1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 27 * Copyright 2017 Joyent, Inc. 28 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/sysmacros.h> 33 #include <sys/param.h> 34 #include <sys/errno.h> 35 #include <sys/signal.h> 36 #include <sys/stat.h> 37 #include <sys/proc.h> 38 #include <sys/cred.h> 39 #include <sys/user.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/stream.h> 43 #include <sys/strsubr.h> 44 #include <sys/stropts.h> 45 #include <sys/tihdr.h> 46 #include <sys/var.h> 47 #include <sys/poll.h> 48 #include <sys/termio.h> 49 #include <sys/ttold.h> 50 #include <sys/systm.h> 51 #include <sys/uio.h> 52 #include <sys/cmn_err.h> 53 #include <sys/sad.h> 54 #include <sys/netstack.h> 55 #include <sys/priocntl.h> 56 #include <sys/jioctl.h> 57 #include <sys/procset.h> 58 #include <sys/session.h> 59 #include <sys/kmem.h> 60 #include <sys/filio.h> 61 #include <sys/vtrace.h> 62 #include <sys/debug.h> 63 #include <sys/strredir.h> 64 #include <sys/fs/fifonode.h> 65 #include <sys/fs/snode.h> 66 #include <sys/strlog.h> 67 #include <sys/strsun.h> 68 #include <sys/project.h> 69 #include <sys/kbio.h> 70 #include <sys/msio.h> 71 #include <sys/tty.h> 72 #include <sys/ptyvar.h> 73 #include <sys/vuid_event.h> 74 #include <sys/modctl.h> 75 #include <sys/sunddi.h> 76 #include <sys/sunldi_impl.h> 77 #include <sys/autoconf.h> 78 #include <sys/policy.h> 79 #include <sys/dld.h> 80 #include <sys/zone.h> 81 #include <sys/ptms.h> 82 #include <c2/audit.h> 83 84 /* 85 * This define helps improve the readability of streams code while 86 * still maintaining a very old streams performance enhancement. The 87 * performance enhancement basically involved having all callers 88 * of straccess() perform the first check that straccess() will do 89 * locally before actually calling straccess(). (There by reducing 90 * the number of unnecessary calls to straccess().) 91 */ 92 #define i_straccess(x, y) ((stp->sd_sidp == NULL) ? 0 : \ 93 (stp->sd_vnode->v_type == VFIFO) ? 0 : \ 94 straccess((x), (y))) 95 96 /* 97 * what is mblk_pull_len? 98 * 99 * If a streams message consists of many short messages, 100 * a performance degradation occurs from copyout overhead. 101 * To decrease the per mblk overhead, messages that are 102 * likely to consist of many small mblks are pulled up into 103 * one continuous chunk of memory. 104 * 105 * To avoid the processing overhead of examining every 106 * mblk, a quick heuristic is used. If the first mblk in 107 * the message is shorter than mblk_pull_len, it is likely 108 * that the rest of the mblk will be short. 109 * 110 * This heuristic was decided upon after performance tests 111 * indicated that anything more complex slowed down the main 112 * code path. 113 */ 114 #define MBLK_PULL_LEN 64 115 uint32_t mblk_pull_len = MBLK_PULL_LEN; 116 117 /* 118 * The sgttyb_handling flag controls the handling of the old BSD 119 * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows: 120 * 121 * 0 - Emit no warnings at all and retain old, broken behavior. 122 * 1 - Emit no warnings and silently handle new semantics. 123 * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used 124 * (once per system invocation). Handle with new semantics. 125 * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is 126 * made (so that offenders drop core and are easy to debug). 127 * 128 * The "new semantics" are that TIOCGETP returns B38400 for 129 * sg_[io]speed if the corresponding value is over B38400, and that 130 * TIOCSET[PN] accept B38400 in these cases to mean "retain current 131 * bit rate." 132 */ 133 int sgttyb_handling = 1; 134 static boolean_t sgttyb_complaint; 135 136 /* don't push drcompat module by default on Style-2 streams */ 137 static int push_drcompat = 0; 138 139 /* 140 * id value used to distinguish between different ioctl messages 141 */ 142 static uint32_t ioc_id; 143 144 static void putback(struct stdata *, queue_t *, mblk_t *, int); 145 static void strcleanall(struct vnode *); 146 static int strwsrv(queue_t *); 147 static int strdocmd(struct stdata *, struct strcmd *, cred_t *); 148 149 /* 150 * qinit and module_info structures for stream head read and write queues 151 */ 152 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW }; 153 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 }; 154 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info }; 155 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info }; 156 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT, 157 FIFOLOWAT }; 158 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 }; 159 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info }; 160 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info }; 161 162 extern kmutex_t strresources; /* protects global resources */ 163 extern kmutex_t muxifier; /* single-threads multiplexor creation */ 164 165 static boolean_t msghasdata(mblk_t *bp); 166 #define msgnodata(bp) (!msghasdata(bp)) 167 168 /* 169 * Stream head locking notes: 170 * There are four monitors associated with the stream head: 171 * 1. v_stream monitor: in stropen() and strclose() v_lock 172 * is held while the association of vnode and stream 173 * head is established or tested for. 174 * 2. open/close/push/pop monitor: sd_lock is held while each 175 * thread bids for exclusive access to this monitor 176 * for opening or closing a stream. In addition, this 177 * monitor is entered during pushes and pops. This 178 * guarantees that during plumbing operations there 179 * is only one thread trying to change the plumbing. 180 * Any other threads present in the stream are only 181 * using the plumbing. 182 * 3. read/write monitor: in the case of read, a thread holds 183 * sd_lock while trying to get data from the stream 184 * head queue. if there is none to fulfill a read 185 * request, it sets RSLEEP and calls cv_wait_sig() down 186 * in strwaitq() to await the arrival of new data. 187 * when new data arrives in strrput(), sd_lock is acquired 188 * before testing for RSLEEP and calling cv_broadcast(). 189 * the behavior of strwrite(), strwsrv(), and WSLEEP 190 * mirror this. 191 * 4. ioctl monitor: sd_lock is gotten to ensure that only one 192 * thread is doing an ioctl at a time. 193 */ 194 195 static int 196 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name, 197 int anchor, cred_t *crp, uint_t anchor_zoneid) 198 { 199 int error; 200 fmodsw_impl_t *fp; 201 202 if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) { 203 error = (stp->sd_flag & STRHUP) ? ENXIO : EIO; 204 return (error); 205 } 206 if (stp->sd_pushcnt >= nstrpush) { 207 return (EINVAL); 208 } 209 210 if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) { 211 stp->sd_flag |= STREOPENFAIL; 212 return (EINVAL); 213 } 214 215 /* 216 * push new module and call its open routine via qattach 217 */ 218 if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0) 219 return (error); 220 221 /* 222 * Check to see if caller wants a STREAMS anchor 223 * put at this place in the stream, and add if so. 224 */ 225 mutex_enter(&stp->sd_lock); 226 if (anchor == stp->sd_pushcnt) { 227 stp->sd_anchor = stp->sd_pushcnt; 228 stp->sd_anchorzone = anchor_zoneid; 229 } 230 mutex_exit(&stp->sd_lock); 231 232 return (0); 233 } 234 235 static int 236 xpg4_fixup(queue_t *qp, dev_t *devp, struct stdata *stp, cred_t *crp) 237 { 238 static const char *ptsmods[] = { 239 "ptem", "ldterm", "ttcompat" 240 }; 241 dev_t dummydev = *devp; 242 struct strioctl strioc; 243 zoneid_t zoneid; 244 int32_t rval; 245 uint_t i; 246 247 /* 248 * Push modules required for the slave PTY to have terminal 249 * semantics out of the box; this is required by XPG4v2. 250 * These three modules are flagged as single-instance so that 251 * the system will never end up with duplicate copies pushed 252 * onto a stream. 253 */ 254 255 zoneid = crgetzoneid(crp); 256 for (i = 0; i < ARRAY_SIZE(ptsmods); i++) { 257 int error; 258 259 error = push_mod(qp, &dummydev, stp, ptsmods[i], 0, 260 crp, zoneid); 261 if (error != 0) 262 return (error); 263 } 264 265 /* 266 * Send PTSSTTY down the stream 267 */ 268 269 strioc.ic_cmd = PTSSTTY; 270 strioc.ic_timout = 0; 271 strioc.ic_len = 0; 272 strioc.ic_dp = NULL; 273 274 (void) strdoioctl(stp, &strioc, FNATIVE, K_TO_K, crp, &rval); 275 276 return (0); 277 } 278 279 /* 280 * Open a stream device. 281 */ 282 int 283 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp) 284 { 285 struct stdata *stp; 286 queue_t *qp; 287 int s; 288 dev_t dummydev, savedev; 289 struct autopush *ap; 290 struct dlautopush dlap; 291 int error = 0; 292 ssize_t rmin, rmax; 293 int cloneopen; 294 queue_t *brq; 295 major_t major; 296 str_stack_t *ss; 297 zoneid_t zoneid; 298 uint_t anchor; 299 300 /* 301 * If the stream already exists, wait for any open in progress 302 * to complete, then call the open function of each module and 303 * driver in the stream. Otherwise create the stream. 304 */ 305 TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp); 306 retry: 307 mutex_enter(&vp->v_lock); 308 if ((stp = vp->v_stream) != NULL) { 309 310 /* 311 * Waiting for stream to be created to device 312 * due to another open. 313 */ 314 mutex_exit(&vp->v_lock); 315 316 if (STRMATED(stp)) { 317 struct stdata *strmatep = stp->sd_mate; 318 319 STRLOCKMATES(stp); 320 if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 321 if (flag & (FNDELAY|FNONBLOCK)) { 322 error = EAGAIN; 323 mutex_exit(&strmatep->sd_lock); 324 goto ckreturn; 325 } 326 mutex_exit(&stp->sd_lock); 327 if (!cv_wait_sig(&strmatep->sd_monitor, 328 &strmatep->sd_lock)) { 329 error = EINTR; 330 mutex_exit(&strmatep->sd_lock); 331 mutex_enter(&stp->sd_lock); 332 goto ckreturn; 333 } 334 mutex_exit(&strmatep->sd_lock); 335 goto retry; 336 } 337 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 338 if (flag & (FNDELAY|FNONBLOCK)) { 339 error = EAGAIN; 340 mutex_exit(&strmatep->sd_lock); 341 goto ckreturn; 342 } 343 mutex_exit(&strmatep->sd_lock); 344 if (!cv_wait_sig(&stp->sd_monitor, 345 &stp->sd_lock)) { 346 error = EINTR; 347 goto ckreturn; 348 } 349 mutex_exit(&stp->sd_lock); 350 goto retry; 351 } 352 353 if (stp->sd_flag & (STRDERR|STWRERR)) { 354 error = EIO; 355 mutex_exit(&strmatep->sd_lock); 356 goto ckreturn; 357 } 358 359 stp->sd_flag |= STWOPEN; 360 STRUNLOCKMATES(stp); 361 } else { 362 mutex_enter(&stp->sd_lock); 363 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 364 if (flag & (FNDELAY|FNONBLOCK)) { 365 error = EAGAIN; 366 goto ckreturn; 367 } 368 if (!cv_wait_sig(&stp->sd_monitor, 369 &stp->sd_lock)) { 370 error = EINTR; 371 goto ckreturn; 372 } 373 mutex_exit(&stp->sd_lock); 374 goto retry; /* could be clone! */ 375 } 376 377 if (stp->sd_flag & (STRDERR|STWRERR)) { 378 error = EIO; 379 goto ckreturn; 380 } 381 382 stp->sd_flag |= STWOPEN; 383 mutex_exit(&stp->sd_lock); 384 } 385 386 /* 387 * Open all modules and devices down stream to notify 388 * that another user is streaming. For modules, set the 389 * last argument to MODOPEN and do not pass any open flags. 390 * Ignore dummydev since this is not the first open. 391 */ 392 claimstr(stp->sd_wrq); 393 qp = stp->sd_wrq; 394 while (_SAMESTR(qp)) { 395 qp = qp->q_next; 396 if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0) 397 break; 398 } 399 releasestr(stp->sd_wrq); 400 mutex_enter(&stp->sd_lock); 401 stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR); 402 stp->sd_rerror = 0; 403 stp->sd_werror = 0; 404 ckreturn: 405 cv_broadcast(&stp->sd_monitor); 406 mutex_exit(&stp->sd_lock); 407 return (error); 408 } 409 410 /* 411 * This vnode isn't streaming. SPECFS already 412 * checked for multiple vnodes pointing to the 413 * same stream, so create a stream to the driver. 414 */ 415 qp = allocq(); 416 stp = shalloc(qp); 417 418 /* 419 * Initialize stream head. shalloc() has given us 420 * exclusive access, and we have the vnode locked; 421 * we can do whatever we want with stp. 422 */ 423 stp->sd_flag = STWOPEN; 424 stp->sd_siglist = NULL; 425 stp->sd_pollist.ph_list = NULL; 426 stp->sd_sigflags = 0; 427 stp->sd_mark = NULL; 428 stp->sd_closetime = STRTIMOUT; 429 stp->sd_sidp = NULL; 430 stp->sd_pgidp = NULL; 431 stp->sd_vnode = vp; 432 stp->sd_pvnode = NULL; 433 stp->sd_rerror = 0; 434 stp->sd_werror = 0; 435 stp->sd_wroff = 0; 436 stp->sd_tail = 0; 437 stp->sd_iocblk = NULL; 438 stp->sd_cmdblk = NULL; 439 stp->sd_pushcnt = 0; 440 stp->sd_qn_minpsz = 0; 441 stp->sd_qn_maxpsz = INFPSZ - 1; /* used to check for initialization */ 442 stp->sd_maxblk = INFPSZ; 443 qp->q_ptr = _WR(qp)->q_ptr = stp; 444 STREAM(qp) = STREAM(_WR(qp)) = stp; 445 vp->v_stream = stp; 446 mutex_exit(&vp->v_lock); 447 if (vp->v_type == VFIFO) { 448 stp->sd_flag |= OLDNDELAY; 449 /* 450 * This means, both for pipes and fifos 451 * strwrite will send SIGPIPE if the other 452 * end is closed. For putmsg it depends 453 * on whether it is a XPG4_2 application 454 * or not 455 */ 456 stp->sd_wput_opt = SW_SIGPIPE; 457 458 /* setq might sleep in kmem_alloc - avoid holding locks. */ 459 setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE, 460 SQ_CI|SQ_CO, B_FALSE); 461 462 set_qend(qp); 463 stp->sd_strtab = fifo_getinfo(); 464 _WR(qp)->q_nfsrv = _WR(qp); 465 qp->q_nfsrv = qp; 466 /* 467 * Wake up others that are waiting for stream to be created. 468 */ 469 mutex_enter(&stp->sd_lock); 470 /* 471 * nothing is be pushed on stream yet, so 472 * optimized stream head packetsizes are just that 473 * of the read queue 474 */ 475 stp->sd_qn_minpsz = qp->q_minpsz; 476 stp->sd_qn_maxpsz = qp->q_maxpsz; 477 stp->sd_flag &= ~STWOPEN; 478 goto fifo_opendone; 479 } 480 /* setq might sleep in kmem_alloc - avoid holding locks. */ 481 setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE); 482 483 set_qend(qp); 484 485 /* 486 * Open driver and create stream to it (via qattach). 487 */ 488 savedev = *devp; 489 cloneopen = (getmajor(*devp) == clone_major); 490 if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) { 491 mutex_enter(&vp->v_lock); 492 vp->v_stream = NULL; 493 mutex_exit(&vp->v_lock); 494 mutex_enter(&stp->sd_lock); 495 cv_broadcast(&stp->sd_monitor); 496 mutex_exit(&stp->sd_lock); 497 freeq(_RD(qp)); 498 shfree(stp); 499 return (error); 500 } 501 /* 502 * Set sd_strtab after open in order to handle clonable drivers 503 */ 504 stp->sd_strtab = STREAMSTAB(getmajor(*devp)); 505 506 /* 507 * Historical note: dummydev used to be be prior to the initial 508 * open (via qattach above), which made the value seen 509 * inconsistent between an I_PUSH and an autopush of a module. 510 */ 511 dummydev = *devp; 512 513 /* 514 * For clone open of old style (Q not associated) network driver, 515 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH 516 */ 517 brq = _RD(_WR(qp)->q_next); 518 major = getmajor(*devp); 519 if (push_drcompat && cloneopen && NETWORK_DRV(major) && 520 ((brq->q_flag & _QASSOCIATED) == 0)) { 521 if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0) 522 cmn_err(CE_WARN, "cannot push " DRMODNAME 523 " streams module"); 524 } 525 526 if (!NETWORK_DRV(major)) { 527 savedev = *devp; 528 } else { 529 /* 530 * For network devices, process differently based on the 531 * return value from dld_autopush(): 532 * 533 * 0: the passed-in device points to a GLDv3 datalink with 534 * per-link autopush configuration; use that configuration 535 * and ignore any per-driver autopush configuration. 536 * 537 * 1: the passed-in device points to a physical GLDv3 538 * datalink without per-link autopush configuration. The 539 * passed in device was changed to refer to the actual 540 * physical device (if it's not already); we use that new 541 * device to look up any per-driver autopush configuration. 542 * 543 * -1: neither of the above cases applied; use the initial 544 * device to look up any per-driver autopush configuration. 545 */ 546 switch (dld_autopush(&savedev, &dlap)) { 547 case 0: 548 zoneid = crgetzoneid(crp); 549 for (s = 0; s < dlap.dap_npush; s++) { 550 error = push_mod(qp, &dummydev, stp, 551 dlap.dap_aplist[s], dlap.dap_anchor, crp, 552 zoneid); 553 if (error != 0) 554 break; 555 } 556 goto opendone; 557 case 1: 558 break; 559 case -1: 560 savedev = *devp; 561 break; 562 } 563 } 564 /* 565 * Find the autopush configuration based on "savedev". Start with the 566 * global zone. If not found check in the local zone. 567 */ 568 zoneid = GLOBAL_ZONEID; 569 retryap: 570 ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))-> 571 netstack_str; 572 if ((ap = sad_ap_find_by_dev(savedev, ss)) == NULL) { 573 netstack_rele(ss->ss_netstack); 574 if (zoneid == GLOBAL_ZONEID) { 575 /* 576 * None found. Also look in the zone's autopush table. 577 */ 578 zoneid = crgetzoneid(crp); 579 if (zoneid != GLOBAL_ZONEID) 580 goto retryap; 581 } 582 goto opendone; 583 } 584 anchor = ap->ap_anchor; 585 zoneid = crgetzoneid(crp); 586 for (s = 0; s < ap->ap_npush; s++) { 587 error = push_mod(qp, &dummydev, stp, ap->ap_list[s], 588 anchor, crp, zoneid); 589 if (error != 0) 590 break; 591 } 592 sad_ap_rele(ap, ss); 593 netstack_rele(ss->ss_netstack); 594 595 opendone: 596 597 if (error == 0 && 598 (stp->sd_flag & (STRISTTY|STRXPG4TTY)) == (STRISTTY|STRXPG4TTY)) { 599 error = xpg4_fixup(qp, devp, stp, crp); 600 } 601 602 /* 603 * let specfs know that open failed part way through 604 */ 605 if (error != 0) { 606 mutex_enter(&stp->sd_lock); 607 stp->sd_flag |= STREOPENFAIL; 608 mutex_exit(&stp->sd_lock); 609 } 610 611 /* 612 * Wake up others that are waiting for stream to be created. 613 */ 614 mutex_enter(&stp->sd_lock); 615 stp->sd_flag &= ~STWOPEN; 616 617 /* 618 * As a performance concern we are caching the values of 619 * q_minpsz and q_maxpsz of the module below the stream 620 * head in the stream head. 621 */ 622 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 623 rmin = stp->sd_wrq->q_next->q_minpsz; 624 rmax = stp->sd_wrq->q_next->q_maxpsz; 625 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 626 627 /* do this processing here as a performance concern */ 628 if (strmsgsz != 0) { 629 if (rmax == INFPSZ) 630 rmax = strmsgsz; 631 else 632 rmax = MIN(strmsgsz, rmax); 633 } 634 635 mutex_enter(QLOCK(stp->sd_wrq)); 636 stp->sd_qn_minpsz = rmin; 637 stp->sd_qn_maxpsz = rmax; 638 mutex_exit(QLOCK(stp->sd_wrq)); 639 640 fifo_opendone: 641 cv_broadcast(&stp->sd_monitor); 642 mutex_exit(&stp->sd_lock); 643 return (error); 644 } 645 646 static int strsink(queue_t *, mblk_t *); 647 static struct qinit deadrend = { 648 strsink, NULL, NULL, NULL, NULL, &strm_info, NULL 649 }; 650 static struct qinit deadwend = { 651 NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL 652 }; 653 654 /* 655 * Close a stream. 656 * This is called from closef() on the last close of an open stream. 657 * Strclean() will already have removed the siglist and pollist 658 * information, so all that remains is to remove all multiplexor links 659 * for the stream, pop all the modules (and the driver), and free the 660 * stream structure. 661 */ 662 663 int 664 strclose(struct vnode *vp, int flag, cred_t *crp) 665 { 666 struct stdata *stp; 667 queue_t *qp; 668 int rval; 669 int freestp = 1; 670 queue_t *rmq; 671 672 TRACE_1(TR_FAC_STREAMS_FR, 673 TR_STRCLOSE, "strclose:%p", vp); 674 ASSERT(vp->v_stream); 675 676 stp = vp->v_stream; 677 ASSERT(!(stp->sd_flag & STPLEX)); 678 qp = stp->sd_wrq; 679 680 /* 681 * Needed so that strpoll will return non-zero for this fd. 682 * Note that with POLLNOERR STRHUP does still cause POLLHUP. 683 */ 684 mutex_enter(&stp->sd_lock); 685 stp->sd_flag |= STRHUP; 686 mutex_exit(&stp->sd_lock); 687 688 /* 689 * If the registered process or process group did not have an 690 * open instance of this stream then strclean would not be 691 * called. Thus at the time of closing all remaining siglist entries 692 * are removed. 693 */ 694 if (stp->sd_siglist != NULL) 695 strcleanall(vp); 696 697 ASSERT(stp->sd_siglist == NULL); 698 ASSERT(stp->sd_sigflags == 0); 699 700 if (STRMATED(stp)) { 701 struct stdata *strmatep = stp->sd_mate; 702 int waited = 1; 703 704 STRLOCKMATES(stp); 705 while (waited) { 706 waited = 0; 707 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 708 mutex_exit(&strmatep->sd_lock); 709 cv_wait(&stp->sd_monitor, &stp->sd_lock); 710 mutex_exit(&stp->sd_lock); 711 STRLOCKMATES(stp); 712 waited = 1; 713 } 714 while (strmatep->sd_flag & 715 (STWOPEN|STRCLOSE|STRPLUMB)) { 716 mutex_exit(&stp->sd_lock); 717 cv_wait(&strmatep->sd_monitor, 718 &strmatep->sd_lock); 719 mutex_exit(&strmatep->sd_lock); 720 STRLOCKMATES(stp); 721 waited = 1; 722 } 723 } 724 stp->sd_flag |= STRCLOSE; 725 STRUNLOCKMATES(stp); 726 } else { 727 mutex_enter(&stp->sd_lock); 728 stp->sd_flag |= STRCLOSE; 729 mutex_exit(&stp->sd_lock); 730 } 731 732 ASSERT(qp->q_first == NULL); /* No more delayed write */ 733 734 /* Check if an I_LINK was ever done on this stream */ 735 if (stp->sd_flag & STRHASLINKS) { 736 netstack_t *ns; 737 str_stack_t *ss; 738 739 ns = netstack_find_by_cred(crp); 740 ASSERT(ns != NULL); 741 ss = ns->netstack_str; 742 ASSERT(ss != NULL); 743 744 (void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss); 745 netstack_rele(ss->ss_netstack); 746 } 747 748 while (_SAMESTR(qp)) { 749 /* 750 * Holding sd_lock prevents q_next from changing in 751 * this stream. 752 */ 753 mutex_enter(&stp->sd_lock); 754 if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) { 755 756 /* 757 * sleep until awakened by strwsrv() or timeout 758 */ 759 for (;;) { 760 mutex_enter(QLOCK(qp->q_next)); 761 if (!(qp->q_next->q_mblkcnt)) { 762 mutex_exit(QLOCK(qp->q_next)); 763 break; 764 } 765 stp->sd_flag |= WSLEEP; 766 767 /* ensure strwsrv gets enabled */ 768 qp->q_next->q_flag |= QWANTW; 769 mutex_exit(QLOCK(qp->q_next)); 770 /* get out if we timed out or recv'd a signal */ 771 if (str_cv_wait(&qp->q_wait, &stp->sd_lock, 772 stp->sd_closetime, 0) <= 0) { 773 break; 774 } 775 } 776 stp->sd_flag &= ~WSLEEP; 777 } 778 mutex_exit(&stp->sd_lock); 779 780 rmq = qp->q_next; 781 if (rmq->q_flag & QISDRV) { 782 ASSERT(!_SAMESTR(rmq)); 783 wait_sq_svc(_RD(qp)->q_syncq); 784 } 785 786 qdetach(_RD(rmq), 1, flag, crp, B_FALSE); 787 } 788 789 /* 790 * Since we call pollwakeup in close() now, the poll list should 791 * be empty in most cases. The only exception is the layered devices 792 * (e.g. the console drivers with redirection modules pushed on top 793 * of it). We have to do this after calling qdetach() because 794 * the redirection module won't have torn down the console 795 * redirection until after qdetach() has been invoked. 796 */ 797 if (stp->sd_pollist.ph_list != NULL) { 798 pollwakeup(&stp->sd_pollist, POLLERR); 799 pollhead_clean(&stp->sd_pollist); 800 } 801 ASSERT(stp->sd_pollist.ph_list == NULL); 802 ASSERT(stp->sd_sidp == NULL); 803 ASSERT(stp->sd_pgidp == NULL); 804 805 /* Prevent qenable from re-enabling the stream head queue */ 806 disable_svc(_RD(qp)); 807 808 /* 809 * Wait until service procedure of each queue is 810 * run, if QINSERVICE is set. 811 */ 812 wait_svc(_RD(qp)); 813 814 /* 815 * Now, flush both queues. 816 */ 817 flushq(_RD(qp), FLUSHALL); 818 flushq(qp, FLUSHALL); 819 820 /* 821 * If the write queue of the stream head is pointing to a 822 * read queue, we have a twisted stream. If the read queue 823 * is alive, convert the stream head queues into a dead end. 824 * If the read queue is dead, free the dead pair. 825 */ 826 if (qp->q_next && !_SAMESTR(qp)) { 827 if (qp->q_next->q_qinfo == &deadrend) { /* half-closed pipe */ 828 flushq(qp->q_next, FLUSHALL); /* ensure no message */ 829 shfree(qp->q_next->q_stream); 830 freeq(qp->q_next); 831 freeq(_RD(qp)); 832 } else if (qp->q_next == _RD(qp)) { /* fifo */ 833 freeq(_RD(qp)); 834 } else { /* pipe */ 835 freestp = 0; 836 /* 837 * The q_info pointers are never accessed when 838 * SQLOCK is held. 839 */ 840 ASSERT(qp->q_syncq == _RD(qp)->q_syncq); 841 mutex_enter(SQLOCK(qp->q_syncq)); 842 qp->q_qinfo = &deadwend; 843 _RD(qp)->q_qinfo = &deadrend; 844 mutex_exit(SQLOCK(qp->q_syncq)); 845 } 846 } else { 847 freeq(_RD(qp)); /* free stream head queue pair */ 848 } 849 850 mutex_enter(&vp->v_lock); 851 if (stp->sd_iocblk) { 852 if (stp->sd_iocblk != (mblk_t *)-1) { 853 freemsg(stp->sd_iocblk); 854 } 855 stp->sd_iocblk = NULL; 856 } 857 stp->sd_vnode = stp->sd_pvnode = NULL; 858 vp->v_stream = NULL; 859 mutex_exit(&vp->v_lock); 860 mutex_enter(&stp->sd_lock); 861 freemsg(stp->sd_cmdblk); 862 stp->sd_cmdblk = NULL; 863 stp->sd_flag &= ~STRCLOSE; 864 cv_broadcast(&stp->sd_monitor); 865 mutex_exit(&stp->sd_lock); 866 867 if (freestp) 868 shfree(stp); 869 return (0); 870 } 871 872 static int 873 strsink(queue_t *q, mblk_t *bp) 874 { 875 struct copyresp *resp; 876 877 switch (bp->b_datap->db_type) { 878 case M_FLUSH: 879 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 880 *bp->b_rptr &= ~FLUSHR; 881 bp->b_flag |= MSGNOLOOP; 882 /* 883 * Protect against the driver passing up 884 * messages after it has done a qprocsoff. 885 */ 886 if (_OTHERQ(q)->q_next == NULL) 887 freemsg(bp); 888 else 889 qreply(q, bp); 890 } else { 891 freemsg(bp); 892 } 893 break; 894 895 case M_COPYIN: 896 case M_COPYOUT: 897 if (bp->b_cont) { 898 freemsg(bp->b_cont); 899 bp->b_cont = NULL; 900 } 901 bp->b_datap->db_type = M_IOCDATA; 902 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 903 resp = (struct copyresp *)bp->b_rptr; 904 resp->cp_rval = (caddr_t)1; /* failure */ 905 /* 906 * Protect against the driver passing up 907 * messages after it has done a qprocsoff. 908 */ 909 if (_OTHERQ(q)->q_next == NULL) 910 freemsg(bp); 911 else 912 qreply(q, bp); 913 break; 914 915 case M_IOCTL: 916 if (bp->b_cont) { 917 freemsg(bp->b_cont); 918 bp->b_cont = NULL; 919 } 920 bp->b_datap->db_type = M_IOCNAK; 921 /* 922 * Protect against the driver passing up 923 * messages after it has done a qprocsoff. 924 */ 925 if (_OTHERQ(q)->q_next == NULL) 926 freemsg(bp); 927 else 928 qreply(q, bp); 929 break; 930 931 default: 932 freemsg(bp); 933 break; 934 } 935 936 return (0); 937 } 938 939 /* 940 * Clean up after a process when it closes a stream. This is called 941 * from closef for all closes, whereas strclose is called only for the 942 * last close on a stream. The siglist is scanned for entries for the 943 * current process, and these are removed. 944 */ 945 void 946 strclean(struct vnode *vp) 947 { 948 strsig_t *ssp, *pssp, *tssp; 949 stdata_t *stp; 950 int update = 0; 951 952 TRACE_1(TR_FAC_STREAMS_FR, 953 TR_STRCLEAN, "strclean:%p", vp); 954 stp = vp->v_stream; 955 pssp = NULL; 956 mutex_enter(&stp->sd_lock); 957 ssp = stp->sd_siglist; 958 while (ssp) { 959 if (ssp->ss_pidp == curproc->p_pidp) { 960 tssp = ssp->ss_next; 961 if (pssp) 962 pssp->ss_next = tssp; 963 else 964 stp->sd_siglist = tssp; 965 mutex_enter(&pidlock); 966 PID_RELE(ssp->ss_pidp); 967 mutex_exit(&pidlock); 968 kmem_free(ssp, sizeof (strsig_t)); 969 update = 1; 970 ssp = tssp; 971 } else { 972 pssp = ssp; 973 ssp = ssp->ss_next; 974 } 975 } 976 if (update) { 977 stp->sd_sigflags = 0; 978 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 979 stp->sd_sigflags |= ssp->ss_events; 980 } 981 mutex_exit(&stp->sd_lock); 982 } 983 984 /* 985 * Used on the last close to remove any remaining items on the siglist. 986 * These could be present on the siglist due to I_ESETSIG calls that 987 * use process groups or processed that do not have an open file descriptor 988 * for this stream (Such entries would not be removed by strclean). 989 */ 990 static void 991 strcleanall(struct vnode *vp) 992 { 993 strsig_t *ssp, *nssp; 994 stdata_t *stp; 995 996 stp = vp->v_stream; 997 mutex_enter(&stp->sd_lock); 998 ssp = stp->sd_siglist; 999 stp->sd_siglist = NULL; 1000 while (ssp) { 1001 nssp = ssp->ss_next; 1002 mutex_enter(&pidlock); 1003 PID_RELE(ssp->ss_pidp); 1004 mutex_exit(&pidlock); 1005 kmem_free(ssp, sizeof (strsig_t)); 1006 ssp = nssp; 1007 } 1008 stp->sd_sigflags = 0; 1009 mutex_exit(&stp->sd_lock); 1010 } 1011 1012 /* 1013 * Retrieve the next message from the logical stream head read queue 1014 * using either rwnext (if sync stream) or getq_noenab. 1015 * It is the callers responsibility to call qbackenable after 1016 * it is finished with the message. The caller should not call 1017 * qbackenable until after any putback calls to avoid spurious backenabling. 1018 */ 1019 mblk_t * 1020 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first, 1021 int *errorp) 1022 { 1023 mblk_t *bp; 1024 int error; 1025 ssize_t rbytes = 0; 1026 1027 /* Holding sd_lock prevents the read queue from changing */ 1028 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1029 1030 if (uiop != NULL && stp->sd_struiordq != NULL && 1031 q->q_first == NULL && 1032 (!first || (stp->sd_wakeq & RSLEEP))) { 1033 /* 1034 * Stream supports rwnext() for the read side. 1035 * If this is the first time we're called by e.g. strread 1036 * only do the downcall if there is a deferred wakeup 1037 * (registered in sd_wakeq). 1038 */ 1039 struiod_t uiod; 1040 1041 if (first) 1042 stp->sd_wakeq &= ~RSLEEP; 1043 1044 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 1045 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 1046 uiod.d_mp = 0; 1047 /* 1048 * Mark that a thread is in rwnext on the read side 1049 * to prevent strrput from nacking ioctls immediately. 1050 * When the last concurrent rwnext returns 1051 * the ioctls are nack'ed. 1052 */ 1053 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1054 stp->sd_struiodnak++; 1055 /* 1056 * Note: rwnext will drop sd_lock. 1057 */ 1058 error = rwnext(q, &uiod); 1059 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 1060 mutex_enter(&stp->sd_lock); 1061 stp->sd_struiodnak--; 1062 while (stp->sd_struiodnak == 0 && 1063 ((bp = stp->sd_struionak) != NULL)) { 1064 stp->sd_struionak = bp->b_next; 1065 bp->b_next = NULL; 1066 bp->b_datap->db_type = M_IOCNAK; 1067 /* 1068 * Protect against the driver passing up 1069 * messages after it has done a qprocsoff. 1070 */ 1071 if (_OTHERQ(q)->q_next == NULL) 1072 freemsg(bp); 1073 else { 1074 mutex_exit(&stp->sd_lock); 1075 qreply(q, bp); 1076 mutex_enter(&stp->sd_lock); 1077 } 1078 } 1079 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1080 if (error == 0 || error == EWOULDBLOCK) { 1081 if ((bp = uiod.d_mp) != NULL) { 1082 *errorp = 0; 1083 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1084 return (bp); 1085 } 1086 error = 0; 1087 } else if (error == EINVAL) { 1088 /* 1089 * The stream plumbing must have 1090 * changed while we were away, so 1091 * just turn off rwnext()s. 1092 */ 1093 error = 0; 1094 } else if (error == EBUSY) { 1095 /* 1096 * The module might have data in transit using putnext 1097 * Fall back on waiting + getq. 1098 */ 1099 error = 0; 1100 } else { 1101 *errorp = error; 1102 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1103 return (NULL); 1104 } 1105 /* 1106 * Try a getq in case a rwnext() generated mblk 1107 * has bubbled up via strrput(). 1108 */ 1109 } 1110 *errorp = 0; 1111 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1112 1113 /* 1114 * If we have a valid uio, try and use this as a guide for how 1115 * many bytes to retrieve from the queue via getq_noenab(). 1116 * Doing this can avoid unneccesary counting of overlong 1117 * messages in putback(). We currently only do this for sockets 1118 * and only if there is no sd_rputdatafunc hook. 1119 * 1120 * The sd_rputdatafunc hook transforms the entire message 1121 * before any bytes in it can be given to a client. So, rbytes 1122 * must be 0 if there is a hook. 1123 */ 1124 if ((uiop != NULL) && (stp->sd_vnode->v_type == VSOCK) && 1125 (stp->sd_rputdatafunc == NULL)) 1126 rbytes = uiop->uio_resid; 1127 1128 return (getq_noenab(q, rbytes)); 1129 } 1130 1131 /* 1132 * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'. 1133 * If the message does not fit in the uio the remainder of it is returned; 1134 * otherwise NULL is returned. Any embedded zero-length mblk_t's are 1135 * consumed, even if uio_resid reaches zero. On error, `*errorp' is set to 1136 * the error code, the message is consumed, and NULL is returned. 1137 */ 1138 static mblk_t * 1139 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp) 1140 { 1141 int error; 1142 ptrdiff_t n; 1143 mblk_t *nbp; 1144 1145 ASSERT(bp->b_wptr >= bp->b_rptr); 1146 1147 do { 1148 if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) { 1149 ASSERT(n > 0); 1150 1151 error = uiomove(bp->b_rptr, n, UIO_READ, uiop); 1152 if (error != 0) { 1153 freemsg(bp); 1154 *errorp = error; 1155 return (NULL); 1156 } 1157 } 1158 1159 bp->b_rptr += n; 1160 while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) { 1161 nbp = bp; 1162 bp = bp->b_cont; 1163 freeb(nbp); 1164 } 1165 } while (bp != NULL && uiop->uio_resid > 0); 1166 1167 *errorp = 0; 1168 return (bp); 1169 } 1170 1171 /* 1172 * Read a stream according to the mode flags in sd_flag: 1173 * 1174 * (default mode) - Byte stream, msg boundaries are ignored 1175 * RD_MSGDIS (msg discard) - Read on msg boundaries and throw away 1176 * any data remaining in msg 1177 * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back 1178 * any remaining data on head of read queue 1179 * 1180 * Consume readable messages on the front of the queue until 1181 * ttolwp(curthread)->lwp_count 1182 * is satisfied, the readable messages are exhausted, or a message 1183 * boundary is reached in a message mode. If no data was read and 1184 * the stream was not opened with the NDELAY flag, block until data arrives. 1185 * Otherwise return the data read and update the count. 1186 * 1187 * In default mode a 0 length message signifies end-of-file and terminates 1188 * a read in progress. The 0 length message is removed from the queue 1189 * only if it is the only message read (no data is read). 1190 * 1191 * An attempt to read an M_PROTO or M_PCPROTO message results in an 1192 * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set. 1193 * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data. 1194 * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message 1195 * are unlinked from and M_DATA blocks in the message, the protos are 1196 * thrown away, and the data is read. 1197 */ 1198 /* ARGSUSED */ 1199 int 1200 strread(struct vnode *vp, struct uio *uiop, cred_t *crp) 1201 { 1202 struct stdata *stp; 1203 mblk_t *bp, *nbp; 1204 queue_t *q; 1205 int error = 0; 1206 uint_t old_sd_flag; 1207 int first; 1208 char rflg; 1209 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 1210 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 1211 short delim; 1212 unsigned char pri = 0; 1213 char waitflag; 1214 unsigned char type; 1215 1216 TRACE_1(TR_FAC_STREAMS_FR, 1217 TR_STRREAD_ENTER, "strread:%p", vp); 1218 ASSERT(vp->v_stream); 1219 stp = vp->v_stream; 1220 1221 mutex_enter(&stp->sd_lock); 1222 1223 if ((error = i_straccess(stp, JCREAD)) != 0) { 1224 mutex_exit(&stp->sd_lock); 1225 return (error); 1226 } 1227 1228 if (stp->sd_flag & (STRDERR|STPLEX)) { 1229 error = strgeterr(stp, STRDERR|STPLEX, 0); 1230 if (error != 0) { 1231 mutex_exit(&stp->sd_lock); 1232 return (error); 1233 } 1234 } 1235 1236 /* 1237 * Loop terminates when uiop->uio_resid == 0. 1238 */ 1239 rflg = 0; 1240 waitflag = READWAIT; 1241 q = _RD(stp->sd_wrq); 1242 for (;;) { 1243 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1244 old_sd_flag = stp->sd_flag; 1245 mark = 0; 1246 delim = 0; 1247 first = 1; 1248 while ((bp = strget(stp, q, uiop, first, &error)) == NULL) { 1249 int done = 0; 1250 1251 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1252 1253 if (error != 0) 1254 goto oops; 1255 1256 if (stp->sd_flag & (STRHUP|STREOF)) { 1257 goto oops; 1258 } 1259 if (rflg && !(stp->sd_flag & STRDELIM)) { 1260 goto oops; 1261 } 1262 /* 1263 * If a read(fd,buf,0) has been done, there is no 1264 * need to sleep. We always have zero bytes to 1265 * return. 1266 */ 1267 if (uiop->uio_resid == 0) { 1268 goto oops; 1269 } 1270 1271 qbackenable(q, 0); 1272 1273 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT, 1274 "strread calls strwaitq:%p, %p, %p", 1275 vp, uiop, crp); 1276 if ((error = strwaitq(stp, waitflag, uiop->uio_resid, 1277 uiop->uio_fmode, -1, &done)) != 0 || done) { 1278 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE, 1279 "strread error or done:%p, %p, %p", 1280 vp, uiop, crp); 1281 if ((uiop->uio_fmode & FNDELAY) && 1282 (stp->sd_flag & OLDNDELAY) && 1283 (error == EAGAIN)) 1284 error = 0; 1285 goto oops; 1286 } 1287 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE, 1288 "strread awakes:%p, %p, %p", vp, uiop, crp); 1289 if ((error = i_straccess(stp, JCREAD)) != 0) { 1290 goto oops; 1291 } 1292 first = 0; 1293 } 1294 1295 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1296 ASSERT(bp); 1297 pri = bp->b_band; 1298 /* 1299 * Extract any mark information. If the message is not 1300 * completely consumed this information will be put in the mblk 1301 * that is putback. 1302 * If MSGMARKNEXT is set and the message is completely consumed 1303 * the STRATMARK flag will be set below. Likewise, if 1304 * MSGNOTMARKNEXT is set and the message is 1305 * completely consumed STRNOTATMARK will be set. 1306 * 1307 * For some unknown reason strread only breaks the read at the 1308 * last mark. 1309 */ 1310 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 1311 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 1312 (MSGMARKNEXT|MSGNOTMARKNEXT)); 1313 if (mark != 0 && bp == stp->sd_mark) { 1314 if (rflg) { 1315 putback(stp, q, bp, pri); 1316 goto oops; 1317 } 1318 mark |= _LASTMARK; 1319 stp->sd_mark = NULL; 1320 } 1321 if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM)) 1322 delim = 1; 1323 mutex_exit(&stp->sd_lock); 1324 1325 if (STREAM_NEEDSERVICE(stp)) 1326 stream_runservice(stp); 1327 1328 type = bp->b_datap->db_type; 1329 1330 switch (type) { 1331 1332 case M_DATA: 1333 ismdata: 1334 if (msgnodata(bp)) { 1335 if (mark || delim) { 1336 freemsg(bp); 1337 } else if (rflg) { 1338 1339 /* 1340 * If already read data put zero 1341 * length message back on queue else 1342 * free msg and return 0. 1343 */ 1344 bp->b_band = pri; 1345 mutex_enter(&stp->sd_lock); 1346 putback(stp, q, bp, pri); 1347 mutex_exit(&stp->sd_lock); 1348 } else { 1349 freemsg(bp); 1350 } 1351 error = 0; 1352 goto oops1; 1353 } 1354 1355 rflg = 1; 1356 waitflag |= NOINTR; 1357 bp = struiocopyout(bp, uiop, &error); 1358 if (error != 0) 1359 goto oops1; 1360 1361 mutex_enter(&stp->sd_lock); 1362 if (bp) { 1363 /* 1364 * Have remaining data in message. 1365 * Free msg if in discard mode. 1366 */ 1367 if (stp->sd_read_opt & RD_MSGDIS) { 1368 freemsg(bp); 1369 } else { 1370 bp->b_band = pri; 1371 if ((mark & _LASTMARK) && 1372 (stp->sd_mark == NULL)) 1373 stp->sd_mark = bp; 1374 bp->b_flag |= mark & ~_LASTMARK; 1375 if (delim) 1376 bp->b_flag |= MSGDELIM; 1377 if (msgnodata(bp)) 1378 freemsg(bp); 1379 else 1380 putback(stp, q, bp, pri); 1381 } 1382 } else { 1383 /* 1384 * Consumed the complete message. 1385 * Move the MSG*MARKNEXT information 1386 * to the stream head just in case 1387 * the read queue becomes empty. 1388 * 1389 * If the stream head was at the mark 1390 * (STRATMARK) before we dropped sd_lock above 1391 * and some data was consumed then we have 1392 * moved past the mark thus STRATMARK is 1393 * cleared. However, if a message arrived in 1394 * strrput during the copyout above causing 1395 * STRATMARK to be set we can not clear that 1396 * flag. 1397 */ 1398 if (mark & 1399 (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 1400 if (mark & MSGMARKNEXT) { 1401 stp->sd_flag &= ~STRNOTATMARK; 1402 stp->sd_flag |= STRATMARK; 1403 } else if (mark & MSGNOTMARKNEXT) { 1404 stp->sd_flag &= ~STRATMARK; 1405 stp->sd_flag |= STRNOTATMARK; 1406 } else { 1407 stp->sd_flag &= 1408 ~(STRATMARK|STRNOTATMARK); 1409 } 1410 } else if (rflg && (old_sd_flag & STRATMARK)) { 1411 stp->sd_flag &= ~STRATMARK; 1412 } 1413 } 1414 1415 /* 1416 * Check for signal messages at the front of the read 1417 * queue and generate the signal(s) if appropriate. 1418 * The only signal that can be on queue is M_SIG at 1419 * this point. 1420 */ 1421 while ((((bp = q->q_first)) != NULL) && 1422 (bp->b_datap->db_type == M_SIG)) { 1423 bp = getq_noenab(q, 0); 1424 /* 1425 * sd_lock is held so the content of the 1426 * read queue can not change. 1427 */ 1428 ASSERT(bp != NULL && DB_TYPE(bp) == M_SIG); 1429 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 1430 mutex_exit(&stp->sd_lock); 1431 freemsg(bp); 1432 if (STREAM_NEEDSERVICE(stp)) 1433 stream_runservice(stp); 1434 mutex_enter(&stp->sd_lock); 1435 } 1436 1437 if ((uiop->uio_resid == 0) || (mark & _LASTMARK) || 1438 delim || 1439 (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) { 1440 goto oops; 1441 } 1442 continue; 1443 1444 case M_SIG: 1445 strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band); 1446 freemsg(bp); 1447 mutex_enter(&stp->sd_lock); 1448 continue; 1449 1450 case M_PROTO: 1451 case M_PCPROTO: 1452 /* 1453 * Only data messages are readable. 1454 * Any others generate an error, unless 1455 * RD_PROTDIS or RD_PROTDAT is set. 1456 */ 1457 if (stp->sd_read_opt & RD_PROTDAT) { 1458 for (nbp = bp; nbp; nbp = nbp->b_next) { 1459 if ((nbp->b_datap->db_type == 1460 M_PROTO) || 1461 (nbp->b_datap->db_type == 1462 M_PCPROTO)) { 1463 nbp->b_datap->db_type = M_DATA; 1464 } else { 1465 break; 1466 } 1467 } 1468 /* 1469 * clear stream head hi pri flag based on 1470 * first message 1471 */ 1472 if (type == M_PCPROTO) { 1473 mutex_enter(&stp->sd_lock); 1474 stp->sd_flag &= ~STRPRI; 1475 mutex_exit(&stp->sd_lock); 1476 } 1477 goto ismdata; 1478 } else if (stp->sd_read_opt & RD_PROTDIS) { 1479 /* 1480 * discard non-data messages 1481 */ 1482 while (bp && 1483 ((bp->b_datap->db_type == M_PROTO) || 1484 (bp->b_datap->db_type == M_PCPROTO))) { 1485 nbp = unlinkb(bp); 1486 freeb(bp); 1487 bp = nbp; 1488 } 1489 /* 1490 * clear stream head hi pri flag based on 1491 * first message 1492 */ 1493 if (type == M_PCPROTO) { 1494 mutex_enter(&stp->sd_lock); 1495 stp->sd_flag &= ~STRPRI; 1496 mutex_exit(&stp->sd_lock); 1497 } 1498 if (bp) { 1499 bp->b_band = pri; 1500 goto ismdata; 1501 } else { 1502 break; 1503 } 1504 } 1505 /* FALLTHRU */ 1506 case M_PASSFP: 1507 if ((bp->b_datap->db_type == M_PASSFP) && 1508 (stp->sd_read_opt & RD_PROTDIS)) { 1509 freemsg(bp); 1510 break; 1511 } 1512 mutex_enter(&stp->sd_lock); 1513 putback(stp, q, bp, pri); 1514 mutex_exit(&stp->sd_lock); 1515 if (rflg == 0) 1516 error = EBADMSG; 1517 goto oops1; 1518 1519 default: 1520 /* 1521 * Garbage on stream head read queue. 1522 */ 1523 cmn_err(CE_WARN, "bad %x found at stream head\n", 1524 bp->b_datap->db_type); 1525 freemsg(bp); 1526 goto oops1; 1527 } 1528 mutex_enter(&stp->sd_lock); 1529 } 1530 oops: 1531 mutex_exit(&stp->sd_lock); 1532 oops1: 1533 qbackenable(q, pri); 1534 return (error); 1535 #undef _LASTMARK 1536 } 1537 1538 /* 1539 * Default processing of M_PROTO/M_PCPROTO messages. 1540 * Determine which wakeups and signals are needed. 1541 * This can be replaced by a user-specified procedure for kernel users 1542 * of STREAMS. 1543 */ 1544 /* ARGSUSED */ 1545 mblk_t * 1546 strrput_proto(vnode_t *vp, mblk_t *mp, 1547 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1548 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1549 { 1550 *wakeups = RSLEEP; 1551 *allmsgsigs = 0; 1552 1553 switch (mp->b_datap->db_type) { 1554 case M_PROTO: 1555 if (mp->b_band == 0) { 1556 *firstmsgsigs = S_INPUT | S_RDNORM; 1557 *pollwakeups = POLLIN | POLLRDNORM; 1558 } else { 1559 *firstmsgsigs = S_INPUT | S_RDBAND; 1560 *pollwakeups = POLLIN | POLLRDBAND; 1561 } 1562 break; 1563 case M_PCPROTO: 1564 *firstmsgsigs = S_HIPRI; 1565 *pollwakeups = POLLPRI; 1566 break; 1567 } 1568 return (mp); 1569 } 1570 1571 /* 1572 * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and 1573 * M_PASSFP messages. 1574 * Determine which wakeups and signals are needed. 1575 * This can be replaced by a user-specified procedure for kernel users 1576 * of STREAMS. 1577 */ 1578 /* ARGSUSED */ 1579 mblk_t * 1580 strrput_misc(vnode_t *vp, mblk_t *mp, 1581 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1582 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1583 { 1584 *wakeups = 0; 1585 *firstmsgsigs = 0; 1586 *allmsgsigs = 0; 1587 *pollwakeups = 0; 1588 return (mp); 1589 } 1590 1591 /* 1592 * Stream read put procedure. Called from downstream driver/module 1593 * with messages for the stream head. Data, protocol, and in-stream 1594 * signal messages are placed on the queue, others are handled directly. 1595 */ 1596 int 1597 strrput(queue_t *q, mblk_t *bp) 1598 { 1599 struct stdata *stp; 1600 ulong_t rput_opt; 1601 strwakeup_t wakeups; 1602 strsigset_t firstmsgsigs; /* Signals if first message on queue */ 1603 strsigset_t allmsgsigs; /* Signals for all messages */ 1604 strsigset_t signals; /* Signals events to generate */ 1605 strpollset_t pollwakeups; 1606 mblk_t *nextbp; 1607 uchar_t band = 0; 1608 int hipri_sig; 1609 1610 stp = (struct stdata *)q->q_ptr; 1611 /* 1612 * Use rput_opt for optimized access to the SR_ flags except 1613 * SR_POLLIN. That flag has to be checked under sd_lock since it 1614 * is modified by strpoll(). 1615 */ 1616 rput_opt = stp->sd_rput_opt; 1617 1618 ASSERT(qclaimed(q)); 1619 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER, 1620 "strrput called with message type:q %p bp %p", q, bp); 1621 1622 /* 1623 * Perform initial processing and pass to the parameterized functions. 1624 */ 1625 ASSERT(bp->b_next == NULL); 1626 1627 switch (bp->b_datap->db_type) { 1628 case M_DATA: 1629 /* 1630 * sockfs is the only consumer of STREOF and when it is set, 1631 * it implies that the receiver is not interested in receiving 1632 * any more data, hence the mblk is freed to prevent unnecessary 1633 * message queueing at the stream head. 1634 */ 1635 if (stp->sd_flag == STREOF) { 1636 freemsg(bp); 1637 return (0); 1638 } 1639 if ((rput_opt & SR_IGN_ZEROLEN) && 1640 bp->b_rptr == bp->b_wptr && msgnodata(bp)) { 1641 /* 1642 * Ignore zero-length M_DATA messages. These might be 1643 * generated by some transports. 1644 * The zero-length M_DATA messages, even if they 1645 * are ignored, should effect the atmark tracking and 1646 * should wake up a thread sleeping in strwaitmark. 1647 */ 1648 mutex_enter(&stp->sd_lock); 1649 if (bp->b_flag & MSGMARKNEXT) { 1650 /* 1651 * Record the position of the mark either 1652 * in q_last or in STRATMARK. 1653 */ 1654 if (q->q_last != NULL) { 1655 q->q_last->b_flag &= ~MSGNOTMARKNEXT; 1656 q->q_last->b_flag |= MSGMARKNEXT; 1657 } else { 1658 stp->sd_flag &= ~STRNOTATMARK; 1659 stp->sd_flag |= STRATMARK; 1660 } 1661 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1662 /* 1663 * Record that this is not the position of 1664 * the mark either in q_last or in 1665 * STRNOTATMARK. 1666 */ 1667 if (q->q_last != NULL) { 1668 q->q_last->b_flag &= ~MSGMARKNEXT; 1669 q->q_last->b_flag |= MSGNOTMARKNEXT; 1670 } else { 1671 stp->sd_flag &= ~STRATMARK; 1672 stp->sd_flag |= STRNOTATMARK; 1673 } 1674 } 1675 if (stp->sd_flag & RSLEEP) { 1676 stp->sd_flag &= ~RSLEEP; 1677 cv_broadcast(&q->q_wait); 1678 } 1679 mutex_exit(&stp->sd_lock); 1680 freemsg(bp); 1681 return (0); 1682 } 1683 wakeups = RSLEEP; 1684 if (bp->b_band == 0) { 1685 firstmsgsigs = S_INPUT | S_RDNORM; 1686 pollwakeups = POLLIN | POLLRDNORM; 1687 } else { 1688 firstmsgsigs = S_INPUT | S_RDBAND; 1689 pollwakeups = POLLIN | POLLRDBAND; 1690 } 1691 if (rput_opt & SR_SIGALLDATA) 1692 allmsgsigs = firstmsgsigs; 1693 else 1694 allmsgsigs = 0; 1695 1696 mutex_enter(&stp->sd_lock); 1697 if ((rput_opt & SR_CONSOL_DATA) && 1698 (q->q_last != NULL) && 1699 (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) { 1700 /* 1701 * Consolidate an M_DATA message onto an M_DATA, 1702 * M_PROTO, or M_PCPROTO by merging it with q_last. 1703 * The consolidation does not take place if 1704 * the old message is marked with either of the 1705 * marks or the delim flag or if the new 1706 * message is marked with MSGMARK. The MSGMARK 1707 * check is needed to handle the odd semantics of 1708 * MSGMARK where essentially the whole message 1709 * is to be treated as marked. 1710 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from the 1711 * new message to the front of the b_cont chain. 1712 */ 1713 mblk_t *lbp = q->q_last; 1714 unsigned char db_type = lbp->b_datap->db_type; 1715 1716 if ((db_type == M_DATA || db_type == M_PROTO || 1717 db_type == M_PCPROTO) && 1718 !(lbp->b_flag & (MSGDELIM|MSGMARK|MSGMARKNEXT))) { 1719 rmvq_noenab(q, lbp); 1720 /* 1721 * The first message in the b_cont list 1722 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 1723 * We need to handle the case where we 1724 * are appending: 1725 * 1726 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 1727 * 2) a MSGMARKNEXT to a plain message. 1728 * 3) a MSGNOTMARKNEXT to a plain message 1729 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 1730 * message. 1731 * 1732 * Thus we never append a MSGMARKNEXT or 1733 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 1734 */ 1735 if (bp->b_flag & MSGMARKNEXT) { 1736 lbp->b_flag |= MSGMARKNEXT; 1737 lbp->b_flag &= ~MSGNOTMARKNEXT; 1738 bp->b_flag &= ~MSGMARKNEXT; 1739 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1740 lbp->b_flag |= MSGNOTMARKNEXT; 1741 bp->b_flag &= ~MSGNOTMARKNEXT; 1742 } 1743 1744 linkb(lbp, bp); 1745 bp = lbp; 1746 /* 1747 * The new message logically isn't the first 1748 * even though the q_first check below thinks 1749 * it is. Clear the firstmsgsigs to make it 1750 * not appear to be first. 1751 */ 1752 firstmsgsigs = 0; 1753 } 1754 } 1755 break; 1756 1757 case M_PASSFP: 1758 wakeups = RSLEEP; 1759 allmsgsigs = 0; 1760 if (bp->b_band == 0) { 1761 firstmsgsigs = S_INPUT | S_RDNORM; 1762 pollwakeups = POLLIN | POLLRDNORM; 1763 } else { 1764 firstmsgsigs = S_INPUT | S_RDBAND; 1765 pollwakeups = POLLIN | POLLRDBAND; 1766 } 1767 mutex_enter(&stp->sd_lock); 1768 break; 1769 1770 case M_PROTO: 1771 case M_PCPROTO: 1772 ASSERT(stp->sd_rprotofunc != NULL); 1773 bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp, 1774 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1775 #define ALLSIG (S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\ 1776 S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG) 1777 #define ALLPOLL (POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\ 1778 POLLWRBAND) 1779 1780 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1781 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1782 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1783 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1784 1785 mutex_enter(&stp->sd_lock); 1786 break; 1787 1788 default: 1789 ASSERT(stp->sd_rmiscfunc != NULL); 1790 bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp, 1791 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1792 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1793 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1794 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1795 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1796 #undef ALLSIG 1797 #undef ALLPOLL 1798 mutex_enter(&stp->sd_lock); 1799 break; 1800 } 1801 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1802 1803 /* By default generate superset of signals */ 1804 signals = (firstmsgsigs | allmsgsigs); 1805 1806 /* 1807 * The proto and misc functions can return multiple messages 1808 * as a b_next chain. Such messages are processed separately. 1809 */ 1810 one_more: 1811 hipri_sig = 0; 1812 if (bp == NULL) { 1813 nextbp = NULL; 1814 } else { 1815 nextbp = bp->b_next; 1816 bp->b_next = NULL; 1817 1818 switch (bp->b_datap->db_type) { 1819 case M_PCPROTO: 1820 /* 1821 * Only one priority protocol message is allowed at the 1822 * stream head at a time. 1823 */ 1824 if (stp->sd_flag & STRPRI) { 1825 TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR, 1826 "M_PCPROTO already at head"); 1827 freemsg(bp); 1828 mutex_exit(&stp->sd_lock); 1829 goto done; 1830 } 1831 stp->sd_flag |= STRPRI; 1832 hipri_sig = 1; 1833 /* FALLTHRU */ 1834 case M_DATA: 1835 case M_PROTO: 1836 case M_PASSFP: 1837 band = bp->b_band; 1838 /* 1839 * Marking doesn't work well when messages 1840 * are marked in more than one band. We only 1841 * remember the last message received, even if 1842 * it is placed on the queue ahead of other 1843 * marked messages. 1844 */ 1845 if (bp->b_flag & MSGMARK) 1846 stp->sd_mark = bp; 1847 (void) putq(q, bp); 1848 1849 /* 1850 * If message is a PCPROTO message, always use 1851 * firstmsgsigs to determine if a signal should be 1852 * sent as strrput is the only place to send 1853 * signals for PCPROTO. Other messages are based on 1854 * the STRGETINPROG flag. The flag determines if 1855 * strrput or (k)strgetmsg will be responsible for 1856 * sending the signals, in the firstmsgsigs case. 1857 */ 1858 if ((hipri_sig == 1) || 1859 (((stp->sd_flag & STRGETINPROG) == 0) && 1860 (q->q_first == bp))) 1861 signals = (firstmsgsigs | allmsgsigs); 1862 else 1863 signals = allmsgsigs; 1864 break; 1865 1866 default: 1867 mutex_exit(&stp->sd_lock); 1868 (void) strrput_nondata(q, bp); 1869 mutex_enter(&stp->sd_lock); 1870 break; 1871 } 1872 } 1873 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1874 /* 1875 * Wake sleeping read/getmsg and cancel deferred wakeup 1876 */ 1877 if (wakeups & RSLEEP) 1878 stp->sd_wakeq &= ~RSLEEP; 1879 1880 wakeups &= stp->sd_flag; 1881 if (wakeups & RSLEEP) { 1882 stp->sd_flag &= ~RSLEEP; 1883 cv_broadcast(&q->q_wait); 1884 } 1885 if (wakeups & WSLEEP) { 1886 stp->sd_flag &= ~WSLEEP; 1887 cv_broadcast(&_WR(q)->q_wait); 1888 } 1889 1890 if (pollwakeups != 0) { 1891 if (pollwakeups == (POLLIN | POLLRDNORM)) { 1892 /* 1893 * Can't use rput_opt since it was not 1894 * read when sd_lock was held and SR_POLLIN is changed 1895 * by strpoll() under sd_lock. 1896 */ 1897 if (!(stp->sd_rput_opt & SR_POLLIN)) 1898 goto no_pollwake; 1899 stp->sd_rput_opt &= ~SR_POLLIN; 1900 } 1901 mutex_exit(&stp->sd_lock); 1902 pollwakeup(&stp->sd_pollist, pollwakeups); 1903 mutex_enter(&stp->sd_lock); 1904 } 1905 no_pollwake: 1906 1907 /* 1908 * strsendsig can handle multiple signals with a 1909 * single call. 1910 */ 1911 if (stp->sd_sigflags & signals) 1912 strsendsig(stp->sd_siglist, signals, band, 0); 1913 mutex_exit(&stp->sd_lock); 1914 1915 1916 done: 1917 if (nextbp == NULL) 1918 return (0); 1919 1920 /* 1921 * Any signals were handled the first time. 1922 * Wakeups and pollwakeups are redone to avoid any race 1923 * conditions - all the messages are not queued until the 1924 * last message has been processed by strrput. 1925 */ 1926 bp = nextbp; 1927 signals = firstmsgsigs = allmsgsigs = 0; 1928 mutex_enter(&stp->sd_lock); 1929 goto one_more; 1930 } 1931 1932 static void 1933 log_dupioc(queue_t *rq, mblk_t *bp) 1934 { 1935 queue_t *wq, *qp; 1936 char *modnames, *mnp, *dname; 1937 size_t maxmodstr; 1938 boolean_t islast; 1939 1940 /* 1941 * Allocate a buffer large enough to hold the names of nstrpush modules 1942 * and one driver, with spaces between and NUL terminator. If we can't 1943 * get memory, then we'll just log the driver name. 1944 */ 1945 maxmodstr = nstrpush * (FMNAMESZ + 1); 1946 mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP); 1947 1948 /* march down write side to print log message down to the driver */ 1949 wq = WR(rq); 1950 1951 /* make sure q_next doesn't shift around while we're grabbing data */ 1952 claimstr(wq); 1953 qp = wq->q_next; 1954 do { 1955 dname = Q2NAME(qp); 1956 islast = !SAMESTR(qp) || qp->q_next == NULL; 1957 if (modnames == NULL) { 1958 /* 1959 * If we don't have memory, then get the driver name in 1960 * the log where we can see it. Note that memory 1961 * pressure is a possible cause of these sorts of bugs. 1962 */ 1963 if (islast) { 1964 modnames = dname; 1965 maxmodstr = 0; 1966 } 1967 } else { 1968 mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname); 1969 if (!islast) 1970 *mnp++ = ' '; 1971 } 1972 qp = qp->q_next; 1973 } while (!islast); 1974 releasestr(wq); 1975 /* Cannot happen unless stream head is corrupt. */ 1976 ASSERT(modnames != NULL); 1977 (void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1, 1978 SL_CONSOLE|SL_TRACE|SL_ERROR, 1979 "Warning: stream %p received duplicate %X M_IOC%s; module list: %s", 1980 rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd, 1981 (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames); 1982 if (maxmodstr != 0) 1983 kmem_free(modnames, maxmodstr); 1984 } 1985 1986 int 1987 strrput_nondata(queue_t *q, mblk_t *bp) 1988 { 1989 struct stdata *stp; 1990 struct iocblk *iocbp; 1991 struct stroptions *sop; 1992 struct copyreq *reqp; 1993 struct copyresp *resp; 1994 unsigned char bpri; 1995 unsigned char flushed_already = 0; 1996 1997 stp = (struct stdata *)q->q_ptr; 1998 1999 ASSERT(!(stp->sd_flag & STPLEX)); 2000 ASSERT(qclaimed(q)); 2001 2002 switch (bp->b_datap->db_type) { 2003 case M_ERROR: 2004 /* 2005 * An error has occurred downstream, the errno is in the first 2006 * bytes of the message. 2007 */ 2008 if ((bp->b_wptr - bp->b_rptr) == 2) { /* New flavor */ 2009 unsigned char rw = 0; 2010 2011 mutex_enter(&stp->sd_lock); 2012 if (*bp->b_rptr != NOERROR) { /* read error */ 2013 if (*bp->b_rptr != 0) { 2014 if (stp->sd_flag & STRDERR) 2015 flushed_already |= FLUSHR; 2016 stp->sd_flag |= STRDERR; 2017 rw |= FLUSHR; 2018 } else { 2019 stp->sd_flag &= ~STRDERR; 2020 } 2021 stp->sd_rerror = *bp->b_rptr; 2022 } 2023 bp->b_rptr++; 2024 if (*bp->b_rptr != NOERROR) { /* write error */ 2025 if (*bp->b_rptr != 0) { 2026 if (stp->sd_flag & STWRERR) 2027 flushed_already |= FLUSHW; 2028 stp->sd_flag |= STWRERR; 2029 rw |= FLUSHW; 2030 } else { 2031 stp->sd_flag &= ~STWRERR; 2032 } 2033 stp->sd_werror = *bp->b_rptr; 2034 } 2035 if (rw) { 2036 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE, 2037 "strrput cv_broadcast:q %p, bp %p", 2038 q, bp); 2039 cv_broadcast(&q->q_wait); /* readers */ 2040 cv_broadcast(&_WR(q)->q_wait); /* writers */ 2041 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 2042 2043 mutex_exit(&stp->sd_lock); 2044 pollwakeup(&stp->sd_pollist, POLLERR); 2045 mutex_enter(&stp->sd_lock); 2046 2047 if (stp->sd_sigflags & S_ERROR) 2048 strsendsig(stp->sd_siglist, S_ERROR, 0, 2049 ((rw & FLUSHR) ? stp->sd_rerror : 2050 stp->sd_werror)); 2051 mutex_exit(&stp->sd_lock); 2052 /* 2053 * Send the M_FLUSH only 2054 * for the first M_ERROR 2055 * message on the stream 2056 */ 2057 if (flushed_already == rw) { 2058 freemsg(bp); 2059 return (0); 2060 } 2061 2062 bp->b_datap->db_type = M_FLUSH; 2063 *bp->b_rptr = rw; 2064 bp->b_wptr = bp->b_rptr + 1; 2065 /* 2066 * Protect against the driver 2067 * passing up messages after 2068 * it has done a qprocsoff 2069 */ 2070 if (_OTHERQ(q)->q_next == NULL) 2071 freemsg(bp); 2072 else 2073 qreply(q, bp); 2074 return (0); 2075 } else 2076 mutex_exit(&stp->sd_lock); 2077 } else if (*bp->b_rptr != 0) { /* Old flavor */ 2078 if (stp->sd_flag & (STRDERR|STWRERR)) 2079 flushed_already = FLUSHRW; 2080 mutex_enter(&stp->sd_lock); 2081 stp->sd_flag |= (STRDERR|STWRERR); 2082 stp->sd_rerror = *bp->b_rptr; 2083 stp->sd_werror = *bp->b_rptr; 2084 TRACE_2(TR_FAC_STREAMS_FR, 2085 TR_STRRPUT_WAKE2, 2086 "strrput wakeup #2:q %p, bp %p", q, bp); 2087 cv_broadcast(&q->q_wait); /* the readers */ 2088 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 2089 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 2090 2091 mutex_exit(&stp->sd_lock); 2092 pollwakeup(&stp->sd_pollist, POLLERR); 2093 mutex_enter(&stp->sd_lock); 2094 2095 if (stp->sd_sigflags & S_ERROR) 2096 strsendsig(stp->sd_siglist, S_ERROR, 0, 2097 (stp->sd_werror ? stp->sd_werror : 2098 stp->sd_rerror)); 2099 mutex_exit(&stp->sd_lock); 2100 2101 /* 2102 * Send the M_FLUSH only 2103 * for the first M_ERROR 2104 * message on the stream 2105 */ 2106 if (flushed_already != FLUSHRW) { 2107 bp->b_datap->db_type = M_FLUSH; 2108 *bp->b_rptr = FLUSHRW; 2109 /* 2110 * Protect against the driver passing up 2111 * messages after it has done a 2112 * qprocsoff. 2113 */ 2114 if (_OTHERQ(q)->q_next == NULL) 2115 freemsg(bp); 2116 else 2117 qreply(q, bp); 2118 return (0); 2119 } 2120 } 2121 freemsg(bp); 2122 return (0); 2123 2124 case M_HANGUP: 2125 2126 freemsg(bp); 2127 mutex_enter(&stp->sd_lock); 2128 stp->sd_werror = ENXIO; 2129 stp->sd_flag |= STRHUP; 2130 stp->sd_flag &= ~(WSLEEP|RSLEEP); 2131 2132 /* 2133 * send signal if controlling tty 2134 */ 2135 2136 if (stp->sd_sidp) { 2137 prsignal(stp->sd_sidp, SIGHUP); 2138 if (stp->sd_sidp != stp->sd_pgidp) 2139 pgsignal(stp->sd_pgidp, SIGTSTP); 2140 } 2141 2142 /* 2143 * wake up read, write, and exception pollers and 2144 * reset wakeup mechanism. 2145 */ 2146 cv_broadcast(&q->q_wait); /* the readers */ 2147 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 2148 cv_broadcast(&stp->sd_monitor); /* the ioctllers */ 2149 strhup(stp); 2150 mutex_exit(&stp->sd_lock); 2151 return (0); 2152 2153 case M_UNHANGUP: 2154 freemsg(bp); 2155 mutex_enter(&stp->sd_lock); 2156 stp->sd_werror = 0; 2157 stp->sd_flag &= ~STRHUP; 2158 mutex_exit(&stp->sd_lock); 2159 return (0); 2160 2161 case M_SIG: 2162 /* 2163 * Someone downstream wants to post a signal. The 2164 * signal to post is contained in the first byte of the 2165 * message. If the message would go on the front of 2166 * the queue, send a signal to the process group 2167 * (if not SIGPOLL) or to the siglist processes 2168 * (SIGPOLL). If something is already on the queue, 2169 * OR if we are delivering a delayed suspend (*sigh* 2170 * another "tty" hack) and there's no one sleeping already, 2171 * just enqueue the message. 2172 */ 2173 mutex_enter(&stp->sd_lock); 2174 if (q->q_first || (*bp->b_rptr == SIGTSTP && 2175 !(stp->sd_flag & RSLEEP))) { 2176 (void) putq(q, bp); 2177 mutex_exit(&stp->sd_lock); 2178 return (0); 2179 } 2180 mutex_exit(&stp->sd_lock); 2181 /* FALLTHRU */ 2182 2183 case M_PCSIG: 2184 /* 2185 * Don't enqueue, just post the signal. 2186 */ 2187 strsignal(stp, *bp->b_rptr, 0L); 2188 freemsg(bp); 2189 return (0); 2190 2191 case M_CMD: 2192 if (MBLKL(bp) != sizeof (cmdblk_t)) { 2193 freemsg(bp); 2194 return (0); 2195 } 2196 2197 mutex_enter(&stp->sd_lock); 2198 if (stp->sd_flag & STRCMDWAIT) { 2199 ASSERT(stp->sd_cmdblk == NULL); 2200 stp->sd_cmdblk = bp; 2201 cv_broadcast(&stp->sd_monitor); 2202 mutex_exit(&stp->sd_lock); 2203 } else { 2204 mutex_exit(&stp->sd_lock); 2205 freemsg(bp); 2206 } 2207 return (0); 2208 2209 case M_FLUSH: 2210 /* 2211 * Flush queues. The indication of which queues to flush 2212 * is in the first byte of the message. If the read queue 2213 * is specified, then flush it. If FLUSHBAND is set, just 2214 * flush the band specified by the second byte of the message. 2215 * 2216 * If a module has issued a M_SETOPT to not flush hi 2217 * priority messages off of the stream head, then pass this 2218 * flag into the flushq code to preserve such messages. 2219 */ 2220 2221 if (*bp->b_rptr & FLUSHR) { 2222 mutex_enter(&stp->sd_lock); 2223 if (*bp->b_rptr & FLUSHBAND) { 2224 ASSERT((bp->b_wptr - bp->b_rptr) >= 2); 2225 flushband(q, *(bp->b_rptr + 1), FLUSHALL); 2226 } else 2227 flushq_common(q, FLUSHALL, 2228 stp->sd_read_opt & RFLUSHPCPROT); 2229 if ((q->q_first == NULL) || 2230 (q->q_first->b_datap->db_type < QPCTL)) 2231 stp->sd_flag &= ~STRPRI; 2232 else { 2233 ASSERT(stp->sd_flag & STRPRI); 2234 } 2235 mutex_exit(&stp->sd_lock); 2236 } 2237 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 2238 *bp->b_rptr &= ~FLUSHR; 2239 bp->b_flag |= MSGNOLOOP; 2240 /* 2241 * Protect against the driver passing up 2242 * messages after it has done a qprocsoff. 2243 */ 2244 if (_OTHERQ(q)->q_next == NULL) 2245 freemsg(bp); 2246 else 2247 qreply(q, bp); 2248 return (0); 2249 } 2250 freemsg(bp); 2251 return (0); 2252 2253 case M_IOCACK: 2254 case M_IOCNAK: 2255 iocbp = (struct iocblk *)bp->b_rptr; 2256 /* 2257 * If not waiting for ACK or NAK then just free msg. 2258 * If incorrect id sequence number then just free msg. 2259 * If already have ACK or NAK for user then this is a 2260 * duplicate, display a warning and free the msg. 2261 */ 2262 mutex_enter(&stp->sd_lock); 2263 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2264 (stp->sd_iocid != iocbp->ioc_id)) { 2265 /* 2266 * If the ACK/NAK is a dup, display a message 2267 * Dup is when sd_iocid == ioc_id, and 2268 * sd_iocblk == <valid ptr> or -1 (the former 2269 * is when an ioctl has been put on the stream 2270 * head, but has not yet been consumed, the 2271 * later is when it has been consumed). 2272 */ 2273 if ((stp->sd_iocid == iocbp->ioc_id) && 2274 (stp->sd_iocblk != NULL)) { 2275 log_dupioc(q, bp); 2276 } 2277 freemsg(bp); 2278 mutex_exit(&stp->sd_lock); 2279 return (0); 2280 } 2281 2282 /* 2283 * Assign ACK or NAK to user and wake up. 2284 */ 2285 stp->sd_iocblk = bp; 2286 cv_broadcast(&stp->sd_monitor); 2287 mutex_exit(&stp->sd_lock); 2288 return (0); 2289 2290 case M_COPYIN: 2291 case M_COPYOUT: 2292 reqp = (struct copyreq *)bp->b_rptr; 2293 2294 /* 2295 * If not waiting for ACK or NAK then just fail request. 2296 * If already have ACK, NAK, or copy request, then just 2297 * fail request. 2298 * If incorrect id sequence number then just fail request. 2299 */ 2300 mutex_enter(&stp->sd_lock); 2301 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2302 (stp->sd_iocid != reqp->cq_id)) { 2303 if (bp->b_cont) { 2304 freemsg(bp->b_cont); 2305 bp->b_cont = NULL; 2306 } 2307 bp->b_datap->db_type = M_IOCDATA; 2308 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 2309 resp = (struct copyresp *)bp->b_rptr; 2310 resp->cp_rval = (caddr_t)1; /* failure */ 2311 mutex_exit(&stp->sd_lock); 2312 putnext(stp->sd_wrq, bp); 2313 return (0); 2314 } 2315 2316 /* 2317 * Assign copy request to user and wake up. 2318 */ 2319 stp->sd_iocblk = bp; 2320 cv_broadcast(&stp->sd_monitor); 2321 mutex_exit(&stp->sd_lock); 2322 return (0); 2323 2324 case M_SETOPTS: 2325 /* 2326 * Set stream head options (read option, write offset, 2327 * min/max packet size, and/or high/low water marks for 2328 * the read side only). 2329 */ 2330 2331 bpri = 0; 2332 sop = (struct stroptions *)bp->b_rptr; 2333 mutex_enter(&stp->sd_lock); 2334 if (sop->so_flags & SO_READOPT) { 2335 switch (sop->so_readopt & RMODEMASK) { 2336 case RNORM: 2337 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 2338 break; 2339 2340 case RMSGD: 2341 stp->sd_read_opt = 2342 ((stp->sd_read_opt & ~RD_MSGNODIS) | 2343 RD_MSGDIS); 2344 break; 2345 2346 case RMSGN: 2347 stp->sd_read_opt = 2348 ((stp->sd_read_opt & ~RD_MSGDIS) | 2349 RD_MSGNODIS); 2350 break; 2351 } 2352 switch (sop->so_readopt & RPROTMASK) { 2353 case RPROTNORM: 2354 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 2355 break; 2356 2357 case RPROTDAT: 2358 stp->sd_read_opt = 2359 ((stp->sd_read_opt & ~RD_PROTDIS) | 2360 RD_PROTDAT); 2361 break; 2362 2363 case RPROTDIS: 2364 stp->sd_read_opt = 2365 ((stp->sd_read_opt & ~RD_PROTDAT) | 2366 RD_PROTDIS); 2367 break; 2368 } 2369 switch (sop->so_readopt & RFLUSHMASK) { 2370 case RFLUSHPCPROT: 2371 /* 2372 * This sets the stream head to NOT flush 2373 * M_PCPROTO messages. 2374 */ 2375 stp->sd_read_opt |= RFLUSHPCPROT; 2376 break; 2377 } 2378 } 2379 if (sop->so_flags & SO_ERROPT) { 2380 switch (sop->so_erropt & RERRMASK) { 2381 case RERRNORM: 2382 stp->sd_flag &= ~STRDERRNONPERSIST; 2383 break; 2384 case RERRNONPERSIST: 2385 stp->sd_flag |= STRDERRNONPERSIST; 2386 break; 2387 } 2388 switch (sop->so_erropt & WERRMASK) { 2389 case WERRNORM: 2390 stp->sd_flag &= ~STWRERRNONPERSIST; 2391 break; 2392 case WERRNONPERSIST: 2393 stp->sd_flag |= STWRERRNONPERSIST; 2394 break; 2395 } 2396 } 2397 if (sop->so_flags & SO_COPYOPT) { 2398 if (sop->so_copyopt & ZCVMSAFE) { 2399 stp->sd_copyflag |= STZCVMSAFE; 2400 stp->sd_copyflag &= ~STZCVMUNSAFE; 2401 } else if (sop->so_copyopt & ZCVMUNSAFE) { 2402 stp->sd_copyflag |= STZCVMUNSAFE; 2403 stp->sd_copyflag &= ~STZCVMSAFE; 2404 } 2405 2406 if (sop->so_copyopt & COPYCACHED) { 2407 stp->sd_copyflag |= STRCOPYCACHED; 2408 } 2409 } 2410 if (sop->so_flags & SO_WROFF) 2411 stp->sd_wroff = sop->so_wroff; 2412 if (sop->so_flags & SO_TAIL) 2413 stp->sd_tail = sop->so_tail; 2414 if (sop->so_flags & SO_MINPSZ) 2415 q->q_minpsz = sop->so_minpsz; 2416 if (sop->so_flags & SO_MAXPSZ) 2417 q->q_maxpsz = sop->so_maxpsz; 2418 if (sop->so_flags & SO_MAXBLK) 2419 stp->sd_maxblk = sop->so_maxblk; 2420 if (sop->so_flags & SO_HIWAT) { 2421 if (sop->so_flags & SO_BAND) { 2422 if (strqset(q, QHIWAT, 2423 sop->so_band, sop->so_hiwat)) { 2424 cmn_err(CE_WARN, "strrput: could not " 2425 "allocate qband\n"); 2426 } else { 2427 bpri = sop->so_band; 2428 } 2429 } else { 2430 q->q_hiwat = sop->so_hiwat; 2431 } 2432 } 2433 if (sop->so_flags & SO_LOWAT) { 2434 if (sop->so_flags & SO_BAND) { 2435 if (strqset(q, QLOWAT, 2436 sop->so_band, sop->so_lowat)) { 2437 cmn_err(CE_WARN, "strrput: could not " 2438 "allocate qband\n"); 2439 } else { 2440 bpri = sop->so_band; 2441 } 2442 } else { 2443 q->q_lowat = sop->so_lowat; 2444 } 2445 } 2446 if (sop->so_flags & SO_MREADON) 2447 stp->sd_flag |= SNDMREAD; 2448 if (sop->so_flags & SO_MREADOFF) 2449 stp->sd_flag &= ~SNDMREAD; 2450 if (sop->so_flags & SO_NDELON) 2451 stp->sd_flag |= OLDNDELAY; 2452 if (sop->so_flags & SO_NDELOFF) 2453 stp->sd_flag &= ~OLDNDELAY; 2454 if (sop->so_flags & SO_ISTTY) 2455 stp->sd_flag |= STRISTTY; 2456 if (sop->so_flags & SO_ISNTTY) 2457 stp->sd_flag &= ~STRISTTY; 2458 if (sop->so_flags & SO_TOSTOP) 2459 stp->sd_flag |= STRTOSTOP; 2460 if (sop->so_flags & SO_TONSTOP) 2461 stp->sd_flag &= ~STRTOSTOP; 2462 if (sop->so_flags & SO_DELIM) 2463 stp->sd_flag |= STRDELIM; 2464 if (sop->so_flags & SO_NODELIM) 2465 stp->sd_flag &= ~STRDELIM; 2466 2467 mutex_exit(&stp->sd_lock); 2468 freemsg(bp); 2469 2470 /* Check backenable in case the water marks changed */ 2471 qbackenable(q, bpri); 2472 return (0); 2473 2474 /* 2475 * The following set of cases deal with situations where two stream 2476 * heads are connected to each other (twisted streams). These messages 2477 * have no meaning at the stream head. 2478 */ 2479 case M_BREAK: 2480 case M_CTL: 2481 case M_DELAY: 2482 case M_START: 2483 case M_STOP: 2484 case M_IOCDATA: 2485 case M_STARTI: 2486 case M_STOPI: 2487 freemsg(bp); 2488 return (0); 2489 2490 case M_IOCTL: 2491 /* 2492 * Always NAK this condition 2493 * (makes no sense) 2494 * If there is one or more threads in the read side 2495 * rwnext we have to defer the nacking until that thread 2496 * returns (in strget). 2497 */ 2498 mutex_enter(&stp->sd_lock); 2499 if (stp->sd_struiodnak != 0) { 2500 /* 2501 * Defer NAK to the streamhead. Queue at the end 2502 * the list. 2503 */ 2504 mblk_t *mp = stp->sd_struionak; 2505 2506 while (mp && mp->b_next) 2507 mp = mp->b_next; 2508 if (mp) 2509 mp->b_next = bp; 2510 else 2511 stp->sd_struionak = bp; 2512 bp->b_next = NULL; 2513 mutex_exit(&stp->sd_lock); 2514 return (0); 2515 } 2516 mutex_exit(&stp->sd_lock); 2517 2518 bp->b_datap->db_type = M_IOCNAK; 2519 /* 2520 * Protect against the driver passing up 2521 * messages after it has done a qprocsoff. 2522 */ 2523 if (_OTHERQ(q)->q_next == NULL) 2524 freemsg(bp); 2525 else 2526 qreply(q, bp); 2527 return (0); 2528 2529 default: 2530 #ifdef DEBUG 2531 cmn_err(CE_WARN, 2532 "bad message type %x received at stream head\n", 2533 bp->b_datap->db_type); 2534 #endif 2535 freemsg(bp); 2536 return (0); 2537 } 2538 2539 /* NOTREACHED */ 2540 } 2541 2542 /* 2543 * Check if the stream pointed to by `stp' can be written to, and return an 2544 * error code if not. If `eiohup' is set, then return EIO if STRHUP is set. 2545 * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream, 2546 * then always return EPIPE and send a SIGPIPE to the invoking thread. 2547 */ 2548 static int 2549 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok) 2550 { 2551 int error; 2552 2553 ASSERT(MUTEX_HELD(&stp->sd_lock)); 2554 2555 /* 2556 * For modem support, POSIX states that on writes, EIO should 2557 * be returned if the stream has been hung up. 2558 */ 2559 if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP) 2560 error = EIO; 2561 else 2562 error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0); 2563 2564 if (error != 0) { 2565 if (!(stp->sd_flag & STPLEX) && 2566 (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) { 2567 tsignal(curthread, SIGPIPE); 2568 error = EPIPE; 2569 } 2570 } 2571 2572 return (error); 2573 } 2574 2575 /* 2576 * Copyin and send data down a stream. 2577 * The caller will allocate and copyin any control part that precedes the 2578 * message and pass that in as mctl. 2579 * 2580 * Caller should *not* hold sd_lock. 2581 * When EWOULDBLOCK is returned the caller has to redo the canputnext 2582 * under sd_lock in order to avoid missing a backenabling wakeup. 2583 * 2584 * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA. 2585 * 2586 * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages. 2587 * For sync streams we can only ignore flow control by reverting to using 2588 * putnext. 2589 * 2590 * If sd_maxblk is less than *iosize this routine might return without 2591 * transferring all of *iosize. In all cases, on return *iosize will contain 2592 * the amount of data that was transferred. 2593 */ 2594 static int 2595 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize, 2596 int b_flag, int pri, int flags) 2597 { 2598 struiod_t uiod; 2599 mblk_t *mp; 2600 queue_t *wqp = stp->sd_wrq; 2601 int error = 0; 2602 ssize_t count = *iosize; 2603 2604 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 2605 2606 if (uiop != NULL && count >= 0) 2607 flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0; 2608 2609 if (!(flags & STRUIO_POSTPONE)) { 2610 /* 2611 * Use regular canputnext, strmakedata, putnext sequence. 2612 */ 2613 if (pri == 0) { 2614 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2615 freemsg(mctl); 2616 return (EWOULDBLOCK); 2617 } 2618 } else { 2619 if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) { 2620 freemsg(mctl); 2621 return (EWOULDBLOCK); 2622 } 2623 } 2624 2625 if ((error = strmakedata(iosize, uiop, stp, flags, 2626 &mp)) != 0) { 2627 freemsg(mctl); 2628 /* 2629 * need to change return code to ENOMEM 2630 * so that this is not confused with 2631 * flow control, EAGAIN. 2632 */ 2633 2634 if (error == EAGAIN) 2635 return (ENOMEM); 2636 else 2637 return (error); 2638 } 2639 if (mctl != NULL) { 2640 if (mctl->b_cont == NULL) 2641 mctl->b_cont = mp; 2642 else if (mp != NULL) 2643 linkb(mctl, mp); 2644 mp = mctl; 2645 } else if (mp == NULL) 2646 return (0); 2647 2648 mp->b_flag |= b_flag; 2649 mp->b_band = (uchar_t)pri; 2650 2651 if (flags & MSG_IGNFLOW) { 2652 /* 2653 * XXX Hack: Don't get stuck running service 2654 * procedures. This is needed for sockfs when 2655 * sending the unbind message out of the rput 2656 * procedure - we don't want a put procedure 2657 * to run service procedures. 2658 */ 2659 putnext(wqp, mp); 2660 } else { 2661 stream_willservice(stp); 2662 putnext(wqp, mp); 2663 stream_runservice(stp); 2664 } 2665 return (0); 2666 } 2667 /* 2668 * Stream supports rwnext() for the write side. 2669 */ 2670 if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) { 2671 freemsg(mctl); 2672 /* 2673 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled". 2674 */ 2675 return (error == EAGAIN ? ENOMEM : error); 2676 } 2677 if (mctl != NULL) { 2678 if (mctl->b_cont == NULL) 2679 mctl->b_cont = mp; 2680 else if (mp != NULL) 2681 linkb(mctl, mp); 2682 mp = mctl; 2683 } else if (mp == NULL) { 2684 return (0); 2685 } 2686 2687 mp->b_flag |= b_flag; 2688 mp->b_band = (uchar_t)pri; 2689 2690 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 2691 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 2692 uiod.d_uio.uio_offset = 0; 2693 uiod.d_mp = mp; 2694 error = rwnext(wqp, &uiod); 2695 if (! uiod.d_mp) { 2696 uioskip(uiop, *iosize); 2697 return (error); 2698 } 2699 ASSERT(mp == uiod.d_mp); 2700 if (error == EINVAL) { 2701 /* 2702 * The stream plumbing must have changed while 2703 * we were away, so just turn off rwnext()s. 2704 */ 2705 error = 0; 2706 } else if (error == EBUSY || error == EWOULDBLOCK) { 2707 /* 2708 * Couldn't enter a perimeter or took a page fault, 2709 * so fall-back to putnext(). 2710 */ 2711 error = 0; 2712 } else { 2713 freemsg(mp); 2714 return (error); 2715 } 2716 /* Have to check canput before consuming data from the uio */ 2717 if (pri == 0) { 2718 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2719 freemsg(mp); 2720 return (EWOULDBLOCK); 2721 } 2722 } else { 2723 if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) { 2724 freemsg(mp); 2725 return (EWOULDBLOCK); 2726 } 2727 } 2728 ASSERT(mp == uiod.d_mp); 2729 /* Copyin data from the uio */ 2730 if ((error = struioget(wqp, mp, &uiod, 0)) != 0) { 2731 freemsg(mp); 2732 return (error); 2733 } 2734 uioskip(uiop, *iosize); 2735 if (flags & MSG_IGNFLOW) { 2736 /* 2737 * XXX Hack: Don't get stuck running service procedures. 2738 * This is needed for sockfs when sending the unbind message 2739 * out of the rput procedure - we don't want a put procedure 2740 * to run service procedures. 2741 */ 2742 putnext(wqp, mp); 2743 } else { 2744 stream_willservice(stp); 2745 putnext(wqp, mp); 2746 stream_runservice(stp); 2747 } 2748 return (0); 2749 } 2750 2751 /* 2752 * Write attempts to break the write request into messages conforming 2753 * with the minimum and maximum packet sizes set downstream. 2754 * 2755 * Write will not block if downstream queue is full and 2756 * O_NDELAY is set, otherwise it will block waiting for the queue to get room. 2757 * 2758 * A write of zero bytes gets packaged into a zero length message and sent 2759 * downstream like any other message. 2760 * 2761 * If buffers of the requested sizes are not available, the write will 2762 * sleep until the buffers become available. 2763 * 2764 * Write (if specified) will supply a write offset in a message if it 2765 * makes sense. This can be specified by downstream modules as part of 2766 * a M_SETOPTS message. Write will not supply the write offset if it 2767 * cannot supply any data in a buffer. In other words, write will never 2768 * send down an empty packet due to a write offset. 2769 */ 2770 /* ARGSUSED2 */ 2771 int 2772 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp) 2773 { 2774 return (strwrite_common(vp, uiop, crp, 0)); 2775 } 2776 2777 /* ARGSUSED2 */ 2778 int 2779 strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag) 2780 { 2781 struct stdata *stp; 2782 struct queue *wqp; 2783 ssize_t rmin, rmax; 2784 ssize_t iosize; 2785 int waitflag; 2786 int tempmode; 2787 int error = 0; 2788 int b_flag; 2789 2790 ASSERT(vp->v_stream); 2791 stp = vp->v_stream; 2792 2793 mutex_enter(&stp->sd_lock); 2794 2795 if ((error = i_straccess(stp, JCWRITE)) != 0) { 2796 mutex_exit(&stp->sd_lock); 2797 return (error); 2798 } 2799 2800 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 2801 error = strwriteable(stp, B_TRUE, B_TRUE); 2802 if (error != 0) { 2803 mutex_exit(&stp->sd_lock); 2804 return (error); 2805 } 2806 } 2807 2808 mutex_exit(&stp->sd_lock); 2809 2810 wqp = stp->sd_wrq; 2811 2812 /* get these values from them cached in the stream head */ 2813 rmin = stp->sd_qn_minpsz; 2814 rmax = stp->sd_qn_maxpsz; 2815 2816 /* 2817 * Check the min/max packet size constraints. If min packet size 2818 * is non-zero, the write cannot be split into multiple messages 2819 * and still guarantee the size constraints. 2820 */ 2821 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp); 2822 2823 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 2824 if (rmax == 0) { 2825 return (0); 2826 } 2827 if (rmin > 0) { 2828 if (uiop->uio_resid < rmin) { 2829 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2830 "strwrite out:q %p out %d error %d", 2831 wqp, 0, ERANGE); 2832 return (ERANGE); 2833 } 2834 if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) { 2835 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2836 "strwrite out:q %p out %d error %d", 2837 wqp, 1, ERANGE); 2838 return (ERANGE); 2839 } 2840 } 2841 2842 /* 2843 * Do until count satisfied or error. 2844 */ 2845 waitflag = WRITEWAIT | wflag; 2846 if (stp->sd_flag & OLDNDELAY) 2847 tempmode = uiop->uio_fmode & ~FNDELAY; 2848 else 2849 tempmode = uiop->uio_fmode; 2850 2851 if (rmax == INFPSZ) 2852 rmax = uiop->uio_resid; 2853 2854 /* 2855 * Note that tempmode does not get used in strput/strmakedata 2856 * but only in strwaitq. The other routines use uio_fmode 2857 * unmodified. 2858 */ 2859 2860 /* LINTED: constant in conditional context */ 2861 while (1) { /* breaks when uio_resid reaches zero */ 2862 /* 2863 * Determine the size of the next message to be 2864 * packaged. May have to break write into several 2865 * messages based on max packet size. 2866 */ 2867 iosize = MIN(uiop->uio_resid, rmax); 2868 2869 /* 2870 * Put block downstream when flow control allows it. 2871 */ 2872 if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize)) 2873 b_flag = MSGDELIM; 2874 else 2875 b_flag = 0; 2876 2877 for (;;) { 2878 int done = 0; 2879 2880 error = strput(stp, NULL, uiop, &iosize, b_flag, 0, 0); 2881 if (error == 0) 2882 break; 2883 if (error != EWOULDBLOCK) 2884 goto out; 2885 2886 mutex_enter(&stp->sd_lock); 2887 /* 2888 * Check for a missed wakeup. 2889 * Needed since strput did not hold sd_lock across 2890 * the canputnext. 2891 */ 2892 if (canputnext(wqp)) { 2893 /* Try again */ 2894 mutex_exit(&stp->sd_lock); 2895 continue; 2896 } 2897 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT, 2898 "strwrite wait:q %p wait", wqp); 2899 if ((error = strwaitq(stp, waitflag, (ssize_t)0, 2900 tempmode, -1, &done)) != 0 || done) { 2901 mutex_exit(&stp->sd_lock); 2902 if ((vp->v_type == VFIFO) && 2903 (uiop->uio_fmode & FNDELAY) && 2904 (error == EAGAIN)) 2905 error = 0; 2906 goto out; 2907 } 2908 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE, 2909 "strwrite wake:q %p awakes", wqp); 2910 if ((error = i_straccess(stp, JCWRITE)) != 0) { 2911 mutex_exit(&stp->sd_lock); 2912 goto out; 2913 } 2914 mutex_exit(&stp->sd_lock); 2915 } 2916 waitflag |= NOINTR; 2917 TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID, 2918 "strwrite resid:q %p uiop %p", wqp, uiop); 2919 if (uiop->uio_resid) { 2920 /* Recheck for errors - needed for sockets */ 2921 if ((stp->sd_wput_opt & SW_RECHECK_ERR) && 2922 (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) { 2923 mutex_enter(&stp->sd_lock); 2924 error = strwriteable(stp, B_FALSE, B_TRUE); 2925 mutex_exit(&stp->sd_lock); 2926 if (error != 0) 2927 return (error); 2928 } 2929 continue; 2930 } 2931 break; 2932 } 2933 out: 2934 /* 2935 * For historical reasons, applications expect EAGAIN when a data 2936 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN. 2937 */ 2938 if (error == ENOMEM) 2939 error = EAGAIN; 2940 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2941 "strwrite out:q %p out %d error %d", wqp, 2, error); 2942 return (error); 2943 } 2944 2945 /* 2946 * Stream head write service routine. 2947 * Its job is to wake up any sleeping writers when a queue 2948 * downstream needs data (part of the flow control in putq and getq). 2949 * It also must wake anyone sleeping on a poll(). 2950 * For stream head right below mux module, it must also invoke put procedure 2951 * of next downstream module. 2952 */ 2953 int 2954 strwsrv(queue_t *q) 2955 { 2956 struct stdata *stp; 2957 queue_t *tq; 2958 qband_t *qbp; 2959 int i; 2960 qband_t *myqbp; 2961 int isevent; 2962 unsigned char qbf[NBAND]; /* band flushing backenable flags */ 2963 2964 TRACE_1(TR_FAC_STREAMS_FR, 2965 TR_STRWSRV, "strwsrv:q %p", q); 2966 stp = (struct stdata *)q->q_ptr; 2967 ASSERT(qclaimed(q)); 2968 mutex_enter(&stp->sd_lock); 2969 ASSERT(!(stp->sd_flag & STPLEX)); 2970 2971 if (stp->sd_flag & WSLEEP) { 2972 stp->sd_flag &= ~WSLEEP; 2973 cv_broadcast(&q->q_wait); 2974 } 2975 mutex_exit(&stp->sd_lock); 2976 2977 /* The other end of a stream pipe went away. */ 2978 if ((tq = q->q_next) == NULL) { 2979 return (0); 2980 } 2981 2982 /* Find the next module forward that has a service procedure */ 2983 claimstr(q); 2984 tq = q->q_nfsrv; 2985 ASSERT(tq != NULL); 2986 2987 if ((q->q_flag & QBACK)) { 2988 if ((tq->q_flag & QFULL)) { 2989 mutex_enter(QLOCK(tq)); 2990 if (!(tq->q_flag & QFULL)) { 2991 mutex_exit(QLOCK(tq)); 2992 goto wakeup; 2993 } 2994 /* 2995 * The queue must have become full again. Set QWANTW 2996 * again so strwsrv will be back enabled when 2997 * the queue becomes non-full next time. 2998 */ 2999 tq->q_flag |= QWANTW; 3000 mutex_exit(QLOCK(tq)); 3001 } else { 3002 wakeup: 3003 pollwakeup(&stp->sd_pollist, POLLWRNORM); 3004 mutex_enter(&stp->sd_lock); 3005 if (stp->sd_sigflags & S_WRNORM) 3006 strsendsig(stp->sd_siglist, S_WRNORM, 0, 0); 3007 mutex_exit(&stp->sd_lock); 3008 } 3009 } 3010 3011 isevent = 0; 3012 i = 1; 3013 bzero((caddr_t)qbf, NBAND); 3014 mutex_enter(QLOCK(tq)); 3015 if ((myqbp = q->q_bandp) != NULL) 3016 for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) { 3017 ASSERT(myqbp); 3018 if ((myqbp->qb_flag & QB_BACK)) { 3019 if (qbp->qb_flag & QB_FULL) { 3020 /* 3021 * The band must have become full again. 3022 * Set QB_WANTW again so strwsrv will 3023 * be back enabled when the band becomes 3024 * non-full next time. 3025 */ 3026 qbp->qb_flag |= QB_WANTW; 3027 } else { 3028 isevent = 1; 3029 qbf[i] = 1; 3030 } 3031 } 3032 myqbp = myqbp->qb_next; 3033 i++; 3034 } 3035 mutex_exit(QLOCK(tq)); 3036 3037 if (isevent) { 3038 for (i = tq->q_nband; i; i--) { 3039 if (qbf[i]) { 3040 pollwakeup(&stp->sd_pollist, POLLWRBAND); 3041 mutex_enter(&stp->sd_lock); 3042 if (stp->sd_sigflags & S_WRBAND) 3043 strsendsig(stp->sd_siglist, S_WRBAND, 3044 (uchar_t)i, 0); 3045 mutex_exit(&stp->sd_lock); 3046 } 3047 } 3048 } 3049 3050 releasestr(q); 3051 return (0); 3052 } 3053 3054 /* 3055 * Special case of strcopyin/strcopyout for copying 3056 * struct strioctl that can deal with both data 3057 * models. 3058 */ 3059 3060 #ifdef _LP64 3061 3062 static int 3063 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 3064 { 3065 struct strioctl32 strioc32; 3066 struct strioctl *striocp; 3067 3068 if (copyflag & U_TO_K) { 3069 ASSERT((copyflag & K_TO_K) == 0); 3070 3071 if ((flag & FMODELS) == DATAMODEL_ILP32) { 3072 if (copyin(from, &strioc32, sizeof (strioc32))) 3073 return (EFAULT); 3074 3075 striocp = (struct strioctl *)to; 3076 striocp->ic_cmd = strioc32.ic_cmd; 3077 striocp->ic_timout = strioc32.ic_timout; 3078 striocp->ic_len = strioc32.ic_len; 3079 striocp->ic_dp = (char *)(uintptr_t)strioc32.ic_dp; 3080 3081 } else { /* NATIVE data model */ 3082 if (copyin(from, to, sizeof (struct strioctl))) { 3083 return (EFAULT); 3084 } else { 3085 return (0); 3086 } 3087 } 3088 } else { 3089 ASSERT(copyflag & K_TO_K); 3090 bcopy(from, to, sizeof (struct strioctl)); 3091 } 3092 return (0); 3093 } 3094 3095 static int 3096 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3097 { 3098 struct strioctl32 strioc32; 3099 struct strioctl *striocp; 3100 3101 if (copyflag & U_TO_K) { 3102 ASSERT((copyflag & K_TO_K) == 0); 3103 3104 if ((flag & FMODELS) == DATAMODEL_ILP32) { 3105 striocp = (struct strioctl *)from; 3106 strioc32.ic_cmd = striocp->ic_cmd; 3107 strioc32.ic_timout = striocp->ic_timout; 3108 strioc32.ic_len = striocp->ic_len; 3109 strioc32.ic_dp = (caddr32_t)(uintptr_t)striocp->ic_dp; 3110 ASSERT((char *)(uintptr_t)strioc32.ic_dp == 3111 striocp->ic_dp); 3112 3113 if (copyout(&strioc32, to, sizeof (strioc32))) 3114 return (EFAULT); 3115 3116 } else { /* NATIVE data model */ 3117 if (copyout(from, to, sizeof (struct strioctl))) { 3118 return (EFAULT); 3119 } else { 3120 return (0); 3121 } 3122 } 3123 } else { 3124 ASSERT(copyflag & K_TO_K); 3125 bcopy(from, to, sizeof (struct strioctl)); 3126 } 3127 return (0); 3128 } 3129 3130 #else /* ! _LP64 */ 3131 3132 /* ARGSUSED2 */ 3133 static int 3134 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 3135 { 3136 return (strcopyin(from, to, sizeof (struct strioctl), copyflag)); 3137 } 3138 3139 /* ARGSUSED2 */ 3140 static int 3141 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3142 { 3143 return (strcopyout(from, to, sizeof (struct strioctl), copyflag)); 3144 } 3145 3146 #endif /* _LP64 */ 3147 3148 /* 3149 * Determine type of job control semantics expected by user. The 3150 * possibilities are: 3151 * JCREAD - Behaves like read() on fd; send SIGTTIN 3152 * JCWRITE - Behaves like write() on fd; send SIGTTOU if TOSTOP set 3153 * JCSETP - Sets a value in the stream; send SIGTTOU, ignore TOSTOP 3154 * JCGETP - Gets a value in the stream; no signals. 3155 * See straccess in strsubr.c for usage of these values. 3156 * 3157 * This routine also returns -1 for I_STR as a special case; the 3158 * caller must call again with the real ioctl number for 3159 * classification. 3160 */ 3161 static int 3162 job_control_type(int cmd) 3163 { 3164 switch (cmd) { 3165 case I_STR: 3166 return (-1); 3167 3168 case I_RECVFD: 3169 case I_E_RECVFD: 3170 return (JCREAD); 3171 3172 case I_FDINSERT: 3173 case I_SENDFD: 3174 return (JCWRITE); 3175 3176 case TCSETA: 3177 case TCSETAW: 3178 case TCSETAF: 3179 case TCSBRK: 3180 case TCXONC: 3181 case TCFLSH: 3182 case TCDSET: /* Obsolete */ 3183 case TIOCSWINSZ: 3184 case TCSETS: 3185 case TCSETSW: 3186 case TCSETSF: 3187 case TIOCSETD: 3188 case TIOCHPCL: 3189 case TIOCSETP: 3190 case TIOCSETN: 3191 case TIOCEXCL: 3192 case TIOCNXCL: 3193 case TIOCFLUSH: 3194 case TIOCSETC: 3195 case TIOCLBIS: 3196 case TIOCLBIC: 3197 case TIOCLSET: 3198 case TIOCSBRK: 3199 case TIOCCBRK: 3200 case TIOCSDTR: 3201 case TIOCCDTR: 3202 case TIOCSLTC: 3203 case TIOCSTOP: 3204 case TIOCSTART: 3205 case TIOCSTI: 3206 case TIOCSPGRP: 3207 case TIOCMSET: 3208 case TIOCMBIS: 3209 case TIOCMBIC: 3210 case TIOCREMOTE: 3211 case TIOCSIGNAL: 3212 case LDSETT: 3213 case LDSMAP: /* Obsolete */ 3214 case DIOCSETP: 3215 case I_FLUSH: 3216 case I_SRDOPT: 3217 case I_SETSIG: 3218 case I_SWROPT: 3219 case I_FLUSHBAND: 3220 case I_SETCLTIME: 3221 case I_SERROPT: 3222 case I_ESETSIG: 3223 case FIONBIO: 3224 case FIOASYNC: 3225 case FIOSETOWN: 3226 case JBOOT: /* Obsolete */ 3227 case JTERM: /* Obsolete */ 3228 case JTIMOM: /* Obsolete */ 3229 case JZOMBOOT: /* Obsolete */ 3230 case JAGENT: /* Obsolete */ 3231 case JTRUN: /* Obsolete */ 3232 case JXTPROTO: /* Obsolete */ 3233 return (JCSETP); 3234 } 3235 3236 return (JCGETP); 3237 } 3238 3239 /* 3240 * ioctl for streams 3241 */ 3242 int 3243 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag, 3244 cred_t *crp, int *rvalp) 3245 { 3246 struct stdata *stp; 3247 struct strcmd *scp; 3248 struct strioctl strioc; 3249 struct uio uio; 3250 struct iovec iov; 3251 int access; 3252 mblk_t *mp; 3253 int error = 0; 3254 int done = 0; 3255 ssize_t rmin, rmax; 3256 queue_t *wrq; 3257 queue_t *rdq; 3258 boolean_t kioctl = B_FALSE; 3259 uint32_t auditing = AU_AUDITING(); 3260 3261 if (flag & FKIOCTL) { 3262 copyflag = K_TO_K; 3263 kioctl = B_TRUE; 3264 } 3265 ASSERT(vp->v_stream); 3266 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 3267 stp = vp->v_stream; 3268 3269 TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER, 3270 "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg); 3271 3272 /* 3273 * If the copy is kernel to kernel, make sure that the FNATIVE 3274 * flag is set. After this it would be a serious error to have 3275 * no model flag. 3276 */ 3277 if (copyflag == K_TO_K) 3278 flag = (flag & ~FMODELS) | FNATIVE; 3279 3280 ASSERT((flag & FMODELS) != 0); 3281 3282 wrq = stp->sd_wrq; 3283 rdq = _RD(wrq); 3284 3285 access = job_control_type(cmd); 3286 3287 /* We should never see these here, should be handled by iwscn */ 3288 if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR) 3289 return (EINVAL); 3290 3291 mutex_enter(&stp->sd_lock); 3292 if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) { 3293 mutex_exit(&stp->sd_lock); 3294 return (error); 3295 } 3296 mutex_exit(&stp->sd_lock); 3297 3298 /* 3299 * Check for sgttyb-related ioctls first, and complain as 3300 * necessary. 3301 */ 3302 switch (cmd) { 3303 case TIOCGETP: 3304 case TIOCSETP: 3305 case TIOCSETN: 3306 if (sgttyb_handling >= 2 && !sgttyb_complaint) { 3307 sgttyb_complaint = B_TRUE; 3308 cmn_err(CE_NOTE, 3309 "application used obsolete TIOC[GS]ET"); 3310 } 3311 if (sgttyb_handling >= 3) { 3312 tsignal(curthread, SIGSYS); 3313 return (EIO); 3314 } 3315 break; 3316 } 3317 3318 mutex_enter(&stp->sd_lock); 3319 3320 switch (cmd) { 3321 case I_RECVFD: 3322 case I_E_RECVFD: 3323 case I_PEEK: 3324 case I_NREAD: 3325 case FIONREAD: 3326 case FIORDCHK: 3327 case I_ATMARK: 3328 case FIONBIO: 3329 case FIOASYNC: 3330 if (stp->sd_flag & (STRDERR|STPLEX)) { 3331 error = strgeterr(stp, STRDERR|STPLEX, 0); 3332 if (error != 0) { 3333 mutex_exit(&stp->sd_lock); 3334 return (error); 3335 } 3336 } 3337 break; 3338 3339 default: 3340 if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) { 3341 error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0); 3342 if (error != 0) { 3343 mutex_exit(&stp->sd_lock); 3344 return (error); 3345 } 3346 } 3347 } 3348 3349 mutex_exit(&stp->sd_lock); 3350 3351 switch (cmd) { 3352 default: 3353 /* 3354 * The stream head has hardcoded knowledge of a 3355 * miscellaneous collection of terminal-, keyboard- and 3356 * mouse-related ioctls, enumerated below. This hardcoded 3357 * knowledge allows the stream head to automatically 3358 * convert transparent ioctl requests made by userland 3359 * programs into I_STR ioctls which many old STREAMS 3360 * modules and drivers require. 3361 * 3362 * No new ioctls should ever be added to this list. 3363 * Instead, the STREAMS module or driver should be written 3364 * to either handle transparent ioctls or require any 3365 * userland programs to use I_STR ioctls (by returning 3366 * EINVAL to any transparent ioctl requests). 3367 * 3368 * More importantly, removing ioctls from this list should 3369 * be done with the utmost care, since our STREAMS modules 3370 * and drivers *count* on the stream head performing this 3371 * conversion, and thus may panic while processing 3372 * transparent ioctl request for one of these ioctls (keep 3373 * in mind that third party modules and drivers may have 3374 * similar problems). 3375 */ 3376 if (((cmd & IOCTYPE) == LDIOC) || 3377 ((cmd & IOCTYPE) == tIOC) || 3378 ((cmd & IOCTYPE) == TIOC) || 3379 ((cmd & IOCTYPE) == KIOC) || 3380 ((cmd & IOCTYPE) == MSIOC) || 3381 ((cmd & IOCTYPE) == VUIOC)) { 3382 /* 3383 * The ioctl is a tty ioctl - set up strioc buffer 3384 * and call strdoioctl() to do the work. 3385 */ 3386 if (stp->sd_flag & STRHUP) 3387 return (ENXIO); 3388 strioc.ic_cmd = cmd; 3389 strioc.ic_timout = INFTIM; 3390 3391 switch (cmd) { 3392 3393 case TCXONC: 3394 case TCSBRK: 3395 case TCFLSH: 3396 case TCDSET: 3397 { 3398 int native_arg = (int)arg; 3399 strioc.ic_len = sizeof (int); 3400 strioc.ic_dp = (char *)&native_arg; 3401 return (strdoioctl(stp, &strioc, flag, 3402 K_TO_K, crp, rvalp)); 3403 } 3404 3405 case TCSETA: 3406 case TCSETAW: 3407 case TCSETAF: 3408 strioc.ic_len = sizeof (struct termio); 3409 strioc.ic_dp = (char *)arg; 3410 return (strdoioctl(stp, &strioc, flag, 3411 copyflag, crp, rvalp)); 3412 3413 case TCSETS: 3414 case TCSETSW: 3415 case TCSETSF: 3416 strioc.ic_len = sizeof (struct termios); 3417 strioc.ic_dp = (char *)arg; 3418 return (strdoioctl(stp, &strioc, flag, 3419 copyflag, crp, rvalp)); 3420 3421 case LDSETT: 3422 strioc.ic_len = sizeof (struct termcb); 3423 strioc.ic_dp = (char *)arg; 3424 return (strdoioctl(stp, &strioc, flag, 3425 copyflag, crp, rvalp)); 3426 3427 case TIOCSETP: 3428 strioc.ic_len = sizeof (struct sgttyb); 3429 strioc.ic_dp = (char *)arg; 3430 return (strdoioctl(stp, &strioc, flag, 3431 copyflag, crp, rvalp)); 3432 3433 case TIOCSTI: 3434 if ((flag & FREAD) == 0 && 3435 secpolicy_sti(crp) != 0) { 3436 return (EPERM); 3437 } 3438 mutex_enter(&stp->sd_lock); 3439 mutex_enter(&curproc->p_splock); 3440 if (stp->sd_sidp != curproc->p_sessp->s_sidp && 3441 secpolicy_sti(crp) != 0) { 3442 mutex_exit(&curproc->p_splock); 3443 mutex_exit(&stp->sd_lock); 3444 return (EACCES); 3445 } 3446 mutex_exit(&curproc->p_splock); 3447 mutex_exit(&stp->sd_lock); 3448 3449 strioc.ic_len = sizeof (char); 3450 strioc.ic_dp = (char *)arg; 3451 return (strdoioctl(stp, &strioc, flag, 3452 copyflag, crp, rvalp)); 3453 3454 case TIOCSWINSZ: 3455 strioc.ic_len = sizeof (struct winsize); 3456 strioc.ic_dp = (char *)arg; 3457 return (strdoioctl(stp, &strioc, flag, 3458 copyflag, crp, rvalp)); 3459 3460 case TIOCSSIZE: 3461 strioc.ic_len = sizeof (struct ttysize); 3462 strioc.ic_dp = (char *)arg; 3463 return (strdoioctl(stp, &strioc, flag, 3464 copyflag, crp, rvalp)); 3465 3466 case TIOCSSOFTCAR: 3467 case KIOCTRANS: 3468 case KIOCTRANSABLE: 3469 case KIOCCMD: 3470 case KIOCSDIRECT: 3471 case KIOCSCOMPAT: 3472 case KIOCSKABORTEN: 3473 case KIOCSRPTCOUNT: 3474 case KIOCSRPTDELAY: 3475 case KIOCSRPTRATE: 3476 case VUIDSFORMAT: 3477 case TIOCSPPS: 3478 strioc.ic_len = sizeof (int); 3479 strioc.ic_dp = (char *)arg; 3480 return (strdoioctl(stp, &strioc, flag, 3481 copyflag, crp, rvalp)); 3482 3483 case KIOCSETKEY: 3484 case KIOCGETKEY: 3485 strioc.ic_len = sizeof (struct kiockey); 3486 strioc.ic_dp = (char *)arg; 3487 return (strdoioctl(stp, &strioc, flag, 3488 copyflag, crp, rvalp)); 3489 3490 case KIOCSKEY: 3491 case KIOCGKEY: 3492 strioc.ic_len = sizeof (struct kiockeymap); 3493 strioc.ic_dp = (char *)arg; 3494 return (strdoioctl(stp, &strioc, flag, 3495 copyflag, crp, rvalp)); 3496 3497 case KIOCSLED: 3498 /* arg is a pointer to char */ 3499 strioc.ic_len = sizeof (char); 3500 strioc.ic_dp = (char *)arg; 3501 return (strdoioctl(stp, &strioc, flag, 3502 copyflag, crp, rvalp)); 3503 3504 case MSIOSETPARMS: 3505 strioc.ic_len = sizeof (Ms_parms); 3506 strioc.ic_dp = (char *)arg; 3507 return (strdoioctl(stp, &strioc, flag, 3508 copyflag, crp, rvalp)); 3509 3510 case VUIDSADDR: 3511 case VUIDGADDR: 3512 strioc.ic_len = sizeof (struct vuid_addr_probe); 3513 strioc.ic_dp = (char *)arg; 3514 return (strdoioctl(stp, &strioc, flag, 3515 copyflag, crp, rvalp)); 3516 3517 /* 3518 * These M_IOCTL's don't require any data to be sent 3519 * downstream, and the driver will allocate and link 3520 * on its own mblk_t upon M_IOCACK -- thus we set 3521 * ic_len to zero and set ic_dp to arg so we know 3522 * where to copyout to later. 3523 */ 3524 case TIOCGSOFTCAR: 3525 case TIOCGWINSZ: 3526 case TIOCGSIZE: 3527 case KIOCGTRANS: 3528 case KIOCGTRANSABLE: 3529 case KIOCTYPE: 3530 case KIOCGDIRECT: 3531 case KIOCGCOMPAT: 3532 case KIOCLAYOUT: 3533 case KIOCGLED: 3534 case MSIOGETPARMS: 3535 case MSIOBUTTONS: 3536 case VUIDGFORMAT: 3537 case TIOCGPPS: 3538 case TIOCGPPSEV: 3539 case TCGETA: 3540 case TCGETS: 3541 case LDGETT: 3542 case TIOCGETP: 3543 case KIOCGRPTCOUNT: 3544 case KIOCGRPTDELAY: 3545 case KIOCGRPTRATE: 3546 strioc.ic_len = 0; 3547 strioc.ic_dp = (char *)arg; 3548 return (strdoioctl(stp, &strioc, flag, 3549 copyflag, crp, rvalp)); 3550 } 3551 } 3552 3553 /* 3554 * Unknown cmd - send it down as a transparent ioctl. 3555 */ 3556 strioc.ic_cmd = cmd; 3557 strioc.ic_timout = INFTIM; 3558 strioc.ic_len = TRANSPARENT; 3559 strioc.ic_dp = (char *)&arg; 3560 3561 return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); 3562 3563 case I_STR: 3564 /* 3565 * Stream ioctl. Read in an strioctl buffer from the user 3566 * along with any data specified and send it downstream. 3567 * Strdoioctl will wait allow only one ioctl message at 3568 * a time, and waits for the acknowledgement. 3569 */ 3570 3571 if (stp->sd_flag & STRHUP) 3572 return (ENXIO); 3573 3574 error = strcopyin_strioctl((void *)arg, &strioc, flag, 3575 copyflag); 3576 if (error != 0) 3577 return (error); 3578 3579 if ((strioc.ic_len < 0) || (strioc.ic_timout < -1)) 3580 return (EINVAL); 3581 3582 access = job_control_type(strioc.ic_cmd); 3583 mutex_enter(&stp->sd_lock); 3584 if ((access != -1) && 3585 ((error = i_straccess(stp, access)) != 0)) { 3586 mutex_exit(&stp->sd_lock); 3587 return (error); 3588 } 3589 mutex_exit(&stp->sd_lock); 3590 3591 /* 3592 * The I_STR facility provides a trap door for malicious 3593 * code to send down bogus streamio(7I) ioctl commands to 3594 * unsuspecting STREAMS modules and drivers which expect to 3595 * only get these messages from the stream head. 3596 * Explicitly prohibit any streamio ioctls which can be 3597 * passed downstream by the stream head. Note that we do 3598 * not block all streamio ioctls because the ioctl 3599 * numberspace is not well managed and thus it's possible 3600 * that a module or driver's ioctl numbers may accidentally 3601 * collide with them. 3602 */ 3603 switch (strioc.ic_cmd) { 3604 case I_LINK: 3605 case I_PLINK: 3606 case I_UNLINK: 3607 case I_PUNLINK: 3608 case _I_GETPEERCRED: 3609 case _I_PLINK_LH: 3610 return (EINVAL); 3611 } 3612 3613 error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp); 3614 if (error == 0) { 3615 error = strcopyout_strioctl(&strioc, (void *)arg, 3616 flag, copyflag); 3617 } 3618 return (error); 3619 3620 case _I_CMD: 3621 /* 3622 * Like I_STR, but without using M_IOC* messages and without 3623 * copyins/copyouts beyond the passed-in argument. 3624 */ 3625 if (stp->sd_flag & STRHUP) 3626 return (ENXIO); 3627 3628 if (copyflag == U_TO_K) { 3629 if ((scp = kmem_alloc(sizeof (strcmd_t), 3630 KM_NOSLEEP)) == NULL) { 3631 return (ENOMEM); 3632 } 3633 3634 if (copyin((void *)arg, scp, sizeof (strcmd_t))) { 3635 kmem_free(scp, sizeof (strcmd_t)); 3636 return (EFAULT); 3637 } 3638 } else { 3639 scp = (strcmd_t *)arg; 3640 } 3641 3642 access = job_control_type(scp->sc_cmd); 3643 mutex_enter(&stp->sd_lock); 3644 if (access != -1 && (error = i_straccess(stp, access)) != 0) { 3645 mutex_exit(&stp->sd_lock); 3646 if (copyflag == U_TO_K) 3647 kmem_free(scp, sizeof (strcmd_t)); 3648 return (error); 3649 } 3650 mutex_exit(&stp->sd_lock); 3651 3652 *rvalp = 0; 3653 if ((error = strdocmd(stp, scp, crp)) == 0) { 3654 if (copyflag == U_TO_K && 3655 copyout(scp, (void *)arg, sizeof (strcmd_t))) { 3656 error = EFAULT; 3657 } 3658 } 3659 if (copyflag == U_TO_K) 3660 kmem_free(scp, sizeof (strcmd_t)); 3661 return (error); 3662 3663 case I_NREAD: 3664 /* 3665 * Return number of bytes of data in first message 3666 * in queue in "arg" and return the number of messages 3667 * in queue in return value. 3668 */ 3669 { 3670 size_t size; 3671 int retval; 3672 int count = 0; 3673 3674 mutex_enter(QLOCK(rdq)); 3675 3676 size = msgdsize(rdq->q_first); 3677 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3678 count++; 3679 3680 mutex_exit(QLOCK(rdq)); 3681 if (stp->sd_struiordq) { 3682 infod_t infod; 3683 3684 infod.d_cmd = INFOD_COUNT; 3685 infod.d_count = 0; 3686 if (count == 0) { 3687 infod.d_cmd |= INFOD_FIRSTBYTES; 3688 infod.d_bytes = 0; 3689 } 3690 infod.d_res = 0; 3691 (void) infonext(rdq, &infod); 3692 count += infod.d_count; 3693 if (infod.d_res & INFOD_FIRSTBYTES) 3694 size = infod.d_bytes; 3695 } 3696 3697 /* 3698 * Drop down from size_t to the "int" required by the 3699 * interface. Cap at INT_MAX. 3700 */ 3701 retval = MIN(size, INT_MAX); 3702 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3703 copyflag); 3704 if (!error) 3705 *rvalp = count; 3706 return (error); 3707 } 3708 3709 case FIONREAD: 3710 /* 3711 * Return number of bytes of data in all data messages 3712 * in queue in "arg". 3713 */ 3714 { 3715 size_t size = 0; 3716 int retval; 3717 3718 mutex_enter(QLOCK(rdq)); 3719 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3720 size += msgdsize(mp); 3721 mutex_exit(QLOCK(rdq)); 3722 3723 if (stp->sd_struiordq) { 3724 infod_t infod; 3725 3726 infod.d_cmd = INFOD_BYTES; 3727 infod.d_res = 0; 3728 infod.d_bytes = 0; 3729 (void) infonext(rdq, &infod); 3730 size += infod.d_bytes; 3731 } 3732 3733 /* 3734 * Drop down from size_t to the "int" required by the 3735 * interface. Cap at INT_MAX. 3736 */ 3737 retval = MIN(size, INT_MAX); 3738 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3739 copyflag); 3740 3741 *rvalp = 0; 3742 return (error); 3743 } 3744 case FIORDCHK: 3745 /* 3746 * FIORDCHK does not use arg value (like FIONREAD), 3747 * instead a count is returned. I_NREAD value may 3748 * not be accurate but safe. The real thing to do is 3749 * to add the msgdsizes of all data messages until 3750 * a non-data message. 3751 */ 3752 { 3753 size_t size = 0; 3754 3755 mutex_enter(QLOCK(rdq)); 3756 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3757 size += msgdsize(mp); 3758 mutex_exit(QLOCK(rdq)); 3759 3760 if (stp->sd_struiordq) { 3761 infod_t infod; 3762 3763 infod.d_cmd = INFOD_BYTES; 3764 infod.d_res = 0; 3765 infod.d_bytes = 0; 3766 (void) infonext(rdq, &infod); 3767 size += infod.d_bytes; 3768 } 3769 3770 /* 3771 * Since ioctl returns an int, and memory sizes under 3772 * LP64 may not fit, we return INT_MAX if the count was 3773 * actually greater. 3774 */ 3775 *rvalp = MIN(size, INT_MAX); 3776 return (0); 3777 } 3778 3779 case I_FIND: 3780 /* 3781 * Get module name. 3782 */ 3783 { 3784 char mname[FMNAMESZ + 1]; 3785 queue_t *q; 3786 3787 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3788 mname, FMNAMESZ + 1, NULL); 3789 if (error) 3790 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3791 3792 /* 3793 * Return EINVAL if we're handed a bogus module name. 3794 */ 3795 if (fmodsw_find(mname, FMODSW_LOAD) == NULL) { 3796 TRACE_0(TR_FAC_STREAMS_FR, 3797 TR_I_CANT_FIND, "couldn't I_FIND"); 3798 return (EINVAL); 3799 } 3800 3801 *rvalp = 0; 3802 3803 /* Look downstream to see if module is there. */ 3804 claimstr(stp->sd_wrq); 3805 for (q = stp->sd_wrq->q_next; q; q = q->q_next) { 3806 if (q->q_flag & QREADR) { 3807 q = NULL; 3808 break; 3809 } 3810 if (strcmp(mname, Q2NAME(q)) == 0) 3811 break; 3812 } 3813 releasestr(stp->sd_wrq); 3814 3815 *rvalp = (q ? 1 : 0); 3816 return (error); 3817 } 3818 3819 case I_PUSH: 3820 case __I_PUSH_NOCTTY: 3821 /* 3822 * Push a module. 3823 * For the case __I_PUSH_NOCTTY push a module but 3824 * do not allocate controlling tty. See bugid 4025044 3825 */ 3826 3827 { 3828 char mname[FMNAMESZ + 1]; 3829 fmodsw_impl_t *fp; 3830 dev_t dummydev; 3831 3832 if (stp->sd_flag & STRHUP) 3833 return (ENXIO); 3834 3835 /* 3836 * Get module name and look up in fmodsw. 3837 */ 3838 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3839 mname, FMNAMESZ + 1, NULL); 3840 if (error) 3841 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3842 3843 if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) == 3844 NULL) 3845 return (EINVAL); 3846 3847 TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH, 3848 "I_PUSH:fp %p stp %p", fp, stp); 3849 3850 /* 3851 * If the module is flagged as single-instance, then check 3852 * to see if the module is already pushed. If it is, return 3853 * as if the push was successful. 3854 */ 3855 if (fp->f_qflag & _QSINGLE_INSTANCE) { 3856 queue_t *q; 3857 3858 claimstr(stp->sd_wrq); 3859 for (q = stp->sd_wrq->q_next; q; q = q->q_next) { 3860 if (q->q_flag & QREADR) { 3861 q = NULL; 3862 break; 3863 } 3864 if (strcmp(mname, Q2NAME(q)) == 0) 3865 break; 3866 } 3867 releasestr(stp->sd_wrq); 3868 if (q != NULL) { 3869 fmodsw_rele(fp); 3870 return (0); 3871 } 3872 } 3873 3874 if (error = strstartplumb(stp, flag, cmd)) { 3875 fmodsw_rele(fp); 3876 return (error); 3877 } 3878 3879 /* 3880 * See if any more modules can be pushed on this stream. 3881 * Note that this check must be done after strstartplumb() 3882 * since otherwise multiple threads issuing I_PUSHes on 3883 * the same stream will be able to exceed nstrpush. 3884 */ 3885 mutex_enter(&stp->sd_lock); 3886 if (stp->sd_pushcnt >= nstrpush) { 3887 fmodsw_rele(fp); 3888 strendplumb(stp); 3889 mutex_exit(&stp->sd_lock); 3890 return (EINVAL); 3891 } 3892 mutex_exit(&stp->sd_lock); 3893 3894 /* 3895 * Push new module and call its open routine 3896 * via qattach(). Modules don't change device 3897 * numbers, so just ignore dummydev here. 3898 */ 3899 dummydev = vp->v_rdev; 3900 if ((error = qattach(rdq, &dummydev, 0, crp, fp, 3901 B_FALSE)) == 0) { 3902 if (vp->v_type == VCHR && /* sorry, no pipes allowed */ 3903 (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) { 3904 /* 3905 * try to allocate it as a controlling terminal 3906 */ 3907 (void) strctty(stp); 3908 } 3909 } 3910 3911 mutex_enter(&stp->sd_lock); 3912 3913 /* 3914 * As a performance concern we are caching the values of 3915 * q_minpsz and q_maxpsz of the module below the stream 3916 * head in the stream head. 3917 */ 3918 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 3919 rmin = stp->sd_wrq->q_next->q_minpsz; 3920 rmax = stp->sd_wrq->q_next->q_maxpsz; 3921 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 3922 3923 /* Do this processing here as a performance concern */ 3924 if (strmsgsz != 0) { 3925 if (rmax == INFPSZ) 3926 rmax = strmsgsz; 3927 else { 3928 if (vp->v_type == VFIFO) 3929 rmax = MIN(PIPE_BUF, rmax); 3930 else rmax = MIN(strmsgsz, rmax); 3931 } 3932 } 3933 3934 mutex_enter(QLOCK(wrq)); 3935 stp->sd_qn_minpsz = rmin; 3936 stp->sd_qn_maxpsz = rmax; 3937 mutex_exit(QLOCK(wrq)); 3938 3939 strendplumb(stp); 3940 mutex_exit(&stp->sd_lock); 3941 return (error); 3942 } 3943 3944 case I_POP: 3945 { 3946 queue_t *q; 3947 3948 if (stp->sd_flag & STRHUP) 3949 return (ENXIO); 3950 if (!wrq->q_next) /* for broken pipes */ 3951 return (EINVAL); 3952 3953 if (error = strstartplumb(stp, flag, cmd)) 3954 return (error); 3955 3956 /* 3957 * If there is an anchor on this stream and popping 3958 * the current module would attempt to pop through the 3959 * anchor, then disallow the pop unless we have sufficient 3960 * privileges; take the cheapest (non-locking) check 3961 * first. 3962 */ 3963 if (secpolicy_ip_config(crp, B_TRUE) != 0 || 3964 (stp->sd_anchorzone != crgetzoneid(crp))) { 3965 mutex_enter(&stp->sd_lock); 3966 /* 3967 * Anchors only apply if there's at least one 3968 * module on the stream (sd_pushcnt > 0). 3969 */ 3970 if (stp->sd_pushcnt > 0 && 3971 stp->sd_pushcnt == stp->sd_anchor && 3972 stp->sd_vnode->v_type != VFIFO) { 3973 strendplumb(stp); 3974 mutex_exit(&stp->sd_lock); 3975 if (stp->sd_anchorzone != crgetzoneid(crp)) 3976 return (EINVAL); 3977 /* Audit and report error */ 3978 return (secpolicy_ip_config(crp, B_FALSE)); 3979 } 3980 mutex_exit(&stp->sd_lock); 3981 } 3982 3983 q = wrq->q_next; 3984 TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP, 3985 "I_POP:%p from %p", q, stp); 3986 if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) { 3987 error = EINVAL; 3988 } else { 3989 qdetach(_RD(q), 1, flag, crp, B_FALSE); 3990 error = 0; 3991 } 3992 mutex_enter(&stp->sd_lock); 3993 3994 /* 3995 * As a performance concern we are caching the values of 3996 * q_minpsz and q_maxpsz of the module below the stream 3997 * head in the stream head. 3998 */ 3999 mutex_enter(QLOCK(wrq->q_next)); 4000 rmin = wrq->q_next->q_minpsz; 4001 rmax = wrq->q_next->q_maxpsz; 4002 mutex_exit(QLOCK(wrq->q_next)); 4003 4004 /* Do this processing here as a performance concern */ 4005 if (strmsgsz != 0) { 4006 if (rmax == INFPSZ) 4007 rmax = strmsgsz; 4008 else { 4009 if (vp->v_type == VFIFO) 4010 rmax = MIN(PIPE_BUF, rmax); 4011 else rmax = MIN(strmsgsz, rmax); 4012 } 4013 } 4014 4015 mutex_enter(QLOCK(wrq)); 4016 stp->sd_qn_minpsz = rmin; 4017 stp->sd_qn_maxpsz = rmax; 4018 mutex_exit(QLOCK(wrq)); 4019 4020 /* If we popped through the anchor, then reset the anchor. */ 4021 if (stp->sd_pushcnt < stp->sd_anchor) { 4022 stp->sd_anchor = 0; 4023 stp->sd_anchorzone = 0; 4024 } 4025 strendplumb(stp); 4026 mutex_exit(&stp->sd_lock); 4027 return (error); 4028 } 4029 4030 case _I_MUXID2FD: 4031 { 4032 /* 4033 * Create a fd for a I_PLINK'ed lower stream with a given 4034 * muxid. With the fd, application can send down ioctls, 4035 * like I_LIST, to the previously I_PLINK'ed stream. Note 4036 * that after getting the fd, the application has to do an 4037 * I_PUNLINK on the muxid before it can do any operation 4038 * on the lower stream. This is required by spec1170. 4039 * 4040 * The fd used to do this ioctl should point to the same 4041 * controlling device used to do the I_PLINK. If it uses 4042 * a different stream or an invalid muxid, I_MUXID2FD will 4043 * fail. The error code is set to EINVAL. 4044 * 4045 * The intended use of this interface is the following. 4046 * An application I_PLINK'ed a stream and exits. The fd 4047 * to the lower stream is gone. Another application 4048 * wants to get a fd to the lower stream, it uses I_MUXID2FD. 4049 */ 4050 int muxid = (int)arg; 4051 int fd; 4052 linkinfo_t *linkp; 4053 struct file *fp; 4054 netstack_t *ns; 4055 str_stack_t *ss; 4056 4057 /* 4058 * Do not allow the wildcard muxid. This ioctl is not 4059 * intended to find arbitrary link. 4060 */ 4061 if (muxid == 0) { 4062 return (EINVAL); 4063 } 4064 4065 ns = netstack_find_by_cred(crp); 4066 ASSERT(ns != NULL); 4067 ss = ns->netstack_str; 4068 ASSERT(ss != NULL); 4069 4070 mutex_enter(&muxifier); 4071 linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss); 4072 if (linkp == NULL) { 4073 mutex_exit(&muxifier); 4074 netstack_rele(ss->ss_netstack); 4075 return (EINVAL); 4076 } 4077 4078 if ((fd = ufalloc(0)) == -1) { 4079 mutex_exit(&muxifier); 4080 netstack_rele(ss->ss_netstack); 4081 return (EMFILE); 4082 } 4083 fp = linkp->li_fpdown; 4084 mutex_enter(&fp->f_tlock); 4085 fp->f_count++; 4086 mutex_exit(&fp->f_tlock); 4087 mutex_exit(&muxifier); 4088 setf(fd, fp); 4089 *rvalp = fd; 4090 netstack_rele(ss->ss_netstack); 4091 return (0); 4092 } 4093 4094 case _I_INSERT: 4095 { 4096 /* 4097 * To insert a module to a given position in a stream. 4098 * In the first release, only allow privileged user 4099 * to use this ioctl. Furthermore, the insert is only allowed 4100 * below an anchor if the zoneid is the same as the zoneid 4101 * which created the anchor. 4102 * 4103 * Note that we do not plan to support this ioctl 4104 * on pipes in the first release. We want to learn more 4105 * about the implications of these ioctls before extending 4106 * their support. And we do not think these features are 4107 * valuable for pipes. 4108 */ 4109 STRUCT_DECL(strmodconf, strmodinsert); 4110 char mod_name[FMNAMESZ + 1]; 4111 fmodsw_impl_t *fp; 4112 dev_t dummydev; 4113 queue_t *tmp_wrq; 4114 int pos; 4115 boolean_t is_insert; 4116 4117 STRUCT_INIT(strmodinsert, flag); 4118 if (stp->sd_flag & STRHUP) 4119 return (ENXIO); 4120 if (STRMATED(stp)) 4121 return (EINVAL); 4122 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 4123 return (error); 4124 if (stp->sd_anchor != 0 && 4125 stp->sd_anchorzone != crgetzoneid(crp)) 4126 return (EINVAL); 4127 4128 error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert), 4129 STRUCT_SIZE(strmodinsert), copyflag); 4130 if (error) 4131 return (error); 4132 4133 /* 4134 * Get module name and look up in fmodsw. 4135 */ 4136 error = (copyflag & U_TO_K ? copyinstr : 4137 copystr)(STRUCT_FGETP(strmodinsert, mod_name), 4138 mod_name, FMNAMESZ + 1, NULL); 4139 if (error) 4140 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 4141 4142 if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) == 4143 NULL) 4144 return (EINVAL); 4145 4146 if (error = strstartplumb(stp, flag, cmd)) { 4147 fmodsw_rele(fp); 4148 return (error); 4149 } 4150 4151 /* 4152 * Is this _I_INSERT just like an I_PUSH? We need to know 4153 * this because we do some optimizations if this is a 4154 * module being pushed. 4155 */ 4156 pos = STRUCT_FGET(strmodinsert, pos); 4157 is_insert = (pos != 0); 4158 4159 /* 4160 * Make sure pos is valid. Even though it is not an I_PUSH, 4161 * we impose the same limit on the number of modules in a 4162 * stream. 4163 */ 4164 mutex_enter(&stp->sd_lock); 4165 if (stp->sd_pushcnt >= nstrpush || pos < 0 || 4166 pos > stp->sd_pushcnt) { 4167 fmodsw_rele(fp); 4168 strendplumb(stp); 4169 mutex_exit(&stp->sd_lock); 4170 return (EINVAL); 4171 } 4172 if (stp->sd_anchor != 0) { 4173 /* 4174 * Is this insert below the anchor? 4175 * Pushcnt hasn't been increased yet hence 4176 * we test for greater than here, and greater or 4177 * equal after qattach. 4178 */ 4179 if (pos > (stp->sd_pushcnt - stp->sd_anchor) && 4180 stp->sd_anchorzone != crgetzoneid(crp)) { 4181 fmodsw_rele(fp); 4182 strendplumb(stp); 4183 mutex_exit(&stp->sd_lock); 4184 return (EPERM); 4185 } 4186 } 4187 4188 mutex_exit(&stp->sd_lock); 4189 4190 /* 4191 * First find the correct position this module to 4192 * be inserted. We don't need to call claimstr() 4193 * as the stream should not be changing at this point. 4194 * 4195 * Insert new module and call its open routine 4196 * via qattach(). Modules don't change device 4197 * numbers, so just ignore dummydev here. 4198 */ 4199 for (tmp_wrq = stp->sd_wrq; pos > 0; 4200 tmp_wrq = tmp_wrq->q_next, pos--) { 4201 ASSERT(SAMESTR(tmp_wrq)); 4202 } 4203 dummydev = vp->v_rdev; 4204 if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp, 4205 fp, is_insert)) != 0) { 4206 mutex_enter(&stp->sd_lock); 4207 strendplumb(stp); 4208 mutex_exit(&stp->sd_lock); 4209 return (error); 4210 } 4211 4212 mutex_enter(&stp->sd_lock); 4213 4214 /* 4215 * As a performance concern we are caching the values of 4216 * q_minpsz and q_maxpsz of the module below the stream 4217 * head in the stream head. 4218 */ 4219 if (!is_insert) { 4220 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 4221 rmin = stp->sd_wrq->q_next->q_minpsz; 4222 rmax = stp->sd_wrq->q_next->q_maxpsz; 4223 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 4224 4225 /* Do this processing here as a performance concern */ 4226 if (strmsgsz != 0) { 4227 if (rmax == INFPSZ) { 4228 rmax = strmsgsz; 4229 } else { 4230 rmax = MIN(strmsgsz, rmax); 4231 } 4232 } 4233 4234 mutex_enter(QLOCK(wrq)); 4235 stp->sd_qn_minpsz = rmin; 4236 stp->sd_qn_maxpsz = rmax; 4237 mutex_exit(QLOCK(wrq)); 4238 } 4239 4240 /* 4241 * Need to update the anchor value if this module is 4242 * inserted below the anchor point. 4243 */ 4244 if (stp->sd_anchor != 0) { 4245 pos = STRUCT_FGET(strmodinsert, pos); 4246 if (pos >= (stp->sd_pushcnt - stp->sd_anchor)) 4247 stp->sd_anchor++; 4248 } 4249 4250 strendplumb(stp); 4251 mutex_exit(&stp->sd_lock); 4252 return (0); 4253 } 4254 4255 case _I_REMOVE: 4256 { 4257 /* 4258 * To remove a module with a given name in a stream. The 4259 * caller of this ioctl needs to provide both the name and 4260 * the position of the module to be removed. This eliminates 4261 * the ambiguity of removal if a module is inserted/pushed 4262 * multiple times in a stream. In the first release, only 4263 * allow privileged user to use this ioctl. 4264 * Furthermore, the remove is only allowed 4265 * below an anchor if the zoneid is the same as the zoneid 4266 * which created the anchor. 4267 * 4268 * Note that we do not plan to support this ioctl 4269 * on pipes in the first release. We want to learn more 4270 * about the implications of these ioctls before extending 4271 * their support. And we do not think these features are 4272 * valuable for pipes. 4273 * 4274 * Also note that _I_REMOVE cannot be used to remove a 4275 * driver or the stream head. 4276 */ 4277 STRUCT_DECL(strmodconf, strmodremove); 4278 queue_t *q; 4279 int pos; 4280 char mod_name[FMNAMESZ + 1]; 4281 boolean_t is_remove; 4282 4283 STRUCT_INIT(strmodremove, flag); 4284 if (stp->sd_flag & STRHUP) 4285 return (ENXIO); 4286 if (STRMATED(stp)) 4287 return (EINVAL); 4288 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 4289 return (error); 4290 if (stp->sd_anchor != 0 && 4291 stp->sd_anchorzone != crgetzoneid(crp)) 4292 return (EINVAL); 4293 4294 error = strcopyin((void *)arg, STRUCT_BUF(strmodremove), 4295 STRUCT_SIZE(strmodremove), copyflag); 4296 if (error) 4297 return (error); 4298 4299 error = (copyflag & U_TO_K ? copyinstr : 4300 copystr)(STRUCT_FGETP(strmodremove, mod_name), 4301 mod_name, FMNAMESZ + 1, NULL); 4302 if (error) 4303 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 4304 4305 if ((error = strstartplumb(stp, flag, cmd)) != 0) 4306 return (error); 4307 4308 /* 4309 * Match the name of given module to the name of module at 4310 * the given position. 4311 */ 4312 pos = STRUCT_FGET(strmodremove, pos); 4313 4314 is_remove = (pos != 0); 4315 for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0; 4316 q = q->q_next, pos--) 4317 ; 4318 if (pos > 0 || !SAMESTR(q) || 4319 strcmp(Q2NAME(q), mod_name) != 0) { 4320 mutex_enter(&stp->sd_lock); 4321 strendplumb(stp); 4322 mutex_exit(&stp->sd_lock); 4323 return (EINVAL); 4324 } 4325 4326 /* 4327 * If the position is at or below an anchor, then the zoneid 4328 * must match the zoneid that created the anchor. 4329 */ 4330 if (stp->sd_anchor != 0) { 4331 pos = STRUCT_FGET(strmodremove, pos); 4332 if (pos >= (stp->sd_pushcnt - stp->sd_anchor) && 4333 stp->sd_anchorzone != crgetzoneid(crp)) { 4334 mutex_enter(&stp->sd_lock); 4335 strendplumb(stp); 4336 mutex_exit(&stp->sd_lock); 4337 return (EPERM); 4338 } 4339 } 4340 4341 4342 ASSERT(!(q->q_flag & QREADR)); 4343 qdetach(_RD(q), 1, flag, crp, is_remove); 4344 4345 mutex_enter(&stp->sd_lock); 4346 4347 /* 4348 * As a performance concern we are caching the values of 4349 * q_minpsz and q_maxpsz of the module below the stream 4350 * head in the stream head. 4351 */ 4352 if (!is_remove) { 4353 mutex_enter(QLOCK(wrq->q_next)); 4354 rmin = wrq->q_next->q_minpsz; 4355 rmax = wrq->q_next->q_maxpsz; 4356 mutex_exit(QLOCK(wrq->q_next)); 4357 4358 /* Do this processing here as a performance concern */ 4359 if (strmsgsz != 0) { 4360 if (rmax == INFPSZ) 4361 rmax = strmsgsz; 4362 else { 4363 if (vp->v_type == VFIFO) 4364 rmax = MIN(PIPE_BUF, rmax); 4365 else rmax = MIN(strmsgsz, rmax); 4366 } 4367 } 4368 4369 mutex_enter(QLOCK(wrq)); 4370 stp->sd_qn_minpsz = rmin; 4371 stp->sd_qn_maxpsz = rmax; 4372 mutex_exit(QLOCK(wrq)); 4373 } 4374 4375 /* 4376 * Need to update the anchor value if this module is removed 4377 * at or below the anchor point. If the removed module is at 4378 * the anchor point, remove the anchor for this stream if 4379 * there is no module above the anchor point. Otherwise, if 4380 * the removed module is below the anchor point, decrement the 4381 * anchor point by 1. 4382 */ 4383 if (stp->sd_anchor != 0) { 4384 pos = STRUCT_FGET(strmodremove, pos); 4385 if (pos == stp->sd_pushcnt - stp->sd_anchor + 1) 4386 stp->sd_anchor = 0; 4387 else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1)) 4388 stp->sd_anchor--; 4389 } 4390 4391 strendplumb(stp); 4392 mutex_exit(&stp->sd_lock); 4393 return (0); 4394 } 4395 4396 case I_ANCHOR: 4397 /* 4398 * Set the anchor position on the stream to reside at 4399 * the top module (in other words, the top module 4400 * cannot be popped). Anchors with a FIFO make no 4401 * obvious sense, so they're not allowed. 4402 */ 4403 mutex_enter(&stp->sd_lock); 4404 4405 if (stp->sd_vnode->v_type == VFIFO) { 4406 mutex_exit(&stp->sd_lock); 4407 return (EINVAL); 4408 } 4409 /* Only allow the same zoneid to update the anchor */ 4410 if (stp->sd_anchor != 0 && 4411 stp->sd_anchorzone != crgetzoneid(crp)) { 4412 mutex_exit(&stp->sd_lock); 4413 return (EINVAL); 4414 } 4415 stp->sd_anchor = stp->sd_pushcnt; 4416 stp->sd_anchorzone = crgetzoneid(crp); 4417 mutex_exit(&stp->sd_lock); 4418 return (0); 4419 4420 case I_LOOK: 4421 /* 4422 * Get name of first module downstream. 4423 * If no module, return an error. 4424 */ 4425 claimstr(wrq); 4426 if (_SAMESTR(wrq) && wrq->q_next->q_next != NULL) { 4427 char *name = Q2NAME(wrq->q_next); 4428 4429 error = strcopyout(name, (void *)arg, strlen(name) + 1, 4430 copyflag); 4431 releasestr(wrq); 4432 return (error); 4433 } 4434 releasestr(wrq); 4435 return (EINVAL); 4436 4437 case I_LINK: 4438 case I_PLINK: 4439 /* 4440 * Link a multiplexor. 4441 */ 4442 return (mlink(vp, cmd, (int)arg, crp, rvalp, 0)); 4443 4444 case _I_PLINK_LH: 4445 /* 4446 * Link a multiplexor: Call must originate from kernel. 4447 */ 4448 if (kioctl) 4449 return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp)); 4450 4451 return (EINVAL); 4452 case I_UNLINK: 4453 case I_PUNLINK: 4454 /* 4455 * Unlink a multiplexor. 4456 * If arg is -1, unlink all links for which this is the 4457 * controlling stream. Otherwise, arg is an index number 4458 * for a link to be removed. 4459 */ 4460 { 4461 struct linkinfo *linkp; 4462 int native_arg = (int)arg; 4463 int type; 4464 netstack_t *ns; 4465 str_stack_t *ss; 4466 4467 TRACE_1(TR_FAC_STREAMS_FR, 4468 TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp); 4469 if (vp->v_type == VFIFO) { 4470 return (EINVAL); 4471 } 4472 if (cmd == I_UNLINK) 4473 type = LINKNORMAL; 4474 else /* I_PUNLINK */ 4475 type = LINKPERSIST; 4476 if (native_arg == 0) { 4477 return (EINVAL); 4478 } 4479 ns = netstack_find_by_cred(crp); 4480 ASSERT(ns != NULL); 4481 ss = ns->netstack_str; 4482 ASSERT(ss != NULL); 4483 4484 if (native_arg == MUXID_ALL) 4485 error = munlinkall(stp, type, crp, rvalp, ss); 4486 else { 4487 mutex_enter(&muxifier); 4488 if (!(linkp = findlinks(stp, (int)arg, type, ss))) { 4489 /* invalid user supplied index number */ 4490 mutex_exit(&muxifier); 4491 netstack_rele(ss->ss_netstack); 4492 return (EINVAL); 4493 } 4494 /* munlink drops the muxifier lock */ 4495 error = munlink(stp, linkp, type, crp, rvalp, ss); 4496 } 4497 netstack_rele(ss->ss_netstack); 4498 return (error); 4499 } 4500 4501 case I_FLUSH: 4502 /* 4503 * send a flush message downstream 4504 * flush message can indicate 4505 * FLUSHR - flush read queue 4506 * FLUSHW - flush write queue 4507 * FLUSHRW - flush read/write queue 4508 */ 4509 if (stp->sd_flag & STRHUP) 4510 return (ENXIO); 4511 if (arg & ~FLUSHRW) 4512 return (EINVAL); 4513 4514 for (;;) { 4515 if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) { 4516 break; 4517 } 4518 if (error = strwaitbuf(1, BPRI_HI)) { 4519 return (error); 4520 } 4521 } 4522 4523 /* 4524 * Send down an unsupported ioctl and wait for the nack 4525 * in order to allow the M_FLUSH to propagate back 4526 * up to the stream head. 4527 * Replaces if (qready()) runqueues(); 4528 */ 4529 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4530 strioc.ic_timout = 0; 4531 strioc.ic_len = 0; 4532 strioc.ic_dp = NULL; 4533 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4534 *rvalp = 0; 4535 return (0); 4536 4537 case I_FLUSHBAND: 4538 { 4539 struct bandinfo binfo; 4540 4541 error = strcopyin((void *)arg, &binfo, sizeof (binfo), 4542 copyflag); 4543 if (error) 4544 return (error); 4545 if (stp->sd_flag & STRHUP) 4546 return (ENXIO); 4547 if (binfo.bi_flag & ~FLUSHRW) 4548 return (EINVAL); 4549 while (!(mp = allocb(2, BPRI_HI))) { 4550 if (error = strwaitbuf(2, BPRI_HI)) 4551 return (error); 4552 } 4553 mp->b_datap->db_type = M_FLUSH; 4554 *mp->b_wptr++ = binfo.bi_flag | FLUSHBAND; 4555 *mp->b_wptr++ = binfo.bi_pri; 4556 putnext(stp->sd_wrq, mp); 4557 /* 4558 * Send down an unsupported ioctl and wait for the nack 4559 * in order to allow the M_FLUSH to propagate back 4560 * up to the stream head. 4561 * Replaces if (qready()) runqueues(); 4562 */ 4563 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4564 strioc.ic_timout = 0; 4565 strioc.ic_len = 0; 4566 strioc.ic_dp = NULL; 4567 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4568 *rvalp = 0; 4569 return (0); 4570 } 4571 4572 case I_SRDOPT: 4573 /* 4574 * Set read options 4575 * 4576 * RNORM - default stream mode 4577 * RMSGN - message no discard 4578 * RMSGD - message discard 4579 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs 4580 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs 4581 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs 4582 */ 4583 if (arg & ~(RMODEMASK | RPROTMASK)) 4584 return (EINVAL); 4585 4586 if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN)) 4587 return (EINVAL); 4588 4589 mutex_enter(&stp->sd_lock); 4590 switch (arg & RMODEMASK) { 4591 case RNORM: 4592 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 4593 break; 4594 case RMSGD: 4595 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) | 4596 RD_MSGDIS; 4597 break; 4598 case RMSGN: 4599 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) | 4600 RD_MSGNODIS; 4601 break; 4602 } 4603 4604 switch (arg & RPROTMASK) { 4605 case RPROTNORM: 4606 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 4607 break; 4608 4609 case RPROTDAT: 4610 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) | 4611 RD_PROTDAT); 4612 break; 4613 4614 case RPROTDIS: 4615 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) | 4616 RD_PROTDIS); 4617 break; 4618 } 4619 mutex_exit(&stp->sd_lock); 4620 return (0); 4621 4622 case I_GRDOPT: 4623 /* 4624 * Get read option and return the value 4625 * to spot pointed to by arg 4626 */ 4627 { 4628 int rdopt; 4629 4630 rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD : 4631 ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM)); 4632 rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT : 4633 ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM)); 4634 4635 return (strcopyout(&rdopt, (void *)arg, sizeof (int), 4636 copyflag)); 4637 } 4638 4639 case I_SERROPT: 4640 /* 4641 * Set error options 4642 * 4643 * RERRNORM - persistent read errors 4644 * RERRNONPERSIST - non-persistent read errors 4645 * WERRNORM - persistent write errors 4646 * WERRNONPERSIST - non-persistent write errors 4647 */ 4648 if (arg & ~(RERRMASK | WERRMASK)) 4649 return (EINVAL); 4650 4651 mutex_enter(&stp->sd_lock); 4652 switch (arg & RERRMASK) { 4653 case RERRNORM: 4654 stp->sd_flag &= ~STRDERRNONPERSIST; 4655 break; 4656 case RERRNONPERSIST: 4657 stp->sd_flag |= STRDERRNONPERSIST; 4658 break; 4659 } 4660 switch (arg & WERRMASK) { 4661 case WERRNORM: 4662 stp->sd_flag &= ~STWRERRNONPERSIST; 4663 break; 4664 case WERRNONPERSIST: 4665 stp->sd_flag |= STWRERRNONPERSIST; 4666 break; 4667 } 4668 mutex_exit(&stp->sd_lock); 4669 return (0); 4670 4671 case I_GERROPT: 4672 /* 4673 * Get error option and return the value 4674 * to spot pointed to by arg 4675 */ 4676 { 4677 int erropt = 0; 4678 4679 erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST : 4680 RERRNORM; 4681 erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST : 4682 WERRNORM; 4683 return (strcopyout(&erropt, (void *)arg, sizeof (int), 4684 copyflag)); 4685 } 4686 4687 case I_SETSIG: 4688 /* 4689 * Register the calling proc to receive the SIGPOLL 4690 * signal based on the events given in arg. If 4691 * arg is zero, remove the proc from register list. 4692 */ 4693 { 4694 strsig_t *ssp, *pssp; 4695 struct pid *pidp; 4696 4697 pssp = NULL; 4698 pidp = curproc->p_pidp; 4699 /* 4700 * Hold sd_lock to prevent traversal of sd_siglist while 4701 * it is modified. 4702 */ 4703 mutex_enter(&stp->sd_lock); 4704 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp); 4705 pssp = ssp, ssp = ssp->ss_next) 4706 ; 4707 4708 if (arg) { 4709 if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4710 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4711 mutex_exit(&stp->sd_lock); 4712 return (EINVAL); 4713 } 4714 if ((arg & S_BANDURG) && !(arg & S_RDBAND)) { 4715 mutex_exit(&stp->sd_lock); 4716 return (EINVAL); 4717 } 4718 4719 /* 4720 * If proc not already registered, add it 4721 * to list. 4722 */ 4723 if (!ssp) { 4724 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4725 ssp->ss_pidp = pidp; 4726 ssp->ss_pid = pidp->pid_id; 4727 ssp->ss_next = NULL; 4728 if (pssp) 4729 pssp->ss_next = ssp; 4730 else 4731 stp->sd_siglist = ssp; 4732 mutex_enter(&pidlock); 4733 PID_HOLD(pidp); 4734 mutex_exit(&pidlock); 4735 } 4736 4737 /* 4738 * Set events. 4739 */ 4740 ssp->ss_events = (int)arg; 4741 } else { 4742 /* 4743 * Remove proc from register list. 4744 */ 4745 if (ssp) { 4746 mutex_enter(&pidlock); 4747 PID_RELE(pidp); 4748 mutex_exit(&pidlock); 4749 if (pssp) 4750 pssp->ss_next = ssp->ss_next; 4751 else 4752 stp->sd_siglist = ssp->ss_next; 4753 kmem_free(ssp, sizeof (strsig_t)); 4754 } else { 4755 mutex_exit(&stp->sd_lock); 4756 return (EINVAL); 4757 } 4758 } 4759 4760 /* 4761 * Recalculate OR of sig events. 4762 */ 4763 stp->sd_sigflags = 0; 4764 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4765 stp->sd_sigflags |= ssp->ss_events; 4766 mutex_exit(&stp->sd_lock); 4767 return (0); 4768 } 4769 4770 case I_GETSIG: 4771 /* 4772 * Return (in arg) the current registration of events 4773 * for which the calling proc is to be signaled. 4774 */ 4775 { 4776 struct strsig *ssp; 4777 struct pid *pidp; 4778 4779 pidp = curproc->p_pidp; 4780 mutex_enter(&stp->sd_lock); 4781 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4782 if (ssp->ss_pidp == pidp) { 4783 error = strcopyout(&ssp->ss_events, (void *)arg, 4784 sizeof (int), copyflag); 4785 mutex_exit(&stp->sd_lock); 4786 return (error); 4787 } 4788 mutex_exit(&stp->sd_lock); 4789 return (EINVAL); 4790 } 4791 4792 case I_ESETSIG: 4793 /* 4794 * Register the ss_pid to receive the SIGPOLL 4795 * signal based on the events is ss_events arg. If 4796 * ss_events is zero, remove the proc from register list. 4797 */ 4798 { 4799 struct strsig *ssp, *pssp; 4800 struct proc *proc; 4801 struct pid *pidp; 4802 pid_t pid; 4803 struct strsigset ss; 4804 4805 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4806 if (error) 4807 return (error); 4808 4809 pid = ss.ss_pid; 4810 4811 if (ss.ss_events != 0) { 4812 /* 4813 * Permissions check by sending signal 0. 4814 * Note that when kill fails it does a set_errno 4815 * causing the system call to fail. 4816 */ 4817 error = kill(pid, 0); 4818 if (error) { 4819 return (error); 4820 } 4821 } 4822 mutex_enter(&pidlock); 4823 if (pid == 0) 4824 proc = curproc; 4825 else if (pid < 0) 4826 proc = pgfind(-pid); 4827 else 4828 proc = prfind(pid); 4829 if (proc == NULL) { 4830 mutex_exit(&pidlock); 4831 return (ESRCH); 4832 } 4833 if (pid < 0) 4834 pidp = proc->p_pgidp; 4835 else 4836 pidp = proc->p_pidp; 4837 ASSERT(pidp); 4838 /* 4839 * Get a hold on the pid structure while referencing it. 4840 * There is a separate PID_HOLD should it be inserted 4841 * in the list below. 4842 */ 4843 PID_HOLD(pidp); 4844 mutex_exit(&pidlock); 4845 4846 pssp = NULL; 4847 /* 4848 * Hold sd_lock to prevent traversal of sd_siglist while 4849 * it is modified. 4850 */ 4851 mutex_enter(&stp->sd_lock); 4852 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid); 4853 pssp = ssp, ssp = ssp->ss_next) 4854 ; 4855 4856 if (ss.ss_events) { 4857 if (ss.ss_events & 4858 ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4859 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4860 mutex_exit(&stp->sd_lock); 4861 mutex_enter(&pidlock); 4862 PID_RELE(pidp); 4863 mutex_exit(&pidlock); 4864 return (EINVAL); 4865 } 4866 if ((ss.ss_events & S_BANDURG) && 4867 !(ss.ss_events & S_RDBAND)) { 4868 mutex_exit(&stp->sd_lock); 4869 mutex_enter(&pidlock); 4870 PID_RELE(pidp); 4871 mutex_exit(&pidlock); 4872 return (EINVAL); 4873 } 4874 4875 /* 4876 * If proc not already registered, add it 4877 * to list. 4878 */ 4879 if (!ssp) { 4880 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4881 ssp->ss_pidp = pidp; 4882 ssp->ss_pid = pid; 4883 ssp->ss_next = NULL; 4884 if (pssp) 4885 pssp->ss_next = ssp; 4886 else 4887 stp->sd_siglist = ssp; 4888 mutex_enter(&pidlock); 4889 PID_HOLD(pidp); 4890 mutex_exit(&pidlock); 4891 } 4892 4893 /* 4894 * Set events. 4895 */ 4896 ssp->ss_events = ss.ss_events; 4897 } else { 4898 /* 4899 * Remove proc from register list. 4900 */ 4901 if (ssp) { 4902 mutex_enter(&pidlock); 4903 PID_RELE(pidp); 4904 mutex_exit(&pidlock); 4905 if (pssp) 4906 pssp->ss_next = ssp->ss_next; 4907 else 4908 stp->sd_siglist = ssp->ss_next; 4909 kmem_free(ssp, sizeof (strsig_t)); 4910 } else { 4911 mutex_exit(&stp->sd_lock); 4912 mutex_enter(&pidlock); 4913 PID_RELE(pidp); 4914 mutex_exit(&pidlock); 4915 return (EINVAL); 4916 } 4917 } 4918 4919 /* 4920 * Recalculate OR of sig events. 4921 */ 4922 stp->sd_sigflags = 0; 4923 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4924 stp->sd_sigflags |= ssp->ss_events; 4925 mutex_exit(&stp->sd_lock); 4926 mutex_enter(&pidlock); 4927 PID_RELE(pidp); 4928 mutex_exit(&pidlock); 4929 return (0); 4930 } 4931 4932 case I_EGETSIG: 4933 /* 4934 * Return (in arg) the current registration of events 4935 * for which the calling proc is to be signaled. 4936 */ 4937 { 4938 struct strsig *ssp; 4939 struct proc *proc; 4940 pid_t pid; 4941 struct pid *pidp; 4942 struct strsigset ss; 4943 4944 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4945 if (error) 4946 return (error); 4947 4948 pid = ss.ss_pid; 4949 mutex_enter(&pidlock); 4950 if (pid == 0) 4951 proc = curproc; 4952 else if (pid < 0) 4953 proc = pgfind(-pid); 4954 else 4955 proc = prfind(pid); 4956 if (proc == NULL) { 4957 mutex_exit(&pidlock); 4958 return (ESRCH); 4959 } 4960 if (pid < 0) 4961 pidp = proc->p_pgidp; 4962 else 4963 pidp = proc->p_pidp; 4964 4965 /* Prevent the pidp from being reassigned */ 4966 PID_HOLD(pidp); 4967 mutex_exit(&pidlock); 4968 4969 mutex_enter(&stp->sd_lock); 4970 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4971 if (ssp->ss_pid == pid) { 4972 ss.ss_pid = ssp->ss_pid; 4973 ss.ss_events = ssp->ss_events; 4974 error = strcopyout(&ss, (void *)arg, 4975 sizeof (struct strsigset), copyflag); 4976 mutex_exit(&stp->sd_lock); 4977 mutex_enter(&pidlock); 4978 PID_RELE(pidp); 4979 mutex_exit(&pidlock); 4980 return (error); 4981 } 4982 mutex_exit(&stp->sd_lock); 4983 mutex_enter(&pidlock); 4984 PID_RELE(pidp); 4985 mutex_exit(&pidlock); 4986 return (EINVAL); 4987 } 4988 4989 case I_PEEK: 4990 { 4991 STRUCT_DECL(strpeek, strpeek); 4992 size_t n; 4993 mblk_t *fmp, *tmp_mp = NULL; 4994 4995 STRUCT_INIT(strpeek, flag); 4996 4997 error = strcopyin((void *)arg, STRUCT_BUF(strpeek), 4998 STRUCT_SIZE(strpeek), copyflag); 4999 if (error) 5000 return (error); 5001 5002 mutex_enter(QLOCK(rdq)); 5003 /* 5004 * Skip the invalid messages 5005 */ 5006 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 5007 if (mp->b_datap->db_type != M_SIG) 5008 break; 5009 5010 /* 5011 * If user has requested to peek at a high priority message 5012 * and first message is not, return 0 5013 */ 5014 if (mp != NULL) { 5015 if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) && 5016 queclass(mp) == QNORM) { 5017 *rvalp = 0; 5018 mutex_exit(QLOCK(rdq)); 5019 return (0); 5020 } 5021 } else if (stp->sd_struiordq == NULL || 5022 (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) { 5023 /* 5024 * No mblks to look at at the streamhead and 5025 * 1). This isn't a synch stream or 5026 * 2). This is a synch stream but caller wants high 5027 * priority messages which is not supported by 5028 * the synch stream. (it only supports QNORM) 5029 */ 5030 *rvalp = 0; 5031 mutex_exit(QLOCK(rdq)); 5032 return (0); 5033 } 5034 5035 fmp = mp; 5036 5037 if (mp && mp->b_datap->db_type == M_PASSFP) { 5038 mutex_exit(QLOCK(rdq)); 5039 return (EBADMSG); 5040 } 5041 5042 ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO || 5043 mp->b_datap->db_type == M_PROTO || 5044 mp->b_datap->db_type == M_DATA); 5045 5046 if (mp && mp->b_datap->db_type == M_PCPROTO) { 5047 STRUCT_FSET(strpeek, flags, RS_HIPRI); 5048 } else { 5049 STRUCT_FSET(strpeek, flags, 0); 5050 } 5051 5052 5053 if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) { 5054 mutex_exit(QLOCK(rdq)); 5055 return (ENOSR); 5056 } 5057 mutex_exit(QLOCK(rdq)); 5058 5059 /* 5060 * set mp = tmp_mp, so that I_PEEK processing can continue. 5061 * tmp_mp is used to free the dup'd message. 5062 */ 5063 mp = tmp_mp; 5064 5065 uio.uio_fmode = 0; 5066 uio.uio_extflg = UIO_COPY_CACHED; 5067 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 5068 UIO_SYSSPACE; 5069 uio.uio_limit = 0; 5070 /* 5071 * First process PROTO blocks, if any. 5072 * If user doesn't want to get ctl info by setting maxlen <= 0, 5073 * then set len to -1/0 and skip control blocks part. 5074 */ 5075 if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0) 5076 STRUCT_FSET(strpeek, ctlbuf.len, -1); 5077 else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0) 5078 STRUCT_FSET(strpeek, ctlbuf.len, 0); 5079 else { 5080 int ctl_part = 0; 5081 5082 iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf); 5083 iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen); 5084 uio.uio_iov = &iov; 5085 uio.uio_resid = iov.iov_len; 5086 uio.uio_loffset = 0; 5087 uio.uio_iovcnt = 1; 5088 while (mp && mp->b_datap->db_type != M_DATA && 5089 uio.uio_resid >= 0) { 5090 ASSERT(STRUCT_FGET(strpeek, flags) == 0 ? 5091 mp->b_datap->db_type == M_PROTO : 5092 mp->b_datap->db_type == M_PCPROTO); 5093 5094 if ((n = MIN(uio.uio_resid, 5095 mp->b_wptr - mp->b_rptr)) != 0 && 5096 (error = uiomove((char *)mp->b_rptr, n, 5097 UIO_READ, &uio)) != 0) { 5098 freemsg(tmp_mp); 5099 return (error); 5100 } 5101 ctl_part = 1; 5102 mp = mp->b_cont; 5103 } 5104 /* No ctl message */ 5105 if (ctl_part == 0) 5106 STRUCT_FSET(strpeek, ctlbuf.len, -1); 5107 else 5108 STRUCT_FSET(strpeek, ctlbuf.len, 5109 STRUCT_FGET(strpeek, ctlbuf.maxlen) - 5110 uio.uio_resid); 5111 } 5112 5113 /* 5114 * Now process DATA blocks, if any. 5115 * If user doesn't want to get data info by setting maxlen <= 0, 5116 * then set len to -1/0 and skip data blocks part. 5117 */ 5118 if (STRUCT_FGET(strpeek, databuf.maxlen) < 0) 5119 STRUCT_FSET(strpeek, databuf.len, -1); 5120 else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0) 5121 STRUCT_FSET(strpeek, databuf.len, 0); 5122 else { 5123 int data_part = 0; 5124 5125 iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf); 5126 iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen); 5127 uio.uio_iov = &iov; 5128 uio.uio_resid = iov.iov_len; 5129 uio.uio_loffset = 0; 5130 uio.uio_iovcnt = 1; 5131 while (mp && uio.uio_resid) { 5132 if (mp->b_datap->db_type == M_DATA) { 5133 if ((n = MIN(uio.uio_resid, 5134 mp->b_wptr - mp->b_rptr)) != 0 && 5135 (error = uiomove((char *)mp->b_rptr, 5136 n, UIO_READ, &uio)) != 0) { 5137 freemsg(tmp_mp); 5138 return (error); 5139 } 5140 data_part = 1; 5141 } 5142 ASSERT(data_part == 0 || 5143 mp->b_datap->db_type == M_DATA); 5144 mp = mp->b_cont; 5145 } 5146 /* No data message */ 5147 if (data_part == 0) 5148 STRUCT_FSET(strpeek, databuf.len, -1); 5149 else 5150 STRUCT_FSET(strpeek, databuf.len, 5151 STRUCT_FGET(strpeek, databuf.maxlen) - 5152 uio.uio_resid); 5153 } 5154 freemsg(tmp_mp); 5155 5156 /* 5157 * It is a synch stream and user wants to get 5158 * data (maxlen > 0). 5159 * uio setup is done by the codes that process DATA 5160 * blocks above. 5161 */ 5162 if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) { 5163 infod_t infod; 5164 5165 infod.d_cmd = INFOD_COPYOUT; 5166 infod.d_res = 0; 5167 infod.d_uiop = &uio; 5168 error = infonext(rdq, &infod); 5169 if (error == EINVAL || error == EBUSY) 5170 error = 0; 5171 if (error) 5172 return (error); 5173 STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek, 5174 databuf.maxlen) - uio.uio_resid); 5175 if (STRUCT_FGET(strpeek, databuf.len) == 0) { 5176 /* 5177 * No data found by the infonext(). 5178 */ 5179 STRUCT_FSET(strpeek, databuf.len, -1); 5180 } 5181 } 5182 error = strcopyout(STRUCT_BUF(strpeek), (void *)arg, 5183 STRUCT_SIZE(strpeek), copyflag); 5184 if (error) { 5185 return (error); 5186 } 5187 /* 5188 * If there is no message retrieved, set return code to 0 5189 * otherwise, set it to 1. 5190 */ 5191 if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 && 5192 STRUCT_FGET(strpeek, databuf.len) == -1) 5193 *rvalp = 0; 5194 else 5195 *rvalp = 1; 5196 return (0); 5197 } 5198 5199 case I_FDINSERT: 5200 { 5201 STRUCT_DECL(strfdinsert, strfdinsert); 5202 struct file *resftp; 5203 struct stdata *resstp; 5204 t_uscalar_t ival; 5205 ssize_t msgsize; 5206 struct strbuf mctl; 5207 5208 STRUCT_INIT(strfdinsert, flag); 5209 if (stp->sd_flag & STRHUP) 5210 return (ENXIO); 5211 /* 5212 * STRDERR, STWRERR and STPLEX tested above. 5213 */ 5214 error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert), 5215 STRUCT_SIZE(strfdinsert), copyflag); 5216 if (error) 5217 return (error); 5218 5219 if (STRUCT_FGET(strfdinsert, offset) < 0 || 5220 (STRUCT_FGET(strfdinsert, offset) % 5221 sizeof (t_uscalar_t)) != 0) 5222 return (EINVAL); 5223 if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) { 5224 if ((resstp = resftp->f_vnode->v_stream) == NULL) { 5225 releasef(STRUCT_FGET(strfdinsert, fildes)); 5226 return (EINVAL); 5227 } 5228 } else 5229 return (EINVAL); 5230 5231 mutex_enter(&resstp->sd_lock); 5232 if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) { 5233 error = strgeterr(resstp, 5234 STRDERR|STWRERR|STRHUP|STPLEX, 0); 5235 if (error != 0) { 5236 mutex_exit(&resstp->sd_lock); 5237 releasef(STRUCT_FGET(strfdinsert, fildes)); 5238 return (error); 5239 } 5240 } 5241 mutex_exit(&resstp->sd_lock); 5242 5243 #ifdef _ILP32 5244 { 5245 queue_t *q; 5246 queue_t *mate = NULL; 5247 5248 /* get read queue of stream terminus */ 5249 claimstr(resstp->sd_wrq); 5250 for (q = resstp->sd_wrq->q_next; q->q_next != NULL; 5251 q = q->q_next) 5252 if (!STRMATED(resstp) && STREAM(q) != resstp && 5253 mate == NULL) { 5254 ASSERT(q->q_qinfo->qi_srvp); 5255 ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp); 5256 claimstr(q); 5257 mate = q; 5258 } 5259 q = _RD(q); 5260 if (mate) 5261 releasestr(mate); 5262 releasestr(resstp->sd_wrq); 5263 ival = (t_uscalar_t)q; 5264 } 5265 #else 5266 ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev); 5267 #endif /* _ILP32 */ 5268 5269 if (STRUCT_FGET(strfdinsert, ctlbuf.len) < 5270 STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) { 5271 releasef(STRUCT_FGET(strfdinsert, fildes)); 5272 return (EINVAL); 5273 } 5274 5275 /* 5276 * Check for legal flag value. 5277 */ 5278 if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) { 5279 releasef(STRUCT_FGET(strfdinsert, fildes)); 5280 return (EINVAL); 5281 } 5282 5283 /* get these values from those cached in the stream head */ 5284 mutex_enter(QLOCK(stp->sd_wrq)); 5285 rmin = stp->sd_qn_minpsz; 5286 rmax = stp->sd_qn_maxpsz; 5287 mutex_exit(QLOCK(stp->sd_wrq)); 5288 5289 /* 5290 * Make sure ctl and data sizes together fall within 5291 * the limits of the max and min receive packet sizes 5292 * and do not exceed system limit. A negative data 5293 * length means that no data part is to be sent. 5294 */ 5295 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 5296 if (rmax == 0) { 5297 releasef(STRUCT_FGET(strfdinsert, fildes)); 5298 return (ERANGE); 5299 } 5300 if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0) 5301 msgsize = 0; 5302 if ((msgsize < rmin) || 5303 ((msgsize > rmax) && (rmax != INFPSZ)) || 5304 (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) { 5305 releasef(STRUCT_FGET(strfdinsert, fildes)); 5306 return (ERANGE); 5307 } 5308 5309 mutex_enter(&stp->sd_lock); 5310 while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) && 5311 !canputnext(stp->sd_wrq)) { 5312 if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, 5313 flag, -1, &done)) != 0 || done) { 5314 mutex_exit(&stp->sd_lock); 5315 releasef(STRUCT_FGET(strfdinsert, fildes)); 5316 return (error); 5317 } 5318 if ((error = i_straccess(stp, access)) != 0) { 5319 mutex_exit(&stp->sd_lock); 5320 releasef( 5321 STRUCT_FGET(strfdinsert, fildes)); 5322 return (error); 5323 } 5324 } 5325 mutex_exit(&stp->sd_lock); 5326 5327 /* 5328 * Copy strfdinsert.ctlbuf into native form of 5329 * ctlbuf to pass down into strmakemsg(). 5330 */ 5331 mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen); 5332 mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len); 5333 mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf); 5334 5335 iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf); 5336 iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len); 5337 uio.uio_iov = &iov; 5338 uio.uio_iovcnt = 1; 5339 uio.uio_loffset = 0; 5340 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 5341 UIO_SYSSPACE; 5342 uio.uio_fmode = 0; 5343 uio.uio_extflg = UIO_COPY_CACHED; 5344 uio.uio_resid = iov.iov_len; 5345 if ((error = strmakemsg(&mctl, 5346 &msgsize, &uio, stp, 5347 STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) { 5348 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5349 releasef(STRUCT_FGET(strfdinsert, fildes)); 5350 return (error); 5351 } 5352 5353 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5354 5355 /* 5356 * Place the possibly reencoded queue pointer 'offset' bytes 5357 * from the start of the control portion of the message. 5358 */ 5359 *((t_uscalar_t *)(mp->b_rptr + 5360 STRUCT_FGET(strfdinsert, offset))) = ival; 5361 5362 /* 5363 * Put message downstream. 5364 */ 5365 stream_willservice(stp); 5366 putnext(stp->sd_wrq, mp); 5367 stream_runservice(stp); 5368 releasef(STRUCT_FGET(strfdinsert, fildes)); 5369 return (error); 5370 } 5371 5372 case I_SENDFD: 5373 { 5374 struct file *fp; 5375 5376 if ((fp = getf((int)arg)) == NULL) 5377 return (EBADF); 5378 error = do_sendfp(stp, fp, crp); 5379 if (auditing) { 5380 audit_fdsend((int)arg, fp, error); 5381 } 5382 releasef((int)arg); 5383 return (error); 5384 } 5385 5386 case I_RECVFD: 5387 case I_E_RECVFD: 5388 { 5389 struct k_strrecvfd *srf; 5390 int i, fd; 5391 5392 mutex_enter(&stp->sd_lock); 5393 while (!(mp = getq(rdq))) { 5394 if (stp->sd_flag & (STRHUP|STREOF)) { 5395 mutex_exit(&stp->sd_lock); 5396 return (ENXIO); 5397 } 5398 if ((error = strwaitq(stp, GETWAIT, (ssize_t)0, 5399 flag, -1, &done)) != 0 || done) { 5400 mutex_exit(&stp->sd_lock); 5401 return (error); 5402 } 5403 if ((error = i_straccess(stp, access)) != 0) { 5404 mutex_exit(&stp->sd_lock); 5405 return (error); 5406 } 5407 } 5408 if (mp->b_datap->db_type != M_PASSFP) { 5409 putback(stp, rdq, mp, mp->b_band); 5410 mutex_exit(&stp->sd_lock); 5411 return (EBADMSG); 5412 } 5413 mutex_exit(&stp->sd_lock); 5414 5415 srf = (struct k_strrecvfd *)mp->b_rptr; 5416 if ((fd = ufalloc(0)) == -1) { 5417 mutex_enter(&stp->sd_lock); 5418 putback(stp, rdq, mp, mp->b_band); 5419 mutex_exit(&stp->sd_lock); 5420 return (EMFILE); 5421 } 5422 if (cmd == I_RECVFD) { 5423 struct o_strrecvfd ostrfd; 5424 5425 /* check to see if uid/gid values are too large. */ 5426 5427 if (srf->uid > (o_uid_t)USHRT_MAX || 5428 srf->gid > (o_gid_t)USHRT_MAX) { 5429 mutex_enter(&stp->sd_lock); 5430 putback(stp, rdq, mp, mp->b_band); 5431 mutex_exit(&stp->sd_lock); 5432 setf(fd, NULL); /* release fd entry */ 5433 return (EOVERFLOW); 5434 } 5435 5436 ostrfd.fd = fd; 5437 ostrfd.uid = (o_uid_t)srf->uid; 5438 ostrfd.gid = (o_gid_t)srf->gid; 5439 5440 /* Null the filler bits */ 5441 for (i = 0; i < 8; i++) 5442 ostrfd.fill[i] = 0; 5443 5444 error = strcopyout(&ostrfd, (void *)arg, 5445 sizeof (struct o_strrecvfd), copyflag); 5446 } else { /* I_E_RECVFD */ 5447 struct strrecvfd strfd; 5448 5449 strfd.fd = fd; 5450 strfd.uid = srf->uid; 5451 strfd.gid = srf->gid; 5452 5453 /* null the filler bits */ 5454 for (i = 0; i < 8; i++) 5455 strfd.fill[i] = 0; 5456 5457 error = strcopyout(&strfd, (void *)arg, 5458 sizeof (struct strrecvfd), copyflag); 5459 } 5460 5461 if (error) { 5462 setf(fd, NULL); /* release fd entry */ 5463 mutex_enter(&stp->sd_lock); 5464 putback(stp, rdq, mp, mp->b_band); 5465 mutex_exit(&stp->sd_lock); 5466 return (error); 5467 } 5468 if (auditing) { 5469 audit_fdrecv(fd, srf->fp); 5470 } 5471 5472 /* 5473 * Always increment f_count since the freemsg() below will 5474 * always call free_passfp() which performs a closef(). 5475 */ 5476 mutex_enter(&srf->fp->f_tlock); 5477 srf->fp->f_count++; 5478 mutex_exit(&srf->fp->f_tlock); 5479 setf(fd, srf->fp); 5480 freemsg(mp); 5481 return (0); 5482 } 5483 5484 case I_SWROPT: 5485 /* 5486 * Set/clear the write options. arg is a bit 5487 * mask with any of the following bits set... 5488 * SNDZERO - send zero length message 5489 * SNDPIPE - send sigpipe to process if 5490 * sd_werror is set and process is 5491 * doing a write or putmsg. 5492 * The new stream head write options should reflect 5493 * what is in arg. 5494 */ 5495 if (arg & ~(SNDZERO|SNDPIPE)) 5496 return (EINVAL); 5497 5498 mutex_enter(&stp->sd_lock); 5499 stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO); 5500 if (arg & SNDZERO) 5501 stp->sd_wput_opt |= SW_SNDZERO; 5502 if (arg & SNDPIPE) 5503 stp->sd_wput_opt |= SW_SIGPIPE; 5504 mutex_exit(&stp->sd_lock); 5505 return (0); 5506 5507 case I_GWROPT: 5508 { 5509 int wropt = 0; 5510 5511 if (stp->sd_wput_opt & SW_SNDZERO) 5512 wropt |= SNDZERO; 5513 if (stp->sd_wput_opt & SW_SIGPIPE) 5514 wropt |= SNDPIPE; 5515 return (strcopyout(&wropt, (void *)arg, sizeof (wropt), 5516 copyflag)); 5517 } 5518 5519 case I_LIST: 5520 /* 5521 * Returns all the modules found on this stream, 5522 * upto the driver. If argument is NULL, return the 5523 * number of modules (including driver). If argument 5524 * is not NULL, copy the names into the structure 5525 * provided. 5526 */ 5527 5528 { 5529 queue_t *q; 5530 char *qname; 5531 int i, nmods; 5532 struct str_mlist *mlist; 5533 STRUCT_DECL(str_list, strlist); 5534 5535 if (arg == 0) { /* Return number of modules plus driver */ 5536 if (stp->sd_vnode->v_type == VFIFO) 5537 *rvalp = stp->sd_pushcnt; 5538 else 5539 *rvalp = stp->sd_pushcnt + 1; 5540 return (0); 5541 } 5542 5543 STRUCT_INIT(strlist, flag); 5544 5545 error = strcopyin((void *)arg, STRUCT_BUF(strlist), 5546 STRUCT_SIZE(strlist), copyflag); 5547 if (error != 0) 5548 return (error); 5549 5550 mlist = STRUCT_FGETP(strlist, sl_modlist); 5551 nmods = STRUCT_FGET(strlist, sl_nmods); 5552 if (nmods <= 0) 5553 return (EINVAL); 5554 5555 claimstr(stp->sd_wrq); 5556 q = stp->sd_wrq; 5557 for (i = 0; i < nmods && _SAMESTR(q); i++, q = q->q_next) { 5558 qname = Q2NAME(q->q_next); 5559 error = strcopyout(qname, &mlist[i], strlen(qname) + 1, 5560 copyflag); 5561 if (error != 0) { 5562 releasestr(stp->sd_wrq); 5563 return (error); 5564 } 5565 } 5566 releasestr(stp->sd_wrq); 5567 return (strcopyout(&i, (void *)arg, sizeof (int), copyflag)); 5568 } 5569 5570 case I_CKBAND: 5571 { 5572 queue_t *q; 5573 qband_t *qbp; 5574 5575 if ((arg < 0) || (arg >= NBAND)) 5576 return (EINVAL); 5577 q = _RD(stp->sd_wrq); 5578 mutex_enter(QLOCK(q)); 5579 if (arg > (int)q->q_nband) { 5580 *rvalp = 0; 5581 } else { 5582 if (arg == 0) { 5583 if (q->q_first) 5584 *rvalp = 1; 5585 else 5586 *rvalp = 0; 5587 } else { 5588 qbp = q->q_bandp; 5589 while (--arg > 0) 5590 qbp = qbp->qb_next; 5591 if (qbp->qb_first) 5592 *rvalp = 1; 5593 else 5594 *rvalp = 0; 5595 } 5596 } 5597 mutex_exit(QLOCK(q)); 5598 return (0); 5599 } 5600 5601 case I_GETBAND: 5602 { 5603 int intpri; 5604 queue_t *q; 5605 5606 q = _RD(stp->sd_wrq); 5607 mutex_enter(QLOCK(q)); 5608 mp = q->q_first; 5609 if (!mp) { 5610 mutex_exit(QLOCK(q)); 5611 return (ENODATA); 5612 } 5613 intpri = (int)mp->b_band; 5614 error = strcopyout(&intpri, (void *)arg, sizeof (int), 5615 copyflag); 5616 mutex_exit(QLOCK(q)); 5617 return (error); 5618 } 5619 5620 case I_ATMARK: 5621 { 5622 queue_t *q; 5623 5624 if (arg & ~(ANYMARK|LASTMARK)) 5625 return (EINVAL); 5626 q = _RD(stp->sd_wrq); 5627 mutex_enter(&stp->sd_lock); 5628 if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) { 5629 *rvalp = 1; 5630 } else { 5631 mutex_enter(QLOCK(q)); 5632 mp = q->q_first; 5633 5634 if (mp == NULL) 5635 *rvalp = 0; 5636 else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK)) 5637 *rvalp = 1; 5638 else if ((arg == LASTMARK) && (mp == stp->sd_mark)) 5639 *rvalp = 1; 5640 else 5641 *rvalp = 0; 5642 mutex_exit(QLOCK(q)); 5643 } 5644 mutex_exit(&stp->sd_lock); 5645 return (0); 5646 } 5647 5648 case I_CANPUT: 5649 { 5650 char band; 5651 5652 if ((arg < 0) || (arg >= NBAND)) 5653 return (EINVAL); 5654 band = (char)arg; 5655 *rvalp = bcanputnext(stp->sd_wrq, band); 5656 return (0); 5657 } 5658 5659 case I_SETCLTIME: 5660 { 5661 int closetime; 5662 5663 error = strcopyin((void *)arg, &closetime, sizeof (int), 5664 copyflag); 5665 if (error) 5666 return (error); 5667 if (closetime < 0) 5668 return (EINVAL); 5669 5670 stp->sd_closetime = closetime; 5671 return (0); 5672 } 5673 5674 case I_GETCLTIME: 5675 { 5676 int closetime; 5677 5678 closetime = stp->sd_closetime; 5679 return (strcopyout(&closetime, (void *)arg, sizeof (int), 5680 copyflag)); 5681 } 5682 5683 case TIOCGSID: 5684 { 5685 pid_t sid; 5686 5687 mutex_enter(&stp->sd_lock); 5688 if (stp->sd_sidp == NULL) { 5689 mutex_exit(&stp->sd_lock); 5690 return (ENOTTY); 5691 } 5692 sid = stp->sd_sidp->pid_id; 5693 mutex_exit(&stp->sd_lock); 5694 return (strcopyout(&sid, (void *)arg, sizeof (pid_t), 5695 copyflag)); 5696 } 5697 5698 case TIOCSPGRP: 5699 { 5700 pid_t pgrp; 5701 proc_t *q; 5702 pid_t sid, fg_pgid, bg_pgid; 5703 5704 if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t), 5705 copyflag)) 5706 return (error); 5707 mutex_enter(&stp->sd_lock); 5708 mutex_enter(&pidlock); 5709 if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) { 5710 mutex_exit(&pidlock); 5711 mutex_exit(&stp->sd_lock); 5712 return (ENOTTY); 5713 } 5714 if (pgrp == stp->sd_pgidp->pid_id) { 5715 mutex_exit(&pidlock); 5716 mutex_exit(&stp->sd_lock); 5717 return (0); 5718 } 5719 if (pgrp <= 0 || pgrp >= maxpid) { 5720 mutex_exit(&pidlock); 5721 mutex_exit(&stp->sd_lock); 5722 return (EINVAL); 5723 } 5724 if ((q = pgfind(pgrp)) == NULL || 5725 q->p_sessp != ttoproc(curthread)->p_sessp) { 5726 mutex_exit(&pidlock); 5727 mutex_exit(&stp->sd_lock); 5728 return (EPERM); 5729 } 5730 sid = stp->sd_sidp->pid_id; 5731 fg_pgid = q->p_pgrp; 5732 bg_pgid = stp->sd_pgidp->pid_id; 5733 CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid); 5734 PID_RELE(stp->sd_pgidp); 5735 ctty_clear_sighuped(); 5736 stp->sd_pgidp = q->p_pgidp; 5737 PID_HOLD(stp->sd_pgidp); 5738 mutex_exit(&pidlock); 5739 mutex_exit(&stp->sd_lock); 5740 return (0); 5741 } 5742 5743 case TIOCGPGRP: 5744 { 5745 pid_t pgrp; 5746 5747 mutex_enter(&stp->sd_lock); 5748 if (stp->sd_sidp == NULL) { 5749 mutex_exit(&stp->sd_lock); 5750 return (ENOTTY); 5751 } 5752 pgrp = stp->sd_pgidp->pid_id; 5753 mutex_exit(&stp->sd_lock); 5754 return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t), 5755 copyflag)); 5756 } 5757 5758 case TIOCSCTTY: 5759 { 5760 return (strctty(stp)); 5761 } 5762 5763 case TIOCNOTTY: 5764 { 5765 /* freectty() always assumes curproc. */ 5766 if (freectty(B_FALSE) != 0) 5767 return (0); 5768 return (ENOTTY); 5769 } 5770 5771 case FIONBIO: 5772 case FIOASYNC: 5773 return (0); /* handled by the upper layer */ 5774 } 5775 } 5776 5777 /* 5778 * Custom free routine used for M_PASSFP messages. 5779 */ 5780 static void 5781 free_passfp(struct k_strrecvfd *srf) 5782 { 5783 (void) closef(srf->fp); 5784 kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t)); 5785 } 5786 5787 /* ARGSUSED */ 5788 int 5789 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr) 5790 { 5791 queue_t *qp, *nextqp; 5792 struct k_strrecvfd *srf; 5793 mblk_t *mp; 5794 frtn_t *frtnp; 5795 size_t bufsize; 5796 queue_t *mate = NULL; 5797 syncq_t *sq = NULL; 5798 int retval = 0; 5799 5800 if (stp->sd_flag & STRHUP) 5801 return (ENXIO); 5802 5803 claimstr(stp->sd_wrq); 5804 5805 /* Fastpath, we have a pipe, and we are already mated, use it. */ 5806 if (STRMATED(stp)) { 5807 qp = _RD(stp->sd_mate->sd_wrq); 5808 claimstr(qp); 5809 mate = qp; 5810 } else { /* Not already mated. */ 5811 5812 /* 5813 * Walk the stream to the end of this one. 5814 * assumes that the claimstr() will prevent 5815 * plumbing between the stream head and the 5816 * driver from changing 5817 */ 5818 qp = stp->sd_wrq; 5819 5820 /* 5821 * Loop until we reach the end of this stream. 5822 * On completion, qp points to the write queue 5823 * at the end of the stream, or the read queue 5824 * at the stream head if this is a fifo. 5825 */ 5826 while (((qp = qp->q_next) != NULL) && _SAMESTR(qp)) 5827 ; 5828 5829 /* 5830 * Just in case we get a q_next which is NULL, but 5831 * not at the end of the stream. This is actually 5832 * broken, so we set an assert to catch it in 5833 * debug, and set an error and return if not debug. 5834 */ 5835 ASSERT(qp); 5836 if (qp == NULL) { 5837 releasestr(stp->sd_wrq); 5838 return (EINVAL); 5839 } 5840 5841 /* 5842 * Enter the syncq for the driver, so (hopefully) 5843 * the queue values will not change on us. 5844 * XXXX - This will only prevent the race IFF only 5845 * the write side modifies the q_next member, and 5846 * the put procedure is protected by at least 5847 * MT_PERQ. 5848 */ 5849 if ((sq = qp->q_syncq) != NULL) 5850 entersq(sq, SQ_PUT); 5851 5852 /* Now get the q_next value from this qp. */ 5853 nextqp = qp->q_next; 5854 5855 /* 5856 * If nextqp exists and the other stream is different 5857 * from this one claim the stream, set the mate, and 5858 * get the read queue at the stream head of the other 5859 * stream. Assumes that nextqp was at least valid when 5860 * we got it. Hopefully the entersq of the driver 5861 * will prevent it from changing on us. 5862 */ 5863 if ((nextqp != NULL) && (STREAM(nextqp) != stp)) { 5864 ASSERT(qp->q_qinfo->qi_srvp); 5865 ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp); 5866 ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp); 5867 claimstr(nextqp); 5868 5869 /* Make sure we still have a q_next */ 5870 if (nextqp != qp->q_next) { 5871 releasestr(stp->sd_wrq); 5872 releasestr(nextqp); 5873 return (EINVAL); 5874 } 5875 5876 qp = _RD(STREAM(nextqp)->sd_wrq); 5877 mate = qp; 5878 } 5879 /* If we entered the synq above, leave it. */ 5880 if (sq != NULL) 5881 leavesq(sq, SQ_PUT); 5882 } /* STRMATED(STP) */ 5883 5884 /* XXX prevents substitution of the ops vector */ 5885 if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) { 5886 retval = EINVAL; 5887 goto out; 5888 } 5889 5890 if (qp->q_flag & QFULL) { 5891 retval = EAGAIN; 5892 goto out; 5893 } 5894 5895 /* 5896 * Since M_PASSFP messages include a file descriptor, we use 5897 * esballoc() and specify a custom free routine (free_passfp()) that 5898 * will close the descriptor as part of freeing the message. For 5899 * convenience, we stash the frtn_t right after the data block. 5900 */ 5901 bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t); 5902 srf = kmem_alloc(bufsize, KM_NOSLEEP); 5903 if (srf == NULL) { 5904 retval = EAGAIN; 5905 goto out; 5906 } 5907 5908 frtnp = (frtn_t *)(srf + 1); 5909 frtnp->free_arg = (caddr_t)srf; 5910 frtnp->free_func = free_passfp; 5911 5912 mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp); 5913 if (mp == NULL) { 5914 kmem_free(srf, bufsize); 5915 retval = EAGAIN; 5916 goto out; 5917 } 5918 mp->b_wptr += sizeof (struct k_strrecvfd); 5919 mp->b_datap->db_type = M_PASSFP; 5920 5921 srf->fp = fp; 5922 srf->uid = crgetuid(curthread->t_cred); 5923 srf->gid = crgetgid(curthread->t_cred); 5924 mutex_enter(&fp->f_tlock); 5925 fp->f_count++; 5926 mutex_exit(&fp->f_tlock); 5927 5928 put(qp, mp); 5929 out: 5930 releasestr(stp->sd_wrq); 5931 if (mate) 5932 releasestr(mate); 5933 return (retval); 5934 } 5935 5936 /* 5937 * Send an ioctl message downstream and wait for acknowledgement. 5938 * flags may be set to either U_TO_K or K_TO_K and a combination 5939 * of STR_NOERROR or STR_NOSIG 5940 * STR_NOSIG: Signals are essentially ignored or held and have 5941 * no effect for the duration of the call. 5942 * STR_NOERROR: Ignores stream head read, write and hup errors. 5943 * Additionally, if an existing ioctl times out, it is assumed 5944 * lost and and this ioctl will continue as if the previous ioctl had 5945 * finished. ETIME may be returned if this ioctl times out (i.e. 5946 * ic_timout is not INFTIM). Non-stream head errors may be returned if 5947 * the ioc_error indicates that the driver/module had problems, 5948 * an EFAULT was found when accessing user data, a lack of 5949 * resources, etc. 5950 */ 5951 int 5952 strdoioctl( 5953 struct stdata *stp, 5954 struct strioctl *strioc, 5955 int fflags, /* file flags with model info */ 5956 int flag, 5957 cred_t *crp, 5958 int *rvalp) 5959 { 5960 mblk_t *bp; 5961 struct iocblk *iocbp; 5962 struct copyreq *reqp; 5963 struct copyresp *resp; 5964 int id; 5965 int transparent = 0; 5966 int error = 0; 5967 int len = 0; 5968 caddr_t taddr; 5969 int copyflag = (flag & (U_TO_K | K_TO_K)); 5970 int sigflag = (flag & STR_NOSIG); 5971 int errs; 5972 uint_t waitflags; 5973 boolean_t set_iocwaitne = B_FALSE; 5974 5975 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 5976 ASSERT((fflags & FMODELS) != 0); 5977 5978 TRACE_2(TR_FAC_STREAMS_FR, 5979 TR_STRDOIOCTL, 5980 "strdoioctl:stp %p strioc %p", stp, strioc); 5981 if (strioc->ic_len == TRANSPARENT) { /* send arg in M_DATA block */ 5982 transparent = 1; 5983 strioc->ic_len = sizeof (intptr_t); 5984 } 5985 5986 if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz)) 5987 return (EINVAL); 5988 5989 if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error, 5990 crp, curproc->p_pid)) == NULL) 5991 return (error); 5992 5993 bzero(bp->b_wptr, sizeof (union ioctypes)); 5994 5995 iocbp = (struct iocblk *)bp->b_wptr; 5996 iocbp->ioc_count = strioc->ic_len; 5997 iocbp->ioc_cmd = strioc->ic_cmd; 5998 iocbp->ioc_flag = (fflags & FMODELS); 5999 6000 crhold(crp); 6001 iocbp->ioc_cr = crp; 6002 DB_TYPE(bp) = M_IOCTL; 6003 bp->b_wptr += sizeof (struct iocblk); 6004 6005 if (flag & STR_NOERROR) 6006 errs = STPLEX; 6007 else 6008 errs = STRHUP|STRDERR|STWRERR|STPLEX; 6009 6010 /* 6011 * If there is data to copy into ioctl block, do so. 6012 */ 6013 if (iocbp->ioc_count > 0) { 6014 if (transparent) 6015 /* 6016 * Note: STR_NOERROR does not have an effect 6017 * in putiocd() 6018 */ 6019 id = K_TO_K | sigflag; 6020 else 6021 id = flag; 6022 if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) { 6023 freemsg(bp); 6024 crfree(crp); 6025 return (error); 6026 } 6027 6028 /* 6029 * We could have slept copying in user pages. 6030 * Recheck the stream head state (the other end 6031 * of a pipe could have gone away). 6032 */ 6033 if (stp->sd_flag & errs) { 6034 mutex_enter(&stp->sd_lock); 6035 error = strgeterr(stp, errs, 0); 6036 mutex_exit(&stp->sd_lock); 6037 if (error != 0) { 6038 freemsg(bp); 6039 crfree(crp); 6040 return (error); 6041 } 6042 } 6043 } 6044 if (transparent) 6045 iocbp->ioc_count = TRANSPARENT; 6046 6047 /* 6048 * Block for up to STRTIMOUT milliseconds if there is an outstanding 6049 * ioctl for this stream already running. All processes 6050 * sleeping here will be awakened as a result of an ACK 6051 * or NAK being received for the outstanding ioctl, or 6052 * as a result of the timer expiring on the outstanding 6053 * ioctl (a failure), or as a result of any waiting 6054 * process's timer expiring (also a failure). 6055 */ 6056 6057 error = 0; 6058 mutex_enter(&stp->sd_lock); 6059 while ((stp->sd_flag & IOCWAIT) || 6060 (!set_iocwaitne && (stp->sd_flag & IOCWAITNE))) { 6061 clock_t cv_rval; 6062 6063 TRACE_0(TR_FAC_STREAMS_FR, 6064 TR_STRDOIOCTL_WAIT, 6065 "strdoioctl sleeps - IOCWAIT"); 6066 cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock, 6067 STRTIMOUT, sigflag); 6068 if (cv_rval <= 0) { 6069 if (cv_rval == 0) { 6070 error = EINTR; 6071 } else { 6072 if (flag & STR_NOERROR) { 6073 /* 6074 * Terminating current ioctl in 6075 * progress -- assume it got lost and 6076 * wake up the other thread so that the 6077 * operation completes. 6078 */ 6079 if (!(stp->sd_flag & IOCWAITNE)) { 6080 set_iocwaitne = B_TRUE; 6081 stp->sd_flag |= IOCWAITNE; 6082 cv_broadcast(&stp->sd_monitor); 6083 } 6084 /* 6085 * Otherwise, there's a running 6086 * STR_NOERROR -- we have no choice 6087 * here but to wait forever (or until 6088 * interrupted). 6089 */ 6090 } else { 6091 /* 6092 * pending ioctl has caused 6093 * us to time out 6094 */ 6095 error = ETIME; 6096 } 6097 } 6098 } else if ((stp->sd_flag & errs)) { 6099 error = strgeterr(stp, errs, 0); 6100 } 6101 if (error) { 6102 mutex_exit(&stp->sd_lock); 6103 freemsg(bp); 6104 crfree(crp); 6105 return (error); 6106 } 6107 } 6108 6109 /* 6110 * Have control of ioctl mechanism. 6111 * Send down ioctl packet and wait for response. 6112 */ 6113 if (stp->sd_iocblk != (mblk_t *)-1) { 6114 freemsg(stp->sd_iocblk); 6115 } 6116 stp->sd_iocblk = NULL; 6117 6118 /* 6119 * If this is marked with 'noerror' (internal; mostly 6120 * I_{P,}{UN,}LINK), then make sure nobody else is able to get 6121 * in here by setting IOCWAITNE. 6122 */ 6123 waitflags = IOCWAIT; 6124 if (flag & STR_NOERROR) 6125 waitflags |= IOCWAITNE; 6126 6127 stp->sd_flag |= waitflags; 6128 6129 /* 6130 * Assign sequence number. 6131 */ 6132 iocbp->ioc_id = stp->sd_iocid = getiocseqno(); 6133 6134 mutex_exit(&stp->sd_lock); 6135 6136 TRACE_1(TR_FAC_STREAMS_FR, 6137 TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp); 6138 stream_willservice(stp); 6139 putnext(stp->sd_wrq, bp); 6140 stream_runservice(stp); 6141 6142 /* 6143 * Timed wait for acknowledgment. The wait time is limited by the 6144 * timeout value, which must be a positive integer (number of 6145 * milliseconds) to wait, or 0 (use default value of STRTIMOUT 6146 * milliseconds), or -1 (wait forever). This will be awakened 6147 * either by an ACK/NAK message arriving, the timer expiring, or 6148 * the timer expiring on another ioctl waiting for control of the 6149 * mechanism. 6150 */ 6151 waitioc: 6152 mutex_enter(&stp->sd_lock); 6153 6154 6155 /* 6156 * If the reply has already arrived, don't sleep. If awakened from 6157 * the sleep, fail only if the reply has not arrived by then. 6158 * Otherwise, process the reply. 6159 */ 6160 while (!stp->sd_iocblk) { 6161 clock_t cv_rval; 6162 6163 if (stp->sd_flag & errs) { 6164 error = strgeterr(stp, errs, 0); 6165 if (error != 0) { 6166 stp->sd_flag &= ~waitflags; 6167 cv_broadcast(&stp->sd_iocmonitor); 6168 mutex_exit(&stp->sd_lock); 6169 crfree(crp); 6170 return (error); 6171 } 6172 } 6173 6174 TRACE_0(TR_FAC_STREAMS_FR, 6175 TR_STRDOIOCTL_WAIT2, 6176 "strdoioctl sleeps awaiting reply"); 6177 ASSERT(error == 0); 6178 6179 cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, 6180 (strioc->ic_timout ? 6181 strioc->ic_timout * 1000 : STRTIMOUT), sigflag); 6182 6183 /* 6184 * There are four possible cases here: interrupt, timeout, 6185 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a 6186 * valid M_IOCTL reply). 6187 * 6188 * If we've been awakened by a STR_NOERROR ioctl on some other 6189 * thread, then sd_iocblk will still be NULL, and IOCWAITNE 6190 * will be set. Pretend as if we just timed out. Note that 6191 * this other thread waited at least STRTIMOUT before trying to 6192 * awaken our thread, so this is indistinguishable (even for 6193 * INFTIM) from the case where we failed with ETIME waiting on 6194 * IOCWAIT in the prior loop. 6195 */ 6196 if (cv_rval > 0 && !(flag & STR_NOERROR) && 6197 stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) { 6198 cv_rval = -1; 6199 } 6200 6201 /* 6202 * note: STR_NOERROR does not protect 6203 * us here.. use ic_timout < 0 6204 */ 6205 if (cv_rval <= 0) { 6206 if (cv_rval == 0) { 6207 error = EINTR; 6208 } else { 6209 error = ETIME; 6210 } 6211 /* 6212 * A message could have come in after we were scheduled 6213 * but before we were actually run. 6214 */ 6215 bp = stp->sd_iocblk; 6216 stp->sd_iocblk = NULL; 6217 if (bp != NULL) { 6218 if ((bp->b_datap->db_type == M_COPYIN) || 6219 (bp->b_datap->db_type == M_COPYOUT)) { 6220 mutex_exit(&stp->sd_lock); 6221 if (bp->b_cont) { 6222 freemsg(bp->b_cont); 6223 bp->b_cont = NULL; 6224 } 6225 bp->b_datap->db_type = M_IOCDATA; 6226 bp->b_wptr = bp->b_rptr + 6227 sizeof (struct copyresp); 6228 resp = (struct copyresp *)bp->b_rptr; 6229 resp->cp_rval = 6230 (caddr_t)1; /* failure */ 6231 stream_willservice(stp); 6232 putnext(stp->sd_wrq, bp); 6233 stream_runservice(stp); 6234 mutex_enter(&stp->sd_lock); 6235 } else { 6236 freemsg(bp); 6237 } 6238 } 6239 stp->sd_flag &= ~waitflags; 6240 cv_broadcast(&stp->sd_iocmonitor); 6241 mutex_exit(&stp->sd_lock); 6242 crfree(crp); 6243 return (error); 6244 } 6245 } 6246 bp = stp->sd_iocblk; 6247 /* 6248 * Note: it is strictly impossible to get here with sd_iocblk set to 6249 * -1. This is because the initial loop above doesn't allow any new 6250 * ioctls into the fray until all others have passed this point. 6251 */ 6252 ASSERT(bp != NULL && bp != (mblk_t *)-1); 6253 TRACE_1(TR_FAC_STREAMS_FR, 6254 TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp); 6255 if ((bp->b_datap->db_type == M_IOCACK) || 6256 (bp->b_datap->db_type == M_IOCNAK)) { 6257 /* for detection of duplicate ioctl replies */ 6258 stp->sd_iocblk = (mblk_t *)-1; 6259 stp->sd_flag &= ~waitflags; 6260 cv_broadcast(&stp->sd_iocmonitor); 6261 mutex_exit(&stp->sd_lock); 6262 } else { 6263 /* 6264 * flags not cleared here because we're still doing 6265 * copy in/out for ioctl. 6266 */ 6267 stp->sd_iocblk = NULL; 6268 mutex_exit(&stp->sd_lock); 6269 } 6270 6271 6272 /* 6273 * Have received acknowledgment. 6274 */ 6275 6276 switch (bp->b_datap->db_type) { 6277 case M_IOCACK: 6278 /* 6279 * Positive ack. 6280 */ 6281 iocbp = (struct iocblk *)bp->b_rptr; 6282 6283 /* 6284 * Set error if indicated. 6285 */ 6286 if (iocbp->ioc_error) { 6287 error = iocbp->ioc_error; 6288 break; 6289 } 6290 6291 /* 6292 * Set return value. 6293 */ 6294 *rvalp = iocbp->ioc_rval; 6295 6296 /* 6297 * Data may have been returned in ACK message (ioc_count > 0). 6298 * If so, copy it out to the user's buffer. 6299 */ 6300 if (iocbp->ioc_count && !transparent) { 6301 if (error = getiocd(bp, strioc->ic_dp, copyflag)) 6302 break; 6303 } 6304 if (!transparent) { 6305 if (len) /* an M_COPYOUT was used with I_STR */ 6306 strioc->ic_len = len; 6307 else 6308 strioc->ic_len = (int)iocbp->ioc_count; 6309 } 6310 break; 6311 6312 case M_IOCNAK: 6313 /* 6314 * Negative ack. 6315 * 6316 * The only thing to do is set error as specified 6317 * in neg ack packet. 6318 */ 6319 iocbp = (struct iocblk *)bp->b_rptr; 6320 6321 error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL); 6322 break; 6323 6324 case M_COPYIN: 6325 /* 6326 * Driver or module has requested user ioctl data. 6327 */ 6328 reqp = (struct copyreq *)bp->b_rptr; 6329 6330 /* 6331 * M_COPYIN should *never* have a message attached, though 6332 * it's harmless if it does -- thus, panic on a DEBUG 6333 * kernel and just free it on a non-DEBUG build. 6334 */ 6335 ASSERT(bp->b_cont == NULL); 6336 if (bp->b_cont != NULL) { 6337 freemsg(bp->b_cont); 6338 bp->b_cont = NULL; 6339 } 6340 6341 error = putiocd(bp, reqp->cq_addr, flag, crp); 6342 if (error && bp->b_cont) { 6343 freemsg(bp->b_cont); 6344 bp->b_cont = NULL; 6345 } 6346 6347 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6348 bp->b_datap->db_type = M_IOCDATA; 6349 6350 mblk_setcred(bp, crp, curproc->p_pid); 6351 resp = (struct copyresp *)bp->b_rptr; 6352 resp->cp_rval = (caddr_t)(uintptr_t)error; 6353 resp->cp_flag = (fflags & FMODELS); 6354 6355 stream_willservice(stp); 6356 putnext(stp->sd_wrq, bp); 6357 stream_runservice(stp); 6358 6359 if (error) { 6360 mutex_enter(&stp->sd_lock); 6361 stp->sd_flag &= ~waitflags; 6362 cv_broadcast(&stp->sd_iocmonitor); 6363 mutex_exit(&stp->sd_lock); 6364 crfree(crp); 6365 return (error); 6366 } 6367 6368 goto waitioc; 6369 6370 case M_COPYOUT: 6371 /* 6372 * Driver or module has ioctl data for a user. 6373 */ 6374 reqp = (struct copyreq *)bp->b_rptr; 6375 ASSERT(bp->b_cont != NULL); 6376 6377 /* 6378 * Always (transparent or non-transparent ) 6379 * use the address specified in the request 6380 */ 6381 taddr = reqp->cq_addr; 6382 if (!transparent) 6383 len = (int)reqp->cq_size; 6384 6385 /* copyout data to the provided address */ 6386 error = getiocd(bp, taddr, copyflag); 6387 6388 freemsg(bp->b_cont); 6389 bp->b_cont = NULL; 6390 6391 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6392 bp->b_datap->db_type = M_IOCDATA; 6393 6394 mblk_setcred(bp, crp, curproc->p_pid); 6395 resp = (struct copyresp *)bp->b_rptr; 6396 resp->cp_rval = (caddr_t)(uintptr_t)error; 6397 resp->cp_flag = (fflags & FMODELS); 6398 6399 stream_willservice(stp); 6400 putnext(stp->sd_wrq, bp); 6401 stream_runservice(stp); 6402 6403 if (error) { 6404 mutex_enter(&stp->sd_lock); 6405 stp->sd_flag &= ~waitflags; 6406 cv_broadcast(&stp->sd_iocmonitor); 6407 mutex_exit(&stp->sd_lock); 6408 crfree(crp); 6409 return (error); 6410 } 6411 goto waitioc; 6412 6413 default: 6414 ASSERT(0); 6415 mutex_enter(&stp->sd_lock); 6416 stp->sd_flag &= ~waitflags; 6417 cv_broadcast(&stp->sd_iocmonitor); 6418 mutex_exit(&stp->sd_lock); 6419 break; 6420 } 6421 6422 freemsg(bp); 6423 crfree(crp); 6424 return (error); 6425 } 6426 6427 /* 6428 * Send an M_CMD message downstream and wait for a reply. This is a ptools 6429 * special used to retrieve information from modules/drivers a stream without 6430 * being subjected to flow control or interfering with pending messages on the 6431 * stream (e.g. an ioctl in flight). 6432 */ 6433 int 6434 strdocmd(struct stdata *stp, struct strcmd *scp, cred_t *crp) 6435 { 6436 mblk_t *mp; 6437 struct cmdblk *cmdp; 6438 int error = 0; 6439 int errs = STRHUP|STRDERR|STWRERR|STPLEX; 6440 clock_t rval, timeout = STRTIMOUT; 6441 6442 if (scp->sc_len < 0 || scp->sc_len > sizeof (scp->sc_buf) || 6443 scp->sc_timeout < -1) 6444 return (EINVAL); 6445 6446 if (scp->sc_timeout > 0) 6447 timeout = scp->sc_timeout * MILLISEC; 6448 6449 if ((mp = allocb_cred(sizeof (struct cmdblk), crp, 6450 curproc->p_pid)) == NULL) 6451 return (ENOMEM); 6452 6453 crhold(crp); 6454 6455 cmdp = (struct cmdblk *)mp->b_wptr; 6456 cmdp->cb_cr = crp; 6457 cmdp->cb_cmd = scp->sc_cmd; 6458 cmdp->cb_len = scp->sc_len; 6459 cmdp->cb_error = 0; 6460 mp->b_wptr += sizeof (struct cmdblk); 6461 6462 DB_TYPE(mp) = M_CMD; 6463 DB_CPID(mp) = curproc->p_pid; 6464 6465 /* 6466 * Copy in the payload. 6467 */ 6468 if (cmdp->cb_len > 0) { 6469 mp->b_cont = allocb_cred(sizeof (scp->sc_buf), crp, 6470 curproc->p_pid); 6471 if (mp->b_cont == NULL) { 6472 error = ENOMEM; 6473 goto out; 6474 } 6475 6476 /* cb_len comes from sc_len, which has already been checked */ 6477 ASSERT(cmdp->cb_len <= sizeof (scp->sc_buf)); 6478 (void) bcopy(scp->sc_buf, mp->b_cont->b_wptr, cmdp->cb_len); 6479 mp->b_cont->b_wptr += cmdp->cb_len; 6480 DB_CPID(mp->b_cont) = curproc->p_pid; 6481 } 6482 6483 /* 6484 * Since this mechanism is strictly for ptools, and since only one 6485 * process can be grabbed at a time, we simply fail if there's 6486 * currently an operation pending. 6487 */ 6488 mutex_enter(&stp->sd_lock); 6489 if (stp->sd_flag & STRCMDWAIT) { 6490 mutex_exit(&stp->sd_lock); 6491 error = EBUSY; 6492 goto out; 6493 } 6494 stp->sd_flag |= STRCMDWAIT; 6495 ASSERT(stp->sd_cmdblk == NULL); 6496 mutex_exit(&stp->sd_lock); 6497 6498 putnext(stp->sd_wrq, mp); 6499 mp = NULL; 6500 6501 /* 6502 * Timed wait for acknowledgment. If the reply has already arrived, 6503 * don't sleep. If awakened from the sleep, fail only if the reply 6504 * has not arrived by then. Otherwise, process the reply. 6505 */ 6506 mutex_enter(&stp->sd_lock); 6507 while (stp->sd_cmdblk == NULL) { 6508 if (stp->sd_flag & errs) { 6509 if ((error = strgeterr(stp, errs, 0)) != 0) 6510 goto waitout; 6511 } 6512 6513 rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, timeout, 0); 6514 if (stp->sd_cmdblk != NULL) 6515 break; 6516 6517 if (rval <= 0) { 6518 error = (rval == 0) ? EINTR : ETIME; 6519 goto waitout; 6520 } 6521 } 6522 6523 /* 6524 * We received a reply. 6525 */ 6526 mp = stp->sd_cmdblk; 6527 stp->sd_cmdblk = NULL; 6528 ASSERT(mp != NULL && DB_TYPE(mp) == M_CMD); 6529 ASSERT(stp->sd_flag & STRCMDWAIT); 6530 stp->sd_flag &= ~STRCMDWAIT; 6531 mutex_exit(&stp->sd_lock); 6532 6533 cmdp = (struct cmdblk *)mp->b_rptr; 6534 if ((error = cmdp->cb_error) != 0) 6535 goto out; 6536 6537 /* 6538 * Data may have been returned in the reply (cb_len > 0). 6539 * If so, copy it out to the user's buffer. 6540 */ 6541 if (cmdp->cb_len > 0) { 6542 if (mp->b_cont == NULL || MBLKL(mp->b_cont) < cmdp->cb_len) { 6543 error = EPROTO; 6544 goto out; 6545 } 6546 6547 cmdp->cb_len = MIN(cmdp->cb_len, sizeof (scp->sc_buf)); 6548 (void) bcopy(mp->b_cont->b_rptr, scp->sc_buf, cmdp->cb_len); 6549 } 6550 scp->sc_len = cmdp->cb_len; 6551 out: 6552 freemsg(mp); 6553 crfree(crp); 6554 return (error); 6555 waitout: 6556 ASSERT(stp->sd_cmdblk == NULL); 6557 stp->sd_flag &= ~STRCMDWAIT; 6558 mutex_exit(&stp->sd_lock); 6559 crfree(crp); 6560 return (error); 6561 } 6562 6563 /* 6564 * For the SunOS keyboard driver. 6565 * Return the next available "ioctl" sequence number. 6566 * Exported, so that streams modules can send "ioctl" messages 6567 * downstream from their open routine. 6568 */ 6569 int 6570 getiocseqno(void) 6571 { 6572 int i; 6573 6574 mutex_enter(&strresources); 6575 i = ++ioc_id; 6576 mutex_exit(&strresources); 6577 return (i); 6578 } 6579 6580 /* 6581 * Get the next message from the read queue. If the message is 6582 * priority, STRPRI will have been set by strrput(). This flag 6583 * should be reset only when the entire message at the front of the 6584 * queue as been consumed. 6585 * 6586 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 6587 */ 6588 int 6589 strgetmsg( 6590 struct vnode *vp, 6591 struct strbuf *mctl, 6592 struct strbuf *mdata, 6593 unsigned char *prip, 6594 int *flagsp, 6595 int fmode, 6596 rval_t *rvp) 6597 { 6598 struct stdata *stp; 6599 mblk_t *bp, *nbp; 6600 mblk_t *savemp = NULL; 6601 mblk_t *savemptail = NULL; 6602 uint_t old_sd_flag; 6603 int flg = MSG_BAND; 6604 int more = 0; 6605 int error = 0; 6606 char first = 1; 6607 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 6608 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 6609 unsigned char pri = 0; 6610 queue_t *q; 6611 int pr = 0; /* Partial read successful */ 6612 struct uio uios; 6613 struct uio *uiop = &uios; 6614 struct iovec iovs; 6615 unsigned char type; 6616 6617 TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER, 6618 "strgetmsg:%p", vp); 6619 6620 ASSERT(vp->v_stream); 6621 stp = vp->v_stream; 6622 rvp->r_val1 = 0; 6623 6624 mutex_enter(&stp->sd_lock); 6625 6626 if ((error = i_straccess(stp, JCREAD)) != 0) { 6627 mutex_exit(&stp->sd_lock); 6628 return (error); 6629 } 6630 6631 if (stp->sd_flag & (STRDERR|STPLEX)) { 6632 error = strgeterr(stp, STRDERR|STPLEX, 0); 6633 if (error != 0) { 6634 mutex_exit(&stp->sd_lock); 6635 return (error); 6636 } 6637 } 6638 mutex_exit(&stp->sd_lock); 6639 6640 switch (*flagsp) { 6641 case MSG_HIPRI: 6642 if (*prip != 0) 6643 return (EINVAL); 6644 break; 6645 6646 case MSG_ANY: 6647 case MSG_BAND: 6648 break; 6649 6650 default: 6651 return (EINVAL); 6652 } 6653 /* 6654 * Setup uio and iov for data part 6655 */ 6656 iovs.iov_base = mdata->buf; 6657 iovs.iov_len = mdata->maxlen; 6658 uios.uio_iov = &iovs; 6659 uios.uio_iovcnt = 1; 6660 uios.uio_loffset = 0; 6661 uios.uio_segflg = UIO_USERSPACE; 6662 uios.uio_fmode = 0; 6663 uios.uio_extflg = UIO_COPY_CACHED; 6664 uios.uio_resid = mdata->maxlen; 6665 uios.uio_offset = 0; 6666 6667 q = _RD(stp->sd_wrq); 6668 mutex_enter(&stp->sd_lock); 6669 old_sd_flag = stp->sd_flag; 6670 mark = 0; 6671 for (;;) { 6672 int done = 0; 6673 mblk_t *q_first = q->q_first; 6674 6675 /* 6676 * Get the next message of appropriate priority 6677 * from the stream head. If the caller is interested 6678 * in band or hipri messages, then they should already 6679 * be enqueued at the stream head. On the other hand 6680 * if the caller wants normal (band 0) messages, they 6681 * might be deferred in a synchronous stream and they 6682 * will need to be pulled up. 6683 * 6684 * After we have dequeued a message, we might find that 6685 * it was a deferred M_SIG that was enqueued at the 6686 * stream head. It must now be posted as part of the 6687 * read by calling strsignal_nolock(). 6688 * 6689 * Also note that strrput does not enqueue an M_PCSIG, 6690 * and there cannot be more than one hipri message, 6691 * so there was no need to have the M_PCSIG case. 6692 * 6693 * At some time it might be nice to try and wrap the 6694 * functionality of kstrgetmsg() and strgetmsg() into 6695 * a common routine so to reduce the amount of replicated 6696 * code (since they are extremely similar). 6697 */ 6698 if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) { 6699 /* Asking for normal, band0 data */ 6700 bp = strget(stp, q, uiop, first, &error); 6701 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6702 if (bp != NULL) { 6703 if (DB_TYPE(bp) == M_SIG) { 6704 strsignal_nolock(stp, *bp->b_rptr, 6705 bp->b_band); 6706 freemsg(bp); 6707 continue; 6708 } else { 6709 break; 6710 } 6711 } 6712 if (error != 0) 6713 goto getmout; 6714 6715 /* 6716 * We can't depend on the value of STRPRI here because 6717 * the stream head may be in transit. Therefore, we 6718 * must look at the type of the first message to 6719 * determine if a high priority messages is waiting 6720 */ 6721 } else if ((*flagsp & MSG_HIPRI) && q_first != NULL && 6722 DB_TYPE(q_first) >= QPCTL && 6723 (bp = getq_noenab(q, 0)) != NULL) { 6724 /* Asked for HIPRI and got one */ 6725 ASSERT(DB_TYPE(bp) >= QPCTL); 6726 break; 6727 } else if ((*flagsp & MSG_BAND) && q_first != NULL && 6728 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) && 6729 (bp = getq_noenab(q, 0)) != NULL) { 6730 /* 6731 * Asked for at least band "prip" and got either at 6732 * least that band or a hipri message. 6733 */ 6734 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL); 6735 if (DB_TYPE(bp) == M_SIG) { 6736 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 6737 freemsg(bp); 6738 continue; 6739 } else { 6740 break; 6741 } 6742 } 6743 6744 /* No data. Time to sleep? */ 6745 qbackenable(q, 0); 6746 6747 /* 6748 * If STRHUP or STREOF, return 0 length control and data. 6749 * If resid is 0, then a read(fd,buf,0) was done. Do not 6750 * sleep to satisfy this request because by default we have 6751 * zero bytes to return. 6752 */ 6753 if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 && 6754 mdata->maxlen == 0)) { 6755 mctl->len = mdata->len = 0; 6756 *flagsp = 0; 6757 mutex_exit(&stp->sd_lock); 6758 return (0); 6759 } 6760 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT, 6761 "strgetmsg calls strwaitq:%p, %p", 6762 vp, uiop); 6763 if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1, 6764 &done)) != 0) || done) { 6765 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE, 6766 "strgetmsg error or done:%p, %p", 6767 vp, uiop); 6768 mutex_exit(&stp->sd_lock); 6769 return (error); 6770 } 6771 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE, 6772 "strgetmsg awakes:%p, %p", vp, uiop); 6773 if ((error = i_straccess(stp, JCREAD)) != 0) { 6774 mutex_exit(&stp->sd_lock); 6775 return (error); 6776 } 6777 first = 0; 6778 } 6779 ASSERT(bp != NULL); 6780 /* 6781 * Extract any mark information. If the message is not completely 6782 * consumed this information will be put in the mblk 6783 * that is putback. 6784 * If MSGMARKNEXT is set and the message is completely consumed 6785 * the STRATMARK flag will be set below. Likewise, if 6786 * MSGNOTMARKNEXT is set and the message is 6787 * completely consumed STRNOTATMARK will be set. 6788 */ 6789 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 6790 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 6791 (MSGMARKNEXT|MSGNOTMARKNEXT)); 6792 if (mark != 0 && bp == stp->sd_mark) { 6793 mark |= _LASTMARK; 6794 stp->sd_mark = NULL; 6795 } 6796 /* 6797 * keep track of the original message type and priority 6798 */ 6799 pri = bp->b_band; 6800 type = bp->b_datap->db_type; 6801 if (type == M_PASSFP) { 6802 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 6803 stp->sd_mark = bp; 6804 bp->b_flag |= mark & ~_LASTMARK; 6805 putback(stp, q, bp, pri); 6806 qbackenable(q, pri); 6807 mutex_exit(&stp->sd_lock); 6808 return (EBADMSG); 6809 } 6810 ASSERT(type != M_SIG); 6811 6812 /* 6813 * Set this flag so strrput will not generate signals. Need to 6814 * make sure this flag is cleared before leaving this routine 6815 * else signals will stop being sent. 6816 */ 6817 stp->sd_flag |= STRGETINPROG; 6818 mutex_exit(&stp->sd_lock); 6819 6820 if (STREAM_NEEDSERVICE(stp)) 6821 stream_runservice(stp); 6822 6823 /* 6824 * Set HIPRI flag if message is priority. 6825 */ 6826 if (type >= QPCTL) 6827 flg = MSG_HIPRI; 6828 else 6829 flg = MSG_BAND; 6830 6831 /* 6832 * First process PROTO or PCPROTO blocks, if any. 6833 */ 6834 if (mctl->maxlen >= 0 && type != M_DATA) { 6835 size_t n, bcnt; 6836 char *ubuf; 6837 6838 bcnt = mctl->maxlen; 6839 ubuf = mctl->buf; 6840 while (bp != NULL && bp->b_datap->db_type != M_DATA) { 6841 if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 && 6842 copyout(bp->b_rptr, ubuf, n)) { 6843 error = EFAULT; 6844 mutex_enter(&stp->sd_lock); 6845 /* 6846 * clear stream head pri flag based on 6847 * first message type 6848 */ 6849 if (type >= QPCTL) { 6850 ASSERT(type == M_PCPROTO); 6851 stp->sd_flag &= ~STRPRI; 6852 } 6853 more = 0; 6854 freemsg(bp); 6855 goto getmout; 6856 } 6857 ubuf += n; 6858 bp->b_rptr += n; 6859 if (bp->b_rptr >= bp->b_wptr) { 6860 nbp = bp; 6861 bp = bp->b_cont; 6862 freeb(nbp); 6863 } 6864 ASSERT(n <= bcnt); 6865 bcnt -= n; 6866 if (bcnt == 0) 6867 break; 6868 } 6869 mctl->len = mctl->maxlen - bcnt; 6870 } else 6871 mctl->len = -1; 6872 6873 if (bp && bp->b_datap->db_type != M_DATA) { 6874 /* 6875 * More PROTO blocks in msg. 6876 */ 6877 more |= MORECTL; 6878 savemp = bp; 6879 while (bp && bp->b_datap->db_type != M_DATA) { 6880 savemptail = bp; 6881 bp = bp->b_cont; 6882 } 6883 savemptail->b_cont = NULL; 6884 } 6885 6886 /* 6887 * Now process DATA blocks, if any. 6888 */ 6889 if (mdata->maxlen >= 0 && bp) { 6890 /* 6891 * struiocopyout will consume a potential zero-length 6892 * M_DATA even if uio_resid is zero. 6893 */ 6894 size_t oldresid = uiop->uio_resid; 6895 6896 bp = struiocopyout(bp, uiop, &error); 6897 if (error != 0) { 6898 mutex_enter(&stp->sd_lock); 6899 /* 6900 * clear stream head hi pri flag based on 6901 * first message 6902 */ 6903 if (type >= QPCTL) { 6904 ASSERT(type == M_PCPROTO); 6905 stp->sd_flag &= ~STRPRI; 6906 } 6907 more = 0; 6908 freemsg(savemp); 6909 goto getmout; 6910 } 6911 /* 6912 * (pr == 1) indicates a partial read. 6913 */ 6914 if (oldresid > uiop->uio_resid) 6915 pr = 1; 6916 mdata->len = mdata->maxlen - uiop->uio_resid; 6917 } else 6918 mdata->len = -1; 6919 6920 if (bp) { /* more data blocks in msg */ 6921 more |= MOREDATA; 6922 if (savemp) 6923 savemptail->b_cont = bp; 6924 else 6925 savemp = bp; 6926 } 6927 6928 mutex_enter(&stp->sd_lock); 6929 if (savemp) { 6930 if (pr && (savemp->b_datap->db_type == M_DATA) && 6931 msgnodata(savemp)) { 6932 /* 6933 * Avoid queuing a zero-length tail part of 6934 * a message. pr=1 indicates that we read some of 6935 * the message. 6936 */ 6937 freemsg(savemp); 6938 more &= ~MOREDATA; 6939 /* 6940 * clear stream head hi pri flag based on 6941 * first message 6942 */ 6943 if (type >= QPCTL) { 6944 ASSERT(type == M_PCPROTO); 6945 stp->sd_flag &= ~STRPRI; 6946 } 6947 } else { 6948 savemp->b_band = pri; 6949 /* 6950 * If the first message was HIPRI and the one we're 6951 * putting back isn't, then clear STRPRI, otherwise 6952 * set STRPRI again. Note that we must set STRPRI 6953 * again since the flush logic in strrput_nondata() 6954 * may have cleared it while we had sd_lock dropped. 6955 */ 6956 if (type >= QPCTL) { 6957 ASSERT(type == M_PCPROTO); 6958 if (queclass(savemp) < QPCTL) 6959 stp->sd_flag &= ~STRPRI; 6960 else 6961 stp->sd_flag |= STRPRI; 6962 } else if (queclass(savemp) >= QPCTL) { 6963 /* 6964 * The first message was not a HIPRI message, 6965 * but the one we are about to putback is. 6966 * For simplicitly, we do not allow for HIPRI 6967 * messages to be embedded in the message 6968 * body, so just force it to same type as 6969 * first message. 6970 */ 6971 ASSERT(type == M_DATA || type == M_PROTO); 6972 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 6973 savemp->b_datap->db_type = type; 6974 } 6975 if (mark != 0) { 6976 savemp->b_flag |= mark & ~_LASTMARK; 6977 if ((mark & _LASTMARK) && 6978 (stp->sd_mark == NULL)) { 6979 /* 6980 * If another marked message arrived 6981 * while sd_lock was not held sd_mark 6982 * would be non-NULL. 6983 */ 6984 stp->sd_mark = savemp; 6985 } 6986 } 6987 putback(stp, q, savemp, pri); 6988 } 6989 } else { 6990 /* 6991 * The complete message was consumed. 6992 * 6993 * If another M_PCPROTO arrived while sd_lock was not held 6994 * it would have been discarded since STRPRI was still set. 6995 * 6996 * Move the MSG*MARKNEXT information 6997 * to the stream head just in case 6998 * the read queue becomes empty. 6999 * clear stream head hi pri flag based on 7000 * first message 7001 * 7002 * If the stream head was at the mark 7003 * (STRATMARK) before we dropped sd_lock above 7004 * and some data was consumed then we have 7005 * moved past the mark thus STRATMARK is 7006 * cleared. However, if a message arrived in 7007 * strrput during the copyout above causing 7008 * STRATMARK to be set we can not clear that 7009 * flag. 7010 */ 7011 if (type >= QPCTL) { 7012 ASSERT(type == M_PCPROTO); 7013 stp->sd_flag &= ~STRPRI; 7014 } 7015 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 7016 if (mark & MSGMARKNEXT) { 7017 stp->sd_flag &= ~STRNOTATMARK; 7018 stp->sd_flag |= STRATMARK; 7019 } else if (mark & MSGNOTMARKNEXT) { 7020 stp->sd_flag &= ~STRATMARK; 7021 stp->sd_flag |= STRNOTATMARK; 7022 } else { 7023 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 7024 } 7025 } else if (pr && (old_sd_flag & STRATMARK)) { 7026 stp->sd_flag &= ~STRATMARK; 7027 } 7028 } 7029 7030 *flagsp = flg; 7031 *prip = pri; 7032 7033 /* 7034 * Getmsg cleanup processing - if the state of the queue has changed 7035 * some signals may need to be sent and/or poll awakened. 7036 */ 7037 getmout: 7038 qbackenable(q, pri); 7039 7040 /* 7041 * We dropped the stream head lock above. Send all M_SIG messages 7042 * before processing stream head for SIGPOLL messages. 7043 */ 7044 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7045 while ((bp = q->q_first) != NULL && 7046 (bp->b_datap->db_type == M_SIG)) { 7047 /* 7048 * sd_lock is held so the content of the read queue can not 7049 * change. 7050 */ 7051 bp = getq(q); 7052 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 7053 7054 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 7055 mutex_exit(&stp->sd_lock); 7056 freemsg(bp); 7057 if (STREAM_NEEDSERVICE(stp)) 7058 stream_runservice(stp); 7059 mutex_enter(&stp->sd_lock); 7060 } 7061 7062 /* 7063 * stream head cannot change while we make the determination 7064 * whether or not to send a signal. Drop the flag to allow strrput 7065 * to send firstmsgsigs again. 7066 */ 7067 stp->sd_flag &= ~STRGETINPROG; 7068 7069 /* 7070 * If the type of message at the front of the queue changed 7071 * due to the receive the appropriate signals and pollwakeup events 7072 * are generated. The type of changes are: 7073 * Processed a hipri message, q_first is not hipri. 7074 * Processed a band X message, and q_first is band Y. 7075 * The generated signals and pollwakeups are identical to what 7076 * strrput() generates should the message that is now on q_first 7077 * arrive to an empty read queue. 7078 * 7079 * Note: only strrput will send a signal for a hipri message. 7080 */ 7081 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 7082 strsigset_t signals = 0; 7083 strpollset_t pollwakeups = 0; 7084 7085 if (flg & MSG_HIPRI) { 7086 /* 7087 * Removed a hipri message. Regular data at 7088 * the front of the queue. 7089 */ 7090 if (bp->b_band == 0) { 7091 signals = S_INPUT | S_RDNORM; 7092 pollwakeups = POLLIN | POLLRDNORM; 7093 } else { 7094 signals = S_INPUT | S_RDBAND; 7095 pollwakeups = POLLIN | POLLRDBAND; 7096 } 7097 } else if (pri != bp->b_band) { 7098 /* 7099 * The band is different for the new q_first. 7100 */ 7101 if (bp->b_band == 0) { 7102 signals = S_RDNORM; 7103 pollwakeups = POLLIN | POLLRDNORM; 7104 } else { 7105 signals = S_RDBAND; 7106 pollwakeups = POLLIN | POLLRDBAND; 7107 } 7108 } 7109 7110 if (pollwakeups != 0) { 7111 if (pollwakeups == (POLLIN | POLLRDNORM)) { 7112 if (!(stp->sd_rput_opt & SR_POLLIN)) 7113 goto no_pollwake; 7114 stp->sd_rput_opt &= ~SR_POLLIN; 7115 } 7116 mutex_exit(&stp->sd_lock); 7117 pollwakeup(&stp->sd_pollist, pollwakeups); 7118 mutex_enter(&stp->sd_lock); 7119 } 7120 no_pollwake: 7121 7122 if (stp->sd_sigflags & signals) 7123 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 7124 } 7125 mutex_exit(&stp->sd_lock); 7126 7127 rvp->r_val1 = more; 7128 return (error); 7129 #undef _LASTMARK 7130 } 7131 7132 /* 7133 * Get the next message from the read queue. If the message is 7134 * priority, STRPRI will have been set by strrput(). This flag 7135 * should be reset only when the entire message at the front of the 7136 * queue as been consumed. 7137 * 7138 * If uiop is NULL all data is returned in mctlp. 7139 * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed 7140 * not enabled. 7141 * The timeout parameter is in milliseconds; -1 for infinity. 7142 * This routine handles the consolidation private flags: 7143 * MSG_IGNERROR Ignore any stream head error except STPLEX. 7144 * MSG_DELAYERROR Defer the error check until the queue is empty. 7145 * MSG_HOLDSIG Hold signals while waiting for data. 7146 * MSG_IPEEK Only peek at messages. 7147 * MSG_DISCARDTAIL Discard the tail M_DATA part of the message 7148 * that doesn't fit. 7149 * MSG_NOMARK If the message is marked leave it on the queue. 7150 * 7151 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 7152 */ 7153 int 7154 kstrgetmsg( 7155 struct vnode *vp, 7156 mblk_t **mctlp, 7157 struct uio *uiop, 7158 unsigned char *prip, 7159 int *flagsp, 7160 clock_t timout, 7161 rval_t *rvp) 7162 { 7163 struct stdata *stp; 7164 mblk_t *bp, *nbp; 7165 mblk_t *savemp = NULL; 7166 mblk_t *savemptail = NULL; 7167 int flags; 7168 uint_t old_sd_flag; 7169 int flg = MSG_BAND; 7170 int more = 0; 7171 int error = 0; 7172 char first = 1; 7173 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 7174 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 7175 unsigned char pri = 0; 7176 queue_t *q; 7177 int pr = 0; /* Partial read successful */ 7178 unsigned char type; 7179 7180 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER, 7181 "kstrgetmsg:%p", vp); 7182 7183 ASSERT(vp->v_stream); 7184 stp = vp->v_stream; 7185 rvp->r_val1 = 0; 7186 7187 mutex_enter(&stp->sd_lock); 7188 7189 if ((error = i_straccess(stp, JCREAD)) != 0) { 7190 mutex_exit(&stp->sd_lock); 7191 return (error); 7192 } 7193 7194 flags = *flagsp; 7195 if (stp->sd_flag & (STRDERR|STPLEX)) { 7196 if ((stp->sd_flag & STPLEX) || 7197 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) { 7198 error = strgeterr(stp, STRDERR|STPLEX, 7199 (flags & MSG_IPEEK)); 7200 if (error != 0) { 7201 mutex_exit(&stp->sd_lock); 7202 return (error); 7203 } 7204 } 7205 } 7206 mutex_exit(&stp->sd_lock); 7207 7208 switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) { 7209 case MSG_HIPRI: 7210 if (*prip != 0) 7211 return (EINVAL); 7212 break; 7213 7214 case MSG_ANY: 7215 case MSG_BAND: 7216 break; 7217 7218 default: 7219 return (EINVAL); 7220 } 7221 7222 retry: 7223 q = _RD(stp->sd_wrq); 7224 mutex_enter(&stp->sd_lock); 7225 old_sd_flag = stp->sd_flag; 7226 mark = 0; 7227 for (;;) { 7228 int done = 0; 7229 int waitflag; 7230 int fmode; 7231 mblk_t *q_first = q->q_first; 7232 7233 /* 7234 * This section of the code operates just like the code 7235 * in strgetmsg(). There is a comment there about what 7236 * is going on here. 7237 */ 7238 if (!(flags & (MSG_HIPRI|MSG_BAND))) { 7239 /* Asking for normal, band0 data */ 7240 bp = strget(stp, q, uiop, first, &error); 7241 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7242 if (bp != NULL) { 7243 if (DB_TYPE(bp) == M_SIG) { 7244 strsignal_nolock(stp, *bp->b_rptr, 7245 bp->b_band); 7246 freemsg(bp); 7247 continue; 7248 } else { 7249 break; 7250 } 7251 } 7252 if (error != 0) { 7253 goto getmout; 7254 } 7255 /* 7256 * We can't depend on the value of STRPRI here because 7257 * the stream head may be in transit. Therefore, we 7258 * must look at the type of the first message to 7259 * determine if a high priority messages is waiting 7260 */ 7261 } else if ((flags & MSG_HIPRI) && q_first != NULL && 7262 DB_TYPE(q_first) >= QPCTL && 7263 (bp = getq_noenab(q, 0)) != NULL) { 7264 ASSERT(DB_TYPE(bp) >= QPCTL); 7265 break; 7266 } else if ((flags & MSG_BAND) && q_first != NULL && 7267 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) && 7268 (bp = getq_noenab(q, 0)) != NULL) { 7269 /* 7270 * Asked for at least band "prip" and got either at 7271 * least that band or a hipri message. 7272 */ 7273 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL); 7274 if (DB_TYPE(bp) == M_SIG) { 7275 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 7276 freemsg(bp); 7277 continue; 7278 } else { 7279 break; 7280 } 7281 } 7282 7283 /* No data. Time to sleep? */ 7284 qbackenable(q, 0); 7285 7286 /* 7287 * Delayed error notification? 7288 */ 7289 if ((stp->sd_flag & (STRDERR|STPLEX)) && 7290 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) { 7291 error = strgeterr(stp, STRDERR|STPLEX, 7292 (flags & MSG_IPEEK)); 7293 if (error != 0) { 7294 mutex_exit(&stp->sd_lock); 7295 return (error); 7296 } 7297 } 7298 7299 /* 7300 * If STRHUP or STREOF, return 0 length control and data. 7301 * If a read(fd,buf,0) has been done, do not sleep, just 7302 * return. 7303 * 7304 * If mctlp == NULL and uiop == NULL, then the code will 7305 * do the strwaitq. This is an understood way of saying 7306 * sleep "polling" until a message is received. 7307 */ 7308 if ((stp->sd_flag & (STRHUP|STREOF)) || 7309 (uiop != NULL && uiop->uio_resid == 0)) { 7310 if (mctlp != NULL) 7311 *mctlp = NULL; 7312 *flagsp = 0; 7313 mutex_exit(&stp->sd_lock); 7314 return (0); 7315 } 7316 7317 waitflag = GETWAIT; 7318 if (flags & 7319 (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) { 7320 if (flags & MSG_HOLDSIG) 7321 waitflag |= STR_NOSIG; 7322 if (flags & MSG_IGNERROR) 7323 waitflag |= STR_NOERROR; 7324 if (flags & MSG_IPEEK) 7325 waitflag |= STR_PEEK; 7326 if (flags & MSG_DELAYERROR) 7327 waitflag |= STR_DELAYERR; 7328 } 7329 if (uiop != NULL) 7330 fmode = uiop->uio_fmode; 7331 else 7332 fmode = 0; 7333 7334 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT, 7335 "kstrgetmsg calls strwaitq:%p, %p", 7336 vp, uiop); 7337 if (((error = strwaitq(stp, waitflag, (ssize_t)0, 7338 fmode, timout, &done))) != 0 || done) { 7339 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE, 7340 "kstrgetmsg error or done:%p, %p", 7341 vp, uiop); 7342 mutex_exit(&stp->sd_lock); 7343 return (error); 7344 } 7345 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE, 7346 "kstrgetmsg awakes:%p, %p", vp, uiop); 7347 if ((error = i_straccess(stp, JCREAD)) != 0) { 7348 mutex_exit(&stp->sd_lock); 7349 return (error); 7350 } 7351 first = 0; 7352 } 7353 ASSERT(bp != NULL); 7354 /* 7355 * Extract any mark information. If the message is not completely 7356 * consumed this information will be put in the mblk 7357 * that is putback. 7358 * If MSGMARKNEXT is set and the message is completely consumed 7359 * the STRATMARK flag will be set below. Likewise, if 7360 * MSGNOTMARKNEXT is set and the message is 7361 * completely consumed STRNOTATMARK will be set. 7362 */ 7363 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 7364 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 7365 (MSGMARKNEXT|MSGNOTMARKNEXT)); 7366 pri = bp->b_band; 7367 if (mark != 0) { 7368 /* 7369 * If the caller doesn't want the mark return. 7370 * Used to implement MSG_WAITALL in sockets. 7371 */ 7372 if (flags & MSG_NOMARK) { 7373 putback(stp, q, bp, pri); 7374 qbackenable(q, pri); 7375 mutex_exit(&stp->sd_lock); 7376 return (EWOULDBLOCK); 7377 } 7378 if (bp == stp->sd_mark) { 7379 mark |= _LASTMARK; 7380 stp->sd_mark = NULL; 7381 } 7382 } 7383 7384 /* 7385 * keep track of the first message type 7386 */ 7387 type = bp->b_datap->db_type; 7388 7389 if (bp->b_datap->db_type == M_PASSFP) { 7390 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7391 stp->sd_mark = bp; 7392 bp->b_flag |= mark & ~_LASTMARK; 7393 putback(stp, q, bp, pri); 7394 qbackenable(q, pri); 7395 mutex_exit(&stp->sd_lock); 7396 return (EBADMSG); 7397 } 7398 ASSERT(type != M_SIG); 7399 7400 if (flags & MSG_IPEEK) { 7401 /* 7402 * Clear any struioflag - we do the uiomove over again 7403 * when peeking since it simplifies the code. 7404 * 7405 * Dup the message and put the original back on the queue. 7406 * If dupmsg() fails, try again with copymsg() to see if 7407 * there is indeed a shortage of memory. dupmsg() may fail 7408 * if db_ref in any of the messages reaches its limit. 7409 */ 7410 7411 if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) { 7412 /* 7413 * Restore the state of the stream head since we 7414 * need to drop sd_lock (strwaitbuf is sleeping). 7415 */ 7416 size_t size = msgdsize(bp); 7417 7418 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7419 stp->sd_mark = bp; 7420 bp->b_flag |= mark & ~_LASTMARK; 7421 putback(stp, q, bp, pri); 7422 mutex_exit(&stp->sd_lock); 7423 error = strwaitbuf(size, BPRI_HI); 7424 if (error) { 7425 /* 7426 * There is no net change to the queue thus 7427 * no need to qbackenable. 7428 */ 7429 return (error); 7430 } 7431 goto retry; 7432 } 7433 7434 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7435 stp->sd_mark = bp; 7436 bp->b_flag |= mark & ~_LASTMARK; 7437 putback(stp, q, bp, pri); 7438 bp = nbp; 7439 } 7440 7441 /* 7442 * Set this flag so strrput will not generate signals. Need to 7443 * make sure this flag is cleared before leaving this routine 7444 * else signals will stop being sent. 7445 */ 7446 stp->sd_flag |= STRGETINPROG; 7447 mutex_exit(&stp->sd_lock); 7448 7449 if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA)) { 7450 mblk_t *tmp, *prevmp; 7451 7452 /* 7453 * Put first non-data mblk back to stream head and 7454 * cut the mblk chain so sd_rputdatafunc only sees 7455 * M_DATA mblks. We can skip the first mblk since it 7456 * is M_DATA according to the condition above. 7457 */ 7458 for (prevmp = bp, tmp = bp->b_cont; tmp != NULL; 7459 prevmp = tmp, tmp = tmp->b_cont) { 7460 if (DB_TYPE(tmp) != M_DATA) { 7461 prevmp->b_cont = NULL; 7462 mutex_enter(&stp->sd_lock); 7463 putback(stp, q, tmp, tmp->b_band); 7464 mutex_exit(&stp->sd_lock); 7465 break; 7466 } 7467 } 7468 7469 bp = (stp->sd_rputdatafunc)(stp->sd_vnode, bp, 7470 NULL, NULL, NULL, NULL); 7471 7472 if (bp == NULL) 7473 goto retry; 7474 } 7475 7476 if (STREAM_NEEDSERVICE(stp)) 7477 stream_runservice(stp); 7478 7479 /* 7480 * Set HIPRI flag if message is priority. 7481 */ 7482 if (type >= QPCTL) 7483 flg = MSG_HIPRI; 7484 else 7485 flg = MSG_BAND; 7486 7487 /* 7488 * First process PROTO or PCPROTO blocks, if any. 7489 */ 7490 if (mctlp != NULL && type != M_DATA) { 7491 mblk_t *nbp; 7492 7493 *mctlp = bp; 7494 while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA) 7495 bp = bp->b_cont; 7496 nbp = bp->b_cont; 7497 bp->b_cont = NULL; 7498 bp = nbp; 7499 } 7500 7501 if (bp && bp->b_datap->db_type != M_DATA) { 7502 /* 7503 * More PROTO blocks in msg. Will only happen if mctlp is NULL. 7504 */ 7505 more |= MORECTL; 7506 savemp = bp; 7507 while (bp && bp->b_datap->db_type != M_DATA) { 7508 savemptail = bp; 7509 bp = bp->b_cont; 7510 } 7511 savemptail->b_cont = NULL; 7512 } 7513 7514 /* 7515 * Now process DATA blocks, if any. 7516 */ 7517 if (uiop == NULL) { 7518 /* Append data to tail of mctlp */ 7519 7520 if (mctlp != NULL) { 7521 mblk_t **mpp = mctlp; 7522 7523 while (*mpp != NULL) 7524 mpp = &((*mpp)->b_cont); 7525 *mpp = bp; 7526 bp = NULL; 7527 } 7528 } else if (uiop->uio_resid >= 0 && bp) { 7529 size_t oldresid = uiop->uio_resid; 7530 7531 /* 7532 * If a streams message is likely to consist 7533 * of many small mblks, it is pulled up into 7534 * one continuous chunk of memory. 7535 * The size of the first mblk may be bogus because 7536 * successive read() calls on the socket reduce 7537 * the size of this mblk until it is exhausted 7538 * and then the code walks on to the next. Thus 7539 * the size of the mblk may not be the original size 7540 * that was passed up, it's simply a remainder 7541 * and hence can be very small without any 7542 * implication that the packet is badly fragmented. 7543 * So the size of the possible second mblk is 7544 * used to spot a badly fragmented packet. 7545 * see longer comment at top of page 7546 * by mblk_pull_len declaration. 7547 */ 7548 7549 if (bp->b_cont != NULL && MBLKL(bp->b_cont) < mblk_pull_len) { 7550 (void) pullupmsg(bp, -1); 7551 } 7552 7553 bp = struiocopyout(bp, uiop, &error); 7554 if (error != 0) { 7555 if (mctlp != NULL) { 7556 freemsg(*mctlp); 7557 *mctlp = NULL; 7558 } else 7559 freemsg(savemp); 7560 mutex_enter(&stp->sd_lock); 7561 /* 7562 * clear stream head hi pri flag based on 7563 * first message 7564 */ 7565 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7566 ASSERT(type == M_PCPROTO); 7567 stp->sd_flag &= ~STRPRI; 7568 } 7569 more = 0; 7570 goto getmout; 7571 } 7572 /* 7573 * (pr == 1) indicates a partial read. 7574 */ 7575 if (oldresid > uiop->uio_resid) 7576 pr = 1; 7577 } 7578 7579 if (bp) { /* more data blocks in msg */ 7580 more |= MOREDATA; 7581 if (savemp) 7582 savemptail->b_cont = bp; 7583 else 7584 savemp = bp; 7585 } 7586 7587 mutex_enter(&stp->sd_lock); 7588 if (savemp) { 7589 if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) { 7590 /* 7591 * When MSG_DISCARDTAIL is set or 7592 * when peeking discard any tail. When peeking this 7593 * is the tail of the dup that was copied out - the 7594 * message has already been putback on the queue. 7595 * Return MOREDATA to the caller even though the data 7596 * is discarded. This is used by sockets (to 7597 * set MSG_TRUNC). 7598 */ 7599 freemsg(savemp); 7600 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7601 ASSERT(type == M_PCPROTO); 7602 stp->sd_flag &= ~STRPRI; 7603 } 7604 } else if (pr && (savemp->b_datap->db_type == M_DATA) && 7605 msgnodata(savemp)) { 7606 /* 7607 * Avoid queuing a zero-length tail part of 7608 * a message. pr=1 indicates that we read some of 7609 * the message. 7610 */ 7611 freemsg(savemp); 7612 more &= ~MOREDATA; 7613 if (type >= QPCTL) { 7614 ASSERT(type == M_PCPROTO); 7615 stp->sd_flag &= ~STRPRI; 7616 } 7617 } else { 7618 savemp->b_band = pri; 7619 /* 7620 * If the first message was HIPRI and the one we're 7621 * putting back isn't, then clear STRPRI, otherwise 7622 * set STRPRI again. Note that we must set STRPRI 7623 * again since the flush logic in strrput_nondata() 7624 * may have cleared it while we had sd_lock dropped. 7625 */ 7626 7627 if (type >= QPCTL) { 7628 ASSERT(type == M_PCPROTO); 7629 if (queclass(savemp) < QPCTL) 7630 stp->sd_flag &= ~STRPRI; 7631 else 7632 stp->sd_flag |= STRPRI; 7633 } else if (queclass(savemp) >= QPCTL) { 7634 /* 7635 * The first message was not a HIPRI message, 7636 * but the one we are about to putback is. 7637 * For simplicitly, we do not allow for HIPRI 7638 * messages to be embedded in the message 7639 * body, so just force it to same type as 7640 * first message. 7641 */ 7642 ASSERT(type == M_DATA || type == M_PROTO); 7643 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 7644 savemp->b_datap->db_type = type; 7645 } 7646 if (mark != 0) { 7647 if ((mark & _LASTMARK) && 7648 (stp->sd_mark == NULL)) { 7649 /* 7650 * If another marked message arrived 7651 * while sd_lock was not held sd_mark 7652 * would be non-NULL. 7653 */ 7654 stp->sd_mark = savemp; 7655 } 7656 savemp->b_flag |= mark & ~_LASTMARK; 7657 } 7658 putback(stp, q, savemp, pri); 7659 } 7660 } else if (!(flags & MSG_IPEEK)) { 7661 /* 7662 * The complete message was consumed. 7663 * 7664 * If another M_PCPROTO arrived while sd_lock was not held 7665 * it would have been discarded since STRPRI was still set. 7666 * 7667 * Move the MSG*MARKNEXT information 7668 * to the stream head just in case 7669 * the read queue becomes empty. 7670 * clear stream head hi pri flag based on 7671 * first message 7672 * 7673 * If the stream head was at the mark 7674 * (STRATMARK) before we dropped sd_lock above 7675 * and some data was consumed then we have 7676 * moved past the mark thus STRATMARK is 7677 * cleared. However, if a message arrived in 7678 * strrput during the copyout above causing 7679 * STRATMARK to be set we can not clear that 7680 * flag. 7681 * XXX A "perimeter" would help by single-threading strrput, 7682 * strread, strgetmsg and kstrgetmsg. 7683 */ 7684 if (type >= QPCTL) { 7685 ASSERT(type == M_PCPROTO); 7686 stp->sd_flag &= ~STRPRI; 7687 } 7688 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 7689 if (mark & MSGMARKNEXT) { 7690 stp->sd_flag &= ~STRNOTATMARK; 7691 stp->sd_flag |= STRATMARK; 7692 } else if (mark & MSGNOTMARKNEXT) { 7693 stp->sd_flag &= ~STRATMARK; 7694 stp->sd_flag |= STRNOTATMARK; 7695 } else { 7696 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 7697 } 7698 } else if (pr && (old_sd_flag & STRATMARK)) { 7699 stp->sd_flag &= ~STRATMARK; 7700 } 7701 } 7702 7703 *flagsp = flg; 7704 *prip = pri; 7705 7706 /* 7707 * Getmsg cleanup processing - if the state of the queue has changed 7708 * some signals may need to be sent and/or poll awakened. 7709 */ 7710 getmout: 7711 qbackenable(q, pri); 7712 7713 /* 7714 * We dropped the stream head lock above. Send all M_SIG messages 7715 * before processing stream head for SIGPOLL messages. 7716 */ 7717 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7718 while ((bp = q->q_first) != NULL && 7719 (bp->b_datap->db_type == M_SIG)) { 7720 /* 7721 * sd_lock is held so the content of the read queue can not 7722 * change. 7723 */ 7724 bp = getq(q); 7725 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 7726 7727 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 7728 mutex_exit(&stp->sd_lock); 7729 freemsg(bp); 7730 if (STREAM_NEEDSERVICE(stp)) 7731 stream_runservice(stp); 7732 mutex_enter(&stp->sd_lock); 7733 } 7734 7735 /* 7736 * stream head cannot change while we make the determination 7737 * whether or not to send a signal. Drop the flag to allow strrput 7738 * to send firstmsgsigs again. 7739 */ 7740 stp->sd_flag &= ~STRGETINPROG; 7741 7742 /* 7743 * If the type of message at the front of the queue changed 7744 * due to the receive the appropriate signals and pollwakeup events 7745 * are generated. The type of changes are: 7746 * Processed a hipri message, q_first is not hipri. 7747 * Processed a band X message, and q_first is band Y. 7748 * The generated signals and pollwakeups are identical to what 7749 * strrput() generates should the message that is now on q_first 7750 * arrive to an empty read queue. 7751 * 7752 * Note: only strrput will send a signal for a hipri message. 7753 */ 7754 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 7755 strsigset_t signals = 0; 7756 strpollset_t pollwakeups = 0; 7757 7758 if (flg & MSG_HIPRI) { 7759 /* 7760 * Removed a hipri message. Regular data at 7761 * the front of the queue. 7762 */ 7763 if (bp->b_band == 0) { 7764 signals = S_INPUT | S_RDNORM; 7765 pollwakeups = POLLIN | POLLRDNORM; 7766 } else { 7767 signals = S_INPUT | S_RDBAND; 7768 pollwakeups = POLLIN | POLLRDBAND; 7769 } 7770 } else if (pri != bp->b_band) { 7771 /* 7772 * The band is different for the new q_first. 7773 */ 7774 if (bp->b_band == 0) { 7775 signals = S_RDNORM; 7776 pollwakeups = POLLIN | POLLRDNORM; 7777 } else { 7778 signals = S_RDBAND; 7779 pollwakeups = POLLIN | POLLRDBAND; 7780 } 7781 } 7782 7783 if (pollwakeups != 0) { 7784 if (pollwakeups == (POLLIN | POLLRDNORM)) { 7785 if (!(stp->sd_rput_opt & SR_POLLIN)) 7786 goto no_pollwake; 7787 stp->sd_rput_opt &= ~SR_POLLIN; 7788 } 7789 mutex_exit(&stp->sd_lock); 7790 pollwakeup(&stp->sd_pollist, pollwakeups); 7791 mutex_enter(&stp->sd_lock); 7792 } 7793 no_pollwake: 7794 7795 if (stp->sd_sigflags & signals) 7796 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 7797 } 7798 mutex_exit(&stp->sd_lock); 7799 7800 rvp->r_val1 = more; 7801 return (error); 7802 #undef _LASTMARK 7803 } 7804 7805 /* 7806 * Put a message downstream. 7807 * 7808 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7809 */ 7810 int 7811 strputmsg( 7812 struct vnode *vp, 7813 struct strbuf *mctl, 7814 struct strbuf *mdata, 7815 unsigned char pri, 7816 int flag, 7817 int fmode) 7818 { 7819 struct stdata *stp; 7820 queue_t *wqp; 7821 mblk_t *mp; 7822 ssize_t msgsize; 7823 ssize_t rmin, rmax; 7824 int error; 7825 struct uio uios; 7826 struct uio *uiop = &uios; 7827 struct iovec iovs; 7828 int xpg4 = 0; 7829 7830 ASSERT(vp->v_stream); 7831 stp = vp->v_stream; 7832 wqp = stp->sd_wrq; 7833 7834 /* 7835 * If it is an XPG4 application, we need to send 7836 * SIGPIPE below 7837 */ 7838 7839 xpg4 = (flag & MSG_XPG4) ? 1 : 0; 7840 flag &= ~MSG_XPG4; 7841 7842 if (AU_AUDITING()) 7843 audit_strputmsg(vp, mctl, mdata, pri, flag, fmode); 7844 7845 mutex_enter(&stp->sd_lock); 7846 7847 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7848 mutex_exit(&stp->sd_lock); 7849 return (error); 7850 } 7851 7852 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 7853 error = strwriteable(stp, B_FALSE, xpg4); 7854 if (error != 0) { 7855 mutex_exit(&stp->sd_lock); 7856 return (error); 7857 } 7858 } 7859 7860 mutex_exit(&stp->sd_lock); 7861 7862 /* 7863 * Check for legal flag value. 7864 */ 7865 switch (flag) { 7866 case MSG_HIPRI: 7867 if ((mctl->len < 0) || (pri != 0)) 7868 return (EINVAL); 7869 break; 7870 case MSG_BAND: 7871 break; 7872 7873 default: 7874 return (EINVAL); 7875 } 7876 7877 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN, 7878 "strputmsg in:stp %p", stp); 7879 7880 /* get these values from those cached in the stream head */ 7881 rmin = stp->sd_qn_minpsz; 7882 rmax = stp->sd_qn_maxpsz; 7883 7884 /* 7885 * Make sure ctl and data sizes together fall within the 7886 * limits of the max and min receive packet sizes and do 7887 * not exceed system limit. 7888 */ 7889 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 7890 if (rmax == 0) { 7891 return (ERANGE); 7892 } 7893 /* 7894 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 7895 * Needed to prevent partial failures in the strmakedata loop. 7896 */ 7897 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 7898 rmax = stp->sd_maxblk; 7899 7900 if ((msgsize = mdata->len) < 0) { 7901 msgsize = 0; 7902 rmin = 0; /* no range check for NULL data part */ 7903 } 7904 if ((msgsize < rmin) || 7905 ((msgsize > rmax) && (rmax != INFPSZ)) || 7906 (mctl->len > strctlsz)) { 7907 return (ERANGE); 7908 } 7909 7910 /* 7911 * Setup uio and iov for data part 7912 */ 7913 iovs.iov_base = mdata->buf; 7914 iovs.iov_len = msgsize; 7915 uios.uio_iov = &iovs; 7916 uios.uio_iovcnt = 1; 7917 uios.uio_loffset = 0; 7918 uios.uio_segflg = UIO_USERSPACE; 7919 uios.uio_fmode = fmode; 7920 uios.uio_extflg = UIO_COPY_DEFAULT; 7921 uios.uio_resid = msgsize; 7922 uios.uio_offset = 0; 7923 7924 /* Ignore flow control in strput for HIPRI */ 7925 if (flag & MSG_HIPRI) 7926 flag |= MSG_IGNFLOW; 7927 7928 for (;;) { 7929 int done = 0; 7930 7931 /* 7932 * strput will always free the ctl mblk - even when strput 7933 * fails. 7934 */ 7935 if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) { 7936 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7937 "strputmsg out:stp %p out %d error %d", 7938 stp, 1, error); 7939 return (error); 7940 } 7941 /* 7942 * Verify that the whole message can be transferred by 7943 * strput. 7944 */ 7945 ASSERT(stp->sd_maxblk == INFPSZ || 7946 stp->sd_maxblk >= mdata->len); 7947 7948 msgsize = mdata->len; 7949 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 7950 mdata->len = msgsize; 7951 7952 if (error == 0) 7953 break; 7954 7955 if (error != EWOULDBLOCK) 7956 goto out; 7957 7958 mutex_enter(&stp->sd_lock); 7959 /* 7960 * Check for a missed wakeup. 7961 * Needed since strput did not hold sd_lock across 7962 * the canputnext. 7963 */ 7964 if (bcanputnext(wqp, pri)) { 7965 /* Try again */ 7966 mutex_exit(&stp->sd_lock); 7967 continue; 7968 } 7969 TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT, 7970 "strputmsg wait:stp %p waits pri %d", stp, pri); 7971 if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1, 7972 &done)) != 0) || done) { 7973 mutex_exit(&stp->sd_lock); 7974 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7975 "strputmsg out:q %p out %d error %d", 7976 stp, 0, error); 7977 return (error); 7978 } 7979 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE, 7980 "strputmsg wake:stp %p wakes", stp); 7981 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7982 mutex_exit(&stp->sd_lock); 7983 return (error); 7984 } 7985 mutex_exit(&stp->sd_lock); 7986 } 7987 out: 7988 /* 7989 * For historic reasons, applications expect EAGAIN 7990 * when data mblk could not be allocated. so change 7991 * ENOMEM back to EAGAIN 7992 */ 7993 if (error == ENOMEM) 7994 error = EAGAIN; 7995 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7996 "strputmsg out:stp %p out %d error %d", stp, 2, error); 7997 return (error); 7998 } 7999 8000 /* 8001 * Put a message downstream. 8002 * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop. 8003 * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio 8004 * and the fmode parameter. 8005 * 8006 * This routine handles the consolidation private flags: 8007 * MSG_IGNERROR Ignore any stream head error except STPLEX. 8008 * MSG_HOLDSIG Hold signals while waiting for data. 8009 * MSG_IGNFLOW Don't check streams flow control. 8010 * 8011 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 8012 */ 8013 int 8014 kstrputmsg( 8015 struct vnode *vp, 8016 mblk_t *mctl, 8017 struct uio *uiop, 8018 ssize_t msgsize, 8019 unsigned char pri, 8020 int flag, 8021 int fmode) 8022 { 8023 struct stdata *stp; 8024 queue_t *wqp; 8025 ssize_t rmin, rmax; 8026 int error; 8027 8028 ASSERT(vp->v_stream); 8029 stp = vp->v_stream; 8030 wqp = stp->sd_wrq; 8031 if (AU_AUDITING()) 8032 audit_strputmsg(vp, NULL, NULL, pri, flag, fmode); 8033 if (mctl == NULL) 8034 return (EINVAL); 8035 8036 mutex_enter(&stp->sd_lock); 8037 8038 if ((error = i_straccess(stp, JCWRITE)) != 0) { 8039 mutex_exit(&stp->sd_lock); 8040 freemsg(mctl); 8041 return (error); 8042 } 8043 8044 if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) { 8045 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 8046 error = strwriteable(stp, B_FALSE, B_TRUE); 8047 if (error != 0) { 8048 mutex_exit(&stp->sd_lock); 8049 freemsg(mctl); 8050 return (error); 8051 } 8052 } 8053 } 8054 8055 mutex_exit(&stp->sd_lock); 8056 8057 /* 8058 * Check for legal flag value. 8059 */ 8060 switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) { 8061 case MSG_HIPRI: 8062 if (pri != 0) { 8063 freemsg(mctl); 8064 return (EINVAL); 8065 } 8066 break; 8067 case MSG_BAND: 8068 break; 8069 default: 8070 freemsg(mctl); 8071 return (EINVAL); 8072 } 8073 8074 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN, 8075 "kstrputmsg in:stp %p", stp); 8076 8077 /* get these values from those cached in the stream head */ 8078 rmin = stp->sd_qn_minpsz; 8079 rmax = stp->sd_qn_maxpsz; 8080 8081 /* 8082 * Make sure ctl and data sizes together fall within the 8083 * limits of the max and min receive packet sizes and do 8084 * not exceed system limit. 8085 */ 8086 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 8087 if (rmax == 0) { 8088 freemsg(mctl); 8089 return (ERANGE); 8090 } 8091 /* 8092 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 8093 * Needed to prevent partial failures in the strmakedata loop. 8094 */ 8095 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 8096 rmax = stp->sd_maxblk; 8097 8098 if (uiop == NULL) { 8099 msgsize = -1; 8100 rmin = -1; /* no range check for NULL data part */ 8101 } else { 8102 /* Use uio flags as well as the fmode parameter flags */ 8103 fmode |= uiop->uio_fmode; 8104 8105 if ((msgsize < rmin) || 8106 ((msgsize > rmax) && (rmax != INFPSZ))) { 8107 freemsg(mctl); 8108 return (ERANGE); 8109 } 8110 } 8111 8112 /* Ignore flow control in strput for HIPRI */ 8113 if (flag & MSG_HIPRI) 8114 flag |= MSG_IGNFLOW; 8115 8116 for (;;) { 8117 int done = 0; 8118 int waitflag; 8119 mblk_t *mp; 8120 8121 /* 8122 * strput will always free the ctl mblk - even when strput 8123 * fails. If MSG_IGNFLOW is set then any error returned 8124 * will cause us to break the loop, so we don't need a copy 8125 * of the message. If MSG_IGNFLOW is not set, then we can 8126 * get hit by flow control and be forced to try again. In 8127 * this case we need to have a copy of the message. We 8128 * do this using copymsg since the message may get modified 8129 * by something below us. 8130 * 8131 * We've observed that many TPI providers do not check db_ref 8132 * on the control messages but blindly reuse them for the 8133 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more 8134 * friendly to such providers than using dupmsg. Also, note 8135 * that sockfs uses MSG_IGNFLOW for all TPI control messages. 8136 * Only data messages are subject to flow control, hence 8137 * subject to this copymsg. 8138 */ 8139 if (flag & MSG_IGNFLOW) { 8140 mp = mctl; 8141 mctl = NULL; 8142 } else { 8143 do { 8144 /* 8145 * If a message has a free pointer, the message 8146 * must be dupmsg to maintain this pointer. 8147 * Code using this facility must be sure 8148 * that modules below will not change the 8149 * contents of the dblk without checking db_ref 8150 * first. If db_ref is > 1, then the module 8151 * needs to do a copymsg first. Otherwise, 8152 * the contents of the dblk may become 8153 * inconsistent because the freesmg/freeb below 8154 * may end up calling atomic_add_32_nv. 8155 * The atomic_add_32_nv in freeb (accessing 8156 * all of db_ref, db_type, db_flags, and 8157 * db_struioflag) does not prevent other threads 8158 * from concurrently trying to modify e.g. 8159 * db_type. 8160 */ 8161 if (mctl->b_datap->db_frtnp != NULL) 8162 mp = dupmsg(mctl); 8163 else 8164 mp = copymsg(mctl); 8165 8166 if (mp != NULL) 8167 break; 8168 8169 error = strwaitbuf(msgdsize(mctl), BPRI_MED); 8170 if (error) { 8171 freemsg(mctl); 8172 return (error); 8173 } 8174 } while (mp == NULL); 8175 } 8176 /* 8177 * Verify that all of msgsize can be transferred by 8178 * strput. 8179 */ 8180 ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize); 8181 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 8182 if (error == 0) 8183 break; 8184 8185 if (error != EWOULDBLOCK) 8186 goto out; 8187 8188 /* 8189 * IF MSG_IGNFLOW is set we should have broken out of loop 8190 * above. 8191 */ 8192 ASSERT(!(flag & MSG_IGNFLOW)); 8193 mutex_enter(&stp->sd_lock); 8194 /* 8195 * Check for a missed wakeup. 8196 * Needed since strput did not hold sd_lock across 8197 * the canputnext. 8198 */ 8199 if (bcanputnext(wqp, pri)) { 8200 /* Try again */ 8201 mutex_exit(&stp->sd_lock); 8202 continue; 8203 } 8204 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT, 8205 "kstrputmsg wait:stp %p waits pri %d", stp, pri); 8206 8207 waitflag = WRITEWAIT; 8208 if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) { 8209 if (flag & MSG_HOLDSIG) 8210 waitflag |= STR_NOSIG; 8211 if (flag & MSG_IGNERROR) 8212 waitflag |= STR_NOERROR; 8213 } 8214 if (((error = strwaitq(stp, waitflag, 8215 (ssize_t)0, fmode, -1, &done)) != 0) || done) { 8216 mutex_exit(&stp->sd_lock); 8217 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 8218 "kstrputmsg out:stp %p out %d error %d", 8219 stp, 0, error); 8220 freemsg(mctl); 8221 return (error); 8222 } 8223 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE, 8224 "kstrputmsg wake:stp %p wakes", stp); 8225 if ((error = i_straccess(stp, JCWRITE)) != 0) { 8226 mutex_exit(&stp->sd_lock); 8227 freemsg(mctl); 8228 return (error); 8229 } 8230 mutex_exit(&stp->sd_lock); 8231 } 8232 out: 8233 freemsg(mctl); 8234 /* 8235 * For historic reasons, applications expect EAGAIN 8236 * when data mblk could not be allocated. so change 8237 * ENOMEM back to EAGAIN 8238 */ 8239 if (error == ENOMEM) 8240 error = EAGAIN; 8241 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 8242 "kstrputmsg out:stp %p out %d error %d", stp, 2, error); 8243 return (error); 8244 } 8245 8246 /* 8247 * Determines whether the necessary conditions are set on a stream 8248 * for it to be readable, writeable, or have exceptions. 8249 * 8250 * strpoll handles the consolidation private events: 8251 * POLLNOERR Do not return POLLERR even if there are stream 8252 * head errors. 8253 * Used by sockfs. 8254 * POLLRDDATA Do not return POLLIN unless at least one message on 8255 * the queue contains one or more M_DATA mblks. Thus 8256 * when this flag is set a queue with only 8257 * M_PROTO/M_PCPROTO mblks does not return POLLIN. 8258 * Used by sockfs to ignore T_EXDATA_IND messages. 8259 * 8260 * Note: POLLRDDATA assumes that synch streams only return messages with 8261 * an M_DATA attached (i.e. not messages consisting of only 8262 * an M_PROTO/M_PCPROTO part). 8263 */ 8264 int 8265 strpoll(struct stdata *stp, short events_arg, int anyyet, short *reventsp, 8266 struct pollhead **phpp) 8267 { 8268 int events = (ushort_t)events_arg; 8269 int retevents = 0; 8270 mblk_t *mp; 8271 qband_t *qbp; 8272 long sd_flags = stp->sd_flag; 8273 int headlocked = 0; 8274 8275 /* 8276 * For performance, a single 'if' tests for most possible edge 8277 * conditions in one shot 8278 */ 8279 if (sd_flags & (STPLEX | STRDERR | STWRERR)) { 8280 if (sd_flags & STPLEX) { 8281 *reventsp = POLLNVAL; 8282 return (EINVAL); 8283 } 8284 if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) && 8285 (sd_flags & STRDERR)) || 8286 ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) && 8287 (sd_flags & STWRERR))) { 8288 if (!(events & POLLNOERR)) { 8289 *reventsp = POLLERR; 8290 return (0); 8291 } 8292 } 8293 } 8294 if (sd_flags & STRHUP) { 8295 retevents |= POLLHUP; 8296 } else if (events & (POLLWRNORM | POLLWRBAND)) { 8297 queue_t *tq; 8298 queue_t *qp = stp->sd_wrq; 8299 8300 claimstr(qp); 8301 /* Find next module forward that has a service procedure */ 8302 tq = qp->q_next->q_nfsrv; 8303 ASSERT(tq != NULL); 8304 8305 if (polllock(&stp->sd_pollist, QLOCK(tq)) != 0) { 8306 releasestr(qp); 8307 *reventsp = POLLNVAL; 8308 return (0); 8309 } 8310 if (events & POLLWRNORM) { 8311 queue_t *sqp; 8312 8313 if (tq->q_flag & QFULL) 8314 /* ensure backq svc procedure runs */ 8315 tq->q_flag |= QWANTW; 8316 else if ((sqp = stp->sd_struiowrq) != NULL) { 8317 /* Check sync stream barrier write q */ 8318 mutex_exit(QLOCK(tq)); 8319 if (polllock(&stp->sd_pollist, 8320 QLOCK(sqp)) != 0) { 8321 releasestr(qp); 8322 *reventsp = POLLNVAL; 8323 return (0); 8324 } 8325 if (sqp->q_flag & QFULL) 8326 /* ensure pollwakeup() is done */ 8327 sqp->q_flag |= QWANTWSYNC; 8328 else 8329 retevents |= POLLOUT; 8330 /* More write events to process ??? */ 8331 if (! (events & POLLWRBAND)) { 8332 mutex_exit(QLOCK(sqp)); 8333 releasestr(qp); 8334 goto chkrd; 8335 } 8336 mutex_exit(QLOCK(sqp)); 8337 if (polllock(&stp->sd_pollist, 8338 QLOCK(tq)) != 0) { 8339 releasestr(qp); 8340 *reventsp = POLLNVAL; 8341 return (0); 8342 } 8343 } else 8344 retevents |= POLLOUT; 8345 } 8346 if (events & POLLWRBAND) { 8347 qbp = tq->q_bandp; 8348 if (qbp) { 8349 while (qbp) { 8350 if (qbp->qb_flag & QB_FULL) 8351 qbp->qb_flag |= QB_WANTW; 8352 else 8353 retevents |= POLLWRBAND; 8354 qbp = qbp->qb_next; 8355 } 8356 } else { 8357 retevents |= POLLWRBAND; 8358 } 8359 } 8360 mutex_exit(QLOCK(tq)); 8361 releasestr(qp); 8362 } 8363 chkrd: 8364 if (sd_flags & STRPRI) { 8365 retevents |= (events & POLLPRI); 8366 } else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) { 8367 queue_t *qp = _RD(stp->sd_wrq); 8368 int normevents = (events & (POLLIN | POLLRDNORM)); 8369 8370 /* 8371 * Note: Need to do polllock() here since ps_lock may be 8372 * held. See bug 4191544. 8373 */ 8374 if (polllock(&stp->sd_pollist, &stp->sd_lock) != 0) { 8375 *reventsp = POLLNVAL; 8376 return (0); 8377 } 8378 headlocked = 1; 8379 mp = qp->q_first; 8380 while (mp) { 8381 /* 8382 * For POLLRDDATA we scan b_cont and b_next until we 8383 * find an M_DATA. 8384 */ 8385 if ((events & POLLRDDATA) && 8386 mp->b_datap->db_type != M_DATA) { 8387 mblk_t *nmp = mp->b_cont; 8388 8389 while (nmp != NULL && 8390 nmp->b_datap->db_type != M_DATA) 8391 nmp = nmp->b_cont; 8392 if (nmp == NULL) { 8393 mp = mp->b_next; 8394 continue; 8395 } 8396 } 8397 if (mp->b_band == 0) 8398 retevents |= normevents; 8399 else 8400 retevents |= (events & (POLLIN | POLLRDBAND)); 8401 break; 8402 } 8403 if (!(retevents & normevents) && (stp->sd_wakeq & RSLEEP)) { 8404 /* 8405 * Sync stream barrier read queue has data. 8406 */ 8407 retevents |= normevents; 8408 } 8409 /* Treat eof as normal data */ 8410 if (sd_flags & STREOF) 8411 retevents |= normevents; 8412 } 8413 8414 /* 8415 * Pass back a pollhead if no events are pending or if edge-triggering 8416 * has been configured on this resource. 8417 */ 8418 if ((retevents == 0 && !anyyet) || (events & POLLET)) { 8419 *phpp = &stp->sd_pollist; 8420 if (headlocked == 0) { 8421 if (polllock(&stp->sd_pollist, &stp->sd_lock) != 0) { 8422 *reventsp = POLLNVAL; 8423 return (0); 8424 } 8425 headlocked = 1; 8426 } 8427 stp->sd_rput_opt |= SR_POLLIN; 8428 } 8429 8430 *reventsp = (short)retevents; 8431 if (headlocked) 8432 mutex_exit(&stp->sd_lock); 8433 return (0); 8434 } 8435 8436 /* 8437 * The purpose of putback() is to assure sleeping polls/reads 8438 * are awakened when there are no new messages arriving at the, 8439 * stream head, and a message is placed back on the read queue. 8440 * 8441 * sd_lock must be held when messages are placed back on stream 8442 * head. (getq() holds sd_lock when it removes messages from 8443 * the queue) 8444 */ 8445 8446 static void 8447 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band) 8448 { 8449 mblk_t *qfirst; 8450 ASSERT(MUTEX_HELD(&stp->sd_lock)); 8451 8452 /* 8453 * As a result of lock-step ordering around q_lock and sd_lock, 8454 * it's possible for function calls like putnext() and 8455 * canputnext() to get an inaccurate picture of how much 8456 * data is really being processed at the stream head. 8457 * We only consolidate with existing messages on the queue 8458 * if the length of the message we want to put back is smaller 8459 * than the queue hiwater mark. 8460 */ 8461 if ((stp->sd_rput_opt & SR_CONSOL_DATA) && 8462 (DB_TYPE(bp) == M_DATA) && ((qfirst = q->q_first) != NULL) && 8463 (DB_TYPE(qfirst) == M_DATA) && 8464 ((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0) && 8465 ((bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT)) == 0) && 8466 (mp_cont_len(bp, NULL) < q->q_hiwat)) { 8467 /* 8468 * We use the same logic as defined in strrput() 8469 * but in reverse as we are putting back onto the 8470 * queue and want to retain byte ordering. 8471 * Consolidate M_DATA messages with M_DATA ONLY. 8472 * strrput() allows the consolidation of M_DATA onto 8473 * M_PROTO | M_PCPROTO but not the other way round. 8474 * 8475 * The consolidation does not take place if the message 8476 * we are returning to the queue is marked with either 8477 * of the marks or the delim flag or if q_first 8478 * is marked with MSGMARK. The MSGMARK check is needed to 8479 * handle the odd semantics of MSGMARK where essentially 8480 * the whole message is to be treated as marked. 8481 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first 8482 * to the front of the b_cont chain. 8483 */ 8484 rmvq_noenab(q, qfirst); 8485 8486 /* 8487 * The first message in the b_cont list 8488 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 8489 * We need to handle the case where we 8490 * are appending: 8491 * 8492 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 8493 * 2) a MSGMARKNEXT to a plain message. 8494 * 3) a MSGNOTMARKNEXT to a plain message 8495 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 8496 * message. 8497 * 8498 * Thus we never append a MSGMARKNEXT or 8499 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 8500 */ 8501 if (qfirst->b_flag & MSGMARKNEXT) { 8502 bp->b_flag |= MSGMARKNEXT; 8503 bp->b_flag &= ~MSGNOTMARKNEXT; 8504 qfirst->b_flag &= ~MSGMARKNEXT; 8505 } else if (qfirst->b_flag & MSGNOTMARKNEXT) { 8506 bp->b_flag |= MSGNOTMARKNEXT; 8507 qfirst->b_flag &= ~MSGNOTMARKNEXT; 8508 } 8509 8510 linkb(bp, qfirst); 8511 } 8512 (void) putbq(q, bp); 8513 8514 /* 8515 * A message may have come in when the sd_lock was dropped in the 8516 * calling routine. If this is the case and STR*ATMARK info was 8517 * received, need to move that from the stream head to the q_last 8518 * so that SIOCATMARK can return the proper value. 8519 */ 8520 if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) { 8521 unsigned short *flagp = &q->q_last->b_flag; 8522 uint_t b_flag = (uint_t)*flagp; 8523 8524 if (stp->sd_flag & STRATMARK) { 8525 b_flag &= ~MSGNOTMARKNEXT; 8526 b_flag |= MSGMARKNEXT; 8527 stp->sd_flag &= ~STRATMARK; 8528 } else { 8529 b_flag &= ~MSGMARKNEXT; 8530 b_flag |= MSGNOTMARKNEXT; 8531 stp->sd_flag &= ~STRNOTATMARK; 8532 } 8533 *flagp = (unsigned short) b_flag; 8534 } 8535 8536 #ifdef DEBUG 8537 /* 8538 * Make sure that the flags are not messed up. 8539 */ 8540 { 8541 mblk_t *mp; 8542 mp = q->q_last; 8543 while (mp != NULL) { 8544 ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 8545 (MSGMARKNEXT|MSGNOTMARKNEXT)); 8546 mp = mp->b_cont; 8547 } 8548 } 8549 #endif 8550 if (q->q_first == bp) { 8551 short pollevents; 8552 8553 if (stp->sd_flag & RSLEEP) { 8554 stp->sd_flag &= ~RSLEEP; 8555 cv_broadcast(&q->q_wait); 8556 } 8557 if (stp->sd_flag & STRPRI) { 8558 pollevents = POLLPRI; 8559 } else { 8560 if (band == 0) { 8561 if (!(stp->sd_rput_opt & SR_POLLIN)) 8562 return; 8563 stp->sd_rput_opt &= ~SR_POLLIN; 8564 pollevents = POLLIN | POLLRDNORM; 8565 } else { 8566 pollevents = POLLIN | POLLRDBAND; 8567 } 8568 } 8569 mutex_exit(&stp->sd_lock); 8570 pollwakeup(&stp->sd_pollist, pollevents); 8571 mutex_enter(&stp->sd_lock); 8572 } 8573 } 8574 8575 /* 8576 * Return the held vnode attached to the stream head of a 8577 * given queue 8578 * It is the responsibility of the calling routine to ensure 8579 * that the queue does not go away (e.g. pop). 8580 */ 8581 vnode_t * 8582 strq2vp(queue_t *qp) 8583 { 8584 vnode_t *vp; 8585 vp = STREAM(qp)->sd_vnode; 8586 ASSERT(vp != NULL); 8587 VN_HOLD(vp); 8588 return (vp); 8589 } 8590 8591 /* 8592 * return the stream head write queue for the given vp 8593 * It is the responsibility of the calling routine to ensure 8594 * that the stream or vnode do not close. 8595 */ 8596 queue_t * 8597 strvp2wq(vnode_t *vp) 8598 { 8599 ASSERT(vp->v_stream != NULL); 8600 return (vp->v_stream->sd_wrq); 8601 } 8602 8603 /* 8604 * pollwakeup stream head 8605 * It is the responsibility of the calling routine to ensure 8606 * that the stream or vnode do not close. 8607 */ 8608 void 8609 strpollwakeup(vnode_t *vp, short event) 8610 { 8611 ASSERT(vp->v_stream); 8612 pollwakeup(&vp->v_stream->sd_pollist, event); 8613 } 8614 8615 /* 8616 * Mate the stream heads of two vnodes together. If the two vnodes are the 8617 * same, we just make the write-side point at the read-side -- otherwise, 8618 * we do a full mate. Only works on vnodes associated with streams that are 8619 * still being built and thus have only a stream head. 8620 */ 8621 void 8622 strmate(vnode_t *vp1, vnode_t *vp2) 8623 { 8624 queue_t *wrq1 = strvp2wq(vp1); 8625 queue_t *wrq2 = strvp2wq(vp2); 8626 8627 /* 8628 * Verify that there are no modules on the stream yet. We also 8629 * rely on the stream head always having a service procedure to 8630 * avoid tweaking q_nfsrv. 8631 */ 8632 ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL); 8633 ASSERT(wrq1->q_qinfo->qi_srvp != NULL); 8634 ASSERT(wrq2->q_qinfo->qi_srvp != NULL); 8635 8636 /* 8637 * If the queues are the same, just twist; otherwise do a full mate. 8638 */ 8639 if (wrq1 == wrq2) { 8640 wrq1->q_next = _RD(wrq1); 8641 } else { 8642 wrq1->q_next = _RD(wrq2); 8643 wrq2->q_next = _RD(wrq1); 8644 STREAM(wrq1)->sd_mate = STREAM(wrq2); 8645 STREAM(wrq1)->sd_flag |= STRMATE; 8646 STREAM(wrq2)->sd_mate = STREAM(wrq1); 8647 STREAM(wrq2)->sd_flag |= STRMATE; 8648 } 8649 } 8650 8651 /* 8652 * XXX will go away when console is correctly fixed. 8653 * Clean up the console PIDS, from previous I_SETSIG, 8654 * called only for cnopen which never calls strclean(). 8655 */ 8656 void 8657 str_cn_clean(struct vnode *vp) 8658 { 8659 strsig_t *ssp, *pssp, *tssp; 8660 struct stdata *stp; 8661 struct pid *pidp; 8662 int update = 0; 8663 8664 ASSERT(vp->v_stream); 8665 stp = vp->v_stream; 8666 pssp = NULL; 8667 mutex_enter(&stp->sd_lock); 8668 ssp = stp->sd_siglist; 8669 while (ssp) { 8670 mutex_enter(&pidlock); 8671 pidp = ssp->ss_pidp; 8672 /* 8673 * Get rid of PID if the proc is gone. 8674 */ 8675 if (pidp->pid_prinactive) { 8676 tssp = ssp->ss_next; 8677 if (pssp) 8678 pssp->ss_next = tssp; 8679 else 8680 stp->sd_siglist = tssp; 8681 ASSERT(pidp->pid_ref <= 1); 8682 PID_RELE(ssp->ss_pidp); 8683 mutex_exit(&pidlock); 8684 kmem_free(ssp, sizeof (strsig_t)); 8685 update = 1; 8686 ssp = tssp; 8687 continue; 8688 } else 8689 mutex_exit(&pidlock); 8690 pssp = ssp; 8691 ssp = ssp->ss_next; 8692 } 8693 if (update) { 8694 stp->sd_sigflags = 0; 8695 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 8696 stp->sd_sigflags |= ssp->ss_events; 8697 } 8698 mutex_exit(&stp->sd_lock); 8699 } 8700 8701 /* 8702 * Return B_TRUE if there is data in the message, B_FALSE otherwise. 8703 */ 8704 static boolean_t 8705 msghasdata(mblk_t *bp) 8706 { 8707 for (; bp; bp = bp->b_cont) 8708 if (bp->b_datap->db_type == M_DATA) { 8709 ASSERT(bp->b_wptr >= bp->b_rptr); 8710 if (bp->b_wptr > bp->b_rptr) 8711 return (B_TRUE); 8712 } 8713 return (B_FALSE); 8714 }