1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 /* 31 * Copyright 2019 OmniOS Community Edition (OmniOSce) Association. 32 */ 33 34 #ifndef _SYS_STRSUBR_H 35 #define _SYS_STRSUBR_H 36 37 /* 38 * WARNING: 39 * Everything in this file is private, belonging to the 40 * STREAMS subsystem. The only guarantee made about the 41 * contents of this file is that if you include it, your 42 * code will not port to the next release. 43 */ 44 #include <sys/stream.h> 45 #include <sys/stropts.h> 46 #include <sys/vnode.h> 47 #include <sys/kstat.h> 48 #include <sys/uio.h> 49 #include <sys/proc.h> 50 #include <sys/netstack.h> 51 #include <sys/modhash.h> 52 53 #ifdef __cplusplus 54 extern "C" { 55 #endif 56 57 /* 58 * In general, the STREAMS locks are disjoint; they are only held 59 * locally, and not simultaneously by a thread. However, module 60 * code, including at the stream head, requires some locks to be 61 * acquired in order for its safety. 62 * 1. Stream level claim. This prevents the value of q_next 63 * from changing while module code is executing. 64 * 2. Queue level claim. This prevents the value of q_ptr 65 * from changing while put or service code is executing. 66 * In addition, it provides for queue single-threading 67 * for QPAIR and PERQ MT-safe modules. 68 * 3. Stream head lock. May be held by the stream head module 69 * to implement a read/write/open/close monitor. 70 * Note: that the only types of twisted stream supported are 71 * the pipe and transports which have read and write service 72 * procedures on both sides of the twist. 73 * 4. Queue lock. May be acquired by utility routines on 74 * behalf of a module. 75 */ 76 77 /* 78 * In general, sd_lock protects the consistency of the stdata 79 * structure. Additionally, it is used with sd_monitor 80 * to implement an open/close monitor. In particular, it protects 81 * the following fields: 82 * sd_iocblk 83 * sd_flag 84 * sd_copyflag 85 * sd_iocid 86 * sd_iocwait 87 * sd_sidp 88 * sd_pgidp 89 * sd_wroff 90 * sd_tail 91 * sd_rerror 92 * sd_werror 93 * sd_pushcnt 94 * sd_sigflags 95 * sd_siglist 96 * sd_pollist 97 * sd_mark 98 * sd_closetime 99 * sd_wakeq 100 * sd_maxblk 101 * 102 * The following fields are modified only by the allocator, which 103 * has exclusive access to them at that time: 104 * sd_wrq 105 * sd_strtab 106 * 107 * The following field is protected by the overlying file system 108 * code, guaranteeing single-threading of opens: 109 * sd_vnode 110 * 111 * Stream-level locks should be acquired before any queue-level locks 112 * are acquired. 113 * 114 * The stream head write queue lock(sd_wrq) is used to protect the 115 * fields qn_maxpsz and qn_minpsz because freezestr() which is 116 * necessary for strqset() only gets the queue lock. 117 */ 118 119 /* 120 * Function types for the parameterized stream head. 121 * The msgfunc_t takes the parameters: 122 * msgfunc(vnode_t *vp, mblk_t *mp, strwakeup_t *wakeups, 123 * strsigset_t *firstmsgsigs, strsigset_t *allmsgsigs, 124 * strpollset_t *pollwakeups); 125 * It returns an optional message to be processed by the stream head. 126 * 127 * The parameters for errfunc_t are: 128 * errfunc(vnode *vp, int ispeek, int *clearerr); 129 * It returns an errno and zero if there was no pending error. 130 */ 131 typedef uint_t strwakeup_t; 132 typedef uint_t strsigset_t; 133 typedef short strpollset_t; 134 typedef uintptr_t callbparams_id_t; 135 typedef mblk_t *(*msgfunc_t)(vnode_t *, mblk_t *, strwakeup_t *, 136 strsigset_t *, strsigset_t *, strpollset_t *); 137 typedef int (*errfunc_t)(vnode_t *, int, int *); 138 139 /* 140 * Per stream sd_lock in putnext may be replaced by per cpu stream_putlocks 141 * each living in a separate cache line. putnext/canputnext grabs only one of 142 * stream_putlocks while strlock() (called on behalf of insertq()/removeq()) 143 * acquires all stream_putlocks. Normally stream_putlocks are only employed 144 * for highly contended streams that have SQ_CIPUT queues in the critical path 145 * (e.g. NFS/UDP stream). 146 * 147 * stream_putlocks are dynamically assigned to stdata structure through 148 * sd_ciputctrl pointer possibly when a stream is already in use. Since 149 * strlock() uses stream_putlocks only under sd_lock acquiring sd_lock when 150 * assigning stream_putlocks to the stream ensures synchronization with 151 * strlock(). 152 * 153 * For lock ordering purposes stream_putlocks are treated as the extension of 154 * sd_lock and are always grabbed right after grabbing sd_lock and released 155 * right before releasing sd_lock except putnext/canputnext where only one of 156 * stream_putlocks locks is used and where it is the first lock to grab. 157 */ 158 159 typedef struct ciputctrl_str { 160 union _ciput_un { 161 uchar_t pad[64]; 162 struct _ciput_str { 163 kmutex_t ciput_lck; 164 ushort_t ciput_cnt; 165 } ciput_str; 166 } ciput_un; 167 } ciputctrl_t; 168 169 #define ciputctrl_lock ciput_un.ciput_str.ciput_lck 170 #define ciputctrl_count ciput_un.ciput_str.ciput_cnt 171 172 /* 173 * Header for a stream: interface to rest of system. 174 * 175 * NOTE: While this is a consolidation-private structure, some unbundled and 176 * third-party products inappropriately make use of some of the fields. 177 * As such, please take care to not gratuitously change any offsets of 178 * existing members. 179 */ 180 typedef struct stdata { 181 struct queue *sd_wrq; /* write queue */ 182 struct msgb *sd_iocblk; /* return block for ioctl */ 183 struct vnode *sd_vnode; /* pointer to associated vnode */ 184 struct streamtab *sd_strtab; /* pointer to streamtab for stream */ 185 uint_t sd_flag; /* state/flags */ 186 uint_t sd_iocid; /* ioctl id */ 187 struct pid *sd_sidp; /* controlling session info */ 188 struct pid *sd_pgidp; /* controlling process group info */ 189 ushort_t sd_tail; /* reserved space in written mblks */ 190 ushort_t sd_wroff; /* write offset */ 191 int sd_rerror; /* error to return on read ops */ 192 int sd_werror; /* error to return on write ops */ 193 int sd_pushcnt; /* number of pushes done on stream */ 194 int sd_sigflags; /* logical OR of all siglist events */ 195 struct strsig *sd_siglist; /* pid linked list to rcv SIGPOLL sig */ 196 struct pollhead sd_pollist; /* list of all pollers to wake up */ 197 struct msgb *sd_mark; /* "marked" message on read queue */ 198 clock_t sd_closetime; /* time to wait to drain q in close */ 199 kmutex_t sd_lock; /* protect head consistency */ 200 kcondvar_t sd_monitor; /* open/close/push/pop monitor */ 201 kcondvar_t sd_iocmonitor; /* ioctl single-threading */ 202 kcondvar_t sd_refmonitor; /* sd_refcnt monitor */ 203 ssize_t sd_qn_minpsz; /* These two fields are a performance */ 204 ssize_t sd_qn_maxpsz; /* enhancements, cache the values in */ 205 /* the stream head so we don't have */ 206 /* to ask the module below the stream */ 207 /* head to get this information. */ 208 struct stdata *sd_mate; /* pointer to twisted stream mate */ 209 kthread_id_t sd_freezer; /* thread that froze stream */ 210 kmutex_t sd_reflock; /* Protects sd_refcnt */ 211 int sd_refcnt; /* number of claimstr */ 212 uint_t sd_wakeq; /* strwakeq()'s copy of sd_flag */ 213 struct queue *sd_struiordq; /* sync barrier struio() read queue */ 214 struct queue *sd_struiowrq; /* sync barrier struio() write queue */ 215 char sd_struiodnak; /* defer NAK of M_IOCTL by rput() */ 216 struct msgb *sd_struionak; /* pointer M_IOCTL mblk(s) to NAK */ 217 caddr_t sd_t_audit_data; /* For audit purposes only */ 218 ssize_t sd_maxblk; /* maximum message block size */ 219 uint_t sd_rput_opt; /* options/flags for strrput */ 220 uint_t sd_wput_opt; /* options/flags for write/putmsg */ 221 uint_t sd_read_opt; /* options/flags for strread */ 222 msgfunc_t sd_rprotofunc; /* rput M_*PROTO routine */ 223 msgfunc_t sd_rputdatafunc; /* read M_DATA routine */ 224 msgfunc_t sd_rmiscfunc; /* rput routine (non-data/proto) */ 225 msgfunc_t sd_wputdatafunc; /* wput M_DATA routine */ 226 errfunc_t sd_rderrfunc; /* read side error callback */ 227 errfunc_t sd_wrerrfunc; /* write side error callback */ 228 /* 229 * support for low contention concurrent putnext. 230 */ 231 ciputctrl_t *sd_ciputctrl; 232 uint_t sd_nciputctrl; 233 234 int sd_anchor; /* position of anchor in stream */ 235 /* 236 * Service scheduling at the stream head. 237 */ 238 kmutex_t sd_qlock; 239 struct queue *sd_qhead; /* Head of queues to be serviced. */ 240 struct queue *sd_qtail; /* Tail of queues to be serviced. */ 241 void *sd_servid; /* Service ID for bckgrnd schedule */ 242 ushort_t sd_svcflags; /* Servicing flags */ 243 short sd_nqueues; /* Number of queues in the list */ 244 kcondvar_t sd_qcv; /* Waiters for qhead to become empty */ 245 kcondvar_t sd_zcopy_wait; 246 uint_t sd_copyflag; /* copy-related flags */ 247 zoneid_t sd_anchorzone; /* Allow removal from same zone only */ 248 struct msgb *sd_cmdblk; /* reply from _I_CMD */ 249 250 /* 251 * When a STREAMS device is cloned, the sd_vnode element of this 252 * structure is replaced by a pointer to a common vnode shared across 253 * all streams that are using the device. In this case, it is no longer 254 * possible to get from the stream head back to the original vnode via 255 * sd_vnode. Therefore, when such a device is cloned, the parent vnode - 256 * i.e. that which was created during the device clone in spec_clone() 257 * - is kept in sd_pvnode. 258 */ 259 struct vnode *sd_pvnode; 260 } stdata_t; 261 262 /* 263 * stdata servicing flags. 264 */ 265 #define STRS_WILLSERVICE 0x01 266 #define STRS_SCHEDULED 0x02 267 268 #define STREAM_NEEDSERVICE(stp) ((stp)->sd_qhead != NULL) 269 270 /* 271 * stdata flag field defines 272 */ 273 #define IOCWAIT 0x00000001 /* Someone is doing an ioctl */ 274 #define RSLEEP 0x00000002 /* Someone wants to read/recv msg */ 275 #define WSLEEP 0x00000004 /* Someone wants to write */ 276 #define STRPRI 0x00000008 /* An M_PCPROTO is at stream head */ 277 #define STRHUP 0x00000010 /* Device has vanished */ 278 #define STWOPEN 0x00000020 /* waiting for 1st open */ 279 #define STPLEX 0x00000040 /* stream is being multiplexed */ 280 #define STRISTTY 0x00000080 /* stream is a terminal */ 281 #define STRGETINPROG 0x00000100 /* (k)strgetmsg is running */ 282 #define IOCWAITNE 0x00000200 /* STR_NOERROR ioctl running */ 283 #define STRDERR 0x00000400 /* fatal read error from M_ERROR */ 284 #define STWRERR 0x00000800 /* fatal write error from M_ERROR */ 285 #define STRDERRNONPERSIST 0x00001000 /* nonpersistent read errors */ 286 #define STWRERRNONPERSIST 0x00002000 /* nonpersistent write errors */ 287 #define STRCLOSE 0x00004000 /* wait for a close to complete */ 288 #define SNDMREAD 0x00008000 /* used for read notification */ 289 #define OLDNDELAY 0x00010000 /* use old TTY semantics for */ 290 /* NDELAY reads and writes */ 291 #define STRXPG4TTY 0x00020000 /* Use XPG4 TTY semantics */ 292 /* 0x00040000 unused */ 293 #define STRTOSTOP 0x00080000 /* block background writes */ 294 #define STRCMDWAIT 0x00100000 /* someone is doing an _I_CMD */ 295 /* 0x00200000 unused */ 296 #define STRMOUNT 0x00400000 /* stream is mounted */ 297 #define STRNOTATMARK 0x00800000 /* Not at mark (when empty read q) */ 298 #define STRDELIM 0x01000000 /* generate delimited messages */ 299 #define STRATMARK 0x02000000 /* At mark (due to MSGMARKNEXT) */ 300 #define STZCNOTIFY 0x04000000 /* wait for zerocopy mblk to be acked */ 301 #define STRPLUMB 0x08000000 /* push/pop pending */ 302 #define STREOF 0x10000000 /* End-of-file indication */ 303 #define STREOPENFAIL 0x20000000 /* indicates if re-open has failed */ 304 #define STRMATE 0x40000000 /* this stream is a mate */ 305 #define STRHASLINKS 0x80000000 /* I_LINKs under this stream */ 306 307 /* 308 * Copy-related flags (sd_copyflag), set by SO_COPYOPT. 309 */ 310 #define STZCVMSAFE 0x00000001 /* safe to borrow file (segmapped) */ 311 /* pages instead of bcopy */ 312 #define STZCVMUNSAFE 0x00000002 /* unsafe to borrow file pages */ 313 #define STRCOPYCACHED 0x00000004 /* copy should NOT bypass cache */ 314 315 /* 316 * Options and flags for strrput (sd_rput_opt) 317 */ 318 #define SR_POLLIN 0x00000001 /* pollwakeup needed for band0 data */ 319 #define SR_SIGALLDATA 0x00000002 /* Send SIGPOLL for all M_DATA */ 320 #define SR_CONSOL_DATA 0x00000004 /* Consolidate M_DATA onto q_last */ 321 #define SR_IGN_ZEROLEN 0x00000008 /* Ignore zero-length M_DATA */ 322 323 /* 324 * Options and flags for strwrite/strputmsg (sd_wput_opt) 325 */ 326 #define SW_SIGPIPE 0x00000001 /* Send SIGPIPE for write error */ 327 #define SW_RECHECK_ERR 0x00000002 /* Recheck errors in strwrite loop */ 328 #define SW_SNDZERO 0x00000004 /* send 0-length msg down pipe/FIFO */ 329 330 /* 331 * Options and flags for strread (sd_read_opt) 332 */ 333 #define RD_MSGDIS 0x00000001 /* read msg discard */ 334 #define RD_MSGNODIS 0x00000002 /* read msg no discard */ 335 #define RD_PROTDAT 0x00000004 /* read M_[PC]PROTO contents as data */ 336 #define RD_PROTDIS 0x00000008 /* discard M_[PC]PROTO blocks and */ 337 /* retain data blocks */ 338 /* 339 * Flags parameter for strsetrputhooks() and strsetwputhooks(). 340 * These flags define the interface for setting the above internal 341 * flags in sd_rput_opt and sd_wput_opt. 342 */ 343 #define SH_CONSOL_DATA 0x00000001 /* Consolidate M_DATA onto q_last */ 344 #define SH_SIGALLDATA 0x00000002 /* Send SIGPOLL for all M_DATA */ 345 #define SH_IGN_ZEROLEN 0x00000004 /* Drop zero-length M_DATA */ 346 347 #define SH_SIGPIPE 0x00000100 /* Send SIGPIPE for write error */ 348 #define SH_RECHECK_ERR 0x00000200 /* Recheck errors in strwrite loop */ 349 350 /* 351 * Each queue points to a sync queue (the inner perimeter) which keeps 352 * track of the number of threads that are inside a given queue (sq_count) 353 * and also is used to implement the asynchronous putnext 354 * (by queuing messages if the queue can not be entered.) 355 * 356 * Messages are queued on sq_head/sq_tail including deferred qwriter(INNER) 357 * messages. The sq_head/sq_tail list is a singly-linked list with 358 * b_queue recording the queue and b_prev recording the function to 359 * be called (either the put procedure or a qwriter callback function.) 360 * 361 * The sq_count counter tracks the number of threads that are 362 * executing inside the perimeter or (in the case of outer perimeters) 363 * have some work queued for them relating to the perimeter. The sq_rmqcount 364 * counter tracks the subset which are in removeq() (usually invoked from 365 * qprocsoff(9F)). 366 * 367 * In addition a module writer can declare that the module has an outer 368 * perimeter (by setting D_MTOUTPERIM) in which case all inner perimeter 369 * syncq's for the module point (through sq_outer) to an outer perimeter 370 * syncq. The outer perimeter consists of the doubly linked list (sq_onext and 371 * sq_oprev) linking all the inner perimeter syncq's with out outer perimeter 372 * syncq. This is used to implement qwriter(OUTER) (an asynchronous way of 373 * getting exclusive access at the outer perimeter) and outer_enter/exit 374 * which are used by the framework to acquire exclusive access to the outer 375 * perimeter during open and close of modules that have set D_MTOUTPERIM. 376 * 377 * In the inner perimeter case sq_save is available for use by machine 378 * dependent code. sq_head/sq_tail are used to queue deferred messages on 379 * the inner perimeter syncqs and to queue become_writer requests on the 380 * outer perimeter syncqs. 381 * 382 * Note: machine dependent optimized versions of putnext may depend 383 * on the order of sq_flags and sq_count (so that they can e.g. 384 * read these two fields in a single load instruction.) 385 * 386 * Per perimeter SQLOCK/sq_count in putnext/put may be replaced by per cpu 387 * sq_putlocks/sq_putcounts each living in a separate cache line. Obviously 388 * sq_putlock[x] protects sq_putcount[x]. putnext/put routine will grab only 1 389 * of sq_putlocks and update only 1 of sq_putcounts. strlock() and many 390 * other routines in strsubr.c and ddi.c will grab all sq_putlocks (as well as 391 * SQLOCK) and figure out the count value as the sum of sq_count and all of 392 * sq_putcounts. The idea is to make critical fast path -- putnext -- much 393 * faster at the expense of much less often used slower path like 394 * strlock(). One known case where entersq/strlock is executed pretty often is 395 * SpecWeb but since IP is SQ_CIOC and socket TCP/IP stream is nextless 396 * there's no need to grab multiple sq_putlocks and look at sq_putcounts. See 397 * strsubr.c for more comments. 398 * 399 * Note regular SQLOCK and sq_count are still used in many routines 400 * (e.g. entersq(), rwnext()) in the same way as before sq_putlocks were 401 * introduced. 402 * 403 * To understand when all sq_putlocks need to be held and all sq_putcounts 404 * need to be added up one needs to look closely at putnext code. Basically if 405 * a routine like e.g. wait_syncq() needs to be sure that perimeter is empty 406 * all sq_putlocks/sq_putcounts need to be held/added up. On the other hand 407 * there's no need to hold all sq_putlocks and count all sq_putcounts in 408 * routines like leavesq()/dropsq() and etc. since the are usually exit 409 * counterparts of entersq/outer_enter() and etc. which have already either 410 * prevented put entry poins from executing or did not care about put 411 * entrypoints. entersq() doesn't need to care about sq_putlocks/sq_putcounts 412 * if the entry point has a shared access since put has the highest degree of 413 * concurrency and such entersq() does not intend to block out put 414 * entrypoints. 415 * 416 * Before sq_putcounts were introduced the standard way to wait for perimeter 417 * to become empty was: 418 * 419 * mutex_enter(SQLOCK(sq)); 420 * while (sq->sq_count > 0) { 421 * sq->sq_flags |= SQ_WANTWAKEUP; 422 * cv_wait(&sq->sq_wait, SQLOCK(sq)); 423 * } 424 * mutex_exit(SQLOCK(sq)); 425 * 426 * The new way is: 427 * 428 * mutex_enter(SQLOCK(sq)); 429 * count = sq->sq_count; 430 * SQ_PUTLOCKS_ENTER(sq); 431 * SUM_SQ_PUTCOUNTS(sq, count); 432 * while (count != 0) { 433 * sq->sq_flags |= SQ_WANTWAKEUP; 434 * SQ_PUTLOCKS_EXIT(sq); 435 * cv_wait(&sq->sq_wait, SQLOCK(sq)); 436 * count = sq->sq_count; 437 * SQ_PUTLOCKS_ENTER(sq); 438 * SUM_SQ_PUTCOUNTS(sq, count); 439 * } 440 * SQ_PUTLOCKS_EXIT(sq); 441 * mutex_exit(SQLOCK(sq)); 442 * 443 * Note that SQ_WANTWAKEUP is set before dropping SQ_PUTLOCKS. This makes sure 444 * putnext won't skip a wakeup. 445 * 446 * sq_putlocks are treated as the extension of SQLOCK for lock ordering 447 * purposes and are always grabbed right after grabbing SQLOCK and released 448 * right before releasing SQLOCK. This also allows dynamic creation of 449 * sq_putlocks while holding SQLOCK (by making sq_ciputctrl non null even when 450 * the stream is already in use). Only in putnext one of sq_putlocks 451 * is grabbed instead of SQLOCK. putnext return path remembers what counter it 452 * incremented and decrements the right counter on its way out. 453 */ 454 455 struct syncq { 456 kmutex_t sq_lock; /* atomic access to syncq */ 457 uint16_t sq_count; /* # threads inside */ 458 uint16_t sq_flags; /* state and some type info */ 459 /* 460 * Distributed syncq scheduling 461 * The list of queue's is handled by sq_head and 462 * sq_tail fields. 463 * 464 * The list of events is handled by the sq_evhead and sq_evtail 465 * fields. 466 */ 467 queue_t *sq_head; /* queue of deferred messages */ 468 queue_t *sq_tail; /* queue of deferred messages */ 469 mblk_t *sq_evhead; /* Event message on the syncq */ 470 mblk_t *sq_evtail; 471 uint_t sq_nqueues; /* # of queues on this sq */ 472 /* 473 * Concurrency and condition variables 474 */ 475 uint16_t sq_type; /* type (concurrency) of syncq */ 476 uint16_t sq_rmqcount; /* # threads inside removeq() */ 477 kcondvar_t sq_wait; /* block on this sync queue */ 478 kcondvar_t sq_exitwait; /* waiting for thread to leave the */ 479 /* inner perimeter */ 480 /* 481 * Handling synchronous callbacks such as qtimeout and qbufcall 482 */ 483 ushort_t sq_callbflags; /* flags for callback synchronization */ 484 callbparams_id_t sq_cancelid; /* id of callback being cancelled */ 485 struct callbparams *sq_callbpend; /* Pending callbacks */ 486 487 /* 488 * Links forming an outer perimeter from one outer syncq and 489 * a set of inner sync queues. 490 */ 491 struct syncq *sq_outer; /* Pointer to outer perimeter */ 492 struct syncq *sq_onext; /* Linked list of syncq's making */ 493 struct syncq *sq_oprev; /* up the outer perimeter. */ 494 /* 495 * support for low contention concurrent putnext. 496 */ 497 ciputctrl_t *sq_ciputctrl; 498 uint_t sq_nciputctrl; 499 /* 500 * Counter for the number of threads wanting to become exclusive. 501 */ 502 uint_t sq_needexcl; 503 /* 504 * These two fields are used for scheduling a syncq for 505 * background processing. The sq_svcflag is protected by 506 * SQLOCK lock. 507 */ 508 struct syncq *sq_next; /* for syncq scheduling */ 509 void * sq_servid; 510 uint_t sq_servcount; /* # pending background threads */ 511 uint_t sq_svcflags; /* Scheduling flags */ 512 clock_t sq_tstamp; /* Time when was enabled */ 513 /* 514 * Maximum priority of the queues on this syncq. 515 */ 516 pri_t sq_pri; 517 }; 518 typedef struct syncq syncq_t; 519 520 /* 521 * sync queue scheduling flags (for sq_svcflags). 522 */ 523 #define SQ_SERVICE 0x1 /* being serviced */ 524 #define SQ_BGTHREAD 0x2 /* awaiting service by bg thread */ 525 #define SQ_DISABLED 0x4 /* don't put syncq in service list */ 526 527 /* 528 * FASTPUT bit in sd_count/putcount. 529 */ 530 #define SQ_FASTPUT 0x8000 531 #define SQ_FASTMASK 0x7FFF 532 533 /* 534 * sync queue state flags 535 */ 536 #define SQ_EXCL 0x0001 /* exclusive access to inner */ 537 /* perimeter */ 538 #define SQ_BLOCKED 0x0002 /* qprocsoff */ 539 #define SQ_FROZEN 0x0004 /* freezestr */ 540 #define SQ_WRITER 0x0008 /* qwriter(OUTER) pending or running */ 541 #define SQ_MESSAGES 0x0010 /* messages on syncq */ 542 #define SQ_WANTWAKEUP 0x0020 /* do cv_broadcast on sq_wait */ 543 #define SQ_WANTEXWAKEUP 0x0040 /* do cv_broadcast on sq_exitwait */ 544 #define SQ_EVENTS 0x0080 /* Events pending */ 545 #define SQ_QUEUED (SQ_MESSAGES | SQ_EVENTS) 546 #define SQ_FLAGMASK 0x00FF 547 548 /* 549 * Test a queue to see if inner perimeter is exclusive. 550 */ 551 #define PERIM_EXCL(q) ((q)->q_syncq->sq_flags & SQ_EXCL) 552 553 /* 554 * If any of these flags are set it is not possible for a thread to 555 * enter a put or service procedure. Instead it must either block 556 * or put the message on the syncq. 557 */ 558 #define SQ_GOAWAY (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN|SQ_WRITER|\ 559 SQ_QUEUED) 560 /* 561 * If any of these flags are set it not possible to drain the syncq 562 */ 563 #define SQ_STAYAWAY (SQ_BLOCKED|SQ_FROZEN|SQ_WRITER) 564 565 /* 566 * Flags to trigger syncq tail processing. 567 */ 568 #define SQ_TAIL (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP) 569 570 /* 571 * Syncq types (stored in sq_type) 572 * The SQ_TYPES_IN_FLAGS (ciput) are also stored in sq_flags 573 * for performance reasons. Thus these type values have to be in the low 574 * 16 bits and not conflict with the sq_flags values above. 575 * 576 * Notes: 577 * - putnext() and put() assume that the put procedures have the highest 578 * degree of concurrency. Thus if any of the SQ_CI* are set then SQ_CIPUT 579 * has to be set. This restriction can be lifted by adding code to putnext 580 * and put that check that sq_count == 0 like entersq does. 581 * - putnext() and put() does currently not handle !SQ_COPUT 582 * - In order to implement !SQ_COCB outer_enter has to be fixed so that 583 * the callback can be cancelled while cv_waiting in outer_enter. 584 * - If SQ_CISVC needs to be implemented, qprocsoff() needs to wait 585 * for the currently running services to stop (wait for QINSERVICE 586 * to go off). disable_svc called from qprcosoff disables only 587 * services that will be run in future. 588 * 589 * All the SQ_CO flags are set when there is no outer perimeter. 590 */ 591 #define SQ_CIPUT 0x0100 /* Concurrent inner put proc */ 592 #define SQ_CISVC 0x0200 /* Concurrent inner svc proc */ 593 #define SQ_CIOC 0x0400 /* Concurrent inner open/close */ 594 #define SQ_CICB 0x0800 /* Concurrent inner callback */ 595 #define SQ_COPUT 0x1000 /* Concurrent outer put proc */ 596 #define SQ_COSVC 0x2000 /* Concurrent outer svc proc */ 597 #define SQ_COOC 0x4000 /* Concurrent outer open/close */ 598 #define SQ_COCB 0x8000 /* Concurrent outer callback */ 599 600 /* Types also kept in sq_flags for performance */ 601 #define SQ_TYPES_IN_FLAGS (SQ_CIPUT) 602 603 #define SQ_CI (SQ_CIPUT|SQ_CISVC|SQ_CIOC|SQ_CICB) 604 #define SQ_CO (SQ_COPUT|SQ_COSVC|SQ_COOC|SQ_COCB) 605 #define SQ_TYPEMASK (SQ_CI|SQ_CO) 606 607 /* 608 * Flag combinations passed to entersq and leavesq to specify the type 609 * of entry point. 610 */ 611 #define SQ_PUT (SQ_CIPUT|SQ_COPUT) 612 #define SQ_SVC (SQ_CISVC|SQ_COSVC) 613 #define SQ_OPENCLOSE (SQ_CIOC|SQ_COOC) 614 #define SQ_CALLBACK (SQ_CICB|SQ_COCB) 615 616 /* 617 * Other syncq types which are not copied into flags. 618 */ 619 #define SQ_PERMOD 0x01 /* Syncq is PERMOD */ 620 621 /* 622 * Asynchronous callback qun*** flag. 623 * The mechanism these flags are used in is one where callbacks enter 624 * the perimeter thanks to framework support. To use this mechanism 625 * the q* and qun* flavors of the callback routines must be used. 626 * e.g. qtimeout and quntimeout. The synchronization provided by the flags 627 * avoids deadlocks between blocking qun* routines and the perimeter 628 * lock. 629 */ 630 #define SQ_CALLB_BYPASSED 0x01 /* bypassed callback fn */ 631 632 /* 633 * Cancel callback mask. 634 * The mask expands as the number of cancelable callback types grows 635 * Note - separate callback flag because different callbacks have 636 * overlapping id space. 637 */ 638 #define SQ_CALLB_CANCEL_MASK (SQ_CANCEL_TOUT|SQ_CANCEL_BUFCALL) 639 640 #define SQ_CANCEL_TOUT 0x02 /* cancel timeout request */ 641 #define SQ_CANCEL_BUFCALL 0x04 /* cancel bufcall request */ 642 643 typedef struct callbparams { 644 syncq_t *cbp_sq; 645 void (*cbp_func)(void *); 646 void *cbp_arg; 647 callbparams_id_t cbp_id; 648 uint_t cbp_flags; 649 struct callbparams *cbp_next; 650 size_t cbp_size; 651 } callbparams_t; 652 653 typedef struct strbufcall { 654 void (*bc_func)(void *); 655 void *bc_arg; 656 size_t bc_size; 657 bufcall_id_t bc_id; 658 struct strbufcall *bc_next; 659 kthread_id_t bc_executor; 660 } strbufcall_t; 661 662 /* 663 * Structure of list of processes to be sent SIGPOLL/SIGURG signal 664 * on request. The valid S_* events are defined in stropts.h. 665 */ 666 typedef struct strsig { 667 struct pid *ss_pidp; /* pid/pgrp pointer */ 668 pid_t ss_pid; /* positive pid, negative pgrp */ 669 int ss_events; /* S_* events */ 670 struct strsig *ss_next; 671 } strsig_t; 672 673 /* 674 * bufcall list 675 */ 676 struct bclist { 677 strbufcall_t *bc_head; 678 strbufcall_t *bc_tail; 679 }; 680 681 /* 682 * Structure used to track mux links and unlinks. 683 */ 684 struct mux_node { 685 major_t mn_imaj; /* internal major device number */ 686 uint16_t mn_indegree; /* number of incoming edges */ 687 struct mux_node *mn_originp; /* where we came from during search */ 688 struct mux_edge *mn_startp; /* where search left off in mn_outp */ 689 struct mux_edge *mn_outp; /* list of outgoing edges */ 690 uint_t mn_flags; /* see below */ 691 }; 692 693 /* 694 * Flags for mux_nodes. 695 */ 696 #define VISITED 1 697 698 /* 699 * Edge structure - a list of these is hung off the 700 * mux_node to represent the outgoing edges. 701 */ 702 struct mux_edge { 703 struct mux_node *me_nodep; /* edge leads to this node */ 704 struct mux_edge *me_nextp; /* next edge */ 705 int me_muxid; /* id of link */ 706 dev_t me_dev; /* dev_t - used for kernel PUNLINK */ 707 }; 708 709 /* 710 * Queue info 711 * 712 * The syncq is included here to reduce memory fragmentation 713 * for kernel memory allocators that only allocate in sizes that are 714 * powers of two. If the kernel memory allocator changes this should 715 * be revisited. 716 */ 717 typedef struct queinfo { 718 struct queue qu_rqueue; /* read queue - must be first */ 719 struct queue qu_wqueue; /* write queue - must be second */ 720 struct syncq qu_syncq; /* syncq - must be third */ 721 } queinfo_t; 722 723 /* 724 * Multiplexed streams info 725 */ 726 typedef struct linkinfo { 727 struct linkblk li_lblk; /* must be first */ 728 struct file *li_fpdown; /* file pointer for lower stream */ 729 struct linkinfo *li_next; /* next in list */ 730 struct linkinfo *li_prev; /* previous in list */ 731 } linkinfo_t; 732 733 /* 734 * List of syncq's used by freeezestr/unfreezestr 735 */ 736 typedef struct syncql { 737 struct syncql *sql_next; 738 syncq_t *sql_sq; 739 } syncql_t; 740 741 typedef struct sqlist { 742 syncql_t *sqlist_head; 743 size_t sqlist_size; /* structure size in bytes */ 744 size_t sqlist_index; /* next free entry in array */ 745 syncql_t sqlist_array[4]; /* 4 or more entries */ 746 } sqlist_t; 747 748 typedef struct perdm { 749 struct perdm *dm_next; 750 syncq_t *dm_sq; 751 struct streamtab *dm_str; 752 uint_t dm_ref; 753 } perdm_t; 754 755 #define NEED_DM(dmp, qflag) \ 756 (dmp == NULL && (qflag & (QPERMOD | QMTOUTPERIM))) 757 758 /* 759 * fmodsw_impl_t is used within the kernel. fmodsw is used by 760 * the modules/drivers. The information is copied from fmodsw 761 * defined in the module/driver into the fmodsw_impl_t structure 762 * during the module/driver initialization. 763 */ 764 typedef struct fmodsw_impl fmodsw_impl_t; 765 766 struct fmodsw_impl { 767 fmodsw_impl_t *f_next; 768 char f_name[FMNAMESZ + 1]; 769 struct streamtab *f_str; 770 uint32_t f_qflag; 771 uint32_t f_sqtype; 772 perdm_t *f_dmp; 773 uint32_t f_ref; 774 uint32_t f_hits; 775 }; 776 777 typedef enum { 778 FMODSW_HOLD = 0x00000001, 779 FMODSW_LOAD = 0x00000002 780 } fmodsw_flags_t; 781 782 typedef struct cdevsw_impl { 783 struct streamtab *d_str; 784 uint32_t d_qflag; 785 uint32_t d_sqtype; 786 perdm_t *d_dmp; 787 } cdevsw_impl_t; 788 789 /* 790 * Enumeration of the types of access that can be requested for a 791 * controlling terminal under job control. 792 */ 793 enum jcaccess { 794 JCREAD, /* read data on a ctty */ 795 JCWRITE, /* write data to a ctty */ 796 JCSETP, /* set ctty parameters */ 797 JCGETP /* get ctty parameters */ 798 }; 799 800 struct str_stack { 801 netstack_t *ss_netstack; /* Common netstack */ 802 803 kmutex_t ss_sad_lock; /* autopush lock */ 804 mod_hash_t *ss_sad_hash; 805 size_t ss_sad_hash_nchains; 806 struct saddev *ss_saddev; /* sad device array */ 807 int ss_sadcnt; /* number of sad devices */ 808 809 int ss_devcnt; /* number of mux_nodes */ 810 struct mux_node *ss_mux_nodes; /* mux info for cycle checking */ 811 }; 812 typedef struct str_stack str_stack_t; 813 814 /* 815 * Finding related queues 816 */ 817 #define STREAM(q) ((q)->q_stream) 818 #define SQ(rq) ((syncq_t *)((rq) + 2)) 819 820 /* 821 * Get the module/driver name for a queue. Since some queues don't have 822 * q_info structures (e.g., see log_makeq()), fall back to "?". 823 */ 824 #define Q2NAME(q) \ 825 (((q)->q_qinfo != NULL && (q)->q_qinfo->qi_minfo->mi_idname != NULL) ? \ 826 (q)->q_qinfo->qi_minfo->mi_idname : "?") 827 828 /* 829 * Locking macros 830 */ 831 #define QLOCK(q) (&(q)->q_lock) 832 #define SQLOCK(sq) (&(sq)->sq_lock) 833 834 #define STREAM_PUTLOCKS_ENTER(stp) { \ 835 ASSERT(MUTEX_HELD(&(stp)->sd_lock)); \ 836 if ((stp)->sd_ciputctrl != NULL) { \ 837 int i; \ 838 int nlocks = (stp)->sd_nciputctrl; \ 839 ciputctrl_t *cip = (stp)->sd_ciputctrl; \ 840 for (i = 0; i <= nlocks; i++) { \ 841 mutex_enter(&cip[i].ciputctrl_lock); \ 842 } \ 843 } \ 844 } 845 846 #define STREAM_PUTLOCKS_EXIT(stp) { \ 847 ASSERT(MUTEX_HELD(&(stp)->sd_lock)); \ 848 if ((stp)->sd_ciputctrl != NULL) { \ 849 int i; \ 850 int nlocks = (stp)->sd_nciputctrl; \ 851 ciputctrl_t *cip = (stp)->sd_ciputctrl; \ 852 for (i = 0; i <= nlocks; i++) { \ 853 mutex_exit(&cip[i].ciputctrl_lock); \ 854 } \ 855 } \ 856 } 857 858 #define SQ_PUTLOCKS_ENTER(sq) { \ 859 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 860 if ((sq)->sq_ciputctrl != NULL) { \ 861 int i; \ 862 int nlocks = (sq)->sq_nciputctrl; \ 863 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 864 ASSERT((sq)->sq_type & SQ_CIPUT); \ 865 for (i = 0; i <= nlocks; i++) { \ 866 mutex_enter(&cip[i].ciputctrl_lock); \ 867 } \ 868 } \ 869 } 870 871 #define SQ_PUTLOCKS_EXIT(sq) { \ 872 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 873 if ((sq)->sq_ciputctrl != NULL) { \ 874 int i; \ 875 int nlocks = (sq)->sq_nciputctrl; \ 876 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 877 ASSERT((sq)->sq_type & SQ_CIPUT); \ 878 for (i = 0; i <= nlocks; i++) { \ 879 mutex_exit(&cip[i].ciputctrl_lock); \ 880 } \ 881 } \ 882 } 883 884 #define SQ_PUTCOUNT_SETFAST(sq) { \ 885 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 886 if ((sq)->sq_ciputctrl != NULL) { \ 887 int i; \ 888 int nlocks = (sq)->sq_nciputctrl; \ 889 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 890 ASSERT((sq)->sq_type & SQ_CIPUT); \ 891 for (i = 0; i <= nlocks; i++) { \ 892 mutex_enter(&cip[i].ciputctrl_lock); \ 893 cip[i].ciputctrl_count |= SQ_FASTPUT; \ 894 mutex_exit(&cip[i].ciputctrl_lock); \ 895 } \ 896 } \ 897 } 898 899 #define SQ_PUTCOUNT_CLRFAST(sq) { \ 900 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 901 if ((sq)->sq_ciputctrl != NULL) { \ 902 int i; \ 903 int nlocks = (sq)->sq_nciputctrl; \ 904 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 905 ASSERT((sq)->sq_type & SQ_CIPUT); \ 906 for (i = 0; i <= nlocks; i++) { \ 907 mutex_enter(&cip[i].ciputctrl_lock); \ 908 cip[i].ciputctrl_count &= ~SQ_FASTPUT; \ 909 mutex_exit(&cip[i].ciputctrl_lock); \ 910 } \ 911 } \ 912 } 913 914 915 #ifdef DEBUG 916 917 #define SQ_PUTLOCKS_HELD(sq) { \ 918 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 919 if ((sq)->sq_ciputctrl != NULL) { \ 920 int i; \ 921 int nlocks = (sq)->sq_nciputctrl; \ 922 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 923 ASSERT((sq)->sq_type & SQ_CIPUT); \ 924 for (i = 0; i <= nlocks; i++) { \ 925 ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \ 926 } \ 927 } \ 928 } 929 930 #define SUMCHECK_SQ_PUTCOUNTS(sq, countcheck) { \ 931 if ((sq)->sq_ciputctrl != NULL) { \ 932 int i; \ 933 uint_t count = 0; \ 934 int ncounts = (sq)->sq_nciputctrl; \ 935 ASSERT((sq)->sq_type & SQ_CIPUT); \ 936 for (i = 0; i <= ncounts; i++) { \ 937 count += \ 938 (((sq)->sq_ciputctrl[i].ciputctrl_count) & \ 939 SQ_FASTMASK); \ 940 } \ 941 ASSERT(count == (countcheck)); \ 942 } \ 943 } 944 945 #define SUMCHECK_CIPUTCTRL_COUNTS(ciput, nciput, countcheck) { \ 946 int i; \ 947 uint_t count = 0; \ 948 ASSERT((ciput) != NULL); \ 949 for (i = 0; i <= (nciput); i++) { \ 950 count += (((ciput)[i].ciputctrl_count) & \ 951 SQ_FASTMASK); \ 952 } \ 953 ASSERT(count == (countcheck)); \ 954 } 955 956 #else /* DEBUG */ 957 958 #define SQ_PUTLOCKS_HELD(sq) 959 #define SUMCHECK_SQ_PUTCOUNTS(sq, countcheck) 960 #define SUMCHECK_CIPUTCTRL_COUNTS(sq, nciput, countcheck) 961 962 #endif /* DEBUG */ 963 964 #define SUM_SQ_PUTCOUNTS(sq, count) { \ 965 if ((sq)->sq_ciputctrl != NULL) { \ 966 int i; \ 967 int ncounts = (sq)->sq_nciputctrl; \ 968 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 969 ASSERT((sq)->sq_type & SQ_CIPUT); \ 970 for (i = 0; i <= ncounts; i++) { \ 971 (count) += ((cip[i].ciputctrl_count) & \ 972 SQ_FASTMASK); \ 973 } \ 974 } \ 975 } 976 977 #define CLAIM_QNEXT_LOCK(stp) mutex_enter(&(stp)->sd_lock) 978 #define RELEASE_QNEXT_LOCK(stp) mutex_exit(&(stp)->sd_lock) 979 980 /* 981 * syncq message manipulation macros. 982 */ 983 /* 984 * Put a message on the queue syncq. 985 * Assumes QLOCK held. 986 */ 987 #define SQPUT_MP(qp, mp) \ 988 { \ 989 qp->q_syncqmsgs++; \ 990 if (qp->q_sqhead == NULL) { \ 991 qp->q_sqhead = qp->q_sqtail = mp; \ 992 } else { \ 993 qp->q_sqtail->b_next = mp; \ 994 qp->q_sqtail = mp; \ 995 } \ 996 set_qfull(qp); \ 997 } 998 999 /* 1000 * Miscellaneous parameters and flags. 1001 */ 1002 1003 /* 1004 * Default timeout in milliseconds for ioctls and close 1005 */ 1006 #define STRTIMOUT 15000 1007 1008 /* 1009 * Flag values for stream io 1010 */ 1011 #define WRITEWAIT 0x1 /* waiting for write event */ 1012 #define READWAIT 0x2 /* waiting for read event */ 1013 #define NOINTR 0x4 /* error is not to be set for signal */ 1014 #define GETWAIT 0x8 /* waiting for getmsg event */ 1015 1016 /* 1017 * These flags need to be unique for stream io name space 1018 * and copy modes name space. These flags allow strwaitq 1019 * and strdoioctl to proceed as if signals or errors on the stream 1020 * head have not occurred; i.e. they will be detected by some other 1021 * means. 1022 * STR_NOSIG does not allow signals to interrupt the call 1023 * STR_NOERROR does not allow stream head read, write or hup errors to 1024 * affect the call. When used with strdoioctl(), if a previous ioctl 1025 * is pending and times out, STR_NOERROR will cause strdoioctl() to not 1026 * return ETIME. If, however, the requested ioctl times out, ETIME 1027 * will be returned (use ic_timout instead) 1028 * STR_PEEK is used to inform strwaitq that the reader is peeking at data 1029 * and that a non-persistent error should not be cleared. 1030 * STR_DELAYERR is used to inform strwaitq that it should not check errors 1031 * after being awoken since, in addition to an error, there might also be 1032 * data queued on the stream head read queue. 1033 */ 1034 #define STR_NOSIG 0x10 /* Ignore signals during strdoioctl/strwaitq */ 1035 #define STR_NOERROR 0x20 /* Ignore errors during strdoioctl/strwaitq */ 1036 #define STR_PEEK 0x40 /* Peeking behavior on non-persistent errors */ 1037 #define STR_DELAYERR 0x80 /* Do not check errors on return */ 1038 1039 /* 1040 * Copy modes for tty and I_STR ioctls 1041 */ 1042 #define U_TO_K 01 /* User to Kernel */ 1043 #define K_TO_K 02 /* Kernel to Kernel */ 1044 1045 /* 1046 * Mux defines. 1047 */ 1048 #define LINKNORMAL 0x01 /* normal mux link */ 1049 #define LINKPERSIST 0x02 /* persistent mux link */ 1050 #define LINKTYPEMASK 0x03 /* bitmask of all link types */ 1051 #define LINKCLOSE 0x04 /* unlink from strclose */ 1052 1053 /* 1054 * Definitions of Streams macros and function interfaces. 1055 */ 1056 1057 /* 1058 * Obsolete queue scheduling macros. They are not used anymore, but still kept 1059 * here for 3-d party modules and drivers who might still use them. 1060 */ 1061 #define setqsched() 1062 #define qready() 1 1063 1064 #ifdef _KERNEL 1065 #define runqueues() 1066 #define queuerun() 1067 #endif 1068 1069 /* compatibility module for style 2 drivers with DR race condition */ 1070 #define DRMODNAME "drcompat" 1071 1072 /* 1073 * Macros dealing with mux_nodes. 1074 */ 1075 #define MUX_VISIT(X) ((X)->mn_flags |= VISITED) 1076 #define MUX_CLEAR(X) ((X)->mn_flags &= (~VISITED)); \ 1077 ((X)->mn_originp = NULL) 1078 #define MUX_DIDVISIT(X) ((X)->mn_flags & VISITED) 1079 1080 1081 /* 1082 * Twisted stream macros 1083 */ 1084 #define STRMATED(X) ((X)->sd_flag & STRMATE) 1085 #define STRLOCKMATES(X) if (&((X)->sd_lock) > &(((X)->sd_mate)->sd_lock)) { \ 1086 mutex_enter(&((X)->sd_lock)); \ 1087 mutex_enter(&(((X)->sd_mate)->sd_lock)); \ 1088 } else { \ 1089 mutex_enter(&(((X)->sd_mate)->sd_lock)); \ 1090 mutex_enter(&((X)->sd_lock)); \ 1091 } 1092 #define STRUNLOCKMATES(X) mutex_exit(&((X)->sd_lock)); \ 1093 mutex_exit(&(((X)->sd_mate)->sd_lock)) 1094 1095 #if defined(_KERNEL) || defined(_FAKE_KERNEL) 1096 1097 extern void strinit(void); 1098 extern int strdoioctl(struct stdata *, struct strioctl *, int, int, 1099 cred_t *, int *); 1100 extern void strsendsig(struct strsig *, int, uchar_t, int); 1101 extern void str_sendsig(vnode_t *, int, uchar_t, int); 1102 extern void strhup(struct stdata *); 1103 extern int qattach(queue_t *, dev_t *, int, cred_t *, fmodsw_impl_t *, 1104 boolean_t); 1105 extern int qreopen(queue_t *, dev_t *, int, cred_t *); 1106 extern void qdetach(queue_t *, int, int, cred_t *, boolean_t); 1107 extern void enterq(queue_t *); 1108 extern void leaveq(queue_t *); 1109 extern int putiocd(mblk_t *, caddr_t, int, cred_t *); 1110 extern int getiocd(mblk_t *, caddr_t, int); 1111 extern struct linkinfo *alloclink(queue_t *, queue_t *, struct file *); 1112 extern void lbfree(struct linkinfo *); 1113 extern int linkcycle(stdata_t *, stdata_t *, str_stack_t *); 1114 extern struct linkinfo *findlinks(stdata_t *, int, int, str_stack_t *); 1115 extern queue_t *getendq(queue_t *); 1116 extern int mlink(vnode_t *, int, int, cred_t *, int *, int); 1117 extern int mlink_file(vnode_t *, int, struct file *, cred_t *, int *, int); 1118 extern int munlink(struct stdata *, struct linkinfo *, int, cred_t *, int *, 1119 str_stack_t *); 1120 extern int munlinkall(struct stdata *, int, cred_t *, int *, str_stack_t *); 1121 extern void mux_addedge(stdata_t *, stdata_t *, int, str_stack_t *); 1122 extern void mux_rmvedge(stdata_t *, int, str_stack_t *); 1123 extern int devflg_to_qflag(struct streamtab *, uint32_t, uint32_t *, 1124 uint32_t *); 1125 extern void setq(queue_t *, struct qinit *, struct qinit *, perdm_t *, 1126 uint32_t, uint32_t, boolean_t); 1127 extern perdm_t *hold_dm(struct streamtab *, uint32_t, uint32_t); 1128 extern void rele_dm(perdm_t *); 1129 extern int strmakectl(struct strbuf *, int32_t, int32_t, mblk_t **); 1130 extern int strmakedata(ssize_t *, struct uio *, stdata_t *, int32_t, mblk_t **); 1131 extern int strmakemsg(struct strbuf *, ssize_t *, struct uio *, 1132 struct stdata *, int32_t, mblk_t **); 1133 extern int strgetmsg(vnode_t *, struct strbuf *, struct strbuf *, uchar_t *, 1134 int *, int, rval_t *); 1135 extern int strputmsg(vnode_t *, struct strbuf *, struct strbuf *, uchar_t, 1136 int flag, int fmode); 1137 extern int strstartplumb(struct stdata *, int, int); 1138 extern void strendplumb(struct stdata *); 1139 extern int stropen(struct vnode *, dev_t *, int, cred_t *); 1140 extern int strclose(struct vnode *, int, cred_t *); 1141 extern int strpoll(register struct stdata *, short, int, short *, 1142 struct pollhead **); 1143 extern void strclean(struct vnode *); 1144 extern void str_cn_clean(); /* XXX hook for consoles signal cleanup */ 1145 extern int strwrite(struct vnode *, struct uio *, cred_t *); 1146 extern int strwrite_common(struct vnode *, struct uio *, cred_t *, int); 1147 extern int strread(struct vnode *, struct uio *, cred_t *); 1148 extern int strioctl(struct vnode *, int, intptr_t, int, int, cred_t *, int *); 1149 extern int strrput(queue_t *, mblk_t *); 1150 extern int strrput_nondata(queue_t *, mblk_t *); 1151 extern mblk_t *strrput_proto(vnode_t *, mblk_t *, 1152 strwakeup_t *, strsigset_t *, strsigset_t *, strpollset_t *); 1153 extern mblk_t *strrput_misc(vnode_t *, mblk_t *, 1154 strwakeup_t *, strsigset_t *, strsigset_t *, strpollset_t *); 1155 extern int getiocseqno(void); 1156 extern int strwaitbuf(size_t, int); 1157 extern int strwaitq(stdata_t *, int, ssize_t, int, clock_t, int *); 1158 extern struct stdata *shalloc(queue_t *); 1159 extern void shfree(struct stdata *s); 1160 extern queue_t *allocq(void); 1161 extern void freeq(queue_t *); 1162 extern qband_t *allocband(void); 1163 extern void freeband(qband_t *); 1164 extern void freebs_enqueue(mblk_t *, dblk_t *); 1165 extern void setqback(queue_t *, unsigned char); 1166 extern int strcopyin(void *, void *, size_t, int); 1167 extern int strcopyout(void *, void *, size_t, int); 1168 extern void strsignal(struct stdata *, int, int32_t); 1169 extern clock_t str_cv_wait(kcondvar_t *, kmutex_t *, clock_t, int); 1170 extern void disable_svc(queue_t *); 1171 extern void enable_svc(queue_t *); 1172 extern void remove_runlist(queue_t *); 1173 extern void wait_svc(queue_t *); 1174 extern void backenable(queue_t *, uchar_t); 1175 extern void set_qend(queue_t *); 1176 extern int strgeterr(stdata_t *, int32_t, int); 1177 extern void qenable_locked(queue_t *); 1178 extern mblk_t *getq_noenab(queue_t *, ssize_t); 1179 extern void rmvq_noenab(queue_t *, mblk_t *); 1180 extern void qbackenable(queue_t *, uchar_t); 1181 extern void set_qfull(queue_t *); 1182 1183 extern void strblock(queue_t *); 1184 extern void strunblock(queue_t *); 1185 extern int qclaimed(queue_t *); 1186 extern int straccess(struct stdata *, enum jcaccess); 1187 1188 extern void entersq(syncq_t *, int); 1189 extern void leavesq(syncq_t *, int); 1190 extern void claimq(queue_t *); 1191 extern void releaseq(queue_t *); 1192 extern void claimstr(queue_t *); 1193 extern void releasestr(queue_t *); 1194 extern void removeq(queue_t *); 1195 extern void insertq(struct stdata *, queue_t *); 1196 extern void drain_syncq(syncq_t *); 1197 extern void qfill_syncq(syncq_t *, queue_t *, mblk_t *); 1198 extern void qdrain_syncq(syncq_t *, queue_t *); 1199 extern int flush_syncq(syncq_t *, queue_t *); 1200 extern void wait_sq_svc(syncq_t *); 1201 1202 extern void outer_enter(syncq_t *, uint16_t); 1203 extern void outer_exit(syncq_t *); 1204 extern void qwriter_inner(queue_t *, mblk_t *, void (*)()); 1205 extern void qwriter_outer(queue_t *, mblk_t *, void (*)()); 1206 1207 extern callbparams_t *callbparams_alloc(syncq_t *, void (*)(void *), 1208 void *, int); 1209 extern void callbparams_free(syncq_t *, callbparams_t *); 1210 extern void callbparams_free_id(syncq_t *, callbparams_id_t, int32_t); 1211 extern void qcallbwrapper(void *); 1212 1213 extern mblk_t *esballoc_wait(unsigned char *, size_t, uint_t, frtn_t *); 1214 extern mblk_t *esballoca(unsigned char *, size_t, uint_t, frtn_t *); 1215 extern mblk_t *desballoca(unsigned char *, size_t, uint_t, frtn_t *); 1216 extern int do_sendfp(struct stdata *, struct file *, struct cred *); 1217 extern int frozenstr(queue_t *); 1218 extern size_t xmsgsize(mblk_t *); 1219 1220 extern void putnext_tail(syncq_t *, queue_t *, uint32_t); 1221 extern void stream_willservice(stdata_t *); 1222 extern void stream_runservice(stdata_t *); 1223 1224 extern void strmate(vnode_t *, vnode_t *); 1225 extern queue_t *strvp2wq(vnode_t *); 1226 extern vnode_t *strq2vp(queue_t *); 1227 extern mblk_t *allocb_wait(size_t, uint_t, uint_t, int *); 1228 extern mblk_t *allocb_cred(size_t, cred_t *, pid_t); 1229 extern mblk_t *allocb_cred_wait(size_t, uint_t, int *, cred_t *, pid_t); 1230 extern mblk_t *allocb_tmpl(size_t, const mblk_t *); 1231 extern mblk_t *allocb_tryhard(size_t); 1232 extern void mblk_copycred(mblk_t *, const mblk_t *); 1233 extern void mblk_setcred(mblk_t *, cred_t *, pid_t); 1234 extern cred_t *msg_getcred(const mblk_t *, pid_t *); 1235 extern struct ts_label_s *msg_getlabel(const mblk_t *); 1236 extern cred_t *msg_extractcred(mblk_t *, pid_t *); 1237 extern void strpollwakeup(vnode_t *, short); 1238 extern int putnextctl_wait(queue_t *, int); 1239 1240 extern int kstrputmsg(struct vnode *, mblk_t *, struct uio *, ssize_t, 1241 unsigned char, int, int); 1242 extern int kstrgetmsg(struct vnode *, mblk_t **, struct uio *, 1243 unsigned char *, int *, clock_t, rval_t *); 1244 1245 extern void strsetrerror(vnode_t *, int, int, errfunc_t); 1246 extern void strsetwerror(vnode_t *, int, int, errfunc_t); 1247 extern void strseteof(vnode_t *, int); 1248 extern void strflushrq(vnode_t *, int); 1249 extern void strsetrputhooks(vnode_t *, uint_t, msgfunc_t, msgfunc_t); 1250 extern void strsetwputhooks(vnode_t *, uint_t, clock_t); 1251 extern void strsetrwputdatahooks(vnode_t *, msgfunc_t, msgfunc_t); 1252 extern int strwaitmark(vnode_t *); 1253 extern void strsignal_nolock(stdata_t *, int, uchar_t); 1254 1255 struct multidata_s; 1256 struct pdesc_s; 1257 extern int hcksum_assoc(mblk_t *, struct multidata_s *, struct pdesc_s *, 1258 uint32_t, uint32_t, uint32_t, uint32_t, uint32_t, int); 1259 extern void hcksum_retrieve(mblk_t *, struct multidata_s *, struct pdesc_s *, 1260 uint32_t *, uint32_t *, uint32_t *, uint32_t *, uint32_t *); 1261 extern void lso_info_set(mblk_t *, uint32_t, uint32_t); 1262 extern void lso_info_cleanup(mblk_t *); 1263 extern unsigned int bcksum(uchar_t *, int, unsigned int); 1264 extern boolean_t is_vmloaned_mblk(mblk_t *, struct multidata_s *, 1265 struct pdesc_s *); 1266 1267 extern int fmodsw_register(const char *, struct streamtab *, int); 1268 extern int fmodsw_unregister(const char *); 1269 extern fmodsw_impl_t *fmodsw_find(const char *, fmodsw_flags_t); 1270 extern void fmodsw_rele(fmodsw_impl_t *); 1271 1272 extern void freemsgchain(mblk_t *); 1273 extern mblk_t *copymsgchain(mblk_t *); 1274 1275 extern mblk_t *mcopyinuio(struct stdata *, uio_t *, ssize_t, ssize_t, int *); 1276 1277 /* 1278 * shared or externally configured data structures 1279 */ 1280 extern ssize_t strmsgsz; /* maximum stream message size */ 1281 extern ssize_t strctlsz; /* maximum size of ctl message */ 1282 extern int nstrpush; /* maximum number of pushes allowed */ 1283 1284 /* 1285 * Bufcalls related variables. 1286 */ 1287 extern struct bclist strbcalls; /* List of bufcalls */ 1288 extern kmutex_t strbcall_lock; /* Protects the list of bufcalls */ 1289 extern kcondvar_t strbcall_cv; /* Signaling when a bufcall is added */ 1290 extern kcondvar_t bcall_cv; /* wait of executing bufcall completes */ 1291 1292 extern frtn_t frnop; 1293 1294 extern struct kmem_cache *ciputctrl_cache; 1295 extern int n_ciputctrl; 1296 extern int max_n_ciputctrl; 1297 extern int min_n_ciputctrl; 1298 1299 extern cdevsw_impl_t *devimpl; 1300 1301 /* 1302 * esballoc queue for throttling 1303 */ 1304 typedef struct esb_queue { 1305 kmutex_t eq_lock; 1306 uint_t eq_len; /* number of queued messages */ 1307 mblk_t *eq_head; /* head of queue */ 1308 mblk_t *eq_tail; /* tail of queue */ 1309 uint_t eq_flags; /* esballoc queue flags */ 1310 } esb_queue_t; 1311 1312 /* 1313 * esballoc flags for queue processing. 1314 */ 1315 #define ESBQ_PROCESSING 0x01 /* queue is being processed */ 1316 #define ESBQ_TIMER 0x02 /* timer is active */ 1317 1318 extern void esballoc_queue_init(void); 1319 1320 #endif /* _KERNEL */ 1321 1322 /* 1323 * Note: Use of these macros are restricted to kernel/unix and 1324 * intended for the STREAMS framework. 1325 * All modules/drivers should include sys/ddi.h. 1326 * 1327 * Finding related queues 1328 */ 1329 #define _OTHERQ(q) ((q)->q_flag&QREADR? (q)+1: (q)-1) 1330 #define _WR(q) ((q)->q_flag&QREADR? (q)+1: (q)) 1331 #define _RD(q) ((q)->q_flag&QREADR? (q): (q)-1) 1332 #define _SAMESTR(q) (!((q)->q_flag & QEND)) 1333 1334 /* 1335 * These are also declared here for modules/drivers that erroneously 1336 * include strsubr.h after ddi.h or fail to include ddi.h at all. 1337 */ 1338 extern struct queue *OTHERQ(queue_t *); /* stream.h */ 1339 extern struct queue *RD(queue_t *); 1340 extern struct queue *WR(queue_t *); 1341 extern int SAMESTR(queue_t *); 1342 1343 /* 1344 * The following hardware checksum related macros are private 1345 * interfaces that are subject to change without notice. 1346 */ 1347 #ifdef _KERNEL 1348 #define DB_CKSUMSTART(mp) ((mp)->b_datap->db_cksumstart) 1349 #define DB_CKSUMEND(mp) ((mp)->b_datap->db_cksumend) 1350 #define DB_CKSUMSTUFF(mp) ((mp)->b_datap->db_cksumstuff) 1351 #define DB_CKSUMFLAGS(mp) ((mp)->b_datap->db_struioun.cksum.flags) 1352 #define DB_CKSUM16(mp) ((mp)->b_datap->db_cksum16) 1353 #define DB_CKSUM32(mp) ((mp)->b_datap->db_cksum32) 1354 #define DB_LSOFLAGS(mp) ((mp)->b_datap->db_struioun.cksum.flags) 1355 #define DB_LSOMSS(mp) ((mp)->b_datap->db_struioun.cksum.pad) 1356 #endif /* _KERNEL */ 1357 1358 #ifdef __cplusplus 1359 } 1360 #endif 1361 1362 1363 #endif /* _SYS_STRSUBR_H */