 TAI LQ HEAD(nl m host _li st, nlmhost);
308 #define NLM NH_MONI TORED 0x01
309 #define NLM_NH_RECLAIM 0x02 375 /*
310 #define NLM_NH_|I NI DLE 0x04 376 * nlmnsmstructure describes RPC client handle that can be
311 #define NLM_NH_SUSPEND 0x08 377 * used to communicate with local NSMvia kRPC.
378 *
313 /* 379 * W need to wap handle with nl mnsm structure because kRPC
314 * NLM host object is the nbst major structure in NLM 380 * can not share one handl e between several threads. It’'s assuned
315 * |t identifies renote client or renpte server or both. 381 * that NLMuses only one NSM handl e per zone, thus all RPC operations
316 * NLM host object keep a track of all vnodes client/server 382 * on NSMs handle are serialized using nl mnsm>sem semaphore.
317 * locked and all sleeping locks it has. Al |ock/unlock 383 *
318 * operations are done using host object. 384 * nlmnsmalso contains refcnt field used for reference counting.
319 * 385 * |t’'s used because there exist a possibility of sinultaneous
320 * nlmhost: 386 * execution of NLM shutdown operation and host nonitor/unnonitor
321 * nh_l ock: a mutex protecting host object fields 387 * operations.
322 * nh_refs: reference counter. ldentifies how many threads 388 *

new usr/src/uts/comon/ Kkl minl minpl.h

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

406
407
408
409
410
411
412
413
414
415

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

*
*
*
*
*
*
*
*

*/
str

s
/*
*
*

struct nlmnsm o))
ns_sem a semaphore for serialization network operations to statd

ns_knc: a kneconfig describing transport that is used for communication
ns_addr: an address of |ocal statd we're talking to
ns_handl e: an RPC handl e used for talking to local statd using the status

nmoni tor protocol (SM PROG
ns_addr _handl e: an RPC handl e used for talking to |local statd using the
address registration protocol (NSM ADDR_PROGRAM

uct nlmnsm {

ksema_t ns_sem

struct knetconfig ns_knc; /* (c) */
struct net buf ns_addr; I* (c) */
CLI ENT *ns_handl e; I* (c) */
CLI ENT *ns_addr _handle; /* (c) */

Coul d use flock.h flk_nlmstatus_t instead, but
prefer our own enumwi th initial zero...

typedef enum {

NLM ST_DOWN = 0,
NLM_ST_STOPPI NG,
NLM_ST_UP,

NLM_ST_STARTI NG

} nlmrun_status_t;

/

® Ok kR ok Rk ok S ok b Sk O 3k ok R b Rk Sk k¥ b %

*
*/
str

nl mgl obals structure allows NLM be zone aware. The structure
collects all "global variables" NLM has for each zone.

struct nlmglobal s:
lock: mutex protecting all operations inside given zone
grace_threshol d: grace period expiration tine (in ticks)
lockd_pid: PID of |ockd user space daenon
run_status: run status of klnmmod inside given zone
nsmstate: state obtained fromlocal statd during kl nmod startup
nl mgc_thread: garbage collector thread
nl mgc_sched_cv: condvar that can be signalled to wakeup GC
nlmgc_finish_cv: condvar that is signalled just before GC thread exits
nlmnsm an object describing RPC handl e used for talking to |ocal statd
nlmhosts_tree: an AVL tree of all hosts in the given zone

(used for hosts | ookup by <netid, address> pair)
nl m hosts_hash: a hash table of all hosts in the given zone

(used for hosts | ookup by sysid)
nlmidle_hosts: a list of all hosts that are idle state (i.e. unused)
nlmslocks: a list of all client-side sleeping |ocks in the zone
cn_idle_tno: a value of idle timeout (in seconds) obtained froml ockd
grace_period: a value of grace period (in seconds) obtained from !l ockd
retrans_tno: a value of retransm ssion tineout (in seconds) obtained

from I ockd.
clean_l ock: mutex used to serialize clear_locks calls.
nimlink: a list node used for keeping all nlmglobals objects
in one global linked list.

uct nlmglobals {

kmut ex_t | ock;

clock_t grace_t hreshol d; I* (z) *I
pid_t | ockd_pi d; /* (z) */
nl mrun_status_t run_st at us; /* (z) */
int32_t nsm st at e; I* (z) */
kt hread_t *nl m gc_t hread; I* (z) */
kcondvar _t nl m gc_sched_cv; [* (z) */
kcondvar _t nl mgc_finish_cv; /* (z) */
struct nlmnsm nl mnsm I* (z) */

new usr/src/uts/comon/ Kkl minl minpl.h

~_————————
L N
—~.
N
~—
*
-~

/

int, u_offset_t,
t);
Int,

,
1
*

cred_t *);

struct nlmhost *,

config *);

455 avl _tree_t nl m hosts_tree;
456 nmod_hash_t *nl m_host s_hash;
457 struct nlmhost_list nl m.idle_hosts;
458 struct nlmslock_list nl m sl ocks;

459 int cn_idl e_tno;

460 i nt grace_period;

461 int retrans_t no;

462 kmut ex_t cl ean_l ock;

463 TAI LQ_ENTRY(nl m gl obal s) nl m|ink;

464 };

465 TAI LQ HEAD(nl m gl obal s_list, nlmglobals);

468 [*

469 * This is what we pass as the "owner handle" for NLM LOCK.
470 * This lets us find the blocked | ock in NLM GRANTED.

471 * It al so exposes on the wire what we're using as the
472 * sysid for any server, which can be very hel pful for

473 * probl em di agnosis. (Cbservability is good).

474 */

475 struct nl mowner_handl e {

476 sysid_t oh_sysid; /* of renote host *
477 };

479 [*

480 * Nunber retries NLM RPC call is repeatead in case of failure.
481 * (used in case of conectionless transport).

482 *

483 #define NLM RPC_RETRI ES 5

485 [*

486 * Kl nmmod gl obal vari abl es

487 */

488 extern krw ock_t I mlck;

489 extern zone_key_t nl mzone_key;

491 | *

492 * NLMinterface functions (called directly by

493 * either klmod or kil npos)

494 *

495 extern int nlmfrlock(struct vnode *, int, struct flock64 *
496 struct cred *, struct netobj *, struct flk_callback *,
497 extern int nlmshrlock(struct vnode *, int, struct shrlock
498 struct netobj *, int);

499 extern int nl msafemp(const vnode_t *);

500 extern int nlmsafel ock(vnode_t *, const struct flock64 *,
501 extern int nlmhas_sleep(const vnode_t *);

502 extern void nlmregister_lock_locally(struct vnode *,

503 struct flock64 *, int, u_offset_t);

504 int nlmyvp_active(const vnode_t *vp);

505 void nlmsysid_free(sysid_t);

506 int nlmvp_active(const vnode_t *);

507 void nl munexport(struct exportinfo *);

509 /*

510 * NLM startup/shutdown

511 */

512 int nlmsvc_starting(struct nlmglobals *, struct file *,
513 const char *, struct knetconfig *);

514 voi d nl msvc_stoppi ng(struct nl mglobals *);

515 int nlmsvc_add_ep(struct file *, const char *, struct knet
517 [*

518 * NLM suspend/resune

519 */

520 voi d nl m cprsuspend(void);

new usr/src/uts/comon/ Kkl minl minpl.h

521 void nlmcprresunme(void);

523 /| *
524 * NLMinternal functions for initialization.
525 */

526 void nlminit(void);

527 void nlmrpc_init(void);

528 void nl mrpc_cache_destroy(struct nl mhost *);

529 void nl mglobal s_register(struct nl mglobals *);
530 voi d nl m gl obal s_unregi ster(struct nl mglobals *);
531 sysid_t nlmsysid_alloc(void);

533 /*
534 * Cient reclanation/cancel ation
535 */

536 void nimreclaimclient(struct nl mglobals *, struct nlmhost *);

537 void nlmclient_cancel _all(struct nilmglobals *, struct nlmhost *);

539 /* (nlmrpc_clnt.c) */

540 enum cl nt_stat nlmnull _rpc(CLIENT *, rpcvers_t);

541 enumclnt_stat nimtest_rpc(nlm_testargs *, nlmi_testres *,
542 CLIENT *, rpcvers_t)

543 enum cl nt_stat nlmlock_rpc(nl m_|l ockargs *, nlmi_res *,

544 CLI ENT *, rpcvers_t);

545 enum clnt_stat nlm. cancel _rpc(nl m_cancargs *, nlmi_res *,

546 CLI ENT *, rpcvers_t);

547 enum cl nt _stat nl m.unl ock _rpc(nl mM_unl ockargs *, nlmd_res *,
548 CLI ENT *, rpcvers_t);

549 enum clnt_stat nlmshare_rpc(nl m_shareargs *, nlmi_shareres *,
550 CLI ENT *, rpcvers_t);

551 enum cl nt_stat nl m_unshar e_rpc(nl md_shareargs *, nlmi_shareres *,
552 CLI ENT *, rpcvers_t);

555 /*

556 * RPC service functions.

557 * nlmdispatch.c

558 */

559 void nl mprog_3(struct svc_req *rqgstp, SVCXPRT *transp);
560 void nl mprog_4(struct svc_req *rgstp, SVCXPRT *transp);

562 /*

563 * Functions for working with knetconfigs (nl mnetconfig.c)
564 */

565 const char *nlmknc_to_netid(struct knetconfig *);

566 int nlmknc_fromnetid(const char *, struct knetconfig *);

568 /*

569 * NLM host functions (nlm.inpl.c)

570 */

571 struct nlmhost *nlmhost_findcreate(struct nlmglobals *, char *,
572 const char *, struct netbuf *);

573 struct nlmhost *nlmhost_fi nd(struct nl mgl obals *,

574 const char *, struct netbuf *);

575 struct nlmhost *nlmhost_find_by_sysid(struct nlmglobals *, sysid_t);

576 void nl mhost_rel ease(struct nimglobals *, struct nlmhost *);

578 void nl mhost_nonitor(struct nlmglobals *, struct nlmhost *, int);

579 void nl mhost _unnonitor(struct nlmglobals *, struct nlmhost *);

581 void nl mhost_notify_server(struct nl mhost *, int32_t);
582 void nlmhost_notify client(struct nlmhost *, int32_t);

584 int nl mhost_get_state(struct nl mhost *);

586 struct nlmvhold *nl mvhol d_get (struct nl mhost *, vnode_t *);

new usr/src/uts/comon/ Kkl minl minpl.h

587 void nl mvhol d_rel ease(struct nl mhost *, struct

nl mvhold *);
588 struct nimvhold *nlmvhold_find_Tocked(struct nl mhost *, const vnode_t

590 struct nlmslock *nl mslock_register(struct nlmglobals *,

591 struct nlmhost *, struct nlmd_lock *, struct vnode *);

592 void nlmslock_unregister(struct nimglobals *, struct nlmslock *);
593 int nlmslock_wait(struct nlmglobals *, struct nlmslock *, uint_t);

594 int nlmslock_grant(struct nlmglobals *,
595 struct nlmhost *, struct nlmi_l ock *);
596 voi d nl m host_cancel _sl ocks(struct nl mglobals *,

598 int nlmslreq_register(struct nl mhost *,

599 struct nlmuvhold *, struct flock64 *);
600 int nlmslreq_unregister(struct nl mhost *,
601 struct nlmvhoid *, struct flock64 *);

603 void nl mshres_track(struct nl mhost *, vnode_t *
604 void nl mshres_untrack(struct nl'm host *, vnode_t

struct nlmhost *);

struct shrlock *);
* struct shrlock *)

605 struct nimshres *nlmget_active _shres(struct nlmhost *);

606 void nlmfree_shrlist(struct nlmshres *);

608 int nl mhost_wait_grace(struct nl mhost *);
609 int nl mhost_cnp(const void *, const void *

610 voi d nl mcopy_netobj (struct netobj *, struct net obj *);

612 int nlmhost_get_rpc(struct nlmhost *, int, nlmrpc_t **);

613 void nl mhost_rele_rpc(struct nl mhost *, nlmrpc_t

615 /*

616 * NLM server functions (nlmservice.c)
617 */

618 int nlmvp_active(const vnode_t *vp);

DE

619 void nlmdo_notifyl(nlmsmstatus *, void *, struct svc_req *);
620 void nl mdo_notify2(nlmsmstatus *, void *, struct svc_req *);

621 void nlmdo_test(nlmd_testargs *, nl mi_testres *,

622 struct svc_req *, nimtestres _ch);

623 void nlmdo_| ock(nl m4_| ockargs *, nl rm_res *, struct svc_req *
624 nimreply_ch, nlmres_ch, nlmtestargs_ch);

625 voi d nl mdo_cancel (nl m_cancargs *, nlmd_res *,

626 struct svc_req *, nlmres_cb);

627 void nl mdo_unl ock(nl md_unl ockargs *, nlmi_res *,

628 struct svc_req *, nlmres_ch);

629 void nl mdo granted(nl mi_testargs *, nlmd_res *,

630 struct svc_req *, nimres_ch);

631 void nl mdo_share(nl m_shareargs *, nl md_shareres *, struct svc_req *);

632 void nl mdo_unshare(nl m4_shareargs *, nlmi_shareres *, struct svc_req *);

633 void nlmdo_free_all(nlmi_notify *, void *, struct svc_req *);

635 /*

636 * NLM RPC functions

637 */

638 enum clnt_stat nlmclnt_call (CLIENT *, rpcproc_t,
639 caddr_t, xdrproc t, caddr_t, struct timeval);

640 bool _t nimcaller_is_| ocal (SVCXPRT *);
642 #endif /* NLMNLMH_ */

xdrproc_t,

*)s

10

new usr/src/ uts/ comon/kl m nl m prot_clnt. sed

R R R R

746 Sun Aug 25 23:51:10 2013

new usr/src/ uts/ comon/kl m nl m prot_clnt. sed

195 Need repl acenment for nfs/lockd+kl m

Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

HHHH HHHHHFHHHHTHHH

6{
i\

This file and its contents are supplied under the terms of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this

source. A copy is of the CDDL is also available via the Internet
at http://ww.illunps.org/license/ CDDL.

Copyright 2011 Nexenta Systens, Inc. All rights reserved.

This sed script is run on the client code generated by rpcgen
fromnlmprot.x before it is conpil ed.

#i ncl ude <sys/param h>
i\

#include <sys/systm h>

i\

#include <rpcsve/nl mprot. h>

i\

#i ncl ude "nl m.inpl.h"

}
/~.include/,/”. endif/d
s/clnt_call/nlmclnt_call/g

new usr/src/uts/comon/klminlmrpc_clnt.c

R R R R

6993 Sun Aug 25 23:51:11 2013
new usr/src/uts/comon/klminlmrpc_clnt.c
195 Need repl acenment for nfs/lockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp

Revi ewed by: Jereny Jones <jereny@lel phi x. con>

Revi ewed by: Jeff Biseda <jbi seda@lel phi x. con»

IR R R R R R R RS R SR S R RS RS E R E R E RS E R R R R REREREEEEEEEE]
1/*

* Copyright (c) 2008 Isilon Inc http://ww.isilon.conm
Aut hors: Doug Rabson <dfr @ abson. or g>
Devel oped with Red Inc: Alfred Perlstein <alfred@reebsd. org>

Redi stribution and use in source and binary fornms, with or wthout

nodi fication, are permtted provided that the follow ng conditions

are met:

1. Redistributions of source code nust retain the above copyri ght
notice, this list of conditions and the follow ng disclainer.

2. Redistributions in binary form nust reproduce the above copyri ght
notice, this list of conditions and the follow ng disclainmer in the
docunentation and/or other materials provided with the distribution.

THI'S SOFTWARE | S PROVI DED BY THE AUTHOR AND CONTRIBUTORS ‘'AS IS’ AND
ANY EXPRESS CR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIMTED TO, THE

I MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE
ARE DI SCLAI MED. I N NO EVENT SHALL THE AUTHOR OR CONTRI BUTORS BE LI ABLE
FOR ANY DI RECT, | NDI RECT, | NCIDENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL
DAMAGES (I NCLUDI NG, BUT NOT LI M TED TO, PROCUREMENT OF SUBSTI TUTE GOODS

NRERRRERRRER R
COONOUITAWNROOO~NOUTDWN

21 OR SERVI CES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON)

22 HOWEVER CAUSED AND ON ANY THECRY OF LI ABILITY, WHETHER | N CONTRACT, STRICT
23 LI ABI LI TY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG | N ANY WAY
24 QUT OF THE USE OF TH'S SOFTWARE, EVEN | F ADVI SED OF THE PCSSI BI LI TY OF

25 SUCH DAMAGE.

26 */

28 /| *

29 */Copyright 2011 Nexenta Systems, Inc. Al rights reserved.

30 *

32 /*

33 * dient-side RPC wappers (nlm..._rpc)

34 * Called fromnlmclient.c

35 *

36 * Source code derived from FreeBSD nl m advl ock. ¢

37 */

39 #include <sys/param h>
40 #include <sys/fcntl. h>
41 #include <sys/| ock. h>

42 #include <sys/flock. h>
43 #incl ude <sys/nmount. h>
44 #incl ude <sys/nmutex. h>
45 #incl ude <sys/proc. h>

46 #incl ude <sys/sysl og. h>
47 #incl ude <sys/systm h>
48 #i ncl ude <sys/unistd. h>
49 #i ncl ude <sys/vnode. h>
50 #i nclude <sys/queue. h>

52 #i

ncl ude <rpcsvce/ nl mprot. h>

54 #include <nfs/nfs.h>

55 #include <nfs/nfs_clnt.h>
56 #i nclude <nfs/export.h>
57 #include <nfs/rnode. h>

new usr/src/uts/comon/klminlmrpc_clnt.c

59

#include "nl m.inpl.h"

static void

nl mconvert_to_nl mlock(struct nlmlock *dst,

struct nlmd_l ock *src)

dst->cal | er_nane = src->call er_nane;

dst->fh
dst - >oh
dst - >svi

dst->| _of fset

dst->l _|
}

static void

= src->fh;
= src->oh;
d = src->svid;

en = src->| _len;

= src->| _offset;

73 nlmconvert_to_nl mi_hol der (struct nlm_hol der *dst, struct nlmhol der *src)
74
75 dst - >excl usi ve = src->excl usive;
76 dst->svid = src->svid;
77 dst - >oh = src->o0h;
78 dst->l _offset = src->l _offset;
79 dst->l _len = src->l _len;
80 }
82 static void
83 nlmconvert_to_nlmi_res(struct nlmd_res *dst, struct nlmres *src)
84
85 dst - >cooki e = src->cooki e;
86 dst->stat.stat = (enumnlmi_stats) src->stat.stat;
87 }
89 enum cl nt _stat
90 nlmtest_rpc(nlmi_testargs *args, nlni_testres *res,
91 CLIENT *client, rpcvers_t vers)
92 {
93 if (vers == NLM4_VERS)
94 return (nlm_test_4(args, res, client));
95 } else {
96 nlmtestargs argsi;
97 nlmtestres resi;
98 enum cl nt _stat stat;
100 argsl. cooki e = args->cooki e;
101 ar gsl. excl usi ve = args->excl usi ve;
102 nlmconvert_to_nl ml ock(&argsl. al ock, &args->al ock);
103 (void) nmenset (& esl, 0, sizeof (resl));
105 stat = nlmtest_1(&argsl, &esl, client);
107 if (stat == RPC_SUCCESS) {
108 res->cooki e = resl. cooki e;
109 res->stat.stat = (enumnlmi_stats) resl.stat.stat;
110 if (resl.stat.stat == nl mdenied)
111 nl m convert _to_nl md_hol der (
112 & es->stat.nl md_testrply_u. hol der,
113 & esl.stat.nlmtestrply_u. holder);
114 }
116 return (stat);
117 }
118 }
120 enum cl nt_st at
121 nlmlock_rpc(nl mi_| ockargs *args, nlmi_res *res,
122 CLI ENT *client, rpcvers_t vers)
123 {
124 if (vers == NLMA_VERS) {

new usr/src/uts/comon/klminlmrpc_clnt.c 3 new usr/src/uts/comon/klminlmrpc_clnt.c

125 return (nlmi_l ock_4(args, res, client)); 191 stat = nl munl ock_1(&argsl, &esl, client);
126 } else {
127 nl m | ockargs argsi; 193 if (stat == RPC_SUCCESS) {
128 nlmres resi; 194 nl mconvert_to_nlmi_res(res, &esl);
129 enum cl nt_stat stat; 195 }
131 argsl. cooki e = args->cookie; 197 return (stat);
132 argsl. bl ock = args->bl ock; 198 }
133 argsl. excl usive = args->excl usive; 199 }
134 nl m convert_to_nl ml ock(&argsl. al ock, &args->al ock);
135 argsl.reclaim= args->reclaim 201 enumcl nt_stat
136 argsl.state = args->state; 202 nlmnul |l _rpc(CLI ENT *client, rpcvers_t vers)
137 (void) nenset (& esl, 0, sizeof (resl)); 203 {
204 if (vers == NLM4_VERS)
139 stat = nlmlock_1(&argsl, & esl, client); 205 return (nlmd_nul | _4(NULL, NULL, client));
141 if (stat == RPC_SUCCESS) { 207 return (nlmnul | _1(NULL, NULL, client));
142 nl mconvert_to_nlm_res(res, &esl); 208 }
143 }
210 /*
145 return (stat); 211 * Share reservations
146 } 212 =/
147 }
214 static void
149 enum cl nt_stat 215 nl mconvert_to_nl mshare(struct nl mshare *dst, struct nlmi_share *src)
150 nl m cancel _rpc(nl m_cancargs *args, nlmi_res *res, 216 {
151 CLI ENT *client, rpcvers_t vers)
152 { 218 dst->cal | er_nane = src->call er_nane;
153 if (vers == NLMA_VERS) { 219 dst->fh = src->fh;
154 return (nl m_cancel _4(args, res, client)); 220 dst->oh = src->oh;
155 } else { 221 dst - >node = src->node;
156 nl m cancargs argsl; 222 dst - >access = src->access;
157 nlmres resi; 223 }
158 enum cl nt _stat stat;
225 static void
160 argsl. cooki e = args->cooki e; 226 nl mconvert_to_nlmi_shres(struct nl mi_shareres *dst,
161 argsl. bl ock = args->bl ock; 227 struct nlmshareres *src)
162 argsl. excl usive = args->excl usive; 228 {
163 nlmconvert_to_nl ml ock(&argsl. al ock, &args->al ock); 229 dst - >cooki e = src->cooki e;
164 (void) menset (& esl, 0, sizeof (resl)); 230 dst->stat = (enum nl mi_stats) src->stat;
231 dst - >sequence = src->sequence;
166 stat = nlmcancel _1(&argsl, &resl, client); 232 }
168 if (stat == RPC_SUCCESS)
169 nl mconvert_to_nlmd_res(res, &esl); 235 enum cl nt_stat
170 } 236 nl mshare_rpc(nl mi_shareargs *args, nlmi_shareres *res,
237 CLI ENT *client, rpcvers_t vers)
172 return (stat); 238 {
173 } 239 if (vers == NLM4_VERS)
174 } 240 return (nlm_share_4(args, res, client));
241 } else {
176 enum cl nt_stat 242 nl m shareargs args3;
177 nl m_unl ock_rpc(nl mi_unl ockargs *args, nlmi_res *res, 243 nl mshareres res3;
178 (CLIENT *client, rpcvers_t vers) 244 enum cl nt _stat stat;
179
180 if (vers == NLMA_VERS) { 246 ar gs3. cooki e = args->cooki e;
181 return (nl md_unl ock_4(args, res, client)); 247 nl m convert_to_nl mshare(&args3. share, &args->share);
182 } else { 248 args3.reclaim= args->reclaim
183 nl m_unl ockargs argsi; 249 (void) nenset (& es3, 0, sizeof (res3));
184 nlmres resi;
185 enum cl nt _stat stat; 251 stat = nl mshare_3(&args3, &es3, client);
187 argsl. cooki e = args->cooki e; 253 if (stat == RPC_SUCCESS) {
188 nlm convert_to_nl ml ock(&argsl. al ock, &args->al ock); 254 nl mconvert_to_nl md_shres(res, & es3);

189 (void) nmenset (& esl, 0, sizeof (resl)); 255 }

new usr/src/uts/comon/klminlmrpc_clnt.c

257 return (stat);
258 1
259 }

261 enum cl nt_stat
262 nl munshare_rpc(nl m_shareargs *args, nlm_shareres *res,

263 CLI ENT *client, rpcvers_t vers)

264 {

265 if (vers == NLM4_VERS)

266 return (nl md_unshare_4(args, res, client));
267 } else {

268 nl m shareargs args3;

269 nl m shareres res3;

270 enum cl nt _stat stat;

272 ar gs3. cooki e = args->cooki €;

273 nl mconvert_to_nl mshare(&args3.share, &args->share);
274 args3.reclaim= args->reclaim

275 (void) nmemset (& es3, 0, sizeof (res3));

277 stat = nl munshare_3(&args3, &res3, client);
279 if (stat == RPC SUCCESS) {

280 nl mconvert_to_nlmi_shres(res, & es3);
281 }

283 return (stat);

284

285 }

new usr/src/uts/comon/kl minl mrpc_handle.c

R R R R

9353 Sun Aug 25 23:51:12 2013
new usr/src/uts/comon/kl minl mrpc_handle.c
195 Need repl acenment for nfs/lockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbi seda@lel phi x. con»

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1/*

*

* Ok ok ok Rk Ok Ok % b ok Ok % %

NRERRRERRRER R
COONOUITAWNROOO~NOUTDWN

27 #i
28 #i
29 #i
30 #i
31 #i
32 #i
33 #i
34 #i
35 #i

37 #i
38 #i
39 #i
40 #i
41 #i

43 #i
44 #i

46 #i

48 | *
49 *

51*

53 #def| ne NLM STALE_CLNT(_st at us)

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww:.opensolaris.org/os/licensing.

See the License for the specific |anguage governi ng perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the foll ow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

Copyright (c) 2012 by Del phix. Al rights reserved.
*
/

ncl ude <sys/param h>
ncl ude <sys/systm h>
ncl ude <sys/socket. h>
ncl ude <sys/sysl og. h>
ncl ude <sys/systm h>
ncl ude <sys/unistd. h>
ncl ude <sys/ queue. h>
ncl ude <sys/sdt. h>
ncl ude <netinet/in.h>

ncl ude <rpc/rpc. h>
ncl ude <rpc/xdr. h>
ncl ude <rpc/ pmap_prot. h>
ncl ude <rpc/ pmap_clnt. h>
ncl ude <rpc/rpcb_prot. h>

ncl ude <rpcsvc/nl mprot. h>
ncl ude <rpcsvc/sminter. h>

nclude "nl m.inpl.h"

The following errors codes fromnlmnull_rpc indicate that the port we have
50 * cached for the client’s NLM service is stale and that we need to establish

a new RPC client.

((_status) == RPC_PROGUNAVAIL ||
(_status) == RPC_PROGVERSM SMATCH | |
(“status) == RPC_PROCUNAVAI L ||
(_status) == RPC_CANTCONNECT | |
(_status) == RPC_XPRTFAI LED)

——— ——

new usr/src/uts/comon/ Kkl minl mrpc_handle.c

101

105
106
107
108
109
110
111
112

114
115

117
118

120
121
122

124

stati

stati
stati
stati
stati
stati
stati
stati

stati

(o}
Cc
C
(o}
c
C
C
(o}

c

struct kmem cache *nl mrpch_cache = NULL;

int nlmrpch_ctor(void *, void *, int);
void nlmrpch_dtor(void *, void *);
voi d destroy_rpch(nlmrpc_t *);

nimrpc_t *get_nlmrpc_froncache(struct nlmhost *, int);

voi d updat e_host _rpchbi ndi ng(struct nlmhost *, int);
int refresh_nlmrpc(struct nlmhost *, nlmrpc_t *);
voi d nl mhost_rele_rpc_l ocked(struct nl mhost *, nimr

nlmrpc_t *

get _nlmrpc_froncache(struct nlmhost *hostp, int vers)
{

}
/*

nlmrpc_t *rpcp

bool _t found = FALSE;

ASSERT(MUTEX_HELD(&host p- >nh_| ock)) ;

i f (TAILQ ENPTY(&host p->nh_rpchc))
return (NULL);

TAI LQ FOREACH(r pcp, &host p->nh_rpchc, nr_link) {

if (rpcp->nr_vers == vers) {
found = TRUE;
br eak;
}
}
if (!found)

return (NULL);

TAI LQ REMOVE(&host p- >nh_r pchc, rpcp, nr_link);
return (rpcp);

* Update host’s RPC bi ndi ng (host->nh_addr).
* The function is executed by only one thread at tine.

*/

static void
updat e_host _r pcbi ndi ng(struct nl mhost *hostp, int vers)

}
| *

enum cl nt _stat stat;
ASSERT(MUTEX_HELD(&host p- >nh_l ock)) ;

/*

* Mark RPC binding state as "update in progress" in
* to say other threads that they need to wait until
* is fully updated.

*/

host p- >nh_r pch_state NRPCB_UPDATE_| NPROGRESS;
host p- >nh_r pcb_ust at RPC_SUCCESS;
mut ex_exi t (&host p- >nh_I ock) ;

stat = rpcbi nd_get addr (&ost p- >nh_knc, NLM PROG, vers,

nmut ex_ent er (&host p- >nh_| ock) ;

host p- >nh_rpch_state = ((stat == RPC_SUCCESS) ?
NRPCB_UPDATED : NRPCB_NEED UPDATE) ;

host p- >nh_rpcb_ustat = stat;
cv_broadcast (&ost p- >nh_r pcb_cv);

pc_t *);

or der
bi ndi ng

&host p- >nh_addr) ;

new usr/src/uts/comon/kl minl mrpc_handle.c

125 * Refresh RPC handl e taken from host handl es cache.
126 * This function is called when an RPC handle is either
127 * uninitialized or was initialized using a binding that's
128 * no longer current.
129 */
130 static int
131 refresh_nl mrpc(struct nl mhost *hostp, nlmrpc_t *rpcp)
132 {
133 int ret;
135 if (rpcp->nr_handl e == NULL) {
136 bool _t clset = TRUE;
138 ret = clnt_tli_kcreate(&hostp->nh_knc, &hostp->nh_addr,
139 NLM PROG, rpcp->nr_vers, 0, NLM RPC RETRI ES,
140 CRED(), &rpcp->nr_handle);
142 /*
143 * Set the client’s CLSET_NODELAYONERR option to true. The
144 * RPC clnt_call interface creates an artificial delay for
145 * certain call errors in order to prevent RPC consuners
146 * fromgetting into tight retry |loops. Since this function is
147 * called by the NLM service routines we would like to avoid
148 * this artificial delay when possible. W do not retry if the
149 * NULL request fails so it is safe for us to turn this option
150 * on.
151 */
152 if (clnt_control (rpcp- >nr _handl e, CLSET_NODELAYONERR,
153 (char *)&cls t)
154 I ERR(" Unabl e to set CLSET_NODELAYONERR\n");
155
156 } else {
157 ret = clnt_tli_kinit(rpcp->nr_handle, &hostp->nh_knc,
158 &host p->nh_addr, 0, NLM RPC RETRI ES, CRED());
159 if (ret == 0)
160 enum cl nt _stat stat;
162 /*
163 * Check whether host’s RPC binding is still
164 * fresh, i.e. if renpte programis still sits
165 * on the same port we assune. Call NULL proc
166 * todoit.
167 *
168 * Note: Even though we set no delay on error on the
169 * client handle the call to nlmnull_rpc can still
170 * delay for 10 seconds before returning an error. For
171 * exanpl e the no delay on error option is not honored
172 * for RPC_XPRTFAILED errors (see clnt_cots_kcallit).
173 */
174 stat = nlmnull _rpc(rpcp->nr_handl e, rpcp->nr_vers);
175 f (NLM STALE CLNT(stat)) {
176 ret = ESTALE;
177 }
178 }
179 }
181 return (ret);
182 }
184 /*
185 * Cet RPC handle that can be used to talk to the NLM
186 * of given version running on given host.
187 * Saves obtained RPC handle to rpcpp argunent.
188 *
189 * If error occures, return nonzero error code.
*

190

new usr/src/uts/comon/ Kkl minl mrpc_handle.c

191

192 nl m_host

193
194
195

197

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

216
217
218
219
220
221
222
223

225
226
227
228
229
230
231
232
233
234

236
237
238
239
240
241
242
243
244
245

247
248
249
250
251
252
253
254
255
256

int

{

agai n:

_get _rpc(struct nlmhost *hostp, int vers, nlmrpc_t **rpcpp)

nlmrpc_t *rpcp = NULL;
int rc;

nmut ex_ent er (&host p- >nh_| ock) ;

/
If this handle is either uninitialized, or was
initialized using binding that's now stale
do the init or re-init.

See coments to enum nl mrpch_state for nore
details.

/

* ok % ok % kK

whi l e (hostp->nh_rpcb_state != NRPCB_UPDATED)
if (hostp- >nh _rpcb_state == NRPCB_UPDATE_| NPROGRESS) {
rc = cv V\alt _si g(&host p->nh_rpcb_cv, &host p->nh_| ock);
if (rc ==
mut ex_exi t (&host p- >nh_I ock) ;
return (EINTR);

}
/*
* Check if RPC binding was nmarked for update.
* |f so, start RPC bindi ng update operation.

* NOTE: the operation can be executed by only
* one thread at tine.

*

/
if (hostp->nh_rpcb_state == NRPCB_NEED UPDATE)

updat e_host _r pchi ndl ng(hostp, vers);

/*
* Check if RPC error occured during RPC bindi ng

* update operation. If so, report a correspodi ng
* error.

*/

if (hostp->nh_rpcb_ustat != RPC SUCCESS) {

nut ex_exi t (&ost p- >nh_| ock) ;
return (ENCENT);

}

rpcp = get_nlmrpc_frontache(hostp, vers);
mut ex_exi t (&host p- >nh_I ock) ;
if (rpcp == NULL) {

/*

* There weren’t any RPC handles in a host
* cache. No luck, just create a new one.
e/

rpcp = knmem cache_al | oc(nl m rpch_cache,
rpcp->nr_vers = vers;

KM SLEEP) ;

}

* Refresh RPC bi ndi ng

*/

rc = refresh _nl mrpc(hostp, rpcp);
if (rc!= {

if (rc == ESTALE) {
/*

* Host’'s RPC binding is stale, we have
* to update it. Put the RPC handl e back
* to the cache and mark the host as

new usr/src/uts/comon/kl minl mrpc_handle.c

257 * "need update".

258 */

259 mut ex_ent er (&host p- >nh _l ock) ;

260 host p->nh_rpcb_state = NRPCB_NEED UPDATE;
261 nl m host _rele_rpc_|l ocked(hostp, rpcp);
262 goto agai n;

263 }

265 destroy_rpch(rpcp);

266 return (rc);

267 1

269 DTRACE_PROBE2(end, struct nl mhost *, hostp,

270 nlmrpc_t *, rpcp);

272 *rpcpp = rpcp;

273 return (0);

274 }

276 void

277 nl mhost _rel e_rpc(struct nl mhost *hostp, nlmrpc_t *rpcp)
278 {

279 mut ex_ent er (&host p- >nh_| ock) ;

280 nl m host_rel e_rpc_| Iocked(hostp, rpcp);

281 mut ex_exi t (&host p->nh_| ock) ;

282 }

284 static void

285 nl m host _rel e_rpc_| ocked(struct nl mhost *hostp, nlmrpc_t *rpcp)

286 {

287 ASSERT(nut ex_owned(&ost p- >nh_| ock)) ;

288 TAI LQ_I NSERT_HEAD(&host p- >nh_r pchc, rpcp, nr_link);
289 }

291 /*

292 * The function invalidates host’s RPC binding by marking it
293 * as not fresh. In this case another tinme thread tries to
294 * get RPC handle from host’s handl es cache, host’s RPC bi ndi ng
295 * will be updated.

296 *

297 * The function should be executed when RPC call invoked via
298 * handl e taken from RPC cache returns RPC_PROCUNAVAI L.

299 */

300 void

301 ?I m_host _i nval i dat e_bi ndi ng(struct nl mhost *hostp)

302

303 nmut ex_ent er (&host p- >nh_| ock) ;

304 host p->nh_rpcb_state = NRPCB_NEED UPDATE;

305 mut ex_exi t (&host p- >nh_I ock) ;

306 }

308 void

309 nlmrpc_init(void)

310 {

311 nl mrpch_cache = knmem cache_create("nl mrpch_cache",
312 si zeof (nlmrpc_t), O, nlmrpch_ctor, nlmrpch_dtor,
313 NULL, NULL, NULL, 0);

314 }

316 void

317 nl mrpc_cache_destroy(struct nl mhost *hostp)
318 {
319 nlmrpc_t *rpcp;

321 /*
322 * There's no need to | ock host’s nmutex here,

new usr/src/uts/comon/ Kkl minl mrpc_handle.c

323 * nlmrpc_cache_destroy() should be called from

324 * only one place: nlmhost_destroy, when all

325 * resources host owns are al ready cleaned up.

326 * So there shouldn’t be any raises.

327 *

328 while ((rpcp = TAI LQ FI RST(&host p->nh_rpchc)) !'= NULL)
329 TAI LQ REMOVE(&host p- >nh_r pchc, rpcp, nr_link);
330 destroy_rpch(rpcp);

331 }

332 }

334 /* ARGSUSED */

335 static int

336 nl mrpch_ctor(void *datap, void *cdrarg, int knflags)
337 {

338 nilmrpc_t *rpcp = (nlmrpc_t *)datap;
340 bzero(rpcp, sizeof (*rpcp));

341 return (0);

342 }

344 | * ARGSUSED */
345 static void
346 nlmrpch_dtor(void *datap, void *cdrarg)

347 {

348 nlmrpc_t *rpcp = (nlmrpc_t *)datap;
349 ASSERT(rpcp->nr _handl e == NULL);

350 }

352 static void
353 destroy_rpch(nl mrpc_t *rpcp)

354 {

355 if (rpcp->nr_handle != NULL)

356 AUTH_DESTROY(r pcp- >nr _handl e->cl _aut h);
357 CLNT_DESTROY(r pcp->nr _handl e) ;

358 rpcp->nr_handl e = NULL;

359 }

361 kmem cache_free(nl mrpch_cache, rpcp);

362 }

new usr

*ok ok ok ok ok Kk

/'src/ uts/ common/ kl m nl mrpc_svc.c

R R R R

21456 Sun Aug 25 23:51:12 2013

new usr

/'src/ uts/ common/ kl m nl mrpc_svc.c

195 Need repl acenment for nfs/lockd+kl m

Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbi seda@lel phi x. con»

*k ok ok ok kk

1/*

*

NRERRRERRRER R
COONOUITAWNROOO~NOUTDWN

I T T I S

w
(=
EE

w
~
O T

44 #i
45 #i

47 #i

(&
[ep
* Ok Ok k%

Khkkhkhkkhkkhkhkhkhkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkk k*

Copyright (c) 2008 Isilon Inc http://ww.isilon.conl
Aut hors: Doug Rabson <dfr @ abson. or g>
Devel oped with Red Inc: Alfred Perlstein <alfred@reebsd. org>

Redi stribution and use in source and binary fornms, with or wthout

nodi fication, are permtted provided that the follow ng conditions

are met:

1. Redistributions of source code nust retain the above copyri ght
notice, this list of conditions and the follow ng disclainer.

2. Redistributions in binary form nust reproduce the above copyri ght
notice, this list of conditions and the follow ng disclainmer in the
docunentation and/or other materials provided with the distribution.

THI'S SOFTWARE | S PROVI DED BY THE AUTHOR AND CONTRIBUTORS ‘'AS IS’ AND
ANY EXPRESS CR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIMTED TO, THE

I MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE
ARE DI SCLAI MED. I N NO EVENT SHALL THE AUTHOR OR CONTRI BUTORS BE LI ABLE
FOR ANY DI RECT, | NDI RECT, | NCIDENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL
DAMAGES (I NCLUDI NG, BUT NOT LI M TED TO, PROCUREMENT OF SUBSTI TUTE GOODS
OR SERVI CES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON)
HONEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER | N CONTRACT, STRICT
LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SING | N ANY WAY
QUT OF THE USE OF THI S SOFTWARE, EVEN I F ADVI SED OF THE PGCSSI Bl LI TY OF
SUCH DANMAGE.

Copyri ght 2013 Nexenta Systens, Inc. Al rights reserved.
Copyright (c) 2012 by Del phix. Al rights reserved.
/

NFS Lock Manager, RPC service functions (nlm..._svc)
Call ed via nl mdispatch.c tables.

Sour ce code derived from FreeBSD nl m prot_server.c

The real service functions all use nlmd_... args and return
data types. These wappers convert older forns to and from
the new forns and call the nimdo_... service functions.

/

ncl ude <sys/param h>
ncl ude <sys/systm h>

ncl ude <rpcsvc/nl mprot. h>
nclude "nl m.inpl.h"

Convert between various versions of the protocol structures.
*

Down- convert, for granted_1 call

This converts a 64-bit lock to 32-bit formfor our granted
cal | -back when we’'re dealing with a 32-bit NLMclient.

new usr/src/uts/comon/ Kkl minl mrpc_svc.c

124

* Qur NLM LOCK handl er ensures that any |ock we grant to a
* 32-bit client can be represented in 32-bits. |If the
* ASSERTs here fire, then the call to niminit_flock in
* nlmdo_lock has failed to restrict a 32-bit client to
* 32-bit lock ranges.
*/
static void
nl mconvert_to_nl mlock(struct nlmlock *dst, struct nlmi_|lock *src)
dst->cal | er_nane = src->caller_nane;
dst->fh = src->fh;
dst->oh = src->oh;
dst->svid = src->svid;
ASSERT(src->| _of fset <= MAX_UOFF32);
dst->l _offset = (uint32_t)src->l_offset;
ASSERT(src-> _| en <= MAX_UCFF32);
dst->l _len = (uint32_t)src->l _len;
}
/*
* Up-convert for vl svc functions with a 32-bit |ock range arg.
* Note that |ock range checks (like overflow) are done |later,
* in nlminit_flock().
*
static void
nl mconvert_to_nl mi_| ock(struct nlmi_l ock *dst, struct nlmlock *src)
dst->cal | er_nanme = src->call er_nane;
dst->fh = src->fh;
dst ->o0h = src->o0h;
dst->svid = src->svid;
dst->l _offset = src->l _offset;
dst->l _len = src->l _l en;
}
static void
nl mconvert_to_nl m_share(struct nlmi_share *dst, struct nlmshare *src)
dst->cal | er_nane = src->call er_nane;
dst->fh = src->fh;
dst->o0h = src->o0h;
dst - >nbde = src->npde;
dst - >access = src->access;
}
/*
* Down-convert for vl NLM TEST or NLM TEST_MSG response.
* Note that nlmdo_test is careful to give us |ock ranges
* that can be represented with 32-bit values. |If the
* ASSERTs here fire, then the code in nlmdo_test that
* builds an nl mM_hol der for a 32-bit client has failed to
* restrict the reported conflicting lock range so it’'s a
* valid 32-bit |ock range.
*/
static void

nl m convert_to_nl mhol der (struct nlmholder *dst, struct nlnm4_holder *src)

dst - >excl usi ve = src->excl usive;
dst->svid = src->svid;

dst->oh = src->oh;

ASSERT(src->| _of fset <= MAX_UOFF32);
dst->| _offset = (uint32_t)src->l_offset;
ASSERT(src->| _| en <= MAX_UOFF32);

dst->l _len = (uint32_t)src-> _len;

new usr/src/uts/comon/ Kkl minl mrpc_svc.c 3 new usr/src/uts/comon/ Kkl minl mrpc_svc.c
125 } 191 ar gs4. excl usi ve = ar gp->excl usi ve;
192 nl m convert_to_nl md_| ock(&args4. al ock, &argp->al ock);
127 static enumnlmstats 193 args4.reclaim= argp->reclaim
128 ?I m convert_to_nl mstats(enumnl md_stats src) 194 args4.state = argp->state;
129
130 if (src > nlm_deadl ck) 196 /* NLM LOCK */
131 return (nl mdenied); 197 nl mdo_| ock(&args4, & es4, sr,
132 return ((enumnl mstats)src); 198 nlmlock_1_reply, NULL,
133 } 199 nl mgranted_1_cb);
135 static void 201 /* for freeresult */
136 ?I m convert_to_nlmres(struct nlmres *dst, struct nlmi_res *src) 202 nlmconvert_to_nlmres(resp, & es4);
137
138 dst - >cooki e = src->cooki e; 204 /* above does its own reply */
139 dst->stat.stat = nlmconvert_to_nlmstats(src->stat.stat); 205 return (FALSE);
140 } 206 }
142 /* IR E R E R EREEREESEEESEEEEEEEEEEREEEEREERERERERESRESREREREREEREREEEEEEEESESEESES] */ 208 StatIC bool t
209 nlmlock_1_repl y(SVCXPRT *transp, nlmi_res *resp)
144 | * 210 {
145 * Version 1 svc functions 211 nlmres resi;
146 */
213 nlmconvert_to_nlmres(&esl, resp);
148 bool _t 214 return (svc_sendreply(transp, xdr_nlmres, (char *)&esl));
149 nlmtest_1_svc(struct nlmtestargs *argp, nlmtestres *resp, 215 }
150 struct svc_req *sr)
151 { 217 static enum cl nt_stat
152 nl mM_testargs args4; 218 nimgranted_1_cb(nl mi_testargs *argp, void *resp, CLIENT *clnt)
153 nlm_testres res4; 219 {
220 nl mtestargs argsi;
155 bzero(&args4, sizeof (args4)); 221 nlmres resi;
156 bzero(& es4, sizeof (resd)); 222 int rv;
158 ar gs4. cooki e = argp- >cooki e; 224 bzero(&resl, sizeof (resl));
159 ar gs4. excl usi ve = argp->excl usi ve;
160 nl mconvert_to_nl md_| ock(&args4. al ock, &argp->al ock); 226 argsl. cooki e = argp->cooki e;
227 argsl. excl usive = argp->excl usive;
162 nl mdo_test(&args4, &es4, sr, NULL); 228 nl mconvert_to_nl m| ock(&argsl. al ock, &argp->al ock);
164 resp- >cooki e = res4. cooki e; 230 rv = nlmgranted_1(&argsl, &esl, clnt);
165 resp->stat.stat = nlmconvert_to_nlmstats(res4.stat.stat);
166 if (resp->stat.stat == nl mdenied) 232 /* NB: We have a result our caller will not free. */
167 nl m convert _to_nl m hol der (233 xdr _free((xdrproc_t)xdr_nlmres, (void *)&resl);
168 & esp->stat.nl mtestrply_u. hol der, 234 (void) resp;
169 &res4.stat.nlmi_testrply_u. holder);
236 return (rv);
171 return (TRUE); 237 }
172 }
239 bool _t
174 | * 240 nl mcancel _1_svc(struct nlmcancargs *argp, nlmres *resp,
175 * Call back functions for nlmlock_1_svc 241 struct svc_req *sr)
176 * 242 {
177 static bool _t nlmlock_1_reply(SVCXPRT *, nlmi_res *); 243 nl m_cancargs args4;
178 static enumclnt_stat nlmgranted_1_cb(nlmi_testargs *, void *, CLIENT *); 244 nlmd_res res4;
180 bool _t 246 bzero(& es4, sizeof (resd));
181 nl mlock_1_svc(nlmlockargs *argp, nlmres *resp,
182 struct svc_req *sr) 248 ar gs4. cooki e = argp- >cooki e;
183 { 249 args4. bl ock = argp->bl ock;
184 nl md_| ockargs args4; 250 ar gs4. excl usi ve = argp->excl usi ve;
185 nl md_res res4; 251 nl mconvert_to_nl md_| ock(&args4. al ock, &argp->al ock);
187 bzero(&res4, sizeof (res4)); 253 nl m do_cancel (&args4, &res4, sr, NULL);
189 ar gs4. cooki e = argp->cooki e; 255 nl mconvert _to_nlmres(resp, & es4);
190 args4. bl ock = argp->bl ock;

new usr/src/uts/comon/ Kkl minl mrpc_svc.c

257 return (TRUE);

258 }

260 bool _t

261 nl munl ock_1_svc(struct nl munlockargs *argp, nlmres *resp,
262 struct svc_req *sr)

263 {

264 nl m_unl ockar gs ar gs4;

265 nl mM_res res4;

267 bzero(& es4, sizeof (resd));

269 ar gs4. cooki e = argp- >cooki e;

270 nl mconvert_to_nl md_| ock(&args4. al ock, &argp->al ock);
272 nl m do_unl ock(&rgs4, & es4, sr, NULL);

274 nl mconvert_to_nlmres(resp, & es4);

276 return (TRUE);

277 }

279 bool _t

280 nlmgranted_1_svc(struct nlmtestargs *argp, nlmres *resp,
281 struct svc_req *sr)

282 {

283 nl md_testargs args4;

284 nlmd_res res4;

286 bzero(&res4, sizeof (resd));

288 ar gs4. cooki e = ar gp->cooki e;

289 ar gs4. excl usi ve = argp- >excl usi ve;

290 nl m convert_to_nl md_| ock(&args4. al ock, &argp->al ock);
292 nl m do_grant ed(&args4, & es4, sr, NULL);

294 nl mconvert_to_nlmres(resp, & es4);

296 return (TRUE);

297 }

299 /*

300 * The _nmsg_ calls get no reply. Instead, these callers

301 * expect an RPC call to the corresponding _res function.
302 * We pass this callback function to nlmdo_test so it wll
303 * use it to do the RPC call back, with the correct res type.
304 *

305 * The callback functions have nearly the sane arg signature
306 * as the client call functions so that many of those can be
307 * optimzed to nothing by the conpiler. Also, passing the
308 * null result arg for these just to reduce warnings.

309 *

310 * See sinmilar callbacks for other _nsg functions bel ow

311 */

313 static enumclnt_stat nimtest_res_1 cb(nlmi_testres *, void *,
315 bool _t

316 nlmtest_nsg_1_svc(struct nlmtestargs *argp, void *resp,
317 struct svc_req *sr)

318 {

319 nl m_testargs args4;

320 nl md_testres res4;

322 bzero(& es4, sizeof (resd));

CLIENT *);

new usr/src/uts/comon/ Kkl minl mrpc_svc.c

324 ar gs4. cooki e = argp->cooki e;

325 ar gs4. excl usive = argp->excl usi ve;

326 nl m convert_to_nl md_| ock(&args4. al ock, &argp->al ock);
328 nl mdo_test(&args4, & es4, sr,

329 nimtest_res_1_ch);

331 /* NB: We have a result our caller will not free. */
332 xdr _free((xdrproc_t)xdr_nlm_testres, (void *)&resd4);
333 (void) resp;

335 /* The _msg_ calls get no reply. */

336 return (FALSE);

337 }

339 static enum clnt_stat

340 nimtest_res_1_cb(nlmi_testres *res4, void *null, CLIENT *clnt)
341 {

342 nlmtestres resi;

344 resl. cooki e = res4->cookie;

345 resl.stat.stat = nlmconvert_to_nlmstats(res4->stat.stat);
346 if (resl.stat.stat == nl mdenied)

347 nl m convert _to_nl m hol der (

348 &resl.stat.nlmtestrply_u.holder,

349 & es4->stat.nl mi_testrply_u. hol der);

351 return (nfmtest_res_1(&esl, null, clnt));

352 }

354 /*

355 * Callback functions for nlmlock_nmsg_1_svc

356 */

357 static enumclnt_stat nlmlock_res_1 cb(nlmi_res *, void *, CLIENT *)

358

360
361
362

364
365

367

369
370
371
372
373
374

376
377
378
379

381
382
383

385
386
387

static enumclnt_stat nimgranted_nsg 1 cb(nlm4_testargs *, void *,
bool _t
nlmlock_msg_1_svc(nl mlockargs *argp, void *resp,

struct svc_req *sr)

nl m_| ockargs args4;
nlmd_res res4;

bzero(& es4, sizeof (resd));

ar gs4. cooki e = argp- >cooki e;

ar gs4. bl ock = argp->bl ock;

ar gs4. excl usi ve = argp->excl usi ve;

nl m convert_to_nl md_| ock(&args4. al ock, &argp->al ock);
args4.reclaim= argp->reclaim

args4.state = argp->state;

/* NLM_LOCK_MSG */

nl m do_| ock(&args4, &res4, sr,
NULL, nlm|ock_res_1_cbh,
nl mgranted_nsg_1_cb);

/* NB: We have a result our caller will not free. */
xdr _free((xdrproc_t)xdr_nlm_res, (void *)&resd4);
(void) resp;

/* The _msg_ calls get no reply. */
return (FALSE);
}

CLIENT *);

new usr/src/uts/comon/ Kkl minl mrpc_svc.c

389 static enumclnt_stat

390 nlmlock_res_1_cb(nlmi_res *resp, void *null, CLIENT *clnt)
391 {

392 nlmres resi;

394 nlmconvert_to_nlmres(&esl, resp);

395 return (nlmlock_res_1(&esl, null, clnt));

396 }

398 static enum cl nt_stat

399 nimgranted_nsg_1_cb(nl mi_testargs *argp, void *null, CLIENT *clnt)
400 {

401 nl mtestargs argsi;

403 argsl. cooki e = argp->cooki e;

404 argsl. excl usive = argp->excl usive;

405 nl mconvert_to_nl m| ock(&argsl. al ock, &argp->al ock);
407 return (nlmgranted_nsg_1(&argsl, null, clnt));

409 }

412 static enumclnt_stat nlmcancel _res_1_cb(nlmi_res *, void *, CLIENT *);
414 bool _t

415 nl m cancel _nmsg_1_svc(struct nl mcancargs *argp, void *resp,
416 struct svc_req *sr)

417 {

418 nl m_cancargs args4;

419 nl md_res res4;

421 bzero(&res4, sizeof (res4));

423 ar gs4. cooki e = argp->cooki e;

424 ar gs4. bl ock = ar gp->bl ock;

425 args4. excl usive = argp->excl usi ve;

426 nl m convert_to_nl mi_| ock(&args4. al ock, &argp->al ock);
428 nl m do_cancel (&args4, &res4, sr,

429 nl m cancel _res_1_ch);

431 /* NB: We have a result our caller will not free. */
432 xdr _free((xdrproc_t)xdr_nlm_res, (void *)&res4);

433 (void) resp;

435 /* The _msg_ calls get no reply. */

436 return (FALSE);

437 }

439 static enum cl nt_stat

440 nl mcancel _res_1_cb(nlmi_res *res4, void *null, CLIENT *clnt)
441 {

442 nlmres resi;

444 nl mconvert_to_nlmres(&esl, res4);

445 return (nlmcancel _res_1(&esl, null, clnt));

446 }

449 static enumclnt_stat nlmunlock_res_1_cb(nlmi_res *, void *, CLIENT *);
451 bool _t

452 nl m unl ock_nsg_1_svc(struct nl munl ockargs *argp, void *resp,
453 struct svc_req *sr)

454 {

new usr/src/uts/comon/ Kkl minl mrpc_svc.c

455 nl m_unl ockar gs ar gs4;

456 nl md_res res4;

458 bzero(&res4, sizeof (res4));

460 ar gs4. cooki e = ar gp->cooki e;

461 nl m convert _to_nl md_| ock(&ar gs4. al ock, &argp->al ock);
463 nl m do_unl ock(&args4, &res4, sr,

464 nl munl ock_res_1_ch);

466 /* NB: We have a result our caller will not free. */
467 xdr_free((xdrproc_t)xdr_nlmi_res, (void *)&res4);

468 (void) resp;

470 /* The _msg_ calls get no reply. */

471 return (FALSE);

472 }

474 static enum cl nt _stat

475 nl munl ock_res_1_cb(nlmi_res *res4, void *null, CLIENT *clnt)
476 {

477 nlmres resi;

479 nl mconvert_to_nlmres(& esl, res4);

480 return (nl munlock_res_1(&esl, null, cint));

481 }

484 static enumclnt_stat nlmgranted_res_1_cb(nlmi_res *, void *,
486 bool _t

487 nl mgranted_nsg_1_svc(struct nlmtestargs *argp, void *resp,

488 struct svc_req *sr)

489 {

490 nl md_testargs args4;

491 nl md_res res4;

493 bzero(& es4, sizeof (res4));

495 ar gs4. cooki e = argp- >cooki e;

496 args4. excl usi ve = ar gp->excl usi ve;

497 nl m convert_to_nl md_| ock(&args4. al ock, &argp->al ock);
499 nl m do_grant ed(&r gs4, &res4, sr,

500 nlmgranted_res_1_cb);

502 /* NB: We have a result our caller will not free. */
503 xdr_free((xdrproc_t)xdr_nlmd_res, (void *)&r es4);
504 (void) resp;

506 /* The _nmsg_ calls get no reply. */

507 return (FALSE);

508 }

510 static enum cl nt_stat

511 nimgranted_res_1_cb(nlmi_res *res4, void *null, CLIENT *clnt)
512 {

513 nlmres resi;

515 nlmconvert_to_nlmres(&esl, res4);

516 return (nilmgranted_res_1(&esl, null, clnt));

517 }

519 /*

520 * The _res_ calls get no reply. These RPC calls are

CLIENT *);

new usr/src/uts/comon/ Kkl minl mrpc_svc.c

521 * "call backs" in response to RPC _nsg_ calls.
522 * W don’t care about these responses.

523 */

525 /* ARGSUSED */

526 bool _t

527 nimtest_res_1_svc(nlmtestres *argp, void *resp, struct svc_req *sr)
528 {

529 /* The _res_ calls get no reply. */

530 return (FALSE);

531 }

533 /* ARGSUSED */

534 bool _t

535 nimlock_res_1 svc(nlmres *argp, void *resp, struct svc_req *sr)
536 {

537 /* The _res_ calls get no reply. */

538 return (FALSE);

539 }

541 /* ARGSUSED */

542 bool _t

543 nl mcancel _res_1_svc(nlmres *argp, void *resp,
544 {

545 /* The _res_ calls get no reply. */

546 return (FALSE);

547 }

549 /* ARGSUSED */

550 bool _t

551 nl munlock_res_1_svc(nlmres *argp, void *resp,
552 {

558 /* The _res_ calls get no reply. */

554 return (FALSE);

555 }

557 /* ARGSUSED */

558 bool _t

559 nlmgranted_res_1_svc(nlmres *argp, void *resp,
560 {

561 /* The _res_ calls get no reply. */

562 return (FALSE);

563 }

565 /*

566 * Version 2 svc functions (used by |ocal statd)
567 */

569 bool _t

570 nlmsmnotifyl_2_svc(struct nlmsmstatus *argp,
571 struct svc_req *sr)

572 {

573 nl mdo_notifyl(argp, resp, sr);

574 return (TRUE);

575 }

577 bool _t

578 nlmsmnotify2_2_svc(struct nlmsmstatus *argp,
579 struct svc_req *sr)

580 {

581 nl mdo_notify2(argp, resp, sr);

582 return (TRUE);

583 }

585 /*

586 * Version 3 svc functions

struct svc_req *sr)

struct svc_req *sr)

struct svc_req *sr)

void *resp,

void *resp,

new usr/src/uts/comon/ Kkl minl mrpc_svc.c

nl m shareres *resp,

&ar gp- >share);

&ar gp- >share) ;

struct svc_req *sr)

i ncl udi ng

587 */

589 bool _t

590 nl m share_3_svc(nl mshareargs *argp,

591 struct svc_req *sr)

592 {

593 nl md_shar eargs args4;

594 nl m_shareres res4;

596 bzero(& es4, sizeof (resd));

598 args4. cooki e = argp- >cooki e;

599 nl m convert_to_nl mi_share(&args4. share,

600 args4.reclaim= argp->reclaim

602 nl m do_share(&args4, & es4, sr);

604 resp- >cooki e = res4. cooki e;

605 resp->stat = nlmconvert_to_nlmstats(res4.stat);
606 resp- >sequence = res4.sequence;

608 return (TRUE);

609 }

611 bool _t

612 nl m unshare_3_svc(nl m shareargs *argp, nlmshareres *resp,
613 struct svc_req *sr)

614 {

615 nl m_shareargs args4;

616 nl m_shareres res4;

618 bzero(& es4, sizeof (resd));

620 ar gs4. cooki e = argp- >cooki e;

621 nl m convert_to_nl md_share(&args4. share,

622 args4.reclaim= argp->reclaim

624 nl m do_unshare(&args4, & es4, sr);

626 resp- >cooki e = res4. cooki e;

627 resp->stat = nlmconvert_to_nlmstats(res4.stat);
628 resp- >sequence = res4.sequence;

630 return (TRUE);

631 }

633 bool _t

634 nl mnmlock_3_svc(nl mlockargs *argp, nlmres *resp,

635

636 nl m_| ockargs args4;

637 nl mM_res res4;

639 bzero(& es4, sizeof (resd));

641 ar gs4. cooki e = argp- >cooki e;

642 ar gs4. bl ock = ar gp->bl ock;

643 ar gs4. excl usi ve = argp->excl usi ve;

644 nl mconvert _to_nl mi_| ock(&args4. al ock, &argp->al ock);
645 args4.reclaim= argp->reclaim

646 args4.state = argp->state;

648 /*

649 * Don’t allow bl ocking for non-nonitored (nmlock) calls.
650 * These clients don’t handl e any cal | backs,

651 * the granted call we nake after a bl ocking |ock.
652 * Sane reply callback as nl mlock_1_svc

10

new usr/src/uts/comon/ Kkl minl mrpc_svc.c

653 */

654 args4. bl ock = FALSE;

656 /* NLM_NM LOCK */

657 nl m do_| ock(&args4, &res4, sr,

658 nlmlock_1_reply, NULL,

659 NULL); /* indicates non-nonitored */

661 /* for freeresult */

662 nl mconvert_to_nlmres(resp, & es4);

664 /* above does its own reply */

665 return (FALSE);

666 }

668 bool _t

669 nimfree_all _3_svc(nlmnotify *argp, void *resp, struct svc_req *sr)
670 {

671 struct nlmi_notify args4;

673 args4. nane = ar gp->nane;

674 args4.state = argp->state;

676 nlmdo_free_all (&rgs4, resp, sr);

678 return (TRUE);

679 }

681 /*

682 * Version 4 svc functions

683 */

685 bool _t

686 nlmi_test_4_svc(nlmi_testargs *argp, nlmi_testres *resp, struct svc_req *sr)
687 {

688 nl mdo_test(argp, resp, sr, NULL);

689 return (TRUE);

690 }

692 /*

693 * Call back functions for nlm_|lock_4_svc

694 */

695 static bool _t nlmi_l ock_4_repl y(SVCXPRT *, nlnmd_res *);
696 static enumclnt_stat nlmi_granted_4_cb(nl mi_testargs *, void *, CLIENT *);
698 bool _t

699 nl m4_| ock_4_svc(nl mi_| ockargs *argp, nlmd_res *resp,
700 struct svc_req *sr)

701 {

703 /* NLM4_LOCK */

704 nl m do_I ock(argp, resp, sr,

705 nl m_l ock_4_reply, NULL,

706 nl m_granted_4_cb);

708 /* above does its own reply */

709 return (FALSE);

710 }

712 static bool _t

713 nl md_|l ock_4_repl y(SVCXPRT *transp, nlmi_res *resp)
714 {

715 return (svc_sendreply(transp, xdr_nlmi_res, (char *)resp));
716 }

718 static enum cl nt_stat

11 new usr/src/uts/ comon/kl m nl mrpc_svc.c
719 nlmd_granted_4_cb(nl mi_testargs *argp, void *resp, CLIENT *clnt)
720 {
721 nl md_res res4;
722 int rv;
724 bzero(& es4, sizeof (resd));
725 rv = nlmd_granted_4(argp, &es4, clnt);
727 /* NB: We have a result our caller will not free. */
728 xdr _free((xdrproc_t)xdr_nlmd_res, (void *)&resd);
729 (void) resp;
731 return (rv);
732 }
734 bool _t
735 nl mi_cancel _4_svc(nl mi_cancargs *argp, nlmi_res *resp, struct svc_req *sr)
736 {
737 nl m do_cancel (argp, resp, sr, NULL);
738 return (TRUE);
739 }
741 bool _t
742 nl md_unl ock_4_svc(nl md_unl ockargs *argp, nlmi_res *resp, struct svc_req *sr)
743 {
744 nl m do_unl ock(argp, resp, sr, NULL);
745 return (TRUE);
746 }
748 bool _t
749 nlmd_granted_4_svc(nl mi_testargs *argp, nlmd_res *resp, struct svc_req *sr)
750 {
751 nl mdo_granted(argp, resp, sr, NULL);
752 return (TRUE);
753 }
755 bool _t
756 nlmi_test_nsg_4_svc(nl mi_testargs *argp, void *resp, struct svc_req *sr)
757 {
758 nl mi_testres res4;
760 bzero(&res4, sizeof (resd));
761 nl mdo_test(argp, & es4, sr,
762 nlmd_test_res_4);
764 /* NB: We have a result our caller will not free. */
765 xdr_free((xdrproc_t)xdr_nlmi_testres, (void *)&esd);
766 (void) resp;
768 /* The _msg_ calls get no reply. */
769 return (FALSE);
770 }
772 | *
773 * Callback functions for nlmi_|ock_nsg_4_svc
774 * (using the RPC client stubs directly)
775 */
777 bool _t
778 nl mi_| ock_nsg_4_svc(nl mi_| ockargs *argp, void *resp,
779 struct svc_req *sr)
780 {
781 nlmd_res res4;
783 /* NLMA_LOCK_MSG */
784 bzero(& es4, sizeof (resd));

12

14

new usr/src/uts/comon/ Kkl minl mrpc_svc.c 13 new usr/src/uts/comon/ Kkl minl mrpc_svc.c
785 nl m do_| ock(argp, &res4, sr, 851 {
786 NULL, nl m4_l ock_res_4, 852 /* The _res_ calls get no reply. */
787 nl m_granted_nsg_4); 853 return (FALSE);
854 }
789 /* NB: We have a result our caller will not free. */
790 xdr _free((xdrproc_t)xdr_nlm_res, (void *)&resd); 856 /* ARGSUSED */
791 (void) resp; 857 bool _t
858 nlmd_| ock_res_4_svc(nlmi_res *argp, void *resp, struct svc_req *sr)
793 /* The _msg_ calls get no reply. */ 859 {
794 return (FALSE); 860 /* The _res_ calls get no reply. */
795 } 861 return (FALSE);
862 }
797 bool _t
798 nl md_cancel _nmsg_4_svc(nl m_cancargs *argp, void *resp, struct svc_req *sr) 864 /* ARGSUSED */
799 { 865 bool _t
800 nl mi_res res4; 866 ?I md_cancel _res_4_svc(nlmd_res *argp, void *resp, struct svc_req *sr)
867
802 bzero(& es4, sizeof (res4)); 868 /* The _res_ calls get no reply. */
803 nl m do_cancel (argp, & es4, sr, 869 return (FALSE);
804 nl m_cancel _res_4); 870 }
806 /* NB: We have a result our caller will not free. */ 872 /* ARGSUSED */
807 xdr _free((xdrproc_t)xdr_nlm_res, (void *)&res4); 873 bool _t
808 (void) resp; 874 ?I m4_unl ock_res_4_svc(nlmd_res *argp, void *resp, struct svc_req *sr)
875
810 /* The _msg_ calls get no reply. */ 876 /* The _res_ calls get no reply. */
811 return (FALSE); 877 return (FALSE);
812 } 878 }
814 bool _t 880 /* ARGSUSED */
815 nl md_unl ock_nsg_4_svc(nl m_unl ockargs *argp, void *resp, struct svc_req *sr) 881 bool _t
816 { 882 nlmi_granted_res_4_svc(nlmi_res *argp, void *resp, struct svc_req *sr)
817 nlm_res res4; 883 {
884 /* The _res_ calls get no reply. */
819 bzero(& es4, sizeof (res4d)); 885 return (FALSE);
820 nl m do_unl ock(argp, & es4, sr, 886 }
821 nl md_unl ock_res_4);
888 /* ARGSUSED */
823 /* NB: W& have a result our caller will not free. */ 889 bool _t
824 xdr _free((xdrproc_t)xdr_nlm_res, (void *)&res4); 890 nl md_share_4_svc(nl mi_shareargs *argp, nlmi_shareres *resp,
825 (void) resp; 891 (struct svc_req *sr)
892
827 /* The _nmsg_ calls get no reply. */ 893 nl m do_share(argp, resp, sr);
828 return (FALSE); 894 return (TRUE);
829 } 895 }
831 bool _t 897 /* ARGSUSED */
832 nlmi_granted_nsg_4_svc(nl mi_testargs *argp, void *resp, struct svc_req *sr) 898 bool _t
833 { 899 nl md_unshare_4_svc(nl m_shareargs *argp, nl m_shareres *resp,
834 nlm_res res4; 900 (struct svc_req *sr)
901
836 bzero(& es4, sizeof (res4d)); 902 nl m do_unshare(argp, resp, sr);
837 nl m do_granted(argp, &res4, sr, 903 return (TRUE);
838 nlm_granted_res_4); 904 }
840 /* NB: W& have a result our caller will not free. */ 906 bool _t
841 xdr _free((xdrproc_t)xdr_nlmd_res, (void *)&res4); 907 nlmd_nm | ock_4_svc(nl mi_| ockargs *argp, nlmd_res *resp, struct svc_req *sr)
842 (void) resp; 908 {
844 /* The _nmsg_ calls get no reply. */ 910 I*
845 return (FALSE); 911 * Don’t allow blocking for non-nonitored (nmlock) calls.
846 } 912 * These clients don't handl e any call backs, including
913 * the granted call we make after a bl ocking | ock.
848 /* ARGSUSED */ 914 * Sane reply callback as nl mi_| ock_4_svc
849 bool _t 915 */
850 nlmi_test_res_4_svc(nlmi_testres *argp, void *resp, struct svc_req *sr) 916 ar gp- >bl ock = FALSE;

new usr/src/uts/comon/ Kkl minl mrpc_svc.c

918 /* NLMA_NM LOCK */

919 nl m do_I ock(argp, resp, sr,

920 nlmi_l ock_4_reply, NULL,

921 NULL); /* indicates non-nonitored */
923 /* above does its own reply */

924 return (FALSE);

925 }

927 bool _t

928 nlmd_free_all _4_svc(nlmi_notify *argp, void *resp, struct svc_req *sr)
929 {

930 nlmdo_free_all (argp, resp, sr);

931 return (TRUE);

932 }

new usr/src/uts/comon/kl m nl mservice.c 1 new usr/src/uts/comon/kl m nl mservice.c 2
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 59 #I ncl ude <net| net/l n. h>
30556 Sun Aug 25 23:51:13 2013
new usr/src/uts/comon/kl m nl mservice.c 61 #include <rpc/rpc. h>
195 Need repl acenment for nfs/l|ockd+kl m 62 #include <rpc/xdr.h>
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp 63 #include <rpc/pmap_prot. h>
Revi ewed by: Jereny Jones <jereny@lel phi x. con> 64 #include <rpc/pmap_cl nt. h>
Revi ewed by: Jeff Biseda <jbi seda@lel phi x. con» 65 #i nclude <rpc/rpcb_prot.h>
IR R R R R R R RS R SR S R RS RS E R E R E RS E R R R R REREREEEEEEEE]
1/* 67 #include <rpcsvc/nl mprot. h>
2 * Copyright (c) 2008 Isilon Inc http://ww.isilon.conl 68 #include <rpcsvc/sminter. h>
3 * Authors: Doug Rabson <dfr @ abson. or g>
4 * Developed with Red Inc: Alfred Perlstein <alfred@reebsd. org> 70 #include <nfs/nfs.h>
B = 71 #include <nfs/nfs_clnt.h>
6 * Redistribution and use in source and binary forms, with or w thout 72 #include <nfs/export.h>
7 * nodification, are pernmitted provided that the follow ng conditions 73 #include <nfs/rnode. h>
8 * are met:
9 * 1. Redistributions of source code nmust retain the above copyright 75 #include "nl m.inpl.h"
10 = notice, this list of conditions and the follow ng disclainer.
11 * 2. Redistributions in binary form nust reproduce the above copyri ght 77 #define NLM IN GRACE(g) (ddi_get_lbolt() < (g)->grace_threshol d)
12~ notice, this list of conditions and the follow ng disclainmer in the
13 = docunentation and/or other materials provided with the distribution. 79 struct nlmblock_cb_data {
14 = 80 struct nl mhost *host p;
15 * THI' S SOFTWARE | S PROVI DED BY THE AUTHOR AND CONTRI BUTCORS ‘*AS IS’ AND 81 struct nlmyvhold *nvp;
16 * ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TO, THE 82 struct flock64 *flp;
17 * | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE 83 };
18 * ARE DI SCLAIMED. | N NO EVENT SHALL THE AUTHOR OR CONTRI BUTORS BE LI ABLE
19 * FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL 85 /*
20 * DAMAGES (I NCLUDI NG, BUT NOT LIM TED TO, PROCUREMENT OF SUBSTI TUTE GOODS 86 * Invoke an asyncronous RPC cal | beck
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON) 87 * (used when NLM server needs to reply to MSG NLM procedure).
22 * HOWEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER I N CONTRACT, STRI CT 88 */
23 * LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG I N ANY WAY 89 #define NLM | NVOKE_CALLBACK(descr, rpcp, resp, callb) \
24 * QUT OF THE USE OF THI S SOFTWARE, EVEN | F ADVI SED OF THE PGCSSI BI LI TY OF 90 do { \
25 * SUCH DAMAGE. 91 enum cl nt_stat _stat; \
26 */ 92 \
93 _stat = (*(callb))(resp, NULL, (rpcp)->nr_handle); \
28 /* 94 if (_stat != RPC SUCCESS && _stat != RPC TI MEDOUT) { \
29 * Copyright 2011 Nexenta Systenms, Inc. Al rights reserved. 95 struct rpc_err _err; \
30 * Copyright (c) 2012 by Del phix. Al rights reserved. 96 \
31 */ 97 CLNT_CGETERR((rpcp)->nr_handl e, & err); \
98 NLM ERR("NLM % cal | back failed: " \
33 /* 99 "stat %, err %\ n", descr, _stat, \
34 * NFS Lock Manager service functions (nlmdo_...) 100 _err.re_errno); \
35 * Called fromnlmrpc_svc.c w appers. 101 } \
36 * 102 \
37 */Source code derived from FreeBSD nl mprot_inpl.c 103 _NOTE(CONSTCOND) } while (0)
38 *
105 static void nl mblock(
40 #i ncl ude <sys/param h> 106 nl mi_| ockargs *I ockargs,
41 #incl ude <sys/systm h> 107 struct nl mhost *host,
42 #include <sys/thread. h> 108 struct nlmvhold *nvp,
43 #include <sys/fcntl. h> 109 nlmrpc_t *rpcp,
44 #include <sys/flock. h> 110 struct flock64 *fl,
45 #incl ude <sys/nount. h> 111 nlmtestargs_cb grant_cb);
46 #include <sys/priv.h>
47 #incl ude <sys/proc. h> 113 static vnode_t *nlmfh_to_vp(struct netobj *)
48 #i ncl ude <sys/share. h> 114 static struct nlmvhold *nlmfh_to_vhol d(struct nl mhost *, struct netobj *);
49 #incl ude <sys/socket. h> 115 static void nlminit_shrlock(struct shriock *, nlmi_share *, struct nlmhost *);
50 #include <sys/syscall.h> 116 static callb_cpr_t *nlmblock_call back(flk_cb_when_t, void *);
51 #include <sys/sysl og. h> 117 static int nlmvop_frlock(vnode_t *, int, flock64_t *, int, offset_t,
52 #include <sys/systm h> 118 struct flk_callback *, cred_t *, caller_context_t *);
53 #incl ude <sys/taskq. h>
54 #incl ude <sys/unistd. h> 120 /*
55 #i ncl ude <sys/vnode. h> 121 * Convert a lock fromnetwork to local form and
56 #include <sys/vfs.h> 122 * check for valid range (no overflow).
57 #include <sys/queue. h> 123 */
58 #include <sys/sdt.h> 124 static int

new usr/src/uts/comon/kl m nl mservice.c 3 new usr/src/uts/comon/kl m nl mservice.c

125 nIlm.init_flock(struct flock64 *fl, struct nlmi_lock *nl, 191 */

126 struct nlmhost *host, rpcvers_t vers, short type) 192 static struct nlmvhold *

127 { 193 nimfh_to_vhol d(struct nl mhost *hostp, struct netobj *fh)

128 uint64_t off, len; 194 {
195 vnode_t *vp;

130 bzero(fl, sizeof (*fl)); 196 struct nlmvhold *nvp;

131 of f = nl->|_offset;

132 len = nl->_len; 198 vp = nlmfh_to_vp(fh);
199 if (vp == NULL

134 if (vers < NLMd_VERS) { 200 return (NULL);

135 if (off > MAX_UOFF32 || len > MAX_UOFF32)

136 return (EI NVAL);

137 if (off + len > MAX_UCFF32 + 1) 203 nvp = nl mvhol d_get (hostp, vp);

138 return (ElINVAL);

139 } else { 205 I*

140 /* 206 * Both nlmfh_to_vp() and nl mvhol d_get ()

141 * Check range for 64-bit client (no overflow). 207 * do VN_HOLD(), so we need to drop one

142 * Again allow len == ~0 to nean | ock to EOF. 208 * reference on vnode.

143 */ 209 */

144 if (len == MAX_U OFFSET_T) 210 VN_RELE(vp) ;

145 en = 0; 211 return (nvp);

146 if (len!=0 & off + (len - 1) < off) 212 }

147 return (ElINVAL);

148 } 214 /* IR R R R SRR RS EEES SRS SRR RS E R R E R R R R R R R R R R R R RS SRR EEEEEEEEEEEEEESEES */

150 fl->_type = type; 216 /*

151 fl->I _whence = SEEK_SET; 217 * NLMinplenentation details, called fromthe RPC svc code.

152 fl-> _start = off; 218 */

153 fl-> _len = len;

154 fl->_sysid = host->nh_sysid; 220 /*

155 fl->_pid = nl->svid; 221 * Call-back from NFS statd, used to notify that one of our

156 /* | _pad */ 222 * hosts had a status change. The host can be either an
223 * NFS client, NFS server or both.

158 return (0); 224 * According to NSM protocol description, the state is a

159 } 225 * nunber that is increases nonotonically each time the
226 * state of host changes. An even nunber indicates that

161 /* 227 * the host is down, while an odd nunber indicates that

162 * Gets vnode fromclient’s filehandle 228 * the host is up.

163 * NOTE: Holds vnode, it _nust_ be explicitly 229 *

164 * released by VN RELE(). 230 * Here we ignore this even/odd difference of status nunber

165 */ 231 * reported by the NSM we | aunch notification handlers

166 static vnode_t * 232 * every tine the state is changed. The reason we why do so

167 nIlmfh_to_vp(struct netobj *fh) 233 * is that client and server can talk to each other using

168 { 234 * connectionless transport and it’'s easy to | ose packet

169 fhandl e_t *fhp; 235 * containing NSMnotification with status nunber update.
236 *

171 /* 237 * In nlmhost_nonitor(), we put the sysid in the private data

172 * CGet a vnode pointer for the given NFS file handle. 238 * that statd carries in this callback, so we can easliy find

173 * Note that it could be an NFSv2 for NFSv3 handl e, 239 * the host this call applies to.

174 * which nmeans the size mght vary. (don’t copy) 240 */

175 */ 241 /* ARGSUSED */

176 if (fh->n_len < sizeof (*fhp)) 242 void

177 return (NULL); 243 nl mdo_notifyl(nl msmstatus *argp, void *res, struct svc_req *sr)
244 {

179 /* We know this is aligned (kmem.alloc) */ 245 struct nlmglobals *g;

180 /* LINTED E_BAD PTR CAST_ALI GN */ 246 struct nlmhost *host;

181 fhp = (fhandl e_t *)fh->n_bytes; 247 uint16_t sysid,;

182 return (I mfhtovp(fhp));

183 } 249 g = zone_getspecific(nl mzone_key, curzone);
250 bcopy(&argp->priv, &sysid, sizeof (sysid));

185 /*

186 * Get vhold fromclient’s filehandle, but in contrast to 252 DTRACE_PROBE2(nsm__notify, uintl6_t, sysid,

187 * The function tries to check some access rights as well. 253 int, argp->state);

188 *

189 * NOTE: vhold object _nust_ be explicitly rel eased by 255 host = nlmhost_find_by_sysid(g, (sysid_t)sysid);

190 * nlmyvhol d_rel ease(). 256 if (host == NULL)

new usr/src/uts/comon/kl m nl mservice.c

257 return;

259 nl m host _notify_server(host, argp->state);

260 nl mhost _notify_client(host, argp->state);

261 nl m host _rel ease(g, host);

262 }

264 | *

265 * Another avail able call-back for NFS statd.

266 * Not currently used.

267 */

268 /* ARGSUSED */

269 void

270 nl m.do_notify2(nl msmstatus *argp, void *res, struct svc_req *sr)
271 {

272 ASSERT(0) ;

273 }

276 | *

277 * NLM TEST, NLM TEST_MSG

278 * NLM&_TEST, NLM4_TEST MBG,

279 * dient inquiry about |ocks, non-blocking.

280 */

281 void

282 nlmdo_test(nlmi_testargs *argp, nlmi_testres *resp,
283 struct svc_req *sr, nlmtestres_cb cbh)

284 {

285 struct nlmaglobals *g;

286 struct nlmhost *host;

287 struct nl mi_hol der *Ih;

288 struct nl mowner_handl e *oh;

289 nlmrpc_t *rpcp = NULL;

290 vnode_t *vp = NULL;

291 struct netbuf *addr;

292 char *netid;

293 char *nane;

294 int error;

295 struct flock64 fl;

297 nl m copy_net obj (& esp- >cooki e, &ar gp->cooki e);
299 name = argp- >al ock. cal | er _nane;

300 netid = svc_getnetid(sr->rq_xprt);

301 addr = svc_getrpccal ler(sr->rq_xprt);

303 g = zone_getspecific(nl mzone_key, curzone);
304 host = nlmhost_findcreate(g, nane, netid, addr);
305 if (host == NULL) {

306 resp->stat.stat = nl mi_deni ed_nol ocks;
307 return;

308 }

309 if (cb !'= NULL) {

310 error = nlmhost_get_rpc(host, sr->rq_vers, & pcp);
311 if (error !'=0)

312 resp->stat.stat = nl md_deni ed_nol ocks;
313 goto out;

314 }

315 }

317 vp = nlmfh_to_vp(&argp->al ock.fh);

318 if (vp == NULL) {

319 resp->stat.stat = nlmi_stale_fh;

320 goto out;

321 1

new usr/src/uts/comon/kl m nl mservice.c

323
324
325
326

328
329
330
331
332
333
334

336
337
338
339
340
341
342
343

345
346
347
348
349

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

if (NLM_IN_GRACE(Qg)) {
resp->stat.stat = nl md_deni ed_grace_peri od;
goto out;

}

/* Convert to local form */
error = niminit_flock(& |, &argp->alock, host, sr->rqg_vers,
(argp->exclusive) ? F_ZWRLCK : F_RDLCK);
if (error)
resp->stat.stat = nlmd_failed,
goto out;

}

/* BSD: VOP_ADVLOCK(nv->nv_vp, NULL, F_GETLK, &fl, F_REMOTE);
error = nlmvop_frlock(vp, F_GETLK, &fl,
F_REMOTELOCK | FREAD | FWRITE,
(u_offset_t)0, NULL, CRED(), NULL);
if (error) {
resp->stat.stat = nlmd_fail ed;
goto out;

}

if (fl.l_type == F_UNLCK)
resp->stat.stat = nl md_granted;
goto out;

resp->stat.stat = nl md_deni ed;

/
This lock "test" fails due to a conflicting |ock.

If this is a vl client, make sure the conflicting
I ock range we report can be expressed with 32-bit
of fsets. The lock range requested was expressed
as 32-bit offset and length, so at |east part of
the conflicting | ock should Iie bel ow MAX_ UOFF32.
If the conflicting |ock extends past that, we'll
trimthe range to end at MAX_UOFF32 so this |ock
can be represented in a 32-bit response. Check
the start also (paranoid, but a |ow cost check).

B R EE e
-~

(sr->rg_vers < NLMA_VERS) {
ui nt 64 nmaxl en;
if (fl.l_start > MAX_UCFF32)
fl.l_start = MAX_UOFF32;
maxl en = MAX UOFF32 + 1 - fl.|_start;
if (fl.1_len > maxlen)
fl.l_len = maxl en;

Build the nl md_hol der result structure.

Note that | h->oh is freed via xdr_free,
xdr _nl mi_hol der, xdr_netobj, xdr_bytes.
/

*

*

*

*

*

*

h = kmem zal | oc(si zeof (*oh), KM SLEEP);
h->oh_sysid = (sysid_t)fl.| _sysid;

h = & esp->stat.nl mi_testrply_u. hol der;
h->exclusive = (fl.l_type == F_WRLCK);
h->svid = fl.l_pid;

h si zeof (*oh);

h = (void *)oh;

h _ fl.l_start;

h-> _len = fl.l_len;

*/

new usr/src/uts/comon/kl m nl mservice.c

389 out:

390 *

391 * If we have a callback funtion, use that to

392 * deliver the response via another RPC call.

393 *

394 if (cb !'= NULL & rpcp != NULL)

395 NLM_ | NVOKE_CALLBACK("test", rpcp, resp, cbh);
397 if (vp !'= NULL)

398 VN_RELE(vp);

399 if (rpcp !'= NULL)

400 nl m host_rel e_rpc(host, rpcp);

402 nl m host_rel ease(g, host);

403 }

405 /[*

406 * NLM LOCK, NLM LOCK MBG, NLM NM LOCK

407 * NLMA_LOCK, NLM4_LOCK MSG, NLM4_NM LOCK

408 *

409 * Cient request to set a |lock, possibly bl ocking.

410 *

411 * If the lock needs to block, we return status bl ocked to
412 * this RPC call, and then later call back the client with
413 * a "granted" callback. Tricky aspects of this include:
414 * sending a reply before this function returns, and then
415 * borrowing this thread fromthe RPC service pool for the
416 * wait on the lock and doing the later granted call back.
417 *

418 * We also have to keep a list of |ocks (pending + granted)
419 * both to handle retransmtted requests, and to keep the
420 * vnodes for those |ocks active.

421 */

422 void

423 nl mdo_I| ock(nl mi_| ockargs *argp, nlmd_res *resp, struct svc_req *sr,
424 nilmreply_cb reply_cbh, nimres_cb res_cb, nimtestargs_cb grant_cb)
425 {

426 struct nlmglobals *g;

427 struct flock64 fl;

428 struct nl mhost *host = NULL;

429 struct netbuf *addr;

430 struct nlmvhold *nvp = NULL;

431 nlmrpc_t *rpcp = NULL;

432 char *netid;

433 char *nane;

434 int error, flags;

435 bool _t do_bl ocki ng = FALSE;

436 bool _t do_non_req = FALSE;

437 enum nl m_stats status;

439 nl m_copy_net obj (& esp->cooki e, &argp->cookie);

441 nane = argp- >al ock. cal | er_nane;

442 netid = svc_getnetid(sr->rq_xprt);

443 addr = svc_getrpccal | er(sr->rg_xprt);

445 g = zone_get speci fic(nl mzone_key, curzone);

446 host = nl'm host_findcreate(g, name, netid, addr);
447 if (host == NULL)

448 DTRACE_PROBE4(no__host, struct nlmglobals *, g,
449 char *, nane, char *, netid, struct netbuf *,
450 status = nl md_deni ed_nol ocks;

451 goto doreply;

452 }

454 DTRACE_PROBE3(start, struct nlmglobals *, g,

new usr/src/uts/comon/kl m nl mservice.c

455

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

475
476
477
478
479
480
481

483
484
485
486
487

489
490
491
492
493
494
495
496
497

499
500
501
502
503
504
505

507
508
509
510
511
512
513
514
515
516
517
518

520

struct nlmhost *, host, nlmi_|lockargs *, argp);

If we may need to do _nmsg_ call needing an RPC
cal | back, get the RPC client handl e now,

so we know if we can bind to the NLM service on
this client.

Not e: host object carries transport type.
One client using nultiple transports gets
separate sysids for each of its transports.

/
(res_cb !'= NULL || (grant_cb != NULL && argp->block == TRUE)) {
error = nl mhost_get_rpc(host, sr->rq_vers, & pcp);
if (error 1= 0)
status = nl m_deni ed_nol ocks;
goto doreply;

}
}
/*
* During the "grace period", only allow reclaim
*
/
if (argp->reclaim== 0 & & NLM. I N GRACE(g)) {
status = nl mi_deni ed_grace_peri od;
goto doreply;
}
/*
* Check whether we missed host shutdown event
*
/
if (nlmhost_get_state(host) != argp->state)
nl m host _notify_server(host, argp->state);
/*

*
*

Get a hold on the vnode for a | ock operation.
Only lock() and share() need vhol d objects.
/

nvp = nlmfh_to_vhol d(host, &argp->al ock.fh);

if

}

| *
er

if

-

* ok kb k ok * %

(nvp == NULL)
status = nlmi_stal e_fh;
goto doreply;

Convert to local form */
ror = niminit_flock(& |, &argp->alock, host, sr->rqg_vers,
(argp->exclusive) ? F_ WRLCK : F_RDLCK);
(error) {
status = nlm4_fail ed;
goto doreply;

Try to lock non-blocking first. [|f we succeed

getting the lock, we can reply with the granted
status directly and avoid the conplications of

maki ng the "granted" RPC call back |ater.

This also let’s us find out now about some
possi ble errors |ike EROFS, etc.

*/

fl
er

ags = F_REMOTELOCK | FREAD | FWRI TE;
ror = nlmvop_frlock(nvp->nv_vp, F_SETLK, &fl, flags,
(u_offset_t)0, NULL, CRED(), NULL);

DTRACE_PROBE3(setl k__res, struct flock64 *, &fl,

new usr/src/uts/comon/kl m nl mservice.c 9 new usr/src/uts/comon/kl m nl mservice.c 10
521 int, flags, int, error); 587 * "cal l back" _res reply for a _nsg function.
588 * Use either of those to send the reply now.
523 switch (error) { 589 *
524 case O: 590 * |f sending this reply fails, just |leave the
525 /* Got it wthout waiting! */ 591 * lock in the list for retransmtted requests.
526 status = nl md_grant ed; 592 * Cleanup is via unlock or host rele (statnon).
527 do_non_req = TRUE; 593 */
528 br eak; 594 if (reply_cb !'= NULL) {
595 /* i.e. nimlock_1_reply */
530 /* ElI NPROGRESS t 00? */ 596 if (!(*reply_cb)(sr->rq_xprt, resp))
531 case EAGAIN: 597 svecerr_systenmerr(sr->rq_xprt);
532 /* We did not get the |ock. Should we bl ock? */ 598 }
533 if (argp->block == FALSE || grant_cb == NULL) { 599 if (res_cb !'= NULL && rpcp != NULL)
534 status = nl md_deni ed; 600 NLM_| NVOKE_CALLBACK("I ock", rpcp, resp, res_ch);
535 break;
536 } 602 /*
537 /* 603 * The reply has been sent to the client.
538 * Should block. Try to reserve this thread 604 * Start nonitoring this client (maybe).
539 * so we can use it to wait for the lock and 605 *
540 * later send the granted nessage. |If this 606 * Note that the non-nonitored (NM calls pass grant_cbh=NULL
541 * reservation fails, say "no resources". 607 * indicating that the client doesn’t support RPC call backs.
542 */ 608 * No nonitoring for these (lane) clients.
543 if (!svc_reserve_thread(sr->rq_xprt)) { 609 */
544 status = nl mi_deni ed_nol ocks; 610 if (do_non_req &% grant_cb !'= NULL)
545) br eak; 611 nl m host _nonitor(g, host, argp->state);
546
547 /* 613 if (do_bl ocking) {
548 * OK, can detach this thread, so this call 614 /*
549 * will block below (after we reply). 615 * We need to block on this lock, and when that
550 */ 616 * conpl etes, do the granted RPC call. Note that
551 status = nl m4_bl ocked; 617 * we "reserved" this thread above, so we can now
552 do_bl ocki ng = TRUE; 618 * "detach” it fromthe RPC SVC pool, allowing it
553 do_non_req = TRUE; 619 * to block indefinitely if needed.
554 br eak; 620 */
621 ASSERT(rpcp != NULL);
556 case ENOLCK: 622 (void) svc_detach_thread(sr->rq_xprt);
557 /* Failed for lack of resources. */ 623 nl m bl ock(argp, host, nvp, rpcp, &I, grant_cbh);
558 status = nl md_deni ed_nol ocks; 624 }
559 br eak;
626 DTRACE_PROBE3(| ock__end, struct nlmglobals *, g,
561 case ERCFS: 627 struct nlmhost *, host, nlmi_res *, resp);
562 /* read-only file system*/
563 status = nlmd_rofs; 629 if (rpcp !'= NULL)
564 br eak; 630 nl m host_rel e_rpc(host, rpcp);
566 case EFBI G 632 nl mvhol d_rel ease(host, nvp);
567 /* file too big */ 633 nl m host _rel ease(g, host);
568 status = nl m4_f bi g; 634 }
569 br eak;
636 /*
571 case EDEADLK: 637 * Helper for nlmdo_|l ock(), partly for observability,
572 /* dead | ock condition */ 638 * (we’ll see a call blocked in this function) and
573 status = nl mi_deadl ck; 639 * because nlmdo_|l ock() was getting quite |ong.
574 br eak; 640 *
641 static void
576 defaul t: 642 nl m bl ock(nl mi_I ockargs *I| ockar gs,
577 status = nl md_deni ed; 643 struct nlmhost *host,
578 br eak; 644 struct nlmvhold *nvp,
579 } 645 nlmrpc_t *rpcp,
646 struct flock64 *flp,
581 doreply: 647 nl mtestargs_cb grant_ch)
582 resp->stat.stat = status; 648 {
649 nl m_testargs args;
584 l* 650 int error;
585 * W get one of two function pointers; one for a 651 flk_callback_t flk_cb;
586 * normal RPC reply, and another for doing an RPC 652 struct nlmblock_cb_data cb_dat a;

new usr/src/uts/comon/kl m nl mservice.c

654
655
656
657
658
659
660
661
662

664
665
666
667
668
669
670
671
672
673
674

676
677
678
679

681
682
683
684

686
687
688
689
690
691
692
693

695
696
697
698
699
700

702
703

705
706
707
708
709
710
711
712
713
714
715
716

Keep a list of blocked | ocks on nh_pending, and use it
to cancel these threads in nlmdestroy_client_pending.

Check to see if this lock is already in the |ist
and if not, add an entry for it. Allocate first,
then if we don’t insert, free the new one.
Cal | er already has vp held

/

* ok % ok k ok F ok

error = nlmslreq_register(host, nvp, flp);
if (error 1=0) {
/

Sl eeping | ock request with given fl is already
regi stered by sonmeone el se. This neans that
sone other thread is handling the request, |et
* himto do its work
*/
ASSERT(error == EEXI ST);
return;

L

}

cb_dat a. hostp = host;

cb_data.nvp = nvp;

cb_data.flp = flp

flk_init_call back(&fl k_cb, nl mblock_cal | back, &cb_data);

/* BSD: VOP_ADVLOCK(vp, NULL, F_SETLK, fl, F_REMOTE); */
error = nlmvop_frlock(nvp->nv_vp, F_ SETLKW flp,
F_REMOTELOCK | FREAD | FWRI TE,
(u_offset_t)0, & lk_cb, CRED() NULL) ;

if (error 1=0) {
/*

* W failed getting the I ock, but have no way to
* tell the client about that. Let "emtinme out.

*

/
(void) nlmslreq_unregister(host, nvp, flp);
return;

}

/*

* Do the "granted" call-back to the client.
*/

ar gs. cooki e = | ockar gs->cooki e;
args. exclusive = | ockargs->excl usive;
args. al ock = | ockar gs- >al ock;

NLM_I NVOKE_CALLBACK("grant", rpcp, &args, grant_cb);

*
* The function that is used as flk call back when NLM server
* sets new sl eeping |ock. The function unregisters NLM

* sl eeping | ock request (nlmslreq) associated with the

* sleeping lock _before_ lock becomes active. It prevents
* potential race condition between nlmblock() and

* nl m.do_cancel ().

*

t

|

/
atic callb_cpr_t *
m bl ock_cal | back(fl k_cb_when_t when, void *data)

struct nl mbl ock_cb_data *cb_data;

cb_data = (struct nlmblock_cb_data *)dat a;

11

new usr/src/ uts/ comon/kl m nl m service.c 12
719 if (when == FLK_AFTER SLEEP) {
720 (void) nlmslreq_unregister(cb_data->hostp,
721 cb_dat a- >nvp, cb_data->flp);
722 }
724 return (0);
725

727
728
729
730
731
732 v
733
734

735 {

736
737
738
739
740
741
742
743
744

746
747
748
749

751
752
753
754
755
756
757
758
759
760
761
762
763

765
766

768
769
770
771

773
774
775
776
77

779
780
781
782
783
784

LM CANCEL, NLM CANCEL_MSG
LNE. CANCEL NLV#_CANCEL_MSG,

Client gives up waiting for a bl ocking | ock.
/

d

m do_cancel (nl mi_cancargs *argp, nlmi_res *resp,
struct svc_req *sr, nlmres_cb cbh)

struct nlmglobals *g;

struct nlmhost *host;
struct netbuf *addr;

struct nlmvhold *nvp = NULL;
nlmrpc_t *rpcp = NULL;

char *netid;

char *nane;

int error;

struct flock64 fl;

nl m 1 .copy_ net obj (& esp- >cooki e, &ar gp->cooki e);
netid = svc_getnetid(sr->rq_ xprt)

addr = svc_getrpccal |l er(sr->r q_xprt);

name = argp- >al ock. cal | er _nane;

g = zone _get speci fic(nl mzone_key, curzone);
host = nimhost_findcreate(g, name, netid, addr);
if (host == NULL)
resp->stat.stat = nl mi_deni ed_nol ocks;
return;

}
if (cb !'= NULL)
error = nlmhost_get_rpc(host, sr->rq_vers, & pcp);
if (error 1=0) {
resp->stat.stat = nl m_deni ed_nol ocks;
return;

}

DTRACE_PROBE3(start, struct nlmglobals *,
struct nlmhost *, host, nln4_cancargs *, argp);

if (NLM.IN_GRACE(g)) {
resp->stat.stat = nl mi_deni ed_grace_peri od;
goto out;

}

nvp = nlmfh_to_vhol d(host, &argp->al ock.fh);
if (nvp == NULL)

resp->stat.stat = nlm_stale_fh;

goto out;

}

/* Convert to local form */
error = niminit_flock(& |, &argp->alock, host, sr->rqg_vers,
(argp->exclusive) ? F_WRLCK : F_RDLCK);
if (error) {
resp->stat.stat = nlmd_fail ed;
goto out;

new usr/src/uts/comon/kl m nl mservice.c

785

787
788
789
790
791
792
793
794
795
796

798
799
800
801

803
804

806
807
808
809
810
811
812

814
815

817
818

820
821
822

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841

843
845
846
847

849
850

out :

}
/*
*
*

*
*

/

voi d

}

error = nlmslreqg_unregister(host, nvp, &l);
if (error 1= 0)
/*

* There’s no sl eeping | ock request correspondi ng

* to the lock. Then requested sleeping | ock
* doesn’t exist.
*/

resp->stat.stat = nl md_deni ed;

goto out;

}

fl.l_type = F_UNLCK;

error = nlmvop_frlock(nvp->nv_vp, F_SETLK, &fl,
F_REMOTELOCK | FREAD | FWRITE,
(u_offset_t)0, NULL, CRED(), NULL);

resp->stat.stat = (error == 0) ?
nlm_granted : nlmi_denied;

/*
* |f we have a callback funtion, use that to
* deliver the response via another RPC call.
*/

if (cb !'= NULL & rpcp != NULL)
NLM_ | NVOKE_CALLBACK("cancel ", rpcp, resp, ch);

DTRACE_PROBE3(cancel __end, struct nlmglobals *, g,
struct nlmhost *, host, nlmi_res *, resp);

if (rpcp !'= NULL)
nl m host _rel e_rpc(host, rpcp);

nl m vhol d_r el ease(host, nvp);
nl m host _rel ease(g, host);

NLM_UNLOCK, NLM UNLOCK_MSG,
NLMA_UNLOCK, NLMA_UNLOCK_MsG,
Client renoves one of their |ocks.

nl m do_unl ock(nl md_unl ockargs *argp, nlm_res *resp,

{

struct svc_req *sr, nlmres_cb cb)

struct nlmaglobals *g;
struct nl mhost *host;
struct netbuf *addr;
nlmrpc_t *rpcp = NULL;
vnode_t *vp = NULL;
char *netid;

char *nane;

int error;

struct flock64 fl;

nl m_copy_net obj (& esp->cooki e, &argp->cookie);
netid = svc_getnetid(sr->rq_xprt);

addr = svc_getrpccal ler(sr->rq_xprt);

name = argp- >al ock. cal | er_nane;

/*

* NLM_UNLOCK operation doesn’t have an error code

13

new usr/src/uts/comon/kl m nl mservice.c

851
852
853
854
855

857
858
859
860

862
863
864
865
866

868
869

871
872
873
874

876
877
878

880
881
882
883

885
886
887
888

890
891
892
893
894
895
896
897

899
900

902
903
904
905

907
908

910
911
912
913
914
915
916

out :

O

* denoting that operation failed, so we al ways
* return nl mi_granted except when the server is
* in a grace period.
*/
resp->stat.stat = nlm_granted;
g = zone_getspecific(nl mzone_key, curzone);
host = nl m host_findcreate(g, name, netid, addr);
if (host == NULL)

return;

if (cb!= NULL)

error = nlmhost_get_rpc(host, sr->rq_vers, & pcp);

if (error 1= 0)
goto out;

}

DTRACE_PROBE3(start, struct nlmglobals *, g,
struct nlmhost *, host, nlnm_unlockargs *, argp);

if (NLM_IN_GRACE(Qg)) {
resp->stat.stat = nl md_deni ed_grace_peri od;
goto out;

}
vp = nlmfh_to_vp(&argp->al ock.fh);
if (vp == NULL)

goto out;

/* Convert to local form */

error = nlminit_flock(& |, &argp->alock, host, sr->rqg_vers,

if (error)
goto out;

/* BSD: VOP_ADVLOCK(nv->nv_vp, NULL, F _UNLCK, &f|, F_REMOTE);

error = nlmvop_frlock(vp, F_SETLK, &fl,
F_REMOTELOCK | FREAD | FWRITE,
(u_offset_t)0, NULL, CRED(), NULL);

DTRACE_PROBE1(unl ock__res, int, error);

/*
* |f we have a call back funtion, use that to
* deliver the response via another RPC call.
*

if (cb !'= NULL & rpcp !'= NULL)
NLM_| NVOKE_CALLBACK(" unl ock", rpcp, resp, ch);

DTRACE_PROBE3(unl ock__end, struct nlmglobals *, g,
struct nlmhost *, host, nlmi_res *, resp);

if (vp !'= NULL)
VN_RELE(vp);
if (rpcp !'= NULL)
nl m host _rel e_rpc(host, rpcp);

nl m host _rel ease(g, host);

NLM GRANTED, NLM GRANTED_ M5G,
NLM4_GRANTED, NLM4_GRANTED_MSG,

This service routine is special. |It’'s the only one that’'s
really part of our NLM _client_ support, used by _servers_
to "call back" when a blocking lock fromthis NLMclient

F_UNLCK) ;

*/

14

new usr/src/uts/comon/kl m nl mservice.c 15 new usr/src/uts/comon/kl m nl mservice.c
917 * is granted by the server. |In this case, we _know_there is 983 nlmdo_free_all (nlmi_notify *argp, void *res, struct svc_req *sr)
918 * already an nlmhost allocated and held by the client code. 984 {
919 * We want to find that nlmhost here. 985 struct nlmaglobals *g;
920 * 986 struct nl mhost_list host_list;
921 * Over in nlmcall_lock(), the client encoded the sysid for this 987 struct nlmhost *hostp;
922 * server in the "owner handl e" netbuf sent with our |ock request.
923 * W can now use that to find the nl mhost object we used there. 989 TAI LQ I NI T(&host _list);
924 */(NB: The owner handle is opaque to the server.) 990 g = zone_getspecific(nl mzone_key, curzone);
925 *
926 void 992 /* Serialize calls to clean |ocks. */
927 nl m do_granted(nl mi_testargs *argp, nlmi_res *resp, 993 mut ex_ent er (&g- >cl ean_| ock) ;
928 struct svc_req *sr, nlmres_cb cbh)
929 { 995 /*
930 struct nlmglobals *g; 996 * Find all hosts that have the given node name and put themon a
931 struct nl mowner_handl e *oh; 997 * local list.
932 struct nl mhost *host; 998 */
933 nlmrpc_t *rpcp = NULL; 999 mut ex_ent er (&g- >l ock) ;
934 int error; 1000 for (hostp = avl _first(&g->nlmhosts_tree); hostp !'= NULL;
1001 hostp = AVL_NEXT(&g->nl m hosts_tree, hostp)) {
936 nl m copy_net obj (& esp- >cooki e, &ar gp->cooki e); 1002 if (strcasecnp(hostp->nh_nane, argp->nane) == 0) {
937 resp->stat.stat = nlnm_deni ed; 1003 /*
1004 * |f needed take the host out of the idle list since
939 g = zone_get speci fic(nl mzone_key, curzone); 1005 * we are taking a reference.
940 oh = (void *) argp->al ock. oh. n_bytes; 1006 */
941 if (oh == NULL) 1007 if (hostp->nh_flags & NLM NH_I NIDLE) {
942 return; 1008 TAlI LQ REMOVE(&g- >nl m_i dl e_hosts, hostp,
1009 nh_li nk);
944 host = nl mhost_find_by_sysid(g, oh->oh_sysid); 1010 host p->nh_fl ags & ~NLM_NH_I| NI DLE;
945 if (host == NULL) 1011 }
946 return; 1012 host p- >nh_r ef s++;
948 if (cb = NULL) { 1014 TAI LQ | NSERT_TAI L(&host _list, hostp, nh_link);
949 error = nlmhost_get_rpc(host, sr->rq_vers, & pcp); 1015 }
950 if (error 1= 0) 1016
951 goto out; 1017 mut ex_exi t (&g- >l ock) ;
952 1
1019 /* Free locks for all hosts on the local list. */
954 if (NLM_IN_GRACE(Qg)) { 1020 while (! TAILQ EMPTY(&host _list))
955 resp->stat.stat = nl mi_deni ed_grace_peri od; 1021 hostp = TAI LQ FI RST(&host _list);
956 goto out; 1022 TAI LQ REMOVE(&host _I'i st, hostp, nh_link);
957 }
1024 /*
959 error = nlmslock_grant (g, host, &argp->al ock); 1025 * Note that this does not do client-side cleanup.
960 if (error == 0) 1026 * W want to do that ONLY if statd tells us the
961 resp->stat.stat = nl mi_granted; 1027 */server has restarted.
1028 *
963 out: 1029 nl m host_notify_server(hostp, argp->state);
964 I* 1030 nl m host_rel ease(g, hostp);
965 * |f we have a callback funtion, use that to 1031 }
966 * deliver the response via another RPC call.
967 */ 1033 mut ex_exi t (&g- >cl ean_| ock) ;
968 if (cb !'= NULL & rpcp != NULL)
969 NLM_| NVOKE_CALLBACK("do_granted", rpcp, resp, cb); 1035 (void) res;
1036 (void) sr;
971 if (rpcp !'= NULL) 1037 }
972 nl m host_rel e_rpc(host, rpcp);
1039 static void
974 nl m host _rel ease(g, host); 1040 nlm.init_shrlock(struct shrlock *shr,
975 } 1041 nl m_share *nshare, struct nlmhost *host)
1042 {
977 | *
978 * NLM FREE_ALL, NLMA_FREE_ALL 1044 switch (nshare->access) {
979 * 1045 defaul t:
980 * Destroy all lock state for the calling client. 1046 case fsa_NONE:
981 */ 1047 shr->s_access = 0;
982 void 1048 br eak;

new usr/src/uts/comon/kl m nl mservice.c

1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

1076
1077
1078
1079
1080

1082
1083
1084
1085
1086
1087
1088

}
/

case fsa_R
shr->s_access = F_RDACC,
br eak;

case fsa_ W
shr->s_access = F_WRACC,
br eak;

case fsa_RW
shr->s_access = F_RWACC,

br eak;
}
swi tch (nshare->node) {
defaul t:

case fsm DN
shr->s_deny = F_NCDNY;
br eak;

case fsmDR
shr->s_deny = F_RDDNY;
br eak;

case fsm DW
shr->s_deny = F_WRDNY;
br eak;

case fsm DRW
shr->s_deny
br eak;

F_RWDNY;
}

shr->s_sysid = host->nh_sysi d;
shr->s_pid = 0;

shr->s_own_| en = nshare->oh. n_| en;
shr->s_owner = nshar e- >oh. n_bytes;

*

* NLM SHARE, NLMi_SHARE
*

* Request a DOS-style share reservation
*

voi d

nl m do_share(nl md_shareargs *argp,

1089 {

1090
1091
1092
1093
1094
1095
1096
1097

1099

1101
1102
1103

1105
1106
1107
1108
1109
1110

1112
1113

nl mi_shareres *resp,

struct nlmaglobals *g;

struct nlmhost *host;

struct netbuf *addr;

struct nlmvhold *nvp = NULL;
char *netid;

char *nane;

int error;

struct shrlock shr;

nl m_copy_net obj (& esp->cooki e, &argp->cookie);
name = argp->share. cal |l er_nane;

netid = svc_getnetid(sr->rq_xprt);

addr = svc_getrpccal | er(sr->rg_xprt);

g = zone_get speci fic(nl mzone_key, curzone);
host = nl m host_findcreate(g, name, netid,
if (host == NULL)
resp->stat = nl md_deni ed_nol ocks;
return;

}

struct svc_req *sr)

addr) ;

DTRACE_PROBE3(share__start, struct nlmglobals *, g,

struct nlmhost *, host, nlm_shareargs *,

argp) ;

new usr/src/uts/comon/kl m nl mservice.c

1115 if (argp->reclaim== 0 & & NLM_ I N _GRACE(Qg))
1116 resp->stat = nl md_deni ed_grace_peri od;
1117 goto out

1118

1120 /*

1121 * Get hol ded vnode when on | ock operation.
1122 * Only lock() and share() need vhol d objects.
1123 */

1124 nvp = nlmfh_to_vhol d(host, &argp->share.fh);
1125 if (nvp == NULL)

1126 resp->stat = nlmd_stale_fh;

1127 goto out;

1128 }

1130 /* Convert to local form */

1131 nl minit_shrlock(&hr, &argp->share, host);
1132 error = VOP_SHRLOCK(nvp->nv_vp, F_SHARE, &shr,
1133 FREAD | FWRI TE, CRED(), NULL);

1135 if (error == {

1136 resp->stat = nl md_granted;

1137 nl m host_nonitor(g, host, 0);

1138 } else {

1139 resp->stat = nl mi_deni ed;

1140 }

1142 out:

1143 DTRACE_PROBE3(share__end, struct nlmglobals *, g,
1144 struct nlmhost *, host, nlmi_shareres *, resp);
1146 nl m vhol d_r el ease(host, nvp);

1147 nl m host _rel ease(g, host);

1148 }

1150 /*

1151 * NLM_UNSHARE, NLM4_UNSHARE

1152 *

1153 * Rel ease a DOS-style share reservation

1154 *

1155 void

1156 nl m do_unshare(nl m_shareargs *argp, nlm_shareres *resp, struct svc_req *sr)
1157 {

1158 struct nlmglobals *g;

1159 struct nl mhost *host;

1160 struct netbuf *addr;

1161 vnode_t *vp = NULL;

1162 char *netid;

1163 int error;

1164 struct shrlock shr;

1166 nl m copy_net obj (& esp- >cooki e, &ar gp->cooki e);
1168 netid = svc_getnetid(sr->rq_xprt);

1169 addr = svc_getrpccal | er(sr->rg_xprt);

1171 g = zone_get speci fic(nl mzone_key, curzone);
1172 host = nlmhost_find(g, netid, addr);

1173 if (host == NULL)

1174 resp->stat = nl md_deni ed_nol ocks;

1175 return;

1176 }

1178 DTRACE_PROBE3(unshare__start, struct nlmglobals *, g,
1179 struct nlmhost *, host, nlm_shareargs *, argp);

new usr/src/uts/comon/kl m nl mservice.c

1181 if (NLM_IN_GRACE(g)) {

1182 resp->stat = nl mi_deni ed_grace_peri od;
1183 goto out;

1184 }

1186 vp = nlmfh_to_vp(&argp->share.fh);

1187 if (vp == NULL) {

1188 resp->stat = nlmd_stale_fh;

1189 goto out;

1190 }

1192 /* Convert to local form */

1193 nl minit_shrlock(&hr, &argp->share, host);
1194 error = VOP_SHRLOCK(vp, F_UNSHARE, &shr,

1195 FREAD | FWRI TE, CRED(), NULL);

1197 (void) error;

1198 resp->stat = nl md_granted;

1200 out:

1201 DTRACE_PROBE3(unshare__end, struct nlmglobals *, g,
1202 struct nlmhost *, host, nlmi_shareres *, resp);
1204 if (vp !'= NULL)

1205 VN_RELE(vp);

1207 nl m host _rel ease(g, host);

1208 }

1210 /*

1211 * NLM wrapper to VOP_FRLOCK that checks the validity of the |ock before
1212 * invoki ng the vnode operation.

1213 */

1214 static int

19

1215 nl mvop_frl ock(vnode_t *vp, int cnd, flock64_t *bfp, int flag, offset_t offset,

1216 struct flk_callback *flk _cbp, cred_t *cr, caller_context_t *ct)

1217 {

1218 if (bfp->l_len != 0 & bfp->l _start + (bfp->l_len - 1) < bfp->l_start) {
1219 return (EOVERFLOW ;

1220 }

1222 return (VOP_FRLOCK(vp, cnd, bfp, flag, offset, flk_cbp, cr, ct));

1223 }

new usr/ src/ uts/ comon/ kl m nsm addr _cl nt. sed

R R R R

687 Sun Aug 25 23:51:13 2013
new usr/ src/ uts/ comon/ kl m nsm addr _cl nt. sed
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1#

2 # This file and its contents are supplied under the terms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terns of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy is of the CDDL is also available via the Internet
9 # at http://ww.illunps.org/license/ CODL.

10 #

11 #

12 # Copyright (c) 2012 by Del phix. Al rights reserved.

13 #

15 #

16 # This sed script is run on the client code generated by rpcgen

17 # fromnsmaddr.x before it is conpiled.

18 #

20 6{

21 i\

22 #include <sys/param h>

23 i\

24 #include <sys/systm h>

25 i\

26 #include <rpcsvc/ nsm addr. h>

27

}
28 /~.include/,/". endif/d

new usr/src/uts/ comon/kl m sminter_clnt. sed

R R R R

693 Sun Aug 25 23:51:14 2013
new usr/src/uts/ comon/kl m sminter_clnt. sed
195 Need repl acenment for nfs/lockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1#

2 # This file and its contents are supplied under the terms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terns of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy is of the CDDL is also available via the Internet
9 # at http://ww.illunps.org/license/ CODL.

10 #

11 #

12 # Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

13 #

15 #

16 # This sed script is run on the client code generated by rpcgen

17 # fromsm.inter.x before it is conpiled.

18 #

20 6{

21 i\

22 #include <sys/param h>

23 i\

24 #include <sys/systm h>

25 i\

26 #include <rpcsvc/sminter. h>

27

}
28 /~.include/,/". endif/d

new usr/src/uts/comon/nfs/Imh 1 new usr/src/uts/comon/nfs/Imh
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 56 /*
4867 Sun Aug 25 23:51:14 2013 57 * The nuneric sysid is used to identify a host and transport.
new usr/src/uts/comon/nfs/Imh 58 *
195 Need repl acenment for nfs/l|ockd+kl m 59 * The local |ocking code uses (pid, sysid) to uniquely identify a process.
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp 60 * This neans that the client-side code nust doctor up the sysid before
Revi ewed by: Jereny Jones <jereny@lel phi x. con> 61 * registering a lock, so that the local |ocking code doesn't confuse a
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com 62 * renote process with a local process just because they have the same pid.
IR R R R R R R RS R SR S R RS RS E R E R E RS E R R R R REREREEEEEEEE] 63 * \/\é CUfrenHy do thIS by mng LM_SYS' D_O_I ENT |nt0 the SySId before
1/* 64 * registering a |ock.
2 * CDDL HEADER START 65 *
3 * 66 * |If you change LM SYSID and LM SYSID MAX, be sure to pick values so that
4 * The contents of this file are subject to the terms of the 67 * LM SYSID MAX > LM SYSID using signed arithnetic, and don't use zero.
5 * Common Devel opnent and Distribution License, Version 1.0 only 68 * You may also need a different way to tag | ock manager |ocks that are
6 * (the "License"). You nmay not use this file except in conpliance 69 * registered locally.
7 * with the License. 70 */
8 * 71 #define LM SYSID ((sysid_t)0x0001)
9 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 72 #define LM SYSI D_MAX ((sysid_t)Ox3FFF)
10 * or http://ww. opensol aris.org/os/licensing. 73 #define LM SYSID_CLI ENT ((sysid_t)0x4000)
11 * See the License for the specific |anguage governi ng perm ssions 74 #define LM NOSYSID ((sysid_t)-1)
12 * and limtations under the License.
13 = 76 [*
14 * Wen distributing Covered Code, include this CDDL HEADER in each 77 * Struct used to represent a host.
15 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 78 */
16 * |f applicable, add the followi ng below this CDDL HEADER, wth the 79 struct | msysid;
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner] 81 /*
19 = 82 * Gven a knetconfig and network address, returns a reference to the
20 * CDDL HEADER END 83 * associated Imsysid. The 3rd argunent is the hostname to assign to the
21 */ 84 * |Imsysid. The 4th argunent is an output paraneter. It is set non-zero
22 | * 85 * if the returned Imsysid has a different protocol
23 * Copyright 2005 Sun Mcrosystens, Inc. Al rights reserved. 86 * (knetconfig::knc_proto) than what was requested.
24 * Use is subject to license terns. 87 */
25 */ 88 extern struct I msysid *| m get _sysid(struct knetconfig *, struct netbuf *,
89 char *, bool _t *);
27 |* 90 extern void Imrel _sysid(struct I msysid *);
28 * Copyright 2011 Nexenta Systens, Inc. All rights reserved.
29 =/ 92 /*
93 * Return the integer sysid for the given | msysid.
31 #ifndef _NFS_LMH 94 */
32 #define _NFS_LMH 95 extern sysid_t I msysidt(struct Imsysid *);
30 #pragma ident " %Yo U % %Y SM " 97 extern void I mfree_config(struct knetconfig *);
34 /* 99 extern void I m cprsuspend(void);
35 */ Interface definitions for the NFSv2/v3 | ock nmanager. 100 extern void I mcprresune(void);
36 *
102 /*
38 #ifdef __cplusplus 103 * Cient-side interfaces.
39 extern "C' { 104 */
40 #endi f
106 extern int Imfrlock(struct vnode *vp, int cnd,
42 #include <sys/cred. h> 107 struct flock64 *flk, int flag,
43 #include <sys/fcntl. h> 108 u_offset_t offset, struct cred *cr,
44 #incl ude <sys/types. h> 109 netobj *fh, struct flk_callback *);
45 #i ncl ude <sys/vnode. h> 110 extern int | m has_sl eep(const struct vnode *);
46 #i nclude <rpc/rpc. h> 111 extern void Imregister_|l ock_|l ocall y(vhode_t *,
45 #incl ude <nfs/export.h> 112 struct Imsysid *, struct flock64 *, int,
113 u_of fset_t);
48 #ifdef _KERNEL 114 extern int | m saf el ock(vnode_t *, const struct flock64 *,
115 cred_t *);
50 /* 116 extern int I m saf emap(const vnode_t *);
51 * Common interfaces. 117 extern int I mshrlock(struct vnode *vp, int cnd,
52 =/ 118 struct shrlock *shr, int flag, netobj *fh);
119 extern int I md_frlock(struct vnode *vp, int cnd,
54 struct exportinfo; 120 struct flock64 *flk, int flag,
121 u_offset_t offset, struct cred *cr,

new usr/src/uts/comon/nfs/Imh

122 netobj *fh, struct flk_callback *);

123 extern int I md_shrl ock(struct vnode *vp, int cnd,

124 struct shrlock *shr, int flag, netobj *fh);
126 /*

127 * Server-side interfaces.

128 */

130 extern void I m unexport(struct exportinfo *);

132 /*

133 * Clustering: functions to encode the nlmd of the node where this NLM
134 * server is running in the | _sysid of the flock struct or the s_sysid
135 * field of the shrlock struct (respectively).

136 */

137 extern void Imset_nlmd_flk(int *);

138 extern void Imset_nlmd_shr(int32_t *);

139 /* Hook for deleting all mandatory NFSv4 file |ocks held by a renpte client */
140 extern void (*I mrenove_file_locks)(int);

142 /*

143 * The follow ng global variable is the node id of the node where this
144 * NLM server is running.

145 */

146 extern int | mglobal _nlmd;

148 /*

149 * End of clustering hooks.

150 */

152 /*

153 * Return non-zero if the given local vnode is in use.
154 */

155 extern int I mvp_active(const struct vnode *);

157 extern sysid_t I'malloc_sysidt(void);

158 extern void Imfree_sysidt(sysid_t);

160 #endif /* _KERNEL */
157 #else /* _KERNEL */

162 #ifdef __STDC _

163 extern int | mshutdown(void);
164 #el se

165 extern int | mshutdown();

166 #endif /* __STDC _ */

165 #endif /* _KERNEL */
168 #ifdef __cplusplus

169 }
__unchanged_portion_onitted_

new usr/src/uts/comon/os/flock.c

R R R R

107231 Sun Aug 25 23:51:16 2013

new usr/src/uts/comon/os/flock.c

195 Need repl acenment for nfs/l|ockd+kl m

Revi ewed by: Gordon Ross <gordon. ross@exenta. conp

Revi ewed by: Jereny Jones <jereny@lel phi x. con>

Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

IR R R R R R R RS R SR S R RS RS E R E R E RS E R R R R REREREEEEEEEE]
1/*

* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmon Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governi ng perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

I T

CDDL HEADER END

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN

23 * Copyright 2007 Sun Mcrosystens, Inc. Al rights reserved.

24 * Use is subject to license terns.

25 */

27 [* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /| * Al Rights Reserved */

30 /*

31 * Copyright 2011 Nexenta Systens, Inc. All rights reserved.
*
/

34 #include <sys/flock_inpl.h>
35 #include <sys/vfs.h>

36 #include <sys/t_Il ock. h>

37 #include <sys/callb. h>

38 #include <sys/clconf. h>

39 #include <sys/cladm h>

40 #i ncl ude <sys/nbnm ock. h>

41 #include <sys/cred. h>

42 #include <sys/policy. h>

/* for <sys/callb.h> */

44 | *

45 * The following four variables are for statistics purposes and they are
46 * not protected by |ocks. They may not be accurate but will at |east be
47 * close to the actual val ue.

48 */

50 int flk_l ock_allocs;

51 int flk_| ock_frees;

52 int edge_al | ocs;

53 int edge_frees;

54 int flk_proc_vertex_allocs;

55 int fl k_proc_edge_al |l ocs;

56 int flk_proc_vertex_frees;

57 int fl k_proc_edge_frees;

new usr/src/uts/comon/os/flock.c

59

static kmutex_t flock_| ock;

#i f def DEBUG
i nt check_debug = 0;
#def i ne CHECK_ACTI VE_LOCKS(gp) if (check_debug)

#defi ne CHECK_SLEEPI NG _LOCKS(gp)
#def i ne CHECK_OWNER _LOCKS(gp, pid, sysid, vp)
\

\
check_active_l ocks(gp);
if (check_debug) \
check_sl eepi ng_| ocks(gp);
\

if (check_debug)
check_owner _| ocks(gp, pid, sysid, vp);

#defi ne CHECK_LOCK TRANSI TI ON(ol d_state, new_ state) \
\

if (check_lock_transition(old_state, new state)) { \

crm_err (CE_PANIC, "Illegal lock transition \
fromod to %", old_state, new state); \
P\
}
#el se
#def i ne CHECK_ACTI VE_LOCKS(gp)

#def i ne CHECK_SLEEPI NG_LOCKS(gp)
#defi ne CHECK_OMNER _LOCKS(gp, pid, sysid, vp)
#defi ne CHECK_LOCK_TRANSI TI ON(ol d_state, new_state)

#endi f /* DEBUG */

struct kmem cache *fl k_edge_cache;

graph_t *| ock_gr aph[HASH_SI ZE] ;

proc_graph_t pgr aph;

/*

* Custering.

*

* NLM REG STRY TYPE | MPLEMENTATI ON

*

* Assunptions:

* 1. Nodes in a cluster are nunbered starting at 1; always non-negative
* integers; maximumnode id is returned by clconf_naxi num nodei d().
* 2. We use this node id to identify the node an NLM server runs on.

*

/*

* NLMregistry object keeps track of NLM servers via their

* nlmds (which are the node ids of the node in the cluster they run on)
* that have requested locks at this LLMw th which this registry is

* associ at ed.

*

* Representation of abstraction:

* rep = record[states: array[nlmstate],

* I ock: mutex]

*

* Representation invariants:

* 1. index i of rep.states is between 0 and n - 1 where n is nunber
* of elements in the array, which happen to be the maxi mum nunber
* of nodes in the cluster configuration + 1.

* 2. map nlmd to index i of rep.states

* 0o ->0

* 1 -> 1

* 2 -> 2

* n-1 -> cl conf_maxi mum nodei d() +1

* 3. This 1-1 mapping is quite convenient and it avoids errors resulting
* fromforgetting to subtract 1 fromthe index.

* 4. The reason we keep the Oth index is the following. A legitimte
* cluster configuration includes naeking a UFS file system NFS

new usr/src/uts/comon/os/flock.c

125
126
127
128
129
130
131
132
133

134 static flk_nlmstatus_t *nlmreg_status =
135 static kmutex_t
136 static uint_t nlmstatus_size;

*
*
*
*
*
*
*

*

*/

exportable. The code is structured so that if you're in a cluster
you do one thing; otherw se, you do sonething el se. The problem
Is what to do if you think you're in a cluster with PXFS | oaded,
but you're using UFS not PXFS? The upper two bytes of the sysid
encode the node id of the node where NLM server runs; these bytes
are zero for UFS. Since the nodeid is used to index into the
registry, we can record the NLM server state information at index
0 using the same nechani smused for PXFS file | ocks!

NULL; /* state array 0..N-1 */

/* lock to protect arrary */
/* size of state array */

nl mreg_| ock;

138 /*
139 * Although we need a gl obal |ock dependency graph (and associ ated data
140 * structures), we al so need a per-zone notion of whether the |ock manager is
141 * running, and so whether to allow | ock manager requests or not.
142 *
143 * Thus, on a per-zone basis we maintain a ‘‘global’’ variable
144 * (flk_|l ockmgr_status), protected by flock_lock, and set when the |ock
145 * manager is determ ned to be changi ng state (st arting or stopping).
146 *
147 * Each graph/zone pair also has a copy of this variable, which is protected by
148 * the graph’s nutex.
149 ~*
150 * The per-graph copies are used to synchronize | ock requests wi th shutdown
151 * requests. The global copy is used to initialize the per-graph field when a
152 * new graph is created.
153 */
154 struct flock _globals {
155 flk_l ockngr_status_t fI | ockngr _st at us;
156 fl k_l ockmgr _status_t | ockngr _stat us[HASH_SI ZE] ;
157 };
__unchanged_portion_omtted_
2244 | *
2245 * Determi ne whether there are any |locks for the given vnode with a renote
2246 * sysid. Returns zero if not, non-zero if there are.
2247 *
2248 * Note that the return value fromthis function is potentially invalid
2249 * once it has been returned. The caller is responsible for providing its
2250 * own synchroni zation nmechanismto ensure that the return value is useful
2251 * (e.g., see nfs_lockconpletion()).
2252 */
2253 int
2254 fl k_has_renote_| ocks(vnode_t *vp)
2255 {
2256 | ock_descriptor_t *Iock;
2257 int result = 0;
2258 graph_t *gp;
2260 gp = fl k get Iock _graph(vp, FLK_USE_GRAPH);
2261 if (g LL) {
2262 return (0);
2263 }
2265 mut ex_ent er (&gp- >gp_nut ex) ;
2267 SET_LOCK_TO_FI RST_ACTI VE_VP(gp, |ock, vp);
2269 if (lock) {
2270 while (lock->l_vnode == vp
2271 if (1S RENDTE(Iock)) {
2272 result = 1;
2273 goto done;
2274 }

new usr/src/uts/comon/os/flock.c

2275
2276
2277

2279

2281
2282
2283
2284
2285
2286
2287
2288
2289

2291
2292
2293
2294

2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306

2308
2309

2311
2312
2313
2314

2316
2318

2320
2321
2322
2323
2324
2325
2326
2327
2328

2330

2332
2333
2334
2335
2336
2337
2338
2339
2340

o~

I ock = I ock->l _next;

}

SET_LOCK_TO_FI RST_SLEEP_VP(gp, | ock,

vp);
if (lock) {
while (lock->l_vnode == vp) {
if (1S RENOTE(Iock)) {
result =
goto done

}
lock = | ock->l_next;

mut ex_exi t (&gp- >gp_nut ex) ;
return (result);

Det ermi ne whether there are any | ocks for the given vnode with a renote
sysid matching given sysid.
Used by the new (open source) NFS Lock Manager (NLM

_has_remote_| ocks_for_sysi d(vnode_t *vp, int sysid)
| ock_descriptor_t *Iock;
int result = 0;

graph_t *gp

if (sysid ==
return (0);

gp = flk_get_| FLK_USE_GRAPH) ;

iIf (gp == NUL

return (0)

| ock_graph(vp,
L) {

}
nmut ex_ent er (&gp- >gp_nut ex) ;
SET_LOCK_TO FI RST_ACTI VE_VP(gp,

if (lock) {
while (lock->l

I ock, vp);

_vnode == vp)
if (lock->l_flock.l
result = 1;
goto done;

_{sysi d == sysid) {

lock = | ock->l_next;

}
SET_LOCK_TO FI RST_SLEEP_VP(gp,

if (lock) {
while (Iock->l

| ock, vp);

_vnode == vp)
if (lock->l_flock.l
result = 1;
got o done;

_{sysi d == sysid) {

lock = | ock->l_next;

new usr/src/uts/comon/os/flock.c 5

2342 done:

2343 mut ex_exi t (&gp- >gp_nut ex) ;
2344 return (result);

2345 }

____unchanged_portion_onitted_

new usr/src/uts/comon/os/share.c 1 new usr/ src/uts/comon/ os/share.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 59 Int
16601 Sun Aug 25 23:51:17 2013 60 add_share(struct vnode *vp, struct shrlock *shr)
new usr/src/uts/comon/os/share.c 61 {
195 Need repl acenment for nfs/l|ockd+kl m 62 struct shrlocklist *shrl;
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con> 64 /*
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com 65 * An access of zero is not |egal, however sone older clients
IR R R R R R R RS R SR S R RS RS E R E R E RS E R R R R REREREEEEEEEE] 66 * generate |t anyv\ays AIlthhe request Only If |t |S
1/* 67 * comng froma renpte system Be generous in what you
2 * CDDL HEADER START 68 * accept and strict in what you send.
3 * 69 */
4 * The contents of this file are subject to the terms of the 70 if ((shr->s_access == 0) && (CETSYSID(shr->s_sysid) == 0)) {
5 * Common Devel opnent and Distribution License (the "License"). 71 return (EINVAL);
6 * You may not use this file except in conpliance with the License. 72 }
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 I *
9 * or http://ww.opensol aris.org/os/licensing. 75 * Sanity check to make sure we have valid options.
10 * See the License for the specific |anguage governing perm ssions 76 * There is known overlap but it doesn’'t hurt to be careful.
11 * and limtations under the License. 77 */
12~ 78 if (shr->s_access & ~(F_RDACC| F_WRACC| F_RWACC| F_RMACC| F_MDACC)) {
13 * Wen distributing Covered Code, include this CDDL HEADER i n each 79 return (EINVAL);
14 * file and include the License file at usr/src/OPENSOLARI S. LI CENSE. 80 }
15 * If applicable, add the followi ng below this CDDL HEADER, wth the 81 if (shr->s_deny & ~(F_NCDNY| F_RDDNY| F_WRDNY| F_RWDNY| F_COWPAT]|
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 F_MANDDNY| F_RI
17 * information: Portions Copyright [yyyy] [nane of copyright owner] 83) return (EINVAL);
18 = 84
19 * CDDL HEADER END
20 */ 86 mut ex_ent er (& p->v_| ock);
21 | * 87 for (shrl = vp->v_shrlocks; shrl != NULL; shrl = shrl->next) {
22 * Copyright 2008 Sun M crosystens, Inc. Al rights reserved. 88 1=
23 * Use is subject to license terns. 89 * |f the share owner natches previous request
24 */ 90 * do special handling.
91 */
26 [/ * 92 if ((shrl->shr->s_sysid == shr->s_sysid) &&
27 * Copyright 2011 Nexenta Systens, Inc. All rights reserved. 93 (shrl->shr->s_pid == shr->s_pid) &
28 */ 94 (shrl->shr->s_own_l en == shr->s_own_|l en) &&
95 bcnmp(shrl ->shr->s_owner, shr->s_owner,
30 #include <sys/types. h> 96 shr->s_own_l en) == 0) {
31 #include <sys/sysnacros. h>
32 #include <sys/param h> 98 /*
33 #include <sys/systm h> 99 * |f the existing request is F_COWAT and
34 #include <sys/fcntl.h> 100 * is the first share then allow any F_COWAT
35 #include <sys/vfs.h> 101 * fromthe sane process. Trick: |If the existing
36 #include <sys/vnode. h> 102 * F_COWAT is wite access then it must have
37 #include <sys/share. h> 103 * the same owner as the first.
38 #include <sys/cm_err. h> 104 *
39 #include <sys/knem h> 105 if ((shrl->shr->s_deny & F_COWPAT) &&
40 #i ncl ude <sys/debug. h> 106 (shr->s_deny & F_COWAT) &&
41 #include <sys/t_| ock. h> 107 ((shrl->next == NULL) ||
42 #incl ude <sys/errno. h> 108 (shrl->shr->s_access & F_WRACQ)))
43 #incl ude <sys/nbm ock. h> 109 br eak;
110 }
45 int share_debug = O;
112 /*
47 #ifdef DEBUG 113 * |f a first share has been done in conpatibility node
48 static void print_shares(struct vnode *); 114 * handl e the special cases.
49 static void print_share(struct shrlock *); 115 */
50 #endif 116 if ((shrl->shr->s_deny & F_COWAT) && (shrl->next == NULL)) {
52 static int isreadonly(struct vnode *); 118 if (!(shr->s_deny & F_COWAT)) {
53 static void do_cl eanshares(struct vnode *, pid_t, int32_t); 119 l*
120 * |f not conpat and want wite access or
121 * want to deny read or
56 /* 122 * wite exists, fails
57 * Add the share reservation shr to vp. 123 */
58 */ 124 if ((shr->s_access & F_WRACC) ||

new usr/src/uts/comon/os/share.c 3 new usr/src/uts/comon/os/share.c
125 (shr->s_deny & F_RDDNY) || 191 conti nue;
126 (shrl->shr->s_access & F_WRACO)) { 192 }
127 mut ex_exi t (& p->v_I ock);
128 return (EAGAIN); 194 /*
129 } 195 * Sinple bitwise test, if we are trying to access what
130 1* 196 * sonmeone else is denying or we are trying to deny
131 * |f read only file allow, this nay allow 197 * what soneone else is accessing we fail.
132 * a deny wite but that is meaningl ess on 198 */
133 * aread only file. 199 if ((shr->s_access & shrl->shr->s_deny) ||
134 */ 200 (shr->s_deny & shrl->shr->s_access)) {
135 if (isreadonly(vp)) 201 mut ex_exi t (& p->v_I| ock);
136 br eak; 202 return (EAGAIN);
137 mut ex eX|t(&vp >v_| ock); 203 }
138 return (EAGAIN); 204 }
139 }
140 /* 206 shrl = krTem al | oc(sizeof (struct shrlocklist), KMSLEEP);
141 * This is a conpat request and read access 207 shrl->shr = kmem al | oc(si zeof (struct shrlock) KM SLEEP)
142 * and the first was al so read access 208 shrl->shr->s_access = shr->s_access;
143 * we always allowit, otherwi se we reject because 209 shrl->shr->s_deny = shr->s_deny;
144 * we have handled the only valid wite case above.
145 */ 211 /*
146 if ((shr->s_access == F_RDACC) && 212 * Make sure no other deny nodes are al so set with F_COWAT
147 (shrl->shr->s_access == F_RDACC)) 213 */
148 br eak; 214 if (shrl->shr->s_deny & F_COWPAT)
149 nut ex exn(&vp >v_| ock); 215 shrl->shr->s_deny = F_COWPAT;
150 return (EAGAIN); 216 shrI—>shr—>s_sysid = shr->s_sysid; [* XXX ref cnt? */
151 } 217 shrl->shr->s_pid = shr->s_pid;

218 shrl->shr->s_own_| Ien = shr->s_own_| en;
153 /* 219 shrl->shr->s_owner = kmem al | oc(shr->s_own_| en, KM SLEEP);
154 * |f we are trying to share in conpatibility node 220 bcopy(shr->s_owner, shrl->shr->s_owner, shr—>s_own_| en);
155 * and the current share is conpat (and not the first) 221 shrl->next = vp->v_shrl ocks;
156 * we don’t know enough. 222 vp->v_shrlocks = shrl;
157 */ 223 #ifdef DEBUG
158 if ((shrl->shr->s_deny & F_COWPAT) && (shr->s_deny & F_COWPAT)) 224 if (share_debug)
159 continue; 225 print_shares(vp);

226 #endi f
161 /*
162 * |f this is a conpat we check for what can’t succeed. 228 mut ex_exi t (& p->v_| ock);
163 */
164 if (shr->s_deny & F_COWPAT) { 230 return (0);
165 /* 231 }
166 * |If we want wite access or __unchanged_portion_omtted_
167 * if anyone is denying read or
168 * if anyone has wite access we fail 337 /*
169 */ 338 * Clean up all local share reservations that the given process has with
170 if ((shr->s_access & F_WRACO) || 339 * the given file.
171 (shrl->shr->s_deny & F_RDDNY) || 340 */
172 (shrl->shr->s_access & F_WRACCO)) { 341 void
173 mut ex_exi t (& p->v_l ock); 342 cl eanshares(struct vnode *vp, pid_t pid)
174 return (EAGAIN); 343 {
175 } 344 do_cl eanshares(vp, pid, 0);
176 /* 345 }
177 * If the first was opened with only read access
178 * and is aread only file we allow 347 [*
179 */ 348 * Cleanup all renpte share reservations that
180 if (shrl->next == NULL) { 349 * were nmade by the given sysid on given vnode.
181 if ((shrl->shr->s_access == F_RDACC) && 350 */
182 i sreadonl y(vp)) { 351 void
183 br eak 352 cl eanshares_by_sysid(struct vnode *vp, int32_t sysid)
184 } 353 {
185 mut ex_exi t (& p->v_| ock); 354 if (sysid == 0)
186 return (EAGAIN); 355 return;
187 }
188 /* 357 do_cl eanshares(vp, 0, sysid);
189 * W still can't determine our fate so continue 358 }
190 */

new usr/src/uts/comon/ os/share.c

360
361
362
363
364
365
366
367
368
369
370

372
373

375
376
377
378
346
379
380

382

/

*
*
*
*
*
*

*/

Cl eanup share reservations on given vnode nade

by the either given pid or sysid.

If sysidis 0, remove all shares nade by given pid,
otherwi se all shares nade by the given sysid wll
be renoved.

static void
do_cl eanshares(struct vnode *vp, pid_t pid, int32_t sysid)

383 }
__unchanged_portion_omtted_

struct shrlock shr;

if (vp->v_shrlocks == NULL)
return;

shr.s_access = 0;
shr.s_deny = 0;
shr.s_pid = pid;
shr.s_sysid = sysid;
shr.s_sysid = 0;
shr.s_own_len = 0;
shr.s_owner = NULL;

(voi d) del _share(vp, &shr);

new usr/src/ uts/ comon/rpcsvc/ Makefil e

R R R R

2205 Sun Aug 25 23:51:18 2013
new usr/src/ uts/ comon/rpcsvc/ Makefil e
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

i ncl ude gl obal definitions
32 include ../../../Makefile. master

1#
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terns of the
5 # Common Devel oprent and Distribution License (the "License").
6 # You may not use this file except in conpliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww.opensol aris.org/os/licensing.
10 # See the License for the specific |anguage governing perm ssions
11 # and limtations under the License.
12 #
13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # If applicable, add the followi ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun M crosystens, Inc. Al rights reserved.
23 # Use is subject to license terns.
24 #
25 # Copyright (c) 2012 by Del phix. Al rights reserved.
26 #
27 # uts/comon/rpcsve/ Makefile
28 # This makefile installs system header files that go into
29 # /usr/include/rpcsvc.
30 #
#
i

34 # Protocol descriptions. Alas, the NFS protocol cannot be expressed

35 # conpletely via rpcgen. The NLM description should go here sonme day.

36 # Al so, the v3 headers have been hacked so that they no | onger
37 # quite reflect what goes over the wire.

38 | DVAP_PROT_X= i dmap_prot. x

39 RPCGEN_SRC= autofs_prot.x nlmprot.x sminter.x nsmaddr.x \

40 $(| DVAP_PROT_X)

37 RPCGEN_SRC= autof s_prot.x sm.inter.x nsmaddr.x $(| DVAP_PROT_X)

42 DERIVED HDRS= $(RPCGEN_SRC: % x=% h)

44 ALLHDRS= $(RPCGEN_SRC) $(DERI VED_HDRS)
46 ROOTDI RS= $(ROOT) / usr /i ncl ude/ r pcsve
48 ROOTHDRS= $(ALLHDRS: %$(ROOTDI RS) / %

50 RPCGENFLAGS = -C

51 idmap_prot.h := RPCGENFLAGS += - MN
52 nimprot.h : RPCGENFLAGS += -M
53 sminter.h : RPCGENFLAGS += -M
54 nsm addr.h : RPCGENFLAGS += -M

56 $(ROOTDIRS)/ % %
57 $(INS. file)

new usr/src/ uts/ comon/rpcsvc/ Makefil e

59 . KEEP_STATE:

61 # all _h pernmits derived headers to be built here in the uts source area
62 # for the kernel to reference, without going so far as to install them
63 #

64 al | _h: $(DERI VED_HDRS)

66 install_h: all_h $(ROOTDI RS) $(ROOTHDRS)

68 cl ean:

69 $(RM $(DERI VED_HDRS)

71 cl obber: clean

73 # Don’t check rpcgen-derived files.

74 check:

76 $(ROOTDI RS):

77 $(INS. dir)

79 % h: %X

80 $(RPCGEN) $(RPCGENFLAGS) -h $< -0 $@

71 $(RPCGEN) -C -h $< -0 $@

73 idmap_prot. h: $(1 DMAP_PROT_X)

74 $(RPCCEN) -CWN\h -0 $@ $(| DVAP_PROT_X)

new usr/src/uts/ comon/rpcsve/ nl mprot. x 1

R R R R

9615 Sun Aug 25 23:51:19 2013
new usr/src/uts/comon/rpcsvc/ nl mprot. x
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License, Version 1.0 only

6 * (the "License"). You nmay not use this file except in conpliance

7 * with the License.

8 *

9 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
10 * or http://ww. opensol aris.org/os/licensing.

11 * See the License for the specific |anguage governi ng perm ssions

12 * and limtations under the License.

13 =

14 * Wen distributing Covered Code, include this CDDL HEADER in each

15 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
16 * If applicable, add the followi ng below this CDDL HEADER, wth the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]

19 =

20 * CDDL HEADER END

21 */

22 /*

23 * Network | ock nanager protocol definition

23 * Copyright (C) 1986, 1992, 1993, 1997, 1999 by Sun M crosystens, Inc.
24 * Al rights reserved.

25 *

26 * Copyright 2011 Nexenta Systenms, Inc. All rights reserved.

27 *

28 * Protocol used between |ocal |ock manager and renote | ock manager.
29 =

30 * There are currently 3 versions of the protocol in use. Versions 1
31 * and 3 are used with NFS version 2. Version 4 is used with NFS

32 * version 3.

33 *

34 * (Note: there is also a version 2, but it defines an orthogonal set of
35 * procedures that the status nonitor uses to notify the | ock manager of
36 * changes in nonitored systens.)

37 */

38 %tpragma ident " 9%Z%4Wo % % %EY% SM "

39 #if RPC_HDR

40 %

41 %ti ncl ude <rpc/rpc_sztypes. h>

42 %

43 #endi f

45 #ifdef RPC_HDR

46 %tdefi ne LM _MAXSTRLEN 1024

47 9%tdefine LM MAXNAMELEN (LM MAXSTRLEN + 1)
48 #endi f

50 /*
51 * Types for versions 1 and 3.
*/

54 |*
55 * Status of a call to the |ock manager. The |ower case enuns violate the

new usr/src/uts/comon/rpcsvc/ nl mprot. x

56 *
57 *

current style guide, but we're stuck with 'em

59 enum nl mstats {

185 /*
186 *
187 *
188 *
189 *
190 *
191 ~*
192 ~*
193 *
194 ~*
195 ~
196 *

198 /*
199 ~

200 */

nl mgranted = 0,

nl mdenied = 1,

nl m deni ed_nol ocks = 2,

nl m bl ocked = 3,

nl m deni ed_grace_period = 4,
nl mdeadlck = 5

L nchanged_portion_omitted_

Types for version 4.

This revision is designed to work with NFS V3. The main changes from
NFS V2 to V3 that affect the NLM protocol are that all file offsets
and sizes are now unsigned 64-bit ints, and file handl es are now

variable length. In NLM V1 and V3, the fixed-I|ength
was encoded as a 'netobj’, which is a count followed

V2 file handle
by the data

bytes. For NLM 4, the file handle is already a count foll owed by
data bytes, so the handle is copied directly into the netobj, rather

than being encoded with an additional byte count.
/

Status of a call to the |ock nanager.

202 enum nl md_stats {

203
204
204
205
205
206
207
207
208
208
209
210
210
211
212
213
214
212
213
214
215
215
216
217
217 }

nlmd_granted = 0,
nl md_denied = 1,
NLM4_GRANTED = 0,
NLM4_DEN ED = 1,

| ock was not
| ock was not

nl m_deni ed_nol ocks = 2,
nl m4_bl ocked = 3,
NLM4_DENI ED_NOLOCKS = 2,
NLM4_BLOCKED = 3,

not granted:
not granted:
not granted:
not granted:
when granted
not granted:
not granted:

nl m_deni ed_grace_peri od
NLM4_DENI ED_GRACE_PERI 0D

nl m_deadl ck = 5,
nlmd_rofs = 6,
nlm_stale_fh = 7,

not granted:
not granted:
not granted:

® ok ok ok ok b Sk Ok ok b ok Ok ok % ok % ok kb % ok F ok

— e e e —

nlmd_fbig = 8, not granted:
NLMA_DEADLCK = 5, not granted:
NLMA_ROFS = 6, not granted:
NLMA_STALE_FH = 7, not granted:
NLM4_FBI G = 8, not granted:
too big */
nlml_failed = 9 not granted:
NLMA_FAI LED = 9 not granted:

__hnchanged_port ion_omtted_

231 union nlmd_testrply switch (nlmi_stats stat) {

232
233
233
234
235
236 };

case nl mi_deni ed:
case NLM4_DEN ED:

struct nl mi_hol der hol der;
defaul t:

voi d;

____unchanged_portion_onitted_

l ock was granted */

granted, usually */

| ock was granted */

granted, usually */

due to conflicting lock */

out of resources */
expect call back */
out of resources */
expect call back */
*

/

server is */

server is */

reestablishing old | ocks */

deadl ock detected */
read-only filesystem*/
stale file handle */
of fset or length */
deadl ock detected */
read-only filesystem*/
stale file handle */
of fset or length */

sonme other error */
sonme other error */

new usr/src/uts/comon/rpcsvc/ nl mprot. x 3 new usr/src/uts/comon/rpcsvc/ nl mprot. x
346 nlmres
289 #ifdef RPC_HDR 347 NLM_UNLOCK(nl m_unl ockargs) = 4;
290 % * 348 /*
291 %* The followi ng enunms are actually bit encoded for efficient 349 * renote | ock manager call-back to grant |ock
292 %* bool ean algebra.... DON T change them.... 350 */
293 % */ 351 nlmres
294 #endi f 352 NLM GRANTED(nl m t estargs) = 5;
296 enum fsh4_node { 354 /*
297 FSM DN = 0, /* deny none */ 355 * message passing style of requesting |ock
298 FSM DR =1, /* deny read */ 356 */
299 FSM DW = 2, /* deny wite */
300 FSM DRW = 3 /* deny read/wite */ 358 void
301 }; 359 NLM TEST_MSG(nl m testargs) = 6;
360 voi d
303 enum fsh4_access { 361 NLM LOCK_MSG(nl m | ockargs) = 7;
304 FSA_NONE = 0, /* for conpl eteness */ 362 void
305 FSA R =1, /* read only */ 363 NLM_CANCEL_MSG(nl m cancar gs) = 8;
306 FSA W = 2, /* wite only */ 364 voi d
307 FSA RW =3 /* read/wite */ 365 NLM_UNLOCK_MSG(nl m unl ockargs) = 9;
308 }; 366 voi d
367 NLM _GRANTED_MSG(nl m testargs) = 10;
288 struct nlmi_share { 368 voi d
289 string call er_nane<LM MAXSTRLEN>; 369 NLM TEST_RES(nl m testres) = 11,
290 netob] fh; 370 void
291 netobj oh; 371 NLM_LOCK_RES(nl mres) = 12;
292 fsh_node node; 372 voi d
293 fsh_access access; 373 NLM CANCEL_RES(nl mres) = 13;
314 f sh4_node node; 374 voi d
315 fsh4_access access; 375 NLM_UNLOCK_RES(nl mres) = 14;
294 }; 376 voi d
____unchanged_portion_onitted_ 377 NLM GRANTED _RES(nlmres) = 15;
378 } =1
313 /*
314 * Argunment for the NLM call-back procedure called by rpc.statd 380 I*
315 * when a nonitored host status changes. The statd calls the 381 * Private (|oopback-only) call-backs from statd,
316 * NLM prog, vers, proc specified in the SMMON cal |. 382 * used to notify that sone machine has restarted.
317 * NB: This struct nust exactly match sminter.x:smstatus 383 * The nmeaning of these is up to the | ock manager
318 * and requires LM MAXSTRLEN == SM MAXSTRLEN 384 * inplenenation. (See the SM MON calls.)
319 */ 385 */
320 struct nlmsmstatus { 386 ver si on NLM SM {
321 string nmon_name<LM MAXSTRLEN>; /* nane of host */ 387 void NLM SM NOTI FY1(struct nlmsmstatus) = 17;
322 int32 state; /* new state */ 388 voi d NLM SM NOTI FY2(struct nlmsmstatus) = 18;
323 opaque priv[16]; /* private data */ 389 } = 2
324 };
391 versi on NLM VERSX {
326 /* 392 nl m shareres
327 * Over-the-wire protocol used between the network | ock managers 393 NLM SHARE(nl m shar eargs) = 20;
328 */ 394 nl m shareres
395 NLM_UNSHARE(nl m shar eargs) = 21;
330 program NLM PROG { 396 nlmres
397 NLM_NM_LOCK(nl m | ockargs) = 22;
332 versi on NLM VERS { 398 voi d
399 NLM FREE_ALL(nl m notify) = 23,
334 void 400 } =3
335 NLM NULL(voi d) = 0;
402 versi on NLM4_VERS {
337 nlmtestres 403 voi d
338 NLM TEST(nl m testargs) = 1; 404 NLMA_NULL(void) = 0;
398 NLMPROC4_NULL(voi d) = 0;
340 nlmres 405 nlmd_testres
341 NLM_LOCK(nl m_| ockargs) = 2; 406 NLMA_TEST(nl mi_testargs) = 1;
400 NLMPROCA_TEST(nl md_testargs) = 1;
343 nlmres 407 nlmd_res
344 NLM CANCEL(nl m cancargs) = 3; 408 NLMA_LOCK(nl md_l ockargs) = 2;
402 NLMPROCA_LOCK(nl mad_| ockargs) = 2;

new usr/src/uts/comon/rpcsvc/ nl mprot. x

409
410
404
411
412
406
413
414
415
416
417
411

419
420
421

423
424
418
425
426
420
427
428
422
429
430
424
431
432
426
433
434
428
435
436
430
437
438
432
439
440
434
441
442
436

444
445
446

448
449
443
450
451
445
452
453
447
454
455
449
456

nlmi_res
NLMA_CANCEL(nl md_cancargs) = 3;
NLMPROC4_CANCEL(nl md_cancargs) =
nlmi_res
NLMA_UNLOCK(nl mi_unl ockargs) = 4;
NLMPROC4_UNLOCK(nl m4_unl ockar gs) =
/ *

* renote | ock manager call-back to grant |ock

*/
nl md_res
NLMA_GRANTED(nl md_t estargs) = 5;
NLMPROCA_GRANTED(nl m4_t estargs) =

| *

* message passing style of requesting |ock
*/

void
NLMA_TEST_MSG(nl md_t st args) = 6;
NLMPROCA_TEST _MSG(nl m4_t estargs) =
voi d
NLM4_LOCK_MSG(nl mé4_| ockargs) = 7;
NLMPROC4_LOCK_MSG(nl m4_| ockar gs) =
void
NLMA_CANCEL_MSQ nl m4_cancargs) =
NLMPROCA4_CANCEL_MSG(nl mA_cancar gs)
void
NLMA_UNLOCK_MsSQ@ nl m4_unl ockar gs) =
NLMPROC4_UNLOCK_MSG(nl mA_unl ockar gs)
voi d
NLM4_GRANTED _MSG(nl md_t estargs) =
NLMPROC4_GRANTED_MSG(nl mé_t est ar gs)
void
NLMA_TEST_RES(nl md_te res) 11;
NLMPROC4_TEST_RES(nl m4 estres) =
void
NLMA_LOCK_RES(nl md_res) =
NLMPROCA_LOCK_RES(nl m4_res) =
void
NLM4_CANCEL_RES(nl md_res) =
NLMPROC4_CANCEL_RES(nl md_res) =
voi d
NLMA_UNLOCK_RES(nl md_res) =
NLMPROC4_UNLOCK_RES(nl m4_res) =
void

NLMA_GRANTED_RES(nl mi_res) = 157
NLMPROCA_GRANTED_RES(nl md_r es)

*

* DOS-style file sharing
*/

nl mM_shareres
NLM4_SHARE(nl md_shar eargs) = 20;
NLMPROCA_SHARE(nl md_shar ear gs)
nl md_shareres
NLM4_UNSHARE(nl md_shareargs) = 21;
NLMPROC4_UNSHARE(nl m4_shar ear gs)
nlmd_res
NLMA_NM LOCK(nl m4_| ockargs) = 22;
NLMPROC4_NM LOCK(nl m4_l ockargs) =
void
NLMA_FREE_ALL(nl md_notify) = 23;
NLMPROC4A_FREE_ALL(nl md_notify) =

20;

21;

22;

new usr/src/uts/comon/rpcsvc/ nl mprot. x

458 } = 100021;

__unchanged_portion_onitted_

new usr/src/uts/comon/rpcsvc/sminter.x

R R R R

3331 Sun Aug 25 23:51:21 2013

new usr/src/uts/comon/rpcsvc/sminter.x

195 Need repl acenment for nfs/l|ockd+kl m

Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN

/ *
* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License, Version 1.0 only
(the "License"). You may not use this file except in conpliance
with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

* Ok ok ok ok ok % bk O % Ok Ok % k%

CDDL HEADER END

*

%*

% * Copyright (c) 1986, 1994 by Sun M crosystens, Inc.
%* Al rights reserved.

% */

%* fromsminter.x */

#i f def RPC_HDR
0,

%
Y%tpragma ident " 9%Z%AW6 % % YE% SM "
prag

%

#endi f

/*
* Status nonitor protocol specification
*/

program SM_PROG {

version SM VERS {
/* res_stat

/* smnanme */
struct smstat_res SM STAT(struct smnane) = 1;

/* res_stat = stat_succ if status nonitor agrees to nonitor */
/* res_stat = stat_fail if status nonitor cannot nonitor */

/* stat consists of state nunmber of local site */
struct smstat_res SM MON(struct non) = 2;

/* stat consists of state nunber of |ocal site */
struct smstat SM UNMON(struct nmon_id) = 3;

/* stat consists of state number of local site */
struct smstat SM UNMON_ALL(struct nmy_id) = 4;

voi d SM S| MJ_CRASH(voi d) = 5;

= stat_succ if status nonitor agrees to nmonitor */
/* res_stat = stat_fail if status nonitor cannot nonitor */
/* if res_stat == stat_succ, state = state nunber of site */

new usr/src/uts/comon/rpcsve/sminter.x

54 voi d SM NOTI FY(struct stat_chge) = 6;
55 } =1
56 } = 100024;

__unchanged_portion_omtted_

95 enumsmres {
101 enumres {

96 stat_succ = O, /* status nonitor agrees to nonitor */
97 stat_fail =1 /* status nonitor cannot nonitor */
98 };

100 struct smstat_res {

101 smres res_stat;

107 res res_stat;

102 int state;

103 };

105 /*

106 * structure of the status nmessage sent by the status nonitor to the
107 * requesting programwhen a nonitored site changes status.

108 */

109 struct smstatus {

115 struct status {

110 string nmon_name<SM MAXSTRLEN>;

111 int state;

112 opaque priv[16]; /* stored private information */
113 };

__unchanged_portion_omtted_

new usr/src/uts/comon/sys/flock.h

R R R R

8612 Sun Aug 25 23:51:22 2013

new usr/src/uts/comon/sys/flock.h

195 Need repl acenment for nfs/l|ockd+kl m

Revi ewed by: Gordon Ross <gordon. ross@exenta. conp

Revi ewed by: Jereny Jones <jereny@lel phi x. con>

Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

IR R R R R R R RS R SR S R RS RS E R E R E RS E R R R R REREREEEEEEEE]
1/*

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License, Version 1.0 only
(the "License"). You may not use this file except in conpliance
with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END
/

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN
LR I I T I I SRR I R)

21
22/ Copyrlght (c) 1984, 1986, 1987, 1988, 1989 AT&T */
23/ Al Rights Reserved *

27 * Copyright 2004 Sun Mcrosystens, Inc. Al rights reserved.
28 * Use is subject to license terns.
29 */
30 /*
31 * Copyright 2011 Nexenta Systens, Inc. All rights reserved.
*
/

34 #ifndef _SYS FLOCK H
35 #define _SYS_FLOCK H
34 #pragma ident " %98 % % YE% SM "
37 #include <sys/types. h>
38 #include <sys/fcntl.h>
39 #include <sys/vnode. h>
40 #include <sys/t_| ock. h>
41 #incl ude <sys/callb. h>
42 #include <sys/param h>
43 #incl ude <sys/zone. h>

/* for <sys/callb.h> */

45 #ifdef __cplusplus
46 extern "C' {

47 #endi f

49 [*

50 * Private declarations and instrunentation for |ocal |ocking.
*/

53 /*

54 * The flag passed to fs_frlock() may be ORed together with either

55 * 'F_REMOTELOCK' or ‘F_PXFSLOCK . Since this flag is initialized using the
56 * ‘f_flag’ fieldin the ‘file’ structure, and that field is an unsigned short,

new usr/src/uts/comon/sys/flock. h

57
58
59
60

104
105

107
108
109
110

221
222

224
225
226
227
228
229
230

* we do not use the first 2 bytes.
*/

#defi ne F_REMOTELOCK (0x01 << 16) /* Set if NLMIlock */

#def i ne F_PXFSLOCK (0x02 << 16) /* Custering: set if PXFS |ock */
/*
* The command passed to reclock() is nade by ORing together one or nore of
* the follow ng val ues.
*/
#define | NOFLCK 0x01 /* Vnode is |ocked when reclock() is called.
#def i ne SETFLCK 0x02 /* Set a file lock. */
#defi ne SLPFLCK 0x04 /* Wait if blocked. */
#defi ne RCVDLCK 0x08 /* F_REMOTELOCK specified */
#def i ne PCVDLCK 0x10 /* Custering: F_PXFSLOCK specified */
#def i ne NBMLCK 0x20 /* non-bl ocki ng mandatory | ocking */
/*
* Special pid value that can be passed to cleanlocks(). It nmeans that
* cl eanl ocks() should flush all locks for the given sysid, not just the
* | ocks owned by a specific process.
*
/
#define | GN_PID (-1)
/* file locking structure (connected to vnode)

#define | _end I _len

/*

* The | ock nanager is allowed to use unsigned offsets and | engths, though
* regul ar Unix processes are still required to use signed offsets and

* | engths.

*/

typedef ulong_t u_off_t;

#define MAX_ U OFF_T ((u_off_t)~0)
#define MAX_ U OFFSET_T ((u_offset_t)~0)
/*
* define MAXEND as the | argest positive value the signed offset_t will hold.
*/
#def i ne MAXEND MAXOFFSET_T
/*
* Definitions for accessing the | _pad area of struct flock. The
* descrimnant of the pad_info_t union is the fcntl command used in
* conjunction with the flock struct.
*/
typedef union {

int pi _pad[4]; /* (original pad area) */
int pi _has_rnt; /* F_HASREMOTELOCKS */
} pad_info_t;
__unchanged_portion_omtted_
#def i ne FLK_QUERY_ACTI VE Ox1
#def i ne FLK_QUERY_SLEEPI NG 0x2
int recl ock(struct vnode *, struct flock64 *, int, int, u_offset_t,
flk_cal | back_t *)
int chkl ock(struct vnode *, int, u_offset_t, ssize_ t, int,
cal ler_context_t *);
int convof f (struct “vnode *, struct flock64 *, int, of fset_t);
voi d cl eanl ocks(struct vnode *, pid_t, int);
locklist_t *flk_get_sleeping_locks(int sysid, pid_t pid);

*/

new usr/src/uts/comon/sys/flock.h

231 locklist_t *flk_get_active_l ocks(int sysid, pid_t pid);
232 locklist_t *flk_active_|l ocks_for_vp(const struct vnode *vp);
233 locklist_t *flk_active_nbmand_| ocks_for _vp(const struct vnode *vp);

234 locklist_t *flk_active_nbrmand_| ocks(pid_t pid);

235 void Flk_free_| ockl Tst(locklist_t *);

236 int fl k_convert_l ock_data(struct vnode *, struct flock64 *,
237 u_offset_t *, u_offset_t *, offset_t);

238 int fl k_check_l ock_data(u_offset_t, u_offset_t, offset_t);
239 int fl k_has_renote_| ocks(struct Vnode “*vp);

240 void flk_set | ockngr_status(flk_l ockngr_status_t status);

241 int fl k_sysid_has_l ocks(int sysid, int chklck);

242 int fl k_has_renote_|l ocks_for_sysid(vnode_t *vp, int);

243 void flk_init_call back(flk_call back_t *

244 callb_cpr_t *(*)(flk_ch v\hent void *), void *);
245 void fl k_add_cal | back(fl k_cal | back_t *,

246 callb_cpr_t *(*)(flk_ch_when_t, void *), void *,
247 flk_cal | back_t *);

248 cal Il b_cpr_t *flk_invoke_cal l backs(fl k_cal I back_t *, flk_cb_when_t);

250 /* Zones hooks */
251 extern zone_key_t flock_zone_key;

253 void *fl k_zone_init(zoneid_t);

254 void flk_zone_fini(zoneid_t, void *);

256 /* Clustering hooks */

257 void cl _flk_set_nlmstatus(int nlmd, flk_nlmstatus_t nlmstate);
258 void cl _flk_renove_l ocks_by_sysid(int sysid);

259 int cl _flk_has_renote_| ocks_for nImd(struct vnode *vp, int nimd);
260 void cl _fl k_change_nl m state_t o_unknown(int nl nid);

261 void cl _fl k_del ete_pxfs_l ocks(struct vfs *vfsp, int pxfsid);
262 #endi f /* _KERNEL */

264 #ifdef __cplusplus
265 }
__unchanged_portion_onitted_

new usr/src/ uts/ comon/sys/share. h

R R R R

2135 Sun Aug 25 23:51:23 2013
new usr/src/uts/comon/sys/share. h
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governing perm ssions
11 * and limtations under the License.

12 *

13 * Wen distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * If applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [nane of copyright owner]
18 =

19 * CDDL HEADER END
20 */
21 /*

22 * Copyright 2011 Nexenta Systenms, Inc. Al rights reserved.
*
/

24 | *

25 * Copyright 2008 Sun Mcrosystems, Inc. Al rights reserved.
26 * Use is subject to license terns.

27 =/

29 #ifndef _SYS SHARE H
30 #define _SYS_SHARE H
32 #include <sys/types. h>

34 #ifdef _ _cplusplus
35 extern "C' {
36 #endif

38 /*
39 * Maxinmum size of a shrlock owner.
*

40 Mist be | arge enough to handl e a netobj.
41 */

42 #define MAX_SHR_OWNER_LEN 1024

44 | *

45 * Contents of shrlock owner field for |ocal share requests
*/

47 struct shr_l ocowner {

48 pid_t sl _pid;
49 I nt sl_id;
50 }

7’ nchanged_portion_omitted_
66 #if defined(KERNEL)
67 struct flock64;

69 extern int add_share(struct vnode *, struct shrlock *);
70 extern int del _share(struct vnode *, struct shrlock *);
71 extern void cl eanshares(struct vnode *, pid_t);

new usr/ src/ uts/ comon/sys/share. h

72 extern void cleanshares_by_sysid(struct vnode *, int32_t);
73 extern int shr_has_renote_shares(vnode_t *, int32_t);

74 extern int proc_has_nbmand_share_on_vp(vnode_t *, pid_t);
75 #endif /* _KERNEL */

77 #ifdef _ cplusplus

__unchanged_portion_omtted_

new usr/src/uts/intel/Mkefile.intel.shared

R R R R

16919 Sun Aug 25 23:51:24 2013
new usr/src/uts/intel/Mkefile.intel.shared
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1 # CDDL HEADER START
2 #
3 # The contents of this file are subject to the terms of the
4 # Common Devel opnent and Distribution License (the "License")
5 # You may not use this file except in conpliance with the License.
6 #
7 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
8 # or http://ww.opensol aris.org/os/licensing.
9 # See the License for the specific |anguage governi ng permni ssions
10 # and limtations under the License.
11 #
12 # When distributing Covered Code, include this CDDL HEADER in each
13 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
14 # |f applicable, add the followi ng below this CDDL HEADER, with the
15 # fields enclosed by brackets "[]" replaced with your own identifying
16 # information: Portions Copyright [yyyy] [nane of copyright owner]
17 #
18 # CDDL HEADER END
19 #
21 # Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
22 # Copyright (c) 2012 Nexenta Systens, Inc. Al rights reserved.
24 #
25 # This makefile contains the conmon definitions for all intel
26 # i npl ement ati on architecture independent nodul es.
27 #
29 #
30 # Machi ne type (inplenmentation architecture):
31 #
32 PLATFORM = i 86pc
34 #
35 # Everybody needs to know how to build nodstubs.o and to | ocate unix.o.
36 # Note that unix.o nmust currently be selected from anbng the possible
37 # "inplementation architectures". Note further, that unix.o is only
38 # used as an optional error check for undefines so (theoretically)
39 # any "inplenentation architectures" could be used. W choose i86pc
40 # because it is the reference port.
#

42 UNI X_DI R
43 GENLIB_DI R
44 | PDRV_DI R

$(UTSBASE) / i 86pc/ uni x
$(UTSBASE) / i nt el / genuni x
$(UTSBASE) /intel /ip

45 MODSTUBS_DI R $(UNI X_DI R)

46 DSF_DI R $(UTSBASE) / $(PLATFORM) / genassym

47 LINTS_ DR $(OBIS_DI R

48 LINT_LIB DIR $(UTSBASE)/intel /lint-1ibs/$(0BIS DI R)

50 UNI X_O = $(UNI X DIR)/$(0BJS_DI R/ unix.o

51 GENLIB = $(CGENLIB_ DIR)/ $(OBJS_DI R)/ | i bgenuni x. so

52 MODSTUBS_O = $(MODSTUBS DI R)/ $(0BJS DI R)/ nodst ubs. o

53 LINT_LIB = $(UTSBASE)7i 86pc/lint-Tibs/$(0OBIJS DIR)/ -lunix.In
54 GEN_LINT_LIB = $(UTSBASE)/intel/lint-1ibs/$(0OBIS D R)/ Igenunix.ln
56 #

57 # I nclude the nakefiles which define build rule tenplates, the

58 # collection of files per nodule, and a few specific flags. Note

new usr/src/uts/intel/Mkefile.intel.shared

108

110
111
112

114
115
116

118
119
120

122
123
124

that order is significant, just as with an include path. The
first build rule tenplate which matches the files name will be
used. By including these in order from nbst machi ne dependent
to nost machi ne independent, we allow a machi ne dependent file
to be used in preference over a machine i ndependent version

(Such as a machi ne specific optimzation, which preserves the
interfaces.)

#
i
i

ncl ude $(UTSTREE)/intel/Makefile.files
ncl ude $(UTSTREE)/conmon/ Makefile.files
#
#o----- TRANSI TIONAL SECTION - - - - oo m s o e m e e oo e e
#
#
Not everything which *shoul d* be a nodule is a nodule yet. The
following is a list of such objects which are currently part of
genuni x but which nmight soneday beconme knobds. This nust be
defined before we include Makefile.uts, or else genunix's build
won't be as parallel as we mght I|ike.
#
NOT_YET_KMODS = $(OLDPTY_OBJS) $(PTY_OBJS) $(VCONS_CONF_0BJS) $(MOD_0BJS)
#
#----- END OF TRANSI TIONAL SECTION --------mmmmmm o
#
I ncl ude machi ne i ndependent rules. Note that this does not inply
that the resulting nodule fromrules in Makefile.uts is machine
i ndependent. Only that the build rules are machi ne i ndependent.
#
i ncl ude $(UTSBASE)/ Makefile.uts
#
The fol l owing nust be defined for all inplenmentations:
#
MODSTUBS = $(UTSBASE)/intel/ia32/ m /nodstubs. s
#
Define supported builds
#
DEF_BUI LDS = $(DEF_BU LDS64) $(DEF_BUI LDS32)
ALL_BUI LDS = $(ALL_BUI LDS64) $(ALL_BUI LDS32)
x86 or anmd64 inline tenplates
#
I NLI NES_32 = $(UTSBASE)/intel /ia32/m /ia32.il
I NLI NES_64 = $(UTSBASE) /i ntel / and64/ m / and64. i |
I NLI NES += $(1 NLI NES_$(CLASS))
#
kernel -specific optimzations; override default in Makefile. naster
#
CFLAGS_XARCH_32 $(i 386_CFLAGS)

CFLAGS_XARCH_64
CFLAGS_XARCH

$(ami64_CFLAGS)
$(CFLAGS_XARCH_$(CLASS))

COPTFLAG 32 = $(COPTFLAG)

COPTFLAG 64 = $(COPTFLAG54)

COPTI M ZE = $(COPTFLAG $(CLASS))
CFLAGS = $(CFLAGS

CFLAGS += $(COPTI M ZE)

CFLAGS $(I'NLINES) -D ASM | NLI NES

new usr/src/uts/intel/Mkefile.intel.shared

125
126
127
128
129

131
132
133

135

137
138
139
140

142
143
144
145
146
147
148
149
150
151
152

154
155
156
157
158

160
161

163
164
165
166
167

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

CFLAGS
CFLAGS
CFLAGS
CFLAGS
CFLAGS

ASFLAGS XARCH 32
ASFLAGS_XARCH 64
ASFLAGS_XARCH

ASFLAGS

3+ 3

BASE_I NS DI R

Speci al

HHHHHHR

DEBUG DEFS_0BJ32
DEBUG_DEFS_DBG32
DEBUG_DEFS_OBJ64
DEBUG_DEFS_DBG64
DEBUG_DEFS

DEBUG_COND_OBJ32
DEBUG_COND_DBG32
DEBUG_COND_OBJ64
DEBUG_COND_DBGG4
| F_DEBUG_OBJ

+= $(CCMODE)

+= $(SPACEFLAG)
+= $(CCUNBOUND)
+= $(CFLAGS_ut s)
+= -xstrconst

$(i 386_ASFLAGS)
$(ami6d_ASFLAGS)
$(ASFLAGS_XARCH_$(CLASS))

+= $(ASFLAGS_XARCH)

Define the base directory for installation

= $(ROOT)

Debuggi ng | evel

know edge of which special debugging options affect which

file is used to optimze the build if these flags are changed

- DDEBUG

- DDEBUG
$(DEBUG_DEFS_$(BUI LD_TYPE))

:sh = echo \\043
Tsh = echo \\043
$(DEBUG_COND_$(BUI LD_TYPE)) $(OBJS_DI R)/

$(| F_DEBUG OBJ)syscall .o 1= DEBUG DEFS += - DSYSCALLTRACE
$(| F_DEBUG 0BJ) cl ock. o = DEBUG_DEFS += - DKSLI CE=1
#

Col l ect the preprocessor definitions to be associated with *all*
files.

#

ALL_DEFS = $(DEBUG_DEFS) $(OPTI ON_DEFS)

#

The kernel s nodul es which are "inplenentation architecture”

specific for this machine are enunerated bel ow. Note that nost
of these nodul es nust exist (in one formor another) for each
architecture.

#

Common Drivers (usually pseudo drivers) (/kernel/drv)

DRV_KMODS are built both 32-bit and 64-bit

DRV_KMODS_32 are built only 32-bit

DRV_KMODS_64 are built only 64-bit

#

DRV_KMODS += aac

DRV_KMODS += aggr

DRV_KMODS += ahci

DRV_KMODS += and64_gart

DRV_KMODS += anr

DRV_KMODS += agpgart

DRV_KMODS += srn

DRV_KMODS += agpt ar get

DRV_KMODS += arn

DRV_KMODS += arp

DRV_KMODS += asy

new usr/src/uts/intel/Mkefile.intel.shared

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS_32
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS_32
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS

+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=

+= d

+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=

+=
+=

+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=

ata

ath

atu

audi o

audi 01575
audi 0810
audi ocm
audi ocm hd
audi oermu10k
audi oens
audi ohd
audi oi xp
audi ol s
audi opl6x
audi opci
audi osol o
audi ot s
audi ovi a823x
audi ovi a97

bl kdev
bge

bof i

bpf

bri dge
bscbus
bscv
chxge
cxgbe

nt xn
nmyri 10ge
cl one
cndk

cn
conskbd
consns
cpui d
cpunex
crypto
crypt oadm

dl pi stub
dnet
dunp

ecpp
enm xs

nt el _nb5000
ntel _nhm

o

i p6

i pf

i pnet

i ppctl

i psecah
i psecesp

new usr/src/uts/intel/Mkefile.intel.shared

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS

+=
+=

+= |
+=
+=
+=

+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=

i pw
i wh

kb8042
keysock
kssl

kst at
ksyms
kndb
Ilecl

| ofi

| og

| ogi ndmux
nega_sas
nc- anmd

+= mm

+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=

nmouse8042
npt _sas
nT _sas
m

nca

nsnb

nul I driver
nv_sata
nxge

oce
openeepr
pci _pci
pcic

pci eb
physmem
pcan

new usr/src/uts/intel/Mkefile.intel.shared

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

371
372
373
374
375
376
377
378
379
380

382
383
384

386
387
388

DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS
DRV_KMODS

+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=

sof t mac
spdsock
snbsrv
snp
sppp
spppt un
srpt

st

Sy
sysevent
sysnsg
tcp
tcp6

t

t nf

tpm
trill
udp
udp6
ucode
ural
uat h
urtw
vgat ext
heci
vni c

pppt
ncall nsctl sdbc nskern

ii rdc rdcsrv rdcstub

i ptun

$(CLOSED_BUI LD) CLOSED_DRV_KMODS
$(CLOSED_BUI LD) CLOSED_DRV_KMODS
$(CLOSED_BUI LD) CLOSED_DRV_KMODS
$(CLOSED_BUI LD) CLOSED_DRV_KMODS
$(CLOSED_BUI LD) CLOSED_DRV_KMODS
$(CLOSED_BUI LD) CLOSED_DRV_KMODS
$(CLOSED_BUI LD) CLOSED_DRV_KMODS
$(CLOSED_BUI LD) CLOSED_DRV_KMODS
$(CLOSED_BUI LD) CLOSED_DRV_KMODS
$(CLOSED_BUI LD) CLOSED_DRV_KMODS

#

Common code drivers

#

DRV_KMODS
DRV_KMODS
DRV_KMODS

+=
+=
+=

af e
at ge
bf e

SV

= bnt

glm

= intel _nhmex

cpgary3

= marvel | 88sx

bcm sat a

= nment est

npt

= atiatom

acpi _toshi ba

new usr/src/uts/intel/Mkefile.intel.shared

389 DRV_KMODS += dnfe

390 DRV_KMODS += e1000g

391 DRV_KMODS += efe

392 DRV_KMODS += el xl

393 DRV_KMODS += hne

394 DRV_KMODS += nxfe

395 DRV_KMODS += nge

396 DRV_KMODS += pcn

397 DRV_KMODS += rge

398 DRV_KMODS +=rtls

399 DRV_KMOIDS += sfe

400 DRV_KMODS += anmd811ls
401 DRV_KMODS += igb

402 DRV_KMODS += ipm

403 DRV_KMODS += iprb

404 DRV_KMODS += i xgbe

405 DRV_KMODS += vr

406 $(CLOSED BUI LD) CLOSED DRV_KMODS += i xgb
408 #

409 # Virtio drivers

410 #

412 # Virtio core

413 DRV_KMODS += virtio

415 # Virtio block driver

416 DRV_KMODS += vi obl k

418 #

419 # DTrace and DTrace Providers
420 #

421 DRV_KMODS += dtrace

422 DRV_KMODS += fbt

423 DRV_KMODS += | ockst at
424 DRV_KMODS += profile
425 DRV_KMODS += sdt

426 DRV_KMODS += systrace
427 DRV_KMODS += fasttrap
428 DRV_KMODS += dcpc

430 #

431 # I/0 framework test drivers
432 #

433 DRV_KMODS += pshot

434 DRV_KMODS += gen_drv
435 DRV_KMODS += tvhci tphci tclient
436 DRV_KMODS += enul 64

438 #

439 # Machi ne Specific Driver Mdules (/kernel/drv):
440 #

441 DRV_KMODS += options
442 DRV_KMODS += scsi _vhci
443 DRV_KMODS += pnts

444 DRV_KMODS += pncs8001fw
445 DRV_KMODS += arcmsr

446 DRV_KMODS += fcp

447 DRV_KMODS += fcip

448 DRV_KMODS += fcsm

449 DRV_KMODS += fp

450 DRV_KMODS +=qlc

451 DRV_KMODS += iscsi

453 #

454 # PCMCI A speci fic nodul e(s)

new usr/src/uts/intel/Makefile.intel.shared
455 #

456 DRV_KMODS += pcs

457 DRV_KMODS += pcata

458 M SC_KMODS += car dbus
459 $(CLOSED_BUI LD) CLOSED_DRV_KMODS += pcser
461 #

462 # SCSI Encl osure Services driver
463 #

464 DRV_KMODS += ses

466 #

467 # USB speci fic nodul es
468 #

469 DRV_KMODS += hid

470 DRV_KMODS += hwar ¢ hwahc
471 DRV_KMODS += hubd

472 DRV_KMODS += uhci

473 DRV_KMODS += ehci

474 DRV_KMODS += ohci

475 DRV_KMODS += usb_md
476 DRV_KMODS += usb_ia

477 DRV_KMODS += scsa2usb
478 DRV_KMODS += usbprn

479 DRV_KMODS += ugen

480 DRV_KMODS += ushser

481 DRV_KMODS += ushsacm
482 DRV_KMODS += usbsksp
483 DRV_KMODS += usbsprl

484 DRV_KMODS += usb_ac

485 DRV_KMODS += usb_as

486 DRV_KMODS += ushskel

487 DRV_KMODS += ushvc

488 DRV_KMODS += usbftdi

489 DRV_KMODS += wusb_df

490 DRV_KMODS += wusb_ca
491 DRV_KMODS += usbhecm

493 $(CLOSED_BUI LD) CLOSED _DRV_KMODS += ushser _edge

495 #

496 # 1394 nodul es

497 #

498 M SC_KMODS += 51394 sbp2

499 DRV_KMODS += hci 1394 scsal394
500 DRV_KMODS += av1394

501 DRV_KMODS += dcaml394

503 #

504 # I nfini Band pseudo drivers

505 #

506 DRV_KMODS +=ib ibp eibnx eoib rdsib sdp iser daplt hernon tavor sol_ucma
507 DRV_KMODS += sol _umad

509 #

510 # LVM nodul es

511 #

512 DRV_KMODS += md

513 M SC_KMODS += nd_stripe mi_hotspares md_mirror nd_raid nd_trans nd_notify
514 M SC_KMODS += md_sp

516 #

517 # Brand nodul es

518 #

519 BRAND_KMODS += snl_brand s10_brand

new usr/src/uts/intel/Mkefile.intel.shared 9 new usr/src/uts/intel/Mkefile.intel.shared

521 # 587 M SC_KMODS += cmb
522 # Exec Cl ass Mdul es (/kernel/exec): 588 M SC_KMODS += consconfig
523 # 589 M SC_KMOIDS += ctf
524 EXEC_KMODS += el fexec intpexec shbinexec javaexec 590 M SC_KMOIDS += dadk
591 M SC_KMIDS += dcopy
526 # 592 M SC_KMODS +=dl's
527 # Schedul i ng Cl ass Mdul es (/kernel/sched): 593 M SC_KMODS += drm
528 # 594 M SC_KMODS += fssnap_if
529 SCHED_KMODS += |A RT TS RT_DPTBL TS _DPTBL FSS FX FX_DPTBL SDC 595 M SC_KMIDS += gda
596 M SC_KMODS += gld
531 # 597 M SC_KMODS += hi dpar ser
532 # File System Modul es (/kernel/fs): 598 M SC_KMOIDS += hook
533 # 599 M SC_KMIDS += hpcsvc
534 FS_KMODS += autofs cachefs ctfs dcfs dev devfs fdfs fifofs hsfs |ofs 600 M SC_KMODS += ibcm
535 FS_KMODS += mtfs namefs nfs objfs zfs zut 601 M SC_KMODS += i bdm
536 FS_KMODS += pcfs procfs sockfs specfs tnpfs udfs ufs sharefs 602 M SC_KMODS += i bdma
537 FS_KMODS += snbfs 603 M SC_KMIDS += i bnf
604 M SC_KMODS += i bt
539 # 605 M SC_KMODS += idm
540 # Streans Modul es (/kernel/strnod): 606 M SC_KMODS += i dmap
541 # 607 M SC_KMODS += iommulib
542 STRMOD_KMODS += buf mod connl d dedunp | dterm pckt pfnod pi penod 608 M SC_KMODS += ipc
543 STRMOD_KMODS += ptemredirnmod rpcnod rlinod tel nod tinod 609 M SC_KMODS += kbtrans
544 STRMOD_KMODS += spppasyn spppconp 610 M SC_KMODS += kcf
545 STRMOD_KMODS += tirdw ttconpat 611 M SC_KMODS += kgssapi
546 STRMOD_KMODS += usbkbm 612 M SC_KMODS += kmech_dummy
547 STRMOD_KMODS += ushms 613 M SC_KMODS += kmech_kr b5
548 STRMOD_KMODS += usbwem 614 M SC_KMODS += ksocket
549 STRMOD_KMODS += usb_ah 615 M SC_KMODS += mac
550 STRMOD_KMODS += dr conpat 616 M SC_KMODS += mi
551 STRMOD_KMODS += crypt nod 617 M SC_KMODS += mM fw
552 STRMOD_KMODS += vui d2ps2 618 M SC_KMODS += net 80211
553 STRMOD_KMODS += vui d3ps2 619 M SC_KMODS += nf s_dl boot
554 STRMOD_KMODS += vui dnBp 620 M SC_KMODS += nfssrv
555 STRMOD_KMODS += vui dnip 621 M SC_KMODS += neti
556 STRMOD_KMODS += vui dnbp 622 M SC_KMODS += pci _autoconfig
623 M SC_KMODS += pcicfg
558 # 624 M SC_KMODS += pci hp
559 # " Systemi Modul es (/kernel/sys): 625 M SC_KMODS += pcncl a
560 # 626 M SC_KMODS += rpcsec
561 SYS_KMODS += c2audit 627 M SC_KMODS += rpcsec_gss
562 SYS_KMODS += doorfs 628 M SC_KMODS += rsnops
563 SYS_KMODS += exacct sys 629 M SC_KMODS += sata
564 SYS_KMODS += inst_sync 630 M SC_KMODS += scsi
565 SYS_KMODS += kai o 631 M SC_KMODS += sda
566 SYS_KMODS += nBgSys 632 M SC_KMODS += sol _ofs
567 SYS_KMODS += pi pe 633 M SC_KMODS += spuni
568 SYS _KMODS += portfs 634 M SC_KMODS += strategy
569 SYS_KMODS += pset 635 M SC_KMODS += strplunb
570 SYS_KMODS += sensys 636 M SC_KMODS += tem
571 SYS_KMODS += shmsys 637 M SC_KMODS += tlinod
572 SYS_KMODS += sysacct 638 M SC_KMODS += usba usbalO usbs49_fw
573 SYS_KMODS += acctctl 639 M SC_KMODS += scsi _vhci _f _sym hds
640 M SC_KMODS += scsi_vhci _f_sym
575 # 641 M SC_KMODS += scsi_vhci _f_tpgs
576 # "M sc’ Modul es (/kernel/m sc) 642 M SC_KMODS += scsi _vhci _f _asym sun
577 # M SC_ KMODS are built both 32-bit and 64-bit 643 M SC_KMODS += scsi_vhci _f_tape
578 # M SC_KMODS_32 are built only 32-bit 644 M SC_KMODS += scsi_vhci _f_tpgs_tape
579 # M SC_KMODS_64 are built only 64-bit 645 M SC_KMODS += fctl
580 # 646 M SC_KMODS += enml xs_fw
581 M SC_KMODS += ac97 647 M SC_KMODS += gl c_fw 2200
582 M SC_KMIDS += acpi ca 648 M SC_KMODS += ql c_fw_ 2300
583 M SC_KMODS += agpnast er 649 M SC_KMODS += gl c_fw_ 2400
584 M SC_KMODS += bi gnum 650 M SC_KMODS += gl c_fw_2500
585 M SC_KMODS += boot dev 651 M SC_KMODS += qlc_fw 6322
586 M SC_KMODS += busra 652 M SC_KMODS += gl c_fw_ 8100

new usr/src/uts/intel/Makefile.intel.shared 11 new usr/src/uts/intel/Makefile.intel.shared 12
653 M SC_KMODS += hwal480_fw
654 M SC_KMODS += uat hfw 719 #
655 M SC_KMODS += uwba 720 # Per f ormance Counter BackEnd nodul es (/usr/kernel/pcbe)
721 #
657 M SC_KMODS += kl mmod ki nops 722 PCBE_KMODS += pl123_pcbe p4_pchbe opteron_pche core_pcbe
657 $(CLOSED_BUI LD) CLOSED_M SC_KMODS += kIl mmod kI nops 724 #
659 $(CLOSED_BUI LD) CLOSED_M SC_KMODS += scsi _vhci _f_asym | si 725 # MAC- Type Pl ugin Mbdul es (/kernel/nmac)
660 $(CLOSED_BUI LD) CLOSED_M SC_KMODS += scsi _vhci _f_asym ent 726 #
661 $(CLOSED_BUI LD) CLOSED_M SC_KMODS += scsi_vhci _f_sym ent 727 NMAC_KMODS += mac_6t o4
728 MAC_KMODS += mac_et her
663 # 729 MAC_KMODS += mac_i pv4
664 # Sof t ware Cryptographic Providers (/kernel/crypto): 730 MAC_KMODS += mac_i pv6
665 # 731 MAC_KMODS += mac_wifi
666 CRYPTO_KMODS += aes 732 MAC_KMODS += mac_ib
667 CRYPTO_KMODS += arcfour
668 CRYPTO_KMODS += bl owfish 734 #
669 CRYPTO_KMCODS += des 735 # socketnmod (kernel /socket nod)
670 CRYPTO_KMODS += ecc 736 #
671 CRYPTO_KMODS += nmd4 737 SOCKET_KMODS += sockpfp
672 CRYPTO_KMODS += md5 738 SOCKET_KMODS += socksctp
673 CRYPTO_KMCODS += rsa 739 SOCKET_KMODS += socksdp
674 CRYPTO_KMODS += shal 740 SOCKET_KMODS += sockrds
675 CRYPTO_KMODS += sha2 741 SOCKET_KMODS += kssl f
676 CRYPTO_KMODS += swrand
743 #
678 # 744 # ki conv nodul es (/kernel/kiconv):
679 # I P Policy Mdules (/kernel/ipp) 745 #
680 # 746 Kl CONV_KMODS += ki conv_enea ki conv_ja kiconv_ko kiconv_sc kiconv_tc
681 | PP_KMODS += dl cosnk
682 | PP_KMODS += fl owacct 748 #
683 | PP_KMODS += i pgpc 749 # " Dacf’ Mbdul es (/kernel/dacf):
684 | PP_KMODS += dscpnk 750 #
685 | PP_KMODS += tokennt 751 DACF_KMODS += net _dacf
686 | PP_KMODS += tswiclnt
688 #
689 # generic-uni x nodul e (/kernel/genunix):
690 #
691 GENUNI X_KMODS += genuni x
693 #
694 # SWS Testing Mdul es (/kernel/strnod):
695 #
696 # These are streans and driver npdul es which are not to be
697 # delivered with a rel eased system However, during devel opnent
698 # it is convenient to build and install the SWS kernel nodul es.
699 #
700 SWS_KMODS += I nmodb | node | nodr | nodt svvslo tidg tivc tmux
702 $(CLOSED_BUI LD) SWS += SVVS
704 #
705 # Mbdul es eXcl uded from the product:
706 #
707 $(CLOSED_BUI LD) CLOSED_XMODS = \
708 adpu320 \
709 bnx \
710 bnxe \
711 | si mega \
712 sdpi b
715 #
716 # " Dacf’ Modul es (/kernel/dacf):
717 #

new usr/src/uts/intel/kl mod/ Makefile

R R R R

2101 Sun Aug 25 23:51:25 2013
new usr/src/uts/intel/kl mod/ Makefile
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbi seda@lel phi x. con»

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opment and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww.opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perm ssions
11 # and limtations under the License.

12 #

13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # |If applicable, add the followi ng bel ow this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

21 #

22 # Copyright 2006 Sun M crosystens, Inc. Al rights reserved.

23 # Use is subject to license terns.

24 #

25 # Copyright (c) 2012 by Del phix. Al rights reserved.

26 #

27 # This makefile drives the production of the network | ock manager server
28 # speci fic kernel nodule.

29 #

30 # intel inplenmentation architecture dependent

31 #

33 #

34 # Path to the base of the uts directory tree (usually /usr/src/uts).
35 #

36 UTSBASE = ../..

38 #

39 # Define the nodul e and object file sets.

40 #

41 MODULE = kI nmod

42 OBJECTS = $(KLMVOD_OBJS: %=$(OBJS DI R)/ %

43 LINTS = $(KLMVOD_OBJS: % 0=$(LI NTS DI R)/ % | n)

44 ROOTMODULE = $(ROOT_M SC DI R) / $(MODULE)

46 #

47 # I ncl ude comon rul es.

48 #

49 include $(UTSBASE)/intel/Makefile.intel

51 #

52 # Define targets

53 #

54 ALL_TARGET
55 LI NT_TARCET
56 | NSTALL_TARGET

$(Bl NARY)
$(MODULE) . | i nt
$(Bl NARY) $(ROOTMODULE)

58 #

new usr/src/uts/intel/kl mod/ Makefile

59 # Overri des.

60 #

61 LDFLAGS += -dy -Nstrnod/rpcnod -Nfs/nfs
62 LDFLAGS += - M $(UTSBASE) / common/ kI ml mapfi | e- nod
63 CTFMRGFLAGS += -f

65 #

66 # Code generated by rpcgen triggers the -Ww tch warning.
67 #

68 CERRWARN += -_gcc=-Who-sw tch

70 #

71 # Default build targets.

72 #

73 . KEEP_STATE:

75 def: $(DEF_DEPS)

77 all: $(ALL_DEPS)

79 cl ean: $(CLEAN_DEPS)

81 cl obber: $(CLOBBER_DEPS)

83 lint: $(LI NT_DEPS)

85 nodlintlib: $(MODLI NTLI B_DEPS)

87 clean.lint: $(CLEAN_LI NT_DEPS)

89 install: $(1 NSTALL_DEPS)

91 #

92 # I ncl ude common targets.

93

#
94 include $(UTSBASE)/intel/Makefile.targ

new usr/src/uts/intel/kl mops/ Makefile

R R R R

2011 Sun Aug 25 23:51:26 2013
new usr/src/uts/intel/Kkl mops/ Makefile
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbi seda@lel phi x. con»

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opment and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww.opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perm ssions
11 # and limtations under the License.

12 #

13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # |If applicable, add the followi ng bel ow this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

21 #

22 # Copyright 2006 Sun M crosystens, Inc. Al rights reserved.

23 # Use is subject to license terns.

24 #

25 # Copyright (c) 2012 by Del phix. Al rights reserved.

26 #

27 # This makefile drives the production of the network | ock manager client
28 # si de nodul e.

29 #

30 # intel inplenmentation architecture dependent

31 #

33 #

34 # Path to the base of the uts directory tree (usually /usr/src/uts).
35 #

36 UTSBASE = ../..

38 #

39 # Define the nodul e and object file sets.

40 #

41 MODULE = kil nops

42 OBJECTS = $(KLMOPS_OBJS: %=$(OBJS DI R)/ %

43 LINTS = $(KLMOPS_OBJS: % 0=$(LI NTS DI R)/ % | n)

44 ROOTMODULE = $(ROOT_M SC DI R) / $(MODULE)

46 #

47 # I ncl ude comon rul es.

48 #

49 include $(UTSBASE)/intel/Makefile.intel

51 #

52 # Define targets

53 #

54 ALL_TARGET
55 LI NT_TARCET
56 | NSTALL_TARGET

$(Bl NARY)
$(MODULE) . | i nt
$(Bl NARY) $(ROOTMODULE)

58 #

new usr/src/uts/intel/Kklmops/ Makefile

59 # Overri des.

60 #

61 LDFLAGS += -dy -Nstrnod/rpcnmod - Nf s/ nfs - Nm sc/kl mod
62 LDFLAGS += - M $(UTSBASE) / common/ kI ml mapfi | e- ops
63 CTFMRGFLAGS += -f

65 #

66 # Default build targets.

67 #

68 . KEEP_STATE:

70 def: $(DEF_DEPS)

72 all: $(ALL_DEPS)

74 cl ean: $(CLEAN_DEPS)

76 cl obber: $(CLOBBER_DEPS)

78 lint: $(LI NT_DEPS)

80 nodlintlib: $(MODLI NTLI B_DEPS)

82 clean.lint: $(CLEAN_LI NT_DEPS)

84 install: $(| NSTALL_DEPS)

86 #

87 # I ncl ude common targets.

88

#
89 include $(UTSBASE)/intel/Makefile.targ

new usr/src/ uts/sparc/ Makefil e. sparc. shared

R R R R

13709 Sun Aug 25 23:51:27 2013
new usr/src/uts/sparc/ Makefil e. sparc. shared
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbiseda@iel phix. com

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

#

CDDL HEADER START

#

The contents of this file are subject to the terns of the

Conmon Devel opment and Distribution License (the "License")

You may not use this file except in conpliance with the License.

#

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE

or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing pernissions

and limtations under the License.

#

When distributing Covered Code, include this CDDL HEADER i n each

file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.

| f applicable, add the follow ng bel ow this CDDL HEADER, with the

fields enclosed by brackets "[]" replaced with your own identifying

information: Portions Copyright [yyyy] [nane of copyright owner]

#

CDDL HEADER END

#

Copyright (c) 2005, 2010, Oacle and/or its affiliates. Al rights reserved.
#

This makefile contains the conmon definitions for all sparc

i mpl ementation architecture independent nodul es.

#

#

Define supported builds

#

DEF_BUI LDS = $(DEF_BUI LDS64)

ALL_BUI LDS = $(ALL_BUI LDS64)

#

Everybody needs to know how to build npdstubs.o and to | ocate unix.o.
Note that unix.o must currently be selected fromanong the possible
"inplementation architectures". Note further, that unix.o is only
used as an optional error check for undefines so (theoretically)
any "inplenentation architectures" could be used. W choose sundu
because it is the reference port.

#

UNI X_DI R = $(UTSBASE) / sun4u/ uni x

GENLI B_DI R = $(UTSBASE) / sun4u/ genuni x

| PDRV_DI R = $(UTSBASE) / sparc/ip

MODSTUBS_DI R = $(UNI X_DI R

DSF_DI R = $(UNI X_DI R)

LINTS DI R :$(OBJS DI R)

LINT_LIB DR $(UTSBASE) / sparc/lint-1ibs/$(0BIS_DIR)

UNI X_O = $(UNI X_DI R)/ $(OBIS DI R)/ uni x. o

MODSTUBS_O = $(MODSTUBS_DI R)/ $(0BJS DI R) / modst ubs. o

GENLI B = $(UTSBASE) 7sun4u/lint-Tibs/$(0BJS DI R)/Iibgenunix. so
LI NT_LI B_32 $(UTSBASE) / sund4u/ lint-1ibs/$(0BIS D R)/ -lunix.In

GEN LINT_LIB 32 $(UTSBASE) / sun4u/ lint-1ibs/$(0BIS D R)/ -l genunix.In

new usr/src/ uts/sparc/ Makefil e. sparc. shared

59
60

62
63

65
66

68
69

114

116
117
118

122
123
124

LINT_LI B 64
GEN LINT_LI B_64

$(UTSBASE) / sun4u/ | i nt -
$(UTSBASE) / sun4u/ | i nt -

libs/$(OBIS DIR)/I1ib-I
libs/$(OBIS DIR)/I1ib-I

LINT_LIB = $(LINT_LI B_$(CLASS))

GEN_LINT_LIB = $(GEN_LINT_LI B_$(CLASS))

LI NT32_DI RS = $(LI NT32_BUI LDS: %$(UTSBASE) / sparc/lint-1ibs/ %

LI NT32_FI LES = $(LINT32_DIRS: %% | | i b- 1 $(MODULE) . | n)

LI NT64_DI RS = $(LINT64_BUI LDS: %$(UTSBASE) / sparc/lint-1ibs/%

LI NT64_FI LES = $(LINT64 DI RS: %% | |'i b-1 $(MODULE) . | n)

#

I nclude the makefiles which define build rule tenplates, the

collection of files per nodule, and a few specific flags. Note
that order is significant, just as with an include path. The

first build rule tenplate which nmatches the files nane will be
used. By including these in order fromnost nachi ne dependent

to nost nmachi ne i ndependent, we allow a machi ne dependent file
to be used in preference over a nachine independent version

(Such as a machi ne specific optimzation, which preserves the

interfaces.)

#

i ncl ude $(UTSBASE)/sparc/ Makefile.files

i ncl ude $(UTSBASE)/sparc/v9/ Makefile.files

i ncl ude $(UTSTREE)/ sun/ Makefile.files

i ncl ude $(UTSTREE)/ common/ Makefile.files

#

#o----- TRANSI TIONAL SECTION - - - - - o m oo oo m oo m oo e
#

#

Not everything which *should* be a nodule is a nodule yet. The
following is a list of such objects which are currently part of
genuni x but which nmight soneday becone knods. Thi s nust be

defined before we include Makefile.uts, or else genunix's build
won't be as parallel as we might I|ike.

#

NOT_YET_KMODS = $(OLDPTY_OBJS) $(PTY_OBJS) $(VCONS_CONF_0BJS) $(MOD_0BJS)
#

#----- END OF TRANSI TIONAL SECTION --------mmmmmm o
#

I ncl ude machi ne i ndependent rules. Note that this does not inply
that the resulting nodule fromrules in Makefile.uts is machine
i ndependent. Only that the build rules are nachi ne i ndependent.
#

i ncl ude $(UTSBASE)/ Makefile.uts

#

machi ne specific optimzation, override default in Mkefile. master
#

XARCH_32 = -xarch=v8

XARCH_64 = -nb4

XARCH = $(XARCH_$(CLASS))

COPTI M ZE_32 = -xC3

COPTI M ZE_64 = -xB

COPTI M ZE = $(COPTI M ZE_$(CLASS))

CCMODE = -Xa

CFLAGS_32 = -xcg92

CFLAGS 64 = -xchi p=ul tra $(CCABS32) $(CCREGSYM

CFLAGS = $(CFLAGS_$(CLASS))

new usr/src/ uts/sparc/ Makefil e. sparc. shared

126 CFLAGS += $(XARCH)

127 CFLAGS += $(COPTI M ZE)

128 CFLAGS += $(EXTRA_CFLAGS)

129 CFLAGS += $(XAOPT)

130 CFLAGS += $(INLINES) -D_ASM I NLI NES

131 CFLAGS += $(CCMODE)

132 CFLAGS += $(SPACEFLAG

133 CFLAGS += $(CERRWARN)

134 CFLAGS += $(CTF_FLAGS_$(CLASS))

135 CFLAGS += $(C99MODE)

136 CFLAGS += $(CCUNBOUND)

137 CFLAGS += $(CCSTATI CSYM

138 CFLAGS += $(CC32BI TCALLERS)

139 CFLAGS += $(CCNOAUTO NLI NE)

140 CFLAGS += $(1 ROPTFLAG)

141 CFLAGS += $(CGLOBALSTATI)

142 CFLAGS += - xregs=no% 1 oat

143 CFLAGS += -xstrconst

144 CFLAGS += $(CSOURCEDEBUGFLAGS)

145 CFLAGS += $(CUSERFLAGS)

147 ASFLAGS += $(XARCH)

149 LI NT_DEFS_32 =

150 LI NT_DEFS_64 = -n64

151 LI NT_DEFS += $(LI NT_DEFS_$(CLASS))

153 #

154 # The foll owi ng nmust be defined for all inplenentations:

155 #

156 # MODSTUBS: Mbdul e stubs source file.

157 #

158 MODSTUBS = $(UTSBASE) / spar ¢/ m / nodst ubs. s

160 #

161 # Define the actual specific platforns - obviously none.

162 #

163 MACHI NE_DEFS =

165 #

166 # Debuggi ng | evel

167 #

168 # Speci al know edge of which special debuggi ng options effect which
169 # file is used to optimze the build if these flags are changed.
170 #

171 # XXX: The above coul d possibly be done for nore flags and files, but
172 # is left as an experinment to the interested reader. Be forewarned,
173 # that excessive use could lead to maintenance difficulties.
174 #

175 DEBUG DEFS_0BJ32 =

176 DEBUG DEFS DBG32 = - DDEBUG

177 DEBUG DEFS_OBJ64 =

178 DEBUG_DEFS_DBG64 = - DDEBUG

179 DEBUG DEFS = $(DEBUG_DEFS_$(BUI LD_TYPE))

181 DEBUG _COND_0BJ32 :sh = echo \\043

182 DEBUG_COND_DBG32 =

183 DEBUG COND_0OBJ64 :sh = echo \\043

184 DEBUG_COND_DBGH4 =

185 | F_DEBUG OBJ = $(DEBUG_COND_$(BUI LD_TYPE)) $(OBJS_DI R)/

187 $(1 F_DEBUG OBJ)syscall.o = DEBUG_DEFS += - DSYSCALLTRACE
188 $(| F_DEBUG OBJ) cl ock. o = DEBUG_DEFS += - DKSLI CE=1
190 # Comment these out if you don’t want dispatcher |ock statistics.

new usr/src/ uts/sparc/ Makefil e. sparc. shared

192 # $(| F_DEBUG OBJ)di sp_| ock. o := DEBUG DEFS += -DDI SP_LOCK_STATS
194 #

195 # Col I ect the preprocessor definitions to be associated with *all*
196 # files.

197 #

198 ALL_DEFS = $(MACHI NE_DEFS) $(DEBUG DEFS) $(OPTI ON_DEFS)

199 #

200 #

201 # The kernel s nodul es which are "inplenentation architecture”
202 # specific for this machine are enunerated bel ow. Note that nost
203 # of these npdul es nust exist (in one formor another) for each
204 # architecture.

205 #

206 # Common Drivers (usually pseudo drivers) (/kernel/drv):

207 #

208 DRV_KMODS += aggr arp audio bl bl kdev bofi clone cn conskbd consns cpuid
209 DRV_KMODS += crypto cryptoadm devi nfo dunp

210 DRV_KMODS += dtrace fasttrap fbt lockstat profile sdt systrace dcpc
211 DRV_KMODS += fssnap icnp icnp6 ip ip6 ipnet ipsecah

212 DRV_KMODS += ipsecesp i ptun I1wscn keysock kndb kstat ksyms I1cl
213 DRV_KMODS += | ofi

214 DRV_KMODS += log | ogi ndmux kssl nm nca physmem pm pol | pool

215 DRV_KMODS += pseudo ptc ptmpts ptsl randi sk randomrsmrts sad
216 DRV_KMODS += simet softmac sppp sppptun sy sysevent sysnsg

217 DRV_KMODS += spdsock

218 DRV_KMODS += tcp tcp6 tl tnf ttynux udp udp6 wc w nl ock zcons
219 DRV_KMODS += i ppctl

220 DRV_KMODS += dl d

221 DRV_KMODS += i pf

222 DRV_KMODS += rpcib

223 DRV_KMODS += dl pi stub

224 DRV_KMODS += vnic

225 DRV_KMODS += xge

226 DRV_KMODS += rds

227 DRV_KMODS += rdsv3

228 DRV_KMODS += chxge

229 DRV_KMODS += snbsrv

230 DRV_KMODS += vscan

231 DRV_KMODS += nsnb

232 DRV_KMODS += fm

233 DRV_KMODS += nul l driver

234 DRV_KMODS += bridge trill

235 DRV_KMODS += bpf

236 DRV_KMODS += dca

238 $(CLOSED BUI LD) CLOSED _DRV_KMODS += gl m

239
240
241
242

244
245
246

248
249
250
251
252
253
254
255
256

$(CLOSED_BUI LD) CLOSED_DRV_KMODS += i sp
$(CLOSED_BUI LD) CLOSED_DRV_KMODS += npt
$(CLOSED_BUI LD) CLOSED_DRV_KMODS += qus
$(CLOSED_BUI LD) CLOSED_DRV_KMODS += se

#

Hardware Drivers in common space
#

DRV_KMODS += afe
DRV_KMODS += audi 01575
DRV_KMODS += audi oens
DRV_KMODS += audi ol s
DRV_KMODS += audi op16x
DRV_KMODS += audi opci
DRV_KMODS += audi ots
DRV_KMODS += e1000g
DRV_KMODS += efe

new usr/src/ uts/sparc/ Makefil e. sparc. shared

257
258
259
260
261
262
263
264
265
266
267
268
269
270

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

DRV_KMODS += hxge

DRV_KMODS += nxfe

DRV_KMODS += pcan

DRV_KMODS += pcwl

DRV_KMODS += rge

DRV_KMODS +=rtls

DRV_KMODS += sfe

DRV_KMODS += aac

DRV_KMODS += igb

DRV_KMODS += i xghe

DRV_KMODS += vr

DRV_KMODS += mr_sas

$(CLOSED_BUI LD) CLOSED_DRV_KMIDS += i xgb
DRV_KMODS += yge

#

Machi ne Specific Driver Mdules (/kernel/drv):
#

DRV_KMODS += audi ocs

DRV_KMODS += bge dnfe eri fas hne gfe
DRV_KMODS += openeepr options sd ses st
DRV_KMODS += ssd

DRV_KMODS += ecpp

DRV_KMODS += hid hubd ehci ohci uhci usb_md usb_ia scsa2usb usbprn ugen
DRV_KMODS += usbser usbsacm usbsksp usbsprl
DRV_KMODS += usb_as usb_ac

DRV_KMODS += ushskel

DRV_KMODS += usbvc

DRV_KMODS += usbftdi

DRV_KMODS += wusb_df hwahc hwarc wusb_ca
DRV_KMODS += ushecm

DRV_KMODS += hci 1394 av1394 scsal394 dcanl394
DRV_KMODS += shp2

DRV_KMODS += ib ibp eibnx eoib rdsib sdp iser daplt hernon tavor sol _ucna
DRV_KMODS += sol _umad

DRV_KMODS += pci_pci pcieb pcieb_bcm
DRV_KMODS += 18042 kb8042 npuse8042
DRV_KMODS += fcode

DRV_KMODS += npt_sas

DRV_KMODS += socal

DRV_KMODS += sgen

DRV_KMODS += nyri 10ge

DRV_KMODS += snp

DRV_KMODS += dad

DRV_KMODS += scsi _vhci

DRV_KMODS += fcp

DRV_KMODS += fcip

DRV_KMODS += fcsm

DRV_KMODS += fp

DRV_KMODS +=qlc

DRV_KMODS += gl ge

DRV_KMODS += stnf

DRV_KMODS += stnf_sbd

DRV_KMODS += fct

DRV_KMODS += fcoe

DRV_KMODS += fcoet

DRV_KMODS += fcoei

DRV_KMODS += qlt

DRV_KMODS += iscsit

DRV_KMODS += pppt

DRV_KMODS += ncall nsctl sdbc nskern sv
DRV_KMODS +=ii rdc rdcsrv rdcstub
DRV_KMODS += i scsi

DRV_KMODS += emnl xs

DRV_KMODS += oce

DRV_KMODS += srpt

new usr/src/ uts/sparc/ Makefil e. sparc. shared

323 DRV_KMODS += pnts

324 DRV_KMODS += pncs8001fw

326 $(CLOSED_BUI LD) CLOSED_DRV_KMODS += ifp

327 $(CLOSED_BUI LD) CLOSED_DRV_KMODS += uat a

328 $(CLOSED _BUI LD) CLOSED_DRV_KMODS += usbser _edge

330 #

331 # I/0 framework test drivers

332 #

333 DRV_KMODS += pshot

334 DRV_KMODS += gen_drv

335 DRV_KMODS += tvhci tphci tclient

336 DRV_KMODS += enul 64

338 #

339 # PCMCI A specific nodul e(s)

340 #

341 DRV_KMODS += pcs

342 M SC_KMODS += busra cardbus dada pcnti a

343 DRV_KMODS += pcata

344 DRV_KMODS += pcic

346 $(CLOSED_BUI LD) CLOSED_DRV_KMODS += pcser

348 # Add |vm

349 #

350 DRV_KMODS += md

351 M SC_KMODS += nd_mirror md_stripe nd_hotspares nd_raid nd_trans nd_notify
352 M SC_KMIDS += nd_sp

354 #

355 # Exec Class Mdul es (/kernel/exec):

356 #

357 EXEC_KMODS += aout exec el fexec intpexec shbinexec javaexec
359 #

360 # Schedul i ng C ass Modul es (/kernel/sched):

361 #

362 SCHED_ KMODS += RT TS RT_DPTBL TS _DPTBL | A FSS FX FX_DPTBL SDC
364 #

365 # File System Modul es (/kernel/fs):

366 #

367 FS_KMODS += dev devfs fdfs fifofs hsfs |ofs nanefs nfs pcfs tnpfs zfs
368 FS_KMODS += zut specfs udfs ufs autofs cachefs procfs sockfs mtfs
369 FS_KMODS += ctfs objfs sharefs dcfs snbfs

371 #

372 # Streans Mdul es (/kernel/strnod):

373 #

374 STRMOD_KMODS += buf nod connl d dedunp | dterm ns pckt pfnod

375 STRMOD_KMODS += pi penod ptemredirnod rpcnod rlnod tel nod tinod
376 STRMOD_KMCODS += spppasyn spppconp

377 STRMOD_KMODS += tirdw ttconpat

378 STRMOD_KMODS += usbkbm usbms usbwcm usb_ah

379
380
381

383
384
385
386
387
388

STRMOD_KMODS += dr conpat
STRMOD_KMODS += crypt nod
STRMOD_KMODS += vui d3ps2

#

" System Modul es (/kernel/sys):

#

SYS_KMODS += c2audit

SYS_KMODS += exacct sys

SYS_KMODS += inst_sync kai o nsgsys sensys shnsys sysacct pipe

new usr/src/ uts/sparc/ Makefile.sparc. shared 7 new usr/src/uts/sparc/ Makefile.sparc. shared
389 SYS_KMODS += doorfs pset acctctl portfs 454 CRYPTO_KMODS += shal
455 CRYPTO_KMODS += sha2
391 # 456 CRYPTO_KMODS += swrand
392 # "User’ Mbdul es (/kernel/msc):
393 # 458 #
394 M SC_KMODS += ac97 459 # | P Policy Mdules (/kernel/ipp):
395 M SC_KMODS += bi gnum 460 #
396 M SC_KMODS += consconfig gld ipc nfs_dl boot nfssrv scsi 461 | PP_KMODS += dl cosnk
397 M SC_KMODS += strplunb swapgeneric tlinod 462 | PP_KMODS += fl owacct
398 M SC_KMODS += rpcsec rpcsec_gss kgssapi knmech_dummy 463 | PP_KMODS += i pgpc
399 M SC_KMODS += knech_kr b5 464 | PP_KMODS += dscpmk
400 M SC_KMODS += fssnap_if 465 | PP_KMODS += t okennt
401 M SC_KMODS += hi dparser kbtrans usba usbalO usbs49 fw 466 | PP_KMODS += tswtclnt
402 M SC_KMODS += s1394
403 M SC_KMODS += hpcsve pci hp 468 #
404 M SC_KMODS += rsnops 469 # ' Dacf’ nodul es (/kernel/dacf)
405 M SC_KMODS += kcf 470 DACF_KMODS += consconfi g_dacf
406 M SC_KMODS += ksocket
407 M SC_KMODS += ibcm 472 #
408 M SC_KMODS += i bdm 473 # SWS Testing Mdul es (/kernel/strnod):
409 M SC_KMODS += i bdma 474 #
410 M SC_KMODS += i bnf 475 # These are streans and driver nodul es which are not to be
411 M SC_KMODS += ibtl 476 # delivered with a rel eased system However, during devel opnent
412 M SC_KMODS += sol _ofs A477 # it is convenient to build and install the SWS kernel nodul es.
413 M SC_KMODS += idm 478 #
414 M SC_KMODS += i dmap 479 SVWVWS_KMODS += I nodb | node | nodr | nodt svvslo tidg tive tmux
415 M SC_KMODS += hook
416 M SC_KMODS += neti 481 $(CLOSED_BUI LD) SWS += SVvVs
417 M SC_KMODS += ctf
418 M SC_KMODS += mac dls 483 #
419 M SC_KMODS += cmb 484 # Modul es eXcl uded fromthe product:
420 M SC_KMODS += tem 485 #
421 M SC_KMODS += pcicfg fcodem fcpci 486 XMODS +=
422 M SC_KMODS += scsi_vhci _f_sym scsi _vhci _f _tpgs scsi_vhci _f_asym sun 487 $(CLOSED_BUI LD) CLOSED_XMCDS = \
423 M SC_KMODS += scsi_vhci _f_sym hds 488 sdpi b \
424 M SC_KMODS += scsi_vhci _f_tape scsi_vhci _f_tpgs_tape 489 wsdr v
425 M SC_KMODS += fctl
426 M SC_KMODS += enml xs_fw 491 #
427 M SC_KMODS += gl c_fw_2200 492 # " Dacf’ Modul es (/kernel/dacf):
428 M SC_KMODS += ql c_fw 2300 493 #
429 M SC_KMODS += gl c_fw_2400 494 DACF_KMODS += net _dacf
430 M SC_KMODS += gl c_fw_2500
431 M SC_KMODS += gl c_fw_ 6322 496 #
432 M SC_KMODS += gl c_fw_8100 497 # MAC- Type Pl ugin Mdul es (/kernel/mac)
433 M SC_KMODS += spuni 498 #
434 M SC_KMODS += hwal480_f w uwba 499 MAC_KMODS += mac_6t 04
435 M SC_KMODS += mi 500 MAC_KMODS += mac_et her
501 MAC_KMODS += mac_i pv4
437 M SC_KMODS += kIl mmod Kkl nops 502 MAC_KMODS += nmac_i pv6
503 MAC_KMODS += mac_wi fi
437 $(CLOSED_BUI LD) CLOSED_M SC_KMODS += kl mmod k| nops 504 MAC_KMODS += mac_i b
439 $(CLOSED_BUI LD) CLOSED_M SC_KMODS += scsi_vhci _f_asym | si
440 $(CLOSED BUI LD) CLOSED M SC_KMODS += scsi _vhci _f _asym ent 506 #
441 $(CLCSED_BUI LD) CLOSED_M SC_KMODS += scsi_vhci _f_syment 507 # socketnod (kernel/socketnod)
508 #
443 # 509 SOCKET_KMODS += sockpfp
444 # Sof tware Cryptographic Providers (/kernel/crypto): 510 SOCKET_KMODS += socksctp
445 # 511 SOCKET_KMODS += socksdp
446 CRYPTO_KMODS += aes 512 SOCKET_KMODS += sockrds
447 CRYPTO_KMODS += arcfour 513 SOCKET_KMCODS += kssl f
448 CRYPTO_KMODS += bl owfi sh
449 CRYPTO_KMODS += des 515 #
450 CRYPTO_KMODS += nd4 516 # ki conv nodul es (/kernel/kiconv):
451 CRYPTO_KMODS += md5 517 #
452 CRYPTO_KMODS += ecc 518 KI CONV_KMODS += ki conv_enea ki conv_ja kiconv_ko kiconv_sc kiconv_tc
453 CRYPTO_KMODS += rsa

new usr/ src/ uts/sparc/kl mod/ Makefile

R R R R

2106 Sun Aug 25 23:51:28 2013
new usr/ src/ uts/sparc/kl nmod/ Makefil e
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbi seda@lel phi x. con»

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opment and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww.opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perm ssions
11 # and limtations under the License.

12 #

13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # |If applicable, add the followi ng bel ow this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

21 #

22 # Copyright 2006 Sun M crosystens, Inc. Al rights reserved.

23 # Use is subject to license terns.

24 #

25 # Copyright (c) 2012 by Del phix. Al rights reserved.

26 #

27 # This makefile drives the production of the server-side network | ock
28 # manager kernel nodul e.

29 #

30 # sparc architecture dependent

31 #

33 #

34 # Path to the base of the uts directory tree (usually /usr/src/uts).
35 #

36 UTSBASE = ../..

38 #

39 # Define the nodul e and object file sets.

40 #

41 MODULE = kI nmod

42 OBJECTS = $(KLMVOD_OBJS: %=$(OBJS DI R)/ %

43 LINTS = $(KLMVOD_OBJS: % 0=$(LI NTS DI R)/ % | n)

44 ROOTMODULE = $(ROOT_M SC DI R) / $(MODULE)

46 #

47 # I ncl ude comon rul es.

48 #

49 incl ude $(UTSBASE)/ sparc/ Makefile. sparc

51 #

52 # Define targets

53 #

54 ALL_TARGET
55 LI NT_TARCET
56 | NSTALL_TARGET

$(Bl NARY)
$(MODULE) . | i nt
$(Bl NARY) $(ROOTMODULE)

58 #

new usr/ src/ uts/sparc/kl mod/ Makefile

59 # Overri des.

60 #

61 CFLAGS += $(CCVERBOSE)

62 LDFLAGS += -dy -Nstrnod/rpcnod -Nf s/ nfs
63 LDFLAGS += - M $(UTSBASE) / conmon/ kI ml mapfi | e- nod
64 CTFMRGFLAGS += -f

66 #

67 # Code generated by rpcgen triggers the -Wwi tch warning.
68 #

69 CERRWARN += -_gcc=-Who-sw tch

71 #

72 # Default build targets.

73 #

74 . KEEP_STATE:

76 def: $(DEF_DEPS)

78 all: $(ALL_DEPS)

80 cl ean: $(CLEAN_DEPS)

82 cl obber: $(CLOBBER_DEPS)

84 lint: $(LI NT_DEPS)

86 modlintlib: $(MODLI NTLI B_DEPS)

88 clean.lint: $(CLEAN_LI NT_DEPS)

90 install: $(| NSTALL_DEPS)

92 #

93 # I ncl ude common targets.

94

#
95 include $(UTSBASE)/ sparc/ Makefile.targ

new usr/src/ uts/sparc/kl nops/ Makefile

R R R R

2013 Sun Aug 25 23:51:28 2013
new usr/src/ uts/sparc/Kkl nops/ Makefile
195 Need repl acenment for nfs/l|ockd+kl m
Revi ewed by: Gordon Ross <gordon. ross@exenta. conp
Revi ewed by: Jereny Jones <jereny@lel phi x. con>
Revi ewed by: Jeff Biseda <jbi seda@lel phi x. con»

hkkkkkkkkkkkkkkkkhkkhkkhkkhk kX hkkkkkkkkkkkkkkhkkkkkkkkkk ok k ok k k%

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opment and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww.opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perm ssions
11 # and limtations under the License.

12 #

13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # |If applicable, add the followi ng bel ow this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

21 #

22 # Copyright 2006 Sun M crosystens, Inc. Al rights reserved.

23 # Use is subject to license terns.

24 #

25 # Copyright (c) 2012 by Del phix. Al rights reserved.

26 #

27 # This makefile drives the production of the client-side network | ock
28 # manager kernel nodul e.

29 #

30 # sparc architecture dependent

31 #

33 #

34 # Path to the base of the uts directory tree (usually /usr/src/uts).
35 #

36 UTSBASE = ../..

38 #

39 # Define the nodul e and object file sets.

40 #

41 MODULE = kil nops

42 OBJECTS = $(KLMOPS_OBJS: %=$(OBJS DI R)/ %

43 LINTS = $(KLMOPS_OBJS: % 0=$(LI NTS DI R)/ % | n)

44 ROOTMODULE = $(ROOT_M SC DI R) / $(MODULE)

46 #

47 # I ncl ude comon rul es.

48 #

49 incl ude $(UTSBASE)/ sparc/ Makefile. sparc

51 #

52 # Define targets

53 #

54 ALL_TARGET
55 LI NT_TARCET
56 | NSTALL_TARGET

$(Bl NARY)
$(MODULE) . | i nt
$(Bl NARY) $(ROOTMODULE)

58 #

new usr/src/ uts/sparc/kl nops/ Makefile

59 # Overri des.

60 #

61 CFLAGS += $(CCVERBOSE)

62 LDFLAGS += -dy -Nstrnod/rpcnod -Nf s/ nfs
63 LDFLAGS += - M $(UTSBASE) / conmon/ kI ml mapfi | e- ops
64 CTFMRGFLAGS += -f

66 #

67 # Default build targets.

68 #

69 . KEEP_STATE:

71 def: $(DEF_DEPS)

73 all: $(ALL_DEPS)

75 cl ean: $(CLEAN_DEPS)

77 cl obber: $(CLOBBER_DEPS)

79 lint: $(LI NT_DEPS)

81 nmodlintlib: $(MODLI NTLI B_DEPS)
83 clean.lint: $(CLEAN_LI NT_DEPS)
85 install: $(1 NSTALL_DEPS)

87 #

88 # I ncl ude common targets.

89

#
90 incl ude $(UTSBASE)/ sparc/ Makefile.targ

