1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 1990 Mentat Inc.
  25  * Copyright (c) 2017 OmniTI Computer Consulting, Inc. All rights reserved.
  26  * Copyright (c) 2016 by Delphix. All rights reserved.
  27  * Copyright (c) 2019 Joyent, Inc. All rights reserved.
  28  */
  29 
  30 #include <sys/types.h>
  31 #include <sys/stream.h>
  32 #include <sys/dlpi.h>
  33 #include <sys/stropts.h>
  34 #include <sys/sysmacros.h>
  35 #include <sys/strsubr.h>
  36 #include <sys/strlog.h>
  37 #include <sys/strsun.h>
  38 #include <sys/zone.h>
  39 #define _SUN_TPI_VERSION 2
  40 #include <sys/tihdr.h>
  41 #include <sys/xti_inet.h>
  42 #include <sys/ddi.h>
  43 #include <sys/suntpi.h>
  44 #include <sys/cmn_err.h>
  45 #include <sys/debug.h>
  46 #include <sys/kobj.h>
  47 #include <sys/modctl.h>
  48 #include <sys/atomic.h>
  49 #include <sys/policy.h>
  50 #include <sys/priv.h>
  51 #include <sys/taskq.h>
  52 
  53 #include <sys/systm.h>
  54 #include <sys/param.h>
  55 #include <sys/kmem.h>
  56 #include <sys/sdt.h>
  57 #include <sys/socket.h>
  58 #include <sys/vtrace.h>
  59 #include <sys/isa_defs.h>
  60 #include <sys/mac.h>
  61 #include <net/if.h>
  62 #include <net/if_arp.h>
  63 #include <net/route.h>
  64 #include <sys/sockio.h>
  65 #include <netinet/in.h>
  66 #include <net/if_dl.h>
  67 
  68 #include <inet/common.h>
  69 #include <inet/mi.h>
  70 #include <inet/mib2.h>
  71 #include <inet/nd.h>
  72 #include <inet/arp.h>
  73 #include <inet/snmpcom.h>
  74 #include <inet/optcom.h>
  75 #include <inet/kstatcom.h>
  76 
  77 #include <netinet/igmp_var.h>
  78 #include <netinet/ip6.h>
  79 #include <netinet/icmp6.h>
  80 #include <netinet/sctp.h>
  81 
  82 #include <inet/ip.h>
  83 #include <inet/ip_impl.h>
  84 #include <inet/ip6.h>
  85 #include <inet/ip6_asp.h>
  86 #include <inet/tcp.h>
  87 #include <inet/tcp_impl.h>
  88 #include <inet/ip_multi.h>
  89 #include <inet/ip_if.h>
  90 #include <inet/ip_ire.h>
  91 #include <inet/ip_ftable.h>
  92 #include <inet/ip_rts.h>
  93 #include <inet/ip_ndp.h>
  94 #include <inet/ip_listutils.h>
  95 #include <netinet/igmp.h>
  96 #include <netinet/ip_mroute.h>
  97 #include <inet/ipp_common.h>
  98 #include <inet/cc.h>
  99 
 100 #include <net/pfkeyv2.h>
 101 #include <inet/sadb.h>
 102 #include <inet/ipsec_impl.h>
 103 #include <inet/iptun/iptun_impl.h>
 104 #include <inet/ipdrop.h>
 105 #include <inet/ip_netinfo.h>
 106 #include <inet/ilb_ip.h>
 107 
 108 #include <sys/ethernet.h>
 109 #include <net/if_types.h>
 110 #include <sys/cpuvar.h>
 111 
 112 #include <ipp/ipp.h>
 113 #include <ipp/ipp_impl.h>
 114 #include <ipp/ipgpc/ipgpc.h>
 115 
 116 #include <sys/pattr.h>
 117 #include <inet/ipclassifier.h>
 118 #include <inet/sctp_ip.h>
 119 #include <inet/sctp/sctp_impl.h>
 120 #include <inet/udp_impl.h>
 121 #include <inet/rawip_impl.h>
 122 #include <inet/rts_impl.h>
 123 
 124 #include <sys/tsol/label.h>
 125 #include <sys/tsol/tnet.h>
 126 
 127 #include <sys/squeue_impl.h>
 128 #include <inet/ip_arp.h>
 129 
 130 #include <sys/clock_impl.h>       /* For LBOLT_FASTPATH{,64} */
 131 
 132 /*
 133  * Values for squeue switch:
 134  * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
 135  * IP_SQUEUE_ENTER: SQ_PROCESS
 136  * IP_SQUEUE_FILL: SQ_FILL
 137  */
 138 int ip_squeue_enter = IP_SQUEUE_ENTER;  /* Setable in /etc/system */
 139 
 140 int ip_squeue_flag;
 141 
 142 /*
 143  * Setable in /etc/system
 144  */
 145 int ip_poll_normal_ms = 100;
 146 int ip_poll_normal_ticks = 0;
 147 int ip_modclose_ackwait_ms = 3000;
 148 
 149 /*
 150  * It would be nice to have these present only in DEBUG systems, but the
 151  * current design of the global symbol checking logic requires them to be
 152  * unconditionally present.
 153  */
 154 uint_t ip_thread_data;                  /* TSD key for debug support */
 155 krwlock_t ip_thread_rwlock;
 156 list_t  ip_thread_list;
 157 
 158 /*
 159  * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
 160  */
 161 
 162 struct listptr_s {
 163         mblk_t  *lp_head;       /* pointer to the head of the list */
 164         mblk_t  *lp_tail;       /* pointer to the tail of the list */
 165 };
 166 
 167 typedef struct listptr_s listptr_t;
 168 
 169 /*
 170  * This is used by ip_snmp_get_mib2_ip_route_media and
 171  * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
 172  */
 173 typedef struct iproutedata_s {
 174         uint_t          ird_idx;
 175         uint_t          ird_flags;      /* see below */
 176         listptr_t       ird_route;      /* ipRouteEntryTable */
 177         listptr_t       ird_netmedia;   /* ipNetToMediaEntryTable */
 178         listptr_t       ird_attrs;      /* ipRouteAttributeTable */
 179 } iproutedata_t;
 180 
 181 /* Include ire_testhidden and IRE_IF_CLONE routes */
 182 #define IRD_REPORT_ALL  0x01
 183 
 184 /*
 185  * Cluster specific hooks. These should be NULL when booted as a non-cluster
 186  */
 187 
 188 /*
 189  * Hook functions to enable cluster networking
 190  * On non-clustered systems these vectors must always be NULL.
 191  *
 192  * Hook function to Check ip specified ip address is a shared ip address
 193  * in the cluster
 194  *
 195  */
 196 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
 197     sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;
 198 
 199 /*
 200  * Hook function to generate cluster wide ip fragment identifier
 201  */
 202 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
 203     sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
 204     void *args) = NULL;
 205 
 206 /*
 207  * Hook function to generate cluster wide SPI.
 208  */
 209 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
 210     void *) = NULL;
 211 
 212 /*
 213  * Hook function to verify if the SPI is already utlized.
 214  */
 215 
 216 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
 217 
 218 /*
 219  * Hook function to delete the SPI from the cluster wide repository.
 220  */
 221 
 222 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
 223 
 224 /*
 225  * Hook function to inform the cluster when packet received on an IDLE SA
 226  */
 227 
 228 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
 229     in6_addr_t, in6_addr_t, void *) = NULL;
 230 
 231 /*
 232  * Synchronization notes:
 233  *
 234  * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
 235  * MT level protection given by STREAMS. IP uses a combination of its own
 236  * internal serialization mechanism and standard Solaris locking techniques.
 237  * The internal serialization is per phyint.  This is used to serialize
 238  * plumbing operations, IPMP operations, most set ioctls, etc.
 239  *
 240  * Plumbing is a long sequence of operations involving message
 241  * exchanges between IP, ARP and device drivers. Many set ioctls are typically
 242  * involved in plumbing operations. A natural model is to serialize these
 243  * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
 244  * parallel without any interference. But various set ioctls on hme0 are best
 245  * serialized, along with IPMP operations and processing of DLPI control
 246  * messages received from drivers on a per phyint basis. This serialization is
 247  * provided by the ipsq_t and primitives operating on this. Details can
 248  * be found in ip_if.c above the core primitives operating on ipsq_t.
 249  *
 250  * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
 251  * Simiarly lookup of an ire by a thread also returns a refheld ire.
 252  * In addition ipif's and ill's referenced by the ire are also indirectly
 253  * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
 254  * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
 255  * address of an ipif has to go through the ipsq_t. This ensures that only
 256  * one such exclusive operation proceeds at any time on the ipif. It then
 257  * waits for all refcnts
 258  * associated with this ipif to come down to zero. The address is changed
 259  * only after the ipif has been quiesced. Then the ipif is brought up again.
 260  * More details are described above the comment in ip_sioctl_flags.
 261  *
 262  * Packet processing is based mostly on IREs and are fully multi-threaded
 263  * using standard Solaris MT techniques.
 264  *
 265  * There are explicit locks in IP to handle:
 266  * - The ip_g_head list maintained by mi_open_link() and friends.
 267  *
 268  * - The reassembly data structures (one lock per hash bucket)
 269  *
 270  * - conn_lock is meant to protect conn_t fields. The fields actually
 271  *   protected by conn_lock are documented in the conn_t definition.
 272  *
 273  * - ire_lock to protect some of the fields of the ire, IRE tables
 274  *   (one lock per hash bucket). Refer to ip_ire.c for details.
 275  *
 276  * - ndp_g_lock and ncec_lock for protecting NCEs.
 277  *
 278  * - ill_lock protects fields of the ill and ipif. Details in ip.h
 279  *
 280  * - ill_g_lock: This is a global reader/writer lock. Protects the following
 281  *      * The AVL tree based global multi list of all ills.
 282  *      * The linked list of all ipifs of an ill
 283  *      * The <ipsq-xop> mapping
 284  *      * <ill-phyint> association
 285  *   Insertion/deletion of an ill in the system, insertion/deletion of an ipif
 286  *   into an ill, changing the <ipsq-xop> mapping of an ill, changing the
 287  *   <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
 288  *   writer for the actual duration of the insertion/deletion/change.
 289  *
 290  * - ill_lock:  This is a per ill mutex.
 291  *   It protects some members of the ill_t struct; see ip.h for details.
 292  *   It also protects the <ill-phyint> assoc.
 293  *   It also protects the list of ipifs hanging off the ill.
 294  *
 295  * - ipsq_lock: This is a per ipsq_t mutex lock.
 296  *   This protects some members of the ipsq_t struct; see ip.h for details.
 297  *   It also protects the <ipsq-ipxop> mapping
 298  *
 299  * - ipx_lock: This is a per ipxop_t mutex lock.
 300  *   This protects some members of the ipxop_t struct; see ip.h for details.
 301  *
 302  * - phyint_lock: This is a per phyint mutex lock. Protects just the
 303  *   phyint_flags
 304  *
 305  * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
 306  *   This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
 307  *   uniqueness check also done atomically.
 308  *
 309  * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
 310  *   group list linked by ill_usesrc_grp_next. It also protects the
 311  *   ill_usesrc_ifindex field. It is taken as a writer when a member of the
 312  *   group is being added or deleted.  This lock is taken as a reader when
 313  *   walking the list/group(eg: to get the number of members in a usesrc group).
 314  *   Note, it is only necessary to take this lock if the ill_usesrc_grp_next
 315  *   field is changing state i.e from NULL to non-NULL or vice-versa. For
 316  *   example, it is not necessary to take this lock in the initial portion
 317  *   of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
 318  *   operations are executed exclusively and that ensures that the "usesrc
 319  *   group state" cannot change. The "usesrc group state" change can happen
 320  *   only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
 321  *
 322  * Changing <ill-phyint>, <ipsq-xop> assocications:
 323  *
 324  * To change the <ill-phyint> association, the ill_g_lock must be held
 325  * as writer, and the ill_locks of both the v4 and v6 instance of the ill
 326  * must be held.
 327  *
 328  * To change the <ipsq-xop> association, the ill_g_lock must be held as
 329  * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
 330  * This is only done when ills are added or removed from IPMP groups.
 331  *
 332  * To add or delete an ipif from the list of ipifs hanging off the ill,
 333  * ill_g_lock (writer) and ill_lock must be held and the thread must be
 334  * a writer on the associated ipsq.
 335  *
 336  * To add or delete an ill to the system, the ill_g_lock must be held as
 337  * writer and the thread must be a writer on the associated ipsq.
 338  *
 339  * To add or delete an ilm to an ill, the ill_lock must be held and the thread
 340  * must be a writer on the associated ipsq.
 341  *
 342  * Lock hierarchy
 343  *
 344  * Some lock hierarchy scenarios are listed below.
 345  *
 346  * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
 347  * ill_g_lock -> ill_lock(s) -> phyint_lock
 348  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
 349  * ill_g_lock -> ip_addr_avail_lock
 350  * conn_lock -> irb_lock -> ill_lock -> ire_lock
 351  * ill_g_lock -> ip_g_nd_lock
 352  * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
 353  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
 354  * arl_lock -> ill_lock
 355  * ips_ire_dep_lock -> irb_lock
 356  *
 357  * When more than 1 ill lock is needed to be held, all ill lock addresses
 358  * are sorted on address and locked starting from highest addressed lock
 359  * downward.
 360  *
 361  * Multicast scenarios
 362  * ips_ill_g_lock -> ill_mcast_lock
 363  * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
 364  * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
 365  * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
 366  * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
 367  * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
 368  *
 369  * IPsec scenarios
 370  *
 371  * ipsa_lock -> ill_g_lock -> ill_lock
 372  * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
 373  *
 374  * Trusted Solaris scenarios
 375  *
 376  * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
 377  * igsa_lock -> gcdb_lock
 378  * gcgrp_rwlock -> ire_lock
 379  * gcgrp_rwlock -> gcdb_lock
 380  *
 381  * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
 382  *
 383  * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
 384  * sq_lock -> conn_lock -> QLOCK(q)
 385  * ill_lock -> ft_lock -> fe_lock
 386  *
 387  * Routing/forwarding table locking notes:
 388  *
 389  * Lock acquisition order: Radix tree lock, irb_lock.
 390  * Requirements:
 391  * i.  Walker must not hold any locks during the walker callback.
 392  * ii  Walker must not see a truncated tree during the walk because of any node
 393  *     deletion.
 394  * iii Existing code assumes ire_bucket is valid if it is non-null and is used
 395  *     in many places in the code to walk the irb list. Thus even if all the
 396  *     ires in a bucket have been deleted, we still can't free the radix node
 397  *     until the ires have actually been inactive'd (freed).
 398  *
 399  * Tree traversal - Need to hold the global tree lock in read mode.
 400  * Before dropping the global tree lock, need to either increment the ire_refcnt
 401  * to ensure that the radix node can't be deleted.
 402  *
 403  * Tree add - Need to hold the global tree lock in write mode to add a
 404  * radix node. To prevent the node from being deleted, increment the
 405  * irb_refcnt, after the node is added to the tree. The ire itself is
 406  * added later while holding the irb_lock, but not the tree lock.
 407  *
 408  * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
 409  * All associated ires must be inactive (i.e. freed), and irb_refcnt
 410  * must be zero.
 411  *
 412  * Walker - Increment irb_refcnt before calling the walker callback. Hold the
 413  * global tree lock (read mode) for traversal.
 414  *
 415  * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
 416  * hence we will acquire irb_lock while holding ips_ire_dep_lock.
 417  *
 418  * IPsec notes :
 419  *
 420  * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
 421  * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
 422  * ip_xmit_attr_t has the
 423  * information used by the IPsec code for applying the right level of
 424  * protection. The information initialized by IP in the ip_xmit_attr_t
 425  * is determined by the per-socket policy or global policy in the system.
 426  * For inbound datagrams, the ip_recv_attr_t
 427  * starts out with nothing in it. It gets filled
 428  * with the right information if it goes through the AH/ESP code, which
 429  * happens if the incoming packet is secure. The information initialized
 430  * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
 431  * the policy requirements needed by per-socket policy or global policy
 432  * is met or not.
 433  *
 434  * For fully connected sockets i.e dst, src [addr, port] is known,
 435  * conn_policy_cached is set indicating that policy has been cached.
 436  * conn_in_enforce_policy may or may not be set depending on whether
 437  * there is a global policy match or per-socket policy match.
 438  * Policy inheriting happpens in ip_policy_set once the destination is known.
 439  * Once the right policy is set on the conn_t, policy cannot change for
 440  * this socket. This makes life simpler for TCP (UDP ?) where
 441  * re-transmissions go out with the same policy. For symmetry, policy
 442  * is cached for fully connected UDP sockets also. Thus if policy is cached,
 443  * it also implies that policy is latched i.e policy cannot change
 444  * on these sockets. As we have the right policy on the conn, we don't
 445  * have to lookup global policy for every outbound and inbound datagram
 446  * and thus serving as an optimization. Note that a global policy change
 447  * does not affect fully connected sockets if they have policy. If fully
 448  * connected sockets did not have any policy associated with it, global
 449  * policy change may affect them.
 450  *
 451  * IP Flow control notes:
 452  * ---------------------
 453  * Non-TCP streams are flow controlled by IP. The way this is accomplished
 454  * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
 455  * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
 456  * GLDv3. Otherwise packets are sent down to lower layers using STREAMS
 457  * functions.
 458  *
 459  * Per Tx ring udp flow control:
 460  * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
 461  * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
 462  *
 463  * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
 464  * To achieve best performance, outgoing traffic need to be fanned out among
 465  * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
 466  * traffic out of the NIC and it takes a fanout hint. UDP connections pass
 467  * the address of connp as fanout hint to mac_tx(). Under flow controlled
 468  * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
 469  * cookie points to a specific Tx ring that is blocked. The cookie is used to
 470  * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
 471  * point to drain_lists (idl_t's). These drain list will store the blocked UDP
 472  * connp's. The drain list is not a single list but a configurable number of
 473  * lists.
 474  *
 475  * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t
 476  * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
 477  * which is equal to 128. This array in turn contains a pointer to idl_t[],
 478  * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
 479  * list will point to the list of connp's that are flow controlled.
 480  *
 481  *                      ---------------   -------   -------   -------
 482  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
 483  *                   |  ---------------   -------   -------   -------
 484  *                   |  ---------------   -------   -------   -------
 485  *                   |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
 486  * ----------------  |  ---------------   -------   -------   -------
 487  * |idl_tx_list[0]|->|  ---------------   -------   -------   -------
 488  * ----------------  |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
 489  *                   |  ---------------   -------   -------   -------
 490  *                   .        .              .         .         .
 491  *                   |  ---------------   -------   -------   -------
 492  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
 493  *                      ---------------   -------   -------   -------
 494  *                      ---------------   -------   -------   -------
 495  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
 496  *                   |  ---------------   -------   -------   -------
 497  *                   |  ---------------   -------   -------   -------
 498  * ----------------  |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
 499  * |idl_tx_list[1]|->|  ---------------   -------   -------   -------
 500  * ----------------  |        .              .         .         .
 501  *                   |  ---------------   -------   -------   -------
 502  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
 503  *                      ---------------   -------   -------   -------
 504  *     .....
 505  * ----------------
 506  * |idl_tx_list[n]|-> ...
 507  * ----------------
 508  *
 509  * When mac_tx() returns a cookie, the cookie is hashed into an index into
 510  * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list
 511  * to insert the conn onto.  conn_drain_insert() asserts flow control for the
 512  * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS).
 513  * Further, conn_blocked is set to indicate that the conn is blocked.
 514  *
 515  * GLDv3 calls ill_flow_enable() when flow control is relieved.  The cookie
 516  * passed in the call to ill_flow_enable() identifies the blocked Tx ring and
 517  * is again hashed to locate the appropriate idl_tx_list, which is then
 518  * drained via conn_walk_drain().  conn_walk_drain() goes through each conn in
 519  * the drain list and calls conn_drain_remove() to clear flow control (via
 520  * calling su_txq_full() or clearing QFULL), and remove the conn from the
 521  * drain list.
 522  *
 523  * Note that the drain list is not a single list but a (configurable) array of
 524  * lists (8 elements by default).  Synchronization between drain insertion and
 525  * flow control wakeup is handled by using idl_txl->txl_lock, and only
 526  * conn_drain_insert() and conn_drain_remove() manipulate the drain list.
 527  *
 528  * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE.
 529  * On the send side, if the packet cannot be sent down to the driver by IP
 530  * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the
 531  * caller, who may then invoke ixa_check_drain_insert() to insert the conn on
 532  * the 0'th drain list.  When ip_wsrv() runs on the ill_wq because flow
 533  * control has been relieved, the blocked conns in the 0'th drain list are
 534  * drained as in the non-STREAMS case.
 535  *
 536  * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL
 537  * is done when the conn is inserted into the drain list (conn_drain_insert())
 538  * and cleared when the conn is removed from the it (conn_drain_remove()).
 539  *
 540  * IPQOS notes:
 541  *
 542  * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
 543  * and IPQoS modules. IPPF includes hooks in IP at different control points
 544  * (callout positions) which direct packets to IPQoS modules for policy
 545  * processing. Policies, if present, are global.
 546  *
 547  * The callout positions are located in the following paths:
 548  *              o local_in (packets destined for this host)
 549  *              o local_out (packets orginating from this host )
 550  *              o fwd_in  (packets forwarded by this m/c - inbound)
 551  *              o fwd_out (packets forwarded by this m/c - outbound)
 552  * Hooks at these callout points can be enabled/disabled using the ndd variable
 553  * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
 554  * By default all the callout positions are enabled.
 555  *
 556  * Outbound (local_out)
 557  * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
 558  *
 559  * Inbound (local_in)
 560  * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
 561  *
 562  * Forwarding (in and out)
 563  * Hooks are placed in ire_recv_forward_v4/v6.
 564  *
 565  * IP Policy Framework processing (IPPF processing)
 566  * Policy processing for a packet is initiated by ip_process, which ascertains
 567  * that the classifier (ipgpc) is loaded and configured, failing which the
 568  * packet resumes normal processing in IP. If the clasifier is present, the
 569  * packet is acted upon by one or more IPQoS modules (action instances), per
 570  * filters configured in ipgpc and resumes normal IP processing thereafter.
 571  * An action instance can drop a packet in course of its processing.
 572  *
 573  * Zones notes:
 574  *
 575  * The partitioning rules for networking are as follows:
 576  * 1) Packets coming from a zone must have a source address belonging to that
 577  * zone.
 578  * 2) Packets coming from a zone can only be sent on a physical interface on
 579  * which the zone has an IP address.
 580  * 3) Between two zones on the same machine, packet delivery is only allowed if
 581  * there's a matching route for the destination and zone in the forwarding
 582  * table.
 583  * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
 584  * different zones can bind to the same port with the wildcard address
 585  * (INADDR_ANY).
 586  *
 587  * The granularity of interface partitioning is at the logical interface level.
 588  * Therefore, every zone has its own IP addresses, and incoming packets can be
 589  * attributed to a zone unambiguously. A logical interface is placed into a zone
 590  * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
 591  * structure. Rule (1) is implemented by modifying the source address selection
 592  * algorithm so that the list of eligible addresses is filtered based on the
 593  * sending process zone.
 594  *
 595  * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
 596  * across all zones, depending on their type. Here is the break-up:
 597  *
 598  * IRE type                             Shared/exclusive
 599  * --------                             ----------------
 600  * IRE_BROADCAST                        Exclusive
 601  * IRE_DEFAULT (default routes)         Shared (*)
 602  * IRE_LOCAL                            Exclusive (x)
 603  * IRE_LOOPBACK                         Exclusive
 604  * IRE_PREFIX (net routes)              Shared (*)
 605  * IRE_IF_NORESOLVER (interface routes) Exclusive
 606  * IRE_IF_RESOLVER (interface routes)   Exclusive
 607  * IRE_IF_CLONE (interface routes)      Exclusive
 608  * IRE_HOST (host routes)               Shared (*)
 609  *
 610  * (*) A zone can only use a default or off-subnet route if the gateway is
 611  * directly reachable from the zone, that is, if the gateway's address matches
 612  * one of the zone's logical interfaces.
 613  *
 614  * (x) IRE_LOCAL are handled a bit differently.
 615  * When ip_restrict_interzone_loopback is set (the default),
 616  * ire_route_recursive restricts loopback using an IRE_LOCAL
 617  * between zone to the case when L2 would have conceptually looped the packet
 618  * back, i.e. the loopback which is required since neither Ethernet drivers
 619  * nor Ethernet hardware loops them back. This is the case when the normal
 620  * routes (ignoring IREs with different zoneids) would send out the packet on
 621  * the same ill as the ill with which is IRE_LOCAL is associated.
 622  *
 623  * Multiple zones can share a common broadcast address; typically all zones
 624  * share the 255.255.255.255 address. Incoming as well as locally originated
 625  * broadcast packets must be dispatched to all the zones on the broadcast
 626  * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
 627  * since some zones may not be on the 10.16.72/24 network. To handle this, each
 628  * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
 629  * sent to every zone that has an IRE_BROADCAST entry for the destination
 630  * address on the input ill, see ip_input_broadcast().
 631  *
 632  * Applications in different zones can join the same multicast group address.
 633  * The same logic applies for multicast as for broadcast. ip_input_multicast
 634  * dispatches packets to all zones that have members on the physical interface.
 635  */
 636 
 637 /*
 638  * Squeue Fanout flags:
 639  *      0: No fanout.
 640  *      1: Fanout across all squeues
 641  */
 642 boolean_t       ip_squeue_fanout = 0;
 643 
 644 /*
 645  * Maximum dups allowed per packet.
 646  */
 647 uint_t ip_max_frag_dups = 10;
 648 
 649 static int      ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
 650                     cred_t *credp, boolean_t isv6);
 651 static mblk_t   *ip_xmit_attach_llhdr(mblk_t *, nce_t *);
 652 
 653 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
 654 static void     icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
 655 static void     icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
 656     ip_recv_attr_t *);
 657 static void     icmp_options_update(ipha_t *);
 658 static void     icmp_param_problem(mblk_t *, uint8_t,  ip_recv_attr_t *);
 659 static void     icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
 660 static mblk_t   *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
 661 static void     icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
 662     ip_recv_attr_t *);
 663 static void     icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
 664 static void     icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
 665     ip_recv_attr_t *);
 666 
 667 mblk_t          *ip_dlpi_alloc(size_t, t_uscalar_t);
 668 char            *ip_dot_addr(ipaddr_t, char *);
 669 mblk_t          *ip_carve_mp(mblk_t **, ssize_t);
 670 static char     *ip_dot_saddr(uchar_t *, char *);
 671 static int      ip_lrput(queue_t *, mblk_t *);
 672 ipaddr_t        ip_net_mask(ipaddr_t);
 673 char            *ip_nv_lookup(nv_t *, int);
 674 int             ip_rput(queue_t *, mblk_t *);
 675 static void     ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
 676                     void *dummy_arg);
 677 int             ip_snmp_get(queue_t *, mblk_t *, int, boolean_t);
 678 static mblk_t   *ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
 679                     mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t);
 680 static mblk_t   *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
 681                     ip_stack_t *, boolean_t);
 682 static mblk_t   *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *,
 683                     boolean_t);
 684 static mblk_t   *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
 685 static mblk_t   *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
 686 static mblk_t   *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
 687 static mblk_t   *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
 688 static mblk_t   *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
 689                     ip_stack_t *ipst, boolean_t);
 690 static mblk_t   *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
 691                     ip_stack_t *ipst, boolean_t);
 692 static mblk_t   *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
 693                     ip_stack_t *ipst);
 694 static mblk_t   *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
 695                     ip_stack_t *ipst);
 696 static mblk_t   *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
 697                     ip_stack_t *ipst);
 698 static mblk_t   *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
 699                     ip_stack_t *ipst);
 700 static mblk_t   *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
 701                     ip_stack_t *ipst);
 702 static mblk_t   *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
 703                     ip_stack_t *ipst);
 704 static mblk_t   *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
 705                     ip_stack_t *ipst);
 706 static mblk_t   *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
 707                     ip_stack_t *ipst);
 708 static void     ip_snmp_get2_v4(ire_t *, iproutedata_t *);
 709 static void     ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
 710 static void     ip_snmp_get2_v4_media(ncec_t *, void *);
 711 static void     ip_snmp_get2_v6_media(ncec_t *, void *);
 712 int             ip_snmp_set(queue_t *, int, int, uchar_t *, int);
 713 
 714 static mblk_t   *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
 715                     mblk_t *);
 716 
 717 static void     conn_drain_init(ip_stack_t *);
 718 static void     conn_drain_fini(ip_stack_t *);
 719 static void     conn_drain(conn_t *connp, boolean_t closing);
 720 
 721 static void     conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
 722 static void     conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);
 723 
 724 static void     *ip_stack_init(netstackid_t stackid, netstack_t *ns);
 725 static void     ip_stack_shutdown(netstackid_t stackid, void *arg);
 726 static void     ip_stack_fini(netstackid_t stackid, void *arg);
 727 
 728 static int      ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
 729     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
 730     ire_t *, conn_t *, boolean_t, const in6_addr_t *,  mcast_record_t,
 731     const in6_addr_t *);
 732 
 733 static int      ip_squeue_switch(int);
 734 
 735 static void     *ip_kstat_init(netstackid_t, ip_stack_t *);
 736 static void     ip_kstat_fini(netstackid_t, kstat_t *);
 737 static int      ip_kstat_update(kstat_t *kp, int rw);
 738 static void     *icmp_kstat_init(netstackid_t);
 739 static void     icmp_kstat_fini(netstackid_t, kstat_t *);
 740 static int      icmp_kstat_update(kstat_t *kp, int rw);
 741 static void     *ip_kstat2_init(netstackid_t, ip_stat_t *);
 742 static void     ip_kstat2_fini(netstackid_t, kstat_t *);
 743 
 744 static void     ipobs_init(ip_stack_t *);
 745 static void     ipobs_fini(ip_stack_t *);
 746 
 747 static int      ip_tp_cpu_update(cpu_setup_t, int, void *);
 748 
 749 ipaddr_t        ip_g_all_ones = IP_HOST_MASK;
 750 
 751 static long ip_rput_pullups;
 752 int     dohwcksum = 1;  /* use h/w cksum if supported by the hardware */
 753 
 754 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
 755 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
 756 
 757 int     ip_debug;
 758 
 759 /*
 760  * Multirouting/CGTP stuff
 761  */
 762 int     ip_cgtp_filter_rev = CGTP_FILTER_REV;   /* CGTP hooks version */
 763 
 764 /*
 765  * IP tunables related declarations. Definitions are in ip_tunables.c
 766  */
 767 extern mod_prop_info_t ip_propinfo_tbl[];
 768 extern int ip_propinfo_count;
 769 
 770 /*
 771  * Table of IP ioctls encoding the various properties of the ioctl and
 772  * indexed based on the last byte of the ioctl command. Occasionally there
 773  * is a clash, and there is more than 1 ioctl with the same last byte.
 774  * In such a case 1 ioctl is encoded in the ndx table and the remaining
 775  * ioctls are encoded in the misc table. An entry in the ndx table is
 776  * retrieved by indexing on the last byte of the ioctl command and comparing
 777  * the ioctl command with the value in the ndx table. In the event of a
 778  * mismatch the misc table is then searched sequentially for the desired
 779  * ioctl command.
 780  *
 781  * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
 782  */
 783 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
 784         /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 785         /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 786         /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 787         /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 788         /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 789         /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 790         /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 791         /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 792         /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 793         /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 794 
 795         /* 010 */ { SIOCADDRT,  sizeof (struct rtentry), IPI_PRIV,
 796                         MISC_CMD, ip_siocaddrt, NULL },
 797         /* 011 */ { SIOCDELRT,  sizeof (struct rtentry), IPI_PRIV,
 798                         MISC_CMD, ip_siocdelrt, NULL },
 799 
 800         /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 801                         IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
 802         /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
 803                         IF_CMD, ip_sioctl_get_addr, NULL },
 804 
 805         /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 806                         IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
 807         /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
 808                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },
 809 
 810         /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
 811                         IPI_PRIV | IPI_WR,
 812                         IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
 813         /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
 814                         IPI_MODOK | IPI_GET_CMD,
 815                         IF_CMD, ip_sioctl_get_flags, NULL },
 816 
 817         /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 818         /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 819 
 820         /* copyin size cannot be coded for SIOCGIFCONF */
 821         /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
 822                         MISC_CMD, ip_sioctl_get_ifconf, NULL },
 823 
 824         /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 825                         IF_CMD, ip_sioctl_mtu, NULL },
 826         /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD,
 827                         IF_CMD, ip_sioctl_get_mtu, NULL },
 828         /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
 829                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
 830         /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 831                         IF_CMD, ip_sioctl_brdaddr, NULL },
 832         /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
 833                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
 834         /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 835                         IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
 836         /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
 837                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
 838         /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
 839                         IF_CMD, ip_sioctl_metric, NULL },
 840         /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 841 
 842         /* See 166-168 below for extended SIOC*XARP ioctls */
 843         /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
 844                         ARP_CMD, ip_sioctl_arp, NULL },
 845         /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
 846                         ARP_CMD, ip_sioctl_arp, NULL },
 847         /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
 848                         ARP_CMD, ip_sioctl_arp, NULL },
 849 
 850         /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 851         /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 852         /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 853         /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 854         /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 855         /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 856         /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 857         /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 858         /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 859         /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 860         /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 861         /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 862         /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 863         /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 864         /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 865         /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 866         /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 867         /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 868         /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 869         /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 870         /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 871 
 872         /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
 873                         MISC_CMD, if_unitsel, if_unitsel_restart },
 874 
 875         /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 876         /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 877         /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 878         /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 879         /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 880         /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 881         /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 882         /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 883         /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 884         /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 885         /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 886         /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 887         /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 888         /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 889         /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 890         /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 891         /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 892         /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 893 
 894         /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
 895                         IPI_PRIV | IPI_WR | IPI_MODOK,
 896                         IF_CMD, ip_sioctl_sifname, NULL },
 897 
 898         /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 899         /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 900         /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 901         /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 902         /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 903         /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 904         /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 905         /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 906         /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 907         /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 908         /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 909         /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 910         /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 911 
 912         /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
 913                         MISC_CMD, ip_sioctl_get_ifnum, NULL },
 914         /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
 915                         IF_CMD, ip_sioctl_get_muxid, NULL },
 916         /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
 917                         IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },
 918 
 919         /* Both if and lif variants share same func */
 920         /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
 921                         IF_CMD, ip_sioctl_get_lifindex, NULL },
 922         /* Both if and lif variants share same func */
 923         /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
 924                         IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },
 925 
 926         /* copyin size cannot be coded for SIOCGIFCONF */
 927         /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
 928                         MISC_CMD, ip_sioctl_get_ifconf, NULL },
 929         /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 930         /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 931         /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 932         /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 933         /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 934         /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 935         /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 936         /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 937         /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 938         /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 939         /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 940         /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 941         /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 942         /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 943         /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 944         /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 945         /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 946 
 947         /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
 948                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
 949                         ip_sioctl_removeif_restart },
 950         /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
 951                         IPI_GET_CMD | IPI_PRIV | IPI_WR,
 952                         LIF_CMD, ip_sioctl_addif, NULL },
 953 #define SIOCLIFADDR_NDX 112
 954         /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 955                         LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
 956         /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
 957                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
 958         /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 959                         LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
 960         /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
 961                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
 962         /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
 963                         IPI_PRIV | IPI_WR,
 964                         LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
 965         /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
 966                         IPI_GET_CMD | IPI_MODOK,
 967                         LIF_CMD, ip_sioctl_get_flags, NULL },
 968 
 969         /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 970         /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 971 
 972         /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
 973                         ip_sioctl_get_lifconf, NULL },
 974         /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 975                         LIF_CMD, ip_sioctl_mtu, NULL },
 976         /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
 977                         LIF_CMD, ip_sioctl_get_mtu, NULL },
 978         /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
 979                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
 980         /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 981                         LIF_CMD, ip_sioctl_brdaddr, NULL },
 982         /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
 983                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
 984         /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 985                         LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
 986         /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
 987                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
 988         /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 989                         LIF_CMD, ip_sioctl_metric, NULL },
 990         /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
 991                         IPI_PRIV | IPI_WR | IPI_MODOK,
 992                         LIF_CMD, ip_sioctl_slifname,
 993                         ip_sioctl_slifname_restart },
 994 
 995         /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
 996                         MISC_CMD, ip_sioctl_get_lifnum, NULL },
 997         /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
 998                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
 999         /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
1000                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
1001         /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1002                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1003         /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1004                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1005         /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1006                         LIF_CMD, ip_sioctl_token, NULL },
1007         /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1008                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1009         /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1010                         LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1011         /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1012                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1013         /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1014                         LIF_CMD, ip_sioctl_lnkinfo, NULL },
1015 
1016         /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1017                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1018         /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1019                         LIF_CMD, ip_siocdelndp_v6, NULL },
1020         /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1021                         LIF_CMD, ip_siocqueryndp_v6, NULL },
1022         /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1023                         LIF_CMD, ip_siocsetndp_v6, NULL },
1024         /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1025                         MISC_CMD, ip_sioctl_tmyaddr, NULL },
1026         /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1027                         MISC_CMD, ip_sioctl_tonlink, NULL },
1028         /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1029                         MISC_CMD, ip_sioctl_tmysite, NULL },
1030         /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1031         /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1032 
1033         /* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */
1034         /* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1035         /* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1036         /* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1037         /* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1038 
1039         /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1040 
1041         /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1042                         LIF_CMD, ip_sioctl_get_binding, NULL },
1043         /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1044                         IPI_PRIV | IPI_WR,
1045                         LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1046         /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1047                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1048         /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1049                         IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },
1050 
1051         /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1052         /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1053         /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1054         /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1055 
1056         /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1057 
1058         /* These are handled in ip_sioctl_copyin_setup itself */
1059         /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1060                         MISC_CMD, NULL, NULL },
1061         /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1062                         MISC_CMD, NULL, NULL },
1063         /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1064 
1065         /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1066                         ip_sioctl_get_lifconf, NULL },
1067 
1068         /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1069                         XARP_CMD, ip_sioctl_arp, NULL },
1070         /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1071                         XARP_CMD, ip_sioctl_arp, NULL },
1072         /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1073                         XARP_CMD, ip_sioctl_arp, NULL },
1074 
1075         /* SIOCPOPSOCKFS is not handled by IP */
1076         /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1077 
1078         /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1079                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1080         /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1081                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1082                         ip_sioctl_slifzone_restart },
1083         /* 172-174 are SCTP ioctls and not handled by IP */
1084         /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1085         /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1086         /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1087         /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1088                         IPI_GET_CMD, LIF_CMD,
1089                         ip_sioctl_get_lifusesrc, 0 },
1090         /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1091                         IPI_PRIV | IPI_WR,
1092                         LIF_CMD, ip_sioctl_slifusesrc,
1093                         NULL },
1094         /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1095                         ip_sioctl_get_lifsrcof, NULL },
1096         /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1097                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1098         /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1099                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1100         /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1101                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1102         /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1103                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1104         /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1105         /* SIOCSENABLESDP is handled by SDP */
1106         /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1107         /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1108         /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD,
1109                         IF_CMD, ip_sioctl_get_ifhwaddr, NULL },
1110         /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1111         /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1112                         ip_sioctl_ilb_cmd, NULL },
1113         /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
1114         /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
1115         /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
1116                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
1117         /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1118                         LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
1119         /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD,
1120                         LIF_CMD, ip_sioctl_get_lifhwaddr, NULL }
1121 };
1122 
1123 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1124 
1125 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1126         { I_LINK,       0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1127         { I_UNLINK,     0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1128         { I_PLINK,      0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1129         { I_PUNLINK,    0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1130         { ND_GET,       0, 0, 0, NULL, NULL },
1131         { ND_SET,       0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1132         { IP_IOCTL,     0, 0, 0, NULL, NULL },
1133         { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1134                 MISC_CMD, mrt_ioctl},
1135         { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD,
1136                 MISC_CMD, mrt_ioctl},
1137         { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1138                 MISC_CMD, mrt_ioctl}
1139 };
1140 
1141 int ip_misc_ioctl_count =
1142     sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1143 
1144 int     conn_drain_nthreads;            /* Number of drainers reqd. */
1145                                         /* Settable in /etc/system */
1146 /* Defined in ip_ire.c */
1147 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1148 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1149 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1150 
1151 static nv_t     ire_nv_arr[] = {
1152         { IRE_BROADCAST, "BROADCAST" },
1153         { IRE_LOCAL, "LOCAL" },
1154         { IRE_LOOPBACK, "LOOPBACK" },
1155         { IRE_DEFAULT, "DEFAULT" },
1156         { IRE_PREFIX, "PREFIX" },
1157         { IRE_IF_NORESOLVER, "IF_NORESOL" },
1158         { IRE_IF_RESOLVER, "IF_RESOLV" },
1159         { IRE_IF_CLONE, "IF_CLONE" },
1160         { IRE_HOST, "HOST" },
1161         { IRE_MULTICAST, "MULTICAST" },
1162         { IRE_NOROUTE, "NOROUTE" },
1163         { 0 }
1164 };
1165 
1166 nv_t    *ire_nv_tbl = ire_nv_arr;
1167 
1168 /* Simple ICMP IP Header Template */
1169 static ipha_t icmp_ipha = {
1170         IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1171 };
1172 
1173 struct module_info ip_mod_info = {
1174         IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1175         IP_MOD_LOWAT
1176 };
1177 
1178 /*
1179  * Duplicate static symbols within a module confuses mdb; so we avoid the
1180  * problem by making the symbols here distinct from those in udp.c.
1181  */
1182 
1183 /*
1184  * Entry points for IP as a device and as a module.
1185  * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1186  */
1187 static struct qinit iprinitv4 = {
1188         ip_rput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info
1189 };
1190 
1191 struct qinit iprinitv6 = {
1192         ip_rput_v6, NULL, ip_openv6, ip_close, NULL, &ip_mod_info
1193 };
1194 
1195 static struct qinit ipwinit = {
1196         ip_wput_nondata, ip_wsrv, NULL, NULL, NULL, &ip_mod_info
1197 };
1198 
1199 static struct qinit iplrinit = {
1200         ip_lrput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info
1201 };
1202 
1203 static struct qinit iplwinit = {
1204         ip_lwput, NULL, NULL, NULL, NULL, &ip_mod_info
1205 };
1206 
1207 /* For AF_INET aka /dev/ip */
1208 struct streamtab ipinfov4 = {
1209         &iprinitv4, &ipwinit, &iplrinit, &iplwinit
1210 };
1211 
1212 /* For AF_INET6 aka /dev/ip6 */
1213 struct streamtab ipinfov6 = {
1214         &iprinitv6, &ipwinit, &iplrinit, &iplwinit
1215 };
1216 
1217 #ifdef  DEBUG
1218 boolean_t skip_sctp_cksum = B_FALSE;
1219 #endif
1220 
1221 /*
1222  * Generate an ICMP fragmentation needed message.
1223  * When called from ip_output side a minimal ip_recv_attr_t needs to be
1224  * constructed by the caller.
1225  */
1226 void
1227 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1228 {
1229         icmph_t icmph;
1230         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
1231 
1232         mp = icmp_pkt_err_ok(mp, ira);
1233         if (mp == NULL)
1234                 return;
1235 
1236         bzero(&icmph, sizeof (icmph_t));
1237         icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1238         icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1239         icmph.icmph_du_mtu = htons((uint16_t)mtu);
1240         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1241         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1242 
1243         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
1244 }
1245 
1246 /*
1247  * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1248  * If the ICMP message is consumed by IP, i.e., it should not be delivered
1249  * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1250  * Likewise, if the ICMP error is misformed (too short, etc), then it
1251  * returns NULL. The caller uses this to determine whether or not to send
1252  * to raw sockets.
1253  *
1254  * All error messages are passed to the matching transport stream.
1255  *
1256  * The following cases are handled by icmp_inbound:
1257  * 1) It needs to send a reply back and possibly delivering it
1258  *    to the "interested" upper clients.
1259  * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1260  * 3) It needs to change some values in IP only.
1261  * 4) It needs to change some values in IP and upper layers e.g TCP
1262  *    by delivering an error to the upper layers.
1263  *
1264  * We handle the above three cases in the context of IPsec in the
1265  * following way :
1266  *
1267  * 1) Send the reply back in the same way as the request came in.
1268  *    If it came in encrypted, it goes out encrypted. If it came in
1269  *    clear, it goes out in clear. Thus, this will prevent chosen
1270  *    plain text attack.
1271  * 2) The client may or may not expect things to come in secure.
1272  *    If it comes in secure, the policy constraints are checked
1273  *    before delivering it to the upper layers. If it comes in
1274  *    clear, ipsec_inbound_accept_clear will decide whether to
1275  *    accept this in clear or not. In both the cases, if the returned
1276  *    message (IP header + 8 bytes) that caused the icmp message has
1277  *    AH/ESP headers, it is sent up to AH/ESP for validation before
1278  *    sending up. If there are only 8 bytes of returned message, then
1279  *    upper client will not be notified.
1280  * 3) Check with global policy to see whether it matches the constaints.
1281  *    But this will be done only if icmp_accept_messages_in_clear is
1282  *    zero.
1283  * 4) If we need to change both in IP and ULP, then the decision taken
1284  *    while affecting the values in IP and while delivering up to TCP
1285  *    should be the same.
1286  *
1287  *      There are two cases.
1288  *
1289  *      a) If we reject data at the IP layer (ipsec_check_global_policy()
1290  *         failed), we will not deliver it to the ULP, even though they
1291  *         are *willing* to accept in *clear*. This is fine as our global
1292  *         disposition to icmp messages asks us reject the datagram.
1293  *
1294  *      b) If we accept data at the IP layer (ipsec_check_global_policy()
1295  *         succeeded or icmp_accept_messages_in_clear is 1), and not able
1296  *         to deliver it to ULP (policy failed), it can lead to
1297  *         consistency problems. The cases known at this time are
1298  *         ICMP_DESTINATION_UNREACHABLE  messages with following code
1299  *         values :
1300  *
1301  *         - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1302  *           and Upper layer rejects. Then the communication will
1303  *           come to a stop. This is solved by making similar decisions
1304  *           at both levels. Currently, when we are unable to deliver
1305  *           to the Upper Layer (due to policy failures) while IP has
1306  *           adjusted dce_pmtu, the next outbound datagram would
1307  *           generate a local ICMP_FRAGMENTATION_NEEDED message - which
1308  *           will be with the right level of protection. Thus the right
1309  *           value will be communicated even if we are not able to
1310  *           communicate when we get from the wire initially. But this
1311  *           assumes there would be at least one outbound datagram after
1312  *           IP has adjusted its dce_pmtu value. To make things
1313  *           simpler, we accept in clear after the validation of
1314  *           AH/ESP headers.
1315  *
1316  *         - Other ICMP ERRORS : We may not be able to deliver it to the
1317  *           upper layer depending on the level of protection the upper
1318  *           layer expects and the disposition in ipsec_inbound_accept_clear().
1319  *           ipsec_inbound_accept_clear() decides whether a given ICMP error
1320  *           should be accepted in clear when the Upper layer expects secure.
1321  *           Thus the communication may get aborted by some bad ICMP
1322  *           packets.
1323  */
1324 mblk_t *
1325 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1326 {
1327         icmph_t         *icmph;
1328         ipha_t          *ipha;          /* Outer header */
1329         int             ip_hdr_length;  /* Outer header length */
1330         boolean_t       interested;
1331         ipif_t          *ipif;
1332         uint32_t        ts;
1333         uint32_t        *tsp;
1334         timestruc_t     now;
1335         ill_t           *ill = ira->ira_ill;
1336         ip_stack_t      *ipst = ill->ill_ipst;
1337         zoneid_t        zoneid = ira->ira_zoneid;
1338         int             len_needed;
1339         mblk_t          *mp_ret = NULL;
1340 
1341         ipha = (ipha_t *)mp->b_rptr;
1342 
1343         BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1344 
1345         ip_hdr_length = ira->ira_ip_hdr_length;
1346         if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1347                 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1348                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1349                         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1350                         freemsg(mp);
1351                         return (NULL);
1352                 }
1353                 /* Last chance to get real. */
1354                 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1355                 if (ipha == NULL) {
1356                         BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1357                         freemsg(mp);
1358                         return (NULL);
1359                 }
1360         }
1361 
1362         /* The IP header will always be a multiple of four bytes */
1363         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1364         ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1365             icmph->icmph_code));
1366 
1367         /*
1368          * We will set "interested" to "true" if we should pass a copy to
1369          * the transport or if we handle the packet locally.
1370          */
1371         interested = B_FALSE;
1372         switch (icmph->icmph_type) {
1373         case ICMP_ECHO_REPLY:
1374                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1375                 break;
1376         case ICMP_DEST_UNREACHABLE:
1377                 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1378                         BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1379                 interested = B_TRUE;    /* Pass up to transport */
1380                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1381                 break;
1382         case ICMP_SOURCE_QUENCH:
1383                 interested = B_TRUE;    /* Pass up to transport */
1384                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1385                 break;
1386         case ICMP_REDIRECT:
1387                 if (!ipst->ips_ip_ignore_redirect)
1388                         interested = B_TRUE;
1389                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1390                 break;
1391         case ICMP_ECHO_REQUEST:
1392                 /*
1393                  * Whether to respond to echo requests that come in as IP
1394                  * broadcasts or as IP multicast is subject to debate
1395                  * (what isn't?).  We aim to please, you pick it.
1396                  * Default is do it.
1397                  */
1398                 if (ira->ira_flags & IRAF_MULTICAST) {
1399                         /* multicast: respond based on tunable */
1400                         interested = ipst->ips_ip_g_resp_to_echo_mcast;
1401                 } else if (ira->ira_flags & IRAF_BROADCAST) {
1402                         /* broadcast: respond based on tunable */
1403                         interested = ipst->ips_ip_g_resp_to_echo_bcast;
1404                 } else {
1405                         /* unicast: always respond */
1406                         interested = B_TRUE;
1407                 }
1408                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1409                 if (!interested) {
1410                         /* We never pass these to RAW sockets */
1411                         freemsg(mp);
1412                         return (NULL);
1413                 }
1414 
1415                 /* Check db_ref to make sure we can modify the packet. */
1416                 if (mp->b_datap->db_ref > 1) {
1417                         mblk_t  *mp1;
1418 
1419                         mp1 = copymsg(mp);
1420                         freemsg(mp);
1421                         if (!mp1) {
1422                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1423                                 return (NULL);
1424                         }
1425                         mp = mp1;
1426                         ipha = (ipha_t *)mp->b_rptr;
1427                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1428                 }
1429                 icmph->icmph_type = ICMP_ECHO_REPLY;
1430                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1431                 icmp_send_reply_v4(mp, ipha, icmph, ira);
1432                 return (NULL);
1433 
1434         case ICMP_ROUTER_ADVERTISEMENT:
1435         case ICMP_ROUTER_SOLICITATION:
1436                 break;
1437         case ICMP_TIME_EXCEEDED:
1438                 interested = B_TRUE;    /* Pass up to transport */
1439                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1440                 break;
1441         case ICMP_PARAM_PROBLEM:
1442                 interested = B_TRUE;    /* Pass up to transport */
1443                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1444                 break;
1445         case ICMP_TIME_STAMP_REQUEST:
1446                 /* Response to Time Stamp Requests is local policy. */
1447                 if (ipst->ips_ip_g_resp_to_timestamp) {
1448                         if (ira->ira_flags & IRAF_MULTIBROADCAST)
1449                                 interested =
1450                                     ipst->ips_ip_g_resp_to_timestamp_bcast;
1451                         else
1452                                 interested = B_TRUE;
1453                 }
1454                 if (!interested) {
1455                         /* We never pass these to RAW sockets */
1456                         freemsg(mp);
1457                         return (NULL);
1458                 }
1459 
1460                 /* Make sure we have enough of the packet */
1461                 len_needed = ip_hdr_length + ICMPH_SIZE +
1462                     3 * sizeof (uint32_t);
1463 
1464                 if (mp->b_wptr - mp->b_rptr < len_needed) {
1465                         ipha = ip_pullup(mp, len_needed, ira);
1466                         if (ipha == NULL) {
1467                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1468                                 ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1469                                     mp, ill);
1470                                 freemsg(mp);
1471                                 return (NULL);
1472                         }
1473                         /* Refresh following the pullup. */
1474                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1475                 }
1476                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1477                 /* Check db_ref to make sure we can modify the packet. */
1478                 if (mp->b_datap->db_ref > 1) {
1479                         mblk_t  *mp1;
1480 
1481                         mp1 = copymsg(mp);
1482                         freemsg(mp);
1483                         if (!mp1) {
1484                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1485                                 return (NULL);
1486                         }
1487                         mp = mp1;
1488                         ipha = (ipha_t *)mp->b_rptr;
1489                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1490                 }
1491                 icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1492                 tsp = (uint32_t *)&icmph[1];
1493                 tsp++;          /* Skip past 'originate time' */
1494                 /* Compute # of milliseconds since midnight */
1495                 gethrestime(&now);
1496                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1497                     NSEC2MSEC(now.tv_nsec);
1498                 *tsp++ = htonl(ts);     /* Lay in 'receive time' */
1499                 *tsp++ = htonl(ts);     /* Lay in 'send time' */
1500                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1501                 icmp_send_reply_v4(mp, ipha, icmph, ira);
1502                 return (NULL);
1503 
1504         case ICMP_TIME_STAMP_REPLY:
1505                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1506                 break;
1507         case ICMP_INFO_REQUEST:
1508                 /* Per RFC 1122 3.2.2.7, ignore this. */
1509         case ICMP_INFO_REPLY:
1510                 break;
1511         case ICMP_ADDRESS_MASK_REQUEST:
1512                 if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1513                         interested =
1514                             ipst->ips_ip_respond_to_address_mask_broadcast;
1515                 } else {
1516                         interested = B_TRUE;
1517                 }
1518                 if (!interested) {
1519                         /* We never pass these to RAW sockets */
1520                         freemsg(mp);
1521                         return (NULL);
1522                 }
1523                 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1524                 if (mp->b_wptr - mp->b_rptr < len_needed) {
1525                         ipha = ip_pullup(mp, len_needed, ira);
1526                         if (ipha == NULL) {
1527                                 BUMP_MIB(ill->ill_ip_mib,
1528                                     ipIfStatsInTruncatedPkts);
1529                                 ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1530                                     ill);
1531                                 freemsg(mp);
1532                                 return (NULL);
1533                         }
1534                         /* Refresh following the pullup. */
1535                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1536                 }
1537                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1538                 /* Check db_ref to make sure we can modify the packet. */
1539                 if (mp->b_datap->db_ref > 1) {
1540                         mblk_t  *mp1;
1541 
1542                         mp1 = copymsg(mp);
1543                         freemsg(mp);
1544                         if (!mp1) {
1545                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1546                                 return (NULL);
1547                         }
1548                         mp = mp1;
1549                         ipha = (ipha_t *)mp->b_rptr;
1550                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1551                 }
1552                 /*
1553                  * Need the ipif with the mask be the same as the source
1554                  * address of the mask reply. For unicast we have a specific
1555                  * ipif. For multicast/broadcast we only handle onlink
1556                  * senders, and use the source address to pick an ipif.
1557                  */
1558                 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1559                 if (ipif == NULL) {
1560                         /* Broadcast or multicast */
1561                         ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1562                         if (ipif == NULL) {
1563                                 freemsg(mp);
1564                                 return (NULL);
1565                         }
1566                 }
1567                 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1568                 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1569                 ipif_refrele(ipif);
1570                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1571                 icmp_send_reply_v4(mp, ipha, icmph, ira);
1572                 return (NULL);
1573 
1574         case ICMP_ADDRESS_MASK_REPLY:
1575                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1576                 break;
1577         default:
1578                 interested = B_TRUE;    /* Pass up to transport */
1579                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1580                 break;
1581         }
1582         /*
1583          * See if there is an ICMP client to avoid an extra copymsg/freemsg
1584          * if there isn't one.
1585          */
1586         if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1587                 /* If there is an ICMP client and we want one too, copy it. */
1588 
1589                 if (!interested) {
1590                         /* Caller will deliver to RAW sockets */
1591                         return (mp);
1592                 }
1593                 mp_ret = copymsg(mp);
1594                 if (mp_ret == NULL) {
1595                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1596                         ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1597                 }
1598         } else if (!interested) {
1599                 /* Neither we nor raw sockets are interested. Drop packet now */
1600                 freemsg(mp);
1601                 return (NULL);
1602         }
1603 
1604         /*
1605          * ICMP error or redirect packet. Make sure we have enough of
1606          * the header and that db_ref == 1 since we might end up modifying
1607          * the packet.
1608          */
1609         if (mp->b_cont != NULL) {
1610                 if (ip_pullup(mp, -1, ira) == NULL) {
1611                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1612                         ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1613                             mp, ill);
1614                         freemsg(mp);
1615                         return (mp_ret);
1616                 }
1617         }
1618 
1619         if (mp->b_datap->db_ref > 1) {
1620                 mblk_t  *mp1;
1621 
1622                 mp1 = copymsg(mp);
1623                 if (mp1 == NULL) {
1624                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1625                         ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1626                         freemsg(mp);
1627                         return (mp_ret);
1628                 }
1629                 freemsg(mp);
1630                 mp = mp1;
1631         }
1632 
1633         /*
1634          * In case mp has changed, verify the message before any further
1635          * processes.
1636          */
1637         ipha = (ipha_t *)mp->b_rptr;
1638         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1639         if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
1640                 freemsg(mp);
1641                 return (mp_ret);
1642         }
1643 
1644         switch (icmph->icmph_type) {
1645         case ICMP_REDIRECT:
1646                 icmp_redirect_v4(mp, ipha, icmph, ira);
1647                 break;
1648         case ICMP_DEST_UNREACHABLE:
1649                 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1650                         /* Update DCE and adjust MTU is icmp header if needed */
1651                         icmp_inbound_too_big_v4(icmph, ira);
1652                 }
1653                 /* FALLTHROUGH */
1654         default:
1655                 icmp_inbound_error_fanout_v4(mp, icmph, ira);
1656                 break;
1657         }
1658         return (mp_ret);
1659 }
1660 
1661 /*
1662  * Send an ICMP echo, timestamp or address mask reply.
1663  * The caller has already updated the payload part of the packet.
1664  * We handle the ICMP checksum, IP source address selection and feed
1665  * the packet into ip_output_simple.
1666  */
1667 static void
1668 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1669     ip_recv_attr_t *ira)
1670 {
1671         uint_t          ip_hdr_length = ira->ira_ip_hdr_length;
1672         ill_t           *ill = ira->ira_ill;
1673         ip_stack_t      *ipst = ill->ill_ipst;
1674         ip_xmit_attr_t  ixas;
1675 
1676         /* Send out an ICMP packet */
1677         icmph->icmph_checksum = 0;
1678         icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1679         /* Reset time to live. */
1680         ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1681         {
1682                 /* Swap source and destination addresses */
1683                 ipaddr_t tmp;
1684 
1685                 tmp = ipha->ipha_src;
1686                 ipha->ipha_src = ipha->ipha_dst;
1687                 ipha->ipha_dst = tmp;
1688         }
1689         ipha->ipha_ident = 0;
1690         if (!IS_SIMPLE_IPH(ipha))
1691                 icmp_options_update(ipha);
1692 
1693         bzero(&ixas, sizeof (ixas));
1694         ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1695         ixas.ixa_zoneid = ira->ira_zoneid;
1696         ixas.ixa_cred = kcred;
1697         ixas.ixa_cpid = NOPID;
1698         ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
1699         ixas.ixa_ifindex = 0;
1700         ixas.ixa_ipst = ipst;
1701         ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1702 
1703         if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1704                 /*
1705                  * This packet should go out the same way as it
1706                  * came in i.e in clear, independent of the IPsec policy
1707                  * for transmitting packets.
1708                  */
1709                 ixas.ixa_flags |= IXAF_NO_IPSEC;
1710         } else {
1711                 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1712                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1713                         /* Note: mp already consumed and ip_drop_packet done */
1714                         return;
1715                 }
1716         }
1717         if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1718                 /*
1719                  * Not one or our addresses (IRE_LOCALs), thus we let
1720                  * ip_output_simple pick the source.
1721                  */
1722                 ipha->ipha_src = INADDR_ANY;
1723                 ixas.ixa_flags |= IXAF_SET_SOURCE;
1724         }
1725         /* Should we send with DF and use dce_pmtu? */
1726         if (ipst->ips_ipv4_icmp_return_pmtu) {
1727                 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1728                 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1729         }
1730 
1731         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
1732 
1733         (void) ip_output_simple(mp, &ixas);
1734         ixa_cleanup(&ixas);
1735 }
1736 
1737 /*
1738  * Verify the ICMP messages for either for ICMP error or redirect packet.
1739  * The caller should have fully pulled up the message. If it's a redirect
1740  * packet, only basic checks on IP header will be done; otherwise, verify
1741  * the packet by looking at the included ULP header.
1742  *
1743  * Called before icmp_inbound_error_fanout_v4 is called.
1744  */
1745 static boolean_t
1746 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1747 {
1748         ill_t           *ill = ira->ira_ill;
1749         int             hdr_length;
1750         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
1751         conn_t          *connp;
1752         ipha_t          *ipha;  /* Inner IP header */
1753 
1754         ipha = (ipha_t *)&icmph[1];
1755         if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1756                 goto truncated;
1757 
1758         hdr_length = IPH_HDR_LENGTH(ipha);
1759 
1760         if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1761                 goto discard_pkt;
1762 
1763         if (hdr_length < sizeof (ipha_t))
1764                 goto truncated;
1765 
1766         if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1767                 goto truncated;
1768 
1769         /*
1770          * Stop here for ICMP_REDIRECT.
1771          */
1772         if (icmph->icmph_type == ICMP_REDIRECT)
1773                 return (B_TRUE);
1774 
1775         /*
1776          * ICMP errors only.
1777          */
1778         switch (ipha->ipha_protocol) {
1779         case IPPROTO_UDP:
1780                 /*
1781                  * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1782                  * transport header.
1783                  */
1784                 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1785                     mp->b_wptr)
1786                         goto truncated;
1787                 break;
1788         case IPPROTO_TCP: {
1789                 tcpha_t         *tcpha;
1790 
1791                 /*
1792                  * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1793                  * transport header.
1794                  */
1795                 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1796                     mp->b_wptr)
1797                         goto truncated;
1798 
1799                 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1800                 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1801                     ipst);
1802                 if (connp == NULL)
1803                         goto discard_pkt;
1804 
1805                 if ((connp->conn_verifyicmp != NULL) &&
1806                     !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1807                         CONN_DEC_REF(connp);
1808                         goto discard_pkt;
1809                 }
1810                 CONN_DEC_REF(connp);
1811                 break;
1812         }
1813         case IPPROTO_SCTP:
1814                 /*
1815                  * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1816                  * transport header.
1817                  */
1818                 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1819                     mp->b_wptr)
1820                         goto truncated;
1821                 break;
1822         case IPPROTO_ESP:
1823         case IPPROTO_AH:
1824                 break;
1825         case IPPROTO_ENCAP:
1826                 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1827                     mp->b_wptr)
1828                         goto truncated;
1829                 break;
1830         default:
1831                 break;
1832         }
1833 
1834         return (B_TRUE);
1835 
1836 discard_pkt:
1837         /* Bogus ICMP error. */
1838         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1839         return (B_FALSE);
1840 
1841 truncated:
1842         /* We pulled up everthing already. Must be truncated */
1843         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1844         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1845         return (B_FALSE);
1846 }
1847 
1848 /* Table from RFC 1191 */
1849 static int icmp_frag_size_table[] =
1850 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
1851 
1852 /*
1853  * Process received ICMP Packet too big.
1854  * Just handles the DCE create/update, including using the above table of
1855  * PMTU guesses. The caller is responsible for validating the packet before
1856  * passing it in and also to fanout the ICMP error to any matching transport
1857  * conns. Assumes the message has been fully pulled up and verified.
1858  *
1859  * Before getting here, the caller has called icmp_inbound_verify_v4()
1860  * that should have verified with ULP to prevent undoing the changes we're
1861  * going to make to DCE. For example, TCP might have verified that the packet
1862  * which generated error is in the send window.
1863  *
1864  * In some cases modified this MTU in the ICMP header packet; the caller
1865  * should pass to the matching ULP after this returns.
1866  */
1867 static void
1868 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
1869 {
1870         dce_t           *dce;
1871         int             old_mtu;
1872         int             mtu, orig_mtu;
1873         ipaddr_t        dst;
1874         boolean_t       disable_pmtud;
1875         ill_t           *ill = ira->ira_ill;
1876         ip_stack_t      *ipst = ill->ill_ipst;
1877         uint_t          hdr_length;
1878         ipha_t          *ipha;
1879 
1880         /* Caller already pulled up everything. */
1881         ipha = (ipha_t *)&icmph[1];
1882         ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
1883             icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
1884         ASSERT(ill != NULL);
1885 
1886         hdr_length = IPH_HDR_LENGTH(ipha);
1887 
1888         /*
1889          * We handle path MTU for source routed packets since the DCE
1890          * is looked up using the final destination.
1891          */
1892         dst = ip_get_dst(ipha);
1893 
1894         dce = dce_lookup_and_add_v4(dst, ipst);
1895         if (dce == NULL) {
1896                 /* Couldn't add a unique one - ENOMEM */
1897                 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
1898                     ntohl(dst)));
1899                 return;
1900         }
1901 
1902         /* Check for MTU discovery advice as described in RFC 1191 */
1903         mtu = ntohs(icmph->icmph_du_mtu);
1904         orig_mtu = mtu;
1905         disable_pmtud = B_FALSE;
1906 
1907         mutex_enter(&dce->dce_lock);
1908         if (dce->dce_flags & DCEF_PMTU)
1909                 old_mtu = dce->dce_pmtu;
1910         else
1911                 old_mtu = ill->ill_mtu;
1912 
1913         if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
1914                 uint32_t length;
1915                 int     i;
1916 
1917                 /*
1918                  * Use the table from RFC 1191 to figure out
1919                  * the next "plateau" based on the length in
1920                  * the original IP packet.
1921                  */
1922                 length = ntohs(ipha->ipha_length);
1923                 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
1924                     uint32_t, length);
1925                 if (old_mtu <= length &&
1926                     old_mtu >= length - hdr_length) {
1927                         /*
1928                          * Handle broken BSD 4.2 systems that
1929                          * return the wrong ipha_length in ICMP
1930                          * errors.
1931                          */
1932                         ip1dbg(("Wrong mtu: sent %d, dce %d\n",
1933                             length, old_mtu));
1934                         length -= hdr_length;
1935                 }
1936                 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
1937                         if (length > icmp_frag_size_table[i])
1938                                 break;
1939                 }
1940                 if (i == A_CNT(icmp_frag_size_table)) {
1941                         /* Smaller than IP_MIN_MTU! */
1942                         ip1dbg(("Too big for packet size %d\n",
1943                             length));
1944                         disable_pmtud = B_TRUE;
1945                         mtu = ipst->ips_ip_pmtu_min;
1946                 } else {
1947                         mtu = icmp_frag_size_table[i];
1948                         ip1dbg(("Calculated mtu %d, packet size %d, "
1949                             "before %d\n", mtu, length, old_mtu));
1950                         if (mtu < ipst->ips_ip_pmtu_min) {
1951                                 mtu = ipst->ips_ip_pmtu_min;
1952                                 disable_pmtud = B_TRUE;
1953                         }
1954                 }
1955         }
1956         if (disable_pmtud)
1957                 dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
1958         else
1959                 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;
1960 
1961         dce->dce_pmtu = MIN(old_mtu, mtu);
1962         /* Prepare to send the new max frag size for the ULP. */
1963         icmph->icmph_du_zero = 0;
1964         icmph->icmph_du_mtu =  htons((uint16_t)dce->dce_pmtu);
1965         DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
1966             dce, int, orig_mtu, int, mtu);
1967 
1968         /* We now have a PMTU for sure */
1969         dce->dce_flags |= DCEF_PMTU;
1970         dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
1971         mutex_exit(&dce->dce_lock);
1972         /*
1973          * After dropping the lock the new value is visible to everyone.
1974          * Then we bump the generation number so any cached values reinspect
1975          * the dce_t.
1976          */
1977         dce_increment_generation(dce);
1978         dce_refrele(dce);
1979 }
1980 
1981 /*
1982  * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
1983  * calls this function.
1984  */
1985 static mblk_t *
1986 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
1987 {
1988         int length;
1989 
1990         ASSERT(mp->b_datap->db_type == M_DATA);
1991 
1992         /* icmp_inbound_v4 has already pulled up the whole error packet */
1993         ASSERT(mp->b_cont == NULL);
1994 
1995         /*
1996          * The length that we want to overlay is the inner header
1997          * and what follows it.
1998          */
1999         length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);
2000 
2001         /*
2002          * Overlay the inner header and whatever follows it over the
2003          * outer header.
2004          */
2005         bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2006 
2007         /* Adjust for what we removed */
2008         mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2009         return (mp);
2010 }
2011 
2012 /*
2013  * Try to pass the ICMP message upstream in case the ULP cares.
2014  *
2015  * If the packet that caused the ICMP error is secure, we send
2016  * it to AH/ESP to make sure that the attached packet has a
2017  * valid association. ipha in the code below points to the
2018  * IP header of the packet that caused the error.
2019  *
2020  * For IPsec cases, we let the next-layer-up (which has access to
2021  * cached policy on the conn_t, or can query the SPD directly)
2022  * subtract out any IPsec overhead if they must.  We therefore make no
2023  * adjustments here for IPsec overhead.
2024  *
2025  * IFN could have been generated locally or by some router.
2026  *
2027  * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2028  * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2029  *          This happens because IP adjusted its value of MTU on an
2030  *          earlier IFN message and could not tell the upper layer,
2031  *          the new adjusted value of MTU e.g. Packet was encrypted
2032  *          or there was not enough information to fanout to upper
2033  *          layers. Thus on the next outbound datagram, ire_send_wire
2034  *          generates the IFN, where IPsec processing has *not* been
2035  *          done.
2036  *
2037  *          Note that we retain ixa_fragsize across IPsec thus once
2038  *          we have picking ixa_fragsize and entered ipsec_out_process we do
2039  *          no change the fragsize even if the path MTU changes before
2040  *          we reach ip_output_post_ipsec.
2041  *
2042  *          In the local case, IRAF_LOOPBACK will be set indicating
2043  *          that IFN was generated locally.
2044  *
2045  * ROUTER : IFN could be secure or non-secure.
2046  *
2047  *          * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2048  *            packet in error has AH/ESP headers to validate the AH/ESP
2049  *            headers. AH/ESP will verify whether there is a valid SA or
2050  *            not and send it back. We will fanout again if we have more
2051  *            data in the packet.
2052  *
2053  *            If the packet in error does not have AH/ESP, we handle it
2054  *            like any other case.
2055  *
2056  *          * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2057  *            up to AH/ESP for validation. AH/ESP will verify whether there is a
2058  *            valid SA or not and send it back. We will fanout again if
2059  *            we have more data in the packet.
2060  *
2061  *            If the packet in error does not have AH/ESP, we handle it
2062  *            like any other case.
2063  *
2064  * The caller must have called icmp_inbound_verify_v4.
2065  */
2066 static void
2067 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2068 {
2069         uint16_t        *up;    /* Pointer to ports in ULP header */
2070         uint32_t        ports;  /* reversed ports for fanout */
2071         ipha_t          ripha;  /* With reversed addresses */
2072         ipha_t          *ipha;  /* Inner IP header */
2073         uint_t          hdr_length; /* Inner IP header length */
2074         tcpha_t         *tcpha;
2075         conn_t          *connp;
2076         ill_t           *ill = ira->ira_ill;
2077         ip_stack_t      *ipst = ill->ill_ipst;
2078         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
2079         ill_t           *rill = ira->ira_rill;
2080 
2081         /* Caller already pulled up everything. */
2082         ipha = (ipha_t *)&icmph[1];
2083         ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2084         ASSERT(mp->b_cont == NULL);
2085 
2086         hdr_length = IPH_HDR_LENGTH(ipha);
2087         ira->ira_protocol = ipha->ipha_protocol;
2088 
2089         /*
2090          * We need a separate IP header with the source and destination
2091          * addresses reversed to do fanout/classification because the ipha in
2092          * the ICMP error is in the form we sent it out.
2093          */
2094         ripha.ipha_src = ipha->ipha_dst;
2095         ripha.ipha_dst = ipha->ipha_src;
2096         ripha.ipha_protocol = ipha->ipha_protocol;
2097         ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;
2098 
2099         ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2100             ripha.ipha_protocol, ntohl(ipha->ipha_src),
2101             ntohl(ipha->ipha_dst),
2102             icmph->icmph_type, icmph->icmph_code));
2103 
2104         switch (ipha->ipha_protocol) {
2105         case IPPROTO_UDP:
2106                 up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2107 
2108                 /* Attempt to find a client stream based on port. */
2109                 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2110                     ntohs(up[0]), ntohs(up[1])));
2111 
2112                 /* Note that we send error to all matches. */
2113                 ira->ira_flags |= IRAF_ICMP_ERROR;
2114                 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2115                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2116                 return;
2117 
2118         case IPPROTO_TCP:
2119                 /*
2120                  * Find a TCP client stream for this packet.
2121                  * Note that we do a reverse lookup since the header is
2122                  * in the form we sent it out.
2123                  */
2124                 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2125                 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2126                     ipst);
2127                 if (connp == NULL)
2128                         goto discard_pkt;
2129 
2130                 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2131                     (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2132                         mp = ipsec_check_inbound_policy(mp, connp,
2133                             ipha, NULL, ira);
2134                         if (mp == NULL) {
2135                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2136                                 /* Note that mp is NULL */
2137                                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2138                                 CONN_DEC_REF(connp);
2139                                 return;
2140                         }
2141                 }
2142 
2143                 ira->ira_flags |= IRAF_ICMP_ERROR;
2144                 ira->ira_ill = ira->ira_rill = NULL;
2145                 if (IPCL_IS_TCP(connp)) {
2146                         SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2147                             connp->conn_recvicmp, connp, ira, SQ_FILL,
2148                             SQTAG_TCP_INPUT_ICMP_ERR);
2149                 } else {
2150                         /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2151                         (connp->conn_recv)(connp, mp, NULL, ira);
2152                         CONN_DEC_REF(connp);
2153                 }
2154                 ira->ira_ill = ill;
2155                 ira->ira_rill = rill;
2156                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2157                 return;
2158 
2159         case IPPROTO_SCTP:
2160                 up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2161                 /* Find a SCTP client stream for this packet. */
2162                 ((uint16_t *)&ports)[0] = up[1];
2163                 ((uint16_t *)&ports)[1] = up[0];
2164 
2165                 ira->ira_flags |= IRAF_ICMP_ERROR;
2166                 ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2167                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2168                 return;
2169 
2170         case IPPROTO_ESP:
2171         case IPPROTO_AH:
2172                 if (!ipsec_loaded(ipss)) {
2173                         ip_proto_not_sup(mp, ira);
2174                         return;
2175                 }
2176 
2177                 if (ipha->ipha_protocol == IPPROTO_ESP)
2178                         mp = ipsecesp_icmp_error(mp, ira);
2179                 else
2180                         mp = ipsecah_icmp_error(mp, ira);
2181                 if (mp == NULL)
2182                         return;
2183 
2184                 /* Just in case ipsec didn't preserve the NULL b_cont */
2185                 if (mp->b_cont != NULL) {
2186                         if (!pullupmsg(mp, -1))
2187                                 goto discard_pkt;
2188                 }
2189 
2190                 /*
2191                  * Note that ira_pktlen and ira_ip_hdr_length are no longer
2192                  * correct, but we don't use them any more here.
2193                  *
2194                  * If succesful, the mp has been modified to not include
2195                  * the ESP/AH header so we can fanout to the ULP's icmp
2196                  * error handler.
2197                  */
2198                 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2199                         goto truncated;
2200 
2201                 /* Verify the modified message before any further processes. */
2202                 ipha = (ipha_t *)mp->b_rptr;
2203                 hdr_length = IPH_HDR_LENGTH(ipha);
2204                 icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2205                 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2206                         freemsg(mp);
2207                         return;
2208                 }
2209 
2210                 icmp_inbound_error_fanout_v4(mp, icmph, ira);
2211                 return;
2212 
2213         case IPPROTO_ENCAP: {
2214                 /* Look for self-encapsulated packets that caused an error */
2215                 ipha_t *in_ipha;
2216 
2217                 /*
2218                  * Caller has verified that length has to be
2219                  * at least the size of IP header.
2220                  */
2221                 ASSERT(hdr_length >= sizeof (ipha_t));
2222                 /*
2223                  * Check the sanity of the inner IP header like
2224                  * we did for the outer header.
2225                  */
2226                 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2227                 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2228                         goto discard_pkt;
2229                 }
2230                 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2231                         goto discard_pkt;
2232                 }
2233                 /* Check for Self-encapsulated tunnels */
2234                 if (in_ipha->ipha_src == ipha->ipha_src &&
2235                     in_ipha->ipha_dst == ipha->ipha_dst) {
2236 
2237                         mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2238                             in_ipha);
2239                         if (mp == NULL)
2240                                 goto discard_pkt;
2241 
2242                         /*
2243                          * Just in case self_encap didn't preserve the NULL
2244                          * b_cont
2245                          */
2246                         if (mp->b_cont != NULL) {
2247                                 if (!pullupmsg(mp, -1))
2248                                         goto discard_pkt;
2249                         }
2250                         /*
2251                          * Note that ira_pktlen and ira_ip_hdr_length are no
2252                          * longer correct, but we don't use them any more here.
2253                          */
2254                         if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2255                                 goto truncated;
2256 
2257                         /*
2258                          * Verify the modified message before any further
2259                          * processes.
2260                          */
2261                         ipha = (ipha_t *)mp->b_rptr;
2262                         hdr_length = IPH_HDR_LENGTH(ipha);
2263                         icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2264                         if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2265                                 freemsg(mp);
2266                                 return;
2267                         }
2268 
2269                         /*
2270                          * The packet in error is self-encapsualted.
2271                          * And we are finding it further encapsulated
2272                          * which we could not have possibly generated.
2273                          */
2274                         if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2275                                 goto discard_pkt;
2276                         }
2277                         icmp_inbound_error_fanout_v4(mp, icmph, ira);
2278                         return;
2279                 }
2280                 /* No self-encapsulated */
2281         }
2282         /* FALLTHROUGH */
2283         case IPPROTO_IPV6:
2284                 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2285                     &ripha.ipha_dst, ipst)) != NULL) {
2286                         ira->ira_flags |= IRAF_ICMP_ERROR;
2287                         connp->conn_recvicmp(connp, mp, NULL, ira);
2288                         CONN_DEC_REF(connp);
2289                         ira->ira_flags &= ~IRAF_ICMP_ERROR;
2290                         return;
2291                 }
2292                 /*
2293                  * No IP tunnel is interested, fallthrough and see
2294                  * if a raw socket will want it.
2295                  */
2296                 /* FALLTHROUGH */
2297         default:
2298                 ira->ira_flags |= IRAF_ICMP_ERROR;
2299                 ip_fanout_proto_v4(mp, &ripha, ira);
2300                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2301                 return;
2302         }
2303         /* NOTREACHED */
2304 discard_pkt:
2305         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2306         ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2307         ip_drop_input("ipIfStatsInDiscards", mp, ill);
2308         freemsg(mp);
2309         return;
2310 
2311 truncated:
2312         /* We pulled up everthing already. Must be truncated */
2313         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2314         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2315         freemsg(mp);
2316 }
2317 
2318 /*
2319  * Common IP options parser.
2320  *
2321  * Setup routine: fill in *optp with options-parsing state, then
2322  * tail-call ipoptp_next to return the first option.
2323  */
2324 uint8_t
2325 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2326 {
2327         uint32_t totallen; /* total length of all options */
2328 
2329         totallen = ipha->ipha_version_and_hdr_length -
2330             (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2331         totallen <<= 2;
2332         optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2333         optp->ipoptp_end = optp->ipoptp_next + totallen;
2334         optp->ipoptp_flags = 0;
2335         return (ipoptp_next(optp));
2336 }
2337 
2338 /* Like above but without an ipha_t */
2339 uint8_t
2340 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2341 {
2342         optp->ipoptp_next = opt;
2343         optp->ipoptp_end = optp->ipoptp_next + totallen;
2344         optp->ipoptp_flags = 0;
2345         return (ipoptp_next(optp));
2346 }
2347 
2348 /*
2349  * Common IP options parser: extract next option.
2350  */
2351 uint8_t
2352 ipoptp_next(ipoptp_t *optp)
2353 {
2354         uint8_t *end = optp->ipoptp_end;
2355         uint8_t *cur = optp->ipoptp_next;
2356         uint8_t opt, len, pointer;
2357 
2358         /*
2359          * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2360          * has been corrupted.
2361          */
2362         ASSERT(cur <= end);
2363 
2364         if (cur == end)
2365                 return (IPOPT_EOL);
2366 
2367         opt = cur[IPOPT_OPTVAL];
2368 
2369         /*
2370          * Skip any NOP options.
2371          */
2372         while (opt == IPOPT_NOP) {
2373                 cur++;
2374                 if (cur == end)
2375                         return (IPOPT_EOL);
2376                 opt = cur[IPOPT_OPTVAL];
2377         }
2378 
2379         if (opt == IPOPT_EOL)
2380                 return (IPOPT_EOL);
2381 
2382         /*
2383          * Option requiring a length.
2384          */
2385         if ((cur + 1) >= end) {
2386                 optp->ipoptp_flags |= IPOPTP_ERROR;
2387                 return (IPOPT_EOL);
2388         }
2389         len = cur[IPOPT_OLEN];
2390         if (len < 2) {
2391                 optp->ipoptp_flags |= IPOPTP_ERROR;
2392                 return (IPOPT_EOL);
2393         }
2394         optp->ipoptp_cur = cur;
2395         optp->ipoptp_len = len;
2396         optp->ipoptp_next = cur + len;
2397         if (cur + len > end) {
2398                 optp->ipoptp_flags |= IPOPTP_ERROR;
2399                 return (IPOPT_EOL);
2400         }
2401 
2402         /*
2403          * For the options which require a pointer field, make sure
2404          * its there, and make sure it points to either something
2405          * inside this option, or the end of the option.
2406          */
2407         pointer = IPOPT_EOL;
2408         switch (opt) {
2409         case IPOPT_RR:
2410         case IPOPT_TS:
2411         case IPOPT_LSRR:
2412         case IPOPT_SSRR:
2413                 if (len <= IPOPT_OFFSET) {
2414                         optp->ipoptp_flags |= IPOPTP_ERROR;
2415                         return (opt);
2416                 }
2417                 pointer = cur[IPOPT_OFFSET];
2418                 if (pointer - 1 > len) {
2419                         optp->ipoptp_flags |= IPOPTP_ERROR;
2420                         return (opt);
2421                 }
2422                 break;
2423         }
2424 
2425         /*
2426          * Sanity check the pointer field based on the type of the
2427          * option.
2428          */
2429         switch (opt) {
2430         case IPOPT_RR:
2431         case IPOPT_SSRR:
2432         case IPOPT_LSRR:
2433                 if (pointer < IPOPT_MINOFF_SR)
2434                         optp->ipoptp_flags |= IPOPTP_ERROR;
2435                 break;
2436         case IPOPT_TS:
2437                 if (pointer < IPOPT_MINOFF_IT)
2438                         optp->ipoptp_flags |= IPOPTP_ERROR;
2439                 /*
2440                  * Note that the Internet Timestamp option also
2441                  * contains two four bit fields (the Overflow field,
2442                  * and the Flag field), which follow the pointer
2443                  * field.  We don't need to check that these fields
2444                  * fall within the length of the option because this
2445                  * was implicitely done above.  We've checked that the
2446                  * pointer value is at least IPOPT_MINOFF_IT, and that
2447                  * it falls within the option.  Since IPOPT_MINOFF_IT >
2448                  * IPOPT_POS_OV_FLG, we don't need the explicit check.
2449                  */
2450                 ASSERT(len > IPOPT_POS_OV_FLG);
2451                 break;
2452         }
2453 
2454         return (opt);
2455 }
2456 
2457 /*
2458  * Use the outgoing IP header to create an IP_OPTIONS option the way
2459  * it was passed down from the application.
2460  *
2461  * This is compatible with BSD in that it returns
2462  * the reverse source route with the final destination
2463  * as the last entry. The first 4 bytes of the option
2464  * will contain the final destination.
2465  */
2466 int
2467 ip_opt_get_user(conn_t *connp, uchar_t *buf)
2468 {
2469         ipoptp_t        opts;
2470         uchar_t         *opt;
2471         uint8_t         optval;
2472         uint8_t         optlen;
2473         uint32_t        len = 0;
2474         uchar_t         *buf1 = buf;
2475         uint32_t        totallen;
2476         ipaddr_t        dst;
2477         ip_pkt_t        *ipp = &connp->conn_xmit_ipp;
2478 
2479         if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2480                 return (0);
2481 
2482         totallen = ipp->ipp_ipv4_options_len;
2483         if (totallen & 0x3)
2484                 return (0);
2485 
2486         buf += IP_ADDR_LEN;     /* Leave room for final destination */
2487         len += IP_ADDR_LEN;
2488         bzero(buf1, IP_ADDR_LEN);
2489 
2490         dst = connp->conn_faddr_v4;
2491 
2492         for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2493             optval != IPOPT_EOL;
2494             optval = ipoptp_next(&opts)) {
2495                 int     off;
2496 
2497                 opt = opts.ipoptp_cur;
2498                 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2499                         break;
2500                 }
2501                 optlen = opts.ipoptp_len;
2502 
2503                 switch (optval) {
2504                 case IPOPT_SSRR:
2505                 case IPOPT_LSRR:
2506 
2507                         /*
2508                          * Insert destination as the first entry in the source
2509                          * route and move down the entries on step.
2510                          * The last entry gets placed at buf1.
2511                          */
2512                         buf[IPOPT_OPTVAL] = optval;
2513                         buf[IPOPT_OLEN] = optlen;
2514                         buf[IPOPT_OFFSET] = optlen;
2515 
2516                         off = optlen - IP_ADDR_LEN;
2517                         if (off < 0) {
2518                                 /* No entries in source route */
2519                                 break;
2520                         }
2521                         /* Last entry in source route if not already set */
2522                         if (dst == INADDR_ANY)
2523                                 bcopy(opt + off, buf1, IP_ADDR_LEN);
2524                         off -= IP_ADDR_LEN;
2525 
2526                         while (off > 0) {
2527                                 bcopy(opt + off,
2528                                     buf + off + IP_ADDR_LEN,
2529                                     IP_ADDR_LEN);
2530                                 off -= IP_ADDR_LEN;
2531                         }
2532                         /* ipha_dst into first slot */
2533                         bcopy(&dst, buf + off + IP_ADDR_LEN,
2534                             IP_ADDR_LEN);
2535                         buf += optlen;
2536                         len += optlen;
2537                         break;
2538 
2539                 default:
2540                         bcopy(opt, buf, optlen);
2541                         buf += optlen;
2542                         len += optlen;
2543                         break;
2544                 }
2545         }
2546 done:
2547         /* Pad the resulting options */
2548         while (len & 0x3) {
2549                 *buf++ = IPOPT_EOL;
2550                 len++;
2551         }
2552         return (len);
2553 }
2554 
2555 /*
2556  * Update any record route or timestamp options to include this host.
2557  * Reverse any source route option.
2558  * This routine assumes that the options are well formed i.e. that they
2559  * have already been checked.
2560  */
2561 static void
2562 icmp_options_update(ipha_t *ipha)
2563 {
2564         ipoptp_t        opts;
2565         uchar_t         *opt;
2566         uint8_t         optval;
2567         ipaddr_t        src;            /* Our local address */
2568         ipaddr_t        dst;
2569 
2570         ip2dbg(("icmp_options_update\n"));
2571         src = ipha->ipha_src;
2572         dst = ipha->ipha_dst;
2573 
2574         for (optval = ipoptp_first(&opts, ipha);
2575             optval != IPOPT_EOL;
2576             optval = ipoptp_next(&opts)) {
2577                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2578                 opt = opts.ipoptp_cur;
2579                 ip2dbg(("icmp_options_update: opt %d, len %d\n",
2580                     optval, opts.ipoptp_len));
2581                 switch (optval) {
2582                         int off1, off2;
2583                 case IPOPT_SSRR:
2584                 case IPOPT_LSRR:
2585                         /*
2586                          * Reverse the source route.  The first entry
2587                          * should be the next to last one in the current
2588                          * source route (the last entry is our address).
2589                          * The last entry should be the final destination.
2590                          */
2591                         off1 = IPOPT_MINOFF_SR - 1;
2592                         off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2593                         if (off2 < 0) {
2594                                 /* No entries in source route */
2595                                 ip1dbg((
2596                                     "icmp_options_update: bad src route\n"));
2597                                 break;
2598                         }
2599                         bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2600                         bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2601                         bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2602                         off2 -= IP_ADDR_LEN;
2603 
2604                         while (off1 < off2) {
2605                                 bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2606                                 bcopy((char *)opt + off2, (char *)opt + off1,
2607                                     IP_ADDR_LEN);
2608                                 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2609                                 off1 += IP_ADDR_LEN;
2610                                 off2 -= IP_ADDR_LEN;
2611                         }
2612                         opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2613                         break;
2614                 }
2615         }
2616 }
2617 
2618 /*
2619  * Process received ICMP Redirect messages.
2620  * Assumes the caller has verified that the headers are in the pulled up mblk.
2621  * Consumes mp.
2622  */
2623 static void
2624 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2625 {
2626         ire_t           *ire, *nire;
2627         ire_t           *prev_ire;
2628         ipaddr_t        src, dst, gateway;
2629         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2630         ipha_t          *inner_ipha;    /* Inner IP header */
2631 
2632         /* Caller already pulled up everything. */
2633         inner_ipha = (ipha_t *)&icmph[1];
2634         src = ipha->ipha_src;
2635         dst = inner_ipha->ipha_dst;
2636         gateway = icmph->icmph_rd_gateway;
2637         /* Make sure the new gateway is reachable somehow. */
2638         ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2639             ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2640         /*
2641          * Make sure we had a route for the dest in question and that
2642          * that route was pointing to the old gateway (the source of the
2643          * redirect packet.)
2644          * We do longest match and then compare ire_gateway_addr below.
2645          */
2646         prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
2647             NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
2648         /*
2649          * Check that
2650          *      the redirect was not from ourselves
2651          *      the new gateway and the old gateway are directly reachable
2652          */
2653         if (prev_ire == NULL || ire == NULL ||
2654             (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2655             (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2656             !(ire->ire_type & IRE_IF_ALL) ||
2657             prev_ire->ire_gateway_addr != src) {
2658                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2659                 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2660                 freemsg(mp);
2661                 if (ire != NULL)
2662                         ire_refrele(ire);
2663                 if (prev_ire != NULL)
2664                         ire_refrele(prev_ire);
2665                 return;
2666         }
2667 
2668         ire_refrele(prev_ire);
2669         ire_refrele(ire);
2670 
2671         /*
2672          * TODO: more precise handling for cases 0, 2, 3, the latter two
2673          * require TOS routing
2674          */
2675         switch (icmph->icmph_code) {
2676         case 0:
2677         case 1:
2678                 /* TODO: TOS specificity for cases 2 and 3 */
2679         case 2:
2680         case 3:
2681                 break;
2682         default:
2683                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2684                 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2685                 freemsg(mp);
2686                 return;
2687         }
2688         /*
2689          * Create a Route Association.  This will allow us to remember that
2690          * someone we believe told us to use the particular gateway.
2691          */
2692         ire = ire_create(
2693             (uchar_t *)&dst,                        /* dest addr */
2694             (uchar_t *)&ip_g_all_ones,              /* mask */
2695             (uchar_t *)&gateway,            /* gateway addr */
2696             IRE_HOST,
2697             NULL,                               /* ill */
2698             ALL_ZONES,
2699             (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2700             NULL,                               /* tsol_gc_t */
2701             ipst);
2702 
2703         if (ire == NULL) {
2704                 freemsg(mp);
2705                 return;
2706         }
2707         nire = ire_add(ire);
2708         /* Check if it was a duplicate entry */
2709         if (nire != NULL && nire != ire) {
2710                 ASSERT(nire->ire_identical_ref > 1);
2711                 ire_delete(nire);
2712                 ire_refrele(nire);
2713                 nire = NULL;
2714         }
2715         ire = nire;
2716         if (ire != NULL) {
2717                 ire_refrele(ire);               /* Held in ire_add */
2718 
2719                 /* tell routing sockets that we received a redirect */
2720                 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2721                     (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2722                     (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2723         }
2724 
2725         /*
2726          * Delete any existing IRE_HOST type redirect ires for this destination.
2727          * This together with the added IRE has the effect of
2728          * modifying an existing redirect.
2729          */
2730         prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2731             ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2732         if (prev_ire != NULL) {
2733                 if (prev_ire ->ire_flags & RTF_DYNAMIC)
2734                         ire_delete(prev_ire);
2735                 ire_refrele(prev_ire);
2736         }
2737 
2738         freemsg(mp);
2739 }
2740 
2741 /*
2742  * Generate an ICMP parameter problem message.
2743  * When called from ip_output side a minimal ip_recv_attr_t needs to be
2744  * constructed by the caller.
2745  */
2746 static void
2747 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2748 {
2749         icmph_t icmph;
2750         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2751 
2752         mp = icmp_pkt_err_ok(mp, ira);
2753         if (mp == NULL)
2754                 return;
2755 
2756         bzero(&icmph, sizeof (icmph_t));
2757         icmph.icmph_type = ICMP_PARAM_PROBLEM;
2758         icmph.icmph_pp_ptr = ptr;
2759         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2760         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2761 }
2762 
2763 /*
2764  * Build and ship an IPv4 ICMP message using the packet data in mp, and
2765  * the ICMP header pointed to by "stuff".  (May be called as writer.)
2766  * Note: assumes that icmp_pkt_err_ok has been called to verify that
2767  * an icmp error packet can be sent.
2768  * Assigns an appropriate source address to the packet. If ipha_dst is
2769  * one of our addresses use it for source. Otherwise let ip_output_simple
2770  * pick the source address.
2771  */
2772 static void
2773 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2774 {
2775         ipaddr_t dst;
2776         icmph_t *icmph;
2777         ipha_t  *ipha;
2778         uint_t  len_needed;
2779         size_t  msg_len;
2780         mblk_t  *mp1;
2781         ipaddr_t src;
2782         ire_t   *ire;
2783         ip_xmit_attr_t ixas;
2784         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2785 
2786         ipha = (ipha_t *)mp->b_rptr;
2787 
2788         bzero(&ixas, sizeof (ixas));
2789         ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2790         ixas.ixa_zoneid = ira->ira_zoneid;
2791         ixas.ixa_ifindex = 0;
2792         ixas.ixa_ipst = ipst;
2793         ixas.ixa_cred = kcred;
2794         ixas.ixa_cpid = NOPID;
2795         ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
2796         ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2797 
2798         if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2799                 /*
2800                  * Apply IPsec based on how IPsec was applied to
2801                  * the packet that had the error.
2802                  *
2803                  * If it was an outbound packet that caused the ICMP
2804                  * error, then the caller will have setup the IRA
2805                  * appropriately.
2806                  */
2807                 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2808                         BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2809                         /* Note: mp already consumed and ip_drop_packet done */
2810                         return;
2811                 }
2812         } else {
2813                 /*
2814                  * This is in clear. The icmp message we are building
2815                  * here should go out in clear, independent of our policy.
2816                  */
2817                 ixas.ixa_flags |= IXAF_NO_IPSEC;
2818         }
2819 
2820         /* Remember our eventual destination */
2821         dst = ipha->ipha_src;
2822 
2823         /*
2824          * If the packet was for one of our unicast addresses, make
2825          * sure we respond with that as the source. Otherwise
2826          * have ip_output_simple pick the source address.
2827          */
2828         ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2829             (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
2830             MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2831         if (ire != NULL) {
2832                 ire_refrele(ire);
2833                 src = ipha->ipha_dst;
2834         } else {
2835                 src = INADDR_ANY;
2836                 ixas.ixa_flags |= IXAF_SET_SOURCE;
2837         }
2838 
2839         /*
2840          * Check if we can send back more then 8 bytes in addition to
2841          * the IP header.  We try to send 64 bytes of data and the internal
2842          * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
2843          */
2844         len_needed = IPH_HDR_LENGTH(ipha);
2845         if (ipha->ipha_protocol == IPPROTO_ENCAP ||
2846             ipha->ipha_protocol == IPPROTO_IPV6) {
2847                 if (!pullupmsg(mp, -1)) {
2848                         BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2849                         ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2850                         freemsg(mp);
2851                         return;
2852                 }
2853                 ipha = (ipha_t *)mp->b_rptr;
2854 
2855                 if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2856                         len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
2857                             len_needed));
2858                 } else {
2859                         ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
2860 
2861                         ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
2862                         len_needed += ip_hdr_length_v6(mp, ip6h);
2863                 }
2864         }
2865         len_needed += ipst->ips_ip_icmp_return;
2866         msg_len = msgdsize(mp);
2867         if (msg_len > len_needed) {
2868                 (void) adjmsg(mp, len_needed - msg_len);
2869                 msg_len = len_needed;
2870         }
2871         mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
2872         if (mp1 == NULL) {
2873                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
2874                 freemsg(mp);
2875                 return;
2876         }
2877         mp1->b_cont = mp;
2878         mp = mp1;
2879 
2880         /*
2881          * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
2882          * node generates be accepted in peace by all on-host destinations.
2883          * If we do NOT assume that all on-host destinations trust
2884          * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
2885          * (Look for IXAF_TRUSTED_ICMP).
2886          */
2887         ixas.ixa_flags |= IXAF_TRUSTED_ICMP;
2888 
2889         ipha = (ipha_t *)mp->b_rptr;
2890         mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
2891         *ipha = icmp_ipha;
2892         ipha->ipha_src = src;
2893         ipha->ipha_dst = dst;
2894         ipha->ipha_ttl = ipst->ips_ip_def_ttl;
2895         msg_len += sizeof (icmp_ipha) + len;
2896         if (msg_len > IP_MAXPACKET) {
2897                 (void) adjmsg(mp, IP_MAXPACKET - msg_len);
2898                 msg_len = IP_MAXPACKET;
2899         }
2900         ipha->ipha_length = htons((uint16_t)msg_len);
2901         icmph = (icmph_t *)&ipha[1];
2902         bcopy(stuff, icmph, len);
2903         icmph->icmph_checksum = 0;
2904         icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
2905         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
2906 
2907         (void) ip_output_simple(mp, &ixas);
2908         ixa_cleanup(&ixas);
2909 }
2910 
2911 /*
2912  * Determine if an ICMP error packet can be sent given the rate limit.
2913  * The limit consists of an average frequency (icmp_pkt_err_interval measured
2914  * in milliseconds) and a burst size. Burst size number of packets can
2915  * be sent arbitrarely closely spaced.
2916  * The state is tracked using two variables to implement an approximate
2917  * token bucket filter:
2918  *      icmp_pkt_err_last - lbolt value when the last burst started
2919  *      icmp_pkt_err_sent - number of packets sent in current burst
2920  */
2921 boolean_t
2922 icmp_err_rate_limit(ip_stack_t *ipst)
2923 {
2924         clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
2925         uint_t refilled; /* Number of packets refilled in tbf since last */
2926         /* Guard against changes by loading into local variable */
2927         uint_t err_interval = ipst->ips_ip_icmp_err_interval;
2928 
2929         if (err_interval == 0)
2930                 return (B_FALSE);
2931 
2932         if (ipst->ips_icmp_pkt_err_last > now) {
2933                 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
2934                 ipst->ips_icmp_pkt_err_last = 0;
2935                 ipst->ips_icmp_pkt_err_sent = 0;
2936         }
2937         /*
2938          * If we are in a burst update the token bucket filter.
2939          * Update the "last" time to be close to "now" but make sure
2940          * we don't loose precision.
2941          */
2942         if (ipst->ips_icmp_pkt_err_sent != 0) {
2943                 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
2944                 if (refilled > ipst->ips_icmp_pkt_err_sent) {
2945                         ipst->ips_icmp_pkt_err_sent = 0;
2946                 } else {
2947                         ipst->ips_icmp_pkt_err_sent -= refilled;
2948                         ipst->ips_icmp_pkt_err_last += refilled * err_interval;
2949                 }
2950         }
2951         if (ipst->ips_icmp_pkt_err_sent == 0) {
2952                 /* Start of new burst */
2953                 ipst->ips_icmp_pkt_err_last = now;
2954         }
2955         if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
2956                 ipst->ips_icmp_pkt_err_sent++;
2957                 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
2958                     ipst->ips_icmp_pkt_err_sent));
2959                 return (B_FALSE);
2960         }
2961         ip1dbg(("icmp_err_rate_limit: dropped\n"));
2962         return (B_TRUE);
2963 }
2964 
2965 /*
2966  * Check if it is ok to send an IPv4 ICMP error packet in
2967  * response to the IPv4 packet in mp.
2968  * Free the message and return null if no
2969  * ICMP error packet should be sent.
2970  */
2971 static mblk_t *
2972 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
2973 {
2974         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2975         icmph_t *icmph;
2976         ipha_t  *ipha;
2977         uint_t  len_needed;
2978 
2979         if (!mp)
2980                 return (NULL);
2981         ipha = (ipha_t *)mp->b_rptr;
2982         if (ip_csum_hdr(ipha)) {
2983                 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
2984                 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
2985                 freemsg(mp);
2986                 return (NULL);
2987         }
2988         if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
2989             ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
2990             CLASSD(ipha->ipha_dst) ||
2991             CLASSD(ipha->ipha_src) ||
2992             (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
2993                 /* Note: only errors to the fragment with offset 0 */
2994                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
2995                 freemsg(mp);
2996                 return (NULL);
2997         }
2998         if (ipha->ipha_protocol == IPPROTO_ICMP) {
2999                 /*
3000                  * Check the ICMP type.  RFC 1122 sez:  don't send ICMP
3001                  * errors in response to any ICMP errors.
3002                  */
3003                 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3004                 if (mp->b_wptr - mp->b_rptr < len_needed) {
3005                         if (!pullupmsg(mp, len_needed)) {
3006                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3007                                 freemsg(mp);
3008                                 return (NULL);
3009                         }
3010                         ipha = (ipha_t *)mp->b_rptr;
3011                 }
3012                 icmph = (icmph_t *)
3013                     (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3014                 switch (icmph->icmph_type) {
3015                 case ICMP_DEST_UNREACHABLE:
3016                 case ICMP_SOURCE_QUENCH:
3017                 case ICMP_TIME_EXCEEDED:
3018                 case ICMP_PARAM_PROBLEM:
3019                 case ICMP_REDIRECT:
3020                         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3021                         freemsg(mp);
3022                         return (NULL);
3023                 default:
3024                         break;
3025                 }
3026         }
3027         /*
3028          * If this is a labeled system, then check to see if we're allowed to
3029          * send a response to this particular sender.  If not, then just drop.
3030          */
3031         if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3032                 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3033                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3034                 freemsg(mp);
3035                 return (NULL);
3036         }
3037         if (icmp_err_rate_limit(ipst)) {
3038                 /*
3039                  * Only send ICMP error packets every so often.
3040                  * This should be done on a per port/source basis,
3041                  * but for now this will suffice.
3042                  */
3043                 freemsg(mp);
3044                 return (NULL);
3045         }
3046         return (mp);
3047 }
3048 
3049 /*
3050  * Called when a packet was sent out the same link that it arrived on.
3051  * Check if it is ok to send a redirect and then send it.
3052  */
3053 void
3054 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
3055     ip_recv_attr_t *ira)
3056 {
3057         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
3058         ipaddr_t        src, nhop;
3059         mblk_t          *mp1;
3060         ire_t           *nhop_ire;
3061 
3062         /*
3063          * Check the source address to see if it originated
3064          * on the same logical subnet it is going back out on.
3065          * If so, we should be able to send it a redirect.
3066          * Avoid sending a redirect if the destination
3067          * is directly connected (i.e., we matched an IRE_ONLINK),
3068          * or if the packet was source routed out this interface.
3069          *
3070          * We avoid sending a redirect if the
3071          * destination is directly connected
3072          * because it is possible that multiple
3073          * IP subnets may have been configured on
3074          * the link, and the source may not
3075          * be on the same subnet as ip destination,
3076          * even though they are on the same
3077          * physical link.
3078          */
3079         if ((ire->ire_type & IRE_ONLINK) ||
3080             ip_source_routed(ipha, ipst))
3081                 return;
3082 
3083         nhop_ire = ire_nexthop(ire);
3084         if (nhop_ire == NULL)
3085                 return;
3086 
3087         nhop = nhop_ire->ire_addr;
3088 
3089         if (nhop_ire->ire_type & IRE_IF_CLONE) {
3090                 ire_t   *ire2;
3091 
3092                 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3093                 mutex_enter(&nhop_ire->ire_lock);
3094                 ire2 = nhop_ire->ire_dep_parent;
3095                 if (ire2 != NULL)
3096                         ire_refhold(ire2);
3097                 mutex_exit(&nhop_ire->ire_lock);
3098                 ire_refrele(nhop_ire);
3099                 nhop_ire = ire2;
3100         }
3101         if (nhop_ire == NULL)
3102                 return;
3103 
3104         ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));
3105 
3106         src = ipha->ipha_src;
3107 
3108         /*
3109          * We look at the interface ire for the nexthop,
3110          * to see if ipha_src is in the same subnet
3111          * as the nexthop.
3112          */
3113         if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3114                 /*
3115                  * The source is directly connected.
3116                  */
3117                 mp1 = copymsg(mp);
3118                 if (mp1 != NULL) {
3119                         icmp_send_redirect(mp1, nhop, ira);
3120                 }
3121         }
3122         ire_refrele(nhop_ire);
3123 }
3124 
3125 /*
3126  * Generate an ICMP redirect message.
3127  */
3128 static void
3129 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3130 {
3131         icmph_t icmph;
3132         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3133 
3134         mp = icmp_pkt_err_ok(mp, ira);
3135         if (mp == NULL)
3136                 return;
3137 
3138         bzero(&icmph, sizeof (icmph_t));
3139         icmph.icmph_type = ICMP_REDIRECT;
3140         icmph.icmph_code = 1;
3141         icmph.icmph_rd_gateway = gateway;
3142         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3143         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3144 }
3145 
3146 /*
3147  * Generate an ICMP time exceeded message.
3148  */
3149 void
3150 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3151 {
3152         icmph_t icmph;
3153         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3154 
3155         mp = icmp_pkt_err_ok(mp, ira);
3156         if (mp == NULL)
3157                 return;
3158 
3159         bzero(&icmph, sizeof (icmph_t));
3160         icmph.icmph_type = ICMP_TIME_EXCEEDED;
3161         icmph.icmph_code = code;
3162         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3163         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3164 }
3165 
3166 /*
3167  * Generate an ICMP unreachable message.
3168  * When called from ip_output side a minimal ip_recv_attr_t needs to be
3169  * constructed by the caller.
3170  */
3171 void
3172 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3173 {
3174         icmph_t icmph;
3175         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3176 
3177         mp = icmp_pkt_err_ok(mp, ira);
3178         if (mp == NULL)
3179                 return;
3180 
3181         bzero(&icmph, sizeof (icmph_t));
3182         icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3183         icmph.icmph_code = code;
3184         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3185         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3186 }
3187 
3188 /*
3189  * Latch in the IPsec state for a stream based the policy in the listener
3190  * and the actions in the ip_recv_attr_t.
3191  * Called directly from TCP and SCTP.
3192  */
3193 boolean_t
3194 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3195 {
3196         ASSERT(lconnp->conn_policy != NULL);
3197         ASSERT(connp->conn_policy == NULL);
3198 
3199         IPPH_REFHOLD(lconnp->conn_policy);
3200         connp->conn_policy = lconnp->conn_policy;
3201 
3202         if (ira->ira_ipsec_action != NULL) {
3203                 if (connp->conn_latch == NULL) {
3204                         connp->conn_latch = iplatch_create();
3205                         if (connp->conn_latch == NULL)
3206                                 return (B_FALSE);
3207                 }
3208                 ipsec_latch_inbound(connp, ira);
3209         }
3210         return (B_TRUE);
3211 }
3212 
3213 /*
3214  * Verify whether or not the IP address is a valid local address.
3215  * Could be a unicast, including one for a down interface.
3216  * If allow_mcbc then a multicast or broadcast address is also
3217  * acceptable.
3218  *
3219  * In the case of a broadcast/multicast address, however, the
3220  * upper protocol is expected to reset the src address
3221  * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3222  * no packets are emitted with broadcast/multicast address as
3223  * source address (that violates hosts requirements RFC 1122)
3224  * The addresses valid for bind are:
3225  *      (1) - INADDR_ANY (0)
3226  *      (2) - IP address of an UP interface
3227  *      (3) - IP address of a DOWN interface
3228  *      (4) - valid local IP broadcast addresses. In this case
3229  *      the conn will only receive packets destined to
3230  *      the specified broadcast address.
3231  *      (5) - a multicast address. In this case
3232  *      the conn will only receive packets destined to
3233  *      the specified multicast address. Note: the
3234  *      application still has to issue an
3235  *      IP_ADD_MEMBERSHIP socket option.
3236  *
3237  * In all the above cases, the bound address must be valid in the current zone.
3238  * When the address is loopback, multicast or broadcast, there might be many
3239  * matching IREs so bind has to look up based on the zone.
3240  */
3241 ip_laddr_t
3242 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3243     ip_stack_t *ipst, boolean_t allow_mcbc)
3244 {
3245         ire_t *src_ire;
3246 
3247         ASSERT(src_addr != INADDR_ANY);
3248 
3249         src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3250             NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);
3251 
3252         /*
3253          * If an address other than in6addr_any is requested,
3254          * we verify that it is a valid address for bind
3255          * Note: Following code is in if-else-if form for
3256          * readability compared to a condition check.
3257          */
3258         if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3259                 /*
3260                  * (2) Bind to address of local UP interface
3261                  */
3262                 ire_refrele(src_ire);
3263                 return (IPVL_UNICAST_UP);
3264         } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3265                 /*
3266                  * (4) Bind to broadcast address
3267                  */
3268                 ire_refrele(src_ire);
3269                 if (allow_mcbc)
3270                         return (IPVL_BCAST);
3271                 else
3272                         return (IPVL_BAD);
3273         } else if (CLASSD(src_addr)) {
3274                 /* (5) bind to multicast address. */
3275                 if (src_ire != NULL)
3276                         ire_refrele(src_ire);
3277 
3278                 if (allow_mcbc)
3279                         return (IPVL_MCAST);
3280                 else
3281                         return (IPVL_BAD);
3282         } else {
3283                 ipif_t *ipif;
3284 
3285                 /*
3286                  * (3) Bind to address of local DOWN interface?
3287                  * (ipif_lookup_addr() looks up all interfaces
3288                  * but we do not get here for UP interfaces
3289                  * - case (2) above)
3290                  */
3291                 if (src_ire != NULL)
3292                         ire_refrele(src_ire);
3293 
3294                 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3295                 if (ipif == NULL)
3296                         return (IPVL_BAD);
3297 
3298                 /* Not a useful source? */
3299                 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3300                         ipif_refrele(ipif);
3301                         return (IPVL_BAD);
3302                 }
3303                 ipif_refrele(ipif);
3304                 return (IPVL_UNICAST_DOWN);
3305         }
3306 }
3307 
3308 /*
3309  * Insert in the bind fanout for IPv4 and IPv6.
3310  * The caller should already have used ip_laddr_verify_v*() before calling
3311  * this.
3312  */
3313 int
3314 ip_laddr_fanout_insert(conn_t *connp)
3315 {
3316         int             error;
3317 
3318         /*
3319          * Allow setting new policies. For example, disconnects result
3320          * in us being called. As we would have set conn_policy_cached
3321          * to B_TRUE before, we should set it to B_FALSE, so that policy
3322          * can change after the disconnect.
3323          */
3324         connp->conn_policy_cached = B_FALSE;
3325 
3326         error = ipcl_bind_insert(connp);
3327         if (error != 0) {
3328                 if (connp->conn_anon_port) {
3329                         (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3330                             connp->conn_mlp_type, connp->conn_proto,
3331                             ntohs(connp->conn_lport), B_FALSE);
3332                 }
3333                 connp->conn_mlp_type = mlptSingle;
3334         }
3335         return (error);
3336 }
3337 
3338 /*
3339  * Verify that both the source and destination addresses are valid. If
3340  * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3341  * i.e. have no route to it.  Protocols like TCP want to verify destination
3342  * reachability, while tunnels do not.
3343  *
3344  * Determine the route, the interface, and (optionally) the source address
3345  * to use to reach a given destination.
3346  * Note that we allow connect to broadcast and multicast addresses when
3347  * IPDF_ALLOW_MCBC is set.
3348  * first_hop and dst_addr are normally the same, but if source routing
3349  * they will differ; in that case the first_hop is what we'll use for the
3350  * routing lookup but the dce and label checks will be done on dst_addr,
3351  *
3352  * If uinfo is set, then we fill in the best available information
3353  * we have for the destination. This is based on (in priority order) any
3354  * metrics and path MTU stored in a dce_t, route metrics, and finally the
3355  * ill_mtu/ill_mc_mtu.
3356  *
3357  * Tsol note: If we have a source route then dst_addr != firsthop. But we
3358  * always do the label check on dst_addr.
3359  */
3360 int
3361 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3362     ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3363 {
3364         ire_t           *ire = NULL;
3365         int             error = 0;
3366         ipaddr_t        setsrc;                         /* RTF_SETSRC */
3367         zoneid_t        zoneid = ixa->ixa_zoneid;    /* Honors SO_ALLZONES */
3368         ip_stack_t      *ipst = ixa->ixa_ipst;
3369         dce_t           *dce;
3370         uint_t          pmtu;
3371         uint_t          generation;
3372         nce_t           *nce;
3373         ill_t           *ill = NULL;
3374         boolean_t       multirt = B_FALSE;
3375 
3376         ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
3377 
3378         /*
3379          * We never send to zero; the ULPs map it to the loopback address.
3380          * We can't allow it since we use zero to mean unitialized in some
3381          * places.
3382          */
3383         ASSERT(dst_addr != INADDR_ANY);
3384 
3385         if (is_system_labeled()) {
3386                 ts_label_t *tsl = NULL;
3387 
3388                 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3389                     mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3390                 if (error != 0)
3391                         return (error);
3392                 if (tsl != NULL) {
3393                         /* Update the label */
3394                         ip_xmit_attr_replace_tsl(ixa, tsl);
3395                 }
3396         }
3397 
3398         setsrc = INADDR_ANY;
3399         /*
3400          * Select a route; For IPMP interfaces, we would only select
3401          * a "hidden" route (i.e., going through a specific under_ill)
3402          * if ixa_ifindex has been specified.
3403          */
3404         ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
3405             &generation, &setsrc, &error, &multirt);
3406         ASSERT(ire != NULL);    /* IRE_NOROUTE if none found */
3407         if (error != 0)
3408                 goto bad_addr;
3409 
3410         /*
3411          * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3412          * If IPDF_VERIFY_DST is set, the destination must be reachable;
3413          * Otherwise the destination needn't be reachable.
3414          *
3415          * If we match on a reject or black hole, then we've got a
3416          * local failure.  May as well fail out the connect() attempt,
3417          * since it's never going to succeed.
3418          */
3419         if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3420                 /*
3421                  * If we're verifying destination reachability, we always want
3422                  * to complain here.
3423                  *
3424                  * If we're not verifying destination reachability but the
3425                  * destination has a route, we still want to fail on the
3426                  * temporary address and broadcast address tests.
3427                  *
3428                  * In both cases do we let the code continue so some reasonable
3429                  * information is returned to the caller. That enables the
3430                  * caller to use (and even cache) the IRE. conn_ip_ouput will
3431                  * use the generation mismatch path to check for the unreachable
3432                  * case thereby avoiding any specific check in the main path.
3433                  */
3434                 ASSERT(generation == IRE_GENERATION_VERIFY);
3435                 if (flags & IPDF_VERIFY_DST) {
3436                         /*
3437                          * Set errno but continue to set up ixa_ire to be
3438                          * the RTF_REJECT|RTF_BLACKHOLE IRE.
3439                          * That allows callers to use ip_output to get an
3440                          * ICMP error back.
3441                          */
3442                         if (!(ire->ire_type & IRE_HOST))
3443                                 error = ENETUNREACH;
3444                         else
3445                                 error = EHOSTUNREACH;
3446                 }
3447         }
3448 
3449         if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3450             !(flags & IPDF_ALLOW_MCBC)) {
3451                 ire_refrele(ire);
3452                 ire = ire_reject(ipst, B_FALSE);
3453                 generation = IRE_GENERATION_VERIFY;
3454                 error = ENETUNREACH;
3455         }
3456 
3457         /* Cache things */
3458         if (ixa->ixa_ire != NULL)
3459                 ire_refrele_notr(ixa->ixa_ire);
3460 #ifdef DEBUG
3461         ire_refhold_notr(ire);
3462         ire_refrele(ire);
3463 #endif
3464         ixa->ixa_ire = ire;
3465         ixa->ixa_ire_generation = generation;
3466 
3467         /*
3468          * Ensure that ixa_dce is always set any time that ixa_ire is set,
3469          * since some callers will send a packet to conn_ip_output() even if
3470          * there's an error.
3471          */
3472         if (flags & IPDF_UNIQUE_DCE) {
3473                 /* Fallback to the default dce if allocation fails */
3474                 dce = dce_lookup_and_add_v4(dst_addr, ipst);
3475                 if (dce != NULL)
3476                         generation = dce->dce_generation;
3477                 else
3478                         dce = dce_lookup_v4(dst_addr, ipst, &generation);
3479         } else {
3480                 dce = dce_lookup_v4(dst_addr, ipst, &generation);
3481         }
3482         ASSERT(dce != NULL);
3483         if (ixa->ixa_dce != NULL)
3484                 dce_refrele_notr(ixa->ixa_dce);
3485 #ifdef DEBUG
3486         dce_refhold_notr(dce);
3487         dce_refrele(dce);
3488 #endif
3489         ixa->ixa_dce = dce;
3490         ixa->ixa_dce_generation = generation;
3491 
3492         /*
3493          * For multicast with multirt we have a flag passed back from
3494          * ire_lookup_multi_ill_v4 since we don't have an IRE for each
3495          * possible multicast address.
3496          * We also need a flag for multicast since we can't check
3497          * whether RTF_MULTIRT is set in ixa_ire for multicast.
3498          */
3499         if (multirt) {
3500                 ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3501                 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3502         } else {
3503                 ixa->ixa_postfragfn = ire->ire_postfragfn;
3504                 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3505         }
3506         if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3507                 /* Get an nce to cache. */
3508                 nce = ire_to_nce(ire, firsthop, NULL);
3509                 if (nce == NULL) {
3510                         /* Allocation failure? */
3511                         ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3512                 } else {
3513                         if (ixa->ixa_nce != NULL)
3514                                 nce_refrele(ixa->ixa_nce);
3515                         ixa->ixa_nce = nce;
3516                 }
3517         }
3518 
3519         /*
3520          * If the source address is a loopback address, the
3521          * destination had best be local or multicast.
3522          * If we are sending to an IRE_LOCAL using a loopback source then
3523          * it had better be the same zoneid.
3524          */
3525         if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3526                 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3527                         ire = NULL;     /* Stored in ixa_ire */
3528                         error = EADDRNOTAVAIL;
3529                         goto bad_addr;
3530                 }
3531                 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3532                         ire = NULL;     /* Stored in ixa_ire */
3533                         error = EADDRNOTAVAIL;
3534                         goto bad_addr;
3535                 }
3536         }
3537         if (ire->ire_type & IRE_BROADCAST) {
3538                 /*
3539                  * If the ULP didn't have a specified source, then we
3540                  * make sure we reselect the source when sending
3541                  * broadcasts out different interfaces.
3542                  */
3543                 if (flags & IPDF_SELECT_SRC)
3544                         ixa->ixa_flags |= IXAF_SET_SOURCE;
3545                 else
3546                         ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3547         }
3548 
3549         /*
3550          * Does the caller want us to pick a source address?
3551          */
3552         if (flags & IPDF_SELECT_SRC) {
3553                 ipaddr_t        src_addr;
3554 
3555                 /*
3556                  * We use use ire_nexthop_ill to avoid the under ipmp
3557                  * interface for source address selection. Note that for ipmp
3558                  * probe packets, ixa_ifindex would have been specified, and
3559                  * the ip_select_route() invocation would have picked an ire
3560                  * will ire_ill pointing at an under interface.
3561                  */
3562                 ill = ire_nexthop_ill(ire);
3563 
3564                 /* If unreachable we have no ill but need some source */
3565                 if (ill == NULL) {
3566                         src_addr = htonl(INADDR_LOOPBACK);
3567                         /* Make sure we look for a better source address */
3568                         generation = SRC_GENERATION_VERIFY;
3569                 } else {
3570                         error = ip_select_source_v4(ill, setsrc, dst_addr,
3571                             ixa->ixa_multicast_ifaddr, zoneid,
3572                             ipst, &src_addr, &generation, NULL);
3573                         if (error != 0) {
3574                                 ire = NULL;     /* Stored in ixa_ire */
3575                                 goto bad_addr;
3576                         }
3577                 }
3578 
3579                 /*
3580                  * We allow the source address to to down.
3581                  * However, we check that we don't use the loopback address
3582                  * as a source when sending out on the wire.
3583                  */
3584                 if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3585                     !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3586                     !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3587                         ire = NULL;     /* Stored in ixa_ire */
3588                         error = EADDRNOTAVAIL;
3589                         goto bad_addr;
3590                 }
3591 
3592                 *src_addrp = src_addr;
3593                 ixa->ixa_src_generation = generation;
3594         }
3595 
3596         /*
3597          * Make sure we don't leave an unreachable ixa_nce in place
3598          * since ip_select_route is used when we unplumb i.e., remove
3599          * references on ixa_ire, ixa_nce, and ixa_dce.
3600          */
3601         nce = ixa->ixa_nce;
3602         if (nce != NULL && nce->nce_is_condemned) {
3603                 nce_refrele(nce);
3604                 ixa->ixa_nce = NULL;
3605                 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3606         }
3607 
3608         /*
3609          * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3610          * However, we can't do it for IPv4 multicast or broadcast.
3611          */
3612         if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3613                 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3614 
3615         /*
3616          * Set initial value for fragmentation limit. Either conn_ip_output
3617          * or ULP might updates it when there are routing changes.
3618          * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3619          */
3620         pmtu = ip_get_pmtu(ixa);
3621         ixa->ixa_fragsize = pmtu;
3622         /* Make sure ixa_fragsize and ixa_pmtu remain identical */
3623         if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3624                 ixa->ixa_pmtu = pmtu;
3625 
3626         /*
3627          * Extract information useful for some transports.
3628          * First we look for DCE metrics. Then we take what we have in
3629          * the metrics in the route, where the offlink is used if we have
3630          * one.
3631          */
3632         if (uinfo != NULL) {
3633                 bzero(uinfo, sizeof (*uinfo));
3634 
3635                 if (dce->dce_flags & DCEF_UINFO)
3636                         *uinfo = dce->dce_uinfo;
3637 
3638                 rts_merge_metrics(uinfo, &ire->ire_metrics);
3639 
3640                 /* Allow ire_metrics to decrease the path MTU from above */
3641                 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3642                         uinfo->iulp_mtu = pmtu;
3643 
3644                 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3645                 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3646                 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3647         }
3648 
3649         if (ill != NULL)
3650                 ill_refrele(ill);
3651 
3652         return (error);
3653 
3654 bad_addr:
3655         if (ire != NULL)
3656                 ire_refrele(ire);
3657 
3658         if (ill != NULL)
3659                 ill_refrele(ill);
3660 
3661         /*
3662          * Make sure we don't leave an unreachable ixa_nce in place
3663          * since ip_select_route is used when we unplumb i.e., remove
3664          * references on ixa_ire, ixa_nce, and ixa_dce.
3665          */
3666         nce = ixa->ixa_nce;
3667         if (nce != NULL && nce->nce_is_condemned) {
3668                 nce_refrele(nce);
3669                 ixa->ixa_nce = NULL;
3670                 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3671         }
3672 
3673         return (error);
3674 }
3675 
3676 
3677 /*
3678  * Get the base MTU for the case when path MTU discovery is not used.
3679  * Takes the MTU of the IRE into account.
3680  */
3681 uint_t
3682 ip_get_base_mtu(ill_t *ill, ire_t *ire)
3683 {
3684         uint_t mtu;
3685         uint_t iremtu = ire->ire_metrics.iulp_mtu;
3686 
3687         if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST))
3688                 mtu = ill->ill_mc_mtu;
3689         else
3690                 mtu = ill->ill_mtu;
3691 
3692         if (iremtu != 0 && iremtu < mtu)
3693                 mtu = iremtu;
3694 
3695         return (mtu);
3696 }
3697 
3698 /*
3699  * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3700  * Assumes that ixa_ire, dce, and nce have already been set up.
3701  *
3702  * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3703  * We avoid path MTU discovery if it is disabled with ndd.
3704  * Furtermore, if the path MTU is too small, then we don't set DF for IPv4.
3705  *
3706  * NOTE: We also used to turn it off for source routed packets. That
3707  * is no longer required since the dce is per final destination.
3708  */
3709 uint_t
3710 ip_get_pmtu(ip_xmit_attr_t *ixa)
3711 {
3712         ip_stack_t      *ipst = ixa->ixa_ipst;
3713         dce_t           *dce;
3714         nce_t           *nce;
3715         ire_t           *ire;
3716         uint_t          pmtu;
3717 
3718         ire = ixa->ixa_ire;
3719         dce = ixa->ixa_dce;
3720         nce = ixa->ixa_nce;
3721 
3722         /*
3723          * If path MTU discovery has been turned off by ndd, then we ignore
3724          * any dce_pmtu and for IPv4 we will not set DF.
3725          */
3726         if (!ipst->ips_ip_path_mtu_discovery)
3727                 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3728 
3729         pmtu = IP_MAXPACKET;
3730         /*
3731          * Decide whether whether IPv4 sets DF
3732          * For IPv6 "no DF" means to use the 1280 mtu
3733          */
3734         if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3735                 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3736         } else {
3737                 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3738                 if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3739                         pmtu = IPV6_MIN_MTU;
3740         }
3741 
3742         /* Check if the PMTU is to old before we use it */
3743         if ((dce->dce_flags & DCEF_PMTU) &&
3744             TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3745             ipst->ips_ip_pathmtu_interval) {
3746                 /*
3747                  * Older than 20 minutes. Drop the path MTU information.
3748                  */
3749                 mutex_enter(&dce->dce_lock);
3750                 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3751                 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3752                 mutex_exit(&dce->dce_lock);
3753                 dce_increment_generation(dce);
3754         }
3755 
3756         /* The metrics on the route can lower the path MTU */
3757         if (ire->ire_metrics.iulp_mtu != 0 &&
3758             ire->ire_metrics.iulp_mtu < pmtu)
3759                 pmtu = ire->ire_metrics.iulp_mtu;
3760 
3761         /*
3762          * If the path MTU is smaller than some minimum, we still use dce_pmtu
3763          * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3764          * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3765          */
3766         if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3767                 if (dce->dce_flags & DCEF_PMTU) {
3768                         if (dce->dce_pmtu < pmtu)
3769                                 pmtu = dce->dce_pmtu;
3770 
3771                         if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3772                                 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3773                                 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3774                         } else {
3775                                 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3776                                 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3777                         }
3778                 } else {
3779                         ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3780                         ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3781                 }
3782         }
3783 
3784         /*
3785          * If we have an IRE_LOCAL we use the loopback mtu instead of
3786          * the ill for going out the wire i.e., IRE_LOCAL gets the same
3787          * mtu as IRE_LOOPBACK.
3788          */
3789         if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3790                 uint_t loopback_mtu;
3791 
3792                 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3793                     ip_loopback_mtu_v6plus : ip_loopback_mtuplus;
3794 
3795                 if (loopback_mtu < pmtu)
3796                         pmtu = loopback_mtu;
3797         } else if (nce != NULL) {
3798                 /*
3799                  * Make sure we don't exceed the interface MTU.
3800                  * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3801                  * an ill. We'd use the above IP_MAXPACKET in that case just
3802                  * to tell the transport something larger than zero.
3803                  */
3804                 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) {
3805                         if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu)
3806                                 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu;
3807                         if (nce->nce_common->ncec_ill != nce->nce_ill &&
3808                             nce->nce_ill->ill_mc_mtu < pmtu) {
3809                                 /*
3810                                  * for interfaces in an IPMP group, the mtu of
3811                                  * the nce_ill (under_ill) could be different
3812                                  * from the mtu of the ncec_ill, so we take the
3813                                  * min of the two.
3814                                  */
3815                                 pmtu = nce->nce_ill->ill_mc_mtu;
3816                         }
3817                 } else {
3818                         if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3819                                 pmtu = nce->nce_common->ncec_ill->ill_mtu;
3820                         if (nce->nce_common->ncec_ill != nce->nce_ill &&
3821                             nce->nce_ill->ill_mtu < pmtu) {
3822                                 /*
3823                                  * for interfaces in an IPMP group, the mtu of
3824                                  * the nce_ill (under_ill) could be different
3825                                  * from the mtu of the ncec_ill, so we take the
3826                                  * min of the two.
3827                                  */
3828                                 pmtu = nce->nce_ill->ill_mtu;
3829                         }
3830                 }
3831         }
3832 
3833         /*
3834          * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3835          * Only applies to IPv6.
3836          */
3837         if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3838                 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3839                         switch (ixa->ixa_use_min_mtu) {
3840                         case IPV6_USE_MIN_MTU_MULTICAST:
3841                                 if (ire->ire_type & IRE_MULTICAST)
3842                                         pmtu = IPV6_MIN_MTU;
3843                                 break;
3844                         case IPV6_USE_MIN_MTU_ALWAYS:
3845                                 pmtu = IPV6_MIN_MTU;
3846                                 break;
3847                         case IPV6_USE_MIN_MTU_NEVER:
3848                                 break;
3849                         }
3850                 } else {
3851                         /* Default is IPV6_USE_MIN_MTU_MULTICAST */
3852                         if (ire->ire_type & IRE_MULTICAST)
3853                                 pmtu = IPV6_MIN_MTU;
3854                 }
3855         }
3856 
3857         /*
3858          * For multirouted IPv6 packets, the IP layer will insert a 8-byte
3859          * fragment header in every packet. We compensate for those cases by
3860          * returning a smaller path MTU to the ULP.
3861          *
3862          * In the case of CGTP then ip_output will add a fragment header.
3863          * Make sure there is room for it by telling a smaller number
3864          * to the transport.
3865          *
3866          * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
3867          * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
3868          * which is the size of the packets it can send.
3869          */
3870         if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3871                 if ((ire->ire_flags & RTF_MULTIRT) ||
3872                     (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
3873                         pmtu -= sizeof (ip6_frag_t);
3874                         ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
3875                 }
3876         }
3877 
3878         return (pmtu);
3879 }
3880 
3881 /*
3882  * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
3883  * the final piece where we don't.  Return a pointer to the first mblk in the
3884  * result, and update the pointer to the next mblk to chew on.  If anything
3885  * goes wrong (i.e., dupb fails), we waste everything in sight and return a
3886  * NULL pointer.
3887  */
3888 mblk_t *
3889 ip_carve_mp(mblk_t **mpp, ssize_t len)
3890 {
3891         mblk_t  *mp0;
3892         mblk_t  *mp1;
3893         mblk_t  *mp2;
3894 
3895         if (!len || !mpp || !(mp0 = *mpp))
3896                 return (NULL);
3897         /* If we aren't going to consume the first mblk, we need a dup. */
3898         if (mp0->b_wptr - mp0->b_rptr > len) {
3899                 mp1 = dupb(mp0);
3900                 if (mp1) {
3901                         /* Partition the data between the two mblks. */
3902                         mp1->b_wptr = mp1->b_rptr + len;
3903                         mp0->b_rptr = mp1->b_wptr;
3904                         /*
3905                          * after adjustments if mblk not consumed is now
3906                          * unaligned, try to align it. If this fails free
3907                          * all messages and let upper layer recover.
3908                          */
3909                         if (!OK_32PTR(mp0->b_rptr)) {
3910                                 if (!pullupmsg(mp0, -1)) {
3911                                         freemsg(mp0);
3912                                         freemsg(mp1);
3913                                         *mpp = NULL;
3914                                         return (NULL);
3915                                 }
3916                         }
3917                 }
3918                 return (mp1);
3919         }
3920         /* Eat through as many mblks as we need to get len bytes. */
3921         len -= mp0->b_wptr - mp0->b_rptr;
3922         for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
3923                 if (mp2->b_wptr - mp2->b_rptr > len) {
3924                         /*
3925                          * We won't consume the entire last mblk.  Like
3926                          * above, dup and partition it.
3927                          */
3928                         mp1->b_cont = dupb(mp2);
3929                         mp1 = mp1->b_cont;
3930                         if (!mp1) {
3931                                 /*
3932                                  * Trouble.  Rather than go to a lot of
3933                                  * trouble to clean up, we free the messages.
3934                                  * This won't be any worse than losing it on
3935                                  * the wire.
3936                                  */
3937                                 freemsg(mp0);
3938                                 freemsg(mp2);
3939                                 *mpp = NULL;
3940                                 return (NULL);
3941                         }
3942                         mp1->b_wptr = mp1->b_rptr + len;
3943                         mp2->b_rptr = mp1->b_wptr;
3944                         /*
3945                          * after adjustments if mblk not consumed is now
3946                          * unaligned, try to align it. If this fails free
3947                          * all messages and let upper layer recover.
3948                          */
3949                         if (!OK_32PTR(mp2->b_rptr)) {
3950                                 if (!pullupmsg(mp2, -1)) {
3951                                         freemsg(mp0);
3952                                         freemsg(mp2);
3953                                         *mpp = NULL;
3954                                         return (NULL);
3955                                 }
3956                         }
3957                         *mpp = mp2;
3958                         return (mp0);
3959                 }
3960                 /* Decrement len by the amount we just got. */
3961                 len -= mp2->b_wptr - mp2->b_rptr;
3962         }
3963         /*
3964          * len should be reduced to zero now.  If not our caller has
3965          * screwed up.
3966          */
3967         if (len) {
3968                 /* Shouldn't happen! */
3969                 freemsg(mp0);
3970                 *mpp = NULL;
3971                 return (NULL);
3972         }
3973         /*
3974          * We consumed up to exactly the end of an mblk.  Detach the part
3975          * we are returning from the rest of the chain.
3976          */
3977         mp1->b_cont = NULL;
3978         *mpp = mp2;
3979         return (mp0);
3980 }
3981 
3982 /* The ill stream is being unplumbed. Called from ip_close */
3983 int
3984 ip_modclose(ill_t *ill)
3985 {
3986         boolean_t success;
3987         ipsq_t  *ipsq;
3988         ipif_t  *ipif;
3989         queue_t *q = ill->ill_rq;
3990         ip_stack_t      *ipst = ill->ill_ipst;
3991         int     i;
3992         arl_ill_common_t *ai = ill->ill_common;
3993 
3994         /*
3995          * The punlink prior to this may have initiated a capability
3996          * negotiation. But ipsq_enter will block until that finishes or
3997          * times out.
3998          */
3999         success = ipsq_enter(ill, B_FALSE, NEW_OP);
4000 
4001         /*
4002          * Open/close/push/pop is guaranteed to be single threaded
4003          * per stream by STREAMS. FS guarantees that all references
4004          * from top are gone before close is called. So there can't
4005          * be another close thread that has set CONDEMNED on this ill.
4006          * and cause ipsq_enter to return failure.
4007          */
4008         ASSERT(success);
4009         ipsq = ill->ill_phyint->phyint_ipsq;
4010 
4011         /*
4012          * Mark it condemned. No new reference will be made to this ill.
4013          * Lookup functions will return an error. Threads that try to
4014          * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4015          * that the refcnt will drop down to zero.
4016          */
4017         mutex_enter(&ill->ill_lock);
4018         ill->ill_state_flags |= ILL_CONDEMNED;
4019         for (ipif = ill->ill_ipif; ipif != NULL;
4020             ipif = ipif->ipif_next) {
4021                 ipif->ipif_state_flags |= IPIF_CONDEMNED;
4022         }
4023         /*
4024          * Wake up anybody waiting to enter the ipsq. ipsq_enter
4025          * returns  error if ILL_CONDEMNED is set
4026          */
4027         cv_broadcast(&ill->ill_cv);
4028         mutex_exit(&ill->ill_lock);
4029 
4030         /*
4031          * Send all the deferred DLPI messages downstream which came in
4032          * during the small window right before ipsq_enter(). We do this
4033          * without waiting for the ACKs because all the ACKs for M_PROTO
4034          * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4035          */
4036         ill_dlpi_send_deferred(ill);
4037 
4038         /*
4039          * Shut down fragmentation reassembly.
4040          * ill_frag_timer won't start a timer again.
4041          * Now cancel any existing timer
4042          */
4043         (void) untimeout(ill->ill_frag_timer_id);
4044         (void) ill_frag_timeout(ill, 0);
4045 
4046         /*
4047          * Call ill_delete to bring down the ipifs, ilms and ill on
4048          * this ill. Then wait for the refcnts to drop to zero.
4049          * ill_is_freeable checks whether the ill is really quiescent.
4050          * Then make sure that threads that are waiting to enter the
4051          * ipsq have seen the error returned by ipsq_enter and have
4052          * gone away. Then we call ill_delete_tail which does the
4053          * DL_UNBIND_REQ with the driver and then qprocsoff.
4054          */
4055         ill_delete(ill);
4056         mutex_enter(&ill->ill_lock);
4057         while (!ill_is_freeable(ill))
4058                 cv_wait(&ill->ill_cv, &ill->ill_lock);
4059 
4060         while (ill->ill_waiters)
4061                 cv_wait(&ill->ill_cv, &ill->ill_lock);
4062 
4063         mutex_exit(&ill->ill_lock);
4064 
4065         /*
4066          * ill_delete_tail drops reference on ill_ipst, but we need to keep
4067          * it held until the end of the function since the cleanup
4068          * below needs to be able to use the ip_stack_t.
4069          */
4070         netstack_hold(ipst->ips_netstack);
4071 
4072         /* qprocsoff is done via ill_delete_tail */
4073         ill_delete_tail(ill);
4074         /*
4075          * synchronously wait for arp stream to unbind. After this, we
4076          * cannot get any data packets up from the driver.
4077          */
4078         arp_unbind_complete(ill);
4079         ASSERT(ill->ill_ipst == NULL);
4080 
4081         /*
4082          * Walk through all conns and qenable those that have queued data.
4083          * Close synchronization needs this to
4084          * be done to ensure that all upper layers blocked
4085          * due to flow control to the closing device
4086          * get unblocked.
4087          */
4088         ip1dbg(("ip_wsrv: walking\n"));
4089         for (i = 0; i < TX_FANOUT_SIZE; i++) {
4090                 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4091         }
4092 
4093         /*
4094          * ai can be null if this is an IPv6 ill, or if the IPv4
4095          * stream is being torn down before ARP was plumbed (e.g.,
4096          * /sbin/ifconfig plumbing a stream twice, and encountering
4097          * an error
4098          */
4099         if (ai != NULL) {
4100                 ASSERT(!ill->ill_isv6);
4101                 mutex_enter(&ai->ai_lock);
4102                 ai->ai_ill = NULL;
4103                 if (ai->ai_arl == NULL) {
4104                         mutex_destroy(&ai->ai_lock);
4105                         kmem_free(ai, sizeof (*ai));
4106                 } else {
4107                         cv_signal(&ai->ai_ill_unplumb_done);
4108                         mutex_exit(&ai->ai_lock);
4109                 }
4110         }
4111 
4112         mutex_enter(&ipst->ips_ip_mi_lock);
4113         mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4114         mutex_exit(&ipst->ips_ip_mi_lock);
4115 
4116         /*
4117          * credp could be null if the open didn't succeed and ip_modopen
4118          * itself calls ip_close.
4119          */
4120         if (ill->ill_credp != NULL)
4121                 crfree(ill->ill_credp);
4122 
4123         mutex_destroy(&ill->ill_saved_ire_lock);
4124         mutex_destroy(&ill->ill_lock);
4125         rw_destroy(&ill->ill_mcast_lock);
4126         mutex_destroy(&ill->ill_mcast_serializer);
4127         list_destroy(&ill->ill_nce);
4128 
4129         /*
4130          * Now we are done with the module close pieces that
4131          * need the netstack_t.
4132          */
4133         netstack_rele(ipst->ips_netstack);
4134 
4135         mi_close_free((IDP)ill);
4136         q->q_ptr = WR(q)->q_ptr = NULL;
4137 
4138         ipsq_exit(ipsq);
4139 
4140         return (0);
4141 }
4142 
4143 /*
4144  * This is called as part of close() for IP, UDP, ICMP, and RTS
4145  * in order to quiesce the conn.
4146  */
4147 void
4148 ip_quiesce_conn(conn_t *connp)
4149 {
4150         boolean_t       drain_cleanup_reqd = B_FALSE;
4151         boolean_t       conn_ioctl_cleanup_reqd = B_FALSE;
4152         boolean_t       ilg_cleanup_reqd = B_FALSE;
4153         ip_stack_t      *ipst;
4154 
4155         ASSERT(!IPCL_IS_TCP(connp));
4156         ipst = connp->conn_netstack->netstack_ip;
4157 
4158         /*
4159          * Mark the conn as closing, and this conn must not be
4160          * inserted in future into any list. Eg. conn_drain_insert(),
4161          * won't insert this conn into the conn_drain_list.
4162          *
4163          * conn_idl, and conn_ilg cannot get set henceforth.
4164          */
4165         mutex_enter(&connp->conn_lock);
4166         ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4167         connp->conn_state_flags |= CONN_CLOSING;
4168         if (connp->conn_idl != NULL)
4169                 drain_cleanup_reqd = B_TRUE;
4170         if (connp->conn_oper_pending_ill != NULL)
4171                 conn_ioctl_cleanup_reqd = B_TRUE;
4172         if (connp->conn_dhcpinit_ill != NULL) {
4173                 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4174                 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
4175                 ill_set_inputfn(connp->conn_dhcpinit_ill);
4176                 connp->conn_dhcpinit_ill = NULL;
4177         }
4178         if (connp->conn_ilg != NULL)
4179                 ilg_cleanup_reqd = B_TRUE;
4180         mutex_exit(&connp->conn_lock);
4181 
4182         if (conn_ioctl_cleanup_reqd)
4183                 conn_ioctl_cleanup(connp);
4184 
4185         if (is_system_labeled() && connp->conn_anon_port) {
4186                 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4187                     connp->conn_mlp_type, connp->conn_proto,
4188                     ntohs(connp->conn_lport), B_FALSE);
4189                 connp->conn_anon_port = 0;
4190         }
4191         connp->conn_mlp_type = mlptSingle;
4192 
4193         /*
4194          * Remove this conn from any fanout list it is on.
4195          * and then wait for any threads currently operating
4196          * on this endpoint to finish
4197          */
4198         ipcl_hash_remove(connp);
4199 
4200         /*
4201          * Remove this conn from the drain list, and do any other cleanup that
4202          * may be required.  (TCP conns are never flow controlled, and
4203          * conn_idl will be NULL.)
4204          */
4205         if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4206                 idl_t *idl = connp->conn_idl;
4207 
4208                 mutex_enter(&idl->idl_lock);
4209                 conn_drain(connp, B_TRUE);
4210                 mutex_exit(&idl->idl_lock);
4211         }
4212 
4213         if (connp == ipst->ips_ip_g_mrouter)
4214                 (void) ip_mrouter_done(ipst);
4215 
4216         if (ilg_cleanup_reqd)
4217                 ilg_delete_all(connp);
4218 
4219         /*
4220          * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4221          * callers from write side can't be there now because close
4222          * is in progress. The only other caller is ipcl_walk
4223          * which checks for the condemned flag.
4224          */
4225         mutex_enter(&connp->conn_lock);
4226         connp->conn_state_flags |= CONN_CONDEMNED;
4227         while (connp->conn_ref != 1)
4228                 cv_wait(&connp->conn_cv, &connp->conn_lock);
4229         connp->conn_state_flags |= CONN_QUIESCED;
4230         mutex_exit(&connp->conn_lock);
4231 }
4232 
4233 /* ARGSUSED */
4234 int
4235 ip_close(queue_t *q, int flags, cred_t *credp __unused)
4236 {
4237         conn_t          *connp;
4238 
4239         /*
4240          * Call the appropriate delete routine depending on whether this is
4241          * a module or device.
4242          */
4243         if (WR(q)->q_next != NULL) {
4244                 /* This is a module close */
4245                 return (ip_modclose((ill_t *)q->q_ptr));
4246         }
4247 
4248         connp = q->q_ptr;
4249         ip_quiesce_conn(connp);
4250 
4251         qprocsoff(q);
4252 
4253         /*
4254          * Now we are truly single threaded on this stream, and can
4255          * delete the things hanging off the connp, and finally the connp.
4256          * We removed this connp from the fanout list, it cannot be
4257          * accessed thru the fanouts, and we already waited for the
4258          * conn_ref to drop to 0. We are already in close, so
4259          * there cannot be any other thread from the top. qprocsoff
4260          * has completed, and service has completed or won't run in
4261          * future.
4262          */
4263         ASSERT(connp->conn_ref == 1);
4264 
4265         inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4266 
4267         connp->conn_ref--;
4268         ipcl_conn_destroy(connp);
4269 
4270         q->q_ptr = WR(q)->q_ptr = NULL;
4271         return (0);
4272 }
4273 
4274 /*
4275  * Wapper around putnext() so that ip_rts_request can merely use
4276  * conn_recv.
4277  */
4278 /*ARGSUSED2*/
4279 static void
4280 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4281 {
4282         conn_t *connp = (conn_t *)arg1;
4283 
4284         putnext(connp->conn_rq, mp);
4285 }
4286 
4287 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4288 /* ARGSUSED */
4289 static void
4290 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4291 {
4292         freemsg(mp);
4293 }
4294 
4295 /*
4296  * Called when the module is about to be unloaded
4297  */
4298 void
4299 ip_ddi_destroy(void)
4300 {
4301         /* This needs to be called before destroying any transports. */
4302         mutex_enter(&cpu_lock);
4303         unregister_cpu_setup_func(ip_tp_cpu_update, NULL);
4304         mutex_exit(&cpu_lock);
4305 
4306         tnet_fini();
4307 
4308         icmp_ddi_g_destroy();
4309         rts_ddi_g_destroy();
4310         udp_ddi_g_destroy();
4311         sctp_ddi_g_destroy();
4312         tcp_ddi_g_destroy();
4313         ilb_ddi_g_destroy();
4314         dce_g_destroy();
4315         ipsec_policy_g_destroy();
4316         ipcl_g_destroy();
4317         ip_net_g_destroy();
4318         ip_ire_g_fini();
4319         inet_minor_destroy(ip_minor_arena_sa);
4320 #if defined(_LP64)
4321         inet_minor_destroy(ip_minor_arena_la);
4322 #endif
4323 
4324 #ifdef DEBUG
4325         list_destroy(&ip_thread_list);
4326         rw_destroy(&ip_thread_rwlock);
4327         tsd_destroy(&ip_thread_data);
4328 #endif
4329 
4330         netstack_unregister(NS_IP);
4331 }
4332 
4333 /*
4334  * First step in cleanup.
4335  */
4336 /* ARGSUSED */
4337 static void
4338 ip_stack_shutdown(netstackid_t stackid, void *arg)
4339 {
4340         ip_stack_t *ipst = (ip_stack_t *)arg;
4341         kt_did_t ktid;
4342 
4343 #ifdef NS_DEBUG
4344         printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
4345 #endif
4346 
4347         /*
4348          * Perform cleanup for special interfaces (loopback and IPMP).
4349          */
4350         ip_interface_cleanup(ipst);
4351 
4352         /*
4353          * The *_hook_shutdown()s start the process of notifying any
4354          * consumers that things are going away.... nothing is destroyed.
4355          */
4356         ipv4_hook_shutdown(ipst);
4357         ipv6_hook_shutdown(ipst);
4358         arp_hook_shutdown(ipst);
4359 
4360         mutex_enter(&ipst->ips_capab_taskq_lock);
4361         ktid = ipst->ips_capab_taskq_thread->t_did;
4362         ipst->ips_capab_taskq_quit = B_TRUE;
4363         cv_signal(&ipst->ips_capab_taskq_cv);
4364         mutex_exit(&ipst->ips_capab_taskq_lock);
4365 
4366         /*
4367          * In rare occurrences, particularly on virtual hardware where CPUs can
4368          * be de-scheduled, the thread that we just signaled will not run until
4369          * after we have gotten through parts of ip_stack_fini. If that happens
4370          * then we'll try to grab the ips_capab_taskq_lock as part of returning
4371          * from cv_wait which no longer exists.
4372          */
4373         thread_join(ktid);
4374 }
4375 
4376 /*
4377  * Free the IP stack instance.
4378  */
4379 static void
4380 ip_stack_fini(netstackid_t stackid, void *arg)
4381 {
4382         ip_stack_t *ipst = (ip_stack_t *)arg;
4383         int ret;
4384 
4385 #ifdef NS_DEBUG
4386         printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4387 #endif
4388         /*
4389          * At this point, all of the notifications that the events and
4390          * protocols are going away have been run, meaning that we can
4391          * now set about starting to clean things up.
4392          */
4393         ipobs_fini(ipst);
4394         ipv4_hook_destroy(ipst);
4395         ipv6_hook_destroy(ipst);
4396         arp_hook_destroy(ipst);
4397         ip_net_destroy(ipst);
4398 
4399         ipmp_destroy(ipst);
4400 
4401         ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4402         ipst->ips_ip_mibkp = NULL;
4403         icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4404         ipst->ips_icmp_mibkp = NULL;
4405         ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4406         ipst->ips_ip_kstat = NULL;
4407         bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4408         ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4409         ipst->ips_ip6_kstat = NULL;
4410         bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
4411 
4412         kmem_free(ipst->ips_propinfo_tbl,
4413             ip_propinfo_count * sizeof (mod_prop_info_t));
4414         ipst->ips_propinfo_tbl = NULL;
4415 
4416         dce_stack_destroy(ipst);
4417         ip_mrouter_stack_destroy(ipst);
4418 
4419         /*
4420          * Quiesce all of our timers. Note we set the quiesce flags before we
4421          * call untimeout. The slowtimers may actually kick off another instance
4422          * of the non-slow timers.
4423          */
4424         mutex_enter(&ipst->ips_igmp_timer_lock);
4425         ipst->ips_igmp_timer_quiesce = B_TRUE;
4426         mutex_exit(&ipst->ips_igmp_timer_lock);
4427 
4428         mutex_enter(&ipst->ips_mld_timer_lock);
4429         ipst->ips_mld_timer_quiesce = B_TRUE;
4430         mutex_exit(&ipst->ips_mld_timer_lock);
4431 
4432         mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
4433         ipst->ips_igmp_slowtimeout_quiesce = B_TRUE;
4434         mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
4435 
4436         mutex_enter(&ipst->ips_mld_slowtimeout_lock);
4437         ipst->ips_mld_slowtimeout_quiesce = B_TRUE;
4438         mutex_exit(&ipst->ips_mld_slowtimeout_lock);
4439 
4440         ret = untimeout(ipst->ips_igmp_timeout_id);
4441         if (ret == -1) {
4442                 ASSERT(ipst->ips_igmp_timeout_id == 0);
4443         } else {
4444                 ASSERT(ipst->ips_igmp_timeout_id != 0);
4445                 ipst->ips_igmp_timeout_id = 0;
4446         }
4447         ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4448         if (ret == -1) {
4449                 ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4450         } else {
4451                 ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4452                 ipst->ips_igmp_slowtimeout_id = 0;
4453         }
4454         ret = untimeout(ipst->ips_mld_timeout_id);
4455         if (ret == -1) {
4456                 ASSERT(ipst->ips_mld_timeout_id == 0);
4457         } else {
4458                 ASSERT(ipst->ips_mld_timeout_id != 0);
4459                 ipst->ips_mld_timeout_id = 0;
4460         }
4461         ret = untimeout(ipst->ips_mld_slowtimeout_id);
4462         if (ret == -1) {
4463                 ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4464         } else {
4465                 ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4466                 ipst->ips_mld_slowtimeout_id = 0;
4467         }
4468 
4469         ip_ire_fini(ipst);
4470         ip6_asp_free(ipst);
4471         conn_drain_fini(ipst);
4472         ipcl_destroy(ipst);
4473 
4474         mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4475         mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4476         kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4477         ipst->ips_ndp4 = NULL;
4478         kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4479         ipst->ips_ndp6 = NULL;
4480 
4481         if (ipst->ips_loopback_ksp != NULL) {
4482                 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4483                 ipst->ips_loopback_ksp = NULL;
4484         }
4485 
4486         mutex_destroy(&ipst->ips_capab_taskq_lock);
4487         cv_destroy(&ipst->ips_capab_taskq_cv);
4488 
4489         rw_destroy(&ipst->ips_srcid_lock);
4490 
4491         mutex_destroy(&ipst->ips_ip_mi_lock);
4492         rw_destroy(&ipst->ips_ill_g_usesrc_lock);
4493 
4494         mutex_destroy(&ipst->ips_igmp_timer_lock);
4495         mutex_destroy(&ipst->ips_mld_timer_lock);
4496         mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4497         mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4498         mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4499         rw_destroy(&ipst->ips_ill_g_lock);
4500 
4501         kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4502         ipst->ips_phyint_g_list = NULL;
4503         kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4504         ipst->ips_ill_g_heads = NULL;
4505 
4506         ldi_ident_release(ipst->ips_ldi_ident);
4507         kmem_free(ipst, sizeof (*ipst));
4508 }
4509 
4510 /*
4511  * This function is called from the TSD destructor, and is used to debug
4512  * reference count issues in IP. See block comment in <inet/ip_if.h> for
4513  * details.
4514  */
4515 static void
4516 ip_thread_exit(void *phash)
4517 {
4518         th_hash_t *thh = phash;
4519 
4520         rw_enter(&ip_thread_rwlock, RW_WRITER);
4521         list_remove(&ip_thread_list, thh);
4522         rw_exit(&ip_thread_rwlock);
4523         mod_hash_destroy_hash(thh->thh_hash);
4524         kmem_free(thh, sizeof (*thh));
4525 }
4526 
4527 /*
4528  * Called when the IP kernel module is loaded into the kernel
4529  */
4530 void
4531 ip_ddi_init(void)
4532 {
4533         ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);
4534 
4535         /*
4536          * For IP and TCP the minor numbers should start from 2 since we have 4
4537          * initial devices: ip, ip6, tcp, tcp6.
4538          */
4539         /*
4540          * If this is a 64-bit kernel, then create two separate arenas -
4541          * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4542          * other for socket apps in the range 2^^18 through 2^^32-1.
4543          */
4544         ip_minor_arena_la = NULL;
4545         ip_minor_arena_sa = NULL;
4546 #if defined(_LP64)
4547         if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4548             INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4549                 cmn_err(CE_PANIC,
4550                     "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4551         }
4552         if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4553             MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4554                 cmn_err(CE_PANIC,
4555                     "ip_ddi_init: ip_minor_arena_la creation failed\n");
4556         }
4557 #else
4558         if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4559             INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4560                 cmn_err(CE_PANIC,
4561                     "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4562         }
4563 #endif
4564         ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
4565 
4566         ipcl_g_init();
4567         ip_ire_g_init();
4568         ip_net_g_init();
4569 
4570 #ifdef DEBUG
4571         tsd_create(&ip_thread_data, ip_thread_exit);
4572         rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4573         list_create(&ip_thread_list, sizeof (th_hash_t),
4574             offsetof(th_hash_t, thh_link));
4575 #endif
4576         ipsec_policy_g_init();
4577         tcp_ddi_g_init();
4578         sctp_ddi_g_init();
4579         dce_g_init();
4580 
4581         /*
4582          * We want to be informed each time a stack is created or
4583          * destroyed in the kernel, so we can maintain the
4584          * set of udp_stack_t's.
4585          */
4586         netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4587             ip_stack_fini);
4588 
4589         tnet_init();
4590 
4591         udp_ddi_g_init();
4592         rts_ddi_g_init();
4593         icmp_ddi_g_init();
4594         ilb_ddi_g_init();
4595 
4596         /* This needs to be called after all transports are initialized. */
4597         mutex_enter(&cpu_lock);
4598         register_cpu_setup_func(ip_tp_cpu_update, NULL);
4599         mutex_exit(&cpu_lock);
4600 }
4601 
4602 /*
4603  * Initialize the IP stack instance.
4604  */
4605 static void *
4606 ip_stack_init(netstackid_t stackid, netstack_t *ns)
4607 {
4608         ip_stack_t      *ipst;
4609         size_t          arrsz;
4610         major_t         major;
4611 
4612 #ifdef NS_DEBUG
4613         printf("ip_stack_init(stack %d)\n", stackid);
4614 #endif
4615 
4616         ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4617         ipst->ips_netstack = ns;
4618 
4619         ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4620             KM_SLEEP);
4621         ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4622             KM_SLEEP);
4623         ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4624         ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4625         mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4626         mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4627 
4628         mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4629         ipst->ips_igmp_deferred_next = INFINITY;
4630         mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4631         ipst->ips_mld_deferred_next = INFINITY;
4632         mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4633         mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4634         mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4635         mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4636         rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4637         rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
4638 
4639         ipcl_init(ipst);
4640         ip_ire_init(ipst);
4641         ip6_asp_init(ipst);
4642         ipif_init(ipst);
4643         conn_drain_init(ipst);
4644         ip_mrouter_stack_init(ipst);
4645         dce_stack_init(ipst);
4646 
4647         ipst->ips_ip_multirt_log_interval = 1000;
4648 
4649         ipst->ips_ill_index = 1;
4650 
4651         ipst->ips_saved_ip_forwarding = -1;
4652         ipst->ips_reg_vif_num = ALL_VIFS;    /* Index to Register vif */
4653 
4654         arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
4655         ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
4656         bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);
4657 
4658         ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4659         ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4660         ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4661         ipst->ips_ip6_kstat =
4662             ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
4663 
4664         ipst->ips_ip_src_id = 1;
4665         rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
4666 
4667         ipst->ips_src_generation = SRC_GENERATION_INITIAL;
4668 
4669         ip_net_init(ipst, ns);
4670         ipv4_hook_init(ipst);
4671         ipv6_hook_init(ipst);
4672         arp_hook_init(ipst);
4673         ipmp_init(ipst);
4674         ipobs_init(ipst);
4675 
4676         /*
4677          * Create the taskq dispatcher thread and initialize related stuff.
4678          */
4679         mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4680         cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4681         ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4682             ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);
4683 
4684         major = mod_name_to_major(INET_NAME);
4685         (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4686         return (ipst);
4687 }
4688 
4689 /*
4690  * Allocate and initialize a DLPI template of the specified length.  (May be
4691  * called as writer.)
4692  */
4693 mblk_t *
4694 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4695 {
4696         mblk_t  *mp;
4697 
4698         mp = allocb(len, BPRI_MED);
4699         if (!mp)
4700                 return (NULL);
4701 
4702         /*
4703          * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
4704          * of which we don't seem to use) are sent with M_PCPROTO, and
4705          * that other DLPI are M_PROTO.
4706          */
4707         if (prim == DL_INFO_REQ) {
4708                 mp->b_datap->db_type = M_PCPROTO;
4709         } else {
4710                 mp->b_datap->db_type = M_PROTO;
4711         }
4712 
4713         mp->b_wptr = mp->b_rptr + len;
4714         bzero(mp->b_rptr, len);
4715         ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4716         return (mp);
4717 }
4718 
4719 /*
4720  * Allocate and initialize a DLPI notification.  (May be called as writer.)
4721  */
4722 mblk_t *
4723 ip_dlnotify_alloc(uint_t notification, uint_t data)
4724 {
4725         dl_notify_ind_t *notifyp;
4726         mblk_t          *mp;
4727 
4728         if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4729                 return (NULL);
4730 
4731         notifyp = (dl_notify_ind_t *)mp->b_rptr;
4732         notifyp->dl_notification = notification;
4733         notifyp->dl_data = data;
4734         return (mp);
4735 }
4736 
4737 mblk_t *
4738 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2)
4739 {
4740         dl_notify_ind_t *notifyp;
4741         mblk_t          *mp;
4742 
4743         if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4744                 return (NULL);
4745 
4746         notifyp = (dl_notify_ind_t *)mp->b_rptr;
4747         notifyp->dl_notification = notification;
4748         notifyp->dl_data1 = data1;
4749         notifyp->dl_data2 = data2;
4750         return (mp);
4751 }
4752 
4753 /*
4754  * Debug formatting routine.  Returns a character string representation of the
4755  * addr in buf, of the form xxx.xxx.xxx.xxx.  This routine takes the address
4756  * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4757  *
4758  * Once the ndd table-printing interfaces are removed, this can be changed to
4759  * standard dotted-decimal form.
4760  */
4761 char *
4762 ip_dot_addr(ipaddr_t addr, char *buf)
4763 {
4764         uint8_t *ap = (uint8_t *)&addr;
4765 
4766         (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4767             ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4768         return (buf);
4769 }
4770 
4771 /*
4772  * Write the given MAC address as a printable string in the usual colon-
4773  * separated format.
4774  */
4775 const char *
4776 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4777 {
4778         char *bp;
4779 
4780         if (alen == 0 || buflen < 4)
4781                 return ("?");
4782         bp = buf;
4783         for (;;) {
4784                 /*
4785                  * If there are more MAC address bytes available, but we won't
4786                  * have any room to print them, then add "..." to the string
4787                  * instead.  See below for the 'magic number' explanation.
4788                  */
4789                 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4790                         (void) strcpy(bp, "...");
4791                         break;
4792                 }
4793                 (void) sprintf(bp, "%02x", *addr++);
4794                 bp += 2;
4795                 if (--alen == 0)
4796                         break;
4797                 *bp++ = ':';
4798                 buflen -= 3;
4799                 /*
4800                  * At this point, based on the first 'if' statement above,
4801                  * either alen == 1 and buflen >= 3, or alen > 1 and
4802                  * buflen >= 4.  The first case leaves room for the final "xx"
4803                  * number and trailing NUL byte.  The second leaves room for at
4804                  * least "...".  Thus the apparently 'magic' numbers chosen for
4805                  * that statement.
4806                  */
4807         }
4808         return (buf);
4809 }
4810 
4811 /*
4812  * Called when it is conceptually a ULP that would sent the packet
4813  * e.g., port unreachable and protocol unreachable. Check that the packet
4814  * would have passed the IPsec global policy before sending the error.
4815  *
4816  * Send an ICMP error after patching up the packet appropriately.
4817  * Uses ip_drop_input and bumps the appropriate MIB.
4818  */
4819 void
4820 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4821     ip_recv_attr_t *ira)
4822 {
4823         ipha_t          *ipha;
4824         boolean_t       secure;
4825         ill_t           *ill = ira->ira_ill;
4826         ip_stack_t      *ipst = ill->ill_ipst;
4827         netstack_t      *ns = ipst->ips_netstack;
4828         ipsec_stack_t   *ipss = ns->netstack_ipsec;
4829 
4830         secure = ira->ira_flags & IRAF_IPSEC_SECURE;
4831 
4832         /*
4833          * We are generating an icmp error for some inbound packet.
4834          * Called from all ip_fanout_(udp, tcp, proto) functions.
4835          * Before we generate an error, check with global policy
4836          * to see whether this is allowed to enter the system. As
4837          * there is no "conn", we are checking with global policy.
4838          */
4839         ipha = (ipha_t *)mp->b_rptr;
4840         if (secure || ipss->ipsec_inbound_v4_policy_present) {
4841                 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4842                 if (mp == NULL)
4843                         return;
4844         }
4845 
4846         /* We never send errors for protocols that we do implement */
4847         if (ira->ira_protocol == IPPROTO_ICMP ||
4848             ira->ira_protocol == IPPROTO_IGMP) {
4849                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4850                 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4851                 freemsg(mp);
4852                 return;
4853         }
4854         /*
4855          * Have to correct checksum since
4856          * the packet might have been
4857          * fragmented and the reassembly code in ip_rput
4858          * does not restore the IP checksum.
4859          */
4860         ipha->ipha_hdr_checksum = 0;
4861         ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
4862 
4863         switch (icmp_type) {
4864         case ICMP_DEST_UNREACHABLE:
4865                 switch (icmp_code) {
4866                 case ICMP_PROTOCOL_UNREACHABLE:
4867                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4868                         ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4869                         break;
4870                 case ICMP_PORT_UNREACHABLE:
4871                         BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4872                         ip_drop_input("ipIfStatsNoPorts", mp, ill);
4873                         break;
4874                 }
4875 
4876                 icmp_unreachable(mp, icmp_code, ira);
4877                 break;
4878         default:
4879 #ifdef DEBUG
4880                 panic("ip_fanout_send_icmp_v4: wrong type");
4881                 /*NOTREACHED*/
4882 #else
4883                 freemsg(mp);
4884                 break;
4885 #endif
4886         }
4887 }
4888 
4889 /*
4890  * Used to send an ICMP error message when a packet is received for
4891  * a protocol that is not supported. The mblk passed as argument
4892  * is consumed by this function.
4893  */
4894 void
4895 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
4896 {
4897         ipha_t          *ipha;
4898 
4899         ipha = (ipha_t *)mp->b_rptr;
4900         if (ira->ira_flags & IRAF_IS_IPV4) {
4901                 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
4902                 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4903                     ICMP_PROTOCOL_UNREACHABLE, ira);
4904         } else {
4905                 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4906                 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
4907                     ICMP6_PARAMPROB_NEXTHEADER, ira);
4908         }
4909 }
4910 
4911 /*
4912  * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
4913  * Handles IPv4 and IPv6.
4914  * We are responsible for disposing of mp, such as by freemsg() or putnext()
4915  * Caller is responsible for dropping references to the conn.
4916  */
4917 void
4918 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4919     ip_recv_attr_t *ira)
4920 {
4921         ill_t           *ill = ira->ira_ill;
4922         ip_stack_t      *ipst = ill->ill_ipst;
4923         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
4924         boolean_t       secure;
4925         uint_t          protocol = ira->ira_protocol;
4926         iaflags_t       iraflags = ira->ira_flags;
4927         queue_t         *rq;
4928 
4929         secure = iraflags & IRAF_IPSEC_SECURE;
4930 
4931         rq = connp->conn_rq;
4932         if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
4933                 switch (protocol) {
4934                 case IPPROTO_ICMPV6:
4935                         BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
4936                         break;
4937                 case IPPROTO_ICMP:
4938                         BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
4939                         break;
4940                 default:
4941                         BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
4942                         break;
4943                 }
4944                 freemsg(mp);
4945                 return;
4946         }
4947 
4948         ASSERT(!(IPCL_IS_IPTUN(connp)));
4949 
4950         if (((iraflags & IRAF_IS_IPV4) ?
4951             CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
4952             CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
4953             secure) {
4954                 mp = ipsec_check_inbound_policy(mp, connp, ipha,
4955                     ip6h, ira);
4956                 if (mp == NULL) {
4957                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4958                         /* Note that mp is NULL */
4959                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
4960                         return;
4961                 }
4962         }
4963 
4964         if (iraflags & IRAF_ICMP_ERROR) {
4965                 (connp->conn_recvicmp)(connp, mp, NULL, ira);
4966         } else {
4967                 ill_t *rill = ira->ira_rill;
4968 
4969                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
4970                 ira->ira_ill = ira->ira_rill = NULL;
4971                 /* Send it upstream */
4972                 (connp->conn_recv)(connp, mp, NULL, ira);
4973                 ira->ira_ill = ill;
4974                 ira->ira_rill = rill;
4975         }
4976 }
4977 
4978 /*
4979  * Handle protocols with which IP is less intimate.  There
4980  * can be more than one stream bound to a particular
4981  * protocol.  When this is the case, normally each one gets a copy
4982  * of any incoming packets.
4983  *
4984  * IPsec NOTE :
4985  *
4986  * Don't allow a secure packet going up a non-secure connection.
4987  * We don't allow this because
4988  *
4989  * 1) Reply might go out in clear which will be dropped at
4990  *    the sending side.
4991  * 2) If the reply goes out in clear it will give the
4992  *    adversary enough information for getting the key in
4993  *    most of the cases.
4994  *
4995  * Moreover getting a secure packet when we expect clear
4996  * implies that SA's were added without checking for
4997  * policy on both ends. This should not happen once ISAKMP
4998  * is used to negotiate SAs as SAs will be added only after
4999  * verifying the policy.
5000  *
5001  * Zones notes:
5002  * Earlier in ip_input on a system with multiple shared-IP zones we
5003  * duplicate the multicast and broadcast packets and send them up
5004  * with each explicit zoneid that exists on that ill.
5005  * This means that here we can match the zoneid with SO_ALLZONES being special.
5006  */
5007 void
5008 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
5009 {
5010         mblk_t          *mp1;
5011         ipaddr_t        laddr;
5012         conn_t          *connp, *first_connp, *next_connp;
5013         connf_t         *connfp;
5014         ill_t           *ill = ira->ira_ill;
5015         ip_stack_t      *ipst = ill->ill_ipst;
5016 
5017         laddr = ipha->ipha_dst;
5018 
5019         connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
5020         mutex_enter(&connfp->connf_lock);
5021         connp = connfp->connf_head;
5022         for (connp = connfp->connf_head; connp != NULL;
5023             connp = connp->conn_next) {
5024                 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5025                 if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5026                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5027                     tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
5028                         break;
5029                 }
5030         }
5031 
5032         if (connp == NULL) {
5033                 /*
5034                  * No one bound to these addresses.  Is
5035                  * there a client that wants all
5036                  * unclaimed datagrams?
5037                  */
5038                 mutex_exit(&connfp->connf_lock);
5039                 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5040                     ICMP_PROTOCOL_UNREACHABLE, ira);
5041                 return;
5042         }
5043 
5044         ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5045 
5046         CONN_INC_REF(connp);
5047         first_connp = connp;
5048         connp = connp->conn_next;
5049 
5050         for (;;) {
5051                 while (connp != NULL) {
5052                         /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5053                         if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5054                             (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5055                             tsol_receive_local(mp, &laddr, IPV4_VERSION,
5056                             ira, connp)))
5057                                 break;
5058                         connp = connp->conn_next;
5059                 }
5060 
5061                 if (connp == NULL) {
5062                         /* No more interested clients */
5063                         connp = first_connp;
5064                         break;
5065                 }
5066                 if (((mp1 = dupmsg(mp)) == NULL) &&
5067                     ((mp1 = copymsg(mp)) == NULL)) {
5068                         /* Memory allocation failed */
5069                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5070                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
5071                         connp = first_connp;
5072                         break;
5073                 }
5074 
5075                 CONN_INC_REF(connp);
5076                 mutex_exit(&connfp->connf_lock);
5077 
5078                 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5079                     ira);
5080 
5081                 mutex_enter(&connfp->connf_lock);
5082                 /* Follow the next pointer before releasing the conn. */
5083                 next_connp = connp->conn_next;
5084                 CONN_DEC_REF(connp);
5085                 connp = next_connp;
5086         }
5087 
5088         /* Last one.  Send it upstream. */
5089         mutex_exit(&connfp->connf_lock);
5090 
5091         ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);
5092 
5093         CONN_DEC_REF(connp);
5094 }
5095 
5096 /*
5097  * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5098  * pass it along to ESP if the SPI is non-zero.  Returns the mblk if the mblk
5099  * is not consumed.
5100  *
5101  * One of three things can happen, all of which affect the passed-in mblk:
5102  *
5103  * 1.) The packet is stock UDP and gets its zero-SPI stripped.  Return mblk..
5104  *
5105  * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5106  *     ESP packet, and is passed along to ESP for consumption.  Return NULL.
5107  *
5108  * 3.) The packet is an ESP-in-UDP Keepalive.  Drop it and return NULL.
5109  */
5110 mblk_t *
5111 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5112 {
5113         int shift, plen, iph_len;
5114         ipha_t *ipha;
5115         udpha_t *udpha;
5116         uint32_t *spi;
5117         uint32_t esp_ports;
5118         uint8_t *orptr;
5119         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
5120         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
5121 
5122         ipha = (ipha_t *)mp->b_rptr;
5123         iph_len = ira->ira_ip_hdr_length;
5124         plen = ira->ira_pktlen;
5125 
5126         if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
5127                 /*
5128                  * Most likely a keepalive for the benefit of an intervening
5129                  * NAT.  These aren't for us, per se, so drop it.
5130                  *
5131                  * RFC 3947/8 doesn't say for sure what to do for 2-3
5132                  * byte packets (keepalives are 1-byte), but we'll drop them
5133                  * also.
5134                  */
5135                 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5136                     DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5137                 return (NULL);
5138         }
5139 
5140         if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5141                 /* might as well pull it all up - it might be ESP. */
5142                 if (!pullupmsg(mp, -1)) {
5143                         ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5144                             DROPPER(ipss, ipds_esp_nomem),
5145                             &ipss->ipsec_dropper);
5146                         return (NULL);
5147                 }
5148 
5149                 ipha = (ipha_t *)mp->b_rptr;
5150         }
5151         spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5152         if (*spi == 0) {
5153                 /* UDP packet - remove 0-spi. */
5154                 shift = sizeof (uint32_t);
5155         } else {
5156                 /* ESP-in-UDP packet - reduce to ESP. */
5157                 ipha->ipha_protocol = IPPROTO_ESP;
5158                 shift = sizeof (udpha_t);
5159         }
5160 
5161         /* Fix IP header */
5162         ira->ira_pktlen = (plen - shift);
5163         ipha->ipha_length = htons(ira->ira_pktlen);
5164         ipha->ipha_hdr_checksum = 0;
5165 
5166         orptr = mp->b_rptr;
5167         mp->b_rptr += shift;
5168 
5169         udpha = (udpha_t *)(orptr + iph_len);
5170         if (*spi == 0) {
5171                 ASSERT((uint8_t *)ipha == orptr);
5172                 udpha->uha_length = htons(plen - shift - iph_len);
5173                 iph_len += sizeof (udpha_t);    /* For the call to ovbcopy(). */
5174                 esp_ports = 0;
5175         } else {
5176                 esp_ports = *((uint32_t *)udpha);
5177                 ASSERT(esp_ports != 0);
5178         }
5179         ovbcopy(orptr, orptr + shift, iph_len);
5180         if (esp_ports != 0) /* Punt up for ESP processing. */ {
5181                 ipha = (ipha_t *)(orptr + shift);
5182 
5183                 ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5184                 ira->ira_esp_udp_ports = esp_ports;
5185                 ip_fanout_v4(mp, ipha, ira);
5186                 return (NULL);
5187         }
5188         return (mp);
5189 }
5190 
5191 /*
5192  * Deliver a udp packet to the given conn, possibly applying ipsec policy.
5193  * Handles IPv4 and IPv6.
5194  * We are responsible for disposing of mp, such as by freemsg() or putnext()
5195  * Caller is responsible for dropping references to the conn.
5196  */
5197 void
5198 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5199     ip_recv_attr_t *ira)
5200 {
5201         ill_t           *ill = ira->ira_ill;
5202         ip_stack_t      *ipst = ill->ill_ipst;
5203         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
5204         boolean_t       secure;
5205         iaflags_t       iraflags = ira->ira_flags;
5206 
5207         secure = iraflags & IRAF_IPSEC_SECURE;
5208 
5209         if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5210             !canputnext(connp->conn_rq)) {
5211                 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5212                 freemsg(mp);
5213                 return;
5214         }
5215 
5216         if (((iraflags & IRAF_IS_IPV4) ?
5217             CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5218             CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5219             secure) {
5220                 mp = ipsec_check_inbound_policy(mp, connp, ipha,
5221                     ip6h, ira);
5222                 if (mp == NULL) {
5223                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5224                         /* Note that mp is NULL */
5225                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
5226                         return;
5227                 }
5228         }
5229 
5230         /*
5231          * Since this code is not used for UDP unicast we don't need a NAT_T
5232          * check. Only ip_fanout_v4 has that check.
5233          */
5234         if (ira->ira_flags & IRAF_ICMP_ERROR) {
5235                 (connp->conn_recvicmp)(connp, mp, NULL, ira);
5236         } else {
5237                 ill_t *rill = ira->ira_rill;
5238 
5239                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5240                 ira->ira_ill = ira->ira_rill = NULL;
5241                 /* Send it upstream */
5242                 (connp->conn_recv)(connp, mp, NULL, ira);
5243                 ira->ira_ill = ill;
5244                 ira->ira_rill = rill;
5245         }
5246 }
5247 
5248 /*
5249  * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5250  * (Unicast fanout is handled in ip_input_v4.)
5251  *
5252  * If SO_REUSEADDR is set all multicast and broadcast packets
5253  * will be delivered to all conns bound to the same port.
5254  *
5255  * If there is at least one matching AF_INET receiver, then we will
5256  * ignore any AF_INET6 receivers.
5257  * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5258  * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
5259  * packets.
5260  *
5261  * Zones notes:
5262  * Earlier in ip_input on a system with multiple shared-IP zones we
5263  * duplicate the multicast and broadcast packets and send them up
5264  * with each explicit zoneid that exists on that ill.
5265  * This means that here we can match the zoneid with SO_ALLZONES being special.
5266  */
5267 void
5268 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5269     ip_recv_attr_t *ira)
5270 {
5271         ipaddr_t        laddr;
5272         in6_addr_t      v6faddr;
5273         conn_t          *connp;
5274         connf_t         *connfp;
5275         ipaddr_t        faddr;
5276         ill_t           *ill = ira->ira_ill;
5277         ip_stack_t      *ipst = ill->ill_ipst;
5278 
5279         ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));
5280 
5281         laddr = ipha->ipha_dst;
5282         faddr = ipha->ipha_src;
5283 
5284         connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5285         mutex_enter(&connfp->connf_lock);
5286         connp = connfp->connf_head;
5287 
5288         /*
5289          * If SO_REUSEADDR has been set on the first we send the
5290          * packet to all clients that have joined the group and
5291          * match the port.
5292          */
5293         while (connp != NULL) {
5294                 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5295                     conn_wantpacket(connp, ira, ipha) &&
5296                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5297                     tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5298                         break;
5299                 connp = connp->conn_next;
5300         }
5301 
5302         if (connp == NULL)
5303                 goto notfound;
5304 
5305         CONN_INC_REF(connp);
5306 
5307         if (connp->conn_reuseaddr) {
5308                 conn_t          *first_connp = connp;
5309                 conn_t          *next_connp;
5310                 mblk_t          *mp1;
5311 
5312                 connp = connp->conn_next;
5313                 for (;;) {
5314                         while (connp != NULL) {
5315                                 if (IPCL_UDP_MATCH(connp, lport, laddr,
5316                                     fport, faddr) &&
5317                                     conn_wantpacket(connp, ira, ipha) &&
5318                                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5319                                     tsol_receive_local(mp, &laddr, IPV4_VERSION,
5320                                     ira, connp)))
5321                                         break;
5322                                 connp = connp->conn_next;
5323                         }
5324                         if (connp == NULL) {
5325                                 /* No more interested clients */
5326                                 connp = first_connp;
5327                                 break;
5328                         }
5329                         if (((mp1 = dupmsg(mp)) == NULL) &&
5330                             ((mp1 = copymsg(mp)) == NULL)) {
5331                                 /* Memory allocation failed */
5332                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5333                                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5334                                 connp = first_connp;
5335                                 break;
5336                         }
5337                         CONN_INC_REF(connp);
5338                         mutex_exit(&connfp->connf_lock);
5339 
5340                         IP_STAT(ipst, ip_udp_fanmb);
5341                         ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5342                             NULL, ira);
5343                         mutex_enter(&connfp->connf_lock);
5344                         /* Follow the next pointer before releasing the conn */
5345                         next_connp = connp->conn_next;
5346                         CONN_DEC_REF(connp);
5347                         connp = next_connp;
5348                 }
5349         }
5350 
5351         /* Last one.  Send it upstream. */
5352         mutex_exit(&connfp->connf_lock);
5353         IP_STAT(ipst, ip_udp_fanmb);
5354         ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5355         CONN_DEC_REF(connp);
5356         return;
5357 
5358 notfound:
5359         mutex_exit(&connfp->connf_lock);
5360         /*
5361          * IPv6 endpoints bound to multicast IPv4-mapped addresses
5362          * have already been matched above, since they live in the IPv4
5363          * fanout tables. This implies we only need to
5364          * check for IPv6 in6addr_any endpoints here.
5365          * Thus we compare using ipv6_all_zeros instead of the destination
5366          * address, except for the multicast group membership lookup which
5367          * uses the IPv4 destination.
5368          */
5369         IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5370         connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5371         mutex_enter(&connfp->connf_lock);
5372         connp = connfp->connf_head;
5373         /*
5374          * IPv4 multicast packet being delivered to an AF_INET6
5375          * in6addr_any endpoint.
5376          * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5377          * and not conn_wantpacket_v6() since any multicast membership is
5378          * for an IPv4-mapped multicast address.
5379          */
5380         while (connp != NULL) {
5381                 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5382                     fport, v6faddr) &&
5383                     conn_wantpacket(connp, ira, ipha) &&
5384                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5385                     tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5386                         break;
5387                 connp = connp->conn_next;
5388         }
5389 
5390         if (connp == NULL) {
5391                 /*
5392                  * No one bound to this port.  Is
5393                  * there a client that wants all
5394                  * unclaimed datagrams?
5395                  */
5396                 mutex_exit(&connfp->connf_lock);
5397 
5398                 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5399                     NULL) {
5400                         ASSERT(ira->ira_protocol == IPPROTO_UDP);
5401                         ip_fanout_proto_v4(mp, ipha, ira);
5402                 } else {
5403                         /*
5404                          * We used to attempt to send an icmp error here, but
5405                          * since this is known to be a multicast packet
5406                          * and we don't send icmp errors in response to
5407                          * multicast, just drop the packet and give up sooner.
5408                          */
5409                         BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5410                         freemsg(mp);
5411                 }
5412                 return;
5413         }
5414         CONN_INC_REF(connp);
5415         ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5416 
5417         /*
5418          * If SO_REUSEADDR has been set on the first we send the
5419          * packet to all clients that have joined the group and
5420          * match the port.
5421          */
5422         if (connp->conn_reuseaddr) {
5423                 conn_t          *first_connp = connp;
5424                 conn_t          *next_connp;
5425                 mblk_t          *mp1;
5426 
5427                 connp = connp->conn_next;
5428                 for (;;) {
5429                         while (connp != NULL) {
5430                                 if (IPCL_UDP_MATCH_V6(connp, lport,
5431                                     ipv6_all_zeros, fport, v6faddr) &&
5432                                     conn_wantpacket(connp, ira, ipha) &&
5433                                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5434                                     tsol_receive_local(mp, &laddr, IPV4_VERSION,
5435                                     ira, connp)))
5436                                         break;
5437                                 connp = connp->conn_next;
5438                         }
5439                         if (connp == NULL) {
5440                                 /* No more interested clients */
5441                                 connp = first_connp;
5442                                 break;
5443                         }
5444                         if (((mp1 = dupmsg(mp)) == NULL) &&
5445                             ((mp1 = copymsg(mp)) == NULL)) {
5446                                 /* Memory allocation failed */
5447                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5448                                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5449                                 connp = first_connp;
5450                                 break;
5451                         }
5452                         CONN_INC_REF(connp);
5453                         mutex_exit(&connfp->connf_lock);
5454 
5455                         IP_STAT(ipst, ip_udp_fanmb);
5456                         ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5457                             NULL, ira);
5458                         mutex_enter(&connfp->connf_lock);
5459                         /* Follow the next pointer before releasing the conn */
5460                         next_connp = connp->conn_next;
5461                         CONN_DEC_REF(connp);
5462                         connp = next_connp;
5463                 }
5464         }
5465 
5466         /* Last one.  Send it upstream. */
5467         mutex_exit(&connfp->connf_lock);
5468         IP_STAT(ipst, ip_udp_fanmb);
5469         ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5470         CONN_DEC_REF(connp);
5471 }
5472 
5473 /*
5474  * Split an incoming packet's IPv4 options into the label and the other options.
5475  * If 'allocate' is set it does memory allocation for the ip_pkt_t, including
5476  * clearing out any leftover label or options.
5477  * Otherwise it just makes ipp point into the packet.
5478  *
5479  * Returns zero if ok; ENOMEM if the buffer couldn't be allocated.
5480  */
5481 int
5482 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5483 {
5484         uchar_t         *opt;
5485         uint32_t        totallen;
5486         uint32_t        optval;
5487         uint32_t        optlen;
5488 
5489         ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5490         ipp->ipp_hoplimit = ipha->ipha_ttl;
5491         ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5492         IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);
5493 
5494         /*
5495          * Get length (in 4 byte octets) of IP header options.
5496          */
5497         totallen = ipha->ipha_version_and_hdr_length -
5498             (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5499 
5500         if (totallen == 0) {
5501                 if (!allocate)
5502                         return (0);
5503 
5504                 /* Clear out anything from a previous packet */
5505                 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5506                         kmem_free(ipp->ipp_ipv4_options,
5507                             ipp->ipp_ipv4_options_len);
5508                         ipp->ipp_ipv4_options = NULL;
5509                         ipp->ipp_ipv4_options_len = 0;
5510                         ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5511                 }
5512                 if (ipp->ipp_fields & IPPF_LABEL_V4) {
5513                         kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5514                         ipp->ipp_label_v4 = NULL;
5515                         ipp->ipp_label_len_v4 = 0;
5516                         ipp->ipp_fields &= ~IPPF_LABEL_V4;
5517                 }
5518                 return (0);
5519         }
5520 
5521         totallen <<= 2;
5522         opt = (uchar_t *)&ipha[1];
5523         if (!is_system_labeled()) {
5524 
5525         copyall:
5526                 if (!allocate) {
5527                         if (totallen != 0) {
5528                                 ipp->ipp_ipv4_options = opt;
5529                                 ipp->ipp_ipv4_options_len = totallen;
5530                                 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5531                         }
5532                         return (0);
5533                 }
5534                 /* Just copy all of options */
5535                 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5536                         if (totallen == ipp->ipp_ipv4_options_len) {
5537                                 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5538                                 return (0);
5539                         }
5540                         kmem_free(ipp->ipp_ipv4_options,
5541                             ipp->ipp_ipv4_options_len);
5542                         ipp->ipp_ipv4_options = NULL;
5543                         ipp->ipp_ipv4_options_len = 0;
5544                         ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5545                 }
5546                 if (totallen == 0)
5547                         return (0);
5548 
5549                 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5550                 if (ipp->ipp_ipv4_options == NULL)
5551                         return (ENOMEM);
5552                 ipp->ipp_ipv4_options_len = totallen;
5553                 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5554                 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5555                 return (0);
5556         }
5557 
5558         if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5559                 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5560                 ipp->ipp_label_v4 = NULL;
5561                 ipp->ipp_label_len_v4 = 0;
5562                 ipp->ipp_fields &= ~IPPF_LABEL_V4;
5563         }
5564 
5565         /*
5566          * Search for CIPSO option.
5567          * We assume CIPSO is first in options if it is present.
5568          * If it isn't, then ipp_opt_ipv4_options will not include the options
5569          * prior to the CIPSO option.
5570          */
5571         while (totallen != 0) {
5572                 switch (optval = opt[IPOPT_OPTVAL]) {
5573                 case IPOPT_EOL:
5574                         return (0);
5575                 case IPOPT_NOP:
5576                         optlen = 1;
5577                         break;
5578                 default:
5579                         if (totallen <= IPOPT_OLEN)
5580                                 return (EINVAL);
5581                         optlen = opt[IPOPT_OLEN];
5582                         if (optlen < 2)
5583                                 return (EINVAL);
5584                 }
5585                 if (optlen > totallen)
5586                         return (EINVAL);
5587 
5588                 switch (optval) {
5589                 case IPOPT_COMSEC:
5590                         if (!allocate) {
5591                                 ipp->ipp_label_v4 = opt;
5592                                 ipp->ipp_label_len_v4 = optlen;
5593                                 ipp->ipp_fields |= IPPF_LABEL_V4;
5594                         } else {
5595                                 ipp->ipp_label_v4 = kmem_alloc(optlen,
5596                                     KM_NOSLEEP);
5597                                 if (ipp->ipp_label_v4 == NULL)
5598                                         return (ENOMEM);
5599                                 ipp->ipp_label_len_v4 = optlen;
5600                                 ipp->ipp_fields |= IPPF_LABEL_V4;
5601                                 bcopy(opt, ipp->ipp_label_v4, optlen);
5602                         }
5603                         totallen -= optlen;
5604                         opt += optlen;
5605 
5606                         /* Skip padding bytes until we get to a multiple of 4 */
5607                         while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5608                                 totallen--;
5609                                 opt++;
5610                         }
5611                         /* Remaining as ipp_ipv4_options */
5612                         goto copyall;
5613                 }
5614                 totallen -= optlen;
5615                 opt += optlen;
5616         }
5617         /* No CIPSO found; return everything as ipp_ipv4_options */
5618         totallen = ipha->ipha_version_and_hdr_length -
5619             (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5620         totallen <<= 2;
5621         opt = (uchar_t *)&ipha[1];
5622         goto copyall;
5623 }
5624 
5625 /*
5626  * Efficient versions of lookup for an IRE when we only
5627  * match the address.
5628  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5629  * Does not handle multicast addresses.
5630  */
5631 uint_t
5632 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5633 {
5634         ire_t *ire;
5635         uint_t result;
5636 
5637         ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5638         ASSERT(ire != NULL);
5639         if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5640                 result = IRE_NOROUTE;
5641         else
5642                 result = ire->ire_type;
5643         ire_refrele(ire);
5644         return (result);
5645 }
5646 
5647 /*
5648  * Efficient versions of lookup for an IRE when we only
5649  * match the address.
5650  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5651  * Does not handle multicast addresses.
5652  */
5653 uint_t
5654 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
5655 {
5656         ire_t *ire;
5657         uint_t result;
5658 
5659         ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5660         ASSERT(ire != NULL);
5661         if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5662                 result = IRE_NOROUTE;
5663         else
5664                 result = ire->ire_type;
5665         ire_refrele(ire);
5666         return (result);
5667 }
5668 
5669 /*
5670  * Nobody should be sending
5671  * packets up this stream
5672  */
5673 static int
5674 ip_lrput(queue_t *q, mblk_t *mp)
5675 {
5676         switch (mp->b_datap->db_type) {
5677         case M_FLUSH:
5678                 /* Turn around */
5679                 if (*mp->b_rptr & FLUSHW) {
5680                         *mp->b_rptr &= ~FLUSHR;
5681                         qreply(q, mp);
5682                         return (0);
5683                 }
5684                 break;
5685         }
5686         freemsg(mp);
5687         return (0);
5688 }
5689 
5690 /* Nobody should be sending packets down this stream */
5691 /* ARGSUSED */
5692 int
5693 ip_lwput(queue_t *q, mblk_t *mp)
5694 {
5695         freemsg(mp);
5696         return (0);
5697 }
5698 
5699 /*
5700  * Move the first hop in any source route to ipha_dst and remove that part of
5701  * the source route.  Called by other protocols.  Errors in option formatting
5702  * are ignored - will be handled by ip_output_options. Return the final
5703  * destination (either ipha_dst or the last entry in a source route.)
5704  */
5705 ipaddr_t
5706 ip_massage_options(ipha_t *ipha, netstack_t *ns)
5707 {
5708         ipoptp_t        opts;
5709         uchar_t         *opt;
5710         uint8_t         optval;
5711         uint8_t         optlen;
5712         ipaddr_t        dst;
5713         int             i;
5714         ip_stack_t      *ipst = ns->netstack_ip;
5715 
5716         ip2dbg(("ip_massage_options\n"));
5717         dst = ipha->ipha_dst;
5718         for (optval = ipoptp_first(&opts, ipha);
5719             optval != IPOPT_EOL;
5720             optval = ipoptp_next(&opts)) {
5721                 opt = opts.ipoptp_cur;
5722                 switch (optval) {
5723                         uint8_t off;
5724                 case IPOPT_SSRR:
5725                 case IPOPT_LSRR:
5726                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5727                                 ip1dbg(("ip_massage_options: bad src route\n"));
5728                                 break;
5729                         }
5730                         optlen = opts.ipoptp_len;
5731                         off = opt[IPOPT_OFFSET];
5732                         off--;
5733                 redo_srr:
5734                         if (optlen < IP_ADDR_LEN ||
5735                             off > optlen - IP_ADDR_LEN) {
5736                                 /* End of source route */
5737                                 ip1dbg(("ip_massage_options: end of SR\n"));
5738                                 break;
5739                         }
5740                         bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5741                         ip1dbg(("ip_massage_options: next hop 0x%x\n",
5742                             ntohl(dst)));
5743                         /*
5744                          * Check if our address is present more than
5745                          * once as consecutive hops in source route.
5746                          * XXX verify per-interface ip_forwarding
5747                          * for source route?
5748                          */
5749                         if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5750                                 off += IP_ADDR_LEN;
5751                                 goto redo_srr;
5752                         }
5753                         if (dst == htonl(INADDR_LOOPBACK)) {
5754                                 ip1dbg(("ip_massage_options: loopback addr in "
5755                                     "source route!\n"));
5756                                 break;
5757                         }
5758                         /*
5759                          * Update ipha_dst to be the first hop and remove the
5760                          * first hop from the source route (by overwriting
5761                          * part of the option with NOP options).
5762                          */
5763                         ipha->ipha_dst = dst;
5764                         /* Put the last entry in dst */
5765                         off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5766                             3;
5767                         bcopy(&opt[off], &dst, IP_ADDR_LEN);
5768 
5769                         ip1dbg(("ip_massage_options: last hop 0x%x\n",
5770                             ntohl(dst)));
5771                         /* Move down and overwrite */
5772                         opt[IP_ADDR_LEN] = opt[0];
5773                         opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5774                         opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5775                         for (i = 0; i < IP_ADDR_LEN; i++)
5776                                 opt[i] = IPOPT_NOP;
5777                         break;
5778                 }
5779         }
5780         return (dst);
5781 }
5782 
5783 /*
5784  * Return the network mask
5785  * associated with the specified address.
5786  */
5787 ipaddr_t
5788 ip_net_mask(ipaddr_t addr)
5789 {
5790         uchar_t *up = (uchar_t *)&addr;
5791         ipaddr_t mask = 0;
5792         uchar_t *maskp = (uchar_t *)&mask;
5793 
5794 #if defined(__i386) || defined(__amd64)
5795 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER
5796 #endif
5797 #ifdef  TOTALLY_BRAIN_DAMAGED_C_COMPILER
5798         maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5799 #endif
5800         if (CLASSD(addr)) {
5801                 maskp[0] = 0xF0;
5802                 return (mask);
5803         }
5804 
5805         /* We assume Class E default netmask to be 32 */
5806         if (CLASSE(addr))
5807                 return (0xffffffffU);
5808 
5809         if (addr == 0)
5810                 return (0);
5811         maskp[0] = 0xFF;
5812         if ((up[0] & 0x80) == 0)
5813                 return (mask);
5814 
5815         maskp[1] = 0xFF;
5816         if ((up[0] & 0xC0) == 0x80)
5817                 return (mask);
5818 
5819         maskp[2] = 0xFF;
5820         if ((up[0] & 0xE0) == 0xC0)
5821                 return (mask);
5822 
5823         /* Otherwise return no mask */
5824         return ((ipaddr_t)0);
5825 }
5826 
5827 /* Name/Value Table Lookup Routine */
5828 char *
5829 ip_nv_lookup(nv_t *nv, int value)
5830 {
5831         if (!nv)
5832                 return (NULL);
5833         for (; nv->nv_name; nv++) {
5834                 if (nv->nv_value == value)
5835                         return (nv->nv_name);
5836         }
5837         return ("unknown");
5838 }
5839 
5840 static int
5841 ip_wait_for_info_ack(ill_t *ill)
5842 {
5843         int err;
5844 
5845         mutex_enter(&ill->ill_lock);
5846         while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5847                 /*
5848                  * Return value of 0 indicates a pending signal.
5849                  */
5850                 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5851                 if (err == 0) {
5852                         mutex_exit(&ill->ill_lock);
5853                         return (EINTR);
5854                 }
5855         }
5856         mutex_exit(&ill->ill_lock);
5857         /*
5858          * ip_rput_other could have set an error  in ill_error on
5859          * receipt of M_ERROR.
5860          */
5861         return (ill->ill_error);
5862 }
5863 
5864 /*
5865  * This is a module open, i.e. this is a control stream for access
5866  * to a DLPI device.  We allocate an ill_t as the instance data in
5867  * this case.
5868  */
5869 static int
5870 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5871 {
5872         ill_t   *ill;
5873         int     err;
5874         zoneid_t zoneid;
5875         netstack_t *ns;
5876         ip_stack_t *ipst;
5877 
5878         /*
5879          * Prevent unprivileged processes from pushing IP so that
5880          * they can't send raw IP.
5881          */
5882         if (secpolicy_net_rawaccess(credp) != 0)
5883                 return (EPERM);
5884 
5885         ns = netstack_find_by_cred(credp);
5886         ASSERT(ns != NULL);
5887         ipst = ns->netstack_ip;
5888         ASSERT(ipst != NULL);
5889 
5890         /*
5891          * For exclusive stacks we set the zoneid to zero
5892          * to make IP operate as if in the global zone.
5893          */
5894         if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5895                 zoneid = GLOBAL_ZONEID;
5896         else
5897                 zoneid = crgetzoneid(credp);
5898 
5899         ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
5900         q->q_ptr = WR(q)->q_ptr = ill;
5901         ill->ill_ipst = ipst;
5902         ill->ill_zoneid = zoneid;
5903 
5904         /*
5905          * ill_init initializes the ill fields and then sends down
5906          * down a DL_INFO_REQ after calling qprocson.
5907          */
5908         err = ill_init(q, ill);
5909 
5910         if (err != 0) {
5911                 mi_free(ill);
5912                 netstack_rele(ipst->ips_netstack);
5913                 q->q_ptr = NULL;
5914                 WR(q)->q_ptr = NULL;
5915                 return (err);
5916         }
5917 
5918         /*
5919          * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
5920          *
5921          * ill_init initializes the ipsq marking this thread as
5922          * writer
5923          */
5924         ipsq_exit(ill->ill_phyint->phyint_ipsq);
5925         err = ip_wait_for_info_ack(ill);
5926         if (err == 0)
5927                 ill->ill_credp = credp;
5928         else
5929                 goto fail;
5930 
5931         crhold(credp);
5932 
5933         mutex_enter(&ipst->ips_ip_mi_lock);
5934         err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
5935             sflag, credp);
5936         mutex_exit(&ipst->ips_ip_mi_lock);
5937 fail:
5938         if (err) {
5939                 (void) ip_close(q, 0, credp);
5940                 return (err);
5941         }
5942         return (0);
5943 }
5944 
5945 /* For /dev/ip aka AF_INET open */
5946 int
5947 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5948 {
5949         return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
5950 }
5951 
5952 /* For /dev/ip6 aka AF_INET6 open */
5953 int
5954 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5955 {
5956         return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
5957 }
5958 
5959 /* IP open routine. */
5960 int
5961 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
5962     boolean_t isv6)
5963 {
5964         conn_t          *connp;
5965         major_t         maj;
5966         zoneid_t        zoneid;
5967         netstack_t      *ns;
5968         ip_stack_t      *ipst;
5969 
5970         /* Allow reopen. */
5971         if (q->q_ptr != NULL)
5972                 return (0);
5973 
5974         if (sflag & MODOPEN) {
5975                 /* This is a module open */
5976                 return (ip_modopen(q, devp, flag, sflag, credp));
5977         }
5978 
5979         if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
5980                 /*
5981                  * Non streams based socket looking for a stream
5982                  * to access IP
5983                  */
5984                 return (ip_helper_stream_setup(q, devp, flag, sflag,
5985                     credp, isv6));
5986         }
5987 
5988         ns = netstack_find_by_cred(credp);
5989         ASSERT(ns != NULL);
5990         ipst = ns->netstack_ip;
5991         ASSERT(ipst != NULL);
5992 
5993         /*
5994          * For exclusive stacks we set the zoneid to zero
5995          * to make IP operate as if in the global zone.
5996          */
5997         if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5998                 zoneid = GLOBAL_ZONEID;
5999         else
6000                 zoneid = crgetzoneid(credp);
6001 
6002         /*
6003          * We are opening as a device. This is an IP client stream, and we
6004          * allocate an conn_t as the instance data.
6005          */
6006         connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
6007 
6008         /*
6009          * ipcl_conn_create did a netstack_hold. Undo the hold that was
6010          * done by netstack_find_by_cred()
6011          */
6012         netstack_rele(ipst->ips_netstack);
6013 
6014         connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
6015         /* conn_allzones can not be set this early, hence no IPCL_ZONEID */
6016         connp->conn_ixa->ixa_zoneid = zoneid;
6017         connp->conn_zoneid = zoneid;
6018 
6019         connp->conn_rq = q;
6020         q->q_ptr = WR(q)->q_ptr = connp;
6021 
6022         /* Minor tells us which /dev entry was opened */
6023         if (isv6) {
6024                 connp->conn_family = AF_INET6;
6025                 connp->conn_ipversion = IPV6_VERSION;
6026                 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
6027                 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
6028         } else {
6029                 connp->conn_family = AF_INET;
6030                 connp->conn_ipversion = IPV4_VERSION;
6031                 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
6032         }
6033 
6034         if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
6035             ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
6036                 connp->conn_minor_arena = ip_minor_arena_la;
6037         } else {
6038                 /*
6039                  * Either minor numbers in the large arena were exhausted
6040                  * or a non socket application is doing the open.
6041                  * Try to allocate from the small arena.
6042                  */
6043                 if ((connp->conn_dev =
6044                     inet_minor_alloc(ip_minor_arena_sa)) == 0) {
6045                         /* CONN_DEC_REF takes care of netstack_rele() */
6046                         q->q_ptr = WR(q)->q_ptr = NULL;
6047                         CONN_DEC_REF(connp);
6048                         return (EBUSY);
6049                 }
6050                 connp->conn_minor_arena = ip_minor_arena_sa;
6051         }
6052 
6053         maj = getemajor(*devp);
6054         *devp = makedevice(maj, (minor_t)connp->conn_dev);
6055 
6056         /*
6057          * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
6058          */
6059         connp->conn_cred = credp;
6060         connp->conn_cpid = curproc->p_pid;
6061         /* Cache things in ixa without an extra refhold */
6062         ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
6063         connp->conn_ixa->ixa_cred = connp->conn_cred;
6064         connp->conn_ixa->ixa_cpid = connp->conn_cpid;
6065         if (is_system_labeled())
6066                 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
6067 
6068         /*
6069          * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
6070          */
6071         connp->conn_recv = ip_conn_input;
6072         connp->conn_recvicmp = ip_conn_input_icmp;
6073 
6074         crhold(connp->conn_cred);
6075 
6076         /*
6077          * If the caller has the process-wide flag set, then default to MAC
6078          * exempt mode.  This allows read-down to unlabeled hosts.
6079          */
6080         if (getpflags(NET_MAC_AWARE, credp) != 0)
6081                 connp->conn_mac_mode = CONN_MAC_AWARE;
6082 
6083         connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
6084 
6085         connp->conn_rq = q;
6086         connp->conn_wq = WR(q);
6087 
6088         /* Non-zero default values */
6089         connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;
6090 
6091         /*
6092          * Make the conn globally visible to walkers
6093          */
6094         ASSERT(connp->conn_ref == 1);
6095         mutex_enter(&connp->conn_lock);
6096         connp->conn_state_flags &= ~CONN_INCIPIENT;
6097         mutex_exit(&connp->conn_lock);
6098 
6099         qprocson(q);
6100 
6101         return (0);
6102 }
6103 
6104 /*
6105  * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6106  * all of them are copied to the conn_t. If the req is "zero", the policy is
6107  * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6108  * fields.
6109  * We keep only the latest setting of the policy and thus policy setting
6110  * is not incremental/cumulative.
6111  *
6112  * Requests to set policies with multiple alternative actions will
6113  * go through a different API.
6114  */
6115 int
6116 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6117 {
6118         uint_t ah_req = 0;
6119         uint_t esp_req = 0;
6120         uint_t se_req = 0;
6121         ipsec_act_t *actp = NULL;
6122         uint_t nact;
6123         ipsec_policy_head_t *ph;
6124         boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6125         int error = 0;
6126         netstack_t      *ns = connp->conn_netstack;
6127         ip_stack_t      *ipst = ns->netstack_ip;
6128         ipsec_stack_t   *ipss = ns->netstack_ipsec;
6129 
6130 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
6131 
6132         /*
6133          * The IP_SEC_OPT option does not allow variable length parameters,
6134          * hence a request cannot be NULL.
6135          */
6136         if (req == NULL)
6137                 return (EINVAL);
6138 
6139         ah_req = req->ipsr_ah_req;
6140         esp_req = req->ipsr_esp_req;
6141         se_req = req->ipsr_self_encap_req;
6142 
6143         /* Don't allow setting self-encap without one or more of AH/ESP. */
6144         if (se_req != 0 && esp_req == 0 && ah_req == 0)
6145                 return (EINVAL);
6146 
6147         /*
6148          * Are we dealing with a request to reset the policy (i.e.
6149          * zero requests).
6150          */
6151         is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6152             (esp_req & REQ_MASK) == 0 &&
6153             (se_req & REQ_MASK) == 0);
6154 
6155         if (!is_pol_reset) {
6156                 /*
6157                  * If we couldn't load IPsec, fail with "protocol
6158                  * not supported".
6159                  * IPsec may not have been loaded for a request with zero
6160                  * policies, so we don't fail in this case.
6161                  */
6162                 mutex_enter(&ipss->ipsec_loader_lock);
6163                 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6164                         mutex_exit(&ipss->ipsec_loader_lock);
6165                         return (EPROTONOSUPPORT);
6166                 }
6167                 mutex_exit(&ipss->ipsec_loader_lock);
6168 
6169                 /*
6170                  * Test for valid requests. Invalid algorithms
6171                  * need to be tested by IPsec code because new
6172                  * algorithms can be added dynamically.
6173                  */
6174                 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6175                     (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6176                     (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6177                         return (EINVAL);
6178                 }
6179 
6180                 /*
6181                  * Only privileged users can issue these
6182                  * requests.
6183                  */
6184                 if (((ah_req & IPSEC_PREF_NEVER) ||
6185                     (esp_req & IPSEC_PREF_NEVER) ||
6186                     (se_req & IPSEC_PREF_NEVER)) &&
6187                     secpolicy_ip_config(cr, B_FALSE) != 0) {
6188                         return (EPERM);
6189                 }
6190 
6191                 /*
6192                  * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6193                  * are mutually exclusive.
6194                  */
6195                 if (((ah_req & REQ_MASK) == REQ_MASK) ||
6196                     ((esp_req & REQ_MASK) == REQ_MASK) ||
6197                     ((se_req & REQ_MASK) == REQ_MASK)) {
6198                         /* Both of them are set */
6199                         return (EINVAL);
6200                 }
6201         }
6202 
6203         ASSERT(MUTEX_HELD(&connp->conn_lock));
6204 
6205         /*
6206          * If we have already cached policies in conn_connect(), don't
6207          * let them change now. We cache policies for connections
6208          * whose src,dst [addr, port] is known.
6209          */
6210         if (connp->conn_policy_cached) {
6211                 return (EINVAL);
6212         }
6213 
6214         /*
6215          * We have a zero policies, reset the connection policy if already
6216          * set. This will cause the connection to inherit the
6217          * global policy, if any.
6218          */
6219         if (is_pol_reset) {
6220                 if (connp->conn_policy != NULL) {
6221                         IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6222                         connp->conn_policy = NULL;
6223                 }
6224                 connp->conn_in_enforce_policy = B_FALSE;
6225                 connp->conn_out_enforce_policy = B_FALSE;
6226                 return (0);
6227         }
6228 
6229         ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6230             ipst->ips_netstack);
6231         if (ph == NULL)
6232                 goto enomem;
6233 
6234         ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6235         if (actp == NULL)
6236                 goto enomem;
6237 
6238         /*
6239          * Always insert IPv4 policy entries, since they can also apply to
6240          * ipv6 sockets being used in ipv4-compat mode.
6241          */
6242         if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6243             IPSEC_TYPE_INBOUND, ns))
6244                 goto enomem;
6245         is_pol_inserted = B_TRUE;
6246         if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6247             IPSEC_TYPE_OUTBOUND, ns))
6248                 goto enomem;
6249 
6250         /*
6251          * We're looking at a v6 socket, also insert the v6-specific
6252          * entries.
6253          */
6254         if (connp->conn_family == AF_INET6) {
6255                 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6256                     IPSEC_TYPE_INBOUND, ns))
6257                         goto enomem;
6258                 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6259                     IPSEC_TYPE_OUTBOUND, ns))
6260                         goto enomem;
6261         }
6262 
6263         ipsec_actvec_free(actp, nact);
6264 
6265         /*
6266          * If the requests need security, set enforce_policy.
6267          * If the requests are IPSEC_PREF_NEVER, one should
6268          * still set conn_out_enforce_policy so that ip_set_destination
6269          * marks the ip_xmit_attr_t appropriatly. This is needed so that
6270          * for connections that we don't cache policy in at connect time,
6271          * if global policy matches in ip_output_attach_policy, we
6272          * don't wrongly inherit global policy. Similarly, we need
6273          * to set conn_in_enforce_policy also so that we don't verify
6274          * policy wrongly.
6275          */
6276         if ((ah_req & REQ_MASK) != 0 ||
6277             (esp_req & REQ_MASK) != 0 ||
6278             (se_req & REQ_MASK) != 0) {
6279                 connp->conn_in_enforce_policy = B_TRUE;
6280                 connp->conn_out_enforce_policy = B_TRUE;
6281         }
6282 
6283         return (error);
6284 #undef REQ_MASK
6285 
6286         /*
6287          * Common memory-allocation-failure exit path.
6288          */
6289 enomem:
6290         if (actp != NULL)
6291                 ipsec_actvec_free(actp, nact);
6292         if (is_pol_inserted)
6293                 ipsec_polhead_flush(ph, ns);
6294         return (ENOMEM);
6295 }
6296 
6297 /*
6298  * Set socket options for joining and leaving multicast groups.
6299  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6300  * The caller has already check that the option name is consistent with
6301  * the address family of the socket.
6302  */
6303 int
6304 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6305     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6306 {
6307         int             *i1 = (int *)invalp;
6308         int             error = 0;
6309         ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
6310         struct ip_mreq  *v4_mreqp;
6311         struct ipv6_mreq *v6_mreqp;
6312         struct group_req *greqp;
6313         ire_t *ire;
6314         boolean_t done = B_FALSE;
6315         ipaddr_t ifaddr;
6316         in6_addr_t v6group;
6317         uint_t ifindex;
6318         boolean_t mcast_opt = B_TRUE;
6319         mcast_record_t fmode;
6320         int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6321             ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6322 
6323         switch (name) {
6324         case IP_ADD_MEMBERSHIP:
6325         case IPV6_JOIN_GROUP:
6326                 mcast_opt = B_FALSE;
6327                 /* FALLTHROUGH */
6328         case MCAST_JOIN_GROUP:
6329                 fmode = MODE_IS_EXCLUDE;
6330                 optfn = ip_opt_add_group;
6331                 break;
6332 
6333         case IP_DROP_MEMBERSHIP:
6334         case IPV6_LEAVE_GROUP:
6335                 mcast_opt = B_FALSE;
6336                 /* FALLTHROUGH */
6337         case MCAST_LEAVE_GROUP:
6338                 fmode = MODE_IS_INCLUDE;
6339                 optfn = ip_opt_delete_group;
6340                 break;
6341         default:
6342                 /* Should not be reached. */
6343                 fmode = MODE_IS_INCLUDE;
6344                 optfn = NULL;
6345                 ASSERT(0);
6346         }
6347 
6348         if (mcast_opt) {
6349                 struct sockaddr_in *sin;
6350                 struct sockaddr_in6 *sin6;
6351 
6352                 greqp = (struct group_req *)i1;
6353                 if (greqp->gr_group.ss_family == AF_INET) {
6354                         sin = (struct sockaddr_in *)&(greqp->gr_group);
6355                         IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6356                 } else {
6357                         if (!inet6)
6358                                 return (EINVAL);        /* Not on INET socket */
6359 
6360                         sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6361                         v6group = sin6->sin6_addr;
6362                 }
6363                 ifaddr = INADDR_ANY;
6364                 ifindex = greqp->gr_interface;
6365         } else if (inet6) {
6366                 v6_mreqp = (struct ipv6_mreq *)i1;
6367                 v6group = v6_mreqp->ipv6mr_multiaddr;
6368                 ifaddr = INADDR_ANY;
6369                 ifindex = v6_mreqp->ipv6mr_interface;
6370         } else {
6371                 v4_mreqp = (struct ip_mreq *)i1;
6372                 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6373                 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6374                 ifindex = 0;
6375         }
6376 
6377         /*
6378          * In the multirouting case, we need to replicate
6379          * the request on all interfaces that will take part
6380          * in replication.  We do so because multirouting is
6381          * reflective, thus we will probably receive multi-
6382          * casts on those interfaces.
6383          * The ip_multirt_apply_membership() succeeds if
6384          * the operation succeeds on at least one interface.
6385          */
6386         if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6387                 ipaddr_t group;
6388 
6389                 IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6390 
6391                 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6392                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6393                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6394         } else {
6395                 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6396                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6397                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6398         }
6399         if (ire != NULL) {
6400                 if (ire->ire_flags & RTF_MULTIRT) {
6401                         error = ip_multirt_apply_membership(optfn, ire, connp,
6402                             checkonly, &v6group, fmode, &ipv6_all_zeros);
6403                         done = B_TRUE;
6404                 }
6405                 ire_refrele(ire);
6406         }
6407 
6408         if (!done) {
6409                 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6410                     fmode, &ipv6_all_zeros);
6411         }
6412         return (error);
6413 }
6414 
6415 /*
6416  * Set socket options for joining and leaving multicast groups
6417  * for specific sources.
6418  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6419  * The caller has already check that the option name is consistent with
6420  * the address family of the socket.
6421  */
6422 int
6423 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6424     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6425 {
6426         int             *i1 = (int *)invalp;
6427         int             error = 0;
6428         ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
6429         struct ip_mreq_source *imreqp;
6430         struct group_source_req *gsreqp;
6431         in6_addr_t v6group, v6src;
6432         uint32_t ifindex;
6433         ipaddr_t ifaddr;
6434         boolean_t mcast_opt = B_TRUE;
6435         mcast_record_t fmode;
6436         ire_t *ire;
6437         boolean_t done = B_FALSE;
6438         int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6439             ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6440 
6441         switch (name) {
6442         case IP_BLOCK_SOURCE:
6443                 mcast_opt = B_FALSE;
6444                 /* FALLTHROUGH */
6445         case MCAST_BLOCK_SOURCE:
6446                 fmode = MODE_IS_EXCLUDE;
6447                 optfn = ip_opt_add_group;
6448                 break;
6449 
6450         case IP_UNBLOCK_SOURCE:
6451                 mcast_opt = B_FALSE;
6452                 /* FALLTHROUGH */
6453         case MCAST_UNBLOCK_SOURCE:
6454                 fmode = MODE_IS_EXCLUDE;
6455                 optfn = ip_opt_delete_group;
6456                 break;
6457 
6458         case IP_ADD_SOURCE_MEMBERSHIP:
6459                 mcast_opt = B_FALSE;
6460                 /* FALLTHROUGH */
6461         case MCAST_JOIN_SOURCE_GROUP:
6462                 fmode = MODE_IS_INCLUDE;
6463                 optfn = ip_opt_add_group;
6464                 break;
6465 
6466         case IP_DROP_SOURCE_MEMBERSHIP:
6467                 mcast_opt = B_FALSE;
6468                 /* FALLTHROUGH */
6469         case MCAST_LEAVE_SOURCE_GROUP:
6470                 fmode = MODE_IS_INCLUDE;
6471                 optfn = ip_opt_delete_group;
6472                 break;
6473         default:
6474                 /* Should not be reached. */
6475                 optfn = NULL;
6476                 fmode = 0;
6477                 ASSERT(0);
6478         }
6479 
6480         if (mcast_opt) {
6481                 gsreqp = (struct group_source_req *)i1;
6482                 ifindex = gsreqp->gsr_interface;
6483                 if (gsreqp->gsr_group.ss_family == AF_INET) {
6484                         struct sockaddr_in *s;
6485                         s = (struct sockaddr_in *)&gsreqp->gsr_group;
6486                         IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6487                         s = (struct sockaddr_in *)&gsreqp->gsr_source;
6488                         IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6489                 } else {
6490                         struct sockaddr_in6 *s6;
6491 
6492                         if (!inet6)
6493                                 return (EINVAL);        /* Not on INET socket */
6494 
6495                         s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6496                         v6group = s6->sin6_addr;
6497                         s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6498                         v6src = s6->sin6_addr;
6499                 }
6500                 ifaddr = INADDR_ANY;
6501         } else {
6502                 imreqp = (struct ip_mreq_source *)i1;
6503                 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6504                 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6505                 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6506                 ifindex = 0;
6507         }
6508 
6509         /*
6510          * Handle src being mapped INADDR_ANY by changing it to unspecified.
6511          */
6512         if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6513                 v6src = ipv6_all_zeros;
6514 
6515         /*
6516          * In the multirouting case, we need to replicate
6517          * the request as noted in the mcast cases above.
6518          */
6519         if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6520                 ipaddr_t group;
6521 
6522                 IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6523 
6524                 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6525                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6526                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6527         } else {
6528                 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6529                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6530                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6531         }
6532         if (ire != NULL) {
6533                 if (ire->ire_flags & RTF_MULTIRT) {
6534                         error = ip_multirt_apply_membership(optfn, ire, connp,
6535                             checkonly, &v6group, fmode, &v6src);
6536                         done = B_TRUE;
6537                 }
6538                 ire_refrele(ire);
6539         }
6540         if (!done) {
6541                 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6542                     fmode, &v6src);
6543         }
6544         return (error);
6545 }
6546 
6547 /*
6548  * Given a destination address and a pointer to where to put the information
6549  * this routine fills in the mtuinfo.
6550  * The socket must be connected.
6551  * For sctp conn_faddr is the primary address.
6552  */
6553 int
6554 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6555 {
6556         uint32_t        pmtu = IP_MAXPACKET;
6557         uint_t          scopeid;
6558 
6559         if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
6560                 return (-1);
6561 
6562         /* In case we never sent or called ip_set_destination_v4/v6 */
6563         if (ixa->ixa_ire != NULL)
6564                 pmtu = ip_get_pmtu(ixa);
6565 
6566         if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6567                 scopeid = ixa->ixa_scopeid;
6568         else
6569                 scopeid = 0;
6570 
6571         bzero(mtuinfo, sizeof (*mtuinfo));
6572         mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6573         mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6574         mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6575         mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6576         mtuinfo->ip6m_mtu = pmtu;
6577 
6578         return (sizeof (struct ip6_mtuinfo));
6579 }
6580 
6581 /*
6582  * When the src multihoming is changed from weak to [strong, preferred]
6583  * ip_ire_rebind_walker is called to walk the list of all ire_t entries
6584  * and identify routes that were created by user-applications in the
6585  * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
6586  * currently defined. These routes are then 'rebound', i.e., their ire_ill
6587  * is selected by finding an interface route for the gateway.
6588  */
6589 /* ARGSUSED */
6590 void
6591 ip_ire_rebind_walker(ire_t *ire, void *notused)
6592 {
6593         if (!ire->ire_unbound || ire->ire_ill != NULL)
6594                 return;
6595         ire_rebind(ire);
6596         ire_delete(ire);
6597 }
6598 
6599 /*
6600  * When the src multihoming is changed from  [strong, preferred] to weak,
6601  * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
6602  * set any entries that were created by user-applications in the unbound state
6603  * (i.e., without RTA_IFP) back to having a NULL ire_ill.
6604  */
6605 /* ARGSUSED */
6606 void
6607 ip_ire_unbind_walker(ire_t *ire, void *notused)
6608 {
6609         ire_t *new_ire;
6610 
6611         if (!ire->ire_unbound || ire->ire_ill == NULL)
6612                 return;
6613         if (ire->ire_ipversion == IPV6_VERSION) {
6614                 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
6615                     &ire->ire_gateway_addr_v6, ire->ire_type, NULL,
6616                     ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6617         } else {
6618                 new_ire = ire_create((uchar_t *)&ire->ire_addr,
6619                     (uchar_t *)&ire->ire_mask,
6620                     (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
6621                     ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6622         }
6623         if (new_ire == NULL)
6624                 return;
6625         new_ire->ire_unbound = B_TRUE;
6626         /*
6627          * The bound ire must first be deleted so that we don't return
6628          * the existing one on the attempt to add the unbound new_ire.
6629          */
6630         ire_delete(ire);
6631         new_ire = ire_add(new_ire);
6632         if (new_ire != NULL)
6633                 ire_refrele(new_ire);
6634 }
6635 
6636 /*
6637  * When the settings of ip*_strict_src_multihoming tunables are changed,
6638  * all cached routes need to be recomputed. This recomputation needs to be
6639  * done when going from weaker to stronger modes so that the cached ire
6640  * for the connection does not violate the current ip*_strict_src_multihoming
6641  * setting. It also needs to be done when going from stronger to weaker modes,
6642  * so that we fall back to matching on the longest-matching-route (as opposed
6643  * to a shorter match that may have been selected in the strong mode
6644  * to satisfy src_multihoming settings).
6645  *
6646  * The cached ixa_ire entires for all conn_t entries are marked as
6647  * "verify" so that they will be recomputed for the next packet.
6648  */
6649 void
6650 conn_ire_revalidate(conn_t *connp, void *arg)
6651 {
6652         boolean_t isv6 = (boolean_t)arg;
6653 
6654         if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
6655             (!isv6 && connp->conn_ipversion != IPV4_VERSION))
6656                 return;
6657         connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
6658 }
6659 
6660 /*
6661  * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6662  * When an ipf is passed here for the first time, if
6663  * we already have in-order fragments on the queue, we convert from the fast-
6664  * path reassembly scheme to the hard-case scheme.  From then on, additional
6665  * fragments are reassembled here.  We keep track of the start and end offsets
6666  * of each piece, and the number of holes in the chain.  When the hole count
6667  * goes to zero, we are done!
6668  *
6669  * The ipf_count will be updated to account for any mblk(s) added (pointed to
6670  * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6671  * ipfb_count and ill_frag_count by the difference of ipf_count before and
6672  * after the call to ip_reassemble().
6673  */
6674 int
6675 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6676     size_t msg_len)
6677 {
6678         uint_t  end;
6679         mblk_t  *next_mp;
6680         mblk_t  *mp1;
6681         uint_t  offset;
6682         boolean_t incr_dups = B_TRUE;
6683         boolean_t offset_zero_seen = B_FALSE;
6684         boolean_t pkt_boundary_checked = B_FALSE;
6685 
6686         /* If start == 0 then ipf_nf_hdr_len has to be set. */
6687         ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
6688 
6689         /* Add in byte count */
6690         ipf->ipf_count += msg_len;
6691         if (ipf->ipf_end) {
6692                 /*
6693                  * We were part way through in-order reassembly, but now there
6694                  * is a hole.  We walk through messages already queued, and
6695                  * mark them for hard case reassembly.  We know that up till
6696                  * now they were in order starting from offset zero.
6697                  */
6698                 offset = 0;
6699                 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6700                         IP_REASS_SET_START(mp1, offset);
6701                         if (offset == 0) {
6702                                 ASSERT(ipf->ipf_nf_hdr_len != 0);
6703                                 offset = -ipf->ipf_nf_hdr_len;
6704                         }
6705                         offset += mp1->b_wptr - mp1->b_rptr;
6706                         IP_REASS_SET_END(mp1, offset);
6707                 }
6708                 /* One hole at the end. */
6709                 ipf->ipf_hole_cnt = 1;
6710                 /* Brand it as a hard case, forever. */
6711                 ipf->ipf_end = 0;
6712         }
6713         /* Walk through all the new pieces. */
6714         do {
6715                 end = start + (mp->b_wptr - mp->b_rptr);
6716                 /*
6717                  * If start is 0, decrease 'end' only for the first mblk of
6718                  * the fragment. Otherwise 'end' can get wrong value in the
6719                  * second pass of the loop if first mblk is exactly the
6720                  * size of ipf_nf_hdr_len.
6721                  */
6722                 if (start == 0 && !offset_zero_seen) {
6723                         /* First segment */
6724                         ASSERT(ipf->ipf_nf_hdr_len != 0);
6725                         end -= ipf->ipf_nf_hdr_len;
6726                         offset_zero_seen = B_TRUE;
6727                 }
6728                 next_mp = mp->b_cont;
6729                 /*
6730                  * We are checking to see if there is any interesing data
6731                  * to process.  If there isn't and the mblk isn't the
6732                  * one which carries the unfragmentable header then we
6733                  * drop it.  It's possible to have just the unfragmentable
6734                  * header come through without any data.  That needs to be
6735                  * saved.
6736                  *
6737                  * If the assert at the top of this function holds then the
6738                  * term "ipf->ipf_nf_hdr_len != 0" isn't needed.  This code
6739                  * is infrequently traveled enough that the test is left in
6740                  * to protect against future code changes which break that
6741                  * invariant.
6742                  */
6743                 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6744                         /* Empty.  Blast it. */
6745                         IP_REASS_SET_START(mp, 0);
6746                         IP_REASS_SET_END(mp, 0);
6747                         /*
6748                          * If the ipf points to the mblk we are about to free,
6749                          * update ipf to point to the next mblk (or NULL
6750                          * if none).
6751                          */
6752                         if (ipf->ipf_mp->b_cont == mp)
6753                                 ipf->ipf_mp->b_cont = next_mp;
6754                         freeb(mp);
6755                         continue;
6756                 }
6757                 mp->b_cont = NULL;
6758                 IP_REASS_SET_START(mp, start);
6759                 IP_REASS_SET_END(mp, end);
6760                 if (!ipf->ipf_tail_mp) {
6761                         ipf->ipf_tail_mp = mp;
6762                         ipf->ipf_mp->b_cont = mp;
6763                         if (start == 0 || !more) {
6764                                 ipf->ipf_hole_cnt = 1;
6765                                 /*
6766                                  * if the first fragment comes in more than one
6767                                  * mblk, this loop will be executed for each
6768                                  * mblk. Need to adjust hole count so exiting
6769                                  * this routine will leave hole count at 1.
6770                                  */
6771                                 if (next_mp)
6772                                         ipf->ipf_hole_cnt++;
6773                         } else
6774                                 ipf->ipf_hole_cnt = 2;
6775                         continue;
6776                 } else if (ipf->ipf_last_frag_seen && !more &&
6777                     !pkt_boundary_checked) {
6778                         /*
6779                          * We check datagram boundary only if this fragment
6780                          * claims to be the last fragment and we have seen a
6781                          * last fragment in the past too. We do this only
6782                          * once for a given fragment.
6783                          *
6784                          * start cannot be 0 here as fragments with start=0
6785                          * and MF=0 gets handled as a complete packet. These
6786                          * fragments should not reach here.
6787                          */
6788 
6789                         if (start + msgdsize(mp) !=
6790                             IP_REASS_END(ipf->ipf_tail_mp)) {
6791                                 /*
6792                                  * We have two fragments both of which claim
6793                                  * to be the last fragment but gives conflicting
6794                                  * information about the whole datagram size.
6795                                  * Something fishy is going on. Drop the
6796                                  * fragment and free up the reassembly list.
6797                                  */
6798                                 return (IP_REASS_FAILED);
6799                         }
6800 
6801                         /*
6802                          * We shouldn't come to this code block again for this
6803                          * particular fragment.
6804                          */
6805                         pkt_boundary_checked = B_TRUE;
6806                 }
6807 
6808                 /* New stuff at or beyond tail? */
6809                 offset = IP_REASS_END(ipf->ipf_tail_mp);
6810                 if (start >= offset) {
6811                         if (ipf->ipf_last_frag_seen) {
6812                                 /* current fragment is beyond last fragment */
6813                                 return (IP_REASS_FAILED);
6814                         }
6815                         /* Link it on end. */
6816                         ipf->ipf_tail_mp->b_cont = mp;
6817                         ipf->ipf_tail_mp = mp;
6818                         if (more) {
6819                                 if (start != offset)
6820                                         ipf->ipf_hole_cnt++;
6821                         } else if (start == offset && next_mp == NULL)
6822                                         ipf->ipf_hole_cnt--;
6823                         continue;
6824                 }
6825                 mp1 = ipf->ipf_mp->b_cont;
6826                 offset = IP_REASS_START(mp1);
6827                 /* New stuff at the front? */
6828                 if (start < offset) {
6829                         if (start == 0) {
6830                                 if (end >= offset) {
6831                                         /* Nailed the hole at the begining. */
6832                                         ipf->ipf_hole_cnt--;
6833                                 }
6834                         } else if (end < offset) {
6835                                 /*
6836                                  * A hole, stuff, and a hole where there used
6837                                  * to be just a hole.
6838                                  */
6839                                 ipf->ipf_hole_cnt++;
6840                         }
6841                         mp->b_cont = mp1;
6842                         /* Check for overlap. */
6843                         while (end > offset) {
6844                                 if (end < IP_REASS_END(mp1)) {
6845                                         mp->b_wptr -= end - offset;
6846                                         IP_REASS_SET_END(mp, offset);
6847                                         BUMP_MIB(ill->ill_ip_mib,
6848                                             ipIfStatsReasmPartDups);
6849                                         break;
6850                                 }
6851                                 /* Did we cover another hole? */
6852                                 if ((mp1->b_cont &&
6853                                     IP_REASS_END(mp1) !=
6854                                     IP_REASS_START(mp1->b_cont) &&
6855                                     end >= IP_REASS_START(mp1->b_cont)) ||
6856                                     (!ipf->ipf_last_frag_seen && !more)) {
6857                                         ipf->ipf_hole_cnt--;
6858                                 }
6859                                 /* Clip out mp1. */
6860                                 if ((mp->b_cont = mp1->b_cont) == NULL) {
6861                                         /*
6862                                          * After clipping out mp1, this guy
6863                                          * is now hanging off the end.
6864                                          */
6865                                         ipf->ipf_tail_mp = mp;
6866                                 }
6867                                 IP_REASS_SET_START(mp1, 0);
6868                                 IP_REASS_SET_END(mp1, 0);
6869                                 /* Subtract byte count */
6870                                 ipf->ipf_count -= mp1->b_datap->db_lim -
6871                                     mp1->b_datap->db_base;
6872                                 freeb(mp1);
6873                                 BUMP_MIB(ill->ill_ip_mib,
6874                                     ipIfStatsReasmPartDups);
6875                                 mp1 = mp->b_cont;
6876                                 if (!mp1)
6877                                         break;
6878                                 offset = IP_REASS_START(mp1);
6879                         }
6880                         ipf->ipf_mp->b_cont = mp;
6881                         continue;
6882                 }
6883                 /*
6884                  * The new piece starts somewhere between the start of the head
6885                  * and before the end of the tail.
6886                  */
6887                 for (; mp1; mp1 = mp1->b_cont) {
6888                         offset = IP_REASS_END(mp1);
6889                         if (start < offset) {
6890                                 if (end <= offset) {
6891                                         /* Nothing new. */
6892                                         IP_REASS_SET_START(mp, 0);
6893                                         IP_REASS_SET_END(mp, 0);
6894                                         /* Subtract byte count */
6895                                         ipf->ipf_count -= mp->b_datap->db_lim -
6896                                             mp->b_datap->db_base;
6897                                         if (incr_dups) {
6898                                                 ipf->ipf_num_dups++;
6899                                                 incr_dups = B_FALSE;
6900                                         }
6901                                         freeb(mp);
6902                                         BUMP_MIB(ill->ill_ip_mib,
6903                                             ipIfStatsReasmDuplicates);
6904                                         break;
6905                                 }
6906                                 /*
6907                                  * Trim redundant stuff off beginning of new
6908                                  * piece.
6909                                  */
6910                                 IP_REASS_SET_START(mp, offset);
6911                                 mp->b_rptr += offset - start;
6912                                 BUMP_MIB(ill->ill_ip_mib,
6913                                     ipIfStatsReasmPartDups);
6914                                 start = offset;
6915                                 if (!mp1->b_cont) {
6916                                         /*
6917                                          * After trimming, this guy is now
6918                                          * hanging off the end.
6919                                          */
6920                                         mp1->b_cont = mp;
6921                                         ipf->ipf_tail_mp = mp;
6922                                         if (!more) {
6923                                                 ipf->ipf_hole_cnt--;
6924                                         }
6925                                         break;
6926                                 }
6927                         }
6928                         if (start >= IP_REASS_START(mp1->b_cont))
6929                                 continue;
6930                         /* Fill a hole */
6931                         if (start > offset)
6932                                 ipf->ipf_hole_cnt++;
6933                         mp->b_cont = mp1->b_cont;
6934                         mp1->b_cont = mp;
6935                         mp1 = mp->b_cont;
6936                         offset = IP_REASS_START(mp1);
6937                         if (end >= offset) {
6938                                 ipf->ipf_hole_cnt--;
6939                                 /* Check for overlap. */
6940                                 while (end > offset) {
6941                                         if (end < IP_REASS_END(mp1)) {
6942                                                 mp->b_wptr -= end - offset;
6943                                                 IP_REASS_SET_END(mp, offset);
6944                                                 /*
6945                                                  * TODO we might bump
6946                                                  * this up twice if there is
6947                                                  * overlap at both ends.
6948                                                  */
6949                                                 BUMP_MIB(ill->ill_ip_mib,
6950                                                     ipIfStatsReasmPartDups);
6951                                                 break;
6952                                         }
6953                                         /* Did we cover another hole? */
6954                                         if ((mp1->b_cont &&
6955                                             IP_REASS_END(mp1)
6956                                             != IP_REASS_START(mp1->b_cont) &&
6957                                             end >=
6958                                             IP_REASS_START(mp1->b_cont)) ||
6959                                             (!ipf->ipf_last_frag_seen &&
6960                                             !more)) {
6961                                                 ipf->ipf_hole_cnt--;
6962                                         }
6963                                         /* Clip out mp1. */
6964                                         if ((mp->b_cont = mp1->b_cont) ==
6965                                             NULL) {
6966                                                 /*
6967                                                  * After clipping out mp1,
6968                                                  * this guy is now hanging
6969                                                  * off the end.
6970                                                  */
6971                                                 ipf->ipf_tail_mp = mp;
6972                                         }
6973                                         IP_REASS_SET_START(mp1, 0);
6974                                         IP_REASS_SET_END(mp1, 0);
6975                                         /* Subtract byte count */
6976                                         ipf->ipf_count -=
6977                                             mp1->b_datap->db_lim -
6978                                             mp1->b_datap->db_base;
6979                                         freeb(mp1);
6980                                         BUMP_MIB(ill->ill_ip_mib,
6981                                             ipIfStatsReasmPartDups);
6982                                         mp1 = mp->b_cont;
6983                                         if (!mp1)
6984                                                 break;
6985                                         offset = IP_REASS_START(mp1);
6986                                 }
6987                         }
6988                         break;
6989                 }
6990         } while (start = end, mp = next_mp);
6991 
6992         /* Fragment just processed could be the last one. Remember this fact */
6993         if (!more)
6994                 ipf->ipf_last_frag_seen = B_TRUE;
6995 
6996         /* Still got holes? */
6997         if (ipf->ipf_hole_cnt)
6998                 return (IP_REASS_PARTIAL);
6999         /* Clean up overloaded fields to avoid upstream disasters. */
7000         for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
7001                 IP_REASS_SET_START(mp1, 0);
7002                 IP_REASS_SET_END(mp1, 0);
7003         }
7004         return (IP_REASS_COMPLETE);
7005 }
7006 
7007 /*
7008  * Fragmentation reassembly.  Each ILL has a hash table for
7009  * queuing packets undergoing reassembly for all IPIFs
7010  * associated with the ILL.  The hash is based on the packet
7011  * IP ident field.  The ILL frag hash table was allocated
7012  * as a timer block at the time the ILL was created.  Whenever
7013  * there is anything on the reassembly queue, the timer will
7014  * be running.  Returns the reassembled packet if reassembly completes.
7015  */
7016 mblk_t *
7017 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
7018 {
7019         uint32_t        frag_offset_flags;
7020         mblk_t          *t_mp;
7021         ipaddr_t        dst;
7022         uint8_t         proto = ipha->ipha_protocol;
7023         uint32_t        sum_val;
7024         uint16_t        sum_flags;
7025         ipf_t           *ipf;
7026         ipf_t           **ipfp;
7027         ipfb_t          *ipfb;
7028         uint16_t        ident;
7029         uint32_t        offset;
7030         ipaddr_t        src;
7031         uint_t          hdr_length;
7032         uint32_t        end;
7033         mblk_t          *mp1;
7034         mblk_t          *tail_mp;
7035         size_t          count;
7036         size_t          msg_len;
7037         uint8_t         ecn_info = 0;
7038         uint32_t        packet_size;
7039         boolean_t       pruned = B_FALSE;
7040         ill_t           *ill = ira->ira_ill;
7041         ip_stack_t      *ipst = ill->ill_ipst;
7042 
7043         /*
7044          * Drop the fragmented as early as possible, if
7045          * we don't have resource(s) to re-assemble.
7046          */
7047         if (ipst->ips_ip_reass_queue_bytes == 0) {
7048                 freemsg(mp);
7049                 return (NULL);
7050         }
7051 
7052         /* Check for fragmentation offset; return if there's none */
7053         if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
7054             (IPH_MF | IPH_OFFSET)) == 0)
7055                 return (mp);
7056 
7057         /*
7058          * We utilize hardware computed checksum info only for UDP since
7059          * IP fragmentation is a normal occurrence for the protocol.  In
7060          * addition, checksum offload support for IP fragments carrying
7061          * UDP payload is commonly implemented across network adapters.
7062          */
7063         ASSERT(ira->ira_rill != NULL);
7064         if (proto == IPPROTO_UDP && dohwcksum &&
7065             ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
7066             (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
7067                 mblk_t *mp1 = mp->b_cont;
7068                 int32_t len;
7069 
7070                 /* Record checksum information from the packet */
7071                 sum_val = (uint32_t)DB_CKSUM16(mp);
7072                 sum_flags = DB_CKSUMFLAGS(mp);
7073 
7074                 /* IP payload offset from beginning of mblk */
7075                 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
7076 
7077                 if ((sum_flags & HCK_PARTIALCKSUM) &&
7078                     (mp1 == NULL || mp1->b_cont == NULL) &&
7079                     offset >= DB_CKSUMSTART(mp) &&
7080                     ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7081                         uint32_t adj;
7082                         /*
7083                          * Partial checksum has been calculated by hardware
7084                          * and attached to the packet; in addition, any
7085                          * prepended extraneous data is even byte aligned.
7086                          * If any such data exists, we adjust the checksum;
7087                          * this would also handle any postpended data.
7088                          */
7089                         IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7090                             mp, mp1, len, adj);
7091 
7092                         /* One's complement subtract extraneous checksum */
7093                         if (adj >= sum_val)
7094                                 sum_val = ~(adj - sum_val) & 0xFFFF;
7095                         else
7096                                 sum_val -= adj;
7097                 }
7098         } else {
7099                 sum_val = 0;
7100                 sum_flags = 0;
7101         }
7102 
7103         /* Clear hardware checksumming flag */
7104         DB_CKSUMFLAGS(mp) = 0;
7105 
7106         ident = ipha->ipha_ident;
7107         offset = (frag_offset_flags << 3) & 0xFFFF;
7108         src = ipha->ipha_src;
7109         dst = ipha->ipha_dst;
7110         hdr_length = IPH_HDR_LENGTH(ipha);
7111         end = ntohs(ipha->ipha_length) - hdr_length;
7112 
7113         /* If end == 0 then we have a packet with no data, so just free it */
7114         if (end == 0) {
7115                 freemsg(mp);
7116                 return (NULL);
7117         }
7118 
7119         /* Record the ECN field info. */
7120         ecn_info = (ipha->ipha_type_of_service & 0x3);
7121         if (offset != 0) {
7122                 /*
7123                  * If this isn't the first piece, strip the header, and
7124                  * add the offset to the end value.
7125                  */
7126                 mp->b_rptr += hdr_length;
7127                 end += offset;
7128         }
7129 
7130         /* Handle vnic loopback of fragments */
7131         if (mp->b_datap->db_ref > 2)
7132                 msg_len = 0;
7133         else
7134                 msg_len = MBLKSIZE(mp);
7135 
7136         tail_mp = mp;
7137         while (tail_mp->b_cont != NULL) {
7138                 tail_mp = tail_mp->b_cont;
7139                 if (tail_mp->b_datap->db_ref <= 2)
7140                         msg_len += MBLKSIZE(tail_mp);
7141         }
7142 
7143         /* If the reassembly list for this ILL will get too big, prune it */
7144         if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7145             ipst->ips_ip_reass_queue_bytes) {
7146                 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7147                     uint_t, ill->ill_frag_count,
7148                     uint_t, ipst->ips_ip_reass_queue_bytes);
7149                 ill_frag_prune(ill,
7150                     (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7151                     (ipst->ips_ip_reass_queue_bytes - msg_len));
7152                 pruned = B_TRUE;
7153         }
7154 
7155         ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7156         mutex_enter(&ipfb->ipfb_lock);
7157 
7158         ipfp = &ipfb->ipfb_ipf;
7159         /* Try to find an existing fragment queue for this packet. */
7160         for (;;) {
7161                 ipf = ipfp[0];
7162                 if (ipf != NULL) {
7163                         /*
7164                          * It has to match on ident and src/dst address.
7165                          */
7166                         if (ipf->ipf_ident == ident &&
7167                             ipf->ipf_src == src &&
7168                             ipf->ipf_dst == dst &&
7169                             ipf->ipf_protocol == proto) {
7170                                 /*
7171                                  * If we have received too many
7172                                  * duplicate fragments for this packet
7173                                  * free it.
7174                                  */
7175                                 if (ipf->ipf_num_dups > ip_max_frag_dups) {
7176                                         ill_frag_free_pkts(ill, ipfb, ipf, 1);
7177                                         freemsg(mp);
7178                                         mutex_exit(&ipfb->ipfb_lock);
7179                                         return (NULL);
7180                                 }
7181                                 /* Found it. */
7182                                 break;
7183                         }
7184                         ipfp = &ipf->ipf_hash_next;
7185                         continue;
7186                 }
7187 
7188                 /*
7189                  * If we pruned the list, do we want to store this new
7190                  * fragment?. We apply an optimization here based on the
7191                  * fact that most fragments will be received in order.
7192                  * So if the offset of this incoming fragment is zero,
7193                  * it is the first fragment of a new packet. We will
7194                  * keep it.  Otherwise drop the fragment, as we have
7195                  * probably pruned the packet already (since the
7196                  * packet cannot be found).
7197                  */
7198                 if (pruned && offset != 0) {
7199                         mutex_exit(&ipfb->ipfb_lock);
7200                         freemsg(mp);
7201                         return (NULL);
7202                 }
7203 
7204                 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst))  {
7205                         /*
7206                          * Too many fragmented packets in this hash
7207                          * bucket. Free the oldest.
7208                          */
7209                         ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7210                 }
7211 
7212                 /* New guy.  Allocate a frag message. */
7213                 mp1 = allocb(sizeof (*ipf), BPRI_MED);
7214                 if (mp1 == NULL) {
7215                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7216                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7217                         freemsg(mp);
7218 reass_done:
7219                         mutex_exit(&ipfb->ipfb_lock);
7220                         return (NULL);
7221                 }
7222 
7223                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7224                 mp1->b_cont = mp;
7225 
7226                 /* Initialize the fragment header. */
7227                 ipf = (ipf_t *)mp1->b_rptr;
7228                 ipf->ipf_mp = mp1;
7229                 ipf->ipf_ptphn = ipfp;
7230                 ipfp[0] = ipf;
7231                 ipf->ipf_hash_next = NULL;
7232                 ipf->ipf_ident = ident;
7233                 ipf->ipf_protocol = proto;
7234                 ipf->ipf_src = src;
7235                 ipf->ipf_dst = dst;
7236                 ipf->ipf_nf_hdr_len = 0;
7237                 /* Record reassembly start time. */
7238                 ipf->ipf_timestamp = gethrestime_sec();
7239                 /* Record ipf generation and account for frag header */
7240                 ipf->ipf_gen = ill->ill_ipf_gen++;
7241                 ipf->ipf_count = MBLKSIZE(mp1);
7242                 ipf->ipf_last_frag_seen = B_FALSE;
7243                 ipf->ipf_ecn = ecn_info;
7244                 ipf->ipf_num_dups = 0;
7245                 ipfb->ipfb_frag_pkts++;
7246                 ipf->ipf_checksum = 0;
7247                 ipf->ipf_checksum_flags = 0;
7248 
7249                 /* Store checksum value in fragment header */
7250                 if (sum_flags != 0) {
7251                         sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7252                         sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7253                         ipf->ipf_checksum = sum_val;
7254                         ipf->ipf_checksum_flags = sum_flags;
7255                 }
7256 
7257                 /*
7258                  * We handle reassembly two ways.  In the easy case,
7259                  * where all the fragments show up in order, we do
7260                  * minimal bookkeeping, and just clip new pieces on
7261                  * the end.  If we ever see a hole, then we go off
7262                  * to ip_reassemble which has to mark the pieces and
7263                  * keep track of the number of holes, etc.  Obviously,
7264                  * the point of having both mechanisms is so we can
7265                  * handle the easy case as efficiently as possible.
7266                  */
7267                 if (offset == 0) {
7268                         /* Easy case, in-order reassembly so far. */
7269                         ipf->ipf_count += msg_len;
7270                         ipf->ipf_tail_mp = tail_mp;
7271                         /*
7272                          * Keep track of next expected offset in
7273                          * ipf_end.
7274                          */
7275                         ipf->ipf_end = end;
7276                         ipf->ipf_nf_hdr_len = hdr_length;
7277                 } else {
7278                         /* Hard case, hole at the beginning. */
7279                         ipf->ipf_tail_mp = NULL;
7280                         /*
7281                          * ipf_end == 0 means that we have given up
7282                          * on easy reassembly.
7283                          */
7284                         ipf->ipf_end = 0;
7285 
7286                         /* Forget checksum offload from now on */
7287                         ipf->ipf_checksum_flags = 0;
7288 
7289                         /*
7290                          * ipf_hole_cnt is set by ip_reassemble.
7291                          * ipf_count is updated by ip_reassemble.
7292                          * No need to check for return value here
7293                          * as we don't expect reassembly to complete
7294                          * or fail for the first fragment itself.
7295                          */
7296                         (void) ip_reassemble(mp, ipf,
7297                             (frag_offset_flags & IPH_OFFSET) << 3,
7298                             (frag_offset_flags & IPH_MF), ill, msg_len);
7299                 }
7300                 /* Update per ipfb and ill byte counts */
7301                 ipfb->ipfb_count += ipf->ipf_count;
7302                 ASSERT(ipfb->ipfb_count > 0);     /* Wraparound */
7303                 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7304                 /* If the frag timer wasn't already going, start it. */
7305                 mutex_enter(&ill->ill_lock);
7306                 ill_frag_timer_start(ill);
7307                 mutex_exit(&ill->ill_lock);
7308                 goto reass_done;
7309         }
7310 
7311         /*
7312          * If the packet's flag has changed (it could be coming up
7313          * from an interface different than the previous, therefore
7314          * possibly different checksum capability), then forget about
7315          * any stored checksum states.  Otherwise add the value to
7316          * the existing one stored in the fragment header.
7317          */
7318         if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7319                 sum_val += ipf->ipf_checksum;
7320                 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7321                 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7322                 ipf->ipf_checksum = sum_val;
7323         } else if (ipf->ipf_checksum_flags != 0) {
7324                 /* Forget checksum offload from now on */
7325                 ipf->ipf_checksum_flags = 0;
7326         }
7327 
7328         /*
7329          * We have a new piece of a datagram which is already being
7330          * reassembled.  Update the ECN info if all IP fragments
7331          * are ECN capable.  If there is one which is not, clear
7332          * all the info.  If there is at least one which has CE
7333          * code point, IP needs to report that up to transport.
7334          */
7335         if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7336                 if (ecn_info == IPH_ECN_CE)
7337                         ipf->ipf_ecn = IPH_ECN_CE;
7338         } else {
7339                 ipf->ipf_ecn = IPH_ECN_NECT;
7340         }
7341         if (offset && ipf->ipf_end == offset) {
7342                 /* The new fragment fits at the end */
7343                 ipf->ipf_tail_mp->b_cont = mp;
7344                 /* Update the byte count */
7345                 ipf->ipf_count += msg_len;
7346                 /* Update per ipfb and ill byte counts */
7347                 ipfb->ipfb_count += msg_len;
7348                 ASSERT(ipfb->ipfb_count > 0);     /* Wraparound */
7349                 atomic_add_32(&ill->ill_frag_count, msg_len);
7350                 if (frag_offset_flags & IPH_MF) {
7351                         /* More to come. */
7352                         ipf->ipf_end = end;
7353                         ipf->ipf_tail_mp = tail_mp;
7354                         goto reass_done;
7355                 }
7356         } else {
7357                 /* Go do the hard cases. */
7358                 int ret;
7359 
7360                 if (offset == 0)
7361                         ipf->ipf_nf_hdr_len = hdr_length;
7362 
7363                 /* Save current byte count */
7364                 count = ipf->ipf_count;
7365                 ret = ip_reassemble(mp, ipf,
7366                     (frag_offset_flags & IPH_OFFSET) << 3,
7367                     (frag_offset_flags & IPH_MF), ill, msg_len);
7368                 /* Count of bytes added and subtracted (freeb()ed) */
7369                 count = ipf->ipf_count - count;
7370                 if (count) {
7371                         /* Update per ipfb and ill byte counts */
7372                         ipfb->ipfb_count += count;
7373                         ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7374                         atomic_add_32(&ill->ill_frag_count, count);
7375                 }
7376                 if (ret == IP_REASS_PARTIAL) {
7377                         goto reass_done;
7378                 } else if (ret == IP_REASS_FAILED) {
7379                         /* Reassembly failed. Free up all resources */
7380                         ill_frag_free_pkts(ill, ipfb, ipf, 1);
7381                         for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7382                                 IP_REASS_SET_START(t_mp, 0);
7383                                 IP_REASS_SET_END(t_mp, 0);
7384                         }
7385                         freemsg(mp);
7386                         goto reass_done;
7387                 }
7388                 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */
7389         }
7390         /*
7391          * We have completed reassembly.  Unhook the frag header from
7392          * the reassembly list.
7393          *
7394          * Before we free the frag header, record the ECN info
7395          * to report back to the transport.
7396          */
7397         ecn_info = ipf->ipf_ecn;
7398         BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7399         ipfp = ipf->ipf_ptphn;
7400 
7401         /* We need to supply these to caller */
7402         if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7403                 sum_val = ipf->ipf_checksum;
7404         else
7405                 sum_val = 0;
7406 
7407         mp1 = ipf->ipf_mp;
7408         count = ipf->ipf_count;
7409         ipf = ipf->ipf_hash_next;
7410         if (ipf != NULL)
7411                 ipf->ipf_ptphn = ipfp;
7412         ipfp[0] = ipf;
7413         atomic_add_32(&ill->ill_frag_count, -count);
7414         ASSERT(ipfb->ipfb_count >= count);
7415         ipfb->ipfb_count -= count;
7416         ipfb->ipfb_frag_pkts--;
7417         mutex_exit(&ipfb->ipfb_lock);
7418         /* Ditch the frag header. */
7419         mp = mp1->b_cont;
7420 
7421         freeb(mp1);
7422 
7423         /* Restore original IP length in header. */
7424         packet_size = (uint32_t)msgdsize(mp);
7425         if (packet_size > IP_MAXPACKET) {
7426                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7427                 ip_drop_input("Reassembled packet too large", mp, ill);
7428                 freemsg(mp);
7429                 return (NULL);
7430         }
7431 
7432         if (DB_REF(mp) > 1) {
7433                 mblk_t *mp2 = copymsg(mp);
7434 
7435                 if (mp2 == NULL) {
7436                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7437                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7438                         freemsg(mp);
7439                         return (NULL);
7440                 }
7441                 freemsg(mp);
7442                 mp = mp2;
7443         }
7444         ipha = (ipha_t *)mp->b_rptr;
7445 
7446         ipha->ipha_length = htons((uint16_t)packet_size);
7447         /* We're now complete, zip the frag state */
7448         ipha->ipha_fragment_offset_and_flags = 0;
7449         /* Record the ECN info. */
7450         ipha->ipha_type_of_service &= 0xFC;
7451         ipha->ipha_type_of_service |= ecn_info;
7452 
7453         /* Update the receive attributes */
7454         ira->ira_pktlen = packet_size;
7455         ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
7456 
7457         /* Reassembly is successful; set checksum information in packet */
7458         DB_CKSUM16(mp) = (uint16_t)sum_val;
7459         DB_CKSUMFLAGS(mp) = sum_flags;
7460         DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;
7461 
7462         return (mp);
7463 }
7464 
7465 /*
7466  * Pullup function that should be used for IP input in order to
7467  * ensure we do not loose the L2 source address; we need the l2 source
7468  * address for IP_RECVSLLA and for ndp_input.
7469  *
7470  * We return either NULL or b_rptr.
7471  */
7472 void *
7473 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7474 {
7475         ill_t           *ill = ira->ira_ill;
7476 
7477         if (ip_rput_pullups++ == 0) {
7478                 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7479                     "ip_pullup: %s forced us to "
7480                     " pullup pkt, hdr len %ld, hdr addr %p",
7481                     ill->ill_name, len, (void *)mp->b_rptr);
7482         }
7483         if (!(ira->ira_flags & IRAF_L2SRC_SET))
7484                 ip_setl2src(mp, ira, ira->ira_rill);
7485         ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7486         if (!pullupmsg(mp, len))
7487                 return (NULL);
7488         else
7489                 return (mp->b_rptr);
7490 }
7491 
7492 /*
7493  * Make sure ira_l2src has an address. If we don't have one fill with zeros.
7494  * When called from the ULP ira_rill will be NULL hence the caller has to
7495  * pass in the ill.
7496  */
7497 /* ARGSUSED */
7498 void
7499 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7500 {
7501         const uchar_t *addr;
7502         int alen;
7503 
7504         if (ira->ira_flags & IRAF_L2SRC_SET)
7505                 return;
7506 
7507         ASSERT(ill != NULL);
7508         alen = ill->ill_phys_addr_length;
7509         ASSERT(alen <= sizeof (ira->ira_l2src));
7510         if (ira->ira_mhip != NULL &&
7511             (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7512                 bcopy(addr, ira->ira_l2src, alen);
7513         } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7514             (addr = ill->ill_phys_addr) != NULL) {
7515                 bcopy(addr, ira->ira_l2src, alen);
7516         } else {
7517                 bzero(ira->ira_l2src, alen);
7518         }
7519         ira->ira_flags |= IRAF_L2SRC_SET;
7520 }
7521 
7522 /*
7523  * check ip header length and align it.
7524  */
7525 mblk_t *
7526 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7527 {
7528         ill_t   *ill = ira->ira_ill;
7529         ssize_t len;
7530 
7531         len = MBLKL(mp);
7532 
7533         if (!OK_32PTR(mp->b_rptr))
7534                 IP_STAT(ill->ill_ipst, ip_notaligned);
7535         else
7536                 IP_STAT(ill->ill_ipst, ip_recv_pullup);
7537 
7538         /* Guard against bogus device drivers */
7539         if (len < 0) {
7540                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7541                 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7542                 freemsg(mp);
7543                 return (NULL);
7544         }
7545 
7546         if (len == 0) {
7547                 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7548                 mblk_t *mp1 = mp->b_cont;
7549 
7550                 if (!(ira->ira_flags & IRAF_L2SRC_SET))
7551                         ip_setl2src(mp, ira, ira->ira_rill);
7552                 ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7553 
7554                 freeb(mp);
7555                 mp = mp1;
7556                 if (mp == NULL)
7557                         return (NULL);
7558 
7559                 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7560                         return (mp);
7561         }
7562         if (ip_pullup(mp, min_size, ira) == NULL) {
7563                 if (msgdsize(mp) < min_size) {
7564                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7565                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7566                 } else {
7567                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7568                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7569                 }
7570                 freemsg(mp);
7571                 return (NULL);
7572         }
7573         return (mp);
7574 }
7575 
7576 /*
7577  * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7578  */
7579 mblk_t *
7580 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len,
7581     uint_t min_size, ip_recv_attr_t *ira)
7582 {
7583         ill_t   *ill = ira->ira_ill;
7584 
7585         /*
7586          * Make sure we have data length consistent
7587          * with the IP header.
7588          */
7589         if (mp->b_cont == NULL) {
7590                 /* pkt_len is based on ipha_len, not the mblk length */
7591                 if (pkt_len < min_size) {
7592                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7593                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7594                         freemsg(mp);
7595                         return (NULL);
7596                 }
7597                 if (len < 0) {
7598                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7599                         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7600                         freemsg(mp);
7601                         return (NULL);
7602                 }
7603                 /* Drop any pad */
7604                 mp->b_wptr = rptr + pkt_len;
7605         } else if ((len += msgdsize(mp->b_cont)) != 0) {
7606                 ASSERT(pkt_len >= min_size);
7607                 if (pkt_len < min_size) {
7608                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7609                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7610                         freemsg(mp);
7611                         return (NULL);
7612                 }
7613                 if (len < 0) {
7614                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7615                         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7616                         freemsg(mp);
7617                         return (NULL);
7618                 }
7619                 /* Drop any pad */
7620                 (void) adjmsg(mp, -len);
7621                 /*
7622                  * adjmsg may have freed an mblk from the chain, hence
7623                  * invalidate any hw checksum here. This will force IP to
7624                  * calculate the checksum in sw, but only for this packet.
7625                  */
7626                 DB_CKSUMFLAGS(mp) = 0;
7627                 IP_STAT(ill->ill_ipst, ip_multimblk);
7628         }
7629         return (mp);
7630 }
7631 
7632 /*
7633  * Check that the IPv4 opt_len is consistent with the packet and pullup
7634  * the options.
7635  */
7636 mblk_t *
7637 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7638     ip_recv_attr_t *ira)
7639 {
7640         ill_t   *ill = ira->ira_ill;
7641         ssize_t len;
7642 
7643         /* Assume no IPv6 packets arrive over the IPv4 queue */
7644         if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7645                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7646                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7647                 ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7648                 freemsg(mp);
7649                 return (NULL);
7650         }
7651 
7652         if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7653                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7654                 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7655                 freemsg(mp);
7656                 return (NULL);
7657         }
7658         /*
7659          * Recompute complete header length and make sure we
7660          * have access to all of it.
7661          */
7662         len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7663         if (len > (mp->b_wptr - mp->b_rptr)) {
7664                 if (len > pkt_len) {
7665                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7666                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7667                         freemsg(mp);
7668                         return (NULL);
7669                 }
7670                 if (ip_pullup(mp, len, ira) == NULL) {
7671                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7672                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7673                         freemsg(mp);
7674                         return (NULL);
7675                 }
7676         }
7677         return (mp);
7678 }
7679 
7680 /*
7681  * Returns a new ire, or the same ire, or NULL.
7682  * If a different IRE is returned, then it is held; the caller
7683  * needs to release it.
7684  * In no case is there any hold/release on the ire argument.
7685  */
7686 ire_t *
7687 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7688 {
7689         ire_t           *new_ire;
7690         ill_t           *ire_ill;
7691         uint_t          ifindex;
7692         ip_stack_t      *ipst = ill->ill_ipst;
7693         boolean_t       strict_check = B_FALSE;
7694 
7695         /*
7696          * IPMP common case: if IRE and ILL are in the same group, there's no
7697          * issue (e.g. packet received on an underlying interface matched an
7698          * IRE_LOCAL on its associated group interface).
7699          */
7700         ASSERT(ire->ire_ill != NULL);
7701         if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7702                 return (ire);
7703 
7704         /*
7705          * Do another ire lookup here, using the ingress ill, to see if the
7706          * interface is in a usesrc group.
7707          * As long as the ills belong to the same group, we don't consider
7708          * them to be arriving on the wrong interface. Thus, if the switch
7709          * is doing inbound load spreading, we won't drop packets when the
7710          * ip*_strict_dst_multihoming switch is on.
7711          * We also need to check for IPIF_UNNUMBERED point2point interfaces
7712          * where the local address may not be unique. In this case we were
7713          * at the mercy of the initial ire lookup and the IRE_LOCAL it
7714          * actually returned. The new lookup, which is more specific, should
7715          * only find the IRE_LOCAL associated with the ingress ill if one
7716          * exists.
7717          */
7718         if (ire->ire_ipversion == IPV4_VERSION) {
7719                 if (ipst->ips_ip_strict_dst_multihoming)
7720                         strict_check = B_TRUE;
7721                 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7722                     IRE_LOCAL, ill, ALL_ZONES, NULL,
7723                     (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7724         } else {
7725                 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7726                 if (ipst->ips_ipv6_strict_dst_multihoming)
7727                         strict_check = B_TRUE;
7728                 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7729                     IRE_LOCAL, ill, ALL_ZONES, NULL,
7730                     (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7731         }
7732         /*
7733          * If the same ire that was returned in ip_input() is found then this
7734          * is an indication that usesrc groups are in use. The packet
7735          * arrived on a different ill in the group than the one associated with
7736          * the destination address.  If a different ire was found then the same
7737          * IP address must be hosted on multiple ills. This is possible with
7738          * unnumbered point2point interfaces. We switch to use this new ire in
7739          * order to have accurate interface statistics.
7740          */
7741         if (new_ire != NULL) {
7742                 /* Note: held in one case but not the other? Caller handles */
7743                 if (new_ire != ire)
7744                         return (new_ire);
7745                 /* Unchanged */
7746                 ire_refrele(new_ire);
7747                 return (ire);
7748         }
7749 
7750         /*
7751          * Chase pointers once and store locally.
7752          */
7753         ASSERT(ire->ire_ill != NULL);
7754         ire_ill = ire->ire_ill;
7755         ifindex = ill->ill_usesrc_ifindex;
7756 
7757         /*
7758          * Check if it's a legal address on the 'usesrc' interface.
7759          * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7760          * can just check phyint_ifindex.
7761          */
7762         if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7763                 return (ire);
7764         }
7765 
7766         /*
7767          * If the ip*_strict_dst_multihoming switch is on then we can
7768          * only accept this packet if the interface is marked as routing.
7769          */
7770         if (!(strict_check))
7771                 return (ire);
7772 
7773         if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7774                 return (ire);
7775         }
7776         return (NULL);
7777 }
7778 
7779 /*
7780  * This function is used to construct a mac_header_info_s from a
7781  * DL_UNITDATA_IND message.
7782  * The address fields in the mhi structure points into the message,
7783  * thus the caller can't use those fields after freeing the message.
7784  *
7785  * We determine whether the packet received is a non-unicast packet
7786  * and in doing so, determine whether or not it is broadcast vs multicast.
7787  * For it to be a broadcast packet, we must have the appropriate mblk_t
7788  * hanging off the ill_t.  If this is either not present or doesn't match
7789  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7790  * to be multicast.  Thus NICs that have no broadcast address (or no
7791  * capability for one, such as point to point links) cannot return as
7792  * the packet being broadcast.
7793  */
7794 void
7795 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7796 {
7797         dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7798         mblk_t *bmp;
7799         uint_t extra_offset;
7800 
7801         bzero(mhip, sizeof (struct mac_header_info_s));
7802 
7803         mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7804 
7805         if (ill->ill_sap_length < 0)
7806                 extra_offset = 0;
7807         else
7808                 extra_offset = ill->ill_sap_length;
7809 
7810         mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7811             extra_offset;
7812         mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7813             extra_offset;
7814 
7815         if (!ind->dl_group_address)
7816                 return;
7817 
7818         /* Multicast or broadcast */
7819         mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7820 
7821         if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7822             ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7823             (bmp = ill->ill_bcast_mp) != NULL) {
7824                 dl_unitdata_req_t *dlur;
7825                 uint8_t *bphys_addr;
7826 
7827                 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7828                 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7829                     extra_offset;
7830 
7831                 if (bcmp(mhip->mhi_daddr, bphys_addr,
7832                     ind->dl_dest_addr_length) == 0)
7833                         mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7834         }
7835 }
7836 
7837 /*
7838  * This function is used to construct a mac_header_info_s from a
7839  * M_DATA fastpath message from a DLPI driver.
7840  * The address fields in the mhi structure points into the message,
7841  * thus the caller can't use those fields after freeing the message.
7842  *
7843  * We determine whether the packet received is a non-unicast packet
7844  * and in doing so, determine whether or not it is broadcast vs multicast.
7845  * For it to be a broadcast packet, we must have the appropriate mblk_t
7846  * hanging off the ill_t.  If this is either not present or doesn't match
7847  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7848  * to be multicast.  Thus NICs that have no broadcast address (or no
7849  * capability for one, such as point to point links) cannot return as
7850  * the packet being broadcast.
7851  */
7852 void
7853 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7854 {
7855         mblk_t *bmp;
7856         struct ether_header *pether;
7857 
7858         bzero(mhip, sizeof (struct mac_header_info_s));
7859 
7860         mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7861 
7862         pether = (struct ether_header *)((char *)mp->b_rptr
7863             - sizeof (struct ether_header));
7864 
7865         /*
7866          * Make sure the interface is an ethernet type, since we don't
7867          * know the header format for anything but Ethernet. Also make
7868          * sure we are pointing correctly above db_base.
7869          */
7870         if (ill->ill_type != IFT_ETHER)
7871                 return;
7872 
7873 retry:
7874         if ((uchar_t *)pether < mp->b_datap->db_base)
7875                 return;
7876 
7877         /* Is there a VLAN tag? */
7878         if (ill->ill_isv6) {
7879                 if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
7880                         pether = (struct ether_header *)((char *)pether - 4);
7881                         goto retry;
7882                 }
7883         } else {
7884                 if (pether->ether_type != htons(ETHERTYPE_IP)) {
7885                         pether = (struct ether_header *)((char *)pether - 4);
7886                         goto retry;
7887                 }
7888         }
7889         mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
7890         mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;
7891 
7892         if (!(mhip->mhi_daddr[0] & 0x01))
7893                 return;
7894 
7895         /* Multicast or broadcast */
7896         mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7897 
7898         if ((bmp = ill->ill_bcast_mp) != NULL) {
7899                 dl_unitdata_req_t *dlur;
7900                 uint8_t *bphys_addr;
7901                 uint_t  addrlen;
7902 
7903                 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7904                 addrlen = dlur->dl_dest_addr_length;
7905                 if (ill->ill_sap_length < 0) {
7906                         bphys_addr = (uchar_t *)dlur +
7907                             dlur->dl_dest_addr_offset;
7908                         addrlen += ill->ill_sap_length;
7909                 } else {
7910                         bphys_addr = (uchar_t *)dlur +
7911                             dlur->dl_dest_addr_offset +
7912                             ill->ill_sap_length;
7913                         addrlen -= ill->ill_sap_length;
7914                 }
7915                 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
7916                         mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7917         }
7918 }
7919 
7920 /*
7921  * Handle anything but M_DATA messages
7922  * We see the DL_UNITDATA_IND which are part
7923  * of the data path, and also the other messages from the driver.
7924  */
7925 void
7926 ip_rput_notdata(ill_t *ill, mblk_t *mp)
7927 {
7928         mblk_t          *first_mp;
7929         struct iocblk   *iocp;
7930         struct mac_header_info_s mhi;
7931 
7932         switch (DB_TYPE(mp)) {
7933         case M_PROTO:
7934         case M_PCPROTO: {
7935                 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
7936                     DL_UNITDATA_IND) {
7937                         /* Go handle anything other than data elsewhere. */
7938                         ip_rput_dlpi(ill, mp);
7939                         return;
7940                 }
7941 
7942                 first_mp = mp;
7943                 mp = first_mp->b_cont;
7944                 first_mp->b_cont = NULL;
7945 
7946                 if (mp == NULL) {
7947                         freeb(first_mp);
7948                         return;
7949                 }
7950                 ip_dlur_to_mhi(ill, first_mp, &mhi);
7951                 if (ill->ill_isv6)
7952                         ip_input_v6(ill, NULL, mp, &mhi);
7953                 else
7954                         ip_input(ill, NULL, mp, &mhi);
7955 
7956                 /* Ditch the DLPI header. */
7957                 freeb(first_mp);
7958                 return;
7959         }
7960         case M_IOCACK:
7961                 iocp = (struct iocblk *)mp->b_rptr;
7962                 switch (iocp->ioc_cmd) {
7963                 case DL_IOC_HDR_INFO:
7964                         ill_fastpath_ack(ill, mp);
7965                         return;
7966                 default:
7967                         putnext(ill->ill_rq, mp);
7968                         return;
7969                 }
7970                 /* FALLTHROUGH */
7971         case M_ERROR:
7972         case M_HANGUP:
7973                 mutex_enter(&ill->ill_lock);
7974                 if (ill->ill_state_flags & ILL_CONDEMNED) {
7975                         mutex_exit(&ill->ill_lock);
7976                         freemsg(mp);
7977                         return;
7978                 }
7979                 ill_refhold_locked(ill);
7980                 mutex_exit(&ill->ill_lock);
7981                 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
7982                     B_FALSE);
7983                 return;
7984         case M_CTL:
7985                 putnext(ill->ill_rq, mp);
7986                 return;
7987         case M_IOCNAK:
7988                 ip1dbg(("got iocnak "));
7989                 iocp = (struct iocblk *)mp->b_rptr;
7990                 switch (iocp->ioc_cmd) {
7991                 case DL_IOC_HDR_INFO:
7992                         ip_rput_other(NULL, ill->ill_rq, mp, NULL);
7993                         return;
7994                 default:
7995                         break;
7996                 }
7997                 /* FALLTHROUGH */
7998         default:
7999                 putnext(ill->ill_rq, mp);
8000                 return;
8001         }
8002 }
8003 
8004 /* Read side put procedure.  Packets coming from the wire arrive here. */
8005 int
8006 ip_rput(queue_t *q, mblk_t *mp)
8007 {
8008         ill_t   *ill;
8009         union DL_primitives *dl;
8010 
8011         ill = (ill_t *)q->q_ptr;
8012 
8013         if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
8014                 /*
8015                  * If things are opening or closing, only accept high-priority
8016                  * DLPI messages.  (On open ill->ill_ipif has not yet been
8017                  * created; on close, things hanging off the ill may have been
8018                  * freed already.)
8019                  */
8020                 dl = (union DL_primitives *)mp->b_rptr;
8021                 if (DB_TYPE(mp) != M_PCPROTO ||
8022                     dl->dl_primitive == DL_UNITDATA_IND) {
8023                         inet_freemsg(mp);
8024                         return (0);
8025                 }
8026         }
8027         if (DB_TYPE(mp) == M_DATA) {
8028                 struct mac_header_info_s mhi;
8029 
8030                 ip_mdata_to_mhi(ill, mp, &mhi);
8031                 ip_input(ill, NULL, mp, &mhi);
8032         } else {
8033                 ip_rput_notdata(ill, mp);
8034         }
8035         return (0);
8036 }
8037 
8038 /*
8039  * Move the information to a copy.
8040  */
8041 mblk_t *
8042 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
8043 {
8044         mblk_t          *mp1;
8045         ill_t           *ill = ira->ira_ill;
8046         ip_stack_t      *ipst = ill->ill_ipst;
8047 
8048         IP_STAT(ipst, ip_db_ref);
8049 
8050         /* Make sure we have ira_l2src before we loose the original mblk */
8051         if (!(ira->ira_flags & IRAF_L2SRC_SET))
8052                 ip_setl2src(mp, ira, ira->ira_rill);
8053 
8054         mp1 = copymsg(mp);
8055         if (mp1 == NULL) {
8056                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
8057                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
8058                 freemsg(mp);
8059                 return (NULL);
8060         }
8061         /* preserve the hardware checksum flags and data, if present */
8062         if (DB_CKSUMFLAGS(mp) != 0) {
8063                 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
8064                 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
8065                 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
8066                 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
8067                 DB_CKSUM16(mp1) = DB_CKSUM16(mp);
8068         }
8069         freemsg(mp);
8070         return (mp1);
8071 }
8072 
8073 static void
8074 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
8075     t_uscalar_t err)
8076 {
8077         if (dl_err == DL_SYSERR) {
8078                 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8079                     "%s: %s failed: DL_SYSERR (errno %u)\n",
8080                     ill->ill_name, dl_primstr(prim), err);
8081                 return;
8082         }
8083 
8084         (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8085             "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8086             dl_errstr(dl_err));
8087 }
8088 
8089 /*
8090  * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8091  * than DL_UNITDATA_IND messages. If we need to process this message
8092  * exclusively, we call qwriter_ip, in which case we also need to call
8093  * ill_refhold before that, since qwriter_ip does an ill_refrele.
8094  */
8095 void
8096 ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8097 {
8098         dl_ok_ack_t     *dloa = (dl_ok_ack_t *)mp->b_rptr;
8099         dl_error_ack_t  *dlea = (dl_error_ack_t *)dloa;
8100         queue_t         *q = ill->ill_rq;
8101         t_uscalar_t     prim = dloa->dl_primitive;
8102         t_uscalar_t     reqprim = DL_PRIM_INVAL;
8103 
8104         DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8105             char *, dl_primstr(prim), ill_t *, ill);
8106         ip1dbg(("ip_rput_dlpi"));
8107 
8108         /*
8109          * If we received an ACK but didn't send a request for it, then it
8110          * can't be part of any pending operation; discard up-front.
8111          */
8112         switch (prim) {
8113         case DL_ERROR_ACK:
8114                 reqprim = dlea->dl_error_primitive;
8115                 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8116                     "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8117                     reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8118                     dlea->dl_unix_errno));
8119                 break;
8120         case DL_OK_ACK:
8121                 reqprim = dloa->dl_correct_primitive;
8122                 break;
8123         case DL_INFO_ACK:
8124                 reqprim = DL_INFO_REQ;
8125                 break;
8126         case DL_BIND_ACK:
8127                 reqprim = DL_BIND_REQ;
8128                 break;
8129         case DL_PHYS_ADDR_ACK:
8130                 reqprim = DL_PHYS_ADDR_REQ;
8131                 break;
8132         case DL_NOTIFY_ACK:
8133                 reqprim = DL_NOTIFY_REQ;
8134                 break;
8135         case DL_CAPABILITY_ACK:
8136                 reqprim = DL_CAPABILITY_REQ;
8137                 break;
8138         }
8139 
8140         if (prim != DL_NOTIFY_IND) {
8141                 if (reqprim == DL_PRIM_INVAL ||
8142                     !ill_dlpi_pending(ill, reqprim)) {
8143                         /* Not a DLPI message we support or expected */
8144                         freemsg(mp);
8145                         return;
8146                 }
8147                 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8148                     dl_primstr(reqprim)));
8149         }
8150 
8151         switch (reqprim) {
8152         case DL_UNBIND_REQ:
8153                 /*
8154                  * NOTE: we mark the unbind as complete even if we got a
8155                  * DL_ERROR_ACK, since there's not much else we can do.
8156                  */
8157                 mutex_enter(&ill->ill_lock);
8158                 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8159                 cv_signal(&ill->ill_cv);
8160                 mutex_exit(&ill->ill_lock);
8161                 break;
8162 
8163         case DL_ENABMULTI_REQ:
8164                 if (prim == DL_OK_ACK) {
8165                         if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8166                                 ill->ill_dlpi_multicast_state = IDS_OK;
8167                 }
8168                 break;
8169         }
8170 
8171         /*
8172          * The message is one we're waiting for (or DL_NOTIFY_IND), but we
8173          * need to become writer to continue to process it.  Because an
8174          * exclusive operation doesn't complete until replies to all queued
8175          * DLPI messages have been received, we know we're in the middle of an
8176          * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8177          *
8178          * As required by qwriter_ip(), we refhold the ill; it will refrele.
8179          * Since this is on the ill stream we unconditionally bump up the
8180          * refcount without doing ILL_CAN_LOOKUP().
8181          */
8182         ill_refhold(ill);
8183         if (prim == DL_NOTIFY_IND)
8184                 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8185         else
8186                 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8187 }
8188 
8189 /*
8190  * Handling of DLPI messages that require exclusive access to the ipsq.
8191  *
8192  * Need to do ipsq_pending_mp_get on ioctl completion, which could
8193  * happen here. (along with mi_copy_done)
8194  */
8195 /* ARGSUSED */
8196 static void
8197 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8198 {
8199         dl_ok_ack_t     *dloa = (dl_ok_ack_t *)mp->b_rptr;
8200         dl_error_ack_t  *dlea = (dl_error_ack_t *)dloa;
8201         int             err = 0;
8202         ill_t           *ill = (ill_t *)q->q_ptr;
8203         ipif_t          *ipif = NULL;
8204         mblk_t          *mp1 = NULL;
8205         conn_t          *connp = NULL;
8206         t_uscalar_t     paddrreq;
8207         mblk_t          *mp_hw;
8208         boolean_t       success;
8209         boolean_t       ioctl_aborted = B_FALSE;
8210         boolean_t       log = B_TRUE;
8211 
8212         DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8213             char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);
8214 
8215         ip1dbg(("ip_rput_dlpi_writer .."));
8216         ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8217         ASSERT(IAM_WRITER_ILL(ill));
8218 
8219         ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8220         /*
8221          * The current ioctl could have been aborted by the user and a new
8222          * ioctl to bring up another ill could have started. We could still
8223          * get a response from the driver later.
8224          */
8225         if (ipif != NULL && ipif->ipif_ill != ill)
8226                 ioctl_aborted = B_TRUE;
8227 
8228         switch (dloa->dl_primitive) {
8229         case DL_ERROR_ACK:
8230                 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8231                     dl_primstr(dlea->dl_error_primitive)));
8232 
8233                 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8234                     char *, dl_primstr(dlea->dl_error_primitive),
8235                     ill_t *, ill);
8236 
8237                 switch (dlea->dl_error_primitive) {
8238                 case DL_DISABMULTI_REQ:
8239                         ill_dlpi_done(ill, dlea->dl_error_primitive);
8240                         break;
8241                 case DL_PROMISCON_REQ:
8242                 case DL_PROMISCOFF_REQ:
8243                 case DL_UNBIND_REQ:
8244                 case DL_ATTACH_REQ:
8245                 case DL_INFO_REQ:
8246                         ill_dlpi_done(ill, dlea->dl_error_primitive);
8247                         break;
8248                 case DL_NOTIFY_REQ:
8249                         ill_dlpi_done(ill, DL_NOTIFY_REQ);
8250                         log = B_FALSE;
8251                         break;
8252                 case DL_PHYS_ADDR_REQ:
8253                         /*
8254                          * For IPv6 only, there are two additional
8255                          * phys_addr_req's sent to the driver to get the
8256                          * IPv6 token and lla. This allows IP to acquire
8257                          * the hardware address format for a given interface
8258                          * without having built in knowledge of the hardware
8259                          * address. ill_phys_addr_pend keeps track of the last
8260                          * DL_PAR sent so we know which response we are
8261                          * dealing with. ill_dlpi_done will update
8262                          * ill_phys_addr_pend when it sends the next req.
8263                          * We don't complete the IOCTL until all three DL_PARs
8264                          * have been attempted, so set *_len to 0 and break.
8265                          */
8266                         paddrreq = ill->ill_phys_addr_pend;
8267                         ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8268                         if (paddrreq == DL_IPV6_TOKEN) {
8269                                 ill->ill_token_length = 0;
8270                                 log = B_FALSE;
8271                                 break;
8272                         } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8273                                 ill->ill_nd_lla_len = 0;
8274                                 log = B_FALSE;
8275                                 break;
8276                         }
8277                         /*
8278                          * Something went wrong with the DL_PHYS_ADDR_REQ.
8279                          * We presumably have an IOCTL hanging out waiting
8280                          * for completion. Find it and complete the IOCTL
8281                          * with the error noted.
8282                          * However, ill_dl_phys was called on an ill queue
8283                          * (from SIOCSLIFNAME), thus conn_pending_ill is not
8284                          * set. But the ioctl is known to be pending on ill_wq.
8285                          */
8286                         if (!ill->ill_ifname_pending)
8287                                 break;
8288                         ill->ill_ifname_pending = 0;
8289                         if (!ioctl_aborted)
8290                                 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8291                         if (mp1 != NULL) {
8292                                 /*
8293                                  * This operation (SIOCSLIFNAME) must have
8294                                  * happened on the ill. Assert there is no conn
8295                                  */
8296                                 ASSERT(connp == NULL);
8297                                 q = ill->ill_wq;
8298                         }
8299                         break;
8300                 case DL_BIND_REQ:
8301                         ill_dlpi_done(ill, DL_BIND_REQ);
8302                         if (ill->ill_ifname_pending)
8303                                 break;
8304                         mutex_enter(&ill->ill_lock);
8305                         ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8306                         mutex_exit(&ill->ill_lock);
8307                         /*
8308                          * Something went wrong with the bind.  We presumably
8309                          * have an IOCTL hanging out waiting for completion.
8310                          * Find it, take down the interface that was coming
8311                          * up, and complete the IOCTL with the error noted.
8312                          */
8313                         if (!ioctl_aborted)
8314                                 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8315                         if (mp1 != NULL) {
8316                                 /*
8317                                  * This might be a result of a DL_NOTE_REPLUMB
8318                                  * notification. In that case, connp is NULL.
8319                                  */
8320                                 if (connp != NULL)
8321                                         q = CONNP_TO_WQ(connp);
8322 
8323                                 (void) ipif_down(ipif, NULL, NULL);
8324                                 /* error is set below the switch */
8325                         }
8326                         break;
8327                 case DL_ENABMULTI_REQ:
8328                         ill_dlpi_done(ill, DL_ENABMULTI_REQ);
8329 
8330                         if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8331                                 ill->ill_dlpi_multicast_state = IDS_FAILED;
8332                         if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
8333 
8334                                 printf("ip: joining multicasts failed (%d)"
8335                                     " on %s - will use link layer "
8336                                     "broadcasts for multicast\n",
8337                                     dlea->dl_errno, ill->ill_name);
8338 
8339                                 /*
8340                                  * Set up for multi_bcast; We are the
8341                                  * writer, so ok to access ill->ill_ipif
8342                                  * without any lock.
8343                                  */
8344                                 mutex_enter(&ill->ill_phyint->phyint_lock);
8345                                 ill->ill_phyint->phyint_flags |=
8346                                     PHYI_MULTI_BCAST;
8347                                 mutex_exit(&ill->ill_phyint->phyint_lock);
8348 
8349                         }
8350                         freemsg(mp);    /* Don't want to pass this up */
8351                         return;
8352                 case DL_CAPABILITY_REQ:
8353                         ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8354                             "DL_CAPABILITY REQ\n"));
8355                         if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8356                                 ill->ill_dlpi_capab_state = IDCS_FAILED;
8357                         ill_capability_done(ill);
8358                         freemsg(mp);
8359                         return;
8360                 }
8361                 /*
8362                  * Note the error for IOCTL completion (mp1 is set when
8363                  * ready to complete ioctl). If ill_ifname_pending_err is
8364                  * set, an error occured during plumbing (ill_ifname_pending),
8365                  * so we want to report that error.
8366                  *
8367                  * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
8368                  * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8369                  * expected to get errack'd if the driver doesn't support
8370                  * these flags (e.g. ethernet). log will be set to B_FALSE
8371                  * if these error conditions are encountered.
8372                  */
8373                 if (mp1 != NULL) {
8374                         if (ill->ill_ifname_pending_err != 0)  {
8375                                 err = ill->ill_ifname_pending_err;
8376                                 ill->ill_ifname_pending_err = 0;
8377                         } else {
8378                                 err = dlea->dl_unix_errno ?
8379                                     dlea->dl_unix_errno : ENXIO;
8380                         }
8381                 /*
8382                  * If we're plumbing an interface and an error hasn't already
8383                  * been saved, set ill_ifname_pending_err to the error passed
8384                  * up. Ignore the error if log is B_FALSE (see comment above).
8385                  */
8386                 } else if (log && ill->ill_ifname_pending &&
8387                     ill->ill_ifname_pending_err == 0) {
8388                         ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8389                             dlea->dl_unix_errno : ENXIO;
8390                 }
8391 
8392                 if (log)
8393                         ip_dlpi_error(ill, dlea->dl_error_primitive,
8394                             dlea->dl_errno, dlea->dl_unix_errno);
8395                 break;
8396         case DL_CAPABILITY_ACK:
8397                 ill_capability_ack(ill, mp);
8398                 /*
8399                  * The message has been handed off to ill_capability_ack
8400                  * and must not be freed below
8401                  */
8402                 mp = NULL;
8403                 break;
8404 
8405         case DL_INFO_ACK:
8406                 /* Call a routine to handle this one. */
8407                 ill_dlpi_done(ill, DL_INFO_REQ);
8408                 ip_ll_subnet_defaults(ill, mp);
8409                 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8410                 return;
8411         case DL_BIND_ACK:
8412                 /*
8413                  * We should have an IOCTL waiting on this unless
8414                  * sent by ill_dl_phys, in which case just return
8415                  */
8416                 ill_dlpi_done(ill, DL_BIND_REQ);
8417 
8418                 if (ill->ill_ifname_pending) {
8419                         DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8420                             ill_t *, ill, mblk_t *, mp);
8421                         break;
8422                 }
8423                 mutex_enter(&ill->ill_lock);
8424                 ill->ill_dl_up = 1;
8425                 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8426                 mutex_exit(&ill->ill_lock);
8427 
8428                 if (!ioctl_aborted)
8429                         mp1 = ipsq_pending_mp_get(ipsq, &connp);
8430                 if (mp1 == NULL) {
8431                         DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8432                         break;
8433                 }
8434                 /*
8435                  * mp1 was added by ill_dl_up(). if that is a result of
8436                  * a DL_NOTE_REPLUMB notification, connp could be NULL.
8437                  */
8438                 if (connp != NULL)
8439                         q = CONNP_TO_WQ(connp);
8440                 /*
8441                  * We are exclusive. So nothing can change even after
8442                  * we get the pending mp.
8443                  */
8444                 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8445                 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8446                 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);
8447 
8448                 /*
8449                  * Now bring up the resolver; when that is complete, we'll
8450                  * create IREs.  Note that we intentionally mirror what
8451                  * ipif_up() would have done, because we got here by way of
8452                  * ill_dl_up(), which stopped ipif_up()'s processing.
8453                  */
8454                 if (ill->ill_isv6) {
8455                         /*
8456                          * v6 interfaces.
8457                          * Unlike ARP which has to do another bind
8458                          * and attach, once we get here we are
8459                          * done with NDP
8460                          */
8461                         (void) ipif_resolver_up(ipif, Res_act_initial);
8462                         if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
8463                                 err = ipif_up_done_v6(ipif);
8464                 } else if (ill->ill_net_type == IRE_IF_RESOLVER) {
8465                         /*
8466                          * ARP and other v4 external resolvers.
8467                          * Leave the pending mblk intact so that
8468                          * the ioctl completes in ip_rput().
8469                          */
8470                         if (connp != NULL)
8471                                 mutex_enter(&connp->conn_lock);
8472                         mutex_enter(&ill->ill_lock);
8473                         success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
8474                         mutex_exit(&ill->ill_lock);
8475                         if (connp != NULL)
8476                                 mutex_exit(&connp->conn_lock);
8477                         if (success) {
8478                                 err = ipif_resolver_up(ipif, Res_act_initial);
8479                                 if (err == EINPROGRESS) {
8480                                         freemsg(mp);
8481                                         return;
8482                                 }
8483                                 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8484                         } else {
8485                                 /* The conn has started closing */
8486                                 err = EINTR;
8487                         }
8488                 } else {
8489                         /*
8490                          * This one is complete. Reply to pending ioctl.
8491                          */
8492                         (void) ipif_resolver_up(ipif, Res_act_initial);
8493                         err = ipif_up_done(ipif);
8494                 }
8495 
8496                 if ((err == 0) && (ill->ill_up_ipifs)) {
8497                         err = ill_up_ipifs(ill, q, mp1);
8498                         if (err == EINPROGRESS) {
8499                                 freemsg(mp);
8500                                 return;
8501                         }
8502                 }
8503 
8504                 /*
8505                  * If we have a moved ipif to bring up, and everything has
8506                  * succeeded to this point, bring it up on the IPMP ill.
8507                  * Otherwise, leave it down -- the admin can try to bring it
8508                  * up by hand if need be.
8509                  */
8510                 if (ill->ill_move_ipif != NULL) {
8511                         if (err != 0) {
8512                                 ill->ill_move_ipif = NULL;
8513                         } else {
8514                                 ipif = ill->ill_move_ipif;
8515                                 ill->ill_move_ipif = NULL;
8516                                 err = ipif_up(ipif, q, mp1);
8517                                 if (err == EINPROGRESS) {
8518                                         freemsg(mp);
8519                                         return;
8520                                 }
8521                         }
8522                 }
8523                 break;
8524 
8525         case DL_NOTIFY_IND: {
8526                 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8527                 uint_t orig_mtu, orig_mc_mtu;
8528 
8529                 switch (notify->dl_notification) {
8530                 case DL_NOTE_PHYS_ADDR:
8531                         err = ill_set_phys_addr(ill, mp);
8532                         break;
8533 
8534                 case DL_NOTE_REPLUMB:
8535                         /*
8536                          * Directly return after calling ill_replumb().
8537                          * Note that we should not free mp as it is reused
8538                          * in the ill_replumb() function.
8539                          */
8540                         err = ill_replumb(ill, mp);
8541                         return;
8542 
8543                 case DL_NOTE_FASTPATH_FLUSH:
8544                         nce_flush(ill, B_FALSE);
8545                         break;
8546 
8547                 case DL_NOTE_SDU_SIZE:
8548                 case DL_NOTE_SDU_SIZE2:
8549                         /*
8550                          * The dce and fragmentation code can cope with
8551                          * this changing while packets are being sent.
8552                          * When packets are sent ip_output will discover
8553                          * a change.
8554                          *
8555                          * Change the MTU size of the interface.
8556                          */
8557                         mutex_enter(&ill->ill_lock);
8558                         orig_mtu = ill->ill_mtu;
8559                         orig_mc_mtu = ill->ill_mc_mtu;
8560                         switch (notify->dl_notification) {
8561                         case DL_NOTE_SDU_SIZE:
8562                                 ill->ill_current_frag =
8563                                     (uint_t)notify->dl_data;
8564                                 ill->ill_mc_mtu = (uint_t)notify->dl_data;
8565                                 break;
8566                         case DL_NOTE_SDU_SIZE2:
8567                                 ill->ill_current_frag =
8568                                     (uint_t)notify->dl_data1;
8569                                 ill->ill_mc_mtu = (uint_t)notify->dl_data2;
8570                                 break;
8571                         }
8572                         if (ill->ill_current_frag > ill->ill_max_frag)
8573                                 ill->ill_max_frag = ill->ill_current_frag;
8574 
8575                         if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8576                                 ill->ill_mtu = ill->ill_current_frag;
8577 
8578                                 /*
8579                                  * If ill_user_mtu was set (via
8580                                  * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8581                                  */
8582                                 if (ill->ill_user_mtu != 0 &&
8583                                     ill->ill_user_mtu < ill->ill_mtu)
8584                                         ill->ill_mtu = ill->ill_user_mtu;
8585 
8586                                 if (ill->ill_user_mtu != 0 &&
8587                                     ill->ill_user_mtu < ill->ill_mc_mtu)
8588                                         ill->ill_mc_mtu = ill->ill_user_mtu;
8589 
8590                                 if (ill->ill_isv6) {
8591                                         if (ill->ill_mtu < IPV6_MIN_MTU)
8592                                                 ill->ill_mtu = IPV6_MIN_MTU;
8593                                         if (ill->ill_mc_mtu < IPV6_MIN_MTU)
8594                                                 ill->ill_mc_mtu = IPV6_MIN_MTU;
8595                                 } else {
8596                                         if (ill->ill_mtu < IP_MIN_MTU)
8597                                                 ill->ill_mtu = IP_MIN_MTU;
8598                                         if (ill->ill_mc_mtu < IP_MIN_MTU)
8599                                                 ill->ill_mc_mtu = IP_MIN_MTU;
8600                                 }
8601                         } else if (ill->ill_mc_mtu > ill->ill_mtu) {
8602                                 ill->ill_mc_mtu = ill->ill_mtu;
8603                         }
8604 
8605                         mutex_exit(&ill->ill_lock);
8606                         /*
8607                          * Make sure all dce_generation checks find out
8608                          * that ill_mtu/ill_mc_mtu has changed.
8609                          */
8610                         if (orig_mtu != ill->ill_mtu ||
8611                             orig_mc_mtu != ill->ill_mc_mtu) {
8612                                 dce_increment_all_generations(ill->ill_isv6,
8613                                     ill->ill_ipst);
8614                         }
8615 
8616                         /*
8617                          * Refresh IPMP meta-interface MTU if necessary.
8618                          */
8619                         if (IS_UNDER_IPMP(ill))
8620                                 ipmp_illgrp_refresh_mtu(ill->ill_grp);
8621                         break;
8622 
8623                 case DL_NOTE_LINK_UP:
8624                 case DL_NOTE_LINK_DOWN: {
8625                         /*
8626                          * We are writer. ill / phyint / ipsq assocs stable.
8627                          * The RUNNING flag reflects the state of the link.
8628                          */
8629                         phyint_t *phyint = ill->ill_phyint;
8630                         uint64_t new_phyint_flags;
8631                         boolean_t changed = B_FALSE;
8632                         boolean_t went_up;
8633 
8634                         went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8635                         mutex_enter(&phyint->phyint_lock);
8636 
8637                         new_phyint_flags = went_up ?
8638                             phyint->phyint_flags | PHYI_RUNNING :
8639                             phyint->phyint_flags & ~PHYI_RUNNING;
8640 
8641                         if (IS_IPMP(ill)) {
8642                                 new_phyint_flags = went_up ?
8643                                     new_phyint_flags & ~PHYI_FAILED :
8644                                     new_phyint_flags | PHYI_FAILED;
8645                         }
8646 
8647                         if (new_phyint_flags != phyint->phyint_flags) {
8648                                 phyint->phyint_flags = new_phyint_flags;
8649                                 changed = B_TRUE;
8650                         }
8651                         mutex_exit(&phyint->phyint_lock);
8652                         /*
8653                          * ill_restart_dad handles the DAD restart and routing
8654                          * socket notification logic.
8655                          */
8656                         if (changed) {
8657                                 ill_restart_dad(phyint->phyint_illv4, went_up);
8658                                 ill_restart_dad(phyint->phyint_illv6, went_up);
8659                         }
8660                         break;
8661                 }
8662                 case DL_NOTE_PROMISC_ON_PHYS: {
8663                         phyint_t *phyint = ill->ill_phyint;
8664 
8665                         mutex_enter(&phyint->phyint_lock);
8666                         phyint->phyint_flags |= PHYI_PROMISC;
8667                         mutex_exit(&phyint->phyint_lock);
8668                         break;
8669                 }
8670                 case DL_NOTE_PROMISC_OFF_PHYS: {
8671                         phyint_t *phyint = ill->ill_phyint;
8672 
8673                         mutex_enter(&phyint->phyint_lock);
8674                         phyint->phyint_flags &= ~PHYI_PROMISC;
8675                         mutex_exit(&phyint->phyint_lock);
8676                         break;
8677                 }
8678                 case DL_NOTE_CAPAB_RENEG:
8679                         /*
8680                          * Something changed on the driver side.
8681                          * It wants us to renegotiate the capabilities
8682                          * on this ill. One possible cause is the aggregation
8683                          * interface under us where a port got added or
8684                          * went away.
8685                          *
8686                          * If the capability negotiation is already done
8687                          * or is in progress, reset the capabilities and
8688                          * mark the ill's ill_capab_reneg to be B_TRUE,
8689                          * so that when the ack comes back, we can start
8690                          * the renegotiation process.
8691                          *
8692                          * Note that if ill_capab_reneg is already B_TRUE
8693                          * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8694                          * the capability resetting request has been sent
8695                          * and the renegotiation has not been started yet;
8696                          * nothing needs to be done in this case.
8697                          */
8698                         ipsq_current_start(ipsq, ill->ill_ipif, 0);
8699                         ill_capability_reset(ill, B_TRUE);
8700                         ipsq_current_finish(ipsq);
8701                         break;
8702 
8703                 case DL_NOTE_ALLOWED_IPS:
8704                         ill_set_allowed_ips(ill, mp);
8705                         break;
8706                 default:
8707                         ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8708                             "type 0x%x for DL_NOTIFY_IND\n",
8709                             notify->dl_notification));
8710                         break;
8711                 }
8712 
8713                 /*
8714                  * As this is an asynchronous operation, we
8715                  * should not call ill_dlpi_done
8716                  */
8717                 break;
8718         }
8719         case DL_NOTIFY_ACK: {
8720                 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
8721 
8722                 if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8723                         ill->ill_note_link = 1;
8724                 ill_dlpi_done(ill, DL_NOTIFY_REQ);
8725                 break;
8726         }
8727         case DL_PHYS_ADDR_ACK: {
8728                 /*
8729                  * As part of plumbing the interface via SIOCSLIFNAME,
8730                  * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8731                  * whose answers we receive here.  As each answer is received,
8732                  * we call ill_dlpi_done() to dispatch the next request as
8733                  * we're processing the current one.  Once all answers have
8734                  * been received, we use ipsq_pending_mp_get() to dequeue the
8735                  * outstanding IOCTL and reply to it.  (Because ill_dl_phys()
8736                  * is invoked from an ill queue, conn_oper_pending_ill is not
8737                  * available, but we know the ioctl is pending on ill_wq.)
8738                  */
8739                 uint_t  paddrlen, paddroff;
8740                 uint8_t *addr;
8741 
8742                 paddrreq = ill->ill_phys_addr_pend;
8743                 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8744                 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8745                 addr = mp->b_rptr + paddroff;
8746 
8747                 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8748                 if (paddrreq == DL_IPV6_TOKEN) {
8749                         /*
8750                          * bcopy to low-order bits of ill_token
8751                          *
8752                          * XXX Temporary hack - currently, all known tokens
8753                          * are 64 bits, so I'll cheat for the moment.
8754                          */
8755                         bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8756                         ill->ill_token_length = paddrlen;
8757                         break;
8758                 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8759                         ASSERT(ill->ill_nd_lla_mp == NULL);
8760                         ill_set_ndmp(ill, mp, paddroff, paddrlen);
8761                         mp = NULL;
8762                         break;
8763                 } else if (paddrreq == DL_CURR_DEST_ADDR) {
8764                         ASSERT(ill->ill_dest_addr_mp == NULL);
8765                         ill->ill_dest_addr_mp = mp;
8766                         ill->ill_dest_addr = addr;
8767                         mp = NULL;
8768                         if (ill->ill_isv6) {
8769                                 ill_setdesttoken(ill);
8770                                 ipif_setdestlinklocal(ill->ill_ipif);
8771                         }
8772                         break;
8773                 }
8774 
8775                 ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8776                 ASSERT(ill->ill_phys_addr_mp == NULL);
8777                 if (!ill->ill_ifname_pending)
8778                         break;
8779                 ill->ill_ifname_pending = 0;
8780                 if (!ioctl_aborted)
8781                         mp1 = ipsq_pending_mp_get(ipsq, &connp);
8782                 if (mp1 != NULL) {
8783                         ASSERT(connp == NULL);
8784                         q = ill->ill_wq;
8785                 }
8786                 /*
8787                  * If any error acks received during the plumbing sequence,
8788                  * ill_ifname_pending_err will be set. Break out and send up
8789                  * the error to the pending ioctl.
8790                  */
8791                 if (ill->ill_ifname_pending_err != 0) {
8792                         err = ill->ill_ifname_pending_err;
8793                         ill->ill_ifname_pending_err = 0;
8794                         break;
8795                 }
8796 
8797                 ill->ill_phys_addr_mp = mp;
8798                 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8799                 mp = NULL;
8800 
8801                 /*
8802                  * If paddrlen or ill_phys_addr_length is zero, the DLPI
8803                  * provider doesn't support physical addresses.  We check both
8804                  * paddrlen and ill_phys_addr_length because sppp (PPP) does
8805                  * not have physical addresses, but historically adversises a
8806                  * physical address length of 0 in its DL_INFO_ACK, but 6 in
8807                  * its DL_PHYS_ADDR_ACK.
8808                  */
8809                 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8810                         ill->ill_phys_addr = NULL;
8811                 } else if (paddrlen != ill->ill_phys_addr_length) {
8812                         ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8813                             paddrlen, ill->ill_phys_addr_length));
8814                         err = EINVAL;
8815                         break;
8816                 }
8817 
8818                 if (ill->ill_nd_lla_mp == NULL) {
8819                         if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8820                                 err = ENOMEM;
8821                                 break;
8822                         }
8823                         ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8824                 }
8825 
8826                 if (ill->ill_isv6) {
8827                         ill_setdefaulttoken(ill);
8828                         ipif_setlinklocal(ill->ill_ipif);
8829                 }
8830                 break;
8831         }
8832         case DL_OK_ACK:
8833                 ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8834                     dl_primstr((int)dloa->dl_correct_primitive),
8835                     dloa->dl_correct_primitive));
8836                 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8837                     char *, dl_primstr(dloa->dl_correct_primitive),
8838                     ill_t *, ill);
8839 
8840                 switch (dloa->dl_correct_primitive) {
8841                 case DL_ENABMULTI_REQ:
8842                 case DL_DISABMULTI_REQ:
8843                         ill_dlpi_done(ill, dloa->dl_correct_primitive);
8844                         break;
8845                 case DL_PROMISCON_REQ:
8846                 case DL_PROMISCOFF_REQ:
8847                 case DL_UNBIND_REQ:
8848                 case DL_ATTACH_REQ:
8849                         ill_dlpi_done(ill, dloa->dl_correct_primitive);
8850                         break;
8851                 }
8852                 break;
8853         default:
8854                 break;
8855         }
8856 
8857         freemsg(mp);
8858         if (mp1 == NULL)
8859                 return;
8860 
8861         /*
8862          * The operation must complete without EINPROGRESS since
8863          * ipsq_pending_mp_get() has removed the mblk (mp1).  Otherwise,
8864          * the operation will be stuck forever inside the IPSQ.
8865          */
8866         ASSERT(err != EINPROGRESS);
8867 
8868         DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8869             int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8870             ipif_t *, NULL);
8871 
8872         switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8873         case 0:
8874                 ipsq_current_finish(ipsq);
8875                 break;
8876 
8877         case SIOCSLIFNAME:
8878         case IF_UNITSEL: {
8879                 ill_t *ill_other = ILL_OTHER(ill);
8880 
8881                 /*
8882                  * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8883                  * ill has a peer which is in an IPMP group, then place ill
8884                  * into the same group.  One catch: although ifconfig plumbs
8885                  * the appropriate IPMP meta-interface prior to plumbing this
8886                  * ill, it is possible for multiple ifconfig applications to
8887                  * race (or for another application to adjust plumbing), in
8888                  * which case the IPMP meta-interface we need will be missing.
8889                  * If so, kick the phyint out of the group.
8890                  */
8891                 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8892                         ipmp_grp_t      *grp = ill->ill_phyint->phyint_grp;
8893                         ipmp_illgrp_t   *illg;
8894 
8895                         illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8896                         if (illg == NULL)
8897                                 ipmp_phyint_leave_grp(ill->ill_phyint);
8898                         else
8899                                 ipmp_ill_join_illgrp(ill, illg);
8900                 }
8901 
8902                 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
8903                         ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8904                 else
8905                         ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8906                 break;
8907         }
8908         case SIOCLIFADDIF:
8909                 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8910                 break;
8911 
8912         default:
8913                 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8914                 break;
8915         }
8916 }
8917 
8918 /*
8919  * ip_rput_other is called by ip_rput to handle messages modifying the global
8920  * state in IP.  If 'ipsq' is non-NULL, caller is writer on it.
8921  */
8922 /* ARGSUSED */
8923 void
8924 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8925 {
8926         ill_t           *ill = q->q_ptr;
8927         struct iocblk   *iocp;
8928 
8929         ip1dbg(("ip_rput_other "));
8930         if (ipsq != NULL) {
8931                 ASSERT(IAM_WRITER_IPSQ(ipsq));
8932                 ASSERT(ipsq->ipsq_xop ==
8933                     ill->ill_phyint->phyint_ipsq->ipsq_xop);
8934         }
8935 
8936         switch (mp->b_datap->db_type) {
8937         case M_ERROR:
8938         case M_HANGUP:
8939                 /*
8940                  * The device has a problem.  We force the ILL down.  It can
8941                  * be brought up again manually using SIOCSIFFLAGS (via
8942                  * ifconfig or equivalent).
8943                  */
8944                 ASSERT(ipsq != NULL);
8945                 if (mp->b_rptr < mp->b_wptr)
8946                         ill->ill_error = (int)(*mp->b_rptr & 0xFF);
8947                 if (ill->ill_error == 0)
8948                         ill->ill_error = ENXIO;
8949                 if (!ill_down_start(q, mp))
8950                         return;
8951                 ipif_all_down_tail(ipsq, q, mp, NULL);
8952                 break;
8953         case M_IOCNAK: {
8954                 iocp = (struct iocblk *)mp->b_rptr;
8955 
8956                 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
8957                 /*
8958                  * If this was the first attempt, turn off the fastpath
8959                  * probing.
8960                  */
8961                 mutex_enter(&ill->ill_lock);
8962                 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
8963                         ill->ill_dlpi_fastpath_state = IDS_FAILED;
8964                         mutex_exit(&ill->ill_lock);
8965                         /*
8966                          * don't flush the nce_t entries: we use them
8967                          * as an index to the ncec itself.
8968                          */
8969                         ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
8970                             ill->ill_name));
8971                 } else {
8972                         mutex_exit(&ill->ill_lock);
8973                 }
8974                 freemsg(mp);
8975                 break;
8976         }
8977         default:
8978                 ASSERT(0);
8979                 break;
8980         }
8981 }
8982 
8983 /*
8984  * Update any source route, record route or timestamp options
8985  * When it fails it has consumed the message and BUMPed the MIB.
8986  */
8987 boolean_t
8988 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
8989     ip_recv_attr_t *ira)
8990 {
8991         ipoptp_t        opts;
8992         uchar_t         *opt;
8993         uint8_t         optval;
8994         uint8_t         optlen;
8995         ipaddr_t        dst;
8996         ipaddr_t        ifaddr;
8997         uint32_t        ts;
8998         timestruc_t     now;
8999         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
9000 
9001         ip2dbg(("ip_forward_options\n"));
9002         dst = ipha->ipha_dst;
9003         opt = NULL;
9004 
9005         for (optval = ipoptp_first(&opts, ipha);
9006             optval != IPOPT_EOL;
9007             optval = ipoptp_next(&opts)) {
9008                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9009                 opt = opts.ipoptp_cur;
9010                 optlen = opts.ipoptp_len;
9011                 ip2dbg(("ip_forward_options: opt %d, len %d\n",
9012                     optval, opts.ipoptp_len));
9013                 switch (optval) {
9014                         uint32_t off;
9015                 case IPOPT_SSRR:
9016                 case IPOPT_LSRR:
9017                         /* Check if adminstratively disabled */
9018                         if (!ipst->ips_ip_forward_src_routed) {
9019                                 BUMP_MIB(dst_ill->ill_ip_mib,
9020                                     ipIfStatsForwProhibits);
9021                                 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
9022                                     mp, dst_ill);
9023                                 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
9024                                     ira);
9025                                 return (B_FALSE);
9026                         }
9027                         if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9028                                 /*
9029                                  * Must be partial since ip_input_options
9030                                  * checked for strict.
9031                                  */
9032                                 break;
9033                         }
9034                         off = opt[IPOPT_OFFSET];
9035                         off--;
9036                 redo_srr:
9037                         if (optlen < IP_ADDR_LEN ||
9038                             off > optlen - IP_ADDR_LEN) {
9039                                 /* End of source route */
9040                                 ip1dbg((
9041                                     "ip_forward_options: end of SR\n"));
9042                                 break;
9043                         }
9044                         /* Pick a reasonable address on the outbound if */
9045                         ASSERT(dst_ill != NULL);
9046                         if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9047                             INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9048                             NULL) != 0) {
9049                                 /* No source! Shouldn't happen */
9050                                 ifaddr = INADDR_ANY;
9051                         }
9052                         bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9053                         bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9054                         ip1dbg(("ip_forward_options: next hop 0x%x\n",
9055                             ntohl(dst)));
9056 
9057                         /*
9058                          * Check if our address is present more than
9059                          * once as consecutive hops in source route.
9060                          */
9061                         if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9062                                 off += IP_ADDR_LEN;
9063                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9064                                 goto redo_srr;
9065                         }
9066                         ipha->ipha_dst = dst;
9067                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9068                         break;
9069                 case IPOPT_RR:
9070                         off = opt[IPOPT_OFFSET];
9071                         off--;
9072                         if (optlen < IP_ADDR_LEN ||
9073                             off > optlen - IP_ADDR_LEN) {
9074                                 /* No more room - ignore */
9075                                 ip1dbg((
9076                                     "ip_forward_options: end of RR\n"));
9077                                 break;
9078                         }
9079                         /* Pick a reasonable address on the outbound if */
9080                         ASSERT(dst_ill != NULL);
9081                         if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9082                             INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9083                             NULL) != 0) {
9084                                 /* No source! Shouldn't happen */
9085                                 ifaddr = INADDR_ANY;
9086                         }
9087                         bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9088                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9089                         break;
9090                 case IPOPT_TS:
9091                         off = 0;
9092                         /* Insert timestamp if there is room */
9093                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9094                         case IPOPT_TS_TSONLY:
9095                                 off = IPOPT_TS_TIMELEN;
9096                                 break;
9097                         case IPOPT_TS_PRESPEC:
9098                         case IPOPT_TS_PRESPEC_RFC791:
9099                                 /* Verify that the address matched */
9100                                 off = opt[IPOPT_OFFSET] - 1;
9101                                 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9102                                 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9103                                         /* Not for us */
9104                                         break;
9105                                 }
9106                                 /* FALLTHROUGH */
9107                         case IPOPT_TS_TSANDADDR:
9108                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9109                                 break;
9110                         default:
9111                                 /*
9112                                  * ip_*put_options should have already
9113                                  * dropped this packet.
9114                                  */
9115                                 cmn_err(CE_PANIC, "ip_forward_options: "
9116                                     "unknown IT - bug in ip_input_options?\n");
9117                         }
9118                         if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9119                                 /* Increase overflow counter */
9120                                 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9121                                 opt[IPOPT_POS_OV_FLG] =
9122                                     (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9123                                     (off << 4));
9124                                 break;
9125                         }
9126                         off = opt[IPOPT_OFFSET] - 1;
9127                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9128                         case IPOPT_TS_PRESPEC:
9129                         case IPOPT_TS_PRESPEC_RFC791:
9130                         case IPOPT_TS_TSANDADDR:
9131                                 /* Pick a reasonable addr on the outbound if */
9132                                 ASSERT(dst_ill != NULL);
9133                                 if (ip_select_source_v4(dst_ill, INADDR_ANY,
9134                                     dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9135                                     NULL, NULL) != 0) {
9136                                         /* No source! Shouldn't happen */
9137                                         ifaddr = INADDR_ANY;
9138                                 }
9139                                 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9140                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9141                                 /* FALLTHROUGH */
9142                         case IPOPT_TS_TSONLY:
9143                                 off = opt[IPOPT_OFFSET] - 1;
9144                                 /* Compute # of milliseconds since midnight */
9145                                 gethrestime(&now);
9146                                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9147                                     NSEC2MSEC(now.tv_nsec);
9148                                 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9149                                 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9150                                 break;
9151                         }
9152                         break;
9153                 }
9154         }
9155         return (B_TRUE);
9156 }
9157 
9158 /*
9159  * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9160  * returns 'true' if there are still fragments left on the queue, in
9161  * which case we restart the timer.
9162  */
9163 void
9164 ill_frag_timer(void *arg)
9165 {
9166         ill_t   *ill = (ill_t *)arg;
9167         boolean_t frag_pending;
9168         ip_stack_t *ipst = ill->ill_ipst;
9169         time_t  timeout;
9170 
9171         mutex_enter(&ill->ill_lock);
9172         ASSERT(!ill->ill_fragtimer_executing);
9173         if (ill->ill_state_flags & ILL_CONDEMNED) {
9174                 ill->ill_frag_timer_id = 0;
9175                 mutex_exit(&ill->ill_lock);
9176                 return;
9177         }
9178         ill->ill_fragtimer_executing = 1;
9179         mutex_exit(&ill->ill_lock);
9180 
9181         timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9182             ipst->ips_ip_reassembly_timeout);
9183 
9184         frag_pending = ill_frag_timeout(ill, timeout);
9185 
9186         /*
9187          * Restart the timer, if we have fragments pending or if someone
9188          * wanted us to be scheduled again.
9189          */
9190         mutex_enter(&ill->ill_lock);
9191         ill->ill_fragtimer_executing = 0;
9192         ill->ill_frag_timer_id = 0;
9193         if (frag_pending || ill->ill_fragtimer_needrestart)
9194                 ill_frag_timer_start(ill);
9195         mutex_exit(&ill->ill_lock);
9196 }
9197 
9198 void
9199 ill_frag_timer_start(ill_t *ill)
9200 {
9201         ip_stack_t *ipst = ill->ill_ipst;
9202         clock_t timeo_ms;
9203 
9204         ASSERT(MUTEX_HELD(&ill->ill_lock));
9205 
9206         /* If the ill is closing or opening don't proceed */
9207         if (ill->ill_state_flags & ILL_CONDEMNED)
9208                 return;
9209 
9210         if (ill->ill_fragtimer_executing) {
9211                 /*
9212                  * ill_frag_timer is currently executing. Just record the
9213                  * the fact that we want the timer to be restarted.
9214                  * ill_frag_timer will post a timeout before it returns,
9215                  * ensuring it will be called again.
9216                  */
9217                 ill->ill_fragtimer_needrestart = 1;
9218                 return;
9219         }
9220 
9221         if (ill->ill_frag_timer_id == 0) {
9222                 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9223                     ipst->ips_ip_reassembly_timeout) * SECONDS;
9224 
9225                 /*
9226                  * The timer is neither running nor is the timeout handler
9227                  * executing. Post a timeout so that ill_frag_timer will be
9228                  * called
9229                  */
9230                 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9231                     MSEC_TO_TICK(timeo_ms >> 1));
9232                 ill->ill_fragtimer_needrestart = 0;
9233         }
9234 }
9235 
9236 /*
9237  * Update any source route, record route or timestamp options.
9238  * Check that we are at end of strict source route.
9239  * The options have already been checked for sanity in ip_input_options().
9240  */
9241 boolean_t
9242 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9243 {
9244         ipoptp_t        opts;
9245         uchar_t         *opt;
9246         uint8_t         optval;
9247         uint8_t         optlen;
9248         ipaddr_t        dst;
9249         ipaddr_t        ifaddr;
9250         uint32_t        ts;
9251         timestruc_t     now;
9252         ill_t           *ill = ira->ira_ill;
9253         ip_stack_t      *ipst = ill->ill_ipst;
9254 
9255         ip2dbg(("ip_input_local_options\n"));
9256         opt = NULL;
9257 
9258         for (optval = ipoptp_first(&opts, ipha);
9259             optval != IPOPT_EOL;
9260             optval = ipoptp_next(&opts)) {
9261                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9262                 opt = opts.ipoptp_cur;
9263                 optlen = opts.ipoptp_len;
9264                 ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9265                     optval, optlen));
9266                 switch (optval) {
9267                         uint32_t off;
9268                 case IPOPT_SSRR:
9269                 case IPOPT_LSRR:
9270                         off = opt[IPOPT_OFFSET];
9271                         off--;
9272                         if (optlen < IP_ADDR_LEN ||
9273                             off > optlen - IP_ADDR_LEN) {
9274                                 /* End of source route */
9275                                 ip1dbg(("ip_input_local_options: end of SR\n"));
9276                                 break;
9277                         }
9278                         /*
9279                          * This will only happen if two consecutive entries
9280                          * in the source route contains our address or if
9281                          * it is a packet with a loose source route which
9282                          * reaches us before consuming the whole source route
9283                          */
9284                         ip1dbg(("ip_input_local_options: not end of SR\n"));
9285                         if (optval == IPOPT_SSRR) {
9286                                 goto bad_src_route;
9287                         }
9288                         /*
9289                          * Hack: instead of dropping the packet truncate the
9290                          * source route to what has been used by filling the
9291                          * rest with IPOPT_NOP.
9292                          */
9293                         opt[IPOPT_OLEN] = (uint8_t)off;
9294                         while (off < optlen) {
9295                                 opt[off++] = IPOPT_NOP;
9296                         }
9297                         break;
9298                 case IPOPT_RR:
9299                         off = opt[IPOPT_OFFSET];
9300                         off--;
9301                         if (optlen < IP_ADDR_LEN ||
9302                             off > optlen - IP_ADDR_LEN) {
9303                                 /* No more room - ignore */
9304                                 ip1dbg((
9305                                     "ip_input_local_options: end of RR\n"));
9306                                 break;
9307                         }
9308                         /* Pick a reasonable address on the outbound if */
9309                         if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9310                             INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9311                             NULL) != 0) {
9312                                 /* No source! Shouldn't happen */
9313                                 ifaddr = INADDR_ANY;
9314                         }
9315                         bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9316                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9317                         break;
9318                 case IPOPT_TS:
9319                         off = 0;
9320                         /* Insert timestamp if there is romm */
9321                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9322                         case IPOPT_TS_TSONLY:
9323                                 off = IPOPT_TS_TIMELEN;
9324                                 break;
9325                         case IPOPT_TS_PRESPEC:
9326                         case IPOPT_TS_PRESPEC_RFC791:
9327                                 /* Verify that the address matched */
9328                                 off = opt[IPOPT_OFFSET] - 1;
9329                                 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9330                                 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9331                                         /* Not for us */
9332                                         break;
9333                                 }
9334                                 /* FALLTHROUGH */
9335                         case IPOPT_TS_TSANDADDR:
9336                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9337                                 break;
9338                         default:
9339                                 /*
9340                                  * ip_*put_options should have already
9341                                  * dropped this packet.
9342                                  */
9343                                 cmn_err(CE_PANIC, "ip_input_local_options: "
9344                                     "unknown IT - bug in ip_input_options?\n");
9345                         }
9346                         if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9347                                 /* Increase overflow counter */
9348                                 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9349                                 opt[IPOPT_POS_OV_FLG] =
9350                                     (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9351                                     (off << 4));
9352                                 break;
9353                         }
9354                         off = opt[IPOPT_OFFSET] - 1;
9355                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9356                         case IPOPT_TS_PRESPEC:
9357                         case IPOPT_TS_PRESPEC_RFC791:
9358                         case IPOPT_TS_TSANDADDR:
9359                                 /* Pick a reasonable addr on the outbound if */
9360                                 if (ip_select_source_v4(ill, INADDR_ANY,
9361                                     ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9362                                     &ifaddr, NULL, NULL) != 0) {
9363                                         /* No source! Shouldn't happen */
9364                                         ifaddr = INADDR_ANY;
9365                                 }
9366                                 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9367                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9368                                 /* FALLTHROUGH */
9369                         case IPOPT_TS_TSONLY:
9370                                 off = opt[IPOPT_OFFSET] - 1;
9371                                 /* Compute # of milliseconds since midnight */
9372                                 gethrestime(&now);
9373                                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9374                                     NSEC2MSEC(now.tv_nsec);
9375                                 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9376                                 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9377                                 break;
9378                         }
9379                         break;
9380                 }
9381         }
9382         return (B_TRUE);
9383 
9384 bad_src_route:
9385         /* make sure we clear any indication of a hardware checksum */
9386         DB_CKSUMFLAGS(mp) = 0;
9387         ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9388         icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9389         return (B_FALSE);
9390 
9391 }
9392 
9393 /*
9394  * Process IP options in an inbound packet.  Always returns the nexthop.
9395  * Normally this is the passed in nexthop, but if there is an option
9396  * that effects the nexthop (such as a source route) that will be returned.
9397  * Sets *errorp if there is an error, in which case an ICMP error has been sent
9398  * and mp freed.
9399  */
9400 ipaddr_t
9401 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
9402     ip_recv_attr_t *ira, int *errorp)
9403 {
9404         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
9405         ipoptp_t        opts;
9406         uchar_t         *opt;
9407         uint8_t         optval;
9408         uint8_t         optlen;
9409         intptr_t        code = 0;
9410         ire_t           *ire;
9411 
9412         ip2dbg(("ip_input_options\n"));
9413         opt = NULL;
9414         *errorp = 0;
9415         for (optval = ipoptp_first(&opts, ipha);
9416             optval != IPOPT_EOL;
9417             optval = ipoptp_next(&opts)) {
9418                 opt = opts.ipoptp_cur;
9419                 optlen = opts.ipoptp_len;
9420                 ip2dbg(("ip_input_options: opt %d, len %d\n",
9421                     optval, optlen));
9422                 /*
9423                  * Note: we need to verify the checksum before we
9424                  * modify anything thus this routine only extracts the next
9425                  * hop dst from any source route.
9426                  */
9427                 switch (optval) {
9428                         uint32_t off;
9429                 case IPOPT_SSRR:
9430                 case IPOPT_LSRR:
9431                         if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9432                                 if (optval == IPOPT_SSRR) {
9433                                         ip1dbg(("ip_input_options: not next"
9434                                             " strict source route 0x%x\n",
9435                                             ntohl(dst)));
9436                                         code = (char *)&ipha->ipha_dst -
9437                                             (char *)ipha;
9438                                         goto param_prob; /* RouterReq's */
9439                                 }
9440                                 ip2dbg(("ip_input_options: "
9441                                     "not next source route 0x%x\n",
9442                                     ntohl(dst)));
9443                                 break;
9444                         }
9445 
9446                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9447                                 ip1dbg((
9448                                     "ip_input_options: bad option offset\n"));
9449                                 code = (char *)&opt[IPOPT_OLEN] -
9450                                     (char *)ipha;
9451                                 goto param_prob;
9452                         }
9453                         off = opt[IPOPT_OFFSET];
9454                         off--;
9455                 redo_srr:
9456                         if (optlen < IP_ADDR_LEN ||
9457                             off > optlen - IP_ADDR_LEN) {
9458                                 /* End of source route */
9459                                 ip1dbg(("ip_input_options: end of SR\n"));
9460                                 break;
9461                         }
9462                         bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9463                         ip1dbg(("ip_input_options: next hop 0x%x\n",
9464                             ntohl(dst)));
9465 
9466                         /*
9467                          * Check if our address is present more than
9468                          * once as consecutive hops in source route.
9469                          * XXX verify per-interface ip_forwarding
9470                          * for source route?
9471                          */
9472                         if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9473                                 off += IP_ADDR_LEN;
9474                                 goto redo_srr;
9475                         }
9476 
9477                         if (dst == htonl(INADDR_LOOPBACK)) {
9478                                 ip1dbg(("ip_input_options: loopback addr in "
9479                                     "source route!\n"));
9480                                 goto bad_src_route;
9481                         }
9482                         /*
9483                          * For strict: verify that dst is directly
9484                          * reachable.
9485                          */
9486                         if (optval == IPOPT_SSRR) {
9487                                 ire = ire_ftable_lookup_v4(dst, 0, 0,
9488                                     IRE_INTERFACE, NULL, ALL_ZONES,
9489                                     ira->ira_tsl,
9490                                     MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9491                                     NULL);
9492                                 if (ire == NULL) {
9493                                         ip1dbg(("ip_input_options: SSRR not "
9494                                             "directly reachable: 0x%x\n",
9495                                             ntohl(dst)));
9496                                         goto bad_src_route;
9497                                 }
9498                                 ire_refrele(ire);
9499                         }
9500                         /*
9501                          * Defer update of the offset and the record route
9502                          * until the packet is forwarded.
9503                          */
9504                         break;
9505                 case IPOPT_RR:
9506                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9507                                 ip1dbg((
9508                                     "ip_input_options: bad option offset\n"));
9509                                 code = (char *)&opt[IPOPT_OLEN] -
9510                                     (char *)ipha;
9511                                 goto param_prob;
9512                         }
9513                         break;
9514                 case IPOPT_TS:
9515                         /*
9516                          * Verify that length >= 5 and that there is either
9517                          * room for another timestamp or that the overflow
9518                          * counter is not maxed out.
9519                          */
9520                         code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9521                         if (optlen < IPOPT_MINLEN_IT) {
9522                                 goto param_prob;
9523                         }
9524                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9525                                 ip1dbg((
9526                                     "ip_input_options: bad option offset\n"));
9527                                 code = (char *)&opt[IPOPT_OFFSET] -
9528                                     (char *)ipha;
9529                                 goto param_prob;
9530                         }
9531                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9532                         case IPOPT_TS_TSONLY:
9533                                 off = IPOPT_TS_TIMELEN;
9534                                 break;
9535                         case IPOPT_TS_TSANDADDR:
9536                         case IPOPT_TS_PRESPEC:
9537                         case IPOPT_TS_PRESPEC_RFC791:
9538                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9539                                 break;
9540                         default:
9541                                 code = (char *)&opt[IPOPT_POS_OV_FLG] -
9542                                     (char *)ipha;
9543                                 goto param_prob;
9544                         }
9545                         if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9546                             (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9547                                 /*
9548                                  * No room and the overflow counter is 15
9549                                  * already.
9550                                  */
9551                                 goto param_prob;
9552                         }
9553                         break;
9554                 }
9555         }
9556 
9557         if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9558                 return (dst);
9559         }
9560 
9561         ip1dbg(("ip_input_options: error processing IP options."));
9562         code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
9563 
9564 param_prob:
9565         /* make sure we clear any indication of a hardware checksum */
9566         DB_CKSUMFLAGS(mp) = 0;
9567         ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9568         icmp_param_problem(mp, (uint8_t)code, ira);
9569         *errorp = -1;
9570         return (dst);
9571 
9572 bad_src_route:
9573         /* make sure we clear any indication of a hardware checksum */
9574         DB_CKSUMFLAGS(mp) = 0;
9575         ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9576         icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9577         *errorp = -1;
9578         return (dst);
9579 }
9580 
9581 /*
9582  * IP & ICMP info in >=14 msg's ...
9583  *  - ip fixed part (mib2_ip_t)
9584  *  - icmp fixed part (mib2_icmp_t)
9585  *  - ipAddrEntryTable (ip 20)          all IPv4 ipifs
9586  *  - ipRouteEntryTable (ip 21)         all IPv4 IREs
9587  *  - ipNetToMediaEntryTable (ip 22)    all IPv4 Neighbor Cache entries
9588  *  - ipRouteAttributeTable (ip 102)    labeled routes
9589  *  - ip multicast membership (ip_member_t)
9590  *  - ip multicast source filtering (ip_grpsrc_t)
9591  *  - igmp fixed part (struct igmpstat)
9592  *  - multicast routing stats (struct mrtstat)
9593  *  - multicast routing vifs (array of struct vifctl)
9594  *  - multicast routing routes (array of struct mfcctl)
9595  *  - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9596  *                                      One per ill plus one generic
9597  *  - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9598  *                                      One per ill plus one generic
9599  *  - ipv6RouteEntry                    all IPv6 IREs
9600  *  - ipv6RouteAttributeTable (ip6 102) labeled routes
9601  *  - ipv6NetToMediaEntry               all IPv6 Neighbor Cache entries
9602  *  - ipv6AddrEntry                     all IPv6 ipifs
9603  *  - ipv6 multicast membership (ipv6_member_t)
9604  *  - ipv6 multicast source filtering (ipv6_grpsrc_t)
9605  *
9606  * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
9607  * already filled in by the caller.
9608  * If legacy_req is true then MIB structures needs to be truncated to their
9609  * legacy sizes before being returned.
9610  * Return value of 0 indicates that no messages were sent and caller
9611  * should free mpctl.
9612  */
9613 int
9614 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req)
9615 {
9616         ip_stack_t *ipst;
9617         sctp_stack_t *sctps;
9618 
9619         if (q->q_next != NULL) {
9620                 ipst = ILLQ_TO_IPST(q);
9621         } else {
9622                 ipst = CONNQ_TO_IPST(q);
9623         }
9624         ASSERT(ipst != NULL);
9625         sctps = ipst->ips_netstack->netstack_sctp;
9626 
9627         if (mpctl == NULL || mpctl->b_cont == NULL) {
9628                 return (0);
9629         }
9630 
9631         /*
9632          * For the purposes of the (broken) packet shell use
9633          * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9634          * to make TCP and UDP appear first in the list of mib items.
9635          * TBD: We could expand this and use it in netstat so that
9636          * the kernel doesn't have to produce large tables (connections,
9637          * routes, etc) when netstat only wants the statistics or a particular
9638          * table.
9639          */
9640         if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9641                 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9642                         return (1);
9643                 }
9644         }
9645 
9646         if (level != MIB2_TCP) {
9647                 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9648                         return (1);
9649                 }
9650                 if (level == MIB2_UDP) {
9651                         goto done;
9652                 }
9653         }
9654 
9655         if (level != MIB2_UDP) {
9656                 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9657                         return (1);
9658                 }
9659                 if (level == MIB2_TCP) {
9660                         goto done;
9661                 }
9662         }
9663 
9664         if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9665             ipst, legacy_req)) == NULL) {
9666                 return (1);
9667         }
9668 
9669         if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst,
9670             legacy_req)) == NULL) {
9671                 return (1);
9672         }
9673 
9674         if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9675                 return (1);
9676         }
9677 
9678         if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9679                 return (1);
9680         }
9681 
9682         if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9683                 return (1);
9684         }
9685 
9686         if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9687                 return (1);
9688         }
9689 
9690         if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst,
9691             legacy_req)) == NULL) {
9692                 return (1);
9693         }
9694 
9695         if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst,
9696             legacy_req)) == NULL) {
9697                 return (1);
9698         }
9699 
9700         if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9701                 return (1);
9702         }
9703 
9704         if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9705                 return (1);
9706         }
9707 
9708         if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9709                 return (1);
9710         }
9711 
9712         if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9713                 return (1);
9714         }
9715 
9716         if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9717                 return (1);
9718         }
9719 
9720         if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9721                 return (1);
9722         }
9723 
9724         mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9725         if (mpctl == NULL)
9726                 return (1);
9727 
9728         mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9729         if (mpctl == NULL)
9730                 return (1);
9731 
9732         if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9733                 return (1);
9734         }
9735         if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9736                 return (1);
9737         }
9738 done:
9739         freemsg(mpctl);
9740         return (1);
9741 }
9742 
9743 /* Get global (legacy) IPv4 statistics */
9744 static mblk_t *
9745 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9746     ip_stack_t *ipst, boolean_t legacy_req)
9747 {
9748         mib2_ip_t               old_ip_mib;
9749         struct opthdr           *optp;
9750         mblk_t                  *mp2ctl;
9751         mib2_ipAddrEntry_t      mae;
9752 
9753         /*
9754          * make a copy of the original message
9755          */
9756         mp2ctl = copymsg(mpctl);
9757 
9758         /* fixed length IP structure... */
9759         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9760         optp->level = MIB2_IP;
9761         optp->name = 0;
9762         SET_MIB(old_ip_mib.ipForwarding,
9763             (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9764         SET_MIB(old_ip_mib.ipDefaultTTL,
9765             (uint32_t)ipst->ips_ip_def_ttl);
9766         SET_MIB(old_ip_mib.ipReasmTimeout,
9767             ipst->ips_ip_reassembly_timeout);
9768         SET_MIB(old_ip_mib.ipAddrEntrySize,
9769             (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9770             sizeof (mib2_ipAddrEntry_t));
9771         SET_MIB(old_ip_mib.ipRouteEntrySize,
9772             sizeof (mib2_ipRouteEntry_t));
9773         SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9774             sizeof (mib2_ipNetToMediaEntry_t));
9775         SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9776         SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9777         SET_MIB(old_ip_mib.ipRouteAttributeSize,
9778             sizeof (mib2_ipAttributeEntry_t));
9779         SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9780         SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));
9781 
9782         /*
9783          * Grab the statistics from the new IP MIB
9784          */
9785         SET_MIB(old_ip_mib.ipInReceives,
9786             (uint32_t)ipmib->ipIfStatsHCInReceives);
9787         SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9788         SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9789         SET_MIB(old_ip_mib.ipForwDatagrams,
9790             (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9791         SET_MIB(old_ip_mib.ipInUnknownProtos,
9792             ipmib->ipIfStatsInUnknownProtos);
9793         SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9794         SET_MIB(old_ip_mib.ipInDelivers,
9795             (uint32_t)ipmib->ipIfStatsHCInDelivers);
9796         SET_MIB(old_ip_mib.ipOutRequests,
9797             (uint32_t)ipmib->ipIfStatsHCOutRequests);
9798         SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9799         SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9800         SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9801         SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9802         SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9803         SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9804         SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9805         SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
9806 
9807         /* ipRoutingDiscards is not being used */
9808         SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9809         SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9810         SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9811         SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9812         SET_MIB(old_ip_mib.ipReasmDuplicates,
9813             ipmib->ipIfStatsReasmDuplicates);
9814         SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9815         SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9816         SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9817         SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9818         SET_MIB(old_ip_mib.rawipInOverflows,
9819             ipmib->rawipIfStatsInOverflows);
9820 
9821         SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9822         SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9823         SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9824         SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
9825         SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9826             ipmib->ipIfStatsOutSwitchIPVersion);
9827 
9828         if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9829             (int)sizeof (old_ip_mib))) {
9830                 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9831                     (uint_t)sizeof (old_ip_mib)));
9832         }
9833 
9834         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9835         ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9836             (int)optp->level, (int)optp->name, (int)optp->len));
9837         qreply(q, mpctl);
9838         return (mp2ctl);
9839 }
9840 
9841 /* Per interface IPv4 statistics */
9842 static mblk_t *
9843 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9844     boolean_t legacy_req)
9845 {
9846         struct opthdr           *optp;
9847         mblk_t                  *mp2ctl;
9848         ill_t                   *ill;
9849         ill_walk_context_t      ctx;
9850         mblk_t                  *mp_tail = NULL;
9851         mib2_ipIfStatsEntry_t   global_ip_mib;
9852         mib2_ipAddrEntry_t      mae;
9853 
9854         /*
9855          * Make a copy of the original message
9856          */
9857         mp2ctl = copymsg(mpctl);
9858 
9859         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9860         optp->level = MIB2_IP;
9861         optp->name = MIB2_IP_TRAFFIC_STATS;
9862         /* Include "unknown interface" ip_mib */
9863         ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9864         ipst->ips_ip_mib.ipIfStatsIfIndex =
9865             MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9866         SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9867             (ipst->ips_ip_forwarding ? 1 : 2));
9868         SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9869             (uint32_t)ipst->ips_ip_def_ttl);
9870         SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9871             sizeof (mib2_ipIfStatsEntry_t));
9872         SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9873             sizeof (mib2_ipAddrEntry_t));
9874         SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9875             sizeof (mib2_ipRouteEntry_t));
9876         SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9877             sizeof (mib2_ipNetToMediaEntry_t));
9878         SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9879             sizeof (ip_member_t));
9880         SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9881             sizeof (ip_grpsrc_t));
9882 
9883         bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
9884 
9885         if (legacy_req) {
9886                 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize,
9887                     LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t));
9888         }
9889 
9890         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9891             (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) {
9892                 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9893                     "failed to allocate %u bytes\n",
9894                     (uint_t)sizeof (global_ip_mib)));
9895         }
9896 
9897         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9898         ill = ILL_START_WALK_V4(&ctx, ipst);
9899         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9900                 ill->ill_ip_mib->ipIfStatsIfIndex =
9901                     ill->ill_phyint->phyint_ifindex;
9902                 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9903                     (ipst->ips_ip_forwarding ? 1 : 2));
9904                 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9905                     (uint32_t)ipst->ips_ip_def_ttl);
9906 
9907                 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9908                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9909                     (char *)ill->ill_ip_mib,
9910                     (int)sizeof (*ill->ill_ip_mib))) {
9911                         ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9912                             "failed to allocate %u bytes\n",
9913                             (uint_t)sizeof (*ill->ill_ip_mib)));
9914                 }
9915         }
9916         rw_exit(&ipst->ips_ill_g_lock);
9917 
9918         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9919         ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9920             "level %d, name %d, len %d\n",
9921             (int)optp->level, (int)optp->name, (int)optp->len));
9922         qreply(q, mpctl);
9923 
9924         if (mp2ctl == NULL)
9925                 return (NULL);
9926 
9927         return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst,
9928             legacy_req));
9929 }
9930 
9931 /* Global IPv4 ICMP statistics */
9932 static mblk_t *
9933 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9934 {
9935         struct opthdr           *optp;
9936         mblk_t                  *mp2ctl;
9937 
9938         /*
9939          * Make a copy of the original message
9940          */
9941         mp2ctl = copymsg(mpctl);
9942 
9943         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9944         optp->level = MIB2_ICMP;
9945         optp->name = 0;
9946         if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
9947             (int)sizeof (ipst->ips_icmp_mib))) {
9948                 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
9949                     (uint_t)sizeof (ipst->ips_icmp_mib)));
9950         }
9951         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9952         ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
9953             (int)optp->level, (int)optp->name, (int)optp->len));
9954         qreply(q, mpctl);
9955         return (mp2ctl);
9956 }
9957 
9958 /* Global IPv4 IGMP statistics */
9959 static mblk_t *
9960 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9961 {
9962         struct opthdr           *optp;
9963         mblk_t                  *mp2ctl;
9964 
9965         /*
9966          * make a copy of the original message
9967          */
9968         mp2ctl = copymsg(mpctl);
9969 
9970         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9971         optp->level = EXPER_IGMP;
9972         optp->name = 0;
9973         if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
9974             (int)sizeof (ipst->ips_igmpstat))) {
9975                 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
9976                     (uint_t)sizeof (ipst->ips_igmpstat)));
9977         }
9978         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9979         ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
9980             (int)optp->level, (int)optp->name, (int)optp->len));
9981         qreply(q, mpctl);
9982         return (mp2ctl);
9983 }
9984 
9985 /* Global IPv4 Multicast Routing statistics */
9986 static mblk_t *
9987 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9988 {
9989         struct opthdr           *optp;
9990         mblk_t                  *mp2ctl;
9991 
9992         /*
9993          * make a copy of the original message
9994          */
9995         mp2ctl = copymsg(mpctl);
9996 
9997         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9998         optp->level = EXPER_DVMRP;
9999         optp->name = 0;
10000         if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
10001                 ip0dbg(("ip_mroute_stats: failed\n"));
10002         }
10003         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10004         ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
10005             (int)optp->level, (int)optp->name, (int)optp->len));
10006         qreply(q, mpctl);
10007         return (mp2ctl);
10008 }
10009 
10010 /* IPv4 address information */
10011 static mblk_t *
10012 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10013     boolean_t legacy_req)
10014 {
10015         struct opthdr           *optp;
10016         mblk_t                  *mp2ctl;
10017         mblk_t                  *mp_tail = NULL;
10018         ill_t                   *ill;
10019         ipif_t                  *ipif;
10020         uint_t                  bitval;
10021         mib2_ipAddrEntry_t      mae;
10022         size_t                  mae_size;
10023         zoneid_t                zoneid;
10024         ill_walk_context_t      ctx;
10025 
10026         /*
10027          * make a copy of the original message
10028          */
10029         mp2ctl = copymsg(mpctl);
10030 
10031         mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
10032             sizeof (mib2_ipAddrEntry_t);
10033 
10034         /* ipAddrEntryTable */
10035 
10036         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10037         optp->level = MIB2_IP;
10038         optp->name = MIB2_IP_ADDR;
10039         zoneid = Q_TO_CONN(q)->conn_zoneid;
10040 
10041         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10042         ill = ILL_START_WALK_V4(&ctx, ipst);
10043         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10044                 for (ipif = ill->ill_ipif; ipif != NULL;
10045                     ipif = ipif->ipif_next) {
10046                         if (ipif->ipif_zoneid != zoneid &&
10047                             ipif->ipif_zoneid != ALL_ZONES)
10048                                 continue;
10049                         /* Sum of count from dead IRE_LO* and our current */
10050                         mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10051                         if (ipif->ipif_ire_local != NULL) {
10052                                 mae.ipAdEntInfo.ae_ibcnt +=
10053                                     ipif->ipif_ire_local->ire_ib_pkt_count;
10054                         }
10055                         mae.ipAdEntInfo.ae_obcnt = 0;
10056                         mae.ipAdEntInfo.ae_focnt = 0;
10057 
10058                         ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
10059                             OCTET_LENGTH);
10060                         mae.ipAdEntIfIndex.o_length =
10061                             mi_strlen(mae.ipAdEntIfIndex.o_bytes);
10062                         mae.ipAdEntAddr = ipif->ipif_lcl_addr;
10063                         mae.ipAdEntNetMask = ipif->ipif_net_mask;
10064                         mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
10065                         mae.ipAdEntInfo.ae_subnet_len =
10066                             ip_mask_to_plen(ipif->ipif_net_mask);
10067                         mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
10068                         for (bitval = 1;
10069                             bitval &&
10070                             !(bitval & ipif->ipif_brd_addr);
10071                             bitval <<= 1)
10072                                 noop;
10073                         mae.ipAdEntBcastAddr = bitval;
10074                         mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
10075                         mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10076                         mae.ipAdEntInfo.ae_metric  = ipif->ipif_ill->ill_metric;
10077                         mae.ipAdEntInfo.ae_broadcast_addr =
10078                             ipif->ipif_brd_addr;
10079                         mae.ipAdEntInfo.ae_pp_dst_addr =
10080                             ipif->ipif_pp_dst_addr;
10081                         mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
10082                             ill->ill_flags | ill->ill_phyint->phyint_flags;
10083                         mae.ipAdEntRetransmitTime =
10084                             ill->ill_reachable_retrans_time;
10085 
10086                         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10087                             (char *)&mae, (int)mae_size)) {
10088                                 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
10089                                     "allocate %u bytes\n", (uint_t)mae_size));
10090                         }
10091                 }
10092         }
10093         rw_exit(&ipst->ips_ill_g_lock);
10094 
10095         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10096         ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
10097             (int)optp->level, (int)optp->name, (int)optp->len));
10098         qreply(q, mpctl);
10099         return (mp2ctl);
10100 }
10101 
10102 /* IPv6 address information */
10103 static mblk_t *
10104 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10105     boolean_t legacy_req)
10106 {
10107         struct opthdr           *optp;
10108         mblk_t                  *mp2ctl;
10109         mblk_t                  *mp_tail = NULL;
10110         ill_t                   *ill;
10111         ipif_t                  *ipif;
10112         mib2_ipv6AddrEntry_t    mae6;
10113         size_t                  mae6_size;
10114         zoneid_t                zoneid;
10115         ill_walk_context_t      ctx;
10116 
10117         /*
10118          * make a copy of the original message
10119          */
10120         mp2ctl = copymsg(mpctl);
10121 
10122         mae6_size = (legacy_req) ?
10123             LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) :
10124             sizeof (mib2_ipv6AddrEntry_t);
10125 
10126         /* ipv6AddrEntryTable */
10127 
10128         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10129         optp->level = MIB2_IP6;
10130         optp->name = MIB2_IP6_ADDR;
10131         zoneid = Q_TO_CONN(q)->conn_zoneid;
10132 
10133         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10134         ill = ILL_START_WALK_V6(&ctx, ipst);
10135         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10136                 for (ipif = ill->ill_ipif; ipif != NULL;
10137                     ipif = ipif->ipif_next) {
10138                         if (ipif->ipif_zoneid != zoneid &&
10139                             ipif->ipif_zoneid != ALL_ZONES)
10140                                 continue;
10141                         /* Sum of count from dead IRE_LO* and our current */
10142                         mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10143                         if (ipif->ipif_ire_local != NULL) {
10144                                 mae6.ipv6AddrInfo.ae_ibcnt +=
10145                                     ipif->ipif_ire_local->ire_ib_pkt_count;
10146                         }
10147                         mae6.ipv6AddrInfo.ae_obcnt = 0;
10148                         mae6.ipv6AddrInfo.ae_focnt = 0;
10149 
10150                         ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10151                             OCTET_LENGTH);
10152                         mae6.ipv6AddrIfIndex.o_length =
10153                             mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10154                         mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
10155                         mae6.ipv6AddrPfxLength =
10156                             ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10157                         mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10158                         mae6.ipv6AddrInfo.ae_subnet_len =
10159                             mae6.ipv6AddrPfxLength;
10160                         mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;
10161 
10162                         /* Type: stateless(1), stateful(2), unknown(3) */
10163                         if (ipif->ipif_flags & IPIF_ADDRCONF)
10164                                 mae6.ipv6AddrType = 1;
10165                         else
10166                                 mae6.ipv6AddrType = 2;
10167                         /* Anycast: true(1), false(2) */
10168                         if (ipif->ipif_flags & IPIF_ANYCAST)
10169                                 mae6.ipv6AddrAnycastFlag = 1;
10170                         else
10171                                 mae6.ipv6AddrAnycastFlag = 2;
10172 
10173                         /*
10174                          * Address status: preferred(1), deprecated(2),
10175                          * invalid(3), inaccessible(4), unknown(5)
10176                          */
10177                         if (ipif->ipif_flags & IPIF_NOLOCAL)
10178                                 mae6.ipv6AddrStatus = 3;
10179                         else if (ipif->ipif_flags & IPIF_DEPRECATED)
10180                                 mae6.ipv6AddrStatus = 2;
10181                         else
10182                                 mae6.ipv6AddrStatus = 1;
10183                         mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10184                         mae6.ipv6AddrInfo.ae_metric  =
10185                             ipif->ipif_ill->ill_metric;
10186                         mae6.ipv6AddrInfo.ae_pp_dst_addr =
10187                             ipif->ipif_v6pp_dst_addr;
10188                         mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10189                             ill->ill_flags | ill->ill_phyint->phyint_flags;
10190                         mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10191                         mae6.ipv6AddrIdentifier = ill->ill_token;
10192                         mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10193                         mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10194                         mae6.ipv6AddrRetransmitTime =
10195                             ill->ill_reachable_retrans_time;
10196                         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10197                             (char *)&mae6, (int)mae6_size)) {
10198                                 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10199                                     "allocate %u bytes\n",
10200                                     (uint_t)mae6_size));
10201                         }
10202                 }
10203         }
10204         rw_exit(&ipst->ips_ill_g_lock);
10205 
10206         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10207         ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10208             (int)optp->level, (int)optp->name, (int)optp->len));
10209         qreply(q, mpctl);
10210         return (mp2ctl);
10211 }
10212 
10213 /* IPv4 multicast group membership. */
10214 static mblk_t *
10215 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10216 {
10217         struct opthdr           *optp;
10218         mblk_t                  *mp2ctl;
10219         ill_t                   *ill;
10220         ipif_t                  *ipif;
10221         ilm_t                   *ilm;
10222         ip_member_t             ipm;
10223         mblk_t                  *mp_tail = NULL;
10224         ill_walk_context_t      ctx;
10225         zoneid_t                zoneid;
10226 
10227         /*
10228          * make a copy of the original message
10229          */
10230         mp2ctl = copymsg(mpctl);
10231         zoneid = Q_TO_CONN(q)->conn_zoneid;
10232 
10233         /* ipGroupMember table */
10234         optp = (struct opthdr *)&mpctl->b_rptr[
10235             sizeof (struct T_optmgmt_ack)];
10236         optp->level = MIB2_IP;
10237         optp->name = EXPER_IP_GROUP_MEMBERSHIP;
10238 
10239         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10240         ill = ILL_START_WALK_V4(&ctx, ipst);
10241         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10242                 /* Make sure the ill isn't going away. */
10243                 if (!ill_check_and_refhold(ill))
10244                         continue;
10245                 rw_exit(&ipst->ips_ill_g_lock);
10246                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10247                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10248                         if (ilm->ilm_zoneid != zoneid &&
10249                             ilm->ilm_zoneid != ALL_ZONES)
10250                                 continue;
10251 
10252                         /* Is there an ipif for ilm_ifaddr? */
10253                         for (ipif = ill->ill_ipif; ipif != NULL;
10254                             ipif = ipif->ipif_next) {
10255                                 if (!IPIF_IS_CONDEMNED(ipif) &&
10256                                     ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10257                                     ilm->ilm_ifaddr != INADDR_ANY)
10258                                         break;
10259                         }
10260                         if (ipif != NULL) {
10261                                 ipif_get_name(ipif,
10262                                     ipm.ipGroupMemberIfIndex.o_bytes,
10263                                     OCTET_LENGTH);
10264                         } else {
10265                                 ill_get_name(ill,
10266                                     ipm.ipGroupMemberIfIndex.o_bytes,
10267                                     OCTET_LENGTH);
10268                         }
10269                         ipm.ipGroupMemberIfIndex.o_length =
10270                             mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
10271 
10272                         ipm.ipGroupMemberAddress = ilm->ilm_addr;
10273                         ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10274                         ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10275                         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10276                             (char *)&ipm, (int)sizeof (ipm))) {
10277                                 ip1dbg(("ip_snmp_get_mib2_ip_group: "
10278                                     "failed to allocate %u bytes\n",
10279                                     (uint_t)sizeof (ipm)));
10280                         }
10281                 }
10282                 rw_exit(&ill->ill_mcast_lock);
10283                 ill_refrele(ill);
10284                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10285         }
10286         rw_exit(&ipst->ips_ill_g_lock);
10287         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10288         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10289             (int)optp->level, (int)optp->name, (int)optp->len));
10290         qreply(q, mpctl);
10291         return (mp2ctl);
10292 }
10293 
10294 /* IPv6 multicast group membership. */
10295 static mblk_t *
10296 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10297 {
10298         struct opthdr           *optp;
10299         mblk_t                  *mp2ctl;
10300         ill_t                   *ill;
10301         ilm_t                   *ilm;
10302         ipv6_member_t           ipm6;
10303         mblk_t                  *mp_tail = NULL;
10304         ill_walk_context_t      ctx;
10305         zoneid_t                zoneid;
10306 
10307         /*
10308          * make a copy of the original message
10309          */
10310         mp2ctl = copymsg(mpctl);
10311         zoneid = Q_TO_CONN(q)->conn_zoneid;
10312 
10313         /* ip6GroupMember table */
10314         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10315         optp->level = MIB2_IP6;
10316         optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
10317 
10318         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10319         ill = ILL_START_WALK_V6(&ctx, ipst);
10320         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10321                 /* Make sure the ill isn't going away. */
10322                 if (!ill_check_and_refhold(ill))
10323                         continue;
10324                 rw_exit(&ipst->ips_ill_g_lock);
10325                 /*
10326                  * Normally we don't have any members on under IPMP interfaces.
10327                  * We report them as a debugging aid.
10328                  */
10329                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10330                 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10331                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10332                         if (ilm->ilm_zoneid != zoneid &&
10333                             ilm->ilm_zoneid != ALL_ZONES)
10334                                 continue;       /* not this zone */
10335                         ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10336                         ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10337                         ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10338                         if (!snmp_append_data2(mpctl->b_cont,
10339                             &mp_tail,
10340                             (char *)&ipm6, (int)sizeof (ipm6))) {
10341                                 ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10342                                     "failed to allocate %u bytes\n",
10343                                     (uint_t)sizeof (ipm6)));
10344                         }
10345                 }
10346                 rw_exit(&ill->ill_mcast_lock);
10347                 ill_refrele(ill);
10348                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10349         }
10350         rw_exit(&ipst->ips_ill_g_lock);
10351 
10352         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10353         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10354             (int)optp->level, (int)optp->name, (int)optp->len));
10355         qreply(q, mpctl);
10356         return (mp2ctl);
10357 }
10358 
10359 /* IP multicast filtered sources */
10360 static mblk_t *
10361 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10362 {
10363         struct opthdr           *optp;
10364         mblk_t                  *mp2ctl;
10365         ill_t                   *ill;
10366         ipif_t                  *ipif;
10367         ilm_t                   *ilm;
10368         ip_grpsrc_t             ips;
10369         mblk_t                  *mp_tail = NULL;
10370         ill_walk_context_t      ctx;
10371         zoneid_t                zoneid;
10372         int                     i;
10373         slist_t                 *sl;
10374 
10375         /*
10376          * make a copy of the original message
10377          */
10378         mp2ctl = copymsg(mpctl);
10379         zoneid = Q_TO_CONN(q)->conn_zoneid;
10380 
10381         /* ipGroupSource table */
10382         optp = (struct opthdr *)&mpctl->b_rptr[
10383             sizeof (struct T_optmgmt_ack)];
10384         optp->level = MIB2_IP;
10385         optp->name = EXPER_IP_GROUP_SOURCES;
10386 
10387         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10388         ill = ILL_START_WALK_V4(&ctx, ipst);
10389         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10390                 /* Make sure the ill isn't going away. */
10391                 if (!ill_check_and_refhold(ill))
10392                         continue;
10393                 rw_exit(&ipst->ips_ill_g_lock);
10394                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10395                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10396                         sl = ilm->ilm_filter;
10397                         if (ilm->ilm_zoneid != zoneid &&
10398                             ilm->ilm_zoneid != ALL_ZONES)
10399                                 continue;
10400                         if (SLIST_IS_EMPTY(sl))
10401                                 continue;
10402 
10403                         /* Is there an ipif for ilm_ifaddr? */
10404                         for (ipif = ill->ill_ipif; ipif != NULL;
10405                             ipif = ipif->ipif_next) {
10406                                 if (!IPIF_IS_CONDEMNED(ipif) &&
10407                                     ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10408                                     ilm->ilm_ifaddr != INADDR_ANY)
10409                                         break;
10410                         }
10411                         if (ipif != NULL) {
10412                                 ipif_get_name(ipif,
10413                                     ips.ipGroupSourceIfIndex.o_bytes,
10414                                     OCTET_LENGTH);
10415                         } else {
10416                                 ill_get_name(ill,
10417                                     ips.ipGroupSourceIfIndex.o_bytes,
10418                                     OCTET_LENGTH);
10419                         }
10420                         ips.ipGroupSourceIfIndex.o_length =
10421                             mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
10422 
10423                         ips.ipGroupSourceGroup = ilm->ilm_addr;
10424                         for (i = 0; i < sl->sl_numsrc; i++) {
10425                                 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10426                                         continue;
10427                                 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10428                                     ips.ipGroupSourceAddress);
10429                                 if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10430                                     (char *)&ips, (int)sizeof (ips)) == 0) {
10431                                         ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10432                                             " failed to allocate %u bytes\n",
10433                                             (uint_t)sizeof (ips)));
10434                                 }
10435                         }
10436                 }
10437                 rw_exit(&ill->ill_mcast_lock);
10438                 ill_refrele(ill);
10439                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10440         }
10441         rw_exit(&ipst->ips_ill_g_lock);
10442         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10443         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10444             (int)optp->level, (int)optp->name, (int)optp->len));
10445         qreply(q, mpctl);
10446         return (mp2ctl);
10447 }
10448 
10449 /* IPv6 multicast filtered sources. */
10450 static mblk_t *
10451 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10452 {
10453         struct opthdr           *optp;
10454         mblk_t                  *mp2ctl;
10455         ill_t                   *ill;
10456         ilm_t                   *ilm;
10457         ipv6_grpsrc_t           ips6;
10458         mblk_t                  *mp_tail = NULL;
10459         ill_walk_context_t      ctx;
10460         zoneid_t                zoneid;
10461         int                     i;
10462         slist_t                 *sl;
10463 
10464         /*
10465          * make a copy of the original message
10466          */
10467         mp2ctl = copymsg(mpctl);
10468         zoneid = Q_TO_CONN(q)->conn_zoneid;
10469 
10470         /* ip6GroupMember table */
10471         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10472         optp->level = MIB2_IP6;
10473         optp->name = EXPER_IP6_GROUP_SOURCES;
10474 
10475         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10476         ill = ILL_START_WALK_V6(&ctx, ipst);
10477         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10478                 /* Make sure the ill isn't going away. */
10479                 if (!ill_check_and_refhold(ill))
10480                         continue;
10481                 rw_exit(&ipst->ips_ill_g_lock);
10482                 /*
10483                  * Normally we don't have any members on under IPMP interfaces.
10484                  * We report them as a debugging aid.
10485                  */
10486                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10487                 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10488                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10489                         sl = ilm->ilm_filter;
10490                         if (ilm->ilm_zoneid != zoneid &&
10491                             ilm->ilm_zoneid != ALL_ZONES)
10492                                 continue;
10493                         if (SLIST_IS_EMPTY(sl))
10494                                 continue;
10495                         ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10496                         for (i = 0; i < sl->sl_numsrc; i++) {
10497                                 ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10498                                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10499                                     (char *)&ips6, (int)sizeof (ips6))) {
10500                                         ip1dbg(("ip_snmp_get_mib2_ip6_"
10501                                             "group_src: failed to allocate "
10502                                             "%u bytes\n",
10503                                             (uint_t)sizeof (ips6)));
10504                                 }
10505                         }
10506                 }
10507                 rw_exit(&ill->ill_mcast_lock);
10508                 ill_refrele(ill);
10509                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10510         }
10511         rw_exit(&ipst->ips_ill_g_lock);
10512 
10513         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10514         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10515             (int)optp->level, (int)optp->name, (int)optp->len));
10516         qreply(q, mpctl);
10517         return (mp2ctl);
10518 }
10519 
10520 /* Multicast routing virtual interface table. */
10521 static mblk_t *
10522 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10523 {
10524         struct opthdr           *optp;
10525         mblk_t                  *mp2ctl;
10526 
10527         /*
10528          * make a copy of the original message
10529          */
10530         mp2ctl = copymsg(mpctl);
10531 
10532         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10533         optp->level = EXPER_DVMRP;
10534         optp->name = EXPER_DVMRP_VIF;
10535         if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10536                 ip0dbg(("ip_mroute_vif: failed\n"));
10537         }
10538         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10539         ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10540             (int)optp->level, (int)optp->name, (int)optp->len));
10541         qreply(q, mpctl);
10542         return (mp2ctl);
10543 }
10544 
10545 /* Multicast routing table. */
10546 static mblk_t *
10547 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10548 {
10549         struct opthdr           *optp;
10550         mblk_t                  *mp2ctl;
10551 
10552         /*
10553          * make a copy of the original message
10554          */
10555         mp2ctl = copymsg(mpctl);
10556 
10557         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10558         optp->level = EXPER_DVMRP;
10559         optp->name = EXPER_DVMRP_MRT;
10560         if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10561                 ip0dbg(("ip_mroute_mrt: failed\n"));
10562         }
10563         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10564         ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10565             (int)optp->level, (int)optp->name, (int)optp->len));
10566         qreply(q, mpctl);
10567         return (mp2ctl);
10568 }
10569 
10570 /*
10571  * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10572  * in one IRE walk.
10573  */
10574 static mblk_t *
10575 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10576     ip_stack_t *ipst)
10577 {
10578         struct opthdr   *optp;
10579         mblk_t          *mp2ctl;        /* Returned */
10580         mblk_t          *mp3ctl;        /* nettomedia */
10581         mblk_t          *mp4ctl;        /* routeattrs */
10582         iproutedata_t   ird;
10583         zoneid_t        zoneid;
10584 
10585         /*
10586          * make copies of the original message
10587          *      - mp2ctl is returned unchanged to the caller for its use
10588          *      - mpctl is sent upstream as ipRouteEntryTable
10589          *      - mp3ctl is sent upstream as ipNetToMediaEntryTable
10590          *      - mp4ctl is sent upstream as ipRouteAttributeTable
10591          */
10592         mp2ctl = copymsg(mpctl);
10593         mp3ctl = copymsg(mpctl);
10594         mp4ctl = copymsg(mpctl);
10595         if (mp3ctl == NULL || mp4ctl == NULL) {
10596                 freemsg(mp4ctl);
10597                 freemsg(mp3ctl);
10598                 freemsg(mp2ctl);
10599                 freemsg(mpctl);
10600                 return (NULL);
10601         }
10602 
10603         bzero(&ird, sizeof (ird));
10604 
10605         ird.ird_route.lp_head = mpctl->b_cont;
10606         ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10607         ird.ird_attrs.lp_head = mp4ctl->b_cont;
10608         /*
10609          * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10610          * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10611          * intended a temporary solution until a proper MIB API is provided
10612          * that provides complete filtering/caller-opt-in.
10613          */
10614         if (level == EXPER_IP_AND_ALL_IRES)
10615                 ird.ird_flags |= IRD_REPORT_ALL;
10616 
10617         zoneid = Q_TO_CONN(q)->conn_zoneid;
10618         ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
10619 
10620         /* ipRouteEntryTable in mpctl */
10621         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10622         optp->level = MIB2_IP;
10623         optp->name = MIB2_IP_ROUTE;
10624         optp->len = msgdsize(ird.ird_route.lp_head);
10625         ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10626             (int)optp->level, (int)optp->name, (int)optp->len));
10627         qreply(q, mpctl);
10628 
10629         /* ipNetToMediaEntryTable in mp3ctl */
10630         ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);
10631 
10632         optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10633         optp->level = MIB2_IP;
10634         optp->name = MIB2_IP_MEDIA;
10635         optp->len = msgdsize(ird.ird_netmedia.lp_head);
10636         ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10637             (int)optp->level, (int)optp->name, (int)optp->len));
10638         qreply(q, mp3ctl);
10639 
10640         /* ipRouteAttributeTable in mp4ctl */
10641         optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10642         optp->level = MIB2_IP;
10643         optp->name = EXPER_IP_RTATTR;
10644         optp->len = msgdsize(ird.ird_attrs.lp_head);
10645         ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10646             (int)optp->level, (int)optp->name, (int)optp->len));
10647         if (optp->len == 0)
10648                 freemsg(mp4ctl);
10649         else
10650                 qreply(q, mp4ctl);
10651 
10652         return (mp2ctl);
10653 }
10654 
10655 /*
10656  * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10657  * ipv6NetToMediaEntryTable in an NDP walk.
10658  */
10659 static mblk_t *
10660 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10661     ip_stack_t *ipst)
10662 {
10663         struct opthdr   *optp;
10664         mblk_t          *mp2ctl;        /* Returned */
10665         mblk_t          *mp3ctl;        /* nettomedia */
10666         mblk_t          *mp4ctl;        /* routeattrs */
10667         iproutedata_t   ird;
10668         zoneid_t        zoneid;
10669 
10670         /*
10671          * make copies of the original message
10672          *      - mp2ctl is returned unchanged to the caller for its use
10673          *      - mpctl is sent upstream as ipv6RouteEntryTable
10674          *      - mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10675          *      - mp4ctl is sent upstream as ipv6RouteAttributeTable
10676          */
10677         mp2ctl = copymsg(mpctl);
10678         mp3ctl = copymsg(mpctl);
10679         mp4ctl = copymsg(mpctl);
10680         if (mp3ctl == NULL || mp4ctl == NULL) {
10681                 freemsg(mp4ctl);
10682                 freemsg(mp3ctl);
10683                 freemsg(mp2ctl);
10684                 freemsg(mpctl);
10685                 return (NULL);
10686         }
10687 
10688         bzero(&ird, sizeof (ird));
10689 
10690         ird.ird_route.lp_head = mpctl->b_cont;
10691         ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10692         ird.ird_attrs.lp_head = mp4ctl->b_cont;
10693         /*
10694          * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10695          * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10696          * intended a temporary solution until a proper MIB API is provided
10697          * that provides complete filtering/caller-opt-in.
10698          */
10699         if (level == EXPER_IP_AND_ALL_IRES)
10700                 ird.ird_flags |= IRD_REPORT_ALL;
10701 
10702         zoneid = Q_TO_CONN(q)->conn_zoneid;
10703         ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
10704 
10705         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10706         optp->level = MIB2_IP6;
10707         optp->name = MIB2_IP6_ROUTE;
10708         optp->len = msgdsize(ird.ird_route.lp_head);
10709         ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10710             (int)optp->level, (int)optp->name, (int)optp->len));
10711         qreply(q, mpctl);
10712 
10713         /* ipv6NetToMediaEntryTable in mp3ctl */
10714         ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
10715 
10716         optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10717         optp->level = MIB2_IP6;
10718         optp->name = MIB2_IP6_MEDIA;
10719         optp->len = msgdsize(ird.ird_netmedia.lp_head);
10720         ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10721             (int)optp->level, (int)optp->name, (int)optp->len));
10722         qreply(q, mp3ctl);
10723 
10724         /* ipv6RouteAttributeTable in mp4ctl */
10725         optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10726         optp->level = MIB2_IP6;
10727         optp->name = EXPER_IP_RTATTR;
10728         optp->len = msgdsize(ird.ird_attrs.lp_head);
10729         ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10730             (int)optp->level, (int)optp->name, (int)optp->len));
10731         if (optp->len == 0)
10732                 freemsg(mp4ctl);
10733         else
10734                 qreply(q, mp4ctl);
10735 
10736         return (mp2ctl);
10737 }
10738 
10739 /*
10740  * IPv6 mib: One per ill
10741  */
10742 static mblk_t *
10743 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10744     boolean_t legacy_req)
10745 {
10746         struct opthdr           *optp;
10747         mblk_t                  *mp2ctl;
10748         ill_t                   *ill;
10749         ill_walk_context_t      ctx;
10750         mblk_t                  *mp_tail = NULL;
10751         mib2_ipv6AddrEntry_t    mae6;
10752         mib2_ipIfStatsEntry_t   *ise;
10753         size_t                  ise_size, iae_size;
10754 
10755         /*
10756          * Make a copy of the original message
10757          */
10758         mp2ctl = copymsg(mpctl);
10759 
10760         /* fixed length IPv6 structure ... */
10761 
10762         if (legacy_req) {
10763                 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib,
10764                     mib2_ipIfStatsEntry_t);
10765                 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t);
10766         } else {
10767                 ise_size = sizeof (mib2_ipIfStatsEntry_t);
10768                 iae_size = sizeof (mib2_ipv6AddrEntry_t);
10769         }
10770 
10771         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10772         optp->level = MIB2_IP6;
10773         optp->name = 0;
10774         /* Include "unknown interface" ip6_mib */
10775         ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10776         ipst->ips_ip6_mib.ipIfStatsIfIndex =
10777             MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10778         SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10779             ipst->ips_ipv6_forwarding ? 1 : 2);
10780         SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10781             ipst->ips_ipv6_def_hops);
10782         SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10783             sizeof (mib2_ipIfStatsEntry_t));
10784         SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10785             sizeof (mib2_ipv6AddrEntry_t));
10786         SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10787             sizeof (mib2_ipv6RouteEntry_t));
10788         SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10789             sizeof (mib2_ipv6NetToMediaEntry_t));
10790         SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10791             sizeof (ipv6_member_t));
10792         SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10793             sizeof (ipv6_grpsrc_t));
10794 
10795         /*
10796          * Synchronize 64- and 32-bit counters
10797          */
10798         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10799             ipIfStatsHCInReceives);
10800         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10801             ipIfStatsHCInDelivers);
10802         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10803             ipIfStatsHCOutRequests);
10804         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10805             ipIfStatsHCOutForwDatagrams);
10806         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10807             ipIfStatsHCOutMcastPkts);
10808         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10809             ipIfStatsHCInMcastPkts);
10810 
10811         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10812             (char *)&ipst->ips_ip6_mib, (int)ise_size)) {
10813                 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10814                     (uint_t)ise_size));
10815         } else if (legacy_req) {
10816                 /* Adjust the EntrySize fields for legacy requests. */
10817                 ise =
10818                     (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size);
10819                 SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10820                 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10821         }
10822 
10823         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10824         ill = ILL_START_WALK_V6(&ctx, ipst);
10825         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10826                 ill->ill_ip_mib->ipIfStatsIfIndex =
10827                     ill->ill_phyint->phyint_ifindex;
10828                 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10829                     ipst->ips_ipv6_forwarding ? 1 : 2);
10830                 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10831                     ill->ill_max_hops);
10832 
10833                 /*
10834                  * Synchronize 64- and 32-bit counters
10835                  */
10836                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10837                     ipIfStatsHCInReceives);
10838                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10839                     ipIfStatsHCInDelivers);
10840                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10841                     ipIfStatsHCOutRequests);
10842                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10843                     ipIfStatsHCOutForwDatagrams);
10844                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10845                     ipIfStatsHCOutMcastPkts);
10846                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10847                     ipIfStatsHCInMcastPkts);
10848 
10849                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10850                     (char *)ill->ill_ip_mib, (int)ise_size)) {
10851                         ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10852                         "%u bytes\n", (uint_t)ise_size));
10853                 } else if (legacy_req) {
10854                         /* Adjust the EntrySize fields for legacy requests. */
10855                         ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr -
10856                             (int)ise_size);
10857                         SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10858                         SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10859                 }
10860         }
10861         rw_exit(&ipst->ips_ill_g_lock);
10862 
10863         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10864         ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10865             (int)optp->level, (int)optp->name, (int)optp->len));
10866         qreply(q, mpctl);
10867         return (mp2ctl);
10868 }
10869 
10870 /*
10871  * ICMPv6 mib: One per ill
10872  */
10873 static mblk_t *
10874 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10875 {
10876         struct opthdr           *optp;
10877         mblk_t                  *mp2ctl;
10878         ill_t                   *ill;
10879         ill_walk_context_t      ctx;
10880         mblk_t                  *mp_tail = NULL;
10881         /*
10882          * Make a copy of the original message
10883          */
10884         mp2ctl = copymsg(mpctl);
10885 
10886         /* fixed length ICMPv6 structure ... */
10887 
10888         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10889         optp->level = MIB2_ICMP6;
10890         optp->name = 0;
10891         /* Include "unknown interface" icmp6_mib */
10892         ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10893             MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10894         ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10895             sizeof (mib2_ipv6IfIcmpEntry_t);
10896         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10897             (char *)&ipst->ips_icmp6_mib,
10898             (int)sizeof (ipst->ips_icmp6_mib))) {
10899                 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10900                     (uint_t)sizeof (ipst->ips_icmp6_mib)));
10901         }
10902 
10903         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10904         ill = ILL_START_WALK_V6(&ctx, ipst);
10905         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10906                 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10907                     ill->ill_phyint->phyint_ifindex;
10908                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10909                     (char *)ill->ill_icmp6_mib,
10910                     (int)sizeof (*ill->ill_icmp6_mib))) {
10911                         ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10912                             "%u bytes\n",
10913                             (uint_t)sizeof (*ill->ill_icmp6_mib)));
10914                 }
10915         }
10916         rw_exit(&ipst->ips_ill_g_lock);
10917 
10918         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10919         ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10920             (int)optp->level, (int)optp->name, (int)optp->len));
10921         qreply(q, mpctl);
10922         return (mp2ctl);
10923 }
10924 
10925 /*
10926  * ire_walk routine to create both ipRouteEntryTable and
10927  * ipRouteAttributeTable in one IRE walk
10928  */
10929 static void
10930 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10931 {
10932         ill_t                           *ill;
10933         mib2_ipRouteEntry_t             *re;
10934         mib2_ipAttributeEntry_t         iaes;
10935         tsol_ire_gw_secattr_t           *attrp;
10936         tsol_gc_t                       *gc = NULL;
10937         tsol_gcgrp_t                    *gcgrp = NULL;
10938         ip_stack_t                      *ipst = ire->ire_ipst;
10939 
10940         ASSERT(ire->ire_ipversion == IPV4_VERSION);
10941 
10942         if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10943                 if (ire->ire_testhidden)
10944                         return;
10945                 if (ire->ire_type & IRE_IF_CLONE)
10946                         return;
10947         }
10948 
10949         if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10950                 return;
10951 
10952         if ((attrp = ire->ire_gw_secattr) != NULL) {
10953                 mutex_enter(&attrp->igsa_lock);
10954                 if ((gc = attrp->igsa_gc) != NULL) {
10955                         gcgrp = gc->gc_grp;
10956                         ASSERT(gcgrp != NULL);
10957                         rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10958                 }
10959                 mutex_exit(&attrp->igsa_lock);
10960         }
10961         /*
10962          * Return all IRE types for route table... let caller pick and choose
10963          */
10964         re->ipRouteDest = ire->ire_addr;
10965         ill = ire->ire_ill;
10966         re->ipRouteIfIndex.o_length = 0;
10967         if (ill != NULL) {
10968                 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
10969                 re->ipRouteIfIndex.o_length =
10970                     mi_strlen(re->ipRouteIfIndex.o_bytes);
10971         }
10972         re->ipRouteMetric1 = -1;
10973         re->ipRouteMetric2 = -1;
10974         re->ipRouteMetric3 = -1;
10975         re->ipRouteMetric4 = -1;
10976 
10977         re->ipRouteNextHop = ire->ire_gateway_addr;
10978         /* indirect(4), direct(3), or invalid(2) */
10979         if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10980                 re->ipRouteType = 2;
10981         else if (ire->ire_type & IRE_ONLINK)
10982                 re->ipRouteType = 3;
10983         else
10984                 re->ipRouteType = 4;
10985 
10986         re->ipRouteProto = -1;
10987         re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
10988         re->ipRouteMask = ire->ire_mask;
10989         re->ipRouteMetric5 = -1;
10990         re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10991         if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
10992                 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
10993 
10994         re->ipRouteInfo.re_frag_flag = 0;
10995         re->ipRouteInfo.re_rtt               = 0;
10996         re->ipRouteInfo.re_src_addr  = 0;
10997         re->ipRouteInfo.re_ref               = ire->ire_refcnt;
10998         re->ipRouteInfo.re_obpkt     = ire->ire_ob_pkt_count;
10999         re->ipRouteInfo.re_ibpkt     = ire->ire_ib_pkt_count;
11000         re->ipRouteInfo.re_flags     = ire->ire_flags;
11001 
11002         /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11003         if (ire->ire_type & IRE_INTERFACE) {
11004                 ire_t *child;
11005 
11006                 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11007                 child = ire->ire_dep_children;
11008                 while (child != NULL) {
11009                         re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
11010                         re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11011                         child = child->ire_dep_sib_next;
11012                 }
11013                 rw_exit(&ipst->ips_ire_dep_lock);
11014         }
11015 
11016         if (ire->ire_flags & RTF_DYNAMIC) {
11017                 re->ipRouteInfo.re_ire_type  = IRE_HOST_REDIRECT;
11018         } else {
11019                 re->ipRouteInfo.re_ire_type  = ire->ire_type;
11020         }
11021 
11022         if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11023             (char *)re, (int)sizeof (*re))) {
11024                 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
11025                     (uint_t)sizeof (*re)));
11026         }
11027 
11028         if (gc != NULL) {
11029                 iaes.iae_routeidx = ird->ird_idx;
11030                 iaes.iae_doi = gc->gc_db->gcdb_doi;
11031                 iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11032 
11033                 if (!snmp_append_data2(ird->ird_attrs.lp_head,
11034                     &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11035                         ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
11036                             "bytes\n", (uint_t)sizeof (iaes)));
11037                 }
11038         }
11039 
11040         /* bump route index for next pass */
11041         ird->ird_idx++;
11042 
11043         kmem_free(re, sizeof (*re));
11044         if (gcgrp != NULL)
11045                 rw_exit(&gcgrp->gcgrp_rwlock);
11046 }
11047 
11048 /*
11049  * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
11050  */
11051 static void
11052 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
11053 {
11054         ill_t                           *ill;
11055         mib2_ipv6RouteEntry_t           *re;
11056         mib2_ipAttributeEntry_t         iaes;
11057         tsol_ire_gw_secattr_t           *attrp;
11058         tsol_gc_t                       *gc = NULL;
11059         tsol_gcgrp_t                    *gcgrp = NULL;
11060         ip_stack_t                      *ipst = ire->ire_ipst;
11061 
11062         ASSERT(ire->ire_ipversion == IPV6_VERSION);
11063 
11064         if (!(ird->ird_flags & IRD_REPORT_ALL)) {
11065                 if (ire->ire_testhidden)
11066                         return;
11067                 if (ire->ire_type & IRE_IF_CLONE)
11068                         return;
11069         }
11070 
11071         if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
11072                 return;
11073 
11074         if ((attrp = ire->ire_gw_secattr) != NULL) {
11075                 mutex_enter(&attrp->igsa_lock);
11076                 if ((gc = attrp->igsa_gc) != NULL) {
11077                         gcgrp = gc->gc_grp;
11078                         ASSERT(gcgrp != NULL);
11079                         rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11080                 }
11081                 mutex_exit(&attrp->igsa_lock);
11082         }
11083         /*
11084          * Return all IRE types for route table... let caller pick and choose
11085          */
11086         re->ipv6RouteDest = ire->ire_addr_v6;
11087         re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
11088         re->ipv6RouteIndex = 0;      /* Unique when multiple with same dest/plen */
11089         re->ipv6RouteIfIndex.o_length = 0;
11090         ill = ire->ire_ill;
11091         if (ill != NULL) {
11092                 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
11093                 re->ipv6RouteIfIndex.o_length =
11094                     mi_strlen(re->ipv6RouteIfIndex.o_bytes);
11095         }
11096 
11097         ASSERT(!(ire->ire_type & IRE_BROADCAST));
11098 
11099         mutex_enter(&ire->ire_lock);
11100         re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
11101         mutex_exit(&ire->ire_lock);
11102 
11103         /* remote(4), local(3), or discard(2) */
11104         if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11105                 re->ipv6RouteType = 2;
11106         else if (ire->ire_type & IRE_ONLINK)
11107                 re->ipv6RouteType = 3;
11108         else
11109                 re->ipv6RouteType = 4;
11110 
11111         re->ipv6RouteProtocol        = -1;
11112         re->ipv6RoutePolicy  = 0;
11113         re->ipv6RouteAge     = gethrestime_sec() - ire->ire_create_time;
11114         re->ipv6RouteNextHopRDI      = 0;
11115         re->ipv6RouteWeight  = 0;
11116         re->ipv6RouteMetric  = 0;
11117         re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11118         if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
11119                 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
11120 
11121         re->ipv6RouteInfo.re_frag_flag       = 0;
11122         re->ipv6RouteInfo.re_rtt     = 0;
11123         re->ipv6RouteInfo.re_src_addr        = ipv6_all_zeros;
11124         re->ipv6RouteInfo.re_obpkt   = ire->ire_ob_pkt_count;
11125         re->ipv6RouteInfo.re_ibpkt   = ire->ire_ib_pkt_count;
11126         re->ipv6RouteInfo.re_ref     = ire->ire_refcnt;
11127         re->ipv6RouteInfo.re_flags   = ire->ire_flags;
11128 
11129         /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11130         if (ire->ire_type & IRE_INTERFACE) {
11131                 ire_t *child;
11132 
11133                 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11134                 child = ire->ire_dep_children;
11135                 while (child != NULL) {
11136                         re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
11137                         re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11138                         child = child->ire_dep_sib_next;
11139                 }
11140                 rw_exit(&ipst->ips_ire_dep_lock);
11141         }
11142         if (ire->ire_flags & RTF_DYNAMIC) {
11143                 re->ipv6RouteInfo.re_ire_type        = IRE_HOST_REDIRECT;
11144         } else {
11145                 re->ipv6RouteInfo.re_ire_type        = ire->ire_type;
11146         }
11147 
11148         if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11149             (char *)re, (int)sizeof (*re))) {
11150                 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
11151                     (uint_t)sizeof (*re)));
11152         }
11153 
11154         if (gc != NULL) {
11155                 iaes.iae_routeidx = ird->ird_idx;
11156                 iaes.iae_doi = gc->gc_db->gcdb_doi;
11157                 iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11158 
11159                 if (!snmp_append_data2(ird->ird_attrs.lp_head,
11160                     &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11161                         ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
11162                             "bytes\n", (uint_t)sizeof (iaes)));
11163                 }
11164         }
11165 
11166         /* bump route index for next pass */
11167         ird->ird_idx++;
11168 
11169         kmem_free(re, sizeof (*re));
11170         if (gcgrp != NULL)
11171                 rw_exit(&gcgrp->gcgrp_rwlock);
11172 }
11173 
11174 /*
11175  * ncec_walk routine to create ipv6NetToMediaEntryTable
11176  */
11177 static void
11178 ip_snmp_get2_v6_media(ncec_t *ncec, void *ptr)
11179 {
11180         iproutedata_t *ird              = ptr;
11181         ill_t                           *ill;
11182         mib2_ipv6NetToMediaEntry_t      ntme;
11183 
11184         ill = ncec->ncec_ill;
11185         /* skip arpce entries, and loopback ncec entries */
11186         if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11187                 return;
11188         /*
11189          * Neighbor cache entry attached to IRE with on-link
11190          * destination.
11191          * We report all IPMP groups on ncec_ill which is normally the upper.
11192          */
11193         ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11194         ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11195         ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11196         if (ncec->ncec_lladdr != NULL) {
11197                 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11198                     ntme.ipv6NetToMediaPhysAddress.o_length);
11199         }
11200         /*
11201          * Note: Returns ND_* states. Should be:
11202          * reachable(1), stale(2), delay(3), probe(4),
11203          * invalid(5), unknown(6)
11204          */
11205         ntme.ipv6NetToMediaState = ncec->ncec_state;
11206         ntme.ipv6NetToMediaLastUpdated = 0;
11207 
11208         /* other(1), dynamic(2), static(3), local(4) */
11209         if (NCE_MYADDR(ncec)) {
11210                 ntme.ipv6NetToMediaType = 4;
11211         } else if (ncec->ncec_flags & NCE_F_PUBLISH) {
11212                 ntme.ipv6NetToMediaType = 1; /* proxy */
11213         } else if (ncec->ncec_flags & NCE_F_STATIC) {
11214                 ntme.ipv6NetToMediaType = 3;
11215         } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11216                 ntme.ipv6NetToMediaType = 1;
11217         } else {
11218                 ntme.ipv6NetToMediaType = 2;
11219         }
11220 
11221         if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11222             &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11223                 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11224                     (uint_t)sizeof (ntme)));
11225         }
11226 }
11227 
11228 int
11229 nce2ace(ncec_t *ncec)
11230 {
11231         int flags = 0;
11232 
11233         if (NCE_ISREACHABLE(ncec))
11234                 flags |= ACE_F_RESOLVED;
11235         if (ncec->ncec_flags & NCE_F_AUTHORITY)
11236                 flags |= ACE_F_AUTHORITY;
11237         if (ncec->ncec_flags & NCE_F_PUBLISH)
11238                 flags |= ACE_F_PUBLISH;
11239         if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11240                 flags |= ACE_F_PERMANENT;
11241         if (NCE_MYADDR(ncec))
11242                 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11243         if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11244                 flags |= ACE_F_UNVERIFIED;
11245         if (ncec->ncec_flags & NCE_F_AUTHORITY)
11246                 flags |= ACE_F_AUTHORITY;
11247         if (ncec->ncec_flags & NCE_F_DELAYED)
11248                 flags |= ACE_F_DELAYED;
11249         return (flags);
11250 }
11251 
11252 /*
11253  * ncec_walk routine to create ipNetToMediaEntryTable
11254  */
11255 static void
11256 ip_snmp_get2_v4_media(ncec_t *ncec, void *ptr)
11257 {
11258         iproutedata_t *ird              = ptr;
11259         ill_t                           *ill;
11260         mib2_ipNetToMediaEntry_t        ntme;
11261         const char                      *name = "unknown";
11262         ipaddr_t                        ncec_addr;
11263 
11264         ill = ncec->ncec_ill;
11265         if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11266             ill->ill_net_type == IRE_LOOPBACK)
11267                 return;
11268 
11269         /* We report all IPMP groups on ncec_ill which is normally the upper. */
11270         name = ill->ill_name;
11271         /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11272         if (NCE_MYADDR(ncec)) {
11273                 ntme.ipNetToMediaType = 4;
11274         } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11275                 ntme.ipNetToMediaType = 1;
11276         } else {
11277                 ntme.ipNetToMediaType = 3;
11278         }
11279         ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11280         bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11281             ntme.ipNetToMediaIfIndex.o_length);
11282 
11283         IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11284         bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));
11285 
11286         ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11287         ncec_addr = INADDR_BROADCAST;
11288         bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11289             sizeof (ncec_addr));
11290         /*
11291          * map all the flags to the ACE counterpart.
11292          */
11293         ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);
11294 
11295         ntme.ipNetToMediaPhysAddress.o_length =
11296             MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
11297 
11298         if (!NCE_ISREACHABLE(ncec))
11299                 ntme.ipNetToMediaPhysAddress.o_length = 0;
11300         else {
11301                 if (ncec->ncec_lladdr != NULL) {
11302                         bcopy(ncec->ncec_lladdr,
11303                             ntme.ipNetToMediaPhysAddress.o_bytes,
11304                             ntme.ipNetToMediaPhysAddress.o_length);
11305                 }
11306         }
11307 
11308         if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11309             &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11310                 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11311                     (uint_t)sizeof (ntme)));
11312         }
11313 }
11314 
11315 /*
11316  * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11317  */
11318 /* ARGSUSED */
11319 int
11320 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11321 {
11322         switch (level) {
11323         case MIB2_IP:
11324         case MIB2_ICMP:
11325                 switch (name) {
11326                 default:
11327                         break;
11328                 }
11329                 return (1);
11330         default:
11331                 return (1);
11332         }
11333 }
11334 
11335 /*
11336  * When there exists both a 64- and 32-bit counter of a particular type
11337  * (i.e., InReceives), only the 64-bit counters are added.
11338  */
11339 void
11340 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11341 {
11342         UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
11343         UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11344         UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11345         UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11346         UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11347         UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11348         UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11349         UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11350         UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11351         UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11352         UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11353         UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11354         UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11355         UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11356         UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11357         UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11358         UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11359         UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11360         UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11361         UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11362         UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11363         UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11364             o2->ipIfStatsInWrongIPVersion);
11365         UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11366             o2->ipIfStatsInWrongIPVersion);
11367         UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11368             o2->ipIfStatsOutSwitchIPVersion);
11369         UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11370         UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11371         UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11372             o2->ipIfStatsHCInForwDatagrams);
11373         UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11374         UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11375         UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11376             o2->ipIfStatsHCOutForwDatagrams);
11377         UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11378         UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11379         UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11380         UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11381         UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11382         UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11383         UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11384             o2->ipIfStatsHCOutMcastOctets);
11385         UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11386         UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11387         UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11388         UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11389         UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
11390         UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11391         UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11392 }
11393 
11394 void
11395 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11396 {
11397         UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11398         UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11399         UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11400         UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11401         UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11402         UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11403         UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11404         UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11405         UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11406         UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11407             o2->ipv6IfIcmpInRouterSolicits);
11408         UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
11409             o2->ipv6IfIcmpInRouterAdvertisements);
11410         UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11411             o2->ipv6IfIcmpInNeighborSolicits);
11412         UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11413             o2->ipv6IfIcmpInNeighborAdvertisements);
11414         UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11415         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11416             o2->ipv6IfIcmpInGroupMembQueries);
11417         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11418             o2->ipv6IfIcmpInGroupMembResponses);
11419         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11420             o2->ipv6IfIcmpInGroupMembReductions);
11421         UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11422         UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11423         UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11424             o2->ipv6IfIcmpOutDestUnreachs);
11425         UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11426             o2->ipv6IfIcmpOutAdminProhibs);
11427         UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11428         UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11429             o2->ipv6IfIcmpOutParmProblems);
11430         UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11431         UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11432         UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11433         UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11434             o2->ipv6IfIcmpOutRouterSolicits);
11435         UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11436             o2->ipv6IfIcmpOutRouterAdvertisements);
11437         UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11438             o2->ipv6IfIcmpOutNeighborSolicits);
11439         UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11440             o2->ipv6IfIcmpOutNeighborAdvertisements);
11441         UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11442         UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11443             o2->ipv6IfIcmpOutGroupMembQueries);
11444         UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11445             o2->ipv6IfIcmpOutGroupMembResponses);
11446         UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11447             o2->ipv6IfIcmpOutGroupMembReductions);
11448         UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11449         UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11450         UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11451             o2->ipv6IfIcmpInBadNeighborAdvertisements);
11452         UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11453             o2->ipv6IfIcmpInBadNeighborSolicitations);
11454         UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11455         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
11456             o2->ipv6IfIcmpInGroupMembTotal);
11457         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11458             o2->ipv6IfIcmpInGroupMembBadQueries);
11459         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11460             o2->ipv6IfIcmpInGroupMembBadReports);
11461         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11462             o2->ipv6IfIcmpInGroupMembOurReports);
11463 }
11464 
11465 /*
11466  * Called before the options are updated to check if this packet will
11467  * be source routed from here.
11468  * This routine assumes that the options are well formed i.e. that they
11469  * have already been checked.
11470  */
11471 boolean_t
11472 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11473 {
11474         ipoptp_t        opts;
11475         uchar_t         *opt;
11476         uint8_t         optval;
11477         uint8_t         optlen;
11478         ipaddr_t        dst;
11479 
11480         if (IS_SIMPLE_IPH(ipha)) {
11481                 ip2dbg(("not source routed\n"));
11482                 return (B_FALSE);
11483         }
11484         dst = ipha->ipha_dst;
11485         for (optval = ipoptp_first(&opts, ipha);
11486             optval != IPOPT_EOL;
11487             optval = ipoptp_next(&opts)) {
11488                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11489                 opt = opts.ipoptp_cur;
11490                 optlen = opts.ipoptp_len;
11491                 ip2dbg(("ip_source_routed: opt %d, len %d\n",
11492                     optval, optlen));
11493                 switch (optval) {
11494                         uint32_t off;
11495                 case IPOPT_SSRR:
11496                 case IPOPT_LSRR:
11497                         /*
11498                          * If dst is one of our addresses and there are some
11499                          * entries left in the source route return (true).
11500                          */
11501                         if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11502                                 ip2dbg(("ip_source_routed: not next"
11503                                     " source route 0x%x\n",
11504                                     ntohl(dst)));
11505                                 return (B_FALSE);
11506                         }
11507                         off = opt[IPOPT_OFFSET];
11508                         off--;
11509                         if (optlen < IP_ADDR_LEN ||
11510                             off > optlen - IP_ADDR_LEN) {
11511                                 /* End of source route */
11512                                 ip1dbg(("ip_source_routed: end of SR\n"));
11513                                 return (B_FALSE);
11514                         }
11515                         return (B_TRUE);
11516                 }
11517         }
11518         ip2dbg(("not source routed\n"));
11519         return (B_FALSE);
11520 }
11521 
11522 /*
11523  * ip_unbind is called by the transports to remove a conn from
11524  * the fanout table.
11525  */
11526 void
11527 ip_unbind(conn_t *connp)
11528 {
11529 
11530         ASSERT(!MUTEX_HELD(&connp->conn_lock));
11531 
11532         if (is_system_labeled() && connp->conn_anon_port) {
11533                 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11534                     connp->conn_mlp_type, connp->conn_proto,
11535                     ntohs(connp->conn_lport), B_FALSE);
11536                 connp->conn_anon_port = 0;
11537         }
11538         connp->conn_mlp_type = mlptSingle;
11539 
11540         ipcl_hash_remove(connp);
11541 }
11542 
11543 /*
11544  * Used for deciding the MSS size for the upper layer. Thus
11545  * we need to check the outbound policy values in the conn.
11546  */
11547 int
11548 conn_ipsec_length(conn_t *connp)
11549 {
11550         ipsec_latch_t *ipl;
11551 
11552         ipl = connp->conn_latch;
11553         if (ipl == NULL)
11554                 return (0);
11555 
11556         if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11557                 return (0);
11558 
11559         return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11560 }
11561 
11562 /*
11563  * Returns an estimate of the IPsec headers size. This is used if
11564  * we don't want to call into IPsec to get the exact size.
11565  */
11566 int
11567 ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11568 {
11569         ipsec_action_t *a;
11570 
11571         if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11572                 return (0);
11573 
11574         a = ixa->ixa_ipsec_action;
11575         if (a == NULL) {
11576                 ASSERT(ixa->ixa_ipsec_policy != NULL);
11577                 a = ixa->ixa_ipsec_policy->ipsp_act;
11578         }
11579         ASSERT(a != NULL);
11580 
11581         return (a->ipa_ovhd);
11582 }
11583 
11584 /*
11585  * If there are any source route options, return the true final
11586  * destination. Otherwise, return the destination.
11587  */
11588 ipaddr_t
11589 ip_get_dst(ipha_t *ipha)
11590 {
11591         ipoptp_t        opts;
11592         uchar_t         *opt;
11593         uint8_t         optval;
11594         uint8_t         optlen;
11595         ipaddr_t        dst;
11596         uint32_t off;
11597 
11598         dst = ipha->ipha_dst;
11599 
11600         if (IS_SIMPLE_IPH(ipha))
11601                 return (dst);
11602 
11603         for (optval = ipoptp_first(&opts, ipha);
11604             optval != IPOPT_EOL;
11605             optval = ipoptp_next(&opts)) {
11606                 opt = opts.ipoptp_cur;
11607                 optlen = opts.ipoptp_len;
11608                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11609                 switch (optval) {
11610                 case IPOPT_SSRR:
11611                 case IPOPT_LSRR:
11612                         off = opt[IPOPT_OFFSET];
11613                         /*
11614                          * If one of the conditions is true, it means
11615                          * end of options and dst already has the right
11616                          * value.
11617                          */
11618                         if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11619                                 off = optlen - IP_ADDR_LEN;
11620                                 bcopy(&opt[off], &dst, IP_ADDR_LEN);
11621                         }
11622                         return (dst);
11623                 default:
11624                         break;
11625                 }
11626         }
11627 
11628         return (dst);
11629 }
11630 
11631 /*
11632  * Outbound IP fragmentation routine.
11633  * Assumes the caller has checked whether or not fragmentation should
11634  * be allowed. Here we copy the DF bit from the header to all the generated
11635  * fragments.
11636  */
11637 int
11638 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11639     uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11640     zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11641 {
11642         int             i1;
11643         int             hdr_len;
11644         mblk_t          *hdr_mp;
11645         ipha_t          *ipha;
11646         int             ip_data_end;
11647         int             len;
11648         mblk_t          *mp = mp_orig;
11649         int             offset;
11650         ill_t           *ill = nce->nce_ill;
11651         ip_stack_t      *ipst = ill->ill_ipst;
11652         mblk_t          *carve_mp;
11653         uint32_t        frag_flag;
11654         uint_t          priority = mp->b_band;
11655         int             error = 0;
11656 
11657         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);
11658 
11659         if (pkt_len != msgdsize(mp)) {
11660                 ip0dbg(("Packet length mismatch: %d, %ld\n",
11661                     pkt_len, msgdsize(mp)));
11662                 freemsg(mp);
11663                 return (EINVAL);
11664         }
11665 
11666         if (max_frag == 0) {
11667                 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11668                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11669                 ip_drop_output("FragFails: zero max_frag", mp, ill);
11670                 freemsg(mp);
11671                 return (EINVAL);
11672         }
11673 
11674         ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11675         ipha = (ipha_t *)mp->b_rptr;
11676         ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11677         frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;
11678 
11679         /*
11680          * Establish the starting offset.  May not be zero if we are fragging
11681          * a fragment that is being forwarded.
11682          */
11683         offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;
11684 
11685         /* TODO why is this test needed? */
11686         if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11687                 /* TODO: notify ulp somehow */
11688                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11689                 ip_drop_output("FragFails: bad starting offset", mp, ill);
11690                 freemsg(mp);
11691                 return (EINVAL);
11692         }
11693 
11694         hdr_len = IPH_HDR_LENGTH(ipha);
11695         ipha->ipha_hdr_checksum = 0;
11696 
11697         /*
11698          * Establish the number of bytes maximum per frag, after putting
11699          * in the header.
11700          */
11701         len = (max_frag - hdr_len) & ~7;
11702 
11703         /* Get a copy of the header for the trailing frags */
11704         hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11705             mp);
11706         if (hdr_mp == NULL) {
11707                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11708                 ip_drop_output("FragFails: no hdr_mp", mp, ill);
11709                 freemsg(mp);
11710                 return (ENOBUFS);
11711         }
11712 
11713         /* Store the starting offset, with the MoreFrags flag. */
11714         i1 = offset | IPH_MF | frag_flag;
11715         ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
11716 
11717         /* Establish the ending byte offset, based on the starting offset. */
11718         offset <<= 3;
11719         ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
11720 
11721         /* Store the length of the first fragment in the IP header. */
11722         i1 = len + hdr_len;
11723         ASSERT(i1 <= IP_MAXPACKET);
11724         ipha->ipha_length = htons((uint16_t)i1);
11725 
11726         /*
11727          * Compute the IP header checksum for the first frag.  We have to
11728          * watch out that we stop at the end of the header.
11729          */
11730         ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11731 
11732         /*
11733          * Now carve off the first frag.  Note that this will include the
11734          * original IP header.
11735          */
11736         if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11737                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11738                 ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
11739                 freeb(hdr_mp);
11740                 freemsg(mp_orig);
11741                 return (ENOBUFS);
11742         }
11743 
11744         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11745 
11746         error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11747             ixa_cookie);
11748         if (error != 0 && error != EWOULDBLOCK) {
11749                 /* No point in sending the other fragments */
11750                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11751                 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11752                 freeb(hdr_mp);
11753                 freemsg(mp_orig);
11754                 return (error);
11755         }
11756 
11757         /* No need to redo state machine in loop */
11758         ixaflags &= ~IXAF_REACH_CONF;
11759 
11760         /* Advance the offset to the second frag starting point. */
11761         offset += len;
11762         /*
11763          * Update hdr_len from the copied header - there might be less options
11764          * in the later fragments.
11765          */
11766         hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11767         /* Loop until done. */
11768         for (;;) {
11769                 uint16_t        offset_and_flags;
11770                 uint16_t        ip_len;
11771 
11772                 if (ip_data_end - offset > len) {
11773                         /*
11774                          * Carve off the appropriate amount from the original
11775                          * datagram.
11776                          */
11777                         if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11778                                 mp = NULL;
11779                                 break;
11780                         }
11781                         /*
11782                          * More frags after this one.  Get another copy
11783                          * of the header.
11784                          */
11785                         if (carve_mp->b_datap->db_ref == 1 &&
11786                             hdr_mp->b_wptr - hdr_mp->b_rptr <
11787                             carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11788                                 /* Inline IP header */
11789                                 carve_mp->b_rptr -= hdr_mp->b_wptr -
11790                                     hdr_mp->b_rptr;
11791                                 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11792                                     hdr_mp->b_wptr - hdr_mp->b_rptr);
11793                                 mp = carve_mp;
11794                         } else {
11795                                 if (!(mp = copyb(hdr_mp))) {
11796                                         freemsg(carve_mp);
11797                                         break;
11798                                 }
11799                                 /* Get priority marking, if any. */
11800                                 mp->b_band = priority;
11801                                 mp->b_cont = carve_mp;
11802                         }
11803                         ipha = (ipha_t *)mp->b_rptr;
11804                         offset_and_flags = IPH_MF;
11805                 } else {
11806                         /*
11807                          * Last frag.  Consume the header. Set len to
11808                          * the length of this last piece.
11809                          */
11810                         len = ip_data_end - offset;
11811 
11812                         /*
11813                          * Carve off the appropriate amount from the original
11814                          * datagram.
11815                          */
11816                         if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11817                                 mp = NULL;
11818                                 break;
11819                         }
11820                         if (carve_mp->b_datap->db_ref == 1 &&
11821                             hdr_mp->b_wptr - hdr_mp->b_rptr <
11822                             carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11823                                 /* Inline IP header */
11824                                 carve_mp->b_rptr -= hdr_mp->b_wptr -
11825                                     hdr_mp->b_rptr;
11826                                 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11827                                     hdr_mp->b_wptr - hdr_mp->b_rptr);
11828                                 mp = carve_mp;
11829                                 freeb(hdr_mp);
11830                                 hdr_mp = mp;
11831                         } else {
11832                                 mp = hdr_mp;
11833                                 /* Get priority marking, if any. */
11834                                 mp->b_band = priority;
11835                                 mp->b_cont = carve_mp;
11836                         }
11837                         ipha = (ipha_t *)mp->b_rptr;
11838                         /* A frag of a frag might have IPH_MF non-zero */
11839                         offset_and_flags =
11840                             ntohs(ipha->ipha_fragment_offset_and_flags) &
11841                             IPH_MF;
11842                 }
11843                 offset_and_flags |= (uint16_t)(offset >> 3);
11844                 offset_and_flags |= (uint16_t)frag_flag;
11845                 /* Store the offset and flags in the IP header. */
11846                 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
11847 
11848                 /* Store the length in the IP header. */
11849                 ip_len = (uint16_t)(len + hdr_len);
11850                 ipha->ipha_length = htons(ip_len);
11851 
11852                 /*
11853                  * Set the IP header checksum.  Note that mp is just
11854                  * the header, so this is easy to pass to ip_csum.
11855                  */
11856                 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11857 
11858                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11859 
11860                 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11861                     nolzid, ixa_cookie);
11862                 /* All done if we just consumed the hdr_mp. */
11863                 if (mp == hdr_mp) {
11864                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11865                         return (error);
11866                 }
11867                 if (error != 0 && error != EWOULDBLOCK) {
11868                         DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11869                             mblk_t *, hdr_mp);
11870                         /* No point in sending the other fragments */
11871                         break;
11872                 }
11873 
11874                 /* Otherwise, advance and loop. */
11875                 offset += len;
11876         }
11877         /* Clean up following allocation failure. */
11878         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11879         ip_drop_output("FragFails: loop ended", NULL, ill);
11880         if (mp != hdr_mp)
11881                 freeb(hdr_mp);
11882         if (mp != mp_orig)
11883                 freemsg(mp_orig);
11884         return (error);
11885 }
11886 
11887 /*
11888  * Copy the header plus those options which have the copy bit set
11889  */
11890 static mblk_t *
11891 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11892     mblk_t *src)
11893 {
11894         mblk_t  *mp;
11895         uchar_t *up;
11896 
11897         /*
11898          * Quick check if we need to look for options without the copy bit
11899          * set
11900          */
11901         mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11902         if (!mp)
11903                 return (mp);
11904         mp->b_rptr += ipst->ips_ip_wroff_extra;
11905         if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11906                 bcopy(rptr, mp->b_rptr, hdr_len);
11907                 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11908                 return (mp);
11909         }
11910         up  = mp->b_rptr;
11911         bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11912         up += IP_SIMPLE_HDR_LENGTH;
11913         rptr += IP_SIMPLE_HDR_LENGTH;
11914         hdr_len -= IP_SIMPLE_HDR_LENGTH;
11915         while (hdr_len > 0) {
11916                 uint32_t optval;
11917                 uint32_t optlen;
11918 
11919                 optval = *rptr;
11920                 if (optval == IPOPT_EOL)
11921                         break;
11922                 if (optval == IPOPT_NOP)
11923                         optlen = 1;
11924                 else
11925                         optlen = rptr[1];
11926                 if (optval & IPOPT_COPY) {
11927                         bcopy(rptr, up, optlen);
11928                         up += optlen;
11929                 }
11930                 rptr += optlen;
11931                 hdr_len -= optlen;
11932         }
11933         /*
11934          * Make sure that we drop an even number of words by filling
11935          * with EOL to the next word boundary.
11936          */
11937         for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11938             hdr_len & 0x3; hdr_len++)
11939                 *up++ = IPOPT_EOL;
11940         mp->b_wptr = up;
11941         /* Update header length */
11942         mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11943         return (mp);
11944 }
11945 
11946 /*
11947  * Update any source route, record route, or timestamp options when
11948  * sending a packet back to ourselves.
11949  * Check that we are at end of strict source route.
11950  * The options have been sanity checked by ip_output_options().
11951  */
11952 void
11953 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11954 {
11955         ipoptp_t        opts;
11956         uchar_t         *opt;
11957         uint8_t         optval;
11958         uint8_t         optlen;
11959         ipaddr_t        dst;
11960         uint32_t        ts;
11961         timestruc_t     now;
11962         uint32_t        off = 0;
11963 
11964         for (optval = ipoptp_first(&opts, ipha);
11965             optval != IPOPT_EOL;
11966             optval = ipoptp_next(&opts)) {
11967                 opt = opts.ipoptp_cur;
11968                 optlen = opts.ipoptp_len;
11969                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11970                 switch (optval) {
11971                 case IPOPT_SSRR:
11972                 case IPOPT_LSRR:
11973                         off = opt[IPOPT_OFFSET];
11974                         off--;
11975                         if (optlen < IP_ADDR_LEN ||
11976                             off > optlen - IP_ADDR_LEN) {
11977                                 /* End of source route */
11978                                 break;
11979                         }
11980                         /*
11981                          * This will only happen if two consecutive entries
11982                          * in the source route contains our address or if
11983                          * it is a packet with a loose source route which
11984                          * reaches us before consuming the whole source route
11985                          */
11986 
11987                         if (optval == IPOPT_SSRR) {
11988                                 return;
11989                         }
11990                         /*
11991                          * Hack: instead of dropping the packet truncate the
11992                          * source route to what has been used by filling the
11993                          * rest with IPOPT_NOP.
11994                          */
11995                         opt[IPOPT_OLEN] = (uint8_t)off;
11996                         while (off < optlen) {
11997                                 opt[off++] = IPOPT_NOP;
11998                         }
11999                         break;
12000                 case IPOPT_RR:
12001                         off = opt[IPOPT_OFFSET];
12002                         off--;
12003                         if (optlen < IP_ADDR_LEN ||
12004                             off > optlen - IP_ADDR_LEN) {
12005                                 /* No more room - ignore */
12006                                 ip1dbg((
12007                                     "ip_output_local_options: end of RR\n"));
12008                                 break;
12009                         }
12010                         dst = htonl(INADDR_LOOPBACK);
12011                         bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12012                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12013                         break;
12014                 case IPOPT_TS:
12015                         /* Insert timestamp if there is romm */
12016                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12017                         case IPOPT_TS_TSONLY:
12018                                 off = IPOPT_TS_TIMELEN;
12019                                 break;
12020                         case IPOPT_TS_PRESPEC:
12021                         case IPOPT_TS_PRESPEC_RFC791:
12022                                 /* Verify that the address matched */
12023                                 off = opt[IPOPT_OFFSET] - 1;
12024                                 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
12025                                 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
12026                                         /* Not for us */
12027                                         break;
12028                                 }
12029                                 /* FALLTHROUGH */
12030                         case IPOPT_TS_TSANDADDR:
12031                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
12032                                 break;
12033                         default:
12034                                 /*
12035                                  * ip_*put_options should have already
12036                                  * dropped this packet.
12037                                  */
12038                                 cmn_err(CE_PANIC, "ip_output_local_options: "
12039                                     "unknown IT - bug in ip_output_options?\n");
12040                         }
12041                         if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
12042                                 /* Increase overflow counter */
12043                                 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
12044                                 opt[IPOPT_POS_OV_FLG] = (uint8_t)
12045                                     (opt[IPOPT_POS_OV_FLG] & 0x0F) |
12046                                     (off << 4);
12047                                 break;
12048                         }
12049                         off = opt[IPOPT_OFFSET] - 1;
12050                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12051                         case IPOPT_TS_PRESPEC:
12052                         case IPOPT_TS_PRESPEC_RFC791:
12053                         case IPOPT_TS_TSANDADDR:
12054                                 dst = htonl(INADDR_LOOPBACK);
12055                                 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12056                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12057                                 /* FALLTHROUGH */
12058                         case IPOPT_TS_TSONLY:
12059                                 off = opt[IPOPT_OFFSET] - 1;
12060                                 /* Compute # of milliseconds since midnight */
12061                                 gethrestime(&now);
12062                                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
12063                                     NSEC2MSEC(now.tv_nsec);
12064                                 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
12065                                 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
12066                                 break;
12067                         }
12068                         break;
12069                 }
12070         }
12071 }
12072 
12073 /*
12074  * Prepend an M_DATA fastpath header, and if none present prepend a
12075  * DL_UNITDATA_REQ. Frees the mblk on failure.
12076  *
12077  * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
12078  * If there is a change to them, the nce will be deleted (condemned) and
12079  * a new nce_t will be created when packets are sent. Thus we need no locks
12080  * to access those fields.
12081  *
12082  * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
12083  * we place b_band in dl_priority.dl_max.
12084  */
12085 static mblk_t *
12086 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
12087 {
12088         uint_t  hlen;
12089         mblk_t *mp1;
12090         uint_t  priority;
12091         uchar_t *rptr;
12092 
12093         rptr = mp->b_rptr;
12094 
12095         ASSERT(DB_TYPE(mp) == M_DATA);
12096         priority = mp->b_band;
12097 
12098         ASSERT(nce != NULL);
12099         if ((mp1 = nce->nce_fp_mp) != NULL) {
12100                 hlen = MBLKL(mp1);
12101                 /*
12102                  * Check if we have enough room to prepend fastpath
12103                  * header
12104                  */
12105                 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
12106                         rptr -= hlen;
12107                         bcopy(mp1->b_rptr, rptr, hlen);
12108                         /*
12109                          * Set the b_rptr to the start of the link layer
12110                          * header
12111                          */
12112                         mp->b_rptr = rptr;
12113                         return (mp);
12114                 }
12115                 mp1 = copyb(mp1);
12116                 if (mp1 == NULL) {
12117                         ill_t *ill = nce->nce_ill;
12118 
12119                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12120                         ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12121                         freemsg(mp);
12122                         return (NULL);
12123                 }
12124                 mp1->b_band = priority;
12125                 mp1->b_cont = mp;
12126                 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
12127                 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
12128                 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
12129                 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
12130                 DB_LSOMSS(mp1) = DB_LSOMSS(mp);
12131                 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
12132                 /*
12133                  * XXX disable ICK_VALID and compute checksum
12134                  * here; can happen if nce_fp_mp changes and
12135                  * it can't be copied now due to insufficient
12136                  * space. (unlikely, fp mp can change, but it
12137                  * does not increase in length)
12138                  */
12139                 return (mp1);
12140         }
12141         mp1 = copyb(nce->nce_dlur_mp);
12142 
12143         if (mp1 == NULL) {
12144                 ill_t *ill = nce->nce_ill;
12145 
12146                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12147                 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12148                 freemsg(mp);
12149                 return (NULL);
12150         }
12151         mp1->b_cont = mp;
12152         if (priority != 0) {
12153                 mp1->b_band = priority;
12154                 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
12155                     priority;
12156         }
12157         return (mp1);
12158 }
12159 
12160 /*
12161  * Finish the outbound IPsec processing. This function is called from
12162  * ipsec_out_process() if the IPsec packet was processed
12163  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12164  * asynchronously.
12165  *
12166  * This is common to IPv4 and IPv6.
12167  */
12168 int
12169 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
12170 {
12171         iaflags_t       ixaflags = ixa->ixa_flags;
12172         uint_t          pktlen;
12173 
12174 
12175         /* AH/ESP don't update ixa_pktlen when they modify the packet */
12176         if (ixaflags & IXAF_IS_IPV4) {
12177                 ipha_t          *ipha = (ipha_t *)mp->b_rptr;
12178 
12179                 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12180                 pktlen = ntohs(ipha->ipha_length);
12181         } else {
12182                 ip6_t           *ip6h = (ip6_t *)mp->b_rptr;
12183 
12184                 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12185                 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12186         }
12187 
12188         /*
12189          * We release any hard reference on the SAs here to make
12190          * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12191          * on the SAs.
12192          * If in the future we want the hard latching of the SAs in the
12193          * ip_xmit_attr_t then we should remove this.
12194          */
12195         if (ixa->ixa_ipsec_esp_sa != NULL) {
12196                 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12197                 ixa->ixa_ipsec_esp_sa = NULL;
12198         }
12199         if (ixa->ixa_ipsec_ah_sa != NULL) {
12200                 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12201                 ixa->ixa_ipsec_ah_sa = NULL;
12202         }
12203 
12204         /* Do we need to fragment? */
12205         if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12206             pktlen > ixa->ixa_fragsize) {
12207                 if (ixaflags & IXAF_IS_IPV4) {
12208                         ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12209                         /*
12210                          * We check for the DF case in ipsec_out_process
12211                          * hence this only handles the non-DF case.
12212                          */
12213                         return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12214                             pktlen, ixa->ixa_fragsize,
12215                             ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12216                             ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12217                             &ixa->ixa_cookie));
12218                 } else {
12219                         mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12220                         if (mp == NULL) {
12221                                 /* MIB and ip_drop_output already done */
12222                                 return (ENOMEM);
12223                         }
12224                         pktlen += sizeof (ip6_frag_t);
12225                         if (pktlen > ixa->ixa_fragsize) {
12226                                 return (ip_fragment_v6(mp, ixa->ixa_nce,
12227                                     ixa->ixa_flags, pktlen,
12228                                     ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12229                                     ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12230                                     ixa->ixa_postfragfn, &ixa->ixa_cookie));
12231                         }
12232                 }
12233         }
12234         return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12235             pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12236             ixa->ixa_no_loop_zoneid, NULL));
12237 }
12238 
12239 /*
12240  * Finish the inbound IPsec processing. This function is called from
12241  * ipsec_out_process() if the IPsec packet was processed
12242  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12243  * asynchronously.
12244  *
12245  * This is common to IPv4 and IPv6.
12246  */
12247 void
12248 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12249 {
12250         iaflags_t       iraflags = ira->ira_flags;
12251 
12252         /* Length might have changed */
12253         if (iraflags & IRAF_IS_IPV4) {
12254                 ipha_t          *ipha = (ipha_t *)mp->b_rptr;
12255 
12256                 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12257                 ira->ira_pktlen = ntohs(ipha->ipha_length);
12258                 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12259                 ira->ira_protocol = ipha->ipha_protocol;
12260 
12261                 ip_fanout_v4(mp, ipha, ira);
12262         } else {
12263                 ip6_t           *ip6h = (ip6_t *)mp->b_rptr;
12264                 uint8_t         *nexthdrp;
12265 
12266                 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12267                 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12268                 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12269                     &nexthdrp)) {
12270                         /* Malformed packet */
12271                         BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12272                         ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12273                         freemsg(mp);
12274                         return;
12275                 }
12276                 ira->ira_protocol = *nexthdrp;
12277                 ip_fanout_v6(mp, ip6h, ira);
12278         }
12279 }
12280 
12281 /*
12282  * Select which AH & ESP SA's to use (if any) for the outbound packet.
12283  *
12284  * If this function returns B_TRUE, the requested SA's have been filled
12285  * into the ixa_ipsec_*_sa pointers.
12286  *
12287  * If the function returns B_FALSE, the packet has been "consumed", most
12288  * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12289  *
12290  * The SA references created by the protocol-specific "select"
12291  * function will be released in ip_output_post_ipsec.
12292  */
12293 static boolean_t
12294 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12295 {
12296         boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12297         ipsec_policy_t *pp;
12298         ipsec_action_t *ap;
12299 
12300         ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12301         ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12302             (ixa->ixa_ipsec_action != NULL));
12303 
12304         ap = ixa->ixa_ipsec_action;
12305         if (ap == NULL) {
12306                 pp = ixa->ixa_ipsec_policy;
12307                 ASSERT(pp != NULL);
12308                 ap = pp->ipsp_act;
12309                 ASSERT(ap != NULL);
12310         }
12311 
12312         /*
12313          * We have an action.  now, let's select SA's.
12314          * A side effect of setting ixa_ipsec_*_sa is that it will
12315          * be cached in the conn_t.
12316          */
12317         if (ap->ipa_want_esp) {
12318                 if (ixa->ixa_ipsec_esp_sa == NULL) {
12319                         need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12320                             IPPROTO_ESP);
12321                 }
12322                 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12323         }
12324 
12325         if (ap->ipa_want_ah) {
12326                 if (ixa->ixa_ipsec_ah_sa == NULL) {
12327                         need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12328                             IPPROTO_AH);
12329                 }
12330                 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
12331                 /*
12332                  * The ESP and AH processing order needs to be preserved
12333                  * when both protocols are required (ESP should be applied
12334                  * before AH for an outbound packet). Force an ESP ACQUIRE
12335                  * when both ESP and AH are required, and an AH ACQUIRE
12336                  * is needed.
12337                  */
12338                 if (ap->ipa_want_esp && need_ah_acquire)
12339                         need_esp_acquire = B_TRUE;
12340         }
12341 
12342         /*
12343          * Send an ACQUIRE (extended, regular, or both) if we need one.
12344          * Release SAs that got referenced, but will not be used until we
12345          * acquire _all_ of the SAs we need.
12346          */
12347         if (need_ah_acquire || need_esp_acquire) {
12348                 if (ixa->ixa_ipsec_ah_sa != NULL) {
12349                         IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12350                         ixa->ixa_ipsec_ah_sa = NULL;
12351                 }
12352                 if (ixa->ixa_ipsec_esp_sa != NULL) {
12353                         IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12354                         ixa->ixa_ipsec_esp_sa = NULL;
12355                 }
12356 
12357                 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12358                 return (B_FALSE);
12359         }
12360 
12361         return (B_TRUE);
12362 }
12363 
12364 /*
12365  * Handle IPsec output processing.
12366  * This function is only entered once for a given packet.
12367  * We try to do things synchronously, but if we need to have user-level
12368  * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12369  * will be completed
12370  *  - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12371  *  - when asynchronous ESP is done it will do AH
12372  *
12373  * In all cases we come back in ip_output_post_ipsec() to fragment and
12374  * send out the packet.
12375  */
12376 int
12377 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
12378 {
12379         ill_t           *ill = ixa->ixa_nce->nce_ill;
12380         ip_stack_t      *ipst = ixa->ixa_ipst;
12381         ipsec_stack_t   *ipss;
12382         ipsec_policy_t  *pp;
12383         ipsec_action_t  *ap;
12384 
12385         ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12386 
12387         ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12388             (ixa->ixa_ipsec_action != NULL));
12389 
12390         ipss = ipst->ips_netstack->netstack_ipsec;
12391         if (!ipsec_loaded(ipss)) {
12392                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12393                 ip_drop_packet(mp, B_TRUE, ill,
12394                     DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12395                     &ipss->ipsec_dropper);
12396                 return (ENOTSUP);
12397         }
12398 
12399         ap = ixa->ixa_ipsec_action;
12400         if (ap == NULL) {
12401                 pp = ixa->ixa_ipsec_policy;
12402                 ASSERT(pp != NULL);
12403                 ap = pp->ipsp_act;
12404                 ASSERT(ap != NULL);
12405         }
12406 
12407         /* Handle explicit drop action and bypass. */
12408         switch (ap->ipa_act.ipa_type) {
12409         case IPSEC_ACT_DISCARD:
12410         case IPSEC_ACT_REJECT:
12411                 ip_drop_packet(mp, B_FALSE, ill,
12412                     DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12413                 return (EHOSTUNREACH);  /* IPsec policy failure */
12414         case IPSEC_ACT_BYPASS:
12415                 return (ip_output_post_ipsec(mp, ixa));
12416         }
12417 
12418         /*
12419          * The order of processing is first insert a IP header if needed.
12420          * Then insert the ESP header and then the AH header.
12421          */
12422         if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12423                 /*
12424                  * First get the outer IP header before sending
12425                  * it to ESP.
12426                  */
12427                 ipha_t *oipha, *iipha;
12428                 mblk_t *outer_mp, *inner_mp;
12429 
12430                 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12431                         (void) mi_strlog(ill->ill_rq, 0,
12432                             SL_ERROR|SL_TRACE|SL_CONSOLE,
12433                             "ipsec_out_process: "
12434                             "Self-Encapsulation failed: Out of memory\n");
12435                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12436                         ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12437                         freemsg(mp);
12438                         return (ENOBUFS);
12439                 }
12440                 inner_mp = mp;
12441                 ASSERT(inner_mp->b_datap->db_type == M_DATA);
12442                 oipha = (ipha_t *)outer_mp->b_rptr;
12443                 iipha = (ipha_t *)inner_mp->b_rptr;
12444                 *oipha = *iipha;
12445                 outer_mp->b_wptr += sizeof (ipha_t);
12446                 oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12447                     sizeof (ipha_t));
12448                 oipha->ipha_protocol = IPPROTO_ENCAP;
12449                 oipha->ipha_version_and_hdr_length =
12450                     IP_SIMPLE_HDR_VERSION;
12451                 oipha->ipha_hdr_checksum = 0;
12452                 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12453                 outer_mp->b_cont = inner_mp;
12454                 mp = outer_mp;
12455 
12456                 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12457         }
12458 
12459         /* If we need to wait for a SA then we can't return any errno */
12460         if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12461             (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12462             !ipsec_out_select_sa(mp, ixa))
12463                 return (0);
12464 
12465         /*
12466          * By now, we know what SA's to use.  Toss over to ESP & AH
12467          * to do the heavy lifting.
12468          */
12469         if (ap->ipa_want_esp) {
12470                 ASSERT(ixa->ixa_ipsec_esp_sa != NULL);
12471 
12472                 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12473                 if (mp == NULL) {
12474                         /*
12475                          * Either it failed or is pending. In the former case
12476                          * ipIfStatsInDiscards was increased.
12477                          */
12478                         return (0);
12479                 }
12480         }
12481 
12482         if (ap->ipa_want_ah) {
12483                 ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
12484 
12485                 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12486                 if (mp == NULL) {
12487                         /*
12488                          * Either it failed or is pending. In the former case
12489                          * ipIfStatsInDiscards was increased.
12490                          */
12491                         return (0);
12492                 }
12493         }
12494         /*
12495          * We are done with IPsec processing. Send it over
12496          * the wire.
12497          */
12498         return (ip_output_post_ipsec(mp, ixa));
12499 }
12500 
12501 /*
12502  * ioctls that go through a down/up sequence may need to wait for the down
12503  * to complete. This involves waiting for the ire and ipif refcnts to go down
12504  * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12505  */
12506 /* ARGSUSED */
12507 void
12508 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12509 {
12510         struct iocblk *iocp;
12511         mblk_t *mp1;
12512         ip_ioctl_cmd_t *ipip;
12513         int err;
12514         sin_t   *sin;
12515         struct lifreq *lifr;
12516         struct ifreq *ifr;
12517 
12518         iocp = (struct iocblk *)mp->b_rptr;
12519         ASSERT(ipsq != NULL);
12520         /* Existence of mp1 verified in ip_wput_nondata */
12521         mp1 = mp->b_cont->b_cont;
12522         ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12523         if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12524                 /*
12525                  * Special case where ipx_current_ipif is not set:
12526                  * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12527                  * We are here as were not able to complete the operation in
12528                  * ipif_set_values because we could not become exclusive on
12529                  * the new ipsq.
12530                  */
12531                 ill_t *ill = q->q_ptr;
12532                 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12533         }
12534         ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);
12535 
12536         if (ipip->ipi_cmd_type == IF_CMD) {
12537                 /* This a old style SIOC[GS]IF* command */
12538                 ifr = (struct ifreq *)mp1->b_rptr;
12539                 sin = (sin_t *)&ifr->ifr_addr;
12540         } else if (ipip->ipi_cmd_type == LIF_CMD) {
12541                 /* This a new style SIOC[GS]LIF* command */
12542                 lifr = (struct lifreq *)mp1->b_rptr;
12543                 sin = (sin_t *)&lifr->lifr_addr;
12544         } else {
12545                 sin = NULL;
12546         }
12547 
12548         err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12549             q, mp, ipip, mp1->b_rptr);
12550 
12551         DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12552             int, ipip->ipi_cmd,
12553             ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12554             ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);
12555 
12556         ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12557 }
12558 
12559 /*
12560  * ioctl processing
12561  *
12562  * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12563  * the ioctl command in the ioctl tables, determines the copyin data size
12564  * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12565  *
12566  * ioctl processing then continues when the M_IOCDATA makes its way down to
12567  * ip_wput_nondata().  The ioctl is looked up again in the ioctl table, its
12568  * associated 'conn' is refheld till the end of the ioctl and the general
12569  * ioctl processing function ip_process_ioctl() is called to extract the
12570  * arguments and process the ioctl.  To simplify extraction, ioctl commands
12571  * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12572  * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
12573  * is used to extract the ioctl's arguments.
12574  *
12575  * ip_process_ioctl determines if the ioctl needs to be serialized, and if
12576  * so goes thru the serialization primitive ipsq_try_enter. Then the
12577  * appropriate function to handle the ioctl is called based on the entry in
12578  * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12579  * which also refreleases the 'conn' that was refheld at the start of the
12580  * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12581  *
12582  * Many exclusive ioctls go thru an internal down up sequence as part of
12583  * the operation. For example an attempt to change the IP address of an
12584  * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12585  * does all the cleanup such as deleting all ires that use this address.
12586  * Then we need to wait till all references to the interface go away.
12587  */
12588 void
12589 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12590 {
12591         struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12592         ip_ioctl_cmd_t *ipip = arg;
12593         ip_extract_func_t *extract_funcp;
12594         cmd_info_t ci;
12595         int err;
12596         boolean_t entered_ipsq = B_FALSE;
12597 
12598         ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
12599 
12600         if (ipip == NULL)
12601                 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12602 
12603         /*
12604          * SIOCLIFADDIF needs to go thru a special path since the
12605          * ill may not exist yet. This happens in the case of lo0
12606          * which is created using this ioctl.
12607          */
12608         if (ipip->ipi_cmd == SIOCLIFADDIF) {
12609                 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12610                 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12611                     int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12612                 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12613                 return;
12614         }
12615 
12616         ci.ci_ipif = NULL;
12617         extract_funcp = NULL;
12618         switch (ipip->ipi_cmd_type) {
12619         case MISC_CMD:
12620         case MSFILT_CMD:
12621                 /*
12622                  * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12623                  */
12624                 if (ipip->ipi_cmd == IF_UNITSEL) {
12625                         /* ioctl comes down the ill */
12626                         ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12627                         ipif_refhold(ci.ci_ipif);
12628                 }
12629                 err = 0;
12630                 ci.ci_sin = NULL;
12631                 ci.ci_sin6 = NULL;
12632                 ci.ci_lifr = NULL;
12633                 extract_funcp = NULL;
12634                 break;
12635 
12636         case IF_CMD:
12637         case LIF_CMD:
12638                 extract_funcp = ip_extract_lifreq;
12639                 break;
12640 
12641         case ARP_CMD:
12642         case XARP_CMD:
12643                 extract_funcp = ip_extract_arpreq;
12644                 break;
12645 
12646         default:
12647                 ASSERT(0);
12648         }
12649 
12650         if (extract_funcp != NULL) {
12651                 err = (*extract_funcp)(q, mp, ipip, &ci);
12652                 if (err != 0) {
12653                         DTRACE_PROBE4(ipif__ioctl,
12654                             char *, "ip_process_ioctl finish err",
12655                             int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12656                         ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12657                         return;
12658                 }
12659 
12660                 /*
12661                  * All of the extraction functions return a refheld ipif.
12662                  */
12663                 ASSERT(ci.ci_ipif != NULL);
12664         }
12665 
12666         if (!(ipip->ipi_flags & IPI_WR)) {
12667                 /*
12668                  * A return value of EINPROGRESS means the ioctl is
12669                  * either queued and waiting for some reason or has
12670                  * already completed.
12671                  */
12672                 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12673                     ci.ci_lifr);
12674                 if (ci.ci_ipif != NULL) {
12675                         DTRACE_PROBE4(ipif__ioctl,
12676                             char *, "ip_process_ioctl finish RD",
12677                             int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12678                             ipif_t *, ci.ci_ipif);
12679                         ipif_refrele(ci.ci_ipif);
12680                 } else {
12681                         DTRACE_PROBE4(ipif__ioctl,
12682                             char *, "ip_process_ioctl finish RD",
12683                             int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12684                 }
12685                 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12686                 return;
12687         }
12688 
12689         ASSERT(ci.ci_ipif != NULL);
12690 
12691         /*
12692          * If ipsq is non-NULL, we are already being called exclusively
12693          */
12694         ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12695         if (ipsq == NULL) {
12696                 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12697                     NEW_OP, B_TRUE);
12698                 if (ipsq == NULL) {
12699                         ipif_refrele(ci.ci_ipif);
12700                         return;
12701                 }
12702                 entered_ipsq = B_TRUE;
12703         }
12704         /*
12705          * Release the ipif so that ipif_down and friends that wait for
12706          * references to go away are not misled about the current ipif_refcnt
12707          * values. We are writer so we can access the ipif even after releasing
12708          * the ipif.
12709          */
12710         ipif_refrele(ci.ci_ipif);
12711 
12712         ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
12713 
12714         /*
12715          * A return value of EINPROGRESS means the ioctl is
12716          * either queued and waiting for some reason or has
12717          * already completed.
12718          */
12719         err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
12720 
12721         DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12722             int, ipip->ipi_cmd,
12723             ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
12724             ipif_t *, ci.ci_ipif);
12725         ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12726 
12727         if (entered_ipsq)
12728                 ipsq_exit(ipsq);
12729 }
12730 
12731 /*
12732  * Complete the ioctl. Typically ioctls use the mi package and need to
12733  * do mi_copyout/mi_copy_done.
12734  */
12735 void
12736 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12737 {
12738         conn_t  *connp = NULL;
12739 
12740         if (err == EINPROGRESS)
12741                 return;
12742 
12743         if (CONN_Q(q)) {
12744                 connp = Q_TO_CONN(q);
12745                 ASSERT(connp->conn_ref >= 2);
12746         }
12747 
12748         switch (mode) {
12749         case COPYOUT:
12750                 if (err == 0)
12751                         mi_copyout(q, mp);
12752                 else
12753                         mi_copy_done(q, mp, err);
12754                 break;
12755 
12756         case NO_COPYOUT:
12757                 mi_copy_done(q, mp, err);
12758                 break;
12759 
12760         default:
12761                 ASSERT(mode == CONN_CLOSE);     /* aborted through CONN_CLOSE */
12762                 break;
12763         }
12764 
12765         /*
12766          * The conn refhold and ioctlref placed on the conn at the start of the
12767          * ioctl are released here.
12768          */
12769         if (connp != NULL) {
12770                 CONN_DEC_IOCTLREF(connp);
12771                 CONN_OPER_PENDING_DONE(connp);
12772         }
12773 
12774         if (ipsq != NULL)
12775                 ipsq_current_finish(ipsq);
12776 }
12777 
12778 /* Handles all non data messages */
12779 int
12780 ip_wput_nondata(queue_t *q, mblk_t *mp)
12781 {
12782         mblk_t          *mp1;
12783         struct iocblk   *iocp;
12784         ip_ioctl_cmd_t  *ipip;
12785         conn_t          *connp;
12786         cred_t          *cr;
12787         char            *proto_str;
12788 
12789         if (CONN_Q(q))
12790                 connp = Q_TO_CONN(q);
12791         else
12792                 connp = NULL;
12793 
12794         iocp = NULL;
12795         switch (DB_TYPE(mp)) {
12796         case M_IOCTL:
12797                 /*
12798                  * IOCTL processing begins in ip_sioctl_copyin_setup which
12799                  * will arrange to copy in associated control structures.
12800                  */
12801                 ip_sioctl_copyin_setup(q, mp);
12802                 return (0);
12803         case M_IOCDATA:
12804                 /*
12805                  * Ensure that this is associated with one of our trans-
12806                  * parent ioctls.  If it's not ours, discard it if we're
12807                  * running as a driver, or pass it on if we're a module.
12808                  */
12809                 iocp = (struct iocblk *)mp->b_rptr;
12810                 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12811                 if (ipip == NULL) {
12812                         if (q->q_next == NULL) {
12813                                 goto nak;
12814                         } else {
12815                                 putnext(q, mp);
12816                         }
12817                         return (0);
12818                 }
12819                 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12820                         /*
12821                          * The ioctl is one we recognise, but is not consumed
12822                          * by IP as a module and we are a module, so we drop
12823                          */
12824                         goto nak;
12825                 }
12826 
12827                 /* IOCTL continuation following copyin or copyout. */
12828                 if (mi_copy_state(q, mp, NULL) == -1) {
12829                         /*
12830                          * The copy operation failed.  mi_copy_state already
12831                          * cleaned up, so we're out of here.
12832                          */
12833                         return (0);
12834                 }
12835                 /*
12836                  * If we just completed a copy in, we become writer and
12837                  * continue processing in ip_sioctl_copyin_done.  If it
12838                  * was a copy out, we call mi_copyout again.  If there is
12839                  * nothing more to copy out, it will complete the IOCTL.
12840                  */
12841                 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
12842                         if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12843                                 mi_copy_done(q, mp, EPROTO);
12844                                 return (0);
12845                         }
12846                         /*
12847                          * Check for cases that need more copying.  A return
12848                          * value of 0 means a second copyin has been started,
12849                          * so we return; a return value of 1 means no more
12850                          * copying is needed, so we continue.
12851                          */
12852                         if (ipip->ipi_cmd_type == MSFILT_CMD &&
12853                             MI_COPY_COUNT(mp) == 1) {
12854                                 if (ip_copyin_msfilter(q, mp) == 0)
12855                                         return (0);
12856                         }
12857                         /*
12858                          * Refhold the conn, till the ioctl completes. This is
12859                          * needed in case the ioctl ends up in the pending mp
12860                          * list. Every mp in the ipx_pending_mp list must have
12861                          * a refhold on the conn to resume processing. The
12862                          * refhold is released when the ioctl completes
12863                          * (whether normally or abnormally). An ioctlref is also
12864                          * placed on the conn to prevent TCP from removing the
12865                          * queue needed to send the ioctl reply back.
12866                          * In all cases ip_ioctl_finish is called to finish
12867                          * the ioctl and release the refholds.
12868                          */
12869                         if (connp != NULL) {
12870                                 /* This is not a reentry */
12871                                 CONN_INC_REF(connp);
12872                                 CONN_INC_IOCTLREF(connp);
12873                         } else {
12874                                 if (!(ipip->ipi_flags & IPI_MODOK)) {
12875                                         mi_copy_done(q, mp, EINVAL);
12876                                         return (0);
12877                                 }
12878                         }
12879 
12880                         ip_process_ioctl(NULL, q, mp, ipip);
12881 
12882                 } else {
12883                         mi_copyout(q, mp);
12884                 }
12885                 return (0);
12886 
12887         case M_IOCNAK:
12888                 /*
12889                  * The only way we could get here is if a resolver didn't like
12890                  * an IOCTL we sent it.  This shouldn't happen.
12891                  */
12892                 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12893                     "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12894                     ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12895                 freemsg(mp);
12896                 return (0);
12897         case M_IOCACK:
12898                 /* /dev/ip shouldn't see this */
12899                 goto nak;
12900         case M_FLUSH:
12901                 if (*mp->b_rptr & FLUSHW)
12902                         flushq(q, FLUSHALL);
12903                 if (q->q_next) {
12904                         putnext(q, mp);
12905                         return (0);
12906                 }
12907                 if (*mp->b_rptr & FLUSHR) {
12908                         *mp->b_rptr &= ~FLUSHW;
12909                         qreply(q, mp);
12910                         return (0);
12911                 }
12912                 freemsg(mp);
12913                 return (0);
12914         case M_CTL:
12915                 break;
12916         case M_PROTO:
12917         case M_PCPROTO:
12918                 /*
12919                  * The only PROTO messages we expect are SNMP-related.
12920                  */
12921                 switch (((union T_primitives *)mp->b_rptr)->type) {
12922                 case T_SVR4_OPTMGMT_REQ:
12923                         ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12924                             "flags %x\n",
12925                             ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
12926 
12927                         if (connp == NULL) {
12928                                 proto_str = "T_SVR4_OPTMGMT_REQ";
12929                                 goto protonak;
12930                         }
12931 
12932                         /*
12933                          * All Solaris components should pass a db_credp
12934                          * for this TPI message, hence we ASSERT.
12935                          * But in case there is some other M_PROTO that looks
12936                          * like a TPI message sent by some other kernel
12937                          * component, we check and return an error.
12938                          */
12939                         cr = msg_getcred(mp, NULL);
12940                         ASSERT(cr != NULL);
12941                         if (cr == NULL) {
12942                                 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12943                                 if (mp != NULL)
12944                                         qreply(q, mp);
12945                                 return (0);
12946                         }
12947 
12948                         if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12949                                 proto_str = "Bad SNMPCOM request?";
12950                                 goto protonak;
12951                         }
12952                         return (0);
12953                 default:
12954                         ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12955                             (int)*(uint_t *)mp->b_rptr));
12956                         freemsg(mp);
12957                         return (0);
12958                 }
12959         default:
12960                 break;
12961         }
12962         if (q->q_next) {
12963                 putnext(q, mp);
12964         } else
12965                 freemsg(mp);
12966         return (0);
12967 
12968 nak:
12969         iocp->ioc_error = EINVAL;
12970         mp->b_datap->db_type = M_IOCNAK;
12971         iocp->ioc_count = 0;
12972         qreply(q, mp);
12973         return (0);
12974 
12975 protonak:
12976         cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
12977         if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
12978                 qreply(q, mp);
12979         return (0);
12980 }
12981 
12982 /*
12983  * Process IP options in an outbound packet.  Verify that the nexthop in a
12984  * strict source route is onlink.
12985  * Returns non-zero if something fails in which case an ICMP error has been
12986  * sent and mp freed.
12987  *
12988  * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
12989  */
12990 int
12991 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
12992 {
12993         ipoptp_t        opts;
12994         uchar_t         *opt;
12995         uint8_t         optval;
12996         uint8_t         optlen;
12997         ipaddr_t        dst;
12998         intptr_t        code = 0;
12999         ire_t           *ire;
13000         ip_stack_t      *ipst = ixa->ixa_ipst;
13001         ip_recv_attr_t  iras;
13002 
13003         ip2dbg(("ip_output_options\n"));
13004 
13005         opt = NULL;
13006         dst = ipha->ipha_dst;
13007         for (optval = ipoptp_first(&opts, ipha);
13008             optval != IPOPT_EOL;
13009             optval = ipoptp_next(&opts)) {
13010                 opt = opts.ipoptp_cur;
13011                 optlen = opts.ipoptp_len;
13012                 ip2dbg(("ip_output_options: opt %d, len %d\n",
13013                     optval, optlen));
13014                 switch (optval) {
13015                         uint32_t off;
13016                 case IPOPT_SSRR:
13017                 case IPOPT_LSRR:
13018                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13019                                 ip1dbg((
13020                                     "ip_output_options: bad option offset\n"));
13021                                 code = (char *)&opt[IPOPT_OLEN] -
13022                                     (char *)ipha;
13023                                 goto param_prob;
13024                         }
13025                         off = opt[IPOPT_OFFSET];
13026                         ip1dbg(("ip_output_options: next hop 0x%x\n",
13027                             ntohl(dst)));
13028                         /*
13029                          * For strict: verify that dst is directly
13030                          * reachable.
13031                          */
13032                         if (optval == IPOPT_SSRR) {
13033                                 ire = ire_ftable_lookup_v4(dst, 0, 0,
13034                                     IRE_INTERFACE, NULL, ALL_ZONES,
13035                                     ixa->ixa_tsl,
13036                                     MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
13037                                     NULL);
13038                                 if (ire == NULL) {
13039                                         ip1dbg(("ip_output_options: SSRR not"
13040                                             " directly reachable: 0x%x\n",
13041                                             ntohl(dst)));
13042                                         goto bad_src_route;
13043                                 }
13044                                 ire_refrele(ire);
13045                         }
13046                         break;
13047                 case IPOPT_RR:
13048                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13049                                 ip1dbg((
13050                                     "ip_output_options: bad option offset\n"));
13051                                 code = (char *)&opt[IPOPT_OLEN] -
13052                                     (char *)ipha;
13053                                 goto param_prob;
13054                         }
13055                         break;
13056                 case IPOPT_TS:
13057                         /*
13058                          * Verify that length >=5 and that there is either
13059                          * room for another timestamp or that the overflow
13060                          * counter is not maxed out.
13061                          */
13062                         code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
13063                         if (optlen < IPOPT_MINLEN_IT) {
13064                                 goto param_prob;
13065                         }
13066                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13067                                 ip1dbg((
13068                                     "ip_output_options: bad option offset\n"));
13069                                 code = (char *)&opt[IPOPT_OFFSET] -
13070                                     (char *)ipha;
13071                                 goto param_prob;
13072                         }
13073                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
13074                         case IPOPT_TS_TSONLY:
13075                                 off = IPOPT_TS_TIMELEN;
13076                                 break;
13077                         case IPOPT_TS_TSANDADDR:
13078                         case IPOPT_TS_PRESPEC:
13079                         case IPOPT_TS_PRESPEC_RFC791:
13080                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
13081                                 break;
13082                         default:
13083                                 code = (char *)&opt[IPOPT_POS_OV_FLG] -
13084                                     (char *)ipha;
13085                                 goto param_prob;
13086                         }
13087                         if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
13088                             (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
13089                                 /*
13090                                  * No room and the overflow counter is 15
13091                                  * already.
13092                                  */
13093                                 goto param_prob;
13094                         }
13095                         break;
13096                 }
13097         }
13098 
13099         if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
13100                 return (0);
13101 
13102         ip1dbg(("ip_output_options: error processing IP options."));
13103         code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
13104 
13105 param_prob:
13106         bzero(&iras, sizeof (iras));
13107         iras.ira_ill = iras.ira_rill = ill;
13108         iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13109         iras.ira_rifindex = iras.ira_ruifindex;
13110         iras.ira_flags = IRAF_IS_IPV4;
13111 
13112         ip_drop_output("ip_output_options", mp, ill);
13113         icmp_param_problem(mp, (uint8_t)code, &iras);
13114         ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13115         return (-1);
13116 
13117 bad_src_route:
13118         bzero(&iras, sizeof (iras));
13119         iras.ira_ill = iras.ira_rill = ill;
13120         iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13121         iras.ira_rifindex = iras.ira_ruifindex;
13122         iras.ira_flags = IRAF_IS_IPV4;
13123 
13124         ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
13125         icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
13126         ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13127         return (-1);
13128 }
13129 
13130 /*
13131  * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
13132  * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
13133  * thru /etc/system.
13134  */
13135 #define CONN_MAXDRAINCNT        64
13136 
13137 static void
13138 conn_drain_init(ip_stack_t *ipst)
13139 {
13140         int i, j;
13141         idl_tx_list_t *itl_tx;
13142 
13143         ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
13144 
13145         if ((ipst->ips_conn_drain_list_cnt == 0) ||
13146             (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
13147                 /*
13148                  * Default value of the number of drainers is the
13149                  * number of cpus, subject to maximum of 8 drainers.
13150                  */
13151                 if (boot_max_ncpus != -1)
13152                         ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
13153                 else
13154                         ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
13155         }
13156 
13157         ipst->ips_idl_tx_list =
13158             kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
13159         for (i = 0; i < TX_FANOUT_SIZE; i++) {
13160                 itl_tx =  &ipst->ips_idl_tx_list[i];
13161                 itl_tx->txl_drain_list =
13162                     kmem_zalloc(ipst->ips_conn_drain_list_cnt *
13163                     sizeof (idl_t), KM_SLEEP);
13164                 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
13165                 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
13166                         mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
13167                             MUTEX_DEFAULT, NULL);
13168                         itl_tx->txl_drain_list[j].idl_itl = itl_tx;
13169                 }
13170         }
13171 }
13172 
13173 static void
13174 conn_drain_fini(ip_stack_t *ipst)
13175 {
13176         int i;
13177         idl_tx_list_t *itl_tx;
13178 
13179         for (i = 0; i < TX_FANOUT_SIZE; i++) {
13180                 itl_tx =  &ipst->ips_idl_tx_list[i];
13181                 kmem_free(itl_tx->txl_drain_list,
13182                     ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13183         }
13184         kmem_free(ipst->ips_idl_tx_list,
13185             TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13186         ipst->ips_idl_tx_list = NULL;
13187 }
13188 
13189 /*
13190  * Flow control has blocked us from proceeding.  Insert the given conn in one
13191  * of the conn drain lists.  When flow control is unblocked, either ip_wsrv()
13192  * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn
13193  * will call conn_walk_drain().  See the flow control notes at the top of this
13194  * file for more details.
13195  */
13196 void
13197 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13198 {
13199         idl_t   *idl = tx_list->txl_drain_list;
13200         uint_t  index;
13201         ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
13202 
13203         mutex_enter(&connp->conn_lock);
13204         if (connp->conn_state_flags & CONN_CLOSING) {
13205                 /*
13206                  * The conn is closing as a result of which CONN_CLOSING
13207                  * is set. Return.
13208                  */
13209                 mutex_exit(&connp->conn_lock);
13210                 return;
13211         } else if (connp->conn_idl == NULL) {
13212                 /*
13213                  * Assign the next drain list round robin. We dont' use
13214                  * a lock, and thus it may not be strictly round robin.
13215                  * Atomicity of load/stores is enough to make sure that
13216                  * conn_drain_list_index is always within bounds.
13217                  */
13218                 index = tx_list->txl_drain_index;
13219                 ASSERT(index < ipst->ips_conn_drain_list_cnt);
13220                 connp->conn_idl = &tx_list->txl_drain_list[index];
13221                 index++;
13222                 if (index == ipst->ips_conn_drain_list_cnt)
13223                         index = 0;
13224                 tx_list->txl_drain_index = index;
13225         } else {
13226                 ASSERT(connp->conn_idl->idl_itl == tx_list);
13227         }
13228         mutex_exit(&connp->conn_lock);
13229 
13230         idl = connp->conn_idl;
13231         mutex_enter(&idl->idl_lock);
13232         if ((connp->conn_drain_prev != NULL) ||
13233             (connp->conn_state_flags & CONN_CLOSING)) {
13234                 /*
13235                  * The conn is either already in the drain list or closing.
13236                  * (We needed to check for CONN_CLOSING again since close can
13237                  * sneak in between dropping conn_lock and acquiring idl_lock.)
13238                  */
13239                 mutex_exit(&idl->idl_lock);
13240                 return;
13241         }
13242 
13243         /*
13244          * The conn is not in the drain list. Insert it at the
13245          * tail of the drain list. The drain list is circular
13246          * and doubly linked. idl_conn points to the 1st element
13247          * in the list.
13248          */
13249         if (idl->idl_conn == NULL) {
13250                 idl->idl_conn = connp;
13251                 connp->conn_drain_next = connp;
13252                 connp->conn_drain_prev = connp;
13253         } else {
13254                 conn_t *head = idl->idl_conn;
13255 
13256                 connp->conn_drain_next = head;
13257                 connp->conn_drain_prev = head->conn_drain_prev;
13258                 head->conn_drain_prev->conn_drain_next = connp;
13259                 head->conn_drain_prev = connp;
13260         }
13261         /*
13262          * For non streams based sockets assert flow control.
13263          */
13264         conn_setqfull(connp, NULL);
13265         mutex_exit(&idl->idl_lock);
13266 }
13267 
13268 static void
13269 conn_drain_remove(conn_t *connp)
13270 {
13271         idl_t *idl = connp->conn_idl;
13272 
13273         if (idl != NULL) {
13274                 /*
13275                  * Remove ourself from the drain list.
13276                  */
13277                 if (connp->conn_drain_next == connp) {
13278                         /* Singleton in the list */
13279                         ASSERT(connp->conn_drain_prev == connp);
13280                         idl->idl_conn = NULL;
13281                 } else {
13282                         connp->conn_drain_prev->conn_drain_next =
13283                             connp->conn_drain_next;
13284                         connp->conn_drain_next->conn_drain_prev =
13285                             connp->conn_drain_prev;
13286                         if (idl->idl_conn == connp)
13287                                 idl->idl_conn = connp->conn_drain_next;
13288                 }
13289 
13290                 /*
13291                  * NOTE: because conn_idl is associated with a specific drain
13292                  * list which in turn is tied to the index the TX ring
13293                  * (txl_cookie) hashes to, and because the TX ring can change
13294                  * over the lifetime of the conn_t, we must clear conn_idl so
13295                  * a subsequent conn_drain_insert() will set conn_idl again
13296                  * based on the latest txl_cookie.
13297                  */
13298                 connp->conn_idl = NULL;
13299         }
13300         connp->conn_drain_next = NULL;
13301         connp->conn_drain_prev = NULL;
13302 
13303         conn_clrqfull(connp, NULL);
13304         /*
13305          * For streams based sockets open up flow control.
13306          */
13307         if (!IPCL_IS_NONSTR(connp))
13308                 enableok(connp->conn_wq);
13309 }
13310 
13311 /*
13312  * This conn is closing, and we are called from ip_close. OR
13313  * this conn is draining because flow-control on the ill has been relieved.
13314  *
13315  * We must also need to remove conn's on this idl from the list, and also
13316  * inform the sockfs upcalls about the change in flow-control.
13317  */
13318 static void
13319 conn_drain(conn_t *connp, boolean_t closing)
13320 {
13321         idl_t *idl;
13322         conn_t *next_connp;
13323 
13324         /*
13325          * connp->conn_idl is stable at this point, and no lock is needed
13326          * to check it. If we are called from ip_close, close has already
13327          * set CONN_CLOSING, thus freezing the value of conn_idl, and
13328          * called us only because conn_idl is non-null. If we are called thru
13329          * service, conn_idl could be null, but it cannot change because
13330          * service is single-threaded per queue, and there cannot be another
13331          * instance of service trying to call conn_drain_insert on this conn
13332          * now.
13333          */
13334         ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);
13335 
13336         /*
13337          * If the conn doesn't exist or is not on a drain list, bail.
13338          */
13339         if (connp == NULL || connp->conn_idl == NULL ||
13340             connp->conn_drain_prev == NULL) {
13341                 return;
13342         }
13343 
13344         idl = connp->conn_idl;
13345         ASSERT(MUTEX_HELD(&idl->idl_lock));
13346 
13347         if (!closing) {
13348                 next_connp = connp->conn_drain_next;
13349                 while (next_connp != connp) {
13350                         conn_t *delconnp = next_connp;
13351 
13352                         next_connp = next_connp->conn_drain_next;
13353                         conn_drain_remove(delconnp);
13354                 }
13355                 ASSERT(connp->conn_drain_next == idl->idl_conn);
13356         }
13357         conn_drain_remove(connp);
13358 }
13359 
13360 /*
13361  * Write service routine. Shared perimeter entry point.
13362  * The device queue's messages has fallen below the low water mark and STREAMS
13363  * has backenabled the ill_wq. Send sockfs notification about flow-control on
13364  * each waiting conn.
13365  */
13366 int
13367 ip_wsrv(queue_t *q)
13368 {
13369         ill_t   *ill;
13370 
13371         ill = (ill_t *)q->q_ptr;
13372         if (ill->ill_state_flags == 0) {
13373                 ip_stack_t *ipst = ill->ill_ipst;
13374 
13375                 /*
13376                  * The device flow control has opened up.
13377                  * Walk through conn drain lists and qenable the
13378                  * first conn in each list. This makes sense only
13379                  * if the stream is fully plumbed and setup.
13380                  * Hence the ill_state_flags check above.
13381                  */
13382                 ip1dbg(("ip_wsrv: walking\n"));
13383                 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13384                 enableok(ill->ill_wq);
13385         }
13386         return (0);
13387 }
13388 
13389 /*
13390  * Callback to disable flow control in IP.
13391  *
13392  * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13393  * is enabled.
13394  *
13395  * When MAC_TX() is not able to send any more packets, dld sets its queue
13396  * to QFULL and enable the STREAMS flow control. Later, when the underlying
13397  * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13398  * function and wakes up corresponding mac worker threads, which in turn
13399  * calls this callback function, and disables flow control.
13400  */
13401 void
13402 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13403 {
13404         ill_t *ill = (ill_t *)arg;
13405         ip_stack_t *ipst = ill->ill_ipst;
13406         idl_tx_list_t *idl_txl;
13407 
13408         idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13409         mutex_enter(&idl_txl->txl_lock);
13410         /* add code to to set a flag to indicate idl_txl is enabled */
13411         conn_walk_drain(ipst, idl_txl);
13412         mutex_exit(&idl_txl->txl_lock);
13413 }
13414 
13415 /*
13416  * Flow control has been relieved and STREAMS has backenabled us; drain
13417  * all the conn lists on `tx_list'.
13418  */
13419 static void
13420 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13421 {
13422         int i;
13423         idl_t *idl;
13424 
13425         IP_STAT(ipst, ip_conn_walk_drain);
13426 
13427         for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13428                 idl = &tx_list->txl_drain_list[i];
13429                 mutex_enter(&idl->idl_lock);
13430                 conn_drain(idl->idl_conn, B_FALSE);
13431                 mutex_exit(&idl->idl_lock);
13432         }
13433 }
13434 
13435 /*
13436  * Determine if the ill and multicast aspects of that packets
13437  * "matches" the conn.
13438  */
13439 boolean_t
13440 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13441 {
13442         ill_t           *ill = ira->ira_rill;
13443         zoneid_t        zoneid = ira->ira_zoneid;
13444         uint_t          in_ifindex;
13445         ipaddr_t        dst, src;
13446 
13447         dst = ipha->ipha_dst;
13448         src = ipha->ipha_src;
13449 
13450         /*
13451          * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13452          * unicast, broadcast and multicast reception to
13453          * conn_incoming_ifindex.
13454          * conn_wantpacket is called for unicast, broadcast and
13455          * multicast packets.
13456          */
13457         in_ifindex = connp->conn_incoming_ifindex;
13458 
13459         /* mpathd can bind to the under IPMP interface, which we allow */
13460         if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13461                 if (!IS_UNDER_IPMP(ill))
13462                         return (B_FALSE);
13463 
13464                 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13465                         return (B_FALSE);
13466         }
13467 
13468         if (!IPCL_ZONE_MATCH(connp, zoneid))
13469                 return (B_FALSE);
13470 
13471         if (!(ira->ira_flags & IRAF_MULTICAST))
13472                 return (B_TRUE);
13473 
13474         if (connp->conn_multi_router) {
13475                 /* multicast packet and multicast router socket: send up */
13476                 return (B_TRUE);
13477         }
13478 
13479         if (ipha->ipha_protocol == IPPROTO_PIM ||
13480             ipha->ipha_protocol == IPPROTO_RSVP)
13481                 return (B_TRUE);
13482 
13483         return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13484 }
13485 
13486 void
13487 conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13488 {
13489         if (IPCL_IS_NONSTR(connp)) {
13490                 (*connp->conn_upcalls->su_txq_full)
13491                     (connp->conn_upper_handle, B_TRUE);
13492                 if (flow_stopped != NULL)
13493                         *flow_stopped = B_TRUE;
13494         } else {
13495                 queue_t *q = connp->conn_wq;
13496 
13497                 ASSERT(q != NULL);
13498                 if (!(q->q_flag & QFULL)) {
13499                         mutex_enter(QLOCK(q));
13500                         if (!(q->q_flag & QFULL)) {
13501                                 /* still need to set QFULL */
13502                                 q->q_flag |= QFULL;
13503                                 /* set flow_stopped to true under QLOCK */
13504                                 if (flow_stopped != NULL)
13505                                         *flow_stopped = B_TRUE;
13506                                 mutex_exit(QLOCK(q));
13507                         } else {
13508                                 /* flow_stopped is left unchanged */
13509                                 mutex_exit(QLOCK(q));
13510                         }
13511                 }
13512         }
13513 }
13514 
13515 void
13516 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13517 {
13518         if (IPCL_IS_NONSTR(connp)) {
13519                 (*connp->conn_upcalls->su_txq_full)
13520                     (connp->conn_upper_handle, B_FALSE);
13521                 if (flow_stopped != NULL)
13522                         *flow_stopped = B_FALSE;
13523         } else {
13524                 queue_t *q = connp->conn_wq;
13525 
13526                 ASSERT(q != NULL);
13527                 if (q->q_flag & QFULL) {
13528                         mutex_enter(QLOCK(q));
13529                         if (q->q_flag & QFULL) {
13530                                 q->q_flag &= ~QFULL;
13531                                 /* set flow_stopped to false under QLOCK */
13532                                 if (flow_stopped != NULL)
13533                                         *flow_stopped = B_FALSE;
13534                                 mutex_exit(QLOCK(q));
13535                                 if (q->q_flag & QWANTW)
13536                                         qbackenable(q, 0);
13537                         } else {
13538                                 /* flow_stopped is left unchanged */
13539                                 mutex_exit(QLOCK(q));
13540                         }
13541                 }
13542         }
13543 
13544         mutex_enter(&connp->conn_lock);
13545         connp->conn_blocked = B_FALSE;
13546         mutex_exit(&connp->conn_lock);
13547 }
13548 
13549 /*
13550  * Return the length in bytes of the IPv4 headers (base header, label, and
13551  * other IP options) that will be needed based on the
13552  * ip_pkt_t structure passed by the caller.
13553  *
13554  * The returned length does not include the length of the upper level
13555  * protocol (ULP) header.
13556  * The caller needs to check that the length doesn't exceed the max for IPv4.
13557  */
13558 int
13559 ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13560 {
13561         int len;
13562 
13563         len = IP_SIMPLE_HDR_LENGTH;
13564         if (ipp->ipp_fields & IPPF_LABEL_V4) {
13565                 ASSERT(ipp->ipp_label_len_v4 != 0);
13566                 /* We need to round up here */
13567                 len += (ipp->ipp_label_len_v4 + 3) & ~3;
13568         }
13569 
13570         if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13571                 ASSERT(ipp->ipp_ipv4_options_len != 0);
13572                 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13573                 len += ipp->ipp_ipv4_options_len;
13574         }
13575         return (len);
13576 }
13577 
13578 /*
13579  * All-purpose routine to build an IPv4 header with options based
13580  * on the abstract ip_pkt_t.
13581  *
13582  * The caller has to set the source and destination address as well as
13583  * ipha_length. The caller has to massage any source route and compensate
13584  * for the ULP pseudo-header checksum due to the source route.
13585  */
13586 void
13587 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13588     uint8_t protocol)
13589 {
13590         ipha_t  *ipha = (ipha_t *)buf;
13591         uint8_t *cp;
13592 
13593         /* Initialize IPv4 header */
13594         ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13595         ipha->ipha_length = 0;       /* Caller will set later */
13596         ipha->ipha_ident = 0;
13597         ipha->ipha_fragment_offset_and_flags = 0;
13598         ipha->ipha_ttl = ipp->ipp_unicast_hops;
13599         ipha->ipha_protocol = protocol;
13600         ipha->ipha_hdr_checksum = 0;
13601 
13602         if ((ipp->ipp_fields & IPPF_ADDR) &&
13603             IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13604                 ipha->ipha_src = ipp->ipp_addr_v4;
13605 
13606         cp = (uint8_t *)&ipha[1];
13607         if (ipp->ipp_fields & IPPF_LABEL_V4) {
13608                 ASSERT(ipp->ipp_label_len_v4 != 0);
13609                 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13610                 cp += ipp->ipp_label_len_v4;
13611                 /* We need to round up here */
13612                 while ((uintptr_t)cp & 0x3) {
13613                         *cp++ = IPOPT_NOP;
13614                 }
13615         }
13616 
13617         if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13618                 ASSERT(ipp->ipp_ipv4_options_len != 0);
13619                 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13620                 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13621                 cp += ipp->ipp_ipv4_options_len;
13622         }
13623         ipha->ipha_version_and_hdr_length =
13624             (uint8_t)((IP_VERSION << 4) + buf_len / 4);
13625 
13626         ASSERT((int)(cp - buf) == buf_len);
13627 }
13628 
13629 /* Allocate the private structure */
13630 static int
13631 ip_priv_alloc(void **bufp)
13632 {
13633         void    *buf;
13634 
13635         if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13636                 return (ENOMEM);
13637 
13638         *bufp = buf;
13639         return (0);
13640 }
13641 
13642 /* Function to delete the private structure */
13643 void
13644 ip_priv_free(void *buf)
13645 {
13646         ASSERT(buf != NULL);
13647         kmem_free(buf, sizeof (ip_priv_t));
13648 }
13649 
13650 /*
13651  * The entry point for IPPF processing.
13652  * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13653  * routine just returns.
13654  *
13655  * When called, ip_process generates an ipp_packet_t structure
13656  * which holds the state information for this packet and invokes the
13657  * the classifier (via ipp_packet_process). The classification, depending on
13658  * configured filters, results in a list of actions for this packet. Invoking
13659  * an action may cause the packet to be dropped, in which case we return NULL.
13660  * proc indicates the callout position for
13661  * this packet and ill is the interface this packet arrived on or will leave
13662  * on (inbound and outbound resp.).
13663  *
13664  * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13665  * on the ill corrsponding to the destination IP address.
13666  */
13667 mblk_t *
13668 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13669 {
13670         ip_priv_t       *priv;
13671         ipp_action_id_t aid;
13672         int             rc = 0;
13673         ipp_packet_t    *pp;
13674 
13675         /* If the classifier is not loaded, return  */
13676         if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13677                 return (mp);
13678         }
13679 
13680         ASSERT(mp != NULL);
13681 
13682         /* Allocate the packet structure */
13683         rc = ipp_packet_alloc(&pp, "ip", aid);
13684         if (rc != 0)
13685                 goto drop;
13686 
13687         /* Allocate the private structure */
13688         rc = ip_priv_alloc((void **)&priv);
13689         if (rc != 0) {
13690                 ipp_packet_free(pp);
13691                 goto drop;
13692         }
13693         priv->proc = proc;
13694         priv->ill_index = ill_get_upper_ifindex(rill);
13695 
13696         ipp_packet_set_private(pp, priv, ip_priv_free);
13697         ipp_packet_set_data(pp, mp);
13698 
13699         /* Invoke the classifier */
13700         rc = ipp_packet_process(&pp);
13701         if (pp != NULL) {
13702                 mp = ipp_packet_get_data(pp);
13703                 ipp_packet_free(pp);
13704                 if (rc != 0)
13705                         goto drop;
13706                 return (mp);
13707         } else {
13708                 /* No mp to trace in ip_drop_input/ip_drop_output  */
13709                 mp = NULL;
13710         }
13711 drop:
13712         if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13713                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13714                 ip_drop_input("ip_process", mp, ill);
13715         } else {
13716                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13717                 ip_drop_output("ip_process", mp, ill);
13718         }
13719         freemsg(mp);
13720         return (NULL);
13721 }
13722 
13723 /*
13724  * Propagate a multicast group membership operation (add/drop) on
13725  * all the interfaces crossed by the related multirt routes.
13726  * The call is considered successful if the operation succeeds
13727  * on at least one interface.
13728  *
13729  * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13730  * multicast addresses with the ire argument being the first one.
13731  * We walk the bucket to find all the of those.
13732  *
13733  * Common to IPv4 and IPv6.
13734  */
13735 static int
13736 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13737     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13738     ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13739     mcast_record_t fmode, const in6_addr_t *v6src)
13740 {
13741         ire_t           *ire_gw;
13742         irb_t           *irb;
13743         int             ifindex;
13744         int             error = 0;
13745         int             result;
13746         ip_stack_t      *ipst = ire->ire_ipst;
13747         ipaddr_t        group;
13748         boolean_t       isv6;
13749         int             match_flags;
13750 
13751         if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13752                 IN6_V4MAPPED_TO_IPADDR(v6group, group);
13753                 isv6 = B_FALSE;
13754         } else {
13755                 isv6 = B_TRUE;
13756         }
13757 
13758         irb = ire->ire_bucket;
13759         ASSERT(irb != NULL);
13760 
13761         result = 0;
13762         irb_refhold(irb);
13763         for (; ire != NULL; ire = ire->ire_next) {
13764                 if ((ire->ire_flags & RTF_MULTIRT) == 0)
13765                         continue;
13766 
13767                 /* We handle -ifp routes by matching on the ill if set */
13768                 match_flags = MATCH_IRE_TYPE;
13769                 if (ire->ire_ill != NULL)
13770                         match_flags |= MATCH_IRE_ILL;
13771 
13772                 if (isv6) {
13773                         if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13774                                 continue;
13775 
13776                         ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13777                             0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13778                             match_flags, 0, ipst, NULL);
13779                 } else {
13780                         if (ire->ire_addr != group)
13781                                 continue;
13782 
13783                         ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13784                             0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13785                             match_flags, 0, ipst, NULL);
13786                 }
13787                 /* No interface route exists for the gateway; skip this ire. */
13788                 if (ire_gw == NULL)
13789                         continue;
13790                 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13791                         ire_refrele(ire_gw);
13792                         continue;
13793                 }
13794                 ASSERT(ire_gw->ire_ill != NULL);     /* IRE_INTERFACE */
13795                 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;
13796 
13797                 /*
13798                  * The operation is considered a success if
13799                  * it succeeds at least once on any one interface.
13800                  */
13801                 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13802                     fmode, v6src);
13803                 if (error == 0)
13804                         result = CGTP_MCAST_SUCCESS;
13805 
13806                 ire_refrele(ire_gw);
13807         }
13808         irb_refrele(irb);
13809         /*
13810          * Consider the call as successful if we succeeded on at least
13811          * one interface. Otherwise, return the last encountered error.
13812          */
13813         return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13814 }
13815 
13816 /*
13817  * Return the expected CGTP hooks version number.
13818  */
13819 int
13820 ip_cgtp_filter_supported(void)
13821 {
13822         return (ip_cgtp_filter_rev);
13823 }
13824 
13825 /*
13826  * CGTP hooks can be registered by invoking this function.
13827  * Checks that the version number matches.
13828  */
13829 int
13830 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13831 {
13832         netstack_t *ns;
13833         ip_stack_t *ipst;
13834 
13835         if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13836                 return (ENOTSUP);
13837 
13838         ns = netstack_find_by_stackid(stackid);
13839         if (ns == NULL)
13840                 return (EINVAL);
13841         ipst = ns->netstack_ip;
13842         ASSERT(ipst != NULL);
13843 
13844         if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13845                 netstack_rele(ns);
13846                 return (EALREADY);
13847         }
13848 
13849         ipst->ips_ip_cgtp_filter_ops = ops;
13850 
13851         ill_set_inputfn_all(ipst);
13852 
13853         netstack_rele(ns);
13854         return (0);
13855 }
13856 
13857 /*
13858  * CGTP hooks can be unregistered by invoking this function.
13859  * Returns ENXIO if there was no registration.
13860  * Returns EBUSY if the ndd variable has not been turned off.
13861  */
13862 int
13863 ip_cgtp_filter_unregister(netstackid_t stackid)
13864 {
13865         netstack_t *ns;
13866         ip_stack_t *ipst;
13867 
13868         ns = netstack_find_by_stackid(stackid);
13869         if (ns == NULL)
13870                 return (EINVAL);
13871         ipst = ns->netstack_ip;
13872         ASSERT(ipst != NULL);
13873 
13874         if (ipst->ips_ip_cgtp_filter) {
13875                 netstack_rele(ns);
13876                 return (EBUSY);
13877         }
13878 
13879         if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13880                 netstack_rele(ns);
13881                 return (ENXIO);
13882         }
13883         ipst->ips_ip_cgtp_filter_ops = NULL;
13884 
13885         ill_set_inputfn_all(ipst);
13886 
13887         netstack_rele(ns);
13888         return (0);
13889 }
13890 
13891 /*
13892  * Check whether there is a CGTP filter registration.
13893  * Returns non-zero if there is a registration, otherwise returns zero.
13894  * Note: returns zero if bad stackid.
13895  */
13896 int
13897 ip_cgtp_filter_is_registered(netstackid_t stackid)
13898 {
13899         netstack_t *ns;
13900         ip_stack_t *ipst;
13901         int ret;
13902 
13903         ns = netstack_find_by_stackid(stackid);
13904         if (ns == NULL)
13905                 return (0);
13906         ipst = ns->netstack_ip;
13907         ASSERT(ipst != NULL);
13908 
13909         if (ipst->ips_ip_cgtp_filter_ops != NULL)
13910                 ret = 1;
13911         else
13912                 ret = 0;
13913 
13914         netstack_rele(ns);
13915         return (ret);
13916 }
13917 
13918 static int
13919 ip_squeue_switch(int val)
13920 {
13921         int rval;
13922 
13923         switch (val) {
13924         case IP_SQUEUE_ENTER_NODRAIN:
13925                 rval = SQ_NODRAIN;
13926                 break;
13927         case IP_SQUEUE_ENTER:
13928                 rval = SQ_PROCESS;
13929                 break;
13930         case IP_SQUEUE_FILL:
13931         default:
13932                 rval = SQ_FILL;
13933                 break;
13934         }
13935         return (rval);
13936 }
13937 
13938 static void *
13939 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
13940 {
13941         kstat_t *ksp;
13942 
13943         ip_stat_t template = {
13944                 { "ip_udp_fannorm",             KSTAT_DATA_UINT64 },
13945                 { "ip_udp_fanmb",               KSTAT_DATA_UINT64 },
13946                 { "ip_recv_pullup",             KSTAT_DATA_UINT64 },
13947                 { "ip_db_ref",                  KSTAT_DATA_UINT64 },
13948                 { "ip_notaligned",              KSTAT_DATA_UINT64 },
13949                 { "ip_multimblk",               KSTAT_DATA_UINT64 },
13950                 { "ip_opt",                     KSTAT_DATA_UINT64 },
13951                 { "ipsec_proto_ahesp",          KSTAT_DATA_UINT64 },
13952                 { "ip_conn_flputbq",            KSTAT_DATA_UINT64 },
13953                 { "ip_conn_walk_drain",         KSTAT_DATA_UINT64 },
13954                 { "ip_out_sw_cksum",            KSTAT_DATA_UINT64 },
13955                 { "ip_out_sw_cksum_bytes",      KSTAT_DATA_UINT64 },
13956                 { "ip_in_sw_cksum",             KSTAT_DATA_UINT64 },
13957                 { "ip_ire_reclaim_calls",       KSTAT_DATA_UINT64 },
13958                 { "ip_ire_reclaim_deleted",     KSTAT_DATA_UINT64 },
13959                 { "ip_nce_reclaim_calls",       KSTAT_DATA_UINT64 },
13960                 { "ip_nce_reclaim_deleted",     KSTAT_DATA_UINT64 },
13961                 { "ip_nce_mcast_reclaim_calls", KSTAT_DATA_UINT64 },
13962                 { "ip_nce_mcast_reclaim_deleted",       KSTAT_DATA_UINT64 },
13963                 { "ip_nce_mcast_reclaim_tqfail",        KSTAT_DATA_UINT64 },
13964                 { "ip_dce_reclaim_calls",       KSTAT_DATA_UINT64 },
13965                 { "ip_dce_reclaim_deleted",     KSTAT_DATA_UINT64 },
13966                 { "ip_tcp_in_full_hw_cksum_err",        KSTAT_DATA_UINT64 },
13967                 { "ip_tcp_in_part_hw_cksum_err",        KSTAT_DATA_UINT64 },
13968                 { "ip_tcp_in_sw_cksum_err",             KSTAT_DATA_UINT64 },
13969                 { "ip_udp_in_full_hw_cksum_err",        KSTAT_DATA_UINT64 },
13970                 { "ip_udp_in_part_hw_cksum_err",        KSTAT_DATA_UINT64 },
13971                 { "ip_udp_in_sw_cksum_err",     KSTAT_DATA_UINT64 },
13972                 { "conn_in_recvdstaddr",        KSTAT_DATA_UINT64 },
13973                 { "conn_in_recvopts",           KSTAT_DATA_UINT64 },
13974                 { "conn_in_recvif",             KSTAT_DATA_UINT64 },
13975                 { "conn_in_recvslla",           KSTAT_DATA_UINT64 },
13976                 { "conn_in_recvucred",          KSTAT_DATA_UINT64 },
13977                 { "conn_in_recvttl",            KSTAT_DATA_UINT64 },
13978                 { "conn_in_recvhopopts",        KSTAT_DATA_UINT64 },
13979                 { "conn_in_recvhoplimit",       KSTAT_DATA_UINT64 },
13980                 { "conn_in_recvdstopts",        KSTAT_DATA_UINT64 },
13981                 { "conn_in_recvrthdrdstopts",   KSTAT_DATA_UINT64 },
13982                 { "conn_in_recvrthdr",          KSTAT_DATA_UINT64 },
13983                 { "conn_in_recvpktinfo",        KSTAT_DATA_UINT64 },
13984                 { "conn_in_recvtclass",         KSTAT_DATA_UINT64 },
13985                 { "conn_in_timestamp",          KSTAT_DATA_UINT64 },
13986         };
13987 
13988         ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
13989             KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
13990             KSTAT_FLAG_VIRTUAL, stackid);
13991 
13992         if (ksp == NULL)
13993                 return (NULL);
13994 
13995         bcopy(&template, ip_statisticsp, sizeof (template));
13996         ksp->ks_data = (void *)ip_statisticsp;
13997         ksp->ks_private = (void *)(uintptr_t)stackid;
13998 
13999         kstat_install(ksp);
14000         return (ksp);
14001 }
14002 
14003 static void
14004 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
14005 {
14006         if (ksp != NULL) {
14007                 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14008                 kstat_delete_netstack(ksp, stackid);
14009         }
14010 }
14011 
14012 static void *
14013 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
14014 {
14015         kstat_t *ksp;
14016 
14017         ip_named_kstat_t template = {
14018                 { "forwarding",         KSTAT_DATA_UINT32, 0 },
14019                 { "defaultTTL",         KSTAT_DATA_UINT32, 0 },
14020                 { "inReceives",         KSTAT_DATA_UINT64, 0 },
14021                 { "inHdrErrors",        KSTAT_DATA_UINT32, 0 },
14022                 { "inAddrErrors",       KSTAT_DATA_UINT32, 0 },
14023                 { "forwDatagrams",      KSTAT_DATA_UINT64, 0 },
14024                 { "inUnknownProtos",    KSTAT_DATA_UINT32, 0 },
14025                 { "inDiscards",         KSTAT_DATA_UINT32, 0 },
14026                 { "inDelivers",         KSTAT_DATA_UINT64, 0 },
14027                 { "outRequests",        KSTAT_DATA_UINT64, 0 },
14028                 { "outDiscards",        KSTAT_DATA_UINT32, 0 },
14029                 { "outNoRoutes",        KSTAT_DATA_UINT32, 0 },
14030                 { "reasmTimeout",       KSTAT_DATA_UINT32, 0 },
14031                 { "reasmReqds",         KSTAT_DATA_UINT32, 0 },
14032                 { "reasmOKs",           KSTAT_DATA_UINT32, 0 },
14033                 { "reasmFails",         KSTAT_DATA_UINT32, 0 },
14034                 { "fragOKs",            KSTAT_DATA_UINT32, 0 },
14035                 { "fragFails",          KSTAT_DATA_UINT32, 0 },
14036                 { "fragCreates",        KSTAT_DATA_UINT32, 0 },
14037                 { "addrEntrySize",      KSTAT_DATA_INT32, 0 },
14038                 { "routeEntrySize",     KSTAT_DATA_INT32, 0 },
14039                 { "netToMediaEntrySize",        KSTAT_DATA_INT32, 0 },
14040                 { "routingDiscards",    KSTAT_DATA_UINT32, 0 },
14041                 { "inErrs",             KSTAT_DATA_UINT32, 0 },
14042                 { "noPorts",            KSTAT_DATA_UINT32, 0 },
14043                 { "inCksumErrs",        KSTAT_DATA_UINT32, 0 },
14044                 { "reasmDuplicates",    KSTAT_DATA_UINT32, 0 },
14045                 { "reasmPartDups",      KSTAT_DATA_UINT32, 0 },
14046                 { "forwProhibits",      KSTAT_DATA_UINT32, 0 },
14047                 { "udpInCksumErrs",     KSTAT_DATA_UINT32, 0 },
14048                 { "udpInOverflows",     KSTAT_DATA_UINT32, 0 },
14049                 { "rawipInOverflows",   KSTAT_DATA_UINT32, 0 },
14050                 { "ipsecInSucceeded",   KSTAT_DATA_UINT32, 0 },
14051                 { "ipsecInFailed",      KSTAT_DATA_INT32, 0 },
14052                 { "memberEntrySize",    KSTAT_DATA_INT32, 0 },
14053                 { "inIPv6",             KSTAT_DATA_UINT32, 0 },
14054                 { "outIPv6",            KSTAT_DATA_UINT32, 0 },
14055                 { "outSwitchIPv6",      KSTAT_DATA_UINT32, 0 },
14056         };
14057 
14058         ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
14059             NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
14060         if (ksp == NULL || ksp->ks_data == NULL)
14061                 return (NULL);
14062 
14063         template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
14064         template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
14065         template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14066         template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
14067         template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
14068 
14069         template.netToMediaEntrySize.value.i32 =
14070             sizeof (mib2_ipNetToMediaEntry_t);
14071 
14072         template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
14073 
14074         bcopy(&template, ksp->ks_data, sizeof (template));
14075         ksp->ks_update = ip_kstat_update;
14076         ksp->ks_private = (void *)(uintptr_t)stackid;
14077 
14078         kstat_install(ksp);
14079         return (ksp);
14080 }
14081 
14082 static void
14083 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14084 {
14085         if (ksp != NULL) {
14086                 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14087                 kstat_delete_netstack(ksp, stackid);
14088         }
14089 }
14090 
14091 static int
14092 ip_kstat_update(kstat_t *kp, int rw)
14093 {
14094         ip_named_kstat_t *ipkp;
14095         mib2_ipIfStatsEntry_t ipmib;
14096         ill_walk_context_t ctx;
14097         ill_t *ill;
14098         netstackid_t    stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14099         netstack_t      *ns;
14100         ip_stack_t      *ipst;
14101 
14102         if (kp->ks_data == NULL)
14103                 return (EIO);
14104 
14105         if (rw == KSTAT_WRITE)
14106                 return (EACCES);
14107 
14108         ns = netstack_find_by_stackid(stackid);
14109         if (ns == NULL)
14110                 return (-1);
14111         ipst = ns->netstack_ip;
14112         if (ipst == NULL) {
14113                 netstack_rele(ns);
14114                 return (-1);
14115         }
14116         ipkp = (ip_named_kstat_t *)kp->ks_data;
14117 
14118         bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
14119         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14120         ill = ILL_START_WALK_V4(&ctx, ipst);
14121         for (; ill != NULL; ill = ill_next(&ctx, ill))
14122                 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
14123         rw_exit(&ipst->ips_ill_g_lock);
14124 
14125         ipkp->forwarding.value.ui32 =                ipmib.ipIfStatsForwarding;
14126         ipkp->defaultTTL.value.ui32 =                ipmib.ipIfStatsDefaultTTL;
14127         ipkp->inReceives.value.ui64 =                ipmib.ipIfStatsHCInReceives;
14128         ipkp->inHdrErrors.value.ui32 =               ipmib.ipIfStatsInHdrErrors;
14129         ipkp->inAddrErrors.value.ui32 =              ipmib.ipIfStatsInAddrErrors;
14130         ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
14131         ipkp->inUnknownProtos.value.ui32 =   ipmib.ipIfStatsInUnknownProtos;
14132         ipkp->inDiscards.value.ui32 =                ipmib.ipIfStatsInDiscards;
14133         ipkp->inDelivers.value.ui64 =                ipmib.ipIfStatsHCInDelivers;
14134         ipkp->outRequests.value.ui64 =               ipmib.ipIfStatsHCOutRequests;
14135         ipkp->outDiscards.value.ui32 =               ipmib.ipIfStatsOutDiscards;
14136         ipkp->outNoRoutes.value.ui32 =               ipmib.ipIfStatsOutNoRoutes;
14137         ipkp->reasmTimeout.value.ui32 =              ipst->ips_ip_reassembly_timeout;
14138         ipkp->reasmReqds.value.ui32 =                ipmib.ipIfStatsReasmReqds;
14139         ipkp->reasmOKs.value.ui32 =          ipmib.ipIfStatsReasmOKs;
14140         ipkp->reasmFails.value.ui32 =                ipmib.ipIfStatsReasmFails;
14141         ipkp->fragOKs.value.ui32 =           ipmib.ipIfStatsOutFragOKs;
14142         ipkp->fragFails.value.ui32 =         ipmib.ipIfStatsOutFragFails;
14143         ipkp->fragCreates.value.ui32 =               ipmib.ipIfStatsOutFragCreates;
14144 
14145         ipkp->routingDiscards.value.ui32 =   0;
14146         ipkp->inErrs.value.ui32 =            ipmib.tcpIfStatsInErrs;
14147         ipkp->noPorts.value.ui32 =           ipmib.udpIfStatsNoPorts;
14148         ipkp->inCksumErrs.value.ui32 =               ipmib.ipIfStatsInCksumErrs;
14149         ipkp->reasmDuplicates.value.ui32 =   ipmib.ipIfStatsReasmDuplicates;
14150         ipkp->reasmPartDups.value.ui32 =     ipmib.ipIfStatsReasmPartDups;
14151         ipkp->forwProhibits.value.ui32 =     ipmib.ipIfStatsForwProhibits;
14152         ipkp->udpInCksumErrs.value.ui32 =    ipmib.udpIfStatsInCksumErrs;
14153         ipkp->udpInOverflows.value.ui32 =    ipmib.udpIfStatsInOverflows;
14154         ipkp->rawipInOverflows.value.ui32 =  ipmib.rawipIfStatsInOverflows;
14155         ipkp->ipsecInSucceeded.value.ui32 =  ipmib.ipsecIfStatsInSucceeded;
14156         ipkp->ipsecInFailed.value.i32 =              ipmib.ipsecIfStatsInFailed;
14157 
14158         ipkp->inIPv6.value.ui32 =    ipmib.ipIfStatsInWrongIPVersion;
14159         ipkp->outIPv6.value.ui32 =   ipmib.ipIfStatsOutWrongIPVersion;
14160         ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
14161 
14162         netstack_rele(ns);
14163 
14164         return (0);
14165 }
14166 
14167 static void *
14168 icmp_kstat_init(netstackid_t stackid)
14169 {
14170         kstat_t *ksp;
14171 
14172         icmp_named_kstat_t template = {
14173                 { "inMsgs",             KSTAT_DATA_UINT32 },
14174                 { "inErrors",           KSTAT_DATA_UINT32 },
14175                 { "inDestUnreachs",     KSTAT_DATA_UINT32 },
14176                 { "inTimeExcds",        KSTAT_DATA_UINT32 },
14177                 { "inParmProbs",        KSTAT_DATA_UINT32 },
14178                 { "inSrcQuenchs",       KSTAT_DATA_UINT32 },
14179                 { "inRedirects",        KSTAT_DATA_UINT32 },
14180                 { "inEchos",            KSTAT_DATA_UINT32 },
14181                 { "inEchoReps",         KSTAT_DATA_UINT32 },
14182                 { "inTimestamps",       KSTAT_DATA_UINT32 },
14183                 { "inTimestampReps",    KSTAT_DATA_UINT32 },
14184                 { "inAddrMasks",        KSTAT_DATA_UINT32 },
14185                 { "inAddrMaskReps",     KSTAT_DATA_UINT32 },
14186                 { "outMsgs",            KSTAT_DATA_UINT32 },
14187                 { "outErrors",          KSTAT_DATA_UINT32 },
14188                 { "outDestUnreachs",    KSTAT_DATA_UINT32 },
14189                 { "outTimeExcds",       KSTAT_DATA_UINT32 },
14190                 { "outParmProbs",       KSTAT_DATA_UINT32 },
14191                 { "outSrcQuenchs",      KSTAT_DATA_UINT32 },
14192                 { "outRedirects",       KSTAT_DATA_UINT32 },
14193                 { "outEchos",           KSTAT_DATA_UINT32 },
14194                 { "outEchoReps",        KSTAT_DATA_UINT32 },
14195                 { "outTimestamps",      KSTAT_DATA_UINT32 },
14196                 { "outTimestampReps",   KSTAT_DATA_UINT32 },
14197                 { "outAddrMasks",       KSTAT_DATA_UINT32 },
14198                 { "outAddrMaskReps",    KSTAT_DATA_UINT32 },
14199                 { "inChksumErrs",       KSTAT_DATA_UINT32 },
14200                 { "inUnknowns",         KSTAT_DATA_UINT32 },
14201                 { "inFragNeeded",       KSTAT_DATA_UINT32 },
14202                 { "outFragNeeded",      KSTAT_DATA_UINT32 },
14203                 { "outDrops",           KSTAT_DATA_UINT32 },
14204                 { "inOverFlows",        KSTAT_DATA_UINT32 },
14205                 { "inBadRedirects",     KSTAT_DATA_UINT32 },
14206         };
14207 
14208         ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14209             NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14210         if (ksp == NULL || ksp->ks_data == NULL)
14211                 return (NULL);
14212 
14213         bcopy(&template, ksp->ks_data, sizeof (template));
14214 
14215         ksp->ks_update = icmp_kstat_update;
14216         ksp->ks_private = (void *)(uintptr_t)stackid;
14217 
14218         kstat_install(ksp);
14219         return (ksp);
14220 }
14221 
14222 static void
14223 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14224 {
14225         if (ksp != NULL) {
14226                 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14227                 kstat_delete_netstack(ksp, stackid);
14228         }
14229 }
14230 
14231 static int
14232 icmp_kstat_update(kstat_t *kp, int rw)
14233 {
14234         icmp_named_kstat_t *icmpkp;
14235         netstackid_t    stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14236         netstack_t      *ns;
14237         ip_stack_t      *ipst;
14238 
14239         if (kp->ks_data == NULL)
14240                 return (EIO);
14241 
14242         if (rw == KSTAT_WRITE)
14243                 return (EACCES);
14244 
14245         ns = netstack_find_by_stackid(stackid);
14246         if (ns == NULL)
14247                 return (-1);
14248         ipst = ns->netstack_ip;
14249         if (ipst == NULL) {
14250                 netstack_rele(ns);
14251                 return (-1);
14252         }
14253         icmpkp = (icmp_named_kstat_t *)kp->ks_data;
14254 
14255         icmpkp->inMsgs.value.ui32 =      ipst->ips_icmp_mib.icmpInMsgs;
14256         icmpkp->inErrors.value.ui32 =            ipst->ips_icmp_mib.icmpInErrors;
14257         icmpkp->inDestUnreachs.value.ui32 =
14258             ipst->ips_icmp_mib.icmpInDestUnreachs;
14259         icmpkp->inTimeExcds.value.ui32 =    ipst->ips_icmp_mib.icmpInTimeExcds;
14260         icmpkp->inParmProbs.value.ui32 =    ipst->ips_icmp_mib.icmpInParmProbs;
14261         icmpkp->inSrcQuenchs.value.ui32 =   ipst->ips_icmp_mib.icmpInSrcQuenchs;
14262         icmpkp->inRedirects.value.ui32 =    ipst->ips_icmp_mib.icmpInRedirects;
14263         icmpkp->inEchos.value.ui32 =     ipst->ips_icmp_mib.icmpInEchos;
14264         icmpkp->inEchoReps.value.ui32 =          ipst->ips_icmp_mib.icmpInEchoReps;
14265         icmpkp->inTimestamps.value.ui32 =   ipst->ips_icmp_mib.icmpInTimestamps;
14266         icmpkp->inTimestampReps.value.ui32 =
14267             ipst->ips_icmp_mib.icmpInTimestampReps;
14268         icmpkp->inAddrMasks.value.ui32 =    ipst->ips_icmp_mib.icmpInAddrMasks;
14269         icmpkp->inAddrMaskReps.value.ui32 =
14270             ipst->ips_icmp_mib.icmpInAddrMaskReps;
14271         icmpkp->outMsgs.value.ui32 =     ipst->ips_icmp_mib.icmpOutMsgs;
14272         icmpkp->outErrors.value.ui32 =           ipst->ips_icmp_mib.icmpOutErrors;
14273         icmpkp->outDestUnreachs.value.ui32 =
14274             ipst->ips_icmp_mib.icmpOutDestUnreachs;
14275         icmpkp->outTimeExcds.value.ui32 =   ipst->ips_icmp_mib.icmpOutTimeExcds;
14276         icmpkp->outParmProbs.value.ui32 =   ipst->ips_icmp_mib.icmpOutParmProbs;
14277         icmpkp->outSrcQuenchs.value.ui32 =
14278             ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14279         icmpkp->outRedirects.value.ui32 =   ipst->ips_icmp_mib.icmpOutRedirects;
14280         icmpkp->outEchos.value.ui32 =            ipst->ips_icmp_mib.icmpOutEchos;
14281         icmpkp->outEchoReps.value.ui32 =    ipst->ips_icmp_mib.icmpOutEchoReps;
14282         icmpkp->outTimestamps.value.ui32 =
14283             ipst->ips_icmp_mib.icmpOutTimestamps;
14284         icmpkp->outTimestampReps.value.ui32 =
14285             ipst->ips_icmp_mib.icmpOutTimestampReps;
14286         icmpkp->outAddrMasks.value.ui32 =
14287             ipst->ips_icmp_mib.icmpOutAddrMasks;
14288         icmpkp->outAddrMaskReps.value.ui32 =
14289             ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14290         icmpkp->inCksumErrs.value.ui32 =    ipst->ips_icmp_mib.icmpInCksumErrs;
14291         icmpkp->inUnknowns.value.ui32 =          ipst->ips_icmp_mib.icmpInUnknowns;
14292         icmpkp->inFragNeeded.value.ui32 =   ipst->ips_icmp_mib.icmpInFragNeeded;
14293         icmpkp->outFragNeeded.value.ui32 =
14294             ipst->ips_icmp_mib.icmpOutFragNeeded;
14295         icmpkp->outDrops.value.ui32 =            ipst->ips_icmp_mib.icmpOutDrops;
14296         icmpkp->inOverflows.value.ui32 =    ipst->ips_icmp_mib.icmpInOverflows;
14297         icmpkp->inBadRedirects.value.ui32 =
14298             ipst->ips_icmp_mib.icmpInBadRedirects;
14299 
14300         netstack_rele(ns);
14301         return (0);
14302 }
14303 
14304 /*
14305  * This is the fanout function for raw socket opened for SCTP.  Note
14306  * that it is called after SCTP checks that there is no socket which
14307  * wants a packet.  Then before SCTP handles this out of the blue packet,
14308  * this function is called to see if there is any raw socket for SCTP.
14309  * If there is and it is bound to the correct address, the packet will
14310  * be sent to that socket.  Note that only one raw socket can be bound to
14311  * a port.  This is assured in ipcl_sctp_hash_insert();
14312  */
14313 void
14314 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14315     ip_recv_attr_t *ira)
14316 {
14317         conn_t          *connp;
14318         queue_t         *rq;
14319         boolean_t       secure;
14320         ill_t           *ill = ira->ira_ill;
14321         ip_stack_t      *ipst = ill->ill_ipst;
14322         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
14323         sctp_stack_t    *sctps = ipst->ips_netstack->netstack_sctp;
14324         iaflags_t       iraflags = ira->ira_flags;
14325         ill_t           *rill = ira->ira_rill;
14326 
14327         secure = iraflags & IRAF_IPSEC_SECURE;
14328 
14329         connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14330             ira, ipst);
14331         if (connp == NULL) {
14332                 /*
14333                  * Although raw sctp is not summed, OOB chunks must be.
14334                  * Drop the packet here if the sctp checksum failed.
14335                  */
14336                 if (iraflags & IRAF_SCTP_CSUM_ERR) {
14337                         SCTPS_BUMP_MIB(sctps, sctpChecksumError);
14338                         freemsg(mp);
14339                         return;
14340                 }
14341                 ira->ira_ill = ira->ira_rill = NULL;
14342                 sctp_ootb_input(mp, ira, ipst);
14343                 ira->ira_ill = ill;
14344                 ira->ira_rill = rill;
14345                 return;
14346         }
14347         rq = connp->conn_rq;
14348         if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14349                 CONN_DEC_REF(connp);
14350                 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14351                 freemsg(mp);
14352                 return;
14353         }
14354         if (((iraflags & IRAF_IS_IPV4) ?
14355             CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14356             CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14357             secure) {
14358                 mp = ipsec_check_inbound_policy(mp, connp, ipha,
14359                     ip6h, ira);
14360                 if (mp == NULL) {
14361                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14362                         /* Note that mp is NULL */
14363                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
14364                         CONN_DEC_REF(connp);
14365                         return;
14366                 }
14367         }
14368 
14369         if (iraflags & IRAF_ICMP_ERROR) {
14370                 (connp->conn_recvicmp)(connp, mp, NULL, ira);
14371         } else {
14372                 ill_t *rill = ira->ira_rill;
14373 
14374                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14375                 /* This is the SOCK_RAW, IPPROTO_SCTP case. */
14376                 ira->ira_ill = ira->ira_rill = NULL;
14377                 (connp->conn_recv)(connp, mp, NULL, ira);
14378                 ira->ira_ill = ill;
14379                 ira->ira_rill = rill;
14380         }
14381         CONN_DEC_REF(connp);
14382 }
14383 
14384 /*
14385  * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14386  * header before the ip payload.
14387  */
14388 static void
14389 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14390 {
14391         int len = (mp->b_wptr - mp->b_rptr);
14392         mblk_t *ip_mp;
14393 
14394         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14395         if (is_fp_mp || len != fp_mp_len) {
14396                 if (len > fp_mp_len) {
14397                         /*
14398                          * fastpath header and ip header in the first mblk
14399                          */
14400                         mp->b_rptr += fp_mp_len;
14401                 } else {
14402                         /*
14403                          * ip_xmit_attach_llhdr had to prepend an mblk to
14404                          * attach the fastpath header before ip header.
14405                          */
14406                         ip_mp = mp->b_cont;
14407                         freeb(mp);
14408                         mp = ip_mp;
14409                         mp->b_rptr += (fp_mp_len - len);
14410                 }
14411         } else {
14412                 ip_mp = mp->b_cont;
14413                 freeb(mp);
14414                 mp = ip_mp;
14415         }
14416         ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14417         freemsg(mp);
14418 }
14419 
14420 /*
14421  * Normal post fragmentation function.
14422  *
14423  * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14424  * using the same state machine.
14425  *
14426  * We return an error on failure. In particular we return EWOULDBLOCK
14427  * when the driver flow controls. In that case this ensures that ip_wsrv runs
14428  * (currently by canputnext failure resulting in backenabling from GLD.)
14429  * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14430  * indication that they can flow control until ip_wsrv() tells then to restart.
14431  *
14432  * If the nce passed by caller is incomplete, this function
14433  * queues the packet and if necessary, sends ARP request and bails.
14434  * If the Neighbor Cache passed is fully resolved, we simply prepend
14435  * the link-layer header to the packet, do ipsec hw acceleration
14436  * work if necessary, and send the packet out on the wire.
14437  */
14438 /* ARGSUSED6 */
14439 int
14440 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14441     uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14442 {
14443         queue_t         *wq;
14444         ill_t           *ill = nce->nce_ill;
14445         ip_stack_t      *ipst = ill->ill_ipst;
14446         uint64_t        delta;
14447         boolean_t       isv6 = ill->ill_isv6;
14448         boolean_t       fp_mp;
14449         ncec_t          *ncec = nce->nce_common;
14450         int64_t         now = LBOLT_FASTPATH64;
14451         boolean_t       is_probe;
14452 
14453         DTRACE_PROBE1(ip__xmit, nce_t *, nce);
14454 
14455         ASSERT(mp != NULL);
14456         ASSERT(mp->b_datap->db_type == M_DATA);
14457         ASSERT(pkt_len == msgdsize(mp));
14458 
14459         /*
14460          * If we have already been here and are coming back after ARP/ND.
14461          * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14462          * in that case since they have seen the packet when it came here
14463          * the first time.
14464          */
14465         if (ixaflags & IXAF_NO_TRACE)
14466                 goto sendit;
14467 
14468         if (ixaflags & IXAF_IS_IPV4) {
14469                 ipha_t *ipha = (ipha_t *)mp->b_rptr;
14470 
14471                 ASSERT(!isv6);
14472                 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14473                 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14474                     !(ixaflags & IXAF_NO_PFHOOK)) {
14475                         int     error;
14476 
14477                         FW_HOOKS(ipst->ips_ip4_physical_out_event,
14478                             ipst->ips_ipv4firewall_physical_out,
14479                             NULL, ill, ipha, mp, mp, 0, ipst, error);
14480                         DTRACE_PROBE1(ip4__physical__out__end,
14481                             mblk_t *, mp);
14482                         if (mp == NULL)
14483                                 return (error);
14484 
14485                         /* The length could have changed */
14486                         pkt_len = msgdsize(mp);
14487                 }
14488                 if (ipst->ips_ip4_observe.he_interested) {
14489                         /*
14490                          * Note that for TX the zoneid is the sending
14491                          * zone, whether or not MLP is in play.
14492                          * Since the szone argument is the IP zoneid (i.e.,
14493                          * zero for exclusive-IP zones) and ipobs wants
14494                          * the system zoneid, we map it here.
14495                          */
14496                         szone = IP_REAL_ZONEID(szone, ipst);
14497 
14498                         /*
14499                          * On the outbound path the destination zone will be
14500                          * unknown as we're sending this packet out on the
14501                          * wire.
14502                          */
14503                         ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14504                             ill, ipst);
14505                 }
14506                 DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14507                     void_ip_t *, ipha,  __dtrace_ipsr_ill_t *, ill,
14508                     ipha_t *, ipha, ip6_t *, NULL, int, 0);
14509         } else {
14510                 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
14511 
14512                 ASSERT(isv6);
14513                 ASSERT(pkt_len ==
14514                     ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14515                 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14516                     !(ixaflags & IXAF_NO_PFHOOK)) {
14517                         int     error;
14518 
14519                         FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14520                             ipst->ips_ipv6firewall_physical_out,
14521                             NULL, ill, ip6h, mp, mp, 0, ipst, error);
14522                         DTRACE_PROBE1(ip6__physical__out__end,
14523                             mblk_t *, mp);
14524                         if (mp == NULL)
14525                                 return (error);
14526 
14527                         /* The length could have changed */
14528                         pkt_len = msgdsize(mp);
14529                 }
14530                 if (ipst->ips_ip6_observe.he_interested) {
14531                         /* See above */
14532                         szone = IP_REAL_ZONEID(szone, ipst);
14533 
14534                         ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14535                             ill, ipst);
14536                 }
14537                 DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14538                     void_ip_t *, ip6h,  __dtrace_ipsr_ill_t *, ill,
14539                     ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14540         }
14541 
14542 sendit:
14543         /*
14544          * We check the state without a lock because the state can never
14545          * move "backwards" to initial or incomplete.
14546          */
14547         switch (ncec->ncec_state) {
14548         case ND_REACHABLE:
14549         case ND_STALE:
14550         case ND_DELAY:
14551         case ND_PROBE:
14552                 mp = ip_xmit_attach_llhdr(mp, nce);
14553                 if (mp == NULL) {
14554                         /*
14555                          * ip_xmit_attach_llhdr has increased
14556                          * ipIfStatsOutDiscards and called ip_drop_output()
14557                          */
14558                         return (ENOBUFS);
14559                 }
14560                 /*
14561                  * check if nce_fastpath completed and we tagged on a
14562                  * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14563                  */
14564                 fp_mp = (mp->b_datap->db_type == M_DATA);
14565 
14566                 if (fp_mp &&
14567                     (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14568                         ill_dld_direct_t *idd;
14569 
14570                         idd = &ill->ill_dld_capab->idc_direct;
14571                         /*
14572                          * Send the packet directly to DLD, where it
14573                          * may be queued depending on the availability
14574                          * of transmit resources at the media layer.
14575                          * Return value should be taken into
14576                          * account and flow control the TCP.
14577                          */
14578                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14579                         UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14580                             pkt_len);
14581 
14582                         if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
14583                                 (void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14584                                     (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14585                         } else {
14586                                 uintptr_t cookie;
14587 
14588                                 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14589                                     mp, (uintptr_t)xmit_hint, 0)) != 0) {
14590                                         if (ixacookie != NULL)
14591                                                 *ixacookie = cookie;
14592                                         return (EWOULDBLOCK);
14593                                 }
14594                         }
14595                 } else {
14596                         wq = ill->ill_wq;
14597 
14598                         if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14599                             !canputnext(wq)) {
14600                                 if (ixacookie != NULL)
14601                                         *ixacookie = 0;
14602                                 ip_xmit_flowctl_drop(ill, mp, fp_mp,
14603                                     nce->nce_fp_mp != NULL ?
14604                                     MBLKL(nce->nce_fp_mp) : 0);
14605                                 return (EWOULDBLOCK);
14606                         }
14607                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14608                         UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14609                             pkt_len);
14610                         putnext(wq, mp);
14611                 }
14612 
14613                 /*
14614                  * The rest of this function implements Neighbor Unreachability
14615                  * detection. Determine if the ncec is eligible for NUD.
14616                  */
14617                 if (ncec->ncec_flags & NCE_F_NONUD)
14618                         return (0);
14619 
14620                 ASSERT(ncec->ncec_state != ND_INCOMPLETE);
14621 
14622                 /*
14623                  * Check for upper layer advice
14624                  */
14625                 if (ixaflags & IXAF_REACH_CONF) {
14626                         timeout_id_t tid;
14627 
14628                         /*
14629                          * It should be o.k. to check the state without
14630                          * a lock here, at most we lose an advice.
14631                          */
14632                         ncec->ncec_last = TICK_TO_MSEC(now);
14633                         if (ncec->ncec_state != ND_REACHABLE) {
14634                                 mutex_enter(&ncec->ncec_lock);
14635                                 ncec->ncec_state = ND_REACHABLE;
14636                                 tid = ncec->ncec_timeout_id;
14637                                 ncec->ncec_timeout_id = 0;
14638                                 mutex_exit(&ncec->ncec_lock);
14639                                 (void) untimeout(tid);
14640                                 if (ip_debug > 2) {
14641                                         /* ip1dbg */
14642                                         pr_addr_dbg("ip_xmit: state"
14643                                             " for %s changed to"
14644                                             " REACHABLE\n", AF_INET6,
14645                                             &ncec->ncec_addr);
14646                                 }
14647                         }
14648                         return (0);
14649                 }
14650 
14651                 delta =  TICK_TO_MSEC(now) - ncec->ncec_last;
14652                 ip1dbg(("ip_xmit: delta = %" PRId64
14653                     " ill_reachable_time = %d \n", delta,
14654                     ill->ill_reachable_time));
14655                 if (delta > (uint64_t)ill->ill_reachable_time) {
14656                         mutex_enter(&ncec->ncec_lock);
14657                         switch (ncec->ncec_state) {
14658                         case ND_REACHABLE:
14659                                 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14660                                 /* FALLTHROUGH */
14661                         case ND_STALE:
14662                                 /*
14663                                  * ND_REACHABLE is identical to
14664                                  * ND_STALE in this specific case. If
14665                                  * reachable time has expired for this
14666                                  * neighbor (delta is greater than
14667                                  * reachable time), conceptually, the
14668                                  * neighbor cache is no longer in
14669                                  * REACHABLE state, but already in
14670                                  * STALE state.  So the correct
14671                                  * transition here is to ND_DELAY.
14672                                  */
14673                                 ncec->ncec_state = ND_DELAY;
14674                                 mutex_exit(&ncec->ncec_lock);
14675                                 nce_restart_timer(ncec,
14676                                     ipst->ips_delay_first_probe_time);
14677                                 if (ip_debug > 3) {
14678                                         /* ip2dbg */
14679                                         pr_addr_dbg("ip_xmit: state"
14680                                             " for %s changed to"
14681                                             " DELAY\n", AF_INET6,
14682                                             &ncec->ncec_addr);
14683                                 }
14684                                 break;
14685                         case ND_DELAY:
14686                         case ND_PROBE:
14687                                 mutex_exit(&ncec->ncec_lock);
14688                                 /* Timers have already started */
14689                                 break;
14690                         case ND_UNREACHABLE:
14691                                 /*
14692                                  * nce_timer has detected that this ncec
14693                                  * is unreachable and initiated deleting
14694                                  * this ncec.
14695                                  * This is a harmless race where we found the
14696                                  * ncec before it was deleted and have
14697                                  * just sent out a packet using this
14698                                  * unreachable ncec.
14699                                  */
14700                                 mutex_exit(&ncec->ncec_lock);
14701                                 break;
14702                         default:
14703                                 ASSERT(0);
14704                                 mutex_exit(&ncec->ncec_lock);
14705                         }
14706                 }
14707                 return (0);
14708 
14709         case ND_INCOMPLETE:
14710                 /*
14711                  * the state could have changed since we didn't hold the lock.
14712                  * Re-verify state under lock.
14713                  */
14714                 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14715                 mutex_enter(&ncec->ncec_lock);
14716                 if (NCE_ISREACHABLE(ncec)) {
14717                         mutex_exit(&ncec->ncec_lock);
14718                         goto sendit;
14719                 }
14720                 /* queue the packet */
14721                 nce_queue_mp(ncec, mp, is_probe);
14722                 mutex_exit(&ncec->ncec_lock);
14723                 DTRACE_PROBE2(ip__xmit__incomplete,
14724                     (ncec_t *), ncec, (mblk_t *), mp);
14725                 return (0);
14726 
14727         case ND_INITIAL:
14728                 /*
14729                  * State could have changed since we didn't hold the lock, so
14730                  * re-verify state.
14731                  */
14732                 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14733                 mutex_enter(&ncec->ncec_lock);
14734                 if (NCE_ISREACHABLE(ncec))  {
14735                         mutex_exit(&ncec->ncec_lock);
14736                         goto sendit;
14737                 }
14738                 nce_queue_mp(ncec, mp, is_probe);
14739                 if (ncec->ncec_state == ND_INITIAL) {
14740                         ncec->ncec_state = ND_INCOMPLETE;
14741                         mutex_exit(&ncec->ncec_lock);
14742                         /*
14743                          * figure out the source we want to use
14744                          * and resolve it.
14745                          */
14746                         ip_ndp_resolve(ncec);
14747                 } else  {
14748                         mutex_exit(&ncec->ncec_lock);
14749                 }
14750                 return (0);
14751 
14752         case ND_UNREACHABLE:
14753                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14754                 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14755                     mp, ill);
14756                 freemsg(mp);
14757                 return (0);
14758 
14759         default:
14760                 ASSERT(0);
14761                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14762                 ip_drop_output("ipIfStatsOutDiscards - ND_other",
14763                     mp, ill);
14764                 freemsg(mp);
14765                 return (ENETUNREACH);
14766         }
14767 }
14768 
14769 /*
14770  * Return B_TRUE if the buffers differ in length or content.
14771  * This is used for comparing extension header buffers.
14772  * Note that an extension header would be declared different
14773  * even if all that changed was the next header value in that header i.e.
14774  * what really changed is the next extension header.
14775  */
14776 boolean_t
14777 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14778     uint_t blen)
14779 {
14780         if (!b_valid)
14781                 blen = 0;
14782 
14783         if (alen != blen)
14784                 return (B_TRUE);
14785         if (alen == 0)
14786                 return (B_FALSE);       /* Both zero length */
14787         return (bcmp(abuf, bbuf, alen));
14788 }
14789 
14790 /*
14791  * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14792  * Return B_FALSE if memory allocation fails - don't change any state!
14793  */
14794 boolean_t
14795 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14796     const void *src, uint_t srclen)
14797 {
14798         void *dst;
14799 
14800         if (!src_valid)
14801                 srclen = 0;
14802 
14803         ASSERT(*dstlenp == 0);
14804         if (src != NULL && srclen != 0) {
14805                 dst = mi_alloc(srclen, BPRI_MED);
14806                 if (dst == NULL)
14807                         return (B_FALSE);
14808         } else {
14809                 dst = NULL;
14810         }
14811         if (*dstp != NULL)
14812                 mi_free(*dstp);
14813         *dstp = dst;
14814         *dstlenp = dst == NULL ? 0 : srclen;
14815         return (B_TRUE);
14816 }
14817 
14818 /*
14819  * Replace what is in *dst, *dstlen with the source.
14820  * Assumes ip_allocbuf has already been called.
14821  */
14822 void
14823 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14824     const void *src, uint_t srclen)
14825 {
14826         if (!src_valid)
14827                 srclen = 0;
14828 
14829         ASSERT(*dstlenp == srclen);
14830         if (src != NULL && srclen != 0)
14831                 bcopy(src, *dstp, srclen);
14832 }
14833 
14834 /*
14835  * Free the storage pointed to by the members of an ip_pkt_t.
14836  */
14837 void
14838 ip_pkt_free(ip_pkt_t *ipp)
14839 {
14840         uint_t  fields = ipp->ipp_fields;
14841 
14842         if (fields & IPPF_HOPOPTS) {
14843                 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14844                 ipp->ipp_hopopts = NULL;
14845                 ipp->ipp_hopoptslen = 0;
14846         }
14847         if (fields & IPPF_RTHDRDSTOPTS) {
14848                 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14849                 ipp->ipp_rthdrdstopts = NULL;
14850                 ipp->ipp_rthdrdstoptslen = 0;
14851         }
14852         if (fields & IPPF_DSTOPTS) {
14853                 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14854                 ipp->ipp_dstopts = NULL;
14855                 ipp->ipp_dstoptslen = 0;
14856         }
14857         if (fields & IPPF_RTHDR) {
14858                 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14859                 ipp->ipp_rthdr = NULL;
14860                 ipp->ipp_rthdrlen = 0;
14861         }
14862         if (fields & IPPF_IPV4_OPTIONS) {
14863                 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
14864                 ipp->ipp_ipv4_options = NULL;
14865                 ipp->ipp_ipv4_options_len = 0;
14866         }
14867         if (fields & IPPF_LABEL_V4) {
14868                 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
14869                 ipp->ipp_label_v4 = NULL;
14870                 ipp->ipp_label_len_v4 = 0;
14871         }
14872         if (fields & IPPF_LABEL_V6) {
14873                 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
14874                 ipp->ipp_label_v6 = NULL;
14875                 ipp->ipp_label_len_v6 = 0;
14876         }
14877         ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14878             IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14879 }
14880 
14881 /*
14882  * Copy from src to dst and allocate as needed.
14883  * Returns zero or ENOMEM.
14884  *
14885  * The caller must initialize dst to zero.
14886  */
14887 int
14888 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
14889 {
14890         uint_t  fields = src->ipp_fields;
14891 
14892         /* Start with fields that don't require memory allocation */
14893         dst->ipp_fields = fields &
14894             ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14895             IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14896 
14897         dst->ipp_addr = src->ipp_addr;
14898         dst->ipp_unicast_hops = src->ipp_unicast_hops;
14899         dst->ipp_hoplimit = src->ipp_hoplimit;
14900         dst->ipp_tclass = src->ipp_tclass;
14901         dst->ipp_type_of_service = src->ipp_type_of_service;
14902 
14903         if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14904             IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
14905                 return (0);
14906 
14907         if (fields & IPPF_HOPOPTS) {
14908                 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
14909                 if (dst->ipp_hopopts == NULL) {
14910                         ip_pkt_free(dst);
14911                         return (ENOMEM);
14912                 }
14913                 dst->ipp_fields |= IPPF_HOPOPTS;
14914                 bcopy(src->ipp_hopopts, dst->ipp_hopopts,
14915                     src->ipp_hopoptslen);
14916                 dst->ipp_hopoptslen = src->ipp_hopoptslen;
14917         }
14918         if (fields & IPPF_RTHDRDSTOPTS) {
14919                 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
14920                     kmflag);
14921                 if (dst->ipp_rthdrdstopts == NULL) {
14922                         ip_pkt_free(dst);
14923                         return (ENOMEM);
14924                 }
14925                 dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
14926                 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
14927                     src->ipp_rthdrdstoptslen);
14928                 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
14929         }
14930         if (fields & IPPF_DSTOPTS) {
14931                 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
14932                 if (dst->ipp_dstopts == NULL) {
14933                         ip_pkt_free(dst);
14934                         return (ENOMEM);
14935                 }
14936                 dst->ipp_fields |= IPPF_DSTOPTS;
14937                 bcopy(src->ipp_dstopts, dst->ipp_dstopts,
14938                     src->ipp_dstoptslen);
14939                 dst->ipp_dstoptslen = src->ipp_dstoptslen;
14940         }
14941         if (fields & IPPF_RTHDR) {
14942                 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
14943                 if (dst->ipp_rthdr == NULL) {
14944                         ip_pkt_free(dst);
14945                         return (ENOMEM);
14946                 }
14947                 dst->ipp_fields |= IPPF_RTHDR;
14948                 bcopy(src->ipp_rthdr, dst->ipp_rthdr,
14949                     src->ipp_rthdrlen);
14950                 dst->ipp_rthdrlen = src->ipp_rthdrlen;
14951         }
14952         if (fields & IPPF_IPV4_OPTIONS) {
14953                 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
14954                     kmflag);
14955                 if (dst->ipp_ipv4_options == NULL) {
14956                         ip_pkt_free(dst);
14957                         return (ENOMEM);
14958                 }
14959                 dst->ipp_fields |= IPPF_IPV4_OPTIONS;
14960                 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
14961                     src->ipp_ipv4_options_len);
14962                 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
14963         }
14964         if (fields & IPPF_LABEL_V4) {
14965                 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
14966                 if (dst->ipp_label_v4 == NULL) {
14967                         ip_pkt_free(dst);
14968                         return (ENOMEM);
14969                 }
14970                 dst->ipp_fields |= IPPF_LABEL_V4;
14971                 bcopy(src->ipp_label_v4, dst->ipp_label_v4,
14972                     src->ipp_label_len_v4);
14973                 dst->ipp_label_len_v4 = src->ipp_label_len_v4;
14974         }
14975         if (fields & IPPF_LABEL_V6) {
14976                 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
14977                 if (dst->ipp_label_v6 == NULL) {
14978                         ip_pkt_free(dst);
14979                         return (ENOMEM);
14980                 }
14981                 dst->ipp_fields |= IPPF_LABEL_V6;
14982                 bcopy(src->ipp_label_v6, dst->ipp_label_v6,
14983                     src->ipp_label_len_v6);
14984                 dst->ipp_label_len_v6 = src->ipp_label_len_v6;
14985         }
14986         if (fields & IPPF_FRAGHDR) {
14987                 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
14988                 if (dst->ipp_fraghdr == NULL) {
14989                         ip_pkt_free(dst);
14990                         return (ENOMEM);
14991                 }
14992                 dst->ipp_fields |= IPPF_FRAGHDR;
14993                 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
14994                     src->ipp_fraghdrlen);
14995                 dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
14996         }
14997         return (0);
14998 }
14999 
15000 /*
15001  * Returns INADDR_ANY if no source route
15002  */
15003 ipaddr_t
15004 ip_pkt_source_route_v4(const ip_pkt_t *ipp)
15005 {
15006         ipaddr_t        nexthop = INADDR_ANY;
15007         ipoptp_t        opts;
15008         uchar_t         *opt;
15009         uint8_t         optval;
15010         uint8_t         optlen;
15011         uint32_t        totallen;
15012 
15013         if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15014                 return (INADDR_ANY);
15015 
15016         totallen = ipp->ipp_ipv4_options_len;
15017         if (totallen & 0x3)
15018                 return (INADDR_ANY);
15019 
15020         for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15021             optval != IPOPT_EOL;
15022             optval = ipoptp_next(&opts)) {
15023                 opt = opts.ipoptp_cur;
15024                 switch (optval) {
15025                         uint8_t off;
15026                 case IPOPT_SSRR:
15027                 case IPOPT_LSRR:
15028                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15029                                 break;
15030                         }
15031                         optlen = opts.ipoptp_len;
15032                         off = opt[IPOPT_OFFSET];
15033                         off--;
15034                         if (optlen < IP_ADDR_LEN ||
15035                             off > optlen - IP_ADDR_LEN) {
15036                                 /* End of source route */
15037                                 break;
15038                         }
15039                         bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
15040                         if (nexthop == htonl(INADDR_LOOPBACK)) {
15041                                 /* Ignore */
15042                                 nexthop = INADDR_ANY;
15043                                 break;
15044                         }
15045                         break;
15046                 }
15047         }
15048         return (nexthop);
15049 }
15050 
15051 /*
15052  * Reverse a source route.
15053  */
15054 void
15055 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
15056 {
15057         ipaddr_t        tmp;
15058         ipoptp_t        opts;
15059         uchar_t         *opt;
15060         uint8_t         optval;
15061         uint32_t        totallen;
15062 
15063         if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15064                 return;
15065 
15066         totallen = ipp->ipp_ipv4_options_len;
15067         if (totallen & 0x3)
15068                 return;
15069 
15070         for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15071             optval != IPOPT_EOL;
15072             optval = ipoptp_next(&opts)) {
15073                 uint8_t off1, off2;
15074 
15075                 opt = opts.ipoptp_cur;
15076                 switch (optval) {
15077                 case IPOPT_SSRR:
15078                 case IPOPT_LSRR:
15079                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15080                                 break;
15081                         }
15082                         off1 = IPOPT_MINOFF_SR - 1;
15083                         off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
15084                         while (off2 > off1) {
15085                                 bcopy(opt + off2, &tmp, IP_ADDR_LEN);
15086                                 bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
15087                                 bcopy(&tmp, opt + off2, IP_ADDR_LEN);
15088                                 off2 -= IP_ADDR_LEN;
15089                                 off1 += IP_ADDR_LEN;
15090                         }
15091                         opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
15092                         break;
15093                 }
15094         }
15095 }
15096 
15097 /*
15098  * Returns NULL if no routing header
15099  */
15100 in6_addr_t *
15101 ip_pkt_source_route_v6(const ip_pkt_t *ipp)
15102 {
15103         in6_addr_t      *nexthop = NULL;
15104         ip6_rthdr0_t    *rthdr;
15105 
15106         if (!(ipp->ipp_fields & IPPF_RTHDR))
15107                 return (NULL);
15108 
15109         rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
15110         if (rthdr->ip6r0_segleft == 0)
15111                 return (NULL);
15112 
15113         nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
15114         return (nexthop);
15115 }
15116 
15117 zoneid_t
15118 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
15119     zoneid_t lookup_zoneid)
15120 {
15121         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
15122         ire_t           *ire;
15123         int             ire_flags = MATCH_IRE_TYPE;
15124         zoneid_t        zoneid = ALL_ZONES;
15125 
15126         if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15127                 return (ALL_ZONES);
15128 
15129         if (lookup_zoneid != ALL_ZONES)
15130                 ire_flags |= MATCH_IRE_ZONEONLY;
15131         ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_LOCAL | IRE_LOOPBACK,
15132             NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15133         if (ire != NULL) {
15134                 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15135                 ire_refrele(ire);
15136         }
15137         return (zoneid);
15138 }
15139 
15140 zoneid_t
15141 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
15142     ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
15143 {
15144         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
15145         ire_t           *ire;
15146         int             ire_flags = MATCH_IRE_TYPE;
15147         zoneid_t        zoneid = ALL_ZONES;
15148 
15149         if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15150                 return (ALL_ZONES);
15151 
15152         if (IN6_IS_ADDR_LINKLOCAL(addr))
15153                 ire_flags |= MATCH_IRE_ILL;
15154 
15155         if (lookup_zoneid != ALL_ZONES)
15156                 ire_flags |= MATCH_IRE_ZONEONLY;
15157         ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15158             ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15159         if (ire != NULL) {
15160                 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15161                 ire_refrele(ire);
15162         }
15163         return (zoneid);
15164 }
15165 
15166 /*
15167  * IP obserability hook support functions.
15168  */
15169 static void
15170 ipobs_init(ip_stack_t *ipst)
15171 {
15172         netid_t id;
15173 
15174         id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);
15175 
15176         ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
15177         VERIFY(ipst->ips_ip4_observe_pr != NULL);
15178 
15179         ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15180         VERIFY(ipst->ips_ip6_observe_pr != NULL);
15181 }
15182 
15183 static void
15184 ipobs_fini(ip_stack_t *ipst)
15185 {
15186 
15187         VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15188         VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15189 }
15190 
15191 /*
15192  * hook_pkt_observe_t is composed in network byte order so that the
15193  * entire mblk_t chain handed into hook_run can be used as-is.
15194  * The caveat is that use of the fields, such as the zone fields,
15195  * requires conversion into host byte order first.
15196  */
15197 void
15198 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15199     const ill_t *ill, ip_stack_t *ipst)
15200 {
15201         hook_pkt_observe_t *hdr;
15202         uint64_t grifindex;
15203         mblk_t *imp;
15204 
15205         imp = allocb(sizeof (*hdr), BPRI_HI);
15206         if (imp == NULL)
15207                 return;
15208 
15209         hdr = (hook_pkt_observe_t *)imp->b_rptr;
15210         /*
15211          * b_wptr is set to make the apparent size of the data in the mblk_t
15212          * to exclude the pointers at the end of hook_pkt_observer_t.
15213          */
15214         imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15215         imp->b_cont = mp;
15216 
15217         ASSERT(DB_TYPE(mp) == M_DATA);
15218 
15219         if (IS_UNDER_IPMP(ill))
15220                 grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15221         else
15222                 grifindex = 0;
15223 
15224         hdr->hpo_version = 1;
15225         hdr->hpo_htype = htons(htype);
15226         hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
15227         hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15228         hdr->hpo_grifindex = htonl(grifindex);
15229         hdr->hpo_zsrc = htonl(zsrc);
15230         hdr->hpo_zdst = htonl(zdst);
15231         hdr->hpo_pkt = imp;
15232         hdr->hpo_ctx = ipst->ips_netstack;
15233 
15234         if (ill->ill_isv6) {
15235                 hdr->hpo_family = AF_INET6;
15236                 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15237                     ipst->ips_ipv6observing, (hook_data_t)hdr);
15238         } else {
15239                 hdr->hpo_family = AF_INET;
15240                 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15241                     ipst->ips_ipv4observing, (hook_data_t)hdr);
15242         }
15243 
15244         imp->b_cont = NULL;
15245         freemsg(imp);
15246 }
15247 
15248 /*
15249  * Utility routine that checks if `v4srcp' is a valid address on underlying
15250  * interface `ill'.  If `ipifp' is non-NULL, it's set to a held ipif
15251  * associated with `v4srcp' on success.  NOTE: if this is not called from
15252  * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the
15253  * group during or after this lookup.
15254  */
15255 boolean_t
15256 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15257 {
15258         ipif_t *ipif;
15259 
15260         ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15261         if (ipif != NULL) {
15262                 if (ipifp != NULL)
15263                         *ipifp = ipif;
15264                 else
15265                         ipif_refrele(ipif);
15266                 return (B_TRUE);
15267         }
15268 
15269         ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15270             *v4srcp));
15271         return (B_FALSE);
15272 }
15273 
15274 /*
15275  * Transport protocol call back function for CPU state change.
15276  */
15277 /* ARGSUSED */
15278 static int
15279 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg)
15280 {
15281         processorid_t cpu_seqid;
15282         netstack_handle_t nh;
15283         netstack_t *ns;
15284 
15285         ASSERT(MUTEX_HELD(&cpu_lock));
15286 
15287         switch (what) {
15288         case CPU_CONFIG:
15289         case CPU_ON:
15290         case CPU_INIT:
15291         case CPU_CPUPART_IN:
15292                 cpu_seqid = cpu[id]->cpu_seqid;
15293                 netstack_next_init(&nh);
15294                 while ((ns = netstack_next(&nh)) != NULL) {
15295                         tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid);
15296                         sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid);
15297                         udp_stack_cpu_add(ns->netstack_udp, cpu_seqid);
15298                         netstack_rele(ns);
15299                 }
15300                 netstack_next_fini(&nh);
15301                 break;
15302         case CPU_UNCONFIG:
15303         case CPU_OFF:
15304         case CPU_CPUPART_OUT:
15305                 /*
15306                  * Nothing to do.  We don't remove the per CPU stats from
15307                  * the IP stack even when the CPU goes offline.
15308                  */
15309                 break;
15310         default:
15311                 break;
15312         }
15313         return (0);
15314 }