
new/usr/src/uts/common/fs/nfs/nfs4_rnode.c 1

**
 48230 Mon May 12 10:06:21 2014
new/usr/src/uts/common/fs/nfs/nfs4_rnode.c
4827 nfs4: slow file locking
4837 NFSv4 client lock retry delay upper limit should be shorter
**
______unchanged_portion_omitted_

1614 /*
1615 * Return the current lease time for the server associated with the given
1616 * file. Note that the lease time could change immediately after this
1617 * call.
1618 */

1620 time_t
1621 r2lease_time(rnode4_t *rp)
1622 {
1623 nfs4_server_t *sp;
1624 time_t lease_time;
1625 mntinfo4_t *mi = VTOMI4(RTOV4(rp));

1627 (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0);

1629 /* this locks down sp if it is found */
1630 sp = find_nfs4_server(VTOMI4(RTOV4(rp)));

1632 if (VTOMI4(RTOV4(rp))->mi_vfsp->vfs_flag & VFS_UNMOUNTED) {
1633 if (sp != NULL) {
1634 mutex_exit(&sp->s_lock);
1635 nfs4_server_rele(sp);
1636 }
1637 nfs_rw_exit(&mi->mi_recovlock);
1638 return (1); /* 1 second */
1639 }

1641 ASSERT(sp != NULL);

1643 lease_time = sp->s_lease_time;

1645 mutex_exit(&sp->s_lock);
1646 nfs4_server_rele(sp);
1647 nfs_rw_exit(&mi->mi_recovlock);

1649 return (lease_time);
1650 }

1652 /*
1615 * Return a list with information about all the known open instances for
1616 * a filesystem. The caller must call r4releopenlist() when done with the
1617 * list.
1618 *
1619 * We are safe at looking at os_valid and os_pending_close across dropping
1620 * the ’os_sync_lock’ to count up the number of open streams and then
1621 * allocate memory for the osp list due to:
1622 * -Looking at os_pending_close is safe since this routine is
1623 * only called via recovery, and os_pending_close can only be set via
1624 * a non-recovery operation (which are all blocked when recovery
1625 * is active).
1626 *
1627 * -Examining os_valid is safe since non-recovery operations, which
1628 * could potentially switch os_valid to 0, are blocked (via
1629 * nfs4_start_fop) and recovery is single-threaded per mntinfo4_t
1630 * (which means we are the only recovery thread potentially acting
1631 * on this open stream).
1632 */

new/usr/src/uts/common/fs/nfs/nfs4_rnode.c 2

1634 nfs4_opinst_t *
1635 r4mkopenlist(mntinfo4_t *mi)
1636 {
1637 nfs4_opinst_t *reopenlist, *rep;
1638 rnode4_t *rp;
1639 vnode_t *vp;
1640 vfs_t *vfsp = mi->mi_vfsp;
1641 int numosp;
1642 nfs4_open_stream_t *osp;
1643 int index;
1644 open_delegation_type4 dtype;
1645 int hold_vnode;

1647 reopenlist = NULL;

1649 for (index = 0; index < rtable4size; index++) {
1650 rw_enter(&rtable4[index].r_lock, RW_READER);
1651 for (rp = rtable4[index].r_hashf;
1652 rp != (rnode4_t *)(&rtable4[index]);
1653 rp = rp->r_hashf) {

1655 vp = RTOV4(rp);
1656 if (vp->v_vfsp != vfsp)
1657 continue;
1658 hold_vnode = 0;

1660 mutex_enter(&rp->r_os_lock);

1662 /* Count the number of valid open_streams of the file */
1663 numosp = 0;
1664 for (osp = list_head(&rp->r_open_streams); osp != NULL;
1665 osp = list_next(&rp->r_open_streams, osp)) {
1666 mutex_enter(&osp->os_sync_lock);
1667 if (osp->os_valid && !osp->os_pending_close)
1668 numosp++;
1669 mutex_exit(&osp->os_sync_lock);
1670 }

1672 /* Fill in the valid open streams per vp */
1673 if (numosp > 0) {
1674 int j;

1676 hold_vnode = 1;

1678 /*
1679 * Add a new open instance to the list
1680 */
1681 rep = kmem_zalloc(sizeof (*reopenlist),
1682 KM_SLEEP);
1683 rep->re_next = reopenlist;
1684 reopenlist = rep;

1686 rep->re_vp = vp;
1687 rep->re_osp = kmem_zalloc(
1688 numosp * sizeof (*(rep->re_osp)),
1689 KM_SLEEP);
1690 rep->re_numosp = numosp;

1692 j = 0;
1693 for (osp = list_head(&rp->r_open_streams);
1694 osp != NULL;
1695 osp = list_next(&rp->r_open_streams, osp)) {

1697 mutex_enter(&osp->os_sync_lock);
1698 if (osp->os_valid &&
1699 !osp->os_pending_close) {

new/usr/src/uts/common/fs/nfs/nfs4_rnode.c 3

1700 osp->os_ref_count++;
1701 rep->re_osp[j] = osp;
1702 j++;
1703 }
1704 mutex_exit(&osp->os_sync_lock);
1705 }
1706 /*
1707 * Assuming valid osp(s) stays valid between
1708 * the time obtaining j and numosp.
1709 */
1710 ASSERT(j == numosp);
1711 }

1713 mutex_exit(&rp->r_os_lock);
1714 /* do this here to keep v_lock > r_os_lock */
1715 if (hold_vnode)
1716 VN_HOLD(vp);
1717 mutex_enter(&rp->r_statev4_lock);
1718 if (rp->r_deleg_type != OPEN_DELEGATE_NONE) {
1719 /*
1720 * If this rnode holds a delegation,
1721 * but if there are no valid open streams,
1722 * then just discard the delegation
1723 * without doing delegreturn.
1724 */
1725 if (numosp > 0)
1726 rp->r_deleg_needs_recovery =
1727 rp->r_deleg_type;
1728 }
1729 /* Save the delegation type for use outside the lock */
1730 dtype = rp->r_deleg_type;
1731 mutex_exit(&rp->r_statev4_lock);

1733 /*
1734 * If we have a delegation then get rid of it.
1735 * We’ve set rp->r_deleg_needs_recovery so we have
1736 * enough information to recover.
1737 */
1738 if (dtype != OPEN_DELEGATE_NONE) {
1739 (void) nfs4delegreturn(rp, NFS4_DR_DISCARD);
1740 }
1741 }
1742 rw_exit(&rtable4[index].r_lock);
1743 }
1744 return (reopenlist);
1745 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 1

**
 430707 Mon May 12 10:06:21 2014
new/usr/src/uts/common/fs/nfs/nfs4_vnops.c
4827 nfs4: slow file locking
4837 NFSv4 client lock retry delay upper limit should be shorter
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
27 */

29 /*
30 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T.
31 * All Rights Reserved
32 */

34 /*
35 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
36 */

38 /*
39 * Copyright (c) 2014, STRATO AG. All rights reserved.
40 */

42 #endif /* ! codereview */
43 #include <sys/param.h>
44 #include <sys/types.h>
45 #include <sys/systm.h>
46 #include <sys/cred.h>
47 #include <sys/time.h>
48 #include <sys/vnode.h>
49 #include <sys/vfs.h>
50 #include <sys/vfs_opreg.h>
51 #include <sys/file.h>
52 #include <sys/filio.h>
53 #include <sys/uio.h>
54 #include <sys/buf.h>
55 #include <sys/mman.h>
56 #include <sys/pathname.h>
57 #include <sys/dirent.h>
58 #include <sys/debug.h>
59 #include <sys/vmsystm.h>
60 #include <sys/fcntl.h>

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 2

61 #include <sys/flock.h>
62 #include <sys/swap.h>
63 #include <sys/errno.h>
64 #include <sys/strsubr.h>
65 #include <sys/sysmacros.h>
66 #include <sys/kmem.h>
67 #include <sys/cmn_err.h>
68 #include <sys/pathconf.h>
69 #include <sys/utsname.h>
70 #include <sys/dnlc.h>
71 #include <sys/acl.h>
72 #include <sys/systeminfo.h>
73 #include <sys/policy.h>
74 #include <sys/sdt.h>
75 #include <sys/list.h>
76 #include <sys/stat.h>
77 #include <sys/zone.h>

79 #include <rpc/types.h>
80 #include <rpc/auth.h>
81 #include <rpc/clnt.h>

83 #include <nfs/nfs.h>
84 #include <nfs/nfs_clnt.h>
85 #include <nfs/nfs_acl.h>
86 #include <nfs/lm.h>
87 #include <nfs/nfs4.h>
88 #include <nfs/nfs4_kprot.h>
89 #include <nfs/rnode4.h>
90 #include <nfs/nfs4_clnt.h>

92 #include <vm/hat.h>
93 #include <vm/as.h>
94 #include <vm/page.h>
95 #include <vm/pvn.h>
96 #include <vm/seg.h>
97 #include <vm/seg_map.h>
98 #include <vm/seg_kpm.h>
99 #include <vm/seg_vn.h>

101 #include <fs/fs_subr.h>

103 #include <sys/ddi.h>
104 #include <sys/int_fmtio.h>
105 #include <sys/fs/autofs.h>

107 typedef struct {
108 nfs4_ga_res_t *di_garp;
109 cred_t *di_cred;
110 hrtime_t di_time_call;
111 } dirattr_info_t;

113 typedef enum nfs4_acl_op {
114 NFS4_ACL_GET,
115 NFS4_ACL_SET
116 } nfs4_acl_op_t;

118 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *mi);

120 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *,
121 char *, dirattr_info_t *);

123 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *,
124 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t,
125 nfs4_error_t *, int *);
126 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int,

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 3

127 cred_t *);
128 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *,
129 stable_how4 *);
130 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *,
131 cred_t *, bool_t, struct uio *);
132 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *,
133 vsecattr_t *);
134 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *);
135 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int);
136 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *);
137 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *);
138 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *);
139 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl,
140 int, vnode_t **, cred_t *);
141 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **,
142 cred_t *, int, int, enum createmode4, int);
143 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
144 caller_context_t *);
145 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *,
146 vnode_t *, char *, cred_t *, nfsstat4 *);
147 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *,
148 vnode_t *, char *, cred_t *, nfsstat4 *);
149 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *);
150 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *);
151 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t);
152 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *,
153 page_t *[], size_t, struct seg *, caddr_t,
154 enum seg_rw, cred_t *);
155 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *,
156 cred_t *);
157 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t,
158 int, cred_t *);
159 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t,
160 int, cred_t *);
161 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *);
162 static void nfs4_set_mod(vnode_t *);
163 static void nfs4_get_commit(vnode_t *);
164 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t);
165 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *);
166 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int);
167 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3,
168 cred_t *);
169 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3,
170 cred_t *);
171 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *,
172 hrtime_t, vnode_t *, cred_t *);
173 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *);
174 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *);
175 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int,
176 u_offset_t);
177 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *);
178 static int nfs4_block_and_wait(clock_t *, rnode4_t *);
179 static cred_t *state_to_cred(nfs4_open_stream_t *);
180 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *);
181 static pid_t lo_to_pid(lock_owner4 *);
182 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *,
183 cred_t *, nfs4_lock_owner_t *);
184 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *,
185 nfs4_lock_owner_t *);
186 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **);
187 static void nfs4_delmap_callback(struct as *, void *, uint_t);
188 static void nfs4_free_delmapcall(nfs4_delmapcall_t *);
189 static nfs4_delmapcall_t *nfs4_init_delmapcall();
190 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *);
191 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t);
192 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *,

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 4

193 uid_t, gid_t, int);

195 /*
196 * Routines that implement the setting of v4 args for the misc. ops
197 */
198 static void nfs4args_lock_free(nfs_argop4 *);
199 static void nfs4args_lockt_free(nfs_argop4 *);
200 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *,
201 int, rnode4_t *, cred_t *, bitmap4, int *,
202 nfs4_stateid_types_t *);
203 static void nfs4args_setattr_free(nfs_argop4 *);
204 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4,
205 bitmap4);
206 static void nfs4args_verify_free(nfs_argop4 *);
207 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *,
208 WRITE4args **, nfs4_stateid_types_t *);

210 /*
211 * These are the vnode ops functions that implement the vnode interface to
212 * the networked file system. See more comments below at nfs4_vnodeops.
213 */
214 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *);
215 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *,
216 caller_context_t *);
217 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *,
218 caller_context_t *);
219 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *,
220 caller_context_t *);
221 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
222 caller_context_t *);
223 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *,
224 caller_context_t *);
225 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *);
226 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *,
227 caller_context_t *);
228 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *);
229 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl,
230 int, vnode_t **, cred_t *, int, caller_context_t *,
231 vsecattr_t *);
232 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *,
233 int);
234 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *,
235 caller_context_t *, int);
236 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
237 caller_context_t *, int);
238 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
239 cred_t *, caller_context_t *, int, vsecattr_t *);
240 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
241 caller_context_t *, int);
242 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *,
243 cred_t *, caller_context_t *, int);
244 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *,
245 caller_context_t *, int);
246 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
247 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *,
248 page_t *[], size_t, struct seg *, caddr_t,
249 enum seg_rw, cred_t *, caller_context_t *);
250 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *,
251 caller_context_t *);
252 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t,
253 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
254 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
255 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
256 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *);
257 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
258 struct flk_callback *, cred_t *, caller_context_t *);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 5

259 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t,
260 cred_t *, caller_context_t *);
261 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
262 uint_t, uint_t, uint_t, cred_t *, caller_context_t *);
263 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int,
264 cred_t *, caller_context_t *);
265 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *,
266 caller_context_t *);
267 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
268 caller_context_t *);
269 /*
270 * These vnode ops are required to be called from outside this source file,
271 * e.g. by ephemeral mount stub vnode ops, and so may not be declared
272 * as static.
273 */
274 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *,
275 caller_context_t *);
276 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *);
277 int nfs4_lookup(vnode_t *, char *, vnode_t **,
278 struct pathname *, int, vnode_t *, cred_t *,
279 caller_context_t *, int *, pathname_t *);
280 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *);
281 int nfs4_rwlock(vnode_t *, int, caller_context_t *);
282 void nfs4_rwunlock(vnode_t *, int, caller_context_t *);
283 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *);
284 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *,
285 caller_context_t *);
286 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
287 caller_context_t *);
288 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
289 caller_context_t *);

291 /*
292 * Used for nfs4_commit_vp() to indicate if we should
293 * wait on pending writes.
294 */
295 #define NFS4_WRITE_NOWAIT 0
296 #define NFS4_WRITE_WAIT 1

38 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */

298 /*
299 * Error flags used to pass information about certain special errors
300 * which need to be handled specially.
301 */
302 #define NFS_EOF -98
303 #define NFS_VERF_MISMATCH -97

305 /*
306 * Flags used to differentiate between which operation drove the
307 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary)
308 */
309 #define NFS4_CLOSE_OP 0x1
310 #define NFS4_DELMAP_OP 0x2
311 #define NFS4_INACTIVE_OP 0x3

313 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO))

315 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */
316 #define ALIGN64(x, ptr, sz) \
317 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \
318 if (x) { \
319 x = sizeof (uint64_t) - (x); \
320 sz -= (x); \
321 ptr += (x); \
322 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 6

324 #ifdef DEBUG
325 int nfs4_client_attr_debug = 0;
326 int nfs4_client_state_debug = 0;
327 int nfs4_client_shadow_debug = 0;
328 int nfs4_client_lock_debug = 0;
329 int nfs4_seqid_sync = 0;
330 int nfs4_client_map_debug = 0;
331 static int nfs4_pageio_debug = 0;
332 int nfs4_client_inactive_debug = 0;
333 int nfs4_client_recov_debug = 0;
334 int nfs4_client_failover_debug = 0;
335 int nfs4_client_call_debug = 0;
336 int nfs4_client_lookup_debug = 0;
337 int nfs4_client_zone_debug = 0;
338 int nfs4_lost_rqst_debug = 0;
339 int nfs4_rdattrerr_debug = 0;
340 int nfs4_open_stream_debug = 0;

342 int nfs4read_error_inject;

344 static int nfs4_create_misses = 0;

346 static int nfs4_readdir_cache_shorts = 0;
347 static int nfs4_readdir_readahead = 0;

349 static int nfs4_bio_do_stop = 0;

351 static int nfs4_lostpage = 0; /* number of times we lost original page */

353 int nfs4_mmap_debug = 0;

355 static int nfs4_pathconf_cache_hits = 0;
356 static int nfs4_pathconf_cache_misses = 0;

358 int nfs4close_all_cnt;
359 int nfs4close_one_debug = 0;
360 int nfs4close_notw_debug = 0;

362 int denied_to_flk_debug = 0;
363 void *lockt_denied_debug;

365 #endif

367 /*
368 * In milliseconds. Should be less than half of the lease time or better,
369 * less than one second.
370 */
371 int nfs4_base_wait_time = 20;

373 /*
374 #endif /* ! codereview */
375 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT
376 * or NFS4ERR_RESOURCE.
377 */
378 static int confirm_retry_sec = 30;

380 static int nfs4_lookup_neg_cache = 1;

382 /*
383 * number of pages to read ahead
384 * optimized for 100 base-T.
385 */
386 static int nfs4_nra = 4;

388 static int nfs4_do_symlink_cache = 1;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 7

390 static int nfs4_pathconf_disable_cache = 0;

392 /*
393 * These are the vnode ops routines which implement the vnode interface to
394 * the networked file system. These routines just take their parameters,
395 * make them look networkish by putting the right info into interface structs,
396 * and then calling the appropriate remote routine(s) to do the work.
397 *
398 * Note on directory name lookup cacheing: If we detect a stale fhandle,
399 * we purge the directory cache relative to that vnode. This way, the
400 * user won’t get burned by the cache repeatedly. See <nfs/rnode4.h> for
401 * more details on rnode locking.
402 */

404 struct vnodeops *nfs4_vnodeops;

406 const fs_operation_def_t nfs4_vnodeops_template[] = {
407 VOPNAME_OPEN, { .vop_open = nfs4_open },
408 VOPNAME_CLOSE, { .vop_close = nfs4_close },
409 VOPNAME_READ, { .vop_read = nfs4_read },
410 VOPNAME_WRITE, { .vop_write = nfs4_write },
411 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl },
412 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr },
413 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr },
414 VOPNAME_ACCESS, { .vop_access = nfs4_access },
415 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup },
416 VOPNAME_CREATE, { .vop_create = nfs4_create },
417 VOPNAME_REMOVE, { .vop_remove = nfs4_remove },
418 VOPNAME_LINK, { .vop_link = nfs4_link },
419 VOPNAME_RENAME, { .vop_rename = nfs4_rename },
420 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir },
421 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir },
422 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir },
423 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink },
424 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink },
425 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync },
426 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive },
427 VOPNAME_FID, { .vop_fid = nfs4_fid },
428 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock },
429 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock },
430 VOPNAME_SEEK, { .vop_seek = nfs4_seek },
431 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock },
432 VOPNAME_SPACE, { .vop_space = nfs4_space },
433 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp },
434 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage },
435 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage },
436 VOPNAME_MAP, { .vop_map = nfs4_map },
437 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap },
438 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap },
439 /* no separate nfs4_dump */
440 VOPNAME_DUMP, { .vop_dump = nfs_dump },
441 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf },
442 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio },
443 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose },
444 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr },
445 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr },
446 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock },
447 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
448 NULL, NULL
449 };

451 /*
452 * The following are subroutines and definitions to set args or get res
453 * for the different nfsv4 ops
454 */

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 8

456 void
457 nfs4args_lookup_free(nfs_argop4 *argop, int arglen)
458 {
459 int i;

461 for (i = 0; i < arglen; i++) {
462 if (argop[i].argop == OP_LOOKUP) {
463 kmem_free(
464 argop[i].nfs_argop4_u.oplookup.
465 objname.utf8string_val,
466 argop[i].nfs_argop4_u.oplookup.
467 objname.utf8string_len);
468 }
469 }
470 }

472 static void
473 nfs4args_lock_free(nfs_argop4 *argop)
474 {
475 locker4 *locker = &argop->nfs_argop4_u.oplock.locker;

477 if (locker->new_lock_owner == TRUE) {
478 open_to_lock_owner4 *open_owner;

480 open_owner = &locker->locker4_u.open_owner;
481 if (open_owner->lock_owner.owner_val != NULL) {
482 kmem_free(open_owner->lock_owner.owner_val,
483 open_owner->lock_owner.owner_len);
484 }
485 }
486 }

488 static void
489 nfs4args_lockt_free(nfs_argop4 *argop)
490 {
491 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner;

493 if (lowner->owner_val != NULL) {
494 kmem_free(lowner->owner_val, lowner->owner_len);
495 }
496 }

498 static void
499 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags,
500 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error,
501 nfs4_stateid_types_t *sid_types)
502 {
503 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes;
504 mntinfo4_t *mi;

506 argop->argop = OP_SETATTR;
507 /*
508 * The stateid is set to 0 if client is not modifying the size
509 * and otherwise to whatever nfs4_get_stateid() returns.
510 *
511 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no
512 * state struct could be found for the process/file pair. We may
513 * want to change this in the future (by OPENing the file). See
514 * bug # 4474852.
515 */
516 if (vap->va_mask & AT_SIZE) {

518 ASSERT(rp != NULL);
519 mi = VTOMI4(RTOV4(rp));

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 9

521 argop->nfs_argop4_u.opsetattr.stateid =
522 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi,
523 OP_SETATTR, sid_types, FALSE);
524 } else {
525 bzero(&argop->nfs_argop4_u.opsetattr.stateid,
526 sizeof (stateid4));
527 }

529 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp);
530 if (*error)
531 bzero(attr, sizeof (*attr));
532 }

534 static void
535 nfs4args_setattr_free(nfs_argop4 *argop)
536 {
537 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes);
538 }

540 static int
541 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op,
542 bitmap4 supp)
543 {
544 fattr4 *attr;
545 int error = 0;

547 argop->argop = op;
548 switch (op) {
549 case OP_VERIFY:
550 attr = &argop->nfs_argop4_u.opverify.obj_attributes;
551 break;
552 case OP_NVERIFY:
553 attr = &argop->nfs_argop4_u.opnverify.obj_attributes;
554 break;
555 default:
556 return (EINVAL);
557 }
558 if (!error)
559 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp);
560 if (error)
561 bzero(attr, sizeof (*attr));
562 return (error);
563 }

565 static void
566 nfs4args_verify_free(nfs_argop4 *argop)
567 {
568 switch (argop->argop) {
569 case OP_VERIFY:
570 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes);
571 break;
572 case OP_NVERIFY:
573 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes);
574 break;
575 default:
576 break;
577 }
578 }

580 static void
581 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr,
582 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp)
583 {
584 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite;
585 mntinfo4_t *mi = VTOMI4(RTOV4(rp));

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 10

587 argop->argop = OP_WRITE;
588 wargs->stable = stable;
589 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id,
590 mi, OP_WRITE, sid_tp);
591 wargs->mblk = NULL;
592 *wargs_pp = wargs;
593 }

595 void
596 nfs4args_copen_free(OPEN4cargs *open_args)
597 {
598 if (open_args->owner.owner_val) {
599 kmem_free(open_args->owner.owner_val,
600 open_args->owner.owner_len);
601 }
602 if ((open_args->opentype == OPEN4_CREATE) &&
603 (open_args->mode != EXCLUSIVE4)) {
604 nfs4_fattr4_free(&open_args->createhow4_u.createattrs);
605 }
606 }

608 /*
609 * XXX: This is referenced in modstubs.s
610 */
611 struct vnodeops *
612 nfs4_getvnodeops(void)
613 {
614 return (nfs4_vnodeops);
615 }

617 /*
618 * The OPEN operation opens a regular file.
619 */
620 /*ARGSUSED3*/
621 static int
622 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
623 {
624 vnode_t *dvp = NULL;
625 rnode4_t *rp, *drp;
626 int error;
627 int just_been_created;
628 char fn[MAXNAMELEN];

630 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: "));
631 if (nfs_zone() != VTOMI4(*vpp)->mi_zone)
632 return (EIO);
633 rp = VTOR4(*vpp);

635 /*
636 * Check to see if opening something besides a regular file;
637 * if so skip the OTW call
638 */
639 if ((*vpp)->v_type != VREG) {
640 error = nfs4_open_non_reg_file(vpp, flag, cr);
641 return (error);
642 }

644 /*
645 * XXX - would like a check right here to know if the file is
646 * executable or not, so as to skip OTW
647 */

649 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0)
650 return (error);

652 drp = VTOR4(dvp);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 11

653 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
654 return (EINTR);

656 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) {
657 nfs_rw_exit(&drp->r_rwlock);
658 return (error);
659 }

661 /*
662 * See if this file has just been CREATEd.
663 * If so, clear the flag and update the dnlc, which was previously
664 * skipped in nfs4_create.
665 * XXX need better serilization on this.
666 * XXX move this into the nf4open_otw call, after we have
667 * XXX acquired the open owner seqid sync.
668 */
669 mutex_enter(&rp->r_statev4_lock);
670 if (rp->created_v4) {
671 rp->created_v4 = 0;
672 mutex_exit(&rp->r_statev4_lock);

674 dnlc_update(dvp, fn, *vpp);
675 /* This is needed so we don’t bump the open ref count */
676 just_been_created = 1;
677 } else {
678 mutex_exit(&rp->r_statev4_lock);
679 just_been_created = 0;
680 }

682 /*
683 * If caller specified O_TRUNC/FTRUNC, then be sure to set
684 * FWRITE (to drive successful setattr(size=0) after open)
685 */
686 if (flag & FTRUNC)
687 flag |= FWRITE;

689 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0,
690 just_been_created);

692 if (!error && !((*vpp)->v_flag & VROOT))
693 dnlc_update(dvp, fn, *vpp);

695 nfs_rw_exit(&drp->r_rwlock);

697 /* release the hold from vtodv */
698 VN_RELE(dvp);

700 /* exchange the shadow for the master vnode, if needed */

702 if (error == 0 && IS_SHADOW(*vpp, rp))
703 sv_exchange(vpp);

705 return (error);
706 }

708 /*
709 * See if there’s a "lost open" request to be saved and recovered.
710 */
711 static void
712 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp,
713 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp,
714 vnode_t *dvp, OPEN4cargs *open_args)
715 {
716 vfs_t *vfsp;
717 char *srccfp;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 12

719 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp);

721 if (error != ETIMEDOUT && error != EINTR &&
722 !NFS4_FRC_UNMT_ERR(error, vfsp)) {
723 lost_rqstp->lr_op = 0;
724 return;
725 }

727 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
728 "nfs4open_save_lost_rqst: error %d", error));

730 lost_rqstp->lr_op = OP_OPEN;

732 /*
733 * The vp (if it is not NULL) and dvp are held and rele’d via
734 * the recovery code. See nfs4_save_lost_rqst.
735 */
736 lost_rqstp->lr_vp = vp;
737 lost_rqstp->lr_dvp = dvp;
738 lost_rqstp->lr_oop = oop;
739 lost_rqstp->lr_osp = NULL;
740 lost_rqstp->lr_lop = NULL;
741 lost_rqstp->lr_cr = cr;
742 lost_rqstp->lr_flk = NULL;
743 lost_rqstp->lr_oacc = open_args->share_access;
744 lost_rqstp->lr_odeny = open_args->share_deny;
745 lost_rqstp->lr_oclaim = open_args->claim;
746 if (open_args->claim == CLAIM_DELEGATE_CUR) {
747 lost_rqstp->lr_ostateid =
748 open_args->open_claim4_u.delegate_cur_info.delegate_stateid;
749 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile;
750 } else {
751 srccfp = open_args->open_claim4_u.cfile;
752 }
753 lost_rqstp->lr_ofile.utf8string_len = 0;
754 lost_rqstp->lr_ofile.utf8string_val = NULL;
755 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile);
756 lost_rqstp->lr_putfirst = FALSE;
757 }

759 struct nfs4_excl_time {
760 uint32 seconds;
761 uint32 nseconds;
762 };

764 /*
765 * The OPEN operation creates and/or opens a regular file
766 *
767 * ARGSUSED
768 */
769 static int
770 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va,
771 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag,
772 enum createmode4 createmode, int file_just_been_created)
773 {
774 rnode4_t *rp;
775 rnode4_t *drp = VTOR4(dvp);
776 vnode_t *vp = NULL;
777 vnode_t *vpi = *vpp;
778 bool_t needrecov = FALSE;

780 int doqueue = 1;

782 COMPOUND4args_clnt args;
783 COMPOUND4res_clnt res;
784 nfs_argop4 *argop;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 13

785 nfs_resop4 *resop;
786 int argoplist_size;
787 int idx_open, idx_fattr;

789 GETFH4res *gf_res = NULL;
790 OPEN4res *op_res = NULL;
791 nfs4_ga_res_t *garp;
792 fattr4 *attr = NULL;
793 struct nfs4_excl_time verf;
794 bool_t did_excl_setup = FALSE;
795 int created_osp;

797 OPEN4cargs *open_args;
798 nfs4_open_owner_t *oop = NULL;
799 nfs4_open_stream_t *osp = NULL;
800 seqid4 seqid = 0;
801 bool_t retry_open = FALSE;
802 nfs4_recov_state_t recov_state;
803 nfs4_lost_rqst_t lost_rqst;
804 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
805 hrtime_t t;
806 int acc = 0;
807 cred_t *cred_otw = NULL; /* cred used to do the RPC call */
808 cred_t *ncr = NULL;

810 nfs4_sharedfh_t *otw_sfh;
811 nfs4_sharedfh_t *orig_sfh;
812 int fh_differs = 0;
813 int numops, setgid_flag;
814 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1;

816 /*
817 * Make sure we properly deal with setting the right gid on
818 * a newly created file to reflect the parent’s setgid bit
819 */
820 setgid_flag = 0;
821 if (create_flag && in_va) {

823 /*
824 * If there is grpid mount flag used or
825 * the parent’s directory has the setgid bit set
826 * _and_ the client was able to get a valid mapping
827 * for the parent dir’s owner_group, we want to
828 * append NVERIFY(owner_group == dva.va_gid) and
829 * SETATTR to the CREATE compound.
830 */
831 mutex_enter(&drp->r_statelock);
832 if ((VTOMI4(dvp)->mi_flags & MI4_GRPID ||
833 drp->r_attr.va_mode & VSGID) &&
834 drp->r_attr.va_gid != GID_NOBODY) {
835 in_va->va_mask |= AT_GID;
836 in_va->va_gid = drp->r_attr.va_gid;
837 setgid_flag = 1;
838 }
839 mutex_exit(&drp->r_statelock);
840 }

842 /*
843 * Normal/non-create compound:
844 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new)
845 *
846 * Open(create) compound no setgid:
847 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) +
848 * RESTOREFH + GETATTR
849 *
850 * Open(create) setgid:

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 14

851 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) +
852 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH +
853 * NVERIFY(grp) + SETATTR
854 */
855 if (setgid_flag) {
856 numops = 10;
857 idx_open = 1;
858 idx_fattr = 3;
859 } else if (create_flag) {
860 numops = 7;
861 idx_open = 2;
862 idx_fattr = 4;
863 } else {
864 numops = 4;
865 idx_open = 1;
866 idx_fattr = 3;
867 }

869 args.array_len = numops;
870 argoplist_size = numops * sizeof (nfs_argop4);
871 argop = kmem_alloc(argoplist_size, KM_SLEEP);

873 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: "
874 "open %s open flag 0x%x cred %p", file_name, open_flag,
875 (void *)cr));

877 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
878 if (create_flag) {
879 /*
880 * We are to create a file. Initialize the passed in vnode
881 * pointer.
882 */
883 vpi = NULL;
884 } else {
885 /*
886 * Check to see if the client owns a read delegation and is
887 * trying to open for write. If so, then return the delegation
888 * to avoid the server doing a cb_recall and returning DELAY.
889 * NB - we don’t use the statev4_lock here because we’d have
890 * to drop the lock anyway and the result would be stale.
891 */
892 if ((open_flag & FWRITE) &&
893 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ)
894 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN);

896 /*
897 * If the file has a delegation, then do an access check up
898 * front. This avoids having to an access check later after
899 * we’ve already done start_op, which could deadlock.
900 */
901 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) {
902 if (open_flag & FREAD &&
903 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0)
904 acc |= VREAD;
905 if (open_flag & FWRITE &&
906 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0)
907 acc |= VWRITE;
908 }
909 }

911 drp = VTOR4(dvp);

913 recov_state.rs_flags = 0;
914 recov_state.rs_num_retry_despite_err = 0;
915 cred_otw = cr;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 15

917 recov_retry:
918 fh_differs = 0;
919 nfs4_error_zinit(&e);

921 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state);
922 if (e.error) {
923 if (ncr != NULL)
924 crfree(ncr);
925 kmem_free(argop, argoplist_size);
926 return (e.error);
927 }

929 args.ctag = TAG_OPEN;
930 args.array_len = numops;
931 args.array = argop;

933 /* putfh directory fh */
934 argop[0].argop = OP_CPUTFH;
935 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;

937 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */
938 argop[idx_open].argop = OP_COPEN;
939 open_args = &argop[idx_open].nfs_argop4_u.opcopen;
940 open_args->claim = CLAIM_NULL;

942 /* name of file */
943 open_args->open_claim4_u.cfile = file_name;
944 open_args->owner.owner_len = 0;
945 open_args->owner.owner_val = NULL;

947 if (create_flag) {
948 /* CREATE a file */
949 open_args->opentype = OPEN4_CREATE;
950 open_args->mode = createmode;
951 if (createmode == EXCLUSIVE4) {
952 if (did_excl_setup == FALSE) {
953 verf.seconds = zone_get_hostid(NULL);
954 if (verf.seconds != 0)
955 verf.nseconds = newnum();
956 else {
957 timestruc_t now;

959 gethrestime(&now);
960 verf.seconds = now.tv_sec;
961 verf.nseconds = now.tv_nsec;
962 }
963 /*
964 * Since the server will use this value for the
965 * mtime, make sure that it can’t overflow. Zero
966 * out the MSB. The actual value does not matter
967 * here, only its uniqeness.
968 */
969 verf.seconds &= INT32_MAX;
970 did_excl_setup = TRUE;
971 }

973 /* Now copy over verifier to OPEN4args. */
974 open_args->createhow4_u.createverf = *(uint64_t *)&verf;
975 } else {
976 int v_error;
977 bitmap4 supp_attrs;
978 servinfo4_t *svp;

980 attr = &open_args->createhow4_u.createattrs;

982 svp = drp->r_server;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 16

983 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
984 supp_attrs = svp->sv_supp_attrs;
985 nfs_rw_exit(&svp->sv_lock);

987 /* GUARDED4 or UNCHECKED4 */
988 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN,
989 supp_attrs);
990 if (v_error) {
991 bzero(attr, sizeof (*attr));
992 nfs4args_copen_free(open_args);
993 nfs4_end_op(VTOMI4(dvp), dvp, vpi,
994 &recov_state, FALSE);
995 if (ncr != NULL)
996 crfree(ncr);
997 kmem_free(argop, argoplist_size);
998 return (v_error);
999 }

1000 }
1001 } else {
1002 /* NO CREATE */
1003 open_args->opentype = OPEN4_NOCREATE;
1004 }

1006 if (recov_state.rs_sp != NULL) {
1007 mutex_enter(&recov_state.rs_sp->s_lock);
1008 open_args->owner.clientid = recov_state.rs_sp->clientid;
1009 mutex_exit(&recov_state.rs_sp->s_lock);
1010 } else {
1011 /* XXX should we just fail here? */
1012 open_args->owner.clientid = 0;
1013 }

1015 /*
1016 * This increments oop’s ref count or creates a temporary ’just_created’
1017 * open owner that will become valid when this OPEN/OPEN_CONFIRM call
1018 * completes.
1019 */
1020 mutex_enter(&VTOMI4(dvp)->mi_lock);

1022 /* See if a permanent or just created open owner exists */
1023 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp));
1024 if (!oop) {
1025 /*
1026 * This open owner does not exist so create a temporary
1027 * just created one.
1028 */
1029 oop = create_open_owner(cr, VTOMI4(dvp));
1030 ASSERT(oop != NULL);
1031 }
1032 mutex_exit(&VTOMI4(dvp)->mi_lock);

1034 /* this length never changes, do alloc before seqid sync */
1035 open_args->owner.owner_len = sizeof (oop->oo_name);
1036 open_args->owner.owner_val =
1037 kmem_alloc(open_args->owner.owner_len, KM_SLEEP);

1039 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp));
1040 if (e.error == EAGAIN) {
1041 open_owner_rele(oop);
1042 nfs4args_copen_free(open_args);
1043 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE);
1044 if (ncr != NULL) {
1045 crfree(ncr);
1046 ncr = NULL;
1047 }
1048 goto recov_retry;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 17

1049 }

1051 /* Check to see if we need to do the OTW call */
1052 if (!create_flag) {
1053 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi,
1054 file_just_been_created, &e.error, acc, &recov_state)) {

1056 /*
1057 * The OTW open is not necessary. Either
1058 * the open can succeed without it (eg.
1059 * delegation, error == 0) or the open
1060 * must fail due to an access failure
1061 * (error != 0). In either case, tidy
1062 * up and return.
1063 */

1065 nfs4_end_open_seqid_sync(oop);
1066 open_owner_rele(oop);
1067 nfs4args_copen_free(open_args);
1068 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE);
1069 if (ncr != NULL)
1070 crfree(ncr);
1071 kmem_free(argop, argoplist_size);
1072 return (e.error);
1073 }
1074 }

1076 bcopy(&oop->oo_name, open_args->owner.owner_val,
1077 open_args->owner.owner_len);

1079 seqid = nfs4_get_open_seqid(oop) + 1;
1080 open_args->seqid = seqid;
1081 open_args->share_access = 0;
1082 if (open_flag & FREAD)
1083 open_args->share_access |= OPEN4_SHARE_ACCESS_READ;
1084 if (open_flag & FWRITE)
1085 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE;
1086 open_args->share_deny = OPEN4_SHARE_DENY_NONE;

1090 /*
1091 * getfh w/sanity check for idx_open/idx_fattr
1092 */
1093 ASSERT((idx_open + 1) == (idx_fattr - 1));
1094 argop[idx_open + 1].argop = OP_GETFH;

1096 /* getattr */
1097 argop[idx_fattr].argop = OP_GETATTR;
1098 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1099 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);

1101 if (setgid_flag) {
1102 vattr_t _v;
1103 servinfo4_t *svp;
1104 bitmap4 supp_attrs;

1106 svp = drp->r_server;
1107 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1108 supp_attrs = svp->sv_supp_attrs;
1109 nfs_rw_exit(&svp->sv_lock);

1111 /*
1112 * For setgid case, we need to:
1113 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new)
1114 */

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 18

1115 argop[4].argop = OP_SAVEFH;

1117 argop[5].argop = OP_CPUTFH;
1118 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh;

1120 argop[6].argop = OP_GETATTR;
1121 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1122 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);

1124 argop[7].argop = OP_RESTOREFH;

1126 /*
1127 * nverify
1128 */
1129 _v.va_mask = AT_GID;
1130 _v.va_gid = in_va->va_gid;
1131 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY,
1132 supp_attrs))) {

1134 /*
1135 * setattr
1136 *
1137 * We _know_ we’re not messing with AT_SIZE or
1138 * AT_XTIME, so no need for stateid or flags.
1139 * Also we specify NULL rp since we’re only
1140 * interested in setting owner_group attributes.
1141 */
1142 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr,
1143 supp_attrs, &e.error, 0);
1144 if (e.error)
1145 nfs4args_verify_free(&argop[8]);
1146 }

1148 if (e.error) {
1149 /*
1150 * XXX - Revisit the last argument to nfs4_end_op()
1151 * once 5020486 is fixed.
1152 */
1153 nfs4_end_open_seqid_sync(oop);
1154 open_owner_rele(oop);
1155 nfs4args_copen_free(open_args);
1156 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE);
1157 if (ncr != NULL)
1158 crfree(ncr);
1159 kmem_free(argop, argoplist_size);
1160 return (e.error);
1161 }
1162 } else if (create_flag) {
1163 argop[1].argop = OP_SAVEFH;

1165 argop[5].argop = OP_RESTOREFH;

1167 argop[6].argop = OP_GETATTR;
1168 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1169 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
1170 }

1172 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
1173 "nfs4open_otw: %s call, nm %s, rp %s",
1174 needrecov ? "recov" : "first", file_name,
1175 rnode4info(VTOR4(dvp))));

1177 t = gethrtime();

1179 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 19

1181 if (!e.error && nfs4_need_to_bump_seqid(&res))
1182 nfs4_set_open_seqid(seqid, oop, args.ctag);

1184 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp);

1186 if (e.error || needrecov) {
1187 bool_t abort = FALSE;

1189 if (needrecov) {
1190 nfs4_bseqid_entry_t *bsep = NULL;

1192 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop,
1193 cred_otw, vpi, dvp, open_args);

1195 if (!e.error && res.status == NFS4ERR_BAD_SEQID) {
1196 bsep = nfs4_create_bseqid_entry(oop, NULL,
1197 vpi, 0, args.ctag, open_args->seqid);
1198 num_bseqid_retry--;
1199 }

1201 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi,
1202 NULL, lost_rqst.lr_op == OP_OPEN ?
1203 &lost_rqst : NULL, OP_OPEN, bsep, NULL, NULL);

1205 if (bsep)
1206 kmem_free(bsep, sizeof (*bsep));
1207 /* give up if we keep getting BAD_SEQID */
1208 if (num_bseqid_retry == 0)
1209 abort = TRUE;
1210 if (abort == TRUE && e.error == 0)
1211 e.error = geterrno4(res.status);
1212 }
1213 nfs4_end_open_seqid_sync(oop);
1214 open_owner_rele(oop);
1215 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1216 nfs4args_copen_free(open_args);
1217 if (setgid_flag) {
1218 nfs4args_verify_free(&argop[8]);
1219 nfs4args_setattr_free(&argop[9]);
1220 }
1221 if (!e.error)
1222 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1223 if (ncr != NULL) {
1224 crfree(ncr);
1225 ncr = NULL;
1226 }
1227 if (!needrecov || abort == TRUE || e.error == EINTR ||
1228 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) {
1229 kmem_free(argop, argoplist_size);
1230 return (e.error);
1231 }
1232 goto recov_retry;
1233 }

1235 /*
1236 * Will check and update lease after checking the rflag for
1237 * OPEN_CONFIRM in the successful OPEN call.
1238 */
1239 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) {

1241 /*
1242 * XXX what if we’re crossing mount points from server1:/drp
1243 * to server2:/drp/rp.
1244 */

1246 /* Signal our end of use of the open seqid */

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 20

1247 nfs4_end_open_seqid_sync(oop);

1249 /*
1250 * This will destroy the open owner if it was just created,
1251 * and no one else has put a reference on it.
1252 */
1253 open_owner_rele(oop);
1254 if (create_flag && (createmode != EXCLUSIVE4) &&
1255 res.status == NFS4ERR_BADOWNER)
1256 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN);

1258 e.error = geterrno4(res.status);
1259 nfs4args_copen_free(open_args);
1260 if (setgid_flag) {
1261 nfs4args_verify_free(&argop[8]);
1262 nfs4args_setattr_free(&argop[9]);
1263 }
1264 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1265 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1266 /*
1267 * If the reply is NFS4ERR_ACCESS, it may be because
1268 * we are root (no root net access). If the real uid
1269 * is not root, then retry with the real uid instead.
1270 */
1271 if (ncr != NULL) {
1272 crfree(ncr);
1273 ncr = NULL;
1274 }
1275 if (res.status == NFS4ERR_ACCESS &&
1276 (ncr = crnetadjust(cred_otw)) != NULL) {
1277 cred_otw = ncr;
1278 goto recov_retry;
1279 }
1280 kmem_free(argop, argoplist_size);
1281 return (e.error);
1282 }

1284 resop = &res.array[idx_open]; /* open res */
1285 op_res = &resop->nfs_resop4_u.opopen;

1287 #ifdef DEBUG
1288 /*
1289 * verify attrset bitmap
1290 */
1291 if (create_flag &&
1292 (createmode == UNCHECKED4 || createmode == GUARDED4)) {
1293 /* make sure attrset returned is what we asked for */
1294 /* XXX Ignore this ’error’ for now */
1295 if (attr->attrmask != op_res->attrset)
1296 /* EMPTY */;
1297 }
1298 #endif

1300 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) {
1301 mutex_enter(&VTOMI4(dvp)->mi_lock);
1302 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK;
1303 mutex_exit(&VTOMI4(dvp)->mi_lock);
1304 }

1306 resop = &res.array[idx_open + 1]; /* getfh res */
1307 gf_res = &resop->nfs_resop4_u.opgetfh;

1309 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp));

1311 /*
1312 * The open stateid has been updated on the server but not

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 21

1313 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache->
1314 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW
1315 * WRITE call. That, however, will use the old stateid, so go ahead
1316 * and upate the open stateid now, before any call to makenfs4node.
1317 */
1318 if (vpi) {
1319 nfs4_open_stream_t *tmp_osp;
1320 rnode4_t *tmp_rp = VTOR4(vpi);

1322 tmp_osp = find_open_stream(oop, tmp_rp);
1323 if (tmp_osp) {
1324 tmp_osp->open_stateid = op_res->stateid;
1325 mutex_exit(&tmp_osp->os_sync_lock);
1326 open_stream_rele(tmp_osp, tmp_rp);
1327 }

1329 /*
1330 * We must determine if the file handle given by the otw open
1331 * is the same as the file handle which was passed in with
1332 * *vpp. This case can be reached if the file we are trying
1333 * to open has been removed and another file has been created
1334 * having the same file name. The passed in vnode is released
1335 * later.
1336 */
1337 orig_sfh = VTOR4(vpi)->r_fh;
1338 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh);
1339 }

1341 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res;

1343 if (create_flag || fh_differs) {
1344 int rnode_err = 0;

1346 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr,
1347 dvp, fn_get(VTOSV(dvp)->sv_name, file_name, otw_sfh));

1349 if (e.error)
1350 PURGE_ATTRCACHE4(vp);
1351 /*
1352 * For the newly created vp case, make sure the rnode
1353 * isn’t bad before using it.
1354 */
1355 mutex_enter(&(VTOR4(vp))->r_statelock);
1356 if (VTOR4(vp)->r_flags & R4RECOVERR)
1357 rnode_err = EIO;
1358 mutex_exit(&(VTOR4(vp))->r_statelock);

1360 if (rnode_err) {
1361 nfs4_end_open_seqid_sync(oop);
1362 nfs4args_copen_free(open_args);
1363 if (setgid_flag) {
1364 nfs4args_verify_free(&argop[8]);
1365 nfs4args_setattr_free(&argop[9]);
1366 }
1367 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1368 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state,
1369 needrecov);
1370 open_owner_rele(oop);
1371 VN_RELE(vp);
1372 if (ncr != NULL)
1373 crfree(ncr);
1374 sfh4_rele(&otw_sfh);
1375 kmem_free(argop, argoplist_size);
1376 return (EIO);
1377 }
1378 } else {

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 22

1379 vp = vpi;
1380 }
1381 sfh4_rele(&otw_sfh);

1383 /*
1384 * It seems odd to get a full set of attrs and then not update
1385 * the object’s attrcache in the non-create case. Create case uses
1386 * the attrs since makenfs4node checks to see if the attrs need to
1387 * be updated (and then updates them). The non-create case should
1388 * update attrs also.
1389 */
1390 if (! create_flag && ! fh_differs && !e.error) {
1391 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL);
1392 }

1394 nfs4_error_zinit(&e);
1395 if (op_res->rflags & OPEN4_RESULT_CONFIRM) {
1396 /* This does not do recovery for vp explicitly. */
1397 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE,
1398 &retry_open, oop, FALSE, &e, &num_bseqid_retry);

1400 if (e.error || e.stat) {
1401 nfs4_end_open_seqid_sync(oop);
1402 nfs4args_copen_free(open_args);
1403 if (setgid_flag) {
1404 nfs4args_verify_free(&argop[8]);
1405 nfs4args_setattr_free(&argop[9]);
1406 }
1407 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1408 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state,
1409 needrecov);
1410 open_owner_rele(oop);
1411 if (create_flag || fh_differs) {
1412 /* rele the makenfs4node */
1413 VN_RELE(vp);
1414 }
1415 if (ncr != NULL) {
1416 crfree(ncr);
1417 ncr = NULL;
1418 }
1419 if (retry_open == TRUE) {
1420 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1421 "nfs4open_otw: retry the open since OPEN "
1422 "CONFIRM failed with error %d stat %d",
1423 e.error, e.stat));
1424 if (create_flag && createmode == GUARDED4) {
1425 NFS4_DEBUG(nfs4_client_recov_debug,
1426 (CE_NOTE, "nfs4open_otw: switch "
1427 "createmode from GUARDED4 to "
1428 "UNCHECKED4"));
1429 createmode = UNCHECKED4;
1430 }
1431 goto recov_retry;
1432 }
1433 if (!e.error) {
1434 if (create_flag && (createmode != EXCLUSIVE4) &&
1435 e.stat == NFS4ERR_BADOWNER)
1436 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN);

1438 e.error = geterrno4(e.stat);
1439 }
1440 kmem_free(argop, argoplist_size);
1441 return (e.error);
1442 }
1443 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 23

1445 rp = VTOR4(vp);

1447 mutex_enter(&rp->r_statev4_lock);
1448 if (create_flag)
1449 rp->created_v4 = 1;
1450 mutex_exit(&rp->r_statev4_lock);

1452 mutex_enter(&oop->oo_lock);
1453 /* Doesn’t matter if ’oo_just_created’ already was set as this */
1454 oop->oo_just_created = NFS4_PERM_CREATED;
1455 if (oop->oo_cred_otw)
1456 crfree(oop->oo_cred_otw);
1457 oop->oo_cred_otw = cred_otw;
1458 crhold(oop->oo_cred_otw);
1459 mutex_exit(&oop->oo_lock);

1461 /* returns with ’os_sync_lock’ held */
1462 osp = find_or_create_open_stream(oop, rp, &created_osp);
1463 if (!osp) {
1464 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
1465 "nfs4open_otw: failed to create an open stream"));
1466 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: "
1467 "signal our end of use of the open seqid"));

1469 nfs4_end_open_seqid_sync(oop);
1470 open_owner_rele(oop);
1471 nfs4args_copen_free(open_args);
1472 if (setgid_flag) {
1473 nfs4args_verify_free(&argop[8]);
1474 nfs4args_setattr_free(&argop[9]);
1475 }
1476 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1477 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1478 if (create_flag || fh_differs)
1479 VN_RELE(vp);
1480 if (ncr != NULL)
1481 crfree(ncr);

1483 kmem_free(argop, argoplist_size);
1484 return (EINVAL);

1486 }

1488 osp->open_stateid = op_res->stateid;

1490 if (open_flag & FREAD)
1491 osp->os_share_acc_read++;
1492 if (open_flag & FWRITE)
1493 osp->os_share_acc_write++;
1494 osp->os_share_deny_none++;

1496 /*
1497 * Need to reset this bitfield for the possible case where we were
1498 * going to OTW CLOSE the file, got a non-recoverable error, and before
1499 * we could retry the CLOSE, OPENed the file again.
1500 */
1501 ASSERT(osp->os_open_owner->oo_seqid_inuse);
1502 osp->os_final_close = 0;
1503 osp->os_force_close = 0;
1504 #ifdef DEBUG
1505 if (osp->os_failed_reopen)
1506 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:"
1507 " clearing os_failed_reopen for osp %p, cr %p, rp %s",
1508 (void *)osp, (void *)cr, rnode4info(rp)));
1509 #endif
1510 osp->os_failed_reopen = 0;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 24

1512 mutex_exit(&osp->os_sync_lock);

1514 nfs4_end_open_seqid_sync(oop);

1516 if (created_osp && recov_state.rs_sp != NULL) {
1517 mutex_enter(&recov_state.rs_sp->s_lock);
1518 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp));
1519 mutex_exit(&recov_state.rs_sp->s_lock);
1520 }

1522 /* get rid of our reference to find oop */
1523 open_owner_rele(oop);

1525 open_stream_rele(osp, rp);

1527 /* accept delegation, if any */
1528 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw);

1530 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);

1532 if (createmode == EXCLUSIVE4 &&
1533 (in_va->va_mask & ~(AT_GID | AT_SIZE))) {
1534 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:"
1535 " EXCLUSIVE4: sending a SETATTR"));
1536 /*
1537 * If doing an exclusive create, then generate
1538 * a SETATTR to set the initial attributes.
1539 * Try to set the mtime and the atime to the
1540 * server’s current time. It is somewhat
1541 * expected that these fields will be used to
1542 * store the exclusive create cookie. If not,
1543 * server implementors will need to know that
1544 * a SETATTR will follow an exclusive create
1545 * and the cookie should be destroyed if
1546 * appropriate.
1547 *
1548 * The AT_GID and AT_SIZE bits are turned off
1549 * so that the SETATTR request will not attempt
1550 * to process these. The gid will be set
1551 * separately if appropriate. The size is turned
1552 * off because it is assumed that a new file will
1553 * be created empty and if the file wasn’t empty,
1554 * then the exclusive create will have failed
1555 * because the file must have existed already.
1556 * Therefore, no truncate operation is needed.
1557 */
1558 in_va->va_mask &= ~(AT_GID | AT_SIZE);
1559 in_va->va_mask |= (AT_MTIME | AT_ATIME);

1561 e.error = nfs4setattr(vp, in_va, 0, cr, NULL);
1562 if (e.error) {
1563 /*
1564 * Couldn’t correct the attributes of
1565 * the newly created file and the
1566 * attributes are wrong. Remove the
1567 * file and return an error to the
1568 * application.
1569 */
1570 /* XXX will this take care of client state ? */
1571 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
1572 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:"
1573 " remove file", e.error));
1574 VN_RELE(vp);
1575 (void) nfs4_remove(dvp, file_name, cr, NULL, 0);
1576 /*

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 25

1577 * Since we’ve reled the vnode and removed
1578 * the file we now need to return the error.
1579 * At this point we don’t want to update the
1580 * dircaches, call nfs4_waitfor_purge_complete
1581 * or set vpp to vp so we need to skip these
1582 * as well.
1583 */
1584 goto skip_update_dircaches;
1585 }
1586 }

1588 /*
1589 * If we created or found the correct vnode, due to create_flag or
1590 * fh_differs being set, then update directory cache attribute, readdir
1591 * and dnlc caches.
1592 */
1593 if (create_flag || fh_differs) {
1594 dirattr_info_t dinfo, *dinfop;

1596 /*
1597 * Make sure getattr succeeded before using results.
1598 * note: op 7 is getattr(dir) for both flavors of
1599 * open(create).
1600 */
1601 if (create_flag && res.status == NFS4_OK) {
1602 dinfo.di_time_call = t;
1603 dinfo.di_cred = cr;
1604 dinfo.di_garp =
1605 &res.array[6].nfs_resop4_u.opgetattr.ga_res;
1606 dinfop = &dinfo;
1607 } else {
1608 dinfop = NULL;
1609 }

1611 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name,
1612 dinfop);
1613 }

1615 /*
1616 * If the page cache for this file was flushed from actions
1617 * above, it was done asynchronously and if that is true,
1618 * there is a need to wait here for it to complete. This must
1619 * be done outside of start_fop/end_fop.
1620 */
1621 (void) nfs4_waitfor_purge_complete(vp);

1623 /*
1624 * It is implicit that we are in the open case (create_flag == 0) since
1625 * fh_differs can only be set to a non-zero value in the open case.
1626 */
1627 if (fh_differs != 0 && vpi != NULL)
1628 VN_RELE(vpi);

1630 /*
1631 * Be sure to set *vpp to the correct value before returning.
1632 */
1633 *vpp = vp;

1635 skip_update_dircaches:

1637 nfs4args_copen_free(open_args);
1638 if (setgid_flag) {
1639 nfs4args_verify_free(&argop[8]);
1640 nfs4args_setattr_free(&argop[9]);
1641 }
1642 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 26

1644 if (ncr)
1645 crfree(ncr);
1646 kmem_free(argop, argoplist_size);
1647 return (e.error);
1648 }

1650 /*
1651 * Reopen an open instance. cf. nfs4open_otw().
1652 *
1653 * Errors are returned by the nfs4_error_t parameter.
1654 * - ep->error contains an errno value or zero.
1655 * - if it is zero, ep->stat is set to an NFS status code, if any.
1656 * If the file could not be reopened, but the caller should continue, the
1657 * file is marked dead and no error values are returned. If the caller
1658 * should stop recovering open files and start over, either the ep->error
1659 * value or ep->stat will indicate an error (either something that requires
1660 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile
1661 * filehandles) may be handled silently by this routine.
1662 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state
1663 * will be started, so the caller should not do it.
1664 *
1665 * Gotos:
1666 * - kill_file : reopen failed in such a fashion to constitute marking the
1667 * file dead and setting the open stream’s ’os_failed_reopen’ as 1. This
1668 * is for cases where recovery is not possible.
1669 * - failed_reopen : same as above, except that the file has already been
1670 * marked dead, so no need to do it again.
1671 * - bailout : reopen failed but we are able to recover and retry the reopen -
1672 * either within this function immediately or via the calling function.
1673 */

1675 void
1676 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep,
1677 open_claim_type4 claim, bool_t frc_use_claim_previous,
1678 bool_t is_recov)
1679 {
1680 COMPOUND4args_clnt args;
1681 COMPOUND4res_clnt res;
1682 nfs_argop4 argop[4];
1683 nfs_resop4 *resop;
1684 OPEN4res *op_res = NULL;
1685 OPEN4cargs *open_args;
1686 GETFH4res *gf_res;
1687 rnode4_t *rp = VTOR4(vp);
1688 int doqueue = 1;
1689 cred_t *cr = NULL, *cred_otw = NULL;
1690 nfs4_open_owner_t *oop = NULL;
1691 seqid4 seqid;
1692 nfs4_ga_res_t *garp;
1693 char fn[MAXNAMELEN];
1694 nfs4_recov_state_t recov = {NULL, 0};
1695 nfs4_lost_rqst_t lost_rqst;
1696 mntinfo4_t *mi = VTOMI4(vp);
1697 bool_t abort;
1698 char *failed_msg = "";
1699 int fh_different;
1700 hrtime_t t;
1701 nfs4_bseqid_entry_t *bsep = NULL;

1703 ASSERT(nfs4_consistent_type(vp));
1704 ASSERT(nfs_zone() == mi->mi_zone);

1706 nfs4_error_zinit(ep);

1708 /* this is the cred used to find the open owner */

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 27

1709 cr = state_to_cred(osp);
1710 if (cr == NULL) {
1711 failed_msg = "Couldn’t reopen: no cred";
1712 goto kill_file;
1713 }
1714 /* use this cred for OTW operations */
1715 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner);

1717 top:
1718 nfs4_error_zinit(ep);

1720 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) {
1721 /* File system has been unmounted, quit */
1722 ep->error = EIO;
1723 failed_msg = "Couldn’t reopen: file system has been unmounted";
1724 goto kill_file;
1725 }

1727 oop = osp->os_open_owner;

1729 ASSERT(oop != NULL);
1730 if (oop == NULL) { /* be defensive in non-DEBUG */
1731 failed_msg = "can’t reopen: no open owner";
1732 goto kill_file;
1733 }
1734 open_owner_hold(oop);

1736 ep->error = nfs4_start_open_seqid_sync(oop, mi);
1737 if (ep->error) {
1738 open_owner_rele(oop);
1739 oop = NULL;
1740 goto bailout;
1741 }

1743 /*
1744 * If the rnode has a delegation and the delegation has been
1745 * recovered and the server didn’t request a recall and the caller
1746 * didn’t specifically ask for CLAIM_PREVIOUS (nfs4frlock during
1747 * recovery) and the rnode hasn’t been marked dead, then install
1748 * the delegation stateid in the open stream. Otherwise, proceed
1749 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN.
1750 */
1751 mutex_enter(&rp->r_statev4_lock);
1752 if (rp->r_deleg_type != OPEN_DELEGATE_NONE &&
1753 !rp->r_deleg_return_pending &&
1754 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) &&
1755 !rp->r_deleg_needs_recall &&
1756 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous &&
1757 !(rp->r_flags & R4RECOVERR)) {
1758 mutex_enter(&osp->os_sync_lock);
1759 osp->os_delegation = 1;
1760 osp->open_stateid = rp->r_deleg_stateid;
1761 mutex_exit(&osp->os_sync_lock);
1762 mutex_exit(&rp->r_statev4_lock);
1763 goto bailout;
1764 }
1765 mutex_exit(&rp->r_statev4_lock);

1767 /*
1768 * If the file failed recovery, just quit. This failure need not
1769 * affect other reopens, so don’t return an error.
1770 */
1771 mutex_enter(&rp->r_statelock);
1772 if (rp->r_flags & R4RECOVERR) {
1773 mutex_exit(&rp->r_statelock);
1774 ep->error = 0;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 28

1775 goto failed_reopen;
1776 }
1777 mutex_exit(&rp->r_statelock);

1779 /*
1780 * argop is empty here
1781 *
1782 * PUTFH, OPEN, GETATTR
1783 */
1784 args.ctag = TAG_REOPEN;
1785 args.array_len = 4;
1786 args.array = argop;

1788 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
1789 "nfs4_reopen: file is type %d, id %s",
1790 vp->v_type, rnode4info(VTOR4(vp))));

1792 argop[0].argop = OP_CPUTFH;

1794 if (claim != CLAIM_PREVIOUS) {
1795 /*
1796 * if this is a file mount then
1797 * use the mntinfo parentfh
1798 */
1799 argop[0].nfs_argop4_u.opcputfh.sfh =
1800 (vp->v_flag & VROOT) ? mi->mi_srvparentfh :
1801 VTOSV(vp)->sv_dfh;
1802 } else {
1803 /* putfh fh to reopen */
1804 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
1805 }

1807 argop[1].argop = OP_COPEN;
1808 open_args = &argop[1].nfs_argop4_u.opcopen;
1809 open_args->claim = claim;

1811 if (claim == CLAIM_NULL) {

1813 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) {
1814 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname "
1815 "failed for vp 0x%p for CLAIM_NULL with %m",
1816 (void *)vp);
1817 failed_msg = "Couldn’t reopen: vtoname failed for "
1818 "CLAIM_NULL";
1819 /* nothing allocated yet */
1820 goto kill_file;
1821 }

1823 open_args->open_claim4_u.cfile = fn;
1824 } else if (claim == CLAIM_PREVIOUS) {

1826 /*
1827 * We have two cases to deal with here:
1828 * 1) We’re being called to reopen files in order to satisfy
1829 * a lock operation request which requires us to explicitly
1830 * reopen files which were opened under a delegation. If
1831 * we’re in recovery, we *must* use CLAIM_PREVIOUS. In
1832 * that case, frc_use_claim_previous is TRUE and we must
1833 * use the rnode’s current delegation type (r_deleg_type).
1834 * 2) We’re reopening files during some form of recovery.
1835 * In this case, frc_use_claim_previous is FALSE and we
1836 * use the delegation type appropriate for recovery
1837 * (r_deleg_needs_recovery).
1838 */
1839 mutex_enter(&rp->r_statev4_lock);
1840 open_args->open_claim4_u.delegate_type =

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 29

1841 frc_use_claim_previous ?
1842 rp->r_deleg_type :
1843 rp->r_deleg_needs_recovery;
1844 mutex_exit(&rp->r_statev4_lock);

1846 } else if (claim == CLAIM_DELEGATE_CUR) {

1848 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) {
1849 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname "
1850 "failed for vp 0x%p for CLAIM_DELEGATE_CUR "
1851 "with %m", (void *)vp);
1852 failed_msg = "Couldn’t reopen: vtoname failed for "
1853 "CLAIM_DELEGATE_CUR";
1854 /* nothing allocated yet */
1855 goto kill_file;
1856 }

1858 mutex_enter(&rp->r_statev4_lock);
1859 open_args->open_claim4_u.delegate_cur_info.delegate_stateid =
1860 rp->r_deleg_stateid;
1861 mutex_exit(&rp->r_statev4_lock);

1863 open_args->open_claim4_u.delegate_cur_info.cfile = fn;
1864 }
1865 open_args->opentype = OPEN4_NOCREATE;
1866 open_args->owner.clientid = mi2clientid(mi);
1867 open_args->owner.owner_len = sizeof (oop->oo_name);
1868 open_args->owner.owner_val =
1869 kmem_alloc(open_args->owner.owner_len, KM_SLEEP);
1870 bcopy(&oop->oo_name, open_args->owner.owner_val,
1871 open_args->owner.owner_len);
1872 open_args->share_access = 0;
1873 open_args->share_deny = 0;

1875 mutex_enter(&osp->os_sync_lock);
1876 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp "
1877 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: "
1878 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ",
1879 (void *)osp, (void *)rp, osp->os_share_acc_read,
1880 osp->os_share_acc_write, osp->os_open_ref_count,
1881 osp->os_mmap_read, osp->os_mmap_write, claim));

1883 if (osp->os_share_acc_read || osp->os_mmap_read)
1884 open_args->share_access |= OPEN4_SHARE_ACCESS_READ;
1885 if (osp->os_share_acc_write || osp->os_mmap_write)
1886 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE;
1887 if (osp->os_share_deny_read)
1888 open_args->share_deny |= OPEN4_SHARE_DENY_READ;
1889 if (osp->os_share_deny_write)
1890 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE;
1891 mutex_exit(&osp->os_sync_lock);

1893 seqid = nfs4_get_open_seqid(oop) + 1;
1894 open_args->seqid = seqid;

1896 /* Construct the getfh part of the compound */
1897 argop[2].argop = OP_GETFH;

1899 /* Construct the getattr part of the compound */
1900 argop[3].argop = OP_GETATTR;
1901 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1902 argop[3].nfs_argop4_u.opgetattr.mi = mi;

1904 t = gethrtime();

1906 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 30

1908 if (ep->error) {
1909 if (!is_recov && !frc_use_claim_previous &&
1910 (ep->error == EINTR || ep->error == ETIMEDOUT ||
1911 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) {
1912 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop,
1913 cred_otw, vp, NULL, open_args);
1914 abort = nfs4_start_recovery(ep,
1915 VTOMI4(vp), vp, NULL, NULL,
1916 lost_rqst.lr_op == OP_OPEN ?
1917 &lost_rqst : NULL, OP_OPEN, NULL, NULL, NULL);
1918 nfs4args_copen_free(open_args);
1919 goto bailout;
1920 }

1922 nfs4args_copen_free(open_args);

1924 if (ep->error == EACCES && cred_otw != cr) {
1925 crfree(cred_otw);
1926 cred_otw = cr;
1927 crhold(cred_otw);
1928 nfs4_end_open_seqid_sync(oop);
1929 open_owner_rele(oop);
1930 oop = NULL;
1931 goto top;
1932 }
1933 if (ep->error == ETIMEDOUT)
1934 goto bailout;
1935 failed_msg = "Couldn’t reopen: rpc error";
1936 goto kill_file;
1937 }

1939 if (nfs4_need_to_bump_seqid(&res))
1940 nfs4_set_open_seqid(seqid, oop, args.ctag);

1942 switch (res.status) {
1943 case NFS4_OK:
1944 if (recov.rs_flags & NFS4_RS_DELAY_MSG) {
1945 mutex_enter(&rp->r_statelock);
1946 rp->r_delay_interval = 0;
1947 mutex_exit(&rp->r_statelock);
1948 }
1949 break;
1950 case NFS4ERR_BAD_SEQID:
1951 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0,
1952 args.ctag, open_args->seqid);

1954 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL,
1955 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst :
1956 NULL, OP_OPEN, bsep, NULL, NULL);

1958 nfs4args_copen_free(open_args);
1959 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1960 nfs4_end_open_seqid_sync(oop);
1961 open_owner_rele(oop);
1962 oop = NULL;
1963 kmem_free(bsep, sizeof (*bsep));

1965 goto kill_file;
1966 case NFS4ERR_NO_GRACE:
1967 nfs4args_copen_free(open_args);
1968 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1969 nfs4_end_open_seqid_sync(oop);
1970 open_owner_rele(oop);
1971 oop = NULL;
1972 if (claim == CLAIM_PREVIOUS) {

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 31

1973 /*
1974 * Retry as a plain open. We don’t need to worry about
1975 * checking the changeinfo: it is acceptable for a
1976 * client to re-open a file and continue processing
1977 * (in the absence of locks).
1978 */
1979 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1980 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; "
1981 "will retry as CLAIM_NULL"));
1982 claim = CLAIM_NULL;
1983 nfs4_mi_kstat_inc_no_grace(mi);
1984 goto top;
1985 }
1986 failed_msg =
1987 "Couldn’t reopen: tried reclaim outside grace period. ";
1988 goto kill_file;
1989 case NFS4ERR_GRACE:
1990 nfs4_set_grace_wait(mi);
1991 nfs4args_copen_free(open_args);
1992 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1993 nfs4_end_open_seqid_sync(oop);
1994 open_owner_rele(oop);
1995 oop = NULL;
1996 ep->error = nfs4_wait_for_grace(mi, &recov);
1997 if (ep->error != 0)
1998 goto bailout;
1999 goto top;
2000 case NFS4ERR_DELAY:
2001 nfs4_set_delay_wait(vp);
2002 nfs4args_copen_free(open_args);
2003 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2004 nfs4_end_open_seqid_sync(oop);
2005 open_owner_rele(oop);
2006 oop = NULL;
2007 ep->error = nfs4_wait_for_delay(vp, &recov);
2008 nfs4_mi_kstat_inc_delay(mi);
2009 if (ep->error != 0)
2010 goto bailout;
2011 goto top;
2012 case NFS4ERR_FHEXPIRED:
2013 /* recover filehandle and retry */
2014 abort = nfs4_start_recovery(ep,
2015 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL, NULL, NULL);
2016 nfs4args_copen_free(open_args);
2017 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2018 nfs4_end_open_seqid_sync(oop);
2019 open_owner_rele(oop);
2020 oop = NULL;
2021 if (abort == FALSE)
2022 goto top;
2023 failed_msg = "Couldn’t reopen: recovery aborted";
2024 goto kill_file;
2025 case NFS4ERR_RESOURCE:
2026 case NFS4ERR_STALE_CLIENTID:
2027 case NFS4ERR_WRONGSEC:
2028 case NFS4ERR_EXPIRED:
2029 /*
2030 * Do not mark the file dead and let the calling
2031 * function initiate recovery.
2032 */
2033 nfs4args_copen_free(open_args);
2034 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2035 nfs4_end_open_seqid_sync(oop);
2036 open_owner_rele(oop);
2037 oop = NULL;
2038 goto bailout;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 32

2039 case NFS4ERR_ACCESS:
2040 if (cred_otw != cr) {
2041 crfree(cred_otw);
2042 cred_otw = cr;
2043 crhold(cred_otw);
2044 nfs4args_copen_free(open_args);
2045 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2046 nfs4_end_open_seqid_sync(oop);
2047 open_owner_rele(oop);
2048 oop = NULL;
2049 goto top;
2050 }
2051 /* fall through */
2052 default:
2053 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
2054 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s",
2055 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv,
2056 rnode4info(VTOR4(vp))));
2057 failed_msg = "Couldn’t reopen: NFSv4 error";
2058 nfs4args_copen_free(open_args);
2059 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2060 goto kill_file;
2061 }

2063 resop = &res.array[1]; /* open res */
2064 op_res = &resop->nfs_resop4_u.opopen;

2066 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res;

2068 /*
2069 * Check if the path we reopened really is the same
2070 * file. We could end up in a situation where the file
2071 * was removed and a new file created with the same name.
2072 */
2073 resop = &res.array[2];
2074 gf_res = &resop->nfs_resop4_u.opgetfh;
2075 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
2076 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0);
2077 if (fh_different) {
2078 if (mi->mi_fh_expire_type == FH4_PERSISTENT ||
2079 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) {
2080 /* Oops, we don’t have the same file */
2081 if (mi->mi_fh_expire_type == FH4_PERSISTENT)
2082 failed_msg = "Couldn’t reopen: Persistent "
2083 "file handle changed";
2084 else
2085 failed_msg = "Couldn’t reopen: Volatile "
2086 "(no expire on open) file handle changed";

2088 nfs4args_copen_free(open_args);
2089 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2090 nfs_rw_exit(&mi->mi_fh_lock);
2091 goto kill_file;

2093 } else {
2094 /*
2095 * We have volatile file handles that don’t compare.
2096 * If the fids are the same then we assume that the
2097 * file handle expired but the rnode still refers to
2098 * the same file object.
2099 *
2100 * First check that we have fids or not.
2101 * If we don’t we have a dumb server so we will
2102 * just assume every thing is ok for now.
2103 */
2104 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID &&

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 33

2105 rp->r_attr.va_mask & AT_NODEID &&
2106 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) {
2107 /*
2108 * We have fids, but they don’t
2109 * compare. So kill the file.
2110 */
2111 failed_msg =
2112 "Couldn’t reopen: file handle changed"
2113 " due to mismatched fids";
2114 nfs4args_copen_free(open_args);
2115 (void) xdr_free(xdr_COMPOUND4res_clnt,
2116 (caddr_t)&res);
2117 nfs_rw_exit(&mi->mi_fh_lock);
2118 goto kill_file;
2119 } else {
2120 /*
2121 * We have volatile file handles that refers
2122 * to the same file (at least they have the
2123 * same fid) or we don’t have fids so we
2124 * can’t tell. :(. We’ll be a kind and accepting
2125 * client so we’ll update the rnode’s file
2126 * handle with the otw handle.
2127 *
2128 * We need to drop mi->mi_fh_lock since
2129 * sh4_update acquires it. Since there is
2130 * only one recovery thread there is no
2131 * race.
2132 */
2133 nfs_rw_exit(&mi->mi_fh_lock);
2134 sfh4_update(rp->r_fh, &gf_res->object);
2135 }
2136 }
2137 } else {
2138 nfs_rw_exit(&mi->mi_fh_lock);
2139 }

2141 ASSERT(nfs4_consistent_type(vp));

2143 /*
2144 * If the server wanted an OPEN_CONFIRM but that fails, just start
2145 * over. Presumably if there is a persistent error it will show up
2146 * when we resend the OPEN.
2147 */
2148 if (op_res->rflags & OPEN4_RESULT_CONFIRM) {
2149 bool_t retry_open = FALSE;

2151 nfs4open_confirm(vp, &seqid, &op_res->stateid,
2152 cred_otw, is_recov, &retry_open,
2153 oop, FALSE, ep, NULL);
2154 if (ep->error || ep->stat) {
2155 nfs4args_copen_free(open_args);
2156 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2157 nfs4_end_open_seqid_sync(oop);
2158 open_owner_rele(oop);
2159 oop = NULL;
2160 goto top;
2161 }
2162 }

2164 mutex_enter(&osp->os_sync_lock);
2165 osp->open_stateid = op_res->stateid;
2166 osp->os_delegation = 0;
2167 /*
2168 * Need to reset this bitfield for the possible case where we were
2169 * going to OTW CLOSE the file, got a non-recoverable error, and before
2170 * we could retry the CLOSE, OPENed the file again.

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 34

2171 */
2172 ASSERT(osp->os_open_owner->oo_seqid_inuse);
2173 osp->os_final_close = 0;
2174 osp->os_force_close = 0;
2175 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS)
2176 osp->os_dc_openacc = open_args->share_access;
2177 mutex_exit(&osp->os_sync_lock);

2179 nfs4_end_open_seqid_sync(oop);

2181 /* accept delegation, if any */
2182 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw);

2184 nfs4args_copen_free(open_args);

2186 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL);

2188 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);

2190 ASSERT(nfs4_consistent_type(vp));

2192 open_owner_rele(oop);
2193 crfree(cr);
2194 crfree(cred_otw);
2195 return;

2197 kill_file:
2198 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat);
2199 failed_reopen:
2200 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE,
2201 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s",
2202 (void *)osp, (void *)cr, rnode4info(rp)));
2203 mutex_enter(&osp->os_sync_lock);
2204 osp->os_failed_reopen = 1;
2205 mutex_exit(&osp->os_sync_lock);
2206 bailout:
2207 if (oop != NULL) {
2208 nfs4_end_open_seqid_sync(oop);
2209 open_owner_rele(oop);
2210 }
2211 if (cr != NULL)
2212 crfree(cr);
2213 if (cred_otw != NULL)
2214 crfree(cred_otw);
2215 }

2217 /* for . and .. OPENs */
2218 /* ARGSUSED */
2219 static int
2220 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr)
2221 {
2222 rnode4_t *rp;
2223 nfs4_ga_res_t gar;

2225 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone);

2227 /*
2228 * If close-to-open consistency checking is turned off or
2229 * if there is no cached data, we can avoid
2230 * the over the wire getattr. Otherwise, force a
2231 * call to the server to get fresh attributes and to
2232 * check caches. This is required for close-to-open
2233 * consistency.
2234 */
2235 rp = VTOR4(*vpp);
2236 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO ||

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 35

2237 (rp->r_dir == NULL && !nfs4_has_pages(*vpp)))
2238 return (0);

2240 gar.n4g_va.va_mask = AT_ALL;
2241 return (nfs4_getattr_otw(*vpp, &gar, cr, 0));
2242 }

2244 /*
2245 * CLOSE a file
2246 */
2247 /* ARGSUSED */
2248 static int
2249 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
2250 caller_context_t *ct)
2251 {
2252 rnode4_t *rp;
2253 int error = 0;
2254 int r_error = 0;
2255 int n4error = 0;
2256 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };

2258 /*
2259 * Remove client state for this (lockowner, file) pair.
2260 * Issue otw v4 call to have the server do the same.
2261 */

2263 rp = VTOR4(vp);

2265 /*
2266 * zone_enter(2) prevents processes from changing zones with NFS files
2267 * open; if we happen to get here from the wrong zone we can’t do
2268 * anything over the wire.
2269 */
2270 if (VTOMI4(vp)->mi_zone != nfs_zone()) {
2271 /*
2272 * We could attempt to clean up locks, except we’re sure
2273 * that the current process didn’t acquire any locks on
2274 * the file: any attempt to lock a file belong to another zone
2275 * will fail, and one can’t lock an NFS file and then change
2276 * zones, as that fails too.
2277 *
2278 * Returning an error here is the sane thing to do. A
2279 * subsequent call to VN_RELE() which translates to a
2280 * nfs4_inactive() will clean up state: if the zone of the
2281 * vnode’s origin is still alive and kicking, the inactive
2282 * thread will handle the request (from the correct zone), and
2283 * everything (minus the OTW close call) should be OK. If the
2284 * zone is going away nfs4_async_inactive() will throw away
2285 * delegations, open streams and cached pages inline.
2286 */
2287 return (EIO);
2288 }

2290 /*
2291 * If we are using local locking for this filesystem, then
2292 * release all of the SYSV style record locks. Otherwise,
2293 * we are doing network locking and we need to release all
2294 * of the network locks. All of the locks held by this
2295 * process on this file are released no matter what the
2296 * incoming reference count is.
2297 */
2298 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) {
2299 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
2300 cleanshares(vp, ttoproc(curthread)->p_pid);
2301 } else
2302 e.error = nfs4_lockrelease(vp, flag, offset, cr);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 36

2304 if (e.error) {
2305 struct lm_sysid *lmsid;
2306 lmsid = nfs4_find_sysid(VTOMI4(vp));
2307 if (lmsid == NULL) {
2308 DTRACE_PROBE2(unknown__sysid, int, e.error,
2309 vnode_t *, vp);
2310 } else {
2311 cleanlocks(vp, ttoproc(curthread)->p_pid,
2312 (lm_sysidt(lmsid) | LM_SYSID_CLIENT));
2313 }
2314 return (e.error);
2315 }

2317 if (count > 1)
2318 return (0);

2320 /*
2321 * If the file has been ‘unlinked’, then purge the
2322 * DNLC so that this vnode will get reycled quicker
2323 * and the .nfs* file on the server will get removed.
2324 */
2325 if (rp->r_unldvp != NULL)
2326 dnlc_purge_vp(vp);

2328 /*
2329 * If the file was open for write and there are pages,
2330 * do a synchronous flush and commit of all of the
2331 * dirty and uncommitted pages.
2332 */
2333 ASSERT(!e.error);
2334 if ((flag & FWRITE) && nfs4_has_pages(vp))
2335 error = nfs4_putpage_commit(vp, 0, 0, cr);

2337 mutex_enter(&rp->r_statelock);
2338 r_error = rp->r_error;
2339 rp->r_error = 0;
2340 mutex_exit(&rp->r_statelock);

2342 /*
2343 * If this file type is one for which no explicit ’open’ was
2344 * done, then bail now (ie. no need for protocol ’close’). If
2345 * there was an error w/the vm subsystem, return _that_ error,
2346 * otherwise, return any errors that may’ve been reported via
2347 * the rnode.
2348 */
2349 if (vp->v_type != VREG)
2350 return (error ? error : r_error);

2352 /*
2353 * The sync putpage commit may have failed above, but since
2354 * we’re working w/a regular file, we need to do the protocol
2355 * ’close’ (nfs4close_one will figure out if an otw close is
2356 * needed or not). Report any errors _after_ doing the protocol
2357 * ’close’.
2358 */
2359 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0);
2360 n4error = e.error ? e.error : geterrno4(e.stat);

2362 /*
2363 * Error reporting prio (Hi -> Lo)
2364 *
2365 * i) nfs4_putpage_commit (error)
2366 * ii) rnode’s (r_error)
2367 * iii) nfs4close_one (n4error)
2368 */

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 37

2369 return (error ? error : (r_error ? r_error : n4error));
2370 }

2372 /*
2373 * Initialize *lost_rqstp.
2374 */

2376 static void
2377 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp,
2378 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr,
2379 vnode_t *vp)
2380 {
2381 if (error != ETIMEDOUT && error != EINTR &&
2382 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) {
2383 lost_rqstp->lr_op = 0;
2384 return;
2385 }

2387 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
2388 "nfs4close_save_lost_rqst: error %d", error));

2390 lost_rqstp->lr_op = OP_CLOSE;
2391 /*
2392 * The vp is held and rele’d via the recovery code.
2393 * See nfs4_save_lost_rqst.
2394 */
2395 lost_rqstp->lr_vp = vp;
2396 lost_rqstp->lr_dvp = NULL;
2397 lost_rqstp->lr_oop = oop;
2398 lost_rqstp->lr_osp = osp;
2399 ASSERT(osp != NULL);
2400 ASSERT(mutex_owned(&osp->os_sync_lock));
2401 osp->os_pending_close = 1;
2402 lost_rqstp->lr_lop = NULL;
2403 lost_rqstp->lr_cr = cr;
2404 lost_rqstp->lr_flk = NULL;
2405 lost_rqstp->lr_putfirst = FALSE;
2406 }

2408 /*
2409 * Assumes you already have the open seqid sync grabbed as well as the
2410 * ’os_sync_lock’. Note: this will release the open seqid sync and
2411 * ’os_sync_lock’ if client recovery starts. Calling functions have to
2412 * be prepared to handle this.
2413 *
2414 * ’recov’ is returned as 1 if the CLOSE operation detected client recovery
2415 * was needed and was started, and that the calling function should retry
2416 * this function; otherwise it is returned as 0.
2417 *
2418 * Errors are returned via the nfs4_error_t parameter.
2419 */
2420 static void
2421 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop,
2422 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp,
2423 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp)
2424 {
2425 COMPOUND4args_clnt args;
2426 COMPOUND4res_clnt res;
2427 CLOSE4args *close_args;
2428 nfs_resop4 *resop;
2429 nfs_argop4 argop[3];
2430 int doqueue = 1;
2431 mntinfo4_t *mi;
2432 seqid4 seqid;
2433 vnode_t *vp;
2434 bool_t needrecov = FALSE;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 38

2435 nfs4_lost_rqst_t lost_rqst;
2436 hrtime_t t;

2438 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone);

2440 ASSERT(MUTEX_HELD(&osp->os_sync_lock));

2442 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw"));

2444 /* Only set this to 1 if recovery is started */
2445 *recov = 0;

2447 /* do the OTW call to close the file */

2449 if (close_type == CLOSE_RESEND)
2450 args.ctag = TAG_CLOSE_LOST;
2451 else if (close_type == CLOSE_AFTER_RESEND)
2452 args.ctag = TAG_CLOSE_UNDO;
2453 else
2454 args.ctag = TAG_CLOSE;

2456 args.array_len = 3;
2457 args.array = argop;

2459 vp = RTOV4(rp);

2461 mi = VTOMI4(vp);

2463 /* putfh target fh */
2464 argop[0].argop = OP_CPUTFH;
2465 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;

2467 argop[1].argop = OP_GETATTR;
2468 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
2469 argop[1].nfs_argop4_u.opgetattr.mi = mi;

2471 argop[2].argop = OP_CLOSE;
2472 close_args = &argop[2].nfs_argop4_u.opclose;

2474 seqid = nfs4_get_open_seqid(oop) + 1;

2476 close_args->seqid = seqid;
2477 close_args->open_stateid = osp->open_stateid;

2479 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
2480 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first",
2481 rnode4info(rp)));

2483 t = gethrtime();

2485 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep);

2487 if (!ep->error && nfs4_need_to_bump_seqid(&res)) {
2488 nfs4_set_open_seqid(seqid, oop, args.ctag);
2489 }

2491 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp);
2492 if (ep->error && !needrecov) {
2493 /*
2494 * if there was an error and no recovery is to be done
2495 * then then set up the file to flush its cache if
2496 * needed for the next caller.
2497 */
2498 mutex_enter(&rp->r_statelock);
2499 PURGE_ATTRCACHE4_LOCKED(rp);
2500 rp->r_flags &= ~R4WRITEMODIFIED;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 39

2501 mutex_exit(&rp->r_statelock);
2502 return;
2503 }

2505 if (needrecov) {
2506 bool_t abort;
2507 nfs4_bseqid_entry_t *bsep = NULL;

2509 if (close_type != CLOSE_RESEND)
2510 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop,
2511 osp, cred_otw, vp);

2513 if (!ep->error && res.status == NFS4ERR_BAD_SEQID)
2514 bsep = nfs4_create_bseqid_entry(oop, NULL, vp,
2515 0, args.ctag, close_args->seqid);

2517 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
2518 "nfs4close_otw: initiating recovery. error %d "
2519 "res.status %d", ep->error, res.status));

2521 /*
2522 * Drop the ’os_sync_lock’ here so we don’t hit
2523 * a potential recursive mutex_enter via an
2524 * ’open_stream_hold()’.
2525 */
2526 mutex_exit(&osp->os_sync_lock);
2527 *have_sync_lockp = 0;
2528 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL,
2529 (close_type != CLOSE_RESEND &&
2530 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL,
2531 OP_CLOSE, bsep, NULL, NULL);

2533 /* drop open seq sync, and let the calling function regrab it */
2534 nfs4_end_open_seqid_sync(oop);
2535 *did_start_seqid_syncp = 0;

2537 if (bsep)
2538 kmem_free(bsep, sizeof (*bsep));
2539 /*
2540 * For signals, the caller wants to quit, so don’t say to
2541 * retry. For forced unmount, if it’s a user thread, it
2542 * wants to quit. If it’s a recovery thread, the retry
2543 * will happen higher-up on the call stack. Either way,
2544 * don’t say to retry.
2545 */
2546 if (abort == FALSE && ep->error != EINTR &&
2547 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) &&
2548 close_type != CLOSE_RESEND &&
2549 close_type != CLOSE_AFTER_RESEND)
2550 *recov = 1;
2551 else
2552 *recov = 0;

2554 if (!ep->error)
2555 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2556 return;
2557 }

2559 if (res.status) {
2560 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2561 return;
2562 }

2564 mutex_enter(&rp->r_statev4_lock);
2565 rp->created_v4 = 0;
2566 mutex_exit(&rp->r_statev4_lock);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 40

2568 resop = &res.array[2];
2569 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid;
2570 osp->os_valid = 0;

2572 /*
2573 * This removes the reference obtained at OPEN; ie, when the
2574 * open stream structure was created.
2575 *
2576 * We don’t have to worry about calling ’open_stream_rele’
2577 * since we our currently holding a reference to the open
2578 * stream which means the count cannot go to 0 with this
2579 * decrement.
2580 */
2581 ASSERT(osp->os_ref_count >= 2);
2582 osp->os_ref_count--;

2584 if (!ep->error)
2585 nfs4_attr_cache(vp,
2586 &res.array[1].nfs_resop4_u.opgetattr.ga_res,
2587 t, cred_otw, TRUE, NULL);

2589 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:"
2590 " returning %d", ep->error));

2592 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2593 }

2595 /* ARGSUSED */
2596 static int
2597 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
2598 caller_context_t *ct)
2599 {
2600 rnode4_t *rp;
2601 u_offset_t off;
2602 offset_t diff;
2603 uint_t on;
2604 uint_t n;
2605 caddr_t base;
2606 uint_t flags;
2607 int error;
2608 mntinfo4_t *mi;

2610 rp = VTOR4(vp);

2612 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));

2614 if (IS_SHADOW(vp, rp))
2615 vp = RTOV4(rp);

2617 if (vp->v_type != VREG)
2618 return (EISDIR);

2620 mi = VTOMI4(vp);

2622 if (nfs_zone() != mi->mi_zone)
2623 return (EIO);

2625 if (uiop->uio_resid == 0)
2626 return (0);

2628 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0)
2629 return (EINVAL);

2631 mutex_enter(&rp->r_statelock);
2632 if (rp->r_flags & R4RECOVERRP)

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 41

2633 error = (rp->r_error ? rp->r_error : EIO);
2634 else
2635 error = 0;
2636 mutex_exit(&rp->r_statelock);
2637 if (error)
2638 return (error);

2640 /*
2641 * Bypass VM if caching has been disabled (e.g., locking) or if
2642 * using client-side direct I/O and the file is not mmap’d and
2643 * there are no cached pages.
2644 */
2645 if ((vp->v_flag & VNOCACHE) ||
2646 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) &&
2647 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) {
2648 size_t resid = 0;

2650 return (nfs4read(vp, NULL, uiop->uio_loffset,
2651 uiop->uio_resid, &resid, cr, FALSE, uiop));
2652 }

2654 error = 0;

2656 do {
2657 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
2658 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
2659 n = MIN(MAXBSIZE - on, uiop->uio_resid);

2661 if (error = nfs4_validate_caches(vp, cr))
2662 break;

2664 mutex_enter(&rp->r_statelock);
2665 while (rp->r_flags & R4INCACHEPURGE) {
2666 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
2667 mutex_exit(&rp->r_statelock);
2668 return (EINTR);
2669 }
2670 }
2671 diff = rp->r_size - uiop->uio_loffset;
2672 mutex_exit(&rp->r_statelock);
2673 if (diff <= 0)
2674 break;
2675 if (diff < n)
2676 n = (uint_t)diff;

2678 if (vpm_enable) {
2679 /*
2680 * Copy data.
2681 */
2682 error = vpm_data_copy(vp, off + on, n, uiop,
2683 1, NULL, 0, S_READ);
2684 } else {
2685 base = segmap_getmapflt(segkmap, vp, off + on, n, 1,
2686 S_READ);

2688 error = uiomove(base + on, n, UIO_READ, uiop);
2689 }

2691 if (!error) {
2692 /*
2693 * If read a whole block or read to eof,
2694 * won’t need this buffer again soon.
2695 */
2696 mutex_enter(&rp->r_statelock);
2697 if (n + on == MAXBSIZE ||
2698 uiop->uio_loffset == rp->r_size)

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 42

2699 flags = SM_DONTNEED;
2700 else
2701 flags = 0;
2702 mutex_exit(&rp->r_statelock);
2703 if (vpm_enable) {
2704 error = vpm_sync_pages(vp, off, n, flags);
2705 } else {
2706 error = segmap_release(segkmap, base, flags);
2707 }
2708 } else {
2709 if (vpm_enable) {
2710 (void) vpm_sync_pages(vp, off, n, 0);
2711 } else {
2712 (void) segmap_release(segkmap, base, 0);
2713 }
2714 }
2715 } while (!error && uiop->uio_resid > 0);

2717 return (error);
2718 }

2720 /* ARGSUSED */
2721 static int
2722 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
2723 caller_context_t *ct)
2724 {
2725 rlim64_t limit = uiop->uio_llimit;
2726 rnode4_t *rp;
2727 u_offset_t off;
2728 caddr_t base;
2729 uint_t flags;
2730 int remainder;
2731 size_t n;
2732 int on;
2733 int error;
2734 int resid;
2735 u_offset_t offset;
2736 mntinfo4_t *mi;
2737 uint_t bsize;

2739 rp = VTOR4(vp);

2741 if (IS_SHADOW(vp, rp))
2742 vp = RTOV4(rp);

2744 if (vp->v_type != VREG)
2745 return (EISDIR);

2747 mi = VTOMI4(vp);

2749 if (nfs_zone() != mi->mi_zone)
2750 return (EIO);

2752 if (uiop->uio_resid == 0)
2753 return (0);

2755 mutex_enter(&rp->r_statelock);
2756 if (rp->r_flags & R4RECOVERRP)
2757 error = (rp->r_error ? rp->r_error : EIO);
2758 else
2759 error = 0;
2760 mutex_exit(&rp->r_statelock);
2761 if (error)
2762 return (error);

2764 if (ioflag & FAPPEND) {

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 43

2765 struct vattr va;

2767 /*
2768 * Must serialize if appending.
2769 */
2770 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) {
2771 nfs_rw_exit(&rp->r_rwlock);
2772 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER,
2773 INTR4(vp)))
2774 return (EINTR);
2775 }

2777 va.va_mask = AT_SIZE;
2778 error = nfs4getattr(vp, &va, cr);
2779 if (error)
2780 return (error);
2781 uiop->uio_loffset = va.va_size;
2782 }

2784 offset = uiop->uio_loffset + uiop->uio_resid;

2786 if (uiop->uio_loffset < (offset_t)0 || offset < 0)
2787 return (EINVAL);

2789 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
2790 limit = MAXOFFSET_T;

2792 /*
2793 * Check to make sure that the process will not exceed
2794 * its limit on file size. It is okay to write up to
2795 * the limit, but not beyond. Thus, the write which
2796 * reaches the limit will be short and the next write
2797 * will return an error.
2798 */
2799 remainder = 0;
2800 if (offset > uiop->uio_llimit) {
2801 remainder = offset - uiop->uio_llimit;
2802 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset;
2803 if (uiop->uio_resid <= 0) {
2804 proc_t *p = ttoproc(curthread);

2806 uiop->uio_resid += remainder;
2807 mutex_enter(&p->p_lock);
2808 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE],
2809 p->p_rctls, p, RCA_UNSAFE_SIGINFO);
2810 mutex_exit(&p->p_lock);
2811 return (EFBIG);
2812 }
2813 }

2815 /* update the change attribute, if we have a write delegation */

2817 mutex_enter(&rp->r_statev4_lock);
2818 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE)
2819 rp->r_deleg_change++;

2821 mutex_exit(&rp->r_statev4_lock);

2823 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp)))
2824 return (EINTR);

2826 /*
2827 * Bypass VM if caching has been disabled (e.g., locking) or if
2828 * using client-side direct I/O and the file is not mmap’d and
2829 * there are no cached pages.
2830 */

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 44

2831 if ((vp->v_flag & VNOCACHE) ||
2832 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) &&
2833 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) {
2834 size_t bufsize;
2835 int count;
2836 u_offset_t org_offset;
2837 stable_how4 stab_comm;
2838 nfs4_fwrite:
2839 if (rp->r_flags & R4STALE) {
2840 resid = uiop->uio_resid;
2841 offset = uiop->uio_loffset;
2842 error = rp->r_error;
2843 /*
2844 * A close may have cleared r_error, if so,
2845 * propagate ESTALE error return properly
2846 */
2847 if (error == 0)
2848 error = ESTALE;
2849 goto bottom;
2850 }

2852 bufsize = MIN(uiop->uio_resid, mi->mi_stsize);
2853 base = kmem_alloc(bufsize, KM_SLEEP);
2854 do {
2855 if (ioflag & FDSYNC)
2856 stab_comm = DATA_SYNC4;
2857 else
2858 stab_comm = FILE_SYNC4;
2859 resid = uiop->uio_resid;
2860 offset = uiop->uio_loffset;
2861 count = MIN(uiop->uio_resid, bufsize);
2862 org_offset = uiop->uio_loffset;
2863 error = uiomove(base, count, UIO_WRITE, uiop);
2864 if (!error) {
2865 error = nfs4write(vp, base, org_offset,
2866 count, cr, &stab_comm);
2867 if (!error) {
2868 mutex_enter(&rp->r_statelock);
2869 if (rp->r_size < uiop->uio_loffset)
2870 rp->r_size = uiop->uio_loffset;
2871 mutex_exit(&rp->r_statelock);
2872 }
2873 }
2874 } while (!error && uiop->uio_resid > 0);
2875 kmem_free(base, bufsize);
2876 goto bottom;
2877 }

2879 bsize = vp->v_vfsp->vfs_bsize;

2881 do {
2882 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
2883 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
2884 n = MIN(MAXBSIZE - on, uiop->uio_resid);

2886 resid = uiop->uio_resid;
2887 offset = uiop->uio_loffset;

2889 if (rp->r_flags & R4STALE) {
2890 error = rp->r_error;
2891 /*
2892 * A close may have cleared r_error, if so,
2893 * propagate ESTALE error return properly
2894 */
2895 if (error == 0)
2896 error = ESTALE;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 45

2897 break;
2898 }

2900 /*
2901 * Don’t create dirty pages faster than they
2902 * can be cleaned so that the system doesn’t
2903 * get imbalanced. If the async queue is
2904 * maxed out, then wait for it to drain before
2905 * creating more dirty pages. Also, wait for
2906 * any threads doing pagewalks in the vop_getattr
2907 * entry points so that they don’t block for
2908 * long periods.
2909 */
2910 mutex_enter(&rp->r_statelock);
2911 while ((mi->mi_max_threads != 0 &&
2912 rp->r_awcount > 2 * mi->mi_max_threads) ||
2913 rp->r_gcount > 0) {
2914 if (INTR4(vp)) {
2915 klwp_t *lwp = ttolwp(curthread);

2917 if (lwp != NULL)
2918 lwp->lwp_nostop++;
2919 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
2920 mutex_exit(&rp->r_statelock);
2921 if (lwp != NULL)
2922 lwp->lwp_nostop--;
2923 error = EINTR;
2924 goto bottom;
2925 }
2926 if (lwp != NULL)
2927 lwp->lwp_nostop--;
2928 } else
2929 cv_wait(&rp->r_cv, &rp->r_statelock);
2930 }
2931 mutex_exit(&rp->r_statelock);

2933 /*
2934 * Touch the page and fault it in if it is not in core
2935 * before segmap_getmapflt or vpm_data_copy can lock it.
2936 * This is to avoid the deadlock if the buffer is mapped
2937 * to the same file through mmap which we want to write.
2938 */
2939 uio_prefaultpages((long)n, uiop);

2941 if (vpm_enable) {
2942 /*
2943 * It will use kpm mappings, so no need to
2944 * pass an address.
2945 */
2946 error = writerp4(rp, NULL, n, uiop, 0);
2947 } else {
2948 if (segmap_kpm) {
2949 int pon = uiop->uio_loffset & PAGEOFFSET;
2950 size_t pn = MIN(PAGESIZE - pon,
2951 uiop->uio_resid);
2952 int pagecreate;

2954 mutex_enter(&rp->r_statelock);
2955 pagecreate = (pon == 0) && (pn == PAGESIZE ||
2956 uiop->uio_loffset + pn >= rp->r_size);
2957 mutex_exit(&rp->r_statelock);

2959 base = segmap_getmapflt(segkmap, vp, off + on,
2960 pn, !pagecreate, S_WRITE);

2962 error = writerp4(rp, base + pon, n, uiop,

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 46

2963 pagecreate);

2965 } else {
2966 base = segmap_getmapflt(segkmap, vp, off + on,
2967 n, 0, S_READ);
2968 error = writerp4(rp, base + on, n, uiop, 0);
2969 }
2970 }

2972 if (!error) {
2973 if (mi->mi_flags & MI4_NOAC)
2974 flags = SM_WRITE;
2975 else if ((uiop->uio_loffset % bsize) == 0 ||
2976 IS_SWAPVP(vp)) {
2977 /*
2978 * Have written a whole block.
2979 * Start an asynchronous write
2980 * and mark the buffer to
2981 * indicate that it won’t be
2982 * needed again soon.
2983 */
2984 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
2985 } else
2986 flags = 0;
2987 if ((ioflag & (FSYNC|FDSYNC)) ||
2988 (rp->r_flags & R4OUTOFSPACE)) {
2989 flags &= ~SM_ASYNC;
2990 flags |= SM_WRITE;
2991 }
2992 if (vpm_enable) {
2993 error = vpm_sync_pages(vp, off, n, flags);
2994 } else {
2995 error = segmap_release(segkmap, base, flags);
2996 }
2997 } else {
2998 if (vpm_enable) {
2999 (void) vpm_sync_pages(vp, off, n, 0);
3000 } else {
3001 (void) segmap_release(segkmap, base, 0);
3002 }
3003 /*
3004 * In the event that we got an access error while
3005 * faulting in a page for a write-only file just
3006 * force a write.
3007 */
3008 if (error == EACCES)
3009 goto nfs4_fwrite;
3010 }
3011 } while (!error && uiop->uio_resid > 0);

3013 bottom:
3014 if (error) {
3015 uiop->uio_resid = resid + remainder;
3016 uiop->uio_loffset = offset;
3017 } else {
3018 uiop->uio_resid += remainder;

3020 mutex_enter(&rp->r_statev4_lock);
3021 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) {
3022 gethrestime(&rp->r_attr.va_mtime);
3023 rp->r_attr.va_ctime = rp->r_attr.va_mtime;
3024 }
3025 mutex_exit(&rp->r_statev4_lock);
3026 }

3028 nfs_rw_exit(&rp->r_lkserlock);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 47

3030 return (error);
3031 }

3033 /*
3034 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED}
3035 */
3036 static int
3037 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
3038 int flags, cred_t *cr)
3039 {
3040 struct buf *bp;
3041 int error;
3042 page_t *savepp;
3043 uchar_t fsdata;
3044 stable_how4 stab_comm;

3046 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
3047 bp = pageio_setup(pp, len, vp, flags);
3048 ASSERT(bp != NULL);

3050 /*
3051 * pageio_setup should have set b_addr to 0. This
3052 * is correct since we want to do I/O on a page
3053 * boundary. bp_mapin will use this addr to calculate
3054 * an offset, and then set b_addr to the kernel virtual
3055 * address it allocated for us.
3056 */
3057 ASSERT(bp->b_un.b_addr == 0);

3059 bp->b_edev = 0;
3060 bp->b_dev = 0;
3061 bp->b_lblkno = lbtodb(off);
3062 bp->b_file = vp;
3063 bp->b_offset = (offset_t)off;
3064 bp_mapin(bp);

3066 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) &&
3067 freemem > desfree)
3068 stab_comm = UNSTABLE4;
3069 else
3070 stab_comm = FILE_SYNC4;

3072 error = nfs4_bio(bp, &stab_comm, cr, FALSE);

3074 bp_mapout(bp);
3075 pageio_done(bp);

3077 if (stab_comm == UNSTABLE4)
3078 fsdata = C_DELAYCOMMIT;
3079 else
3080 fsdata = C_NOCOMMIT;

3082 savepp = pp;
3083 do {
3084 pp->p_fsdata = fsdata;
3085 } while ((pp = pp->p_next) != savepp);

3087 return (error);
3088 }

3090 /*
3091 */
3092 static int
3093 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr)
3094 {

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 48

3095 nfs4_open_owner_t *oop;
3096 nfs4_open_stream_t *osp;
3097 rnode4_t *rp = VTOR4(vp);
3098 mntinfo4_t *mi = VTOMI4(vp);
3099 int reopen_needed;

3101 ASSERT(nfs_zone() == mi->mi_zone);

3104 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
3105 if (!oop)
3106 return (EIO);

3108 /* returns with ’os_sync_lock’ held */
3109 osp = find_open_stream(oop, rp);
3110 if (!osp) {
3111 open_owner_rele(oop);
3112 return (EIO);
3113 }

3115 if (osp->os_failed_reopen) {
3116 mutex_exit(&osp->os_sync_lock);
3117 open_stream_rele(osp, rp);
3118 open_owner_rele(oop);
3119 return (EIO);
3120 }

3122 /*
3123 * Determine whether a reopen is needed. If this
3124 * is a delegation open stream, then the os_delegation bit
3125 * should be set.
3126 */

3128 reopen_needed = osp->os_delegation;

3130 mutex_exit(&osp->os_sync_lock);
3131 open_owner_rele(oop);

3133 if (reopen_needed) {
3134 nfs4_error_zinit(ep);
3135 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE);
3136 mutex_enter(&osp->os_sync_lock);
3137 if (ep->error || ep->stat || osp->os_failed_reopen) {
3138 mutex_exit(&osp->os_sync_lock);
3139 open_stream_rele(osp, rp);
3140 return (EIO);
3141 }
3142 mutex_exit(&osp->os_sync_lock);
3143 }
3144 open_stream_rele(osp, rp);

3146 return (0);
3147 }

3149 /*
3150 * Write to file. Writes to remote server in largest size
3151 * chunks that the server can handle. Write is synchronous.
3152 */
3153 static int
3154 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr,
3155 stable_how4 *stab_comm)
3156 {
3157 mntinfo4_t *mi;
3158 COMPOUND4args_clnt args;
3159 COMPOUND4res_clnt res;
3160 WRITE4args *wargs;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 49

3161 WRITE4res *wres;
3162 nfs_argop4 argop[2];
3163 nfs_resop4 *resop;
3164 int tsize;
3165 stable_how4 stable;
3166 rnode4_t *rp;
3167 int doqueue = 1;
3168 bool_t needrecov;
3169 nfs4_recov_state_t recov_state;
3170 nfs4_stateid_types_t sid_types;
3171 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3172 int recov;

3174 rp = VTOR4(vp);
3175 mi = VTOMI4(vp);

3177 ASSERT(nfs_zone() == mi->mi_zone);

3179 stable = *stab_comm;
3180 *stab_comm = FILE_SYNC4;

3182 needrecov = FALSE;
3183 recov_state.rs_flags = 0;
3184 recov_state.rs_num_retry_despite_err = 0;
3185 nfs4_init_stateid_types(&sid_types);

3187 /* Is curthread the recovery thread? */
3188 mutex_enter(&mi->mi_lock);
3189 recov = (mi->mi_recovthread == curthread);
3190 mutex_exit(&mi->mi_lock);

3192 recov_retry:
3193 args.ctag = TAG_WRITE;
3194 args.array_len = 2;
3195 args.array = argop;

3197 if (!recov) {
3198 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3199 &recov_state, NULL);
3200 if (e.error)
3201 return (e.error);
3202 }

3204 /* 0. putfh target fh */
3205 argop[0].argop = OP_CPUTFH;
3206 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;

3208 /* 1. write */
3209 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types);

3211 do {

3213 wargs->offset = (offset4)offset;
3214 wargs->data_val = base;

3216 if (mi->mi_io_kstats) {
3217 mutex_enter(&mi->mi_lock);
3218 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
3219 mutex_exit(&mi->mi_lock);
3220 }

3222 if ((vp->v_flag & VNOCACHE) ||
3223 (rp->r_flags & R4DIRECTIO) ||
3224 (mi->mi_flags & MI4_DIRECTIO))
3225 tsize = MIN(mi->mi_stsize, count);
3226 else

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 50

3227 tsize = MIN(mi->mi_curwrite, count);
3228 wargs->data_len = (uint_t)tsize;
3229 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);

3231 if (mi->mi_io_kstats) {
3232 mutex_enter(&mi->mi_lock);
3233 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
3234 mutex_exit(&mi->mi_lock);
3235 }

3237 if (!recov) {
3238 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3239 if (e.error && !needrecov) {
3240 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3241 &recov_state, needrecov);
3242 return (e.error);
3243 }
3244 } else {
3245 if (e.error)
3246 return (e.error);
3247 }

3249 /*
3250 * Do handling of OLD_STATEID outside
3251 * of the normal recovery framework.
3252 *
3253 * If write receives a BAD stateid error while using a
3254 * delegation stateid, retry using the open stateid (if it
3255 * exists). If it doesn’t have an open stateid, reopen the
3256 * file first, then retry.
3257 */
3258 if (!e.error && res.status == NFS4ERR_OLD_STATEID &&
3259 sid_types.cur_sid_type != SPEC_SID) {
3260 nfs4_save_stateid(&wargs->stateid, &sid_types);
3261 if (!recov)
3262 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3263 &recov_state, needrecov);
3264 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3265 goto recov_retry;
3266 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID &&
3267 sid_types.cur_sid_type == DEL_SID) {
3268 nfs4_save_stateid(&wargs->stateid, &sid_types);
3269 mutex_enter(&rp->r_statev4_lock);
3270 rp->r_deleg_return_pending = TRUE;
3271 mutex_exit(&rp->r_statev4_lock);
3272 if (nfs4rdwr_check_osid(vp, &e, cr)) {
3273 if (!recov)
3274 nfs4_end_fop(mi, vp, NULL, OH_WRITE,
3275 &recov_state, needrecov);
3276 (void) xdr_free(xdr_COMPOUND4res_clnt,
3277 (caddr_t)&res);
3278 return (EIO);
3279 }
3280 if (!recov)
3281 nfs4_end_fop(mi, vp, NULL, OH_WRITE,
3282 &recov_state, needrecov);
3283 /* hold needed for nfs4delegreturn_thread */
3284 VN_HOLD(vp);
3285 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN|
3286 NFS4_DR_DISCARD), FALSE);
3287 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3288 goto recov_retry;
3289 }

3291 if (needrecov) {
3292 bool_t abort;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 51

3294 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
3295 "nfs4write: client got error %d, res.status %d"
3296 ", so start recovery", e.error, res.status));

3298 abort = nfs4_start_recovery(&e,
3299 VTOMI4(vp), vp, NULL, &wargs->stateid,
3300 NULL, OP_WRITE, NULL, NULL, NULL);
3301 if (!e.error) {
3302 e.error = geterrno4(res.status);
3303 (void) xdr_free(xdr_COMPOUND4res_clnt,
3304 (caddr_t)&res);
3305 }
3306 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3307 &recov_state, needrecov);
3308 if (abort == FALSE)
3309 goto recov_retry;
3310 return (e.error);
3311 }

3313 if (res.status) {
3314 e.error = geterrno4(res.status);
3315 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3316 if (!recov)
3317 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3318 &recov_state, needrecov);
3319 return (e.error);
3320 }

3322 resop = &res.array[1]; /* write res */
3323 wres = &resop->nfs_resop4_u.opwrite;

3325 if ((int)wres->count > tsize) {
3326 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);

3328 zcmn_err(getzoneid(), CE_WARN,
3329 "nfs4write: server wrote %u, requested was %u",
3330 (int)wres->count, tsize);
3331 if (!recov)
3332 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3333 &recov_state, needrecov);
3334 return (EIO);
3335 }
3336 if (wres->committed == UNSTABLE4) {
3337 *stab_comm = UNSTABLE4;
3338 if (wargs->stable == DATA_SYNC4 ||
3339 wargs->stable == FILE_SYNC4) {
3340 (void) xdr_free(xdr_COMPOUND4res_clnt,
3341 (caddr_t)&res);
3342 zcmn_err(getzoneid(), CE_WARN,
3343 "nfs4write: server %s did not commit "
3344 "to stable storage",
3345 rp->r_server->sv_hostname);
3346 if (!recov)
3347 nfs4_end_fop(VTOMI4(vp), vp, NULL,
3348 OH_WRITE, &recov_state, needrecov);
3349 return (EIO);
3350 }
3351 }

3353 tsize = (int)wres->count;
3354 count -= tsize;
3355 base += tsize;
3356 offset += tsize;
3357 if (mi->mi_io_kstats) {
3358 mutex_enter(&mi->mi_lock);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 52

3359 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++;
3360 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten +=
3361 tsize;
3362 mutex_exit(&mi->mi_lock);
3363 }
3364 lwp_stat_update(LWP_STAT_OUBLK, 1);
3365 mutex_enter(&rp->r_statelock);
3366 if (rp->r_flags & R4HAVEVERF) {
3367 if (rp->r_writeverf != wres->writeverf) {
3368 nfs4_set_mod(vp);
3369 rp->r_writeverf = wres->writeverf;
3370 }
3371 } else {
3372 rp->r_writeverf = wres->writeverf;
3373 rp->r_flags |= R4HAVEVERF;
3374 }
3375 PURGE_ATTRCACHE4_LOCKED(rp);
3376 rp->r_flags |= R4WRITEMODIFIED;
3377 gethrestime(&rp->r_attr.va_mtime);
3378 rp->r_attr.va_ctime = rp->r_attr.va_mtime;
3379 mutex_exit(&rp->r_statelock);
3380 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3381 } while (count);

3383 if (!recov)
3384 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state,
3385 needrecov);

3387 return (e.error);
3388 }

3390 /*
3391 * Read from a file. Reads data in largest chunks our interface can handle.
3392 */
3393 static int
3394 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count,
3395 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop)
3396 {
3397 mntinfo4_t *mi;
3398 COMPOUND4args_clnt args;
3399 COMPOUND4res_clnt res;
3400 READ4args *rargs;
3401 nfs_argop4 argop[2];
3402 int tsize;
3403 int doqueue;
3404 rnode4_t *rp;
3405 int data_len;
3406 bool_t is_eof;
3407 bool_t needrecov = FALSE;
3408 nfs4_recov_state_t recov_state;
3409 nfs4_stateid_types_t sid_types;
3410 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };

3412 rp = VTOR4(vp);
3413 mi = VTOMI4(vp);
3414 doqueue = 1;

3416 ASSERT(nfs_zone() == mi->mi_zone);

3418 args.ctag = async ? TAG_READAHEAD : TAG_READ;

3420 args.array_len = 2;
3421 args.array = argop;

3423 nfs4_init_stateid_types(&sid_types);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 53

3425 recov_state.rs_flags = 0;
3426 recov_state.rs_num_retry_despite_err = 0;

3428 recov_retry:
3429 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ,
3430 &recov_state, NULL);
3431 if (e.error)
3432 return (e.error);

3434 /* putfh target fh */
3435 argop[0].argop = OP_CPUTFH;
3436 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;

3438 /* read */
3439 argop[1].argop = OP_READ;
3440 rargs = &argop[1].nfs_argop4_u.opread;
3441 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi,
3442 OP_READ, &sid_types, async);

3444 do {
3445 if (mi->mi_io_kstats) {
3446 mutex_enter(&mi->mi_lock);
3447 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
3448 mutex_exit(&mi->mi_lock);
3449 }

3451 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
3452 "nfs4read: %s call, rp %s",
3453 needrecov ? "recov" : "first",
3454 rnode4info(rp)));

3456 if ((vp->v_flag & VNOCACHE) ||
3457 (rp->r_flags & R4DIRECTIO) ||
3458 (mi->mi_flags & MI4_DIRECTIO))
3459 tsize = MIN(mi->mi_tsize, count);
3460 else
3461 tsize = MIN(mi->mi_curread, count);

3463 rargs->offset = (offset4)offset;
3464 rargs->count = (count4)tsize;
3465 rargs->res_data_val_alt = NULL;
3466 rargs->res_mblk = NULL;
3467 rargs->res_uiop = NULL;
3468 rargs->res_maxsize = 0;
3469 rargs->wlist = NULL;

3471 if (uiop)
3472 rargs->res_uiop = uiop;
3473 else
3474 rargs->res_data_val_alt = base;
3475 rargs->res_maxsize = tsize;

3477 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
3478 #ifdef DEBUG
3479 if (nfs4read_error_inject) {
3480 res.status = nfs4read_error_inject;
3481 nfs4read_error_inject = 0;
3482 }
3483 #endif

3485 if (mi->mi_io_kstats) {
3486 mutex_enter(&mi->mi_lock);
3487 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
3488 mutex_exit(&mi->mi_lock);
3489 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 54

3491 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3492 if (e.error != 0 && !needrecov) {
3493 nfs4_end_fop(mi, vp, NULL, OH_READ,
3494 &recov_state, needrecov);
3495 return (e.error);
3496 }

3498 /*
3499 * Do proper retry for OLD and BAD stateid errors outside
3500 * of the normal recovery framework. There are two differences
3501 * between async and sync reads. The first is that we allow
3502 * retry on BAD_STATEID for async reads, but not sync reads.
3503 * The second is that we mark the file dead for a failed
3504 * attempt with a special stateid for sync reads, but just
3505 * return EIO for async reads.
3506 *
3507 * If a sync read receives a BAD stateid error while using a
3508 * delegation stateid, retry using the open stateid (if it
3509 * exists). If it doesn’t have an open stateid, reopen the
3510 * file first, then retry.
3511 */
3512 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID ||
3513 res.status == NFS4ERR_BAD_STATEID) && async) {
3514 nfs4_end_fop(mi, vp, NULL, OH_READ,
3515 &recov_state, needrecov);
3516 if (sid_types.cur_sid_type == SPEC_SID) {
3517 (void) xdr_free(xdr_COMPOUND4res_clnt,
3518 (caddr_t)&res);
3519 return (EIO);
3520 }
3521 nfs4_save_stateid(&rargs->stateid, &sid_types);
3522 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3523 goto recov_retry;
3524 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
3525 !async && sid_types.cur_sid_type != SPEC_SID) {
3526 nfs4_save_stateid(&rargs->stateid, &sid_types);
3527 nfs4_end_fop(mi, vp, NULL, OH_READ,
3528 &recov_state, needrecov);
3529 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3530 goto recov_retry;
3531 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID &&
3532 sid_types.cur_sid_type == DEL_SID) {
3533 nfs4_save_stateid(&rargs->stateid, &sid_types);
3534 mutex_enter(&rp->r_statev4_lock);
3535 rp->r_deleg_return_pending = TRUE;
3536 mutex_exit(&rp->r_statev4_lock);
3537 if (nfs4rdwr_check_osid(vp, &e, cr)) {
3538 nfs4_end_fop(mi, vp, NULL, OH_READ,
3539 &recov_state, needrecov);
3540 (void) xdr_free(xdr_COMPOUND4res_clnt,
3541 (caddr_t)&res);
3542 return (EIO);
3543 }
3544 nfs4_end_fop(mi, vp, NULL, OH_READ,
3545 &recov_state, needrecov);
3546 /* hold needed for nfs4delegreturn_thread */
3547 VN_HOLD(vp);
3548 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN|
3549 NFS4_DR_DISCARD), FALSE);
3550 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3551 goto recov_retry;
3552 }
3553 if (needrecov) {
3554 bool_t abort;

3556 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 55

3557 "nfs4read: initiating recovery\n"));
3558 abort = nfs4_start_recovery(&e,
3559 mi, vp, NULL, &rargs->stateid,
3560 NULL, OP_READ, NULL, NULL, NULL);
3561 nfs4_end_fop(mi, vp, NULL, OH_READ,
3562 &recov_state, needrecov);
3563 /*
3564 * Do not retry if we got OLD_STATEID using a special
3565 * stateid. This avoids looping with a broken server.
3566 */
3567 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
3568 sid_types.cur_sid_type == SPEC_SID)
3569 abort = TRUE;

3571 if (abort == FALSE) {
3572 /*
3573 * Need to retry all possible stateids in
3574 * case the recovery error wasn’t stateid
3575 * related or the stateids have become
3576 * stale (server reboot).
3577 */
3578 nfs4_init_stateid_types(&sid_types);
3579 (void) xdr_free(xdr_COMPOUND4res_clnt,
3580 (caddr_t)&res);
3581 goto recov_retry;
3582 }

3584 if (!e.error) {
3585 e.error = geterrno4(res.status);
3586 (void) xdr_free(xdr_COMPOUND4res_clnt,
3587 (caddr_t)&res);
3588 }
3589 return (e.error);
3590 }

3592 if (res.status) {
3593 e.error = geterrno4(res.status);
3594 nfs4_end_fop(mi, vp, NULL, OH_READ,
3595 &recov_state, needrecov);
3596 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3597 return (e.error);
3598 }

3600 data_len = res.array[1].nfs_resop4_u.opread.data_len;
3601 count -= data_len;
3602 if (base)
3603 base += data_len;
3604 offset += data_len;
3605 if (mi->mi_io_kstats) {
3606 mutex_enter(&mi->mi_lock);
3607 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
3608 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len;
3609 mutex_exit(&mi->mi_lock);
3610 }
3611 lwp_stat_update(LWP_STAT_INBLK, 1);
3612 is_eof = res.array[1].nfs_resop4_u.opread.eof;
3613 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);

3615 } while (count && !is_eof);

3617 *residp = count;

3619 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov);

3621 return (e.error);
3622 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 56

3624 /* ARGSUSED */
3625 static int
3626 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp,
3627 caller_context_t *ct)
3628 {
3629 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3630 return (EIO);
3631 switch (cmd) {
3632 case _FIODIRECTIO:
3633 return (nfs4_directio(vp, (int)arg, cr));
3634 default:
3635 return (ENOTTY);
3636 }
3637 }

3639 /* ARGSUSED */
3640 int
3641 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3642 caller_context_t *ct)
3643 {
3644 int error;
3645 rnode4_t *rp = VTOR4(vp);

3647 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3648 return (EIO);
3649 /*
3650 * If it has been specified that the return value will
3651 * just be used as a hint, and we are only being asked
3652 * for size, fsid or rdevid, then return the client’s
3653 * notion of these values without checking to make sure
3654 * that the attribute cache is up to date.
3655 * The whole point is to avoid an over the wire GETATTR
3656 * call.
3657 */
3658 if (flags & ATTR_HINT) {
3659 if (!(vap->va_mask & ~(AT_SIZE | AT_FSID | AT_RDEV))) {
3660 mutex_enter(&rp->r_statelock);
3661 if (vap->va_mask & AT_SIZE)
3662 vap->va_size = rp->r_size;
3663 if (vap->va_mask & AT_FSID)
3664 vap->va_fsid = rp->r_attr.va_fsid;
3665 if (vap->va_mask & AT_RDEV)
3666 vap->va_rdev = rp->r_attr.va_rdev;
3667 mutex_exit(&rp->r_statelock);
3668 return (0);
3669 }
3670 }

3672 /*
3673 * Only need to flush pages if asking for the mtime
3674 * and if there any dirty pages or any outstanding
3675 * asynchronous (write) requests for this file.
3676 */
3677 if (vap->va_mask & AT_MTIME) {
3678 rp = VTOR4(vp);
3679 if (nfs4_has_pages(vp)) {
3680 mutex_enter(&rp->r_statev4_lock);
3681 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) {
3682 mutex_exit(&rp->r_statev4_lock);
3683 if (rp->r_flags & R4DIRTY ||
3684 rp->r_awcount > 0) {
3685 mutex_enter(&rp->r_statelock);
3686 rp->r_gcount++;
3687 mutex_exit(&rp->r_statelock);
3688 error =

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 57

3689 nfs4_putpage(vp, (u_offset_t)0,
3690 0, 0, cr, NULL);
3691 mutex_enter(&rp->r_statelock);
3692 if (error && (error == ENOSPC ||
3693 error == EDQUOT)) {
3694 if (!rp->r_error)
3695 rp->r_error = error;
3696 }
3697 if (--rp->r_gcount == 0)
3698 cv_broadcast(&rp->r_cv);
3699 mutex_exit(&rp->r_statelock);
3700 }
3701 } else {
3702 mutex_exit(&rp->r_statev4_lock);
3703 }
3704 }
3705 }
3706 return (nfs4getattr(vp, vap, cr));
3707 }

3709 int
3710 nfs4_compare_modes(mode_t from_server, mode_t on_client)
3711 {
3712 /*
3713 * If these are the only two bits cleared
3714 * on the server then return 0 (OK) else
3715 * return 1 (BAD).
3716 */
3717 on_client &= ~(S_ISUID|S_ISGID);
3718 if (on_client == from_server)
3719 return (0);
3720 else
3721 return (1);
3722 }

3724 /*ARGSUSED4*/
3725 static int
3726 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3727 caller_context_t *ct)
3728 {
3729 int error;

3731 if (vap->va_mask & AT_NOSET)
3732 return (EINVAL);

3734 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3735 return (EIO);

3737 /*
3738 * Don’t call secpolicy_vnode_setattr, the client cannot
3739 * use its cached attributes to make security decisions
3740 * as the server may be faking mode bits or mapping uid/gid.
3741 * Always just let the server to the checking.
3742 * If we provide the ability to remove basic priviledges
3743 * to setattr (e.g. basic without chmod) then we will
3744 * need to add a check here before calling the server.
3745 */
3746 error = nfs4setattr(vp, vap, flags, cr, NULL);

3748 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0)
3749 vnevent_truncate(vp, ct);

3751 return (error);
3752 }

3754 /*

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 58

3755 * To replace the "guarded" version 3 setattr, we use two types of compound
3756 * setattr requests:
3757 * 1. The "normal" setattr, used when the size of the file isn’t being
3758 * changed - { Putfh <fh>; Setattr; Getattr }/
3759 * 2. If the size is changed, precede Setattr with: Getattr; Verify
3760 * with only ctime as the argument. If the server ctime differs from
3761 * what is cached on the client, the verify will fail, but we would
3762 * already have the ctime from the preceding getattr, so just set it
3763 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify;
3764 * Setattr; Getattr }.
3765 *
3766 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in
3767 * this setattr and NULL if they are not.
3768 */
3769 static int
3770 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3771 vsecattr_t *vsap)
3772 {
3773 COMPOUND4args_clnt args;
3774 COMPOUND4res_clnt res, *resp = NULL;
3775 nfs4_ga_res_t *garp = NULL;
3776 int numops = 3; /* { Putfh; Setattr; Getattr } */
3777 nfs_argop4 argop[5];
3778 int verify_argop = -1;
3779 int setattr_argop = 1;
3780 nfs_resop4 *resop;
3781 vattr_t va;
3782 rnode4_t *rp;
3783 int doqueue = 1;
3784 uint_t mask = vap->va_mask;
3785 mode_t omode;
3786 vsecattr_t *vsp;
3787 timestruc_t ctime;
3788 bool_t needrecov = FALSE;
3789 nfs4_recov_state_t recov_state;
3790 nfs4_stateid_types_t sid_types;
3791 stateid4 stateid;
3792 hrtime_t t;
3793 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3794 servinfo4_t *svp;
3795 bitmap4 supp_attrs;

3797 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
3798 rp = VTOR4(vp);
3799 nfs4_init_stateid_types(&sid_types);

3801 /*
3802 * Only need to flush pages if there are any pages and
3803 * if the file is marked as dirty in some fashion. The
3804 * file must be flushed so that we can accurately
3805 * determine the size of the file and the cached data
3806 * after the SETATTR returns. A file is considered to
3807 * be dirty if it is either marked with R4DIRTY, has
3808 * outstanding i/o’s active, or is mmap’d. In this
3809 * last case, we can’t tell whether there are dirty
3810 * pages, so we flush just to be sure.
3811 */
3812 if (nfs4_has_pages(vp) &&
3813 ((rp->r_flags & R4DIRTY) ||
3814 rp->r_count > 0 ||
3815 rp->r_mapcnt > 0)) {
3816 ASSERT(vp->v_type != VCHR);
3817 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL);
3818 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) {
3819 mutex_enter(&rp->r_statelock);
3820 if (!rp->r_error)

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 59

3821 rp->r_error = e.error;
3822 mutex_exit(&rp->r_statelock);
3823 }
3824 }

3826 if (mask & AT_SIZE) {
3827 /*
3828 * Verification setattr compound for non-deleg AT_SIZE:
3829 * { Putfh; Getattr; Verify; Setattr; Getattr }
3830 * Set ctime local here (outside the do_again label)
3831 * so that subsequent retries (after failed VERIFY)
3832 * will use ctime from GETATTR results (from failed
3833 * verify compound) as VERIFY arg.
3834 * If file has delegation, then VERIFY(time_metadata)
3835 * is of little added value, so don’t bother.
3836 */
3837 mutex_enter(&rp->r_statev4_lock);
3838 if (rp->r_deleg_type == OPEN_DELEGATE_NONE ||
3839 rp->r_deleg_return_pending) {
3840 numops = 5;
3841 ctime = rp->r_attr.va_ctime;
3842 }
3843 mutex_exit(&rp->r_statev4_lock);
3844 }

3846 recov_state.rs_flags = 0;
3847 recov_state.rs_num_retry_despite_err = 0;

3849 args.ctag = TAG_SETATTR;
3850 do_again:
3851 recov_retry:
3852 setattr_argop = numops - 2;

3854 args.array = argop;
3855 args.array_len = numops;

3857 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state);
3858 if (e.error)
3859 return (e.error);

3862 /* putfh target fh */
3863 argop[0].argop = OP_CPUTFH;
3864 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;

3866 if (numops == 5) {
3867 /*
3868 * We only care about the ctime, but need to get mtime
3869 * and size for proper cache update.
3870 */
3871 /* getattr */
3872 argop[1].argop = OP_GETATTR;
3873 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
3874 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);

3876 /* verify - set later in loop */
3877 verify_argop = 2;
3878 }

3880 /* setattr */
3881 svp = rp->r_server;
3882 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
3883 supp_attrs = svp->sv_supp_attrs;
3884 nfs_rw_exit(&svp->sv_lock);

3886 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr,

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 60

3887 supp_attrs, &e.error, &sid_types);
3888 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid;
3889 if (e.error) {
3890 /* req time field(s) overflow - return immediately */
3891 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
3892 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
3893 opsetattr.obj_attributes);
3894 return (e.error);
3895 }
3896 omode = rp->r_attr.va_mode;

3898 /* getattr */
3899 argop[numops-1].argop = OP_GETATTR;
3900 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
3901 /*
3902 * If we are setting the ACL (indicated only by vsap != NULL), request
3903 * the ACL in this getattr. The ACL returned from this getattr will be
3904 * used in updating the ACL cache.
3905 */
3906 if (vsap != NULL)
3907 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |=
3908 FATTR4_ACL_MASK;
3909 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);

3911 /*
3912 * setattr iterates if the object size is set and the cached ctime
3913 * does not match the file ctime. In that case, verify the ctime first.
3914 */

3916 do {
3917 if (verify_argop != -1) {
3918 /*
3919 * Verify that the ctime match before doing setattr.
3920 */
3921 va.va_mask = AT_CTIME;
3922 va.va_ctime = ctime;
3923 svp = rp->r_server;
3924 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
3925 supp_attrs = svp->sv_supp_attrs;
3926 nfs_rw_exit(&svp->sv_lock);
3927 e.error = nfs4args_verify(&argop[verify_argop], &va,
3928 OP_VERIFY, supp_attrs);
3929 if (e.error) {
3930 /* req time field(s) overflow - return */
3931 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3932 needrecov);
3933 break;
3934 }
3935 }

3937 doqueue = 1;

3939 t = gethrtime();

3941 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e);

3943 /*
3944 * Purge the access cache and ACL cache if changing either the
3945 * owner of the file, the group owner, or the mode. These may
3946 * change the access permissions of the file, so purge old
3947 * information and start over again.
3948 */
3949 if (mask & (AT_UID | AT_GID | AT_MODE)) {
3950 (void) nfs4_access_purge_rp(rp);
3951 if (rp->r_secattr != NULL) {
3952 mutex_enter(&rp->r_statelock);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 61

3953 vsp = rp->r_secattr;
3954 rp->r_secattr = NULL;
3955 mutex_exit(&rp->r_statelock);
3956 if (vsp != NULL)
3957 nfs4_acl_free_cache(vsp);
3958 }
3959 }

3961 /*
3962 * If res.array_len == numops, then everything succeeded,
3963 * except for possibly the final getattr. If only the
3964 * last getattr failed, give up, and don’t try recovery.
3965 */
3966 if (res.array_len == numops) {
3967 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3968 needrecov);
3969 if (! e.error)
3970 resp = &res;
3971 break;
3972 }

3974 /*
3975 * if either rpc call failed or completely succeeded - done
3976 */
3977 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
3978 if (e.error) {
3979 PURGE_ATTRCACHE4(vp);
3980 if (!needrecov) {
3981 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3982 needrecov);
3983 break;
3984 }
3985 }

3987 /*
3988 * Do proper retry for OLD_STATEID outside of the normal
3989 * recovery framework.
3990 */
3991 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
3992 sid_types.cur_sid_type != SPEC_SID &&
3993 sid_types.cur_sid_type != NO_SID) {
3994 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3995 needrecov);
3996 nfs4_save_stateid(&stateid, &sid_types);
3997 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
3998 opsetattr.obj_attributes);
3999 if (verify_argop != -1) {
4000 nfs4args_verify_free(&argop[verify_argop]);
4001 verify_argop = -1;
4002 }
4003 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4004 goto recov_retry;
4005 }

4007 if (needrecov) {
4008 bool_t abort;

4010 abort = nfs4_start_recovery(&e,
4011 VTOMI4(vp), vp, NULL, NULL, NULL,
4012 OP_SETATTR, NULL, NULL, NULL);
4013 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
4014 needrecov);
4015 /*
4016 * Do not retry if we failed with OLD_STATEID using
4017 * a special stateid. This is done to avoid looping
4018 * with a broken server.

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 62

4019 */
4020 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
4021 (sid_types.cur_sid_type == SPEC_SID ||
4022 sid_types.cur_sid_type == NO_SID))
4023 abort = TRUE;
4024 if (!e.error) {
4025 if (res.status == NFS4ERR_BADOWNER)
4026 nfs4_log_badowner(VTOMI4(vp),
4027 OP_SETATTR);

4029 e.error = geterrno4(res.status);
4030 (void) xdr_free(xdr_COMPOUND4res_clnt,
4031 (caddr_t)&res);
4032 }
4033 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4034 opsetattr.obj_attributes);
4035 if (verify_argop != -1) {
4036 nfs4args_verify_free(&argop[verify_argop]);
4037 verify_argop = -1;
4038 }
4039 if (abort == FALSE) {
4040 /*
4041 * Need to retry all possible stateids in
4042 * case the recovery error wasn’t stateid
4043 * related or the stateids have become
4044 * stale (server reboot).
4045 */
4046 nfs4_init_stateid_types(&sid_types);
4047 goto recov_retry;
4048 }
4049 return (e.error);
4050 }

4052 /*
4053 * Need to call nfs4_end_op before nfs4getattr to
4054 * avoid potential nfs4_start_op deadlock. See RFE
4055 * 4777612. Calls to nfs4_invalidate_pages() and
4056 * nfs4_purge_stale_fh() might also generate over the
4057 * wire calls which my cause nfs4_start_op() deadlock.
4058 */
4059 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);

4061 /*
4062 * Check to update lease.
4063 */
4064 resp = &res;
4065 if (res.status == NFS4_OK) {
4066 break;
4067 }

4069 /*
4070 * Check if verify failed to see if try again
4071 */
4072 if ((verify_argop == -1) || (res.array_len != 3)) {
4073 /*
4074 * can’t continue...
4075 */
4076 if (res.status == NFS4ERR_BADOWNER)
4077 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR);

4079 e.error = geterrno4(res.status);
4080 } else {
4081 /*
4082 * When the verify request fails, the client ctime is
4083 * not in sync with the server. This is the same as
4084 * the version 3 "not synchronized" error, and we

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 63

4085 * handle it in a similar manner (XXX do we need to???).
4086 * Use the ctime returned in the first getattr for
4087 * the input to the next verify.
4088 * If we couldn’t get the attributes, then we give up
4089 * because we can’t complete the operation as required.
4090 */
4091 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res;
4092 }
4093 if (e.error) {
4094 PURGE_ATTRCACHE4(vp);
4095 nfs4_purge_stale_fh(e.error, vp, cr);
4096 } else {
4097 /*
4098 * retry with a new verify value
4099 */
4100 ctime = garp->n4g_va.va_ctime;
4101 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4102 resp = NULL;
4103 }
4104 if (!e.error) {
4105 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4106 opsetattr.obj_attributes);
4107 if (verify_argop != -1) {
4108 nfs4args_verify_free(&argop[verify_argop]);
4109 verify_argop = -1;
4110 }
4111 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4112 goto do_again;
4113 }
4114 } while (!e.error);

4116 if (e.error) {
4117 /*
4118 * If we are here, rfs4call has an irrecoverable error - return
4119 */
4120 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4121 opsetattr.obj_attributes);
4122 if (verify_argop != -1) {
4123 nfs4args_verify_free(&argop[verify_argop]);
4124 verify_argop = -1;
4125 }
4126 if (resp)
4127 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
4128 return (e.error);
4129 }

4133 /*
4134 * If changing the size of the file, invalidate
4135 * any local cached data which is no longer part
4136 * of the file. We also possibly invalidate the
4137 * last page in the file. We could use
4138 * pvn_vpzero(), but this would mark the page as
4139 * modified and require it to be written back to
4140 * the server for no particularly good reason.
4141 * This way, if we access it, then we bring it
4142 * back in. A read should be cheaper than a
4143 * write.
4144 */
4145 if (mask & AT_SIZE) {
4146 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr);
4147 }

4149 /* either no error or one of the postop getattr failed */

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 64

4151 /*
4152 * XXX Perform a simplified version of wcc checking. Instead of
4153 * have another getattr to get pre-op, just purge cache if
4154 * any of the ops prior to and including the getattr failed.
4155 * If the getattr succeeded then update the attrcache accordingly.
4156 */

4158 garp = NULL;
4159 if (res.status == NFS4_OK) {
4160 /*
4161 * Last getattr
4162 */
4163 resop = &res.array[numops - 1];
4164 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
4165 }
4166 /*
4167 * In certain cases, nfs4_update_attrcache() will purge the attrcache,
4168 * rather than filling it. See the function itself for details.
4169 */
4170 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr);
4171 if (garp != NULL) {
4172 if (garp->n4g_resbmap & FATTR4_ACL_MASK) {
4173 nfs4_acl_fill_cache(rp, &garp->n4g_vsa);
4174 vs_ace4_destroy(&garp->n4g_vsa);
4175 } else {
4176 if (vsap != NULL) {
4177 /*
4178 * The ACL was supposed to be set and to be
4179 * returned in the last getattr of this
4180 * compound, but for some reason the getattr
4181 * result doesn’t contain the ACL. In this
4182 * case, purge the ACL cache.
4183 */
4184 if (rp->r_secattr != NULL) {
4185 mutex_enter(&rp->r_statelock);
4186 vsp = rp->r_secattr;
4187 rp->r_secattr = NULL;
4188 mutex_exit(&rp->r_statelock);
4189 if (vsp != NULL)
4190 nfs4_acl_free_cache(vsp);
4191 }
4192 }
4193 }
4194 }

4196 if (res.status == NFS4_OK && (mask & AT_SIZE)) {
4197 /*
4198 * Set the size, rather than relying on getting it updated
4199 * via a GETATTR. With delegations the client tries to
4200 * suppress GETATTR calls.
4201 */
4202 mutex_enter(&rp->r_statelock);
4203 rp->r_size = vap->va_size;
4204 mutex_exit(&rp->r_statelock);
4205 }

4207 /*
4208 * Can free up request args and res
4209 */
4210 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4211 opsetattr.obj_attributes);
4212 if (verify_argop != -1) {
4213 nfs4args_verify_free(&argop[verify_argop]);
4214 verify_argop = -1;
4215 }
4216 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 65

4218 /*
4219 * Some servers will change the mode to clear the setuid
4220 * and setgid bits when changing the uid or gid. The
4221 * client needs to compensate appropriately.
4222 */
4223 if (mask & (AT_UID | AT_GID)) {
4224 int terror, do_setattr;

4226 do_setattr = 0;
4227 va.va_mask = AT_MODE;
4228 terror = nfs4getattr(vp, &va, cr);
4229 if (!terror &&
4230 (((mask & AT_MODE) && va.va_mode != vap->va_mode) ||
4231 (!(mask & AT_MODE) && va.va_mode != omode))) {
4232 va.va_mask = AT_MODE;
4233 if (mask & AT_MODE) {
4234 /*
4235 * We asked the mode to be changed and what
4236 * we just got from the server in getattr is
4237 * not what we wanted it to be, so set it now.
4238 */
4239 va.va_mode = vap->va_mode;
4240 do_setattr = 1;
4241 } else {
4242 /*
4243 * We did not ask the mode to be changed,
4244 * Check to see that the server just cleared
4245 * I_SUID and I_GUID from it. If not then
4246 * set mode to omode with UID/GID cleared.
4247 */
4248 if (nfs4_compare_modes(va.va_mode, omode)) {
4249 omode &= ~(S_ISUID|S_ISGID);
4250 va.va_mode = omode;
4251 do_setattr = 1;
4252 }
4253 }

4255 if (do_setattr)
4256 (void) nfs4setattr(vp, &va, 0, cr, NULL);
4257 }
4258 }

4260 return (e.error);
4261 }

4263 /* ARGSUSED */
4264 static int
4265 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
4266 {
4267 COMPOUND4args_clnt args;
4268 COMPOUND4res_clnt res;
4269 int doqueue;
4270 uint32_t acc, resacc, argacc;
4271 rnode4_t *rp;
4272 cred_t *cred, *ncr, *ncrfree = NULL;
4273 nfs4_access_type_t cacc;
4274 int num_ops;
4275 nfs_argop4 argop[3];
4276 nfs_resop4 *resop;
4277 bool_t needrecov = FALSE, do_getattr;
4278 nfs4_recov_state_t recov_state;
4279 int rpc_error;
4280 hrtime_t t;
4281 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
4282 mntinfo4_t *mi = VTOMI4(vp);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 66

4284 if (nfs_zone() != mi->mi_zone)
4285 return (EIO);

4287 acc = 0;
4288 if (mode & VREAD)
4289 acc |= ACCESS4_READ;
4290 if (mode & VWRITE) {
4291 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type))
4292 return (EROFS);
4293 if (vp->v_type == VDIR)
4294 acc |= ACCESS4_DELETE;
4295 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND;
4296 }
4297 if (mode & VEXEC) {
4298 if (vp->v_type == VDIR)
4299 acc |= ACCESS4_LOOKUP;
4300 else
4301 acc |= ACCESS4_EXECUTE;
4302 }

4304 if (VTOR4(vp)->r_acache != NULL) {
4305 e.error = nfs4_validate_caches(vp, cr);
4306 if (e.error)
4307 return (e.error);
4308 }

4310 rp = VTOR4(vp);
4311 if (vp->v_type == VDIR)
4312 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY |
4313 ACCESS4_EXTEND | ACCESS4_LOOKUP;
4314 else
4315 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND |
4316 ACCESS4_EXECUTE;
4317 recov_state.rs_flags = 0;
4318 recov_state.rs_num_retry_despite_err = 0;

4320 cred = cr;
4321 /*
4322 * ncr and ncrfree both initially
4323 * point to the memory area returned
4324 * by crnetadjust();
4325 * ncrfree not NULL when exiting means
4326 * that we need to release it
4327 */
4328 ncr = crnetadjust(cred);
4329 ncrfree = ncr;

4331 tryagain:
4332 cacc = nfs4_access_check(rp, acc, cred);
4333 if (cacc == NFS4_ACCESS_ALLOWED) {
4334 if (ncrfree != NULL)
4335 crfree(ncrfree);
4336 return (0);
4337 }
4338 if (cacc == NFS4_ACCESS_DENIED) {
4339 /*
4340 * If the cred can be adjusted, try again
4341 * with the new cred.
4342 */
4343 if (ncr != NULL) {
4344 cred = ncr;
4345 ncr = NULL;
4346 goto tryagain;
4347 }
4348 if (ncrfree != NULL)

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 67

4349 crfree(ncrfree);
4350 return (EACCES);
4351 }

4353 recov_retry:
4354 /*
4355 * Don’t take with r_statev4_lock here. r_deleg_type could
4356 * change as soon as lock is released. Since it is an int,
4357 * there is no atomicity issue.
4358 */
4359 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE);
4360 num_ops = do_getattr ? 3 : 2;

4362 args.ctag = TAG_ACCESS;

4364 args.array_len = num_ops;
4365 args.array = argop;

4367 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS,
4368 &recov_state, NULL)) {
4369 if (ncrfree != NULL)
4370 crfree(ncrfree);
4371 return (e.error);
4372 }

4374 /* putfh target fh */
4375 argop[0].argop = OP_CPUTFH;
4376 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;

4378 /* access */
4379 argop[1].argop = OP_ACCESS;
4380 argop[1].nfs_argop4_u.opaccess.access = argacc;

4382 /* getattr */
4383 if (do_getattr) {
4384 argop[2].argop = OP_GETATTR;
4385 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
4386 argop[2].nfs_argop4_u.opgetattr.mi = mi;
4387 }

4389 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
4390 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first",
4391 rnode4info(VTOR4(vp))));

4393 doqueue = 1;
4394 t = gethrtime();
4395 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e);
4396 rpc_error = e.error;

4398 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
4399 if (needrecov) {
4400 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
4401 "nfs4_access: initiating recovery\n"));

4403 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
4404 NULL, OP_ACCESS, NULL, NULL, NULL) == FALSE) {
4405 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS,
4406 &recov_state, needrecov);
4407 if (!e.error)
4408 (void) xdr_free(xdr_COMPOUND4res_clnt,
4409 (caddr_t)&res);
4410 goto recov_retry;
4411 }
4412 }
4413 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 68

4415 if (e.error)
4416 goto out;

4418 if (res.status) {
4419 e.error = geterrno4(res.status);
4420 /*
4421 * This might generate over the wire calls throught
4422 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
4423 * here to avoid a deadlock.
4424 */
4425 nfs4_purge_stale_fh(e.error, vp, cr);
4426 goto out;
4427 }
4428 resop = &res.array[1]; /* access res */

4430 resacc = resop->nfs_resop4_u.opaccess.access;

4432 if (do_getattr) {
4433 resop++; /* getattr res */
4434 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res,
4435 t, cr, FALSE, NULL);
4436 }

4438 if (!e.error) {
4439 nfs4_access_cache(rp, argacc, resacc, cred);
4440 /*
4441 * we just cached results with cred; if cred is the
4442 * adjusted credentials from crnetadjust, we do not want
4443 * to release them before exiting: hence setting ncrfree
4444 * to NULL
4445 */
4446 if (cred != cr)
4447 ncrfree = NULL;
4448 /* XXX check the supported bits too? */
4449 if ((acc & resacc) != acc) {
4450 /*
4451 * The following code implements the semantic
4452 * that a setuid root program has *at least* the
4453 * permissions of the user that is running the
4454 * program. See rfs3call() for more portions
4455 * of the implementation of this functionality.
4456 */
4457 /* XXX-LP */
4458 if (ncr != NULL) {
4459 (void) xdr_free(xdr_COMPOUND4res_clnt,
4460 (caddr_t)&res);
4461 cred = ncr;
4462 ncr = NULL;
4463 goto tryagain;
4464 }
4465 e.error = EACCES;
4466 }
4467 }

4469 out:
4470 if (!rpc_error)
4471 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);

4473 if (ncrfree != NULL)
4474 crfree(ncrfree);

4476 return (e.error);
4477 }

4479 /* ARGSUSED */
4480 static int

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 69

4481 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct)
4482 {
4483 COMPOUND4args_clnt args;
4484 COMPOUND4res_clnt res;
4485 int doqueue;
4486 rnode4_t *rp;
4487 nfs_argop4 argop[3];
4488 nfs_resop4 *resop;
4489 READLINK4res *lr_res;
4490 nfs4_ga_res_t *garp;
4491 uint_t len;
4492 char *linkdata;
4493 bool_t needrecov = FALSE;
4494 nfs4_recov_state_t recov_state;
4495 hrtime_t t;
4496 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };

4498 if (nfs_zone() != VTOMI4(vp)->mi_zone)
4499 return (EIO);
4500 /*
4501 * Can’t readlink anything other than a symbolic link.
4502 */
4503 if (vp->v_type != VLNK)
4504 return (EINVAL);

4506 rp = VTOR4(vp);
4507 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) {
4508 e.error = nfs4_validate_caches(vp, cr);
4509 if (e.error)
4510 return (e.error);
4511 mutex_enter(&rp->r_statelock);
4512 if (rp->r_symlink.contents != NULL) {
4513 e.error = uiomove(rp->r_symlink.contents,
4514 rp->r_symlink.len, UIO_READ, uiop);
4515 mutex_exit(&rp->r_statelock);
4516 return (e.error);
4517 }
4518 mutex_exit(&rp->r_statelock);
4519 }
4520 recov_state.rs_flags = 0;
4521 recov_state.rs_num_retry_despite_err = 0;

4523 recov_retry:
4524 args.array_len = 3;
4525 args.array = argop;
4526 args.ctag = TAG_READLINK;

4528 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state);
4529 if (e.error) {
4530 return (e.error);
4531 }

4533 /* 0. putfh symlink fh */
4534 argop[0].argop = OP_CPUTFH;
4535 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;

4537 /* 1. readlink */
4538 argop[1].argop = OP_READLINK;

4540 /* 2. getattr */
4541 argop[2].argop = OP_GETATTR;
4542 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
4543 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);

4545 doqueue = 1;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 70

4547 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
4548 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first",
4549 rnode4info(VTOR4(vp))));

4551 t = gethrtime();

4553 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e);

4555 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
4556 if (needrecov) {
4557 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
4558 "nfs4_readlink: initiating recovery\n"));

4560 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
4561 NULL, OP_READLINK, NULL, NULL, NULL) == FALSE) {
4562 if (!e.error)
4563 (void) xdr_free(xdr_COMPOUND4res_clnt,
4564 (caddr_t)&res);

4566 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
4567 needrecov);
4568 goto recov_retry;
4569 }
4570 }

4572 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);

4574 if (e.error)
4575 return (e.error);

4577 /*
4578 * There is an path in the code below which calls
4579 * nfs4_purge_stale_fh(), which may generate otw calls through
4580 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
4581 * here to avoid nfs4_start_op() deadlock.
4582 */

4584 if (res.status && (res.array_len < args.array_len)) {
4585 /*
4586 * either Putfh or Link failed
4587 */
4588 e.error = geterrno4(res.status);
4589 nfs4_purge_stale_fh(e.error, vp, cr);
4590 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4591 return (e.error);
4592 }

4594 resop = &res.array[1]; /* readlink res */
4595 lr_res = &resop->nfs_resop4_u.opreadlink;

4597 /*
4598 * treat symlink names as data
4599 */
4600 linkdata = utf8_to_str(&lr_res->link, &len, NULL);
4601 if (linkdata != NULL) {
4602 int uio_len = len - 1;
4603 /* len includes null byte, which we won’t uiomove */
4604 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop);
4605 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) {
4606 mutex_enter(&rp->r_statelock);
4607 if (rp->r_symlink.contents == NULL) {
4608 rp->r_symlink.contents = linkdata;
4609 rp->r_symlink.len = uio_len;
4610 rp->r_symlink.size = len;
4611 mutex_exit(&rp->r_statelock);
4612 } else {

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 71

4613 mutex_exit(&rp->r_statelock);
4614 kmem_free(linkdata, len);
4615 }
4616 } else {
4617 kmem_free(linkdata, len);
4618 }
4619 }
4620 if (res.status == NFS4_OK) {
4621 resop++; /* getattr res */
4622 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
4623 }
4624 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr);

4626 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);

4628 /*
4629 * The over the wire error for attempting to readlink something
4630 * other than a symbolic link is ENXIO. However, we need to
4631 * return EINVAL instead of ENXIO, so we map it here.
4632 */
4633 return (e.error == ENXIO ? EINVAL : e.error);
4634 }

4636 /*
4637 * Flush local dirty pages to stable storage on the server.
4638 *
4639 * If FNODSYNC is specified, then there is nothing to do because
4640 * metadata changes are not cached on the client before being
4641 * sent to the server.
4642 */
4643 /* ARGSUSED */
4644 static int
4645 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
4646 {
4647 int error;

4649 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
4650 return (0);
4651 if (nfs_zone() != VTOMI4(vp)->mi_zone)
4652 return (EIO);
4653 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr);
4654 if (!error)
4655 error = VTOR4(vp)->r_error;
4656 return (error);
4657 }

4659 /*
4660 * Weirdness: if the file was removed or the target of a rename
4661 * operation while it was open, it got renamed instead. Here we
4662 * remove the renamed file.
4663 */
4664 /* ARGSUSED */
4665 void
4666 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4667 {
4668 rnode4_t *rp;

4670 ASSERT(vp != DNLC_NO_VNODE);

4672 rp = VTOR4(vp);

4674 if (IS_SHADOW(vp, rp)) {
4675 sv_inactive(vp);
4676 return;
4677 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 72

4679 /*
4680 * If this is coming from the wrong zone, we let someone in the right
4681 * zone take care of it asynchronously. We can get here due to
4682 * VN_RELE() being called from pageout() or fsflush(). This call may
4683 * potentially turn into an expensive no-op if, for instance, v_count
4684 * gets incremented in the meantime, but it’s still correct.
4685 */
4686 if (nfs_zone() != VTOMI4(vp)->mi_zone) {
4687 nfs4_async_inactive(vp, cr);
4688 return;
4689 }

4691 /*
4692 * Some of the cleanup steps might require over-the-wire
4693 * operations. Since VOP_INACTIVE can get called as a result of
4694 * other over-the-wire operations (e.g., an attribute cache update
4695 * can lead to a DNLC purge), doing those steps now would lead to a
4696 * nested call to the recovery framework, which can deadlock. So
4697 * do any over-the-wire cleanups asynchronously, in a separate
4698 * thread.
4699 */

4701 mutex_enter(&rp->r_os_lock);
4702 mutex_enter(&rp->r_statelock);
4703 mutex_enter(&rp->r_statev4_lock);

4705 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) {
4706 mutex_exit(&rp->r_statev4_lock);
4707 mutex_exit(&rp->r_statelock);
4708 mutex_exit(&rp->r_os_lock);
4709 nfs4_async_inactive(vp, cr);
4710 return;
4711 }

4713 if (rp->r_deleg_type == OPEN_DELEGATE_READ ||
4714 rp->r_deleg_type == OPEN_DELEGATE_WRITE) {
4715 mutex_exit(&rp->r_statev4_lock);
4716 mutex_exit(&rp->r_statelock);
4717 mutex_exit(&rp->r_os_lock);
4718 nfs4_async_inactive(vp, cr);
4719 return;
4720 }

4722 if (rp->r_unldvp != NULL) {
4723 mutex_exit(&rp->r_statev4_lock);
4724 mutex_exit(&rp->r_statelock);
4725 mutex_exit(&rp->r_os_lock);
4726 nfs4_async_inactive(vp, cr);
4727 return;
4728 }
4729 mutex_exit(&rp->r_statev4_lock);
4730 mutex_exit(&rp->r_statelock);
4731 mutex_exit(&rp->r_os_lock);

4733 rp4_addfree(rp, cr);
4734 }

4736 /*
4737 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up
4738 * various bits of state. The caller must not refer to vp after this call.
4739 */

4741 void
4742 nfs4_inactive_otw(vnode_t *vp, cred_t *cr)
4743 {
4744 rnode4_t *rp = VTOR4(vp);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 73

4745 nfs4_recov_state_t recov_state;
4746 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
4747 vnode_t *unldvp;
4748 char *unlname;
4749 cred_t *unlcred;
4750 COMPOUND4args_clnt args;
4751 COMPOUND4res_clnt res, *resp;
4752 nfs_argop4 argop[2];
4753 int doqueue;
4754 #ifdef DEBUG
4755 char *name;
4756 #endif

4758 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
4759 ASSERT(!IS_SHADOW(vp, rp));

4761 #ifdef DEBUG
4762 name = fn_name(VTOSV(vp)->sv_name);
4763 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: "
4764 "release vnode %s", name));
4765 kmem_free(name, MAXNAMELEN);
4766 #endif

4768 if (vp->v_type == VREG) {
4769 bool_t recov_failed = FALSE;

4771 e.error = nfs4close_all(vp, cr);
4772 if (e.error) {
4773 /* Check to see if recovery failed */
4774 mutex_enter(&(VTOMI4(vp)->mi_lock));
4775 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL)
4776 recov_failed = TRUE;
4777 mutex_exit(&(VTOMI4(vp)->mi_lock));
4778 if (!recov_failed) {
4779 mutex_enter(&rp->r_statelock);
4780 if (rp->r_flags & R4RECOVERR)
4781 recov_failed = TRUE;
4782 mutex_exit(&rp->r_statelock);
4783 }
4784 if (recov_failed) {
4785 NFS4_DEBUG(nfs4_client_recov_debug,
4786 (CE_NOTE, "nfs4_inactive_otw: "
4787 "close failed (recovery failure)"));
4788 }
4789 }
4790 }

4792 redo:
4793 if (rp->r_unldvp == NULL) {
4794 rp4_addfree(rp, cr);
4795 return;
4796 }

4798 /*
4799 * Save the vnode pointer for the directory where the
4800 * unlinked-open file got renamed, then set it to NULL
4801 * to prevent another thread from getting here before
4802 * we’re done with the remove. While we have the
4803 * statelock, make local copies of the pertinent rnode
4804 * fields. If we weren’t to do this in an atomic way, the
4805 * the unl* fields could become inconsistent with respect
4806 * to each other due to a race condition between this
4807 * code and nfs_remove(). See bug report 1034328.
4808 */
4809 mutex_enter(&rp->r_statelock);
4810 if (rp->r_unldvp == NULL) {

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 74

4811 mutex_exit(&rp->r_statelock);
4812 rp4_addfree(rp, cr);
4813 return;
4814 }

4816 unldvp = rp->r_unldvp;
4817 rp->r_unldvp = NULL;
4818 unlname = rp->r_unlname;
4819 rp->r_unlname = NULL;
4820 unlcred = rp->r_unlcred;
4821 rp->r_unlcred = NULL;
4822 mutex_exit(&rp->r_statelock);

4824 /*
4825 * If there are any dirty pages left, then flush
4826 * them. This is unfortunate because they just
4827 * may get thrown away during the remove operation,
4828 * but we have to do this for correctness.
4829 */
4830 if (nfs4_has_pages(vp) &&
4831 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) {
4832 ASSERT(vp->v_type != VCHR);
4833 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL);
4834 if (e.error) {
4835 mutex_enter(&rp->r_statelock);
4836 if (!rp->r_error)
4837 rp->r_error = e.error;
4838 mutex_exit(&rp->r_statelock);
4839 }
4840 }

4842 recov_state.rs_flags = 0;
4843 recov_state.rs_num_retry_despite_err = 0;
4844 recov_retry_remove:
4845 /*
4846 * Do the remove operation on the renamed file
4847 */
4848 args.ctag = TAG_INACTIVE;

4850 /*
4851 * Remove ops: putfh dir; remove
4852 */
4853 args.array_len = 2;
4854 args.array = argop;

4856 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state);
4857 if (e.error) {
4858 kmem_free(unlname, MAXNAMELEN);
4859 crfree(unlcred);
4860 VN_RELE(unldvp);
4861 /*
4862 * Try again; this time around r_unldvp will be NULL, so we’ll
4863 * just call rp4_addfree() and return.
4864 */
4865 goto redo;
4866 }

4868 /* putfh directory */
4869 argop[0].argop = OP_CPUTFH;
4870 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh;

4872 /* remove */
4873 argop[1].argop = OP_CREMOVE;
4874 argop[1].nfs_argop4_u.opcremove.ctarget = unlname;

4876 doqueue = 1;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 75

4877 resp = &res;

4879 #if 0 /* notyet */
4880 /*
4881 * Can’t do this yet. We may be being called from
4882 * dnlc_purge_XXX while that routine is holding a
4883 * mutex lock to the nc_rele list. The calls to
4884 * nfs3_cache_wcc_data may result in calls to
4885 * dnlc_purge_XXX. This will result in a deadlock.
4886 */
4887 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e);
4888 if (e.error) {
4889 PURGE_ATTRCACHE4(unldvp);
4890 resp = NULL;
4891 } else if (res.status) {
4892 e.error = geterrno4(res.status);
4893 PURGE_ATTRCACHE4(unldvp);
4894 /*
4895 * This code is inactive right now
4896 * but if made active there should
4897 * be a nfs4_end_op() call before
4898 * nfs4_purge_stale_fh to avoid start_op()
4899 * deadlock. See BugId: 4948726
4900 */
4901 nfs4_purge_stale_fh(error, unldvp, cr);
4902 } else {
4903 nfs_resop4 *resop;
4904 REMOVE4res *rm_res;

4906 resop = &res.array[1];
4907 rm_res = &resop->nfs_resop4_u.opremove;
4908 /*
4909 * Update directory cache attribute,
4910 * readdir and dnlc caches.
4911 */
4912 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL);
4913 }
4914 #else
4915 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e);

4917 PURGE_ATTRCACHE4(unldvp);
4918 #endif

4920 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) {
4921 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL,
4922 NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
4923 if (!e.error)
4924 (void) xdr_free(xdr_COMPOUND4res_clnt,
4925 (caddr_t)&res);
4926 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL,
4927 &recov_state, TRUE);
4928 goto recov_retry_remove;
4929 }
4930 }
4931 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE);

4933 /*
4934 * Release stuff held for the remove
4935 */
4936 VN_RELE(unldvp);
4937 if (!e.error && resp)
4938 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);

4940 kmem_free(unlname, MAXNAMELEN);
4941 crfree(unlcred);
4942 goto redo;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 76

4943 }

4945 /*
4946 * Remote file system operations having to do with directory manipulation.
4947 */
4948 /* ARGSUSED3 */
4949 int
4950 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
4951 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
4952 int *direntflags, pathname_t *realpnp)
4953 {
4954 int error;
4955 vnode_t *vp, *avp = NULL;
4956 rnode4_t *drp;

4958 *vpp = NULL;
4959 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
4960 return (EPERM);
4961 /*
4962 * if LOOKUP_XATTR, must replace dvp (object) with
4963 * object’s attrdir before continuing with lookup
4964 */
4965 if (flags & LOOKUP_XATTR) {
4966 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr);
4967 if (error)
4968 return (error);

4970 dvp = avp;

4972 /*
4973 * If lookup is for "", just return dvp now. The attrdir
4974 * has already been activated (from nfs4lookup_xattr), and
4975 * the caller will RELE the original dvp -- not
4976 * the attrdir. So, set vpp and return.
4977 * Currently, when the LOOKUP_XATTR flag is
4978 * passed to VOP_LOOKUP, the name is always empty, and
4979 * shortcircuiting here avoids 3 unneeded lock/unlock
4980 * pairs.
4981 *
4982 * If a non-empty name was provided, then it is the
4983 * attribute name, and it will be looked up below.
4984 */
4985 if (*nm == ’\0’) {
4986 *vpp = dvp;
4987 return (0);
4988 }

4990 /*
4991 * The vfs layer never sends a name when asking for the
4992 * attrdir, so we should never get here (unless of course
4993 * name is passed at some time in future -- at which time
4994 * we’ll blow up here).
4995 */
4996 ASSERT(0);
4997 }

4999 drp = VTOR4(dvp);
5000 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
5001 return (EINTR);

5003 error = nfs4lookup(dvp, nm, vpp, cr, 0);
5004 nfs_rw_exit(&drp->r_rwlock);

5006 /*
5007 * If vnode is a device, create special vnode.
5008 */

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 77

5009 if (!error && ISVDEV((*vpp)->v_type)) {
5010 vp = *vpp;
5011 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
5012 VN_RELE(vp);
5013 }

5015 return (error);
5016 }

5018 /* ARGSUSED */
5019 static int
5020 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr)
5021 {
5022 int error;
5023 rnode4_t *drp;
5024 int cflag = ((flags & CREATE_XATTR_DIR) != 0);
5025 mntinfo4_t *mi;

5027 mi = VTOMI4(dvp);
5028 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) &&
5029 !vfs_has_feature(mi->mi_vfsp, VFSFT_SYSATTR_VIEWS))
5030 return (EINVAL);

5032 drp = VTOR4(dvp);
5033 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
5034 return (EINTR);

5036 mutex_enter(&drp->r_statelock);
5037 /*
5038 * If the server doesn’t support xattrs just return EINVAL
5039 */
5040 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) {
5041 mutex_exit(&drp->r_statelock);
5042 nfs_rw_exit(&drp->r_rwlock);
5043 return (EINVAL);
5044 }

5046 /*
5047 * If there is a cached xattr directory entry,
5048 * use it as long as the attributes are valid. If the
5049 * attributes are not valid, take the simple approach and
5050 * free the cached value and re-fetch a new value.
5051 *
5052 * We don’t negative entry cache for now, if we did we
5053 * would need to check if the file has changed on every
5054 * lookup. But xattrs don’t exist very often and failing
5055 * an openattr is not much more expensive than and NVERIFY or GETATTR
5056 * so do an openattr over the wire for now.
5057 */
5058 if (drp->r_xattr_dir != NULL) {
5059 if (ATTRCACHE4_VALID(dvp)) {
5060 VN_HOLD(drp->r_xattr_dir);
5061 *vpp = drp->r_xattr_dir;
5062 mutex_exit(&drp->r_statelock);
5063 nfs_rw_exit(&drp->r_rwlock);
5064 return (0);
5065 }
5066 VN_RELE(drp->r_xattr_dir);
5067 drp->r_xattr_dir = NULL;
5068 }
5069 mutex_exit(&drp->r_statelock);

5071 error = nfs4openattr(dvp, vpp, cflag, cr);

5073 nfs_rw_exit(&drp->r_rwlock);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 78

5075 return (error);
5076 }

5078 static int
5079 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc)
5080 {
5081 int error;
5082 rnode4_t *drp;

5084 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);

5086 /*
5087 * If lookup is for "", just return dvp. Don’t need
5088 * to send it over the wire, look it up in the dnlc,
5089 * or perform any access checks.
5090 */
5091 if (*nm == ’\0’) {
5092 VN_HOLD(dvp);
5093 *vpp = dvp;
5094 return (0);
5095 }

5097 /*
5098 * Can’t do lookups in non-directories.
5099 */
5100 if (dvp->v_type != VDIR)
5101 return (ENOTDIR);

5103 /*
5104 * If lookup is for ".", just return dvp. Don’t need
5105 * to send it over the wire or look it up in the dnlc,
5106 * just need to check access.
5107 */
5108 if (nm[0] == ’.’ && nm[1] == ’\0’) {
5109 error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5110 if (error)
5111 return (error);
5112 VN_HOLD(dvp);
5113 *vpp = dvp;
5114 return (0);
5115 }

5117 drp = VTOR4(dvp);
5118 if (!(drp->r_flags & R4LOOKUP)) {
5119 mutex_enter(&drp->r_statelock);
5120 drp->r_flags |= R4LOOKUP;
5121 mutex_exit(&drp->r_statelock);
5122 }

5124 *vpp = NULL;
5125 /*
5126 * Lookup this name in the DNLC. If there is no entry
5127 * lookup over the wire.
5128 */
5129 if (!skipdnlc)
5130 *vpp = dnlc_lookup(dvp, nm);
5131 if (*vpp == NULL) {
5132 /*
5133 * We need to go over the wire to lookup the name.
5134 */
5135 return (nfs4lookupnew_otw(dvp, nm, vpp, cr));
5136 }

5138 /*
5139 * We hit on the dnlc
5140 */

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 79

5141 if (*vpp != DNLC_NO_VNODE ||
5142 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) {
5143 /*
5144 * But our attrs may not be valid.
5145 */
5146 if (ATTRCACHE4_VALID(dvp)) {
5147 error = nfs4_waitfor_purge_complete(dvp);
5148 if (error) {
5149 VN_RELE(*vpp);
5150 *vpp = NULL;
5151 return (error);
5152 }

5154 /*
5155 * If after the purge completes, check to make sure
5156 * our attrs are still valid.
5157 */
5158 if (ATTRCACHE4_VALID(dvp)) {
5159 /*
5160 * If we waited for a purge we may have
5161 * lost our vnode so look it up again.
5162 */
5163 VN_RELE(*vpp);
5164 *vpp = dnlc_lookup(dvp, nm);
5165 if (*vpp == NULL)
5166 return (nfs4lookupnew_otw(dvp,
5167 nm, vpp, cr));

5169 /*
5170 * The access cache should almost always hit
5171 */
5172 error = nfs4_access(dvp, VEXEC, 0, cr, NULL);

5174 if (error) {
5175 VN_RELE(*vpp);
5176 *vpp = NULL;
5177 return (error);
5178 }
5179 if (*vpp == DNLC_NO_VNODE) {
5180 VN_RELE(*vpp);
5181 *vpp = NULL;
5182 return (ENOENT);
5183 }
5184 return (0);
5185 }
5186 }
5187 }

5189 ASSERT(*vpp != NULL);

5191 /*
5192 * We may have gotten here we have one of the following cases:
5193 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we
5194 * need to validate them.
5195 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always
5196 * must validate.
5197 *
5198 * Go to the server and check if the directory has changed, if
5199 * it hasn’t we are done and can use the dnlc entry.
5200 */
5201 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr));
5202 }

5204 /*
5205 * Go to the server and check if the directory has changed, if
5206 * it hasn’t we are done and can use the dnlc entry. If it

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 80

5207 * has changed we get a new copy of its attributes and check
5208 * the access for VEXEC, then relookup the filename and
5209 * get its filehandle and attributes.
5210 *
5211 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR
5212 * if the NVERIFY failed we must
5213 * purge the caches
5214 * cache new attributes (will set r_time_attr_inval)
5215 * cache new access
5216 * recheck VEXEC access
5217 * add name to dnlc, possibly negative
5218 * if LOOKUP succeeded
5219 * cache new attributes
5220 * else
5221 * set a new r_time_attr_inval for dvp
5222 * check to make sure we have access
5223 *
5224 * The vpp returned is the vnode passed in if the directory is valid,
5225 * a new vnode if successful lookup, or NULL on error.
5226 */
5227 static int
5228 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
5229 {
5230 COMPOUND4args_clnt args;
5231 COMPOUND4res_clnt res;
5232 fattr4 *ver_fattr;
5233 fattr4_change dchange;
5234 int32_t *ptr;
5235 int argoplist_size = 7 * sizeof (nfs_argop4);
5236 nfs_argop4 *argop;
5237 int doqueue;
5238 mntinfo4_t *mi;
5239 nfs4_recov_state_t recov_state;
5240 hrtime_t t;
5241 int isdotdot;
5242 vnode_t *nvp;
5243 nfs_fh4 *fhp;
5244 nfs4_sharedfh_t *sfhp;
5245 nfs4_access_type_t cacc;
5246 rnode4_t *nrp;
5247 rnode4_t *drp = VTOR4(dvp);
5248 nfs4_ga_res_t *garp = NULL;
5249 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };

5251 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
5252 ASSERT(nm != NULL);
5253 ASSERT(nm[0] != ’\0’);
5254 ASSERT(dvp->v_type == VDIR);
5255 ASSERT(nm[0] != ’.’ || nm[1] != ’\0’);
5256 ASSERT(*vpp != NULL);

5258 if (nm[0] == ’.’ && nm[1] == ’.’ && nm[2] == ’\0’) {
5259 isdotdot = 1;
5260 args.ctag = TAG_LOOKUP_VPARENT;
5261 } else {
5262 /*
5263 * If dvp were a stub, it should have triggered and caused
5264 * a mount for us to get this far.
5265 */
5266 ASSERT(!RP_ISSTUB(VTOR4(dvp)));

5268 isdotdot = 0;
5269 args.ctag = TAG_LOOKUP_VALID;
5270 }

5272 mi = VTOMI4(dvp);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 81

5273 recov_state.rs_flags = 0;
5274 recov_state.rs_num_retry_despite_err = 0;

5276 nvp = NULL;

5278 /* Save the original mount point security information */
5279 (void) save_mnt_secinfo(mi->mi_curr_serv);

5281 recov_retry:
5282 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP,
5283 &recov_state, NULL);
5284 if (e.error) {
5285 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5286 VN_RELE(*vpp);
5287 *vpp = NULL;
5288 return (e.error);
5289 }

5291 argop = kmem_alloc(argoplist_size, KM_SLEEP);

5293 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */
5294 args.array_len = 7;
5295 args.array = argop;

5297 /* 0. putfh file */
5298 argop[0].argop = OP_CPUTFH;
5299 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh;

5301 /* 1. nverify the change info */
5302 argop[1].argop = OP_NVERIFY;
5303 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes;
5304 ver_fattr->attrmask = FATTR4_CHANGE_MASK;
5305 ver_fattr->attrlist4 = (char *)&dchange;
5306 ptr = (int32_t *)&dchange;
5307 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change);
5308 ver_fattr->attrlist4_len = sizeof (fattr4_change);

5310 /* 2. getattr directory */
5311 argop[2].argop = OP_GETATTR;
5312 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5313 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);

5315 /* 3. access directory */
5316 argop[3].argop = OP_ACCESS;
5317 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE |
5318 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP;

5320 /* 4. lookup name */
5321 if (isdotdot) {
5322 argop[4].argop = OP_LOOKUPP;
5323 } else {
5324 argop[4].argop = OP_CLOOKUP;
5325 argop[4].nfs_argop4_u.opclookup.cname = nm;
5326 }

5328 /* 5. resulting file handle */
5329 argop[5].argop = OP_GETFH;

5331 /* 6. resulting file attributes */
5332 argop[6].argop = OP_GETATTR;
5333 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5334 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);

5336 doqueue = 1;
5337 t = gethrtime();

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 82

5339 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);

5341 if (!isdotdot && res.status == NFS4ERR_MOVED) {
5342 e.error = nfs4_setup_referral(dvp, nm, vpp, cr);
5343 if (e.error != 0 && *vpp != NULL)
5344 VN_RELE(*vpp);
5345 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5346 &recov_state, FALSE);
5347 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5348 kmem_free(argop, argoplist_size);
5349 return (e.error);
5350 }

5352 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) {
5353 /*
5354 * For WRONGSEC of a non-dotdot case, send secinfo directly
5355 * from this thread, do not go thru the recovery thread since
5356 * we need the nm information.
5357 *
5358 * Not doing dotdot case because there is no specification
5359 * for (PUTFH, SECINFO "..") yet.
5360 */
5361 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) {
5362 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr)))
5363 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5364 &recov_state, FALSE);
5365 else
5366 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5367 &recov_state, TRUE);
5368 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5369 kmem_free(argop, argoplist_size);
5370 if (!e.error)
5371 goto recov_retry;
5372 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5373 VN_RELE(*vpp);
5374 *vpp = NULL;
5375 return (e.error);
5376 }

5378 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
5379 OP_LOOKUP, NULL, NULL, NULL) == FALSE) {
5380 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5381 &recov_state, TRUE);

5383 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5384 kmem_free(argop, argoplist_size);
5385 goto recov_retry;
5386 }
5387 }

5389 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE);

5391 if (e.error || res.array_len == 0) {
5392 /*
5393 * If e.error isn’t set, then reply has no ops (or we couldn’t
5394 * be here). The only legal way to reply without an op array
5395 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should
5396 * be in the reply for all other status values.
5397 *
5398 * For valid replies without an ops array, return ENOTSUP
5399 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies,
5400 * return EIO -- don’t trust status.
5401 */
5402 if (e.error == 0)
5403 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ?
5404 ENOTSUP : EIO;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 83

5405 VN_RELE(*vpp);
5406 *vpp = NULL;
5407 kmem_free(argop, argoplist_size);
5408 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5409 return (e.error);
5410 }

5412 if (res.status != NFS4ERR_SAME) {
5413 e.error = geterrno4(res.status);

5415 /*
5416 * The NVERIFY "failed" so the directory has changed
5417 * First make sure PUTFH succeeded and NVERIFY "failed"
5418 * cleanly.
5419 */
5420 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) ||
5421 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) {
5422 nfs4_purge_stale_fh(e.error, dvp, cr);
5423 VN_RELE(*vpp);
5424 *vpp = NULL;
5425 goto exit;
5426 }

5428 /*
5429 * We know the NVERIFY "failed" so we must:
5430 * purge the caches (access and indirectly dnlc if needed)
5431 */
5432 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE);

5434 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5435 nfs4_purge_stale_fh(e.error, dvp, cr);
5436 VN_RELE(*vpp);
5437 *vpp = NULL;
5438 goto exit;
5439 }

5441 /*
5442 * Install new cached attributes for the directory
5443 */
5444 nfs4_attr_cache(dvp,
5445 &res.array[2].nfs_resop4_u.opgetattr.ga_res,
5446 t, cr, FALSE, NULL);

5448 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) {
5449 nfs4_purge_stale_fh(e.error, dvp, cr);
5450 VN_RELE(*vpp);
5451 *vpp = NULL;
5452 e.error = geterrno4(res.status);
5453 goto exit;
5454 }

5456 /*
5457 * Now we know the directory is valid,
5458 * cache new directory access
5459 */
5460 nfs4_access_cache(drp,
5461 args.array[3].nfs_argop4_u.opaccess.access,
5462 res.array[3].nfs_resop4_u.opaccess.access, cr);

5464 /*
5465 * recheck VEXEC access
5466 */
5467 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr);
5468 if (cacc != NFS4_ACCESS_ALLOWED) {
5469 /*
5470 * Directory permissions might have been revoked

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 84

5471 */
5472 if (cacc == NFS4_ACCESS_DENIED) {
5473 e.error = EACCES;
5474 VN_RELE(*vpp);
5475 *vpp = NULL;
5476 goto exit;
5477 }

5479 /*
5480 * Somehow we must not have asked for enough
5481 * so try a singleton ACCESS, should never happen.
5482 */
5483 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5484 if (e.error) {
5485 VN_RELE(*vpp);
5486 *vpp = NULL;
5487 goto exit;
5488 }
5489 }

5491 e.error = geterrno4(res.status);
5492 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) {
5493 /*
5494 * The lookup failed, probably no entry
5495 */
5496 if (e.error == ENOENT && nfs4_lookup_neg_cache) {
5497 dnlc_update(dvp, nm, DNLC_NO_VNODE);
5498 } else {
5499 /*
5500 * Might be some other error, so remove
5501 * the dnlc entry to make sure we start all
5502 * over again, next time.
5503 */
5504 dnlc_remove(dvp, nm);
5505 }
5506 VN_RELE(*vpp);
5507 *vpp = NULL;
5508 goto exit;
5509 }

5511 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) {
5512 /*
5513 * The file exists but we can’t get its fh for
5514 * some unknown reason. Remove it from the dnlc
5515 * and error out to be safe.
5516 */
5517 dnlc_remove(dvp, nm);
5518 VN_RELE(*vpp);
5519 *vpp = NULL;
5520 goto exit;
5521 }
5522 fhp = &res.array[5].nfs_resop4_u.opgetfh.object;
5523 if (fhp->nfs_fh4_len == 0) {
5524 /*
5525 * The file exists but a bogus fh
5526 * some unknown reason. Remove it from the dnlc
5527 * and error out to be safe.
5528 */
5529 e.error = ENOENT;
5530 dnlc_remove(dvp, nm);
5531 VN_RELE(*vpp);
5532 *vpp = NULL;
5533 goto exit;
5534 }
5535 sfhp = sfh4_get(fhp, mi);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 85

5537 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK)
5538 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res;

5540 /*
5541 * Make the new rnode
5542 */
5543 if (isdotdot) {
5544 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1);
5545 if (e.error) {
5546 sfh4_rele(&sfhp);
5547 VN_RELE(*vpp);
5548 *vpp = NULL;
5549 goto exit;
5550 }
5551 /*
5552 * XXX if nfs4_make_dotdot uses an existing rnode
5553 * XXX it doesn’t update the attributes.
5554 * XXX for now just save them again to save an OTW
5555 */
5556 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL);
5557 } else {
5558 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr,
5559 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
5560 /*
5561 * If v_type == VNON, then garp was NULL because
5562 * the last op in the compound failed and makenfs4node
5563 * could not find the vnode for sfhp. It created
5564 * a new vnode, so we have nothing to purge here.
5565 */
5566 if (nvp->v_type == VNON) {
5567 vattr_t vattr;

5569 vattr.va_mask = AT_TYPE;
5570 /*
5571 * N.B. We’ve already called nfs4_end_fop above.
5572 */
5573 e.error = nfs4getattr(nvp, &vattr, cr);
5574 if (e.error) {
5575 sfh4_rele(&sfhp);
5576 VN_RELE(*vpp);
5577 *vpp = NULL;
5578 VN_RELE(nvp);
5579 goto exit;
5580 }
5581 nvp->v_type = vattr.va_type;
5582 }
5583 }
5584 sfh4_rele(&sfhp);

5586 nrp = VTOR4(nvp);
5587 mutex_enter(&nrp->r_statev4_lock);
5588 if (!nrp->created_v4) {
5589 mutex_exit(&nrp->r_statev4_lock);
5590 dnlc_update(dvp, nm, nvp);
5591 } else
5592 mutex_exit(&nrp->r_statev4_lock);

5594 VN_RELE(*vpp);
5595 *vpp = nvp;
5596 } else {
5597 hrtime_t now;
5598 hrtime_t delta = 0;

5600 e.error = 0;

5602 /*

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 86

5603 * Because the NVERIFY "succeeded" we know that the
5604 * directory attributes are still valid
5605 * so update r_time_attr_inval
5606 */
5607 now = gethrtime();
5608 mutex_enter(&drp->r_statelock);
5609 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) {
5610 delta = now - drp->r_time_attr_saved;
5611 if (delta < mi->mi_acdirmin)
5612 delta = mi->mi_acdirmin;
5613 else if (delta > mi->mi_acdirmax)
5614 delta = mi->mi_acdirmax;
5615 }
5616 drp->r_time_attr_inval = now + delta;
5617 mutex_exit(&drp->r_statelock);
5618 dnlc_update(dvp, nm, *vpp);

5620 /*
5621 * Even though we have a valid directory attr cache
5622 * and dnlc entry, we may not have access.
5623 * This should almost always hit the cache.
5624 */
5625 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5626 if (e.error) {
5627 VN_RELE(*vpp);
5628 *vpp = NULL;
5629 }

5631 if (*vpp == DNLC_NO_VNODE) {
5632 VN_RELE(*vpp);
5633 *vpp = NULL;
5634 e.error = ENOENT;
5635 }
5636 }

5638 exit:
5639 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5640 kmem_free(argop, argoplist_size);
5641 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5642 return (e.error);
5643 }

5645 /*
5646 * We need to go over the wire to lookup the name, but
5647 * while we are there verify the directory has not
5648 * changed but if it has, get new attributes and check access
5649 *
5650 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH
5651 * NVERIFY GETATTR ACCESS
5652 *
5653 * With the results:
5654 * if the NVERIFY failed we must purge the caches, add new attributes,
5655 * and cache new access.
5656 * set a new r_time_attr_inval
5657 * add name to dnlc, possibly negative
5658 * if LOOKUP succeeded
5659 * cache new attributes
5660 */
5661 static int
5662 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
5663 {
5664 COMPOUND4args_clnt args;
5665 COMPOUND4res_clnt res;
5666 fattr4 *ver_fattr;
5667 fattr4_change dchange;
5668 int32_t *ptr;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 87

5669 nfs4_ga_res_t *garp = NULL;
5670 int argoplist_size = 9 * sizeof (nfs_argop4);
5671 nfs_argop4 *argop;
5672 int doqueue;
5673 mntinfo4_t *mi;
5674 nfs4_recov_state_t recov_state;
5675 hrtime_t t;
5676 int isdotdot;
5677 vnode_t *nvp;
5678 nfs_fh4 *fhp;
5679 nfs4_sharedfh_t *sfhp;
5680 nfs4_access_type_t cacc;
5681 rnode4_t *nrp;
5682 rnode4_t *drp = VTOR4(dvp);
5683 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };

5685 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
5686 ASSERT(nm != NULL);
5687 ASSERT(nm[0] != ’\0’);
5688 ASSERT(dvp->v_type == VDIR);
5689 ASSERT(nm[0] != ’.’ || nm[1] != ’\0’);
5690 ASSERT(*vpp == NULL);

5692 if (nm[0] == ’.’ && nm[1] == ’.’ && nm[2] == ’\0’) {
5693 isdotdot = 1;
5694 args.ctag = TAG_LOOKUP_PARENT;
5695 } else {
5696 /*
5697 * If dvp were a stub, it should have triggered and caused
5698 * a mount for us to get this far.
5699 */
5700 ASSERT(!RP_ISSTUB(VTOR4(dvp)));

5702 isdotdot = 0;
5703 args.ctag = TAG_LOOKUP;
5704 }

5706 mi = VTOMI4(dvp);
5707 recov_state.rs_flags = 0;
5708 recov_state.rs_num_retry_despite_err = 0;

5710 nvp = NULL;

5712 /* Save the original mount point security information */
5713 (void) save_mnt_secinfo(mi->mi_curr_serv);

5715 recov_retry:
5716 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP,
5717 &recov_state, NULL);
5718 if (e.error) {
5719 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5720 return (e.error);
5721 }

5723 argop = kmem_alloc(argoplist_size, KM_SLEEP);

5725 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */
5726 args.array_len = 9;
5727 args.array = argop;

5729 /* 0. putfh file */
5730 argop[0].argop = OP_CPUTFH;
5731 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh;

5733 /* 1. savefh for the nverify */
5734 argop[1].argop = OP_SAVEFH;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 88

5736 /* 2. lookup name */
5737 if (isdotdot) {
5738 argop[2].argop = OP_LOOKUPP;
5739 } else {
5740 argop[2].argop = OP_CLOOKUP;
5741 argop[2].nfs_argop4_u.opclookup.cname = nm;
5742 }

5744 /* 3. resulting file handle */
5745 argop[3].argop = OP_GETFH;

5747 /* 4. resulting file attributes */
5748 argop[4].argop = OP_GETATTR;
5749 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5750 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);

5752 /* 5. restorefh back the directory for the nverify */
5753 argop[5].argop = OP_RESTOREFH;

5755 /* 6. nverify the change info */
5756 argop[6].argop = OP_NVERIFY;
5757 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes;
5758 ver_fattr->attrmask = FATTR4_CHANGE_MASK;
5759 ver_fattr->attrlist4 = (char *)&dchange;
5760 ptr = (int32_t *)&dchange;
5761 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change);
5762 ver_fattr->attrlist4_len = sizeof (fattr4_change);

5764 /* 7. getattr directory */
5765 argop[7].argop = OP_GETATTR;
5766 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5767 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);

5769 /* 8. access directory */
5770 argop[8].argop = OP_ACCESS;
5771 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE |
5772 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP;

5774 doqueue = 1;
5775 t = gethrtime();

5777 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);

5779 if (!isdotdot && res.status == NFS4ERR_MOVED) {
5780 e.error = nfs4_setup_referral(dvp, nm, vpp, cr);
5781 if (e.error != 0 && *vpp != NULL)
5782 VN_RELE(*vpp);
5783 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5784 &recov_state, FALSE);
5785 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5786 kmem_free(argop, argoplist_size);
5787 return (e.error);
5788 }

5790 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) {
5791 /*
5792 * For WRONGSEC of a non-dotdot case, send secinfo directly
5793 * from this thread, do not go thru the recovery thread since
5794 * we need the nm information.
5795 *
5796 * Not doing dotdot case because there is no specification
5797 * for (PUTFH, SECINFO "..") yet.
5798 */
5799 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) {
5800 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr)))

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 89

5801 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5802 &recov_state, FALSE);
5803 else
5804 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5805 &recov_state, TRUE);
5806 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5807 kmem_free(argop, argoplist_size);
5808 if (!e.error)
5809 goto recov_retry;
5810 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5811 return (e.error);
5812 }

5814 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
5815 OP_LOOKUP, NULL, NULL, NULL) == FALSE) {
5816 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5817 &recov_state, TRUE);

5819 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5820 kmem_free(argop, argoplist_size);
5821 goto recov_retry;
5822 }
5823 }

5825 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE);

5827 if (e.error || res.array_len == 0) {
5828 /*
5829 * If e.error isn’t set, then reply has no ops (or we couldn’t
5830 * be here). The only legal way to reply without an op array
5831 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should
5832 * be in the reply for all other status values.
5833 *
5834 * For valid replies without an ops array, return ENOTSUP
5835 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies,
5836 * return EIO -- don’t trust status.
5837 */
5838 if (e.error == 0)
5839 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ?
5840 ENOTSUP : EIO;

5842 kmem_free(argop, argoplist_size);
5843 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5844 return (e.error);
5845 }

5847 e.error = geterrno4(res.status);

5849 /*
5850 * The PUTFH and SAVEFH may have failed.
5851 */
5852 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) ||
5853 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) {
5854 nfs4_purge_stale_fh(e.error, dvp, cr);
5855 goto exit;
5856 }

5858 /*
5859 * Check if the file exists, if it does delay entering
5860 * into the dnlc until after we update the directory
5861 * attributes so we don’t cause it to get purged immediately.
5862 */
5863 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) {
5864 /*
5865 * The lookup failed, probably no entry
5866 */

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 90

5867 if (e.error == ENOENT && nfs4_lookup_neg_cache)
5868 dnlc_update(dvp, nm, DNLC_NO_VNODE);
5869 goto exit;
5870 }

5872 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) {
5873 /*
5874 * The file exists but we can’t get its fh for
5875 * some unknown reason. Error out to be safe.
5876 */
5877 goto exit;
5878 }

5880 fhp = &res.array[3].nfs_resop4_u.opgetfh.object;
5881 if (fhp->nfs_fh4_len == 0) {
5882 /*
5883 * The file exists but a bogus fh
5884 * some unknown reason. Error out to be safe.
5885 */
5886 e.error = EIO;
5887 goto exit;
5888 }
5889 sfhp = sfh4_get(fhp, mi);

5891 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5892 sfh4_rele(&sfhp);
5893 goto exit;
5894 }
5895 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res;

5897 /*
5898 * The RESTOREFH may have failed
5899 */
5900 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) {
5901 sfh4_rele(&sfhp);
5902 e.error = EIO;
5903 goto exit;
5904 }

5906 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) {
5907 /*
5908 * First make sure the NVERIFY failed as we expected,
5909 * if it didn’t then be conservative and error out
5910 * as we can’t trust the directory.
5911 */
5912 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) {
5913 sfh4_rele(&sfhp);
5914 e.error = EIO;
5915 goto exit;
5916 }

5918 /*
5919 * We know the NVERIFY "failed" so the directory has changed,
5920 * so we must:
5921 * purge the caches (access and indirectly dnlc if needed)
5922 */
5923 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE);

5925 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5926 sfh4_rele(&sfhp);
5927 goto exit;
5928 }
5929 nfs4_attr_cache(dvp,
5930 &res.array[7].nfs_resop4_u.opgetattr.ga_res,
5931 t, cr, FALSE, NULL);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 91

5933 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) {
5934 nfs4_purge_stale_fh(e.error, dvp, cr);
5935 sfh4_rele(&sfhp);
5936 e.error = geterrno4(res.status);
5937 goto exit;
5938 }

5940 /*
5941 * Now we know the directory is valid,
5942 * cache new directory access
5943 */
5944 nfs4_access_cache(drp,
5945 args.array[8].nfs_argop4_u.opaccess.access,
5946 res.array[8].nfs_resop4_u.opaccess.access, cr);

5948 /*
5949 * recheck VEXEC access
5950 */
5951 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr);
5952 if (cacc != NFS4_ACCESS_ALLOWED) {
5953 /*
5954 * Directory permissions might have been revoked
5955 */
5956 if (cacc == NFS4_ACCESS_DENIED) {
5957 sfh4_rele(&sfhp);
5958 e.error = EACCES;
5959 goto exit;
5960 }

5962 /*
5963 * Somehow we must not have asked for enough
5964 * so try a singleton ACCESS should never happen
5965 */
5966 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5967 if (e.error) {
5968 sfh4_rele(&sfhp);
5969 goto exit;
5970 }
5971 }

5973 e.error = geterrno4(res.status);
5974 } else {
5975 hrtime_t now;
5976 hrtime_t delta = 0;

5978 e.error = 0;

5980 /*
5981 * Because the NVERIFY "succeeded" we know that the
5982 * directory attributes are still valid
5983 * so update r_time_attr_inval
5984 */
5985 now = gethrtime();
5986 mutex_enter(&drp->r_statelock);
5987 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) {
5988 delta = now - drp->r_time_attr_saved;
5989 if (delta < mi->mi_acdirmin)
5990 delta = mi->mi_acdirmin;
5991 else if (delta > mi->mi_acdirmax)
5992 delta = mi->mi_acdirmax;
5993 }
5994 drp->r_time_attr_inval = now + delta;
5995 mutex_exit(&drp->r_statelock);

5997 /*
5998 * Even though we have a valid directory attr cache,

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 92

5999 * we may not have access.
6000 * This should almost always hit the cache.
6001 */
6002 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
6003 if (e.error) {
6004 sfh4_rele(&sfhp);
6005 goto exit;
6006 }
6007 }

6009 /*
6010 * Now we have successfully completed the lookup, if the
6011 * directory has changed we now have the valid attributes.
6012 * We also know we have directory access.
6013 * Create the new rnode and insert it in the dnlc.
6014 */
6015 if (isdotdot) {
6016 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1);
6017 if (e.error) {
6018 sfh4_rele(&sfhp);
6019 goto exit;
6020 }
6021 /*
6022 * XXX if nfs4_make_dotdot uses an existing rnode
6023 * XXX it doesn’t update the attributes.
6024 * XXX for now just save them again to save an OTW
6025 */
6026 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL);
6027 } else {
6028 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr,
6029 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
6030 }
6031 sfh4_rele(&sfhp);

6033 nrp = VTOR4(nvp);
6034 mutex_enter(&nrp->r_statev4_lock);
6035 if (!nrp->created_v4) {
6036 mutex_exit(&nrp->r_statev4_lock);
6037 dnlc_update(dvp, nm, nvp);
6038 } else
6039 mutex_exit(&nrp->r_statev4_lock);

6041 *vpp = nvp;

6043 exit:
6044 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6045 kmem_free(argop, argoplist_size);
6046 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
6047 return (e.error);
6048 }

6050 #ifdef DEBUG
6051 void
6052 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt)
6053 {
6054 uint_t i, len;
6055 zoneid_t zoneid = getzoneid();
6056 char *s;

6058 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where);
6059 for (i = 0; i < argcnt; i++) {
6060 nfs_argop4 *op = &argbase[i];
6061 switch (op->argop) {
6062 case OP_CPUTFH:
6063 case OP_PUTFH:
6064 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 93

6065 break;
6066 case OP_PUTROOTFH:
6067 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i);
6068 break;
6069 case OP_CLOOKUP:
6070 s = op->nfs_argop4_u.opclookup.cname;
6071 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s);
6072 break;
6073 case OP_LOOKUP:
6074 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname,
6075 &len, NULL);
6076 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s);
6077 kmem_free(s, len);
6078 break;
6079 case OP_LOOKUPP:
6080 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i);
6081 break;
6082 case OP_GETFH:
6083 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i);
6084 break;
6085 case OP_GETATTR:
6086 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i);
6087 break;
6088 case OP_OPENATTR:
6089 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i);
6090 break;
6091 default:
6092 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i,
6093 op->argop);
6094 break;
6095 }
6096 }
6097 }
6098 #endif

6100 /*
6101 * nfs4lookup_setup - constructs a multi-lookup compound request.
6102 *
6103 * Given the path "nm1/nm2/.../nmn", the following compound requests
6104 * may be created:
6105 *
6106 * Note: Getfh is not be needed because filehandle attr is mandatory, but it
6107 * is faster, for now.
6108 *
6109 * l4_getattrs indicates the type of compound requested.
6110 *
6111 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo):
6112 *
6113 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} }
6114 *
6115 * total number of ops is n + 1.
6116 *
6117 * LKP4_LAST_NAMED_ATTR - multi-component path for a named
6118 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR
6119 * before the last component, and only get attributes
6120 * for the last component. Note that the second-to-last
6121 * pathname component is XATTR_RPATH, which does NOT go
6122 * over-the-wire as a lookup.
6123 *
6124 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2};
6125 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr }
6126 *
6127 * and total number of ops is n + 5.
6128 *
6129 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named
6130 * attribute directory: create lookups plus an OPENATTR

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 94

6131 * replacing the last lookup. Note that the last pathname
6132 * component is XATTR_RPATH, which does NOT go over-the-wire
6133 * as a lookup.
6134 *
6135 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr;
6136 * Openattr; Getfh; Getattr }
6137 *
6138 * and total number of ops is n + 5.
6139 *
6140 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate
6141 * nodes too.
6142 *
6143 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr;
6144 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr }
6145 *
6146 * and total number of ops is 3*n + 1.
6147 *
6148 * All cases: returns the index in the arg array of the final LOOKUP op, or
6149 * -1 if no LOOKUPs were used.
6150 */
6151 int
6152 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh)
6153 {
6154 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs;
6155 nfs_argop4 *argbase, *argop;
6156 int arglen, argcnt;
6157 int n = 1; /* number of components */
6158 int nga = 1; /* number of Getattr’s in request */
6159 char c = ’\0’, *s, *p;
6160 int lookup_idx = -1;
6161 int argoplist_size;

6163 /* set lookuparg response result to 0 */
6164 lookupargp->resp->status = NFS4_OK;

6166 /* skip leading "/" or "." e.g. ".//./" if there is */
6167 for (; ; nm++) {
6168 if (*nm != ’/’ && *nm != ’.’)
6169 break;

6171 /* ".." is counted as 1 component */
6172 if (*nm == ’.’ && *(nm + 1) != ’/’)
6173 break;
6174 }

6176 /*
6177 * Find n = number of components - nm must be null terminated
6178 * Skip "." components.
6179 */
6180 if (*nm != ’\0’)
6181 for (n = 1, s = nm; *s != ’\0’; s++) {
6182 if ((*s == ’/’) && (*(s + 1) != ’/’) &&
6183 (*(s + 1) != ’\0’) &&
6184 !(*(s + 1) == ’.’ && (*(s + 2) == ’/’ ||
6185 *(s + 2) == ’\0’)))
6186 n++;
6187 }
6188 else
6189 n = 0;

6191 /*
6192 * nga is number of components that need Getfh+Getattr
6193 */
6194 switch (l4_getattrs) {
6195 case LKP4_NO_ATTRIBUTES:
6196 nga = 0;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 95

6197 break;
6198 case LKP4_ALL_ATTRIBUTES:
6199 nga = n;
6200 /*
6201 * Always have at least 1 getfh, getattr pair
6202 */
6203 if (nga == 0)
6204 nga++;
6205 break;
6206 case LKP4_LAST_ATTRDIR:
6207 case LKP4_LAST_NAMED_ATTR:
6208 nga = n+1;
6209 break;
6210 }

6212 /*
6213 * If change to use the filehandle attr instead of getfh
6214 * the following line can be deleted.
6215 */
6216 nga *= 2;

6218 /*
6219 * calculate number of ops in request as
6220 * header + trailer + lookups + getattrs
6221 */
6222 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga;

6224 argoplist_size = arglen * sizeof (nfs_argop4);
6225 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP);
6226 lookupargp->argsp->array = argop;

6228 argcnt = lookupargp->header_len;
6229 argop += argcnt;

6231 /*
6232 * loop and create a lookup op and possibly getattr/getfh for
6233 * each component. Skip "." components.
6234 */
6235 for (s = nm; *s != ’\0’; s = p) {
6236 /*
6237 * Set up a pathname struct for each component if needed
6238 */
6239 while (*s == ’/’)
6240 s++;
6241 if (*s == ’\0’)
6242 break;

6244 for (p = s; (*p != ’/’) && (*p != ’\0’); p++)
6245 ;
6246 c = *p;
6247 *p = ’\0’;

6249 if (s[0] == ’.’ && s[1] == ’\0’) {
6250 *p = c;
6251 continue;
6252 }
6253 if (l4_getattrs == LKP4_LAST_ATTRDIR &&
6254 strcmp(s, XATTR_RPATH) == 0) {
6255 /* getfh XXX may not be needed in future */
6256 argop->argop = OP_GETFH;
6257 argop++;
6258 argcnt++;

6260 /* getattr */
6261 argop->argop = OP_GETATTR;
6262 argop->nfs_argop4_u.opgetattr.attr_request =

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 96

6263 lookupargp->ga_bits;
6264 argop->nfs_argop4_u.opgetattr.mi =
6265 lookupargp->mi;
6266 argop++;
6267 argcnt++;

6269 /* openattr */
6270 argop->argop = OP_OPENATTR;
6271 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR &&
6272 strcmp(s, XATTR_RPATH) == 0) {
6273 /* openattr */
6274 argop->argop = OP_OPENATTR;
6275 argop++;
6276 argcnt++;

6278 /* getfh XXX may not be needed in future */
6279 argop->argop = OP_GETFH;
6280 argop++;
6281 argcnt++;

6283 /* getattr */
6284 argop->argop = OP_GETATTR;
6285 argop->nfs_argop4_u.opgetattr.attr_request =
6286 lookupargp->ga_bits;
6287 argop->nfs_argop4_u.opgetattr.mi =
6288 lookupargp->mi;
6289 argop++;
6290 argcnt++;
6291 *p = c;
6292 continue;
6293 } else if (s[0] == ’.’ && s[1] == ’.’ && s[2] == ’\0’) {
6294 /* lookupp */
6295 argop->argop = OP_LOOKUPP;
6296 } else {
6297 /* lookup */
6298 argop->argop = OP_LOOKUP;
6299 (void) str_to_utf8(s,
6300 &argop->nfs_argop4_u.oplookup.objname);
6301 }
6302 lookup_idx = argcnt;
6303 argop++;
6304 argcnt++;

6306 *p = c;

6308 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) {
6309 /* getfh XXX may not be needed in future */
6310 argop->argop = OP_GETFH;
6311 argop++;
6312 argcnt++;

6314 /* getattr */
6315 argop->argop = OP_GETATTR;
6316 argop->nfs_argop4_u.opgetattr.attr_request =
6317 lookupargp->ga_bits;
6318 argop->nfs_argop4_u.opgetattr.mi =
6319 lookupargp->mi;
6320 argop++;
6321 argcnt++;
6322 }
6323 }

6325 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) &&
6326 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) {
6327 if (needgetfh) {
6328 /* stick in a post-lookup getfh */

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 97

6329 argop->argop = OP_GETFH;
6330 argcnt++;
6331 argop++;
6332 }
6333 /* post-lookup getattr */
6334 argop->argop = OP_GETATTR;
6335 argop->nfs_argop4_u.opgetattr.attr_request =
6336 lookupargp->ga_bits;
6337 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi;
6338 argcnt++;
6339 }
6340 argcnt += lookupargp->trailer_len; /* actual op count */
6341 lookupargp->argsp->array_len = argcnt;
6342 lookupargp->arglen = arglen;

6344 #ifdef DEBUG
6345 if (nfs4_client_lookup_debug)
6346 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt);
6347 #endif

6349 return (lookup_idx);
6350 }

6352 static int
6353 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr)
6354 {
6355 COMPOUND4args_clnt args;
6356 COMPOUND4res_clnt res;
6357 GETFH4res *gf_res = NULL;
6358 nfs_argop4 argop[4];
6359 nfs_resop4 *resop = NULL;
6360 nfs4_sharedfh_t *sfhp;
6361 hrtime_t t;
6362 nfs4_error_t e;

6364 rnode4_t *drp;
6365 int doqueue = 1;
6366 vnode_t *vp;
6367 int needrecov = 0;
6368 nfs4_recov_state_t recov_state;

6370 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);

6372 *avp = NULL;
6373 recov_state.rs_flags = 0;
6374 recov_state.rs_num_retry_despite_err = 0;

6376 recov_retry:
6377 /* COMPOUND: putfh, openattr, getfh, getattr */
6378 args.array_len = 4;
6379 args.array = argop;
6380 args.ctag = TAG_OPENATTR;

6382 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
6383 if (e.error)
6384 return (e.error);

6386 drp = VTOR4(dvp);

6388 /* putfh */
6389 argop[0].argop = OP_CPUTFH;
6390 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;

6392 /* openattr */
6393 argop[1].argop = OP_OPENATTR;
6394 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 98

6396 /* getfh */
6397 argop[2].argop = OP_GETFH;

6399 /* getattr */
6400 argop[3].argop = OP_GETATTR;
6401 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
6402 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);

6404 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
6405 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first",
6406 rnode4info(drp)));

6408 t = gethrtime();

6410 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);

6412 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp);
6413 if (needrecov) {
6414 bool_t abort;

6416 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
6417 "nfs4openattr: initiating recovery\n"));

6419 abort = nfs4_start_recovery(&e,
6420 VTOMI4(dvp), dvp, NULL, NULL, NULL,
6421 OP_OPENATTR, NULL, NULL, NULL);
6422 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6423 if (!e.error) {
6424 e.error = geterrno4(res.status);
6425 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6426 }
6427 if (abort == FALSE)
6428 goto recov_retry;
6429 return (e.error);
6430 }

6432 if (e.error) {
6433 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6434 return (e.error);
6435 }

6437 if (res.status) {
6438 /*
6439 * If OTW errro is NOTSUPP, then it should be
6440 * translated to EINVAL. All Solaris file system
6441 * implementations return EINVAL to the syscall layer
6442 * when the attrdir cannot be created due to an
6443 * implementation restriction or noxattr mount option.
6444 */
6445 if (res.status == NFS4ERR_NOTSUPP) {
6446 mutex_enter(&drp->r_statelock);
6447 if (drp->r_xattr_dir)
6448 VN_RELE(drp->r_xattr_dir);
6449 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP);
6450 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP;
6451 mutex_exit(&drp->r_statelock);

6453 e.error = EINVAL;
6454 } else {
6455 e.error = geterrno4(res.status);
6456 }

6458 if (e.error) {
6459 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6460 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 99

6461 needrecov);
6462 return (e.error);
6463 }
6464 }

6466 resop = &res.array[0]; /* putfh res */
6467 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK);

6469 resop = &res.array[1]; /* openattr res */
6470 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK);

6472 resop = &res.array[2]; /* getfh res */
6473 gf_res = &resop->nfs_resop4_u.opgetfh;
6474 if (gf_res->object.nfs_fh4_len == 0) {
6475 *avp = NULL;
6476 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6477 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6478 return (ENOENT);
6479 }

6481 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp));
6482 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res,
6483 dvp->v_vfsp, t, cr, dvp,
6484 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH, sfhp));
6485 sfh4_rele(&sfhp);

6487 if (e.error)
6488 PURGE_ATTRCACHE4(vp);

6490 mutex_enter(&vp->v_lock);
6491 vp->v_flag |= V_XATTRDIR;
6492 mutex_exit(&vp->v_lock);

6494 *avp = vp;

6496 mutex_enter(&drp->r_statelock);
6497 if (drp->r_xattr_dir)
6498 VN_RELE(drp->r_xattr_dir);
6499 VN_HOLD(vp);
6500 drp->r_xattr_dir = vp;

6502 /*
6503 * Invalidate pathconf4 cache because r_xattr_dir is no longer
6504 * NULL. xattrs could be created at any time, and we have no
6505 * way to update pc4_xattr_exists in the base object if/when
6506 * it happens.
6507 */
6508 drp->r_pathconf.pc4_xattr_valid = 0;

6510 mutex_exit(&drp->r_statelock);

6512 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);

6514 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);

6516 return (0);
6517 }

6519 /* ARGSUSED */
6520 static int
6521 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
6522 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct,
6523 vsecattr_t *vsecp)
6524 {
6525 int error;
6526 vnode_t *vp = NULL;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 100

6527 rnode4_t *rp;
6528 struct vattr vattr;
6529 rnode4_t *drp;
6530 vnode_t *tempvp;
6531 enum createmode4 createmode;
6532 bool_t must_trunc = FALSE;
6533 int truncating = 0;

6535 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
6536 return (EPERM);
6537 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) {
6538 return (EINVAL);
6539 }

6541 /* . and .. have special meaning in the protocol, reject them. */

6543 if (nm[0] == ’.’ && (nm[1] == ’\0’ || (nm[1] == ’.’ && nm[2] == ’\0’)))
6544 return (EISDIR);

6546 drp = VTOR4(dvp);

6548 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
6549 return (EINTR);

6551 top:
6552 /*
6553 * We make a copy of the attributes because the caller does not
6554 * expect us to change what va points to.
6555 */
6556 vattr = *va;

6558 /*
6559 * If the pathname is "", then dvp is the root vnode of
6560 * a remote file mounted over a local directory.
6561 * All that needs to be done is access
6562 * checking and truncation. Note that we avoid doing
6563 * open w/ create because the parent directory might
6564 * be in pseudo-fs and the open would fail.
6565 */
6566 if (*nm == ’\0’) {
6567 error = 0;
6568 VN_HOLD(dvp);
6569 vp = dvp;
6570 must_trunc = TRUE;
6571 } else {
6572 /*
6573 * We need to go over the wire, just to be sure whether the
6574 * file exists or not. Using the DNLC can be dangerous in
6575 * this case when making a decision regarding existence.
6576 */
6577 error = nfs4lookup(dvp, nm, &vp, cr, 1);
6578 }

6580 if (exclusive)
6581 createmode = EXCLUSIVE4;
6582 else
6583 createmode = GUARDED4;

6585 /*
6586 * error would be set if the file does not exist on the
6587 * server, so lets go create it.
6588 */
6589 if (error) {
6590 goto create_otw;
6591 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 101

6593 /*
6594 * File does exist on the server
6595 */
6596 if (exclusive == EXCL)
6597 error = EEXIST;
6598 else if (vp->v_type == VDIR && (mode & VWRITE))
6599 error = EISDIR;
6600 else {
6601 /*
6602 * If vnode is a device, create special vnode.
6603 */
6604 if (ISVDEV(vp->v_type)) {
6605 tempvp = vp;
6606 vp = specvp(vp, vp->v_rdev, vp->v_type, cr);
6607 VN_RELE(tempvp);
6608 }
6609 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) {
6610 if ((vattr.va_mask & AT_SIZE) &&
6611 vp->v_type == VREG) {
6612 rp = VTOR4(vp);
6613 /*
6614 * Check here for large file handled
6615 * by LF-unaware process (as
6616 * ufs_create() does)
6617 */
6618 if (!(flags & FOFFMAX)) {
6619 mutex_enter(&rp->r_statelock);
6620 if (rp->r_size > MAXOFF32_T)
6621 error = EOVERFLOW;
6622 mutex_exit(&rp->r_statelock);
6623 }

6625 /* if error is set then we need to return */
6626 if (error) {
6627 nfs_rw_exit(&drp->r_rwlock);
6628 VN_RELE(vp);
6629 return (error);
6630 }

6632 if (must_trunc) {
6633 vattr.va_mask = AT_SIZE;
6634 error = nfs4setattr(vp, &vattr, 0, cr,
6635 NULL);
6636 } else {
6637 /*
6638 * we know we have a regular file that already
6639 * exists and we may end up truncating the file
6640 * as a result of the open_otw, so flush out
6641 * any dirty pages for this file first.
6642 */
6643 if (nfs4_has_pages(vp) &&
6644 ((rp->r_flags & R4DIRTY) ||
6645 rp->r_count > 0 ||
6646 rp->r_mapcnt > 0)) {
6647 error = nfs4_putpage(vp,
6648 (offset_t)0, 0, 0, cr, ct);
6649 if (error && (error == ENOSPC ||
6650 error == EDQUOT)) {
6651 mutex_enter(
6652 &rp->r_statelock);
6653 if (!rp->r_error)
6654 rp->r_error =
6655 error;
6656 mutex_exit(
6657 &rp->r_statelock);
6658 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 102

6659 }
6660 vattr.va_mask = (AT_SIZE |
6661 AT_TYPE | AT_MODE);
6662 vattr.va_type = VREG;
6663 createmode = UNCHECKED4;
6664 truncating = 1;
6665 goto create_otw;
6666 }
6667 }
6668 }
6669 }
6670 nfs_rw_exit(&drp->r_rwlock);
6671 if (error) {
6672 VN_RELE(vp);
6673 } else {
6674 vnode_t *tvp;
6675 rnode4_t *trp;
6676 tvp = vp;
6677 if (vp->v_type == VREG) {
6678 trp = VTOR4(vp);
6679 if (IS_SHADOW(vp, trp))
6680 tvp = RTOV4(trp);
6681 }

6683 if (must_trunc) {
6684 /*
6685 * existing file got truncated, notify.
6686 */
6687 vnevent_create(tvp, ct);
6688 }

6690 *vpp = vp;
6691 }
6692 return (error);

6694 create_otw:
6695 dnlc_remove(dvp, nm);

6697 ASSERT(vattr.va_mask & AT_TYPE);

6699 /*
6700 * If not a regular file let nfs4mknod() handle it.
6701 */
6702 if (vattr.va_type != VREG) {
6703 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr);
6704 nfs_rw_exit(&drp->r_rwlock);
6705 return (error);
6706 }

6708 /*
6709 * It _is_ a regular file.
6710 */
6711 ASSERT(vattr.va_mask & AT_MODE);
6712 if (MANDMODE(vattr.va_mode)) {
6713 nfs_rw_exit(&drp->r_rwlock);
6714 return (EACCES);
6715 }

6717 /*
6718 * If this happens to be a mknod of a regular file, then flags will
6719 * have neither FREAD or FWRITE. However, we must set at least one
6720 * for the call to nfs4open_otw. If it’s open(O_CREAT) driving
6721 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been
6722 * set (based on openmode specified by app).
6723 */
6724 if ((flags & (FREAD|FWRITE)) == 0)

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 103

6725 flags |= (FREAD|FWRITE);

6727 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0);

6729 if (vp != NULL) {
6730 /* if create was successful, throw away the file’s pages */
6731 if (!error && (vattr.va_mask & AT_SIZE))
6732 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK),
6733 cr);
6734 /* release the lookup hold */
6735 VN_RELE(vp);
6736 vp = NULL;
6737 }

6739 /*
6740 * validate that we opened a regular file. This handles a misbehaving
6741 * server that returns an incorrect FH.
6742 */
6743 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) {
6744 error = EISDIR;
6745 VN_RELE(*vpp);
6746 }

6748 /*
6749 * If this is not an exclusive create, then the CREATE
6750 * request will be made with the GUARDED mode set. This
6751 * means that the server will return EEXIST if the file
6752 * exists. The file could exist because of a retransmitted
6753 * request. In this case, we recover by starting over and
6754 * checking to see whether the file exists. This second
6755 * time through it should and a CREATE request will not be
6756 * sent.
6757 *
6758 * This handles the problem of a dangling CREATE request
6759 * which contains attributes which indicate that the file
6760 * should be truncated. This retransmitted request could
6761 * possibly truncate valid data in the file if not caught
6762 * by the duplicate request mechanism on the server or if
6763 * not caught by other means. The scenario is:
6764 *
6765 * Client transmits CREATE request with size = 0
6766 * Client times out, retransmits request.
6767 * Response to the first request arrives from the server
6768 * and the client proceeds on.
6769 * Client writes data to the file.
6770 * The server now processes retransmitted CREATE request
6771 * and truncates file.
6772 *
6773 * The use of the GUARDED CREATE request prevents this from
6774 * happening because the retransmitted CREATE would fail
6775 * with EEXIST and would not truncate the file.
6776 */
6777 if (error == EEXIST && exclusive == NONEXCL) {
6778 #ifdef DEBUG
6779 nfs4_create_misses++;
6780 #endif
6781 goto top;
6782 }
6783 nfs_rw_exit(&drp->r_rwlock);
6784 if (truncating && !error && *vpp) {
6785 vnode_t *tvp;
6786 rnode4_t *trp;
6787 /*
6788 * existing file got truncated, notify.
6789 */
6790 tvp = *vpp;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 104

6791 trp = VTOR4(tvp);
6792 if (IS_SHADOW(tvp, trp))
6793 tvp = RTOV4(trp);
6794 vnevent_create(tvp, ct);
6795 }
6796 return (error);
6797 }

6799 /*
6800 * Create compound (for mkdir, mknod, symlink):
6801 * { Putfh <dfh>; Create; Getfh; Getattr }
6802 * It’s okay if setattr failed to set gid - this is not considered
6803 * an error, but purge attrs in that case.
6804 */
6805 static int
6806 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va,
6807 vnode_t **vpp, cred_t *cr, nfs_ftype4 type)
6808 {
6809 int need_end_op = FALSE;
6810 COMPOUND4args_clnt args;
6811 COMPOUND4res_clnt res, *resp = NULL;
6812 nfs_argop4 *argop;
6813 nfs_resop4 *resop;
6814 int doqueue;
6815 mntinfo4_t *mi;
6816 rnode4_t *drp = VTOR4(dvp);
6817 change_info4 *cinfo;
6818 GETFH4res *gf_res;
6819 struct vattr vattr;
6820 vnode_t *vp;
6821 fattr4 *crattr;
6822 bool_t needrecov = FALSE;
6823 nfs4_recov_state_t recov_state;
6824 nfs4_sharedfh_t *sfhp = NULL;
6825 hrtime_t t;
6826 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
6827 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr;
6828 dirattr_info_t dinfo, *dinfop;
6829 servinfo4_t *svp;
6830 bitmap4 supp_attrs;

6832 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK ||
6833 type == NF4CHR || type == NF4SOCK || type == NF4FIFO);

6835 mi = VTOMI4(dvp);

6837 /*
6838 * Make sure we properly deal with setting the right gid
6839 * on a new directory to reflect the parent’s setgid bit
6840 */
6841 setgid_flag = 0;
6842 if (type == NF4DIR) {
6843 struct vattr dva;

6845 va->va_mode &= ~VSGID;
6846 dva.va_mask = AT_MODE | AT_GID;
6847 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) {

6849 /*
6850 * If the parent’s directory has the setgid bit set
6851 * _and_ the client was able to get a valid mapping
6852 * for the parent dir’s owner_group, we want to
6853 * append NVERIFY(owner_group == dva.va_gid) and
6854 * SETTATTR to the CREATE compound.
6855 */
6856 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) {

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 105

6857 setgid_flag = 1;
6858 va->va_mode |= VSGID;
6859 if (dva.va_gid != GID_NOBODY) {
6860 va->va_mask |= AT_GID;
6861 va->va_gid = dva.va_gid;
6862 }
6863 }
6864 }
6865 }

6867 /*
6868 * Create ops:
6869 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new)
6870 * 5:restorefh(dir) 6:getattr(dir)
6871 *
6872 * if (setgid)
6873 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new)
6874 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new)
6875 * 8:nverify 9:setattr
6876 */
6877 if (setgid_flag) {
6878 numops = 10;
6879 idx_create = 1;
6880 idx_fattr = 3;
6881 } else {
6882 numops = 7;
6883 idx_create = 2;
6884 idx_fattr = 4;
6885 }

6887 ASSERT(nfs_zone() == mi->mi_zone);
6888 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) {
6889 return (EINTR);
6890 }
6891 recov_state.rs_flags = 0;
6892 recov_state.rs_num_retry_despite_err = 0;

6894 argoplist_size = numops * sizeof (nfs_argop4);
6895 argop = kmem_alloc(argoplist_size, KM_SLEEP);

6897 recov_retry:
6898 if (type == NF4LNK)
6899 args.ctag = TAG_SYMLINK;
6900 else if (type == NF4DIR)
6901 args.ctag = TAG_MKDIR;
6902 else
6903 args.ctag = TAG_MKNOD;

6905 args.array_len = numops;
6906 args.array = argop;

6908 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) {
6909 nfs_rw_exit(&drp->r_rwlock);
6910 kmem_free(argop, argoplist_size);
6911 return (e.error);
6912 }
6913 need_end_op = TRUE;

6916 /* 0: putfh directory */
6917 argop[0].argop = OP_CPUTFH;
6918 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;

6920 /* 1/2: Create object */
6921 argop[idx_create].argop = OP_CCREATE;
6922 argop[idx_create].nfs_argop4_u.opccreate.cname = nm;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 106

6923 argop[idx_create].nfs_argop4_u.opccreate.type = type;
6924 if (type == NF4LNK) {
6925 /*
6926 * symlink, treat name as data
6927 */
6928 ASSERT(data != NULL);
6929 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata =
6930 (char *)data;
6931 }
6932 if (type == NF4BLK || type == NF4CHR) {
6933 ASSERT(data != NULL);
6934 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata =
6935 *((specdata4 *)data);
6936 }

6938 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs;

6940 svp = drp->r_server;
6941 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
6942 supp_attrs = svp->sv_supp_attrs;
6943 nfs_rw_exit(&svp->sv_lock);

6945 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) {
6946 nfs_rw_exit(&drp->r_rwlock);
6947 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov);
6948 e.error = EINVAL;
6949 kmem_free(argop, argoplist_size);
6950 return (e.error);
6951 }

6953 /* 2/3: getfh fh of created object */
6954 ASSERT(idx_create + 1 == idx_fattr - 1);
6955 argop[idx_create + 1].argop = OP_GETFH;

6957 /* 3/4: getattr of new object */
6958 argop[idx_fattr].argop = OP_GETATTR;
6959 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
6960 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi;

6962 if (setgid_flag) {
6963 vattr_t _v;

6965 argop[4].argop = OP_SAVEFH;

6967 argop[5].argop = OP_CPUTFH;
6968 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh;

6970 argop[6].argop = OP_GETATTR;
6971 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
6972 argop[6].nfs_argop4_u.opgetattr.mi = mi;

6974 argop[7].argop = OP_RESTOREFH;

6976 /*
6977 * nverify
6978 *
6979 * XXX - Revisit the last argument to nfs4_end_op()
6980 * once 5020486 is fixed.
6981 */
6982 _v.va_mask = AT_GID;
6983 _v.va_gid = va->va_gid;
6984 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY,
6985 supp_attrs)) {
6986 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE);
6987 nfs_rw_exit(&drp->r_rwlock);
6988 nfs4_fattr4_free(crattr);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 107

6989 kmem_free(argop, argoplist_size);
6990 return (e.error);
6991 }

6993 /*
6994 * setattr
6995 *
6996 * We _know_ we’re not messing with AT_SIZE or AT_XTIME,
6997 * so no need for stateid or flags. Also we specify NULL
6998 * rp since we’re only interested in setting owner_group
6999 * attributes.
7000 */
7001 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs,
7002 &e.error, 0);

7004 if (e.error) {
7005 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE);
7006 nfs_rw_exit(&drp->r_rwlock);
7007 nfs4_fattr4_free(crattr);
7008 nfs4args_verify_free(&argop[8]);
7009 kmem_free(argop, argoplist_size);
7010 return (e.error);
7011 }
7012 } else {
7013 argop[1].argop = OP_SAVEFH;

7015 argop[5].argop = OP_RESTOREFH;

7017 argop[6].argop = OP_GETATTR;
7018 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7019 argop[6].nfs_argop4_u.opgetattr.mi = mi;
7020 }

7022 dnlc_remove(dvp, nm);

7024 doqueue = 1;
7025 t = gethrtime();
7026 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);

7028 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
7029 if (e.error) {
7030 PURGE_ATTRCACHE4(dvp);
7031 if (!needrecov)
7032 goto out;
7033 }

7035 if (needrecov) {
7036 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
7037 OP_CREATE, NULL, NULL, NULL) == FALSE) {
7038 nfs4_end_op(mi, dvp, NULL, &recov_state,
7039 needrecov);
7040 need_end_op = FALSE;
7041 nfs4_fattr4_free(crattr);
7042 if (setgid_flag) {
7043 nfs4args_verify_free(&argop[8]);
7044 nfs4args_setattr_free(&argop[9]);
7045 }
7046 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
7047 goto recov_retry;
7048 }
7049 }

7051 resp = &res;

7053 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) {

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 108

7055 if (res.status == NFS4ERR_BADOWNER)
7056 nfs4_log_badowner(mi, OP_CREATE);

7058 e.error = geterrno4(res.status);

7060 /*
7061 * This check is left over from when create was implemented
7062 * using a setattr op (instead of createattrs). If the
7063 * putfh/create/getfh failed, the error was returned. If
7064 * setattr/getattr failed, we keep going.
7065 *
7066 * It might be better to get rid of the GETFH also, and just
7067 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory.
7068 * Then if any of the operations failed, we could return the
7069 * error now, and remove much of the error code below.
7070 */
7071 if (res.array_len <= idx_fattr) {
7072 /*
7073 * Either Putfh, Create or Getfh failed.
7074 */
7075 PURGE_ATTRCACHE4(dvp);
7076 /*
7077 * nfs4_purge_stale_fh() may generate otw calls through
7078 * nfs4_invalidate_pages. Hence the need to call
7079 * nfs4_end_op() here to avoid nfs4_start_op() deadlock.
7080 */
7081 nfs4_end_op(mi, dvp, NULL, &recov_state,
7082 needrecov);
7083 need_end_op = FALSE;
7084 nfs4_purge_stale_fh(e.error, dvp, cr);
7085 goto out;
7086 }
7087 }

7089 resop = &res.array[idx_create]; /* create res */
7090 cinfo = &resop->nfs_resop4_u.opcreate.cinfo;

7092 resop = &res.array[idx_create + 1]; /* getfh res */
7093 gf_res = &resop->nfs_resop4_u.opgetfh;

7095 sfhp = sfh4_get(&gf_res->object, mi);
7096 if (e.error) {
7097 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp,
7098 fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
7099 if (vp->v_type == VNON) {
7100 vattr.va_mask = AT_TYPE;
7101 /*
7102 * Need to call nfs4_end_op before nfs4getattr to avoid
7103 * potential nfs4_start_op deadlock. See RFE 4777612.
7104 */
7105 nfs4_end_op(mi, dvp, NULL, &recov_state,
7106 needrecov);
7107 need_end_op = FALSE;
7108 e.error = nfs4getattr(vp, &vattr, cr);
7109 if (e.error) {
7110 VN_RELE(vp);
7111 *vpp = NULL;
7112 goto out;
7113 }
7114 vp->v_type = vattr.va_type;
7115 }
7116 e.error = 0;
7117 } else {
7118 *vpp = vp = makenfs4node(sfhp,
7119 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res,
7120 dvp->v_vfsp, t, cr,

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 109

7121 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
7122 }

7124 /*
7125 * If compound succeeded, then update dir attrs
7126 */
7127 if (res.status == NFS4_OK) {
7128 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res;
7129 dinfo.di_cred = cr;
7130 dinfo.di_time_call = t;
7131 dinfop = &dinfo;
7132 } else
7133 dinfop = NULL;

7135 /* Update directory cache attribute, readdir and dnlc caches */
7136 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop);

7138 out:
7139 if (sfhp != NULL)
7140 sfh4_rele(&sfhp);
7141 nfs_rw_exit(&drp->r_rwlock);
7142 nfs4_fattr4_free(crattr);
7143 if (setgid_flag) {
7144 nfs4args_verify_free(&argop[8]);
7145 nfs4args_setattr_free(&argop[9]);
7146 }
7147 if (resp)
7148 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
7149 if (need_end_op)
7150 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov);

7152 kmem_free(argop, argoplist_size);
7153 return (e.error);
7154 }

7156 /* ARGSUSED */
7157 static int
7158 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
7159 int mode, vnode_t **vpp, cred_t *cr)
7160 {
7161 int error;
7162 vnode_t *vp;
7163 nfs_ftype4 type;
7164 specdata4 spec, *specp = NULL;

7166 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);

7168 switch (va->va_type) {
7169 case VCHR:
7170 case VBLK:
7171 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK;
7172 spec.specdata1 = getmajor(va->va_rdev);
7173 spec.specdata2 = getminor(va->va_rdev);
7174 specp = &spec;
7175 break;

7177 case VFIFO:
7178 type = NF4FIFO;
7179 break;
7180 case VSOCK:
7181 type = NF4SOCK;
7182 break;

7184 default:
7185 return (EINVAL);
7186 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 110

7188 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type);
7189 if (error) {
7190 return (error);
7191 }

7193 /*
7194 * This might not be needed any more; special case to deal
7195 * with problematic v2/v3 servers. Since create was unable
7196 * to set group correctly, not sure what hope setattr has.
7197 */
7198 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) {
7199 va->va_mask = AT_GID;
7200 (void) nfs4setattr(vp, va, 0, cr, NULL);
7201 }

7203 /*
7204 * If vnode is a device create special vnode
7205 */
7206 if (ISVDEV(vp->v_type)) {
7207 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
7208 VN_RELE(vp);
7209 } else {
7210 *vpp = vp;
7211 }
7212 return (error);
7213 }

7215 /*
7216 * Remove requires that the current fh be the target directory.
7217 * After the operation, the current fh is unchanged.
7218 * The compound op structure is:
7219 * PUTFH(targetdir), REMOVE
7220 *
7221 * Weirdness: if the vnode to be removed is open
7222 * we rename it instead of removing it and nfs_inactive
7223 * will remove the new name.
7224 */
7225 /* ARGSUSED */
7226 static int
7227 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags)
7228 {
7229 COMPOUND4args_clnt args;
7230 COMPOUND4res_clnt res, *resp = NULL;
7231 REMOVE4res *rm_res;
7232 nfs_argop4 argop[3];
7233 nfs_resop4 *resop;
7234 vnode_t *vp;
7235 char *tmpname;
7236 int doqueue;
7237 mntinfo4_t *mi;
7238 rnode4_t *rp;
7239 rnode4_t *drp;
7240 int needrecov = 0;
7241 nfs4_recov_state_t recov_state;
7242 int isopen;
7243 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
7244 dirattr_info_t dinfo;

7246 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
7247 return (EPERM);
7248 drp = VTOR4(dvp);
7249 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
7250 return (EINTR);

7252 e.error = nfs4lookup(dvp, nm, &vp, cr, 0);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 111

7253 if (e.error) {
7254 nfs_rw_exit(&drp->r_rwlock);
7255 return (e.error);
7256 }

7258 if (vp->v_type == VDIR) {
7259 VN_RELE(vp);
7260 nfs_rw_exit(&drp->r_rwlock);
7261 return (EISDIR);
7262 }

7264 /*
7265 * First just remove the entry from the name cache, as it
7266 * is most likely the only entry for this vp.
7267 */
7268 dnlc_remove(dvp, nm);

7270 rp = VTOR4(vp);

7272 /*
7273 * For regular file types, check to see if the file is open by looking
7274 * at the open streams.
7275 * For all other types, check the reference count on the vnode. Since
7276 * they are not opened OTW they never have an open stream.
7277 *
7278 * If the file is open, rename it to .nfsXXXX.
7279 */
7280 if (vp->v_type != VREG) {
7281 /*
7282 * If the file has a v_count > 1 then there may be more than one
7283 * entry in the name cache due multiple links or an open file,
7284 * but we don’t have the real reference count so flush all
7285 * possible entries.
7286 */
7287 if (vp->v_count > 1)
7288 dnlc_purge_vp(vp);

7290 /*
7291 * Now we have the real reference count.
7292 */
7293 isopen = vp->v_count > 1;
7294 } else {
7295 mutex_enter(&rp->r_os_lock);
7296 isopen = list_head(&rp->r_open_streams) != NULL;
7297 mutex_exit(&rp->r_os_lock);
7298 }

7300 mutex_enter(&rp->r_statelock);
7301 if (isopen &&
7302 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) {
7303 mutex_exit(&rp->r_statelock);
7304 tmpname = newname();
7305 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct);
7306 if (e.error)
7307 kmem_free(tmpname, MAXNAMELEN);
7308 else {
7309 mutex_enter(&rp->r_statelock);
7310 if (rp->r_unldvp == NULL) {
7311 VN_HOLD(dvp);
7312 rp->r_unldvp = dvp;
7313 if (rp->r_unlcred != NULL)
7314 crfree(rp->r_unlcred);
7315 crhold(cr);
7316 rp->r_unlcred = cr;
7317 rp->r_unlname = tmpname;
7318 } else {

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 112

7319 kmem_free(rp->r_unlname, MAXNAMELEN);
7320 rp->r_unlname = tmpname;
7321 }
7322 mutex_exit(&rp->r_statelock);
7323 }
7324 VN_RELE(vp);
7325 nfs_rw_exit(&drp->r_rwlock);
7326 return (e.error);
7327 }
7328 /*
7329 * Actually remove the file/dir
7330 */
7331 mutex_exit(&rp->r_statelock);

7333 /*
7334 * We need to flush any dirty pages which happen to
7335 * be hanging around before removing the file.
7336 * This shouldn’t happen very often since in NFSv4
7337 * we should be close to open consistent.
7338 */
7339 if (nfs4_has_pages(vp) &&
7340 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) {
7341 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct);
7342 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) {
7343 mutex_enter(&rp->r_statelock);
7344 if (!rp->r_error)
7345 rp->r_error = e.error;
7346 mutex_exit(&rp->r_statelock);
7347 }
7348 }

7350 mi = VTOMI4(dvp);

7352 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN);
7353 recov_state.rs_flags = 0;
7354 recov_state.rs_num_retry_despite_err = 0;

7356 recov_retry:
7357 /*
7358 * Remove ops: putfh dir; remove
7359 */
7360 args.ctag = TAG_REMOVE;
7361 args.array_len = 3;
7362 args.array = argop;

7364 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
7365 if (e.error) {
7366 nfs_rw_exit(&drp->r_rwlock);
7367 VN_RELE(vp);
7368 return (e.error);
7369 }

7371 /* putfh directory */
7372 argop[0].argop = OP_CPUTFH;
7373 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;

7375 /* remove */
7376 argop[1].argop = OP_CREMOVE;
7377 argop[1].nfs_argop4_u.opcremove.ctarget = nm;

7379 /* getattr dir */
7380 argop[2].argop = OP_GETATTR;
7381 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7382 argop[2].nfs_argop4_u.opgetattr.mi = mi;

7384 doqueue = 1;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 113

7385 dinfo.di_time_call = gethrtime();
7386 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);

7388 PURGE_ATTRCACHE4(vp);

7390 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
7391 if (e.error)
7392 PURGE_ATTRCACHE4(dvp);

7394 if (needrecov) {
7395 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp,
7396 NULL, NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
7397 if (!e.error)
7398 (void) xdr_free(xdr_COMPOUND4res_clnt,
7399 (caddr_t)&res);
7400 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
7401 needrecov);
7402 goto recov_retry;
7403 }
7404 }

7406 /*
7407 * Matching nfs4_end_op() for start_op() above.
7408 * There is a path in the code below which calls
7409 * nfs4_purge_stale_fh(), which may generate otw calls through
7410 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
7411 * here to avoid nfs4_start_op() deadlock.
7412 */
7413 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);

7415 if (!e.error) {
7416 resp = &res;

7418 if (res.status) {
7419 e.error = geterrno4(res.status);
7420 PURGE_ATTRCACHE4(dvp);
7421 nfs4_purge_stale_fh(e.error, dvp, cr);
7422 } else {
7423 resop = &res.array[1]; /* remove res */
7424 rm_res = &resop->nfs_resop4_u.opremove;

7426 dinfo.di_garp =
7427 &res.array[2].nfs_resop4_u.opgetattr.ga_res;
7428 dinfo.di_cred = cr;

7430 /* Update directory attr, readdir and dnlc caches */
7431 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL,
7432 &dinfo);
7433 }
7434 }
7435 nfs_rw_exit(&drp->r_rwlock);
7436 if (resp)
7437 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);

7439 if (e.error == 0) {
7440 vnode_t *tvp;
7441 rnode4_t *trp;
7442 trp = VTOR4(vp);
7443 tvp = vp;
7444 if (IS_SHADOW(vp, trp))
7445 tvp = RTOV4(trp);
7446 vnevent_remove(tvp, dvp, nm, ct);
7447 }
7448 VN_RELE(vp);
7449 return (e.error);
7450 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 114

7452 /*
7453 * Link requires that the current fh be the target directory and the
7454 * saved fh be the source fh. After the operation, the current fh is unchanged.
7455 * Thus the compound op structure is:
7456 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH,
7457 * GETATTR(file)
7458 */
7459 /* ARGSUSED */
7460 static int
7461 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr,
7462 caller_context_t *ct, int flags)
7463 {
7464 COMPOUND4args_clnt args;
7465 COMPOUND4res_clnt res, *resp = NULL;
7466 LINK4res *ln_res;
7467 int argoplist_size = 7 * sizeof (nfs_argop4);
7468 nfs_argop4 *argop;
7469 nfs_resop4 *resop;
7470 vnode_t *realvp, *nvp;
7471 int doqueue;
7472 mntinfo4_t *mi;
7473 rnode4_t *tdrp;
7474 bool_t needrecov = FALSE;
7475 nfs4_recov_state_t recov_state;
7476 hrtime_t t;
7477 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
7478 dirattr_info_t dinfo;

7480 ASSERT(*tnm != ’\0’);
7481 ASSERT(tdvp->v_type == VDIR);
7482 ASSERT(nfs4_consistent_type(tdvp));
7483 ASSERT(nfs4_consistent_type(svp));

7485 if (nfs_zone() != VTOMI4(tdvp)->mi_zone)
7486 return (EPERM);
7487 if (VOP_REALVP(svp, &realvp, ct) == 0) {
7488 svp = realvp;
7489 ASSERT(nfs4_consistent_type(svp));
7490 }

7492 tdrp = VTOR4(tdvp);
7493 mi = VTOMI4(svp);

7495 if (!(mi->mi_flags & MI4_LINK)) {
7496 return (EOPNOTSUPP);
7497 }
7498 recov_state.rs_flags = 0;
7499 recov_state.rs_num_retry_despite_err = 0;

7501 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp)))
7502 return (EINTR);

7504 recov_retry:
7505 argop = kmem_alloc(argoplist_size, KM_SLEEP);

7507 args.ctag = TAG_LINK;

7509 /*
7510 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir);
7511 * restorefh; getattr(fl)
7512 */
7513 args.array_len = 7;
7514 args.array = argop;

7516 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 115

7517 if (e.error) {
7518 kmem_free(argop, argoplist_size);
7519 nfs_rw_exit(&tdrp->r_rwlock);
7520 return (e.error);
7521 }

7523 /* 0. putfh file */
7524 argop[0].argop = OP_CPUTFH;
7525 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh;

7527 /* 1. save current fh to free up the space for the dir */
7528 argop[1].argop = OP_SAVEFH;

7530 /* 2. putfh targetdir */
7531 argop[2].argop = OP_CPUTFH;
7532 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh;

7534 /* 3. link: current_fh is targetdir, saved_fh is source */
7535 argop[3].argop = OP_CLINK;
7536 argop[3].nfs_argop4_u.opclink.cnewname = tnm;

7538 /* 4. Get attributes of dir */
7539 argop[4].argop = OP_GETATTR;
7540 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7541 argop[4].nfs_argop4_u.opgetattr.mi = mi;

7543 /* 5. If link was successful, restore current vp to file */
7544 argop[5].argop = OP_RESTOREFH;

7546 /* 6. Get attributes of linked object */
7547 argop[6].argop = OP_GETATTR;
7548 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7549 argop[6].nfs_argop4_u.opgetattr.mi = mi;

7551 dnlc_remove(tdvp, tnm);

7553 doqueue = 1;
7554 t = gethrtime();

7556 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e);

7558 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp);
7559 if (e.error != 0 && !needrecov) {
7560 PURGE_ATTRCACHE4(tdvp);
7561 PURGE_ATTRCACHE4(svp);
7562 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov);
7563 goto out;
7564 }

7566 if (needrecov) {
7567 bool_t abort;

7569 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp,
7570 NULL, NULL, OP_LINK, NULL, NULL, NULL);
7571 if (abort == FALSE) {
7572 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state,
7573 needrecov);
7574 kmem_free(argop, argoplist_size);
7575 if (!e.error)
7576 (void) xdr_free(xdr_COMPOUND4res_clnt,
7577 (caddr_t)&res);
7578 goto recov_retry;
7579 } else {
7580 if (e.error != 0) {
7581 PURGE_ATTRCACHE4(tdvp);
7582 PURGE_ATTRCACHE4(svp);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 116

7583 nfs4_end_op(VTOMI4(svp), svp, tdvp,
7584 &recov_state, needrecov);
7585 goto out;
7586 }
7587 /* fall through for res.status case */
7588 }
7589 }

7591 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov);

7593 resp = &res;
7594 if (res.status) {
7595 /* If link succeeded, then don’t return error */
7596 e.error = geterrno4(res.status);
7597 if (res.array_len <= 4) {
7598 /*
7599 * Either Putfh, Savefh, Putfh dir, or Link failed
7600 */
7601 PURGE_ATTRCACHE4(svp);
7602 PURGE_ATTRCACHE4(tdvp);
7603 if (e.error == EOPNOTSUPP) {
7604 mutex_enter(&mi->mi_lock);
7605 mi->mi_flags &= ~MI4_LINK;
7606 mutex_exit(&mi->mi_lock);
7607 }
7608 /* Remap EISDIR to EPERM for non-root user for SVVS */
7609 /* XXX-LP */
7610 if (e.error == EISDIR && crgetuid(cr) != 0)
7611 e.error = EPERM;
7612 goto out;
7613 }
7614 }

7616 /* either no error or one of the postop getattr failed */

7618 /*
7619 * XXX - if LINK succeeded, but no attrs were returned for link
7620 * file, purge its cache.
7621 *
7622 * XXX Perform a simplified version of wcc checking. Instead of
7623 * have another getattr to get pre-op, just purge cache if
7624 * any of the ops prior to and including the getattr failed.
7625 * If the getattr succeeded then update the attrcache accordingly.
7626 */

7628 /*
7629 * update cache with link file postattrs.
7630 * Note: at this point resop points to link res.
7631 */
7632 resop = &res.array[3]; /* link res */
7633 ln_res = &resop->nfs_resop4_u.oplink;
7634 if (res.status == NFS4_OK)
7635 e.error = nfs4_update_attrcache(res.status,
7636 &res.array[6].nfs_resop4_u.opgetattr.ga_res,
7637 t, svp, cr);

7639 /*
7640 * Call makenfs4node to create the new shadow vp for tnm.
7641 * We pass NULL attrs because we just cached attrs for
7642 * the src object. All we’re trying to accomplish is to
7643 * to create the new shadow vnode.
7644 */
7645 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr,
7646 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm, VTOR4(svp)->r_fh));

7648 /* Update target cache attribute, readdir and dnlc caches */

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 117

7649 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res;
7650 dinfo.di_time_call = t;
7651 dinfo.di_cred = cr;

7653 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo);
7654 ASSERT(nfs4_consistent_type(tdvp));
7655 ASSERT(nfs4_consistent_type(svp));
7656 ASSERT(nfs4_consistent_type(nvp));
7657 VN_RELE(nvp);

7659 if (!e.error) {
7660 vnode_t *tvp;
7661 rnode4_t *trp;
7662 /*
7663 * Notify the source file of this link operation.
7664 */
7665 trp = VTOR4(svp);
7666 tvp = svp;
7667 if (IS_SHADOW(svp, trp))
7668 tvp = RTOV4(trp);
7669 vnevent_link(tvp, ct);
7670 }
7671 out:
7672 kmem_free(argop, argoplist_size);
7673 if (resp)
7674 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);

7676 nfs_rw_exit(&tdrp->r_rwlock);

7678 return (e.error);
7679 }

7681 /* ARGSUSED */
7682 static int
7683 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
7684 caller_context_t *ct, int flags)
7685 {
7686 vnode_t *realvp;

7688 if (nfs_zone() != VTOMI4(odvp)->mi_zone)
7689 return (EPERM);
7690 if (VOP_REALVP(ndvp, &realvp, ct) == 0)
7691 ndvp = realvp;

7693 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct));
7694 }

7696 /*
7697 * nfs4rename does the real work of renaming in NFS Version 4.
7698 *
7699 * A file handle is considered volatile for renaming purposes if either
7700 * of the volatile bits are turned on. However, the compound may differ
7701 * based on the likelihood of the filehandle to change during rename.
7702 */
7703 static int
7704 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
7705 caller_context_t *ct)
7706 {
7707 int error;
7708 mntinfo4_t *mi;
7709 vnode_t *nvp = NULL;
7710 vnode_t *ovp = NULL;
7711 char *tmpname = NULL;
7712 rnode4_t *rp;
7713 rnode4_t *odrp;
7714 rnode4_t *ndrp;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 118

7715 int did_link = 0;
7716 int do_link = 1;
7717 nfsstat4 stat = NFS4_OK;

7719 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
7720 ASSERT(nfs4_consistent_type(odvp));
7721 ASSERT(nfs4_consistent_type(ndvp));

7723 if (onm[0] == ’.’ && (onm[1] == ’\0’ ||
7724 (onm[1] == ’.’ && onm[2] == ’\0’)))
7725 return (EINVAL);

7727 if (nnm[0] == ’.’ && (nnm[1] == ’\0’ ||
7728 (nnm[1] == ’.’ && nnm[2] == ’\0’)))
7729 return (EINVAL);

7731 odrp = VTOR4(odvp);
7732 ndrp = VTOR4(ndvp);
7733 if ((intptr_t)odrp < (intptr_t)ndrp) {
7734 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp)))
7735 return (EINTR);
7736 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) {
7737 nfs_rw_exit(&odrp->r_rwlock);
7738 return (EINTR);
7739 }
7740 } else {
7741 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp)))
7742 return (EINTR);
7743 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) {
7744 nfs_rw_exit(&ndrp->r_rwlock);
7745 return (EINTR);
7746 }
7747 }

7749 /*
7750 * Lookup the target file. If it exists, it needs to be
7751 * checked to see whether it is a mount point and whether
7752 * it is active (open).
7753 */
7754 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0);
7755 if (!error) {
7756 int isactive;

7758 ASSERT(nfs4_consistent_type(nvp));
7759 /*
7760 * If this file has been mounted on, then just
7761 * return busy because renaming to it would remove
7762 * the mounted file system from the name space.
7763 */
7764 if (vn_ismntpt(nvp)) {
7765 VN_RELE(nvp);
7766 nfs_rw_exit(&odrp->r_rwlock);
7767 nfs_rw_exit(&ndrp->r_rwlock);
7768 return (EBUSY);
7769 }

7771 /*
7772 * First just remove the entry from the name cache, as it
7773 * is most likely the only entry for this vp.
7774 */
7775 dnlc_remove(ndvp, nnm);

7777 rp = VTOR4(nvp);

7779 if (nvp->v_type != VREG) {
7780 /*

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 119

7781 * Purge the name cache of all references to this vnode
7782 * so that we can check the reference count to infer
7783 * whether it is active or not.
7784 */
7785 if (nvp->v_count > 1)
7786 dnlc_purge_vp(nvp);

7788 isactive = nvp->v_count > 1;
7789 } else {
7790 mutex_enter(&rp->r_os_lock);
7791 isactive = list_head(&rp->r_open_streams) != NULL;
7792 mutex_exit(&rp->r_os_lock);
7793 }

7795 /*
7796 * If the vnode is active and is not a directory,
7797 * arrange to rename it to a
7798 * temporary file so that it will continue to be
7799 * accessible. This implements the "unlink-open-file"
7800 * semantics for the target of a rename operation.
7801 * Before doing this though, make sure that the
7802 * source and target files are not already the same.
7803 */
7804 if (isactive && nvp->v_type != VDIR) {
7805 /*
7806 * Lookup the source name.
7807 */
7808 error = nfs4lookup(odvp, onm, &ovp, cr, 0);

7810 /*
7811 * The source name *should* already exist.
7812 */
7813 if (error) {
7814 VN_RELE(nvp);
7815 nfs_rw_exit(&odrp->r_rwlock);
7816 nfs_rw_exit(&ndrp->r_rwlock);
7817 return (error);
7818 }

7820 ASSERT(nfs4_consistent_type(ovp));

7822 /*
7823 * Compare the two vnodes. If they are the same,
7824 * just release all held vnodes and return success.
7825 */
7826 if (VN_CMP(ovp, nvp)) {
7827 VN_RELE(ovp);
7828 VN_RELE(nvp);
7829 nfs_rw_exit(&odrp->r_rwlock);
7830 nfs_rw_exit(&ndrp->r_rwlock);
7831 return (0);
7832 }

7834 /*
7835 * Can’t mix and match directories and non-
7836 * directories in rename operations. We already
7837 * know that the target is not a directory. If
7838 * the source is a directory, return an error.
7839 */
7840 if (ovp->v_type == VDIR) {
7841 VN_RELE(ovp);
7842 VN_RELE(nvp);
7843 nfs_rw_exit(&odrp->r_rwlock);
7844 nfs_rw_exit(&ndrp->r_rwlock);
7845 return (ENOTDIR);
7846 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 120

7847 link_call:
7848 /*
7849 * The target file exists, is not the same as
7850 * the source file, and is active. We first
7851 * try to Link it to a temporary filename to
7852 * avoid having the server removing the file
7853 * completely (which could cause data loss to
7854 * the user’s POV in the event the Rename fails
7855 * -- see bug 1165874).
7856 */
7857 /*
7858 * The do_link and did_link booleans are
7859 * introduced in the event we get NFS4ERR_FILE_OPEN
7860 * returned for the Rename. Some servers can
7861 * not Rename over an Open file, so they return
7862 * this error. The client needs to Remove the
7863 * newly created Link and do two Renames, just
7864 * as if the server didn’t support LINK.
7865 */
7866 tmpname = newname();
7867 error = 0;

7869 if (do_link) {
7870 error = nfs4_link(ndvp, nvp, tmpname, cr,
7871 NULL, 0);
7872 }
7873 if (error == EOPNOTSUPP || !do_link) {
7874 error = nfs4_rename(ndvp, nnm, ndvp, tmpname,
7875 cr, NULL, 0);
7876 did_link = 0;
7877 } else {
7878 did_link = 1;
7879 }
7880 if (error) {
7881 kmem_free(tmpname, MAXNAMELEN);
7882 VN_RELE(ovp);
7883 VN_RELE(nvp);
7884 nfs_rw_exit(&odrp->r_rwlock);
7885 nfs_rw_exit(&ndrp->r_rwlock);
7886 return (error);
7887 }

7889 mutex_enter(&rp->r_statelock);
7890 if (rp->r_unldvp == NULL) {
7891 VN_HOLD(ndvp);
7892 rp->r_unldvp = ndvp;
7893 if (rp->r_unlcred != NULL)
7894 crfree(rp->r_unlcred);
7895 crhold(cr);
7896 rp->r_unlcred = cr;
7897 rp->r_unlname = tmpname;
7898 } else {
7899 if (rp->r_unlname)
7900 kmem_free(rp->r_unlname, MAXNAMELEN);
7901 rp->r_unlname = tmpname;
7902 }
7903 mutex_exit(&rp->r_statelock);
7904 }

7906 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN);

7908 ASSERT(nfs4_consistent_type(nvp));
7909 }

7911 if (ovp == NULL) {
7912 /*

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 121

7913 * When renaming directories to be a subdirectory of a
7914 * different parent, the dnlc entry for ".." will no
7915 * longer be valid, so it must be removed.
7916 *
7917 * We do a lookup here to determine whether we are renaming
7918 * a directory and we need to check if we are renaming
7919 * an unlinked file. This might have already been done
7920 * in previous code, so we check ovp == NULL to avoid
7921 * doing it twice.
7922 */
7923 error = nfs4lookup(odvp, onm, &ovp, cr, 0);
7924 /*
7925 * The source name *should* already exist.
7926 */
7927 if (error) {
7928 nfs_rw_exit(&odrp->r_rwlock);
7929 nfs_rw_exit(&ndrp->r_rwlock);
7930 if (nvp) {
7931 VN_RELE(nvp);
7932 }
7933 return (error);
7934 }
7935 ASSERT(ovp != NULL);
7936 ASSERT(nfs4_consistent_type(ovp));
7937 }

7939 /*
7940 * Is the object being renamed a dir, and if so, is
7941 * it being renamed to a child of itself? The underlying
7942 * fs should ultimately return EINVAL for this case;
7943 * however, buggy beta non-Solaris NFSv4 servers at
7944 * interop testing events have allowed this behavior,
7945 * and it caused our client to panic due to a recursive
7946 * mutex_enter in fn_move.
7947 *
7948 * The tedious locking in fn_move could be changed to
7949 * deal with this case, and the client could avoid the
7950 * panic; however, the client would just confuse itself
7951 * later and misbehave. A better way to handle the broken
7952 * server is to detect this condition and return EINVAL
7953 * without ever sending the the bogus rename to the server.
7954 * We know the rename is invalid -- just fail it now.
7955 */
7956 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) {
7957 VN_RELE(ovp);
7958 nfs_rw_exit(&odrp->r_rwlock);
7959 nfs_rw_exit(&ndrp->r_rwlock);
7960 if (nvp) {
7961 VN_RELE(nvp);
7962 }
7963 return (EINVAL);
7964 }

7966 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN);

7968 /*
7969 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is
7970 * possible for the filehandle to change due to the rename.
7971 * If neither of these bits is set, but FH4_VOL_MIGRATION is set,
7972 * the fh will not change because of the rename, but we still need
7973 * to update its rnode entry with the new name for
7974 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN
7975 * has no effect on these for now, but for future improvements,
7976 * we might want to use it too to simplify handling of files
7977 * that are open with that flag on. (XXX)
7978 */

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 122

7979 mi = VTOMI4(odvp);
7980 if (NFS4_VOLATILE_FH(mi))
7981 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr,
7982 &stat);
7983 else
7984 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr,
7985 &stat);

7987 ASSERT(nfs4_consistent_type(odvp));
7988 ASSERT(nfs4_consistent_type(ndvp));
7989 ASSERT(nfs4_consistent_type(ovp));

7991 if (stat == NFS4ERR_FILE_OPEN && did_link) {
7992 do_link = 0;
7993 /*
7994 * Before the ’link_call’ code, we did a nfs4_lookup
7995 * that puts a VN_HOLD on nvp. After the nfs4_link
7996 * call we call VN_RELE to match that hold. We need
7997 * to place an additional VN_HOLD here since we will
7998 * be hitting that VN_RELE again.
7999 */
8000 VN_HOLD(nvp);

8002 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0);

8004 /* Undo the unlinked file naming stuff we just did */
8005 mutex_enter(&rp->r_statelock);
8006 if (rp->r_unldvp) {
8007 VN_RELE(ndvp);
8008 rp->r_unldvp = NULL;
8009 if (rp->r_unlcred != NULL)
8010 crfree(rp->r_unlcred);
8011 rp->r_unlcred = NULL;
8012 /* rp->r_unlanme points to tmpname */
8013 if (rp->r_unlname)
8014 kmem_free(rp->r_unlname, MAXNAMELEN);
8015 rp->r_unlname = NULL;
8016 }
8017 mutex_exit(&rp->r_statelock);

8019 if (nvp) {
8020 VN_RELE(nvp);
8021 }
8022 goto link_call;
8023 }

8025 if (error) {
8026 VN_RELE(ovp);
8027 nfs_rw_exit(&odrp->r_rwlock);
8028 nfs_rw_exit(&ndrp->r_rwlock);
8029 if (nvp) {
8030 VN_RELE(nvp);
8031 }
8032 return (error);
8033 }

8035 /*
8036 * when renaming directories to be a subdirectory of a
8037 * different parent, the dnlc entry for ".." will no
8038 * longer be valid, so it must be removed
8039 */
8040 rp = VTOR4(ovp);
8041 if (ndvp != odvp) {
8042 if (ovp->v_type == VDIR) {
8043 dnlc_remove(ovp, "..");
8044 if (rp->r_dir != NULL)

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 123

8045 nfs4_purge_rddir_cache(ovp);
8046 }
8047 }

8049 /*
8050 * If we are renaming the unlinked file, update the
8051 * r_unldvp and r_unlname as needed.
8052 */
8053 mutex_enter(&rp->r_statelock);
8054 if (rp->r_unldvp != NULL) {
8055 if (strcmp(rp->r_unlname, onm) == 0) {
8056 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN);
8057 rp->r_unlname[MAXNAMELEN - 1] = ’\0’;
8058 if (ndvp != rp->r_unldvp) {
8059 VN_RELE(rp->r_unldvp);
8060 rp->r_unldvp = ndvp;
8061 VN_HOLD(ndvp);
8062 }
8063 }
8064 }
8065 mutex_exit(&rp->r_statelock);

8067 /*
8068 * Notify the rename vnevents to source vnode, and to the target
8069 * vnode if it already existed.
8070 */
8071 if (error == 0) {
8072 vnode_t *tvp;
8073 rnode4_t *trp;
8074 /*
8075 * Notify the vnode. Each links is represented by
8076 * a different vnode, in nfsv4.
8077 */
8078 if (nvp) {
8079 trp = VTOR4(nvp);
8080 tvp = nvp;
8081 if (IS_SHADOW(nvp, trp))
8082 tvp = RTOV4(trp);
8083 vnevent_rename_dest(tvp, ndvp, nnm, ct);
8084 }

8086 /*
8087 * if the source and destination directory are not the
8088 * same notify the destination directory.
8089 */
8090 if (VTOR4(odvp) != VTOR4(ndvp)) {
8091 trp = VTOR4(ndvp);
8092 tvp = ndvp;
8093 if (IS_SHADOW(ndvp, trp))
8094 tvp = RTOV4(trp);
8095 vnevent_rename_dest_dir(tvp, ct);
8096 }

8098 trp = VTOR4(ovp);
8099 tvp = ovp;
8100 if (IS_SHADOW(ovp, trp))
8101 tvp = RTOV4(trp);
8102 vnevent_rename_src(tvp, odvp, onm, ct);
8103 }

8105 if (nvp) {
8106 VN_RELE(nvp);
8107 }
8108 VN_RELE(ovp);

8110 nfs_rw_exit(&odrp->r_rwlock);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 124

8111 nfs_rw_exit(&ndrp->r_rwlock);

8113 return (error);
8114 }

8116 /*
8117 * When the parent directory has changed, sv_dfh must be updated
8118 */
8119 static void
8120 update_parentdir_sfh(vnode_t *vp, vnode_t *ndvp)
8121 {
8122 svnode_t *sv = VTOSV(vp);
8123 nfs4_sharedfh_t *old_dfh = sv->sv_dfh;
8124 nfs4_sharedfh_t *new_dfh = VTOR4(ndvp)->r_fh;

8126 sfh4_hold(new_dfh);
8127 sv->sv_dfh = new_dfh;
8128 sfh4_rele(&old_dfh);
8129 }

8131 /*
8132 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4,
8133 * when it is known that the filehandle is persistent through rename.
8134 *
8135 * Rename requires that the current fh be the target directory and the
8136 * saved fh be the source directory. After the operation, the current fh
8137 * is unchanged.
8138 * The compound op structure for persistent fh rename is:
8139 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME
8140 * Rather than bother with the directory postop args, we’ll simply
8141 * update that a change occurred in the cache, so no post-op getattrs.
8142 */
8143 static int
8144 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp,
8145 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp)
8146 {
8147 COMPOUND4args_clnt args;
8148 COMPOUND4res_clnt res, *resp = NULL;
8149 nfs_argop4 *argop;
8150 nfs_resop4 *resop;
8151 int doqueue, argoplist_size;
8152 mntinfo4_t *mi;
8153 rnode4_t *odrp = VTOR4(odvp);
8154 rnode4_t *ndrp = VTOR4(ndvp);
8155 RENAME4res *rn_res;
8156 bool_t needrecov;
8157 nfs4_recov_state_t recov_state;
8158 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8159 dirattr_info_t dinfo, *dinfop;

8161 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);

8163 recov_state.rs_flags = 0;
8164 recov_state.rs_num_retry_despite_err = 0;

8166 /*
8167 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir
8168 *
8169 * If source/target are different dirs, then append putfh(src); getattr
8170 */
8171 args.array_len = (odvp == ndvp) ? 5 : 7;
8172 argoplist_size = args.array_len * sizeof (nfs_argop4);
8173 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP);

8175 recov_retry:
8176 *statp = NFS4_OK;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 125

8178 /* No need to Lookup the file, persistent fh */
8179 args.ctag = TAG_RENAME;

8181 mi = VTOMI4(odvp);
8182 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state);
8183 if (e.error) {
8184 kmem_free(argop, argoplist_size);
8185 return (e.error);
8186 }

8188 /* 0: putfh source directory */
8189 argop[0].argop = OP_CPUTFH;
8190 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh;

8192 /* 1: Save source fh to free up current for target */
8193 argop[1].argop = OP_SAVEFH;

8195 /* 2: putfh targetdir */
8196 argop[2].argop = OP_CPUTFH;
8197 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;

8199 /* 3: current_fh is targetdir, saved_fh is sourcedir */
8200 argop[3].argop = OP_CRENAME;
8201 argop[3].nfs_argop4_u.opcrename.coldname = onm;
8202 argop[3].nfs_argop4_u.opcrename.cnewname = nnm;

8204 /* 4: getattr (targetdir) */
8205 argop[4].argop = OP_GETATTR;
8206 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8207 argop[4].nfs_argop4_u.opgetattr.mi = mi;

8209 if (ndvp != odvp) {

8211 /* 5: putfh (sourcedir) */
8212 argop[5].argop = OP_CPUTFH;
8213 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;

8215 /* 6: getattr (sourcedir) */
8216 argop[6].argop = OP_GETATTR;
8217 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8218 argop[6].nfs_argop4_u.opgetattr.mi = mi;
8219 }

8221 dnlc_remove(odvp, onm);
8222 dnlc_remove(ndvp, nnm);

8224 doqueue = 1;
8225 dinfo.di_time_call = gethrtime();
8226 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);

8228 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8229 if (e.error) {
8230 PURGE_ATTRCACHE4(odvp);
8231 PURGE_ATTRCACHE4(ndvp);
8232 } else {
8233 *statp = res.status;
8234 }

8236 if (needrecov) {
8237 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL,
8238 OP_RENAME, NULL, NULL, NULL) == FALSE) {
8239 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov);
8240 if (!e.error)
8241 (void) xdr_free(xdr_COMPOUND4res_clnt,
8242 (caddr_t)&res);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 126

8243 goto recov_retry;
8244 }
8245 }

8247 if (!e.error) {
8248 resp = &res;
8249 /*
8250 * as long as OP_RENAME
8251 */
8252 if (res.status != NFS4_OK && res.array_len <= 4) {
8253 e.error = geterrno4(res.status);
8254 PURGE_ATTRCACHE4(odvp);
8255 PURGE_ATTRCACHE4(ndvp);
8256 /*
8257 * System V defines rename to return EEXIST, not
8258 * ENOTEMPTY if the target directory is not empty.
8259 * Over the wire, the error is NFSERR_ENOTEMPTY
8260 * which geterrno4 maps to ENOTEMPTY.
8261 */
8262 if (e.error == ENOTEMPTY)
8263 e.error = EEXIST;
8264 } else {

8266 resop = &res.array[3]; /* rename res */
8267 rn_res = &resop->nfs_resop4_u.oprename;

8269 if (res.status == NFS4_OK) {
8270 /*
8271 * Update target attribute, readdir and dnlc
8272 * caches.
8273 */
8274 dinfo.di_garp =
8275 &res.array[4].nfs_resop4_u.opgetattr.ga_res;
8276 dinfo.di_cred = cr;
8277 dinfop = &dinfo;
8278 } else
8279 dinfop = NULL;

8281 nfs4_update_dircaches(&rn_res->target_cinfo,
8282 ndvp, NULL, NULL, dinfop);

8284 /*
8285 * Update source attribute, readdir and dnlc caches
8286 *
8287 */
8288 if (ndvp != odvp) {
8289 update_parentdir_sfh(renvp, ndvp);

8291 if (dinfop)
8292 dinfo.di_garp =
8293 &(res.array[6].nfs_resop4_u.
8294 opgetattr.ga_res);

8296 nfs4_update_dircaches(&rn_res->source_cinfo,
8297 odvp, NULL, NULL, dinfop);
8298 }

8300 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name,
8301 nnm);
8302 }
8303 }

8305 if (resp)
8306 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
8307 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov);
8308 kmem_free(argop, argoplist_size);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 127

8310 return (e.error);
8311 }

8313 /*
8314 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when
8315 * it is possible for the filehandle to change due to the rename.
8316 *
8317 * The compound req in this case includes a post-rename lookup and getattr
8318 * to ensure that we have the correct fh and attributes for the object.
8319 *
8320 * Rename requires that the current fh be the target directory and the
8321 * saved fh be the source directory. After the operation, the current fh
8322 * is unchanged.
8323 *
8324 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can
8325 * update the filehandle for the renamed object. We also get the old
8326 * filehandle for historical reasons; this should be taken out sometime.
8327 * This results in a rather cumbersome compound...
8328 *
8329 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old),
8330 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR
8331 *
8332 */
8333 static int
8334 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp,
8335 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp)
8336 {
8337 COMPOUND4args_clnt args;
8338 COMPOUND4res_clnt res, *resp = NULL;
8339 int argoplist_size;
8340 nfs_argop4 *argop;
8341 nfs_resop4 *resop;
8342 int doqueue;
8343 mntinfo4_t *mi;
8344 rnode4_t *odrp = VTOR4(odvp); /* old directory */
8345 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */
8346 rnode4_t *orp = VTOR4(ovp); /* object being renamed */
8347 RENAME4res *rn_res;
8348 GETFH4res *ngf_res;
8349 bool_t needrecov;
8350 nfs4_recov_state_t recov_state;
8351 hrtime_t t;
8352 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8353 dirattr_info_t dinfo, *dinfop = &dinfo;

8355 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);

8357 recov_state.rs_flags = 0;
8358 recov_state.rs_num_retry_despite_err = 0;

8360 recov_retry:
8361 *statp = NFS4_OK;

8363 /*
8364 * There is a window between the RPC and updating the path and
8365 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery
8366 * code, so that it doesn’t try to use the old path during that
8367 * window.
8368 */
8369 mutex_enter(&orp->r_statelock);
8370 while (orp->r_flags & R4RECEXPFH) {
8371 klwp_t *lwp = ttolwp(curthread);

8373 if (lwp != NULL)
8374 lwp->lwp_nostop++;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 128

8375 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) {
8376 mutex_exit(&orp->r_statelock);
8377 if (lwp != NULL)
8378 lwp->lwp_nostop--;
8379 return (EINTR);
8380 }
8381 if (lwp != NULL)
8382 lwp->lwp_nostop--;
8383 }
8384 orp->r_flags |= R4RECEXPFH;
8385 mutex_exit(&orp->r_statelock);

8387 mi = VTOMI4(odvp);

8389 args.ctag = TAG_RENAME_VFH;
8390 args.array_len = (odvp == ndvp) ? 10 : 12;
8391 argoplist_size = args.array_len * sizeof (nfs_argop4);
8392 argop = kmem_alloc(argoplist_size, KM_SLEEP);

8394 /*
8395 * Rename ops:
8396 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old),
8397 * PUTFH(targetdir), RENAME, GETATTR(targetdir)
8398 * LOOKUP(trgt), GETFH(new), GETATTR,
8399 *
8400 * if (odvp != ndvp)
8401 * add putfh(sourcedir), getattr(sourcedir) }
8402 */
8403 args.array = argop;

8405 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8406 &recov_state, NULL);
8407 if (e.error) {
8408 kmem_free(argop, argoplist_size);
8409 mutex_enter(&orp->r_statelock);
8410 orp->r_flags &= ~R4RECEXPFH;
8411 cv_broadcast(&orp->r_cv);
8412 mutex_exit(&orp->r_statelock);
8413 return (e.error);
8414 }

8416 /* 0: putfh source directory */
8417 argop[0].argop = OP_CPUTFH;
8418 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh;

8420 /* 1: Save source fh to free up current for target */
8421 argop[1].argop = OP_SAVEFH;

8423 /* 2: Lookup pre-rename fh of renamed object */
8424 argop[2].argop = OP_CLOOKUP;
8425 argop[2].nfs_argop4_u.opclookup.cname = onm;

8427 /* 3: getfh fh of renamed object (before rename) */
8428 argop[3].argop = OP_GETFH;

8430 /* 4: putfh targetdir */
8431 argop[4].argop = OP_CPUTFH;
8432 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;

8434 /* 5: current_fh is targetdir, saved_fh is sourcedir */
8435 argop[5].argop = OP_CRENAME;
8436 argop[5].nfs_argop4_u.opcrename.coldname = onm;
8437 argop[5].nfs_argop4_u.opcrename.cnewname = nnm;

8439 /* 6: getattr of target dir (post op attrs) */
8440 argop[6].argop = OP_GETATTR;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 129

8441 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8442 argop[6].nfs_argop4_u.opgetattr.mi = mi;

8444 /* 7: Lookup post-rename fh of renamed object */
8445 argop[7].argop = OP_CLOOKUP;
8446 argop[7].nfs_argop4_u.opclookup.cname = nnm;

8448 /* 8: getfh fh of renamed object (after rename) */
8449 argop[8].argop = OP_GETFH;

8451 /* 9: getattr of renamed object */
8452 argop[9].argop = OP_GETATTR;
8453 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8454 argop[9].nfs_argop4_u.opgetattr.mi = mi;

8456 /*
8457 * If source/target dirs are different, then get new post-op
8458 * attrs for source dir also.
8459 */
8460 if (ndvp != odvp) {
8461 /* 10: putfh (sourcedir) */
8462 argop[10].argop = OP_CPUTFH;
8463 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;

8465 /* 11: getattr (sourcedir) */
8466 argop[11].argop = OP_GETATTR;
8467 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8468 argop[11].nfs_argop4_u.opgetattr.mi = mi;
8469 }

8471 dnlc_remove(odvp, onm);
8472 dnlc_remove(ndvp, nnm);

8474 doqueue = 1;
8475 t = gethrtime();
8476 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);

8478 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8479 if (e.error) {
8480 PURGE_ATTRCACHE4(odvp);
8481 PURGE_ATTRCACHE4(ndvp);
8482 if (!needrecov) {
8483 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8484 &recov_state, needrecov);
8485 goto out;
8486 }
8487 } else {
8488 *statp = res.status;
8489 }

8491 if (needrecov) {
8492 bool_t abort;

8494 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL,
8495 OP_RENAME, NULL, NULL, NULL);
8496 if (abort == FALSE) {
8497 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8498 &recov_state, needrecov);
8499 kmem_free(argop, argoplist_size);
8500 if (!e.error)
8501 (void) xdr_free(xdr_COMPOUND4res_clnt,
8502 (caddr_t)&res);
8503 mutex_enter(&orp->r_statelock);
8504 orp->r_flags &= ~R4RECEXPFH;
8505 cv_broadcast(&orp->r_cv);
8506 mutex_exit(&orp->r_statelock);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 130

8507 goto recov_retry;
8508 } else {
8509 if (e.error != 0) {
8510 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8511 &recov_state, needrecov);
8512 goto out;
8513 }
8514 /* fall through for res.status case */
8515 }
8516 }

8518 resp = &res;
8519 /*
8520 * If OP_RENAME (or any prev op) failed, then return an error.
8521 * OP_RENAME is index 5, so if array len <= 6 we return an error.
8522 */
8523 if ((res.status != NFS4_OK) && (res.array_len <= 6)) {
8524 /*
8525 * Error in an op other than last Getattr
8526 */
8527 e.error = geterrno4(res.status);
8528 PURGE_ATTRCACHE4(odvp);
8529 PURGE_ATTRCACHE4(ndvp);
8530 /*
8531 * System V defines rename to return EEXIST, not
8532 * ENOTEMPTY if the target directory is not empty.
8533 * Over the wire, the error is NFSERR_ENOTEMPTY
8534 * which geterrno4 maps to ENOTEMPTY.
8535 */
8536 if (e.error == ENOTEMPTY)
8537 e.error = EEXIST;
8538 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state,
8539 needrecov);
8540 goto out;
8541 }

8543 /* rename results */
8544 rn_res = &res.array[5].nfs_resop4_u.oprename;

8546 if (res.status == NFS4_OK) {
8547 /* Update target attribute, readdir and dnlc caches */
8548 dinfo.di_garp =
8549 &res.array[6].nfs_resop4_u.opgetattr.ga_res;
8550 dinfo.di_cred = cr;
8551 dinfo.di_time_call = t;
8552 } else
8553 dinfop = NULL;

8555 /* Update source cache attribute, readdir and dnlc caches */
8556 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop);

8558 /* Update source cache attribute, readdir and dnlc caches */
8559 if (ndvp != odvp) {
8560 update_parentdir_sfh(ovp, ndvp);

8562 /*
8563 * If dinfop is non-NULL, then compound succeded, so
8564 * set di_garp to attrs for source dir. dinfop is only
8565 * set to NULL when compound fails.
8566 */
8567 if (dinfop)
8568 dinfo.di_garp =
8569 &res.array[11].nfs_resop4_u.opgetattr.ga_res;
8570 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL,
8571 dinfop);
8572 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 131

8574 /*
8575 * Update the rnode with the new component name and args,
8576 * and if the file handle changed, also update it with the new fh.
8577 * This is only necessary if the target object has an rnode
8578 * entry and there is no need to create one for it.
8579 */
8580 resop = &res.array[8]; /* getfh new res */
8581 ngf_res = &resop->nfs_resop4_u.opgetfh;

8583 /*
8584 * Update the path and filehandle for the renamed object.
8585 */
8586 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm);

8588 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov);

8590 if (res.status == NFS4_OK) {
8591 resop++; /* getattr res */
8592 e.error = nfs4_update_attrcache(res.status,
8593 &resop->nfs_resop4_u.opgetattr.ga_res,
8594 t, ovp, cr);
8595 }

8597 out:
8598 kmem_free(argop, argoplist_size);
8599 if (resp)
8600 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
8601 mutex_enter(&orp->r_statelock);
8602 orp->r_flags &= ~R4RECEXPFH;
8603 cv_broadcast(&orp->r_cv);
8604 mutex_exit(&orp->r_statelock);

8606 return (e.error);
8607 }

8609 /* ARGSUSED */
8610 static int
8611 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr,
8612 caller_context_t *ct, int flags, vsecattr_t *vsecp)
8613 {
8614 int error;
8615 vnode_t *vp;

8617 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
8618 return (EPERM);
8619 /*
8620 * As ".." has special meaning and rather than send a mkdir
8621 * over the wire to just let the server freak out, we just
8622 * short circuit it here and return EEXIST
8623 */
8624 if (nm[0] == ’.’ && nm[1] == ’.’ && nm[2] == ’\0’)
8625 return (EEXIST);

8627 /*
8628 * Decision to get the right gid and setgid bit of the
8629 * new directory is now made in call_nfs4_create_req.
8630 */
8631 va->va_mask |= AT_MODE;
8632 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR);
8633 if (error)
8634 return (error);

8636 *vpp = vp;
8637 return (0);
8638 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 132

8641 /*
8642 * rmdir is using the same remove v4 op as does remove.
8643 * Remove requires that the current fh be the target directory.
8644 * After the operation, the current fh is unchanged.
8645 * The compound op structure is:
8646 * PUTFH(targetdir), REMOVE
8647 */
8648 /*ARGSUSED4*/
8649 static int
8650 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
8651 caller_context_t *ct, int flags)
8652 {
8653 int need_end_op = FALSE;
8654 COMPOUND4args_clnt args;
8655 COMPOUND4res_clnt res, *resp = NULL;
8656 REMOVE4res *rm_res;
8657 nfs_argop4 argop[3];
8658 nfs_resop4 *resop;
8659 vnode_t *vp;
8660 int doqueue;
8661 mntinfo4_t *mi;
8662 rnode4_t *drp;
8663 bool_t needrecov = FALSE;
8664 nfs4_recov_state_t recov_state;
8665 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8666 dirattr_info_t dinfo, *dinfop;

8668 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
8669 return (EPERM);
8670 /*
8671 * As ".." has special meaning and rather than send a rmdir
8672 * over the wire to just let the server freak out, we just
8673 * short circuit it here and return EEXIST
8674 */
8675 if (nm[0] == ’.’ && nm[1] == ’.’ && nm[2] == ’\0’)
8676 return (EEXIST);

8678 drp = VTOR4(dvp);
8679 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
8680 return (EINTR);

8682 /*
8683 * Attempt to prevent a rmdir(".") from succeeding.
8684 */
8685 e.error = nfs4lookup(dvp, nm, &vp, cr, 0);
8686 if (e.error) {
8687 nfs_rw_exit(&drp->r_rwlock);
8688 return (e.error);
8689 }
8690 if (vp == cdir) {
8691 VN_RELE(vp);
8692 nfs_rw_exit(&drp->r_rwlock);
8693 return (EINVAL);
8694 }

8696 /*
8697 * Since nfsv4 remove op works on both files and directories,
8698 * check that the removed object is indeed a directory.
8699 */
8700 if (vp->v_type != VDIR) {
8701 VN_RELE(vp);
8702 nfs_rw_exit(&drp->r_rwlock);
8703 return (ENOTDIR);
8704 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 133

8706 /*
8707 * First just remove the entry from the name cache, as it
8708 * is most likely an entry for this vp.
8709 */
8710 dnlc_remove(dvp, nm);

8712 /*
8713 * If there vnode reference count is greater than one, then
8714 * there may be additional references in the DNLC which will
8715 * need to be purged. First, trying removing the entry for
8716 * the parent directory and see if that removes the additional
8717 * reference(s). If that doesn’t do it, then use dnlc_purge_vp
8718 * to completely remove any references to the directory which
8719 * might still exist in the DNLC.
8720 */
8721 if (vp->v_count > 1) {
8722 dnlc_remove(vp, "..");
8723 if (vp->v_count > 1)
8724 dnlc_purge_vp(vp);
8725 }

8727 mi = VTOMI4(dvp);
8728 recov_state.rs_flags = 0;
8729 recov_state.rs_num_retry_despite_err = 0;

8731 recov_retry:
8732 args.ctag = TAG_RMDIR;

8734 /*
8735 * Rmdir ops: putfh dir; remove
8736 */
8737 args.array_len = 3;
8738 args.array = argop;

8740 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
8741 if (e.error) {
8742 nfs_rw_exit(&drp->r_rwlock);
8743 return (e.error);
8744 }
8745 need_end_op = TRUE;

8747 /* putfh directory */
8748 argop[0].argop = OP_CPUTFH;
8749 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;

8751 /* remove */
8752 argop[1].argop = OP_CREMOVE;
8753 argop[1].nfs_argop4_u.opcremove.ctarget = nm;

8755 /* getattr (postop attrs for dir that contained removed dir) */
8756 argop[2].argop = OP_GETATTR;
8757 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8758 argop[2].nfs_argop4_u.opgetattr.mi = mi;

8760 dinfo.di_time_call = gethrtime();
8761 doqueue = 1;
8762 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);

8764 PURGE_ATTRCACHE4(vp);

8766 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8767 if (e.error) {
8768 PURGE_ATTRCACHE4(dvp);
8769 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 134

8771 if (needrecov) {
8772 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL,
8773 NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
8774 if (!e.error)
8775 (void) xdr_free(xdr_COMPOUND4res_clnt,
8776 (caddr_t)&res);

8778 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
8779 needrecov);
8780 need_end_op = FALSE;
8781 goto recov_retry;
8782 }
8783 }

8785 if (!e.error) {
8786 resp = &res;

8788 /*
8789 * Only return error if first 2 ops (OP_REMOVE or earlier)
8790 * failed.
8791 */
8792 if (res.status != NFS4_OK && res.array_len <= 2) {
8793 e.error = geterrno4(res.status);
8794 PURGE_ATTRCACHE4(dvp);
8795 nfs4_end_op(VTOMI4(dvp), dvp, NULL,
8796 &recov_state, needrecov);
8797 need_end_op = FALSE;
8798 nfs4_purge_stale_fh(e.error, dvp, cr);
8799 /*
8800 * System V defines rmdir to return EEXIST, not
8801 * ENOTEMPTY if the directory is not empty. Over
8802 * the wire, the error is NFSERR_ENOTEMPTY which
8803 * geterrno4 maps to ENOTEMPTY.
8804 */
8805 if (e.error == ENOTEMPTY)
8806 e.error = EEXIST;
8807 } else {
8808 resop = &res.array[1]; /* remove res */
8809 rm_res = &resop->nfs_resop4_u.opremove;

8811 if (res.status == NFS4_OK) {
8812 resop = &res.array[2]; /* dir attrs */
8813 dinfo.di_garp =
8814 &resop->nfs_resop4_u.opgetattr.ga_res;
8815 dinfo.di_cred = cr;
8816 dinfop = &dinfo;
8817 } else
8818 dinfop = NULL;

8820 /* Update dir attribute, readdir and dnlc caches */
8821 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL,
8822 dinfop);

8824 /* destroy rddir cache for dir that was removed */
8825 if (VTOR4(vp)->r_dir != NULL)
8826 nfs4_purge_rddir_cache(vp);
8827 }
8828 }

8830 if (need_end_op)
8831 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);

8833 nfs_rw_exit(&drp->r_rwlock);

8835 if (resp)
8836 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 135

8838 if (e.error == 0) {
8839 vnode_t *tvp;
8840 rnode4_t *trp;
8841 trp = VTOR4(vp);
8842 tvp = vp;
8843 if (IS_SHADOW(vp, trp))
8844 tvp = RTOV4(trp);
8845 vnevent_rmdir(tvp, dvp, nm, ct);
8846 }

8848 VN_RELE(vp);

8850 return (e.error);
8851 }

8853 /* ARGSUSED */
8854 static int
8855 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr,
8856 caller_context_t *ct, int flags)
8857 {
8858 int error;
8859 vnode_t *vp;
8860 rnode4_t *rp;
8861 char *contents;
8862 mntinfo4_t *mi = VTOMI4(dvp);

8864 if (nfs_zone() != mi->mi_zone)
8865 return (EPERM);
8866 if (!(mi->mi_flags & MI4_SYMLINK))
8867 return (EOPNOTSUPP);

8869 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK);
8870 if (error)
8871 return (error);

8873 ASSERT(nfs4_consistent_type(vp));
8874 rp = VTOR4(vp);
8875 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) {

8877 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP);

8879 if (contents != NULL) {
8880 mutex_enter(&rp->r_statelock);
8881 if (rp->r_symlink.contents == NULL) {
8882 rp->r_symlink.len = strlen(tnm);
8883 bcopy(tnm, contents, rp->r_symlink.len);
8884 rp->r_symlink.contents = contents;
8885 rp->r_symlink.size = MAXPATHLEN;
8886 mutex_exit(&rp->r_statelock);
8887 } else {
8888 mutex_exit(&rp->r_statelock);
8889 kmem_free((void *)contents, MAXPATHLEN);
8890 }
8891 }
8892 }
8893 VN_RELE(vp);

8895 return (error);
8896 }

8899 /*
8900 * Read directory entries.
8901 * There are some weird things to look out for here. The uio_loffset
8902 * field is either 0 or it is the offset returned from a previous

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 136

8903 * readdir. It is an opaque value used by the server to find the
8904 * correct directory block to read. The count field is the number
8905 * of blocks to read on the server. This is advisory only, the server
8906 * may return only one block’s worth of entries. Entries may be compressed
8907 * on the server.
8908 */
8909 /* ARGSUSED */
8910 static int
8911 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,
8912 caller_context_t *ct, int flags)
8913 {
8914 int error;
8915 uint_t count;
8916 rnode4_t *rp;
8917 rddir4_cache *rdc;
8918 rddir4_cache *rrdc;

8920 if (nfs_zone() != VTOMI4(vp)->mi_zone)
8921 return (EIO);
8922 rp = VTOR4(vp);

8924 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));

8926 /*
8927 * Make sure that the directory cache is valid.
8928 */
8929 if (rp->r_dir != NULL) {
8930 if (nfs_disable_rddir_cache != 0) {
8931 /*
8932 * Setting nfs_disable_rddir_cache in /etc/system
8933 * allows interoperability with servers that do not
8934 * properly update the attributes of directories.
8935 * Any cached information gets purged before an
8936 * access is made to it.
8937 */
8938 nfs4_purge_rddir_cache(vp);
8939 }

8941 error = nfs4_validate_caches(vp, cr);
8942 if (error)
8943 return (error);
8944 }

8946 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE);

8948 /*
8949 * Short circuit last readdir which always returns 0 bytes.
8950 * This can be done after the directory has been read through
8951 * completely at least once. This will set r_direof which
8952 * can be used to find the value of the last cookie.
8953 */
8954 mutex_enter(&rp->r_statelock);
8955 if (rp->r_direof != NULL &&
8956 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) {
8957 mutex_exit(&rp->r_statelock);
8958 #ifdef DEBUG
8959 nfs4_readdir_cache_shorts++;
8960 #endif
8961 if (eofp)
8962 *eofp = 1;
8963 return (0);
8964 }

8966 /*
8967 * Look for a cache entry. Cache entries are identified
8968 * by the NFS cookie value and the byte count requested.

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 137

8969 */
8970 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count);

8972 /*
8973 * If rdc is NULL then the lookup resulted in an unrecoverable error.
8974 */
8975 if (rdc == NULL) {
8976 mutex_exit(&rp->r_statelock);
8977 return (EINTR);
8978 }

8980 /*
8981 * Check to see if we need to fill this entry in.
8982 */
8983 if (rdc->flags & RDDIRREQ) {
8984 rdc->flags &= ~RDDIRREQ;
8985 rdc->flags |= RDDIR;
8986 mutex_exit(&rp->r_statelock);

8988 /*
8989 * Do the readdir.
8990 */
8991 nfs4readdir(vp, rdc, cr);

8993 /*
8994 * Reacquire the lock, so that we can continue
8995 */
8996 mutex_enter(&rp->r_statelock);
8997 /*
8998 * The entry is now complete
8999 */
9000 rdc->flags &= ~RDDIR;
9001 }

9003 ASSERT(!(rdc->flags & RDDIR));

9005 /*
9006 * If an error occurred while attempting
9007 * to fill the cache entry, mark the entry invalid and
9008 * just return the error.
9009 */
9010 if (rdc->error) {
9011 error = rdc->error;
9012 rdc->flags |= RDDIRREQ;
9013 rddir4_cache_rele(rp, rdc);
9014 mutex_exit(&rp->r_statelock);
9015 return (error);
9016 }

9018 /*
9019 * The cache entry is complete and good,
9020 * copyout the dirent structs to the calling
9021 * thread.
9022 */
9023 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop);

9025 /*
9026 * If no error occurred during the copyout,
9027 * update the offset in the uio struct to
9028 * contain the value of the next NFS 4 cookie
9029 * and set the eof value appropriately.
9030 */
9031 if (!error) {
9032 uiop->uio_loffset = rdc->nfs4_ncookie;
9033 if (eofp)
9034 *eofp = rdc->eof;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 138

9035 }

9037 /*
9038 * Decide whether to do readahead. Don’t if we
9039 * have already read to the end of directory.
9040 */
9041 if (rdc->eof) {
9042 /*
9043 * Make the entry the direof only if it is cached
9044 */
9045 if (rdc->flags & RDDIRCACHED)
9046 rp->r_direof = rdc;
9047 rddir4_cache_rele(rp, rdc);
9048 mutex_exit(&rp->r_statelock);
9049 return (error);
9050 }

9052 /* Determine if a readdir readahead should be done */
9053 if (!(rp->r_flags & R4LOOKUP)) {
9054 rddir4_cache_rele(rp, rdc);
9055 mutex_exit(&rp->r_statelock);
9056 return (error);
9057 }

9059 /*
9060 * Now look for a readahead entry.
9061 *
9062 * Check to see whether we found an entry for the readahead.
9063 * If so, we don’t need to do anything further, so free the new
9064 * entry if one was allocated. Otherwise, allocate a new entry, add
9065 * it to the cache, and then initiate an asynchronous readdir
9066 * operation to fill it.
9067 */
9068 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count);

9070 /*
9071 * A readdir cache entry could not be obtained for the readahead. In
9072 * this case we skip the readahead and return.
9073 */
9074 if (rrdc == NULL) {
9075 rddir4_cache_rele(rp, rdc);
9076 mutex_exit(&rp->r_statelock);
9077 return (error);
9078 }

9080 /*
9081 * Check to see if we need to fill this entry in.
9082 */
9083 if (rrdc->flags & RDDIRREQ) {
9084 rrdc->flags &= ~RDDIRREQ;
9085 rrdc->flags |= RDDIR;
9086 rddir4_cache_rele(rp, rdc);
9087 mutex_exit(&rp->r_statelock);
9088 #ifdef DEBUG
9089 nfs4_readdir_readahead++;
9090 #endif
9091 /*
9092 * Do the readdir.
9093 */
9094 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir);
9095 return (error);
9096 }

9098 rddir4_cache_rele(rp, rrdc);
9099 rddir4_cache_rele(rp, rdc);
9100 mutex_exit(&rp->r_statelock);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 139

9101 return (error);
9102 }

9104 static int
9105 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr)
9106 {
9107 int error;
9108 rnode4_t *rp;

9110 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);

9112 rp = VTOR4(vp);

9114 /*
9115 * Obtain the readdir results for the caller.
9116 */
9117 nfs4readdir(vp, rdc, cr);

9119 mutex_enter(&rp->r_statelock);
9120 /*
9121 * The entry is now complete
9122 */
9123 rdc->flags &= ~RDDIR;

9125 error = rdc->error;
9126 if (error)
9127 rdc->flags |= RDDIRREQ;
9128 rddir4_cache_rele(rp, rdc);
9129 mutex_exit(&rp->r_statelock);

9131 return (error);
9132 }

9134 /*
9135 * Read directory entries.
9136 * There are some weird things to look out for here. The uio_loffset
9137 * field is either 0 or it is the offset returned from a previous
9138 * readdir. It is an opaque value used by the server to find the
9139 * correct directory block to read. The count field is the number
9140 * of blocks to read on the server. This is advisory only, the server
9141 * may return only one block’s worth of entries. Entries may be compressed
9142 * on the server.
9143 *
9144 * Generates the following compound request:
9145 * 1. If readdir offset is zero and no dnlc entry for parent exists,
9146 * must include a Lookupp as well. In this case, send:
9147 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr }
9148 * 2. Otherwise just do: { Putfh <fh>; Readdir }
9149 *
9150 * Get complete attributes and filehandles for entries if this is the
9151 * first read of the directory. Otherwise, just get fileid’s.
9152 */
9153 static void
9154 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr)
9155 {
9156 COMPOUND4args_clnt args;
9157 COMPOUND4res_clnt res;
9158 READDIR4args *rargs;
9159 READDIR4res_clnt *rd_res;
9160 bitmap4 rd_bitsval;
9161 nfs_argop4 argop[5];
9162 nfs_resop4 *resop;
9163 rnode4_t *rp = VTOR4(vp);
9164 mntinfo4_t *mi = VTOMI4(vp);
9165 int doqueue;
9166 u_longlong_t nodeid, pnodeid; /* id’s of dir and its parents */

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 140

9167 vnode_t *dvp;
9168 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie;
9169 int num_ops, res_opcnt;
9170 bool_t needrecov = FALSE;
9171 nfs4_recov_state_t recov_state;
9172 hrtime_t t;
9173 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };

9175 ASSERT(nfs_zone() == mi->mi_zone);
9176 ASSERT(rdc->flags & RDDIR);
9177 ASSERT(rdc->entries == NULL);

9179 /*
9180 * If rp were a stub, it should have triggered and caused
9181 * a mount for us to get this far.
9182 */
9183 ASSERT(!RP_ISSTUB(rp));

9185 num_ops = 2;
9186 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) {
9187 /*
9188 * Since nfsv4 readdir may not return entries for "." and "..",
9189 * the client must recreate them:
9190 * To find the correct nodeid, do the following:
9191 * For current node, get nodeid from dnlc.
9192 * - if current node is rootvp, set pnodeid to nodeid.
9193 * - else if parent is in the dnlc, get its nodeid from there.
9194 * - else add LOOKUPP+GETATTR to compound.
9195 */
9196 nodeid = rp->r_attr.va_nodeid;
9197 if (vp->v_flag & VROOT) {
9198 pnodeid = nodeid; /* root of mount point */
9199 } else {
9200 dvp = dnlc_lookup(vp, "..");
9201 if (dvp != NULL && dvp != DNLC_NO_VNODE) {
9202 /* parent in dnlc cache - no need for otw */
9203 pnodeid = VTOR4(dvp)->r_attr.va_nodeid;
9204 } else {
9205 /*
9206 * parent not in dnlc cache,
9207 * do lookupp to get its id
9208 */
9209 num_ops = 5;
9210 pnodeid = 0; /* set later by getattr parent */
9211 }
9212 if (dvp)
9213 VN_RELE(dvp);
9214 }
9215 }
9216 recov_state.rs_flags = 0;
9217 recov_state.rs_num_retry_despite_err = 0;

9219 /* Save the original mount point security flavor */
9220 (void) save_mnt_secinfo(mi->mi_curr_serv);

9222 recov_retry:
9223 args.ctag = TAG_READDIR;

9225 args.array = argop;
9226 args.array_len = num_ops;

9228 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9229 &recov_state, NULL)) {
9230 /*
9231 * If readdir a node that is a stub for a crossed mount point,
9232 * keep the original secinfo flavor for the current file

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 141

9233 * system, not the crossed one.
9234 */
9235 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
9236 rdc->error = e.error;
9237 return;
9238 }

9240 /*
9241 * Determine which attrs to request for dirents. This code
9242 * must be protected by nfs4_start/end_fop because of r_server
9243 * (which will change during failover recovery).
9244 *
9245 */
9246 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) {
9247 /*
9248 * Get all vattr attrs plus filehandle and rdattr_error
9249 */
9250 rd_bitsval = NFS4_VATTR_MASK |
9251 FATTR4_RDATTR_ERROR_MASK |
9252 FATTR4_FILEHANDLE_MASK;

9254 if (rp->r_flags & R4READDIRWATTR) {
9255 mutex_enter(&rp->r_statelock);
9256 rp->r_flags &= ~R4READDIRWATTR;
9257 mutex_exit(&rp->r_statelock);
9258 }
9259 } else {
9260 servinfo4_t *svp = rp->r_server;

9262 /*
9263 * Already read directory. Use readdir with
9264 * no attrs (except for mounted_on_fileid) for updates.
9265 */
9266 rd_bitsval = FATTR4_RDATTR_ERROR_MASK;

9268 /*
9269 * request mounted on fileid if supported, else request
9270 * fileid. maybe we should verify that fileid is supported
9271 * and request something else if not.
9272 */
9273 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
9274 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK)
9275 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK;
9276 nfs_rw_exit(&svp->sv_lock);
9277 }

9279 /* putfh directory fh */
9280 argop[0].argop = OP_CPUTFH;
9281 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;

9283 argop[1].argop = OP_READDIR;
9284 rargs = &argop[1].nfs_argop4_u.opreaddir;
9285 /*
9286 * 1 and 2 are reserved for client "." and ".." entry offset.
9287 * cookie 0 should be used over-the-wire to start reading at
9288 * the beginning of the directory excluding "." and "..".
9289 */
9290 if (rdc->nfs4_cookie == 0 ||
9291 rdc->nfs4_cookie == 1 ||
9292 rdc->nfs4_cookie == 2) {
9293 rargs->cookie = (nfs_cookie4)0;
9294 rargs->cookieverf = 0;
9295 } else {
9296 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie;
9297 mutex_enter(&rp->r_statelock);
9298 rargs->cookieverf = rp->r_cookieverf4;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 142

9299 mutex_exit(&rp->r_statelock);
9300 }
9301 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize);
9302 rargs->maxcount = mi->mi_tsize;
9303 rargs->attr_request = rd_bitsval;
9304 rargs->rdc = rdc;
9305 rargs->dvp = vp;
9306 rargs->mi = mi;
9307 rargs->cr = cr;

9310 /*
9311 * If count < than the minimum required, we return no entries
9312 * and fail with EINVAL
9313 */
9314 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) {
9315 rdc->error = EINVAL;
9316 goto out;
9317 }

9319 if (args.array_len == 5) {
9320 /*
9321 * Add lookupp and getattr for parent nodeid.
9322 */
9323 argop[2].argop = OP_LOOKUPP;

9325 argop[3].argop = OP_GETFH;

9327 /* getattr parent */
9328 argop[4].argop = OP_GETATTR;
9329 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
9330 argop[4].nfs_argop4_u.opgetattr.mi = mi;
9331 }

9333 doqueue = 1;

9335 if (mi->mi_io_kstats) {
9336 mutex_enter(&mi->mi_lock);
9337 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
9338 mutex_exit(&mi->mi_lock);
9339 }

9341 /* capture the time of this call */
9342 rargs->t = t = gethrtime();

9344 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);

9346 if (mi->mi_io_kstats) {
9347 mutex_enter(&mi->mi_lock);
9348 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
9349 mutex_exit(&mi->mi_lock);
9350 }

9352 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);

9354 /*
9355 * If RPC error occurred and it isn’t an error that
9356 * triggers recovery, then go ahead and fail now.
9357 */
9358 if (e.error != 0 && !needrecov) {
9359 rdc->error = e.error;
9360 goto out;
9361 }

9363 if (needrecov) {
9364 bool_t abort;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 143

9366 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
9367 "nfs4readdir: initiating recovery.\n"));

9369 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
9370 NULL, OP_READDIR, NULL, NULL, NULL);
9371 if (abort == FALSE) {
9372 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9373 &recov_state, needrecov);
9374 if (!e.error)
9375 (void) xdr_free(xdr_COMPOUND4res_clnt,
9376 (caddr_t)&res);
9377 if (rdc->entries != NULL) {
9378 kmem_free(rdc->entries, rdc->entlen);
9379 rdc->entries = NULL;
9380 }
9381 goto recov_retry;
9382 }

9384 if (e.error != 0) {
9385 rdc->error = e.error;
9386 goto out;
9387 }

9389 /* fall through for res.status case */
9390 }

9392 res_opcnt = res.array_len;

9394 /*
9395 * If compound failed first 2 ops (PUTFH+READDIR), then return
9396 * failure here. Subsequent ops are for filling out dot-dot
9397 * dirent, and if they fail, we still want to give the caller
9398 * the dirents returned by (the successful) READDIR op, so we need
9399 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR).
9400 *
9401 * One example where PUTFH+READDIR ops would succeed but
9402 * LOOKUPP+GETATTR would fail would be a dir that has r perm
9403 * but lacks x. In this case, a POSIX server’s VOP_READDIR
9404 * would succeed; however, VOP_LOOKUP(..) would fail since no
9405 * x perm. We need to come up with a non-vendor-specific way
9406 * for a POSIX server to return d_ino from dotdot’s dirent if
9407 * client only requests mounted_on_fileid, and just say the
9408 * LOOKUPP succeeded and fill out the GETATTR. However, if
9409 * client requested any mandatory attrs, server would be required
9410 * to fail the GETATTR op because it can’t call VOP_LOOKUP+VOP_GETATTR
9411 * for dotdot.
9412 */

9414 if (res.status) {
9415 if (res_opcnt <= 2) {
9416 e.error = geterrno4(res.status);
9417 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9418 &recov_state, needrecov);
9419 nfs4_purge_stale_fh(e.error, vp, cr);
9420 rdc->error = e.error;
9421 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
9422 if (rdc->entries != NULL) {
9423 kmem_free(rdc->entries, rdc->entlen);
9424 rdc->entries = NULL;
9425 }
9426 /*
9427 * If readdir a node that is a stub for a
9428 * crossed mount point, keep the original
9429 * secinfo flavor for the current file system,
9430 * not the crossed one.

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 144

9431 */
9432 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
9433 return;
9434 }
9435 }

9437 resop = &res.array[1]; /* readdir res */
9438 rd_res = &resop->nfs_resop4_u.opreaddirclnt;

9440 mutex_enter(&rp->r_statelock);
9441 rp->r_cookieverf4 = rd_res->cookieverf;
9442 mutex_exit(&rp->r_statelock);

9444 /*
9445 * For "." and ".." entries
9446 * e.g.
9447 * seek(cookie=0) -> "." entry with d_off = 1
9448 * seek(cookie=1) -> ".." entry with d_off = 2
9449 */
9450 if (cookie == (nfs_cookie4) 0) {
9451 if (rd_res->dotp)
9452 rd_res->dotp->d_ino = nodeid;
9453 if (rd_res->dotdotp)
9454 rd_res->dotdotp->d_ino = pnodeid;
9455 }
9456 if (cookie == (nfs_cookie4) 1) {
9457 if (rd_res->dotdotp)
9458 rd_res->dotdotp->d_ino = pnodeid;
9459 }

9462 /* LOOKUPP+GETATTR attemped */
9463 if (args.array_len == 5 && rd_res->dotdotp) {
9464 if (res.status == NFS4_OK && res_opcnt == 5) {
9465 nfs_fh4 *fhp;
9466 nfs4_sharedfh_t *sfhp;
9467 vnode_t *pvp;
9468 nfs4_ga_res_t *garp;

9470 resop++; /* lookupp */
9471 resop++; /* getfh */
9472 fhp = &resop->nfs_resop4_u.opgetfh.object;

9474 resop++; /* getattr of parent */

9476 /*
9477 * First, take care of finishing the
9478 * readdir results.
9479 */
9480 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
9481 /*
9482 * The d_ino of .. must be the inode number
9483 * of the mounted filesystem.
9484 */
9485 if (garp->n4g_va.va_mask & AT_NODEID)
9486 rd_res->dotdotp->d_ino =
9487 garp->n4g_va.va_nodeid;

9490 /*
9491 * Next, create the ".." dnlc entry
9492 */
9493 sfhp = sfh4_get(fhp, mi);
9494 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) {
9495 dnlc_update(vp, "..", pvp);
9496 VN_RELE(pvp);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 145

9497 }
9498 sfh4_rele(&sfhp);
9499 }
9500 }

9502 if (mi->mi_io_kstats) {
9503 mutex_enter(&mi->mi_lock);
9504 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
9505 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen;
9506 mutex_exit(&mi->mi_lock);
9507 }

9509 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);

9511 out:
9512 /*
9513 * If readdir a node that is a stub for a crossed mount point,
9514 * keep the original secinfo flavor for the current file system,
9515 * not the crossed one.
9516 */
9517 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);

9519 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov);
9520 }

9523 static int
9524 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead)
9525 {
9526 rnode4_t *rp = VTOR4(bp->b_vp);
9527 int count;
9528 int error;
9529 cred_t *cred_otw = NULL;
9530 offset_t offset;
9531 nfs4_open_stream_t *osp = NULL;
9532 bool_t first_time = TRUE; /* first time getting otw cred */
9533 bool_t last_time = FALSE; /* last time getting otw cred */

9535 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone);

9537 DTRACE_IO1(start, struct buf *, bp);
9538 offset = ldbtob(bp->b_lblkno);

9540 if (bp->b_flags & B_READ) {
9541 read_again:
9542 /*
9543 * Releases the osp, if it is provided.
9544 * Puts a hold on the cred_otw and the new osp (if found).
9545 */
9546 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
9547 &first_time, &last_time);
9548 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr,
9549 offset, bp->b_bcount, &bp->b_resid, cred_otw,
9550 readahead, NULL);
9551 crfree(cred_otw);
9552 if (!error) {
9553 if (bp->b_resid) {
9554 /*
9555 * Didn’t get it all because we hit EOF,
9556 * zero all the memory beyond the EOF.
9557 */
9558 /* bzero(rdaddr + */
9559 bzero(bp->b_un.b_addr +
9560 bp->b_bcount - bp->b_resid, bp->b_resid);
9561 }
9562 mutex_enter(&rp->r_statelock);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 146

9563 if (bp->b_resid == bp->b_bcount &&
9564 offset >= rp->r_size) {
9565 /*
9566 * We didn’t read anything at all as we are
9567 * past EOF. Return an error indicator back
9568 * but don’t destroy the pages (yet).
9569 */
9570 error = NFS_EOF;
9571 }
9572 mutex_exit(&rp->r_statelock);
9573 } else if (error == EACCES && last_time == FALSE) {
9574 goto read_again;
9575 }
9576 } else {
9577 if (!(rp->r_flags & R4STALE)) {
9578 write_again:
9579 /*
9580 * Releases the osp, if it is provided.
9581 * Puts a hold on the cred_otw and the new
9582 * osp (if found).
9583 */
9584 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
9585 &first_time, &last_time);
9586 mutex_enter(&rp->r_statelock);
9587 count = MIN(bp->b_bcount, rp->r_size - offset);
9588 mutex_exit(&rp->r_statelock);
9589 if (count < 0)
9590 cmn_err(CE_PANIC, "nfs4_bio: write count < 0");
9591 #ifdef DEBUG
9592 if (count == 0) {
9593 zoneid_t zoneid = getzoneid();

9595 zcmn_err(zoneid, CE_WARN,
9596 "nfs4_bio: zero length write at %lld",
9597 offset);
9598 zcmn_err(zoneid, CE_CONT, "flags=0x%x, "
9599 "b_bcount=%ld, file size=%lld",
9600 rp->r_flags, (long)bp->b_bcount,
9601 rp->r_size);
9602 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh);
9603 if (nfs4_bio_do_stop)
9604 debug_enter("nfs4_bio");
9605 }
9606 #endif
9607 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset,
9608 count, cred_otw, stab_comm);
9609 if (error == EACCES && last_time == FALSE) {
9610 crfree(cred_otw);
9611 goto write_again;
9612 }
9613 bp->b_error = error;
9614 if (error && error != EINTR &&
9615 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) {
9616 /*
9617 * Don’t print EDQUOT errors on the console.
9618 * Don’t print asynchronous EACCES errors.
9619 * Don’t print EFBIG errors.
9620 * Print all other write errors.
9621 */
9622 if (error != EDQUOT && error != EFBIG &&
9623 (error != EACCES ||
9624 !(bp->b_flags & B_ASYNC)))
9625 nfs4_write_error(bp->b_vp,
9626 error, cred_otw);
9627 /*
9628 * Update r_error and r_flags as appropriate.

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 147

9629 * If the error was ESTALE, then mark the
9630 * rnode as not being writeable and save
9631 * the error status. Otherwise, save any
9632 * errors which occur from asynchronous
9633 * page invalidations. Any errors occurring
9634 * from other operations should be saved
9635 * by the caller.
9636 */
9637 mutex_enter(&rp->r_statelock);
9638 if (error == ESTALE) {
9639 rp->r_flags |= R4STALE;
9640 if (!rp->r_error)
9641 rp->r_error = error;
9642 } else if (!rp->r_error &&
9643 (bp->b_flags &
9644 (B_INVAL|B_FORCE|B_ASYNC)) ==
9645 (B_INVAL|B_FORCE|B_ASYNC)) {
9646 rp->r_error = error;
9647 }
9648 mutex_exit(&rp->r_statelock);
9649 }
9650 crfree(cred_otw);
9651 } else {
9652 error = rp->r_error;
9653 /*
9654 * A close may have cleared r_error, if so,
9655 * propagate ESTALE error return properly
9656 */
9657 if (error == 0)
9658 error = ESTALE;
9659 }
9660 }

9662 if (error != 0 && error != NFS_EOF)
9663 bp->b_flags |= B_ERROR;

9665 if (osp)
9666 open_stream_rele(osp, rp);

9668 DTRACE_IO1(done, struct buf *, bp);

9670 return (error);
9671 }

9673 /* ARGSUSED */
9674 int
9675 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
9676 {
9677 return (EREMOTE);
9678 }

9680 /* ARGSUSED2 */
9681 int
9682 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
9683 {
9684 rnode4_t *rp = VTOR4(vp);

9686 if (!write_lock) {
9687 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
9688 return (V_WRITELOCK_FALSE);
9689 }

9691 if ((rp->r_flags & R4DIRECTIO) ||
9692 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) {
9693 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
9694 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp))

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 148

9695 return (V_WRITELOCK_FALSE);
9696 nfs_rw_exit(&rp->r_rwlock);
9697 }

9699 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE);
9700 return (V_WRITELOCK_TRUE);
9701 }

9703 /* ARGSUSED */
9704 void
9705 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
9706 {
9707 rnode4_t *rp = VTOR4(vp);

9709 nfs_rw_exit(&rp->r_rwlock);
9710 }

9712 /* ARGSUSED */
9713 static int
9714 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
9715 {
9716 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9717 return (EIO);

9719 /*
9720 * Because we stuff the readdir cookie into the offset field
9721 * someone may attempt to do an lseek with the cookie which
9722 * we want to succeed.
9723 */
9724 if (vp->v_type == VDIR)
9725 return (0);
9726 if (*noffp < 0)
9727 return (EINVAL);
9728 return (0);
9729 }

9732 /*
9733 * Return all the pages from [off..off+len) in file
9734 */
9735 /* ARGSUSED */
9736 static int
9737 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
9738 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
9739 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
9740 {
9741 rnode4_t *rp;
9742 int error;
9743 mntinfo4_t *mi;

9745 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9746 return (EIO);
9747 rp = VTOR4(vp);
9748 if (IS_SHADOW(vp, rp))
9749 vp = RTOV4(rp);

9751 if (vp->v_flag & VNOMAP)
9752 return (ENOSYS);

9754 if (protp != NULL)
9755 *protp = PROT_ALL;

9757 /*
9758 * Now validate that the caches are up to date.
9759 */
9760 if (error = nfs4_validate_caches(vp, cr))

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 149

9761 return (error);

9763 mi = VTOMI4(vp);
9764 retry:
9765 mutex_enter(&rp->r_statelock);

9767 /*
9768 * Don’t create dirty pages faster than they
9769 * can be cleaned so that the system doesn’t
9770 * get imbalanced. If the async queue is
9771 * maxed out, then wait for it to drain before
9772 * creating more dirty pages. Also, wait for
9773 * any threads doing pagewalks in the vop_getattr
9774 * entry points so that they don’t block for
9775 * long periods.
9776 */
9777 if (rw == S_CREATE) {
9778 while ((mi->mi_max_threads != 0 &&
9779 rp->r_awcount > 2 * mi->mi_max_threads) ||
9780 rp->r_gcount > 0)
9781 cv_wait(&rp->r_cv, &rp->r_statelock);
9782 }

9784 /*
9785 * If we are getting called as a side effect of an nfs_write()
9786 * operation the local file size might not be extended yet.
9787 * In this case we want to be able to return pages of zeroes.
9788 */
9789 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) {
9790 NFS4_DEBUG(nfs4_pageio_debug,
9791 (CE_NOTE, "getpage beyond EOF: off=%lld, "
9792 "len=%llu, size=%llu, attrsize =%llu", off,
9793 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size));
9794 mutex_exit(&rp->r_statelock);
9795 return (EFAULT); /* beyond EOF */
9796 }

9798 mutex_exit(&rp->r_statelock);

9800 if (len <= PAGESIZE) {
9801 error = nfs4_getapage(vp, off, len, protp, pl, plsz,
9802 seg, addr, rw, cr);
9803 NFS4_DEBUG(nfs4_pageio_debug && error,
9804 (CE_NOTE, "getpage error %d; off=%lld, "
9805 "len=%lld", error, off, (u_longlong_t)len));
9806 } else {
9807 error = pvn_getpages(nfs4_getapage, vp, off, len, protp,
9808 pl, plsz, seg, addr, rw, cr);
9809 NFS4_DEBUG(nfs4_pageio_debug && error,
9810 (CE_NOTE, "getpages error %d; off=%lld, "
9811 "len=%lld", error, off, (u_longlong_t)len));
9812 }

9814 switch (error) {
9815 case NFS_EOF:
9816 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE);
9817 goto retry;
9818 case ESTALE:
9819 nfs4_purge_stale_fh(error, vp, cr);
9820 }

9822 return (error);
9823 }

9825 /*
9826 * Called from pvn_getpages or nfs4_getpage to get a particular page.

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 150

9827 */
9828 /* ARGSUSED */
9829 static int
9830 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp,
9831 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
9832 enum seg_rw rw, cred_t *cr)
9833 {
9834 rnode4_t *rp;
9835 uint_t bsize;
9836 struct buf *bp;
9837 page_t *pp;
9838 u_offset_t lbn;
9839 u_offset_t io_off;
9840 u_offset_t blkoff;
9841 u_offset_t rablkoff;
9842 size_t io_len;
9843 uint_t blksize;
9844 int error;
9845 int readahead;
9846 int readahead_issued = 0;
9847 int ra_window; /* readahead window */
9848 page_t *pagefound;
9849 page_t *savepp;

9851 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9852 return (EIO);

9854 rp = VTOR4(vp);
9855 ASSERT(!IS_SHADOW(vp, rp));
9856 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);

9858 reread:
9859 bp = NULL;
9860 pp = NULL;
9861 pagefound = NULL;

9863 if (pl != NULL)
9864 pl[0] = NULL;

9866 error = 0;
9867 lbn = off / bsize;
9868 blkoff = lbn * bsize;

9870 /*
9871 * Queueing up the readahead before doing the synchronous read
9872 * results in a significant increase in read throughput because
9873 * of the increased parallelism between the async threads and
9874 * the process context.
9875 */
9876 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 &&
9877 rw != S_CREATE &&
9878 !(vp->v_flag & VNOCACHE)) {
9879 mutex_enter(&rp->r_statelock);

9881 /*
9882 * Calculate the number of readaheads to do.
9883 * a) No readaheads at offset = 0.
9884 * b) Do maximum(nfs4_nra) readaheads when the readahead
9885 * window is closed.
9886 * c) Do readaheads between 1 to (nfs4_nra - 1) depending
9887 * upon how far the readahead window is open or close.
9888 * d) No readaheads if rp->r_nextr is not within the scope
9889 * of the readahead window (random i/o).
9890 */

9892 if (off == 0)

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 151

9893 readahead = 0;
9894 else if (blkoff == rp->r_nextr)
9895 readahead = nfs4_nra;
9896 else if (rp->r_nextr > blkoff &&
9897 ((ra_window = (rp->r_nextr - blkoff) / bsize)
9898 <= (nfs4_nra - 1)))
9899 readahead = nfs4_nra - ra_window;
9900 else
9901 readahead = 0;

9903 rablkoff = rp->r_nextr;
9904 while (readahead > 0 && rablkoff + bsize < rp->r_size) {
9905 mutex_exit(&rp->r_statelock);
9906 if (nfs4_async_readahead(vp, rablkoff + bsize,
9907 addr + (rablkoff + bsize - off),
9908 seg, cr, nfs4_readahead) < 0) {
9909 mutex_enter(&rp->r_statelock);
9910 break;
9911 }
9912 readahead--;
9913 rablkoff += bsize;
9914 /*
9915 * Indicate that we did a readahead so
9916 * readahead offset is not updated
9917 * by the synchronous read below.
9918 */
9919 readahead_issued = 1;
9920 mutex_enter(&rp->r_statelock);
9921 /*
9922 * set readahead offset to
9923 * offset of last async readahead
9924 * request.
9925 */
9926 rp->r_nextr = rablkoff;
9927 }
9928 mutex_exit(&rp->r_statelock);
9929 }

9931 again:
9932 if ((pagefound = page_exists(vp, off)) == NULL) {
9933 if (pl == NULL) {
9934 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr,
9935 nfs4_readahead);
9936 } else if (rw == S_CREATE) {
9937 /*
9938 * Block for this page is not allocated, or the offset
9939 * is beyond the current allocation size, or we’re
9940 * allocating a swap slot and the page was not found,
9941 * so allocate it and return a zero page.
9942 */
9943 if ((pp = page_create_va(vp, off,
9944 PAGESIZE, PG_WAIT, seg, addr)) == NULL)
9945 cmn_err(CE_PANIC, "nfs4_getapage: page_create");
9946 io_len = PAGESIZE;
9947 mutex_enter(&rp->r_statelock);
9948 rp->r_nextr = off + PAGESIZE;
9949 mutex_exit(&rp->r_statelock);
9950 } else {
9951 /*
9952 * Need to go to server to get a block
9953 */
9954 mutex_enter(&rp->r_statelock);
9955 if (blkoff < rp->r_size &&
9956 blkoff + bsize > rp->r_size) {
9957 /*
9958 * If less than a block left in

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 152

9959 * file read less than a block.
9960 */
9961 if (rp->r_size <= off) {
9962 /*
9963 * Trying to access beyond EOF,
9964 * set up to get at least one page.
9965 */
9966 blksize = off + PAGESIZE - blkoff;
9967 } else
9968 blksize = rp->r_size - blkoff;
9969 } else if ((off == 0) ||
9970 (off != rp->r_nextr && !readahead_issued)) {
9971 blksize = PAGESIZE;
9972 blkoff = off; /* block = page here */
9973 } else
9974 blksize = bsize;
9975 mutex_exit(&rp->r_statelock);

9977 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
9978 &io_len, blkoff, blksize, 0);

9980 /*
9981 * Some other thread has entered the page,
9982 * so just use it.
9983 */
9984 if (pp == NULL)
9985 goto again;

9987 /*
9988 * Now round the request size up to page boundaries.
9989 * This ensures that the entire page will be
9990 * initialized to zeroes if EOF is encountered.
9991 */
9992 io_len = ptob(btopr(io_len));

9994 bp = pageio_setup(pp, io_len, vp, B_READ);
9995 ASSERT(bp != NULL);

9997 /*
9998 * pageio_setup should have set b_addr to 0. This
9999 * is correct since we want to do I/O on a page
10000 * boundary. bp_mapin will use this addr to calculate
10001 * an offset, and then set b_addr to the kernel virtual
10002 * address it allocated for us.
10003 */
10004 ASSERT(bp->b_un.b_addr == 0);

10006 bp->b_edev = 0;
10007 bp->b_dev = 0;
10008 bp->b_lblkno = lbtodb(io_off);
10009 bp->b_file = vp;
10010 bp->b_offset = (offset_t)off;
10011 bp_mapin(bp);

10013 /*
10014 * If doing a write beyond what we believe is EOF,
10015 * don’t bother trying to read the pages from the
10016 * server, we’ll just zero the pages here. We
10017 * don’t check that the rw flag is S_WRITE here
10018 * because some implementations may attempt a
10019 * read access to the buffer before copying data.
10020 */
10021 mutex_enter(&rp->r_statelock);
10022 if (io_off >= rp->r_size && seg == segkmap) {
10023 mutex_exit(&rp->r_statelock);
10024 bzero(bp->b_un.b_addr, io_len);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 153

10025 } else {
10026 mutex_exit(&rp->r_statelock);
10027 error = nfs4_bio(bp, NULL, cr, FALSE);
10028 }

10030 /*
10031 * Unmap the buffer before freeing it.
10032 */
10033 bp_mapout(bp);
10034 pageio_done(bp);

10036 savepp = pp;
10037 do {
10038 pp->p_fsdata = C_NOCOMMIT;
10039 } while ((pp = pp->p_next) != savepp);

10041 if (error == NFS_EOF) {
10042 /*
10043 * If doing a write system call just return
10044 * zeroed pages, else user tried to get pages
10045 * beyond EOF, return error. We don’t check
10046 * that the rw flag is S_WRITE here because
10047 * some implementations may attempt a read
10048 * access to the buffer before copying data.
10049 */
10050 if (seg == segkmap)
10051 error = 0;
10052 else
10053 error = EFAULT;
10054 }

10056 if (!readahead_issued && !error) {
10057 mutex_enter(&rp->r_statelock);
10058 rp->r_nextr = io_off + io_len;
10059 mutex_exit(&rp->r_statelock);
10060 }
10061 }
10062 }

10064 out:
10065 if (pl == NULL)
10066 return (error);

10068 if (error) {
10069 if (pp != NULL)
10070 pvn_read_done(pp, B_ERROR);
10071 return (error);
10072 }

10074 if (pagefound) {
10075 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);

10077 /*
10078 * Page exists in the cache, acquire the appropriate lock.
10079 * If this fails, start all over again.
10080 */
10081 if ((pp = page_lookup(vp, off, se)) == NULL) {
10082 #ifdef DEBUG
10083 nfs4_lostpage++;
10084 #endif
10085 goto reread;
10086 }
10087 pl[0] = pp;
10088 pl[1] = NULL;
10089 return (0);
10090 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 154

10092 if (pp != NULL)
10093 pvn_plist_init(pp, pl, plsz, off, io_len, rw);

10095 return (error);
10096 }

10098 static void
10099 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg,
10100 cred_t *cr)
10101 {
10102 int error;
10103 page_t *pp;
10104 u_offset_t io_off;
10105 size_t io_len;
10106 struct buf *bp;
10107 uint_t bsize, blksize;
10108 rnode4_t *rp = VTOR4(vp);
10109 page_t *savepp;

10111 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);

10113 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);

10115 mutex_enter(&rp->r_statelock);
10116 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) {
10117 /*
10118 * If less than a block left in file read less
10119 * than a block.
10120 */
10121 blksize = rp->r_size - blkoff;
10122 } else
10123 blksize = bsize;
10124 mutex_exit(&rp->r_statelock);

10126 pp = pvn_read_kluster(vp, blkoff, segkmap, addr,
10127 &io_off, &io_len, blkoff, blksize, 1);
10128 /*
10129 * The isra flag passed to the kluster function is 1, we may have
10130 * gotten a return value of NULL for a variety of reasons (# of free
10131 * pages < minfree, someone entered the page on the vnode etc). In all
10132 * cases, we want to punt on the readahead.
10133 */
10134 if (pp == NULL)
10135 return;

10137 /*
10138 * Now round the request size up to page boundaries.
10139 * This ensures that the entire page will be
10140 * initialized to zeroes if EOF is encountered.
10141 */
10142 io_len = ptob(btopr(io_len));

10144 bp = pageio_setup(pp, io_len, vp, B_READ);
10145 ASSERT(bp != NULL);

10147 /*
10148 * pageio_setup should have set b_addr to 0. This is correct since
10149 * we want to do I/O on a page boundary. bp_mapin() will use this addr
10150 * to calculate an offset, and then set b_addr to the kernel virtual
10151 * address it allocated for us.
10152 */
10153 ASSERT(bp->b_un.b_addr == 0);

10155 bp->b_edev = 0;
10156 bp->b_dev = 0;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 155

10157 bp->b_lblkno = lbtodb(io_off);
10158 bp->b_file = vp;
10159 bp->b_offset = (offset_t)blkoff;
10160 bp_mapin(bp);

10162 /*
10163 * If doing a write beyond what we believe is EOF, don’t bother trying
10164 * to read the pages from the server, we’ll just zero the pages here.
10165 * We don’t check that the rw flag is S_WRITE here because some
10166 * implementations may attempt a read access to the buffer before
10167 * copying data.
10168 */
10169 mutex_enter(&rp->r_statelock);
10170 if (io_off >= rp->r_size && seg == segkmap) {
10171 mutex_exit(&rp->r_statelock);
10172 bzero(bp->b_un.b_addr, io_len);
10173 error = 0;
10174 } else {
10175 mutex_exit(&rp->r_statelock);
10176 error = nfs4_bio(bp, NULL, cr, TRUE);
10177 if (error == NFS_EOF)
10178 error = 0;
10179 }

10181 /*
10182 * Unmap the buffer before freeing it.
10183 */
10184 bp_mapout(bp);
10185 pageio_done(bp);

10187 savepp = pp;
10188 do {
10189 pp->p_fsdata = C_NOCOMMIT;
10190 } while ((pp = pp->p_next) != savepp);

10192 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ);

10194 /*
10195 * In case of error set readahead offset
10196 * to the lowest offset.
10197 * pvn_read_done() calls VN_DISPOSE to destroy the pages
10198 */
10199 if (error && rp->r_nextr > io_off) {
10200 mutex_enter(&rp->r_statelock);
10201 if (rp->r_nextr > io_off)
10202 rp->r_nextr = io_off;
10203 mutex_exit(&rp->r_statelock);
10204 }
10205 }

10207 /*
10208 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE}
10209 * If len == 0, do from off to EOF.
10210 *
10211 * The normal cases should be len == 0 && off == 0 (entire vp list) or
10212 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
10213 * (from pageout).
10214 */
10215 /* ARGSUSED */
10216 static int
10217 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
10218 caller_context_t *ct)
10219 {
10220 int error;
10221 rnode4_t *rp;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 156

10223 ASSERT(cr != NULL);

10225 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone)
10226 return (EIO);

10228 rp = VTOR4(vp);
10229 if (IS_SHADOW(vp, rp))
10230 vp = RTOV4(rp);

10232 /*
10233 * XXX - Why should this check be made here?
10234 */
10235 if (vp->v_flag & VNOMAP)
10236 return (ENOSYS);

10238 if (len == 0 && !(flags & B_INVAL) &&
10239 (vp->v_vfsp->vfs_flag & VFS_RDONLY))
10240 return (0);

10242 mutex_enter(&rp->r_statelock);
10243 rp->r_count++;
10244 mutex_exit(&rp->r_statelock);
10245 error = nfs4_putpages(vp, off, len, flags, cr);
10246 mutex_enter(&rp->r_statelock);
10247 rp->r_count--;
10248 cv_broadcast(&rp->r_cv);
10249 mutex_exit(&rp->r_statelock);

10251 return (error);
10252 }

10254 /*
10255 * Write out a single page, possibly klustering adjacent dirty pages.
10256 */
10257 int
10258 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
10259 int flags, cred_t *cr)
10260 {
10261 u_offset_t io_off;
10262 u_offset_t lbn_off;
10263 u_offset_t lbn;
10264 size_t io_len;
10265 uint_t bsize;
10266 int error;
10267 rnode4_t *rp;

10269 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY));
10270 ASSERT(pp != NULL);
10271 ASSERT(cr != NULL);
10272 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone);

10274 rp = VTOR4(vp);
10275 ASSERT(rp->r_count > 0);
10276 ASSERT(!IS_SHADOW(vp, rp));

10278 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
10279 lbn = pp->p_offset / bsize;
10280 lbn_off = lbn * bsize;

10282 /*
10283 * Find a kluster that fits in one block, or in
10284 * one page if pages are bigger than blocks. If
10285 * there is less file space allocated than a whole
10286 * page, we’ll shorten the i/o request below.
10287 */
10288 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off,

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 157

10289 roundup(bsize, PAGESIZE), flags);

10291 /*
10292 * pvn_write_kluster shouldn’t have returned a page with offset
10293 * behind the original page we were given. Verify that.
10294 */
10295 ASSERT((pp->p_offset / bsize) >= lbn);

10297 /*
10298 * Now pp will have the list of kept dirty pages marked for
10299 * write back. It will also handle invalidation and freeing
10300 * of pages that are not dirty. Check for page length rounding
10301 * problems.
10302 */
10303 if (io_off + io_len > lbn_off + bsize) {
10304 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE);
10305 io_len = lbn_off + bsize - io_off;
10306 }
10307 /*
10308 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a
10309 * consistent value of r_size. R4MODINPROGRESS is set in writerp4().
10310 * When R4MODINPROGRESS is set it indicates that a uiomove() is in
10311 * progress and the r_size has not been made consistent with the
10312 * new size of the file. When the uiomove() completes the r_size is
10313 * updated and the R4MODINPROGRESS flag is cleared.
10314 *
10315 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a
10316 * consistent value of r_size. Without this handshaking, it is
10317 * possible that nfs4_bio() picks up the old value of r_size
10318 * before the uiomove() in writerp4() completes. This will result
10319 * in the write through nfs4_bio() being dropped.
10320 *
10321 * More precisely, there is a window between the time the uiomove()
10322 * completes and the time the r_size is updated. If a VOP_PUTPAGE()
10323 * operation intervenes in this window, the page will be picked up,
10324 * because it is dirty (it will be unlocked, unless it was
10325 * pagecreate’d). When the page is picked up as dirty, the dirty
10326 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is
10327 * checked. This will still be the old size. Therefore the page will
10328 * not be written out. When segmap_release() calls VOP_PUTPAGE(),
10329 * the page will be found to be clean and the write will be dropped.
10330 */
10331 if (rp->r_flags & R4MODINPROGRESS) {
10332 mutex_enter(&rp->r_statelock);
10333 if ((rp->r_flags & R4MODINPROGRESS) &&
10334 rp->r_modaddr + MAXBSIZE > io_off &&
10335 rp->r_modaddr < io_off + io_len) {
10336 page_t *plist;
10337 /*
10338 * A write is in progress for this region of the file.
10339 * If we did not detect R4MODINPROGRESS here then this
10340 * path through nfs_putapage() would eventually go to
10341 * nfs4_bio() and may not write out all of the data
10342 * in the pages. We end up losing data. So we decide
10343 * to set the modified bit on each page in the page
10344 * list and mark the rnode with R4DIRTY. This write
10345 * will be restarted at some later time.
10346 */
10347 plist = pp;
10348 while (plist != NULL) {
10349 pp = plist;
10350 page_sub(&plist, pp);
10351 hat_setmod(pp);
10352 page_io_unlock(pp);
10353 page_unlock(pp);
10354 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 158

10355 rp->r_flags |= R4DIRTY;
10356 mutex_exit(&rp->r_statelock);
10357 if (offp)
10358 *offp = io_off;
10359 if (lenp)
10360 *lenp = io_len;
10361 return (0);
10362 }
10363 mutex_exit(&rp->r_statelock);
10364 }

10366 if (flags & B_ASYNC) {
10367 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr,
10368 nfs4_sync_putapage);
10369 } else
10370 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr);

10372 if (offp)
10373 *offp = io_off;
10374 if (lenp)
10375 *lenp = io_len;
10376 return (error);
10377 }

10379 static int
10380 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
10381 int flags, cred_t *cr)
10382 {
10383 int error;
10384 rnode4_t *rp;

10386 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);

10388 flags |= B_WRITE;

10390 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);

10392 rp = VTOR4(vp);

10394 if ((error == ENOSPC || error == EDQUOT || error == EFBIG ||
10395 error == EACCES) &&
10396 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) {
10397 if (!(rp->r_flags & R4OUTOFSPACE)) {
10398 mutex_enter(&rp->r_statelock);
10399 rp->r_flags |= R4OUTOFSPACE;
10400 mutex_exit(&rp->r_statelock);
10401 }
10402 flags |= B_ERROR;
10403 pvn_write_done(pp, flags);
10404 /*
10405 * If this was not an async thread, then try again to
10406 * write out the pages, but this time, also destroy
10407 * them whether or not the write is successful. This
10408 * will prevent memory from filling up with these
10409 * pages and destroying them is the only alternative
10410 * if they can’t be written out.
10411 *
10412 * Don’t do this if this is an async thread because
10413 * when the pages are unlocked in pvn_write_done,
10414 * some other thread could have come along, locked
10415 * them, and queued for an async thread. It would be
10416 * possible for all of the async threads to be tied
10417 * up waiting to lock the pages again and they would
10418 * all already be locked and waiting for an async
10419 * thread to handle them. Deadlock.
10420 */

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 159

10421 if (!(flags & B_ASYNC)) {
10422 error = nfs4_putpage(vp, io_off, io_len,
10423 B_INVAL | B_FORCE, cr, NULL);
10424 }
10425 } else {
10426 if (error)
10427 flags |= B_ERROR;
10428 else if (rp->r_flags & R4OUTOFSPACE) {
10429 mutex_enter(&rp->r_statelock);
10430 rp->r_flags &= ~R4OUTOFSPACE;
10431 mutex_exit(&rp->r_statelock);
10432 }
10433 pvn_write_done(pp, flags);
10434 if (freemem < desfree)
10435 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr,
10436 NFS4_WRITE_NOWAIT);
10437 }

10439 return (error);
10440 }

10442 #ifdef DEBUG
10443 int nfs4_force_open_before_mmap = 0;
10444 #endif

10446 /* ARGSUSED */
10447 static int
10448 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
10449 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
10450 caller_context_t *ct)
10451 {
10452 struct segvn_crargs vn_a;
10453 int error = 0;
10454 rnode4_t *rp = VTOR4(vp);
10455 mntinfo4_t *mi = VTOMI4(vp);

10457 if (nfs_zone() != VTOMI4(vp)->mi_zone)
10458 return (EIO);

10460 if (vp->v_flag & VNOMAP)
10461 return (ENOSYS);

10463 if (off < 0 || (off + len) < 0)
10464 return (ENXIO);

10466 if (vp->v_type != VREG)
10467 return (ENODEV);

10469 /*
10470 * If the file is delegated to the client don’t do anything.
10471 * If the file is not delegated, then validate the data cache.
10472 */
10473 mutex_enter(&rp->r_statev4_lock);
10474 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) {
10475 mutex_exit(&rp->r_statev4_lock);
10476 error = nfs4_validate_caches(vp, cr);
10477 if (error)
10478 return (error);
10479 } else {
10480 mutex_exit(&rp->r_statev4_lock);
10481 }

10483 /*
10484 * Check to see if the vnode is currently marked as not cachable.
10485 * This means portions of the file are locked (through VOP_FRLOCK).
10486 * In this case the map request must be refused. We use

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 160

10487 * rp->r_lkserlock to avoid a race with concurrent lock requests.
10488 *
10489 * Atomically increment r_inmap after acquiring r_rwlock. The
10490 * idea here is to acquire r_rwlock to block read/write and
10491 * not to protect r_inmap. r_inmap will inform nfs4_read/write()
10492 * that we are in nfs4_map(). Now, r_rwlock is acquired in order
10493 * and we can prevent the deadlock that would have occurred
10494 * when nfs4_addmap() would have acquired it out of order.
10495 *
10496 * Since we are not protecting r_inmap by any lock, we do not
10497 * hold any lock when we decrement it. We atomically decrement
10498 * r_inmap after we release r_lkserlock.
10499 */

10501 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR4(vp)))
10502 return (EINTR);
10503 atomic_add_int(&rp->r_inmap, 1);
10504 nfs_rw_exit(&rp->r_rwlock);

10506 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) {
10507 atomic_add_int(&rp->r_inmap, -1);
10508 return (EINTR);
10509 }

10512 if (vp->v_flag & VNOCACHE) {
10513 error = EAGAIN;
10514 goto done;
10515 }

10517 /*
10518 * Don’t allow concurrent locks and mapping if mandatory locking is
10519 * enabled.
10520 */
10521 if (flk_has_remote_locks(vp)) {
10522 struct vattr va;
10523 va.va_mask = AT_MODE;
10524 error = nfs4getattr(vp, &va, cr);
10525 if (error != 0)
10526 goto done;
10527 if (MANDLOCK(vp, va.va_mode)) {
10528 error = EAGAIN;
10529 goto done;
10530 }
10531 }

10533 /*
10534 * It is possible that the rnode has a lost lock request that we
10535 * are still trying to recover, and that the request conflicts with
10536 * this map request.
10537 *
10538 * An alternative approach would be for nfs4_safemap() to consider
10539 * queued lock requests when deciding whether to set or clear
10540 * VNOCACHE. This would require the frlock code path to call
10541 * nfs4_safemap() after enqueing a lost request.
10542 */
10543 if (nfs4_map_lost_lock_conflict(vp)) {
10544 error = EAGAIN;
10545 goto done;
10546 }

10548 as_rangelock(as);
10549 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
10550 if (error != 0) {
10551 as_rangeunlock(as);
10552 goto done;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 161

10553 }

10555 if (vp->v_type == VREG) {
10556 /*
10557 * We need to retrieve the open stream
10558 */
10559 nfs4_open_stream_t *osp = NULL;
10560 nfs4_open_owner_t *oop = NULL;

10562 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
10563 if (oop != NULL) {
10564 /* returns with ’os_sync_lock’ held */
10565 osp = find_open_stream(oop, rp);
10566 open_owner_rele(oop);
10567 }
10568 if (osp == NULL) {
10569 #ifdef DEBUG
10570 if (nfs4_force_open_before_mmap) {
10571 error = EIO;
10572 goto done;
10573 }
10574 #endif
10575 /* returns with ’os_sync_lock’ held */
10576 error = open_and_get_osp(vp, cr, &osp);
10577 if (osp == NULL) {
10578 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE,
10579 "nfs4_map: we tried to OPEN the file "
10580 "but again no osp, so fail with EIO"));
10581 goto done;
10582 }
10583 }

10585 if (osp->os_failed_reopen) {
10586 mutex_exit(&osp->os_sync_lock);
10587 open_stream_rele(osp, rp);
10588 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE,
10589 "nfs4_map: os_failed_reopen set on "
10590 "osp %p, cr %p, rp %s", (void *)osp,
10591 (void *)cr, rnode4info(rp)));
10592 error = EIO;
10593 goto done;
10594 }
10595 mutex_exit(&osp->os_sync_lock);
10596 open_stream_rele(osp, rp);
10597 }

10599 vn_a.vp = vp;
10600 vn_a.offset = off;
10601 vn_a.type = (flags & MAP_TYPE);
10602 vn_a.prot = (uchar_t)prot;
10603 vn_a.maxprot = (uchar_t)maxprot;
10604 vn_a.flags = (flags & ~MAP_TYPE);
10605 vn_a.cred = cr;
10606 vn_a.amp = NULL;
10607 vn_a.szc = 0;
10608 vn_a.lgrp_mem_policy_flags = 0;

10610 error = as_map(as, *addrp, len, segvn_create, &vn_a);
10611 as_rangeunlock(as);

10613 done:
10614 nfs_rw_exit(&rp->r_lkserlock);
10615 atomic_add_int(&rp->r_inmap, -1);
10616 return (error);
10617 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 162

10619 /*
10620 * We’re most likely dealing with a kernel module that likes to READ
10621 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets
10622 * officially OPEN the file to create the necessary client state
10623 * for bookkeeping of os_mmap_read/write counts.
10624 *
10625 * Since VOP_MAP only passes in a pointer to the vnode rather than
10626 * a double pointer, we can’t handle the case where nfs4open_otw()
10627 * returns a different vnode than the one passed into VOP_MAP (since
10628 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case,
10629 * we return NULL and let nfs4_map() fail. Note: the only case where
10630 * this should happen is if the file got removed and replaced with the
10631 * same name on the server (in addition to the fact that we’re trying
10632 * to VOP_MAP withouth VOP_OPENing the file in the first place).
10633 */
10634 static int
10635 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp)
10636 {
10637 rnode4_t *rp, *drp;
10638 vnode_t *dvp, *open_vp;
10639 char file_name[MAXNAMELEN];
10640 int just_created;
10641 nfs4_open_stream_t *osp;
10642 nfs4_open_owner_t *oop;
10643 int error;

10645 *ospp = NULL;
10646 open_vp = map_vp;

10648 rp = VTOR4(open_vp);
10649 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0)
10650 return (error);
10651 drp = VTOR4(dvp);

10653 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) {
10654 VN_RELE(dvp);
10655 return (EINTR);
10656 }

10658 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) {
10659 nfs_rw_exit(&drp->r_rwlock);
10660 VN_RELE(dvp);
10661 return (error);
10662 }

10664 mutex_enter(&rp->r_statev4_lock);
10665 if (rp->created_v4) {
10666 rp->created_v4 = 0;
10667 mutex_exit(&rp->r_statev4_lock);

10669 dnlc_update(dvp, file_name, open_vp);
10670 /* This is needed so we don’t bump the open ref count */
10671 just_created = 1;
10672 } else {
10673 mutex_exit(&rp->r_statev4_lock);
10674 just_created = 0;
10675 }

10677 VN_HOLD(map_vp);

10679 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0,
10680 just_created);
10681 if (error) {
10682 nfs_rw_exit(&drp->r_rwlock);
10683 VN_RELE(dvp);
10684 VN_RELE(map_vp);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 163

10685 return (error);
10686 }

10688 nfs_rw_exit(&drp->r_rwlock);
10689 VN_RELE(dvp);

10691 /*
10692 * If nfs4open_otw() returned a different vnode then "undo"
10693 * the open and return failure to the caller.
10694 */
10695 if (!VN_CMP(open_vp, map_vp)) {
10696 nfs4_error_t e;

10698 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: "
10699 "open returned a different vnode"));
10700 /*
10701 * If there’s an error, ignore it,
10702 * and let VOP_INACTIVE handle it.
10703 */
10704 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e,
10705 CLOSE_NORM, 0, 0, 0);
10706 VN_RELE(map_vp);
10707 return (EIO);
10708 }

10710 VN_RELE(map_vp);

10712 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp));
10713 if (!oop) {
10714 nfs4_error_t e;

10716 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: "
10717 "no open owner"));
10718 /*
10719 * If there’s an error, ignore it,
10720 * and let VOP_INACTIVE handle it.
10721 */
10722 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e,
10723 CLOSE_NORM, 0, 0, 0);
10724 return (EIO);
10725 }
10726 osp = find_open_stream(oop, rp);
10727 open_owner_rele(oop);
10728 *ospp = osp;
10729 return (0);
10730 }

10732 /*
10733 * Please be aware that when this function is called, the address space write
10734 * a_lock is held. Do not put over the wire calls in this function.
10735 */
10736 /* ARGSUSED */
10737 static int
10738 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
10739 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
10740 caller_context_t *ct)
10741 {
10742 rnode4_t *rp;
10743 int error = 0;
10744 mntinfo4_t *mi;

10746 mi = VTOMI4(vp);
10747 rp = VTOR4(vp);

10749 if (nfs_zone() != mi->mi_zone)
10750 return (EIO);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 164

10751 if (vp->v_flag & VNOMAP)
10752 return (ENOSYS);

10754 /*
10755 * Don’t need to update the open stream first, since this
10756 * mmap can’t add any additional share access that isn’t
10757 * already contained in the open stream (for the case where we
10758 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn’t
10759 * take into account os_mmap_read[write] counts).
10760 */
10761 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len));

10763 if (vp->v_type == VREG) {
10764 /*
10765 * We need to retrieve the open stream and update the counts.
10766 * If there is no open stream here, something is wrong.
10767 */
10768 nfs4_open_stream_t *osp = NULL;
10769 nfs4_open_owner_t *oop = NULL;

10771 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
10772 if (oop != NULL) {
10773 /* returns with ’os_sync_lock’ held */
10774 osp = find_open_stream(oop, rp);
10775 open_owner_rele(oop);
10776 }
10777 if (osp == NULL) {
10778 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE,
10779 "nfs4_addmap: we should have an osp"
10780 "but we don’t, so fail with EIO"));
10781 error = EIO;
10782 goto out;
10783 }

10785 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p,"
10786 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot));

10788 /*
10789 * Update the map count in the open stream.
10790 * This is necessary in the case where we
10791 * open/mmap/close/, then the server reboots, and we
10792 * attempt to reopen. If the mmap doesn’t add share
10793 * access then we send an invalid reopen with
10794 * access = NONE.
10795 *
10796 * We need to specifically check each PROT_* so a mmap
10797 * call of (PROT_WRITE | PROT_EXEC) will ensure us both
10798 * read and write access. A simple comparison of prot
10799 * to ~PROT_WRITE to determine read access is insufficient
10800 * since prot can be |= with PROT_USER, etc.
10801 */

10803 /*
10804 * Unless we’re MAP_SHARED, no sense in adding os_mmap_write
10805 */
10806 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE))
10807 osp->os_mmap_write += btopr(len);
10808 if (maxprot & PROT_READ)
10809 osp->os_mmap_read += btopr(len);
10810 if (maxprot & PROT_EXEC)
10811 osp->os_mmap_read += btopr(len);
10812 /*
10813 * Ensure that os_mmap_read gets incremented, even if
10814 * maxprot were to look like PROT_NONE.
10815 */
10816 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) &&

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 165

10817 !(maxprot & PROT_EXEC))
10818 osp->os_mmap_read += btopr(len);
10819 osp->os_mapcnt += btopr(len);
10820 mutex_exit(&osp->os_sync_lock);
10821 open_stream_rele(osp, rp);
10822 }

10824 out:
10825 /*
10826 * If we got an error, then undo our
10827 * incrementing of ’r_mapcnt’.
10828 */

10830 if (error) {
10831 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len));
10832 ASSERT(rp->r_mapcnt >= 0);
10833 }
10834 return (error);
10835 }

10837 /* ARGSUSED */
10838 static int
10839 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct)
10840 {

10842 return (VTOR4(vp1) == VTOR4(vp2));
10843 }

10845 /* ARGSUSED */
10846 static int
10847 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
10848 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr,
10849 caller_context_t *ct)
10850 {
10851 int rc;
10852 u_offset_t start, end;
10853 rnode4_t *rp;
10854 int error = 0, intr = INTR4(vp);
10855 nfs4_error_t e;

10857 if (nfs_zone() != VTOMI4(vp)->mi_zone)
10858 return (EIO);

10860 /* check for valid cmd parameter */
10861 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW)
10862 return (EINVAL);

10864 /* Verify l_type. */
10865 switch (bfp->l_type) {
10866 case F_RDLCK:
10867 if (cmd != F_GETLK && !(flag & FREAD))
10868 return (EBADF);
10869 break;
10870 case F_WRLCK:
10871 if (cmd != F_GETLK && !(flag & FWRITE))
10872 return (EBADF);
10873 break;
10874 case F_UNLCK:
10875 intr = 0;
10876 break;

10878 default:
10879 return (EINVAL);
10880 }

10882 /* check the validity of the lock range */

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 166

10883 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset))
10884 return (rc);
10885 if (rc = flk_check_lock_data(start, end, MAXEND))
10886 return (rc);

10888 /*
10889 * If the filesystem is mounted using local locking, pass the
10890 * request off to the local locking code.
10891 */
10892 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) {
10893 if (cmd == F_SETLK || cmd == F_SETLKW) {
10894 /*
10895 * For complete safety, we should be holding
10896 * r_lkserlock. However, we can’t call
10897 * nfs4_safelock and then fs_frlock while
10898 * holding r_lkserlock, so just invoke
10899 * nfs4_safelock and expect that this will
10900 * catch enough of the cases.
10901 */
10902 if (!nfs4_safelock(vp, bfp, cr))
10903 return (EAGAIN);
10904 }
10905 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
10906 }

10908 rp = VTOR4(vp);

10910 /*
10911 * Check whether the given lock request can proceed, given the
10912 * current file mappings.
10913 */
10914 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr))
10915 return (EINTR);
10916 if (cmd == F_SETLK || cmd == F_SETLKW) {
10917 if (!nfs4_safelock(vp, bfp, cr)) {
10918 rc = EAGAIN;
10919 goto done;
10920 }
10921 }

10923 /*
10924 * Flush the cache after waiting for async I/O to finish. For new
10925 * locks, this is so that the process gets the latest bits from the
10926 * server. For unlocks, this is so that other clients see the
10927 * latest bits once the file has been unlocked. If currently dirty
10928 * pages can’t be flushed, then don’t allow a lock to be set. But
10929 * allow unlocks to succeed, to avoid having orphan locks on the
10930 * server.
10931 */
10932 if (cmd != F_GETLK) {
10933 mutex_enter(&rp->r_statelock);
10934 while (rp->r_count > 0) {
10935 if (intr) {
10936 klwp_t *lwp = ttolwp(curthread);

10938 if (lwp != NULL)
10939 lwp->lwp_nostop++;
10940 if (cv_wait_sig(&rp->r_cv,
10941 &rp->r_statelock) == 0) {
10942 if (lwp != NULL)
10943 lwp->lwp_nostop--;
10944 rc = EINTR;
10945 break;
10946 }
10947 if (lwp != NULL)
10948 lwp->lwp_nostop--;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 167

10949 } else
10950 cv_wait(&rp->r_cv, &rp->r_statelock);
10951 }
10952 mutex_exit(&rp->r_statelock);
10953 if (rc != 0)
10954 goto done;
10955 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct);
10956 if (error) {
10957 if (error == ENOSPC || error == EDQUOT) {
10958 mutex_enter(&rp->r_statelock);
10959 if (!rp->r_error)
10960 rp->r_error = error;
10961 mutex_exit(&rp->r_statelock);
10962 }
10963 if (bfp->l_type != F_UNLCK) {
10964 rc = ENOLCK;
10965 goto done;
10966 }
10967 }
10968 }

10970 /*
10971 * Call the lock manager to do the real work of contacting
10972 * the server and obtaining the lock.
10973 */
10974 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset,
10975 cr, &e, NULL, NULL);
10976 rc = e.error;

10978 if (rc == 0)
10979 nfs4_lockcompletion(vp, cmd);

10981 done:
10982 nfs_rw_exit(&rp->r_lkserlock);

10984 return (rc);
10985 }

10987 /*
10988 * Free storage space associated with the specified vnode. The portion
10989 * to be freed is specified by bfp->l_start and bfp->l_len (already
10990 * normalized to a "whence" of 0).
10991 *
10992 * This is an experimental facility whose continued existence is not
10993 * guaranteed. Currently, we only support the special case
10994 * of l_len == 0, meaning free to end of file.
10995 */
10996 /* ARGSUSED */
10997 static int
10998 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
10999 offset_t offset, cred_t *cr, caller_context_t *ct)
11000 {
11001 int error;

11003 if (nfs_zone() != VTOMI4(vp)->mi_zone)
11004 return (EIO);
11005 ASSERT(vp->v_type == VREG);
11006 if (cmd != F_FREESP)
11007 return (EINVAL);

11009 error = convoff(vp, bfp, 0, offset);
11010 if (!error) {
11011 ASSERT(bfp->l_start >= 0);
11012 if (bfp->l_len == 0) {
11013 struct vattr va;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 168

11015 va.va_mask = AT_SIZE;
11016 va.va_size = bfp->l_start;
11017 error = nfs4setattr(vp, &va, 0, cr, NULL);

11019 if (error == 0 && bfp->l_start == 0)
11020 vnevent_truncate(vp, ct);
11021 } else
11022 error = EINVAL;
11023 }

11025 return (error);
11026 }

11028 /* ARGSUSED */
11029 int
11030 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct)
11031 {
11032 rnode4_t *rp;
11033 rp = VTOR4(vp);

11035 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) {
11036 vp = RTOV4(rp);
11037 }
11038 *vpp = vp;
11039 return (0);
11040 }

11042 /*
11043 * Setup and add an address space callback to do the work of the delmap call.
11044 * The callback will (and must be) deleted in the actual callback function.
11045 *
11046 * This is done in order to take care of the problem that we have with holding
11047 * the address space’s a_lock for a long period of time (e.g. if the NFS server
11048 * is down). Callbacks will be executed in the address space code while the
11049 * a_lock is not held. Holding the address space’s a_lock causes things such
11050 * as ps and fork to hang because they are trying to acquire this lock as well.
11051 */
11052 /* ARGSUSED */
11053 static int
11054 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
11055 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
11056 caller_context_t *ct)
11057 {
11058 int caller_found;
11059 int error;
11060 rnode4_t *rp;
11061 nfs4_delmap_args_t *dmapp;
11062 nfs4_delmapcall_t *delmap_call;

11064 if (vp->v_flag & VNOMAP)
11065 return (ENOSYS);

11067 /*
11068 * A process may not change zones if it has NFS pages mmap’ed
11069 * in, so we can’t legitimately get here from the wrong zone.
11070 */
11071 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);

11073 rp = VTOR4(vp);

11075 /*
11076 * The way that the address space of this process deletes its mapping
11077 * of this file is via the following call chains:
11078 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap()
11079 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap()
11080 *

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 169

11081 * With the use of address space callbacks we are allowed to drop the
11082 * address space lock, a_lock, while executing the NFS operations that
11083 * need to go over the wire. Returning EAGAIN to the caller of this
11084 * function is what drives the execution of the callback that we add
11085 * below. The callback will be executed by the address space code
11086 * after dropping the a_lock. When the callback is finished, since
11087 * we dropped the a_lock, it must be re-acquired and segvn_unmap()
11088 * is called again on the same segment to finish the rest of the work
11089 * that needs to happen during unmapping.
11090 *
11091 * This action of calling back into the segment driver causes
11092 * nfs4_delmap() to get called again, but since the callback was
11093 * already executed at this point, it already did the work and there
11094 * is nothing left for us to do.
11095 *
11096 * To Summarize:
11097 * - The first time nfs4_delmap is called by the current thread is when
11098 * we add the caller associated with this delmap to the delmap caller
11099 * list, add the callback, and return EAGAIN.
11100 * - The second time in this call chain when nfs4_delmap is called we
11101 * will find this caller in the delmap caller list and realize there
11102 * is no more work to do thus removing this caller from the list and
11103 * returning the error that was set in the callback execution.
11104 */
11105 caller_found = nfs4_find_and_delete_delmapcall(rp, &error);
11106 if (caller_found) {
11107 /*
11108 * ’error’ is from the actual delmap operations. To avoid
11109 * hangs, we need to handle the return of EAGAIN differently
11110 * since this is what drives the callback execution.
11111 * In this case, we don’t want to return EAGAIN and do the
11112 * callback execution because there are none to execute.
11113 */
11114 if (error == EAGAIN)
11115 return (0);
11116 else
11117 return (error);
11118 }

11120 /* current caller was not in the list */
11121 delmap_call = nfs4_init_delmapcall();

11123 mutex_enter(&rp->r_statelock);
11124 list_insert_tail(&rp->r_indelmap, delmap_call);
11125 mutex_exit(&rp->r_statelock);

11127 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP);

11129 dmapp->vp = vp;
11130 dmapp->off = off;
11131 dmapp->addr = addr;
11132 dmapp->len = len;
11133 dmapp->prot = prot;
11134 dmapp->maxprot = maxprot;
11135 dmapp->flags = flags;
11136 dmapp->cr = cr;
11137 dmapp->caller = delmap_call;

11139 error = as_add_callback(as, nfs4_delmap_callback, dmapp,
11140 AS_UNMAP_EVENT, addr, len, KM_SLEEP);

11142 return (error ? error : EAGAIN);
11143 }

11145 static nfs4_delmapcall_t *
11146 nfs4_init_delmapcall()

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 170

11147 {
11148 nfs4_delmapcall_t *delmap_call;

11150 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP);
11151 delmap_call->call_id = curthread;
11152 delmap_call->error = 0;

11154 return (delmap_call);
11155 }

11157 static void
11158 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call)
11159 {
11160 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t));
11161 }

11163 /*
11164 * Searches for the current delmap caller (based on curthread) in the list of
11165 * callers. If it is found, we remove it and free the delmap caller.
11166 * Returns:
11167 * 0 if the caller wasn’t found
11168 * 1 if the caller was found, removed and freed. *errp will be set
11169 * to what the result of the delmap was.
11170 */
11171 static int
11172 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp)
11173 {
11174 nfs4_delmapcall_t *delmap_call;

11176 /*
11177 * If the list doesn’t exist yet, we create it and return
11178 * that the caller wasn’t found. No list = no callers.
11179 */
11180 mutex_enter(&rp->r_statelock);
11181 if (!(rp->r_flags & R4DELMAPLIST)) {
11182 /* The list does not exist */
11183 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t),
11184 offsetof(nfs4_delmapcall_t, call_node));
11185 rp->r_flags |= R4DELMAPLIST;
11186 mutex_exit(&rp->r_statelock);
11187 return (0);
11188 } else {
11189 /* The list exists so search it */
11190 for (delmap_call = list_head(&rp->r_indelmap);
11191 delmap_call != NULL;
11192 delmap_call = list_next(&rp->r_indelmap, delmap_call)) {
11193 if (delmap_call->call_id == curthread) {
11194 /* current caller is in the list */
11195 *errp = delmap_call->error;
11196 list_remove(&rp->r_indelmap, delmap_call);
11197 mutex_exit(&rp->r_statelock);
11198 nfs4_free_delmapcall(delmap_call);
11199 return (1);
11200 }
11201 }
11202 }
11203 mutex_exit(&rp->r_statelock);
11204 return (0);
11205 }

11207 /*
11208 * Remove some pages from an mmap’d vnode. Just update the
11209 * count of pages. If doing close-to-open, then flush and
11210 * commit all of the pages associated with this file.
11211 * Otherwise, start an asynchronous page flush to write out
11212 * any dirty pages. This will also associate a credential

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 171

11213 * with the rnode which can be used to write the pages.
11214 */
11215 /* ARGSUSED */
11216 static void
11217 nfs4_delmap_callback(struct as *as, void *arg, uint_t event)
11218 {
11219 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
11220 rnode4_t *rp;
11221 mntinfo4_t *mi;
11222 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg;

11224 rp = VTOR4(dmapp->vp);
11225 mi = VTOMI4(dmapp->vp);

11227 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len));
11228 ASSERT(rp->r_mapcnt >= 0);

11230 /*
11231 * Initiate a page flush and potential commit if there are
11232 * pages, the file system was not mounted readonly, the segment
11233 * was mapped shared, and the pages themselves were writeable.
11234 */
11235 if (nfs4_has_pages(dmapp->vp) &&
11236 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) &&
11237 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) {
11238 mutex_enter(&rp->r_statelock);
11239 rp->r_flags |= R4DIRTY;
11240 mutex_exit(&rp->r_statelock);
11241 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off,
11242 dmapp->len, dmapp->cr);
11243 if (!e.error) {
11244 mutex_enter(&rp->r_statelock);
11245 e.error = rp->r_error;
11246 rp->r_error = 0;
11247 mutex_exit(&rp->r_statelock);
11248 }
11249 } else
11250 e.error = 0;

11252 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO))
11253 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len,
11254 B_INVAL, dmapp->cr, NULL);

11256 if (e.error) {
11257 e.stat = puterrno4(e.error);
11258 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0,
11259 OP_COMMIT, FALSE, NULL, 0, dmapp->vp);
11260 dmapp->caller->error = e.error;
11261 }

11263 /* Check to see if we need to close the file */

11265 if (dmapp->vp->v_type == VREG) {
11266 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e,
11267 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags);

11269 if (e.error != 0 || e.stat != NFS4_OK) {
11270 /*
11271 * Since it is possible that e.error == 0 and
11272 * e.stat != NFS4_OK (and vice versa),
11273 * we do the proper checking in order to get both
11274 * e.error and e.stat reporting the correct info.
11275 */
11276 if (e.stat == NFS4_OK)
11277 e.stat = puterrno4(e.error);
11278 if (e.error == 0)

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 172

11279 e.error = geterrno4(e.stat);

11281 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0,
11282 OP_CLOSE, FALSE, NULL, 0, dmapp->vp);
11283 dmapp->caller->error = e.error;
11284 }
11285 }

11287 (void) as_delete_callback(as, arg);
11288 kmem_free(dmapp, sizeof (nfs4_delmap_args_t));
11289 }

11292 static uint_t
11293 fattr4_maxfilesize_to_bits(uint64_t ll)
11294 {
11295 uint_t l = 1;

11297 if (ll == 0) {
11298 return (0);
11299 }

11301 if (ll & 0xffffffff00000000) {
11302 l += 32; ll >>= 32;
11303 }
11304 if (ll & 0xffff0000) {
11305 l += 16; ll >>= 16;
11306 }
11307 if (ll & 0xff00) {
11308 l += 8; ll >>= 8;
11309 }
11310 if (ll & 0xf0) {
11311 l += 4; ll >>= 4;
11312 }
11313 if (ll & 0xc) {
11314 l += 2; ll >>= 2;
11315 }
11316 if (ll & 0x2) {
11317 l += 1;
11318 }
11319 return (l);
11320 }

11322 static int
11323 nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr)
11324 {
11325 vnode_t *avp = NULL;
11326 int error;

11328 if ((error = nfs4lookup_xattr(vp, "", &avp,
11329 LOOKUP_XATTR, cr)) == 0)
11330 error = do_xattr_exists_check(avp, valp, cr);
11331 if (avp)
11332 VN_RELE(avp);

11334 return (error);
11335 }

11337 /* ARGSUSED */
11338 int
11339 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
11340 caller_context_t *ct)
11341 {
11342 int error;
11343 hrtime_t t;
11344 rnode4_t *rp;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 173

11345 nfs4_ga_res_t gar;
11346 nfs4_ga_ext_res_t ger;

11348 gar.n4g_ext_res = &ger;

11350 if (nfs_zone() != VTOMI4(vp)->mi_zone)
11351 return (EIO);
11352 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) {
11353 *valp = MAXPATHLEN;
11354 return (0);
11355 }
11356 if (cmd == _PC_ACL_ENABLED) {
11357 *valp = _ACL_ACE_ENABLED;
11358 return (0);
11359 }

11361 rp = VTOR4(vp);
11362 if (cmd == _PC_XATTR_EXISTS) {
11363 /*
11364 * The existence of the xattr directory is not sufficient
11365 * for determining whether generic user attributes exists.
11366 * The attribute directory could only be a transient directory
11367 * used for Solaris sysattr support. Do a small readdir
11368 * to verify if the only entries are sysattrs or not.
11369 *
11370 * pc4_xattr_valid can be only be trusted when r_xattr_dir
11371 * is NULL. Once the xadir vp exists, we can create xattrs,
11372 * and we don’t have any way to update the "base" object’s
11373 * pc4_xattr_exists from the xattr or xadir. Maybe FEM
11374 * could help out.
11375 */
11376 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid &&
11377 rp->r_xattr_dir == NULL) {
11378 return (nfs4_have_xattrs(vp, valp, cr));
11379 }
11380 } else { /* OLD CODE */
11381 if (ATTRCACHE4_VALID(vp)) {
11382 mutex_enter(&rp->r_statelock);
11383 if (rp->r_pathconf.pc4_cache_valid) {
11384 error = 0;
11385 switch (cmd) {
11386 case _PC_FILESIZEBITS:
11387 *valp =
11388 rp->r_pathconf.pc4_filesizebits;
11389 break;
11390 case _PC_LINK_MAX:
11391 *valp =
11392 rp->r_pathconf.pc4_link_max;
11393 break;
11394 case _PC_NAME_MAX:
11395 *valp =
11396 rp->r_pathconf.pc4_name_max;
11397 break;
11398 case _PC_CHOWN_RESTRICTED:
11399 *valp =
11400 rp->r_pathconf.pc4_chown_restricted;
11401 break;
11402 case _PC_NO_TRUNC:
11403 *valp =
11404 rp->r_pathconf.pc4_no_trunc;
11405 break;
11406 default:
11407 error = EINVAL;
11408 break;
11409 }
11410 mutex_exit(&rp->r_statelock);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 174

11411 #ifdef DEBUG
11412 nfs4_pathconf_cache_hits++;
11413 #endif
11414 return (error);
11415 }
11416 mutex_exit(&rp->r_statelock);
11417 }
11418 }
11419 #ifdef DEBUG
11420 nfs4_pathconf_cache_misses++;
11421 #endif

11423 t = gethrtime();

11425 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr);

11427 if (error) {
11428 mutex_enter(&rp->r_statelock);
11429 rp->r_pathconf.pc4_cache_valid = FALSE;
11430 rp->r_pathconf.pc4_xattr_valid = FALSE;
11431 mutex_exit(&rp->r_statelock);
11432 return (error);
11433 }

11435 /* interpret the max filesize */
11436 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits =
11437 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize);

11439 /* Store the attributes we just received */
11440 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL);

11442 switch (cmd) {
11443 case _PC_FILESIZEBITS:
11444 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits;
11445 break;
11446 case _PC_LINK_MAX:
11447 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max;
11448 break;
11449 case _PC_NAME_MAX:
11450 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max;
11451 break;
11452 case _PC_CHOWN_RESTRICTED:
11453 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted;
11454 break;
11455 case _PC_NO_TRUNC:
11456 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc;
11457 break;
11458 case _PC_XATTR_EXISTS:
11459 if (gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists) {
11460 if (error = nfs4_have_xattrs(vp, valp, cr))
11461 return (error);
11462 }
11463 break;
11464 default:
11465 return (EINVAL);
11466 }

11468 return (0);
11469 }

11471 /*
11472 * Called by async thread to do synchronous pageio. Do the i/o, wait
11473 * for it to complete, and cleanup the page list when done.
11474 */
11475 static int
11476 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 175

11477 int flags, cred_t *cr)
11478 {
11479 int error;

11481 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);

11483 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
11484 if (flags & B_READ)
11485 pvn_read_done(pp, (error ? B_ERROR : 0) | flags);
11486 else
11487 pvn_write_done(pp, (error ? B_ERROR : 0) | flags);
11488 return (error);
11489 }

11491 /* ARGSUSED */
11492 static int
11493 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
11494 int flags, cred_t *cr, caller_context_t *ct)
11495 {
11496 int error;
11497 rnode4_t *rp;

11499 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone)
11500 return (EIO);

11502 if (pp == NULL)
11503 return (EINVAL);

11505 rp = VTOR4(vp);
11506 mutex_enter(&rp->r_statelock);
11507 rp->r_count++;
11508 mutex_exit(&rp->r_statelock);

11510 if (flags & B_ASYNC) {
11511 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr,
11512 nfs4_sync_pageio);
11513 } else
11514 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
11515 mutex_enter(&rp->r_statelock);
11516 rp->r_count--;
11517 cv_broadcast(&rp->r_cv);
11518 mutex_exit(&rp->r_statelock);
11519 return (error);
11520 }

11522 /* ARGSUSED */
11523 static void
11524 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr,
11525 caller_context_t *ct)
11526 {
11527 int error;
11528 rnode4_t *rp;
11529 page_t *plist;
11530 page_t *pptr;
11531 offset3 offset;
11532 count3 len;
11533 k_sigset_t smask;

11535 /*
11536 * We should get called with fl equal to either B_FREE or
11537 * B_INVAL. Any other value is illegal.
11538 *
11539 * The page that we are either supposed to free or destroy
11540 * should be exclusive locked and its io lock should not
11541 * be held.
11542 */

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 176

11543 ASSERT(fl == B_FREE || fl == B_INVAL);
11544 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);

11546 rp = VTOR4(vp);

11548 /*
11549 * If the page doesn’t need to be committed or we shouldn’t
11550 * even bother attempting to commit it, then just make sure
11551 * that the p_fsdata byte is clear and then either free or
11552 * destroy the page as appropriate.
11553 */
11554 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) {
11555 pp->p_fsdata = C_NOCOMMIT;
11556 if (fl == B_FREE)
11557 page_free(pp, dn);
11558 else
11559 page_destroy(pp, dn);
11560 return;
11561 }

11563 /*
11564 * If there is a page invalidation operation going on, then
11565 * if this is one of the pages being destroyed, then just
11566 * clear the p_fsdata byte and then either free or destroy
11567 * the page as appropriate.
11568 */
11569 mutex_enter(&rp->r_statelock);
11570 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) {
11571 mutex_exit(&rp->r_statelock);
11572 pp->p_fsdata = C_NOCOMMIT;
11573 if (fl == B_FREE)
11574 page_free(pp, dn);
11575 else
11576 page_destroy(pp, dn);
11577 return;
11578 }

11580 /*
11581 * If we are freeing this page and someone else is already
11582 * waiting to do a commit, then just unlock the page and
11583 * return. That other thread will take care of commiting
11584 * this page. The page can be freed sometime after the
11585 * commit has finished. Otherwise, if the page is marked
11586 * as delay commit, then we may be getting called from
11587 * pvn_write_done, one page at a time. This could result
11588 * in one commit per page, so we end up doing lots of small
11589 * commits instead of fewer larger commits. This is bad,
11590 * we want do as few commits as possible.
11591 */
11592 if (fl == B_FREE) {
11593 if (rp->r_flags & R4COMMITWAIT) {
11594 page_unlock(pp);
11595 mutex_exit(&rp->r_statelock);
11596 return;
11597 }
11598 if (pp->p_fsdata == C_DELAYCOMMIT) {
11599 pp->p_fsdata = C_COMMIT;
11600 page_unlock(pp);
11601 mutex_exit(&rp->r_statelock);
11602 return;
11603 }
11604 }

11606 /*
11607 * Check to see if there is a signal which would prevent an
11608 * attempt to commit the pages from being successful. If so,

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 177

11609 * then don’t bother with all of the work to gather pages and
11610 * generate the unsuccessful RPC. Just return from here and
11611 * let the page be committed at some later time.
11612 */
11613 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT);
11614 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) {
11615 sigunintr(&smask);
11616 page_unlock(pp);
11617 mutex_exit(&rp->r_statelock);
11618 return;
11619 }
11620 sigunintr(&smask);

11622 /*
11623 * We are starting to need to commit pages, so let’s try
11624 * to commit as many as possible at once to reduce the
11625 * overhead.
11626 *
11627 * Set the ‘commit inprogress’ state bit. We must
11628 * first wait until any current one finishes. Then
11629 * we initialize the c_pages list with this page.
11630 */
11631 while (rp->r_flags & R4COMMIT) {
11632 rp->r_flags |= R4COMMITWAIT;
11633 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
11634 rp->r_flags &= ~R4COMMITWAIT;
11635 }
11636 rp->r_flags |= R4COMMIT;
11637 mutex_exit(&rp->r_statelock);
11638 ASSERT(rp->r_commit.c_pages == NULL);
11639 rp->r_commit.c_pages = pp;
11640 rp->r_commit.c_commbase = (offset3)pp->p_offset;
11641 rp->r_commit.c_commlen = PAGESIZE;

11643 /*
11644 * Gather together all other pages which can be committed.
11645 * They will all be chained off r_commit.c_pages.
11646 */
11647 nfs4_get_commit(vp);

11649 /*
11650 * Clear the ‘commit inprogress’ status and disconnect
11651 * the list of pages to be committed from the rnode.
11652 * At this same time, we also save the starting offset
11653 * and length of data to be committed on the server.
11654 */
11655 plist = rp->r_commit.c_pages;
11656 rp->r_commit.c_pages = NULL;
11657 offset = rp->r_commit.c_commbase;
11658 len = rp->r_commit.c_commlen;
11659 mutex_enter(&rp->r_statelock);
11660 rp->r_flags &= ~R4COMMIT;
11661 cv_broadcast(&rp->r_commit.c_cv);
11662 mutex_exit(&rp->r_statelock);

11664 if (curproc == proc_pageout || curproc == proc_fsflush ||
11665 nfs_zone() != VTOMI4(vp)->mi_zone) {
11666 nfs4_async_commit(vp, plist, offset, len,
11667 cr, do_nfs4_async_commit);
11668 return;
11669 }

11671 /*
11672 * Actually generate the COMMIT op over the wire operation.
11673 */
11674 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 178

11676 /*
11677 * If we got an error during the commit, just unlock all
11678 * of the pages. The pages will get retransmitted to the
11679 * server during a putpage operation.
11680 */
11681 if (error) {
11682 while (plist != NULL) {
11683 pptr = plist;
11684 page_sub(&plist, pptr);
11685 page_unlock(pptr);
11686 }
11687 return;
11688 }

11690 /*
11691 * We’ve tried as hard as we can to commit the data to stable
11692 * storage on the server. We just unlock the rest of the pages
11693 * and clear the commit required state. They will be put
11694 * onto the tail of the cachelist if they are nolonger
11695 * mapped.
11696 */
11697 while (plist != pp) {
11698 pptr = plist;
11699 page_sub(&plist, pptr);
11700 pptr->p_fsdata = C_NOCOMMIT;
11701 page_unlock(pptr);
11702 }

11704 /*
11705 * It is possible that nfs4_commit didn’t return error but
11706 * some other thread has modified the page we are going
11707 * to free/destroy.
11708 * In this case we need to rewrite the page. Do an explicit check
11709 * before attempting to free/destroy the page. If modified, needs to
11710 * be rewritten so unlock the page and return.
11711 */
11712 if (hat_ismod(pp)) {
11713 pp->p_fsdata = C_NOCOMMIT;
11714 page_unlock(pp);
11715 return;
11716 }

11718 /*
11719 * Now, as appropriate, either free or destroy the page
11720 * that we were called with.
11721 */
11722 pp->p_fsdata = C_NOCOMMIT;
11723 if (fl == B_FREE)
11724 page_free(pp, dn);
11725 else
11726 page_destroy(pp, dn);
11727 }

11729 /*
11730 * Commit requires that the current fh be the file written to.
11731 * The compound op structure is:
11732 * PUTFH(file), COMMIT
11733 */
11734 static int
11735 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr)
11736 {
11737 COMPOUND4args_clnt args;
11738 COMPOUND4res_clnt res;
11739 COMMIT4res *cm_res;
11740 nfs_argop4 argop[2];

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 179

11741 nfs_resop4 *resop;
11742 int doqueue;
11743 mntinfo4_t *mi;
11744 rnode4_t *rp;
11745 cred_t *cred_otw = NULL;
11746 bool_t needrecov = FALSE;
11747 nfs4_recov_state_t recov_state;
11748 nfs4_open_stream_t *osp = NULL;
11749 bool_t first_time = TRUE; /* first time getting OTW cred */
11750 bool_t last_time = FALSE; /* last time getting OTW cred */
11751 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };

11753 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);

11755 rp = VTOR4(vp);

11757 mi = VTOMI4(vp);
11758 recov_state.rs_flags = 0;
11759 recov_state.rs_num_retry_despite_err = 0;
11760 get_commit_cred:
11761 /*
11762 * Releases the osp, if a valid open stream is provided.
11763 * Puts a hold on the cred_otw and the new osp (if found).
11764 */
11765 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
11766 &first_time, &last_time);
11767 args.ctag = TAG_COMMIT;
11768 recov_retry:
11769 /*
11770 * Commit ops: putfh file; commit
11771 */
11772 args.array_len = 2;
11773 args.array = argop;

11775 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11776 &recov_state, NULL);
11777 if (e.error) {
11778 crfree(cred_otw);
11779 if (osp != NULL)
11780 open_stream_rele(osp, rp);
11781 return (e.error);
11782 }

11784 /* putfh directory */
11785 argop[0].argop = OP_CPUTFH;
11786 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;

11788 /* commit */
11789 argop[1].argop = OP_COMMIT;
11790 argop[1].nfs_argop4_u.opcommit.offset = offset;
11791 argop[1].nfs_argop4_u.opcommit.count = count;

11793 doqueue = 1;
11794 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e);

11796 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
11797 if (!needrecov && e.error) {
11798 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state,
11799 needrecov);
11800 crfree(cred_otw);
11801 if (e.error == EACCES && last_time == FALSE)
11802 goto get_commit_cred;
11803 if (osp != NULL)
11804 open_stream_rele(osp, rp);
11805 return (e.error);
11806 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 180

11808 if (needrecov) {
11809 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
11810 NULL, OP_COMMIT, NULL, NULL, NULL) == FALSE) {
11811 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11812 &recov_state, needrecov);
11813 if (!e.error)
11814 (void) xdr_free(xdr_COMPOUND4res_clnt,
11815 (caddr_t)&res);
11816 goto recov_retry;
11817 }
11818 if (e.error) {
11819 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11820 &recov_state, needrecov);
11821 crfree(cred_otw);
11822 if (osp != NULL)
11823 open_stream_rele(osp, rp);
11824 return (e.error);
11825 }
11826 /* fall through for res.status case */
11827 }

11829 if (res.status) {
11830 e.error = geterrno4(res.status);
11831 if (e.error == EACCES && last_time == FALSE) {
11832 crfree(cred_otw);
11833 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11834 &recov_state, needrecov);
11835 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
11836 goto get_commit_cred;
11837 }
11838 /*
11839 * Can’t do a nfs4_purge_stale_fh here because this
11840 * can cause a deadlock. nfs4_commit can
11841 * be called from nfs4_dispose which can be called
11842 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh
11843 * can call back to pvn_vplist_dirty.
11844 */
11845 if (e.error == ESTALE) {
11846 mutex_enter(&rp->r_statelock);
11847 rp->r_flags |= R4STALE;
11848 if (!rp->r_error)
11849 rp->r_error = e.error;
11850 mutex_exit(&rp->r_statelock);
11851 PURGE_ATTRCACHE4(vp);
11852 } else {
11853 mutex_enter(&rp->r_statelock);
11854 if (!rp->r_error)
11855 rp->r_error = e.error;
11856 mutex_exit(&rp->r_statelock);
11857 }
11858 } else {
11859 ASSERT(rp->r_flags & R4HAVEVERF);
11860 resop = &res.array[1]; /* commit res */
11861 cm_res = &resop->nfs_resop4_u.opcommit;
11862 mutex_enter(&rp->r_statelock);
11863 if (cm_res->writeverf == rp->r_writeverf) {
11864 mutex_exit(&rp->r_statelock);
11865 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
11866 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11867 &recov_state, needrecov);
11868 crfree(cred_otw);
11869 if (osp != NULL)
11870 open_stream_rele(osp, rp);
11871 return (0);
11872 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 181

11873 nfs4_set_mod(vp);
11874 rp->r_writeverf = cm_res->writeverf;
11875 mutex_exit(&rp->r_statelock);
11876 e.error = NFS_VERF_MISMATCH;
11877 }

11879 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
11880 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov);
11881 crfree(cred_otw);
11882 if (osp != NULL)
11883 open_stream_rele(osp, rp);

11885 return (e.error);
11886 }

11888 static void
11889 nfs4_set_mod(vnode_t *vp)
11890 {
11891 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);

11893 /* make sure we’re looking at the master vnode, not a shadow */
11894 pvn_vplist_setdirty(RTOV4(VTOR4(vp)), nfs_setmod_check);
11895 }

11897 /*
11898 * This function is used to gather a page list of the pages which
11899 * can be committed on the server.
11900 *
11901 * The calling thread must have set R4COMMIT. This bit is used to
11902 * serialize access to the commit structure in the rnode. As long
11903 * as the thread has set R4COMMIT, then it can manipulate the commit
11904 * structure without requiring any other locks.
11905 *
11906 * When this function is called from nfs4_dispose() the page passed
11907 * into nfs4_dispose() will be SE_EXCL locked, and so this function
11908 * will skip it. This is not a problem since we initially add the
11909 * page to the r_commit page list.
11910 *
11911 */
11912 static void
11913 nfs4_get_commit(vnode_t *vp)
11914 {
11915 rnode4_t *rp;
11916 page_t *pp;
11917 kmutex_t *vphm;

11919 rp = VTOR4(vp);

11921 ASSERT(rp->r_flags & R4COMMIT);

11923 /* make sure we’re looking at the master vnode, not a shadow */

11925 if (IS_SHADOW(vp, rp))
11926 vp = RTOV4(rp);

11928 vphm = page_vnode_mutex(vp);
11929 mutex_enter(vphm);

11931 /*
11932 * If there are no pages associated with this vnode, then
11933 * just return.
11934 */
11935 if ((pp = vp->v_pages) == NULL) {
11936 mutex_exit(vphm);
11937 return;
11938 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 182

11940 /*
11941 * Step through all of the pages associated with this vnode
11942 * looking for pages which need to be committed.
11943 */
11944 do {
11945 /* Skip marker pages. */
11946 if (pp->p_hash == PVN_VPLIST_HASH_TAG)
11947 continue;

11949 /*
11950 * First short-cut everything (without the page_lock)
11951 * and see if this page does not need to be committed
11952 * or is modified if so then we’ll just skip it.
11953 */
11954 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp))
11955 continue;

11957 /*
11958 * Attempt to lock the page. If we can’t, then
11959 * someone else is messing with it or we have been
11960 * called from nfs4_dispose and this is the page that
11961 * nfs4_dispose was called with.. anyway just skip it.
11962 */
11963 if (!page_trylock(pp, SE_EXCL))
11964 continue;

11966 /*
11967 * Lets check again now that we have the page lock.
11968 */
11969 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
11970 page_unlock(pp);
11971 continue;
11972 }

11974 /* this had better not be a free page */
11975 ASSERT(PP_ISFREE(pp) == 0);

11977 /*
11978 * The page needs to be committed and we locked it.
11979 * Update the base and length parameters and add it
11980 * to r_pages.
11981 */
11982 if (rp->r_commit.c_pages == NULL) {
11983 rp->r_commit.c_commbase = (offset3)pp->p_offset;
11984 rp->r_commit.c_commlen = PAGESIZE;
11985 } else if (pp->p_offset < rp->r_commit.c_commbase) {
11986 rp->r_commit.c_commlen = rp->r_commit.c_commbase -
11987 (offset3)pp->p_offset + rp->r_commit.c_commlen;
11988 rp->r_commit.c_commbase = (offset3)pp->p_offset;
11989 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen)
11990 <= pp->p_offset) {
11991 rp->r_commit.c_commlen = (offset3)pp->p_offset -
11992 rp->r_commit.c_commbase + PAGESIZE;
11993 }
11994 page_add(&rp->r_commit.c_pages, pp);
11995 } while ((pp = pp->p_vpnext) != vp->v_pages);

11997 mutex_exit(vphm);
11998 }

12000 /*
12001 * This routine is used to gather together a page list of the pages
12002 * which are to be committed on the server. This routine must not
12003 * be called if the calling thread holds any locked pages.
12004 *

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 183

12005 * The calling thread must have set R4COMMIT. This bit is used to
12006 * serialize access to the commit structure in the rnode. As long
12007 * as the thread has set R4COMMIT, then it can manipulate the commit
12008 * structure without requiring any other locks.
12009 */
12010 static void
12011 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len)
12012 {

12014 rnode4_t *rp;
12015 page_t *pp;
12016 u_offset_t end;
12017 u_offset_t off;
12018 ASSERT(len != 0);
12019 rp = VTOR4(vp);
12020 ASSERT(rp->r_flags & R4COMMIT);

12022 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);

12024 /* make sure we’re looking at the master vnode, not a shadow */

12026 if (IS_SHADOW(vp, rp))
12027 vp = RTOV4(rp);

12029 /*
12030 * If there are no pages associated with this vnode, then
12031 * just return.
12032 */
12033 if ((pp = vp->v_pages) == NULL)
12034 return;
12035 /*
12036 * Calculate the ending offset.
12037 */
12038 end = soff + len;
12039 for (off = soff; off < end; off += PAGESIZE) {
12040 /*
12041 * Lookup each page by vp, offset.
12042 */
12043 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL)
12044 continue;
12045 /*
12046 * If this page does not need to be committed or is
12047 * modified, then just skip it.
12048 */
12049 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
12050 page_unlock(pp);
12051 continue;
12052 }

12054 ASSERT(PP_ISFREE(pp) == 0);
12055 /*
12056 * The page needs to be committed and we locked it.
12057 * Update the base and length parameters and add it
12058 * to r_pages.
12059 */
12060 if (rp->r_commit.c_pages == NULL) {
12061 rp->r_commit.c_commbase = (offset3)pp->p_offset;
12062 rp->r_commit.c_commlen = PAGESIZE;
12063 } else {
12064 rp->r_commit.c_commlen = (offset3)pp->p_offset -
12065 rp->r_commit.c_commbase + PAGESIZE;
12066 }
12067 page_add(&rp->r_commit.c_pages, pp);
12068 }
12069 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 184

12071 /*
12072 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap().
12073 * Flushes and commits data to the server.
12074 */
12075 static int
12076 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr)
12077 {
12078 int error;
12079 verifier4 write_verf;
12080 rnode4_t *rp = VTOR4(vp);

12082 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);

12084 /*
12085 * Flush the data portion of the file and then commit any
12086 * portions which need to be committed. This may need to
12087 * be done twice if the server has changed state since
12088 * data was last written. The data will need to be
12089 * rewritten to the server and then a new commit done.
12090 *
12091 * In fact, this may need to be done several times if the
12092 * server is having problems and crashing while we are
12093 * attempting to do this.
12094 */

12096 top:
12097 /*
12098 * Do a flush based on the poff and plen arguments. This
12099 * will synchronously write out any modified pages in the
12100 * range specified by (poff, plen). This starts all of the
12101 * i/o operations which will be waited for in the next
12102 * call to nfs4_putpage
12103 */

12105 mutex_enter(&rp->r_statelock);
12106 write_verf = rp->r_writeverf;
12107 mutex_exit(&rp->r_statelock);

12109 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL);
12110 if (error == EAGAIN)
12111 error = 0;

12113 /*
12114 * Do a flush based on the poff and plen arguments. This
12115 * will synchronously write out any modified pages in the
12116 * range specified by (poff, plen) and wait until all of
12117 * the asynchronous i/o’s in that range are done as well.
12118 */
12119 if (!error)
12120 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL);

12122 if (error)
12123 return (error);

12125 mutex_enter(&rp->r_statelock);
12126 if (rp->r_writeverf != write_verf) {
12127 mutex_exit(&rp->r_statelock);
12128 goto top;
12129 }
12130 mutex_exit(&rp->r_statelock);

12132 /*
12133 * Now commit any pages which might need to be committed.
12134 * If the error, NFS_VERF_MISMATCH, is returned, then
12135 * start over with the flush operation.
12136 */

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 185

12137 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT);

12139 if (error == NFS_VERF_MISMATCH)
12140 goto top;

12142 return (error);
12143 }

12145 /*
12146 * nfs4_commit_vp() will wait for other pending commits and
12147 * will either commit the whole file or a range, plen dictates
12148 * if we commit whole file. a value of zero indicates the whole
12149 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage()
12150 */
12151 static int
12152 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen,
12153 cred_t *cr, int wait_on_writes)
12154 {
12155 rnode4_t *rp;
12156 page_t *plist;
12157 offset3 offset;
12158 count3 len;

12160 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);

12162 rp = VTOR4(vp);

12164 /*
12165 * before we gather commitable pages make
12166 * sure there are no outstanding async writes
12167 */
12168 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) {
12169 mutex_enter(&rp->r_statelock);
12170 while (rp->r_count > 0) {
12171 cv_wait(&rp->r_cv, &rp->r_statelock);
12172 }
12173 mutex_exit(&rp->r_statelock);
12174 }

12176 /*
12177 * Set the ‘commit inprogress’ state bit. We must
12178 * first wait until any current one finishes.
12179 */
12180 mutex_enter(&rp->r_statelock);
12181 while (rp->r_flags & R4COMMIT) {
12182 rp->r_flags |= R4COMMITWAIT;
12183 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
12184 rp->r_flags &= ~R4COMMITWAIT;
12185 }
12186 rp->r_flags |= R4COMMIT;
12187 mutex_exit(&rp->r_statelock);

12189 /*
12190 * Gather all of the pages which need to be
12191 * committed.
12192 */
12193 if (plen == 0)
12194 nfs4_get_commit(vp);
12195 else
12196 nfs4_get_commit_range(vp, poff, plen);

12198 /*
12199 * Clear the ‘commit inprogress’ bit and disconnect the
12200 * page list which was gathered by nfs4_get_commit.
12201 */
12202 plist = rp->r_commit.c_pages;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 186

12203 rp->r_commit.c_pages = NULL;
12204 offset = rp->r_commit.c_commbase;
12205 len = rp->r_commit.c_commlen;
12206 mutex_enter(&rp->r_statelock);
12207 rp->r_flags &= ~R4COMMIT;
12208 cv_broadcast(&rp->r_commit.c_cv);
12209 mutex_exit(&rp->r_statelock);

12211 /*
12212 * If any pages need to be committed, commit them and
12213 * then unlock them so that they can be freed some
12214 * time later.
12215 */
12216 if (plist == NULL)
12217 return (0);

12219 /*
12220 * No error occurred during the flush portion
12221 * of this operation, so now attempt to commit
12222 * the data to stable storage on the server.
12223 *
12224 * This will unlock all of the pages on the list.
12225 */
12226 return (nfs4_sync_commit(vp, plist, offset, len, cr));
12227 }

12229 static int
12230 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
12231 cred_t *cr)
12232 {
12233 int error;
12234 page_t *pp;

12236 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);

12238 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr);

12240 /*
12241 * If we got an error, then just unlock all of the pages
12242 * on the list.
12243 */
12244 if (error) {
12245 while (plist != NULL) {
12246 pp = plist;
12247 page_sub(&plist, pp);
12248 page_unlock(pp);
12249 }
12250 return (error);
12251 }
12252 /*
12253 * We’ve tried as hard as we can to commit the data to stable
12254 * storage on the server. We just unlock the pages and clear
12255 * the commit required state. They will get freed later.
12256 */
12257 while (plist != NULL) {
12258 pp = plist;
12259 page_sub(&plist, pp);
12260 pp->p_fsdata = C_NOCOMMIT;
12261 page_unlock(pp);
12262 }

12264 return (error);
12265 }

12267 static void
12268 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 187

12269 cred_t *cr)
12270 {

12272 (void) nfs4_sync_commit(vp, plist, offset, count, cr);
12273 }

12275 /*ARGSUSED*/
12276 static int
12277 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
12278 caller_context_t *ct)
12279 {
12280 int error = 0;
12281 mntinfo4_t *mi;
12282 vattr_t va;
12283 vsecattr_t nfsace4_vsap;

12285 mi = VTOMI4(vp);
12286 if (nfs_zone() != mi->mi_zone)
12287 return (EIO);
12288 if (mi->mi_flags & MI4_ACL) {
12289 /* if we have a delegation, return it */
12290 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE)
12291 (void) nfs4delegreturn(VTOR4(vp),
12292 NFS4_DR_REOPEN|NFS4_DR_PUSH);

12294 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask,
12295 NFS4_ACL_SET);
12296 if (error) /* EINVAL */
12297 return (error);

12299 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) {
12300 /*
12301 * These are aclent_t type entries.
12302 */
12303 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap,
12304 vp->v_type == VDIR, FALSE);
12305 if (error)
12306 return (error);
12307 } else {
12308 /*
12309 * These are ace_t type entries.
12310 */
12311 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap,
12312 FALSE);
12313 if (error)
12314 return (error);
12315 }
12316 bzero(&va, sizeof (va));
12317 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap);
12318 vs_ace4_destroy(&nfsace4_vsap);
12319 return (error);
12320 }
12321 return (ENOSYS);
12322 }

12324 /* ARGSUSED */
12325 int
12326 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
12327 caller_context_t *ct)
12328 {
12329 int error;
12330 mntinfo4_t *mi;
12331 nfs4_ga_res_t gar;
12332 rnode4_t *rp = VTOR4(vp);

12334 mi = VTOMI4(vp);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 188

12335 if (nfs_zone() != mi->mi_zone)
12336 return (EIO);

12338 bzero(&gar, sizeof (gar));
12339 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask;

12341 /*
12342 * vsecattr->vsa_mask holds the original acl request mask.
12343 * This is needed when determining what to return.
12344 * (See: nfs4_create_getsecattr_return())
12345 */
12346 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET);
12347 if (error) /* EINVAL */
12348 return (error);

12350 /*
12351 * If this is a referral stub, don’t try to go OTW for an ACL
12352 */
12353 if (RP_ISSTUB_REFERRAL(VTOR4(vp)))
12354 return (fs_fab_acl(vp, vsecattr, flag, cr, ct));

12356 if (mi->mi_flags & MI4_ACL) {
12357 /*
12358 * Check if the data is cached and the cache is valid. If it
12359 * is we don’t go over the wire.
12360 */
12361 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) {
12362 mutex_enter(&rp->r_statelock);
12363 if (rp->r_secattr != NULL) {
12364 error = nfs4_create_getsecattr_return(
12365 rp->r_secattr, vsecattr, rp->r_attr.va_uid,
12366 rp->r_attr.va_gid,
12367 vp->v_type == VDIR);
12368 if (!error) { /* error == 0 - Success! */
12369 mutex_exit(&rp->r_statelock);
12370 return (error);
12371 }
12372 }
12373 mutex_exit(&rp->r_statelock);
12374 }

12376 /*
12377 * The getattr otw call will always get both the acl, in
12378 * the form of a list of nfsace4’s, and the number of acl
12379 * entries; independent of the value of gar.n4g_vsa.vsa_mask.
12380 */
12381 gar.n4g_va.va_mask = AT_ALL;
12382 error = nfs4_getattr_otw(vp, &gar, cr, 1);
12383 if (error) {
12384 vs_ace4_destroy(&gar.n4g_vsa);
12385 if (error == ENOTSUP || error == EOPNOTSUPP)
12386 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12387 return (error);
12388 }

12390 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) {
12391 /*
12392 * No error was returned, but according to the response
12393 * bitmap, neither was an acl.
12394 */
12395 vs_ace4_destroy(&gar.n4g_vsa);
12396 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12397 return (error);
12398 }

12400 /*

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 189

12401 * Update the cache with the ACL.
12402 */
12403 nfs4_acl_fill_cache(rp, &gar.n4g_vsa);

12405 error = nfs4_create_getsecattr_return(&gar.n4g_vsa,
12406 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid,
12407 vp->v_type == VDIR);
12408 vs_ace4_destroy(&gar.n4g_vsa);
12409 if ((error) && (vsecattr->vsa_mask &
12410 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) &&
12411 (error != EACCES)) {
12412 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12413 }
12414 return (error);
12415 }
12416 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12417 return (error);
12418 }

12420 /*
12421 * The function returns:
12422 * - 0 (zero) if the passed in "acl_mask" is a valid request.
12423 * - EINVAL if the passed in "acl_mask" is an invalid request.
12424 *
12425 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if:
12426 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE)
12427 *
12428 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if:
12429 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE)
12430 * - We have a count field set without the corresponding acl field set. (e.g. -
12431 * VSA_ACECNT is set, but VSA_ACE is not)
12432 */
12433 static int
12434 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op)
12435 {
12436 /* Shortcut the masks that are always valid. */
12437 if (acl_mask == (VSA_ACE | VSA_ACECNT))
12438 return (0);
12439 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT))
12440 return (0);

12442 if (acl_mask & (VSA_ACE | VSA_ACECNT)) {
12443 /*
12444 * We can’t have any VSA_ACL type stuff in the mask now.
12445 */
12446 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL |
12447 VSA_DFACLCNT))
12448 return (EINVAL);

12450 if (op == NFS4_ACL_SET) {
12451 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE))
12452 return (EINVAL);
12453 }
12454 }

12456 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) {
12457 /*
12458 * We can’t have any VSA_ACE type stuff in the mask now.
12459 */
12460 if (acl_mask & (VSA_ACE | VSA_ACECNT))
12461 return (EINVAL);

12463 if (op == NFS4_ACL_SET) {
12464 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL))
12465 return (EINVAL);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 190

12467 if ((acl_mask & VSA_DFACLCNT) &&
12468 !(acl_mask & VSA_DFACL))
12469 return (EINVAL);
12470 }
12471 }
12472 return (0);
12473 }

12475 /*
12476 * The theory behind creating the correct getsecattr return is simply this:
12477 * "Don’t return anything that the caller is not expecting to have to free."
12478 */
12479 static int
12480 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap,
12481 uid_t uid, gid_t gid, int isdir)
12482 {
12483 int error = 0;
12484 /* Save the mask since the translators modify it. */
12485 uint_t orig_mask = vsap->vsa_mask;

12487 if (orig_mask & (VSA_ACE | VSA_ACECNT)) {
12488 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, FALSE);

12490 if (error)
12491 return (error);

12493 /*
12494 * If the caller only asked for the ace count (VSA_ACECNT)
12495 * don’t give them the full acl (VSA_ACE), free it.
12496 */
12497 if (!orig_mask & VSA_ACE) {
12498 if (vsap->vsa_aclentp != NULL) {
12499 kmem_free(vsap->vsa_aclentp,
12500 vsap->vsa_aclcnt * sizeof (ace_t));
12501 vsap->vsa_aclentp = NULL;
12502 }
12503 }
12504 vsap->vsa_mask = orig_mask;

12506 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL |
12507 VSA_DFACLCNT)) {
12508 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid,
12509 isdir, FALSE);

12511 if (error)
12512 return (error);

12514 /*
12515 * If the caller only asked for the acl count (VSA_ACLCNT)
12516 * and/or the default acl count (VSA_DFACLCNT) don’t give them
12517 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it.
12518 */
12519 if (!orig_mask & VSA_ACL) {
12520 if (vsap->vsa_aclentp != NULL) {
12521 kmem_free(vsap->vsa_aclentp,
12522 vsap->vsa_aclcnt * sizeof (aclent_t));
12523 vsap->vsa_aclentp = NULL;
12524 }
12525 }

12527 if (!orig_mask & VSA_DFACL) {
12528 if (vsap->vsa_dfaclentp != NULL) {
12529 kmem_free(vsap->vsa_dfaclentp,
12530 vsap->vsa_dfaclcnt * sizeof (aclent_t));
12531 vsap->vsa_dfaclentp = NULL;
12532 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 191

12533 }
12534 vsap->vsa_mask = orig_mask;
12535 }
12536 return (0);
12537 }

12539 /* ARGSUSED */
12540 int
12541 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr,
12542 caller_context_t *ct)
12543 {
12544 int error;

12546 if (nfs_zone() != VTOMI4(vp)->mi_zone)
12547 return (EIO);
12548 /*
12549 * check for valid cmd parameter
12550 */
12551 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS)
12552 return (EINVAL);

12554 /*
12555 * Check access permissions
12556 */
12557 if ((cmd & F_SHARE) &&
12558 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) ||
12559 (shr->s_access == F_WRACC && (flag & FWRITE) == 0)))
12560 return (EBADF);

12562 /*
12563 * If the filesystem is mounted using local locking, pass the
12564 * request off to the local share code.
12565 */
12566 if (VTOMI4(vp)->mi_flags & MI4_LLOCK)
12567 return (fs_shrlock(vp, cmd, shr, flag, cr, ct));

12569 switch (cmd) {
12570 case F_SHARE:
12571 case F_UNSHARE:
12572 /*
12573 * This will be properly implemented later,
12574 * see RFE: 4823948 .
12575 */
12576 error = EAGAIN;
12577 break;

12579 case F_HASREMOTELOCKS:
12580 /*
12581 * NFS client can’t store remote locks itself
12582 */
12583 shr->s_access = 0;
12584 error = 0;
12585 break;

12587 default:
12588 error = EINVAL;
12589 break;
12590 }

12592 return (error);
12593 }

12595 /*
12596 * Common code called by directory ops to update the attrcache
12597 */
12598 static int

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 192

12599 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp,
12600 hrtime_t t, vnode_t *vp, cred_t *cr)
12601 {
12602 int error = 0;

12604 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);

12606 if (status != NFS4_OK) {
12607 /* getattr not done or failed */
12608 PURGE_ATTRCACHE4(vp);
12609 return (error);
12610 }

12612 if (garp) {
12613 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL);
12614 } else {
12615 PURGE_ATTRCACHE4(vp);
12616 }
12617 return (error);
12618 }

12620 /*
12621 * Update directory caches for directory modification ops (link, rename, etc.)
12622 * When dinfo is NULL, manage dircaches in the old way.
12623 */
12624 static void
12625 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm,
12626 dirattr_info_t *dinfo)
12627 {
12628 rnode4_t *drp = VTOR4(dvp);

12630 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);

12632 /* Purge rddir cache for dir since it changed */
12633 if (drp->r_dir != NULL)
12634 nfs4_purge_rddir_cache(dvp);

12636 /*
12637 * If caller provided dinfo, then use it to manage dir caches.
12638 */
12639 if (dinfo != NULL) {
12640 if (vp != NULL) {
12641 mutex_enter(&VTOR4(vp)->r_statev4_lock);
12642 if (!VTOR4(vp)->created_v4) {
12643 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12644 dnlc_update(dvp, nm, vp);
12645 } else {
12646 /*
12647 * XXX don’t update if the created_v4 flag is
12648 * set
12649 */
12650 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12651 NFS4_DEBUG(nfs4_client_state_debug,
12652 (CE_NOTE, "nfs4_update_dircaches: "
12653 "don’t update dnlc: created_v4 flag"));
12654 }
12655 }

12657 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call,
12658 dinfo->di_cred, FALSE, cinfo);

12660 return;
12661 }

12663 /*
12664 * Caller didn’t provide dinfo, then check change_info4 to update DNLC.

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 193

12665 * Since caller modified dir but didn’t receive post-dirmod-op dir
12666 * attrs, the dir’s attrs must be purged.
12667 *
12668 * XXX this check and dnlc update/purge should really be atomic,
12669 * XXX but can’t use rnode statelock because it’ll deadlock in
12670 * XXX dnlc_purge_vp, however, the risk is minimal even if a race
12671 * XXX does occur.
12672 *
12673 * XXX We also may want to check that atomic is true in the
12674 * XXX change_info struct. If it is not, the change_info may
12675 * XXX reflect changes by more than one clients which means that
12676 * XXX our cache may not be valid.
12677 */
12678 PURGE_ATTRCACHE4(dvp);
12679 if (drp->r_change == cinfo->before) {
12680 /* no changes took place in the directory prior to our link */
12681 if (vp != NULL) {
12682 mutex_enter(&VTOR4(vp)->r_statev4_lock);
12683 if (!VTOR4(vp)->created_v4) {
12684 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12685 dnlc_update(dvp, nm, vp);
12686 } else {
12687 /*
12688 * XXX dont’ update if the created_v4 flag
12689 * is set
12690 */
12691 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12692 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
12693 "nfs4_update_dircaches: don’t"
12694 " update dnlc: created_v4 flag"));
12695 }
12696 }
12697 } else {
12698 /* Another client modified directory - purge its dnlc cache */
12699 dnlc_purge_vp(dvp);
12700 }
12701 }

12703 /*
12704 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a
12705 * file.
12706 *
12707 * The ’reopening_file’ boolean should be set to TRUE if we are reopening this
12708 * file (ie: client recovery) and otherwise set to FALSE.
12709 *
12710 * ’nfs4_start/end_op’ should have been called by the proper (ie: not recovery
12711 * initiated) calling functions.
12712 *
12713 * ’resend’ is set to TRUE if this is a OPEN_CONFIRM issued as a result
12714 * of resending a ’lost’ open request.
12715 *
12716 * ’num_bseqid_retryp’ makes sure we don’t loop forever on a broken
12717 * server that hands out BAD_SEQID on open confirm.
12718 *
12719 * Errors are returned via the nfs4_error_t parameter.
12720 */
12721 void
12722 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr,
12723 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop,
12724 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp)
12725 {
12726 COMPOUND4args_clnt args;
12727 COMPOUND4res_clnt res;
12728 nfs_argop4 argop[2];
12729 nfs_resop4 *resop;
12730 int doqueue = 1;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 194

12731 mntinfo4_t *mi;
12732 OPEN_CONFIRM4args *open_confirm_args;
12733 int needrecov;

12735 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12736 #if DEBUG
12737 mutex_enter(&oop->oo_lock);
12738 ASSERT(oop->oo_seqid_inuse);
12739 mutex_exit(&oop->oo_lock);
12740 #endif

12742 recov_retry_confirm:
12743 nfs4_error_zinit(ep);
12744 *retry_open = FALSE;

12746 if (resend)
12747 args.ctag = TAG_OPEN_CONFIRM_LOST;
12748 else
12749 args.ctag = TAG_OPEN_CONFIRM;

12751 args.array_len = 2;
12752 args.array = argop;

12754 /* putfh target fh */
12755 argop[0].argop = OP_CPUTFH;
12756 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;

12758 argop[1].argop = OP_OPEN_CONFIRM;
12759 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm;

12761 (*seqid) += 1;
12762 open_confirm_args->seqid = *seqid;
12763 open_confirm_args->open_stateid = *stateid;

12765 mi = VTOMI4(vp);

12767 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep);

12769 if (!ep->error && nfs4_need_to_bump_seqid(&res)) {
12770 nfs4_set_open_seqid((*seqid), oop, args.ctag);
12771 }

12773 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp);
12774 if (!needrecov && ep->error)
12775 return;

12777 if (needrecov) {
12778 bool_t abort = FALSE;

12780 if (reopening_file == FALSE) {
12781 nfs4_bseqid_entry_t *bsep = NULL;

12783 if (!ep->error && res.status == NFS4ERR_BAD_SEQID)
12784 bsep = nfs4_create_bseqid_entry(oop, NULL,
12785 vp, 0, args.ctag,
12786 open_confirm_args->seqid);

12788 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL,
12789 NULL, NULL, OP_OPEN_CONFIRM, bsep, NULL, NULL);
12790 if (bsep) {
12791 kmem_free(bsep, sizeof (*bsep));
12792 if (num_bseqid_retryp &&
12793 --(*num_bseqid_retryp) == 0)
12794 abort = TRUE;
12795 }
12796 }

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 195

12797 if ((ep->error == ETIMEDOUT ||
12798 res.status == NFS4ERR_RESOURCE) &&
12799 abort == FALSE && resend == FALSE) {
12800 if (!ep->error)
12801 (void) xdr_free(xdr_COMPOUND4res_clnt,
12802 (caddr_t)&res);

12804 delay(SEC_TO_TICK(confirm_retry_sec));
12805 goto recov_retry_confirm;
12806 }
12807 /* State may have changed so retry the entire OPEN op */
12808 if (abort == FALSE)
12809 *retry_open = TRUE;
12810 else
12811 *retry_open = FALSE;
12812 if (!ep->error)
12813 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12814 return;
12815 }

12817 if (res.status) {
12818 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12819 return;
12820 }

12822 resop = &res.array[1]; /* open confirm res */
12823 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid,
12824 stateid, sizeof (*stateid));

12826 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12827 }

12829 /*
12830 * Return the credentials associated with a client state object. The
12831 * caller is responsible for freeing the credentials.
12832 */

12834 static cred_t *
12835 state_to_cred(nfs4_open_stream_t *osp)
12836 {
12837 cred_t *cr;

12839 /*
12840 * It’s ok to not lock the open stream and open owner to get
12841 * the oo_cred since this is only written once (upon creation)
12842 * and will not change.
12843 */
12844 cr = osp->os_open_owner->oo_cred;
12845 crhold(cr);

12847 return (cr);
12848 }

12850 /*
12851 * nfs4_find_sysid
12852 *
12853 * Find the sysid for the knetconfig associated with the given mi.
12854 */
12855 static struct lm_sysid *
12856 nfs4_find_sysid(mntinfo4_t *mi)
12857 {
12858 ASSERT(nfs_zone() == mi->mi_zone);

12860 /*
12861 * Switch from RDMA knconf to original mount knconf
12862 */

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 196

12863 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr,
12864 mi->mi_curr_serv->sv_hostname, NULL));
12865 }

12867 #ifdef DEBUG
12868 /*
12869 * Return a string version of the call type for easy reading.
12870 */
12871 static char *
12872 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype)
12873 {
12874 switch (ctype) {
12875 case NFS4_LCK_CTYPE_NORM:
12876 return ("NORMAL");
12877 case NFS4_LCK_CTYPE_RECLAIM:
12878 return ("RECLAIM");
12879 case NFS4_LCK_CTYPE_RESEND:
12880 return ("RESEND");
12881 case NFS4_LCK_CTYPE_REINSTATE:
12882 return ("REINSTATE");
12883 default:
12884 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal "
12885 "type %d", ctype);
12886 return ("");
12887 }
12888 }
12889 #endif

12891 /*
12892 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type
12893 * Unlock requests don’t have an over-the-wire locktype, so we just return
12894 * something non-threatening.
12895 */

12897 static nfs_lock_type4
12898 flk_to_locktype(int cmd, int l_type)
12899 {
12900 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK);

12902 switch (l_type) {
12903 case F_UNLCK:
12904 return (READ_LT);
12905 case F_RDLCK:
12906 if (cmd == F_SETLK)
12907 return (READ_LT);
12908 else
12909 return (READW_LT);
12910 case F_WRLCK:
12911 if (cmd == F_SETLK)
12912 return (WRITE_LT);
12913 else
12914 return (WRITEW_LT);
12915 }
12916 panic("flk_to_locktype");
12917 /*NOTREACHED*/
12918 }

12920 /*
12921 * Do some preliminary checks for nfs4frlock.
12922 */
12923 static int
12924 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp,
12925 u_offset_t offset)
12926 {
12927 int error = 0;

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 197

12929 /*
12930 * If we are setting a lock, check that the file is opened
12931 * with the correct mode.
12932 */
12933 if (cmd == F_SETLK || cmd == F_SETLKW) {
12934 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) ||
12935 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) {
12936 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
12937 "nfs4frlock_validate_args: file was opened with "
12938 "incorrect mode"));
12939 return (EBADF);
12940 }
12941 }

12943 /* Convert the offset. It may need to be restored before returning. */
12944 if (error = convoff(vp, flk, 0, offset)) {
12945 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
12946 "nfs4frlock_validate_args: convoff => error= %d\n",
12947 error));
12948 return (error);
12949 }

12951 return (error);
12952 }

12954 /*
12955 * Set the flock64’s lm_sysid for nfs4frlock.
12956 */
12957 static int
12958 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk)
12959 {
12960 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);

12962 /* Find the lm_sysid */
12963 *lspp = nfs4_find_sysid(VTOMI4(vp));

12965 if (*lspp == NULL) {
12966 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
12967 "nfs4frlock_get_sysid: no sysid, return ENOLCK"));
12968 return (ENOLCK);
12969 }

12971 flk->l_sysid = lm_sysidt(*lspp);

12973 return (0);
12974 }

12976 /*
12977 * Do the remaining preliminary setup for nfs4frlock.
12978 */
12979 static void
12980 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep,
12981 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr,
12982 cred_t **cred_otw)
12983 {
12984 /*
12985 * set tick_delay to the base delay time.
12986 * (nfs4_base_wait_time is in msecs)
110 * (NFS4_BASE_WAIT_TIME is in secs)
12987 */

12989 *tick_delayp = drv_usectohz(nfs4_base_wait_time * 1000);
113 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000);

12991 /*
12992 * If lock is relative to EOF, we need the newest length of the

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 198

12993 * file. Therefore invalidate the ATTR_CACHE.
12994 */

12996 *whencep = flk->l_whence;

12998 if (*whencep == 2) /* SEEK_END */
12999 PURGE_ATTRCACHE4(vp);

13001 recov_statep->rs_flags = 0;
13002 recov_statep->rs_num_retry_despite_err = 0;
13003 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL);
13004 }
______unchanged_portion_omitted_

14757 /*
14758 * Wait for ’tick_delay’ clock ticks.
14759 * Implement exponential backoff until hit the lease_time of this nfs4_server.
14760 *
14761 * The client should retry to acquire the lock faster than the lease period.
14762 * We use roughly half of the lease time to use a similar calculation as it is
14763 * used in nfs4_renew_lease_thread().
1884 * NOTE: lock_lease_time is in seconds.
14764 *
14765 * XXX For future improvements, should implement a waiting queue scheme.
14766 */
14767 static int
14768 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp)
14769 {
14770 long max_msec_delay = 1 * 1000; /* 1 sec */
14771 nfs4_server_t *sp;
14772 mntinfo4_t *mi = VTOMI4(RTOV4(rp));
1891 long milliseconds_delay;
1892 time_t lock_lease_time;

14774 /* wait tick_delay clock ticks or siginteruptus */
14775 if (delay_sig(*tick_delay)) {
14776 return (EINTR);
14777 }

14779 #endif /* ! codereview */
14780 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: "
14781 "reissue the lock request: blocked for %ld clock ticks: %ld "
14782 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000));

14784 /*
14785 * Get the current lease time and propagation time for the server
14786 * associated with the given file. Note that both times could
14787 * change immediately after this section.
14788 */
14789 nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0);
14790 sp = find_nfs4_server(mi);
14791 if (sp != NULL) {
14792 if (!(mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED)) {
14793 max_msec_delay = sp->s_lease_time * 1000 / 2 -
14794 (3 * sp->propagation_delay.tv_sec *
14795 1000);
14796 }
14797 mutex_exit(&sp->s_lock);
14798 nfs4_server_rele(sp);
14799 }
14800 nfs_rw_exit(&mi->mi_recovlock);
1898 /* get the lease time */
1899 lock_lease_time = r2lease_time(rp);

14802 max_msec_delay = MAX(max_msec_delay, nfs4_base_wait_time);
14803 *tick_delay = MIN(drv_usectohz(max_msec_delay * 1000), *tick_delay * 2);

new/usr/src/uts/common/fs/nfs/nfs4_vnops.c 199

1901 /* drv_hztousec converts ticks to microseconds */
1902 milliseconds_delay = drv_hztousec(*tick_delay) / 1000;
1903 if (milliseconds_delay < lock_lease_time * 1000) {
1904 *tick_delay = 2 * *tick_delay;
1905 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000)
1906 *tick_delay = drv_usectohz(lock_lease_time*1000*1000);
1907 }
14804 return (0);
14805 }

14807 void
14808 nfs4_vnops_init(void)
14809 {
14810 }
______unchanged_portion_omitted_

new/usr/src/uts/common/nfs/rnode4.h 1

**
 19631 Mon May 12 10:06:22 2014
new/usr/src/uts/common/nfs/rnode4.h
4827 nfs4: slow file locking
4837 NFSv4 client lock retry delay upper limit should be shorter
**
______unchanged_portion_omitted_

388 #ifdef _KERNEL

390 extern long nrnode;

392 /* Used for r_delay_interval */
393 #define NFS4_INITIAL_DELAY_INTERVAL 1
394 #define NFS4_MAX_DELAY_INTERVAL 20

396 /* Used for check_rtable4 */
397 #define NFSV4_RTABLE4_OK 0
398 #define NFSV4_RTABLE4_NOT_FREE_LIST 1
399 #define NFSV4_RTABLE4_DIRTY_PAGES 2
400 #define NFSV4_RTABLE4_POS_R_COUNT 3

402 extern rnode4_t *r4find(r4hashq_t *, nfs4_sharedfh_t *, struct vfs *);
403 extern rnode4_t *r4find_unlocked(nfs4_sharedfh_t *, struct vfs *);
404 extern void r4flush(struct vfs *, cred_t *);
405 extern void destroy_rtable4(struct vfs *, cred_t *);
406 extern int check_rtable4(struct vfs *);
407 extern void rp4_addfree(rnode4_t *, cred_t *);
408 extern void rp4_addhash(rnode4_t *);
409 extern void rp4_rmhash(rnode4_t *);
410 extern void rp4_rmhash_locked(rnode4_t *);
411 extern int rtable4hash(nfs4_sharedfh_t *);

413 extern vnode_t *makenfs4node(nfs4_sharedfh_t *, nfs4_ga_res_t *, struct vfs *,
414 hrtime_t, cred_t *, vnode_t *, nfs4_fname_t *);
415 extern vnode_t *makenfs4node_by_fh(nfs4_sharedfh_t *, nfs4_sharedfh_t *,
416 nfs4_fname_t **, nfs4_ga_res_t *, mntinfo4_t *, cred_t *, hrtime_t);

418 extern nfs4_opinst_t *r4mkopenlist(struct mntinfo4 *);
419 extern void r4releopenlist(nfs4_opinst_t *);
420 extern int r4find_by_fsid(mntinfo4_t *, fattr4_fsid *);

422 /* Access cache calls */
423 extern nfs4_access_type_t nfs4_access_check(rnode4_t *, uint32_t, cred_t *);
424 extern void nfs4_access_cache(rnode4_t *rp, uint32_t, uint32_t, cred_t *);
425 extern int nfs4_access_purge_rp(rnode4_t *);

427 extern int nfs4_free_data_reclaim(rnode4_t *);
428 extern void nfs4_rnode_invalidate(struct vfs *);

430 extern time_t r2lease_time(rnode4_t *);
430 extern int nfs4_directio(vnode_t *, int, cred_t *);

432 /* shadow vnode functions */
433 extern void sv_activate(vnode_t **, vnode_t *, nfs4_fname_t **, int);
434 extern vnode_t *sv_find(vnode_t *, vnode_t *, nfs4_fname_t **);
435 extern void sv_update_path(vnode_t *, char *, char *);
436 extern void sv_inactive(vnode_t *);
437 extern void sv_exchange(vnode_t **);
438 extern void sv_uninit(svnode_t *);
439 extern void nfs4_clear_open_streams(rnode4_t *);

441 /*
442 * Mark cached attributes as timed out
443 *
444 * The caller must not be holding the rnode r_statelock mutex.

new/usr/src/uts/common/nfs/rnode4.h 2

445 */
446 #define PURGE_ATTRCACHE4_LOCKED(rp) \
447 rp->r_time_attr_inval = gethrtime(); \
448 rp->r_time_attr_saved = rp->r_time_attr_inval; \
449 rp->r_pathconf.pc4_xattr_valid = 0; \
450 rp->r_pathconf.pc4_cache_valid = 0;

452 #define PURGE_ATTRCACHE4(vp) { \
453 rnode4_t *rp = VTOR4(vp); \
454 mutex_enter(&rp->r_statelock); \
455 PURGE_ATTRCACHE4_LOCKED(rp); \
456 mutex_exit(&rp->r_statelock); \
457 }

______unchanged_portion_omitted_

