1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 /*
30 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T.
31 * All Rights Reserved
32 */
33
34 /*
35 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
36 */
37
38 #include <sys/param.h>
39 #include <sys/types.h>
40 #include <sys/systm.h>
41 #include <sys/cred.h>
42 #include <sys/time.h>
43 #include <sys/vnode.h>
44 #include <sys/vfs.h>
45 #include <sys/vfs_opreg.h>
46 #include <sys/file.h>
47 #include <sys/filio.h>
48 #include <sys/uio.h>
49 #include <sys/buf.h>
50 #include <sys/mman.h>
51 #include <sys/pathname.h>
52 #include <sys/dirent.h>
53 #include <sys/debug.h>
54 #include <sys/vmsystm.h>
55 #include <sys/fcntl.h>
56 #include <sys/flock.h>
57 #include <sys/swap.h>
58 #include <sys/errno.h>
59 #include <sys/strsubr.h>
60 #include <sys/sysmacros.h>
61 #include <sys/kmem.h>
62 #include <sys/cmn_err.h>
63 #include <sys/pathconf.h>
64 #include <sys/utsname.h>
65 #include <sys/dnlc.h>
66 #include <sys/acl.h>
67 #include <sys/systeminfo.h>
68 #include <sys/policy.h>
69 #include <sys/sdt.h>
70 #include <sys/list.h>
71 #include <sys/stat.h>
72 #include <sys/zone.h>
73
74 #include <rpc/types.h>
75 #include <rpc/auth.h>
76 #include <rpc/clnt.h>
77
78 #include <nfs/nfs.h>
79 #include <nfs/nfs_clnt.h>
80 #include <nfs/nfs_acl.h>
81 #include <nfs/lm.h>
82 #include <nfs/nfs4.h>
83 #include <nfs/nfs4_kprot.h>
84 #include <nfs/rnode4.h>
85 #include <nfs/nfs4_clnt.h>
86
87 #include <vm/hat.h>
88 #include <vm/as.h>
89 #include <vm/page.h>
90 #include <vm/pvn.h>
91 #include <vm/seg.h>
92 #include <vm/seg_map.h>
93 #include <vm/seg_kpm.h>
94 #include <vm/seg_vn.h>
95
96 #include <fs/fs_subr.h>
97
98 #include <sys/ddi.h>
99 #include <sys/int_fmtio.h>
100 #include <sys/fs/autofs.h>
101
102 typedef struct {
103 nfs4_ga_res_t *di_garp;
104 cred_t *di_cred;
105 hrtime_t di_time_call;
106 } dirattr_info_t;
107
108 typedef enum nfs4_acl_op {
109 NFS4_ACL_GET,
110 NFS4_ACL_SET
111 } nfs4_acl_op_t;
112
113 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *mi);
114
115 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *,
116 char *, dirattr_info_t *);
117
118 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *,
119 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t,
120 nfs4_error_t *, int *);
121 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int,
122 cred_t *);
123 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *,
124 stable_how4 *);
125 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *,
126 cred_t *, bool_t, struct uio *);
127 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *,
128 vsecattr_t *);
129 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *);
130 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int);
131 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *);
132 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *);
133 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *);
134 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl,
135 int, vnode_t **, cred_t *);
136 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **,
137 cred_t *, int, int, enum createmode4, int);
138 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
139 caller_context_t *);
140 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *,
141 vnode_t *, char *, cred_t *, nfsstat4 *);
142 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *,
143 vnode_t *, char *, cred_t *, nfsstat4 *);
144 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *);
145 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *);
146 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t);
147 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *,
148 page_t *[], size_t, struct seg *, caddr_t,
149 enum seg_rw, cred_t *);
150 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *,
151 cred_t *);
152 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t,
153 int, cred_t *);
154 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t,
155 int, cred_t *);
156 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *);
157 static void nfs4_set_mod(vnode_t *);
158 static void nfs4_get_commit(vnode_t *);
159 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t);
160 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *);
161 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int);
162 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3,
163 cred_t *);
164 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3,
165 cred_t *);
166 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *,
167 hrtime_t, vnode_t *, cred_t *);
168 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *);
169 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *);
170 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int,
171 u_offset_t);
172 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *);
173 static int nfs4_block_and_wait(clock_t *, rnode4_t *);
174 static cred_t *state_to_cred(nfs4_open_stream_t *);
175 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *);
176 static pid_t lo_to_pid(lock_owner4 *);
177 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *,
178 cred_t *, nfs4_lock_owner_t *);
179 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *,
180 nfs4_lock_owner_t *);
181 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **);
182 static void nfs4_delmap_callback(struct as *, void *, uint_t);
183 static void nfs4_free_delmapcall(nfs4_delmapcall_t *);
184 static nfs4_delmapcall_t *nfs4_init_delmapcall();
185 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *);
186 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t);
187 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *,
188 uid_t, gid_t, int);
189
190 /*
191 * Routines that implement the setting of v4 args for the misc. ops
192 */
193 static void nfs4args_lock_free(nfs_argop4 *);
194 static void nfs4args_lockt_free(nfs_argop4 *);
195 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *,
196 int, rnode4_t *, cred_t *, bitmap4, int *,
197 nfs4_stateid_types_t *);
198 static void nfs4args_setattr_free(nfs_argop4 *);
199 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4,
200 bitmap4);
201 static void nfs4args_verify_free(nfs_argop4 *);
202 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *,
203 WRITE4args **, nfs4_stateid_types_t *);
204
205 /*
206 * These are the vnode ops functions that implement the vnode interface to
207 * the networked file system. See more comments below at nfs4_vnodeops.
208 */
209 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *);
210 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *,
211 caller_context_t *);
212 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *,
213 caller_context_t *);
214 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *,
215 caller_context_t *);
216 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
217 caller_context_t *);
218 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *,
219 caller_context_t *);
220 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *);
221 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *,
222 caller_context_t *);
223 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *);
224 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl,
225 int, vnode_t **, cred_t *, int, caller_context_t *,
226 vsecattr_t *);
227 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *,
228 int);
229 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *,
230 caller_context_t *, int);
231 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
232 caller_context_t *, int);
233 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
234 cred_t *, caller_context_t *, int, vsecattr_t *);
235 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
236 caller_context_t *, int);
237 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *,
238 cred_t *, caller_context_t *, int);
239 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *,
240 caller_context_t *, int);
241 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
242 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *,
243 page_t *[], size_t, struct seg *, caddr_t,
244 enum seg_rw, cred_t *, caller_context_t *);
245 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *,
246 caller_context_t *);
247 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t,
248 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
249 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
250 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
251 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *);
252 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
253 struct flk_callback *, cred_t *, caller_context_t *);
254 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t,
255 cred_t *, caller_context_t *);
256 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
257 uint_t, uint_t, uint_t, cred_t *, caller_context_t *);
258 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int,
259 cred_t *, caller_context_t *);
260 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *,
261 caller_context_t *);
262 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
263 caller_context_t *);
264 /*
265 * These vnode ops are required to be called from outside this source file,
266 * e.g. by ephemeral mount stub vnode ops, and so may not be declared
267 * as static.
268 */
269 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *,
270 caller_context_t *);
271 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *);
272 int nfs4_lookup(vnode_t *, char *, vnode_t **,
273 struct pathname *, int, vnode_t *, cred_t *,
274 caller_context_t *, int *, pathname_t *);
275 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *);
276 int nfs4_rwlock(vnode_t *, int, caller_context_t *);
277 void nfs4_rwunlock(vnode_t *, int, caller_context_t *);
278 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *);
279 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *,
280 caller_context_t *);
281 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
282 caller_context_t *);
283 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
284 caller_context_t *);
285
286 /*
287 * Used for nfs4_commit_vp() to indicate if we should
288 * wait on pending writes.
289 */
290 #define NFS4_WRITE_NOWAIT 0
291 #define NFS4_WRITE_WAIT 1
292
293 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */
294
295 /*
296 * Error flags used to pass information about certain special errors
297 * which need to be handled specially.
298 */
299 #define NFS_EOF -98
300 #define NFS_VERF_MISMATCH -97
301
302 /*
303 * Flags used to differentiate between which operation drove the
304 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary)
305 */
306 #define NFS4_CLOSE_OP 0x1
307 #define NFS4_DELMAP_OP 0x2
308 #define NFS4_INACTIVE_OP 0x3
309
310 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO))
311
312 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */
313 #define ALIGN64(x, ptr, sz) \
314 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \
315 if (x) { \
316 x = sizeof (uint64_t) - (x); \
317 sz -= (x); \
318 ptr += (x); \
319 }
320
321 #ifdef DEBUG
322 int nfs4_client_attr_debug = 0;
323 int nfs4_client_state_debug = 0;
324 int nfs4_client_shadow_debug = 0;
325 int nfs4_client_lock_debug = 0;
326 int nfs4_seqid_sync = 0;
327 int nfs4_client_map_debug = 0;
328 static int nfs4_pageio_debug = 0;
329 int nfs4_client_inactive_debug = 0;
330 int nfs4_client_recov_debug = 0;
331 int nfs4_client_failover_debug = 0;
332 int nfs4_client_call_debug = 0;
333 int nfs4_client_lookup_debug = 0;
334 int nfs4_client_zone_debug = 0;
335 int nfs4_lost_rqst_debug = 0;
336 int nfs4_rdattrerr_debug = 0;
337 int nfs4_open_stream_debug = 0;
338
339 int nfs4read_error_inject;
340
341 static int nfs4_create_misses = 0;
342
343 static int nfs4_readdir_cache_shorts = 0;
344 static int nfs4_readdir_readahead = 0;
345
346 static int nfs4_bio_do_stop = 0;
347
348 static int nfs4_lostpage = 0; /* number of times we lost original page */
349
350 int nfs4_mmap_debug = 0;
351
352 static int nfs4_pathconf_cache_hits = 0;
353 static int nfs4_pathconf_cache_misses = 0;
354
355 int nfs4close_all_cnt;
356 int nfs4close_one_debug = 0;
357 int nfs4close_notw_debug = 0;
358
359 int denied_to_flk_debug = 0;
360 void *lockt_denied_debug;
361
362 #endif
363
364 /*
365 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT
366 * or NFS4ERR_RESOURCE.
367 */
368 static int confirm_retry_sec = 30;
369
370 static int nfs4_lookup_neg_cache = 1;
371
372 /*
373 * number of pages to read ahead
374 * optimized for 100 base-T.
375 */
376 static int nfs4_nra = 4;
377
378 static int nfs4_do_symlink_cache = 1;
379
380 static int nfs4_pathconf_disable_cache = 0;
381
382 /*
383 * These are the vnode ops routines which implement the vnode interface to
384 * the networked file system. These routines just take their parameters,
385 * make them look networkish by putting the right info into interface structs,
386 * and then calling the appropriate remote routine(s) to do the work.
387 *
388 * Note on directory name lookup cacheing: If we detect a stale fhandle,
389 * we purge the directory cache relative to that vnode. This way, the
390 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for
391 * more details on rnode locking.
392 */
393
394 struct vnodeops *nfs4_vnodeops;
395
396 const fs_operation_def_t nfs4_vnodeops_template[] = {
397 VOPNAME_OPEN, { .vop_open = nfs4_open },
398 VOPNAME_CLOSE, { .vop_close = nfs4_close },
399 VOPNAME_READ, { .vop_read = nfs4_read },
400 VOPNAME_WRITE, { .vop_write = nfs4_write },
401 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl },
402 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr },
403 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr },
404 VOPNAME_ACCESS, { .vop_access = nfs4_access },
405 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup },
406 VOPNAME_CREATE, { .vop_create = nfs4_create },
407 VOPNAME_REMOVE, { .vop_remove = nfs4_remove },
408 VOPNAME_LINK, { .vop_link = nfs4_link },
409 VOPNAME_RENAME, { .vop_rename = nfs4_rename },
410 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir },
411 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir },
412 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir },
413 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink },
414 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink },
415 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync },
416 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive },
417 VOPNAME_FID, { .vop_fid = nfs4_fid },
418 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock },
419 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock },
420 VOPNAME_SEEK, { .vop_seek = nfs4_seek },
421 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock },
422 VOPNAME_SPACE, { .vop_space = nfs4_space },
423 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp },
424 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage },
425 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage },
426 VOPNAME_MAP, { .vop_map = nfs4_map },
427 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap },
428 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap },
429 /* no separate nfs4_dump */
430 VOPNAME_DUMP, { .vop_dump = nfs_dump },
431 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf },
432 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio },
433 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose },
434 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr },
435 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr },
436 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock },
437 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
438 NULL, NULL
439 };
440
441 /*
442 * The following are subroutines and definitions to set args or get res
443 * for the different nfsv4 ops
444 */
445
446 void
447 nfs4args_lookup_free(nfs_argop4 *argop, int arglen)
448 {
449 int i;
450
451 for (i = 0; i < arglen; i++) {
452 if (argop[i].argop == OP_LOOKUP) {
453 kmem_free(
454 argop[i].nfs_argop4_u.oplookup.
455 objname.utf8string_val,
456 argop[i].nfs_argop4_u.oplookup.
457 objname.utf8string_len);
458 }
459 }
460 }
461
462 static void
463 nfs4args_lock_free(nfs_argop4 *argop)
464 {
465 locker4 *locker = &argop->nfs_argop4_u.oplock.locker;
466
467 if (locker->new_lock_owner == TRUE) {
468 open_to_lock_owner4 *open_owner;
469
470 open_owner = &locker->locker4_u.open_owner;
471 if (open_owner->lock_owner.owner_val != NULL) {
472 kmem_free(open_owner->lock_owner.owner_val,
473 open_owner->lock_owner.owner_len);
474 }
475 }
476 }
477
478 static void
479 nfs4args_lockt_free(nfs_argop4 *argop)
480 {
481 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner;
482
483 if (lowner->owner_val != NULL) {
484 kmem_free(lowner->owner_val, lowner->owner_len);
485 }
486 }
487
488 static void
489 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags,
490 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error,
491 nfs4_stateid_types_t *sid_types)
492 {
493 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes;
494 mntinfo4_t *mi;
495
496 argop->argop = OP_SETATTR;
497 /*
498 * The stateid is set to 0 if client is not modifying the size
499 * and otherwise to whatever nfs4_get_stateid() returns.
500 *
501 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no
502 * state struct could be found for the process/file pair. We may
503 * want to change this in the future (by OPENing the file). See
504 * bug # 4474852.
505 */
506 if (vap->va_mask & AT_SIZE) {
507
508 ASSERT(rp != NULL);
509 mi = VTOMI4(RTOV4(rp));
510
511 argop->nfs_argop4_u.opsetattr.stateid =
512 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi,
513 OP_SETATTR, sid_types, FALSE);
514 } else {
515 bzero(&argop->nfs_argop4_u.opsetattr.stateid,
516 sizeof (stateid4));
517 }
518
519 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp);
520 if (*error)
521 bzero(attr, sizeof (*attr));
522 }
523
524 static void
525 nfs4args_setattr_free(nfs_argop4 *argop)
526 {
527 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes);
528 }
529
530 static int
531 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op,
532 bitmap4 supp)
533 {
534 fattr4 *attr;
535 int error = 0;
536
537 argop->argop = op;
538 switch (op) {
539 case OP_VERIFY:
540 attr = &argop->nfs_argop4_u.opverify.obj_attributes;
541 break;
542 case OP_NVERIFY:
543 attr = &argop->nfs_argop4_u.opnverify.obj_attributes;
544 break;
545 default:
546 return (EINVAL);
547 }
548 if (!error)
549 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp);
550 if (error)
551 bzero(attr, sizeof (*attr));
552 return (error);
553 }
554
555 static void
556 nfs4args_verify_free(nfs_argop4 *argop)
557 {
558 switch (argop->argop) {
559 case OP_VERIFY:
560 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes);
561 break;
562 case OP_NVERIFY:
563 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes);
564 break;
565 default:
566 break;
567 }
568 }
569
570 static void
571 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr,
572 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp)
573 {
574 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite;
575 mntinfo4_t *mi = VTOMI4(RTOV4(rp));
576
577 argop->argop = OP_WRITE;
578 wargs->stable = stable;
579 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id,
580 mi, OP_WRITE, sid_tp);
581 wargs->mblk = NULL;
582 *wargs_pp = wargs;
583 }
584
585 void
586 nfs4args_copen_free(OPEN4cargs *open_args)
587 {
588 if (open_args->owner.owner_val) {
589 kmem_free(open_args->owner.owner_val,
590 open_args->owner.owner_len);
591 }
592 if ((open_args->opentype == OPEN4_CREATE) &&
593 (open_args->mode != EXCLUSIVE4)) {
594 nfs4_fattr4_free(&open_args->createhow4_u.createattrs);
595 }
596 }
597
598 /*
599 * XXX: This is referenced in modstubs.s
600 */
601 struct vnodeops *
602 nfs4_getvnodeops(void)
603 {
604 return (nfs4_vnodeops);
605 }
606
607 /*
608 * The OPEN operation opens a regular file.
609 */
610 /*ARGSUSED3*/
611 static int
612 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
613 {
614 vnode_t *dvp = NULL;
615 rnode4_t *rp, *drp;
616 int error;
617 int just_been_created;
618 char fn[MAXNAMELEN];
619
620 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: "));
621 if (nfs_zone() != VTOMI4(*vpp)->mi_zone)
622 return (EIO);
623 rp = VTOR4(*vpp);
624
625 /*
626 * Check to see if opening something besides a regular file;
627 * if so skip the OTW call
628 */
629 if ((*vpp)->v_type != VREG) {
630 error = nfs4_open_non_reg_file(vpp, flag, cr);
631 return (error);
632 }
633
634 /*
635 * XXX - would like a check right here to know if the file is
636 * executable or not, so as to skip OTW
637 */
638
639 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0)
640 return (error);
641
642 drp = VTOR4(dvp);
643 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
644 return (EINTR);
645
646 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) {
647 nfs_rw_exit(&drp->r_rwlock);
648 return (error);
649 }
650
651 /*
652 * See if this file has just been CREATEd.
653 * If so, clear the flag and update the dnlc, which was previously
654 * skipped in nfs4_create.
655 * XXX need better serilization on this.
656 * XXX move this into the nf4open_otw call, after we have
657 * XXX acquired the open owner seqid sync.
658 */
659 mutex_enter(&rp->r_statev4_lock);
660 if (rp->created_v4) {
661 rp->created_v4 = 0;
662 mutex_exit(&rp->r_statev4_lock);
663
664 dnlc_update(dvp, fn, *vpp);
665 /* This is needed so we don't bump the open ref count */
666 just_been_created = 1;
667 } else {
668 mutex_exit(&rp->r_statev4_lock);
669 just_been_created = 0;
670 }
671
672 /*
673 * If caller specified O_TRUNC/FTRUNC, then be sure to set
674 * FWRITE (to drive successful setattr(size=0) after open)
675 */
676 if (flag & FTRUNC)
677 flag |= FWRITE;
678
679 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0,
680 just_been_created);
681
682 if (!error && !((*vpp)->v_flag & VROOT))
683 dnlc_update(dvp, fn, *vpp);
684
685 nfs_rw_exit(&drp->r_rwlock);
686
687 /* release the hold from vtodv */
688 VN_RELE(dvp);
689
690 /* exchange the shadow for the master vnode, if needed */
691
692 if (error == 0 && IS_SHADOW(*vpp, rp))
693 sv_exchange(vpp);
694
695 return (error);
696 }
697
698 /*
699 * See if there's a "lost open" request to be saved and recovered.
700 */
701 static void
702 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp,
703 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp,
704 vnode_t *dvp, OPEN4cargs *open_args)
705 {
706 vfs_t *vfsp;
707 char *srccfp;
708
709 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp);
710
711 if (error != ETIMEDOUT && error != EINTR &&
712 !NFS4_FRC_UNMT_ERR(error, vfsp)) {
713 lost_rqstp->lr_op = 0;
714 return;
715 }
716
717 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
718 "nfs4open_save_lost_rqst: error %d", error));
719
720 lost_rqstp->lr_op = OP_OPEN;
721
722 /*
723 * The vp (if it is not NULL) and dvp are held and rele'd via
724 * the recovery code. See nfs4_save_lost_rqst.
725 */
726 lost_rqstp->lr_vp = vp;
727 lost_rqstp->lr_dvp = dvp;
728 lost_rqstp->lr_oop = oop;
729 lost_rqstp->lr_osp = NULL;
730 lost_rqstp->lr_lop = NULL;
731 lost_rqstp->lr_cr = cr;
732 lost_rqstp->lr_flk = NULL;
733 lost_rqstp->lr_oacc = open_args->share_access;
734 lost_rqstp->lr_odeny = open_args->share_deny;
735 lost_rqstp->lr_oclaim = open_args->claim;
736 if (open_args->claim == CLAIM_DELEGATE_CUR) {
737 lost_rqstp->lr_ostateid =
738 open_args->open_claim4_u.delegate_cur_info.delegate_stateid;
739 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile;
740 } else {
741 srccfp = open_args->open_claim4_u.cfile;
742 }
743 lost_rqstp->lr_ofile.utf8string_len = 0;
744 lost_rqstp->lr_ofile.utf8string_val = NULL;
745 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile);
746 lost_rqstp->lr_putfirst = FALSE;
747 }
748
749 struct nfs4_excl_time {
750 uint32 seconds;
751 uint32 nseconds;
752 };
753
754 /*
755 * The OPEN operation creates and/or opens a regular file
756 *
757 * ARGSUSED
758 */
759 static int
760 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va,
761 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag,
762 enum createmode4 createmode, int file_just_been_created)
763 {
764 rnode4_t *rp;
765 rnode4_t *drp = VTOR4(dvp);
766 vnode_t *vp = NULL;
767 vnode_t *vpi = *vpp;
768 bool_t needrecov = FALSE;
769
770 int doqueue = 1;
771
772 COMPOUND4args_clnt args;
773 COMPOUND4res_clnt res;
774 nfs_argop4 *argop;
775 nfs_resop4 *resop;
776 int argoplist_size;
777 int idx_open, idx_fattr;
778
779 GETFH4res *gf_res = NULL;
780 OPEN4res *op_res = NULL;
781 nfs4_ga_res_t *garp;
782 fattr4 *attr = NULL;
783 struct nfs4_excl_time verf;
784 bool_t did_excl_setup = FALSE;
785 int created_osp;
786
787 OPEN4cargs *open_args;
788 nfs4_open_owner_t *oop = NULL;
789 nfs4_open_stream_t *osp = NULL;
790 seqid4 seqid = 0;
791 bool_t retry_open = FALSE;
792 nfs4_recov_state_t recov_state;
793 nfs4_lost_rqst_t lost_rqst;
794 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
795 hrtime_t t;
796 int acc = 0;
797 cred_t *cred_otw = NULL; /* cred used to do the RPC call */
798 cred_t *ncr = NULL;
799
800 nfs4_sharedfh_t *otw_sfh;
801 nfs4_sharedfh_t *orig_sfh;
802 int fh_differs = 0;
803 int numops, setgid_flag;
804 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1;
805
806 /*
807 * Make sure we properly deal with setting the right gid on
808 * a newly created file to reflect the parent's setgid bit
809 */
810 setgid_flag = 0;
811 if (create_flag && in_va) {
812
813 /*
814 * If there is grpid mount flag used or
815 * the parent's directory has the setgid bit set
816 * _and_ the client was able to get a valid mapping
817 * for the parent dir's owner_group, we want to
818 * append NVERIFY(owner_group == dva.va_gid) and
819 * SETATTR to the CREATE compound.
820 */
821 mutex_enter(&drp->r_statelock);
822 if ((VTOMI4(dvp)->mi_flags & MI4_GRPID ||
823 drp->r_attr.va_mode & VSGID) &&
824 drp->r_attr.va_gid != GID_NOBODY) {
825 in_va->va_mask |= AT_GID;
826 in_va->va_gid = drp->r_attr.va_gid;
827 setgid_flag = 1;
828 }
829 mutex_exit(&drp->r_statelock);
830 }
831
832 /*
833 * Normal/non-create compound:
834 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new)
835 *
836 * Open(create) compound no setgid:
837 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) +
838 * RESTOREFH + GETATTR
839 *
840 * Open(create) setgid:
841 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) +
842 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH +
843 * NVERIFY(grp) + SETATTR
844 */
845 if (setgid_flag) {
846 numops = 10;
847 idx_open = 1;
848 idx_fattr = 3;
849 } else if (create_flag) {
850 numops = 7;
851 idx_open = 2;
852 idx_fattr = 4;
853 } else {
854 numops = 4;
855 idx_open = 1;
856 idx_fattr = 3;
857 }
858
859 args.array_len = numops;
860 argoplist_size = numops * sizeof (nfs_argop4);
861 argop = kmem_alloc(argoplist_size, KM_SLEEP);
862
863 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: "
864 "open %s open flag 0x%x cred %p", file_name, open_flag,
865 (void *)cr));
866
867 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
868 if (create_flag) {
869 /*
870 * We are to create a file. Initialize the passed in vnode
871 * pointer.
872 */
873 vpi = NULL;
874 } else {
875 /*
876 * Check to see if the client owns a read delegation and is
877 * trying to open for write. If so, then return the delegation
878 * to avoid the server doing a cb_recall and returning DELAY.
879 * NB - we don't use the statev4_lock here because we'd have
880 * to drop the lock anyway and the result would be stale.
881 */
882 if ((open_flag & FWRITE) &&
883 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ)
884 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN);
885
886 /*
887 * If the file has a delegation, then do an access check up
888 * front. This avoids having to an access check later after
889 * we've already done start_op, which could deadlock.
890 */
891 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) {
892 if (open_flag & FREAD &&
893 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0)
894 acc |= VREAD;
895 if (open_flag & FWRITE &&
896 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0)
897 acc |= VWRITE;
898 }
899 }
900
901 drp = VTOR4(dvp);
902
903 recov_state.rs_flags = 0;
904 recov_state.rs_num_retry_despite_err = 0;
905 cred_otw = cr;
906
907 recov_retry:
908 fh_differs = 0;
909 nfs4_error_zinit(&e);
910
911 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state);
912 if (e.error) {
913 if (ncr != NULL)
914 crfree(ncr);
915 kmem_free(argop, argoplist_size);
916 return (e.error);
917 }
918
919 args.ctag = TAG_OPEN;
920 args.array_len = numops;
921 args.array = argop;
922
923 /* putfh directory fh */
924 argop[0].argop = OP_CPUTFH;
925 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
926
927 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */
928 argop[idx_open].argop = OP_COPEN;
929 open_args = &argop[idx_open].nfs_argop4_u.opcopen;
930 open_args->claim = CLAIM_NULL;
931
932 /* name of file */
933 open_args->open_claim4_u.cfile = file_name;
934 open_args->owner.owner_len = 0;
935 open_args->owner.owner_val = NULL;
936
937 if (create_flag) {
938 /* CREATE a file */
939 open_args->opentype = OPEN4_CREATE;
940 open_args->mode = createmode;
941 if (createmode == EXCLUSIVE4) {
942 if (did_excl_setup == FALSE) {
943 verf.seconds = zone_get_hostid(NULL);
944 if (verf.seconds != 0)
945 verf.nseconds = newnum();
946 else {
947 timestruc_t now;
948
949 gethrestime(&now);
950 verf.seconds = now.tv_sec;
951 verf.nseconds = now.tv_nsec;
952 }
953 /*
954 * Since the server will use this value for the
955 * mtime, make sure that it can't overflow. Zero
956 * out the MSB. The actual value does not matter
957 * here, only its uniqeness.
958 */
959 verf.seconds &= INT32_MAX;
960 did_excl_setup = TRUE;
961 }
962
963 /* Now copy over verifier to OPEN4args. */
964 open_args->createhow4_u.createverf = *(uint64_t *)&verf;
965 } else {
966 int v_error;
967 bitmap4 supp_attrs;
968 servinfo4_t *svp;
969
970 attr = &open_args->createhow4_u.createattrs;
971
972 svp = drp->r_server;
973 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
974 supp_attrs = svp->sv_supp_attrs;
975 nfs_rw_exit(&svp->sv_lock);
976
977 /* GUARDED4 or UNCHECKED4 */
978 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN,
979 supp_attrs);
980 if (v_error) {
981 bzero(attr, sizeof (*attr));
982 nfs4args_copen_free(open_args);
983 nfs4_end_op(VTOMI4(dvp), dvp, vpi,
984 &recov_state, FALSE);
985 if (ncr != NULL)
986 crfree(ncr);
987 kmem_free(argop, argoplist_size);
988 return (v_error);
989 }
990 }
991 } else {
992 /* NO CREATE */
993 open_args->opentype = OPEN4_NOCREATE;
994 }
995
996 if (recov_state.rs_sp != NULL) {
997 mutex_enter(&recov_state.rs_sp->s_lock);
998 open_args->owner.clientid = recov_state.rs_sp->clientid;
999 mutex_exit(&recov_state.rs_sp->s_lock);
1000 } else {
1001 /* XXX should we just fail here? */
1002 open_args->owner.clientid = 0;
1003 }
1004
1005 /*
1006 * This increments oop's ref count or creates a temporary 'just_created'
1007 * open owner that will become valid when this OPEN/OPEN_CONFIRM call
1008 * completes.
1009 */
1010 mutex_enter(&VTOMI4(dvp)->mi_lock);
1011
1012 /* See if a permanent or just created open owner exists */
1013 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp));
1014 if (!oop) {
1015 /*
1016 * This open owner does not exist so create a temporary
1017 * just created one.
1018 */
1019 oop = create_open_owner(cr, VTOMI4(dvp));
1020 ASSERT(oop != NULL);
1021 }
1022 mutex_exit(&VTOMI4(dvp)->mi_lock);
1023
1024 /* this length never changes, do alloc before seqid sync */
1025 open_args->owner.owner_len = sizeof (oop->oo_name);
1026 open_args->owner.owner_val =
1027 kmem_alloc(open_args->owner.owner_len, KM_SLEEP);
1028
1029 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp));
1030 if (e.error == EAGAIN) {
1031 open_owner_rele(oop);
1032 nfs4args_copen_free(open_args);
1033 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE);
1034 if (ncr != NULL) {
1035 crfree(ncr);
1036 ncr = NULL;
1037 }
1038 goto recov_retry;
1039 }
1040
1041 /* Check to see if we need to do the OTW call */
1042 if (!create_flag) {
1043 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi,
1044 file_just_been_created, &e.error, acc, &recov_state)) {
1045
1046 /*
1047 * The OTW open is not necessary. Either
1048 * the open can succeed without it (eg.
1049 * delegation, error == 0) or the open
1050 * must fail due to an access failure
1051 * (error != 0). In either case, tidy
1052 * up and return.
1053 */
1054
1055 nfs4_end_open_seqid_sync(oop);
1056 open_owner_rele(oop);
1057 nfs4args_copen_free(open_args);
1058 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE);
1059 if (ncr != NULL)
1060 crfree(ncr);
1061 kmem_free(argop, argoplist_size);
1062 return (e.error);
1063 }
1064 }
1065
1066 bcopy(&oop->oo_name, open_args->owner.owner_val,
1067 open_args->owner.owner_len);
1068
1069 seqid = nfs4_get_open_seqid(oop) + 1;
1070 open_args->seqid = seqid;
1071 open_args->share_access = 0;
1072 if (open_flag & FREAD)
1073 open_args->share_access |= OPEN4_SHARE_ACCESS_READ;
1074 if (open_flag & FWRITE)
1075 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE;
1076 open_args->share_deny = OPEN4_SHARE_DENY_NONE;
1077
1078
1079
1080 /*
1081 * getfh w/sanity check for idx_open/idx_fattr
1082 */
1083 ASSERT((idx_open + 1) == (idx_fattr - 1));
1084 argop[idx_open + 1].argop = OP_GETFH;
1085
1086 /* getattr */
1087 argop[idx_fattr].argop = OP_GETATTR;
1088 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1089 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
1090
1091 if (setgid_flag) {
1092 vattr_t _v;
1093 servinfo4_t *svp;
1094 bitmap4 supp_attrs;
1095
1096 svp = drp->r_server;
1097 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1098 supp_attrs = svp->sv_supp_attrs;
1099 nfs_rw_exit(&svp->sv_lock);
1100
1101 /*
1102 * For setgid case, we need to:
1103 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new)
1104 */
1105 argop[4].argop = OP_SAVEFH;
1106
1107 argop[5].argop = OP_CPUTFH;
1108 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
1109
1110 argop[6].argop = OP_GETATTR;
1111 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1112 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
1113
1114 argop[7].argop = OP_RESTOREFH;
1115
1116 /*
1117 * nverify
1118 */
1119 _v.va_mask = AT_GID;
1120 _v.va_gid = in_va->va_gid;
1121 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY,
1122 supp_attrs))) {
1123
1124 /*
1125 * setattr
1126 *
1127 * We _know_ we're not messing with AT_SIZE or
1128 * AT_XTIME, so no need for stateid or flags.
1129 * Also we specify NULL rp since we're only
1130 * interested in setting owner_group attributes.
1131 */
1132 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr,
1133 supp_attrs, &e.error, 0);
1134 if (e.error)
1135 nfs4args_verify_free(&argop[8]);
1136 }
1137
1138 if (e.error) {
1139 /*
1140 * XXX - Revisit the last argument to nfs4_end_op()
1141 * once 5020486 is fixed.
1142 */
1143 nfs4_end_open_seqid_sync(oop);
1144 open_owner_rele(oop);
1145 nfs4args_copen_free(open_args);
1146 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE);
1147 if (ncr != NULL)
1148 crfree(ncr);
1149 kmem_free(argop, argoplist_size);
1150 return (e.error);
1151 }
1152 } else if (create_flag) {
1153 argop[1].argop = OP_SAVEFH;
1154
1155 argop[5].argop = OP_RESTOREFH;
1156
1157 argop[6].argop = OP_GETATTR;
1158 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1159 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
1160 }
1161
1162 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
1163 "nfs4open_otw: %s call, nm %s, rp %s",
1164 needrecov ? "recov" : "first", file_name,
1165 rnode4info(VTOR4(dvp))));
1166
1167 t = gethrtime();
1168
1169 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e);
1170
1171 if (!e.error && nfs4_need_to_bump_seqid(&res))
1172 nfs4_set_open_seqid(seqid, oop, args.ctag);
1173
1174 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp);
1175
1176 if (e.error || needrecov) {
1177 bool_t abort = FALSE;
1178
1179 if (needrecov) {
1180 nfs4_bseqid_entry_t *bsep = NULL;
1181
1182 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop,
1183 cred_otw, vpi, dvp, open_args);
1184
1185 if (!e.error && res.status == NFS4ERR_BAD_SEQID) {
1186 bsep = nfs4_create_bseqid_entry(oop, NULL,
1187 vpi, 0, args.ctag, open_args->seqid);
1188 num_bseqid_retry--;
1189 }
1190
1191 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi,
1192 NULL, lost_rqst.lr_op == OP_OPEN ?
1193 &lost_rqst : NULL, OP_OPEN, bsep, NULL, NULL);
1194
1195 if (bsep)
1196 kmem_free(bsep, sizeof (*bsep));
1197 /* give up if we keep getting BAD_SEQID */
1198 if (num_bseqid_retry == 0)
1199 abort = TRUE;
1200 if (abort == TRUE && e.error == 0)
1201 e.error = geterrno4(res.status);
1202 }
1203 nfs4_end_open_seqid_sync(oop);
1204 open_owner_rele(oop);
1205 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1206 nfs4args_copen_free(open_args);
1207 if (setgid_flag) {
1208 nfs4args_verify_free(&argop[8]);
1209 nfs4args_setattr_free(&argop[9]);
1210 }
1211 if (!e.error)
1212 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1213 if (ncr != NULL) {
1214 crfree(ncr);
1215 ncr = NULL;
1216 }
1217 if (!needrecov || abort == TRUE || e.error == EINTR ||
1218 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) {
1219 kmem_free(argop, argoplist_size);
1220 return (e.error);
1221 }
1222 goto recov_retry;
1223 }
1224
1225 /*
1226 * Will check and update lease after checking the rflag for
1227 * OPEN_CONFIRM in the successful OPEN call.
1228 */
1229 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) {
1230
1231 /*
1232 * XXX what if we're crossing mount points from server1:/drp
1233 * to server2:/drp/rp.
1234 */
1235
1236 /* Signal our end of use of the open seqid */
1237 nfs4_end_open_seqid_sync(oop);
1238
1239 /*
1240 * This will destroy the open owner if it was just created,
1241 * and no one else has put a reference on it.
1242 */
1243 open_owner_rele(oop);
1244 if (create_flag && (createmode != EXCLUSIVE4) &&
1245 res.status == NFS4ERR_BADOWNER)
1246 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN);
1247
1248 e.error = geterrno4(res.status);
1249 nfs4args_copen_free(open_args);
1250 if (setgid_flag) {
1251 nfs4args_verify_free(&argop[8]);
1252 nfs4args_setattr_free(&argop[9]);
1253 }
1254 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1255 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1256 /*
1257 * If the reply is NFS4ERR_ACCESS, it may be because
1258 * we are root (no root net access). If the real uid
1259 * is not root, then retry with the real uid instead.
1260 */
1261 if (ncr != NULL) {
1262 crfree(ncr);
1263 ncr = NULL;
1264 }
1265 if (res.status == NFS4ERR_ACCESS &&
1266 (ncr = crnetadjust(cred_otw)) != NULL) {
1267 cred_otw = ncr;
1268 goto recov_retry;
1269 }
1270 kmem_free(argop, argoplist_size);
1271 return (e.error);
1272 }
1273
1274 resop = &res.array[idx_open]; /* open res */
1275 op_res = &resop->nfs_resop4_u.opopen;
1276
1277 #ifdef DEBUG
1278 /*
1279 * verify attrset bitmap
1280 */
1281 if (create_flag &&
1282 (createmode == UNCHECKED4 || createmode == GUARDED4)) {
1283 /* make sure attrset returned is what we asked for */
1284 /* XXX Ignore this 'error' for now */
1285 if (attr->attrmask != op_res->attrset)
1286 /* EMPTY */;
1287 }
1288 #endif
1289
1290 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) {
1291 mutex_enter(&VTOMI4(dvp)->mi_lock);
1292 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK;
1293 mutex_exit(&VTOMI4(dvp)->mi_lock);
1294 }
1295
1296 resop = &res.array[idx_open + 1]; /* getfh res */
1297 gf_res = &resop->nfs_resop4_u.opgetfh;
1298
1299 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp));
1300
1301 /*
1302 * The open stateid has been updated on the server but not
1303 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache->
1304 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW
1305 * WRITE call. That, however, will use the old stateid, so go ahead
1306 * and upate the open stateid now, before any call to makenfs4node.
1307 */
1308 if (vpi) {
1309 nfs4_open_stream_t *tmp_osp;
1310 rnode4_t *tmp_rp = VTOR4(vpi);
1311
1312 tmp_osp = find_open_stream(oop, tmp_rp);
1313 if (tmp_osp) {
1314 tmp_osp->open_stateid = op_res->stateid;
1315 mutex_exit(&tmp_osp->os_sync_lock);
1316 open_stream_rele(tmp_osp, tmp_rp);
1317 }
1318
1319 /*
1320 * We must determine if the file handle given by the otw open
1321 * is the same as the file handle which was passed in with
1322 * *vpp. This case can be reached if the file we are trying
1323 * to open has been removed and another file has been created
1324 * having the same file name. The passed in vnode is released
1325 * later.
1326 */
1327 orig_sfh = VTOR4(vpi)->r_fh;
1328 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh);
1329 }
1330
1331 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res;
1332
1333 if (create_flag || fh_differs) {
1334 int rnode_err = 0;
1335
1336 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr,
1337 dvp, fn_get(VTOSV(dvp)->sv_name, file_name, otw_sfh));
1338
1339 if (e.error)
1340 PURGE_ATTRCACHE4(vp);
1341 /*
1342 * For the newly created vp case, make sure the rnode
1343 * isn't bad before using it.
1344 */
1345 mutex_enter(&(VTOR4(vp))->r_statelock);
1346 if (VTOR4(vp)->r_flags & R4RECOVERR)
1347 rnode_err = EIO;
1348 mutex_exit(&(VTOR4(vp))->r_statelock);
1349
1350 if (rnode_err) {
1351 nfs4_end_open_seqid_sync(oop);
1352 nfs4args_copen_free(open_args);
1353 if (setgid_flag) {
1354 nfs4args_verify_free(&argop[8]);
1355 nfs4args_setattr_free(&argop[9]);
1356 }
1357 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1358 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state,
1359 needrecov);
1360 open_owner_rele(oop);
1361 VN_RELE(vp);
1362 if (ncr != NULL)
1363 crfree(ncr);
1364 sfh4_rele(&otw_sfh);
1365 kmem_free(argop, argoplist_size);
1366 return (EIO);
1367 }
1368 } else {
1369 vp = vpi;
1370 }
1371 sfh4_rele(&otw_sfh);
1372
1373 /*
1374 * It seems odd to get a full set of attrs and then not update
1375 * the object's attrcache in the non-create case. Create case uses
1376 * the attrs since makenfs4node checks to see if the attrs need to
1377 * be updated (and then updates them). The non-create case should
1378 * update attrs also.
1379 */
1380 if (! create_flag && ! fh_differs && !e.error) {
1381 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL);
1382 }
1383
1384 nfs4_error_zinit(&e);
1385 if (op_res->rflags & OPEN4_RESULT_CONFIRM) {
1386 /* This does not do recovery for vp explicitly. */
1387 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE,
1388 &retry_open, oop, FALSE, &e, &num_bseqid_retry);
1389
1390 if (e.error || e.stat) {
1391 nfs4_end_open_seqid_sync(oop);
1392 nfs4args_copen_free(open_args);
1393 if (setgid_flag) {
1394 nfs4args_verify_free(&argop[8]);
1395 nfs4args_setattr_free(&argop[9]);
1396 }
1397 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1398 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state,
1399 needrecov);
1400 open_owner_rele(oop);
1401 if (create_flag || fh_differs) {
1402 /* rele the makenfs4node */
1403 VN_RELE(vp);
1404 }
1405 if (ncr != NULL) {
1406 crfree(ncr);
1407 ncr = NULL;
1408 }
1409 if (retry_open == TRUE) {
1410 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1411 "nfs4open_otw: retry the open since OPEN "
1412 "CONFIRM failed with error %d stat %d",
1413 e.error, e.stat));
1414 if (create_flag && createmode == GUARDED4) {
1415 NFS4_DEBUG(nfs4_client_recov_debug,
1416 (CE_NOTE, "nfs4open_otw: switch "
1417 "createmode from GUARDED4 to "
1418 "UNCHECKED4"));
1419 createmode = UNCHECKED4;
1420 }
1421 goto recov_retry;
1422 }
1423 if (!e.error) {
1424 if (create_flag && (createmode != EXCLUSIVE4) &&
1425 e.stat == NFS4ERR_BADOWNER)
1426 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN);
1427
1428 e.error = geterrno4(e.stat);
1429 }
1430 kmem_free(argop, argoplist_size);
1431 return (e.error);
1432 }
1433 }
1434
1435 rp = VTOR4(vp);
1436
1437 mutex_enter(&rp->r_statev4_lock);
1438 if (create_flag)
1439 rp->created_v4 = 1;
1440 mutex_exit(&rp->r_statev4_lock);
1441
1442 mutex_enter(&oop->oo_lock);
1443 /* Doesn't matter if 'oo_just_created' already was set as this */
1444 oop->oo_just_created = NFS4_PERM_CREATED;
1445 if (oop->oo_cred_otw)
1446 crfree(oop->oo_cred_otw);
1447 oop->oo_cred_otw = cred_otw;
1448 crhold(oop->oo_cred_otw);
1449 mutex_exit(&oop->oo_lock);
1450
1451 /* returns with 'os_sync_lock' held */
1452 osp = find_or_create_open_stream(oop, rp, &created_osp);
1453 if (!osp) {
1454 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
1455 "nfs4open_otw: failed to create an open stream"));
1456 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: "
1457 "signal our end of use of the open seqid"));
1458
1459 nfs4_end_open_seqid_sync(oop);
1460 open_owner_rele(oop);
1461 nfs4args_copen_free(open_args);
1462 if (setgid_flag) {
1463 nfs4args_verify_free(&argop[8]);
1464 nfs4args_setattr_free(&argop[9]);
1465 }
1466 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1467 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1468 if (create_flag || fh_differs)
1469 VN_RELE(vp);
1470 if (ncr != NULL)
1471 crfree(ncr);
1472
1473 kmem_free(argop, argoplist_size);
1474 return (EINVAL);
1475
1476 }
1477
1478 osp->open_stateid = op_res->stateid;
1479
1480 if (open_flag & FREAD)
1481 osp->os_share_acc_read++;
1482 if (open_flag & FWRITE)
1483 osp->os_share_acc_write++;
1484 osp->os_share_deny_none++;
1485
1486 /*
1487 * Need to reset this bitfield for the possible case where we were
1488 * going to OTW CLOSE the file, got a non-recoverable error, and before
1489 * we could retry the CLOSE, OPENed the file again.
1490 */
1491 ASSERT(osp->os_open_owner->oo_seqid_inuse);
1492 osp->os_final_close = 0;
1493 osp->os_force_close = 0;
1494 #ifdef DEBUG
1495 if (osp->os_failed_reopen)
1496 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:"
1497 " clearing os_failed_reopen for osp %p, cr %p, rp %s",
1498 (void *)osp, (void *)cr, rnode4info(rp)));
1499 #endif
1500 osp->os_failed_reopen = 0;
1501
1502 mutex_exit(&osp->os_sync_lock);
1503
1504 nfs4_end_open_seqid_sync(oop);
1505
1506 if (created_osp && recov_state.rs_sp != NULL) {
1507 mutex_enter(&recov_state.rs_sp->s_lock);
1508 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp));
1509 mutex_exit(&recov_state.rs_sp->s_lock);
1510 }
1511
1512 /* get rid of our reference to find oop */
1513 open_owner_rele(oop);
1514
1515 open_stream_rele(osp, rp);
1516
1517 /* accept delegation, if any */
1518 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw);
1519
1520 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1521
1522 if (createmode == EXCLUSIVE4 &&
1523 (in_va->va_mask & ~(AT_GID | AT_SIZE))) {
1524 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:"
1525 " EXCLUSIVE4: sending a SETATTR"));
1526 /*
1527 * If doing an exclusive create, then generate
1528 * a SETATTR to set the initial attributes.
1529 * Try to set the mtime and the atime to the
1530 * server's current time. It is somewhat
1531 * expected that these fields will be used to
1532 * store the exclusive create cookie. If not,
1533 * server implementors will need to know that
1534 * a SETATTR will follow an exclusive create
1535 * and the cookie should be destroyed if
1536 * appropriate.
1537 *
1538 * The AT_GID and AT_SIZE bits are turned off
1539 * so that the SETATTR request will not attempt
1540 * to process these. The gid will be set
1541 * separately if appropriate. The size is turned
1542 * off because it is assumed that a new file will
1543 * be created empty and if the file wasn't empty,
1544 * then the exclusive create will have failed
1545 * because the file must have existed already.
1546 * Therefore, no truncate operation is needed.
1547 */
1548 in_va->va_mask &= ~(AT_GID | AT_SIZE);
1549 in_va->va_mask |= (AT_MTIME | AT_ATIME);
1550
1551 e.error = nfs4setattr(vp, in_va, 0, cr, NULL);
1552 if (e.error) {
1553 /*
1554 * Couldn't correct the attributes of
1555 * the newly created file and the
1556 * attributes are wrong. Remove the
1557 * file and return an error to the
1558 * application.
1559 */
1560 /* XXX will this take care of client state ? */
1561 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
1562 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:"
1563 " remove file", e.error));
1564 VN_RELE(vp);
1565 (void) nfs4_remove(dvp, file_name, cr, NULL, 0);
1566 /*
1567 * Since we've reled the vnode and removed
1568 * the file we now need to return the error.
1569 * At this point we don't want to update the
1570 * dircaches, call nfs4_waitfor_purge_complete
1571 * or set vpp to vp so we need to skip these
1572 * as well.
1573 */
1574 goto skip_update_dircaches;
1575 }
1576 }
1577
1578 /*
1579 * If we created or found the correct vnode, due to create_flag or
1580 * fh_differs being set, then update directory cache attribute, readdir
1581 * and dnlc caches.
1582 */
1583 if (create_flag || fh_differs) {
1584 dirattr_info_t dinfo, *dinfop;
1585
1586 /*
1587 * Make sure getattr succeeded before using results.
1588 * note: op 7 is getattr(dir) for both flavors of
1589 * open(create).
1590 */
1591 if (create_flag && res.status == NFS4_OK) {
1592 dinfo.di_time_call = t;
1593 dinfo.di_cred = cr;
1594 dinfo.di_garp =
1595 &res.array[6].nfs_resop4_u.opgetattr.ga_res;
1596 dinfop = &dinfo;
1597 } else {
1598 dinfop = NULL;
1599 }
1600
1601 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name,
1602 dinfop);
1603 }
1604
1605 /*
1606 * If the page cache for this file was flushed from actions
1607 * above, it was done asynchronously and if that is true,
1608 * there is a need to wait here for it to complete. This must
1609 * be done outside of start_fop/end_fop.
1610 */
1611 (void) nfs4_waitfor_purge_complete(vp);
1612
1613 /*
1614 * It is implicit that we are in the open case (create_flag == 0) since
1615 * fh_differs can only be set to a non-zero value in the open case.
1616 */
1617 if (fh_differs != 0 && vpi != NULL)
1618 VN_RELE(vpi);
1619
1620 /*
1621 * Be sure to set *vpp to the correct value before returning.
1622 */
1623 *vpp = vp;
1624
1625 skip_update_dircaches:
1626
1627 nfs4args_copen_free(open_args);
1628 if (setgid_flag) {
1629 nfs4args_verify_free(&argop[8]);
1630 nfs4args_setattr_free(&argop[9]);
1631 }
1632 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1633
1634 if (ncr)
1635 crfree(ncr);
1636 kmem_free(argop, argoplist_size);
1637 return (e.error);
1638 }
1639
1640 /*
1641 * Reopen an open instance. cf. nfs4open_otw().
1642 *
1643 * Errors are returned by the nfs4_error_t parameter.
1644 * - ep->error contains an errno value or zero.
1645 * - if it is zero, ep->stat is set to an NFS status code, if any.
1646 * If the file could not be reopened, but the caller should continue, the
1647 * file is marked dead and no error values are returned. If the caller
1648 * should stop recovering open files and start over, either the ep->error
1649 * value or ep->stat will indicate an error (either something that requires
1650 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile
1651 * filehandles) may be handled silently by this routine.
1652 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state
1653 * will be started, so the caller should not do it.
1654 *
1655 * Gotos:
1656 * - kill_file : reopen failed in such a fashion to constitute marking the
1657 * file dead and setting the open stream's 'os_failed_reopen' as 1. This
1658 * is for cases where recovery is not possible.
1659 * - failed_reopen : same as above, except that the file has already been
1660 * marked dead, so no need to do it again.
1661 * - bailout : reopen failed but we are able to recover and retry the reopen -
1662 * either within this function immediately or via the calling function.
1663 */
1664
1665 void
1666 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep,
1667 open_claim_type4 claim, bool_t frc_use_claim_previous,
1668 bool_t is_recov)
1669 {
1670 COMPOUND4args_clnt args;
1671 COMPOUND4res_clnt res;
1672 nfs_argop4 argop[4];
1673 nfs_resop4 *resop;
1674 OPEN4res *op_res = NULL;
1675 OPEN4cargs *open_args;
1676 GETFH4res *gf_res;
1677 rnode4_t *rp = VTOR4(vp);
1678 int doqueue = 1;
1679 cred_t *cr = NULL, *cred_otw = NULL;
1680 nfs4_open_owner_t *oop = NULL;
1681 seqid4 seqid;
1682 nfs4_ga_res_t *garp;
1683 char fn[MAXNAMELEN];
1684 nfs4_recov_state_t recov = {NULL, 0};
1685 nfs4_lost_rqst_t lost_rqst;
1686 mntinfo4_t *mi = VTOMI4(vp);
1687 bool_t abort;
1688 char *failed_msg = "";
1689 int fh_different;
1690 hrtime_t t;
1691 nfs4_bseqid_entry_t *bsep = NULL;
1692
1693 ASSERT(nfs4_consistent_type(vp));
1694 ASSERT(nfs_zone() == mi->mi_zone);
1695
1696 nfs4_error_zinit(ep);
1697
1698 /* this is the cred used to find the open owner */
1699 cr = state_to_cred(osp);
1700 if (cr == NULL) {
1701 failed_msg = "Couldn't reopen: no cred";
1702 goto kill_file;
1703 }
1704 /* use this cred for OTW operations */
1705 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner);
1706
1707 top:
1708 nfs4_error_zinit(ep);
1709
1710 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) {
1711 /* File system has been unmounted, quit */
1712 ep->error = EIO;
1713 failed_msg = "Couldn't reopen: file system has been unmounted";
1714 goto kill_file;
1715 }
1716
1717 oop = osp->os_open_owner;
1718
1719 ASSERT(oop != NULL);
1720 if (oop == NULL) { /* be defensive in non-DEBUG */
1721 failed_msg = "can't reopen: no open owner";
1722 goto kill_file;
1723 }
1724 open_owner_hold(oop);
1725
1726 ep->error = nfs4_start_open_seqid_sync(oop, mi);
1727 if (ep->error) {
1728 open_owner_rele(oop);
1729 oop = NULL;
1730 goto bailout;
1731 }
1732
1733 /*
1734 * If the rnode has a delegation and the delegation has been
1735 * recovered and the server didn't request a recall and the caller
1736 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during
1737 * recovery) and the rnode hasn't been marked dead, then install
1738 * the delegation stateid in the open stream. Otherwise, proceed
1739 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN.
1740 */
1741 mutex_enter(&rp->r_statev4_lock);
1742 if (rp->r_deleg_type != OPEN_DELEGATE_NONE &&
1743 !rp->r_deleg_return_pending &&
1744 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) &&
1745 !rp->r_deleg_needs_recall &&
1746 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous &&
1747 !(rp->r_flags & R4RECOVERR)) {
1748 mutex_enter(&osp->os_sync_lock);
1749 osp->os_delegation = 1;
1750 osp->open_stateid = rp->r_deleg_stateid;
1751 mutex_exit(&osp->os_sync_lock);
1752 mutex_exit(&rp->r_statev4_lock);
1753 goto bailout;
1754 }
1755 mutex_exit(&rp->r_statev4_lock);
1756
1757 /*
1758 * If the file failed recovery, just quit. This failure need not
1759 * affect other reopens, so don't return an error.
1760 */
1761 mutex_enter(&rp->r_statelock);
1762 if (rp->r_flags & R4RECOVERR) {
1763 mutex_exit(&rp->r_statelock);
1764 ep->error = 0;
1765 goto failed_reopen;
1766 }
1767 mutex_exit(&rp->r_statelock);
1768
1769 /*
1770 * argop is empty here
1771 *
1772 * PUTFH, OPEN, GETATTR
1773 */
1774 args.ctag = TAG_REOPEN;
1775 args.array_len = 4;
1776 args.array = argop;
1777
1778 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
1779 "nfs4_reopen: file is type %d, id %s",
1780 vp->v_type, rnode4info(VTOR4(vp))));
1781
1782 argop[0].argop = OP_CPUTFH;
1783
1784 if (claim != CLAIM_PREVIOUS) {
1785 /*
1786 * if this is a file mount then
1787 * use the mntinfo parentfh
1788 */
1789 argop[0].nfs_argop4_u.opcputfh.sfh =
1790 (vp->v_flag & VROOT) ? mi->mi_srvparentfh :
1791 VTOSV(vp)->sv_dfh;
1792 } else {
1793 /* putfh fh to reopen */
1794 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
1795 }
1796
1797 argop[1].argop = OP_COPEN;
1798 open_args = &argop[1].nfs_argop4_u.opcopen;
1799 open_args->claim = claim;
1800
1801 if (claim == CLAIM_NULL) {
1802
1803 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) {
1804 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname "
1805 "failed for vp 0x%p for CLAIM_NULL with %m",
1806 (void *)vp);
1807 failed_msg = "Couldn't reopen: vtoname failed for "
1808 "CLAIM_NULL";
1809 /* nothing allocated yet */
1810 goto kill_file;
1811 }
1812
1813 open_args->open_claim4_u.cfile = fn;
1814 } else if (claim == CLAIM_PREVIOUS) {
1815
1816 /*
1817 * We have two cases to deal with here:
1818 * 1) We're being called to reopen files in order to satisfy
1819 * a lock operation request which requires us to explicitly
1820 * reopen files which were opened under a delegation. If
1821 * we're in recovery, we *must* use CLAIM_PREVIOUS. In
1822 * that case, frc_use_claim_previous is TRUE and we must
1823 * use the rnode's current delegation type (r_deleg_type).
1824 * 2) We're reopening files during some form of recovery.
1825 * In this case, frc_use_claim_previous is FALSE and we
1826 * use the delegation type appropriate for recovery
1827 * (r_deleg_needs_recovery).
1828 */
1829 mutex_enter(&rp->r_statev4_lock);
1830 open_args->open_claim4_u.delegate_type =
1831 frc_use_claim_previous ?
1832 rp->r_deleg_type :
1833 rp->r_deleg_needs_recovery;
1834 mutex_exit(&rp->r_statev4_lock);
1835
1836 } else if (claim == CLAIM_DELEGATE_CUR) {
1837
1838 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) {
1839 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname "
1840 "failed for vp 0x%p for CLAIM_DELEGATE_CUR "
1841 "with %m", (void *)vp);
1842 failed_msg = "Couldn't reopen: vtoname failed for "
1843 "CLAIM_DELEGATE_CUR";
1844 /* nothing allocated yet */
1845 goto kill_file;
1846 }
1847
1848 mutex_enter(&rp->r_statev4_lock);
1849 open_args->open_claim4_u.delegate_cur_info.delegate_stateid =
1850 rp->r_deleg_stateid;
1851 mutex_exit(&rp->r_statev4_lock);
1852
1853 open_args->open_claim4_u.delegate_cur_info.cfile = fn;
1854 }
1855 open_args->opentype = OPEN4_NOCREATE;
1856 open_args->owner.clientid = mi2clientid(mi);
1857 open_args->owner.owner_len = sizeof (oop->oo_name);
1858 open_args->owner.owner_val =
1859 kmem_alloc(open_args->owner.owner_len, KM_SLEEP);
1860 bcopy(&oop->oo_name, open_args->owner.owner_val,
1861 open_args->owner.owner_len);
1862 open_args->share_access = 0;
1863 open_args->share_deny = 0;
1864
1865 mutex_enter(&osp->os_sync_lock);
1866 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp "
1867 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: "
1868 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ",
1869 (void *)osp, (void *)rp, osp->os_share_acc_read,
1870 osp->os_share_acc_write, osp->os_open_ref_count,
1871 osp->os_mmap_read, osp->os_mmap_write, claim));
1872
1873 if (osp->os_share_acc_read || osp->os_mmap_read)
1874 open_args->share_access |= OPEN4_SHARE_ACCESS_READ;
1875 if (osp->os_share_acc_write || osp->os_mmap_write)
1876 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE;
1877 if (osp->os_share_deny_read)
1878 open_args->share_deny |= OPEN4_SHARE_DENY_READ;
1879 if (osp->os_share_deny_write)
1880 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE;
1881 mutex_exit(&osp->os_sync_lock);
1882
1883 seqid = nfs4_get_open_seqid(oop) + 1;
1884 open_args->seqid = seqid;
1885
1886 /* Construct the getfh part of the compound */
1887 argop[2].argop = OP_GETFH;
1888
1889 /* Construct the getattr part of the compound */
1890 argop[3].argop = OP_GETATTR;
1891 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1892 argop[3].nfs_argop4_u.opgetattr.mi = mi;
1893
1894 t = gethrtime();
1895
1896 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep);
1897
1898 if (ep->error) {
1899 if (!is_recov && !frc_use_claim_previous &&
1900 (ep->error == EINTR || ep->error == ETIMEDOUT ||
1901 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) {
1902 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop,
1903 cred_otw, vp, NULL, open_args);
1904 abort = nfs4_start_recovery(ep,
1905 VTOMI4(vp), vp, NULL, NULL,
1906 lost_rqst.lr_op == OP_OPEN ?
1907 &lost_rqst : NULL, OP_OPEN, NULL, NULL, NULL);
1908 nfs4args_copen_free(open_args);
1909 goto bailout;
1910 }
1911
1912 nfs4args_copen_free(open_args);
1913
1914 if (ep->error == EACCES && cred_otw != cr) {
1915 crfree(cred_otw);
1916 cred_otw = cr;
1917 crhold(cred_otw);
1918 nfs4_end_open_seqid_sync(oop);
1919 open_owner_rele(oop);
1920 oop = NULL;
1921 goto top;
1922 }
1923 if (ep->error == ETIMEDOUT)
1924 goto bailout;
1925 failed_msg = "Couldn't reopen: rpc error";
1926 goto kill_file;
1927 }
1928
1929 if (nfs4_need_to_bump_seqid(&res))
1930 nfs4_set_open_seqid(seqid, oop, args.ctag);
1931
1932 switch (res.status) {
1933 case NFS4_OK:
1934 if (recov.rs_flags & NFS4_RS_DELAY_MSG) {
1935 mutex_enter(&rp->r_statelock);
1936 rp->r_delay_interval = 0;
1937 mutex_exit(&rp->r_statelock);
1938 }
1939 break;
1940 case NFS4ERR_BAD_SEQID:
1941 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0,
1942 args.ctag, open_args->seqid);
1943
1944 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL,
1945 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst :
1946 NULL, OP_OPEN, bsep, NULL, NULL);
1947
1948 nfs4args_copen_free(open_args);
1949 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1950 nfs4_end_open_seqid_sync(oop);
1951 open_owner_rele(oop);
1952 oop = NULL;
1953 kmem_free(bsep, sizeof (*bsep));
1954
1955 goto kill_file;
1956 case NFS4ERR_NO_GRACE:
1957 nfs4args_copen_free(open_args);
1958 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1959 nfs4_end_open_seqid_sync(oop);
1960 open_owner_rele(oop);
1961 oop = NULL;
1962 if (claim == CLAIM_PREVIOUS) {
1963 /*
1964 * Retry as a plain open. We don't need to worry about
1965 * checking the changeinfo: it is acceptable for a
1966 * client to re-open a file and continue processing
1967 * (in the absence of locks).
1968 */
1969 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1970 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; "
1971 "will retry as CLAIM_NULL"));
1972 claim = CLAIM_NULL;
1973 nfs4_mi_kstat_inc_no_grace(mi);
1974 goto top;
1975 }
1976 failed_msg =
1977 "Couldn't reopen: tried reclaim outside grace period. ";
1978 goto kill_file;
1979 case NFS4ERR_GRACE:
1980 nfs4_set_grace_wait(mi);
1981 nfs4args_copen_free(open_args);
1982 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1983 nfs4_end_open_seqid_sync(oop);
1984 open_owner_rele(oop);
1985 oop = NULL;
1986 ep->error = nfs4_wait_for_grace(mi, &recov);
1987 if (ep->error != 0)
1988 goto bailout;
1989 goto top;
1990 case NFS4ERR_DELAY:
1991 nfs4_set_delay_wait(vp);
1992 nfs4args_copen_free(open_args);
1993 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1994 nfs4_end_open_seqid_sync(oop);
1995 open_owner_rele(oop);
1996 oop = NULL;
1997 ep->error = nfs4_wait_for_delay(vp, &recov);
1998 nfs4_mi_kstat_inc_delay(mi);
1999 if (ep->error != 0)
2000 goto bailout;
2001 goto top;
2002 case NFS4ERR_FHEXPIRED:
2003 /* recover filehandle and retry */
2004 abort = nfs4_start_recovery(ep,
2005 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL, NULL, NULL);
2006 nfs4args_copen_free(open_args);
2007 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2008 nfs4_end_open_seqid_sync(oop);
2009 open_owner_rele(oop);
2010 oop = NULL;
2011 if (abort == FALSE)
2012 goto top;
2013 failed_msg = "Couldn't reopen: recovery aborted";
2014 goto kill_file;
2015 case NFS4ERR_RESOURCE:
2016 case NFS4ERR_STALE_CLIENTID:
2017 case NFS4ERR_WRONGSEC:
2018 case NFS4ERR_EXPIRED:
2019 /*
2020 * Do not mark the file dead and let the calling
2021 * function initiate recovery.
2022 */
2023 nfs4args_copen_free(open_args);
2024 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2025 nfs4_end_open_seqid_sync(oop);
2026 open_owner_rele(oop);
2027 oop = NULL;
2028 goto bailout;
2029 case NFS4ERR_ACCESS:
2030 if (cred_otw != cr) {
2031 crfree(cred_otw);
2032 cred_otw = cr;
2033 crhold(cred_otw);
2034 nfs4args_copen_free(open_args);
2035 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2036 nfs4_end_open_seqid_sync(oop);
2037 open_owner_rele(oop);
2038 oop = NULL;
2039 goto top;
2040 }
2041 /* fall through */
2042 default:
2043 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
2044 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s",
2045 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv,
2046 rnode4info(VTOR4(vp))));
2047 failed_msg = "Couldn't reopen: NFSv4 error";
2048 nfs4args_copen_free(open_args);
2049 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2050 goto kill_file;
2051 }
2052
2053 resop = &res.array[1]; /* open res */
2054 op_res = &resop->nfs_resop4_u.opopen;
2055
2056 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res;
2057
2058 /*
2059 * Check if the path we reopened really is the same
2060 * file. We could end up in a situation where the file
2061 * was removed and a new file created with the same name.
2062 */
2063 resop = &res.array[2];
2064 gf_res = &resop->nfs_resop4_u.opgetfh;
2065 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
2066 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0);
2067 if (fh_different) {
2068 if (mi->mi_fh_expire_type == FH4_PERSISTENT ||
2069 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) {
2070 /* Oops, we don't have the same file */
2071 if (mi->mi_fh_expire_type == FH4_PERSISTENT)
2072 failed_msg = "Couldn't reopen: Persistent "
2073 "file handle changed";
2074 else
2075 failed_msg = "Couldn't reopen: Volatile "
2076 "(no expire on open) file handle changed";
2077
2078 nfs4args_copen_free(open_args);
2079 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2080 nfs_rw_exit(&mi->mi_fh_lock);
2081 goto kill_file;
2082
2083 } else {
2084 /*
2085 * We have volatile file handles that don't compare.
2086 * If the fids are the same then we assume that the
2087 * file handle expired but the rnode still refers to
2088 * the same file object.
2089 *
2090 * First check that we have fids or not.
2091 * If we don't we have a dumb server so we will
2092 * just assume every thing is ok for now.
2093 */
2094 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID &&
2095 rp->r_attr.va_mask & AT_NODEID &&
2096 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) {
2097 /*
2098 * We have fids, but they don't
2099 * compare. So kill the file.
2100 */
2101 failed_msg =
2102 "Couldn't reopen: file handle changed"
2103 " due to mismatched fids";
2104 nfs4args_copen_free(open_args);
2105 (void) xdr_free(xdr_COMPOUND4res_clnt,
2106 (caddr_t)&res);
2107 nfs_rw_exit(&mi->mi_fh_lock);
2108 goto kill_file;
2109 } else {
2110 /*
2111 * We have volatile file handles that refers
2112 * to the same file (at least they have the
2113 * same fid) or we don't have fids so we
2114 * can't tell. :(. We'll be a kind and accepting
2115 * client so we'll update the rnode's file
2116 * handle with the otw handle.
2117 *
2118 * We need to drop mi->mi_fh_lock since
2119 * sh4_update acquires it. Since there is
2120 * only one recovery thread there is no
2121 * race.
2122 */
2123 nfs_rw_exit(&mi->mi_fh_lock);
2124 sfh4_update(rp->r_fh, &gf_res->object);
2125 }
2126 }
2127 } else {
2128 nfs_rw_exit(&mi->mi_fh_lock);
2129 }
2130
2131 ASSERT(nfs4_consistent_type(vp));
2132
2133 /*
2134 * If the server wanted an OPEN_CONFIRM but that fails, just start
2135 * over. Presumably if there is a persistent error it will show up
2136 * when we resend the OPEN.
2137 */
2138 if (op_res->rflags & OPEN4_RESULT_CONFIRM) {
2139 bool_t retry_open = FALSE;
2140
2141 nfs4open_confirm(vp, &seqid, &op_res->stateid,
2142 cred_otw, is_recov, &retry_open,
2143 oop, FALSE, ep, NULL);
2144 if (ep->error || ep->stat) {
2145 nfs4args_copen_free(open_args);
2146 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2147 nfs4_end_open_seqid_sync(oop);
2148 open_owner_rele(oop);
2149 oop = NULL;
2150 goto top;
2151 }
2152 }
2153
2154 mutex_enter(&osp->os_sync_lock);
2155 osp->open_stateid = op_res->stateid;
2156 osp->os_delegation = 0;
2157 /*
2158 * Need to reset this bitfield for the possible case where we were
2159 * going to OTW CLOSE the file, got a non-recoverable error, and before
2160 * we could retry the CLOSE, OPENed the file again.
2161 */
2162 ASSERT(osp->os_open_owner->oo_seqid_inuse);
2163 osp->os_final_close = 0;
2164 osp->os_force_close = 0;
2165 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS)
2166 osp->os_dc_openacc = open_args->share_access;
2167 mutex_exit(&osp->os_sync_lock);
2168
2169 nfs4_end_open_seqid_sync(oop);
2170
2171 /* accept delegation, if any */
2172 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw);
2173
2174 nfs4args_copen_free(open_args);
2175
2176 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL);
2177
2178 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2179
2180 ASSERT(nfs4_consistent_type(vp));
2181
2182 open_owner_rele(oop);
2183 crfree(cr);
2184 crfree(cred_otw);
2185 return;
2186
2187 kill_file:
2188 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat);
2189 failed_reopen:
2190 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE,
2191 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s",
2192 (void *)osp, (void *)cr, rnode4info(rp)));
2193 mutex_enter(&osp->os_sync_lock);
2194 osp->os_failed_reopen = 1;
2195 mutex_exit(&osp->os_sync_lock);
2196 bailout:
2197 if (oop != NULL) {
2198 nfs4_end_open_seqid_sync(oop);
2199 open_owner_rele(oop);
2200 }
2201 if (cr != NULL)
2202 crfree(cr);
2203 if (cred_otw != NULL)
2204 crfree(cred_otw);
2205 }
2206
2207 /* for . and .. OPENs */
2208 /* ARGSUSED */
2209 static int
2210 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr)
2211 {
2212 rnode4_t *rp;
2213 nfs4_ga_res_t gar;
2214
2215 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone);
2216
2217 /*
2218 * If close-to-open consistency checking is turned off or
2219 * if there is no cached data, we can avoid
2220 * the over the wire getattr. Otherwise, force a
2221 * call to the server to get fresh attributes and to
2222 * check caches. This is required for close-to-open
2223 * consistency.
2224 */
2225 rp = VTOR4(*vpp);
2226 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO ||
2227 (rp->r_dir == NULL && !nfs4_has_pages(*vpp)))
2228 return (0);
2229
2230 gar.n4g_va.va_mask = AT_ALL;
2231 return (nfs4_getattr_otw(*vpp, &gar, cr, 0));
2232 }
2233
2234 /*
2235 * CLOSE a file
2236 */
2237 /* ARGSUSED */
2238 static int
2239 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
2240 caller_context_t *ct)
2241 {
2242 rnode4_t *rp;
2243 int error = 0;
2244 int r_error = 0;
2245 int n4error = 0;
2246 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
2247
2248 /*
2249 * Remove client state for this (lockowner, file) pair.
2250 * Issue otw v4 call to have the server do the same.
2251 */
2252
2253 rp = VTOR4(vp);
2254
2255 /*
2256 * zone_enter(2) prevents processes from changing zones with NFS files
2257 * open; if we happen to get here from the wrong zone we can't do
2258 * anything over the wire.
2259 */
2260 if (VTOMI4(vp)->mi_zone != nfs_zone()) {
2261 /*
2262 * We could attempt to clean up locks, except we're sure
2263 * that the current process didn't acquire any locks on
2264 * the file: any attempt to lock a file belong to another zone
2265 * will fail, and one can't lock an NFS file and then change
2266 * zones, as that fails too.
2267 *
2268 * Returning an error here is the sane thing to do. A
2269 * subsequent call to VN_RELE() which translates to a
2270 * nfs4_inactive() will clean up state: if the zone of the
2271 * vnode's origin is still alive and kicking, the inactive
2272 * thread will handle the request (from the correct zone), and
2273 * everything (minus the OTW close call) should be OK. If the
2274 * zone is going away nfs4_async_inactive() will throw away
2275 * delegations, open streams and cached pages inline.
2276 */
2277 return (EIO);
2278 }
2279
2280 /*
2281 * If we are using local locking for this filesystem, then
2282 * release all of the SYSV style record locks. Otherwise,
2283 * we are doing network locking and we need to release all
2284 * of the network locks. All of the locks held by this
2285 * process on this file are released no matter what the
2286 * incoming reference count is.
2287 */
2288 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) {
2289 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
2290 cleanshares(vp, ttoproc(curthread)->p_pid);
2291 } else
2292 e.error = nfs4_lockrelease(vp, flag, offset, cr);
2293
2294 if (e.error) {
2295 struct lm_sysid *lmsid;
2296 lmsid = nfs4_find_sysid(VTOMI4(vp));
2297 if (lmsid == NULL) {
2298 DTRACE_PROBE2(unknown__sysid, int, e.error,
2299 vnode_t *, vp);
2300 } else {
2301 cleanlocks(vp, ttoproc(curthread)->p_pid,
2302 (lm_sysidt(lmsid) | LM_SYSID_CLIENT));
2303 }
2304 return (e.error);
2305 }
2306
2307 if (count > 1)
2308 return (0);
2309
2310 /*
2311 * If the file has been `unlinked', then purge the
2312 * DNLC so that this vnode will get reycled quicker
2313 * and the .nfs* file on the server will get removed.
2314 */
2315 if (rp->r_unldvp != NULL)
2316 dnlc_purge_vp(vp);
2317
2318 /*
2319 * If the file was open for write and there are pages,
2320 * do a synchronous flush and commit of all of the
2321 * dirty and uncommitted pages.
2322 */
2323 ASSERT(!e.error);
2324 if ((flag & FWRITE) && nfs4_has_pages(vp))
2325 error = nfs4_putpage_commit(vp, 0, 0, cr);
2326
2327 mutex_enter(&rp->r_statelock);
2328 r_error = rp->r_error;
2329 rp->r_error = 0;
2330 mutex_exit(&rp->r_statelock);
2331
2332 /*
2333 * If this file type is one for which no explicit 'open' was
2334 * done, then bail now (ie. no need for protocol 'close'). If
2335 * there was an error w/the vm subsystem, return _that_ error,
2336 * otherwise, return any errors that may've been reported via
2337 * the rnode.
2338 */
2339 if (vp->v_type != VREG)
2340 return (error ? error : r_error);
2341
2342 /*
2343 * The sync putpage commit may have failed above, but since
2344 * we're working w/a regular file, we need to do the protocol
2345 * 'close' (nfs4close_one will figure out if an otw close is
2346 * needed or not). Report any errors _after_ doing the protocol
2347 * 'close'.
2348 */
2349 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0);
2350 n4error = e.error ? e.error : geterrno4(e.stat);
2351
2352 /*
2353 * Error reporting prio (Hi -> Lo)
2354 *
2355 * i) nfs4_putpage_commit (error)
2356 * ii) rnode's (r_error)
2357 * iii) nfs4close_one (n4error)
2358 */
2359 return (error ? error : (r_error ? r_error : n4error));
2360 }
2361
2362 /*
2363 * Initialize *lost_rqstp.
2364 */
2365
2366 static void
2367 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp,
2368 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr,
2369 vnode_t *vp)
2370 {
2371 if (error != ETIMEDOUT && error != EINTR &&
2372 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) {
2373 lost_rqstp->lr_op = 0;
2374 return;
2375 }
2376
2377 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
2378 "nfs4close_save_lost_rqst: error %d", error));
2379
2380 lost_rqstp->lr_op = OP_CLOSE;
2381 /*
2382 * The vp is held and rele'd via the recovery code.
2383 * See nfs4_save_lost_rqst.
2384 */
2385 lost_rqstp->lr_vp = vp;
2386 lost_rqstp->lr_dvp = NULL;
2387 lost_rqstp->lr_oop = oop;
2388 lost_rqstp->lr_osp = osp;
2389 ASSERT(osp != NULL);
2390 ASSERT(mutex_owned(&osp->os_sync_lock));
2391 osp->os_pending_close = 1;
2392 lost_rqstp->lr_lop = NULL;
2393 lost_rqstp->lr_cr = cr;
2394 lost_rqstp->lr_flk = NULL;
2395 lost_rqstp->lr_putfirst = FALSE;
2396 }
2397
2398 /*
2399 * Assumes you already have the open seqid sync grabbed as well as the
2400 * 'os_sync_lock'. Note: this will release the open seqid sync and
2401 * 'os_sync_lock' if client recovery starts. Calling functions have to
2402 * be prepared to handle this.
2403 *
2404 * 'recov' is returned as 1 if the CLOSE operation detected client recovery
2405 * was needed and was started, and that the calling function should retry
2406 * this function; otherwise it is returned as 0.
2407 *
2408 * Errors are returned via the nfs4_error_t parameter.
2409 */
2410 static void
2411 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop,
2412 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp,
2413 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp)
2414 {
2415 COMPOUND4args_clnt args;
2416 COMPOUND4res_clnt res;
2417 CLOSE4args *close_args;
2418 nfs_resop4 *resop;
2419 nfs_argop4 argop[3];
2420 int doqueue = 1;
2421 mntinfo4_t *mi;
2422 seqid4 seqid;
2423 vnode_t *vp;
2424 bool_t needrecov = FALSE;
2425 nfs4_lost_rqst_t lost_rqst;
2426 hrtime_t t;
2427
2428 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone);
2429
2430 ASSERT(MUTEX_HELD(&osp->os_sync_lock));
2431
2432 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw"));
2433
2434 /* Only set this to 1 if recovery is started */
2435 *recov = 0;
2436
2437 /* do the OTW call to close the file */
2438
2439 if (close_type == CLOSE_RESEND)
2440 args.ctag = TAG_CLOSE_LOST;
2441 else if (close_type == CLOSE_AFTER_RESEND)
2442 args.ctag = TAG_CLOSE_UNDO;
2443 else
2444 args.ctag = TAG_CLOSE;
2445
2446 args.array_len = 3;
2447 args.array = argop;
2448
2449 vp = RTOV4(rp);
2450
2451 mi = VTOMI4(vp);
2452
2453 /* putfh target fh */
2454 argop[0].argop = OP_CPUTFH;
2455 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
2456
2457 argop[1].argop = OP_GETATTR;
2458 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
2459 argop[1].nfs_argop4_u.opgetattr.mi = mi;
2460
2461 argop[2].argop = OP_CLOSE;
2462 close_args = &argop[2].nfs_argop4_u.opclose;
2463
2464 seqid = nfs4_get_open_seqid(oop) + 1;
2465
2466 close_args->seqid = seqid;
2467 close_args->open_stateid = osp->open_stateid;
2468
2469 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
2470 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first",
2471 rnode4info(rp)));
2472
2473 t = gethrtime();
2474
2475 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep);
2476
2477 if (!ep->error && nfs4_need_to_bump_seqid(&res)) {
2478 nfs4_set_open_seqid(seqid, oop, args.ctag);
2479 }
2480
2481 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp);
2482 if (ep->error && !needrecov) {
2483 /*
2484 * if there was an error and no recovery is to be done
2485 * then then set up the file to flush its cache if
2486 * needed for the next caller.
2487 */
2488 mutex_enter(&rp->r_statelock);
2489 PURGE_ATTRCACHE4_LOCKED(rp);
2490 rp->r_flags &= ~R4WRITEMODIFIED;
2491 mutex_exit(&rp->r_statelock);
2492 return;
2493 }
2494
2495 if (needrecov) {
2496 bool_t abort;
2497 nfs4_bseqid_entry_t *bsep = NULL;
2498
2499 if (close_type != CLOSE_RESEND)
2500 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop,
2501 osp, cred_otw, vp);
2502
2503 if (!ep->error && res.status == NFS4ERR_BAD_SEQID)
2504 bsep = nfs4_create_bseqid_entry(oop, NULL, vp,
2505 0, args.ctag, close_args->seqid);
2506
2507 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
2508 "nfs4close_otw: initiating recovery. error %d "
2509 "res.status %d", ep->error, res.status));
2510
2511 /*
2512 * Drop the 'os_sync_lock' here so we don't hit
2513 * a potential recursive mutex_enter via an
2514 * 'open_stream_hold()'.
2515 */
2516 mutex_exit(&osp->os_sync_lock);
2517 *have_sync_lockp = 0;
2518 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL,
2519 (close_type != CLOSE_RESEND &&
2520 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL,
2521 OP_CLOSE, bsep, NULL, NULL);
2522
2523 /* drop open seq sync, and let the calling function regrab it */
2524 nfs4_end_open_seqid_sync(oop);
2525 *did_start_seqid_syncp = 0;
2526
2527 if (bsep)
2528 kmem_free(bsep, sizeof (*bsep));
2529 /*
2530 * For signals, the caller wants to quit, so don't say to
2531 * retry. For forced unmount, if it's a user thread, it
2532 * wants to quit. If it's a recovery thread, the retry
2533 * will happen higher-up on the call stack. Either way,
2534 * don't say to retry.
2535 */
2536 if (abort == FALSE && ep->error != EINTR &&
2537 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) &&
2538 close_type != CLOSE_RESEND &&
2539 close_type != CLOSE_AFTER_RESEND)
2540 *recov = 1;
2541 else
2542 *recov = 0;
2543
2544 if (!ep->error)
2545 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2546 return;
2547 }
2548
2549 if (res.status) {
2550 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2551 return;
2552 }
2553
2554 mutex_enter(&rp->r_statev4_lock);
2555 rp->created_v4 = 0;
2556 mutex_exit(&rp->r_statev4_lock);
2557
2558 resop = &res.array[2];
2559 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid;
2560 osp->os_valid = 0;
2561
2562 /*
2563 * This removes the reference obtained at OPEN; ie, when the
2564 * open stream structure was created.
2565 *
2566 * We don't have to worry about calling 'open_stream_rele'
2567 * since we our currently holding a reference to the open
2568 * stream which means the count cannot go to 0 with this
2569 * decrement.
2570 */
2571 ASSERT(osp->os_ref_count >= 2);
2572 osp->os_ref_count--;
2573
2574 if (!ep->error)
2575 nfs4_attr_cache(vp,
2576 &res.array[1].nfs_resop4_u.opgetattr.ga_res,
2577 t, cred_otw, TRUE, NULL);
2578
2579 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:"
2580 " returning %d", ep->error));
2581
2582 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2583 }
2584
2585 /* ARGSUSED */
2586 static int
2587 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
2588 caller_context_t *ct)
2589 {
2590 rnode4_t *rp;
2591 u_offset_t off;
2592 offset_t diff;
2593 uint_t on;
2594 uint_t n;
2595 caddr_t base;
2596 uint_t flags;
2597 int error;
2598 mntinfo4_t *mi;
2599
2600 rp = VTOR4(vp);
2601
2602 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
2603
2604 if (IS_SHADOW(vp, rp))
2605 vp = RTOV4(rp);
2606
2607 if (vp->v_type != VREG)
2608 return (EISDIR);
2609
2610 mi = VTOMI4(vp);
2611
2612 if (nfs_zone() != mi->mi_zone)
2613 return (EIO);
2614
2615 if (uiop->uio_resid == 0)
2616 return (0);
2617
2618 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0)
2619 return (EINVAL);
2620
2621 mutex_enter(&rp->r_statelock);
2622 if (rp->r_flags & R4RECOVERRP)
2623 error = (rp->r_error ? rp->r_error : EIO);
2624 else
2625 error = 0;
2626 mutex_exit(&rp->r_statelock);
2627 if (error)
2628 return (error);
2629
2630 /*
2631 * Bypass VM if caching has been disabled (e.g., locking) or if
2632 * using client-side direct I/O and the file is not mmap'd and
2633 * there are no cached pages.
2634 */
2635 if ((vp->v_flag & VNOCACHE) ||
2636 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) &&
2637 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) {
2638 size_t resid = 0;
2639
2640 return (nfs4read(vp, NULL, uiop->uio_loffset,
2641 uiop->uio_resid, &resid, cr, FALSE, uiop));
2642 }
2643
2644 error = 0;
2645
2646 do {
2647 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
2648 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
2649 n = MIN(MAXBSIZE - on, uiop->uio_resid);
2650
2651 if (error = nfs4_validate_caches(vp, cr))
2652 break;
2653
2654 mutex_enter(&rp->r_statelock);
2655 while (rp->r_flags & R4INCACHEPURGE) {
2656 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
2657 mutex_exit(&rp->r_statelock);
2658 return (EINTR);
2659 }
2660 }
2661 diff = rp->r_size - uiop->uio_loffset;
2662 mutex_exit(&rp->r_statelock);
2663 if (diff <= 0)
2664 break;
2665 if (diff < n)
2666 n = (uint_t)diff;
2667
2668 if (vpm_enable) {
2669 /*
2670 * Copy data.
2671 */
2672 error = vpm_data_copy(vp, off + on, n, uiop,
2673 1, NULL, 0, S_READ);
2674 } else {
2675 base = segmap_getmapflt(segkmap, vp, off + on, n, 1,
2676 S_READ);
2677
2678 error = uiomove(base + on, n, UIO_READ, uiop);
2679 }
2680
2681 if (!error) {
2682 /*
2683 * If read a whole block or read to eof,
2684 * won't need this buffer again soon.
2685 */
2686 mutex_enter(&rp->r_statelock);
2687 if (n + on == MAXBSIZE ||
2688 uiop->uio_loffset == rp->r_size)
2689 flags = SM_DONTNEED;
2690 else
2691 flags = 0;
2692 mutex_exit(&rp->r_statelock);
2693 if (vpm_enable) {
2694 error = vpm_sync_pages(vp, off, n, flags);
2695 } else {
2696 error = segmap_release(segkmap, base, flags);
2697 }
2698 } else {
2699 if (vpm_enable) {
2700 (void) vpm_sync_pages(vp, off, n, 0);
2701 } else {
2702 (void) segmap_release(segkmap, base, 0);
2703 }
2704 }
2705 } while (!error && uiop->uio_resid > 0);
2706
2707 return (error);
2708 }
2709
2710 /* ARGSUSED */
2711 static int
2712 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
2713 caller_context_t *ct)
2714 {
2715 rlim64_t limit = uiop->uio_llimit;
2716 rnode4_t *rp;
2717 u_offset_t off;
2718 caddr_t base;
2719 uint_t flags;
2720 int remainder;
2721 size_t n;
2722 int on;
2723 int error;
2724 int resid;
2725 u_offset_t offset;
2726 mntinfo4_t *mi;
2727 uint_t bsize;
2728
2729 rp = VTOR4(vp);
2730
2731 if (IS_SHADOW(vp, rp))
2732 vp = RTOV4(rp);
2733
2734 if (vp->v_type != VREG)
2735 return (EISDIR);
2736
2737 mi = VTOMI4(vp);
2738
2739 if (nfs_zone() != mi->mi_zone)
2740 return (EIO);
2741
2742 if (uiop->uio_resid == 0)
2743 return (0);
2744
2745 mutex_enter(&rp->r_statelock);
2746 if (rp->r_flags & R4RECOVERRP)
2747 error = (rp->r_error ? rp->r_error : EIO);
2748 else
2749 error = 0;
2750 mutex_exit(&rp->r_statelock);
2751 if (error)
2752 return (error);
2753
2754 if (ioflag & FAPPEND) {
2755 struct vattr va;
2756
2757 /*
2758 * Must serialize if appending.
2759 */
2760 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) {
2761 nfs_rw_exit(&rp->r_rwlock);
2762 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER,
2763 INTR4(vp)))
2764 return (EINTR);
2765 }
2766
2767 va.va_mask = AT_SIZE;
2768 error = nfs4getattr(vp, &va, cr);
2769 if (error)
2770 return (error);
2771 uiop->uio_loffset = va.va_size;
2772 }
2773
2774 offset = uiop->uio_loffset + uiop->uio_resid;
2775
2776 if (uiop->uio_loffset < (offset_t)0 || offset < 0)
2777 return (EINVAL);
2778
2779 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
2780 limit = MAXOFFSET_T;
2781
2782 /*
2783 * Check to make sure that the process will not exceed
2784 * its limit on file size. It is okay to write up to
2785 * the limit, but not beyond. Thus, the write which
2786 * reaches the limit will be short and the next write
2787 * will return an error.
2788 */
2789 remainder = 0;
2790 if (offset > uiop->uio_llimit) {
2791 remainder = offset - uiop->uio_llimit;
2792 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset;
2793 if (uiop->uio_resid <= 0) {
2794 proc_t *p = ttoproc(curthread);
2795
2796 uiop->uio_resid += remainder;
2797 mutex_enter(&p->p_lock);
2798 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE],
2799 p->p_rctls, p, RCA_UNSAFE_SIGINFO);
2800 mutex_exit(&p->p_lock);
2801 return (EFBIG);
2802 }
2803 }
2804
2805 /* update the change attribute, if we have a write delegation */
2806
2807 mutex_enter(&rp->r_statev4_lock);
2808 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE)
2809 rp->r_deleg_change++;
2810
2811 mutex_exit(&rp->r_statev4_lock);
2812
2813 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp)))
2814 return (EINTR);
2815
2816 /*
2817 * Bypass VM if caching has been disabled (e.g., locking) or if
2818 * using client-side direct I/O and the file is not mmap'd and
2819 * there are no cached pages.
2820 */
2821 if ((vp->v_flag & VNOCACHE) ||
2822 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) &&
2823 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) {
2824 size_t bufsize;
2825 int count;
2826 u_offset_t org_offset;
2827 stable_how4 stab_comm;
2828 nfs4_fwrite:
2829 if (rp->r_flags & R4STALE) {
2830 resid = uiop->uio_resid;
2831 offset = uiop->uio_loffset;
2832 error = rp->r_error;
2833 /*
2834 * A close may have cleared r_error, if so,
2835 * propagate ESTALE error return properly
2836 */
2837 if (error == 0)
2838 error = ESTALE;
2839 goto bottom;
2840 }
2841
2842 bufsize = MIN(uiop->uio_resid, mi->mi_stsize);
2843 base = kmem_alloc(bufsize, KM_SLEEP);
2844 do {
2845 if (ioflag & FDSYNC)
2846 stab_comm = DATA_SYNC4;
2847 else
2848 stab_comm = FILE_SYNC4;
2849 resid = uiop->uio_resid;
2850 offset = uiop->uio_loffset;
2851 count = MIN(uiop->uio_resid, bufsize);
2852 org_offset = uiop->uio_loffset;
2853 error = uiomove(base, count, UIO_WRITE, uiop);
2854 if (!error) {
2855 error = nfs4write(vp, base, org_offset,
2856 count, cr, &stab_comm);
2857 if (!error) {
2858 mutex_enter(&rp->r_statelock);
2859 if (rp->r_size < uiop->uio_loffset)
2860 rp->r_size = uiop->uio_loffset;
2861 mutex_exit(&rp->r_statelock);
2862 }
2863 }
2864 } while (!error && uiop->uio_resid > 0);
2865 kmem_free(base, bufsize);
2866 goto bottom;
2867 }
2868
2869 bsize = vp->v_vfsp->vfs_bsize;
2870
2871 do {
2872 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
2873 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
2874 n = MIN(MAXBSIZE - on, uiop->uio_resid);
2875
2876 resid = uiop->uio_resid;
2877 offset = uiop->uio_loffset;
2878
2879 if (rp->r_flags & R4STALE) {
2880 error = rp->r_error;
2881 /*
2882 * A close may have cleared r_error, if so,
2883 * propagate ESTALE error return properly
2884 */
2885 if (error == 0)
2886 error = ESTALE;
2887 break;
2888 }
2889
2890 /*
2891 * Don't create dirty pages faster than they
2892 * can be cleaned so that the system doesn't
2893 * get imbalanced. If the async queue is
2894 * maxed out, then wait for it to drain before
2895 * creating more dirty pages. Also, wait for
2896 * any threads doing pagewalks in the vop_getattr
2897 * entry points so that they don't block for
2898 * long periods.
2899 */
2900 mutex_enter(&rp->r_statelock);
2901 while ((mi->mi_max_threads != 0 &&
2902 rp->r_awcount > 2 * mi->mi_max_threads) ||
2903 rp->r_gcount > 0) {
2904 if (INTR4(vp)) {
2905 klwp_t *lwp = ttolwp(curthread);
2906
2907 if (lwp != NULL)
2908 lwp->lwp_nostop++;
2909 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
2910 mutex_exit(&rp->r_statelock);
2911 if (lwp != NULL)
2912 lwp->lwp_nostop--;
2913 error = EINTR;
2914 goto bottom;
2915 }
2916 if (lwp != NULL)
2917 lwp->lwp_nostop--;
2918 } else
2919 cv_wait(&rp->r_cv, &rp->r_statelock);
2920 }
2921 mutex_exit(&rp->r_statelock);
2922
2923 /*
2924 * Touch the page and fault it in if it is not in core
2925 * before segmap_getmapflt or vpm_data_copy can lock it.
2926 * This is to avoid the deadlock if the buffer is mapped
2927 * to the same file through mmap which we want to write.
2928 */
2929 uio_prefaultpages((long)n, uiop);
2930
2931 if (vpm_enable) {
2932 /*
2933 * It will use kpm mappings, so no need to
2934 * pass an address.
2935 */
2936 error = writerp4(rp, NULL, n, uiop, 0);
2937 } else {
2938 if (segmap_kpm) {
2939 int pon = uiop->uio_loffset & PAGEOFFSET;
2940 size_t pn = MIN(PAGESIZE - pon,
2941 uiop->uio_resid);
2942 int pagecreate;
2943
2944 mutex_enter(&rp->r_statelock);
2945 pagecreate = (pon == 0) && (pn == PAGESIZE ||
2946 uiop->uio_loffset + pn >= rp->r_size);
2947 mutex_exit(&rp->r_statelock);
2948
2949 base = segmap_getmapflt(segkmap, vp, off + on,
2950 pn, !pagecreate, S_WRITE);
2951
2952 error = writerp4(rp, base + pon, n, uiop,
2953 pagecreate);
2954
2955 } else {
2956 base = segmap_getmapflt(segkmap, vp, off + on,
2957 n, 0, S_READ);
2958 error = writerp4(rp, base + on, n, uiop, 0);
2959 }
2960 }
2961
2962 if (!error) {
2963 if (mi->mi_flags & MI4_NOAC)
2964 flags = SM_WRITE;
2965 else if ((uiop->uio_loffset % bsize) == 0 ||
2966 IS_SWAPVP(vp)) {
2967 /*
2968 * Have written a whole block.
2969 * Start an asynchronous write
2970 * and mark the buffer to
2971 * indicate that it won't be
2972 * needed again soon.
2973 */
2974 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
2975 } else
2976 flags = 0;
2977 if ((ioflag & (FSYNC|FDSYNC)) ||
2978 (rp->r_flags & R4OUTOFSPACE)) {
2979 flags &= ~SM_ASYNC;
2980 flags |= SM_WRITE;
2981 }
2982 if (vpm_enable) {
2983 error = vpm_sync_pages(vp, off, n, flags);
2984 } else {
2985 error = segmap_release(segkmap, base, flags);
2986 }
2987 } else {
2988 if (vpm_enable) {
2989 (void) vpm_sync_pages(vp, off, n, 0);
2990 } else {
2991 (void) segmap_release(segkmap, base, 0);
2992 }
2993 /*
2994 * In the event that we got an access error while
2995 * faulting in a page for a write-only file just
2996 * force a write.
2997 */
2998 if (error == EACCES)
2999 goto nfs4_fwrite;
3000 }
3001 } while (!error && uiop->uio_resid > 0);
3002
3003 bottom:
3004 if (error) {
3005 uiop->uio_resid = resid + remainder;
3006 uiop->uio_loffset = offset;
3007 } else {
3008 uiop->uio_resid += remainder;
3009
3010 mutex_enter(&rp->r_statev4_lock);
3011 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) {
3012 gethrestime(&rp->r_attr.va_mtime);
3013 rp->r_attr.va_ctime = rp->r_attr.va_mtime;
3014 }
3015 mutex_exit(&rp->r_statev4_lock);
3016 }
3017
3018 nfs_rw_exit(&rp->r_lkserlock);
3019
3020 return (error);
3021 }
3022
3023 /*
3024 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED}
3025 */
3026 static int
3027 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
3028 int flags, cred_t *cr)
3029 {
3030 struct buf *bp;
3031 int error;
3032 page_t *savepp;
3033 uchar_t fsdata;
3034 stable_how4 stab_comm;
3035
3036 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
3037 bp = pageio_setup(pp, len, vp, flags);
3038 ASSERT(bp != NULL);
3039
3040 /*
3041 * pageio_setup should have set b_addr to 0. This
3042 * is correct since we want to do I/O on a page
3043 * boundary. bp_mapin will use this addr to calculate
3044 * an offset, and then set b_addr to the kernel virtual
3045 * address it allocated for us.
3046 */
3047 ASSERT(bp->b_un.b_addr == 0);
3048
3049 bp->b_edev = 0;
3050 bp->b_dev = 0;
3051 bp->b_lblkno = lbtodb(off);
3052 bp->b_file = vp;
3053 bp->b_offset = (offset_t)off;
3054 bp_mapin(bp);
3055
3056 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) &&
3057 freemem > desfree)
3058 stab_comm = UNSTABLE4;
3059 else
3060 stab_comm = FILE_SYNC4;
3061
3062 error = nfs4_bio(bp, &stab_comm, cr, FALSE);
3063
3064 bp_mapout(bp);
3065 pageio_done(bp);
3066
3067 if (stab_comm == UNSTABLE4)
3068 fsdata = C_DELAYCOMMIT;
3069 else
3070 fsdata = C_NOCOMMIT;
3071
3072 savepp = pp;
3073 do {
3074 pp->p_fsdata = fsdata;
3075 } while ((pp = pp->p_next) != savepp);
3076
3077 return (error);
3078 }
3079
3080 /*
3081 */
3082 static int
3083 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr)
3084 {
3085 nfs4_open_owner_t *oop;
3086 nfs4_open_stream_t *osp;
3087 rnode4_t *rp = VTOR4(vp);
3088 mntinfo4_t *mi = VTOMI4(vp);
3089 int reopen_needed;
3090
3091 ASSERT(nfs_zone() == mi->mi_zone);
3092
3093
3094 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
3095 if (!oop)
3096 return (EIO);
3097
3098 /* returns with 'os_sync_lock' held */
3099 osp = find_open_stream(oop, rp);
3100 if (!osp) {
3101 open_owner_rele(oop);
3102 return (EIO);
3103 }
3104
3105 if (osp->os_failed_reopen) {
3106 mutex_exit(&osp->os_sync_lock);
3107 open_stream_rele(osp, rp);
3108 open_owner_rele(oop);
3109 return (EIO);
3110 }
3111
3112 /*
3113 * Determine whether a reopen is needed. If this
3114 * is a delegation open stream, then the os_delegation bit
3115 * should be set.
3116 */
3117
3118 reopen_needed = osp->os_delegation;
3119
3120 mutex_exit(&osp->os_sync_lock);
3121 open_owner_rele(oop);
3122
3123 if (reopen_needed) {
3124 nfs4_error_zinit(ep);
3125 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE);
3126 mutex_enter(&osp->os_sync_lock);
3127 if (ep->error || ep->stat || osp->os_failed_reopen) {
3128 mutex_exit(&osp->os_sync_lock);
3129 open_stream_rele(osp, rp);
3130 return (EIO);
3131 }
3132 mutex_exit(&osp->os_sync_lock);
3133 }
3134 open_stream_rele(osp, rp);
3135
3136 return (0);
3137 }
3138
3139 /*
3140 * Write to file. Writes to remote server in largest size
3141 * chunks that the server can handle. Write is synchronous.
3142 */
3143 static int
3144 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr,
3145 stable_how4 *stab_comm)
3146 {
3147 mntinfo4_t *mi;
3148 COMPOUND4args_clnt args;
3149 COMPOUND4res_clnt res;
3150 WRITE4args *wargs;
3151 WRITE4res *wres;
3152 nfs_argop4 argop[2];
3153 nfs_resop4 *resop;
3154 int tsize;
3155 stable_how4 stable;
3156 rnode4_t *rp;
3157 int doqueue = 1;
3158 bool_t needrecov;
3159 nfs4_recov_state_t recov_state;
3160 nfs4_stateid_types_t sid_types;
3161 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3162 int recov;
3163
3164 rp = VTOR4(vp);
3165 mi = VTOMI4(vp);
3166
3167 ASSERT(nfs_zone() == mi->mi_zone);
3168
3169 stable = *stab_comm;
3170 *stab_comm = FILE_SYNC4;
3171
3172 needrecov = FALSE;
3173 recov_state.rs_flags = 0;
3174 recov_state.rs_num_retry_despite_err = 0;
3175 nfs4_init_stateid_types(&sid_types);
3176
3177 /* Is curthread the recovery thread? */
3178 mutex_enter(&mi->mi_lock);
3179 recov = (mi->mi_recovthread == curthread);
3180 mutex_exit(&mi->mi_lock);
3181
3182 recov_retry:
3183 args.ctag = TAG_WRITE;
3184 args.array_len = 2;
3185 args.array = argop;
3186
3187 if (!recov) {
3188 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3189 &recov_state, NULL);
3190 if (e.error)
3191 return (e.error);
3192 }
3193
3194 /* 0. putfh target fh */
3195 argop[0].argop = OP_CPUTFH;
3196 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
3197
3198 /* 1. write */
3199 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types);
3200
3201 do {
3202
3203 wargs->offset = (offset4)offset;
3204 wargs->data_val = base;
3205
3206 if (mi->mi_io_kstats) {
3207 mutex_enter(&mi->mi_lock);
3208 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
3209 mutex_exit(&mi->mi_lock);
3210 }
3211
3212 if ((vp->v_flag & VNOCACHE) ||
3213 (rp->r_flags & R4DIRECTIO) ||
3214 (mi->mi_flags & MI4_DIRECTIO))
3215 tsize = MIN(mi->mi_stsize, count);
3216 else
3217 tsize = MIN(mi->mi_curwrite, count);
3218 wargs->data_len = (uint_t)tsize;
3219 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
3220
3221 if (mi->mi_io_kstats) {
3222 mutex_enter(&mi->mi_lock);
3223 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
3224 mutex_exit(&mi->mi_lock);
3225 }
3226
3227 if (!recov) {
3228 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3229 if (e.error && !needrecov) {
3230 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3231 &recov_state, needrecov);
3232 return (e.error);
3233 }
3234 } else {
3235 if (e.error)
3236 return (e.error);
3237 }
3238
3239 /*
3240 * Do handling of OLD_STATEID outside
3241 * of the normal recovery framework.
3242 *
3243 * If write receives a BAD stateid error while using a
3244 * delegation stateid, retry using the open stateid (if it
3245 * exists). If it doesn't have an open stateid, reopen the
3246 * file first, then retry.
3247 */
3248 if (!e.error && res.status == NFS4ERR_OLD_STATEID &&
3249 sid_types.cur_sid_type != SPEC_SID) {
3250 nfs4_save_stateid(&wargs->stateid, &sid_types);
3251 if (!recov)
3252 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3253 &recov_state, needrecov);
3254 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3255 goto recov_retry;
3256 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID &&
3257 sid_types.cur_sid_type == DEL_SID) {
3258 nfs4_save_stateid(&wargs->stateid, &sid_types);
3259 mutex_enter(&rp->r_statev4_lock);
3260 rp->r_deleg_return_pending = TRUE;
3261 mutex_exit(&rp->r_statev4_lock);
3262 if (nfs4rdwr_check_osid(vp, &e, cr)) {
3263 if (!recov)
3264 nfs4_end_fop(mi, vp, NULL, OH_WRITE,
3265 &recov_state, needrecov);
3266 (void) xdr_free(xdr_COMPOUND4res_clnt,
3267 (caddr_t)&res);
3268 return (EIO);
3269 }
3270 if (!recov)
3271 nfs4_end_fop(mi, vp, NULL, OH_WRITE,
3272 &recov_state, needrecov);
3273 /* hold needed for nfs4delegreturn_thread */
3274 VN_HOLD(vp);
3275 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN|
3276 NFS4_DR_DISCARD), FALSE);
3277 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3278 goto recov_retry;
3279 }
3280
3281 if (needrecov) {
3282 bool_t abort;
3283
3284 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
3285 "nfs4write: client got error %d, res.status %d"
3286 ", so start recovery", e.error, res.status));
3287
3288 abort = nfs4_start_recovery(&e,
3289 VTOMI4(vp), vp, NULL, &wargs->stateid,
3290 NULL, OP_WRITE, NULL, NULL, NULL);
3291 if (!e.error) {
3292 e.error = geterrno4(res.status);
3293 (void) xdr_free(xdr_COMPOUND4res_clnt,
3294 (caddr_t)&res);
3295 }
3296 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3297 &recov_state, needrecov);
3298 if (abort == FALSE)
3299 goto recov_retry;
3300 return (e.error);
3301 }
3302
3303 if (res.status) {
3304 e.error = geterrno4(res.status);
3305 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3306 if (!recov)
3307 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3308 &recov_state, needrecov);
3309 return (e.error);
3310 }
3311
3312 resop = &res.array[1]; /* write res */
3313 wres = &resop->nfs_resop4_u.opwrite;
3314
3315 if ((int)wres->count > tsize) {
3316 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3317
3318 zcmn_err(getzoneid(), CE_WARN,
3319 "nfs4write: server wrote %u, requested was %u",
3320 (int)wres->count, tsize);
3321 if (!recov)
3322 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3323 &recov_state, needrecov);
3324 return (EIO);
3325 }
3326 if (wres->committed == UNSTABLE4) {
3327 *stab_comm = UNSTABLE4;
3328 if (wargs->stable == DATA_SYNC4 ||
3329 wargs->stable == FILE_SYNC4) {
3330 (void) xdr_free(xdr_COMPOUND4res_clnt,
3331 (caddr_t)&res);
3332 zcmn_err(getzoneid(), CE_WARN,
3333 "nfs4write: server %s did not commit "
3334 "to stable storage",
3335 rp->r_server->sv_hostname);
3336 if (!recov)
3337 nfs4_end_fop(VTOMI4(vp), vp, NULL,
3338 OH_WRITE, &recov_state, needrecov);
3339 return (EIO);
3340 }
3341 }
3342
3343 tsize = (int)wres->count;
3344 count -= tsize;
3345 base += tsize;
3346 offset += tsize;
3347 if (mi->mi_io_kstats) {
3348 mutex_enter(&mi->mi_lock);
3349 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++;
3350 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten +=
3351 tsize;
3352 mutex_exit(&mi->mi_lock);
3353 }
3354 lwp_stat_update(LWP_STAT_OUBLK, 1);
3355 mutex_enter(&rp->r_statelock);
3356 if (rp->r_flags & R4HAVEVERF) {
3357 if (rp->r_writeverf != wres->writeverf) {
3358 nfs4_set_mod(vp);
3359 rp->r_writeverf = wres->writeverf;
3360 }
3361 } else {
3362 rp->r_writeverf = wres->writeverf;
3363 rp->r_flags |= R4HAVEVERF;
3364 }
3365 PURGE_ATTRCACHE4_LOCKED(rp);
3366 rp->r_flags |= R4WRITEMODIFIED;
3367 gethrestime(&rp->r_attr.va_mtime);
3368 rp->r_attr.va_ctime = rp->r_attr.va_mtime;
3369 mutex_exit(&rp->r_statelock);
3370 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3371 } while (count);
3372
3373 if (!recov)
3374 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state,
3375 needrecov);
3376
3377 return (e.error);
3378 }
3379
3380 /*
3381 * Read from a file. Reads data in largest chunks our interface can handle.
3382 */
3383 static int
3384 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count,
3385 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop)
3386 {
3387 mntinfo4_t *mi;
3388 COMPOUND4args_clnt args;
3389 COMPOUND4res_clnt res;
3390 READ4args *rargs;
3391 nfs_argop4 argop[2];
3392 int tsize;
3393 int doqueue;
3394 rnode4_t *rp;
3395 int data_len;
3396 bool_t is_eof;
3397 bool_t needrecov = FALSE;
3398 nfs4_recov_state_t recov_state;
3399 nfs4_stateid_types_t sid_types;
3400 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3401
3402 rp = VTOR4(vp);
3403 mi = VTOMI4(vp);
3404 doqueue = 1;
3405
3406 ASSERT(nfs_zone() == mi->mi_zone);
3407
3408 args.ctag = async ? TAG_READAHEAD : TAG_READ;
3409
3410 args.array_len = 2;
3411 args.array = argop;
3412
3413 nfs4_init_stateid_types(&sid_types);
3414
3415 recov_state.rs_flags = 0;
3416 recov_state.rs_num_retry_despite_err = 0;
3417
3418 recov_retry:
3419 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ,
3420 &recov_state, NULL);
3421 if (e.error)
3422 return (e.error);
3423
3424 /* putfh target fh */
3425 argop[0].argop = OP_CPUTFH;
3426 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
3427
3428 /* read */
3429 argop[1].argop = OP_READ;
3430 rargs = &argop[1].nfs_argop4_u.opread;
3431 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi,
3432 OP_READ, &sid_types, async);
3433
3434 do {
3435 if (mi->mi_io_kstats) {
3436 mutex_enter(&mi->mi_lock);
3437 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
3438 mutex_exit(&mi->mi_lock);
3439 }
3440
3441 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
3442 "nfs4read: %s call, rp %s",
3443 needrecov ? "recov" : "first",
3444 rnode4info(rp)));
3445
3446 if ((vp->v_flag & VNOCACHE) ||
3447 (rp->r_flags & R4DIRECTIO) ||
3448 (mi->mi_flags & MI4_DIRECTIO))
3449 tsize = MIN(mi->mi_tsize, count);
3450 else
3451 tsize = MIN(mi->mi_curread, count);
3452
3453 rargs->offset = (offset4)offset;
3454 rargs->count = (count4)tsize;
3455 rargs->res_data_val_alt = NULL;
3456 rargs->res_mblk = NULL;
3457 rargs->res_uiop = NULL;
3458 rargs->res_maxsize = 0;
3459 rargs->wlist = NULL;
3460
3461 if (uiop)
3462 rargs->res_uiop = uiop;
3463 else
3464 rargs->res_data_val_alt = base;
3465 rargs->res_maxsize = tsize;
3466
3467 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
3468 #ifdef DEBUG
3469 if (nfs4read_error_inject) {
3470 res.status = nfs4read_error_inject;
3471 nfs4read_error_inject = 0;
3472 }
3473 #endif
3474
3475 if (mi->mi_io_kstats) {
3476 mutex_enter(&mi->mi_lock);
3477 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
3478 mutex_exit(&mi->mi_lock);
3479 }
3480
3481 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3482 if (e.error != 0 && !needrecov) {
3483 nfs4_end_fop(mi, vp, NULL, OH_READ,
3484 &recov_state, needrecov);
3485 return (e.error);
3486 }
3487
3488 /*
3489 * Do proper retry for OLD and BAD stateid errors outside
3490 * of the normal recovery framework. There are two differences
3491 * between async and sync reads. The first is that we allow
3492 * retry on BAD_STATEID for async reads, but not sync reads.
3493 * The second is that we mark the file dead for a failed
3494 * attempt with a special stateid for sync reads, but just
3495 * return EIO for async reads.
3496 *
3497 * If a sync read receives a BAD stateid error while using a
3498 * delegation stateid, retry using the open stateid (if it
3499 * exists). If it doesn't have an open stateid, reopen the
3500 * file first, then retry.
3501 */
3502 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID ||
3503 res.status == NFS4ERR_BAD_STATEID) && async) {
3504 nfs4_end_fop(mi, vp, NULL, OH_READ,
3505 &recov_state, needrecov);
3506 if (sid_types.cur_sid_type == SPEC_SID) {
3507 (void) xdr_free(xdr_COMPOUND4res_clnt,
3508 (caddr_t)&res);
3509 return (EIO);
3510 }
3511 nfs4_save_stateid(&rargs->stateid, &sid_types);
3512 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3513 goto recov_retry;
3514 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
3515 !async && sid_types.cur_sid_type != SPEC_SID) {
3516 nfs4_save_stateid(&rargs->stateid, &sid_types);
3517 nfs4_end_fop(mi, vp, NULL, OH_READ,
3518 &recov_state, needrecov);
3519 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3520 goto recov_retry;
3521 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID &&
3522 sid_types.cur_sid_type == DEL_SID) {
3523 nfs4_save_stateid(&rargs->stateid, &sid_types);
3524 mutex_enter(&rp->r_statev4_lock);
3525 rp->r_deleg_return_pending = TRUE;
3526 mutex_exit(&rp->r_statev4_lock);
3527 if (nfs4rdwr_check_osid(vp, &e, cr)) {
3528 nfs4_end_fop(mi, vp, NULL, OH_READ,
3529 &recov_state, needrecov);
3530 (void) xdr_free(xdr_COMPOUND4res_clnt,
3531 (caddr_t)&res);
3532 return (EIO);
3533 }
3534 nfs4_end_fop(mi, vp, NULL, OH_READ,
3535 &recov_state, needrecov);
3536 /* hold needed for nfs4delegreturn_thread */
3537 VN_HOLD(vp);
3538 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN|
3539 NFS4_DR_DISCARD), FALSE);
3540 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3541 goto recov_retry;
3542 }
3543 if (needrecov) {
3544 bool_t abort;
3545
3546 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
3547 "nfs4read: initiating recovery\n"));
3548 abort = nfs4_start_recovery(&e,
3549 mi, vp, NULL, &rargs->stateid,
3550 NULL, OP_READ, NULL, NULL, NULL);
3551 nfs4_end_fop(mi, vp, NULL, OH_READ,
3552 &recov_state, needrecov);
3553 /*
3554 * Do not retry if we got OLD_STATEID using a special
3555 * stateid. This avoids looping with a broken server.
3556 */
3557 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
3558 sid_types.cur_sid_type == SPEC_SID)
3559 abort = TRUE;
3560
3561 if (abort == FALSE) {
3562 /*
3563 * Need to retry all possible stateids in
3564 * case the recovery error wasn't stateid
3565 * related or the stateids have become
3566 * stale (server reboot).
3567 */
3568 nfs4_init_stateid_types(&sid_types);
3569 (void) xdr_free(xdr_COMPOUND4res_clnt,
3570 (caddr_t)&res);
3571 goto recov_retry;
3572 }
3573
3574 if (!e.error) {
3575 e.error = geterrno4(res.status);
3576 (void) xdr_free(xdr_COMPOUND4res_clnt,
3577 (caddr_t)&res);
3578 }
3579 return (e.error);
3580 }
3581
3582 if (res.status) {
3583 e.error = geterrno4(res.status);
3584 nfs4_end_fop(mi, vp, NULL, OH_READ,
3585 &recov_state, needrecov);
3586 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3587 return (e.error);
3588 }
3589
3590 data_len = res.array[1].nfs_resop4_u.opread.data_len;
3591 count -= data_len;
3592 if (base)
3593 base += data_len;
3594 offset += data_len;
3595 if (mi->mi_io_kstats) {
3596 mutex_enter(&mi->mi_lock);
3597 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
3598 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len;
3599 mutex_exit(&mi->mi_lock);
3600 }
3601 lwp_stat_update(LWP_STAT_INBLK, 1);
3602 is_eof = res.array[1].nfs_resop4_u.opread.eof;
3603 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3604
3605 } while (count && !is_eof);
3606
3607 *residp = count;
3608
3609 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov);
3610
3611 return (e.error);
3612 }
3613
3614 /* ARGSUSED */
3615 static int
3616 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp,
3617 caller_context_t *ct)
3618 {
3619 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3620 return (EIO);
3621 switch (cmd) {
3622 case _FIODIRECTIO:
3623 return (nfs4_directio(vp, (int)arg, cr));
3624 default:
3625 return (ENOTTY);
3626 }
3627 }
3628
3629 /* ARGSUSED */
3630 int
3631 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3632 caller_context_t *ct)
3633 {
3634 int error;
3635 rnode4_t *rp = VTOR4(vp);
3636
3637 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3638 return (EIO);
3639 /*
3640 * If it has been specified that the return value will
3641 * just be used as a hint, and we are only being asked
3642 * for size, fsid or rdevid, then return the client's
3643 * notion of these values without checking to make sure
3644 * that the attribute cache is up to date.
3645 * The whole point is to avoid an over the wire GETATTR
3646 * call.
3647 */
3648 if (flags & ATTR_HINT) {
3649 if (!(vap->va_mask & ~(AT_SIZE | AT_FSID | AT_RDEV))) {
3650 mutex_enter(&rp->r_statelock);
3651 if (vap->va_mask & AT_SIZE)
3652 vap->va_size = rp->r_size;
3653 if (vap->va_mask & AT_FSID)
3654 vap->va_fsid = rp->r_attr.va_fsid;
3655 if (vap->va_mask & AT_RDEV)
3656 vap->va_rdev = rp->r_attr.va_rdev;
3657 mutex_exit(&rp->r_statelock);
3658 return (0);
3659 }
3660 }
3661
3662 /*
3663 * Only need to flush pages if asking for the mtime
3664 * and if there any dirty pages or any outstanding
3665 * asynchronous (write) requests for this file.
3666 */
3667 if (vap->va_mask & AT_MTIME) {
3668 rp = VTOR4(vp);
3669 if (nfs4_has_pages(vp)) {
3670 mutex_enter(&rp->r_statev4_lock);
3671 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) {
3672 mutex_exit(&rp->r_statev4_lock);
3673 if (rp->r_flags & R4DIRTY ||
3674 rp->r_awcount > 0) {
3675 mutex_enter(&rp->r_statelock);
3676 rp->r_gcount++;
3677 mutex_exit(&rp->r_statelock);
3678 error =
3679 nfs4_putpage(vp, (u_offset_t)0,
3680 0, 0, cr, NULL);
3681 mutex_enter(&rp->r_statelock);
3682 if (error && (error == ENOSPC ||
3683 error == EDQUOT)) {
3684 if (!rp->r_error)
3685 rp->r_error = error;
3686 }
3687 if (--rp->r_gcount == 0)
3688 cv_broadcast(&rp->r_cv);
3689 mutex_exit(&rp->r_statelock);
3690 }
3691 } else {
3692 mutex_exit(&rp->r_statev4_lock);
3693 }
3694 }
3695 }
3696 return (nfs4getattr(vp, vap, cr));
3697 }
3698
3699 int
3700 nfs4_compare_modes(mode_t from_server, mode_t on_client)
3701 {
3702 /*
3703 * If these are the only two bits cleared
3704 * on the server then return 0 (OK) else
3705 * return 1 (BAD).
3706 */
3707 on_client &= ~(S_ISUID|S_ISGID);
3708 if (on_client == from_server)
3709 return (0);
3710 else
3711 return (1);
3712 }
3713
3714 /*ARGSUSED4*/
3715 static int
3716 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3717 caller_context_t *ct)
3718 {
3719 int error;
3720
3721 if (vap->va_mask & AT_NOSET)
3722 return (EINVAL);
3723
3724 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3725 return (EIO);
3726
3727 /*
3728 * Don't call secpolicy_vnode_setattr, the client cannot
3729 * use its cached attributes to make security decisions
3730 * as the server may be faking mode bits or mapping uid/gid.
3731 * Always just let the server to the checking.
3732 * If we provide the ability to remove basic priviledges
3733 * to setattr (e.g. basic without chmod) then we will
3734 * need to add a check here before calling the server.
3735 */
3736 error = nfs4setattr(vp, vap, flags, cr, NULL);
3737
3738 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0)
3739 vnevent_truncate(vp, ct);
3740
3741 return (error);
3742 }
3743
3744 /*
3745 * To replace the "guarded" version 3 setattr, we use two types of compound
3746 * setattr requests:
3747 * 1. The "normal" setattr, used when the size of the file isn't being
3748 * changed - { Putfh <fh>; Setattr; Getattr }/
3749 * 2. If the size is changed, precede Setattr with: Getattr; Verify
3750 * with only ctime as the argument. If the server ctime differs from
3751 * what is cached on the client, the verify will fail, but we would
3752 * already have the ctime from the preceding getattr, so just set it
3753 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify;
3754 * Setattr; Getattr }.
3755 *
3756 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in
3757 * this setattr and NULL if they are not.
3758 */
3759 static int
3760 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3761 vsecattr_t *vsap)
3762 {
3763 COMPOUND4args_clnt args;
3764 COMPOUND4res_clnt res, *resp = NULL;
3765 nfs4_ga_res_t *garp = NULL;
3766 int numops = 3; /* { Putfh; Setattr; Getattr } */
3767 nfs_argop4 argop[5];
3768 int verify_argop = -1;
3769 int setattr_argop = 1;
3770 nfs_resop4 *resop;
3771 vattr_t va;
3772 rnode4_t *rp;
3773 int doqueue = 1;
3774 uint_t mask = vap->va_mask;
3775 mode_t omode;
3776 vsecattr_t *vsp;
3777 timestruc_t ctime;
3778 bool_t needrecov = FALSE;
3779 nfs4_recov_state_t recov_state;
3780 nfs4_stateid_types_t sid_types;
3781 stateid4 stateid;
3782 hrtime_t t;
3783 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3784 servinfo4_t *svp;
3785 bitmap4 supp_attrs;
3786
3787 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
3788 rp = VTOR4(vp);
3789 nfs4_init_stateid_types(&sid_types);
3790
3791 /*
3792 * Only need to flush pages if there are any pages and
3793 * if the file is marked as dirty in some fashion. The
3794 * file must be flushed so that we can accurately
3795 * determine the size of the file and the cached data
3796 * after the SETATTR returns. A file is considered to
3797 * be dirty if it is either marked with R4DIRTY, has
3798 * outstanding i/o's active, or is mmap'd. In this
3799 * last case, we can't tell whether there are dirty
3800 * pages, so we flush just to be sure.
3801 */
3802 if (nfs4_has_pages(vp) &&
3803 ((rp->r_flags & R4DIRTY) ||
3804 rp->r_count > 0 ||
3805 rp->r_mapcnt > 0)) {
3806 ASSERT(vp->v_type != VCHR);
3807 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL);
3808 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) {
3809 mutex_enter(&rp->r_statelock);
3810 if (!rp->r_error)
3811 rp->r_error = e.error;
3812 mutex_exit(&rp->r_statelock);
3813 }
3814 }
3815
3816 if (mask & AT_SIZE) {
3817 /*
3818 * Verification setattr compound for non-deleg AT_SIZE:
3819 * { Putfh; Getattr; Verify; Setattr; Getattr }
3820 * Set ctime local here (outside the do_again label)
3821 * so that subsequent retries (after failed VERIFY)
3822 * will use ctime from GETATTR results (from failed
3823 * verify compound) as VERIFY arg.
3824 * If file has delegation, then VERIFY(time_metadata)
3825 * is of little added value, so don't bother.
3826 */
3827 mutex_enter(&rp->r_statev4_lock);
3828 if (rp->r_deleg_type == OPEN_DELEGATE_NONE ||
3829 rp->r_deleg_return_pending) {
3830 numops = 5;
3831 ctime = rp->r_attr.va_ctime;
3832 }
3833 mutex_exit(&rp->r_statev4_lock);
3834 }
3835
3836 recov_state.rs_flags = 0;
3837 recov_state.rs_num_retry_despite_err = 0;
3838
3839 args.ctag = TAG_SETATTR;
3840 do_again:
3841 recov_retry:
3842 setattr_argop = numops - 2;
3843
3844 args.array = argop;
3845 args.array_len = numops;
3846
3847 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state);
3848 if (e.error)
3849 return (e.error);
3850
3851
3852 /* putfh target fh */
3853 argop[0].argop = OP_CPUTFH;
3854 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
3855
3856 if (numops == 5) {
3857 /*
3858 * We only care about the ctime, but need to get mtime
3859 * and size for proper cache update.
3860 */
3861 /* getattr */
3862 argop[1].argop = OP_GETATTR;
3863 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
3864 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
3865
3866 /* verify - set later in loop */
3867 verify_argop = 2;
3868 }
3869
3870 /* setattr */
3871 svp = rp->r_server;
3872 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
3873 supp_attrs = svp->sv_supp_attrs;
3874 nfs_rw_exit(&svp->sv_lock);
3875
3876 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr,
3877 supp_attrs, &e.error, &sid_types);
3878 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid;
3879 if (e.error) {
3880 /* req time field(s) overflow - return immediately */
3881 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
3882 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
3883 opsetattr.obj_attributes);
3884 return (e.error);
3885 }
3886 omode = rp->r_attr.va_mode;
3887
3888 /* getattr */
3889 argop[numops-1].argop = OP_GETATTR;
3890 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
3891 /*
3892 * If we are setting the ACL (indicated only by vsap != NULL), request
3893 * the ACL in this getattr. The ACL returned from this getattr will be
3894 * used in updating the ACL cache.
3895 */
3896 if (vsap != NULL)
3897 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |=
3898 FATTR4_ACL_MASK;
3899 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
3900
3901 /*
3902 * setattr iterates if the object size is set and the cached ctime
3903 * does not match the file ctime. In that case, verify the ctime first.
3904 */
3905
3906 do {
3907 if (verify_argop != -1) {
3908 /*
3909 * Verify that the ctime match before doing setattr.
3910 */
3911 va.va_mask = AT_CTIME;
3912 va.va_ctime = ctime;
3913 svp = rp->r_server;
3914 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
3915 supp_attrs = svp->sv_supp_attrs;
3916 nfs_rw_exit(&svp->sv_lock);
3917 e.error = nfs4args_verify(&argop[verify_argop], &va,
3918 OP_VERIFY, supp_attrs);
3919 if (e.error) {
3920 /* req time field(s) overflow - return */
3921 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3922 needrecov);
3923 break;
3924 }
3925 }
3926
3927 doqueue = 1;
3928
3929 t = gethrtime();
3930
3931 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e);
3932
3933 /*
3934 * Purge the access cache and ACL cache if changing either the
3935 * owner of the file, the group owner, or the mode. These may
3936 * change the access permissions of the file, so purge old
3937 * information and start over again.
3938 */
3939 if (mask & (AT_UID | AT_GID | AT_MODE)) {
3940 (void) nfs4_access_purge_rp(rp);
3941 if (rp->r_secattr != NULL) {
3942 mutex_enter(&rp->r_statelock);
3943 vsp = rp->r_secattr;
3944 rp->r_secattr = NULL;
3945 mutex_exit(&rp->r_statelock);
3946 if (vsp != NULL)
3947 nfs4_acl_free_cache(vsp);
3948 }
3949 }
3950
3951 /*
3952 * If res.array_len == numops, then everything succeeded,
3953 * except for possibly the final getattr. If only the
3954 * last getattr failed, give up, and don't try recovery.
3955 */
3956 if (res.array_len == numops) {
3957 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3958 needrecov);
3959 if (! e.error)
3960 resp = &res;
3961 break;
3962 }
3963
3964 /*
3965 * if either rpc call failed or completely succeeded - done
3966 */
3967 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
3968 if (e.error) {
3969 PURGE_ATTRCACHE4(vp);
3970 if (!needrecov) {
3971 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3972 needrecov);
3973 break;
3974 }
3975 }
3976
3977 /*
3978 * Do proper retry for OLD_STATEID outside of the normal
3979 * recovery framework.
3980 */
3981 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
3982 sid_types.cur_sid_type != SPEC_SID &&
3983 sid_types.cur_sid_type != NO_SID) {
3984 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3985 needrecov);
3986 nfs4_save_stateid(&stateid, &sid_types);
3987 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
3988 opsetattr.obj_attributes);
3989 if (verify_argop != -1) {
3990 nfs4args_verify_free(&argop[verify_argop]);
3991 verify_argop = -1;
3992 }
3993 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3994 goto recov_retry;
3995 }
3996
3997 if (needrecov) {
3998 bool_t abort;
3999
4000 abort = nfs4_start_recovery(&e,
4001 VTOMI4(vp), vp, NULL, NULL, NULL,
4002 OP_SETATTR, NULL, NULL, NULL);
4003 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
4004 needrecov);
4005 /*
4006 * Do not retry if we failed with OLD_STATEID using
4007 * a special stateid. This is done to avoid looping
4008 * with a broken server.
4009 */
4010 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
4011 (sid_types.cur_sid_type == SPEC_SID ||
4012 sid_types.cur_sid_type == NO_SID))
4013 abort = TRUE;
4014 if (!e.error) {
4015 if (res.status == NFS4ERR_BADOWNER)
4016 nfs4_log_badowner(VTOMI4(vp),
4017 OP_SETATTR);
4018
4019 e.error = geterrno4(res.status);
4020 (void) xdr_free(xdr_COMPOUND4res_clnt,
4021 (caddr_t)&res);
4022 }
4023 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4024 opsetattr.obj_attributes);
4025 if (verify_argop != -1) {
4026 nfs4args_verify_free(&argop[verify_argop]);
4027 verify_argop = -1;
4028 }
4029 if (abort == FALSE) {
4030 /*
4031 * Need to retry all possible stateids in
4032 * case the recovery error wasn't stateid
4033 * related or the stateids have become
4034 * stale (server reboot).
4035 */
4036 nfs4_init_stateid_types(&sid_types);
4037 goto recov_retry;
4038 }
4039 return (e.error);
4040 }
4041
4042 /*
4043 * Need to call nfs4_end_op before nfs4getattr to
4044 * avoid potential nfs4_start_op deadlock. See RFE
4045 * 4777612. Calls to nfs4_invalidate_pages() and
4046 * nfs4_purge_stale_fh() might also generate over the
4047 * wire calls which my cause nfs4_start_op() deadlock.
4048 */
4049 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
4050
4051 /*
4052 * Check to update lease.
4053 */
4054 resp = &res;
4055 if (res.status == NFS4_OK) {
4056 break;
4057 }
4058
4059 /*
4060 * Check if verify failed to see if try again
4061 */
4062 if ((verify_argop == -1) || (res.array_len != 3)) {
4063 /*
4064 * can't continue...
4065 */
4066 if (res.status == NFS4ERR_BADOWNER)
4067 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR);
4068
4069 e.error = geterrno4(res.status);
4070 } else {
4071 /*
4072 * When the verify request fails, the client ctime is
4073 * not in sync with the server. This is the same as
4074 * the version 3 "not synchronized" error, and we
4075 * handle it in a similar manner (XXX do we need to???).
4076 * Use the ctime returned in the first getattr for
4077 * the input to the next verify.
4078 * If we couldn't get the attributes, then we give up
4079 * because we can't complete the operation as required.
4080 */
4081 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res;
4082 }
4083 if (e.error) {
4084 PURGE_ATTRCACHE4(vp);
4085 nfs4_purge_stale_fh(e.error, vp, cr);
4086 } else {
4087 /*
4088 * retry with a new verify value
4089 */
4090 ctime = garp->n4g_va.va_ctime;
4091 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4092 resp = NULL;
4093 }
4094 if (!e.error) {
4095 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4096 opsetattr.obj_attributes);
4097 if (verify_argop != -1) {
4098 nfs4args_verify_free(&argop[verify_argop]);
4099 verify_argop = -1;
4100 }
4101 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4102 goto do_again;
4103 }
4104 } while (!e.error);
4105
4106 if (e.error) {
4107 /*
4108 * If we are here, rfs4call has an irrecoverable error - return
4109 */
4110 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4111 opsetattr.obj_attributes);
4112 if (verify_argop != -1) {
4113 nfs4args_verify_free(&argop[verify_argop]);
4114 verify_argop = -1;
4115 }
4116 if (resp)
4117 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
4118 return (e.error);
4119 }
4120
4121
4122
4123 /*
4124 * If changing the size of the file, invalidate
4125 * any local cached data which is no longer part
4126 * of the file. We also possibly invalidate the
4127 * last page in the file. We could use
4128 * pvn_vpzero(), but this would mark the page as
4129 * modified and require it to be written back to
4130 * the server for no particularly good reason.
4131 * This way, if we access it, then we bring it
4132 * back in. A read should be cheaper than a
4133 * write.
4134 */
4135 if (mask & AT_SIZE) {
4136 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr);
4137 }
4138
4139 /* either no error or one of the postop getattr failed */
4140
4141 /*
4142 * XXX Perform a simplified version of wcc checking. Instead of
4143 * have another getattr to get pre-op, just purge cache if
4144 * any of the ops prior to and including the getattr failed.
4145 * If the getattr succeeded then update the attrcache accordingly.
4146 */
4147
4148 garp = NULL;
4149 if (res.status == NFS4_OK) {
4150 /*
4151 * Last getattr
4152 */
4153 resop = &res.array[numops - 1];
4154 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
4155 }
4156 /*
4157 * In certain cases, nfs4_update_attrcache() will purge the attrcache,
4158 * rather than filling it. See the function itself for details.
4159 */
4160 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr);
4161 if (garp != NULL) {
4162 if (garp->n4g_resbmap & FATTR4_ACL_MASK) {
4163 nfs4_acl_fill_cache(rp, &garp->n4g_vsa);
4164 vs_ace4_destroy(&garp->n4g_vsa);
4165 } else {
4166 if (vsap != NULL) {
4167 /*
4168 * The ACL was supposed to be set and to be
4169 * returned in the last getattr of this
4170 * compound, but for some reason the getattr
4171 * result doesn't contain the ACL. In this
4172 * case, purge the ACL cache.
4173 */
4174 if (rp->r_secattr != NULL) {
4175 mutex_enter(&rp->r_statelock);
4176 vsp = rp->r_secattr;
4177 rp->r_secattr = NULL;
4178 mutex_exit(&rp->r_statelock);
4179 if (vsp != NULL)
4180 nfs4_acl_free_cache(vsp);
4181 }
4182 }
4183 }
4184 }
4185
4186 if (res.status == NFS4_OK && (mask & AT_SIZE)) {
4187 /*
4188 * Set the size, rather than relying on getting it updated
4189 * via a GETATTR. With delegations the client tries to
4190 * suppress GETATTR calls.
4191 */
4192 mutex_enter(&rp->r_statelock);
4193 rp->r_size = vap->va_size;
4194 mutex_exit(&rp->r_statelock);
4195 }
4196
4197 /*
4198 * Can free up request args and res
4199 */
4200 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4201 opsetattr.obj_attributes);
4202 if (verify_argop != -1) {
4203 nfs4args_verify_free(&argop[verify_argop]);
4204 verify_argop = -1;
4205 }
4206 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4207
4208 /*
4209 * Some servers will change the mode to clear the setuid
4210 * and setgid bits when changing the uid or gid. The
4211 * client needs to compensate appropriately.
4212 */
4213 if (mask & (AT_UID | AT_GID)) {
4214 int terror, do_setattr;
4215
4216 do_setattr = 0;
4217 va.va_mask = AT_MODE;
4218 terror = nfs4getattr(vp, &va, cr);
4219 if (!terror &&
4220 (((mask & AT_MODE) && va.va_mode != vap->va_mode) ||
4221 (!(mask & AT_MODE) && va.va_mode != omode))) {
4222 va.va_mask = AT_MODE;
4223 if (mask & AT_MODE) {
4224 /*
4225 * We asked the mode to be changed and what
4226 * we just got from the server in getattr is
4227 * not what we wanted it to be, so set it now.
4228 */
4229 va.va_mode = vap->va_mode;
4230 do_setattr = 1;
4231 } else {
4232 /*
4233 * We did not ask the mode to be changed,
4234 * Check to see that the server just cleared
4235 * I_SUID and I_GUID from it. If not then
4236 * set mode to omode with UID/GID cleared.
4237 */
4238 if (nfs4_compare_modes(va.va_mode, omode)) {
4239 omode &= ~(S_ISUID|S_ISGID);
4240 va.va_mode = omode;
4241 do_setattr = 1;
4242 }
4243 }
4244
4245 if (do_setattr)
4246 (void) nfs4setattr(vp, &va, 0, cr, NULL);
4247 }
4248 }
4249
4250 return (e.error);
4251 }
4252
4253 /* ARGSUSED */
4254 static int
4255 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
4256 {
4257 COMPOUND4args_clnt args;
4258 COMPOUND4res_clnt res;
4259 int doqueue;
4260 uint32_t acc, resacc, argacc;
4261 rnode4_t *rp;
4262 cred_t *cred, *ncr, *ncrfree = NULL;
4263 nfs4_access_type_t cacc;
4264 int num_ops;
4265 nfs_argop4 argop[3];
4266 nfs_resop4 *resop;
4267 bool_t needrecov = FALSE, do_getattr;
4268 nfs4_recov_state_t recov_state;
4269 int rpc_error;
4270 hrtime_t t;
4271 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
4272 mntinfo4_t *mi = VTOMI4(vp);
4273
4274 if (nfs_zone() != mi->mi_zone)
4275 return (EIO);
4276
4277 acc = 0;
4278 if (mode & VREAD)
4279 acc |= ACCESS4_READ;
4280 if (mode & VWRITE) {
4281 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type))
4282 return (EROFS);
4283 if (vp->v_type == VDIR)
4284 acc |= ACCESS4_DELETE;
4285 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND;
4286 }
4287 if (mode & VEXEC) {
4288 if (vp->v_type == VDIR)
4289 acc |= ACCESS4_LOOKUP;
4290 else
4291 acc |= ACCESS4_EXECUTE;
4292 }
4293
4294 if (VTOR4(vp)->r_acache != NULL) {
4295 e.error = nfs4_validate_caches(vp, cr);
4296 if (e.error)
4297 return (e.error);
4298 }
4299
4300 rp = VTOR4(vp);
4301 if (vp->v_type == VDIR)
4302 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY |
4303 ACCESS4_EXTEND | ACCESS4_LOOKUP;
4304 else
4305 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND |
4306 ACCESS4_EXECUTE;
4307 recov_state.rs_flags = 0;
4308 recov_state.rs_num_retry_despite_err = 0;
4309
4310 cred = cr;
4311 /*
4312 * ncr and ncrfree both initially
4313 * point to the memory area returned
4314 * by crnetadjust();
4315 * ncrfree not NULL when exiting means
4316 * that we need to release it
4317 */
4318 ncr = crnetadjust(cred);
4319 ncrfree = ncr;
4320
4321 tryagain:
4322 cacc = nfs4_access_check(rp, acc, cred);
4323 if (cacc == NFS4_ACCESS_ALLOWED) {
4324 if (ncrfree != NULL)
4325 crfree(ncrfree);
4326 return (0);
4327 }
4328 if (cacc == NFS4_ACCESS_DENIED) {
4329 /*
4330 * If the cred can be adjusted, try again
4331 * with the new cred.
4332 */
4333 if (ncr != NULL) {
4334 cred = ncr;
4335 ncr = NULL;
4336 goto tryagain;
4337 }
4338 if (ncrfree != NULL)
4339 crfree(ncrfree);
4340 return (EACCES);
4341 }
4342
4343 recov_retry:
4344 /*
4345 * Don't take with r_statev4_lock here. r_deleg_type could
4346 * change as soon as lock is released. Since it is an int,
4347 * there is no atomicity issue.
4348 */
4349 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE);
4350 num_ops = do_getattr ? 3 : 2;
4351
4352 args.ctag = TAG_ACCESS;
4353
4354 args.array_len = num_ops;
4355 args.array = argop;
4356
4357 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS,
4358 &recov_state, NULL)) {
4359 if (ncrfree != NULL)
4360 crfree(ncrfree);
4361 return (e.error);
4362 }
4363
4364 /* putfh target fh */
4365 argop[0].argop = OP_CPUTFH;
4366 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
4367
4368 /* access */
4369 argop[1].argop = OP_ACCESS;
4370 argop[1].nfs_argop4_u.opaccess.access = argacc;
4371
4372 /* getattr */
4373 if (do_getattr) {
4374 argop[2].argop = OP_GETATTR;
4375 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
4376 argop[2].nfs_argop4_u.opgetattr.mi = mi;
4377 }
4378
4379 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
4380 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first",
4381 rnode4info(VTOR4(vp))));
4382
4383 doqueue = 1;
4384 t = gethrtime();
4385 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e);
4386 rpc_error = e.error;
4387
4388 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
4389 if (needrecov) {
4390 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
4391 "nfs4_access: initiating recovery\n"));
4392
4393 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
4394 NULL, OP_ACCESS, NULL, NULL, NULL) == FALSE) {
4395 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS,
4396 &recov_state, needrecov);
4397 if (!e.error)
4398 (void) xdr_free(xdr_COMPOUND4res_clnt,
4399 (caddr_t)&res);
4400 goto recov_retry;
4401 }
4402 }
4403 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov);
4404
4405 if (e.error)
4406 goto out;
4407
4408 if (res.status) {
4409 e.error = geterrno4(res.status);
4410 /*
4411 * This might generate over the wire calls throught
4412 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
4413 * here to avoid a deadlock.
4414 */
4415 nfs4_purge_stale_fh(e.error, vp, cr);
4416 goto out;
4417 }
4418 resop = &res.array[1]; /* access res */
4419
4420 resacc = resop->nfs_resop4_u.opaccess.access;
4421
4422 if (do_getattr) {
4423 resop++; /* getattr res */
4424 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res,
4425 t, cr, FALSE, NULL);
4426 }
4427
4428 if (!e.error) {
4429 nfs4_access_cache(rp, argacc, resacc, cred);
4430 /*
4431 * we just cached results with cred; if cred is the
4432 * adjusted credentials from crnetadjust, we do not want
4433 * to release them before exiting: hence setting ncrfree
4434 * to NULL
4435 */
4436 if (cred != cr)
4437 ncrfree = NULL;
4438 /* XXX check the supported bits too? */
4439 if ((acc & resacc) != acc) {
4440 /*
4441 * The following code implements the semantic
4442 * that a setuid root program has *at least* the
4443 * permissions of the user that is running the
4444 * program. See rfs3call() for more portions
4445 * of the implementation of this functionality.
4446 */
4447 /* XXX-LP */
4448 if (ncr != NULL) {
4449 (void) xdr_free(xdr_COMPOUND4res_clnt,
4450 (caddr_t)&res);
4451 cred = ncr;
4452 ncr = NULL;
4453 goto tryagain;
4454 }
4455 e.error = EACCES;
4456 }
4457 }
4458
4459 out:
4460 if (!rpc_error)
4461 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4462
4463 if (ncrfree != NULL)
4464 crfree(ncrfree);
4465
4466 return (e.error);
4467 }
4468
4469 /* ARGSUSED */
4470 static int
4471 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct)
4472 {
4473 COMPOUND4args_clnt args;
4474 COMPOUND4res_clnt res;
4475 int doqueue;
4476 rnode4_t *rp;
4477 nfs_argop4 argop[3];
4478 nfs_resop4 *resop;
4479 READLINK4res *lr_res;
4480 nfs4_ga_res_t *garp;
4481 uint_t len;
4482 char *linkdata;
4483 bool_t needrecov = FALSE;
4484 nfs4_recov_state_t recov_state;
4485 hrtime_t t;
4486 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
4487
4488 if (nfs_zone() != VTOMI4(vp)->mi_zone)
4489 return (EIO);
4490 /*
4491 * Can't readlink anything other than a symbolic link.
4492 */
4493 if (vp->v_type != VLNK)
4494 return (EINVAL);
4495
4496 rp = VTOR4(vp);
4497 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) {
4498 e.error = nfs4_validate_caches(vp, cr);
4499 if (e.error)
4500 return (e.error);
4501 mutex_enter(&rp->r_statelock);
4502 if (rp->r_symlink.contents != NULL) {
4503 e.error = uiomove(rp->r_symlink.contents,
4504 rp->r_symlink.len, UIO_READ, uiop);
4505 mutex_exit(&rp->r_statelock);
4506 return (e.error);
4507 }
4508 mutex_exit(&rp->r_statelock);
4509 }
4510 recov_state.rs_flags = 0;
4511 recov_state.rs_num_retry_despite_err = 0;
4512
4513 recov_retry:
4514 args.array_len = 3;
4515 args.array = argop;
4516 args.ctag = TAG_READLINK;
4517
4518 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state);
4519 if (e.error) {
4520 return (e.error);
4521 }
4522
4523 /* 0. putfh symlink fh */
4524 argop[0].argop = OP_CPUTFH;
4525 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
4526
4527 /* 1. readlink */
4528 argop[1].argop = OP_READLINK;
4529
4530 /* 2. getattr */
4531 argop[2].argop = OP_GETATTR;
4532 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
4533 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
4534
4535 doqueue = 1;
4536
4537 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
4538 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first",
4539 rnode4info(VTOR4(vp))));
4540
4541 t = gethrtime();
4542
4543 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e);
4544
4545 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
4546 if (needrecov) {
4547 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
4548 "nfs4_readlink: initiating recovery\n"));
4549
4550 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
4551 NULL, OP_READLINK, NULL, NULL, NULL) == FALSE) {
4552 if (!e.error)
4553 (void) xdr_free(xdr_COMPOUND4res_clnt,
4554 (caddr_t)&res);
4555
4556 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
4557 needrecov);
4558 goto recov_retry;
4559 }
4560 }
4561
4562 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
4563
4564 if (e.error)
4565 return (e.error);
4566
4567 /*
4568 * There is an path in the code below which calls
4569 * nfs4_purge_stale_fh(), which may generate otw calls through
4570 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
4571 * here to avoid nfs4_start_op() deadlock.
4572 */
4573
4574 if (res.status && (res.array_len < args.array_len)) {
4575 /*
4576 * either Putfh or Link failed
4577 */
4578 e.error = geterrno4(res.status);
4579 nfs4_purge_stale_fh(e.error, vp, cr);
4580 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4581 return (e.error);
4582 }
4583
4584 resop = &res.array[1]; /* readlink res */
4585 lr_res = &resop->nfs_resop4_u.opreadlink;
4586
4587 /*
4588 * treat symlink names as data
4589 */
4590 linkdata = utf8_to_str(&lr_res->link, &len, NULL);
4591 if (linkdata != NULL) {
4592 int uio_len = len - 1;
4593 /* len includes null byte, which we won't uiomove */
4594 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop);
4595 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) {
4596 mutex_enter(&rp->r_statelock);
4597 if (rp->r_symlink.contents == NULL) {
4598 rp->r_symlink.contents = linkdata;
4599 rp->r_symlink.len = uio_len;
4600 rp->r_symlink.size = len;
4601 mutex_exit(&rp->r_statelock);
4602 } else {
4603 mutex_exit(&rp->r_statelock);
4604 kmem_free(linkdata, len);
4605 }
4606 } else {
4607 kmem_free(linkdata, len);
4608 }
4609 }
4610 if (res.status == NFS4_OK) {
4611 resop++; /* getattr res */
4612 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
4613 }
4614 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr);
4615
4616 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4617
4618 /*
4619 * The over the wire error for attempting to readlink something
4620 * other than a symbolic link is ENXIO. However, we need to
4621 * return EINVAL instead of ENXIO, so we map it here.
4622 */
4623 return (e.error == ENXIO ? EINVAL : e.error);
4624 }
4625
4626 /*
4627 * Flush local dirty pages to stable storage on the server.
4628 *
4629 * If FNODSYNC is specified, then there is nothing to do because
4630 * metadata changes are not cached on the client before being
4631 * sent to the server.
4632 */
4633 /* ARGSUSED */
4634 static int
4635 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
4636 {
4637 int error;
4638
4639 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
4640 return (0);
4641 if (nfs_zone() != VTOMI4(vp)->mi_zone)
4642 return (EIO);
4643 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr);
4644 if (!error)
4645 error = VTOR4(vp)->r_error;
4646 return (error);
4647 }
4648
4649 /*
4650 * Weirdness: if the file was removed or the target of a rename
4651 * operation while it was open, it got renamed instead. Here we
4652 * remove the renamed file.
4653 */
4654 /* ARGSUSED */
4655 void
4656 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4657 {
4658 rnode4_t *rp;
4659
4660 ASSERT(vp != DNLC_NO_VNODE);
4661
4662 rp = VTOR4(vp);
4663
4664 if (IS_SHADOW(vp, rp)) {
4665 sv_inactive(vp);
4666 return;
4667 }
4668
4669 /*
4670 * If this is coming from the wrong zone, we let someone in the right
4671 * zone take care of it asynchronously. We can get here due to
4672 * VN_RELE() being called from pageout() or fsflush(). This call may
4673 * potentially turn into an expensive no-op if, for instance, v_count
4674 * gets incremented in the meantime, but it's still correct.
4675 */
4676 if (nfs_zone() != VTOMI4(vp)->mi_zone) {
4677 nfs4_async_inactive(vp, cr);
4678 return;
4679 }
4680
4681 /*
4682 * Some of the cleanup steps might require over-the-wire
4683 * operations. Since VOP_INACTIVE can get called as a result of
4684 * other over-the-wire operations (e.g., an attribute cache update
4685 * can lead to a DNLC purge), doing those steps now would lead to a
4686 * nested call to the recovery framework, which can deadlock. So
4687 * do any over-the-wire cleanups asynchronously, in a separate
4688 * thread.
4689 */
4690
4691 mutex_enter(&rp->r_os_lock);
4692 mutex_enter(&rp->r_statelock);
4693 mutex_enter(&rp->r_statev4_lock);
4694
4695 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) {
4696 mutex_exit(&rp->r_statev4_lock);
4697 mutex_exit(&rp->r_statelock);
4698 mutex_exit(&rp->r_os_lock);
4699 nfs4_async_inactive(vp, cr);
4700 return;
4701 }
4702
4703 if (rp->r_deleg_type == OPEN_DELEGATE_READ ||
4704 rp->r_deleg_type == OPEN_DELEGATE_WRITE) {
4705 mutex_exit(&rp->r_statev4_lock);
4706 mutex_exit(&rp->r_statelock);
4707 mutex_exit(&rp->r_os_lock);
4708 nfs4_async_inactive(vp, cr);
4709 return;
4710 }
4711
4712 if (rp->r_unldvp != NULL) {
4713 mutex_exit(&rp->r_statev4_lock);
4714 mutex_exit(&rp->r_statelock);
4715 mutex_exit(&rp->r_os_lock);
4716 nfs4_async_inactive(vp, cr);
4717 return;
4718 }
4719 mutex_exit(&rp->r_statev4_lock);
4720 mutex_exit(&rp->r_statelock);
4721 mutex_exit(&rp->r_os_lock);
4722
4723 rp4_addfree(rp, cr);
4724 }
4725
4726 /*
4727 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up
4728 * various bits of state. The caller must not refer to vp after this call.
4729 */
4730
4731 void
4732 nfs4_inactive_otw(vnode_t *vp, cred_t *cr)
4733 {
4734 rnode4_t *rp = VTOR4(vp);
4735 nfs4_recov_state_t recov_state;
4736 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
4737 vnode_t *unldvp;
4738 char *unlname;
4739 cred_t *unlcred;
4740 COMPOUND4args_clnt args;
4741 COMPOUND4res_clnt res, *resp;
4742 nfs_argop4 argop[2];
4743 int doqueue;
4744 #ifdef DEBUG
4745 char *name;
4746 #endif
4747
4748 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
4749 ASSERT(!IS_SHADOW(vp, rp));
4750
4751 #ifdef DEBUG
4752 name = fn_name(VTOSV(vp)->sv_name);
4753 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: "
4754 "release vnode %s", name));
4755 kmem_free(name, MAXNAMELEN);
4756 #endif
4757
4758 if (vp->v_type == VREG) {
4759 bool_t recov_failed = FALSE;
4760
4761 e.error = nfs4close_all(vp, cr);
4762 if (e.error) {
4763 /* Check to see if recovery failed */
4764 mutex_enter(&(VTOMI4(vp)->mi_lock));
4765 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL)
4766 recov_failed = TRUE;
4767 mutex_exit(&(VTOMI4(vp)->mi_lock));
4768 if (!recov_failed) {
4769 mutex_enter(&rp->r_statelock);
4770 if (rp->r_flags & R4RECOVERR)
4771 recov_failed = TRUE;
4772 mutex_exit(&rp->r_statelock);
4773 }
4774 if (recov_failed) {
4775 NFS4_DEBUG(nfs4_client_recov_debug,
4776 (CE_NOTE, "nfs4_inactive_otw: "
4777 "close failed (recovery failure)"));
4778 }
4779 }
4780 }
4781
4782 redo:
4783 if (rp->r_unldvp == NULL) {
4784 rp4_addfree(rp, cr);
4785 return;
4786 }
4787
4788 /*
4789 * Save the vnode pointer for the directory where the
4790 * unlinked-open file got renamed, then set it to NULL
4791 * to prevent another thread from getting here before
4792 * we're done with the remove. While we have the
4793 * statelock, make local copies of the pertinent rnode
4794 * fields. If we weren't to do this in an atomic way, the
4795 * the unl* fields could become inconsistent with respect
4796 * to each other due to a race condition between this
4797 * code and nfs_remove(). See bug report 1034328.
4798 */
4799 mutex_enter(&rp->r_statelock);
4800 if (rp->r_unldvp == NULL) {
4801 mutex_exit(&rp->r_statelock);
4802 rp4_addfree(rp, cr);
4803 return;
4804 }
4805
4806 unldvp = rp->r_unldvp;
4807 rp->r_unldvp = NULL;
4808 unlname = rp->r_unlname;
4809 rp->r_unlname = NULL;
4810 unlcred = rp->r_unlcred;
4811 rp->r_unlcred = NULL;
4812 mutex_exit(&rp->r_statelock);
4813
4814 /*
4815 * If there are any dirty pages left, then flush
4816 * them. This is unfortunate because they just
4817 * may get thrown away during the remove operation,
4818 * but we have to do this for correctness.
4819 */
4820 if (nfs4_has_pages(vp) &&
4821 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) {
4822 ASSERT(vp->v_type != VCHR);
4823 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL);
4824 if (e.error) {
4825 mutex_enter(&rp->r_statelock);
4826 if (!rp->r_error)
4827 rp->r_error = e.error;
4828 mutex_exit(&rp->r_statelock);
4829 }
4830 }
4831
4832 recov_state.rs_flags = 0;
4833 recov_state.rs_num_retry_despite_err = 0;
4834 recov_retry_remove:
4835 /*
4836 * Do the remove operation on the renamed file
4837 */
4838 args.ctag = TAG_INACTIVE;
4839
4840 /*
4841 * Remove ops: putfh dir; remove
4842 */
4843 args.array_len = 2;
4844 args.array = argop;
4845
4846 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state);
4847 if (e.error) {
4848 kmem_free(unlname, MAXNAMELEN);
4849 crfree(unlcred);
4850 VN_RELE(unldvp);
4851 /*
4852 * Try again; this time around r_unldvp will be NULL, so we'll
4853 * just call rp4_addfree() and return.
4854 */
4855 goto redo;
4856 }
4857
4858 /* putfh directory */
4859 argop[0].argop = OP_CPUTFH;
4860 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh;
4861
4862 /* remove */
4863 argop[1].argop = OP_CREMOVE;
4864 argop[1].nfs_argop4_u.opcremove.ctarget = unlname;
4865
4866 doqueue = 1;
4867 resp = &res;
4868
4869 #if 0 /* notyet */
4870 /*
4871 * Can't do this yet. We may be being called from
4872 * dnlc_purge_XXX while that routine is holding a
4873 * mutex lock to the nc_rele list. The calls to
4874 * nfs3_cache_wcc_data may result in calls to
4875 * dnlc_purge_XXX. This will result in a deadlock.
4876 */
4877 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e);
4878 if (e.error) {
4879 PURGE_ATTRCACHE4(unldvp);
4880 resp = NULL;
4881 } else if (res.status) {
4882 e.error = geterrno4(res.status);
4883 PURGE_ATTRCACHE4(unldvp);
4884 /*
4885 * This code is inactive right now
4886 * but if made active there should
4887 * be a nfs4_end_op() call before
4888 * nfs4_purge_stale_fh to avoid start_op()
4889 * deadlock. See BugId: 4948726
4890 */
4891 nfs4_purge_stale_fh(error, unldvp, cr);
4892 } else {
4893 nfs_resop4 *resop;
4894 REMOVE4res *rm_res;
4895
4896 resop = &res.array[1];
4897 rm_res = &resop->nfs_resop4_u.opremove;
4898 /*
4899 * Update directory cache attribute,
4900 * readdir and dnlc caches.
4901 */
4902 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL);
4903 }
4904 #else
4905 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e);
4906
4907 PURGE_ATTRCACHE4(unldvp);
4908 #endif
4909
4910 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) {
4911 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL,
4912 NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
4913 if (!e.error)
4914 (void) xdr_free(xdr_COMPOUND4res_clnt,
4915 (caddr_t)&res);
4916 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL,
4917 &recov_state, TRUE);
4918 goto recov_retry_remove;
4919 }
4920 }
4921 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE);
4922
4923 /*
4924 * Release stuff held for the remove
4925 */
4926 VN_RELE(unldvp);
4927 if (!e.error && resp)
4928 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
4929
4930 kmem_free(unlname, MAXNAMELEN);
4931 crfree(unlcred);
4932 goto redo;
4933 }
4934
4935 /*
4936 * Remote file system operations having to do with directory manipulation.
4937 */
4938 /* ARGSUSED3 */
4939 int
4940 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
4941 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
4942 int *direntflags, pathname_t *realpnp)
4943 {
4944 int error;
4945 vnode_t *vp, *avp = NULL;
4946 rnode4_t *drp;
4947
4948 *vpp = NULL;
4949 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
4950 return (EPERM);
4951 /*
4952 * if LOOKUP_XATTR, must replace dvp (object) with
4953 * object's attrdir before continuing with lookup
4954 */
4955 if (flags & LOOKUP_XATTR) {
4956 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr);
4957 if (error)
4958 return (error);
4959
4960 dvp = avp;
4961
4962 /*
4963 * If lookup is for "", just return dvp now. The attrdir
4964 * has already been activated (from nfs4lookup_xattr), and
4965 * the caller will RELE the original dvp -- not
4966 * the attrdir. So, set vpp and return.
4967 * Currently, when the LOOKUP_XATTR flag is
4968 * passed to VOP_LOOKUP, the name is always empty, and
4969 * shortcircuiting here avoids 3 unneeded lock/unlock
4970 * pairs.
4971 *
4972 * If a non-empty name was provided, then it is the
4973 * attribute name, and it will be looked up below.
4974 */
4975 if (*nm == '\0') {
4976 *vpp = dvp;
4977 return (0);
4978 }
4979
4980 /*
4981 * The vfs layer never sends a name when asking for the
4982 * attrdir, so we should never get here (unless of course
4983 * name is passed at some time in future -- at which time
4984 * we'll blow up here).
4985 */
4986 ASSERT(0);
4987 }
4988
4989 drp = VTOR4(dvp);
4990 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
4991 return (EINTR);
4992
4993 error = nfs4lookup(dvp, nm, vpp, cr, 0);
4994 nfs_rw_exit(&drp->r_rwlock);
4995
4996 /*
4997 * If vnode is a device, create special vnode.
4998 */
4999 if (!error && ISVDEV((*vpp)->v_type)) {
5000 vp = *vpp;
5001 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
5002 VN_RELE(vp);
5003 }
5004
5005 return (error);
5006 }
5007
5008 /* ARGSUSED */
5009 static int
5010 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr)
5011 {
5012 int error;
5013 rnode4_t *drp;
5014 int cflag = ((flags & CREATE_XATTR_DIR) != 0);
5015 mntinfo4_t *mi;
5016
5017 mi = VTOMI4(dvp);
5018 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) &&
5019 !vfs_has_feature(mi->mi_vfsp, VFSFT_SYSATTR_VIEWS))
5020 return (EINVAL);
5021
5022 drp = VTOR4(dvp);
5023 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
5024 return (EINTR);
5025
5026 mutex_enter(&drp->r_statelock);
5027 /*
5028 * If the server doesn't support xattrs just return EINVAL
5029 */
5030 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) {
5031 mutex_exit(&drp->r_statelock);
5032 nfs_rw_exit(&drp->r_rwlock);
5033 return (EINVAL);
5034 }
5035
5036 /*
5037 * If there is a cached xattr directory entry,
5038 * use it as long as the attributes are valid. If the
5039 * attributes are not valid, take the simple approach and
5040 * free the cached value and re-fetch a new value.
5041 *
5042 * We don't negative entry cache for now, if we did we
5043 * would need to check if the file has changed on every
5044 * lookup. But xattrs don't exist very often and failing
5045 * an openattr is not much more expensive than and NVERIFY or GETATTR
5046 * so do an openattr over the wire for now.
5047 */
5048 if (drp->r_xattr_dir != NULL) {
5049 if (ATTRCACHE4_VALID(dvp)) {
5050 VN_HOLD(drp->r_xattr_dir);
5051 *vpp = drp->r_xattr_dir;
5052 mutex_exit(&drp->r_statelock);
5053 nfs_rw_exit(&drp->r_rwlock);
5054 return (0);
5055 }
5056 VN_RELE(drp->r_xattr_dir);
5057 drp->r_xattr_dir = NULL;
5058 }
5059 mutex_exit(&drp->r_statelock);
5060
5061 error = nfs4openattr(dvp, vpp, cflag, cr);
5062
5063 nfs_rw_exit(&drp->r_rwlock);
5064
5065 return (error);
5066 }
5067
5068 static int
5069 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc)
5070 {
5071 int error;
5072 rnode4_t *drp;
5073
5074 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
5075
5076 /*
5077 * If lookup is for "", just return dvp. Don't need
5078 * to send it over the wire, look it up in the dnlc,
5079 * or perform any access checks.
5080 */
5081 if (*nm == '\0') {
5082 VN_HOLD(dvp);
5083 *vpp = dvp;
5084 return (0);
5085 }
5086
5087 /*
5088 * Can't do lookups in non-directories.
5089 */
5090 if (dvp->v_type != VDIR)
5091 return (ENOTDIR);
5092
5093 /*
5094 * If lookup is for ".", just return dvp. Don't need
5095 * to send it over the wire or look it up in the dnlc,
5096 * just need to check access.
5097 */
5098 if (nm[0] == '.' && nm[1] == '\0') {
5099 error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5100 if (error)
5101 return (error);
5102 VN_HOLD(dvp);
5103 *vpp = dvp;
5104 return (0);
5105 }
5106
5107 drp = VTOR4(dvp);
5108 if (!(drp->r_flags & R4LOOKUP)) {
5109 mutex_enter(&drp->r_statelock);
5110 drp->r_flags |= R4LOOKUP;
5111 mutex_exit(&drp->r_statelock);
5112 }
5113
5114 *vpp = NULL;
5115 /*
5116 * Lookup this name in the DNLC. If there is no entry
5117 * lookup over the wire.
5118 */
5119 if (!skipdnlc)
5120 *vpp = dnlc_lookup(dvp, nm);
5121 if (*vpp == NULL) {
5122 /*
5123 * We need to go over the wire to lookup the name.
5124 */
5125 return (nfs4lookupnew_otw(dvp, nm, vpp, cr));
5126 }
5127
5128 /*
5129 * We hit on the dnlc
5130 */
5131 if (*vpp != DNLC_NO_VNODE ||
5132 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) {
5133 /*
5134 * But our attrs may not be valid.
5135 */
5136 if (ATTRCACHE4_VALID(dvp)) {
5137 error = nfs4_waitfor_purge_complete(dvp);
5138 if (error) {
5139 VN_RELE(*vpp);
5140 *vpp = NULL;
5141 return (error);
5142 }
5143
5144 /*
5145 * If after the purge completes, check to make sure
5146 * our attrs are still valid.
5147 */
5148 if (ATTRCACHE4_VALID(dvp)) {
5149 /*
5150 * If we waited for a purge we may have
5151 * lost our vnode so look it up again.
5152 */
5153 VN_RELE(*vpp);
5154 *vpp = dnlc_lookup(dvp, nm);
5155 if (*vpp == NULL)
5156 return (nfs4lookupnew_otw(dvp,
5157 nm, vpp, cr));
5158
5159 /*
5160 * The access cache should almost always hit
5161 */
5162 error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5163
5164 if (error) {
5165 VN_RELE(*vpp);
5166 *vpp = NULL;
5167 return (error);
5168 }
5169 if (*vpp == DNLC_NO_VNODE) {
5170 VN_RELE(*vpp);
5171 *vpp = NULL;
5172 return (ENOENT);
5173 }
5174 return (0);
5175 }
5176 }
5177 }
5178
5179 ASSERT(*vpp != NULL);
5180
5181 /*
5182 * We may have gotten here we have one of the following cases:
5183 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we
5184 * need to validate them.
5185 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always
5186 * must validate.
5187 *
5188 * Go to the server and check if the directory has changed, if
5189 * it hasn't we are done and can use the dnlc entry.
5190 */
5191 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr));
5192 }
5193
5194 /*
5195 * Go to the server and check if the directory has changed, if
5196 * it hasn't we are done and can use the dnlc entry. If it
5197 * has changed we get a new copy of its attributes and check
5198 * the access for VEXEC, then relookup the filename and
5199 * get its filehandle and attributes.
5200 *
5201 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR
5202 * if the NVERIFY failed we must
5203 * purge the caches
5204 * cache new attributes (will set r_time_attr_inval)
5205 * cache new access
5206 * recheck VEXEC access
5207 * add name to dnlc, possibly negative
5208 * if LOOKUP succeeded
5209 * cache new attributes
5210 * else
5211 * set a new r_time_attr_inval for dvp
5212 * check to make sure we have access
5213 *
5214 * The vpp returned is the vnode passed in if the directory is valid,
5215 * a new vnode if successful lookup, or NULL on error.
5216 */
5217 static int
5218 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
5219 {
5220 COMPOUND4args_clnt args;
5221 COMPOUND4res_clnt res;
5222 fattr4 *ver_fattr;
5223 fattr4_change dchange;
5224 int32_t *ptr;
5225 int argoplist_size = 7 * sizeof (nfs_argop4);
5226 nfs_argop4 *argop;
5227 int doqueue;
5228 mntinfo4_t *mi;
5229 nfs4_recov_state_t recov_state;
5230 hrtime_t t;
5231 int isdotdot;
5232 vnode_t *nvp;
5233 nfs_fh4 *fhp;
5234 nfs4_sharedfh_t *sfhp;
5235 nfs4_access_type_t cacc;
5236 rnode4_t *nrp;
5237 rnode4_t *drp = VTOR4(dvp);
5238 nfs4_ga_res_t *garp = NULL;
5239 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
5240
5241 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
5242 ASSERT(nm != NULL);
5243 ASSERT(nm[0] != '\0');
5244 ASSERT(dvp->v_type == VDIR);
5245 ASSERT(nm[0] != '.' || nm[1] != '\0');
5246 ASSERT(*vpp != NULL);
5247
5248 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') {
5249 isdotdot = 1;
5250 args.ctag = TAG_LOOKUP_VPARENT;
5251 } else {
5252 /*
5253 * If dvp were a stub, it should have triggered and caused
5254 * a mount for us to get this far.
5255 */
5256 ASSERT(!RP_ISSTUB(VTOR4(dvp)));
5257
5258 isdotdot = 0;
5259 args.ctag = TAG_LOOKUP_VALID;
5260 }
5261
5262 mi = VTOMI4(dvp);
5263 recov_state.rs_flags = 0;
5264 recov_state.rs_num_retry_despite_err = 0;
5265
5266 nvp = NULL;
5267
5268 /* Save the original mount point security information */
5269 (void) save_mnt_secinfo(mi->mi_curr_serv);
5270
5271 recov_retry:
5272 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP,
5273 &recov_state, NULL);
5274 if (e.error) {
5275 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5276 VN_RELE(*vpp);
5277 *vpp = NULL;
5278 return (e.error);
5279 }
5280
5281 argop = kmem_alloc(argoplist_size, KM_SLEEP);
5282
5283 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */
5284 args.array_len = 7;
5285 args.array = argop;
5286
5287 /* 0. putfh file */
5288 argop[0].argop = OP_CPUTFH;
5289 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh;
5290
5291 /* 1. nverify the change info */
5292 argop[1].argop = OP_NVERIFY;
5293 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes;
5294 ver_fattr->attrmask = FATTR4_CHANGE_MASK;
5295 ver_fattr->attrlist4 = (char *)&dchange;
5296 ptr = (int32_t *)&dchange;
5297 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change);
5298 ver_fattr->attrlist4_len = sizeof (fattr4_change);
5299
5300 /* 2. getattr directory */
5301 argop[2].argop = OP_GETATTR;
5302 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5303 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5304
5305 /* 3. access directory */
5306 argop[3].argop = OP_ACCESS;
5307 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE |
5308 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP;
5309
5310 /* 4. lookup name */
5311 if (isdotdot) {
5312 argop[4].argop = OP_LOOKUPP;
5313 } else {
5314 argop[4].argop = OP_CLOOKUP;
5315 argop[4].nfs_argop4_u.opclookup.cname = nm;
5316 }
5317
5318 /* 5. resulting file handle */
5319 argop[5].argop = OP_GETFH;
5320
5321 /* 6. resulting file attributes */
5322 argop[6].argop = OP_GETATTR;
5323 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5324 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5325
5326 doqueue = 1;
5327 t = gethrtime();
5328
5329 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
5330
5331 if (!isdotdot && res.status == NFS4ERR_MOVED) {
5332 e.error = nfs4_setup_referral(dvp, nm, vpp, cr);
5333 if (e.error != 0 && *vpp != NULL)
5334 VN_RELE(*vpp);
5335 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5336 &recov_state, FALSE);
5337 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5338 kmem_free(argop, argoplist_size);
5339 return (e.error);
5340 }
5341
5342 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) {
5343 /*
5344 * For WRONGSEC of a non-dotdot case, send secinfo directly
5345 * from this thread, do not go thru the recovery thread since
5346 * we need the nm information.
5347 *
5348 * Not doing dotdot case because there is no specification
5349 * for (PUTFH, SECINFO "..") yet.
5350 */
5351 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) {
5352 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr)))
5353 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5354 &recov_state, FALSE);
5355 else
5356 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5357 &recov_state, TRUE);
5358 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5359 kmem_free(argop, argoplist_size);
5360 if (!e.error)
5361 goto recov_retry;
5362 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5363 VN_RELE(*vpp);
5364 *vpp = NULL;
5365 return (e.error);
5366 }
5367
5368 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
5369 OP_LOOKUP, NULL, NULL, NULL) == FALSE) {
5370 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5371 &recov_state, TRUE);
5372
5373 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5374 kmem_free(argop, argoplist_size);
5375 goto recov_retry;
5376 }
5377 }
5378
5379 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE);
5380
5381 if (e.error || res.array_len == 0) {
5382 /*
5383 * If e.error isn't set, then reply has no ops (or we couldn't
5384 * be here). The only legal way to reply without an op array
5385 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should
5386 * be in the reply for all other status values.
5387 *
5388 * For valid replies without an ops array, return ENOTSUP
5389 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies,
5390 * return EIO -- don't trust status.
5391 */
5392 if (e.error == 0)
5393 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ?
5394 ENOTSUP : EIO;
5395 VN_RELE(*vpp);
5396 *vpp = NULL;
5397 kmem_free(argop, argoplist_size);
5398 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5399 return (e.error);
5400 }
5401
5402 if (res.status != NFS4ERR_SAME) {
5403 e.error = geterrno4(res.status);
5404
5405 /*
5406 * The NVERIFY "failed" so the directory has changed
5407 * First make sure PUTFH succeeded and NVERIFY "failed"
5408 * cleanly.
5409 */
5410 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) ||
5411 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) {
5412 nfs4_purge_stale_fh(e.error, dvp, cr);
5413 VN_RELE(*vpp);
5414 *vpp = NULL;
5415 goto exit;
5416 }
5417
5418 /*
5419 * We know the NVERIFY "failed" so we must:
5420 * purge the caches (access and indirectly dnlc if needed)
5421 */
5422 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE);
5423
5424 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5425 nfs4_purge_stale_fh(e.error, dvp, cr);
5426 VN_RELE(*vpp);
5427 *vpp = NULL;
5428 goto exit;
5429 }
5430
5431 /*
5432 * Install new cached attributes for the directory
5433 */
5434 nfs4_attr_cache(dvp,
5435 &res.array[2].nfs_resop4_u.opgetattr.ga_res,
5436 t, cr, FALSE, NULL);
5437
5438 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) {
5439 nfs4_purge_stale_fh(e.error, dvp, cr);
5440 VN_RELE(*vpp);
5441 *vpp = NULL;
5442 e.error = geterrno4(res.status);
5443 goto exit;
5444 }
5445
5446 /*
5447 * Now we know the directory is valid,
5448 * cache new directory access
5449 */
5450 nfs4_access_cache(drp,
5451 args.array[3].nfs_argop4_u.opaccess.access,
5452 res.array[3].nfs_resop4_u.opaccess.access, cr);
5453
5454 /*
5455 * recheck VEXEC access
5456 */
5457 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr);
5458 if (cacc != NFS4_ACCESS_ALLOWED) {
5459 /*
5460 * Directory permissions might have been revoked
5461 */
5462 if (cacc == NFS4_ACCESS_DENIED) {
5463 e.error = EACCES;
5464 VN_RELE(*vpp);
5465 *vpp = NULL;
5466 goto exit;
5467 }
5468
5469 /*
5470 * Somehow we must not have asked for enough
5471 * so try a singleton ACCESS, should never happen.
5472 */
5473 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5474 if (e.error) {
5475 VN_RELE(*vpp);
5476 *vpp = NULL;
5477 goto exit;
5478 }
5479 }
5480
5481 e.error = geterrno4(res.status);
5482 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) {
5483 /*
5484 * The lookup failed, probably no entry
5485 */
5486 if (e.error == ENOENT && nfs4_lookup_neg_cache) {
5487 dnlc_update(dvp, nm, DNLC_NO_VNODE);
5488 } else {
5489 /*
5490 * Might be some other error, so remove
5491 * the dnlc entry to make sure we start all
5492 * over again, next time.
5493 */
5494 dnlc_remove(dvp, nm);
5495 }
5496 VN_RELE(*vpp);
5497 *vpp = NULL;
5498 goto exit;
5499 }
5500
5501 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) {
5502 /*
5503 * The file exists but we can't get its fh for
5504 * some unknown reason. Remove it from the dnlc
5505 * and error out to be safe.
5506 */
5507 dnlc_remove(dvp, nm);
5508 VN_RELE(*vpp);
5509 *vpp = NULL;
5510 goto exit;
5511 }
5512 fhp = &res.array[5].nfs_resop4_u.opgetfh.object;
5513 if (fhp->nfs_fh4_len == 0) {
5514 /*
5515 * The file exists but a bogus fh
5516 * some unknown reason. Remove it from the dnlc
5517 * and error out to be safe.
5518 */
5519 e.error = ENOENT;
5520 dnlc_remove(dvp, nm);
5521 VN_RELE(*vpp);
5522 *vpp = NULL;
5523 goto exit;
5524 }
5525 sfhp = sfh4_get(fhp, mi);
5526
5527 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK)
5528 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res;
5529
5530 /*
5531 * Make the new rnode
5532 */
5533 if (isdotdot) {
5534 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1);
5535 if (e.error) {
5536 sfh4_rele(&sfhp);
5537 VN_RELE(*vpp);
5538 *vpp = NULL;
5539 goto exit;
5540 }
5541 /*
5542 * XXX if nfs4_make_dotdot uses an existing rnode
5543 * XXX it doesn't update the attributes.
5544 * XXX for now just save them again to save an OTW
5545 */
5546 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL);
5547 } else {
5548 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr,
5549 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
5550 /*
5551 * If v_type == VNON, then garp was NULL because
5552 * the last op in the compound failed and makenfs4node
5553 * could not find the vnode for sfhp. It created
5554 * a new vnode, so we have nothing to purge here.
5555 */
5556 if (nvp->v_type == VNON) {
5557 vattr_t vattr;
5558
5559 vattr.va_mask = AT_TYPE;
5560 /*
5561 * N.B. We've already called nfs4_end_fop above.
5562 */
5563 e.error = nfs4getattr(nvp, &vattr, cr);
5564 if (e.error) {
5565 sfh4_rele(&sfhp);
5566 VN_RELE(*vpp);
5567 *vpp = NULL;
5568 VN_RELE(nvp);
5569 goto exit;
5570 }
5571 nvp->v_type = vattr.va_type;
5572 }
5573 }
5574 sfh4_rele(&sfhp);
5575
5576 nrp = VTOR4(nvp);
5577 mutex_enter(&nrp->r_statev4_lock);
5578 if (!nrp->created_v4) {
5579 mutex_exit(&nrp->r_statev4_lock);
5580 dnlc_update(dvp, nm, nvp);
5581 } else
5582 mutex_exit(&nrp->r_statev4_lock);
5583
5584 VN_RELE(*vpp);
5585 *vpp = nvp;
5586 } else {
5587 hrtime_t now;
5588 hrtime_t delta = 0;
5589
5590 e.error = 0;
5591
5592 /*
5593 * Because the NVERIFY "succeeded" we know that the
5594 * directory attributes are still valid
5595 * so update r_time_attr_inval
5596 */
5597 now = gethrtime();
5598 mutex_enter(&drp->r_statelock);
5599 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) {
5600 delta = now - drp->r_time_attr_saved;
5601 if (delta < mi->mi_acdirmin)
5602 delta = mi->mi_acdirmin;
5603 else if (delta > mi->mi_acdirmax)
5604 delta = mi->mi_acdirmax;
5605 }
5606 drp->r_time_attr_inval = now + delta;
5607 mutex_exit(&drp->r_statelock);
5608 dnlc_update(dvp, nm, *vpp);
5609
5610 /*
5611 * Even though we have a valid directory attr cache
5612 * and dnlc entry, we may not have access.
5613 * This should almost always hit the cache.
5614 */
5615 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5616 if (e.error) {
5617 VN_RELE(*vpp);
5618 *vpp = NULL;
5619 }
5620
5621 if (*vpp == DNLC_NO_VNODE) {
5622 VN_RELE(*vpp);
5623 *vpp = NULL;
5624 e.error = ENOENT;
5625 }
5626 }
5627
5628 exit:
5629 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5630 kmem_free(argop, argoplist_size);
5631 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5632 return (e.error);
5633 }
5634
5635 /*
5636 * We need to go over the wire to lookup the name, but
5637 * while we are there verify the directory has not
5638 * changed but if it has, get new attributes and check access
5639 *
5640 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH
5641 * NVERIFY GETATTR ACCESS
5642 *
5643 * With the results:
5644 * if the NVERIFY failed we must purge the caches, add new attributes,
5645 * and cache new access.
5646 * set a new r_time_attr_inval
5647 * add name to dnlc, possibly negative
5648 * if LOOKUP succeeded
5649 * cache new attributes
5650 */
5651 static int
5652 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
5653 {
5654 COMPOUND4args_clnt args;
5655 COMPOUND4res_clnt res;
5656 fattr4 *ver_fattr;
5657 fattr4_change dchange;
5658 int32_t *ptr;
5659 nfs4_ga_res_t *garp = NULL;
5660 int argoplist_size = 9 * sizeof (nfs_argop4);
5661 nfs_argop4 *argop;
5662 int doqueue;
5663 mntinfo4_t *mi;
5664 nfs4_recov_state_t recov_state;
5665 hrtime_t t;
5666 int isdotdot;
5667 vnode_t *nvp;
5668 nfs_fh4 *fhp;
5669 nfs4_sharedfh_t *sfhp;
5670 nfs4_access_type_t cacc;
5671 rnode4_t *nrp;
5672 rnode4_t *drp = VTOR4(dvp);
5673 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
5674
5675 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
5676 ASSERT(nm != NULL);
5677 ASSERT(nm[0] != '\0');
5678 ASSERT(dvp->v_type == VDIR);
5679 ASSERT(nm[0] != '.' || nm[1] != '\0');
5680 ASSERT(*vpp == NULL);
5681
5682 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') {
5683 isdotdot = 1;
5684 args.ctag = TAG_LOOKUP_PARENT;
5685 } else {
5686 /*
5687 * If dvp were a stub, it should have triggered and caused
5688 * a mount for us to get this far.
5689 */
5690 ASSERT(!RP_ISSTUB(VTOR4(dvp)));
5691
5692 isdotdot = 0;
5693 args.ctag = TAG_LOOKUP;
5694 }
5695
5696 mi = VTOMI4(dvp);
5697 recov_state.rs_flags = 0;
5698 recov_state.rs_num_retry_despite_err = 0;
5699
5700 nvp = NULL;
5701
5702 /* Save the original mount point security information */
5703 (void) save_mnt_secinfo(mi->mi_curr_serv);
5704
5705 recov_retry:
5706 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP,
5707 &recov_state, NULL);
5708 if (e.error) {
5709 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5710 return (e.error);
5711 }
5712
5713 argop = kmem_alloc(argoplist_size, KM_SLEEP);
5714
5715 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */
5716 args.array_len = 9;
5717 args.array = argop;
5718
5719 /* 0. putfh file */
5720 argop[0].argop = OP_CPUTFH;
5721 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh;
5722
5723 /* 1. savefh for the nverify */
5724 argop[1].argop = OP_SAVEFH;
5725
5726 /* 2. lookup name */
5727 if (isdotdot) {
5728 argop[2].argop = OP_LOOKUPP;
5729 } else {
5730 argop[2].argop = OP_CLOOKUP;
5731 argop[2].nfs_argop4_u.opclookup.cname = nm;
5732 }
5733
5734 /* 3. resulting file handle */
5735 argop[3].argop = OP_GETFH;
5736
5737 /* 4. resulting file attributes */
5738 argop[4].argop = OP_GETATTR;
5739 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5740 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5741
5742 /* 5. restorefh back the directory for the nverify */
5743 argop[5].argop = OP_RESTOREFH;
5744
5745 /* 6. nverify the change info */
5746 argop[6].argop = OP_NVERIFY;
5747 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes;
5748 ver_fattr->attrmask = FATTR4_CHANGE_MASK;
5749 ver_fattr->attrlist4 = (char *)&dchange;
5750 ptr = (int32_t *)&dchange;
5751 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change);
5752 ver_fattr->attrlist4_len = sizeof (fattr4_change);
5753
5754 /* 7. getattr directory */
5755 argop[7].argop = OP_GETATTR;
5756 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5757 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5758
5759 /* 8. access directory */
5760 argop[8].argop = OP_ACCESS;
5761 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE |
5762 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP;
5763
5764 doqueue = 1;
5765 t = gethrtime();
5766
5767 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
5768
5769 if (!isdotdot && res.status == NFS4ERR_MOVED) {
5770 e.error = nfs4_setup_referral(dvp, nm, vpp, cr);
5771 if (e.error != 0 && *vpp != NULL)
5772 VN_RELE(*vpp);
5773 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5774 &recov_state, FALSE);
5775 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5776 kmem_free(argop, argoplist_size);
5777 return (e.error);
5778 }
5779
5780 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) {
5781 /*
5782 * For WRONGSEC of a non-dotdot case, send secinfo directly
5783 * from this thread, do not go thru the recovery thread since
5784 * we need the nm information.
5785 *
5786 * Not doing dotdot case because there is no specification
5787 * for (PUTFH, SECINFO "..") yet.
5788 */
5789 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) {
5790 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr)))
5791 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5792 &recov_state, FALSE);
5793 else
5794 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5795 &recov_state, TRUE);
5796 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5797 kmem_free(argop, argoplist_size);
5798 if (!e.error)
5799 goto recov_retry;
5800 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5801 return (e.error);
5802 }
5803
5804 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
5805 OP_LOOKUP, NULL, NULL, NULL) == FALSE) {
5806 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5807 &recov_state, TRUE);
5808
5809 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5810 kmem_free(argop, argoplist_size);
5811 goto recov_retry;
5812 }
5813 }
5814
5815 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE);
5816
5817 if (e.error || res.array_len == 0) {
5818 /*
5819 * If e.error isn't set, then reply has no ops (or we couldn't
5820 * be here). The only legal way to reply without an op array
5821 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should
5822 * be in the reply for all other status values.
5823 *
5824 * For valid replies without an ops array, return ENOTSUP
5825 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies,
5826 * return EIO -- don't trust status.
5827 */
5828 if (e.error == 0)
5829 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ?
5830 ENOTSUP : EIO;
5831
5832 kmem_free(argop, argoplist_size);
5833 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5834 return (e.error);
5835 }
5836
5837 e.error = geterrno4(res.status);
5838
5839 /*
5840 * The PUTFH and SAVEFH may have failed.
5841 */
5842 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) ||
5843 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) {
5844 nfs4_purge_stale_fh(e.error, dvp, cr);
5845 goto exit;
5846 }
5847
5848 /*
5849 * Check if the file exists, if it does delay entering
5850 * into the dnlc until after we update the directory
5851 * attributes so we don't cause it to get purged immediately.
5852 */
5853 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) {
5854 /*
5855 * The lookup failed, probably no entry
5856 */
5857 if (e.error == ENOENT && nfs4_lookup_neg_cache)
5858 dnlc_update(dvp, nm, DNLC_NO_VNODE);
5859 goto exit;
5860 }
5861
5862 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) {
5863 /*
5864 * The file exists but we can't get its fh for
5865 * some unknown reason. Error out to be safe.
5866 */
5867 goto exit;
5868 }
5869
5870 fhp = &res.array[3].nfs_resop4_u.opgetfh.object;
5871 if (fhp->nfs_fh4_len == 0) {
5872 /*
5873 * The file exists but a bogus fh
5874 * some unknown reason. Error out to be safe.
5875 */
5876 e.error = EIO;
5877 goto exit;
5878 }
5879 sfhp = sfh4_get(fhp, mi);
5880
5881 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5882 sfh4_rele(&sfhp);
5883 goto exit;
5884 }
5885 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res;
5886
5887 /*
5888 * The RESTOREFH may have failed
5889 */
5890 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) {
5891 sfh4_rele(&sfhp);
5892 e.error = EIO;
5893 goto exit;
5894 }
5895
5896 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) {
5897 /*
5898 * First make sure the NVERIFY failed as we expected,
5899 * if it didn't then be conservative and error out
5900 * as we can't trust the directory.
5901 */
5902 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) {
5903 sfh4_rele(&sfhp);
5904 e.error = EIO;
5905 goto exit;
5906 }
5907
5908 /*
5909 * We know the NVERIFY "failed" so the directory has changed,
5910 * so we must:
5911 * purge the caches (access and indirectly dnlc if needed)
5912 */
5913 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE);
5914
5915 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5916 sfh4_rele(&sfhp);
5917 goto exit;
5918 }
5919 nfs4_attr_cache(dvp,
5920 &res.array[7].nfs_resop4_u.opgetattr.ga_res,
5921 t, cr, FALSE, NULL);
5922
5923 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) {
5924 nfs4_purge_stale_fh(e.error, dvp, cr);
5925 sfh4_rele(&sfhp);
5926 e.error = geterrno4(res.status);
5927 goto exit;
5928 }
5929
5930 /*
5931 * Now we know the directory is valid,
5932 * cache new directory access
5933 */
5934 nfs4_access_cache(drp,
5935 args.array[8].nfs_argop4_u.opaccess.access,
5936 res.array[8].nfs_resop4_u.opaccess.access, cr);
5937
5938 /*
5939 * recheck VEXEC access
5940 */
5941 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr);
5942 if (cacc != NFS4_ACCESS_ALLOWED) {
5943 /*
5944 * Directory permissions might have been revoked
5945 */
5946 if (cacc == NFS4_ACCESS_DENIED) {
5947 sfh4_rele(&sfhp);
5948 e.error = EACCES;
5949 goto exit;
5950 }
5951
5952 /*
5953 * Somehow we must not have asked for enough
5954 * so try a singleton ACCESS should never happen
5955 */
5956 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5957 if (e.error) {
5958 sfh4_rele(&sfhp);
5959 goto exit;
5960 }
5961 }
5962
5963 e.error = geterrno4(res.status);
5964 } else {
5965 hrtime_t now;
5966 hrtime_t delta = 0;
5967
5968 e.error = 0;
5969
5970 /*
5971 * Because the NVERIFY "succeeded" we know that the
5972 * directory attributes are still valid
5973 * so update r_time_attr_inval
5974 */
5975 now = gethrtime();
5976 mutex_enter(&drp->r_statelock);
5977 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) {
5978 delta = now - drp->r_time_attr_saved;
5979 if (delta < mi->mi_acdirmin)
5980 delta = mi->mi_acdirmin;
5981 else if (delta > mi->mi_acdirmax)
5982 delta = mi->mi_acdirmax;
5983 }
5984 drp->r_time_attr_inval = now + delta;
5985 mutex_exit(&drp->r_statelock);
5986
5987 /*
5988 * Even though we have a valid directory attr cache,
5989 * we may not have access.
5990 * This should almost always hit the cache.
5991 */
5992 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5993 if (e.error) {
5994 sfh4_rele(&sfhp);
5995 goto exit;
5996 }
5997 }
5998
5999 /*
6000 * Now we have successfully completed the lookup, if the
6001 * directory has changed we now have the valid attributes.
6002 * We also know we have directory access.
6003 * Create the new rnode and insert it in the dnlc.
6004 */
6005 if (isdotdot) {
6006 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1);
6007 if (e.error) {
6008 sfh4_rele(&sfhp);
6009 goto exit;
6010 }
6011 /*
6012 * XXX if nfs4_make_dotdot uses an existing rnode
6013 * XXX it doesn't update the attributes.
6014 * XXX for now just save them again to save an OTW
6015 */
6016 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL);
6017 } else {
6018 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr,
6019 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
6020 }
6021 sfh4_rele(&sfhp);
6022
6023 nrp = VTOR4(nvp);
6024 mutex_enter(&nrp->r_statev4_lock);
6025 if (!nrp->created_v4) {
6026 mutex_exit(&nrp->r_statev4_lock);
6027 dnlc_update(dvp, nm, nvp);
6028 } else
6029 mutex_exit(&nrp->r_statev4_lock);
6030
6031 *vpp = nvp;
6032
6033 exit:
6034 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6035 kmem_free(argop, argoplist_size);
6036 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
6037 return (e.error);
6038 }
6039
6040 #ifdef DEBUG
6041 void
6042 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt)
6043 {
6044 uint_t i, len;
6045 zoneid_t zoneid = getzoneid();
6046 char *s;
6047
6048 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where);
6049 for (i = 0; i < argcnt; i++) {
6050 nfs_argop4 *op = &argbase[i];
6051 switch (op->argop) {
6052 case OP_CPUTFH:
6053 case OP_PUTFH:
6054 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i);
6055 break;
6056 case OP_PUTROOTFH:
6057 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i);
6058 break;
6059 case OP_CLOOKUP:
6060 s = op->nfs_argop4_u.opclookup.cname;
6061 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s);
6062 break;
6063 case OP_LOOKUP:
6064 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname,
6065 &len, NULL);
6066 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s);
6067 kmem_free(s, len);
6068 break;
6069 case OP_LOOKUPP:
6070 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i);
6071 break;
6072 case OP_GETFH:
6073 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i);
6074 break;
6075 case OP_GETATTR:
6076 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i);
6077 break;
6078 case OP_OPENATTR:
6079 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i);
6080 break;
6081 default:
6082 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i,
6083 op->argop);
6084 break;
6085 }
6086 }
6087 }
6088 #endif
6089
6090 /*
6091 * nfs4lookup_setup - constructs a multi-lookup compound request.
6092 *
6093 * Given the path "nm1/nm2/.../nmn", the following compound requests
6094 * may be created:
6095 *
6096 * Note: Getfh is not be needed because filehandle attr is mandatory, but it
6097 * is faster, for now.
6098 *
6099 * l4_getattrs indicates the type of compound requested.
6100 *
6101 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo):
6102 *
6103 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} }
6104 *
6105 * total number of ops is n + 1.
6106 *
6107 * LKP4_LAST_NAMED_ATTR - multi-component path for a named
6108 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR
6109 * before the last component, and only get attributes
6110 * for the last component. Note that the second-to-last
6111 * pathname component is XATTR_RPATH, which does NOT go
6112 * over-the-wire as a lookup.
6113 *
6114 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2};
6115 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr }
6116 *
6117 * and total number of ops is n + 5.
6118 *
6119 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named
6120 * attribute directory: create lookups plus an OPENATTR
6121 * replacing the last lookup. Note that the last pathname
6122 * component is XATTR_RPATH, which does NOT go over-the-wire
6123 * as a lookup.
6124 *
6125 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr;
6126 * Openattr; Getfh; Getattr }
6127 *
6128 * and total number of ops is n + 5.
6129 *
6130 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate
6131 * nodes too.
6132 *
6133 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr;
6134 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr }
6135 *
6136 * and total number of ops is 3*n + 1.
6137 *
6138 * All cases: returns the index in the arg array of the final LOOKUP op, or
6139 * -1 if no LOOKUPs were used.
6140 */
6141 int
6142 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh)
6143 {
6144 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs;
6145 nfs_argop4 *argbase, *argop;
6146 int arglen, argcnt;
6147 int n = 1; /* number of components */
6148 int nga = 1; /* number of Getattr's in request */
6149 char c = '\0', *s, *p;
6150 int lookup_idx = -1;
6151 int argoplist_size;
6152
6153 /* set lookuparg response result to 0 */
6154 lookupargp->resp->status = NFS4_OK;
6155
6156 /* skip leading "/" or "." e.g. ".//./" if there is */
6157 for (; ; nm++) {
6158 if (*nm != '/' && *nm != '.')
6159 break;
6160
6161 /* ".." is counted as 1 component */
6162 if (*nm == '.' && *(nm + 1) != '/')
6163 break;
6164 }
6165
6166 /*
6167 * Find n = number of components - nm must be null terminated
6168 * Skip "." components.
6169 */
6170 if (*nm != '\0')
6171 for (n = 1, s = nm; *s != '\0'; s++) {
6172 if ((*s == '/') && (*(s + 1) != '/') &&
6173 (*(s + 1) != '\0') &&
6174 !(*(s + 1) == '.' && (*(s + 2) == '/' ||
6175 *(s + 2) == '\0')))
6176 n++;
6177 }
6178 else
6179 n = 0;
6180
6181 /*
6182 * nga is number of components that need Getfh+Getattr
6183 */
6184 switch (l4_getattrs) {
6185 case LKP4_NO_ATTRIBUTES:
6186 nga = 0;
6187 break;
6188 case LKP4_ALL_ATTRIBUTES:
6189 nga = n;
6190 /*
6191 * Always have at least 1 getfh, getattr pair
6192 */
6193 if (nga == 0)
6194 nga++;
6195 break;
6196 case LKP4_LAST_ATTRDIR:
6197 case LKP4_LAST_NAMED_ATTR:
6198 nga = n+1;
6199 break;
6200 }
6201
6202 /*
6203 * If change to use the filehandle attr instead of getfh
6204 * the following line can be deleted.
6205 */
6206 nga *= 2;
6207
6208 /*
6209 * calculate number of ops in request as
6210 * header + trailer + lookups + getattrs
6211 */
6212 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga;
6213
6214 argoplist_size = arglen * sizeof (nfs_argop4);
6215 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP);
6216 lookupargp->argsp->array = argop;
6217
6218 argcnt = lookupargp->header_len;
6219 argop += argcnt;
6220
6221 /*
6222 * loop and create a lookup op and possibly getattr/getfh for
6223 * each component. Skip "." components.
6224 */
6225 for (s = nm; *s != '\0'; s = p) {
6226 /*
6227 * Set up a pathname struct for each component if needed
6228 */
6229 while (*s == '/')
6230 s++;
6231 if (*s == '\0')
6232 break;
6233
6234 for (p = s; (*p != '/') && (*p != '\0'); p++)
6235 ;
6236 c = *p;
6237 *p = '\0';
6238
6239 if (s[0] == '.' && s[1] == '\0') {
6240 *p = c;
6241 continue;
6242 }
6243 if (l4_getattrs == LKP4_LAST_ATTRDIR &&
6244 strcmp(s, XATTR_RPATH) == 0) {
6245 /* getfh XXX may not be needed in future */
6246 argop->argop = OP_GETFH;
6247 argop++;
6248 argcnt++;
6249
6250 /* getattr */
6251 argop->argop = OP_GETATTR;
6252 argop->nfs_argop4_u.opgetattr.attr_request =
6253 lookupargp->ga_bits;
6254 argop->nfs_argop4_u.opgetattr.mi =
6255 lookupargp->mi;
6256 argop++;
6257 argcnt++;
6258
6259 /* openattr */
6260 argop->argop = OP_OPENATTR;
6261 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR &&
6262 strcmp(s, XATTR_RPATH) == 0) {
6263 /* openattr */
6264 argop->argop = OP_OPENATTR;
6265 argop++;
6266 argcnt++;
6267
6268 /* getfh XXX may not be needed in future */
6269 argop->argop = OP_GETFH;
6270 argop++;
6271 argcnt++;
6272
6273 /* getattr */
6274 argop->argop = OP_GETATTR;
6275 argop->nfs_argop4_u.opgetattr.attr_request =
6276 lookupargp->ga_bits;
6277 argop->nfs_argop4_u.opgetattr.mi =
6278 lookupargp->mi;
6279 argop++;
6280 argcnt++;
6281 *p = c;
6282 continue;
6283 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') {
6284 /* lookupp */
6285 argop->argop = OP_LOOKUPP;
6286 } else {
6287 /* lookup */
6288 argop->argop = OP_LOOKUP;
6289 (void) str_to_utf8(s,
6290 &argop->nfs_argop4_u.oplookup.objname);
6291 }
6292 lookup_idx = argcnt;
6293 argop++;
6294 argcnt++;
6295
6296 *p = c;
6297
6298 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) {
6299 /* getfh XXX may not be needed in future */
6300 argop->argop = OP_GETFH;
6301 argop++;
6302 argcnt++;
6303
6304 /* getattr */
6305 argop->argop = OP_GETATTR;
6306 argop->nfs_argop4_u.opgetattr.attr_request =
6307 lookupargp->ga_bits;
6308 argop->nfs_argop4_u.opgetattr.mi =
6309 lookupargp->mi;
6310 argop++;
6311 argcnt++;
6312 }
6313 }
6314
6315 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) &&
6316 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) {
6317 if (needgetfh) {
6318 /* stick in a post-lookup getfh */
6319 argop->argop = OP_GETFH;
6320 argcnt++;
6321 argop++;
6322 }
6323 /* post-lookup getattr */
6324 argop->argop = OP_GETATTR;
6325 argop->nfs_argop4_u.opgetattr.attr_request =
6326 lookupargp->ga_bits;
6327 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi;
6328 argcnt++;
6329 }
6330 argcnt += lookupargp->trailer_len; /* actual op count */
6331 lookupargp->argsp->array_len = argcnt;
6332 lookupargp->arglen = arglen;
6333
6334 #ifdef DEBUG
6335 if (nfs4_client_lookup_debug)
6336 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt);
6337 #endif
6338
6339 return (lookup_idx);
6340 }
6341
6342 static int
6343 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr)
6344 {
6345 COMPOUND4args_clnt args;
6346 COMPOUND4res_clnt res;
6347 GETFH4res *gf_res = NULL;
6348 nfs_argop4 argop[4];
6349 nfs_resop4 *resop = NULL;
6350 nfs4_sharedfh_t *sfhp;
6351 hrtime_t t;
6352 nfs4_error_t e;
6353
6354 rnode4_t *drp;
6355 int doqueue = 1;
6356 vnode_t *vp;
6357 int needrecov = 0;
6358 nfs4_recov_state_t recov_state;
6359
6360 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
6361
6362 *avp = NULL;
6363 recov_state.rs_flags = 0;
6364 recov_state.rs_num_retry_despite_err = 0;
6365
6366 recov_retry:
6367 /* COMPOUND: putfh, openattr, getfh, getattr */
6368 args.array_len = 4;
6369 args.array = argop;
6370 args.ctag = TAG_OPENATTR;
6371
6372 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
6373 if (e.error)
6374 return (e.error);
6375
6376 drp = VTOR4(dvp);
6377
6378 /* putfh */
6379 argop[0].argop = OP_CPUTFH;
6380 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
6381
6382 /* openattr */
6383 argop[1].argop = OP_OPENATTR;
6384 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE);
6385
6386 /* getfh */
6387 argop[2].argop = OP_GETFH;
6388
6389 /* getattr */
6390 argop[3].argop = OP_GETATTR;
6391 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
6392 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
6393
6394 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
6395 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first",
6396 rnode4info(drp)));
6397
6398 t = gethrtime();
6399
6400 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
6401
6402 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp);
6403 if (needrecov) {
6404 bool_t abort;
6405
6406 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
6407 "nfs4openattr: initiating recovery\n"));
6408
6409 abort = nfs4_start_recovery(&e,
6410 VTOMI4(dvp), dvp, NULL, NULL, NULL,
6411 OP_OPENATTR, NULL, NULL, NULL);
6412 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6413 if (!e.error) {
6414 e.error = geterrno4(res.status);
6415 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6416 }
6417 if (abort == FALSE)
6418 goto recov_retry;
6419 return (e.error);
6420 }
6421
6422 if (e.error) {
6423 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6424 return (e.error);
6425 }
6426
6427 if (res.status) {
6428 /*
6429 * If OTW errro is NOTSUPP, then it should be
6430 * translated to EINVAL. All Solaris file system
6431 * implementations return EINVAL to the syscall layer
6432 * when the attrdir cannot be created due to an
6433 * implementation restriction or noxattr mount option.
6434 */
6435 if (res.status == NFS4ERR_NOTSUPP) {
6436 mutex_enter(&drp->r_statelock);
6437 if (drp->r_xattr_dir)
6438 VN_RELE(drp->r_xattr_dir);
6439 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP);
6440 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP;
6441 mutex_exit(&drp->r_statelock);
6442
6443 e.error = EINVAL;
6444 } else {
6445 e.error = geterrno4(res.status);
6446 }
6447
6448 if (e.error) {
6449 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6450 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
6451 needrecov);
6452 return (e.error);
6453 }
6454 }
6455
6456 resop = &res.array[0]; /* putfh res */
6457 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK);
6458
6459 resop = &res.array[1]; /* openattr res */
6460 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK);
6461
6462 resop = &res.array[2]; /* getfh res */
6463 gf_res = &resop->nfs_resop4_u.opgetfh;
6464 if (gf_res->object.nfs_fh4_len == 0) {
6465 *avp = NULL;
6466 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6467 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6468 return (ENOENT);
6469 }
6470
6471 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp));
6472 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res,
6473 dvp->v_vfsp, t, cr, dvp,
6474 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH, sfhp));
6475 sfh4_rele(&sfhp);
6476
6477 if (e.error)
6478 PURGE_ATTRCACHE4(vp);
6479
6480 mutex_enter(&vp->v_lock);
6481 vp->v_flag |= V_XATTRDIR;
6482 mutex_exit(&vp->v_lock);
6483
6484 *avp = vp;
6485
6486 mutex_enter(&drp->r_statelock);
6487 if (drp->r_xattr_dir)
6488 VN_RELE(drp->r_xattr_dir);
6489 VN_HOLD(vp);
6490 drp->r_xattr_dir = vp;
6491
6492 /*
6493 * Invalidate pathconf4 cache because r_xattr_dir is no longer
6494 * NULL. xattrs could be created at any time, and we have no
6495 * way to update pc4_xattr_exists in the base object if/when
6496 * it happens.
6497 */
6498 drp->r_pathconf.pc4_xattr_valid = 0;
6499
6500 mutex_exit(&drp->r_statelock);
6501
6502 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6503
6504 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6505
6506 return (0);
6507 }
6508
6509 /* ARGSUSED */
6510 static int
6511 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
6512 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct,
6513 vsecattr_t *vsecp)
6514 {
6515 int error;
6516 vnode_t *vp = NULL;
6517 rnode4_t *rp;
6518 struct vattr vattr;
6519 rnode4_t *drp;
6520 vnode_t *tempvp;
6521 enum createmode4 createmode;
6522 bool_t must_trunc = FALSE;
6523 int truncating = 0;
6524
6525 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
6526 return (EPERM);
6527 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) {
6528 return (EINVAL);
6529 }
6530
6531 /* . and .. have special meaning in the protocol, reject them. */
6532
6533 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0')))
6534 return (EISDIR);
6535
6536 drp = VTOR4(dvp);
6537
6538 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
6539 return (EINTR);
6540
6541 top:
6542 /*
6543 * We make a copy of the attributes because the caller does not
6544 * expect us to change what va points to.
6545 */
6546 vattr = *va;
6547
6548 /*
6549 * If the pathname is "", then dvp is the root vnode of
6550 * a remote file mounted over a local directory.
6551 * All that needs to be done is access
6552 * checking and truncation. Note that we avoid doing
6553 * open w/ create because the parent directory might
6554 * be in pseudo-fs and the open would fail.
6555 */
6556 if (*nm == '\0') {
6557 error = 0;
6558 VN_HOLD(dvp);
6559 vp = dvp;
6560 must_trunc = TRUE;
6561 } else {
6562 /*
6563 * We need to go over the wire, just to be sure whether the
6564 * file exists or not. Using the DNLC can be dangerous in
6565 * this case when making a decision regarding existence.
6566 */
6567 error = nfs4lookup(dvp, nm, &vp, cr, 1);
6568 }
6569
6570 if (exclusive)
6571 createmode = EXCLUSIVE4;
6572 else
6573 createmode = GUARDED4;
6574
6575 /*
6576 * error would be set if the file does not exist on the
6577 * server, so lets go create it.
6578 */
6579 if (error) {
6580 goto create_otw;
6581 }
6582
6583 /*
6584 * File does exist on the server
6585 */
6586 if (exclusive == EXCL)
6587 error = EEXIST;
6588 else if (vp->v_type == VDIR && (mode & VWRITE))
6589 error = EISDIR;
6590 else {
6591 /*
6592 * If vnode is a device, create special vnode.
6593 */
6594 if (ISVDEV(vp->v_type)) {
6595 tempvp = vp;
6596 vp = specvp(vp, vp->v_rdev, vp->v_type, cr);
6597 VN_RELE(tempvp);
6598 }
6599 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) {
6600 if ((vattr.va_mask & AT_SIZE) &&
6601 vp->v_type == VREG) {
6602 rp = VTOR4(vp);
6603 /*
6604 * Check here for large file handled
6605 * by LF-unaware process (as
6606 * ufs_create() does)
6607 */
6608 if (!(flags & FOFFMAX)) {
6609 mutex_enter(&rp->r_statelock);
6610 if (rp->r_size > MAXOFF32_T)
6611 error = EOVERFLOW;
6612 mutex_exit(&rp->r_statelock);
6613 }
6614
6615 /* if error is set then we need to return */
6616 if (error) {
6617 nfs_rw_exit(&drp->r_rwlock);
6618 VN_RELE(vp);
6619 return (error);
6620 }
6621
6622 if (must_trunc) {
6623 vattr.va_mask = AT_SIZE;
6624 error = nfs4setattr(vp, &vattr, 0, cr,
6625 NULL);
6626 } else {
6627 /*
6628 * we know we have a regular file that already
6629 * exists and we may end up truncating the file
6630 * as a result of the open_otw, so flush out
6631 * any dirty pages for this file first.
6632 */
6633 if (nfs4_has_pages(vp) &&
6634 ((rp->r_flags & R4DIRTY) ||
6635 rp->r_count > 0 ||
6636 rp->r_mapcnt > 0)) {
6637 error = nfs4_putpage(vp,
6638 (offset_t)0, 0, 0, cr, ct);
6639 if (error && (error == ENOSPC ||
6640 error == EDQUOT)) {
6641 mutex_enter(
6642 &rp->r_statelock);
6643 if (!rp->r_error)
6644 rp->r_error =
6645 error;
6646 mutex_exit(
6647 &rp->r_statelock);
6648 }
6649 }
6650 vattr.va_mask = (AT_SIZE |
6651 AT_TYPE | AT_MODE);
6652 vattr.va_type = VREG;
6653 createmode = UNCHECKED4;
6654 truncating = 1;
6655 goto create_otw;
6656 }
6657 }
6658 }
6659 }
6660 nfs_rw_exit(&drp->r_rwlock);
6661 if (error) {
6662 VN_RELE(vp);
6663 } else {
6664 vnode_t *tvp;
6665 rnode4_t *trp;
6666 tvp = vp;
6667 if (vp->v_type == VREG) {
6668 trp = VTOR4(vp);
6669 if (IS_SHADOW(vp, trp))
6670 tvp = RTOV4(trp);
6671 }
6672
6673 if (must_trunc) {
6674 /*
6675 * existing file got truncated, notify.
6676 */
6677 vnevent_create(tvp, ct);
6678 }
6679
6680 *vpp = vp;
6681 }
6682 return (error);
6683
6684 create_otw:
6685 dnlc_remove(dvp, nm);
6686
6687 ASSERT(vattr.va_mask & AT_TYPE);
6688
6689 /*
6690 * If not a regular file let nfs4mknod() handle it.
6691 */
6692 if (vattr.va_type != VREG) {
6693 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr);
6694 nfs_rw_exit(&drp->r_rwlock);
6695 return (error);
6696 }
6697
6698 /*
6699 * It _is_ a regular file.
6700 */
6701 ASSERT(vattr.va_mask & AT_MODE);
6702 if (MANDMODE(vattr.va_mode)) {
6703 nfs_rw_exit(&drp->r_rwlock);
6704 return (EACCES);
6705 }
6706
6707 /*
6708 * If this happens to be a mknod of a regular file, then flags will
6709 * have neither FREAD or FWRITE. However, we must set at least one
6710 * for the call to nfs4open_otw. If it's open(O_CREAT) driving
6711 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been
6712 * set (based on openmode specified by app).
6713 */
6714 if ((flags & (FREAD|FWRITE)) == 0)
6715 flags |= (FREAD|FWRITE);
6716
6717 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0);
6718
6719 if (vp != NULL) {
6720 /* if create was successful, throw away the file's pages */
6721 if (!error && (vattr.va_mask & AT_SIZE))
6722 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK),
6723 cr);
6724 /* release the lookup hold */
6725 VN_RELE(vp);
6726 vp = NULL;
6727 }
6728
6729 /*
6730 * validate that we opened a regular file. This handles a misbehaving
6731 * server that returns an incorrect FH.
6732 */
6733 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) {
6734 error = EISDIR;
6735 VN_RELE(*vpp);
6736 }
6737
6738 /*
6739 * If this is not an exclusive create, then the CREATE
6740 * request will be made with the GUARDED mode set. This
6741 * means that the server will return EEXIST if the file
6742 * exists. The file could exist because of a retransmitted
6743 * request. In this case, we recover by starting over and
6744 * checking to see whether the file exists. This second
6745 * time through it should and a CREATE request will not be
6746 * sent.
6747 *
6748 * This handles the problem of a dangling CREATE request
6749 * which contains attributes which indicate that the file
6750 * should be truncated. This retransmitted request could
6751 * possibly truncate valid data in the file if not caught
6752 * by the duplicate request mechanism on the server or if
6753 * not caught by other means. The scenario is:
6754 *
6755 * Client transmits CREATE request with size = 0
6756 * Client times out, retransmits request.
6757 * Response to the first request arrives from the server
6758 * and the client proceeds on.
6759 * Client writes data to the file.
6760 * The server now processes retransmitted CREATE request
6761 * and truncates file.
6762 *
6763 * The use of the GUARDED CREATE request prevents this from
6764 * happening because the retransmitted CREATE would fail
6765 * with EEXIST and would not truncate the file.
6766 */
6767 if (error == EEXIST && exclusive == NONEXCL) {
6768 #ifdef DEBUG
6769 nfs4_create_misses++;
6770 #endif
6771 goto top;
6772 }
6773 nfs_rw_exit(&drp->r_rwlock);
6774 if (truncating && !error && *vpp) {
6775 vnode_t *tvp;
6776 rnode4_t *trp;
6777 /*
6778 * existing file got truncated, notify.
6779 */
6780 tvp = *vpp;
6781 trp = VTOR4(tvp);
6782 if (IS_SHADOW(tvp, trp))
6783 tvp = RTOV4(trp);
6784 vnevent_create(tvp, ct);
6785 }
6786 return (error);
6787 }
6788
6789 /*
6790 * Create compound (for mkdir, mknod, symlink):
6791 * { Putfh <dfh>; Create; Getfh; Getattr }
6792 * It's okay if setattr failed to set gid - this is not considered
6793 * an error, but purge attrs in that case.
6794 */
6795 static int
6796 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va,
6797 vnode_t **vpp, cred_t *cr, nfs_ftype4 type)
6798 {
6799 int need_end_op = FALSE;
6800 COMPOUND4args_clnt args;
6801 COMPOUND4res_clnt res, *resp = NULL;
6802 nfs_argop4 *argop;
6803 nfs_resop4 *resop;
6804 int doqueue;
6805 mntinfo4_t *mi;
6806 rnode4_t *drp = VTOR4(dvp);
6807 change_info4 *cinfo;
6808 GETFH4res *gf_res;
6809 struct vattr vattr;
6810 vnode_t *vp;
6811 fattr4 *crattr;
6812 bool_t needrecov = FALSE;
6813 nfs4_recov_state_t recov_state;
6814 nfs4_sharedfh_t *sfhp = NULL;
6815 hrtime_t t;
6816 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
6817 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr;
6818 dirattr_info_t dinfo, *dinfop;
6819 servinfo4_t *svp;
6820 bitmap4 supp_attrs;
6821
6822 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK ||
6823 type == NF4CHR || type == NF4SOCK || type == NF4FIFO);
6824
6825 mi = VTOMI4(dvp);
6826
6827 /*
6828 * Make sure we properly deal with setting the right gid
6829 * on a new directory to reflect the parent's setgid bit
6830 */
6831 setgid_flag = 0;
6832 if (type == NF4DIR) {
6833 struct vattr dva;
6834
6835 va->va_mode &= ~VSGID;
6836 dva.va_mask = AT_MODE | AT_GID;
6837 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) {
6838
6839 /*
6840 * If the parent's directory has the setgid bit set
6841 * _and_ the client was able to get a valid mapping
6842 * for the parent dir's owner_group, we want to
6843 * append NVERIFY(owner_group == dva.va_gid) and
6844 * SETTATTR to the CREATE compound.
6845 */
6846 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) {
6847 setgid_flag = 1;
6848 va->va_mode |= VSGID;
6849 if (dva.va_gid != GID_NOBODY) {
6850 va->va_mask |= AT_GID;
6851 va->va_gid = dva.va_gid;
6852 }
6853 }
6854 }
6855 }
6856
6857 /*
6858 * Create ops:
6859 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new)
6860 * 5:restorefh(dir) 6:getattr(dir)
6861 *
6862 * if (setgid)
6863 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new)
6864 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new)
6865 * 8:nverify 9:setattr
6866 */
6867 if (setgid_flag) {
6868 numops = 10;
6869 idx_create = 1;
6870 idx_fattr = 3;
6871 } else {
6872 numops = 7;
6873 idx_create = 2;
6874 idx_fattr = 4;
6875 }
6876
6877 ASSERT(nfs_zone() == mi->mi_zone);
6878 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) {
6879 return (EINTR);
6880 }
6881 recov_state.rs_flags = 0;
6882 recov_state.rs_num_retry_despite_err = 0;
6883
6884 argoplist_size = numops * sizeof (nfs_argop4);
6885 argop = kmem_alloc(argoplist_size, KM_SLEEP);
6886
6887 recov_retry:
6888 if (type == NF4LNK)
6889 args.ctag = TAG_SYMLINK;
6890 else if (type == NF4DIR)
6891 args.ctag = TAG_MKDIR;
6892 else
6893 args.ctag = TAG_MKNOD;
6894
6895 args.array_len = numops;
6896 args.array = argop;
6897
6898 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) {
6899 nfs_rw_exit(&drp->r_rwlock);
6900 kmem_free(argop, argoplist_size);
6901 return (e.error);
6902 }
6903 need_end_op = TRUE;
6904
6905
6906 /* 0: putfh directory */
6907 argop[0].argop = OP_CPUTFH;
6908 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
6909
6910 /* 1/2: Create object */
6911 argop[idx_create].argop = OP_CCREATE;
6912 argop[idx_create].nfs_argop4_u.opccreate.cname = nm;
6913 argop[idx_create].nfs_argop4_u.opccreate.type = type;
6914 if (type == NF4LNK) {
6915 /*
6916 * symlink, treat name as data
6917 */
6918 ASSERT(data != NULL);
6919 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata =
6920 (char *)data;
6921 }
6922 if (type == NF4BLK || type == NF4CHR) {
6923 ASSERT(data != NULL);
6924 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata =
6925 *((specdata4 *)data);
6926 }
6927
6928 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs;
6929
6930 svp = drp->r_server;
6931 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
6932 supp_attrs = svp->sv_supp_attrs;
6933 nfs_rw_exit(&svp->sv_lock);
6934
6935 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) {
6936 nfs_rw_exit(&drp->r_rwlock);
6937 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov);
6938 e.error = EINVAL;
6939 kmem_free(argop, argoplist_size);
6940 return (e.error);
6941 }
6942
6943 /* 2/3: getfh fh of created object */
6944 ASSERT(idx_create + 1 == idx_fattr - 1);
6945 argop[idx_create + 1].argop = OP_GETFH;
6946
6947 /* 3/4: getattr of new object */
6948 argop[idx_fattr].argop = OP_GETATTR;
6949 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
6950 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi;
6951
6952 if (setgid_flag) {
6953 vattr_t _v;
6954
6955 argop[4].argop = OP_SAVEFH;
6956
6957 argop[5].argop = OP_CPUTFH;
6958 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
6959
6960 argop[6].argop = OP_GETATTR;
6961 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
6962 argop[6].nfs_argop4_u.opgetattr.mi = mi;
6963
6964 argop[7].argop = OP_RESTOREFH;
6965
6966 /*
6967 * nverify
6968 *
6969 * XXX - Revisit the last argument to nfs4_end_op()
6970 * once 5020486 is fixed.
6971 */
6972 _v.va_mask = AT_GID;
6973 _v.va_gid = va->va_gid;
6974 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY,
6975 supp_attrs)) {
6976 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE);
6977 nfs_rw_exit(&drp->r_rwlock);
6978 nfs4_fattr4_free(crattr);
6979 kmem_free(argop, argoplist_size);
6980 return (e.error);
6981 }
6982
6983 /*
6984 * setattr
6985 *
6986 * We _know_ we're not messing with AT_SIZE or AT_XTIME,
6987 * so no need for stateid or flags. Also we specify NULL
6988 * rp since we're only interested in setting owner_group
6989 * attributes.
6990 */
6991 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs,
6992 &e.error, 0);
6993
6994 if (e.error) {
6995 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE);
6996 nfs_rw_exit(&drp->r_rwlock);
6997 nfs4_fattr4_free(crattr);
6998 nfs4args_verify_free(&argop[8]);
6999 kmem_free(argop, argoplist_size);
7000 return (e.error);
7001 }
7002 } else {
7003 argop[1].argop = OP_SAVEFH;
7004
7005 argop[5].argop = OP_RESTOREFH;
7006
7007 argop[6].argop = OP_GETATTR;
7008 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7009 argop[6].nfs_argop4_u.opgetattr.mi = mi;
7010 }
7011
7012 dnlc_remove(dvp, nm);
7013
7014 doqueue = 1;
7015 t = gethrtime();
7016 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
7017
7018 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
7019 if (e.error) {
7020 PURGE_ATTRCACHE4(dvp);
7021 if (!needrecov)
7022 goto out;
7023 }
7024
7025 if (needrecov) {
7026 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
7027 OP_CREATE, NULL, NULL, NULL) == FALSE) {
7028 nfs4_end_op(mi, dvp, NULL, &recov_state,
7029 needrecov);
7030 need_end_op = FALSE;
7031 nfs4_fattr4_free(crattr);
7032 if (setgid_flag) {
7033 nfs4args_verify_free(&argop[8]);
7034 nfs4args_setattr_free(&argop[9]);
7035 }
7036 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
7037 goto recov_retry;
7038 }
7039 }
7040
7041 resp = &res;
7042
7043 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) {
7044
7045 if (res.status == NFS4ERR_BADOWNER)
7046 nfs4_log_badowner(mi, OP_CREATE);
7047
7048 e.error = geterrno4(res.status);
7049
7050 /*
7051 * This check is left over from when create was implemented
7052 * using a setattr op (instead of createattrs). If the
7053 * putfh/create/getfh failed, the error was returned. If
7054 * setattr/getattr failed, we keep going.
7055 *
7056 * It might be better to get rid of the GETFH also, and just
7057 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory.
7058 * Then if any of the operations failed, we could return the
7059 * error now, and remove much of the error code below.
7060 */
7061 if (res.array_len <= idx_fattr) {
7062 /*
7063 * Either Putfh, Create or Getfh failed.
7064 */
7065 PURGE_ATTRCACHE4(dvp);
7066 /*
7067 * nfs4_purge_stale_fh() may generate otw calls through
7068 * nfs4_invalidate_pages. Hence the need to call
7069 * nfs4_end_op() here to avoid nfs4_start_op() deadlock.
7070 */
7071 nfs4_end_op(mi, dvp, NULL, &recov_state,
7072 needrecov);
7073 need_end_op = FALSE;
7074 nfs4_purge_stale_fh(e.error, dvp, cr);
7075 goto out;
7076 }
7077 }
7078
7079 resop = &res.array[idx_create]; /* create res */
7080 cinfo = &resop->nfs_resop4_u.opcreate.cinfo;
7081
7082 resop = &res.array[idx_create + 1]; /* getfh res */
7083 gf_res = &resop->nfs_resop4_u.opgetfh;
7084
7085 sfhp = sfh4_get(&gf_res->object, mi);
7086 if (e.error) {
7087 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp,
7088 fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
7089 if (vp->v_type == VNON) {
7090 vattr.va_mask = AT_TYPE;
7091 /*
7092 * Need to call nfs4_end_op before nfs4getattr to avoid
7093 * potential nfs4_start_op deadlock. See RFE 4777612.
7094 */
7095 nfs4_end_op(mi, dvp, NULL, &recov_state,
7096 needrecov);
7097 need_end_op = FALSE;
7098 e.error = nfs4getattr(vp, &vattr, cr);
7099 if (e.error) {
7100 VN_RELE(vp);
7101 *vpp = NULL;
7102 goto out;
7103 }
7104 vp->v_type = vattr.va_type;
7105 }
7106 e.error = 0;
7107 } else {
7108 *vpp = vp = makenfs4node(sfhp,
7109 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res,
7110 dvp->v_vfsp, t, cr,
7111 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
7112 }
7113
7114 /*
7115 * If compound succeeded, then update dir attrs
7116 */
7117 if (res.status == NFS4_OK) {
7118 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res;
7119 dinfo.di_cred = cr;
7120 dinfo.di_time_call = t;
7121 dinfop = &dinfo;
7122 } else
7123 dinfop = NULL;
7124
7125 /* Update directory cache attribute, readdir and dnlc caches */
7126 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop);
7127
7128 out:
7129 if (sfhp != NULL)
7130 sfh4_rele(&sfhp);
7131 nfs_rw_exit(&drp->r_rwlock);
7132 nfs4_fattr4_free(crattr);
7133 if (setgid_flag) {
7134 nfs4args_verify_free(&argop[8]);
7135 nfs4args_setattr_free(&argop[9]);
7136 }
7137 if (resp)
7138 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
7139 if (need_end_op)
7140 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov);
7141
7142 kmem_free(argop, argoplist_size);
7143 return (e.error);
7144 }
7145
7146 /* ARGSUSED */
7147 static int
7148 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
7149 int mode, vnode_t **vpp, cred_t *cr)
7150 {
7151 int error;
7152 vnode_t *vp;
7153 nfs_ftype4 type;
7154 specdata4 spec, *specp = NULL;
7155
7156 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
7157
7158 switch (va->va_type) {
7159 case VCHR:
7160 case VBLK:
7161 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK;
7162 spec.specdata1 = getmajor(va->va_rdev);
7163 spec.specdata2 = getminor(va->va_rdev);
7164 specp = &spec;
7165 break;
7166
7167 case VFIFO:
7168 type = NF4FIFO;
7169 break;
7170 case VSOCK:
7171 type = NF4SOCK;
7172 break;
7173
7174 default:
7175 return (EINVAL);
7176 }
7177
7178 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type);
7179 if (error) {
7180 return (error);
7181 }
7182
7183 /*
7184 * This might not be needed any more; special case to deal
7185 * with problematic v2/v3 servers. Since create was unable
7186 * to set group correctly, not sure what hope setattr has.
7187 */
7188 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) {
7189 va->va_mask = AT_GID;
7190 (void) nfs4setattr(vp, va, 0, cr, NULL);
7191 }
7192
7193 /*
7194 * If vnode is a device create special vnode
7195 */
7196 if (ISVDEV(vp->v_type)) {
7197 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
7198 VN_RELE(vp);
7199 } else {
7200 *vpp = vp;
7201 }
7202 return (error);
7203 }
7204
7205 /*
7206 * Remove requires that the current fh be the target directory.
7207 * After the operation, the current fh is unchanged.
7208 * The compound op structure is:
7209 * PUTFH(targetdir), REMOVE
7210 *
7211 * Weirdness: if the vnode to be removed is open
7212 * we rename it instead of removing it and nfs_inactive
7213 * will remove the new name.
7214 */
7215 /* ARGSUSED */
7216 static int
7217 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags)
7218 {
7219 COMPOUND4args_clnt args;
7220 COMPOUND4res_clnt res, *resp = NULL;
7221 REMOVE4res *rm_res;
7222 nfs_argop4 argop[3];
7223 nfs_resop4 *resop;
7224 vnode_t *vp;
7225 char *tmpname;
7226 int doqueue;
7227 mntinfo4_t *mi;
7228 rnode4_t *rp;
7229 rnode4_t *drp;
7230 int needrecov = 0;
7231 nfs4_recov_state_t recov_state;
7232 int isopen;
7233 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
7234 dirattr_info_t dinfo;
7235
7236 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
7237 return (EPERM);
7238 drp = VTOR4(dvp);
7239 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
7240 return (EINTR);
7241
7242 e.error = nfs4lookup(dvp, nm, &vp, cr, 0);
7243 if (e.error) {
7244 nfs_rw_exit(&drp->r_rwlock);
7245 return (e.error);
7246 }
7247
7248 if (vp->v_type == VDIR) {
7249 VN_RELE(vp);
7250 nfs_rw_exit(&drp->r_rwlock);
7251 return (EISDIR);
7252 }
7253
7254 /*
7255 * First just remove the entry from the name cache, as it
7256 * is most likely the only entry for this vp.
7257 */
7258 dnlc_remove(dvp, nm);
7259
7260 rp = VTOR4(vp);
7261
7262 /*
7263 * For regular file types, check to see if the file is open by looking
7264 * at the open streams.
7265 * For all other types, check the reference count on the vnode. Since
7266 * they are not opened OTW they never have an open stream.
7267 *
7268 * If the file is open, rename it to .nfsXXXX.
7269 */
7270 if (vp->v_type != VREG) {
7271 /*
7272 * If the file has a v_count > 1 then there may be more than one
7273 * entry in the name cache due multiple links or an open file,
7274 * but we don't have the real reference count so flush all
7275 * possible entries.
7276 */
7277 if (vp->v_count > 1)
7278 dnlc_purge_vp(vp);
7279
7280 /*
7281 * Now we have the real reference count.
7282 */
7283 isopen = vp->v_count > 1;
7284 } else {
7285 mutex_enter(&rp->r_os_lock);
7286 isopen = list_head(&rp->r_open_streams) != NULL;
7287 mutex_exit(&rp->r_os_lock);
7288 }
7289
7290 mutex_enter(&rp->r_statelock);
7291 if (isopen &&
7292 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) {
7293 mutex_exit(&rp->r_statelock);
7294 tmpname = newname();
7295 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct);
7296 if (e.error)
7297 kmem_free(tmpname, MAXNAMELEN);
7298 else {
7299 mutex_enter(&rp->r_statelock);
7300 if (rp->r_unldvp == NULL) {
7301 VN_HOLD(dvp);
7302 rp->r_unldvp = dvp;
7303 if (rp->r_unlcred != NULL)
7304 crfree(rp->r_unlcred);
7305 crhold(cr);
7306 rp->r_unlcred = cr;
7307 rp->r_unlname = tmpname;
7308 } else {
7309 kmem_free(rp->r_unlname, MAXNAMELEN);
7310 rp->r_unlname = tmpname;
7311 }
7312 mutex_exit(&rp->r_statelock);
7313 }
7314 VN_RELE(vp);
7315 nfs_rw_exit(&drp->r_rwlock);
7316 return (e.error);
7317 }
7318 /*
7319 * Actually remove the file/dir
7320 */
7321 mutex_exit(&rp->r_statelock);
7322
7323 /*
7324 * We need to flush any dirty pages which happen to
7325 * be hanging around before removing the file.
7326 * This shouldn't happen very often since in NFSv4
7327 * we should be close to open consistent.
7328 */
7329 if (nfs4_has_pages(vp) &&
7330 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) {
7331 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct);
7332 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) {
7333 mutex_enter(&rp->r_statelock);
7334 if (!rp->r_error)
7335 rp->r_error = e.error;
7336 mutex_exit(&rp->r_statelock);
7337 }
7338 }
7339
7340 mi = VTOMI4(dvp);
7341
7342 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN);
7343 recov_state.rs_flags = 0;
7344 recov_state.rs_num_retry_despite_err = 0;
7345
7346 recov_retry:
7347 /*
7348 * Remove ops: putfh dir; remove
7349 */
7350 args.ctag = TAG_REMOVE;
7351 args.array_len = 3;
7352 args.array = argop;
7353
7354 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
7355 if (e.error) {
7356 nfs_rw_exit(&drp->r_rwlock);
7357 VN_RELE(vp);
7358 return (e.error);
7359 }
7360
7361 /* putfh directory */
7362 argop[0].argop = OP_CPUTFH;
7363 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
7364
7365 /* remove */
7366 argop[1].argop = OP_CREMOVE;
7367 argop[1].nfs_argop4_u.opcremove.ctarget = nm;
7368
7369 /* getattr dir */
7370 argop[2].argop = OP_GETATTR;
7371 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7372 argop[2].nfs_argop4_u.opgetattr.mi = mi;
7373
7374 doqueue = 1;
7375 dinfo.di_time_call = gethrtime();
7376 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
7377
7378 PURGE_ATTRCACHE4(vp);
7379
7380 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
7381 if (e.error)
7382 PURGE_ATTRCACHE4(dvp);
7383
7384 if (needrecov) {
7385 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp,
7386 NULL, NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
7387 if (!e.error)
7388 (void) xdr_free(xdr_COMPOUND4res_clnt,
7389 (caddr_t)&res);
7390 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
7391 needrecov);
7392 goto recov_retry;
7393 }
7394 }
7395
7396 /*
7397 * Matching nfs4_end_op() for start_op() above.
7398 * There is a path in the code below which calls
7399 * nfs4_purge_stale_fh(), which may generate otw calls through
7400 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
7401 * here to avoid nfs4_start_op() deadlock.
7402 */
7403 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
7404
7405 if (!e.error) {
7406 resp = &res;
7407
7408 if (res.status) {
7409 e.error = geterrno4(res.status);
7410 PURGE_ATTRCACHE4(dvp);
7411 nfs4_purge_stale_fh(e.error, dvp, cr);
7412 } else {
7413 resop = &res.array[1]; /* remove res */
7414 rm_res = &resop->nfs_resop4_u.opremove;
7415
7416 dinfo.di_garp =
7417 &res.array[2].nfs_resop4_u.opgetattr.ga_res;
7418 dinfo.di_cred = cr;
7419
7420 /* Update directory attr, readdir and dnlc caches */
7421 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL,
7422 &dinfo);
7423 }
7424 }
7425 nfs_rw_exit(&drp->r_rwlock);
7426 if (resp)
7427 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
7428
7429 if (e.error == 0) {
7430 vnode_t *tvp;
7431 rnode4_t *trp;
7432 trp = VTOR4(vp);
7433 tvp = vp;
7434 if (IS_SHADOW(vp, trp))
7435 tvp = RTOV4(trp);
7436 vnevent_remove(tvp, dvp, nm, ct);
7437 }
7438 VN_RELE(vp);
7439 return (e.error);
7440 }
7441
7442 /*
7443 * Link requires that the current fh be the target directory and the
7444 * saved fh be the source fh. After the operation, the current fh is unchanged.
7445 * Thus the compound op structure is:
7446 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH,
7447 * GETATTR(file)
7448 */
7449 /* ARGSUSED */
7450 static int
7451 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr,
7452 caller_context_t *ct, int flags)
7453 {
7454 COMPOUND4args_clnt args;
7455 COMPOUND4res_clnt res, *resp = NULL;
7456 LINK4res *ln_res;
7457 int argoplist_size = 7 * sizeof (nfs_argop4);
7458 nfs_argop4 *argop;
7459 nfs_resop4 *resop;
7460 vnode_t *realvp, *nvp;
7461 int doqueue;
7462 mntinfo4_t *mi;
7463 rnode4_t *tdrp;
7464 bool_t needrecov = FALSE;
7465 nfs4_recov_state_t recov_state;
7466 hrtime_t t;
7467 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
7468 dirattr_info_t dinfo;
7469
7470 ASSERT(*tnm != '\0');
7471 ASSERT(tdvp->v_type == VDIR);
7472 ASSERT(nfs4_consistent_type(tdvp));
7473 ASSERT(nfs4_consistent_type(svp));
7474
7475 if (nfs_zone() != VTOMI4(tdvp)->mi_zone)
7476 return (EPERM);
7477 if (VOP_REALVP(svp, &realvp, ct) == 0) {
7478 svp = realvp;
7479 ASSERT(nfs4_consistent_type(svp));
7480 }
7481
7482 tdrp = VTOR4(tdvp);
7483 mi = VTOMI4(svp);
7484
7485 if (!(mi->mi_flags & MI4_LINK)) {
7486 return (EOPNOTSUPP);
7487 }
7488 recov_state.rs_flags = 0;
7489 recov_state.rs_num_retry_despite_err = 0;
7490
7491 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp)))
7492 return (EINTR);
7493
7494 recov_retry:
7495 argop = kmem_alloc(argoplist_size, KM_SLEEP);
7496
7497 args.ctag = TAG_LINK;
7498
7499 /*
7500 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir);
7501 * restorefh; getattr(fl)
7502 */
7503 args.array_len = 7;
7504 args.array = argop;
7505
7506 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state);
7507 if (e.error) {
7508 kmem_free(argop, argoplist_size);
7509 nfs_rw_exit(&tdrp->r_rwlock);
7510 return (e.error);
7511 }
7512
7513 /* 0. putfh file */
7514 argop[0].argop = OP_CPUTFH;
7515 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh;
7516
7517 /* 1. save current fh to free up the space for the dir */
7518 argop[1].argop = OP_SAVEFH;
7519
7520 /* 2. putfh targetdir */
7521 argop[2].argop = OP_CPUTFH;
7522 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh;
7523
7524 /* 3. link: current_fh is targetdir, saved_fh is source */
7525 argop[3].argop = OP_CLINK;
7526 argop[3].nfs_argop4_u.opclink.cnewname = tnm;
7527
7528 /* 4. Get attributes of dir */
7529 argop[4].argop = OP_GETATTR;
7530 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7531 argop[4].nfs_argop4_u.opgetattr.mi = mi;
7532
7533 /* 5. If link was successful, restore current vp to file */
7534 argop[5].argop = OP_RESTOREFH;
7535
7536 /* 6. Get attributes of linked object */
7537 argop[6].argop = OP_GETATTR;
7538 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7539 argop[6].nfs_argop4_u.opgetattr.mi = mi;
7540
7541 dnlc_remove(tdvp, tnm);
7542
7543 doqueue = 1;
7544 t = gethrtime();
7545
7546 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e);
7547
7548 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp);
7549 if (e.error != 0 && !needrecov) {
7550 PURGE_ATTRCACHE4(tdvp);
7551 PURGE_ATTRCACHE4(svp);
7552 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov);
7553 goto out;
7554 }
7555
7556 if (needrecov) {
7557 bool_t abort;
7558
7559 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp,
7560 NULL, NULL, OP_LINK, NULL, NULL, NULL);
7561 if (abort == FALSE) {
7562 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state,
7563 needrecov);
7564 kmem_free(argop, argoplist_size);
7565 if (!e.error)
7566 (void) xdr_free(xdr_COMPOUND4res_clnt,
7567 (caddr_t)&res);
7568 goto recov_retry;
7569 } else {
7570 if (e.error != 0) {
7571 PURGE_ATTRCACHE4(tdvp);
7572 PURGE_ATTRCACHE4(svp);
7573 nfs4_end_op(VTOMI4(svp), svp, tdvp,
7574 &recov_state, needrecov);
7575 goto out;
7576 }
7577 /* fall through for res.status case */
7578 }
7579 }
7580
7581 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov);
7582
7583 resp = &res;
7584 if (res.status) {
7585 /* If link succeeded, then don't return error */
7586 e.error = geterrno4(res.status);
7587 if (res.array_len <= 4) {
7588 /*
7589 * Either Putfh, Savefh, Putfh dir, or Link failed
7590 */
7591 PURGE_ATTRCACHE4(svp);
7592 PURGE_ATTRCACHE4(tdvp);
7593 if (e.error == EOPNOTSUPP) {
7594 mutex_enter(&mi->mi_lock);
7595 mi->mi_flags &= ~MI4_LINK;
7596 mutex_exit(&mi->mi_lock);
7597 }
7598 /* Remap EISDIR to EPERM for non-root user for SVVS */
7599 /* XXX-LP */
7600 if (e.error == EISDIR && crgetuid(cr) != 0)
7601 e.error = EPERM;
7602 goto out;
7603 }
7604 }
7605
7606 /* either no error or one of the postop getattr failed */
7607
7608 /*
7609 * XXX - if LINK succeeded, but no attrs were returned for link
7610 * file, purge its cache.
7611 *
7612 * XXX Perform a simplified version of wcc checking. Instead of
7613 * have another getattr to get pre-op, just purge cache if
7614 * any of the ops prior to and including the getattr failed.
7615 * If the getattr succeeded then update the attrcache accordingly.
7616 */
7617
7618 /*
7619 * update cache with link file postattrs.
7620 * Note: at this point resop points to link res.
7621 */
7622 resop = &res.array[3]; /* link res */
7623 ln_res = &resop->nfs_resop4_u.oplink;
7624 if (res.status == NFS4_OK)
7625 e.error = nfs4_update_attrcache(res.status,
7626 &res.array[6].nfs_resop4_u.opgetattr.ga_res,
7627 t, svp, cr);
7628
7629 /*
7630 * Call makenfs4node to create the new shadow vp for tnm.
7631 * We pass NULL attrs because we just cached attrs for
7632 * the src object. All we're trying to accomplish is to
7633 * to create the new shadow vnode.
7634 */
7635 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr,
7636 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm, VTOR4(svp)->r_fh));
7637
7638 /* Update target cache attribute, readdir and dnlc caches */
7639 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res;
7640 dinfo.di_time_call = t;
7641 dinfo.di_cred = cr;
7642
7643 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo);
7644 ASSERT(nfs4_consistent_type(tdvp));
7645 ASSERT(nfs4_consistent_type(svp));
7646 ASSERT(nfs4_consistent_type(nvp));
7647 VN_RELE(nvp);
7648
7649 if (!e.error) {
7650 vnode_t *tvp;
7651 rnode4_t *trp;
7652 /*
7653 * Notify the source file of this link operation.
7654 */
7655 trp = VTOR4(svp);
7656 tvp = svp;
7657 if (IS_SHADOW(svp, trp))
7658 tvp = RTOV4(trp);
7659 vnevent_link(tvp, ct);
7660 }
7661 out:
7662 kmem_free(argop, argoplist_size);
7663 if (resp)
7664 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
7665
7666 nfs_rw_exit(&tdrp->r_rwlock);
7667
7668 return (e.error);
7669 }
7670
7671 /* ARGSUSED */
7672 static int
7673 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
7674 caller_context_t *ct, int flags)
7675 {
7676 vnode_t *realvp;
7677
7678 if (nfs_zone() != VTOMI4(odvp)->mi_zone)
7679 return (EPERM);
7680 if (VOP_REALVP(ndvp, &realvp, ct) == 0)
7681 ndvp = realvp;
7682
7683 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct));
7684 }
7685
7686 /*
7687 * nfs4rename does the real work of renaming in NFS Version 4.
7688 *
7689 * A file handle is considered volatile for renaming purposes if either
7690 * of the volatile bits are turned on. However, the compound may differ
7691 * based on the likelihood of the filehandle to change during rename.
7692 */
7693 static int
7694 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
7695 caller_context_t *ct)
7696 {
7697 int error;
7698 mntinfo4_t *mi;
7699 vnode_t *nvp = NULL;
7700 vnode_t *ovp = NULL;
7701 char *tmpname = NULL;
7702 rnode4_t *rp;
7703 rnode4_t *odrp;
7704 rnode4_t *ndrp;
7705 int did_link = 0;
7706 int do_link = 1;
7707 nfsstat4 stat = NFS4_OK;
7708
7709 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
7710 ASSERT(nfs4_consistent_type(odvp));
7711 ASSERT(nfs4_consistent_type(ndvp));
7712
7713 if (onm[0] == '.' && (onm[1] == '\0' ||
7714 (onm[1] == '.' && onm[2] == '\0')))
7715 return (EINVAL);
7716
7717 if (nnm[0] == '.' && (nnm[1] == '\0' ||
7718 (nnm[1] == '.' && nnm[2] == '\0')))
7719 return (EINVAL);
7720
7721 odrp = VTOR4(odvp);
7722 ndrp = VTOR4(ndvp);
7723 if ((intptr_t)odrp < (intptr_t)ndrp) {
7724 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp)))
7725 return (EINTR);
7726 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) {
7727 nfs_rw_exit(&odrp->r_rwlock);
7728 return (EINTR);
7729 }
7730 } else {
7731 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp)))
7732 return (EINTR);
7733 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) {
7734 nfs_rw_exit(&ndrp->r_rwlock);
7735 return (EINTR);
7736 }
7737 }
7738
7739 /*
7740 * Lookup the target file. If it exists, it needs to be
7741 * checked to see whether it is a mount point and whether
7742 * it is active (open).
7743 */
7744 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0);
7745 if (!error) {
7746 int isactive;
7747
7748 ASSERT(nfs4_consistent_type(nvp));
7749 /*
7750 * If this file has been mounted on, then just
7751 * return busy because renaming to it would remove
7752 * the mounted file system from the name space.
7753 */
7754 if (vn_ismntpt(nvp)) {
7755 VN_RELE(nvp);
7756 nfs_rw_exit(&odrp->r_rwlock);
7757 nfs_rw_exit(&ndrp->r_rwlock);
7758 return (EBUSY);
7759 }
7760
7761 /*
7762 * First just remove the entry from the name cache, as it
7763 * is most likely the only entry for this vp.
7764 */
7765 dnlc_remove(ndvp, nnm);
7766
7767 rp = VTOR4(nvp);
7768
7769 if (nvp->v_type != VREG) {
7770 /*
7771 * Purge the name cache of all references to this vnode
7772 * so that we can check the reference count to infer
7773 * whether it is active or not.
7774 */
7775 if (nvp->v_count > 1)
7776 dnlc_purge_vp(nvp);
7777
7778 isactive = nvp->v_count > 1;
7779 } else {
7780 mutex_enter(&rp->r_os_lock);
7781 isactive = list_head(&rp->r_open_streams) != NULL;
7782 mutex_exit(&rp->r_os_lock);
7783 }
7784
7785 /*
7786 * If the vnode is active and is not a directory,
7787 * arrange to rename it to a
7788 * temporary file so that it will continue to be
7789 * accessible. This implements the "unlink-open-file"
7790 * semantics for the target of a rename operation.
7791 * Before doing this though, make sure that the
7792 * source and target files are not already the same.
7793 */
7794 if (isactive && nvp->v_type != VDIR) {
7795 /*
7796 * Lookup the source name.
7797 */
7798 error = nfs4lookup(odvp, onm, &ovp, cr, 0);
7799
7800 /*
7801 * The source name *should* already exist.
7802 */
7803 if (error) {
7804 VN_RELE(nvp);
7805 nfs_rw_exit(&odrp->r_rwlock);
7806 nfs_rw_exit(&ndrp->r_rwlock);
7807 return (error);
7808 }
7809
7810 ASSERT(nfs4_consistent_type(ovp));
7811
7812 /*
7813 * Compare the two vnodes. If they are the same,
7814 * just release all held vnodes and return success.
7815 */
7816 if (VN_CMP(ovp, nvp)) {
7817 VN_RELE(ovp);
7818 VN_RELE(nvp);
7819 nfs_rw_exit(&odrp->r_rwlock);
7820 nfs_rw_exit(&ndrp->r_rwlock);
7821 return (0);
7822 }
7823
7824 /*
7825 * Can't mix and match directories and non-
7826 * directories in rename operations. We already
7827 * know that the target is not a directory. If
7828 * the source is a directory, return an error.
7829 */
7830 if (ovp->v_type == VDIR) {
7831 VN_RELE(ovp);
7832 VN_RELE(nvp);
7833 nfs_rw_exit(&odrp->r_rwlock);
7834 nfs_rw_exit(&ndrp->r_rwlock);
7835 return (ENOTDIR);
7836 }
7837 link_call:
7838 /*
7839 * The target file exists, is not the same as
7840 * the source file, and is active. We first
7841 * try to Link it to a temporary filename to
7842 * avoid having the server removing the file
7843 * completely (which could cause data loss to
7844 * the user's POV in the event the Rename fails
7845 * -- see bug 1165874).
7846 */
7847 /*
7848 * The do_link and did_link booleans are
7849 * introduced in the event we get NFS4ERR_FILE_OPEN
7850 * returned for the Rename. Some servers can
7851 * not Rename over an Open file, so they return
7852 * this error. The client needs to Remove the
7853 * newly created Link and do two Renames, just
7854 * as if the server didn't support LINK.
7855 */
7856 tmpname = newname();
7857 error = 0;
7858
7859 if (do_link) {
7860 error = nfs4_link(ndvp, nvp, tmpname, cr,
7861 NULL, 0);
7862 }
7863 if (error == EOPNOTSUPP || !do_link) {
7864 error = nfs4_rename(ndvp, nnm, ndvp, tmpname,
7865 cr, NULL, 0);
7866 did_link = 0;
7867 } else {
7868 did_link = 1;
7869 }
7870 if (error) {
7871 kmem_free(tmpname, MAXNAMELEN);
7872 VN_RELE(ovp);
7873 VN_RELE(nvp);
7874 nfs_rw_exit(&odrp->r_rwlock);
7875 nfs_rw_exit(&ndrp->r_rwlock);
7876 return (error);
7877 }
7878
7879 mutex_enter(&rp->r_statelock);
7880 if (rp->r_unldvp == NULL) {
7881 VN_HOLD(ndvp);
7882 rp->r_unldvp = ndvp;
7883 if (rp->r_unlcred != NULL)
7884 crfree(rp->r_unlcred);
7885 crhold(cr);
7886 rp->r_unlcred = cr;
7887 rp->r_unlname = tmpname;
7888 } else {
7889 if (rp->r_unlname)
7890 kmem_free(rp->r_unlname, MAXNAMELEN);
7891 rp->r_unlname = tmpname;
7892 }
7893 mutex_exit(&rp->r_statelock);
7894 }
7895
7896 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN);
7897
7898 ASSERT(nfs4_consistent_type(nvp));
7899 }
7900
7901 if (ovp == NULL) {
7902 /*
7903 * When renaming directories to be a subdirectory of a
7904 * different parent, the dnlc entry for ".." will no
7905 * longer be valid, so it must be removed.
7906 *
7907 * We do a lookup here to determine whether we are renaming
7908 * a directory and we need to check if we are renaming
7909 * an unlinked file. This might have already been done
7910 * in previous code, so we check ovp == NULL to avoid
7911 * doing it twice.
7912 */
7913 error = nfs4lookup(odvp, onm, &ovp, cr, 0);
7914 /*
7915 * The source name *should* already exist.
7916 */
7917 if (error) {
7918 nfs_rw_exit(&odrp->r_rwlock);
7919 nfs_rw_exit(&ndrp->r_rwlock);
7920 if (nvp) {
7921 VN_RELE(nvp);
7922 }
7923 return (error);
7924 }
7925 ASSERT(ovp != NULL);
7926 ASSERT(nfs4_consistent_type(ovp));
7927 }
7928
7929 /*
7930 * Is the object being renamed a dir, and if so, is
7931 * it being renamed to a child of itself? The underlying
7932 * fs should ultimately return EINVAL for this case;
7933 * however, buggy beta non-Solaris NFSv4 servers at
7934 * interop testing events have allowed this behavior,
7935 * and it caused our client to panic due to a recursive
7936 * mutex_enter in fn_move.
7937 *
7938 * The tedious locking in fn_move could be changed to
7939 * deal with this case, and the client could avoid the
7940 * panic; however, the client would just confuse itself
7941 * later and misbehave. A better way to handle the broken
7942 * server is to detect this condition and return EINVAL
7943 * without ever sending the the bogus rename to the server.
7944 * We know the rename is invalid -- just fail it now.
7945 */
7946 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) {
7947 VN_RELE(ovp);
7948 nfs_rw_exit(&odrp->r_rwlock);
7949 nfs_rw_exit(&ndrp->r_rwlock);
7950 if (nvp) {
7951 VN_RELE(nvp);
7952 }
7953 return (EINVAL);
7954 }
7955
7956 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN);
7957
7958 /*
7959 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is
7960 * possible for the filehandle to change due to the rename.
7961 * If neither of these bits is set, but FH4_VOL_MIGRATION is set,
7962 * the fh will not change because of the rename, but we still need
7963 * to update its rnode entry with the new name for
7964 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN
7965 * has no effect on these for now, but for future improvements,
7966 * we might want to use it too to simplify handling of files
7967 * that are open with that flag on. (XXX)
7968 */
7969 mi = VTOMI4(odvp);
7970 if (NFS4_VOLATILE_FH(mi))
7971 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr,
7972 &stat);
7973 else
7974 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr,
7975 &stat);
7976
7977 ASSERT(nfs4_consistent_type(odvp));
7978 ASSERT(nfs4_consistent_type(ndvp));
7979 ASSERT(nfs4_consistent_type(ovp));
7980
7981 if (stat == NFS4ERR_FILE_OPEN && did_link) {
7982 do_link = 0;
7983 /*
7984 * Before the 'link_call' code, we did a nfs4_lookup
7985 * that puts a VN_HOLD on nvp. After the nfs4_link
7986 * call we call VN_RELE to match that hold. We need
7987 * to place an additional VN_HOLD here since we will
7988 * be hitting that VN_RELE again.
7989 */
7990 VN_HOLD(nvp);
7991
7992 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0);
7993
7994 /* Undo the unlinked file naming stuff we just did */
7995 mutex_enter(&rp->r_statelock);
7996 if (rp->r_unldvp) {
7997 VN_RELE(ndvp);
7998 rp->r_unldvp = NULL;
7999 if (rp->r_unlcred != NULL)
8000 crfree(rp->r_unlcred);
8001 rp->r_unlcred = NULL;
8002 /* rp->r_unlanme points to tmpname */
8003 if (rp->r_unlname)
8004 kmem_free(rp->r_unlname, MAXNAMELEN);
8005 rp->r_unlname = NULL;
8006 }
8007 mutex_exit(&rp->r_statelock);
8008
8009 if (nvp) {
8010 VN_RELE(nvp);
8011 }
8012 goto link_call;
8013 }
8014
8015 if (error) {
8016 VN_RELE(ovp);
8017 nfs_rw_exit(&odrp->r_rwlock);
8018 nfs_rw_exit(&ndrp->r_rwlock);
8019 if (nvp) {
8020 VN_RELE(nvp);
8021 }
8022 return (error);
8023 }
8024
8025 /*
8026 * when renaming directories to be a subdirectory of a
8027 * different parent, the dnlc entry for ".." will no
8028 * longer be valid, so it must be removed
8029 */
8030 rp = VTOR4(ovp);
8031 if (ndvp != odvp) {
8032 if (ovp->v_type == VDIR) {
8033 dnlc_remove(ovp, "..");
8034 if (rp->r_dir != NULL)
8035 nfs4_purge_rddir_cache(ovp);
8036 }
8037 }
8038
8039 /*
8040 * If we are renaming the unlinked file, update the
8041 * r_unldvp and r_unlname as needed.
8042 */
8043 mutex_enter(&rp->r_statelock);
8044 if (rp->r_unldvp != NULL) {
8045 if (strcmp(rp->r_unlname, onm) == 0) {
8046 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN);
8047 rp->r_unlname[MAXNAMELEN - 1] = '\0';
8048 if (ndvp != rp->r_unldvp) {
8049 VN_RELE(rp->r_unldvp);
8050 rp->r_unldvp = ndvp;
8051 VN_HOLD(ndvp);
8052 }
8053 }
8054 }
8055 mutex_exit(&rp->r_statelock);
8056
8057 /*
8058 * Notify the rename vnevents to source vnode, and to the target
8059 * vnode if it already existed.
8060 */
8061 if (error == 0) {
8062 vnode_t *tvp;
8063 rnode4_t *trp;
8064 /*
8065 * Notify the vnode. Each links is represented by
8066 * a different vnode, in nfsv4.
8067 */
8068 if (nvp) {
8069 trp = VTOR4(nvp);
8070 tvp = nvp;
8071 if (IS_SHADOW(nvp, trp))
8072 tvp = RTOV4(trp);
8073 vnevent_rename_dest(tvp, ndvp, nnm, ct);
8074 }
8075
8076 /*
8077 * if the source and destination directory are not the
8078 * same notify the destination directory.
8079 */
8080 if (VTOR4(odvp) != VTOR4(ndvp)) {
8081 trp = VTOR4(ndvp);
8082 tvp = ndvp;
8083 if (IS_SHADOW(ndvp, trp))
8084 tvp = RTOV4(trp);
8085 vnevent_rename_dest_dir(tvp, ct);
8086 }
8087
8088 trp = VTOR4(ovp);
8089 tvp = ovp;
8090 if (IS_SHADOW(ovp, trp))
8091 tvp = RTOV4(trp);
8092 vnevent_rename_src(tvp, odvp, onm, ct);
8093 }
8094
8095 if (nvp) {
8096 VN_RELE(nvp);
8097 }
8098 VN_RELE(ovp);
8099
8100 nfs_rw_exit(&odrp->r_rwlock);
8101 nfs_rw_exit(&ndrp->r_rwlock);
8102
8103 return (error);
8104 }
8105
8106 /*
8107 * When the parent directory has changed, sv_dfh must be updated
8108 */
8109 static void
8110 update_parentdir_sfh(vnode_t *vp, vnode_t *ndvp)
8111 {
8112 svnode_t *sv = VTOSV(vp);
8113 nfs4_sharedfh_t *old_dfh = sv->sv_dfh;
8114 nfs4_sharedfh_t *new_dfh = VTOR4(ndvp)->r_fh;
8115
8116 sfh4_hold(new_dfh);
8117 sv->sv_dfh = new_dfh;
8118 sfh4_rele(&old_dfh);
8119 }
8120
8121 /*
8122 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4,
8123 * when it is known that the filehandle is persistent through rename.
8124 *
8125 * Rename requires that the current fh be the target directory and the
8126 * saved fh be the source directory. After the operation, the current fh
8127 * is unchanged.
8128 * The compound op structure for persistent fh rename is:
8129 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME
8130 * Rather than bother with the directory postop args, we'll simply
8131 * update that a change occurred in the cache, so no post-op getattrs.
8132 */
8133 static int
8134 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp,
8135 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp)
8136 {
8137 COMPOUND4args_clnt args;
8138 COMPOUND4res_clnt res, *resp = NULL;
8139 nfs_argop4 *argop;
8140 nfs_resop4 *resop;
8141 int doqueue, argoplist_size;
8142 mntinfo4_t *mi;
8143 rnode4_t *odrp = VTOR4(odvp);
8144 rnode4_t *ndrp = VTOR4(ndvp);
8145 RENAME4res *rn_res;
8146 bool_t needrecov;
8147 nfs4_recov_state_t recov_state;
8148 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8149 dirattr_info_t dinfo, *dinfop;
8150
8151 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
8152
8153 recov_state.rs_flags = 0;
8154 recov_state.rs_num_retry_despite_err = 0;
8155
8156 /*
8157 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir
8158 *
8159 * If source/target are different dirs, then append putfh(src); getattr
8160 */
8161 args.array_len = (odvp == ndvp) ? 5 : 7;
8162 argoplist_size = args.array_len * sizeof (nfs_argop4);
8163 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP);
8164
8165 recov_retry:
8166 *statp = NFS4_OK;
8167
8168 /* No need to Lookup the file, persistent fh */
8169 args.ctag = TAG_RENAME;
8170
8171 mi = VTOMI4(odvp);
8172 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state);
8173 if (e.error) {
8174 kmem_free(argop, argoplist_size);
8175 return (e.error);
8176 }
8177
8178 /* 0: putfh source directory */
8179 argop[0].argop = OP_CPUTFH;
8180 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh;
8181
8182 /* 1: Save source fh to free up current for target */
8183 argop[1].argop = OP_SAVEFH;
8184
8185 /* 2: putfh targetdir */
8186 argop[2].argop = OP_CPUTFH;
8187 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8188
8189 /* 3: current_fh is targetdir, saved_fh is sourcedir */
8190 argop[3].argop = OP_CRENAME;
8191 argop[3].nfs_argop4_u.opcrename.coldname = onm;
8192 argop[3].nfs_argop4_u.opcrename.cnewname = nnm;
8193
8194 /* 4: getattr (targetdir) */
8195 argop[4].argop = OP_GETATTR;
8196 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8197 argop[4].nfs_argop4_u.opgetattr.mi = mi;
8198
8199 if (ndvp != odvp) {
8200
8201 /* 5: putfh (sourcedir) */
8202 argop[5].argop = OP_CPUTFH;
8203 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8204
8205 /* 6: getattr (sourcedir) */
8206 argop[6].argop = OP_GETATTR;
8207 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8208 argop[6].nfs_argop4_u.opgetattr.mi = mi;
8209 }
8210
8211 dnlc_remove(odvp, onm);
8212 dnlc_remove(ndvp, nnm);
8213
8214 doqueue = 1;
8215 dinfo.di_time_call = gethrtime();
8216 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
8217
8218 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8219 if (e.error) {
8220 PURGE_ATTRCACHE4(odvp);
8221 PURGE_ATTRCACHE4(ndvp);
8222 } else {
8223 *statp = res.status;
8224 }
8225
8226 if (needrecov) {
8227 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL,
8228 OP_RENAME, NULL, NULL, NULL) == FALSE) {
8229 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov);
8230 if (!e.error)
8231 (void) xdr_free(xdr_COMPOUND4res_clnt,
8232 (caddr_t)&res);
8233 goto recov_retry;
8234 }
8235 }
8236
8237 if (!e.error) {
8238 resp = &res;
8239 /*
8240 * as long as OP_RENAME
8241 */
8242 if (res.status != NFS4_OK && res.array_len <= 4) {
8243 e.error = geterrno4(res.status);
8244 PURGE_ATTRCACHE4(odvp);
8245 PURGE_ATTRCACHE4(ndvp);
8246 /*
8247 * System V defines rename to return EEXIST, not
8248 * ENOTEMPTY if the target directory is not empty.
8249 * Over the wire, the error is NFSERR_ENOTEMPTY
8250 * which geterrno4 maps to ENOTEMPTY.
8251 */
8252 if (e.error == ENOTEMPTY)
8253 e.error = EEXIST;
8254 } else {
8255
8256 resop = &res.array[3]; /* rename res */
8257 rn_res = &resop->nfs_resop4_u.oprename;
8258
8259 if (res.status == NFS4_OK) {
8260 /*
8261 * Update target attribute, readdir and dnlc
8262 * caches.
8263 */
8264 dinfo.di_garp =
8265 &res.array[4].nfs_resop4_u.opgetattr.ga_res;
8266 dinfo.di_cred = cr;
8267 dinfop = &dinfo;
8268 } else
8269 dinfop = NULL;
8270
8271 nfs4_update_dircaches(&rn_res->target_cinfo,
8272 ndvp, NULL, NULL, dinfop);
8273
8274 /*
8275 * Update source attribute, readdir and dnlc caches
8276 *
8277 */
8278 if (ndvp != odvp) {
8279 update_parentdir_sfh(renvp, ndvp);
8280
8281 if (dinfop)
8282 dinfo.di_garp =
8283 &(res.array[6].nfs_resop4_u.
8284 opgetattr.ga_res);
8285
8286 nfs4_update_dircaches(&rn_res->source_cinfo,
8287 odvp, NULL, NULL, dinfop);
8288 }
8289
8290 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name,
8291 nnm);
8292 }
8293 }
8294
8295 if (resp)
8296 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
8297 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov);
8298 kmem_free(argop, argoplist_size);
8299
8300 return (e.error);
8301 }
8302
8303 /*
8304 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when
8305 * it is possible for the filehandle to change due to the rename.
8306 *
8307 * The compound req in this case includes a post-rename lookup and getattr
8308 * to ensure that we have the correct fh and attributes for the object.
8309 *
8310 * Rename requires that the current fh be the target directory and the
8311 * saved fh be the source directory. After the operation, the current fh
8312 * is unchanged.
8313 *
8314 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can
8315 * update the filehandle for the renamed object. We also get the old
8316 * filehandle for historical reasons; this should be taken out sometime.
8317 * This results in a rather cumbersome compound...
8318 *
8319 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old),
8320 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR
8321 *
8322 */
8323 static int
8324 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp,
8325 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp)
8326 {
8327 COMPOUND4args_clnt args;
8328 COMPOUND4res_clnt res, *resp = NULL;
8329 int argoplist_size;
8330 nfs_argop4 *argop;
8331 nfs_resop4 *resop;
8332 int doqueue;
8333 mntinfo4_t *mi;
8334 rnode4_t *odrp = VTOR4(odvp); /* old directory */
8335 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */
8336 rnode4_t *orp = VTOR4(ovp); /* object being renamed */
8337 RENAME4res *rn_res;
8338 GETFH4res *ngf_res;
8339 bool_t needrecov;
8340 nfs4_recov_state_t recov_state;
8341 hrtime_t t;
8342 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8343 dirattr_info_t dinfo, *dinfop = &dinfo;
8344
8345 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
8346
8347 recov_state.rs_flags = 0;
8348 recov_state.rs_num_retry_despite_err = 0;
8349
8350 recov_retry:
8351 *statp = NFS4_OK;
8352
8353 /*
8354 * There is a window between the RPC and updating the path and
8355 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery
8356 * code, so that it doesn't try to use the old path during that
8357 * window.
8358 */
8359 mutex_enter(&orp->r_statelock);
8360 while (orp->r_flags & R4RECEXPFH) {
8361 klwp_t *lwp = ttolwp(curthread);
8362
8363 if (lwp != NULL)
8364 lwp->lwp_nostop++;
8365 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) {
8366 mutex_exit(&orp->r_statelock);
8367 if (lwp != NULL)
8368 lwp->lwp_nostop--;
8369 return (EINTR);
8370 }
8371 if (lwp != NULL)
8372 lwp->lwp_nostop--;
8373 }
8374 orp->r_flags |= R4RECEXPFH;
8375 mutex_exit(&orp->r_statelock);
8376
8377 mi = VTOMI4(odvp);
8378
8379 args.ctag = TAG_RENAME_VFH;
8380 args.array_len = (odvp == ndvp) ? 10 : 12;
8381 argoplist_size = args.array_len * sizeof (nfs_argop4);
8382 argop = kmem_alloc(argoplist_size, KM_SLEEP);
8383
8384 /*
8385 * Rename ops:
8386 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old),
8387 * PUTFH(targetdir), RENAME, GETATTR(targetdir)
8388 * LOOKUP(trgt), GETFH(new), GETATTR,
8389 *
8390 * if (odvp != ndvp)
8391 * add putfh(sourcedir), getattr(sourcedir) }
8392 */
8393 args.array = argop;
8394
8395 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8396 &recov_state, NULL);
8397 if (e.error) {
8398 kmem_free(argop, argoplist_size);
8399 mutex_enter(&orp->r_statelock);
8400 orp->r_flags &= ~R4RECEXPFH;
8401 cv_broadcast(&orp->r_cv);
8402 mutex_exit(&orp->r_statelock);
8403 return (e.error);
8404 }
8405
8406 /* 0: putfh source directory */
8407 argop[0].argop = OP_CPUTFH;
8408 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh;
8409
8410 /* 1: Save source fh to free up current for target */
8411 argop[1].argop = OP_SAVEFH;
8412
8413 /* 2: Lookup pre-rename fh of renamed object */
8414 argop[2].argop = OP_CLOOKUP;
8415 argop[2].nfs_argop4_u.opclookup.cname = onm;
8416
8417 /* 3: getfh fh of renamed object (before rename) */
8418 argop[3].argop = OP_GETFH;
8419
8420 /* 4: putfh targetdir */
8421 argop[4].argop = OP_CPUTFH;
8422 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8423
8424 /* 5: current_fh is targetdir, saved_fh is sourcedir */
8425 argop[5].argop = OP_CRENAME;
8426 argop[5].nfs_argop4_u.opcrename.coldname = onm;
8427 argop[5].nfs_argop4_u.opcrename.cnewname = nnm;
8428
8429 /* 6: getattr of target dir (post op attrs) */
8430 argop[6].argop = OP_GETATTR;
8431 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8432 argop[6].nfs_argop4_u.opgetattr.mi = mi;
8433
8434 /* 7: Lookup post-rename fh of renamed object */
8435 argop[7].argop = OP_CLOOKUP;
8436 argop[7].nfs_argop4_u.opclookup.cname = nnm;
8437
8438 /* 8: getfh fh of renamed object (after rename) */
8439 argop[8].argop = OP_GETFH;
8440
8441 /* 9: getattr of renamed object */
8442 argop[9].argop = OP_GETATTR;
8443 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8444 argop[9].nfs_argop4_u.opgetattr.mi = mi;
8445
8446 /*
8447 * If source/target dirs are different, then get new post-op
8448 * attrs for source dir also.
8449 */
8450 if (ndvp != odvp) {
8451 /* 10: putfh (sourcedir) */
8452 argop[10].argop = OP_CPUTFH;
8453 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8454
8455 /* 11: getattr (sourcedir) */
8456 argop[11].argop = OP_GETATTR;
8457 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8458 argop[11].nfs_argop4_u.opgetattr.mi = mi;
8459 }
8460
8461 dnlc_remove(odvp, onm);
8462 dnlc_remove(ndvp, nnm);
8463
8464 doqueue = 1;
8465 t = gethrtime();
8466 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
8467
8468 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8469 if (e.error) {
8470 PURGE_ATTRCACHE4(odvp);
8471 PURGE_ATTRCACHE4(ndvp);
8472 if (!needrecov) {
8473 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8474 &recov_state, needrecov);
8475 goto out;
8476 }
8477 } else {
8478 *statp = res.status;
8479 }
8480
8481 if (needrecov) {
8482 bool_t abort;
8483
8484 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL,
8485 OP_RENAME, NULL, NULL, NULL);
8486 if (abort == FALSE) {
8487 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8488 &recov_state, needrecov);
8489 kmem_free(argop, argoplist_size);
8490 if (!e.error)
8491 (void) xdr_free(xdr_COMPOUND4res_clnt,
8492 (caddr_t)&res);
8493 mutex_enter(&orp->r_statelock);
8494 orp->r_flags &= ~R4RECEXPFH;
8495 cv_broadcast(&orp->r_cv);
8496 mutex_exit(&orp->r_statelock);
8497 goto recov_retry;
8498 } else {
8499 if (e.error != 0) {
8500 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8501 &recov_state, needrecov);
8502 goto out;
8503 }
8504 /* fall through for res.status case */
8505 }
8506 }
8507
8508 resp = &res;
8509 /*
8510 * If OP_RENAME (or any prev op) failed, then return an error.
8511 * OP_RENAME is index 5, so if array len <= 6 we return an error.
8512 */
8513 if ((res.status != NFS4_OK) && (res.array_len <= 6)) {
8514 /*
8515 * Error in an op other than last Getattr
8516 */
8517 e.error = geterrno4(res.status);
8518 PURGE_ATTRCACHE4(odvp);
8519 PURGE_ATTRCACHE4(ndvp);
8520 /*
8521 * System V defines rename to return EEXIST, not
8522 * ENOTEMPTY if the target directory is not empty.
8523 * Over the wire, the error is NFSERR_ENOTEMPTY
8524 * which geterrno4 maps to ENOTEMPTY.
8525 */
8526 if (e.error == ENOTEMPTY)
8527 e.error = EEXIST;
8528 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state,
8529 needrecov);
8530 goto out;
8531 }
8532
8533 /* rename results */
8534 rn_res = &res.array[5].nfs_resop4_u.oprename;
8535
8536 if (res.status == NFS4_OK) {
8537 /* Update target attribute, readdir and dnlc caches */
8538 dinfo.di_garp =
8539 &res.array[6].nfs_resop4_u.opgetattr.ga_res;
8540 dinfo.di_cred = cr;
8541 dinfo.di_time_call = t;
8542 } else
8543 dinfop = NULL;
8544
8545 /* Update source cache attribute, readdir and dnlc caches */
8546 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop);
8547
8548 /* Update source cache attribute, readdir and dnlc caches */
8549 if (ndvp != odvp) {
8550 update_parentdir_sfh(ovp, ndvp);
8551
8552 /*
8553 * If dinfop is non-NULL, then compound succeded, so
8554 * set di_garp to attrs for source dir. dinfop is only
8555 * set to NULL when compound fails.
8556 */
8557 if (dinfop)
8558 dinfo.di_garp =
8559 &res.array[11].nfs_resop4_u.opgetattr.ga_res;
8560 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL,
8561 dinfop);
8562 }
8563
8564 /*
8565 * Update the rnode with the new component name and args,
8566 * and if the file handle changed, also update it with the new fh.
8567 * This is only necessary if the target object has an rnode
8568 * entry and there is no need to create one for it.
8569 */
8570 resop = &res.array[8]; /* getfh new res */
8571 ngf_res = &resop->nfs_resop4_u.opgetfh;
8572
8573 /*
8574 * Update the path and filehandle for the renamed object.
8575 */
8576 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm);
8577
8578 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov);
8579
8580 if (res.status == NFS4_OK) {
8581 resop++; /* getattr res */
8582 e.error = nfs4_update_attrcache(res.status,
8583 &resop->nfs_resop4_u.opgetattr.ga_res,
8584 t, ovp, cr);
8585 }
8586
8587 out:
8588 kmem_free(argop, argoplist_size);
8589 if (resp)
8590 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
8591 mutex_enter(&orp->r_statelock);
8592 orp->r_flags &= ~R4RECEXPFH;
8593 cv_broadcast(&orp->r_cv);
8594 mutex_exit(&orp->r_statelock);
8595
8596 return (e.error);
8597 }
8598
8599 /* ARGSUSED */
8600 static int
8601 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr,
8602 caller_context_t *ct, int flags, vsecattr_t *vsecp)
8603 {
8604 int error;
8605 vnode_t *vp;
8606
8607 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
8608 return (EPERM);
8609 /*
8610 * As ".." has special meaning and rather than send a mkdir
8611 * over the wire to just let the server freak out, we just
8612 * short circuit it here and return EEXIST
8613 */
8614 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0')
8615 return (EEXIST);
8616
8617 /*
8618 * Decision to get the right gid and setgid bit of the
8619 * new directory is now made in call_nfs4_create_req.
8620 */
8621 va->va_mask |= AT_MODE;
8622 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR);
8623 if (error)
8624 return (error);
8625
8626 *vpp = vp;
8627 return (0);
8628 }
8629
8630
8631 /*
8632 * rmdir is using the same remove v4 op as does remove.
8633 * Remove requires that the current fh be the target directory.
8634 * After the operation, the current fh is unchanged.
8635 * The compound op structure is:
8636 * PUTFH(targetdir), REMOVE
8637 */
8638 /*ARGSUSED4*/
8639 static int
8640 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
8641 caller_context_t *ct, int flags)
8642 {
8643 int need_end_op = FALSE;
8644 COMPOUND4args_clnt args;
8645 COMPOUND4res_clnt res, *resp = NULL;
8646 REMOVE4res *rm_res;
8647 nfs_argop4 argop[3];
8648 nfs_resop4 *resop;
8649 vnode_t *vp;
8650 int doqueue;
8651 mntinfo4_t *mi;
8652 rnode4_t *drp;
8653 bool_t needrecov = FALSE;
8654 nfs4_recov_state_t recov_state;
8655 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8656 dirattr_info_t dinfo, *dinfop;
8657
8658 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
8659 return (EPERM);
8660 /*
8661 * As ".." has special meaning and rather than send a rmdir
8662 * over the wire to just let the server freak out, we just
8663 * short circuit it here and return EEXIST
8664 */
8665 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0')
8666 return (EEXIST);
8667
8668 drp = VTOR4(dvp);
8669 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
8670 return (EINTR);
8671
8672 /*
8673 * Attempt to prevent a rmdir(".") from succeeding.
8674 */
8675 e.error = nfs4lookup(dvp, nm, &vp, cr, 0);
8676 if (e.error) {
8677 nfs_rw_exit(&drp->r_rwlock);
8678 return (e.error);
8679 }
8680 if (vp == cdir) {
8681 VN_RELE(vp);
8682 nfs_rw_exit(&drp->r_rwlock);
8683 return (EINVAL);
8684 }
8685
8686 /*
8687 * Since nfsv4 remove op works on both files and directories,
8688 * check that the removed object is indeed a directory.
8689 */
8690 if (vp->v_type != VDIR) {
8691 VN_RELE(vp);
8692 nfs_rw_exit(&drp->r_rwlock);
8693 return (ENOTDIR);
8694 }
8695
8696 /*
8697 * First just remove the entry from the name cache, as it
8698 * is most likely an entry for this vp.
8699 */
8700 dnlc_remove(dvp, nm);
8701
8702 /*
8703 * If there vnode reference count is greater than one, then
8704 * there may be additional references in the DNLC which will
8705 * need to be purged. First, trying removing the entry for
8706 * the parent directory and see if that removes the additional
8707 * reference(s). If that doesn't do it, then use dnlc_purge_vp
8708 * to completely remove any references to the directory which
8709 * might still exist in the DNLC.
8710 */
8711 if (vp->v_count > 1) {
8712 dnlc_remove(vp, "..");
8713 if (vp->v_count > 1)
8714 dnlc_purge_vp(vp);
8715 }
8716
8717 mi = VTOMI4(dvp);
8718 recov_state.rs_flags = 0;
8719 recov_state.rs_num_retry_despite_err = 0;
8720
8721 recov_retry:
8722 args.ctag = TAG_RMDIR;
8723
8724 /*
8725 * Rmdir ops: putfh dir; remove
8726 */
8727 args.array_len = 3;
8728 args.array = argop;
8729
8730 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
8731 if (e.error) {
8732 nfs_rw_exit(&drp->r_rwlock);
8733 return (e.error);
8734 }
8735 need_end_op = TRUE;
8736
8737 /* putfh directory */
8738 argop[0].argop = OP_CPUTFH;
8739 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
8740
8741 /* remove */
8742 argop[1].argop = OP_CREMOVE;
8743 argop[1].nfs_argop4_u.opcremove.ctarget = nm;
8744
8745 /* getattr (postop attrs for dir that contained removed dir) */
8746 argop[2].argop = OP_GETATTR;
8747 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8748 argop[2].nfs_argop4_u.opgetattr.mi = mi;
8749
8750 dinfo.di_time_call = gethrtime();
8751 doqueue = 1;
8752 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
8753
8754 PURGE_ATTRCACHE4(vp);
8755
8756 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8757 if (e.error) {
8758 PURGE_ATTRCACHE4(dvp);
8759 }
8760
8761 if (needrecov) {
8762 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL,
8763 NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
8764 if (!e.error)
8765 (void) xdr_free(xdr_COMPOUND4res_clnt,
8766 (caddr_t)&res);
8767
8768 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
8769 needrecov);
8770 need_end_op = FALSE;
8771 goto recov_retry;
8772 }
8773 }
8774
8775 if (!e.error) {
8776 resp = &res;
8777
8778 /*
8779 * Only return error if first 2 ops (OP_REMOVE or earlier)
8780 * failed.
8781 */
8782 if (res.status != NFS4_OK && res.array_len <= 2) {
8783 e.error = geterrno4(res.status);
8784 PURGE_ATTRCACHE4(dvp);
8785 nfs4_end_op(VTOMI4(dvp), dvp, NULL,
8786 &recov_state, needrecov);
8787 need_end_op = FALSE;
8788 nfs4_purge_stale_fh(e.error, dvp, cr);
8789 /*
8790 * System V defines rmdir to return EEXIST, not
8791 * ENOTEMPTY if the directory is not empty. Over
8792 * the wire, the error is NFSERR_ENOTEMPTY which
8793 * geterrno4 maps to ENOTEMPTY.
8794 */
8795 if (e.error == ENOTEMPTY)
8796 e.error = EEXIST;
8797 } else {
8798 resop = &res.array[1]; /* remove res */
8799 rm_res = &resop->nfs_resop4_u.opremove;
8800
8801 if (res.status == NFS4_OK) {
8802 resop = &res.array[2]; /* dir attrs */
8803 dinfo.di_garp =
8804 &resop->nfs_resop4_u.opgetattr.ga_res;
8805 dinfo.di_cred = cr;
8806 dinfop = &dinfo;
8807 } else
8808 dinfop = NULL;
8809
8810 /* Update dir attribute, readdir and dnlc caches */
8811 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL,
8812 dinfop);
8813
8814 /* destroy rddir cache for dir that was removed */
8815 if (VTOR4(vp)->r_dir != NULL)
8816 nfs4_purge_rddir_cache(vp);
8817 }
8818 }
8819
8820 if (need_end_op)
8821 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
8822
8823 nfs_rw_exit(&drp->r_rwlock);
8824
8825 if (resp)
8826 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
8827
8828 if (e.error == 0) {
8829 vnode_t *tvp;
8830 rnode4_t *trp;
8831 trp = VTOR4(vp);
8832 tvp = vp;
8833 if (IS_SHADOW(vp, trp))
8834 tvp = RTOV4(trp);
8835 vnevent_rmdir(tvp, dvp, nm, ct);
8836 }
8837
8838 VN_RELE(vp);
8839
8840 return (e.error);
8841 }
8842
8843 /* ARGSUSED */
8844 static int
8845 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr,
8846 caller_context_t *ct, int flags)
8847 {
8848 int error;
8849 vnode_t *vp;
8850 rnode4_t *rp;
8851 char *contents;
8852 mntinfo4_t *mi = VTOMI4(dvp);
8853
8854 if (nfs_zone() != mi->mi_zone)
8855 return (EPERM);
8856 if (!(mi->mi_flags & MI4_SYMLINK))
8857 return (EOPNOTSUPP);
8858
8859 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK);
8860 if (error)
8861 return (error);
8862
8863 ASSERT(nfs4_consistent_type(vp));
8864 rp = VTOR4(vp);
8865 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) {
8866
8867 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP);
8868
8869 if (contents != NULL) {
8870 mutex_enter(&rp->r_statelock);
8871 if (rp->r_symlink.contents == NULL) {
8872 rp->r_symlink.len = strlen(tnm);
8873 bcopy(tnm, contents, rp->r_symlink.len);
8874 rp->r_symlink.contents = contents;
8875 rp->r_symlink.size = MAXPATHLEN;
8876 mutex_exit(&rp->r_statelock);
8877 } else {
8878 mutex_exit(&rp->r_statelock);
8879 kmem_free((void *)contents, MAXPATHLEN);
8880 }
8881 }
8882 }
8883 VN_RELE(vp);
8884
8885 return (error);
8886 }
8887
8888
8889 /*
8890 * Read directory entries.
8891 * There are some weird things to look out for here. The uio_loffset
8892 * field is either 0 or it is the offset returned from a previous
8893 * readdir. It is an opaque value used by the server to find the
8894 * correct directory block to read. The count field is the number
8895 * of blocks to read on the server. This is advisory only, the server
8896 * may return only one block's worth of entries. Entries may be compressed
8897 * on the server.
8898 */
8899 /* ARGSUSED */
8900 static int
8901 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,
8902 caller_context_t *ct, int flags)
8903 {
8904 int error;
8905 uint_t count;
8906 rnode4_t *rp;
8907 rddir4_cache *rdc;
8908 rddir4_cache *rrdc;
8909
8910 if (nfs_zone() != VTOMI4(vp)->mi_zone)
8911 return (EIO);
8912 rp = VTOR4(vp);
8913
8914 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
8915
8916 /*
8917 * Make sure that the directory cache is valid.
8918 */
8919 if (rp->r_dir != NULL) {
8920 if (nfs_disable_rddir_cache != 0) {
8921 /*
8922 * Setting nfs_disable_rddir_cache in /etc/system
8923 * allows interoperability with servers that do not
8924 * properly update the attributes of directories.
8925 * Any cached information gets purged before an
8926 * access is made to it.
8927 */
8928 nfs4_purge_rddir_cache(vp);
8929 }
8930
8931 error = nfs4_validate_caches(vp, cr);
8932 if (error)
8933 return (error);
8934 }
8935
8936 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE);
8937
8938 /*
8939 * Short circuit last readdir which always returns 0 bytes.
8940 * This can be done after the directory has been read through
8941 * completely at least once. This will set r_direof which
8942 * can be used to find the value of the last cookie.
8943 */
8944 mutex_enter(&rp->r_statelock);
8945 if (rp->r_direof != NULL &&
8946 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) {
8947 mutex_exit(&rp->r_statelock);
8948 #ifdef DEBUG
8949 nfs4_readdir_cache_shorts++;
8950 #endif
8951 if (eofp)
8952 *eofp = 1;
8953 return (0);
8954 }
8955
8956 /*
8957 * Look for a cache entry. Cache entries are identified
8958 * by the NFS cookie value and the byte count requested.
8959 */
8960 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count);
8961
8962 /*
8963 * If rdc is NULL then the lookup resulted in an unrecoverable error.
8964 */
8965 if (rdc == NULL) {
8966 mutex_exit(&rp->r_statelock);
8967 return (EINTR);
8968 }
8969
8970 /*
8971 * Check to see if we need to fill this entry in.
8972 */
8973 if (rdc->flags & RDDIRREQ) {
8974 rdc->flags &= ~RDDIRREQ;
8975 rdc->flags |= RDDIR;
8976 mutex_exit(&rp->r_statelock);
8977
8978 /*
8979 * Do the readdir.
8980 */
8981 nfs4readdir(vp, rdc, cr);
8982
8983 /*
8984 * Reacquire the lock, so that we can continue
8985 */
8986 mutex_enter(&rp->r_statelock);
8987 /*
8988 * The entry is now complete
8989 */
8990 rdc->flags &= ~RDDIR;
8991 }
8992
8993 ASSERT(!(rdc->flags & RDDIR));
8994
8995 /*
8996 * If an error occurred while attempting
8997 * to fill the cache entry, mark the entry invalid and
8998 * just return the error.
8999 */
9000 if (rdc->error) {
9001 error = rdc->error;
9002 rdc->flags |= RDDIRREQ;
9003 rddir4_cache_rele(rp, rdc);
9004 mutex_exit(&rp->r_statelock);
9005 return (error);
9006 }
9007
9008 /*
9009 * The cache entry is complete and good,
9010 * copyout the dirent structs to the calling
9011 * thread.
9012 */
9013 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop);
9014
9015 /*
9016 * If no error occurred during the copyout,
9017 * update the offset in the uio struct to
9018 * contain the value of the next NFS 4 cookie
9019 * and set the eof value appropriately.
9020 */
9021 if (!error) {
9022 uiop->uio_loffset = rdc->nfs4_ncookie;
9023 if (eofp)
9024 *eofp = rdc->eof;
9025 }
9026
9027 /*
9028 * Decide whether to do readahead. Don't if we
9029 * have already read to the end of directory.
9030 */
9031 if (rdc->eof) {
9032 /*
9033 * Make the entry the direof only if it is cached
9034 */
9035 if (rdc->flags & RDDIRCACHED)
9036 rp->r_direof = rdc;
9037 rddir4_cache_rele(rp, rdc);
9038 mutex_exit(&rp->r_statelock);
9039 return (error);
9040 }
9041
9042 /* Determine if a readdir readahead should be done */
9043 if (!(rp->r_flags & R4LOOKUP)) {
9044 rddir4_cache_rele(rp, rdc);
9045 mutex_exit(&rp->r_statelock);
9046 return (error);
9047 }
9048
9049 /*
9050 * Now look for a readahead entry.
9051 *
9052 * Check to see whether we found an entry for the readahead.
9053 * If so, we don't need to do anything further, so free the new
9054 * entry if one was allocated. Otherwise, allocate a new entry, add
9055 * it to the cache, and then initiate an asynchronous readdir
9056 * operation to fill it.
9057 */
9058 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count);
9059
9060 /*
9061 * A readdir cache entry could not be obtained for the readahead. In
9062 * this case we skip the readahead and return.
9063 */
9064 if (rrdc == NULL) {
9065 rddir4_cache_rele(rp, rdc);
9066 mutex_exit(&rp->r_statelock);
9067 return (error);
9068 }
9069
9070 /*
9071 * Check to see if we need to fill this entry in.
9072 */
9073 if (rrdc->flags & RDDIRREQ) {
9074 rrdc->flags &= ~RDDIRREQ;
9075 rrdc->flags |= RDDIR;
9076 rddir4_cache_rele(rp, rdc);
9077 mutex_exit(&rp->r_statelock);
9078 #ifdef DEBUG
9079 nfs4_readdir_readahead++;
9080 #endif
9081 /*
9082 * Do the readdir.
9083 */
9084 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir);
9085 return (error);
9086 }
9087
9088 rddir4_cache_rele(rp, rrdc);
9089 rddir4_cache_rele(rp, rdc);
9090 mutex_exit(&rp->r_statelock);
9091 return (error);
9092 }
9093
9094 static int
9095 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr)
9096 {
9097 int error;
9098 rnode4_t *rp;
9099
9100 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
9101
9102 rp = VTOR4(vp);
9103
9104 /*
9105 * Obtain the readdir results for the caller.
9106 */
9107 nfs4readdir(vp, rdc, cr);
9108
9109 mutex_enter(&rp->r_statelock);
9110 /*
9111 * The entry is now complete
9112 */
9113 rdc->flags &= ~RDDIR;
9114
9115 error = rdc->error;
9116 if (error)
9117 rdc->flags |= RDDIRREQ;
9118 rddir4_cache_rele(rp, rdc);
9119 mutex_exit(&rp->r_statelock);
9120
9121 return (error);
9122 }
9123
9124 /*
9125 * Read directory entries.
9126 * There are some weird things to look out for here. The uio_loffset
9127 * field is either 0 or it is the offset returned from a previous
9128 * readdir. It is an opaque value used by the server to find the
9129 * correct directory block to read. The count field is the number
9130 * of blocks to read on the server. This is advisory only, the server
9131 * may return only one block's worth of entries. Entries may be compressed
9132 * on the server.
9133 *
9134 * Generates the following compound request:
9135 * 1. If readdir offset is zero and no dnlc entry for parent exists,
9136 * must include a Lookupp as well. In this case, send:
9137 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr }
9138 * 2. Otherwise just do: { Putfh <fh>; Readdir }
9139 *
9140 * Get complete attributes and filehandles for entries if this is the
9141 * first read of the directory. Otherwise, just get fileid's.
9142 */
9143 static void
9144 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr)
9145 {
9146 COMPOUND4args_clnt args;
9147 COMPOUND4res_clnt res;
9148 READDIR4args *rargs;
9149 READDIR4res_clnt *rd_res;
9150 bitmap4 rd_bitsval;
9151 nfs_argop4 argop[5];
9152 nfs_resop4 *resop;
9153 rnode4_t *rp = VTOR4(vp);
9154 mntinfo4_t *mi = VTOMI4(vp);
9155 int doqueue;
9156 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */
9157 vnode_t *dvp;
9158 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie;
9159 int num_ops, res_opcnt;
9160 bool_t needrecov = FALSE;
9161 nfs4_recov_state_t recov_state;
9162 hrtime_t t;
9163 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
9164
9165 ASSERT(nfs_zone() == mi->mi_zone);
9166 ASSERT(rdc->flags & RDDIR);
9167 ASSERT(rdc->entries == NULL);
9168
9169 /*
9170 * If rp were a stub, it should have triggered and caused
9171 * a mount for us to get this far.
9172 */
9173 ASSERT(!RP_ISSTUB(rp));
9174
9175 num_ops = 2;
9176 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) {
9177 /*
9178 * Since nfsv4 readdir may not return entries for "." and "..",
9179 * the client must recreate them:
9180 * To find the correct nodeid, do the following:
9181 * For current node, get nodeid from dnlc.
9182 * - if current node is rootvp, set pnodeid to nodeid.
9183 * - else if parent is in the dnlc, get its nodeid from there.
9184 * - else add LOOKUPP+GETATTR to compound.
9185 */
9186 nodeid = rp->r_attr.va_nodeid;
9187 if (vp->v_flag & VROOT) {
9188 pnodeid = nodeid; /* root of mount point */
9189 } else {
9190 dvp = dnlc_lookup(vp, "..");
9191 if (dvp != NULL && dvp != DNLC_NO_VNODE) {
9192 /* parent in dnlc cache - no need for otw */
9193 pnodeid = VTOR4(dvp)->r_attr.va_nodeid;
9194 } else {
9195 /*
9196 * parent not in dnlc cache,
9197 * do lookupp to get its id
9198 */
9199 num_ops = 5;
9200 pnodeid = 0; /* set later by getattr parent */
9201 }
9202 if (dvp)
9203 VN_RELE(dvp);
9204 }
9205 }
9206 recov_state.rs_flags = 0;
9207 recov_state.rs_num_retry_despite_err = 0;
9208
9209 /* Save the original mount point security flavor */
9210 (void) save_mnt_secinfo(mi->mi_curr_serv);
9211
9212 recov_retry:
9213 args.ctag = TAG_READDIR;
9214
9215 args.array = argop;
9216 args.array_len = num_ops;
9217
9218 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9219 &recov_state, NULL)) {
9220 /*
9221 * If readdir a node that is a stub for a crossed mount point,
9222 * keep the original secinfo flavor for the current file
9223 * system, not the crossed one.
9224 */
9225 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
9226 rdc->error = e.error;
9227 return;
9228 }
9229
9230 /*
9231 * Determine which attrs to request for dirents. This code
9232 * must be protected by nfs4_start/end_fop because of r_server
9233 * (which will change during failover recovery).
9234 *
9235 */
9236 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) {
9237 /*
9238 * Get all vattr attrs plus filehandle and rdattr_error
9239 */
9240 rd_bitsval = NFS4_VATTR_MASK |
9241 FATTR4_RDATTR_ERROR_MASK |
9242 FATTR4_FILEHANDLE_MASK;
9243
9244 if (rp->r_flags & R4READDIRWATTR) {
9245 mutex_enter(&rp->r_statelock);
9246 rp->r_flags &= ~R4READDIRWATTR;
9247 mutex_exit(&rp->r_statelock);
9248 }
9249 } else {
9250 servinfo4_t *svp = rp->r_server;
9251
9252 /*
9253 * Already read directory. Use readdir with
9254 * no attrs (except for mounted_on_fileid) for updates.
9255 */
9256 rd_bitsval = FATTR4_RDATTR_ERROR_MASK;
9257
9258 /*
9259 * request mounted on fileid if supported, else request
9260 * fileid. maybe we should verify that fileid is supported
9261 * and request something else if not.
9262 */
9263 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
9264 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK)
9265 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK;
9266 nfs_rw_exit(&svp->sv_lock);
9267 }
9268
9269 /* putfh directory fh */
9270 argop[0].argop = OP_CPUTFH;
9271 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
9272
9273 argop[1].argop = OP_READDIR;
9274 rargs = &argop[1].nfs_argop4_u.opreaddir;
9275 /*
9276 * 1 and 2 are reserved for client "." and ".." entry offset.
9277 * cookie 0 should be used over-the-wire to start reading at
9278 * the beginning of the directory excluding "." and "..".
9279 */
9280 if (rdc->nfs4_cookie == 0 ||
9281 rdc->nfs4_cookie == 1 ||
9282 rdc->nfs4_cookie == 2) {
9283 rargs->cookie = (nfs_cookie4)0;
9284 rargs->cookieverf = 0;
9285 } else {
9286 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie;
9287 mutex_enter(&rp->r_statelock);
9288 rargs->cookieverf = rp->r_cookieverf4;
9289 mutex_exit(&rp->r_statelock);
9290 }
9291 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize);
9292 rargs->maxcount = mi->mi_tsize;
9293 rargs->attr_request = rd_bitsval;
9294 rargs->rdc = rdc;
9295 rargs->dvp = vp;
9296 rargs->mi = mi;
9297 rargs->cr = cr;
9298
9299
9300 /*
9301 * If count < than the minimum required, we return no entries
9302 * and fail with EINVAL
9303 */
9304 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) {
9305 rdc->error = EINVAL;
9306 goto out;
9307 }
9308
9309 if (args.array_len == 5) {
9310 /*
9311 * Add lookupp and getattr for parent nodeid.
9312 */
9313 argop[2].argop = OP_LOOKUPP;
9314
9315 argop[3].argop = OP_GETFH;
9316
9317 /* getattr parent */
9318 argop[4].argop = OP_GETATTR;
9319 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
9320 argop[4].nfs_argop4_u.opgetattr.mi = mi;
9321 }
9322
9323 doqueue = 1;
9324
9325 if (mi->mi_io_kstats) {
9326 mutex_enter(&mi->mi_lock);
9327 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
9328 mutex_exit(&mi->mi_lock);
9329 }
9330
9331 /* capture the time of this call */
9332 rargs->t = t = gethrtime();
9333
9334 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
9335
9336 if (mi->mi_io_kstats) {
9337 mutex_enter(&mi->mi_lock);
9338 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
9339 mutex_exit(&mi->mi_lock);
9340 }
9341
9342 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
9343
9344 /*
9345 * If RPC error occurred and it isn't an error that
9346 * triggers recovery, then go ahead and fail now.
9347 */
9348 if (e.error != 0 && !needrecov) {
9349 rdc->error = e.error;
9350 goto out;
9351 }
9352
9353 if (needrecov) {
9354 bool_t abort;
9355
9356 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
9357 "nfs4readdir: initiating recovery.\n"));
9358
9359 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
9360 NULL, OP_READDIR, NULL, NULL, NULL);
9361 if (abort == FALSE) {
9362 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9363 &recov_state, needrecov);
9364 if (!e.error)
9365 (void) xdr_free(xdr_COMPOUND4res_clnt,
9366 (caddr_t)&res);
9367 if (rdc->entries != NULL) {
9368 kmem_free(rdc->entries, rdc->entlen);
9369 rdc->entries = NULL;
9370 }
9371 goto recov_retry;
9372 }
9373
9374 if (e.error != 0) {
9375 rdc->error = e.error;
9376 goto out;
9377 }
9378
9379 /* fall through for res.status case */
9380 }
9381
9382 res_opcnt = res.array_len;
9383
9384 /*
9385 * If compound failed first 2 ops (PUTFH+READDIR), then return
9386 * failure here. Subsequent ops are for filling out dot-dot
9387 * dirent, and if they fail, we still want to give the caller
9388 * the dirents returned by (the successful) READDIR op, so we need
9389 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR).
9390 *
9391 * One example where PUTFH+READDIR ops would succeed but
9392 * LOOKUPP+GETATTR would fail would be a dir that has r perm
9393 * but lacks x. In this case, a POSIX server's VOP_READDIR
9394 * would succeed; however, VOP_LOOKUP(..) would fail since no
9395 * x perm. We need to come up with a non-vendor-specific way
9396 * for a POSIX server to return d_ino from dotdot's dirent if
9397 * client only requests mounted_on_fileid, and just say the
9398 * LOOKUPP succeeded and fill out the GETATTR. However, if
9399 * client requested any mandatory attrs, server would be required
9400 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR
9401 * for dotdot.
9402 */
9403
9404 if (res.status) {
9405 if (res_opcnt <= 2) {
9406 e.error = geterrno4(res.status);
9407 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9408 &recov_state, needrecov);
9409 nfs4_purge_stale_fh(e.error, vp, cr);
9410 rdc->error = e.error;
9411 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
9412 if (rdc->entries != NULL) {
9413 kmem_free(rdc->entries, rdc->entlen);
9414 rdc->entries = NULL;
9415 }
9416 /*
9417 * If readdir a node that is a stub for a
9418 * crossed mount point, keep the original
9419 * secinfo flavor for the current file system,
9420 * not the crossed one.
9421 */
9422 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
9423 return;
9424 }
9425 }
9426
9427 resop = &res.array[1]; /* readdir res */
9428 rd_res = &resop->nfs_resop4_u.opreaddirclnt;
9429
9430 mutex_enter(&rp->r_statelock);
9431 rp->r_cookieverf4 = rd_res->cookieverf;
9432 mutex_exit(&rp->r_statelock);
9433
9434 /*
9435 * For "." and ".." entries
9436 * e.g.
9437 * seek(cookie=0) -> "." entry with d_off = 1
9438 * seek(cookie=1) -> ".." entry with d_off = 2
9439 */
9440 if (cookie == (nfs_cookie4) 0) {
9441 if (rd_res->dotp)
9442 rd_res->dotp->d_ino = nodeid;
9443 if (rd_res->dotdotp)
9444 rd_res->dotdotp->d_ino = pnodeid;
9445 }
9446 if (cookie == (nfs_cookie4) 1) {
9447 if (rd_res->dotdotp)
9448 rd_res->dotdotp->d_ino = pnodeid;
9449 }
9450
9451
9452 /* LOOKUPP+GETATTR attemped */
9453 if (args.array_len == 5 && rd_res->dotdotp) {
9454 if (res.status == NFS4_OK && res_opcnt == 5) {
9455 nfs_fh4 *fhp;
9456 nfs4_sharedfh_t *sfhp;
9457 vnode_t *pvp;
9458 nfs4_ga_res_t *garp;
9459
9460 resop++; /* lookupp */
9461 resop++; /* getfh */
9462 fhp = &resop->nfs_resop4_u.opgetfh.object;
9463
9464 resop++; /* getattr of parent */
9465
9466 /*
9467 * First, take care of finishing the
9468 * readdir results.
9469 */
9470 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
9471 /*
9472 * The d_ino of .. must be the inode number
9473 * of the mounted filesystem.
9474 */
9475 if (garp->n4g_va.va_mask & AT_NODEID)
9476 rd_res->dotdotp->d_ino =
9477 garp->n4g_va.va_nodeid;
9478
9479
9480 /*
9481 * Next, create the ".." dnlc entry
9482 */
9483 sfhp = sfh4_get(fhp, mi);
9484 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) {
9485 dnlc_update(vp, "..", pvp);
9486 VN_RELE(pvp);
9487 }
9488 sfh4_rele(&sfhp);
9489 }
9490 }
9491
9492 if (mi->mi_io_kstats) {
9493 mutex_enter(&mi->mi_lock);
9494 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
9495 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen;
9496 mutex_exit(&mi->mi_lock);
9497 }
9498
9499 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
9500
9501 out:
9502 /*
9503 * If readdir a node that is a stub for a crossed mount point,
9504 * keep the original secinfo flavor for the current file system,
9505 * not the crossed one.
9506 */
9507 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
9508
9509 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov);
9510 }
9511
9512
9513 static int
9514 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead)
9515 {
9516 rnode4_t *rp = VTOR4(bp->b_vp);
9517 int count;
9518 int error;
9519 cred_t *cred_otw = NULL;
9520 offset_t offset;
9521 nfs4_open_stream_t *osp = NULL;
9522 bool_t first_time = TRUE; /* first time getting otw cred */
9523 bool_t last_time = FALSE; /* last time getting otw cred */
9524
9525 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone);
9526
9527 DTRACE_IO1(start, struct buf *, bp);
9528 offset = ldbtob(bp->b_lblkno);
9529
9530 if (bp->b_flags & B_READ) {
9531 read_again:
9532 /*
9533 * Releases the osp, if it is provided.
9534 * Puts a hold on the cred_otw and the new osp (if found).
9535 */
9536 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
9537 &first_time, &last_time);
9538 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr,
9539 offset, bp->b_bcount, &bp->b_resid, cred_otw,
9540 readahead, NULL);
9541 crfree(cred_otw);
9542 if (!error) {
9543 if (bp->b_resid) {
9544 /*
9545 * Didn't get it all because we hit EOF,
9546 * zero all the memory beyond the EOF.
9547 */
9548 /* bzero(rdaddr + */
9549 bzero(bp->b_un.b_addr +
9550 bp->b_bcount - bp->b_resid, bp->b_resid);
9551 }
9552 mutex_enter(&rp->r_statelock);
9553 if (bp->b_resid == bp->b_bcount &&
9554 offset >= rp->r_size) {
9555 /*
9556 * We didn't read anything at all as we are
9557 * past EOF. Return an error indicator back
9558 * but don't destroy the pages (yet).
9559 */
9560 error = NFS_EOF;
9561 }
9562 mutex_exit(&rp->r_statelock);
9563 } else if (error == EACCES && last_time == FALSE) {
9564 goto read_again;
9565 }
9566 } else {
9567 if (!(rp->r_flags & R4STALE)) {
9568 write_again:
9569 /*
9570 * Releases the osp, if it is provided.
9571 * Puts a hold on the cred_otw and the new
9572 * osp (if found).
9573 */
9574 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
9575 &first_time, &last_time);
9576 mutex_enter(&rp->r_statelock);
9577 count = MIN(bp->b_bcount, rp->r_size - offset);
9578 mutex_exit(&rp->r_statelock);
9579 if (count < 0)
9580 cmn_err(CE_PANIC, "nfs4_bio: write count < 0");
9581 #ifdef DEBUG
9582 if (count == 0) {
9583 zoneid_t zoneid = getzoneid();
9584
9585 zcmn_err(zoneid, CE_WARN,
9586 "nfs4_bio: zero length write at %lld",
9587 offset);
9588 zcmn_err(zoneid, CE_CONT, "flags=0x%x, "
9589 "b_bcount=%ld, file size=%lld",
9590 rp->r_flags, (long)bp->b_bcount,
9591 rp->r_size);
9592 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh);
9593 if (nfs4_bio_do_stop)
9594 debug_enter("nfs4_bio");
9595 }
9596 #endif
9597 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset,
9598 count, cred_otw, stab_comm);
9599 if (error == EACCES && last_time == FALSE) {
9600 crfree(cred_otw);
9601 goto write_again;
9602 }
9603 bp->b_error = error;
9604 if (error && error != EINTR &&
9605 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) {
9606 /*
9607 * Don't print EDQUOT errors on the console.
9608 * Don't print asynchronous EACCES errors.
9609 * Don't print EFBIG errors.
9610 * Print all other write errors.
9611 */
9612 if (error != EDQUOT && error != EFBIG &&
9613 (error != EACCES ||
9614 !(bp->b_flags & B_ASYNC)))
9615 nfs4_write_error(bp->b_vp,
9616 error, cred_otw);
9617 /*
9618 * Update r_error and r_flags as appropriate.
9619 * If the error was ESTALE, then mark the
9620 * rnode as not being writeable and save
9621 * the error status. Otherwise, save any
9622 * errors which occur from asynchronous
9623 * page invalidations. Any errors occurring
9624 * from other operations should be saved
9625 * by the caller.
9626 */
9627 mutex_enter(&rp->r_statelock);
9628 if (error == ESTALE) {
9629 rp->r_flags |= R4STALE;
9630 if (!rp->r_error)
9631 rp->r_error = error;
9632 } else if (!rp->r_error &&
9633 (bp->b_flags &
9634 (B_INVAL|B_FORCE|B_ASYNC)) ==
9635 (B_INVAL|B_FORCE|B_ASYNC)) {
9636 rp->r_error = error;
9637 }
9638 mutex_exit(&rp->r_statelock);
9639 }
9640 crfree(cred_otw);
9641 } else {
9642 error = rp->r_error;
9643 /*
9644 * A close may have cleared r_error, if so,
9645 * propagate ESTALE error return properly
9646 */
9647 if (error == 0)
9648 error = ESTALE;
9649 }
9650 }
9651
9652 if (error != 0 && error != NFS_EOF)
9653 bp->b_flags |= B_ERROR;
9654
9655 if (osp)
9656 open_stream_rele(osp, rp);
9657
9658 DTRACE_IO1(done, struct buf *, bp);
9659
9660 return (error);
9661 }
9662
9663 /* ARGSUSED */
9664 int
9665 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
9666 {
9667 return (EREMOTE);
9668 }
9669
9670 /* ARGSUSED2 */
9671 int
9672 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
9673 {
9674 rnode4_t *rp = VTOR4(vp);
9675
9676 if (!write_lock) {
9677 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
9678 return (V_WRITELOCK_FALSE);
9679 }
9680
9681 if ((rp->r_flags & R4DIRECTIO) ||
9682 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) {
9683 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
9684 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp))
9685 return (V_WRITELOCK_FALSE);
9686 nfs_rw_exit(&rp->r_rwlock);
9687 }
9688
9689 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE);
9690 return (V_WRITELOCK_TRUE);
9691 }
9692
9693 /* ARGSUSED */
9694 void
9695 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
9696 {
9697 rnode4_t *rp = VTOR4(vp);
9698
9699 nfs_rw_exit(&rp->r_rwlock);
9700 }
9701
9702 /* ARGSUSED */
9703 static int
9704 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
9705 {
9706 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9707 return (EIO);
9708
9709 /*
9710 * Because we stuff the readdir cookie into the offset field
9711 * someone may attempt to do an lseek with the cookie which
9712 * we want to succeed.
9713 */
9714 if (vp->v_type == VDIR)
9715 return (0);
9716 if (*noffp < 0)
9717 return (EINVAL);
9718 return (0);
9719 }
9720
9721
9722 /*
9723 * Return all the pages from [off..off+len) in file
9724 */
9725 /* ARGSUSED */
9726 static int
9727 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
9728 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
9729 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
9730 {
9731 rnode4_t *rp;
9732 int error;
9733 mntinfo4_t *mi;
9734
9735 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9736 return (EIO);
9737 rp = VTOR4(vp);
9738 if (IS_SHADOW(vp, rp))
9739 vp = RTOV4(rp);
9740
9741 if (vp->v_flag & VNOMAP)
9742 return (ENOSYS);
9743
9744 if (protp != NULL)
9745 *protp = PROT_ALL;
9746
9747 /*
9748 * Now validate that the caches are up to date.
9749 */
9750 if (error = nfs4_validate_caches(vp, cr))
9751 return (error);
9752
9753 mi = VTOMI4(vp);
9754 retry:
9755 mutex_enter(&rp->r_statelock);
9756
9757 /*
9758 * Don't create dirty pages faster than they
9759 * can be cleaned so that the system doesn't
9760 * get imbalanced. If the async queue is
9761 * maxed out, then wait for it to drain before
9762 * creating more dirty pages. Also, wait for
9763 * any threads doing pagewalks in the vop_getattr
9764 * entry points so that they don't block for
9765 * long periods.
9766 */
9767 if (rw == S_CREATE) {
9768 while ((mi->mi_max_threads != 0 &&
9769 rp->r_awcount > 2 * mi->mi_max_threads) ||
9770 rp->r_gcount > 0)
9771 cv_wait(&rp->r_cv, &rp->r_statelock);
9772 }
9773
9774 /*
9775 * If we are getting called as a side effect of an nfs_write()
9776 * operation the local file size might not be extended yet.
9777 * In this case we want to be able to return pages of zeroes.
9778 */
9779 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) {
9780 NFS4_DEBUG(nfs4_pageio_debug,
9781 (CE_NOTE, "getpage beyond EOF: off=%lld, "
9782 "len=%llu, size=%llu, attrsize =%llu", off,
9783 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size));
9784 mutex_exit(&rp->r_statelock);
9785 return (EFAULT); /* beyond EOF */
9786 }
9787
9788 mutex_exit(&rp->r_statelock);
9789
9790 if (len <= PAGESIZE) {
9791 error = nfs4_getapage(vp, off, len, protp, pl, plsz,
9792 seg, addr, rw, cr);
9793 NFS4_DEBUG(nfs4_pageio_debug && error,
9794 (CE_NOTE, "getpage error %d; off=%lld, "
9795 "len=%lld", error, off, (u_longlong_t)len));
9796 } else {
9797 error = pvn_getpages(nfs4_getapage, vp, off, len, protp,
9798 pl, plsz, seg, addr, rw, cr);
9799 NFS4_DEBUG(nfs4_pageio_debug && error,
9800 (CE_NOTE, "getpages error %d; off=%lld, "
9801 "len=%lld", error, off, (u_longlong_t)len));
9802 }
9803
9804 switch (error) {
9805 case NFS_EOF:
9806 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE);
9807 goto retry;
9808 case ESTALE:
9809 nfs4_purge_stale_fh(error, vp, cr);
9810 }
9811
9812 return (error);
9813 }
9814
9815 /*
9816 * Called from pvn_getpages or nfs4_getpage to get a particular page.
9817 */
9818 /* ARGSUSED */
9819 static int
9820 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp,
9821 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
9822 enum seg_rw rw, cred_t *cr)
9823 {
9824 rnode4_t *rp;
9825 uint_t bsize;
9826 struct buf *bp;
9827 page_t *pp;
9828 u_offset_t lbn;
9829 u_offset_t io_off;
9830 u_offset_t blkoff;
9831 u_offset_t rablkoff;
9832 size_t io_len;
9833 uint_t blksize;
9834 int error;
9835 int readahead;
9836 int readahead_issued = 0;
9837 int ra_window; /* readahead window */
9838 page_t *pagefound;
9839 page_t *savepp;
9840
9841 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9842 return (EIO);
9843
9844 rp = VTOR4(vp);
9845 ASSERT(!IS_SHADOW(vp, rp));
9846 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
9847
9848 reread:
9849 bp = NULL;
9850 pp = NULL;
9851 pagefound = NULL;
9852
9853 if (pl != NULL)
9854 pl[0] = NULL;
9855
9856 error = 0;
9857 lbn = off / bsize;
9858 blkoff = lbn * bsize;
9859
9860 /*
9861 * Queueing up the readahead before doing the synchronous read
9862 * results in a significant increase in read throughput because
9863 * of the increased parallelism between the async threads and
9864 * the process context.
9865 */
9866 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 &&
9867 rw != S_CREATE &&
9868 !(vp->v_flag & VNOCACHE)) {
9869 mutex_enter(&rp->r_statelock);
9870
9871 /*
9872 * Calculate the number of readaheads to do.
9873 * a) No readaheads at offset = 0.
9874 * b) Do maximum(nfs4_nra) readaheads when the readahead
9875 * window is closed.
9876 * c) Do readaheads between 1 to (nfs4_nra - 1) depending
9877 * upon how far the readahead window is open or close.
9878 * d) No readaheads if rp->r_nextr is not within the scope
9879 * of the readahead window (random i/o).
9880 */
9881
9882 if (off == 0)
9883 readahead = 0;
9884 else if (blkoff == rp->r_nextr)
9885 readahead = nfs4_nra;
9886 else if (rp->r_nextr > blkoff &&
9887 ((ra_window = (rp->r_nextr - blkoff) / bsize)
9888 <= (nfs4_nra - 1)))
9889 readahead = nfs4_nra - ra_window;
9890 else
9891 readahead = 0;
9892
9893 rablkoff = rp->r_nextr;
9894 while (readahead > 0 && rablkoff + bsize < rp->r_size) {
9895 mutex_exit(&rp->r_statelock);
9896 if (nfs4_async_readahead(vp, rablkoff + bsize,
9897 addr + (rablkoff + bsize - off),
9898 seg, cr, nfs4_readahead) < 0) {
9899 mutex_enter(&rp->r_statelock);
9900 break;
9901 }
9902 readahead--;
9903 rablkoff += bsize;
9904 /*
9905 * Indicate that we did a readahead so
9906 * readahead offset is not updated
9907 * by the synchronous read below.
9908 */
9909 readahead_issued = 1;
9910 mutex_enter(&rp->r_statelock);
9911 /*
9912 * set readahead offset to
9913 * offset of last async readahead
9914 * request.
9915 */
9916 rp->r_nextr = rablkoff;
9917 }
9918 mutex_exit(&rp->r_statelock);
9919 }
9920
9921 again:
9922 if ((pagefound = page_exists(vp, off)) == NULL) {
9923 if (pl == NULL) {
9924 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr,
9925 nfs4_readahead);
9926 } else if (rw == S_CREATE) {
9927 /*
9928 * Block for this page is not allocated, or the offset
9929 * is beyond the current allocation size, or we're
9930 * allocating a swap slot and the page was not found,
9931 * so allocate it and return a zero page.
9932 */
9933 if ((pp = page_create_va(vp, off,
9934 PAGESIZE, PG_WAIT, seg, addr)) == NULL)
9935 cmn_err(CE_PANIC, "nfs4_getapage: page_create");
9936 io_len = PAGESIZE;
9937 mutex_enter(&rp->r_statelock);
9938 rp->r_nextr = off + PAGESIZE;
9939 mutex_exit(&rp->r_statelock);
9940 } else {
9941 /*
9942 * Need to go to server to get a block
9943 */
9944 mutex_enter(&rp->r_statelock);
9945 if (blkoff < rp->r_size &&
9946 blkoff + bsize > rp->r_size) {
9947 /*
9948 * If less than a block left in
9949 * file read less than a block.
9950 */
9951 if (rp->r_size <= off) {
9952 /*
9953 * Trying to access beyond EOF,
9954 * set up to get at least one page.
9955 */
9956 blksize = off + PAGESIZE - blkoff;
9957 } else
9958 blksize = rp->r_size - blkoff;
9959 } else if ((off == 0) ||
9960 (off != rp->r_nextr && !readahead_issued)) {
9961 blksize = PAGESIZE;
9962 blkoff = off; /* block = page here */
9963 } else
9964 blksize = bsize;
9965 mutex_exit(&rp->r_statelock);
9966
9967 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
9968 &io_len, blkoff, blksize, 0);
9969
9970 /*
9971 * Some other thread has entered the page,
9972 * so just use it.
9973 */
9974 if (pp == NULL)
9975 goto again;
9976
9977 /*
9978 * Now round the request size up to page boundaries.
9979 * This ensures that the entire page will be
9980 * initialized to zeroes if EOF is encountered.
9981 */
9982 io_len = ptob(btopr(io_len));
9983
9984 bp = pageio_setup(pp, io_len, vp, B_READ);
9985 ASSERT(bp != NULL);
9986
9987 /*
9988 * pageio_setup should have set b_addr to 0. This
9989 * is correct since we want to do I/O on a page
9990 * boundary. bp_mapin will use this addr to calculate
9991 * an offset, and then set b_addr to the kernel virtual
9992 * address it allocated for us.
9993 */
9994 ASSERT(bp->b_un.b_addr == 0);
9995
9996 bp->b_edev = 0;
9997 bp->b_dev = 0;
9998 bp->b_lblkno = lbtodb(io_off);
9999 bp->b_file = vp;
10000 bp->b_offset = (offset_t)off;
10001 bp_mapin(bp);
10002
10003 /*
10004 * If doing a write beyond what we believe is EOF,
10005 * don't bother trying to read the pages from the
10006 * server, we'll just zero the pages here. We
10007 * don't check that the rw flag is S_WRITE here
10008 * because some implementations may attempt a
10009 * read access to the buffer before copying data.
10010 */
10011 mutex_enter(&rp->r_statelock);
10012 if (io_off >= rp->r_size && seg == segkmap) {
10013 mutex_exit(&rp->r_statelock);
10014 bzero(bp->b_un.b_addr, io_len);
10015 } else {
10016 mutex_exit(&rp->r_statelock);
10017 error = nfs4_bio(bp, NULL, cr, FALSE);
10018 }
10019
10020 /*
10021 * Unmap the buffer before freeing it.
10022 */
10023 bp_mapout(bp);
10024 pageio_done(bp);
10025
10026 savepp = pp;
10027 do {
10028 pp->p_fsdata = C_NOCOMMIT;
10029 } while ((pp = pp->p_next) != savepp);
10030
10031 if (error == NFS_EOF) {
10032 /*
10033 * If doing a write system call just return
10034 * zeroed pages, else user tried to get pages
10035 * beyond EOF, return error. We don't check
10036 * that the rw flag is S_WRITE here because
10037 * some implementations may attempt a read
10038 * access to the buffer before copying data.
10039 */
10040 if (seg == segkmap)
10041 error = 0;
10042 else
10043 error = EFAULT;
10044 }
10045
10046 if (!readahead_issued && !error) {
10047 mutex_enter(&rp->r_statelock);
10048 rp->r_nextr = io_off + io_len;
10049 mutex_exit(&rp->r_statelock);
10050 }
10051 }
10052 }
10053
10054 out:
10055 if (pl == NULL)
10056 return (error);
10057
10058 if (error) {
10059 if (pp != NULL)
10060 pvn_read_done(pp, B_ERROR);
10061 return (error);
10062 }
10063
10064 if (pagefound) {
10065 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);
10066
10067 /*
10068 * Page exists in the cache, acquire the appropriate lock.
10069 * If this fails, start all over again.
10070 */
10071 if ((pp = page_lookup(vp, off, se)) == NULL) {
10072 #ifdef DEBUG
10073 nfs4_lostpage++;
10074 #endif
10075 goto reread;
10076 }
10077 pl[0] = pp;
10078 pl[1] = NULL;
10079 return (0);
10080 }
10081
10082 if (pp != NULL)
10083 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
10084
10085 return (error);
10086 }
10087
10088 static void
10089 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg,
10090 cred_t *cr)
10091 {
10092 int error;
10093 page_t *pp;
10094 u_offset_t io_off;
10095 size_t io_len;
10096 struct buf *bp;
10097 uint_t bsize, blksize;
10098 rnode4_t *rp = VTOR4(vp);
10099 page_t *savepp;
10100
10101 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
10102
10103 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
10104
10105 mutex_enter(&rp->r_statelock);
10106 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) {
10107 /*
10108 * If less than a block left in file read less
10109 * than a block.
10110 */
10111 blksize = rp->r_size - blkoff;
10112 } else
10113 blksize = bsize;
10114 mutex_exit(&rp->r_statelock);
10115
10116 pp = pvn_read_kluster(vp, blkoff, segkmap, addr,
10117 &io_off, &io_len, blkoff, blksize, 1);
10118 /*
10119 * The isra flag passed to the kluster function is 1, we may have
10120 * gotten a return value of NULL for a variety of reasons (# of free
10121 * pages < minfree, someone entered the page on the vnode etc). In all
10122 * cases, we want to punt on the readahead.
10123 */
10124 if (pp == NULL)
10125 return;
10126
10127 /*
10128 * Now round the request size up to page boundaries.
10129 * This ensures that the entire page will be
10130 * initialized to zeroes if EOF is encountered.
10131 */
10132 io_len = ptob(btopr(io_len));
10133
10134 bp = pageio_setup(pp, io_len, vp, B_READ);
10135 ASSERT(bp != NULL);
10136
10137 /*
10138 * pageio_setup should have set b_addr to 0. This is correct since
10139 * we want to do I/O on a page boundary. bp_mapin() will use this addr
10140 * to calculate an offset, and then set b_addr to the kernel virtual
10141 * address it allocated for us.
10142 */
10143 ASSERT(bp->b_un.b_addr == 0);
10144
10145 bp->b_edev = 0;
10146 bp->b_dev = 0;
10147 bp->b_lblkno = lbtodb(io_off);
10148 bp->b_file = vp;
10149 bp->b_offset = (offset_t)blkoff;
10150 bp_mapin(bp);
10151
10152 /*
10153 * If doing a write beyond what we believe is EOF, don't bother trying
10154 * to read the pages from the server, we'll just zero the pages here.
10155 * We don't check that the rw flag is S_WRITE here because some
10156 * implementations may attempt a read access to the buffer before
10157 * copying data.
10158 */
10159 mutex_enter(&rp->r_statelock);
10160 if (io_off >= rp->r_size && seg == segkmap) {
10161 mutex_exit(&rp->r_statelock);
10162 bzero(bp->b_un.b_addr, io_len);
10163 error = 0;
10164 } else {
10165 mutex_exit(&rp->r_statelock);
10166 error = nfs4_bio(bp, NULL, cr, TRUE);
10167 if (error == NFS_EOF)
10168 error = 0;
10169 }
10170
10171 /*
10172 * Unmap the buffer before freeing it.
10173 */
10174 bp_mapout(bp);
10175 pageio_done(bp);
10176
10177 savepp = pp;
10178 do {
10179 pp->p_fsdata = C_NOCOMMIT;
10180 } while ((pp = pp->p_next) != savepp);
10181
10182 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ);
10183
10184 /*
10185 * In case of error set readahead offset
10186 * to the lowest offset.
10187 * pvn_read_done() calls VN_DISPOSE to destroy the pages
10188 */
10189 if (error && rp->r_nextr > io_off) {
10190 mutex_enter(&rp->r_statelock);
10191 if (rp->r_nextr > io_off)
10192 rp->r_nextr = io_off;
10193 mutex_exit(&rp->r_statelock);
10194 }
10195 }
10196
10197 /*
10198 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE}
10199 * If len == 0, do from off to EOF.
10200 *
10201 * The normal cases should be len == 0 && off == 0 (entire vp list) or
10202 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
10203 * (from pageout).
10204 */
10205 /* ARGSUSED */
10206 static int
10207 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
10208 caller_context_t *ct)
10209 {
10210 int error;
10211 rnode4_t *rp;
10212
10213 ASSERT(cr != NULL);
10214
10215 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone)
10216 return (EIO);
10217
10218 rp = VTOR4(vp);
10219 if (IS_SHADOW(vp, rp))
10220 vp = RTOV4(rp);
10221
10222 /*
10223 * XXX - Why should this check be made here?
10224 */
10225 if (vp->v_flag & VNOMAP)
10226 return (ENOSYS);
10227
10228 if (len == 0 && !(flags & B_INVAL) &&
10229 (vp->v_vfsp->vfs_flag & VFS_RDONLY))
10230 return (0);
10231
10232 mutex_enter(&rp->r_statelock);
10233 rp->r_count++;
10234 mutex_exit(&rp->r_statelock);
10235 error = nfs4_putpages(vp, off, len, flags, cr);
10236 mutex_enter(&rp->r_statelock);
10237 rp->r_count--;
10238 cv_broadcast(&rp->r_cv);
10239 mutex_exit(&rp->r_statelock);
10240
10241 return (error);
10242 }
10243
10244 /*
10245 * Write out a single page, possibly klustering adjacent dirty pages.
10246 */
10247 int
10248 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
10249 int flags, cred_t *cr)
10250 {
10251 u_offset_t io_off;
10252 u_offset_t lbn_off;
10253 u_offset_t lbn;
10254 size_t io_len;
10255 uint_t bsize;
10256 int error;
10257 rnode4_t *rp;
10258
10259 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY));
10260 ASSERT(pp != NULL);
10261 ASSERT(cr != NULL);
10262 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone);
10263
10264 rp = VTOR4(vp);
10265 ASSERT(rp->r_count > 0);
10266 ASSERT(!IS_SHADOW(vp, rp));
10267
10268 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
10269 lbn = pp->p_offset / bsize;
10270 lbn_off = lbn * bsize;
10271
10272 /*
10273 * Find a kluster that fits in one block, or in
10274 * one page if pages are bigger than blocks. If
10275 * there is less file space allocated than a whole
10276 * page, we'll shorten the i/o request below.
10277 */
10278 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off,
10279 roundup(bsize, PAGESIZE), flags);
10280
10281 /*
10282 * pvn_write_kluster shouldn't have returned a page with offset
10283 * behind the original page we were given. Verify that.
10284 */
10285 ASSERT((pp->p_offset / bsize) >= lbn);
10286
10287 /*
10288 * Now pp will have the list of kept dirty pages marked for
10289 * write back. It will also handle invalidation and freeing
10290 * of pages that are not dirty. Check for page length rounding
10291 * problems.
10292 */
10293 if (io_off + io_len > lbn_off + bsize) {
10294 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE);
10295 io_len = lbn_off + bsize - io_off;
10296 }
10297 /*
10298 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a
10299 * consistent value of r_size. R4MODINPROGRESS is set in writerp4().
10300 * When R4MODINPROGRESS is set it indicates that a uiomove() is in
10301 * progress and the r_size has not been made consistent with the
10302 * new size of the file. When the uiomove() completes the r_size is
10303 * updated and the R4MODINPROGRESS flag is cleared.
10304 *
10305 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a
10306 * consistent value of r_size. Without this handshaking, it is
10307 * possible that nfs4_bio() picks up the old value of r_size
10308 * before the uiomove() in writerp4() completes. This will result
10309 * in the write through nfs4_bio() being dropped.
10310 *
10311 * More precisely, there is a window between the time the uiomove()
10312 * completes and the time the r_size is updated. If a VOP_PUTPAGE()
10313 * operation intervenes in this window, the page will be picked up,
10314 * because it is dirty (it will be unlocked, unless it was
10315 * pagecreate'd). When the page is picked up as dirty, the dirty
10316 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is
10317 * checked. This will still be the old size. Therefore the page will
10318 * not be written out. When segmap_release() calls VOP_PUTPAGE(),
10319 * the page will be found to be clean and the write will be dropped.
10320 */
10321 if (rp->r_flags & R4MODINPROGRESS) {
10322 mutex_enter(&rp->r_statelock);
10323 if ((rp->r_flags & R4MODINPROGRESS) &&
10324 rp->r_modaddr + MAXBSIZE > io_off &&
10325 rp->r_modaddr < io_off + io_len) {
10326 page_t *plist;
10327 /*
10328 * A write is in progress for this region of the file.
10329 * If we did not detect R4MODINPROGRESS here then this
10330 * path through nfs_putapage() would eventually go to
10331 * nfs4_bio() and may not write out all of the data
10332 * in the pages. We end up losing data. So we decide
10333 * to set the modified bit on each page in the page
10334 * list and mark the rnode with R4DIRTY. This write
10335 * will be restarted at some later time.
10336 */
10337 plist = pp;
10338 while (plist != NULL) {
10339 pp = plist;
10340 page_sub(&plist, pp);
10341 hat_setmod(pp);
10342 page_io_unlock(pp);
10343 page_unlock(pp);
10344 }
10345 rp->r_flags |= R4DIRTY;
10346 mutex_exit(&rp->r_statelock);
10347 if (offp)
10348 *offp = io_off;
10349 if (lenp)
10350 *lenp = io_len;
10351 return (0);
10352 }
10353 mutex_exit(&rp->r_statelock);
10354 }
10355
10356 if (flags & B_ASYNC) {
10357 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr,
10358 nfs4_sync_putapage);
10359 } else
10360 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr);
10361
10362 if (offp)
10363 *offp = io_off;
10364 if (lenp)
10365 *lenp = io_len;
10366 return (error);
10367 }
10368
10369 static int
10370 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
10371 int flags, cred_t *cr)
10372 {
10373 int error;
10374 rnode4_t *rp;
10375
10376 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
10377
10378 flags |= B_WRITE;
10379
10380 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
10381
10382 rp = VTOR4(vp);
10383
10384 if ((error == ENOSPC || error == EDQUOT || error == EFBIG ||
10385 error == EACCES) &&
10386 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) {
10387 if (!(rp->r_flags & R4OUTOFSPACE)) {
10388 mutex_enter(&rp->r_statelock);
10389 rp->r_flags |= R4OUTOFSPACE;
10390 mutex_exit(&rp->r_statelock);
10391 }
10392 flags |= B_ERROR;
10393 pvn_write_done(pp, flags);
10394 /*
10395 * If this was not an async thread, then try again to
10396 * write out the pages, but this time, also destroy
10397 * them whether or not the write is successful. This
10398 * will prevent memory from filling up with these
10399 * pages and destroying them is the only alternative
10400 * if they can't be written out.
10401 *
10402 * Don't do this if this is an async thread because
10403 * when the pages are unlocked in pvn_write_done,
10404 * some other thread could have come along, locked
10405 * them, and queued for an async thread. It would be
10406 * possible for all of the async threads to be tied
10407 * up waiting to lock the pages again and they would
10408 * all already be locked and waiting for an async
10409 * thread to handle them. Deadlock.
10410 */
10411 if (!(flags & B_ASYNC)) {
10412 error = nfs4_putpage(vp, io_off, io_len,
10413 B_INVAL | B_FORCE, cr, NULL);
10414 }
10415 } else {
10416 if (error)
10417 flags |= B_ERROR;
10418 else if (rp->r_flags & R4OUTOFSPACE) {
10419 mutex_enter(&rp->r_statelock);
10420 rp->r_flags &= ~R4OUTOFSPACE;
10421 mutex_exit(&rp->r_statelock);
10422 }
10423 pvn_write_done(pp, flags);
10424 if (freemem < desfree)
10425 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr,
10426 NFS4_WRITE_NOWAIT);
10427 }
10428
10429 return (error);
10430 }
10431
10432 #ifdef DEBUG
10433 int nfs4_force_open_before_mmap = 0;
10434 #endif
10435
10436 /* ARGSUSED */
10437 static int
10438 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
10439 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
10440 caller_context_t *ct)
10441 {
10442 struct segvn_crargs vn_a;
10443 int error = 0;
10444 rnode4_t *rp = VTOR4(vp);
10445 mntinfo4_t *mi = VTOMI4(vp);
10446
10447 if (nfs_zone() != VTOMI4(vp)->mi_zone)
10448 return (EIO);
10449
10450 if (vp->v_flag & VNOMAP)
10451 return (ENOSYS);
10452
10453 if (off < 0 || (off + len) < 0)
10454 return (ENXIO);
10455
10456 if (vp->v_type != VREG)
10457 return (ENODEV);
10458
10459 /*
10460 * If the file is delegated to the client don't do anything.
10461 * If the file is not delegated, then validate the data cache.
10462 */
10463 mutex_enter(&rp->r_statev4_lock);
10464 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) {
10465 mutex_exit(&rp->r_statev4_lock);
10466 error = nfs4_validate_caches(vp, cr);
10467 if (error)
10468 return (error);
10469 } else {
10470 mutex_exit(&rp->r_statev4_lock);
10471 }
10472
10473 /*
10474 * Check to see if the vnode is currently marked as not cachable.
10475 * This means portions of the file are locked (through VOP_FRLOCK).
10476 * In this case the map request must be refused. We use
10477 * rp->r_lkserlock to avoid a race with concurrent lock requests.
10478 *
10479 * Atomically increment r_inmap after acquiring r_rwlock. The
10480 * idea here is to acquire r_rwlock to block read/write and
10481 * not to protect r_inmap. r_inmap will inform nfs4_read/write()
10482 * that we are in nfs4_map(). Now, r_rwlock is acquired in order
10483 * and we can prevent the deadlock that would have occurred
10484 * when nfs4_addmap() would have acquired it out of order.
10485 *
10486 * Since we are not protecting r_inmap by any lock, we do not
10487 * hold any lock when we decrement it. We atomically decrement
10488 * r_inmap after we release r_lkserlock.
10489 */
10490
10491 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR4(vp)))
10492 return (EINTR);
10493 atomic_add_int(&rp->r_inmap, 1);
10494 nfs_rw_exit(&rp->r_rwlock);
10495
10496 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) {
10497 atomic_add_int(&rp->r_inmap, -1);
10498 return (EINTR);
10499 }
10500
10501
10502 if (vp->v_flag & VNOCACHE) {
10503 error = EAGAIN;
10504 goto done;
10505 }
10506
10507 /*
10508 * Don't allow concurrent locks and mapping if mandatory locking is
10509 * enabled.
10510 */
10511 if (flk_has_remote_locks(vp)) {
10512 struct vattr va;
10513 va.va_mask = AT_MODE;
10514 error = nfs4getattr(vp, &va, cr);
10515 if (error != 0)
10516 goto done;
10517 if (MANDLOCK(vp, va.va_mode)) {
10518 error = EAGAIN;
10519 goto done;
10520 }
10521 }
10522
10523 /*
10524 * It is possible that the rnode has a lost lock request that we
10525 * are still trying to recover, and that the request conflicts with
10526 * this map request.
10527 *
10528 * An alternative approach would be for nfs4_safemap() to consider
10529 * queued lock requests when deciding whether to set or clear
10530 * VNOCACHE. This would require the frlock code path to call
10531 * nfs4_safemap() after enqueing a lost request.
10532 */
10533 if (nfs4_map_lost_lock_conflict(vp)) {
10534 error = EAGAIN;
10535 goto done;
10536 }
10537
10538 as_rangelock(as);
10539 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
10540 if (error != 0) {
10541 as_rangeunlock(as);
10542 goto done;
10543 }
10544
10545 if (vp->v_type == VREG) {
10546 /*
10547 * We need to retrieve the open stream
10548 */
10549 nfs4_open_stream_t *osp = NULL;
10550 nfs4_open_owner_t *oop = NULL;
10551
10552 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
10553 if (oop != NULL) {
10554 /* returns with 'os_sync_lock' held */
10555 osp = find_open_stream(oop, rp);
10556 open_owner_rele(oop);
10557 }
10558 if (osp == NULL) {
10559 #ifdef DEBUG
10560 if (nfs4_force_open_before_mmap) {
10561 error = EIO;
10562 goto done;
10563 }
10564 #endif
10565 /* returns with 'os_sync_lock' held */
10566 error = open_and_get_osp(vp, cr, &osp);
10567 if (osp == NULL) {
10568 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE,
10569 "nfs4_map: we tried to OPEN the file "
10570 "but again no osp, so fail with EIO"));
10571 goto done;
10572 }
10573 }
10574
10575 if (osp->os_failed_reopen) {
10576 mutex_exit(&osp->os_sync_lock);
10577 open_stream_rele(osp, rp);
10578 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE,
10579 "nfs4_map: os_failed_reopen set on "
10580 "osp %p, cr %p, rp %s", (void *)osp,
10581 (void *)cr, rnode4info(rp)));
10582 error = EIO;
10583 goto done;
10584 }
10585 mutex_exit(&osp->os_sync_lock);
10586 open_stream_rele(osp, rp);
10587 }
10588
10589 vn_a.vp = vp;
10590 vn_a.offset = off;
10591 vn_a.type = (flags & MAP_TYPE);
10592 vn_a.prot = (uchar_t)prot;
10593 vn_a.maxprot = (uchar_t)maxprot;
10594 vn_a.flags = (flags & ~MAP_TYPE);
10595 vn_a.cred = cr;
10596 vn_a.amp = NULL;
10597 vn_a.szc = 0;
10598 vn_a.lgrp_mem_policy_flags = 0;
10599
10600 error = as_map(as, *addrp, len, segvn_create, &vn_a);
10601 as_rangeunlock(as);
10602
10603 done:
10604 nfs_rw_exit(&rp->r_lkserlock);
10605 atomic_add_int(&rp->r_inmap, -1);
10606 return (error);
10607 }
10608
10609 /*
10610 * We're most likely dealing with a kernel module that likes to READ
10611 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets
10612 * officially OPEN the file to create the necessary client state
10613 * for bookkeeping of os_mmap_read/write counts.
10614 *
10615 * Since VOP_MAP only passes in a pointer to the vnode rather than
10616 * a double pointer, we can't handle the case where nfs4open_otw()
10617 * returns a different vnode than the one passed into VOP_MAP (since
10618 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case,
10619 * we return NULL and let nfs4_map() fail. Note: the only case where
10620 * this should happen is if the file got removed and replaced with the
10621 * same name on the server (in addition to the fact that we're trying
10622 * to VOP_MAP withouth VOP_OPENing the file in the first place).
10623 */
10624 static int
10625 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp)
10626 {
10627 rnode4_t *rp, *drp;
10628 vnode_t *dvp, *open_vp;
10629 char file_name[MAXNAMELEN];
10630 int just_created;
10631 nfs4_open_stream_t *osp;
10632 nfs4_open_owner_t *oop;
10633 int error;
10634
10635 *ospp = NULL;
10636 open_vp = map_vp;
10637
10638 rp = VTOR4(open_vp);
10639 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0)
10640 return (error);
10641 drp = VTOR4(dvp);
10642
10643 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) {
10644 VN_RELE(dvp);
10645 return (EINTR);
10646 }
10647
10648 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) {
10649 nfs_rw_exit(&drp->r_rwlock);
10650 VN_RELE(dvp);
10651 return (error);
10652 }
10653
10654 mutex_enter(&rp->r_statev4_lock);
10655 if (rp->created_v4) {
10656 rp->created_v4 = 0;
10657 mutex_exit(&rp->r_statev4_lock);
10658
10659 dnlc_update(dvp, file_name, open_vp);
10660 /* This is needed so we don't bump the open ref count */
10661 just_created = 1;
10662 } else {
10663 mutex_exit(&rp->r_statev4_lock);
10664 just_created = 0;
10665 }
10666
10667 VN_HOLD(map_vp);
10668
10669 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0,
10670 just_created);
10671 if (error) {
10672 nfs_rw_exit(&drp->r_rwlock);
10673 VN_RELE(dvp);
10674 VN_RELE(map_vp);
10675 return (error);
10676 }
10677
10678 nfs_rw_exit(&drp->r_rwlock);
10679 VN_RELE(dvp);
10680
10681 /*
10682 * If nfs4open_otw() returned a different vnode then "undo"
10683 * the open and return failure to the caller.
10684 */
10685 if (!VN_CMP(open_vp, map_vp)) {
10686 nfs4_error_t e;
10687
10688 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: "
10689 "open returned a different vnode"));
10690 /*
10691 * If there's an error, ignore it,
10692 * and let VOP_INACTIVE handle it.
10693 */
10694 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e,
10695 CLOSE_NORM, 0, 0, 0);
10696 VN_RELE(map_vp);
10697 return (EIO);
10698 }
10699
10700 VN_RELE(map_vp);
10701
10702 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp));
10703 if (!oop) {
10704 nfs4_error_t e;
10705
10706 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: "
10707 "no open owner"));
10708 /*
10709 * If there's an error, ignore it,
10710 * and let VOP_INACTIVE handle it.
10711 */
10712 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e,
10713 CLOSE_NORM, 0, 0, 0);
10714 return (EIO);
10715 }
10716 osp = find_open_stream(oop, rp);
10717 open_owner_rele(oop);
10718 *ospp = osp;
10719 return (0);
10720 }
10721
10722 /*
10723 * Please be aware that when this function is called, the address space write
10724 * a_lock is held. Do not put over the wire calls in this function.
10725 */
10726 /* ARGSUSED */
10727 static int
10728 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
10729 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
10730 caller_context_t *ct)
10731 {
10732 rnode4_t *rp;
10733 int error = 0;
10734 mntinfo4_t *mi;
10735
10736 mi = VTOMI4(vp);
10737 rp = VTOR4(vp);
10738
10739 if (nfs_zone() != mi->mi_zone)
10740 return (EIO);
10741 if (vp->v_flag & VNOMAP)
10742 return (ENOSYS);
10743
10744 /*
10745 * Don't need to update the open stream first, since this
10746 * mmap can't add any additional share access that isn't
10747 * already contained in the open stream (for the case where we
10748 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't
10749 * take into account os_mmap_read[write] counts).
10750 */
10751 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len));
10752
10753 if (vp->v_type == VREG) {
10754 /*
10755 * We need to retrieve the open stream and update the counts.
10756 * If there is no open stream here, something is wrong.
10757 */
10758 nfs4_open_stream_t *osp = NULL;
10759 nfs4_open_owner_t *oop = NULL;
10760
10761 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
10762 if (oop != NULL) {
10763 /* returns with 'os_sync_lock' held */
10764 osp = find_open_stream(oop, rp);
10765 open_owner_rele(oop);
10766 }
10767 if (osp == NULL) {
10768 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE,
10769 "nfs4_addmap: we should have an osp"
10770 "but we don't, so fail with EIO"));
10771 error = EIO;
10772 goto out;
10773 }
10774
10775 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p,"
10776 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot));
10777
10778 /*
10779 * Update the map count in the open stream.
10780 * This is necessary in the case where we
10781 * open/mmap/close/, then the server reboots, and we
10782 * attempt to reopen. If the mmap doesn't add share
10783 * access then we send an invalid reopen with
10784 * access = NONE.
10785 *
10786 * We need to specifically check each PROT_* so a mmap
10787 * call of (PROT_WRITE | PROT_EXEC) will ensure us both
10788 * read and write access. A simple comparison of prot
10789 * to ~PROT_WRITE to determine read access is insufficient
10790 * since prot can be |= with PROT_USER, etc.
10791 */
10792
10793 /*
10794 * Unless we're MAP_SHARED, no sense in adding os_mmap_write
10795 */
10796 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE))
10797 osp->os_mmap_write += btopr(len);
10798 if (maxprot & PROT_READ)
10799 osp->os_mmap_read += btopr(len);
10800 if (maxprot & PROT_EXEC)
10801 osp->os_mmap_read += btopr(len);
10802 /*
10803 * Ensure that os_mmap_read gets incremented, even if
10804 * maxprot were to look like PROT_NONE.
10805 */
10806 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) &&
10807 !(maxprot & PROT_EXEC))
10808 osp->os_mmap_read += btopr(len);
10809 osp->os_mapcnt += btopr(len);
10810 mutex_exit(&osp->os_sync_lock);
10811 open_stream_rele(osp, rp);
10812 }
10813
10814 out:
10815 /*
10816 * If we got an error, then undo our
10817 * incrementing of 'r_mapcnt'.
10818 */
10819
10820 if (error) {
10821 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len));
10822 ASSERT(rp->r_mapcnt >= 0);
10823 }
10824 return (error);
10825 }
10826
10827 /* ARGSUSED */
10828 static int
10829 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct)
10830 {
10831
10832 return (VTOR4(vp1) == VTOR4(vp2));
10833 }
10834
10835 /* ARGSUSED */
10836 static int
10837 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
10838 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr,
10839 caller_context_t *ct)
10840 {
10841 int rc;
10842 u_offset_t start, end;
10843 rnode4_t *rp;
10844 int error = 0, intr = INTR4(vp);
10845 nfs4_error_t e;
10846
10847 if (nfs_zone() != VTOMI4(vp)->mi_zone)
10848 return (EIO);
10849
10850 /* check for valid cmd parameter */
10851 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW)
10852 return (EINVAL);
10853
10854 /* Verify l_type. */
10855 switch (bfp->l_type) {
10856 case F_RDLCK:
10857 if (cmd != F_GETLK && !(flag & FREAD))
10858 return (EBADF);
10859 break;
10860 case F_WRLCK:
10861 if (cmd != F_GETLK && !(flag & FWRITE))
10862 return (EBADF);
10863 break;
10864 case F_UNLCK:
10865 intr = 0;
10866 break;
10867
10868 default:
10869 return (EINVAL);
10870 }
10871
10872 /* check the validity of the lock range */
10873 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset))
10874 return (rc);
10875 if (rc = flk_check_lock_data(start, end, MAXEND))
10876 return (rc);
10877
10878 /*
10879 * If the filesystem is mounted using local locking, pass the
10880 * request off to the local locking code.
10881 */
10882 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) {
10883 if (cmd == F_SETLK || cmd == F_SETLKW) {
10884 /*
10885 * For complete safety, we should be holding
10886 * r_lkserlock. However, we can't call
10887 * nfs4_safelock and then fs_frlock while
10888 * holding r_lkserlock, so just invoke
10889 * nfs4_safelock and expect that this will
10890 * catch enough of the cases.
10891 */
10892 if (!nfs4_safelock(vp, bfp, cr))
10893 return (EAGAIN);
10894 }
10895 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
10896 }
10897
10898 rp = VTOR4(vp);
10899
10900 /*
10901 * Check whether the given lock request can proceed, given the
10902 * current file mappings.
10903 */
10904 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr))
10905 return (EINTR);
10906 if (cmd == F_SETLK || cmd == F_SETLKW) {
10907 if (!nfs4_safelock(vp, bfp, cr)) {
10908 rc = EAGAIN;
10909 goto done;
10910 }
10911 }
10912
10913 /*
10914 * Flush the cache after waiting for async I/O to finish. For new
10915 * locks, this is so that the process gets the latest bits from the
10916 * server. For unlocks, this is so that other clients see the
10917 * latest bits once the file has been unlocked. If currently dirty
10918 * pages can't be flushed, then don't allow a lock to be set. But
10919 * allow unlocks to succeed, to avoid having orphan locks on the
10920 * server.
10921 */
10922 if (cmd != F_GETLK) {
10923 mutex_enter(&rp->r_statelock);
10924 while (rp->r_count > 0) {
10925 if (intr) {
10926 klwp_t *lwp = ttolwp(curthread);
10927
10928 if (lwp != NULL)
10929 lwp->lwp_nostop++;
10930 if (cv_wait_sig(&rp->r_cv,
10931 &rp->r_statelock) == 0) {
10932 if (lwp != NULL)
10933 lwp->lwp_nostop--;
10934 rc = EINTR;
10935 break;
10936 }
10937 if (lwp != NULL)
10938 lwp->lwp_nostop--;
10939 } else
10940 cv_wait(&rp->r_cv, &rp->r_statelock);
10941 }
10942 mutex_exit(&rp->r_statelock);
10943 if (rc != 0)
10944 goto done;
10945 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct);
10946 if (error) {
10947 if (error == ENOSPC || error == EDQUOT) {
10948 mutex_enter(&rp->r_statelock);
10949 if (!rp->r_error)
10950 rp->r_error = error;
10951 mutex_exit(&rp->r_statelock);
10952 }
10953 if (bfp->l_type != F_UNLCK) {
10954 rc = ENOLCK;
10955 goto done;
10956 }
10957 }
10958 }
10959
10960 /*
10961 * Call the lock manager to do the real work of contacting
10962 * the server and obtaining the lock.
10963 */
10964 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset,
10965 cr, &e, NULL, NULL);
10966 rc = e.error;
10967
10968 if (rc == 0)
10969 nfs4_lockcompletion(vp, cmd);
10970
10971 done:
10972 nfs_rw_exit(&rp->r_lkserlock);
10973
10974 return (rc);
10975 }
10976
10977 /*
10978 * Free storage space associated with the specified vnode. The portion
10979 * to be freed is specified by bfp->l_start and bfp->l_len (already
10980 * normalized to a "whence" of 0).
10981 *
10982 * This is an experimental facility whose continued existence is not
10983 * guaranteed. Currently, we only support the special case
10984 * of l_len == 0, meaning free to end of file.
10985 */
10986 /* ARGSUSED */
10987 static int
10988 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
10989 offset_t offset, cred_t *cr, caller_context_t *ct)
10990 {
10991 int error;
10992
10993 if (nfs_zone() != VTOMI4(vp)->mi_zone)
10994 return (EIO);
10995 ASSERT(vp->v_type == VREG);
10996 if (cmd != F_FREESP)
10997 return (EINVAL);
10998
10999 error = convoff(vp, bfp, 0, offset);
11000 if (!error) {
11001 ASSERT(bfp->l_start >= 0);
11002 if (bfp->l_len == 0) {
11003 struct vattr va;
11004
11005 va.va_mask = AT_SIZE;
11006 va.va_size = bfp->l_start;
11007 error = nfs4setattr(vp, &va, 0, cr, NULL);
11008
11009 if (error == 0 && bfp->l_start == 0)
11010 vnevent_truncate(vp, ct);
11011 } else
11012 error = EINVAL;
11013 }
11014
11015 return (error);
11016 }
11017
11018 /* ARGSUSED */
11019 int
11020 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct)
11021 {
11022 rnode4_t *rp;
11023 rp = VTOR4(vp);
11024
11025 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) {
11026 vp = RTOV4(rp);
11027 }
11028 *vpp = vp;
11029 return (0);
11030 }
11031
11032 /*
11033 * Setup and add an address space callback to do the work of the delmap call.
11034 * The callback will (and must be) deleted in the actual callback function.
11035 *
11036 * This is done in order to take care of the problem that we have with holding
11037 * the address space's a_lock for a long period of time (e.g. if the NFS server
11038 * is down). Callbacks will be executed in the address space code while the
11039 * a_lock is not held. Holding the address space's a_lock causes things such
11040 * as ps and fork to hang because they are trying to acquire this lock as well.
11041 */
11042 /* ARGSUSED */
11043 static int
11044 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
11045 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
11046 caller_context_t *ct)
11047 {
11048 int caller_found;
11049 int error;
11050 rnode4_t *rp;
11051 nfs4_delmap_args_t *dmapp;
11052 nfs4_delmapcall_t *delmap_call;
11053
11054 if (vp->v_flag & VNOMAP)
11055 return (ENOSYS);
11056
11057 /*
11058 * A process may not change zones if it has NFS pages mmap'ed
11059 * in, so we can't legitimately get here from the wrong zone.
11060 */
11061 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11062
11063 rp = VTOR4(vp);
11064
11065 /*
11066 * The way that the address space of this process deletes its mapping
11067 * of this file is via the following call chains:
11068 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap()
11069 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap()
11070 *
11071 * With the use of address space callbacks we are allowed to drop the
11072 * address space lock, a_lock, while executing the NFS operations that
11073 * need to go over the wire. Returning EAGAIN to the caller of this
11074 * function is what drives the execution of the callback that we add
11075 * below. The callback will be executed by the address space code
11076 * after dropping the a_lock. When the callback is finished, since
11077 * we dropped the a_lock, it must be re-acquired and segvn_unmap()
11078 * is called again on the same segment to finish the rest of the work
11079 * that needs to happen during unmapping.
11080 *
11081 * This action of calling back into the segment driver causes
11082 * nfs4_delmap() to get called again, but since the callback was
11083 * already executed at this point, it already did the work and there
11084 * is nothing left for us to do.
11085 *
11086 * To Summarize:
11087 * - The first time nfs4_delmap is called by the current thread is when
11088 * we add the caller associated with this delmap to the delmap caller
11089 * list, add the callback, and return EAGAIN.
11090 * - The second time in this call chain when nfs4_delmap is called we
11091 * will find this caller in the delmap caller list and realize there
11092 * is no more work to do thus removing this caller from the list and
11093 * returning the error that was set in the callback execution.
11094 */
11095 caller_found = nfs4_find_and_delete_delmapcall(rp, &error);
11096 if (caller_found) {
11097 /*
11098 * 'error' is from the actual delmap operations. To avoid
11099 * hangs, we need to handle the return of EAGAIN differently
11100 * since this is what drives the callback execution.
11101 * In this case, we don't want to return EAGAIN and do the
11102 * callback execution because there are none to execute.
11103 */
11104 if (error == EAGAIN)
11105 return (0);
11106 else
11107 return (error);
11108 }
11109
11110 /* current caller was not in the list */
11111 delmap_call = nfs4_init_delmapcall();
11112
11113 mutex_enter(&rp->r_statelock);
11114 list_insert_tail(&rp->r_indelmap, delmap_call);
11115 mutex_exit(&rp->r_statelock);
11116
11117 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP);
11118
11119 dmapp->vp = vp;
11120 dmapp->off = off;
11121 dmapp->addr = addr;
11122 dmapp->len = len;
11123 dmapp->prot = prot;
11124 dmapp->maxprot = maxprot;
11125 dmapp->flags = flags;
11126 dmapp->cr = cr;
11127 dmapp->caller = delmap_call;
11128
11129 error = as_add_callback(as, nfs4_delmap_callback, dmapp,
11130 AS_UNMAP_EVENT, addr, len, KM_SLEEP);
11131
11132 return (error ? error : EAGAIN);
11133 }
11134
11135 static nfs4_delmapcall_t *
11136 nfs4_init_delmapcall()
11137 {
11138 nfs4_delmapcall_t *delmap_call;
11139
11140 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP);
11141 delmap_call->call_id = curthread;
11142 delmap_call->error = 0;
11143
11144 return (delmap_call);
11145 }
11146
11147 static void
11148 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call)
11149 {
11150 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t));
11151 }
11152
11153 /*
11154 * Searches for the current delmap caller (based on curthread) in the list of
11155 * callers. If it is found, we remove it and free the delmap caller.
11156 * Returns:
11157 * 0 if the caller wasn't found
11158 * 1 if the caller was found, removed and freed. *errp will be set
11159 * to what the result of the delmap was.
11160 */
11161 static int
11162 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp)
11163 {
11164 nfs4_delmapcall_t *delmap_call;
11165
11166 /*
11167 * If the list doesn't exist yet, we create it and return
11168 * that the caller wasn't found. No list = no callers.
11169 */
11170 mutex_enter(&rp->r_statelock);
11171 if (!(rp->r_flags & R4DELMAPLIST)) {
11172 /* The list does not exist */
11173 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t),
11174 offsetof(nfs4_delmapcall_t, call_node));
11175 rp->r_flags |= R4DELMAPLIST;
11176 mutex_exit(&rp->r_statelock);
11177 return (0);
11178 } else {
11179 /* The list exists so search it */
11180 for (delmap_call = list_head(&rp->r_indelmap);
11181 delmap_call != NULL;
11182 delmap_call = list_next(&rp->r_indelmap, delmap_call)) {
11183 if (delmap_call->call_id == curthread) {
11184 /* current caller is in the list */
11185 *errp = delmap_call->error;
11186 list_remove(&rp->r_indelmap, delmap_call);
11187 mutex_exit(&rp->r_statelock);
11188 nfs4_free_delmapcall(delmap_call);
11189 return (1);
11190 }
11191 }
11192 }
11193 mutex_exit(&rp->r_statelock);
11194 return (0);
11195 }
11196
11197 /*
11198 * Remove some pages from an mmap'd vnode. Just update the
11199 * count of pages. If doing close-to-open, then flush and
11200 * commit all of the pages associated with this file.
11201 * Otherwise, start an asynchronous page flush to write out
11202 * any dirty pages. This will also associate a credential
11203 * with the rnode which can be used to write the pages.
11204 */
11205 /* ARGSUSED */
11206 static void
11207 nfs4_delmap_callback(struct as *as, void *arg, uint_t event)
11208 {
11209 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
11210 rnode4_t *rp;
11211 mntinfo4_t *mi;
11212 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg;
11213
11214 rp = VTOR4(dmapp->vp);
11215 mi = VTOMI4(dmapp->vp);
11216
11217 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len));
11218 ASSERT(rp->r_mapcnt >= 0);
11219
11220 /*
11221 * Initiate a page flush and potential commit if there are
11222 * pages, the file system was not mounted readonly, the segment
11223 * was mapped shared, and the pages themselves were writeable.
11224 */
11225 if (nfs4_has_pages(dmapp->vp) &&
11226 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) &&
11227 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) {
11228 mutex_enter(&rp->r_statelock);
11229 rp->r_flags |= R4DIRTY;
11230 mutex_exit(&rp->r_statelock);
11231 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off,
11232 dmapp->len, dmapp->cr);
11233 if (!e.error) {
11234 mutex_enter(&rp->r_statelock);
11235 e.error = rp->r_error;
11236 rp->r_error = 0;
11237 mutex_exit(&rp->r_statelock);
11238 }
11239 } else
11240 e.error = 0;
11241
11242 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO))
11243 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len,
11244 B_INVAL, dmapp->cr, NULL);
11245
11246 if (e.error) {
11247 e.stat = puterrno4(e.error);
11248 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0,
11249 OP_COMMIT, FALSE, NULL, 0, dmapp->vp);
11250 dmapp->caller->error = e.error;
11251 }
11252
11253 /* Check to see if we need to close the file */
11254
11255 if (dmapp->vp->v_type == VREG) {
11256 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e,
11257 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags);
11258
11259 if (e.error != 0 || e.stat != NFS4_OK) {
11260 /*
11261 * Since it is possible that e.error == 0 and
11262 * e.stat != NFS4_OK (and vice versa),
11263 * we do the proper checking in order to get both
11264 * e.error and e.stat reporting the correct info.
11265 */
11266 if (e.stat == NFS4_OK)
11267 e.stat = puterrno4(e.error);
11268 if (e.error == 0)
11269 e.error = geterrno4(e.stat);
11270
11271 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0,
11272 OP_CLOSE, FALSE, NULL, 0, dmapp->vp);
11273 dmapp->caller->error = e.error;
11274 }
11275 }
11276
11277 (void) as_delete_callback(as, arg);
11278 kmem_free(dmapp, sizeof (nfs4_delmap_args_t));
11279 }
11280
11281
11282 static uint_t
11283 fattr4_maxfilesize_to_bits(uint64_t ll)
11284 {
11285 uint_t l = 1;
11286
11287 if (ll == 0) {
11288 return (0);
11289 }
11290
11291 if (ll & 0xffffffff00000000) {
11292 l += 32; ll >>= 32;
11293 }
11294 if (ll & 0xffff0000) {
11295 l += 16; ll >>= 16;
11296 }
11297 if (ll & 0xff00) {
11298 l += 8; ll >>= 8;
11299 }
11300 if (ll & 0xf0) {
11301 l += 4; ll >>= 4;
11302 }
11303 if (ll & 0xc) {
11304 l += 2; ll >>= 2;
11305 }
11306 if (ll & 0x2) {
11307 l += 1;
11308 }
11309 return (l);
11310 }
11311
11312 static int
11313 nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr)
11314 {
11315 vnode_t *avp = NULL;
11316 int error;
11317
11318 if ((error = nfs4lookup_xattr(vp, "", &avp,
11319 LOOKUP_XATTR, cr)) == 0)
11320 error = do_xattr_exists_check(avp, valp, cr);
11321 if (avp)
11322 VN_RELE(avp);
11323
11324 return (error);
11325 }
11326
11327 /* ARGSUSED */
11328 int
11329 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
11330 caller_context_t *ct)
11331 {
11332 int error;
11333 hrtime_t t;
11334 rnode4_t *rp;
11335 nfs4_ga_res_t gar;
11336 nfs4_ga_ext_res_t ger;
11337
11338 gar.n4g_ext_res = &ger;
11339
11340 if (nfs_zone() != VTOMI4(vp)->mi_zone)
11341 return (EIO);
11342 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) {
11343 *valp = MAXPATHLEN;
11344 return (0);
11345 }
11346 if (cmd == _PC_ACL_ENABLED) {
11347 *valp = _ACL_ACE_ENABLED;
11348 return (0);
11349 }
11350
11351 rp = VTOR4(vp);
11352 if (cmd == _PC_XATTR_EXISTS) {
11353 /*
11354 * The existence of the xattr directory is not sufficient
11355 * for determining whether generic user attributes exists.
11356 * The attribute directory could only be a transient directory
11357 * used for Solaris sysattr support. Do a small readdir
11358 * to verify if the only entries are sysattrs or not.
11359 *
11360 * pc4_xattr_valid can be only be trusted when r_xattr_dir
11361 * is NULL. Once the xadir vp exists, we can create xattrs,
11362 * and we don't have any way to update the "base" object's
11363 * pc4_xattr_exists from the xattr or xadir. Maybe FEM
11364 * could help out.
11365 */
11366 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid &&
11367 rp->r_xattr_dir == NULL) {
11368 return (nfs4_have_xattrs(vp, valp, cr));
11369 }
11370 } else { /* OLD CODE */
11371 if (ATTRCACHE4_VALID(vp)) {
11372 mutex_enter(&rp->r_statelock);
11373 if (rp->r_pathconf.pc4_cache_valid) {
11374 error = 0;
11375 switch (cmd) {
11376 case _PC_FILESIZEBITS:
11377 *valp =
11378 rp->r_pathconf.pc4_filesizebits;
11379 break;
11380 case _PC_LINK_MAX:
11381 *valp =
11382 rp->r_pathconf.pc4_link_max;
11383 break;
11384 case _PC_NAME_MAX:
11385 *valp =
11386 rp->r_pathconf.pc4_name_max;
11387 break;
11388 case _PC_CHOWN_RESTRICTED:
11389 *valp =
11390 rp->r_pathconf.pc4_chown_restricted;
11391 break;
11392 case _PC_NO_TRUNC:
11393 *valp =
11394 rp->r_pathconf.pc4_no_trunc;
11395 break;
11396 default:
11397 error = EINVAL;
11398 break;
11399 }
11400 mutex_exit(&rp->r_statelock);
11401 #ifdef DEBUG
11402 nfs4_pathconf_cache_hits++;
11403 #endif
11404 return (error);
11405 }
11406 mutex_exit(&rp->r_statelock);
11407 }
11408 }
11409 #ifdef DEBUG
11410 nfs4_pathconf_cache_misses++;
11411 #endif
11412
11413 t = gethrtime();
11414
11415 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr);
11416
11417 if (error) {
11418 mutex_enter(&rp->r_statelock);
11419 rp->r_pathconf.pc4_cache_valid = FALSE;
11420 rp->r_pathconf.pc4_xattr_valid = FALSE;
11421 mutex_exit(&rp->r_statelock);
11422 return (error);
11423 }
11424
11425 /* interpret the max filesize */
11426 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits =
11427 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize);
11428
11429 /* Store the attributes we just received */
11430 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL);
11431
11432 switch (cmd) {
11433 case _PC_FILESIZEBITS:
11434 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits;
11435 break;
11436 case _PC_LINK_MAX:
11437 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max;
11438 break;
11439 case _PC_NAME_MAX:
11440 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max;
11441 break;
11442 case _PC_CHOWN_RESTRICTED:
11443 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted;
11444 break;
11445 case _PC_NO_TRUNC:
11446 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc;
11447 break;
11448 case _PC_XATTR_EXISTS:
11449 if (gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists) {
11450 if (error = nfs4_have_xattrs(vp, valp, cr))
11451 return (error);
11452 }
11453 break;
11454 default:
11455 return (EINVAL);
11456 }
11457
11458 return (0);
11459 }
11460
11461 /*
11462 * Called by async thread to do synchronous pageio. Do the i/o, wait
11463 * for it to complete, and cleanup the page list when done.
11464 */
11465 static int
11466 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
11467 int flags, cred_t *cr)
11468 {
11469 int error;
11470
11471 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11472
11473 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
11474 if (flags & B_READ)
11475 pvn_read_done(pp, (error ? B_ERROR : 0) | flags);
11476 else
11477 pvn_write_done(pp, (error ? B_ERROR : 0) | flags);
11478 return (error);
11479 }
11480
11481 /* ARGSUSED */
11482 static int
11483 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
11484 int flags, cred_t *cr, caller_context_t *ct)
11485 {
11486 int error;
11487 rnode4_t *rp;
11488
11489 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone)
11490 return (EIO);
11491
11492 if (pp == NULL)
11493 return (EINVAL);
11494
11495 rp = VTOR4(vp);
11496 mutex_enter(&rp->r_statelock);
11497 rp->r_count++;
11498 mutex_exit(&rp->r_statelock);
11499
11500 if (flags & B_ASYNC) {
11501 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr,
11502 nfs4_sync_pageio);
11503 } else
11504 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
11505 mutex_enter(&rp->r_statelock);
11506 rp->r_count--;
11507 cv_broadcast(&rp->r_cv);
11508 mutex_exit(&rp->r_statelock);
11509 return (error);
11510 }
11511
11512 /* ARGSUSED */
11513 static void
11514 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr,
11515 caller_context_t *ct)
11516 {
11517 int error;
11518 rnode4_t *rp;
11519 page_t *plist;
11520 page_t *pptr;
11521 offset3 offset;
11522 count3 len;
11523 k_sigset_t smask;
11524
11525 /*
11526 * We should get called with fl equal to either B_FREE or
11527 * B_INVAL. Any other value is illegal.
11528 *
11529 * The page that we are either supposed to free or destroy
11530 * should be exclusive locked and its io lock should not
11531 * be held.
11532 */
11533 ASSERT(fl == B_FREE || fl == B_INVAL);
11534 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
11535
11536 rp = VTOR4(vp);
11537
11538 /*
11539 * If the page doesn't need to be committed or we shouldn't
11540 * even bother attempting to commit it, then just make sure
11541 * that the p_fsdata byte is clear and then either free or
11542 * destroy the page as appropriate.
11543 */
11544 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) {
11545 pp->p_fsdata = C_NOCOMMIT;
11546 if (fl == B_FREE)
11547 page_free(pp, dn);
11548 else
11549 page_destroy(pp, dn);
11550 return;
11551 }
11552
11553 /*
11554 * If there is a page invalidation operation going on, then
11555 * if this is one of the pages being destroyed, then just
11556 * clear the p_fsdata byte and then either free or destroy
11557 * the page as appropriate.
11558 */
11559 mutex_enter(&rp->r_statelock);
11560 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) {
11561 mutex_exit(&rp->r_statelock);
11562 pp->p_fsdata = C_NOCOMMIT;
11563 if (fl == B_FREE)
11564 page_free(pp, dn);
11565 else
11566 page_destroy(pp, dn);
11567 return;
11568 }
11569
11570 /*
11571 * If we are freeing this page and someone else is already
11572 * waiting to do a commit, then just unlock the page and
11573 * return. That other thread will take care of commiting
11574 * this page. The page can be freed sometime after the
11575 * commit has finished. Otherwise, if the page is marked
11576 * as delay commit, then we may be getting called from
11577 * pvn_write_done, one page at a time. This could result
11578 * in one commit per page, so we end up doing lots of small
11579 * commits instead of fewer larger commits. This is bad,
11580 * we want do as few commits as possible.
11581 */
11582 if (fl == B_FREE) {
11583 if (rp->r_flags & R4COMMITWAIT) {
11584 page_unlock(pp);
11585 mutex_exit(&rp->r_statelock);
11586 return;
11587 }
11588 if (pp->p_fsdata == C_DELAYCOMMIT) {
11589 pp->p_fsdata = C_COMMIT;
11590 page_unlock(pp);
11591 mutex_exit(&rp->r_statelock);
11592 return;
11593 }
11594 }
11595
11596 /*
11597 * Check to see if there is a signal which would prevent an
11598 * attempt to commit the pages from being successful. If so,
11599 * then don't bother with all of the work to gather pages and
11600 * generate the unsuccessful RPC. Just return from here and
11601 * let the page be committed at some later time.
11602 */
11603 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT);
11604 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) {
11605 sigunintr(&smask);
11606 page_unlock(pp);
11607 mutex_exit(&rp->r_statelock);
11608 return;
11609 }
11610 sigunintr(&smask);
11611
11612 /*
11613 * We are starting to need to commit pages, so let's try
11614 * to commit as many as possible at once to reduce the
11615 * overhead.
11616 *
11617 * Set the `commit inprogress' state bit. We must
11618 * first wait until any current one finishes. Then
11619 * we initialize the c_pages list with this page.
11620 */
11621 while (rp->r_flags & R4COMMIT) {
11622 rp->r_flags |= R4COMMITWAIT;
11623 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
11624 rp->r_flags &= ~R4COMMITWAIT;
11625 }
11626 rp->r_flags |= R4COMMIT;
11627 mutex_exit(&rp->r_statelock);
11628 ASSERT(rp->r_commit.c_pages == NULL);
11629 rp->r_commit.c_pages = pp;
11630 rp->r_commit.c_commbase = (offset3)pp->p_offset;
11631 rp->r_commit.c_commlen = PAGESIZE;
11632
11633 /*
11634 * Gather together all other pages which can be committed.
11635 * They will all be chained off r_commit.c_pages.
11636 */
11637 nfs4_get_commit(vp);
11638
11639 /*
11640 * Clear the `commit inprogress' status and disconnect
11641 * the list of pages to be committed from the rnode.
11642 * At this same time, we also save the starting offset
11643 * and length of data to be committed on the server.
11644 */
11645 plist = rp->r_commit.c_pages;
11646 rp->r_commit.c_pages = NULL;
11647 offset = rp->r_commit.c_commbase;
11648 len = rp->r_commit.c_commlen;
11649 mutex_enter(&rp->r_statelock);
11650 rp->r_flags &= ~R4COMMIT;
11651 cv_broadcast(&rp->r_commit.c_cv);
11652 mutex_exit(&rp->r_statelock);
11653
11654 if (curproc == proc_pageout || curproc == proc_fsflush ||
11655 nfs_zone() != VTOMI4(vp)->mi_zone) {
11656 nfs4_async_commit(vp, plist, offset, len,
11657 cr, do_nfs4_async_commit);
11658 return;
11659 }
11660
11661 /*
11662 * Actually generate the COMMIT op over the wire operation.
11663 */
11664 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr);
11665
11666 /*
11667 * If we got an error during the commit, just unlock all
11668 * of the pages. The pages will get retransmitted to the
11669 * server during a putpage operation.
11670 */
11671 if (error) {
11672 while (plist != NULL) {
11673 pptr = plist;
11674 page_sub(&plist, pptr);
11675 page_unlock(pptr);
11676 }
11677 return;
11678 }
11679
11680 /*
11681 * We've tried as hard as we can to commit the data to stable
11682 * storage on the server. We just unlock the rest of the pages
11683 * and clear the commit required state. They will be put
11684 * onto the tail of the cachelist if they are nolonger
11685 * mapped.
11686 */
11687 while (plist != pp) {
11688 pptr = plist;
11689 page_sub(&plist, pptr);
11690 pptr->p_fsdata = C_NOCOMMIT;
11691 page_unlock(pptr);
11692 }
11693
11694 /*
11695 * It is possible that nfs4_commit didn't return error but
11696 * some other thread has modified the page we are going
11697 * to free/destroy.
11698 * In this case we need to rewrite the page. Do an explicit check
11699 * before attempting to free/destroy the page. If modified, needs to
11700 * be rewritten so unlock the page and return.
11701 */
11702 if (hat_ismod(pp)) {
11703 pp->p_fsdata = C_NOCOMMIT;
11704 page_unlock(pp);
11705 return;
11706 }
11707
11708 /*
11709 * Now, as appropriate, either free or destroy the page
11710 * that we were called with.
11711 */
11712 pp->p_fsdata = C_NOCOMMIT;
11713 if (fl == B_FREE)
11714 page_free(pp, dn);
11715 else
11716 page_destroy(pp, dn);
11717 }
11718
11719 /*
11720 * Commit requires that the current fh be the file written to.
11721 * The compound op structure is:
11722 * PUTFH(file), COMMIT
11723 */
11724 static int
11725 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr)
11726 {
11727 COMPOUND4args_clnt args;
11728 COMPOUND4res_clnt res;
11729 COMMIT4res *cm_res;
11730 nfs_argop4 argop[2];
11731 nfs_resop4 *resop;
11732 int doqueue;
11733 mntinfo4_t *mi;
11734 rnode4_t *rp;
11735 cred_t *cred_otw = NULL;
11736 bool_t needrecov = FALSE;
11737 nfs4_recov_state_t recov_state;
11738 nfs4_open_stream_t *osp = NULL;
11739 bool_t first_time = TRUE; /* first time getting OTW cred */
11740 bool_t last_time = FALSE; /* last time getting OTW cred */
11741 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
11742
11743 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11744
11745 rp = VTOR4(vp);
11746
11747 mi = VTOMI4(vp);
11748 recov_state.rs_flags = 0;
11749 recov_state.rs_num_retry_despite_err = 0;
11750 get_commit_cred:
11751 /*
11752 * Releases the osp, if a valid open stream is provided.
11753 * Puts a hold on the cred_otw and the new osp (if found).
11754 */
11755 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
11756 &first_time, &last_time);
11757 args.ctag = TAG_COMMIT;
11758 recov_retry:
11759 /*
11760 * Commit ops: putfh file; commit
11761 */
11762 args.array_len = 2;
11763 args.array = argop;
11764
11765 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11766 &recov_state, NULL);
11767 if (e.error) {
11768 crfree(cred_otw);
11769 if (osp != NULL)
11770 open_stream_rele(osp, rp);
11771 return (e.error);
11772 }
11773
11774 /* putfh directory */
11775 argop[0].argop = OP_CPUTFH;
11776 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
11777
11778 /* commit */
11779 argop[1].argop = OP_COMMIT;
11780 argop[1].nfs_argop4_u.opcommit.offset = offset;
11781 argop[1].nfs_argop4_u.opcommit.count = count;
11782
11783 doqueue = 1;
11784 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e);
11785
11786 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
11787 if (!needrecov && e.error) {
11788 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state,
11789 needrecov);
11790 crfree(cred_otw);
11791 if (e.error == EACCES && last_time == FALSE)
11792 goto get_commit_cred;
11793 if (osp != NULL)
11794 open_stream_rele(osp, rp);
11795 return (e.error);
11796 }
11797
11798 if (needrecov) {
11799 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
11800 NULL, OP_COMMIT, NULL, NULL, NULL) == FALSE) {
11801 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11802 &recov_state, needrecov);
11803 if (!e.error)
11804 (void) xdr_free(xdr_COMPOUND4res_clnt,
11805 (caddr_t)&res);
11806 goto recov_retry;
11807 }
11808 if (e.error) {
11809 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11810 &recov_state, needrecov);
11811 crfree(cred_otw);
11812 if (osp != NULL)
11813 open_stream_rele(osp, rp);
11814 return (e.error);
11815 }
11816 /* fall through for res.status case */
11817 }
11818
11819 if (res.status) {
11820 e.error = geterrno4(res.status);
11821 if (e.error == EACCES && last_time == FALSE) {
11822 crfree(cred_otw);
11823 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11824 &recov_state, needrecov);
11825 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
11826 goto get_commit_cred;
11827 }
11828 /*
11829 * Can't do a nfs4_purge_stale_fh here because this
11830 * can cause a deadlock. nfs4_commit can
11831 * be called from nfs4_dispose which can be called
11832 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh
11833 * can call back to pvn_vplist_dirty.
11834 */
11835 if (e.error == ESTALE) {
11836 mutex_enter(&rp->r_statelock);
11837 rp->r_flags |= R4STALE;
11838 if (!rp->r_error)
11839 rp->r_error = e.error;
11840 mutex_exit(&rp->r_statelock);
11841 PURGE_ATTRCACHE4(vp);
11842 } else {
11843 mutex_enter(&rp->r_statelock);
11844 if (!rp->r_error)
11845 rp->r_error = e.error;
11846 mutex_exit(&rp->r_statelock);
11847 }
11848 } else {
11849 ASSERT(rp->r_flags & R4HAVEVERF);
11850 resop = &res.array[1]; /* commit res */
11851 cm_res = &resop->nfs_resop4_u.opcommit;
11852 mutex_enter(&rp->r_statelock);
11853 if (cm_res->writeverf == rp->r_writeverf) {
11854 mutex_exit(&rp->r_statelock);
11855 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
11856 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11857 &recov_state, needrecov);
11858 crfree(cred_otw);
11859 if (osp != NULL)
11860 open_stream_rele(osp, rp);
11861 return (0);
11862 }
11863 nfs4_set_mod(vp);
11864 rp->r_writeverf = cm_res->writeverf;
11865 mutex_exit(&rp->r_statelock);
11866 e.error = NFS_VERF_MISMATCH;
11867 }
11868
11869 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
11870 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov);
11871 crfree(cred_otw);
11872 if (osp != NULL)
11873 open_stream_rele(osp, rp);
11874
11875 return (e.error);
11876 }
11877
11878 static void
11879 nfs4_set_mod(vnode_t *vp)
11880 {
11881 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11882
11883 /* make sure we're looking at the master vnode, not a shadow */
11884 pvn_vplist_setdirty(RTOV4(VTOR4(vp)), nfs_setmod_check);
11885 }
11886
11887 /*
11888 * This function is used to gather a page list of the pages which
11889 * can be committed on the server.
11890 *
11891 * The calling thread must have set R4COMMIT. This bit is used to
11892 * serialize access to the commit structure in the rnode. As long
11893 * as the thread has set R4COMMIT, then it can manipulate the commit
11894 * structure without requiring any other locks.
11895 *
11896 * When this function is called from nfs4_dispose() the page passed
11897 * into nfs4_dispose() will be SE_EXCL locked, and so this function
11898 * will skip it. This is not a problem since we initially add the
11899 * page to the r_commit page list.
11900 *
11901 */
11902 static void
11903 nfs4_get_commit(vnode_t *vp)
11904 {
11905 rnode4_t *rp;
11906 page_t *pp;
11907 kmutex_t *vphm;
11908
11909 rp = VTOR4(vp);
11910
11911 ASSERT(rp->r_flags & R4COMMIT);
11912
11913 /* make sure we're looking at the master vnode, not a shadow */
11914
11915 if (IS_SHADOW(vp, rp))
11916 vp = RTOV4(rp);
11917
11918 vphm = page_vnode_mutex(vp);
11919 mutex_enter(vphm);
11920
11921 /*
11922 * If there are no pages associated with this vnode, then
11923 * just return.
11924 */
11925 if ((pp = vp->v_pages) == NULL) {
11926 mutex_exit(vphm);
11927 return;
11928 }
11929
11930 /*
11931 * Step through all of the pages associated with this vnode
11932 * looking for pages which need to be committed.
11933 */
11934 do {
11935 /* Skip marker pages. */
11936 if (pp->p_hash == PVN_VPLIST_HASH_TAG)
11937 continue;
11938
11939 /*
11940 * First short-cut everything (without the page_lock)
11941 * and see if this page does not need to be committed
11942 * or is modified if so then we'll just skip it.
11943 */
11944 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp))
11945 continue;
11946
11947 /*
11948 * Attempt to lock the page. If we can't, then
11949 * someone else is messing with it or we have been
11950 * called from nfs4_dispose and this is the page that
11951 * nfs4_dispose was called with.. anyway just skip it.
11952 */
11953 if (!page_trylock(pp, SE_EXCL))
11954 continue;
11955
11956 /*
11957 * Lets check again now that we have the page lock.
11958 */
11959 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
11960 page_unlock(pp);
11961 continue;
11962 }
11963
11964 /* this had better not be a free page */
11965 ASSERT(PP_ISFREE(pp) == 0);
11966
11967 /*
11968 * The page needs to be committed and we locked it.
11969 * Update the base and length parameters and add it
11970 * to r_pages.
11971 */
11972 if (rp->r_commit.c_pages == NULL) {
11973 rp->r_commit.c_commbase = (offset3)pp->p_offset;
11974 rp->r_commit.c_commlen = PAGESIZE;
11975 } else if (pp->p_offset < rp->r_commit.c_commbase) {
11976 rp->r_commit.c_commlen = rp->r_commit.c_commbase -
11977 (offset3)pp->p_offset + rp->r_commit.c_commlen;
11978 rp->r_commit.c_commbase = (offset3)pp->p_offset;
11979 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen)
11980 <= pp->p_offset) {
11981 rp->r_commit.c_commlen = (offset3)pp->p_offset -
11982 rp->r_commit.c_commbase + PAGESIZE;
11983 }
11984 page_add(&rp->r_commit.c_pages, pp);
11985 } while ((pp = pp->p_vpnext) != vp->v_pages);
11986
11987 mutex_exit(vphm);
11988 }
11989
11990 /*
11991 * This routine is used to gather together a page list of the pages
11992 * which are to be committed on the server. This routine must not
11993 * be called if the calling thread holds any locked pages.
11994 *
11995 * The calling thread must have set R4COMMIT. This bit is used to
11996 * serialize access to the commit structure in the rnode. As long
11997 * as the thread has set R4COMMIT, then it can manipulate the commit
11998 * structure without requiring any other locks.
11999 */
12000 static void
12001 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len)
12002 {
12003
12004 rnode4_t *rp;
12005 page_t *pp;
12006 u_offset_t end;
12007 u_offset_t off;
12008 ASSERT(len != 0);
12009 rp = VTOR4(vp);
12010 ASSERT(rp->r_flags & R4COMMIT);
12011
12012 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12013
12014 /* make sure we're looking at the master vnode, not a shadow */
12015
12016 if (IS_SHADOW(vp, rp))
12017 vp = RTOV4(rp);
12018
12019 /*
12020 * If there are no pages associated with this vnode, then
12021 * just return.
12022 */
12023 if ((pp = vp->v_pages) == NULL)
12024 return;
12025 /*
12026 * Calculate the ending offset.
12027 */
12028 end = soff + len;
12029 for (off = soff; off < end; off += PAGESIZE) {
12030 /*
12031 * Lookup each page by vp, offset.
12032 */
12033 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL)
12034 continue;
12035 /*
12036 * If this page does not need to be committed or is
12037 * modified, then just skip it.
12038 */
12039 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
12040 page_unlock(pp);
12041 continue;
12042 }
12043
12044 ASSERT(PP_ISFREE(pp) == 0);
12045 /*
12046 * The page needs to be committed and we locked it.
12047 * Update the base and length parameters and add it
12048 * to r_pages.
12049 */
12050 if (rp->r_commit.c_pages == NULL) {
12051 rp->r_commit.c_commbase = (offset3)pp->p_offset;
12052 rp->r_commit.c_commlen = PAGESIZE;
12053 } else {
12054 rp->r_commit.c_commlen = (offset3)pp->p_offset -
12055 rp->r_commit.c_commbase + PAGESIZE;
12056 }
12057 page_add(&rp->r_commit.c_pages, pp);
12058 }
12059 }
12060
12061 /*
12062 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap().
12063 * Flushes and commits data to the server.
12064 */
12065 static int
12066 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr)
12067 {
12068 int error;
12069 verifier4 write_verf;
12070 rnode4_t *rp = VTOR4(vp);
12071
12072 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12073
12074 /*
12075 * Flush the data portion of the file and then commit any
12076 * portions which need to be committed. This may need to
12077 * be done twice if the server has changed state since
12078 * data was last written. The data will need to be
12079 * rewritten to the server and then a new commit done.
12080 *
12081 * In fact, this may need to be done several times if the
12082 * server is having problems and crashing while we are
12083 * attempting to do this.
12084 */
12085
12086 top:
12087 /*
12088 * Do a flush based on the poff and plen arguments. This
12089 * will synchronously write out any modified pages in the
12090 * range specified by (poff, plen). This starts all of the
12091 * i/o operations which will be waited for in the next
12092 * call to nfs4_putpage
12093 */
12094
12095 mutex_enter(&rp->r_statelock);
12096 write_verf = rp->r_writeverf;
12097 mutex_exit(&rp->r_statelock);
12098
12099 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL);
12100 if (error == EAGAIN)
12101 error = 0;
12102
12103 /*
12104 * Do a flush based on the poff and plen arguments. This
12105 * will synchronously write out any modified pages in the
12106 * range specified by (poff, plen) and wait until all of
12107 * the asynchronous i/o's in that range are done as well.
12108 */
12109 if (!error)
12110 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL);
12111
12112 if (error)
12113 return (error);
12114
12115 mutex_enter(&rp->r_statelock);
12116 if (rp->r_writeverf != write_verf) {
12117 mutex_exit(&rp->r_statelock);
12118 goto top;
12119 }
12120 mutex_exit(&rp->r_statelock);
12121
12122 /*
12123 * Now commit any pages which might need to be committed.
12124 * If the error, NFS_VERF_MISMATCH, is returned, then
12125 * start over with the flush operation.
12126 */
12127 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT);
12128
12129 if (error == NFS_VERF_MISMATCH)
12130 goto top;
12131
12132 return (error);
12133 }
12134
12135 /*
12136 * nfs4_commit_vp() will wait for other pending commits and
12137 * will either commit the whole file or a range, plen dictates
12138 * if we commit whole file. a value of zero indicates the whole
12139 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage()
12140 */
12141 static int
12142 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen,
12143 cred_t *cr, int wait_on_writes)
12144 {
12145 rnode4_t *rp;
12146 page_t *plist;
12147 offset3 offset;
12148 count3 len;
12149
12150 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12151
12152 rp = VTOR4(vp);
12153
12154 /*
12155 * before we gather commitable pages make
12156 * sure there are no outstanding async writes
12157 */
12158 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) {
12159 mutex_enter(&rp->r_statelock);
12160 while (rp->r_count > 0) {
12161 cv_wait(&rp->r_cv, &rp->r_statelock);
12162 }
12163 mutex_exit(&rp->r_statelock);
12164 }
12165
12166 /*
12167 * Set the `commit inprogress' state bit. We must
12168 * first wait until any current one finishes.
12169 */
12170 mutex_enter(&rp->r_statelock);
12171 while (rp->r_flags & R4COMMIT) {
12172 rp->r_flags |= R4COMMITWAIT;
12173 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
12174 rp->r_flags &= ~R4COMMITWAIT;
12175 }
12176 rp->r_flags |= R4COMMIT;
12177 mutex_exit(&rp->r_statelock);
12178
12179 /*
12180 * Gather all of the pages which need to be
12181 * committed.
12182 */
12183 if (plen == 0)
12184 nfs4_get_commit(vp);
12185 else
12186 nfs4_get_commit_range(vp, poff, plen);
12187
12188 /*
12189 * Clear the `commit inprogress' bit and disconnect the
12190 * page list which was gathered by nfs4_get_commit.
12191 */
12192 plist = rp->r_commit.c_pages;
12193 rp->r_commit.c_pages = NULL;
12194 offset = rp->r_commit.c_commbase;
12195 len = rp->r_commit.c_commlen;
12196 mutex_enter(&rp->r_statelock);
12197 rp->r_flags &= ~R4COMMIT;
12198 cv_broadcast(&rp->r_commit.c_cv);
12199 mutex_exit(&rp->r_statelock);
12200
12201 /*
12202 * If any pages need to be committed, commit them and
12203 * then unlock them so that they can be freed some
12204 * time later.
12205 */
12206 if (plist == NULL)
12207 return (0);
12208
12209 /*
12210 * No error occurred during the flush portion
12211 * of this operation, so now attempt to commit
12212 * the data to stable storage on the server.
12213 *
12214 * This will unlock all of the pages on the list.
12215 */
12216 return (nfs4_sync_commit(vp, plist, offset, len, cr));
12217 }
12218
12219 static int
12220 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
12221 cred_t *cr)
12222 {
12223 int error;
12224 page_t *pp;
12225
12226 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12227
12228 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr);
12229
12230 /*
12231 * If we got an error, then just unlock all of the pages
12232 * on the list.
12233 */
12234 if (error) {
12235 while (plist != NULL) {
12236 pp = plist;
12237 page_sub(&plist, pp);
12238 page_unlock(pp);
12239 }
12240 return (error);
12241 }
12242 /*
12243 * We've tried as hard as we can to commit the data to stable
12244 * storage on the server. We just unlock the pages and clear
12245 * the commit required state. They will get freed later.
12246 */
12247 while (plist != NULL) {
12248 pp = plist;
12249 page_sub(&plist, pp);
12250 pp->p_fsdata = C_NOCOMMIT;
12251 page_unlock(pp);
12252 }
12253
12254 return (error);
12255 }
12256
12257 static void
12258 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
12259 cred_t *cr)
12260 {
12261
12262 (void) nfs4_sync_commit(vp, plist, offset, count, cr);
12263 }
12264
12265 /*ARGSUSED*/
12266 static int
12267 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
12268 caller_context_t *ct)
12269 {
12270 int error = 0;
12271 mntinfo4_t *mi;
12272 vattr_t va;
12273 vsecattr_t nfsace4_vsap;
12274
12275 mi = VTOMI4(vp);
12276 if (nfs_zone() != mi->mi_zone)
12277 return (EIO);
12278 if (mi->mi_flags & MI4_ACL) {
12279 /* if we have a delegation, return it */
12280 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE)
12281 (void) nfs4delegreturn(VTOR4(vp),
12282 NFS4_DR_REOPEN|NFS4_DR_PUSH);
12283
12284 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask,
12285 NFS4_ACL_SET);
12286 if (error) /* EINVAL */
12287 return (error);
12288
12289 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) {
12290 /*
12291 * These are aclent_t type entries.
12292 */
12293 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap,
12294 vp->v_type == VDIR, FALSE);
12295 if (error)
12296 return (error);
12297 } else {
12298 /*
12299 * These are ace_t type entries.
12300 */
12301 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap,
12302 FALSE);
12303 if (error)
12304 return (error);
12305 }
12306 bzero(&va, sizeof (va));
12307 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap);
12308 vs_ace4_destroy(&nfsace4_vsap);
12309 return (error);
12310 }
12311 return (ENOSYS);
12312 }
12313
12314 /* ARGSUSED */
12315 int
12316 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
12317 caller_context_t *ct)
12318 {
12319 int error;
12320 mntinfo4_t *mi;
12321 nfs4_ga_res_t gar;
12322 rnode4_t *rp = VTOR4(vp);
12323
12324 mi = VTOMI4(vp);
12325 if (nfs_zone() != mi->mi_zone)
12326 return (EIO);
12327
12328 bzero(&gar, sizeof (gar));
12329 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask;
12330
12331 /*
12332 * vsecattr->vsa_mask holds the original acl request mask.
12333 * This is needed when determining what to return.
12334 * (See: nfs4_create_getsecattr_return())
12335 */
12336 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET);
12337 if (error) /* EINVAL */
12338 return (error);
12339
12340 /*
12341 * If this is a referral stub, don't try to go OTW for an ACL
12342 */
12343 if (RP_ISSTUB_REFERRAL(VTOR4(vp)))
12344 return (fs_fab_acl(vp, vsecattr, flag, cr, ct));
12345
12346 if (mi->mi_flags & MI4_ACL) {
12347 /*
12348 * Check if the data is cached and the cache is valid. If it
12349 * is we don't go over the wire.
12350 */
12351 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) {
12352 mutex_enter(&rp->r_statelock);
12353 if (rp->r_secattr != NULL) {
12354 error = nfs4_create_getsecattr_return(
12355 rp->r_secattr, vsecattr, rp->r_attr.va_uid,
12356 rp->r_attr.va_gid,
12357 vp->v_type == VDIR);
12358 if (!error) { /* error == 0 - Success! */
12359 mutex_exit(&rp->r_statelock);
12360 return (error);
12361 }
12362 }
12363 mutex_exit(&rp->r_statelock);
12364 }
12365
12366 /*
12367 * The getattr otw call will always get both the acl, in
12368 * the form of a list of nfsace4's, and the number of acl
12369 * entries; independent of the value of gar.n4g_vsa.vsa_mask.
12370 */
12371 gar.n4g_va.va_mask = AT_ALL;
12372 error = nfs4_getattr_otw(vp, &gar, cr, 1);
12373 if (error) {
12374 vs_ace4_destroy(&gar.n4g_vsa);
12375 if (error == ENOTSUP || error == EOPNOTSUPP)
12376 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12377 return (error);
12378 }
12379
12380 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) {
12381 /*
12382 * No error was returned, but according to the response
12383 * bitmap, neither was an acl.
12384 */
12385 vs_ace4_destroy(&gar.n4g_vsa);
12386 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12387 return (error);
12388 }
12389
12390 /*
12391 * Update the cache with the ACL.
12392 */
12393 nfs4_acl_fill_cache(rp, &gar.n4g_vsa);
12394
12395 error = nfs4_create_getsecattr_return(&gar.n4g_vsa,
12396 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid,
12397 vp->v_type == VDIR);
12398 vs_ace4_destroy(&gar.n4g_vsa);
12399 if ((error) && (vsecattr->vsa_mask &
12400 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) &&
12401 (error != EACCES)) {
12402 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12403 }
12404 return (error);
12405 }
12406 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12407 return (error);
12408 }
12409
12410 /*
12411 * The function returns:
12412 * - 0 (zero) if the passed in "acl_mask" is a valid request.
12413 * - EINVAL if the passed in "acl_mask" is an invalid request.
12414 *
12415 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if:
12416 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE)
12417 *
12418 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if:
12419 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE)
12420 * - We have a count field set without the corresponding acl field set. (e.g. -
12421 * VSA_ACECNT is set, but VSA_ACE is not)
12422 */
12423 static int
12424 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op)
12425 {
12426 /* Shortcut the masks that are always valid. */
12427 if (acl_mask == (VSA_ACE | VSA_ACECNT))
12428 return (0);
12429 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT))
12430 return (0);
12431
12432 if (acl_mask & (VSA_ACE | VSA_ACECNT)) {
12433 /*
12434 * We can't have any VSA_ACL type stuff in the mask now.
12435 */
12436 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL |
12437 VSA_DFACLCNT))
12438 return (EINVAL);
12439
12440 if (op == NFS4_ACL_SET) {
12441 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE))
12442 return (EINVAL);
12443 }
12444 }
12445
12446 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) {
12447 /*
12448 * We can't have any VSA_ACE type stuff in the mask now.
12449 */
12450 if (acl_mask & (VSA_ACE | VSA_ACECNT))
12451 return (EINVAL);
12452
12453 if (op == NFS4_ACL_SET) {
12454 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL))
12455 return (EINVAL);
12456
12457 if ((acl_mask & VSA_DFACLCNT) &&
12458 !(acl_mask & VSA_DFACL))
12459 return (EINVAL);
12460 }
12461 }
12462 return (0);
12463 }
12464
12465 /*
12466 * The theory behind creating the correct getsecattr return is simply this:
12467 * "Don't return anything that the caller is not expecting to have to free."
12468 */
12469 static int
12470 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap,
12471 uid_t uid, gid_t gid, int isdir)
12472 {
12473 int error = 0;
12474 /* Save the mask since the translators modify it. */
12475 uint_t orig_mask = vsap->vsa_mask;
12476
12477 if (orig_mask & (VSA_ACE | VSA_ACECNT)) {
12478 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, FALSE);
12479
12480 if (error)
12481 return (error);
12482
12483 /*
12484 * If the caller only asked for the ace count (VSA_ACECNT)
12485 * don't give them the full acl (VSA_ACE), free it.
12486 */
12487 if (!orig_mask & VSA_ACE) {
12488 if (vsap->vsa_aclentp != NULL) {
12489 kmem_free(vsap->vsa_aclentp,
12490 vsap->vsa_aclcnt * sizeof (ace_t));
12491 vsap->vsa_aclentp = NULL;
12492 }
12493 }
12494 vsap->vsa_mask = orig_mask;
12495
12496 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL |
12497 VSA_DFACLCNT)) {
12498 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid,
12499 isdir, FALSE);
12500
12501 if (error)
12502 return (error);
12503
12504 /*
12505 * If the caller only asked for the acl count (VSA_ACLCNT)
12506 * and/or the default acl count (VSA_DFACLCNT) don't give them
12507 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it.
12508 */
12509 if (!orig_mask & VSA_ACL) {
12510 if (vsap->vsa_aclentp != NULL) {
12511 kmem_free(vsap->vsa_aclentp,
12512 vsap->vsa_aclcnt * sizeof (aclent_t));
12513 vsap->vsa_aclentp = NULL;
12514 }
12515 }
12516
12517 if (!orig_mask & VSA_DFACL) {
12518 if (vsap->vsa_dfaclentp != NULL) {
12519 kmem_free(vsap->vsa_dfaclentp,
12520 vsap->vsa_dfaclcnt * sizeof (aclent_t));
12521 vsap->vsa_dfaclentp = NULL;
12522 }
12523 }
12524 vsap->vsa_mask = orig_mask;
12525 }
12526 return (0);
12527 }
12528
12529 /* ARGSUSED */
12530 int
12531 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr,
12532 caller_context_t *ct)
12533 {
12534 int error;
12535
12536 if (nfs_zone() != VTOMI4(vp)->mi_zone)
12537 return (EIO);
12538 /*
12539 * check for valid cmd parameter
12540 */
12541 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS)
12542 return (EINVAL);
12543
12544 /*
12545 * Check access permissions
12546 */
12547 if ((cmd & F_SHARE) &&
12548 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) ||
12549 (shr->s_access == F_WRACC && (flag & FWRITE) == 0)))
12550 return (EBADF);
12551
12552 /*
12553 * If the filesystem is mounted using local locking, pass the
12554 * request off to the local share code.
12555 */
12556 if (VTOMI4(vp)->mi_flags & MI4_LLOCK)
12557 return (fs_shrlock(vp, cmd, shr, flag, cr, ct));
12558
12559 switch (cmd) {
12560 case F_SHARE:
12561 case F_UNSHARE:
12562 /*
12563 * This will be properly implemented later,
12564 * see RFE: 4823948 .
12565 */
12566 error = EAGAIN;
12567 break;
12568
12569 case F_HASREMOTELOCKS:
12570 /*
12571 * NFS client can't store remote locks itself
12572 */
12573 shr->s_access = 0;
12574 error = 0;
12575 break;
12576
12577 default:
12578 error = EINVAL;
12579 break;
12580 }
12581
12582 return (error);
12583 }
12584
12585 /*
12586 * Common code called by directory ops to update the attrcache
12587 */
12588 static int
12589 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp,
12590 hrtime_t t, vnode_t *vp, cred_t *cr)
12591 {
12592 int error = 0;
12593
12594 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12595
12596 if (status != NFS4_OK) {
12597 /* getattr not done or failed */
12598 PURGE_ATTRCACHE4(vp);
12599 return (error);
12600 }
12601
12602 if (garp) {
12603 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL);
12604 } else {
12605 PURGE_ATTRCACHE4(vp);
12606 }
12607 return (error);
12608 }
12609
12610 /*
12611 * Update directory caches for directory modification ops (link, rename, etc.)
12612 * When dinfo is NULL, manage dircaches in the old way.
12613 */
12614 static void
12615 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm,
12616 dirattr_info_t *dinfo)
12617 {
12618 rnode4_t *drp = VTOR4(dvp);
12619
12620 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
12621
12622 /* Purge rddir cache for dir since it changed */
12623 if (drp->r_dir != NULL)
12624 nfs4_purge_rddir_cache(dvp);
12625
12626 /*
12627 * If caller provided dinfo, then use it to manage dir caches.
12628 */
12629 if (dinfo != NULL) {
12630 if (vp != NULL) {
12631 mutex_enter(&VTOR4(vp)->r_statev4_lock);
12632 if (!VTOR4(vp)->created_v4) {
12633 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12634 dnlc_update(dvp, nm, vp);
12635 } else {
12636 /*
12637 * XXX don't update if the created_v4 flag is
12638 * set
12639 */
12640 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12641 NFS4_DEBUG(nfs4_client_state_debug,
12642 (CE_NOTE, "nfs4_update_dircaches: "
12643 "don't update dnlc: created_v4 flag"));
12644 }
12645 }
12646
12647 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call,
12648 dinfo->di_cred, FALSE, cinfo);
12649
12650 return;
12651 }
12652
12653 /*
12654 * Caller didn't provide dinfo, then check change_info4 to update DNLC.
12655 * Since caller modified dir but didn't receive post-dirmod-op dir
12656 * attrs, the dir's attrs must be purged.
12657 *
12658 * XXX this check and dnlc update/purge should really be atomic,
12659 * XXX but can't use rnode statelock because it'll deadlock in
12660 * XXX dnlc_purge_vp, however, the risk is minimal even if a race
12661 * XXX does occur.
12662 *
12663 * XXX We also may want to check that atomic is true in the
12664 * XXX change_info struct. If it is not, the change_info may
12665 * XXX reflect changes by more than one clients which means that
12666 * XXX our cache may not be valid.
12667 */
12668 PURGE_ATTRCACHE4(dvp);
12669 if (drp->r_change == cinfo->before) {
12670 /* no changes took place in the directory prior to our link */
12671 if (vp != NULL) {
12672 mutex_enter(&VTOR4(vp)->r_statev4_lock);
12673 if (!VTOR4(vp)->created_v4) {
12674 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12675 dnlc_update(dvp, nm, vp);
12676 } else {
12677 /*
12678 * XXX dont' update if the created_v4 flag
12679 * is set
12680 */
12681 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12682 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
12683 "nfs4_update_dircaches: don't"
12684 " update dnlc: created_v4 flag"));
12685 }
12686 }
12687 } else {
12688 /* Another client modified directory - purge its dnlc cache */
12689 dnlc_purge_vp(dvp);
12690 }
12691 }
12692
12693 /*
12694 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a
12695 * file.
12696 *
12697 * The 'reopening_file' boolean should be set to TRUE if we are reopening this
12698 * file (ie: client recovery) and otherwise set to FALSE.
12699 *
12700 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery
12701 * initiated) calling functions.
12702 *
12703 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result
12704 * of resending a 'lost' open request.
12705 *
12706 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken
12707 * server that hands out BAD_SEQID on open confirm.
12708 *
12709 * Errors are returned via the nfs4_error_t parameter.
12710 */
12711 void
12712 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr,
12713 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop,
12714 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp)
12715 {
12716 COMPOUND4args_clnt args;
12717 COMPOUND4res_clnt res;
12718 nfs_argop4 argop[2];
12719 nfs_resop4 *resop;
12720 int doqueue = 1;
12721 mntinfo4_t *mi;
12722 OPEN_CONFIRM4args *open_confirm_args;
12723 int needrecov;
12724
12725 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12726 #if DEBUG
12727 mutex_enter(&oop->oo_lock);
12728 ASSERT(oop->oo_seqid_inuse);
12729 mutex_exit(&oop->oo_lock);
12730 #endif
12731
12732 recov_retry_confirm:
12733 nfs4_error_zinit(ep);
12734 *retry_open = FALSE;
12735
12736 if (resend)
12737 args.ctag = TAG_OPEN_CONFIRM_LOST;
12738 else
12739 args.ctag = TAG_OPEN_CONFIRM;
12740
12741 args.array_len = 2;
12742 args.array = argop;
12743
12744 /* putfh target fh */
12745 argop[0].argop = OP_CPUTFH;
12746 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
12747
12748 argop[1].argop = OP_OPEN_CONFIRM;
12749 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm;
12750
12751 (*seqid) += 1;
12752 open_confirm_args->seqid = *seqid;
12753 open_confirm_args->open_stateid = *stateid;
12754
12755 mi = VTOMI4(vp);
12756
12757 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep);
12758
12759 if (!ep->error && nfs4_need_to_bump_seqid(&res)) {
12760 nfs4_set_open_seqid((*seqid), oop, args.ctag);
12761 }
12762
12763 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp);
12764 if (!needrecov && ep->error)
12765 return;
12766
12767 if (needrecov) {
12768 bool_t abort = FALSE;
12769
12770 if (reopening_file == FALSE) {
12771 nfs4_bseqid_entry_t *bsep = NULL;
12772
12773 if (!ep->error && res.status == NFS4ERR_BAD_SEQID)
12774 bsep = nfs4_create_bseqid_entry(oop, NULL,
12775 vp, 0, args.ctag,
12776 open_confirm_args->seqid);
12777
12778 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL,
12779 NULL, NULL, OP_OPEN_CONFIRM, bsep, NULL, NULL);
12780 if (bsep) {
12781 kmem_free(bsep, sizeof (*bsep));
12782 if (num_bseqid_retryp &&
12783 --(*num_bseqid_retryp) == 0)
12784 abort = TRUE;
12785 }
12786 }
12787 if ((ep->error == ETIMEDOUT ||
12788 res.status == NFS4ERR_RESOURCE) &&
12789 abort == FALSE && resend == FALSE) {
12790 if (!ep->error)
12791 (void) xdr_free(xdr_COMPOUND4res_clnt,
12792 (caddr_t)&res);
12793
12794 delay(SEC_TO_TICK(confirm_retry_sec));
12795 goto recov_retry_confirm;
12796 }
12797 /* State may have changed so retry the entire OPEN op */
12798 if (abort == FALSE)
12799 *retry_open = TRUE;
12800 else
12801 *retry_open = FALSE;
12802 if (!ep->error)
12803 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12804 return;
12805 }
12806
12807 if (res.status) {
12808 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12809 return;
12810 }
12811
12812 resop = &res.array[1]; /* open confirm res */
12813 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid,
12814 stateid, sizeof (*stateid));
12815
12816 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12817 }
12818
12819 /*
12820 * Return the credentials associated with a client state object. The
12821 * caller is responsible for freeing the credentials.
12822 */
12823
12824 static cred_t *
12825 state_to_cred(nfs4_open_stream_t *osp)
12826 {
12827 cred_t *cr;
12828
12829 /*
12830 * It's ok to not lock the open stream and open owner to get
12831 * the oo_cred since this is only written once (upon creation)
12832 * and will not change.
12833 */
12834 cr = osp->os_open_owner->oo_cred;
12835 crhold(cr);
12836
12837 return (cr);
12838 }
12839
12840 /*
12841 * nfs4_find_sysid
12842 *
12843 * Find the sysid for the knetconfig associated with the given mi.
12844 */
12845 static struct lm_sysid *
12846 nfs4_find_sysid(mntinfo4_t *mi)
12847 {
12848 ASSERT(nfs_zone() == mi->mi_zone);
12849
12850 /*
12851 * Switch from RDMA knconf to original mount knconf
12852 */
12853 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr,
12854 mi->mi_curr_serv->sv_hostname, NULL));
12855 }
12856
12857 #ifdef DEBUG
12858 /*
12859 * Return a string version of the call type for easy reading.
12860 */
12861 static char *
12862 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype)
12863 {
12864 switch (ctype) {
12865 case NFS4_LCK_CTYPE_NORM:
12866 return ("NORMAL");
12867 case NFS4_LCK_CTYPE_RECLAIM:
12868 return ("RECLAIM");
12869 case NFS4_LCK_CTYPE_RESEND:
12870 return ("RESEND");
12871 case NFS4_LCK_CTYPE_REINSTATE:
12872 return ("REINSTATE");
12873 default:
12874 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal "
12875 "type %d", ctype);
12876 return ("");
12877 }
12878 }
12879 #endif
12880
12881 /*
12882 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type
12883 * Unlock requests don't have an over-the-wire locktype, so we just return
12884 * something non-threatening.
12885 */
12886
12887 static nfs_lock_type4
12888 flk_to_locktype(int cmd, int l_type)
12889 {
12890 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK);
12891
12892 switch (l_type) {
12893 case F_UNLCK:
12894 return (READ_LT);
12895 case F_RDLCK:
12896 if (cmd == F_SETLK)
12897 return (READ_LT);
12898 else
12899 return (READW_LT);
12900 case F_WRLCK:
12901 if (cmd == F_SETLK)
12902 return (WRITE_LT);
12903 else
12904 return (WRITEW_LT);
12905 }
12906 panic("flk_to_locktype");
12907 /*NOTREACHED*/
12908 }
12909
12910 /*
12911 * Do some preliminary checks for nfs4frlock.
12912 */
12913 static int
12914 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp,
12915 u_offset_t offset)
12916 {
12917 int error = 0;
12918
12919 /*
12920 * If we are setting a lock, check that the file is opened
12921 * with the correct mode.
12922 */
12923 if (cmd == F_SETLK || cmd == F_SETLKW) {
12924 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) ||
12925 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) {
12926 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
12927 "nfs4frlock_validate_args: file was opened with "
12928 "incorrect mode"));
12929 return (EBADF);
12930 }
12931 }
12932
12933 /* Convert the offset. It may need to be restored before returning. */
12934 if (error = convoff(vp, flk, 0, offset)) {
12935 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
12936 "nfs4frlock_validate_args: convoff => error= %d\n",
12937 error));
12938 return (error);
12939 }
12940
12941 return (error);
12942 }
12943
12944 /*
12945 * Set the flock64's lm_sysid for nfs4frlock.
12946 */
12947 static int
12948 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk)
12949 {
12950 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12951
12952 /* Find the lm_sysid */
12953 *lspp = nfs4_find_sysid(VTOMI4(vp));
12954
12955 if (*lspp == NULL) {
12956 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
12957 "nfs4frlock_get_sysid: no sysid, return ENOLCK"));
12958 return (ENOLCK);
12959 }
12960
12961 flk->l_sysid = lm_sysidt(*lspp);
12962
12963 return (0);
12964 }
12965
12966 /*
12967 * Do the remaining preliminary setup for nfs4frlock.
12968 */
12969 static void
12970 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep,
12971 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr,
12972 cred_t **cred_otw)
12973 {
12974 /*
12975 * set tick_delay to the base delay time.
12976 * (NFS4_BASE_WAIT_TIME is in secs)
12977 */
12978
12979 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000);
12980
12981 /*
12982 * If lock is relative to EOF, we need the newest length of the
12983 * file. Therefore invalidate the ATTR_CACHE.
12984 */
12985
12986 *whencep = flk->l_whence;
12987
12988 if (*whencep == 2) /* SEEK_END */
12989 PURGE_ATTRCACHE4(vp);
12990
12991 recov_statep->rs_flags = 0;
12992 recov_statep->rs_num_retry_despite_err = 0;
12993 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL);
12994 }
12995
12996 /*
12997 * Initialize and allocate the data structures necessary for
12998 * the nfs4frlock call.
12999 * Allocates argsp's op array, frees up the saved_rqstpp if there is one.
13000 */
13001 static void
13002 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp,
13003 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd,
13004 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp,
13005 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp)
13006 {
13007 int argoplist_size;
13008 int num_ops = 2;
13009
13010 *retry = FALSE;
13011 *did_start_fop = FALSE;
13012 *skip_get_err = FALSE;
13013 lost_rqstp->lr_op = 0;
13014 argoplist_size = num_ops * sizeof (nfs_argop4);
13015 /* fill array with zero */
13016 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP);
13017
13018 *argspp = argsp;
13019 *respp = NULL;
13020
13021 argsp->array_len = num_ops;
13022 argsp->array = *argopp;
13023
13024 /* initialize in case of error; will get real value down below */
13025 argsp->ctag = TAG_NONE;
13026
13027 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK)
13028 *op_hintp = OH_LOCKU;
13029 else
13030 *op_hintp = OH_OTHER;
13031 }
13032
13033 /*
13034 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign
13035 * the proper nfs4_server_t for this instance of nfs4frlock.
13036 * Returns 0 (success) or an errno value.
13037 */
13038 static int
13039 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp,
13040 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep,
13041 bool_t *did_start_fop, bool_t *startrecovp)
13042 {
13043 int error = 0;
13044 rnode4_t *rp;
13045
13046 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13047
13048 if (ctype == NFS4_LCK_CTYPE_NORM) {
13049 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint,
13050 recov_statep, startrecovp);
13051 if (error)
13052 return (error);
13053 *did_start_fop = TRUE;
13054 } else {
13055 *did_start_fop = FALSE;
13056 *startrecovp = FALSE;
13057 }
13058
13059 if (!error) {
13060 rp = VTOR4(vp);
13061
13062 /* If the file failed recovery, just quit. */
13063 mutex_enter(&rp->r_statelock);
13064 if (rp->r_flags & R4RECOVERR) {
13065 error = EIO;
13066 }
13067 mutex_exit(&rp->r_statelock);
13068 }
13069
13070 return (error);
13071 }
13072
13073 /*
13074 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A
13075 * resend nfs4frlock call is initiated by the recovery framework.
13076 * Acquires the lop and oop seqid synchronization.
13077 */
13078 static void
13079 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp,
13080 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp,
13081 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
13082 LOCK4args **lock_argsp, LOCKU4args **locku_argsp)
13083 {
13084 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp);
13085 int error;
13086
13087 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug),
13088 (CE_NOTE,
13089 "nfs4frlock_setup_resend_lock_args: have lost lock to resend"));
13090 ASSERT(resend_rqstp != NULL);
13091 ASSERT(resend_rqstp->lr_op == OP_LOCK ||
13092 resend_rqstp->lr_op == OP_LOCKU);
13093
13094 *oopp = resend_rqstp->lr_oop;
13095 if (resend_rqstp->lr_oop) {
13096 open_owner_hold(resend_rqstp->lr_oop);
13097 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi);
13098 ASSERT(error == 0); /* recov thread always succeeds */
13099 }
13100
13101 /* Must resend this lost lock/locku request. */
13102 ASSERT(resend_rqstp->lr_lop != NULL);
13103 *lopp = resend_rqstp->lr_lop;
13104 lock_owner_hold(resend_rqstp->lr_lop);
13105 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi);
13106 ASSERT(error == 0); /* recov thread always succeeds */
13107
13108 *ospp = resend_rqstp->lr_osp;
13109 if (*ospp)
13110 open_stream_hold(resend_rqstp->lr_osp);
13111
13112 if (resend_rqstp->lr_op == OP_LOCK) {
13113 LOCK4args *lock_args;
13114
13115 argop->argop = OP_LOCK;
13116 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock;
13117 lock_args->locktype = resend_rqstp->lr_locktype;
13118 lock_args->reclaim =
13119 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM);
13120 lock_args->offset = resend_rqstp->lr_flk->l_start;
13121 lock_args->length = resend_rqstp->lr_flk->l_len;
13122 if (lock_args->length == 0)
13123 lock_args->length = ~lock_args->length;
13124 nfs4_setup_lock_args(*lopp, *oopp, *ospp,
13125 mi2clientid(mi), &lock_args->locker);
13126
13127 switch (resend_rqstp->lr_ctype) {
13128 case NFS4_LCK_CTYPE_RESEND:
13129 argsp->ctag = TAG_LOCK_RESEND;
13130 break;
13131 case NFS4_LCK_CTYPE_REINSTATE:
13132 argsp->ctag = TAG_LOCK_REINSTATE;
13133 break;
13134 case NFS4_LCK_CTYPE_RECLAIM:
13135 argsp->ctag = TAG_LOCK_RECLAIM;
13136 break;
13137 default:
13138 argsp->ctag = TAG_LOCK_UNKNOWN;
13139 break;
13140 }
13141 } else {
13142 LOCKU4args *locku_args;
13143 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop;
13144
13145 argop->argop = OP_LOCKU;
13146 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku;
13147 locku_args->locktype = READ_LT;
13148 locku_args->seqid = lop->lock_seqid + 1;
13149 mutex_enter(&lop->lo_lock);
13150 locku_args->lock_stateid = lop->lock_stateid;
13151 mutex_exit(&lop->lo_lock);
13152 locku_args->offset = resend_rqstp->lr_flk->l_start;
13153 locku_args->length = resend_rqstp->lr_flk->l_len;
13154 if (locku_args->length == 0)
13155 locku_args->length = ~locku_args->length;
13156
13157 switch (resend_rqstp->lr_ctype) {
13158 case NFS4_LCK_CTYPE_RESEND:
13159 argsp->ctag = TAG_LOCKU_RESEND;
13160 break;
13161 case NFS4_LCK_CTYPE_REINSTATE:
13162 argsp->ctag = TAG_LOCKU_REINSTATE;
13163 break;
13164 default:
13165 argsp->ctag = TAG_LOCK_UNKNOWN;
13166 break;
13167 }
13168 }
13169 }
13170
13171 /*
13172 * Setup the LOCKT4 arguments.
13173 */
13174 static void
13175 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop,
13176 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk,
13177 rnode4_t *rp)
13178 {
13179 LOCKT4args *lockt_args;
13180
13181 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone);
13182 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
13183 argop->argop = OP_LOCKT;
13184 argsp->ctag = TAG_LOCKT;
13185 lockt_args = &argop->nfs_argop4_u.oplockt;
13186
13187 /*
13188 * The locktype will be READ_LT unless it's
13189 * a write lock. We do this because the Solaris
13190 * system call allows the combination of
13191 * F_UNLCK and F_GETLK* and so in that case the
13192 * unlock is mapped to a read.
13193 */
13194 if (flk->l_type == F_WRLCK)
13195 lockt_args->locktype = WRITE_LT;
13196 else
13197 lockt_args->locktype = READ_LT;
13198
13199 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp)));
13200 /* set the lock owner4 args */
13201 nfs4_setlockowner_args(&lockt_args->owner, rp,
13202 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id :
13203 flk->l_pid);
13204 lockt_args->offset = flk->l_start;
13205 lockt_args->length = flk->l_len;
13206 if (flk->l_len == 0)
13207 lockt_args->length = ~lockt_args->length;
13208
13209 *lockt_argsp = lockt_args;
13210 }
13211
13212 /*
13213 * If the client is holding a delegation, and the open stream to be used
13214 * with this lock request is a delegation open stream, then re-open the stream.
13215 * Sets the nfs4_error_t to all zeros unless the open stream has already
13216 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY
13217 * means the caller should retry (like a recovery retry).
13218 */
13219 static void
13220 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt)
13221 {
13222 open_delegation_type4 dt;
13223 bool_t reopen_needed, force;
13224 nfs4_open_stream_t *osp;
13225 open_claim_type4 oclaim;
13226 rnode4_t *rp = VTOR4(vp);
13227 mntinfo4_t *mi = VTOMI4(vp);
13228
13229 ASSERT(nfs_zone() == mi->mi_zone);
13230
13231 nfs4_error_zinit(ep);
13232
13233 mutex_enter(&rp->r_statev4_lock);
13234 dt = rp->r_deleg_type;
13235 mutex_exit(&rp->r_statev4_lock);
13236
13237 if (dt != OPEN_DELEGATE_NONE) {
13238 nfs4_open_owner_t *oop;
13239
13240 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
13241 if (!oop) {
13242 ep->stat = NFS4ERR_IO;
13243 return;
13244 }
13245 /* returns with 'os_sync_lock' held */
13246 osp = find_open_stream(oop, rp);
13247 if (!osp) {
13248 open_owner_rele(oop);
13249 ep->stat = NFS4ERR_IO;
13250 return;
13251 }
13252
13253 if (osp->os_failed_reopen) {
13254 NFS4_DEBUG((nfs4_open_stream_debug ||
13255 nfs4_client_lock_debug), (CE_NOTE,
13256 "nfs4frlock_check_deleg: os_failed_reopen set "
13257 "for osp %p, cr %p, rp %s", (void *)osp,
13258 (void *)cr, rnode4info(rp)));
13259 mutex_exit(&osp->os_sync_lock);
13260 open_stream_rele(osp, rp);
13261 open_owner_rele(oop);
13262 ep->stat = NFS4ERR_IO;
13263 return;
13264 }
13265
13266 /*
13267 * Determine whether a reopen is needed. If this
13268 * is a delegation open stream, then send the open
13269 * to the server to give visibility to the open owner.
13270 * Even if it isn't a delegation open stream, we need
13271 * to check if the previous open CLAIM_DELEGATE_CUR
13272 * was sufficient.
13273 */
13274
13275 reopen_needed = osp->os_delegation ||
13276 ((lt == F_RDLCK &&
13277 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) ||
13278 (lt == F_WRLCK &&
13279 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE)));
13280
13281 mutex_exit(&osp->os_sync_lock);
13282 open_owner_rele(oop);
13283
13284 if (reopen_needed) {
13285 /*
13286 * Always use CLAIM_PREVIOUS after server reboot.
13287 * The server will reject CLAIM_DELEGATE_CUR if
13288 * it is used during the grace period.
13289 */
13290 mutex_enter(&mi->mi_lock);
13291 if (mi->mi_recovflags & MI4R_SRV_REBOOT) {
13292 oclaim = CLAIM_PREVIOUS;
13293 force = TRUE;
13294 } else {
13295 oclaim = CLAIM_DELEGATE_CUR;
13296 force = FALSE;
13297 }
13298 mutex_exit(&mi->mi_lock);
13299
13300 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE);
13301 if (ep->error == EAGAIN) {
13302 nfs4_error_zinit(ep);
13303 ep->stat = NFS4ERR_DELAY;
13304 }
13305 }
13306 open_stream_rele(osp, rp);
13307 osp = NULL;
13308 }
13309 }
13310
13311 /*
13312 * Setup the LOCKU4 arguments.
13313 * Returns errors via the nfs4_error_t.
13314 * NFS4_OK no problems. *go_otwp is TRUE if call should go
13315 * over-the-wire. The caller must release the
13316 * reference on *lopp.
13317 * NFS4ERR_DELAY caller should retry (like recovery retry)
13318 * (other) unrecoverable error.
13319 */
13320 static void
13321 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop,
13322 LOCKU4args **locku_argsp, flock64_t *flk,
13323 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp,
13324 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr,
13325 bool_t *skip_get_err, bool_t *go_otwp)
13326 {
13327 nfs4_lock_owner_t *lop = NULL;
13328 LOCKU4args *locku_args;
13329 pid_t pid;
13330 bool_t is_spec = FALSE;
13331 rnode4_t *rp = VTOR4(vp);
13332
13333 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13334 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
13335
13336 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK);
13337 if (ep->error || ep->stat)
13338 return;
13339
13340 argop->argop = OP_LOCKU;
13341 if (ctype == NFS4_LCK_CTYPE_REINSTATE)
13342 argsp->ctag = TAG_LOCKU_REINSTATE;
13343 else
13344 argsp->ctag = TAG_LOCKU;
13345 locku_args = &argop->nfs_argop4_u.oplocku;
13346 *locku_argsp = locku_args;
13347
13348 /*
13349 * XXX what should locku_args->locktype be?
13350 * setting to ALWAYS be READ_LT so at least
13351 * it is a valid locktype.
13352 */
13353
13354 locku_args->locktype = READ_LT;
13355
13356 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id :
13357 flk->l_pid;
13358
13359 /*
13360 * Get the lock owner stateid. If no lock owner
13361 * exists, return success.
13362 */
13363 lop = find_lock_owner(rp, pid, LOWN_ANY);
13364 *lopp = lop;
13365 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid))
13366 is_spec = TRUE;
13367 if (!lop || is_spec) {
13368 /*
13369 * No lock owner so no locks to unlock.
13370 * Return success. If there was a failed
13371 * reclaim earlier, the lock might still be
13372 * registered with the local locking code,
13373 * so notify it of the unlock.
13374 *
13375 * If the lockowner is using a special stateid,
13376 * then the original lock request (that created
13377 * this lockowner) was never successful, so we
13378 * have no lock to undo OTW.
13379 */
13380 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
13381 "nfs4frlock_setup_locku_args: LOCKU: no lock owner "
13382 "(%ld) so return success", (long)pid));
13383
13384 if (ctype == NFS4_LCK_CTYPE_NORM)
13385 flk->l_pid = curproc->p_pid;
13386 nfs4_register_lock_locally(vp, flk, flag, offset);
13387 /*
13388 * Release our hold and NULL out so final_cleanup
13389 * doesn't try to end a lock seqid sync we
13390 * never started.
13391 */
13392 if (is_spec) {
13393 lock_owner_rele(lop);
13394 *lopp = NULL;
13395 }
13396 *skip_get_err = TRUE;
13397 *go_otwp = FALSE;
13398 return;
13399 }
13400
13401 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp));
13402 if (ep->error == EAGAIN) {
13403 lock_owner_rele(lop);
13404 *lopp = NULL;
13405 return;
13406 }
13407
13408 mutex_enter(&lop->lo_lock);
13409 locku_args->lock_stateid = lop->lock_stateid;
13410 mutex_exit(&lop->lo_lock);
13411 locku_args->seqid = lop->lock_seqid + 1;
13412
13413 /* leave the ref count on lop, rele after RPC call */
13414
13415 locku_args->offset = flk->l_start;
13416 locku_args->length = flk->l_len;
13417 if (flk->l_len == 0)
13418 locku_args->length = ~locku_args->length;
13419
13420 *go_otwp = TRUE;
13421 }
13422
13423 /*
13424 * Setup the LOCK4 arguments.
13425 *
13426 * Returns errors via the nfs4_error_t.
13427 * NFS4_OK no problems
13428 * NFS4ERR_DELAY caller should retry (like recovery retry)
13429 * (other) unrecoverable error
13430 */
13431 static void
13432 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp,
13433 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
13434 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp,
13435 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep)
13436 {
13437 LOCK4args *lock_args;
13438 nfs4_open_owner_t *oop = NULL;
13439 nfs4_open_stream_t *osp = NULL;
13440 nfs4_lock_owner_t *lop = NULL;
13441 pid_t pid;
13442 rnode4_t *rp = VTOR4(vp);
13443
13444 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13445
13446 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type);
13447 if (ep->error || ep->stat != NFS4_OK)
13448 return;
13449
13450 argop->argop = OP_LOCK;
13451 if (ctype == NFS4_LCK_CTYPE_NORM)
13452 argsp->ctag = TAG_LOCK;
13453 else if (ctype == NFS4_LCK_CTYPE_RECLAIM)
13454 argsp->ctag = TAG_RELOCK;
13455 else
13456 argsp->ctag = TAG_LOCK_REINSTATE;
13457 lock_args = &argop->nfs_argop4_u.oplock;
13458 lock_args->locktype = flk_to_locktype(cmd, flk->l_type);
13459 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0;
13460 /*
13461 * Get the lock owner. If no lock owner exists,
13462 * create a 'temporary' one and grab the open seqid
13463 * synchronization (which puts a hold on the open
13464 * owner and open stream).
13465 * This also grabs the lock seqid synchronization.
13466 */
13467 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid;
13468 ep->stat =
13469 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop);
13470
13471 if (ep->stat != NFS4_OK)
13472 goto out;
13473
13474 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)),
13475 &lock_args->locker);
13476
13477 lock_args->offset = flk->l_start;
13478 lock_args->length = flk->l_len;
13479 if (flk->l_len == 0)
13480 lock_args->length = ~lock_args->length;
13481 *lock_argsp = lock_args;
13482 out:
13483 *oopp = oop;
13484 *ospp = osp;
13485 *lopp = lop;
13486 }
13487
13488 /*
13489 * After we get the reply from the server, record the proper information
13490 * for possible resend lock requests.
13491 *
13492 * Allocates memory for the saved_rqstp if we have a lost lock to save.
13493 */
13494 static void
13495 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error,
13496 nfs_lock_type4 locktype, nfs4_open_owner_t *oop,
13497 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk,
13498 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp)
13499 {
13500 bool_t unlock = (flk->l_type == F_UNLCK);
13501
13502 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13503 ASSERT(ctype == NFS4_LCK_CTYPE_NORM ||
13504 ctype == NFS4_LCK_CTYPE_REINSTATE);
13505
13506 if (error != 0 && !unlock) {
13507 NFS4_DEBUG((nfs4_lost_rqst_debug ||
13508 nfs4_client_lock_debug), (CE_NOTE,
13509 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 "
13510 " for lop %p", (void *)lop));
13511 ASSERT(lop != NULL);
13512 mutex_enter(&lop->lo_lock);
13513 lop->lo_pending_rqsts = 1;
13514 mutex_exit(&lop->lo_lock);
13515 }
13516
13517 lost_rqstp->lr_putfirst = FALSE;
13518 lost_rqstp->lr_op = 0;
13519
13520 /*
13521 * For lock/locku requests, we treat EINTR as ETIMEDOUT for
13522 * recovery purposes so that the lock request that was sent
13523 * can be saved and re-issued later. Ditto for EIO from a forced
13524 * unmount. This is done to have the client's local locking state
13525 * match the v4 server's state; that is, the request was
13526 * potentially received and accepted by the server but the client
13527 * thinks it was not.
13528 */
13529 if (error == ETIMEDOUT || error == EINTR ||
13530 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) {
13531 NFS4_DEBUG((nfs4_lost_rqst_debug ||
13532 nfs4_client_lock_debug), (CE_NOTE,
13533 "nfs4frlock_save_lost_rqst: got a lost %s lock for "
13534 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK",
13535 (void *)lop, (void *)oop, (void *)osp));
13536 if (unlock)
13537 lost_rqstp->lr_op = OP_LOCKU;
13538 else {
13539 lost_rqstp->lr_op = OP_LOCK;
13540 lost_rqstp->lr_locktype = locktype;
13541 }
13542 /*
13543 * Objects are held and rele'd via the recovery code.
13544 * See nfs4_save_lost_rqst.
13545 */
13546 lost_rqstp->lr_vp = vp;
13547 lost_rqstp->lr_dvp = NULL;
13548 lost_rqstp->lr_oop = oop;
13549 lost_rqstp->lr_osp = osp;
13550 lost_rqstp->lr_lop = lop;
13551 lost_rqstp->lr_cr = cr;
13552 switch (ctype) {
13553 case NFS4_LCK_CTYPE_NORM:
13554 flk->l_pid = ttoproc(curthread)->p_pid;
13555 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND;
13556 break;
13557 case NFS4_LCK_CTYPE_REINSTATE:
13558 lost_rqstp->lr_putfirst = TRUE;
13559 lost_rqstp->lr_ctype = ctype;
13560 break;
13561 default:
13562 break;
13563 }
13564 lost_rqstp->lr_flk = flk;
13565 }
13566 }
13567
13568 /*
13569 * Update lop's seqid. Also update the seqid stored in a resend request,
13570 * if any. (Some recovery errors increment the seqid, and we may have to
13571 * send the resend request again.)
13572 */
13573
13574 static void
13575 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args,
13576 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type)
13577 {
13578 if (lock_args) {
13579 if (lock_args->locker.new_lock_owner == TRUE)
13580 nfs4_get_and_set_next_open_seqid(oop, tag_type);
13581 else {
13582 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE);
13583 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop);
13584 }
13585 } else if (locku_args) {
13586 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE);
13587 nfs4_set_lock_seqid(lop->lock_seqid +1, lop);
13588 }
13589 }
13590
13591 /*
13592 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
13593 * COMPOUND4 args/res for calls that need to retry.
13594 * Switches the *cred_otwp to base_cr.
13595 */
13596 static void
13597 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint,
13598 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop,
13599 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error,
13600 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp,
13601 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp)
13602 {
13603 nfs4_open_owner_t *oop = *oopp;
13604 nfs4_open_stream_t *osp = *ospp;
13605 nfs4_lock_owner_t *lop = *lopp;
13606 nfs_argop4 *argop = (*argspp)->array;
13607
13608 if (*did_start_fop) {
13609 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep,
13610 needrecov);
13611 *did_start_fop = FALSE;
13612 }
13613 ASSERT((*argspp)->array_len == 2);
13614 if (argop[1].argop == OP_LOCK)
13615 nfs4args_lock_free(&argop[1]);
13616 else if (argop[1].argop == OP_LOCKT)
13617 nfs4args_lockt_free(&argop[1]);
13618 kmem_free(argop, 2 * sizeof (nfs_argop4));
13619 if (!error)
13620 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp);
13621 *argspp = NULL;
13622 *respp = NULL;
13623
13624 if (lop) {
13625 nfs4_end_lock_seqid_sync(lop);
13626 lock_owner_rele(lop);
13627 *lopp = NULL;
13628 }
13629
13630 /* need to free up the reference on osp for lock args */
13631 if (osp != NULL) {
13632 open_stream_rele(osp, VTOR4(vp));
13633 *ospp = NULL;
13634 }
13635
13636 /* need to free up the reference on oop for lock args */
13637 if (oop != NULL) {
13638 nfs4_end_open_seqid_sync(oop);
13639 open_owner_rele(oop);
13640 *oopp = NULL;
13641 }
13642
13643 crfree(*cred_otwp);
13644 *cred_otwp = base_cr;
13645 crhold(*cred_otwp);
13646 }
13647
13648 /*
13649 * Function to process the client's recovery for nfs4frlock.
13650 * Returns TRUE if we should retry the lock request; FALSE otherwise.
13651 *
13652 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
13653 * COMPOUND4 args/res for calls that need to retry.
13654 *
13655 * Note: the rp's r_lkserlock is *not* dropped during this path.
13656 */
13657 static bool_t
13658 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep,
13659 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp,
13660 LOCK4args *lock_args, LOCKU4args *locku_args,
13661 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
13662 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp,
13663 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint,
13664 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk)
13665 {
13666 nfs4_open_owner_t *oop = *oopp;
13667 nfs4_open_stream_t *osp = *ospp;
13668 nfs4_lock_owner_t *lop = *lopp;
13669
13670 bool_t abort, retry;
13671
13672 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13673 ASSERT((*argspp) != NULL);
13674 ASSERT((*respp) != NULL);
13675 if (lock_args || locku_args)
13676 ASSERT(lop != NULL);
13677
13678 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug),
13679 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n"));
13680
13681 retry = TRUE;
13682 abort = FALSE;
13683 if (needrecov) {
13684 nfs4_bseqid_entry_t *bsep = NULL;
13685 nfs_opnum4 op;
13686
13687 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT;
13688
13689 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) {
13690 seqid4 seqid;
13691
13692 if (lock_args) {
13693 if (lock_args->locker.new_lock_owner == TRUE)
13694 seqid = lock_args->locker.locker4_u.
13695 open_owner.open_seqid;
13696 else
13697 seqid = lock_args->locker.locker4_u.
13698 lock_owner.lock_seqid;
13699 } else if (locku_args) {
13700 seqid = locku_args->seqid;
13701 } else {
13702 seqid = 0;
13703 }
13704
13705 bsep = nfs4_create_bseqid_entry(oop, lop, vp,
13706 flk->l_pid, (*argspp)->ctag, seqid);
13707 }
13708
13709 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL,
13710 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK ||
13711 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp :
13712 NULL, op, bsep, NULL, NULL);
13713
13714 if (bsep)
13715 kmem_free(bsep, sizeof (*bsep));
13716 }
13717
13718 /*
13719 * Return that we do not want to retry the request for 3 cases:
13720 * 1. If we received EINTR or are bailing out because of a forced
13721 * unmount, we came into this code path just for the sake of
13722 * initiating recovery, we now need to return the error.
13723 * 2. If we have aborted recovery.
13724 * 3. We received NFS4ERR_BAD_SEQID.
13725 */
13726 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) ||
13727 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID))
13728 retry = FALSE;
13729
13730 if (*did_start_fop == TRUE) {
13731 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep,
13732 needrecov);
13733 *did_start_fop = FALSE;
13734 }
13735
13736 if (retry == TRUE) {
13737 nfs_argop4 *argop;
13738
13739 argop = (*argspp)->array;
13740 ASSERT((*argspp)->array_len == 2);
13741
13742 if (argop[1].argop == OP_LOCK)
13743 nfs4args_lock_free(&argop[1]);
13744 else if (argop[1].argop == OP_LOCKT)
13745 nfs4args_lockt_free(&argop[1]);
13746 kmem_free(argop, 2 * sizeof (nfs_argop4));
13747 if (!ep->error)
13748 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp);
13749 *respp = NULL;
13750 *argspp = NULL;
13751 }
13752
13753 if (lop != NULL) {
13754 nfs4_end_lock_seqid_sync(lop);
13755 lock_owner_rele(lop);
13756 }
13757
13758 *lopp = NULL;
13759
13760 /* need to free up the reference on osp for lock args */
13761 if (osp != NULL) {
13762 open_stream_rele(osp, rp);
13763 *ospp = NULL;
13764 }
13765
13766 /* need to free up the reference on oop for lock args */
13767 if (oop != NULL) {
13768 nfs4_end_open_seqid_sync(oop);
13769 open_owner_rele(oop);
13770 *oopp = NULL;
13771 }
13772
13773 return (retry);
13774 }
13775
13776 /*
13777 * Handles the successful reply from the server for nfs4frlock.
13778 */
13779 static void
13780 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk,
13781 vnode_t *vp, int flag, u_offset_t offset,
13782 nfs4_lost_rqst_t *resend_rqstp)
13783 {
13784 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13785 if ((cmd == F_SETLK || cmd == F_SETLKW) &&
13786 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) {
13787 if (ctype == NFS4_LCK_CTYPE_NORM) {
13788 flk->l_pid = ttoproc(curthread)->p_pid;
13789 /*
13790 * We do not register lost locks locally in
13791 * the 'resend' case since the user/application
13792 * doesn't think we have the lock.
13793 */
13794 ASSERT(!resend_rqstp);
13795 nfs4_register_lock_locally(vp, flk, flag, offset);
13796 }
13797 }
13798 }
13799
13800 /*
13801 * Handle the DENIED reply from the server for nfs4frlock.
13802 * Returns TRUE if we should retry the request; FALSE otherwise.
13803 *
13804 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
13805 * COMPOUND4 args/res for calls that need to retry. Can also
13806 * drop and regrab the r_lkserlock.
13807 */
13808 static bool_t
13809 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args,
13810 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp,
13811 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd,
13812 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint,
13813 nfs4_recov_state_t *recov_statep, int needrecov,
13814 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp,
13815 clock_t *tick_delayp, short *whencep, int *errorp,
13816 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop,
13817 bool_t *skip_get_err)
13818 {
13819 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13820
13821 if (lock_args) {
13822 nfs4_open_owner_t *oop = *oopp;
13823 nfs4_open_stream_t *osp = *ospp;
13824 nfs4_lock_owner_t *lop = *lopp;
13825 int intr;
13826
13827 /*
13828 * Blocking lock needs to sleep and retry from the request.
13829 *
13830 * Do not block and wait for 'resend' or 'reinstate'
13831 * lock requests, just return the error.
13832 *
13833 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW.
13834 */
13835 if (cmd == F_SETLKW) {
13836 rnode4_t *rp = VTOR4(vp);
13837 nfs_argop4 *argop = (*argspp)->array;
13838
13839 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
13840
13841 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint,
13842 recov_statep, needrecov);
13843 *did_start_fop = FALSE;
13844 ASSERT((*argspp)->array_len == 2);
13845 if (argop[1].argop == OP_LOCK)
13846 nfs4args_lock_free(&argop[1]);
13847 else if (argop[1].argop == OP_LOCKT)
13848 nfs4args_lockt_free(&argop[1]);
13849 kmem_free(argop, 2 * sizeof (nfs_argop4));
13850 if (*respp)
13851 (void) xdr_free(xdr_COMPOUND4res_clnt,
13852 (caddr_t)*respp);
13853 *argspp = NULL;
13854 *respp = NULL;
13855 nfs4_end_lock_seqid_sync(lop);
13856 lock_owner_rele(lop);
13857 *lopp = NULL;
13858 if (osp != NULL) {
13859 open_stream_rele(osp, rp);
13860 *ospp = NULL;
13861 }
13862 if (oop != NULL) {
13863 nfs4_end_open_seqid_sync(oop);
13864 open_owner_rele(oop);
13865 *oopp = NULL;
13866 }
13867
13868 nfs_rw_exit(&rp->r_lkserlock);
13869
13870 intr = nfs4_block_and_wait(tick_delayp, rp);
13871
13872 if (intr) {
13873 (void) nfs_rw_enter_sig(&rp->r_lkserlock,
13874 RW_WRITER, FALSE);
13875 *errorp = EINTR;
13876 return (FALSE);
13877 }
13878
13879 (void) nfs_rw_enter_sig(&rp->r_lkserlock,
13880 RW_WRITER, FALSE);
13881
13882 /*
13883 * Make sure we are still safe to lock with
13884 * regards to mmapping.
13885 */
13886 if (!nfs4_safelock(vp, flk, cr)) {
13887 *errorp = EAGAIN;
13888 return (FALSE);
13889 }
13890
13891 return (TRUE);
13892 }
13893 if (ctype == NFS4_LCK_CTYPE_NORM)
13894 *errorp = EAGAIN;
13895 *skip_get_err = TRUE;
13896 flk->l_whence = 0;
13897 *whencep = 0;
13898 return (FALSE);
13899 } else if (lockt_args) {
13900 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
13901 "nfs4frlock_results_denied: OP_LOCKT DENIED"));
13902
13903 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied,
13904 flk, lockt_args);
13905
13906 /* according to NLM code */
13907 *errorp = 0;
13908 *whencep = 0;
13909 *skip_get_err = TRUE;
13910 return (FALSE);
13911 }
13912 return (FALSE);
13913 }
13914
13915 /*
13916 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock.
13917 */
13918 static void
13919 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp)
13920 {
13921 switch (resp->status) {
13922 case NFS4ERR_ACCESS:
13923 case NFS4ERR_ADMIN_REVOKED:
13924 case NFS4ERR_BADHANDLE:
13925 case NFS4ERR_BAD_RANGE:
13926 case NFS4ERR_BAD_SEQID:
13927 case NFS4ERR_BAD_STATEID:
13928 case NFS4ERR_BADXDR:
13929 case NFS4ERR_DEADLOCK:
13930 case NFS4ERR_DELAY:
13931 case NFS4ERR_EXPIRED:
13932 case NFS4ERR_FHEXPIRED:
13933 case NFS4ERR_GRACE:
13934 case NFS4ERR_INVAL:
13935 case NFS4ERR_ISDIR:
13936 case NFS4ERR_LEASE_MOVED:
13937 case NFS4ERR_LOCK_NOTSUPP:
13938 case NFS4ERR_LOCK_RANGE:
13939 case NFS4ERR_MOVED:
13940 case NFS4ERR_NOFILEHANDLE:
13941 case NFS4ERR_NO_GRACE:
13942 case NFS4ERR_OLD_STATEID:
13943 case NFS4ERR_OPENMODE:
13944 case NFS4ERR_RECLAIM_BAD:
13945 case NFS4ERR_RECLAIM_CONFLICT:
13946 case NFS4ERR_RESOURCE:
13947 case NFS4ERR_SERVERFAULT:
13948 case NFS4ERR_STALE:
13949 case NFS4ERR_STALE_CLIENTID:
13950 case NFS4ERR_STALE_STATEID:
13951 return;
13952 default:
13953 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
13954 "nfs4frlock_results_default: got unrecognizable "
13955 "res.status %d", resp->status));
13956 *errorp = NFS4ERR_INVAL;
13957 }
13958 }
13959
13960 /*
13961 * The lock request was successful, so update the client's state.
13962 */
13963 static void
13964 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args,
13965 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop,
13966 vnode_t *vp, flock64_t *flk, cred_t *cr,
13967 nfs4_lost_rqst_t *resend_rqstp)
13968 {
13969 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13970
13971 if (lock_args) {
13972 LOCK4res *lock_res;
13973
13974 lock_res = &resop->nfs_resop4_u.oplock;
13975 /* update the stateid with server's response */
13976
13977 if (lock_args->locker.new_lock_owner == TRUE) {
13978 mutex_enter(&lop->lo_lock);
13979 lop->lo_just_created = NFS4_PERM_CREATED;
13980 mutex_exit(&lop->lo_lock);
13981 }
13982
13983 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid);
13984
13985 /*
13986 * If the lock was the result of a resending a lost
13987 * request, we've synched up the stateid and seqid
13988 * with the server, but now the server might be out of sync
13989 * with what the application thinks it has for locks.
13990 * Clean that up here. It's unclear whether we should do
13991 * this even if the filesystem has been forcibly unmounted.
13992 * For most servers, it's probably wasted effort, but
13993 * RFC3530 lets servers require that unlocks exactly match
13994 * the locks that are held.
13995 */
13996 if (resend_rqstp != NULL &&
13997 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) {
13998 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop);
13999 } else {
14000 flk->l_whence = 0;
14001 }
14002 } else if (locku_args) {
14003 LOCKU4res *locku_res;
14004
14005 locku_res = &resop->nfs_resop4_u.oplocku;
14006
14007 /* Update the stateid with the server's response */
14008 nfs4_set_lock_stateid(lop, locku_res->lock_stateid);
14009 } else if (lockt_args) {
14010 /* Switch the lock type to express success, see fcntl */
14011 flk->l_type = F_UNLCK;
14012 flk->l_whence = 0;
14013 }
14014 }
14015
14016 /*
14017 * Do final cleanup before exiting nfs4frlock.
14018 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
14019 * COMPOUND4 args/res for calls that haven't already.
14020 */
14021 static void
14022 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp,
14023 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint,
14024 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop,
14025 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk,
14026 short whence, u_offset_t offset, struct lm_sysid *ls,
14027 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args,
14028 bool_t did_start_fop, bool_t skip_get_err,
14029 cred_t *cred_otw, cred_t *cred)
14030 {
14031 mntinfo4_t *mi = VTOMI4(vp);
14032 rnode4_t *rp = VTOR4(vp);
14033 int error = *errorp;
14034 nfs_argop4 *argop;
14035 int do_flush_pages = 0;
14036
14037 ASSERT(nfs_zone() == mi->mi_zone);
14038 /*
14039 * The client recovery code wants the raw status information,
14040 * so don't map the NFS status code to an errno value for
14041 * non-normal call types.
14042 */
14043 if (ctype == NFS4_LCK_CTYPE_NORM) {
14044 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE)
14045 *errorp = geterrno4(resp->status);
14046 if (did_start_fop == TRUE)
14047 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep,
14048 needrecov);
14049
14050 /*
14051 * We've established a new lock on the server, so invalidate
14052 * the pages associated with the vnode to get the most up to
14053 * date pages from the server after acquiring the lock. We
14054 * want to be sure that the read operation gets the newest data.
14055 * N.B.
14056 * We used to do this in nfs4frlock_results_ok but that doesn't
14057 * work since VOP_PUTPAGE can call nfs4_commit which calls
14058 * nfs4_start_fop. We flush the pages below after calling
14059 * nfs4_end_fop above
14060 * The flush of the page cache must be done after
14061 * nfs4_end_open_seqid_sync() to avoid a 4-way hang.
14062 */
14063 if (!error && resp && resp->status == NFS4_OK)
14064 do_flush_pages = 1;
14065 }
14066 if (argsp) {
14067 ASSERT(argsp->array_len == 2);
14068 argop = argsp->array;
14069 if (argop[1].argop == OP_LOCK)
14070 nfs4args_lock_free(&argop[1]);
14071 else if (argop[1].argop == OP_LOCKT)
14072 nfs4args_lockt_free(&argop[1]);
14073 kmem_free(argop, 2 * sizeof (nfs_argop4));
14074 if (resp)
14075 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
14076 }
14077
14078 /* free the reference on the lock owner */
14079 if (lop != NULL) {
14080 nfs4_end_lock_seqid_sync(lop);
14081 lock_owner_rele(lop);
14082 }
14083
14084 /* need to free up the reference on osp for lock args */
14085 if (osp != NULL)
14086 open_stream_rele(osp, rp);
14087
14088 /* need to free up the reference on oop for lock args */
14089 if (oop != NULL) {
14090 nfs4_end_open_seqid_sync(oop);
14091 open_owner_rele(oop);
14092 }
14093
14094 if (do_flush_pages)
14095 nfs4_flush_pages(vp, cred);
14096
14097 (void) convoff(vp, flk, whence, offset);
14098
14099 lm_rel_sysid(ls);
14100
14101 /*
14102 * Record debug information in the event we get EINVAL.
14103 */
14104 mutex_enter(&mi->mi_lock);
14105 if (*errorp == EINVAL && (lock_args || locku_args) &&
14106 (!(mi->mi_flags & MI4_POSIX_LOCK))) {
14107 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) {
14108 zcmn_err(getzoneid(), CE_NOTE,
14109 "%s operation failed with "
14110 "EINVAL probably since the server, %s,"
14111 " doesn't support POSIX style locking",
14112 lock_args ? "LOCK" : "LOCKU",
14113 mi->mi_curr_serv->sv_hostname);
14114 mi->mi_flags |= MI4_LOCK_DEBUG;
14115 }
14116 }
14117 mutex_exit(&mi->mi_lock);
14118
14119 if (cred_otw)
14120 crfree(cred_otw);
14121 }
14122
14123 /*
14124 * This calls the server and the local locking code.
14125 *
14126 * Client locks are registerred locally by oring the sysid with
14127 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid.
14128 * We need to distinguish between the two to avoid collision in case one
14129 * machine is used as both client and server.
14130 *
14131 * Blocking lock requests will continually retry to acquire the lock
14132 * forever.
14133 *
14134 * The ctype is defined as follows:
14135 * NFS4_LCK_CTYPE_NORM: normal lock request.
14136 *
14137 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client
14138 * recovery, get the pid from flk instead of curproc, and don't reregister
14139 * the lock locally.
14140 *
14141 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition
14142 * that we will use the information passed in via resend_rqstp to setup the
14143 * lock/locku request. This resend is the exact same request as the 'lost
14144 * lock', and is initiated by the recovery framework. A successful resend
14145 * request can initiate one or more reinstate requests.
14146 *
14147 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it
14148 * does not trigger additional reinstate requests. This lock call type is
14149 * set for setting the v4 server's locking state back to match what the
14150 * client's local locking state is in the event of a received 'lost lock'.
14151 *
14152 * Errors are returned via the nfs4_error_t parameter.
14153 */
14154 void
14155 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk,
14156 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep,
14157 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp)
14158 {
14159 COMPOUND4args_clnt args, *argsp = NULL;
14160 COMPOUND4res_clnt res, *resp = NULL;
14161 nfs_argop4 *argop;
14162 nfs_resop4 *resop;
14163 rnode4_t *rp;
14164 int doqueue = 1;
14165 clock_t tick_delay; /* delay in clock ticks */
14166 struct lm_sysid *ls;
14167 LOCK4args *lock_args = NULL;
14168 LOCKU4args *locku_args = NULL;
14169 LOCKT4args *lockt_args = NULL;
14170 nfs4_open_owner_t *oop = NULL;
14171 nfs4_open_stream_t *osp = NULL;
14172 nfs4_lock_owner_t *lop = NULL;
14173 bool_t needrecov = FALSE;
14174 nfs4_recov_state_t recov_state;
14175 short whence;
14176 nfs4_op_hint_t op_hint;
14177 nfs4_lost_rqst_t lost_rqst;
14178 bool_t retry = FALSE;
14179 bool_t did_start_fop = FALSE;
14180 bool_t skip_get_err = FALSE;
14181 cred_t *cred_otw = NULL;
14182 bool_t recovonly; /* just queue request */
14183 int frc_no_reclaim = 0;
14184 #ifdef DEBUG
14185 char *name;
14186 #endif
14187
14188 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14189
14190 #ifdef DEBUG
14191 name = fn_name(VTOSV(vp)->sv_name);
14192 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: "
14193 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", "
14194 "length %"PRIu64", pid %d, sysid %d, call type %s, "
14195 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start,
14196 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid :
14197 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype),
14198 resend_rqstp ? "TRUE" : "FALSE"));
14199 kmem_free(name, MAXNAMELEN);
14200 #endif
14201
14202 nfs4_error_zinit(ep);
14203 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset);
14204 if (ep->error)
14205 return;
14206 ep->error = nfs4frlock_get_sysid(&ls, vp, flk);
14207 if (ep->error)
14208 return;
14209 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence,
14210 vp, cr, &cred_otw);
14211
14212 recov_retry:
14213 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd,
14214 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst);
14215 rp = VTOR4(vp);
14216
14217 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state,
14218 &did_start_fop, &recovonly);
14219
14220 if (ep->error)
14221 goto out;
14222
14223 if (recovonly) {
14224 /*
14225 * Leave the request for the recovery system to deal with.
14226 */
14227 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
14228 ASSERT(cmd != F_GETLK);
14229 ASSERT(flk->l_type == F_UNLCK);
14230
14231 nfs4_error_init(ep, EINTR);
14232 needrecov = TRUE;
14233 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY);
14234 if (lop != NULL) {
14235 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT,
14236 NULL, NULL, lop, flk, &lost_rqst, cr, vp);
14237 (void) nfs4_start_recovery(ep,
14238 VTOMI4(vp), vp, NULL, NULL,
14239 (lost_rqst.lr_op == OP_LOCK ||
14240 lost_rqst.lr_op == OP_LOCKU) ?
14241 &lost_rqst : NULL, OP_LOCKU, NULL, NULL, NULL);
14242 lock_owner_rele(lop);
14243 lop = NULL;
14244 }
14245 flk->l_pid = curproc->p_pid;
14246 nfs4_register_lock_locally(vp, flk, flag, offset);
14247 goto out;
14248 }
14249
14250 /* putfh directory fh */
14251 argop[0].argop = OP_CPUTFH;
14252 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
14253
14254 /*
14255 * Set up the over-the-wire arguments and get references to the
14256 * open owner, etc.
14257 */
14258
14259 if (ctype == NFS4_LCK_CTYPE_RESEND ||
14260 ctype == NFS4_LCK_CTYPE_REINSTATE) {
14261 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp,
14262 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args);
14263 } else {
14264 bool_t go_otw = TRUE;
14265
14266 ASSERT(resend_rqstp == NULL);
14267
14268 switch (cmd) {
14269 case F_GETLK:
14270 case F_O_GETLK:
14271 nfs4frlock_setup_lockt_args(ctype, &argop[1],
14272 &lockt_args, argsp, flk, rp);
14273 break;
14274 case F_SETLKW:
14275 case F_SETLK:
14276 if (flk->l_type == F_UNLCK)
14277 nfs4frlock_setup_locku_args(ctype,
14278 &argop[1], &locku_args, flk,
14279 &lop, ep, argsp,
14280 vp, flag, offset, cr,
14281 &skip_get_err, &go_otw);
14282 else
14283 nfs4frlock_setup_lock_args(ctype,
14284 &lock_args, &oop, &osp, &lop, &argop[1],
14285 argsp, flk, cmd, vp, cr, ep);
14286
14287 if (ep->error)
14288 goto out;
14289
14290 switch (ep->stat) {
14291 case NFS4_OK:
14292 break;
14293 case NFS4ERR_DELAY:
14294 /* recov thread never gets this error */
14295 ASSERT(resend_rqstp == NULL);
14296 ASSERT(did_start_fop);
14297
14298 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint,
14299 &recov_state, TRUE);
14300 did_start_fop = FALSE;
14301 if (argop[1].argop == OP_LOCK)
14302 nfs4args_lock_free(&argop[1]);
14303 else if (argop[1].argop == OP_LOCKT)
14304 nfs4args_lockt_free(&argop[1]);
14305 kmem_free(argop, 2 * sizeof (nfs_argop4));
14306 argsp = NULL;
14307 goto recov_retry;
14308 default:
14309 ep->error = EIO;
14310 goto out;
14311 }
14312 break;
14313 default:
14314 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14315 "nfs4_frlock: invalid cmd %d", cmd));
14316 ep->error = EINVAL;
14317 goto out;
14318 }
14319
14320 if (!go_otw)
14321 goto out;
14322 }
14323
14324 /* XXX should we use the local reclock as a cache ? */
14325 /*
14326 * Unregister the lock with the local locking code before
14327 * contacting the server. This avoids a potential race where
14328 * another process gets notified that it has been granted a lock
14329 * before we can unregister ourselves locally.
14330 */
14331 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) {
14332 if (ctype == NFS4_LCK_CTYPE_NORM)
14333 flk->l_pid = ttoproc(curthread)->p_pid;
14334 nfs4_register_lock_locally(vp, flk, flag, offset);
14335 }
14336
14337 /*
14338 * Send the server the lock request. Continually loop with a delay
14339 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE.
14340 */
14341 resp = &res;
14342
14343 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug),
14344 (CE_NOTE,
14345 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first",
14346 rnode4info(rp)));
14347
14348 if (lock_args && frc_no_reclaim) {
14349 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM);
14350 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14351 "nfs4frlock: frc_no_reclaim: clearing reclaim"));
14352 lock_args->reclaim = FALSE;
14353 if (did_reclaimp)
14354 *did_reclaimp = 0;
14355 }
14356
14357 /*
14358 * Do the OTW call.
14359 */
14360 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep);
14361
14362 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14363 "nfs4frlock: error %d, status %d", ep->error, resp->status));
14364
14365 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp);
14366 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14367 "nfs4frlock: needrecov %d", needrecov));
14368
14369 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp))
14370 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop,
14371 args.ctag);
14372
14373 /*
14374 * Check if one of these mutually exclusive error cases has
14375 * happened:
14376 * need to swap credentials due to access error
14377 * recovery is needed
14378 * different error (only known case is missing Kerberos ticket)
14379 */
14380
14381 if ((ep->error == EACCES ||
14382 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) &&
14383 cred_otw != cr) {
14384 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov,
14385 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp,
14386 cr, &cred_otw);
14387 goto recov_retry;
14388 }
14389
14390 if (needrecov) {
14391 /*
14392 * LOCKT requests don't need to recover from lost
14393 * requests since they don't create/modify state.
14394 */
14395 if ((ep->error == EINTR ||
14396 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) &&
14397 lockt_args)
14398 goto out;
14399 /*
14400 * Do not attempt recovery for requests initiated by
14401 * the recovery framework. Let the framework redrive them.
14402 */
14403 if (ctype != NFS4_LCK_CTYPE_NORM)
14404 goto out;
14405 else {
14406 ASSERT(resend_rqstp == NULL);
14407 }
14408
14409 nfs4frlock_save_lost_rqst(ctype, ep->error,
14410 flk_to_locktype(cmd, flk->l_type),
14411 oop, osp, lop, flk, &lost_rqst, cred_otw, vp);
14412
14413 retry = nfs4frlock_recovery(needrecov, ep, &argsp,
14414 &resp, lock_args, locku_args, &oop, &osp, &lop,
14415 rp, vp, &recov_state, op_hint, &did_start_fop,
14416 cmd != F_GETLK ? &lost_rqst : NULL, flk);
14417
14418 if (retry) {
14419 ASSERT(oop == NULL);
14420 ASSERT(osp == NULL);
14421 ASSERT(lop == NULL);
14422 goto recov_retry;
14423 }
14424 goto out;
14425 }
14426
14427 /*
14428 * Bail out if have reached this point with ep->error set. Can
14429 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr).
14430 * This happens if Kerberos ticket has expired or has been
14431 * destroyed.
14432 */
14433 if (ep->error != 0)
14434 goto out;
14435
14436 /*
14437 * Process the reply.
14438 */
14439 switch (resp->status) {
14440 case NFS4_OK:
14441 resop = &resp->array[1];
14442 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset,
14443 resend_rqstp);
14444 /*
14445 * Have a successful lock operation, now update state.
14446 */
14447 nfs4frlock_update_state(lock_args, locku_args, lockt_args,
14448 resop, lop, vp, flk, cr, resend_rqstp);
14449 break;
14450
14451 case NFS4ERR_DENIED:
14452 resop = &resp->array[1];
14453 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args,
14454 &oop, &osp, &lop, cmd, vp, flk, op_hint,
14455 &recov_state, needrecov, &argsp, &resp,
14456 &tick_delay, &whence, &ep->error, resop, cr,
14457 &did_start_fop, &skip_get_err);
14458
14459 if (retry) {
14460 ASSERT(oop == NULL);
14461 ASSERT(osp == NULL);
14462 ASSERT(lop == NULL);
14463 goto recov_retry;
14464 }
14465 break;
14466 /*
14467 * If the server won't let us reclaim, fall-back to trying to lock
14468 * the file from scratch. Code elsewhere will check the changeinfo
14469 * to ensure the file hasn't been changed.
14470 */
14471 case NFS4ERR_NO_GRACE:
14472 if (lock_args && lock_args->reclaim == TRUE) {
14473 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM);
14474 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14475 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE"));
14476 frc_no_reclaim = 1;
14477 /* clean up before retrying */
14478 needrecov = 0;
14479 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp,
14480 lock_args, locku_args, &oop, &osp, &lop, rp, vp,
14481 &recov_state, op_hint, &did_start_fop, NULL, flk);
14482 goto recov_retry;
14483 }
14484 /* FALLTHROUGH */
14485
14486 default:
14487 nfs4frlock_results_default(resp, &ep->error);
14488 break;
14489 }
14490 out:
14491 /*
14492 * Process and cleanup from error. Make interrupted unlock
14493 * requests look successful, since they will be handled by the
14494 * client recovery code.
14495 */
14496 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state,
14497 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error,
14498 lock_args, locku_args, did_start_fop,
14499 skip_get_err, cred_otw, cr);
14500
14501 if (ep->error == EINTR && flk->l_type == F_UNLCK &&
14502 (cmd == F_SETLK || cmd == F_SETLKW))
14503 ep->error = 0;
14504 }
14505
14506 /*
14507 * nfs4_safelock:
14508 *
14509 * Return non-zero if the given lock request can be handled without
14510 * violating the constraints on concurrent mapping and locking.
14511 */
14512
14513 static int
14514 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr)
14515 {
14516 rnode4_t *rp = VTOR4(vp);
14517 struct vattr va;
14518 int error;
14519
14520 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14521 ASSERT(rp->r_mapcnt >= 0);
14522 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: "
14523 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ?
14524 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock",
14525 bfp->l_start, bfp->l_len, rp->r_mapcnt));
14526
14527 if (rp->r_mapcnt == 0)
14528 return (1); /* always safe if not mapped */
14529
14530 /*
14531 * If the file is already mapped and there are locks, then they
14532 * should be all safe locks. So adding or removing a lock is safe
14533 * as long as the new request is safe (i.e., whole-file, meaning
14534 * length and starting offset are both zero).
14535 */
14536
14537 if (bfp->l_start != 0 || bfp->l_len != 0) {
14538 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
14539 "cannot lock a memory mapped file unless locking the "
14540 "entire file: start %"PRIx64", len %"PRIx64,
14541 bfp->l_start, bfp->l_len));
14542 return (0);
14543 }
14544
14545 /* mandatory locking and mapping don't mix */
14546 va.va_mask = AT_MODE;
14547 error = VOP_GETATTR(vp, &va, 0, cr, NULL);
14548 if (error != 0) {
14549 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
14550 "getattr error %d", error));
14551 return (0); /* treat errors conservatively */
14552 }
14553 if (MANDLOCK(vp, va.va_mode)) {
14554 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
14555 "cannot mandatory lock and mmap a file"));
14556 return (0);
14557 }
14558
14559 return (1);
14560 }
14561
14562
14563 /*
14564 * Register the lock locally within Solaris.
14565 * As the client, we "or" the sysid with LM_SYSID_CLIENT when
14566 * recording locks locally.
14567 *
14568 * This should handle conflicts/cooperation with NFS v2/v3 since all locks
14569 * are registered locally.
14570 */
14571 void
14572 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag,
14573 u_offset_t offset)
14574 {
14575 int oldsysid;
14576 int error;
14577 #ifdef DEBUG
14578 char *name;
14579 #endif
14580
14581 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14582
14583 #ifdef DEBUG
14584 name = fn_name(VTOSV(vp)->sv_name);
14585 NFS4_DEBUG(nfs4_client_lock_debug,
14586 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, "
14587 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d",
14588 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid,
14589 flk->l_sysid));
14590 kmem_free(name, MAXNAMELEN);
14591 #endif
14592
14593 /* register the lock with local locking */
14594 oldsysid = flk->l_sysid;
14595 flk->l_sysid |= LM_SYSID_CLIENT;
14596 error = reclock(vp, flk, SETFLCK, flag, offset, NULL);
14597 #ifdef DEBUG
14598 if (error != 0) {
14599 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14600 "nfs4_register_lock_locally: could not register with"
14601 " local locking"));
14602 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT,
14603 "error %d, vp 0x%p, pid %d, sysid 0x%x",
14604 error, (void *)vp, flk->l_pid, flk->l_sysid));
14605 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT,
14606 "type %d off 0x%" PRIx64 " len 0x%" PRIx64,
14607 flk->l_type, flk->l_start, flk->l_len));
14608 (void) reclock(vp, flk, 0, flag, offset, NULL);
14609 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT,
14610 "blocked by pid %d sysid 0x%x type %d "
14611 "off 0x%" PRIx64 " len 0x%" PRIx64,
14612 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start,
14613 flk->l_len));
14614 }
14615 #endif
14616 flk->l_sysid = oldsysid;
14617 }
14618
14619 /*
14620 * nfs4_lockrelease:
14621 *
14622 * Release any locks on the given vnode that are held by the current
14623 * process. Also removes the lock owner (if one exists) from the rnode's
14624 * list.
14625 */
14626 static int
14627 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr)
14628 {
14629 flock64_t ld;
14630 int ret, error;
14631 rnode4_t *rp;
14632 nfs4_lock_owner_t *lop;
14633 nfs4_recov_state_t recov_state;
14634 mntinfo4_t *mi;
14635 bool_t possible_orphan = FALSE;
14636 bool_t recovonly;
14637
14638 ASSERT((uintptr_t)vp > KERNELBASE);
14639 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14640
14641 rp = VTOR4(vp);
14642 mi = VTOMI4(vp);
14643
14644 /*
14645 * If we have not locked anything then we can
14646 * just return since we have no work to do.
14647 */
14648 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) {
14649 return (0);
14650 }
14651
14652 /*
14653 * We need to comprehend that another thread may
14654 * kick off recovery and the lock_owner we have stashed
14655 * in lop might be invalid so we should NOT cache it
14656 * locally!
14657 */
14658 recov_state.rs_flags = 0;
14659 recov_state.rs_num_retry_despite_err = 0;
14660 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state,
14661 &recovonly);
14662 if (error) {
14663 mutex_enter(&rp->r_statelock);
14664 rp->r_flags |= R4LODANGLERS;
14665 mutex_exit(&rp->r_statelock);
14666 return (error);
14667 }
14668
14669 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY);
14670
14671 /*
14672 * Check if the lock owner might have a lock (request was sent but
14673 * no response was received). Also check if there are any remote
14674 * locks on the file. (In theory we shouldn't have to make this
14675 * second check if there's no lock owner, but for now we'll be
14676 * conservative and do it anyway.) If either condition is true,
14677 * send an unlock for the entire file to the server.
14678 *
14679 * Note that no explicit synchronization is needed here. At worst,
14680 * flk_has_remote_locks() will return a false positive, in which case
14681 * the unlock call wastes time but doesn't harm correctness.
14682 */
14683
14684 if (lop) {
14685 mutex_enter(&lop->lo_lock);
14686 possible_orphan = lop->lo_pending_rqsts;
14687 mutex_exit(&lop->lo_lock);
14688 lock_owner_rele(lop);
14689 }
14690
14691 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0);
14692
14693 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14694 "nfs4_lockrelease: possible orphan %d, remote locks %d, for "
14695 "lop %p.", possible_orphan, flk_has_remote_locks(vp),
14696 (void *)lop));
14697
14698 if (possible_orphan || flk_has_remote_locks(vp)) {
14699 ld.l_type = F_UNLCK; /* set to unlock entire file */
14700 ld.l_whence = 0; /* unlock from start of file */
14701 ld.l_start = 0;
14702 ld.l_len = 0; /* do entire file */
14703
14704 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL,
14705 cr, NULL);
14706
14707 if (ret != 0) {
14708 /*
14709 * If VOP_FRLOCK fails, make sure we unregister
14710 * local locks before we continue.
14711 */
14712 ld.l_pid = ttoproc(curthread)->p_pid;
14713 nfs4_register_lock_locally(vp, &ld, flag, offset);
14714 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14715 "nfs4_lockrelease: lock release error on vp"
14716 " %p: error %d.\n", (void *)vp, ret));
14717 }
14718 }
14719
14720 recov_state.rs_flags = 0;
14721 recov_state.rs_num_retry_despite_err = 0;
14722 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state,
14723 &recovonly);
14724 if (error) {
14725 mutex_enter(&rp->r_statelock);
14726 rp->r_flags |= R4LODANGLERS;
14727 mutex_exit(&rp->r_statelock);
14728 return (error);
14729 }
14730
14731 /*
14732 * So, here we're going to need to retrieve the lock-owner
14733 * again (in case recovery has done a switch-a-roo) and
14734 * remove it because we can.
14735 */
14736 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY);
14737
14738 if (lop) {
14739 nfs4_rnode_remove_lock_owner(rp, lop);
14740 lock_owner_rele(lop);
14741 }
14742
14743 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0);
14744 return (0);
14745 }
14746
14747 /*
14748 * Wait for 'tick_delay' clock ticks.
14749 * Implement exponential backoff until hit the lease_time of this nfs4_server.
14750 * NOTE: lock_lease_time is in seconds.
14751 *
14752 * XXX For future improvements, should implement a waiting queue scheme.
14753 */
14754 static int
14755 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp)
14756 {
14757 long milliseconds_delay;
14758 time_t lock_lease_time;
14759
14760 /* wait tick_delay clock ticks or siginteruptus */
14761 if (delay_sig(*tick_delay)) {
14762 return (EINTR);
14763 }
14764 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: "
14765 "reissue the lock request: blocked for %ld clock ticks: %ld "
14766 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000));
14767
14768 /* get the lease time */
14769 lock_lease_time = r2lease_time(rp);
14770
14771 /* drv_hztousec converts ticks to microseconds */
14772 milliseconds_delay = drv_hztousec(*tick_delay) / 1000;
14773 if (milliseconds_delay < lock_lease_time * 1000) {
14774 *tick_delay = 2 * *tick_delay;
14775 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000)
14776 *tick_delay = drv_usectohz(lock_lease_time*1000*1000);
14777 }
14778 return (0);
14779 }
14780
14781
14782 void
14783 nfs4_vnops_init(void)
14784 {
14785 }
14786
14787 void
14788 nfs4_vnops_fini(void)
14789 {
14790 }
14791
14792 /*
14793 * Return a reference to the directory (parent) vnode for a given vnode,
14794 * using the saved pathname information and the directory file handle. The
14795 * caller is responsible for disposing of the reference.
14796 * Returns zero or an errno value.
14797 *
14798 * Caller should set need_start_op to FALSE if it is the recovery
14799 * thread, or if a start_fop has already been done. Otherwise, TRUE.
14800 */
14801 int
14802 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op)
14803 {
14804 svnode_t *svnp;
14805 vnode_t *dvp = NULL;
14806 servinfo4_t *svp;
14807 nfs4_fname_t *mfname;
14808 int error;
14809
14810 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14811
14812 if (vp->v_flag & VROOT) {
14813 nfs4_sharedfh_t *sfh;
14814 nfs_fh4 fh;
14815 mntinfo4_t *mi;
14816
14817 ASSERT(vp->v_type == VREG);
14818
14819 mi = VTOMI4(vp);
14820 svp = mi->mi_curr_serv;
14821 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
14822 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len;
14823 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf;
14824 sfh = sfh4_get(&fh, VTOMI4(vp));
14825 nfs_rw_exit(&svp->sv_lock);
14826 mfname = mi->mi_fname;
14827 fn_hold(mfname);
14828 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0);
14829 sfh4_rele(&sfh);
14830
14831 if (dvp->v_type == VNON)
14832 dvp->v_type = VDIR;
14833 *dvpp = dvp;
14834 return (0);
14835 }
14836
14837 svnp = VTOSV(vp);
14838
14839 if (svnp == NULL) {
14840 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14841 "shadow node is NULL"));
14842 return (EINVAL);
14843 }
14844
14845 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) {
14846 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14847 "shadow node name or dfh val == NULL"));
14848 return (EINVAL);
14849 }
14850
14851 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp,
14852 (int)need_start_op);
14853 if (error != 0) {
14854 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14855 "nfs4_make_dotdot returned %d", error));
14856 return (error);
14857 }
14858 if (!dvp) {
14859 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14860 "nfs4_make_dotdot returned a NULL dvp"));
14861 return (EIO);
14862 }
14863 if (dvp->v_type == VNON)
14864 dvp->v_type = VDIR;
14865 ASSERT(dvp->v_type == VDIR);
14866 if (VTOR4(vp)->r_flags & R4ISXATTR) {
14867 mutex_enter(&dvp->v_lock);
14868 dvp->v_flag |= V_XATTRDIR;
14869 mutex_exit(&dvp->v_lock);
14870 }
14871 *dvpp = dvp;
14872 return (0);
14873 }
14874
14875 /*
14876 * Copy the (final) component name of vp to fnamep. maxlen is the maximum
14877 * length that fnamep can accept, including the trailing null.
14878 * Returns 0 if okay, returns an errno value if there was a problem.
14879 */
14880
14881 int
14882 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen)
14883 {
14884 char *fn;
14885 int err = 0;
14886 servinfo4_t *svp;
14887 svnode_t *shvp;
14888
14889 /*
14890 * If the file being opened has VROOT set, then this is
14891 * a "file" mount. sv_name will not be interesting, so
14892 * go back to the servinfo4 to get the original mount
14893 * path and strip off all but the final edge. Otherwise
14894 * just return the name from the shadow vnode.
14895 */
14896
14897 if (vp->v_flag & VROOT) {
14898
14899 svp = VTOMI4(vp)->mi_curr_serv;
14900 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
14901
14902 fn = strrchr(svp->sv_path, '/');
14903 if (fn == NULL)
14904 err = EINVAL;
14905 else
14906 fn++;
14907 } else {
14908 shvp = VTOSV(vp);
14909 fn = fn_name(shvp->sv_name);
14910 }
14911
14912 if (err == 0)
14913 if (strlen(fn) < maxlen)
14914 (void) strcpy(fnamep, fn);
14915 else
14916 err = ENAMETOOLONG;
14917
14918 if (vp->v_flag & VROOT)
14919 nfs_rw_exit(&svp->sv_lock);
14920 else
14921 kmem_free(fn, MAXNAMELEN);
14922
14923 return (err);
14924 }
14925
14926 /*
14927 * Bookkeeping for a close that doesn't need to go over the wire.
14928 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise
14929 * it is left at 1.
14930 */
14931 void
14932 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp)
14933 {
14934 rnode4_t *rp;
14935 mntinfo4_t *mi;
14936
14937 mi = VTOMI4(vp);
14938 rp = VTOR4(vp);
14939
14940 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: "
14941 "rp=%p osp=%p", (void *)rp, (void *)osp));
14942 ASSERT(nfs_zone() == mi->mi_zone);
14943 ASSERT(mutex_owned(&osp->os_sync_lock));
14944 ASSERT(*have_lockp);
14945
14946 if (!osp->os_valid ||
14947 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) {
14948 return;
14949 }
14950
14951 /*
14952 * This removes the reference obtained at OPEN; ie,
14953 * when the open stream structure was created.
14954 *
14955 * We don't have to worry about calling 'open_stream_rele'
14956 * since we our currently holding a reference to this
14957 * open stream which means the count can not go to 0 with
14958 * this decrement.
14959 */
14960 ASSERT(osp->os_ref_count >= 2);
14961 osp->os_ref_count--;
14962 osp->os_valid = 0;
14963 mutex_exit(&osp->os_sync_lock);
14964 *have_lockp = 0;
14965
14966 nfs4_dec_state_ref_count(mi);
14967 }
14968
14969 /*
14970 * Close all remaining open streams on the rnode. These open streams
14971 * could be here because:
14972 * - The close attempted at either close or delmap failed
14973 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE
14974 * - Someone did mknod on a regular file but never opened it
14975 */
14976 int
14977 nfs4close_all(vnode_t *vp, cred_t *cr)
14978 {
14979 nfs4_open_stream_t *osp;
14980 int error;
14981 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
14982 rnode4_t *rp;
14983
14984 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14985
14986 error = 0;
14987 rp = VTOR4(vp);
14988
14989 /*
14990 * At this point, all we know is that the last time
14991 * someone called vn_rele, the count was 1. Since then,
14992 * the vnode could have been re-activated. We want to
14993 * loop through the open streams and close each one, but
14994 * we have to be careful since once we release the rnode
14995 * hash bucket lock, someone else is free to come in and
14996 * re-activate the rnode and add new open streams. The
14997 * strategy is take the rnode hash bucket lock, verify that
14998 * the count is still 1, grab the open stream off the
14999 * head of the list and mark it invalid, then release the
15000 * rnode hash bucket lock and proceed with that open stream.
15001 * This is ok because nfs4close_one() will acquire the proper
15002 * open/create to close/destroy synchronization for open
15003 * streams, and will ensure that if someone has reopened
15004 * the open stream after we've dropped the hash bucket lock
15005 * then we'll just simply return without destroying the
15006 * open stream.
15007 * Repeat until the list is empty.
15008 */
15009
15010 for (;;) {
15011
15012 /* make sure vnode hasn't been reactivated */
15013 rw_enter(&rp->r_hashq->r_lock, RW_READER);
15014 mutex_enter(&vp->v_lock);
15015 if (vp->v_count > 1) {
15016 mutex_exit(&vp->v_lock);
15017 rw_exit(&rp->r_hashq->r_lock);
15018 break;
15019 }
15020 /*
15021 * Grabbing r_os_lock before releasing v_lock prevents
15022 * a window where the rnode/open stream could get
15023 * reactivated (and os_force_close set to 0) before we
15024 * had a chance to set os_force_close to 1.
15025 */
15026 mutex_enter(&rp->r_os_lock);
15027 mutex_exit(&vp->v_lock);
15028
15029 osp = list_head(&rp->r_open_streams);
15030 if (!osp) {
15031 /* nothing left to CLOSE OTW, so return */
15032 mutex_exit(&rp->r_os_lock);
15033 rw_exit(&rp->r_hashq->r_lock);
15034 break;
15035 }
15036
15037 mutex_enter(&rp->r_statev4_lock);
15038 /* the file can't still be mem mapped */
15039 ASSERT(rp->r_mapcnt == 0);
15040 if (rp->created_v4)
15041 rp->created_v4 = 0;
15042 mutex_exit(&rp->r_statev4_lock);
15043
15044 /*
15045 * Grab a ref on this open stream; nfs4close_one
15046 * will mark it as invalid
15047 */
15048 mutex_enter(&osp->os_sync_lock);
15049 osp->os_ref_count++;
15050 osp->os_force_close = 1;
15051 mutex_exit(&osp->os_sync_lock);
15052 mutex_exit(&rp->r_os_lock);
15053 rw_exit(&rp->r_hashq->r_lock);
15054
15055 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0);
15056
15057 /* Update error if it isn't already non-zero */
15058 if (error == 0) {
15059 if (e.error)
15060 error = e.error;
15061 else if (e.stat)
15062 error = geterrno4(e.stat);
15063 }
15064
15065 #ifdef DEBUG
15066 nfs4close_all_cnt++;
15067 #endif
15068 /* Release the ref on osp acquired above. */
15069 open_stream_rele(osp, rp);
15070
15071 /* Proceed to the next open stream, if any */
15072 }
15073 return (error);
15074 }
15075
15076 /*
15077 * nfs4close_one - close one open stream for a file if needed.
15078 *
15079 * "close_type" indicates which close path this is:
15080 * CLOSE_NORM: close initiated via VOP_CLOSE.
15081 * CLOSE_DELMAP: close initiated via VOP_DELMAP.
15082 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces
15083 * the close and release of client state for this open stream
15084 * (unless someone else has the open stream open).
15085 * CLOSE_RESEND: indicates the request is a replay of an earlier request
15086 * (e.g., due to abort because of a signal).
15087 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN.
15088 *
15089 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client
15090 * recovery. Instead, the caller is expected to deal with retries.
15091 *
15092 * The caller can either pass in the osp ('provided_osp') or not.
15093 *
15094 * 'access_bits' represents the access we are closing/downgrading.
15095 *
15096 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the
15097 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and
15098 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED).
15099 *
15100 * Errors are returned via the nfs4_error_t.
15101 */
15102 void
15103 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr,
15104 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep,
15105 nfs4_close_type_t close_type, size_t len, uint_t maxprot,
15106 uint_t mmap_flags)
15107 {
15108 nfs4_open_owner_t *oop;
15109 nfs4_open_stream_t *osp = NULL;
15110 int retry = 0;
15111 int num_retries = NFS4_NUM_RECOV_RETRIES;
15112 rnode4_t *rp;
15113 mntinfo4_t *mi;
15114 nfs4_recov_state_t recov_state;
15115 cred_t *cred_otw = NULL;
15116 bool_t recovonly = FALSE;
15117 int isrecov;
15118 int force_close;
15119 int close_failed = 0;
15120 int did_dec_count = 0;
15121 int did_start_op = 0;
15122 int did_force_recovlock = 0;
15123 int did_start_seqid_sync = 0;
15124 int have_sync_lock = 0;
15125
15126 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
15127
15128 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, "
15129 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x",
15130 (void *)vp, (void *)provided_osp, (void *)lrp, close_type,
15131 len, maxprot, mmap_flags, access_bits));
15132
15133 nfs4_error_zinit(ep);
15134 rp = VTOR4(vp);
15135 mi = VTOMI4(vp);
15136 isrecov = (close_type == CLOSE_RESEND ||
15137 close_type == CLOSE_AFTER_RESEND);
15138
15139 /*
15140 * First get the open owner.
15141 */
15142 if (!provided_osp) {
15143 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
15144 } else {
15145 oop = provided_osp->os_open_owner;
15146 ASSERT(oop != NULL);
15147 open_owner_hold(oop);
15148 }
15149
15150 if (!oop) {
15151 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
15152 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, "
15153 "close type %d", (void *)rp, (void *)mi, (void *)cr,
15154 (void *)provided_osp, close_type));
15155 ep->error = EIO;
15156 goto out;
15157 }
15158
15159 cred_otw = nfs4_get_otw_cred(cr, mi, oop);
15160 recov_retry:
15161 osp = NULL;
15162 close_failed = 0;
15163 force_close = (close_type == CLOSE_FORCE);
15164 retry = 0;
15165 did_start_op = 0;
15166 did_force_recovlock = 0;
15167 did_start_seqid_sync = 0;
15168 have_sync_lock = 0;
15169 recovonly = FALSE;
15170 recov_state.rs_flags = 0;
15171 recov_state.rs_num_retry_despite_err = 0;
15172
15173 /*
15174 * Second synchronize with recovery.
15175 */
15176 if (!isrecov) {
15177 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE,
15178 &recov_state, &recovonly);
15179 if (!ep->error) {
15180 did_start_op = 1;
15181 } else {
15182 close_failed = 1;
15183 /*
15184 * If we couldn't get start_fop, but have to
15185 * cleanup state, then at least acquire the
15186 * mi_recovlock so we can synchronize with
15187 * recovery.
15188 */
15189 if (close_type == CLOSE_FORCE) {
15190 (void) nfs_rw_enter_sig(&mi->mi_recovlock,
15191 RW_READER, FALSE);
15192 did_force_recovlock = 1;
15193 } else
15194 goto out;
15195 }
15196 }
15197
15198 /*
15199 * We cannot attempt to get the open seqid sync if nfs4_start_fop
15200 * set 'recovonly' to TRUE since most likely this is due to
15201 * reovery being active (MI4_RECOV_ACTIV). If recovery is active,
15202 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us
15203 * to retry, causing us to loop until recovery finishes. Plus we
15204 * don't need protection over the open seqid since we're not going
15205 * OTW, hence don't need to use the seqid.
15206 */
15207 if (recovonly == FALSE) {
15208 /* need to grab the open owner sync before 'os_sync_lock' */
15209 ep->error = nfs4_start_open_seqid_sync(oop, mi);
15210 if (ep->error == EAGAIN) {
15211 ASSERT(!isrecov);
15212 if (did_start_op)
15213 nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
15214 &recov_state, TRUE);
15215 if (did_force_recovlock)
15216 nfs_rw_exit(&mi->mi_recovlock);
15217 goto recov_retry;
15218 }
15219 did_start_seqid_sync = 1;
15220 }
15221
15222 /*
15223 * Third get an open stream and acquire 'os_sync_lock' to
15224 * sychronize the opening/creating of an open stream with the
15225 * closing/destroying of an open stream.
15226 */
15227 if (!provided_osp) {
15228 /* returns with 'os_sync_lock' held */
15229 osp = find_open_stream(oop, rp);
15230 if (!osp) {
15231 ep->error = EIO;
15232 goto out;
15233 }
15234 } else {
15235 osp = provided_osp;
15236 open_stream_hold(osp);
15237 mutex_enter(&osp->os_sync_lock);
15238 }
15239 have_sync_lock = 1;
15240
15241 ASSERT(oop == osp->os_open_owner);
15242
15243 /*
15244 * Fourth, do any special pre-OTW CLOSE processing
15245 * based on the specific close type.
15246 */
15247 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) &&
15248 !did_dec_count) {
15249 ASSERT(osp->os_open_ref_count > 0);
15250 osp->os_open_ref_count--;
15251 did_dec_count = 1;
15252 if (osp->os_open_ref_count == 0)
15253 osp->os_final_close = 1;
15254 }
15255
15256 if (close_type == CLOSE_FORCE) {
15257 /* see if somebody reopened the open stream. */
15258 if (!osp->os_force_close) {
15259 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE,
15260 "nfs4close_one: skip CLOSE_FORCE as osp %p "
15261 "was reopened, vp %p", (void *)osp, (void *)vp));
15262 ep->error = 0;
15263 ep->stat = NFS4_OK;
15264 goto out;
15265 }
15266
15267 if (!osp->os_final_close && !did_dec_count) {
15268 osp->os_open_ref_count--;
15269 did_dec_count = 1;
15270 }
15271
15272 /*
15273 * We can't depend on os_open_ref_count being 0 due to the
15274 * way executables are opened (VN_RELE to match a VOP_OPEN).
15275 */
15276 #ifdef NOTYET
15277 ASSERT(osp->os_open_ref_count == 0);
15278 #endif
15279 if (osp->os_open_ref_count != 0) {
15280 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE,
15281 "nfs4close_one: should panic here on an "
15282 "ASSERT(osp->os_open_ref_count == 0). Ignoring "
15283 "since this is probably the exec problem."));
15284
15285 osp->os_open_ref_count = 0;
15286 }
15287
15288 /*
15289 * There is the possibility that nfs4close_one()
15290 * for close_type == CLOSE_DELMAP couldn't find the
15291 * open stream, thus couldn't decrement its os_mapcnt;
15292 * therefore we can't use this ASSERT yet.
15293 */
15294 #ifdef NOTYET
15295 ASSERT(osp->os_mapcnt == 0);
15296 #endif
15297 osp->os_mapcnt = 0;
15298 }
15299
15300 if (close_type == CLOSE_DELMAP && !did_dec_count) {
15301 ASSERT(osp->os_mapcnt >= btopr(len));
15302
15303 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE))
15304 osp->os_mmap_write -= btopr(len);
15305 if (maxprot & PROT_READ)
15306 osp->os_mmap_read -= btopr(len);
15307 if (maxprot & PROT_EXEC)
15308 osp->os_mmap_read -= btopr(len);
15309 /* mirror the PROT_NONE check in nfs4_addmap() */
15310 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) &&
15311 !(maxprot & PROT_EXEC))
15312 osp->os_mmap_read -= btopr(len);
15313 osp->os_mapcnt -= btopr(len);
15314 did_dec_count = 1;
15315 }
15316
15317 if (recovonly) {
15318 nfs4_lost_rqst_t lost_rqst;
15319
15320 /* request should not already be in recovery queue */
15321 ASSERT(lrp == NULL);
15322 nfs4_error_init(ep, EINTR);
15323 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop,
15324 osp, cred_otw, vp);
15325 mutex_exit(&osp->os_sync_lock);
15326 have_sync_lock = 0;
15327 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL,
15328 lost_rqst.lr_op == OP_CLOSE ?
15329 &lost_rqst : NULL, OP_CLOSE, NULL, NULL, NULL);
15330 close_failed = 1;
15331 force_close = 0;
15332 goto close_cleanup;
15333 }
15334
15335 /*
15336 * If a previous OTW call got NFS4ERR_BAD_SEQID, then
15337 * we stopped operating on the open owner's <old oo_name, old seqid>
15338 * space, which means we stopped operating on the open stream
15339 * too. So don't go OTW (as the seqid is likely bad, and the
15340 * stateid could be stale, potentially triggering a false
15341 * setclientid), and just clean up the client's internal state.
15342 */
15343 if (osp->os_orig_oo_name != oop->oo_name) {
15344 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug,
15345 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p "
15346 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current "
15347 "oo_name %" PRIx64")",
15348 (void *)osp, (void *)oop, osp->os_orig_oo_name,
15349 oop->oo_name));
15350 close_failed = 1;
15351 }
15352
15353 /* If the file failed recovery, just quit. */
15354 mutex_enter(&rp->r_statelock);
15355 if (rp->r_flags & R4RECOVERR) {
15356 close_failed = 1;
15357 }
15358 mutex_exit(&rp->r_statelock);
15359
15360 /*
15361 * If the force close path failed to obtain start_fop
15362 * then skip the OTW close and just remove the state.
15363 */
15364 if (close_failed)
15365 goto close_cleanup;
15366
15367 /*
15368 * Fifth, check to see if there are still mapped pages or other
15369 * opens using this open stream. If there are then we can't
15370 * close yet but we can see if an OPEN_DOWNGRADE is necessary.
15371 */
15372 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) {
15373 nfs4_lost_rqst_t new_lost_rqst;
15374 bool_t needrecov = FALSE;
15375 cred_t *odg_cred_otw = NULL;
15376 seqid4 open_dg_seqid = 0;
15377
15378 if (osp->os_delegation) {
15379 /*
15380 * If this open stream was never OPENed OTW then we
15381 * surely can't DOWNGRADE it (especially since the
15382 * osp->open_stateid is really a delegation stateid
15383 * when os_delegation is 1).
15384 */
15385 if (access_bits & FREAD)
15386 osp->os_share_acc_read--;
15387 if (access_bits & FWRITE)
15388 osp->os_share_acc_write--;
15389 osp->os_share_deny_none--;
15390 nfs4_error_zinit(ep);
15391 goto out;
15392 }
15393 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr,
15394 lrp, ep, &odg_cred_otw, &open_dg_seqid);
15395 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp);
15396 if (needrecov && !isrecov) {
15397 bool_t abort;
15398 nfs4_bseqid_entry_t *bsep = NULL;
15399
15400 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID)
15401 bsep = nfs4_create_bseqid_entry(oop, NULL,
15402 vp, 0,
15403 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG,
15404 open_dg_seqid);
15405
15406 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst,
15407 oop, osp, odg_cred_otw, vp, access_bits, 0);
15408 mutex_exit(&osp->os_sync_lock);
15409 have_sync_lock = 0;
15410 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL,
15411 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ?
15412 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE,
15413 bsep, NULL, NULL);
15414 if (odg_cred_otw)
15415 crfree(odg_cred_otw);
15416 if (bsep)
15417 kmem_free(bsep, sizeof (*bsep));
15418
15419 if (abort == TRUE)
15420 goto out;
15421
15422 if (did_start_seqid_sync) {
15423 nfs4_end_open_seqid_sync(oop);
15424 did_start_seqid_sync = 0;
15425 }
15426 open_stream_rele(osp, rp);
15427
15428 if (did_start_op)
15429 nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
15430 &recov_state, FALSE);
15431 if (did_force_recovlock)
15432 nfs_rw_exit(&mi->mi_recovlock);
15433
15434 goto recov_retry;
15435 } else {
15436 if (odg_cred_otw)
15437 crfree(odg_cred_otw);
15438 }
15439 goto out;
15440 }
15441
15442 /*
15443 * If this open stream was created as the results of an open
15444 * while holding a delegation, then just release it; no need
15445 * to do an OTW close. Otherwise do a "normal" OTW close.
15446 */
15447 if (osp->os_delegation) {
15448 nfs4close_notw(vp, osp, &have_sync_lock);
15449 nfs4_error_zinit(ep);
15450 goto out;
15451 }
15452
15453 /*
15454 * If this stream is not valid, we're done.
15455 */
15456 if (!osp->os_valid) {
15457 nfs4_error_zinit(ep);
15458 goto out;
15459 }
15460
15461 /*
15462 * Last open or mmap ref has vanished, need to do an OTW close.
15463 * First check to see if a close is still necessary.
15464 */
15465 if (osp->os_failed_reopen) {
15466 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
15467 "don't close OTW osp %p since reopen failed.",
15468 (void *)osp));
15469 /*
15470 * Reopen of the open stream failed, hence the
15471 * stateid of the open stream is invalid/stale, and
15472 * sending this OTW would incorrectly cause another
15473 * round of recovery. In this case, we need to set
15474 * the 'os_valid' bit to 0 so another thread doesn't
15475 * come in and re-open this open stream before
15476 * this "closing" thread cleans up state (decrementing
15477 * the nfs4_server_t's state_ref_count and decrementing
15478 * the os_ref_count).
15479 */
15480 osp->os_valid = 0;
15481 /*
15482 * This removes the reference obtained at OPEN; ie,
15483 * when the open stream structure was created.
15484 *
15485 * We don't have to worry about calling 'open_stream_rele'
15486 * since we our currently holding a reference to this
15487 * open stream which means the count can not go to 0 with
15488 * this decrement.
15489 */
15490 ASSERT(osp->os_ref_count >= 2);
15491 osp->os_ref_count--;
15492 nfs4_error_zinit(ep);
15493 close_failed = 0;
15494 goto close_cleanup;
15495 }
15496
15497 ASSERT(osp->os_ref_count > 1);
15498
15499 /*
15500 * Sixth, try the CLOSE OTW.
15501 */
15502 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync,
15503 close_type, ep, &have_sync_lock);
15504
15505 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) {
15506 /*
15507 * Let the recovery thread be responsible for
15508 * removing the state for CLOSE.
15509 */
15510 close_failed = 1;
15511 force_close = 0;
15512 retry = 0;
15513 }
15514
15515 /* See if we need to retry with a different cred */
15516 if ((ep->error == EACCES ||
15517 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) &&
15518 cred_otw != cr) {
15519 crfree(cred_otw);
15520 cred_otw = cr;
15521 crhold(cred_otw);
15522 retry = 1;
15523 }
15524
15525 if (ep->error || ep->stat)
15526 close_failed = 1;
15527
15528 if (retry && !isrecov && num_retries-- > 0) {
15529 if (have_sync_lock) {
15530 mutex_exit(&osp->os_sync_lock);
15531 have_sync_lock = 0;
15532 }
15533 if (did_start_seqid_sync) {
15534 nfs4_end_open_seqid_sync(oop);
15535 did_start_seqid_sync = 0;
15536 }
15537 open_stream_rele(osp, rp);
15538
15539 if (did_start_op)
15540 nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
15541 &recov_state, FALSE);
15542 if (did_force_recovlock)
15543 nfs_rw_exit(&mi->mi_recovlock);
15544 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
15545 "nfs4close_one: need to retry the close "
15546 "operation"));
15547 goto recov_retry;
15548 }
15549 close_cleanup:
15550 /*
15551 * Seventh and lastly, process our results.
15552 */
15553 if (close_failed && force_close) {
15554 /*
15555 * It's ok to drop and regrab the 'os_sync_lock' since
15556 * nfs4close_notw() will recheck to make sure the
15557 * "close"/removal of state should happen.
15558 */
15559 if (!have_sync_lock) {
15560 mutex_enter(&osp->os_sync_lock);
15561 have_sync_lock = 1;
15562 }
15563 /*
15564 * This is last call, remove the ref on the open
15565 * stream created by open and clean everything up.
15566 */
15567 osp->os_pending_close = 0;
15568 nfs4close_notw(vp, osp, &have_sync_lock);
15569 nfs4_error_zinit(ep);
15570 }
15571
15572 if (!close_failed) {
15573 if (have_sync_lock) {
15574 osp->os_pending_close = 0;
15575 mutex_exit(&osp->os_sync_lock);
15576 have_sync_lock = 0;
15577 } else {
15578 mutex_enter(&osp->os_sync_lock);
15579 osp->os_pending_close = 0;
15580 mutex_exit(&osp->os_sync_lock);
15581 }
15582 if (did_start_op && recov_state.rs_sp != NULL) {
15583 mutex_enter(&recov_state.rs_sp->s_lock);
15584 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi);
15585 mutex_exit(&recov_state.rs_sp->s_lock);
15586 } else {
15587 nfs4_dec_state_ref_count(mi);
15588 }
15589 nfs4_error_zinit(ep);
15590 }
15591
15592 out:
15593 if (have_sync_lock)
15594 mutex_exit(&osp->os_sync_lock);
15595 if (did_start_op)
15596 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state,
15597 recovonly ? TRUE : FALSE);
15598 if (did_force_recovlock)
15599 nfs_rw_exit(&mi->mi_recovlock);
15600 if (cred_otw)
15601 crfree(cred_otw);
15602 if (osp)
15603 open_stream_rele(osp, rp);
15604 if (oop) {
15605 if (did_start_seqid_sync)
15606 nfs4_end_open_seqid_sync(oop);
15607 open_owner_rele(oop);
15608 }
15609 }
15610
15611 /*
15612 * Convert information returned by the server in the LOCK4denied
15613 * structure to the form required by fcntl.
15614 */
15615 static void
15616 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args)
15617 {
15618 nfs4_lo_name_t *lo;
15619
15620 #ifdef DEBUG
15621 if (denied_to_flk_debug) {
15622 lockt_denied_debug = lockt_denied;
15623 debug_enter("lockt_denied");
15624 }
15625 #endif
15626
15627 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK;
15628 flk->l_whence = 0; /* aka SEEK_SET */
15629 flk->l_start = lockt_denied->offset;
15630 flk->l_len = lockt_denied->length;
15631
15632 /*
15633 * If the blocking clientid matches our client id, then we can
15634 * interpret the lockowner (since we built it). If not, then
15635 * fabricate a sysid and pid. Note that the l_sysid field
15636 * in *flk already has the local sysid.
15637 */
15638
15639 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) {
15640
15641 if (lockt_denied->owner.owner_len == sizeof (*lo)) {
15642 lo = (nfs4_lo_name_t *)
15643 lockt_denied->owner.owner_val;
15644
15645 flk->l_pid = lo->ln_pid;
15646 } else {
15647 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
15648 "denied_to_flk: bad lock owner length\n"));
15649
15650 flk->l_pid = lo_to_pid(&lockt_denied->owner);
15651 }
15652 } else {
15653 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
15654 "denied_to_flk: foreign clientid\n"));
15655
15656 /*
15657 * Construct a new sysid which should be different from
15658 * sysids of other systems.
15659 */
15660
15661 flk->l_sysid++;
15662 flk->l_pid = lo_to_pid(&lockt_denied->owner);
15663 }
15664 }
15665
15666 static pid_t
15667 lo_to_pid(lock_owner4 *lop)
15668 {
15669 pid_t pid = 0;
15670 uchar_t *cp;
15671 int i;
15672
15673 cp = (uchar_t *)&lop->clientid;
15674
15675 for (i = 0; i < sizeof (lop->clientid); i++)
15676 pid += (pid_t)*cp++;
15677
15678 cp = (uchar_t *)lop->owner_val;
15679
15680 for (i = 0; i < lop->owner_len; i++)
15681 pid += (pid_t)*cp++;
15682
15683 return (pid);
15684 }
15685
15686 /*
15687 * Given a lock pointer, returns the length of that lock.
15688 * "end" is the last locked offset the "l_len" covers from
15689 * the start of the lock.
15690 */
15691 static off64_t
15692 lock_to_end(flock64_t *lock)
15693 {
15694 off64_t lock_end;
15695
15696 if (lock->l_len == 0)
15697 lock_end = (off64_t)MAXEND;
15698 else
15699 lock_end = lock->l_start + lock->l_len - 1;
15700
15701 return (lock_end);
15702 }
15703
15704 /*
15705 * Given the end of a lock, it will return you the length "l_len" for that lock.
15706 */
15707 static off64_t
15708 end_to_len(off64_t start, off64_t end)
15709 {
15710 off64_t lock_len;
15711
15712 ASSERT(end >= start);
15713 if (end == MAXEND)
15714 lock_len = 0;
15715 else
15716 lock_len = end - start + 1;
15717
15718 return (lock_len);
15719 }
15720
15721 /*
15722 * On given end for a lock it determines if it is the last locked offset
15723 * or not, if so keeps it as is, else adds one to return the length for
15724 * valid start.
15725 */
15726 static off64_t
15727 start_check(off64_t x)
15728 {
15729 if (x == MAXEND)
15730 return (x);
15731 else
15732 return (x + 1);
15733 }
15734
15735 /*
15736 * See if these two locks overlap, and if so return 1;
15737 * otherwise, return 0.
15738 */
15739 static int
15740 locks_intersect(flock64_t *llfp, flock64_t *curfp)
15741 {
15742 off64_t llfp_end, curfp_end;
15743
15744 llfp_end = lock_to_end(llfp);
15745 curfp_end = lock_to_end(curfp);
15746
15747 if (((llfp_end >= curfp->l_start) &&
15748 (llfp->l_start <= curfp->l_start)) ||
15749 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start)))
15750 return (1);
15751 return (0);
15752 }
15753
15754 /*
15755 * Determine what the intersecting lock region is, and add that to the
15756 * 'nl_llpp' locklist in increasing order (by l_start).
15757 */
15758 static void
15759 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp,
15760 locklist_t **nl_llpp, vnode_t *vp)
15761 {
15762 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp;
15763 off64_t lost_flp_end, local_flp_end, len, start;
15764
15765 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:"));
15766
15767 if (!locks_intersect(lost_flp, local_flp))
15768 return;
15769
15770 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: "
15771 "locks intersect"));
15772
15773 lost_flp_end = lock_to_end(lost_flp);
15774 local_flp_end = lock_to_end(local_flp);
15775
15776 /* Find the starting point of the intersecting region */
15777 if (local_flp->l_start > lost_flp->l_start)
15778 start = local_flp->l_start;
15779 else
15780 start = lost_flp->l_start;
15781
15782 /* Find the lenght of the intersecting region */
15783 if (lost_flp_end < local_flp_end)
15784 len = end_to_len(start, lost_flp_end);
15785 else
15786 len = end_to_len(start, local_flp_end);
15787
15788 /*
15789 * Prepare the flock structure for the intersection found and insert
15790 * it into the new list in increasing l_start order. This list contains
15791 * intersections of locks registered by the client with the local host
15792 * and the lost lock.
15793 * The lock type of this lock is the same as that of the local_flp.
15794 */
15795 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP);
15796 intersect_llp->ll_flock.l_start = start;
15797 intersect_llp->ll_flock.l_len = len;
15798 intersect_llp->ll_flock.l_type = local_flp->l_type;
15799 intersect_llp->ll_flock.l_pid = local_flp->l_pid;
15800 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid;
15801 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */
15802 intersect_llp->ll_vp = vp;
15803
15804 tmp_fllp = *nl_llpp;
15805 cur_fllp = NULL;
15806 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start <
15807 intersect_llp->ll_flock.l_start) {
15808 cur_fllp = tmp_fllp;
15809 tmp_fllp = tmp_fllp->ll_next;
15810 }
15811 if (cur_fllp == NULL) {
15812 /* first on the list */
15813 intersect_llp->ll_next = *nl_llpp;
15814 *nl_llpp = intersect_llp;
15815 } else {
15816 intersect_llp->ll_next = cur_fllp->ll_next;
15817 cur_fllp->ll_next = intersect_llp;
15818 }
15819
15820 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: "
15821 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n",
15822 intersect_llp->ll_flock.l_start,
15823 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len,
15824 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE"));
15825 }
15826
15827 /*
15828 * Our local locking current state is potentially different than
15829 * what the NFSv4 server thinks we have due to a lost lock that was
15830 * resent and then received. We need to reset our "NFSv4" locking
15831 * state to match the current local locking state for this pid since
15832 * that is what the user/application sees as what the world is.
15833 *
15834 * We cannot afford to drop the open/lock seqid sync since then we can
15835 * get confused about what the current local locking state "is" versus
15836 * "was".
15837 *
15838 * If we are unable to fix up the locks, we send SIGLOST to the affected
15839 * process. This is not done if the filesystem has been forcibly
15840 * unmounted, in case the process has already exited and a new process
15841 * exists with the same pid.
15842 */
15843 static void
15844 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr,
15845 nfs4_lock_owner_t *lop)
15846 {
15847 locklist_t *locks, *llp, *ri_llp, *tmp_llp;
15848 mntinfo4_t *mi = VTOMI4(vp);
15849 const int cmd = F_SETLK;
15850 off64_t cur_start, llp_ll_flock_end, lost_flp_end;
15851 flock64_t ul_fl;
15852
15853 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15854 "nfs4_reinstitute_local_lock_state"));
15855
15856 /*
15857 * Find active locks for this vp from the local locking code.
15858 * Scan through this list and find out the locks that intersect with
15859 * the lost lock. Once we find the lock that intersects, add the
15860 * intersection area as a new lock to a new list "ri_llp". The lock
15861 * type of the intersection region lock added to ri_llp is the same
15862 * as that found in the active lock list, "list". The intersecting
15863 * region locks are added to ri_llp in increasing l_start order.
15864 */
15865 ASSERT(nfs_zone() == mi->mi_zone);
15866
15867 locks = flk_active_locks_for_vp(vp);
15868 ri_llp = NULL;
15869
15870 for (llp = locks; llp != NULL; llp = llp->ll_next) {
15871 ASSERT(llp->ll_vp == vp);
15872 /*
15873 * Pick locks that belong to this pid/lockowner
15874 */
15875 if (llp->ll_flock.l_pid != lost_flp->l_pid)
15876 continue;
15877
15878 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp);
15879 }
15880
15881 /*
15882 * Now we have the list of intersections with the lost lock. These are
15883 * the locks that were/are active before the server replied to the
15884 * last/lost lock. Issue these locks to the server here. Playing these
15885 * locks to the server will re-establish aur current local locking state
15886 * with the v4 server.
15887 * If we get an error, send SIGLOST to the application for that lock.
15888 */
15889
15890 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) {
15891 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15892 "nfs4_reinstitute_local_lock_state: need to issue "
15893 "flock: [%"PRIx64" - %"PRIx64"] : %s",
15894 llp->ll_flock.l_start,
15895 llp->ll_flock.l_start + llp->ll_flock.l_len,
15896 llp->ll_flock.l_type == F_RDLCK ? "READ" :
15897 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID"));
15898 /*
15899 * No need to relock what we already have
15900 */
15901 if (llp->ll_flock.l_type == lost_flp->l_type)
15902 continue;
15903
15904 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop);
15905 }
15906
15907 /*
15908 * Now keeping the start of the lost lock as our reference parse the
15909 * newly created ri_llp locklist to find the ranges that we have locked
15910 * with the v4 server but not in the current local locking. We need
15911 * to unlock these ranges.
15912 * These ranges can also be reffered to as those ranges, where the lost
15913 * lock does not overlap with the locks in the ri_llp but are locked
15914 * since the server replied to the lost lock.
15915 */
15916 cur_start = lost_flp->l_start;
15917 lost_flp_end = lock_to_end(lost_flp);
15918
15919 ul_fl.l_type = F_UNLCK;
15920 ul_fl.l_whence = 0; /* aka SEEK_SET */
15921 ul_fl.l_sysid = lost_flp->l_sysid;
15922 ul_fl.l_pid = lost_flp->l_pid;
15923
15924 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) {
15925 llp_ll_flock_end = lock_to_end(&llp->ll_flock);
15926
15927 if (llp->ll_flock.l_start <= cur_start) {
15928 cur_start = start_check(llp_ll_flock_end);
15929 continue;
15930 }
15931 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15932 "nfs4_reinstitute_local_lock_state: "
15933 "UNLOCK [%"PRIx64" - %"PRIx64"]",
15934 cur_start, llp->ll_flock.l_start));
15935
15936 ul_fl.l_start = cur_start;
15937 ul_fl.l_len = end_to_len(cur_start,
15938 (llp->ll_flock.l_start - 1));
15939
15940 push_reinstate(vp, cmd, &ul_fl, cr, lop);
15941 cur_start = start_check(llp_ll_flock_end);
15942 }
15943
15944 /*
15945 * In the case where the lost lock ends after all intersecting locks,
15946 * unlock the last part of the lost lock range.
15947 */
15948 if (cur_start != start_check(lost_flp_end)) {
15949 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15950 "nfs4_reinstitute_local_lock_state: UNLOCK end of the "
15951 "lost lock region [%"PRIx64" - %"PRIx64"]",
15952 cur_start, lost_flp->l_start + lost_flp->l_len));
15953
15954 ul_fl.l_start = cur_start;
15955 /*
15956 * Is it an to-EOF lock? if so unlock till the end
15957 */
15958 if (lost_flp->l_len == 0)
15959 ul_fl.l_len = 0;
15960 else
15961 ul_fl.l_len = start_check(lost_flp_end) - cur_start;
15962
15963 push_reinstate(vp, cmd, &ul_fl, cr, lop);
15964 }
15965
15966 if (locks != NULL)
15967 flk_free_locklist(locks);
15968
15969 /* Free up our newly created locklist */
15970 for (llp = ri_llp; llp != NULL; ) {
15971 tmp_llp = llp->ll_next;
15972 kmem_free(llp, sizeof (locklist_t));
15973 llp = tmp_llp;
15974 }
15975
15976 /*
15977 * Now return back to the original calling nfs4frlock()
15978 * and let us naturally drop our seqid syncs.
15979 */
15980 }
15981
15982 /*
15983 * Create a lost state record for the given lock reinstantiation request
15984 * and push it onto the lost state queue.
15985 */
15986 static void
15987 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr,
15988 nfs4_lock_owner_t *lop)
15989 {
15990 nfs4_lost_rqst_t req;
15991 nfs_lock_type4 locktype;
15992 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS };
15993
15994 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
15995
15996 locktype = flk_to_locktype(cmd, flk->l_type);
15997 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype,
15998 NULL, NULL, lop, flk, &req, cr, vp);
15999 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
16000 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ?
16001 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK,
16002 NULL, NULL, NULL);
16003 }