1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright 2012 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 31 * All Rights Reserved 32 */ 33 34 /* 35 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 36 */ 37 38 /* 39 * Copyright (c) 2014, STRATO AG. All rights reserved. 40 */ 41 42 #include <sys/param.h> 43 #include <sys/types.h> 44 #include <sys/systm.h> 45 #include <sys/cred.h> 46 #include <sys/time.h> 47 #include <sys/vnode.h> 48 #include <sys/vfs.h> 49 #include <sys/vfs_opreg.h> 50 #include <sys/file.h> 51 #include <sys/filio.h> 52 #include <sys/uio.h> 53 #include <sys/buf.h> 54 #include <sys/mman.h> 55 #include <sys/pathname.h> 56 #include <sys/dirent.h> 57 #include <sys/debug.h> 58 #include <sys/vmsystm.h> 59 #include <sys/fcntl.h> 60 #include <sys/flock.h> 61 #include <sys/swap.h> 62 #include <sys/errno.h> 63 #include <sys/strsubr.h> 64 #include <sys/sysmacros.h> 65 #include <sys/kmem.h> 66 #include <sys/cmn_err.h> 67 #include <sys/pathconf.h> 68 #include <sys/utsname.h> 69 #include <sys/dnlc.h> 70 #include <sys/acl.h> 71 #include <sys/systeminfo.h> 72 #include <sys/policy.h> 73 #include <sys/sdt.h> 74 #include <sys/list.h> 75 #include <sys/stat.h> 76 #include <sys/zone.h> 77 78 #include <rpc/types.h> 79 #include <rpc/auth.h> 80 #include <rpc/clnt.h> 81 82 #include <nfs/nfs.h> 83 #include <nfs/nfs_clnt.h> 84 #include <nfs/nfs_acl.h> 85 #include <nfs/lm.h> 86 #include <nfs/nfs4.h> 87 #include <nfs/nfs4_kprot.h> 88 #include <nfs/rnode4.h> 89 #include <nfs/nfs4_clnt.h> 90 91 #include <vm/hat.h> 92 #include <vm/as.h> 93 #include <vm/page.h> 94 #include <vm/pvn.h> 95 #include <vm/seg.h> 96 #include <vm/seg_map.h> 97 #include <vm/seg_kpm.h> 98 #include <vm/seg_vn.h> 99 100 #include <fs/fs_subr.h> 101 102 #include <sys/ddi.h> 103 #include <sys/int_fmtio.h> 104 #include <sys/fs/autofs.h> 105 106 typedef struct { 107 nfs4_ga_res_t *di_garp; 108 cred_t *di_cred; 109 hrtime_t di_time_call; 110 } dirattr_info_t; 111 112 typedef enum nfs4_acl_op { 113 NFS4_ACL_GET, 114 NFS4_ACL_SET 115 } nfs4_acl_op_t; 116 117 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *mi); 118 119 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 120 char *, dirattr_info_t *); 121 122 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 123 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 124 nfs4_error_t *, int *); 125 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 126 cred_t *); 127 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 128 stable_how4 *); 129 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 130 cred_t *, bool_t, struct uio *); 131 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 132 vsecattr_t *); 133 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 134 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 135 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 136 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 137 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 138 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 139 int, vnode_t **, cred_t *); 140 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 141 cred_t *, int, int, enum createmode4, int); 142 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 143 caller_context_t *); 144 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 145 vnode_t *, char *, cred_t *, nfsstat4 *); 146 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 147 vnode_t *, char *, cred_t *, nfsstat4 *); 148 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 149 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 150 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 151 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 152 page_t *[], size_t, struct seg *, caddr_t, 153 enum seg_rw, cred_t *); 154 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 155 cred_t *); 156 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 157 int, cred_t *); 158 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 159 int, cred_t *); 160 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 161 static void nfs4_set_mod(vnode_t *); 162 static void nfs4_get_commit(vnode_t *); 163 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 164 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 165 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 166 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 167 cred_t *); 168 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 169 cred_t *); 170 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 171 hrtime_t, vnode_t *, cred_t *); 172 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 173 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 174 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, 175 u_offset_t); 176 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 177 static int nfs4_block_and_wait(clock_t *, rnode4_t *); 178 static cred_t *state_to_cred(nfs4_open_stream_t *); 179 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 180 static pid_t lo_to_pid(lock_owner4 *); 181 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 182 cred_t *, nfs4_lock_owner_t *); 183 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 184 nfs4_lock_owner_t *); 185 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **); 186 static void nfs4_delmap_callback(struct as *, void *, uint_t); 187 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 188 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 189 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 190 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 191 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 192 uid_t, gid_t, int); 193 194 /* 195 * Routines that implement the setting of v4 args for the misc. ops 196 */ 197 static void nfs4args_lock_free(nfs_argop4 *); 198 static void nfs4args_lockt_free(nfs_argop4 *); 199 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 200 int, rnode4_t *, cred_t *, bitmap4, int *, 201 nfs4_stateid_types_t *); 202 static void nfs4args_setattr_free(nfs_argop4 *); 203 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 204 bitmap4); 205 static void nfs4args_verify_free(nfs_argop4 *); 206 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 207 WRITE4args **, nfs4_stateid_types_t *); 208 209 /* 210 * These are the vnode ops functions that implement the vnode interface to 211 * the networked file system. See more comments below at nfs4_vnodeops. 212 */ 213 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *); 214 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *, 215 caller_context_t *); 216 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 217 caller_context_t *); 218 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 219 caller_context_t *); 220 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 221 caller_context_t *); 222 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 223 caller_context_t *); 224 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *); 225 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *, 226 caller_context_t *); 227 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *); 228 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 229 int, vnode_t **, cred_t *, int, caller_context_t *, 230 vsecattr_t *); 231 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *, 232 int); 233 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *, 234 caller_context_t *, int); 235 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 236 caller_context_t *, int); 237 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 238 cred_t *, caller_context_t *, int, vsecattr_t *); 239 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 240 caller_context_t *, int); 241 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 242 cred_t *, caller_context_t *, int); 243 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *, 244 caller_context_t *, int); 245 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 246 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 247 page_t *[], size_t, struct seg *, caddr_t, 248 enum seg_rw, cred_t *, caller_context_t *); 249 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 250 caller_context_t *); 251 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 252 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 253 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 254 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 255 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *); 256 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 257 struct flk_callback *, cred_t *, caller_context_t *); 258 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 259 cred_t *, caller_context_t *); 260 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 261 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 262 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 263 cred_t *, caller_context_t *); 264 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *, 265 caller_context_t *); 266 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 267 caller_context_t *); 268 /* 269 * These vnode ops are required to be called from outside this source file, 270 * e.g. by ephemeral mount stub vnode ops, and so may not be declared 271 * as static. 272 */ 273 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *, 274 caller_context_t *); 275 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *); 276 int nfs4_lookup(vnode_t *, char *, vnode_t **, 277 struct pathname *, int, vnode_t *, cred_t *, 278 caller_context_t *, int *, pathname_t *); 279 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *); 280 int nfs4_rwlock(vnode_t *, int, caller_context_t *); 281 void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 282 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *); 283 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *, 284 caller_context_t *); 285 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 286 caller_context_t *); 287 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 288 caller_context_t *); 289 290 /* 291 * Used for nfs4_commit_vp() to indicate if we should 292 * wait on pending writes. 293 */ 294 #define NFS4_WRITE_NOWAIT 0 295 #define NFS4_WRITE_WAIT 1 296 297 /* 298 * Error flags used to pass information about certain special errors 299 * which need to be handled specially. 300 */ 301 #define NFS_EOF -98 302 #define NFS_VERF_MISMATCH -97 303 304 /* 305 * Flags used to differentiate between which operation drove the 306 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 307 */ 308 #define NFS4_CLOSE_OP 0x1 309 #define NFS4_DELMAP_OP 0x2 310 #define NFS4_INACTIVE_OP 0x3 311 312 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 313 314 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 315 #define ALIGN64(x, ptr, sz) \ 316 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 317 if (x) { \ 318 x = sizeof (uint64_t) - (x); \ 319 sz -= (x); \ 320 ptr += (x); \ 321 } 322 323 #ifdef DEBUG 324 int nfs4_client_attr_debug = 0; 325 int nfs4_client_state_debug = 0; 326 int nfs4_client_shadow_debug = 0; 327 int nfs4_client_lock_debug = 0; 328 int nfs4_seqid_sync = 0; 329 int nfs4_client_map_debug = 0; 330 static int nfs4_pageio_debug = 0; 331 int nfs4_client_inactive_debug = 0; 332 int nfs4_client_recov_debug = 0; 333 int nfs4_client_failover_debug = 0; 334 int nfs4_client_call_debug = 0; 335 int nfs4_client_lookup_debug = 0; 336 int nfs4_client_zone_debug = 0; 337 int nfs4_lost_rqst_debug = 0; 338 int nfs4_rdattrerr_debug = 0; 339 int nfs4_open_stream_debug = 0; 340 341 int nfs4read_error_inject; 342 343 static int nfs4_create_misses = 0; 344 345 static int nfs4_readdir_cache_shorts = 0; 346 static int nfs4_readdir_readahead = 0; 347 348 static int nfs4_bio_do_stop = 0; 349 350 static int nfs4_lostpage = 0; /* number of times we lost original page */ 351 352 int nfs4_mmap_debug = 0; 353 354 static int nfs4_pathconf_cache_hits = 0; 355 static int nfs4_pathconf_cache_misses = 0; 356 357 int nfs4close_all_cnt; 358 int nfs4close_one_debug = 0; 359 int nfs4close_notw_debug = 0; 360 361 int denied_to_flk_debug = 0; 362 void *lockt_denied_debug; 363 364 #endif 365 366 /* 367 * In milliseconds. Should be less than half of the lease time or better, 368 * less than one second. 369 */ 370 int nfs4_base_wait_time = 20; 371 372 /* 373 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 374 * or NFS4ERR_RESOURCE. 375 */ 376 static int confirm_retry_sec = 30; 377 378 static int nfs4_lookup_neg_cache = 1; 379 380 /* 381 * number of pages to read ahead 382 * optimized for 100 base-T. 383 */ 384 static int nfs4_nra = 4; 385 386 static int nfs4_do_symlink_cache = 1; 387 388 static int nfs4_pathconf_disable_cache = 0; 389 390 /* 391 * These are the vnode ops routines which implement the vnode interface to 392 * the networked file system. These routines just take their parameters, 393 * make them look networkish by putting the right info into interface structs, 394 * and then calling the appropriate remote routine(s) to do the work. 395 * 396 * Note on directory name lookup cacheing: If we detect a stale fhandle, 397 * we purge the directory cache relative to that vnode. This way, the 398 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 399 * more details on rnode locking. 400 */ 401 402 struct vnodeops *nfs4_vnodeops; 403 404 const fs_operation_def_t nfs4_vnodeops_template[] = { 405 VOPNAME_OPEN, { .vop_open = nfs4_open }, 406 VOPNAME_CLOSE, { .vop_close = nfs4_close }, 407 VOPNAME_READ, { .vop_read = nfs4_read }, 408 VOPNAME_WRITE, { .vop_write = nfs4_write }, 409 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl }, 410 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr }, 411 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr }, 412 VOPNAME_ACCESS, { .vop_access = nfs4_access }, 413 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup }, 414 VOPNAME_CREATE, { .vop_create = nfs4_create }, 415 VOPNAME_REMOVE, { .vop_remove = nfs4_remove }, 416 VOPNAME_LINK, { .vop_link = nfs4_link }, 417 VOPNAME_RENAME, { .vop_rename = nfs4_rename }, 418 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir }, 419 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir }, 420 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir }, 421 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink }, 422 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink }, 423 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync }, 424 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive }, 425 VOPNAME_FID, { .vop_fid = nfs4_fid }, 426 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock }, 427 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock }, 428 VOPNAME_SEEK, { .vop_seek = nfs4_seek }, 429 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock }, 430 VOPNAME_SPACE, { .vop_space = nfs4_space }, 431 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp }, 432 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage }, 433 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage }, 434 VOPNAME_MAP, { .vop_map = nfs4_map }, 435 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap }, 436 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap }, 437 /* no separate nfs4_dump */ 438 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 439 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf }, 440 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio }, 441 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose }, 442 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr }, 443 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr }, 444 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock }, 445 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 446 NULL, NULL 447 }; 448 449 /* 450 * The following are subroutines and definitions to set args or get res 451 * for the different nfsv4 ops 452 */ 453 454 void 455 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 456 { 457 int i; 458 459 for (i = 0; i < arglen; i++) { 460 if (argop[i].argop == OP_LOOKUP) { 461 kmem_free( 462 argop[i].nfs_argop4_u.oplookup. 463 objname.utf8string_val, 464 argop[i].nfs_argop4_u.oplookup. 465 objname.utf8string_len); 466 } 467 } 468 } 469 470 static void 471 nfs4args_lock_free(nfs_argop4 *argop) 472 { 473 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 474 475 if (locker->new_lock_owner == TRUE) { 476 open_to_lock_owner4 *open_owner; 477 478 open_owner = &locker->locker4_u.open_owner; 479 if (open_owner->lock_owner.owner_val != NULL) { 480 kmem_free(open_owner->lock_owner.owner_val, 481 open_owner->lock_owner.owner_len); 482 } 483 } 484 } 485 486 static void 487 nfs4args_lockt_free(nfs_argop4 *argop) 488 { 489 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 490 491 if (lowner->owner_val != NULL) { 492 kmem_free(lowner->owner_val, lowner->owner_len); 493 } 494 } 495 496 static void 497 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 498 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 499 nfs4_stateid_types_t *sid_types) 500 { 501 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 502 mntinfo4_t *mi; 503 504 argop->argop = OP_SETATTR; 505 /* 506 * The stateid is set to 0 if client is not modifying the size 507 * and otherwise to whatever nfs4_get_stateid() returns. 508 * 509 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 510 * state struct could be found for the process/file pair. We may 511 * want to change this in the future (by OPENing the file). See 512 * bug # 4474852. 513 */ 514 if (vap->va_mask & AT_SIZE) { 515 516 ASSERT(rp != NULL); 517 mi = VTOMI4(RTOV4(rp)); 518 519 argop->nfs_argop4_u.opsetattr.stateid = 520 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 521 OP_SETATTR, sid_types, FALSE); 522 } else { 523 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 524 sizeof (stateid4)); 525 } 526 527 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 528 if (*error) 529 bzero(attr, sizeof (*attr)); 530 } 531 532 static void 533 nfs4args_setattr_free(nfs_argop4 *argop) 534 { 535 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 536 } 537 538 static int 539 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 540 bitmap4 supp) 541 { 542 fattr4 *attr; 543 int error = 0; 544 545 argop->argop = op; 546 switch (op) { 547 case OP_VERIFY: 548 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 549 break; 550 case OP_NVERIFY: 551 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 552 break; 553 default: 554 return (EINVAL); 555 } 556 if (!error) 557 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 558 if (error) 559 bzero(attr, sizeof (*attr)); 560 return (error); 561 } 562 563 static void 564 nfs4args_verify_free(nfs_argop4 *argop) 565 { 566 switch (argop->argop) { 567 case OP_VERIFY: 568 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 569 break; 570 case OP_NVERIFY: 571 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 572 break; 573 default: 574 break; 575 } 576 } 577 578 static void 579 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 580 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 581 { 582 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 583 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 584 585 argop->argop = OP_WRITE; 586 wargs->stable = stable; 587 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 588 mi, OP_WRITE, sid_tp); 589 wargs->mblk = NULL; 590 *wargs_pp = wargs; 591 } 592 593 void 594 nfs4args_copen_free(OPEN4cargs *open_args) 595 { 596 if (open_args->owner.owner_val) { 597 kmem_free(open_args->owner.owner_val, 598 open_args->owner.owner_len); 599 } 600 if ((open_args->opentype == OPEN4_CREATE) && 601 (open_args->mode != EXCLUSIVE4)) { 602 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 603 } 604 } 605 606 /* 607 * XXX: This is referenced in modstubs.s 608 */ 609 struct vnodeops * 610 nfs4_getvnodeops(void) 611 { 612 return (nfs4_vnodeops); 613 } 614 615 /* 616 * The OPEN operation opens a regular file. 617 */ 618 /*ARGSUSED3*/ 619 static int 620 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 621 { 622 vnode_t *dvp = NULL; 623 rnode4_t *rp, *drp; 624 int error; 625 int just_been_created; 626 char fn[MAXNAMELEN]; 627 628 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 629 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 630 return (EIO); 631 rp = VTOR4(*vpp); 632 633 /* 634 * Check to see if opening something besides a regular file; 635 * if so skip the OTW call 636 */ 637 if ((*vpp)->v_type != VREG) { 638 error = nfs4_open_non_reg_file(vpp, flag, cr); 639 return (error); 640 } 641 642 /* 643 * XXX - would like a check right here to know if the file is 644 * executable or not, so as to skip OTW 645 */ 646 647 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 648 return (error); 649 650 drp = VTOR4(dvp); 651 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 652 return (EINTR); 653 654 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) { 655 nfs_rw_exit(&drp->r_rwlock); 656 return (error); 657 } 658 659 /* 660 * See if this file has just been CREATEd. 661 * If so, clear the flag and update the dnlc, which was previously 662 * skipped in nfs4_create. 663 * XXX need better serilization on this. 664 * XXX move this into the nf4open_otw call, after we have 665 * XXX acquired the open owner seqid sync. 666 */ 667 mutex_enter(&rp->r_statev4_lock); 668 if (rp->created_v4) { 669 rp->created_v4 = 0; 670 mutex_exit(&rp->r_statev4_lock); 671 672 dnlc_update(dvp, fn, *vpp); 673 /* This is needed so we don't bump the open ref count */ 674 just_been_created = 1; 675 } else { 676 mutex_exit(&rp->r_statev4_lock); 677 just_been_created = 0; 678 } 679 680 /* 681 * If caller specified O_TRUNC/FTRUNC, then be sure to set 682 * FWRITE (to drive successful setattr(size=0) after open) 683 */ 684 if (flag & FTRUNC) 685 flag |= FWRITE; 686 687 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 688 just_been_created); 689 690 if (!error && !((*vpp)->v_flag & VROOT)) 691 dnlc_update(dvp, fn, *vpp); 692 693 nfs_rw_exit(&drp->r_rwlock); 694 695 /* release the hold from vtodv */ 696 VN_RELE(dvp); 697 698 /* exchange the shadow for the master vnode, if needed */ 699 700 if (error == 0 && IS_SHADOW(*vpp, rp)) 701 sv_exchange(vpp); 702 703 return (error); 704 } 705 706 /* 707 * See if there's a "lost open" request to be saved and recovered. 708 */ 709 static void 710 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 711 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 712 vnode_t *dvp, OPEN4cargs *open_args) 713 { 714 vfs_t *vfsp; 715 char *srccfp; 716 717 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 718 719 if (error != ETIMEDOUT && error != EINTR && 720 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 721 lost_rqstp->lr_op = 0; 722 return; 723 } 724 725 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 726 "nfs4open_save_lost_rqst: error %d", error)); 727 728 lost_rqstp->lr_op = OP_OPEN; 729 730 /* 731 * The vp (if it is not NULL) and dvp are held and rele'd via 732 * the recovery code. See nfs4_save_lost_rqst. 733 */ 734 lost_rqstp->lr_vp = vp; 735 lost_rqstp->lr_dvp = dvp; 736 lost_rqstp->lr_oop = oop; 737 lost_rqstp->lr_osp = NULL; 738 lost_rqstp->lr_lop = NULL; 739 lost_rqstp->lr_cr = cr; 740 lost_rqstp->lr_flk = NULL; 741 lost_rqstp->lr_oacc = open_args->share_access; 742 lost_rqstp->lr_odeny = open_args->share_deny; 743 lost_rqstp->lr_oclaim = open_args->claim; 744 if (open_args->claim == CLAIM_DELEGATE_CUR) { 745 lost_rqstp->lr_ostateid = 746 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 747 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 748 } else { 749 srccfp = open_args->open_claim4_u.cfile; 750 } 751 lost_rqstp->lr_ofile.utf8string_len = 0; 752 lost_rqstp->lr_ofile.utf8string_val = NULL; 753 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 754 lost_rqstp->lr_putfirst = FALSE; 755 } 756 757 struct nfs4_excl_time { 758 uint32 seconds; 759 uint32 nseconds; 760 }; 761 762 /* 763 * The OPEN operation creates and/or opens a regular file 764 * 765 * ARGSUSED 766 */ 767 static int 768 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 769 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 770 enum createmode4 createmode, int file_just_been_created) 771 { 772 rnode4_t *rp; 773 rnode4_t *drp = VTOR4(dvp); 774 vnode_t *vp = NULL; 775 vnode_t *vpi = *vpp; 776 bool_t needrecov = FALSE; 777 778 int doqueue = 1; 779 780 COMPOUND4args_clnt args; 781 COMPOUND4res_clnt res; 782 nfs_argop4 *argop; 783 nfs_resop4 *resop; 784 int argoplist_size; 785 int idx_open, idx_fattr; 786 787 GETFH4res *gf_res = NULL; 788 OPEN4res *op_res = NULL; 789 nfs4_ga_res_t *garp; 790 fattr4 *attr = NULL; 791 struct nfs4_excl_time verf; 792 bool_t did_excl_setup = FALSE; 793 int created_osp; 794 795 OPEN4cargs *open_args; 796 nfs4_open_owner_t *oop = NULL; 797 nfs4_open_stream_t *osp = NULL; 798 seqid4 seqid = 0; 799 bool_t retry_open = FALSE; 800 nfs4_recov_state_t recov_state; 801 nfs4_lost_rqst_t lost_rqst; 802 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 803 hrtime_t t; 804 int acc = 0; 805 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 806 cred_t *ncr = NULL; 807 808 nfs4_sharedfh_t *otw_sfh; 809 nfs4_sharedfh_t *orig_sfh; 810 int fh_differs = 0; 811 int numops, setgid_flag; 812 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 813 814 /* 815 * Make sure we properly deal with setting the right gid on 816 * a newly created file to reflect the parent's setgid bit 817 */ 818 setgid_flag = 0; 819 if (create_flag && in_va) { 820 821 /* 822 * If there is grpid mount flag used or 823 * the parent's directory has the setgid bit set 824 * _and_ the client was able to get a valid mapping 825 * for the parent dir's owner_group, we want to 826 * append NVERIFY(owner_group == dva.va_gid) and 827 * SETATTR to the CREATE compound. 828 */ 829 mutex_enter(&drp->r_statelock); 830 if ((VTOMI4(dvp)->mi_flags & MI4_GRPID || 831 drp->r_attr.va_mode & VSGID) && 832 drp->r_attr.va_gid != GID_NOBODY) { 833 in_va->va_mask |= AT_GID; 834 in_va->va_gid = drp->r_attr.va_gid; 835 setgid_flag = 1; 836 } 837 mutex_exit(&drp->r_statelock); 838 } 839 840 /* 841 * Normal/non-create compound: 842 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 843 * 844 * Open(create) compound no setgid: 845 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 846 * RESTOREFH + GETATTR 847 * 848 * Open(create) setgid: 849 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 850 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 851 * NVERIFY(grp) + SETATTR 852 */ 853 if (setgid_flag) { 854 numops = 10; 855 idx_open = 1; 856 idx_fattr = 3; 857 } else if (create_flag) { 858 numops = 7; 859 idx_open = 2; 860 idx_fattr = 4; 861 } else { 862 numops = 4; 863 idx_open = 1; 864 idx_fattr = 3; 865 } 866 867 args.array_len = numops; 868 argoplist_size = numops * sizeof (nfs_argop4); 869 argop = kmem_alloc(argoplist_size, KM_SLEEP); 870 871 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 872 "open %s open flag 0x%x cred %p", file_name, open_flag, 873 (void *)cr)); 874 875 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 876 if (create_flag) { 877 /* 878 * We are to create a file. Initialize the passed in vnode 879 * pointer. 880 */ 881 vpi = NULL; 882 } else { 883 /* 884 * Check to see if the client owns a read delegation and is 885 * trying to open for write. If so, then return the delegation 886 * to avoid the server doing a cb_recall and returning DELAY. 887 * NB - we don't use the statev4_lock here because we'd have 888 * to drop the lock anyway and the result would be stale. 889 */ 890 if ((open_flag & FWRITE) && 891 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 892 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 893 894 /* 895 * If the file has a delegation, then do an access check up 896 * front. This avoids having to an access check later after 897 * we've already done start_op, which could deadlock. 898 */ 899 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 900 if (open_flag & FREAD && 901 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0) 902 acc |= VREAD; 903 if (open_flag & FWRITE && 904 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0) 905 acc |= VWRITE; 906 } 907 } 908 909 drp = VTOR4(dvp); 910 911 recov_state.rs_flags = 0; 912 recov_state.rs_num_retry_despite_err = 0; 913 cred_otw = cr; 914 915 recov_retry: 916 fh_differs = 0; 917 nfs4_error_zinit(&e); 918 919 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 920 if (e.error) { 921 if (ncr != NULL) 922 crfree(ncr); 923 kmem_free(argop, argoplist_size); 924 return (e.error); 925 } 926 927 args.ctag = TAG_OPEN; 928 args.array_len = numops; 929 args.array = argop; 930 931 /* putfh directory fh */ 932 argop[0].argop = OP_CPUTFH; 933 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 934 935 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 936 argop[idx_open].argop = OP_COPEN; 937 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 938 open_args->claim = CLAIM_NULL; 939 940 /* name of file */ 941 open_args->open_claim4_u.cfile = file_name; 942 open_args->owner.owner_len = 0; 943 open_args->owner.owner_val = NULL; 944 945 if (create_flag) { 946 /* CREATE a file */ 947 open_args->opentype = OPEN4_CREATE; 948 open_args->mode = createmode; 949 if (createmode == EXCLUSIVE4) { 950 if (did_excl_setup == FALSE) { 951 verf.seconds = zone_get_hostid(NULL); 952 if (verf.seconds != 0) 953 verf.nseconds = newnum(); 954 else { 955 timestruc_t now; 956 957 gethrestime(&now); 958 verf.seconds = now.tv_sec; 959 verf.nseconds = now.tv_nsec; 960 } 961 /* 962 * Since the server will use this value for the 963 * mtime, make sure that it can't overflow. Zero 964 * out the MSB. The actual value does not matter 965 * here, only its uniqeness. 966 */ 967 verf.seconds &= INT32_MAX; 968 did_excl_setup = TRUE; 969 } 970 971 /* Now copy over verifier to OPEN4args. */ 972 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 973 } else { 974 int v_error; 975 bitmap4 supp_attrs; 976 servinfo4_t *svp; 977 978 attr = &open_args->createhow4_u.createattrs; 979 980 svp = drp->r_server; 981 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 982 supp_attrs = svp->sv_supp_attrs; 983 nfs_rw_exit(&svp->sv_lock); 984 985 /* GUARDED4 or UNCHECKED4 */ 986 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 987 supp_attrs); 988 if (v_error) { 989 bzero(attr, sizeof (*attr)); 990 nfs4args_copen_free(open_args); 991 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 992 &recov_state, FALSE); 993 if (ncr != NULL) 994 crfree(ncr); 995 kmem_free(argop, argoplist_size); 996 return (v_error); 997 } 998 } 999 } else { 1000 /* NO CREATE */ 1001 open_args->opentype = OPEN4_NOCREATE; 1002 } 1003 1004 if (recov_state.rs_sp != NULL) { 1005 mutex_enter(&recov_state.rs_sp->s_lock); 1006 open_args->owner.clientid = recov_state.rs_sp->clientid; 1007 mutex_exit(&recov_state.rs_sp->s_lock); 1008 } else { 1009 /* XXX should we just fail here? */ 1010 open_args->owner.clientid = 0; 1011 } 1012 1013 /* 1014 * This increments oop's ref count or creates a temporary 'just_created' 1015 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 1016 * completes. 1017 */ 1018 mutex_enter(&VTOMI4(dvp)->mi_lock); 1019 1020 /* See if a permanent or just created open owner exists */ 1021 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 1022 if (!oop) { 1023 /* 1024 * This open owner does not exist so create a temporary 1025 * just created one. 1026 */ 1027 oop = create_open_owner(cr, VTOMI4(dvp)); 1028 ASSERT(oop != NULL); 1029 } 1030 mutex_exit(&VTOMI4(dvp)->mi_lock); 1031 1032 /* this length never changes, do alloc before seqid sync */ 1033 open_args->owner.owner_len = sizeof (oop->oo_name); 1034 open_args->owner.owner_val = 1035 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1036 1037 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 1038 if (e.error == EAGAIN) { 1039 open_owner_rele(oop); 1040 nfs4args_copen_free(open_args); 1041 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1042 if (ncr != NULL) { 1043 crfree(ncr); 1044 ncr = NULL; 1045 } 1046 goto recov_retry; 1047 } 1048 1049 /* Check to see if we need to do the OTW call */ 1050 if (!create_flag) { 1051 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1052 file_just_been_created, &e.error, acc, &recov_state)) { 1053 1054 /* 1055 * The OTW open is not necessary. Either 1056 * the open can succeed without it (eg. 1057 * delegation, error == 0) or the open 1058 * must fail due to an access failure 1059 * (error != 0). In either case, tidy 1060 * up and return. 1061 */ 1062 1063 nfs4_end_open_seqid_sync(oop); 1064 open_owner_rele(oop); 1065 nfs4args_copen_free(open_args); 1066 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1067 if (ncr != NULL) 1068 crfree(ncr); 1069 kmem_free(argop, argoplist_size); 1070 return (e.error); 1071 } 1072 } 1073 1074 bcopy(&oop->oo_name, open_args->owner.owner_val, 1075 open_args->owner.owner_len); 1076 1077 seqid = nfs4_get_open_seqid(oop) + 1; 1078 open_args->seqid = seqid; 1079 open_args->share_access = 0; 1080 if (open_flag & FREAD) 1081 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1082 if (open_flag & FWRITE) 1083 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1084 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1085 1086 1087 1088 /* 1089 * getfh w/sanity check for idx_open/idx_fattr 1090 */ 1091 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1092 argop[idx_open + 1].argop = OP_GETFH; 1093 1094 /* getattr */ 1095 argop[idx_fattr].argop = OP_GETATTR; 1096 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1097 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1098 1099 if (setgid_flag) { 1100 vattr_t _v; 1101 servinfo4_t *svp; 1102 bitmap4 supp_attrs; 1103 1104 svp = drp->r_server; 1105 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1106 supp_attrs = svp->sv_supp_attrs; 1107 nfs_rw_exit(&svp->sv_lock); 1108 1109 /* 1110 * For setgid case, we need to: 1111 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1112 */ 1113 argop[4].argop = OP_SAVEFH; 1114 1115 argop[5].argop = OP_CPUTFH; 1116 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1117 1118 argop[6].argop = OP_GETATTR; 1119 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1120 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1121 1122 argop[7].argop = OP_RESTOREFH; 1123 1124 /* 1125 * nverify 1126 */ 1127 _v.va_mask = AT_GID; 1128 _v.va_gid = in_va->va_gid; 1129 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1130 supp_attrs))) { 1131 1132 /* 1133 * setattr 1134 * 1135 * We _know_ we're not messing with AT_SIZE or 1136 * AT_XTIME, so no need for stateid or flags. 1137 * Also we specify NULL rp since we're only 1138 * interested in setting owner_group attributes. 1139 */ 1140 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1141 supp_attrs, &e.error, 0); 1142 if (e.error) 1143 nfs4args_verify_free(&argop[8]); 1144 } 1145 1146 if (e.error) { 1147 /* 1148 * XXX - Revisit the last argument to nfs4_end_op() 1149 * once 5020486 is fixed. 1150 */ 1151 nfs4_end_open_seqid_sync(oop); 1152 open_owner_rele(oop); 1153 nfs4args_copen_free(open_args); 1154 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1155 if (ncr != NULL) 1156 crfree(ncr); 1157 kmem_free(argop, argoplist_size); 1158 return (e.error); 1159 } 1160 } else if (create_flag) { 1161 argop[1].argop = OP_SAVEFH; 1162 1163 argop[5].argop = OP_RESTOREFH; 1164 1165 argop[6].argop = OP_GETATTR; 1166 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1167 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1168 } 1169 1170 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1171 "nfs4open_otw: %s call, nm %s, rp %s", 1172 needrecov ? "recov" : "first", file_name, 1173 rnode4info(VTOR4(dvp)))); 1174 1175 t = gethrtime(); 1176 1177 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1178 1179 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1180 nfs4_set_open_seqid(seqid, oop, args.ctag); 1181 1182 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1183 1184 if (e.error || needrecov) { 1185 bool_t abort = FALSE; 1186 1187 if (needrecov) { 1188 nfs4_bseqid_entry_t *bsep = NULL; 1189 1190 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1191 cred_otw, vpi, dvp, open_args); 1192 1193 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1194 bsep = nfs4_create_bseqid_entry(oop, NULL, 1195 vpi, 0, args.ctag, open_args->seqid); 1196 num_bseqid_retry--; 1197 } 1198 1199 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1200 NULL, lost_rqst.lr_op == OP_OPEN ? 1201 &lost_rqst : NULL, OP_OPEN, bsep, NULL, NULL); 1202 1203 if (bsep) 1204 kmem_free(bsep, sizeof (*bsep)); 1205 /* give up if we keep getting BAD_SEQID */ 1206 if (num_bseqid_retry == 0) 1207 abort = TRUE; 1208 if (abort == TRUE && e.error == 0) 1209 e.error = geterrno4(res.status); 1210 } 1211 nfs4_end_open_seqid_sync(oop); 1212 open_owner_rele(oop); 1213 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1214 nfs4args_copen_free(open_args); 1215 if (setgid_flag) { 1216 nfs4args_verify_free(&argop[8]); 1217 nfs4args_setattr_free(&argop[9]); 1218 } 1219 if (!e.error) 1220 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1221 if (ncr != NULL) { 1222 crfree(ncr); 1223 ncr = NULL; 1224 } 1225 if (!needrecov || abort == TRUE || e.error == EINTR || 1226 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1227 kmem_free(argop, argoplist_size); 1228 return (e.error); 1229 } 1230 goto recov_retry; 1231 } 1232 1233 /* 1234 * Will check and update lease after checking the rflag for 1235 * OPEN_CONFIRM in the successful OPEN call. 1236 */ 1237 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1238 1239 /* 1240 * XXX what if we're crossing mount points from server1:/drp 1241 * to server2:/drp/rp. 1242 */ 1243 1244 /* Signal our end of use of the open seqid */ 1245 nfs4_end_open_seqid_sync(oop); 1246 1247 /* 1248 * This will destroy the open owner if it was just created, 1249 * and no one else has put a reference on it. 1250 */ 1251 open_owner_rele(oop); 1252 if (create_flag && (createmode != EXCLUSIVE4) && 1253 res.status == NFS4ERR_BADOWNER) 1254 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1255 1256 e.error = geterrno4(res.status); 1257 nfs4args_copen_free(open_args); 1258 if (setgid_flag) { 1259 nfs4args_verify_free(&argop[8]); 1260 nfs4args_setattr_free(&argop[9]); 1261 } 1262 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1263 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1264 /* 1265 * If the reply is NFS4ERR_ACCESS, it may be because 1266 * we are root (no root net access). If the real uid 1267 * is not root, then retry with the real uid instead. 1268 */ 1269 if (ncr != NULL) { 1270 crfree(ncr); 1271 ncr = NULL; 1272 } 1273 if (res.status == NFS4ERR_ACCESS && 1274 (ncr = crnetadjust(cred_otw)) != NULL) { 1275 cred_otw = ncr; 1276 goto recov_retry; 1277 } 1278 kmem_free(argop, argoplist_size); 1279 return (e.error); 1280 } 1281 1282 resop = &res.array[idx_open]; /* open res */ 1283 op_res = &resop->nfs_resop4_u.opopen; 1284 1285 #ifdef DEBUG 1286 /* 1287 * verify attrset bitmap 1288 */ 1289 if (create_flag && 1290 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1291 /* make sure attrset returned is what we asked for */ 1292 /* XXX Ignore this 'error' for now */ 1293 if (attr->attrmask != op_res->attrset) 1294 /* EMPTY */; 1295 } 1296 #endif 1297 1298 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1299 mutex_enter(&VTOMI4(dvp)->mi_lock); 1300 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1301 mutex_exit(&VTOMI4(dvp)->mi_lock); 1302 } 1303 1304 resop = &res.array[idx_open + 1]; /* getfh res */ 1305 gf_res = &resop->nfs_resop4_u.opgetfh; 1306 1307 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1308 1309 /* 1310 * The open stateid has been updated on the server but not 1311 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1312 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1313 * WRITE call. That, however, will use the old stateid, so go ahead 1314 * and upate the open stateid now, before any call to makenfs4node. 1315 */ 1316 if (vpi) { 1317 nfs4_open_stream_t *tmp_osp; 1318 rnode4_t *tmp_rp = VTOR4(vpi); 1319 1320 tmp_osp = find_open_stream(oop, tmp_rp); 1321 if (tmp_osp) { 1322 tmp_osp->open_stateid = op_res->stateid; 1323 mutex_exit(&tmp_osp->os_sync_lock); 1324 open_stream_rele(tmp_osp, tmp_rp); 1325 } 1326 1327 /* 1328 * We must determine if the file handle given by the otw open 1329 * is the same as the file handle which was passed in with 1330 * *vpp. This case can be reached if the file we are trying 1331 * to open has been removed and another file has been created 1332 * having the same file name. The passed in vnode is released 1333 * later. 1334 */ 1335 orig_sfh = VTOR4(vpi)->r_fh; 1336 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1337 } 1338 1339 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1340 1341 if (create_flag || fh_differs) { 1342 int rnode_err = 0; 1343 1344 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1345 dvp, fn_get(VTOSV(dvp)->sv_name, file_name, otw_sfh)); 1346 1347 if (e.error) 1348 PURGE_ATTRCACHE4(vp); 1349 /* 1350 * For the newly created vp case, make sure the rnode 1351 * isn't bad before using it. 1352 */ 1353 mutex_enter(&(VTOR4(vp))->r_statelock); 1354 if (VTOR4(vp)->r_flags & R4RECOVERR) 1355 rnode_err = EIO; 1356 mutex_exit(&(VTOR4(vp))->r_statelock); 1357 1358 if (rnode_err) { 1359 nfs4_end_open_seqid_sync(oop); 1360 nfs4args_copen_free(open_args); 1361 if (setgid_flag) { 1362 nfs4args_verify_free(&argop[8]); 1363 nfs4args_setattr_free(&argop[9]); 1364 } 1365 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1366 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1367 needrecov); 1368 open_owner_rele(oop); 1369 VN_RELE(vp); 1370 if (ncr != NULL) 1371 crfree(ncr); 1372 sfh4_rele(&otw_sfh); 1373 kmem_free(argop, argoplist_size); 1374 return (EIO); 1375 } 1376 } else { 1377 vp = vpi; 1378 } 1379 sfh4_rele(&otw_sfh); 1380 1381 /* 1382 * It seems odd to get a full set of attrs and then not update 1383 * the object's attrcache in the non-create case. Create case uses 1384 * the attrs since makenfs4node checks to see if the attrs need to 1385 * be updated (and then updates them). The non-create case should 1386 * update attrs also. 1387 */ 1388 if (! create_flag && ! fh_differs && !e.error) { 1389 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1390 } 1391 1392 nfs4_error_zinit(&e); 1393 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1394 /* This does not do recovery for vp explicitly. */ 1395 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1396 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1397 1398 if (e.error || e.stat) { 1399 nfs4_end_open_seqid_sync(oop); 1400 nfs4args_copen_free(open_args); 1401 if (setgid_flag) { 1402 nfs4args_verify_free(&argop[8]); 1403 nfs4args_setattr_free(&argop[9]); 1404 } 1405 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1406 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1407 needrecov); 1408 open_owner_rele(oop); 1409 if (create_flag || fh_differs) { 1410 /* rele the makenfs4node */ 1411 VN_RELE(vp); 1412 } 1413 if (ncr != NULL) { 1414 crfree(ncr); 1415 ncr = NULL; 1416 } 1417 if (retry_open == TRUE) { 1418 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1419 "nfs4open_otw: retry the open since OPEN " 1420 "CONFIRM failed with error %d stat %d", 1421 e.error, e.stat)); 1422 if (create_flag && createmode == GUARDED4) { 1423 NFS4_DEBUG(nfs4_client_recov_debug, 1424 (CE_NOTE, "nfs4open_otw: switch " 1425 "createmode from GUARDED4 to " 1426 "UNCHECKED4")); 1427 createmode = UNCHECKED4; 1428 } 1429 goto recov_retry; 1430 } 1431 if (!e.error) { 1432 if (create_flag && (createmode != EXCLUSIVE4) && 1433 e.stat == NFS4ERR_BADOWNER) 1434 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1435 1436 e.error = geterrno4(e.stat); 1437 } 1438 kmem_free(argop, argoplist_size); 1439 return (e.error); 1440 } 1441 } 1442 1443 rp = VTOR4(vp); 1444 1445 mutex_enter(&rp->r_statev4_lock); 1446 if (create_flag) 1447 rp->created_v4 = 1; 1448 mutex_exit(&rp->r_statev4_lock); 1449 1450 mutex_enter(&oop->oo_lock); 1451 /* Doesn't matter if 'oo_just_created' already was set as this */ 1452 oop->oo_just_created = NFS4_PERM_CREATED; 1453 if (oop->oo_cred_otw) 1454 crfree(oop->oo_cred_otw); 1455 oop->oo_cred_otw = cred_otw; 1456 crhold(oop->oo_cred_otw); 1457 mutex_exit(&oop->oo_lock); 1458 1459 /* returns with 'os_sync_lock' held */ 1460 osp = find_or_create_open_stream(oop, rp, &created_osp); 1461 if (!osp) { 1462 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1463 "nfs4open_otw: failed to create an open stream")); 1464 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1465 "signal our end of use of the open seqid")); 1466 1467 nfs4_end_open_seqid_sync(oop); 1468 open_owner_rele(oop); 1469 nfs4args_copen_free(open_args); 1470 if (setgid_flag) { 1471 nfs4args_verify_free(&argop[8]); 1472 nfs4args_setattr_free(&argop[9]); 1473 } 1474 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1475 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1476 if (create_flag || fh_differs) 1477 VN_RELE(vp); 1478 if (ncr != NULL) 1479 crfree(ncr); 1480 1481 kmem_free(argop, argoplist_size); 1482 return (EINVAL); 1483 1484 } 1485 1486 osp->open_stateid = op_res->stateid; 1487 1488 if (open_flag & FREAD) 1489 osp->os_share_acc_read++; 1490 if (open_flag & FWRITE) 1491 osp->os_share_acc_write++; 1492 osp->os_share_deny_none++; 1493 1494 /* 1495 * Need to reset this bitfield for the possible case where we were 1496 * going to OTW CLOSE the file, got a non-recoverable error, and before 1497 * we could retry the CLOSE, OPENed the file again. 1498 */ 1499 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1500 osp->os_final_close = 0; 1501 osp->os_force_close = 0; 1502 #ifdef DEBUG 1503 if (osp->os_failed_reopen) 1504 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1505 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1506 (void *)osp, (void *)cr, rnode4info(rp))); 1507 #endif 1508 osp->os_failed_reopen = 0; 1509 1510 mutex_exit(&osp->os_sync_lock); 1511 1512 nfs4_end_open_seqid_sync(oop); 1513 1514 if (created_osp && recov_state.rs_sp != NULL) { 1515 mutex_enter(&recov_state.rs_sp->s_lock); 1516 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1517 mutex_exit(&recov_state.rs_sp->s_lock); 1518 } 1519 1520 /* get rid of our reference to find oop */ 1521 open_owner_rele(oop); 1522 1523 open_stream_rele(osp, rp); 1524 1525 /* accept delegation, if any */ 1526 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1527 1528 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1529 1530 if (createmode == EXCLUSIVE4 && 1531 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1532 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1533 " EXCLUSIVE4: sending a SETATTR")); 1534 /* 1535 * If doing an exclusive create, then generate 1536 * a SETATTR to set the initial attributes. 1537 * Try to set the mtime and the atime to the 1538 * server's current time. It is somewhat 1539 * expected that these fields will be used to 1540 * store the exclusive create cookie. If not, 1541 * server implementors will need to know that 1542 * a SETATTR will follow an exclusive create 1543 * and the cookie should be destroyed if 1544 * appropriate. 1545 * 1546 * The AT_GID and AT_SIZE bits are turned off 1547 * so that the SETATTR request will not attempt 1548 * to process these. The gid will be set 1549 * separately if appropriate. The size is turned 1550 * off because it is assumed that a new file will 1551 * be created empty and if the file wasn't empty, 1552 * then the exclusive create will have failed 1553 * because the file must have existed already. 1554 * Therefore, no truncate operation is needed. 1555 */ 1556 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1557 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1558 1559 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1560 if (e.error) { 1561 /* 1562 * Couldn't correct the attributes of 1563 * the newly created file and the 1564 * attributes are wrong. Remove the 1565 * file and return an error to the 1566 * application. 1567 */ 1568 /* XXX will this take care of client state ? */ 1569 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1570 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1571 " remove file", e.error)); 1572 VN_RELE(vp); 1573 (void) nfs4_remove(dvp, file_name, cr, NULL, 0); 1574 /* 1575 * Since we've reled the vnode and removed 1576 * the file we now need to return the error. 1577 * At this point we don't want to update the 1578 * dircaches, call nfs4_waitfor_purge_complete 1579 * or set vpp to vp so we need to skip these 1580 * as well. 1581 */ 1582 goto skip_update_dircaches; 1583 } 1584 } 1585 1586 /* 1587 * If we created or found the correct vnode, due to create_flag or 1588 * fh_differs being set, then update directory cache attribute, readdir 1589 * and dnlc caches. 1590 */ 1591 if (create_flag || fh_differs) { 1592 dirattr_info_t dinfo, *dinfop; 1593 1594 /* 1595 * Make sure getattr succeeded before using results. 1596 * note: op 7 is getattr(dir) for both flavors of 1597 * open(create). 1598 */ 1599 if (create_flag && res.status == NFS4_OK) { 1600 dinfo.di_time_call = t; 1601 dinfo.di_cred = cr; 1602 dinfo.di_garp = 1603 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1604 dinfop = &dinfo; 1605 } else { 1606 dinfop = NULL; 1607 } 1608 1609 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1610 dinfop); 1611 } 1612 1613 /* 1614 * If the page cache for this file was flushed from actions 1615 * above, it was done asynchronously and if that is true, 1616 * there is a need to wait here for it to complete. This must 1617 * be done outside of start_fop/end_fop. 1618 */ 1619 (void) nfs4_waitfor_purge_complete(vp); 1620 1621 /* 1622 * It is implicit that we are in the open case (create_flag == 0) since 1623 * fh_differs can only be set to a non-zero value in the open case. 1624 */ 1625 if (fh_differs != 0 && vpi != NULL) 1626 VN_RELE(vpi); 1627 1628 /* 1629 * Be sure to set *vpp to the correct value before returning. 1630 */ 1631 *vpp = vp; 1632 1633 skip_update_dircaches: 1634 1635 nfs4args_copen_free(open_args); 1636 if (setgid_flag) { 1637 nfs4args_verify_free(&argop[8]); 1638 nfs4args_setattr_free(&argop[9]); 1639 } 1640 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1641 1642 if (ncr) 1643 crfree(ncr); 1644 kmem_free(argop, argoplist_size); 1645 return (e.error); 1646 } 1647 1648 /* 1649 * Reopen an open instance. cf. nfs4open_otw(). 1650 * 1651 * Errors are returned by the nfs4_error_t parameter. 1652 * - ep->error contains an errno value or zero. 1653 * - if it is zero, ep->stat is set to an NFS status code, if any. 1654 * If the file could not be reopened, but the caller should continue, the 1655 * file is marked dead and no error values are returned. If the caller 1656 * should stop recovering open files and start over, either the ep->error 1657 * value or ep->stat will indicate an error (either something that requires 1658 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1659 * filehandles) may be handled silently by this routine. 1660 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1661 * will be started, so the caller should not do it. 1662 * 1663 * Gotos: 1664 * - kill_file : reopen failed in such a fashion to constitute marking the 1665 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1666 * is for cases where recovery is not possible. 1667 * - failed_reopen : same as above, except that the file has already been 1668 * marked dead, so no need to do it again. 1669 * - bailout : reopen failed but we are able to recover and retry the reopen - 1670 * either within this function immediately or via the calling function. 1671 */ 1672 1673 void 1674 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1675 open_claim_type4 claim, bool_t frc_use_claim_previous, 1676 bool_t is_recov) 1677 { 1678 COMPOUND4args_clnt args; 1679 COMPOUND4res_clnt res; 1680 nfs_argop4 argop[4]; 1681 nfs_resop4 *resop; 1682 OPEN4res *op_res = NULL; 1683 OPEN4cargs *open_args; 1684 GETFH4res *gf_res; 1685 rnode4_t *rp = VTOR4(vp); 1686 int doqueue = 1; 1687 cred_t *cr = NULL, *cred_otw = NULL; 1688 nfs4_open_owner_t *oop = NULL; 1689 seqid4 seqid; 1690 nfs4_ga_res_t *garp; 1691 char fn[MAXNAMELEN]; 1692 nfs4_recov_state_t recov = {NULL, 0}; 1693 nfs4_lost_rqst_t lost_rqst; 1694 mntinfo4_t *mi = VTOMI4(vp); 1695 bool_t abort; 1696 char *failed_msg = ""; 1697 int fh_different; 1698 hrtime_t t; 1699 nfs4_bseqid_entry_t *bsep = NULL; 1700 1701 ASSERT(nfs4_consistent_type(vp)); 1702 ASSERT(nfs_zone() == mi->mi_zone); 1703 1704 nfs4_error_zinit(ep); 1705 1706 /* this is the cred used to find the open owner */ 1707 cr = state_to_cred(osp); 1708 if (cr == NULL) { 1709 failed_msg = "Couldn't reopen: no cred"; 1710 goto kill_file; 1711 } 1712 /* use this cred for OTW operations */ 1713 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1714 1715 top: 1716 nfs4_error_zinit(ep); 1717 1718 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1719 /* File system has been unmounted, quit */ 1720 ep->error = EIO; 1721 failed_msg = "Couldn't reopen: file system has been unmounted"; 1722 goto kill_file; 1723 } 1724 1725 oop = osp->os_open_owner; 1726 1727 ASSERT(oop != NULL); 1728 if (oop == NULL) { /* be defensive in non-DEBUG */ 1729 failed_msg = "can't reopen: no open owner"; 1730 goto kill_file; 1731 } 1732 open_owner_hold(oop); 1733 1734 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1735 if (ep->error) { 1736 open_owner_rele(oop); 1737 oop = NULL; 1738 goto bailout; 1739 } 1740 1741 /* 1742 * If the rnode has a delegation and the delegation has been 1743 * recovered and the server didn't request a recall and the caller 1744 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1745 * recovery) and the rnode hasn't been marked dead, then install 1746 * the delegation stateid in the open stream. Otherwise, proceed 1747 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1748 */ 1749 mutex_enter(&rp->r_statev4_lock); 1750 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1751 !rp->r_deleg_return_pending && 1752 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1753 !rp->r_deleg_needs_recall && 1754 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1755 !(rp->r_flags & R4RECOVERR)) { 1756 mutex_enter(&osp->os_sync_lock); 1757 osp->os_delegation = 1; 1758 osp->open_stateid = rp->r_deleg_stateid; 1759 mutex_exit(&osp->os_sync_lock); 1760 mutex_exit(&rp->r_statev4_lock); 1761 goto bailout; 1762 } 1763 mutex_exit(&rp->r_statev4_lock); 1764 1765 /* 1766 * If the file failed recovery, just quit. This failure need not 1767 * affect other reopens, so don't return an error. 1768 */ 1769 mutex_enter(&rp->r_statelock); 1770 if (rp->r_flags & R4RECOVERR) { 1771 mutex_exit(&rp->r_statelock); 1772 ep->error = 0; 1773 goto failed_reopen; 1774 } 1775 mutex_exit(&rp->r_statelock); 1776 1777 /* 1778 * argop is empty here 1779 * 1780 * PUTFH, OPEN, GETATTR 1781 */ 1782 args.ctag = TAG_REOPEN; 1783 args.array_len = 4; 1784 args.array = argop; 1785 1786 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1787 "nfs4_reopen: file is type %d, id %s", 1788 vp->v_type, rnode4info(VTOR4(vp)))); 1789 1790 argop[0].argop = OP_CPUTFH; 1791 1792 if (claim != CLAIM_PREVIOUS) { 1793 /* 1794 * if this is a file mount then 1795 * use the mntinfo parentfh 1796 */ 1797 argop[0].nfs_argop4_u.opcputfh.sfh = 1798 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1799 VTOSV(vp)->sv_dfh; 1800 } else { 1801 /* putfh fh to reopen */ 1802 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1803 } 1804 1805 argop[1].argop = OP_COPEN; 1806 open_args = &argop[1].nfs_argop4_u.opcopen; 1807 open_args->claim = claim; 1808 1809 if (claim == CLAIM_NULL) { 1810 1811 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1812 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1813 "failed for vp 0x%p for CLAIM_NULL with %m", 1814 (void *)vp); 1815 failed_msg = "Couldn't reopen: vtoname failed for " 1816 "CLAIM_NULL"; 1817 /* nothing allocated yet */ 1818 goto kill_file; 1819 } 1820 1821 open_args->open_claim4_u.cfile = fn; 1822 } else if (claim == CLAIM_PREVIOUS) { 1823 1824 /* 1825 * We have two cases to deal with here: 1826 * 1) We're being called to reopen files in order to satisfy 1827 * a lock operation request which requires us to explicitly 1828 * reopen files which were opened under a delegation. If 1829 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1830 * that case, frc_use_claim_previous is TRUE and we must 1831 * use the rnode's current delegation type (r_deleg_type). 1832 * 2) We're reopening files during some form of recovery. 1833 * In this case, frc_use_claim_previous is FALSE and we 1834 * use the delegation type appropriate for recovery 1835 * (r_deleg_needs_recovery). 1836 */ 1837 mutex_enter(&rp->r_statev4_lock); 1838 open_args->open_claim4_u.delegate_type = 1839 frc_use_claim_previous ? 1840 rp->r_deleg_type : 1841 rp->r_deleg_needs_recovery; 1842 mutex_exit(&rp->r_statev4_lock); 1843 1844 } else if (claim == CLAIM_DELEGATE_CUR) { 1845 1846 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1847 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1848 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1849 "with %m", (void *)vp); 1850 failed_msg = "Couldn't reopen: vtoname failed for " 1851 "CLAIM_DELEGATE_CUR"; 1852 /* nothing allocated yet */ 1853 goto kill_file; 1854 } 1855 1856 mutex_enter(&rp->r_statev4_lock); 1857 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1858 rp->r_deleg_stateid; 1859 mutex_exit(&rp->r_statev4_lock); 1860 1861 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1862 } 1863 open_args->opentype = OPEN4_NOCREATE; 1864 open_args->owner.clientid = mi2clientid(mi); 1865 open_args->owner.owner_len = sizeof (oop->oo_name); 1866 open_args->owner.owner_val = 1867 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1868 bcopy(&oop->oo_name, open_args->owner.owner_val, 1869 open_args->owner.owner_len); 1870 open_args->share_access = 0; 1871 open_args->share_deny = 0; 1872 1873 mutex_enter(&osp->os_sync_lock); 1874 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1875 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1876 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1877 (void *)osp, (void *)rp, osp->os_share_acc_read, 1878 osp->os_share_acc_write, osp->os_open_ref_count, 1879 osp->os_mmap_read, osp->os_mmap_write, claim)); 1880 1881 if (osp->os_share_acc_read || osp->os_mmap_read) 1882 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1883 if (osp->os_share_acc_write || osp->os_mmap_write) 1884 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1885 if (osp->os_share_deny_read) 1886 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1887 if (osp->os_share_deny_write) 1888 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1889 mutex_exit(&osp->os_sync_lock); 1890 1891 seqid = nfs4_get_open_seqid(oop) + 1; 1892 open_args->seqid = seqid; 1893 1894 /* Construct the getfh part of the compound */ 1895 argop[2].argop = OP_GETFH; 1896 1897 /* Construct the getattr part of the compound */ 1898 argop[3].argop = OP_GETATTR; 1899 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1900 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1901 1902 t = gethrtime(); 1903 1904 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1905 1906 if (ep->error) { 1907 if (!is_recov && !frc_use_claim_previous && 1908 (ep->error == EINTR || ep->error == ETIMEDOUT || 1909 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1910 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1911 cred_otw, vp, NULL, open_args); 1912 abort = nfs4_start_recovery(ep, 1913 VTOMI4(vp), vp, NULL, NULL, 1914 lost_rqst.lr_op == OP_OPEN ? 1915 &lost_rqst : NULL, OP_OPEN, NULL, NULL, NULL); 1916 nfs4args_copen_free(open_args); 1917 goto bailout; 1918 } 1919 1920 nfs4args_copen_free(open_args); 1921 1922 if (ep->error == EACCES && cred_otw != cr) { 1923 crfree(cred_otw); 1924 cred_otw = cr; 1925 crhold(cred_otw); 1926 nfs4_end_open_seqid_sync(oop); 1927 open_owner_rele(oop); 1928 oop = NULL; 1929 goto top; 1930 } 1931 if (ep->error == ETIMEDOUT) 1932 goto bailout; 1933 failed_msg = "Couldn't reopen: rpc error"; 1934 goto kill_file; 1935 } 1936 1937 if (nfs4_need_to_bump_seqid(&res)) 1938 nfs4_set_open_seqid(seqid, oop, args.ctag); 1939 1940 switch (res.status) { 1941 case NFS4_OK: 1942 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1943 mutex_enter(&rp->r_statelock); 1944 rp->r_delay_interval = 0; 1945 mutex_exit(&rp->r_statelock); 1946 } 1947 break; 1948 case NFS4ERR_BAD_SEQID: 1949 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1950 args.ctag, open_args->seqid); 1951 1952 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1953 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1954 NULL, OP_OPEN, bsep, NULL, NULL); 1955 1956 nfs4args_copen_free(open_args); 1957 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1958 nfs4_end_open_seqid_sync(oop); 1959 open_owner_rele(oop); 1960 oop = NULL; 1961 kmem_free(bsep, sizeof (*bsep)); 1962 1963 goto kill_file; 1964 case NFS4ERR_NO_GRACE: 1965 nfs4args_copen_free(open_args); 1966 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1967 nfs4_end_open_seqid_sync(oop); 1968 open_owner_rele(oop); 1969 oop = NULL; 1970 if (claim == CLAIM_PREVIOUS) { 1971 /* 1972 * Retry as a plain open. We don't need to worry about 1973 * checking the changeinfo: it is acceptable for a 1974 * client to re-open a file and continue processing 1975 * (in the absence of locks). 1976 */ 1977 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1978 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1979 "will retry as CLAIM_NULL")); 1980 claim = CLAIM_NULL; 1981 nfs4_mi_kstat_inc_no_grace(mi); 1982 goto top; 1983 } 1984 failed_msg = 1985 "Couldn't reopen: tried reclaim outside grace period. "; 1986 goto kill_file; 1987 case NFS4ERR_GRACE: 1988 nfs4_set_grace_wait(mi); 1989 nfs4args_copen_free(open_args); 1990 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1991 nfs4_end_open_seqid_sync(oop); 1992 open_owner_rele(oop); 1993 oop = NULL; 1994 ep->error = nfs4_wait_for_grace(mi, &recov); 1995 if (ep->error != 0) 1996 goto bailout; 1997 goto top; 1998 case NFS4ERR_DELAY: 1999 nfs4_set_delay_wait(vp); 2000 nfs4args_copen_free(open_args); 2001 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2002 nfs4_end_open_seqid_sync(oop); 2003 open_owner_rele(oop); 2004 oop = NULL; 2005 ep->error = nfs4_wait_for_delay(vp, &recov); 2006 nfs4_mi_kstat_inc_delay(mi); 2007 if (ep->error != 0) 2008 goto bailout; 2009 goto top; 2010 case NFS4ERR_FHEXPIRED: 2011 /* recover filehandle and retry */ 2012 abort = nfs4_start_recovery(ep, 2013 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL, NULL, NULL); 2014 nfs4args_copen_free(open_args); 2015 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2016 nfs4_end_open_seqid_sync(oop); 2017 open_owner_rele(oop); 2018 oop = NULL; 2019 if (abort == FALSE) 2020 goto top; 2021 failed_msg = "Couldn't reopen: recovery aborted"; 2022 goto kill_file; 2023 case NFS4ERR_RESOURCE: 2024 case NFS4ERR_STALE_CLIENTID: 2025 case NFS4ERR_WRONGSEC: 2026 case NFS4ERR_EXPIRED: 2027 /* 2028 * Do not mark the file dead and let the calling 2029 * function initiate recovery. 2030 */ 2031 nfs4args_copen_free(open_args); 2032 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2033 nfs4_end_open_seqid_sync(oop); 2034 open_owner_rele(oop); 2035 oop = NULL; 2036 goto bailout; 2037 case NFS4ERR_ACCESS: 2038 if (cred_otw != cr) { 2039 crfree(cred_otw); 2040 cred_otw = cr; 2041 crhold(cred_otw); 2042 nfs4args_copen_free(open_args); 2043 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2044 nfs4_end_open_seqid_sync(oop); 2045 open_owner_rele(oop); 2046 oop = NULL; 2047 goto top; 2048 } 2049 /* fall through */ 2050 default: 2051 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2052 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2053 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2054 rnode4info(VTOR4(vp)))); 2055 failed_msg = "Couldn't reopen: NFSv4 error"; 2056 nfs4args_copen_free(open_args); 2057 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2058 goto kill_file; 2059 } 2060 2061 resop = &res.array[1]; /* open res */ 2062 op_res = &resop->nfs_resop4_u.opopen; 2063 2064 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2065 2066 /* 2067 * Check if the path we reopened really is the same 2068 * file. We could end up in a situation where the file 2069 * was removed and a new file created with the same name. 2070 */ 2071 resop = &res.array[2]; 2072 gf_res = &resop->nfs_resop4_u.opgetfh; 2073 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2074 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2075 if (fh_different) { 2076 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2077 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2078 /* Oops, we don't have the same file */ 2079 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2080 failed_msg = "Couldn't reopen: Persistent " 2081 "file handle changed"; 2082 else 2083 failed_msg = "Couldn't reopen: Volatile " 2084 "(no expire on open) file handle changed"; 2085 2086 nfs4args_copen_free(open_args); 2087 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2088 nfs_rw_exit(&mi->mi_fh_lock); 2089 goto kill_file; 2090 2091 } else { 2092 /* 2093 * We have volatile file handles that don't compare. 2094 * If the fids are the same then we assume that the 2095 * file handle expired but the rnode still refers to 2096 * the same file object. 2097 * 2098 * First check that we have fids or not. 2099 * If we don't we have a dumb server so we will 2100 * just assume every thing is ok for now. 2101 */ 2102 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2103 rp->r_attr.va_mask & AT_NODEID && 2104 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2105 /* 2106 * We have fids, but they don't 2107 * compare. So kill the file. 2108 */ 2109 failed_msg = 2110 "Couldn't reopen: file handle changed" 2111 " due to mismatched fids"; 2112 nfs4args_copen_free(open_args); 2113 (void) xdr_free(xdr_COMPOUND4res_clnt, 2114 (caddr_t)&res); 2115 nfs_rw_exit(&mi->mi_fh_lock); 2116 goto kill_file; 2117 } else { 2118 /* 2119 * We have volatile file handles that refers 2120 * to the same file (at least they have the 2121 * same fid) or we don't have fids so we 2122 * can't tell. :(. We'll be a kind and accepting 2123 * client so we'll update the rnode's file 2124 * handle with the otw handle. 2125 * 2126 * We need to drop mi->mi_fh_lock since 2127 * sh4_update acquires it. Since there is 2128 * only one recovery thread there is no 2129 * race. 2130 */ 2131 nfs_rw_exit(&mi->mi_fh_lock); 2132 sfh4_update(rp->r_fh, &gf_res->object); 2133 } 2134 } 2135 } else { 2136 nfs_rw_exit(&mi->mi_fh_lock); 2137 } 2138 2139 ASSERT(nfs4_consistent_type(vp)); 2140 2141 /* 2142 * If the server wanted an OPEN_CONFIRM but that fails, just start 2143 * over. Presumably if there is a persistent error it will show up 2144 * when we resend the OPEN. 2145 */ 2146 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2147 bool_t retry_open = FALSE; 2148 2149 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2150 cred_otw, is_recov, &retry_open, 2151 oop, FALSE, ep, NULL); 2152 if (ep->error || ep->stat) { 2153 nfs4args_copen_free(open_args); 2154 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2155 nfs4_end_open_seqid_sync(oop); 2156 open_owner_rele(oop); 2157 oop = NULL; 2158 goto top; 2159 } 2160 } 2161 2162 mutex_enter(&osp->os_sync_lock); 2163 osp->open_stateid = op_res->stateid; 2164 osp->os_delegation = 0; 2165 /* 2166 * Need to reset this bitfield for the possible case where we were 2167 * going to OTW CLOSE the file, got a non-recoverable error, and before 2168 * we could retry the CLOSE, OPENed the file again. 2169 */ 2170 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2171 osp->os_final_close = 0; 2172 osp->os_force_close = 0; 2173 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2174 osp->os_dc_openacc = open_args->share_access; 2175 mutex_exit(&osp->os_sync_lock); 2176 2177 nfs4_end_open_seqid_sync(oop); 2178 2179 /* accept delegation, if any */ 2180 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2181 2182 nfs4args_copen_free(open_args); 2183 2184 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2185 2186 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2187 2188 ASSERT(nfs4_consistent_type(vp)); 2189 2190 open_owner_rele(oop); 2191 crfree(cr); 2192 crfree(cred_otw); 2193 return; 2194 2195 kill_file: 2196 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2197 failed_reopen: 2198 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2199 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2200 (void *)osp, (void *)cr, rnode4info(rp))); 2201 mutex_enter(&osp->os_sync_lock); 2202 osp->os_failed_reopen = 1; 2203 mutex_exit(&osp->os_sync_lock); 2204 bailout: 2205 if (oop != NULL) { 2206 nfs4_end_open_seqid_sync(oop); 2207 open_owner_rele(oop); 2208 } 2209 if (cr != NULL) 2210 crfree(cr); 2211 if (cred_otw != NULL) 2212 crfree(cred_otw); 2213 } 2214 2215 /* for . and .. OPENs */ 2216 /* ARGSUSED */ 2217 static int 2218 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2219 { 2220 rnode4_t *rp; 2221 nfs4_ga_res_t gar; 2222 2223 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2224 2225 /* 2226 * If close-to-open consistency checking is turned off or 2227 * if there is no cached data, we can avoid 2228 * the over the wire getattr. Otherwise, force a 2229 * call to the server to get fresh attributes and to 2230 * check caches. This is required for close-to-open 2231 * consistency. 2232 */ 2233 rp = VTOR4(*vpp); 2234 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2235 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2236 return (0); 2237 2238 gar.n4g_va.va_mask = AT_ALL; 2239 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2240 } 2241 2242 /* 2243 * CLOSE a file 2244 */ 2245 /* ARGSUSED */ 2246 static int 2247 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 2248 caller_context_t *ct) 2249 { 2250 rnode4_t *rp; 2251 int error = 0; 2252 int r_error = 0; 2253 int n4error = 0; 2254 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2255 2256 /* 2257 * Remove client state for this (lockowner, file) pair. 2258 * Issue otw v4 call to have the server do the same. 2259 */ 2260 2261 rp = VTOR4(vp); 2262 2263 /* 2264 * zone_enter(2) prevents processes from changing zones with NFS files 2265 * open; if we happen to get here from the wrong zone we can't do 2266 * anything over the wire. 2267 */ 2268 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2269 /* 2270 * We could attempt to clean up locks, except we're sure 2271 * that the current process didn't acquire any locks on 2272 * the file: any attempt to lock a file belong to another zone 2273 * will fail, and one can't lock an NFS file and then change 2274 * zones, as that fails too. 2275 * 2276 * Returning an error here is the sane thing to do. A 2277 * subsequent call to VN_RELE() which translates to a 2278 * nfs4_inactive() will clean up state: if the zone of the 2279 * vnode's origin is still alive and kicking, the inactive 2280 * thread will handle the request (from the correct zone), and 2281 * everything (minus the OTW close call) should be OK. If the 2282 * zone is going away nfs4_async_inactive() will throw away 2283 * delegations, open streams and cached pages inline. 2284 */ 2285 return (EIO); 2286 } 2287 2288 /* 2289 * If we are using local locking for this filesystem, then 2290 * release all of the SYSV style record locks. Otherwise, 2291 * we are doing network locking and we need to release all 2292 * of the network locks. All of the locks held by this 2293 * process on this file are released no matter what the 2294 * incoming reference count is. 2295 */ 2296 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2297 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2298 cleanshares(vp, ttoproc(curthread)->p_pid); 2299 } else 2300 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2301 2302 if (e.error) { 2303 struct lm_sysid *lmsid; 2304 lmsid = nfs4_find_sysid(VTOMI4(vp)); 2305 if (lmsid == NULL) { 2306 DTRACE_PROBE2(unknown__sysid, int, e.error, 2307 vnode_t *, vp); 2308 } else { 2309 cleanlocks(vp, ttoproc(curthread)->p_pid, 2310 (lm_sysidt(lmsid) | LM_SYSID_CLIENT)); 2311 } 2312 return (e.error); 2313 } 2314 2315 if (count > 1) 2316 return (0); 2317 2318 /* 2319 * If the file has been `unlinked', then purge the 2320 * DNLC so that this vnode will get reycled quicker 2321 * and the .nfs* file on the server will get removed. 2322 */ 2323 if (rp->r_unldvp != NULL) 2324 dnlc_purge_vp(vp); 2325 2326 /* 2327 * If the file was open for write and there are pages, 2328 * do a synchronous flush and commit of all of the 2329 * dirty and uncommitted pages. 2330 */ 2331 ASSERT(!e.error); 2332 if ((flag & FWRITE) && nfs4_has_pages(vp)) 2333 error = nfs4_putpage_commit(vp, 0, 0, cr); 2334 2335 mutex_enter(&rp->r_statelock); 2336 r_error = rp->r_error; 2337 rp->r_error = 0; 2338 mutex_exit(&rp->r_statelock); 2339 2340 /* 2341 * If this file type is one for which no explicit 'open' was 2342 * done, then bail now (ie. no need for protocol 'close'). If 2343 * there was an error w/the vm subsystem, return _that_ error, 2344 * otherwise, return any errors that may've been reported via 2345 * the rnode. 2346 */ 2347 if (vp->v_type != VREG) 2348 return (error ? error : r_error); 2349 2350 /* 2351 * The sync putpage commit may have failed above, but since 2352 * we're working w/a regular file, we need to do the protocol 2353 * 'close' (nfs4close_one will figure out if an otw close is 2354 * needed or not). Report any errors _after_ doing the protocol 2355 * 'close'. 2356 */ 2357 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2358 n4error = e.error ? e.error : geterrno4(e.stat); 2359 2360 /* 2361 * Error reporting prio (Hi -> Lo) 2362 * 2363 * i) nfs4_putpage_commit (error) 2364 * ii) rnode's (r_error) 2365 * iii) nfs4close_one (n4error) 2366 */ 2367 return (error ? error : (r_error ? r_error : n4error)); 2368 } 2369 2370 /* 2371 * Initialize *lost_rqstp. 2372 */ 2373 2374 static void 2375 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2376 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2377 vnode_t *vp) 2378 { 2379 if (error != ETIMEDOUT && error != EINTR && 2380 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2381 lost_rqstp->lr_op = 0; 2382 return; 2383 } 2384 2385 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2386 "nfs4close_save_lost_rqst: error %d", error)); 2387 2388 lost_rqstp->lr_op = OP_CLOSE; 2389 /* 2390 * The vp is held and rele'd via the recovery code. 2391 * See nfs4_save_lost_rqst. 2392 */ 2393 lost_rqstp->lr_vp = vp; 2394 lost_rqstp->lr_dvp = NULL; 2395 lost_rqstp->lr_oop = oop; 2396 lost_rqstp->lr_osp = osp; 2397 ASSERT(osp != NULL); 2398 ASSERT(mutex_owned(&osp->os_sync_lock)); 2399 osp->os_pending_close = 1; 2400 lost_rqstp->lr_lop = NULL; 2401 lost_rqstp->lr_cr = cr; 2402 lost_rqstp->lr_flk = NULL; 2403 lost_rqstp->lr_putfirst = FALSE; 2404 } 2405 2406 /* 2407 * Assumes you already have the open seqid sync grabbed as well as the 2408 * 'os_sync_lock'. Note: this will release the open seqid sync and 2409 * 'os_sync_lock' if client recovery starts. Calling functions have to 2410 * be prepared to handle this. 2411 * 2412 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2413 * was needed and was started, and that the calling function should retry 2414 * this function; otherwise it is returned as 0. 2415 * 2416 * Errors are returned via the nfs4_error_t parameter. 2417 */ 2418 static void 2419 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2420 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2421 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2422 { 2423 COMPOUND4args_clnt args; 2424 COMPOUND4res_clnt res; 2425 CLOSE4args *close_args; 2426 nfs_resop4 *resop; 2427 nfs_argop4 argop[3]; 2428 int doqueue = 1; 2429 mntinfo4_t *mi; 2430 seqid4 seqid; 2431 vnode_t *vp; 2432 bool_t needrecov = FALSE; 2433 nfs4_lost_rqst_t lost_rqst; 2434 hrtime_t t; 2435 2436 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2437 2438 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2439 2440 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2441 2442 /* Only set this to 1 if recovery is started */ 2443 *recov = 0; 2444 2445 /* do the OTW call to close the file */ 2446 2447 if (close_type == CLOSE_RESEND) 2448 args.ctag = TAG_CLOSE_LOST; 2449 else if (close_type == CLOSE_AFTER_RESEND) 2450 args.ctag = TAG_CLOSE_UNDO; 2451 else 2452 args.ctag = TAG_CLOSE; 2453 2454 args.array_len = 3; 2455 args.array = argop; 2456 2457 vp = RTOV4(rp); 2458 2459 mi = VTOMI4(vp); 2460 2461 /* putfh target fh */ 2462 argop[0].argop = OP_CPUTFH; 2463 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2464 2465 argop[1].argop = OP_GETATTR; 2466 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2467 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2468 2469 argop[2].argop = OP_CLOSE; 2470 close_args = &argop[2].nfs_argop4_u.opclose; 2471 2472 seqid = nfs4_get_open_seqid(oop) + 1; 2473 2474 close_args->seqid = seqid; 2475 close_args->open_stateid = osp->open_stateid; 2476 2477 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2478 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2479 rnode4info(rp))); 2480 2481 t = gethrtime(); 2482 2483 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2484 2485 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2486 nfs4_set_open_seqid(seqid, oop, args.ctag); 2487 } 2488 2489 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2490 if (ep->error && !needrecov) { 2491 /* 2492 * if there was an error and no recovery is to be done 2493 * then then set up the file to flush its cache if 2494 * needed for the next caller. 2495 */ 2496 mutex_enter(&rp->r_statelock); 2497 PURGE_ATTRCACHE4_LOCKED(rp); 2498 rp->r_flags &= ~R4WRITEMODIFIED; 2499 mutex_exit(&rp->r_statelock); 2500 return; 2501 } 2502 2503 if (needrecov) { 2504 bool_t abort; 2505 nfs4_bseqid_entry_t *bsep = NULL; 2506 2507 if (close_type != CLOSE_RESEND) 2508 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2509 osp, cred_otw, vp); 2510 2511 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2512 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2513 0, args.ctag, close_args->seqid); 2514 2515 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2516 "nfs4close_otw: initiating recovery. error %d " 2517 "res.status %d", ep->error, res.status)); 2518 2519 /* 2520 * Drop the 'os_sync_lock' here so we don't hit 2521 * a potential recursive mutex_enter via an 2522 * 'open_stream_hold()'. 2523 */ 2524 mutex_exit(&osp->os_sync_lock); 2525 *have_sync_lockp = 0; 2526 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2527 (close_type != CLOSE_RESEND && 2528 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2529 OP_CLOSE, bsep, NULL, NULL); 2530 2531 /* drop open seq sync, and let the calling function regrab it */ 2532 nfs4_end_open_seqid_sync(oop); 2533 *did_start_seqid_syncp = 0; 2534 2535 if (bsep) 2536 kmem_free(bsep, sizeof (*bsep)); 2537 /* 2538 * For signals, the caller wants to quit, so don't say to 2539 * retry. For forced unmount, if it's a user thread, it 2540 * wants to quit. If it's a recovery thread, the retry 2541 * will happen higher-up on the call stack. Either way, 2542 * don't say to retry. 2543 */ 2544 if (abort == FALSE && ep->error != EINTR && 2545 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2546 close_type != CLOSE_RESEND && 2547 close_type != CLOSE_AFTER_RESEND) 2548 *recov = 1; 2549 else 2550 *recov = 0; 2551 2552 if (!ep->error) 2553 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2554 return; 2555 } 2556 2557 if (res.status) { 2558 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2559 return; 2560 } 2561 2562 mutex_enter(&rp->r_statev4_lock); 2563 rp->created_v4 = 0; 2564 mutex_exit(&rp->r_statev4_lock); 2565 2566 resop = &res.array[2]; 2567 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2568 osp->os_valid = 0; 2569 2570 /* 2571 * This removes the reference obtained at OPEN; ie, when the 2572 * open stream structure was created. 2573 * 2574 * We don't have to worry about calling 'open_stream_rele' 2575 * since we our currently holding a reference to the open 2576 * stream which means the count cannot go to 0 with this 2577 * decrement. 2578 */ 2579 ASSERT(osp->os_ref_count >= 2); 2580 osp->os_ref_count--; 2581 2582 if (!ep->error) 2583 nfs4_attr_cache(vp, 2584 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2585 t, cred_otw, TRUE, NULL); 2586 2587 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2588 " returning %d", ep->error)); 2589 2590 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2591 } 2592 2593 /* ARGSUSED */ 2594 static int 2595 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2596 caller_context_t *ct) 2597 { 2598 rnode4_t *rp; 2599 u_offset_t off; 2600 offset_t diff; 2601 uint_t on; 2602 uint_t n; 2603 caddr_t base; 2604 uint_t flags; 2605 int error; 2606 mntinfo4_t *mi; 2607 2608 rp = VTOR4(vp); 2609 2610 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2611 2612 if (IS_SHADOW(vp, rp)) 2613 vp = RTOV4(rp); 2614 2615 if (vp->v_type != VREG) 2616 return (EISDIR); 2617 2618 mi = VTOMI4(vp); 2619 2620 if (nfs_zone() != mi->mi_zone) 2621 return (EIO); 2622 2623 if (uiop->uio_resid == 0) 2624 return (0); 2625 2626 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2627 return (EINVAL); 2628 2629 mutex_enter(&rp->r_statelock); 2630 if (rp->r_flags & R4RECOVERRP) 2631 error = (rp->r_error ? rp->r_error : EIO); 2632 else 2633 error = 0; 2634 mutex_exit(&rp->r_statelock); 2635 if (error) 2636 return (error); 2637 2638 /* 2639 * Bypass VM if caching has been disabled (e.g., locking) or if 2640 * using client-side direct I/O and the file is not mmap'd and 2641 * there are no cached pages. 2642 */ 2643 if ((vp->v_flag & VNOCACHE) || 2644 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2645 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2646 size_t resid = 0; 2647 2648 return (nfs4read(vp, NULL, uiop->uio_loffset, 2649 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2650 } 2651 2652 error = 0; 2653 2654 do { 2655 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2656 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2657 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2658 2659 if (error = nfs4_validate_caches(vp, cr)) 2660 break; 2661 2662 mutex_enter(&rp->r_statelock); 2663 while (rp->r_flags & R4INCACHEPURGE) { 2664 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2665 mutex_exit(&rp->r_statelock); 2666 return (EINTR); 2667 } 2668 } 2669 diff = rp->r_size - uiop->uio_loffset; 2670 mutex_exit(&rp->r_statelock); 2671 if (diff <= 0) 2672 break; 2673 if (diff < n) 2674 n = (uint_t)diff; 2675 2676 if (vpm_enable) { 2677 /* 2678 * Copy data. 2679 */ 2680 error = vpm_data_copy(vp, off + on, n, uiop, 2681 1, NULL, 0, S_READ); 2682 } else { 2683 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 2684 S_READ); 2685 2686 error = uiomove(base + on, n, UIO_READ, uiop); 2687 } 2688 2689 if (!error) { 2690 /* 2691 * If read a whole block or read to eof, 2692 * won't need this buffer again soon. 2693 */ 2694 mutex_enter(&rp->r_statelock); 2695 if (n + on == MAXBSIZE || 2696 uiop->uio_loffset == rp->r_size) 2697 flags = SM_DONTNEED; 2698 else 2699 flags = 0; 2700 mutex_exit(&rp->r_statelock); 2701 if (vpm_enable) { 2702 error = vpm_sync_pages(vp, off, n, flags); 2703 } else { 2704 error = segmap_release(segkmap, base, flags); 2705 } 2706 } else { 2707 if (vpm_enable) { 2708 (void) vpm_sync_pages(vp, off, n, 0); 2709 } else { 2710 (void) segmap_release(segkmap, base, 0); 2711 } 2712 } 2713 } while (!error && uiop->uio_resid > 0); 2714 2715 return (error); 2716 } 2717 2718 /* ARGSUSED */ 2719 static int 2720 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2721 caller_context_t *ct) 2722 { 2723 rlim64_t limit = uiop->uio_llimit; 2724 rnode4_t *rp; 2725 u_offset_t off; 2726 caddr_t base; 2727 uint_t flags; 2728 int remainder; 2729 size_t n; 2730 int on; 2731 int error; 2732 int resid; 2733 u_offset_t offset; 2734 mntinfo4_t *mi; 2735 uint_t bsize; 2736 2737 rp = VTOR4(vp); 2738 2739 if (IS_SHADOW(vp, rp)) 2740 vp = RTOV4(rp); 2741 2742 if (vp->v_type != VREG) 2743 return (EISDIR); 2744 2745 mi = VTOMI4(vp); 2746 2747 if (nfs_zone() != mi->mi_zone) 2748 return (EIO); 2749 2750 if (uiop->uio_resid == 0) 2751 return (0); 2752 2753 mutex_enter(&rp->r_statelock); 2754 if (rp->r_flags & R4RECOVERRP) 2755 error = (rp->r_error ? rp->r_error : EIO); 2756 else 2757 error = 0; 2758 mutex_exit(&rp->r_statelock); 2759 if (error) 2760 return (error); 2761 2762 if (ioflag & FAPPEND) { 2763 struct vattr va; 2764 2765 /* 2766 * Must serialize if appending. 2767 */ 2768 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2769 nfs_rw_exit(&rp->r_rwlock); 2770 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2771 INTR4(vp))) 2772 return (EINTR); 2773 } 2774 2775 va.va_mask = AT_SIZE; 2776 error = nfs4getattr(vp, &va, cr); 2777 if (error) 2778 return (error); 2779 uiop->uio_loffset = va.va_size; 2780 } 2781 2782 offset = uiop->uio_loffset + uiop->uio_resid; 2783 2784 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2785 return (EINVAL); 2786 2787 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2788 limit = MAXOFFSET_T; 2789 2790 /* 2791 * Check to make sure that the process will not exceed 2792 * its limit on file size. It is okay to write up to 2793 * the limit, but not beyond. Thus, the write which 2794 * reaches the limit will be short and the next write 2795 * will return an error. 2796 */ 2797 remainder = 0; 2798 if (offset > uiop->uio_llimit) { 2799 remainder = offset - uiop->uio_llimit; 2800 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2801 if (uiop->uio_resid <= 0) { 2802 proc_t *p = ttoproc(curthread); 2803 2804 uiop->uio_resid += remainder; 2805 mutex_enter(&p->p_lock); 2806 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2807 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2808 mutex_exit(&p->p_lock); 2809 return (EFBIG); 2810 } 2811 } 2812 2813 /* update the change attribute, if we have a write delegation */ 2814 2815 mutex_enter(&rp->r_statev4_lock); 2816 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2817 rp->r_deleg_change++; 2818 2819 mutex_exit(&rp->r_statev4_lock); 2820 2821 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 2822 return (EINTR); 2823 2824 /* 2825 * Bypass VM if caching has been disabled (e.g., locking) or if 2826 * using client-side direct I/O and the file is not mmap'd and 2827 * there are no cached pages. 2828 */ 2829 if ((vp->v_flag & VNOCACHE) || 2830 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2831 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2832 size_t bufsize; 2833 int count; 2834 u_offset_t org_offset; 2835 stable_how4 stab_comm; 2836 nfs4_fwrite: 2837 if (rp->r_flags & R4STALE) { 2838 resid = uiop->uio_resid; 2839 offset = uiop->uio_loffset; 2840 error = rp->r_error; 2841 /* 2842 * A close may have cleared r_error, if so, 2843 * propagate ESTALE error return properly 2844 */ 2845 if (error == 0) 2846 error = ESTALE; 2847 goto bottom; 2848 } 2849 2850 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2851 base = kmem_alloc(bufsize, KM_SLEEP); 2852 do { 2853 if (ioflag & FDSYNC) 2854 stab_comm = DATA_SYNC4; 2855 else 2856 stab_comm = FILE_SYNC4; 2857 resid = uiop->uio_resid; 2858 offset = uiop->uio_loffset; 2859 count = MIN(uiop->uio_resid, bufsize); 2860 org_offset = uiop->uio_loffset; 2861 error = uiomove(base, count, UIO_WRITE, uiop); 2862 if (!error) { 2863 error = nfs4write(vp, base, org_offset, 2864 count, cr, &stab_comm); 2865 if (!error) { 2866 mutex_enter(&rp->r_statelock); 2867 if (rp->r_size < uiop->uio_loffset) 2868 rp->r_size = uiop->uio_loffset; 2869 mutex_exit(&rp->r_statelock); 2870 } 2871 } 2872 } while (!error && uiop->uio_resid > 0); 2873 kmem_free(base, bufsize); 2874 goto bottom; 2875 } 2876 2877 bsize = vp->v_vfsp->vfs_bsize; 2878 2879 do { 2880 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2881 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2882 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2883 2884 resid = uiop->uio_resid; 2885 offset = uiop->uio_loffset; 2886 2887 if (rp->r_flags & R4STALE) { 2888 error = rp->r_error; 2889 /* 2890 * A close may have cleared r_error, if so, 2891 * propagate ESTALE error return properly 2892 */ 2893 if (error == 0) 2894 error = ESTALE; 2895 break; 2896 } 2897 2898 /* 2899 * Don't create dirty pages faster than they 2900 * can be cleaned so that the system doesn't 2901 * get imbalanced. If the async queue is 2902 * maxed out, then wait for it to drain before 2903 * creating more dirty pages. Also, wait for 2904 * any threads doing pagewalks in the vop_getattr 2905 * entry points so that they don't block for 2906 * long periods. 2907 */ 2908 mutex_enter(&rp->r_statelock); 2909 while ((mi->mi_max_threads != 0 && 2910 rp->r_awcount > 2 * mi->mi_max_threads) || 2911 rp->r_gcount > 0) { 2912 if (INTR4(vp)) { 2913 klwp_t *lwp = ttolwp(curthread); 2914 2915 if (lwp != NULL) 2916 lwp->lwp_nostop++; 2917 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2918 mutex_exit(&rp->r_statelock); 2919 if (lwp != NULL) 2920 lwp->lwp_nostop--; 2921 error = EINTR; 2922 goto bottom; 2923 } 2924 if (lwp != NULL) 2925 lwp->lwp_nostop--; 2926 } else 2927 cv_wait(&rp->r_cv, &rp->r_statelock); 2928 } 2929 mutex_exit(&rp->r_statelock); 2930 2931 /* 2932 * Touch the page and fault it in if it is not in core 2933 * before segmap_getmapflt or vpm_data_copy can lock it. 2934 * This is to avoid the deadlock if the buffer is mapped 2935 * to the same file through mmap which we want to write. 2936 */ 2937 uio_prefaultpages((long)n, uiop); 2938 2939 if (vpm_enable) { 2940 /* 2941 * It will use kpm mappings, so no need to 2942 * pass an address. 2943 */ 2944 error = writerp4(rp, NULL, n, uiop, 0); 2945 } else { 2946 if (segmap_kpm) { 2947 int pon = uiop->uio_loffset & PAGEOFFSET; 2948 size_t pn = MIN(PAGESIZE - pon, 2949 uiop->uio_resid); 2950 int pagecreate; 2951 2952 mutex_enter(&rp->r_statelock); 2953 pagecreate = (pon == 0) && (pn == PAGESIZE || 2954 uiop->uio_loffset + pn >= rp->r_size); 2955 mutex_exit(&rp->r_statelock); 2956 2957 base = segmap_getmapflt(segkmap, vp, off + on, 2958 pn, !pagecreate, S_WRITE); 2959 2960 error = writerp4(rp, base + pon, n, uiop, 2961 pagecreate); 2962 2963 } else { 2964 base = segmap_getmapflt(segkmap, vp, off + on, 2965 n, 0, S_READ); 2966 error = writerp4(rp, base + on, n, uiop, 0); 2967 } 2968 } 2969 2970 if (!error) { 2971 if (mi->mi_flags & MI4_NOAC) 2972 flags = SM_WRITE; 2973 else if ((uiop->uio_loffset % bsize) == 0 || 2974 IS_SWAPVP(vp)) { 2975 /* 2976 * Have written a whole block. 2977 * Start an asynchronous write 2978 * and mark the buffer to 2979 * indicate that it won't be 2980 * needed again soon. 2981 */ 2982 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 2983 } else 2984 flags = 0; 2985 if ((ioflag & (FSYNC|FDSYNC)) || 2986 (rp->r_flags & R4OUTOFSPACE)) { 2987 flags &= ~SM_ASYNC; 2988 flags |= SM_WRITE; 2989 } 2990 if (vpm_enable) { 2991 error = vpm_sync_pages(vp, off, n, flags); 2992 } else { 2993 error = segmap_release(segkmap, base, flags); 2994 } 2995 } else { 2996 if (vpm_enable) { 2997 (void) vpm_sync_pages(vp, off, n, 0); 2998 } else { 2999 (void) segmap_release(segkmap, base, 0); 3000 } 3001 /* 3002 * In the event that we got an access error while 3003 * faulting in a page for a write-only file just 3004 * force a write. 3005 */ 3006 if (error == EACCES) 3007 goto nfs4_fwrite; 3008 } 3009 } while (!error && uiop->uio_resid > 0); 3010 3011 bottom: 3012 if (error) { 3013 uiop->uio_resid = resid + remainder; 3014 uiop->uio_loffset = offset; 3015 } else { 3016 uiop->uio_resid += remainder; 3017 3018 mutex_enter(&rp->r_statev4_lock); 3019 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 3020 gethrestime(&rp->r_attr.va_mtime); 3021 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3022 } 3023 mutex_exit(&rp->r_statev4_lock); 3024 } 3025 3026 nfs_rw_exit(&rp->r_lkserlock); 3027 3028 return (error); 3029 } 3030 3031 /* 3032 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 3033 */ 3034 static int 3035 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 3036 int flags, cred_t *cr) 3037 { 3038 struct buf *bp; 3039 int error; 3040 page_t *savepp; 3041 uchar_t fsdata; 3042 stable_how4 stab_comm; 3043 3044 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3045 bp = pageio_setup(pp, len, vp, flags); 3046 ASSERT(bp != NULL); 3047 3048 /* 3049 * pageio_setup should have set b_addr to 0. This 3050 * is correct since we want to do I/O on a page 3051 * boundary. bp_mapin will use this addr to calculate 3052 * an offset, and then set b_addr to the kernel virtual 3053 * address it allocated for us. 3054 */ 3055 ASSERT(bp->b_un.b_addr == 0); 3056 3057 bp->b_edev = 0; 3058 bp->b_dev = 0; 3059 bp->b_lblkno = lbtodb(off); 3060 bp->b_file = vp; 3061 bp->b_offset = (offset_t)off; 3062 bp_mapin(bp); 3063 3064 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 3065 freemem > desfree) 3066 stab_comm = UNSTABLE4; 3067 else 3068 stab_comm = FILE_SYNC4; 3069 3070 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 3071 3072 bp_mapout(bp); 3073 pageio_done(bp); 3074 3075 if (stab_comm == UNSTABLE4) 3076 fsdata = C_DELAYCOMMIT; 3077 else 3078 fsdata = C_NOCOMMIT; 3079 3080 savepp = pp; 3081 do { 3082 pp->p_fsdata = fsdata; 3083 } while ((pp = pp->p_next) != savepp); 3084 3085 return (error); 3086 } 3087 3088 /* 3089 */ 3090 static int 3091 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 3092 { 3093 nfs4_open_owner_t *oop; 3094 nfs4_open_stream_t *osp; 3095 rnode4_t *rp = VTOR4(vp); 3096 mntinfo4_t *mi = VTOMI4(vp); 3097 int reopen_needed; 3098 3099 ASSERT(nfs_zone() == mi->mi_zone); 3100 3101 3102 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 3103 if (!oop) 3104 return (EIO); 3105 3106 /* returns with 'os_sync_lock' held */ 3107 osp = find_open_stream(oop, rp); 3108 if (!osp) { 3109 open_owner_rele(oop); 3110 return (EIO); 3111 } 3112 3113 if (osp->os_failed_reopen) { 3114 mutex_exit(&osp->os_sync_lock); 3115 open_stream_rele(osp, rp); 3116 open_owner_rele(oop); 3117 return (EIO); 3118 } 3119 3120 /* 3121 * Determine whether a reopen is needed. If this 3122 * is a delegation open stream, then the os_delegation bit 3123 * should be set. 3124 */ 3125 3126 reopen_needed = osp->os_delegation; 3127 3128 mutex_exit(&osp->os_sync_lock); 3129 open_owner_rele(oop); 3130 3131 if (reopen_needed) { 3132 nfs4_error_zinit(ep); 3133 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 3134 mutex_enter(&osp->os_sync_lock); 3135 if (ep->error || ep->stat || osp->os_failed_reopen) { 3136 mutex_exit(&osp->os_sync_lock); 3137 open_stream_rele(osp, rp); 3138 return (EIO); 3139 } 3140 mutex_exit(&osp->os_sync_lock); 3141 } 3142 open_stream_rele(osp, rp); 3143 3144 return (0); 3145 } 3146 3147 /* 3148 * Write to file. Writes to remote server in largest size 3149 * chunks that the server can handle. Write is synchronous. 3150 */ 3151 static int 3152 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3153 stable_how4 *stab_comm) 3154 { 3155 mntinfo4_t *mi; 3156 COMPOUND4args_clnt args; 3157 COMPOUND4res_clnt res; 3158 WRITE4args *wargs; 3159 WRITE4res *wres; 3160 nfs_argop4 argop[2]; 3161 nfs_resop4 *resop; 3162 int tsize; 3163 stable_how4 stable; 3164 rnode4_t *rp; 3165 int doqueue = 1; 3166 bool_t needrecov; 3167 nfs4_recov_state_t recov_state; 3168 nfs4_stateid_types_t sid_types; 3169 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3170 int recov; 3171 3172 rp = VTOR4(vp); 3173 mi = VTOMI4(vp); 3174 3175 ASSERT(nfs_zone() == mi->mi_zone); 3176 3177 stable = *stab_comm; 3178 *stab_comm = FILE_SYNC4; 3179 3180 needrecov = FALSE; 3181 recov_state.rs_flags = 0; 3182 recov_state.rs_num_retry_despite_err = 0; 3183 nfs4_init_stateid_types(&sid_types); 3184 3185 /* Is curthread the recovery thread? */ 3186 mutex_enter(&mi->mi_lock); 3187 recov = (mi->mi_recovthread == curthread); 3188 mutex_exit(&mi->mi_lock); 3189 3190 recov_retry: 3191 args.ctag = TAG_WRITE; 3192 args.array_len = 2; 3193 args.array = argop; 3194 3195 if (!recov) { 3196 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3197 &recov_state, NULL); 3198 if (e.error) 3199 return (e.error); 3200 } 3201 3202 /* 0. putfh target fh */ 3203 argop[0].argop = OP_CPUTFH; 3204 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3205 3206 /* 1. write */ 3207 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3208 3209 do { 3210 3211 wargs->offset = (offset4)offset; 3212 wargs->data_val = base; 3213 3214 if (mi->mi_io_kstats) { 3215 mutex_enter(&mi->mi_lock); 3216 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3217 mutex_exit(&mi->mi_lock); 3218 } 3219 3220 if ((vp->v_flag & VNOCACHE) || 3221 (rp->r_flags & R4DIRECTIO) || 3222 (mi->mi_flags & MI4_DIRECTIO)) 3223 tsize = MIN(mi->mi_stsize, count); 3224 else 3225 tsize = MIN(mi->mi_curwrite, count); 3226 wargs->data_len = (uint_t)tsize; 3227 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3228 3229 if (mi->mi_io_kstats) { 3230 mutex_enter(&mi->mi_lock); 3231 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3232 mutex_exit(&mi->mi_lock); 3233 } 3234 3235 if (!recov) { 3236 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3237 if (e.error && !needrecov) { 3238 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3239 &recov_state, needrecov); 3240 return (e.error); 3241 } 3242 } else { 3243 if (e.error) 3244 return (e.error); 3245 } 3246 3247 /* 3248 * Do handling of OLD_STATEID outside 3249 * of the normal recovery framework. 3250 * 3251 * If write receives a BAD stateid error while using a 3252 * delegation stateid, retry using the open stateid (if it 3253 * exists). If it doesn't have an open stateid, reopen the 3254 * file first, then retry. 3255 */ 3256 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3257 sid_types.cur_sid_type != SPEC_SID) { 3258 nfs4_save_stateid(&wargs->stateid, &sid_types); 3259 if (!recov) 3260 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3261 &recov_state, needrecov); 3262 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3263 goto recov_retry; 3264 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3265 sid_types.cur_sid_type == DEL_SID) { 3266 nfs4_save_stateid(&wargs->stateid, &sid_types); 3267 mutex_enter(&rp->r_statev4_lock); 3268 rp->r_deleg_return_pending = TRUE; 3269 mutex_exit(&rp->r_statev4_lock); 3270 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3271 if (!recov) 3272 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3273 &recov_state, needrecov); 3274 (void) xdr_free(xdr_COMPOUND4res_clnt, 3275 (caddr_t)&res); 3276 return (EIO); 3277 } 3278 if (!recov) 3279 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3280 &recov_state, needrecov); 3281 /* hold needed for nfs4delegreturn_thread */ 3282 VN_HOLD(vp); 3283 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3284 NFS4_DR_DISCARD), FALSE); 3285 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3286 goto recov_retry; 3287 } 3288 3289 if (needrecov) { 3290 bool_t abort; 3291 3292 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3293 "nfs4write: client got error %d, res.status %d" 3294 ", so start recovery", e.error, res.status)); 3295 3296 abort = nfs4_start_recovery(&e, 3297 VTOMI4(vp), vp, NULL, &wargs->stateid, 3298 NULL, OP_WRITE, NULL, NULL, NULL); 3299 if (!e.error) { 3300 e.error = geterrno4(res.status); 3301 (void) xdr_free(xdr_COMPOUND4res_clnt, 3302 (caddr_t)&res); 3303 } 3304 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3305 &recov_state, needrecov); 3306 if (abort == FALSE) 3307 goto recov_retry; 3308 return (e.error); 3309 } 3310 3311 if (res.status) { 3312 e.error = geterrno4(res.status); 3313 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3314 if (!recov) 3315 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3316 &recov_state, needrecov); 3317 return (e.error); 3318 } 3319 3320 resop = &res.array[1]; /* write res */ 3321 wres = &resop->nfs_resop4_u.opwrite; 3322 3323 if ((int)wres->count > tsize) { 3324 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3325 3326 zcmn_err(getzoneid(), CE_WARN, 3327 "nfs4write: server wrote %u, requested was %u", 3328 (int)wres->count, tsize); 3329 if (!recov) 3330 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3331 &recov_state, needrecov); 3332 return (EIO); 3333 } 3334 if (wres->committed == UNSTABLE4) { 3335 *stab_comm = UNSTABLE4; 3336 if (wargs->stable == DATA_SYNC4 || 3337 wargs->stable == FILE_SYNC4) { 3338 (void) xdr_free(xdr_COMPOUND4res_clnt, 3339 (caddr_t)&res); 3340 zcmn_err(getzoneid(), CE_WARN, 3341 "nfs4write: server %s did not commit " 3342 "to stable storage", 3343 rp->r_server->sv_hostname); 3344 if (!recov) 3345 nfs4_end_fop(VTOMI4(vp), vp, NULL, 3346 OH_WRITE, &recov_state, needrecov); 3347 return (EIO); 3348 } 3349 } 3350 3351 tsize = (int)wres->count; 3352 count -= tsize; 3353 base += tsize; 3354 offset += tsize; 3355 if (mi->mi_io_kstats) { 3356 mutex_enter(&mi->mi_lock); 3357 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3358 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3359 tsize; 3360 mutex_exit(&mi->mi_lock); 3361 } 3362 lwp_stat_update(LWP_STAT_OUBLK, 1); 3363 mutex_enter(&rp->r_statelock); 3364 if (rp->r_flags & R4HAVEVERF) { 3365 if (rp->r_writeverf != wres->writeverf) { 3366 nfs4_set_mod(vp); 3367 rp->r_writeverf = wres->writeverf; 3368 } 3369 } else { 3370 rp->r_writeverf = wres->writeverf; 3371 rp->r_flags |= R4HAVEVERF; 3372 } 3373 PURGE_ATTRCACHE4_LOCKED(rp); 3374 rp->r_flags |= R4WRITEMODIFIED; 3375 gethrestime(&rp->r_attr.va_mtime); 3376 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3377 mutex_exit(&rp->r_statelock); 3378 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3379 } while (count); 3380 3381 if (!recov) 3382 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, 3383 needrecov); 3384 3385 return (e.error); 3386 } 3387 3388 /* 3389 * Read from a file. Reads data in largest chunks our interface can handle. 3390 */ 3391 static int 3392 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3393 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3394 { 3395 mntinfo4_t *mi; 3396 COMPOUND4args_clnt args; 3397 COMPOUND4res_clnt res; 3398 READ4args *rargs; 3399 nfs_argop4 argop[2]; 3400 int tsize; 3401 int doqueue; 3402 rnode4_t *rp; 3403 int data_len; 3404 bool_t is_eof; 3405 bool_t needrecov = FALSE; 3406 nfs4_recov_state_t recov_state; 3407 nfs4_stateid_types_t sid_types; 3408 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3409 3410 rp = VTOR4(vp); 3411 mi = VTOMI4(vp); 3412 doqueue = 1; 3413 3414 ASSERT(nfs_zone() == mi->mi_zone); 3415 3416 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3417 3418 args.array_len = 2; 3419 args.array = argop; 3420 3421 nfs4_init_stateid_types(&sid_types); 3422 3423 recov_state.rs_flags = 0; 3424 recov_state.rs_num_retry_despite_err = 0; 3425 3426 recov_retry: 3427 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3428 &recov_state, NULL); 3429 if (e.error) 3430 return (e.error); 3431 3432 /* putfh target fh */ 3433 argop[0].argop = OP_CPUTFH; 3434 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3435 3436 /* read */ 3437 argop[1].argop = OP_READ; 3438 rargs = &argop[1].nfs_argop4_u.opread; 3439 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3440 OP_READ, &sid_types, async); 3441 3442 do { 3443 if (mi->mi_io_kstats) { 3444 mutex_enter(&mi->mi_lock); 3445 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3446 mutex_exit(&mi->mi_lock); 3447 } 3448 3449 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3450 "nfs4read: %s call, rp %s", 3451 needrecov ? "recov" : "first", 3452 rnode4info(rp))); 3453 3454 if ((vp->v_flag & VNOCACHE) || 3455 (rp->r_flags & R4DIRECTIO) || 3456 (mi->mi_flags & MI4_DIRECTIO)) 3457 tsize = MIN(mi->mi_tsize, count); 3458 else 3459 tsize = MIN(mi->mi_curread, count); 3460 3461 rargs->offset = (offset4)offset; 3462 rargs->count = (count4)tsize; 3463 rargs->res_data_val_alt = NULL; 3464 rargs->res_mblk = NULL; 3465 rargs->res_uiop = NULL; 3466 rargs->res_maxsize = 0; 3467 rargs->wlist = NULL; 3468 3469 if (uiop) 3470 rargs->res_uiop = uiop; 3471 else 3472 rargs->res_data_val_alt = base; 3473 rargs->res_maxsize = tsize; 3474 3475 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3476 #ifdef DEBUG 3477 if (nfs4read_error_inject) { 3478 res.status = nfs4read_error_inject; 3479 nfs4read_error_inject = 0; 3480 } 3481 #endif 3482 3483 if (mi->mi_io_kstats) { 3484 mutex_enter(&mi->mi_lock); 3485 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3486 mutex_exit(&mi->mi_lock); 3487 } 3488 3489 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3490 if (e.error != 0 && !needrecov) { 3491 nfs4_end_fop(mi, vp, NULL, OH_READ, 3492 &recov_state, needrecov); 3493 return (e.error); 3494 } 3495 3496 /* 3497 * Do proper retry for OLD and BAD stateid errors outside 3498 * of the normal recovery framework. There are two differences 3499 * between async and sync reads. The first is that we allow 3500 * retry on BAD_STATEID for async reads, but not sync reads. 3501 * The second is that we mark the file dead for a failed 3502 * attempt with a special stateid for sync reads, but just 3503 * return EIO for async reads. 3504 * 3505 * If a sync read receives a BAD stateid error while using a 3506 * delegation stateid, retry using the open stateid (if it 3507 * exists). If it doesn't have an open stateid, reopen the 3508 * file first, then retry. 3509 */ 3510 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3511 res.status == NFS4ERR_BAD_STATEID) && async) { 3512 nfs4_end_fop(mi, vp, NULL, OH_READ, 3513 &recov_state, needrecov); 3514 if (sid_types.cur_sid_type == SPEC_SID) { 3515 (void) xdr_free(xdr_COMPOUND4res_clnt, 3516 (caddr_t)&res); 3517 return (EIO); 3518 } 3519 nfs4_save_stateid(&rargs->stateid, &sid_types); 3520 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3521 goto recov_retry; 3522 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3523 !async && sid_types.cur_sid_type != SPEC_SID) { 3524 nfs4_save_stateid(&rargs->stateid, &sid_types); 3525 nfs4_end_fop(mi, vp, NULL, OH_READ, 3526 &recov_state, needrecov); 3527 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3528 goto recov_retry; 3529 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3530 sid_types.cur_sid_type == DEL_SID) { 3531 nfs4_save_stateid(&rargs->stateid, &sid_types); 3532 mutex_enter(&rp->r_statev4_lock); 3533 rp->r_deleg_return_pending = TRUE; 3534 mutex_exit(&rp->r_statev4_lock); 3535 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3536 nfs4_end_fop(mi, vp, NULL, OH_READ, 3537 &recov_state, needrecov); 3538 (void) xdr_free(xdr_COMPOUND4res_clnt, 3539 (caddr_t)&res); 3540 return (EIO); 3541 } 3542 nfs4_end_fop(mi, vp, NULL, OH_READ, 3543 &recov_state, needrecov); 3544 /* hold needed for nfs4delegreturn_thread */ 3545 VN_HOLD(vp); 3546 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3547 NFS4_DR_DISCARD), FALSE); 3548 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3549 goto recov_retry; 3550 } 3551 if (needrecov) { 3552 bool_t abort; 3553 3554 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3555 "nfs4read: initiating recovery\n")); 3556 abort = nfs4_start_recovery(&e, 3557 mi, vp, NULL, &rargs->stateid, 3558 NULL, OP_READ, NULL, NULL, NULL); 3559 nfs4_end_fop(mi, vp, NULL, OH_READ, 3560 &recov_state, needrecov); 3561 /* 3562 * Do not retry if we got OLD_STATEID using a special 3563 * stateid. This avoids looping with a broken server. 3564 */ 3565 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3566 sid_types.cur_sid_type == SPEC_SID) 3567 abort = TRUE; 3568 3569 if (abort == FALSE) { 3570 /* 3571 * Need to retry all possible stateids in 3572 * case the recovery error wasn't stateid 3573 * related or the stateids have become 3574 * stale (server reboot). 3575 */ 3576 nfs4_init_stateid_types(&sid_types); 3577 (void) xdr_free(xdr_COMPOUND4res_clnt, 3578 (caddr_t)&res); 3579 goto recov_retry; 3580 } 3581 3582 if (!e.error) { 3583 e.error = geterrno4(res.status); 3584 (void) xdr_free(xdr_COMPOUND4res_clnt, 3585 (caddr_t)&res); 3586 } 3587 return (e.error); 3588 } 3589 3590 if (res.status) { 3591 e.error = geterrno4(res.status); 3592 nfs4_end_fop(mi, vp, NULL, OH_READ, 3593 &recov_state, needrecov); 3594 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3595 return (e.error); 3596 } 3597 3598 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3599 count -= data_len; 3600 if (base) 3601 base += data_len; 3602 offset += data_len; 3603 if (mi->mi_io_kstats) { 3604 mutex_enter(&mi->mi_lock); 3605 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3606 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3607 mutex_exit(&mi->mi_lock); 3608 } 3609 lwp_stat_update(LWP_STAT_INBLK, 1); 3610 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3611 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3612 3613 } while (count && !is_eof); 3614 3615 *residp = count; 3616 3617 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3618 3619 return (e.error); 3620 } 3621 3622 /* ARGSUSED */ 3623 static int 3624 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 3625 caller_context_t *ct) 3626 { 3627 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3628 return (EIO); 3629 switch (cmd) { 3630 case _FIODIRECTIO: 3631 return (nfs4_directio(vp, (int)arg, cr)); 3632 default: 3633 return (ENOTTY); 3634 } 3635 } 3636 3637 /* ARGSUSED */ 3638 int 3639 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3640 caller_context_t *ct) 3641 { 3642 int error; 3643 rnode4_t *rp = VTOR4(vp); 3644 3645 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3646 return (EIO); 3647 /* 3648 * If it has been specified that the return value will 3649 * just be used as a hint, and we are only being asked 3650 * for size, fsid or rdevid, then return the client's 3651 * notion of these values without checking to make sure 3652 * that the attribute cache is up to date. 3653 * The whole point is to avoid an over the wire GETATTR 3654 * call. 3655 */ 3656 if (flags & ATTR_HINT) { 3657 if (!(vap->va_mask & ~(AT_SIZE | AT_FSID | AT_RDEV))) { 3658 mutex_enter(&rp->r_statelock); 3659 if (vap->va_mask & AT_SIZE) 3660 vap->va_size = rp->r_size; 3661 if (vap->va_mask & AT_FSID) 3662 vap->va_fsid = rp->r_attr.va_fsid; 3663 if (vap->va_mask & AT_RDEV) 3664 vap->va_rdev = rp->r_attr.va_rdev; 3665 mutex_exit(&rp->r_statelock); 3666 return (0); 3667 } 3668 } 3669 3670 /* 3671 * Only need to flush pages if asking for the mtime 3672 * and if there any dirty pages or any outstanding 3673 * asynchronous (write) requests for this file. 3674 */ 3675 if (vap->va_mask & AT_MTIME) { 3676 rp = VTOR4(vp); 3677 if (nfs4_has_pages(vp)) { 3678 mutex_enter(&rp->r_statev4_lock); 3679 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3680 mutex_exit(&rp->r_statev4_lock); 3681 if (rp->r_flags & R4DIRTY || 3682 rp->r_awcount > 0) { 3683 mutex_enter(&rp->r_statelock); 3684 rp->r_gcount++; 3685 mutex_exit(&rp->r_statelock); 3686 error = 3687 nfs4_putpage(vp, (u_offset_t)0, 3688 0, 0, cr, NULL); 3689 mutex_enter(&rp->r_statelock); 3690 if (error && (error == ENOSPC || 3691 error == EDQUOT)) { 3692 if (!rp->r_error) 3693 rp->r_error = error; 3694 } 3695 if (--rp->r_gcount == 0) 3696 cv_broadcast(&rp->r_cv); 3697 mutex_exit(&rp->r_statelock); 3698 } 3699 } else { 3700 mutex_exit(&rp->r_statev4_lock); 3701 } 3702 } 3703 } 3704 return (nfs4getattr(vp, vap, cr)); 3705 } 3706 3707 int 3708 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3709 { 3710 /* 3711 * If these are the only two bits cleared 3712 * on the server then return 0 (OK) else 3713 * return 1 (BAD). 3714 */ 3715 on_client &= ~(S_ISUID|S_ISGID); 3716 if (on_client == from_server) 3717 return (0); 3718 else 3719 return (1); 3720 } 3721 3722 /*ARGSUSED4*/ 3723 static int 3724 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3725 caller_context_t *ct) 3726 { 3727 int error; 3728 3729 if (vap->va_mask & AT_NOSET) 3730 return (EINVAL); 3731 3732 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3733 return (EIO); 3734 3735 /* 3736 * Don't call secpolicy_vnode_setattr, the client cannot 3737 * use its cached attributes to make security decisions 3738 * as the server may be faking mode bits or mapping uid/gid. 3739 * Always just let the server to the checking. 3740 * If we provide the ability to remove basic priviledges 3741 * to setattr (e.g. basic without chmod) then we will 3742 * need to add a check here before calling the server. 3743 */ 3744 error = nfs4setattr(vp, vap, flags, cr, NULL); 3745 3746 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0) 3747 vnevent_truncate(vp, ct); 3748 3749 return (error); 3750 } 3751 3752 /* 3753 * To replace the "guarded" version 3 setattr, we use two types of compound 3754 * setattr requests: 3755 * 1. The "normal" setattr, used when the size of the file isn't being 3756 * changed - { Putfh <fh>; Setattr; Getattr }/ 3757 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3758 * with only ctime as the argument. If the server ctime differs from 3759 * what is cached on the client, the verify will fail, but we would 3760 * already have the ctime from the preceding getattr, so just set it 3761 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3762 * Setattr; Getattr }. 3763 * 3764 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3765 * this setattr and NULL if they are not. 3766 */ 3767 static int 3768 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3769 vsecattr_t *vsap) 3770 { 3771 COMPOUND4args_clnt args; 3772 COMPOUND4res_clnt res, *resp = NULL; 3773 nfs4_ga_res_t *garp = NULL; 3774 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3775 nfs_argop4 argop[5]; 3776 int verify_argop = -1; 3777 int setattr_argop = 1; 3778 nfs_resop4 *resop; 3779 vattr_t va; 3780 rnode4_t *rp; 3781 int doqueue = 1; 3782 uint_t mask = vap->va_mask; 3783 mode_t omode; 3784 vsecattr_t *vsp; 3785 timestruc_t ctime; 3786 bool_t needrecov = FALSE; 3787 nfs4_recov_state_t recov_state; 3788 nfs4_stateid_types_t sid_types; 3789 stateid4 stateid; 3790 hrtime_t t; 3791 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3792 servinfo4_t *svp; 3793 bitmap4 supp_attrs; 3794 3795 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3796 rp = VTOR4(vp); 3797 nfs4_init_stateid_types(&sid_types); 3798 3799 /* 3800 * Only need to flush pages if there are any pages and 3801 * if the file is marked as dirty in some fashion. The 3802 * file must be flushed so that we can accurately 3803 * determine the size of the file and the cached data 3804 * after the SETATTR returns. A file is considered to 3805 * be dirty if it is either marked with R4DIRTY, has 3806 * outstanding i/o's active, or is mmap'd. In this 3807 * last case, we can't tell whether there are dirty 3808 * pages, so we flush just to be sure. 3809 */ 3810 if (nfs4_has_pages(vp) && 3811 ((rp->r_flags & R4DIRTY) || 3812 rp->r_count > 0 || 3813 rp->r_mapcnt > 0)) { 3814 ASSERT(vp->v_type != VCHR); 3815 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 3816 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3817 mutex_enter(&rp->r_statelock); 3818 if (!rp->r_error) 3819 rp->r_error = e.error; 3820 mutex_exit(&rp->r_statelock); 3821 } 3822 } 3823 3824 if (mask & AT_SIZE) { 3825 /* 3826 * Verification setattr compound for non-deleg AT_SIZE: 3827 * { Putfh; Getattr; Verify; Setattr; Getattr } 3828 * Set ctime local here (outside the do_again label) 3829 * so that subsequent retries (after failed VERIFY) 3830 * will use ctime from GETATTR results (from failed 3831 * verify compound) as VERIFY arg. 3832 * If file has delegation, then VERIFY(time_metadata) 3833 * is of little added value, so don't bother. 3834 */ 3835 mutex_enter(&rp->r_statev4_lock); 3836 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3837 rp->r_deleg_return_pending) { 3838 numops = 5; 3839 ctime = rp->r_attr.va_ctime; 3840 } 3841 mutex_exit(&rp->r_statev4_lock); 3842 } 3843 3844 recov_state.rs_flags = 0; 3845 recov_state.rs_num_retry_despite_err = 0; 3846 3847 args.ctag = TAG_SETATTR; 3848 do_again: 3849 recov_retry: 3850 setattr_argop = numops - 2; 3851 3852 args.array = argop; 3853 args.array_len = numops; 3854 3855 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3856 if (e.error) 3857 return (e.error); 3858 3859 3860 /* putfh target fh */ 3861 argop[0].argop = OP_CPUTFH; 3862 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3863 3864 if (numops == 5) { 3865 /* 3866 * We only care about the ctime, but need to get mtime 3867 * and size for proper cache update. 3868 */ 3869 /* getattr */ 3870 argop[1].argop = OP_GETATTR; 3871 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3872 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3873 3874 /* verify - set later in loop */ 3875 verify_argop = 2; 3876 } 3877 3878 /* setattr */ 3879 svp = rp->r_server; 3880 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3881 supp_attrs = svp->sv_supp_attrs; 3882 nfs_rw_exit(&svp->sv_lock); 3883 3884 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3885 supp_attrs, &e.error, &sid_types); 3886 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3887 if (e.error) { 3888 /* req time field(s) overflow - return immediately */ 3889 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3890 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3891 opsetattr.obj_attributes); 3892 return (e.error); 3893 } 3894 omode = rp->r_attr.va_mode; 3895 3896 /* getattr */ 3897 argop[numops-1].argop = OP_GETATTR; 3898 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3899 /* 3900 * If we are setting the ACL (indicated only by vsap != NULL), request 3901 * the ACL in this getattr. The ACL returned from this getattr will be 3902 * used in updating the ACL cache. 3903 */ 3904 if (vsap != NULL) 3905 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3906 FATTR4_ACL_MASK; 3907 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3908 3909 /* 3910 * setattr iterates if the object size is set and the cached ctime 3911 * does not match the file ctime. In that case, verify the ctime first. 3912 */ 3913 3914 do { 3915 if (verify_argop != -1) { 3916 /* 3917 * Verify that the ctime match before doing setattr. 3918 */ 3919 va.va_mask = AT_CTIME; 3920 va.va_ctime = ctime; 3921 svp = rp->r_server; 3922 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3923 supp_attrs = svp->sv_supp_attrs; 3924 nfs_rw_exit(&svp->sv_lock); 3925 e.error = nfs4args_verify(&argop[verify_argop], &va, 3926 OP_VERIFY, supp_attrs); 3927 if (e.error) { 3928 /* req time field(s) overflow - return */ 3929 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3930 needrecov); 3931 break; 3932 } 3933 } 3934 3935 doqueue = 1; 3936 3937 t = gethrtime(); 3938 3939 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3940 3941 /* 3942 * Purge the access cache and ACL cache if changing either the 3943 * owner of the file, the group owner, or the mode. These may 3944 * change the access permissions of the file, so purge old 3945 * information and start over again. 3946 */ 3947 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3948 (void) nfs4_access_purge_rp(rp); 3949 if (rp->r_secattr != NULL) { 3950 mutex_enter(&rp->r_statelock); 3951 vsp = rp->r_secattr; 3952 rp->r_secattr = NULL; 3953 mutex_exit(&rp->r_statelock); 3954 if (vsp != NULL) 3955 nfs4_acl_free_cache(vsp); 3956 } 3957 } 3958 3959 /* 3960 * If res.array_len == numops, then everything succeeded, 3961 * except for possibly the final getattr. If only the 3962 * last getattr failed, give up, and don't try recovery. 3963 */ 3964 if (res.array_len == numops) { 3965 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3966 needrecov); 3967 if (! e.error) 3968 resp = &res; 3969 break; 3970 } 3971 3972 /* 3973 * if either rpc call failed or completely succeeded - done 3974 */ 3975 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3976 if (e.error) { 3977 PURGE_ATTRCACHE4(vp); 3978 if (!needrecov) { 3979 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3980 needrecov); 3981 break; 3982 } 3983 } 3984 3985 /* 3986 * Do proper retry for OLD_STATEID outside of the normal 3987 * recovery framework. 3988 */ 3989 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3990 sid_types.cur_sid_type != SPEC_SID && 3991 sid_types.cur_sid_type != NO_SID) { 3992 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3993 needrecov); 3994 nfs4_save_stateid(&stateid, &sid_types); 3995 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3996 opsetattr.obj_attributes); 3997 if (verify_argop != -1) { 3998 nfs4args_verify_free(&argop[verify_argop]); 3999 verify_argop = -1; 4000 } 4001 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4002 goto recov_retry; 4003 } 4004 4005 if (needrecov) { 4006 bool_t abort; 4007 4008 abort = nfs4_start_recovery(&e, 4009 VTOMI4(vp), vp, NULL, NULL, NULL, 4010 OP_SETATTR, NULL, NULL, NULL); 4011 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4012 needrecov); 4013 /* 4014 * Do not retry if we failed with OLD_STATEID using 4015 * a special stateid. This is done to avoid looping 4016 * with a broken server. 4017 */ 4018 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 4019 (sid_types.cur_sid_type == SPEC_SID || 4020 sid_types.cur_sid_type == NO_SID)) 4021 abort = TRUE; 4022 if (!e.error) { 4023 if (res.status == NFS4ERR_BADOWNER) 4024 nfs4_log_badowner(VTOMI4(vp), 4025 OP_SETATTR); 4026 4027 e.error = geterrno4(res.status); 4028 (void) xdr_free(xdr_COMPOUND4res_clnt, 4029 (caddr_t)&res); 4030 } 4031 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4032 opsetattr.obj_attributes); 4033 if (verify_argop != -1) { 4034 nfs4args_verify_free(&argop[verify_argop]); 4035 verify_argop = -1; 4036 } 4037 if (abort == FALSE) { 4038 /* 4039 * Need to retry all possible stateids in 4040 * case the recovery error wasn't stateid 4041 * related or the stateids have become 4042 * stale (server reboot). 4043 */ 4044 nfs4_init_stateid_types(&sid_types); 4045 goto recov_retry; 4046 } 4047 return (e.error); 4048 } 4049 4050 /* 4051 * Need to call nfs4_end_op before nfs4getattr to 4052 * avoid potential nfs4_start_op deadlock. See RFE 4053 * 4777612. Calls to nfs4_invalidate_pages() and 4054 * nfs4_purge_stale_fh() might also generate over the 4055 * wire calls which my cause nfs4_start_op() deadlock. 4056 */ 4057 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4058 4059 /* 4060 * Check to update lease. 4061 */ 4062 resp = &res; 4063 if (res.status == NFS4_OK) { 4064 break; 4065 } 4066 4067 /* 4068 * Check if verify failed to see if try again 4069 */ 4070 if ((verify_argop == -1) || (res.array_len != 3)) { 4071 /* 4072 * can't continue... 4073 */ 4074 if (res.status == NFS4ERR_BADOWNER) 4075 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 4076 4077 e.error = geterrno4(res.status); 4078 } else { 4079 /* 4080 * When the verify request fails, the client ctime is 4081 * not in sync with the server. This is the same as 4082 * the version 3 "not synchronized" error, and we 4083 * handle it in a similar manner (XXX do we need to???). 4084 * Use the ctime returned in the first getattr for 4085 * the input to the next verify. 4086 * If we couldn't get the attributes, then we give up 4087 * because we can't complete the operation as required. 4088 */ 4089 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 4090 } 4091 if (e.error) { 4092 PURGE_ATTRCACHE4(vp); 4093 nfs4_purge_stale_fh(e.error, vp, cr); 4094 } else { 4095 /* 4096 * retry with a new verify value 4097 */ 4098 ctime = garp->n4g_va.va_ctime; 4099 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4100 resp = NULL; 4101 } 4102 if (!e.error) { 4103 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4104 opsetattr.obj_attributes); 4105 if (verify_argop != -1) { 4106 nfs4args_verify_free(&argop[verify_argop]); 4107 verify_argop = -1; 4108 } 4109 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4110 goto do_again; 4111 } 4112 } while (!e.error); 4113 4114 if (e.error) { 4115 /* 4116 * If we are here, rfs4call has an irrecoverable error - return 4117 */ 4118 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4119 opsetattr.obj_attributes); 4120 if (verify_argop != -1) { 4121 nfs4args_verify_free(&argop[verify_argop]); 4122 verify_argop = -1; 4123 } 4124 if (resp) 4125 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4126 return (e.error); 4127 } 4128 4129 4130 4131 /* 4132 * If changing the size of the file, invalidate 4133 * any local cached data which is no longer part 4134 * of the file. We also possibly invalidate the 4135 * last page in the file. We could use 4136 * pvn_vpzero(), but this would mark the page as 4137 * modified and require it to be written back to 4138 * the server for no particularly good reason. 4139 * This way, if we access it, then we bring it 4140 * back in. A read should be cheaper than a 4141 * write. 4142 */ 4143 if (mask & AT_SIZE) { 4144 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 4145 } 4146 4147 /* either no error or one of the postop getattr failed */ 4148 4149 /* 4150 * XXX Perform a simplified version of wcc checking. Instead of 4151 * have another getattr to get pre-op, just purge cache if 4152 * any of the ops prior to and including the getattr failed. 4153 * If the getattr succeeded then update the attrcache accordingly. 4154 */ 4155 4156 garp = NULL; 4157 if (res.status == NFS4_OK) { 4158 /* 4159 * Last getattr 4160 */ 4161 resop = &res.array[numops - 1]; 4162 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4163 } 4164 /* 4165 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 4166 * rather than filling it. See the function itself for details. 4167 */ 4168 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4169 if (garp != NULL) { 4170 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 4171 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 4172 vs_ace4_destroy(&garp->n4g_vsa); 4173 } else { 4174 if (vsap != NULL) { 4175 /* 4176 * The ACL was supposed to be set and to be 4177 * returned in the last getattr of this 4178 * compound, but for some reason the getattr 4179 * result doesn't contain the ACL. In this 4180 * case, purge the ACL cache. 4181 */ 4182 if (rp->r_secattr != NULL) { 4183 mutex_enter(&rp->r_statelock); 4184 vsp = rp->r_secattr; 4185 rp->r_secattr = NULL; 4186 mutex_exit(&rp->r_statelock); 4187 if (vsp != NULL) 4188 nfs4_acl_free_cache(vsp); 4189 } 4190 } 4191 } 4192 } 4193 4194 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4195 /* 4196 * Set the size, rather than relying on getting it updated 4197 * via a GETATTR. With delegations the client tries to 4198 * suppress GETATTR calls. 4199 */ 4200 mutex_enter(&rp->r_statelock); 4201 rp->r_size = vap->va_size; 4202 mutex_exit(&rp->r_statelock); 4203 } 4204 4205 /* 4206 * Can free up request args and res 4207 */ 4208 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4209 opsetattr.obj_attributes); 4210 if (verify_argop != -1) { 4211 nfs4args_verify_free(&argop[verify_argop]); 4212 verify_argop = -1; 4213 } 4214 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4215 4216 /* 4217 * Some servers will change the mode to clear the setuid 4218 * and setgid bits when changing the uid or gid. The 4219 * client needs to compensate appropriately. 4220 */ 4221 if (mask & (AT_UID | AT_GID)) { 4222 int terror, do_setattr; 4223 4224 do_setattr = 0; 4225 va.va_mask = AT_MODE; 4226 terror = nfs4getattr(vp, &va, cr); 4227 if (!terror && 4228 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4229 (!(mask & AT_MODE) && va.va_mode != omode))) { 4230 va.va_mask = AT_MODE; 4231 if (mask & AT_MODE) { 4232 /* 4233 * We asked the mode to be changed and what 4234 * we just got from the server in getattr is 4235 * not what we wanted it to be, so set it now. 4236 */ 4237 va.va_mode = vap->va_mode; 4238 do_setattr = 1; 4239 } else { 4240 /* 4241 * We did not ask the mode to be changed, 4242 * Check to see that the server just cleared 4243 * I_SUID and I_GUID from it. If not then 4244 * set mode to omode with UID/GID cleared. 4245 */ 4246 if (nfs4_compare_modes(va.va_mode, omode)) { 4247 omode &= ~(S_ISUID|S_ISGID); 4248 va.va_mode = omode; 4249 do_setattr = 1; 4250 } 4251 } 4252 4253 if (do_setattr) 4254 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4255 } 4256 } 4257 4258 return (e.error); 4259 } 4260 4261 /* ARGSUSED */ 4262 static int 4263 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 4264 { 4265 COMPOUND4args_clnt args; 4266 COMPOUND4res_clnt res; 4267 int doqueue; 4268 uint32_t acc, resacc, argacc; 4269 rnode4_t *rp; 4270 cred_t *cred, *ncr, *ncrfree = NULL; 4271 nfs4_access_type_t cacc; 4272 int num_ops; 4273 nfs_argop4 argop[3]; 4274 nfs_resop4 *resop; 4275 bool_t needrecov = FALSE, do_getattr; 4276 nfs4_recov_state_t recov_state; 4277 int rpc_error; 4278 hrtime_t t; 4279 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4280 mntinfo4_t *mi = VTOMI4(vp); 4281 4282 if (nfs_zone() != mi->mi_zone) 4283 return (EIO); 4284 4285 acc = 0; 4286 if (mode & VREAD) 4287 acc |= ACCESS4_READ; 4288 if (mode & VWRITE) { 4289 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4290 return (EROFS); 4291 if (vp->v_type == VDIR) 4292 acc |= ACCESS4_DELETE; 4293 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4294 } 4295 if (mode & VEXEC) { 4296 if (vp->v_type == VDIR) 4297 acc |= ACCESS4_LOOKUP; 4298 else 4299 acc |= ACCESS4_EXECUTE; 4300 } 4301 4302 if (VTOR4(vp)->r_acache != NULL) { 4303 e.error = nfs4_validate_caches(vp, cr); 4304 if (e.error) 4305 return (e.error); 4306 } 4307 4308 rp = VTOR4(vp); 4309 if (vp->v_type == VDIR) 4310 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4311 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4312 else 4313 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4314 ACCESS4_EXECUTE; 4315 recov_state.rs_flags = 0; 4316 recov_state.rs_num_retry_despite_err = 0; 4317 4318 cred = cr; 4319 /* 4320 * ncr and ncrfree both initially 4321 * point to the memory area returned 4322 * by crnetadjust(); 4323 * ncrfree not NULL when exiting means 4324 * that we need to release it 4325 */ 4326 ncr = crnetadjust(cred); 4327 ncrfree = ncr; 4328 4329 tryagain: 4330 cacc = nfs4_access_check(rp, acc, cred); 4331 if (cacc == NFS4_ACCESS_ALLOWED) { 4332 if (ncrfree != NULL) 4333 crfree(ncrfree); 4334 return (0); 4335 } 4336 if (cacc == NFS4_ACCESS_DENIED) { 4337 /* 4338 * If the cred can be adjusted, try again 4339 * with the new cred. 4340 */ 4341 if (ncr != NULL) { 4342 cred = ncr; 4343 ncr = NULL; 4344 goto tryagain; 4345 } 4346 if (ncrfree != NULL) 4347 crfree(ncrfree); 4348 return (EACCES); 4349 } 4350 4351 recov_retry: 4352 /* 4353 * Don't take with r_statev4_lock here. r_deleg_type could 4354 * change as soon as lock is released. Since it is an int, 4355 * there is no atomicity issue. 4356 */ 4357 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4358 num_ops = do_getattr ? 3 : 2; 4359 4360 args.ctag = TAG_ACCESS; 4361 4362 args.array_len = num_ops; 4363 args.array = argop; 4364 4365 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4366 &recov_state, NULL)) { 4367 if (ncrfree != NULL) 4368 crfree(ncrfree); 4369 return (e.error); 4370 } 4371 4372 /* putfh target fh */ 4373 argop[0].argop = OP_CPUTFH; 4374 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4375 4376 /* access */ 4377 argop[1].argop = OP_ACCESS; 4378 argop[1].nfs_argop4_u.opaccess.access = argacc; 4379 4380 /* getattr */ 4381 if (do_getattr) { 4382 argop[2].argop = OP_GETATTR; 4383 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4384 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4385 } 4386 4387 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4388 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4389 rnode4info(VTOR4(vp)))); 4390 4391 doqueue = 1; 4392 t = gethrtime(); 4393 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4394 rpc_error = e.error; 4395 4396 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4397 if (needrecov) { 4398 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4399 "nfs4_access: initiating recovery\n")); 4400 4401 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4402 NULL, OP_ACCESS, NULL, NULL, NULL) == FALSE) { 4403 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4404 &recov_state, needrecov); 4405 if (!e.error) 4406 (void) xdr_free(xdr_COMPOUND4res_clnt, 4407 (caddr_t)&res); 4408 goto recov_retry; 4409 } 4410 } 4411 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4412 4413 if (e.error) 4414 goto out; 4415 4416 if (res.status) { 4417 e.error = geterrno4(res.status); 4418 /* 4419 * This might generate over the wire calls throught 4420 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4421 * here to avoid a deadlock. 4422 */ 4423 nfs4_purge_stale_fh(e.error, vp, cr); 4424 goto out; 4425 } 4426 resop = &res.array[1]; /* access res */ 4427 4428 resacc = resop->nfs_resop4_u.opaccess.access; 4429 4430 if (do_getattr) { 4431 resop++; /* getattr res */ 4432 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4433 t, cr, FALSE, NULL); 4434 } 4435 4436 if (!e.error) { 4437 nfs4_access_cache(rp, argacc, resacc, cred); 4438 /* 4439 * we just cached results with cred; if cred is the 4440 * adjusted credentials from crnetadjust, we do not want 4441 * to release them before exiting: hence setting ncrfree 4442 * to NULL 4443 */ 4444 if (cred != cr) 4445 ncrfree = NULL; 4446 /* XXX check the supported bits too? */ 4447 if ((acc & resacc) != acc) { 4448 /* 4449 * The following code implements the semantic 4450 * that a setuid root program has *at least* the 4451 * permissions of the user that is running the 4452 * program. See rfs3call() for more portions 4453 * of the implementation of this functionality. 4454 */ 4455 /* XXX-LP */ 4456 if (ncr != NULL) { 4457 (void) xdr_free(xdr_COMPOUND4res_clnt, 4458 (caddr_t)&res); 4459 cred = ncr; 4460 ncr = NULL; 4461 goto tryagain; 4462 } 4463 e.error = EACCES; 4464 } 4465 } 4466 4467 out: 4468 if (!rpc_error) 4469 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4470 4471 if (ncrfree != NULL) 4472 crfree(ncrfree); 4473 4474 return (e.error); 4475 } 4476 4477 /* ARGSUSED */ 4478 static int 4479 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 4480 { 4481 COMPOUND4args_clnt args; 4482 COMPOUND4res_clnt res; 4483 int doqueue; 4484 rnode4_t *rp; 4485 nfs_argop4 argop[3]; 4486 nfs_resop4 *resop; 4487 READLINK4res *lr_res; 4488 nfs4_ga_res_t *garp; 4489 uint_t len; 4490 char *linkdata; 4491 bool_t needrecov = FALSE; 4492 nfs4_recov_state_t recov_state; 4493 hrtime_t t; 4494 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4495 4496 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4497 return (EIO); 4498 /* 4499 * Can't readlink anything other than a symbolic link. 4500 */ 4501 if (vp->v_type != VLNK) 4502 return (EINVAL); 4503 4504 rp = VTOR4(vp); 4505 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4506 e.error = nfs4_validate_caches(vp, cr); 4507 if (e.error) 4508 return (e.error); 4509 mutex_enter(&rp->r_statelock); 4510 if (rp->r_symlink.contents != NULL) { 4511 e.error = uiomove(rp->r_symlink.contents, 4512 rp->r_symlink.len, UIO_READ, uiop); 4513 mutex_exit(&rp->r_statelock); 4514 return (e.error); 4515 } 4516 mutex_exit(&rp->r_statelock); 4517 } 4518 recov_state.rs_flags = 0; 4519 recov_state.rs_num_retry_despite_err = 0; 4520 4521 recov_retry: 4522 args.array_len = 3; 4523 args.array = argop; 4524 args.ctag = TAG_READLINK; 4525 4526 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4527 if (e.error) { 4528 return (e.error); 4529 } 4530 4531 /* 0. putfh symlink fh */ 4532 argop[0].argop = OP_CPUTFH; 4533 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4534 4535 /* 1. readlink */ 4536 argop[1].argop = OP_READLINK; 4537 4538 /* 2. getattr */ 4539 argop[2].argop = OP_GETATTR; 4540 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4541 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4542 4543 doqueue = 1; 4544 4545 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4546 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4547 rnode4info(VTOR4(vp)))); 4548 4549 t = gethrtime(); 4550 4551 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4552 4553 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4554 if (needrecov) { 4555 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4556 "nfs4_readlink: initiating recovery\n")); 4557 4558 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4559 NULL, OP_READLINK, NULL, NULL, NULL) == FALSE) { 4560 if (!e.error) 4561 (void) xdr_free(xdr_COMPOUND4res_clnt, 4562 (caddr_t)&res); 4563 4564 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4565 needrecov); 4566 goto recov_retry; 4567 } 4568 } 4569 4570 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4571 4572 if (e.error) 4573 return (e.error); 4574 4575 /* 4576 * There is an path in the code below which calls 4577 * nfs4_purge_stale_fh(), which may generate otw calls through 4578 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4579 * here to avoid nfs4_start_op() deadlock. 4580 */ 4581 4582 if (res.status && (res.array_len < args.array_len)) { 4583 /* 4584 * either Putfh or Link failed 4585 */ 4586 e.error = geterrno4(res.status); 4587 nfs4_purge_stale_fh(e.error, vp, cr); 4588 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4589 return (e.error); 4590 } 4591 4592 resop = &res.array[1]; /* readlink res */ 4593 lr_res = &resop->nfs_resop4_u.opreadlink; 4594 4595 /* 4596 * treat symlink names as data 4597 */ 4598 linkdata = utf8_to_str(&lr_res->link, &len, NULL); 4599 if (linkdata != NULL) { 4600 int uio_len = len - 1; 4601 /* len includes null byte, which we won't uiomove */ 4602 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4603 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4604 mutex_enter(&rp->r_statelock); 4605 if (rp->r_symlink.contents == NULL) { 4606 rp->r_symlink.contents = linkdata; 4607 rp->r_symlink.len = uio_len; 4608 rp->r_symlink.size = len; 4609 mutex_exit(&rp->r_statelock); 4610 } else { 4611 mutex_exit(&rp->r_statelock); 4612 kmem_free(linkdata, len); 4613 } 4614 } else { 4615 kmem_free(linkdata, len); 4616 } 4617 } 4618 if (res.status == NFS4_OK) { 4619 resop++; /* getattr res */ 4620 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4621 } 4622 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4623 4624 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4625 4626 /* 4627 * The over the wire error for attempting to readlink something 4628 * other than a symbolic link is ENXIO. However, we need to 4629 * return EINVAL instead of ENXIO, so we map it here. 4630 */ 4631 return (e.error == ENXIO ? EINVAL : e.error); 4632 } 4633 4634 /* 4635 * Flush local dirty pages to stable storage on the server. 4636 * 4637 * If FNODSYNC is specified, then there is nothing to do because 4638 * metadata changes are not cached on the client before being 4639 * sent to the server. 4640 */ 4641 /* ARGSUSED */ 4642 static int 4643 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 4644 { 4645 int error; 4646 4647 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4648 return (0); 4649 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4650 return (EIO); 4651 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4652 if (!error) 4653 error = VTOR4(vp)->r_error; 4654 return (error); 4655 } 4656 4657 /* 4658 * Weirdness: if the file was removed or the target of a rename 4659 * operation while it was open, it got renamed instead. Here we 4660 * remove the renamed file. 4661 */ 4662 /* ARGSUSED */ 4663 void 4664 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4665 { 4666 rnode4_t *rp; 4667 4668 ASSERT(vp != DNLC_NO_VNODE); 4669 4670 rp = VTOR4(vp); 4671 4672 if (IS_SHADOW(vp, rp)) { 4673 sv_inactive(vp); 4674 return; 4675 } 4676 4677 /* 4678 * If this is coming from the wrong zone, we let someone in the right 4679 * zone take care of it asynchronously. We can get here due to 4680 * VN_RELE() being called from pageout() or fsflush(). This call may 4681 * potentially turn into an expensive no-op if, for instance, v_count 4682 * gets incremented in the meantime, but it's still correct. 4683 */ 4684 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4685 nfs4_async_inactive(vp, cr); 4686 return; 4687 } 4688 4689 /* 4690 * Some of the cleanup steps might require over-the-wire 4691 * operations. Since VOP_INACTIVE can get called as a result of 4692 * other over-the-wire operations (e.g., an attribute cache update 4693 * can lead to a DNLC purge), doing those steps now would lead to a 4694 * nested call to the recovery framework, which can deadlock. So 4695 * do any over-the-wire cleanups asynchronously, in a separate 4696 * thread. 4697 */ 4698 4699 mutex_enter(&rp->r_os_lock); 4700 mutex_enter(&rp->r_statelock); 4701 mutex_enter(&rp->r_statev4_lock); 4702 4703 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4704 mutex_exit(&rp->r_statev4_lock); 4705 mutex_exit(&rp->r_statelock); 4706 mutex_exit(&rp->r_os_lock); 4707 nfs4_async_inactive(vp, cr); 4708 return; 4709 } 4710 4711 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4712 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4713 mutex_exit(&rp->r_statev4_lock); 4714 mutex_exit(&rp->r_statelock); 4715 mutex_exit(&rp->r_os_lock); 4716 nfs4_async_inactive(vp, cr); 4717 return; 4718 } 4719 4720 if (rp->r_unldvp != NULL) { 4721 mutex_exit(&rp->r_statev4_lock); 4722 mutex_exit(&rp->r_statelock); 4723 mutex_exit(&rp->r_os_lock); 4724 nfs4_async_inactive(vp, cr); 4725 return; 4726 } 4727 mutex_exit(&rp->r_statev4_lock); 4728 mutex_exit(&rp->r_statelock); 4729 mutex_exit(&rp->r_os_lock); 4730 4731 rp4_addfree(rp, cr); 4732 } 4733 4734 /* 4735 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4736 * various bits of state. The caller must not refer to vp after this call. 4737 */ 4738 4739 void 4740 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4741 { 4742 rnode4_t *rp = VTOR4(vp); 4743 nfs4_recov_state_t recov_state; 4744 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4745 vnode_t *unldvp; 4746 char *unlname; 4747 cred_t *unlcred; 4748 COMPOUND4args_clnt args; 4749 COMPOUND4res_clnt res, *resp; 4750 nfs_argop4 argop[2]; 4751 int doqueue; 4752 #ifdef DEBUG 4753 char *name; 4754 #endif 4755 4756 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4757 ASSERT(!IS_SHADOW(vp, rp)); 4758 4759 #ifdef DEBUG 4760 name = fn_name(VTOSV(vp)->sv_name); 4761 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4762 "release vnode %s", name)); 4763 kmem_free(name, MAXNAMELEN); 4764 #endif 4765 4766 if (vp->v_type == VREG) { 4767 bool_t recov_failed = FALSE; 4768 4769 e.error = nfs4close_all(vp, cr); 4770 if (e.error) { 4771 /* Check to see if recovery failed */ 4772 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4773 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4774 recov_failed = TRUE; 4775 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4776 if (!recov_failed) { 4777 mutex_enter(&rp->r_statelock); 4778 if (rp->r_flags & R4RECOVERR) 4779 recov_failed = TRUE; 4780 mutex_exit(&rp->r_statelock); 4781 } 4782 if (recov_failed) { 4783 NFS4_DEBUG(nfs4_client_recov_debug, 4784 (CE_NOTE, "nfs4_inactive_otw: " 4785 "close failed (recovery failure)")); 4786 } 4787 } 4788 } 4789 4790 redo: 4791 if (rp->r_unldvp == NULL) { 4792 rp4_addfree(rp, cr); 4793 return; 4794 } 4795 4796 /* 4797 * Save the vnode pointer for the directory where the 4798 * unlinked-open file got renamed, then set it to NULL 4799 * to prevent another thread from getting here before 4800 * we're done with the remove. While we have the 4801 * statelock, make local copies of the pertinent rnode 4802 * fields. If we weren't to do this in an atomic way, the 4803 * the unl* fields could become inconsistent with respect 4804 * to each other due to a race condition between this 4805 * code and nfs_remove(). See bug report 1034328. 4806 */ 4807 mutex_enter(&rp->r_statelock); 4808 if (rp->r_unldvp == NULL) { 4809 mutex_exit(&rp->r_statelock); 4810 rp4_addfree(rp, cr); 4811 return; 4812 } 4813 4814 unldvp = rp->r_unldvp; 4815 rp->r_unldvp = NULL; 4816 unlname = rp->r_unlname; 4817 rp->r_unlname = NULL; 4818 unlcred = rp->r_unlcred; 4819 rp->r_unlcred = NULL; 4820 mutex_exit(&rp->r_statelock); 4821 4822 /* 4823 * If there are any dirty pages left, then flush 4824 * them. This is unfortunate because they just 4825 * may get thrown away during the remove operation, 4826 * but we have to do this for correctness. 4827 */ 4828 if (nfs4_has_pages(vp) && 4829 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4830 ASSERT(vp->v_type != VCHR); 4831 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL); 4832 if (e.error) { 4833 mutex_enter(&rp->r_statelock); 4834 if (!rp->r_error) 4835 rp->r_error = e.error; 4836 mutex_exit(&rp->r_statelock); 4837 } 4838 } 4839 4840 recov_state.rs_flags = 0; 4841 recov_state.rs_num_retry_despite_err = 0; 4842 recov_retry_remove: 4843 /* 4844 * Do the remove operation on the renamed file 4845 */ 4846 args.ctag = TAG_INACTIVE; 4847 4848 /* 4849 * Remove ops: putfh dir; remove 4850 */ 4851 args.array_len = 2; 4852 args.array = argop; 4853 4854 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4855 if (e.error) { 4856 kmem_free(unlname, MAXNAMELEN); 4857 crfree(unlcred); 4858 VN_RELE(unldvp); 4859 /* 4860 * Try again; this time around r_unldvp will be NULL, so we'll 4861 * just call rp4_addfree() and return. 4862 */ 4863 goto redo; 4864 } 4865 4866 /* putfh directory */ 4867 argop[0].argop = OP_CPUTFH; 4868 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4869 4870 /* remove */ 4871 argop[1].argop = OP_CREMOVE; 4872 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4873 4874 doqueue = 1; 4875 resp = &res; 4876 4877 #if 0 /* notyet */ 4878 /* 4879 * Can't do this yet. We may be being called from 4880 * dnlc_purge_XXX while that routine is holding a 4881 * mutex lock to the nc_rele list. The calls to 4882 * nfs3_cache_wcc_data may result in calls to 4883 * dnlc_purge_XXX. This will result in a deadlock. 4884 */ 4885 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4886 if (e.error) { 4887 PURGE_ATTRCACHE4(unldvp); 4888 resp = NULL; 4889 } else if (res.status) { 4890 e.error = geterrno4(res.status); 4891 PURGE_ATTRCACHE4(unldvp); 4892 /* 4893 * This code is inactive right now 4894 * but if made active there should 4895 * be a nfs4_end_op() call before 4896 * nfs4_purge_stale_fh to avoid start_op() 4897 * deadlock. See BugId: 4948726 4898 */ 4899 nfs4_purge_stale_fh(error, unldvp, cr); 4900 } else { 4901 nfs_resop4 *resop; 4902 REMOVE4res *rm_res; 4903 4904 resop = &res.array[1]; 4905 rm_res = &resop->nfs_resop4_u.opremove; 4906 /* 4907 * Update directory cache attribute, 4908 * readdir and dnlc caches. 4909 */ 4910 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4911 } 4912 #else 4913 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4914 4915 PURGE_ATTRCACHE4(unldvp); 4916 #endif 4917 4918 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4919 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4920 NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 4921 if (!e.error) 4922 (void) xdr_free(xdr_COMPOUND4res_clnt, 4923 (caddr_t)&res); 4924 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4925 &recov_state, TRUE); 4926 goto recov_retry_remove; 4927 } 4928 } 4929 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4930 4931 /* 4932 * Release stuff held for the remove 4933 */ 4934 VN_RELE(unldvp); 4935 if (!e.error && resp) 4936 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4937 4938 kmem_free(unlname, MAXNAMELEN); 4939 crfree(unlcred); 4940 goto redo; 4941 } 4942 4943 /* 4944 * Remote file system operations having to do with directory manipulation. 4945 */ 4946 /* ARGSUSED3 */ 4947 int 4948 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4949 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 4950 int *direntflags, pathname_t *realpnp) 4951 { 4952 int error; 4953 vnode_t *vp, *avp = NULL; 4954 rnode4_t *drp; 4955 4956 *vpp = NULL; 4957 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4958 return (EPERM); 4959 /* 4960 * if LOOKUP_XATTR, must replace dvp (object) with 4961 * object's attrdir before continuing with lookup 4962 */ 4963 if (flags & LOOKUP_XATTR) { 4964 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4965 if (error) 4966 return (error); 4967 4968 dvp = avp; 4969 4970 /* 4971 * If lookup is for "", just return dvp now. The attrdir 4972 * has already been activated (from nfs4lookup_xattr), and 4973 * the caller will RELE the original dvp -- not 4974 * the attrdir. So, set vpp and return. 4975 * Currently, when the LOOKUP_XATTR flag is 4976 * passed to VOP_LOOKUP, the name is always empty, and 4977 * shortcircuiting here avoids 3 unneeded lock/unlock 4978 * pairs. 4979 * 4980 * If a non-empty name was provided, then it is the 4981 * attribute name, and it will be looked up below. 4982 */ 4983 if (*nm == '\0') { 4984 *vpp = dvp; 4985 return (0); 4986 } 4987 4988 /* 4989 * The vfs layer never sends a name when asking for the 4990 * attrdir, so we should never get here (unless of course 4991 * name is passed at some time in future -- at which time 4992 * we'll blow up here). 4993 */ 4994 ASSERT(0); 4995 } 4996 4997 drp = VTOR4(dvp); 4998 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4999 return (EINTR); 5000 5001 error = nfs4lookup(dvp, nm, vpp, cr, 0); 5002 nfs_rw_exit(&drp->r_rwlock); 5003 5004 /* 5005 * If vnode is a device, create special vnode. 5006 */ 5007 if (!error && ISVDEV((*vpp)->v_type)) { 5008 vp = *vpp; 5009 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 5010 VN_RELE(vp); 5011 } 5012 5013 return (error); 5014 } 5015 5016 /* ARGSUSED */ 5017 static int 5018 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 5019 { 5020 int error; 5021 rnode4_t *drp; 5022 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 5023 mntinfo4_t *mi; 5024 5025 mi = VTOMI4(dvp); 5026 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) && 5027 !vfs_has_feature(mi->mi_vfsp, VFSFT_SYSATTR_VIEWS)) 5028 return (EINVAL); 5029 5030 drp = VTOR4(dvp); 5031 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 5032 return (EINTR); 5033 5034 mutex_enter(&drp->r_statelock); 5035 /* 5036 * If the server doesn't support xattrs just return EINVAL 5037 */ 5038 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 5039 mutex_exit(&drp->r_statelock); 5040 nfs_rw_exit(&drp->r_rwlock); 5041 return (EINVAL); 5042 } 5043 5044 /* 5045 * If there is a cached xattr directory entry, 5046 * use it as long as the attributes are valid. If the 5047 * attributes are not valid, take the simple approach and 5048 * free the cached value and re-fetch a new value. 5049 * 5050 * We don't negative entry cache for now, if we did we 5051 * would need to check if the file has changed on every 5052 * lookup. But xattrs don't exist very often and failing 5053 * an openattr is not much more expensive than and NVERIFY or GETATTR 5054 * so do an openattr over the wire for now. 5055 */ 5056 if (drp->r_xattr_dir != NULL) { 5057 if (ATTRCACHE4_VALID(dvp)) { 5058 VN_HOLD(drp->r_xattr_dir); 5059 *vpp = drp->r_xattr_dir; 5060 mutex_exit(&drp->r_statelock); 5061 nfs_rw_exit(&drp->r_rwlock); 5062 return (0); 5063 } 5064 VN_RELE(drp->r_xattr_dir); 5065 drp->r_xattr_dir = NULL; 5066 } 5067 mutex_exit(&drp->r_statelock); 5068 5069 error = nfs4openattr(dvp, vpp, cflag, cr); 5070 5071 nfs_rw_exit(&drp->r_rwlock); 5072 5073 return (error); 5074 } 5075 5076 static int 5077 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 5078 { 5079 int error; 5080 rnode4_t *drp; 5081 5082 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5083 5084 /* 5085 * If lookup is for "", just return dvp. Don't need 5086 * to send it over the wire, look it up in the dnlc, 5087 * or perform any access checks. 5088 */ 5089 if (*nm == '\0') { 5090 VN_HOLD(dvp); 5091 *vpp = dvp; 5092 return (0); 5093 } 5094 5095 /* 5096 * Can't do lookups in non-directories. 5097 */ 5098 if (dvp->v_type != VDIR) 5099 return (ENOTDIR); 5100 5101 /* 5102 * If lookup is for ".", just return dvp. Don't need 5103 * to send it over the wire or look it up in the dnlc, 5104 * just need to check access. 5105 */ 5106 if (nm[0] == '.' && nm[1] == '\0') { 5107 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5108 if (error) 5109 return (error); 5110 VN_HOLD(dvp); 5111 *vpp = dvp; 5112 return (0); 5113 } 5114 5115 drp = VTOR4(dvp); 5116 if (!(drp->r_flags & R4LOOKUP)) { 5117 mutex_enter(&drp->r_statelock); 5118 drp->r_flags |= R4LOOKUP; 5119 mutex_exit(&drp->r_statelock); 5120 } 5121 5122 *vpp = NULL; 5123 /* 5124 * Lookup this name in the DNLC. If there is no entry 5125 * lookup over the wire. 5126 */ 5127 if (!skipdnlc) 5128 *vpp = dnlc_lookup(dvp, nm); 5129 if (*vpp == NULL) { 5130 /* 5131 * We need to go over the wire to lookup the name. 5132 */ 5133 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 5134 } 5135 5136 /* 5137 * We hit on the dnlc 5138 */ 5139 if (*vpp != DNLC_NO_VNODE || 5140 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 5141 /* 5142 * But our attrs may not be valid. 5143 */ 5144 if (ATTRCACHE4_VALID(dvp)) { 5145 error = nfs4_waitfor_purge_complete(dvp); 5146 if (error) { 5147 VN_RELE(*vpp); 5148 *vpp = NULL; 5149 return (error); 5150 } 5151 5152 /* 5153 * If after the purge completes, check to make sure 5154 * our attrs are still valid. 5155 */ 5156 if (ATTRCACHE4_VALID(dvp)) { 5157 /* 5158 * If we waited for a purge we may have 5159 * lost our vnode so look it up again. 5160 */ 5161 VN_RELE(*vpp); 5162 *vpp = dnlc_lookup(dvp, nm); 5163 if (*vpp == NULL) 5164 return (nfs4lookupnew_otw(dvp, 5165 nm, vpp, cr)); 5166 5167 /* 5168 * The access cache should almost always hit 5169 */ 5170 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5171 5172 if (error) { 5173 VN_RELE(*vpp); 5174 *vpp = NULL; 5175 return (error); 5176 } 5177 if (*vpp == DNLC_NO_VNODE) { 5178 VN_RELE(*vpp); 5179 *vpp = NULL; 5180 return (ENOENT); 5181 } 5182 return (0); 5183 } 5184 } 5185 } 5186 5187 ASSERT(*vpp != NULL); 5188 5189 /* 5190 * We may have gotten here we have one of the following cases: 5191 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5192 * need to validate them. 5193 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5194 * must validate. 5195 * 5196 * Go to the server and check if the directory has changed, if 5197 * it hasn't we are done and can use the dnlc entry. 5198 */ 5199 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5200 } 5201 5202 /* 5203 * Go to the server and check if the directory has changed, if 5204 * it hasn't we are done and can use the dnlc entry. If it 5205 * has changed we get a new copy of its attributes and check 5206 * the access for VEXEC, then relookup the filename and 5207 * get its filehandle and attributes. 5208 * 5209 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5210 * if the NVERIFY failed we must 5211 * purge the caches 5212 * cache new attributes (will set r_time_attr_inval) 5213 * cache new access 5214 * recheck VEXEC access 5215 * add name to dnlc, possibly negative 5216 * if LOOKUP succeeded 5217 * cache new attributes 5218 * else 5219 * set a new r_time_attr_inval for dvp 5220 * check to make sure we have access 5221 * 5222 * The vpp returned is the vnode passed in if the directory is valid, 5223 * a new vnode if successful lookup, or NULL on error. 5224 */ 5225 static int 5226 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5227 { 5228 COMPOUND4args_clnt args; 5229 COMPOUND4res_clnt res; 5230 fattr4 *ver_fattr; 5231 fattr4_change dchange; 5232 int32_t *ptr; 5233 int argoplist_size = 7 * sizeof (nfs_argop4); 5234 nfs_argop4 *argop; 5235 int doqueue; 5236 mntinfo4_t *mi; 5237 nfs4_recov_state_t recov_state; 5238 hrtime_t t; 5239 int isdotdot; 5240 vnode_t *nvp; 5241 nfs_fh4 *fhp; 5242 nfs4_sharedfh_t *sfhp; 5243 nfs4_access_type_t cacc; 5244 rnode4_t *nrp; 5245 rnode4_t *drp = VTOR4(dvp); 5246 nfs4_ga_res_t *garp = NULL; 5247 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5248 5249 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5250 ASSERT(nm != NULL); 5251 ASSERT(nm[0] != '\0'); 5252 ASSERT(dvp->v_type == VDIR); 5253 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5254 ASSERT(*vpp != NULL); 5255 5256 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5257 isdotdot = 1; 5258 args.ctag = TAG_LOOKUP_VPARENT; 5259 } else { 5260 /* 5261 * If dvp were a stub, it should have triggered and caused 5262 * a mount for us to get this far. 5263 */ 5264 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5265 5266 isdotdot = 0; 5267 args.ctag = TAG_LOOKUP_VALID; 5268 } 5269 5270 mi = VTOMI4(dvp); 5271 recov_state.rs_flags = 0; 5272 recov_state.rs_num_retry_despite_err = 0; 5273 5274 nvp = NULL; 5275 5276 /* Save the original mount point security information */ 5277 (void) save_mnt_secinfo(mi->mi_curr_serv); 5278 5279 recov_retry: 5280 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5281 &recov_state, NULL); 5282 if (e.error) { 5283 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5284 VN_RELE(*vpp); 5285 *vpp = NULL; 5286 return (e.error); 5287 } 5288 5289 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5290 5291 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5292 args.array_len = 7; 5293 args.array = argop; 5294 5295 /* 0. putfh file */ 5296 argop[0].argop = OP_CPUTFH; 5297 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5298 5299 /* 1. nverify the change info */ 5300 argop[1].argop = OP_NVERIFY; 5301 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5302 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5303 ver_fattr->attrlist4 = (char *)&dchange; 5304 ptr = (int32_t *)&dchange; 5305 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5306 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5307 5308 /* 2. getattr directory */ 5309 argop[2].argop = OP_GETATTR; 5310 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5311 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5312 5313 /* 3. access directory */ 5314 argop[3].argop = OP_ACCESS; 5315 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5316 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5317 5318 /* 4. lookup name */ 5319 if (isdotdot) { 5320 argop[4].argop = OP_LOOKUPP; 5321 } else { 5322 argop[4].argop = OP_CLOOKUP; 5323 argop[4].nfs_argop4_u.opclookup.cname = nm; 5324 } 5325 5326 /* 5. resulting file handle */ 5327 argop[5].argop = OP_GETFH; 5328 5329 /* 6. resulting file attributes */ 5330 argop[6].argop = OP_GETATTR; 5331 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5332 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5333 5334 doqueue = 1; 5335 t = gethrtime(); 5336 5337 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5338 5339 if (!isdotdot && res.status == NFS4ERR_MOVED) { 5340 e.error = nfs4_setup_referral(dvp, nm, vpp, cr); 5341 if (e.error != 0 && *vpp != NULL) 5342 VN_RELE(*vpp); 5343 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5344 &recov_state, FALSE); 5345 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5346 kmem_free(argop, argoplist_size); 5347 return (e.error); 5348 } 5349 5350 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5351 /* 5352 * For WRONGSEC of a non-dotdot case, send secinfo directly 5353 * from this thread, do not go thru the recovery thread since 5354 * we need the nm information. 5355 * 5356 * Not doing dotdot case because there is no specification 5357 * for (PUTFH, SECINFO "..") yet. 5358 */ 5359 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5360 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5361 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5362 &recov_state, FALSE); 5363 else 5364 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5365 &recov_state, TRUE); 5366 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5367 kmem_free(argop, argoplist_size); 5368 if (!e.error) 5369 goto recov_retry; 5370 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5371 VN_RELE(*vpp); 5372 *vpp = NULL; 5373 return (e.error); 5374 } 5375 5376 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5377 OP_LOOKUP, NULL, NULL, NULL) == FALSE) { 5378 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5379 &recov_state, TRUE); 5380 5381 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5382 kmem_free(argop, argoplist_size); 5383 goto recov_retry; 5384 } 5385 } 5386 5387 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5388 5389 if (e.error || res.array_len == 0) { 5390 /* 5391 * If e.error isn't set, then reply has no ops (or we couldn't 5392 * be here). The only legal way to reply without an op array 5393 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5394 * be in the reply for all other status values. 5395 * 5396 * For valid replies without an ops array, return ENOTSUP 5397 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5398 * return EIO -- don't trust status. 5399 */ 5400 if (e.error == 0) 5401 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5402 ENOTSUP : EIO; 5403 VN_RELE(*vpp); 5404 *vpp = NULL; 5405 kmem_free(argop, argoplist_size); 5406 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5407 return (e.error); 5408 } 5409 5410 if (res.status != NFS4ERR_SAME) { 5411 e.error = geterrno4(res.status); 5412 5413 /* 5414 * The NVERIFY "failed" so the directory has changed 5415 * First make sure PUTFH succeeded and NVERIFY "failed" 5416 * cleanly. 5417 */ 5418 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5419 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5420 nfs4_purge_stale_fh(e.error, dvp, cr); 5421 VN_RELE(*vpp); 5422 *vpp = NULL; 5423 goto exit; 5424 } 5425 5426 /* 5427 * We know the NVERIFY "failed" so we must: 5428 * purge the caches (access and indirectly dnlc if needed) 5429 */ 5430 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5431 5432 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5433 nfs4_purge_stale_fh(e.error, dvp, cr); 5434 VN_RELE(*vpp); 5435 *vpp = NULL; 5436 goto exit; 5437 } 5438 5439 /* 5440 * Install new cached attributes for the directory 5441 */ 5442 nfs4_attr_cache(dvp, 5443 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5444 t, cr, FALSE, NULL); 5445 5446 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5447 nfs4_purge_stale_fh(e.error, dvp, cr); 5448 VN_RELE(*vpp); 5449 *vpp = NULL; 5450 e.error = geterrno4(res.status); 5451 goto exit; 5452 } 5453 5454 /* 5455 * Now we know the directory is valid, 5456 * cache new directory access 5457 */ 5458 nfs4_access_cache(drp, 5459 args.array[3].nfs_argop4_u.opaccess.access, 5460 res.array[3].nfs_resop4_u.opaccess.access, cr); 5461 5462 /* 5463 * recheck VEXEC access 5464 */ 5465 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5466 if (cacc != NFS4_ACCESS_ALLOWED) { 5467 /* 5468 * Directory permissions might have been revoked 5469 */ 5470 if (cacc == NFS4_ACCESS_DENIED) { 5471 e.error = EACCES; 5472 VN_RELE(*vpp); 5473 *vpp = NULL; 5474 goto exit; 5475 } 5476 5477 /* 5478 * Somehow we must not have asked for enough 5479 * so try a singleton ACCESS, should never happen. 5480 */ 5481 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5482 if (e.error) { 5483 VN_RELE(*vpp); 5484 *vpp = NULL; 5485 goto exit; 5486 } 5487 } 5488 5489 e.error = geterrno4(res.status); 5490 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5491 /* 5492 * The lookup failed, probably no entry 5493 */ 5494 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5495 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5496 } else { 5497 /* 5498 * Might be some other error, so remove 5499 * the dnlc entry to make sure we start all 5500 * over again, next time. 5501 */ 5502 dnlc_remove(dvp, nm); 5503 } 5504 VN_RELE(*vpp); 5505 *vpp = NULL; 5506 goto exit; 5507 } 5508 5509 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5510 /* 5511 * The file exists but we can't get its fh for 5512 * some unknown reason. Remove it from the dnlc 5513 * and error out to be safe. 5514 */ 5515 dnlc_remove(dvp, nm); 5516 VN_RELE(*vpp); 5517 *vpp = NULL; 5518 goto exit; 5519 } 5520 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5521 if (fhp->nfs_fh4_len == 0) { 5522 /* 5523 * The file exists but a bogus fh 5524 * some unknown reason. Remove it from the dnlc 5525 * and error out to be safe. 5526 */ 5527 e.error = ENOENT; 5528 dnlc_remove(dvp, nm); 5529 VN_RELE(*vpp); 5530 *vpp = NULL; 5531 goto exit; 5532 } 5533 sfhp = sfh4_get(fhp, mi); 5534 5535 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5536 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5537 5538 /* 5539 * Make the new rnode 5540 */ 5541 if (isdotdot) { 5542 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5543 if (e.error) { 5544 sfh4_rele(&sfhp); 5545 VN_RELE(*vpp); 5546 *vpp = NULL; 5547 goto exit; 5548 } 5549 /* 5550 * XXX if nfs4_make_dotdot uses an existing rnode 5551 * XXX it doesn't update the attributes. 5552 * XXX for now just save them again to save an OTW 5553 */ 5554 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5555 } else { 5556 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5557 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 5558 /* 5559 * If v_type == VNON, then garp was NULL because 5560 * the last op in the compound failed and makenfs4node 5561 * could not find the vnode for sfhp. It created 5562 * a new vnode, so we have nothing to purge here. 5563 */ 5564 if (nvp->v_type == VNON) { 5565 vattr_t vattr; 5566 5567 vattr.va_mask = AT_TYPE; 5568 /* 5569 * N.B. We've already called nfs4_end_fop above. 5570 */ 5571 e.error = nfs4getattr(nvp, &vattr, cr); 5572 if (e.error) { 5573 sfh4_rele(&sfhp); 5574 VN_RELE(*vpp); 5575 *vpp = NULL; 5576 VN_RELE(nvp); 5577 goto exit; 5578 } 5579 nvp->v_type = vattr.va_type; 5580 } 5581 } 5582 sfh4_rele(&sfhp); 5583 5584 nrp = VTOR4(nvp); 5585 mutex_enter(&nrp->r_statev4_lock); 5586 if (!nrp->created_v4) { 5587 mutex_exit(&nrp->r_statev4_lock); 5588 dnlc_update(dvp, nm, nvp); 5589 } else 5590 mutex_exit(&nrp->r_statev4_lock); 5591 5592 VN_RELE(*vpp); 5593 *vpp = nvp; 5594 } else { 5595 hrtime_t now; 5596 hrtime_t delta = 0; 5597 5598 e.error = 0; 5599 5600 /* 5601 * Because the NVERIFY "succeeded" we know that the 5602 * directory attributes are still valid 5603 * so update r_time_attr_inval 5604 */ 5605 now = gethrtime(); 5606 mutex_enter(&drp->r_statelock); 5607 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5608 delta = now - drp->r_time_attr_saved; 5609 if (delta < mi->mi_acdirmin) 5610 delta = mi->mi_acdirmin; 5611 else if (delta > mi->mi_acdirmax) 5612 delta = mi->mi_acdirmax; 5613 } 5614 drp->r_time_attr_inval = now + delta; 5615 mutex_exit(&drp->r_statelock); 5616 dnlc_update(dvp, nm, *vpp); 5617 5618 /* 5619 * Even though we have a valid directory attr cache 5620 * and dnlc entry, we may not have access. 5621 * This should almost always hit the cache. 5622 */ 5623 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5624 if (e.error) { 5625 VN_RELE(*vpp); 5626 *vpp = NULL; 5627 } 5628 5629 if (*vpp == DNLC_NO_VNODE) { 5630 VN_RELE(*vpp); 5631 *vpp = NULL; 5632 e.error = ENOENT; 5633 } 5634 } 5635 5636 exit: 5637 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5638 kmem_free(argop, argoplist_size); 5639 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5640 return (e.error); 5641 } 5642 5643 /* 5644 * We need to go over the wire to lookup the name, but 5645 * while we are there verify the directory has not 5646 * changed but if it has, get new attributes and check access 5647 * 5648 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5649 * NVERIFY GETATTR ACCESS 5650 * 5651 * With the results: 5652 * if the NVERIFY failed we must purge the caches, add new attributes, 5653 * and cache new access. 5654 * set a new r_time_attr_inval 5655 * add name to dnlc, possibly negative 5656 * if LOOKUP succeeded 5657 * cache new attributes 5658 */ 5659 static int 5660 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5661 { 5662 COMPOUND4args_clnt args; 5663 COMPOUND4res_clnt res; 5664 fattr4 *ver_fattr; 5665 fattr4_change dchange; 5666 int32_t *ptr; 5667 nfs4_ga_res_t *garp = NULL; 5668 int argoplist_size = 9 * sizeof (nfs_argop4); 5669 nfs_argop4 *argop; 5670 int doqueue; 5671 mntinfo4_t *mi; 5672 nfs4_recov_state_t recov_state; 5673 hrtime_t t; 5674 int isdotdot; 5675 vnode_t *nvp; 5676 nfs_fh4 *fhp; 5677 nfs4_sharedfh_t *sfhp; 5678 nfs4_access_type_t cacc; 5679 rnode4_t *nrp; 5680 rnode4_t *drp = VTOR4(dvp); 5681 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5682 5683 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5684 ASSERT(nm != NULL); 5685 ASSERT(nm[0] != '\0'); 5686 ASSERT(dvp->v_type == VDIR); 5687 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5688 ASSERT(*vpp == NULL); 5689 5690 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5691 isdotdot = 1; 5692 args.ctag = TAG_LOOKUP_PARENT; 5693 } else { 5694 /* 5695 * If dvp were a stub, it should have triggered and caused 5696 * a mount for us to get this far. 5697 */ 5698 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5699 5700 isdotdot = 0; 5701 args.ctag = TAG_LOOKUP; 5702 } 5703 5704 mi = VTOMI4(dvp); 5705 recov_state.rs_flags = 0; 5706 recov_state.rs_num_retry_despite_err = 0; 5707 5708 nvp = NULL; 5709 5710 /* Save the original mount point security information */ 5711 (void) save_mnt_secinfo(mi->mi_curr_serv); 5712 5713 recov_retry: 5714 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5715 &recov_state, NULL); 5716 if (e.error) { 5717 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5718 return (e.error); 5719 } 5720 5721 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5722 5723 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5724 args.array_len = 9; 5725 args.array = argop; 5726 5727 /* 0. putfh file */ 5728 argop[0].argop = OP_CPUTFH; 5729 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5730 5731 /* 1. savefh for the nverify */ 5732 argop[1].argop = OP_SAVEFH; 5733 5734 /* 2. lookup name */ 5735 if (isdotdot) { 5736 argop[2].argop = OP_LOOKUPP; 5737 } else { 5738 argop[2].argop = OP_CLOOKUP; 5739 argop[2].nfs_argop4_u.opclookup.cname = nm; 5740 } 5741 5742 /* 3. resulting file handle */ 5743 argop[3].argop = OP_GETFH; 5744 5745 /* 4. resulting file attributes */ 5746 argop[4].argop = OP_GETATTR; 5747 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5748 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5749 5750 /* 5. restorefh back the directory for the nverify */ 5751 argop[5].argop = OP_RESTOREFH; 5752 5753 /* 6. nverify the change info */ 5754 argop[6].argop = OP_NVERIFY; 5755 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5756 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5757 ver_fattr->attrlist4 = (char *)&dchange; 5758 ptr = (int32_t *)&dchange; 5759 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5760 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5761 5762 /* 7. getattr directory */ 5763 argop[7].argop = OP_GETATTR; 5764 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5765 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5766 5767 /* 8. access directory */ 5768 argop[8].argop = OP_ACCESS; 5769 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5770 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5771 5772 doqueue = 1; 5773 t = gethrtime(); 5774 5775 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5776 5777 if (!isdotdot && res.status == NFS4ERR_MOVED) { 5778 e.error = nfs4_setup_referral(dvp, nm, vpp, cr); 5779 if (e.error != 0 && *vpp != NULL) 5780 VN_RELE(*vpp); 5781 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5782 &recov_state, FALSE); 5783 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5784 kmem_free(argop, argoplist_size); 5785 return (e.error); 5786 } 5787 5788 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5789 /* 5790 * For WRONGSEC of a non-dotdot case, send secinfo directly 5791 * from this thread, do not go thru the recovery thread since 5792 * we need the nm information. 5793 * 5794 * Not doing dotdot case because there is no specification 5795 * for (PUTFH, SECINFO "..") yet. 5796 */ 5797 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5798 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5799 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5800 &recov_state, FALSE); 5801 else 5802 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5803 &recov_state, TRUE); 5804 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5805 kmem_free(argop, argoplist_size); 5806 if (!e.error) 5807 goto recov_retry; 5808 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5809 return (e.error); 5810 } 5811 5812 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5813 OP_LOOKUP, NULL, NULL, NULL) == FALSE) { 5814 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5815 &recov_state, TRUE); 5816 5817 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5818 kmem_free(argop, argoplist_size); 5819 goto recov_retry; 5820 } 5821 } 5822 5823 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5824 5825 if (e.error || res.array_len == 0) { 5826 /* 5827 * If e.error isn't set, then reply has no ops (or we couldn't 5828 * be here). The only legal way to reply without an op array 5829 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5830 * be in the reply for all other status values. 5831 * 5832 * For valid replies without an ops array, return ENOTSUP 5833 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5834 * return EIO -- don't trust status. 5835 */ 5836 if (e.error == 0) 5837 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5838 ENOTSUP : EIO; 5839 5840 kmem_free(argop, argoplist_size); 5841 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5842 return (e.error); 5843 } 5844 5845 e.error = geterrno4(res.status); 5846 5847 /* 5848 * The PUTFH and SAVEFH may have failed. 5849 */ 5850 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5851 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5852 nfs4_purge_stale_fh(e.error, dvp, cr); 5853 goto exit; 5854 } 5855 5856 /* 5857 * Check if the file exists, if it does delay entering 5858 * into the dnlc until after we update the directory 5859 * attributes so we don't cause it to get purged immediately. 5860 */ 5861 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5862 /* 5863 * The lookup failed, probably no entry 5864 */ 5865 if (e.error == ENOENT && nfs4_lookup_neg_cache) 5866 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5867 goto exit; 5868 } 5869 5870 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5871 /* 5872 * The file exists but we can't get its fh for 5873 * some unknown reason. Error out to be safe. 5874 */ 5875 goto exit; 5876 } 5877 5878 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5879 if (fhp->nfs_fh4_len == 0) { 5880 /* 5881 * The file exists but a bogus fh 5882 * some unknown reason. Error out to be safe. 5883 */ 5884 e.error = EIO; 5885 goto exit; 5886 } 5887 sfhp = sfh4_get(fhp, mi); 5888 5889 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5890 sfh4_rele(&sfhp); 5891 goto exit; 5892 } 5893 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5894 5895 /* 5896 * The RESTOREFH may have failed 5897 */ 5898 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5899 sfh4_rele(&sfhp); 5900 e.error = EIO; 5901 goto exit; 5902 } 5903 5904 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5905 /* 5906 * First make sure the NVERIFY failed as we expected, 5907 * if it didn't then be conservative and error out 5908 * as we can't trust the directory. 5909 */ 5910 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5911 sfh4_rele(&sfhp); 5912 e.error = EIO; 5913 goto exit; 5914 } 5915 5916 /* 5917 * We know the NVERIFY "failed" so the directory has changed, 5918 * so we must: 5919 * purge the caches (access and indirectly dnlc if needed) 5920 */ 5921 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5922 5923 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5924 sfh4_rele(&sfhp); 5925 goto exit; 5926 } 5927 nfs4_attr_cache(dvp, 5928 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5929 t, cr, FALSE, NULL); 5930 5931 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5932 nfs4_purge_stale_fh(e.error, dvp, cr); 5933 sfh4_rele(&sfhp); 5934 e.error = geterrno4(res.status); 5935 goto exit; 5936 } 5937 5938 /* 5939 * Now we know the directory is valid, 5940 * cache new directory access 5941 */ 5942 nfs4_access_cache(drp, 5943 args.array[8].nfs_argop4_u.opaccess.access, 5944 res.array[8].nfs_resop4_u.opaccess.access, cr); 5945 5946 /* 5947 * recheck VEXEC access 5948 */ 5949 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5950 if (cacc != NFS4_ACCESS_ALLOWED) { 5951 /* 5952 * Directory permissions might have been revoked 5953 */ 5954 if (cacc == NFS4_ACCESS_DENIED) { 5955 sfh4_rele(&sfhp); 5956 e.error = EACCES; 5957 goto exit; 5958 } 5959 5960 /* 5961 * Somehow we must not have asked for enough 5962 * so try a singleton ACCESS should never happen 5963 */ 5964 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5965 if (e.error) { 5966 sfh4_rele(&sfhp); 5967 goto exit; 5968 } 5969 } 5970 5971 e.error = geterrno4(res.status); 5972 } else { 5973 hrtime_t now; 5974 hrtime_t delta = 0; 5975 5976 e.error = 0; 5977 5978 /* 5979 * Because the NVERIFY "succeeded" we know that the 5980 * directory attributes are still valid 5981 * so update r_time_attr_inval 5982 */ 5983 now = gethrtime(); 5984 mutex_enter(&drp->r_statelock); 5985 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5986 delta = now - drp->r_time_attr_saved; 5987 if (delta < mi->mi_acdirmin) 5988 delta = mi->mi_acdirmin; 5989 else if (delta > mi->mi_acdirmax) 5990 delta = mi->mi_acdirmax; 5991 } 5992 drp->r_time_attr_inval = now + delta; 5993 mutex_exit(&drp->r_statelock); 5994 5995 /* 5996 * Even though we have a valid directory attr cache, 5997 * we may not have access. 5998 * This should almost always hit the cache. 5999 */ 6000 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 6001 if (e.error) { 6002 sfh4_rele(&sfhp); 6003 goto exit; 6004 } 6005 } 6006 6007 /* 6008 * Now we have successfully completed the lookup, if the 6009 * directory has changed we now have the valid attributes. 6010 * We also know we have directory access. 6011 * Create the new rnode and insert it in the dnlc. 6012 */ 6013 if (isdotdot) { 6014 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 6015 if (e.error) { 6016 sfh4_rele(&sfhp); 6017 goto exit; 6018 } 6019 /* 6020 * XXX if nfs4_make_dotdot uses an existing rnode 6021 * XXX it doesn't update the attributes. 6022 * XXX for now just save them again to save an OTW 6023 */ 6024 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 6025 } else { 6026 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 6027 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 6028 } 6029 sfh4_rele(&sfhp); 6030 6031 nrp = VTOR4(nvp); 6032 mutex_enter(&nrp->r_statev4_lock); 6033 if (!nrp->created_v4) { 6034 mutex_exit(&nrp->r_statev4_lock); 6035 dnlc_update(dvp, nm, nvp); 6036 } else 6037 mutex_exit(&nrp->r_statev4_lock); 6038 6039 *vpp = nvp; 6040 6041 exit: 6042 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6043 kmem_free(argop, argoplist_size); 6044 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 6045 return (e.error); 6046 } 6047 6048 #ifdef DEBUG 6049 void 6050 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 6051 { 6052 uint_t i, len; 6053 zoneid_t zoneid = getzoneid(); 6054 char *s; 6055 6056 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 6057 for (i = 0; i < argcnt; i++) { 6058 nfs_argop4 *op = &argbase[i]; 6059 switch (op->argop) { 6060 case OP_CPUTFH: 6061 case OP_PUTFH: 6062 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 6063 break; 6064 case OP_PUTROOTFH: 6065 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 6066 break; 6067 case OP_CLOOKUP: 6068 s = op->nfs_argop4_u.opclookup.cname; 6069 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6070 break; 6071 case OP_LOOKUP: 6072 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 6073 &len, NULL); 6074 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6075 kmem_free(s, len); 6076 break; 6077 case OP_LOOKUPP: 6078 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 6079 break; 6080 case OP_GETFH: 6081 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 6082 break; 6083 case OP_GETATTR: 6084 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 6085 break; 6086 case OP_OPENATTR: 6087 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 6088 break; 6089 default: 6090 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 6091 op->argop); 6092 break; 6093 } 6094 } 6095 } 6096 #endif 6097 6098 /* 6099 * nfs4lookup_setup - constructs a multi-lookup compound request. 6100 * 6101 * Given the path "nm1/nm2/.../nmn", the following compound requests 6102 * may be created: 6103 * 6104 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 6105 * is faster, for now. 6106 * 6107 * l4_getattrs indicates the type of compound requested. 6108 * 6109 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 6110 * 6111 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 6112 * 6113 * total number of ops is n + 1. 6114 * 6115 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 6116 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 6117 * before the last component, and only get attributes 6118 * for the last component. Note that the second-to-last 6119 * pathname component is XATTR_RPATH, which does NOT go 6120 * over-the-wire as a lookup. 6121 * 6122 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 6123 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 6124 * 6125 * and total number of ops is n + 5. 6126 * 6127 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 6128 * attribute directory: create lookups plus an OPENATTR 6129 * replacing the last lookup. Note that the last pathname 6130 * component is XATTR_RPATH, which does NOT go over-the-wire 6131 * as a lookup. 6132 * 6133 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 6134 * Openattr; Getfh; Getattr } 6135 * 6136 * and total number of ops is n + 5. 6137 * 6138 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 6139 * nodes too. 6140 * 6141 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 6142 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 6143 * 6144 * and total number of ops is 3*n + 1. 6145 * 6146 * All cases: returns the index in the arg array of the final LOOKUP op, or 6147 * -1 if no LOOKUPs were used. 6148 */ 6149 int 6150 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 6151 { 6152 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 6153 nfs_argop4 *argbase, *argop; 6154 int arglen, argcnt; 6155 int n = 1; /* number of components */ 6156 int nga = 1; /* number of Getattr's in request */ 6157 char c = '\0', *s, *p; 6158 int lookup_idx = -1; 6159 int argoplist_size; 6160 6161 /* set lookuparg response result to 0 */ 6162 lookupargp->resp->status = NFS4_OK; 6163 6164 /* skip leading "/" or "." e.g. ".//./" if there is */ 6165 for (; ; nm++) { 6166 if (*nm != '/' && *nm != '.') 6167 break; 6168 6169 /* ".." is counted as 1 component */ 6170 if (*nm == '.' && *(nm + 1) != '/') 6171 break; 6172 } 6173 6174 /* 6175 * Find n = number of components - nm must be null terminated 6176 * Skip "." components. 6177 */ 6178 if (*nm != '\0') 6179 for (n = 1, s = nm; *s != '\0'; s++) { 6180 if ((*s == '/') && (*(s + 1) != '/') && 6181 (*(s + 1) != '\0') && 6182 !(*(s + 1) == '.' && (*(s + 2) == '/' || 6183 *(s + 2) == '\0'))) 6184 n++; 6185 } 6186 else 6187 n = 0; 6188 6189 /* 6190 * nga is number of components that need Getfh+Getattr 6191 */ 6192 switch (l4_getattrs) { 6193 case LKP4_NO_ATTRIBUTES: 6194 nga = 0; 6195 break; 6196 case LKP4_ALL_ATTRIBUTES: 6197 nga = n; 6198 /* 6199 * Always have at least 1 getfh, getattr pair 6200 */ 6201 if (nga == 0) 6202 nga++; 6203 break; 6204 case LKP4_LAST_ATTRDIR: 6205 case LKP4_LAST_NAMED_ATTR: 6206 nga = n+1; 6207 break; 6208 } 6209 6210 /* 6211 * If change to use the filehandle attr instead of getfh 6212 * the following line can be deleted. 6213 */ 6214 nga *= 2; 6215 6216 /* 6217 * calculate number of ops in request as 6218 * header + trailer + lookups + getattrs 6219 */ 6220 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6221 6222 argoplist_size = arglen * sizeof (nfs_argop4); 6223 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6224 lookupargp->argsp->array = argop; 6225 6226 argcnt = lookupargp->header_len; 6227 argop += argcnt; 6228 6229 /* 6230 * loop and create a lookup op and possibly getattr/getfh for 6231 * each component. Skip "." components. 6232 */ 6233 for (s = nm; *s != '\0'; s = p) { 6234 /* 6235 * Set up a pathname struct for each component if needed 6236 */ 6237 while (*s == '/') 6238 s++; 6239 if (*s == '\0') 6240 break; 6241 6242 for (p = s; (*p != '/') && (*p != '\0'); p++) 6243 ; 6244 c = *p; 6245 *p = '\0'; 6246 6247 if (s[0] == '.' && s[1] == '\0') { 6248 *p = c; 6249 continue; 6250 } 6251 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6252 strcmp(s, XATTR_RPATH) == 0) { 6253 /* getfh XXX may not be needed in future */ 6254 argop->argop = OP_GETFH; 6255 argop++; 6256 argcnt++; 6257 6258 /* getattr */ 6259 argop->argop = OP_GETATTR; 6260 argop->nfs_argop4_u.opgetattr.attr_request = 6261 lookupargp->ga_bits; 6262 argop->nfs_argop4_u.opgetattr.mi = 6263 lookupargp->mi; 6264 argop++; 6265 argcnt++; 6266 6267 /* openattr */ 6268 argop->argop = OP_OPENATTR; 6269 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6270 strcmp(s, XATTR_RPATH) == 0) { 6271 /* openattr */ 6272 argop->argop = OP_OPENATTR; 6273 argop++; 6274 argcnt++; 6275 6276 /* getfh XXX may not be needed in future */ 6277 argop->argop = OP_GETFH; 6278 argop++; 6279 argcnt++; 6280 6281 /* getattr */ 6282 argop->argop = OP_GETATTR; 6283 argop->nfs_argop4_u.opgetattr.attr_request = 6284 lookupargp->ga_bits; 6285 argop->nfs_argop4_u.opgetattr.mi = 6286 lookupargp->mi; 6287 argop++; 6288 argcnt++; 6289 *p = c; 6290 continue; 6291 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6292 /* lookupp */ 6293 argop->argop = OP_LOOKUPP; 6294 } else { 6295 /* lookup */ 6296 argop->argop = OP_LOOKUP; 6297 (void) str_to_utf8(s, 6298 &argop->nfs_argop4_u.oplookup.objname); 6299 } 6300 lookup_idx = argcnt; 6301 argop++; 6302 argcnt++; 6303 6304 *p = c; 6305 6306 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6307 /* getfh XXX may not be needed in future */ 6308 argop->argop = OP_GETFH; 6309 argop++; 6310 argcnt++; 6311 6312 /* getattr */ 6313 argop->argop = OP_GETATTR; 6314 argop->nfs_argop4_u.opgetattr.attr_request = 6315 lookupargp->ga_bits; 6316 argop->nfs_argop4_u.opgetattr.mi = 6317 lookupargp->mi; 6318 argop++; 6319 argcnt++; 6320 } 6321 } 6322 6323 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6324 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6325 if (needgetfh) { 6326 /* stick in a post-lookup getfh */ 6327 argop->argop = OP_GETFH; 6328 argcnt++; 6329 argop++; 6330 } 6331 /* post-lookup getattr */ 6332 argop->argop = OP_GETATTR; 6333 argop->nfs_argop4_u.opgetattr.attr_request = 6334 lookupargp->ga_bits; 6335 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6336 argcnt++; 6337 } 6338 argcnt += lookupargp->trailer_len; /* actual op count */ 6339 lookupargp->argsp->array_len = argcnt; 6340 lookupargp->arglen = arglen; 6341 6342 #ifdef DEBUG 6343 if (nfs4_client_lookup_debug) 6344 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6345 #endif 6346 6347 return (lookup_idx); 6348 } 6349 6350 static int 6351 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6352 { 6353 COMPOUND4args_clnt args; 6354 COMPOUND4res_clnt res; 6355 GETFH4res *gf_res = NULL; 6356 nfs_argop4 argop[4]; 6357 nfs_resop4 *resop = NULL; 6358 nfs4_sharedfh_t *sfhp; 6359 hrtime_t t; 6360 nfs4_error_t e; 6361 6362 rnode4_t *drp; 6363 int doqueue = 1; 6364 vnode_t *vp; 6365 int needrecov = 0; 6366 nfs4_recov_state_t recov_state; 6367 6368 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6369 6370 *avp = NULL; 6371 recov_state.rs_flags = 0; 6372 recov_state.rs_num_retry_despite_err = 0; 6373 6374 recov_retry: 6375 /* COMPOUND: putfh, openattr, getfh, getattr */ 6376 args.array_len = 4; 6377 args.array = argop; 6378 args.ctag = TAG_OPENATTR; 6379 6380 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6381 if (e.error) 6382 return (e.error); 6383 6384 drp = VTOR4(dvp); 6385 6386 /* putfh */ 6387 argop[0].argop = OP_CPUTFH; 6388 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6389 6390 /* openattr */ 6391 argop[1].argop = OP_OPENATTR; 6392 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6393 6394 /* getfh */ 6395 argop[2].argop = OP_GETFH; 6396 6397 /* getattr */ 6398 argop[3].argop = OP_GETATTR; 6399 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6400 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6401 6402 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6403 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6404 rnode4info(drp))); 6405 6406 t = gethrtime(); 6407 6408 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6409 6410 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6411 if (needrecov) { 6412 bool_t abort; 6413 6414 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6415 "nfs4openattr: initiating recovery\n")); 6416 6417 abort = nfs4_start_recovery(&e, 6418 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6419 OP_OPENATTR, NULL, NULL, NULL); 6420 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6421 if (!e.error) { 6422 e.error = geterrno4(res.status); 6423 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6424 } 6425 if (abort == FALSE) 6426 goto recov_retry; 6427 return (e.error); 6428 } 6429 6430 if (e.error) { 6431 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6432 return (e.error); 6433 } 6434 6435 if (res.status) { 6436 /* 6437 * If OTW errro is NOTSUPP, then it should be 6438 * translated to EINVAL. All Solaris file system 6439 * implementations return EINVAL to the syscall layer 6440 * when the attrdir cannot be created due to an 6441 * implementation restriction or noxattr mount option. 6442 */ 6443 if (res.status == NFS4ERR_NOTSUPP) { 6444 mutex_enter(&drp->r_statelock); 6445 if (drp->r_xattr_dir) 6446 VN_RELE(drp->r_xattr_dir); 6447 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6448 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6449 mutex_exit(&drp->r_statelock); 6450 6451 e.error = EINVAL; 6452 } else { 6453 e.error = geterrno4(res.status); 6454 } 6455 6456 if (e.error) { 6457 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6458 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6459 needrecov); 6460 return (e.error); 6461 } 6462 } 6463 6464 resop = &res.array[0]; /* putfh res */ 6465 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6466 6467 resop = &res.array[1]; /* openattr res */ 6468 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6469 6470 resop = &res.array[2]; /* getfh res */ 6471 gf_res = &resop->nfs_resop4_u.opgetfh; 6472 if (gf_res->object.nfs_fh4_len == 0) { 6473 *avp = NULL; 6474 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6475 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6476 return (ENOENT); 6477 } 6478 6479 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6480 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6481 dvp->v_vfsp, t, cr, dvp, 6482 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH, sfhp)); 6483 sfh4_rele(&sfhp); 6484 6485 if (e.error) 6486 PURGE_ATTRCACHE4(vp); 6487 6488 mutex_enter(&vp->v_lock); 6489 vp->v_flag |= V_XATTRDIR; 6490 mutex_exit(&vp->v_lock); 6491 6492 *avp = vp; 6493 6494 mutex_enter(&drp->r_statelock); 6495 if (drp->r_xattr_dir) 6496 VN_RELE(drp->r_xattr_dir); 6497 VN_HOLD(vp); 6498 drp->r_xattr_dir = vp; 6499 6500 /* 6501 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6502 * NULL. xattrs could be created at any time, and we have no 6503 * way to update pc4_xattr_exists in the base object if/when 6504 * it happens. 6505 */ 6506 drp->r_pathconf.pc4_xattr_valid = 0; 6507 6508 mutex_exit(&drp->r_statelock); 6509 6510 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6511 6512 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6513 6514 return (0); 6515 } 6516 6517 /* ARGSUSED */ 6518 static int 6519 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6520 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct, 6521 vsecattr_t *vsecp) 6522 { 6523 int error; 6524 vnode_t *vp = NULL; 6525 rnode4_t *rp; 6526 struct vattr vattr; 6527 rnode4_t *drp; 6528 vnode_t *tempvp; 6529 enum createmode4 createmode; 6530 bool_t must_trunc = FALSE; 6531 int truncating = 0; 6532 6533 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6534 return (EPERM); 6535 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6536 return (EINVAL); 6537 } 6538 6539 /* . and .. have special meaning in the protocol, reject them. */ 6540 6541 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6542 return (EISDIR); 6543 6544 drp = VTOR4(dvp); 6545 6546 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6547 return (EINTR); 6548 6549 top: 6550 /* 6551 * We make a copy of the attributes because the caller does not 6552 * expect us to change what va points to. 6553 */ 6554 vattr = *va; 6555 6556 /* 6557 * If the pathname is "", then dvp is the root vnode of 6558 * a remote file mounted over a local directory. 6559 * All that needs to be done is access 6560 * checking and truncation. Note that we avoid doing 6561 * open w/ create because the parent directory might 6562 * be in pseudo-fs and the open would fail. 6563 */ 6564 if (*nm == '\0') { 6565 error = 0; 6566 VN_HOLD(dvp); 6567 vp = dvp; 6568 must_trunc = TRUE; 6569 } else { 6570 /* 6571 * We need to go over the wire, just to be sure whether the 6572 * file exists or not. Using the DNLC can be dangerous in 6573 * this case when making a decision regarding existence. 6574 */ 6575 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6576 } 6577 6578 if (exclusive) 6579 createmode = EXCLUSIVE4; 6580 else 6581 createmode = GUARDED4; 6582 6583 /* 6584 * error would be set if the file does not exist on the 6585 * server, so lets go create it. 6586 */ 6587 if (error) { 6588 goto create_otw; 6589 } 6590 6591 /* 6592 * File does exist on the server 6593 */ 6594 if (exclusive == EXCL) 6595 error = EEXIST; 6596 else if (vp->v_type == VDIR && (mode & VWRITE)) 6597 error = EISDIR; 6598 else { 6599 /* 6600 * If vnode is a device, create special vnode. 6601 */ 6602 if (ISVDEV(vp->v_type)) { 6603 tempvp = vp; 6604 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6605 VN_RELE(tempvp); 6606 } 6607 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 6608 if ((vattr.va_mask & AT_SIZE) && 6609 vp->v_type == VREG) { 6610 rp = VTOR4(vp); 6611 /* 6612 * Check here for large file handled 6613 * by LF-unaware process (as 6614 * ufs_create() does) 6615 */ 6616 if (!(flags & FOFFMAX)) { 6617 mutex_enter(&rp->r_statelock); 6618 if (rp->r_size > MAXOFF32_T) 6619 error = EOVERFLOW; 6620 mutex_exit(&rp->r_statelock); 6621 } 6622 6623 /* if error is set then we need to return */ 6624 if (error) { 6625 nfs_rw_exit(&drp->r_rwlock); 6626 VN_RELE(vp); 6627 return (error); 6628 } 6629 6630 if (must_trunc) { 6631 vattr.va_mask = AT_SIZE; 6632 error = nfs4setattr(vp, &vattr, 0, cr, 6633 NULL); 6634 } else { 6635 /* 6636 * we know we have a regular file that already 6637 * exists and we may end up truncating the file 6638 * as a result of the open_otw, so flush out 6639 * any dirty pages for this file first. 6640 */ 6641 if (nfs4_has_pages(vp) && 6642 ((rp->r_flags & R4DIRTY) || 6643 rp->r_count > 0 || 6644 rp->r_mapcnt > 0)) { 6645 error = nfs4_putpage(vp, 6646 (offset_t)0, 0, 0, cr, ct); 6647 if (error && (error == ENOSPC || 6648 error == EDQUOT)) { 6649 mutex_enter( 6650 &rp->r_statelock); 6651 if (!rp->r_error) 6652 rp->r_error = 6653 error; 6654 mutex_exit( 6655 &rp->r_statelock); 6656 } 6657 } 6658 vattr.va_mask = (AT_SIZE | 6659 AT_TYPE | AT_MODE); 6660 vattr.va_type = VREG; 6661 createmode = UNCHECKED4; 6662 truncating = 1; 6663 goto create_otw; 6664 } 6665 } 6666 } 6667 } 6668 nfs_rw_exit(&drp->r_rwlock); 6669 if (error) { 6670 VN_RELE(vp); 6671 } else { 6672 vnode_t *tvp; 6673 rnode4_t *trp; 6674 tvp = vp; 6675 if (vp->v_type == VREG) { 6676 trp = VTOR4(vp); 6677 if (IS_SHADOW(vp, trp)) 6678 tvp = RTOV4(trp); 6679 } 6680 6681 if (must_trunc) { 6682 /* 6683 * existing file got truncated, notify. 6684 */ 6685 vnevent_create(tvp, ct); 6686 } 6687 6688 *vpp = vp; 6689 } 6690 return (error); 6691 6692 create_otw: 6693 dnlc_remove(dvp, nm); 6694 6695 ASSERT(vattr.va_mask & AT_TYPE); 6696 6697 /* 6698 * If not a regular file let nfs4mknod() handle it. 6699 */ 6700 if (vattr.va_type != VREG) { 6701 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6702 nfs_rw_exit(&drp->r_rwlock); 6703 return (error); 6704 } 6705 6706 /* 6707 * It _is_ a regular file. 6708 */ 6709 ASSERT(vattr.va_mask & AT_MODE); 6710 if (MANDMODE(vattr.va_mode)) { 6711 nfs_rw_exit(&drp->r_rwlock); 6712 return (EACCES); 6713 } 6714 6715 /* 6716 * If this happens to be a mknod of a regular file, then flags will 6717 * have neither FREAD or FWRITE. However, we must set at least one 6718 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6719 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6720 * set (based on openmode specified by app). 6721 */ 6722 if ((flags & (FREAD|FWRITE)) == 0) 6723 flags |= (FREAD|FWRITE); 6724 6725 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6726 6727 if (vp != NULL) { 6728 /* if create was successful, throw away the file's pages */ 6729 if (!error && (vattr.va_mask & AT_SIZE)) 6730 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6731 cr); 6732 /* release the lookup hold */ 6733 VN_RELE(vp); 6734 vp = NULL; 6735 } 6736 6737 /* 6738 * validate that we opened a regular file. This handles a misbehaving 6739 * server that returns an incorrect FH. 6740 */ 6741 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6742 error = EISDIR; 6743 VN_RELE(*vpp); 6744 } 6745 6746 /* 6747 * If this is not an exclusive create, then the CREATE 6748 * request will be made with the GUARDED mode set. This 6749 * means that the server will return EEXIST if the file 6750 * exists. The file could exist because of a retransmitted 6751 * request. In this case, we recover by starting over and 6752 * checking to see whether the file exists. This second 6753 * time through it should and a CREATE request will not be 6754 * sent. 6755 * 6756 * This handles the problem of a dangling CREATE request 6757 * which contains attributes which indicate that the file 6758 * should be truncated. This retransmitted request could 6759 * possibly truncate valid data in the file if not caught 6760 * by the duplicate request mechanism on the server or if 6761 * not caught by other means. The scenario is: 6762 * 6763 * Client transmits CREATE request with size = 0 6764 * Client times out, retransmits request. 6765 * Response to the first request arrives from the server 6766 * and the client proceeds on. 6767 * Client writes data to the file. 6768 * The server now processes retransmitted CREATE request 6769 * and truncates file. 6770 * 6771 * The use of the GUARDED CREATE request prevents this from 6772 * happening because the retransmitted CREATE would fail 6773 * with EEXIST and would not truncate the file. 6774 */ 6775 if (error == EEXIST && exclusive == NONEXCL) { 6776 #ifdef DEBUG 6777 nfs4_create_misses++; 6778 #endif 6779 goto top; 6780 } 6781 nfs_rw_exit(&drp->r_rwlock); 6782 if (truncating && !error && *vpp) { 6783 vnode_t *tvp; 6784 rnode4_t *trp; 6785 /* 6786 * existing file got truncated, notify. 6787 */ 6788 tvp = *vpp; 6789 trp = VTOR4(tvp); 6790 if (IS_SHADOW(tvp, trp)) 6791 tvp = RTOV4(trp); 6792 vnevent_create(tvp, ct); 6793 } 6794 return (error); 6795 } 6796 6797 /* 6798 * Create compound (for mkdir, mknod, symlink): 6799 * { Putfh <dfh>; Create; Getfh; Getattr } 6800 * It's okay if setattr failed to set gid - this is not considered 6801 * an error, but purge attrs in that case. 6802 */ 6803 static int 6804 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6805 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6806 { 6807 int need_end_op = FALSE; 6808 COMPOUND4args_clnt args; 6809 COMPOUND4res_clnt res, *resp = NULL; 6810 nfs_argop4 *argop; 6811 nfs_resop4 *resop; 6812 int doqueue; 6813 mntinfo4_t *mi; 6814 rnode4_t *drp = VTOR4(dvp); 6815 change_info4 *cinfo; 6816 GETFH4res *gf_res; 6817 struct vattr vattr; 6818 vnode_t *vp; 6819 fattr4 *crattr; 6820 bool_t needrecov = FALSE; 6821 nfs4_recov_state_t recov_state; 6822 nfs4_sharedfh_t *sfhp = NULL; 6823 hrtime_t t; 6824 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6825 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6826 dirattr_info_t dinfo, *dinfop; 6827 servinfo4_t *svp; 6828 bitmap4 supp_attrs; 6829 6830 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6831 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6832 6833 mi = VTOMI4(dvp); 6834 6835 /* 6836 * Make sure we properly deal with setting the right gid 6837 * on a new directory to reflect the parent's setgid bit 6838 */ 6839 setgid_flag = 0; 6840 if (type == NF4DIR) { 6841 struct vattr dva; 6842 6843 va->va_mode &= ~VSGID; 6844 dva.va_mask = AT_MODE | AT_GID; 6845 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) { 6846 6847 /* 6848 * If the parent's directory has the setgid bit set 6849 * _and_ the client was able to get a valid mapping 6850 * for the parent dir's owner_group, we want to 6851 * append NVERIFY(owner_group == dva.va_gid) and 6852 * SETTATTR to the CREATE compound. 6853 */ 6854 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6855 setgid_flag = 1; 6856 va->va_mode |= VSGID; 6857 if (dva.va_gid != GID_NOBODY) { 6858 va->va_mask |= AT_GID; 6859 va->va_gid = dva.va_gid; 6860 } 6861 } 6862 } 6863 } 6864 6865 /* 6866 * Create ops: 6867 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6868 * 5:restorefh(dir) 6:getattr(dir) 6869 * 6870 * if (setgid) 6871 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6872 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6873 * 8:nverify 9:setattr 6874 */ 6875 if (setgid_flag) { 6876 numops = 10; 6877 idx_create = 1; 6878 idx_fattr = 3; 6879 } else { 6880 numops = 7; 6881 idx_create = 2; 6882 idx_fattr = 4; 6883 } 6884 6885 ASSERT(nfs_zone() == mi->mi_zone); 6886 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6887 return (EINTR); 6888 } 6889 recov_state.rs_flags = 0; 6890 recov_state.rs_num_retry_despite_err = 0; 6891 6892 argoplist_size = numops * sizeof (nfs_argop4); 6893 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6894 6895 recov_retry: 6896 if (type == NF4LNK) 6897 args.ctag = TAG_SYMLINK; 6898 else if (type == NF4DIR) 6899 args.ctag = TAG_MKDIR; 6900 else 6901 args.ctag = TAG_MKNOD; 6902 6903 args.array_len = numops; 6904 args.array = argop; 6905 6906 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6907 nfs_rw_exit(&drp->r_rwlock); 6908 kmem_free(argop, argoplist_size); 6909 return (e.error); 6910 } 6911 need_end_op = TRUE; 6912 6913 6914 /* 0: putfh directory */ 6915 argop[0].argop = OP_CPUTFH; 6916 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6917 6918 /* 1/2: Create object */ 6919 argop[idx_create].argop = OP_CCREATE; 6920 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6921 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6922 if (type == NF4LNK) { 6923 /* 6924 * symlink, treat name as data 6925 */ 6926 ASSERT(data != NULL); 6927 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6928 (char *)data; 6929 } 6930 if (type == NF4BLK || type == NF4CHR) { 6931 ASSERT(data != NULL); 6932 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6933 *((specdata4 *)data); 6934 } 6935 6936 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6937 6938 svp = drp->r_server; 6939 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6940 supp_attrs = svp->sv_supp_attrs; 6941 nfs_rw_exit(&svp->sv_lock); 6942 6943 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6944 nfs_rw_exit(&drp->r_rwlock); 6945 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6946 e.error = EINVAL; 6947 kmem_free(argop, argoplist_size); 6948 return (e.error); 6949 } 6950 6951 /* 2/3: getfh fh of created object */ 6952 ASSERT(idx_create + 1 == idx_fattr - 1); 6953 argop[idx_create + 1].argop = OP_GETFH; 6954 6955 /* 3/4: getattr of new object */ 6956 argop[idx_fattr].argop = OP_GETATTR; 6957 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6958 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6959 6960 if (setgid_flag) { 6961 vattr_t _v; 6962 6963 argop[4].argop = OP_SAVEFH; 6964 6965 argop[5].argop = OP_CPUTFH; 6966 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6967 6968 argop[6].argop = OP_GETATTR; 6969 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6970 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6971 6972 argop[7].argop = OP_RESTOREFH; 6973 6974 /* 6975 * nverify 6976 * 6977 * XXX - Revisit the last argument to nfs4_end_op() 6978 * once 5020486 is fixed. 6979 */ 6980 _v.va_mask = AT_GID; 6981 _v.va_gid = va->va_gid; 6982 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6983 supp_attrs)) { 6984 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6985 nfs_rw_exit(&drp->r_rwlock); 6986 nfs4_fattr4_free(crattr); 6987 kmem_free(argop, argoplist_size); 6988 return (e.error); 6989 } 6990 6991 /* 6992 * setattr 6993 * 6994 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 6995 * so no need for stateid or flags. Also we specify NULL 6996 * rp since we're only interested in setting owner_group 6997 * attributes. 6998 */ 6999 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 7000 &e.error, 0); 7001 7002 if (e.error) { 7003 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 7004 nfs_rw_exit(&drp->r_rwlock); 7005 nfs4_fattr4_free(crattr); 7006 nfs4args_verify_free(&argop[8]); 7007 kmem_free(argop, argoplist_size); 7008 return (e.error); 7009 } 7010 } else { 7011 argop[1].argop = OP_SAVEFH; 7012 7013 argop[5].argop = OP_RESTOREFH; 7014 7015 argop[6].argop = OP_GETATTR; 7016 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7017 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7018 } 7019 7020 dnlc_remove(dvp, nm); 7021 7022 doqueue = 1; 7023 t = gethrtime(); 7024 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7025 7026 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7027 if (e.error) { 7028 PURGE_ATTRCACHE4(dvp); 7029 if (!needrecov) 7030 goto out; 7031 } 7032 7033 if (needrecov) { 7034 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 7035 OP_CREATE, NULL, NULL, NULL) == FALSE) { 7036 nfs4_end_op(mi, dvp, NULL, &recov_state, 7037 needrecov); 7038 need_end_op = FALSE; 7039 nfs4_fattr4_free(crattr); 7040 if (setgid_flag) { 7041 nfs4args_verify_free(&argop[8]); 7042 nfs4args_setattr_free(&argop[9]); 7043 } 7044 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 7045 goto recov_retry; 7046 } 7047 } 7048 7049 resp = &res; 7050 7051 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 7052 7053 if (res.status == NFS4ERR_BADOWNER) 7054 nfs4_log_badowner(mi, OP_CREATE); 7055 7056 e.error = geterrno4(res.status); 7057 7058 /* 7059 * This check is left over from when create was implemented 7060 * using a setattr op (instead of createattrs). If the 7061 * putfh/create/getfh failed, the error was returned. If 7062 * setattr/getattr failed, we keep going. 7063 * 7064 * It might be better to get rid of the GETFH also, and just 7065 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 7066 * Then if any of the operations failed, we could return the 7067 * error now, and remove much of the error code below. 7068 */ 7069 if (res.array_len <= idx_fattr) { 7070 /* 7071 * Either Putfh, Create or Getfh failed. 7072 */ 7073 PURGE_ATTRCACHE4(dvp); 7074 /* 7075 * nfs4_purge_stale_fh() may generate otw calls through 7076 * nfs4_invalidate_pages. Hence the need to call 7077 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 7078 */ 7079 nfs4_end_op(mi, dvp, NULL, &recov_state, 7080 needrecov); 7081 need_end_op = FALSE; 7082 nfs4_purge_stale_fh(e.error, dvp, cr); 7083 goto out; 7084 } 7085 } 7086 7087 resop = &res.array[idx_create]; /* create res */ 7088 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 7089 7090 resop = &res.array[idx_create + 1]; /* getfh res */ 7091 gf_res = &resop->nfs_resop4_u.opgetfh; 7092 7093 sfhp = sfh4_get(&gf_res->object, mi); 7094 if (e.error) { 7095 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 7096 fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7097 if (vp->v_type == VNON) { 7098 vattr.va_mask = AT_TYPE; 7099 /* 7100 * Need to call nfs4_end_op before nfs4getattr to avoid 7101 * potential nfs4_start_op deadlock. See RFE 4777612. 7102 */ 7103 nfs4_end_op(mi, dvp, NULL, &recov_state, 7104 needrecov); 7105 need_end_op = FALSE; 7106 e.error = nfs4getattr(vp, &vattr, cr); 7107 if (e.error) { 7108 VN_RELE(vp); 7109 *vpp = NULL; 7110 goto out; 7111 } 7112 vp->v_type = vattr.va_type; 7113 } 7114 e.error = 0; 7115 } else { 7116 *vpp = vp = makenfs4node(sfhp, 7117 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 7118 dvp->v_vfsp, t, cr, 7119 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7120 } 7121 7122 /* 7123 * If compound succeeded, then update dir attrs 7124 */ 7125 if (res.status == NFS4_OK) { 7126 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 7127 dinfo.di_cred = cr; 7128 dinfo.di_time_call = t; 7129 dinfop = &dinfo; 7130 } else 7131 dinfop = NULL; 7132 7133 /* Update directory cache attribute, readdir and dnlc caches */ 7134 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 7135 7136 out: 7137 if (sfhp != NULL) 7138 sfh4_rele(&sfhp); 7139 nfs_rw_exit(&drp->r_rwlock); 7140 nfs4_fattr4_free(crattr); 7141 if (setgid_flag) { 7142 nfs4args_verify_free(&argop[8]); 7143 nfs4args_setattr_free(&argop[9]); 7144 } 7145 if (resp) 7146 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7147 if (need_end_op) 7148 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 7149 7150 kmem_free(argop, argoplist_size); 7151 return (e.error); 7152 } 7153 7154 /* ARGSUSED */ 7155 static int 7156 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 7157 int mode, vnode_t **vpp, cred_t *cr) 7158 { 7159 int error; 7160 vnode_t *vp; 7161 nfs_ftype4 type; 7162 specdata4 spec, *specp = NULL; 7163 7164 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 7165 7166 switch (va->va_type) { 7167 case VCHR: 7168 case VBLK: 7169 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 7170 spec.specdata1 = getmajor(va->va_rdev); 7171 spec.specdata2 = getminor(va->va_rdev); 7172 specp = &spec; 7173 break; 7174 7175 case VFIFO: 7176 type = NF4FIFO; 7177 break; 7178 case VSOCK: 7179 type = NF4SOCK; 7180 break; 7181 7182 default: 7183 return (EINVAL); 7184 } 7185 7186 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 7187 if (error) { 7188 return (error); 7189 } 7190 7191 /* 7192 * This might not be needed any more; special case to deal 7193 * with problematic v2/v3 servers. Since create was unable 7194 * to set group correctly, not sure what hope setattr has. 7195 */ 7196 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 7197 va->va_mask = AT_GID; 7198 (void) nfs4setattr(vp, va, 0, cr, NULL); 7199 } 7200 7201 /* 7202 * If vnode is a device create special vnode 7203 */ 7204 if (ISVDEV(vp->v_type)) { 7205 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 7206 VN_RELE(vp); 7207 } else { 7208 *vpp = vp; 7209 } 7210 return (error); 7211 } 7212 7213 /* 7214 * Remove requires that the current fh be the target directory. 7215 * After the operation, the current fh is unchanged. 7216 * The compound op structure is: 7217 * PUTFH(targetdir), REMOVE 7218 * 7219 * Weirdness: if the vnode to be removed is open 7220 * we rename it instead of removing it and nfs_inactive 7221 * will remove the new name. 7222 */ 7223 /* ARGSUSED */ 7224 static int 7225 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 7226 { 7227 COMPOUND4args_clnt args; 7228 COMPOUND4res_clnt res, *resp = NULL; 7229 REMOVE4res *rm_res; 7230 nfs_argop4 argop[3]; 7231 nfs_resop4 *resop; 7232 vnode_t *vp; 7233 char *tmpname; 7234 int doqueue; 7235 mntinfo4_t *mi; 7236 rnode4_t *rp; 7237 rnode4_t *drp; 7238 int needrecov = 0; 7239 nfs4_recov_state_t recov_state; 7240 int isopen; 7241 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7242 dirattr_info_t dinfo; 7243 7244 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7245 return (EPERM); 7246 drp = VTOR4(dvp); 7247 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7248 return (EINTR); 7249 7250 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7251 if (e.error) { 7252 nfs_rw_exit(&drp->r_rwlock); 7253 return (e.error); 7254 } 7255 7256 if (vp->v_type == VDIR) { 7257 VN_RELE(vp); 7258 nfs_rw_exit(&drp->r_rwlock); 7259 return (EISDIR); 7260 } 7261 7262 /* 7263 * First just remove the entry from the name cache, as it 7264 * is most likely the only entry for this vp. 7265 */ 7266 dnlc_remove(dvp, nm); 7267 7268 rp = VTOR4(vp); 7269 7270 /* 7271 * For regular file types, check to see if the file is open by looking 7272 * at the open streams. 7273 * For all other types, check the reference count on the vnode. Since 7274 * they are not opened OTW they never have an open stream. 7275 * 7276 * If the file is open, rename it to .nfsXXXX. 7277 */ 7278 if (vp->v_type != VREG) { 7279 /* 7280 * If the file has a v_count > 1 then there may be more than one 7281 * entry in the name cache due multiple links or an open file, 7282 * but we don't have the real reference count so flush all 7283 * possible entries. 7284 */ 7285 if (vp->v_count > 1) 7286 dnlc_purge_vp(vp); 7287 7288 /* 7289 * Now we have the real reference count. 7290 */ 7291 isopen = vp->v_count > 1; 7292 } else { 7293 mutex_enter(&rp->r_os_lock); 7294 isopen = list_head(&rp->r_open_streams) != NULL; 7295 mutex_exit(&rp->r_os_lock); 7296 } 7297 7298 mutex_enter(&rp->r_statelock); 7299 if (isopen && 7300 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7301 mutex_exit(&rp->r_statelock); 7302 tmpname = newname(); 7303 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct); 7304 if (e.error) 7305 kmem_free(tmpname, MAXNAMELEN); 7306 else { 7307 mutex_enter(&rp->r_statelock); 7308 if (rp->r_unldvp == NULL) { 7309 VN_HOLD(dvp); 7310 rp->r_unldvp = dvp; 7311 if (rp->r_unlcred != NULL) 7312 crfree(rp->r_unlcred); 7313 crhold(cr); 7314 rp->r_unlcred = cr; 7315 rp->r_unlname = tmpname; 7316 } else { 7317 kmem_free(rp->r_unlname, MAXNAMELEN); 7318 rp->r_unlname = tmpname; 7319 } 7320 mutex_exit(&rp->r_statelock); 7321 } 7322 VN_RELE(vp); 7323 nfs_rw_exit(&drp->r_rwlock); 7324 return (e.error); 7325 } 7326 /* 7327 * Actually remove the file/dir 7328 */ 7329 mutex_exit(&rp->r_statelock); 7330 7331 /* 7332 * We need to flush any dirty pages which happen to 7333 * be hanging around before removing the file. 7334 * This shouldn't happen very often since in NFSv4 7335 * we should be close to open consistent. 7336 */ 7337 if (nfs4_has_pages(vp) && 7338 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7339 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct); 7340 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7341 mutex_enter(&rp->r_statelock); 7342 if (!rp->r_error) 7343 rp->r_error = e.error; 7344 mutex_exit(&rp->r_statelock); 7345 } 7346 } 7347 7348 mi = VTOMI4(dvp); 7349 7350 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7351 recov_state.rs_flags = 0; 7352 recov_state.rs_num_retry_despite_err = 0; 7353 7354 recov_retry: 7355 /* 7356 * Remove ops: putfh dir; remove 7357 */ 7358 args.ctag = TAG_REMOVE; 7359 args.array_len = 3; 7360 args.array = argop; 7361 7362 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7363 if (e.error) { 7364 nfs_rw_exit(&drp->r_rwlock); 7365 VN_RELE(vp); 7366 return (e.error); 7367 } 7368 7369 /* putfh directory */ 7370 argop[0].argop = OP_CPUTFH; 7371 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7372 7373 /* remove */ 7374 argop[1].argop = OP_CREMOVE; 7375 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7376 7377 /* getattr dir */ 7378 argop[2].argop = OP_GETATTR; 7379 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7380 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7381 7382 doqueue = 1; 7383 dinfo.di_time_call = gethrtime(); 7384 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7385 7386 PURGE_ATTRCACHE4(vp); 7387 7388 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7389 if (e.error) 7390 PURGE_ATTRCACHE4(dvp); 7391 7392 if (needrecov) { 7393 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7394 NULL, NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 7395 if (!e.error) 7396 (void) xdr_free(xdr_COMPOUND4res_clnt, 7397 (caddr_t)&res); 7398 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7399 needrecov); 7400 goto recov_retry; 7401 } 7402 } 7403 7404 /* 7405 * Matching nfs4_end_op() for start_op() above. 7406 * There is a path in the code below which calls 7407 * nfs4_purge_stale_fh(), which may generate otw calls through 7408 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7409 * here to avoid nfs4_start_op() deadlock. 7410 */ 7411 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7412 7413 if (!e.error) { 7414 resp = &res; 7415 7416 if (res.status) { 7417 e.error = geterrno4(res.status); 7418 PURGE_ATTRCACHE4(dvp); 7419 nfs4_purge_stale_fh(e.error, dvp, cr); 7420 } else { 7421 resop = &res.array[1]; /* remove res */ 7422 rm_res = &resop->nfs_resop4_u.opremove; 7423 7424 dinfo.di_garp = 7425 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7426 dinfo.di_cred = cr; 7427 7428 /* Update directory attr, readdir and dnlc caches */ 7429 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7430 &dinfo); 7431 } 7432 } 7433 nfs_rw_exit(&drp->r_rwlock); 7434 if (resp) 7435 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7436 7437 if (e.error == 0) { 7438 vnode_t *tvp; 7439 rnode4_t *trp; 7440 trp = VTOR4(vp); 7441 tvp = vp; 7442 if (IS_SHADOW(vp, trp)) 7443 tvp = RTOV4(trp); 7444 vnevent_remove(tvp, dvp, nm, ct); 7445 } 7446 VN_RELE(vp); 7447 return (e.error); 7448 } 7449 7450 /* 7451 * Link requires that the current fh be the target directory and the 7452 * saved fh be the source fh. After the operation, the current fh is unchanged. 7453 * Thus the compound op structure is: 7454 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7455 * GETATTR(file) 7456 */ 7457 /* ARGSUSED */ 7458 static int 7459 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 7460 caller_context_t *ct, int flags) 7461 { 7462 COMPOUND4args_clnt args; 7463 COMPOUND4res_clnt res, *resp = NULL; 7464 LINK4res *ln_res; 7465 int argoplist_size = 7 * sizeof (nfs_argop4); 7466 nfs_argop4 *argop; 7467 nfs_resop4 *resop; 7468 vnode_t *realvp, *nvp; 7469 int doqueue; 7470 mntinfo4_t *mi; 7471 rnode4_t *tdrp; 7472 bool_t needrecov = FALSE; 7473 nfs4_recov_state_t recov_state; 7474 hrtime_t t; 7475 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7476 dirattr_info_t dinfo; 7477 7478 ASSERT(*tnm != '\0'); 7479 ASSERT(tdvp->v_type == VDIR); 7480 ASSERT(nfs4_consistent_type(tdvp)); 7481 ASSERT(nfs4_consistent_type(svp)); 7482 7483 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7484 return (EPERM); 7485 if (VOP_REALVP(svp, &realvp, ct) == 0) { 7486 svp = realvp; 7487 ASSERT(nfs4_consistent_type(svp)); 7488 } 7489 7490 tdrp = VTOR4(tdvp); 7491 mi = VTOMI4(svp); 7492 7493 if (!(mi->mi_flags & MI4_LINK)) { 7494 return (EOPNOTSUPP); 7495 } 7496 recov_state.rs_flags = 0; 7497 recov_state.rs_num_retry_despite_err = 0; 7498 7499 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7500 return (EINTR); 7501 7502 recov_retry: 7503 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7504 7505 args.ctag = TAG_LINK; 7506 7507 /* 7508 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7509 * restorefh; getattr(fl) 7510 */ 7511 args.array_len = 7; 7512 args.array = argop; 7513 7514 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7515 if (e.error) { 7516 kmem_free(argop, argoplist_size); 7517 nfs_rw_exit(&tdrp->r_rwlock); 7518 return (e.error); 7519 } 7520 7521 /* 0. putfh file */ 7522 argop[0].argop = OP_CPUTFH; 7523 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7524 7525 /* 1. save current fh to free up the space for the dir */ 7526 argop[1].argop = OP_SAVEFH; 7527 7528 /* 2. putfh targetdir */ 7529 argop[2].argop = OP_CPUTFH; 7530 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7531 7532 /* 3. link: current_fh is targetdir, saved_fh is source */ 7533 argop[3].argop = OP_CLINK; 7534 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7535 7536 /* 4. Get attributes of dir */ 7537 argop[4].argop = OP_GETATTR; 7538 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7539 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7540 7541 /* 5. If link was successful, restore current vp to file */ 7542 argop[5].argop = OP_RESTOREFH; 7543 7544 /* 6. Get attributes of linked object */ 7545 argop[6].argop = OP_GETATTR; 7546 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7547 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7548 7549 dnlc_remove(tdvp, tnm); 7550 7551 doqueue = 1; 7552 t = gethrtime(); 7553 7554 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7555 7556 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7557 if (e.error != 0 && !needrecov) { 7558 PURGE_ATTRCACHE4(tdvp); 7559 PURGE_ATTRCACHE4(svp); 7560 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7561 goto out; 7562 } 7563 7564 if (needrecov) { 7565 bool_t abort; 7566 7567 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7568 NULL, NULL, OP_LINK, NULL, NULL, NULL); 7569 if (abort == FALSE) { 7570 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7571 needrecov); 7572 kmem_free(argop, argoplist_size); 7573 if (!e.error) 7574 (void) xdr_free(xdr_COMPOUND4res_clnt, 7575 (caddr_t)&res); 7576 goto recov_retry; 7577 } else { 7578 if (e.error != 0) { 7579 PURGE_ATTRCACHE4(tdvp); 7580 PURGE_ATTRCACHE4(svp); 7581 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7582 &recov_state, needrecov); 7583 goto out; 7584 } 7585 /* fall through for res.status case */ 7586 } 7587 } 7588 7589 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7590 7591 resp = &res; 7592 if (res.status) { 7593 /* If link succeeded, then don't return error */ 7594 e.error = geterrno4(res.status); 7595 if (res.array_len <= 4) { 7596 /* 7597 * Either Putfh, Savefh, Putfh dir, or Link failed 7598 */ 7599 PURGE_ATTRCACHE4(svp); 7600 PURGE_ATTRCACHE4(tdvp); 7601 if (e.error == EOPNOTSUPP) { 7602 mutex_enter(&mi->mi_lock); 7603 mi->mi_flags &= ~MI4_LINK; 7604 mutex_exit(&mi->mi_lock); 7605 } 7606 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7607 /* XXX-LP */ 7608 if (e.error == EISDIR && crgetuid(cr) != 0) 7609 e.error = EPERM; 7610 goto out; 7611 } 7612 } 7613 7614 /* either no error or one of the postop getattr failed */ 7615 7616 /* 7617 * XXX - if LINK succeeded, but no attrs were returned for link 7618 * file, purge its cache. 7619 * 7620 * XXX Perform a simplified version of wcc checking. Instead of 7621 * have another getattr to get pre-op, just purge cache if 7622 * any of the ops prior to and including the getattr failed. 7623 * If the getattr succeeded then update the attrcache accordingly. 7624 */ 7625 7626 /* 7627 * update cache with link file postattrs. 7628 * Note: at this point resop points to link res. 7629 */ 7630 resop = &res.array[3]; /* link res */ 7631 ln_res = &resop->nfs_resop4_u.oplink; 7632 if (res.status == NFS4_OK) 7633 e.error = nfs4_update_attrcache(res.status, 7634 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7635 t, svp, cr); 7636 7637 /* 7638 * Call makenfs4node to create the new shadow vp for tnm. 7639 * We pass NULL attrs because we just cached attrs for 7640 * the src object. All we're trying to accomplish is to 7641 * to create the new shadow vnode. 7642 */ 7643 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7644 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm, VTOR4(svp)->r_fh)); 7645 7646 /* Update target cache attribute, readdir and dnlc caches */ 7647 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7648 dinfo.di_time_call = t; 7649 dinfo.di_cred = cr; 7650 7651 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7652 ASSERT(nfs4_consistent_type(tdvp)); 7653 ASSERT(nfs4_consistent_type(svp)); 7654 ASSERT(nfs4_consistent_type(nvp)); 7655 VN_RELE(nvp); 7656 7657 if (!e.error) { 7658 vnode_t *tvp; 7659 rnode4_t *trp; 7660 /* 7661 * Notify the source file of this link operation. 7662 */ 7663 trp = VTOR4(svp); 7664 tvp = svp; 7665 if (IS_SHADOW(svp, trp)) 7666 tvp = RTOV4(trp); 7667 vnevent_link(tvp, ct); 7668 } 7669 out: 7670 kmem_free(argop, argoplist_size); 7671 if (resp) 7672 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7673 7674 nfs_rw_exit(&tdrp->r_rwlock); 7675 7676 return (e.error); 7677 } 7678 7679 /* ARGSUSED */ 7680 static int 7681 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7682 caller_context_t *ct, int flags) 7683 { 7684 vnode_t *realvp; 7685 7686 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7687 return (EPERM); 7688 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 7689 ndvp = realvp; 7690 7691 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct)); 7692 } 7693 7694 /* 7695 * nfs4rename does the real work of renaming in NFS Version 4. 7696 * 7697 * A file handle is considered volatile for renaming purposes if either 7698 * of the volatile bits are turned on. However, the compound may differ 7699 * based on the likelihood of the filehandle to change during rename. 7700 */ 7701 static int 7702 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7703 caller_context_t *ct) 7704 { 7705 int error; 7706 mntinfo4_t *mi; 7707 vnode_t *nvp = NULL; 7708 vnode_t *ovp = NULL; 7709 char *tmpname = NULL; 7710 rnode4_t *rp; 7711 rnode4_t *odrp; 7712 rnode4_t *ndrp; 7713 int did_link = 0; 7714 int do_link = 1; 7715 nfsstat4 stat = NFS4_OK; 7716 7717 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7718 ASSERT(nfs4_consistent_type(odvp)); 7719 ASSERT(nfs4_consistent_type(ndvp)); 7720 7721 if (onm[0] == '.' && (onm[1] == '\0' || 7722 (onm[1] == '.' && onm[2] == '\0'))) 7723 return (EINVAL); 7724 7725 if (nnm[0] == '.' && (nnm[1] == '\0' || 7726 (nnm[1] == '.' && nnm[2] == '\0'))) 7727 return (EINVAL); 7728 7729 odrp = VTOR4(odvp); 7730 ndrp = VTOR4(ndvp); 7731 if ((intptr_t)odrp < (intptr_t)ndrp) { 7732 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7733 return (EINTR); 7734 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7735 nfs_rw_exit(&odrp->r_rwlock); 7736 return (EINTR); 7737 } 7738 } else { 7739 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7740 return (EINTR); 7741 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7742 nfs_rw_exit(&ndrp->r_rwlock); 7743 return (EINTR); 7744 } 7745 } 7746 7747 /* 7748 * Lookup the target file. If it exists, it needs to be 7749 * checked to see whether it is a mount point and whether 7750 * it is active (open). 7751 */ 7752 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7753 if (!error) { 7754 int isactive; 7755 7756 ASSERT(nfs4_consistent_type(nvp)); 7757 /* 7758 * If this file has been mounted on, then just 7759 * return busy because renaming to it would remove 7760 * the mounted file system from the name space. 7761 */ 7762 if (vn_ismntpt(nvp)) { 7763 VN_RELE(nvp); 7764 nfs_rw_exit(&odrp->r_rwlock); 7765 nfs_rw_exit(&ndrp->r_rwlock); 7766 return (EBUSY); 7767 } 7768 7769 /* 7770 * First just remove the entry from the name cache, as it 7771 * is most likely the only entry for this vp. 7772 */ 7773 dnlc_remove(ndvp, nnm); 7774 7775 rp = VTOR4(nvp); 7776 7777 if (nvp->v_type != VREG) { 7778 /* 7779 * Purge the name cache of all references to this vnode 7780 * so that we can check the reference count to infer 7781 * whether it is active or not. 7782 */ 7783 if (nvp->v_count > 1) 7784 dnlc_purge_vp(nvp); 7785 7786 isactive = nvp->v_count > 1; 7787 } else { 7788 mutex_enter(&rp->r_os_lock); 7789 isactive = list_head(&rp->r_open_streams) != NULL; 7790 mutex_exit(&rp->r_os_lock); 7791 } 7792 7793 /* 7794 * If the vnode is active and is not a directory, 7795 * arrange to rename it to a 7796 * temporary file so that it will continue to be 7797 * accessible. This implements the "unlink-open-file" 7798 * semantics for the target of a rename operation. 7799 * Before doing this though, make sure that the 7800 * source and target files are not already the same. 7801 */ 7802 if (isactive && nvp->v_type != VDIR) { 7803 /* 7804 * Lookup the source name. 7805 */ 7806 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7807 7808 /* 7809 * The source name *should* already exist. 7810 */ 7811 if (error) { 7812 VN_RELE(nvp); 7813 nfs_rw_exit(&odrp->r_rwlock); 7814 nfs_rw_exit(&ndrp->r_rwlock); 7815 return (error); 7816 } 7817 7818 ASSERT(nfs4_consistent_type(ovp)); 7819 7820 /* 7821 * Compare the two vnodes. If they are the same, 7822 * just release all held vnodes and return success. 7823 */ 7824 if (VN_CMP(ovp, nvp)) { 7825 VN_RELE(ovp); 7826 VN_RELE(nvp); 7827 nfs_rw_exit(&odrp->r_rwlock); 7828 nfs_rw_exit(&ndrp->r_rwlock); 7829 return (0); 7830 } 7831 7832 /* 7833 * Can't mix and match directories and non- 7834 * directories in rename operations. We already 7835 * know that the target is not a directory. If 7836 * the source is a directory, return an error. 7837 */ 7838 if (ovp->v_type == VDIR) { 7839 VN_RELE(ovp); 7840 VN_RELE(nvp); 7841 nfs_rw_exit(&odrp->r_rwlock); 7842 nfs_rw_exit(&ndrp->r_rwlock); 7843 return (ENOTDIR); 7844 } 7845 link_call: 7846 /* 7847 * The target file exists, is not the same as 7848 * the source file, and is active. We first 7849 * try to Link it to a temporary filename to 7850 * avoid having the server removing the file 7851 * completely (which could cause data loss to 7852 * the user's POV in the event the Rename fails 7853 * -- see bug 1165874). 7854 */ 7855 /* 7856 * The do_link and did_link booleans are 7857 * introduced in the event we get NFS4ERR_FILE_OPEN 7858 * returned for the Rename. Some servers can 7859 * not Rename over an Open file, so they return 7860 * this error. The client needs to Remove the 7861 * newly created Link and do two Renames, just 7862 * as if the server didn't support LINK. 7863 */ 7864 tmpname = newname(); 7865 error = 0; 7866 7867 if (do_link) { 7868 error = nfs4_link(ndvp, nvp, tmpname, cr, 7869 NULL, 0); 7870 } 7871 if (error == EOPNOTSUPP || !do_link) { 7872 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7873 cr, NULL, 0); 7874 did_link = 0; 7875 } else { 7876 did_link = 1; 7877 } 7878 if (error) { 7879 kmem_free(tmpname, MAXNAMELEN); 7880 VN_RELE(ovp); 7881 VN_RELE(nvp); 7882 nfs_rw_exit(&odrp->r_rwlock); 7883 nfs_rw_exit(&ndrp->r_rwlock); 7884 return (error); 7885 } 7886 7887 mutex_enter(&rp->r_statelock); 7888 if (rp->r_unldvp == NULL) { 7889 VN_HOLD(ndvp); 7890 rp->r_unldvp = ndvp; 7891 if (rp->r_unlcred != NULL) 7892 crfree(rp->r_unlcred); 7893 crhold(cr); 7894 rp->r_unlcred = cr; 7895 rp->r_unlname = tmpname; 7896 } else { 7897 if (rp->r_unlname) 7898 kmem_free(rp->r_unlname, MAXNAMELEN); 7899 rp->r_unlname = tmpname; 7900 } 7901 mutex_exit(&rp->r_statelock); 7902 } 7903 7904 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7905 7906 ASSERT(nfs4_consistent_type(nvp)); 7907 } 7908 7909 if (ovp == NULL) { 7910 /* 7911 * When renaming directories to be a subdirectory of a 7912 * different parent, the dnlc entry for ".." will no 7913 * longer be valid, so it must be removed. 7914 * 7915 * We do a lookup here to determine whether we are renaming 7916 * a directory and we need to check if we are renaming 7917 * an unlinked file. This might have already been done 7918 * in previous code, so we check ovp == NULL to avoid 7919 * doing it twice. 7920 */ 7921 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7922 /* 7923 * The source name *should* already exist. 7924 */ 7925 if (error) { 7926 nfs_rw_exit(&odrp->r_rwlock); 7927 nfs_rw_exit(&ndrp->r_rwlock); 7928 if (nvp) { 7929 VN_RELE(nvp); 7930 } 7931 return (error); 7932 } 7933 ASSERT(ovp != NULL); 7934 ASSERT(nfs4_consistent_type(ovp)); 7935 } 7936 7937 /* 7938 * Is the object being renamed a dir, and if so, is 7939 * it being renamed to a child of itself? The underlying 7940 * fs should ultimately return EINVAL for this case; 7941 * however, buggy beta non-Solaris NFSv4 servers at 7942 * interop testing events have allowed this behavior, 7943 * and it caused our client to panic due to a recursive 7944 * mutex_enter in fn_move. 7945 * 7946 * The tedious locking in fn_move could be changed to 7947 * deal with this case, and the client could avoid the 7948 * panic; however, the client would just confuse itself 7949 * later and misbehave. A better way to handle the broken 7950 * server is to detect this condition and return EINVAL 7951 * without ever sending the the bogus rename to the server. 7952 * We know the rename is invalid -- just fail it now. 7953 */ 7954 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7955 VN_RELE(ovp); 7956 nfs_rw_exit(&odrp->r_rwlock); 7957 nfs_rw_exit(&ndrp->r_rwlock); 7958 if (nvp) { 7959 VN_RELE(nvp); 7960 } 7961 return (EINVAL); 7962 } 7963 7964 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7965 7966 /* 7967 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7968 * possible for the filehandle to change due to the rename. 7969 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7970 * the fh will not change because of the rename, but we still need 7971 * to update its rnode entry with the new name for 7972 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7973 * has no effect on these for now, but for future improvements, 7974 * we might want to use it too to simplify handling of files 7975 * that are open with that flag on. (XXX) 7976 */ 7977 mi = VTOMI4(odvp); 7978 if (NFS4_VOLATILE_FH(mi)) 7979 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7980 &stat); 7981 else 7982 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7983 &stat); 7984 7985 ASSERT(nfs4_consistent_type(odvp)); 7986 ASSERT(nfs4_consistent_type(ndvp)); 7987 ASSERT(nfs4_consistent_type(ovp)); 7988 7989 if (stat == NFS4ERR_FILE_OPEN && did_link) { 7990 do_link = 0; 7991 /* 7992 * Before the 'link_call' code, we did a nfs4_lookup 7993 * that puts a VN_HOLD on nvp. After the nfs4_link 7994 * call we call VN_RELE to match that hold. We need 7995 * to place an additional VN_HOLD here since we will 7996 * be hitting that VN_RELE again. 7997 */ 7998 VN_HOLD(nvp); 7999 8000 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0); 8001 8002 /* Undo the unlinked file naming stuff we just did */ 8003 mutex_enter(&rp->r_statelock); 8004 if (rp->r_unldvp) { 8005 VN_RELE(ndvp); 8006 rp->r_unldvp = NULL; 8007 if (rp->r_unlcred != NULL) 8008 crfree(rp->r_unlcred); 8009 rp->r_unlcred = NULL; 8010 /* rp->r_unlanme points to tmpname */ 8011 if (rp->r_unlname) 8012 kmem_free(rp->r_unlname, MAXNAMELEN); 8013 rp->r_unlname = NULL; 8014 } 8015 mutex_exit(&rp->r_statelock); 8016 8017 if (nvp) { 8018 VN_RELE(nvp); 8019 } 8020 goto link_call; 8021 } 8022 8023 if (error) { 8024 VN_RELE(ovp); 8025 nfs_rw_exit(&odrp->r_rwlock); 8026 nfs_rw_exit(&ndrp->r_rwlock); 8027 if (nvp) { 8028 VN_RELE(nvp); 8029 } 8030 return (error); 8031 } 8032 8033 /* 8034 * when renaming directories to be a subdirectory of a 8035 * different parent, the dnlc entry for ".." will no 8036 * longer be valid, so it must be removed 8037 */ 8038 rp = VTOR4(ovp); 8039 if (ndvp != odvp) { 8040 if (ovp->v_type == VDIR) { 8041 dnlc_remove(ovp, ".."); 8042 if (rp->r_dir != NULL) 8043 nfs4_purge_rddir_cache(ovp); 8044 } 8045 } 8046 8047 /* 8048 * If we are renaming the unlinked file, update the 8049 * r_unldvp and r_unlname as needed. 8050 */ 8051 mutex_enter(&rp->r_statelock); 8052 if (rp->r_unldvp != NULL) { 8053 if (strcmp(rp->r_unlname, onm) == 0) { 8054 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 8055 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 8056 if (ndvp != rp->r_unldvp) { 8057 VN_RELE(rp->r_unldvp); 8058 rp->r_unldvp = ndvp; 8059 VN_HOLD(ndvp); 8060 } 8061 } 8062 } 8063 mutex_exit(&rp->r_statelock); 8064 8065 /* 8066 * Notify the rename vnevents to source vnode, and to the target 8067 * vnode if it already existed. 8068 */ 8069 if (error == 0) { 8070 vnode_t *tvp; 8071 rnode4_t *trp; 8072 /* 8073 * Notify the vnode. Each links is represented by 8074 * a different vnode, in nfsv4. 8075 */ 8076 if (nvp) { 8077 trp = VTOR4(nvp); 8078 tvp = nvp; 8079 if (IS_SHADOW(nvp, trp)) 8080 tvp = RTOV4(trp); 8081 vnevent_rename_dest(tvp, ndvp, nnm, ct); 8082 } 8083 8084 /* 8085 * if the source and destination directory are not the 8086 * same notify the destination directory. 8087 */ 8088 if (VTOR4(odvp) != VTOR4(ndvp)) { 8089 trp = VTOR4(ndvp); 8090 tvp = ndvp; 8091 if (IS_SHADOW(ndvp, trp)) 8092 tvp = RTOV4(trp); 8093 vnevent_rename_dest_dir(tvp, ct); 8094 } 8095 8096 trp = VTOR4(ovp); 8097 tvp = ovp; 8098 if (IS_SHADOW(ovp, trp)) 8099 tvp = RTOV4(trp); 8100 vnevent_rename_src(tvp, odvp, onm, ct); 8101 } 8102 8103 if (nvp) { 8104 VN_RELE(nvp); 8105 } 8106 VN_RELE(ovp); 8107 8108 nfs_rw_exit(&odrp->r_rwlock); 8109 nfs_rw_exit(&ndrp->r_rwlock); 8110 8111 return (error); 8112 } 8113 8114 /* 8115 * When the parent directory has changed, sv_dfh must be updated 8116 */ 8117 static void 8118 update_parentdir_sfh(vnode_t *vp, vnode_t *ndvp) 8119 { 8120 svnode_t *sv = VTOSV(vp); 8121 nfs4_sharedfh_t *old_dfh = sv->sv_dfh; 8122 nfs4_sharedfh_t *new_dfh = VTOR4(ndvp)->r_fh; 8123 8124 sfh4_hold(new_dfh); 8125 sv->sv_dfh = new_dfh; 8126 sfh4_rele(&old_dfh); 8127 } 8128 8129 /* 8130 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 8131 * when it is known that the filehandle is persistent through rename. 8132 * 8133 * Rename requires that the current fh be the target directory and the 8134 * saved fh be the source directory. After the operation, the current fh 8135 * is unchanged. 8136 * The compound op structure for persistent fh rename is: 8137 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 8138 * Rather than bother with the directory postop args, we'll simply 8139 * update that a change occurred in the cache, so no post-op getattrs. 8140 */ 8141 static int 8142 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 8143 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8144 { 8145 COMPOUND4args_clnt args; 8146 COMPOUND4res_clnt res, *resp = NULL; 8147 nfs_argop4 *argop; 8148 nfs_resop4 *resop; 8149 int doqueue, argoplist_size; 8150 mntinfo4_t *mi; 8151 rnode4_t *odrp = VTOR4(odvp); 8152 rnode4_t *ndrp = VTOR4(ndvp); 8153 RENAME4res *rn_res; 8154 bool_t needrecov; 8155 nfs4_recov_state_t recov_state; 8156 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8157 dirattr_info_t dinfo, *dinfop; 8158 8159 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8160 8161 recov_state.rs_flags = 0; 8162 recov_state.rs_num_retry_despite_err = 0; 8163 8164 /* 8165 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 8166 * 8167 * If source/target are different dirs, then append putfh(src); getattr 8168 */ 8169 args.array_len = (odvp == ndvp) ? 5 : 7; 8170 argoplist_size = args.array_len * sizeof (nfs_argop4); 8171 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 8172 8173 recov_retry: 8174 *statp = NFS4_OK; 8175 8176 /* No need to Lookup the file, persistent fh */ 8177 args.ctag = TAG_RENAME; 8178 8179 mi = VTOMI4(odvp); 8180 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 8181 if (e.error) { 8182 kmem_free(argop, argoplist_size); 8183 return (e.error); 8184 } 8185 8186 /* 0: putfh source directory */ 8187 argop[0].argop = OP_CPUTFH; 8188 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8189 8190 /* 1: Save source fh to free up current for target */ 8191 argop[1].argop = OP_SAVEFH; 8192 8193 /* 2: putfh targetdir */ 8194 argop[2].argop = OP_CPUTFH; 8195 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8196 8197 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 8198 argop[3].argop = OP_CRENAME; 8199 argop[3].nfs_argop4_u.opcrename.coldname = onm; 8200 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 8201 8202 /* 4: getattr (targetdir) */ 8203 argop[4].argop = OP_GETATTR; 8204 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8205 argop[4].nfs_argop4_u.opgetattr.mi = mi; 8206 8207 if (ndvp != odvp) { 8208 8209 /* 5: putfh (sourcedir) */ 8210 argop[5].argop = OP_CPUTFH; 8211 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8212 8213 /* 6: getattr (sourcedir) */ 8214 argop[6].argop = OP_GETATTR; 8215 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8216 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8217 } 8218 8219 dnlc_remove(odvp, onm); 8220 dnlc_remove(ndvp, nnm); 8221 8222 doqueue = 1; 8223 dinfo.di_time_call = gethrtime(); 8224 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8225 8226 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8227 if (e.error) { 8228 PURGE_ATTRCACHE4(odvp); 8229 PURGE_ATTRCACHE4(ndvp); 8230 } else { 8231 *statp = res.status; 8232 } 8233 8234 if (needrecov) { 8235 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8236 OP_RENAME, NULL, NULL, NULL) == FALSE) { 8237 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8238 if (!e.error) 8239 (void) xdr_free(xdr_COMPOUND4res_clnt, 8240 (caddr_t)&res); 8241 goto recov_retry; 8242 } 8243 } 8244 8245 if (!e.error) { 8246 resp = &res; 8247 /* 8248 * as long as OP_RENAME 8249 */ 8250 if (res.status != NFS4_OK && res.array_len <= 4) { 8251 e.error = geterrno4(res.status); 8252 PURGE_ATTRCACHE4(odvp); 8253 PURGE_ATTRCACHE4(ndvp); 8254 /* 8255 * System V defines rename to return EEXIST, not 8256 * ENOTEMPTY if the target directory is not empty. 8257 * Over the wire, the error is NFSERR_ENOTEMPTY 8258 * which geterrno4 maps to ENOTEMPTY. 8259 */ 8260 if (e.error == ENOTEMPTY) 8261 e.error = EEXIST; 8262 } else { 8263 8264 resop = &res.array[3]; /* rename res */ 8265 rn_res = &resop->nfs_resop4_u.oprename; 8266 8267 if (res.status == NFS4_OK) { 8268 /* 8269 * Update target attribute, readdir and dnlc 8270 * caches. 8271 */ 8272 dinfo.di_garp = 8273 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 8274 dinfo.di_cred = cr; 8275 dinfop = &dinfo; 8276 } else 8277 dinfop = NULL; 8278 8279 nfs4_update_dircaches(&rn_res->target_cinfo, 8280 ndvp, NULL, NULL, dinfop); 8281 8282 /* 8283 * Update source attribute, readdir and dnlc caches 8284 * 8285 */ 8286 if (ndvp != odvp) { 8287 update_parentdir_sfh(renvp, ndvp); 8288 8289 if (dinfop) 8290 dinfo.di_garp = 8291 &(res.array[6].nfs_resop4_u. 8292 opgetattr.ga_res); 8293 8294 nfs4_update_dircaches(&rn_res->source_cinfo, 8295 odvp, NULL, NULL, dinfop); 8296 } 8297 8298 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 8299 nnm); 8300 } 8301 } 8302 8303 if (resp) 8304 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8305 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8306 kmem_free(argop, argoplist_size); 8307 8308 return (e.error); 8309 } 8310 8311 /* 8312 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 8313 * it is possible for the filehandle to change due to the rename. 8314 * 8315 * The compound req in this case includes a post-rename lookup and getattr 8316 * to ensure that we have the correct fh and attributes for the object. 8317 * 8318 * Rename requires that the current fh be the target directory and the 8319 * saved fh be the source directory. After the operation, the current fh 8320 * is unchanged. 8321 * 8322 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8323 * update the filehandle for the renamed object. We also get the old 8324 * filehandle for historical reasons; this should be taken out sometime. 8325 * This results in a rather cumbersome compound... 8326 * 8327 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8328 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8329 * 8330 */ 8331 static int 8332 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8333 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8334 { 8335 COMPOUND4args_clnt args; 8336 COMPOUND4res_clnt res, *resp = NULL; 8337 int argoplist_size; 8338 nfs_argop4 *argop; 8339 nfs_resop4 *resop; 8340 int doqueue; 8341 mntinfo4_t *mi; 8342 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8343 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8344 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8345 RENAME4res *rn_res; 8346 GETFH4res *ngf_res; 8347 bool_t needrecov; 8348 nfs4_recov_state_t recov_state; 8349 hrtime_t t; 8350 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8351 dirattr_info_t dinfo, *dinfop = &dinfo; 8352 8353 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8354 8355 recov_state.rs_flags = 0; 8356 recov_state.rs_num_retry_despite_err = 0; 8357 8358 recov_retry: 8359 *statp = NFS4_OK; 8360 8361 /* 8362 * There is a window between the RPC and updating the path and 8363 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8364 * code, so that it doesn't try to use the old path during that 8365 * window. 8366 */ 8367 mutex_enter(&orp->r_statelock); 8368 while (orp->r_flags & R4RECEXPFH) { 8369 klwp_t *lwp = ttolwp(curthread); 8370 8371 if (lwp != NULL) 8372 lwp->lwp_nostop++; 8373 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8374 mutex_exit(&orp->r_statelock); 8375 if (lwp != NULL) 8376 lwp->lwp_nostop--; 8377 return (EINTR); 8378 } 8379 if (lwp != NULL) 8380 lwp->lwp_nostop--; 8381 } 8382 orp->r_flags |= R4RECEXPFH; 8383 mutex_exit(&orp->r_statelock); 8384 8385 mi = VTOMI4(odvp); 8386 8387 args.ctag = TAG_RENAME_VFH; 8388 args.array_len = (odvp == ndvp) ? 10 : 12; 8389 argoplist_size = args.array_len * sizeof (nfs_argop4); 8390 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8391 8392 /* 8393 * Rename ops: 8394 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8395 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8396 * LOOKUP(trgt), GETFH(new), GETATTR, 8397 * 8398 * if (odvp != ndvp) 8399 * add putfh(sourcedir), getattr(sourcedir) } 8400 */ 8401 args.array = argop; 8402 8403 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8404 &recov_state, NULL); 8405 if (e.error) { 8406 kmem_free(argop, argoplist_size); 8407 mutex_enter(&orp->r_statelock); 8408 orp->r_flags &= ~R4RECEXPFH; 8409 cv_broadcast(&orp->r_cv); 8410 mutex_exit(&orp->r_statelock); 8411 return (e.error); 8412 } 8413 8414 /* 0: putfh source directory */ 8415 argop[0].argop = OP_CPUTFH; 8416 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8417 8418 /* 1: Save source fh to free up current for target */ 8419 argop[1].argop = OP_SAVEFH; 8420 8421 /* 2: Lookup pre-rename fh of renamed object */ 8422 argop[2].argop = OP_CLOOKUP; 8423 argop[2].nfs_argop4_u.opclookup.cname = onm; 8424 8425 /* 3: getfh fh of renamed object (before rename) */ 8426 argop[3].argop = OP_GETFH; 8427 8428 /* 4: putfh targetdir */ 8429 argop[4].argop = OP_CPUTFH; 8430 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8431 8432 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8433 argop[5].argop = OP_CRENAME; 8434 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8435 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8436 8437 /* 6: getattr of target dir (post op attrs) */ 8438 argop[6].argop = OP_GETATTR; 8439 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8440 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8441 8442 /* 7: Lookup post-rename fh of renamed object */ 8443 argop[7].argop = OP_CLOOKUP; 8444 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8445 8446 /* 8: getfh fh of renamed object (after rename) */ 8447 argop[8].argop = OP_GETFH; 8448 8449 /* 9: getattr of renamed object */ 8450 argop[9].argop = OP_GETATTR; 8451 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8452 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8453 8454 /* 8455 * If source/target dirs are different, then get new post-op 8456 * attrs for source dir also. 8457 */ 8458 if (ndvp != odvp) { 8459 /* 10: putfh (sourcedir) */ 8460 argop[10].argop = OP_CPUTFH; 8461 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8462 8463 /* 11: getattr (sourcedir) */ 8464 argop[11].argop = OP_GETATTR; 8465 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8466 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8467 } 8468 8469 dnlc_remove(odvp, onm); 8470 dnlc_remove(ndvp, nnm); 8471 8472 doqueue = 1; 8473 t = gethrtime(); 8474 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8475 8476 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8477 if (e.error) { 8478 PURGE_ATTRCACHE4(odvp); 8479 PURGE_ATTRCACHE4(ndvp); 8480 if (!needrecov) { 8481 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8482 &recov_state, needrecov); 8483 goto out; 8484 } 8485 } else { 8486 *statp = res.status; 8487 } 8488 8489 if (needrecov) { 8490 bool_t abort; 8491 8492 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8493 OP_RENAME, NULL, NULL, NULL); 8494 if (abort == FALSE) { 8495 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8496 &recov_state, needrecov); 8497 kmem_free(argop, argoplist_size); 8498 if (!e.error) 8499 (void) xdr_free(xdr_COMPOUND4res_clnt, 8500 (caddr_t)&res); 8501 mutex_enter(&orp->r_statelock); 8502 orp->r_flags &= ~R4RECEXPFH; 8503 cv_broadcast(&orp->r_cv); 8504 mutex_exit(&orp->r_statelock); 8505 goto recov_retry; 8506 } else { 8507 if (e.error != 0) { 8508 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8509 &recov_state, needrecov); 8510 goto out; 8511 } 8512 /* fall through for res.status case */ 8513 } 8514 } 8515 8516 resp = &res; 8517 /* 8518 * If OP_RENAME (or any prev op) failed, then return an error. 8519 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8520 */ 8521 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8522 /* 8523 * Error in an op other than last Getattr 8524 */ 8525 e.error = geterrno4(res.status); 8526 PURGE_ATTRCACHE4(odvp); 8527 PURGE_ATTRCACHE4(ndvp); 8528 /* 8529 * System V defines rename to return EEXIST, not 8530 * ENOTEMPTY if the target directory is not empty. 8531 * Over the wire, the error is NFSERR_ENOTEMPTY 8532 * which geterrno4 maps to ENOTEMPTY. 8533 */ 8534 if (e.error == ENOTEMPTY) 8535 e.error = EEXIST; 8536 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8537 needrecov); 8538 goto out; 8539 } 8540 8541 /* rename results */ 8542 rn_res = &res.array[5].nfs_resop4_u.oprename; 8543 8544 if (res.status == NFS4_OK) { 8545 /* Update target attribute, readdir and dnlc caches */ 8546 dinfo.di_garp = 8547 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8548 dinfo.di_cred = cr; 8549 dinfo.di_time_call = t; 8550 } else 8551 dinfop = NULL; 8552 8553 /* Update source cache attribute, readdir and dnlc caches */ 8554 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8555 8556 /* Update source cache attribute, readdir and dnlc caches */ 8557 if (ndvp != odvp) { 8558 update_parentdir_sfh(ovp, ndvp); 8559 8560 /* 8561 * If dinfop is non-NULL, then compound succeded, so 8562 * set di_garp to attrs for source dir. dinfop is only 8563 * set to NULL when compound fails. 8564 */ 8565 if (dinfop) 8566 dinfo.di_garp = 8567 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8568 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8569 dinfop); 8570 } 8571 8572 /* 8573 * Update the rnode with the new component name and args, 8574 * and if the file handle changed, also update it with the new fh. 8575 * This is only necessary if the target object has an rnode 8576 * entry and there is no need to create one for it. 8577 */ 8578 resop = &res.array[8]; /* getfh new res */ 8579 ngf_res = &resop->nfs_resop4_u.opgetfh; 8580 8581 /* 8582 * Update the path and filehandle for the renamed object. 8583 */ 8584 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8585 8586 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8587 8588 if (res.status == NFS4_OK) { 8589 resop++; /* getattr res */ 8590 e.error = nfs4_update_attrcache(res.status, 8591 &resop->nfs_resop4_u.opgetattr.ga_res, 8592 t, ovp, cr); 8593 } 8594 8595 out: 8596 kmem_free(argop, argoplist_size); 8597 if (resp) 8598 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8599 mutex_enter(&orp->r_statelock); 8600 orp->r_flags &= ~R4RECEXPFH; 8601 cv_broadcast(&orp->r_cv); 8602 mutex_exit(&orp->r_statelock); 8603 8604 return (e.error); 8605 } 8606 8607 /* ARGSUSED */ 8608 static int 8609 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 8610 caller_context_t *ct, int flags, vsecattr_t *vsecp) 8611 { 8612 int error; 8613 vnode_t *vp; 8614 8615 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8616 return (EPERM); 8617 /* 8618 * As ".." has special meaning and rather than send a mkdir 8619 * over the wire to just let the server freak out, we just 8620 * short circuit it here and return EEXIST 8621 */ 8622 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8623 return (EEXIST); 8624 8625 /* 8626 * Decision to get the right gid and setgid bit of the 8627 * new directory is now made in call_nfs4_create_req. 8628 */ 8629 va->va_mask |= AT_MODE; 8630 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8631 if (error) 8632 return (error); 8633 8634 *vpp = vp; 8635 return (0); 8636 } 8637 8638 8639 /* 8640 * rmdir is using the same remove v4 op as does remove. 8641 * Remove requires that the current fh be the target directory. 8642 * After the operation, the current fh is unchanged. 8643 * The compound op structure is: 8644 * PUTFH(targetdir), REMOVE 8645 */ 8646 /*ARGSUSED4*/ 8647 static int 8648 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 8649 caller_context_t *ct, int flags) 8650 { 8651 int need_end_op = FALSE; 8652 COMPOUND4args_clnt args; 8653 COMPOUND4res_clnt res, *resp = NULL; 8654 REMOVE4res *rm_res; 8655 nfs_argop4 argop[3]; 8656 nfs_resop4 *resop; 8657 vnode_t *vp; 8658 int doqueue; 8659 mntinfo4_t *mi; 8660 rnode4_t *drp; 8661 bool_t needrecov = FALSE; 8662 nfs4_recov_state_t recov_state; 8663 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8664 dirattr_info_t dinfo, *dinfop; 8665 8666 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8667 return (EPERM); 8668 /* 8669 * As ".." has special meaning and rather than send a rmdir 8670 * over the wire to just let the server freak out, we just 8671 * short circuit it here and return EEXIST 8672 */ 8673 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8674 return (EEXIST); 8675 8676 drp = VTOR4(dvp); 8677 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8678 return (EINTR); 8679 8680 /* 8681 * Attempt to prevent a rmdir(".") from succeeding. 8682 */ 8683 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8684 if (e.error) { 8685 nfs_rw_exit(&drp->r_rwlock); 8686 return (e.error); 8687 } 8688 if (vp == cdir) { 8689 VN_RELE(vp); 8690 nfs_rw_exit(&drp->r_rwlock); 8691 return (EINVAL); 8692 } 8693 8694 /* 8695 * Since nfsv4 remove op works on both files and directories, 8696 * check that the removed object is indeed a directory. 8697 */ 8698 if (vp->v_type != VDIR) { 8699 VN_RELE(vp); 8700 nfs_rw_exit(&drp->r_rwlock); 8701 return (ENOTDIR); 8702 } 8703 8704 /* 8705 * First just remove the entry from the name cache, as it 8706 * is most likely an entry for this vp. 8707 */ 8708 dnlc_remove(dvp, nm); 8709 8710 /* 8711 * If there vnode reference count is greater than one, then 8712 * there may be additional references in the DNLC which will 8713 * need to be purged. First, trying removing the entry for 8714 * the parent directory and see if that removes the additional 8715 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8716 * to completely remove any references to the directory which 8717 * might still exist in the DNLC. 8718 */ 8719 if (vp->v_count > 1) { 8720 dnlc_remove(vp, ".."); 8721 if (vp->v_count > 1) 8722 dnlc_purge_vp(vp); 8723 } 8724 8725 mi = VTOMI4(dvp); 8726 recov_state.rs_flags = 0; 8727 recov_state.rs_num_retry_despite_err = 0; 8728 8729 recov_retry: 8730 args.ctag = TAG_RMDIR; 8731 8732 /* 8733 * Rmdir ops: putfh dir; remove 8734 */ 8735 args.array_len = 3; 8736 args.array = argop; 8737 8738 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8739 if (e.error) { 8740 nfs_rw_exit(&drp->r_rwlock); 8741 return (e.error); 8742 } 8743 need_end_op = TRUE; 8744 8745 /* putfh directory */ 8746 argop[0].argop = OP_CPUTFH; 8747 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8748 8749 /* remove */ 8750 argop[1].argop = OP_CREMOVE; 8751 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8752 8753 /* getattr (postop attrs for dir that contained removed dir) */ 8754 argop[2].argop = OP_GETATTR; 8755 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8756 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8757 8758 dinfo.di_time_call = gethrtime(); 8759 doqueue = 1; 8760 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8761 8762 PURGE_ATTRCACHE4(vp); 8763 8764 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8765 if (e.error) { 8766 PURGE_ATTRCACHE4(dvp); 8767 } 8768 8769 if (needrecov) { 8770 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8771 NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 8772 if (!e.error) 8773 (void) xdr_free(xdr_COMPOUND4res_clnt, 8774 (caddr_t)&res); 8775 8776 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8777 needrecov); 8778 need_end_op = FALSE; 8779 goto recov_retry; 8780 } 8781 } 8782 8783 if (!e.error) { 8784 resp = &res; 8785 8786 /* 8787 * Only return error if first 2 ops (OP_REMOVE or earlier) 8788 * failed. 8789 */ 8790 if (res.status != NFS4_OK && res.array_len <= 2) { 8791 e.error = geterrno4(res.status); 8792 PURGE_ATTRCACHE4(dvp); 8793 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8794 &recov_state, needrecov); 8795 need_end_op = FALSE; 8796 nfs4_purge_stale_fh(e.error, dvp, cr); 8797 /* 8798 * System V defines rmdir to return EEXIST, not 8799 * ENOTEMPTY if the directory is not empty. Over 8800 * the wire, the error is NFSERR_ENOTEMPTY which 8801 * geterrno4 maps to ENOTEMPTY. 8802 */ 8803 if (e.error == ENOTEMPTY) 8804 e.error = EEXIST; 8805 } else { 8806 resop = &res.array[1]; /* remove res */ 8807 rm_res = &resop->nfs_resop4_u.opremove; 8808 8809 if (res.status == NFS4_OK) { 8810 resop = &res.array[2]; /* dir attrs */ 8811 dinfo.di_garp = 8812 &resop->nfs_resop4_u.opgetattr.ga_res; 8813 dinfo.di_cred = cr; 8814 dinfop = &dinfo; 8815 } else 8816 dinfop = NULL; 8817 8818 /* Update dir attribute, readdir and dnlc caches */ 8819 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8820 dinfop); 8821 8822 /* destroy rddir cache for dir that was removed */ 8823 if (VTOR4(vp)->r_dir != NULL) 8824 nfs4_purge_rddir_cache(vp); 8825 } 8826 } 8827 8828 if (need_end_op) 8829 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8830 8831 nfs_rw_exit(&drp->r_rwlock); 8832 8833 if (resp) 8834 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8835 8836 if (e.error == 0) { 8837 vnode_t *tvp; 8838 rnode4_t *trp; 8839 trp = VTOR4(vp); 8840 tvp = vp; 8841 if (IS_SHADOW(vp, trp)) 8842 tvp = RTOV4(trp); 8843 vnevent_rmdir(tvp, dvp, nm, ct); 8844 } 8845 8846 VN_RELE(vp); 8847 8848 return (e.error); 8849 } 8850 8851 /* ARGSUSED */ 8852 static int 8853 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 8854 caller_context_t *ct, int flags) 8855 { 8856 int error; 8857 vnode_t *vp; 8858 rnode4_t *rp; 8859 char *contents; 8860 mntinfo4_t *mi = VTOMI4(dvp); 8861 8862 if (nfs_zone() != mi->mi_zone) 8863 return (EPERM); 8864 if (!(mi->mi_flags & MI4_SYMLINK)) 8865 return (EOPNOTSUPP); 8866 8867 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8868 if (error) 8869 return (error); 8870 8871 ASSERT(nfs4_consistent_type(vp)); 8872 rp = VTOR4(vp); 8873 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8874 8875 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8876 8877 if (contents != NULL) { 8878 mutex_enter(&rp->r_statelock); 8879 if (rp->r_symlink.contents == NULL) { 8880 rp->r_symlink.len = strlen(tnm); 8881 bcopy(tnm, contents, rp->r_symlink.len); 8882 rp->r_symlink.contents = contents; 8883 rp->r_symlink.size = MAXPATHLEN; 8884 mutex_exit(&rp->r_statelock); 8885 } else { 8886 mutex_exit(&rp->r_statelock); 8887 kmem_free((void *)contents, MAXPATHLEN); 8888 } 8889 } 8890 } 8891 VN_RELE(vp); 8892 8893 return (error); 8894 } 8895 8896 8897 /* 8898 * Read directory entries. 8899 * There are some weird things to look out for here. The uio_loffset 8900 * field is either 0 or it is the offset returned from a previous 8901 * readdir. It is an opaque value used by the server to find the 8902 * correct directory block to read. The count field is the number 8903 * of blocks to read on the server. This is advisory only, the server 8904 * may return only one block's worth of entries. Entries may be compressed 8905 * on the server. 8906 */ 8907 /* ARGSUSED */ 8908 static int 8909 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 8910 caller_context_t *ct, int flags) 8911 { 8912 int error; 8913 uint_t count; 8914 rnode4_t *rp; 8915 rddir4_cache *rdc; 8916 rddir4_cache *rrdc; 8917 8918 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8919 return (EIO); 8920 rp = VTOR4(vp); 8921 8922 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8923 8924 /* 8925 * Make sure that the directory cache is valid. 8926 */ 8927 if (rp->r_dir != NULL) { 8928 if (nfs_disable_rddir_cache != 0) { 8929 /* 8930 * Setting nfs_disable_rddir_cache in /etc/system 8931 * allows interoperability with servers that do not 8932 * properly update the attributes of directories. 8933 * Any cached information gets purged before an 8934 * access is made to it. 8935 */ 8936 nfs4_purge_rddir_cache(vp); 8937 } 8938 8939 error = nfs4_validate_caches(vp, cr); 8940 if (error) 8941 return (error); 8942 } 8943 8944 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8945 8946 /* 8947 * Short circuit last readdir which always returns 0 bytes. 8948 * This can be done after the directory has been read through 8949 * completely at least once. This will set r_direof which 8950 * can be used to find the value of the last cookie. 8951 */ 8952 mutex_enter(&rp->r_statelock); 8953 if (rp->r_direof != NULL && 8954 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8955 mutex_exit(&rp->r_statelock); 8956 #ifdef DEBUG 8957 nfs4_readdir_cache_shorts++; 8958 #endif 8959 if (eofp) 8960 *eofp = 1; 8961 return (0); 8962 } 8963 8964 /* 8965 * Look for a cache entry. Cache entries are identified 8966 * by the NFS cookie value and the byte count requested. 8967 */ 8968 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8969 8970 /* 8971 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8972 */ 8973 if (rdc == NULL) { 8974 mutex_exit(&rp->r_statelock); 8975 return (EINTR); 8976 } 8977 8978 /* 8979 * Check to see if we need to fill this entry in. 8980 */ 8981 if (rdc->flags & RDDIRREQ) { 8982 rdc->flags &= ~RDDIRREQ; 8983 rdc->flags |= RDDIR; 8984 mutex_exit(&rp->r_statelock); 8985 8986 /* 8987 * Do the readdir. 8988 */ 8989 nfs4readdir(vp, rdc, cr); 8990 8991 /* 8992 * Reacquire the lock, so that we can continue 8993 */ 8994 mutex_enter(&rp->r_statelock); 8995 /* 8996 * The entry is now complete 8997 */ 8998 rdc->flags &= ~RDDIR; 8999 } 9000 9001 ASSERT(!(rdc->flags & RDDIR)); 9002 9003 /* 9004 * If an error occurred while attempting 9005 * to fill the cache entry, mark the entry invalid and 9006 * just return the error. 9007 */ 9008 if (rdc->error) { 9009 error = rdc->error; 9010 rdc->flags |= RDDIRREQ; 9011 rddir4_cache_rele(rp, rdc); 9012 mutex_exit(&rp->r_statelock); 9013 return (error); 9014 } 9015 9016 /* 9017 * The cache entry is complete and good, 9018 * copyout the dirent structs to the calling 9019 * thread. 9020 */ 9021 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 9022 9023 /* 9024 * If no error occurred during the copyout, 9025 * update the offset in the uio struct to 9026 * contain the value of the next NFS 4 cookie 9027 * and set the eof value appropriately. 9028 */ 9029 if (!error) { 9030 uiop->uio_loffset = rdc->nfs4_ncookie; 9031 if (eofp) 9032 *eofp = rdc->eof; 9033 } 9034 9035 /* 9036 * Decide whether to do readahead. Don't if we 9037 * have already read to the end of directory. 9038 */ 9039 if (rdc->eof) { 9040 /* 9041 * Make the entry the direof only if it is cached 9042 */ 9043 if (rdc->flags & RDDIRCACHED) 9044 rp->r_direof = rdc; 9045 rddir4_cache_rele(rp, rdc); 9046 mutex_exit(&rp->r_statelock); 9047 return (error); 9048 } 9049 9050 /* Determine if a readdir readahead should be done */ 9051 if (!(rp->r_flags & R4LOOKUP)) { 9052 rddir4_cache_rele(rp, rdc); 9053 mutex_exit(&rp->r_statelock); 9054 return (error); 9055 } 9056 9057 /* 9058 * Now look for a readahead entry. 9059 * 9060 * Check to see whether we found an entry for the readahead. 9061 * If so, we don't need to do anything further, so free the new 9062 * entry if one was allocated. Otherwise, allocate a new entry, add 9063 * it to the cache, and then initiate an asynchronous readdir 9064 * operation to fill it. 9065 */ 9066 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 9067 9068 /* 9069 * A readdir cache entry could not be obtained for the readahead. In 9070 * this case we skip the readahead and return. 9071 */ 9072 if (rrdc == NULL) { 9073 rddir4_cache_rele(rp, rdc); 9074 mutex_exit(&rp->r_statelock); 9075 return (error); 9076 } 9077 9078 /* 9079 * Check to see if we need to fill this entry in. 9080 */ 9081 if (rrdc->flags & RDDIRREQ) { 9082 rrdc->flags &= ~RDDIRREQ; 9083 rrdc->flags |= RDDIR; 9084 rddir4_cache_rele(rp, rdc); 9085 mutex_exit(&rp->r_statelock); 9086 #ifdef DEBUG 9087 nfs4_readdir_readahead++; 9088 #endif 9089 /* 9090 * Do the readdir. 9091 */ 9092 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 9093 return (error); 9094 } 9095 9096 rddir4_cache_rele(rp, rrdc); 9097 rddir4_cache_rele(rp, rdc); 9098 mutex_exit(&rp->r_statelock); 9099 return (error); 9100 } 9101 9102 static int 9103 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9104 { 9105 int error; 9106 rnode4_t *rp; 9107 9108 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9109 9110 rp = VTOR4(vp); 9111 9112 /* 9113 * Obtain the readdir results for the caller. 9114 */ 9115 nfs4readdir(vp, rdc, cr); 9116 9117 mutex_enter(&rp->r_statelock); 9118 /* 9119 * The entry is now complete 9120 */ 9121 rdc->flags &= ~RDDIR; 9122 9123 error = rdc->error; 9124 if (error) 9125 rdc->flags |= RDDIRREQ; 9126 rddir4_cache_rele(rp, rdc); 9127 mutex_exit(&rp->r_statelock); 9128 9129 return (error); 9130 } 9131 9132 /* 9133 * Read directory entries. 9134 * There are some weird things to look out for here. The uio_loffset 9135 * field is either 0 or it is the offset returned from a previous 9136 * readdir. It is an opaque value used by the server to find the 9137 * correct directory block to read. The count field is the number 9138 * of blocks to read on the server. This is advisory only, the server 9139 * may return only one block's worth of entries. Entries may be compressed 9140 * on the server. 9141 * 9142 * Generates the following compound request: 9143 * 1. If readdir offset is zero and no dnlc entry for parent exists, 9144 * must include a Lookupp as well. In this case, send: 9145 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 9146 * 2. Otherwise just do: { Putfh <fh>; Readdir } 9147 * 9148 * Get complete attributes and filehandles for entries if this is the 9149 * first read of the directory. Otherwise, just get fileid's. 9150 */ 9151 static void 9152 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9153 { 9154 COMPOUND4args_clnt args; 9155 COMPOUND4res_clnt res; 9156 READDIR4args *rargs; 9157 READDIR4res_clnt *rd_res; 9158 bitmap4 rd_bitsval; 9159 nfs_argop4 argop[5]; 9160 nfs_resop4 *resop; 9161 rnode4_t *rp = VTOR4(vp); 9162 mntinfo4_t *mi = VTOMI4(vp); 9163 int doqueue; 9164 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 9165 vnode_t *dvp; 9166 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 9167 int num_ops, res_opcnt; 9168 bool_t needrecov = FALSE; 9169 nfs4_recov_state_t recov_state; 9170 hrtime_t t; 9171 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 9172 9173 ASSERT(nfs_zone() == mi->mi_zone); 9174 ASSERT(rdc->flags & RDDIR); 9175 ASSERT(rdc->entries == NULL); 9176 9177 /* 9178 * If rp were a stub, it should have triggered and caused 9179 * a mount for us to get this far. 9180 */ 9181 ASSERT(!RP_ISSTUB(rp)); 9182 9183 num_ops = 2; 9184 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 9185 /* 9186 * Since nfsv4 readdir may not return entries for "." and "..", 9187 * the client must recreate them: 9188 * To find the correct nodeid, do the following: 9189 * For current node, get nodeid from dnlc. 9190 * - if current node is rootvp, set pnodeid to nodeid. 9191 * - else if parent is in the dnlc, get its nodeid from there. 9192 * - else add LOOKUPP+GETATTR to compound. 9193 */ 9194 nodeid = rp->r_attr.va_nodeid; 9195 if (vp->v_flag & VROOT) { 9196 pnodeid = nodeid; /* root of mount point */ 9197 } else { 9198 dvp = dnlc_lookup(vp, ".."); 9199 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 9200 /* parent in dnlc cache - no need for otw */ 9201 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 9202 } else { 9203 /* 9204 * parent not in dnlc cache, 9205 * do lookupp to get its id 9206 */ 9207 num_ops = 5; 9208 pnodeid = 0; /* set later by getattr parent */ 9209 } 9210 if (dvp) 9211 VN_RELE(dvp); 9212 } 9213 } 9214 recov_state.rs_flags = 0; 9215 recov_state.rs_num_retry_despite_err = 0; 9216 9217 /* Save the original mount point security flavor */ 9218 (void) save_mnt_secinfo(mi->mi_curr_serv); 9219 9220 recov_retry: 9221 args.ctag = TAG_READDIR; 9222 9223 args.array = argop; 9224 args.array_len = num_ops; 9225 9226 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9227 &recov_state, NULL)) { 9228 /* 9229 * If readdir a node that is a stub for a crossed mount point, 9230 * keep the original secinfo flavor for the current file 9231 * system, not the crossed one. 9232 */ 9233 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9234 rdc->error = e.error; 9235 return; 9236 } 9237 9238 /* 9239 * Determine which attrs to request for dirents. This code 9240 * must be protected by nfs4_start/end_fop because of r_server 9241 * (which will change during failover recovery). 9242 * 9243 */ 9244 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 9245 /* 9246 * Get all vattr attrs plus filehandle and rdattr_error 9247 */ 9248 rd_bitsval = NFS4_VATTR_MASK | 9249 FATTR4_RDATTR_ERROR_MASK | 9250 FATTR4_FILEHANDLE_MASK; 9251 9252 if (rp->r_flags & R4READDIRWATTR) { 9253 mutex_enter(&rp->r_statelock); 9254 rp->r_flags &= ~R4READDIRWATTR; 9255 mutex_exit(&rp->r_statelock); 9256 } 9257 } else { 9258 servinfo4_t *svp = rp->r_server; 9259 9260 /* 9261 * Already read directory. Use readdir with 9262 * no attrs (except for mounted_on_fileid) for updates. 9263 */ 9264 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 9265 9266 /* 9267 * request mounted on fileid if supported, else request 9268 * fileid. maybe we should verify that fileid is supported 9269 * and request something else if not. 9270 */ 9271 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 9272 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 9273 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 9274 nfs_rw_exit(&svp->sv_lock); 9275 } 9276 9277 /* putfh directory fh */ 9278 argop[0].argop = OP_CPUTFH; 9279 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 9280 9281 argop[1].argop = OP_READDIR; 9282 rargs = &argop[1].nfs_argop4_u.opreaddir; 9283 /* 9284 * 1 and 2 are reserved for client "." and ".." entry offset. 9285 * cookie 0 should be used over-the-wire to start reading at 9286 * the beginning of the directory excluding "." and "..". 9287 */ 9288 if (rdc->nfs4_cookie == 0 || 9289 rdc->nfs4_cookie == 1 || 9290 rdc->nfs4_cookie == 2) { 9291 rargs->cookie = (nfs_cookie4)0; 9292 rargs->cookieverf = 0; 9293 } else { 9294 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9295 mutex_enter(&rp->r_statelock); 9296 rargs->cookieverf = rp->r_cookieverf4; 9297 mutex_exit(&rp->r_statelock); 9298 } 9299 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9300 rargs->maxcount = mi->mi_tsize; 9301 rargs->attr_request = rd_bitsval; 9302 rargs->rdc = rdc; 9303 rargs->dvp = vp; 9304 rargs->mi = mi; 9305 rargs->cr = cr; 9306 9307 9308 /* 9309 * If count < than the minimum required, we return no entries 9310 * and fail with EINVAL 9311 */ 9312 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9313 rdc->error = EINVAL; 9314 goto out; 9315 } 9316 9317 if (args.array_len == 5) { 9318 /* 9319 * Add lookupp and getattr for parent nodeid. 9320 */ 9321 argop[2].argop = OP_LOOKUPP; 9322 9323 argop[3].argop = OP_GETFH; 9324 9325 /* getattr parent */ 9326 argop[4].argop = OP_GETATTR; 9327 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9328 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9329 } 9330 9331 doqueue = 1; 9332 9333 if (mi->mi_io_kstats) { 9334 mutex_enter(&mi->mi_lock); 9335 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9336 mutex_exit(&mi->mi_lock); 9337 } 9338 9339 /* capture the time of this call */ 9340 rargs->t = t = gethrtime(); 9341 9342 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9343 9344 if (mi->mi_io_kstats) { 9345 mutex_enter(&mi->mi_lock); 9346 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9347 mutex_exit(&mi->mi_lock); 9348 } 9349 9350 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9351 9352 /* 9353 * If RPC error occurred and it isn't an error that 9354 * triggers recovery, then go ahead and fail now. 9355 */ 9356 if (e.error != 0 && !needrecov) { 9357 rdc->error = e.error; 9358 goto out; 9359 } 9360 9361 if (needrecov) { 9362 bool_t abort; 9363 9364 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9365 "nfs4readdir: initiating recovery.\n")); 9366 9367 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9368 NULL, OP_READDIR, NULL, NULL, NULL); 9369 if (abort == FALSE) { 9370 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9371 &recov_state, needrecov); 9372 if (!e.error) 9373 (void) xdr_free(xdr_COMPOUND4res_clnt, 9374 (caddr_t)&res); 9375 if (rdc->entries != NULL) { 9376 kmem_free(rdc->entries, rdc->entlen); 9377 rdc->entries = NULL; 9378 } 9379 goto recov_retry; 9380 } 9381 9382 if (e.error != 0) { 9383 rdc->error = e.error; 9384 goto out; 9385 } 9386 9387 /* fall through for res.status case */ 9388 } 9389 9390 res_opcnt = res.array_len; 9391 9392 /* 9393 * If compound failed first 2 ops (PUTFH+READDIR), then return 9394 * failure here. Subsequent ops are for filling out dot-dot 9395 * dirent, and if they fail, we still want to give the caller 9396 * the dirents returned by (the successful) READDIR op, so we need 9397 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9398 * 9399 * One example where PUTFH+READDIR ops would succeed but 9400 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9401 * but lacks x. In this case, a POSIX server's VOP_READDIR 9402 * would succeed; however, VOP_LOOKUP(..) would fail since no 9403 * x perm. We need to come up with a non-vendor-specific way 9404 * for a POSIX server to return d_ino from dotdot's dirent if 9405 * client only requests mounted_on_fileid, and just say the 9406 * LOOKUPP succeeded and fill out the GETATTR. However, if 9407 * client requested any mandatory attrs, server would be required 9408 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9409 * for dotdot. 9410 */ 9411 9412 if (res.status) { 9413 if (res_opcnt <= 2) { 9414 e.error = geterrno4(res.status); 9415 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9416 &recov_state, needrecov); 9417 nfs4_purge_stale_fh(e.error, vp, cr); 9418 rdc->error = e.error; 9419 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9420 if (rdc->entries != NULL) { 9421 kmem_free(rdc->entries, rdc->entlen); 9422 rdc->entries = NULL; 9423 } 9424 /* 9425 * If readdir a node that is a stub for a 9426 * crossed mount point, keep the original 9427 * secinfo flavor for the current file system, 9428 * not the crossed one. 9429 */ 9430 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9431 return; 9432 } 9433 } 9434 9435 resop = &res.array[1]; /* readdir res */ 9436 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9437 9438 mutex_enter(&rp->r_statelock); 9439 rp->r_cookieverf4 = rd_res->cookieverf; 9440 mutex_exit(&rp->r_statelock); 9441 9442 /* 9443 * For "." and ".." entries 9444 * e.g. 9445 * seek(cookie=0) -> "." entry with d_off = 1 9446 * seek(cookie=1) -> ".." entry with d_off = 2 9447 */ 9448 if (cookie == (nfs_cookie4) 0) { 9449 if (rd_res->dotp) 9450 rd_res->dotp->d_ino = nodeid; 9451 if (rd_res->dotdotp) 9452 rd_res->dotdotp->d_ino = pnodeid; 9453 } 9454 if (cookie == (nfs_cookie4) 1) { 9455 if (rd_res->dotdotp) 9456 rd_res->dotdotp->d_ino = pnodeid; 9457 } 9458 9459 9460 /* LOOKUPP+GETATTR attemped */ 9461 if (args.array_len == 5 && rd_res->dotdotp) { 9462 if (res.status == NFS4_OK && res_opcnt == 5) { 9463 nfs_fh4 *fhp; 9464 nfs4_sharedfh_t *sfhp; 9465 vnode_t *pvp; 9466 nfs4_ga_res_t *garp; 9467 9468 resop++; /* lookupp */ 9469 resop++; /* getfh */ 9470 fhp = &resop->nfs_resop4_u.opgetfh.object; 9471 9472 resop++; /* getattr of parent */ 9473 9474 /* 9475 * First, take care of finishing the 9476 * readdir results. 9477 */ 9478 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9479 /* 9480 * The d_ino of .. must be the inode number 9481 * of the mounted filesystem. 9482 */ 9483 if (garp->n4g_va.va_mask & AT_NODEID) 9484 rd_res->dotdotp->d_ino = 9485 garp->n4g_va.va_nodeid; 9486 9487 9488 /* 9489 * Next, create the ".." dnlc entry 9490 */ 9491 sfhp = sfh4_get(fhp, mi); 9492 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9493 dnlc_update(vp, "..", pvp); 9494 VN_RELE(pvp); 9495 } 9496 sfh4_rele(&sfhp); 9497 } 9498 } 9499 9500 if (mi->mi_io_kstats) { 9501 mutex_enter(&mi->mi_lock); 9502 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9503 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9504 mutex_exit(&mi->mi_lock); 9505 } 9506 9507 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9508 9509 out: 9510 /* 9511 * If readdir a node that is a stub for a crossed mount point, 9512 * keep the original secinfo flavor for the current file system, 9513 * not the crossed one. 9514 */ 9515 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9516 9517 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9518 } 9519 9520 9521 static int 9522 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9523 { 9524 rnode4_t *rp = VTOR4(bp->b_vp); 9525 int count; 9526 int error; 9527 cred_t *cred_otw = NULL; 9528 offset_t offset; 9529 nfs4_open_stream_t *osp = NULL; 9530 bool_t first_time = TRUE; /* first time getting otw cred */ 9531 bool_t last_time = FALSE; /* last time getting otw cred */ 9532 9533 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9534 9535 DTRACE_IO1(start, struct buf *, bp); 9536 offset = ldbtob(bp->b_lblkno); 9537 9538 if (bp->b_flags & B_READ) { 9539 read_again: 9540 /* 9541 * Releases the osp, if it is provided. 9542 * Puts a hold on the cred_otw and the new osp (if found). 9543 */ 9544 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9545 &first_time, &last_time); 9546 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9547 offset, bp->b_bcount, &bp->b_resid, cred_otw, 9548 readahead, NULL); 9549 crfree(cred_otw); 9550 if (!error) { 9551 if (bp->b_resid) { 9552 /* 9553 * Didn't get it all because we hit EOF, 9554 * zero all the memory beyond the EOF. 9555 */ 9556 /* bzero(rdaddr + */ 9557 bzero(bp->b_un.b_addr + 9558 bp->b_bcount - bp->b_resid, bp->b_resid); 9559 } 9560 mutex_enter(&rp->r_statelock); 9561 if (bp->b_resid == bp->b_bcount && 9562 offset >= rp->r_size) { 9563 /* 9564 * We didn't read anything at all as we are 9565 * past EOF. Return an error indicator back 9566 * but don't destroy the pages (yet). 9567 */ 9568 error = NFS_EOF; 9569 } 9570 mutex_exit(&rp->r_statelock); 9571 } else if (error == EACCES && last_time == FALSE) { 9572 goto read_again; 9573 } 9574 } else { 9575 if (!(rp->r_flags & R4STALE)) { 9576 write_again: 9577 /* 9578 * Releases the osp, if it is provided. 9579 * Puts a hold on the cred_otw and the new 9580 * osp (if found). 9581 */ 9582 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9583 &first_time, &last_time); 9584 mutex_enter(&rp->r_statelock); 9585 count = MIN(bp->b_bcount, rp->r_size - offset); 9586 mutex_exit(&rp->r_statelock); 9587 if (count < 0) 9588 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9589 #ifdef DEBUG 9590 if (count == 0) { 9591 zoneid_t zoneid = getzoneid(); 9592 9593 zcmn_err(zoneid, CE_WARN, 9594 "nfs4_bio: zero length write at %lld", 9595 offset); 9596 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9597 "b_bcount=%ld, file size=%lld", 9598 rp->r_flags, (long)bp->b_bcount, 9599 rp->r_size); 9600 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9601 if (nfs4_bio_do_stop) 9602 debug_enter("nfs4_bio"); 9603 } 9604 #endif 9605 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9606 count, cred_otw, stab_comm); 9607 if (error == EACCES && last_time == FALSE) { 9608 crfree(cred_otw); 9609 goto write_again; 9610 } 9611 bp->b_error = error; 9612 if (error && error != EINTR && 9613 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) { 9614 /* 9615 * Don't print EDQUOT errors on the console. 9616 * Don't print asynchronous EACCES errors. 9617 * Don't print EFBIG errors. 9618 * Print all other write errors. 9619 */ 9620 if (error != EDQUOT && error != EFBIG && 9621 (error != EACCES || 9622 !(bp->b_flags & B_ASYNC))) 9623 nfs4_write_error(bp->b_vp, 9624 error, cred_otw); 9625 /* 9626 * Update r_error and r_flags as appropriate. 9627 * If the error was ESTALE, then mark the 9628 * rnode as not being writeable and save 9629 * the error status. Otherwise, save any 9630 * errors which occur from asynchronous 9631 * page invalidations. Any errors occurring 9632 * from other operations should be saved 9633 * by the caller. 9634 */ 9635 mutex_enter(&rp->r_statelock); 9636 if (error == ESTALE) { 9637 rp->r_flags |= R4STALE; 9638 if (!rp->r_error) 9639 rp->r_error = error; 9640 } else if (!rp->r_error && 9641 (bp->b_flags & 9642 (B_INVAL|B_FORCE|B_ASYNC)) == 9643 (B_INVAL|B_FORCE|B_ASYNC)) { 9644 rp->r_error = error; 9645 } 9646 mutex_exit(&rp->r_statelock); 9647 } 9648 crfree(cred_otw); 9649 } else { 9650 error = rp->r_error; 9651 /* 9652 * A close may have cleared r_error, if so, 9653 * propagate ESTALE error return properly 9654 */ 9655 if (error == 0) 9656 error = ESTALE; 9657 } 9658 } 9659 9660 if (error != 0 && error != NFS_EOF) 9661 bp->b_flags |= B_ERROR; 9662 9663 if (osp) 9664 open_stream_rele(osp, rp); 9665 9666 DTRACE_IO1(done, struct buf *, bp); 9667 9668 return (error); 9669 } 9670 9671 /* ARGSUSED */ 9672 int 9673 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 9674 { 9675 return (EREMOTE); 9676 } 9677 9678 /* ARGSUSED2 */ 9679 int 9680 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9681 { 9682 rnode4_t *rp = VTOR4(vp); 9683 9684 if (!write_lock) { 9685 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9686 return (V_WRITELOCK_FALSE); 9687 } 9688 9689 if ((rp->r_flags & R4DIRECTIO) || 9690 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9691 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9692 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9693 return (V_WRITELOCK_FALSE); 9694 nfs_rw_exit(&rp->r_rwlock); 9695 } 9696 9697 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9698 return (V_WRITELOCK_TRUE); 9699 } 9700 9701 /* ARGSUSED */ 9702 void 9703 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9704 { 9705 rnode4_t *rp = VTOR4(vp); 9706 9707 nfs_rw_exit(&rp->r_rwlock); 9708 } 9709 9710 /* ARGSUSED */ 9711 static int 9712 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 9713 { 9714 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9715 return (EIO); 9716 9717 /* 9718 * Because we stuff the readdir cookie into the offset field 9719 * someone may attempt to do an lseek with the cookie which 9720 * we want to succeed. 9721 */ 9722 if (vp->v_type == VDIR) 9723 return (0); 9724 if (*noffp < 0) 9725 return (EINVAL); 9726 return (0); 9727 } 9728 9729 9730 /* 9731 * Return all the pages from [off..off+len) in file 9732 */ 9733 /* ARGSUSED */ 9734 static int 9735 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9736 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9737 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 9738 { 9739 rnode4_t *rp; 9740 int error; 9741 mntinfo4_t *mi; 9742 9743 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9744 return (EIO); 9745 rp = VTOR4(vp); 9746 if (IS_SHADOW(vp, rp)) 9747 vp = RTOV4(rp); 9748 9749 if (vp->v_flag & VNOMAP) 9750 return (ENOSYS); 9751 9752 if (protp != NULL) 9753 *protp = PROT_ALL; 9754 9755 /* 9756 * Now validate that the caches are up to date. 9757 */ 9758 if (error = nfs4_validate_caches(vp, cr)) 9759 return (error); 9760 9761 mi = VTOMI4(vp); 9762 retry: 9763 mutex_enter(&rp->r_statelock); 9764 9765 /* 9766 * Don't create dirty pages faster than they 9767 * can be cleaned so that the system doesn't 9768 * get imbalanced. If the async queue is 9769 * maxed out, then wait for it to drain before 9770 * creating more dirty pages. Also, wait for 9771 * any threads doing pagewalks in the vop_getattr 9772 * entry points so that they don't block for 9773 * long periods. 9774 */ 9775 if (rw == S_CREATE) { 9776 while ((mi->mi_max_threads != 0 && 9777 rp->r_awcount > 2 * mi->mi_max_threads) || 9778 rp->r_gcount > 0) 9779 cv_wait(&rp->r_cv, &rp->r_statelock); 9780 } 9781 9782 /* 9783 * If we are getting called as a side effect of an nfs_write() 9784 * operation the local file size might not be extended yet. 9785 * In this case we want to be able to return pages of zeroes. 9786 */ 9787 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9788 NFS4_DEBUG(nfs4_pageio_debug, 9789 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9790 "len=%llu, size=%llu, attrsize =%llu", off, 9791 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9792 mutex_exit(&rp->r_statelock); 9793 return (EFAULT); /* beyond EOF */ 9794 } 9795 9796 mutex_exit(&rp->r_statelock); 9797 9798 if (len <= PAGESIZE) { 9799 error = nfs4_getapage(vp, off, len, protp, pl, plsz, 9800 seg, addr, rw, cr); 9801 NFS4_DEBUG(nfs4_pageio_debug && error, 9802 (CE_NOTE, "getpage error %d; off=%lld, " 9803 "len=%lld", error, off, (u_longlong_t)len)); 9804 } else { 9805 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9806 pl, plsz, seg, addr, rw, cr); 9807 NFS4_DEBUG(nfs4_pageio_debug && error, 9808 (CE_NOTE, "getpages error %d; off=%lld, " 9809 "len=%lld", error, off, (u_longlong_t)len)); 9810 } 9811 9812 switch (error) { 9813 case NFS_EOF: 9814 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9815 goto retry; 9816 case ESTALE: 9817 nfs4_purge_stale_fh(error, vp, cr); 9818 } 9819 9820 return (error); 9821 } 9822 9823 /* 9824 * Called from pvn_getpages or nfs4_getpage to get a particular page. 9825 */ 9826 /* ARGSUSED */ 9827 static int 9828 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9829 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9830 enum seg_rw rw, cred_t *cr) 9831 { 9832 rnode4_t *rp; 9833 uint_t bsize; 9834 struct buf *bp; 9835 page_t *pp; 9836 u_offset_t lbn; 9837 u_offset_t io_off; 9838 u_offset_t blkoff; 9839 u_offset_t rablkoff; 9840 size_t io_len; 9841 uint_t blksize; 9842 int error; 9843 int readahead; 9844 int readahead_issued = 0; 9845 int ra_window; /* readahead window */ 9846 page_t *pagefound; 9847 page_t *savepp; 9848 9849 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9850 return (EIO); 9851 9852 rp = VTOR4(vp); 9853 ASSERT(!IS_SHADOW(vp, rp)); 9854 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9855 9856 reread: 9857 bp = NULL; 9858 pp = NULL; 9859 pagefound = NULL; 9860 9861 if (pl != NULL) 9862 pl[0] = NULL; 9863 9864 error = 0; 9865 lbn = off / bsize; 9866 blkoff = lbn * bsize; 9867 9868 /* 9869 * Queueing up the readahead before doing the synchronous read 9870 * results in a significant increase in read throughput because 9871 * of the increased parallelism between the async threads and 9872 * the process context. 9873 */ 9874 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9875 rw != S_CREATE && 9876 !(vp->v_flag & VNOCACHE)) { 9877 mutex_enter(&rp->r_statelock); 9878 9879 /* 9880 * Calculate the number of readaheads to do. 9881 * a) No readaheads at offset = 0. 9882 * b) Do maximum(nfs4_nra) readaheads when the readahead 9883 * window is closed. 9884 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9885 * upon how far the readahead window is open or close. 9886 * d) No readaheads if rp->r_nextr is not within the scope 9887 * of the readahead window (random i/o). 9888 */ 9889 9890 if (off == 0) 9891 readahead = 0; 9892 else if (blkoff == rp->r_nextr) 9893 readahead = nfs4_nra; 9894 else if (rp->r_nextr > blkoff && 9895 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9896 <= (nfs4_nra - 1))) 9897 readahead = nfs4_nra - ra_window; 9898 else 9899 readahead = 0; 9900 9901 rablkoff = rp->r_nextr; 9902 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9903 mutex_exit(&rp->r_statelock); 9904 if (nfs4_async_readahead(vp, rablkoff + bsize, 9905 addr + (rablkoff + bsize - off), 9906 seg, cr, nfs4_readahead) < 0) { 9907 mutex_enter(&rp->r_statelock); 9908 break; 9909 } 9910 readahead--; 9911 rablkoff += bsize; 9912 /* 9913 * Indicate that we did a readahead so 9914 * readahead offset is not updated 9915 * by the synchronous read below. 9916 */ 9917 readahead_issued = 1; 9918 mutex_enter(&rp->r_statelock); 9919 /* 9920 * set readahead offset to 9921 * offset of last async readahead 9922 * request. 9923 */ 9924 rp->r_nextr = rablkoff; 9925 } 9926 mutex_exit(&rp->r_statelock); 9927 } 9928 9929 again: 9930 if ((pagefound = page_exists(vp, off)) == NULL) { 9931 if (pl == NULL) { 9932 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9933 nfs4_readahead); 9934 } else if (rw == S_CREATE) { 9935 /* 9936 * Block for this page is not allocated, or the offset 9937 * is beyond the current allocation size, or we're 9938 * allocating a swap slot and the page was not found, 9939 * so allocate it and return a zero page. 9940 */ 9941 if ((pp = page_create_va(vp, off, 9942 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9943 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9944 io_len = PAGESIZE; 9945 mutex_enter(&rp->r_statelock); 9946 rp->r_nextr = off + PAGESIZE; 9947 mutex_exit(&rp->r_statelock); 9948 } else { 9949 /* 9950 * Need to go to server to get a block 9951 */ 9952 mutex_enter(&rp->r_statelock); 9953 if (blkoff < rp->r_size && 9954 blkoff + bsize > rp->r_size) { 9955 /* 9956 * If less than a block left in 9957 * file read less than a block. 9958 */ 9959 if (rp->r_size <= off) { 9960 /* 9961 * Trying to access beyond EOF, 9962 * set up to get at least one page. 9963 */ 9964 blksize = off + PAGESIZE - blkoff; 9965 } else 9966 blksize = rp->r_size - blkoff; 9967 } else if ((off == 0) || 9968 (off != rp->r_nextr && !readahead_issued)) { 9969 blksize = PAGESIZE; 9970 blkoff = off; /* block = page here */ 9971 } else 9972 blksize = bsize; 9973 mutex_exit(&rp->r_statelock); 9974 9975 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9976 &io_len, blkoff, blksize, 0); 9977 9978 /* 9979 * Some other thread has entered the page, 9980 * so just use it. 9981 */ 9982 if (pp == NULL) 9983 goto again; 9984 9985 /* 9986 * Now round the request size up to page boundaries. 9987 * This ensures that the entire page will be 9988 * initialized to zeroes if EOF is encountered. 9989 */ 9990 io_len = ptob(btopr(io_len)); 9991 9992 bp = pageio_setup(pp, io_len, vp, B_READ); 9993 ASSERT(bp != NULL); 9994 9995 /* 9996 * pageio_setup should have set b_addr to 0. This 9997 * is correct since we want to do I/O on a page 9998 * boundary. bp_mapin will use this addr to calculate 9999 * an offset, and then set b_addr to the kernel virtual 10000 * address it allocated for us. 10001 */ 10002 ASSERT(bp->b_un.b_addr == 0); 10003 10004 bp->b_edev = 0; 10005 bp->b_dev = 0; 10006 bp->b_lblkno = lbtodb(io_off); 10007 bp->b_file = vp; 10008 bp->b_offset = (offset_t)off; 10009 bp_mapin(bp); 10010 10011 /* 10012 * If doing a write beyond what we believe is EOF, 10013 * don't bother trying to read the pages from the 10014 * server, we'll just zero the pages here. We 10015 * don't check that the rw flag is S_WRITE here 10016 * because some implementations may attempt a 10017 * read access to the buffer before copying data. 10018 */ 10019 mutex_enter(&rp->r_statelock); 10020 if (io_off >= rp->r_size && seg == segkmap) { 10021 mutex_exit(&rp->r_statelock); 10022 bzero(bp->b_un.b_addr, io_len); 10023 } else { 10024 mutex_exit(&rp->r_statelock); 10025 error = nfs4_bio(bp, NULL, cr, FALSE); 10026 } 10027 10028 /* 10029 * Unmap the buffer before freeing it. 10030 */ 10031 bp_mapout(bp); 10032 pageio_done(bp); 10033 10034 savepp = pp; 10035 do { 10036 pp->p_fsdata = C_NOCOMMIT; 10037 } while ((pp = pp->p_next) != savepp); 10038 10039 if (error == NFS_EOF) { 10040 /* 10041 * If doing a write system call just return 10042 * zeroed pages, else user tried to get pages 10043 * beyond EOF, return error. We don't check 10044 * that the rw flag is S_WRITE here because 10045 * some implementations may attempt a read 10046 * access to the buffer before copying data. 10047 */ 10048 if (seg == segkmap) 10049 error = 0; 10050 else 10051 error = EFAULT; 10052 } 10053 10054 if (!readahead_issued && !error) { 10055 mutex_enter(&rp->r_statelock); 10056 rp->r_nextr = io_off + io_len; 10057 mutex_exit(&rp->r_statelock); 10058 } 10059 } 10060 } 10061 10062 out: 10063 if (pl == NULL) 10064 return (error); 10065 10066 if (error) { 10067 if (pp != NULL) 10068 pvn_read_done(pp, B_ERROR); 10069 return (error); 10070 } 10071 10072 if (pagefound) { 10073 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 10074 10075 /* 10076 * Page exists in the cache, acquire the appropriate lock. 10077 * If this fails, start all over again. 10078 */ 10079 if ((pp = page_lookup(vp, off, se)) == NULL) { 10080 #ifdef DEBUG 10081 nfs4_lostpage++; 10082 #endif 10083 goto reread; 10084 } 10085 pl[0] = pp; 10086 pl[1] = NULL; 10087 return (0); 10088 } 10089 10090 if (pp != NULL) 10091 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 10092 10093 return (error); 10094 } 10095 10096 static void 10097 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 10098 cred_t *cr) 10099 { 10100 int error; 10101 page_t *pp; 10102 u_offset_t io_off; 10103 size_t io_len; 10104 struct buf *bp; 10105 uint_t bsize, blksize; 10106 rnode4_t *rp = VTOR4(vp); 10107 page_t *savepp; 10108 10109 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10110 10111 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10112 10113 mutex_enter(&rp->r_statelock); 10114 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 10115 /* 10116 * If less than a block left in file read less 10117 * than a block. 10118 */ 10119 blksize = rp->r_size - blkoff; 10120 } else 10121 blksize = bsize; 10122 mutex_exit(&rp->r_statelock); 10123 10124 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 10125 &io_off, &io_len, blkoff, blksize, 1); 10126 /* 10127 * The isra flag passed to the kluster function is 1, we may have 10128 * gotten a return value of NULL for a variety of reasons (# of free 10129 * pages < minfree, someone entered the page on the vnode etc). In all 10130 * cases, we want to punt on the readahead. 10131 */ 10132 if (pp == NULL) 10133 return; 10134 10135 /* 10136 * Now round the request size up to page boundaries. 10137 * This ensures that the entire page will be 10138 * initialized to zeroes if EOF is encountered. 10139 */ 10140 io_len = ptob(btopr(io_len)); 10141 10142 bp = pageio_setup(pp, io_len, vp, B_READ); 10143 ASSERT(bp != NULL); 10144 10145 /* 10146 * pageio_setup should have set b_addr to 0. This is correct since 10147 * we want to do I/O on a page boundary. bp_mapin() will use this addr 10148 * to calculate an offset, and then set b_addr to the kernel virtual 10149 * address it allocated for us. 10150 */ 10151 ASSERT(bp->b_un.b_addr == 0); 10152 10153 bp->b_edev = 0; 10154 bp->b_dev = 0; 10155 bp->b_lblkno = lbtodb(io_off); 10156 bp->b_file = vp; 10157 bp->b_offset = (offset_t)blkoff; 10158 bp_mapin(bp); 10159 10160 /* 10161 * If doing a write beyond what we believe is EOF, don't bother trying 10162 * to read the pages from the server, we'll just zero the pages here. 10163 * We don't check that the rw flag is S_WRITE here because some 10164 * implementations may attempt a read access to the buffer before 10165 * copying data. 10166 */ 10167 mutex_enter(&rp->r_statelock); 10168 if (io_off >= rp->r_size && seg == segkmap) { 10169 mutex_exit(&rp->r_statelock); 10170 bzero(bp->b_un.b_addr, io_len); 10171 error = 0; 10172 } else { 10173 mutex_exit(&rp->r_statelock); 10174 error = nfs4_bio(bp, NULL, cr, TRUE); 10175 if (error == NFS_EOF) 10176 error = 0; 10177 } 10178 10179 /* 10180 * Unmap the buffer before freeing it. 10181 */ 10182 bp_mapout(bp); 10183 pageio_done(bp); 10184 10185 savepp = pp; 10186 do { 10187 pp->p_fsdata = C_NOCOMMIT; 10188 } while ((pp = pp->p_next) != savepp); 10189 10190 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 10191 10192 /* 10193 * In case of error set readahead offset 10194 * to the lowest offset. 10195 * pvn_read_done() calls VN_DISPOSE to destroy the pages 10196 */ 10197 if (error && rp->r_nextr > io_off) { 10198 mutex_enter(&rp->r_statelock); 10199 if (rp->r_nextr > io_off) 10200 rp->r_nextr = io_off; 10201 mutex_exit(&rp->r_statelock); 10202 } 10203 } 10204 10205 /* 10206 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 10207 * If len == 0, do from off to EOF. 10208 * 10209 * The normal cases should be len == 0 && off == 0 (entire vp list) or 10210 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 10211 * (from pageout). 10212 */ 10213 /* ARGSUSED */ 10214 static int 10215 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 10216 caller_context_t *ct) 10217 { 10218 int error; 10219 rnode4_t *rp; 10220 10221 ASSERT(cr != NULL); 10222 10223 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 10224 return (EIO); 10225 10226 rp = VTOR4(vp); 10227 if (IS_SHADOW(vp, rp)) 10228 vp = RTOV4(rp); 10229 10230 /* 10231 * XXX - Why should this check be made here? 10232 */ 10233 if (vp->v_flag & VNOMAP) 10234 return (ENOSYS); 10235 10236 if (len == 0 && !(flags & B_INVAL) && 10237 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 10238 return (0); 10239 10240 mutex_enter(&rp->r_statelock); 10241 rp->r_count++; 10242 mutex_exit(&rp->r_statelock); 10243 error = nfs4_putpages(vp, off, len, flags, cr); 10244 mutex_enter(&rp->r_statelock); 10245 rp->r_count--; 10246 cv_broadcast(&rp->r_cv); 10247 mutex_exit(&rp->r_statelock); 10248 10249 return (error); 10250 } 10251 10252 /* 10253 * Write out a single page, possibly klustering adjacent dirty pages. 10254 */ 10255 int 10256 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 10257 int flags, cred_t *cr) 10258 { 10259 u_offset_t io_off; 10260 u_offset_t lbn_off; 10261 u_offset_t lbn; 10262 size_t io_len; 10263 uint_t bsize; 10264 int error; 10265 rnode4_t *rp; 10266 10267 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 10268 ASSERT(pp != NULL); 10269 ASSERT(cr != NULL); 10270 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 10271 10272 rp = VTOR4(vp); 10273 ASSERT(rp->r_count > 0); 10274 ASSERT(!IS_SHADOW(vp, rp)); 10275 10276 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10277 lbn = pp->p_offset / bsize; 10278 lbn_off = lbn * bsize; 10279 10280 /* 10281 * Find a kluster that fits in one block, or in 10282 * one page if pages are bigger than blocks. If 10283 * there is less file space allocated than a whole 10284 * page, we'll shorten the i/o request below. 10285 */ 10286 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 10287 roundup(bsize, PAGESIZE), flags); 10288 10289 /* 10290 * pvn_write_kluster shouldn't have returned a page with offset 10291 * behind the original page we were given. Verify that. 10292 */ 10293 ASSERT((pp->p_offset / bsize) >= lbn); 10294 10295 /* 10296 * Now pp will have the list of kept dirty pages marked for 10297 * write back. It will also handle invalidation and freeing 10298 * of pages that are not dirty. Check for page length rounding 10299 * problems. 10300 */ 10301 if (io_off + io_len > lbn_off + bsize) { 10302 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10303 io_len = lbn_off + bsize - io_off; 10304 } 10305 /* 10306 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10307 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10308 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10309 * progress and the r_size has not been made consistent with the 10310 * new size of the file. When the uiomove() completes the r_size is 10311 * updated and the R4MODINPROGRESS flag is cleared. 10312 * 10313 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10314 * consistent value of r_size. Without this handshaking, it is 10315 * possible that nfs4_bio() picks up the old value of r_size 10316 * before the uiomove() in writerp4() completes. This will result 10317 * in the write through nfs4_bio() being dropped. 10318 * 10319 * More precisely, there is a window between the time the uiomove() 10320 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10321 * operation intervenes in this window, the page will be picked up, 10322 * because it is dirty (it will be unlocked, unless it was 10323 * pagecreate'd). When the page is picked up as dirty, the dirty 10324 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10325 * checked. This will still be the old size. Therefore the page will 10326 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10327 * the page will be found to be clean and the write will be dropped. 10328 */ 10329 if (rp->r_flags & R4MODINPROGRESS) { 10330 mutex_enter(&rp->r_statelock); 10331 if ((rp->r_flags & R4MODINPROGRESS) && 10332 rp->r_modaddr + MAXBSIZE > io_off && 10333 rp->r_modaddr < io_off + io_len) { 10334 page_t *plist; 10335 /* 10336 * A write is in progress for this region of the file. 10337 * If we did not detect R4MODINPROGRESS here then this 10338 * path through nfs_putapage() would eventually go to 10339 * nfs4_bio() and may not write out all of the data 10340 * in the pages. We end up losing data. So we decide 10341 * to set the modified bit on each page in the page 10342 * list and mark the rnode with R4DIRTY. This write 10343 * will be restarted at some later time. 10344 */ 10345 plist = pp; 10346 while (plist != NULL) { 10347 pp = plist; 10348 page_sub(&plist, pp); 10349 hat_setmod(pp); 10350 page_io_unlock(pp); 10351 page_unlock(pp); 10352 } 10353 rp->r_flags |= R4DIRTY; 10354 mutex_exit(&rp->r_statelock); 10355 if (offp) 10356 *offp = io_off; 10357 if (lenp) 10358 *lenp = io_len; 10359 return (0); 10360 } 10361 mutex_exit(&rp->r_statelock); 10362 } 10363 10364 if (flags & B_ASYNC) { 10365 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10366 nfs4_sync_putapage); 10367 } else 10368 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10369 10370 if (offp) 10371 *offp = io_off; 10372 if (lenp) 10373 *lenp = io_len; 10374 return (error); 10375 } 10376 10377 static int 10378 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10379 int flags, cred_t *cr) 10380 { 10381 int error; 10382 rnode4_t *rp; 10383 10384 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10385 10386 flags |= B_WRITE; 10387 10388 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10389 10390 rp = VTOR4(vp); 10391 10392 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10393 error == EACCES) && 10394 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10395 if (!(rp->r_flags & R4OUTOFSPACE)) { 10396 mutex_enter(&rp->r_statelock); 10397 rp->r_flags |= R4OUTOFSPACE; 10398 mutex_exit(&rp->r_statelock); 10399 } 10400 flags |= B_ERROR; 10401 pvn_write_done(pp, flags); 10402 /* 10403 * If this was not an async thread, then try again to 10404 * write out the pages, but this time, also destroy 10405 * them whether or not the write is successful. This 10406 * will prevent memory from filling up with these 10407 * pages and destroying them is the only alternative 10408 * if they can't be written out. 10409 * 10410 * Don't do this if this is an async thread because 10411 * when the pages are unlocked in pvn_write_done, 10412 * some other thread could have come along, locked 10413 * them, and queued for an async thread. It would be 10414 * possible for all of the async threads to be tied 10415 * up waiting to lock the pages again and they would 10416 * all already be locked and waiting for an async 10417 * thread to handle them. Deadlock. 10418 */ 10419 if (!(flags & B_ASYNC)) { 10420 error = nfs4_putpage(vp, io_off, io_len, 10421 B_INVAL | B_FORCE, cr, NULL); 10422 } 10423 } else { 10424 if (error) 10425 flags |= B_ERROR; 10426 else if (rp->r_flags & R4OUTOFSPACE) { 10427 mutex_enter(&rp->r_statelock); 10428 rp->r_flags &= ~R4OUTOFSPACE; 10429 mutex_exit(&rp->r_statelock); 10430 } 10431 pvn_write_done(pp, flags); 10432 if (freemem < desfree) 10433 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10434 NFS4_WRITE_NOWAIT); 10435 } 10436 10437 return (error); 10438 } 10439 10440 #ifdef DEBUG 10441 int nfs4_force_open_before_mmap = 0; 10442 #endif 10443 10444 /* ARGSUSED */ 10445 static int 10446 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10447 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10448 caller_context_t *ct) 10449 { 10450 struct segvn_crargs vn_a; 10451 int error = 0; 10452 rnode4_t *rp = VTOR4(vp); 10453 mntinfo4_t *mi = VTOMI4(vp); 10454 10455 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10456 return (EIO); 10457 10458 if (vp->v_flag & VNOMAP) 10459 return (ENOSYS); 10460 10461 if (off < 0 || (off + len) < 0) 10462 return (ENXIO); 10463 10464 if (vp->v_type != VREG) 10465 return (ENODEV); 10466 10467 /* 10468 * If the file is delegated to the client don't do anything. 10469 * If the file is not delegated, then validate the data cache. 10470 */ 10471 mutex_enter(&rp->r_statev4_lock); 10472 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10473 mutex_exit(&rp->r_statev4_lock); 10474 error = nfs4_validate_caches(vp, cr); 10475 if (error) 10476 return (error); 10477 } else { 10478 mutex_exit(&rp->r_statev4_lock); 10479 } 10480 10481 /* 10482 * Check to see if the vnode is currently marked as not cachable. 10483 * This means portions of the file are locked (through VOP_FRLOCK). 10484 * In this case the map request must be refused. We use 10485 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10486 * 10487 * Atomically increment r_inmap after acquiring r_rwlock. The 10488 * idea here is to acquire r_rwlock to block read/write and 10489 * not to protect r_inmap. r_inmap will inform nfs4_read/write() 10490 * that we are in nfs4_map(). Now, r_rwlock is acquired in order 10491 * and we can prevent the deadlock that would have occurred 10492 * when nfs4_addmap() would have acquired it out of order. 10493 * 10494 * Since we are not protecting r_inmap by any lock, we do not 10495 * hold any lock when we decrement it. We atomically decrement 10496 * r_inmap after we release r_lkserlock. 10497 */ 10498 10499 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR4(vp))) 10500 return (EINTR); 10501 atomic_add_int(&rp->r_inmap, 1); 10502 nfs_rw_exit(&rp->r_rwlock); 10503 10504 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) { 10505 atomic_add_int(&rp->r_inmap, -1); 10506 return (EINTR); 10507 } 10508 10509 10510 if (vp->v_flag & VNOCACHE) { 10511 error = EAGAIN; 10512 goto done; 10513 } 10514 10515 /* 10516 * Don't allow concurrent locks and mapping if mandatory locking is 10517 * enabled. 10518 */ 10519 if (flk_has_remote_locks(vp)) { 10520 struct vattr va; 10521 va.va_mask = AT_MODE; 10522 error = nfs4getattr(vp, &va, cr); 10523 if (error != 0) 10524 goto done; 10525 if (MANDLOCK(vp, va.va_mode)) { 10526 error = EAGAIN; 10527 goto done; 10528 } 10529 } 10530 10531 /* 10532 * It is possible that the rnode has a lost lock request that we 10533 * are still trying to recover, and that the request conflicts with 10534 * this map request. 10535 * 10536 * An alternative approach would be for nfs4_safemap() to consider 10537 * queued lock requests when deciding whether to set or clear 10538 * VNOCACHE. This would require the frlock code path to call 10539 * nfs4_safemap() after enqueing a lost request. 10540 */ 10541 if (nfs4_map_lost_lock_conflict(vp)) { 10542 error = EAGAIN; 10543 goto done; 10544 } 10545 10546 as_rangelock(as); 10547 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 10548 if (error != 0) { 10549 as_rangeunlock(as); 10550 goto done; 10551 } 10552 10553 if (vp->v_type == VREG) { 10554 /* 10555 * We need to retrieve the open stream 10556 */ 10557 nfs4_open_stream_t *osp = NULL; 10558 nfs4_open_owner_t *oop = NULL; 10559 10560 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10561 if (oop != NULL) { 10562 /* returns with 'os_sync_lock' held */ 10563 osp = find_open_stream(oop, rp); 10564 open_owner_rele(oop); 10565 } 10566 if (osp == NULL) { 10567 #ifdef DEBUG 10568 if (nfs4_force_open_before_mmap) { 10569 error = EIO; 10570 goto done; 10571 } 10572 #endif 10573 /* returns with 'os_sync_lock' held */ 10574 error = open_and_get_osp(vp, cr, &osp); 10575 if (osp == NULL) { 10576 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10577 "nfs4_map: we tried to OPEN the file " 10578 "but again no osp, so fail with EIO")); 10579 goto done; 10580 } 10581 } 10582 10583 if (osp->os_failed_reopen) { 10584 mutex_exit(&osp->os_sync_lock); 10585 open_stream_rele(osp, rp); 10586 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10587 "nfs4_map: os_failed_reopen set on " 10588 "osp %p, cr %p, rp %s", (void *)osp, 10589 (void *)cr, rnode4info(rp))); 10590 error = EIO; 10591 goto done; 10592 } 10593 mutex_exit(&osp->os_sync_lock); 10594 open_stream_rele(osp, rp); 10595 } 10596 10597 vn_a.vp = vp; 10598 vn_a.offset = off; 10599 vn_a.type = (flags & MAP_TYPE); 10600 vn_a.prot = (uchar_t)prot; 10601 vn_a.maxprot = (uchar_t)maxprot; 10602 vn_a.flags = (flags & ~MAP_TYPE); 10603 vn_a.cred = cr; 10604 vn_a.amp = NULL; 10605 vn_a.szc = 0; 10606 vn_a.lgrp_mem_policy_flags = 0; 10607 10608 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10609 as_rangeunlock(as); 10610 10611 done: 10612 nfs_rw_exit(&rp->r_lkserlock); 10613 atomic_add_int(&rp->r_inmap, -1); 10614 return (error); 10615 } 10616 10617 /* 10618 * We're most likely dealing with a kernel module that likes to READ 10619 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10620 * officially OPEN the file to create the necessary client state 10621 * for bookkeeping of os_mmap_read/write counts. 10622 * 10623 * Since VOP_MAP only passes in a pointer to the vnode rather than 10624 * a double pointer, we can't handle the case where nfs4open_otw() 10625 * returns a different vnode than the one passed into VOP_MAP (since 10626 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10627 * we return NULL and let nfs4_map() fail. Note: the only case where 10628 * this should happen is if the file got removed and replaced with the 10629 * same name on the server (in addition to the fact that we're trying 10630 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10631 */ 10632 static int 10633 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp) 10634 { 10635 rnode4_t *rp, *drp; 10636 vnode_t *dvp, *open_vp; 10637 char file_name[MAXNAMELEN]; 10638 int just_created; 10639 nfs4_open_stream_t *osp; 10640 nfs4_open_owner_t *oop; 10641 int error; 10642 10643 *ospp = NULL; 10644 open_vp = map_vp; 10645 10646 rp = VTOR4(open_vp); 10647 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0) 10648 return (error); 10649 drp = VTOR4(dvp); 10650 10651 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 10652 VN_RELE(dvp); 10653 return (EINTR); 10654 } 10655 10656 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) { 10657 nfs_rw_exit(&drp->r_rwlock); 10658 VN_RELE(dvp); 10659 return (error); 10660 } 10661 10662 mutex_enter(&rp->r_statev4_lock); 10663 if (rp->created_v4) { 10664 rp->created_v4 = 0; 10665 mutex_exit(&rp->r_statev4_lock); 10666 10667 dnlc_update(dvp, file_name, open_vp); 10668 /* This is needed so we don't bump the open ref count */ 10669 just_created = 1; 10670 } else { 10671 mutex_exit(&rp->r_statev4_lock); 10672 just_created = 0; 10673 } 10674 10675 VN_HOLD(map_vp); 10676 10677 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10678 just_created); 10679 if (error) { 10680 nfs_rw_exit(&drp->r_rwlock); 10681 VN_RELE(dvp); 10682 VN_RELE(map_vp); 10683 return (error); 10684 } 10685 10686 nfs_rw_exit(&drp->r_rwlock); 10687 VN_RELE(dvp); 10688 10689 /* 10690 * If nfs4open_otw() returned a different vnode then "undo" 10691 * the open and return failure to the caller. 10692 */ 10693 if (!VN_CMP(open_vp, map_vp)) { 10694 nfs4_error_t e; 10695 10696 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10697 "open returned a different vnode")); 10698 /* 10699 * If there's an error, ignore it, 10700 * and let VOP_INACTIVE handle it. 10701 */ 10702 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10703 CLOSE_NORM, 0, 0, 0); 10704 VN_RELE(map_vp); 10705 return (EIO); 10706 } 10707 10708 VN_RELE(map_vp); 10709 10710 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10711 if (!oop) { 10712 nfs4_error_t e; 10713 10714 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10715 "no open owner")); 10716 /* 10717 * If there's an error, ignore it, 10718 * and let VOP_INACTIVE handle it. 10719 */ 10720 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10721 CLOSE_NORM, 0, 0, 0); 10722 return (EIO); 10723 } 10724 osp = find_open_stream(oop, rp); 10725 open_owner_rele(oop); 10726 *ospp = osp; 10727 return (0); 10728 } 10729 10730 /* 10731 * Please be aware that when this function is called, the address space write 10732 * a_lock is held. Do not put over the wire calls in this function. 10733 */ 10734 /* ARGSUSED */ 10735 static int 10736 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10737 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10738 caller_context_t *ct) 10739 { 10740 rnode4_t *rp; 10741 int error = 0; 10742 mntinfo4_t *mi; 10743 10744 mi = VTOMI4(vp); 10745 rp = VTOR4(vp); 10746 10747 if (nfs_zone() != mi->mi_zone) 10748 return (EIO); 10749 if (vp->v_flag & VNOMAP) 10750 return (ENOSYS); 10751 10752 /* 10753 * Don't need to update the open stream first, since this 10754 * mmap can't add any additional share access that isn't 10755 * already contained in the open stream (for the case where we 10756 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10757 * take into account os_mmap_read[write] counts). 10758 */ 10759 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10760 10761 if (vp->v_type == VREG) { 10762 /* 10763 * We need to retrieve the open stream and update the counts. 10764 * If there is no open stream here, something is wrong. 10765 */ 10766 nfs4_open_stream_t *osp = NULL; 10767 nfs4_open_owner_t *oop = NULL; 10768 10769 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10770 if (oop != NULL) { 10771 /* returns with 'os_sync_lock' held */ 10772 osp = find_open_stream(oop, rp); 10773 open_owner_rele(oop); 10774 } 10775 if (osp == NULL) { 10776 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10777 "nfs4_addmap: we should have an osp" 10778 "but we don't, so fail with EIO")); 10779 error = EIO; 10780 goto out; 10781 } 10782 10783 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10784 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10785 10786 /* 10787 * Update the map count in the open stream. 10788 * This is necessary in the case where we 10789 * open/mmap/close/, then the server reboots, and we 10790 * attempt to reopen. If the mmap doesn't add share 10791 * access then we send an invalid reopen with 10792 * access = NONE. 10793 * 10794 * We need to specifically check each PROT_* so a mmap 10795 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10796 * read and write access. A simple comparison of prot 10797 * to ~PROT_WRITE to determine read access is insufficient 10798 * since prot can be |= with PROT_USER, etc. 10799 */ 10800 10801 /* 10802 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10803 */ 10804 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10805 osp->os_mmap_write += btopr(len); 10806 if (maxprot & PROT_READ) 10807 osp->os_mmap_read += btopr(len); 10808 if (maxprot & PROT_EXEC) 10809 osp->os_mmap_read += btopr(len); 10810 /* 10811 * Ensure that os_mmap_read gets incremented, even if 10812 * maxprot were to look like PROT_NONE. 10813 */ 10814 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10815 !(maxprot & PROT_EXEC)) 10816 osp->os_mmap_read += btopr(len); 10817 osp->os_mapcnt += btopr(len); 10818 mutex_exit(&osp->os_sync_lock); 10819 open_stream_rele(osp, rp); 10820 } 10821 10822 out: 10823 /* 10824 * If we got an error, then undo our 10825 * incrementing of 'r_mapcnt'. 10826 */ 10827 10828 if (error) { 10829 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10830 ASSERT(rp->r_mapcnt >= 0); 10831 } 10832 return (error); 10833 } 10834 10835 /* ARGSUSED */ 10836 static int 10837 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct) 10838 { 10839 10840 return (VTOR4(vp1) == VTOR4(vp2)); 10841 } 10842 10843 /* ARGSUSED */ 10844 static int 10845 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10846 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 10847 caller_context_t *ct) 10848 { 10849 int rc; 10850 u_offset_t start, end; 10851 rnode4_t *rp; 10852 int error = 0, intr = INTR4(vp); 10853 nfs4_error_t e; 10854 10855 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10856 return (EIO); 10857 10858 /* check for valid cmd parameter */ 10859 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 10860 return (EINVAL); 10861 10862 /* Verify l_type. */ 10863 switch (bfp->l_type) { 10864 case F_RDLCK: 10865 if (cmd != F_GETLK && !(flag & FREAD)) 10866 return (EBADF); 10867 break; 10868 case F_WRLCK: 10869 if (cmd != F_GETLK && !(flag & FWRITE)) 10870 return (EBADF); 10871 break; 10872 case F_UNLCK: 10873 intr = 0; 10874 break; 10875 10876 default: 10877 return (EINVAL); 10878 } 10879 10880 /* check the validity of the lock range */ 10881 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 10882 return (rc); 10883 if (rc = flk_check_lock_data(start, end, MAXEND)) 10884 return (rc); 10885 10886 /* 10887 * If the filesystem is mounted using local locking, pass the 10888 * request off to the local locking code. 10889 */ 10890 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10891 if (cmd == F_SETLK || cmd == F_SETLKW) { 10892 /* 10893 * For complete safety, we should be holding 10894 * r_lkserlock. However, we can't call 10895 * nfs4_safelock and then fs_frlock while 10896 * holding r_lkserlock, so just invoke 10897 * nfs4_safelock and expect that this will 10898 * catch enough of the cases. 10899 */ 10900 if (!nfs4_safelock(vp, bfp, cr)) 10901 return (EAGAIN); 10902 } 10903 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 10904 } 10905 10906 rp = VTOR4(vp); 10907 10908 /* 10909 * Check whether the given lock request can proceed, given the 10910 * current file mappings. 10911 */ 10912 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 10913 return (EINTR); 10914 if (cmd == F_SETLK || cmd == F_SETLKW) { 10915 if (!nfs4_safelock(vp, bfp, cr)) { 10916 rc = EAGAIN; 10917 goto done; 10918 } 10919 } 10920 10921 /* 10922 * Flush the cache after waiting for async I/O to finish. For new 10923 * locks, this is so that the process gets the latest bits from the 10924 * server. For unlocks, this is so that other clients see the 10925 * latest bits once the file has been unlocked. If currently dirty 10926 * pages can't be flushed, then don't allow a lock to be set. But 10927 * allow unlocks to succeed, to avoid having orphan locks on the 10928 * server. 10929 */ 10930 if (cmd != F_GETLK) { 10931 mutex_enter(&rp->r_statelock); 10932 while (rp->r_count > 0) { 10933 if (intr) { 10934 klwp_t *lwp = ttolwp(curthread); 10935 10936 if (lwp != NULL) 10937 lwp->lwp_nostop++; 10938 if (cv_wait_sig(&rp->r_cv, 10939 &rp->r_statelock) == 0) { 10940 if (lwp != NULL) 10941 lwp->lwp_nostop--; 10942 rc = EINTR; 10943 break; 10944 } 10945 if (lwp != NULL) 10946 lwp->lwp_nostop--; 10947 } else 10948 cv_wait(&rp->r_cv, &rp->r_statelock); 10949 } 10950 mutex_exit(&rp->r_statelock); 10951 if (rc != 0) 10952 goto done; 10953 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 10954 if (error) { 10955 if (error == ENOSPC || error == EDQUOT) { 10956 mutex_enter(&rp->r_statelock); 10957 if (!rp->r_error) 10958 rp->r_error = error; 10959 mutex_exit(&rp->r_statelock); 10960 } 10961 if (bfp->l_type != F_UNLCK) { 10962 rc = ENOLCK; 10963 goto done; 10964 } 10965 } 10966 } 10967 10968 /* 10969 * Call the lock manager to do the real work of contacting 10970 * the server and obtaining the lock. 10971 */ 10972 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, 10973 cr, &e, NULL, NULL); 10974 rc = e.error; 10975 10976 if (rc == 0) 10977 nfs4_lockcompletion(vp, cmd); 10978 10979 done: 10980 nfs_rw_exit(&rp->r_lkserlock); 10981 10982 return (rc); 10983 } 10984 10985 /* 10986 * Free storage space associated with the specified vnode. The portion 10987 * to be freed is specified by bfp->l_start and bfp->l_len (already 10988 * normalized to a "whence" of 0). 10989 * 10990 * This is an experimental facility whose continued existence is not 10991 * guaranteed. Currently, we only support the special case 10992 * of l_len == 0, meaning free to end of file. 10993 */ 10994 /* ARGSUSED */ 10995 static int 10996 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10997 offset_t offset, cred_t *cr, caller_context_t *ct) 10998 { 10999 int error; 11000 11001 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11002 return (EIO); 11003 ASSERT(vp->v_type == VREG); 11004 if (cmd != F_FREESP) 11005 return (EINVAL); 11006 11007 error = convoff(vp, bfp, 0, offset); 11008 if (!error) { 11009 ASSERT(bfp->l_start >= 0); 11010 if (bfp->l_len == 0) { 11011 struct vattr va; 11012 11013 va.va_mask = AT_SIZE; 11014 va.va_size = bfp->l_start; 11015 error = nfs4setattr(vp, &va, 0, cr, NULL); 11016 11017 if (error == 0 && bfp->l_start == 0) 11018 vnevent_truncate(vp, ct); 11019 } else 11020 error = EINVAL; 11021 } 11022 11023 return (error); 11024 } 11025 11026 /* ARGSUSED */ 11027 int 11028 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 11029 { 11030 rnode4_t *rp; 11031 rp = VTOR4(vp); 11032 11033 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) { 11034 vp = RTOV4(rp); 11035 } 11036 *vpp = vp; 11037 return (0); 11038 } 11039 11040 /* 11041 * Setup and add an address space callback to do the work of the delmap call. 11042 * The callback will (and must be) deleted in the actual callback function. 11043 * 11044 * This is done in order to take care of the problem that we have with holding 11045 * the address space's a_lock for a long period of time (e.g. if the NFS server 11046 * is down). Callbacks will be executed in the address space code while the 11047 * a_lock is not held. Holding the address space's a_lock causes things such 11048 * as ps and fork to hang because they are trying to acquire this lock as well. 11049 */ 11050 /* ARGSUSED */ 11051 static int 11052 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 11053 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 11054 caller_context_t *ct) 11055 { 11056 int caller_found; 11057 int error; 11058 rnode4_t *rp; 11059 nfs4_delmap_args_t *dmapp; 11060 nfs4_delmapcall_t *delmap_call; 11061 11062 if (vp->v_flag & VNOMAP) 11063 return (ENOSYS); 11064 11065 /* 11066 * A process may not change zones if it has NFS pages mmap'ed 11067 * in, so we can't legitimately get here from the wrong zone. 11068 */ 11069 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11070 11071 rp = VTOR4(vp); 11072 11073 /* 11074 * The way that the address space of this process deletes its mapping 11075 * of this file is via the following call chains: 11076 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11077 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11078 * 11079 * With the use of address space callbacks we are allowed to drop the 11080 * address space lock, a_lock, while executing the NFS operations that 11081 * need to go over the wire. Returning EAGAIN to the caller of this 11082 * function is what drives the execution of the callback that we add 11083 * below. The callback will be executed by the address space code 11084 * after dropping the a_lock. When the callback is finished, since 11085 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 11086 * is called again on the same segment to finish the rest of the work 11087 * that needs to happen during unmapping. 11088 * 11089 * This action of calling back into the segment driver causes 11090 * nfs4_delmap() to get called again, but since the callback was 11091 * already executed at this point, it already did the work and there 11092 * is nothing left for us to do. 11093 * 11094 * To Summarize: 11095 * - The first time nfs4_delmap is called by the current thread is when 11096 * we add the caller associated with this delmap to the delmap caller 11097 * list, add the callback, and return EAGAIN. 11098 * - The second time in this call chain when nfs4_delmap is called we 11099 * will find this caller in the delmap caller list and realize there 11100 * is no more work to do thus removing this caller from the list and 11101 * returning the error that was set in the callback execution. 11102 */ 11103 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 11104 if (caller_found) { 11105 /* 11106 * 'error' is from the actual delmap operations. To avoid 11107 * hangs, we need to handle the return of EAGAIN differently 11108 * since this is what drives the callback execution. 11109 * In this case, we don't want to return EAGAIN and do the 11110 * callback execution because there are none to execute. 11111 */ 11112 if (error == EAGAIN) 11113 return (0); 11114 else 11115 return (error); 11116 } 11117 11118 /* current caller was not in the list */ 11119 delmap_call = nfs4_init_delmapcall(); 11120 11121 mutex_enter(&rp->r_statelock); 11122 list_insert_tail(&rp->r_indelmap, delmap_call); 11123 mutex_exit(&rp->r_statelock); 11124 11125 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 11126 11127 dmapp->vp = vp; 11128 dmapp->off = off; 11129 dmapp->addr = addr; 11130 dmapp->len = len; 11131 dmapp->prot = prot; 11132 dmapp->maxprot = maxprot; 11133 dmapp->flags = flags; 11134 dmapp->cr = cr; 11135 dmapp->caller = delmap_call; 11136 11137 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 11138 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 11139 11140 return (error ? error : EAGAIN); 11141 } 11142 11143 static nfs4_delmapcall_t * 11144 nfs4_init_delmapcall() 11145 { 11146 nfs4_delmapcall_t *delmap_call; 11147 11148 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 11149 delmap_call->call_id = curthread; 11150 delmap_call->error = 0; 11151 11152 return (delmap_call); 11153 } 11154 11155 static void 11156 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 11157 { 11158 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 11159 } 11160 11161 /* 11162 * Searches for the current delmap caller (based on curthread) in the list of 11163 * callers. If it is found, we remove it and free the delmap caller. 11164 * Returns: 11165 * 0 if the caller wasn't found 11166 * 1 if the caller was found, removed and freed. *errp will be set 11167 * to what the result of the delmap was. 11168 */ 11169 static int 11170 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 11171 { 11172 nfs4_delmapcall_t *delmap_call; 11173 11174 /* 11175 * If the list doesn't exist yet, we create it and return 11176 * that the caller wasn't found. No list = no callers. 11177 */ 11178 mutex_enter(&rp->r_statelock); 11179 if (!(rp->r_flags & R4DELMAPLIST)) { 11180 /* The list does not exist */ 11181 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 11182 offsetof(nfs4_delmapcall_t, call_node)); 11183 rp->r_flags |= R4DELMAPLIST; 11184 mutex_exit(&rp->r_statelock); 11185 return (0); 11186 } else { 11187 /* The list exists so search it */ 11188 for (delmap_call = list_head(&rp->r_indelmap); 11189 delmap_call != NULL; 11190 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 11191 if (delmap_call->call_id == curthread) { 11192 /* current caller is in the list */ 11193 *errp = delmap_call->error; 11194 list_remove(&rp->r_indelmap, delmap_call); 11195 mutex_exit(&rp->r_statelock); 11196 nfs4_free_delmapcall(delmap_call); 11197 return (1); 11198 } 11199 } 11200 } 11201 mutex_exit(&rp->r_statelock); 11202 return (0); 11203 } 11204 11205 /* 11206 * Remove some pages from an mmap'd vnode. Just update the 11207 * count of pages. If doing close-to-open, then flush and 11208 * commit all of the pages associated with this file. 11209 * Otherwise, start an asynchronous page flush to write out 11210 * any dirty pages. This will also associate a credential 11211 * with the rnode which can be used to write the pages. 11212 */ 11213 /* ARGSUSED */ 11214 static void 11215 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 11216 { 11217 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11218 rnode4_t *rp; 11219 mntinfo4_t *mi; 11220 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 11221 11222 rp = VTOR4(dmapp->vp); 11223 mi = VTOMI4(dmapp->vp); 11224 11225 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 11226 ASSERT(rp->r_mapcnt >= 0); 11227 11228 /* 11229 * Initiate a page flush and potential commit if there are 11230 * pages, the file system was not mounted readonly, the segment 11231 * was mapped shared, and the pages themselves were writeable. 11232 */ 11233 if (nfs4_has_pages(dmapp->vp) && 11234 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 11235 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 11236 mutex_enter(&rp->r_statelock); 11237 rp->r_flags |= R4DIRTY; 11238 mutex_exit(&rp->r_statelock); 11239 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 11240 dmapp->len, dmapp->cr); 11241 if (!e.error) { 11242 mutex_enter(&rp->r_statelock); 11243 e.error = rp->r_error; 11244 rp->r_error = 0; 11245 mutex_exit(&rp->r_statelock); 11246 } 11247 } else 11248 e.error = 0; 11249 11250 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 11251 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 11252 B_INVAL, dmapp->cr, NULL); 11253 11254 if (e.error) { 11255 e.stat = puterrno4(e.error); 11256 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11257 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 11258 dmapp->caller->error = e.error; 11259 } 11260 11261 /* Check to see if we need to close the file */ 11262 11263 if (dmapp->vp->v_type == VREG) { 11264 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 11265 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 11266 11267 if (e.error != 0 || e.stat != NFS4_OK) { 11268 /* 11269 * Since it is possible that e.error == 0 and 11270 * e.stat != NFS4_OK (and vice versa), 11271 * we do the proper checking in order to get both 11272 * e.error and e.stat reporting the correct info. 11273 */ 11274 if (e.stat == NFS4_OK) 11275 e.stat = puterrno4(e.error); 11276 if (e.error == 0) 11277 e.error = geterrno4(e.stat); 11278 11279 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11280 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 11281 dmapp->caller->error = e.error; 11282 } 11283 } 11284 11285 (void) as_delete_callback(as, arg); 11286 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 11287 } 11288 11289 11290 static uint_t 11291 fattr4_maxfilesize_to_bits(uint64_t ll) 11292 { 11293 uint_t l = 1; 11294 11295 if (ll == 0) { 11296 return (0); 11297 } 11298 11299 if (ll & 0xffffffff00000000) { 11300 l += 32; ll >>= 32; 11301 } 11302 if (ll & 0xffff0000) { 11303 l += 16; ll >>= 16; 11304 } 11305 if (ll & 0xff00) { 11306 l += 8; ll >>= 8; 11307 } 11308 if (ll & 0xf0) { 11309 l += 4; ll >>= 4; 11310 } 11311 if (ll & 0xc) { 11312 l += 2; ll >>= 2; 11313 } 11314 if (ll & 0x2) { 11315 l += 1; 11316 } 11317 return (l); 11318 } 11319 11320 static int 11321 nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr) 11322 { 11323 vnode_t *avp = NULL; 11324 int error; 11325 11326 if ((error = nfs4lookup_xattr(vp, "", &avp, 11327 LOOKUP_XATTR, cr)) == 0) 11328 error = do_xattr_exists_check(avp, valp, cr); 11329 if (avp) 11330 VN_RELE(avp); 11331 11332 return (error); 11333 } 11334 11335 /* ARGSUSED */ 11336 int 11337 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 11338 caller_context_t *ct) 11339 { 11340 int error; 11341 hrtime_t t; 11342 rnode4_t *rp; 11343 nfs4_ga_res_t gar; 11344 nfs4_ga_ext_res_t ger; 11345 11346 gar.n4g_ext_res = &ger; 11347 11348 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11349 return (EIO); 11350 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11351 *valp = MAXPATHLEN; 11352 return (0); 11353 } 11354 if (cmd == _PC_ACL_ENABLED) { 11355 *valp = _ACL_ACE_ENABLED; 11356 return (0); 11357 } 11358 11359 rp = VTOR4(vp); 11360 if (cmd == _PC_XATTR_EXISTS) { 11361 /* 11362 * The existence of the xattr directory is not sufficient 11363 * for determining whether generic user attributes exists. 11364 * The attribute directory could only be a transient directory 11365 * used for Solaris sysattr support. Do a small readdir 11366 * to verify if the only entries are sysattrs or not. 11367 * 11368 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11369 * is NULL. Once the xadir vp exists, we can create xattrs, 11370 * and we don't have any way to update the "base" object's 11371 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11372 * could help out. 11373 */ 11374 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11375 rp->r_xattr_dir == NULL) { 11376 return (nfs4_have_xattrs(vp, valp, cr)); 11377 } 11378 } else { /* OLD CODE */ 11379 if (ATTRCACHE4_VALID(vp)) { 11380 mutex_enter(&rp->r_statelock); 11381 if (rp->r_pathconf.pc4_cache_valid) { 11382 error = 0; 11383 switch (cmd) { 11384 case _PC_FILESIZEBITS: 11385 *valp = 11386 rp->r_pathconf.pc4_filesizebits; 11387 break; 11388 case _PC_LINK_MAX: 11389 *valp = 11390 rp->r_pathconf.pc4_link_max; 11391 break; 11392 case _PC_NAME_MAX: 11393 *valp = 11394 rp->r_pathconf.pc4_name_max; 11395 break; 11396 case _PC_CHOWN_RESTRICTED: 11397 *valp = 11398 rp->r_pathconf.pc4_chown_restricted; 11399 break; 11400 case _PC_NO_TRUNC: 11401 *valp = 11402 rp->r_pathconf.pc4_no_trunc; 11403 break; 11404 default: 11405 error = EINVAL; 11406 break; 11407 } 11408 mutex_exit(&rp->r_statelock); 11409 #ifdef DEBUG 11410 nfs4_pathconf_cache_hits++; 11411 #endif 11412 return (error); 11413 } 11414 mutex_exit(&rp->r_statelock); 11415 } 11416 } 11417 #ifdef DEBUG 11418 nfs4_pathconf_cache_misses++; 11419 #endif 11420 11421 t = gethrtime(); 11422 11423 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11424 11425 if (error) { 11426 mutex_enter(&rp->r_statelock); 11427 rp->r_pathconf.pc4_cache_valid = FALSE; 11428 rp->r_pathconf.pc4_xattr_valid = FALSE; 11429 mutex_exit(&rp->r_statelock); 11430 return (error); 11431 } 11432 11433 /* interpret the max filesize */ 11434 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11435 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11436 11437 /* Store the attributes we just received */ 11438 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11439 11440 switch (cmd) { 11441 case _PC_FILESIZEBITS: 11442 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11443 break; 11444 case _PC_LINK_MAX: 11445 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11446 break; 11447 case _PC_NAME_MAX: 11448 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11449 break; 11450 case _PC_CHOWN_RESTRICTED: 11451 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11452 break; 11453 case _PC_NO_TRUNC: 11454 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11455 break; 11456 case _PC_XATTR_EXISTS: 11457 if (gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists) { 11458 if (error = nfs4_have_xattrs(vp, valp, cr)) 11459 return (error); 11460 } 11461 break; 11462 default: 11463 return (EINVAL); 11464 } 11465 11466 return (0); 11467 } 11468 11469 /* 11470 * Called by async thread to do synchronous pageio. Do the i/o, wait 11471 * for it to complete, and cleanup the page list when done. 11472 */ 11473 static int 11474 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11475 int flags, cred_t *cr) 11476 { 11477 int error; 11478 11479 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11480 11481 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11482 if (flags & B_READ) 11483 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11484 else 11485 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11486 return (error); 11487 } 11488 11489 /* ARGSUSED */ 11490 static int 11491 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11492 int flags, cred_t *cr, caller_context_t *ct) 11493 { 11494 int error; 11495 rnode4_t *rp; 11496 11497 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11498 return (EIO); 11499 11500 if (pp == NULL) 11501 return (EINVAL); 11502 11503 rp = VTOR4(vp); 11504 mutex_enter(&rp->r_statelock); 11505 rp->r_count++; 11506 mutex_exit(&rp->r_statelock); 11507 11508 if (flags & B_ASYNC) { 11509 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11510 nfs4_sync_pageio); 11511 } else 11512 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11513 mutex_enter(&rp->r_statelock); 11514 rp->r_count--; 11515 cv_broadcast(&rp->r_cv); 11516 mutex_exit(&rp->r_statelock); 11517 return (error); 11518 } 11519 11520 /* ARGSUSED */ 11521 static void 11522 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 11523 caller_context_t *ct) 11524 { 11525 int error; 11526 rnode4_t *rp; 11527 page_t *plist; 11528 page_t *pptr; 11529 offset3 offset; 11530 count3 len; 11531 k_sigset_t smask; 11532 11533 /* 11534 * We should get called with fl equal to either B_FREE or 11535 * B_INVAL. Any other value is illegal. 11536 * 11537 * The page that we are either supposed to free or destroy 11538 * should be exclusive locked and its io lock should not 11539 * be held. 11540 */ 11541 ASSERT(fl == B_FREE || fl == B_INVAL); 11542 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11543 11544 rp = VTOR4(vp); 11545 11546 /* 11547 * If the page doesn't need to be committed or we shouldn't 11548 * even bother attempting to commit it, then just make sure 11549 * that the p_fsdata byte is clear and then either free or 11550 * destroy the page as appropriate. 11551 */ 11552 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11553 pp->p_fsdata = C_NOCOMMIT; 11554 if (fl == B_FREE) 11555 page_free(pp, dn); 11556 else 11557 page_destroy(pp, dn); 11558 return; 11559 } 11560 11561 /* 11562 * If there is a page invalidation operation going on, then 11563 * if this is one of the pages being destroyed, then just 11564 * clear the p_fsdata byte and then either free or destroy 11565 * the page as appropriate. 11566 */ 11567 mutex_enter(&rp->r_statelock); 11568 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11569 mutex_exit(&rp->r_statelock); 11570 pp->p_fsdata = C_NOCOMMIT; 11571 if (fl == B_FREE) 11572 page_free(pp, dn); 11573 else 11574 page_destroy(pp, dn); 11575 return; 11576 } 11577 11578 /* 11579 * If we are freeing this page and someone else is already 11580 * waiting to do a commit, then just unlock the page and 11581 * return. That other thread will take care of commiting 11582 * this page. The page can be freed sometime after the 11583 * commit has finished. Otherwise, if the page is marked 11584 * as delay commit, then we may be getting called from 11585 * pvn_write_done, one page at a time. This could result 11586 * in one commit per page, so we end up doing lots of small 11587 * commits instead of fewer larger commits. This is bad, 11588 * we want do as few commits as possible. 11589 */ 11590 if (fl == B_FREE) { 11591 if (rp->r_flags & R4COMMITWAIT) { 11592 page_unlock(pp); 11593 mutex_exit(&rp->r_statelock); 11594 return; 11595 } 11596 if (pp->p_fsdata == C_DELAYCOMMIT) { 11597 pp->p_fsdata = C_COMMIT; 11598 page_unlock(pp); 11599 mutex_exit(&rp->r_statelock); 11600 return; 11601 } 11602 } 11603 11604 /* 11605 * Check to see if there is a signal which would prevent an 11606 * attempt to commit the pages from being successful. If so, 11607 * then don't bother with all of the work to gather pages and 11608 * generate the unsuccessful RPC. Just return from here and 11609 * let the page be committed at some later time. 11610 */ 11611 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11612 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11613 sigunintr(&smask); 11614 page_unlock(pp); 11615 mutex_exit(&rp->r_statelock); 11616 return; 11617 } 11618 sigunintr(&smask); 11619 11620 /* 11621 * We are starting to need to commit pages, so let's try 11622 * to commit as many as possible at once to reduce the 11623 * overhead. 11624 * 11625 * Set the `commit inprogress' state bit. We must 11626 * first wait until any current one finishes. Then 11627 * we initialize the c_pages list with this page. 11628 */ 11629 while (rp->r_flags & R4COMMIT) { 11630 rp->r_flags |= R4COMMITWAIT; 11631 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11632 rp->r_flags &= ~R4COMMITWAIT; 11633 } 11634 rp->r_flags |= R4COMMIT; 11635 mutex_exit(&rp->r_statelock); 11636 ASSERT(rp->r_commit.c_pages == NULL); 11637 rp->r_commit.c_pages = pp; 11638 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11639 rp->r_commit.c_commlen = PAGESIZE; 11640 11641 /* 11642 * Gather together all other pages which can be committed. 11643 * They will all be chained off r_commit.c_pages. 11644 */ 11645 nfs4_get_commit(vp); 11646 11647 /* 11648 * Clear the `commit inprogress' status and disconnect 11649 * the list of pages to be committed from the rnode. 11650 * At this same time, we also save the starting offset 11651 * and length of data to be committed on the server. 11652 */ 11653 plist = rp->r_commit.c_pages; 11654 rp->r_commit.c_pages = NULL; 11655 offset = rp->r_commit.c_commbase; 11656 len = rp->r_commit.c_commlen; 11657 mutex_enter(&rp->r_statelock); 11658 rp->r_flags &= ~R4COMMIT; 11659 cv_broadcast(&rp->r_commit.c_cv); 11660 mutex_exit(&rp->r_statelock); 11661 11662 if (curproc == proc_pageout || curproc == proc_fsflush || 11663 nfs_zone() != VTOMI4(vp)->mi_zone) { 11664 nfs4_async_commit(vp, plist, offset, len, 11665 cr, do_nfs4_async_commit); 11666 return; 11667 } 11668 11669 /* 11670 * Actually generate the COMMIT op over the wire operation. 11671 */ 11672 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11673 11674 /* 11675 * If we got an error during the commit, just unlock all 11676 * of the pages. The pages will get retransmitted to the 11677 * server during a putpage operation. 11678 */ 11679 if (error) { 11680 while (plist != NULL) { 11681 pptr = plist; 11682 page_sub(&plist, pptr); 11683 page_unlock(pptr); 11684 } 11685 return; 11686 } 11687 11688 /* 11689 * We've tried as hard as we can to commit the data to stable 11690 * storage on the server. We just unlock the rest of the pages 11691 * and clear the commit required state. They will be put 11692 * onto the tail of the cachelist if they are nolonger 11693 * mapped. 11694 */ 11695 while (plist != pp) { 11696 pptr = plist; 11697 page_sub(&plist, pptr); 11698 pptr->p_fsdata = C_NOCOMMIT; 11699 page_unlock(pptr); 11700 } 11701 11702 /* 11703 * It is possible that nfs4_commit didn't return error but 11704 * some other thread has modified the page we are going 11705 * to free/destroy. 11706 * In this case we need to rewrite the page. Do an explicit check 11707 * before attempting to free/destroy the page. If modified, needs to 11708 * be rewritten so unlock the page and return. 11709 */ 11710 if (hat_ismod(pp)) { 11711 pp->p_fsdata = C_NOCOMMIT; 11712 page_unlock(pp); 11713 return; 11714 } 11715 11716 /* 11717 * Now, as appropriate, either free or destroy the page 11718 * that we were called with. 11719 */ 11720 pp->p_fsdata = C_NOCOMMIT; 11721 if (fl == B_FREE) 11722 page_free(pp, dn); 11723 else 11724 page_destroy(pp, dn); 11725 } 11726 11727 /* 11728 * Commit requires that the current fh be the file written to. 11729 * The compound op structure is: 11730 * PUTFH(file), COMMIT 11731 */ 11732 static int 11733 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11734 { 11735 COMPOUND4args_clnt args; 11736 COMPOUND4res_clnt res; 11737 COMMIT4res *cm_res; 11738 nfs_argop4 argop[2]; 11739 nfs_resop4 *resop; 11740 int doqueue; 11741 mntinfo4_t *mi; 11742 rnode4_t *rp; 11743 cred_t *cred_otw = NULL; 11744 bool_t needrecov = FALSE; 11745 nfs4_recov_state_t recov_state; 11746 nfs4_open_stream_t *osp = NULL; 11747 bool_t first_time = TRUE; /* first time getting OTW cred */ 11748 bool_t last_time = FALSE; /* last time getting OTW cred */ 11749 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11750 11751 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11752 11753 rp = VTOR4(vp); 11754 11755 mi = VTOMI4(vp); 11756 recov_state.rs_flags = 0; 11757 recov_state.rs_num_retry_despite_err = 0; 11758 get_commit_cred: 11759 /* 11760 * Releases the osp, if a valid open stream is provided. 11761 * Puts a hold on the cred_otw and the new osp (if found). 11762 */ 11763 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11764 &first_time, &last_time); 11765 args.ctag = TAG_COMMIT; 11766 recov_retry: 11767 /* 11768 * Commit ops: putfh file; commit 11769 */ 11770 args.array_len = 2; 11771 args.array = argop; 11772 11773 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11774 &recov_state, NULL); 11775 if (e.error) { 11776 crfree(cred_otw); 11777 if (osp != NULL) 11778 open_stream_rele(osp, rp); 11779 return (e.error); 11780 } 11781 11782 /* putfh directory */ 11783 argop[0].argop = OP_CPUTFH; 11784 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11785 11786 /* commit */ 11787 argop[1].argop = OP_COMMIT; 11788 argop[1].nfs_argop4_u.opcommit.offset = offset; 11789 argop[1].nfs_argop4_u.opcommit.count = count; 11790 11791 doqueue = 1; 11792 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 11793 11794 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 11795 if (!needrecov && e.error) { 11796 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 11797 needrecov); 11798 crfree(cred_otw); 11799 if (e.error == EACCES && last_time == FALSE) 11800 goto get_commit_cred; 11801 if (osp != NULL) 11802 open_stream_rele(osp, rp); 11803 return (e.error); 11804 } 11805 11806 if (needrecov) { 11807 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 11808 NULL, OP_COMMIT, NULL, NULL, NULL) == FALSE) { 11809 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11810 &recov_state, needrecov); 11811 if (!e.error) 11812 (void) xdr_free(xdr_COMPOUND4res_clnt, 11813 (caddr_t)&res); 11814 goto recov_retry; 11815 } 11816 if (e.error) { 11817 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11818 &recov_state, needrecov); 11819 crfree(cred_otw); 11820 if (osp != NULL) 11821 open_stream_rele(osp, rp); 11822 return (e.error); 11823 } 11824 /* fall through for res.status case */ 11825 } 11826 11827 if (res.status) { 11828 e.error = geterrno4(res.status); 11829 if (e.error == EACCES && last_time == FALSE) { 11830 crfree(cred_otw); 11831 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11832 &recov_state, needrecov); 11833 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11834 goto get_commit_cred; 11835 } 11836 /* 11837 * Can't do a nfs4_purge_stale_fh here because this 11838 * can cause a deadlock. nfs4_commit can 11839 * be called from nfs4_dispose which can be called 11840 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 11841 * can call back to pvn_vplist_dirty. 11842 */ 11843 if (e.error == ESTALE) { 11844 mutex_enter(&rp->r_statelock); 11845 rp->r_flags |= R4STALE; 11846 if (!rp->r_error) 11847 rp->r_error = e.error; 11848 mutex_exit(&rp->r_statelock); 11849 PURGE_ATTRCACHE4(vp); 11850 } else { 11851 mutex_enter(&rp->r_statelock); 11852 if (!rp->r_error) 11853 rp->r_error = e.error; 11854 mutex_exit(&rp->r_statelock); 11855 } 11856 } else { 11857 ASSERT(rp->r_flags & R4HAVEVERF); 11858 resop = &res.array[1]; /* commit res */ 11859 cm_res = &resop->nfs_resop4_u.opcommit; 11860 mutex_enter(&rp->r_statelock); 11861 if (cm_res->writeverf == rp->r_writeverf) { 11862 mutex_exit(&rp->r_statelock); 11863 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11864 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11865 &recov_state, needrecov); 11866 crfree(cred_otw); 11867 if (osp != NULL) 11868 open_stream_rele(osp, rp); 11869 return (0); 11870 } 11871 nfs4_set_mod(vp); 11872 rp->r_writeverf = cm_res->writeverf; 11873 mutex_exit(&rp->r_statelock); 11874 e.error = NFS_VERF_MISMATCH; 11875 } 11876 11877 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11878 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 11879 crfree(cred_otw); 11880 if (osp != NULL) 11881 open_stream_rele(osp, rp); 11882 11883 return (e.error); 11884 } 11885 11886 static void 11887 nfs4_set_mod(vnode_t *vp) 11888 { 11889 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11890 11891 /* make sure we're looking at the master vnode, not a shadow */ 11892 pvn_vplist_setdirty(RTOV4(VTOR4(vp)), nfs_setmod_check); 11893 } 11894 11895 /* 11896 * This function is used to gather a page list of the pages which 11897 * can be committed on the server. 11898 * 11899 * The calling thread must have set R4COMMIT. This bit is used to 11900 * serialize access to the commit structure in the rnode. As long 11901 * as the thread has set R4COMMIT, then it can manipulate the commit 11902 * structure without requiring any other locks. 11903 * 11904 * When this function is called from nfs4_dispose() the page passed 11905 * into nfs4_dispose() will be SE_EXCL locked, and so this function 11906 * will skip it. This is not a problem since we initially add the 11907 * page to the r_commit page list. 11908 * 11909 */ 11910 static void 11911 nfs4_get_commit(vnode_t *vp) 11912 { 11913 rnode4_t *rp; 11914 page_t *pp; 11915 kmutex_t *vphm; 11916 11917 rp = VTOR4(vp); 11918 11919 ASSERT(rp->r_flags & R4COMMIT); 11920 11921 /* make sure we're looking at the master vnode, not a shadow */ 11922 11923 if (IS_SHADOW(vp, rp)) 11924 vp = RTOV4(rp); 11925 11926 vphm = page_vnode_mutex(vp); 11927 mutex_enter(vphm); 11928 11929 /* 11930 * If there are no pages associated with this vnode, then 11931 * just return. 11932 */ 11933 if ((pp = vp->v_pages) == NULL) { 11934 mutex_exit(vphm); 11935 return; 11936 } 11937 11938 /* 11939 * Step through all of the pages associated with this vnode 11940 * looking for pages which need to be committed. 11941 */ 11942 do { 11943 /* Skip marker pages. */ 11944 if (pp->p_hash == PVN_VPLIST_HASH_TAG) 11945 continue; 11946 11947 /* 11948 * First short-cut everything (without the page_lock) 11949 * and see if this page does not need to be committed 11950 * or is modified if so then we'll just skip it. 11951 */ 11952 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 11953 continue; 11954 11955 /* 11956 * Attempt to lock the page. If we can't, then 11957 * someone else is messing with it or we have been 11958 * called from nfs4_dispose and this is the page that 11959 * nfs4_dispose was called with.. anyway just skip it. 11960 */ 11961 if (!page_trylock(pp, SE_EXCL)) 11962 continue; 11963 11964 /* 11965 * Lets check again now that we have the page lock. 11966 */ 11967 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11968 page_unlock(pp); 11969 continue; 11970 } 11971 11972 /* this had better not be a free page */ 11973 ASSERT(PP_ISFREE(pp) == 0); 11974 11975 /* 11976 * The page needs to be committed and we locked it. 11977 * Update the base and length parameters and add it 11978 * to r_pages. 11979 */ 11980 if (rp->r_commit.c_pages == NULL) { 11981 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11982 rp->r_commit.c_commlen = PAGESIZE; 11983 } else if (pp->p_offset < rp->r_commit.c_commbase) { 11984 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 11985 (offset3)pp->p_offset + rp->r_commit.c_commlen; 11986 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11987 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 11988 <= pp->p_offset) { 11989 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11990 rp->r_commit.c_commbase + PAGESIZE; 11991 } 11992 page_add(&rp->r_commit.c_pages, pp); 11993 } while ((pp = pp->p_vpnext) != vp->v_pages); 11994 11995 mutex_exit(vphm); 11996 } 11997 11998 /* 11999 * This routine is used to gather together a page list of the pages 12000 * which are to be committed on the server. This routine must not 12001 * be called if the calling thread holds any locked pages. 12002 * 12003 * The calling thread must have set R4COMMIT. This bit is used to 12004 * serialize access to the commit structure in the rnode. As long 12005 * as the thread has set R4COMMIT, then it can manipulate the commit 12006 * structure without requiring any other locks. 12007 */ 12008 static void 12009 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 12010 { 12011 12012 rnode4_t *rp; 12013 page_t *pp; 12014 u_offset_t end; 12015 u_offset_t off; 12016 ASSERT(len != 0); 12017 rp = VTOR4(vp); 12018 ASSERT(rp->r_flags & R4COMMIT); 12019 12020 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12021 12022 /* make sure we're looking at the master vnode, not a shadow */ 12023 12024 if (IS_SHADOW(vp, rp)) 12025 vp = RTOV4(rp); 12026 12027 /* 12028 * If there are no pages associated with this vnode, then 12029 * just return. 12030 */ 12031 if ((pp = vp->v_pages) == NULL) 12032 return; 12033 /* 12034 * Calculate the ending offset. 12035 */ 12036 end = soff + len; 12037 for (off = soff; off < end; off += PAGESIZE) { 12038 /* 12039 * Lookup each page by vp, offset. 12040 */ 12041 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 12042 continue; 12043 /* 12044 * If this page does not need to be committed or is 12045 * modified, then just skip it. 12046 */ 12047 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 12048 page_unlock(pp); 12049 continue; 12050 } 12051 12052 ASSERT(PP_ISFREE(pp) == 0); 12053 /* 12054 * The page needs to be committed and we locked it. 12055 * Update the base and length parameters and add it 12056 * to r_pages. 12057 */ 12058 if (rp->r_commit.c_pages == NULL) { 12059 rp->r_commit.c_commbase = (offset3)pp->p_offset; 12060 rp->r_commit.c_commlen = PAGESIZE; 12061 } else { 12062 rp->r_commit.c_commlen = (offset3)pp->p_offset - 12063 rp->r_commit.c_commbase + PAGESIZE; 12064 } 12065 page_add(&rp->r_commit.c_pages, pp); 12066 } 12067 } 12068 12069 /* 12070 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 12071 * Flushes and commits data to the server. 12072 */ 12073 static int 12074 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 12075 { 12076 int error; 12077 verifier4 write_verf; 12078 rnode4_t *rp = VTOR4(vp); 12079 12080 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12081 12082 /* 12083 * Flush the data portion of the file and then commit any 12084 * portions which need to be committed. This may need to 12085 * be done twice if the server has changed state since 12086 * data was last written. The data will need to be 12087 * rewritten to the server and then a new commit done. 12088 * 12089 * In fact, this may need to be done several times if the 12090 * server is having problems and crashing while we are 12091 * attempting to do this. 12092 */ 12093 12094 top: 12095 /* 12096 * Do a flush based on the poff and plen arguments. This 12097 * will synchronously write out any modified pages in the 12098 * range specified by (poff, plen). This starts all of the 12099 * i/o operations which will be waited for in the next 12100 * call to nfs4_putpage 12101 */ 12102 12103 mutex_enter(&rp->r_statelock); 12104 write_verf = rp->r_writeverf; 12105 mutex_exit(&rp->r_statelock); 12106 12107 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 12108 if (error == EAGAIN) 12109 error = 0; 12110 12111 /* 12112 * Do a flush based on the poff and plen arguments. This 12113 * will synchronously write out any modified pages in the 12114 * range specified by (poff, plen) and wait until all of 12115 * the asynchronous i/o's in that range are done as well. 12116 */ 12117 if (!error) 12118 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL); 12119 12120 if (error) 12121 return (error); 12122 12123 mutex_enter(&rp->r_statelock); 12124 if (rp->r_writeverf != write_verf) { 12125 mutex_exit(&rp->r_statelock); 12126 goto top; 12127 } 12128 mutex_exit(&rp->r_statelock); 12129 12130 /* 12131 * Now commit any pages which might need to be committed. 12132 * If the error, NFS_VERF_MISMATCH, is returned, then 12133 * start over with the flush operation. 12134 */ 12135 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 12136 12137 if (error == NFS_VERF_MISMATCH) 12138 goto top; 12139 12140 return (error); 12141 } 12142 12143 /* 12144 * nfs4_commit_vp() will wait for other pending commits and 12145 * will either commit the whole file or a range, plen dictates 12146 * if we commit whole file. a value of zero indicates the whole 12147 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 12148 */ 12149 static int 12150 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 12151 cred_t *cr, int wait_on_writes) 12152 { 12153 rnode4_t *rp; 12154 page_t *plist; 12155 offset3 offset; 12156 count3 len; 12157 12158 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12159 12160 rp = VTOR4(vp); 12161 12162 /* 12163 * before we gather commitable pages make 12164 * sure there are no outstanding async writes 12165 */ 12166 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 12167 mutex_enter(&rp->r_statelock); 12168 while (rp->r_count > 0) { 12169 cv_wait(&rp->r_cv, &rp->r_statelock); 12170 } 12171 mutex_exit(&rp->r_statelock); 12172 } 12173 12174 /* 12175 * Set the `commit inprogress' state bit. We must 12176 * first wait until any current one finishes. 12177 */ 12178 mutex_enter(&rp->r_statelock); 12179 while (rp->r_flags & R4COMMIT) { 12180 rp->r_flags |= R4COMMITWAIT; 12181 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 12182 rp->r_flags &= ~R4COMMITWAIT; 12183 } 12184 rp->r_flags |= R4COMMIT; 12185 mutex_exit(&rp->r_statelock); 12186 12187 /* 12188 * Gather all of the pages which need to be 12189 * committed. 12190 */ 12191 if (plen == 0) 12192 nfs4_get_commit(vp); 12193 else 12194 nfs4_get_commit_range(vp, poff, plen); 12195 12196 /* 12197 * Clear the `commit inprogress' bit and disconnect the 12198 * page list which was gathered by nfs4_get_commit. 12199 */ 12200 plist = rp->r_commit.c_pages; 12201 rp->r_commit.c_pages = NULL; 12202 offset = rp->r_commit.c_commbase; 12203 len = rp->r_commit.c_commlen; 12204 mutex_enter(&rp->r_statelock); 12205 rp->r_flags &= ~R4COMMIT; 12206 cv_broadcast(&rp->r_commit.c_cv); 12207 mutex_exit(&rp->r_statelock); 12208 12209 /* 12210 * If any pages need to be committed, commit them and 12211 * then unlock them so that they can be freed some 12212 * time later. 12213 */ 12214 if (plist == NULL) 12215 return (0); 12216 12217 /* 12218 * No error occurred during the flush portion 12219 * of this operation, so now attempt to commit 12220 * the data to stable storage on the server. 12221 * 12222 * This will unlock all of the pages on the list. 12223 */ 12224 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 12225 } 12226 12227 static int 12228 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12229 cred_t *cr) 12230 { 12231 int error; 12232 page_t *pp; 12233 12234 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12235 12236 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 12237 12238 /* 12239 * If we got an error, then just unlock all of the pages 12240 * on the list. 12241 */ 12242 if (error) { 12243 while (plist != NULL) { 12244 pp = plist; 12245 page_sub(&plist, pp); 12246 page_unlock(pp); 12247 } 12248 return (error); 12249 } 12250 /* 12251 * We've tried as hard as we can to commit the data to stable 12252 * storage on the server. We just unlock the pages and clear 12253 * the commit required state. They will get freed later. 12254 */ 12255 while (plist != NULL) { 12256 pp = plist; 12257 page_sub(&plist, pp); 12258 pp->p_fsdata = C_NOCOMMIT; 12259 page_unlock(pp); 12260 } 12261 12262 return (error); 12263 } 12264 12265 static void 12266 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12267 cred_t *cr) 12268 { 12269 12270 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 12271 } 12272 12273 /*ARGSUSED*/ 12274 static int 12275 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12276 caller_context_t *ct) 12277 { 12278 int error = 0; 12279 mntinfo4_t *mi; 12280 vattr_t va; 12281 vsecattr_t nfsace4_vsap; 12282 12283 mi = VTOMI4(vp); 12284 if (nfs_zone() != mi->mi_zone) 12285 return (EIO); 12286 if (mi->mi_flags & MI4_ACL) { 12287 /* if we have a delegation, return it */ 12288 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 12289 (void) nfs4delegreturn(VTOR4(vp), 12290 NFS4_DR_REOPEN|NFS4_DR_PUSH); 12291 12292 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 12293 NFS4_ACL_SET); 12294 if (error) /* EINVAL */ 12295 return (error); 12296 12297 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 12298 /* 12299 * These are aclent_t type entries. 12300 */ 12301 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 12302 vp->v_type == VDIR, FALSE); 12303 if (error) 12304 return (error); 12305 } else { 12306 /* 12307 * These are ace_t type entries. 12308 */ 12309 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 12310 FALSE); 12311 if (error) 12312 return (error); 12313 } 12314 bzero(&va, sizeof (va)); 12315 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 12316 vs_ace4_destroy(&nfsace4_vsap); 12317 return (error); 12318 } 12319 return (ENOSYS); 12320 } 12321 12322 /* ARGSUSED */ 12323 int 12324 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12325 caller_context_t *ct) 12326 { 12327 int error; 12328 mntinfo4_t *mi; 12329 nfs4_ga_res_t gar; 12330 rnode4_t *rp = VTOR4(vp); 12331 12332 mi = VTOMI4(vp); 12333 if (nfs_zone() != mi->mi_zone) 12334 return (EIO); 12335 12336 bzero(&gar, sizeof (gar)); 12337 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12338 12339 /* 12340 * vsecattr->vsa_mask holds the original acl request mask. 12341 * This is needed when determining what to return. 12342 * (See: nfs4_create_getsecattr_return()) 12343 */ 12344 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12345 if (error) /* EINVAL */ 12346 return (error); 12347 12348 /* 12349 * If this is a referral stub, don't try to go OTW for an ACL 12350 */ 12351 if (RP_ISSTUB_REFERRAL(VTOR4(vp))) 12352 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 12353 12354 if (mi->mi_flags & MI4_ACL) { 12355 /* 12356 * Check if the data is cached and the cache is valid. If it 12357 * is we don't go over the wire. 12358 */ 12359 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12360 mutex_enter(&rp->r_statelock); 12361 if (rp->r_secattr != NULL) { 12362 error = nfs4_create_getsecattr_return( 12363 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12364 rp->r_attr.va_gid, 12365 vp->v_type == VDIR); 12366 if (!error) { /* error == 0 - Success! */ 12367 mutex_exit(&rp->r_statelock); 12368 return (error); 12369 } 12370 } 12371 mutex_exit(&rp->r_statelock); 12372 } 12373 12374 /* 12375 * The getattr otw call will always get both the acl, in 12376 * the form of a list of nfsace4's, and the number of acl 12377 * entries; independent of the value of gar.n4g_vsa.vsa_mask. 12378 */ 12379 gar.n4g_va.va_mask = AT_ALL; 12380 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12381 if (error) { 12382 vs_ace4_destroy(&gar.n4g_vsa); 12383 if (error == ENOTSUP || error == EOPNOTSUPP) 12384 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12385 return (error); 12386 } 12387 12388 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12389 /* 12390 * No error was returned, but according to the response 12391 * bitmap, neither was an acl. 12392 */ 12393 vs_ace4_destroy(&gar.n4g_vsa); 12394 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12395 return (error); 12396 } 12397 12398 /* 12399 * Update the cache with the ACL. 12400 */ 12401 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12402 12403 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12404 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12405 vp->v_type == VDIR); 12406 vs_ace4_destroy(&gar.n4g_vsa); 12407 if ((error) && (vsecattr->vsa_mask & 12408 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12409 (error != EACCES)) { 12410 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12411 } 12412 return (error); 12413 } 12414 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12415 return (error); 12416 } 12417 12418 /* 12419 * The function returns: 12420 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12421 * - EINVAL if the passed in "acl_mask" is an invalid request. 12422 * 12423 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12424 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12425 * 12426 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12427 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12428 * - We have a count field set without the corresponding acl field set. (e.g. - 12429 * VSA_ACECNT is set, but VSA_ACE is not) 12430 */ 12431 static int 12432 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12433 { 12434 /* Shortcut the masks that are always valid. */ 12435 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12436 return (0); 12437 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12438 return (0); 12439 12440 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12441 /* 12442 * We can't have any VSA_ACL type stuff in the mask now. 12443 */ 12444 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12445 VSA_DFACLCNT)) 12446 return (EINVAL); 12447 12448 if (op == NFS4_ACL_SET) { 12449 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12450 return (EINVAL); 12451 } 12452 } 12453 12454 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12455 /* 12456 * We can't have any VSA_ACE type stuff in the mask now. 12457 */ 12458 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12459 return (EINVAL); 12460 12461 if (op == NFS4_ACL_SET) { 12462 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12463 return (EINVAL); 12464 12465 if ((acl_mask & VSA_DFACLCNT) && 12466 !(acl_mask & VSA_DFACL)) 12467 return (EINVAL); 12468 } 12469 } 12470 return (0); 12471 } 12472 12473 /* 12474 * The theory behind creating the correct getsecattr return is simply this: 12475 * "Don't return anything that the caller is not expecting to have to free." 12476 */ 12477 static int 12478 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12479 uid_t uid, gid_t gid, int isdir) 12480 { 12481 int error = 0; 12482 /* Save the mask since the translators modify it. */ 12483 uint_t orig_mask = vsap->vsa_mask; 12484 12485 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12486 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, FALSE); 12487 12488 if (error) 12489 return (error); 12490 12491 /* 12492 * If the caller only asked for the ace count (VSA_ACECNT) 12493 * don't give them the full acl (VSA_ACE), free it. 12494 */ 12495 if (!orig_mask & VSA_ACE) { 12496 if (vsap->vsa_aclentp != NULL) { 12497 kmem_free(vsap->vsa_aclentp, 12498 vsap->vsa_aclcnt * sizeof (ace_t)); 12499 vsap->vsa_aclentp = NULL; 12500 } 12501 } 12502 vsap->vsa_mask = orig_mask; 12503 12504 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12505 VSA_DFACLCNT)) { 12506 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12507 isdir, FALSE); 12508 12509 if (error) 12510 return (error); 12511 12512 /* 12513 * If the caller only asked for the acl count (VSA_ACLCNT) 12514 * and/or the default acl count (VSA_DFACLCNT) don't give them 12515 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12516 */ 12517 if (!orig_mask & VSA_ACL) { 12518 if (vsap->vsa_aclentp != NULL) { 12519 kmem_free(vsap->vsa_aclentp, 12520 vsap->vsa_aclcnt * sizeof (aclent_t)); 12521 vsap->vsa_aclentp = NULL; 12522 } 12523 } 12524 12525 if (!orig_mask & VSA_DFACL) { 12526 if (vsap->vsa_dfaclentp != NULL) { 12527 kmem_free(vsap->vsa_dfaclentp, 12528 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12529 vsap->vsa_dfaclentp = NULL; 12530 } 12531 } 12532 vsap->vsa_mask = orig_mask; 12533 } 12534 return (0); 12535 } 12536 12537 /* ARGSUSED */ 12538 int 12539 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 12540 caller_context_t *ct) 12541 { 12542 int error; 12543 12544 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12545 return (EIO); 12546 /* 12547 * check for valid cmd parameter 12548 */ 12549 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12550 return (EINVAL); 12551 12552 /* 12553 * Check access permissions 12554 */ 12555 if ((cmd & F_SHARE) && 12556 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12557 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12558 return (EBADF); 12559 12560 /* 12561 * If the filesystem is mounted using local locking, pass the 12562 * request off to the local share code. 12563 */ 12564 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12565 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 12566 12567 switch (cmd) { 12568 case F_SHARE: 12569 case F_UNSHARE: 12570 /* 12571 * This will be properly implemented later, 12572 * see RFE: 4823948 . 12573 */ 12574 error = EAGAIN; 12575 break; 12576 12577 case F_HASREMOTELOCKS: 12578 /* 12579 * NFS client can't store remote locks itself 12580 */ 12581 shr->s_access = 0; 12582 error = 0; 12583 break; 12584 12585 default: 12586 error = EINVAL; 12587 break; 12588 } 12589 12590 return (error); 12591 } 12592 12593 /* 12594 * Common code called by directory ops to update the attrcache 12595 */ 12596 static int 12597 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12598 hrtime_t t, vnode_t *vp, cred_t *cr) 12599 { 12600 int error = 0; 12601 12602 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12603 12604 if (status != NFS4_OK) { 12605 /* getattr not done or failed */ 12606 PURGE_ATTRCACHE4(vp); 12607 return (error); 12608 } 12609 12610 if (garp) { 12611 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12612 } else { 12613 PURGE_ATTRCACHE4(vp); 12614 } 12615 return (error); 12616 } 12617 12618 /* 12619 * Update directory caches for directory modification ops (link, rename, etc.) 12620 * When dinfo is NULL, manage dircaches in the old way. 12621 */ 12622 static void 12623 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12624 dirattr_info_t *dinfo) 12625 { 12626 rnode4_t *drp = VTOR4(dvp); 12627 12628 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12629 12630 /* Purge rddir cache for dir since it changed */ 12631 if (drp->r_dir != NULL) 12632 nfs4_purge_rddir_cache(dvp); 12633 12634 /* 12635 * If caller provided dinfo, then use it to manage dir caches. 12636 */ 12637 if (dinfo != NULL) { 12638 if (vp != NULL) { 12639 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12640 if (!VTOR4(vp)->created_v4) { 12641 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12642 dnlc_update(dvp, nm, vp); 12643 } else { 12644 /* 12645 * XXX don't update if the created_v4 flag is 12646 * set 12647 */ 12648 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12649 NFS4_DEBUG(nfs4_client_state_debug, 12650 (CE_NOTE, "nfs4_update_dircaches: " 12651 "don't update dnlc: created_v4 flag")); 12652 } 12653 } 12654 12655 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12656 dinfo->di_cred, FALSE, cinfo); 12657 12658 return; 12659 } 12660 12661 /* 12662 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12663 * Since caller modified dir but didn't receive post-dirmod-op dir 12664 * attrs, the dir's attrs must be purged. 12665 * 12666 * XXX this check and dnlc update/purge should really be atomic, 12667 * XXX but can't use rnode statelock because it'll deadlock in 12668 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12669 * XXX does occur. 12670 * 12671 * XXX We also may want to check that atomic is true in the 12672 * XXX change_info struct. If it is not, the change_info may 12673 * XXX reflect changes by more than one clients which means that 12674 * XXX our cache may not be valid. 12675 */ 12676 PURGE_ATTRCACHE4(dvp); 12677 if (drp->r_change == cinfo->before) { 12678 /* no changes took place in the directory prior to our link */ 12679 if (vp != NULL) { 12680 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12681 if (!VTOR4(vp)->created_v4) { 12682 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12683 dnlc_update(dvp, nm, vp); 12684 } else { 12685 /* 12686 * XXX dont' update if the created_v4 flag 12687 * is set 12688 */ 12689 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12690 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12691 "nfs4_update_dircaches: don't" 12692 " update dnlc: created_v4 flag")); 12693 } 12694 } 12695 } else { 12696 /* Another client modified directory - purge its dnlc cache */ 12697 dnlc_purge_vp(dvp); 12698 } 12699 } 12700 12701 /* 12702 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12703 * file. 12704 * 12705 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12706 * file (ie: client recovery) and otherwise set to FALSE. 12707 * 12708 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12709 * initiated) calling functions. 12710 * 12711 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12712 * of resending a 'lost' open request. 12713 * 12714 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12715 * server that hands out BAD_SEQID on open confirm. 12716 * 12717 * Errors are returned via the nfs4_error_t parameter. 12718 */ 12719 void 12720 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12721 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12722 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12723 { 12724 COMPOUND4args_clnt args; 12725 COMPOUND4res_clnt res; 12726 nfs_argop4 argop[2]; 12727 nfs_resop4 *resop; 12728 int doqueue = 1; 12729 mntinfo4_t *mi; 12730 OPEN_CONFIRM4args *open_confirm_args; 12731 int needrecov; 12732 12733 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12734 #if DEBUG 12735 mutex_enter(&oop->oo_lock); 12736 ASSERT(oop->oo_seqid_inuse); 12737 mutex_exit(&oop->oo_lock); 12738 #endif 12739 12740 recov_retry_confirm: 12741 nfs4_error_zinit(ep); 12742 *retry_open = FALSE; 12743 12744 if (resend) 12745 args.ctag = TAG_OPEN_CONFIRM_LOST; 12746 else 12747 args.ctag = TAG_OPEN_CONFIRM; 12748 12749 args.array_len = 2; 12750 args.array = argop; 12751 12752 /* putfh target fh */ 12753 argop[0].argop = OP_CPUTFH; 12754 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12755 12756 argop[1].argop = OP_OPEN_CONFIRM; 12757 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12758 12759 (*seqid) += 1; 12760 open_confirm_args->seqid = *seqid; 12761 open_confirm_args->open_stateid = *stateid; 12762 12763 mi = VTOMI4(vp); 12764 12765 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12766 12767 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12768 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12769 } 12770 12771 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12772 if (!needrecov && ep->error) 12773 return; 12774 12775 if (needrecov) { 12776 bool_t abort = FALSE; 12777 12778 if (reopening_file == FALSE) { 12779 nfs4_bseqid_entry_t *bsep = NULL; 12780 12781 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12782 bsep = nfs4_create_bseqid_entry(oop, NULL, 12783 vp, 0, args.ctag, 12784 open_confirm_args->seqid); 12785 12786 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 12787 NULL, NULL, OP_OPEN_CONFIRM, bsep, NULL, NULL); 12788 if (bsep) { 12789 kmem_free(bsep, sizeof (*bsep)); 12790 if (num_bseqid_retryp && 12791 --(*num_bseqid_retryp) == 0) 12792 abort = TRUE; 12793 } 12794 } 12795 if ((ep->error == ETIMEDOUT || 12796 res.status == NFS4ERR_RESOURCE) && 12797 abort == FALSE && resend == FALSE) { 12798 if (!ep->error) 12799 (void) xdr_free(xdr_COMPOUND4res_clnt, 12800 (caddr_t)&res); 12801 12802 delay(SEC_TO_TICK(confirm_retry_sec)); 12803 goto recov_retry_confirm; 12804 } 12805 /* State may have changed so retry the entire OPEN op */ 12806 if (abort == FALSE) 12807 *retry_open = TRUE; 12808 else 12809 *retry_open = FALSE; 12810 if (!ep->error) 12811 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12812 return; 12813 } 12814 12815 if (res.status) { 12816 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12817 return; 12818 } 12819 12820 resop = &res.array[1]; /* open confirm res */ 12821 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 12822 stateid, sizeof (*stateid)); 12823 12824 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12825 } 12826 12827 /* 12828 * Return the credentials associated with a client state object. The 12829 * caller is responsible for freeing the credentials. 12830 */ 12831 12832 static cred_t * 12833 state_to_cred(nfs4_open_stream_t *osp) 12834 { 12835 cred_t *cr; 12836 12837 /* 12838 * It's ok to not lock the open stream and open owner to get 12839 * the oo_cred since this is only written once (upon creation) 12840 * and will not change. 12841 */ 12842 cr = osp->os_open_owner->oo_cred; 12843 crhold(cr); 12844 12845 return (cr); 12846 } 12847 12848 /* 12849 * nfs4_find_sysid 12850 * 12851 * Find the sysid for the knetconfig associated with the given mi. 12852 */ 12853 static struct lm_sysid * 12854 nfs4_find_sysid(mntinfo4_t *mi) 12855 { 12856 ASSERT(nfs_zone() == mi->mi_zone); 12857 12858 /* 12859 * Switch from RDMA knconf to original mount knconf 12860 */ 12861 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 12862 mi->mi_curr_serv->sv_hostname, NULL)); 12863 } 12864 12865 #ifdef DEBUG 12866 /* 12867 * Return a string version of the call type for easy reading. 12868 */ 12869 static char * 12870 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 12871 { 12872 switch (ctype) { 12873 case NFS4_LCK_CTYPE_NORM: 12874 return ("NORMAL"); 12875 case NFS4_LCK_CTYPE_RECLAIM: 12876 return ("RECLAIM"); 12877 case NFS4_LCK_CTYPE_RESEND: 12878 return ("RESEND"); 12879 case NFS4_LCK_CTYPE_REINSTATE: 12880 return ("REINSTATE"); 12881 default: 12882 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 12883 "type %d", ctype); 12884 return (""); 12885 } 12886 } 12887 #endif 12888 12889 /* 12890 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 12891 * Unlock requests don't have an over-the-wire locktype, so we just return 12892 * something non-threatening. 12893 */ 12894 12895 static nfs_lock_type4 12896 flk_to_locktype(int cmd, int l_type) 12897 { 12898 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 12899 12900 switch (l_type) { 12901 case F_UNLCK: 12902 return (READ_LT); 12903 case F_RDLCK: 12904 if (cmd == F_SETLK) 12905 return (READ_LT); 12906 else 12907 return (READW_LT); 12908 case F_WRLCK: 12909 if (cmd == F_SETLK) 12910 return (WRITE_LT); 12911 else 12912 return (WRITEW_LT); 12913 } 12914 panic("flk_to_locktype"); 12915 /*NOTREACHED*/ 12916 } 12917 12918 /* 12919 * Do some preliminary checks for nfs4frlock. 12920 */ 12921 static int 12922 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, 12923 u_offset_t offset) 12924 { 12925 int error = 0; 12926 12927 /* 12928 * If we are setting a lock, check that the file is opened 12929 * with the correct mode. 12930 */ 12931 if (cmd == F_SETLK || cmd == F_SETLKW) { 12932 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || 12933 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { 12934 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12935 "nfs4frlock_validate_args: file was opened with " 12936 "incorrect mode")); 12937 return (EBADF); 12938 } 12939 } 12940 12941 /* Convert the offset. It may need to be restored before returning. */ 12942 if (error = convoff(vp, flk, 0, offset)) { 12943 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12944 "nfs4frlock_validate_args: convoff => error= %d\n", 12945 error)); 12946 return (error); 12947 } 12948 12949 return (error); 12950 } 12951 12952 /* 12953 * Set the flock64's lm_sysid for nfs4frlock. 12954 */ 12955 static int 12956 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 12957 { 12958 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12959 12960 /* Find the lm_sysid */ 12961 *lspp = nfs4_find_sysid(VTOMI4(vp)); 12962 12963 if (*lspp == NULL) { 12964 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12965 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 12966 return (ENOLCK); 12967 } 12968 12969 flk->l_sysid = lm_sysidt(*lspp); 12970 12971 return (0); 12972 } 12973 12974 /* 12975 * Do the remaining preliminary setup for nfs4frlock. 12976 */ 12977 static void 12978 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 12979 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, 12980 cred_t **cred_otw) 12981 { 12982 /* 12983 * set tick_delay to the base delay time. 12984 * (nfs4_base_wait_time is in msecs) 12985 */ 12986 12987 *tick_delayp = drv_usectohz(nfs4_base_wait_time * 1000); 12988 12989 /* 12990 * If lock is relative to EOF, we need the newest length of the 12991 * file. Therefore invalidate the ATTR_CACHE. 12992 */ 12993 12994 *whencep = flk->l_whence; 12995 12996 if (*whencep == 2) /* SEEK_END */ 12997 PURGE_ATTRCACHE4(vp); 12998 12999 recov_statep->rs_flags = 0; 13000 recov_statep->rs_num_retry_despite_err = 0; 13001 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 13002 } 13003 13004 /* 13005 * Initialize and allocate the data structures necessary for 13006 * the nfs4frlock call. 13007 * Allocates argsp's op array, frees up the saved_rqstpp if there is one. 13008 */ 13009 static void 13010 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 13011 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 13012 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 13013 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 13014 { 13015 int argoplist_size; 13016 int num_ops = 2; 13017 13018 *retry = FALSE; 13019 *did_start_fop = FALSE; 13020 *skip_get_err = FALSE; 13021 lost_rqstp->lr_op = 0; 13022 argoplist_size = num_ops * sizeof (nfs_argop4); 13023 /* fill array with zero */ 13024 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 13025 13026 *argspp = argsp; 13027 *respp = NULL; 13028 13029 argsp->array_len = num_ops; 13030 argsp->array = *argopp; 13031 13032 /* initialize in case of error; will get real value down below */ 13033 argsp->ctag = TAG_NONE; 13034 13035 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 13036 *op_hintp = OH_LOCKU; 13037 else 13038 *op_hintp = OH_OTHER; 13039 } 13040 13041 /* 13042 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 13043 * the proper nfs4_server_t for this instance of nfs4frlock. 13044 * Returns 0 (success) or an errno value. 13045 */ 13046 static int 13047 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 13048 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 13049 bool_t *did_start_fop, bool_t *startrecovp) 13050 { 13051 int error = 0; 13052 rnode4_t *rp; 13053 13054 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13055 13056 if (ctype == NFS4_LCK_CTYPE_NORM) { 13057 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 13058 recov_statep, startrecovp); 13059 if (error) 13060 return (error); 13061 *did_start_fop = TRUE; 13062 } else { 13063 *did_start_fop = FALSE; 13064 *startrecovp = FALSE; 13065 } 13066 13067 if (!error) { 13068 rp = VTOR4(vp); 13069 13070 /* If the file failed recovery, just quit. */ 13071 mutex_enter(&rp->r_statelock); 13072 if (rp->r_flags & R4RECOVERR) { 13073 error = EIO; 13074 } 13075 mutex_exit(&rp->r_statelock); 13076 } 13077 13078 return (error); 13079 } 13080 13081 /* 13082 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 13083 * resend nfs4frlock call is initiated by the recovery framework. 13084 * Acquires the lop and oop seqid synchronization. 13085 */ 13086 static void 13087 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 13088 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 13089 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13090 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 13091 { 13092 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 13093 int error; 13094 13095 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 13096 (CE_NOTE, 13097 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 13098 ASSERT(resend_rqstp != NULL); 13099 ASSERT(resend_rqstp->lr_op == OP_LOCK || 13100 resend_rqstp->lr_op == OP_LOCKU); 13101 13102 *oopp = resend_rqstp->lr_oop; 13103 if (resend_rqstp->lr_oop) { 13104 open_owner_hold(resend_rqstp->lr_oop); 13105 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 13106 ASSERT(error == 0); /* recov thread always succeeds */ 13107 } 13108 13109 /* Must resend this lost lock/locku request. */ 13110 ASSERT(resend_rqstp->lr_lop != NULL); 13111 *lopp = resend_rqstp->lr_lop; 13112 lock_owner_hold(resend_rqstp->lr_lop); 13113 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 13114 ASSERT(error == 0); /* recov thread always succeeds */ 13115 13116 *ospp = resend_rqstp->lr_osp; 13117 if (*ospp) 13118 open_stream_hold(resend_rqstp->lr_osp); 13119 13120 if (resend_rqstp->lr_op == OP_LOCK) { 13121 LOCK4args *lock_args; 13122 13123 argop->argop = OP_LOCK; 13124 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 13125 lock_args->locktype = resend_rqstp->lr_locktype; 13126 lock_args->reclaim = 13127 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 13128 lock_args->offset = resend_rqstp->lr_flk->l_start; 13129 lock_args->length = resend_rqstp->lr_flk->l_len; 13130 if (lock_args->length == 0) 13131 lock_args->length = ~lock_args->length; 13132 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 13133 mi2clientid(mi), &lock_args->locker); 13134 13135 switch (resend_rqstp->lr_ctype) { 13136 case NFS4_LCK_CTYPE_RESEND: 13137 argsp->ctag = TAG_LOCK_RESEND; 13138 break; 13139 case NFS4_LCK_CTYPE_REINSTATE: 13140 argsp->ctag = TAG_LOCK_REINSTATE; 13141 break; 13142 case NFS4_LCK_CTYPE_RECLAIM: 13143 argsp->ctag = TAG_LOCK_RECLAIM; 13144 break; 13145 default: 13146 argsp->ctag = TAG_LOCK_UNKNOWN; 13147 break; 13148 } 13149 } else { 13150 LOCKU4args *locku_args; 13151 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 13152 13153 argop->argop = OP_LOCKU; 13154 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 13155 locku_args->locktype = READ_LT; 13156 locku_args->seqid = lop->lock_seqid + 1; 13157 mutex_enter(&lop->lo_lock); 13158 locku_args->lock_stateid = lop->lock_stateid; 13159 mutex_exit(&lop->lo_lock); 13160 locku_args->offset = resend_rqstp->lr_flk->l_start; 13161 locku_args->length = resend_rqstp->lr_flk->l_len; 13162 if (locku_args->length == 0) 13163 locku_args->length = ~locku_args->length; 13164 13165 switch (resend_rqstp->lr_ctype) { 13166 case NFS4_LCK_CTYPE_RESEND: 13167 argsp->ctag = TAG_LOCKU_RESEND; 13168 break; 13169 case NFS4_LCK_CTYPE_REINSTATE: 13170 argsp->ctag = TAG_LOCKU_REINSTATE; 13171 break; 13172 default: 13173 argsp->ctag = TAG_LOCK_UNKNOWN; 13174 break; 13175 } 13176 } 13177 } 13178 13179 /* 13180 * Setup the LOCKT4 arguments. 13181 */ 13182 static void 13183 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13184 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, 13185 rnode4_t *rp) 13186 { 13187 LOCKT4args *lockt_args; 13188 13189 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 13190 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13191 argop->argop = OP_LOCKT; 13192 argsp->ctag = TAG_LOCKT; 13193 lockt_args = &argop->nfs_argop4_u.oplockt; 13194 13195 /* 13196 * The locktype will be READ_LT unless it's 13197 * a write lock. We do this because the Solaris 13198 * system call allows the combination of 13199 * F_UNLCK and F_GETLK* and so in that case the 13200 * unlock is mapped to a read. 13201 */ 13202 if (flk->l_type == F_WRLCK) 13203 lockt_args->locktype = WRITE_LT; 13204 else 13205 lockt_args->locktype = READ_LT; 13206 13207 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 13208 /* set the lock owner4 args */ 13209 nfs4_setlockowner_args(&lockt_args->owner, rp, 13210 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13211 flk->l_pid); 13212 lockt_args->offset = flk->l_start; 13213 lockt_args->length = flk->l_len; 13214 if (flk->l_len == 0) 13215 lockt_args->length = ~lockt_args->length; 13216 13217 *lockt_argsp = lockt_args; 13218 } 13219 13220 /* 13221 * If the client is holding a delegation, and the open stream to be used 13222 * with this lock request is a delegation open stream, then re-open the stream. 13223 * Sets the nfs4_error_t to all zeros unless the open stream has already 13224 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 13225 * means the caller should retry (like a recovery retry). 13226 */ 13227 static void 13228 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 13229 { 13230 open_delegation_type4 dt; 13231 bool_t reopen_needed, force; 13232 nfs4_open_stream_t *osp; 13233 open_claim_type4 oclaim; 13234 rnode4_t *rp = VTOR4(vp); 13235 mntinfo4_t *mi = VTOMI4(vp); 13236 13237 ASSERT(nfs_zone() == mi->mi_zone); 13238 13239 nfs4_error_zinit(ep); 13240 13241 mutex_enter(&rp->r_statev4_lock); 13242 dt = rp->r_deleg_type; 13243 mutex_exit(&rp->r_statev4_lock); 13244 13245 if (dt != OPEN_DELEGATE_NONE) { 13246 nfs4_open_owner_t *oop; 13247 13248 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 13249 if (!oop) { 13250 ep->stat = NFS4ERR_IO; 13251 return; 13252 } 13253 /* returns with 'os_sync_lock' held */ 13254 osp = find_open_stream(oop, rp); 13255 if (!osp) { 13256 open_owner_rele(oop); 13257 ep->stat = NFS4ERR_IO; 13258 return; 13259 } 13260 13261 if (osp->os_failed_reopen) { 13262 NFS4_DEBUG((nfs4_open_stream_debug || 13263 nfs4_client_lock_debug), (CE_NOTE, 13264 "nfs4frlock_check_deleg: os_failed_reopen set " 13265 "for osp %p, cr %p, rp %s", (void *)osp, 13266 (void *)cr, rnode4info(rp))); 13267 mutex_exit(&osp->os_sync_lock); 13268 open_stream_rele(osp, rp); 13269 open_owner_rele(oop); 13270 ep->stat = NFS4ERR_IO; 13271 return; 13272 } 13273 13274 /* 13275 * Determine whether a reopen is needed. If this 13276 * is a delegation open stream, then send the open 13277 * to the server to give visibility to the open owner. 13278 * Even if it isn't a delegation open stream, we need 13279 * to check if the previous open CLAIM_DELEGATE_CUR 13280 * was sufficient. 13281 */ 13282 13283 reopen_needed = osp->os_delegation || 13284 ((lt == F_RDLCK && 13285 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 13286 (lt == F_WRLCK && 13287 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 13288 13289 mutex_exit(&osp->os_sync_lock); 13290 open_owner_rele(oop); 13291 13292 if (reopen_needed) { 13293 /* 13294 * Always use CLAIM_PREVIOUS after server reboot. 13295 * The server will reject CLAIM_DELEGATE_CUR if 13296 * it is used during the grace period. 13297 */ 13298 mutex_enter(&mi->mi_lock); 13299 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 13300 oclaim = CLAIM_PREVIOUS; 13301 force = TRUE; 13302 } else { 13303 oclaim = CLAIM_DELEGATE_CUR; 13304 force = FALSE; 13305 } 13306 mutex_exit(&mi->mi_lock); 13307 13308 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 13309 if (ep->error == EAGAIN) { 13310 nfs4_error_zinit(ep); 13311 ep->stat = NFS4ERR_DELAY; 13312 } 13313 } 13314 open_stream_rele(osp, rp); 13315 osp = NULL; 13316 } 13317 } 13318 13319 /* 13320 * Setup the LOCKU4 arguments. 13321 * Returns errors via the nfs4_error_t. 13322 * NFS4_OK no problems. *go_otwp is TRUE if call should go 13323 * over-the-wire. The caller must release the 13324 * reference on *lopp. 13325 * NFS4ERR_DELAY caller should retry (like recovery retry) 13326 * (other) unrecoverable error. 13327 */ 13328 static void 13329 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13330 LOCKU4args **locku_argsp, flock64_t *flk, 13331 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 13332 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, 13333 bool_t *skip_get_err, bool_t *go_otwp) 13334 { 13335 nfs4_lock_owner_t *lop = NULL; 13336 LOCKU4args *locku_args; 13337 pid_t pid; 13338 bool_t is_spec = FALSE; 13339 rnode4_t *rp = VTOR4(vp); 13340 13341 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13342 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13343 13344 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13345 if (ep->error || ep->stat) 13346 return; 13347 13348 argop->argop = OP_LOCKU; 13349 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13350 argsp->ctag = TAG_LOCKU_REINSTATE; 13351 else 13352 argsp->ctag = TAG_LOCKU; 13353 locku_args = &argop->nfs_argop4_u.oplocku; 13354 *locku_argsp = locku_args; 13355 13356 /* 13357 * XXX what should locku_args->locktype be? 13358 * setting to ALWAYS be READ_LT so at least 13359 * it is a valid locktype. 13360 */ 13361 13362 locku_args->locktype = READ_LT; 13363 13364 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13365 flk->l_pid; 13366 13367 /* 13368 * Get the lock owner stateid. If no lock owner 13369 * exists, return success. 13370 */ 13371 lop = find_lock_owner(rp, pid, LOWN_ANY); 13372 *lopp = lop; 13373 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13374 is_spec = TRUE; 13375 if (!lop || is_spec) { 13376 /* 13377 * No lock owner so no locks to unlock. 13378 * Return success. If there was a failed 13379 * reclaim earlier, the lock might still be 13380 * registered with the local locking code, 13381 * so notify it of the unlock. 13382 * 13383 * If the lockowner is using a special stateid, 13384 * then the original lock request (that created 13385 * this lockowner) was never successful, so we 13386 * have no lock to undo OTW. 13387 */ 13388 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13389 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13390 "(%ld) so return success", (long)pid)); 13391 13392 if (ctype == NFS4_LCK_CTYPE_NORM) 13393 flk->l_pid = curproc->p_pid; 13394 nfs4_register_lock_locally(vp, flk, flag, offset); 13395 /* 13396 * Release our hold and NULL out so final_cleanup 13397 * doesn't try to end a lock seqid sync we 13398 * never started. 13399 */ 13400 if (is_spec) { 13401 lock_owner_rele(lop); 13402 *lopp = NULL; 13403 } 13404 *skip_get_err = TRUE; 13405 *go_otwp = FALSE; 13406 return; 13407 } 13408 13409 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13410 if (ep->error == EAGAIN) { 13411 lock_owner_rele(lop); 13412 *lopp = NULL; 13413 return; 13414 } 13415 13416 mutex_enter(&lop->lo_lock); 13417 locku_args->lock_stateid = lop->lock_stateid; 13418 mutex_exit(&lop->lo_lock); 13419 locku_args->seqid = lop->lock_seqid + 1; 13420 13421 /* leave the ref count on lop, rele after RPC call */ 13422 13423 locku_args->offset = flk->l_start; 13424 locku_args->length = flk->l_len; 13425 if (flk->l_len == 0) 13426 locku_args->length = ~locku_args->length; 13427 13428 *go_otwp = TRUE; 13429 } 13430 13431 /* 13432 * Setup the LOCK4 arguments. 13433 * 13434 * Returns errors via the nfs4_error_t. 13435 * NFS4_OK no problems 13436 * NFS4ERR_DELAY caller should retry (like recovery retry) 13437 * (other) unrecoverable error 13438 */ 13439 static void 13440 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13441 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13442 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13443 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13444 { 13445 LOCK4args *lock_args; 13446 nfs4_open_owner_t *oop = NULL; 13447 nfs4_open_stream_t *osp = NULL; 13448 nfs4_lock_owner_t *lop = NULL; 13449 pid_t pid; 13450 rnode4_t *rp = VTOR4(vp); 13451 13452 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13453 13454 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13455 if (ep->error || ep->stat != NFS4_OK) 13456 return; 13457 13458 argop->argop = OP_LOCK; 13459 if (ctype == NFS4_LCK_CTYPE_NORM) 13460 argsp->ctag = TAG_LOCK; 13461 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13462 argsp->ctag = TAG_RELOCK; 13463 else 13464 argsp->ctag = TAG_LOCK_REINSTATE; 13465 lock_args = &argop->nfs_argop4_u.oplock; 13466 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13467 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13468 /* 13469 * Get the lock owner. If no lock owner exists, 13470 * create a 'temporary' one and grab the open seqid 13471 * synchronization (which puts a hold on the open 13472 * owner and open stream). 13473 * This also grabs the lock seqid synchronization. 13474 */ 13475 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; 13476 ep->stat = 13477 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13478 13479 if (ep->stat != NFS4_OK) 13480 goto out; 13481 13482 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13483 &lock_args->locker); 13484 13485 lock_args->offset = flk->l_start; 13486 lock_args->length = flk->l_len; 13487 if (flk->l_len == 0) 13488 lock_args->length = ~lock_args->length; 13489 *lock_argsp = lock_args; 13490 out: 13491 *oopp = oop; 13492 *ospp = osp; 13493 *lopp = lop; 13494 } 13495 13496 /* 13497 * After we get the reply from the server, record the proper information 13498 * for possible resend lock requests. 13499 * 13500 * Allocates memory for the saved_rqstp if we have a lost lock to save. 13501 */ 13502 static void 13503 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13504 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13505 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13506 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13507 { 13508 bool_t unlock = (flk->l_type == F_UNLCK); 13509 13510 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13511 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13512 ctype == NFS4_LCK_CTYPE_REINSTATE); 13513 13514 if (error != 0 && !unlock) { 13515 NFS4_DEBUG((nfs4_lost_rqst_debug || 13516 nfs4_client_lock_debug), (CE_NOTE, 13517 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13518 " for lop %p", (void *)lop)); 13519 ASSERT(lop != NULL); 13520 mutex_enter(&lop->lo_lock); 13521 lop->lo_pending_rqsts = 1; 13522 mutex_exit(&lop->lo_lock); 13523 } 13524 13525 lost_rqstp->lr_putfirst = FALSE; 13526 lost_rqstp->lr_op = 0; 13527 13528 /* 13529 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13530 * recovery purposes so that the lock request that was sent 13531 * can be saved and re-issued later. Ditto for EIO from a forced 13532 * unmount. This is done to have the client's local locking state 13533 * match the v4 server's state; that is, the request was 13534 * potentially received and accepted by the server but the client 13535 * thinks it was not. 13536 */ 13537 if (error == ETIMEDOUT || error == EINTR || 13538 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13539 NFS4_DEBUG((nfs4_lost_rqst_debug || 13540 nfs4_client_lock_debug), (CE_NOTE, 13541 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13542 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13543 (void *)lop, (void *)oop, (void *)osp)); 13544 if (unlock) 13545 lost_rqstp->lr_op = OP_LOCKU; 13546 else { 13547 lost_rqstp->lr_op = OP_LOCK; 13548 lost_rqstp->lr_locktype = locktype; 13549 } 13550 /* 13551 * Objects are held and rele'd via the recovery code. 13552 * See nfs4_save_lost_rqst. 13553 */ 13554 lost_rqstp->lr_vp = vp; 13555 lost_rqstp->lr_dvp = NULL; 13556 lost_rqstp->lr_oop = oop; 13557 lost_rqstp->lr_osp = osp; 13558 lost_rqstp->lr_lop = lop; 13559 lost_rqstp->lr_cr = cr; 13560 switch (ctype) { 13561 case NFS4_LCK_CTYPE_NORM: 13562 flk->l_pid = ttoproc(curthread)->p_pid; 13563 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13564 break; 13565 case NFS4_LCK_CTYPE_REINSTATE: 13566 lost_rqstp->lr_putfirst = TRUE; 13567 lost_rqstp->lr_ctype = ctype; 13568 break; 13569 default: 13570 break; 13571 } 13572 lost_rqstp->lr_flk = flk; 13573 } 13574 } 13575 13576 /* 13577 * Update lop's seqid. Also update the seqid stored in a resend request, 13578 * if any. (Some recovery errors increment the seqid, and we may have to 13579 * send the resend request again.) 13580 */ 13581 13582 static void 13583 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13584 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13585 { 13586 if (lock_args) { 13587 if (lock_args->locker.new_lock_owner == TRUE) 13588 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13589 else { 13590 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13591 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13592 } 13593 } else if (locku_args) { 13594 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13595 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13596 } 13597 } 13598 13599 /* 13600 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13601 * COMPOUND4 args/res for calls that need to retry. 13602 * Switches the *cred_otwp to base_cr. 13603 */ 13604 static void 13605 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13606 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13607 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13608 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13609 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13610 { 13611 nfs4_open_owner_t *oop = *oopp; 13612 nfs4_open_stream_t *osp = *ospp; 13613 nfs4_lock_owner_t *lop = *lopp; 13614 nfs_argop4 *argop = (*argspp)->array; 13615 13616 if (*did_start_fop) { 13617 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13618 needrecov); 13619 *did_start_fop = FALSE; 13620 } 13621 ASSERT((*argspp)->array_len == 2); 13622 if (argop[1].argop == OP_LOCK) 13623 nfs4args_lock_free(&argop[1]); 13624 else if (argop[1].argop == OP_LOCKT) 13625 nfs4args_lockt_free(&argop[1]); 13626 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13627 if (!error) 13628 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13629 *argspp = NULL; 13630 *respp = NULL; 13631 13632 if (lop) { 13633 nfs4_end_lock_seqid_sync(lop); 13634 lock_owner_rele(lop); 13635 *lopp = NULL; 13636 } 13637 13638 /* need to free up the reference on osp for lock args */ 13639 if (osp != NULL) { 13640 open_stream_rele(osp, VTOR4(vp)); 13641 *ospp = NULL; 13642 } 13643 13644 /* need to free up the reference on oop for lock args */ 13645 if (oop != NULL) { 13646 nfs4_end_open_seqid_sync(oop); 13647 open_owner_rele(oop); 13648 *oopp = NULL; 13649 } 13650 13651 crfree(*cred_otwp); 13652 *cred_otwp = base_cr; 13653 crhold(*cred_otwp); 13654 } 13655 13656 /* 13657 * Function to process the client's recovery for nfs4frlock. 13658 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13659 * 13660 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13661 * COMPOUND4 args/res for calls that need to retry. 13662 * 13663 * Note: the rp's r_lkserlock is *not* dropped during this path. 13664 */ 13665 static bool_t 13666 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13667 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13668 LOCK4args *lock_args, LOCKU4args *locku_args, 13669 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13670 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13671 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13672 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13673 { 13674 nfs4_open_owner_t *oop = *oopp; 13675 nfs4_open_stream_t *osp = *ospp; 13676 nfs4_lock_owner_t *lop = *lopp; 13677 13678 bool_t abort, retry; 13679 13680 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13681 ASSERT((*argspp) != NULL); 13682 ASSERT((*respp) != NULL); 13683 if (lock_args || locku_args) 13684 ASSERT(lop != NULL); 13685 13686 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13687 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13688 13689 retry = TRUE; 13690 abort = FALSE; 13691 if (needrecov) { 13692 nfs4_bseqid_entry_t *bsep = NULL; 13693 nfs_opnum4 op; 13694 13695 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13696 13697 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13698 seqid4 seqid; 13699 13700 if (lock_args) { 13701 if (lock_args->locker.new_lock_owner == TRUE) 13702 seqid = lock_args->locker.locker4_u. 13703 open_owner.open_seqid; 13704 else 13705 seqid = lock_args->locker.locker4_u. 13706 lock_owner.lock_seqid; 13707 } else if (locku_args) { 13708 seqid = locku_args->seqid; 13709 } else { 13710 seqid = 0; 13711 } 13712 13713 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13714 flk->l_pid, (*argspp)->ctag, seqid); 13715 } 13716 13717 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13718 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13719 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13720 NULL, op, bsep, NULL, NULL); 13721 13722 if (bsep) 13723 kmem_free(bsep, sizeof (*bsep)); 13724 } 13725 13726 /* 13727 * Return that we do not want to retry the request for 3 cases: 13728 * 1. If we received EINTR or are bailing out because of a forced 13729 * unmount, we came into this code path just for the sake of 13730 * initiating recovery, we now need to return the error. 13731 * 2. If we have aborted recovery. 13732 * 3. We received NFS4ERR_BAD_SEQID. 13733 */ 13734 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13735 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13736 retry = FALSE; 13737 13738 if (*did_start_fop == TRUE) { 13739 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13740 needrecov); 13741 *did_start_fop = FALSE; 13742 } 13743 13744 if (retry == TRUE) { 13745 nfs_argop4 *argop; 13746 13747 argop = (*argspp)->array; 13748 ASSERT((*argspp)->array_len == 2); 13749 13750 if (argop[1].argop == OP_LOCK) 13751 nfs4args_lock_free(&argop[1]); 13752 else if (argop[1].argop == OP_LOCKT) 13753 nfs4args_lockt_free(&argop[1]); 13754 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13755 if (!ep->error) 13756 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13757 *respp = NULL; 13758 *argspp = NULL; 13759 } 13760 13761 if (lop != NULL) { 13762 nfs4_end_lock_seqid_sync(lop); 13763 lock_owner_rele(lop); 13764 } 13765 13766 *lopp = NULL; 13767 13768 /* need to free up the reference on osp for lock args */ 13769 if (osp != NULL) { 13770 open_stream_rele(osp, rp); 13771 *ospp = NULL; 13772 } 13773 13774 /* need to free up the reference on oop for lock args */ 13775 if (oop != NULL) { 13776 nfs4_end_open_seqid_sync(oop); 13777 open_owner_rele(oop); 13778 *oopp = NULL; 13779 } 13780 13781 return (retry); 13782 } 13783 13784 /* 13785 * Handles the successful reply from the server for nfs4frlock. 13786 */ 13787 static void 13788 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, 13789 vnode_t *vp, int flag, u_offset_t offset, 13790 nfs4_lost_rqst_t *resend_rqstp) 13791 { 13792 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13793 if ((cmd == F_SETLK || cmd == F_SETLKW) && 13794 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { 13795 if (ctype == NFS4_LCK_CTYPE_NORM) { 13796 flk->l_pid = ttoproc(curthread)->p_pid; 13797 /* 13798 * We do not register lost locks locally in 13799 * the 'resend' case since the user/application 13800 * doesn't think we have the lock. 13801 */ 13802 ASSERT(!resend_rqstp); 13803 nfs4_register_lock_locally(vp, flk, flag, offset); 13804 } 13805 } 13806 } 13807 13808 /* 13809 * Handle the DENIED reply from the server for nfs4frlock. 13810 * Returns TRUE if we should retry the request; FALSE otherwise. 13811 * 13812 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13813 * COMPOUND4 args/res for calls that need to retry. Can also 13814 * drop and regrab the r_lkserlock. 13815 */ 13816 static bool_t 13817 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13818 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13819 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13820 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13821 nfs4_recov_state_t *recov_statep, int needrecov, 13822 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13823 clock_t *tick_delayp, short *whencep, int *errorp, 13824 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13825 bool_t *skip_get_err) 13826 { 13827 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13828 13829 if (lock_args) { 13830 nfs4_open_owner_t *oop = *oopp; 13831 nfs4_open_stream_t *osp = *ospp; 13832 nfs4_lock_owner_t *lop = *lopp; 13833 int intr; 13834 13835 /* 13836 * Blocking lock needs to sleep and retry from the request. 13837 * 13838 * Do not block and wait for 'resend' or 'reinstate' 13839 * lock requests, just return the error. 13840 * 13841 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13842 */ 13843 if (cmd == F_SETLKW) { 13844 rnode4_t *rp = VTOR4(vp); 13845 nfs_argop4 *argop = (*argspp)->array; 13846 13847 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13848 13849 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13850 recov_statep, needrecov); 13851 *did_start_fop = FALSE; 13852 ASSERT((*argspp)->array_len == 2); 13853 if (argop[1].argop == OP_LOCK) 13854 nfs4args_lock_free(&argop[1]); 13855 else if (argop[1].argop == OP_LOCKT) 13856 nfs4args_lockt_free(&argop[1]); 13857 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13858 if (*respp) 13859 (void) xdr_free(xdr_COMPOUND4res_clnt, 13860 (caddr_t)*respp); 13861 *argspp = NULL; 13862 *respp = NULL; 13863 nfs4_end_lock_seqid_sync(lop); 13864 lock_owner_rele(lop); 13865 *lopp = NULL; 13866 if (osp != NULL) { 13867 open_stream_rele(osp, rp); 13868 *ospp = NULL; 13869 } 13870 if (oop != NULL) { 13871 nfs4_end_open_seqid_sync(oop); 13872 open_owner_rele(oop); 13873 *oopp = NULL; 13874 } 13875 13876 nfs_rw_exit(&rp->r_lkserlock); 13877 13878 intr = nfs4_block_and_wait(tick_delayp, rp); 13879 13880 if (intr) { 13881 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13882 RW_WRITER, FALSE); 13883 *errorp = EINTR; 13884 return (FALSE); 13885 } 13886 13887 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13888 RW_WRITER, FALSE); 13889 13890 /* 13891 * Make sure we are still safe to lock with 13892 * regards to mmapping. 13893 */ 13894 if (!nfs4_safelock(vp, flk, cr)) { 13895 *errorp = EAGAIN; 13896 return (FALSE); 13897 } 13898 13899 return (TRUE); 13900 } 13901 if (ctype == NFS4_LCK_CTYPE_NORM) 13902 *errorp = EAGAIN; 13903 *skip_get_err = TRUE; 13904 flk->l_whence = 0; 13905 *whencep = 0; 13906 return (FALSE); 13907 } else if (lockt_args) { 13908 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13909 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 13910 13911 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 13912 flk, lockt_args); 13913 13914 /* according to NLM code */ 13915 *errorp = 0; 13916 *whencep = 0; 13917 *skip_get_err = TRUE; 13918 return (FALSE); 13919 } 13920 return (FALSE); 13921 } 13922 13923 /* 13924 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 13925 */ 13926 static void 13927 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 13928 { 13929 switch (resp->status) { 13930 case NFS4ERR_ACCESS: 13931 case NFS4ERR_ADMIN_REVOKED: 13932 case NFS4ERR_BADHANDLE: 13933 case NFS4ERR_BAD_RANGE: 13934 case NFS4ERR_BAD_SEQID: 13935 case NFS4ERR_BAD_STATEID: 13936 case NFS4ERR_BADXDR: 13937 case NFS4ERR_DEADLOCK: 13938 case NFS4ERR_DELAY: 13939 case NFS4ERR_EXPIRED: 13940 case NFS4ERR_FHEXPIRED: 13941 case NFS4ERR_GRACE: 13942 case NFS4ERR_INVAL: 13943 case NFS4ERR_ISDIR: 13944 case NFS4ERR_LEASE_MOVED: 13945 case NFS4ERR_LOCK_NOTSUPP: 13946 case NFS4ERR_LOCK_RANGE: 13947 case NFS4ERR_MOVED: 13948 case NFS4ERR_NOFILEHANDLE: 13949 case NFS4ERR_NO_GRACE: 13950 case NFS4ERR_OLD_STATEID: 13951 case NFS4ERR_OPENMODE: 13952 case NFS4ERR_RECLAIM_BAD: 13953 case NFS4ERR_RECLAIM_CONFLICT: 13954 case NFS4ERR_RESOURCE: 13955 case NFS4ERR_SERVERFAULT: 13956 case NFS4ERR_STALE: 13957 case NFS4ERR_STALE_CLIENTID: 13958 case NFS4ERR_STALE_STATEID: 13959 return; 13960 default: 13961 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13962 "nfs4frlock_results_default: got unrecognizable " 13963 "res.status %d", resp->status)); 13964 *errorp = NFS4ERR_INVAL; 13965 } 13966 } 13967 13968 /* 13969 * The lock request was successful, so update the client's state. 13970 */ 13971 static void 13972 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 13973 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 13974 vnode_t *vp, flock64_t *flk, cred_t *cr, 13975 nfs4_lost_rqst_t *resend_rqstp) 13976 { 13977 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13978 13979 if (lock_args) { 13980 LOCK4res *lock_res; 13981 13982 lock_res = &resop->nfs_resop4_u.oplock; 13983 /* update the stateid with server's response */ 13984 13985 if (lock_args->locker.new_lock_owner == TRUE) { 13986 mutex_enter(&lop->lo_lock); 13987 lop->lo_just_created = NFS4_PERM_CREATED; 13988 mutex_exit(&lop->lo_lock); 13989 } 13990 13991 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 13992 13993 /* 13994 * If the lock was the result of a resending a lost 13995 * request, we've synched up the stateid and seqid 13996 * with the server, but now the server might be out of sync 13997 * with what the application thinks it has for locks. 13998 * Clean that up here. It's unclear whether we should do 13999 * this even if the filesystem has been forcibly unmounted. 14000 * For most servers, it's probably wasted effort, but 14001 * RFC3530 lets servers require that unlocks exactly match 14002 * the locks that are held. 14003 */ 14004 if (resend_rqstp != NULL && 14005 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 14006 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 14007 } else { 14008 flk->l_whence = 0; 14009 } 14010 } else if (locku_args) { 14011 LOCKU4res *locku_res; 14012 14013 locku_res = &resop->nfs_resop4_u.oplocku; 14014 14015 /* Update the stateid with the server's response */ 14016 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 14017 } else if (lockt_args) { 14018 /* Switch the lock type to express success, see fcntl */ 14019 flk->l_type = F_UNLCK; 14020 flk->l_whence = 0; 14021 } 14022 } 14023 14024 /* 14025 * Do final cleanup before exiting nfs4frlock. 14026 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 14027 * COMPOUND4 args/res for calls that haven't already. 14028 */ 14029 static void 14030 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 14031 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 14032 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 14033 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 14034 short whence, u_offset_t offset, struct lm_sysid *ls, 14035 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 14036 bool_t did_start_fop, bool_t skip_get_err, 14037 cred_t *cred_otw, cred_t *cred) 14038 { 14039 mntinfo4_t *mi = VTOMI4(vp); 14040 rnode4_t *rp = VTOR4(vp); 14041 int error = *errorp; 14042 nfs_argop4 *argop; 14043 int do_flush_pages = 0; 14044 14045 ASSERT(nfs_zone() == mi->mi_zone); 14046 /* 14047 * The client recovery code wants the raw status information, 14048 * so don't map the NFS status code to an errno value for 14049 * non-normal call types. 14050 */ 14051 if (ctype == NFS4_LCK_CTYPE_NORM) { 14052 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 14053 *errorp = geterrno4(resp->status); 14054 if (did_start_fop == TRUE) 14055 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 14056 needrecov); 14057 14058 /* 14059 * We've established a new lock on the server, so invalidate 14060 * the pages associated with the vnode to get the most up to 14061 * date pages from the server after acquiring the lock. We 14062 * want to be sure that the read operation gets the newest data. 14063 * N.B. 14064 * We used to do this in nfs4frlock_results_ok but that doesn't 14065 * work since VOP_PUTPAGE can call nfs4_commit which calls 14066 * nfs4_start_fop. We flush the pages below after calling 14067 * nfs4_end_fop above 14068 * The flush of the page cache must be done after 14069 * nfs4_end_open_seqid_sync() to avoid a 4-way hang. 14070 */ 14071 if (!error && resp && resp->status == NFS4_OK) 14072 do_flush_pages = 1; 14073 } 14074 if (argsp) { 14075 ASSERT(argsp->array_len == 2); 14076 argop = argsp->array; 14077 if (argop[1].argop == OP_LOCK) 14078 nfs4args_lock_free(&argop[1]); 14079 else if (argop[1].argop == OP_LOCKT) 14080 nfs4args_lockt_free(&argop[1]); 14081 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14082 if (resp) 14083 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 14084 } 14085 14086 /* free the reference on the lock owner */ 14087 if (lop != NULL) { 14088 nfs4_end_lock_seqid_sync(lop); 14089 lock_owner_rele(lop); 14090 } 14091 14092 /* need to free up the reference on osp for lock args */ 14093 if (osp != NULL) 14094 open_stream_rele(osp, rp); 14095 14096 /* need to free up the reference on oop for lock args */ 14097 if (oop != NULL) { 14098 nfs4_end_open_seqid_sync(oop); 14099 open_owner_rele(oop); 14100 } 14101 14102 if (do_flush_pages) 14103 nfs4_flush_pages(vp, cred); 14104 14105 (void) convoff(vp, flk, whence, offset); 14106 14107 lm_rel_sysid(ls); 14108 14109 /* 14110 * Record debug information in the event we get EINVAL. 14111 */ 14112 mutex_enter(&mi->mi_lock); 14113 if (*errorp == EINVAL && (lock_args || locku_args) && 14114 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 14115 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 14116 zcmn_err(getzoneid(), CE_NOTE, 14117 "%s operation failed with " 14118 "EINVAL probably since the server, %s," 14119 " doesn't support POSIX style locking", 14120 lock_args ? "LOCK" : "LOCKU", 14121 mi->mi_curr_serv->sv_hostname); 14122 mi->mi_flags |= MI4_LOCK_DEBUG; 14123 } 14124 } 14125 mutex_exit(&mi->mi_lock); 14126 14127 if (cred_otw) 14128 crfree(cred_otw); 14129 } 14130 14131 /* 14132 * This calls the server and the local locking code. 14133 * 14134 * Client locks are registerred locally by oring the sysid with 14135 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. 14136 * We need to distinguish between the two to avoid collision in case one 14137 * machine is used as both client and server. 14138 * 14139 * Blocking lock requests will continually retry to acquire the lock 14140 * forever. 14141 * 14142 * The ctype is defined as follows: 14143 * NFS4_LCK_CTYPE_NORM: normal lock request. 14144 * 14145 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 14146 * recovery, get the pid from flk instead of curproc, and don't reregister 14147 * the lock locally. 14148 * 14149 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 14150 * that we will use the information passed in via resend_rqstp to setup the 14151 * lock/locku request. This resend is the exact same request as the 'lost 14152 * lock', and is initiated by the recovery framework. A successful resend 14153 * request can initiate one or more reinstate requests. 14154 * 14155 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 14156 * does not trigger additional reinstate requests. This lock call type is 14157 * set for setting the v4 server's locking state back to match what the 14158 * client's local locking state is in the event of a received 'lost lock'. 14159 * 14160 * Errors are returned via the nfs4_error_t parameter. 14161 */ 14162 void 14163 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 14164 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, 14165 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) 14166 { 14167 COMPOUND4args_clnt args, *argsp = NULL; 14168 COMPOUND4res_clnt res, *resp = NULL; 14169 nfs_argop4 *argop; 14170 nfs_resop4 *resop; 14171 rnode4_t *rp; 14172 int doqueue = 1; 14173 clock_t tick_delay; /* delay in clock ticks */ 14174 struct lm_sysid *ls; 14175 LOCK4args *lock_args = NULL; 14176 LOCKU4args *locku_args = NULL; 14177 LOCKT4args *lockt_args = NULL; 14178 nfs4_open_owner_t *oop = NULL; 14179 nfs4_open_stream_t *osp = NULL; 14180 nfs4_lock_owner_t *lop = NULL; 14181 bool_t needrecov = FALSE; 14182 nfs4_recov_state_t recov_state; 14183 short whence; 14184 nfs4_op_hint_t op_hint; 14185 nfs4_lost_rqst_t lost_rqst; 14186 bool_t retry = FALSE; 14187 bool_t did_start_fop = FALSE; 14188 bool_t skip_get_err = FALSE; 14189 cred_t *cred_otw = NULL; 14190 bool_t recovonly; /* just queue request */ 14191 int frc_no_reclaim = 0; 14192 #ifdef DEBUG 14193 char *name; 14194 #endif 14195 14196 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14197 14198 #ifdef DEBUG 14199 name = fn_name(VTOSV(vp)->sv_name); 14200 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 14201 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " 14202 "length %"PRIu64", pid %d, sysid %d, call type %s, " 14203 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, 14204 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : 14205 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), 14206 resend_rqstp ? "TRUE" : "FALSE")); 14207 kmem_free(name, MAXNAMELEN); 14208 #endif 14209 14210 nfs4_error_zinit(ep); 14211 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); 14212 if (ep->error) 14213 return; 14214 ep->error = nfs4frlock_get_sysid(&ls, vp, flk); 14215 if (ep->error) 14216 return; 14217 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, 14218 vp, cr, &cred_otw); 14219 14220 recov_retry: 14221 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 14222 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 14223 rp = VTOR4(vp); 14224 14225 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 14226 &did_start_fop, &recovonly); 14227 14228 if (ep->error) 14229 goto out; 14230 14231 if (recovonly) { 14232 /* 14233 * Leave the request for the recovery system to deal with. 14234 */ 14235 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14236 ASSERT(cmd != F_GETLK); 14237 ASSERT(flk->l_type == F_UNLCK); 14238 14239 nfs4_error_init(ep, EINTR); 14240 needrecov = TRUE; 14241 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14242 if (lop != NULL) { 14243 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 14244 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 14245 (void) nfs4_start_recovery(ep, 14246 VTOMI4(vp), vp, NULL, NULL, 14247 (lost_rqst.lr_op == OP_LOCK || 14248 lost_rqst.lr_op == OP_LOCKU) ? 14249 &lost_rqst : NULL, OP_LOCKU, NULL, NULL, NULL); 14250 lock_owner_rele(lop); 14251 lop = NULL; 14252 } 14253 flk->l_pid = curproc->p_pid; 14254 nfs4_register_lock_locally(vp, flk, flag, offset); 14255 goto out; 14256 } 14257 14258 /* putfh directory fh */ 14259 argop[0].argop = OP_CPUTFH; 14260 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 14261 14262 /* 14263 * Set up the over-the-wire arguments and get references to the 14264 * open owner, etc. 14265 */ 14266 14267 if (ctype == NFS4_LCK_CTYPE_RESEND || 14268 ctype == NFS4_LCK_CTYPE_REINSTATE) { 14269 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 14270 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 14271 } else { 14272 bool_t go_otw = TRUE; 14273 14274 ASSERT(resend_rqstp == NULL); 14275 14276 switch (cmd) { 14277 case F_GETLK: 14278 case F_O_GETLK: 14279 nfs4frlock_setup_lockt_args(ctype, &argop[1], 14280 &lockt_args, argsp, flk, rp); 14281 break; 14282 case F_SETLKW: 14283 case F_SETLK: 14284 if (flk->l_type == F_UNLCK) 14285 nfs4frlock_setup_locku_args(ctype, 14286 &argop[1], &locku_args, flk, 14287 &lop, ep, argsp, 14288 vp, flag, offset, cr, 14289 &skip_get_err, &go_otw); 14290 else 14291 nfs4frlock_setup_lock_args(ctype, 14292 &lock_args, &oop, &osp, &lop, &argop[1], 14293 argsp, flk, cmd, vp, cr, ep); 14294 14295 if (ep->error) 14296 goto out; 14297 14298 switch (ep->stat) { 14299 case NFS4_OK: 14300 break; 14301 case NFS4ERR_DELAY: 14302 /* recov thread never gets this error */ 14303 ASSERT(resend_rqstp == NULL); 14304 ASSERT(did_start_fop); 14305 14306 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 14307 &recov_state, TRUE); 14308 did_start_fop = FALSE; 14309 if (argop[1].argop == OP_LOCK) 14310 nfs4args_lock_free(&argop[1]); 14311 else if (argop[1].argop == OP_LOCKT) 14312 nfs4args_lockt_free(&argop[1]); 14313 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14314 argsp = NULL; 14315 goto recov_retry; 14316 default: 14317 ep->error = EIO; 14318 goto out; 14319 } 14320 break; 14321 default: 14322 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14323 "nfs4_frlock: invalid cmd %d", cmd)); 14324 ep->error = EINVAL; 14325 goto out; 14326 } 14327 14328 if (!go_otw) 14329 goto out; 14330 } 14331 14332 /* XXX should we use the local reclock as a cache ? */ 14333 /* 14334 * Unregister the lock with the local locking code before 14335 * contacting the server. This avoids a potential race where 14336 * another process gets notified that it has been granted a lock 14337 * before we can unregister ourselves locally. 14338 */ 14339 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { 14340 if (ctype == NFS4_LCK_CTYPE_NORM) 14341 flk->l_pid = ttoproc(curthread)->p_pid; 14342 nfs4_register_lock_locally(vp, flk, flag, offset); 14343 } 14344 14345 /* 14346 * Send the server the lock request. Continually loop with a delay 14347 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14348 */ 14349 resp = &res; 14350 14351 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14352 (CE_NOTE, 14353 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14354 rnode4info(rp))); 14355 14356 if (lock_args && frc_no_reclaim) { 14357 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14358 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14359 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14360 lock_args->reclaim = FALSE; 14361 if (did_reclaimp) 14362 *did_reclaimp = 0; 14363 } 14364 14365 /* 14366 * Do the OTW call. 14367 */ 14368 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14369 14370 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14371 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14372 14373 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14374 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14375 "nfs4frlock: needrecov %d", needrecov)); 14376 14377 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14378 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14379 args.ctag); 14380 14381 /* 14382 * Check if one of these mutually exclusive error cases has 14383 * happened: 14384 * need to swap credentials due to access error 14385 * recovery is needed 14386 * different error (only known case is missing Kerberos ticket) 14387 */ 14388 14389 if ((ep->error == EACCES || 14390 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14391 cred_otw != cr) { 14392 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14393 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14394 cr, &cred_otw); 14395 goto recov_retry; 14396 } 14397 14398 if (needrecov) { 14399 /* 14400 * LOCKT requests don't need to recover from lost 14401 * requests since they don't create/modify state. 14402 */ 14403 if ((ep->error == EINTR || 14404 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14405 lockt_args) 14406 goto out; 14407 /* 14408 * Do not attempt recovery for requests initiated by 14409 * the recovery framework. Let the framework redrive them. 14410 */ 14411 if (ctype != NFS4_LCK_CTYPE_NORM) 14412 goto out; 14413 else { 14414 ASSERT(resend_rqstp == NULL); 14415 } 14416 14417 nfs4frlock_save_lost_rqst(ctype, ep->error, 14418 flk_to_locktype(cmd, flk->l_type), 14419 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14420 14421 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14422 &resp, lock_args, locku_args, &oop, &osp, &lop, 14423 rp, vp, &recov_state, op_hint, &did_start_fop, 14424 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14425 14426 if (retry) { 14427 ASSERT(oop == NULL); 14428 ASSERT(osp == NULL); 14429 ASSERT(lop == NULL); 14430 goto recov_retry; 14431 } 14432 goto out; 14433 } 14434 14435 /* 14436 * Bail out if have reached this point with ep->error set. Can 14437 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr). 14438 * This happens if Kerberos ticket has expired or has been 14439 * destroyed. 14440 */ 14441 if (ep->error != 0) 14442 goto out; 14443 14444 /* 14445 * Process the reply. 14446 */ 14447 switch (resp->status) { 14448 case NFS4_OK: 14449 resop = &resp->array[1]; 14450 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, 14451 resend_rqstp); 14452 /* 14453 * Have a successful lock operation, now update state. 14454 */ 14455 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14456 resop, lop, vp, flk, cr, resend_rqstp); 14457 break; 14458 14459 case NFS4ERR_DENIED: 14460 resop = &resp->array[1]; 14461 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14462 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14463 &recov_state, needrecov, &argsp, &resp, 14464 &tick_delay, &whence, &ep->error, resop, cr, 14465 &did_start_fop, &skip_get_err); 14466 14467 if (retry) { 14468 ASSERT(oop == NULL); 14469 ASSERT(osp == NULL); 14470 ASSERT(lop == NULL); 14471 goto recov_retry; 14472 } 14473 break; 14474 /* 14475 * If the server won't let us reclaim, fall-back to trying to lock 14476 * the file from scratch. Code elsewhere will check the changeinfo 14477 * to ensure the file hasn't been changed. 14478 */ 14479 case NFS4ERR_NO_GRACE: 14480 if (lock_args && lock_args->reclaim == TRUE) { 14481 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14482 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14483 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14484 frc_no_reclaim = 1; 14485 /* clean up before retrying */ 14486 needrecov = 0; 14487 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14488 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14489 &recov_state, op_hint, &did_start_fop, NULL, flk); 14490 goto recov_retry; 14491 } 14492 /* FALLTHROUGH */ 14493 14494 default: 14495 nfs4frlock_results_default(resp, &ep->error); 14496 break; 14497 } 14498 out: 14499 /* 14500 * Process and cleanup from error. Make interrupted unlock 14501 * requests look successful, since they will be handled by the 14502 * client recovery code. 14503 */ 14504 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14505 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, 14506 lock_args, locku_args, did_start_fop, 14507 skip_get_err, cred_otw, cr); 14508 14509 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14510 (cmd == F_SETLK || cmd == F_SETLKW)) 14511 ep->error = 0; 14512 } 14513 14514 /* 14515 * nfs4_safelock: 14516 * 14517 * Return non-zero if the given lock request can be handled without 14518 * violating the constraints on concurrent mapping and locking. 14519 */ 14520 14521 static int 14522 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14523 { 14524 rnode4_t *rp = VTOR4(vp); 14525 struct vattr va; 14526 int error; 14527 14528 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14529 ASSERT(rp->r_mapcnt >= 0); 14530 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14531 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14532 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14533 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14534 14535 if (rp->r_mapcnt == 0) 14536 return (1); /* always safe if not mapped */ 14537 14538 /* 14539 * If the file is already mapped and there are locks, then they 14540 * should be all safe locks. So adding or removing a lock is safe 14541 * as long as the new request is safe (i.e., whole-file, meaning 14542 * length and starting offset are both zero). 14543 */ 14544 14545 if (bfp->l_start != 0 || bfp->l_len != 0) { 14546 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14547 "cannot lock a memory mapped file unless locking the " 14548 "entire file: start %"PRIx64", len %"PRIx64, 14549 bfp->l_start, bfp->l_len)); 14550 return (0); 14551 } 14552 14553 /* mandatory locking and mapping don't mix */ 14554 va.va_mask = AT_MODE; 14555 error = VOP_GETATTR(vp, &va, 0, cr, NULL); 14556 if (error != 0) { 14557 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14558 "getattr error %d", error)); 14559 return (0); /* treat errors conservatively */ 14560 } 14561 if (MANDLOCK(vp, va.va_mode)) { 14562 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14563 "cannot mandatory lock and mmap a file")); 14564 return (0); 14565 } 14566 14567 return (1); 14568 } 14569 14570 14571 /* 14572 * Register the lock locally within Solaris. 14573 * As the client, we "or" the sysid with LM_SYSID_CLIENT when 14574 * recording locks locally. 14575 * 14576 * This should handle conflicts/cooperation with NFS v2/v3 since all locks 14577 * are registered locally. 14578 */ 14579 void 14580 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, 14581 u_offset_t offset) 14582 { 14583 int oldsysid; 14584 int error; 14585 #ifdef DEBUG 14586 char *name; 14587 #endif 14588 14589 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14590 14591 #ifdef DEBUG 14592 name = fn_name(VTOSV(vp)->sv_name); 14593 NFS4_DEBUG(nfs4_client_lock_debug, 14594 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " 14595 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", 14596 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, 14597 flk->l_sysid)); 14598 kmem_free(name, MAXNAMELEN); 14599 #endif 14600 14601 /* register the lock with local locking */ 14602 oldsysid = flk->l_sysid; 14603 flk->l_sysid |= LM_SYSID_CLIENT; 14604 error = reclock(vp, flk, SETFLCK, flag, offset, NULL); 14605 #ifdef DEBUG 14606 if (error != 0) { 14607 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14608 "nfs4_register_lock_locally: could not register with" 14609 " local locking")); 14610 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14611 "error %d, vp 0x%p, pid %d, sysid 0x%x", 14612 error, (void *)vp, flk->l_pid, flk->l_sysid)); 14613 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14614 "type %d off 0x%" PRIx64 " len 0x%" PRIx64, 14615 flk->l_type, flk->l_start, flk->l_len)); 14616 (void) reclock(vp, flk, 0, flag, offset, NULL); 14617 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14618 "blocked by pid %d sysid 0x%x type %d " 14619 "off 0x%" PRIx64 " len 0x%" PRIx64, 14620 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, 14621 flk->l_len)); 14622 } 14623 #endif 14624 flk->l_sysid = oldsysid; 14625 } 14626 14627 /* 14628 * nfs4_lockrelease: 14629 * 14630 * Release any locks on the given vnode that are held by the current 14631 * process. Also removes the lock owner (if one exists) from the rnode's 14632 * list. 14633 */ 14634 static int 14635 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14636 { 14637 flock64_t ld; 14638 int ret, error; 14639 rnode4_t *rp; 14640 nfs4_lock_owner_t *lop; 14641 nfs4_recov_state_t recov_state; 14642 mntinfo4_t *mi; 14643 bool_t possible_orphan = FALSE; 14644 bool_t recovonly; 14645 14646 ASSERT((uintptr_t)vp > KERNELBASE); 14647 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14648 14649 rp = VTOR4(vp); 14650 mi = VTOMI4(vp); 14651 14652 /* 14653 * If we have not locked anything then we can 14654 * just return since we have no work to do. 14655 */ 14656 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14657 return (0); 14658 } 14659 14660 /* 14661 * We need to comprehend that another thread may 14662 * kick off recovery and the lock_owner we have stashed 14663 * in lop might be invalid so we should NOT cache it 14664 * locally! 14665 */ 14666 recov_state.rs_flags = 0; 14667 recov_state.rs_num_retry_despite_err = 0; 14668 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14669 &recovonly); 14670 if (error) { 14671 mutex_enter(&rp->r_statelock); 14672 rp->r_flags |= R4LODANGLERS; 14673 mutex_exit(&rp->r_statelock); 14674 return (error); 14675 } 14676 14677 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14678 14679 /* 14680 * Check if the lock owner might have a lock (request was sent but 14681 * no response was received). Also check if there are any remote 14682 * locks on the file. (In theory we shouldn't have to make this 14683 * second check if there's no lock owner, but for now we'll be 14684 * conservative and do it anyway.) If either condition is true, 14685 * send an unlock for the entire file to the server. 14686 * 14687 * Note that no explicit synchronization is needed here. At worst, 14688 * flk_has_remote_locks() will return a false positive, in which case 14689 * the unlock call wastes time but doesn't harm correctness. 14690 */ 14691 14692 if (lop) { 14693 mutex_enter(&lop->lo_lock); 14694 possible_orphan = lop->lo_pending_rqsts; 14695 mutex_exit(&lop->lo_lock); 14696 lock_owner_rele(lop); 14697 } 14698 14699 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14700 14701 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14702 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14703 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14704 (void *)lop)); 14705 14706 if (possible_orphan || flk_has_remote_locks(vp)) { 14707 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14708 ld.l_whence = 0; /* unlock from start of file */ 14709 ld.l_start = 0; 14710 ld.l_len = 0; /* do entire file */ 14711 14712 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, 14713 cr, NULL); 14714 14715 if (ret != 0) { 14716 /* 14717 * If VOP_FRLOCK fails, make sure we unregister 14718 * local locks before we continue. 14719 */ 14720 ld.l_pid = ttoproc(curthread)->p_pid; 14721 nfs4_register_lock_locally(vp, &ld, flag, offset); 14722 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14723 "nfs4_lockrelease: lock release error on vp" 14724 " %p: error %d.\n", (void *)vp, ret)); 14725 } 14726 } 14727 14728 recov_state.rs_flags = 0; 14729 recov_state.rs_num_retry_despite_err = 0; 14730 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14731 &recovonly); 14732 if (error) { 14733 mutex_enter(&rp->r_statelock); 14734 rp->r_flags |= R4LODANGLERS; 14735 mutex_exit(&rp->r_statelock); 14736 return (error); 14737 } 14738 14739 /* 14740 * So, here we're going to need to retrieve the lock-owner 14741 * again (in case recovery has done a switch-a-roo) and 14742 * remove it because we can. 14743 */ 14744 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14745 14746 if (lop) { 14747 nfs4_rnode_remove_lock_owner(rp, lop); 14748 lock_owner_rele(lop); 14749 } 14750 14751 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14752 return (0); 14753 } 14754 14755 /* 14756 * Wait for 'tick_delay' clock ticks. 14757 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14758 * 14759 * The client should retry to acquire the lock faster than the lease period. 14760 * We use roughly half of the lease time to use a similar calculation as it is 14761 * used in nfs4_renew_lease_thread(). 14762 * 14763 * XXX For future improvements, should implement a waiting queue scheme. 14764 */ 14765 static int 14766 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) 14767 { 14768 long max_msec_delay = 1 * 1000; /* 1 sec */ 14769 nfs4_server_t *sp; 14770 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 14771 14772 /* wait tick_delay clock ticks or siginteruptus */ 14773 if (delay_sig(*tick_delay)) { 14774 return (EINTR); 14775 } 14776 14777 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14778 "reissue the lock request: blocked for %ld clock ticks: %ld " 14779 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14780 14781 /* 14782 * Get the current lease time and propagation time for the server 14783 * associated with the given file. Note that both times could 14784 * change immediately after this section. 14785 */ 14786 nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0); 14787 sp = find_nfs4_server(mi); 14788 if (sp != NULL) { 14789 if (!(mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED)) { 14790 max_msec_delay = sp->s_lease_time * 1000 / 2 - 14791 (3 * sp->propagation_delay.tv_sec * 14792 1000); 14793 } 14794 mutex_exit(&sp->s_lock); 14795 nfs4_server_rele(sp); 14796 } 14797 nfs_rw_exit(&mi->mi_recovlock); 14798 14799 max_msec_delay = MAX(max_msec_delay, nfs4_base_wait_time); 14800 *tick_delay = MIN(drv_usectohz(max_msec_delay * 1000), *tick_delay * 2); 14801 return (0); 14802 } 14803 14804 void 14805 nfs4_vnops_init(void) 14806 { 14807 } 14808 14809 void 14810 nfs4_vnops_fini(void) 14811 { 14812 } 14813 14814 /* 14815 * Return a reference to the directory (parent) vnode for a given vnode, 14816 * using the saved pathname information and the directory file handle. The 14817 * caller is responsible for disposing of the reference. 14818 * Returns zero or an errno value. 14819 * 14820 * Caller should set need_start_op to FALSE if it is the recovery 14821 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14822 */ 14823 int 14824 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14825 { 14826 svnode_t *svnp; 14827 vnode_t *dvp = NULL; 14828 servinfo4_t *svp; 14829 nfs4_fname_t *mfname; 14830 int error; 14831 14832 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14833 14834 if (vp->v_flag & VROOT) { 14835 nfs4_sharedfh_t *sfh; 14836 nfs_fh4 fh; 14837 mntinfo4_t *mi; 14838 14839 ASSERT(vp->v_type == VREG); 14840 14841 mi = VTOMI4(vp); 14842 svp = mi->mi_curr_serv; 14843 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14844 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14845 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14846 sfh = sfh4_get(&fh, VTOMI4(vp)); 14847 nfs_rw_exit(&svp->sv_lock); 14848 mfname = mi->mi_fname; 14849 fn_hold(mfname); 14850 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14851 sfh4_rele(&sfh); 14852 14853 if (dvp->v_type == VNON) 14854 dvp->v_type = VDIR; 14855 *dvpp = dvp; 14856 return (0); 14857 } 14858 14859 svnp = VTOSV(vp); 14860 14861 if (svnp == NULL) { 14862 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14863 "shadow node is NULL")); 14864 return (EINVAL); 14865 } 14866 14867 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14868 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14869 "shadow node name or dfh val == NULL")); 14870 return (EINVAL); 14871 } 14872 14873 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14874 (int)need_start_op); 14875 if (error != 0) { 14876 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14877 "nfs4_make_dotdot returned %d", error)); 14878 return (error); 14879 } 14880 if (!dvp) { 14881 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14882 "nfs4_make_dotdot returned a NULL dvp")); 14883 return (EIO); 14884 } 14885 if (dvp->v_type == VNON) 14886 dvp->v_type = VDIR; 14887 ASSERT(dvp->v_type == VDIR); 14888 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14889 mutex_enter(&dvp->v_lock); 14890 dvp->v_flag |= V_XATTRDIR; 14891 mutex_exit(&dvp->v_lock); 14892 } 14893 *dvpp = dvp; 14894 return (0); 14895 } 14896 14897 /* 14898 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14899 * length that fnamep can accept, including the trailing null. 14900 * Returns 0 if okay, returns an errno value if there was a problem. 14901 */ 14902 14903 int 14904 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14905 { 14906 char *fn; 14907 int err = 0; 14908 servinfo4_t *svp; 14909 svnode_t *shvp; 14910 14911 /* 14912 * If the file being opened has VROOT set, then this is 14913 * a "file" mount. sv_name will not be interesting, so 14914 * go back to the servinfo4 to get the original mount 14915 * path and strip off all but the final edge. Otherwise 14916 * just return the name from the shadow vnode. 14917 */ 14918 14919 if (vp->v_flag & VROOT) { 14920 14921 svp = VTOMI4(vp)->mi_curr_serv; 14922 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14923 14924 fn = strrchr(svp->sv_path, '/'); 14925 if (fn == NULL) 14926 err = EINVAL; 14927 else 14928 fn++; 14929 } else { 14930 shvp = VTOSV(vp); 14931 fn = fn_name(shvp->sv_name); 14932 } 14933 14934 if (err == 0) 14935 if (strlen(fn) < maxlen) 14936 (void) strcpy(fnamep, fn); 14937 else 14938 err = ENAMETOOLONG; 14939 14940 if (vp->v_flag & VROOT) 14941 nfs_rw_exit(&svp->sv_lock); 14942 else 14943 kmem_free(fn, MAXNAMELEN); 14944 14945 return (err); 14946 } 14947 14948 /* 14949 * Bookkeeping for a close that doesn't need to go over the wire. 14950 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14951 * it is left at 1. 14952 */ 14953 void 14954 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14955 { 14956 rnode4_t *rp; 14957 mntinfo4_t *mi; 14958 14959 mi = VTOMI4(vp); 14960 rp = VTOR4(vp); 14961 14962 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14963 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14964 ASSERT(nfs_zone() == mi->mi_zone); 14965 ASSERT(mutex_owned(&osp->os_sync_lock)); 14966 ASSERT(*have_lockp); 14967 14968 if (!osp->os_valid || 14969 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14970 return; 14971 } 14972 14973 /* 14974 * This removes the reference obtained at OPEN; ie, 14975 * when the open stream structure was created. 14976 * 14977 * We don't have to worry about calling 'open_stream_rele' 14978 * since we our currently holding a reference to this 14979 * open stream which means the count can not go to 0 with 14980 * this decrement. 14981 */ 14982 ASSERT(osp->os_ref_count >= 2); 14983 osp->os_ref_count--; 14984 osp->os_valid = 0; 14985 mutex_exit(&osp->os_sync_lock); 14986 *have_lockp = 0; 14987 14988 nfs4_dec_state_ref_count(mi); 14989 } 14990 14991 /* 14992 * Close all remaining open streams on the rnode. These open streams 14993 * could be here because: 14994 * - The close attempted at either close or delmap failed 14995 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 14996 * - Someone did mknod on a regular file but never opened it 14997 */ 14998 int 14999 nfs4close_all(vnode_t *vp, cred_t *cr) 15000 { 15001 nfs4_open_stream_t *osp; 15002 int error; 15003 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 15004 rnode4_t *rp; 15005 15006 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15007 15008 error = 0; 15009 rp = VTOR4(vp); 15010 15011 /* 15012 * At this point, all we know is that the last time 15013 * someone called vn_rele, the count was 1. Since then, 15014 * the vnode could have been re-activated. We want to 15015 * loop through the open streams and close each one, but 15016 * we have to be careful since once we release the rnode 15017 * hash bucket lock, someone else is free to come in and 15018 * re-activate the rnode and add new open streams. The 15019 * strategy is take the rnode hash bucket lock, verify that 15020 * the count is still 1, grab the open stream off the 15021 * head of the list and mark it invalid, then release the 15022 * rnode hash bucket lock and proceed with that open stream. 15023 * This is ok because nfs4close_one() will acquire the proper 15024 * open/create to close/destroy synchronization for open 15025 * streams, and will ensure that if someone has reopened 15026 * the open stream after we've dropped the hash bucket lock 15027 * then we'll just simply return without destroying the 15028 * open stream. 15029 * Repeat until the list is empty. 15030 */ 15031 15032 for (;;) { 15033 15034 /* make sure vnode hasn't been reactivated */ 15035 rw_enter(&rp->r_hashq->r_lock, RW_READER); 15036 mutex_enter(&vp->v_lock); 15037 if (vp->v_count > 1) { 15038 mutex_exit(&vp->v_lock); 15039 rw_exit(&rp->r_hashq->r_lock); 15040 break; 15041 } 15042 /* 15043 * Grabbing r_os_lock before releasing v_lock prevents 15044 * a window where the rnode/open stream could get 15045 * reactivated (and os_force_close set to 0) before we 15046 * had a chance to set os_force_close to 1. 15047 */ 15048 mutex_enter(&rp->r_os_lock); 15049 mutex_exit(&vp->v_lock); 15050 15051 osp = list_head(&rp->r_open_streams); 15052 if (!osp) { 15053 /* nothing left to CLOSE OTW, so return */ 15054 mutex_exit(&rp->r_os_lock); 15055 rw_exit(&rp->r_hashq->r_lock); 15056 break; 15057 } 15058 15059 mutex_enter(&rp->r_statev4_lock); 15060 /* the file can't still be mem mapped */ 15061 ASSERT(rp->r_mapcnt == 0); 15062 if (rp->created_v4) 15063 rp->created_v4 = 0; 15064 mutex_exit(&rp->r_statev4_lock); 15065 15066 /* 15067 * Grab a ref on this open stream; nfs4close_one 15068 * will mark it as invalid 15069 */ 15070 mutex_enter(&osp->os_sync_lock); 15071 osp->os_ref_count++; 15072 osp->os_force_close = 1; 15073 mutex_exit(&osp->os_sync_lock); 15074 mutex_exit(&rp->r_os_lock); 15075 rw_exit(&rp->r_hashq->r_lock); 15076 15077 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 15078 15079 /* Update error if it isn't already non-zero */ 15080 if (error == 0) { 15081 if (e.error) 15082 error = e.error; 15083 else if (e.stat) 15084 error = geterrno4(e.stat); 15085 } 15086 15087 #ifdef DEBUG 15088 nfs4close_all_cnt++; 15089 #endif 15090 /* Release the ref on osp acquired above. */ 15091 open_stream_rele(osp, rp); 15092 15093 /* Proceed to the next open stream, if any */ 15094 } 15095 return (error); 15096 } 15097 15098 /* 15099 * nfs4close_one - close one open stream for a file if needed. 15100 * 15101 * "close_type" indicates which close path this is: 15102 * CLOSE_NORM: close initiated via VOP_CLOSE. 15103 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 15104 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 15105 * the close and release of client state for this open stream 15106 * (unless someone else has the open stream open). 15107 * CLOSE_RESEND: indicates the request is a replay of an earlier request 15108 * (e.g., due to abort because of a signal). 15109 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 15110 * 15111 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 15112 * recovery. Instead, the caller is expected to deal with retries. 15113 * 15114 * The caller can either pass in the osp ('provided_osp') or not. 15115 * 15116 * 'access_bits' represents the access we are closing/downgrading. 15117 * 15118 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 15119 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 15120 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 15121 * 15122 * Errors are returned via the nfs4_error_t. 15123 */ 15124 void 15125 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 15126 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 15127 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 15128 uint_t mmap_flags) 15129 { 15130 nfs4_open_owner_t *oop; 15131 nfs4_open_stream_t *osp = NULL; 15132 int retry = 0; 15133 int num_retries = NFS4_NUM_RECOV_RETRIES; 15134 rnode4_t *rp; 15135 mntinfo4_t *mi; 15136 nfs4_recov_state_t recov_state; 15137 cred_t *cred_otw = NULL; 15138 bool_t recovonly = FALSE; 15139 int isrecov; 15140 int force_close; 15141 int close_failed = 0; 15142 int did_dec_count = 0; 15143 int did_start_op = 0; 15144 int did_force_recovlock = 0; 15145 int did_start_seqid_sync = 0; 15146 int have_sync_lock = 0; 15147 15148 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15149 15150 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 15151 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 15152 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 15153 len, maxprot, mmap_flags, access_bits)); 15154 15155 nfs4_error_zinit(ep); 15156 rp = VTOR4(vp); 15157 mi = VTOMI4(vp); 15158 isrecov = (close_type == CLOSE_RESEND || 15159 close_type == CLOSE_AFTER_RESEND); 15160 15161 /* 15162 * First get the open owner. 15163 */ 15164 if (!provided_osp) { 15165 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 15166 } else { 15167 oop = provided_osp->os_open_owner; 15168 ASSERT(oop != NULL); 15169 open_owner_hold(oop); 15170 } 15171 15172 if (!oop) { 15173 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15174 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 15175 "close type %d", (void *)rp, (void *)mi, (void *)cr, 15176 (void *)provided_osp, close_type)); 15177 ep->error = EIO; 15178 goto out; 15179 } 15180 15181 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 15182 recov_retry: 15183 osp = NULL; 15184 close_failed = 0; 15185 force_close = (close_type == CLOSE_FORCE); 15186 retry = 0; 15187 did_start_op = 0; 15188 did_force_recovlock = 0; 15189 did_start_seqid_sync = 0; 15190 have_sync_lock = 0; 15191 recovonly = FALSE; 15192 recov_state.rs_flags = 0; 15193 recov_state.rs_num_retry_despite_err = 0; 15194 15195 /* 15196 * Second synchronize with recovery. 15197 */ 15198 if (!isrecov) { 15199 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 15200 &recov_state, &recovonly); 15201 if (!ep->error) { 15202 did_start_op = 1; 15203 } else { 15204 close_failed = 1; 15205 /* 15206 * If we couldn't get start_fop, but have to 15207 * cleanup state, then at least acquire the 15208 * mi_recovlock so we can synchronize with 15209 * recovery. 15210 */ 15211 if (close_type == CLOSE_FORCE) { 15212 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 15213 RW_READER, FALSE); 15214 did_force_recovlock = 1; 15215 } else 15216 goto out; 15217 } 15218 } 15219 15220 /* 15221 * We cannot attempt to get the open seqid sync if nfs4_start_fop 15222 * set 'recovonly' to TRUE since most likely this is due to 15223 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 15224 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 15225 * to retry, causing us to loop until recovery finishes. Plus we 15226 * don't need protection over the open seqid since we're not going 15227 * OTW, hence don't need to use the seqid. 15228 */ 15229 if (recovonly == FALSE) { 15230 /* need to grab the open owner sync before 'os_sync_lock' */ 15231 ep->error = nfs4_start_open_seqid_sync(oop, mi); 15232 if (ep->error == EAGAIN) { 15233 ASSERT(!isrecov); 15234 if (did_start_op) 15235 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15236 &recov_state, TRUE); 15237 if (did_force_recovlock) 15238 nfs_rw_exit(&mi->mi_recovlock); 15239 goto recov_retry; 15240 } 15241 did_start_seqid_sync = 1; 15242 } 15243 15244 /* 15245 * Third get an open stream and acquire 'os_sync_lock' to 15246 * sychronize the opening/creating of an open stream with the 15247 * closing/destroying of an open stream. 15248 */ 15249 if (!provided_osp) { 15250 /* returns with 'os_sync_lock' held */ 15251 osp = find_open_stream(oop, rp); 15252 if (!osp) { 15253 ep->error = EIO; 15254 goto out; 15255 } 15256 } else { 15257 osp = provided_osp; 15258 open_stream_hold(osp); 15259 mutex_enter(&osp->os_sync_lock); 15260 } 15261 have_sync_lock = 1; 15262 15263 ASSERT(oop == osp->os_open_owner); 15264 15265 /* 15266 * Fourth, do any special pre-OTW CLOSE processing 15267 * based on the specific close type. 15268 */ 15269 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 15270 !did_dec_count) { 15271 ASSERT(osp->os_open_ref_count > 0); 15272 osp->os_open_ref_count--; 15273 did_dec_count = 1; 15274 if (osp->os_open_ref_count == 0) 15275 osp->os_final_close = 1; 15276 } 15277 15278 if (close_type == CLOSE_FORCE) { 15279 /* see if somebody reopened the open stream. */ 15280 if (!osp->os_force_close) { 15281 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15282 "nfs4close_one: skip CLOSE_FORCE as osp %p " 15283 "was reopened, vp %p", (void *)osp, (void *)vp)); 15284 ep->error = 0; 15285 ep->stat = NFS4_OK; 15286 goto out; 15287 } 15288 15289 if (!osp->os_final_close && !did_dec_count) { 15290 osp->os_open_ref_count--; 15291 did_dec_count = 1; 15292 } 15293 15294 /* 15295 * We can't depend on os_open_ref_count being 0 due to the 15296 * way executables are opened (VN_RELE to match a VOP_OPEN). 15297 */ 15298 #ifdef NOTYET 15299 ASSERT(osp->os_open_ref_count == 0); 15300 #endif 15301 if (osp->os_open_ref_count != 0) { 15302 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15303 "nfs4close_one: should panic here on an " 15304 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 15305 "since this is probably the exec problem.")); 15306 15307 osp->os_open_ref_count = 0; 15308 } 15309 15310 /* 15311 * There is the possibility that nfs4close_one() 15312 * for close_type == CLOSE_DELMAP couldn't find the 15313 * open stream, thus couldn't decrement its os_mapcnt; 15314 * therefore we can't use this ASSERT yet. 15315 */ 15316 #ifdef NOTYET 15317 ASSERT(osp->os_mapcnt == 0); 15318 #endif 15319 osp->os_mapcnt = 0; 15320 } 15321 15322 if (close_type == CLOSE_DELMAP && !did_dec_count) { 15323 ASSERT(osp->os_mapcnt >= btopr(len)); 15324 15325 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15326 osp->os_mmap_write -= btopr(len); 15327 if (maxprot & PROT_READ) 15328 osp->os_mmap_read -= btopr(len); 15329 if (maxprot & PROT_EXEC) 15330 osp->os_mmap_read -= btopr(len); 15331 /* mirror the PROT_NONE check in nfs4_addmap() */ 15332 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15333 !(maxprot & PROT_EXEC)) 15334 osp->os_mmap_read -= btopr(len); 15335 osp->os_mapcnt -= btopr(len); 15336 did_dec_count = 1; 15337 } 15338 15339 if (recovonly) { 15340 nfs4_lost_rqst_t lost_rqst; 15341 15342 /* request should not already be in recovery queue */ 15343 ASSERT(lrp == NULL); 15344 nfs4_error_init(ep, EINTR); 15345 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15346 osp, cred_otw, vp); 15347 mutex_exit(&osp->os_sync_lock); 15348 have_sync_lock = 0; 15349 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15350 lost_rqst.lr_op == OP_CLOSE ? 15351 &lost_rqst : NULL, OP_CLOSE, NULL, NULL, NULL); 15352 close_failed = 1; 15353 force_close = 0; 15354 goto close_cleanup; 15355 } 15356 15357 /* 15358 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15359 * we stopped operating on the open owner's <old oo_name, old seqid> 15360 * space, which means we stopped operating on the open stream 15361 * too. So don't go OTW (as the seqid is likely bad, and the 15362 * stateid could be stale, potentially triggering a false 15363 * setclientid), and just clean up the client's internal state. 15364 */ 15365 if (osp->os_orig_oo_name != oop->oo_name) { 15366 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15367 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15368 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15369 "oo_name %" PRIx64")", 15370 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15371 oop->oo_name)); 15372 close_failed = 1; 15373 } 15374 15375 /* If the file failed recovery, just quit. */ 15376 mutex_enter(&rp->r_statelock); 15377 if (rp->r_flags & R4RECOVERR) { 15378 close_failed = 1; 15379 } 15380 mutex_exit(&rp->r_statelock); 15381 15382 /* 15383 * If the force close path failed to obtain start_fop 15384 * then skip the OTW close and just remove the state. 15385 */ 15386 if (close_failed) 15387 goto close_cleanup; 15388 15389 /* 15390 * Fifth, check to see if there are still mapped pages or other 15391 * opens using this open stream. If there are then we can't 15392 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15393 */ 15394 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15395 nfs4_lost_rqst_t new_lost_rqst; 15396 bool_t needrecov = FALSE; 15397 cred_t *odg_cred_otw = NULL; 15398 seqid4 open_dg_seqid = 0; 15399 15400 if (osp->os_delegation) { 15401 /* 15402 * If this open stream was never OPENed OTW then we 15403 * surely can't DOWNGRADE it (especially since the 15404 * osp->open_stateid is really a delegation stateid 15405 * when os_delegation is 1). 15406 */ 15407 if (access_bits & FREAD) 15408 osp->os_share_acc_read--; 15409 if (access_bits & FWRITE) 15410 osp->os_share_acc_write--; 15411 osp->os_share_deny_none--; 15412 nfs4_error_zinit(ep); 15413 goto out; 15414 } 15415 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15416 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15417 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15418 if (needrecov && !isrecov) { 15419 bool_t abort; 15420 nfs4_bseqid_entry_t *bsep = NULL; 15421 15422 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15423 bsep = nfs4_create_bseqid_entry(oop, NULL, 15424 vp, 0, 15425 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15426 open_dg_seqid); 15427 15428 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15429 oop, osp, odg_cred_otw, vp, access_bits, 0); 15430 mutex_exit(&osp->os_sync_lock); 15431 have_sync_lock = 0; 15432 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15433 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15434 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15435 bsep, NULL, NULL); 15436 if (odg_cred_otw) 15437 crfree(odg_cred_otw); 15438 if (bsep) 15439 kmem_free(bsep, sizeof (*bsep)); 15440 15441 if (abort == TRUE) 15442 goto out; 15443 15444 if (did_start_seqid_sync) { 15445 nfs4_end_open_seqid_sync(oop); 15446 did_start_seqid_sync = 0; 15447 } 15448 open_stream_rele(osp, rp); 15449 15450 if (did_start_op) 15451 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15452 &recov_state, FALSE); 15453 if (did_force_recovlock) 15454 nfs_rw_exit(&mi->mi_recovlock); 15455 15456 goto recov_retry; 15457 } else { 15458 if (odg_cred_otw) 15459 crfree(odg_cred_otw); 15460 } 15461 goto out; 15462 } 15463 15464 /* 15465 * If this open stream was created as the results of an open 15466 * while holding a delegation, then just release it; no need 15467 * to do an OTW close. Otherwise do a "normal" OTW close. 15468 */ 15469 if (osp->os_delegation) { 15470 nfs4close_notw(vp, osp, &have_sync_lock); 15471 nfs4_error_zinit(ep); 15472 goto out; 15473 } 15474 15475 /* 15476 * If this stream is not valid, we're done. 15477 */ 15478 if (!osp->os_valid) { 15479 nfs4_error_zinit(ep); 15480 goto out; 15481 } 15482 15483 /* 15484 * Last open or mmap ref has vanished, need to do an OTW close. 15485 * First check to see if a close is still necessary. 15486 */ 15487 if (osp->os_failed_reopen) { 15488 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15489 "don't close OTW osp %p since reopen failed.", 15490 (void *)osp)); 15491 /* 15492 * Reopen of the open stream failed, hence the 15493 * stateid of the open stream is invalid/stale, and 15494 * sending this OTW would incorrectly cause another 15495 * round of recovery. In this case, we need to set 15496 * the 'os_valid' bit to 0 so another thread doesn't 15497 * come in and re-open this open stream before 15498 * this "closing" thread cleans up state (decrementing 15499 * the nfs4_server_t's state_ref_count and decrementing 15500 * the os_ref_count). 15501 */ 15502 osp->os_valid = 0; 15503 /* 15504 * This removes the reference obtained at OPEN; ie, 15505 * when the open stream structure was created. 15506 * 15507 * We don't have to worry about calling 'open_stream_rele' 15508 * since we our currently holding a reference to this 15509 * open stream which means the count can not go to 0 with 15510 * this decrement. 15511 */ 15512 ASSERT(osp->os_ref_count >= 2); 15513 osp->os_ref_count--; 15514 nfs4_error_zinit(ep); 15515 close_failed = 0; 15516 goto close_cleanup; 15517 } 15518 15519 ASSERT(osp->os_ref_count > 1); 15520 15521 /* 15522 * Sixth, try the CLOSE OTW. 15523 */ 15524 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15525 close_type, ep, &have_sync_lock); 15526 15527 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15528 /* 15529 * Let the recovery thread be responsible for 15530 * removing the state for CLOSE. 15531 */ 15532 close_failed = 1; 15533 force_close = 0; 15534 retry = 0; 15535 } 15536 15537 /* See if we need to retry with a different cred */ 15538 if ((ep->error == EACCES || 15539 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15540 cred_otw != cr) { 15541 crfree(cred_otw); 15542 cred_otw = cr; 15543 crhold(cred_otw); 15544 retry = 1; 15545 } 15546 15547 if (ep->error || ep->stat) 15548 close_failed = 1; 15549 15550 if (retry && !isrecov && num_retries-- > 0) { 15551 if (have_sync_lock) { 15552 mutex_exit(&osp->os_sync_lock); 15553 have_sync_lock = 0; 15554 } 15555 if (did_start_seqid_sync) { 15556 nfs4_end_open_seqid_sync(oop); 15557 did_start_seqid_sync = 0; 15558 } 15559 open_stream_rele(osp, rp); 15560 15561 if (did_start_op) 15562 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15563 &recov_state, FALSE); 15564 if (did_force_recovlock) 15565 nfs_rw_exit(&mi->mi_recovlock); 15566 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15567 "nfs4close_one: need to retry the close " 15568 "operation")); 15569 goto recov_retry; 15570 } 15571 close_cleanup: 15572 /* 15573 * Seventh and lastly, process our results. 15574 */ 15575 if (close_failed && force_close) { 15576 /* 15577 * It's ok to drop and regrab the 'os_sync_lock' since 15578 * nfs4close_notw() will recheck to make sure the 15579 * "close"/removal of state should happen. 15580 */ 15581 if (!have_sync_lock) { 15582 mutex_enter(&osp->os_sync_lock); 15583 have_sync_lock = 1; 15584 } 15585 /* 15586 * This is last call, remove the ref on the open 15587 * stream created by open and clean everything up. 15588 */ 15589 osp->os_pending_close = 0; 15590 nfs4close_notw(vp, osp, &have_sync_lock); 15591 nfs4_error_zinit(ep); 15592 } 15593 15594 if (!close_failed) { 15595 if (have_sync_lock) { 15596 osp->os_pending_close = 0; 15597 mutex_exit(&osp->os_sync_lock); 15598 have_sync_lock = 0; 15599 } else { 15600 mutex_enter(&osp->os_sync_lock); 15601 osp->os_pending_close = 0; 15602 mutex_exit(&osp->os_sync_lock); 15603 } 15604 if (did_start_op && recov_state.rs_sp != NULL) { 15605 mutex_enter(&recov_state.rs_sp->s_lock); 15606 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15607 mutex_exit(&recov_state.rs_sp->s_lock); 15608 } else { 15609 nfs4_dec_state_ref_count(mi); 15610 } 15611 nfs4_error_zinit(ep); 15612 } 15613 15614 out: 15615 if (have_sync_lock) 15616 mutex_exit(&osp->os_sync_lock); 15617 if (did_start_op) 15618 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15619 recovonly ? TRUE : FALSE); 15620 if (did_force_recovlock) 15621 nfs_rw_exit(&mi->mi_recovlock); 15622 if (cred_otw) 15623 crfree(cred_otw); 15624 if (osp) 15625 open_stream_rele(osp, rp); 15626 if (oop) { 15627 if (did_start_seqid_sync) 15628 nfs4_end_open_seqid_sync(oop); 15629 open_owner_rele(oop); 15630 } 15631 } 15632 15633 /* 15634 * Convert information returned by the server in the LOCK4denied 15635 * structure to the form required by fcntl. 15636 */ 15637 static void 15638 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15639 { 15640 nfs4_lo_name_t *lo; 15641 15642 #ifdef DEBUG 15643 if (denied_to_flk_debug) { 15644 lockt_denied_debug = lockt_denied; 15645 debug_enter("lockt_denied"); 15646 } 15647 #endif 15648 15649 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15650 flk->l_whence = 0; /* aka SEEK_SET */ 15651 flk->l_start = lockt_denied->offset; 15652 flk->l_len = lockt_denied->length; 15653 15654 /* 15655 * If the blocking clientid matches our client id, then we can 15656 * interpret the lockowner (since we built it). If not, then 15657 * fabricate a sysid and pid. Note that the l_sysid field 15658 * in *flk already has the local sysid. 15659 */ 15660 15661 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15662 15663 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15664 lo = (nfs4_lo_name_t *) 15665 lockt_denied->owner.owner_val; 15666 15667 flk->l_pid = lo->ln_pid; 15668 } else { 15669 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15670 "denied_to_flk: bad lock owner length\n")); 15671 15672 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15673 } 15674 } else { 15675 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15676 "denied_to_flk: foreign clientid\n")); 15677 15678 /* 15679 * Construct a new sysid which should be different from 15680 * sysids of other systems. 15681 */ 15682 15683 flk->l_sysid++; 15684 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15685 } 15686 } 15687 15688 static pid_t 15689 lo_to_pid(lock_owner4 *lop) 15690 { 15691 pid_t pid = 0; 15692 uchar_t *cp; 15693 int i; 15694 15695 cp = (uchar_t *)&lop->clientid; 15696 15697 for (i = 0; i < sizeof (lop->clientid); i++) 15698 pid += (pid_t)*cp++; 15699 15700 cp = (uchar_t *)lop->owner_val; 15701 15702 for (i = 0; i < lop->owner_len; i++) 15703 pid += (pid_t)*cp++; 15704 15705 return (pid); 15706 } 15707 15708 /* 15709 * Given a lock pointer, returns the length of that lock. 15710 * "end" is the last locked offset the "l_len" covers from 15711 * the start of the lock. 15712 */ 15713 static off64_t 15714 lock_to_end(flock64_t *lock) 15715 { 15716 off64_t lock_end; 15717 15718 if (lock->l_len == 0) 15719 lock_end = (off64_t)MAXEND; 15720 else 15721 lock_end = lock->l_start + lock->l_len - 1; 15722 15723 return (lock_end); 15724 } 15725 15726 /* 15727 * Given the end of a lock, it will return you the length "l_len" for that lock. 15728 */ 15729 static off64_t 15730 end_to_len(off64_t start, off64_t end) 15731 { 15732 off64_t lock_len; 15733 15734 ASSERT(end >= start); 15735 if (end == MAXEND) 15736 lock_len = 0; 15737 else 15738 lock_len = end - start + 1; 15739 15740 return (lock_len); 15741 } 15742 15743 /* 15744 * On given end for a lock it determines if it is the last locked offset 15745 * or not, if so keeps it as is, else adds one to return the length for 15746 * valid start. 15747 */ 15748 static off64_t 15749 start_check(off64_t x) 15750 { 15751 if (x == MAXEND) 15752 return (x); 15753 else 15754 return (x + 1); 15755 } 15756 15757 /* 15758 * See if these two locks overlap, and if so return 1; 15759 * otherwise, return 0. 15760 */ 15761 static int 15762 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15763 { 15764 off64_t llfp_end, curfp_end; 15765 15766 llfp_end = lock_to_end(llfp); 15767 curfp_end = lock_to_end(curfp); 15768 15769 if (((llfp_end >= curfp->l_start) && 15770 (llfp->l_start <= curfp->l_start)) || 15771 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15772 return (1); 15773 return (0); 15774 } 15775 15776 /* 15777 * Determine what the intersecting lock region is, and add that to the 15778 * 'nl_llpp' locklist in increasing order (by l_start). 15779 */ 15780 static void 15781 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15782 locklist_t **nl_llpp, vnode_t *vp) 15783 { 15784 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15785 off64_t lost_flp_end, local_flp_end, len, start; 15786 15787 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15788 15789 if (!locks_intersect(lost_flp, local_flp)) 15790 return; 15791 15792 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15793 "locks intersect")); 15794 15795 lost_flp_end = lock_to_end(lost_flp); 15796 local_flp_end = lock_to_end(local_flp); 15797 15798 /* Find the starting point of the intersecting region */ 15799 if (local_flp->l_start > lost_flp->l_start) 15800 start = local_flp->l_start; 15801 else 15802 start = lost_flp->l_start; 15803 15804 /* Find the lenght of the intersecting region */ 15805 if (lost_flp_end < local_flp_end) 15806 len = end_to_len(start, lost_flp_end); 15807 else 15808 len = end_to_len(start, local_flp_end); 15809 15810 /* 15811 * Prepare the flock structure for the intersection found and insert 15812 * it into the new list in increasing l_start order. This list contains 15813 * intersections of locks registered by the client with the local host 15814 * and the lost lock. 15815 * The lock type of this lock is the same as that of the local_flp. 15816 */ 15817 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15818 intersect_llp->ll_flock.l_start = start; 15819 intersect_llp->ll_flock.l_len = len; 15820 intersect_llp->ll_flock.l_type = local_flp->l_type; 15821 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15822 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15823 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15824 intersect_llp->ll_vp = vp; 15825 15826 tmp_fllp = *nl_llpp; 15827 cur_fllp = NULL; 15828 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15829 intersect_llp->ll_flock.l_start) { 15830 cur_fllp = tmp_fllp; 15831 tmp_fllp = tmp_fllp->ll_next; 15832 } 15833 if (cur_fllp == NULL) { 15834 /* first on the list */ 15835 intersect_llp->ll_next = *nl_llpp; 15836 *nl_llpp = intersect_llp; 15837 } else { 15838 intersect_llp->ll_next = cur_fllp->ll_next; 15839 cur_fllp->ll_next = intersect_llp; 15840 } 15841 15842 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15843 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15844 intersect_llp->ll_flock.l_start, 15845 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15846 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15847 } 15848 15849 /* 15850 * Our local locking current state is potentially different than 15851 * what the NFSv4 server thinks we have due to a lost lock that was 15852 * resent and then received. We need to reset our "NFSv4" locking 15853 * state to match the current local locking state for this pid since 15854 * that is what the user/application sees as what the world is. 15855 * 15856 * We cannot afford to drop the open/lock seqid sync since then we can 15857 * get confused about what the current local locking state "is" versus 15858 * "was". 15859 * 15860 * If we are unable to fix up the locks, we send SIGLOST to the affected 15861 * process. This is not done if the filesystem has been forcibly 15862 * unmounted, in case the process has already exited and a new process 15863 * exists with the same pid. 15864 */ 15865 static void 15866 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15867 nfs4_lock_owner_t *lop) 15868 { 15869 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15870 mntinfo4_t *mi = VTOMI4(vp); 15871 const int cmd = F_SETLK; 15872 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15873 flock64_t ul_fl; 15874 15875 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15876 "nfs4_reinstitute_local_lock_state")); 15877 15878 /* 15879 * Find active locks for this vp from the local locking code. 15880 * Scan through this list and find out the locks that intersect with 15881 * the lost lock. Once we find the lock that intersects, add the 15882 * intersection area as a new lock to a new list "ri_llp". The lock 15883 * type of the intersection region lock added to ri_llp is the same 15884 * as that found in the active lock list, "list". The intersecting 15885 * region locks are added to ri_llp in increasing l_start order. 15886 */ 15887 ASSERT(nfs_zone() == mi->mi_zone); 15888 15889 locks = flk_active_locks_for_vp(vp); 15890 ri_llp = NULL; 15891 15892 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15893 ASSERT(llp->ll_vp == vp); 15894 /* 15895 * Pick locks that belong to this pid/lockowner 15896 */ 15897 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15898 continue; 15899 15900 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15901 } 15902 15903 /* 15904 * Now we have the list of intersections with the lost lock. These are 15905 * the locks that were/are active before the server replied to the 15906 * last/lost lock. Issue these locks to the server here. Playing these 15907 * locks to the server will re-establish aur current local locking state 15908 * with the v4 server. 15909 * If we get an error, send SIGLOST to the application for that lock. 15910 */ 15911 15912 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15913 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15914 "nfs4_reinstitute_local_lock_state: need to issue " 15915 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15916 llp->ll_flock.l_start, 15917 llp->ll_flock.l_start + llp->ll_flock.l_len, 15918 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15919 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15920 /* 15921 * No need to relock what we already have 15922 */ 15923 if (llp->ll_flock.l_type == lost_flp->l_type) 15924 continue; 15925 15926 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15927 } 15928 15929 /* 15930 * Now keeping the start of the lost lock as our reference parse the 15931 * newly created ri_llp locklist to find the ranges that we have locked 15932 * with the v4 server but not in the current local locking. We need 15933 * to unlock these ranges. 15934 * These ranges can also be reffered to as those ranges, where the lost 15935 * lock does not overlap with the locks in the ri_llp but are locked 15936 * since the server replied to the lost lock. 15937 */ 15938 cur_start = lost_flp->l_start; 15939 lost_flp_end = lock_to_end(lost_flp); 15940 15941 ul_fl.l_type = F_UNLCK; 15942 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15943 ul_fl.l_sysid = lost_flp->l_sysid; 15944 ul_fl.l_pid = lost_flp->l_pid; 15945 15946 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15947 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15948 15949 if (llp->ll_flock.l_start <= cur_start) { 15950 cur_start = start_check(llp_ll_flock_end); 15951 continue; 15952 } 15953 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15954 "nfs4_reinstitute_local_lock_state: " 15955 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15956 cur_start, llp->ll_flock.l_start)); 15957 15958 ul_fl.l_start = cur_start; 15959 ul_fl.l_len = end_to_len(cur_start, 15960 (llp->ll_flock.l_start - 1)); 15961 15962 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15963 cur_start = start_check(llp_ll_flock_end); 15964 } 15965 15966 /* 15967 * In the case where the lost lock ends after all intersecting locks, 15968 * unlock the last part of the lost lock range. 15969 */ 15970 if (cur_start != start_check(lost_flp_end)) { 15971 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15972 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15973 "lost lock region [%"PRIx64" - %"PRIx64"]", 15974 cur_start, lost_flp->l_start + lost_flp->l_len)); 15975 15976 ul_fl.l_start = cur_start; 15977 /* 15978 * Is it an to-EOF lock? if so unlock till the end 15979 */ 15980 if (lost_flp->l_len == 0) 15981 ul_fl.l_len = 0; 15982 else 15983 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15984 15985 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15986 } 15987 15988 if (locks != NULL) 15989 flk_free_locklist(locks); 15990 15991 /* Free up our newly created locklist */ 15992 for (llp = ri_llp; llp != NULL; ) { 15993 tmp_llp = llp->ll_next; 15994 kmem_free(llp, sizeof (locklist_t)); 15995 llp = tmp_llp; 15996 } 15997 15998 /* 15999 * Now return back to the original calling nfs4frlock() 16000 * and let us naturally drop our seqid syncs. 16001 */ 16002 } 16003 16004 /* 16005 * Create a lost state record for the given lock reinstantiation request 16006 * and push it onto the lost state queue. 16007 */ 16008 static void 16009 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 16010 nfs4_lock_owner_t *lop) 16011 { 16012 nfs4_lost_rqst_t req; 16013 nfs_lock_type4 locktype; 16014 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 16015 16016 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 16017 16018 locktype = flk_to_locktype(cmd, flk->l_type); 16019 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 16020 NULL, NULL, lop, flk, &req, cr, vp); 16021 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 16022 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 16023 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 16024 NULL, NULL, NULL); 16025 }