1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 27 * Copyright 2017 Joyent, Inc. 28 * Copyright 2019 OmniOS Community Edition (OmniOSce) Association. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/sysmacros.h> 33 #include <sys/param.h> 34 #include <sys/errno.h> 35 #include <sys/signal.h> 36 #include <sys/stat.h> 37 #include <sys/proc.h> 38 #include <sys/cred.h> 39 #include <sys/user.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/stream.h> 43 #include <sys/strsubr.h> 44 #include <sys/stropts.h> 45 #include <sys/tihdr.h> 46 #include <sys/var.h> 47 #include <sys/poll.h> 48 #include <sys/termio.h> 49 #include <sys/ttold.h> 50 #include <sys/systm.h> 51 #include <sys/uio.h> 52 #include <sys/cmn_err.h> 53 #include <sys/sad.h> 54 #include <sys/netstack.h> 55 #include <sys/priocntl.h> 56 #include <sys/jioctl.h> 57 #include <sys/procset.h> 58 #include <sys/session.h> 59 #include <sys/kmem.h> 60 #include <sys/filio.h> 61 #include <sys/vtrace.h> 62 #include <sys/debug.h> 63 #include <sys/strredir.h> 64 #include <sys/fs/fifonode.h> 65 #include <sys/fs/snode.h> 66 #include <sys/strlog.h> 67 #include <sys/strsun.h> 68 #include <sys/project.h> 69 #include <sys/kbio.h> 70 #include <sys/msio.h> 71 #include <sys/tty.h> 72 #include <sys/ptyvar.h> 73 #include <sys/vuid_event.h> 74 #include <sys/modctl.h> 75 #include <sys/sunddi.h> 76 #include <sys/sunldi_impl.h> 77 #include <sys/autoconf.h> 78 #include <sys/policy.h> 79 #include <sys/dld.h> 80 #include <sys/zone.h> 81 #include <c2/audit.h> 82 83 /* 84 * This define helps improve the readability of streams code while 85 * still maintaining a very old streams performance enhancement. The 86 * performance enhancement basically involved having all callers 87 * of straccess() perform the first check that straccess() will do 88 * locally before actually calling straccess(). (There by reducing 89 * the number of unnecessary calls to straccess().) 90 */ 91 #define i_straccess(x, y) ((stp->sd_sidp == NULL) ? 0 : \ 92 (stp->sd_vnode->v_type == VFIFO) ? 0 : \ 93 straccess((x), (y))) 94 95 /* 96 * what is mblk_pull_len? 97 * 98 * If a streams message consists of many short messages, 99 * a performance degradation occurs from copyout overhead. 100 * To decrease the per mblk overhead, messages that are 101 * likely to consist of many small mblks are pulled up into 102 * one continuous chunk of memory. 103 * 104 * To avoid the processing overhead of examining every 105 * mblk, a quick heuristic is used. If the first mblk in 106 * the message is shorter than mblk_pull_len, it is likely 107 * that the rest of the mblk will be short. 108 * 109 * This heuristic was decided upon after performance tests 110 * indicated that anything more complex slowed down the main 111 * code path. 112 */ 113 #define MBLK_PULL_LEN 64 114 uint32_t mblk_pull_len = MBLK_PULL_LEN; 115 116 /* 117 * The sgttyb_handling flag controls the handling of the old BSD 118 * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows: 119 * 120 * 0 - Emit no warnings at all and retain old, broken behavior. 121 * 1 - Emit no warnings and silently handle new semantics. 122 * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used 123 * (once per system invocation). Handle with new semantics. 124 * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is 125 * made (so that offenders drop core and are easy to debug). 126 * 127 * The "new semantics" are that TIOCGETP returns B38400 for 128 * sg_[io]speed if the corresponding value is over B38400, and that 129 * TIOCSET[PN] accept B38400 in these cases to mean "retain current 130 * bit rate." 131 */ 132 int sgttyb_handling = 1; 133 static boolean_t sgttyb_complaint; 134 135 /* don't push drcompat module by default on Style-2 streams */ 136 static int push_drcompat = 0; 137 138 /* 139 * id value used to distinguish between different ioctl messages 140 */ 141 static uint32_t ioc_id; 142 143 static void putback(struct stdata *, queue_t *, mblk_t *, int); 144 static void strcleanall(struct vnode *); 145 static int strwsrv(queue_t *); 146 static int strdocmd(struct stdata *, struct strcmd *, cred_t *); 147 148 /* 149 * qinit and module_info structures for stream head read and write queues 150 */ 151 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW }; 152 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 }; 153 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info }; 154 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info }; 155 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT, 156 FIFOLOWAT }; 157 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 }; 158 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info }; 159 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info }; 160 161 extern kmutex_t strresources; /* protects global resources */ 162 extern kmutex_t muxifier; /* single-threads multiplexor creation */ 163 164 static boolean_t msghasdata(mblk_t *bp); 165 #define msgnodata(bp) (!msghasdata(bp)) 166 167 /* 168 * Stream head locking notes: 169 * There are four monitors associated with the stream head: 170 * 1. v_stream monitor: in stropen() and strclose() v_lock 171 * is held while the association of vnode and stream 172 * head is established or tested for. 173 * 2. open/close/push/pop monitor: sd_lock is held while each 174 * thread bids for exclusive access to this monitor 175 * for opening or closing a stream. In addition, this 176 * monitor is entered during pushes and pops. This 177 * guarantees that during plumbing operations there 178 * is only one thread trying to change the plumbing. 179 * Any other threads present in the stream are only 180 * using the plumbing. 181 * 3. read/write monitor: in the case of read, a thread holds 182 * sd_lock while trying to get data from the stream 183 * head queue. if there is none to fulfill a read 184 * request, it sets RSLEEP and calls cv_wait_sig() down 185 * in strwaitq() to await the arrival of new data. 186 * when new data arrives in strrput(), sd_lock is acquired 187 * before testing for RSLEEP and calling cv_broadcast(). 188 * the behavior of strwrite(), strwsrv(), and WSLEEP 189 * mirror this. 190 * 4. ioctl monitor: sd_lock is gotten to ensure that only one 191 * thread is doing an ioctl at a time. 192 */ 193 194 static int 195 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name, 196 int anchor, cred_t *crp, uint_t anchor_zoneid) 197 { 198 int error; 199 fmodsw_impl_t *fp; 200 201 if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) { 202 error = (stp->sd_flag & STRHUP) ? ENXIO : EIO; 203 return (error); 204 } 205 if (stp->sd_pushcnt >= nstrpush) { 206 return (EINVAL); 207 } 208 209 if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) { 210 stp->sd_flag |= STREOPENFAIL; 211 return (EINVAL); 212 } 213 214 /* 215 * push new module and call its open routine via qattach 216 */ 217 if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0) 218 return (error); 219 220 /* 221 * Check to see if caller wants a STREAMS anchor 222 * put at this place in the stream, and add if so. 223 */ 224 mutex_enter(&stp->sd_lock); 225 if (anchor == stp->sd_pushcnt) { 226 stp->sd_anchor = stp->sd_pushcnt; 227 stp->sd_anchorzone = anchor_zoneid; 228 } 229 mutex_exit(&stp->sd_lock); 230 231 return (0); 232 } 233 234 /* 235 * Open a stream device. 236 */ 237 int 238 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp) 239 { 240 struct stdata *stp; 241 queue_t *qp; 242 int s; 243 dev_t dummydev, savedev; 244 struct autopush *ap; 245 struct dlautopush dlap; 246 int error = 0; 247 ssize_t rmin, rmax; 248 int cloneopen; 249 queue_t *brq; 250 major_t major; 251 str_stack_t *ss; 252 zoneid_t zoneid; 253 uint_t anchor; 254 255 /* 256 * If the stream already exists, wait for any open in progress 257 * to complete, then call the open function of each module and 258 * driver in the stream. Otherwise create the stream. 259 */ 260 TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp); 261 retry: 262 mutex_enter(&vp->v_lock); 263 if ((stp = vp->v_stream) != NULL) { 264 265 /* 266 * Waiting for stream to be created to device 267 * due to another open. 268 */ 269 mutex_exit(&vp->v_lock); 270 271 if (STRMATED(stp)) { 272 struct stdata *strmatep = stp->sd_mate; 273 274 STRLOCKMATES(stp); 275 if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 276 if (flag & (FNDELAY|FNONBLOCK)) { 277 error = EAGAIN; 278 mutex_exit(&strmatep->sd_lock); 279 goto ckreturn; 280 } 281 mutex_exit(&stp->sd_lock); 282 if (!cv_wait_sig(&strmatep->sd_monitor, 283 &strmatep->sd_lock)) { 284 error = EINTR; 285 mutex_exit(&strmatep->sd_lock); 286 mutex_enter(&stp->sd_lock); 287 goto ckreturn; 288 } 289 mutex_exit(&strmatep->sd_lock); 290 goto retry; 291 } 292 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 293 if (flag & (FNDELAY|FNONBLOCK)) { 294 error = EAGAIN; 295 mutex_exit(&strmatep->sd_lock); 296 goto ckreturn; 297 } 298 mutex_exit(&strmatep->sd_lock); 299 if (!cv_wait_sig(&stp->sd_monitor, 300 &stp->sd_lock)) { 301 error = EINTR; 302 goto ckreturn; 303 } 304 mutex_exit(&stp->sd_lock); 305 goto retry; 306 } 307 308 if (stp->sd_flag & (STRDERR|STWRERR)) { 309 error = EIO; 310 mutex_exit(&strmatep->sd_lock); 311 goto ckreturn; 312 } 313 314 stp->sd_flag |= STWOPEN; 315 STRUNLOCKMATES(stp); 316 } else { 317 mutex_enter(&stp->sd_lock); 318 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 319 if (flag & (FNDELAY|FNONBLOCK)) { 320 error = EAGAIN; 321 goto ckreturn; 322 } 323 if (!cv_wait_sig(&stp->sd_monitor, 324 &stp->sd_lock)) { 325 error = EINTR; 326 goto ckreturn; 327 } 328 mutex_exit(&stp->sd_lock); 329 goto retry; /* could be clone! */ 330 } 331 332 if (stp->sd_flag & (STRDERR|STWRERR)) { 333 error = EIO; 334 goto ckreturn; 335 } 336 337 stp->sd_flag |= STWOPEN; 338 mutex_exit(&stp->sd_lock); 339 } 340 341 /* 342 * Open all modules and devices down stream to notify 343 * that another user is streaming. For modules, set the 344 * last argument to MODOPEN and do not pass any open flags. 345 * Ignore dummydev since this is not the first open. 346 */ 347 claimstr(stp->sd_wrq); 348 qp = stp->sd_wrq; 349 while (_SAMESTR(qp)) { 350 qp = qp->q_next; 351 if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0) 352 break; 353 } 354 releasestr(stp->sd_wrq); 355 mutex_enter(&stp->sd_lock); 356 stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR); 357 stp->sd_rerror = 0; 358 stp->sd_werror = 0; 359 ckreturn: 360 cv_broadcast(&stp->sd_monitor); 361 mutex_exit(&stp->sd_lock); 362 return (error); 363 } 364 365 /* 366 * This vnode isn't streaming. SPECFS already 367 * checked for multiple vnodes pointing to the 368 * same stream, so create a stream to the driver. 369 */ 370 qp = allocq(); 371 stp = shalloc(qp); 372 373 /* 374 * Initialize stream head. shalloc() has given us 375 * exclusive access, and we have the vnode locked; 376 * we can do whatever we want with stp. 377 */ 378 stp->sd_flag = STWOPEN; 379 stp->sd_siglist = NULL; 380 stp->sd_pollist.ph_list = NULL; 381 stp->sd_sigflags = 0; 382 stp->sd_mark = NULL; 383 stp->sd_closetime = STRTIMOUT; 384 stp->sd_sidp = NULL; 385 stp->sd_pgidp = NULL; 386 stp->sd_vnode = vp; 387 stp->sd_pvnode = NULL; 388 stp->sd_rerror = 0; 389 stp->sd_werror = 0; 390 stp->sd_wroff = 0; 391 stp->sd_tail = 0; 392 stp->sd_iocblk = NULL; 393 stp->sd_cmdblk = NULL; 394 stp->sd_pushcnt = 0; 395 stp->sd_qn_minpsz = 0; 396 stp->sd_qn_maxpsz = INFPSZ - 1; /* used to check for initialization */ 397 stp->sd_maxblk = INFPSZ; 398 qp->q_ptr = _WR(qp)->q_ptr = stp; 399 STREAM(qp) = STREAM(_WR(qp)) = stp; 400 vp->v_stream = stp; 401 mutex_exit(&vp->v_lock); 402 if (vp->v_type == VFIFO) { 403 stp->sd_flag |= OLDNDELAY; 404 /* 405 * This means, both for pipes and fifos 406 * strwrite will send SIGPIPE if the other 407 * end is closed. For putmsg it depends 408 * on whether it is a XPG4_2 application 409 * or not 410 */ 411 stp->sd_wput_opt = SW_SIGPIPE; 412 413 /* setq might sleep in kmem_alloc - avoid holding locks. */ 414 setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE, 415 SQ_CI|SQ_CO, B_FALSE); 416 417 set_qend(qp); 418 stp->sd_strtab = fifo_getinfo(); 419 _WR(qp)->q_nfsrv = _WR(qp); 420 qp->q_nfsrv = qp; 421 /* 422 * Wake up others that are waiting for stream to be created. 423 */ 424 mutex_enter(&stp->sd_lock); 425 /* 426 * nothing is be pushed on stream yet, so 427 * optimized stream head packetsizes are just that 428 * of the read queue 429 */ 430 stp->sd_qn_minpsz = qp->q_minpsz; 431 stp->sd_qn_maxpsz = qp->q_maxpsz; 432 stp->sd_flag &= ~STWOPEN; 433 goto fifo_opendone; 434 } 435 /* setq might sleep in kmem_alloc - avoid holding locks. */ 436 setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE); 437 438 set_qend(qp); 439 440 /* 441 * Open driver and create stream to it (via qattach). 442 */ 443 savedev = *devp; 444 cloneopen = (getmajor(*devp) == clone_major); 445 if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) { 446 mutex_enter(&vp->v_lock); 447 vp->v_stream = NULL; 448 mutex_exit(&vp->v_lock); 449 mutex_enter(&stp->sd_lock); 450 cv_broadcast(&stp->sd_monitor); 451 mutex_exit(&stp->sd_lock); 452 freeq(_RD(qp)); 453 shfree(stp); 454 return (error); 455 } 456 /* 457 * Set sd_strtab after open in order to handle clonable drivers 458 */ 459 stp->sd_strtab = STREAMSTAB(getmajor(*devp)); 460 461 /* 462 * Historical note: dummydev used to be be prior to the initial 463 * open (via qattach above), which made the value seen 464 * inconsistent between an I_PUSH and an autopush of a module. 465 */ 466 dummydev = *devp; 467 468 /* 469 * For clone open of old style (Q not associated) network driver, 470 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH 471 */ 472 brq = _RD(_WR(qp)->q_next); 473 major = getmajor(*devp); 474 if (push_drcompat && cloneopen && NETWORK_DRV(major) && 475 ((brq->q_flag & _QASSOCIATED) == 0)) { 476 if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0) 477 cmn_err(CE_WARN, "cannot push " DRMODNAME 478 " streams module"); 479 } 480 481 if (!NETWORK_DRV(major)) { 482 savedev = *devp; 483 } else { 484 /* 485 * For network devices, process differently based on the 486 * return value from dld_autopush(): 487 * 488 * 0: the passed-in device points to a GLDv3 datalink with 489 * per-link autopush configuration; use that configuration 490 * and ignore any per-driver autopush configuration. 491 * 492 * 1: the passed-in device points to a physical GLDv3 493 * datalink without per-link autopush configuration. The 494 * passed in device was changed to refer to the actual 495 * physical device (if it's not already); we use that new 496 * device to look up any per-driver autopush configuration. 497 * 498 * -1: neither of the above cases applied; use the initial 499 * device to look up any per-driver autopush configuration. 500 */ 501 switch (dld_autopush(&savedev, &dlap)) { 502 case 0: 503 zoneid = crgetzoneid(crp); 504 for (s = 0; s < dlap.dap_npush; s++) { 505 error = push_mod(qp, &dummydev, stp, 506 dlap.dap_aplist[s], dlap.dap_anchor, crp, 507 zoneid); 508 if (error != 0) 509 break; 510 } 511 goto opendone; 512 case 1: 513 break; 514 case -1: 515 savedev = *devp; 516 break; 517 } 518 } 519 /* 520 * Find the autopush configuration based on "savedev". Start with the 521 * global zone. If not found check in the local zone. 522 */ 523 zoneid = GLOBAL_ZONEID; 524 retryap: 525 ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))-> 526 netstack_str; 527 if ((ap = sad_ap_find_by_dev(savedev, ss)) == NULL) { 528 netstack_rele(ss->ss_netstack); 529 if (zoneid == GLOBAL_ZONEID) { 530 /* 531 * None found. Also look in the zone's autopush table. 532 */ 533 zoneid = crgetzoneid(crp); 534 if (zoneid != GLOBAL_ZONEID) 535 goto retryap; 536 } 537 goto opendone; 538 } 539 anchor = ap->ap_anchor; 540 zoneid = crgetzoneid(crp); 541 for (s = 0; s < ap->ap_npush; s++) { 542 error = push_mod(qp, &dummydev, stp, ap->ap_list[s], 543 anchor, crp, zoneid); 544 if (error != 0) 545 break; 546 } 547 sad_ap_rele(ap, ss); 548 netstack_rele(ss->ss_netstack); 549 550 opendone: 551 552 /* 553 * let specfs know that open failed part way through 554 */ 555 if (error) { 556 mutex_enter(&stp->sd_lock); 557 stp->sd_flag |= STREOPENFAIL; 558 mutex_exit(&stp->sd_lock); 559 } 560 561 /* 562 * Wake up others that are waiting for stream to be created. 563 */ 564 mutex_enter(&stp->sd_lock); 565 stp->sd_flag &= ~STWOPEN; 566 567 /* 568 * As a performance concern we are caching the values of 569 * q_minpsz and q_maxpsz of the module below the stream 570 * head in the stream head. 571 */ 572 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 573 rmin = stp->sd_wrq->q_next->q_minpsz; 574 rmax = stp->sd_wrq->q_next->q_maxpsz; 575 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 576 577 /* do this processing here as a performance concern */ 578 if (strmsgsz != 0) { 579 if (rmax == INFPSZ) 580 rmax = strmsgsz; 581 else 582 rmax = MIN(strmsgsz, rmax); 583 } 584 585 mutex_enter(QLOCK(stp->sd_wrq)); 586 stp->sd_qn_minpsz = rmin; 587 stp->sd_qn_maxpsz = rmax; 588 mutex_exit(QLOCK(stp->sd_wrq)); 589 590 fifo_opendone: 591 cv_broadcast(&stp->sd_monitor); 592 mutex_exit(&stp->sd_lock); 593 return (error); 594 } 595 596 static int strsink(queue_t *, mblk_t *); 597 static struct qinit deadrend = { 598 strsink, NULL, NULL, NULL, NULL, &strm_info, NULL 599 }; 600 static struct qinit deadwend = { 601 NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL 602 }; 603 604 /* 605 * Close a stream. 606 * This is called from closef() on the last close of an open stream. 607 * Strclean() will already have removed the siglist and pollist 608 * information, so all that remains is to remove all multiplexor links 609 * for the stream, pop all the modules (and the driver), and free the 610 * stream structure. 611 */ 612 613 int 614 strclose(struct vnode *vp, int flag, cred_t *crp) 615 { 616 struct stdata *stp; 617 queue_t *qp; 618 int rval; 619 int freestp = 1; 620 queue_t *rmq; 621 622 TRACE_1(TR_FAC_STREAMS_FR, 623 TR_STRCLOSE, "strclose:%p", vp); 624 ASSERT(vp->v_stream); 625 626 stp = vp->v_stream; 627 ASSERT(!(stp->sd_flag & STPLEX)); 628 qp = stp->sd_wrq; 629 630 /* 631 * Needed so that strpoll will return non-zero for this fd. 632 * Note that with POLLNOERR STRHUP does still cause POLLHUP. 633 */ 634 mutex_enter(&stp->sd_lock); 635 stp->sd_flag |= STRHUP; 636 mutex_exit(&stp->sd_lock); 637 638 /* 639 * If the registered process or process group did not have an 640 * open instance of this stream then strclean would not be 641 * called. Thus at the time of closing all remaining siglist entries 642 * are removed. 643 */ 644 if (stp->sd_siglist != NULL) 645 strcleanall(vp); 646 647 ASSERT(stp->sd_siglist == NULL); 648 ASSERT(stp->sd_sigflags == 0); 649 650 if (STRMATED(stp)) { 651 struct stdata *strmatep = stp->sd_mate; 652 int waited = 1; 653 654 STRLOCKMATES(stp); 655 while (waited) { 656 waited = 0; 657 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 658 mutex_exit(&strmatep->sd_lock); 659 cv_wait(&stp->sd_monitor, &stp->sd_lock); 660 mutex_exit(&stp->sd_lock); 661 STRLOCKMATES(stp); 662 waited = 1; 663 } 664 while (strmatep->sd_flag & 665 (STWOPEN|STRCLOSE|STRPLUMB)) { 666 mutex_exit(&stp->sd_lock); 667 cv_wait(&strmatep->sd_monitor, 668 &strmatep->sd_lock); 669 mutex_exit(&strmatep->sd_lock); 670 STRLOCKMATES(stp); 671 waited = 1; 672 } 673 } 674 stp->sd_flag |= STRCLOSE; 675 STRUNLOCKMATES(stp); 676 } else { 677 mutex_enter(&stp->sd_lock); 678 stp->sd_flag |= STRCLOSE; 679 mutex_exit(&stp->sd_lock); 680 } 681 682 ASSERT(qp->q_first == NULL); /* No more delayed write */ 683 684 /* Check if an I_LINK was ever done on this stream */ 685 if (stp->sd_flag & STRHASLINKS) { 686 netstack_t *ns; 687 str_stack_t *ss; 688 689 ns = netstack_find_by_cred(crp); 690 ASSERT(ns != NULL); 691 ss = ns->netstack_str; 692 ASSERT(ss != NULL); 693 694 (void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss); 695 netstack_rele(ss->ss_netstack); 696 } 697 698 while (_SAMESTR(qp)) { 699 /* 700 * Holding sd_lock prevents q_next from changing in 701 * this stream. 702 */ 703 mutex_enter(&stp->sd_lock); 704 if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) { 705 706 /* 707 * sleep until awakened by strwsrv() or timeout 708 */ 709 for (;;) { 710 mutex_enter(QLOCK(qp->q_next)); 711 if (!(qp->q_next->q_mblkcnt)) { 712 mutex_exit(QLOCK(qp->q_next)); 713 break; 714 } 715 stp->sd_flag |= WSLEEP; 716 717 /* ensure strwsrv gets enabled */ 718 qp->q_next->q_flag |= QWANTW; 719 mutex_exit(QLOCK(qp->q_next)); 720 /* get out if we timed out or recv'd a signal */ 721 if (str_cv_wait(&qp->q_wait, &stp->sd_lock, 722 stp->sd_closetime, 0) <= 0) { 723 break; 724 } 725 } 726 stp->sd_flag &= ~WSLEEP; 727 } 728 mutex_exit(&stp->sd_lock); 729 730 rmq = qp->q_next; 731 if (rmq->q_flag & QISDRV) { 732 ASSERT(!_SAMESTR(rmq)); 733 wait_sq_svc(_RD(qp)->q_syncq); 734 } 735 736 qdetach(_RD(rmq), 1, flag, crp, B_FALSE); 737 } 738 739 /* 740 * Since we call pollwakeup in close() now, the poll list should 741 * be empty in most cases. The only exception is the layered devices 742 * (e.g. the console drivers with redirection modules pushed on top 743 * of it). We have to do this after calling qdetach() because 744 * the redirection module won't have torn down the console 745 * redirection until after qdetach() has been invoked. 746 */ 747 if (stp->sd_pollist.ph_list != NULL) { 748 pollwakeup(&stp->sd_pollist, POLLERR); 749 pollhead_clean(&stp->sd_pollist); 750 } 751 ASSERT(stp->sd_pollist.ph_list == NULL); 752 ASSERT(stp->sd_sidp == NULL); 753 ASSERT(stp->sd_pgidp == NULL); 754 755 /* Prevent qenable from re-enabling the stream head queue */ 756 disable_svc(_RD(qp)); 757 758 /* 759 * Wait until service procedure of each queue is 760 * run, if QINSERVICE is set. 761 */ 762 wait_svc(_RD(qp)); 763 764 /* 765 * Now, flush both queues. 766 */ 767 flushq(_RD(qp), FLUSHALL); 768 flushq(qp, FLUSHALL); 769 770 /* 771 * If the write queue of the stream head is pointing to a 772 * read queue, we have a twisted stream. If the read queue 773 * is alive, convert the stream head queues into a dead end. 774 * If the read queue is dead, free the dead pair. 775 */ 776 if (qp->q_next && !_SAMESTR(qp)) { 777 if (qp->q_next->q_qinfo == &deadrend) { /* half-closed pipe */ 778 flushq(qp->q_next, FLUSHALL); /* ensure no message */ 779 shfree(qp->q_next->q_stream); 780 freeq(qp->q_next); 781 freeq(_RD(qp)); 782 } else if (qp->q_next == _RD(qp)) { /* fifo */ 783 freeq(_RD(qp)); 784 } else { /* pipe */ 785 freestp = 0; 786 /* 787 * The q_info pointers are never accessed when 788 * SQLOCK is held. 789 */ 790 ASSERT(qp->q_syncq == _RD(qp)->q_syncq); 791 mutex_enter(SQLOCK(qp->q_syncq)); 792 qp->q_qinfo = &deadwend; 793 _RD(qp)->q_qinfo = &deadrend; 794 mutex_exit(SQLOCK(qp->q_syncq)); 795 } 796 } else { 797 freeq(_RD(qp)); /* free stream head queue pair */ 798 } 799 800 mutex_enter(&vp->v_lock); 801 if (stp->sd_iocblk) { 802 if (stp->sd_iocblk != (mblk_t *)-1) { 803 freemsg(stp->sd_iocblk); 804 } 805 stp->sd_iocblk = NULL; 806 } 807 stp->sd_vnode = stp->sd_pvnode = NULL; 808 vp->v_stream = NULL; 809 mutex_exit(&vp->v_lock); 810 mutex_enter(&stp->sd_lock); 811 freemsg(stp->sd_cmdblk); 812 stp->sd_cmdblk = NULL; 813 stp->sd_flag &= ~STRCLOSE; 814 cv_broadcast(&stp->sd_monitor); 815 mutex_exit(&stp->sd_lock); 816 817 if (freestp) 818 shfree(stp); 819 return (0); 820 } 821 822 static int 823 strsink(queue_t *q, mblk_t *bp) 824 { 825 struct copyresp *resp; 826 827 switch (bp->b_datap->db_type) { 828 case M_FLUSH: 829 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 830 *bp->b_rptr &= ~FLUSHR; 831 bp->b_flag |= MSGNOLOOP; 832 /* 833 * Protect against the driver passing up 834 * messages after it has done a qprocsoff. 835 */ 836 if (_OTHERQ(q)->q_next == NULL) 837 freemsg(bp); 838 else 839 qreply(q, bp); 840 } else { 841 freemsg(bp); 842 } 843 break; 844 845 case M_COPYIN: 846 case M_COPYOUT: 847 if (bp->b_cont) { 848 freemsg(bp->b_cont); 849 bp->b_cont = NULL; 850 } 851 bp->b_datap->db_type = M_IOCDATA; 852 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 853 resp = (struct copyresp *)bp->b_rptr; 854 resp->cp_rval = (caddr_t)1; /* failure */ 855 /* 856 * Protect against the driver passing up 857 * messages after it has done a qprocsoff. 858 */ 859 if (_OTHERQ(q)->q_next == NULL) 860 freemsg(bp); 861 else 862 qreply(q, bp); 863 break; 864 865 case M_IOCTL: 866 if (bp->b_cont) { 867 freemsg(bp->b_cont); 868 bp->b_cont = NULL; 869 } 870 bp->b_datap->db_type = M_IOCNAK; 871 /* 872 * Protect against the driver passing up 873 * messages after it has done a qprocsoff. 874 */ 875 if (_OTHERQ(q)->q_next == NULL) 876 freemsg(bp); 877 else 878 qreply(q, bp); 879 break; 880 881 default: 882 freemsg(bp); 883 break; 884 } 885 886 return (0); 887 } 888 889 /* 890 * Clean up after a process when it closes a stream. This is called 891 * from closef for all closes, whereas strclose is called only for the 892 * last close on a stream. The siglist is scanned for entries for the 893 * current process, and these are removed. 894 */ 895 void 896 strclean(struct vnode *vp) 897 { 898 strsig_t *ssp, *pssp, *tssp; 899 stdata_t *stp; 900 int update = 0; 901 902 TRACE_1(TR_FAC_STREAMS_FR, 903 TR_STRCLEAN, "strclean:%p", vp); 904 stp = vp->v_stream; 905 pssp = NULL; 906 mutex_enter(&stp->sd_lock); 907 ssp = stp->sd_siglist; 908 while (ssp) { 909 if (ssp->ss_pidp == curproc->p_pidp) { 910 tssp = ssp->ss_next; 911 if (pssp) 912 pssp->ss_next = tssp; 913 else 914 stp->sd_siglist = tssp; 915 mutex_enter(&pidlock); 916 PID_RELE(ssp->ss_pidp); 917 mutex_exit(&pidlock); 918 kmem_free(ssp, sizeof (strsig_t)); 919 update = 1; 920 ssp = tssp; 921 } else { 922 pssp = ssp; 923 ssp = ssp->ss_next; 924 } 925 } 926 if (update) { 927 stp->sd_sigflags = 0; 928 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 929 stp->sd_sigflags |= ssp->ss_events; 930 } 931 mutex_exit(&stp->sd_lock); 932 } 933 934 /* 935 * Used on the last close to remove any remaining items on the siglist. 936 * These could be present on the siglist due to I_ESETSIG calls that 937 * use process groups or processed that do not have an open file descriptor 938 * for this stream (Such entries would not be removed by strclean). 939 */ 940 static void 941 strcleanall(struct vnode *vp) 942 { 943 strsig_t *ssp, *nssp; 944 stdata_t *stp; 945 946 stp = vp->v_stream; 947 mutex_enter(&stp->sd_lock); 948 ssp = stp->sd_siglist; 949 stp->sd_siglist = NULL; 950 while (ssp) { 951 nssp = ssp->ss_next; 952 mutex_enter(&pidlock); 953 PID_RELE(ssp->ss_pidp); 954 mutex_exit(&pidlock); 955 kmem_free(ssp, sizeof (strsig_t)); 956 ssp = nssp; 957 } 958 stp->sd_sigflags = 0; 959 mutex_exit(&stp->sd_lock); 960 } 961 962 /* 963 * Retrieve the next message from the logical stream head read queue 964 * using either rwnext (if sync stream) or getq_noenab. 965 * It is the callers responsibility to call qbackenable after 966 * it is finished with the message. The caller should not call 967 * qbackenable until after any putback calls to avoid spurious backenabling. 968 */ 969 mblk_t * 970 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first, 971 int *errorp) 972 { 973 mblk_t *bp; 974 int error; 975 ssize_t rbytes = 0; 976 977 /* Holding sd_lock prevents the read queue from changing */ 978 ASSERT(MUTEX_HELD(&stp->sd_lock)); 979 980 if (uiop != NULL && stp->sd_struiordq != NULL && 981 q->q_first == NULL && 982 (!first || (stp->sd_wakeq & RSLEEP))) { 983 /* 984 * Stream supports rwnext() for the read side. 985 * If this is the first time we're called by e.g. strread 986 * only do the downcall if there is a deferred wakeup 987 * (registered in sd_wakeq). 988 */ 989 struiod_t uiod; 990 991 if (first) 992 stp->sd_wakeq &= ~RSLEEP; 993 994 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 995 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 996 uiod.d_mp = 0; 997 /* 998 * Mark that a thread is in rwnext on the read side 999 * to prevent strrput from nacking ioctls immediately. 1000 * When the last concurrent rwnext returns 1001 * the ioctls are nack'ed. 1002 */ 1003 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1004 stp->sd_struiodnak++; 1005 /* 1006 * Note: rwnext will drop sd_lock. 1007 */ 1008 error = rwnext(q, &uiod); 1009 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 1010 mutex_enter(&stp->sd_lock); 1011 stp->sd_struiodnak--; 1012 while (stp->sd_struiodnak == 0 && 1013 ((bp = stp->sd_struionak) != NULL)) { 1014 stp->sd_struionak = bp->b_next; 1015 bp->b_next = NULL; 1016 bp->b_datap->db_type = M_IOCNAK; 1017 /* 1018 * Protect against the driver passing up 1019 * messages after it has done a qprocsoff. 1020 */ 1021 if (_OTHERQ(q)->q_next == NULL) 1022 freemsg(bp); 1023 else { 1024 mutex_exit(&stp->sd_lock); 1025 qreply(q, bp); 1026 mutex_enter(&stp->sd_lock); 1027 } 1028 } 1029 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1030 if (error == 0 || error == EWOULDBLOCK) { 1031 if ((bp = uiod.d_mp) != NULL) { 1032 *errorp = 0; 1033 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1034 return (bp); 1035 } 1036 error = 0; 1037 } else if (error == EINVAL) { 1038 /* 1039 * The stream plumbing must have 1040 * changed while we were away, so 1041 * just turn off rwnext()s. 1042 */ 1043 error = 0; 1044 } else if (error == EBUSY) { 1045 /* 1046 * The module might have data in transit using putnext 1047 * Fall back on waiting + getq. 1048 */ 1049 error = 0; 1050 } else { 1051 *errorp = error; 1052 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1053 return (NULL); 1054 } 1055 /* 1056 * Try a getq in case a rwnext() generated mblk 1057 * has bubbled up via strrput(). 1058 */ 1059 } 1060 *errorp = 0; 1061 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1062 1063 /* 1064 * If we have a valid uio, try and use this as a guide for how 1065 * many bytes to retrieve from the queue via getq_noenab(). 1066 * Doing this can avoid unneccesary counting of overlong 1067 * messages in putback(). We currently only do this for sockets 1068 * and only if there is no sd_rputdatafunc hook. 1069 * 1070 * The sd_rputdatafunc hook transforms the entire message 1071 * before any bytes in it can be given to a client. So, rbytes 1072 * must be 0 if there is a hook. 1073 */ 1074 if ((uiop != NULL) && (stp->sd_vnode->v_type == VSOCK) && 1075 (stp->sd_rputdatafunc == NULL)) 1076 rbytes = uiop->uio_resid; 1077 1078 return (getq_noenab(q, rbytes)); 1079 } 1080 1081 /* 1082 * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'. 1083 * If the message does not fit in the uio the remainder of it is returned; 1084 * otherwise NULL is returned. Any embedded zero-length mblk_t's are 1085 * consumed, even if uio_resid reaches zero. On error, `*errorp' is set to 1086 * the error code, the message is consumed, and NULL is returned. 1087 */ 1088 static mblk_t * 1089 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp) 1090 { 1091 int error; 1092 ptrdiff_t n; 1093 mblk_t *nbp; 1094 1095 ASSERT(bp->b_wptr >= bp->b_rptr); 1096 1097 do { 1098 if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) { 1099 ASSERT(n > 0); 1100 1101 error = uiomove(bp->b_rptr, n, UIO_READ, uiop); 1102 if (error != 0) { 1103 freemsg(bp); 1104 *errorp = error; 1105 return (NULL); 1106 } 1107 } 1108 1109 bp->b_rptr += n; 1110 while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) { 1111 nbp = bp; 1112 bp = bp->b_cont; 1113 freeb(nbp); 1114 } 1115 } while (bp != NULL && uiop->uio_resid > 0); 1116 1117 *errorp = 0; 1118 return (bp); 1119 } 1120 1121 /* 1122 * Read a stream according to the mode flags in sd_flag: 1123 * 1124 * (default mode) - Byte stream, msg boundaries are ignored 1125 * RD_MSGDIS (msg discard) - Read on msg boundaries and throw away 1126 * any data remaining in msg 1127 * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back 1128 * any remaining data on head of read queue 1129 * 1130 * Consume readable messages on the front of the queue until 1131 * ttolwp(curthread)->lwp_count 1132 * is satisfied, the readable messages are exhausted, or a message 1133 * boundary is reached in a message mode. If no data was read and 1134 * the stream was not opened with the NDELAY flag, block until data arrives. 1135 * Otherwise return the data read and update the count. 1136 * 1137 * In default mode a 0 length message signifies end-of-file and terminates 1138 * a read in progress. The 0 length message is removed from the queue 1139 * only if it is the only message read (no data is read). 1140 * 1141 * An attempt to read an M_PROTO or M_PCPROTO message results in an 1142 * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set. 1143 * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data. 1144 * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message 1145 * are unlinked from and M_DATA blocks in the message, the protos are 1146 * thrown away, and the data is read. 1147 */ 1148 /* ARGSUSED */ 1149 int 1150 strread(struct vnode *vp, struct uio *uiop, cred_t *crp) 1151 { 1152 struct stdata *stp; 1153 mblk_t *bp, *nbp; 1154 queue_t *q; 1155 int error = 0; 1156 uint_t old_sd_flag; 1157 int first; 1158 char rflg; 1159 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 1160 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 1161 short delim; 1162 unsigned char pri = 0; 1163 char waitflag; 1164 unsigned char type; 1165 1166 TRACE_1(TR_FAC_STREAMS_FR, 1167 TR_STRREAD_ENTER, "strread:%p", vp); 1168 ASSERT(vp->v_stream); 1169 stp = vp->v_stream; 1170 1171 mutex_enter(&stp->sd_lock); 1172 1173 if ((error = i_straccess(stp, JCREAD)) != 0) { 1174 mutex_exit(&stp->sd_lock); 1175 return (error); 1176 } 1177 1178 if (stp->sd_flag & (STRDERR|STPLEX)) { 1179 error = strgeterr(stp, STRDERR|STPLEX, 0); 1180 if (error != 0) { 1181 mutex_exit(&stp->sd_lock); 1182 return (error); 1183 } 1184 } 1185 1186 /* 1187 * Loop terminates when uiop->uio_resid == 0. 1188 */ 1189 rflg = 0; 1190 waitflag = READWAIT; 1191 q = _RD(stp->sd_wrq); 1192 for (;;) { 1193 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1194 old_sd_flag = stp->sd_flag; 1195 mark = 0; 1196 delim = 0; 1197 first = 1; 1198 while ((bp = strget(stp, q, uiop, first, &error)) == NULL) { 1199 int done = 0; 1200 1201 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1202 1203 if (error != 0) 1204 goto oops; 1205 1206 if (stp->sd_flag & (STRHUP|STREOF)) { 1207 goto oops; 1208 } 1209 if (rflg && !(stp->sd_flag & STRDELIM)) { 1210 goto oops; 1211 } 1212 /* 1213 * If a read(fd,buf,0) has been done, there is no 1214 * need to sleep. We always have zero bytes to 1215 * return. 1216 */ 1217 if (uiop->uio_resid == 0) { 1218 goto oops; 1219 } 1220 1221 qbackenable(q, 0); 1222 1223 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT, 1224 "strread calls strwaitq:%p, %p, %p", 1225 vp, uiop, crp); 1226 if ((error = strwaitq(stp, waitflag, uiop->uio_resid, 1227 uiop->uio_fmode, -1, &done)) != 0 || done) { 1228 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE, 1229 "strread error or done:%p, %p, %p", 1230 vp, uiop, crp); 1231 if ((uiop->uio_fmode & FNDELAY) && 1232 (stp->sd_flag & OLDNDELAY) && 1233 (error == EAGAIN)) 1234 error = 0; 1235 goto oops; 1236 } 1237 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE, 1238 "strread awakes:%p, %p, %p", vp, uiop, crp); 1239 if ((error = i_straccess(stp, JCREAD)) != 0) { 1240 goto oops; 1241 } 1242 first = 0; 1243 } 1244 1245 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1246 ASSERT(bp); 1247 pri = bp->b_band; 1248 /* 1249 * Extract any mark information. If the message is not 1250 * completely consumed this information will be put in the mblk 1251 * that is putback. 1252 * If MSGMARKNEXT is set and the message is completely consumed 1253 * the STRATMARK flag will be set below. Likewise, if 1254 * MSGNOTMARKNEXT is set and the message is 1255 * completely consumed STRNOTATMARK will be set. 1256 * 1257 * For some unknown reason strread only breaks the read at the 1258 * last mark. 1259 */ 1260 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 1261 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 1262 (MSGMARKNEXT|MSGNOTMARKNEXT)); 1263 if (mark != 0 && bp == stp->sd_mark) { 1264 if (rflg) { 1265 putback(stp, q, bp, pri); 1266 goto oops; 1267 } 1268 mark |= _LASTMARK; 1269 stp->sd_mark = NULL; 1270 } 1271 if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM)) 1272 delim = 1; 1273 mutex_exit(&stp->sd_lock); 1274 1275 if (STREAM_NEEDSERVICE(stp)) 1276 stream_runservice(stp); 1277 1278 type = bp->b_datap->db_type; 1279 1280 switch (type) { 1281 1282 case M_DATA: 1283 ismdata: 1284 if (msgnodata(bp)) { 1285 if (mark || delim) { 1286 freemsg(bp); 1287 } else if (rflg) { 1288 1289 /* 1290 * If already read data put zero 1291 * length message back on queue else 1292 * free msg and return 0. 1293 */ 1294 bp->b_band = pri; 1295 mutex_enter(&stp->sd_lock); 1296 putback(stp, q, bp, pri); 1297 mutex_exit(&stp->sd_lock); 1298 } else { 1299 freemsg(bp); 1300 } 1301 error = 0; 1302 goto oops1; 1303 } 1304 1305 rflg = 1; 1306 waitflag |= NOINTR; 1307 bp = struiocopyout(bp, uiop, &error); 1308 if (error != 0) 1309 goto oops1; 1310 1311 mutex_enter(&stp->sd_lock); 1312 if (bp) { 1313 /* 1314 * Have remaining data in message. 1315 * Free msg if in discard mode. 1316 */ 1317 if (stp->sd_read_opt & RD_MSGDIS) { 1318 freemsg(bp); 1319 } else { 1320 bp->b_band = pri; 1321 if ((mark & _LASTMARK) && 1322 (stp->sd_mark == NULL)) 1323 stp->sd_mark = bp; 1324 bp->b_flag |= mark & ~_LASTMARK; 1325 if (delim) 1326 bp->b_flag |= MSGDELIM; 1327 if (msgnodata(bp)) 1328 freemsg(bp); 1329 else 1330 putback(stp, q, bp, pri); 1331 } 1332 } else { 1333 /* 1334 * Consumed the complete message. 1335 * Move the MSG*MARKNEXT information 1336 * to the stream head just in case 1337 * the read queue becomes empty. 1338 * 1339 * If the stream head was at the mark 1340 * (STRATMARK) before we dropped sd_lock above 1341 * and some data was consumed then we have 1342 * moved past the mark thus STRATMARK is 1343 * cleared. However, if a message arrived in 1344 * strrput during the copyout above causing 1345 * STRATMARK to be set we can not clear that 1346 * flag. 1347 */ 1348 if (mark & 1349 (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 1350 if (mark & MSGMARKNEXT) { 1351 stp->sd_flag &= ~STRNOTATMARK; 1352 stp->sd_flag |= STRATMARK; 1353 } else if (mark & MSGNOTMARKNEXT) { 1354 stp->sd_flag &= ~STRATMARK; 1355 stp->sd_flag |= STRNOTATMARK; 1356 } else { 1357 stp->sd_flag &= 1358 ~(STRATMARK|STRNOTATMARK); 1359 } 1360 } else if (rflg && (old_sd_flag & STRATMARK)) { 1361 stp->sd_flag &= ~STRATMARK; 1362 } 1363 } 1364 1365 /* 1366 * Check for signal messages at the front of the read 1367 * queue and generate the signal(s) if appropriate. 1368 * The only signal that can be on queue is M_SIG at 1369 * this point. 1370 */ 1371 while ((((bp = q->q_first)) != NULL) && 1372 (bp->b_datap->db_type == M_SIG)) { 1373 bp = getq_noenab(q, 0); 1374 /* 1375 * sd_lock is held so the content of the 1376 * read queue can not change. 1377 */ 1378 ASSERT(bp != NULL && DB_TYPE(bp) == M_SIG); 1379 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 1380 mutex_exit(&stp->sd_lock); 1381 freemsg(bp); 1382 if (STREAM_NEEDSERVICE(stp)) 1383 stream_runservice(stp); 1384 mutex_enter(&stp->sd_lock); 1385 } 1386 1387 if ((uiop->uio_resid == 0) || (mark & _LASTMARK) || 1388 delim || 1389 (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) { 1390 goto oops; 1391 } 1392 continue; 1393 1394 case M_SIG: 1395 strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band); 1396 freemsg(bp); 1397 mutex_enter(&stp->sd_lock); 1398 continue; 1399 1400 case M_PROTO: 1401 case M_PCPROTO: 1402 /* 1403 * Only data messages are readable. 1404 * Any others generate an error, unless 1405 * RD_PROTDIS or RD_PROTDAT is set. 1406 */ 1407 if (stp->sd_read_opt & RD_PROTDAT) { 1408 for (nbp = bp; nbp; nbp = nbp->b_next) { 1409 if ((nbp->b_datap->db_type == 1410 M_PROTO) || 1411 (nbp->b_datap->db_type == 1412 M_PCPROTO)) { 1413 nbp->b_datap->db_type = M_DATA; 1414 } else { 1415 break; 1416 } 1417 } 1418 /* 1419 * clear stream head hi pri flag based on 1420 * first message 1421 */ 1422 if (type == M_PCPROTO) { 1423 mutex_enter(&stp->sd_lock); 1424 stp->sd_flag &= ~STRPRI; 1425 mutex_exit(&stp->sd_lock); 1426 } 1427 goto ismdata; 1428 } else if (stp->sd_read_opt & RD_PROTDIS) { 1429 /* 1430 * discard non-data messages 1431 */ 1432 while (bp && 1433 ((bp->b_datap->db_type == M_PROTO) || 1434 (bp->b_datap->db_type == M_PCPROTO))) { 1435 nbp = unlinkb(bp); 1436 freeb(bp); 1437 bp = nbp; 1438 } 1439 /* 1440 * clear stream head hi pri flag based on 1441 * first message 1442 */ 1443 if (type == M_PCPROTO) { 1444 mutex_enter(&stp->sd_lock); 1445 stp->sd_flag &= ~STRPRI; 1446 mutex_exit(&stp->sd_lock); 1447 } 1448 if (bp) { 1449 bp->b_band = pri; 1450 goto ismdata; 1451 } else { 1452 break; 1453 } 1454 } 1455 /* FALLTHRU */ 1456 case M_PASSFP: 1457 if ((bp->b_datap->db_type == M_PASSFP) && 1458 (stp->sd_read_opt & RD_PROTDIS)) { 1459 freemsg(bp); 1460 break; 1461 } 1462 mutex_enter(&stp->sd_lock); 1463 putback(stp, q, bp, pri); 1464 mutex_exit(&stp->sd_lock); 1465 if (rflg == 0) 1466 error = EBADMSG; 1467 goto oops1; 1468 1469 default: 1470 /* 1471 * Garbage on stream head read queue. 1472 */ 1473 cmn_err(CE_WARN, "bad %x found at stream head\n", 1474 bp->b_datap->db_type); 1475 freemsg(bp); 1476 goto oops1; 1477 } 1478 mutex_enter(&stp->sd_lock); 1479 } 1480 oops: 1481 mutex_exit(&stp->sd_lock); 1482 oops1: 1483 qbackenable(q, pri); 1484 return (error); 1485 #undef _LASTMARK 1486 } 1487 1488 /* 1489 * Default processing of M_PROTO/M_PCPROTO messages. 1490 * Determine which wakeups and signals are needed. 1491 * This can be replaced by a user-specified procedure for kernel users 1492 * of STREAMS. 1493 */ 1494 /* ARGSUSED */ 1495 mblk_t * 1496 strrput_proto(vnode_t *vp, mblk_t *mp, 1497 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1498 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1499 { 1500 *wakeups = RSLEEP; 1501 *allmsgsigs = 0; 1502 1503 switch (mp->b_datap->db_type) { 1504 case M_PROTO: 1505 if (mp->b_band == 0) { 1506 *firstmsgsigs = S_INPUT | S_RDNORM; 1507 *pollwakeups = POLLIN | POLLRDNORM; 1508 } else { 1509 *firstmsgsigs = S_INPUT | S_RDBAND; 1510 *pollwakeups = POLLIN | POLLRDBAND; 1511 } 1512 break; 1513 case M_PCPROTO: 1514 *firstmsgsigs = S_HIPRI; 1515 *pollwakeups = POLLPRI; 1516 break; 1517 } 1518 return (mp); 1519 } 1520 1521 /* 1522 * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and 1523 * M_PASSFP messages. 1524 * Determine which wakeups and signals are needed. 1525 * This can be replaced by a user-specified procedure for kernel users 1526 * of STREAMS. 1527 */ 1528 /* ARGSUSED */ 1529 mblk_t * 1530 strrput_misc(vnode_t *vp, mblk_t *mp, 1531 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1532 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1533 { 1534 *wakeups = 0; 1535 *firstmsgsigs = 0; 1536 *allmsgsigs = 0; 1537 *pollwakeups = 0; 1538 return (mp); 1539 } 1540 1541 /* 1542 * Stream read put procedure. Called from downstream driver/module 1543 * with messages for the stream head. Data, protocol, and in-stream 1544 * signal messages are placed on the queue, others are handled directly. 1545 */ 1546 int 1547 strrput(queue_t *q, mblk_t *bp) 1548 { 1549 struct stdata *stp; 1550 ulong_t rput_opt; 1551 strwakeup_t wakeups; 1552 strsigset_t firstmsgsigs; /* Signals if first message on queue */ 1553 strsigset_t allmsgsigs; /* Signals for all messages */ 1554 strsigset_t signals; /* Signals events to generate */ 1555 strpollset_t pollwakeups; 1556 mblk_t *nextbp; 1557 uchar_t band = 0; 1558 int hipri_sig; 1559 1560 stp = (struct stdata *)q->q_ptr; 1561 /* 1562 * Use rput_opt for optimized access to the SR_ flags except 1563 * SR_POLLIN. That flag has to be checked under sd_lock since it 1564 * is modified by strpoll(). 1565 */ 1566 rput_opt = stp->sd_rput_opt; 1567 1568 ASSERT(qclaimed(q)); 1569 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER, 1570 "strrput called with message type:q %p bp %p", q, bp); 1571 1572 /* 1573 * Perform initial processing and pass to the parameterized functions. 1574 */ 1575 ASSERT(bp->b_next == NULL); 1576 1577 switch (bp->b_datap->db_type) { 1578 case M_DATA: 1579 /* 1580 * sockfs is the only consumer of STREOF and when it is set, 1581 * it implies that the receiver is not interested in receiving 1582 * any more data, hence the mblk is freed to prevent unnecessary 1583 * message queueing at the stream head. 1584 */ 1585 if (stp->sd_flag == STREOF) { 1586 freemsg(bp); 1587 return (0); 1588 } 1589 if ((rput_opt & SR_IGN_ZEROLEN) && 1590 bp->b_rptr == bp->b_wptr && msgnodata(bp)) { 1591 /* 1592 * Ignore zero-length M_DATA messages. These might be 1593 * generated by some transports. 1594 * The zero-length M_DATA messages, even if they 1595 * are ignored, should effect the atmark tracking and 1596 * should wake up a thread sleeping in strwaitmark. 1597 */ 1598 mutex_enter(&stp->sd_lock); 1599 if (bp->b_flag & MSGMARKNEXT) { 1600 /* 1601 * Record the position of the mark either 1602 * in q_last or in STRATMARK. 1603 */ 1604 if (q->q_last != NULL) { 1605 q->q_last->b_flag &= ~MSGNOTMARKNEXT; 1606 q->q_last->b_flag |= MSGMARKNEXT; 1607 } else { 1608 stp->sd_flag &= ~STRNOTATMARK; 1609 stp->sd_flag |= STRATMARK; 1610 } 1611 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1612 /* 1613 * Record that this is not the position of 1614 * the mark either in q_last or in 1615 * STRNOTATMARK. 1616 */ 1617 if (q->q_last != NULL) { 1618 q->q_last->b_flag &= ~MSGMARKNEXT; 1619 q->q_last->b_flag |= MSGNOTMARKNEXT; 1620 } else { 1621 stp->sd_flag &= ~STRATMARK; 1622 stp->sd_flag |= STRNOTATMARK; 1623 } 1624 } 1625 if (stp->sd_flag & RSLEEP) { 1626 stp->sd_flag &= ~RSLEEP; 1627 cv_broadcast(&q->q_wait); 1628 } 1629 mutex_exit(&stp->sd_lock); 1630 freemsg(bp); 1631 return (0); 1632 } 1633 wakeups = RSLEEP; 1634 if (bp->b_band == 0) { 1635 firstmsgsigs = S_INPUT | S_RDNORM; 1636 pollwakeups = POLLIN | POLLRDNORM; 1637 } else { 1638 firstmsgsigs = S_INPUT | S_RDBAND; 1639 pollwakeups = POLLIN | POLLRDBAND; 1640 } 1641 if (rput_opt & SR_SIGALLDATA) 1642 allmsgsigs = firstmsgsigs; 1643 else 1644 allmsgsigs = 0; 1645 1646 mutex_enter(&stp->sd_lock); 1647 if ((rput_opt & SR_CONSOL_DATA) && 1648 (q->q_last != NULL) && 1649 (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) { 1650 /* 1651 * Consolidate an M_DATA message onto an M_DATA, 1652 * M_PROTO, or M_PCPROTO by merging it with q_last. 1653 * The consolidation does not take place if 1654 * the old message is marked with either of the 1655 * marks or the delim flag or if the new 1656 * message is marked with MSGMARK. The MSGMARK 1657 * check is needed to handle the odd semantics of 1658 * MSGMARK where essentially the whole message 1659 * is to be treated as marked. 1660 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from the 1661 * new message to the front of the b_cont chain. 1662 */ 1663 mblk_t *lbp = q->q_last; 1664 unsigned char db_type = lbp->b_datap->db_type; 1665 1666 if ((db_type == M_DATA || db_type == M_PROTO || 1667 db_type == M_PCPROTO) && 1668 !(lbp->b_flag & (MSGDELIM|MSGMARK|MSGMARKNEXT))) { 1669 rmvq_noenab(q, lbp); 1670 /* 1671 * The first message in the b_cont list 1672 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 1673 * We need to handle the case where we 1674 * are appending: 1675 * 1676 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 1677 * 2) a MSGMARKNEXT to a plain message. 1678 * 3) a MSGNOTMARKNEXT to a plain message 1679 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 1680 * message. 1681 * 1682 * Thus we never append a MSGMARKNEXT or 1683 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 1684 */ 1685 if (bp->b_flag & MSGMARKNEXT) { 1686 lbp->b_flag |= MSGMARKNEXT; 1687 lbp->b_flag &= ~MSGNOTMARKNEXT; 1688 bp->b_flag &= ~MSGMARKNEXT; 1689 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1690 lbp->b_flag |= MSGNOTMARKNEXT; 1691 bp->b_flag &= ~MSGNOTMARKNEXT; 1692 } 1693 1694 linkb(lbp, bp); 1695 bp = lbp; 1696 /* 1697 * The new message logically isn't the first 1698 * even though the q_first check below thinks 1699 * it is. Clear the firstmsgsigs to make it 1700 * not appear to be first. 1701 */ 1702 firstmsgsigs = 0; 1703 } 1704 } 1705 break; 1706 1707 case M_PASSFP: 1708 wakeups = RSLEEP; 1709 allmsgsigs = 0; 1710 if (bp->b_band == 0) { 1711 firstmsgsigs = S_INPUT | S_RDNORM; 1712 pollwakeups = POLLIN | POLLRDNORM; 1713 } else { 1714 firstmsgsigs = S_INPUT | S_RDBAND; 1715 pollwakeups = POLLIN | POLLRDBAND; 1716 } 1717 mutex_enter(&stp->sd_lock); 1718 break; 1719 1720 case M_PROTO: 1721 case M_PCPROTO: 1722 ASSERT(stp->sd_rprotofunc != NULL); 1723 bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp, 1724 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1725 #define ALLSIG (S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\ 1726 S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG) 1727 #define ALLPOLL (POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\ 1728 POLLWRBAND) 1729 1730 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1731 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1732 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1733 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1734 1735 mutex_enter(&stp->sd_lock); 1736 break; 1737 1738 default: 1739 ASSERT(stp->sd_rmiscfunc != NULL); 1740 bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp, 1741 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1742 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1743 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1744 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1745 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1746 #undef ALLSIG 1747 #undef ALLPOLL 1748 mutex_enter(&stp->sd_lock); 1749 break; 1750 } 1751 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1752 1753 /* By default generate superset of signals */ 1754 signals = (firstmsgsigs | allmsgsigs); 1755 1756 /* 1757 * The proto and misc functions can return multiple messages 1758 * as a b_next chain. Such messages are processed separately. 1759 */ 1760 one_more: 1761 hipri_sig = 0; 1762 if (bp == NULL) { 1763 nextbp = NULL; 1764 } else { 1765 nextbp = bp->b_next; 1766 bp->b_next = NULL; 1767 1768 switch (bp->b_datap->db_type) { 1769 case M_PCPROTO: 1770 /* 1771 * Only one priority protocol message is allowed at the 1772 * stream head at a time. 1773 */ 1774 if (stp->sd_flag & STRPRI) { 1775 TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR, 1776 "M_PCPROTO already at head"); 1777 freemsg(bp); 1778 mutex_exit(&stp->sd_lock); 1779 goto done; 1780 } 1781 stp->sd_flag |= STRPRI; 1782 hipri_sig = 1; 1783 /* FALLTHRU */ 1784 case M_DATA: 1785 case M_PROTO: 1786 case M_PASSFP: 1787 band = bp->b_band; 1788 /* 1789 * Marking doesn't work well when messages 1790 * are marked in more than one band. We only 1791 * remember the last message received, even if 1792 * it is placed on the queue ahead of other 1793 * marked messages. 1794 */ 1795 if (bp->b_flag & MSGMARK) 1796 stp->sd_mark = bp; 1797 (void) putq(q, bp); 1798 1799 /* 1800 * If message is a PCPROTO message, always use 1801 * firstmsgsigs to determine if a signal should be 1802 * sent as strrput is the only place to send 1803 * signals for PCPROTO. Other messages are based on 1804 * the STRGETINPROG flag. The flag determines if 1805 * strrput or (k)strgetmsg will be responsible for 1806 * sending the signals, in the firstmsgsigs case. 1807 */ 1808 if ((hipri_sig == 1) || 1809 (((stp->sd_flag & STRGETINPROG) == 0) && 1810 (q->q_first == bp))) 1811 signals = (firstmsgsigs | allmsgsigs); 1812 else 1813 signals = allmsgsigs; 1814 break; 1815 1816 default: 1817 mutex_exit(&stp->sd_lock); 1818 (void) strrput_nondata(q, bp); 1819 mutex_enter(&stp->sd_lock); 1820 break; 1821 } 1822 } 1823 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1824 /* 1825 * Wake sleeping read/getmsg and cancel deferred wakeup 1826 */ 1827 if (wakeups & RSLEEP) 1828 stp->sd_wakeq &= ~RSLEEP; 1829 1830 wakeups &= stp->sd_flag; 1831 if (wakeups & RSLEEP) { 1832 stp->sd_flag &= ~RSLEEP; 1833 cv_broadcast(&q->q_wait); 1834 } 1835 if (wakeups & WSLEEP) { 1836 stp->sd_flag &= ~WSLEEP; 1837 cv_broadcast(&_WR(q)->q_wait); 1838 } 1839 1840 if (pollwakeups != 0) { 1841 if (pollwakeups == (POLLIN | POLLRDNORM)) { 1842 /* 1843 * Can't use rput_opt since it was not 1844 * read when sd_lock was held and SR_POLLIN is changed 1845 * by strpoll() under sd_lock. 1846 */ 1847 if (!(stp->sd_rput_opt & SR_POLLIN)) 1848 goto no_pollwake; 1849 stp->sd_rput_opt &= ~SR_POLLIN; 1850 } 1851 mutex_exit(&stp->sd_lock); 1852 pollwakeup(&stp->sd_pollist, pollwakeups); 1853 mutex_enter(&stp->sd_lock); 1854 } 1855 no_pollwake: 1856 1857 /* 1858 * strsendsig can handle multiple signals with a 1859 * single call. 1860 */ 1861 if (stp->sd_sigflags & signals) 1862 strsendsig(stp->sd_siglist, signals, band, 0); 1863 mutex_exit(&stp->sd_lock); 1864 1865 1866 done: 1867 if (nextbp == NULL) 1868 return (0); 1869 1870 /* 1871 * Any signals were handled the first time. 1872 * Wakeups and pollwakeups are redone to avoid any race 1873 * conditions - all the messages are not queued until the 1874 * last message has been processed by strrput. 1875 */ 1876 bp = nextbp; 1877 signals = firstmsgsigs = allmsgsigs = 0; 1878 mutex_enter(&stp->sd_lock); 1879 goto one_more; 1880 } 1881 1882 static void 1883 log_dupioc(queue_t *rq, mblk_t *bp) 1884 { 1885 queue_t *wq, *qp; 1886 char *modnames, *mnp, *dname; 1887 size_t maxmodstr; 1888 boolean_t islast; 1889 1890 /* 1891 * Allocate a buffer large enough to hold the names of nstrpush modules 1892 * and one driver, with spaces between and NUL terminator. If we can't 1893 * get memory, then we'll just log the driver name. 1894 */ 1895 maxmodstr = nstrpush * (FMNAMESZ + 1); 1896 mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP); 1897 1898 /* march down write side to print log message down to the driver */ 1899 wq = WR(rq); 1900 1901 /* make sure q_next doesn't shift around while we're grabbing data */ 1902 claimstr(wq); 1903 qp = wq->q_next; 1904 do { 1905 dname = Q2NAME(qp); 1906 islast = !SAMESTR(qp) || qp->q_next == NULL; 1907 if (modnames == NULL) { 1908 /* 1909 * If we don't have memory, then get the driver name in 1910 * the log where we can see it. Note that memory 1911 * pressure is a possible cause of these sorts of bugs. 1912 */ 1913 if (islast) { 1914 modnames = dname; 1915 maxmodstr = 0; 1916 } 1917 } else { 1918 mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname); 1919 if (!islast) 1920 *mnp++ = ' '; 1921 } 1922 qp = qp->q_next; 1923 } while (!islast); 1924 releasestr(wq); 1925 /* Cannot happen unless stream head is corrupt. */ 1926 ASSERT(modnames != NULL); 1927 (void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1, 1928 SL_CONSOLE|SL_TRACE|SL_ERROR, 1929 "Warning: stream %p received duplicate %X M_IOC%s; module list: %s", 1930 rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd, 1931 (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames); 1932 if (maxmodstr != 0) 1933 kmem_free(modnames, maxmodstr); 1934 } 1935 1936 int 1937 strrput_nondata(queue_t *q, mblk_t *bp) 1938 { 1939 struct stdata *stp; 1940 struct iocblk *iocbp; 1941 struct stroptions *sop; 1942 struct copyreq *reqp; 1943 struct copyresp *resp; 1944 unsigned char bpri; 1945 unsigned char flushed_already = 0; 1946 1947 stp = (struct stdata *)q->q_ptr; 1948 1949 ASSERT(!(stp->sd_flag & STPLEX)); 1950 ASSERT(qclaimed(q)); 1951 1952 switch (bp->b_datap->db_type) { 1953 case M_ERROR: 1954 /* 1955 * An error has occurred downstream, the errno is in the first 1956 * bytes of the message. 1957 */ 1958 if ((bp->b_wptr - bp->b_rptr) == 2) { /* New flavor */ 1959 unsigned char rw = 0; 1960 1961 mutex_enter(&stp->sd_lock); 1962 if (*bp->b_rptr != NOERROR) { /* read error */ 1963 if (*bp->b_rptr != 0) { 1964 if (stp->sd_flag & STRDERR) 1965 flushed_already |= FLUSHR; 1966 stp->sd_flag |= STRDERR; 1967 rw |= FLUSHR; 1968 } else { 1969 stp->sd_flag &= ~STRDERR; 1970 } 1971 stp->sd_rerror = *bp->b_rptr; 1972 } 1973 bp->b_rptr++; 1974 if (*bp->b_rptr != NOERROR) { /* write error */ 1975 if (*bp->b_rptr != 0) { 1976 if (stp->sd_flag & STWRERR) 1977 flushed_already |= FLUSHW; 1978 stp->sd_flag |= STWRERR; 1979 rw |= FLUSHW; 1980 } else { 1981 stp->sd_flag &= ~STWRERR; 1982 } 1983 stp->sd_werror = *bp->b_rptr; 1984 } 1985 if (rw) { 1986 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE, 1987 "strrput cv_broadcast:q %p, bp %p", 1988 q, bp); 1989 cv_broadcast(&q->q_wait); /* readers */ 1990 cv_broadcast(&_WR(q)->q_wait); /* writers */ 1991 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 1992 1993 mutex_exit(&stp->sd_lock); 1994 pollwakeup(&stp->sd_pollist, POLLERR); 1995 mutex_enter(&stp->sd_lock); 1996 1997 if (stp->sd_sigflags & S_ERROR) 1998 strsendsig(stp->sd_siglist, S_ERROR, 0, 1999 ((rw & FLUSHR) ? stp->sd_rerror : 2000 stp->sd_werror)); 2001 mutex_exit(&stp->sd_lock); 2002 /* 2003 * Send the M_FLUSH only 2004 * for the first M_ERROR 2005 * message on the stream 2006 */ 2007 if (flushed_already == rw) { 2008 freemsg(bp); 2009 return (0); 2010 } 2011 2012 bp->b_datap->db_type = M_FLUSH; 2013 *bp->b_rptr = rw; 2014 bp->b_wptr = bp->b_rptr + 1; 2015 /* 2016 * Protect against the driver 2017 * passing up messages after 2018 * it has done a qprocsoff 2019 */ 2020 if (_OTHERQ(q)->q_next == NULL) 2021 freemsg(bp); 2022 else 2023 qreply(q, bp); 2024 return (0); 2025 } else 2026 mutex_exit(&stp->sd_lock); 2027 } else if (*bp->b_rptr != 0) { /* Old flavor */ 2028 if (stp->sd_flag & (STRDERR|STWRERR)) 2029 flushed_already = FLUSHRW; 2030 mutex_enter(&stp->sd_lock); 2031 stp->sd_flag |= (STRDERR|STWRERR); 2032 stp->sd_rerror = *bp->b_rptr; 2033 stp->sd_werror = *bp->b_rptr; 2034 TRACE_2(TR_FAC_STREAMS_FR, 2035 TR_STRRPUT_WAKE2, 2036 "strrput wakeup #2:q %p, bp %p", q, bp); 2037 cv_broadcast(&q->q_wait); /* the readers */ 2038 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 2039 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 2040 2041 mutex_exit(&stp->sd_lock); 2042 pollwakeup(&stp->sd_pollist, POLLERR); 2043 mutex_enter(&stp->sd_lock); 2044 2045 if (stp->sd_sigflags & S_ERROR) 2046 strsendsig(stp->sd_siglist, S_ERROR, 0, 2047 (stp->sd_werror ? stp->sd_werror : 2048 stp->sd_rerror)); 2049 mutex_exit(&stp->sd_lock); 2050 2051 /* 2052 * Send the M_FLUSH only 2053 * for the first M_ERROR 2054 * message on the stream 2055 */ 2056 if (flushed_already != FLUSHRW) { 2057 bp->b_datap->db_type = M_FLUSH; 2058 *bp->b_rptr = FLUSHRW; 2059 /* 2060 * Protect against the driver passing up 2061 * messages after it has done a 2062 * qprocsoff. 2063 */ 2064 if (_OTHERQ(q)->q_next == NULL) 2065 freemsg(bp); 2066 else 2067 qreply(q, bp); 2068 return (0); 2069 } 2070 } 2071 freemsg(bp); 2072 return (0); 2073 2074 case M_HANGUP: 2075 2076 freemsg(bp); 2077 mutex_enter(&stp->sd_lock); 2078 stp->sd_werror = ENXIO; 2079 stp->sd_flag |= STRHUP; 2080 stp->sd_flag &= ~(WSLEEP|RSLEEP); 2081 2082 /* 2083 * send signal if controlling tty 2084 */ 2085 2086 if (stp->sd_sidp) { 2087 prsignal(stp->sd_sidp, SIGHUP); 2088 if (stp->sd_sidp != stp->sd_pgidp) 2089 pgsignal(stp->sd_pgidp, SIGTSTP); 2090 } 2091 2092 /* 2093 * wake up read, write, and exception pollers and 2094 * reset wakeup mechanism. 2095 */ 2096 cv_broadcast(&q->q_wait); /* the readers */ 2097 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 2098 cv_broadcast(&stp->sd_monitor); /* the ioctllers */ 2099 strhup(stp); 2100 mutex_exit(&stp->sd_lock); 2101 return (0); 2102 2103 case M_UNHANGUP: 2104 freemsg(bp); 2105 mutex_enter(&stp->sd_lock); 2106 stp->sd_werror = 0; 2107 stp->sd_flag &= ~STRHUP; 2108 mutex_exit(&stp->sd_lock); 2109 return (0); 2110 2111 case M_SIG: 2112 /* 2113 * Someone downstream wants to post a signal. The 2114 * signal to post is contained in the first byte of the 2115 * message. If the message would go on the front of 2116 * the queue, send a signal to the process group 2117 * (if not SIGPOLL) or to the siglist processes 2118 * (SIGPOLL). If something is already on the queue, 2119 * OR if we are delivering a delayed suspend (*sigh* 2120 * another "tty" hack) and there's no one sleeping already, 2121 * just enqueue the message. 2122 */ 2123 mutex_enter(&stp->sd_lock); 2124 if (q->q_first || (*bp->b_rptr == SIGTSTP && 2125 !(stp->sd_flag & RSLEEP))) { 2126 (void) putq(q, bp); 2127 mutex_exit(&stp->sd_lock); 2128 return (0); 2129 } 2130 mutex_exit(&stp->sd_lock); 2131 /* FALLTHRU */ 2132 2133 case M_PCSIG: 2134 /* 2135 * Don't enqueue, just post the signal. 2136 */ 2137 strsignal(stp, *bp->b_rptr, 0L); 2138 freemsg(bp); 2139 return (0); 2140 2141 case M_CMD: 2142 if (MBLKL(bp) != sizeof (cmdblk_t)) { 2143 freemsg(bp); 2144 return (0); 2145 } 2146 2147 mutex_enter(&stp->sd_lock); 2148 if (stp->sd_flag & STRCMDWAIT) { 2149 ASSERT(stp->sd_cmdblk == NULL); 2150 stp->sd_cmdblk = bp; 2151 cv_broadcast(&stp->sd_monitor); 2152 mutex_exit(&stp->sd_lock); 2153 } else { 2154 mutex_exit(&stp->sd_lock); 2155 freemsg(bp); 2156 } 2157 return (0); 2158 2159 case M_FLUSH: 2160 /* 2161 * Flush queues. The indication of which queues to flush 2162 * is in the first byte of the message. If the read queue 2163 * is specified, then flush it. If FLUSHBAND is set, just 2164 * flush the band specified by the second byte of the message. 2165 * 2166 * If a module has issued a M_SETOPT to not flush hi 2167 * priority messages off of the stream head, then pass this 2168 * flag into the flushq code to preserve such messages. 2169 */ 2170 2171 if (*bp->b_rptr & FLUSHR) { 2172 mutex_enter(&stp->sd_lock); 2173 if (*bp->b_rptr & FLUSHBAND) { 2174 ASSERT((bp->b_wptr - bp->b_rptr) >= 2); 2175 flushband(q, *(bp->b_rptr + 1), FLUSHALL); 2176 } else 2177 flushq_common(q, FLUSHALL, 2178 stp->sd_read_opt & RFLUSHPCPROT); 2179 if ((q->q_first == NULL) || 2180 (q->q_first->b_datap->db_type < QPCTL)) 2181 stp->sd_flag &= ~STRPRI; 2182 else { 2183 ASSERT(stp->sd_flag & STRPRI); 2184 } 2185 mutex_exit(&stp->sd_lock); 2186 } 2187 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 2188 *bp->b_rptr &= ~FLUSHR; 2189 bp->b_flag |= MSGNOLOOP; 2190 /* 2191 * Protect against the driver passing up 2192 * messages after it has done a qprocsoff. 2193 */ 2194 if (_OTHERQ(q)->q_next == NULL) 2195 freemsg(bp); 2196 else 2197 qreply(q, bp); 2198 return (0); 2199 } 2200 freemsg(bp); 2201 return (0); 2202 2203 case M_IOCACK: 2204 case M_IOCNAK: 2205 iocbp = (struct iocblk *)bp->b_rptr; 2206 /* 2207 * If not waiting for ACK or NAK then just free msg. 2208 * If incorrect id sequence number then just free msg. 2209 * If already have ACK or NAK for user then this is a 2210 * duplicate, display a warning and free the msg. 2211 */ 2212 mutex_enter(&stp->sd_lock); 2213 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2214 (stp->sd_iocid != iocbp->ioc_id)) { 2215 /* 2216 * If the ACK/NAK is a dup, display a message 2217 * Dup is when sd_iocid == ioc_id, and 2218 * sd_iocblk == <valid ptr> or -1 (the former 2219 * is when an ioctl has been put on the stream 2220 * head, but has not yet been consumed, the 2221 * later is when it has been consumed). 2222 */ 2223 if ((stp->sd_iocid == iocbp->ioc_id) && 2224 (stp->sd_iocblk != NULL)) { 2225 log_dupioc(q, bp); 2226 } 2227 freemsg(bp); 2228 mutex_exit(&stp->sd_lock); 2229 return (0); 2230 } 2231 2232 /* 2233 * Assign ACK or NAK to user and wake up. 2234 */ 2235 stp->sd_iocblk = bp; 2236 cv_broadcast(&stp->sd_monitor); 2237 mutex_exit(&stp->sd_lock); 2238 return (0); 2239 2240 case M_COPYIN: 2241 case M_COPYOUT: 2242 reqp = (struct copyreq *)bp->b_rptr; 2243 2244 /* 2245 * If not waiting for ACK or NAK then just fail request. 2246 * If already have ACK, NAK, or copy request, then just 2247 * fail request. 2248 * If incorrect id sequence number then just fail request. 2249 */ 2250 mutex_enter(&stp->sd_lock); 2251 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2252 (stp->sd_iocid != reqp->cq_id)) { 2253 if (bp->b_cont) { 2254 freemsg(bp->b_cont); 2255 bp->b_cont = NULL; 2256 } 2257 bp->b_datap->db_type = M_IOCDATA; 2258 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 2259 resp = (struct copyresp *)bp->b_rptr; 2260 resp->cp_rval = (caddr_t)1; /* failure */ 2261 mutex_exit(&stp->sd_lock); 2262 putnext(stp->sd_wrq, bp); 2263 return (0); 2264 } 2265 2266 /* 2267 * Assign copy request to user and wake up. 2268 */ 2269 stp->sd_iocblk = bp; 2270 cv_broadcast(&stp->sd_monitor); 2271 mutex_exit(&stp->sd_lock); 2272 return (0); 2273 2274 case M_SETOPTS: 2275 /* 2276 * Set stream head options (read option, write offset, 2277 * min/max packet size, and/or high/low water marks for 2278 * the read side only). 2279 */ 2280 2281 bpri = 0; 2282 sop = (struct stroptions *)bp->b_rptr; 2283 mutex_enter(&stp->sd_lock); 2284 if (sop->so_flags & SO_READOPT) { 2285 switch (sop->so_readopt & RMODEMASK) { 2286 case RNORM: 2287 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 2288 break; 2289 2290 case RMSGD: 2291 stp->sd_read_opt = 2292 ((stp->sd_read_opt & ~RD_MSGNODIS) | 2293 RD_MSGDIS); 2294 break; 2295 2296 case RMSGN: 2297 stp->sd_read_opt = 2298 ((stp->sd_read_opt & ~RD_MSGDIS) | 2299 RD_MSGNODIS); 2300 break; 2301 } 2302 switch (sop->so_readopt & RPROTMASK) { 2303 case RPROTNORM: 2304 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 2305 break; 2306 2307 case RPROTDAT: 2308 stp->sd_read_opt = 2309 ((stp->sd_read_opt & ~RD_PROTDIS) | 2310 RD_PROTDAT); 2311 break; 2312 2313 case RPROTDIS: 2314 stp->sd_read_opt = 2315 ((stp->sd_read_opt & ~RD_PROTDAT) | 2316 RD_PROTDIS); 2317 break; 2318 } 2319 switch (sop->so_readopt & RFLUSHMASK) { 2320 case RFLUSHPCPROT: 2321 /* 2322 * This sets the stream head to NOT flush 2323 * M_PCPROTO messages. 2324 */ 2325 stp->sd_read_opt |= RFLUSHPCPROT; 2326 break; 2327 } 2328 } 2329 if (sop->so_flags & SO_ERROPT) { 2330 switch (sop->so_erropt & RERRMASK) { 2331 case RERRNORM: 2332 stp->sd_flag &= ~STRDERRNONPERSIST; 2333 break; 2334 case RERRNONPERSIST: 2335 stp->sd_flag |= STRDERRNONPERSIST; 2336 break; 2337 } 2338 switch (sop->so_erropt & WERRMASK) { 2339 case WERRNORM: 2340 stp->sd_flag &= ~STWRERRNONPERSIST; 2341 break; 2342 case WERRNONPERSIST: 2343 stp->sd_flag |= STWRERRNONPERSIST; 2344 break; 2345 } 2346 } 2347 if (sop->so_flags & SO_COPYOPT) { 2348 if (sop->so_copyopt & ZCVMSAFE) { 2349 stp->sd_copyflag |= STZCVMSAFE; 2350 stp->sd_copyflag &= ~STZCVMUNSAFE; 2351 } else if (sop->so_copyopt & ZCVMUNSAFE) { 2352 stp->sd_copyflag |= STZCVMUNSAFE; 2353 stp->sd_copyflag &= ~STZCVMSAFE; 2354 } 2355 2356 if (sop->so_copyopt & COPYCACHED) { 2357 stp->sd_copyflag |= STRCOPYCACHED; 2358 } 2359 } 2360 if (sop->so_flags & SO_WROFF) 2361 stp->sd_wroff = sop->so_wroff; 2362 if (sop->so_flags & SO_TAIL) 2363 stp->sd_tail = sop->so_tail; 2364 if (sop->so_flags & SO_MINPSZ) 2365 q->q_minpsz = sop->so_minpsz; 2366 if (sop->so_flags & SO_MAXPSZ) 2367 q->q_maxpsz = sop->so_maxpsz; 2368 if (sop->so_flags & SO_MAXBLK) 2369 stp->sd_maxblk = sop->so_maxblk; 2370 if (sop->so_flags & SO_HIWAT) { 2371 if (sop->so_flags & SO_BAND) { 2372 if (strqset(q, QHIWAT, 2373 sop->so_band, sop->so_hiwat)) { 2374 cmn_err(CE_WARN, "strrput: could not " 2375 "allocate qband\n"); 2376 } else { 2377 bpri = sop->so_band; 2378 } 2379 } else { 2380 q->q_hiwat = sop->so_hiwat; 2381 } 2382 } 2383 if (sop->so_flags & SO_LOWAT) { 2384 if (sop->so_flags & SO_BAND) { 2385 if (strqset(q, QLOWAT, 2386 sop->so_band, sop->so_lowat)) { 2387 cmn_err(CE_WARN, "strrput: could not " 2388 "allocate qband\n"); 2389 } else { 2390 bpri = sop->so_band; 2391 } 2392 } else { 2393 q->q_lowat = sop->so_lowat; 2394 } 2395 } 2396 if (sop->so_flags & SO_MREADON) 2397 stp->sd_flag |= SNDMREAD; 2398 if (sop->so_flags & SO_MREADOFF) 2399 stp->sd_flag &= ~SNDMREAD; 2400 if (sop->so_flags & SO_NDELON) 2401 stp->sd_flag |= OLDNDELAY; 2402 if (sop->so_flags & SO_NDELOFF) 2403 stp->sd_flag &= ~OLDNDELAY; 2404 if (sop->so_flags & SO_ISTTY) 2405 stp->sd_flag |= STRISTTY; 2406 if (sop->so_flags & SO_ISNTTY) 2407 stp->sd_flag &= ~STRISTTY; 2408 if (sop->so_flags & SO_TOSTOP) 2409 stp->sd_flag |= STRTOSTOP; 2410 if (sop->so_flags & SO_TONSTOP) 2411 stp->sd_flag &= ~STRTOSTOP; 2412 if (sop->so_flags & SO_DELIM) 2413 stp->sd_flag |= STRDELIM; 2414 if (sop->so_flags & SO_NODELIM) 2415 stp->sd_flag &= ~STRDELIM; 2416 2417 mutex_exit(&stp->sd_lock); 2418 freemsg(bp); 2419 2420 /* Check backenable in case the water marks changed */ 2421 qbackenable(q, bpri); 2422 return (0); 2423 2424 /* 2425 * The following set of cases deal with situations where two stream 2426 * heads are connected to each other (twisted streams). These messages 2427 * have no meaning at the stream head. 2428 */ 2429 case M_BREAK: 2430 case M_CTL: 2431 case M_DELAY: 2432 case M_START: 2433 case M_STOP: 2434 case M_IOCDATA: 2435 case M_STARTI: 2436 case M_STOPI: 2437 freemsg(bp); 2438 return (0); 2439 2440 case M_IOCTL: 2441 /* 2442 * Always NAK this condition 2443 * (makes no sense) 2444 * If there is one or more threads in the read side 2445 * rwnext we have to defer the nacking until that thread 2446 * returns (in strget). 2447 */ 2448 mutex_enter(&stp->sd_lock); 2449 if (stp->sd_struiodnak != 0) { 2450 /* 2451 * Defer NAK to the streamhead. Queue at the end 2452 * the list. 2453 */ 2454 mblk_t *mp = stp->sd_struionak; 2455 2456 while (mp && mp->b_next) 2457 mp = mp->b_next; 2458 if (mp) 2459 mp->b_next = bp; 2460 else 2461 stp->sd_struionak = bp; 2462 bp->b_next = NULL; 2463 mutex_exit(&stp->sd_lock); 2464 return (0); 2465 } 2466 mutex_exit(&stp->sd_lock); 2467 2468 bp->b_datap->db_type = M_IOCNAK; 2469 /* 2470 * Protect against the driver passing up 2471 * messages after it has done a qprocsoff. 2472 */ 2473 if (_OTHERQ(q)->q_next == NULL) 2474 freemsg(bp); 2475 else 2476 qreply(q, bp); 2477 return (0); 2478 2479 default: 2480 #ifdef DEBUG 2481 cmn_err(CE_WARN, 2482 "bad message type %x received at stream head\n", 2483 bp->b_datap->db_type); 2484 #endif 2485 freemsg(bp); 2486 return (0); 2487 } 2488 2489 /* NOTREACHED */ 2490 } 2491 2492 /* 2493 * Check if the stream pointed to by `stp' can be written to, and return an 2494 * error code if not. If `eiohup' is set, then return EIO if STRHUP is set. 2495 * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream, 2496 * then always return EPIPE and send a SIGPIPE to the invoking thread. 2497 */ 2498 static int 2499 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok) 2500 { 2501 int error; 2502 2503 ASSERT(MUTEX_HELD(&stp->sd_lock)); 2504 2505 /* 2506 * For modem support, POSIX states that on writes, EIO should 2507 * be returned if the stream has been hung up. 2508 */ 2509 if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP) 2510 error = EIO; 2511 else 2512 error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0); 2513 2514 if (error != 0) { 2515 if (!(stp->sd_flag & STPLEX) && 2516 (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) { 2517 tsignal(curthread, SIGPIPE); 2518 error = EPIPE; 2519 } 2520 } 2521 2522 return (error); 2523 } 2524 2525 /* 2526 * Copyin and send data down a stream. 2527 * The caller will allocate and copyin any control part that precedes the 2528 * message and pass that in as mctl. 2529 * 2530 * Caller should *not* hold sd_lock. 2531 * When EWOULDBLOCK is returned the caller has to redo the canputnext 2532 * under sd_lock in order to avoid missing a backenabling wakeup. 2533 * 2534 * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA. 2535 * 2536 * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages. 2537 * For sync streams we can only ignore flow control by reverting to using 2538 * putnext. 2539 * 2540 * If sd_maxblk is less than *iosize this routine might return without 2541 * transferring all of *iosize. In all cases, on return *iosize will contain 2542 * the amount of data that was transferred. 2543 */ 2544 static int 2545 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize, 2546 int b_flag, int pri, int flags) 2547 { 2548 struiod_t uiod; 2549 mblk_t *mp; 2550 queue_t *wqp = stp->sd_wrq; 2551 int error = 0; 2552 ssize_t count = *iosize; 2553 2554 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 2555 2556 if (uiop != NULL && count >= 0) 2557 flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0; 2558 2559 if (!(flags & STRUIO_POSTPONE)) { 2560 /* 2561 * Use regular canputnext, strmakedata, putnext sequence. 2562 */ 2563 if (pri == 0) { 2564 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2565 freemsg(mctl); 2566 return (EWOULDBLOCK); 2567 } 2568 } else { 2569 if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) { 2570 freemsg(mctl); 2571 return (EWOULDBLOCK); 2572 } 2573 } 2574 2575 if ((error = strmakedata(iosize, uiop, stp, flags, 2576 &mp)) != 0) { 2577 freemsg(mctl); 2578 /* 2579 * need to change return code to ENOMEM 2580 * so that this is not confused with 2581 * flow control, EAGAIN. 2582 */ 2583 2584 if (error == EAGAIN) 2585 return (ENOMEM); 2586 else 2587 return (error); 2588 } 2589 if (mctl != NULL) { 2590 if (mctl->b_cont == NULL) 2591 mctl->b_cont = mp; 2592 else if (mp != NULL) 2593 linkb(mctl, mp); 2594 mp = mctl; 2595 } else if (mp == NULL) 2596 return (0); 2597 2598 mp->b_flag |= b_flag; 2599 mp->b_band = (uchar_t)pri; 2600 2601 if (flags & MSG_IGNFLOW) { 2602 /* 2603 * XXX Hack: Don't get stuck running service 2604 * procedures. This is needed for sockfs when 2605 * sending the unbind message out of the rput 2606 * procedure - we don't want a put procedure 2607 * to run service procedures. 2608 */ 2609 putnext(wqp, mp); 2610 } else { 2611 stream_willservice(stp); 2612 putnext(wqp, mp); 2613 stream_runservice(stp); 2614 } 2615 return (0); 2616 } 2617 /* 2618 * Stream supports rwnext() for the write side. 2619 */ 2620 if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) { 2621 freemsg(mctl); 2622 /* 2623 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled". 2624 */ 2625 return (error == EAGAIN ? ENOMEM : error); 2626 } 2627 if (mctl != NULL) { 2628 if (mctl->b_cont == NULL) 2629 mctl->b_cont = mp; 2630 else if (mp != NULL) 2631 linkb(mctl, mp); 2632 mp = mctl; 2633 } else if (mp == NULL) { 2634 return (0); 2635 } 2636 2637 mp->b_flag |= b_flag; 2638 mp->b_band = (uchar_t)pri; 2639 2640 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 2641 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 2642 uiod.d_uio.uio_offset = 0; 2643 uiod.d_mp = mp; 2644 error = rwnext(wqp, &uiod); 2645 if (! uiod.d_mp) { 2646 uioskip(uiop, *iosize); 2647 return (error); 2648 } 2649 ASSERT(mp == uiod.d_mp); 2650 if (error == EINVAL) { 2651 /* 2652 * The stream plumbing must have changed while 2653 * we were away, so just turn off rwnext()s. 2654 */ 2655 error = 0; 2656 } else if (error == EBUSY || error == EWOULDBLOCK) { 2657 /* 2658 * Couldn't enter a perimeter or took a page fault, 2659 * so fall-back to putnext(). 2660 */ 2661 error = 0; 2662 } else { 2663 freemsg(mp); 2664 return (error); 2665 } 2666 /* Have to check canput before consuming data from the uio */ 2667 if (pri == 0) { 2668 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2669 freemsg(mp); 2670 return (EWOULDBLOCK); 2671 } 2672 } else { 2673 if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) { 2674 freemsg(mp); 2675 return (EWOULDBLOCK); 2676 } 2677 } 2678 ASSERT(mp == uiod.d_mp); 2679 /* Copyin data from the uio */ 2680 if ((error = struioget(wqp, mp, &uiod, 0)) != 0) { 2681 freemsg(mp); 2682 return (error); 2683 } 2684 uioskip(uiop, *iosize); 2685 if (flags & MSG_IGNFLOW) { 2686 /* 2687 * XXX Hack: Don't get stuck running service procedures. 2688 * This is needed for sockfs when sending the unbind message 2689 * out of the rput procedure - we don't want a put procedure 2690 * to run service procedures. 2691 */ 2692 putnext(wqp, mp); 2693 } else { 2694 stream_willservice(stp); 2695 putnext(wqp, mp); 2696 stream_runservice(stp); 2697 } 2698 return (0); 2699 } 2700 2701 /* 2702 * Write attempts to break the write request into messages conforming 2703 * with the minimum and maximum packet sizes set downstream. 2704 * 2705 * Write will not block if downstream queue is full and 2706 * O_NDELAY is set, otherwise it will block waiting for the queue to get room. 2707 * 2708 * A write of zero bytes gets packaged into a zero length message and sent 2709 * downstream like any other message. 2710 * 2711 * If buffers of the requested sizes are not available, the write will 2712 * sleep until the buffers become available. 2713 * 2714 * Write (if specified) will supply a write offset in a message if it 2715 * makes sense. This can be specified by downstream modules as part of 2716 * a M_SETOPTS message. Write will not supply the write offset if it 2717 * cannot supply any data in a buffer. In other words, write will never 2718 * send down an empty packet due to a write offset. 2719 */ 2720 /* ARGSUSED2 */ 2721 int 2722 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp) 2723 { 2724 return (strwrite_common(vp, uiop, crp, 0)); 2725 } 2726 2727 /* ARGSUSED2 */ 2728 int 2729 strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag) 2730 { 2731 struct stdata *stp; 2732 struct queue *wqp; 2733 ssize_t rmin, rmax; 2734 ssize_t iosize; 2735 int waitflag; 2736 int tempmode; 2737 int error = 0; 2738 int b_flag; 2739 2740 ASSERT(vp->v_stream); 2741 stp = vp->v_stream; 2742 2743 mutex_enter(&stp->sd_lock); 2744 2745 if ((error = i_straccess(stp, JCWRITE)) != 0) { 2746 mutex_exit(&stp->sd_lock); 2747 return (error); 2748 } 2749 2750 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 2751 error = strwriteable(stp, B_TRUE, B_TRUE); 2752 if (error != 0) { 2753 mutex_exit(&stp->sd_lock); 2754 return (error); 2755 } 2756 } 2757 2758 mutex_exit(&stp->sd_lock); 2759 2760 wqp = stp->sd_wrq; 2761 2762 /* get these values from them cached in the stream head */ 2763 rmin = stp->sd_qn_minpsz; 2764 rmax = stp->sd_qn_maxpsz; 2765 2766 /* 2767 * Check the min/max packet size constraints. If min packet size 2768 * is non-zero, the write cannot be split into multiple messages 2769 * and still guarantee the size constraints. 2770 */ 2771 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp); 2772 2773 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 2774 if (rmax == 0) { 2775 return (0); 2776 } 2777 if (rmin > 0) { 2778 if (uiop->uio_resid < rmin) { 2779 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2780 "strwrite out:q %p out %d error %d", 2781 wqp, 0, ERANGE); 2782 return (ERANGE); 2783 } 2784 if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) { 2785 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2786 "strwrite out:q %p out %d error %d", 2787 wqp, 1, ERANGE); 2788 return (ERANGE); 2789 } 2790 } 2791 2792 /* 2793 * Do until count satisfied or error. 2794 */ 2795 waitflag = WRITEWAIT | wflag; 2796 if (stp->sd_flag & OLDNDELAY) 2797 tempmode = uiop->uio_fmode & ~FNDELAY; 2798 else 2799 tempmode = uiop->uio_fmode; 2800 2801 if (rmax == INFPSZ) 2802 rmax = uiop->uio_resid; 2803 2804 /* 2805 * Note that tempmode does not get used in strput/strmakedata 2806 * but only in strwaitq. The other routines use uio_fmode 2807 * unmodified. 2808 */ 2809 2810 /* LINTED: constant in conditional context */ 2811 while (1) { /* breaks when uio_resid reaches zero */ 2812 /* 2813 * Determine the size of the next message to be 2814 * packaged. May have to break write into several 2815 * messages based on max packet size. 2816 */ 2817 iosize = MIN(uiop->uio_resid, rmax); 2818 2819 /* 2820 * Put block downstream when flow control allows it. 2821 */ 2822 if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize)) 2823 b_flag = MSGDELIM; 2824 else 2825 b_flag = 0; 2826 2827 for (;;) { 2828 int done = 0; 2829 2830 error = strput(stp, NULL, uiop, &iosize, b_flag, 0, 0); 2831 if (error == 0) 2832 break; 2833 if (error != EWOULDBLOCK) 2834 goto out; 2835 2836 mutex_enter(&stp->sd_lock); 2837 /* 2838 * Check for a missed wakeup. 2839 * Needed since strput did not hold sd_lock across 2840 * the canputnext. 2841 */ 2842 if (canputnext(wqp)) { 2843 /* Try again */ 2844 mutex_exit(&stp->sd_lock); 2845 continue; 2846 } 2847 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT, 2848 "strwrite wait:q %p wait", wqp); 2849 if ((error = strwaitq(stp, waitflag, (ssize_t)0, 2850 tempmode, -1, &done)) != 0 || done) { 2851 mutex_exit(&stp->sd_lock); 2852 if ((vp->v_type == VFIFO) && 2853 (uiop->uio_fmode & FNDELAY) && 2854 (error == EAGAIN)) 2855 error = 0; 2856 goto out; 2857 } 2858 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE, 2859 "strwrite wake:q %p awakes", wqp); 2860 if ((error = i_straccess(stp, JCWRITE)) != 0) { 2861 mutex_exit(&stp->sd_lock); 2862 goto out; 2863 } 2864 mutex_exit(&stp->sd_lock); 2865 } 2866 waitflag |= NOINTR; 2867 TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID, 2868 "strwrite resid:q %p uiop %p", wqp, uiop); 2869 if (uiop->uio_resid) { 2870 /* Recheck for errors - needed for sockets */ 2871 if ((stp->sd_wput_opt & SW_RECHECK_ERR) && 2872 (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) { 2873 mutex_enter(&stp->sd_lock); 2874 error = strwriteable(stp, B_FALSE, B_TRUE); 2875 mutex_exit(&stp->sd_lock); 2876 if (error != 0) 2877 return (error); 2878 } 2879 continue; 2880 } 2881 break; 2882 } 2883 out: 2884 /* 2885 * For historical reasons, applications expect EAGAIN when a data 2886 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN. 2887 */ 2888 if (error == ENOMEM) 2889 error = EAGAIN; 2890 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2891 "strwrite out:q %p out %d error %d", wqp, 2, error); 2892 return (error); 2893 } 2894 2895 /* 2896 * Stream head write service routine. 2897 * Its job is to wake up any sleeping writers when a queue 2898 * downstream needs data (part of the flow control in putq and getq). 2899 * It also must wake anyone sleeping on a poll(). 2900 * For stream head right below mux module, it must also invoke put procedure 2901 * of next downstream module. 2902 */ 2903 int 2904 strwsrv(queue_t *q) 2905 { 2906 struct stdata *stp; 2907 queue_t *tq; 2908 qband_t *qbp; 2909 int i; 2910 qband_t *myqbp; 2911 int isevent; 2912 unsigned char qbf[NBAND]; /* band flushing backenable flags */ 2913 2914 TRACE_1(TR_FAC_STREAMS_FR, 2915 TR_STRWSRV, "strwsrv:q %p", q); 2916 stp = (struct stdata *)q->q_ptr; 2917 ASSERT(qclaimed(q)); 2918 mutex_enter(&stp->sd_lock); 2919 ASSERT(!(stp->sd_flag & STPLEX)); 2920 2921 if (stp->sd_flag & WSLEEP) { 2922 stp->sd_flag &= ~WSLEEP; 2923 cv_broadcast(&q->q_wait); 2924 } 2925 mutex_exit(&stp->sd_lock); 2926 2927 /* The other end of a stream pipe went away. */ 2928 if ((tq = q->q_next) == NULL) { 2929 return (0); 2930 } 2931 2932 /* Find the next module forward that has a service procedure */ 2933 claimstr(q); 2934 tq = q->q_nfsrv; 2935 ASSERT(tq != NULL); 2936 2937 if ((q->q_flag & QBACK)) { 2938 if ((tq->q_flag & QFULL)) { 2939 mutex_enter(QLOCK(tq)); 2940 if (!(tq->q_flag & QFULL)) { 2941 mutex_exit(QLOCK(tq)); 2942 goto wakeup; 2943 } 2944 /* 2945 * The queue must have become full again. Set QWANTW 2946 * again so strwsrv will be back enabled when 2947 * the queue becomes non-full next time. 2948 */ 2949 tq->q_flag |= QWANTW; 2950 mutex_exit(QLOCK(tq)); 2951 } else { 2952 wakeup: 2953 pollwakeup(&stp->sd_pollist, POLLWRNORM); 2954 mutex_enter(&stp->sd_lock); 2955 if (stp->sd_sigflags & S_WRNORM) 2956 strsendsig(stp->sd_siglist, S_WRNORM, 0, 0); 2957 mutex_exit(&stp->sd_lock); 2958 } 2959 } 2960 2961 isevent = 0; 2962 i = 1; 2963 bzero((caddr_t)qbf, NBAND); 2964 mutex_enter(QLOCK(tq)); 2965 if ((myqbp = q->q_bandp) != NULL) 2966 for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) { 2967 ASSERT(myqbp); 2968 if ((myqbp->qb_flag & QB_BACK)) { 2969 if (qbp->qb_flag & QB_FULL) { 2970 /* 2971 * The band must have become full again. 2972 * Set QB_WANTW again so strwsrv will 2973 * be back enabled when the band becomes 2974 * non-full next time. 2975 */ 2976 qbp->qb_flag |= QB_WANTW; 2977 } else { 2978 isevent = 1; 2979 qbf[i] = 1; 2980 } 2981 } 2982 myqbp = myqbp->qb_next; 2983 i++; 2984 } 2985 mutex_exit(QLOCK(tq)); 2986 2987 if (isevent) { 2988 for (i = tq->q_nband; i; i--) { 2989 if (qbf[i]) { 2990 pollwakeup(&stp->sd_pollist, POLLWRBAND); 2991 mutex_enter(&stp->sd_lock); 2992 if (stp->sd_sigflags & S_WRBAND) 2993 strsendsig(stp->sd_siglist, S_WRBAND, 2994 (uchar_t)i, 0); 2995 mutex_exit(&stp->sd_lock); 2996 } 2997 } 2998 } 2999 3000 releasestr(q); 3001 return (0); 3002 } 3003 3004 /* 3005 * Special case of strcopyin/strcopyout for copying 3006 * struct strioctl that can deal with both data 3007 * models. 3008 */ 3009 3010 #ifdef _LP64 3011 3012 static int 3013 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 3014 { 3015 struct strioctl32 strioc32; 3016 struct strioctl *striocp; 3017 3018 if (copyflag & U_TO_K) { 3019 ASSERT((copyflag & K_TO_K) == 0); 3020 3021 if ((flag & FMODELS) == DATAMODEL_ILP32) { 3022 if (copyin(from, &strioc32, sizeof (strioc32))) 3023 return (EFAULT); 3024 3025 striocp = (struct strioctl *)to; 3026 striocp->ic_cmd = strioc32.ic_cmd; 3027 striocp->ic_timout = strioc32.ic_timout; 3028 striocp->ic_len = strioc32.ic_len; 3029 striocp->ic_dp = (char *)(uintptr_t)strioc32.ic_dp; 3030 3031 } else { /* NATIVE data model */ 3032 if (copyin(from, to, sizeof (struct strioctl))) { 3033 return (EFAULT); 3034 } else { 3035 return (0); 3036 } 3037 } 3038 } else { 3039 ASSERT(copyflag & K_TO_K); 3040 bcopy(from, to, sizeof (struct strioctl)); 3041 } 3042 return (0); 3043 } 3044 3045 static int 3046 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3047 { 3048 struct strioctl32 strioc32; 3049 struct strioctl *striocp; 3050 3051 if (copyflag & U_TO_K) { 3052 ASSERT((copyflag & K_TO_K) == 0); 3053 3054 if ((flag & FMODELS) == DATAMODEL_ILP32) { 3055 striocp = (struct strioctl *)from; 3056 strioc32.ic_cmd = striocp->ic_cmd; 3057 strioc32.ic_timout = striocp->ic_timout; 3058 strioc32.ic_len = striocp->ic_len; 3059 strioc32.ic_dp = (caddr32_t)(uintptr_t)striocp->ic_dp; 3060 ASSERT((char *)(uintptr_t)strioc32.ic_dp == 3061 striocp->ic_dp); 3062 3063 if (copyout(&strioc32, to, sizeof (strioc32))) 3064 return (EFAULT); 3065 3066 } else { /* NATIVE data model */ 3067 if (copyout(from, to, sizeof (struct strioctl))) { 3068 return (EFAULT); 3069 } else { 3070 return (0); 3071 } 3072 } 3073 } else { 3074 ASSERT(copyflag & K_TO_K); 3075 bcopy(from, to, sizeof (struct strioctl)); 3076 } 3077 return (0); 3078 } 3079 3080 #else /* ! _LP64 */ 3081 3082 /* ARGSUSED2 */ 3083 static int 3084 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 3085 { 3086 return (strcopyin(from, to, sizeof (struct strioctl), copyflag)); 3087 } 3088 3089 /* ARGSUSED2 */ 3090 static int 3091 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3092 { 3093 return (strcopyout(from, to, sizeof (struct strioctl), copyflag)); 3094 } 3095 3096 #endif /* _LP64 */ 3097 3098 /* 3099 * Determine type of job control semantics expected by user. The 3100 * possibilities are: 3101 * JCREAD - Behaves like read() on fd; send SIGTTIN 3102 * JCWRITE - Behaves like write() on fd; send SIGTTOU if TOSTOP set 3103 * JCSETP - Sets a value in the stream; send SIGTTOU, ignore TOSTOP 3104 * JCGETP - Gets a value in the stream; no signals. 3105 * See straccess in strsubr.c for usage of these values. 3106 * 3107 * This routine also returns -1 for I_STR as a special case; the 3108 * caller must call again with the real ioctl number for 3109 * classification. 3110 */ 3111 static int 3112 job_control_type(int cmd) 3113 { 3114 switch (cmd) { 3115 case I_STR: 3116 return (-1); 3117 3118 case I_RECVFD: 3119 case I_E_RECVFD: 3120 return (JCREAD); 3121 3122 case I_FDINSERT: 3123 case I_SENDFD: 3124 return (JCWRITE); 3125 3126 case TCSETA: 3127 case TCSETAW: 3128 case TCSETAF: 3129 case TCSBRK: 3130 case TCXONC: 3131 case TCFLSH: 3132 case TCDSET: /* Obsolete */ 3133 case TIOCSWINSZ: 3134 case TCSETS: 3135 case TCSETSW: 3136 case TCSETSF: 3137 case TIOCSETD: 3138 case TIOCHPCL: 3139 case TIOCSETP: 3140 case TIOCSETN: 3141 case TIOCEXCL: 3142 case TIOCNXCL: 3143 case TIOCFLUSH: 3144 case TIOCSETC: 3145 case TIOCLBIS: 3146 case TIOCLBIC: 3147 case TIOCLSET: 3148 case TIOCSBRK: 3149 case TIOCCBRK: 3150 case TIOCSDTR: 3151 case TIOCCDTR: 3152 case TIOCSLTC: 3153 case TIOCSTOP: 3154 case TIOCSTART: 3155 case TIOCSTI: 3156 case TIOCSPGRP: 3157 case TIOCMSET: 3158 case TIOCMBIS: 3159 case TIOCMBIC: 3160 case TIOCREMOTE: 3161 case TIOCSIGNAL: 3162 case LDSETT: 3163 case LDSMAP: /* Obsolete */ 3164 case DIOCSETP: 3165 case I_FLUSH: 3166 case I_SRDOPT: 3167 case I_SETSIG: 3168 case I_SWROPT: 3169 case I_FLUSHBAND: 3170 case I_SETCLTIME: 3171 case I_SERROPT: 3172 case I_ESETSIG: 3173 case FIONBIO: 3174 case FIOASYNC: 3175 case FIOSETOWN: 3176 case JBOOT: /* Obsolete */ 3177 case JTERM: /* Obsolete */ 3178 case JTIMOM: /* Obsolete */ 3179 case JZOMBOOT: /* Obsolete */ 3180 case JAGENT: /* Obsolete */ 3181 case JTRUN: /* Obsolete */ 3182 case JXTPROTO: /* Obsolete */ 3183 return (JCSETP); 3184 } 3185 3186 return (JCGETP); 3187 } 3188 3189 /* 3190 * ioctl for streams 3191 */ 3192 int 3193 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag, 3194 cred_t *crp, int *rvalp) 3195 { 3196 struct stdata *stp; 3197 struct strcmd *scp; 3198 struct strioctl strioc; 3199 struct uio uio; 3200 struct iovec iov; 3201 int access; 3202 mblk_t *mp; 3203 int error = 0; 3204 int done = 0; 3205 ssize_t rmin, rmax; 3206 queue_t *wrq; 3207 queue_t *rdq; 3208 boolean_t kioctl = B_FALSE; 3209 uint32_t auditing = AU_AUDITING(); 3210 3211 if (flag & FKIOCTL) { 3212 copyflag = K_TO_K; 3213 kioctl = B_TRUE; 3214 } 3215 ASSERT(vp->v_stream); 3216 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 3217 stp = vp->v_stream; 3218 3219 TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER, 3220 "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg); 3221 3222 /* 3223 * If the copy is kernel to kernel, make sure that the FNATIVE 3224 * flag is set. After this it would be a serious error to have 3225 * no model flag. 3226 */ 3227 if (copyflag == K_TO_K) 3228 flag = (flag & ~FMODELS) | FNATIVE; 3229 3230 ASSERT((flag & FMODELS) != 0); 3231 3232 wrq = stp->sd_wrq; 3233 rdq = _RD(wrq); 3234 3235 access = job_control_type(cmd); 3236 3237 /* We should never see these here, should be handled by iwscn */ 3238 if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR) 3239 return (EINVAL); 3240 3241 mutex_enter(&stp->sd_lock); 3242 if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) { 3243 mutex_exit(&stp->sd_lock); 3244 return (error); 3245 } 3246 mutex_exit(&stp->sd_lock); 3247 3248 /* 3249 * Check for sgttyb-related ioctls first, and complain as 3250 * necessary. 3251 */ 3252 switch (cmd) { 3253 case TIOCGETP: 3254 case TIOCSETP: 3255 case TIOCSETN: 3256 if (sgttyb_handling >= 2 && !sgttyb_complaint) { 3257 sgttyb_complaint = B_TRUE; 3258 cmn_err(CE_NOTE, 3259 "application used obsolete TIOC[GS]ET"); 3260 } 3261 if (sgttyb_handling >= 3) { 3262 tsignal(curthread, SIGSYS); 3263 return (EIO); 3264 } 3265 break; 3266 } 3267 3268 mutex_enter(&stp->sd_lock); 3269 3270 switch (cmd) { 3271 case I_RECVFD: 3272 case I_E_RECVFD: 3273 case I_PEEK: 3274 case I_NREAD: 3275 case FIONREAD: 3276 case FIORDCHK: 3277 case I_ATMARK: 3278 case FIONBIO: 3279 case FIOASYNC: 3280 if (stp->sd_flag & (STRDERR|STPLEX)) { 3281 error = strgeterr(stp, STRDERR|STPLEX, 0); 3282 if (error != 0) { 3283 mutex_exit(&stp->sd_lock); 3284 return (error); 3285 } 3286 } 3287 break; 3288 3289 default: 3290 if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) { 3291 error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0); 3292 if (error != 0) { 3293 mutex_exit(&stp->sd_lock); 3294 return (error); 3295 } 3296 } 3297 } 3298 3299 mutex_exit(&stp->sd_lock); 3300 3301 switch (cmd) { 3302 default: 3303 /* 3304 * The stream head has hardcoded knowledge of a 3305 * miscellaneous collection of terminal-, keyboard- and 3306 * mouse-related ioctls, enumerated below. This hardcoded 3307 * knowledge allows the stream head to automatically 3308 * convert transparent ioctl requests made by userland 3309 * programs into I_STR ioctls which many old STREAMS 3310 * modules and drivers require. 3311 * 3312 * No new ioctls should ever be added to this list. 3313 * Instead, the STREAMS module or driver should be written 3314 * to either handle transparent ioctls or require any 3315 * userland programs to use I_STR ioctls (by returning 3316 * EINVAL to any transparent ioctl requests). 3317 * 3318 * More importantly, removing ioctls from this list should 3319 * be done with the utmost care, since our STREAMS modules 3320 * and drivers *count* on the stream head performing this 3321 * conversion, and thus may panic while processing 3322 * transparent ioctl request for one of these ioctls (keep 3323 * in mind that third party modules and drivers may have 3324 * similar problems). 3325 */ 3326 if (((cmd & IOCTYPE) == LDIOC) || 3327 ((cmd & IOCTYPE) == tIOC) || 3328 ((cmd & IOCTYPE) == TIOC) || 3329 ((cmd & IOCTYPE) == KIOC) || 3330 ((cmd & IOCTYPE) == MSIOC) || 3331 ((cmd & IOCTYPE) == VUIOC)) { 3332 /* 3333 * The ioctl is a tty ioctl - set up strioc buffer 3334 * and call strdoioctl() to do the work. 3335 */ 3336 if (stp->sd_flag & STRHUP) 3337 return (ENXIO); 3338 strioc.ic_cmd = cmd; 3339 strioc.ic_timout = INFTIM; 3340 3341 switch (cmd) { 3342 3343 case TCXONC: 3344 case TCSBRK: 3345 case TCFLSH: 3346 case TCDSET: 3347 { 3348 int native_arg = (int)arg; 3349 strioc.ic_len = sizeof (int); 3350 strioc.ic_dp = (char *)&native_arg; 3351 return (strdoioctl(stp, &strioc, flag, 3352 K_TO_K, crp, rvalp)); 3353 } 3354 3355 case TCSETA: 3356 case TCSETAW: 3357 case TCSETAF: 3358 strioc.ic_len = sizeof (struct termio); 3359 strioc.ic_dp = (char *)arg; 3360 return (strdoioctl(stp, &strioc, flag, 3361 copyflag, crp, rvalp)); 3362 3363 case TCSETS: 3364 case TCSETSW: 3365 case TCSETSF: 3366 strioc.ic_len = sizeof (struct termios); 3367 strioc.ic_dp = (char *)arg; 3368 return (strdoioctl(stp, &strioc, flag, 3369 copyflag, crp, rvalp)); 3370 3371 case LDSETT: 3372 strioc.ic_len = sizeof (struct termcb); 3373 strioc.ic_dp = (char *)arg; 3374 return (strdoioctl(stp, &strioc, flag, 3375 copyflag, crp, rvalp)); 3376 3377 case TIOCSETP: 3378 strioc.ic_len = sizeof (struct sgttyb); 3379 strioc.ic_dp = (char *)arg; 3380 return (strdoioctl(stp, &strioc, flag, 3381 copyflag, crp, rvalp)); 3382 3383 case TIOCSTI: 3384 if ((flag & FREAD) == 0 && 3385 secpolicy_sti(crp) != 0) { 3386 return (EPERM); 3387 } 3388 mutex_enter(&stp->sd_lock); 3389 mutex_enter(&curproc->p_splock); 3390 if (stp->sd_sidp != curproc->p_sessp->s_sidp && 3391 secpolicy_sti(crp) != 0) { 3392 mutex_exit(&curproc->p_splock); 3393 mutex_exit(&stp->sd_lock); 3394 return (EACCES); 3395 } 3396 mutex_exit(&curproc->p_splock); 3397 mutex_exit(&stp->sd_lock); 3398 3399 strioc.ic_len = sizeof (char); 3400 strioc.ic_dp = (char *)arg; 3401 return (strdoioctl(stp, &strioc, flag, 3402 copyflag, crp, rvalp)); 3403 3404 case TIOCSWINSZ: 3405 strioc.ic_len = sizeof (struct winsize); 3406 strioc.ic_dp = (char *)arg; 3407 return (strdoioctl(stp, &strioc, flag, 3408 copyflag, crp, rvalp)); 3409 3410 case TIOCSSIZE: 3411 strioc.ic_len = sizeof (struct ttysize); 3412 strioc.ic_dp = (char *)arg; 3413 return (strdoioctl(stp, &strioc, flag, 3414 copyflag, crp, rvalp)); 3415 3416 case TIOCSSOFTCAR: 3417 case KIOCTRANS: 3418 case KIOCTRANSABLE: 3419 case KIOCCMD: 3420 case KIOCSDIRECT: 3421 case KIOCSCOMPAT: 3422 case KIOCSKABORTEN: 3423 case KIOCSRPTCOUNT: 3424 case KIOCSRPTDELAY: 3425 case KIOCSRPTRATE: 3426 case VUIDSFORMAT: 3427 case TIOCSPPS: 3428 strioc.ic_len = sizeof (int); 3429 strioc.ic_dp = (char *)arg; 3430 return (strdoioctl(stp, &strioc, flag, 3431 copyflag, crp, rvalp)); 3432 3433 case KIOCSETKEY: 3434 case KIOCGETKEY: 3435 strioc.ic_len = sizeof (struct kiockey); 3436 strioc.ic_dp = (char *)arg; 3437 return (strdoioctl(stp, &strioc, flag, 3438 copyflag, crp, rvalp)); 3439 3440 case KIOCSKEY: 3441 case KIOCGKEY: 3442 strioc.ic_len = sizeof (struct kiockeymap); 3443 strioc.ic_dp = (char *)arg; 3444 return (strdoioctl(stp, &strioc, flag, 3445 copyflag, crp, rvalp)); 3446 3447 case KIOCSLED: 3448 /* arg is a pointer to char */ 3449 strioc.ic_len = sizeof (char); 3450 strioc.ic_dp = (char *)arg; 3451 return (strdoioctl(stp, &strioc, flag, 3452 copyflag, crp, rvalp)); 3453 3454 case MSIOSETPARMS: 3455 strioc.ic_len = sizeof (Ms_parms); 3456 strioc.ic_dp = (char *)arg; 3457 return (strdoioctl(stp, &strioc, flag, 3458 copyflag, crp, rvalp)); 3459 3460 case VUIDSADDR: 3461 case VUIDGADDR: 3462 strioc.ic_len = sizeof (struct vuid_addr_probe); 3463 strioc.ic_dp = (char *)arg; 3464 return (strdoioctl(stp, &strioc, flag, 3465 copyflag, crp, rvalp)); 3466 3467 /* 3468 * These M_IOCTL's don't require any data to be sent 3469 * downstream, and the driver will allocate and link 3470 * on its own mblk_t upon M_IOCACK -- thus we set 3471 * ic_len to zero and set ic_dp to arg so we know 3472 * where to copyout to later. 3473 */ 3474 case TIOCGSOFTCAR: 3475 case TIOCGWINSZ: 3476 case TIOCGSIZE: 3477 case KIOCGTRANS: 3478 case KIOCGTRANSABLE: 3479 case KIOCTYPE: 3480 case KIOCGDIRECT: 3481 case KIOCGCOMPAT: 3482 case KIOCLAYOUT: 3483 case KIOCGLED: 3484 case MSIOGETPARMS: 3485 case MSIOBUTTONS: 3486 case VUIDGFORMAT: 3487 case TIOCGPPS: 3488 case TIOCGPPSEV: 3489 case TCGETA: 3490 case TCGETS: 3491 case LDGETT: 3492 case TIOCGETP: 3493 case KIOCGRPTCOUNT: 3494 case KIOCGRPTDELAY: 3495 case KIOCGRPTRATE: 3496 strioc.ic_len = 0; 3497 strioc.ic_dp = (char *)arg; 3498 return (strdoioctl(stp, &strioc, flag, 3499 copyflag, crp, rvalp)); 3500 } 3501 } 3502 3503 /* 3504 * Unknown cmd - send it down as a transparent ioctl. 3505 */ 3506 strioc.ic_cmd = cmd; 3507 strioc.ic_timout = INFTIM; 3508 strioc.ic_len = TRANSPARENT; 3509 strioc.ic_dp = (char *)&arg; 3510 3511 return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); 3512 3513 case I_STR: 3514 /* 3515 * Stream ioctl. Read in an strioctl buffer from the user 3516 * along with any data specified and send it downstream. 3517 * Strdoioctl will wait allow only one ioctl message at 3518 * a time, and waits for the acknowledgement. 3519 */ 3520 3521 if (stp->sd_flag & STRHUP) 3522 return (ENXIO); 3523 3524 error = strcopyin_strioctl((void *)arg, &strioc, flag, 3525 copyflag); 3526 if (error != 0) 3527 return (error); 3528 3529 if ((strioc.ic_len < 0) || (strioc.ic_timout < -1)) 3530 return (EINVAL); 3531 3532 access = job_control_type(strioc.ic_cmd); 3533 mutex_enter(&stp->sd_lock); 3534 if ((access != -1) && 3535 ((error = i_straccess(stp, access)) != 0)) { 3536 mutex_exit(&stp->sd_lock); 3537 return (error); 3538 } 3539 mutex_exit(&stp->sd_lock); 3540 3541 /* 3542 * The I_STR facility provides a trap door for malicious 3543 * code to send down bogus streamio(7I) ioctl commands to 3544 * unsuspecting STREAMS modules and drivers which expect to 3545 * only get these messages from the stream head. 3546 * Explicitly prohibit any streamio ioctls which can be 3547 * passed downstream by the stream head. Note that we do 3548 * not block all streamio ioctls because the ioctl 3549 * numberspace is not well managed and thus it's possible 3550 * that a module or driver's ioctl numbers may accidentally 3551 * collide with them. 3552 */ 3553 switch (strioc.ic_cmd) { 3554 case I_LINK: 3555 case I_PLINK: 3556 case I_UNLINK: 3557 case I_PUNLINK: 3558 case _I_GETPEERCRED: 3559 case _I_PLINK_LH: 3560 return (EINVAL); 3561 } 3562 3563 error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp); 3564 if (error == 0) { 3565 error = strcopyout_strioctl(&strioc, (void *)arg, 3566 flag, copyflag); 3567 } 3568 return (error); 3569 3570 case _I_CMD: 3571 /* 3572 * Like I_STR, but without using M_IOC* messages and without 3573 * copyins/copyouts beyond the passed-in argument. 3574 */ 3575 if (stp->sd_flag & STRHUP) 3576 return (ENXIO); 3577 3578 if (copyflag == U_TO_K) { 3579 if ((scp = kmem_alloc(sizeof (strcmd_t), 3580 KM_NOSLEEP)) == NULL) { 3581 return (ENOMEM); 3582 } 3583 3584 if (copyin((void *)arg, scp, sizeof (strcmd_t))) { 3585 kmem_free(scp, sizeof (strcmd_t)); 3586 return (EFAULT); 3587 } 3588 } else { 3589 scp = (strcmd_t *)arg; 3590 } 3591 3592 access = job_control_type(scp->sc_cmd); 3593 mutex_enter(&stp->sd_lock); 3594 if (access != -1 && (error = i_straccess(stp, access)) != 0) { 3595 mutex_exit(&stp->sd_lock); 3596 if (copyflag == U_TO_K) 3597 kmem_free(scp, sizeof (strcmd_t)); 3598 return (error); 3599 } 3600 mutex_exit(&stp->sd_lock); 3601 3602 *rvalp = 0; 3603 if ((error = strdocmd(stp, scp, crp)) == 0) { 3604 if (copyflag == U_TO_K && 3605 copyout(scp, (void *)arg, sizeof (strcmd_t))) { 3606 error = EFAULT; 3607 } 3608 } 3609 if (copyflag == U_TO_K) 3610 kmem_free(scp, sizeof (strcmd_t)); 3611 return (error); 3612 3613 case I_NREAD: 3614 /* 3615 * Return number of bytes of data in first message 3616 * in queue in "arg" and return the number of messages 3617 * in queue in return value. 3618 */ 3619 { 3620 size_t size; 3621 int retval; 3622 int count = 0; 3623 3624 mutex_enter(QLOCK(rdq)); 3625 3626 size = msgdsize(rdq->q_first); 3627 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3628 count++; 3629 3630 mutex_exit(QLOCK(rdq)); 3631 if (stp->sd_struiordq) { 3632 infod_t infod; 3633 3634 infod.d_cmd = INFOD_COUNT; 3635 infod.d_count = 0; 3636 if (count == 0) { 3637 infod.d_cmd |= INFOD_FIRSTBYTES; 3638 infod.d_bytes = 0; 3639 } 3640 infod.d_res = 0; 3641 (void) infonext(rdq, &infod); 3642 count += infod.d_count; 3643 if (infod.d_res & INFOD_FIRSTBYTES) 3644 size = infod.d_bytes; 3645 } 3646 3647 /* 3648 * Drop down from size_t to the "int" required by the 3649 * interface. Cap at INT_MAX. 3650 */ 3651 retval = MIN(size, INT_MAX); 3652 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3653 copyflag); 3654 if (!error) 3655 *rvalp = count; 3656 return (error); 3657 } 3658 3659 case FIONREAD: 3660 /* 3661 * Return number of bytes of data in all data messages 3662 * in queue in "arg". 3663 */ 3664 { 3665 size_t size = 0; 3666 int retval; 3667 3668 mutex_enter(QLOCK(rdq)); 3669 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3670 size += msgdsize(mp); 3671 mutex_exit(QLOCK(rdq)); 3672 3673 if (stp->sd_struiordq) { 3674 infod_t infod; 3675 3676 infod.d_cmd = INFOD_BYTES; 3677 infod.d_res = 0; 3678 infod.d_bytes = 0; 3679 (void) infonext(rdq, &infod); 3680 size += infod.d_bytes; 3681 } 3682 3683 /* 3684 * Drop down from size_t to the "int" required by the 3685 * interface. Cap at INT_MAX. 3686 */ 3687 retval = MIN(size, INT_MAX); 3688 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3689 copyflag); 3690 3691 *rvalp = 0; 3692 return (error); 3693 } 3694 case FIORDCHK: 3695 /* 3696 * FIORDCHK does not use arg value (like FIONREAD), 3697 * instead a count is returned. I_NREAD value may 3698 * not be accurate but safe. The real thing to do is 3699 * to add the msgdsizes of all data messages until 3700 * a non-data message. 3701 */ 3702 { 3703 size_t size = 0; 3704 3705 mutex_enter(QLOCK(rdq)); 3706 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3707 size += msgdsize(mp); 3708 mutex_exit(QLOCK(rdq)); 3709 3710 if (stp->sd_struiordq) { 3711 infod_t infod; 3712 3713 infod.d_cmd = INFOD_BYTES; 3714 infod.d_res = 0; 3715 infod.d_bytes = 0; 3716 (void) infonext(rdq, &infod); 3717 size += infod.d_bytes; 3718 } 3719 3720 /* 3721 * Since ioctl returns an int, and memory sizes under 3722 * LP64 may not fit, we return INT_MAX if the count was 3723 * actually greater. 3724 */ 3725 *rvalp = MIN(size, INT_MAX); 3726 return (0); 3727 } 3728 3729 case I_FIND: 3730 /* 3731 * Get module name. 3732 */ 3733 { 3734 char mname[FMNAMESZ + 1]; 3735 queue_t *q; 3736 3737 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3738 mname, FMNAMESZ + 1, NULL); 3739 if (error) 3740 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3741 3742 /* 3743 * Return EINVAL if we're handed a bogus module name. 3744 */ 3745 if (fmodsw_find(mname, FMODSW_LOAD) == NULL) { 3746 TRACE_0(TR_FAC_STREAMS_FR, 3747 TR_I_CANT_FIND, "couldn't I_FIND"); 3748 return (EINVAL); 3749 } 3750 3751 *rvalp = 0; 3752 3753 /* Look downstream to see if module is there. */ 3754 claimstr(stp->sd_wrq); 3755 for (q = stp->sd_wrq->q_next; q; q = q->q_next) { 3756 if (q->q_flag & QREADR) { 3757 q = NULL; 3758 break; 3759 } 3760 if (strcmp(mname, Q2NAME(q)) == 0) 3761 break; 3762 } 3763 releasestr(stp->sd_wrq); 3764 3765 *rvalp = (q ? 1 : 0); 3766 return (error); 3767 } 3768 3769 case I_PUSH: 3770 case __I_PUSH_NOCTTY: 3771 /* 3772 * Push a module. 3773 * For the case __I_PUSH_NOCTTY push a module but 3774 * do not allocate controlling tty. See bugid 4025044 3775 */ 3776 3777 { 3778 char mname[FMNAMESZ + 1]; 3779 fmodsw_impl_t *fp; 3780 dev_t dummydev; 3781 3782 if (stp->sd_flag & STRHUP) 3783 return (ENXIO); 3784 3785 /* 3786 * Get module name and look up in fmodsw. 3787 */ 3788 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3789 mname, FMNAMESZ + 1, NULL); 3790 if (error) 3791 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3792 3793 if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) == 3794 NULL) 3795 return (EINVAL); 3796 3797 TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH, 3798 "I_PUSH:fp %p stp %p", fp, stp); 3799 3800 /* 3801 * If the module is flagged as single-instance, then check 3802 * to see if the module is already pushed. If it is, return 3803 * as if the push was successful. 3804 */ 3805 if (fp->f_qflag & _QSINGLE_INSTANCE) { 3806 queue_t *q; 3807 3808 claimstr(stp->sd_wrq); 3809 for (q = stp->sd_wrq->q_next; q; q = q->q_next) { 3810 if (q->q_flag & QREADR) { 3811 q = NULL; 3812 break; 3813 } 3814 if (strcmp(mname, Q2NAME(q)) == 0) 3815 break; 3816 } 3817 releasestr(stp->sd_wrq); 3818 if (q != NULL) { 3819 fmodsw_rele(fp); 3820 return (0); 3821 } 3822 } 3823 3824 if (error = strstartplumb(stp, flag, cmd)) { 3825 fmodsw_rele(fp); 3826 return (error); 3827 } 3828 3829 /* 3830 * See if any more modules can be pushed on this stream. 3831 * Note that this check must be done after strstartplumb() 3832 * since otherwise multiple threads issuing I_PUSHes on 3833 * the same stream will be able to exceed nstrpush. 3834 */ 3835 mutex_enter(&stp->sd_lock); 3836 if (stp->sd_pushcnt >= nstrpush) { 3837 fmodsw_rele(fp); 3838 strendplumb(stp); 3839 mutex_exit(&stp->sd_lock); 3840 return (EINVAL); 3841 } 3842 mutex_exit(&stp->sd_lock); 3843 3844 /* 3845 * Push new module and call its open routine 3846 * via qattach(). Modules don't change device 3847 * numbers, so just ignore dummydev here. 3848 */ 3849 dummydev = vp->v_rdev; 3850 if ((error = qattach(rdq, &dummydev, 0, crp, fp, 3851 B_FALSE)) == 0) { 3852 if (vp->v_type == VCHR && /* sorry, no pipes allowed */ 3853 (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) { 3854 /* 3855 * try to allocate it as a controlling terminal 3856 */ 3857 (void) strctty(stp); 3858 } 3859 } 3860 3861 mutex_enter(&stp->sd_lock); 3862 3863 /* 3864 * As a performance concern we are caching the values of 3865 * q_minpsz and q_maxpsz of the module below the stream 3866 * head in the stream head. 3867 */ 3868 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 3869 rmin = stp->sd_wrq->q_next->q_minpsz; 3870 rmax = stp->sd_wrq->q_next->q_maxpsz; 3871 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 3872 3873 /* Do this processing here as a performance concern */ 3874 if (strmsgsz != 0) { 3875 if (rmax == INFPSZ) 3876 rmax = strmsgsz; 3877 else { 3878 if (vp->v_type == VFIFO) 3879 rmax = MIN(PIPE_BUF, rmax); 3880 else rmax = MIN(strmsgsz, rmax); 3881 } 3882 } 3883 3884 mutex_enter(QLOCK(wrq)); 3885 stp->sd_qn_minpsz = rmin; 3886 stp->sd_qn_maxpsz = rmax; 3887 mutex_exit(QLOCK(wrq)); 3888 3889 strendplumb(stp); 3890 mutex_exit(&stp->sd_lock); 3891 return (error); 3892 } 3893 3894 case I_POP: 3895 { 3896 queue_t *q; 3897 3898 if (stp->sd_flag & STRHUP) 3899 return (ENXIO); 3900 if (!wrq->q_next) /* for broken pipes */ 3901 return (EINVAL); 3902 3903 if (error = strstartplumb(stp, flag, cmd)) 3904 return (error); 3905 3906 /* 3907 * If there is an anchor on this stream and popping 3908 * the current module would attempt to pop through the 3909 * anchor, then disallow the pop unless we have sufficient 3910 * privileges; take the cheapest (non-locking) check 3911 * first. 3912 */ 3913 if (secpolicy_ip_config(crp, B_TRUE) != 0 || 3914 (stp->sd_anchorzone != crgetzoneid(crp))) { 3915 mutex_enter(&stp->sd_lock); 3916 /* 3917 * Anchors only apply if there's at least one 3918 * module on the stream (sd_pushcnt > 0). 3919 */ 3920 if (stp->sd_pushcnt > 0 && 3921 stp->sd_pushcnt == stp->sd_anchor && 3922 stp->sd_vnode->v_type != VFIFO) { 3923 strendplumb(stp); 3924 mutex_exit(&stp->sd_lock); 3925 if (stp->sd_anchorzone != crgetzoneid(crp)) 3926 return (EINVAL); 3927 /* Audit and report error */ 3928 return (secpolicy_ip_config(crp, B_FALSE)); 3929 } 3930 mutex_exit(&stp->sd_lock); 3931 } 3932 3933 q = wrq->q_next; 3934 TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP, 3935 "I_POP:%p from %p", q, stp); 3936 if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) { 3937 error = EINVAL; 3938 } else { 3939 qdetach(_RD(q), 1, flag, crp, B_FALSE); 3940 error = 0; 3941 } 3942 mutex_enter(&stp->sd_lock); 3943 3944 /* 3945 * As a performance concern we are caching the values of 3946 * q_minpsz and q_maxpsz of the module below the stream 3947 * head in the stream head. 3948 */ 3949 mutex_enter(QLOCK(wrq->q_next)); 3950 rmin = wrq->q_next->q_minpsz; 3951 rmax = wrq->q_next->q_maxpsz; 3952 mutex_exit(QLOCK(wrq->q_next)); 3953 3954 /* Do this processing here as a performance concern */ 3955 if (strmsgsz != 0) { 3956 if (rmax == INFPSZ) 3957 rmax = strmsgsz; 3958 else { 3959 if (vp->v_type == VFIFO) 3960 rmax = MIN(PIPE_BUF, rmax); 3961 else rmax = MIN(strmsgsz, rmax); 3962 } 3963 } 3964 3965 mutex_enter(QLOCK(wrq)); 3966 stp->sd_qn_minpsz = rmin; 3967 stp->sd_qn_maxpsz = rmax; 3968 mutex_exit(QLOCK(wrq)); 3969 3970 /* If we popped through the anchor, then reset the anchor. */ 3971 if (stp->sd_pushcnt < stp->sd_anchor) { 3972 stp->sd_anchor = 0; 3973 stp->sd_anchorzone = 0; 3974 } 3975 strendplumb(stp); 3976 mutex_exit(&stp->sd_lock); 3977 return (error); 3978 } 3979 3980 case _I_MUXID2FD: 3981 { 3982 /* 3983 * Create a fd for a I_PLINK'ed lower stream with a given 3984 * muxid. With the fd, application can send down ioctls, 3985 * like I_LIST, to the previously I_PLINK'ed stream. Note 3986 * that after getting the fd, the application has to do an 3987 * I_PUNLINK on the muxid before it can do any operation 3988 * on the lower stream. This is required by spec1170. 3989 * 3990 * The fd used to do this ioctl should point to the same 3991 * controlling device used to do the I_PLINK. If it uses 3992 * a different stream or an invalid muxid, I_MUXID2FD will 3993 * fail. The error code is set to EINVAL. 3994 * 3995 * The intended use of this interface is the following. 3996 * An application I_PLINK'ed a stream and exits. The fd 3997 * to the lower stream is gone. Another application 3998 * wants to get a fd to the lower stream, it uses I_MUXID2FD. 3999 */ 4000 int muxid = (int)arg; 4001 int fd; 4002 linkinfo_t *linkp; 4003 struct file *fp; 4004 netstack_t *ns; 4005 str_stack_t *ss; 4006 4007 /* 4008 * Do not allow the wildcard muxid. This ioctl is not 4009 * intended to find arbitrary link. 4010 */ 4011 if (muxid == 0) { 4012 return (EINVAL); 4013 } 4014 4015 ns = netstack_find_by_cred(crp); 4016 ASSERT(ns != NULL); 4017 ss = ns->netstack_str; 4018 ASSERT(ss != NULL); 4019 4020 mutex_enter(&muxifier); 4021 linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss); 4022 if (linkp == NULL) { 4023 mutex_exit(&muxifier); 4024 netstack_rele(ss->ss_netstack); 4025 return (EINVAL); 4026 } 4027 4028 if ((fd = ufalloc(0)) == -1) { 4029 mutex_exit(&muxifier); 4030 netstack_rele(ss->ss_netstack); 4031 return (EMFILE); 4032 } 4033 fp = linkp->li_fpdown; 4034 mutex_enter(&fp->f_tlock); 4035 fp->f_count++; 4036 mutex_exit(&fp->f_tlock); 4037 mutex_exit(&muxifier); 4038 setf(fd, fp); 4039 *rvalp = fd; 4040 netstack_rele(ss->ss_netstack); 4041 return (0); 4042 } 4043 4044 case _I_INSERT: 4045 { 4046 /* 4047 * To insert a module to a given position in a stream. 4048 * In the first release, only allow privileged user 4049 * to use this ioctl. Furthermore, the insert is only allowed 4050 * below an anchor if the zoneid is the same as the zoneid 4051 * which created the anchor. 4052 * 4053 * Note that we do not plan to support this ioctl 4054 * on pipes in the first release. We want to learn more 4055 * about the implications of these ioctls before extending 4056 * their support. And we do not think these features are 4057 * valuable for pipes. 4058 */ 4059 STRUCT_DECL(strmodconf, strmodinsert); 4060 char mod_name[FMNAMESZ + 1]; 4061 fmodsw_impl_t *fp; 4062 dev_t dummydev; 4063 queue_t *tmp_wrq; 4064 int pos; 4065 boolean_t is_insert; 4066 4067 STRUCT_INIT(strmodinsert, flag); 4068 if (stp->sd_flag & STRHUP) 4069 return (ENXIO); 4070 if (STRMATED(stp)) 4071 return (EINVAL); 4072 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 4073 return (error); 4074 if (stp->sd_anchor != 0 && 4075 stp->sd_anchorzone != crgetzoneid(crp)) 4076 return (EINVAL); 4077 4078 error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert), 4079 STRUCT_SIZE(strmodinsert), copyflag); 4080 if (error) 4081 return (error); 4082 4083 /* 4084 * Get module name and look up in fmodsw. 4085 */ 4086 error = (copyflag & U_TO_K ? copyinstr : 4087 copystr)(STRUCT_FGETP(strmodinsert, mod_name), 4088 mod_name, FMNAMESZ + 1, NULL); 4089 if (error) 4090 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 4091 4092 if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) == 4093 NULL) 4094 return (EINVAL); 4095 4096 if (error = strstartplumb(stp, flag, cmd)) { 4097 fmodsw_rele(fp); 4098 return (error); 4099 } 4100 4101 /* 4102 * Is this _I_INSERT just like an I_PUSH? We need to know 4103 * this because we do some optimizations if this is a 4104 * module being pushed. 4105 */ 4106 pos = STRUCT_FGET(strmodinsert, pos); 4107 is_insert = (pos != 0); 4108 4109 /* 4110 * Make sure pos is valid. Even though it is not an I_PUSH, 4111 * we impose the same limit on the number of modules in a 4112 * stream. 4113 */ 4114 mutex_enter(&stp->sd_lock); 4115 if (stp->sd_pushcnt >= nstrpush || pos < 0 || 4116 pos > stp->sd_pushcnt) { 4117 fmodsw_rele(fp); 4118 strendplumb(stp); 4119 mutex_exit(&stp->sd_lock); 4120 return (EINVAL); 4121 } 4122 if (stp->sd_anchor != 0) { 4123 /* 4124 * Is this insert below the anchor? 4125 * Pushcnt hasn't been increased yet hence 4126 * we test for greater than here, and greater or 4127 * equal after qattach. 4128 */ 4129 if (pos > (stp->sd_pushcnt - stp->sd_anchor) && 4130 stp->sd_anchorzone != crgetzoneid(crp)) { 4131 fmodsw_rele(fp); 4132 strendplumb(stp); 4133 mutex_exit(&stp->sd_lock); 4134 return (EPERM); 4135 } 4136 } 4137 4138 mutex_exit(&stp->sd_lock); 4139 4140 /* 4141 * First find the correct position this module to 4142 * be inserted. We don't need to call claimstr() 4143 * as the stream should not be changing at this point. 4144 * 4145 * Insert new module and call its open routine 4146 * via qattach(). Modules don't change device 4147 * numbers, so just ignore dummydev here. 4148 */ 4149 for (tmp_wrq = stp->sd_wrq; pos > 0; 4150 tmp_wrq = tmp_wrq->q_next, pos--) { 4151 ASSERT(SAMESTR(tmp_wrq)); 4152 } 4153 dummydev = vp->v_rdev; 4154 if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp, 4155 fp, is_insert)) != 0) { 4156 mutex_enter(&stp->sd_lock); 4157 strendplumb(stp); 4158 mutex_exit(&stp->sd_lock); 4159 return (error); 4160 } 4161 4162 mutex_enter(&stp->sd_lock); 4163 4164 /* 4165 * As a performance concern we are caching the values of 4166 * q_minpsz and q_maxpsz of the module below the stream 4167 * head in the stream head. 4168 */ 4169 if (!is_insert) { 4170 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 4171 rmin = stp->sd_wrq->q_next->q_minpsz; 4172 rmax = stp->sd_wrq->q_next->q_maxpsz; 4173 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 4174 4175 /* Do this processing here as a performance concern */ 4176 if (strmsgsz != 0) { 4177 if (rmax == INFPSZ) { 4178 rmax = strmsgsz; 4179 } else { 4180 rmax = MIN(strmsgsz, rmax); 4181 } 4182 } 4183 4184 mutex_enter(QLOCK(wrq)); 4185 stp->sd_qn_minpsz = rmin; 4186 stp->sd_qn_maxpsz = rmax; 4187 mutex_exit(QLOCK(wrq)); 4188 } 4189 4190 /* 4191 * Need to update the anchor value if this module is 4192 * inserted below the anchor point. 4193 */ 4194 if (stp->sd_anchor != 0) { 4195 pos = STRUCT_FGET(strmodinsert, pos); 4196 if (pos >= (stp->sd_pushcnt - stp->sd_anchor)) 4197 stp->sd_anchor++; 4198 } 4199 4200 strendplumb(stp); 4201 mutex_exit(&stp->sd_lock); 4202 return (0); 4203 } 4204 4205 case _I_REMOVE: 4206 { 4207 /* 4208 * To remove a module with a given name in a stream. The 4209 * caller of this ioctl needs to provide both the name and 4210 * the position of the module to be removed. This eliminates 4211 * the ambiguity of removal if a module is inserted/pushed 4212 * multiple times in a stream. In the first release, only 4213 * allow privileged user to use this ioctl. 4214 * Furthermore, the remove is only allowed 4215 * below an anchor if the zoneid is the same as the zoneid 4216 * which created the anchor. 4217 * 4218 * Note that we do not plan to support this ioctl 4219 * on pipes in the first release. We want to learn more 4220 * about the implications of these ioctls before extending 4221 * their support. And we do not think these features are 4222 * valuable for pipes. 4223 * 4224 * Also note that _I_REMOVE cannot be used to remove a 4225 * driver or the stream head. 4226 */ 4227 STRUCT_DECL(strmodconf, strmodremove); 4228 queue_t *q; 4229 int pos; 4230 char mod_name[FMNAMESZ + 1]; 4231 boolean_t is_remove; 4232 4233 STRUCT_INIT(strmodremove, flag); 4234 if (stp->sd_flag & STRHUP) 4235 return (ENXIO); 4236 if (STRMATED(stp)) 4237 return (EINVAL); 4238 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 4239 return (error); 4240 if (stp->sd_anchor != 0 && 4241 stp->sd_anchorzone != crgetzoneid(crp)) 4242 return (EINVAL); 4243 4244 error = strcopyin((void *)arg, STRUCT_BUF(strmodremove), 4245 STRUCT_SIZE(strmodremove), copyflag); 4246 if (error) 4247 return (error); 4248 4249 error = (copyflag & U_TO_K ? copyinstr : 4250 copystr)(STRUCT_FGETP(strmodremove, mod_name), 4251 mod_name, FMNAMESZ + 1, NULL); 4252 if (error) 4253 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 4254 4255 if ((error = strstartplumb(stp, flag, cmd)) != 0) 4256 return (error); 4257 4258 /* 4259 * Match the name of given module to the name of module at 4260 * the given position. 4261 */ 4262 pos = STRUCT_FGET(strmodremove, pos); 4263 4264 is_remove = (pos != 0); 4265 for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0; 4266 q = q->q_next, pos--) 4267 ; 4268 if (pos > 0 || !SAMESTR(q) || 4269 strcmp(Q2NAME(q), mod_name) != 0) { 4270 mutex_enter(&stp->sd_lock); 4271 strendplumb(stp); 4272 mutex_exit(&stp->sd_lock); 4273 return (EINVAL); 4274 } 4275 4276 /* 4277 * If the position is at or below an anchor, then the zoneid 4278 * must match the zoneid that created the anchor. 4279 */ 4280 if (stp->sd_anchor != 0) { 4281 pos = STRUCT_FGET(strmodremove, pos); 4282 if (pos >= (stp->sd_pushcnt - stp->sd_anchor) && 4283 stp->sd_anchorzone != crgetzoneid(crp)) { 4284 mutex_enter(&stp->sd_lock); 4285 strendplumb(stp); 4286 mutex_exit(&stp->sd_lock); 4287 return (EPERM); 4288 } 4289 } 4290 4291 4292 ASSERT(!(q->q_flag & QREADR)); 4293 qdetach(_RD(q), 1, flag, crp, is_remove); 4294 4295 mutex_enter(&stp->sd_lock); 4296 4297 /* 4298 * As a performance concern we are caching the values of 4299 * q_minpsz and q_maxpsz of the module below the stream 4300 * head in the stream head. 4301 */ 4302 if (!is_remove) { 4303 mutex_enter(QLOCK(wrq->q_next)); 4304 rmin = wrq->q_next->q_minpsz; 4305 rmax = wrq->q_next->q_maxpsz; 4306 mutex_exit(QLOCK(wrq->q_next)); 4307 4308 /* Do this processing here as a performance concern */ 4309 if (strmsgsz != 0) { 4310 if (rmax == INFPSZ) 4311 rmax = strmsgsz; 4312 else { 4313 if (vp->v_type == VFIFO) 4314 rmax = MIN(PIPE_BUF, rmax); 4315 else rmax = MIN(strmsgsz, rmax); 4316 } 4317 } 4318 4319 mutex_enter(QLOCK(wrq)); 4320 stp->sd_qn_minpsz = rmin; 4321 stp->sd_qn_maxpsz = rmax; 4322 mutex_exit(QLOCK(wrq)); 4323 } 4324 4325 /* 4326 * Need to update the anchor value if this module is removed 4327 * at or below the anchor point. If the removed module is at 4328 * the anchor point, remove the anchor for this stream if 4329 * there is no module above the anchor point. Otherwise, if 4330 * the removed module is below the anchor point, decrement the 4331 * anchor point by 1. 4332 */ 4333 if (stp->sd_anchor != 0) { 4334 pos = STRUCT_FGET(strmodremove, pos); 4335 if (pos == stp->sd_pushcnt - stp->sd_anchor + 1) 4336 stp->sd_anchor = 0; 4337 else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1)) 4338 stp->sd_anchor--; 4339 } 4340 4341 strendplumb(stp); 4342 mutex_exit(&stp->sd_lock); 4343 return (0); 4344 } 4345 4346 case I_ANCHOR: 4347 /* 4348 * Set the anchor position on the stream to reside at 4349 * the top module (in other words, the top module 4350 * cannot be popped). Anchors with a FIFO make no 4351 * obvious sense, so they're not allowed. 4352 */ 4353 mutex_enter(&stp->sd_lock); 4354 4355 if (stp->sd_vnode->v_type == VFIFO) { 4356 mutex_exit(&stp->sd_lock); 4357 return (EINVAL); 4358 } 4359 /* Only allow the same zoneid to update the anchor */ 4360 if (stp->sd_anchor != 0 && 4361 stp->sd_anchorzone != crgetzoneid(crp)) { 4362 mutex_exit(&stp->sd_lock); 4363 return (EINVAL); 4364 } 4365 stp->sd_anchor = stp->sd_pushcnt; 4366 stp->sd_anchorzone = crgetzoneid(crp); 4367 mutex_exit(&stp->sd_lock); 4368 return (0); 4369 4370 case I_LOOK: 4371 /* 4372 * Get name of first module downstream. 4373 * If no module, return an error. 4374 */ 4375 claimstr(wrq); 4376 if (_SAMESTR(wrq) && wrq->q_next->q_next != NULL) { 4377 char *name = Q2NAME(wrq->q_next); 4378 4379 error = strcopyout(name, (void *)arg, strlen(name) + 1, 4380 copyflag); 4381 releasestr(wrq); 4382 return (error); 4383 } 4384 releasestr(wrq); 4385 return (EINVAL); 4386 4387 case I_LINK: 4388 case I_PLINK: 4389 /* 4390 * Link a multiplexor. 4391 */ 4392 return (mlink(vp, cmd, (int)arg, crp, rvalp, 0)); 4393 4394 case _I_PLINK_LH: 4395 /* 4396 * Link a multiplexor: Call must originate from kernel. 4397 */ 4398 if (kioctl) 4399 return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp)); 4400 4401 return (EINVAL); 4402 case I_UNLINK: 4403 case I_PUNLINK: 4404 /* 4405 * Unlink a multiplexor. 4406 * If arg is -1, unlink all links for which this is the 4407 * controlling stream. Otherwise, arg is an index number 4408 * for a link to be removed. 4409 */ 4410 { 4411 struct linkinfo *linkp; 4412 int native_arg = (int)arg; 4413 int type; 4414 netstack_t *ns; 4415 str_stack_t *ss; 4416 4417 TRACE_1(TR_FAC_STREAMS_FR, 4418 TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp); 4419 if (vp->v_type == VFIFO) { 4420 return (EINVAL); 4421 } 4422 if (cmd == I_UNLINK) 4423 type = LINKNORMAL; 4424 else /* I_PUNLINK */ 4425 type = LINKPERSIST; 4426 if (native_arg == 0) { 4427 return (EINVAL); 4428 } 4429 ns = netstack_find_by_cred(crp); 4430 ASSERT(ns != NULL); 4431 ss = ns->netstack_str; 4432 ASSERT(ss != NULL); 4433 4434 if (native_arg == MUXID_ALL) 4435 error = munlinkall(stp, type, crp, rvalp, ss); 4436 else { 4437 mutex_enter(&muxifier); 4438 if (!(linkp = findlinks(stp, (int)arg, type, ss))) { 4439 /* invalid user supplied index number */ 4440 mutex_exit(&muxifier); 4441 netstack_rele(ss->ss_netstack); 4442 return (EINVAL); 4443 } 4444 /* munlink drops the muxifier lock */ 4445 error = munlink(stp, linkp, type, crp, rvalp, ss); 4446 } 4447 netstack_rele(ss->ss_netstack); 4448 return (error); 4449 } 4450 4451 case I_FLUSH: 4452 /* 4453 * send a flush message downstream 4454 * flush message can indicate 4455 * FLUSHR - flush read queue 4456 * FLUSHW - flush write queue 4457 * FLUSHRW - flush read/write queue 4458 */ 4459 if (stp->sd_flag & STRHUP) 4460 return (ENXIO); 4461 if (arg & ~FLUSHRW) 4462 return (EINVAL); 4463 4464 for (;;) { 4465 if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) { 4466 break; 4467 } 4468 if (error = strwaitbuf(1, BPRI_HI)) { 4469 return (error); 4470 } 4471 } 4472 4473 /* 4474 * Send down an unsupported ioctl and wait for the nack 4475 * in order to allow the M_FLUSH to propagate back 4476 * up to the stream head. 4477 * Replaces if (qready()) runqueues(); 4478 */ 4479 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4480 strioc.ic_timout = 0; 4481 strioc.ic_len = 0; 4482 strioc.ic_dp = NULL; 4483 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4484 *rvalp = 0; 4485 return (0); 4486 4487 case I_FLUSHBAND: 4488 { 4489 struct bandinfo binfo; 4490 4491 error = strcopyin((void *)arg, &binfo, sizeof (binfo), 4492 copyflag); 4493 if (error) 4494 return (error); 4495 if (stp->sd_flag & STRHUP) 4496 return (ENXIO); 4497 if (binfo.bi_flag & ~FLUSHRW) 4498 return (EINVAL); 4499 while (!(mp = allocb(2, BPRI_HI))) { 4500 if (error = strwaitbuf(2, BPRI_HI)) 4501 return (error); 4502 } 4503 mp->b_datap->db_type = M_FLUSH; 4504 *mp->b_wptr++ = binfo.bi_flag | FLUSHBAND; 4505 *mp->b_wptr++ = binfo.bi_pri; 4506 putnext(stp->sd_wrq, mp); 4507 /* 4508 * Send down an unsupported ioctl and wait for the nack 4509 * in order to allow the M_FLUSH to propagate back 4510 * up to the stream head. 4511 * Replaces if (qready()) runqueues(); 4512 */ 4513 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4514 strioc.ic_timout = 0; 4515 strioc.ic_len = 0; 4516 strioc.ic_dp = NULL; 4517 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4518 *rvalp = 0; 4519 return (0); 4520 } 4521 4522 case I_SRDOPT: 4523 /* 4524 * Set read options 4525 * 4526 * RNORM - default stream mode 4527 * RMSGN - message no discard 4528 * RMSGD - message discard 4529 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs 4530 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs 4531 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs 4532 */ 4533 if (arg & ~(RMODEMASK | RPROTMASK)) 4534 return (EINVAL); 4535 4536 if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN)) 4537 return (EINVAL); 4538 4539 mutex_enter(&stp->sd_lock); 4540 switch (arg & RMODEMASK) { 4541 case RNORM: 4542 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 4543 break; 4544 case RMSGD: 4545 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) | 4546 RD_MSGDIS; 4547 break; 4548 case RMSGN: 4549 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) | 4550 RD_MSGNODIS; 4551 break; 4552 } 4553 4554 switch (arg & RPROTMASK) { 4555 case RPROTNORM: 4556 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 4557 break; 4558 4559 case RPROTDAT: 4560 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) | 4561 RD_PROTDAT); 4562 break; 4563 4564 case RPROTDIS: 4565 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) | 4566 RD_PROTDIS); 4567 break; 4568 } 4569 mutex_exit(&stp->sd_lock); 4570 return (0); 4571 4572 case I_GRDOPT: 4573 /* 4574 * Get read option and return the value 4575 * to spot pointed to by arg 4576 */ 4577 { 4578 int rdopt; 4579 4580 rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD : 4581 ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM)); 4582 rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT : 4583 ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM)); 4584 4585 return (strcopyout(&rdopt, (void *)arg, sizeof (int), 4586 copyflag)); 4587 } 4588 4589 case I_SERROPT: 4590 /* 4591 * Set error options 4592 * 4593 * RERRNORM - persistent read errors 4594 * RERRNONPERSIST - non-persistent read errors 4595 * WERRNORM - persistent write errors 4596 * WERRNONPERSIST - non-persistent write errors 4597 */ 4598 if (arg & ~(RERRMASK | WERRMASK)) 4599 return (EINVAL); 4600 4601 mutex_enter(&stp->sd_lock); 4602 switch (arg & RERRMASK) { 4603 case RERRNORM: 4604 stp->sd_flag &= ~STRDERRNONPERSIST; 4605 break; 4606 case RERRNONPERSIST: 4607 stp->sd_flag |= STRDERRNONPERSIST; 4608 break; 4609 } 4610 switch (arg & WERRMASK) { 4611 case WERRNORM: 4612 stp->sd_flag &= ~STWRERRNONPERSIST; 4613 break; 4614 case WERRNONPERSIST: 4615 stp->sd_flag |= STWRERRNONPERSIST; 4616 break; 4617 } 4618 mutex_exit(&stp->sd_lock); 4619 return (0); 4620 4621 case I_GERROPT: 4622 /* 4623 * Get error option and return the value 4624 * to spot pointed to by arg 4625 */ 4626 { 4627 int erropt = 0; 4628 4629 erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST : 4630 RERRNORM; 4631 erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST : 4632 WERRNORM; 4633 return (strcopyout(&erropt, (void *)arg, sizeof (int), 4634 copyflag)); 4635 } 4636 4637 case I_SETSIG: 4638 /* 4639 * Register the calling proc to receive the SIGPOLL 4640 * signal based on the events given in arg. If 4641 * arg is zero, remove the proc from register list. 4642 */ 4643 { 4644 strsig_t *ssp, *pssp; 4645 struct pid *pidp; 4646 4647 pssp = NULL; 4648 pidp = curproc->p_pidp; 4649 /* 4650 * Hold sd_lock to prevent traversal of sd_siglist while 4651 * it is modified. 4652 */ 4653 mutex_enter(&stp->sd_lock); 4654 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp); 4655 pssp = ssp, ssp = ssp->ss_next) 4656 ; 4657 4658 if (arg) { 4659 if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4660 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4661 mutex_exit(&stp->sd_lock); 4662 return (EINVAL); 4663 } 4664 if ((arg & S_BANDURG) && !(arg & S_RDBAND)) { 4665 mutex_exit(&stp->sd_lock); 4666 return (EINVAL); 4667 } 4668 4669 /* 4670 * If proc not already registered, add it 4671 * to list. 4672 */ 4673 if (!ssp) { 4674 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4675 ssp->ss_pidp = pidp; 4676 ssp->ss_pid = pidp->pid_id; 4677 ssp->ss_next = NULL; 4678 if (pssp) 4679 pssp->ss_next = ssp; 4680 else 4681 stp->sd_siglist = ssp; 4682 mutex_enter(&pidlock); 4683 PID_HOLD(pidp); 4684 mutex_exit(&pidlock); 4685 } 4686 4687 /* 4688 * Set events. 4689 */ 4690 ssp->ss_events = (int)arg; 4691 } else { 4692 /* 4693 * Remove proc from register list. 4694 */ 4695 if (ssp) { 4696 mutex_enter(&pidlock); 4697 PID_RELE(pidp); 4698 mutex_exit(&pidlock); 4699 if (pssp) 4700 pssp->ss_next = ssp->ss_next; 4701 else 4702 stp->sd_siglist = ssp->ss_next; 4703 kmem_free(ssp, sizeof (strsig_t)); 4704 } else { 4705 mutex_exit(&stp->sd_lock); 4706 return (EINVAL); 4707 } 4708 } 4709 4710 /* 4711 * Recalculate OR of sig events. 4712 */ 4713 stp->sd_sigflags = 0; 4714 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4715 stp->sd_sigflags |= ssp->ss_events; 4716 mutex_exit(&stp->sd_lock); 4717 return (0); 4718 } 4719 4720 case I_GETSIG: 4721 /* 4722 * Return (in arg) the current registration of events 4723 * for which the calling proc is to be signaled. 4724 */ 4725 { 4726 struct strsig *ssp; 4727 struct pid *pidp; 4728 4729 pidp = curproc->p_pidp; 4730 mutex_enter(&stp->sd_lock); 4731 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4732 if (ssp->ss_pidp == pidp) { 4733 error = strcopyout(&ssp->ss_events, (void *)arg, 4734 sizeof (int), copyflag); 4735 mutex_exit(&stp->sd_lock); 4736 return (error); 4737 } 4738 mutex_exit(&stp->sd_lock); 4739 return (EINVAL); 4740 } 4741 4742 case I_ESETSIG: 4743 /* 4744 * Register the ss_pid to receive the SIGPOLL 4745 * signal based on the events is ss_events arg. If 4746 * ss_events is zero, remove the proc from register list. 4747 */ 4748 { 4749 struct strsig *ssp, *pssp; 4750 struct proc *proc; 4751 struct pid *pidp; 4752 pid_t pid; 4753 struct strsigset ss; 4754 4755 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4756 if (error) 4757 return (error); 4758 4759 pid = ss.ss_pid; 4760 4761 if (ss.ss_events != 0) { 4762 /* 4763 * Permissions check by sending signal 0. 4764 * Note that when kill fails it does a set_errno 4765 * causing the system call to fail. 4766 */ 4767 error = kill(pid, 0); 4768 if (error) { 4769 return (error); 4770 } 4771 } 4772 mutex_enter(&pidlock); 4773 if (pid == 0) 4774 proc = curproc; 4775 else if (pid < 0) 4776 proc = pgfind(-pid); 4777 else 4778 proc = prfind(pid); 4779 if (proc == NULL) { 4780 mutex_exit(&pidlock); 4781 return (ESRCH); 4782 } 4783 if (pid < 0) 4784 pidp = proc->p_pgidp; 4785 else 4786 pidp = proc->p_pidp; 4787 ASSERT(pidp); 4788 /* 4789 * Get a hold on the pid structure while referencing it. 4790 * There is a separate PID_HOLD should it be inserted 4791 * in the list below. 4792 */ 4793 PID_HOLD(pidp); 4794 mutex_exit(&pidlock); 4795 4796 pssp = NULL; 4797 /* 4798 * Hold sd_lock to prevent traversal of sd_siglist while 4799 * it is modified. 4800 */ 4801 mutex_enter(&stp->sd_lock); 4802 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid); 4803 pssp = ssp, ssp = ssp->ss_next) 4804 ; 4805 4806 if (ss.ss_events) { 4807 if (ss.ss_events & 4808 ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4809 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4810 mutex_exit(&stp->sd_lock); 4811 mutex_enter(&pidlock); 4812 PID_RELE(pidp); 4813 mutex_exit(&pidlock); 4814 return (EINVAL); 4815 } 4816 if ((ss.ss_events & S_BANDURG) && 4817 !(ss.ss_events & S_RDBAND)) { 4818 mutex_exit(&stp->sd_lock); 4819 mutex_enter(&pidlock); 4820 PID_RELE(pidp); 4821 mutex_exit(&pidlock); 4822 return (EINVAL); 4823 } 4824 4825 /* 4826 * If proc not already registered, add it 4827 * to list. 4828 */ 4829 if (!ssp) { 4830 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4831 ssp->ss_pidp = pidp; 4832 ssp->ss_pid = pid; 4833 ssp->ss_next = NULL; 4834 if (pssp) 4835 pssp->ss_next = ssp; 4836 else 4837 stp->sd_siglist = ssp; 4838 mutex_enter(&pidlock); 4839 PID_HOLD(pidp); 4840 mutex_exit(&pidlock); 4841 } 4842 4843 /* 4844 * Set events. 4845 */ 4846 ssp->ss_events = ss.ss_events; 4847 } else { 4848 /* 4849 * Remove proc from register list. 4850 */ 4851 if (ssp) { 4852 mutex_enter(&pidlock); 4853 PID_RELE(pidp); 4854 mutex_exit(&pidlock); 4855 if (pssp) 4856 pssp->ss_next = ssp->ss_next; 4857 else 4858 stp->sd_siglist = ssp->ss_next; 4859 kmem_free(ssp, sizeof (strsig_t)); 4860 } else { 4861 mutex_exit(&stp->sd_lock); 4862 mutex_enter(&pidlock); 4863 PID_RELE(pidp); 4864 mutex_exit(&pidlock); 4865 return (EINVAL); 4866 } 4867 } 4868 4869 /* 4870 * Recalculate OR of sig events. 4871 */ 4872 stp->sd_sigflags = 0; 4873 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4874 stp->sd_sigflags |= ssp->ss_events; 4875 mutex_exit(&stp->sd_lock); 4876 mutex_enter(&pidlock); 4877 PID_RELE(pidp); 4878 mutex_exit(&pidlock); 4879 return (0); 4880 } 4881 4882 case I_EGETSIG: 4883 /* 4884 * Return (in arg) the current registration of events 4885 * for which the calling proc is to be signaled. 4886 */ 4887 { 4888 struct strsig *ssp; 4889 struct proc *proc; 4890 pid_t pid; 4891 struct pid *pidp; 4892 struct strsigset ss; 4893 4894 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4895 if (error) 4896 return (error); 4897 4898 pid = ss.ss_pid; 4899 mutex_enter(&pidlock); 4900 if (pid == 0) 4901 proc = curproc; 4902 else if (pid < 0) 4903 proc = pgfind(-pid); 4904 else 4905 proc = prfind(pid); 4906 if (proc == NULL) { 4907 mutex_exit(&pidlock); 4908 return (ESRCH); 4909 } 4910 if (pid < 0) 4911 pidp = proc->p_pgidp; 4912 else 4913 pidp = proc->p_pidp; 4914 4915 /* Prevent the pidp from being reassigned */ 4916 PID_HOLD(pidp); 4917 mutex_exit(&pidlock); 4918 4919 mutex_enter(&stp->sd_lock); 4920 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4921 if (ssp->ss_pid == pid) { 4922 ss.ss_pid = ssp->ss_pid; 4923 ss.ss_events = ssp->ss_events; 4924 error = strcopyout(&ss, (void *)arg, 4925 sizeof (struct strsigset), copyflag); 4926 mutex_exit(&stp->sd_lock); 4927 mutex_enter(&pidlock); 4928 PID_RELE(pidp); 4929 mutex_exit(&pidlock); 4930 return (error); 4931 } 4932 mutex_exit(&stp->sd_lock); 4933 mutex_enter(&pidlock); 4934 PID_RELE(pidp); 4935 mutex_exit(&pidlock); 4936 return (EINVAL); 4937 } 4938 4939 case I_PEEK: 4940 { 4941 STRUCT_DECL(strpeek, strpeek); 4942 size_t n; 4943 mblk_t *fmp, *tmp_mp = NULL; 4944 4945 STRUCT_INIT(strpeek, flag); 4946 4947 error = strcopyin((void *)arg, STRUCT_BUF(strpeek), 4948 STRUCT_SIZE(strpeek), copyflag); 4949 if (error) 4950 return (error); 4951 4952 mutex_enter(QLOCK(rdq)); 4953 /* 4954 * Skip the invalid messages 4955 */ 4956 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 4957 if (mp->b_datap->db_type != M_SIG) 4958 break; 4959 4960 /* 4961 * If user has requested to peek at a high priority message 4962 * and first message is not, return 0 4963 */ 4964 if (mp != NULL) { 4965 if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) && 4966 queclass(mp) == QNORM) { 4967 *rvalp = 0; 4968 mutex_exit(QLOCK(rdq)); 4969 return (0); 4970 } 4971 } else if (stp->sd_struiordq == NULL || 4972 (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) { 4973 /* 4974 * No mblks to look at at the streamhead and 4975 * 1). This isn't a synch stream or 4976 * 2). This is a synch stream but caller wants high 4977 * priority messages which is not supported by 4978 * the synch stream. (it only supports QNORM) 4979 */ 4980 *rvalp = 0; 4981 mutex_exit(QLOCK(rdq)); 4982 return (0); 4983 } 4984 4985 fmp = mp; 4986 4987 if (mp && mp->b_datap->db_type == M_PASSFP) { 4988 mutex_exit(QLOCK(rdq)); 4989 return (EBADMSG); 4990 } 4991 4992 ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO || 4993 mp->b_datap->db_type == M_PROTO || 4994 mp->b_datap->db_type == M_DATA); 4995 4996 if (mp && mp->b_datap->db_type == M_PCPROTO) { 4997 STRUCT_FSET(strpeek, flags, RS_HIPRI); 4998 } else { 4999 STRUCT_FSET(strpeek, flags, 0); 5000 } 5001 5002 5003 if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) { 5004 mutex_exit(QLOCK(rdq)); 5005 return (ENOSR); 5006 } 5007 mutex_exit(QLOCK(rdq)); 5008 5009 /* 5010 * set mp = tmp_mp, so that I_PEEK processing can continue. 5011 * tmp_mp is used to free the dup'd message. 5012 */ 5013 mp = tmp_mp; 5014 5015 uio.uio_fmode = 0; 5016 uio.uio_extflg = UIO_COPY_CACHED; 5017 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 5018 UIO_SYSSPACE; 5019 uio.uio_limit = 0; 5020 /* 5021 * First process PROTO blocks, if any. 5022 * If user doesn't want to get ctl info by setting maxlen <= 0, 5023 * then set len to -1/0 and skip control blocks part. 5024 */ 5025 if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0) 5026 STRUCT_FSET(strpeek, ctlbuf.len, -1); 5027 else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0) 5028 STRUCT_FSET(strpeek, ctlbuf.len, 0); 5029 else { 5030 int ctl_part = 0; 5031 5032 iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf); 5033 iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen); 5034 uio.uio_iov = &iov; 5035 uio.uio_resid = iov.iov_len; 5036 uio.uio_loffset = 0; 5037 uio.uio_iovcnt = 1; 5038 while (mp && mp->b_datap->db_type != M_DATA && 5039 uio.uio_resid >= 0) { 5040 ASSERT(STRUCT_FGET(strpeek, flags) == 0 ? 5041 mp->b_datap->db_type == M_PROTO : 5042 mp->b_datap->db_type == M_PCPROTO); 5043 5044 if ((n = MIN(uio.uio_resid, 5045 mp->b_wptr - mp->b_rptr)) != 0 && 5046 (error = uiomove((char *)mp->b_rptr, n, 5047 UIO_READ, &uio)) != 0) { 5048 freemsg(tmp_mp); 5049 return (error); 5050 } 5051 ctl_part = 1; 5052 mp = mp->b_cont; 5053 } 5054 /* No ctl message */ 5055 if (ctl_part == 0) 5056 STRUCT_FSET(strpeek, ctlbuf.len, -1); 5057 else 5058 STRUCT_FSET(strpeek, ctlbuf.len, 5059 STRUCT_FGET(strpeek, ctlbuf.maxlen) - 5060 uio.uio_resid); 5061 } 5062 5063 /* 5064 * Now process DATA blocks, if any. 5065 * If user doesn't want to get data info by setting maxlen <= 0, 5066 * then set len to -1/0 and skip data blocks part. 5067 */ 5068 if (STRUCT_FGET(strpeek, databuf.maxlen) < 0) 5069 STRUCT_FSET(strpeek, databuf.len, -1); 5070 else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0) 5071 STRUCT_FSET(strpeek, databuf.len, 0); 5072 else { 5073 int data_part = 0; 5074 5075 iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf); 5076 iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen); 5077 uio.uio_iov = &iov; 5078 uio.uio_resid = iov.iov_len; 5079 uio.uio_loffset = 0; 5080 uio.uio_iovcnt = 1; 5081 while (mp && uio.uio_resid) { 5082 if (mp->b_datap->db_type == M_DATA) { 5083 if ((n = MIN(uio.uio_resid, 5084 mp->b_wptr - mp->b_rptr)) != 0 && 5085 (error = uiomove((char *)mp->b_rptr, 5086 n, UIO_READ, &uio)) != 0) { 5087 freemsg(tmp_mp); 5088 return (error); 5089 } 5090 data_part = 1; 5091 } 5092 ASSERT(data_part == 0 || 5093 mp->b_datap->db_type == M_DATA); 5094 mp = mp->b_cont; 5095 } 5096 /* No data message */ 5097 if (data_part == 0) 5098 STRUCT_FSET(strpeek, databuf.len, -1); 5099 else 5100 STRUCT_FSET(strpeek, databuf.len, 5101 STRUCT_FGET(strpeek, databuf.maxlen) - 5102 uio.uio_resid); 5103 } 5104 freemsg(tmp_mp); 5105 5106 /* 5107 * It is a synch stream and user wants to get 5108 * data (maxlen > 0). 5109 * uio setup is done by the codes that process DATA 5110 * blocks above. 5111 */ 5112 if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) { 5113 infod_t infod; 5114 5115 infod.d_cmd = INFOD_COPYOUT; 5116 infod.d_res = 0; 5117 infod.d_uiop = &uio; 5118 error = infonext(rdq, &infod); 5119 if (error == EINVAL || error == EBUSY) 5120 error = 0; 5121 if (error) 5122 return (error); 5123 STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek, 5124 databuf.maxlen) - uio.uio_resid); 5125 if (STRUCT_FGET(strpeek, databuf.len) == 0) { 5126 /* 5127 * No data found by the infonext(). 5128 */ 5129 STRUCT_FSET(strpeek, databuf.len, -1); 5130 } 5131 } 5132 error = strcopyout(STRUCT_BUF(strpeek), (void *)arg, 5133 STRUCT_SIZE(strpeek), copyflag); 5134 if (error) { 5135 return (error); 5136 } 5137 /* 5138 * If there is no message retrieved, set return code to 0 5139 * otherwise, set it to 1. 5140 */ 5141 if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 && 5142 STRUCT_FGET(strpeek, databuf.len) == -1) 5143 *rvalp = 0; 5144 else 5145 *rvalp = 1; 5146 return (0); 5147 } 5148 5149 case I_FDINSERT: 5150 { 5151 STRUCT_DECL(strfdinsert, strfdinsert); 5152 struct file *resftp; 5153 struct stdata *resstp; 5154 t_uscalar_t ival; 5155 ssize_t msgsize; 5156 struct strbuf mctl; 5157 5158 STRUCT_INIT(strfdinsert, flag); 5159 if (stp->sd_flag & STRHUP) 5160 return (ENXIO); 5161 /* 5162 * STRDERR, STWRERR and STPLEX tested above. 5163 */ 5164 error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert), 5165 STRUCT_SIZE(strfdinsert), copyflag); 5166 if (error) 5167 return (error); 5168 5169 if (STRUCT_FGET(strfdinsert, offset) < 0 || 5170 (STRUCT_FGET(strfdinsert, offset) % 5171 sizeof (t_uscalar_t)) != 0) 5172 return (EINVAL); 5173 if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) { 5174 if ((resstp = resftp->f_vnode->v_stream) == NULL) { 5175 releasef(STRUCT_FGET(strfdinsert, fildes)); 5176 return (EINVAL); 5177 } 5178 } else 5179 return (EINVAL); 5180 5181 mutex_enter(&resstp->sd_lock); 5182 if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) { 5183 error = strgeterr(resstp, 5184 STRDERR|STWRERR|STRHUP|STPLEX, 0); 5185 if (error != 0) { 5186 mutex_exit(&resstp->sd_lock); 5187 releasef(STRUCT_FGET(strfdinsert, fildes)); 5188 return (error); 5189 } 5190 } 5191 mutex_exit(&resstp->sd_lock); 5192 5193 #ifdef _ILP32 5194 { 5195 queue_t *q; 5196 queue_t *mate = NULL; 5197 5198 /* get read queue of stream terminus */ 5199 claimstr(resstp->sd_wrq); 5200 for (q = resstp->sd_wrq->q_next; q->q_next != NULL; 5201 q = q->q_next) 5202 if (!STRMATED(resstp) && STREAM(q) != resstp && 5203 mate == NULL) { 5204 ASSERT(q->q_qinfo->qi_srvp); 5205 ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp); 5206 claimstr(q); 5207 mate = q; 5208 } 5209 q = _RD(q); 5210 if (mate) 5211 releasestr(mate); 5212 releasestr(resstp->sd_wrq); 5213 ival = (t_uscalar_t)q; 5214 } 5215 #else 5216 ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev); 5217 #endif /* _ILP32 */ 5218 5219 if (STRUCT_FGET(strfdinsert, ctlbuf.len) < 5220 STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) { 5221 releasef(STRUCT_FGET(strfdinsert, fildes)); 5222 return (EINVAL); 5223 } 5224 5225 /* 5226 * Check for legal flag value. 5227 */ 5228 if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) { 5229 releasef(STRUCT_FGET(strfdinsert, fildes)); 5230 return (EINVAL); 5231 } 5232 5233 /* get these values from those cached in the stream head */ 5234 mutex_enter(QLOCK(stp->sd_wrq)); 5235 rmin = stp->sd_qn_minpsz; 5236 rmax = stp->sd_qn_maxpsz; 5237 mutex_exit(QLOCK(stp->sd_wrq)); 5238 5239 /* 5240 * Make sure ctl and data sizes together fall within 5241 * the limits of the max and min receive packet sizes 5242 * and do not exceed system limit. A negative data 5243 * length means that no data part is to be sent. 5244 */ 5245 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 5246 if (rmax == 0) { 5247 releasef(STRUCT_FGET(strfdinsert, fildes)); 5248 return (ERANGE); 5249 } 5250 if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0) 5251 msgsize = 0; 5252 if ((msgsize < rmin) || 5253 ((msgsize > rmax) && (rmax != INFPSZ)) || 5254 (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) { 5255 releasef(STRUCT_FGET(strfdinsert, fildes)); 5256 return (ERANGE); 5257 } 5258 5259 mutex_enter(&stp->sd_lock); 5260 while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) && 5261 !canputnext(stp->sd_wrq)) { 5262 if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, 5263 flag, -1, &done)) != 0 || done) { 5264 mutex_exit(&stp->sd_lock); 5265 releasef(STRUCT_FGET(strfdinsert, fildes)); 5266 return (error); 5267 } 5268 if ((error = i_straccess(stp, access)) != 0) { 5269 mutex_exit(&stp->sd_lock); 5270 releasef( 5271 STRUCT_FGET(strfdinsert, fildes)); 5272 return (error); 5273 } 5274 } 5275 mutex_exit(&stp->sd_lock); 5276 5277 /* 5278 * Copy strfdinsert.ctlbuf into native form of 5279 * ctlbuf to pass down into strmakemsg(). 5280 */ 5281 mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen); 5282 mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len); 5283 mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf); 5284 5285 iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf); 5286 iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len); 5287 uio.uio_iov = &iov; 5288 uio.uio_iovcnt = 1; 5289 uio.uio_loffset = 0; 5290 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 5291 UIO_SYSSPACE; 5292 uio.uio_fmode = 0; 5293 uio.uio_extflg = UIO_COPY_CACHED; 5294 uio.uio_resid = iov.iov_len; 5295 if ((error = strmakemsg(&mctl, 5296 &msgsize, &uio, stp, 5297 STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) { 5298 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5299 releasef(STRUCT_FGET(strfdinsert, fildes)); 5300 return (error); 5301 } 5302 5303 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5304 5305 /* 5306 * Place the possibly reencoded queue pointer 'offset' bytes 5307 * from the start of the control portion of the message. 5308 */ 5309 *((t_uscalar_t *)(mp->b_rptr + 5310 STRUCT_FGET(strfdinsert, offset))) = ival; 5311 5312 /* 5313 * Put message downstream. 5314 */ 5315 stream_willservice(stp); 5316 putnext(stp->sd_wrq, mp); 5317 stream_runservice(stp); 5318 releasef(STRUCT_FGET(strfdinsert, fildes)); 5319 return (error); 5320 } 5321 5322 case I_SENDFD: 5323 { 5324 struct file *fp; 5325 5326 if ((fp = getf((int)arg)) == NULL) 5327 return (EBADF); 5328 error = do_sendfp(stp, fp, crp); 5329 if (auditing) { 5330 audit_fdsend((int)arg, fp, error); 5331 } 5332 releasef((int)arg); 5333 return (error); 5334 } 5335 5336 case I_RECVFD: 5337 case I_E_RECVFD: 5338 { 5339 struct k_strrecvfd *srf; 5340 int i, fd; 5341 5342 mutex_enter(&stp->sd_lock); 5343 while (!(mp = getq(rdq))) { 5344 if (stp->sd_flag & (STRHUP|STREOF)) { 5345 mutex_exit(&stp->sd_lock); 5346 return (ENXIO); 5347 } 5348 if ((error = strwaitq(stp, GETWAIT, (ssize_t)0, 5349 flag, -1, &done)) != 0 || done) { 5350 mutex_exit(&stp->sd_lock); 5351 return (error); 5352 } 5353 if ((error = i_straccess(stp, access)) != 0) { 5354 mutex_exit(&stp->sd_lock); 5355 return (error); 5356 } 5357 } 5358 if (mp->b_datap->db_type != M_PASSFP) { 5359 putback(stp, rdq, mp, mp->b_band); 5360 mutex_exit(&stp->sd_lock); 5361 return (EBADMSG); 5362 } 5363 mutex_exit(&stp->sd_lock); 5364 5365 srf = (struct k_strrecvfd *)mp->b_rptr; 5366 if ((fd = ufalloc(0)) == -1) { 5367 mutex_enter(&stp->sd_lock); 5368 putback(stp, rdq, mp, mp->b_band); 5369 mutex_exit(&stp->sd_lock); 5370 return (EMFILE); 5371 } 5372 if (cmd == I_RECVFD) { 5373 struct o_strrecvfd ostrfd; 5374 5375 /* check to see if uid/gid values are too large. */ 5376 5377 if (srf->uid > (o_uid_t)USHRT_MAX || 5378 srf->gid > (o_gid_t)USHRT_MAX) { 5379 mutex_enter(&stp->sd_lock); 5380 putback(stp, rdq, mp, mp->b_band); 5381 mutex_exit(&stp->sd_lock); 5382 setf(fd, NULL); /* release fd entry */ 5383 return (EOVERFLOW); 5384 } 5385 5386 ostrfd.fd = fd; 5387 ostrfd.uid = (o_uid_t)srf->uid; 5388 ostrfd.gid = (o_gid_t)srf->gid; 5389 5390 /* Null the filler bits */ 5391 for (i = 0; i < 8; i++) 5392 ostrfd.fill[i] = 0; 5393 5394 error = strcopyout(&ostrfd, (void *)arg, 5395 sizeof (struct o_strrecvfd), copyflag); 5396 } else { /* I_E_RECVFD */ 5397 struct strrecvfd strfd; 5398 5399 strfd.fd = fd; 5400 strfd.uid = srf->uid; 5401 strfd.gid = srf->gid; 5402 5403 /* null the filler bits */ 5404 for (i = 0; i < 8; i++) 5405 strfd.fill[i] = 0; 5406 5407 error = strcopyout(&strfd, (void *)arg, 5408 sizeof (struct strrecvfd), copyflag); 5409 } 5410 5411 if (error) { 5412 setf(fd, NULL); /* release fd entry */ 5413 mutex_enter(&stp->sd_lock); 5414 putback(stp, rdq, mp, mp->b_band); 5415 mutex_exit(&stp->sd_lock); 5416 return (error); 5417 } 5418 if (auditing) { 5419 audit_fdrecv(fd, srf->fp); 5420 } 5421 5422 /* 5423 * Always increment f_count since the freemsg() below will 5424 * always call free_passfp() which performs a closef(). 5425 */ 5426 mutex_enter(&srf->fp->f_tlock); 5427 srf->fp->f_count++; 5428 mutex_exit(&srf->fp->f_tlock); 5429 setf(fd, srf->fp); 5430 freemsg(mp); 5431 return (0); 5432 } 5433 5434 case I_SWROPT: 5435 /* 5436 * Set/clear the write options. arg is a bit 5437 * mask with any of the following bits set... 5438 * SNDZERO - send zero length message 5439 * SNDPIPE - send sigpipe to process if 5440 * sd_werror is set and process is 5441 * doing a write or putmsg. 5442 * The new stream head write options should reflect 5443 * what is in arg. 5444 */ 5445 if (arg & ~(SNDZERO|SNDPIPE)) 5446 return (EINVAL); 5447 5448 mutex_enter(&stp->sd_lock); 5449 stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO); 5450 if (arg & SNDZERO) 5451 stp->sd_wput_opt |= SW_SNDZERO; 5452 if (arg & SNDPIPE) 5453 stp->sd_wput_opt |= SW_SIGPIPE; 5454 mutex_exit(&stp->sd_lock); 5455 return (0); 5456 5457 case I_GWROPT: 5458 { 5459 int wropt = 0; 5460 5461 if (stp->sd_wput_opt & SW_SNDZERO) 5462 wropt |= SNDZERO; 5463 if (stp->sd_wput_opt & SW_SIGPIPE) 5464 wropt |= SNDPIPE; 5465 return (strcopyout(&wropt, (void *)arg, sizeof (wropt), 5466 copyflag)); 5467 } 5468 5469 case I_LIST: 5470 /* 5471 * Returns all the modules found on this stream, 5472 * upto the driver. If argument is NULL, return the 5473 * number of modules (including driver). If argument 5474 * is not NULL, copy the names into the structure 5475 * provided. 5476 */ 5477 5478 { 5479 queue_t *q; 5480 char *qname; 5481 int i, nmods; 5482 struct str_mlist *mlist; 5483 STRUCT_DECL(str_list, strlist); 5484 5485 if (arg == 0) { /* Return number of modules plus driver */ 5486 if (stp->sd_vnode->v_type == VFIFO) 5487 *rvalp = stp->sd_pushcnt; 5488 else 5489 *rvalp = stp->sd_pushcnt + 1; 5490 return (0); 5491 } 5492 5493 STRUCT_INIT(strlist, flag); 5494 5495 error = strcopyin((void *)arg, STRUCT_BUF(strlist), 5496 STRUCT_SIZE(strlist), copyflag); 5497 if (error != 0) 5498 return (error); 5499 5500 mlist = STRUCT_FGETP(strlist, sl_modlist); 5501 nmods = STRUCT_FGET(strlist, sl_nmods); 5502 if (nmods <= 0) 5503 return (EINVAL); 5504 5505 claimstr(stp->sd_wrq); 5506 q = stp->sd_wrq; 5507 for (i = 0; i < nmods && _SAMESTR(q); i++, q = q->q_next) { 5508 qname = Q2NAME(q->q_next); 5509 error = strcopyout(qname, &mlist[i], strlen(qname) + 1, 5510 copyflag); 5511 if (error != 0) { 5512 releasestr(stp->sd_wrq); 5513 return (error); 5514 } 5515 } 5516 releasestr(stp->sd_wrq); 5517 return (strcopyout(&i, (void *)arg, sizeof (int), copyflag)); 5518 } 5519 5520 case I_CKBAND: 5521 { 5522 queue_t *q; 5523 qband_t *qbp; 5524 5525 if ((arg < 0) || (arg >= NBAND)) 5526 return (EINVAL); 5527 q = _RD(stp->sd_wrq); 5528 mutex_enter(QLOCK(q)); 5529 if (arg > (int)q->q_nband) { 5530 *rvalp = 0; 5531 } else { 5532 if (arg == 0) { 5533 if (q->q_first) 5534 *rvalp = 1; 5535 else 5536 *rvalp = 0; 5537 } else { 5538 qbp = q->q_bandp; 5539 while (--arg > 0) 5540 qbp = qbp->qb_next; 5541 if (qbp->qb_first) 5542 *rvalp = 1; 5543 else 5544 *rvalp = 0; 5545 } 5546 } 5547 mutex_exit(QLOCK(q)); 5548 return (0); 5549 } 5550 5551 case I_GETBAND: 5552 { 5553 int intpri; 5554 queue_t *q; 5555 5556 q = _RD(stp->sd_wrq); 5557 mutex_enter(QLOCK(q)); 5558 mp = q->q_first; 5559 if (!mp) { 5560 mutex_exit(QLOCK(q)); 5561 return (ENODATA); 5562 } 5563 intpri = (int)mp->b_band; 5564 error = strcopyout(&intpri, (void *)arg, sizeof (int), 5565 copyflag); 5566 mutex_exit(QLOCK(q)); 5567 return (error); 5568 } 5569 5570 case I_ATMARK: 5571 { 5572 queue_t *q; 5573 5574 if (arg & ~(ANYMARK|LASTMARK)) 5575 return (EINVAL); 5576 q = _RD(stp->sd_wrq); 5577 mutex_enter(&stp->sd_lock); 5578 if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) { 5579 *rvalp = 1; 5580 } else { 5581 mutex_enter(QLOCK(q)); 5582 mp = q->q_first; 5583 5584 if (mp == NULL) 5585 *rvalp = 0; 5586 else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK)) 5587 *rvalp = 1; 5588 else if ((arg == LASTMARK) && (mp == stp->sd_mark)) 5589 *rvalp = 1; 5590 else 5591 *rvalp = 0; 5592 mutex_exit(QLOCK(q)); 5593 } 5594 mutex_exit(&stp->sd_lock); 5595 return (0); 5596 } 5597 5598 case I_CANPUT: 5599 { 5600 char band; 5601 5602 if ((arg < 0) || (arg >= NBAND)) 5603 return (EINVAL); 5604 band = (char)arg; 5605 *rvalp = bcanputnext(stp->sd_wrq, band); 5606 return (0); 5607 } 5608 5609 case I_SETCLTIME: 5610 { 5611 int closetime; 5612 5613 error = strcopyin((void *)arg, &closetime, sizeof (int), 5614 copyflag); 5615 if (error) 5616 return (error); 5617 if (closetime < 0) 5618 return (EINVAL); 5619 5620 stp->sd_closetime = closetime; 5621 return (0); 5622 } 5623 5624 case I_GETCLTIME: 5625 { 5626 int closetime; 5627 5628 closetime = stp->sd_closetime; 5629 return (strcopyout(&closetime, (void *)arg, sizeof (int), 5630 copyflag)); 5631 } 5632 5633 case TIOCGSID: 5634 { 5635 pid_t sid; 5636 5637 mutex_enter(&stp->sd_lock); 5638 if (stp->sd_sidp == NULL) { 5639 mutex_exit(&stp->sd_lock); 5640 return (ENOTTY); 5641 } 5642 sid = stp->sd_sidp->pid_id; 5643 mutex_exit(&stp->sd_lock); 5644 return (strcopyout(&sid, (void *)arg, sizeof (pid_t), 5645 copyflag)); 5646 } 5647 5648 case TIOCSPGRP: 5649 { 5650 pid_t pgrp; 5651 proc_t *q; 5652 pid_t sid, fg_pgid, bg_pgid; 5653 5654 if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t), 5655 copyflag)) 5656 return (error); 5657 mutex_enter(&stp->sd_lock); 5658 mutex_enter(&pidlock); 5659 if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) { 5660 mutex_exit(&pidlock); 5661 mutex_exit(&stp->sd_lock); 5662 return (ENOTTY); 5663 } 5664 if (pgrp == stp->sd_pgidp->pid_id) { 5665 mutex_exit(&pidlock); 5666 mutex_exit(&stp->sd_lock); 5667 return (0); 5668 } 5669 if (pgrp <= 0 || pgrp >= maxpid) { 5670 mutex_exit(&pidlock); 5671 mutex_exit(&stp->sd_lock); 5672 return (EINVAL); 5673 } 5674 if ((q = pgfind(pgrp)) == NULL || 5675 q->p_sessp != ttoproc(curthread)->p_sessp) { 5676 mutex_exit(&pidlock); 5677 mutex_exit(&stp->sd_lock); 5678 return (EPERM); 5679 } 5680 sid = stp->sd_sidp->pid_id; 5681 fg_pgid = q->p_pgrp; 5682 bg_pgid = stp->sd_pgidp->pid_id; 5683 CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid); 5684 PID_RELE(stp->sd_pgidp); 5685 ctty_clear_sighuped(); 5686 stp->sd_pgidp = q->p_pgidp; 5687 PID_HOLD(stp->sd_pgidp); 5688 mutex_exit(&pidlock); 5689 mutex_exit(&stp->sd_lock); 5690 return (0); 5691 } 5692 5693 case TIOCGPGRP: 5694 { 5695 pid_t pgrp; 5696 5697 mutex_enter(&stp->sd_lock); 5698 if (stp->sd_sidp == NULL) { 5699 mutex_exit(&stp->sd_lock); 5700 return (ENOTTY); 5701 } 5702 pgrp = stp->sd_pgidp->pid_id; 5703 mutex_exit(&stp->sd_lock); 5704 return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t), 5705 copyflag)); 5706 } 5707 5708 case TIOCSCTTY: 5709 { 5710 return (strctty(stp)); 5711 } 5712 5713 case TIOCNOTTY: 5714 { 5715 /* freectty() always assumes curproc. */ 5716 if (freectty(B_FALSE) != 0) 5717 return (0); 5718 return (ENOTTY); 5719 } 5720 5721 case FIONBIO: 5722 case FIOASYNC: 5723 return (0); /* handled by the upper layer */ 5724 } 5725 } 5726 5727 /* 5728 * Custom free routine used for M_PASSFP messages. 5729 */ 5730 static void 5731 free_passfp(struct k_strrecvfd *srf) 5732 { 5733 (void) closef(srf->fp); 5734 kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t)); 5735 } 5736 5737 /* ARGSUSED */ 5738 int 5739 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr) 5740 { 5741 queue_t *qp, *nextqp; 5742 struct k_strrecvfd *srf; 5743 mblk_t *mp; 5744 frtn_t *frtnp; 5745 size_t bufsize; 5746 queue_t *mate = NULL; 5747 syncq_t *sq = NULL; 5748 int retval = 0; 5749 5750 if (stp->sd_flag & STRHUP) 5751 return (ENXIO); 5752 5753 claimstr(stp->sd_wrq); 5754 5755 /* Fastpath, we have a pipe, and we are already mated, use it. */ 5756 if (STRMATED(stp)) { 5757 qp = _RD(stp->sd_mate->sd_wrq); 5758 claimstr(qp); 5759 mate = qp; 5760 } else { /* Not already mated. */ 5761 5762 /* 5763 * Walk the stream to the end of this one. 5764 * assumes that the claimstr() will prevent 5765 * plumbing between the stream head and the 5766 * driver from changing 5767 */ 5768 qp = stp->sd_wrq; 5769 5770 /* 5771 * Loop until we reach the end of this stream. 5772 * On completion, qp points to the write queue 5773 * at the end of the stream, or the read queue 5774 * at the stream head if this is a fifo. 5775 */ 5776 while (((qp = qp->q_next) != NULL) && _SAMESTR(qp)) 5777 ; 5778 5779 /* 5780 * Just in case we get a q_next which is NULL, but 5781 * not at the end of the stream. This is actually 5782 * broken, so we set an assert to catch it in 5783 * debug, and set an error and return if not debug. 5784 */ 5785 ASSERT(qp); 5786 if (qp == NULL) { 5787 releasestr(stp->sd_wrq); 5788 return (EINVAL); 5789 } 5790 5791 /* 5792 * Enter the syncq for the driver, so (hopefully) 5793 * the queue values will not change on us. 5794 * XXXX - This will only prevent the race IFF only 5795 * the write side modifies the q_next member, and 5796 * the put procedure is protected by at least 5797 * MT_PERQ. 5798 */ 5799 if ((sq = qp->q_syncq) != NULL) 5800 entersq(sq, SQ_PUT); 5801 5802 /* Now get the q_next value from this qp. */ 5803 nextqp = qp->q_next; 5804 5805 /* 5806 * If nextqp exists and the other stream is different 5807 * from this one claim the stream, set the mate, and 5808 * get the read queue at the stream head of the other 5809 * stream. Assumes that nextqp was at least valid when 5810 * we got it. Hopefully the entersq of the driver 5811 * will prevent it from changing on us. 5812 */ 5813 if ((nextqp != NULL) && (STREAM(nextqp) != stp)) { 5814 ASSERT(qp->q_qinfo->qi_srvp); 5815 ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp); 5816 ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp); 5817 claimstr(nextqp); 5818 5819 /* Make sure we still have a q_next */ 5820 if (nextqp != qp->q_next) { 5821 releasestr(stp->sd_wrq); 5822 releasestr(nextqp); 5823 return (EINVAL); 5824 } 5825 5826 qp = _RD(STREAM(nextqp)->sd_wrq); 5827 mate = qp; 5828 } 5829 /* If we entered the synq above, leave it. */ 5830 if (sq != NULL) 5831 leavesq(sq, SQ_PUT); 5832 } /* STRMATED(STP) */ 5833 5834 /* XXX prevents substitution of the ops vector */ 5835 if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) { 5836 retval = EINVAL; 5837 goto out; 5838 } 5839 5840 if (qp->q_flag & QFULL) { 5841 retval = EAGAIN; 5842 goto out; 5843 } 5844 5845 /* 5846 * Since M_PASSFP messages include a file descriptor, we use 5847 * esballoc() and specify a custom free routine (free_passfp()) that 5848 * will close the descriptor as part of freeing the message. For 5849 * convenience, we stash the frtn_t right after the data block. 5850 */ 5851 bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t); 5852 srf = kmem_alloc(bufsize, KM_NOSLEEP); 5853 if (srf == NULL) { 5854 retval = EAGAIN; 5855 goto out; 5856 } 5857 5858 frtnp = (frtn_t *)(srf + 1); 5859 frtnp->free_arg = (caddr_t)srf; 5860 frtnp->free_func = free_passfp; 5861 5862 mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp); 5863 if (mp == NULL) { 5864 kmem_free(srf, bufsize); 5865 retval = EAGAIN; 5866 goto out; 5867 } 5868 mp->b_wptr += sizeof (struct k_strrecvfd); 5869 mp->b_datap->db_type = M_PASSFP; 5870 5871 srf->fp = fp; 5872 srf->uid = crgetuid(curthread->t_cred); 5873 srf->gid = crgetgid(curthread->t_cred); 5874 mutex_enter(&fp->f_tlock); 5875 fp->f_count++; 5876 mutex_exit(&fp->f_tlock); 5877 5878 put(qp, mp); 5879 out: 5880 releasestr(stp->sd_wrq); 5881 if (mate) 5882 releasestr(mate); 5883 return (retval); 5884 } 5885 5886 /* 5887 * Send an ioctl message downstream and wait for acknowledgement. 5888 * flags may be set to either U_TO_K or K_TO_K and a combination 5889 * of STR_NOERROR or STR_NOSIG 5890 * STR_NOSIG: Signals are essentially ignored or held and have 5891 * no effect for the duration of the call. 5892 * STR_NOERROR: Ignores stream head read, write and hup errors. 5893 * Additionally, if an existing ioctl times out, it is assumed 5894 * lost and and this ioctl will continue as if the previous ioctl had 5895 * finished. ETIME may be returned if this ioctl times out (i.e. 5896 * ic_timout is not INFTIM). Non-stream head errors may be returned if 5897 * the ioc_error indicates that the driver/module had problems, 5898 * an EFAULT was found when accessing user data, a lack of 5899 * resources, etc. 5900 */ 5901 int 5902 strdoioctl( 5903 struct stdata *stp, 5904 struct strioctl *strioc, 5905 int fflags, /* file flags with model info */ 5906 int flag, 5907 cred_t *crp, 5908 int *rvalp) 5909 { 5910 mblk_t *bp; 5911 struct iocblk *iocbp; 5912 struct copyreq *reqp; 5913 struct copyresp *resp; 5914 int id; 5915 int transparent = 0; 5916 int error = 0; 5917 int len = 0; 5918 caddr_t taddr; 5919 int copyflag = (flag & (U_TO_K | K_TO_K)); 5920 int sigflag = (flag & STR_NOSIG); 5921 int errs; 5922 uint_t waitflags; 5923 boolean_t set_iocwaitne = B_FALSE; 5924 5925 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 5926 ASSERT((fflags & FMODELS) != 0); 5927 5928 TRACE_2(TR_FAC_STREAMS_FR, 5929 TR_STRDOIOCTL, 5930 "strdoioctl:stp %p strioc %p", stp, strioc); 5931 if (strioc->ic_len == TRANSPARENT) { /* send arg in M_DATA block */ 5932 transparent = 1; 5933 strioc->ic_len = sizeof (intptr_t); 5934 } 5935 5936 if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz)) 5937 return (EINVAL); 5938 5939 if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error, 5940 crp, curproc->p_pid)) == NULL) 5941 return (error); 5942 5943 bzero(bp->b_wptr, sizeof (union ioctypes)); 5944 5945 iocbp = (struct iocblk *)bp->b_wptr; 5946 iocbp->ioc_count = strioc->ic_len; 5947 iocbp->ioc_cmd = strioc->ic_cmd; 5948 iocbp->ioc_flag = (fflags & FMODELS); 5949 5950 crhold(crp); 5951 iocbp->ioc_cr = crp; 5952 DB_TYPE(bp) = M_IOCTL; 5953 bp->b_wptr += sizeof (struct iocblk); 5954 5955 if (flag & STR_NOERROR) 5956 errs = STPLEX; 5957 else 5958 errs = STRHUP|STRDERR|STWRERR|STPLEX; 5959 5960 /* 5961 * If there is data to copy into ioctl block, do so. 5962 */ 5963 if (iocbp->ioc_count > 0) { 5964 if (transparent) 5965 /* 5966 * Note: STR_NOERROR does not have an effect 5967 * in putiocd() 5968 */ 5969 id = K_TO_K | sigflag; 5970 else 5971 id = flag; 5972 if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) { 5973 freemsg(bp); 5974 crfree(crp); 5975 return (error); 5976 } 5977 5978 /* 5979 * We could have slept copying in user pages. 5980 * Recheck the stream head state (the other end 5981 * of a pipe could have gone away). 5982 */ 5983 if (stp->sd_flag & errs) { 5984 mutex_enter(&stp->sd_lock); 5985 error = strgeterr(stp, errs, 0); 5986 mutex_exit(&stp->sd_lock); 5987 if (error != 0) { 5988 freemsg(bp); 5989 crfree(crp); 5990 return (error); 5991 } 5992 } 5993 } 5994 if (transparent) 5995 iocbp->ioc_count = TRANSPARENT; 5996 5997 /* 5998 * Block for up to STRTIMOUT milliseconds if there is an outstanding 5999 * ioctl for this stream already running. All processes 6000 * sleeping here will be awakened as a result of an ACK 6001 * or NAK being received for the outstanding ioctl, or 6002 * as a result of the timer expiring on the outstanding 6003 * ioctl (a failure), or as a result of any waiting 6004 * process's timer expiring (also a failure). 6005 */ 6006 6007 error = 0; 6008 mutex_enter(&stp->sd_lock); 6009 while ((stp->sd_flag & IOCWAIT) || 6010 (!set_iocwaitne && (stp->sd_flag & IOCWAITNE))) { 6011 clock_t cv_rval; 6012 6013 TRACE_0(TR_FAC_STREAMS_FR, 6014 TR_STRDOIOCTL_WAIT, 6015 "strdoioctl sleeps - IOCWAIT"); 6016 cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock, 6017 STRTIMOUT, sigflag); 6018 if (cv_rval <= 0) { 6019 if (cv_rval == 0) { 6020 error = EINTR; 6021 } else { 6022 if (flag & STR_NOERROR) { 6023 /* 6024 * Terminating current ioctl in 6025 * progress -- assume it got lost and 6026 * wake up the other thread so that the 6027 * operation completes. 6028 */ 6029 if (!(stp->sd_flag & IOCWAITNE)) { 6030 set_iocwaitne = B_TRUE; 6031 stp->sd_flag |= IOCWAITNE; 6032 cv_broadcast(&stp->sd_monitor); 6033 } 6034 /* 6035 * Otherwise, there's a running 6036 * STR_NOERROR -- we have no choice 6037 * here but to wait forever (or until 6038 * interrupted). 6039 */ 6040 } else { 6041 /* 6042 * pending ioctl has caused 6043 * us to time out 6044 */ 6045 error = ETIME; 6046 } 6047 } 6048 } else if ((stp->sd_flag & errs)) { 6049 error = strgeterr(stp, errs, 0); 6050 } 6051 if (error) { 6052 mutex_exit(&stp->sd_lock); 6053 freemsg(bp); 6054 crfree(crp); 6055 return (error); 6056 } 6057 } 6058 6059 /* 6060 * Have control of ioctl mechanism. 6061 * Send down ioctl packet and wait for response. 6062 */ 6063 if (stp->sd_iocblk != (mblk_t *)-1) { 6064 freemsg(stp->sd_iocblk); 6065 } 6066 stp->sd_iocblk = NULL; 6067 6068 /* 6069 * If this is marked with 'noerror' (internal; mostly 6070 * I_{P,}{UN,}LINK), then make sure nobody else is able to get 6071 * in here by setting IOCWAITNE. 6072 */ 6073 waitflags = IOCWAIT; 6074 if (flag & STR_NOERROR) 6075 waitflags |= IOCWAITNE; 6076 6077 stp->sd_flag |= waitflags; 6078 6079 /* 6080 * Assign sequence number. 6081 */ 6082 iocbp->ioc_id = stp->sd_iocid = getiocseqno(); 6083 6084 mutex_exit(&stp->sd_lock); 6085 6086 TRACE_1(TR_FAC_STREAMS_FR, 6087 TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp); 6088 stream_willservice(stp); 6089 putnext(stp->sd_wrq, bp); 6090 stream_runservice(stp); 6091 6092 /* 6093 * Timed wait for acknowledgment. The wait time is limited by the 6094 * timeout value, which must be a positive integer (number of 6095 * milliseconds) to wait, or 0 (use default value of STRTIMOUT 6096 * milliseconds), or -1 (wait forever). This will be awakened 6097 * either by an ACK/NAK message arriving, the timer expiring, or 6098 * the timer expiring on another ioctl waiting for control of the 6099 * mechanism. 6100 */ 6101 waitioc: 6102 mutex_enter(&stp->sd_lock); 6103 6104 6105 /* 6106 * If the reply has already arrived, don't sleep. If awakened from 6107 * the sleep, fail only if the reply has not arrived by then. 6108 * Otherwise, process the reply. 6109 */ 6110 while (!stp->sd_iocblk) { 6111 clock_t cv_rval; 6112 6113 if (stp->sd_flag & errs) { 6114 error = strgeterr(stp, errs, 0); 6115 if (error != 0) { 6116 stp->sd_flag &= ~waitflags; 6117 cv_broadcast(&stp->sd_iocmonitor); 6118 mutex_exit(&stp->sd_lock); 6119 crfree(crp); 6120 return (error); 6121 } 6122 } 6123 6124 TRACE_0(TR_FAC_STREAMS_FR, 6125 TR_STRDOIOCTL_WAIT2, 6126 "strdoioctl sleeps awaiting reply"); 6127 ASSERT(error == 0); 6128 6129 cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, 6130 (strioc->ic_timout ? 6131 strioc->ic_timout * 1000 : STRTIMOUT), sigflag); 6132 6133 /* 6134 * There are four possible cases here: interrupt, timeout, 6135 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a 6136 * valid M_IOCTL reply). 6137 * 6138 * If we've been awakened by a STR_NOERROR ioctl on some other 6139 * thread, then sd_iocblk will still be NULL, and IOCWAITNE 6140 * will be set. Pretend as if we just timed out. Note that 6141 * this other thread waited at least STRTIMOUT before trying to 6142 * awaken our thread, so this is indistinguishable (even for 6143 * INFTIM) from the case where we failed with ETIME waiting on 6144 * IOCWAIT in the prior loop. 6145 */ 6146 if (cv_rval > 0 && !(flag & STR_NOERROR) && 6147 stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) { 6148 cv_rval = -1; 6149 } 6150 6151 /* 6152 * note: STR_NOERROR does not protect 6153 * us here.. use ic_timout < 0 6154 */ 6155 if (cv_rval <= 0) { 6156 if (cv_rval == 0) { 6157 error = EINTR; 6158 } else { 6159 error = ETIME; 6160 } 6161 /* 6162 * A message could have come in after we were scheduled 6163 * but before we were actually run. 6164 */ 6165 bp = stp->sd_iocblk; 6166 stp->sd_iocblk = NULL; 6167 if (bp != NULL) { 6168 if ((bp->b_datap->db_type == M_COPYIN) || 6169 (bp->b_datap->db_type == M_COPYOUT)) { 6170 mutex_exit(&stp->sd_lock); 6171 if (bp->b_cont) { 6172 freemsg(bp->b_cont); 6173 bp->b_cont = NULL; 6174 } 6175 bp->b_datap->db_type = M_IOCDATA; 6176 bp->b_wptr = bp->b_rptr + 6177 sizeof (struct copyresp); 6178 resp = (struct copyresp *)bp->b_rptr; 6179 resp->cp_rval = 6180 (caddr_t)1; /* failure */ 6181 stream_willservice(stp); 6182 putnext(stp->sd_wrq, bp); 6183 stream_runservice(stp); 6184 mutex_enter(&stp->sd_lock); 6185 } else { 6186 freemsg(bp); 6187 } 6188 } 6189 stp->sd_flag &= ~waitflags; 6190 cv_broadcast(&stp->sd_iocmonitor); 6191 mutex_exit(&stp->sd_lock); 6192 crfree(crp); 6193 return (error); 6194 } 6195 } 6196 bp = stp->sd_iocblk; 6197 /* 6198 * Note: it is strictly impossible to get here with sd_iocblk set to 6199 * -1. This is because the initial loop above doesn't allow any new 6200 * ioctls into the fray until all others have passed this point. 6201 */ 6202 ASSERT(bp != NULL && bp != (mblk_t *)-1); 6203 TRACE_1(TR_FAC_STREAMS_FR, 6204 TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp); 6205 if ((bp->b_datap->db_type == M_IOCACK) || 6206 (bp->b_datap->db_type == M_IOCNAK)) { 6207 /* for detection of duplicate ioctl replies */ 6208 stp->sd_iocblk = (mblk_t *)-1; 6209 stp->sd_flag &= ~waitflags; 6210 cv_broadcast(&stp->sd_iocmonitor); 6211 mutex_exit(&stp->sd_lock); 6212 } else { 6213 /* 6214 * flags not cleared here because we're still doing 6215 * copy in/out for ioctl. 6216 */ 6217 stp->sd_iocblk = NULL; 6218 mutex_exit(&stp->sd_lock); 6219 } 6220 6221 6222 /* 6223 * Have received acknowledgment. 6224 */ 6225 6226 switch (bp->b_datap->db_type) { 6227 case M_IOCACK: 6228 /* 6229 * Positive ack. 6230 */ 6231 iocbp = (struct iocblk *)bp->b_rptr; 6232 6233 /* 6234 * Set error if indicated. 6235 */ 6236 if (iocbp->ioc_error) { 6237 error = iocbp->ioc_error; 6238 break; 6239 } 6240 6241 /* 6242 * Set return value. 6243 */ 6244 *rvalp = iocbp->ioc_rval; 6245 6246 /* 6247 * Data may have been returned in ACK message (ioc_count > 0). 6248 * If so, copy it out to the user's buffer. 6249 */ 6250 if (iocbp->ioc_count && !transparent) { 6251 if (error = getiocd(bp, strioc->ic_dp, copyflag)) 6252 break; 6253 } 6254 if (!transparent) { 6255 if (len) /* an M_COPYOUT was used with I_STR */ 6256 strioc->ic_len = len; 6257 else 6258 strioc->ic_len = (int)iocbp->ioc_count; 6259 } 6260 break; 6261 6262 case M_IOCNAK: 6263 /* 6264 * Negative ack. 6265 * 6266 * The only thing to do is set error as specified 6267 * in neg ack packet. 6268 */ 6269 iocbp = (struct iocblk *)bp->b_rptr; 6270 6271 error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL); 6272 break; 6273 6274 case M_COPYIN: 6275 /* 6276 * Driver or module has requested user ioctl data. 6277 */ 6278 reqp = (struct copyreq *)bp->b_rptr; 6279 6280 /* 6281 * M_COPYIN should *never* have a message attached, though 6282 * it's harmless if it does -- thus, panic on a DEBUG 6283 * kernel and just free it on a non-DEBUG build. 6284 */ 6285 ASSERT(bp->b_cont == NULL); 6286 if (bp->b_cont != NULL) { 6287 freemsg(bp->b_cont); 6288 bp->b_cont = NULL; 6289 } 6290 6291 error = putiocd(bp, reqp->cq_addr, flag, crp); 6292 if (error && bp->b_cont) { 6293 freemsg(bp->b_cont); 6294 bp->b_cont = NULL; 6295 } 6296 6297 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6298 bp->b_datap->db_type = M_IOCDATA; 6299 6300 mblk_setcred(bp, crp, curproc->p_pid); 6301 resp = (struct copyresp *)bp->b_rptr; 6302 resp->cp_rval = (caddr_t)(uintptr_t)error; 6303 resp->cp_flag = (fflags & FMODELS); 6304 6305 stream_willservice(stp); 6306 putnext(stp->sd_wrq, bp); 6307 stream_runservice(stp); 6308 6309 if (error) { 6310 mutex_enter(&stp->sd_lock); 6311 stp->sd_flag &= ~waitflags; 6312 cv_broadcast(&stp->sd_iocmonitor); 6313 mutex_exit(&stp->sd_lock); 6314 crfree(crp); 6315 return (error); 6316 } 6317 6318 goto waitioc; 6319 6320 case M_COPYOUT: 6321 /* 6322 * Driver or module has ioctl data for a user. 6323 */ 6324 reqp = (struct copyreq *)bp->b_rptr; 6325 ASSERT(bp->b_cont != NULL); 6326 6327 /* 6328 * Always (transparent or non-transparent ) 6329 * use the address specified in the request 6330 */ 6331 taddr = reqp->cq_addr; 6332 if (!transparent) 6333 len = (int)reqp->cq_size; 6334 6335 /* copyout data to the provided address */ 6336 error = getiocd(bp, taddr, copyflag); 6337 6338 freemsg(bp->b_cont); 6339 bp->b_cont = NULL; 6340 6341 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6342 bp->b_datap->db_type = M_IOCDATA; 6343 6344 mblk_setcred(bp, crp, curproc->p_pid); 6345 resp = (struct copyresp *)bp->b_rptr; 6346 resp->cp_rval = (caddr_t)(uintptr_t)error; 6347 resp->cp_flag = (fflags & FMODELS); 6348 6349 stream_willservice(stp); 6350 putnext(stp->sd_wrq, bp); 6351 stream_runservice(stp); 6352 6353 if (error) { 6354 mutex_enter(&stp->sd_lock); 6355 stp->sd_flag &= ~waitflags; 6356 cv_broadcast(&stp->sd_iocmonitor); 6357 mutex_exit(&stp->sd_lock); 6358 crfree(crp); 6359 return (error); 6360 } 6361 goto waitioc; 6362 6363 default: 6364 ASSERT(0); 6365 mutex_enter(&stp->sd_lock); 6366 stp->sd_flag &= ~waitflags; 6367 cv_broadcast(&stp->sd_iocmonitor); 6368 mutex_exit(&stp->sd_lock); 6369 break; 6370 } 6371 6372 freemsg(bp); 6373 crfree(crp); 6374 return (error); 6375 } 6376 6377 /* 6378 * Send an M_CMD message downstream and wait for a reply. This is a ptools 6379 * special used to retrieve information from modules/drivers a stream without 6380 * being subjected to flow control or interfering with pending messages on the 6381 * stream (e.g. an ioctl in flight). 6382 */ 6383 int 6384 strdocmd(struct stdata *stp, struct strcmd *scp, cred_t *crp) 6385 { 6386 mblk_t *mp; 6387 struct cmdblk *cmdp; 6388 int error = 0; 6389 int errs = STRHUP|STRDERR|STWRERR|STPLEX; 6390 clock_t rval, timeout = STRTIMOUT; 6391 6392 if (scp->sc_len < 0 || scp->sc_len > sizeof (scp->sc_buf) || 6393 scp->sc_timeout < -1) 6394 return (EINVAL); 6395 6396 if (scp->sc_timeout > 0) 6397 timeout = scp->sc_timeout * MILLISEC; 6398 6399 if ((mp = allocb_cred(sizeof (struct cmdblk), crp, 6400 curproc->p_pid)) == NULL) 6401 return (ENOMEM); 6402 6403 crhold(crp); 6404 6405 cmdp = (struct cmdblk *)mp->b_wptr; 6406 cmdp->cb_cr = crp; 6407 cmdp->cb_cmd = scp->sc_cmd; 6408 cmdp->cb_len = scp->sc_len; 6409 cmdp->cb_error = 0; 6410 mp->b_wptr += sizeof (struct cmdblk); 6411 6412 DB_TYPE(mp) = M_CMD; 6413 DB_CPID(mp) = curproc->p_pid; 6414 6415 /* 6416 * Copy in the payload. 6417 */ 6418 if (cmdp->cb_len > 0) { 6419 mp->b_cont = allocb_cred(sizeof (scp->sc_buf), crp, 6420 curproc->p_pid); 6421 if (mp->b_cont == NULL) { 6422 error = ENOMEM; 6423 goto out; 6424 } 6425 6426 /* cb_len comes from sc_len, which has already been checked */ 6427 ASSERT(cmdp->cb_len <= sizeof (scp->sc_buf)); 6428 (void) bcopy(scp->sc_buf, mp->b_cont->b_wptr, cmdp->cb_len); 6429 mp->b_cont->b_wptr += cmdp->cb_len; 6430 DB_CPID(mp->b_cont) = curproc->p_pid; 6431 } 6432 6433 /* 6434 * Since this mechanism is strictly for ptools, and since only one 6435 * process can be grabbed at a time, we simply fail if there's 6436 * currently an operation pending. 6437 */ 6438 mutex_enter(&stp->sd_lock); 6439 if (stp->sd_flag & STRCMDWAIT) { 6440 mutex_exit(&stp->sd_lock); 6441 error = EBUSY; 6442 goto out; 6443 } 6444 stp->sd_flag |= STRCMDWAIT; 6445 ASSERT(stp->sd_cmdblk == NULL); 6446 mutex_exit(&stp->sd_lock); 6447 6448 putnext(stp->sd_wrq, mp); 6449 mp = NULL; 6450 6451 /* 6452 * Timed wait for acknowledgment. If the reply has already arrived, 6453 * don't sleep. If awakened from the sleep, fail only if the reply 6454 * has not arrived by then. Otherwise, process the reply. 6455 */ 6456 mutex_enter(&stp->sd_lock); 6457 while (stp->sd_cmdblk == NULL) { 6458 if (stp->sd_flag & errs) { 6459 if ((error = strgeterr(stp, errs, 0)) != 0) 6460 goto waitout; 6461 } 6462 6463 rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, timeout, 0); 6464 if (stp->sd_cmdblk != NULL) 6465 break; 6466 6467 if (rval <= 0) { 6468 error = (rval == 0) ? EINTR : ETIME; 6469 goto waitout; 6470 } 6471 } 6472 6473 /* 6474 * We received a reply. 6475 */ 6476 mp = stp->sd_cmdblk; 6477 stp->sd_cmdblk = NULL; 6478 ASSERT(mp != NULL && DB_TYPE(mp) == M_CMD); 6479 ASSERT(stp->sd_flag & STRCMDWAIT); 6480 stp->sd_flag &= ~STRCMDWAIT; 6481 mutex_exit(&stp->sd_lock); 6482 6483 cmdp = (struct cmdblk *)mp->b_rptr; 6484 if ((error = cmdp->cb_error) != 0) 6485 goto out; 6486 6487 /* 6488 * Data may have been returned in the reply (cb_len > 0). 6489 * If so, copy it out to the user's buffer. 6490 */ 6491 if (cmdp->cb_len > 0) { 6492 if (mp->b_cont == NULL || MBLKL(mp->b_cont) < cmdp->cb_len) { 6493 error = EPROTO; 6494 goto out; 6495 } 6496 6497 cmdp->cb_len = MIN(cmdp->cb_len, sizeof (scp->sc_buf)); 6498 (void) bcopy(mp->b_cont->b_rptr, scp->sc_buf, cmdp->cb_len); 6499 } 6500 scp->sc_len = cmdp->cb_len; 6501 out: 6502 freemsg(mp); 6503 crfree(crp); 6504 return (error); 6505 waitout: 6506 ASSERT(stp->sd_cmdblk == NULL); 6507 stp->sd_flag &= ~STRCMDWAIT; 6508 mutex_exit(&stp->sd_lock); 6509 crfree(crp); 6510 return (error); 6511 } 6512 6513 /* 6514 * For the SunOS keyboard driver. 6515 * Return the next available "ioctl" sequence number. 6516 * Exported, so that streams modules can send "ioctl" messages 6517 * downstream from their open routine. 6518 */ 6519 int 6520 getiocseqno(void) 6521 { 6522 int i; 6523 6524 mutex_enter(&strresources); 6525 i = ++ioc_id; 6526 mutex_exit(&strresources); 6527 return (i); 6528 } 6529 6530 /* 6531 * Get the next message from the read queue. If the message is 6532 * priority, STRPRI will have been set by strrput(). This flag 6533 * should be reset only when the entire message at the front of the 6534 * queue as been consumed. 6535 * 6536 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 6537 */ 6538 int 6539 strgetmsg( 6540 struct vnode *vp, 6541 struct strbuf *mctl, 6542 struct strbuf *mdata, 6543 unsigned char *prip, 6544 int *flagsp, 6545 int fmode, 6546 rval_t *rvp) 6547 { 6548 struct stdata *stp; 6549 mblk_t *bp, *nbp; 6550 mblk_t *savemp = NULL; 6551 mblk_t *savemptail = NULL; 6552 uint_t old_sd_flag; 6553 int flg = MSG_BAND; 6554 int more = 0; 6555 int error = 0; 6556 char first = 1; 6557 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 6558 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 6559 unsigned char pri = 0; 6560 queue_t *q; 6561 int pr = 0; /* Partial read successful */ 6562 struct uio uios; 6563 struct uio *uiop = &uios; 6564 struct iovec iovs; 6565 unsigned char type; 6566 6567 TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER, 6568 "strgetmsg:%p", vp); 6569 6570 ASSERT(vp->v_stream); 6571 stp = vp->v_stream; 6572 rvp->r_val1 = 0; 6573 6574 mutex_enter(&stp->sd_lock); 6575 6576 if ((error = i_straccess(stp, JCREAD)) != 0) { 6577 mutex_exit(&stp->sd_lock); 6578 return (error); 6579 } 6580 6581 if (stp->sd_flag & (STRDERR|STPLEX)) { 6582 error = strgeterr(stp, STRDERR|STPLEX, 0); 6583 if (error != 0) { 6584 mutex_exit(&stp->sd_lock); 6585 return (error); 6586 } 6587 } 6588 mutex_exit(&stp->sd_lock); 6589 6590 switch (*flagsp) { 6591 case MSG_HIPRI: 6592 if (*prip != 0) 6593 return (EINVAL); 6594 break; 6595 6596 case MSG_ANY: 6597 case MSG_BAND: 6598 break; 6599 6600 default: 6601 return (EINVAL); 6602 } 6603 /* 6604 * Setup uio and iov for data part 6605 */ 6606 iovs.iov_base = mdata->buf; 6607 iovs.iov_len = mdata->maxlen; 6608 uios.uio_iov = &iovs; 6609 uios.uio_iovcnt = 1; 6610 uios.uio_loffset = 0; 6611 uios.uio_segflg = UIO_USERSPACE; 6612 uios.uio_fmode = 0; 6613 uios.uio_extflg = UIO_COPY_CACHED; 6614 uios.uio_resid = mdata->maxlen; 6615 uios.uio_offset = 0; 6616 6617 q = _RD(stp->sd_wrq); 6618 mutex_enter(&stp->sd_lock); 6619 old_sd_flag = stp->sd_flag; 6620 mark = 0; 6621 for (;;) { 6622 int done = 0; 6623 mblk_t *q_first = q->q_first; 6624 6625 /* 6626 * Get the next message of appropriate priority 6627 * from the stream head. If the caller is interested 6628 * in band or hipri messages, then they should already 6629 * be enqueued at the stream head. On the other hand 6630 * if the caller wants normal (band 0) messages, they 6631 * might be deferred in a synchronous stream and they 6632 * will need to be pulled up. 6633 * 6634 * After we have dequeued a message, we might find that 6635 * it was a deferred M_SIG that was enqueued at the 6636 * stream head. It must now be posted as part of the 6637 * read by calling strsignal_nolock(). 6638 * 6639 * Also note that strrput does not enqueue an M_PCSIG, 6640 * and there cannot be more than one hipri message, 6641 * so there was no need to have the M_PCSIG case. 6642 * 6643 * At some time it might be nice to try and wrap the 6644 * functionality of kstrgetmsg() and strgetmsg() into 6645 * a common routine so to reduce the amount of replicated 6646 * code (since they are extremely similar). 6647 */ 6648 if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) { 6649 /* Asking for normal, band0 data */ 6650 bp = strget(stp, q, uiop, first, &error); 6651 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6652 if (bp != NULL) { 6653 if (DB_TYPE(bp) == M_SIG) { 6654 strsignal_nolock(stp, *bp->b_rptr, 6655 bp->b_band); 6656 freemsg(bp); 6657 continue; 6658 } else { 6659 break; 6660 } 6661 } 6662 if (error != 0) 6663 goto getmout; 6664 6665 /* 6666 * We can't depend on the value of STRPRI here because 6667 * the stream head may be in transit. Therefore, we 6668 * must look at the type of the first message to 6669 * determine if a high priority messages is waiting 6670 */ 6671 } else if ((*flagsp & MSG_HIPRI) && q_first != NULL && 6672 DB_TYPE(q_first) >= QPCTL && 6673 (bp = getq_noenab(q, 0)) != NULL) { 6674 /* Asked for HIPRI and got one */ 6675 ASSERT(DB_TYPE(bp) >= QPCTL); 6676 break; 6677 } else if ((*flagsp & MSG_BAND) && q_first != NULL && 6678 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) && 6679 (bp = getq_noenab(q, 0)) != NULL) { 6680 /* 6681 * Asked for at least band "prip" and got either at 6682 * least that band or a hipri message. 6683 */ 6684 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL); 6685 if (DB_TYPE(bp) == M_SIG) { 6686 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 6687 freemsg(bp); 6688 continue; 6689 } else { 6690 break; 6691 } 6692 } 6693 6694 /* No data. Time to sleep? */ 6695 qbackenable(q, 0); 6696 6697 /* 6698 * If STRHUP or STREOF, return 0 length control and data. 6699 * If resid is 0, then a read(fd,buf,0) was done. Do not 6700 * sleep to satisfy this request because by default we have 6701 * zero bytes to return. 6702 */ 6703 if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 && 6704 mdata->maxlen == 0)) { 6705 mctl->len = mdata->len = 0; 6706 *flagsp = 0; 6707 mutex_exit(&stp->sd_lock); 6708 return (0); 6709 } 6710 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT, 6711 "strgetmsg calls strwaitq:%p, %p", 6712 vp, uiop); 6713 if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1, 6714 &done)) != 0) || done) { 6715 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE, 6716 "strgetmsg error or done:%p, %p", 6717 vp, uiop); 6718 mutex_exit(&stp->sd_lock); 6719 return (error); 6720 } 6721 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE, 6722 "strgetmsg awakes:%p, %p", vp, uiop); 6723 if ((error = i_straccess(stp, JCREAD)) != 0) { 6724 mutex_exit(&stp->sd_lock); 6725 return (error); 6726 } 6727 first = 0; 6728 } 6729 ASSERT(bp != NULL); 6730 /* 6731 * Extract any mark information. If the message is not completely 6732 * consumed this information will be put in the mblk 6733 * that is putback. 6734 * If MSGMARKNEXT is set and the message is completely consumed 6735 * the STRATMARK flag will be set below. Likewise, if 6736 * MSGNOTMARKNEXT is set and the message is 6737 * completely consumed STRNOTATMARK will be set. 6738 */ 6739 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 6740 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 6741 (MSGMARKNEXT|MSGNOTMARKNEXT)); 6742 if (mark != 0 && bp == stp->sd_mark) { 6743 mark |= _LASTMARK; 6744 stp->sd_mark = NULL; 6745 } 6746 /* 6747 * keep track of the original message type and priority 6748 */ 6749 pri = bp->b_band; 6750 type = bp->b_datap->db_type; 6751 if (type == M_PASSFP) { 6752 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 6753 stp->sd_mark = bp; 6754 bp->b_flag |= mark & ~_LASTMARK; 6755 putback(stp, q, bp, pri); 6756 qbackenable(q, pri); 6757 mutex_exit(&stp->sd_lock); 6758 return (EBADMSG); 6759 } 6760 ASSERT(type != M_SIG); 6761 6762 /* 6763 * Set this flag so strrput will not generate signals. Need to 6764 * make sure this flag is cleared before leaving this routine 6765 * else signals will stop being sent. 6766 */ 6767 stp->sd_flag |= STRGETINPROG; 6768 mutex_exit(&stp->sd_lock); 6769 6770 if (STREAM_NEEDSERVICE(stp)) 6771 stream_runservice(stp); 6772 6773 /* 6774 * Set HIPRI flag if message is priority. 6775 */ 6776 if (type >= QPCTL) 6777 flg = MSG_HIPRI; 6778 else 6779 flg = MSG_BAND; 6780 6781 /* 6782 * First process PROTO or PCPROTO blocks, if any. 6783 */ 6784 if (mctl->maxlen >= 0 && type != M_DATA) { 6785 size_t n, bcnt; 6786 char *ubuf; 6787 6788 bcnt = mctl->maxlen; 6789 ubuf = mctl->buf; 6790 while (bp != NULL && bp->b_datap->db_type != M_DATA) { 6791 if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 && 6792 copyout(bp->b_rptr, ubuf, n)) { 6793 error = EFAULT; 6794 mutex_enter(&stp->sd_lock); 6795 /* 6796 * clear stream head pri flag based on 6797 * first message type 6798 */ 6799 if (type >= QPCTL) { 6800 ASSERT(type == M_PCPROTO); 6801 stp->sd_flag &= ~STRPRI; 6802 } 6803 more = 0; 6804 freemsg(bp); 6805 goto getmout; 6806 } 6807 ubuf += n; 6808 bp->b_rptr += n; 6809 if (bp->b_rptr >= bp->b_wptr) { 6810 nbp = bp; 6811 bp = bp->b_cont; 6812 freeb(nbp); 6813 } 6814 ASSERT(n <= bcnt); 6815 bcnt -= n; 6816 if (bcnt == 0) 6817 break; 6818 } 6819 mctl->len = mctl->maxlen - bcnt; 6820 } else 6821 mctl->len = -1; 6822 6823 if (bp && bp->b_datap->db_type != M_DATA) { 6824 /* 6825 * More PROTO blocks in msg. 6826 */ 6827 more |= MORECTL; 6828 savemp = bp; 6829 while (bp && bp->b_datap->db_type != M_DATA) { 6830 savemptail = bp; 6831 bp = bp->b_cont; 6832 } 6833 savemptail->b_cont = NULL; 6834 } 6835 6836 /* 6837 * Now process DATA blocks, if any. 6838 */ 6839 if (mdata->maxlen >= 0 && bp) { 6840 /* 6841 * struiocopyout will consume a potential zero-length 6842 * M_DATA even if uio_resid is zero. 6843 */ 6844 size_t oldresid = uiop->uio_resid; 6845 6846 bp = struiocopyout(bp, uiop, &error); 6847 if (error != 0) { 6848 mutex_enter(&stp->sd_lock); 6849 /* 6850 * clear stream head hi pri flag based on 6851 * first message 6852 */ 6853 if (type >= QPCTL) { 6854 ASSERT(type == M_PCPROTO); 6855 stp->sd_flag &= ~STRPRI; 6856 } 6857 more = 0; 6858 freemsg(savemp); 6859 goto getmout; 6860 } 6861 /* 6862 * (pr == 1) indicates a partial read. 6863 */ 6864 if (oldresid > uiop->uio_resid) 6865 pr = 1; 6866 mdata->len = mdata->maxlen - uiop->uio_resid; 6867 } else 6868 mdata->len = -1; 6869 6870 if (bp) { /* more data blocks in msg */ 6871 more |= MOREDATA; 6872 if (savemp) 6873 savemptail->b_cont = bp; 6874 else 6875 savemp = bp; 6876 } 6877 6878 mutex_enter(&stp->sd_lock); 6879 if (savemp) { 6880 if (pr && (savemp->b_datap->db_type == M_DATA) && 6881 msgnodata(savemp)) { 6882 /* 6883 * Avoid queuing a zero-length tail part of 6884 * a message. pr=1 indicates that we read some of 6885 * the message. 6886 */ 6887 freemsg(savemp); 6888 more &= ~MOREDATA; 6889 /* 6890 * clear stream head hi pri flag based on 6891 * first message 6892 */ 6893 if (type >= QPCTL) { 6894 ASSERT(type == M_PCPROTO); 6895 stp->sd_flag &= ~STRPRI; 6896 } 6897 } else { 6898 savemp->b_band = pri; 6899 /* 6900 * If the first message was HIPRI and the one we're 6901 * putting back isn't, then clear STRPRI, otherwise 6902 * set STRPRI again. Note that we must set STRPRI 6903 * again since the flush logic in strrput_nondata() 6904 * may have cleared it while we had sd_lock dropped. 6905 */ 6906 if (type >= QPCTL) { 6907 ASSERT(type == M_PCPROTO); 6908 if (queclass(savemp) < QPCTL) 6909 stp->sd_flag &= ~STRPRI; 6910 else 6911 stp->sd_flag |= STRPRI; 6912 } else if (queclass(savemp) >= QPCTL) { 6913 /* 6914 * The first message was not a HIPRI message, 6915 * but the one we are about to putback is. 6916 * For simplicitly, we do not allow for HIPRI 6917 * messages to be embedded in the message 6918 * body, so just force it to same type as 6919 * first message. 6920 */ 6921 ASSERT(type == M_DATA || type == M_PROTO); 6922 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 6923 savemp->b_datap->db_type = type; 6924 } 6925 if (mark != 0) { 6926 savemp->b_flag |= mark & ~_LASTMARK; 6927 if ((mark & _LASTMARK) && 6928 (stp->sd_mark == NULL)) { 6929 /* 6930 * If another marked message arrived 6931 * while sd_lock was not held sd_mark 6932 * would be non-NULL. 6933 */ 6934 stp->sd_mark = savemp; 6935 } 6936 } 6937 putback(stp, q, savemp, pri); 6938 } 6939 } else { 6940 /* 6941 * The complete message was consumed. 6942 * 6943 * If another M_PCPROTO arrived while sd_lock was not held 6944 * it would have been discarded since STRPRI was still set. 6945 * 6946 * Move the MSG*MARKNEXT information 6947 * to the stream head just in case 6948 * the read queue becomes empty. 6949 * clear stream head hi pri flag based on 6950 * first message 6951 * 6952 * If the stream head was at the mark 6953 * (STRATMARK) before we dropped sd_lock above 6954 * and some data was consumed then we have 6955 * moved past the mark thus STRATMARK is 6956 * cleared. However, if a message arrived in 6957 * strrput during the copyout above causing 6958 * STRATMARK to be set we can not clear that 6959 * flag. 6960 */ 6961 if (type >= QPCTL) { 6962 ASSERT(type == M_PCPROTO); 6963 stp->sd_flag &= ~STRPRI; 6964 } 6965 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 6966 if (mark & MSGMARKNEXT) { 6967 stp->sd_flag &= ~STRNOTATMARK; 6968 stp->sd_flag |= STRATMARK; 6969 } else if (mark & MSGNOTMARKNEXT) { 6970 stp->sd_flag &= ~STRATMARK; 6971 stp->sd_flag |= STRNOTATMARK; 6972 } else { 6973 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 6974 } 6975 } else if (pr && (old_sd_flag & STRATMARK)) { 6976 stp->sd_flag &= ~STRATMARK; 6977 } 6978 } 6979 6980 *flagsp = flg; 6981 *prip = pri; 6982 6983 /* 6984 * Getmsg cleanup processing - if the state of the queue has changed 6985 * some signals may need to be sent and/or poll awakened. 6986 */ 6987 getmout: 6988 qbackenable(q, pri); 6989 6990 /* 6991 * We dropped the stream head lock above. Send all M_SIG messages 6992 * before processing stream head for SIGPOLL messages. 6993 */ 6994 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6995 while ((bp = q->q_first) != NULL && 6996 (bp->b_datap->db_type == M_SIG)) { 6997 /* 6998 * sd_lock is held so the content of the read queue can not 6999 * change. 7000 */ 7001 bp = getq(q); 7002 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 7003 7004 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 7005 mutex_exit(&stp->sd_lock); 7006 freemsg(bp); 7007 if (STREAM_NEEDSERVICE(stp)) 7008 stream_runservice(stp); 7009 mutex_enter(&stp->sd_lock); 7010 } 7011 7012 /* 7013 * stream head cannot change while we make the determination 7014 * whether or not to send a signal. Drop the flag to allow strrput 7015 * to send firstmsgsigs again. 7016 */ 7017 stp->sd_flag &= ~STRGETINPROG; 7018 7019 /* 7020 * If the type of message at the front of the queue changed 7021 * due to the receive the appropriate signals and pollwakeup events 7022 * are generated. The type of changes are: 7023 * Processed a hipri message, q_first is not hipri. 7024 * Processed a band X message, and q_first is band Y. 7025 * The generated signals and pollwakeups are identical to what 7026 * strrput() generates should the message that is now on q_first 7027 * arrive to an empty read queue. 7028 * 7029 * Note: only strrput will send a signal for a hipri message. 7030 */ 7031 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 7032 strsigset_t signals = 0; 7033 strpollset_t pollwakeups = 0; 7034 7035 if (flg & MSG_HIPRI) { 7036 /* 7037 * Removed a hipri message. Regular data at 7038 * the front of the queue. 7039 */ 7040 if (bp->b_band == 0) { 7041 signals = S_INPUT | S_RDNORM; 7042 pollwakeups = POLLIN | POLLRDNORM; 7043 } else { 7044 signals = S_INPUT | S_RDBAND; 7045 pollwakeups = POLLIN | POLLRDBAND; 7046 } 7047 } else if (pri != bp->b_band) { 7048 /* 7049 * The band is different for the new q_first. 7050 */ 7051 if (bp->b_band == 0) { 7052 signals = S_RDNORM; 7053 pollwakeups = POLLIN | POLLRDNORM; 7054 } else { 7055 signals = S_RDBAND; 7056 pollwakeups = POLLIN | POLLRDBAND; 7057 } 7058 } 7059 7060 if (pollwakeups != 0) { 7061 if (pollwakeups == (POLLIN | POLLRDNORM)) { 7062 if (!(stp->sd_rput_opt & SR_POLLIN)) 7063 goto no_pollwake; 7064 stp->sd_rput_opt &= ~SR_POLLIN; 7065 } 7066 mutex_exit(&stp->sd_lock); 7067 pollwakeup(&stp->sd_pollist, pollwakeups); 7068 mutex_enter(&stp->sd_lock); 7069 } 7070 no_pollwake: 7071 7072 if (stp->sd_sigflags & signals) 7073 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 7074 } 7075 mutex_exit(&stp->sd_lock); 7076 7077 rvp->r_val1 = more; 7078 return (error); 7079 #undef _LASTMARK 7080 } 7081 7082 /* 7083 * Get the next message from the read queue. If the message is 7084 * priority, STRPRI will have been set by strrput(). This flag 7085 * should be reset only when the entire message at the front of the 7086 * queue as been consumed. 7087 * 7088 * If uiop is NULL all data is returned in mctlp. 7089 * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed 7090 * not enabled. 7091 * The timeout parameter is in milliseconds; -1 for infinity. 7092 * This routine handles the consolidation private flags: 7093 * MSG_IGNERROR Ignore any stream head error except STPLEX. 7094 * MSG_DELAYERROR Defer the error check until the queue is empty. 7095 * MSG_HOLDSIG Hold signals while waiting for data. 7096 * MSG_IPEEK Only peek at messages. 7097 * MSG_DISCARDTAIL Discard the tail M_DATA part of the message 7098 * that doesn't fit. 7099 * MSG_NOMARK If the message is marked leave it on the queue. 7100 * 7101 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 7102 */ 7103 int 7104 kstrgetmsg( 7105 struct vnode *vp, 7106 mblk_t **mctlp, 7107 struct uio *uiop, 7108 unsigned char *prip, 7109 int *flagsp, 7110 clock_t timout, 7111 rval_t *rvp) 7112 { 7113 struct stdata *stp; 7114 mblk_t *bp, *nbp; 7115 mblk_t *savemp = NULL; 7116 mblk_t *savemptail = NULL; 7117 int flags; 7118 uint_t old_sd_flag; 7119 int flg = MSG_BAND; 7120 int more = 0; 7121 int error = 0; 7122 char first = 1; 7123 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 7124 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 7125 unsigned char pri = 0; 7126 queue_t *q; 7127 int pr = 0; /* Partial read successful */ 7128 unsigned char type; 7129 7130 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER, 7131 "kstrgetmsg:%p", vp); 7132 7133 ASSERT(vp->v_stream); 7134 stp = vp->v_stream; 7135 rvp->r_val1 = 0; 7136 7137 mutex_enter(&stp->sd_lock); 7138 7139 if ((error = i_straccess(stp, JCREAD)) != 0) { 7140 mutex_exit(&stp->sd_lock); 7141 return (error); 7142 } 7143 7144 flags = *flagsp; 7145 if (stp->sd_flag & (STRDERR|STPLEX)) { 7146 if ((stp->sd_flag & STPLEX) || 7147 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) { 7148 error = strgeterr(stp, STRDERR|STPLEX, 7149 (flags & MSG_IPEEK)); 7150 if (error != 0) { 7151 mutex_exit(&stp->sd_lock); 7152 return (error); 7153 } 7154 } 7155 } 7156 mutex_exit(&stp->sd_lock); 7157 7158 switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) { 7159 case MSG_HIPRI: 7160 if (*prip != 0) 7161 return (EINVAL); 7162 break; 7163 7164 case MSG_ANY: 7165 case MSG_BAND: 7166 break; 7167 7168 default: 7169 return (EINVAL); 7170 } 7171 7172 retry: 7173 q = _RD(stp->sd_wrq); 7174 mutex_enter(&stp->sd_lock); 7175 old_sd_flag = stp->sd_flag; 7176 mark = 0; 7177 for (;;) { 7178 int done = 0; 7179 int waitflag; 7180 int fmode; 7181 mblk_t *q_first = q->q_first; 7182 7183 /* 7184 * This section of the code operates just like the code 7185 * in strgetmsg(). There is a comment there about what 7186 * is going on here. 7187 */ 7188 if (!(flags & (MSG_HIPRI|MSG_BAND))) { 7189 /* Asking for normal, band0 data */ 7190 bp = strget(stp, q, uiop, first, &error); 7191 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7192 if (bp != NULL) { 7193 if (DB_TYPE(bp) == M_SIG) { 7194 strsignal_nolock(stp, *bp->b_rptr, 7195 bp->b_band); 7196 freemsg(bp); 7197 continue; 7198 } else { 7199 break; 7200 } 7201 } 7202 if (error != 0) { 7203 goto getmout; 7204 } 7205 /* 7206 * We can't depend on the value of STRPRI here because 7207 * the stream head may be in transit. Therefore, we 7208 * must look at the type of the first message to 7209 * determine if a high priority messages is waiting 7210 */ 7211 } else if ((flags & MSG_HIPRI) && q_first != NULL && 7212 DB_TYPE(q_first) >= QPCTL && 7213 (bp = getq_noenab(q, 0)) != NULL) { 7214 ASSERT(DB_TYPE(bp) >= QPCTL); 7215 break; 7216 } else if ((flags & MSG_BAND) && q_first != NULL && 7217 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) && 7218 (bp = getq_noenab(q, 0)) != NULL) { 7219 /* 7220 * Asked for at least band "prip" and got either at 7221 * least that band or a hipri message. 7222 */ 7223 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL); 7224 if (DB_TYPE(bp) == M_SIG) { 7225 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 7226 freemsg(bp); 7227 continue; 7228 } else { 7229 break; 7230 } 7231 } 7232 7233 /* No data. Time to sleep? */ 7234 qbackenable(q, 0); 7235 7236 /* 7237 * Delayed error notification? 7238 */ 7239 if ((stp->sd_flag & (STRDERR|STPLEX)) && 7240 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) { 7241 error = strgeterr(stp, STRDERR|STPLEX, 7242 (flags & MSG_IPEEK)); 7243 if (error != 0) { 7244 mutex_exit(&stp->sd_lock); 7245 return (error); 7246 } 7247 } 7248 7249 /* 7250 * If STRHUP or STREOF, return 0 length control and data. 7251 * If a read(fd,buf,0) has been done, do not sleep, just 7252 * return. 7253 * 7254 * If mctlp == NULL and uiop == NULL, then the code will 7255 * do the strwaitq. This is an understood way of saying 7256 * sleep "polling" until a message is received. 7257 */ 7258 if ((stp->sd_flag & (STRHUP|STREOF)) || 7259 (uiop != NULL && uiop->uio_resid == 0)) { 7260 if (mctlp != NULL) 7261 *mctlp = NULL; 7262 *flagsp = 0; 7263 mutex_exit(&stp->sd_lock); 7264 return (0); 7265 } 7266 7267 waitflag = GETWAIT; 7268 if (flags & 7269 (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) { 7270 if (flags & MSG_HOLDSIG) 7271 waitflag |= STR_NOSIG; 7272 if (flags & MSG_IGNERROR) 7273 waitflag |= STR_NOERROR; 7274 if (flags & MSG_IPEEK) 7275 waitflag |= STR_PEEK; 7276 if (flags & MSG_DELAYERROR) 7277 waitflag |= STR_DELAYERR; 7278 } 7279 if (uiop != NULL) 7280 fmode = uiop->uio_fmode; 7281 else 7282 fmode = 0; 7283 7284 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT, 7285 "kstrgetmsg calls strwaitq:%p, %p", 7286 vp, uiop); 7287 if (((error = strwaitq(stp, waitflag, (ssize_t)0, 7288 fmode, timout, &done))) != 0 || done) { 7289 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE, 7290 "kstrgetmsg error or done:%p, %p", 7291 vp, uiop); 7292 mutex_exit(&stp->sd_lock); 7293 return (error); 7294 } 7295 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE, 7296 "kstrgetmsg awakes:%p, %p", vp, uiop); 7297 if ((error = i_straccess(stp, JCREAD)) != 0) { 7298 mutex_exit(&stp->sd_lock); 7299 return (error); 7300 } 7301 first = 0; 7302 } 7303 ASSERT(bp != NULL); 7304 /* 7305 * Extract any mark information. If the message is not completely 7306 * consumed this information will be put in the mblk 7307 * that is putback. 7308 * If MSGMARKNEXT is set and the message is completely consumed 7309 * the STRATMARK flag will be set below. Likewise, if 7310 * MSGNOTMARKNEXT is set and the message is 7311 * completely consumed STRNOTATMARK will be set. 7312 */ 7313 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 7314 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 7315 (MSGMARKNEXT|MSGNOTMARKNEXT)); 7316 pri = bp->b_band; 7317 if (mark != 0) { 7318 /* 7319 * If the caller doesn't want the mark return. 7320 * Used to implement MSG_WAITALL in sockets. 7321 */ 7322 if (flags & MSG_NOMARK) { 7323 putback(stp, q, bp, pri); 7324 qbackenable(q, pri); 7325 mutex_exit(&stp->sd_lock); 7326 return (EWOULDBLOCK); 7327 } 7328 if (bp == stp->sd_mark) { 7329 mark |= _LASTMARK; 7330 stp->sd_mark = NULL; 7331 } 7332 } 7333 7334 /* 7335 * keep track of the first message type 7336 */ 7337 type = bp->b_datap->db_type; 7338 7339 if (bp->b_datap->db_type == M_PASSFP) { 7340 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7341 stp->sd_mark = bp; 7342 bp->b_flag |= mark & ~_LASTMARK; 7343 putback(stp, q, bp, pri); 7344 qbackenable(q, pri); 7345 mutex_exit(&stp->sd_lock); 7346 return (EBADMSG); 7347 } 7348 ASSERT(type != M_SIG); 7349 7350 if (flags & MSG_IPEEK) { 7351 /* 7352 * Clear any struioflag - we do the uiomove over again 7353 * when peeking since it simplifies the code. 7354 * 7355 * Dup the message and put the original back on the queue. 7356 * If dupmsg() fails, try again with copymsg() to see if 7357 * there is indeed a shortage of memory. dupmsg() may fail 7358 * if db_ref in any of the messages reaches its limit. 7359 */ 7360 7361 if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) { 7362 /* 7363 * Restore the state of the stream head since we 7364 * need to drop sd_lock (strwaitbuf is sleeping). 7365 */ 7366 size_t size = msgdsize(bp); 7367 7368 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7369 stp->sd_mark = bp; 7370 bp->b_flag |= mark & ~_LASTMARK; 7371 putback(stp, q, bp, pri); 7372 mutex_exit(&stp->sd_lock); 7373 error = strwaitbuf(size, BPRI_HI); 7374 if (error) { 7375 /* 7376 * There is no net change to the queue thus 7377 * no need to qbackenable. 7378 */ 7379 return (error); 7380 } 7381 goto retry; 7382 } 7383 7384 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7385 stp->sd_mark = bp; 7386 bp->b_flag |= mark & ~_LASTMARK; 7387 putback(stp, q, bp, pri); 7388 bp = nbp; 7389 } 7390 7391 /* 7392 * Set this flag so strrput will not generate signals. Need to 7393 * make sure this flag is cleared before leaving this routine 7394 * else signals will stop being sent. 7395 */ 7396 stp->sd_flag |= STRGETINPROG; 7397 mutex_exit(&stp->sd_lock); 7398 7399 if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA)) { 7400 mblk_t *tmp, *prevmp; 7401 7402 /* 7403 * Put first non-data mblk back to stream head and 7404 * cut the mblk chain so sd_rputdatafunc only sees 7405 * M_DATA mblks. We can skip the first mblk since it 7406 * is M_DATA according to the condition above. 7407 */ 7408 for (prevmp = bp, tmp = bp->b_cont; tmp != NULL; 7409 prevmp = tmp, tmp = tmp->b_cont) { 7410 if (DB_TYPE(tmp) != M_DATA) { 7411 prevmp->b_cont = NULL; 7412 mutex_enter(&stp->sd_lock); 7413 putback(stp, q, tmp, tmp->b_band); 7414 mutex_exit(&stp->sd_lock); 7415 break; 7416 } 7417 } 7418 7419 bp = (stp->sd_rputdatafunc)(stp->sd_vnode, bp, 7420 NULL, NULL, NULL, NULL); 7421 7422 if (bp == NULL) 7423 goto retry; 7424 } 7425 7426 if (STREAM_NEEDSERVICE(stp)) 7427 stream_runservice(stp); 7428 7429 /* 7430 * Set HIPRI flag if message is priority. 7431 */ 7432 if (type >= QPCTL) 7433 flg = MSG_HIPRI; 7434 else 7435 flg = MSG_BAND; 7436 7437 /* 7438 * First process PROTO or PCPROTO blocks, if any. 7439 */ 7440 if (mctlp != NULL && type != M_DATA) { 7441 mblk_t *nbp; 7442 7443 *mctlp = bp; 7444 while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA) 7445 bp = bp->b_cont; 7446 nbp = bp->b_cont; 7447 bp->b_cont = NULL; 7448 bp = nbp; 7449 } 7450 7451 if (bp && bp->b_datap->db_type != M_DATA) { 7452 /* 7453 * More PROTO blocks in msg. Will only happen if mctlp is NULL. 7454 */ 7455 more |= MORECTL; 7456 savemp = bp; 7457 while (bp && bp->b_datap->db_type != M_DATA) { 7458 savemptail = bp; 7459 bp = bp->b_cont; 7460 } 7461 savemptail->b_cont = NULL; 7462 } 7463 7464 /* 7465 * Now process DATA blocks, if any. 7466 */ 7467 if (uiop == NULL) { 7468 /* Append data to tail of mctlp */ 7469 7470 if (mctlp != NULL) { 7471 mblk_t **mpp = mctlp; 7472 7473 while (*mpp != NULL) 7474 mpp = &((*mpp)->b_cont); 7475 *mpp = bp; 7476 bp = NULL; 7477 } 7478 } else if (uiop->uio_resid >= 0 && bp) { 7479 size_t oldresid = uiop->uio_resid; 7480 7481 /* 7482 * If a streams message is likely to consist 7483 * of many small mblks, it is pulled up into 7484 * one continuous chunk of memory. 7485 * The size of the first mblk may be bogus because 7486 * successive read() calls on the socket reduce 7487 * the size of this mblk until it is exhausted 7488 * and then the code walks on to the next. Thus 7489 * the size of the mblk may not be the original size 7490 * that was passed up, it's simply a remainder 7491 * and hence can be very small without any 7492 * implication that the packet is badly fragmented. 7493 * So the size of the possible second mblk is 7494 * used to spot a badly fragmented packet. 7495 * see longer comment at top of page 7496 * by mblk_pull_len declaration. 7497 */ 7498 7499 if (bp->b_cont != NULL && MBLKL(bp->b_cont) < mblk_pull_len) { 7500 (void) pullupmsg(bp, -1); 7501 } 7502 7503 bp = struiocopyout(bp, uiop, &error); 7504 if (error != 0) { 7505 if (mctlp != NULL) { 7506 freemsg(*mctlp); 7507 *mctlp = NULL; 7508 } else 7509 freemsg(savemp); 7510 mutex_enter(&stp->sd_lock); 7511 /* 7512 * clear stream head hi pri flag based on 7513 * first message 7514 */ 7515 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7516 ASSERT(type == M_PCPROTO); 7517 stp->sd_flag &= ~STRPRI; 7518 } 7519 more = 0; 7520 goto getmout; 7521 } 7522 /* 7523 * (pr == 1) indicates a partial read. 7524 */ 7525 if (oldresid > uiop->uio_resid) 7526 pr = 1; 7527 } 7528 7529 if (bp) { /* more data blocks in msg */ 7530 more |= MOREDATA; 7531 if (savemp) 7532 savemptail->b_cont = bp; 7533 else 7534 savemp = bp; 7535 } 7536 7537 mutex_enter(&stp->sd_lock); 7538 if (savemp) { 7539 if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) { 7540 /* 7541 * When MSG_DISCARDTAIL is set or 7542 * when peeking discard any tail. When peeking this 7543 * is the tail of the dup that was copied out - the 7544 * message has already been putback on the queue. 7545 * Return MOREDATA to the caller even though the data 7546 * is discarded. This is used by sockets (to 7547 * set MSG_TRUNC). 7548 */ 7549 freemsg(savemp); 7550 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7551 ASSERT(type == M_PCPROTO); 7552 stp->sd_flag &= ~STRPRI; 7553 } 7554 } else if (pr && (savemp->b_datap->db_type == M_DATA) && 7555 msgnodata(savemp)) { 7556 /* 7557 * Avoid queuing a zero-length tail part of 7558 * a message. pr=1 indicates that we read some of 7559 * the message. 7560 */ 7561 freemsg(savemp); 7562 more &= ~MOREDATA; 7563 if (type >= QPCTL) { 7564 ASSERT(type == M_PCPROTO); 7565 stp->sd_flag &= ~STRPRI; 7566 } 7567 } else { 7568 savemp->b_band = pri; 7569 /* 7570 * If the first message was HIPRI and the one we're 7571 * putting back isn't, then clear STRPRI, otherwise 7572 * set STRPRI again. Note that we must set STRPRI 7573 * again since the flush logic in strrput_nondata() 7574 * may have cleared it while we had sd_lock dropped. 7575 */ 7576 7577 if (type >= QPCTL) { 7578 ASSERT(type == M_PCPROTO); 7579 if (queclass(savemp) < QPCTL) 7580 stp->sd_flag &= ~STRPRI; 7581 else 7582 stp->sd_flag |= STRPRI; 7583 } else if (queclass(savemp) >= QPCTL) { 7584 /* 7585 * The first message was not a HIPRI message, 7586 * but the one we are about to putback is. 7587 * For simplicitly, we do not allow for HIPRI 7588 * messages to be embedded in the message 7589 * body, so just force it to same type as 7590 * first message. 7591 */ 7592 ASSERT(type == M_DATA || type == M_PROTO); 7593 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 7594 savemp->b_datap->db_type = type; 7595 } 7596 if (mark != 0) { 7597 if ((mark & _LASTMARK) && 7598 (stp->sd_mark == NULL)) { 7599 /* 7600 * If another marked message arrived 7601 * while sd_lock was not held sd_mark 7602 * would be non-NULL. 7603 */ 7604 stp->sd_mark = savemp; 7605 } 7606 savemp->b_flag |= mark & ~_LASTMARK; 7607 } 7608 putback(stp, q, savemp, pri); 7609 } 7610 } else if (!(flags & MSG_IPEEK)) { 7611 /* 7612 * The complete message was consumed. 7613 * 7614 * If another M_PCPROTO arrived while sd_lock was not held 7615 * it would have been discarded since STRPRI was still set. 7616 * 7617 * Move the MSG*MARKNEXT information 7618 * to the stream head just in case 7619 * the read queue becomes empty. 7620 * clear stream head hi pri flag based on 7621 * first message 7622 * 7623 * If the stream head was at the mark 7624 * (STRATMARK) before we dropped sd_lock above 7625 * and some data was consumed then we have 7626 * moved past the mark thus STRATMARK is 7627 * cleared. However, if a message arrived in 7628 * strrput during the copyout above causing 7629 * STRATMARK to be set we can not clear that 7630 * flag. 7631 * XXX A "perimeter" would help by single-threading strrput, 7632 * strread, strgetmsg and kstrgetmsg. 7633 */ 7634 if (type >= QPCTL) { 7635 ASSERT(type == M_PCPROTO); 7636 stp->sd_flag &= ~STRPRI; 7637 } 7638 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 7639 if (mark & MSGMARKNEXT) { 7640 stp->sd_flag &= ~STRNOTATMARK; 7641 stp->sd_flag |= STRATMARK; 7642 } else if (mark & MSGNOTMARKNEXT) { 7643 stp->sd_flag &= ~STRATMARK; 7644 stp->sd_flag |= STRNOTATMARK; 7645 } else { 7646 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 7647 } 7648 } else if (pr && (old_sd_flag & STRATMARK)) { 7649 stp->sd_flag &= ~STRATMARK; 7650 } 7651 } 7652 7653 *flagsp = flg; 7654 *prip = pri; 7655 7656 /* 7657 * Getmsg cleanup processing - if the state of the queue has changed 7658 * some signals may need to be sent and/or poll awakened. 7659 */ 7660 getmout: 7661 qbackenable(q, pri); 7662 7663 /* 7664 * We dropped the stream head lock above. Send all M_SIG messages 7665 * before processing stream head for SIGPOLL messages. 7666 */ 7667 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7668 while ((bp = q->q_first) != NULL && 7669 (bp->b_datap->db_type == M_SIG)) { 7670 /* 7671 * sd_lock is held so the content of the read queue can not 7672 * change. 7673 */ 7674 bp = getq(q); 7675 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 7676 7677 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 7678 mutex_exit(&stp->sd_lock); 7679 freemsg(bp); 7680 if (STREAM_NEEDSERVICE(stp)) 7681 stream_runservice(stp); 7682 mutex_enter(&stp->sd_lock); 7683 } 7684 7685 /* 7686 * stream head cannot change while we make the determination 7687 * whether or not to send a signal. Drop the flag to allow strrput 7688 * to send firstmsgsigs again. 7689 */ 7690 stp->sd_flag &= ~STRGETINPROG; 7691 7692 /* 7693 * If the type of message at the front of the queue changed 7694 * due to the receive the appropriate signals and pollwakeup events 7695 * are generated. The type of changes are: 7696 * Processed a hipri message, q_first is not hipri. 7697 * Processed a band X message, and q_first is band Y. 7698 * The generated signals and pollwakeups are identical to what 7699 * strrput() generates should the message that is now on q_first 7700 * arrive to an empty read queue. 7701 * 7702 * Note: only strrput will send a signal for a hipri message. 7703 */ 7704 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 7705 strsigset_t signals = 0; 7706 strpollset_t pollwakeups = 0; 7707 7708 if (flg & MSG_HIPRI) { 7709 /* 7710 * Removed a hipri message. Regular data at 7711 * the front of the queue. 7712 */ 7713 if (bp->b_band == 0) { 7714 signals = S_INPUT | S_RDNORM; 7715 pollwakeups = POLLIN | POLLRDNORM; 7716 } else { 7717 signals = S_INPUT | S_RDBAND; 7718 pollwakeups = POLLIN | POLLRDBAND; 7719 } 7720 } else if (pri != bp->b_band) { 7721 /* 7722 * The band is different for the new q_first. 7723 */ 7724 if (bp->b_band == 0) { 7725 signals = S_RDNORM; 7726 pollwakeups = POLLIN | POLLRDNORM; 7727 } else { 7728 signals = S_RDBAND; 7729 pollwakeups = POLLIN | POLLRDBAND; 7730 } 7731 } 7732 7733 if (pollwakeups != 0) { 7734 if (pollwakeups == (POLLIN | POLLRDNORM)) { 7735 if (!(stp->sd_rput_opt & SR_POLLIN)) 7736 goto no_pollwake; 7737 stp->sd_rput_opt &= ~SR_POLLIN; 7738 } 7739 mutex_exit(&stp->sd_lock); 7740 pollwakeup(&stp->sd_pollist, pollwakeups); 7741 mutex_enter(&stp->sd_lock); 7742 } 7743 no_pollwake: 7744 7745 if (stp->sd_sigflags & signals) 7746 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 7747 } 7748 mutex_exit(&stp->sd_lock); 7749 7750 rvp->r_val1 = more; 7751 return (error); 7752 #undef _LASTMARK 7753 } 7754 7755 /* 7756 * Put a message downstream. 7757 * 7758 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7759 */ 7760 int 7761 strputmsg( 7762 struct vnode *vp, 7763 struct strbuf *mctl, 7764 struct strbuf *mdata, 7765 unsigned char pri, 7766 int flag, 7767 int fmode) 7768 { 7769 struct stdata *stp; 7770 queue_t *wqp; 7771 mblk_t *mp; 7772 ssize_t msgsize; 7773 ssize_t rmin, rmax; 7774 int error; 7775 struct uio uios; 7776 struct uio *uiop = &uios; 7777 struct iovec iovs; 7778 int xpg4 = 0; 7779 7780 ASSERT(vp->v_stream); 7781 stp = vp->v_stream; 7782 wqp = stp->sd_wrq; 7783 7784 /* 7785 * If it is an XPG4 application, we need to send 7786 * SIGPIPE below 7787 */ 7788 7789 xpg4 = (flag & MSG_XPG4) ? 1 : 0; 7790 flag &= ~MSG_XPG4; 7791 7792 if (AU_AUDITING()) 7793 audit_strputmsg(vp, mctl, mdata, pri, flag, fmode); 7794 7795 mutex_enter(&stp->sd_lock); 7796 7797 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7798 mutex_exit(&stp->sd_lock); 7799 return (error); 7800 } 7801 7802 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 7803 error = strwriteable(stp, B_FALSE, xpg4); 7804 if (error != 0) { 7805 mutex_exit(&stp->sd_lock); 7806 return (error); 7807 } 7808 } 7809 7810 mutex_exit(&stp->sd_lock); 7811 7812 /* 7813 * Check for legal flag value. 7814 */ 7815 switch (flag) { 7816 case MSG_HIPRI: 7817 if ((mctl->len < 0) || (pri != 0)) 7818 return (EINVAL); 7819 break; 7820 case MSG_BAND: 7821 break; 7822 7823 default: 7824 return (EINVAL); 7825 } 7826 7827 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN, 7828 "strputmsg in:stp %p", stp); 7829 7830 /* get these values from those cached in the stream head */ 7831 rmin = stp->sd_qn_minpsz; 7832 rmax = stp->sd_qn_maxpsz; 7833 7834 /* 7835 * Make sure ctl and data sizes together fall within the 7836 * limits of the max and min receive packet sizes and do 7837 * not exceed system limit. 7838 */ 7839 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 7840 if (rmax == 0) { 7841 return (ERANGE); 7842 } 7843 /* 7844 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 7845 * Needed to prevent partial failures in the strmakedata loop. 7846 */ 7847 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 7848 rmax = stp->sd_maxblk; 7849 7850 if ((msgsize = mdata->len) < 0) { 7851 msgsize = 0; 7852 rmin = 0; /* no range check for NULL data part */ 7853 } 7854 if ((msgsize < rmin) || 7855 ((msgsize > rmax) && (rmax != INFPSZ)) || 7856 (mctl->len > strctlsz)) { 7857 return (ERANGE); 7858 } 7859 7860 /* 7861 * Setup uio and iov for data part 7862 */ 7863 iovs.iov_base = mdata->buf; 7864 iovs.iov_len = msgsize; 7865 uios.uio_iov = &iovs; 7866 uios.uio_iovcnt = 1; 7867 uios.uio_loffset = 0; 7868 uios.uio_segflg = UIO_USERSPACE; 7869 uios.uio_fmode = fmode; 7870 uios.uio_extflg = UIO_COPY_DEFAULT; 7871 uios.uio_resid = msgsize; 7872 uios.uio_offset = 0; 7873 7874 /* Ignore flow control in strput for HIPRI */ 7875 if (flag & MSG_HIPRI) 7876 flag |= MSG_IGNFLOW; 7877 7878 for (;;) { 7879 int done = 0; 7880 7881 /* 7882 * strput will always free the ctl mblk - even when strput 7883 * fails. 7884 */ 7885 if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) { 7886 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7887 "strputmsg out:stp %p out %d error %d", 7888 stp, 1, error); 7889 return (error); 7890 } 7891 /* 7892 * Verify that the whole message can be transferred by 7893 * strput. 7894 */ 7895 ASSERT(stp->sd_maxblk == INFPSZ || 7896 stp->sd_maxblk >= mdata->len); 7897 7898 msgsize = mdata->len; 7899 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 7900 mdata->len = msgsize; 7901 7902 if (error == 0) 7903 break; 7904 7905 if (error != EWOULDBLOCK) 7906 goto out; 7907 7908 mutex_enter(&stp->sd_lock); 7909 /* 7910 * Check for a missed wakeup. 7911 * Needed since strput did not hold sd_lock across 7912 * the canputnext. 7913 */ 7914 if (bcanputnext(wqp, pri)) { 7915 /* Try again */ 7916 mutex_exit(&stp->sd_lock); 7917 continue; 7918 } 7919 TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT, 7920 "strputmsg wait:stp %p waits pri %d", stp, pri); 7921 if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1, 7922 &done)) != 0) || done) { 7923 mutex_exit(&stp->sd_lock); 7924 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7925 "strputmsg out:q %p out %d error %d", 7926 stp, 0, error); 7927 return (error); 7928 } 7929 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE, 7930 "strputmsg wake:stp %p wakes", stp); 7931 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7932 mutex_exit(&stp->sd_lock); 7933 return (error); 7934 } 7935 mutex_exit(&stp->sd_lock); 7936 } 7937 out: 7938 /* 7939 * For historic reasons, applications expect EAGAIN 7940 * when data mblk could not be allocated. so change 7941 * ENOMEM back to EAGAIN 7942 */ 7943 if (error == ENOMEM) 7944 error = EAGAIN; 7945 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7946 "strputmsg out:stp %p out %d error %d", stp, 2, error); 7947 return (error); 7948 } 7949 7950 /* 7951 * Put a message downstream. 7952 * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop. 7953 * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio 7954 * and the fmode parameter. 7955 * 7956 * This routine handles the consolidation private flags: 7957 * MSG_IGNERROR Ignore any stream head error except STPLEX. 7958 * MSG_HOLDSIG Hold signals while waiting for data. 7959 * MSG_IGNFLOW Don't check streams flow control. 7960 * 7961 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7962 */ 7963 int 7964 kstrputmsg( 7965 struct vnode *vp, 7966 mblk_t *mctl, 7967 struct uio *uiop, 7968 ssize_t msgsize, 7969 unsigned char pri, 7970 int flag, 7971 int fmode) 7972 { 7973 struct stdata *stp; 7974 queue_t *wqp; 7975 ssize_t rmin, rmax; 7976 int error; 7977 7978 ASSERT(vp->v_stream); 7979 stp = vp->v_stream; 7980 wqp = stp->sd_wrq; 7981 if (AU_AUDITING()) 7982 audit_strputmsg(vp, NULL, NULL, pri, flag, fmode); 7983 if (mctl == NULL) 7984 return (EINVAL); 7985 7986 mutex_enter(&stp->sd_lock); 7987 7988 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7989 mutex_exit(&stp->sd_lock); 7990 freemsg(mctl); 7991 return (error); 7992 } 7993 7994 if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) { 7995 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 7996 error = strwriteable(stp, B_FALSE, B_TRUE); 7997 if (error != 0) { 7998 mutex_exit(&stp->sd_lock); 7999 freemsg(mctl); 8000 return (error); 8001 } 8002 } 8003 } 8004 8005 mutex_exit(&stp->sd_lock); 8006 8007 /* 8008 * Check for legal flag value. 8009 */ 8010 switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) { 8011 case MSG_HIPRI: 8012 if (pri != 0) { 8013 freemsg(mctl); 8014 return (EINVAL); 8015 } 8016 break; 8017 case MSG_BAND: 8018 break; 8019 default: 8020 freemsg(mctl); 8021 return (EINVAL); 8022 } 8023 8024 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN, 8025 "kstrputmsg in:stp %p", stp); 8026 8027 /* get these values from those cached in the stream head */ 8028 rmin = stp->sd_qn_minpsz; 8029 rmax = stp->sd_qn_maxpsz; 8030 8031 /* 8032 * Make sure ctl and data sizes together fall within the 8033 * limits of the max and min receive packet sizes and do 8034 * not exceed system limit. 8035 */ 8036 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 8037 if (rmax == 0) { 8038 freemsg(mctl); 8039 return (ERANGE); 8040 } 8041 /* 8042 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 8043 * Needed to prevent partial failures in the strmakedata loop. 8044 */ 8045 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 8046 rmax = stp->sd_maxblk; 8047 8048 if (uiop == NULL) { 8049 msgsize = -1; 8050 rmin = -1; /* no range check for NULL data part */ 8051 } else { 8052 /* Use uio flags as well as the fmode parameter flags */ 8053 fmode |= uiop->uio_fmode; 8054 8055 if ((msgsize < rmin) || 8056 ((msgsize > rmax) && (rmax != INFPSZ))) { 8057 freemsg(mctl); 8058 return (ERANGE); 8059 } 8060 } 8061 8062 /* Ignore flow control in strput for HIPRI */ 8063 if (flag & MSG_HIPRI) 8064 flag |= MSG_IGNFLOW; 8065 8066 for (;;) { 8067 int done = 0; 8068 int waitflag; 8069 mblk_t *mp; 8070 8071 /* 8072 * strput will always free the ctl mblk - even when strput 8073 * fails. If MSG_IGNFLOW is set then any error returned 8074 * will cause us to break the loop, so we don't need a copy 8075 * of the message. If MSG_IGNFLOW is not set, then we can 8076 * get hit by flow control and be forced to try again. In 8077 * this case we need to have a copy of the message. We 8078 * do this using copymsg since the message may get modified 8079 * by something below us. 8080 * 8081 * We've observed that many TPI providers do not check db_ref 8082 * on the control messages but blindly reuse them for the 8083 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more 8084 * friendly to such providers than using dupmsg. Also, note 8085 * that sockfs uses MSG_IGNFLOW for all TPI control messages. 8086 * Only data messages are subject to flow control, hence 8087 * subject to this copymsg. 8088 */ 8089 if (flag & MSG_IGNFLOW) { 8090 mp = mctl; 8091 mctl = NULL; 8092 } else { 8093 do { 8094 /* 8095 * If a message has a free pointer, the message 8096 * must be dupmsg to maintain this pointer. 8097 * Code using this facility must be sure 8098 * that modules below will not change the 8099 * contents of the dblk without checking db_ref 8100 * first. If db_ref is > 1, then the module 8101 * needs to do a copymsg first. Otherwise, 8102 * the contents of the dblk may become 8103 * inconsistent because the freesmg/freeb below 8104 * may end up calling atomic_add_32_nv. 8105 * The atomic_add_32_nv in freeb (accessing 8106 * all of db_ref, db_type, db_flags, and 8107 * db_struioflag) does not prevent other threads 8108 * from concurrently trying to modify e.g. 8109 * db_type. 8110 */ 8111 if (mctl->b_datap->db_frtnp != NULL) 8112 mp = dupmsg(mctl); 8113 else 8114 mp = copymsg(mctl); 8115 8116 if (mp != NULL) 8117 break; 8118 8119 error = strwaitbuf(msgdsize(mctl), BPRI_MED); 8120 if (error) { 8121 freemsg(mctl); 8122 return (error); 8123 } 8124 } while (mp == NULL); 8125 } 8126 /* 8127 * Verify that all of msgsize can be transferred by 8128 * strput. 8129 */ 8130 ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize); 8131 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 8132 if (error == 0) 8133 break; 8134 8135 if (error != EWOULDBLOCK) 8136 goto out; 8137 8138 /* 8139 * IF MSG_IGNFLOW is set we should have broken out of loop 8140 * above. 8141 */ 8142 ASSERT(!(flag & MSG_IGNFLOW)); 8143 mutex_enter(&stp->sd_lock); 8144 /* 8145 * Check for a missed wakeup. 8146 * Needed since strput did not hold sd_lock across 8147 * the canputnext. 8148 */ 8149 if (bcanputnext(wqp, pri)) { 8150 /* Try again */ 8151 mutex_exit(&stp->sd_lock); 8152 continue; 8153 } 8154 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT, 8155 "kstrputmsg wait:stp %p waits pri %d", stp, pri); 8156 8157 waitflag = WRITEWAIT; 8158 if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) { 8159 if (flag & MSG_HOLDSIG) 8160 waitflag |= STR_NOSIG; 8161 if (flag & MSG_IGNERROR) 8162 waitflag |= STR_NOERROR; 8163 } 8164 if (((error = strwaitq(stp, waitflag, 8165 (ssize_t)0, fmode, -1, &done)) != 0) || done) { 8166 mutex_exit(&stp->sd_lock); 8167 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 8168 "kstrputmsg out:stp %p out %d error %d", 8169 stp, 0, error); 8170 freemsg(mctl); 8171 return (error); 8172 } 8173 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE, 8174 "kstrputmsg wake:stp %p wakes", stp); 8175 if ((error = i_straccess(stp, JCWRITE)) != 0) { 8176 mutex_exit(&stp->sd_lock); 8177 freemsg(mctl); 8178 return (error); 8179 } 8180 mutex_exit(&stp->sd_lock); 8181 } 8182 out: 8183 freemsg(mctl); 8184 /* 8185 * For historic reasons, applications expect EAGAIN 8186 * when data mblk could not be allocated. so change 8187 * ENOMEM back to EAGAIN 8188 */ 8189 if (error == ENOMEM) 8190 error = EAGAIN; 8191 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 8192 "kstrputmsg out:stp %p out %d error %d", stp, 2, error); 8193 return (error); 8194 } 8195 8196 /* 8197 * Determines whether the necessary conditions are set on a stream 8198 * for it to be readable, writeable, or have exceptions. 8199 * 8200 * strpoll handles the consolidation private events: 8201 * POLLNOERR Do not return POLLERR even if there are stream 8202 * head errors. 8203 * Used by sockfs. 8204 * POLLRDDATA Do not return POLLIN unless at least one message on 8205 * the queue contains one or more M_DATA mblks. Thus 8206 * when this flag is set a queue with only 8207 * M_PROTO/M_PCPROTO mblks does not return POLLIN. 8208 * Used by sockfs to ignore T_EXDATA_IND messages. 8209 * 8210 * Note: POLLRDDATA assumes that synch streams only return messages with 8211 * an M_DATA attached (i.e. not messages consisting of only 8212 * an M_PROTO/M_PCPROTO part). 8213 */ 8214 int 8215 strpoll(struct stdata *stp, short events_arg, int anyyet, short *reventsp, 8216 struct pollhead **phpp) 8217 { 8218 int events = (ushort_t)events_arg; 8219 int retevents = 0; 8220 mblk_t *mp; 8221 qband_t *qbp; 8222 long sd_flags = stp->sd_flag; 8223 int headlocked = 0; 8224 8225 /* 8226 * For performance, a single 'if' tests for most possible edge 8227 * conditions in one shot 8228 */ 8229 if (sd_flags & (STPLEX | STRDERR | STWRERR)) { 8230 if (sd_flags & STPLEX) { 8231 *reventsp = POLLNVAL; 8232 return (EINVAL); 8233 } 8234 if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) && 8235 (sd_flags & STRDERR)) || 8236 ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) && 8237 (sd_flags & STWRERR))) { 8238 if (!(events & POLLNOERR)) { 8239 *reventsp = POLLERR; 8240 return (0); 8241 } 8242 } 8243 } 8244 if (sd_flags & STRHUP) { 8245 retevents |= POLLHUP; 8246 } else if (events & (POLLWRNORM | POLLWRBAND)) { 8247 queue_t *tq; 8248 queue_t *qp = stp->sd_wrq; 8249 8250 claimstr(qp); 8251 /* Find next module forward that has a service procedure */ 8252 tq = qp->q_next->q_nfsrv; 8253 ASSERT(tq != NULL); 8254 8255 if (polllock(&stp->sd_pollist, QLOCK(tq)) != 0) { 8256 releasestr(qp); 8257 *reventsp = POLLNVAL; 8258 return (0); 8259 } 8260 if (events & POLLWRNORM) { 8261 queue_t *sqp; 8262 8263 if (tq->q_flag & QFULL) 8264 /* ensure backq svc procedure runs */ 8265 tq->q_flag |= QWANTW; 8266 else if ((sqp = stp->sd_struiowrq) != NULL) { 8267 /* Check sync stream barrier write q */ 8268 mutex_exit(QLOCK(tq)); 8269 if (polllock(&stp->sd_pollist, 8270 QLOCK(sqp)) != 0) { 8271 releasestr(qp); 8272 *reventsp = POLLNVAL; 8273 return (0); 8274 } 8275 if (sqp->q_flag & QFULL) 8276 /* ensure pollwakeup() is done */ 8277 sqp->q_flag |= QWANTWSYNC; 8278 else 8279 retevents |= POLLOUT; 8280 /* More write events to process ??? */ 8281 if (! (events & POLLWRBAND)) { 8282 mutex_exit(QLOCK(sqp)); 8283 releasestr(qp); 8284 goto chkrd; 8285 } 8286 mutex_exit(QLOCK(sqp)); 8287 if (polllock(&stp->sd_pollist, 8288 QLOCK(tq)) != 0) { 8289 releasestr(qp); 8290 *reventsp = POLLNVAL; 8291 return (0); 8292 } 8293 } else 8294 retevents |= POLLOUT; 8295 } 8296 if (events & POLLWRBAND) { 8297 qbp = tq->q_bandp; 8298 if (qbp) { 8299 while (qbp) { 8300 if (qbp->qb_flag & QB_FULL) 8301 qbp->qb_flag |= QB_WANTW; 8302 else 8303 retevents |= POLLWRBAND; 8304 qbp = qbp->qb_next; 8305 } 8306 } else { 8307 retevents |= POLLWRBAND; 8308 } 8309 } 8310 mutex_exit(QLOCK(tq)); 8311 releasestr(qp); 8312 } 8313 chkrd: 8314 if (sd_flags & STRPRI) { 8315 retevents |= (events & POLLPRI); 8316 } else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) { 8317 queue_t *qp = _RD(stp->sd_wrq); 8318 int normevents = (events & (POLLIN | POLLRDNORM)); 8319 8320 /* 8321 * Note: Need to do polllock() here since ps_lock may be 8322 * held. See bug 4191544. 8323 */ 8324 if (polllock(&stp->sd_pollist, &stp->sd_lock) != 0) { 8325 *reventsp = POLLNVAL; 8326 return (0); 8327 } 8328 headlocked = 1; 8329 mp = qp->q_first; 8330 while (mp) { 8331 /* 8332 * For POLLRDDATA we scan b_cont and b_next until we 8333 * find an M_DATA. 8334 */ 8335 if ((events & POLLRDDATA) && 8336 mp->b_datap->db_type != M_DATA) { 8337 mblk_t *nmp = mp->b_cont; 8338 8339 while (nmp != NULL && 8340 nmp->b_datap->db_type != M_DATA) 8341 nmp = nmp->b_cont; 8342 if (nmp == NULL) { 8343 mp = mp->b_next; 8344 continue; 8345 } 8346 } 8347 if (mp->b_band == 0) 8348 retevents |= normevents; 8349 else 8350 retevents |= (events & (POLLIN | POLLRDBAND)); 8351 break; 8352 } 8353 if (!(retevents & normevents) && (stp->sd_wakeq & RSLEEP)) { 8354 /* 8355 * Sync stream barrier read queue has data. 8356 */ 8357 retevents |= normevents; 8358 } 8359 /* Treat eof as normal data */ 8360 if (sd_flags & STREOF) 8361 retevents |= normevents; 8362 } 8363 8364 /* 8365 * Pass back a pollhead if no events are pending or if edge-triggering 8366 * has been configured on this resource. 8367 */ 8368 if ((retevents == 0 && !anyyet) || (events & POLLET)) { 8369 *phpp = &stp->sd_pollist; 8370 if (headlocked == 0) { 8371 if (polllock(&stp->sd_pollist, &stp->sd_lock) != 0) { 8372 *reventsp = POLLNVAL; 8373 return (0); 8374 } 8375 headlocked = 1; 8376 } 8377 stp->sd_rput_opt |= SR_POLLIN; 8378 } 8379 8380 *reventsp = (short)retevents; 8381 if (headlocked) 8382 mutex_exit(&stp->sd_lock); 8383 return (0); 8384 } 8385 8386 /* 8387 * The purpose of putback() is to assure sleeping polls/reads 8388 * are awakened when there are no new messages arriving at the, 8389 * stream head, and a message is placed back on the read queue. 8390 * 8391 * sd_lock must be held when messages are placed back on stream 8392 * head. (getq() holds sd_lock when it removes messages from 8393 * the queue) 8394 */ 8395 8396 static void 8397 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band) 8398 { 8399 mblk_t *qfirst; 8400 ASSERT(MUTEX_HELD(&stp->sd_lock)); 8401 8402 /* 8403 * As a result of lock-step ordering around q_lock and sd_lock, 8404 * it's possible for function calls like putnext() and 8405 * canputnext() to get an inaccurate picture of how much 8406 * data is really being processed at the stream head. 8407 * We only consolidate with existing messages on the queue 8408 * if the length of the message we want to put back is smaller 8409 * than the queue hiwater mark. 8410 */ 8411 if ((stp->sd_rput_opt & SR_CONSOL_DATA) && 8412 (DB_TYPE(bp) == M_DATA) && ((qfirst = q->q_first) != NULL) && 8413 (DB_TYPE(qfirst) == M_DATA) && 8414 ((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0) && 8415 ((bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT)) == 0) && 8416 (mp_cont_len(bp, NULL) < q->q_hiwat)) { 8417 /* 8418 * We use the same logic as defined in strrput() 8419 * but in reverse as we are putting back onto the 8420 * queue and want to retain byte ordering. 8421 * Consolidate M_DATA messages with M_DATA ONLY. 8422 * strrput() allows the consolidation of M_DATA onto 8423 * M_PROTO | M_PCPROTO but not the other way round. 8424 * 8425 * The consolidation does not take place if the message 8426 * we are returning to the queue is marked with either 8427 * of the marks or the delim flag or if q_first 8428 * is marked with MSGMARK. The MSGMARK check is needed to 8429 * handle the odd semantics of MSGMARK where essentially 8430 * the whole message is to be treated as marked. 8431 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first 8432 * to the front of the b_cont chain. 8433 */ 8434 rmvq_noenab(q, qfirst); 8435 8436 /* 8437 * The first message in the b_cont list 8438 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 8439 * We need to handle the case where we 8440 * are appending: 8441 * 8442 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 8443 * 2) a MSGMARKNEXT to a plain message. 8444 * 3) a MSGNOTMARKNEXT to a plain message 8445 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 8446 * message. 8447 * 8448 * Thus we never append a MSGMARKNEXT or 8449 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 8450 */ 8451 if (qfirst->b_flag & MSGMARKNEXT) { 8452 bp->b_flag |= MSGMARKNEXT; 8453 bp->b_flag &= ~MSGNOTMARKNEXT; 8454 qfirst->b_flag &= ~MSGMARKNEXT; 8455 } else if (qfirst->b_flag & MSGNOTMARKNEXT) { 8456 bp->b_flag |= MSGNOTMARKNEXT; 8457 qfirst->b_flag &= ~MSGNOTMARKNEXT; 8458 } 8459 8460 linkb(bp, qfirst); 8461 } 8462 (void) putbq(q, bp); 8463 8464 /* 8465 * A message may have come in when the sd_lock was dropped in the 8466 * calling routine. If this is the case and STR*ATMARK info was 8467 * received, need to move that from the stream head to the q_last 8468 * so that SIOCATMARK can return the proper value. 8469 */ 8470 if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) { 8471 unsigned short *flagp = &q->q_last->b_flag; 8472 uint_t b_flag = (uint_t)*flagp; 8473 8474 if (stp->sd_flag & STRATMARK) { 8475 b_flag &= ~MSGNOTMARKNEXT; 8476 b_flag |= MSGMARKNEXT; 8477 stp->sd_flag &= ~STRATMARK; 8478 } else { 8479 b_flag &= ~MSGMARKNEXT; 8480 b_flag |= MSGNOTMARKNEXT; 8481 stp->sd_flag &= ~STRNOTATMARK; 8482 } 8483 *flagp = (unsigned short) b_flag; 8484 } 8485 8486 #ifdef DEBUG 8487 /* 8488 * Make sure that the flags are not messed up. 8489 */ 8490 { 8491 mblk_t *mp; 8492 mp = q->q_last; 8493 while (mp != NULL) { 8494 ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 8495 (MSGMARKNEXT|MSGNOTMARKNEXT)); 8496 mp = mp->b_cont; 8497 } 8498 } 8499 #endif 8500 if (q->q_first == bp) { 8501 short pollevents; 8502 8503 if (stp->sd_flag & RSLEEP) { 8504 stp->sd_flag &= ~RSLEEP; 8505 cv_broadcast(&q->q_wait); 8506 } 8507 if (stp->sd_flag & STRPRI) { 8508 pollevents = POLLPRI; 8509 } else { 8510 if (band == 0) { 8511 if (!(stp->sd_rput_opt & SR_POLLIN)) 8512 return; 8513 stp->sd_rput_opt &= ~SR_POLLIN; 8514 pollevents = POLLIN | POLLRDNORM; 8515 } else { 8516 pollevents = POLLIN | POLLRDBAND; 8517 } 8518 } 8519 mutex_exit(&stp->sd_lock); 8520 pollwakeup(&stp->sd_pollist, pollevents); 8521 mutex_enter(&stp->sd_lock); 8522 } 8523 } 8524 8525 /* 8526 * Return the held vnode attached to the stream head of a 8527 * given queue 8528 * It is the responsibility of the calling routine to ensure 8529 * that the queue does not go away (e.g. pop). 8530 */ 8531 vnode_t * 8532 strq2vp(queue_t *qp) 8533 { 8534 vnode_t *vp; 8535 vp = STREAM(qp)->sd_vnode; 8536 ASSERT(vp != NULL); 8537 VN_HOLD(vp); 8538 return (vp); 8539 } 8540 8541 /* 8542 * return the stream head write queue for the given vp 8543 * It is the responsibility of the calling routine to ensure 8544 * that the stream or vnode do not close. 8545 */ 8546 queue_t * 8547 strvp2wq(vnode_t *vp) 8548 { 8549 ASSERT(vp->v_stream != NULL); 8550 return (vp->v_stream->sd_wrq); 8551 } 8552 8553 /* 8554 * pollwakeup stream head 8555 * It is the responsibility of the calling routine to ensure 8556 * that the stream or vnode do not close. 8557 */ 8558 void 8559 strpollwakeup(vnode_t *vp, short event) 8560 { 8561 ASSERT(vp->v_stream); 8562 pollwakeup(&vp->v_stream->sd_pollist, event); 8563 } 8564 8565 /* 8566 * Mate the stream heads of two vnodes together. If the two vnodes are the 8567 * same, we just make the write-side point at the read-side -- otherwise, 8568 * we do a full mate. Only works on vnodes associated with streams that are 8569 * still being built and thus have only a stream head. 8570 */ 8571 void 8572 strmate(vnode_t *vp1, vnode_t *vp2) 8573 { 8574 queue_t *wrq1 = strvp2wq(vp1); 8575 queue_t *wrq2 = strvp2wq(vp2); 8576 8577 /* 8578 * Verify that there are no modules on the stream yet. We also 8579 * rely on the stream head always having a service procedure to 8580 * avoid tweaking q_nfsrv. 8581 */ 8582 ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL); 8583 ASSERT(wrq1->q_qinfo->qi_srvp != NULL); 8584 ASSERT(wrq2->q_qinfo->qi_srvp != NULL); 8585 8586 /* 8587 * If the queues are the same, just twist; otherwise do a full mate. 8588 */ 8589 if (wrq1 == wrq2) { 8590 wrq1->q_next = _RD(wrq1); 8591 } else { 8592 wrq1->q_next = _RD(wrq2); 8593 wrq2->q_next = _RD(wrq1); 8594 STREAM(wrq1)->sd_mate = STREAM(wrq2); 8595 STREAM(wrq1)->sd_flag |= STRMATE; 8596 STREAM(wrq2)->sd_mate = STREAM(wrq1); 8597 STREAM(wrq2)->sd_flag |= STRMATE; 8598 } 8599 } 8600 8601 /* 8602 * XXX will go away when console is correctly fixed. 8603 * Clean up the console PIDS, from previous I_SETSIG, 8604 * called only for cnopen which never calls strclean(). 8605 */ 8606 void 8607 str_cn_clean(struct vnode *vp) 8608 { 8609 strsig_t *ssp, *pssp, *tssp; 8610 struct stdata *stp; 8611 struct pid *pidp; 8612 int update = 0; 8613 8614 ASSERT(vp->v_stream); 8615 stp = vp->v_stream; 8616 pssp = NULL; 8617 mutex_enter(&stp->sd_lock); 8618 ssp = stp->sd_siglist; 8619 while (ssp) { 8620 mutex_enter(&pidlock); 8621 pidp = ssp->ss_pidp; 8622 /* 8623 * Get rid of PID if the proc is gone. 8624 */ 8625 if (pidp->pid_prinactive) { 8626 tssp = ssp->ss_next; 8627 if (pssp) 8628 pssp->ss_next = tssp; 8629 else 8630 stp->sd_siglist = tssp; 8631 ASSERT(pidp->pid_ref <= 1); 8632 PID_RELE(ssp->ss_pidp); 8633 mutex_exit(&pidlock); 8634 kmem_free(ssp, sizeof (strsig_t)); 8635 update = 1; 8636 ssp = tssp; 8637 continue; 8638 } else 8639 mutex_exit(&pidlock); 8640 pssp = ssp; 8641 ssp = ssp->ss_next; 8642 } 8643 if (update) { 8644 stp->sd_sigflags = 0; 8645 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 8646 stp->sd_sigflags |= ssp->ss_events; 8647 } 8648 mutex_exit(&stp->sd_lock); 8649 } 8650 8651 /* 8652 * Return B_TRUE if there is data in the message, B_FALSE otherwise. 8653 */ 8654 static boolean_t 8655 msghasdata(mblk_t *bp) 8656 { 8657 for (; bp; bp = bp->b_cont) 8658 if (bp->b_datap->db_type == M_DATA) { 8659 ASSERT(bp->b_wptr >= bp->b_rptr); 8660 if (bp->b_wptr > bp->b_rptr) 8661 return (B_TRUE); 8662 } 8663 return (B_FALSE); 8664 }