1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 * Copyright (c) 2017 OmniTI Computer Consulting, Inc. All rights reserved. 26 * Copyright (c) 2016 by Delphix. All rights reserved. 27 * Copyright (c) 2019 Joyent, Inc. All rights reserved. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/suntpi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 #include <sys/taskq.h> 52 53 #include <sys/systm.h> 54 #include <sys/param.h> 55 #include <sys/kmem.h> 56 #include <sys/sdt.h> 57 #include <sys/socket.h> 58 #include <sys/vtrace.h> 59 #include <sys/isa_defs.h> 60 #include <sys/mac.h> 61 #include <net/if.h> 62 #include <net/if_arp.h> 63 #include <net/route.h> 64 #include <sys/sockio.h> 65 #include <netinet/in.h> 66 #include <net/if_dl.h> 67 68 #include <inet/common.h> 69 #include <inet/mi.h> 70 #include <inet/mib2.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/snmpcom.h> 74 #include <inet/optcom.h> 75 #include <inet/kstatcom.h> 76 77 #include <netinet/igmp_var.h> 78 #include <netinet/ip6.h> 79 #include <netinet/icmp6.h> 80 #include <netinet/sctp.h> 81 82 #include <inet/ip.h> 83 #include <inet/ip_impl.h> 84 #include <inet/ip6.h> 85 #include <inet/ip6_asp.h> 86 #include <inet/tcp.h> 87 #include <inet/tcp_impl.h> 88 #include <inet/ip_multi.h> 89 #include <inet/ip_if.h> 90 #include <inet/ip_ire.h> 91 #include <inet/ip_ftable.h> 92 #include <inet/ip_rts.h> 93 #include <inet/ip_ndp.h> 94 #include <inet/ip_listutils.h> 95 #include <netinet/igmp.h> 96 #include <netinet/ip_mroute.h> 97 #include <inet/ipp_common.h> 98 #include <inet/cc.h> 99 100 #include <net/pfkeyv2.h> 101 #include <inet/sadb.h> 102 #include <inet/ipsec_impl.h> 103 #include <inet/iptun/iptun_impl.h> 104 #include <inet/ipdrop.h> 105 #include <inet/ip_netinfo.h> 106 #include <inet/ilb_ip.h> 107 108 #include <sys/ethernet.h> 109 #include <net/if_types.h> 110 #include <sys/cpuvar.h> 111 112 #include <ipp/ipp.h> 113 #include <ipp/ipp_impl.h> 114 #include <ipp/ipgpc/ipgpc.h> 115 116 #include <sys/pattr.h> 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <inet/rawip_impl.h> 122 #include <inet/rts_impl.h> 123 124 #include <sys/tsol/label.h> 125 #include <sys/tsol/tnet.h> 126 127 #include <sys/squeue_impl.h> 128 #include <inet/ip_arp.h> 129 130 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 131 132 /* 133 * Values for squeue switch: 134 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 135 * IP_SQUEUE_ENTER: SQ_PROCESS 136 * IP_SQUEUE_FILL: SQ_FILL 137 */ 138 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 139 140 int ip_squeue_flag; 141 142 /* 143 * Setable in /etc/system 144 */ 145 int ip_poll_normal_ms = 100; 146 int ip_poll_normal_ticks = 0; 147 int ip_modclose_ackwait_ms = 3000; 148 149 /* 150 * It would be nice to have these present only in DEBUG systems, but the 151 * current design of the global symbol checking logic requires them to be 152 * unconditionally present. 153 */ 154 uint_t ip_thread_data; /* TSD key for debug support */ 155 krwlock_t ip_thread_rwlock; 156 list_t ip_thread_list; 157 158 /* 159 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 160 */ 161 162 struct listptr_s { 163 mblk_t *lp_head; /* pointer to the head of the list */ 164 mblk_t *lp_tail; /* pointer to the tail of the list */ 165 }; 166 167 typedef struct listptr_s listptr_t; 168 169 /* 170 * This is used by ip_snmp_get_mib2_ip_route_media and 171 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 172 */ 173 typedef struct iproutedata_s { 174 uint_t ird_idx; 175 uint_t ird_flags; /* see below */ 176 listptr_t ird_route; /* ipRouteEntryTable */ 177 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 178 listptr_t ird_attrs; /* ipRouteAttributeTable */ 179 } iproutedata_t; 180 181 /* Include ire_testhidden and IRE_IF_CLONE routes */ 182 #define IRD_REPORT_ALL 0x01 183 184 /* 185 * Cluster specific hooks. These should be NULL when booted as a non-cluster 186 */ 187 188 /* 189 * Hook functions to enable cluster networking 190 * On non-clustered systems these vectors must always be NULL. 191 * 192 * Hook function to Check ip specified ip address is a shared ip address 193 * in the cluster 194 * 195 */ 196 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 197 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 198 199 /* 200 * Hook function to generate cluster wide ip fragment identifier 201 */ 202 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 203 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 204 void *args) = NULL; 205 206 /* 207 * Hook function to generate cluster wide SPI. 208 */ 209 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 210 void *) = NULL; 211 212 /* 213 * Hook function to verify if the SPI is already utlized. 214 */ 215 216 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 217 218 /* 219 * Hook function to delete the SPI from the cluster wide repository. 220 */ 221 222 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 223 224 /* 225 * Hook function to inform the cluster when packet received on an IDLE SA 226 */ 227 228 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 229 in6_addr_t, in6_addr_t, void *) = NULL; 230 231 /* 232 * Synchronization notes: 233 * 234 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 235 * MT level protection given by STREAMS. IP uses a combination of its own 236 * internal serialization mechanism and standard Solaris locking techniques. 237 * The internal serialization is per phyint. This is used to serialize 238 * plumbing operations, IPMP operations, most set ioctls, etc. 239 * 240 * Plumbing is a long sequence of operations involving message 241 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 242 * involved in plumbing operations. A natural model is to serialize these 243 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 244 * parallel without any interference. But various set ioctls on hme0 are best 245 * serialized, along with IPMP operations and processing of DLPI control 246 * messages received from drivers on a per phyint basis. This serialization is 247 * provided by the ipsq_t and primitives operating on this. Details can 248 * be found in ip_if.c above the core primitives operating on ipsq_t. 249 * 250 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 251 * Simiarly lookup of an ire by a thread also returns a refheld ire. 252 * In addition ipif's and ill's referenced by the ire are also indirectly 253 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 254 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 255 * address of an ipif has to go through the ipsq_t. This ensures that only 256 * one such exclusive operation proceeds at any time on the ipif. It then 257 * waits for all refcnts 258 * associated with this ipif to come down to zero. The address is changed 259 * only after the ipif has been quiesced. Then the ipif is brought up again. 260 * More details are described above the comment in ip_sioctl_flags. 261 * 262 * Packet processing is based mostly on IREs and are fully multi-threaded 263 * using standard Solaris MT techniques. 264 * 265 * There are explicit locks in IP to handle: 266 * - The ip_g_head list maintained by mi_open_link() and friends. 267 * 268 * - The reassembly data structures (one lock per hash bucket) 269 * 270 * - conn_lock is meant to protect conn_t fields. The fields actually 271 * protected by conn_lock are documented in the conn_t definition. 272 * 273 * - ire_lock to protect some of the fields of the ire, IRE tables 274 * (one lock per hash bucket). Refer to ip_ire.c for details. 275 * 276 * - ndp_g_lock and ncec_lock for protecting NCEs. 277 * 278 * - ill_lock protects fields of the ill and ipif. Details in ip.h 279 * 280 * - ill_g_lock: This is a global reader/writer lock. Protects the following 281 * * The AVL tree based global multi list of all ills. 282 * * The linked list of all ipifs of an ill 283 * * The <ipsq-xop> mapping 284 * * <ill-phyint> association 285 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 286 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 287 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 288 * writer for the actual duration of the insertion/deletion/change. 289 * 290 * - ill_lock: This is a per ill mutex. 291 * It protects some members of the ill_t struct; see ip.h for details. 292 * It also protects the <ill-phyint> assoc. 293 * It also protects the list of ipifs hanging off the ill. 294 * 295 * - ipsq_lock: This is a per ipsq_t mutex lock. 296 * This protects some members of the ipsq_t struct; see ip.h for details. 297 * It also protects the <ipsq-ipxop> mapping 298 * 299 * - ipx_lock: This is a per ipxop_t mutex lock. 300 * This protects some members of the ipxop_t struct; see ip.h for details. 301 * 302 * - phyint_lock: This is a per phyint mutex lock. Protects just the 303 * phyint_flags 304 * 305 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 306 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 307 * uniqueness check also done atomically. 308 * 309 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 310 * group list linked by ill_usesrc_grp_next. It also protects the 311 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 312 * group is being added or deleted. This lock is taken as a reader when 313 * walking the list/group(eg: to get the number of members in a usesrc group). 314 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 315 * field is changing state i.e from NULL to non-NULL or vice-versa. For 316 * example, it is not necessary to take this lock in the initial portion 317 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 318 * operations are executed exclusively and that ensures that the "usesrc 319 * group state" cannot change. The "usesrc group state" change can happen 320 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 321 * 322 * Changing <ill-phyint>, <ipsq-xop> assocications: 323 * 324 * To change the <ill-phyint> association, the ill_g_lock must be held 325 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 326 * must be held. 327 * 328 * To change the <ipsq-xop> association, the ill_g_lock must be held as 329 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 330 * This is only done when ills are added or removed from IPMP groups. 331 * 332 * To add or delete an ipif from the list of ipifs hanging off the ill, 333 * ill_g_lock (writer) and ill_lock must be held and the thread must be 334 * a writer on the associated ipsq. 335 * 336 * To add or delete an ill to the system, the ill_g_lock must be held as 337 * writer and the thread must be a writer on the associated ipsq. 338 * 339 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 340 * must be a writer on the associated ipsq. 341 * 342 * Lock hierarchy 343 * 344 * Some lock hierarchy scenarios are listed below. 345 * 346 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 347 * ill_g_lock -> ill_lock(s) -> phyint_lock 348 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 349 * ill_g_lock -> ip_addr_avail_lock 350 * conn_lock -> irb_lock -> ill_lock -> ire_lock 351 * ill_g_lock -> ip_g_nd_lock 352 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 353 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 354 * arl_lock -> ill_lock 355 * ips_ire_dep_lock -> irb_lock 356 * 357 * When more than 1 ill lock is needed to be held, all ill lock addresses 358 * are sorted on address and locked starting from highest addressed lock 359 * downward. 360 * 361 * Multicast scenarios 362 * ips_ill_g_lock -> ill_mcast_lock 363 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 364 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 365 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 366 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 367 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 368 * 369 * IPsec scenarios 370 * 371 * ipsa_lock -> ill_g_lock -> ill_lock 372 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 373 * 374 * Trusted Solaris scenarios 375 * 376 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 377 * igsa_lock -> gcdb_lock 378 * gcgrp_rwlock -> ire_lock 379 * gcgrp_rwlock -> gcdb_lock 380 * 381 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 382 * 383 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 384 * sq_lock -> conn_lock -> QLOCK(q) 385 * ill_lock -> ft_lock -> fe_lock 386 * 387 * Routing/forwarding table locking notes: 388 * 389 * Lock acquisition order: Radix tree lock, irb_lock. 390 * Requirements: 391 * i. Walker must not hold any locks during the walker callback. 392 * ii Walker must not see a truncated tree during the walk because of any node 393 * deletion. 394 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 395 * in many places in the code to walk the irb list. Thus even if all the 396 * ires in a bucket have been deleted, we still can't free the radix node 397 * until the ires have actually been inactive'd (freed). 398 * 399 * Tree traversal - Need to hold the global tree lock in read mode. 400 * Before dropping the global tree lock, need to either increment the ire_refcnt 401 * to ensure that the radix node can't be deleted. 402 * 403 * Tree add - Need to hold the global tree lock in write mode to add a 404 * radix node. To prevent the node from being deleted, increment the 405 * irb_refcnt, after the node is added to the tree. The ire itself is 406 * added later while holding the irb_lock, but not the tree lock. 407 * 408 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 409 * All associated ires must be inactive (i.e. freed), and irb_refcnt 410 * must be zero. 411 * 412 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 413 * global tree lock (read mode) for traversal. 414 * 415 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 416 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 417 * 418 * IPsec notes : 419 * 420 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 421 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 422 * ip_xmit_attr_t has the 423 * information used by the IPsec code for applying the right level of 424 * protection. The information initialized by IP in the ip_xmit_attr_t 425 * is determined by the per-socket policy or global policy in the system. 426 * For inbound datagrams, the ip_recv_attr_t 427 * starts out with nothing in it. It gets filled 428 * with the right information if it goes through the AH/ESP code, which 429 * happens if the incoming packet is secure. The information initialized 430 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 431 * the policy requirements needed by per-socket policy or global policy 432 * is met or not. 433 * 434 * For fully connected sockets i.e dst, src [addr, port] is known, 435 * conn_policy_cached is set indicating that policy has been cached. 436 * conn_in_enforce_policy may or may not be set depending on whether 437 * there is a global policy match or per-socket policy match. 438 * Policy inheriting happpens in ip_policy_set once the destination is known. 439 * Once the right policy is set on the conn_t, policy cannot change for 440 * this socket. This makes life simpler for TCP (UDP ?) where 441 * re-transmissions go out with the same policy. For symmetry, policy 442 * is cached for fully connected UDP sockets also. Thus if policy is cached, 443 * it also implies that policy is latched i.e policy cannot change 444 * on these sockets. As we have the right policy on the conn, we don't 445 * have to lookup global policy for every outbound and inbound datagram 446 * and thus serving as an optimization. Note that a global policy change 447 * does not affect fully connected sockets if they have policy. If fully 448 * connected sockets did not have any policy associated with it, global 449 * policy change may affect them. 450 * 451 * IP Flow control notes: 452 * --------------------- 453 * Non-TCP streams are flow controlled by IP. The way this is accomplished 454 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 455 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 456 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 457 * functions. 458 * 459 * Per Tx ring udp flow control: 460 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 461 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 462 * 463 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 464 * To achieve best performance, outgoing traffic need to be fanned out among 465 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 466 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 467 * the address of connp as fanout hint to mac_tx(). Under flow controlled 468 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 469 * cookie points to a specific Tx ring that is blocked. The cookie is used to 470 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 471 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 472 * connp's. The drain list is not a single list but a configurable number of 473 * lists. 474 * 475 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 476 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 477 * which is equal to 128. This array in turn contains a pointer to idl_t[], 478 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 479 * list will point to the list of connp's that are flow controlled. 480 * 481 * --------------- ------- ------- ------- 482 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 483 * | --------------- ------- ------- ------- 484 * | --------------- ------- ------- ------- 485 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 486 * ---------------- | --------------- ------- ------- ------- 487 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 488 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 489 * | --------------- ------- ------- ------- 490 * . . . . . 491 * | --------------- ------- ------- ------- 492 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 493 * --------------- ------- ------- ------- 494 * --------------- ------- ------- ------- 495 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 496 * | --------------- ------- ------- ------- 497 * | --------------- ------- ------- ------- 498 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 499 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 500 * ---------------- | . . . . 501 * | --------------- ------- ------- ------- 502 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 503 * --------------- ------- ------- ------- 504 * ..... 505 * ---------------- 506 * |idl_tx_list[n]|-> ... 507 * ---------------- 508 * 509 * When mac_tx() returns a cookie, the cookie is hashed into an index into 510 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 511 * to insert the conn onto. conn_drain_insert() asserts flow control for the 512 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 513 * Further, conn_blocked is set to indicate that the conn is blocked. 514 * 515 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 516 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 517 * is again hashed to locate the appropriate idl_tx_list, which is then 518 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 519 * the drain list and calls conn_drain_remove() to clear flow control (via 520 * calling su_txq_full() or clearing QFULL), and remove the conn from the 521 * drain list. 522 * 523 * Note that the drain list is not a single list but a (configurable) array of 524 * lists (8 elements by default). Synchronization between drain insertion and 525 * flow control wakeup is handled by using idl_txl->txl_lock, and only 526 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 527 * 528 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 529 * On the send side, if the packet cannot be sent down to the driver by IP 530 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 531 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 532 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 533 * control has been relieved, the blocked conns in the 0'th drain list are 534 * drained as in the non-STREAMS case. 535 * 536 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 537 * is done when the conn is inserted into the drain list (conn_drain_insert()) 538 * and cleared when the conn is removed from the it (conn_drain_remove()). 539 * 540 * IPQOS notes: 541 * 542 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 543 * and IPQoS modules. IPPF includes hooks in IP at different control points 544 * (callout positions) which direct packets to IPQoS modules for policy 545 * processing. Policies, if present, are global. 546 * 547 * The callout positions are located in the following paths: 548 * o local_in (packets destined for this host) 549 * o local_out (packets orginating from this host ) 550 * o fwd_in (packets forwarded by this m/c - inbound) 551 * o fwd_out (packets forwarded by this m/c - outbound) 552 * Hooks at these callout points can be enabled/disabled using the ndd variable 553 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 554 * By default all the callout positions are enabled. 555 * 556 * Outbound (local_out) 557 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 558 * 559 * Inbound (local_in) 560 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 561 * 562 * Forwarding (in and out) 563 * Hooks are placed in ire_recv_forward_v4/v6. 564 * 565 * IP Policy Framework processing (IPPF processing) 566 * Policy processing for a packet is initiated by ip_process, which ascertains 567 * that the classifier (ipgpc) is loaded and configured, failing which the 568 * packet resumes normal processing in IP. If the clasifier is present, the 569 * packet is acted upon by one or more IPQoS modules (action instances), per 570 * filters configured in ipgpc and resumes normal IP processing thereafter. 571 * An action instance can drop a packet in course of its processing. 572 * 573 * Zones notes: 574 * 575 * The partitioning rules for networking are as follows: 576 * 1) Packets coming from a zone must have a source address belonging to that 577 * zone. 578 * 2) Packets coming from a zone can only be sent on a physical interface on 579 * which the zone has an IP address. 580 * 3) Between two zones on the same machine, packet delivery is only allowed if 581 * there's a matching route for the destination and zone in the forwarding 582 * table. 583 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 584 * different zones can bind to the same port with the wildcard address 585 * (INADDR_ANY). 586 * 587 * The granularity of interface partitioning is at the logical interface level. 588 * Therefore, every zone has its own IP addresses, and incoming packets can be 589 * attributed to a zone unambiguously. A logical interface is placed into a zone 590 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 591 * structure. Rule (1) is implemented by modifying the source address selection 592 * algorithm so that the list of eligible addresses is filtered based on the 593 * sending process zone. 594 * 595 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 596 * across all zones, depending on their type. Here is the break-up: 597 * 598 * IRE type Shared/exclusive 599 * -------- ---------------- 600 * IRE_BROADCAST Exclusive 601 * IRE_DEFAULT (default routes) Shared (*) 602 * IRE_LOCAL Exclusive (x) 603 * IRE_LOOPBACK Exclusive 604 * IRE_PREFIX (net routes) Shared (*) 605 * IRE_IF_NORESOLVER (interface routes) Exclusive 606 * IRE_IF_RESOLVER (interface routes) Exclusive 607 * IRE_IF_CLONE (interface routes) Exclusive 608 * IRE_HOST (host routes) Shared (*) 609 * 610 * (*) A zone can only use a default or off-subnet route if the gateway is 611 * directly reachable from the zone, that is, if the gateway's address matches 612 * one of the zone's logical interfaces. 613 * 614 * (x) IRE_LOCAL are handled a bit differently. 615 * When ip_restrict_interzone_loopback is set (the default), 616 * ire_route_recursive restricts loopback using an IRE_LOCAL 617 * between zone to the case when L2 would have conceptually looped the packet 618 * back, i.e. the loopback which is required since neither Ethernet drivers 619 * nor Ethernet hardware loops them back. This is the case when the normal 620 * routes (ignoring IREs with different zoneids) would send out the packet on 621 * the same ill as the ill with which is IRE_LOCAL is associated. 622 * 623 * Multiple zones can share a common broadcast address; typically all zones 624 * share the 255.255.255.255 address. Incoming as well as locally originated 625 * broadcast packets must be dispatched to all the zones on the broadcast 626 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 627 * since some zones may not be on the 10.16.72/24 network. To handle this, each 628 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 629 * sent to every zone that has an IRE_BROADCAST entry for the destination 630 * address on the input ill, see ip_input_broadcast(). 631 * 632 * Applications in different zones can join the same multicast group address. 633 * The same logic applies for multicast as for broadcast. ip_input_multicast 634 * dispatches packets to all zones that have members on the physical interface. 635 */ 636 637 /* 638 * Squeue Fanout flags: 639 * 0: No fanout. 640 * 1: Fanout across all squeues 641 */ 642 boolean_t ip_squeue_fanout = 0; 643 644 /* 645 * Maximum dups allowed per packet. 646 */ 647 uint_t ip_max_frag_dups = 10; 648 649 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 650 cred_t *credp, boolean_t isv6); 651 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 652 653 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 654 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 655 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 656 ip_recv_attr_t *); 657 static void icmp_options_update(ipha_t *); 658 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 659 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 660 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 661 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 662 ip_recv_attr_t *); 663 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 664 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 665 ip_recv_attr_t *); 666 667 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 668 char *ip_dot_addr(ipaddr_t, char *); 669 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 670 static char *ip_dot_saddr(uchar_t *, char *); 671 static int ip_lrput(queue_t *, mblk_t *); 672 ipaddr_t ip_net_mask(ipaddr_t); 673 char *ip_nv_lookup(nv_t *, int); 674 int ip_rput(queue_t *, mblk_t *); 675 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 676 void *dummy_arg); 677 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t); 678 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 679 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t); 680 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 681 ip_stack_t *, boolean_t); 682 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *, 683 boolean_t); 684 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 689 ip_stack_t *ipst, boolean_t); 690 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 691 ip_stack_t *ipst, boolean_t); 692 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 703 ip_stack_t *ipst); 704 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 705 ip_stack_t *ipst); 706 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 707 ip_stack_t *ipst); 708 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 709 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 710 static void ip_snmp_get2_v4_media(ncec_t *, void *); 711 static void ip_snmp_get2_v6_media(ncec_t *, void *); 712 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 713 714 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 715 mblk_t *); 716 717 static void conn_drain_init(ip_stack_t *); 718 static void conn_drain_fini(ip_stack_t *); 719 static void conn_drain(conn_t *connp, boolean_t closing); 720 721 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 722 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 723 724 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 725 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 726 static void ip_stack_fini(netstackid_t stackid, void *arg); 727 728 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 729 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 730 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 731 const in6_addr_t *); 732 733 static int ip_squeue_switch(int); 734 735 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 736 static void ip_kstat_fini(netstackid_t, kstat_t *); 737 static int ip_kstat_update(kstat_t *kp, int rw); 738 static void *icmp_kstat_init(netstackid_t); 739 static void icmp_kstat_fini(netstackid_t, kstat_t *); 740 static int icmp_kstat_update(kstat_t *kp, int rw); 741 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 742 static void ip_kstat2_fini(netstackid_t, kstat_t *); 743 744 static void ipobs_init(ip_stack_t *); 745 static void ipobs_fini(ip_stack_t *); 746 747 static int ip_tp_cpu_update(cpu_setup_t, int, void *); 748 749 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 750 751 static long ip_rput_pullups; 752 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 753 754 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 755 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 756 757 int ip_debug; 758 759 /* 760 * Multirouting/CGTP stuff 761 */ 762 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 763 764 /* 765 * IP tunables related declarations. Definitions are in ip_tunables.c 766 */ 767 extern mod_prop_info_t ip_propinfo_tbl[]; 768 extern int ip_propinfo_count; 769 770 /* 771 * Table of IP ioctls encoding the various properties of the ioctl and 772 * indexed based on the last byte of the ioctl command. Occasionally there 773 * is a clash, and there is more than 1 ioctl with the same last byte. 774 * In such a case 1 ioctl is encoded in the ndx table and the remaining 775 * ioctls are encoded in the misc table. An entry in the ndx table is 776 * retrieved by indexing on the last byte of the ioctl command and comparing 777 * the ioctl command with the value in the ndx table. In the event of a 778 * mismatch the misc table is then searched sequentially for the desired 779 * ioctl command. 780 * 781 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 782 */ 783 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 784 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 785 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 786 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 789 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 790 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 791 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 792 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 793 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 794 795 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 796 MISC_CMD, ip_siocaddrt, NULL }, 797 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 798 MISC_CMD, ip_siocdelrt, NULL }, 799 800 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 801 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 802 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 803 IF_CMD, ip_sioctl_get_addr, NULL }, 804 805 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 806 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 807 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 808 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 809 810 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 811 IPI_PRIV | IPI_WR, 812 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 813 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 814 IPI_MODOK | IPI_GET_CMD, 815 IF_CMD, ip_sioctl_get_flags, NULL }, 816 817 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 818 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 819 820 /* copyin size cannot be coded for SIOCGIFCONF */ 821 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 822 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 823 824 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 825 IF_CMD, ip_sioctl_mtu, NULL }, 826 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 827 IF_CMD, ip_sioctl_get_mtu, NULL }, 828 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 829 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 830 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 831 IF_CMD, ip_sioctl_brdaddr, NULL }, 832 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 833 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 834 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 835 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 836 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 837 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 838 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 839 IF_CMD, ip_sioctl_metric, NULL }, 840 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 841 842 /* See 166-168 below for extended SIOC*XARP ioctls */ 843 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 844 ARP_CMD, ip_sioctl_arp, NULL }, 845 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 846 ARP_CMD, ip_sioctl_arp, NULL }, 847 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 848 ARP_CMD, ip_sioctl_arp, NULL }, 849 850 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 851 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 852 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 866 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 867 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 868 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 869 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 870 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 871 872 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 873 MISC_CMD, if_unitsel, if_unitsel_restart }, 874 875 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 876 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 877 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 888 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 889 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 890 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 891 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 892 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 893 894 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 895 IPI_PRIV | IPI_WR | IPI_MODOK, 896 IF_CMD, ip_sioctl_sifname, NULL }, 897 898 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 899 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 900 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 906 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 907 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 908 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 909 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 910 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 911 912 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 913 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 914 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 915 IF_CMD, ip_sioctl_get_muxid, NULL }, 916 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 917 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 918 919 /* Both if and lif variants share same func */ 920 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 921 IF_CMD, ip_sioctl_get_lifindex, NULL }, 922 /* Both if and lif variants share same func */ 923 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 924 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 925 926 /* copyin size cannot be coded for SIOCGIFCONF */ 927 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 928 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 929 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 930 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 931 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 941 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 942 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 943 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 944 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 945 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 946 947 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 948 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 949 ip_sioctl_removeif_restart }, 950 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 951 IPI_GET_CMD | IPI_PRIV | IPI_WR, 952 LIF_CMD, ip_sioctl_addif, NULL }, 953 #define SIOCLIFADDR_NDX 112 954 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 955 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 956 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 957 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 958 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 959 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 960 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 961 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 962 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 963 IPI_PRIV | IPI_WR, 964 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 965 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 966 IPI_GET_CMD | IPI_MODOK, 967 LIF_CMD, ip_sioctl_get_flags, NULL }, 968 969 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 970 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 971 972 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 973 ip_sioctl_get_lifconf, NULL }, 974 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 975 LIF_CMD, ip_sioctl_mtu, NULL }, 976 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 977 LIF_CMD, ip_sioctl_get_mtu, NULL }, 978 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 979 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 980 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 981 LIF_CMD, ip_sioctl_brdaddr, NULL }, 982 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 983 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 984 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 985 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 986 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 987 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 988 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 989 LIF_CMD, ip_sioctl_metric, NULL }, 990 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 991 IPI_PRIV | IPI_WR | IPI_MODOK, 992 LIF_CMD, ip_sioctl_slifname, 993 ip_sioctl_slifname_restart }, 994 995 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 996 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 997 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 998 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 999 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1000 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1001 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1002 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1003 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1004 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1005 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1006 LIF_CMD, ip_sioctl_token, NULL }, 1007 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1008 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1009 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1010 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1011 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1012 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1013 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1014 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1015 1016 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1017 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1018 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1019 LIF_CMD, ip_siocdelndp_v6, NULL }, 1020 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1021 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1022 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1023 LIF_CMD, ip_siocsetndp_v6, NULL }, 1024 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1025 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1026 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1027 MISC_CMD, ip_sioctl_tonlink, NULL }, 1028 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1029 MISC_CMD, ip_sioctl_tmysite, NULL }, 1030 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 1033 /* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */ 1034 /* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 1039 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 1041 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1042 LIF_CMD, ip_sioctl_get_binding, NULL }, 1043 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1044 IPI_PRIV | IPI_WR, 1045 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1046 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1047 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1048 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1049 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1050 1051 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1052 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 1056 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 1058 /* These are handled in ip_sioctl_copyin_setup itself */ 1059 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1060 MISC_CMD, NULL, NULL }, 1061 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1062 MISC_CMD, NULL, NULL }, 1063 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1064 1065 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1066 ip_sioctl_get_lifconf, NULL }, 1067 1068 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1069 XARP_CMD, ip_sioctl_arp, NULL }, 1070 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1071 XARP_CMD, ip_sioctl_arp, NULL }, 1072 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1073 XARP_CMD, ip_sioctl_arp, NULL }, 1074 1075 /* SIOCPOPSOCKFS is not handled by IP */ 1076 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1077 1078 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1079 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1080 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1081 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1082 ip_sioctl_slifzone_restart }, 1083 /* 172-174 are SCTP ioctls and not handled by IP */ 1084 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1087 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1088 IPI_GET_CMD, LIF_CMD, 1089 ip_sioctl_get_lifusesrc, 0 }, 1090 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1091 IPI_PRIV | IPI_WR, 1092 LIF_CMD, ip_sioctl_slifusesrc, 1093 NULL }, 1094 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1095 ip_sioctl_get_lifsrcof, NULL }, 1096 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1097 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1098 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1099 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1100 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1101 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1102 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1103 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1104 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* SIOCSENABLESDP is handled by SDP */ 1106 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1107 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1108 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD, 1109 IF_CMD, ip_sioctl_get_ifhwaddr, NULL }, 1110 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1111 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1112 ip_sioctl_ilb_cmd, NULL }, 1113 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1114 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1115 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1116 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1117 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1118 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart }, 1119 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD, 1120 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL } 1121 }; 1122 1123 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1124 1125 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1126 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1127 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1128 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1129 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1130 { ND_GET, 0, 0, 0, NULL, NULL }, 1131 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1132 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1133 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1134 MISC_CMD, mrt_ioctl}, 1135 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1136 MISC_CMD, mrt_ioctl}, 1137 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1138 MISC_CMD, mrt_ioctl} 1139 }; 1140 1141 int ip_misc_ioctl_count = 1142 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1143 1144 int conn_drain_nthreads; /* Number of drainers reqd. */ 1145 /* Settable in /etc/system */ 1146 /* Defined in ip_ire.c */ 1147 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1148 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1149 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1150 1151 static nv_t ire_nv_arr[] = { 1152 { IRE_BROADCAST, "BROADCAST" }, 1153 { IRE_LOCAL, "LOCAL" }, 1154 { IRE_LOOPBACK, "LOOPBACK" }, 1155 { IRE_DEFAULT, "DEFAULT" }, 1156 { IRE_PREFIX, "PREFIX" }, 1157 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1158 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1159 { IRE_IF_CLONE, "IF_CLONE" }, 1160 { IRE_HOST, "HOST" }, 1161 { IRE_MULTICAST, "MULTICAST" }, 1162 { IRE_NOROUTE, "NOROUTE" }, 1163 { 0 } 1164 }; 1165 1166 nv_t *ire_nv_tbl = ire_nv_arr; 1167 1168 /* Simple ICMP IP Header Template */ 1169 static ipha_t icmp_ipha = { 1170 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1171 }; 1172 1173 struct module_info ip_mod_info = { 1174 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1175 IP_MOD_LOWAT 1176 }; 1177 1178 /* 1179 * Duplicate static symbols within a module confuses mdb; so we avoid the 1180 * problem by making the symbols here distinct from those in udp.c. 1181 */ 1182 1183 /* 1184 * Entry points for IP as a device and as a module. 1185 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1186 */ 1187 static struct qinit iprinitv4 = { 1188 ip_rput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info 1189 }; 1190 1191 struct qinit iprinitv6 = { 1192 ip_rput_v6, NULL, ip_openv6, ip_close, NULL, &ip_mod_info 1193 }; 1194 1195 static struct qinit ipwinit = { 1196 ip_wput_nondata, ip_wsrv, NULL, NULL, NULL, &ip_mod_info 1197 }; 1198 1199 static struct qinit iplrinit = { 1200 ip_lrput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info 1201 }; 1202 1203 static struct qinit iplwinit = { 1204 ip_lwput, NULL, NULL, NULL, NULL, &ip_mod_info 1205 }; 1206 1207 /* For AF_INET aka /dev/ip */ 1208 struct streamtab ipinfov4 = { 1209 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1210 }; 1211 1212 /* For AF_INET6 aka /dev/ip6 */ 1213 struct streamtab ipinfov6 = { 1214 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1215 }; 1216 1217 #ifdef DEBUG 1218 boolean_t skip_sctp_cksum = B_FALSE; 1219 #endif 1220 1221 /* 1222 * Generate an ICMP fragmentation needed message. 1223 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1224 * constructed by the caller. 1225 */ 1226 void 1227 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1228 { 1229 icmph_t icmph; 1230 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1231 1232 mp = icmp_pkt_err_ok(mp, ira); 1233 if (mp == NULL) 1234 return; 1235 1236 bzero(&icmph, sizeof (icmph_t)); 1237 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1238 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1239 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1240 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1241 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1242 1243 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1244 } 1245 1246 /* 1247 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1248 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1249 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1250 * Likewise, if the ICMP error is misformed (too short, etc), then it 1251 * returns NULL. The caller uses this to determine whether or not to send 1252 * to raw sockets. 1253 * 1254 * All error messages are passed to the matching transport stream. 1255 * 1256 * The following cases are handled by icmp_inbound: 1257 * 1) It needs to send a reply back and possibly delivering it 1258 * to the "interested" upper clients. 1259 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1260 * 3) It needs to change some values in IP only. 1261 * 4) It needs to change some values in IP and upper layers e.g TCP 1262 * by delivering an error to the upper layers. 1263 * 1264 * We handle the above three cases in the context of IPsec in the 1265 * following way : 1266 * 1267 * 1) Send the reply back in the same way as the request came in. 1268 * If it came in encrypted, it goes out encrypted. If it came in 1269 * clear, it goes out in clear. Thus, this will prevent chosen 1270 * plain text attack. 1271 * 2) The client may or may not expect things to come in secure. 1272 * If it comes in secure, the policy constraints are checked 1273 * before delivering it to the upper layers. If it comes in 1274 * clear, ipsec_inbound_accept_clear will decide whether to 1275 * accept this in clear or not. In both the cases, if the returned 1276 * message (IP header + 8 bytes) that caused the icmp message has 1277 * AH/ESP headers, it is sent up to AH/ESP for validation before 1278 * sending up. If there are only 8 bytes of returned message, then 1279 * upper client will not be notified. 1280 * 3) Check with global policy to see whether it matches the constaints. 1281 * But this will be done only if icmp_accept_messages_in_clear is 1282 * zero. 1283 * 4) If we need to change both in IP and ULP, then the decision taken 1284 * while affecting the values in IP and while delivering up to TCP 1285 * should be the same. 1286 * 1287 * There are two cases. 1288 * 1289 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1290 * failed), we will not deliver it to the ULP, even though they 1291 * are *willing* to accept in *clear*. This is fine as our global 1292 * disposition to icmp messages asks us reject the datagram. 1293 * 1294 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1295 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1296 * to deliver it to ULP (policy failed), it can lead to 1297 * consistency problems. The cases known at this time are 1298 * ICMP_DESTINATION_UNREACHABLE messages with following code 1299 * values : 1300 * 1301 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1302 * and Upper layer rejects. Then the communication will 1303 * come to a stop. This is solved by making similar decisions 1304 * at both levels. Currently, when we are unable to deliver 1305 * to the Upper Layer (due to policy failures) while IP has 1306 * adjusted dce_pmtu, the next outbound datagram would 1307 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1308 * will be with the right level of protection. Thus the right 1309 * value will be communicated even if we are not able to 1310 * communicate when we get from the wire initially. But this 1311 * assumes there would be at least one outbound datagram after 1312 * IP has adjusted its dce_pmtu value. To make things 1313 * simpler, we accept in clear after the validation of 1314 * AH/ESP headers. 1315 * 1316 * - Other ICMP ERRORS : We may not be able to deliver it to the 1317 * upper layer depending on the level of protection the upper 1318 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1319 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1320 * should be accepted in clear when the Upper layer expects secure. 1321 * Thus the communication may get aborted by some bad ICMP 1322 * packets. 1323 */ 1324 mblk_t * 1325 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1326 { 1327 icmph_t *icmph; 1328 ipha_t *ipha; /* Outer header */ 1329 int ip_hdr_length; /* Outer header length */ 1330 boolean_t interested; 1331 ipif_t *ipif; 1332 uint32_t ts; 1333 uint32_t *tsp; 1334 timestruc_t now; 1335 ill_t *ill = ira->ira_ill; 1336 ip_stack_t *ipst = ill->ill_ipst; 1337 zoneid_t zoneid = ira->ira_zoneid; 1338 int len_needed; 1339 mblk_t *mp_ret = NULL; 1340 1341 ipha = (ipha_t *)mp->b_rptr; 1342 1343 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1344 1345 ip_hdr_length = ira->ira_ip_hdr_length; 1346 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1347 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1348 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1349 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1350 freemsg(mp); 1351 return (NULL); 1352 } 1353 /* Last chance to get real. */ 1354 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1355 if (ipha == NULL) { 1356 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1357 freemsg(mp); 1358 return (NULL); 1359 } 1360 } 1361 1362 /* The IP header will always be a multiple of four bytes */ 1363 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1364 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1365 icmph->icmph_code)); 1366 1367 /* 1368 * We will set "interested" to "true" if we should pass a copy to 1369 * the transport or if we handle the packet locally. 1370 */ 1371 interested = B_FALSE; 1372 switch (icmph->icmph_type) { 1373 case ICMP_ECHO_REPLY: 1374 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1375 break; 1376 case ICMP_DEST_UNREACHABLE: 1377 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1378 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1379 interested = B_TRUE; /* Pass up to transport */ 1380 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1381 break; 1382 case ICMP_SOURCE_QUENCH: 1383 interested = B_TRUE; /* Pass up to transport */ 1384 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1385 break; 1386 case ICMP_REDIRECT: 1387 if (!ipst->ips_ip_ignore_redirect) 1388 interested = B_TRUE; 1389 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1390 break; 1391 case ICMP_ECHO_REQUEST: 1392 /* 1393 * Whether to respond to echo requests that come in as IP 1394 * broadcasts or as IP multicast is subject to debate 1395 * (what isn't?). We aim to please, you pick it. 1396 * Default is do it. 1397 */ 1398 if (ira->ira_flags & IRAF_MULTICAST) { 1399 /* multicast: respond based on tunable */ 1400 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1401 } else if (ira->ira_flags & IRAF_BROADCAST) { 1402 /* broadcast: respond based on tunable */ 1403 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1404 } else { 1405 /* unicast: always respond */ 1406 interested = B_TRUE; 1407 } 1408 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1409 if (!interested) { 1410 /* We never pass these to RAW sockets */ 1411 freemsg(mp); 1412 return (NULL); 1413 } 1414 1415 /* Check db_ref to make sure we can modify the packet. */ 1416 if (mp->b_datap->db_ref > 1) { 1417 mblk_t *mp1; 1418 1419 mp1 = copymsg(mp); 1420 freemsg(mp); 1421 if (!mp1) { 1422 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1423 return (NULL); 1424 } 1425 mp = mp1; 1426 ipha = (ipha_t *)mp->b_rptr; 1427 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1428 } 1429 icmph->icmph_type = ICMP_ECHO_REPLY; 1430 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1431 icmp_send_reply_v4(mp, ipha, icmph, ira); 1432 return (NULL); 1433 1434 case ICMP_ROUTER_ADVERTISEMENT: 1435 case ICMP_ROUTER_SOLICITATION: 1436 break; 1437 case ICMP_TIME_EXCEEDED: 1438 interested = B_TRUE; /* Pass up to transport */ 1439 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1440 break; 1441 case ICMP_PARAM_PROBLEM: 1442 interested = B_TRUE; /* Pass up to transport */ 1443 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1444 break; 1445 case ICMP_TIME_STAMP_REQUEST: 1446 /* Response to Time Stamp Requests is local policy. */ 1447 if (ipst->ips_ip_g_resp_to_timestamp) { 1448 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1449 interested = 1450 ipst->ips_ip_g_resp_to_timestamp_bcast; 1451 else 1452 interested = B_TRUE; 1453 } 1454 if (!interested) { 1455 /* We never pass these to RAW sockets */ 1456 freemsg(mp); 1457 return (NULL); 1458 } 1459 1460 /* Make sure we have enough of the packet */ 1461 len_needed = ip_hdr_length + ICMPH_SIZE + 1462 3 * sizeof (uint32_t); 1463 1464 if (mp->b_wptr - mp->b_rptr < len_needed) { 1465 ipha = ip_pullup(mp, len_needed, ira); 1466 if (ipha == NULL) { 1467 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1468 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1469 mp, ill); 1470 freemsg(mp); 1471 return (NULL); 1472 } 1473 /* Refresh following the pullup. */ 1474 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1475 } 1476 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1477 /* Check db_ref to make sure we can modify the packet. */ 1478 if (mp->b_datap->db_ref > 1) { 1479 mblk_t *mp1; 1480 1481 mp1 = copymsg(mp); 1482 freemsg(mp); 1483 if (!mp1) { 1484 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1485 return (NULL); 1486 } 1487 mp = mp1; 1488 ipha = (ipha_t *)mp->b_rptr; 1489 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1490 } 1491 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1492 tsp = (uint32_t *)&icmph[1]; 1493 tsp++; /* Skip past 'originate time' */ 1494 /* Compute # of milliseconds since midnight */ 1495 gethrestime(&now); 1496 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1497 NSEC2MSEC(now.tv_nsec); 1498 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1499 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1500 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1501 icmp_send_reply_v4(mp, ipha, icmph, ira); 1502 return (NULL); 1503 1504 case ICMP_TIME_STAMP_REPLY: 1505 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1506 break; 1507 case ICMP_INFO_REQUEST: 1508 /* Per RFC 1122 3.2.2.7, ignore this. */ 1509 case ICMP_INFO_REPLY: 1510 break; 1511 case ICMP_ADDRESS_MASK_REQUEST: 1512 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1513 interested = 1514 ipst->ips_ip_respond_to_address_mask_broadcast; 1515 } else { 1516 interested = B_TRUE; 1517 } 1518 if (!interested) { 1519 /* We never pass these to RAW sockets */ 1520 freemsg(mp); 1521 return (NULL); 1522 } 1523 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1524 if (mp->b_wptr - mp->b_rptr < len_needed) { 1525 ipha = ip_pullup(mp, len_needed, ira); 1526 if (ipha == NULL) { 1527 BUMP_MIB(ill->ill_ip_mib, 1528 ipIfStatsInTruncatedPkts); 1529 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1530 ill); 1531 freemsg(mp); 1532 return (NULL); 1533 } 1534 /* Refresh following the pullup. */ 1535 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1536 } 1537 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1538 /* Check db_ref to make sure we can modify the packet. */ 1539 if (mp->b_datap->db_ref > 1) { 1540 mblk_t *mp1; 1541 1542 mp1 = copymsg(mp); 1543 freemsg(mp); 1544 if (!mp1) { 1545 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1546 return (NULL); 1547 } 1548 mp = mp1; 1549 ipha = (ipha_t *)mp->b_rptr; 1550 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1551 } 1552 /* 1553 * Need the ipif with the mask be the same as the source 1554 * address of the mask reply. For unicast we have a specific 1555 * ipif. For multicast/broadcast we only handle onlink 1556 * senders, and use the source address to pick an ipif. 1557 */ 1558 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1559 if (ipif == NULL) { 1560 /* Broadcast or multicast */ 1561 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1562 if (ipif == NULL) { 1563 freemsg(mp); 1564 return (NULL); 1565 } 1566 } 1567 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1568 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1569 ipif_refrele(ipif); 1570 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1571 icmp_send_reply_v4(mp, ipha, icmph, ira); 1572 return (NULL); 1573 1574 case ICMP_ADDRESS_MASK_REPLY: 1575 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1576 break; 1577 default: 1578 interested = B_TRUE; /* Pass up to transport */ 1579 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1580 break; 1581 } 1582 /* 1583 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1584 * if there isn't one. 1585 */ 1586 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1587 /* If there is an ICMP client and we want one too, copy it. */ 1588 1589 if (!interested) { 1590 /* Caller will deliver to RAW sockets */ 1591 return (mp); 1592 } 1593 mp_ret = copymsg(mp); 1594 if (mp_ret == NULL) { 1595 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1596 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1597 } 1598 } else if (!interested) { 1599 /* Neither we nor raw sockets are interested. Drop packet now */ 1600 freemsg(mp); 1601 return (NULL); 1602 } 1603 1604 /* 1605 * ICMP error or redirect packet. Make sure we have enough of 1606 * the header and that db_ref == 1 since we might end up modifying 1607 * the packet. 1608 */ 1609 if (mp->b_cont != NULL) { 1610 if (ip_pullup(mp, -1, ira) == NULL) { 1611 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1612 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1613 mp, ill); 1614 freemsg(mp); 1615 return (mp_ret); 1616 } 1617 } 1618 1619 if (mp->b_datap->db_ref > 1) { 1620 mblk_t *mp1; 1621 1622 mp1 = copymsg(mp); 1623 if (mp1 == NULL) { 1624 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1625 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1626 freemsg(mp); 1627 return (mp_ret); 1628 } 1629 freemsg(mp); 1630 mp = mp1; 1631 } 1632 1633 /* 1634 * In case mp has changed, verify the message before any further 1635 * processes. 1636 */ 1637 ipha = (ipha_t *)mp->b_rptr; 1638 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1639 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1640 freemsg(mp); 1641 return (mp_ret); 1642 } 1643 1644 switch (icmph->icmph_type) { 1645 case ICMP_REDIRECT: 1646 icmp_redirect_v4(mp, ipha, icmph, ira); 1647 break; 1648 case ICMP_DEST_UNREACHABLE: 1649 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1650 /* Update DCE and adjust MTU is icmp header if needed */ 1651 icmp_inbound_too_big_v4(icmph, ira); 1652 } 1653 /* FALLTHROUGH */ 1654 default: 1655 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1656 break; 1657 } 1658 return (mp_ret); 1659 } 1660 1661 /* 1662 * Send an ICMP echo, timestamp or address mask reply. 1663 * The caller has already updated the payload part of the packet. 1664 * We handle the ICMP checksum, IP source address selection and feed 1665 * the packet into ip_output_simple. 1666 */ 1667 static void 1668 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1669 ip_recv_attr_t *ira) 1670 { 1671 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1672 ill_t *ill = ira->ira_ill; 1673 ip_stack_t *ipst = ill->ill_ipst; 1674 ip_xmit_attr_t ixas; 1675 1676 /* Send out an ICMP packet */ 1677 icmph->icmph_checksum = 0; 1678 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1679 /* Reset time to live. */ 1680 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1681 { 1682 /* Swap source and destination addresses */ 1683 ipaddr_t tmp; 1684 1685 tmp = ipha->ipha_src; 1686 ipha->ipha_src = ipha->ipha_dst; 1687 ipha->ipha_dst = tmp; 1688 } 1689 ipha->ipha_ident = 0; 1690 if (!IS_SIMPLE_IPH(ipha)) 1691 icmp_options_update(ipha); 1692 1693 bzero(&ixas, sizeof (ixas)); 1694 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1695 ixas.ixa_zoneid = ira->ira_zoneid; 1696 ixas.ixa_cred = kcred; 1697 ixas.ixa_cpid = NOPID; 1698 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1699 ixas.ixa_ifindex = 0; 1700 ixas.ixa_ipst = ipst; 1701 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1702 1703 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1704 /* 1705 * This packet should go out the same way as it 1706 * came in i.e in clear, independent of the IPsec policy 1707 * for transmitting packets. 1708 */ 1709 ixas.ixa_flags |= IXAF_NO_IPSEC; 1710 } else { 1711 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1712 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1713 /* Note: mp already consumed and ip_drop_packet done */ 1714 return; 1715 } 1716 } 1717 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1718 /* 1719 * Not one or our addresses (IRE_LOCALs), thus we let 1720 * ip_output_simple pick the source. 1721 */ 1722 ipha->ipha_src = INADDR_ANY; 1723 ixas.ixa_flags |= IXAF_SET_SOURCE; 1724 } 1725 /* Should we send with DF and use dce_pmtu? */ 1726 if (ipst->ips_ipv4_icmp_return_pmtu) { 1727 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1728 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1729 } 1730 1731 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1732 1733 (void) ip_output_simple(mp, &ixas); 1734 ixa_cleanup(&ixas); 1735 } 1736 1737 /* 1738 * Verify the ICMP messages for either for ICMP error or redirect packet. 1739 * The caller should have fully pulled up the message. If it's a redirect 1740 * packet, only basic checks on IP header will be done; otherwise, verify 1741 * the packet by looking at the included ULP header. 1742 * 1743 * Called before icmp_inbound_error_fanout_v4 is called. 1744 */ 1745 static boolean_t 1746 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1747 { 1748 ill_t *ill = ira->ira_ill; 1749 int hdr_length; 1750 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1751 conn_t *connp; 1752 ipha_t *ipha; /* Inner IP header */ 1753 1754 ipha = (ipha_t *)&icmph[1]; 1755 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1756 goto truncated; 1757 1758 hdr_length = IPH_HDR_LENGTH(ipha); 1759 1760 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1761 goto discard_pkt; 1762 1763 if (hdr_length < sizeof (ipha_t)) 1764 goto truncated; 1765 1766 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1767 goto truncated; 1768 1769 /* 1770 * Stop here for ICMP_REDIRECT. 1771 */ 1772 if (icmph->icmph_type == ICMP_REDIRECT) 1773 return (B_TRUE); 1774 1775 /* 1776 * ICMP errors only. 1777 */ 1778 switch (ipha->ipha_protocol) { 1779 case IPPROTO_UDP: 1780 /* 1781 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1782 * transport header. 1783 */ 1784 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1785 mp->b_wptr) 1786 goto truncated; 1787 break; 1788 case IPPROTO_TCP: { 1789 tcpha_t *tcpha; 1790 1791 /* 1792 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1793 * transport header. 1794 */ 1795 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1796 mp->b_wptr) 1797 goto truncated; 1798 1799 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1800 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1801 ipst); 1802 if (connp == NULL) 1803 goto discard_pkt; 1804 1805 if ((connp->conn_verifyicmp != NULL) && 1806 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1807 CONN_DEC_REF(connp); 1808 goto discard_pkt; 1809 } 1810 CONN_DEC_REF(connp); 1811 break; 1812 } 1813 case IPPROTO_SCTP: 1814 /* 1815 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1816 * transport header. 1817 */ 1818 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1819 mp->b_wptr) 1820 goto truncated; 1821 break; 1822 case IPPROTO_ESP: 1823 case IPPROTO_AH: 1824 break; 1825 case IPPROTO_ENCAP: 1826 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1827 mp->b_wptr) 1828 goto truncated; 1829 break; 1830 default: 1831 break; 1832 } 1833 1834 return (B_TRUE); 1835 1836 discard_pkt: 1837 /* Bogus ICMP error. */ 1838 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1839 return (B_FALSE); 1840 1841 truncated: 1842 /* We pulled up everthing already. Must be truncated */ 1843 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1844 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1845 return (B_FALSE); 1846 } 1847 1848 /* Table from RFC 1191 */ 1849 static int icmp_frag_size_table[] = 1850 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1851 1852 /* 1853 * Process received ICMP Packet too big. 1854 * Just handles the DCE create/update, including using the above table of 1855 * PMTU guesses. The caller is responsible for validating the packet before 1856 * passing it in and also to fanout the ICMP error to any matching transport 1857 * conns. Assumes the message has been fully pulled up and verified. 1858 * 1859 * Before getting here, the caller has called icmp_inbound_verify_v4() 1860 * that should have verified with ULP to prevent undoing the changes we're 1861 * going to make to DCE. For example, TCP might have verified that the packet 1862 * which generated error is in the send window. 1863 * 1864 * In some cases modified this MTU in the ICMP header packet; the caller 1865 * should pass to the matching ULP after this returns. 1866 */ 1867 static void 1868 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1869 { 1870 dce_t *dce; 1871 int old_mtu; 1872 int mtu, orig_mtu; 1873 ipaddr_t dst; 1874 boolean_t disable_pmtud; 1875 ill_t *ill = ira->ira_ill; 1876 ip_stack_t *ipst = ill->ill_ipst; 1877 uint_t hdr_length; 1878 ipha_t *ipha; 1879 1880 /* Caller already pulled up everything. */ 1881 ipha = (ipha_t *)&icmph[1]; 1882 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1883 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1884 ASSERT(ill != NULL); 1885 1886 hdr_length = IPH_HDR_LENGTH(ipha); 1887 1888 /* 1889 * We handle path MTU for source routed packets since the DCE 1890 * is looked up using the final destination. 1891 */ 1892 dst = ip_get_dst(ipha); 1893 1894 dce = dce_lookup_and_add_v4(dst, ipst); 1895 if (dce == NULL) { 1896 /* Couldn't add a unique one - ENOMEM */ 1897 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1898 ntohl(dst))); 1899 return; 1900 } 1901 1902 /* Check for MTU discovery advice as described in RFC 1191 */ 1903 mtu = ntohs(icmph->icmph_du_mtu); 1904 orig_mtu = mtu; 1905 disable_pmtud = B_FALSE; 1906 1907 mutex_enter(&dce->dce_lock); 1908 if (dce->dce_flags & DCEF_PMTU) 1909 old_mtu = dce->dce_pmtu; 1910 else 1911 old_mtu = ill->ill_mtu; 1912 1913 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1914 uint32_t length; 1915 int i; 1916 1917 /* 1918 * Use the table from RFC 1191 to figure out 1919 * the next "plateau" based on the length in 1920 * the original IP packet. 1921 */ 1922 length = ntohs(ipha->ipha_length); 1923 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1924 uint32_t, length); 1925 if (old_mtu <= length && 1926 old_mtu >= length - hdr_length) { 1927 /* 1928 * Handle broken BSD 4.2 systems that 1929 * return the wrong ipha_length in ICMP 1930 * errors. 1931 */ 1932 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1933 length, old_mtu)); 1934 length -= hdr_length; 1935 } 1936 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1937 if (length > icmp_frag_size_table[i]) 1938 break; 1939 } 1940 if (i == A_CNT(icmp_frag_size_table)) { 1941 /* Smaller than IP_MIN_MTU! */ 1942 ip1dbg(("Too big for packet size %d\n", 1943 length)); 1944 disable_pmtud = B_TRUE; 1945 mtu = ipst->ips_ip_pmtu_min; 1946 } else { 1947 mtu = icmp_frag_size_table[i]; 1948 ip1dbg(("Calculated mtu %d, packet size %d, " 1949 "before %d\n", mtu, length, old_mtu)); 1950 if (mtu < ipst->ips_ip_pmtu_min) { 1951 mtu = ipst->ips_ip_pmtu_min; 1952 disable_pmtud = B_TRUE; 1953 } 1954 } 1955 } 1956 if (disable_pmtud) 1957 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1958 else 1959 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1960 1961 dce->dce_pmtu = MIN(old_mtu, mtu); 1962 /* Prepare to send the new max frag size for the ULP. */ 1963 icmph->icmph_du_zero = 0; 1964 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1965 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1966 dce, int, orig_mtu, int, mtu); 1967 1968 /* We now have a PMTU for sure */ 1969 dce->dce_flags |= DCEF_PMTU; 1970 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1971 mutex_exit(&dce->dce_lock); 1972 /* 1973 * After dropping the lock the new value is visible to everyone. 1974 * Then we bump the generation number so any cached values reinspect 1975 * the dce_t. 1976 */ 1977 dce_increment_generation(dce); 1978 dce_refrele(dce); 1979 } 1980 1981 /* 1982 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1983 * calls this function. 1984 */ 1985 static mblk_t * 1986 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1987 { 1988 int length; 1989 1990 ASSERT(mp->b_datap->db_type == M_DATA); 1991 1992 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1993 ASSERT(mp->b_cont == NULL); 1994 1995 /* 1996 * The length that we want to overlay is the inner header 1997 * and what follows it. 1998 */ 1999 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 2000 2001 /* 2002 * Overlay the inner header and whatever follows it over the 2003 * outer header. 2004 */ 2005 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2006 2007 /* Adjust for what we removed */ 2008 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2009 return (mp); 2010 } 2011 2012 /* 2013 * Try to pass the ICMP message upstream in case the ULP cares. 2014 * 2015 * If the packet that caused the ICMP error is secure, we send 2016 * it to AH/ESP to make sure that the attached packet has a 2017 * valid association. ipha in the code below points to the 2018 * IP header of the packet that caused the error. 2019 * 2020 * For IPsec cases, we let the next-layer-up (which has access to 2021 * cached policy on the conn_t, or can query the SPD directly) 2022 * subtract out any IPsec overhead if they must. We therefore make no 2023 * adjustments here for IPsec overhead. 2024 * 2025 * IFN could have been generated locally or by some router. 2026 * 2027 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2028 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2029 * This happens because IP adjusted its value of MTU on an 2030 * earlier IFN message and could not tell the upper layer, 2031 * the new adjusted value of MTU e.g. Packet was encrypted 2032 * or there was not enough information to fanout to upper 2033 * layers. Thus on the next outbound datagram, ire_send_wire 2034 * generates the IFN, where IPsec processing has *not* been 2035 * done. 2036 * 2037 * Note that we retain ixa_fragsize across IPsec thus once 2038 * we have picking ixa_fragsize and entered ipsec_out_process we do 2039 * no change the fragsize even if the path MTU changes before 2040 * we reach ip_output_post_ipsec. 2041 * 2042 * In the local case, IRAF_LOOPBACK will be set indicating 2043 * that IFN was generated locally. 2044 * 2045 * ROUTER : IFN could be secure or non-secure. 2046 * 2047 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2048 * packet in error has AH/ESP headers to validate the AH/ESP 2049 * headers. AH/ESP will verify whether there is a valid SA or 2050 * not and send it back. We will fanout again if we have more 2051 * data in the packet. 2052 * 2053 * If the packet in error does not have AH/ESP, we handle it 2054 * like any other case. 2055 * 2056 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2057 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2058 * valid SA or not and send it back. We will fanout again if 2059 * we have more data in the packet. 2060 * 2061 * If the packet in error does not have AH/ESP, we handle it 2062 * like any other case. 2063 * 2064 * The caller must have called icmp_inbound_verify_v4. 2065 */ 2066 static void 2067 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2068 { 2069 uint16_t *up; /* Pointer to ports in ULP header */ 2070 uint32_t ports; /* reversed ports for fanout */ 2071 ipha_t ripha; /* With reversed addresses */ 2072 ipha_t *ipha; /* Inner IP header */ 2073 uint_t hdr_length; /* Inner IP header length */ 2074 tcpha_t *tcpha; 2075 conn_t *connp; 2076 ill_t *ill = ira->ira_ill; 2077 ip_stack_t *ipst = ill->ill_ipst; 2078 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2079 ill_t *rill = ira->ira_rill; 2080 2081 /* Caller already pulled up everything. */ 2082 ipha = (ipha_t *)&icmph[1]; 2083 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2084 ASSERT(mp->b_cont == NULL); 2085 2086 hdr_length = IPH_HDR_LENGTH(ipha); 2087 ira->ira_protocol = ipha->ipha_protocol; 2088 2089 /* 2090 * We need a separate IP header with the source and destination 2091 * addresses reversed to do fanout/classification because the ipha in 2092 * the ICMP error is in the form we sent it out. 2093 */ 2094 ripha.ipha_src = ipha->ipha_dst; 2095 ripha.ipha_dst = ipha->ipha_src; 2096 ripha.ipha_protocol = ipha->ipha_protocol; 2097 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2098 2099 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2100 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2101 ntohl(ipha->ipha_dst), 2102 icmph->icmph_type, icmph->icmph_code)); 2103 2104 switch (ipha->ipha_protocol) { 2105 case IPPROTO_UDP: 2106 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2107 2108 /* Attempt to find a client stream based on port. */ 2109 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2110 ntohs(up[0]), ntohs(up[1]))); 2111 2112 /* Note that we send error to all matches. */ 2113 ira->ira_flags |= IRAF_ICMP_ERROR; 2114 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2115 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2116 return; 2117 2118 case IPPROTO_TCP: 2119 /* 2120 * Find a TCP client stream for this packet. 2121 * Note that we do a reverse lookup since the header is 2122 * in the form we sent it out. 2123 */ 2124 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2125 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2126 ipst); 2127 if (connp == NULL) 2128 goto discard_pkt; 2129 2130 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2131 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2132 mp = ipsec_check_inbound_policy(mp, connp, 2133 ipha, NULL, ira); 2134 if (mp == NULL) { 2135 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2136 /* Note that mp is NULL */ 2137 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2138 CONN_DEC_REF(connp); 2139 return; 2140 } 2141 } 2142 2143 ira->ira_flags |= IRAF_ICMP_ERROR; 2144 ira->ira_ill = ira->ira_rill = NULL; 2145 if (IPCL_IS_TCP(connp)) { 2146 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2147 connp->conn_recvicmp, connp, ira, SQ_FILL, 2148 SQTAG_TCP_INPUT_ICMP_ERR); 2149 } else { 2150 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2151 (connp->conn_recv)(connp, mp, NULL, ira); 2152 CONN_DEC_REF(connp); 2153 } 2154 ira->ira_ill = ill; 2155 ira->ira_rill = rill; 2156 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2157 return; 2158 2159 case IPPROTO_SCTP: 2160 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2161 /* Find a SCTP client stream for this packet. */ 2162 ((uint16_t *)&ports)[0] = up[1]; 2163 ((uint16_t *)&ports)[1] = up[0]; 2164 2165 ira->ira_flags |= IRAF_ICMP_ERROR; 2166 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2167 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2168 return; 2169 2170 case IPPROTO_ESP: 2171 case IPPROTO_AH: 2172 if (!ipsec_loaded(ipss)) { 2173 ip_proto_not_sup(mp, ira); 2174 return; 2175 } 2176 2177 if (ipha->ipha_protocol == IPPROTO_ESP) 2178 mp = ipsecesp_icmp_error(mp, ira); 2179 else 2180 mp = ipsecah_icmp_error(mp, ira); 2181 if (mp == NULL) 2182 return; 2183 2184 /* Just in case ipsec didn't preserve the NULL b_cont */ 2185 if (mp->b_cont != NULL) { 2186 if (!pullupmsg(mp, -1)) 2187 goto discard_pkt; 2188 } 2189 2190 /* 2191 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2192 * correct, but we don't use them any more here. 2193 * 2194 * If succesful, the mp has been modified to not include 2195 * the ESP/AH header so we can fanout to the ULP's icmp 2196 * error handler. 2197 */ 2198 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2199 goto truncated; 2200 2201 /* Verify the modified message before any further processes. */ 2202 ipha = (ipha_t *)mp->b_rptr; 2203 hdr_length = IPH_HDR_LENGTH(ipha); 2204 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2205 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2206 freemsg(mp); 2207 return; 2208 } 2209 2210 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2211 return; 2212 2213 case IPPROTO_ENCAP: { 2214 /* Look for self-encapsulated packets that caused an error */ 2215 ipha_t *in_ipha; 2216 2217 /* 2218 * Caller has verified that length has to be 2219 * at least the size of IP header. 2220 */ 2221 ASSERT(hdr_length >= sizeof (ipha_t)); 2222 /* 2223 * Check the sanity of the inner IP header like 2224 * we did for the outer header. 2225 */ 2226 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2227 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2228 goto discard_pkt; 2229 } 2230 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2231 goto discard_pkt; 2232 } 2233 /* Check for Self-encapsulated tunnels */ 2234 if (in_ipha->ipha_src == ipha->ipha_src && 2235 in_ipha->ipha_dst == ipha->ipha_dst) { 2236 2237 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2238 in_ipha); 2239 if (mp == NULL) 2240 goto discard_pkt; 2241 2242 /* 2243 * Just in case self_encap didn't preserve the NULL 2244 * b_cont 2245 */ 2246 if (mp->b_cont != NULL) { 2247 if (!pullupmsg(mp, -1)) 2248 goto discard_pkt; 2249 } 2250 /* 2251 * Note that ira_pktlen and ira_ip_hdr_length are no 2252 * longer correct, but we don't use them any more here. 2253 */ 2254 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2255 goto truncated; 2256 2257 /* 2258 * Verify the modified message before any further 2259 * processes. 2260 */ 2261 ipha = (ipha_t *)mp->b_rptr; 2262 hdr_length = IPH_HDR_LENGTH(ipha); 2263 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2264 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2265 freemsg(mp); 2266 return; 2267 } 2268 2269 /* 2270 * The packet in error is self-encapsualted. 2271 * And we are finding it further encapsulated 2272 * which we could not have possibly generated. 2273 */ 2274 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2275 goto discard_pkt; 2276 } 2277 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2278 return; 2279 } 2280 /* No self-encapsulated */ 2281 } 2282 /* FALLTHROUGH */ 2283 case IPPROTO_IPV6: 2284 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2285 &ripha.ipha_dst, ipst)) != NULL) { 2286 ira->ira_flags |= IRAF_ICMP_ERROR; 2287 connp->conn_recvicmp(connp, mp, NULL, ira); 2288 CONN_DEC_REF(connp); 2289 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2290 return; 2291 } 2292 /* 2293 * No IP tunnel is interested, fallthrough and see 2294 * if a raw socket will want it. 2295 */ 2296 /* FALLTHROUGH */ 2297 default: 2298 ira->ira_flags |= IRAF_ICMP_ERROR; 2299 ip_fanout_proto_v4(mp, &ripha, ira); 2300 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2301 return; 2302 } 2303 /* NOTREACHED */ 2304 discard_pkt: 2305 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2306 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2307 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2308 freemsg(mp); 2309 return; 2310 2311 truncated: 2312 /* We pulled up everthing already. Must be truncated */ 2313 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2314 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2315 freemsg(mp); 2316 } 2317 2318 /* 2319 * Common IP options parser. 2320 * 2321 * Setup routine: fill in *optp with options-parsing state, then 2322 * tail-call ipoptp_next to return the first option. 2323 */ 2324 uint8_t 2325 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2326 { 2327 uint32_t totallen; /* total length of all options */ 2328 2329 totallen = ipha->ipha_version_and_hdr_length - 2330 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2331 totallen <<= 2; 2332 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2333 optp->ipoptp_end = optp->ipoptp_next + totallen; 2334 optp->ipoptp_flags = 0; 2335 return (ipoptp_next(optp)); 2336 } 2337 2338 /* Like above but without an ipha_t */ 2339 uint8_t 2340 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2341 { 2342 optp->ipoptp_next = opt; 2343 optp->ipoptp_end = optp->ipoptp_next + totallen; 2344 optp->ipoptp_flags = 0; 2345 return (ipoptp_next(optp)); 2346 } 2347 2348 /* 2349 * Common IP options parser: extract next option. 2350 */ 2351 uint8_t 2352 ipoptp_next(ipoptp_t *optp) 2353 { 2354 uint8_t *end = optp->ipoptp_end; 2355 uint8_t *cur = optp->ipoptp_next; 2356 uint8_t opt, len, pointer; 2357 2358 /* 2359 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2360 * has been corrupted. 2361 */ 2362 ASSERT(cur <= end); 2363 2364 if (cur == end) 2365 return (IPOPT_EOL); 2366 2367 opt = cur[IPOPT_OPTVAL]; 2368 2369 /* 2370 * Skip any NOP options. 2371 */ 2372 while (opt == IPOPT_NOP) { 2373 cur++; 2374 if (cur == end) 2375 return (IPOPT_EOL); 2376 opt = cur[IPOPT_OPTVAL]; 2377 } 2378 2379 if (opt == IPOPT_EOL) 2380 return (IPOPT_EOL); 2381 2382 /* 2383 * Option requiring a length. 2384 */ 2385 if ((cur + 1) >= end) { 2386 optp->ipoptp_flags |= IPOPTP_ERROR; 2387 return (IPOPT_EOL); 2388 } 2389 len = cur[IPOPT_OLEN]; 2390 if (len < 2) { 2391 optp->ipoptp_flags |= IPOPTP_ERROR; 2392 return (IPOPT_EOL); 2393 } 2394 optp->ipoptp_cur = cur; 2395 optp->ipoptp_len = len; 2396 optp->ipoptp_next = cur + len; 2397 if (cur + len > end) { 2398 optp->ipoptp_flags |= IPOPTP_ERROR; 2399 return (IPOPT_EOL); 2400 } 2401 2402 /* 2403 * For the options which require a pointer field, make sure 2404 * its there, and make sure it points to either something 2405 * inside this option, or the end of the option. 2406 */ 2407 pointer = IPOPT_EOL; 2408 switch (opt) { 2409 case IPOPT_RR: 2410 case IPOPT_TS: 2411 case IPOPT_LSRR: 2412 case IPOPT_SSRR: 2413 if (len <= IPOPT_OFFSET) { 2414 optp->ipoptp_flags |= IPOPTP_ERROR; 2415 return (opt); 2416 } 2417 pointer = cur[IPOPT_OFFSET]; 2418 if (pointer - 1 > len) { 2419 optp->ipoptp_flags |= IPOPTP_ERROR; 2420 return (opt); 2421 } 2422 break; 2423 } 2424 2425 /* 2426 * Sanity check the pointer field based on the type of the 2427 * option. 2428 */ 2429 switch (opt) { 2430 case IPOPT_RR: 2431 case IPOPT_SSRR: 2432 case IPOPT_LSRR: 2433 if (pointer < IPOPT_MINOFF_SR) 2434 optp->ipoptp_flags |= IPOPTP_ERROR; 2435 break; 2436 case IPOPT_TS: 2437 if (pointer < IPOPT_MINOFF_IT) 2438 optp->ipoptp_flags |= IPOPTP_ERROR; 2439 /* 2440 * Note that the Internet Timestamp option also 2441 * contains two four bit fields (the Overflow field, 2442 * and the Flag field), which follow the pointer 2443 * field. We don't need to check that these fields 2444 * fall within the length of the option because this 2445 * was implicitely done above. We've checked that the 2446 * pointer value is at least IPOPT_MINOFF_IT, and that 2447 * it falls within the option. Since IPOPT_MINOFF_IT > 2448 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2449 */ 2450 ASSERT(len > IPOPT_POS_OV_FLG); 2451 break; 2452 } 2453 2454 return (opt); 2455 } 2456 2457 /* 2458 * Use the outgoing IP header to create an IP_OPTIONS option the way 2459 * it was passed down from the application. 2460 * 2461 * This is compatible with BSD in that it returns 2462 * the reverse source route with the final destination 2463 * as the last entry. The first 4 bytes of the option 2464 * will contain the final destination. 2465 */ 2466 int 2467 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2468 { 2469 ipoptp_t opts; 2470 uchar_t *opt; 2471 uint8_t optval; 2472 uint8_t optlen; 2473 uint32_t len = 0; 2474 uchar_t *buf1 = buf; 2475 uint32_t totallen; 2476 ipaddr_t dst; 2477 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2478 2479 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2480 return (0); 2481 2482 totallen = ipp->ipp_ipv4_options_len; 2483 if (totallen & 0x3) 2484 return (0); 2485 2486 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2487 len += IP_ADDR_LEN; 2488 bzero(buf1, IP_ADDR_LEN); 2489 2490 dst = connp->conn_faddr_v4; 2491 2492 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2493 optval != IPOPT_EOL; 2494 optval = ipoptp_next(&opts)) { 2495 int off; 2496 2497 opt = opts.ipoptp_cur; 2498 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2499 break; 2500 } 2501 optlen = opts.ipoptp_len; 2502 2503 switch (optval) { 2504 case IPOPT_SSRR: 2505 case IPOPT_LSRR: 2506 2507 /* 2508 * Insert destination as the first entry in the source 2509 * route and move down the entries on step. 2510 * The last entry gets placed at buf1. 2511 */ 2512 buf[IPOPT_OPTVAL] = optval; 2513 buf[IPOPT_OLEN] = optlen; 2514 buf[IPOPT_OFFSET] = optlen; 2515 2516 off = optlen - IP_ADDR_LEN; 2517 if (off < 0) { 2518 /* No entries in source route */ 2519 break; 2520 } 2521 /* Last entry in source route if not already set */ 2522 if (dst == INADDR_ANY) 2523 bcopy(opt + off, buf1, IP_ADDR_LEN); 2524 off -= IP_ADDR_LEN; 2525 2526 while (off > 0) { 2527 bcopy(opt + off, 2528 buf + off + IP_ADDR_LEN, 2529 IP_ADDR_LEN); 2530 off -= IP_ADDR_LEN; 2531 } 2532 /* ipha_dst into first slot */ 2533 bcopy(&dst, buf + off + IP_ADDR_LEN, 2534 IP_ADDR_LEN); 2535 buf += optlen; 2536 len += optlen; 2537 break; 2538 2539 default: 2540 bcopy(opt, buf, optlen); 2541 buf += optlen; 2542 len += optlen; 2543 break; 2544 } 2545 } 2546 done: 2547 /* Pad the resulting options */ 2548 while (len & 0x3) { 2549 *buf++ = IPOPT_EOL; 2550 len++; 2551 } 2552 return (len); 2553 } 2554 2555 /* 2556 * Update any record route or timestamp options to include this host. 2557 * Reverse any source route option. 2558 * This routine assumes that the options are well formed i.e. that they 2559 * have already been checked. 2560 */ 2561 static void 2562 icmp_options_update(ipha_t *ipha) 2563 { 2564 ipoptp_t opts; 2565 uchar_t *opt; 2566 uint8_t optval; 2567 ipaddr_t src; /* Our local address */ 2568 ipaddr_t dst; 2569 2570 ip2dbg(("icmp_options_update\n")); 2571 src = ipha->ipha_src; 2572 dst = ipha->ipha_dst; 2573 2574 for (optval = ipoptp_first(&opts, ipha); 2575 optval != IPOPT_EOL; 2576 optval = ipoptp_next(&opts)) { 2577 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2578 opt = opts.ipoptp_cur; 2579 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2580 optval, opts.ipoptp_len)); 2581 switch (optval) { 2582 int off1, off2; 2583 case IPOPT_SSRR: 2584 case IPOPT_LSRR: 2585 /* 2586 * Reverse the source route. The first entry 2587 * should be the next to last one in the current 2588 * source route (the last entry is our address). 2589 * The last entry should be the final destination. 2590 */ 2591 off1 = IPOPT_MINOFF_SR - 1; 2592 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2593 if (off2 < 0) { 2594 /* No entries in source route */ 2595 ip1dbg(( 2596 "icmp_options_update: bad src route\n")); 2597 break; 2598 } 2599 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2600 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2601 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2602 off2 -= IP_ADDR_LEN; 2603 2604 while (off1 < off2) { 2605 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2606 bcopy((char *)opt + off2, (char *)opt + off1, 2607 IP_ADDR_LEN); 2608 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2609 off1 += IP_ADDR_LEN; 2610 off2 -= IP_ADDR_LEN; 2611 } 2612 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2613 break; 2614 } 2615 } 2616 } 2617 2618 /* 2619 * Process received ICMP Redirect messages. 2620 * Assumes the caller has verified that the headers are in the pulled up mblk. 2621 * Consumes mp. 2622 */ 2623 static void 2624 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2625 { 2626 ire_t *ire, *nire; 2627 ire_t *prev_ire; 2628 ipaddr_t src, dst, gateway; 2629 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2630 ipha_t *inner_ipha; /* Inner IP header */ 2631 2632 /* Caller already pulled up everything. */ 2633 inner_ipha = (ipha_t *)&icmph[1]; 2634 src = ipha->ipha_src; 2635 dst = inner_ipha->ipha_dst; 2636 gateway = icmph->icmph_rd_gateway; 2637 /* Make sure the new gateway is reachable somehow. */ 2638 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2639 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2640 /* 2641 * Make sure we had a route for the dest in question and that 2642 * that route was pointing to the old gateway (the source of the 2643 * redirect packet.) 2644 * We do longest match and then compare ire_gateway_addr below. 2645 */ 2646 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2647 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2648 /* 2649 * Check that 2650 * the redirect was not from ourselves 2651 * the new gateway and the old gateway are directly reachable 2652 */ 2653 if (prev_ire == NULL || ire == NULL || 2654 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2655 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2656 !(ire->ire_type & IRE_IF_ALL) || 2657 prev_ire->ire_gateway_addr != src) { 2658 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2659 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2660 freemsg(mp); 2661 if (ire != NULL) 2662 ire_refrele(ire); 2663 if (prev_ire != NULL) 2664 ire_refrele(prev_ire); 2665 return; 2666 } 2667 2668 ire_refrele(prev_ire); 2669 ire_refrele(ire); 2670 2671 /* 2672 * TODO: more precise handling for cases 0, 2, 3, the latter two 2673 * require TOS routing 2674 */ 2675 switch (icmph->icmph_code) { 2676 case 0: 2677 case 1: 2678 /* TODO: TOS specificity for cases 2 and 3 */ 2679 case 2: 2680 case 3: 2681 break; 2682 default: 2683 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2684 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2685 freemsg(mp); 2686 return; 2687 } 2688 /* 2689 * Create a Route Association. This will allow us to remember that 2690 * someone we believe told us to use the particular gateway. 2691 */ 2692 ire = ire_create( 2693 (uchar_t *)&dst, /* dest addr */ 2694 (uchar_t *)&ip_g_all_ones, /* mask */ 2695 (uchar_t *)&gateway, /* gateway addr */ 2696 IRE_HOST, 2697 NULL, /* ill */ 2698 ALL_ZONES, 2699 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2700 NULL, /* tsol_gc_t */ 2701 ipst); 2702 2703 if (ire == NULL) { 2704 freemsg(mp); 2705 return; 2706 } 2707 nire = ire_add(ire); 2708 /* Check if it was a duplicate entry */ 2709 if (nire != NULL && nire != ire) { 2710 ASSERT(nire->ire_identical_ref > 1); 2711 ire_delete(nire); 2712 ire_refrele(nire); 2713 nire = NULL; 2714 } 2715 ire = nire; 2716 if (ire != NULL) { 2717 ire_refrele(ire); /* Held in ire_add */ 2718 2719 /* tell routing sockets that we received a redirect */ 2720 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2721 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2722 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2723 } 2724 2725 /* 2726 * Delete any existing IRE_HOST type redirect ires for this destination. 2727 * This together with the added IRE has the effect of 2728 * modifying an existing redirect. 2729 */ 2730 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2731 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2732 if (prev_ire != NULL) { 2733 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2734 ire_delete(prev_ire); 2735 ire_refrele(prev_ire); 2736 } 2737 2738 freemsg(mp); 2739 } 2740 2741 /* 2742 * Generate an ICMP parameter problem message. 2743 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2744 * constructed by the caller. 2745 */ 2746 static void 2747 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2748 { 2749 icmph_t icmph; 2750 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2751 2752 mp = icmp_pkt_err_ok(mp, ira); 2753 if (mp == NULL) 2754 return; 2755 2756 bzero(&icmph, sizeof (icmph_t)); 2757 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2758 icmph.icmph_pp_ptr = ptr; 2759 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2760 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2761 } 2762 2763 /* 2764 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2765 * the ICMP header pointed to by "stuff". (May be called as writer.) 2766 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2767 * an icmp error packet can be sent. 2768 * Assigns an appropriate source address to the packet. If ipha_dst is 2769 * one of our addresses use it for source. Otherwise let ip_output_simple 2770 * pick the source address. 2771 */ 2772 static void 2773 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2774 { 2775 ipaddr_t dst; 2776 icmph_t *icmph; 2777 ipha_t *ipha; 2778 uint_t len_needed; 2779 size_t msg_len; 2780 mblk_t *mp1; 2781 ipaddr_t src; 2782 ire_t *ire; 2783 ip_xmit_attr_t ixas; 2784 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2785 2786 ipha = (ipha_t *)mp->b_rptr; 2787 2788 bzero(&ixas, sizeof (ixas)); 2789 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2790 ixas.ixa_zoneid = ira->ira_zoneid; 2791 ixas.ixa_ifindex = 0; 2792 ixas.ixa_ipst = ipst; 2793 ixas.ixa_cred = kcred; 2794 ixas.ixa_cpid = NOPID; 2795 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2796 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2797 2798 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2799 /* 2800 * Apply IPsec based on how IPsec was applied to 2801 * the packet that had the error. 2802 * 2803 * If it was an outbound packet that caused the ICMP 2804 * error, then the caller will have setup the IRA 2805 * appropriately. 2806 */ 2807 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2808 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2809 /* Note: mp already consumed and ip_drop_packet done */ 2810 return; 2811 } 2812 } else { 2813 /* 2814 * This is in clear. The icmp message we are building 2815 * here should go out in clear, independent of our policy. 2816 */ 2817 ixas.ixa_flags |= IXAF_NO_IPSEC; 2818 } 2819 2820 /* Remember our eventual destination */ 2821 dst = ipha->ipha_src; 2822 2823 /* 2824 * If the packet was for one of our unicast addresses, make 2825 * sure we respond with that as the source. Otherwise 2826 * have ip_output_simple pick the source address. 2827 */ 2828 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2829 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2830 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2831 if (ire != NULL) { 2832 ire_refrele(ire); 2833 src = ipha->ipha_dst; 2834 } else { 2835 src = INADDR_ANY; 2836 ixas.ixa_flags |= IXAF_SET_SOURCE; 2837 } 2838 2839 /* 2840 * Check if we can send back more then 8 bytes in addition to 2841 * the IP header. We try to send 64 bytes of data and the internal 2842 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2843 */ 2844 len_needed = IPH_HDR_LENGTH(ipha); 2845 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2846 ipha->ipha_protocol == IPPROTO_IPV6) { 2847 if (!pullupmsg(mp, -1)) { 2848 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2849 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2850 freemsg(mp); 2851 return; 2852 } 2853 ipha = (ipha_t *)mp->b_rptr; 2854 2855 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2856 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 2857 len_needed)); 2858 } else { 2859 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2860 2861 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2862 len_needed += ip_hdr_length_v6(mp, ip6h); 2863 } 2864 } 2865 len_needed += ipst->ips_ip_icmp_return; 2866 msg_len = msgdsize(mp); 2867 if (msg_len > len_needed) { 2868 (void) adjmsg(mp, len_needed - msg_len); 2869 msg_len = len_needed; 2870 } 2871 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2872 if (mp1 == NULL) { 2873 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2874 freemsg(mp); 2875 return; 2876 } 2877 mp1->b_cont = mp; 2878 mp = mp1; 2879 2880 /* 2881 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2882 * node generates be accepted in peace by all on-host destinations. 2883 * If we do NOT assume that all on-host destinations trust 2884 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2885 * (Look for IXAF_TRUSTED_ICMP). 2886 */ 2887 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2888 2889 ipha = (ipha_t *)mp->b_rptr; 2890 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2891 *ipha = icmp_ipha; 2892 ipha->ipha_src = src; 2893 ipha->ipha_dst = dst; 2894 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2895 msg_len += sizeof (icmp_ipha) + len; 2896 if (msg_len > IP_MAXPACKET) { 2897 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2898 msg_len = IP_MAXPACKET; 2899 } 2900 ipha->ipha_length = htons((uint16_t)msg_len); 2901 icmph = (icmph_t *)&ipha[1]; 2902 bcopy(stuff, icmph, len); 2903 icmph->icmph_checksum = 0; 2904 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2905 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2906 2907 (void) ip_output_simple(mp, &ixas); 2908 ixa_cleanup(&ixas); 2909 } 2910 2911 /* 2912 * Determine if an ICMP error packet can be sent given the rate limit. 2913 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2914 * in milliseconds) and a burst size. Burst size number of packets can 2915 * be sent arbitrarely closely spaced. 2916 * The state is tracked using two variables to implement an approximate 2917 * token bucket filter: 2918 * icmp_pkt_err_last - lbolt value when the last burst started 2919 * icmp_pkt_err_sent - number of packets sent in current burst 2920 */ 2921 boolean_t 2922 icmp_err_rate_limit(ip_stack_t *ipst) 2923 { 2924 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2925 uint_t refilled; /* Number of packets refilled in tbf since last */ 2926 /* Guard against changes by loading into local variable */ 2927 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2928 2929 if (err_interval == 0) 2930 return (B_FALSE); 2931 2932 if (ipst->ips_icmp_pkt_err_last > now) { 2933 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2934 ipst->ips_icmp_pkt_err_last = 0; 2935 ipst->ips_icmp_pkt_err_sent = 0; 2936 } 2937 /* 2938 * If we are in a burst update the token bucket filter. 2939 * Update the "last" time to be close to "now" but make sure 2940 * we don't loose precision. 2941 */ 2942 if (ipst->ips_icmp_pkt_err_sent != 0) { 2943 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2944 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2945 ipst->ips_icmp_pkt_err_sent = 0; 2946 } else { 2947 ipst->ips_icmp_pkt_err_sent -= refilled; 2948 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2949 } 2950 } 2951 if (ipst->ips_icmp_pkt_err_sent == 0) { 2952 /* Start of new burst */ 2953 ipst->ips_icmp_pkt_err_last = now; 2954 } 2955 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2956 ipst->ips_icmp_pkt_err_sent++; 2957 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2958 ipst->ips_icmp_pkt_err_sent)); 2959 return (B_FALSE); 2960 } 2961 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2962 return (B_TRUE); 2963 } 2964 2965 /* 2966 * Check if it is ok to send an IPv4 ICMP error packet in 2967 * response to the IPv4 packet in mp. 2968 * Free the message and return null if no 2969 * ICMP error packet should be sent. 2970 */ 2971 static mblk_t * 2972 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 2973 { 2974 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2975 icmph_t *icmph; 2976 ipha_t *ipha; 2977 uint_t len_needed; 2978 2979 if (!mp) 2980 return (NULL); 2981 ipha = (ipha_t *)mp->b_rptr; 2982 if (ip_csum_hdr(ipha)) { 2983 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 2984 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 2985 freemsg(mp); 2986 return (NULL); 2987 } 2988 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 2989 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 2990 CLASSD(ipha->ipha_dst) || 2991 CLASSD(ipha->ipha_src) || 2992 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 2993 /* Note: only errors to the fragment with offset 0 */ 2994 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 2995 freemsg(mp); 2996 return (NULL); 2997 } 2998 if (ipha->ipha_protocol == IPPROTO_ICMP) { 2999 /* 3000 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3001 * errors in response to any ICMP errors. 3002 */ 3003 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3004 if (mp->b_wptr - mp->b_rptr < len_needed) { 3005 if (!pullupmsg(mp, len_needed)) { 3006 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3007 freemsg(mp); 3008 return (NULL); 3009 } 3010 ipha = (ipha_t *)mp->b_rptr; 3011 } 3012 icmph = (icmph_t *) 3013 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3014 switch (icmph->icmph_type) { 3015 case ICMP_DEST_UNREACHABLE: 3016 case ICMP_SOURCE_QUENCH: 3017 case ICMP_TIME_EXCEEDED: 3018 case ICMP_PARAM_PROBLEM: 3019 case ICMP_REDIRECT: 3020 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3021 freemsg(mp); 3022 return (NULL); 3023 default: 3024 break; 3025 } 3026 } 3027 /* 3028 * If this is a labeled system, then check to see if we're allowed to 3029 * send a response to this particular sender. If not, then just drop. 3030 */ 3031 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3032 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3033 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3034 freemsg(mp); 3035 return (NULL); 3036 } 3037 if (icmp_err_rate_limit(ipst)) { 3038 /* 3039 * Only send ICMP error packets every so often. 3040 * This should be done on a per port/source basis, 3041 * but for now this will suffice. 3042 */ 3043 freemsg(mp); 3044 return (NULL); 3045 } 3046 return (mp); 3047 } 3048 3049 /* 3050 * Called when a packet was sent out the same link that it arrived on. 3051 * Check if it is ok to send a redirect and then send it. 3052 */ 3053 void 3054 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3055 ip_recv_attr_t *ira) 3056 { 3057 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3058 ipaddr_t src, nhop; 3059 mblk_t *mp1; 3060 ire_t *nhop_ire; 3061 3062 /* 3063 * Check the source address to see if it originated 3064 * on the same logical subnet it is going back out on. 3065 * If so, we should be able to send it a redirect. 3066 * Avoid sending a redirect if the destination 3067 * is directly connected (i.e., we matched an IRE_ONLINK), 3068 * or if the packet was source routed out this interface. 3069 * 3070 * We avoid sending a redirect if the 3071 * destination is directly connected 3072 * because it is possible that multiple 3073 * IP subnets may have been configured on 3074 * the link, and the source may not 3075 * be on the same subnet as ip destination, 3076 * even though they are on the same 3077 * physical link. 3078 */ 3079 if ((ire->ire_type & IRE_ONLINK) || 3080 ip_source_routed(ipha, ipst)) 3081 return; 3082 3083 nhop_ire = ire_nexthop(ire); 3084 if (nhop_ire == NULL) 3085 return; 3086 3087 nhop = nhop_ire->ire_addr; 3088 3089 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3090 ire_t *ire2; 3091 3092 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3093 mutex_enter(&nhop_ire->ire_lock); 3094 ire2 = nhop_ire->ire_dep_parent; 3095 if (ire2 != NULL) 3096 ire_refhold(ire2); 3097 mutex_exit(&nhop_ire->ire_lock); 3098 ire_refrele(nhop_ire); 3099 nhop_ire = ire2; 3100 } 3101 if (nhop_ire == NULL) 3102 return; 3103 3104 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3105 3106 src = ipha->ipha_src; 3107 3108 /* 3109 * We look at the interface ire for the nexthop, 3110 * to see if ipha_src is in the same subnet 3111 * as the nexthop. 3112 */ 3113 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3114 /* 3115 * The source is directly connected. 3116 */ 3117 mp1 = copymsg(mp); 3118 if (mp1 != NULL) { 3119 icmp_send_redirect(mp1, nhop, ira); 3120 } 3121 } 3122 ire_refrele(nhop_ire); 3123 } 3124 3125 /* 3126 * Generate an ICMP redirect message. 3127 */ 3128 static void 3129 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3130 { 3131 icmph_t icmph; 3132 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3133 3134 mp = icmp_pkt_err_ok(mp, ira); 3135 if (mp == NULL) 3136 return; 3137 3138 bzero(&icmph, sizeof (icmph_t)); 3139 icmph.icmph_type = ICMP_REDIRECT; 3140 icmph.icmph_code = 1; 3141 icmph.icmph_rd_gateway = gateway; 3142 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3143 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3144 } 3145 3146 /* 3147 * Generate an ICMP time exceeded message. 3148 */ 3149 void 3150 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3151 { 3152 icmph_t icmph; 3153 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3154 3155 mp = icmp_pkt_err_ok(mp, ira); 3156 if (mp == NULL) 3157 return; 3158 3159 bzero(&icmph, sizeof (icmph_t)); 3160 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3161 icmph.icmph_code = code; 3162 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3163 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3164 } 3165 3166 /* 3167 * Generate an ICMP unreachable message. 3168 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3169 * constructed by the caller. 3170 */ 3171 void 3172 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3173 { 3174 icmph_t icmph; 3175 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3176 3177 mp = icmp_pkt_err_ok(mp, ira); 3178 if (mp == NULL) 3179 return; 3180 3181 bzero(&icmph, sizeof (icmph_t)); 3182 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3183 icmph.icmph_code = code; 3184 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3185 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3186 } 3187 3188 /* 3189 * Latch in the IPsec state for a stream based the policy in the listener 3190 * and the actions in the ip_recv_attr_t. 3191 * Called directly from TCP and SCTP. 3192 */ 3193 boolean_t 3194 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3195 { 3196 ASSERT(lconnp->conn_policy != NULL); 3197 ASSERT(connp->conn_policy == NULL); 3198 3199 IPPH_REFHOLD(lconnp->conn_policy); 3200 connp->conn_policy = lconnp->conn_policy; 3201 3202 if (ira->ira_ipsec_action != NULL) { 3203 if (connp->conn_latch == NULL) { 3204 connp->conn_latch = iplatch_create(); 3205 if (connp->conn_latch == NULL) 3206 return (B_FALSE); 3207 } 3208 ipsec_latch_inbound(connp, ira); 3209 } 3210 return (B_TRUE); 3211 } 3212 3213 /* 3214 * Verify whether or not the IP address is a valid local address. 3215 * Could be a unicast, including one for a down interface. 3216 * If allow_mcbc then a multicast or broadcast address is also 3217 * acceptable. 3218 * 3219 * In the case of a broadcast/multicast address, however, the 3220 * upper protocol is expected to reset the src address 3221 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3222 * no packets are emitted with broadcast/multicast address as 3223 * source address (that violates hosts requirements RFC 1122) 3224 * The addresses valid for bind are: 3225 * (1) - INADDR_ANY (0) 3226 * (2) - IP address of an UP interface 3227 * (3) - IP address of a DOWN interface 3228 * (4) - valid local IP broadcast addresses. In this case 3229 * the conn will only receive packets destined to 3230 * the specified broadcast address. 3231 * (5) - a multicast address. In this case 3232 * the conn will only receive packets destined to 3233 * the specified multicast address. Note: the 3234 * application still has to issue an 3235 * IP_ADD_MEMBERSHIP socket option. 3236 * 3237 * In all the above cases, the bound address must be valid in the current zone. 3238 * When the address is loopback, multicast or broadcast, there might be many 3239 * matching IREs so bind has to look up based on the zone. 3240 */ 3241 ip_laddr_t 3242 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3243 ip_stack_t *ipst, boolean_t allow_mcbc) 3244 { 3245 ire_t *src_ire; 3246 3247 ASSERT(src_addr != INADDR_ANY); 3248 3249 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3250 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3251 3252 /* 3253 * If an address other than in6addr_any is requested, 3254 * we verify that it is a valid address for bind 3255 * Note: Following code is in if-else-if form for 3256 * readability compared to a condition check. 3257 */ 3258 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3259 /* 3260 * (2) Bind to address of local UP interface 3261 */ 3262 ire_refrele(src_ire); 3263 return (IPVL_UNICAST_UP); 3264 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3265 /* 3266 * (4) Bind to broadcast address 3267 */ 3268 ire_refrele(src_ire); 3269 if (allow_mcbc) 3270 return (IPVL_BCAST); 3271 else 3272 return (IPVL_BAD); 3273 } else if (CLASSD(src_addr)) { 3274 /* (5) bind to multicast address. */ 3275 if (src_ire != NULL) 3276 ire_refrele(src_ire); 3277 3278 if (allow_mcbc) 3279 return (IPVL_MCAST); 3280 else 3281 return (IPVL_BAD); 3282 } else { 3283 ipif_t *ipif; 3284 3285 /* 3286 * (3) Bind to address of local DOWN interface? 3287 * (ipif_lookup_addr() looks up all interfaces 3288 * but we do not get here for UP interfaces 3289 * - case (2) above) 3290 */ 3291 if (src_ire != NULL) 3292 ire_refrele(src_ire); 3293 3294 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3295 if (ipif == NULL) 3296 return (IPVL_BAD); 3297 3298 /* Not a useful source? */ 3299 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3300 ipif_refrele(ipif); 3301 return (IPVL_BAD); 3302 } 3303 ipif_refrele(ipif); 3304 return (IPVL_UNICAST_DOWN); 3305 } 3306 } 3307 3308 /* 3309 * Insert in the bind fanout for IPv4 and IPv6. 3310 * The caller should already have used ip_laddr_verify_v*() before calling 3311 * this. 3312 */ 3313 int 3314 ip_laddr_fanout_insert(conn_t *connp) 3315 { 3316 int error; 3317 3318 /* 3319 * Allow setting new policies. For example, disconnects result 3320 * in us being called. As we would have set conn_policy_cached 3321 * to B_TRUE before, we should set it to B_FALSE, so that policy 3322 * can change after the disconnect. 3323 */ 3324 connp->conn_policy_cached = B_FALSE; 3325 3326 error = ipcl_bind_insert(connp); 3327 if (error != 0) { 3328 if (connp->conn_anon_port) { 3329 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3330 connp->conn_mlp_type, connp->conn_proto, 3331 ntohs(connp->conn_lport), B_FALSE); 3332 } 3333 connp->conn_mlp_type = mlptSingle; 3334 } 3335 return (error); 3336 } 3337 3338 /* 3339 * Verify that both the source and destination addresses are valid. If 3340 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3341 * i.e. have no route to it. Protocols like TCP want to verify destination 3342 * reachability, while tunnels do not. 3343 * 3344 * Determine the route, the interface, and (optionally) the source address 3345 * to use to reach a given destination. 3346 * Note that we allow connect to broadcast and multicast addresses when 3347 * IPDF_ALLOW_MCBC is set. 3348 * first_hop and dst_addr are normally the same, but if source routing 3349 * they will differ; in that case the first_hop is what we'll use for the 3350 * routing lookup but the dce and label checks will be done on dst_addr, 3351 * 3352 * If uinfo is set, then we fill in the best available information 3353 * we have for the destination. This is based on (in priority order) any 3354 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3355 * ill_mtu/ill_mc_mtu. 3356 * 3357 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3358 * always do the label check on dst_addr. 3359 */ 3360 int 3361 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3362 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3363 { 3364 ire_t *ire = NULL; 3365 int error = 0; 3366 ipaddr_t setsrc; /* RTF_SETSRC */ 3367 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3368 ip_stack_t *ipst = ixa->ixa_ipst; 3369 dce_t *dce; 3370 uint_t pmtu; 3371 uint_t generation; 3372 nce_t *nce; 3373 ill_t *ill = NULL; 3374 boolean_t multirt = B_FALSE; 3375 3376 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3377 3378 /* 3379 * We never send to zero; the ULPs map it to the loopback address. 3380 * We can't allow it since we use zero to mean unitialized in some 3381 * places. 3382 */ 3383 ASSERT(dst_addr != INADDR_ANY); 3384 3385 if (is_system_labeled()) { 3386 ts_label_t *tsl = NULL; 3387 3388 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3389 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3390 if (error != 0) 3391 return (error); 3392 if (tsl != NULL) { 3393 /* Update the label */ 3394 ip_xmit_attr_replace_tsl(ixa, tsl); 3395 } 3396 } 3397 3398 setsrc = INADDR_ANY; 3399 /* 3400 * Select a route; For IPMP interfaces, we would only select 3401 * a "hidden" route (i.e., going through a specific under_ill) 3402 * if ixa_ifindex has been specified. 3403 */ 3404 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3405 &generation, &setsrc, &error, &multirt); 3406 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3407 if (error != 0) 3408 goto bad_addr; 3409 3410 /* 3411 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3412 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3413 * Otherwise the destination needn't be reachable. 3414 * 3415 * If we match on a reject or black hole, then we've got a 3416 * local failure. May as well fail out the connect() attempt, 3417 * since it's never going to succeed. 3418 */ 3419 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3420 /* 3421 * If we're verifying destination reachability, we always want 3422 * to complain here. 3423 * 3424 * If we're not verifying destination reachability but the 3425 * destination has a route, we still want to fail on the 3426 * temporary address and broadcast address tests. 3427 * 3428 * In both cases do we let the code continue so some reasonable 3429 * information is returned to the caller. That enables the 3430 * caller to use (and even cache) the IRE. conn_ip_ouput will 3431 * use the generation mismatch path to check for the unreachable 3432 * case thereby avoiding any specific check in the main path. 3433 */ 3434 ASSERT(generation == IRE_GENERATION_VERIFY); 3435 if (flags & IPDF_VERIFY_DST) { 3436 /* 3437 * Set errno but continue to set up ixa_ire to be 3438 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3439 * That allows callers to use ip_output to get an 3440 * ICMP error back. 3441 */ 3442 if (!(ire->ire_type & IRE_HOST)) 3443 error = ENETUNREACH; 3444 else 3445 error = EHOSTUNREACH; 3446 } 3447 } 3448 3449 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3450 !(flags & IPDF_ALLOW_MCBC)) { 3451 ire_refrele(ire); 3452 ire = ire_reject(ipst, B_FALSE); 3453 generation = IRE_GENERATION_VERIFY; 3454 error = ENETUNREACH; 3455 } 3456 3457 /* Cache things */ 3458 if (ixa->ixa_ire != NULL) 3459 ire_refrele_notr(ixa->ixa_ire); 3460 #ifdef DEBUG 3461 ire_refhold_notr(ire); 3462 ire_refrele(ire); 3463 #endif 3464 ixa->ixa_ire = ire; 3465 ixa->ixa_ire_generation = generation; 3466 3467 /* 3468 * Ensure that ixa_dce is always set any time that ixa_ire is set, 3469 * since some callers will send a packet to conn_ip_output() even if 3470 * there's an error. 3471 */ 3472 if (flags & IPDF_UNIQUE_DCE) { 3473 /* Fallback to the default dce if allocation fails */ 3474 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3475 if (dce != NULL) 3476 generation = dce->dce_generation; 3477 else 3478 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3479 } else { 3480 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3481 } 3482 ASSERT(dce != NULL); 3483 if (ixa->ixa_dce != NULL) 3484 dce_refrele_notr(ixa->ixa_dce); 3485 #ifdef DEBUG 3486 dce_refhold_notr(dce); 3487 dce_refrele(dce); 3488 #endif 3489 ixa->ixa_dce = dce; 3490 ixa->ixa_dce_generation = generation; 3491 3492 /* 3493 * For multicast with multirt we have a flag passed back from 3494 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3495 * possible multicast address. 3496 * We also need a flag for multicast since we can't check 3497 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3498 */ 3499 if (multirt) { 3500 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3501 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3502 } else { 3503 ixa->ixa_postfragfn = ire->ire_postfragfn; 3504 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3505 } 3506 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3507 /* Get an nce to cache. */ 3508 nce = ire_to_nce(ire, firsthop, NULL); 3509 if (nce == NULL) { 3510 /* Allocation failure? */ 3511 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3512 } else { 3513 if (ixa->ixa_nce != NULL) 3514 nce_refrele(ixa->ixa_nce); 3515 ixa->ixa_nce = nce; 3516 } 3517 } 3518 3519 /* 3520 * If the source address is a loopback address, the 3521 * destination had best be local or multicast. 3522 * If we are sending to an IRE_LOCAL using a loopback source then 3523 * it had better be the same zoneid. 3524 */ 3525 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3526 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3527 ire = NULL; /* Stored in ixa_ire */ 3528 error = EADDRNOTAVAIL; 3529 goto bad_addr; 3530 } 3531 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3532 ire = NULL; /* Stored in ixa_ire */ 3533 error = EADDRNOTAVAIL; 3534 goto bad_addr; 3535 } 3536 } 3537 if (ire->ire_type & IRE_BROADCAST) { 3538 /* 3539 * If the ULP didn't have a specified source, then we 3540 * make sure we reselect the source when sending 3541 * broadcasts out different interfaces. 3542 */ 3543 if (flags & IPDF_SELECT_SRC) 3544 ixa->ixa_flags |= IXAF_SET_SOURCE; 3545 else 3546 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3547 } 3548 3549 /* 3550 * Does the caller want us to pick a source address? 3551 */ 3552 if (flags & IPDF_SELECT_SRC) { 3553 ipaddr_t src_addr; 3554 3555 /* 3556 * We use use ire_nexthop_ill to avoid the under ipmp 3557 * interface for source address selection. Note that for ipmp 3558 * probe packets, ixa_ifindex would have been specified, and 3559 * the ip_select_route() invocation would have picked an ire 3560 * will ire_ill pointing at an under interface. 3561 */ 3562 ill = ire_nexthop_ill(ire); 3563 3564 /* If unreachable we have no ill but need some source */ 3565 if (ill == NULL) { 3566 src_addr = htonl(INADDR_LOOPBACK); 3567 /* Make sure we look for a better source address */ 3568 generation = SRC_GENERATION_VERIFY; 3569 } else { 3570 error = ip_select_source_v4(ill, setsrc, dst_addr, 3571 ixa->ixa_multicast_ifaddr, zoneid, 3572 ipst, &src_addr, &generation, NULL); 3573 if (error != 0) { 3574 ire = NULL; /* Stored in ixa_ire */ 3575 goto bad_addr; 3576 } 3577 } 3578 3579 /* 3580 * We allow the source address to to down. 3581 * However, we check that we don't use the loopback address 3582 * as a source when sending out on the wire. 3583 */ 3584 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3585 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3586 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3587 ire = NULL; /* Stored in ixa_ire */ 3588 error = EADDRNOTAVAIL; 3589 goto bad_addr; 3590 } 3591 3592 *src_addrp = src_addr; 3593 ixa->ixa_src_generation = generation; 3594 } 3595 3596 /* 3597 * Make sure we don't leave an unreachable ixa_nce in place 3598 * since ip_select_route is used when we unplumb i.e., remove 3599 * references on ixa_ire, ixa_nce, and ixa_dce. 3600 */ 3601 nce = ixa->ixa_nce; 3602 if (nce != NULL && nce->nce_is_condemned) { 3603 nce_refrele(nce); 3604 ixa->ixa_nce = NULL; 3605 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3606 } 3607 3608 /* 3609 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3610 * However, we can't do it for IPv4 multicast or broadcast. 3611 */ 3612 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3613 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3614 3615 /* 3616 * Set initial value for fragmentation limit. Either conn_ip_output 3617 * or ULP might updates it when there are routing changes. 3618 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3619 */ 3620 pmtu = ip_get_pmtu(ixa); 3621 ixa->ixa_fragsize = pmtu; 3622 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3623 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3624 ixa->ixa_pmtu = pmtu; 3625 3626 /* 3627 * Extract information useful for some transports. 3628 * First we look for DCE metrics. Then we take what we have in 3629 * the metrics in the route, where the offlink is used if we have 3630 * one. 3631 */ 3632 if (uinfo != NULL) { 3633 bzero(uinfo, sizeof (*uinfo)); 3634 3635 if (dce->dce_flags & DCEF_UINFO) 3636 *uinfo = dce->dce_uinfo; 3637 3638 rts_merge_metrics(uinfo, &ire->ire_metrics); 3639 3640 /* Allow ire_metrics to decrease the path MTU from above */ 3641 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3642 uinfo->iulp_mtu = pmtu; 3643 3644 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3645 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3646 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3647 } 3648 3649 if (ill != NULL) 3650 ill_refrele(ill); 3651 3652 return (error); 3653 3654 bad_addr: 3655 if (ire != NULL) 3656 ire_refrele(ire); 3657 3658 if (ill != NULL) 3659 ill_refrele(ill); 3660 3661 /* 3662 * Make sure we don't leave an unreachable ixa_nce in place 3663 * since ip_select_route is used when we unplumb i.e., remove 3664 * references on ixa_ire, ixa_nce, and ixa_dce. 3665 */ 3666 nce = ixa->ixa_nce; 3667 if (nce != NULL && nce->nce_is_condemned) { 3668 nce_refrele(nce); 3669 ixa->ixa_nce = NULL; 3670 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3671 } 3672 3673 return (error); 3674 } 3675 3676 3677 /* 3678 * Get the base MTU for the case when path MTU discovery is not used. 3679 * Takes the MTU of the IRE into account. 3680 */ 3681 uint_t 3682 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3683 { 3684 uint_t mtu; 3685 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3686 3687 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) 3688 mtu = ill->ill_mc_mtu; 3689 else 3690 mtu = ill->ill_mtu; 3691 3692 if (iremtu != 0 && iremtu < mtu) 3693 mtu = iremtu; 3694 3695 return (mtu); 3696 } 3697 3698 /* 3699 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3700 * Assumes that ixa_ire, dce, and nce have already been set up. 3701 * 3702 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3703 * We avoid path MTU discovery if it is disabled with ndd. 3704 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3705 * 3706 * NOTE: We also used to turn it off for source routed packets. That 3707 * is no longer required since the dce is per final destination. 3708 */ 3709 uint_t 3710 ip_get_pmtu(ip_xmit_attr_t *ixa) 3711 { 3712 ip_stack_t *ipst = ixa->ixa_ipst; 3713 dce_t *dce; 3714 nce_t *nce; 3715 ire_t *ire; 3716 uint_t pmtu; 3717 3718 ire = ixa->ixa_ire; 3719 dce = ixa->ixa_dce; 3720 nce = ixa->ixa_nce; 3721 3722 /* 3723 * If path MTU discovery has been turned off by ndd, then we ignore 3724 * any dce_pmtu and for IPv4 we will not set DF. 3725 */ 3726 if (!ipst->ips_ip_path_mtu_discovery) 3727 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3728 3729 pmtu = IP_MAXPACKET; 3730 /* 3731 * Decide whether whether IPv4 sets DF 3732 * For IPv6 "no DF" means to use the 1280 mtu 3733 */ 3734 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3735 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3736 } else { 3737 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3738 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3739 pmtu = IPV6_MIN_MTU; 3740 } 3741 3742 /* Check if the PMTU is to old before we use it */ 3743 if ((dce->dce_flags & DCEF_PMTU) && 3744 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3745 ipst->ips_ip_pathmtu_interval) { 3746 /* 3747 * Older than 20 minutes. Drop the path MTU information. 3748 */ 3749 mutex_enter(&dce->dce_lock); 3750 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3751 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3752 mutex_exit(&dce->dce_lock); 3753 dce_increment_generation(dce); 3754 } 3755 3756 /* The metrics on the route can lower the path MTU */ 3757 if (ire->ire_metrics.iulp_mtu != 0 && 3758 ire->ire_metrics.iulp_mtu < pmtu) 3759 pmtu = ire->ire_metrics.iulp_mtu; 3760 3761 /* 3762 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3763 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3764 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3765 */ 3766 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3767 if (dce->dce_flags & DCEF_PMTU) { 3768 if (dce->dce_pmtu < pmtu) 3769 pmtu = dce->dce_pmtu; 3770 3771 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3772 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3773 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3774 } else { 3775 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3776 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3777 } 3778 } else { 3779 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3780 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3781 } 3782 } 3783 3784 /* 3785 * If we have an IRE_LOCAL we use the loopback mtu instead of 3786 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3787 * mtu as IRE_LOOPBACK. 3788 */ 3789 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3790 uint_t loopback_mtu; 3791 3792 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3793 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3794 3795 if (loopback_mtu < pmtu) 3796 pmtu = loopback_mtu; 3797 } else if (nce != NULL) { 3798 /* 3799 * Make sure we don't exceed the interface MTU. 3800 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3801 * an ill. We'd use the above IP_MAXPACKET in that case just 3802 * to tell the transport something larger than zero. 3803 */ 3804 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) { 3805 if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu) 3806 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu; 3807 if (nce->nce_common->ncec_ill != nce->nce_ill && 3808 nce->nce_ill->ill_mc_mtu < pmtu) { 3809 /* 3810 * for interfaces in an IPMP group, the mtu of 3811 * the nce_ill (under_ill) could be different 3812 * from the mtu of the ncec_ill, so we take the 3813 * min of the two. 3814 */ 3815 pmtu = nce->nce_ill->ill_mc_mtu; 3816 } 3817 } else { 3818 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3819 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3820 if (nce->nce_common->ncec_ill != nce->nce_ill && 3821 nce->nce_ill->ill_mtu < pmtu) { 3822 /* 3823 * for interfaces in an IPMP group, the mtu of 3824 * the nce_ill (under_ill) could be different 3825 * from the mtu of the ncec_ill, so we take the 3826 * min of the two. 3827 */ 3828 pmtu = nce->nce_ill->ill_mtu; 3829 } 3830 } 3831 } 3832 3833 /* 3834 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3835 * Only applies to IPv6. 3836 */ 3837 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3838 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3839 switch (ixa->ixa_use_min_mtu) { 3840 case IPV6_USE_MIN_MTU_MULTICAST: 3841 if (ire->ire_type & IRE_MULTICAST) 3842 pmtu = IPV6_MIN_MTU; 3843 break; 3844 case IPV6_USE_MIN_MTU_ALWAYS: 3845 pmtu = IPV6_MIN_MTU; 3846 break; 3847 case IPV6_USE_MIN_MTU_NEVER: 3848 break; 3849 } 3850 } else { 3851 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3852 if (ire->ire_type & IRE_MULTICAST) 3853 pmtu = IPV6_MIN_MTU; 3854 } 3855 } 3856 3857 /* 3858 * For multirouted IPv6 packets, the IP layer will insert a 8-byte 3859 * fragment header in every packet. We compensate for those cases by 3860 * returning a smaller path MTU to the ULP. 3861 * 3862 * In the case of CGTP then ip_output will add a fragment header. 3863 * Make sure there is room for it by telling a smaller number 3864 * to the transport. 3865 * 3866 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3867 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3868 * which is the size of the packets it can send. 3869 */ 3870 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3871 if ((ire->ire_flags & RTF_MULTIRT) || 3872 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3873 pmtu -= sizeof (ip6_frag_t); 3874 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3875 } 3876 } 3877 3878 return (pmtu); 3879 } 3880 3881 /* 3882 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3883 * the final piece where we don't. Return a pointer to the first mblk in the 3884 * result, and update the pointer to the next mblk to chew on. If anything 3885 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3886 * NULL pointer. 3887 */ 3888 mblk_t * 3889 ip_carve_mp(mblk_t **mpp, ssize_t len) 3890 { 3891 mblk_t *mp0; 3892 mblk_t *mp1; 3893 mblk_t *mp2; 3894 3895 if (!len || !mpp || !(mp0 = *mpp)) 3896 return (NULL); 3897 /* If we aren't going to consume the first mblk, we need a dup. */ 3898 if (mp0->b_wptr - mp0->b_rptr > len) { 3899 mp1 = dupb(mp0); 3900 if (mp1) { 3901 /* Partition the data between the two mblks. */ 3902 mp1->b_wptr = mp1->b_rptr + len; 3903 mp0->b_rptr = mp1->b_wptr; 3904 /* 3905 * after adjustments if mblk not consumed is now 3906 * unaligned, try to align it. If this fails free 3907 * all messages and let upper layer recover. 3908 */ 3909 if (!OK_32PTR(mp0->b_rptr)) { 3910 if (!pullupmsg(mp0, -1)) { 3911 freemsg(mp0); 3912 freemsg(mp1); 3913 *mpp = NULL; 3914 return (NULL); 3915 } 3916 } 3917 } 3918 return (mp1); 3919 } 3920 /* Eat through as many mblks as we need to get len bytes. */ 3921 len -= mp0->b_wptr - mp0->b_rptr; 3922 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3923 if (mp2->b_wptr - mp2->b_rptr > len) { 3924 /* 3925 * We won't consume the entire last mblk. Like 3926 * above, dup and partition it. 3927 */ 3928 mp1->b_cont = dupb(mp2); 3929 mp1 = mp1->b_cont; 3930 if (!mp1) { 3931 /* 3932 * Trouble. Rather than go to a lot of 3933 * trouble to clean up, we free the messages. 3934 * This won't be any worse than losing it on 3935 * the wire. 3936 */ 3937 freemsg(mp0); 3938 freemsg(mp2); 3939 *mpp = NULL; 3940 return (NULL); 3941 } 3942 mp1->b_wptr = mp1->b_rptr + len; 3943 mp2->b_rptr = mp1->b_wptr; 3944 /* 3945 * after adjustments if mblk not consumed is now 3946 * unaligned, try to align it. If this fails free 3947 * all messages and let upper layer recover. 3948 */ 3949 if (!OK_32PTR(mp2->b_rptr)) { 3950 if (!pullupmsg(mp2, -1)) { 3951 freemsg(mp0); 3952 freemsg(mp2); 3953 *mpp = NULL; 3954 return (NULL); 3955 } 3956 } 3957 *mpp = mp2; 3958 return (mp0); 3959 } 3960 /* Decrement len by the amount we just got. */ 3961 len -= mp2->b_wptr - mp2->b_rptr; 3962 } 3963 /* 3964 * len should be reduced to zero now. If not our caller has 3965 * screwed up. 3966 */ 3967 if (len) { 3968 /* Shouldn't happen! */ 3969 freemsg(mp0); 3970 *mpp = NULL; 3971 return (NULL); 3972 } 3973 /* 3974 * We consumed up to exactly the end of an mblk. Detach the part 3975 * we are returning from the rest of the chain. 3976 */ 3977 mp1->b_cont = NULL; 3978 *mpp = mp2; 3979 return (mp0); 3980 } 3981 3982 /* The ill stream is being unplumbed. Called from ip_close */ 3983 int 3984 ip_modclose(ill_t *ill) 3985 { 3986 boolean_t success; 3987 ipsq_t *ipsq; 3988 ipif_t *ipif; 3989 queue_t *q = ill->ill_rq; 3990 ip_stack_t *ipst = ill->ill_ipst; 3991 int i; 3992 arl_ill_common_t *ai = ill->ill_common; 3993 3994 /* 3995 * The punlink prior to this may have initiated a capability 3996 * negotiation. But ipsq_enter will block until that finishes or 3997 * times out. 3998 */ 3999 success = ipsq_enter(ill, B_FALSE, NEW_OP); 4000 4001 /* 4002 * Open/close/push/pop is guaranteed to be single threaded 4003 * per stream by STREAMS. FS guarantees that all references 4004 * from top are gone before close is called. So there can't 4005 * be another close thread that has set CONDEMNED on this ill. 4006 * and cause ipsq_enter to return failure. 4007 */ 4008 ASSERT(success); 4009 ipsq = ill->ill_phyint->phyint_ipsq; 4010 4011 /* 4012 * Mark it condemned. No new reference will be made to this ill. 4013 * Lookup functions will return an error. Threads that try to 4014 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4015 * that the refcnt will drop down to zero. 4016 */ 4017 mutex_enter(&ill->ill_lock); 4018 ill->ill_state_flags |= ILL_CONDEMNED; 4019 for (ipif = ill->ill_ipif; ipif != NULL; 4020 ipif = ipif->ipif_next) { 4021 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4022 } 4023 /* 4024 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4025 * returns error if ILL_CONDEMNED is set 4026 */ 4027 cv_broadcast(&ill->ill_cv); 4028 mutex_exit(&ill->ill_lock); 4029 4030 /* 4031 * Send all the deferred DLPI messages downstream which came in 4032 * during the small window right before ipsq_enter(). We do this 4033 * without waiting for the ACKs because all the ACKs for M_PROTO 4034 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4035 */ 4036 ill_dlpi_send_deferred(ill); 4037 4038 /* 4039 * Shut down fragmentation reassembly. 4040 * ill_frag_timer won't start a timer again. 4041 * Now cancel any existing timer 4042 */ 4043 (void) untimeout(ill->ill_frag_timer_id); 4044 (void) ill_frag_timeout(ill, 0); 4045 4046 /* 4047 * Call ill_delete to bring down the ipifs, ilms and ill on 4048 * this ill. Then wait for the refcnts to drop to zero. 4049 * ill_is_freeable checks whether the ill is really quiescent. 4050 * Then make sure that threads that are waiting to enter the 4051 * ipsq have seen the error returned by ipsq_enter and have 4052 * gone away. Then we call ill_delete_tail which does the 4053 * DL_UNBIND_REQ with the driver and then qprocsoff. 4054 */ 4055 ill_delete(ill); 4056 mutex_enter(&ill->ill_lock); 4057 while (!ill_is_freeable(ill)) 4058 cv_wait(&ill->ill_cv, &ill->ill_lock); 4059 4060 while (ill->ill_waiters) 4061 cv_wait(&ill->ill_cv, &ill->ill_lock); 4062 4063 mutex_exit(&ill->ill_lock); 4064 4065 /* 4066 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4067 * it held until the end of the function since the cleanup 4068 * below needs to be able to use the ip_stack_t. 4069 */ 4070 netstack_hold(ipst->ips_netstack); 4071 4072 /* qprocsoff is done via ill_delete_tail */ 4073 ill_delete_tail(ill); 4074 /* 4075 * synchronously wait for arp stream to unbind. After this, we 4076 * cannot get any data packets up from the driver. 4077 */ 4078 arp_unbind_complete(ill); 4079 ASSERT(ill->ill_ipst == NULL); 4080 4081 /* 4082 * Walk through all conns and qenable those that have queued data. 4083 * Close synchronization needs this to 4084 * be done to ensure that all upper layers blocked 4085 * due to flow control to the closing device 4086 * get unblocked. 4087 */ 4088 ip1dbg(("ip_wsrv: walking\n")); 4089 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4090 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4091 } 4092 4093 /* 4094 * ai can be null if this is an IPv6 ill, or if the IPv4 4095 * stream is being torn down before ARP was plumbed (e.g., 4096 * /sbin/ifconfig plumbing a stream twice, and encountering 4097 * an error 4098 */ 4099 if (ai != NULL) { 4100 ASSERT(!ill->ill_isv6); 4101 mutex_enter(&ai->ai_lock); 4102 ai->ai_ill = NULL; 4103 if (ai->ai_arl == NULL) { 4104 mutex_destroy(&ai->ai_lock); 4105 kmem_free(ai, sizeof (*ai)); 4106 } else { 4107 cv_signal(&ai->ai_ill_unplumb_done); 4108 mutex_exit(&ai->ai_lock); 4109 } 4110 } 4111 4112 mutex_enter(&ipst->ips_ip_mi_lock); 4113 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4114 mutex_exit(&ipst->ips_ip_mi_lock); 4115 4116 /* 4117 * credp could be null if the open didn't succeed and ip_modopen 4118 * itself calls ip_close. 4119 */ 4120 if (ill->ill_credp != NULL) 4121 crfree(ill->ill_credp); 4122 4123 mutex_destroy(&ill->ill_saved_ire_lock); 4124 mutex_destroy(&ill->ill_lock); 4125 rw_destroy(&ill->ill_mcast_lock); 4126 mutex_destroy(&ill->ill_mcast_serializer); 4127 list_destroy(&ill->ill_nce); 4128 4129 /* 4130 * Now we are done with the module close pieces that 4131 * need the netstack_t. 4132 */ 4133 netstack_rele(ipst->ips_netstack); 4134 4135 mi_close_free((IDP)ill); 4136 q->q_ptr = WR(q)->q_ptr = NULL; 4137 4138 ipsq_exit(ipsq); 4139 4140 return (0); 4141 } 4142 4143 /* 4144 * This is called as part of close() for IP, UDP, ICMP, and RTS 4145 * in order to quiesce the conn. 4146 */ 4147 void 4148 ip_quiesce_conn(conn_t *connp) 4149 { 4150 boolean_t drain_cleanup_reqd = B_FALSE; 4151 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4152 boolean_t ilg_cleanup_reqd = B_FALSE; 4153 ip_stack_t *ipst; 4154 4155 ASSERT(!IPCL_IS_TCP(connp)); 4156 ipst = connp->conn_netstack->netstack_ip; 4157 4158 /* 4159 * Mark the conn as closing, and this conn must not be 4160 * inserted in future into any list. Eg. conn_drain_insert(), 4161 * won't insert this conn into the conn_drain_list. 4162 * 4163 * conn_idl, and conn_ilg cannot get set henceforth. 4164 */ 4165 mutex_enter(&connp->conn_lock); 4166 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4167 connp->conn_state_flags |= CONN_CLOSING; 4168 if (connp->conn_idl != NULL) 4169 drain_cleanup_reqd = B_TRUE; 4170 if (connp->conn_oper_pending_ill != NULL) 4171 conn_ioctl_cleanup_reqd = B_TRUE; 4172 if (connp->conn_dhcpinit_ill != NULL) { 4173 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4174 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4175 ill_set_inputfn(connp->conn_dhcpinit_ill); 4176 connp->conn_dhcpinit_ill = NULL; 4177 } 4178 if (connp->conn_ilg != NULL) 4179 ilg_cleanup_reqd = B_TRUE; 4180 mutex_exit(&connp->conn_lock); 4181 4182 if (conn_ioctl_cleanup_reqd) 4183 conn_ioctl_cleanup(connp); 4184 4185 if (is_system_labeled() && connp->conn_anon_port) { 4186 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4187 connp->conn_mlp_type, connp->conn_proto, 4188 ntohs(connp->conn_lport), B_FALSE); 4189 connp->conn_anon_port = 0; 4190 } 4191 connp->conn_mlp_type = mlptSingle; 4192 4193 /* 4194 * Remove this conn from any fanout list it is on. 4195 * and then wait for any threads currently operating 4196 * on this endpoint to finish 4197 */ 4198 ipcl_hash_remove(connp); 4199 4200 /* 4201 * Remove this conn from the drain list, and do any other cleanup that 4202 * may be required. (TCP conns are never flow controlled, and 4203 * conn_idl will be NULL.) 4204 */ 4205 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4206 idl_t *idl = connp->conn_idl; 4207 4208 mutex_enter(&idl->idl_lock); 4209 conn_drain(connp, B_TRUE); 4210 mutex_exit(&idl->idl_lock); 4211 } 4212 4213 if (connp == ipst->ips_ip_g_mrouter) 4214 (void) ip_mrouter_done(ipst); 4215 4216 if (ilg_cleanup_reqd) 4217 ilg_delete_all(connp); 4218 4219 /* 4220 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4221 * callers from write side can't be there now because close 4222 * is in progress. The only other caller is ipcl_walk 4223 * which checks for the condemned flag. 4224 */ 4225 mutex_enter(&connp->conn_lock); 4226 connp->conn_state_flags |= CONN_CONDEMNED; 4227 while (connp->conn_ref != 1) 4228 cv_wait(&connp->conn_cv, &connp->conn_lock); 4229 connp->conn_state_flags |= CONN_QUIESCED; 4230 mutex_exit(&connp->conn_lock); 4231 } 4232 4233 /* ARGSUSED */ 4234 int 4235 ip_close(queue_t *q, int flags, cred_t *credp __unused) 4236 { 4237 conn_t *connp; 4238 4239 /* 4240 * Call the appropriate delete routine depending on whether this is 4241 * a module or device. 4242 */ 4243 if (WR(q)->q_next != NULL) { 4244 /* This is a module close */ 4245 return (ip_modclose((ill_t *)q->q_ptr)); 4246 } 4247 4248 connp = q->q_ptr; 4249 ip_quiesce_conn(connp); 4250 4251 qprocsoff(q); 4252 4253 /* 4254 * Now we are truly single threaded on this stream, and can 4255 * delete the things hanging off the connp, and finally the connp. 4256 * We removed this connp from the fanout list, it cannot be 4257 * accessed thru the fanouts, and we already waited for the 4258 * conn_ref to drop to 0. We are already in close, so 4259 * there cannot be any other thread from the top. qprocsoff 4260 * has completed, and service has completed or won't run in 4261 * future. 4262 */ 4263 ASSERT(connp->conn_ref == 1); 4264 4265 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4266 4267 connp->conn_ref--; 4268 ipcl_conn_destroy(connp); 4269 4270 q->q_ptr = WR(q)->q_ptr = NULL; 4271 return (0); 4272 } 4273 4274 /* 4275 * Wapper around putnext() so that ip_rts_request can merely use 4276 * conn_recv. 4277 */ 4278 /*ARGSUSED2*/ 4279 static void 4280 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4281 { 4282 conn_t *connp = (conn_t *)arg1; 4283 4284 putnext(connp->conn_rq, mp); 4285 } 4286 4287 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4288 /* ARGSUSED */ 4289 static void 4290 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4291 { 4292 freemsg(mp); 4293 } 4294 4295 /* 4296 * Called when the module is about to be unloaded 4297 */ 4298 void 4299 ip_ddi_destroy(void) 4300 { 4301 /* This needs to be called before destroying any transports. */ 4302 mutex_enter(&cpu_lock); 4303 unregister_cpu_setup_func(ip_tp_cpu_update, NULL); 4304 mutex_exit(&cpu_lock); 4305 4306 tnet_fini(); 4307 4308 icmp_ddi_g_destroy(); 4309 rts_ddi_g_destroy(); 4310 udp_ddi_g_destroy(); 4311 sctp_ddi_g_destroy(); 4312 tcp_ddi_g_destroy(); 4313 ilb_ddi_g_destroy(); 4314 dce_g_destroy(); 4315 ipsec_policy_g_destroy(); 4316 ipcl_g_destroy(); 4317 ip_net_g_destroy(); 4318 ip_ire_g_fini(); 4319 inet_minor_destroy(ip_minor_arena_sa); 4320 #if defined(_LP64) 4321 inet_minor_destroy(ip_minor_arena_la); 4322 #endif 4323 4324 #ifdef DEBUG 4325 list_destroy(&ip_thread_list); 4326 rw_destroy(&ip_thread_rwlock); 4327 tsd_destroy(&ip_thread_data); 4328 #endif 4329 4330 netstack_unregister(NS_IP); 4331 } 4332 4333 /* 4334 * First step in cleanup. 4335 */ 4336 /* ARGSUSED */ 4337 static void 4338 ip_stack_shutdown(netstackid_t stackid, void *arg) 4339 { 4340 ip_stack_t *ipst = (ip_stack_t *)arg; 4341 kt_did_t ktid; 4342 4343 #ifdef NS_DEBUG 4344 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4345 #endif 4346 4347 /* 4348 * Perform cleanup for special interfaces (loopback and IPMP). 4349 */ 4350 ip_interface_cleanup(ipst); 4351 4352 /* 4353 * The *_hook_shutdown()s start the process of notifying any 4354 * consumers that things are going away.... nothing is destroyed. 4355 */ 4356 ipv4_hook_shutdown(ipst); 4357 ipv6_hook_shutdown(ipst); 4358 arp_hook_shutdown(ipst); 4359 4360 mutex_enter(&ipst->ips_capab_taskq_lock); 4361 ktid = ipst->ips_capab_taskq_thread->t_did; 4362 ipst->ips_capab_taskq_quit = B_TRUE; 4363 cv_signal(&ipst->ips_capab_taskq_cv); 4364 mutex_exit(&ipst->ips_capab_taskq_lock); 4365 4366 /* 4367 * In rare occurrences, particularly on virtual hardware where CPUs can 4368 * be de-scheduled, the thread that we just signaled will not run until 4369 * after we have gotten through parts of ip_stack_fini. If that happens 4370 * then we'll try to grab the ips_capab_taskq_lock as part of returning 4371 * from cv_wait which no longer exists. 4372 */ 4373 thread_join(ktid); 4374 } 4375 4376 /* 4377 * Free the IP stack instance. 4378 */ 4379 static void 4380 ip_stack_fini(netstackid_t stackid, void *arg) 4381 { 4382 ip_stack_t *ipst = (ip_stack_t *)arg; 4383 int ret; 4384 4385 #ifdef NS_DEBUG 4386 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4387 #endif 4388 /* 4389 * At this point, all of the notifications that the events and 4390 * protocols are going away have been run, meaning that we can 4391 * now set about starting to clean things up. 4392 */ 4393 ipobs_fini(ipst); 4394 ipv4_hook_destroy(ipst); 4395 ipv6_hook_destroy(ipst); 4396 arp_hook_destroy(ipst); 4397 ip_net_destroy(ipst); 4398 4399 ipmp_destroy(ipst); 4400 4401 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4402 ipst->ips_ip_mibkp = NULL; 4403 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4404 ipst->ips_icmp_mibkp = NULL; 4405 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4406 ipst->ips_ip_kstat = NULL; 4407 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4408 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4409 ipst->ips_ip6_kstat = NULL; 4410 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4411 4412 kmem_free(ipst->ips_propinfo_tbl, 4413 ip_propinfo_count * sizeof (mod_prop_info_t)); 4414 ipst->ips_propinfo_tbl = NULL; 4415 4416 dce_stack_destroy(ipst); 4417 ip_mrouter_stack_destroy(ipst); 4418 4419 /* 4420 * Quiesce all of our timers. Note we set the quiesce flags before we 4421 * call untimeout. The slowtimers may actually kick off another instance 4422 * of the non-slow timers. 4423 */ 4424 mutex_enter(&ipst->ips_igmp_timer_lock); 4425 ipst->ips_igmp_timer_quiesce = B_TRUE; 4426 mutex_exit(&ipst->ips_igmp_timer_lock); 4427 4428 mutex_enter(&ipst->ips_mld_timer_lock); 4429 ipst->ips_mld_timer_quiesce = B_TRUE; 4430 mutex_exit(&ipst->ips_mld_timer_lock); 4431 4432 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 4433 ipst->ips_igmp_slowtimeout_quiesce = B_TRUE; 4434 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 4435 4436 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 4437 ipst->ips_mld_slowtimeout_quiesce = B_TRUE; 4438 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 4439 4440 ret = untimeout(ipst->ips_igmp_timeout_id); 4441 if (ret == -1) { 4442 ASSERT(ipst->ips_igmp_timeout_id == 0); 4443 } else { 4444 ASSERT(ipst->ips_igmp_timeout_id != 0); 4445 ipst->ips_igmp_timeout_id = 0; 4446 } 4447 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4448 if (ret == -1) { 4449 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4450 } else { 4451 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4452 ipst->ips_igmp_slowtimeout_id = 0; 4453 } 4454 ret = untimeout(ipst->ips_mld_timeout_id); 4455 if (ret == -1) { 4456 ASSERT(ipst->ips_mld_timeout_id == 0); 4457 } else { 4458 ASSERT(ipst->ips_mld_timeout_id != 0); 4459 ipst->ips_mld_timeout_id = 0; 4460 } 4461 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4462 if (ret == -1) { 4463 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4464 } else { 4465 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4466 ipst->ips_mld_slowtimeout_id = 0; 4467 } 4468 4469 ip_ire_fini(ipst); 4470 ip6_asp_free(ipst); 4471 conn_drain_fini(ipst); 4472 ipcl_destroy(ipst); 4473 4474 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4475 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4476 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4477 ipst->ips_ndp4 = NULL; 4478 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4479 ipst->ips_ndp6 = NULL; 4480 4481 if (ipst->ips_loopback_ksp != NULL) { 4482 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4483 ipst->ips_loopback_ksp = NULL; 4484 } 4485 4486 mutex_destroy(&ipst->ips_capab_taskq_lock); 4487 cv_destroy(&ipst->ips_capab_taskq_cv); 4488 4489 rw_destroy(&ipst->ips_srcid_lock); 4490 4491 mutex_destroy(&ipst->ips_ip_mi_lock); 4492 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4493 4494 mutex_destroy(&ipst->ips_igmp_timer_lock); 4495 mutex_destroy(&ipst->ips_mld_timer_lock); 4496 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4497 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4498 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4499 rw_destroy(&ipst->ips_ill_g_lock); 4500 4501 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4502 ipst->ips_phyint_g_list = NULL; 4503 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4504 ipst->ips_ill_g_heads = NULL; 4505 4506 ldi_ident_release(ipst->ips_ldi_ident); 4507 kmem_free(ipst, sizeof (*ipst)); 4508 } 4509 4510 /* 4511 * This function is called from the TSD destructor, and is used to debug 4512 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4513 * details. 4514 */ 4515 static void 4516 ip_thread_exit(void *phash) 4517 { 4518 th_hash_t *thh = phash; 4519 4520 rw_enter(&ip_thread_rwlock, RW_WRITER); 4521 list_remove(&ip_thread_list, thh); 4522 rw_exit(&ip_thread_rwlock); 4523 mod_hash_destroy_hash(thh->thh_hash); 4524 kmem_free(thh, sizeof (*thh)); 4525 } 4526 4527 /* 4528 * Called when the IP kernel module is loaded into the kernel 4529 */ 4530 void 4531 ip_ddi_init(void) 4532 { 4533 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4534 4535 /* 4536 * For IP and TCP the minor numbers should start from 2 since we have 4 4537 * initial devices: ip, ip6, tcp, tcp6. 4538 */ 4539 /* 4540 * If this is a 64-bit kernel, then create two separate arenas - 4541 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4542 * other for socket apps in the range 2^^18 through 2^^32-1. 4543 */ 4544 ip_minor_arena_la = NULL; 4545 ip_minor_arena_sa = NULL; 4546 #if defined(_LP64) 4547 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4548 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4549 cmn_err(CE_PANIC, 4550 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4551 } 4552 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4553 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4554 cmn_err(CE_PANIC, 4555 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4556 } 4557 #else 4558 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4559 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4560 cmn_err(CE_PANIC, 4561 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4562 } 4563 #endif 4564 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4565 4566 ipcl_g_init(); 4567 ip_ire_g_init(); 4568 ip_net_g_init(); 4569 4570 #ifdef DEBUG 4571 tsd_create(&ip_thread_data, ip_thread_exit); 4572 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4573 list_create(&ip_thread_list, sizeof (th_hash_t), 4574 offsetof(th_hash_t, thh_link)); 4575 #endif 4576 ipsec_policy_g_init(); 4577 tcp_ddi_g_init(); 4578 sctp_ddi_g_init(); 4579 dce_g_init(); 4580 4581 /* 4582 * We want to be informed each time a stack is created or 4583 * destroyed in the kernel, so we can maintain the 4584 * set of udp_stack_t's. 4585 */ 4586 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4587 ip_stack_fini); 4588 4589 tnet_init(); 4590 4591 udp_ddi_g_init(); 4592 rts_ddi_g_init(); 4593 icmp_ddi_g_init(); 4594 ilb_ddi_g_init(); 4595 4596 /* This needs to be called after all transports are initialized. */ 4597 mutex_enter(&cpu_lock); 4598 register_cpu_setup_func(ip_tp_cpu_update, NULL); 4599 mutex_exit(&cpu_lock); 4600 } 4601 4602 /* 4603 * Initialize the IP stack instance. 4604 */ 4605 static void * 4606 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4607 { 4608 ip_stack_t *ipst; 4609 size_t arrsz; 4610 major_t major; 4611 4612 #ifdef NS_DEBUG 4613 printf("ip_stack_init(stack %d)\n", stackid); 4614 #endif 4615 4616 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4617 ipst->ips_netstack = ns; 4618 4619 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4620 KM_SLEEP); 4621 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4622 KM_SLEEP); 4623 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4624 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4625 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4626 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4627 4628 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4629 ipst->ips_igmp_deferred_next = INFINITY; 4630 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4631 ipst->ips_mld_deferred_next = INFINITY; 4632 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4633 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4634 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4635 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4636 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4637 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4638 4639 ipcl_init(ipst); 4640 ip_ire_init(ipst); 4641 ip6_asp_init(ipst); 4642 ipif_init(ipst); 4643 conn_drain_init(ipst); 4644 ip_mrouter_stack_init(ipst); 4645 dce_stack_init(ipst); 4646 4647 ipst->ips_ip_multirt_log_interval = 1000; 4648 4649 ipst->ips_ill_index = 1; 4650 4651 ipst->ips_saved_ip_forwarding = -1; 4652 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4653 4654 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4655 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4656 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4657 4658 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4659 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4660 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4661 ipst->ips_ip6_kstat = 4662 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4663 4664 ipst->ips_ip_src_id = 1; 4665 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4666 4667 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4668 4669 ip_net_init(ipst, ns); 4670 ipv4_hook_init(ipst); 4671 ipv6_hook_init(ipst); 4672 arp_hook_init(ipst); 4673 ipmp_init(ipst); 4674 ipobs_init(ipst); 4675 4676 /* 4677 * Create the taskq dispatcher thread and initialize related stuff. 4678 */ 4679 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4680 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4681 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4682 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4683 4684 major = mod_name_to_major(INET_NAME); 4685 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4686 return (ipst); 4687 } 4688 4689 /* 4690 * Allocate and initialize a DLPI template of the specified length. (May be 4691 * called as writer.) 4692 */ 4693 mblk_t * 4694 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4695 { 4696 mblk_t *mp; 4697 4698 mp = allocb(len, BPRI_MED); 4699 if (!mp) 4700 return (NULL); 4701 4702 /* 4703 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4704 * of which we don't seem to use) are sent with M_PCPROTO, and 4705 * that other DLPI are M_PROTO. 4706 */ 4707 if (prim == DL_INFO_REQ) { 4708 mp->b_datap->db_type = M_PCPROTO; 4709 } else { 4710 mp->b_datap->db_type = M_PROTO; 4711 } 4712 4713 mp->b_wptr = mp->b_rptr + len; 4714 bzero(mp->b_rptr, len); 4715 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4716 return (mp); 4717 } 4718 4719 /* 4720 * Allocate and initialize a DLPI notification. (May be called as writer.) 4721 */ 4722 mblk_t * 4723 ip_dlnotify_alloc(uint_t notification, uint_t data) 4724 { 4725 dl_notify_ind_t *notifyp; 4726 mblk_t *mp; 4727 4728 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4729 return (NULL); 4730 4731 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4732 notifyp->dl_notification = notification; 4733 notifyp->dl_data = data; 4734 return (mp); 4735 } 4736 4737 mblk_t * 4738 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2) 4739 { 4740 dl_notify_ind_t *notifyp; 4741 mblk_t *mp; 4742 4743 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4744 return (NULL); 4745 4746 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4747 notifyp->dl_notification = notification; 4748 notifyp->dl_data1 = data1; 4749 notifyp->dl_data2 = data2; 4750 return (mp); 4751 } 4752 4753 /* 4754 * Debug formatting routine. Returns a character string representation of the 4755 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4756 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4757 * 4758 * Once the ndd table-printing interfaces are removed, this can be changed to 4759 * standard dotted-decimal form. 4760 */ 4761 char * 4762 ip_dot_addr(ipaddr_t addr, char *buf) 4763 { 4764 uint8_t *ap = (uint8_t *)&addr; 4765 4766 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4767 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4768 return (buf); 4769 } 4770 4771 /* 4772 * Write the given MAC address as a printable string in the usual colon- 4773 * separated format. 4774 */ 4775 const char * 4776 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4777 { 4778 char *bp; 4779 4780 if (alen == 0 || buflen < 4) 4781 return ("?"); 4782 bp = buf; 4783 for (;;) { 4784 /* 4785 * If there are more MAC address bytes available, but we won't 4786 * have any room to print them, then add "..." to the string 4787 * instead. See below for the 'magic number' explanation. 4788 */ 4789 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4790 (void) strcpy(bp, "..."); 4791 break; 4792 } 4793 (void) sprintf(bp, "%02x", *addr++); 4794 bp += 2; 4795 if (--alen == 0) 4796 break; 4797 *bp++ = ':'; 4798 buflen -= 3; 4799 /* 4800 * At this point, based on the first 'if' statement above, 4801 * either alen == 1 and buflen >= 3, or alen > 1 and 4802 * buflen >= 4. The first case leaves room for the final "xx" 4803 * number and trailing NUL byte. The second leaves room for at 4804 * least "...". Thus the apparently 'magic' numbers chosen for 4805 * that statement. 4806 */ 4807 } 4808 return (buf); 4809 } 4810 4811 /* 4812 * Called when it is conceptually a ULP that would sent the packet 4813 * e.g., port unreachable and protocol unreachable. Check that the packet 4814 * would have passed the IPsec global policy before sending the error. 4815 * 4816 * Send an ICMP error after patching up the packet appropriately. 4817 * Uses ip_drop_input and bumps the appropriate MIB. 4818 */ 4819 void 4820 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4821 ip_recv_attr_t *ira) 4822 { 4823 ipha_t *ipha; 4824 boolean_t secure; 4825 ill_t *ill = ira->ira_ill; 4826 ip_stack_t *ipst = ill->ill_ipst; 4827 netstack_t *ns = ipst->ips_netstack; 4828 ipsec_stack_t *ipss = ns->netstack_ipsec; 4829 4830 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4831 4832 /* 4833 * We are generating an icmp error for some inbound packet. 4834 * Called from all ip_fanout_(udp, tcp, proto) functions. 4835 * Before we generate an error, check with global policy 4836 * to see whether this is allowed to enter the system. As 4837 * there is no "conn", we are checking with global policy. 4838 */ 4839 ipha = (ipha_t *)mp->b_rptr; 4840 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4841 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4842 if (mp == NULL) 4843 return; 4844 } 4845 4846 /* We never send errors for protocols that we do implement */ 4847 if (ira->ira_protocol == IPPROTO_ICMP || 4848 ira->ira_protocol == IPPROTO_IGMP) { 4849 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4850 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4851 freemsg(mp); 4852 return; 4853 } 4854 /* 4855 * Have to correct checksum since 4856 * the packet might have been 4857 * fragmented and the reassembly code in ip_rput 4858 * does not restore the IP checksum. 4859 */ 4860 ipha->ipha_hdr_checksum = 0; 4861 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4862 4863 switch (icmp_type) { 4864 case ICMP_DEST_UNREACHABLE: 4865 switch (icmp_code) { 4866 case ICMP_PROTOCOL_UNREACHABLE: 4867 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4868 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4869 break; 4870 case ICMP_PORT_UNREACHABLE: 4871 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4872 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4873 break; 4874 } 4875 4876 icmp_unreachable(mp, icmp_code, ira); 4877 break; 4878 default: 4879 #ifdef DEBUG 4880 panic("ip_fanout_send_icmp_v4: wrong type"); 4881 /*NOTREACHED*/ 4882 #else 4883 freemsg(mp); 4884 break; 4885 #endif 4886 } 4887 } 4888 4889 /* 4890 * Used to send an ICMP error message when a packet is received for 4891 * a protocol that is not supported. The mblk passed as argument 4892 * is consumed by this function. 4893 */ 4894 void 4895 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4896 { 4897 ipha_t *ipha; 4898 4899 ipha = (ipha_t *)mp->b_rptr; 4900 if (ira->ira_flags & IRAF_IS_IPV4) { 4901 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4902 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4903 ICMP_PROTOCOL_UNREACHABLE, ira); 4904 } else { 4905 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4906 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4907 ICMP6_PARAMPROB_NEXTHEADER, ira); 4908 } 4909 } 4910 4911 /* 4912 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4913 * Handles IPv4 and IPv6. 4914 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4915 * Caller is responsible for dropping references to the conn. 4916 */ 4917 void 4918 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4919 ip_recv_attr_t *ira) 4920 { 4921 ill_t *ill = ira->ira_ill; 4922 ip_stack_t *ipst = ill->ill_ipst; 4923 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4924 boolean_t secure; 4925 uint_t protocol = ira->ira_protocol; 4926 iaflags_t iraflags = ira->ira_flags; 4927 queue_t *rq; 4928 4929 secure = iraflags & IRAF_IPSEC_SECURE; 4930 4931 rq = connp->conn_rq; 4932 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4933 switch (protocol) { 4934 case IPPROTO_ICMPV6: 4935 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4936 break; 4937 case IPPROTO_ICMP: 4938 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4939 break; 4940 default: 4941 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4942 break; 4943 } 4944 freemsg(mp); 4945 return; 4946 } 4947 4948 ASSERT(!(IPCL_IS_IPTUN(connp))); 4949 4950 if (((iraflags & IRAF_IS_IPV4) ? 4951 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4952 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4953 secure) { 4954 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4955 ip6h, ira); 4956 if (mp == NULL) { 4957 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4958 /* Note that mp is NULL */ 4959 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4960 return; 4961 } 4962 } 4963 4964 if (iraflags & IRAF_ICMP_ERROR) { 4965 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4966 } else { 4967 ill_t *rill = ira->ira_rill; 4968 4969 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 4970 ira->ira_ill = ira->ira_rill = NULL; 4971 /* Send it upstream */ 4972 (connp->conn_recv)(connp, mp, NULL, ira); 4973 ira->ira_ill = ill; 4974 ira->ira_rill = rill; 4975 } 4976 } 4977 4978 /* 4979 * Handle protocols with which IP is less intimate. There 4980 * can be more than one stream bound to a particular 4981 * protocol. When this is the case, normally each one gets a copy 4982 * of any incoming packets. 4983 * 4984 * IPsec NOTE : 4985 * 4986 * Don't allow a secure packet going up a non-secure connection. 4987 * We don't allow this because 4988 * 4989 * 1) Reply might go out in clear which will be dropped at 4990 * the sending side. 4991 * 2) If the reply goes out in clear it will give the 4992 * adversary enough information for getting the key in 4993 * most of the cases. 4994 * 4995 * Moreover getting a secure packet when we expect clear 4996 * implies that SA's were added without checking for 4997 * policy on both ends. This should not happen once ISAKMP 4998 * is used to negotiate SAs as SAs will be added only after 4999 * verifying the policy. 5000 * 5001 * Zones notes: 5002 * Earlier in ip_input on a system with multiple shared-IP zones we 5003 * duplicate the multicast and broadcast packets and send them up 5004 * with each explicit zoneid that exists on that ill. 5005 * This means that here we can match the zoneid with SO_ALLZONES being special. 5006 */ 5007 void 5008 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 5009 { 5010 mblk_t *mp1; 5011 ipaddr_t laddr; 5012 conn_t *connp, *first_connp, *next_connp; 5013 connf_t *connfp; 5014 ill_t *ill = ira->ira_ill; 5015 ip_stack_t *ipst = ill->ill_ipst; 5016 5017 laddr = ipha->ipha_dst; 5018 5019 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 5020 mutex_enter(&connfp->connf_lock); 5021 connp = connfp->connf_head; 5022 for (connp = connfp->connf_head; connp != NULL; 5023 connp = connp->conn_next) { 5024 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5025 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5026 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5027 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 5028 break; 5029 } 5030 } 5031 5032 if (connp == NULL) { 5033 /* 5034 * No one bound to these addresses. Is 5035 * there a client that wants all 5036 * unclaimed datagrams? 5037 */ 5038 mutex_exit(&connfp->connf_lock); 5039 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5040 ICMP_PROTOCOL_UNREACHABLE, ira); 5041 return; 5042 } 5043 5044 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5045 5046 CONN_INC_REF(connp); 5047 first_connp = connp; 5048 connp = connp->conn_next; 5049 5050 for (;;) { 5051 while (connp != NULL) { 5052 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5053 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5054 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5055 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5056 ira, connp))) 5057 break; 5058 connp = connp->conn_next; 5059 } 5060 5061 if (connp == NULL) { 5062 /* No more interested clients */ 5063 connp = first_connp; 5064 break; 5065 } 5066 if (((mp1 = dupmsg(mp)) == NULL) && 5067 ((mp1 = copymsg(mp)) == NULL)) { 5068 /* Memory allocation failed */ 5069 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5070 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5071 connp = first_connp; 5072 break; 5073 } 5074 5075 CONN_INC_REF(connp); 5076 mutex_exit(&connfp->connf_lock); 5077 5078 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5079 ira); 5080 5081 mutex_enter(&connfp->connf_lock); 5082 /* Follow the next pointer before releasing the conn. */ 5083 next_connp = connp->conn_next; 5084 CONN_DEC_REF(connp); 5085 connp = next_connp; 5086 } 5087 5088 /* Last one. Send it upstream. */ 5089 mutex_exit(&connfp->connf_lock); 5090 5091 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5092 5093 CONN_DEC_REF(connp); 5094 } 5095 5096 /* 5097 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5098 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5099 * is not consumed. 5100 * 5101 * One of three things can happen, all of which affect the passed-in mblk: 5102 * 5103 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5104 * 5105 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5106 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5107 * 5108 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5109 */ 5110 mblk_t * 5111 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5112 { 5113 int shift, plen, iph_len; 5114 ipha_t *ipha; 5115 udpha_t *udpha; 5116 uint32_t *spi; 5117 uint32_t esp_ports; 5118 uint8_t *orptr; 5119 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5120 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5121 5122 ipha = (ipha_t *)mp->b_rptr; 5123 iph_len = ira->ira_ip_hdr_length; 5124 plen = ira->ira_pktlen; 5125 5126 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5127 /* 5128 * Most likely a keepalive for the benefit of an intervening 5129 * NAT. These aren't for us, per se, so drop it. 5130 * 5131 * RFC 3947/8 doesn't say for sure what to do for 2-3 5132 * byte packets (keepalives are 1-byte), but we'll drop them 5133 * also. 5134 */ 5135 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5136 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5137 return (NULL); 5138 } 5139 5140 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5141 /* might as well pull it all up - it might be ESP. */ 5142 if (!pullupmsg(mp, -1)) { 5143 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5144 DROPPER(ipss, ipds_esp_nomem), 5145 &ipss->ipsec_dropper); 5146 return (NULL); 5147 } 5148 5149 ipha = (ipha_t *)mp->b_rptr; 5150 } 5151 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5152 if (*spi == 0) { 5153 /* UDP packet - remove 0-spi. */ 5154 shift = sizeof (uint32_t); 5155 } else { 5156 /* ESP-in-UDP packet - reduce to ESP. */ 5157 ipha->ipha_protocol = IPPROTO_ESP; 5158 shift = sizeof (udpha_t); 5159 } 5160 5161 /* Fix IP header */ 5162 ira->ira_pktlen = (plen - shift); 5163 ipha->ipha_length = htons(ira->ira_pktlen); 5164 ipha->ipha_hdr_checksum = 0; 5165 5166 orptr = mp->b_rptr; 5167 mp->b_rptr += shift; 5168 5169 udpha = (udpha_t *)(orptr + iph_len); 5170 if (*spi == 0) { 5171 ASSERT((uint8_t *)ipha == orptr); 5172 udpha->uha_length = htons(plen - shift - iph_len); 5173 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5174 esp_ports = 0; 5175 } else { 5176 esp_ports = *((uint32_t *)udpha); 5177 ASSERT(esp_ports != 0); 5178 } 5179 ovbcopy(orptr, orptr + shift, iph_len); 5180 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5181 ipha = (ipha_t *)(orptr + shift); 5182 5183 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5184 ira->ira_esp_udp_ports = esp_ports; 5185 ip_fanout_v4(mp, ipha, ira); 5186 return (NULL); 5187 } 5188 return (mp); 5189 } 5190 5191 /* 5192 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5193 * Handles IPv4 and IPv6. 5194 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5195 * Caller is responsible for dropping references to the conn. 5196 */ 5197 void 5198 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5199 ip_recv_attr_t *ira) 5200 { 5201 ill_t *ill = ira->ira_ill; 5202 ip_stack_t *ipst = ill->ill_ipst; 5203 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5204 boolean_t secure; 5205 iaflags_t iraflags = ira->ira_flags; 5206 5207 secure = iraflags & IRAF_IPSEC_SECURE; 5208 5209 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5210 !canputnext(connp->conn_rq)) { 5211 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5212 freemsg(mp); 5213 return; 5214 } 5215 5216 if (((iraflags & IRAF_IS_IPV4) ? 5217 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5218 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5219 secure) { 5220 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5221 ip6h, ira); 5222 if (mp == NULL) { 5223 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5224 /* Note that mp is NULL */ 5225 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5226 return; 5227 } 5228 } 5229 5230 /* 5231 * Since this code is not used for UDP unicast we don't need a NAT_T 5232 * check. Only ip_fanout_v4 has that check. 5233 */ 5234 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5235 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5236 } else { 5237 ill_t *rill = ira->ira_rill; 5238 5239 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5240 ira->ira_ill = ira->ira_rill = NULL; 5241 /* Send it upstream */ 5242 (connp->conn_recv)(connp, mp, NULL, ira); 5243 ira->ira_ill = ill; 5244 ira->ira_rill = rill; 5245 } 5246 } 5247 5248 /* 5249 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5250 * (Unicast fanout is handled in ip_input_v4.) 5251 * 5252 * If SO_REUSEADDR is set all multicast and broadcast packets 5253 * will be delivered to all conns bound to the same port. 5254 * 5255 * If there is at least one matching AF_INET receiver, then we will 5256 * ignore any AF_INET6 receivers. 5257 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5258 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5259 * packets. 5260 * 5261 * Zones notes: 5262 * Earlier in ip_input on a system with multiple shared-IP zones we 5263 * duplicate the multicast and broadcast packets and send them up 5264 * with each explicit zoneid that exists on that ill. 5265 * This means that here we can match the zoneid with SO_ALLZONES being special. 5266 */ 5267 void 5268 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5269 ip_recv_attr_t *ira) 5270 { 5271 ipaddr_t laddr; 5272 in6_addr_t v6faddr; 5273 conn_t *connp; 5274 connf_t *connfp; 5275 ipaddr_t faddr; 5276 ill_t *ill = ira->ira_ill; 5277 ip_stack_t *ipst = ill->ill_ipst; 5278 5279 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5280 5281 laddr = ipha->ipha_dst; 5282 faddr = ipha->ipha_src; 5283 5284 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5285 mutex_enter(&connfp->connf_lock); 5286 connp = connfp->connf_head; 5287 5288 /* 5289 * If SO_REUSEADDR has been set on the first we send the 5290 * packet to all clients that have joined the group and 5291 * match the port. 5292 */ 5293 while (connp != NULL) { 5294 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5295 conn_wantpacket(connp, ira, ipha) && 5296 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5297 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5298 break; 5299 connp = connp->conn_next; 5300 } 5301 5302 if (connp == NULL) 5303 goto notfound; 5304 5305 CONN_INC_REF(connp); 5306 5307 if (connp->conn_reuseaddr) { 5308 conn_t *first_connp = connp; 5309 conn_t *next_connp; 5310 mblk_t *mp1; 5311 5312 connp = connp->conn_next; 5313 for (;;) { 5314 while (connp != NULL) { 5315 if (IPCL_UDP_MATCH(connp, lport, laddr, 5316 fport, faddr) && 5317 conn_wantpacket(connp, ira, ipha) && 5318 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5319 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5320 ira, connp))) 5321 break; 5322 connp = connp->conn_next; 5323 } 5324 if (connp == NULL) { 5325 /* No more interested clients */ 5326 connp = first_connp; 5327 break; 5328 } 5329 if (((mp1 = dupmsg(mp)) == NULL) && 5330 ((mp1 = copymsg(mp)) == NULL)) { 5331 /* Memory allocation failed */ 5332 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5333 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5334 connp = first_connp; 5335 break; 5336 } 5337 CONN_INC_REF(connp); 5338 mutex_exit(&connfp->connf_lock); 5339 5340 IP_STAT(ipst, ip_udp_fanmb); 5341 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5342 NULL, ira); 5343 mutex_enter(&connfp->connf_lock); 5344 /* Follow the next pointer before releasing the conn */ 5345 next_connp = connp->conn_next; 5346 CONN_DEC_REF(connp); 5347 connp = next_connp; 5348 } 5349 } 5350 5351 /* Last one. Send it upstream. */ 5352 mutex_exit(&connfp->connf_lock); 5353 IP_STAT(ipst, ip_udp_fanmb); 5354 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5355 CONN_DEC_REF(connp); 5356 return; 5357 5358 notfound: 5359 mutex_exit(&connfp->connf_lock); 5360 /* 5361 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5362 * have already been matched above, since they live in the IPv4 5363 * fanout tables. This implies we only need to 5364 * check for IPv6 in6addr_any endpoints here. 5365 * Thus we compare using ipv6_all_zeros instead of the destination 5366 * address, except for the multicast group membership lookup which 5367 * uses the IPv4 destination. 5368 */ 5369 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5370 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5371 mutex_enter(&connfp->connf_lock); 5372 connp = connfp->connf_head; 5373 /* 5374 * IPv4 multicast packet being delivered to an AF_INET6 5375 * in6addr_any endpoint. 5376 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5377 * and not conn_wantpacket_v6() since any multicast membership is 5378 * for an IPv4-mapped multicast address. 5379 */ 5380 while (connp != NULL) { 5381 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5382 fport, v6faddr) && 5383 conn_wantpacket(connp, ira, ipha) && 5384 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5385 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5386 break; 5387 connp = connp->conn_next; 5388 } 5389 5390 if (connp == NULL) { 5391 /* 5392 * No one bound to this port. Is 5393 * there a client that wants all 5394 * unclaimed datagrams? 5395 */ 5396 mutex_exit(&connfp->connf_lock); 5397 5398 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5399 NULL) { 5400 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5401 ip_fanout_proto_v4(mp, ipha, ira); 5402 } else { 5403 /* 5404 * We used to attempt to send an icmp error here, but 5405 * since this is known to be a multicast packet 5406 * and we don't send icmp errors in response to 5407 * multicast, just drop the packet and give up sooner. 5408 */ 5409 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5410 freemsg(mp); 5411 } 5412 return; 5413 } 5414 CONN_INC_REF(connp); 5415 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5416 5417 /* 5418 * If SO_REUSEADDR has been set on the first we send the 5419 * packet to all clients that have joined the group and 5420 * match the port. 5421 */ 5422 if (connp->conn_reuseaddr) { 5423 conn_t *first_connp = connp; 5424 conn_t *next_connp; 5425 mblk_t *mp1; 5426 5427 connp = connp->conn_next; 5428 for (;;) { 5429 while (connp != NULL) { 5430 if (IPCL_UDP_MATCH_V6(connp, lport, 5431 ipv6_all_zeros, fport, v6faddr) && 5432 conn_wantpacket(connp, ira, ipha) && 5433 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5434 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5435 ira, connp))) 5436 break; 5437 connp = connp->conn_next; 5438 } 5439 if (connp == NULL) { 5440 /* No more interested clients */ 5441 connp = first_connp; 5442 break; 5443 } 5444 if (((mp1 = dupmsg(mp)) == NULL) && 5445 ((mp1 = copymsg(mp)) == NULL)) { 5446 /* Memory allocation failed */ 5447 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5448 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5449 connp = first_connp; 5450 break; 5451 } 5452 CONN_INC_REF(connp); 5453 mutex_exit(&connfp->connf_lock); 5454 5455 IP_STAT(ipst, ip_udp_fanmb); 5456 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5457 NULL, ira); 5458 mutex_enter(&connfp->connf_lock); 5459 /* Follow the next pointer before releasing the conn */ 5460 next_connp = connp->conn_next; 5461 CONN_DEC_REF(connp); 5462 connp = next_connp; 5463 } 5464 } 5465 5466 /* Last one. Send it upstream. */ 5467 mutex_exit(&connfp->connf_lock); 5468 IP_STAT(ipst, ip_udp_fanmb); 5469 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5470 CONN_DEC_REF(connp); 5471 } 5472 5473 /* 5474 * Split an incoming packet's IPv4 options into the label and the other options. 5475 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5476 * clearing out any leftover label or options. 5477 * Otherwise it just makes ipp point into the packet. 5478 * 5479 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5480 */ 5481 int 5482 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5483 { 5484 uchar_t *opt; 5485 uint32_t totallen; 5486 uint32_t optval; 5487 uint32_t optlen; 5488 5489 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5490 ipp->ipp_hoplimit = ipha->ipha_ttl; 5491 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5492 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5493 5494 /* 5495 * Get length (in 4 byte octets) of IP header options. 5496 */ 5497 totallen = ipha->ipha_version_and_hdr_length - 5498 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5499 5500 if (totallen == 0) { 5501 if (!allocate) 5502 return (0); 5503 5504 /* Clear out anything from a previous packet */ 5505 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5506 kmem_free(ipp->ipp_ipv4_options, 5507 ipp->ipp_ipv4_options_len); 5508 ipp->ipp_ipv4_options = NULL; 5509 ipp->ipp_ipv4_options_len = 0; 5510 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5511 } 5512 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5513 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5514 ipp->ipp_label_v4 = NULL; 5515 ipp->ipp_label_len_v4 = 0; 5516 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5517 } 5518 return (0); 5519 } 5520 5521 totallen <<= 2; 5522 opt = (uchar_t *)&ipha[1]; 5523 if (!is_system_labeled()) { 5524 5525 copyall: 5526 if (!allocate) { 5527 if (totallen != 0) { 5528 ipp->ipp_ipv4_options = opt; 5529 ipp->ipp_ipv4_options_len = totallen; 5530 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5531 } 5532 return (0); 5533 } 5534 /* Just copy all of options */ 5535 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5536 if (totallen == ipp->ipp_ipv4_options_len) { 5537 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5538 return (0); 5539 } 5540 kmem_free(ipp->ipp_ipv4_options, 5541 ipp->ipp_ipv4_options_len); 5542 ipp->ipp_ipv4_options = NULL; 5543 ipp->ipp_ipv4_options_len = 0; 5544 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5545 } 5546 if (totallen == 0) 5547 return (0); 5548 5549 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5550 if (ipp->ipp_ipv4_options == NULL) 5551 return (ENOMEM); 5552 ipp->ipp_ipv4_options_len = totallen; 5553 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5554 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5555 return (0); 5556 } 5557 5558 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5559 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5560 ipp->ipp_label_v4 = NULL; 5561 ipp->ipp_label_len_v4 = 0; 5562 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5563 } 5564 5565 /* 5566 * Search for CIPSO option. 5567 * We assume CIPSO is first in options if it is present. 5568 * If it isn't, then ipp_opt_ipv4_options will not include the options 5569 * prior to the CIPSO option. 5570 */ 5571 while (totallen != 0) { 5572 switch (optval = opt[IPOPT_OPTVAL]) { 5573 case IPOPT_EOL: 5574 return (0); 5575 case IPOPT_NOP: 5576 optlen = 1; 5577 break; 5578 default: 5579 if (totallen <= IPOPT_OLEN) 5580 return (EINVAL); 5581 optlen = opt[IPOPT_OLEN]; 5582 if (optlen < 2) 5583 return (EINVAL); 5584 } 5585 if (optlen > totallen) 5586 return (EINVAL); 5587 5588 switch (optval) { 5589 case IPOPT_COMSEC: 5590 if (!allocate) { 5591 ipp->ipp_label_v4 = opt; 5592 ipp->ipp_label_len_v4 = optlen; 5593 ipp->ipp_fields |= IPPF_LABEL_V4; 5594 } else { 5595 ipp->ipp_label_v4 = kmem_alloc(optlen, 5596 KM_NOSLEEP); 5597 if (ipp->ipp_label_v4 == NULL) 5598 return (ENOMEM); 5599 ipp->ipp_label_len_v4 = optlen; 5600 ipp->ipp_fields |= IPPF_LABEL_V4; 5601 bcopy(opt, ipp->ipp_label_v4, optlen); 5602 } 5603 totallen -= optlen; 5604 opt += optlen; 5605 5606 /* Skip padding bytes until we get to a multiple of 4 */ 5607 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5608 totallen--; 5609 opt++; 5610 } 5611 /* Remaining as ipp_ipv4_options */ 5612 goto copyall; 5613 } 5614 totallen -= optlen; 5615 opt += optlen; 5616 } 5617 /* No CIPSO found; return everything as ipp_ipv4_options */ 5618 totallen = ipha->ipha_version_and_hdr_length - 5619 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5620 totallen <<= 2; 5621 opt = (uchar_t *)&ipha[1]; 5622 goto copyall; 5623 } 5624 5625 /* 5626 * Efficient versions of lookup for an IRE when we only 5627 * match the address. 5628 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5629 * Does not handle multicast addresses. 5630 */ 5631 uint_t 5632 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5633 { 5634 ire_t *ire; 5635 uint_t result; 5636 5637 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5638 ASSERT(ire != NULL); 5639 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5640 result = IRE_NOROUTE; 5641 else 5642 result = ire->ire_type; 5643 ire_refrele(ire); 5644 return (result); 5645 } 5646 5647 /* 5648 * Efficient versions of lookup for an IRE when we only 5649 * match the address. 5650 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5651 * Does not handle multicast addresses. 5652 */ 5653 uint_t 5654 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5655 { 5656 ire_t *ire; 5657 uint_t result; 5658 5659 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5660 ASSERT(ire != NULL); 5661 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5662 result = IRE_NOROUTE; 5663 else 5664 result = ire->ire_type; 5665 ire_refrele(ire); 5666 return (result); 5667 } 5668 5669 /* 5670 * Nobody should be sending 5671 * packets up this stream 5672 */ 5673 static int 5674 ip_lrput(queue_t *q, mblk_t *mp) 5675 { 5676 switch (mp->b_datap->db_type) { 5677 case M_FLUSH: 5678 /* Turn around */ 5679 if (*mp->b_rptr & FLUSHW) { 5680 *mp->b_rptr &= ~FLUSHR; 5681 qreply(q, mp); 5682 return (0); 5683 } 5684 break; 5685 } 5686 freemsg(mp); 5687 return (0); 5688 } 5689 5690 /* Nobody should be sending packets down this stream */ 5691 /* ARGSUSED */ 5692 int 5693 ip_lwput(queue_t *q, mblk_t *mp) 5694 { 5695 freemsg(mp); 5696 return (0); 5697 } 5698 5699 /* 5700 * Move the first hop in any source route to ipha_dst and remove that part of 5701 * the source route. Called by other protocols. Errors in option formatting 5702 * are ignored - will be handled by ip_output_options. Return the final 5703 * destination (either ipha_dst or the last entry in a source route.) 5704 */ 5705 ipaddr_t 5706 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5707 { 5708 ipoptp_t opts; 5709 uchar_t *opt; 5710 uint8_t optval; 5711 uint8_t optlen; 5712 ipaddr_t dst; 5713 int i; 5714 ip_stack_t *ipst = ns->netstack_ip; 5715 5716 ip2dbg(("ip_massage_options\n")); 5717 dst = ipha->ipha_dst; 5718 for (optval = ipoptp_first(&opts, ipha); 5719 optval != IPOPT_EOL; 5720 optval = ipoptp_next(&opts)) { 5721 opt = opts.ipoptp_cur; 5722 switch (optval) { 5723 uint8_t off; 5724 case IPOPT_SSRR: 5725 case IPOPT_LSRR: 5726 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5727 ip1dbg(("ip_massage_options: bad src route\n")); 5728 break; 5729 } 5730 optlen = opts.ipoptp_len; 5731 off = opt[IPOPT_OFFSET]; 5732 off--; 5733 redo_srr: 5734 if (optlen < IP_ADDR_LEN || 5735 off > optlen - IP_ADDR_LEN) { 5736 /* End of source route */ 5737 ip1dbg(("ip_massage_options: end of SR\n")); 5738 break; 5739 } 5740 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5741 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5742 ntohl(dst))); 5743 /* 5744 * Check if our address is present more than 5745 * once as consecutive hops in source route. 5746 * XXX verify per-interface ip_forwarding 5747 * for source route? 5748 */ 5749 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5750 off += IP_ADDR_LEN; 5751 goto redo_srr; 5752 } 5753 if (dst == htonl(INADDR_LOOPBACK)) { 5754 ip1dbg(("ip_massage_options: loopback addr in " 5755 "source route!\n")); 5756 break; 5757 } 5758 /* 5759 * Update ipha_dst to be the first hop and remove the 5760 * first hop from the source route (by overwriting 5761 * part of the option with NOP options). 5762 */ 5763 ipha->ipha_dst = dst; 5764 /* Put the last entry in dst */ 5765 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5766 3; 5767 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5768 5769 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5770 ntohl(dst))); 5771 /* Move down and overwrite */ 5772 opt[IP_ADDR_LEN] = opt[0]; 5773 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5774 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5775 for (i = 0; i < IP_ADDR_LEN; i++) 5776 opt[i] = IPOPT_NOP; 5777 break; 5778 } 5779 } 5780 return (dst); 5781 } 5782 5783 /* 5784 * Return the network mask 5785 * associated with the specified address. 5786 */ 5787 ipaddr_t 5788 ip_net_mask(ipaddr_t addr) 5789 { 5790 uchar_t *up = (uchar_t *)&addr; 5791 ipaddr_t mask = 0; 5792 uchar_t *maskp = (uchar_t *)&mask; 5793 5794 #if defined(__i386) || defined(__amd64) 5795 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5796 #endif 5797 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5798 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5799 #endif 5800 if (CLASSD(addr)) { 5801 maskp[0] = 0xF0; 5802 return (mask); 5803 } 5804 5805 /* We assume Class E default netmask to be 32 */ 5806 if (CLASSE(addr)) 5807 return (0xffffffffU); 5808 5809 if (addr == 0) 5810 return (0); 5811 maskp[0] = 0xFF; 5812 if ((up[0] & 0x80) == 0) 5813 return (mask); 5814 5815 maskp[1] = 0xFF; 5816 if ((up[0] & 0xC0) == 0x80) 5817 return (mask); 5818 5819 maskp[2] = 0xFF; 5820 if ((up[0] & 0xE0) == 0xC0) 5821 return (mask); 5822 5823 /* Otherwise return no mask */ 5824 return ((ipaddr_t)0); 5825 } 5826 5827 /* Name/Value Table Lookup Routine */ 5828 char * 5829 ip_nv_lookup(nv_t *nv, int value) 5830 { 5831 if (!nv) 5832 return (NULL); 5833 for (; nv->nv_name; nv++) { 5834 if (nv->nv_value == value) 5835 return (nv->nv_name); 5836 } 5837 return ("unknown"); 5838 } 5839 5840 static int 5841 ip_wait_for_info_ack(ill_t *ill) 5842 { 5843 int err; 5844 5845 mutex_enter(&ill->ill_lock); 5846 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5847 /* 5848 * Return value of 0 indicates a pending signal. 5849 */ 5850 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5851 if (err == 0) { 5852 mutex_exit(&ill->ill_lock); 5853 return (EINTR); 5854 } 5855 } 5856 mutex_exit(&ill->ill_lock); 5857 /* 5858 * ip_rput_other could have set an error in ill_error on 5859 * receipt of M_ERROR. 5860 */ 5861 return (ill->ill_error); 5862 } 5863 5864 /* 5865 * This is a module open, i.e. this is a control stream for access 5866 * to a DLPI device. We allocate an ill_t as the instance data in 5867 * this case. 5868 */ 5869 static int 5870 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5871 { 5872 ill_t *ill; 5873 int err; 5874 zoneid_t zoneid; 5875 netstack_t *ns; 5876 ip_stack_t *ipst; 5877 5878 /* 5879 * Prevent unprivileged processes from pushing IP so that 5880 * they can't send raw IP. 5881 */ 5882 if (secpolicy_net_rawaccess(credp) != 0) 5883 return (EPERM); 5884 5885 ns = netstack_find_by_cred(credp); 5886 ASSERT(ns != NULL); 5887 ipst = ns->netstack_ip; 5888 ASSERT(ipst != NULL); 5889 5890 /* 5891 * For exclusive stacks we set the zoneid to zero 5892 * to make IP operate as if in the global zone. 5893 */ 5894 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5895 zoneid = GLOBAL_ZONEID; 5896 else 5897 zoneid = crgetzoneid(credp); 5898 5899 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5900 q->q_ptr = WR(q)->q_ptr = ill; 5901 ill->ill_ipst = ipst; 5902 ill->ill_zoneid = zoneid; 5903 5904 /* 5905 * ill_init initializes the ill fields and then sends down 5906 * down a DL_INFO_REQ after calling qprocson. 5907 */ 5908 err = ill_init(q, ill); 5909 5910 if (err != 0) { 5911 mi_free(ill); 5912 netstack_rele(ipst->ips_netstack); 5913 q->q_ptr = NULL; 5914 WR(q)->q_ptr = NULL; 5915 return (err); 5916 } 5917 5918 /* 5919 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5920 * 5921 * ill_init initializes the ipsq marking this thread as 5922 * writer 5923 */ 5924 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5925 err = ip_wait_for_info_ack(ill); 5926 if (err == 0) 5927 ill->ill_credp = credp; 5928 else 5929 goto fail; 5930 5931 crhold(credp); 5932 5933 mutex_enter(&ipst->ips_ip_mi_lock); 5934 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5935 sflag, credp); 5936 mutex_exit(&ipst->ips_ip_mi_lock); 5937 fail: 5938 if (err) { 5939 (void) ip_close(q, 0, credp); 5940 return (err); 5941 } 5942 return (0); 5943 } 5944 5945 /* For /dev/ip aka AF_INET open */ 5946 int 5947 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5948 { 5949 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5950 } 5951 5952 /* For /dev/ip6 aka AF_INET6 open */ 5953 int 5954 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5955 { 5956 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5957 } 5958 5959 /* IP open routine. */ 5960 int 5961 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5962 boolean_t isv6) 5963 { 5964 conn_t *connp; 5965 major_t maj; 5966 zoneid_t zoneid; 5967 netstack_t *ns; 5968 ip_stack_t *ipst; 5969 5970 /* Allow reopen. */ 5971 if (q->q_ptr != NULL) 5972 return (0); 5973 5974 if (sflag & MODOPEN) { 5975 /* This is a module open */ 5976 return (ip_modopen(q, devp, flag, sflag, credp)); 5977 } 5978 5979 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 5980 /* 5981 * Non streams based socket looking for a stream 5982 * to access IP 5983 */ 5984 return (ip_helper_stream_setup(q, devp, flag, sflag, 5985 credp, isv6)); 5986 } 5987 5988 ns = netstack_find_by_cred(credp); 5989 ASSERT(ns != NULL); 5990 ipst = ns->netstack_ip; 5991 ASSERT(ipst != NULL); 5992 5993 /* 5994 * For exclusive stacks we set the zoneid to zero 5995 * to make IP operate as if in the global zone. 5996 */ 5997 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5998 zoneid = GLOBAL_ZONEID; 5999 else 6000 zoneid = crgetzoneid(credp); 6001 6002 /* 6003 * We are opening as a device. This is an IP client stream, and we 6004 * allocate an conn_t as the instance data. 6005 */ 6006 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 6007 6008 /* 6009 * ipcl_conn_create did a netstack_hold. Undo the hold that was 6010 * done by netstack_find_by_cred() 6011 */ 6012 netstack_rele(ipst->ips_netstack); 6013 6014 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 6015 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 6016 connp->conn_ixa->ixa_zoneid = zoneid; 6017 connp->conn_zoneid = zoneid; 6018 6019 connp->conn_rq = q; 6020 q->q_ptr = WR(q)->q_ptr = connp; 6021 6022 /* Minor tells us which /dev entry was opened */ 6023 if (isv6) { 6024 connp->conn_family = AF_INET6; 6025 connp->conn_ipversion = IPV6_VERSION; 6026 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 6027 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 6028 } else { 6029 connp->conn_family = AF_INET; 6030 connp->conn_ipversion = IPV4_VERSION; 6031 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 6032 } 6033 6034 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 6035 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 6036 connp->conn_minor_arena = ip_minor_arena_la; 6037 } else { 6038 /* 6039 * Either minor numbers in the large arena were exhausted 6040 * or a non socket application is doing the open. 6041 * Try to allocate from the small arena. 6042 */ 6043 if ((connp->conn_dev = 6044 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 6045 /* CONN_DEC_REF takes care of netstack_rele() */ 6046 q->q_ptr = WR(q)->q_ptr = NULL; 6047 CONN_DEC_REF(connp); 6048 return (EBUSY); 6049 } 6050 connp->conn_minor_arena = ip_minor_arena_sa; 6051 } 6052 6053 maj = getemajor(*devp); 6054 *devp = makedevice(maj, (minor_t)connp->conn_dev); 6055 6056 /* 6057 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 6058 */ 6059 connp->conn_cred = credp; 6060 connp->conn_cpid = curproc->p_pid; 6061 /* Cache things in ixa without an extra refhold */ 6062 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 6063 connp->conn_ixa->ixa_cred = connp->conn_cred; 6064 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 6065 if (is_system_labeled()) 6066 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 6067 6068 /* 6069 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 6070 */ 6071 connp->conn_recv = ip_conn_input; 6072 connp->conn_recvicmp = ip_conn_input_icmp; 6073 6074 crhold(connp->conn_cred); 6075 6076 /* 6077 * If the caller has the process-wide flag set, then default to MAC 6078 * exempt mode. This allows read-down to unlabeled hosts. 6079 */ 6080 if (getpflags(NET_MAC_AWARE, credp) != 0) 6081 connp->conn_mac_mode = CONN_MAC_AWARE; 6082 6083 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6084 6085 connp->conn_rq = q; 6086 connp->conn_wq = WR(q); 6087 6088 /* Non-zero default values */ 6089 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6090 6091 /* 6092 * Make the conn globally visible to walkers 6093 */ 6094 ASSERT(connp->conn_ref == 1); 6095 mutex_enter(&connp->conn_lock); 6096 connp->conn_state_flags &= ~CONN_INCIPIENT; 6097 mutex_exit(&connp->conn_lock); 6098 6099 qprocson(q); 6100 6101 return (0); 6102 } 6103 6104 /* 6105 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6106 * all of them are copied to the conn_t. If the req is "zero", the policy is 6107 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6108 * fields. 6109 * We keep only the latest setting of the policy and thus policy setting 6110 * is not incremental/cumulative. 6111 * 6112 * Requests to set policies with multiple alternative actions will 6113 * go through a different API. 6114 */ 6115 int 6116 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6117 { 6118 uint_t ah_req = 0; 6119 uint_t esp_req = 0; 6120 uint_t se_req = 0; 6121 ipsec_act_t *actp = NULL; 6122 uint_t nact; 6123 ipsec_policy_head_t *ph; 6124 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6125 int error = 0; 6126 netstack_t *ns = connp->conn_netstack; 6127 ip_stack_t *ipst = ns->netstack_ip; 6128 ipsec_stack_t *ipss = ns->netstack_ipsec; 6129 6130 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6131 6132 /* 6133 * The IP_SEC_OPT option does not allow variable length parameters, 6134 * hence a request cannot be NULL. 6135 */ 6136 if (req == NULL) 6137 return (EINVAL); 6138 6139 ah_req = req->ipsr_ah_req; 6140 esp_req = req->ipsr_esp_req; 6141 se_req = req->ipsr_self_encap_req; 6142 6143 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6144 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6145 return (EINVAL); 6146 6147 /* 6148 * Are we dealing with a request to reset the policy (i.e. 6149 * zero requests). 6150 */ 6151 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6152 (esp_req & REQ_MASK) == 0 && 6153 (se_req & REQ_MASK) == 0); 6154 6155 if (!is_pol_reset) { 6156 /* 6157 * If we couldn't load IPsec, fail with "protocol 6158 * not supported". 6159 * IPsec may not have been loaded for a request with zero 6160 * policies, so we don't fail in this case. 6161 */ 6162 mutex_enter(&ipss->ipsec_loader_lock); 6163 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6164 mutex_exit(&ipss->ipsec_loader_lock); 6165 return (EPROTONOSUPPORT); 6166 } 6167 mutex_exit(&ipss->ipsec_loader_lock); 6168 6169 /* 6170 * Test for valid requests. Invalid algorithms 6171 * need to be tested by IPsec code because new 6172 * algorithms can be added dynamically. 6173 */ 6174 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6175 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6176 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6177 return (EINVAL); 6178 } 6179 6180 /* 6181 * Only privileged users can issue these 6182 * requests. 6183 */ 6184 if (((ah_req & IPSEC_PREF_NEVER) || 6185 (esp_req & IPSEC_PREF_NEVER) || 6186 (se_req & IPSEC_PREF_NEVER)) && 6187 secpolicy_ip_config(cr, B_FALSE) != 0) { 6188 return (EPERM); 6189 } 6190 6191 /* 6192 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6193 * are mutually exclusive. 6194 */ 6195 if (((ah_req & REQ_MASK) == REQ_MASK) || 6196 ((esp_req & REQ_MASK) == REQ_MASK) || 6197 ((se_req & REQ_MASK) == REQ_MASK)) { 6198 /* Both of them are set */ 6199 return (EINVAL); 6200 } 6201 } 6202 6203 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6204 6205 /* 6206 * If we have already cached policies in conn_connect(), don't 6207 * let them change now. We cache policies for connections 6208 * whose src,dst [addr, port] is known. 6209 */ 6210 if (connp->conn_policy_cached) { 6211 return (EINVAL); 6212 } 6213 6214 /* 6215 * We have a zero policies, reset the connection policy if already 6216 * set. This will cause the connection to inherit the 6217 * global policy, if any. 6218 */ 6219 if (is_pol_reset) { 6220 if (connp->conn_policy != NULL) { 6221 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6222 connp->conn_policy = NULL; 6223 } 6224 connp->conn_in_enforce_policy = B_FALSE; 6225 connp->conn_out_enforce_policy = B_FALSE; 6226 return (0); 6227 } 6228 6229 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6230 ipst->ips_netstack); 6231 if (ph == NULL) 6232 goto enomem; 6233 6234 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6235 if (actp == NULL) 6236 goto enomem; 6237 6238 /* 6239 * Always insert IPv4 policy entries, since they can also apply to 6240 * ipv6 sockets being used in ipv4-compat mode. 6241 */ 6242 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6243 IPSEC_TYPE_INBOUND, ns)) 6244 goto enomem; 6245 is_pol_inserted = B_TRUE; 6246 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6247 IPSEC_TYPE_OUTBOUND, ns)) 6248 goto enomem; 6249 6250 /* 6251 * We're looking at a v6 socket, also insert the v6-specific 6252 * entries. 6253 */ 6254 if (connp->conn_family == AF_INET6) { 6255 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6256 IPSEC_TYPE_INBOUND, ns)) 6257 goto enomem; 6258 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6259 IPSEC_TYPE_OUTBOUND, ns)) 6260 goto enomem; 6261 } 6262 6263 ipsec_actvec_free(actp, nact); 6264 6265 /* 6266 * If the requests need security, set enforce_policy. 6267 * If the requests are IPSEC_PREF_NEVER, one should 6268 * still set conn_out_enforce_policy so that ip_set_destination 6269 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6270 * for connections that we don't cache policy in at connect time, 6271 * if global policy matches in ip_output_attach_policy, we 6272 * don't wrongly inherit global policy. Similarly, we need 6273 * to set conn_in_enforce_policy also so that we don't verify 6274 * policy wrongly. 6275 */ 6276 if ((ah_req & REQ_MASK) != 0 || 6277 (esp_req & REQ_MASK) != 0 || 6278 (se_req & REQ_MASK) != 0) { 6279 connp->conn_in_enforce_policy = B_TRUE; 6280 connp->conn_out_enforce_policy = B_TRUE; 6281 } 6282 6283 return (error); 6284 #undef REQ_MASK 6285 6286 /* 6287 * Common memory-allocation-failure exit path. 6288 */ 6289 enomem: 6290 if (actp != NULL) 6291 ipsec_actvec_free(actp, nact); 6292 if (is_pol_inserted) 6293 ipsec_polhead_flush(ph, ns); 6294 return (ENOMEM); 6295 } 6296 6297 /* 6298 * Set socket options for joining and leaving multicast groups. 6299 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6300 * The caller has already check that the option name is consistent with 6301 * the address family of the socket. 6302 */ 6303 int 6304 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6305 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6306 { 6307 int *i1 = (int *)invalp; 6308 int error = 0; 6309 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6310 struct ip_mreq *v4_mreqp; 6311 struct ipv6_mreq *v6_mreqp; 6312 struct group_req *greqp; 6313 ire_t *ire; 6314 boolean_t done = B_FALSE; 6315 ipaddr_t ifaddr; 6316 in6_addr_t v6group; 6317 uint_t ifindex; 6318 boolean_t mcast_opt = B_TRUE; 6319 mcast_record_t fmode; 6320 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6321 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6322 6323 switch (name) { 6324 case IP_ADD_MEMBERSHIP: 6325 case IPV6_JOIN_GROUP: 6326 mcast_opt = B_FALSE; 6327 /* FALLTHROUGH */ 6328 case MCAST_JOIN_GROUP: 6329 fmode = MODE_IS_EXCLUDE; 6330 optfn = ip_opt_add_group; 6331 break; 6332 6333 case IP_DROP_MEMBERSHIP: 6334 case IPV6_LEAVE_GROUP: 6335 mcast_opt = B_FALSE; 6336 /* FALLTHROUGH */ 6337 case MCAST_LEAVE_GROUP: 6338 fmode = MODE_IS_INCLUDE; 6339 optfn = ip_opt_delete_group; 6340 break; 6341 default: 6342 /* Should not be reached. */ 6343 fmode = MODE_IS_INCLUDE; 6344 optfn = NULL; 6345 ASSERT(0); 6346 } 6347 6348 if (mcast_opt) { 6349 struct sockaddr_in *sin; 6350 struct sockaddr_in6 *sin6; 6351 6352 greqp = (struct group_req *)i1; 6353 if (greqp->gr_group.ss_family == AF_INET) { 6354 sin = (struct sockaddr_in *)&(greqp->gr_group); 6355 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6356 } else { 6357 if (!inet6) 6358 return (EINVAL); /* Not on INET socket */ 6359 6360 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6361 v6group = sin6->sin6_addr; 6362 } 6363 ifaddr = INADDR_ANY; 6364 ifindex = greqp->gr_interface; 6365 } else if (inet6) { 6366 v6_mreqp = (struct ipv6_mreq *)i1; 6367 v6group = v6_mreqp->ipv6mr_multiaddr; 6368 ifaddr = INADDR_ANY; 6369 ifindex = v6_mreqp->ipv6mr_interface; 6370 } else { 6371 v4_mreqp = (struct ip_mreq *)i1; 6372 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6373 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6374 ifindex = 0; 6375 } 6376 6377 /* 6378 * In the multirouting case, we need to replicate 6379 * the request on all interfaces that will take part 6380 * in replication. We do so because multirouting is 6381 * reflective, thus we will probably receive multi- 6382 * casts on those interfaces. 6383 * The ip_multirt_apply_membership() succeeds if 6384 * the operation succeeds on at least one interface. 6385 */ 6386 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6387 ipaddr_t group; 6388 6389 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6390 6391 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6392 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6393 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6394 } else { 6395 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6396 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6397 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6398 } 6399 if (ire != NULL) { 6400 if (ire->ire_flags & RTF_MULTIRT) { 6401 error = ip_multirt_apply_membership(optfn, ire, connp, 6402 checkonly, &v6group, fmode, &ipv6_all_zeros); 6403 done = B_TRUE; 6404 } 6405 ire_refrele(ire); 6406 } 6407 6408 if (!done) { 6409 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6410 fmode, &ipv6_all_zeros); 6411 } 6412 return (error); 6413 } 6414 6415 /* 6416 * Set socket options for joining and leaving multicast groups 6417 * for specific sources. 6418 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6419 * The caller has already check that the option name is consistent with 6420 * the address family of the socket. 6421 */ 6422 int 6423 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6424 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6425 { 6426 int *i1 = (int *)invalp; 6427 int error = 0; 6428 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6429 struct ip_mreq_source *imreqp; 6430 struct group_source_req *gsreqp; 6431 in6_addr_t v6group, v6src; 6432 uint32_t ifindex; 6433 ipaddr_t ifaddr; 6434 boolean_t mcast_opt = B_TRUE; 6435 mcast_record_t fmode; 6436 ire_t *ire; 6437 boolean_t done = B_FALSE; 6438 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6439 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6440 6441 switch (name) { 6442 case IP_BLOCK_SOURCE: 6443 mcast_opt = B_FALSE; 6444 /* FALLTHROUGH */ 6445 case MCAST_BLOCK_SOURCE: 6446 fmode = MODE_IS_EXCLUDE; 6447 optfn = ip_opt_add_group; 6448 break; 6449 6450 case IP_UNBLOCK_SOURCE: 6451 mcast_opt = B_FALSE; 6452 /* FALLTHROUGH */ 6453 case MCAST_UNBLOCK_SOURCE: 6454 fmode = MODE_IS_EXCLUDE; 6455 optfn = ip_opt_delete_group; 6456 break; 6457 6458 case IP_ADD_SOURCE_MEMBERSHIP: 6459 mcast_opt = B_FALSE; 6460 /* FALLTHROUGH */ 6461 case MCAST_JOIN_SOURCE_GROUP: 6462 fmode = MODE_IS_INCLUDE; 6463 optfn = ip_opt_add_group; 6464 break; 6465 6466 case IP_DROP_SOURCE_MEMBERSHIP: 6467 mcast_opt = B_FALSE; 6468 /* FALLTHROUGH */ 6469 case MCAST_LEAVE_SOURCE_GROUP: 6470 fmode = MODE_IS_INCLUDE; 6471 optfn = ip_opt_delete_group; 6472 break; 6473 default: 6474 /* Should not be reached. */ 6475 optfn = NULL; 6476 fmode = 0; 6477 ASSERT(0); 6478 } 6479 6480 if (mcast_opt) { 6481 gsreqp = (struct group_source_req *)i1; 6482 ifindex = gsreqp->gsr_interface; 6483 if (gsreqp->gsr_group.ss_family == AF_INET) { 6484 struct sockaddr_in *s; 6485 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6486 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6487 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6488 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6489 } else { 6490 struct sockaddr_in6 *s6; 6491 6492 if (!inet6) 6493 return (EINVAL); /* Not on INET socket */ 6494 6495 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6496 v6group = s6->sin6_addr; 6497 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6498 v6src = s6->sin6_addr; 6499 } 6500 ifaddr = INADDR_ANY; 6501 } else { 6502 imreqp = (struct ip_mreq_source *)i1; 6503 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6504 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6505 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6506 ifindex = 0; 6507 } 6508 6509 /* 6510 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6511 */ 6512 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6513 v6src = ipv6_all_zeros; 6514 6515 /* 6516 * In the multirouting case, we need to replicate 6517 * the request as noted in the mcast cases above. 6518 */ 6519 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6520 ipaddr_t group; 6521 6522 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6523 6524 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6525 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6526 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6527 } else { 6528 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6529 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6530 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6531 } 6532 if (ire != NULL) { 6533 if (ire->ire_flags & RTF_MULTIRT) { 6534 error = ip_multirt_apply_membership(optfn, ire, connp, 6535 checkonly, &v6group, fmode, &v6src); 6536 done = B_TRUE; 6537 } 6538 ire_refrele(ire); 6539 } 6540 if (!done) { 6541 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6542 fmode, &v6src); 6543 } 6544 return (error); 6545 } 6546 6547 /* 6548 * Given a destination address and a pointer to where to put the information 6549 * this routine fills in the mtuinfo. 6550 * The socket must be connected. 6551 * For sctp conn_faddr is the primary address. 6552 */ 6553 int 6554 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6555 { 6556 uint32_t pmtu = IP_MAXPACKET; 6557 uint_t scopeid; 6558 6559 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6560 return (-1); 6561 6562 /* In case we never sent or called ip_set_destination_v4/v6 */ 6563 if (ixa->ixa_ire != NULL) 6564 pmtu = ip_get_pmtu(ixa); 6565 6566 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6567 scopeid = ixa->ixa_scopeid; 6568 else 6569 scopeid = 0; 6570 6571 bzero(mtuinfo, sizeof (*mtuinfo)); 6572 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6573 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6574 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6575 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6576 mtuinfo->ip6m_mtu = pmtu; 6577 6578 return (sizeof (struct ip6_mtuinfo)); 6579 } 6580 6581 /* 6582 * When the src multihoming is changed from weak to [strong, preferred] 6583 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6584 * and identify routes that were created by user-applications in the 6585 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6586 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6587 * is selected by finding an interface route for the gateway. 6588 */ 6589 /* ARGSUSED */ 6590 void 6591 ip_ire_rebind_walker(ire_t *ire, void *notused) 6592 { 6593 if (!ire->ire_unbound || ire->ire_ill != NULL) 6594 return; 6595 ire_rebind(ire); 6596 ire_delete(ire); 6597 } 6598 6599 /* 6600 * When the src multihoming is changed from [strong, preferred] to weak, 6601 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6602 * set any entries that were created by user-applications in the unbound state 6603 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6604 */ 6605 /* ARGSUSED */ 6606 void 6607 ip_ire_unbind_walker(ire_t *ire, void *notused) 6608 { 6609 ire_t *new_ire; 6610 6611 if (!ire->ire_unbound || ire->ire_ill == NULL) 6612 return; 6613 if (ire->ire_ipversion == IPV6_VERSION) { 6614 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6615 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6616 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6617 } else { 6618 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6619 (uchar_t *)&ire->ire_mask, 6620 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6621 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6622 } 6623 if (new_ire == NULL) 6624 return; 6625 new_ire->ire_unbound = B_TRUE; 6626 /* 6627 * The bound ire must first be deleted so that we don't return 6628 * the existing one on the attempt to add the unbound new_ire. 6629 */ 6630 ire_delete(ire); 6631 new_ire = ire_add(new_ire); 6632 if (new_ire != NULL) 6633 ire_refrele(new_ire); 6634 } 6635 6636 /* 6637 * When the settings of ip*_strict_src_multihoming tunables are changed, 6638 * all cached routes need to be recomputed. This recomputation needs to be 6639 * done when going from weaker to stronger modes so that the cached ire 6640 * for the connection does not violate the current ip*_strict_src_multihoming 6641 * setting. It also needs to be done when going from stronger to weaker modes, 6642 * so that we fall back to matching on the longest-matching-route (as opposed 6643 * to a shorter match that may have been selected in the strong mode 6644 * to satisfy src_multihoming settings). 6645 * 6646 * The cached ixa_ire entires for all conn_t entries are marked as 6647 * "verify" so that they will be recomputed for the next packet. 6648 */ 6649 void 6650 conn_ire_revalidate(conn_t *connp, void *arg) 6651 { 6652 boolean_t isv6 = (boolean_t)arg; 6653 6654 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6655 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6656 return; 6657 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6658 } 6659 6660 /* 6661 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6662 * When an ipf is passed here for the first time, if 6663 * we already have in-order fragments on the queue, we convert from the fast- 6664 * path reassembly scheme to the hard-case scheme. From then on, additional 6665 * fragments are reassembled here. We keep track of the start and end offsets 6666 * of each piece, and the number of holes in the chain. When the hole count 6667 * goes to zero, we are done! 6668 * 6669 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6670 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6671 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6672 * after the call to ip_reassemble(). 6673 */ 6674 int 6675 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6676 size_t msg_len) 6677 { 6678 uint_t end; 6679 mblk_t *next_mp; 6680 mblk_t *mp1; 6681 uint_t offset; 6682 boolean_t incr_dups = B_TRUE; 6683 boolean_t offset_zero_seen = B_FALSE; 6684 boolean_t pkt_boundary_checked = B_FALSE; 6685 6686 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6687 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6688 6689 /* Add in byte count */ 6690 ipf->ipf_count += msg_len; 6691 if (ipf->ipf_end) { 6692 /* 6693 * We were part way through in-order reassembly, but now there 6694 * is a hole. We walk through messages already queued, and 6695 * mark them for hard case reassembly. We know that up till 6696 * now they were in order starting from offset zero. 6697 */ 6698 offset = 0; 6699 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6700 IP_REASS_SET_START(mp1, offset); 6701 if (offset == 0) { 6702 ASSERT(ipf->ipf_nf_hdr_len != 0); 6703 offset = -ipf->ipf_nf_hdr_len; 6704 } 6705 offset += mp1->b_wptr - mp1->b_rptr; 6706 IP_REASS_SET_END(mp1, offset); 6707 } 6708 /* One hole at the end. */ 6709 ipf->ipf_hole_cnt = 1; 6710 /* Brand it as a hard case, forever. */ 6711 ipf->ipf_end = 0; 6712 } 6713 /* Walk through all the new pieces. */ 6714 do { 6715 end = start + (mp->b_wptr - mp->b_rptr); 6716 /* 6717 * If start is 0, decrease 'end' only for the first mblk of 6718 * the fragment. Otherwise 'end' can get wrong value in the 6719 * second pass of the loop if first mblk is exactly the 6720 * size of ipf_nf_hdr_len. 6721 */ 6722 if (start == 0 && !offset_zero_seen) { 6723 /* First segment */ 6724 ASSERT(ipf->ipf_nf_hdr_len != 0); 6725 end -= ipf->ipf_nf_hdr_len; 6726 offset_zero_seen = B_TRUE; 6727 } 6728 next_mp = mp->b_cont; 6729 /* 6730 * We are checking to see if there is any interesing data 6731 * to process. If there isn't and the mblk isn't the 6732 * one which carries the unfragmentable header then we 6733 * drop it. It's possible to have just the unfragmentable 6734 * header come through without any data. That needs to be 6735 * saved. 6736 * 6737 * If the assert at the top of this function holds then the 6738 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6739 * is infrequently traveled enough that the test is left in 6740 * to protect against future code changes which break that 6741 * invariant. 6742 */ 6743 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6744 /* Empty. Blast it. */ 6745 IP_REASS_SET_START(mp, 0); 6746 IP_REASS_SET_END(mp, 0); 6747 /* 6748 * If the ipf points to the mblk we are about to free, 6749 * update ipf to point to the next mblk (or NULL 6750 * if none). 6751 */ 6752 if (ipf->ipf_mp->b_cont == mp) 6753 ipf->ipf_mp->b_cont = next_mp; 6754 freeb(mp); 6755 continue; 6756 } 6757 mp->b_cont = NULL; 6758 IP_REASS_SET_START(mp, start); 6759 IP_REASS_SET_END(mp, end); 6760 if (!ipf->ipf_tail_mp) { 6761 ipf->ipf_tail_mp = mp; 6762 ipf->ipf_mp->b_cont = mp; 6763 if (start == 0 || !more) { 6764 ipf->ipf_hole_cnt = 1; 6765 /* 6766 * if the first fragment comes in more than one 6767 * mblk, this loop will be executed for each 6768 * mblk. Need to adjust hole count so exiting 6769 * this routine will leave hole count at 1. 6770 */ 6771 if (next_mp) 6772 ipf->ipf_hole_cnt++; 6773 } else 6774 ipf->ipf_hole_cnt = 2; 6775 continue; 6776 } else if (ipf->ipf_last_frag_seen && !more && 6777 !pkt_boundary_checked) { 6778 /* 6779 * We check datagram boundary only if this fragment 6780 * claims to be the last fragment and we have seen a 6781 * last fragment in the past too. We do this only 6782 * once for a given fragment. 6783 * 6784 * start cannot be 0 here as fragments with start=0 6785 * and MF=0 gets handled as a complete packet. These 6786 * fragments should not reach here. 6787 */ 6788 6789 if (start + msgdsize(mp) != 6790 IP_REASS_END(ipf->ipf_tail_mp)) { 6791 /* 6792 * We have two fragments both of which claim 6793 * to be the last fragment but gives conflicting 6794 * information about the whole datagram size. 6795 * Something fishy is going on. Drop the 6796 * fragment and free up the reassembly list. 6797 */ 6798 return (IP_REASS_FAILED); 6799 } 6800 6801 /* 6802 * We shouldn't come to this code block again for this 6803 * particular fragment. 6804 */ 6805 pkt_boundary_checked = B_TRUE; 6806 } 6807 6808 /* New stuff at or beyond tail? */ 6809 offset = IP_REASS_END(ipf->ipf_tail_mp); 6810 if (start >= offset) { 6811 if (ipf->ipf_last_frag_seen) { 6812 /* current fragment is beyond last fragment */ 6813 return (IP_REASS_FAILED); 6814 } 6815 /* Link it on end. */ 6816 ipf->ipf_tail_mp->b_cont = mp; 6817 ipf->ipf_tail_mp = mp; 6818 if (more) { 6819 if (start != offset) 6820 ipf->ipf_hole_cnt++; 6821 } else if (start == offset && next_mp == NULL) 6822 ipf->ipf_hole_cnt--; 6823 continue; 6824 } 6825 mp1 = ipf->ipf_mp->b_cont; 6826 offset = IP_REASS_START(mp1); 6827 /* New stuff at the front? */ 6828 if (start < offset) { 6829 if (start == 0) { 6830 if (end >= offset) { 6831 /* Nailed the hole at the begining. */ 6832 ipf->ipf_hole_cnt--; 6833 } 6834 } else if (end < offset) { 6835 /* 6836 * A hole, stuff, and a hole where there used 6837 * to be just a hole. 6838 */ 6839 ipf->ipf_hole_cnt++; 6840 } 6841 mp->b_cont = mp1; 6842 /* Check for overlap. */ 6843 while (end > offset) { 6844 if (end < IP_REASS_END(mp1)) { 6845 mp->b_wptr -= end - offset; 6846 IP_REASS_SET_END(mp, offset); 6847 BUMP_MIB(ill->ill_ip_mib, 6848 ipIfStatsReasmPartDups); 6849 break; 6850 } 6851 /* Did we cover another hole? */ 6852 if ((mp1->b_cont && 6853 IP_REASS_END(mp1) != 6854 IP_REASS_START(mp1->b_cont) && 6855 end >= IP_REASS_START(mp1->b_cont)) || 6856 (!ipf->ipf_last_frag_seen && !more)) { 6857 ipf->ipf_hole_cnt--; 6858 } 6859 /* Clip out mp1. */ 6860 if ((mp->b_cont = mp1->b_cont) == NULL) { 6861 /* 6862 * After clipping out mp1, this guy 6863 * is now hanging off the end. 6864 */ 6865 ipf->ipf_tail_mp = mp; 6866 } 6867 IP_REASS_SET_START(mp1, 0); 6868 IP_REASS_SET_END(mp1, 0); 6869 /* Subtract byte count */ 6870 ipf->ipf_count -= mp1->b_datap->db_lim - 6871 mp1->b_datap->db_base; 6872 freeb(mp1); 6873 BUMP_MIB(ill->ill_ip_mib, 6874 ipIfStatsReasmPartDups); 6875 mp1 = mp->b_cont; 6876 if (!mp1) 6877 break; 6878 offset = IP_REASS_START(mp1); 6879 } 6880 ipf->ipf_mp->b_cont = mp; 6881 continue; 6882 } 6883 /* 6884 * The new piece starts somewhere between the start of the head 6885 * and before the end of the tail. 6886 */ 6887 for (; mp1; mp1 = mp1->b_cont) { 6888 offset = IP_REASS_END(mp1); 6889 if (start < offset) { 6890 if (end <= offset) { 6891 /* Nothing new. */ 6892 IP_REASS_SET_START(mp, 0); 6893 IP_REASS_SET_END(mp, 0); 6894 /* Subtract byte count */ 6895 ipf->ipf_count -= mp->b_datap->db_lim - 6896 mp->b_datap->db_base; 6897 if (incr_dups) { 6898 ipf->ipf_num_dups++; 6899 incr_dups = B_FALSE; 6900 } 6901 freeb(mp); 6902 BUMP_MIB(ill->ill_ip_mib, 6903 ipIfStatsReasmDuplicates); 6904 break; 6905 } 6906 /* 6907 * Trim redundant stuff off beginning of new 6908 * piece. 6909 */ 6910 IP_REASS_SET_START(mp, offset); 6911 mp->b_rptr += offset - start; 6912 BUMP_MIB(ill->ill_ip_mib, 6913 ipIfStatsReasmPartDups); 6914 start = offset; 6915 if (!mp1->b_cont) { 6916 /* 6917 * After trimming, this guy is now 6918 * hanging off the end. 6919 */ 6920 mp1->b_cont = mp; 6921 ipf->ipf_tail_mp = mp; 6922 if (!more) { 6923 ipf->ipf_hole_cnt--; 6924 } 6925 break; 6926 } 6927 } 6928 if (start >= IP_REASS_START(mp1->b_cont)) 6929 continue; 6930 /* Fill a hole */ 6931 if (start > offset) 6932 ipf->ipf_hole_cnt++; 6933 mp->b_cont = mp1->b_cont; 6934 mp1->b_cont = mp; 6935 mp1 = mp->b_cont; 6936 offset = IP_REASS_START(mp1); 6937 if (end >= offset) { 6938 ipf->ipf_hole_cnt--; 6939 /* Check for overlap. */ 6940 while (end > offset) { 6941 if (end < IP_REASS_END(mp1)) { 6942 mp->b_wptr -= end - offset; 6943 IP_REASS_SET_END(mp, offset); 6944 /* 6945 * TODO we might bump 6946 * this up twice if there is 6947 * overlap at both ends. 6948 */ 6949 BUMP_MIB(ill->ill_ip_mib, 6950 ipIfStatsReasmPartDups); 6951 break; 6952 } 6953 /* Did we cover another hole? */ 6954 if ((mp1->b_cont && 6955 IP_REASS_END(mp1) 6956 != IP_REASS_START(mp1->b_cont) && 6957 end >= 6958 IP_REASS_START(mp1->b_cont)) || 6959 (!ipf->ipf_last_frag_seen && 6960 !more)) { 6961 ipf->ipf_hole_cnt--; 6962 } 6963 /* Clip out mp1. */ 6964 if ((mp->b_cont = mp1->b_cont) == 6965 NULL) { 6966 /* 6967 * After clipping out mp1, 6968 * this guy is now hanging 6969 * off the end. 6970 */ 6971 ipf->ipf_tail_mp = mp; 6972 } 6973 IP_REASS_SET_START(mp1, 0); 6974 IP_REASS_SET_END(mp1, 0); 6975 /* Subtract byte count */ 6976 ipf->ipf_count -= 6977 mp1->b_datap->db_lim - 6978 mp1->b_datap->db_base; 6979 freeb(mp1); 6980 BUMP_MIB(ill->ill_ip_mib, 6981 ipIfStatsReasmPartDups); 6982 mp1 = mp->b_cont; 6983 if (!mp1) 6984 break; 6985 offset = IP_REASS_START(mp1); 6986 } 6987 } 6988 break; 6989 } 6990 } while (start = end, mp = next_mp); 6991 6992 /* Fragment just processed could be the last one. Remember this fact */ 6993 if (!more) 6994 ipf->ipf_last_frag_seen = B_TRUE; 6995 6996 /* Still got holes? */ 6997 if (ipf->ipf_hole_cnt) 6998 return (IP_REASS_PARTIAL); 6999 /* Clean up overloaded fields to avoid upstream disasters. */ 7000 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 7001 IP_REASS_SET_START(mp1, 0); 7002 IP_REASS_SET_END(mp1, 0); 7003 } 7004 return (IP_REASS_COMPLETE); 7005 } 7006 7007 /* 7008 * Fragmentation reassembly. Each ILL has a hash table for 7009 * queuing packets undergoing reassembly for all IPIFs 7010 * associated with the ILL. The hash is based on the packet 7011 * IP ident field. The ILL frag hash table was allocated 7012 * as a timer block at the time the ILL was created. Whenever 7013 * there is anything on the reassembly queue, the timer will 7014 * be running. Returns the reassembled packet if reassembly completes. 7015 */ 7016 mblk_t * 7017 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 7018 { 7019 uint32_t frag_offset_flags; 7020 mblk_t *t_mp; 7021 ipaddr_t dst; 7022 uint8_t proto = ipha->ipha_protocol; 7023 uint32_t sum_val; 7024 uint16_t sum_flags; 7025 ipf_t *ipf; 7026 ipf_t **ipfp; 7027 ipfb_t *ipfb; 7028 uint16_t ident; 7029 uint32_t offset; 7030 ipaddr_t src; 7031 uint_t hdr_length; 7032 uint32_t end; 7033 mblk_t *mp1; 7034 mblk_t *tail_mp; 7035 size_t count; 7036 size_t msg_len; 7037 uint8_t ecn_info = 0; 7038 uint32_t packet_size; 7039 boolean_t pruned = B_FALSE; 7040 ill_t *ill = ira->ira_ill; 7041 ip_stack_t *ipst = ill->ill_ipst; 7042 7043 /* 7044 * Drop the fragmented as early as possible, if 7045 * we don't have resource(s) to re-assemble. 7046 */ 7047 if (ipst->ips_ip_reass_queue_bytes == 0) { 7048 freemsg(mp); 7049 return (NULL); 7050 } 7051 7052 /* Check for fragmentation offset; return if there's none */ 7053 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 7054 (IPH_MF | IPH_OFFSET)) == 0) 7055 return (mp); 7056 7057 /* 7058 * We utilize hardware computed checksum info only for UDP since 7059 * IP fragmentation is a normal occurrence for the protocol. In 7060 * addition, checksum offload support for IP fragments carrying 7061 * UDP payload is commonly implemented across network adapters. 7062 */ 7063 ASSERT(ira->ira_rill != NULL); 7064 if (proto == IPPROTO_UDP && dohwcksum && 7065 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 7066 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 7067 mblk_t *mp1 = mp->b_cont; 7068 int32_t len; 7069 7070 /* Record checksum information from the packet */ 7071 sum_val = (uint32_t)DB_CKSUM16(mp); 7072 sum_flags = DB_CKSUMFLAGS(mp); 7073 7074 /* IP payload offset from beginning of mblk */ 7075 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 7076 7077 if ((sum_flags & HCK_PARTIALCKSUM) && 7078 (mp1 == NULL || mp1->b_cont == NULL) && 7079 offset >= DB_CKSUMSTART(mp) && 7080 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7081 uint32_t adj; 7082 /* 7083 * Partial checksum has been calculated by hardware 7084 * and attached to the packet; in addition, any 7085 * prepended extraneous data is even byte aligned. 7086 * If any such data exists, we adjust the checksum; 7087 * this would also handle any postpended data. 7088 */ 7089 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7090 mp, mp1, len, adj); 7091 7092 /* One's complement subtract extraneous checksum */ 7093 if (adj >= sum_val) 7094 sum_val = ~(adj - sum_val) & 0xFFFF; 7095 else 7096 sum_val -= adj; 7097 } 7098 } else { 7099 sum_val = 0; 7100 sum_flags = 0; 7101 } 7102 7103 /* Clear hardware checksumming flag */ 7104 DB_CKSUMFLAGS(mp) = 0; 7105 7106 ident = ipha->ipha_ident; 7107 offset = (frag_offset_flags << 3) & 0xFFFF; 7108 src = ipha->ipha_src; 7109 dst = ipha->ipha_dst; 7110 hdr_length = IPH_HDR_LENGTH(ipha); 7111 end = ntohs(ipha->ipha_length) - hdr_length; 7112 7113 /* If end == 0 then we have a packet with no data, so just free it */ 7114 if (end == 0) { 7115 freemsg(mp); 7116 return (NULL); 7117 } 7118 7119 /* Record the ECN field info. */ 7120 ecn_info = (ipha->ipha_type_of_service & 0x3); 7121 if (offset != 0) { 7122 /* 7123 * If this isn't the first piece, strip the header, and 7124 * add the offset to the end value. 7125 */ 7126 mp->b_rptr += hdr_length; 7127 end += offset; 7128 } 7129 7130 /* Handle vnic loopback of fragments */ 7131 if (mp->b_datap->db_ref > 2) 7132 msg_len = 0; 7133 else 7134 msg_len = MBLKSIZE(mp); 7135 7136 tail_mp = mp; 7137 while (tail_mp->b_cont != NULL) { 7138 tail_mp = tail_mp->b_cont; 7139 if (tail_mp->b_datap->db_ref <= 2) 7140 msg_len += MBLKSIZE(tail_mp); 7141 } 7142 7143 /* If the reassembly list for this ILL will get too big, prune it */ 7144 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7145 ipst->ips_ip_reass_queue_bytes) { 7146 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7147 uint_t, ill->ill_frag_count, 7148 uint_t, ipst->ips_ip_reass_queue_bytes); 7149 ill_frag_prune(ill, 7150 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7151 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7152 pruned = B_TRUE; 7153 } 7154 7155 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7156 mutex_enter(&ipfb->ipfb_lock); 7157 7158 ipfp = &ipfb->ipfb_ipf; 7159 /* Try to find an existing fragment queue for this packet. */ 7160 for (;;) { 7161 ipf = ipfp[0]; 7162 if (ipf != NULL) { 7163 /* 7164 * It has to match on ident and src/dst address. 7165 */ 7166 if (ipf->ipf_ident == ident && 7167 ipf->ipf_src == src && 7168 ipf->ipf_dst == dst && 7169 ipf->ipf_protocol == proto) { 7170 /* 7171 * If we have received too many 7172 * duplicate fragments for this packet 7173 * free it. 7174 */ 7175 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7176 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7177 freemsg(mp); 7178 mutex_exit(&ipfb->ipfb_lock); 7179 return (NULL); 7180 } 7181 /* Found it. */ 7182 break; 7183 } 7184 ipfp = &ipf->ipf_hash_next; 7185 continue; 7186 } 7187 7188 /* 7189 * If we pruned the list, do we want to store this new 7190 * fragment?. We apply an optimization here based on the 7191 * fact that most fragments will be received in order. 7192 * So if the offset of this incoming fragment is zero, 7193 * it is the first fragment of a new packet. We will 7194 * keep it. Otherwise drop the fragment, as we have 7195 * probably pruned the packet already (since the 7196 * packet cannot be found). 7197 */ 7198 if (pruned && offset != 0) { 7199 mutex_exit(&ipfb->ipfb_lock); 7200 freemsg(mp); 7201 return (NULL); 7202 } 7203 7204 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7205 /* 7206 * Too many fragmented packets in this hash 7207 * bucket. Free the oldest. 7208 */ 7209 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7210 } 7211 7212 /* New guy. Allocate a frag message. */ 7213 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7214 if (mp1 == NULL) { 7215 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7216 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7217 freemsg(mp); 7218 reass_done: 7219 mutex_exit(&ipfb->ipfb_lock); 7220 return (NULL); 7221 } 7222 7223 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7224 mp1->b_cont = mp; 7225 7226 /* Initialize the fragment header. */ 7227 ipf = (ipf_t *)mp1->b_rptr; 7228 ipf->ipf_mp = mp1; 7229 ipf->ipf_ptphn = ipfp; 7230 ipfp[0] = ipf; 7231 ipf->ipf_hash_next = NULL; 7232 ipf->ipf_ident = ident; 7233 ipf->ipf_protocol = proto; 7234 ipf->ipf_src = src; 7235 ipf->ipf_dst = dst; 7236 ipf->ipf_nf_hdr_len = 0; 7237 /* Record reassembly start time. */ 7238 ipf->ipf_timestamp = gethrestime_sec(); 7239 /* Record ipf generation and account for frag header */ 7240 ipf->ipf_gen = ill->ill_ipf_gen++; 7241 ipf->ipf_count = MBLKSIZE(mp1); 7242 ipf->ipf_last_frag_seen = B_FALSE; 7243 ipf->ipf_ecn = ecn_info; 7244 ipf->ipf_num_dups = 0; 7245 ipfb->ipfb_frag_pkts++; 7246 ipf->ipf_checksum = 0; 7247 ipf->ipf_checksum_flags = 0; 7248 7249 /* Store checksum value in fragment header */ 7250 if (sum_flags != 0) { 7251 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7252 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7253 ipf->ipf_checksum = sum_val; 7254 ipf->ipf_checksum_flags = sum_flags; 7255 } 7256 7257 /* 7258 * We handle reassembly two ways. In the easy case, 7259 * where all the fragments show up in order, we do 7260 * minimal bookkeeping, and just clip new pieces on 7261 * the end. If we ever see a hole, then we go off 7262 * to ip_reassemble which has to mark the pieces and 7263 * keep track of the number of holes, etc. Obviously, 7264 * the point of having both mechanisms is so we can 7265 * handle the easy case as efficiently as possible. 7266 */ 7267 if (offset == 0) { 7268 /* Easy case, in-order reassembly so far. */ 7269 ipf->ipf_count += msg_len; 7270 ipf->ipf_tail_mp = tail_mp; 7271 /* 7272 * Keep track of next expected offset in 7273 * ipf_end. 7274 */ 7275 ipf->ipf_end = end; 7276 ipf->ipf_nf_hdr_len = hdr_length; 7277 } else { 7278 /* Hard case, hole at the beginning. */ 7279 ipf->ipf_tail_mp = NULL; 7280 /* 7281 * ipf_end == 0 means that we have given up 7282 * on easy reassembly. 7283 */ 7284 ipf->ipf_end = 0; 7285 7286 /* Forget checksum offload from now on */ 7287 ipf->ipf_checksum_flags = 0; 7288 7289 /* 7290 * ipf_hole_cnt is set by ip_reassemble. 7291 * ipf_count is updated by ip_reassemble. 7292 * No need to check for return value here 7293 * as we don't expect reassembly to complete 7294 * or fail for the first fragment itself. 7295 */ 7296 (void) ip_reassemble(mp, ipf, 7297 (frag_offset_flags & IPH_OFFSET) << 3, 7298 (frag_offset_flags & IPH_MF), ill, msg_len); 7299 } 7300 /* Update per ipfb and ill byte counts */ 7301 ipfb->ipfb_count += ipf->ipf_count; 7302 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7303 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7304 /* If the frag timer wasn't already going, start it. */ 7305 mutex_enter(&ill->ill_lock); 7306 ill_frag_timer_start(ill); 7307 mutex_exit(&ill->ill_lock); 7308 goto reass_done; 7309 } 7310 7311 /* 7312 * If the packet's flag has changed (it could be coming up 7313 * from an interface different than the previous, therefore 7314 * possibly different checksum capability), then forget about 7315 * any stored checksum states. Otherwise add the value to 7316 * the existing one stored in the fragment header. 7317 */ 7318 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7319 sum_val += ipf->ipf_checksum; 7320 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7321 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7322 ipf->ipf_checksum = sum_val; 7323 } else if (ipf->ipf_checksum_flags != 0) { 7324 /* Forget checksum offload from now on */ 7325 ipf->ipf_checksum_flags = 0; 7326 } 7327 7328 /* 7329 * We have a new piece of a datagram which is already being 7330 * reassembled. Update the ECN info if all IP fragments 7331 * are ECN capable. If there is one which is not, clear 7332 * all the info. If there is at least one which has CE 7333 * code point, IP needs to report that up to transport. 7334 */ 7335 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7336 if (ecn_info == IPH_ECN_CE) 7337 ipf->ipf_ecn = IPH_ECN_CE; 7338 } else { 7339 ipf->ipf_ecn = IPH_ECN_NECT; 7340 } 7341 if (offset && ipf->ipf_end == offset) { 7342 /* The new fragment fits at the end */ 7343 ipf->ipf_tail_mp->b_cont = mp; 7344 /* Update the byte count */ 7345 ipf->ipf_count += msg_len; 7346 /* Update per ipfb and ill byte counts */ 7347 ipfb->ipfb_count += msg_len; 7348 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7349 atomic_add_32(&ill->ill_frag_count, msg_len); 7350 if (frag_offset_flags & IPH_MF) { 7351 /* More to come. */ 7352 ipf->ipf_end = end; 7353 ipf->ipf_tail_mp = tail_mp; 7354 goto reass_done; 7355 } 7356 } else { 7357 /* Go do the hard cases. */ 7358 int ret; 7359 7360 if (offset == 0) 7361 ipf->ipf_nf_hdr_len = hdr_length; 7362 7363 /* Save current byte count */ 7364 count = ipf->ipf_count; 7365 ret = ip_reassemble(mp, ipf, 7366 (frag_offset_flags & IPH_OFFSET) << 3, 7367 (frag_offset_flags & IPH_MF), ill, msg_len); 7368 /* Count of bytes added and subtracted (freeb()ed) */ 7369 count = ipf->ipf_count - count; 7370 if (count) { 7371 /* Update per ipfb and ill byte counts */ 7372 ipfb->ipfb_count += count; 7373 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7374 atomic_add_32(&ill->ill_frag_count, count); 7375 } 7376 if (ret == IP_REASS_PARTIAL) { 7377 goto reass_done; 7378 } else if (ret == IP_REASS_FAILED) { 7379 /* Reassembly failed. Free up all resources */ 7380 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7381 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7382 IP_REASS_SET_START(t_mp, 0); 7383 IP_REASS_SET_END(t_mp, 0); 7384 } 7385 freemsg(mp); 7386 goto reass_done; 7387 } 7388 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7389 } 7390 /* 7391 * We have completed reassembly. Unhook the frag header from 7392 * the reassembly list. 7393 * 7394 * Before we free the frag header, record the ECN info 7395 * to report back to the transport. 7396 */ 7397 ecn_info = ipf->ipf_ecn; 7398 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7399 ipfp = ipf->ipf_ptphn; 7400 7401 /* We need to supply these to caller */ 7402 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7403 sum_val = ipf->ipf_checksum; 7404 else 7405 sum_val = 0; 7406 7407 mp1 = ipf->ipf_mp; 7408 count = ipf->ipf_count; 7409 ipf = ipf->ipf_hash_next; 7410 if (ipf != NULL) 7411 ipf->ipf_ptphn = ipfp; 7412 ipfp[0] = ipf; 7413 atomic_add_32(&ill->ill_frag_count, -count); 7414 ASSERT(ipfb->ipfb_count >= count); 7415 ipfb->ipfb_count -= count; 7416 ipfb->ipfb_frag_pkts--; 7417 mutex_exit(&ipfb->ipfb_lock); 7418 /* Ditch the frag header. */ 7419 mp = mp1->b_cont; 7420 7421 freeb(mp1); 7422 7423 /* Restore original IP length in header. */ 7424 packet_size = (uint32_t)msgdsize(mp); 7425 if (packet_size > IP_MAXPACKET) { 7426 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7427 ip_drop_input("Reassembled packet too large", mp, ill); 7428 freemsg(mp); 7429 return (NULL); 7430 } 7431 7432 if (DB_REF(mp) > 1) { 7433 mblk_t *mp2 = copymsg(mp); 7434 7435 if (mp2 == NULL) { 7436 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7437 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7438 freemsg(mp); 7439 return (NULL); 7440 } 7441 freemsg(mp); 7442 mp = mp2; 7443 } 7444 ipha = (ipha_t *)mp->b_rptr; 7445 7446 ipha->ipha_length = htons((uint16_t)packet_size); 7447 /* We're now complete, zip the frag state */ 7448 ipha->ipha_fragment_offset_and_flags = 0; 7449 /* Record the ECN info. */ 7450 ipha->ipha_type_of_service &= 0xFC; 7451 ipha->ipha_type_of_service |= ecn_info; 7452 7453 /* Update the receive attributes */ 7454 ira->ira_pktlen = packet_size; 7455 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7456 7457 /* Reassembly is successful; set checksum information in packet */ 7458 DB_CKSUM16(mp) = (uint16_t)sum_val; 7459 DB_CKSUMFLAGS(mp) = sum_flags; 7460 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7461 7462 return (mp); 7463 } 7464 7465 /* 7466 * Pullup function that should be used for IP input in order to 7467 * ensure we do not loose the L2 source address; we need the l2 source 7468 * address for IP_RECVSLLA and for ndp_input. 7469 * 7470 * We return either NULL or b_rptr. 7471 */ 7472 void * 7473 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7474 { 7475 ill_t *ill = ira->ira_ill; 7476 7477 if (ip_rput_pullups++ == 0) { 7478 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7479 "ip_pullup: %s forced us to " 7480 " pullup pkt, hdr len %ld, hdr addr %p", 7481 ill->ill_name, len, (void *)mp->b_rptr); 7482 } 7483 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7484 ip_setl2src(mp, ira, ira->ira_rill); 7485 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7486 if (!pullupmsg(mp, len)) 7487 return (NULL); 7488 else 7489 return (mp->b_rptr); 7490 } 7491 7492 /* 7493 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7494 * When called from the ULP ira_rill will be NULL hence the caller has to 7495 * pass in the ill. 7496 */ 7497 /* ARGSUSED */ 7498 void 7499 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7500 { 7501 const uchar_t *addr; 7502 int alen; 7503 7504 if (ira->ira_flags & IRAF_L2SRC_SET) 7505 return; 7506 7507 ASSERT(ill != NULL); 7508 alen = ill->ill_phys_addr_length; 7509 ASSERT(alen <= sizeof (ira->ira_l2src)); 7510 if (ira->ira_mhip != NULL && 7511 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7512 bcopy(addr, ira->ira_l2src, alen); 7513 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7514 (addr = ill->ill_phys_addr) != NULL) { 7515 bcopy(addr, ira->ira_l2src, alen); 7516 } else { 7517 bzero(ira->ira_l2src, alen); 7518 } 7519 ira->ira_flags |= IRAF_L2SRC_SET; 7520 } 7521 7522 /* 7523 * check ip header length and align it. 7524 */ 7525 mblk_t * 7526 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7527 { 7528 ill_t *ill = ira->ira_ill; 7529 ssize_t len; 7530 7531 len = MBLKL(mp); 7532 7533 if (!OK_32PTR(mp->b_rptr)) 7534 IP_STAT(ill->ill_ipst, ip_notaligned); 7535 else 7536 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7537 7538 /* Guard against bogus device drivers */ 7539 if (len < 0) { 7540 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7541 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7542 freemsg(mp); 7543 return (NULL); 7544 } 7545 7546 if (len == 0) { 7547 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7548 mblk_t *mp1 = mp->b_cont; 7549 7550 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7551 ip_setl2src(mp, ira, ira->ira_rill); 7552 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7553 7554 freeb(mp); 7555 mp = mp1; 7556 if (mp == NULL) 7557 return (NULL); 7558 7559 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7560 return (mp); 7561 } 7562 if (ip_pullup(mp, min_size, ira) == NULL) { 7563 if (msgdsize(mp) < min_size) { 7564 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7565 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7566 } else { 7567 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7568 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7569 } 7570 freemsg(mp); 7571 return (NULL); 7572 } 7573 return (mp); 7574 } 7575 7576 /* 7577 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7578 */ 7579 mblk_t * 7580 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7581 uint_t min_size, ip_recv_attr_t *ira) 7582 { 7583 ill_t *ill = ira->ira_ill; 7584 7585 /* 7586 * Make sure we have data length consistent 7587 * with the IP header. 7588 */ 7589 if (mp->b_cont == NULL) { 7590 /* pkt_len is based on ipha_len, not the mblk length */ 7591 if (pkt_len < min_size) { 7592 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7593 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7594 freemsg(mp); 7595 return (NULL); 7596 } 7597 if (len < 0) { 7598 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7599 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7600 freemsg(mp); 7601 return (NULL); 7602 } 7603 /* Drop any pad */ 7604 mp->b_wptr = rptr + pkt_len; 7605 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7606 ASSERT(pkt_len >= min_size); 7607 if (pkt_len < min_size) { 7608 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7609 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7610 freemsg(mp); 7611 return (NULL); 7612 } 7613 if (len < 0) { 7614 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7615 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7616 freemsg(mp); 7617 return (NULL); 7618 } 7619 /* Drop any pad */ 7620 (void) adjmsg(mp, -len); 7621 /* 7622 * adjmsg may have freed an mblk from the chain, hence 7623 * invalidate any hw checksum here. This will force IP to 7624 * calculate the checksum in sw, but only for this packet. 7625 */ 7626 DB_CKSUMFLAGS(mp) = 0; 7627 IP_STAT(ill->ill_ipst, ip_multimblk); 7628 } 7629 return (mp); 7630 } 7631 7632 /* 7633 * Check that the IPv4 opt_len is consistent with the packet and pullup 7634 * the options. 7635 */ 7636 mblk_t * 7637 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7638 ip_recv_attr_t *ira) 7639 { 7640 ill_t *ill = ira->ira_ill; 7641 ssize_t len; 7642 7643 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7644 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7645 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7646 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7647 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7648 freemsg(mp); 7649 return (NULL); 7650 } 7651 7652 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7653 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7654 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7655 freemsg(mp); 7656 return (NULL); 7657 } 7658 /* 7659 * Recompute complete header length and make sure we 7660 * have access to all of it. 7661 */ 7662 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7663 if (len > (mp->b_wptr - mp->b_rptr)) { 7664 if (len > pkt_len) { 7665 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7666 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7667 freemsg(mp); 7668 return (NULL); 7669 } 7670 if (ip_pullup(mp, len, ira) == NULL) { 7671 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7672 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7673 freemsg(mp); 7674 return (NULL); 7675 } 7676 } 7677 return (mp); 7678 } 7679 7680 /* 7681 * Returns a new ire, or the same ire, or NULL. 7682 * If a different IRE is returned, then it is held; the caller 7683 * needs to release it. 7684 * In no case is there any hold/release on the ire argument. 7685 */ 7686 ire_t * 7687 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7688 { 7689 ire_t *new_ire; 7690 ill_t *ire_ill; 7691 uint_t ifindex; 7692 ip_stack_t *ipst = ill->ill_ipst; 7693 boolean_t strict_check = B_FALSE; 7694 7695 /* 7696 * IPMP common case: if IRE and ILL are in the same group, there's no 7697 * issue (e.g. packet received on an underlying interface matched an 7698 * IRE_LOCAL on its associated group interface). 7699 */ 7700 ASSERT(ire->ire_ill != NULL); 7701 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7702 return (ire); 7703 7704 /* 7705 * Do another ire lookup here, using the ingress ill, to see if the 7706 * interface is in a usesrc group. 7707 * As long as the ills belong to the same group, we don't consider 7708 * them to be arriving on the wrong interface. Thus, if the switch 7709 * is doing inbound load spreading, we won't drop packets when the 7710 * ip*_strict_dst_multihoming switch is on. 7711 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7712 * where the local address may not be unique. In this case we were 7713 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7714 * actually returned. The new lookup, which is more specific, should 7715 * only find the IRE_LOCAL associated with the ingress ill if one 7716 * exists. 7717 */ 7718 if (ire->ire_ipversion == IPV4_VERSION) { 7719 if (ipst->ips_ip_strict_dst_multihoming) 7720 strict_check = B_TRUE; 7721 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7722 IRE_LOCAL, ill, ALL_ZONES, NULL, 7723 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7724 } else { 7725 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7726 if (ipst->ips_ipv6_strict_dst_multihoming) 7727 strict_check = B_TRUE; 7728 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7729 IRE_LOCAL, ill, ALL_ZONES, NULL, 7730 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7731 } 7732 /* 7733 * If the same ire that was returned in ip_input() is found then this 7734 * is an indication that usesrc groups are in use. The packet 7735 * arrived on a different ill in the group than the one associated with 7736 * the destination address. If a different ire was found then the same 7737 * IP address must be hosted on multiple ills. This is possible with 7738 * unnumbered point2point interfaces. We switch to use this new ire in 7739 * order to have accurate interface statistics. 7740 */ 7741 if (new_ire != NULL) { 7742 /* Note: held in one case but not the other? Caller handles */ 7743 if (new_ire != ire) 7744 return (new_ire); 7745 /* Unchanged */ 7746 ire_refrele(new_ire); 7747 return (ire); 7748 } 7749 7750 /* 7751 * Chase pointers once and store locally. 7752 */ 7753 ASSERT(ire->ire_ill != NULL); 7754 ire_ill = ire->ire_ill; 7755 ifindex = ill->ill_usesrc_ifindex; 7756 7757 /* 7758 * Check if it's a legal address on the 'usesrc' interface. 7759 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7760 * can just check phyint_ifindex. 7761 */ 7762 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7763 return (ire); 7764 } 7765 7766 /* 7767 * If the ip*_strict_dst_multihoming switch is on then we can 7768 * only accept this packet if the interface is marked as routing. 7769 */ 7770 if (!(strict_check)) 7771 return (ire); 7772 7773 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7774 return (ire); 7775 } 7776 return (NULL); 7777 } 7778 7779 /* 7780 * This function is used to construct a mac_header_info_s from a 7781 * DL_UNITDATA_IND message. 7782 * The address fields in the mhi structure points into the message, 7783 * thus the caller can't use those fields after freeing the message. 7784 * 7785 * We determine whether the packet received is a non-unicast packet 7786 * and in doing so, determine whether or not it is broadcast vs multicast. 7787 * For it to be a broadcast packet, we must have the appropriate mblk_t 7788 * hanging off the ill_t. If this is either not present or doesn't match 7789 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7790 * to be multicast. Thus NICs that have no broadcast address (or no 7791 * capability for one, such as point to point links) cannot return as 7792 * the packet being broadcast. 7793 */ 7794 void 7795 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7796 { 7797 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7798 mblk_t *bmp; 7799 uint_t extra_offset; 7800 7801 bzero(mhip, sizeof (struct mac_header_info_s)); 7802 7803 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7804 7805 if (ill->ill_sap_length < 0) 7806 extra_offset = 0; 7807 else 7808 extra_offset = ill->ill_sap_length; 7809 7810 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7811 extra_offset; 7812 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7813 extra_offset; 7814 7815 if (!ind->dl_group_address) 7816 return; 7817 7818 /* Multicast or broadcast */ 7819 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7820 7821 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7822 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7823 (bmp = ill->ill_bcast_mp) != NULL) { 7824 dl_unitdata_req_t *dlur; 7825 uint8_t *bphys_addr; 7826 7827 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7828 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7829 extra_offset; 7830 7831 if (bcmp(mhip->mhi_daddr, bphys_addr, 7832 ind->dl_dest_addr_length) == 0) 7833 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7834 } 7835 } 7836 7837 /* 7838 * This function is used to construct a mac_header_info_s from a 7839 * M_DATA fastpath message from a DLPI driver. 7840 * The address fields in the mhi structure points into the message, 7841 * thus the caller can't use those fields after freeing the message. 7842 * 7843 * We determine whether the packet received is a non-unicast packet 7844 * and in doing so, determine whether or not it is broadcast vs multicast. 7845 * For it to be a broadcast packet, we must have the appropriate mblk_t 7846 * hanging off the ill_t. If this is either not present or doesn't match 7847 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7848 * to be multicast. Thus NICs that have no broadcast address (or no 7849 * capability for one, such as point to point links) cannot return as 7850 * the packet being broadcast. 7851 */ 7852 void 7853 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7854 { 7855 mblk_t *bmp; 7856 struct ether_header *pether; 7857 7858 bzero(mhip, sizeof (struct mac_header_info_s)); 7859 7860 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7861 7862 pether = (struct ether_header *)((char *)mp->b_rptr 7863 - sizeof (struct ether_header)); 7864 7865 /* 7866 * Make sure the interface is an ethernet type, since we don't 7867 * know the header format for anything but Ethernet. Also make 7868 * sure we are pointing correctly above db_base. 7869 */ 7870 if (ill->ill_type != IFT_ETHER) 7871 return; 7872 7873 retry: 7874 if ((uchar_t *)pether < mp->b_datap->db_base) 7875 return; 7876 7877 /* Is there a VLAN tag? */ 7878 if (ill->ill_isv6) { 7879 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7880 pether = (struct ether_header *)((char *)pether - 4); 7881 goto retry; 7882 } 7883 } else { 7884 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7885 pether = (struct ether_header *)((char *)pether - 4); 7886 goto retry; 7887 } 7888 } 7889 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7890 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7891 7892 if (!(mhip->mhi_daddr[0] & 0x01)) 7893 return; 7894 7895 /* Multicast or broadcast */ 7896 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7897 7898 if ((bmp = ill->ill_bcast_mp) != NULL) { 7899 dl_unitdata_req_t *dlur; 7900 uint8_t *bphys_addr; 7901 uint_t addrlen; 7902 7903 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7904 addrlen = dlur->dl_dest_addr_length; 7905 if (ill->ill_sap_length < 0) { 7906 bphys_addr = (uchar_t *)dlur + 7907 dlur->dl_dest_addr_offset; 7908 addrlen += ill->ill_sap_length; 7909 } else { 7910 bphys_addr = (uchar_t *)dlur + 7911 dlur->dl_dest_addr_offset + 7912 ill->ill_sap_length; 7913 addrlen -= ill->ill_sap_length; 7914 } 7915 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7916 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7917 } 7918 } 7919 7920 /* 7921 * Handle anything but M_DATA messages 7922 * We see the DL_UNITDATA_IND which are part 7923 * of the data path, and also the other messages from the driver. 7924 */ 7925 void 7926 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7927 { 7928 mblk_t *first_mp; 7929 struct iocblk *iocp; 7930 struct mac_header_info_s mhi; 7931 7932 switch (DB_TYPE(mp)) { 7933 case M_PROTO: 7934 case M_PCPROTO: { 7935 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7936 DL_UNITDATA_IND) { 7937 /* Go handle anything other than data elsewhere. */ 7938 ip_rput_dlpi(ill, mp); 7939 return; 7940 } 7941 7942 first_mp = mp; 7943 mp = first_mp->b_cont; 7944 first_mp->b_cont = NULL; 7945 7946 if (mp == NULL) { 7947 freeb(first_mp); 7948 return; 7949 } 7950 ip_dlur_to_mhi(ill, first_mp, &mhi); 7951 if (ill->ill_isv6) 7952 ip_input_v6(ill, NULL, mp, &mhi); 7953 else 7954 ip_input(ill, NULL, mp, &mhi); 7955 7956 /* Ditch the DLPI header. */ 7957 freeb(first_mp); 7958 return; 7959 } 7960 case M_IOCACK: 7961 iocp = (struct iocblk *)mp->b_rptr; 7962 switch (iocp->ioc_cmd) { 7963 case DL_IOC_HDR_INFO: 7964 ill_fastpath_ack(ill, mp); 7965 return; 7966 default: 7967 putnext(ill->ill_rq, mp); 7968 return; 7969 } 7970 /* FALLTHROUGH */ 7971 case M_ERROR: 7972 case M_HANGUP: 7973 mutex_enter(&ill->ill_lock); 7974 if (ill->ill_state_flags & ILL_CONDEMNED) { 7975 mutex_exit(&ill->ill_lock); 7976 freemsg(mp); 7977 return; 7978 } 7979 ill_refhold_locked(ill); 7980 mutex_exit(&ill->ill_lock); 7981 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 7982 B_FALSE); 7983 return; 7984 case M_CTL: 7985 putnext(ill->ill_rq, mp); 7986 return; 7987 case M_IOCNAK: 7988 ip1dbg(("got iocnak ")); 7989 iocp = (struct iocblk *)mp->b_rptr; 7990 switch (iocp->ioc_cmd) { 7991 case DL_IOC_HDR_INFO: 7992 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 7993 return; 7994 default: 7995 break; 7996 } 7997 /* FALLTHROUGH */ 7998 default: 7999 putnext(ill->ill_rq, mp); 8000 return; 8001 } 8002 } 8003 8004 /* Read side put procedure. Packets coming from the wire arrive here. */ 8005 int 8006 ip_rput(queue_t *q, mblk_t *mp) 8007 { 8008 ill_t *ill; 8009 union DL_primitives *dl; 8010 8011 ill = (ill_t *)q->q_ptr; 8012 8013 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 8014 /* 8015 * If things are opening or closing, only accept high-priority 8016 * DLPI messages. (On open ill->ill_ipif has not yet been 8017 * created; on close, things hanging off the ill may have been 8018 * freed already.) 8019 */ 8020 dl = (union DL_primitives *)mp->b_rptr; 8021 if (DB_TYPE(mp) != M_PCPROTO || 8022 dl->dl_primitive == DL_UNITDATA_IND) { 8023 inet_freemsg(mp); 8024 return (0); 8025 } 8026 } 8027 if (DB_TYPE(mp) == M_DATA) { 8028 struct mac_header_info_s mhi; 8029 8030 ip_mdata_to_mhi(ill, mp, &mhi); 8031 ip_input(ill, NULL, mp, &mhi); 8032 } else { 8033 ip_rput_notdata(ill, mp); 8034 } 8035 return (0); 8036 } 8037 8038 /* 8039 * Move the information to a copy. 8040 */ 8041 mblk_t * 8042 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 8043 { 8044 mblk_t *mp1; 8045 ill_t *ill = ira->ira_ill; 8046 ip_stack_t *ipst = ill->ill_ipst; 8047 8048 IP_STAT(ipst, ip_db_ref); 8049 8050 /* Make sure we have ira_l2src before we loose the original mblk */ 8051 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 8052 ip_setl2src(mp, ira, ira->ira_rill); 8053 8054 mp1 = copymsg(mp); 8055 if (mp1 == NULL) { 8056 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 8057 ip_drop_input("ipIfStatsInDiscards", mp, ill); 8058 freemsg(mp); 8059 return (NULL); 8060 } 8061 /* preserve the hardware checksum flags and data, if present */ 8062 if (DB_CKSUMFLAGS(mp) != 0) { 8063 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 8064 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 8065 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 8066 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 8067 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 8068 } 8069 freemsg(mp); 8070 return (mp1); 8071 } 8072 8073 static void 8074 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 8075 t_uscalar_t err) 8076 { 8077 if (dl_err == DL_SYSERR) { 8078 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8079 "%s: %s failed: DL_SYSERR (errno %u)\n", 8080 ill->ill_name, dl_primstr(prim), err); 8081 return; 8082 } 8083 8084 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8085 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8086 dl_errstr(dl_err)); 8087 } 8088 8089 /* 8090 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8091 * than DL_UNITDATA_IND messages. If we need to process this message 8092 * exclusively, we call qwriter_ip, in which case we also need to call 8093 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8094 */ 8095 void 8096 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8097 { 8098 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8099 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8100 queue_t *q = ill->ill_rq; 8101 t_uscalar_t prim = dloa->dl_primitive; 8102 t_uscalar_t reqprim = DL_PRIM_INVAL; 8103 8104 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8105 char *, dl_primstr(prim), ill_t *, ill); 8106 ip1dbg(("ip_rput_dlpi")); 8107 8108 /* 8109 * If we received an ACK but didn't send a request for it, then it 8110 * can't be part of any pending operation; discard up-front. 8111 */ 8112 switch (prim) { 8113 case DL_ERROR_ACK: 8114 reqprim = dlea->dl_error_primitive; 8115 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8116 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8117 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8118 dlea->dl_unix_errno)); 8119 break; 8120 case DL_OK_ACK: 8121 reqprim = dloa->dl_correct_primitive; 8122 break; 8123 case DL_INFO_ACK: 8124 reqprim = DL_INFO_REQ; 8125 break; 8126 case DL_BIND_ACK: 8127 reqprim = DL_BIND_REQ; 8128 break; 8129 case DL_PHYS_ADDR_ACK: 8130 reqprim = DL_PHYS_ADDR_REQ; 8131 break; 8132 case DL_NOTIFY_ACK: 8133 reqprim = DL_NOTIFY_REQ; 8134 break; 8135 case DL_CAPABILITY_ACK: 8136 reqprim = DL_CAPABILITY_REQ; 8137 break; 8138 } 8139 8140 if (prim != DL_NOTIFY_IND) { 8141 if (reqprim == DL_PRIM_INVAL || 8142 !ill_dlpi_pending(ill, reqprim)) { 8143 /* Not a DLPI message we support or expected */ 8144 freemsg(mp); 8145 return; 8146 } 8147 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8148 dl_primstr(reqprim))); 8149 } 8150 8151 switch (reqprim) { 8152 case DL_UNBIND_REQ: 8153 /* 8154 * NOTE: we mark the unbind as complete even if we got a 8155 * DL_ERROR_ACK, since there's not much else we can do. 8156 */ 8157 mutex_enter(&ill->ill_lock); 8158 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8159 cv_signal(&ill->ill_cv); 8160 mutex_exit(&ill->ill_lock); 8161 break; 8162 8163 case DL_ENABMULTI_REQ: 8164 if (prim == DL_OK_ACK) { 8165 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8166 ill->ill_dlpi_multicast_state = IDS_OK; 8167 } 8168 break; 8169 } 8170 8171 /* 8172 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8173 * need to become writer to continue to process it. Because an 8174 * exclusive operation doesn't complete until replies to all queued 8175 * DLPI messages have been received, we know we're in the middle of an 8176 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8177 * 8178 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8179 * Since this is on the ill stream we unconditionally bump up the 8180 * refcount without doing ILL_CAN_LOOKUP(). 8181 */ 8182 ill_refhold(ill); 8183 if (prim == DL_NOTIFY_IND) 8184 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8185 else 8186 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8187 } 8188 8189 /* 8190 * Handling of DLPI messages that require exclusive access to the ipsq. 8191 * 8192 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8193 * happen here. (along with mi_copy_done) 8194 */ 8195 /* ARGSUSED */ 8196 static void 8197 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8198 { 8199 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8200 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8201 int err = 0; 8202 ill_t *ill = (ill_t *)q->q_ptr; 8203 ipif_t *ipif = NULL; 8204 mblk_t *mp1 = NULL; 8205 conn_t *connp = NULL; 8206 t_uscalar_t paddrreq; 8207 mblk_t *mp_hw; 8208 boolean_t success; 8209 boolean_t ioctl_aborted = B_FALSE; 8210 boolean_t log = B_TRUE; 8211 8212 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8213 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8214 8215 ip1dbg(("ip_rput_dlpi_writer ..")); 8216 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8217 ASSERT(IAM_WRITER_ILL(ill)); 8218 8219 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8220 /* 8221 * The current ioctl could have been aborted by the user and a new 8222 * ioctl to bring up another ill could have started. We could still 8223 * get a response from the driver later. 8224 */ 8225 if (ipif != NULL && ipif->ipif_ill != ill) 8226 ioctl_aborted = B_TRUE; 8227 8228 switch (dloa->dl_primitive) { 8229 case DL_ERROR_ACK: 8230 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8231 dl_primstr(dlea->dl_error_primitive))); 8232 8233 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8234 char *, dl_primstr(dlea->dl_error_primitive), 8235 ill_t *, ill); 8236 8237 switch (dlea->dl_error_primitive) { 8238 case DL_DISABMULTI_REQ: 8239 ill_dlpi_done(ill, dlea->dl_error_primitive); 8240 break; 8241 case DL_PROMISCON_REQ: 8242 case DL_PROMISCOFF_REQ: 8243 case DL_UNBIND_REQ: 8244 case DL_ATTACH_REQ: 8245 case DL_INFO_REQ: 8246 ill_dlpi_done(ill, dlea->dl_error_primitive); 8247 break; 8248 case DL_NOTIFY_REQ: 8249 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8250 log = B_FALSE; 8251 break; 8252 case DL_PHYS_ADDR_REQ: 8253 /* 8254 * For IPv6 only, there are two additional 8255 * phys_addr_req's sent to the driver to get the 8256 * IPv6 token and lla. This allows IP to acquire 8257 * the hardware address format for a given interface 8258 * without having built in knowledge of the hardware 8259 * address. ill_phys_addr_pend keeps track of the last 8260 * DL_PAR sent so we know which response we are 8261 * dealing with. ill_dlpi_done will update 8262 * ill_phys_addr_pend when it sends the next req. 8263 * We don't complete the IOCTL until all three DL_PARs 8264 * have been attempted, so set *_len to 0 and break. 8265 */ 8266 paddrreq = ill->ill_phys_addr_pend; 8267 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8268 if (paddrreq == DL_IPV6_TOKEN) { 8269 ill->ill_token_length = 0; 8270 log = B_FALSE; 8271 break; 8272 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8273 ill->ill_nd_lla_len = 0; 8274 log = B_FALSE; 8275 break; 8276 } 8277 /* 8278 * Something went wrong with the DL_PHYS_ADDR_REQ. 8279 * We presumably have an IOCTL hanging out waiting 8280 * for completion. Find it and complete the IOCTL 8281 * with the error noted. 8282 * However, ill_dl_phys was called on an ill queue 8283 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8284 * set. But the ioctl is known to be pending on ill_wq. 8285 */ 8286 if (!ill->ill_ifname_pending) 8287 break; 8288 ill->ill_ifname_pending = 0; 8289 if (!ioctl_aborted) 8290 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8291 if (mp1 != NULL) { 8292 /* 8293 * This operation (SIOCSLIFNAME) must have 8294 * happened on the ill. Assert there is no conn 8295 */ 8296 ASSERT(connp == NULL); 8297 q = ill->ill_wq; 8298 } 8299 break; 8300 case DL_BIND_REQ: 8301 ill_dlpi_done(ill, DL_BIND_REQ); 8302 if (ill->ill_ifname_pending) 8303 break; 8304 mutex_enter(&ill->ill_lock); 8305 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8306 mutex_exit(&ill->ill_lock); 8307 /* 8308 * Something went wrong with the bind. We presumably 8309 * have an IOCTL hanging out waiting for completion. 8310 * Find it, take down the interface that was coming 8311 * up, and complete the IOCTL with the error noted. 8312 */ 8313 if (!ioctl_aborted) 8314 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8315 if (mp1 != NULL) { 8316 /* 8317 * This might be a result of a DL_NOTE_REPLUMB 8318 * notification. In that case, connp is NULL. 8319 */ 8320 if (connp != NULL) 8321 q = CONNP_TO_WQ(connp); 8322 8323 (void) ipif_down(ipif, NULL, NULL); 8324 /* error is set below the switch */ 8325 } 8326 break; 8327 case DL_ENABMULTI_REQ: 8328 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8329 8330 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8331 ill->ill_dlpi_multicast_state = IDS_FAILED; 8332 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8333 8334 printf("ip: joining multicasts failed (%d)" 8335 " on %s - will use link layer " 8336 "broadcasts for multicast\n", 8337 dlea->dl_errno, ill->ill_name); 8338 8339 /* 8340 * Set up for multi_bcast; We are the 8341 * writer, so ok to access ill->ill_ipif 8342 * without any lock. 8343 */ 8344 mutex_enter(&ill->ill_phyint->phyint_lock); 8345 ill->ill_phyint->phyint_flags |= 8346 PHYI_MULTI_BCAST; 8347 mutex_exit(&ill->ill_phyint->phyint_lock); 8348 8349 } 8350 freemsg(mp); /* Don't want to pass this up */ 8351 return; 8352 case DL_CAPABILITY_REQ: 8353 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8354 "DL_CAPABILITY REQ\n")); 8355 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8356 ill->ill_dlpi_capab_state = IDCS_FAILED; 8357 ill_capability_done(ill); 8358 freemsg(mp); 8359 return; 8360 } 8361 /* 8362 * Note the error for IOCTL completion (mp1 is set when 8363 * ready to complete ioctl). If ill_ifname_pending_err is 8364 * set, an error occured during plumbing (ill_ifname_pending), 8365 * so we want to report that error. 8366 * 8367 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8368 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8369 * expected to get errack'd if the driver doesn't support 8370 * these flags (e.g. ethernet). log will be set to B_FALSE 8371 * if these error conditions are encountered. 8372 */ 8373 if (mp1 != NULL) { 8374 if (ill->ill_ifname_pending_err != 0) { 8375 err = ill->ill_ifname_pending_err; 8376 ill->ill_ifname_pending_err = 0; 8377 } else { 8378 err = dlea->dl_unix_errno ? 8379 dlea->dl_unix_errno : ENXIO; 8380 } 8381 /* 8382 * If we're plumbing an interface and an error hasn't already 8383 * been saved, set ill_ifname_pending_err to the error passed 8384 * up. Ignore the error if log is B_FALSE (see comment above). 8385 */ 8386 } else if (log && ill->ill_ifname_pending && 8387 ill->ill_ifname_pending_err == 0) { 8388 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8389 dlea->dl_unix_errno : ENXIO; 8390 } 8391 8392 if (log) 8393 ip_dlpi_error(ill, dlea->dl_error_primitive, 8394 dlea->dl_errno, dlea->dl_unix_errno); 8395 break; 8396 case DL_CAPABILITY_ACK: 8397 ill_capability_ack(ill, mp); 8398 /* 8399 * The message has been handed off to ill_capability_ack 8400 * and must not be freed below 8401 */ 8402 mp = NULL; 8403 break; 8404 8405 case DL_INFO_ACK: 8406 /* Call a routine to handle this one. */ 8407 ill_dlpi_done(ill, DL_INFO_REQ); 8408 ip_ll_subnet_defaults(ill, mp); 8409 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8410 return; 8411 case DL_BIND_ACK: 8412 /* 8413 * We should have an IOCTL waiting on this unless 8414 * sent by ill_dl_phys, in which case just return 8415 */ 8416 ill_dlpi_done(ill, DL_BIND_REQ); 8417 8418 if (ill->ill_ifname_pending) { 8419 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8420 ill_t *, ill, mblk_t *, mp); 8421 break; 8422 } 8423 mutex_enter(&ill->ill_lock); 8424 ill->ill_dl_up = 1; 8425 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8426 mutex_exit(&ill->ill_lock); 8427 8428 if (!ioctl_aborted) 8429 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8430 if (mp1 == NULL) { 8431 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8432 break; 8433 } 8434 /* 8435 * mp1 was added by ill_dl_up(). if that is a result of 8436 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8437 */ 8438 if (connp != NULL) 8439 q = CONNP_TO_WQ(connp); 8440 /* 8441 * We are exclusive. So nothing can change even after 8442 * we get the pending mp. 8443 */ 8444 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8445 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8446 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8447 8448 /* 8449 * Now bring up the resolver; when that is complete, we'll 8450 * create IREs. Note that we intentionally mirror what 8451 * ipif_up() would have done, because we got here by way of 8452 * ill_dl_up(), which stopped ipif_up()'s processing. 8453 */ 8454 if (ill->ill_isv6) { 8455 /* 8456 * v6 interfaces. 8457 * Unlike ARP which has to do another bind 8458 * and attach, once we get here we are 8459 * done with NDP 8460 */ 8461 (void) ipif_resolver_up(ipif, Res_act_initial); 8462 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8463 err = ipif_up_done_v6(ipif); 8464 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8465 /* 8466 * ARP and other v4 external resolvers. 8467 * Leave the pending mblk intact so that 8468 * the ioctl completes in ip_rput(). 8469 */ 8470 if (connp != NULL) 8471 mutex_enter(&connp->conn_lock); 8472 mutex_enter(&ill->ill_lock); 8473 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8474 mutex_exit(&ill->ill_lock); 8475 if (connp != NULL) 8476 mutex_exit(&connp->conn_lock); 8477 if (success) { 8478 err = ipif_resolver_up(ipif, Res_act_initial); 8479 if (err == EINPROGRESS) { 8480 freemsg(mp); 8481 return; 8482 } 8483 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8484 } else { 8485 /* The conn has started closing */ 8486 err = EINTR; 8487 } 8488 } else { 8489 /* 8490 * This one is complete. Reply to pending ioctl. 8491 */ 8492 (void) ipif_resolver_up(ipif, Res_act_initial); 8493 err = ipif_up_done(ipif); 8494 } 8495 8496 if ((err == 0) && (ill->ill_up_ipifs)) { 8497 err = ill_up_ipifs(ill, q, mp1); 8498 if (err == EINPROGRESS) { 8499 freemsg(mp); 8500 return; 8501 } 8502 } 8503 8504 /* 8505 * If we have a moved ipif to bring up, and everything has 8506 * succeeded to this point, bring it up on the IPMP ill. 8507 * Otherwise, leave it down -- the admin can try to bring it 8508 * up by hand if need be. 8509 */ 8510 if (ill->ill_move_ipif != NULL) { 8511 if (err != 0) { 8512 ill->ill_move_ipif = NULL; 8513 } else { 8514 ipif = ill->ill_move_ipif; 8515 ill->ill_move_ipif = NULL; 8516 err = ipif_up(ipif, q, mp1); 8517 if (err == EINPROGRESS) { 8518 freemsg(mp); 8519 return; 8520 } 8521 } 8522 } 8523 break; 8524 8525 case DL_NOTIFY_IND: { 8526 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8527 uint_t orig_mtu, orig_mc_mtu; 8528 8529 switch (notify->dl_notification) { 8530 case DL_NOTE_PHYS_ADDR: 8531 err = ill_set_phys_addr(ill, mp); 8532 break; 8533 8534 case DL_NOTE_REPLUMB: 8535 /* 8536 * Directly return after calling ill_replumb(). 8537 * Note that we should not free mp as it is reused 8538 * in the ill_replumb() function. 8539 */ 8540 err = ill_replumb(ill, mp); 8541 return; 8542 8543 case DL_NOTE_FASTPATH_FLUSH: 8544 nce_flush(ill, B_FALSE); 8545 break; 8546 8547 case DL_NOTE_SDU_SIZE: 8548 case DL_NOTE_SDU_SIZE2: 8549 /* 8550 * The dce and fragmentation code can cope with 8551 * this changing while packets are being sent. 8552 * When packets are sent ip_output will discover 8553 * a change. 8554 * 8555 * Change the MTU size of the interface. 8556 */ 8557 mutex_enter(&ill->ill_lock); 8558 orig_mtu = ill->ill_mtu; 8559 orig_mc_mtu = ill->ill_mc_mtu; 8560 switch (notify->dl_notification) { 8561 case DL_NOTE_SDU_SIZE: 8562 ill->ill_current_frag = 8563 (uint_t)notify->dl_data; 8564 ill->ill_mc_mtu = (uint_t)notify->dl_data; 8565 break; 8566 case DL_NOTE_SDU_SIZE2: 8567 ill->ill_current_frag = 8568 (uint_t)notify->dl_data1; 8569 ill->ill_mc_mtu = (uint_t)notify->dl_data2; 8570 break; 8571 } 8572 if (ill->ill_current_frag > ill->ill_max_frag) 8573 ill->ill_max_frag = ill->ill_current_frag; 8574 8575 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8576 ill->ill_mtu = ill->ill_current_frag; 8577 8578 /* 8579 * If ill_user_mtu was set (via 8580 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8581 */ 8582 if (ill->ill_user_mtu != 0 && 8583 ill->ill_user_mtu < ill->ill_mtu) 8584 ill->ill_mtu = ill->ill_user_mtu; 8585 8586 if (ill->ill_user_mtu != 0 && 8587 ill->ill_user_mtu < ill->ill_mc_mtu) 8588 ill->ill_mc_mtu = ill->ill_user_mtu; 8589 8590 if (ill->ill_isv6) { 8591 if (ill->ill_mtu < IPV6_MIN_MTU) 8592 ill->ill_mtu = IPV6_MIN_MTU; 8593 if (ill->ill_mc_mtu < IPV6_MIN_MTU) 8594 ill->ill_mc_mtu = IPV6_MIN_MTU; 8595 } else { 8596 if (ill->ill_mtu < IP_MIN_MTU) 8597 ill->ill_mtu = IP_MIN_MTU; 8598 if (ill->ill_mc_mtu < IP_MIN_MTU) 8599 ill->ill_mc_mtu = IP_MIN_MTU; 8600 } 8601 } else if (ill->ill_mc_mtu > ill->ill_mtu) { 8602 ill->ill_mc_mtu = ill->ill_mtu; 8603 } 8604 8605 mutex_exit(&ill->ill_lock); 8606 /* 8607 * Make sure all dce_generation checks find out 8608 * that ill_mtu/ill_mc_mtu has changed. 8609 */ 8610 if (orig_mtu != ill->ill_mtu || 8611 orig_mc_mtu != ill->ill_mc_mtu) { 8612 dce_increment_all_generations(ill->ill_isv6, 8613 ill->ill_ipst); 8614 } 8615 8616 /* 8617 * Refresh IPMP meta-interface MTU if necessary. 8618 */ 8619 if (IS_UNDER_IPMP(ill)) 8620 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8621 break; 8622 8623 case DL_NOTE_LINK_UP: 8624 case DL_NOTE_LINK_DOWN: { 8625 /* 8626 * We are writer. ill / phyint / ipsq assocs stable. 8627 * The RUNNING flag reflects the state of the link. 8628 */ 8629 phyint_t *phyint = ill->ill_phyint; 8630 uint64_t new_phyint_flags; 8631 boolean_t changed = B_FALSE; 8632 boolean_t went_up; 8633 8634 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8635 mutex_enter(&phyint->phyint_lock); 8636 8637 new_phyint_flags = went_up ? 8638 phyint->phyint_flags | PHYI_RUNNING : 8639 phyint->phyint_flags & ~PHYI_RUNNING; 8640 8641 if (IS_IPMP(ill)) { 8642 new_phyint_flags = went_up ? 8643 new_phyint_flags & ~PHYI_FAILED : 8644 new_phyint_flags | PHYI_FAILED; 8645 } 8646 8647 if (new_phyint_flags != phyint->phyint_flags) { 8648 phyint->phyint_flags = new_phyint_flags; 8649 changed = B_TRUE; 8650 } 8651 mutex_exit(&phyint->phyint_lock); 8652 /* 8653 * ill_restart_dad handles the DAD restart and routing 8654 * socket notification logic. 8655 */ 8656 if (changed) { 8657 ill_restart_dad(phyint->phyint_illv4, went_up); 8658 ill_restart_dad(phyint->phyint_illv6, went_up); 8659 } 8660 break; 8661 } 8662 case DL_NOTE_PROMISC_ON_PHYS: { 8663 phyint_t *phyint = ill->ill_phyint; 8664 8665 mutex_enter(&phyint->phyint_lock); 8666 phyint->phyint_flags |= PHYI_PROMISC; 8667 mutex_exit(&phyint->phyint_lock); 8668 break; 8669 } 8670 case DL_NOTE_PROMISC_OFF_PHYS: { 8671 phyint_t *phyint = ill->ill_phyint; 8672 8673 mutex_enter(&phyint->phyint_lock); 8674 phyint->phyint_flags &= ~PHYI_PROMISC; 8675 mutex_exit(&phyint->phyint_lock); 8676 break; 8677 } 8678 case DL_NOTE_CAPAB_RENEG: 8679 /* 8680 * Something changed on the driver side. 8681 * It wants us to renegotiate the capabilities 8682 * on this ill. One possible cause is the aggregation 8683 * interface under us where a port got added or 8684 * went away. 8685 * 8686 * If the capability negotiation is already done 8687 * or is in progress, reset the capabilities and 8688 * mark the ill's ill_capab_reneg to be B_TRUE, 8689 * so that when the ack comes back, we can start 8690 * the renegotiation process. 8691 * 8692 * Note that if ill_capab_reneg is already B_TRUE 8693 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8694 * the capability resetting request has been sent 8695 * and the renegotiation has not been started yet; 8696 * nothing needs to be done in this case. 8697 */ 8698 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8699 ill_capability_reset(ill, B_TRUE); 8700 ipsq_current_finish(ipsq); 8701 break; 8702 8703 case DL_NOTE_ALLOWED_IPS: 8704 ill_set_allowed_ips(ill, mp); 8705 break; 8706 default: 8707 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8708 "type 0x%x for DL_NOTIFY_IND\n", 8709 notify->dl_notification)); 8710 break; 8711 } 8712 8713 /* 8714 * As this is an asynchronous operation, we 8715 * should not call ill_dlpi_done 8716 */ 8717 break; 8718 } 8719 case DL_NOTIFY_ACK: { 8720 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8721 8722 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8723 ill->ill_note_link = 1; 8724 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8725 break; 8726 } 8727 case DL_PHYS_ADDR_ACK: { 8728 /* 8729 * As part of plumbing the interface via SIOCSLIFNAME, 8730 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8731 * whose answers we receive here. As each answer is received, 8732 * we call ill_dlpi_done() to dispatch the next request as 8733 * we're processing the current one. Once all answers have 8734 * been received, we use ipsq_pending_mp_get() to dequeue the 8735 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8736 * is invoked from an ill queue, conn_oper_pending_ill is not 8737 * available, but we know the ioctl is pending on ill_wq.) 8738 */ 8739 uint_t paddrlen, paddroff; 8740 uint8_t *addr; 8741 8742 paddrreq = ill->ill_phys_addr_pend; 8743 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8744 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8745 addr = mp->b_rptr + paddroff; 8746 8747 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8748 if (paddrreq == DL_IPV6_TOKEN) { 8749 /* 8750 * bcopy to low-order bits of ill_token 8751 * 8752 * XXX Temporary hack - currently, all known tokens 8753 * are 64 bits, so I'll cheat for the moment. 8754 */ 8755 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8756 ill->ill_token_length = paddrlen; 8757 break; 8758 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8759 ASSERT(ill->ill_nd_lla_mp == NULL); 8760 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8761 mp = NULL; 8762 break; 8763 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8764 ASSERT(ill->ill_dest_addr_mp == NULL); 8765 ill->ill_dest_addr_mp = mp; 8766 ill->ill_dest_addr = addr; 8767 mp = NULL; 8768 if (ill->ill_isv6) { 8769 ill_setdesttoken(ill); 8770 ipif_setdestlinklocal(ill->ill_ipif); 8771 } 8772 break; 8773 } 8774 8775 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8776 ASSERT(ill->ill_phys_addr_mp == NULL); 8777 if (!ill->ill_ifname_pending) 8778 break; 8779 ill->ill_ifname_pending = 0; 8780 if (!ioctl_aborted) 8781 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8782 if (mp1 != NULL) { 8783 ASSERT(connp == NULL); 8784 q = ill->ill_wq; 8785 } 8786 /* 8787 * If any error acks received during the plumbing sequence, 8788 * ill_ifname_pending_err will be set. Break out and send up 8789 * the error to the pending ioctl. 8790 */ 8791 if (ill->ill_ifname_pending_err != 0) { 8792 err = ill->ill_ifname_pending_err; 8793 ill->ill_ifname_pending_err = 0; 8794 break; 8795 } 8796 8797 ill->ill_phys_addr_mp = mp; 8798 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8799 mp = NULL; 8800 8801 /* 8802 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8803 * provider doesn't support physical addresses. We check both 8804 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8805 * not have physical addresses, but historically adversises a 8806 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8807 * its DL_PHYS_ADDR_ACK. 8808 */ 8809 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8810 ill->ill_phys_addr = NULL; 8811 } else if (paddrlen != ill->ill_phys_addr_length) { 8812 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8813 paddrlen, ill->ill_phys_addr_length)); 8814 err = EINVAL; 8815 break; 8816 } 8817 8818 if (ill->ill_nd_lla_mp == NULL) { 8819 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8820 err = ENOMEM; 8821 break; 8822 } 8823 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8824 } 8825 8826 if (ill->ill_isv6) { 8827 ill_setdefaulttoken(ill); 8828 ipif_setlinklocal(ill->ill_ipif); 8829 } 8830 break; 8831 } 8832 case DL_OK_ACK: 8833 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8834 dl_primstr((int)dloa->dl_correct_primitive), 8835 dloa->dl_correct_primitive)); 8836 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8837 char *, dl_primstr(dloa->dl_correct_primitive), 8838 ill_t *, ill); 8839 8840 switch (dloa->dl_correct_primitive) { 8841 case DL_ENABMULTI_REQ: 8842 case DL_DISABMULTI_REQ: 8843 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8844 break; 8845 case DL_PROMISCON_REQ: 8846 case DL_PROMISCOFF_REQ: 8847 case DL_UNBIND_REQ: 8848 case DL_ATTACH_REQ: 8849 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8850 break; 8851 } 8852 break; 8853 default: 8854 break; 8855 } 8856 8857 freemsg(mp); 8858 if (mp1 == NULL) 8859 return; 8860 8861 /* 8862 * The operation must complete without EINPROGRESS since 8863 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8864 * the operation will be stuck forever inside the IPSQ. 8865 */ 8866 ASSERT(err != EINPROGRESS); 8867 8868 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8869 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8870 ipif_t *, NULL); 8871 8872 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8873 case 0: 8874 ipsq_current_finish(ipsq); 8875 break; 8876 8877 case SIOCSLIFNAME: 8878 case IF_UNITSEL: { 8879 ill_t *ill_other = ILL_OTHER(ill); 8880 8881 /* 8882 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8883 * ill has a peer which is in an IPMP group, then place ill 8884 * into the same group. One catch: although ifconfig plumbs 8885 * the appropriate IPMP meta-interface prior to plumbing this 8886 * ill, it is possible for multiple ifconfig applications to 8887 * race (or for another application to adjust plumbing), in 8888 * which case the IPMP meta-interface we need will be missing. 8889 * If so, kick the phyint out of the group. 8890 */ 8891 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8892 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8893 ipmp_illgrp_t *illg; 8894 8895 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8896 if (illg == NULL) 8897 ipmp_phyint_leave_grp(ill->ill_phyint); 8898 else 8899 ipmp_ill_join_illgrp(ill, illg); 8900 } 8901 8902 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8903 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8904 else 8905 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8906 break; 8907 } 8908 case SIOCLIFADDIF: 8909 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8910 break; 8911 8912 default: 8913 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8914 break; 8915 } 8916 } 8917 8918 /* 8919 * ip_rput_other is called by ip_rput to handle messages modifying the global 8920 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8921 */ 8922 /* ARGSUSED */ 8923 void 8924 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8925 { 8926 ill_t *ill = q->q_ptr; 8927 struct iocblk *iocp; 8928 8929 ip1dbg(("ip_rput_other ")); 8930 if (ipsq != NULL) { 8931 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8932 ASSERT(ipsq->ipsq_xop == 8933 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8934 } 8935 8936 switch (mp->b_datap->db_type) { 8937 case M_ERROR: 8938 case M_HANGUP: 8939 /* 8940 * The device has a problem. We force the ILL down. It can 8941 * be brought up again manually using SIOCSIFFLAGS (via 8942 * ifconfig or equivalent). 8943 */ 8944 ASSERT(ipsq != NULL); 8945 if (mp->b_rptr < mp->b_wptr) 8946 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8947 if (ill->ill_error == 0) 8948 ill->ill_error = ENXIO; 8949 if (!ill_down_start(q, mp)) 8950 return; 8951 ipif_all_down_tail(ipsq, q, mp, NULL); 8952 break; 8953 case M_IOCNAK: { 8954 iocp = (struct iocblk *)mp->b_rptr; 8955 8956 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8957 /* 8958 * If this was the first attempt, turn off the fastpath 8959 * probing. 8960 */ 8961 mutex_enter(&ill->ill_lock); 8962 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8963 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8964 mutex_exit(&ill->ill_lock); 8965 /* 8966 * don't flush the nce_t entries: we use them 8967 * as an index to the ncec itself. 8968 */ 8969 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 8970 ill->ill_name)); 8971 } else { 8972 mutex_exit(&ill->ill_lock); 8973 } 8974 freemsg(mp); 8975 break; 8976 } 8977 default: 8978 ASSERT(0); 8979 break; 8980 } 8981 } 8982 8983 /* 8984 * Update any source route, record route or timestamp options 8985 * When it fails it has consumed the message and BUMPed the MIB. 8986 */ 8987 boolean_t 8988 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 8989 ip_recv_attr_t *ira) 8990 { 8991 ipoptp_t opts; 8992 uchar_t *opt; 8993 uint8_t optval; 8994 uint8_t optlen; 8995 ipaddr_t dst; 8996 ipaddr_t ifaddr; 8997 uint32_t ts; 8998 timestruc_t now; 8999 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9000 9001 ip2dbg(("ip_forward_options\n")); 9002 dst = ipha->ipha_dst; 9003 opt = NULL; 9004 9005 for (optval = ipoptp_first(&opts, ipha); 9006 optval != IPOPT_EOL; 9007 optval = ipoptp_next(&opts)) { 9008 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9009 opt = opts.ipoptp_cur; 9010 optlen = opts.ipoptp_len; 9011 ip2dbg(("ip_forward_options: opt %d, len %d\n", 9012 optval, opts.ipoptp_len)); 9013 switch (optval) { 9014 uint32_t off; 9015 case IPOPT_SSRR: 9016 case IPOPT_LSRR: 9017 /* Check if adminstratively disabled */ 9018 if (!ipst->ips_ip_forward_src_routed) { 9019 BUMP_MIB(dst_ill->ill_ip_mib, 9020 ipIfStatsForwProhibits); 9021 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 9022 mp, dst_ill); 9023 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 9024 ira); 9025 return (B_FALSE); 9026 } 9027 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9028 /* 9029 * Must be partial since ip_input_options 9030 * checked for strict. 9031 */ 9032 break; 9033 } 9034 off = opt[IPOPT_OFFSET]; 9035 off--; 9036 redo_srr: 9037 if (optlen < IP_ADDR_LEN || 9038 off > optlen - IP_ADDR_LEN) { 9039 /* End of source route */ 9040 ip1dbg(( 9041 "ip_forward_options: end of SR\n")); 9042 break; 9043 } 9044 /* Pick a reasonable address on the outbound if */ 9045 ASSERT(dst_ill != NULL); 9046 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9047 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9048 NULL) != 0) { 9049 /* No source! Shouldn't happen */ 9050 ifaddr = INADDR_ANY; 9051 } 9052 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9053 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9054 ip1dbg(("ip_forward_options: next hop 0x%x\n", 9055 ntohl(dst))); 9056 9057 /* 9058 * Check if our address is present more than 9059 * once as consecutive hops in source route. 9060 */ 9061 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9062 off += IP_ADDR_LEN; 9063 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9064 goto redo_srr; 9065 } 9066 ipha->ipha_dst = dst; 9067 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9068 break; 9069 case IPOPT_RR: 9070 off = opt[IPOPT_OFFSET]; 9071 off--; 9072 if (optlen < IP_ADDR_LEN || 9073 off > optlen - IP_ADDR_LEN) { 9074 /* No more room - ignore */ 9075 ip1dbg(( 9076 "ip_forward_options: end of RR\n")); 9077 break; 9078 } 9079 /* Pick a reasonable address on the outbound if */ 9080 ASSERT(dst_ill != NULL); 9081 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9082 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9083 NULL) != 0) { 9084 /* No source! Shouldn't happen */ 9085 ifaddr = INADDR_ANY; 9086 } 9087 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9088 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9089 break; 9090 case IPOPT_TS: 9091 off = 0; 9092 /* Insert timestamp if there is room */ 9093 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9094 case IPOPT_TS_TSONLY: 9095 off = IPOPT_TS_TIMELEN; 9096 break; 9097 case IPOPT_TS_PRESPEC: 9098 case IPOPT_TS_PRESPEC_RFC791: 9099 /* Verify that the address matched */ 9100 off = opt[IPOPT_OFFSET] - 1; 9101 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9102 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9103 /* Not for us */ 9104 break; 9105 } 9106 /* FALLTHROUGH */ 9107 case IPOPT_TS_TSANDADDR: 9108 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9109 break; 9110 default: 9111 /* 9112 * ip_*put_options should have already 9113 * dropped this packet. 9114 */ 9115 cmn_err(CE_PANIC, "ip_forward_options: " 9116 "unknown IT - bug in ip_input_options?\n"); 9117 } 9118 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9119 /* Increase overflow counter */ 9120 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9121 opt[IPOPT_POS_OV_FLG] = 9122 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9123 (off << 4)); 9124 break; 9125 } 9126 off = opt[IPOPT_OFFSET] - 1; 9127 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9128 case IPOPT_TS_PRESPEC: 9129 case IPOPT_TS_PRESPEC_RFC791: 9130 case IPOPT_TS_TSANDADDR: 9131 /* Pick a reasonable addr on the outbound if */ 9132 ASSERT(dst_ill != NULL); 9133 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9134 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9135 NULL, NULL) != 0) { 9136 /* No source! Shouldn't happen */ 9137 ifaddr = INADDR_ANY; 9138 } 9139 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9140 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9141 /* FALLTHROUGH */ 9142 case IPOPT_TS_TSONLY: 9143 off = opt[IPOPT_OFFSET] - 1; 9144 /* Compute # of milliseconds since midnight */ 9145 gethrestime(&now); 9146 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9147 NSEC2MSEC(now.tv_nsec); 9148 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9149 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9150 break; 9151 } 9152 break; 9153 } 9154 } 9155 return (B_TRUE); 9156 } 9157 9158 /* 9159 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9160 * returns 'true' if there are still fragments left on the queue, in 9161 * which case we restart the timer. 9162 */ 9163 void 9164 ill_frag_timer(void *arg) 9165 { 9166 ill_t *ill = (ill_t *)arg; 9167 boolean_t frag_pending; 9168 ip_stack_t *ipst = ill->ill_ipst; 9169 time_t timeout; 9170 9171 mutex_enter(&ill->ill_lock); 9172 ASSERT(!ill->ill_fragtimer_executing); 9173 if (ill->ill_state_flags & ILL_CONDEMNED) { 9174 ill->ill_frag_timer_id = 0; 9175 mutex_exit(&ill->ill_lock); 9176 return; 9177 } 9178 ill->ill_fragtimer_executing = 1; 9179 mutex_exit(&ill->ill_lock); 9180 9181 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9182 ipst->ips_ip_reassembly_timeout); 9183 9184 frag_pending = ill_frag_timeout(ill, timeout); 9185 9186 /* 9187 * Restart the timer, if we have fragments pending or if someone 9188 * wanted us to be scheduled again. 9189 */ 9190 mutex_enter(&ill->ill_lock); 9191 ill->ill_fragtimer_executing = 0; 9192 ill->ill_frag_timer_id = 0; 9193 if (frag_pending || ill->ill_fragtimer_needrestart) 9194 ill_frag_timer_start(ill); 9195 mutex_exit(&ill->ill_lock); 9196 } 9197 9198 void 9199 ill_frag_timer_start(ill_t *ill) 9200 { 9201 ip_stack_t *ipst = ill->ill_ipst; 9202 clock_t timeo_ms; 9203 9204 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9205 9206 /* If the ill is closing or opening don't proceed */ 9207 if (ill->ill_state_flags & ILL_CONDEMNED) 9208 return; 9209 9210 if (ill->ill_fragtimer_executing) { 9211 /* 9212 * ill_frag_timer is currently executing. Just record the 9213 * the fact that we want the timer to be restarted. 9214 * ill_frag_timer will post a timeout before it returns, 9215 * ensuring it will be called again. 9216 */ 9217 ill->ill_fragtimer_needrestart = 1; 9218 return; 9219 } 9220 9221 if (ill->ill_frag_timer_id == 0) { 9222 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9223 ipst->ips_ip_reassembly_timeout) * SECONDS; 9224 9225 /* 9226 * The timer is neither running nor is the timeout handler 9227 * executing. Post a timeout so that ill_frag_timer will be 9228 * called 9229 */ 9230 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9231 MSEC_TO_TICK(timeo_ms >> 1)); 9232 ill->ill_fragtimer_needrestart = 0; 9233 } 9234 } 9235 9236 /* 9237 * Update any source route, record route or timestamp options. 9238 * Check that we are at end of strict source route. 9239 * The options have already been checked for sanity in ip_input_options(). 9240 */ 9241 boolean_t 9242 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9243 { 9244 ipoptp_t opts; 9245 uchar_t *opt; 9246 uint8_t optval; 9247 uint8_t optlen; 9248 ipaddr_t dst; 9249 ipaddr_t ifaddr; 9250 uint32_t ts; 9251 timestruc_t now; 9252 ill_t *ill = ira->ira_ill; 9253 ip_stack_t *ipst = ill->ill_ipst; 9254 9255 ip2dbg(("ip_input_local_options\n")); 9256 opt = NULL; 9257 9258 for (optval = ipoptp_first(&opts, ipha); 9259 optval != IPOPT_EOL; 9260 optval = ipoptp_next(&opts)) { 9261 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9262 opt = opts.ipoptp_cur; 9263 optlen = opts.ipoptp_len; 9264 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9265 optval, optlen)); 9266 switch (optval) { 9267 uint32_t off; 9268 case IPOPT_SSRR: 9269 case IPOPT_LSRR: 9270 off = opt[IPOPT_OFFSET]; 9271 off--; 9272 if (optlen < IP_ADDR_LEN || 9273 off > optlen - IP_ADDR_LEN) { 9274 /* End of source route */ 9275 ip1dbg(("ip_input_local_options: end of SR\n")); 9276 break; 9277 } 9278 /* 9279 * This will only happen if two consecutive entries 9280 * in the source route contains our address or if 9281 * it is a packet with a loose source route which 9282 * reaches us before consuming the whole source route 9283 */ 9284 ip1dbg(("ip_input_local_options: not end of SR\n")); 9285 if (optval == IPOPT_SSRR) { 9286 goto bad_src_route; 9287 } 9288 /* 9289 * Hack: instead of dropping the packet truncate the 9290 * source route to what has been used by filling the 9291 * rest with IPOPT_NOP. 9292 */ 9293 opt[IPOPT_OLEN] = (uint8_t)off; 9294 while (off < optlen) { 9295 opt[off++] = IPOPT_NOP; 9296 } 9297 break; 9298 case IPOPT_RR: 9299 off = opt[IPOPT_OFFSET]; 9300 off--; 9301 if (optlen < IP_ADDR_LEN || 9302 off > optlen - IP_ADDR_LEN) { 9303 /* No more room - ignore */ 9304 ip1dbg(( 9305 "ip_input_local_options: end of RR\n")); 9306 break; 9307 } 9308 /* Pick a reasonable address on the outbound if */ 9309 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9310 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9311 NULL) != 0) { 9312 /* No source! Shouldn't happen */ 9313 ifaddr = INADDR_ANY; 9314 } 9315 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9316 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9317 break; 9318 case IPOPT_TS: 9319 off = 0; 9320 /* Insert timestamp if there is romm */ 9321 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9322 case IPOPT_TS_TSONLY: 9323 off = IPOPT_TS_TIMELEN; 9324 break; 9325 case IPOPT_TS_PRESPEC: 9326 case IPOPT_TS_PRESPEC_RFC791: 9327 /* Verify that the address matched */ 9328 off = opt[IPOPT_OFFSET] - 1; 9329 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9330 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9331 /* Not for us */ 9332 break; 9333 } 9334 /* FALLTHROUGH */ 9335 case IPOPT_TS_TSANDADDR: 9336 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9337 break; 9338 default: 9339 /* 9340 * ip_*put_options should have already 9341 * dropped this packet. 9342 */ 9343 cmn_err(CE_PANIC, "ip_input_local_options: " 9344 "unknown IT - bug in ip_input_options?\n"); 9345 } 9346 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9347 /* Increase overflow counter */ 9348 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9349 opt[IPOPT_POS_OV_FLG] = 9350 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9351 (off << 4)); 9352 break; 9353 } 9354 off = opt[IPOPT_OFFSET] - 1; 9355 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9356 case IPOPT_TS_PRESPEC: 9357 case IPOPT_TS_PRESPEC_RFC791: 9358 case IPOPT_TS_TSANDADDR: 9359 /* Pick a reasonable addr on the outbound if */ 9360 if (ip_select_source_v4(ill, INADDR_ANY, 9361 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9362 &ifaddr, NULL, NULL) != 0) { 9363 /* No source! Shouldn't happen */ 9364 ifaddr = INADDR_ANY; 9365 } 9366 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9367 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9368 /* FALLTHROUGH */ 9369 case IPOPT_TS_TSONLY: 9370 off = opt[IPOPT_OFFSET] - 1; 9371 /* Compute # of milliseconds since midnight */ 9372 gethrestime(&now); 9373 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9374 NSEC2MSEC(now.tv_nsec); 9375 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9376 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9377 break; 9378 } 9379 break; 9380 } 9381 } 9382 return (B_TRUE); 9383 9384 bad_src_route: 9385 /* make sure we clear any indication of a hardware checksum */ 9386 DB_CKSUMFLAGS(mp) = 0; 9387 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9388 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9389 return (B_FALSE); 9390 9391 } 9392 9393 /* 9394 * Process IP options in an inbound packet. Always returns the nexthop. 9395 * Normally this is the passed in nexthop, but if there is an option 9396 * that effects the nexthop (such as a source route) that will be returned. 9397 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9398 * and mp freed. 9399 */ 9400 ipaddr_t 9401 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9402 ip_recv_attr_t *ira, int *errorp) 9403 { 9404 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9405 ipoptp_t opts; 9406 uchar_t *opt; 9407 uint8_t optval; 9408 uint8_t optlen; 9409 intptr_t code = 0; 9410 ire_t *ire; 9411 9412 ip2dbg(("ip_input_options\n")); 9413 opt = NULL; 9414 *errorp = 0; 9415 for (optval = ipoptp_first(&opts, ipha); 9416 optval != IPOPT_EOL; 9417 optval = ipoptp_next(&opts)) { 9418 opt = opts.ipoptp_cur; 9419 optlen = opts.ipoptp_len; 9420 ip2dbg(("ip_input_options: opt %d, len %d\n", 9421 optval, optlen)); 9422 /* 9423 * Note: we need to verify the checksum before we 9424 * modify anything thus this routine only extracts the next 9425 * hop dst from any source route. 9426 */ 9427 switch (optval) { 9428 uint32_t off; 9429 case IPOPT_SSRR: 9430 case IPOPT_LSRR: 9431 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9432 if (optval == IPOPT_SSRR) { 9433 ip1dbg(("ip_input_options: not next" 9434 " strict source route 0x%x\n", 9435 ntohl(dst))); 9436 code = (char *)&ipha->ipha_dst - 9437 (char *)ipha; 9438 goto param_prob; /* RouterReq's */ 9439 } 9440 ip2dbg(("ip_input_options: " 9441 "not next source route 0x%x\n", 9442 ntohl(dst))); 9443 break; 9444 } 9445 9446 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9447 ip1dbg(( 9448 "ip_input_options: bad option offset\n")); 9449 code = (char *)&opt[IPOPT_OLEN] - 9450 (char *)ipha; 9451 goto param_prob; 9452 } 9453 off = opt[IPOPT_OFFSET]; 9454 off--; 9455 redo_srr: 9456 if (optlen < IP_ADDR_LEN || 9457 off > optlen - IP_ADDR_LEN) { 9458 /* End of source route */ 9459 ip1dbg(("ip_input_options: end of SR\n")); 9460 break; 9461 } 9462 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9463 ip1dbg(("ip_input_options: next hop 0x%x\n", 9464 ntohl(dst))); 9465 9466 /* 9467 * Check if our address is present more than 9468 * once as consecutive hops in source route. 9469 * XXX verify per-interface ip_forwarding 9470 * for source route? 9471 */ 9472 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9473 off += IP_ADDR_LEN; 9474 goto redo_srr; 9475 } 9476 9477 if (dst == htonl(INADDR_LOOPBACK)) { 9478 ip1dbg(("ip_input_options: loopback addr in " 9479 "source route!\n")); 9480 goto bad_src_route; 9481 } 9482 /* 9483 * For strict: verify that dst is directly 9484 * reachable. 9485 */ 9486 if (optval == IPOPT_SSRR) { 9487 ire = ire_ftable_lookup_v4(dst, 0, 0, 9488 IRE_INTERFACE, NULL, ALL_ZONES, 9489 ira->ira_tsl, 9490 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9491 NULL); 9492 if (ire == NULL) { 9493 ip1dbg(("ip_input_options: SSRR not " 9494 "directly reachable: 0x%x\n", 9495 ntohl(dst))); 9496 goto bad_src_route; 9497 } 9498 ire_refrele(ire); 9499 } 9500 /* 9501 * Defer update of the offset and the record route 9502 * until the packet is forwarded. 9503 */ 9504 break; 9505 case IPOPT_RR: 9506 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9507 ip1dbg(( 9508 "ip_input_options: bad option offset\n")); 9509 code = (char *)&opt[IPOPT_OLEN] - 9510 (char *)ipha; 9511 goto param_prob; 9512 } 9513 break; 9514 case IPOPT_TS: 9515 /* 9516 * Verify that length >= 5 and that there is either 9517 * room for another timestamp or that the overflow 9518 * counter is not maxed out. 9519 */ 9520 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9521 if (optlen < IPOPT_MINLEN_IT) { 9522 goto param_prob; 9523 } 9524 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9525 ip1dbg(( 9526 "ip_input_options: bad option offset\n")); 9527 code = (char *)&opt[IPOPT_OFFSET] - 9528 (char *)ipha; 9529 goto param_prob; 9530 } 9531 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9532 case IPOPT_TS_TSONLY: 9533 off = IPOPT_TS_TIMELEN; 9534 break; 9535 case IPOPT_TS_TSANDADDR: 9536 case IPOPT_TS_PRESPEC: 9537 case IPOPT_TS_PRESPEC_RFC791: 9538 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9539 break; 9540 default: 9541 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9542 (char *)ipha; 9543 goto param_prob; 9544 } 9545 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9546 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9547 /* 9548 * No room and the overflow counter is 15 9549 * already. 9550 */ 9551 goto param_prob; 9552 } 9553 break; 9554 } 9555 } 9556 9557 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9558 return (dst); 9559 } 9560 9561 ip1dbg(("ip_input_options: error processing IP options.")); 9562 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9563 9564 param_prob: 9565 /* make sure we clear any indication of a hardware checksum */ 9566 DB_CKSUMFLAGS(mp) = 0; 9567 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9568 icmp_param_problem(mp, (uint8_t)code, ira); 9569 *errorp = -1; 9570 return (dst); 9571 9572 bad_src_route: 9573 /* make sure we clear any indication of a hardware checksum */ 9574 DB_CKSUMFLAGS(mp) = 0; 9575 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9576 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9577 *errorp = -1; 9578 return (dst); 9579 } 9580 9581 /* 9582 * IP & ICMP info in >=14 msg's ... 9583 * - ip fixed part (mib2_ip_t) 9584 * - icmp fixed part (mib2_icmp_t) 9585 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9586 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9587 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9588 * - ipRouteAttributeTable (ip 102) labeled routes 9589 * - ip multicast membership (ip_member_t) 9590 * - ip multicast source filtering (ip_grpsrc_t) 9591 * - igmp fixed part (struct igmpstat) 9592 * - multicast routing stats (struct mrtstat) 9593 * - multicast routing vifs (array of struct vifctl) 9594 * - multicast routing routes (array of struct mfcctl) 9595 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9596 * One per ill plus one generic 9597 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9598 * One per ill plus one generic 9599 * - ipv6RouteEntry all IPv6 IREs 9600 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9601 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9602 * - ipv6AddrEntry all IPv6 ipifs 9603 * - ipv6 multicast membership (ipv6_member_t) 9604 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9605 * 9606 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9607 * already filled in by the caller. 9608 * If legacy_req is true then MIB structures needs to be truncated to their 9609 * legacy sizes before being returned. 9610 * Return value of 0 indicates that no messages were sent and caller 9611 * should free mpctl. 9612 */ 9613 int 9614 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req) 9615 { 9616 ip_stack_t *ipst; 9617 sctp_stack_t *sctps; 9618 9619 if (q->q_next != NULL) { 9620 ipst = ILLQ_TO_IPST(q); 9621 } else { 9622 ipst = CONNQ_TO_IPST(q); 9623 } 9624 ASSERT(ipst != NULL); 9625 sctps = ipst->ips_netstack->netstack_sctp; 9626 9627 if (mpctl == NULL || mpctl->b_cont == NULL) { 9628 return (0); 9629 } 9630 9631 /* 9632 * For the purposes of the (broken) packet shell use 9633 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9634 * to make TCP and UDP appear first in the list of mib items. 9635 * TBD: We could expand this and use it in netstat so that 9636 * the kernel doesn't have to produce large tables (connections, 9637 * routes, etc) when netstat only wants the statistics or a particular 9638 * table. 9639 */ 9640 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9641 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9642 return (1); 9643 } 9644 } 9645 9646 if (level != MIB2_TCP) { 9647 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9648 return (1); 9649 } 9650 if (level == MIB2_UDP) { 9651 goto done; 9652 } 9653 } 9654 9655 if (level != MIB2_UDP) { 9656 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9657 return (1); 9658 } 9659 if (level == MIB2_TCP) { 9660 goto done; 9661 } 9662 } 9663 9664 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9665 ipst, legacy_req)) == NULL) { 9666 return (1); 9667 } 9668 9669 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst, 9670 legacy_req)) == NULL) { 9671 return (1); 9672 } 9673 9674 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9675 return (1); 9676 } 9677 9678 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9679 return (1); 9680 } 9681 9682 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9683 return (1); 9684 } 9685 9686 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9687 return (1); 9688 } 9689 9690 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst, 9691 legacy_req)) == NULL) { 9692 return (1); 9693 } 9694 9695 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst, 9696 legacy_req)) == NULL) { 9697 return (1); 9698 } 9699 9700 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9701 return (1); 9702 } 9703 9704 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9705 return (1); 9706 } 9707 9708 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9709 return (1); 9710 } 9711 9712 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9713 return (1); 9714 } 9715 9716 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9717 return (1); 9718 } 9719 9720 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9721 return (1); 9722 } 9723 9724 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9725 if (mpctl == NULL) 9726 return (1); 9727 9728 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9729 if (mpctl == NULL) 9730 return (1); 9731 9732 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9733 return (1); 9734 } 9735 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9736 return (1); 9737 } 9738 done: 9739 freemsg(mpctl); 9740 return (1); 9741 } 9742 9743 /* Get global (legacy) IPv4 statistics */ 9744 static mblk_t * 9745 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9746 ip_stack_t *ipst, boolean_t legacy_req) 9747 { 9748 mib2_ip_t old_ip_mib; 9749 struct opthdr *optp; 9750 mblk_t *mp2ctl; 9751 mib2_ipAddrEntry_t mae; 9752 9753 /* 9754 * make a copy of the original message 9755 */ 9756 mp2ctl = copymsg(mpctl); 9757 9758 /* fixed length IP structure... */ 9759 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9760 optp->level = MIB2_IP; 9761 optp->name = 0; 9762 SET_MIB(old_ip_mib.ipForwarding, 9763 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9764 SET_MIB(old_ip_mib.ipDefaultTTL, 9765 (uint32_t)ipst->ips_ip_def_ttl); 9766 SET_MIB(old_ip_mib.ipReasmTimeout, 9767 ipst->ips_ip_reassembly_timeout); 9768 SET_MIB(old_ip_mib.ipAddrEntrySize, 9769 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9770 sizeof (mib2_ipAddrEntry_t)); 9771 SET_MIB(old_ip_mib.ipRouteEntrySize, 9772 sizeof (mib2_ipRouteEntry_t)); 9773 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9774 sizeof (mib2_ipNetToMediaEntry_t)); 9775 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9776 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9777 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9778 sizeof (mib2_ipAttributeEntry_t)); 9779 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9780 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9781 9782 /* 9783 * Grab the statistics from the new IP MIB 9784 */ 9785 SET_MIB(old_ip_mib.ipInReceives, 9786 (uint32_t)ipmib->ipIfStatsHCInReceives); 9787 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9788 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9789 SET_MIB(old_ip_mib.ipForwDatagrams, 9790 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9791 SET_MIB(old_ip_mib.ipInUnknownProtos, 9792 ipmib->ipIfStatsInUnknownProtos); 9793 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9794 SET_MIB(old_ip_mib.ipInDelivers, 9795 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9796 SET_MIB(old_ip_mib.ipOutRequests, 9797 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9798 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9799 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9800 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9801 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9802 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9803 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9804 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9805 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9806 9807 /* ipRoutingDiscards is not being used */ 9808 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9809 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9810 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9811 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9812 SET_MIB(old_ip_mib.ipReasmDuplicates, 9813 ipmib->ipIfStatsReasmDuplicates); 9814 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9815 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9816 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9817 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9818 SET_MIB(old_ip_mib.rawipInOverflows, 9819 ipmib->rawipIfStatsInOverflows); 9820 9821 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9822 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9823 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9824 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9825 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9826 ipmib->ipIfStatsOutSwitchIPVersion); 9827 9828 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9829 (int)sizeof (old_ip_mib))) { 9830 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9831 (uint_t)sizeof (old_ip_mib))); 9832 } 9833 9834 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9835 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9836 (int)optp->level, (int)optp->name, (int)optp->len)); 9837 qreply(q, mpctl); 9838 return (mp2ctl); 9839 } 9840 9841 /* Per interface IPv4 statistics */ 9842 static mblk_t * 9843 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9844 boolean_t legacy_req) 9845 { 9846 struct opthdr *optp; 9847 mblk_t *mp2ctl; 9848 ill_t *ill; 9849 ill_walk_context_t ctx; 9850 mblk_t *mp_tail = NULL; 9851 mib2_ipIfStatsEntry_t global_ip_mib; 9852 mib2_ipAddrEntry_t mae; 9853 9854 /* 9855 * Make a copy of the original message 9856 */ 9857 mp2ctl = copymsg(mpctl); 9858 9859 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9860 optp->level = MIB2_IP; 9861 optp->name = MIB2_IP_TRAFFIC_STATS; 9862 /* Include "unknown interface" ip_mib */ 9863 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9864 ipst->ips_ip_mib.ipIfStatsIfIndex = 9865 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9866 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9867 (ipst->ips_ip_forwarding ? 1 : 2)); 9868 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9869 (uint32_t)ipst->ips_ip_def_ttl); 9870 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9871 sizeof (mib2_ipIfStatsEntry_t)); 9872 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9873 sizeof (mib2_ipAddrEntry_t)); 9874 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9875 sizeof (mib2_ipRouteEntry_t)); 9876 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9877 sizeof (mib2_ipNetToMediaEntry_t)); 9878 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9879 sizeof (ip_member_t)); 9880 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9881 sizeof (ip_grpsrc_t)); 9882 9883 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9884 9885 if (legacy_req) { 9886 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize, 9887 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t)); 9888 } 9889 9890 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9891 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) { 9892 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9893 "failed to allocate %u bytes\n", 9894 (uint_t)sizeof (global_ip_mib))); 9895 } 9896 9897 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9898 ill = ILL_START_WALK_V4(&ctx, ipst); 9899 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9900 ill->ill_ip_mib->ipIfStatsIfIndex = 9901 ill->ill_phyint->phyint_ifindex; 9902 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9903 (ipst->ips_ip_forwarding ? 1 : 2)); 9904 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9905 (uint32_t)ipst->ips_ip_def_ttl); 9906 9907 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9908 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9909 (char *)ill->ill_ip_mib, 9910 (int)sizeof (*ill->ill_ip_mib))) { 9911 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9912 "failed to allocate %u bytes\n", 9913 (uint_t)sizeof (*ill->ill_ip_mib))); 9914 } 9915 } 9916 rw_exit(&ipst->ips_ill_g_lock); 9917 9918 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9919 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9920 "level %d, name %d, len %d\n", 9921 (int)optp->level, (int)optp->name, (int)optp->len)); 9922 qreply(q, mpctl); 9923 9924 if (mp2ctl == NULL) 9925 return (NULL); 9926 9927 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst, 9928 legacy_req)); 9929 } 9930 9931 /* Global IPv4 ICMP statistics */ 9932 static mblk_t * 9933 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9934 { 9935 struct opthdr *optp; 9936 mblk_t *mp2ctl; 9937 9938 /* 9939 * Make a copy of the original message 9940 */ 9941 mp2ctl = copymsg(mpctl); 9942 9943 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9944 optp->level = MIB2_ICMP; 9945 optp->name = 0; 9946 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9947 (int)sizeof (ipst->ips_icmp_mib))) { 9948 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9949 (uint_t)sizeof (ipst->ips_icmp_mib))); 9950 } 9951 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9952 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9953 (int)optp->level, (int)optp->name, (int)optp->len)); 9954 qreply(q, mpctl); 9955 return (mp2ctl); 9956 } 9957 9958 /* Global IPv4 IGMP statistics */ 9959 static mblk_t * 9960 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9961 { 9962 struct opthdr *optp; 9963 mblk_t *mp2ctl; 9964 9965 /* 9966 * make a copy of the original message 9967 */ 9968 mp2ctl = copymsg(mpctl); 9969 9970 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9971 optp->level = EXPER_IGMP; 9972 optp->name = 0; 9973 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 9974 (int)sizeof (ipst->ips_igmpstat))) { 9975 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 9976 (uint_t)sizeof (ipst->ips_igmpstat))); 9977 } 9978 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9979 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 9980 (int)optp->level, (int)optp->name, (int)optp->len)); 9981 qreply(q, mpctl); 9982 return (mp2ctl); 9983 } 9984 9985 /* Global IPv4 Multicast Routing statistics */ 9986 static mblk_t * 9987 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9988 { 9989 struct opthdr *optp; 9990 mblk_t *mp2ctl; 9991 9992 /* 9993 * make a copy of the original message 9994 */ 9995 mp2ctl = copymsg(mpctl); 9996 9997 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9998 optp->level = EXPER_DVMRP; 9999 optp->name = 0; 10000 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 10001 ip0dbg(("ip_mroute_stats: failed\n")); 10002 } 10003 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10004 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 10005 (int)optp->level, (int)optp->name, (int)optp->len)); 10006 qreply(q, mpctl); 10007 return (mp2ctl); 10008 } 10009 10010 /* IPv4 address information */ 10011 static mblk_t * 10012 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10013 boolean_t legacy_req) 10014 { 10015 struct opthdr *optp; 10016 mblk_t *mp2ctl; 10017 mblk_t *mp_tail = NULL; 10018 ill_t *ill; 10019 ipif_t *ipif; 10020 uint_t bitval; 10021 mib2_ipAddrEntry_t mae; 10022 size_t mae_size; 10023 zoneid_t zoneid; 10024 ill_walk_context_t ctx; 10025 10026 /* 10027 * make a copy of the original message 10028 */ 10029 mp2ctl = copymsg(mpctl); 10030 10031 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 10032 sizeof (mib2_ipAddrEntry_t); 10033 10034 /* ipAddrEntryTable */ 10035 10036 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10037 optp->level = MIB2_IP; 10038 optp->name = MIB2_IP_ADDR; 10039 zoneid = Q_TO_CONN(q)->conn_zoneid; 10040 10041 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10042 ill = ILL_START_WALK_V4(&ctx, ipst); 10043 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10044 for (ipif = ill->ill_ipif; ipif != NULL; 10045 ipif = ipif->ipif_next) { 10046 if (ipif->ipif_zoneid != zoneid && 10047 ipif->ipif_zoneid != ALL_ZONES) 10048 continue; 10049 /* Sum of count from dead IRE_LO* and our current */ 10050 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10051 if (ipif->ipif_ire_local != NULL) { 10052 mae.ipAdEntInfo.ae_ibcnt += 10053 ipif->ipif_ire_local->ire_ib_pkt_count; 10054 } 10055 mae.ipAdEntInfo.ae_obcnt = 0; 10056 mae.ipAdEntInfo.ae_focnt = 0; 10057 10058 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 10059 OCTET_LENGTH); 10060 mae.ipAdEntIfIndex.o_length = 10061 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 10062 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 10063 mae.ipAdEntNetMask = ipif->ipif_net_mask; 10064 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 10065 mae.ipAdEntInfo.ae_subnet_len = 10066 ip_mask_to_plen(ipif->ipif_net_mask); 10067 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 10068 for (bitval = 1; 10069 bitval && 10070 !(bitval & ipif->ipif_brd_addr); 10071 bitval <<= 1) 10072 noop; 10073 mae.ipAdEntBcastAddr = bitval; 10074 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 10075 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10076 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 10077 mae.ipAdEntInfo.ae_broadcast_addr = 10078 ipif->ipif_brd_addr; 10079 mae.ipAdEntInfo.ae_pp_dst_addr = 10080 ipif->ipif_pp_dst_addr; 10081 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 10082 ill->ill_flags | ill->ill_phyint->phyint_flags; 10083 mae.ipAdEntRetransmitTime = 10084 ill->ill_reachable_retrans_time; 10085 10086 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10087 (char *)&mae, (int)mae_size)) { 10088 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 10089 "allocate %u bytes\n", (uint_t)mae_size)); 10090 } 10091 } 10092 } 10093 rw_exit(&ipst->ips_ill_g_lock); 10094 10095 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10096 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 10097 (int)optp->level, (int)optp->name, (int)optp->len)); 10098 qreply(q, mpctl); 10099 return (mp2ctl); 10100 } 10101 10102 /* IPv6 address information */ 10103 static mblk_t * 10104 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10105 boolean_t legacy_req) 10106 { 10107 struct opthdr *optp; 10108 mblk_t *mp2ctl; 10109 mblk_t *mp_tail = NULL; 10110 ill_t *ill; 10111 ipif_t *ipif; 10112 mib2_ipv6AddrEntry_t mae6; 10113 size_t mae6_size; 10114 zoneid_t zoneid; 10115 ill_walk_context_t ctx; 10116 10117 /* 10118 * make a copy of the original message 10119 */ 10120 mp2ctl = copymsg(mpctl); 10121 10122 mae6_size = (legacy_req) ? 10123 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) : 10124 sizeof (mib2_ipv6AddrEntry_t); 10125 10126 /* ipv6AddrEntryTable */ 10127 10128 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10129 optp->level = MIB2_IP6; 10130 optp->name = MIB2_IP6_ADDR; 10131 zoneid = Q_TO_CONN(q)->conn_zoneid; 10132 10133 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10134 ill = ILL_START_WALK_V6(&ctx, ipst); 10135 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10136 for (ipif = ill->ill_ipif; ipif != NULL; 10137 ipif = ipif->ipif_next) { 10138 if (ipif->ipif_zoneid != zoneid && 10139 ipif->ipif_zoneid != ALL_ZONES) 10140 continue; 10141 /* Sum of count from dead IRE_LO* and our current */ 10142 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10143 if (ipif->ipif_ire_local != NULL) { 10144 mae6.ipv6AddrInfo.ae_ibcnt += 10145 ipif->ipif_ire_local->ire_ib_pkt_count; 10146 } 10147 mae6.ipv6AddrInfo.ae_obcnt = 0; 10148 mae6.ipv6AddrInfo.ae_focnt = 0; 10149 10150 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10151 OCTET_LENGTH); 10152 mae6.ipv6AddrIfIndex.o_length = 10153 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10154 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10155 mae6.ipv6AddrPfxLength = 10156 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10157 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10158 mae6.ipv6AddrInfo.ae_subnet_len = 10159 mae6.ipv6AddrPfxLength; 10160 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10161 10162 /* Type: stateless(1), stateful(2), unknown(3) */ 10163 if (ipif->ipif_flags & IPIF_ADDRCONF) 10164 mae6.ipv6AddrType = 1; 10165 else 10166 mae6.ipv6AddrType = 2; 10167 /* Anycast: true(1), false(2) */ 10168 if (ipif->ipif_flags & IPIF_ANYCAST) 10169 mae6.ipv6AddrAnycastFlag = 1; 10170 else 10171 mae6.ipv6AddrAnycastFlag = 2; 10172 10173 /* 10174 * Address status: preferred(1), deprecated(2), 10175 * invalid(3), inaccessible(4), unknown(5) 10176 */ 10177 if (ipif->ipif_flags & IPIF_NOLOCAL) 10178 mae6.ipv6AddrStatus = 3; 10179 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10180 mae6.ipv6AddrStatus = 2; 10181 else 10182 mae6.ipv6AddrStatus = 1; 10183 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10184 mae6.ipv6AddrInfo.ae_metric = 10185 ipif->ipif_ill->ill_metric; 10186 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10187 ipif->ipif_v6pp_dst_addr; 10188 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10189 ill->ill_flags | ill->ill_phyint->phyint_flags; 10190 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10191 mae6.ipv6AddrIdentifier = ill->ill_token; 10192 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10193 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10194 mae6.ipv6AddrRetransmitTime = 10195 ill->ill_reachable_retrans_time; 10196 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10197 (char *)&mae6, (int)mae6_size)) { 10198 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10199 "allocate %u bytes\n", 10200 (uint_t)mae6_size)); 10201 } 10202 } 10203 } 10204 rw_exit(&ipst->ips_ill_g_lock); 10205 10206 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10207 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10208 (int)optp->level, (int)optp->name, (int)optp->len)); 10209 qreply(q, mpctl); 10210 return (mp2ctl); 10211 } 10212 10213 /* IPv4 multicast group membership. */ 10214 static mblk_t * 10215 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10216 { 10217 struct opthdr *optp; 10218 mblk_t *mp2ctl; 10219 ill_t *ill; 10220 ipif_t *ipif; 10221 ilm_t *ilm; 10222 ip_member_t ipm; 10223 mblk_t *mp_tail = NULL; 10224 ill_walk_context_t ctx; 10225 zoneid_t zoneid; 10226 10227 /* 10228 * make a copy of the original message 10229 */ 10230 mp2ctl = copymsg(mpctl); 10231 zoneid = Q_TO_CONN(q)->conn_zoneid; 10232 10233 /* ipGroupMember table */ 10234 optp = (struct opthdr *)&mpctl->b_rptr[ 10235 sizeof (struct T_optmgmt_ack)]; 10236 optp->level = MIB2_IP; 10237 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10238 10239 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10240 ill = ILL_START_WALK_V4(&ctx, ipst); 10241 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10242 /* Make sure the ill isn't going away. */ 10243 if (!ill_check_and_refhold(ill)) 10244 continue; 10245 rw_exit(&ipst->ips_ill_g_lock); 10246 rw_enter(&ill->ill_mcast_lock, RW_READER); 10247 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10248 if (ilm->ilm_zoneid != zoneid && 10249 ilm->ilm_zoneid != ALL_ZONES) 10250 continue; 10251 10252 /* Is there an ipif for ilm_ifaddr? */ 10253 for (ipif = ill->ill_ipif; ipif != NULL; 10254 ipif = ipif->ipif_next) { 10255 if (!IPIF_IS_CONDEMNED(ipif) && 10256 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10257 ilm->ilm_ifaddr != INADDR_ANY) 10258 break; 10259 } 10260 if (ipif != NULL) { 10261 ipif_get_name(ipif, 10262 ipm.ipGroupMemberIfIndex.o_bytes, 10263 OCTET_LENGTH); 10264 } else { 10265 ill_get_name(ill, 10266 ipm.ipGroupMemberIfIndex.o_bytes, 10267 OCTET_LENGTH); 10268 } 10269 ipm.ipGroupMemberIfIndex.o_length = 10270 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10271 10272 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10273 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10274 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10275 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10276 (char *)&ipm, (int)sizeof (ipm))) { 10277 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10278 "failed to allocate %u bytes\n", 10279 (uint_t)sizeof (ipm))); 10280 } 10281 } 10282 rw_exit(&ill->ill_mcast_lock); 10283 ill_refrele(ill); 10284 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10285 } 10286 rw_exit(&ipst->ips_ill_g_lock); 10287 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10288 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10289 (int)optp->level, (int)optp->name, (int)optp->len)); 10290 qreply(q, mpctl); 10291 return (mp2ctl); 10292 } 10293 10294 /* IPv6 multicast group membership. */ 10295 static mblk_t * 10296 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10297 { 10298 struct opthdr *optp; 10299 mblk_t *mp2ctl; 10300 ill_t *ill; 10301 ilm_t *ilm; 10302 ipv6_member_t ipm6; 10303 mblk_t *mp_tail = NULL; 10304 ill_walk_context_t ctx; 10305 zoneid_t zoneid; 10306 10307 /* 10308 * make a copy of the original message 10309 */ 10310 mp2ctl = copymsg(mpctl); 10311 zoneid = Q_TO_CONN(q)->conn_zoneid; 10312 10313 /* ip6GroupMember table */ 10314 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10315 optp->level = MIB2_IP6; 10316 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10317 10318 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10319 ill = ILL_START_WALK_V6(&ctx, ipst); 10320 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10321 /* Make sure the ill isn't going away. */ 10322 if (!ill_check_and_refhold(ill)) 10323 continue; 10324 rw_exit(&ipst->ips_ill_g_lock); 10325 /* 10326 * Normally we don't have any members on under IPMP interfaces. 10327 * We report them as a debugging aid. 10328 */ 10329 rw_enter(&ill->ill_mcast_lock, RW_READER); 10330 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10331 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10332 if (ilm->ilm_zoneid != zoneid && 10333 ilm->ilm_zoneid != ALL_ZONES) 10334 continue; /* not this zone */ 10335 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10336 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10337 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10338 if (!snmp_append_data2(mpctl->b_cont, 10339 &mp_tail, 10340 (char *)&ipm6, (int)sizeof (ipm6))) { 10341 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10342 "failed to allocate %u bytes\n", 10343 (uint_t)sizeof (ipm6))); 10344 } 10345 } 10346 rw_exit(&ill->ill_mcast_lock); 10347 ill_refrele(ill); 10348 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10349 } 10350 rw_exit(&ipst->ips_ill_g_lock); 10351 10352 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10353 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10354 (int)optp->level, (int)optp->name, (int)optp->len)); 10355 qreply(q, mpctl); 10356 return (mp2ctl); 10357 } 10358 10359 /* IP multicast filtered sources */ 10360 static mblk_t * 10361 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10362 { 10363 struct opthdr *optp; 10364 mblk_t *mp2ctl; 10365 ill_t *ill; 10366 ipif_t *ipif; 10367 ilm_t *ilm; 10368 ip_grpsrc_t ips; 10369 mblk_t *mp_tail = NULL; 10370 ill_walk_context_t ctx; 10371 zoneid_t zoneid; 10372 int i; 10373 slist_t *sl; 10374 10375 /* 10376 * make a copy of the original message 10377 */ 10378 mp2ctl = copymsg(mpctl); 10379 zoneid = Q_TO_CONN(q)->conn_zoneid; 10380 10381 /* ipGroupSource table */ 10382 optp = (struct opthdr *)&mpctl->b_rptr[ 10383 sizeof (struct T_optmgmt_ack)]; 10384 optp->level = MIB2_IP; 10385 optp->name = EXPER_IP_GROUP_SOURCES; 10386 10387 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10388 ill = ILL_START_WALK_V4(&ctx, ipst); 10389 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10390 /* Make sure the ill isn't going away. */ 10391 if (!ill_check_and_refhold(ill)) 10392 continue; 10393 rw_exit(&ipst->ips_ill_g_lock); 10394 rw_enter(&ill->ill_mcast_lock, RW_READER); 10395 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10396 sl = ilm->ilm_filter; 10397 if (ilm->ilm_zoneid != zoneid && 10398 ilm->ilm_zoneid != ALL_ZONES) 10399 continue; 10400 if (SLIST_IS_EMPTY(sl)) 10401 continue; 10402 10403 /* Is there an ipif for ilm_ifaddr? */ 10404 for (ipif = ill->ill_ipif; ipif != NULL; 10405 ipif = ipif->ipif_next) { 10406 if (!IPIF_IS_CONDEMNED(ipif) && 10407 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10408 ilm->ilm_ifaddr != INADDR_ANY) 10409 break; 10410 } 10411 if (ipif != NULL) { 10412 ipif_get_name(ipif, 10413 ips.ipGroupSourceIfIndex.o_bytes, 10414 OCTET_LENGTH); 10415 } else { 10416 ill_get_name(ill, 10417 ips.ipGroupSourceIfIndex.o_bytes, 10418 OCTET_LENGTH); 10419 } 10420 ips.ipGroupSourceIfIndex.o_length = 10421 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10422 10423 ips.ipGroupSourceGroup = ilm->ilm_addr; 10424 for (i = 0; i < sl->sl_numsrc; i++) { 10425 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10426 continue; 10427 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10428 ips.ipGroupSourceAddress); 10429 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10430 (char *)&ips, (int)sizeof (ips)) == 0) { 10431 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10432 " failed to allocate %u bytes\n", 10433 (uint_t)sizeof (ips))); 10434 } 10435 } 10436 } 10437 rw_exit(&ill->ill_mcast_lock); 10438 ill_refrele(ill); 10439 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10440 } 10441 rw_exit(&ipst->ips_ill_g_lock); 10442 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10443 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10444 (int)optp->level, (int)optp->name, (int)optp->len)); 10445 qreply(q, mpctl); 10446 return (mp2ctl); 10447 } 10448 10449 /* IPv6 multicast filtered sources. */ 10450 static mblk_t * 10451 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10452 { 10453 struct opthdr *optp; 10454 mblk_t *mp2ctl; 10455 ill_t *ill; 10456 ilm_t *ilm; 10457 ipv6_grpsrc_t ips6; 10458 mblk_t *mp_tail = NULL; 10459 ill_walk_context_t ctx; 10460 zoneid_t zoneid; 10461 int i; 10462 slist_t *sl; 10463 10464 /* 10465 * make a copy of the original message 10466 */ 10467 mp2ctl = copymsg(mpctl); 10468 zoneid = Q_TO_CONN(q)->conn_zoneid; 10469 10470 /* ip6GroupMember table */ 10471 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10472 optp->level = MIB2_IP6; 10473 optp->name = EXPER_IP6_GROUP_SOURCES; 10474 10475 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10476 ill = ILL_START_WALK_V6(&ctx, ipst); 10477 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10478 /* Make sure the ill isn't going away. */ 10479 if (!ill_check_and_refhold(ill)) 10480 continue; 10481 rw_exit(&ipst->ips_ill_g_lock); 10482 /* 10483 * Normally we don't have any members on under IPMP interfaces. 10484 * We report them as a debugging aid. 10485 */ 10486 rw_enter(&ill->ill_mcast_lock, RW_READER); 10487 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10488 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10489 sl = ilm->ilm_filter; 10490 if (ilm->ilm_zoneid != zoneid && 10491 ilm->ilm_zoneid != ALL_ZONES) 10492 continue; 10493 if (SLIST_IS_EMPTY(sl)) 10494 continue; 10495 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10496 for (i = 0; i < sl->sl_numsrc; i++) { 10497 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10498 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10499 (char *)&ips6, (int)sizeof (ips6))) { 10500 ip1dbg(("ip_snmp_get_mib2_ip6_" 10501 "group_src: failed to allocate " 10502 "%u bytes\n", 10503 (uint_t)sizeof (ips6))); 10504 } 10505 } 10506 } 10507 rw_exit(&ill->ill_mcast_lock); 10508 ill_refrele(ill); 10509 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10510 } 10511 rw_exit(&ipst->ips_ill_g_lock); 10512 10513 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10514 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10515 (int)optp->level, (int)optp->name, (int)optp->len)); 10516 qreply(q, mpctl); 10517 return (mp2ctl); 10518 } 10519 10520 /* Multicast routing virtual interface table. */ 10521 static mblk_t * 10522 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10523 { 10524 struct opthdr *optp; 10525 mblk_t *mp2ctl; 10526 10527 /* 10528 * make a copy of the original message 10529 */ 10530 mp2ctl = copymsg(mpctl); 10531 10532 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10533 optp->level = EXPER_DVMRP; 10534 optp->name = EXPER_DVMRP_VIF; 10535 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10536 ip0dbg(("ip_mroute_vif: failed\n")); 10537 } 10538 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10539 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10540 (int)optp->level, (int)optp->name, (int)optp->len)); 10541 qreply(q, mpctl); 10542 return (mp2ctl); 10543 } 10544 10545 /* Multicast routing table. */ 10546 static mblk_t * 10547 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10548 { 10549 struct opthdr *optp; 10550 mblk_t *mp2ctl; 10551 10552 /* 10553 * make a copy of the original message 10554 */ 10555 mp2ctl = copymsg(mpctl); 10556 10557 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10558 optp->level = EXPER_DVMRP; 10559 optp->name = EXPER_DVMRP_MRT; 10560 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10561 ip0dbg(("ip_mroute_mrt: failed\n")); 10562 } 10563 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10564 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10565 (int)optp->level, (int)optp->name, (int)optp->len)); 10566 qreply(q, mpctl); 10567 return (mp2ctl); 10568 } 10569 10570 /* 10571 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10572 * in one IRE walk. 10573 */ 10574 static mblk_t * 10575 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10576 ip_stack_t *ipst) 10577 { 10578 struct opthdr *optp; 10579 mblk_t *mp2ctl; /* Returned */ 10580 mblk_t *mp3ctl; /* nettomedia */ 10581 mblk_t *mp4ctl; /* routeattrs */ 10582 iproutedata_t ird; 10583 zoneid_t zoneid; 10584 10585 /* 10586 * make copies of the original message 10587 * - mp2ctl is returned unchanged to the caller for its use 10588 * - mpctl is sent upstream as ipRouteEntryTable 10589 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10590 * - mp4ctl is sent upstream as ipRouteAttributeTable 10591 */ 10592 mp2ctl = copymsg(mpctl); 10593 mp3ctl = copymsg(mpctl); 10594 mp4ctl = copymsg(mpctl); 10595 if (mp3ctl == NULL || mp4ctl == NULL) { 10596 freemsg(mp4ctl); 10597 freemsg(mp3ctl); 10598 freemsg(mp2ctl); 10599 freemsg(mpctl); 10600 return (NULL); 10601 } 10602 10603 bzero(&ird, sizeof (ird)); 10604 10605 ird.ird_route.lp_head = mpctl->b_cont; 10606 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10607 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10608 /* 10609 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10610 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10611 * intended a temporary solution until a proper MIB API is provided 10612 * that provides complete filtering/caller-opt-in. 10613 */ 10614 if (level == EXPER_IP_AND_ALL_IRES) 10615 ird.ird_flags |= IRD_REPORT_ALL; 10616 10617 zoneid = Q_TO_CONN(q)->conn_zoneid; 10618 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10619 10620 /* ipRouteEntryTable in mpctl */ 10621 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10622 optp->level = MIB2_IP; 10623 optp->name = MIB2_IP_ROUTE; 10624 optp->len = msgdsize(ird.ird_route.lp_head); 10625 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10626 (int)optp->level, (int)optp->name, (int)optp->len)); 10627 qreply(q, mpctl); 10628 10629 /* ipNetToMediaEntryTable in mp3ctl */ 10630 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10631 10632 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10633 optp->level = MIB2_IP; 10634 optp->name = MIB2_IP_MEDIA; 10635 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10636 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10637 (int)optp->level, (int)optp->name, (int)optp->len)); 10638 qreply(q, mp3ctl); 10639 10640 /* ipRouteAttributeTable in mp4ctl */ 10641 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10642 optp->level = MIB2_IP; 10643 optp->name = EXPER_IP_RTATTR; 10644 optp->len = msgdsize(ird.ird_attrs.lp_head); 10645 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10646 (int)optp->level, (int)optp->name, (int)optp->len)); 10647 if (optp->len == 0) 10648 freemsg(mp4ctl); 10649 else 10650 qreply(q, mp4ctl); 10651 10652 return (mp2ctl); 10653 } 10654 10655 /* 10656 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10657 * ipv6NetToMediaEntryTable in an NDP walk. 10658 */ 10659 static mblk_t * 10660 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10661 ip_stack_t *ipst) 10662 { 10663 struct opthdr *optp; 10664 mblk_t *mp2ctl; /* Returned */ 10665 mblk_t *mp3ctl; /* nettomedia */ 10666 mblk_t *mp4ctl; /* routeattrs */ 10667 iproutedata_t ird; 10668 zoneid_t zoneid; 10669 10670 /* 10671 * make copies of the original message 10672 * - mp2ctl is returned unchanged to the caller for its use 10673 * - mpctl is sent upstream as ipv6RouteEntryTable 10674 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10675 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10676 */ 10677 mp2ctl = copymsg(mpctl); 10678 mp3ctl = copymsg(mpctl); 10679 mp4ctl = copymsg(mpctl); 10680 if (mp3ctl == NULL || mp4ctl == NULL) { 10681 freemsg(mp4ctl); 10682 freemsg(mp3ctl); 10683 freemsg(mp2ctl); 10684 freemsg(mpctl); 10685 return (NULL); 10686 } 10687 10688 bzero(&ird, sizeof (ird)); 10689 10690 ird.ird_route.lp_head = mpctl->b_cont; 10691 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10692 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10693 /* 10694 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10695 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10696 * intended a temporary solution until a proper MIB API is provided 10697 * that provides complete filtering/caller-opt-in. 10698 */ 10699 if (level == EXPER_IP_AND_ALL_IRES) 10700 ird.ird_flags |= IRD_REPORT_ALL; 10701 10702 zoneid = Q_TO_CONN(q)->conn_zoneid; 10703 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10704 10705 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10706 optp->level = MIB2_IP6; 10707 optp->name = MIB2_IP6_ROUTE; 10708 optp->len = msgdsize(ird.ird_route.lp_head); 10709 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10710 (int)optp->level, (int)optp->name, (int)optp->len)); 10711 qreply(q, mpctl); 10712 10713 /* ipv6NetToMediaEntryTable in mp3ctl */ 10714 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10715 10716 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10717 optp->level = MIB2_IP6; 10718 optp->name = MIB2_IP6_MEDIA; 10719 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10720 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10721 (int)optp->level, (int)optp->name, (int)optp->len)); 10722 qreply(q, mp3ctl); 10723 10724 /* ipv6RouteAttributeTable in mp4ctl */ 10725 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10726 optp->level = MIB2_IP6; 10727 optp->name = EXPER_IP_RTATTR; 10728 optp->len = msgdsize(ird.ird_attrs.lp_head); 10729 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10730 (int)optp->level, (int)optp->name, (int)optp->len)); 10731 if (optp->len == 0) 10732 freemsg(mp4ctl); 10733 else 10734 qreply(q, mp4ctl); 10735 10736 return (mp2ctl); 10737 } 10738 10739 /* 10740 * IPv6 mib: One per ill 10741 */ 10742 static mblk_t * 10743 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10744 boolean_t legacy_req) 10745 { 10746 struct opthdr *optp; 10747 mblk_t *mp2ctl; 10748 ill_t *ill; 10749 ill_walk_context_t ctx; 10750 mblk_t *mp_tail = NULL; 10751 mib2_ipv6AddrEntry_t mae6; 10752 mib2_ipIfStatsEntry_t *ise; 10753 size_t ise_size, iae_size; 10754 10755 /* 10756 * Make a copy of the original message 10757 */ 10758 mp2ctl = copymsg(mpctl); 10759 10760 /* fixed length IPv6 structure ... */ 10761 10762 if (legacy_req) { 10763 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib, 10764 mib2_ipIfStatsEntry_t); 10765 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t); 10766 } else { 10767 ise_size = sizeof (mib2_ipIfStatsEntry_t); 10768 iae_size = sizeof (mib2_ipv6AddrEntry_t); 10769 } 10770 10771 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10772 optp->level = MIB2_IP6; 10773 optp->name = 0; 10774 /* Include "unknown interface" ip6_mib */ 10775 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10776 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10777 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10778 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10779 ipst->ips_ipv6_forwarding ? 1 : 2); 10780 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10781 ipst->ips_ipv6_def_hops); 10782 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10783 sizeof (mib2_ipIfStatsEntry_t)); 10784 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10785 sizeof (mib2_ipv6AddrEntry_t)); 10786 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10787 sizeof (mib2_ipv6RouteEntry_t)); 10788 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10789 sizeof (mib2_ipv6NetToMediaEntry_t)); 10790 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10791 sizeof (ipv6_member_t)); 10792 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10793 sizeof (ipv6_grpsrc_t)); 10794 10795 /* 10796 * Synchronize 64- and 32-bit counters 10797 */ 10798 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10799 ipIfStatsHCInReceives); 10800 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10801 ipIfStatsHCInDelivers); 10802 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10803 ipIfStatsHCOutRequests); 10804 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10805 ipIfStatsHCOutForwDatagrams); 10806 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10807 ipIfStatsHCOutMcastPkts); 10808 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10809 ipIfStatsHCInMcastPkts); 10810 10811 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10812 (char *)&ipst->ips_ip6_mib, (int)ise_size)) { 10813 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10814 (uint_t)ise_size)); 10815 } else if (legacy_req) { 10816 /* Adjust the EntrySize fields for legacy requests. */ 10817 ise = 10818 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size); 10819 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10820 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10821 } 10822 10823 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10824 ill = ILL_START_WALK_V6(&ctx, ipst); 10825 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10826 ill->ill_ip_mib->ipIfStatsIfIndex = 10827 ill->ill_phyint->phyint_ifindex; 10828 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10829 ipst->ips_ipv6_forwarding ? 1 : 2); 10830 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10831 ill->ill_max_hops); 10832 10833 /* 10834 * Synchronize 64- and 32-bit counters 10835 */ 10836 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10837 ipIfStatsHCInReceives); 10838 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10839 ipIfStatsHCInDelivers); 10840 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10841 ipIfStatsHCOutRequests); 10842 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10843 ipIfStatsHCOutForwDatagrams); 10844 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10845 ipIfStatsHCOutMcastPkts); 10846 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10847 ipIfStatsHCInMcastPkts); 10848 10849 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10850 (char *)ill->ill_ip_mib, (int)ise_size)) { 10851 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10852 "%u bytes\n", (uint_t)ise_size)); 10853 } else if (legacy_req) { 10854 /* Adjust the EntrySize fields for legacy requests. */ 10855 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - 10856 (int)ise_size); 10857 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10858 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10859 } 10860 } 10861 rw_exit(&ipst->ips_ill_g_lock); 10862 10863 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10864 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10865 (int)optp->level, (int)optp->name, (int)optp->len)); 10866 qreply(q, mpctl); 10867 return (mp2ctl); 10868 } 10869 10870 /* 10871 * ICMPv6 mib: One per ill 10872 */ 10873 static mblk_t * 10874 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10875 { 10876 struct opthdr *optp; 10877 mblk_t *mp2ctl; 10878 ill_t *ill; 10879 ill_walk_context_t ctx; 10880 mblk_t *mp_tail = NULL; 10881 /* 10882 * Make a copy of the original message 10883 */ 10884 mp2ctl = copymsg(mpctl); 10885 10886 /* fixed length ICMPv6 structure ... */ 10887 10888 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10889 optp->level = MIB2_ICMP6; 10890 optp->name = 0; 10891 /* Include "unknown interface" icmp6_mib */ 10892 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10893 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10894 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10895 sizeof (mib2_ipv6IfIcmpEntry_t); 10896 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10897 (char *)&ipst->ips_icmp6_mib, 10898 (int)sizeof (ipst->ips_icmp6_mib))) { 10899 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10900 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10901 } 10902 10903 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10904 ill = ILL_START_WALK_V6(&ctx, ipst); 10905 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10906 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10907 ill->ill_phyint->phyint_ifindex; 10908 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10909 (char *)ill->ill_icmp6_mib, 10910 (int)sizeof (*ill->ill_icmp6_mib))) { 10911 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10912 "%u bytes\n", 10913 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10914 } 10915 } 10916 rw_exit(&ipst->ips_ill_g_lock); 10917 10918 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10919 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10920 (int)optp->level, (int)optp->name, (int)optp->len)); 10921 qreply(q, mpctl); 10922 return (mp2ctl); 10923 } 10924 10925 /* 10926 * ire_walk routine to create both ipRouteEntryTable and 10927 * ipRouteAttributeTable in one IRE walk 10928 */ 10929 static void 10930 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10931 { 10932 ill_t *ill; 10933 mib2_ipRouteEntry_t *re; 10934 mib2_ipAttributeEntry_t iaes; 10935 tsol_ire_gw_secattr_t *attrp; 10936 tsol_gc_t *gc = NULL; 10937 tsol_gcgrp_t *gcgrp = NULL; 10938 ip_stack_t *ipst = ire->ire_ipst; 10939 10940 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10941 10942 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10943 if (ire->ire_testhidden) 10944 return; 10945 if (ire->ire_type & IRE_IF_CLONE) 10946 return; 10947 } 10948 10949 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10950 return; 10951 10952 if ((attrp = ire->ire_gw_secattr) != NULL) { 10953 mutex_enter(&attrp->igsa_lock); 10954 if ((gc = attrp->igsa_gc) != NULL) { 10955 gcgrp = gc->gc_grp; 10956 ASSERT(gcgrp != NULL); 10957 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10958 } 10959 mutex_exit(&attrp->igsa_lock); 10960 } 10961 /* 10962 * Return all IRE types for route table... let caller pick and choose 10963 */ 10964 re->ipRouteDest = ire->ire_addr; 10965 ill = ire->ire_ill; 10966 re->ipRouteIfIndex.o_length = 0; 10967 if (ill != NULL) { 10968 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10969 re->ipRouteIfIndex.o_length = 10970 mi_strlen(re->ipRouteIfIndex.o_bytes); 10971 } 10972 re->ipRouteMetric1 = -1; 10973 re->ipRouteMetric2 = -1; 10974 re->ipRouteMetric3 = -1; 10975 re->ipRouteMetric4 = -1; 10976 10977 re->ipRouteNextHop = ire->ire_gateway_addr; 10978 /* indirect(4), direct(3), or invalid(2) */ 10979 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10980 re->ipRouteType = 2; 10981 else if (ire->ire_type & IRE_ONLINK) 10982 re->ipRouteType = 3; 10983 else 10984 re->ipRouteType = 4; 10985 10986 re->ipRouteProto = -1; 10987 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 10988 re->ipRouteMask = ire->ire_mask; 10989 re->ipRouteMetric5 = -1; 10990 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10991 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 10992 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10993 10994 re->ipRouteInfo.re_frag_flag = 0; 10995 re->ipRouteInfo.re_rtt = 0; 10996 re->ipRouteInfo.re_src_addr = 0; 10997 re->ipRouteInfo.re_ref = ire->ire_refcnt; 10998 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10999 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11000 re->ipRouteInfo.re_flags = ire->ire_flags; 11001 11002 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11003 if (ire->ire_type & IRE_INTERFACE) { 11004 ire_t *child; 11005 11006 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11007 child = ire->ire_dep_children; 11008 while (child != NULL) { 11009 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 11010 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11011 child = child->ire_dep_sib_next; 11012 } 11013 rw_exit(&ipst->ips_ire_dep_lock); 11014 } 11015 11016 if (ire->ire_flags & RTF_DYNAMIC) { 11017 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11018 } else { 11019 re->ipRouteInfo.re_ire_type = ire->ire_type; 11020 } 11021 11022 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11023 (char *)re, (int)sizeof (*re))) { 11024 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 11025 (uint_t)sizeof (*re))); 11026 } 11027 11028 if (gc != NULL) { 11029 iaes.iae_routeidx = ird->ird_idx; 11030 iaes.iae_doi = gc->gc_db->gcdb_doi; 11031 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11032 11033 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11034 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11035 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 11036 "bytes\n", (uint_t)sizeof (iaes))); 11037 } 11038 } 11039 11040 /* bump route index for next pass */ 11041 ird->ird_idx++; 11042 11043 kmem_free(re, sizeof (*re)); 11044 if (gcgrp != NULL) 11045 rw_exit(&gcgrp->gcgrp_rwlock); 11046 } 11047 11048 /* 11049 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 11050 */ 11051 static void 11052 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 11053 { 11054 ill_t *ill; 11055 mib2_ipv6RouteEntry_t *re; 11056 mib2_ipAttributeEntry_t iaes; 11057 tsol_ire_gw_secattr_t *attrp; 11058 tsol_gc_t *gc = NULL; 11059 tsol_gcgrp_t *gcgrp = NULL; 11060 ip_stack_t *ipst = ire->ire_ipst; 11061 11062 ASSERT(ire->ire_ipversion == IPV6_VERSION); 11063 11064 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 11065 if (ire->ire_testhidden) 11066 return; 11067 if (ire->ire_type & IRE_IF_CLONE) 11068 return; 11069 } 11070 11071 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 11072 return; 11073 11074 if ((attrp = ire->ire_gw_secattr) != NULL) { 11075 mutex_enter(&attrp->igsa_lock); 11076 if ((gc = attrp->igsa_gc) != NULL) { 11077 gcgrp = gc->gc_grp; 11078 ASSERT(gcgrp != NULL); 11079 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11080 } 11081 mutex_exit(&attrp->igsa_lock); 11082 } 11083 /* 11084 * Return all IRE types for route table... let caller pick and choose 11085 */ 11086 re->ipv6RouteDest = ire->ire_addr_v6; 11087 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 11088 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 11089 re->ipv6RouteIfIndex.o_length = 0; 11090 ill = ire->ire_ill; 11091 if (ill != NULL) { 11092 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 11093 re->ipv6RouteIfIndex.o_length = 11094 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 11095 } 11096 11097 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 11098 11099 mutex_enter(&ire->ire_lock); 11100 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 11101 mutex_exit(&ire->ire_lock); 11102 11103 /* remote(4), local(3), or discard(2) */ 11104 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11105 re->ipv6RouteType = 2; 11106 else if (ire->ire_type & IRE_ONLINK) 11107 re->ipv6RouteType = 3; 11108 else 11109 re->ipv6RouteType = 4; 11110 11111 re->ipv6RouteProtocol = -1; 11112 re->ipv6RoutePolicy = 0; 11113 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 11114 re->ipv6RouteNextHopRDI = 0; 11115 re->ipv6RouteWeight = 0; 11116 re->ipv6RouteMetric = 0; 11117 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11118 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 11119 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11120 11121 re->ipv6RouteInfo.re_frag_flag = 0; 11122 re->ipv6RouteInfo.re_rtt = 0; 11123 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 11124 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11125 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11126 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 11127 re->ipv6RouteInfo.re_flags = ire->ire_flags; 11128 11129 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11130 if (ire->ire_type & IRE_INTERFACE) { 11131 ire_t *child; 11132 11133 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11134 child = ire->ire_dep_children; 11135 while (child != NULL) { 11136 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 11137 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11138 child = child->ire_dep_sib_next; 11139 } 11140 rw_exit(&ipst->ips_ire_dep_lock); 11141 } 11142 if (ire->ire_flags & RTF_DYNAMIC) { 11143 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11144 } else { 11145 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 11146 } 11147 11148 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11149 (char *)re, (int)sizeof (*re))) { 11150 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 11151 (uint_t)sizeof (*re))); 11152 } 11153 11154 if (gc != NULL) { 11155 iaes.iae_routeidx = ird->ird_idx; 11156 iaes.iae_doi = gc->gc_db->gcdb_doi; 11157 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11158 11159 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11160 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11161 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 11162 "bytes\n", (uint_t)sizeof (iaes))); 11163 } 11164 } 11165 11166 /* bump route index for next pass */ 11167 ird->ird_idx++; 11168 11169 kmem_free(re, sizeof (*re)); 11170 if (gcgrp != NULL) 11171 rw_exit(&gcgrp->gcgrp_rwlock); 11172 } 11173 11174 /* 11175 * ncec_walk routine to create ipv6NetToMediaEntryTable 11176 */ 11177 static void 11178 ip_snmp_get2_v6_media(ncec_t *ncec, void *ptr) 11179 { 11180 iproutedata_t *ird = ptr; 11181 ill_t *ill; 11182 mib2_ipv6NetToMediaEntry_t ntme; 11183 11184 ill = ncec->ncec_ill; 11185 /* skip arpce entries, and loopback ncec entries */ 11186 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11187 return; 11188 /* 11189 * Neighbor cache entry attached to IRE with on-link 11190 * destination. 11191 * We report all IPMP groups on ncec_ill which is normally the upper. 11192 */ 11193 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11194 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11195 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11196 if (ncec->ncec_lladdr != NULL) { 11197 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11198 ntme.ipv6NetToMediaPhysAddress.o_length); 11199 } 11200 /* 11201 * Note: Returns ND_* states. Should be: 11202 * reachable(1), stale(2), delay(3), probe(4), 11203 * invalid(5), unknown(6) 11204 */ 11205 ntme.ipv6NetToMediaState = ncec->ncec_state; 11206 ntme.ipv6NetToMediaLastUpdated = 0; 11207 11208 /* other(1), dynamic(2), static(3), local(4) */ 11209 if (NCE_MYADDR(ncec)) { 11210 ntme.ipv6NetToMediaType = 4; 11211 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11212 ntme.ipv6NetToMediaType = 1; /* proxy */ 11213 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11214 ntme.ipv6NetToMediaType = 3; 11215 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11216 ntme.ipv6NetToMediaType = 1; 11217 } else { 11218 ntme.ipv6NetToMediaType = 2; 11219 } 11220 11221 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11222 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11223 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11224 (uint_t)sizeof (ntme))); 11225 } 11226 } 11227 11228 int 11229 nce2ace(ncec_t *ncec) 11230 { 11231 int flags = 0; 11232 11233 if (NCE_ISREACHABLE(ncec)) 11234 flags |= ACE_F_RESOLVED; 11235 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11236 flags |= ACE_F_AUTHORITY; 11237 if (ncec->ncec_flags & NCE_F_PUBLISH) 11238 flags |= ACE_F_PUBLISH; 11239 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11240 flags |= ACE_F_PERMANENT; 11241 if (NCE_MYADDR(ncec)) 11242 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11243 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11244 flags |= ACE_F_UNVERIFIED; 11245 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11246 flags |= ACE_F_AUTHORITY; 11247 if (ncec->ncec_flags & NCE_F_DELAYED) 11248 flags |= ACE_F_DELAYED; 11249 return (flags); 11250 } 11251 11252 /* 11253 * ncec_walk routine to create ipNetToMediaEntryTable 11254 */ 11255 static void 11256 ip_snmp_get2_v4_media(ncec_t *ncec, void *ptr) 11257 { 11258 iproutedata_t *ird = ptr; 11259 ill_t *ill; 11260 mib2_ipNetToMediaEntry_t ntme; 11261 const char *name = "unknown"; 11262 ipaddr_t ncec_addr; 11263 11264 ill = ncec->ncec_ill; 11265 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11266 ill->ill_net_type == IRE_LOOPBACK) 11267 return; 11268 11269 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11270 name = ill->ill_name; 11271 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11272 if (NCE_MYADDR(ncec)) { 11273 ntme.ipNetToMediaType = 4; 11274 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11275 ntme.ipNetToMediaType = 1; 11276 } else { 11277 ntme.ipNetToMediaType = 3; 11278 } 11279 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11280 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11281 ntme.ipNetToMediaIfIndex.o_length); 11282 11283 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11284 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11285 11286 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11287 ncec_addr = INADDR_BROADCAST; 11288 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11289 sizeof (ncec_addr)); 11290 /* 11291 * map all the flags to the ACE counterpart. 11292 */ 11293 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11294 11295 ntme.ipNetToMediaPhysAddress.o_length = 11296 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11297 11298 if (!NCE_ISREACHABLE(ncec)) 11299 ntme.ipNetToMediaPhysAddress.o_length = 0; 11300 else { 11301 if (ncec->ncec_lladdr != NULL) { 11302 bcopy(ncec->ncec_lladdr, 11303 ntme.ipNetToMediaPhysAddress.o_bytes, 11304 ntme.ipNetToMediaPhysAddress.o_length); 11305 } 11306 } 11307 11308 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11309 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11310 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11311 (uint_t)sizeof (ntme))); 11312 } 11313 } 11314 11315 /* 11316 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11317 */ 11318 /* ARGSUSED */ 11319 int 11320 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11321 { 11322 switch (level) { 11323 case MIB2_IP: 11324 case MIB2_ICMP: 11325 switch (name) { 11326 default: 11327 break; 11328 } 11329 return (1); 11330 default: 11331 return (1); 11332 } 11333 } 11334 11335 /* 11336 * When there exists both a 64- and 32-bit counter of a particular type 11337 * (i.e., InReceives), only the 64-bit counters are added. 11338 */ 11339 void 11340 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11341 { 11342 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11343 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11344 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11345 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11346 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11347 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11348 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11349 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11350 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11351 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11352 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11353 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11354 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11355 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11356 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11357 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11358 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11359 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11360 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11361 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11362 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11363 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11364 o2->ipIfStatsInWrongIPVersion); 11365 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11366 o2->ipIfStatsInWrongIPVersion); 11367 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11368 o2->ipIfStatsOutSwitchIPVersion); 11369 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11370 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11371 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11372 o2->ipIfStatsHCInForwDatagrams); 11373 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11374 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11375 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11376 o2->ipIfStatsHCOutForwDatagrams); 11377 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11378 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11379 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11380 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11381 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11382 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11383 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11384 o2->ipIfStatsHCOutMcastOctets); 11385 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11386 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11387 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11388 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11389 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11390 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11391 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11392 } 11393 11394 void 11395 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11396 { 11397 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11398 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11399 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11400 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11401 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11402 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11403 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11404 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11405 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11406 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11407 o2->ipv6IfIcmpInRouterSolicits); 11408 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11409 o2->ipv6IfIcmpInRouterAdvertisements); 11410 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11411 o2->ipv6IfIcmpInNeighborSolicits); 11412 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11413 o2->ipv6IfIcmpInNeighborAdvertisements); 11414 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11415 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11416 o2->ipv6IfIcmpInGroupMembQueries); 11417 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11418 o2->ipv6IfIcmpInGroupMembResponses); 11419 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11420 o2->ipv6IfIcmpInGroupMembReductions); 11421 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11422 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11423 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11424 o2->ipv6IfIcmpOutDestUnreachs); 11425 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11426 o2->ipv6IfIcmpOutAdminProhibs); 11427 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11428 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11429 o2->ipv6IfIcmpOutParmProblems); 11430 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11431 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11432 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11433 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11434 o2->ipv6IfIcmpOutRouterSolicits); 11435 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11436 o2->ipv6IfIcmpOutRouterAdvertisements); 11437 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11438 o2->ipv6IfIcmpOutNeighborSolicits); 11439 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11440 o2->ipv6IfIcmpOutNeighborAdvertisements); 11441 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11442 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11443 o2->ipv6IfIcmpOutGroupMembQueries); 11444 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11445 o2->ipv6IfIcmpOutGroupMembResponses); 11446 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11447 o2->ipv6IfIcmpOutGroupMembReductions); 11448 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11449 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11450 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11451 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11452 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11453 o2->ipv6IfIcmpInBadNeighborSolicitations); 11454 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11455 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11456 o2->ipv6IfIcmpInGroupMembTotal); 11457 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11458 o2->ipv6IfIcmpInGroupMembBadQueries); 11459 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11460 o2->ipv6IfIcmpInGroupMembBadReports); 11461 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11462 o2->ipv6IfIcmpInGroupMembOurReports); 11463 } 11464 11465 /* 11466 * Called before the options are updated to check if this packet will 11467 * be source routed from here. 11468 * This routine assumes that the options are well formed i.e. that they 11469 * have already been checked. 11470 */ 11471 boolean_t 11472 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11473 { 11474 ipoptp_t opts; 11475 uchar_t *opt; 11476 uint8_t optval; 11477 uint8_t optlen; 11478 ipaddr_t dst; 11479 11480 if (IS_SIMPLE_IPH(ipha)) { 11481 ip2dbg(("not source routed\n")); 11482 return (B_FALSE); 11483 } 11484 dst = ipha->ipha_dst; 11485 for (optval = ipoptp_first(&opts, ipha); 11486 optval != IPOPT_EOL; 11487 optval = ipoptp_next(&opts)) { 11488 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11489 opt = opts.ipoptp_cur; 11490 optlen = opts.ipoptp_len; 11491 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11492 optval, optlen)); 11493 switch (optval) { 11494 uint32_t off; 11495 case IPOPT_SSRR: 11496 case IPOPT_LSRR: 11497 /* 11498 * If dst is one of our addresses and there are some 11499 * entries left in the source route return (true). 11500 */ 11501 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11502 ip2dbg(("ip_source_routed: not next" 11503 " source route 0x%x\n", 11504 ntohl(dst))); 11505 return (B_FALSE); 11506 } 11507 off = opt[IPOPT_OFFSET]; 11508 off--; 11509 if (optlen < IP_ADDR_LEN || 11510 off > optlen - IP_ADDR_LEN) { 11511 /* End of source route */ 11512 ip1dbg(("ip_source_routed: end of SR\n")); 11513 return (B_FALSE); 11514 } 11515 return (B_TRUE); 11516 } 11517 } 11518 ip2dbg(("not source routed\n")); 11519 return (B_FALSE); 11520 } 11521 11522 /* 11523 * ip_unbind is called by the transports to remove a conn from 11524 * the fanout table. 11525 */ 11526 void 11527 ip_unbind(conn_t *connp) 11528 { 11529 11530 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11531 11532 if (is_system_labeled() && connp->conn_anon_port) { 11533 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11534 connp->conn_mlp_type, connp->conn_proto, 11535 ntohs(connp->conn_lport), B_FALSE); 11536 connp->conn_anon_port = 0; 11537 } 11538 connp->conn_mlp_type = mlptSingle; 11539 11540 ipcl_hash_remove(connp); 11541 } 11542 11543 /* 11544 * Used for deciding the MSS size for the upper layer. Thus 11545 * we need to check the outbound policy values in the conn. 11546 */ 11547 int 11548 conn_ipsec_length(conn_t *connp) 11549 { 11550 ipsec_latch_t *ipl; 11551 11552 ipl = connp->conn_latch; 11553 if (ipl == NULL) 11554 return (0); 11555 11556 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11557 return (0); 11558 11559 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11560 } 11561 11562 /* 11563 * Returns an estimate of the IPsec headers size. This is used if 11564 * we don't want to call into IPsec to get the exact size. 11565 */ 11566 int 11567 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11568 { 11569 ipsec_action_t *a; 11570 11571 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11572 return (0); 11573 11574 a = ixa->ixa_ipsec_action; 11575 if (a == NULL) { 11576 ASSERT(ixa->ixa_ipsec_policy != NULL); 11577 a = ixa->ixa_ipsec_policy->ipsp_act; 11578 } 11579 ASSERT(a != NULL); 11580 11581 return (a->ipa_ovhd); 11582 } 11583 11584 /* 11585 * If there are any source route options, return the true final 11586 * destination. Otherwise, return the destination. 11587 */ 11588 ipaddr_t 11589 ip_get_dst(ipha_t *ipha) 11590 { 11591 ipoptp_t opts; 11592 uchar_t *opt; 11593 uint8_t optval; 11594 uint8_t optlen; 11595 ipaddr_t dst; 11596 uint32_t off; 11597 11598 dst = ipha->ipha_dst; 11599 11600 if (IS_SIMPLE_IPH(ipha)) 11601 return (dst); 11602 11603 for (optval = ipoptp_first(&opts, ipha); 11604 optval != IPOPT_EOL; 11605 optval = ipoptp_next(&opts)) { 11606 opt = opts.ipoptp_cur; 11607 optlen = opts.ipoptp_len; 11608 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11609 switch (optval) { 11610 case IPOPT_SSRR: 11611 case IPOPT_LSRR: 11612 off = opt[IPOPT_OFFSET]; 11613 /* 11614 * If one of the conditions is true, it means 11615 * end of options and dst already has the right 11616 * value. 11617 */ 11618 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11619 off = optlen - IP_ADDR_LEN; 11620 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11621 } 11622 return (dst); 11623 default: 11624 break; 11625 } 11626 } 11627 11628 return (dst); 11629 } 11630 11631 /* 11632 * Outbound IP fragmentation routine. 11633 * Assumes the caller has checked whether or not fragmentation should 11634 * be allowed. Here we copy the DF bit from the header to all the generated 11635 * fragments. 11636 */ 11637 int 11638 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11639 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11640 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11641 { 11642 int i1; 11643 int hdr_len; 11644 mblk_t *hdr_mp; 11645 ipha_t *ipha; 11646 int ip_data_end; 11647 int len; 11648 mblk_t *mp = mp_orig; 11649 int offset; 11650 ill_t *ill = nce->nce_ill; 11651 ip_stack_t *ipst = ill->ill_ipst; 11652 mblk_t *carve_mp; 11653 uint32_t frag_flag; 11654 uint_t priority = mp->b_band; 11655 int error = 0; 11656 11657 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11658 11659 if (pkt_len != msgdsize(mp)) { 11660 ip0dbg(("Packet length mismatch: %d, %ld\n", 11661 pkt_len, msgdsize(mp))); 11662 freemsg(mp); 11663 return (EINVAL); 11664 } 11665 11666 if (max_frag == 0) { 11667 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11668 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11669 ip_drop_output("FragFails: zero max_frag", mp, ill); 11670 freemsg(mp); 11671 return (EINVAL); 11672 } 11673 11674 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11675 ipha = (ipha_t *)mp->b_rptr; 11676 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11677 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11678 11679 /* 11680 * Establish the starting offset. May not be zero if we are fragging 11681 * a fragment that is being forwarded. 11682 */ 11683 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11684 11685 /* TODO why is this test needed? */ 11686 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11687 /* TODO: notify ulp somehow */ 11688 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11689 ip_drop_output("FragFails: bad starting offset", mp, ill); 11690 freemsg(mp); 11691 return (EINVAL); 11692 } 11693 11694 hdr_len = IPH_HDR_LENGTH(ipha); 11695 ipha->ipha_hdr_checksum = 0; 11696 11697 /* 11698 * Establish the number of bytes maximum per frag, after putting 11699 * in the header. 11700 */ 11701 len = (max_frag - hdr_len) & ~7; 11702 11703 /* Get a copy of the header for the trailing frags */ 11704 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11705 mp); 11706 if (hdr_mp == NULL) { 11707 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11708 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11709 freemsg(mp); 11710 return (ENOBUFS); 11711 } 11712 11713 /* Store the starting offset, with the MoreFrags flag. */ 11714 i1 = offset | IPH_MF | frag_flag; 11715 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11716 11717 /* Establish the ending byte offset, based on the starting offset. */ 11718 offset <<= 3; 11719 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11720 11721 /* Store the length of the first fragment in the IP header. */ 11722 i1 = len + hdr_len; 11723 ASSERT(i1 <= IP_MAXPACKET); 11724 ipha->ipha_length = htons((uint16_t)i1); 11725 11726 /* 11727 * Compute the IP header checksum for the first frag. We have to 11728 * watch out that we stop at the end of the header. 11729 */ 11730 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11731 11732 /* 11733 * Now carve off the first frag. Note that this will include the 11734 * original IP header. 11735 */ 11736 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11737 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11738 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11739 freeb(hdr_mp); 11740 freemsg(mp_orig); 11741 return (ENOBUFS); 11742 } 11743 11744 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11745 11746 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11747 ixa_cookie); 11748 if (error != 0 && error != EWOULDBLOCK) { 11749 /* No point in sending the other fragments */ 11750 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11751 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11752 freeb(hdr_mp); 11753 freemsg(mp_orig); 11754 return (error); 11755 } 11756 11757 /* No need to redo state machine in loop */ 11758 ixaflags &= ~IXAF_REACH_CONF; 11759 11760 /* Advance the offset to the second frag starting point. */ 11761 offset += len; 11762 /* 11763 * Update hdr_len from the copied header - there might be less options 11764 * in the later fragments. 11765 */ 11766 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11767 /* Loop until done. */ 11768 for (;;) { 11769 uint16_t offset_and_flags; 11770 uint16_t ip_len; 11771 11772 if (ip_data_end - offset > len) { 11773 /* 11774 * Carve off the appropriate amount from the original 11775 * datagram. 11776 */ 11777 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11778 mp = NULL; 11779 break; 11780 } 11781 /* 11782 * More frags after this one. Get another copy 11783 * of the header. 11784 */ 11785 if (carve_mp->b_datap->db_ref == 1 && 11786 hdr_mp->b_wptr - hdr_mp->b_rptr < 11787 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11788 /* Inline IP header */ 11789 carve_mp->b_rptr -= hdr_mp->b_wptr - 11790 hdr_mp->b_rptr; 11791 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11792 hdr_mp->b_wptr - hdr_mp->b_rptr); 11793 mp = carve_mp; 11794 } else { 11795 if (!(mp = copyb(hdr_mp))) { 11796 freemsg(carve_mp); 11797 break; 11798 } 11799 /* Get priority marking, if any. */ 11800 mp->b_band = priority; 11801 mp->b_cont = carve_mp; 11802 } 11803 ipha = (ipha_t *)mp->b_rptr; 11804 offset_and_flags = IPH_MF; 11805 } else { 11806 /* 11807 * Last frag. Consume the header. Set len to 11808 * the length of this last piece. 11809 */ 11810 len = ip_data_end - offset; 11811 11812 /* 11813 * Carve off the appropriate amount from the original 11814 * datagram. 11815 */ 11816 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11817 mp = NULL; 11818 break; 11819 } 11820 if (carve_mp->b_datap->db_ref == 1 && 11821 hdr_mp->b_wptr - hdr_mp->b_rptr < 11822 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11823 /* Inline IP header */ 11824 carve_mp->b_rptr -= hdr_mp->b_wptr - 11825 hdr_mp->b_rptr; 11826 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11827 hdr_mp->b_wptr - hdr_mp->b_rptr); 11828 mp = carve_mp; 11829 freeb(hdr_mp); 11830 hdr_mp = mp; 11831 } else { 11832 mp = hdr_mp; 11833 /* Get priority marking, if any. */ 11834 mp->b_band = priority; 11835 mp->b_cont = carve_mp; 11836 } 11837 ipha = (ipha_t *)mp->b_rptr; 11838 /* A frag of a frag might have IPH_MF non-zero */ 11839 offset_and_flags = 11840 ntohs(ipha->ipha_fragment_offset_and_flags) & 11841 IPH_MF; 11842 } 11843 offset_and_flags |= (uint16_t)(offset >> 3); 11844 offset_and_flags |= (uint16_t)frag_flag; 11845 /* Store the offset and flags in the IP header. */ 11846 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11847 11848 /* Store the length in the IP header. */ 11849 ip_len = (uint16_t)(len + hdr_len); 11850 ipha->ipha_length = htons(ip_len); 11851 11852 /* 11853 * Set the IP header checksum. Note that mp is just 11854 * the header, so this is easy to pass to ip_csum. 11855 */ 11856 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11857 11858 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11859 11860 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11861 nolzid, ixa_cookie); 11862 /* All done if we just consumed the hdr_mp. */ 11863 if (mp == hdr_mp) { 11864 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11865 return (error); 11866 } 11867 if (error != 0 && error != EWOULDBLOCK) { 11868 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11869 mblk_t *, hdr_mp); 11870 /* No point in sending the other fragments */ 11871 break; 11872 } 11873 11874 /* Otherwise, advance and loop. */ 11875 offset += len; 11876 } 11877 /* Clean up following allocation failure. */ 11878 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11879 ip_drop_output("FragFails: loop ended", NULL, ill); 11880 if (mp != hdr_mp) 11881 freeb(hdr_mp); 11882 if (mp != mp_orig) 11883 freemsg(mp_orig); 11884 return (error); 11885 } 11886 11887 /* 11888 * Copy the header plus those options which have the copy bit set 11889 */ 11890 static mblk_t * 11891 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11892 mblk_t *src) 11893 { 11894 mblk_t *mp; 11895 uchar_t *up; 11896 11897 /* 11898 * Quick check if we need to look for options without the copy bit 11899 * set 11900 */ 11901 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11902 if (!mp) 11903 return (mp); 11904 mp->b_rptr += ipst->ips_ip_wroff_extra; 11905 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11906 bcopy(rptr, mp->b_rptr, hdr_len); 11907 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11908 return (mp); 11909 } 11910 up = mp->b_rptr; 11911 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11912 up += IP_SIMPLE_HDR_LENGTH; 11913 rptr += IP_SIMPLE_HDR_LENGTH; 11914 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11915 while (hdr_len > 0) { 11916 uint32_t optval; 11917 uint32_t optlen; 11918 11919 optval = *rptr; 11920 if (optval == IPOPT_EOL) 11921 break; 11922 if (optval == IPOPT_NOP) 11923 optlen = 1; 11924 else 11925 optlen = rptr[1]; 11926 if (optval & IPOPT_COPY) { 11927 bcopy(rptr, up, optlen); 11928 up += optlen; 11929 } 11930 rptr += optlen; 11931 hdr_len -= optlen; 11932 } 11933 /* 11934 * Make sure that we drop an even number of words by filling 11935 * with EOL to the next word boundary. 11936 */ 11937 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11938 hdr_len & 0x3; hdr_len++) 11939 *up++ = IPOPT_EOL; 11940 mp->b_wptr = up; 11941 /* Update header length */ 11942 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11943 return (mp); 11944 } 11945 11946 /* 11947 * Update any source route, record route, or timestamp options when 11948 * sending a packet back to ourselves. 11949 * Check that we are at end of strict source route. 11950 * The options have been sanity checked by ip_output_options(). 11951 */ 11952 void 11953 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11954 { 11955 ipoptp_t opts; 11956 uchar_t *opt; 11957 uint8_t optval; 11958 uint8_t optlen; 11959 ipaddr_t dst; 11960 uint32_t ts; 11961 timestruc_t now; 11962 uint32_t off = 0; 11963 11964 for (optval = ipoptp_first(&opts, ipha); 11965 optval != IPOPT_EOL; 11966 optval = ipoptp_next(&opts)) { 11967 opt = opts.ipoptp_cur; 11968 optlen = opts.ipoptp_len; 11969 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11970 switch (optval) { 11971 case IPOPT_SSRR: 11972 case IPOPT_LSRR: 11973 off = opt[IPOPT_OFFSET]; 11974 off--; 11975 if (optlen < IP_ADDR_LEN || 11976 off > optlen - IP_ADDR_LEN) { 11977 /* End of source route */ 11978 break; 11979 } 11980 /* 11981 * This will only happen if two consecutive entries 11982 * in the source route contains our address or if 11983 * it is a packet with a loose source route which 11984 * reaches us before consuming the whole source route 11985 */ 11986 11987 if (optval == IPOPT_SSRR) { 11988 return; 11989 } 11990 /* 11991 * Hack: instead of dropping the packet truncate the 11992 * source route to what has been used by filling the 11993 * rest with IPOPT_NOP. 11994 */ 11995 opt[IPOPT_OLEN] = (uint8_t)off; 11996 while (off < optlen) { 11997 opt[off++] = IPOPT_NOP; 11998 } 11999 break; 12000 case IPOPT_RR: 12001 off = opt[IPOPT_OFFSET]; 12002 off--; 12003 if (optlen < IP_ADDR_LEN || 12004 off > optlen - IP_ADDR_LEN) { 12005 /* No more room - ignore */ 12006 ip1dbg(( 12007 "ip_output_local_options: end of RR\n")); 12008 break; 12009 } 12010 dst = htonl(INADDR_LOOPBACK); 12011 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12012 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12013 break; 12014 case IPOPT_TS: 12015 /* Insert timestamp if there is romm */ 12016 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12017 case IPOPT_TS_TSONLY: 12018 off = IPOPT_TS_TIMELEN; 12019 break; 12020 case IPOPT_TS_PRESPEC: 12021 case IPOPT_TS_PRESPEC_RFC791: 12022 /* Verify that the address matched */ 12023 off = opt[IPOPT_OFFSET] - 1; 12024 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 12025 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 12026 /* Not for us */ 12027 break; 12028 } 12029 /* FALLTHROUGH */ 12030 case IPOPT_TS_TSANDADDR: 12031 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12032 break; 12033 default: 12034 /* 12035 * ip_*put_options should have already 12036 * dropped this packet. 12037 */ 12038 cmn_err(CE_PANIC, "ip_output_local_options: " 12039 "unknown IT - bug in ip_output_options?\n"); 12040 } 12041 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 12042 /* Increase overflow counter */ 12043 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 12044 opt[IPOPT_POS_OV_FLG] = (uint8_t) 12045 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 12046 (off << 4); 12047 break; 12048 } 12049 off = opt[IPOPT_OFFSET] - 1; 12050 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12051 case IPOPT_TS_PRESPEC: 12052 case IPOPT_TS_PRESPEC_RFC791: 12053 case IPOPT_TS_TSANDADDR: 12054 dst = htonl(INADDR_LOOPBACK); 12055 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12056 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12057 /* FALLTHROUGH */ 12058 case IPOPT_TS_TSONLY: 12059 off = opt[IPOPT_OFFSET] - 1; 12060 /* Compute # of milliseconds since midnight */ 12061 gethrestime(&now); 12062 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 12063 NSEC2MSEC(now.tv_nsec); 12064 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 12065 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 12066 break; 12067 } 12068 break; 12069 } 12070 } 12071 } 12072 12073 /* 12074 * Prepend an M_DATA fastpath header, and if none present prepend a 12075 * DL_UNITDATA_REQ. Frees the mblk on failure. 12076 * 12077 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 12078 * If there is a change to them, the nce will be deleted (condemned) and 12079 * a new nce_t will be created when packets are sent. Thus we need no locks 12080 * to access those fields. 12081 * 12082 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 12083 * we place b_band in dl_priority.dl_max. 12084 */ 12085 static mblk_t * 12086 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 12087 { 12088 uint_t hlen; 12089 mblk_t *mp1; 12090 uint_t priority; 12091 uchar_t *rptr; 12092 12093 rptr = mp->b_rptr; 12094 12095 ASSERT(DB_TYPE(mp) == M_DATA); 12096 priority = mp->b_band; 12097 12098 ASSERT(nce != NULL); 12099 if ((mp1 = nce->nce_fp_mp) != NULL) { 12100 hlen = MBLKL(mp1); 12101 /* 12102 * Check if we have enough room to prepend fastpath 12103 * header 12104 */ 12105 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 12106 rptr -= hlen; 12107 bcopy(mp1->b_rptr, rptr, hlen); 12108 /* 12109 * Set the b_rptr to the start of the link layer 12110 * header 12111 */ 12112 mp->b_rptr = rptr; 12113 return (mp); 12114 } 12115 mp1 = copyb(mp1); 12116 if (mp1 == NULL) { 12117 ill_t *ill = nce->nce_ill; 12118 12119 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12120 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12121 freemsg(mp); 12122 return (NULL); 12123 } 12124 mp1->b_band = priority; 12125 mp1->b_cont = mp; 12126 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 12127 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 12128 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 12129 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 12130 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 12131 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 12132 /* 12133 * XXX disable ICK_VALID and compute checksum 12134 * here; can happen if nce_fp_mp changes and 12135 * it can't be copied now due to insufficient 12136 * space. (unlikely, fp mp can change, but it 12137 * does not increase in length) 12138 */ 12139 return (mp1); 12140 } 12141 mp1 = copyb(nce->nce_dlur_mp); 12142 12143 if (mp1 == NULL) { 12144 ill_t *ill = nce->nce_ill; 12145 12146 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12147 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12148 freemsg(mp); 12149 return (NULL); 12150 } 12151 mp1->b_cont = mp; 12152 if (priority != 0) { 12153 mp1->b_band = priority; 12154 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 12155 priority; 12156 } 12157 return (mp1); 12158 } 12159 12160 /* 12161 * Finish the outbound IPsec processing. This function is called from 12162 * ipsec_out_process() if the IPsec packet was processed 12163 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12164 * asynchronously. 12165 * 12166 * This is common to IPv4 and IPv6. 12167 */ 12168 int 12169 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12170 { 12171 iaflags_t ixaflags = ixa->ixa_flags; 12172 uint_t pktlen; 12173 12174 12175 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12176 if (ixaflags & IXAF_IS_IPV4) { 12177 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12178 12179 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12180 pktlen = ntohs(ipha->ipha_length); 12181 } else { 12182 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12183 12184 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12185 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12186 } 12187 12188 /* 12189 * We release any hard reference on the SAs here to make 12190 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12191 * on the SAs. 12192 * If in the future we want the hard latching of the SAs in the 12193 * ip_xmit_attr_t then we should remove this. 12194 */ 12195 if (ixa->ixa_ipsec_esp_sa != NULL) { 12196 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12197 ixa->ixa_ipsec_esp_sa = NULL; 12198 } 12199 if (ixa->ixa_ipsec_ah_sa != NULL) { 12200 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12201 ixa->ixa_ipsec_ah_sa = NULL; 12202 } 12203 12204 /* Do we need to fragment? */ 12205 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12206 pktlen > ixa->ixa_fragsize) { 12207 if (ixaflags & IXAF_IS_IPV4) { 12208 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12209 /* 12210 * We check for the DF case in ipsec_out_process 12211 * hence this only handles the non-DF case. 12212 */ 12213 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12214 pktlen, ixa->ixa_fragsize, 12215 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12216 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12217 &ixa->ixa_cookie)); 12218 } else { 12219 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12220 if (mp == NULL) { 12221 /* MIB and ip_drop_output already done */ 12222 return (ENOMEM); 12223 } 12224 pktlen += sizeof (ip6_frag_t); 12225 if (pktlen > ixa->ixa_fragsize) { 12226 return (ip_fragment_v6(mp, ixa->ixa_nce, 12227 ixa->ixa_flags, pktlen, 12228 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12229 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12230 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12231 } 12232 } 12233 } 12234 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12235 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12236 ixa->ixa_no_loop_zoneid, NULL)); 12237 } 12238 12239 /* 12240 * Finish the inbound IPsec processing. This function is called from 12241 * ipsec_out_process() if the IPsec packet was processed 12242 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12243 * asynchronously. 12244 * 12245 * This is common to IPv4 and IPv6. 12246 */ 12247 void 12248 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12249 { 12250 iaflags_t iraflags = ira->ira_flags; 12251 12252 /* Length might have changed */ 12253 if (iraflags & IRAF_IS_IPV4) { 12254 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12255 12256 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12257 ira->ira_pktlen = ntohs(ipha->ipha_length); 12258 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12259 ira->ira_protocol = ipha->ipha_protocol; 12260 12261 ip_fanout_v4(mp, ipha, ira); 12262 } else { 12263 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12264 uint8_t *nexthdrp; 12265 12266 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12267 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12268 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12269 &nexthdrp)) { 12270 /* Malformed packet */ 12271 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12272 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12273 freemsg(mp); 12274 return; 12275 } 12276 ira->ira_protocol = *nexthdrp; 12277 ip_fanout_v6(mp, ip6h, ira); 12278 } 12279 } 12280 12281 /* 12282 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12283 * 12284 * If this function returns B_TRUE, the requested SA's have been filled 12285 * into the ixa_ipsec_*_sa pointers. 12286 * 12287 * If the function returns B_FALSE, the packet has been "consumed", most 12288 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12289 * 12290 * The SA references created by the protocol-specific "select" 12291 * function will be released in ip_output_post_ipsec. 12292 */ 12293 static boolean_t 12294 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12295 { 12296 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12297 ipsec_policy_t *pp; 12298 ipsec_action_t *ap; 12299 12300 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12301 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12302 (ixa->ixa_ipsec_action != NULL)); 12303 12304 ap = ixa->ixa_ipsec_action; 12305 if (ap == NULL) { 12306 pp = ixa->ixa_ipsec_policy; 12307 ASSERT(pp != NULL); 12308 ap = pp->ipsp_act; 12309 ASSERT(ap != NULL); 12310 } 12311 12312 /* 12313 * We have an action. now, let's select SA's. 12314 * A side effect of setting ixa_ipsec_*_sa is that it will 12315 * be cached in the conn_t. 12316 */ 12317 if (ap->ipa_want_esp) { 12318 if (ixa->ixa_ipsec_esp_sa == NULL) { 12319 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12320 IPPROTO_ESP); 12321 } 12322 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12323 } 12324 12325 if (ap->ipa_want_ah) { 12326 if (ixa->ixa_ipsec_ah_sa == NULL) { 12327 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12328 IPPROTO_AH); 12329 } 12330 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12331 /* 12332 * The ESP and AH processing order needs to be preserved 12333 * when both protocols are required (ESP should be applied 12334 * before AH for an outbound packet). Force an ESP ACQUIRE 12335 * when both ESP and AH are required, and an AH ACQUIRE 12336 * is needed. 12337 */ 12338 if (ap->ipa_want_esp && need_ah_acquire) 12339 need_esp_acquire = B_TRUE; 12340 } 12341 12342 /* 12343 * Send an ACQUIRE (extended, regular, or both) if we need one. 12344 * Release SAs that got referenced, but will not be used until we 12345 * acquire _all_ of the SAs we need. 12346 */ 12347 if (need_ah_acquire || need_esp_acquire) { 12348 if (ixa->ixa_ipsec_ah_sa != NULL) { 12349 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12350 ixa->ixa_ipsec_ah_sa = NULL; 12351 } 12352 if (ixa->ixa_ipsec_esp_sa != NULL) { 12353 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12354 ixa->ixa_ipsec_esp_sa = NULL; 12355 } 12356 12357 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12358 return (B_FALSE); 12359 } 12360 12361 return (B_TRUE); 12362 } 12363 12364 /* 12365 * Handle IPsec output processing. 12366 * This function is only entered once for a given packet. 12367 * We try to do things synchronously, but if we need to have user-level 12368 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12369 * will be completed 12370 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12371 * - when asynchronous ESP is done it will do AH 12372 * 12373 * In all cases we come back in ip_output_post_ipsec() to fragment and 12374 * send out the packet. 12375 */ 12376 int 12377 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12378 { 12379 ill_t *ill = ixa->ixa_nce->nce_ill; 12380 ip_stack_t *ipst = ixa->ixa_ipst; 12381 ipsec_stack_t *ipss; 12382 ipsec_policy_t *pp; 12383 ipsec_action_t *ap; 12384 12385 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12386 12387 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12388 (ixa->ixa_ipsec_action != NULL)); 12389 12390 ipss = ipst->ips_netstack->netstack_ipsec; 12391 if (!ipsec_loaded(ipss)) { 12392 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12393 ip_drop_packet(mp, B_TRUE, ill, 12394 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12395 &ipss->ipsec_dropper); 12396 return (ENOTSUP); 12397 } 12398 12399 ap = ixa->ixa_ipsec_action; 12400 if (ap == NULL) { 12401 pp = ixa->ixa_ipsec_policy; 12402 ASSERT(pp != NULL); 12403 ap = pp->ipsp_act; 12404 ASSERT(ap != NULL); 12405 } 12406 12407 /* Handle explicit drop action and bypass. */ 12408 switch (ap->ipa_act.ipa_type) { 12409 case IPSEC_ACT_DISCARD: 12410 case IPSEC_ACT_REJECT: 12411 ip_drop_packet(mp, B_FALSE, ill, 12412 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12413 return (EHOSTUNREACH); /* IPsec policy failure */ 12414 case IPSEC_ACT_BYPASS: 12415 return (ip_output_post_ipsec(mp, ixa)); 12416 } 12417 12418 /* 12419 * The order of processing is first insert a IP header if needed. 12420 * Then insert the ESP header and then the AH header. 12421 */ 12422 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12423 /* 12424 * First get the outer IP header before sending 12425 * it to ESP. 12426 */ 12427 ipha_t *oipha, *iipha; 12428 mblk_t *outer_mp, *inner_mp; 12429 12430 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12431 (void) mi_strlog(ill->ill_rq, 0, 12432 SL_ERROR|SL_TRACE|SL_CONSOLE, 12433 "ipsec_out_process: " 12434 "Self-Encapsulation failed: Out of memory\n"); 12435 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12436 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12437 freemsg(mp); 12438 return (ENOBUFS); 12439 } 12440 inner_mp = mp; 12441 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12442 oipha = (ipha_t *)outer_mp->b_rptr; 12443 iipha = (ipha_t *)inner_mp->b_rptr; 12444 *oipha = *iipha; 12445 outer_mp->b_wptr += sizeof (ipha_t); 12446 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12447 sizeof (ipha_t)); 12448 oipha->ipha_protocol = IPPROTO_ENCAP; 12449 oipha->ipha_version_and_hdr_length = 12450 IP_SIMPLE_HDR_VERSION; 12451 oipha->ipha_hdr_checksum = 0; 12452 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12453 outer_mp->b_cont = inner_mp; 12454 mp = outer_mp; 12455 12456 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12457 } 12458 12459 /* If we need to wait for a SA then we can't return any errno */ 12460 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12461 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12462 !ipsec_out_select_sa(mp, ixa)) 12463 return (0); 12464 12465 /* 12466 * By now, we know what SA's to use. Toss over to ESP & AH 12467 * to do the heavy lifting. 12468 */ 12469 if (ap->ipa_want_esp) { 12470 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12471 12472 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12473 if (mp == NULL) { 12474 /* 12475 * Either it failed or is pending. In the former case 12476 * ipIfStatsInDiscards was increased. 12477 */ 12478 return (0); 12479 } 12480 } 12481 12482 if (ap->ipa_want_ah) { 12483 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12484 12485 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12486 if (mp == NULL) { 12487 /* 12488 * Either it failed or is pending. In the former case 12489 * ipIfStatsInDiscards was increased. 12490 */ 12491 return (0); 12492 } 12493 } 12494 /* 12495 * We are done with IPsec processing. Send it over 12496 * the wire. 12497 */ 12498 return (ip_output_post_ipsec(mp, ixa)); 12499 } 12500 12501 /* 12502 * ioctls that go through a down/up sequence may need to wait for the down 12503 * to complete. This involves waiting for the ire and ipif refcnts to go down 12504 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12505 */ 12506 /* ARGSUSED */ 12507 void 12508 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12509 { 12510 struct iocblk *iocp; 12511 mblk_t *mp1; 12512 ip_ioctl_cmd_t *ipip; 12513 int err; 12514 sin_t *sin; 12515 struct lifreq *lifr; 12516 struct ifreq *ifr; 12517 12518 iocp = (struct iocblk *)mp->b_rptr; 12519 ASSERT(ipsq != NULL); 12520 /* Existence of mp1 verified in ip_wput_nondata */ 12521 mp1 = mp->b_cont->b_cont; 12522 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12523 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12524 /* 12525 * Special case where ipx_current_ipif is not set: 12526 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12527 * We are here as were not able to complete the operation in 12528 * ipif_set_values because we could not become exclusive on 12529 * the new ipsq. 12530 */ 12531 ill_t *ill = q->q_ptr; 12532 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12533 } 12534 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12535 12536 if (ipip->ipi_cmd_type == IF_CMD) { 12537 /* This a old style SIOC[GS]IF* command */ 12538 ifr = (struct ifreq *)mp1->b_rptr; 12539 sin = (sin_t *)&ifr->ifr_addr; 12540 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12541 /* This a new style SIOC[GS]LIF* command */ 12542 lifr = (struct lifreq *)mp1->b_rptr; 12543 sin = (sin_t *)&lifr->lifr_addr; 12544 } else { 12545 sin = NULL; 12546 } 12547 12548 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12549 q, mp, ipip, mp1->b_rptr); 12550 12551 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12552 int, ipip->ipi_cmd, 12553 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12554 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12555 12556 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12557 } 12558 12559 /* 12560 * ioctl processing 12561 * 12562 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12563 * the ioctl command in the ioctl tables, determines the copyin data size 12564 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12565 * 12566 * ioctl processing then continues when the M_IOCDATA makes its way down to 12567 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12568 * associated 'conn' is refheld till the end of the ioctl and the general 12569 * ioctl processing function ip_process_ioctl() is called to extract the 12570 * arguments and process the ioctl. To simplify extraction, ioctl commands 12571 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12572 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12573 * is used to extract the ioctl's arguments. 12574 * 12575 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12576 * so goes thru the serialization primitive ipsq_try_enter. Then the 12577 * appropriate function to handle the ioctl is called based on the entry in 12578 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12579 * which also refreleases the 'conn' that was refheld at the start of the 12580 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12581 * 12582 * Many exclusive ioctls go thru an internal down up sequence as part of 12583 * the operation. For example an attempt to change the IP address of an 12584 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12585 * does all the cleanup such as deleting all ires that use this address. 12586 * Then we need to wait till all references to the interface go away. 12587 */ 12588 void 12589 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12590 { 12591 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12592 ip_ioctl_cmd_t *ipip = arg; 12593 ip_extract_func_t *extract_funcp; 12594 cmd_info_t ci; 12595 int err; 12596 boolean_t entered_ipsq = B_FALSE; 12597 12598 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12599 12600 if (ipip == NULL) 12601 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12602 12603 /* 12604 * SIOCLIFADDIF needs to go thru a special path since the 12605 * ill may not exist yet. This happens in the case of lo0 12606 * which is created using this ioctl. 12607 */ 12608 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12609 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12610 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12611 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12612 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12613 return; 12614 } 12615 12616 ci.ci_ipif = NULL; 12617 extract_funcp = NULL; 12618 switch (ipip->ipi_cmd_type) { 12619 case MISC_CMD: 12620 case MSFILT_CMD: 12621 /* 12622 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12623 */ 12624 if (ipip->ipi_cmd == IF_UNITSEL) { 12625 /* ioctl comes down the ill */ 12626 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12627 ipif_refhold(ci.ci_ipif); 12628 } 12629 err = 0; 12630 ci.ci_sin = NULL; 12631 ci.ci_sin6 = NULL; 12632 ci.ci_lifr = NULL; 12633 extract_funcp = NULL; 12634 break; 12635 12636 case IF_CMD: 12637 case LIF_CMD: 12638 extract_funcp = ip_extract_lifreq; 12639 break; 12640 12641 case ARP_CMD: 12642 case XARP_CMD: 12643 extract_funcp = ip_extract_arpreq; 12644 break; 12645 12646 default: 12647 ASSERT(0); 12648 } 12649 12650 if (extract_funcp != NULL) { 12651 err = (*extract_funcp)(q, mp, ipip, &ci); 12652 if (err != 0) { 12653 DTRACE_PROBE4(ipif__ioctl, 12654 char *, "ip_process_ioctl finish err", 12655 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12656 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12657 return; 12658 } 12659 12660 /* 12661 * All of the extraction functions return a refheld ipif. 12662 */ 12663 ASSERT(ci.ci_ipif != NULL); 12664 } 12665 12666 if (!(ipip->ipi_flags & IPI_WR)) { 12667 /* 12668 * A return value of EINPROGRESS means the ioctl is 12669 * either queued and waiting for some reason or has 12670 * already completed. 12671 */ 12672 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12673 ci.ci_lifr); 12674 if (ci.ci_ipif != NULL) { 12675 DTRACE_PROBE4(ipif__ioctl, 12676 char *, "ip_process_ioctl finish RD", 12677 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12678 ipif_t *, ci.ci_ipif); 12679 ipif_refrele(ci.ci_ipif); 12680 } else { 12681 DTRACE_PROBE4(ipif__ioctl, 12682 char *, "ip_process_ioctl finish RD", 12683 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12684 } 12685 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12686 return; 12687 } 12688 12689 ASSERT(ci.ci_ipif != NULL); 12690 12691 /* 12692 * If ipsq is non-NULL, we are already being called exclusively 12693 */ 12694 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12695 if (ipsq == NULL) { 12696 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12697 NEW_OP, B_TRUE); 12698 if (ipsq == NULL) { 12699 ipif_refrele(ci.ci_ipif); 12700 return; 12701 } 12702 entered_ipsq = B_TRUE; 12703 } 12704 /* 12705 * Release the ipif so that ipif_down and friends that wait for 12706 * references to go away are not misled about the current ipif_refcnt 12707 * values. We are writer so we can access the ipif even after releasing 12708 * the ipif. 12709 */ 12710 ipif_refrele(ci.ci_ipif); 12711 12712 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12713 12714 /* 12715 * A return value of EINPROGRESS means the ioctl is 12716 * either queued and waiting for some reason or has 12717 * already completed. 12718 */ 12719 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12720 12721 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12722 int, ipip->ipi_cmd, 12723 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12724 ipif_t *, ci.ci_ipif); 12725 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12726 12727 if (entered_ipsq) 12728 ipsq_exit(ipsq); 12729 } 12730 12731 /* 12732 * Complete the ioctl. Typically ioctls use the mi package and need to 12733 * do mi_copyout/mi_copy_done. 12734 */ 12735 void 12736 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12737 { 12738 conn_t *connp = NULL; 12739 12740 if (err == EINPROGRESS) 12741 return; 12742 12743 if (CONN_Q(q)) { 12744 connp = Q_TO_CONN(q); 12745 ASSERT(connp->conn_ref >= 2); 12746 } 12747 12748 switch (mode) { 12749 case COPYOUT: 12750 if (err == 0) 12751 mi_copyout(q, mp); 12752 else 12753 mi_copy_done(q, mp, err); 12754 break; 12755 12756 case NO_COPYOUT: 12757 mi_copy_done(q, mp, err); 12758 break; 12759 12760 default: 12761 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12762 break; 12763 } 12764 12765 /* 12766 * The conn refhold and ioctlref placed on the conn at the start of the 12767 * ioctl are released here. 12768 */ 12769 if (connp != NULL) { 12770 CONN_DEC_IOCTLREF(connp); 12771 CONN_OPER_PENDING_DONE(connp); 12772 } 12773 12774 if (ipsq != NULL) 12775 ipsq_current_finish(ipsq); 12776 } 12777 12778 /* Handles all non data messages */ 12779 int 12780 ip_wput_nondata(queue_t *q, mblk_t *mp) 12781 { 12782 mblk_t *mp1; 12783 struct iocblk *iocp; 12784 ip_ioctl_cmd_t *ipip; 12785 conn_t *connp; 12786 cred_t *cr; 12787 char *proto_str; 12788 12789 if (CONN_Q(q)) 12790 connp = Q_TO_CONN(q); 12791 else 12792 connp = NULL; 12793 12794 iocp = NULL; 12795 switch (DB_TYPE(mp)) { 12796 case M_IOCTL: 12797 /* 12798 * IOCTL processing begins in ip_sioctl_copyin_setup which 12799 * will arrange to copy in associated control structures. 12800 */ 12801 ip_sioctl_copyin_setup(q, mp); 12802 return (0); 12803 case M_IOCDATA: 12804 /* 12805 * Ensure that this is associated with one of our trans- 12806 * parent ioctls. If it's not ours, discard it if we're 12807 * running as a driver, or pass it on if we're a module. 12808 */ 12809 iocp = (struct iocblk *)mp->b_rptr; 12810 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12811 if (ipip == NULL) { 12812 if (q->q_next == NULL) { 12813 goto nak; 12814 } else { 12815 putnext(q, mp); 12816 } 12817 return (0); 12818 } 12819 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12820 /* 12821 * The ioctl is one we recognise, but is not consumed 12822 * by IP as a module and we are a module, so we drop 12823 */ 12824 goto nak; 12825 } 12826 12827 /* IOCTL continuation following copyin or copyout. */ 12828 if (mi_copy_state(q, mp, NULL) == -1) { 12829 /* 12830 * The copy operation failed. mi_copy_state already 12831 * cleaned up, so we're out of here. 12832 */ 12833 return (0); 12834 } 12835 /* 12836 * If we just completed a copy in, we become writer and 12837 * continue processing in ip_sioctl_copyin_done. If it 12838 * was a copy out, we call mi_copyout again. If there is 12839 * nothing more to copy out, it will complete the IOCTL. 12840 */ 12841 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12842 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12843 mi_copy_done(q, mp, EPROTO); 12844 return (0); 12845 } 12846 /* 12847 * Check for cases that need more copying. A return 12848 * value of 0 means a second copyin has been started, 12849 * so we return; a return value of 1 means no more 12850 * copying is needed, so we continue. 12851 */ 12852 if (ipip->ipi_cmd_type == MSFILT_CMD && 12853 MI_COPY_COUNT(mp) == 1) { 12854 if (ip_copyin_msfilter(q, mp) == 0) 12855 return (0); 12856 } 12857 /* 12858 * Refhold the conn, till the ioctl completes. This is 12859 * needed in case the ioctl ends up in the pending mp 12860 * list. Every mp in the ipx_pending_mp list must have 12861 * a refhold on the conn to resume processing. The 12862 * refhold is released when the ioctl completes 12863 * (whether normally or abnormally). An ioctlref is also 12864 * placed on the conn to prevent TCP from removing the 12865 * queue needed to send the ioctl reply back. 12866 * In all cases ip_ioctl_finish is called to finish 12867 * the ioctl and release the refholds. 12868 */ 12869 if (connp != NULL) { 12870 /* This is not a reentry */ 12871 CONN_INC_REF(connp); 12872 CONN_INC_IOCTLREF(connp); 12873 } else { 12874 if (!(ipip->ipi_flags & IPI_MODOK)) { 12875 mi_copy_done(q, mp, EINVAL); 12876 return (0); 12877 } 12878 } 12879 12880 ip_process_ioctl(NULL, q, mp, ipip); 12881 12882 } else { 12883 mi_copyout(q, mp); 12884 } 12885 return (0); 12886 12887 case M_IOCNAK: 12888 /* 12889 * The only way we could get here is if a resolver didn't like 12890 * an IOCTL we sent it. This shouldn't happen. 12891 */ 12892 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12893 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12894 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12895 freemsg(mp); 12896 return (0); 12897 case M_IOCACK: 12898 /* /dev/ip shouldn't see this */ 12899 goto nak; 12900 case M_FLUSH: 12901 if (*mp->b_rptr & FLUSHW) 12902 flushq(q, FLUSHALL); 12903 if (q->q_next) { 12904 putnext(q, mp); 12905 return (0); 12906 } 12907 if (*mp->b_rptr & FLUSHR) { 12908 *mp->b_rptr &= ~FLUSHW; 12909 qreply(q, mp); 12910 return (0); 12911 } 12912 freemsg(mp); 12913 return (0); 12914 case M_CTL: 12915 break; 12916 case M_PROTO: 12917 case M_PCPROTO: 12918 /* 12919 * The only PROTO messages we expect are SNMP-related. 12920 */ 12921 switch (((union T_primitives *)mp->b_rptr)->type) { 12922 case T_SVR4_OPTMGMT_REQ: 12923 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12924 "flags %x\n", 12925 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12926 12927 if (connp == NULL) { 12928 proto_str = "T_SVR4_OPTMGMT_REQ"; 12929 goto protonak; 12930 } 12931 12932 /* 12933 * All Solaris components should pass a db_credp 12934 * for this TPI message, hence we ASSERT. 12935 * But in case there is some other M_PROTO that looks 12936 * like a TPI message sent by some other kernel 12937 * component, we check and return an error. 12938 */ 12939 cr = msg_getcred(mp, NULL); 12940 ASSERT(cr != NULL); 12941 if (cr == NULL) { 12942 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12943 if (mp != NULL) 12944 qreply(q, mp); 12945 return (0); 12946 } 12947 12948 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12949 proto_str = "Bad SNMPCOM request?"; 12950 goto protonak; 12951 } 12952 return (0); 12953 default: 12954 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12955 (int)*(uint_t *)mp->b_rptr)); 12956 freemsg(mp); 12957 return (0); 12958 } 12959 default: 12960 break; 12961 } 12962 if (q->q_next) { 12963 putnext(q, mp); 12964 } else 12965 freemsg(mp); 12966 return (0); 12967 12968 nak: 12969 iocp->ioc_error = EINVAL; 12970 mp->b_datap->db_type = M_IOCNAK; 12971 iocp->ioc_count = 0; 12972 qreply(q, mp); 12973 return (0); 12974 12975 protonak: 12976 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 12977 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 12978 qreply(q, mp); 12979 return (0); 12980 } 12981 12982 /* 12983 * Process IP options in an outbound packet. Verify that the nexthop in a 12984 * strict source route is onlink. 12985 * Returns non-zero if something fails in which case an ICMP error has been 12986 * sent and mp freed. 12987 * 12988 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 12989 */ 12990 int 12991 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 12992 { 12993 ipoptp_t opts; 12994 uchar_t *opt; 12995 uint8_t optval; 12996 uint8_t optlen; 12997 ipaddr_t dst; 12998 intptr_t code = 0; 12999 ire_t *ire; 13000 ip_stack_t *ipst = ixa->ixa_ipst; 13001 ip_recv_attr_t iras; 13002 13003 ip2dbg(("ip_output_options\n")); 13004 13005 opt = NULL; 13006 dst = ipha->ipha_dst; 13007 for (optval = ipoptp_first(&opts, ipha); 13008 optval != IPOPT_EOL; 13009 optval = ipoptp_next(&opts)) { 13010 opt = opts.ipoptp_cur; 13011 optlen = opts.ipoptp_len; 13012 ip2dbg(("ip_output_options: opt %d, len %d\n", 13013 optval, optlen)); 13014 switch (optval) { 13015 uint32_t off; 13016 case IPOPT_SSRR: 13017 case IPOPT_LSRR: 13018 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13019 ip1dbg(( 13020 "ip_output_options: bad option offset\n")); 13021 code = (char *)&opt[IPOPT_OLEN] - 13022 (char *)ipha; 13023 goto param_prob; 13024 } 13025 off = opt[IPOPT_OFFSET]; 13026 ip1dbg(("ip_output_options: next hop 0x%x\n", 13027 ntohl(dst))); 13028 /* 13029 * For strict: verify that dst is directly 13030 * reachable. 13031 */ 13032 if (optval == IPOPT_SSRR) { 13033 ire = ire_ftable_lookup_v4(dst, 0, 0, 13034 IRE_INTERFACE, NULL, ALL_ZONES, 13035 ixa->ixa_tsl, 13036 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 13037 NULL); 13038 if (ire == NULL) { 13039 ip1dbg(("ip_output_options: SSRR not" 13040 " directly reachable: 0x%x\n", 13041 ntohl(dst))); 13042 goto bad_src_route; 13043 } 13044 ire_refrele(ire); 13045 } 13046 break; 13047 case IPOPT_RR: 13048 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13049 ip1dbg(( 13050 "ip_output_options: bad option offset\n")); 13051 code = (char *)&opt[IPOPT_OLEN] - 13052 (char *)ipha; 13053 goto param_prob; 13054 } 13055 break; 13056 case IPOPT_TS: 13057 /* 13058 * Verify that length >=5 and that there is either 13059 * room for another timestamp or that the overflow 13060 * counter is not maxed out. 13061 */ 13062 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 13063 if (optlen < IPOPT_MINLEN_IT) { 13064 goto param_prob; 13065 } 13066 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13067 ip1dbg(( 13068 "ip_output_options: bad option offset\n")); 13069 code = (char *)&opt[IPOPT_OFFSET] - 13070 (char *)ipha; 13071 goto param_prob; 13072 } 13073 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 13074 case IPOPT_TS_TSONLY: 13075 off = IPOPT_TS_TIMELEN; 13076 break; 13077 case IPOPT_TS_TSANDADDR: 13078 case IPOPT_TS_PRESPEC: 13079 case IPOPT_TS_PRESPEC_RFC791: 13080 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 13081 break; 13082 default: 13083 code = (char *)&opt[IPOPT_POS_OV_FLG] - 13084 (char *)ipha; 13085 goto param_prob; 13086 } 13087 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 13088 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 13089 /* 13090 * No room and the overflow counter is 15 13091 * already. 13092 */ 13093 goto param_prob; 13094 } 13095 break; 13096 } 13097 } 13098 13099 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 13100 return (0); 13101 13102 ip1dbg(("ip_output_options: error processing IP options.")); 13103 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 13104 13105 param_prob: 13106 bzero(&iras, sizeof (iras)); 13107 iras.ira_ill = iras.ira_rill = ill; 13108 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13109 iras.ira_rifindex = iras.ira_ruifindex; 13110 iras.ira_flags = IRAF_IS_IPV4; 13111 13112 ip_drop_output("ip_output_options", mp, ill); 13113 icmp_param_problem(mp, (uint8_t)code, &iras); 13114 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13115 return (-1); 13116 13117 bad_src_route: 13118 bzero(&iras, sizeof (iras)); 13119 iras.ira_ill = iras.ira_rill = ill; 13120 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13121 iras.ira_rifindex = iras.ira_ruifindex; 13122 iras.ira_flags = IRAF_IS_IPV4; 13123 13124 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 13125 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 13126 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13127 return (-1); 13128 } 13129 13130 /* 13131 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 13132 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 13133 * thru /etc/system. 13134 */ 13135 #define CONN_MAXDRAINCNT 64 13136 13137 static void 13138 conn_drain_init(ip_stack_t *ipst) 13139 { 13140 int i, j; 13141 idl_tx_list_t *itl_tx; 13142 13143 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 13144 13145 if ((ipst->ips_conn_drain_list_cnt == 0) || 13146 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 13147 /* 13148 * Default value of the number of drainers is the 13149 * number of cpus, subject to maximum of 8 drainers. 13150 */ 13151 if (boot_max_ncpus != -1) 13152 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 13153 else 13154 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 13155 } 13156 13157 ipst->ips_idl_tx_list = 13158 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 13159 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13160 itl_tx = &ipst->ips_idl_tx_list[i]; 13161 itl_tx->txl_drain_list = 13162 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 13163 sizeof (idl_t), KM_SLEEP); 13164 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 13165 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13166 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13167 MUTEX_DEFAULT, NULL); 13168 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13169 } 13170 } 13171 } 13172 13173 static void 13174 conn_drain_fini(ip_stack_t *ipst) 13175 { 13176 int i; 13177 idl_tx_list_t *itl_tx; 13178 13179 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13180 itl_tx = &ipst->ips_idl_tx_list[i]; 13181 kmem_free(itl_tx->txl_drain_list, 13182 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13183 } 13184 kmem_free(ipst->ips_idl_tx_list, 13185 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13186 ipst->ips_idl_tx_list = NULL; 13187 } 13188 13189 /* 13190 * Flow control has blocked us from proceeding. Insert the given conn in one 13191 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13192 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13193 * will call conn_walk_drain(). See the flow control notes at the top of this 13194 * file for more details. 13195 */ 13196 void 13197 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13198 { 13199 idl_t *idl = tx_list->txl_drain_list; 13200 uint_t index; 13201 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13202 13203 mutex_enter(&connp->conn_lock); 13204 if (connp->conn_state_flags & CONN_CLOSING) { 13205 /* 13206 * The conn is closing as a result of which CONN_CLOSING 13207 * is set. Return. 13208 */ 13209 mutex_exit(&connp->conn_lock); 13210 return; 13211 } else if (connp->conn_idl == NULL) { 13212 /* 13213 * Assign the next drain list round robin. We dont' use 13214 * a lock, and thus it may not be strictly round robin. 13215 * Atomicity of load/stores is enough to make sure that 13216 * conn_drain_list_index is always within bounds. 13217 */ 13218 index = tx_list->txl_drain_index; 13219 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13220 connp->conn_idl = &tx_list->txl_drain_list[index]; 13221 index++; 13222 if (index == ipst->ips_conn_drain_list_cnt) 13223 index = 0; 13224 tx_list->txl_drain_index = index; 13225 } else { 13226 ASSERT(connp->conn_idl->idl_itl == tx_list); 13227 } 13228 mutex_exit(&connp->conn_lock); 13229 13230 idl = connp->conn_idl; 13231 mutex_enter(&idl->idl_lock); 13232 if ((connp->conn_drain_prev != NULL) || 13233 (connp->conn_state_flags & CONN_CLOSING)) { 13234 /* 13235 * The conn is either already in the drain list or closing. 13236 * (We needed to check for CONN_CLOSING again since close can 13237 * sneak in between dropping conn_lock and acquiring idl_lock.) 13238 */ 13239 mutex_exit(&idl->idl_lock); 13240 return; 13241 } 13242 13243 /* 13244 * The conn is not in the drain list. Insert it at the 13245 * tail of the drain list. The drain list is circular 13246 * and doubly linked. idl_conn points to the 1st element 13247 * in the list. 13248 */ 13249 if (idl->idl_conn == NULL) { 13250 idl->idl_conn = connp; 13251 connp->conn_drain_next = connp; 13252 connp->conn_drain_prev = connp; 13253 } else { 13254 conn_t *head = idl->idl_conn; 13255 13256 connp->conn_drain_next = head; 13257 connp->conn_drain_prev = head->conn_drain_prev; 13258 head->conn_drain_prev->conn_drain_next = connp; 13259 head->conn_drain_prev = connp; 13260 } 13261 /* 13262 * For non streams based sockets assert flow control. 13263 */ 13264 conn_setqfull(connp, NULL); 13265 mutex_exit(&idl->idl_lock); 13266 } 13267 13268 static void 13269 conn_drain_remove(conn_t *connp) 13270 { 13271 idl_t *idl = connp->conn_idl; 13272 13273 if (idl != NULL) { 13274 /* 13275 * Remove ourself from the drain list. 13276 */ 13277 if (connp->conn_drain_next == connp) { 13278 /* Singleton in the list */ 13279 ASSERT(connp->conn_drain_prev == connp); 13280 idl->idl_conn = NULL; 13281 } else { 13282 connp->conn_drain_prev->conn_drain_next = 13283 connp->conn_drain_next; 13284 connp->conn_drain_next->conn_drain_prev = 13285 connp->conn_drain_prev; 13286 if (idl->idl_conn == connp) 13287 idl->idl_conn = connp->conn_drain_next; 13288 } 13289 13290 /* 13291 * NOTE: because conn_idl is associated with a specific drain 13292 * list which in turn is tied to the index the TX ring 13293 * (txl_cookie) hashes to, and because the TX ring can change 13294 * over the lifetime of the conn_t, we must clear conn_idl so 13295 * a subsequent conn_drain_insert() will set conn_idl again 13296 * based on the latest txl_cookie. 13297 */ 13298 connp->conn_idl = NULL; 13299 } 13300 connp->conn_drain_next = NULL; 13301 connp->conn_drain_prev = NULL; 13302 13303 conn_clrqfull(connp, NULL); 13304 /* 13305 * For streams based sockets open up flow control. 13306 */ 13307 if (!IPCL_IS_NONSTR(connp)) 13308 enableok(connp->conn_wq); 13309 } 13310 13311 /* 13312 * This conn is closing, and we are called from ip_close. OR 13313 * this conn is draining because flow-control on the ill has been relieved. 13314 * 13315 * We must also need to remove conn's on this idl from the list, and also 13316 * inform the sockfs upcalls about the change in flow-control. 13317 */ 13318 static void 13319 conn_drain(conn_t *connp, boolean_t closing) 13320 { 13321 idl_t *idl; 13322 conn_t *next_connp; 13323 13324 /* 13325 * connp->conn_idl is stable at this point, and no lock is needed 13326 * to check it. If we are called from ip_close, close has already 13327 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13328 * called us only because conn_idl is non-null. If we are called thru 13329 * service, conn_idl could be null, but it cannot change because 13330 * service is single-threaded per queue, and there cannot be another 13331 * instance of service trying to call conn_drain_insert on this conn 13332 * now. 13333 */ 13334 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13335 13336 /* 13337 * If the conn doesn't exist or is not on a drain list, bail. 13338 */ 13339 if (connp == NULL || connp->conn_idl == NULL || 13340 connp->conn_drain_prev == NULL) { 13341 return; 13342 } 13343 13344 idl = connp->conn_idl; 13345 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13346 13347 if (!closing) { 13348 next_connp = connp->conn_drain_next; 13349 while (next_connp != connp) { 13350 conn_t *delconnp = next_connp; 13351 13352 next_connp = next_connp->conn_drain_next; 13353 conn_drain_remove(delconnp); 13354 } 13355 ASSERT(connp->conn_drain_next == idl->idl_conn); 13356 } 13357 conn_drain_remove(connp); 13358 } 13359 13360 /* 13361 * Write service routine. Shared perimeter entry point. 13362 * The device queue's messages has fallen below the low water mark and STREAMS 13363 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13364 * each waiting conn. 13365 */ 13366 int 13367 ip_wsrv(queue_t *q) 13368 { 13369 ill_t *ill; 13370 13371 ill = (ill_t *)q->q_ptr; 13372 if (ill->ill_state_flags == 0) { 13373 ip_stack_t *ipst = ill->ill_ipst; 13374 13375 /* 13376 * The device flow control has opened up. 13377 * Walk through conn drain lists and qenable the 13378 * first conn in each list. This makes sense only 13379 * if the stream is fully plumbed and setup. 13380 * Hence the ill_state_flags check above. 13381 */ 13382 ip1dbg(("ip_wsrv: walking\n")); 13383 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13384 enableok(ill->ill_wq); 13385 } 13386 return (0); 13387 } 13388 13389 /* 13390 * Callback to disable flow control in IP. 13391 * 13392 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13393 * is enabled. 13394 * 13395 * When MAC_TX() is not able to send any more packets, dld sets its queue 13396 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13397 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13398 * function and wakes up corresponding mac worker threads, which in turn 13399 * calls this callback function, and disables flow control. 13400 */ 13401 void 13402 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13403 { 13404 ill_t *ill = (ill_t *)arg; 13405 ip_stack_t *ipst = ill->ill_ipst; 13406 idl_tx_list_t *idl_txl; 13407 13408 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13409 mutex_enter(&idl_txl->txl_lock); 13410 /* add code to to set a flag to indicate idl_txl is enabled */ 13411 conn_walk_drain(ipst, idl_txl); 13412 mutex_exit(&idl_txl->txl_lock); 13413 } 13414 13415 /* 13416 * Flow control has been relieved and STREAMS has backenabled us; drain 13417 * all the conn lists on `tx_list'. 13418 */ 13419 static void 13420 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13421 { 13422 int i; 13423 idl_t *idl; 13424 13425 IP_STAT(ipst, ip_conn_walk_drain); 13426 13427 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13428 idl = &tx_list->txl_drain_list[i]; 13429 mutex_enter(&idl->idl_lock); 13430 conn_drain(idl->idl_conn, B_FALSE); 13431 mutex_exit(&idl->idl_lock); 13432 } 13433 } 13434 13435 /* 13436 * Determine if the ill and multicast aspects of that packets 13437 * "matches" the conn. 13438 */ 13439 boolean_t 13440 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13441 { 13442 ill_t *ill = ira->ira_rill; 13443 zoneid_t zoneid = ira->ira_zoneid; 13444 uint_t in_ifindex; 13445 ipaddr_t dst, src; 13446 13447 dst = ipha->ipha_dst; 13448 src = ipha->ipha_src; 13449 13450 /* 13451 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13452 * unicast, broadcast and multicast reception to 13453 * conn_incoming_ifindex. 13454 * conn_wantpacket is called for unicast, broadcast and 13455 * multicast packets. 13456 */ 13457 in_ifindex = connp->conn_incoming_ifindex; 13458 13459 /* mpathd can bind to the under IPMP interface, which we allow */ 13460 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13461 if (!IS_UNDER_IPMP(ill)) 13462 return (B_FALSE); 13463 13464 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13465 return (B_FALSE); 13466 } 13467 13468 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13469 return (B_FALSE); 13470 13471 if (!(ira->ira_flags & IRAF_MULTICAST)) 13472 return (B_TRUE); 13473 13474 if (connp->conn_multi_router) { 13475 /* multicast packet and multicast router socket: send up */ 13476 return (B_TRUE); 13477 } 13478 13479 if (ipha->ipha_protocol == IPPROTO_PIM || 13480 ipha->ipha_protocol == IPPROTO_RSVP) 13481 return (B_TRUE); 13482 13483 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13484 } 13485 13486 void 13487 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13488 { 13489 if (IPCL_IS_NONSTR(connp)) { 13490 (*connp->conn_upcalls->su_txq_full) 13491 (connp->conn_upper_handle, B_TRUE); 13492 if (flow_stopped != NULL) 13493 *flow_stopped = B_TRUE; 13494 } else { 13495 queue_t *q = connp->conn_wq; 13496 13497 ASSERT(q != NULL); 13498 if (!(q->q_flag & QFULL)) { 13499 mutex_enter(QLOCK(q)); 13500 if (!(q->q_flag & QFULL)) { 13501 /* still need to set QFULL */ 13502 q->q_flag |= QFULL; 13503 /* set flow_stopped to true under QLOCK */ 13504 if (flow_stopped != NULL) 13505 *flow_stopped = B_TRUE; 13506 mutex_exit(QLOCK(q)); 13507 } else { 13508 /* flow_stopped is left unchanged */ 13509 mutex_exit(QLOCK(q)); 13510 } 13511 } 13512 } 13513 } 13514 13515 void 13516 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13517 { 13518 if (IPCL_IS_NONSTR(connp)) { 13519 (*connp->conn_upcalls->su_txq_full) 13520 (connp->conn_upper_handle, B_FALSE); 13521 if (flow_stopped != NULL) 13522 *flow_stopped = B_FALSE; 13523 } else { 13524 queue_t *q = connp->conn_wq; 13525 13526 ASSERT(q != NULL); 13527 if (q->q_flag & QFULL) { 13528 mutex_enter(QLOCK(q)); 13529 if (q->q_flag & QFULL) { 13530 q->q_flag &= ~QFULL; 13531 /* set flow_stopped to false under QLOCK */ 13532 if (flow_stopped != NULL) 13533 *flow_stopped = B_FALSE; 13534 mutex_exit(QLOCK(q)); 13535 if (q->q_flag & QWANTW) 13536 qbackenable(q, 0); 13537 } else { 13538 /* flow_stopped is left unchanged */ 13539 mutex_exit(QLOCK(q)); 13540 } 13541 } 13542 } 13543 13544 mutex_enter(&connp->conn_lock); 13545 connp->conn_blocked = B_FALSE; 13546 mutex_exit(&connp->conn_lock); 13547 } 13548 13549 /* 13550 * Return the length in bytes of the IPv4 headers (base header, label, and 13551 * other IP options) that will be needed based on the 13552 * ip_pkt_t structure passed by the caller. 13553 * 13554 * The returned length does not include the length of the upper level 13555 * protocol (ULP) header. 13556 * The caller needs to check that the length doesn't exceed the max for IPv4. 13557 */ 13558 int 13559 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13560 { 13561 int len; 13562 13563 len = IP_SIMPLE_HDR_LENGTH; 13564 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13565 ASSERT(ipp->ipp_label_len_v4 != 0); 13566 /* We need to round up here */ 13567 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13568 } 13569 13570 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13571 ASSERT(ipp->ipp_ipv4_options_len != 0); 13572 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13573 len += ipp->ipp_ipv4_options_len; 13574 } 13575 return (len); 13576 } 13577 13578 /* 13579 * All-purpose routine to build an IPv4 header with options based 13580 * on the abstract ip_pkt_t. 13581 * 13582 * The caller has to set the source and destination address as well as 13583 * ipha_length. The caller has to massage any source route and compensate 13584 * for the ULP pseudo-header checksum due to the source route. 13585 */ 13586 void 13587 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13588 uint8_t protocol) 13589 { 13590 ipha_t *ipha = (ipha_t *)buf; 13591 uint8_t *cp; 13592 13593 /* Initialize IPv4 header */ 13594 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13595 ipha->ipha_length = 0; /* Caller will set later */ 13596 ipha->ipha_ident = 0; 13597 ipha->ipha_fragment_offset_and_flags = 0; 13598 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13599 ipha->ipha_protocol = protocol; 13600 ipha->ipha_hdr_checksum = 0; 13601 13602 if ((ipp->ipp_fields & IPPF_ADDR) && 13603 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13604 ipha->ipha_src = ipp->ipp_addr_v4; 13605 13606 cp = (uint8_t *)&ipha[1]; 13607 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13608 ASSERT(ipp->ipp_label_len_v4 != 0); 13609 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13610 cp += ipp->ipp_label_len_v4; 13611 /* We need to round up here */ 13612 while ((uintptr_t)cp & 0x3) { 13613 *cp++ = IPOPT_NOP; 13614 } 13615 } 13616 13617 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13618 ASSERT(ipp->ipp_ipv4_options_len != 0); 13619 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13620 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13621 cp += ipp->ipp_ipv4_options_len; 13622 } 13623 ipha->ipha_version_and_hdr_length = 13624 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13625 13626 ASSERT((int)(cp - buf) == buf_len); 13627 } 13628 13629 /* Allocate the private structure */ 13630 static int 13631 ip_priv_alloc(void **bufp) 13632 { 13633 void *buf; 13634 13635 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13636 return (ENOMEM); 13637 13638 *bufp = buf; 13639 return (0); 13640 } 13641 13642 /* Function to delete the private structure */ 13643 void 13644 ip_priv_free(void *buf) 13645 { 13646 ASSERT(buf != NULL); 13647 kmem_free(buf, sizeof (ip_priv_t)); 13648 } 13649 13650 /* 13651 * The entry point for IPPF processing. 13652 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13653 * routine just returns. 13654 * 13655 * When called, ip_process generates an ipp_packet_t structure 13656 * which holds the state information for this packet and invokes the 13657 * the classifier (via ipp_packet_process). The classification, depending on 13658 * configured filters, results in a list of actions for this packet. Invoking 13659 * an action may cause the packet to be dropped, in which case we return NULL. 13660 * proc indicates the callout position for 13661 * this packet and ill is the interface this packet arrived on or will leave 13662 * on (inbound and outbound resp.). 13663 * 13664 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13665 * on the ill corrsponding to the destination IP address. 13666 */ 13667 mblk_t * 13668 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13669 { 13670 ip_priv_t *priv; 13671 ipp_action_id_t aid; 13672 int rc = 0; 13673 ipp_packet_t *pp; 13674 13675 /* If the classifier is not loaded, return */ 13676 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13677 return (mp); 13678 } 13679 13680 ASSERT(mp != NULL); 13681 13682 /* Allocate the packet structure */ 13683 rc = ipp_packet_alloc(&pp, "ip", aid); 13684 if (rc != 0) 13685 goto drop; 13686 13687 /* Allocate the private structure */ 13688 rc = ip_priv_alloc((void **)&priv); 13689 if (rc != 0) { 13690 ipp_packet_free(pp); 13691 goto drop; 13692 } 13693 priv->proc = proc; 13694 priv->ill_index = ill_get_upper_ifindex(rill); 13695 13696 ipp_packet_set_private(pp, priv, ip_priv_free); 13697 ipp_packet_set_data(pp, mp); 13698 13699 /* Invoke the classifier */ 13700 rc = ipp_packet_process(&pp); 13701 if (pp != NULL) { 13702 mp = ipp_packet_get_data(pp); 13703 ipp_packet_free(pp); 13704 if (rc != 0) 13705 goto drop; 13706 return (mp); 13707 } else { 13708 /* No mp to trace in ip_drop_input/ip_drop_output */ 13709 mp = NULL; 13710 } 13711 drop: 13712 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13713 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13714 ip_drop_input("ip_process", mp, ill); 13715 } else { 13716 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13717 ip_drop_output("ip_process", mp, ill); 13718 } 13719 freemsg(mp); 13720 return (NULL); 13721 } 13722 13723 /* 13724 * Propagate a multicast group membership operation (add/drop) on 13725 * all the interfaces crossed by the related multirt routes. 13726 * The call is considered successful if the operation succeeds 13727 * on at least one interface. 13728 * 13729 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13730 * multicast addresses with the ire argument being the first one. 13731 * We walk the bucket to find all the of those. 13732 * 13733 * Common to IPv4 and IPv6. 13734 */ 13735 static int 13736 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13737 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13738 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13739 mcast_record_t fmode, const in6_addr_t *v6src) 13740 { 13741 ire_t *ire_gw; 13742 irb_t *irb; 13743 int ifindex; 13744 int error = 0; 13745 int result; 13746 ip_stack_t *ipst = ire->ire_ipst; 13747 ipaddr_t group; 13748 boolean_t isv6; 13749 int match_flags; 13750 13751 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13752 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13753 isv6 = B_FALSE; 13754 } else { 13755 isv6 = B_TRUE; 13756 } 13757 13758 irb = ire->ire_bucket; 13759 ASSERT(irb != NULL); 13760 13761 result = 0; 13762 irb_refhold(irb); 13763 for (; ire != NULL; ire = ire->ire_next) { 13764 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13765 continue; 13766 13767 /* We handle -ifp routes by matching on the ill if set */ 13768 match_flags = MATCH_IRE_TYPE; 13769 if (ire->ire_ill != NULL) 13770 match_flags |= MATCH_IRE_ILL; 13771 13772 if (isv6) { 13773 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13774 continue; 13775 13776 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13777 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13778 match_flags, 0, ipst, NULL); 13779 } else { 13780 if (ire->ire_addr != group) 13781 continue; 13782 13783 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13784 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13785 match_flags, 0, ipst, NULL); 13786 } 13787 /* No interface route exists for the gateway; skip this ire. */ 13788 if (ire_gw == NULL) 13789 continue; 13790 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13791 ire_refrele(ire_gw); 13792 continue; 13793 } 13794 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13795 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13796 13797 /* 13798 * The operation is considered a success if 13799 * it succeeds at least once on any one interface. 13800 */ 13801 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13802 fmode, v6src); 13803 if (error == 0) 13804 result = CGTP_MCAST_SUCCESS; 13805 13806 ire_refrele(ire_gw); 13807 } 13808 irb_refrele(irb); 13809 /* 13810 * Consider the call as successful if we succeeded on at least 13811 * one interface. Otherwise, return the last encountered error. 13812 */ 13813 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13814 } 13815 13816 /* 13817 * Return the expected CGTP hooks version number. 13818 */ 13819 int 13820 ip_cgtp_filter_supported(void) 13821 { 13822 return (ip_cgtp_filter_rev); 13823 } 13824 13825 /* 13826 * CGTP hooks can be registered by invoking this function. 13827 * Checks that the version number matches. 13828 */ 13829 int 13830 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13831 { 13832 netstack_t *ns; 13833 ip_stack_t *ipst; 13834 13835 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13836 return (ENOTSUP); 13837 13838 ns = netstack_find_by_stackid(stackid); 13839 if (ns == NULL) 13840 return (EINVAL); 13841 ipst = ns->netstack_ip; 13842 ASSERT(ipst != NULL); 13843 13844 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13845 netstack_rele(ns); 13846 return (EALREADY); 13847 } 13848 13849 ipst->ips_ip_cgtp_filter_ops = ops; 13850 13851 ill_set_inputfn_all(ipst); 13852 13853 netstack_rele(ns); 13854 return (0); 13855 } 13856 13857 /* 13858 * CGTP hooks can be unregistered by invoking this function. 13859 * Returns ENXIO if there was no registration. 13860 * Returns EBUSY if the ndd variable has not been turned off. 13861 */ 13862 int 13863 ip_cgtp_filter_unregister(netstackid_t stackid) 13864 { 13865 netstack_t *ns; 13866 ip_stack_t *ipst; 13867 13868 ns = netstack_find_by_stackid(stackid); 13869 if (ns == NULL) 13870 return (EINVAL); 13871 ipst = ns->netstack_ip; 13872 ASSERT(ipst != NULL); 13873 13874 if (ipst->ips_ip_cgtp_filter) { 13875 netstack_rele(ns); 13876 return (EBUSY); 13877 } 13878 13879 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13880 netstack_rele(ns); 13881 return (ENXIO); 13882 } 13883 ipst->ips_ip_cgtp_filter_ops = NULL; 13884 13885 ill_set_inputfn_all(ipst); 13886 13887 netstack_rele(ns); 13888 return (0); 13889 } 13890 13891 /* 13892 * Check whether there is a CGTP filter registration. 13893 * Returns non-zero if there is a registration, otherwise returns zero. 13894 * Note: returns zero if bad stackid. 13895 */ 13896 int 13897 ip_cgtp_filter_is_registered(netstackid_t stackid) 13898 { 13899 netstack_t *ns; 13900 ip_stack_t *ipst; 13901 int ret; 13902 13903 ns = netstack_find_by_stackid(stackid); 13904 if (ns == NULL) 13905 return (0); 13906 ipst = ns->netstack_ip; 13907 ASSERT(ipst != NULL); 13908 13909 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13910 ret = 1; 13911 else 13912 ret = 0; 13913 13914 netstack_rele(ns); 13915 return (ret); 13916 } 13917 13918 static int 13919 ip_squeue_switch(int val) 13920 { 13921 int rval; 13922 13923 switch (val) { 13924 case IP_SQUEUE_ENTER_NODRAIN: 13925 rval = SQ_NODRAIN; 13926 break; 13927 case IP_SQUEUE_ENTER: 13928 rval = SQ_PROCESS; 13929 break; 13930 case IP_SQUEUE_FILL: 13931 default: 13932 rval = SQ_FILL; 13933 break; 13934 } 13935 return (rval); 13936 } 13937 13938 static void * 13939 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13940 { 13941 kstat_t *ksp; 13942 13943 ip_stat_t template = { 13944 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13945 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13946 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13947 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13948 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13949 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13950 { "ip_opt", KSTAT_DATA_UINT64 }, 13951 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13952 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13953 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13954 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13955 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13956 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13957 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13958 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13959 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13960 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13961 { "ip_nce_mcast_reclaim_calls", KSTAT_DATA_UINT64 }, 13962 { "ip_nce_mcast_reclaim_deleted", KSTAT_DATA_UINT64 }, 13963 { "ip_nce_mcast_reclaim_tqfail", KSTAT_DATA_UINT64 }, 13964 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13965 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13966 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13967 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13968 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13969 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13970 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13971 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13972 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 13973 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 13974 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 13975 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 13976 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 13977 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 13978 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 13979 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 13980 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 13981 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 13982 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 13983 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 13984 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 13985 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 13986 }; 13987 13988 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 13989 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 13990 KSTAT_FLAG_VIRTUAL, stackid); 13991 13992 if (ksp == NULL) 13993 return (NULL); 13994 13995 bcopy(&template, ip_statisticsp, sizeof (template)); 13996 ksp->ks_data = (void *)ip_statisticsp; 13997 ksp->ks_private = (void *)(uintptr_t)stackid; 13998 13999 kstat_install(ksp); 14000 return (ksp); 14001 } 14002 14003 static void 14004 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 14005 { 14006 if (ksp != NULL) { 14007 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14008 kstat_delete_netstack(ksp, stackid); 14009 } 14010 } 14011 14012 static void * 14013 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 14014 { 14015 kstat_t *ksp; 14016 14017 ip_named_kstat_t template = { 14018 { "forwarding", KSTAT_DATA_UINT32, 0 }, 14019 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 14020 { "inReceives", KSTAT_DATA_UINT64, 0 }, 14021 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 14022 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 14023 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 14024 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 14025 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 14026 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 14027 { "outRequests", KSTAT_DATA_UINT64, 0 }, 14028 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 14029 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 14030 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 14031 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 14032 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 14033 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 14034 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 14035 { "fragFails", KSTAT_DATA_UINT32, 0 }, 14036 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 14037 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 14038 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 14039 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 14040 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 14041 { "inErrs", KSTAT_DATA_UINT32, 0 }, 14042 { "noPorts", KSTAT_DATA_UINT32, 0 }, 14043 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 14044 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 14045 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 14046 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 14047 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 14048 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 14049 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 14050 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 14051 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 14052 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 14053 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 14054 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 14055 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 14056 }; 14057 14058 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 14059 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 14060 if (ksp == NULL || ksp->ks_data == NULL) 14061 return (NULL); 14062 14063 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 14064 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 14065 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14066 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 14067 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 14068 14069 template.netToMediaEntrySize.value.i32 = 14070 sizeof (mib2_ipNetToMediaEntry_t); 14071 14072 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 14073 14074 bcopy(&template, ksp->ks_data, sizeof (template)); 14075 ksp->ks_update = ip_kstat_update; 14076 ksp->ks_private = (void *)(uintptr_t)stackid; 14077 14078 kstat_install(ksp); 14079 return (ksp); 14080 } 14081 14082 static void 14083 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14084 { 14085 if (ksp != NULL) { 14086 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14087 kstat_delete_netstack(ksp, stackid); 14088 } 14089 } 14090 14091 static int 14092 ip_kstat_update(kstat_t *kp, int rw) 14093 { 14094 ip_named_kstat_t *ipkp; 14095 mib2_ipIfStatsEntry_t ipmib; 14096 ill_walk_context_t ctx; 14097 ill_t *ill; 14098 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14099 netstack_t *ns; 14100 ip_stack_t *ipst; 14101 14102 if (kp->ks_data == NULL) 14103 return (EIO); 14104 14105 if (rw == KSTAT_WRITE) 14106 return (EACCES); 14107 14108 ns = netstack_find_by_stackid(stackid); 14109 if (ns == NULL) 14110 return (-1); 14111 ipst = ns->netstack_ip; 14112 if (ipst == NULL) { 14113 netstack_rele(ns); 14114 return (-1); 14115 } 14116 ipkp = (ip_named_kstat_t *)kp->ks_data; 14117 14118 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 14119 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14120 ill = ILL_START_WALK_V4(&ctx, ipst); 14121 for (; ill != NULL; ill = ill_next(&ctx, ill)) 14122 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 14123 rw_exit(&ipst->ips_ill_g_lock); 14124 14125 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 14126 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 14127 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 14128 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 14129 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 14130 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 14131 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 14132 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 14133 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 14134 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 14135 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 14136 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 14137 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14138 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 14139 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 14140 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 14141 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 14142 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 14143 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 14144 14145 ipkp->routingDiscards.value.ui32 = 0; 14146 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 14147 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 14148 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 14149 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 14150 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 14151 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 14152 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 14153 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 14154 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 14155 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 14156 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 14157 14158 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 14159 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 14160 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 14161 14162 netstack_rele(ns); 14163 14164 return (0); 14165 } 14166 14167 static void * 14168 icmp_kstat_init(netstackid_t stackid) 14169 { 14170 kstat_t *ksp; 14171 14172 icmp_named_kstat_t template = { 14173 { "inMsgs", KSTAT_DATA_UINT32 }, 14174 { "inErrors", KSTAT_DATA_UINT32 }, 14175 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14176 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14177 { "inParmProbs", KSTAT_DATA_UINT32 }, 14178 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14179 { "inRedirects", KSTAT_DATA_UINT32 }, 14180 { "inEchos", KSTAT_DATA_UINT32 }, 14181 { "inEchoReps", KSTAT_DATA_UINT32 }, 14182 { "inTimestamps", KSTAT_DATA_UINT32 }, 14183 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14184 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14185 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14186 { "outMsgs", KSTAT_DATA_UINT32 }, 14187 { "outErrors", KSTAT_DATA_UINT32 }, 14188 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14189 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14190 { "outParmProbs", KSTAT_DATA_UINT32 }, 14191 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14192 { "outRedirects", KSTAT_DATA_UINT32 }, 14193 { "outEchos", KSTAT_DATA_UINT32 }, 14194 { "outEchoReps", KSTAT_DATA_UINT32 }, 14195 { "outTimestamps", KSTAT_DATA_UINT32 }, 14196 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14197 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14198 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14199 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14200 { "inUnknowns", KSTAT_DATA_UINT32 }, 14201 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14202 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14203 { "outDrops", KSTAT_DATA_UINT32 }, 14204 { "inOverFlows", KSTAT_DATA_UINT32 }, 14205 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14206 }; 14207 14208 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14209 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14210 if (ksp == NULL || ksp->ks_data == NULL) 14211 return (NULL); 14212 14213 bcopy(&template, ksp->ks_data, sizeof (template)); 14214 14215 ksp->ks_update = icmp_kstat_update; 14216 ksp->ks_private = (void *)(uintptr_t)stackid; 14217 14218 kstat_install(ksp); 14219 return (ksp); 14220 } 14221 14222 static void 14223 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14224 { 14225 if (ksp != NULL) { 14226 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14227 kstat_delete_netstack(ksp, stackid); 14228 } 14229 } 14230 14231 static int 14232 icmp_kstat_update(kstat_t *kp, int rw) 14233 { 14234 icmp_named_kstat_t *icmpkp; 14235 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14236 netstack_t *ns; 14237 ip_stack_t *ipst; 14238 14239 if (kp->ks_data == NULL) 14240 return (EIO); 14241 14242 if (rw == KSTAT_WRITE) 14243 return (EACCES); 14244 14245 ns = netstack_find_by_stackid(stackid); 14246 if (ns == NULL) 14247 return (-1); 14248 ipst = ns->netstack_ip; 14249 if (ipst == NULL) { 14250 netstack_rele(ns); 14251 return (-1); 14252 } 14253 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14254 14255 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14256 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14257 icmpkp->inDestUnreachs.value.ui32 = 14258 ipst->ips_icmp_mib.icmpInDestUnreachs; 14259 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14260 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14261 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14262 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14263 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14264 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14265 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14266 icmpkp->inTimestampReps.value.ui32 = 14267 ipst->ips_icmp_mib.icmpInTimestampReps; 14268 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14269 icmpkp->inAddrMaskReps.value.ui32 = 14270 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14271 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14272 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14273 icmpkp->outDestUnreachs.value.ui32 = 14274 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14275 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14276 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14277 icmpkp->outSrcQuenchs.value.ui32 = 14278 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14279 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14280 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14281 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14282 icmpkp->outTimestamps.value.ui32 = 14283 ipst->ips_icmp_mib.icmpOutTimestamps; 14284 icmpkp->outTimestampReps.value.ui32 = 14285 ipst->ips_icmp_mib.icmpOutTimestampReps; 14286 icmpkp->outAddrMasks.value.ui32 = 14287 ipst->ips_icmp_mib.icmpOutAddrMasks; 14288 icmpkp->outAddrMaskReps.value.ui32 = 14289 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14290 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14291 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14292 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14293 icmpkp->outFragNeeded.value.ui32 = 14294 ipst->ips_icmp_mib.icmpOutFragNeeded; 14295 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14296 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14297 icmpkp->inBadRedirects.value.ui32 = 14298 ipst->ips_icmp_mib.icmpInBadRedirects; 14299 14300 netstack_rele(ns); 14301 return (0); 14302 } 14303 14304 /* 14305 * This is the fanout function for raw socket opened for SCTP. Note 14306 * that it is called after SCTP checks that there is no socket which 14307 * wants a packet. Then before SCTP handles this out of the blue packet, 14308 * this function is called to see if there is any raw socket for SCTP. 14309 * If there is and it is bound to the correct address, the packet will 14310 * be sent to that socket. Note that only one raw socket can be bound to 14311 * a port. This is assured in ipcl_sctp_hash_insert(); 14312 */ 14313 void 14314 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14315 ip_recv_attr_t *ira) 14316 { 14317 conn_t *connp; 14318 queue_t *rq; 14319 boolean_t secure; 14320 ill_t *ill = ira->ira_ill; 14321 ip_stack_t *ipst = ill->ill_ipst; 14322 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14323 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14324 iaflags_t iraflags = ira->ira_flags; 14325 ill_t *rill = ira->ira_rill; 14326 14327 secure = iraflags & IRAF_IPSEC_SECURE; 14328 14329 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14330 ira, ipst); 14331 if (connp == NULL) { 14332 /* 14333 * Although raw sctp is not summed, OOB chunks must be. 14334 * Drop the packet here if the sctp checksum failed. 14335 */ 14336 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14337 SCTPS_BUMP_MIB(sctps, sctpChecksumError); 14338 freemsg(mp); 14339 return; 14340 } 14341 ira->ira_ill = ira->ira_rill = NULL; 14342 sctp_ootb_input(mp, ira, ipst); 14343 ira->ira_ill = ill; 14344 ira->ira_rill = rill; 14345 return; 14346 } 14347 rq = connp->conn_rq; 14348 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14349 CONN_DEC_REF(connp); 14350 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14351 freemsg(mp); 14352 return; 14353 } 14354 if (((iraflags & IRAF_IS_IPV4) ? 14355 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14356 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14357 secure) { 14358 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14359 ip6h, ira); 14360 if (mp == NULL) { 14361 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14362 /* Note that mp is NULL */ 14363 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14364 CONN_DEC_REF(connp); 14365 return; 14366 } 14367 } 14368 14369 if (iraflags & IRAF_ICMP_ERROR) { 14370 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14371 } else { 14372 ill_t *rill = ira->ira_rill; 14373 14374 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14375 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14376 ira->ira_ill = ira->ira_rill = NULL; 14377 (connp->conn_recv)(connp, mp, NULL, ira); 14378 ira->ira_ill = ill; 14379 ira->ira_rill = rill; 14380 } 14381 CONN_DEC_REF(connp); 14382 } 14383 14384 /* 14385 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14386 * header before the ip payload. 14387 */ 14388 static void 14389 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14390 { 14391 int len = (mp->b_wptr - mp->b_rptr); 14392 mblk_t *ip_mp; 14393 14394 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14395 if (is_fp_mp || len != fp_mp_len) { 14396 if (len > fp_mp_len) { 14397 /* 14398 * fastpath header and ip header in the first mblk 14399 */ 14400 mp->b_rptr += fp_mp_len; 14401 } else { 14402 /* 14403 * ip_xmit_attach_llhdr had to prepend an mblk to 14404 * attach the fastpath header before ip header. 14405 */ 14406 ip_mp = mp->b_cont; 14407 freeb(mp); 14408 mp = ip_mp; 14409 mp->b_rptr += (fp_mp_len - len); 14410 } 14411 } else { 14412 ip_mp = mp->b_cont; 14413 freeb(mp); 14414 mp = ip_mp; 14415 } 14416 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14417 freemsg(mp); 14418 } 14419 14420 /* 14421 * Normal post fragmentation function. 14422 * 14423 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14424 * using the same state machine. 14425 * 14426 * We return an error on failure. In particular we return EWOULDBLOCK 14427 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14428 * (currently by canputnext failure resulting in backenabling from GLD.) 14429 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14430 * indication that they can flow control until ip_wsrv() tells then to restart. 14431 * 14432 * If the nce passed by caller is incomplete, this function 14433 * queues the packet and if necessary, sends ARP request and bails. 14434 * If the Neighbor Cache passed is fully resolved, we simply prepend 14435 * the link-layer header to the packet, do ipsec hw acceleration 14436 * work if necessary, and send the packet out on the wire. 14437 */ 14438 /* ARGSUSED6 */ 14439 int 14440 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14441 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14442 { 14443 queue_t *wq; 14444 ill_t *ill = nce->nce_ill; 14445 ip_stack_t *ipst = ill->ill_ipst; 14446 uint64_t delta; 14447 boolean_t isv6 = ill->ill_isv6; 14448 boolean_t fp_mp; 14449 ncec_t *ncec = nce->nce_common; 14450 int64_t now = LBOLT_FASTPATH64; 14451 boolean_t is_probe; 14452 14453 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14454 14455 ASSERT(mp != NULL); 14456 ASSERT(mp->b_datap->db_type == M_DATA); 14457 ASSERT(pkt_len == msgdsize(mp)); 14458 14459 /* 14460 * If we have already been here and are coming back after ARP/ND. 14461 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14462 * in that case since they have seen the packet when it came here 14463 * the first time. 14464 */ 14465 if (ixaflags & IXAF_NO_TRACE) 14466 goto sendit; 14467 14468 if (ixaflags & IXAF_IS_IPV4) { 14469 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14470 14471 ASSERT(!isv6); 14472 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14473 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14474 !(ixaflags & IXAF_NO_PFHOOK)) { 14475 int error; 14476 14477 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14478 ipst->ips_ipv4firewall_physical_out, 14479 NULL, ill, ipha, mp, mp, 0, ipst, error); 14480 DTRACE_PROBE1(ip4__physical__out__end, 14481 mblk_t *, mp); 14482 if (mp == NULL) 14483 return (error); 14484 14485 /* The length could have changed */ 14486 pkt_len = msgdsize(mp); 14487 } 14488 if (ipst->ips_ip4_observe.he_interested) { 14489 /* 14490 * Note that for TX the zoneid is the sending 14491 * zone, whether or not MLP is in play. 14492 * Since the szone argument is the IP zoneid (i.e., 14493 * zero for exclusive-IP zones) and ipobs wants 14494 * the system zoneid, we map it here. 14495 */ 14496 szone = IP_REAL_ZONEID(szone, ipst); 14497 14498 /* 14499 * On the outbound path the destination zone will be 14500 * unknown as we're sending this packet out on the 14501 * wire. 14502 */ 14503 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14504 ill, ipst); 14505 } 14506 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14507 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14508 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14509 } else { 14510 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14511 14512 ASSERT(isv6); 14513 ASSERT(pkt_len == 14514 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14515 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14516 !(ixaflags & IXAF_NO_PFHOOK)) { 14517 int error; 14518 14519 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14520 ipst->ips_ipv6firewall_physical_out, 14521 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14522 DTRACE_PROBE1(ip6__physical__out__end, 14523 mblk_t *, mp); 14524 if (mp == NULL) 14525 return (error); 14526 14527 /* The length could have changed */ 14528 pkt_len = msgdsize(mp); 14529 } 14530 if (ipst->ips_ip6_observe.he_interested) { 14531 /* See above */ 14532 szone = IP_REAL_ZONEID(szone, ipst); 14533 14534 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14535 ill, ipst); 14536 } 14537 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14538 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14539 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14540 } 14541 14542 sendit: 14543 /* 14544 * We check the state without a lock because the state can never 14545 * move "backwards" to initial or incomplete. 14546 */ 14547 switch (ncec->ncec_state) { 14548 case ND_REACHABLE: 14549 case ND_STALE: 14550 case ND_DELAY: 14551 case ND_PROBE: 14552 mp = ip_xmit_attach_llhdr(mp, nce); 14553 if (mp == NULL) { 14554 /* 14555 * ip_xmit_attach_llhdr has increased 14556 * ipIfStatsOutDiscards and called ip_drop_output() 14557 */ 14558 return (ENOBUFS); 14559 } 14560 /* 14561 * check if nce_fastpath completed and we tagged on a 14562 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14563 */ 14564 fp_mp = (mp->b_datap->db_type == M_DATA); 14565 14566 if (fp_mp && 14567 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14568 ill_dld_direct_t *idd; 14569 14570 idd = &ill->ill_dld_capab->idc_direct; 14571 /* 14572 * Send the packet directly to DLD, where it 14573 * may be queued depending on the availability 14574 * of transmit resources at the media layer. 14575 * Return value should be taken into 14576 * account and flow control the TCP. 14577 */ 14578 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14579 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14580 pkt_len); 14581 14582 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14583 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14584 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14585 } else { 14586 uintptr_t cookie; 14587 14588 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14589 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14590 if (ixacookie != NULL) 14591 *ixacookie = cookie; 14592 return (EWOULDBLOCK); 14593 } 14594 } 14595 } else { 14596 wq = ill->ill_wq; 14597 14598 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14599 !canputnext(wq)) { 14600 if (ixacookie != NULL) 14601 *ixacookie = 0; 14602 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14603 nce->nce_fp_mp != NULL ? 14604 MBLKL(nce->nce_fp_mp) : 0); 14605 return (EWOULDBLOCK); 14606 } 14607 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14608 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14609 pkt_len); 14610 putnext(wq, mp); 14611 } 14612 14613 /* 14614 * The rest of this function implements Neighbor Unreachability 14615 * detection. Determine if the ncec is eligible for NUD. 14616 */ 14617 if (ncec->ncec_flags & NCE_F_NONUD) 14618 return (0); 14619 14620 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14621 14622 /* 14623 * Check for upper layer advice 14624 */ 14625 if (ixaflags & IXAF_REACH_CONF) { 14626 timeout_id_t tid; 14627 14628 /* 14629 * It should be o.k. to check the state without 14630 * a lock here, at most we lose an advice. 14631 */ 14632 ncec->ncec_last = TICK_TO_MSEC(now); 14633 if (ncec->ncec_state != ND_REACHABLE) { 14634 mutex_enter(&ncec->ncec_lock); 14635 ncec->ncec_state = ND_REACHABLE; 14636 tid = ncec->ncec_timeout_id; 14637 ncec->ncec_timeout_id = 0; 14638 mutex_exit(&ncec->ncec_lock); 14639 (void) untimeout(tid); 14640 if (ip_debug > 2) { 14641 /* ip1dbg */ 14642 pr_addr_dbg("ip_xmit: state" 14643 " for %s changed to" 14644 " REACHABLE\n", AF_INET6, 14645 &ncec->ncec_addr); 14646 } 14647 } 14648 return (0); 14649 } 14650 14651 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14652 ip1dbg(("ip_xmit: delta = %" PRId64 14653 " ill_reachable_time = %d \n", delta, 14654 ill->ill_reachable_time)); 14655 if (delta > (uint64_t)ill->ill_reachable_time) { 14656 mutex_enter(&ncec->ncec_lock); 14657 switch (ncec->ncec_state) { 14658 case ND_REACHABLE: 14659 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14660 /* FALLTHROUGH */ 14661 case ND_STALE: 14662 /* 14663 * ND_REACHABLE is identical to 14664 * ND_STALE in this specific case. If 14665 * reachable time has expired for this 14666 * neighbor (delta is greater than 14667 * reachable time), conceptually, the 14668 * neighbor cache is no longer in 14669 * REACHABLE state, but already in 14670 * STALE state. So the correct 14671 * transition here is to ND_DELAY. 14672 */ 14673 ncec->ncec_state = ND_DELAY; 14674 mutex_exit(&ncec->ncec_lock); 14675 nce_restart_timer(ncec, 14676 ipst->ips_delay_first_probe_time); 14677 if (ip_debug > 3) { 14678 /* ip2dbg */ 14679 pr_addr_dbg("ip_xmit: state" 14680 " for %s changed to" 14681 " DELAY\n", AF_INET6, 14682 &ncec->ncec_addr); 14683 } 14684 break; 14685 case ND_DELAY: 14686 case ND_PROBE: 14687 mutex_exit(&ncec->ncec_lock); 14688 /* Timers have already started */ 14689 break; 14690 case ND_UNREACHABLE: 14691 /* 14692 * nce_timer has detected that this ncec 14693 * is unreachable and initiated deleting 14694 * this ncec. 14695 * This is a harmless race where we found the 14696 * ncec before it was deleted and have 14697 * just sent out a packet using this 14698 * unreachable ncec. 14699 */ 14700 mutex_exit(&ncec->ncec_lock); 14701 break; 14702 default: 14703 ASSERT(0); 14704 mutex_exit(&ncec->ncec_lock); 14705 } 14706 } 14707 return (0); 14708 14709 case ND_INCOMPLETE: 14710 /* 14711 * the state could have changed since we didn't hold the lock. 14712 * Re-verify state under lock. 14713 */ 14714 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14715 mutex_enter(&ncec->ncec_lock); 14716 if (NCE_ISREACHABLE(ncec)) { 14717 mutex_exit(&ncec->ncec_lock); 14718 goto sendit; 14719 } 14720 /* queue the packet */ 14721 nce_queue_mp(ncec, mp, is_probe); 14722 mutex_exit(&ncec->ncec_lock); 14723 DTRACE_PROBE2(ip__xmit__incomplete, 14724 (ncec_t *), ncec, (mblk_t *), mp); 14725 return (0); 14726 14727 case ND_INITIAL: 14728 /* 14729 * State could have changed since we didn't hold the lock, so 14730 * re-verify state. 14731 */ 14732 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14733 mutex_enter(&ncec->ncec_lock); 14734 if (NCE_ISREACHABLE(ncec)) { 14735 mutex_exit(&ncec->ncec_lock); 14736 goto sendit; 14737 } 14738 nce_queue_mp(ncec, mp, is_probe); 14739 if (ncec->ncec_state == ND_INITIAL) { 14740 ncec->ncec_state = ND_INCOMPLETE; 14741 mutex_exit(&ncec->ncec_lock); 14742 /* 14743 * figure out the source we want to use 14744 * and resolve it. 14745 */ 14746 ip_ndp_resolve(ncec); 14747 } else { 14748 mutex_exit(&ncec->ncec_lock); 14749 } 14750 return (0); 14751 14752 case ND_UNREACHABLE: 14753 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14754 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14755 mp, ill); 14756 freemsg(mp); 14757 return (0); 14758 14759 default: 14760 ASSERT(0); 14761 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14762 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14763 mp, ill); 14764 freemsg(mp); 14765 return (ENETUNREACH); 14766 } 14767 } 14768 14769 /* 14770 * Return B_TRUE if the buffers differ in length or content. 14771 * This is used for comparing extension header buffers. 14772 * Note that an extension header would be declared different 14773 * even if all that changed was the next header value in that header i.e. 14774 * what really changed is the next extension header. 14775 */ 14776 boolean_t 14777 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14778 uint_t blen) 14779 { 14780 if (!b_valid) 14781 blen = 0; 14782 14783 if (alen != blen) 14784 return (B_TRUE); 14785 if (alen == 0) 14786 return (B_FALSE); /* Both zero length */ 14787 return (bcmp(abuf, bbuf, alen)); 14788 } 14789 14790 /* 14791 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14792 * Return B_FALSE if memory allocation fails - don't change any state! 14793 */ 14794 boolean_t 14795 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14796 const void *src, uint_t srclen) 14797 { 14798 void *dst; 14799 14800 if (!src_valid) 14801 srclen = 0; 14802 14803 ASSERT(*dstlenp == 0); 14804 if (src != NULL && srclen != 0) { 14805 dst = mi_alloc(srclen, BPRI_MED); 14806 if (dst == NULL) 14807 return (B_FALSE); 14808 } else { 14809 dst = NULL; 14810 } 14811 if (*dstp != NULL) 14812 mi_free(*dstp); 14813 *dstp = dst; 14814 *dstlenp = dst == NULL ? 0 : srclen; 14815 return (B_TRUE); 14816 } 14817 14818 /* 14819 * Replace what is in *dst, *dstlen with the source. 14820 * Assumes ip_allocbuf has already been called. 14821 */ 14822 void 14823 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14824 const void *src, uint_t srclen) 14825 { 14826 if (!src_valid) 14827 srclen = 0; 14828 14829 ASSERT(*dstlenp == srclen); 14830 if (src != NULL && srclen != 0) 14831 bcopy(src, *dstp, srclen); 14832 } 14833 14834 /* 14835 * Free the storage pointed to by the members of an ip_pkt_t. 14836 */ 14837 void 14838 ip_pkt_free(ip_pkt_t *ipp) 14839 { 14840 uint_t fields = ipp->ipp_fields; 14841 14842 if (fields & IPPF_HOPOPTS) { 14843 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14844 ipp->ipp_hopopts = NULL; 14845 ipp->ipp_hopoptslen = 0; 14846 } 14847 if (fields & IPPF_RTHDRDSTOPTS) { 14848 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14849 ipp->ipp_rthdrdstopts = NULL; 14850 ipp->ipp_rthdrdstoptslen = 0; 14851 } 14852 if (fields & IPPF_DSTOPTS) { 14853 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14854 ipp->ipp_dstopts = NULL; 14855 ipp->ipp_dstoptslen = 0; 14856 } 14857 if (fields & IPPF_RTHDR) { 14858 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14859 ipp->ipp_rthdr = NULL; 14860 ipp->ipp_rthdrlen = 0; 14861 } 14862 if (fields & IPPF_IPV4_OPTIONS) { 14863 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14864 ipp->ipp_ipv4_options = NULL; 14865 ipp->ipp_ipv4_options_len = 0; 14866 } 14867 if (fields & IPPF_LABEL_V4) { 14868 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14869 ipp->ipp_label_v4 = NULL; 14870 ipp->ipp_label_len_v4 = 0; 14871 } 14872 if (fields & IPPF_LABEL_V6) { 14873 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14874 ipp->ipp_label_v6 = NULL; 14875 ipp->ipp_label_len_v6 = 0; 14876 } 14877 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14878 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14879 } 14880 14881 /* 14882 * Copy from src to dst and allocate as needed. 14883 * Returns zero or ENOMEM. 14884 * 14885 * The caller must initialize dst to zero. 14886 */ 14887 int 14888 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14889 { 14890 uint_t fields = src->ipp_fields; 14891 14892 /* Start with fields that don't require memory allocation */ 14893 dst->ipp_fields = fields & 14894 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14895 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14896 14897 dst->ipp_addr = src->ipp_addr; 14898 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14899 dst->ipp_hoplimit = src->ipp_hoplimit; 14900 dst->ipp_tclass = src->ipp_tclass; 14901 dst->ipp_type_of_service = src->ipp_type_of_service; 14902 14903 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14904 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14905 return (0); 14906 14907 if (fields & IPPF_HOPOPTS) { 14908 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14909 if (dst->ipp_hopopts == NULL) { 14910 ip_pkt_free(dst); 14911 return (ENOMEM); 14912 } 14913 dst->ipp_fields |= IPPF_HOPOPTS; 14914 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14915 src->ipp_hopoptslen); 14916 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14917 } 14918 if (fields & IPPF_RTHDRDSTOPTS) { 14919 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14920 kmflag); 14921 if (dst->ipp_rthdrdstopts == NULL) { 14922 ip_pkt_free(dst); 14923 return (ENOMEM); 14924 } 14925 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14926 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14927 src->ipp_rthdrdstoptslen); 14928 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14929 } 14930 if (fields & IPPF_DSTOPTS) { 14931 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14932 if (dst->ipp_dstopts == NULL) { 14933 ip_pkt_free(dst); 14934 return (ENOMEM); 14935 } 14936 dst->ipp_fields |= IPPF_DSTOPTS; 14937 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14938 src->ipp_dstoptslen); 14939 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14940 } 14941 if (fields & IPPF_RTHDR) { 14942 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14943 if (dst->ipp_rthdr == NULL) { 14944 ip_pkt_free(dst); 14945 return (ENOMEM); 14946 } 14947 dst->ipp_fields |= IPPF_RTHDR; 14948 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14949 src->ipp_rthdrlen); 14950 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14951 } 14952 if (fields & IPPF_IPV4_OPTIONS) { 14953 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14954 kmflag); 14955 if (dst->ipp_ipv4_options == NULL) { 14956 ip_pkt_free(dst); 14957 return (ENOMEM); 14958 } 14959 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14960 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14961 src->ipp_ipv4_options_len); 14962 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14963 } 14964 if (fields & IPPF_LABEL_V4) { 14965 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14966 if (dst->ipp_label_v4 == NULL) { 14967 ip_pkt_free(dst); 14968 return (ENOMEM); 14969 } 14970 dst->ipp_fields |= IPPF_LABEL_V4; 14971 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 14972 src->ipp_label_len_v4); 14973 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 14974 } 14975 if (fields & IPPF_LABEL_V6) { 14976 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 14977 if (dst->ipp_label_v6 == NULL) { 14978 ip_pkt_free(dst); 14979 return (ENOMEM); 14980 } 14981 dst->ipp_fields |= IPPF_LABEL_V6; 14982 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 14983 src->ipp_label_len_v6); 14984 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 14985 } 14986 if (fields & IPPF_FRAGHDR) { 14987 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 14988 if (dst->ipp_fraghdr == NULL) { 14989 ip_pkt_free(dst); 14990 return (ENOMEM); 14991 } 14992 dst->ipp_fields |= IPPF_FRAGHDR; 14993 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 14994 src->ipp_fraghdrlen); 14995 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 14996 } 14997 return (0); 14998 } 14999 15000 /* 15001 * Returns INADDR_ANY if no source route 15002 */ 15003 ipaddr_t 15004 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 15005 { 15006 ipaddr_t nexthop = INADDR_ANY; 15007 ipoptp_t opts; 15008 uchar_t *opt; 15009 uint8_t optval; 15010 uint8_t optlen; 15011 uint32_t totallen; 15012 15013 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15014 return (INADDR_ANY); 15015 15016 totallen = ipp->ipp_ipv4_options_len; 15017 if (totallen & 0x3) 15018 return (INADDR_ANY); 15019 15020 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15021 optval != IPOPT_EOL; 15022 optval = ipoptp_next(&opts)) { 15023 opt = opts.ipoptp_cur; 15024 switch (optval) { 15025 uint8_t off; 15026 case IPOPT_SSRR: 15027 case IPOPT_LSRR: 15028 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15029 break; 15030 } 15031 optlen = opts.ipoptp_len; 15032 off = opt[IPOPT_OFFSET]; 15033 off--; 15034 if (optlen < IP_ADDR_LEN || 15035 off > optlen - IP_ADDR_LEN) { 15036 /* End of source route */ 15037 break; 15038 } 15039 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 15040 if (nexthop == htonl(INADDR_LOOPBACK)) { 15041 /* Ignore */ 15042 nexthop = INADDR_ANY; 15043 break; 15044 } 15045 break; 15046 } 15047 } 15048 return (nexthop); 15049 } 15050 15051 /* 15052 * Reverse a source route. 15053 */ 15054 void 15055 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 15056 { 15057 ipaddr_t tmp; 15058 ipoptp_t opts; 15059 uchar_t *opt; 15060 uint8_t optval; 15061 uint32_t totallen; 15062 15063 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15064 return; 15065 15066 totallen = ipp->ipp_ipv4_options_len; 15067 if (totallen & 0x3) 15068 return; 15069 15070 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15071 optval != IPOPT_EOL; 15072 optval = ipoptp_next(&opts)) { 15073 uint8_t off1, off2; 15074 15075 opt = opts.ipoptp_cur; 15076 switch (optval) { 15077 case IPOPT_SSRR: 15078 case IPOPT_LSRR: 15079 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15080 break; 15081 } 15082 off1 = IPOPT_MINOFF_SR - 1; 15083 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 15084 while (off2 > off1) { 15085 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 15086 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 15087 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 15088 off2 -= IP_ADDR_LEN; 15089 off1 += IP_ADDR_LEN; 15090 } 15091 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 15092 break; 15093 } 15094 } 15095 } 15096 15097 /* 15098 * Returns NULL if no routing header 15099 */ 15100 in6_addr_t * 15101 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 15102 { 15103 in6_addr_t *nexthop = NULL; 15104 ip6_rthdr0_t *rthdr; 15105 15106 if (!(ipp->ipp_fields & IPPF_RTHDR)) 15107 return (NULL); 15108 15109 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 15110 if (rthdr->ip6r0_segleft == 0) 15111 return (NULL); 15112 15113 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 15114 return (nexthop); 15115 } 15116 15117 zoneid_t 15118 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 15119 zoneid_t lookup_zoneid) 15120 { 15121 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15122 ire_t *ire; 15123 int ire_flags = MATCH_IRE_TYPE; 15124 zoneid_t zoneid = ALL_ZONES; 15125 15126 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15127 return (ALL_ZONES); 15128 15129 if (lookup_zoneid != ALL_ZONES) 15130 ire_flags |= MATCH_IRE_ZONEONLY; 15131 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_LOCAL | IRE_LOOPBACK, 15132 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15133 if (ire != NULL) { 15134 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15135 ire_refrele(ire); 15136 } 15137 return (zoneid); 15138 } 15139 15140 zoneid_t 15141 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 15142 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 15143 { 15144 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15145 ire_t *ire; 15146 int ire_flags = MATCH_IRE_TYPE; 15147 zoneid_t zoneid = ALL_ZONES; 15148 15149 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15150 return (ALL_ZONES); 15151 15152 if (IN6_IS_ADDR_LINKLOCAL(addr)) 15153 ire_flags |= MATCH_IRE_ILL; 15154 15155 if (lookup_zoneid != ALL_ZONES) 15156 ire_flags |= MATCH_IRE_ZONEONLY; 15157 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15158 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15159 if (ire != NULL) { 15160 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15161 ire_refrele(ire); 15162 } 15163 return (zoneid); 15164 } 15165 15166 /* 15167 * IP obserability hook support functions. 15168 */ 15169 static void 15170 ipobs_init(ip_stack_t *ipst) 15171 { 15172 netid_t id; 15173 15174 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15175 15176 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15177 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15178 15179 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15180 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15181 } 15182 15183 static void 15184 ipobs_fini(ip_stack_t *ipst) 15185 { 15186 15187 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15188 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15189 } 15190 15191 /* 15192 * hook_pkt_observe_t is composed in network byte order so that the 15193 * entire mblk_t chain handed into hook_run can be used as-is. 15194 * The caveat is that use of the fields, such as the zone fields, 15195 * requires conversion into host byte order first. 15196 */ 15197 void 15198 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15199 const ill_t *ill, ip_stack_t *ipst) 15200 { 15201 hook_pkt_observe_t *hdr; 15202 uint64_t grifindex; 15203 mblk_t *imp; 15204 15205 imp = allocb(sizeof (*hdr), BPRI_HI); 15206 if (imp == NULL) 15207 return; 15208 15209 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15210 /* 15211 * b_wptr is set to make the apparent size of the data in the mblk_t 15212 * to exclude the pointers at the end of hook_pkt_observer_t. 15213 */ 15214 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15215 imp->b_cont = mp; 15216 15217 ASSERT(DB_TYPE(mp) == M_DATA); 15218 15219 if (IS_UNDER_IPMP(ill)) 15220 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15221 else 15222 grifindex = 0; 15223 15224 hdr->hpo_version = 1; 15225 hdr->hpo_htype = htons(htype); 15226 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15227 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15228 hdr->hpo_grifindex = htonl(grifindex); 15229 hdr->hpo_zsrc = htonl(zsrc); 15230 hdr->hpo_zdst = htonl(zdst); 15231 hdr->hpo_pkt = imp; 15232 hdr->hpo_ctx = ipst->ips_netstack; 15233 15234 if (ill->ill_isv6) { 15235 hdr->hpo_family = AF_INET6; 15236 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15237 ipst->ips_ipv6observing, (hook_data_t)hdr); 15238 } else { 15239 hdr->hpo_family = AF_INET; 15240 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15241 ipst->ips_ipv4observing, (hook_data_t)hdr); 15242 } 15243 15244 imp->b_cont = NULL; 15245 freemsg(imp); 15246 } 15247 15248 /* 15249 * Utility routine that checks if `v4srcp' is a valid address on underlying 15250 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15251 * associated with `v4srcp' on success. NOTE: if this is not called from 15252 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15253 * group during or after this lookup. 15254 */ 15255 boolean_t 15256 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15257 { 15258 ipif_t *ipif; 15259 15260 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15261 if (ipif != NULL) { 15262 if (ipifp != NULL) 15263 *ipifp = ipif; 15264 else 15265 ipif_refrele(ipif); 15266 return (B_TRUE); 15267 } 15268 15269 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15270 *v4srcp)); 15271 return (B_FALSE); 15272 } 15273 15274 /* 15275 * Transport protocol call back function for CPU state change. 15276 */ 15277 /* ARGSUSED */ 15278 static int 15279 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg) 15280 { 15281 processorid_t cpu_seqid; 15282 netstack_handle_t nh; 15283 netstack_t *ns; 15284 15285 ASSERT(MUTEX_HELD(&cpu_lock)); 15286 15287 switch (what) { 15288 case CPU_CONFIG: 15289 case CPU_ON: 15290 case CPU_INIT: 15291 case CPU_CPUPART_IN: 15292 cpu_seqid = cpu[id]->cpu_seqid; 15293 netstack_next_init(&nh); 15294 while ((ns = netstack_next(&nh)) != NULL) { 15295 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid); 15296 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid); 15297 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid); 15298 netstack_rele(ns); 15299 } 15300 netstack_next_fini(&nh); 15301 break; 15302 case CPU_UNCONFIG: 15303 case CPU_OFF: 15304 case CPU_CPUPART_OUT: 15305 /* 15306 * Nothing to do. We don't remove the per CPU stats from 15307 * the IP stack even when the CPU goes offline. 15308 */ 15309 break; 15310 default: 15311 break; 15312 } 15313 return (0); 15314 }