new usr/ src/ uts/ common/ fs/ nfs/nfs4_rnode. c 1

R R R R

48230 Mon May 12 10: 06: 21 2014
new usr/src/uts/comon/fs/nfs/nfs4_rnode.c
4827 nfs4: slow file |ocking
4837 NFSv4 client lock retry delay upper limt should be shorter

LR

__unchanged_portion_omtted_

1614 /*
1615 * Return the current lease tine for the server associated with the given

1616 * file. Note that the lease tine could change i mediately after this
1617 * call

1618 */

1620 tinme_t

1621 r2l ease_tinme(rnoded4_t *rp)

1622 {

1623 nfs4_server_t *sp;

1624 tinme_t | ease_ti ne;

1625 mt i nfo4_t *m = VIOM 4(RTOV4(rp));

1627 (void) nfs_rw enter_sig(&m->ni _recovl ock, RWREADER, 0);

1629 /* this locks down sp if it is found */

1630 sp = find_nfs4_server (VIOM 4(RTOV4(rp)));

1632 if (VIOM 4(RTOV4A(rp))->m _vfsp->vfs_flag & VFS_UNMOUNTED) {

1633 if (sp !'= NULL)

1634 nut ex_exi t (&sp->s_l ock);

1635 nfs4_server_rel e(sp);

1636

1637 nfs_rw exit(&m->m _recovl ock);

1638 return (1); /* 1 second */

1639 }

1641 ASSERT(sp != NULL)

1643 | ease_tinme = sp->s_| ease_ting;

1645 mut ex_exi t (&sp->s_l ock);

1646 nfs4_server_rel e(sp);

1647 nfs_rw exit(&m->m _recovl ock);

1649 return (lease_tine);

1650 }

1652 /*

1615 * Return a list with infornation about all the known open instances for
1616 * a filesystem The caller nust call r4rel eopenlist() when done with the
1617 * list.

1618 *

1619 * We are safe at |looking at os_valid and os_pendi ng_cl ose across droppl ng
1620 * the ’'os_sync_lock’ to count up the number of open streams and t

1621 * allocate nmenory for the osp |ist due to:

1622 * -Looking at os_pending_close is safe since this routine is

1623 * only called via recovery, and os_pendi ng_cl ose can only be set via
1624 * a non-recovery operation (which are all blocked when recovery
1625 * is active).

1626 *

1627 * -Examining os_valid is safe since non-recovery operations, which
1628 * could potentially switch os_valid to 0, are blocked (via

1629 * nfs4_start_fop) and recovery is single-threaded per mtinfo4_t
1630 * (which neans we are the only recovery thread potentially acting
1631 * on this open strean.

1632 */

new usr/src/uts/comon/ fs/nfs/nfs4_rnode.c

1634 nfs4_opinst_t *
1635 r4nkopenlist(mtinfod_t *ni)

1636 {
1637
1638
1639
1640
1641
1642
1643
1644
1645

1647

1649
1650
1651
1652
1653

1655
1656
1657
1658

1660

1662
1663
1664
1665
1666
1667
1668
1669
1670

1672
1673
1674

1676

1678
1679
1680
1681
1682
1683
1684

1686
1687
1688
1689
1690

1692
1693
1694
1695

1697
1698
1699

nfs4_opinst_t *reopenlist, *rep;
rnoded_t *rp;

vnode_t *vp;

vfs_t *vfsp = ni->ni_vfsp;

int nunosp;
nfs4_open_streamt *osp;
int Index;

open_del egati on_type4 dtype;
int hol d_vnode;

reopenlist = NULL;

for (index = 0; index < rtabl edsize; index++) {
rw_ent er(&rt abl e4[i ndex].r_l ock, RW READER);
for (rp = rtabl e4[i ndex].r_hashf;
rp !'= (rnode4_t *)(&tabl e4[|ndex])
rp = rp->r_hashf) {

vp = RTOVA(rp);

if (vp->v_vfsp ! = vfsp)
conti nue;

hol d_vnode = 0;

mut ex_ent er (& p->r_os_| ock);
/* Count the number of valid open_streans of the file */

nunosp = 0;
for (osp = list_head(& p->r_open_streans); osp != NULL;

osp = list_next (& p->r_open_streans, osp)) {
mut ex_ent er (&osp- >o0s_sync_| ock) ;
if (osp->os_valid & ! osp- >os_pendi ng_cl ose)
nunmosp++;

mut ex_exi t (&osp->0s_sync_| ock);

}

/* Fill in the valid open streans per vp */

if (nunmosp > 0) {

int j;

hol d_vnode = 1;

/*
* Add a new open instance to the |ist
*/
rep = kmem zal | oc(si zeof (*reopenlist),

KM _SLEEP) ;
rep->re_next = reopenlist;
reopenlist = rep;

rep->re_vp = vp;

rep->re_osp = knem zal | oc(
nunosp * sizeof (*(rep->re_osp)),
KM SLEEP) ;

rep->re_nunosp = NUNDSP;

= 0;
for (osp = list_head(& p->r_open_streans);
osp !'= NULL;
osp Ilst_next(&rp- >r_open_streans, osp)) {

mut ex_ent er (&osp- >0s_sync_| ock) ;
if (osp->os_valid &&
I osp->0s_pendi ng_cl ose) {

new usr/src/uts/comon/fs/nfs/nfs4_rnode.c

1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711

1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731

1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745 }

osp- >os_ref _count ++;
rep->re_osp[j] = osp;
j+

}
mut ex_exi t (&osp->o0s_sync_| ock);

}

/*

* Assuming valid osp(s) stays valid between
* the tinme obtaining j and nunobsp.

ASSERT(j == nunosp);

}

mut ex_exi t (& p->r_os_| ock);
/* do this here to keep v_lock > r_os_lock */
if (hold_vnode)
VN_HOLD(vp) ;
nmut ex_ent er (& p->r_statev4_| ock);
if (rp->r_deleg_type != OPEN_DELEGATE_NONE) ({

If this rnode hol ds a del egati on,

but if there are no valid open streans,
* then just discard the del egation

* w thout doing del egreturn.

*

-~
* k¥

if (numpbsp > 0)
rp->r_del eg_needs_recovery =
rp->r_del eg_type;

/* Save the del egation type for use outside the |lock */
dtype = rp->r_del eg_type;

nut ex_exi t (& p->r_statev4_| ock);

/*

* |If we have a delegation then get rid of it.

* W' ve set rp->r_del eg_needs_recovery so we have
* enough information to recover.
*/

if (dtype != OPEN_DELEGATE_NONE) {
(voi d) nfsddel egreturn(rp, NFS4_DR DI SCARD);
}

rw_exit(&tabl e4[index].r_Iock);

}
return (reopenlist);

__unchanged_portion_onitted_

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 1 new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 61 #I ncl ude <SyS/f| OCk h>
430707 Mon May 12 10:06:21 2014 62 #include <sys/swap. h>
new usr/ src/ uts/ comon/fs/nfs/nfs4_vnops.c 63 #i nclude <sys/errno. h>
4827 nfs4: slow file |ocking 64 #include <sys/strsubr. h>
4837 NFSv4 client lock retry delay upper limt should be shorter 65 #i ncl ude <sys/sysnmacros. h>
EEEEEEEEEEEEEEEEEEESEEESESEREEEEEEEEREEEEEERERERERESRESRESESESSE] 66 #I ncl ude <SyS/ krTEm h>
1/* 67 #i nclude <sys/cm_err. h>
2 * CDDL HEADER START 68 #include <sys/ pathconf. h>
3 = 69 #include <sys/utsnane. h>
4 * The contents of this file are subject to the terms of the 70 #include <sys/dnlc. h>
5 * Common Devel opnent and Distribution License (the "License"). 71 #include <sys/acl.h>
6 * You may not use this file except in conpliance with the License. 72 #include <sys/system nfo.h>
7 0% 73 #include <sys/policy.h>
8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE 74 #include <sys/sdt.h>
9 * or http://ww. opensol aris.org/os/licensing. 75 #include <sys/list.h>
10 * See the License for the specific |anguage governi ng perm ssions 76 #include <sys/stat.h>
11 * and linmtations under the License. 77 #include <sys/zone. h>
12 =
13 * When distributing Covered Code, include this CDDL HEADER i n each 79 #include <rpc/types. h>
14 * file and include the License file at usr/src/OPENSOLARI S. LI CENSE. 80 #include <rpc/auth. h>
15 * |f applicable, add the follow ng below this CODL HEADER, with the 81 #include <rpc/clnt.h>
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner] 83 #include <nfs/nfs.h>
18 * 84 #include <nfs/nfs_clnt.h>
19 * CDDL HEADER END 85 #include <nfs/nfs_acl.h>
20 */ 86 #include <nfs/Imh>
21 /* 87 #include <nfs/nfs4.h>
22 * Copyright 2010 Sun Mcrosystens, Inc. Al rights reserved. 88 #i nclude <nfs/nfs4_kprot.h>
23 * Use is subject to |license terns. 89 #include <nfs/rnode4. h>
24 | 90 #include <nfs/nfs4_clnt.h>
25 [*
26 * Copyright 2012 Nexenta Systens, Inc. Al rights reserved. 92 #include <vni hat. h>
27 */ 93 #i nclude <vni as. h>
94 #incl ude <vni page. h>
29 /* 95 #i nclude <vni pvn. h>
30 * Copyri ght 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T. 96 #i nclude <vni seg. h>
31 * Al Rights Reserved 97 #include <vnl seg_map. h>
32 =/ 98 #i ncl ude <vnl seg_kpm h>
99 #include <vm seg_vn. h>
34 /*
35 */ Copyright (c) 2013, Joyent, Inc. Al rights reserved. 101 #include <fs/fs_subr.h>
36 *
103 #i ncl ude <sys/ddi. h>
38 /* 104 #include <sys/int_fntio.h>
39 */Copyri ght (c) 2014, STRATO AG All rights reserved. 105 #i ncl ude <sys/fs/autofs.h>
40 *
107 typedef struct {
42 #endif /* 1 codereview */ 108 nfs4_ga_res_t *di _garp;
43 #include <sys/param h> 109 cred_t *di _cred;
44 #incl ude <sys/types. h> 110 hrtime_t di _time_call;
45 #incl ude <sys/systm h> 111 } dirattr_info_t;
46 #incl ude <sys/cred. h>
47 #include <sys/tine. h> 113 typedef enum nfs4_acl _op {
48 #i ncl ude <sys/vnode. h> 114 NFS4_ACL_CET,
49 #include <sys/vfs. h> 115 NFS4_ACL_SET
50 #include <sys/vfs_opreg. h> 116 } nfs4_acl _op_t;
51 #include <sys/file.h>
52 #include <sys/filio.h> 118 static struct Imsysid *nfs4_find_sysid(mtinfod4_t *m);
53 #incl ude <sys/uio.h>
54 #incl ude <sys/buf.h> 120 static void nf s4_updat e_di rcaches(change_i nfo4 *, vnode_t *, vnode_t *,
55 #i ncl ude <sys/nmman. h> 121 char *, dirattr_info_t *);
56 #i ncl ude <sys/pathnane. h>
57 #include <sys/dirent. h> 123 static void nfs4cl ose_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *,
58 #i nclude <sys/debug. h> 124 nfs4_open_streamt *, int *, int *, nfs4_close_type_t,
59 #include <sys/vnsystm h> 125 nfs4_error_t *, int *);
60 #i nclude <sys/fcntl.h> 126 static int nfs4_rdwl bn(vnode_t *, page_t *, u_offset_t, size_t, int,

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

127 cred_t *);

128 static int nfs4write(vnode t *, caddr_t, u offset_t, int, cred_t *,
129 st abl e_how4 *);

130 static int nf s4r ead(vnode_t caddr _t, offset_t, int, size_t *,
131 cred_t *, bool _t, struct uio *);

132 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *,

133 vsecattr_t *);

134 static int nfsdopenattr(vnode_t *, vnode_t **, int, cred_t *);

135 static int nf s4l ookup(vnode_t *, char *, vnode_t **, cred_t *, int);
136 static int nf s4l ookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t
137 static int nf s4l ookupval i date_otw(vnode_t *, char *, vnode_t **, cred_t
138 static int nf s4l ookupnew_ot W vnode_t *, char *, vnode_t **, cred_t *);
139 static int nf s4nknod(vnode_t *, char *, struct vattr *, enum vcexcl,
140 int, vnode_t **, cred_t *);

141 static int

143 static int
144 cal | er _context _t
145 static int
146 vnode_t *, char
147 static int

nfs4open_otw(vnode_t *, char *,
142 cred_t *, int, int,
nf s4renane(vnode_t *, char *, vnode_t *, char *, cred_t *,

nf s4renanme_persi stent _fh(vnode_t *, char *,
)| *, cred_t *, nfsstat4 *);
nf s4renane_vol atil e_fh(vnode_t

struct vattr *, vnode_t **,
enum cr eat ennde4, int);

*)-

vnode_t *,

*, char *, vnode_t *,

Dk
*);

148 vnode_t *, char *, cred_t *, nfsstat4 *);

149 static int do_nf s4readdir(vnode_t *, rddir4 _cache *, cred_t *);

150 static void nf s4readdi r(vnode_t *, rddir4_cache *, cred_t *);

151 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool _t);
152 static int nfs4_get apage(vnode_t *, u_offset_t, size_t, uint_t *,

153 page_t *[], size_t, struct seg *, caddr_t,

154 enum seg_rw, cred_| t *);

155 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *
156 cred_t *);

157 static int nf s4_sync_put apage(vnode t *, page_t *, u_offset_t, size_t,
158 int, cred_t *

159 static int nfs4_sync_pagei o(vnode t *, page_t *, u_offset_t, size_t,
160 int, cred_t *);

161 static int nfs4 comnt(vnode t *, offset4, count4, cred_t *);

162 static void nfs4_set_nod(vnode_t *);

163 static void nf s4_get _conmi t (vnode_t *);

164 static void nfs4_get_commt_range(vnode_t *, u_offset_t, size_t);

165 static int nf s4_put page_comm t (vnode_t *, offset_t, size_t, cred_t *);
166 static int nfs4_commt_vp(vnode_t *, u_offset_t, size_t, cred_t *, int);
167 static int nfs4_sync_commit(vnode_t *, page_t *, of f set 3, count 3,

168 cred_t *);

169 static void do_nfs4_async_conmmi t (vnode_t *, page_t *, offset3, count3,
170 cred_t *);

171 static int nfs4_update_attrcache(nfsstat4, nfs4 ga res_t *,

172 hrtime_t, vnode_t *, cred to*);

173 static int nfs4_open_non_reg file(vnode t **, int, cred_t *);

174 static int nfs4_saf el ock(vnode_t *, const struct flock64 *, cred_t *);

175 static void nfs4_register_| ock_|l ocal |

y(vnode_t *, struct flock64 *, int,

176 u_offset_t);

177 static int nfs4_| ockrel ease(vnode_t *, int, offset_t, cred_t *);

178 static int nfs4_bl ock_and_wai t(clock_t *, rnode4_t *);

179 static cred_t *state_to_cred(nfs4_open_streamt *);

180 static void deni ed_to_fl k(LOCK4denied *, flock64_t *, LOCKT4args *);
181 static pid_t lo_to_pid(lock_owner4 *);

182 static void nfs4 _reinstitute_|l ocal _| ock_state(vnode_t *, flock64_t *,

183 cred_t *,
184 static void push_rei nst at e(vnode_t *,

185 nf s4_| ock_owner _t *);

186 static int open_and_get _osp(vnode_t *, cred_t *, nfs4_open_streamt **);
187 static void nf s4_del map_cal | back(struct as *, void *, uint_t);

188 static void nfs4_free_del mapcal | (nfs4_del mapcal | _t *);

189 static nfs4_del mapcall _t *nfs4_init_del mapcal T();

190 static int nfs4_find_and_del ete_del mapcal | (rnode4_t *, int *);

191 static int nfs4_is_acl _mask_valid(uint_t, nfs4_acl _op_t);

192 static int nfs4_create_getsecattr return(vsecattr_t *, vsecattr_t *,

nfs4_| ock_owner _t *);

int, flock64t *, cred_t *,

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

193 uid_t, gid_t, int);

195 /*

196 */Routi nes that inplenent the setting of v4 args for the msc. ops
197 *

198 static void nf sd4args_| ock_free(nfs_argop4 *);
199 static void nfsdargs_| ockt _free(nfs_ argop4 *);
200 static void nfsdargs_setattr(nfs_argopd4 *, vattr_t *, vsecattr_|
201 int, rnoded4_t *, cred_t *, bitmap4, int *,
202 nfs4 stateid_types_t ¥);

203 static void nfs4args_setattr_free(nfs_ argop4 *);

204 static int nfsdargs_verify(nfs_argop4 *
205 bi t map4) ;

206 static void nf sd4ar gs_veri fy_f ree(nfs_argop4 *);

207 static void nfsdargs_wite(nfs_argop4 *, stable_how4, rnodes_t
208 WRI TE4args **, nfs4_stateid_types_t *);

210 /*

211 * These are the vnode ops functions that inplenent the vnode interface to
See nore commrents bel ow at nfs4_vnodeops.

212 * the networked file system
213 */

214 static int nfs4_open(vnode_t **, int,

215 static int nfs4_cl ose(vnode_t *, int, int, offset_t, cred_t *,

216 call er_context_t *);

217 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *,

218 cal ler_context_t *);

219 static int nfs4_ wite(vnode_t *, struct uio *, int, cred_t *,

220 caller_context_t *);

221 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *

222 cal ler_context_t *);

223 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t

224 call er_context_t *);

225 static int nfs4_access(vnode_t *, int, int,

226 static int nfs4_readlink(vnode_t *, struct uio * cred_t *,

227 cal l er_context _t *);

228 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *);
229 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl,
230 int, vnode t **, cred_t *, int, caller_context_t
231 vsecattr_t)¢

232 static int nfs4_renove(vnode_t *, char *, cred_t *, caller_context_t
233 int);

234 static int nfs4_|ink(vn6de_t *, vnode_t *, char *, cred_t *,
235 caller_context_t *, int);

236 static int nfs4_renanme(vnode_t *, char *, vnode t *, char *,
237 caller_context_t *, int);
238 static int nfs4_nkdir(vnode_t *, char *, struct vattr *, vnode_t

239 cred_t *, caller_context_t *, int,

240 static int nfs4 rndir(vnode_t *, char *, vnode_t *, cred_t *,
241 caller_context_t *, int);

242 static int nfs4_sym ink(vnode_t *, char *, struct vattr *, char
243 cred_t *, caller_context_t *, int);

244 static int nfs4_readdir(vnode_t *, struct uio *,
245 caller_context_t *, int);
246 static int nfs4_seek(vnode_t *, offset_t,

cred_t *, int

247 static int nfs4_get page(vnode_t *, offset_t, size_t, uint_t *
248 page_t *[], size_t, struct seg *, caddr_t,
249 enum seg_rw, cred t *, caller_context_t *);

250 static int nfs4_put page(vnode_t *, offset_t, size_t, int, cred_t
251 caller_context_t *);

252 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t
253 uchar_t, uchar_t, uint_t, cred_t *, caller_
254 static int nf s4_addmap(vnode_t *, offset_t, struct as *, caddr_
255 uchar _t, uchar_t, uint_t, cred_t *,

256 static int nfs4_cnp(vnode_t *, vnode_t *, caller_context_t *)

257 static int nfs4_frlock(vnode_ t *, int, struct flock64 *, int,
258 struct flk_callback *, cred_t *,

vattr_t *, enum nfs_opnun¥,

cred_t *, caller_context_t *);

cred_t *, caller_context_t *);

vsecattr_t *);

offset _t *, caller_context_t *);

cal l er_context _t *);

caller_context t

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 5 new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c
259 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t,
260 cred_t *, caller context _t o), 324 #ifdef DEBUG
261 static int nfs4_del map(vnode t *, offset_t, struct as *, caddr_t, size_t, 325 int nfs4_client_attr_debug = O;
262 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 326 int nfs4_client_state_debug =
263 static int nfs4_pagei o(vnode_t *, page_t *, u_offset_t, size_t, int, 327 int nfs4_client_shadow debug =
264 cred_t *, caller_context_t *); 328 int nfs4_client_|ock debug = O
265 static void nfs4_di spose(vnode_t *, page_t *, int, int, cred_t *, 329 int nfs4_: _seqid _sync = 0;
266 cal ler_context_t *); 330 int nfs4_client_map_ debug
267 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 331 static int nfs4_pageio debug = 0;
268 call er_context_t *); 332 int nfs4_client_inactive debug = 0;
269 /* 333 int nfs4_client_recov_debug = 0;
270 * These vnode ops are required to be called fromoutside this source file, 334 int nfs4_client_fail over_debug = 0;
271 * e.g. by epheneral mount stub vnode ops, and so nay not be decl ared 335 int nfs4_client_call_debug = O
272 * as static. 336 int nfs4_client_| ookup_ debug =
273 */ 337 int nfs4_client_zone_debug = O;
274 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *, 338 int nfs4_|lost_rqst_debug = O;
275 cal ler_context_t *); 339 int nfs4_rdattrerr_debug = O;
276 void nfs4_inactive(vnode t *, cred_t *, caller_context_t *); 340 int nfs4_open_streamdebug = O;
277 int nfs4_l ookup(vnode_t *, char *, vnode_t **,
278 struct pathnane *, int, vnode_t *, cred_t *, 342 int nfsdread_error_inject;
279 caller_context_t *, int *, pathname_t *);
280 int nfs4_fid(vnode t *, fid_t *, caller_context_t *); 344 static int nfs4_create_nmisses = 0;
281 int nfs4_rw ock(vnode_t *, Tnt, caller_context t *);
282 void nfs4_rwunl ock(vnode_t *, int, caller_context_t *) 346 static int nfs4_readdir_cache_shorts = O;
283 int nfs4_real vp(vnode_t *, vnode_t **, caller_context_t *); 347 static int nfs4_readdir_readahead = 0;
284 int nfs4_pat hconf (vnode_t *, int, ulong_t *, cred_t *,
285 cal l er_context _t *); 349 static int nfs4_bio_do_stop = O;
286 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
287 cal ler_context_t *); 351 static int nfs4_| ostpage = O; /* nunber of times we |ost original page */
288 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
289 cal l er_context _t *); 353 int nfs4_mrap_debug = O;
291 /* 355 static int nfs4_pathconf_cache_hits = 0;
292 * Used for nfs4_commit_vp() to indicate if we should 356 static int nfs4_pathconf_cache_nmi sses = 0;
293 * wait on pending wites.
294 */ 358 int nfs4close_all_cnt;
295 #define NFS4_WRI TE_NOWAI T 0 359 int nfs4cl ose_one_debug = 0;
296 #define NFS4_WRI TE_ WAI T 1 360 int nfs4cl ose_notw debug = 0
38 #define NFS4_BASE WAIT_TI ME 1 /* 1 second */ 362 int denied_to_flk_debug =
363 voi d *| ockt_deni ed_debug;
298 /*
299 * Error flags used to pass infornmation about certain special errors 365 #endi f
300 * which need to be handl ed specially.
301 */ 367 /*
302 #define NFS_ECF -98 368 * In mlliseconds. Should be less than half of the |ease time or better,
303 #define NFS_VERF_M SMATCH -97 369 * less than one second.
370 */
305 /* 371 int nfs4_base_wait_tine = 20;
306 * Flags used to differentiate between which operation drove the
307 * potential CLOSE OTW (see nfs4_close_otw_ if_necessary) 373 /*
308 */ 374 #endif /* | codereview */
309 #define NFS4_CLOSE_OP 0x1 375 * How long to wait before trying again if OPEN_CONFI RM gets ETI MEDOUT
310 #define NFS4_DELMAP_OP 0x2 376 * or NFS4ERR_RESOURCE.
311 #define NFS4_I NACTI VE_OP 0x3 377 */
378 static int confirmretry_sec = 30;
313 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFQ))
380 static int nfs4_| ookup_neg_cache = 1,
315 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */
316 #define ALI GN64(>< ptr, sz) \ 382 /*
317 ((uintptr t)(ptr)) & (sizeof (uint64_t) - 1); \ 383 * nunber of pages to read ahead
318 |f (x) { \ 384 * optimzed for 100 base-T.
319 X = sizeof (uint64_t) - (x); \ 385 */
320 sz -= (X); \ 386 static int nfs4_nra = 4;
321 ptr += (x); \
322 } 388 static int nfs4_do_syniink_cache = 1;

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

390 static int nfs4_pathconf_disabl e_cache = 0;

392 /*

393 * These are the vnode ops routines which inplement the vnode interface to
394 * the networked file system These routines just take their paraneters,
395 * make them | ook networkish by putting the right info into interface structs,
396 * and then calling the appropriate renpte routine(s) to do the work.
397 *

398 * Note on directory nane | ookup cacheing: |f we detect a stale fhandle,
399 * we purge the directory cache relative to that vnode. This way, the
400 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for
401 * nore details on rnode | ocking.

402 */

404 struct vnodeops *nfs4_vnodeops;

406 const fs_operation_def_t nfs4_vnodeops_tenplate[] = {

407 VOPNAME_OPEN, .vop_open = nfs4_open },

408 VOPNAME_CLCSE, .vop_cl ose = nfs4_close },

409 VOPNAME_READ, .vop_read = nfs4_read },

410 VOPNAME_WRI TE, .vop_wite = nfs4d_ wite },

411 VOPNAME_| OCTL, .vop_ioctl = nfs4_ioctl },

412 VOPNAVE_GETATTR, .vop_getattr = nfs4_getattr },

413 VOPNAME_SETATTR, .vop_setattr = nfs4_setattr },

414 VOPNAME_ACCESS, .vop_access = nfs4_access },

415 VOPNAME_ L OOKUP, .vop_| ookup = nfs4_l ookup },

416 VOPNAME_CREATE, .vop_create = nfs4_create },

417 VOPNAME_REMOVE, .vop_renove = nfs4_renove },

418 VOPNAME_LI NK, .vop_link = nfs4_link },

419 VOPNAME_ RENAME, .vop_renane = nfs4_renane },

420 VOPNAMVE_MKDI R, .vop_nkdir = nfs4_nkdir },

421 VOPNAME_RMDI R, .vop_rndir = nfs4_rndir },

422 VOPNAME_READDI R, .vop_readdir = nfs4_readdir },

423 VOPNAME_SYMLI NK, .vop_sym ink = nfs4_symink },

424 VOPNAME_READLI NK, .vop_readlink = nfs4_readlink },

425 VOPNAME_FSYNC, .vop_fsync = nfs4_fsync },

426 VOPNANME_| NACTI VE, .vop_i nactive = nfs4_inactive },

427 VOPNAME_FI D, .vop_fid = nfs4_fid },

428 VOPNAME_RW.OCK, .vop_rw ock = nfs4_rw ock },

429 VOPNAME_RWUNL OCK, .vop_rwunl ock = nfs4_rwunl ock },

430 VOPNAME_SEEK, .vop_seek = nfs4_seek },

431 VOPNAME_FRLOCK, .vop_frlock = nfs4_frlock },

432 VOPNAME_SPACE, .vop_space = nfs4_space },

433 VOPNAME_REAL VP, .vop_realvp = nfs4_realvp },

434 VOPNAME_GETPAGE, .vop_get page = nfs4_get page },

435 VOPNAME_PUTPAGE, .vop_put page = nfs4_put page },

436 VOPNAME_ VAP, .vop_map = nfs4_map },

437 VOPNAME_ADDIVAP, .vop_addmap = nfs4_addmap },

438 VOPNAME_DEL VAP, .vop_del map = nfs4_del map },

439 /* no separate nfs4_dunmp */

440 VOPNAME_DUWP, .vop_dunp = nfs_dunp },

441 VOPNAME_ PATHCONF, .vop_pat hconf = nfs4_pat hconf },

442 VOPNAME_PAGEI O, .vop_pagei o = nfs4_pageio },

443 VOPNAME_DI SPCSE, .vop_di spose = nfs4_di spose },

444 VOPNAME_SETSECATTR, .vop_setsecattr = nfs4_setsecattr },
445 VOPNAME_GETSECATTR, .vop_getsecattr = nfs4_getsecattr },
446 VOPNAME_SHRLOCK, .vop_shrlock = nfs4_shrlock },

447 VOPNAME_VNEVENT, .vop_vnevent = fs_vnevent_support },
448 NULL, L

449 };

451 [*

452 * The followi ng are subroutines and definitions to set args or get res
453 * for the different nfsv4 ops

454

*/

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

456 voi d

457 nfsdargs_| ookup_free(nfs_argop4 *argop, int arglen)

458 {

459 int i;

461 for (i =0; i <arglen; i++) {

462 if (argop[i].argop == OP_LOOKUP) {

463 kmem f ree(

464 argop[i].nfs_argop4_u. opl ookup.

465 obj nane. ut f 8string_val,

466 argop[i].nfs_argop4_u. opl ookup.

467 obj nanme. utf8string_| en);

468 }

469 1

470 }

472 static void

473 nfsdargs_| ock_free(nfs_argop4 *argop)

474 {

475 | ocker4 *| ocker = &argop->nfs_argop4_u. opl ock. | ocker;

477 if (locker->new | ock_owner == TRUE)

478 open_t o_| ock_owner 4 *open_owner ;

480 open_owner = &l ocker->| ocker4_u. open_owner;

481 if (open_owner->l ock_owner.owner_val != NULL) {

482 kmem f r ee(open_owner - >l ock_owner. owner _val ,
483 open_owner - > ock_owner. owner _| en);

484 }

485 }

486 }

488 static void

489 nf sd4args_| ockt _free(nfs_argop4 *argop)

490 {

491 | ock_owner4 *| owner = &argop->nfs_argop4_u. opl ockt. owner;

493 if (lowner->owner_val != NULL)

494 kmem free(l owner - >owner _val , | owner->owner _| en);

495 }

496 }

498 static void

499 nfsdargs_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags,
500 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error,

501 nfs4_stateid_types_t *sid_types)

502 {

503 fattré *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes;
504 mtinfod_t *m;

506 ar gop- >argop = OP_SETATTR,

507 /*

508 * The stateid is set to 0 if client is not nodifying the size
509 * and otherwi se to whatever nfs4_get_stateid() returns.

510 *

511 * XXX Note: nfs4_get_stateid() returns O if no | ockowner and/or no
512 * state struct could be found for the process/file pair. W may
513 * want to change this in the future (by OPENing the file). See
514 * bug # 4474852.

515 */

516 if (vap->va_mask & AT_SIZE) {

518 ASSERT(rp !'= NULL);

519 m = VIOM 4(RTOVA(rp));

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 9 new usr/src/uts/comon/fs/nfs/nfs4_vnops.c
521 argop- >nfs_argop4_u. opsetattr.stateid = 587 ar gop- >argop = 03 WRI TE;
522 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, m, 588 war gs- >st abl e = stabl e;
523 OP_SETATTR, sid_types, FALSE); 589 war gs->stateid = nfs4 get _w_stateid(cr, rp, curproc->p_pidp->pid_id,
524 } else { 590 m, OP_WRITE, sid_tp);
525 bzer o(&r gop->nfs_argop4_u. opsetattr.stateid, 591 war gs- >nbl k = NULL;
526 si zeof (stateid4)); 592 *war gs_pp = wargs;
527 } 593 }
529 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 595 void
530 if (*error) 596 nf sd4args_copen_free(OPENdcargs *open_ar gs)
531 bzero(attr, sizeof (*attr)); 597 {
532 } 598 if (open_args->owner.owner_val) {
599 knmem f ree(open_ar gs- >owner . owner _val ,
534 static void 600 open_ar gs- >owner . owner _| en) ;
535 nfsdargs_setattr_free(nfs_argop4 *argop) 601 }
536 { 602 if ((open_args->opentype == OPENA_CREATE) &&
537 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 603 (open_ar gs- >node ! = EXCLUSI VE4))
538 } 604 nfs4_fattr4_free(&open_args->createhow4_u. createattrs);
605 1
540 static int 606 }
541 nfsdargs_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnun¥ op,
542 bi t map4 supp) 608 /*
543 { 609 * XXX: This is referenced in nodstubs.s
544 fattr4 *attr; 610 */
545 int error = 0; 611 struct vnodeops *
612 nf s4_get vnodeops(voi d)
547 ar gop- >argop = op; 613 {
548 swtch (op) { 614 return (nfs4_vnodeops);
549 case OP_VERIFY: 615 }
550 attr = &argop->nfs_argop4_u.opverify.obj_attributes;
551 br eak; 617 /*
552 case OP_NVERI FY: 618 * The OPEN operation opens a regular file.
553 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 619 *
554 br eak; 620 /* ARGSUSED3*/
555 defaul t: 621 static int
556 return (EINVAL); 622 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
551 } 623 {
558 if (lerror) 624 vnode_t *dvp = NULL;
559 error = vattr_to_fattr4(vap, NULL, attr, O, op, supp); 625 rnode4_t *rp, *drp;
560 if (error) 626 int error;
561 bzero(attr, sizeof (*attr)); 627 int just_been_created;
562 return (error); 628 char fn[MAXNAMVELEN] ;
563 }
630 NFS4_DEBUG(nf s4_cl i ent _st at e_debug, (CE_NOTE, "nfs4_open: "));
565 static void 631 if (nfs_zone() T= VIOM 4(*vpp)->m _zone)
566 nfsdargs_verify_free(nfs_argop4 *argop) 632 return (EIO;
567 { 633 rp = VIOR4(*vpp);
568 switch (ar gop >argop) {
569 case OP_VERI 635 /*
570 “nfs4 fattr4_f ree(&r gop->nfs_argop4_u. opverify.obj_attributes); 636 * Check to see if opening sonething besides a regular file;
571 br eak; 637 * if so skip the OTWcall
572 case OP_NVERI FY: 638 */
573 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 639 f ((*vpp)->v_type != VREG {
574 br eak; 640 error = nfs4_open_non_reg_file(vpp, flag, cr);
575 def aul t: 641 return (error);
576 br eak; 642 }
577 1
578 } 644 /*
645 * XXX - would like a check right here to knowif the file is
580 static void 646 * executable or not, so as to skip OTW
581 nfsdargs_wite(nfs_argop4 *argop, stable_how4 stable, rnoded4_t *rp, cred_t *cr, 647 */
582 WRI TE4args **wargs_pp, nfs4_stateid_types_t *sid_tp)
583 { 649 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0)
584 WRI TE4ar gs *wargs = &argop->nfs_argop4_u.opwite; 650 return (error);
585 mtinfod4 t *mi = VIOM 4(RTOVA(rp));
652 drp = VIOR4(dvp);

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

653
654

656
657
658
659

661
662
663
664
665
666
667
668
669
670
671
672

674
675
676
677
678
679
680

682
683
684
685
686
687

689
690

692
693

695

697
698

702
703

705
706

708
709
710
711
712
713
714
715
716
717

if (nfs_rw_ enter_sig(&rp->r_rw ock, RWREADER, |NTR4(dvp)))
return (EINTR);

if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) {
nfs_rw_ exit(&drp->r_rw ock);
return (error);

See if this file has just been CREATEd.

ski pped in nfs4_create.
XXX need better serilization on this.
XXX move this into the nf4open_otw call, after we have
* XXX acquired the open owner seqid sync.
*
/
mut ex_ent er (& p->r_statev4_| ock);
if (rp->created_v4) {
rp->created_v4 = 0;
mut ex_exi t (& p->r_statev4_l ock);

* ok kb F o

dnl c_updat e(dvp, fn, *vpp);
/* This is needed so we don't bunp the open ref count
just_been_created = 1;
} else {
mut ex_exit (& p->r_statev4_| ock);
just_been_created = 0;

}

/*
* |f caller specified O TRUNC/ FTRUNC, then be sure to set
* FWRITE (to drive successful setattr(size=0) after open)

*

if (flag & FTRUNC)
flag | = FWRI TE;

error = nfs4open_otw dvp, fn, NULL, vpp, cr, O, flag, O,
just_been_created);

if (lerror & ! ((*vpp)->v_flag & VROQOT))
dnl c_updat e(dvp, fn, *vpp);

nfs_rw_ exit(&drp->r_rw ock);

/* release the hold fromvtodv */
VN_RELE(dvp);

/* exchange the shadow for the master vnode, if needed */

if (error == 0 & & |'S_SHADOW *vpp, rp))
sv_exchange(vpp) ;

return (error);

}

/*
* See if there’'s a "lost open" request to be saved and recovered.
*/

static void

nf s4open_save_l ost_rqgst(int error, nfs4_lost_rqst_t *lost_rqgstp,
nfs4_open_owner _t *oop, cred_t *cr, vnode_t *vp,
vnode_t *dvp, OPEN4cargs *open_args)

vfs_t *vfsp;
char *srccfp;

If so, clear the flag and update the dnlc, which was previously

*/

11

new usr/ src/ uts/ common/ fs/ nfs/nfs4_vnops.c 12
719 visp = (dvp ? dvp->v_vfsp : vp->v_vfsp);
721 if (error !'= ETIMEDOUT && error != EINTR &&
722 I NFS4_FRC_UNMT_ERR(error, vfsp)) {
723 lost_rgstp->lr_op = 0;
724 return;
725 }
727 NFS4_DEBUG nf s4_| ost _rqst _debug, (CE_NOTE,
728 "nf s4open_save_l ost _rqst: error %", error));
730 lost_rqgstp->lr_op = OP_CPEN,
732 /*
733 * The vp (if it is not NULL) and dvp are held and rele’d via
734 * the recovery code. See nfs4_save_lost_rqgst.
735 */
736 lost_rqgstp->lr_vp = vp;
737 lost_rqgstp->lr_dvp = dvp;
738 | ost _rqgstp->lr_oop = oop;
739 lost _rqgstp->lr_osp = NULL;
740 lost_rqgstp->lr_lop = NULL;
741 lost_rqgstp->lr_cr = cr;
742 lost_rqgstp->lr_flk = NULL;
743 | ost _rgstp->lr_oacc = open_args->share_access;
744 | ost _rgst p->l r_odeny = open_args->share_deny;
745 | ost_rqgstp->lr_oclalm= open_args->claim
746 if (open_args->claim== CLAI M DELEGATE_CUR) {
747 lost_rgstp->lr_ostateid =
748 open_ar gs- >open_cl ai mi_u. del egat e_cur _i nf 0. del egat e_st atei d;
749 srccfp = open_args->open_cl ai m_u. del egate_cur_info.cfile;
750 } else {
751 srccfp = open_args->open_claimi_u.cfile;
752
753 lost_rqgstp->lr_ofile.utf8string_len = 0;
754 lost_rqgstp->lr_ofile.utf8string_val = NULL;
755 (void) str_to_utf8(srccfp, & ost_rqstp->lr_ofile);
756 lost_rgstp->lr_putfirst = FALSE;
757 }
759 struct nfsd_excl _time {
760 ui nt 32 seconds;
761 ui nt 32 nseconds;
762 };
764 [*
765 * The OPEN operation creates and/or opens a regular file
766 *
767 ARGSUSED
768 */
769 static int
770 nfsdopen_otw(vnode_t *dvp, char *file_nane, struct vattr *in_va,
771 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag,
772 (enum cr eat ennde4 createnode, int file_just_been_created)
773
774 rnode4_t *rp;
775 rnode4_t *drp = VIOR4(dvp);
776 vnode_t *vp = NULL;
777 vnode_t *vpi = *vpp;
778 bool _t needrecov = FALSE;
780 int doqueue = 1;
782 COVPOUND4ar gs_cl nt args;
783 COVPOUNDAr es_cl nt res;
784 nfs_argop4 *argop;

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

785
786
787

789
790
791
792
793
794
795

797
798
799
800
801
802
803
804
805
806
807
808

810
811
812
813
814

816
817
818
819
820
821

823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

842
843
844
845
846
847
848
849
850

nfs_resop4 *resop;
int argoplist_size;
int idx_open, idx_fattr;

GETFH4res *gf _res = NULL;
OPENdres *op_res = NULL;
nfs4_ga_res_t *garp;

fattr4 *attr = NULL;

struct nfs4_excl tinme verf;
bool _t did_excl_setup = FALSE;
int created_osp;

OPEN4car gs *open_ar gs;

nf s4_open_owner _t *oop = NULL;

nf s4_open_streamt *osp = NULL;

seqi d4 seqid = O;

bool _t retry_open = FALSE;

nfs4_recov_state_t recov_state;

nfs4_| ost_rqgst_t |ost_rqst;

nfs4_error _t = { 0, NFS4_OK, RPC_SUCCESS };
hrtime_t t;

int acc = 0;

cred_t *cred_otw = NULL;
cred_t *ncr = NULL;

/* cred used to do the RPC call

nfs4_sharedfh_t *otw_sfh;
nfs4_sharedfh_t *orig_ sfh
int fh_differs = 0;
int nunops, setgid

retr

| ag
int num bseqid_ =

_f

ry = NFS4_NUM RETRY_BAD SEQ D + 1;

/*

* Make sure we properly deal with setting the right gid on
* anewy created file to reflect the parent’s setgid bit
*/

setgid_flag = 0

if (createflag &% in_va) {

/
If there is grpid nount flag used or
the parent’s directory has the setgid bit set
and the client was able to get a valid mapping
for the parent dir’'s owner_group, we want to
append NVERI FY(owner _group == dva.va_gid) and
/SETATTR to the CREATE conpound.
mut ex_ent er (&dr p- >r _st at el ock) ;
if ((VTIOM4(dvp)->m _flags & M4_GRPID ||
drp->r_attr.va_npde & VSA D) &&
drp->r_attr.va_gid ! = G D_NOBODY) {
in_va->va_mask | = AT_Q D;
in_va->va_gid = drp->r_attr.va_gid;
setgid_flag = 1;

* Ok ok k% ok ok ok

mut ex_exi t (&dr p->r _st at el ock) ;

}
/*
* Nor mal / non-create conpound:
* PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new)
*
* Open(create) conpound no setgid:
* PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + CGETATTR(new) +
* RESTOREFH + CETATTR
*
*

Open(create) setgid:

*/

13

new usr/ src/ uts/ comon/fs/nfs/nfs4_vnops.c 14
851 * PUTFH(df h) + OPEN(create) + GETFH + GETATTR(new) +

852 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH +

853 * NVERI FY(grp) + SETATTR

854 *

855 if (setgid_flag) {

856 nunops = 10;

857 idx_open = 1;

858 idx_fattr = 3;

859 } else if (create_flag) {

860 nunops = 7;

861 i dx_open = 2;

862 idx_fattr = 4;

863 } else {

864 nunops = 4;

865 i dx_open = 1;

866 idx_fattr = 3;

867 }

869 args.array_len = nurmps

870 argoplist_size = nunops * sizeof (nfs_argop4);

871 argop = kmem al | oc(argoplist_size, KM SLEEP);

873 NFS4 _DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw

874 Topen % open flag Ox% cred %", file_name, open_flag,

875 (void *)cr));

877 ASSERT(nfs_zone() == VIOM 4(dvp)->mni _zone);

878 if (create_flag) {

879 /*

880 * W are to create a file. Initialize the passed in vnode
881 * pointer.

882 */

883 vpi = NULL;

884 } else {

885

886 * Check to see if the client owns a read del egation and is
887 * trying to open for wite. |If so, then return the del egation
888 * to avoid the server doing a cb_r ecal | and returni ng DELAY.
889 * NB - we don't use the statev4_|ock here because we’ d have
890 * to drop the lock anyway and the result would be stale.
891 i

892 if ((open_flag & FWRITE) &&

893 VTOR4(vpi) ->r_del eg_type == OPEN_DELEGATE_READ)

894 (voi d) nfs4del egreturn(VTOR4(vpi), NFS4_DR RECPEN);
896 /*

897 * |f the file has a del egation, then do an access check up
898 * front. This avoids having to an access check later after
899 */we’ ve al ready done start_op, which coul d deadl ock.

900

901 if (VIOR4(vpi)->r_del eg_type != OPEN_DELEGATE_NONE) {

902 if (open_flag & FREAD &&

903 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0)

904 acc | = VI

905 if (open_flag & FWRI TE &&

906 nfs4_access(vpi, WARITE, 0, cr, NULL) == 0)
907 acc | = WRI TE;

908 }

909 }

911 drp = VIOR4(dvp);

913 recov_state.rs_flags = O;

914 recov_state.rs_numretry_despite_err = O;

915 cred_otw = cr;

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 15

917 recov_retry:

918
919

921
922
923
924
925
926
927

929
930
931

933
934
935

937
938
939
940

942
943
944
945

947
948
949
950
951
952
953
954
955
956
957

959
960
961
962
963
964
965
966
967
968
969
970
971

973

fh_differs = 0;
nfs4_error_zinit(&e);

e.error = nfs4_start_op(VTIOM 4(dvp), dvp, vpi, & ecov_state);
if (e.error)
if (ncr !'= NULL)
crfree(ncr);
kmem free(argop, argoplist_size);
return (e.error);

}

args.ctag = TAG OPEN,
args.array_|l en = nunops;
args.array = argop;

/* putfh directory fh */
argop[0] . argop = OP_CPUTFH,
argop[0] . nfs_argop4_u. opcput fh. sfh = drp->r_fh;

/* OPEN:. either op 1 or op 2 depending upon create/setgid flags */
argop[i dx_open] . argop = OP_COPEN,

open_args = &argop[idx_open].nfs_argop4_u. opcopen;

open_ar gs->cl aim= CLAI M_NULL;

/* nane of file */

open_ar gs->open_claimi_u.cfile = fil e_nane;
open_ar gs- >owner . owner _| en = 0;

open_ar gs- >owner . owner _val = NULL;

if (create_flag) {
/* CREATE a file */
open_ar gs- >opent ype = OPEN4_CREATE;
open_ar gs- >node = creat enode;
if (createnode == EXCLUSI VE4) {
if (did_excl_setup == FALSE) {
verf.seconds = zone_get_hosti d(NULL);
if (verf.seconds != 0
verf.nseconds = newnun();

el se {
tinmestruc_t now
get hresti me(&ow) ;
verf.seconds = now.tv_sec;
verf.nseconds = now. tv_nsec;
}
/

*
* Since the server will use this value for the
* mtinme, make sure that it can't overflow Zero
* out the MSB. The actual value does not matter
* here, only its unigeness.
*

verf.seconds &= | NT32_MAX;
) di d_excl _setup = TRUE;

/* Now copy over verifier to OPENdargs. */

open_ar gs- >cr eat ehowd_u. createverf = *(uint64_t *)&verf;
} else {

int v_error;

bi t map4 supp_attrs;

servinfo4_t *svp;

attr = &open_args->creat ehow4_u. createattrs;

svp = drp->r_server;

new usr/ src/ uts/ common/ fs/ nfs/nfs4_vnops.c 16
983 (void) nfs_rw enter_sig(&svp->sv_|ock, RWREADER 0);
984 supp_attrs = svp->sv_supp_attrs;

985 nfs_rw_ exit(&svp->sv_| ock);

987 /* GUARDED4 or UNCHECKED4 */

988 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN,
989 supp_attrs);

990 if (v_error)

991 bzero(attr, sizeof (*attr));

992 nf s4ar gs_copen_free(open_args);
993 nfs4_end_op(VIOM 4(dvp), dvp, vpi,
994 & ecov_state, FALSE);

995 if (ncr !'= NULL)

996 crfree(ncr);

997 kmem free(argop, argoplist_size);
998 return (v_error);

999 }

1000 }

1001 } else {

1002 /* NO CREATE */

1003 open_ar gs- >opent ype = OPEN4_NOCREATE;

1004 }

1006 if (recov_state.rs_sp != NULL)

1007 nmut ex_ent er (& ecov_state.rs_sp->s_| ock);

1008 open_args->owner.clientid = recov_state.rs_sp->clientid;

1009 mut ex_exit (& ecov_state.rs_sp->s_| ock);

1010 } else {

1011 /* XXX should we just fail here? */

1012 open_args->owner.clientid = 0;

1013 }

1015 *

1016 * This increments oop’s ref count or creates a tenporary 'just_created

1017 * open owner that will become valid when this OPEN OPEN_CONFI RM cal |

1018 * conpl et es.

1019 */

1020 mut ex_ent er (&TOM 4(dvp) - >m _| ock);

1022 /* See if a permanent or just created open owner exists */

1023 oop = find_open_owner_nol ock(cr, NFS4_JUST_CREATED, VTOM 4(dvp));

1024 if (loop) {

1025 /*

1026 * This open owner does not exist so create a tenporary

1027 * just created one.

1028 */

1029 oop = create_open_owner(cr, VIOM 4(dvp));

1030 ASSERT(oop != NULL);

1031 }

1032 mut ex_exi t (&VTOM 4(dvp) - >mi _| ock) ;

1034 /* this length never changes, do alloc before seqid sync */

1035 open_ar gs- >owner . owner _| en = si zeof (oop->00_nane);

1036 open_ar gs- >owner . owner _val =

1037 knmem al | oc(open_ar gs- >owner . owner _| en, KM SLEEP);

1039 e.error = nfs4_start_open_seqi d_sync(oop, VIOM 4(dvp));

1040 if (e.error == EAGAIN) {

1041 open_owner _rel e(oop);

1042 nf sd4ar gs_copen_free(open_args);

1043 nfs4_end_op(VIOM 4(dvp), dvp, vpi, & ecov_state, TRUE);

1044 if (ncr T= NULL) {

1045 crfree(ncr);

1046 ncr = NULL;

1047

1048 goto recov_retry;

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 17

1049

1051
1052
1053
1054

1056
1057
1058
1059
1060
1061
1062
1063

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

1076
1077

1079
1080
1081
1082
1083
1084
1085
1086

1090
1091
1092
1093
1094

1096
1097
1098
1099

1101
1102
1103
1104

1106
1107
1108
1109

1111
1112
1113
1114

}

/* Check to see if we need to do the OTWcall */
if (‘create_flag) {
if (!nfs4_is_otw open_necessary(oop, open_flag, vpi,
file just_been_created, &e.error, acc, & ecov_state)) {

/
The OTWopen is not necessary. Either
the open can succeed without it (eg.
del egation, error == 0) or the open
must fail due to an access failure
(error '=0). In either case, tidy
up and return.

/

* Ok Ok ok % Ok ko

nfs4_end_open_seqi d_sync(oop);
open_owner _rel e(oop);
nf s4ar gs_copen_free(open_args);
nfs4_end_op(VTOM 4(dvp), dvp, vpi, & ecov_state, FALSE);
if (ncr !'= NULL)
crfree(ncr);
kmem free(argop, argoplist_size);
return (e.error);

}

bcopy(&oop- >00_nane, open_ar gs->owner . owner _val,
open_ar gs- >owner . owner _| en);

seqi d = nfs4_get _open_seqi d(oop) + 1;
open_ar gs->seqi d = seqid;
open_ar gs->share_access = 0;
if (open_flag & FREAD)

open_ar gs- >share_access | = OPENA_SHARE_ACCESS_READ;
if (open_flag & FWRI TE)

open_ar gs- >share_access | = OPENA_SHARE_ACCESS_WRI TE;
open_ar gs- >share_deny = OPEN4_SHARE DENY_NONE;

/*

* getfh wsanity check for idx_open/idx_fattr
*

/

ASSERT((i dx_open + 1) == (|dx fattr - 1))
argop[i dx_open + 1].argop = OP_CETFH,

/* getattr */

argop[idx_fattr].argop = OP_GETATTR,
argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
argop[idx_fattr].nfs_argop4_u.opgetattr.m = VIOM 4(dvp);

if (setgid_flag) {
vattr_t _v;

servinfo4d_t *svp;
bi t map4 supp_attrs;

svp = drp->r_server;

(void) nfs_rw enter_sig(&svp->sv_|ock, RWREADER 0);
supp_attrs = svp->sv_supp_attrs;

nfs_rw exit(&svp->sv_| ock);

/*
* For setgid case, we need to:
* 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new)
*
/

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

1115

1117
1118

1120
1121
1122

1124

1126
1127
1128
1129
1130
1131
1132

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146

1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163

1165

1167
1168
1169
1170

1172
1173
1174
1175
1177

1179

argop[4] . argop = OP_SAVEFH;
argop[5] . argop = OP_CPUTFH;
argop[5] . nfs_argop4_u. opcputfh.sfh = drp->r_fh;
argop[6] . argop = OP_CETATTR,
argop[6] . nfs_argop4_u. opgetattr.attr_request = NFS4_VATTR_MASK;
argop[6] . nfs_argop4_u. opgetattr.m = VIOM 4(dvp);
1

argop[7] . argop = OP_RESTOREFH,
/*

* nverify

*/

v.va_mask = AT_G D

v.va_gid =in _va->va_ gi d;

if (!(e.error = nfsdar gs verify(&argop[8], & v, OP_NVER FY,
supp_attrs))) {

/
setattr

We _know_ we’'re not nessing with AT_SI ZE or
AT_XTI ME, so no need for stateid or flags.
Al'so we specify NULL rp since we're only
interested in setting owner_group attributes.

* ok Ok ok F ok ko
-~

nfsd4args_setattr(&argop[9], & v, NULL, O, NULL, cr,
supp_attrs, &e.error, 0);
if (e.error)
nfsdargs_verify_free(&argop[8]);
}

if (e.error) {
/*

* XXX - Revisit the last argunent to nfs4_end_op()
*/ once 5020486 is fixed.
*
nfs4_end_open_seqi d_sync(oop);
open_owner _rel e(oop);
nf s4ar gs_copen_free(open_args);
nfs4_end_op(VTOM 4(dvp), dvp, vpi, & ecov_state, TRUE);
if (ncr !'= NULL)
crfree(ncr);
kmem free(argop, argoplist_size);
return (e.error);

}
} else if (create_flag) {
argop[1] . argop = OP_SAVEFH;
argop[5] . argop = OP_RESTOREFH,
argop[6] . argop = OP_GETATTR
argop[6] . nfs_argop4_u. opgetattr.attr_request = NFS4_VATTR_MASK;
argop[6] . nfs_argop4_u. opgetattr.m = VIOM 4(dvp);
}
NFS4_DEBUG(nf s4_cl i ent _cal | _debug, (CE_NOTE,
"nfs4open_otw. % call, nm%, rp %",
needrecov ? "recov" : "first", file_naneg,
rnodedi nf o(VTOR4(dvp))));
t = gethrtine();

rfsdcal | (VTOM 4(dvp), &args, &res, cred_otw, &doqueue, 0, &e);

18

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 19

1181
1182

1184

1186
1187

1189
1190

1192
1193

1195
1196
1197
1198
1199

1201
1202
1203

1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233

1235
1236
1237
1238
1239

1241
1242
1243
1244

1246

if (le.error & nfs4_need_to_bunp_seqi d(& es))
nfs4_set_open_seqi d(seqi d, oop, args.ctag);

needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp);

if (e.error || needrecov) {
bool _t abort = FALSE;

if (needrecov)
nfs4_bseqid_entry_t *bsep = NULL;

nf s4open_save_l ost_rqgst(e.error, & ost_rqst, oop,
cred_otw, vpi, dvp, open_args);

if (le.error & res.status == NFS4ERR BAD SEQ D) {
bsep = nfs4_create_bseqi d_entry(oop, NULL,
vpi, 0, args.ctag, open_args->seqid);
num bseqid_retry--;

}

abort = nfs4_start_recovery(&e, VIOM 4(dvp), dvp, vpi,
NULL, lost_rgst.lr_op == OP_OPEN ?
& ost_rqgst : NULL, OP_OPEN, bsep, NULL, NULL);

if (bsep)

kmem free(bsep, sizeof (*bsep));
/* give up if we keep getting BAD SEQ D */
if (numbseqid_retry ==

abort = TRUE;
if (abort == TRUE && e.error == 0)

e.error = geterrno4(res.status);

}

nfs4_end_open_seqi d_sync(oop);

open_owner _rel e(oop);

nfs4_end_op(VTOM 4(dvp), dvp, vpi, & ecov_state, needrecov);

nf s4ar gs_copen_free(open_args);

if (setgid_flag) {
nfsdargs_verify_free(&argop[8]);
nfsdargs_setattr_free(&argop[9]);

}
if (le.error)

(voi d) xdr_free(xdr_COVMPOUNDAres_clnt, (caddr_t)&res);
if (ncr !'= NULL) {

crfree(ncr);

ncr = NULL;

}
if (!needrecov || abort == TRUE || e.error == EINTR ||
NFS4_FRC UNMI_ERR(e. error, dvp->v_vfsp))
knmem f ree(argop, argoplist_size);
return (e.error);

goto recov_retry;

}

/*
* WII check and update |ease after checking the rflag for
* OPEN_CONFIRM in the successful OPEN call.
*/
if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) {
/*
* XXX what if we’'re crossing nount points from serverl:/drp

* to server2:/drp/rp.
)

/* Signal our end of use of the open seqid */

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

1247

1249
1250
1251
1252
1253
1254
1255]
1256

1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282

1284
1285

1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298

1300
1301
1302
1303
1304

1306
1307

1309

1311
1312

nfs4_end_open_seqi d_sync(oop);

| *

* This will destroy the open owner if it was just created,

* and no one else has put a reference on it.
)

open_owner _rel e(oop) ;
if (create_flag & (createnpde != EXCLUSI VE4) &&
res.status == NFS4ERR_BADOMNER)
nfs4_| og_badowner (VTOM 4(dvp), OP_OPEN);

e.error = geterrno4(res.status);

nf s4ar gs_copen_free(open_args);

if (setgid_flag) {
nfsdargs_verify_free(&argop[8]);
nfsdargs_setattr_free(&argop[9]);

}
(voi d) xdr_free(xdr_COVMPOUND4Ares_clnt, (caddr_t)&res);

nfs4_end_op(VTOM 4(dvp), dvp, vpi, & ecov_state, needrecov);
/*

* |f the reply is NFS4ERR _ACCESS, it nmy be because

* we are root (no root net access). |If the real uid
* is not root, then retry with the real uid instead.
*/

if (ncr !'= NULL) {
crfree(ncr);
ncr = NULL;

}
1f (res.status == NFS4ERR_ACCESS &&
(ncr = crnetadjust(cred_otw)) != NULL) {
cred_otw = ncr;
goto recov_retry;

kmem free(argop, argoplist_size);
return (e.error);

}

resop = &res.array[idx_open]; /* open res */
op_res = & esop->nfs_resop4_u. opopen;

#i f def DEBUG
/*

* verify attrset bitmap
*
if (create_flag &&
(createnpde == UNCHECKED4 || createnpde == GUARDED4)) {
/* make sure attrset returned is what we asked for */
/* XXX Ignore this "error’ for now */
if (attr->attrmask != op_res->attrset)
[* EMPTY */;
#endi f
if (op_res->rflags & OPENA_RESULT_LOCKTYPE_PCSI X) {
mut ex_ent er (&TOM 4(dvp) - >mi _| ock);
VTOM 4(dvp)->m _flags |= M 4_PGCSI X_LOCK;
mut ex_exi t (&TOM 4(dvp) - >m _I| ock) ;
}
resop = &es.array[idx_open + 1]; [/* getfh res */
gf _res = &resop->nfs_resop4_u. opgetfh;
otw sfh = sfh4_get (&gf_res->object, VIOM 4(dvp));
/*
* The open stateid has been updated on the server but not

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 21

1313
1314
1315
1316
1317
1318
1319
1320

1322
1323
1324
1325
1326
1327

1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339

1341

1343
1344

1346
1347

1349
1350
1351
1352
1353
1354
1355
1356
1357
1358

1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378

*
*
*
*

on the client yet. There is a path: makenfs4node->nfs4_attr_cache->
fl ush_pages->VOP_PUTPAGE->...->nfs4wite where we will issue an OTW
WRI TE call. That, however will use the old statei d, so go ahead

and upate the open stateid now, before any call to makenf s4node.
*

if (vpi) {
nfs4_open_streamt *t nmp_osp;
rnode4_t *tnp_rp = VIOR4(vpi);
tnp_osp = find_open_strean(oop, tnp_rp);

}

if (trp_osp) {
t np_osp->open_stateid = op_res->stateid;
nut ex_exi t (& np_osp- >o0s_sync_| ock);
open_streamrel e(tnp_osp, tnp_rp);

}

/*

* W nust deternmine if the file handle given by the otw open
* is the sane as the file handl e which was passed in with

* *ypp. This case can be reached if the file we are trying
* to open has been renpbved and another file has been created
* having the sane file nane. The passed in vnode is rel eased
*

*/Iater

orig_sfh = VIOR4(vpi)->r_fh;

fh_differs = nfs4cnpfh(&or|g sfh->sfh_fh, &tw sfh->sfh_fh);

garp = &es.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res;

if (create_flag || fh_differs) {

int rnode_err = O;

vp = mekenfs4node(otw sfh, garp, dvp->v_vfsp, t, cr,
dvp, fn_get(VTOSV(dvp)->sv_nane, file_nane, otw sfh));

if (e.error)
PURGE_ATTRCACHE4(vp) ;
/*
* For the newy created vp case, nake sure the rnode
* isn't bad before using it.
*/
mut ex_ent er (& VTOR4(vp))->r _st at el ock) ;
if (VTOR4(vp)->r_flags & RARECOVERR)
rnode_err = EIQ
mut ex_exi t (& VTOR4(vp)) - >r _st at el ock) ;

if (rnode_err)
nfs4_end_open_seqi d_sync(oop);
nf s4args_copen_free(open_args);
if (setgid_flag)
nfsdargs_verify_free(&argop[8]);
) nfsdargs_setattr_free(&argop[9]);
(void) xdr_free(xdr_COVPOUNDAres_clnt, (caddr_t)&res);
nfs4_end_op(VTOM 4(dvp), dvp, vpi, & ecov_state,
needr ecov) ;
open_owner _rel e(oop);
VN_RELE(vp);
if (ncr !'= NULL)
crfree(ncr);
sfh4_rel e(&tw sfh);
kmem f ree(argop, argoplist_size);
return (ElIO);

} else {

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

1379
1380
1381

1383
1384
1385
1386
1387
1388
1389
1390
1391
1392

1394
1395
1396
1397
1398

1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436

1438
1439
1440
1441
1442
1443

vp = vpi;
sfh4_rel e(&t w_sfh);

/*
* It seens odd to get a full set of attrs and then not update

* the object’s attrcache in the non-create case. Create case uses
* the attrs since nakenfs4node checks to see if the attrs need to
* be updated (and then updates them. The non-create case should
* update attrs al so.

*

/

f

(! create_flag & ! fh_differs & !e.error) {
nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL);
}

nfs4_error_zinit(&e);
if (op_res->rflags & OPEN4_RESULT_CONFI RM)
/* This does not do recovery for vp explicitly. */
nf s4open_confirmvp, &seqid, &op_res->stateid, cred_otw, FALSE,
& etry_open, oop, FALSE, &e, &um bseqid_retry);

if (e.error || e.stat) {
nfs4_end_open_seqi d_sync(oop);
nf s4args_copen_free(open_args);
if (setgid_flag)
nfsdargs_verify_free(&argop[8]);
nfsdargs_setattr_free(&argop[9]);
}
(voi d) xdr_free(xdr_COVMPOUNDAres_clnt, (caddr_t)&res);
nfs4_end_op(VTOM 4(dvp), dvp, vpi, & ecov_state,
needr ecov) ;
open_owner _rel e(oop)
if (create_flag || th _differs)
/* rele the nmakenfs4node */
VN_RELE(vp) ;

}

if (ncr !'= NULL) {
crfree(ncr);
ncr = NULL

}
if (retry_open == TRUE) {
NFS4_DEBUG(nf s4_cl i ent _recov_debug, (CE_NOTE,
"nfs4open_otw. retry the open since OPEN "
"CONFIRM failed with error %l stat %",
e.error, e.stat));
if (create_flag && createnpde == GUARDED4) ({
NFS4_DEBUG(nf s4_cl i ent _r ecov_debug,
(CE_NOTE, "nfsdopen_otw. switch "
"createnpde from GUARDEDA to "
" UNCHECKED4")) ;
creat ennde = UNCHECKED4;

}
goto recov_retry

}
if (le.error)

if (create_flag & (createnode != EXCLUSI VE4) &&

e.stat == NFS4AERR BADOWNER)
nfs4_| og_badowner (VTOM 4(dvp), OP_OPEN);
e.error = geterrno4(e.stat);

kmem free(argop, argoplist_size);
return (e.error);

22

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 23

1445

1447
1448
1449
1450

1452
1453
1454
1455
1456
1457
1458
1459

1461
1462
1463
1464
1465
1466
1467

1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481

1483
1484

1486
1488

1490
1491
1492
1493
1494

1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510

rp = VIOR4(vp);

mut ex_ent er (& p->r_st at ev4_| ock) ;
if (create_flag)

rp->created_v4 = 1;
mut ex_exi t (& p->r_statev4_| ock);

nmut ex_ent er (&oop- >00_| ock) ;
/* Doesn't matter if 'oo_just_created already was set as this */
oop- >00_j ust _created = NFS4_PERM CREATED,
if (oop->00_cred_otw)
crfree(oop->00_cred_otw);
oop->00_cred_otw = cred_otw,
crhol d(oop->00_cred_otw);
mut ex_exi t (&oop- >00_| ock) ;

/* returns with "os_sync_|l ock’ held */
osp = find_or_create_open_strean(oop, rp, &created_osp);
if (losp) {
NFS4 _DEBUG(nfs4_client_state_debug, (CE_NOTE,
"nf s4open_otw. failed to create an open stream'))
NFS4_DEBUG(nf s4_seqi d_sync, (CE_NOTE, "nfs4open_otw "
"signal our end of use of the open seqid"));

nfs4_end_open_seqi d_sync(oop);

open_owner _rel e(oop);

nf s4ar gs_copen_free(open_args) ;

if (setgid_flag)
nfsdargs_verify_free(&argop[8]);
nfsdargs_setattr_free(&argop[9]);

}
(void) xdr_free(xdr_COVPOUND4Ares_clnt, (caddr_t)&res);
nfs4_end_op(VTOM 4(dvp), dvp, vpi, & ecov_state, needrecov);
if (create_flag || fh_differs)

VN_RELE(vp) ;
if (ncr !'= NULL)

crfree(ncr);

kmem free(argop, argoplist_size);
return (EINVAL);

}
osp->open_stateid = op_res->stateid;

if (open_flag & FREAD)
osp->0s_share_acc_r ead++;
if (open_flag & FWRI TE)
osp- >0s_share_acc_wr it e++;
osp->0s_shar e_deny_none++;

/*
* Need to reset this bitfield for the possible case where we were
* going to OTWCLOSE the file, got a non-recoverable error, and before
* we could retry the CLOSE, OPENed the file again.
*
/
ASSERT(osp- >0s_open_owner - >00_seqi d_i nuse) ;
osp->os_final _close = 0;
osp->os_force_cl ose = 0;

#i f def DEBUG

if (osp->os_fail ed_reopen)
NFS4_DEBUG(nf s4_open_st ream debug, (CE_NOTE, "nfs4open_otw "
" clearing os_failed_reopen for osp %, cr %, rp %",
(void *)osp, (void *)Ycr, rnodedinfo(rp)));

osp->os_failed_reopen = 0O;

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

1512
1514

1516
1517
1518
1519
1520

1522
1523

1525

1527
1528

1530

1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559

1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576

mut ex_exi t (&osp- >0s_sync_| ock) ;
nfs4_end_open_seqi d_sync(oop);

if (created_osp &% recov_state.rs_sp != NULL) {
mut ex_ent er (& ecov_state.rs_sp->s_| ock);
nfs4_inc_state_ref_count_nol ock(recov_state.rs_sp, VIOM 4(dvp));
mut ex_exi t (& ecov_state.rs_sp->s_| ock);

}

/* get rid of our reference to find oop */
open_owner _rel e(oop);

open_streamrel e(osp, rp);

/* accept delegation, if any */
nfs4_del egati on_accept (rp, CLAIMNULL, op_res, garp, cred_otw);

nfs4_end_op(VTOM 4(dvp), dvp, vpi, & ecov_state, needrecov);

if (createnpnde == EXCLUSI VE4 &&
(in_va->va_mask & ~(AT_G D | AT_SIZE))) {
NFS4_DEBUG(nf s4_cl i ent _state_debug, (CE_NOTE, "nfs4open_otw "
" EXCLUSI VE4: sending a SETATTR'));

-

33*»***»**»»*******»»***

I f doing an exclusive create, then generate
a SETATTR to set the initial attributes.
Try to set the ntine and the atinme to the

server’s current time. It is somewhat
expected that these fields will be used to
store the exclusive create cookie. |f not,

server inplementors will need to know that
a SETATTR wi |l follow an exclusive create
and the cookie should be destroyed if
appropri ate.

The AT_G D and AT_SIZE bits are turned off

so that the SETATTR request will not attenpt
to process these. The gid will be set
separately if appropriate. The size is turned
off because it Is assuned that a new file will
be created enpty and if the file wasn't enpty,
then the exclusive create will have failed
because the file nust have existed already.
Therefore, no truncate operation i s needed.

-

_va->va_mask & ~(AT_G D | AT_SIZE);
_va->va_mask | = (AT_MII ME | AT_ATIME);

e.error = nfs4setattr(vp, in_va, 0, cr, NULL);
if (e.error
/*

* Couldn’t correct the attributes of

* the newy created file and the

* attributes are wong. Renove the

* file and return an error to the

* application.

*/

/* XXX will this take care of client state ? */

NFS4_DEBUG(nf s4_cl i ent _st at e_debug, (CE_NOTE,
"nfs4open_otw. EXCLUSI VE4: error % on SETATTR'
" renove file", e.error));

VN_RELE(vp) ;

(void) nfs4_renove(dvp, file_name, cr, NULL, 0);

/*

24

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

1577 * Since we've reled the vnode and renpved
1578 * the file we now need to return the error.
1579 * At this point we don't want to update the
1580 * dircaches, call nfs4_waitfor_purge_conplete
1581 * or set vpp to vp so we need to skip these
1582 * as well.

1583 */

1584 goto ski p_updat e_dircaches;

1585 }

1586 }

1588 /*

1589 * |f we created or found the correct vnode, due to create_flag or
1590 * fh_differs being set, then update directory cache attribute, readdir
1591 * and dnl ¢ caches.

1592 */

1593 if (create_flag || fh dlffers) {

1594 dirattr_info_t dinfo, *dinfop;

1596 /*

1597 * Make sure getattr succeeded before using results.
1598 * note: op 7 is getattr(dir) for both flavors of

1599 * open(create).

1600 */

1601 if (create_flag & res.status == NFS4_OK) {

1602 di nfo. di tlnecall-t

1603 dinfo.di _cred = cr;

1604 dinfo.di _garp =

1605 &res. array[6] nfs_resop4_u.opgetattr.ga_res;
1606 di nfop = &dinfo;

1607 } else {

1608 di nfop = NULL;

1609 }

1611 nf s4_updat e_di rcaches(&op_res->cinfo, dvp, vp, file_nane,
1612 di nf op) ;

1613 }

1615 I*

1616 * |If the page cache for this file was flushed from acti ons
1617 * above, it was done asynchronously and if that is true,

1618 * there is a need to wait here for it to conplete. This nust
1619 * be done outside of start_fop/end_fop.

1620 */

1621 (void) nfs4_waitfor_purge_conplete(vp);

1623 /*

1624 * It is inplicit that we are in the open case (create_flag == 0) since
1625 */fh differs can only be set to a non-zero value in the open case.
1626 *

1627 if (fh_differs !'= 0 & vpi != NULL)

1628 VN_RELE(vpi);

1630 /*

1631 * Be sure to set *vpp to the correct value before returning.
1632 */

1633 *vpp = vp;

1635 ski p_updat e_di rcaches:

1637 nf s4ar gs_copen_free(open_args);

1638 if (setgid_flag)

1639 nfsdargs_verify_free(&argop[8]);

1640 nf sd4args_setattr_free(&argop[9]);

1641 1

1642 (void) xdr_free(xdr_COVWOUND4Ares_clnt, (caddr_t)&res);

25

new usr/ src/ uts/ comon/fs/nfs/nfs4_vnops.c 26
1644 if (ncr)

1645 crfree(ncr);

1646 kmem free(argop, argoplist_size);

1647 return (e.error);

1648 }

1650 /*

1651 * Reopen an open instance. cf. nfs4open_otw().

1652 *

1653 * Errors are returned by the nfs4_error_t paraneter.

1654 * - ep->error contains an errno value or zero.

1655 * - if it is zero, ep->stat is set to an NFS status code, if any.

1656 * If the file could not be reopened, but the caller should continue, the
1657 * file is marked dead and no error values are returned. |f the caller
1658 * shoul d stop recovering open files and start over, either the ep->error
1659 * val ue or ep->stat will indicate an error (either sonething that requires
1660 * recovery or EAGAIN). Note that sone recovery (e.g., expired volatile
1661 * filehandl es) nay be handled silently by this routine.

1662 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC UNMI_ERR, recovery for |ost state
1663 * will be started, so the caller should not do it.

1664 *

1665 * Cotos:

1666 * - kill_file : reopen failed in suchafashlonto constitute marking the
1667 * file dead and setting the open streanmis ’'os_failed_reopen’ as 1. This
1668 * is for cases where recovery iIs not possible.

1669 * - failed_reopen : sane as above, except that the file has already been
1670 * mar ked dead, so no need to do it again.

1671 * - bailout reopen failed but we are able to recover and retry the reopen -
1672 * either within this function inmmediately or via the calling function.
1673 */

1675 voi d

1676 nfs4_reopen(vnode_t *vp, nfs4_open_streamt *osp, nfs4_error_t *ep,

1677 open_cl ai mtype4 claim bool _t frc_use_clai mprevious,

1678 bool _t is_recov)

1679 {

1680 COVPOUND4ar gs_cl nt args;

1681 COVPOUNDAr es_cl nt res;

1682 nfs_argop4 argop[4];

1683 nfs_resop4 *resop;

1684 OPENdres *op_res = NULL;

1685 OPEN4car gs *open_ar gs;

1686 CETFH4res *gf _res;

1687 rnoded4_t *rp = VIOR4(vp);

1688 int doqueue = 1;

1689 cred_t *cr = NULL, *cred_otw = NULL;

1690 nf s4_open_owner _t *oop = NULL;

1691 seqi d4 seqid;

1692 nfs4_ga_res_t *garp;

1693 char fn[MAXNAVELEN ;

1694 nfs4_recov_state_t recov = {NULL, O};

1695 nfs4_lost_rqgst_t lost_rqst;

1696 mtinfod4_t *m = VIOM 4(vp);

1697 bool _t abort;

1698 char *failed_nmsg = "";

1699 int fh_different;

1700 hrtime_t t;

1701 nf s4_bseqi dfentryft *bsep = NULL;

1703 ASSERT(nf s4_consi stent _type(vp));

1704 ASSERT(nfs_zone() == m ->ni Zone)

1706 nfs4_error_zinit(ep);

1708 /* this is the cred used to find the open owner */

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 27 new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 28
1709 cr = state_to_cred(osp); 1775 goto fail ed_reopen;
1710 if (cr == NULL) { 1776
1711 failed_msg = "Couldn’t reopen: no cred"; 1777 mut ex_exi t (& p->r_stat el ock);
1712 goto kill_file;
1713 } 1779 /*
1714 /* use this cred for OTWoperations */ 1780 * argop is enpty here
1715 cred_otw = nfs4_get_otw cred(cr, m, osp->0s_open_owner); 1781 *
1782 * PUTFH, OPEN, GETATTR
1717 top: 1783 */
1718 nfs4_error_zinit(ep); 1784 args. ctag = TAG REOPEN,
1785 args.array_len = 4;
1720 if (m->m _vfsp->vfs_flag & VFS_UNMOUNTED) { 1786 args.array = argop;
1721 /* File system has been unmounted, quit */
1722 ep->error = EIQ 1788 NFS4_DEBUG(nf s4_cl i ent _f ai | over _debug, (CE_NOTE,
1723 failed_nsg = "Couldn’t reopen: file system has been unnounted"; 1789 "nfs4_reopen: file is type %, id %",
1724 goto kill _file; 1790 vp->v_type, rnodedinfo(VTIOR4(vp))));
1725 }
1792 argop[0] . argop = OP_CPUTFH,
1727 00p = OSp- >0S_open_owner;
1794 if (claim!= CLAIMPREVIOUS) {
1729 ASSERT(oop != NULL); 1795 [
1730 if (oop == NULL) { /* be defensive in non- DEBUG */ 1796 * if thisis a file nount then
1731 failed_nsg = "can’t reopen: no open owner"; 1797 * use the mtinfo parentfh
1732 goto kill_file; 1798 */
1733 } 1799 argop[0] . nfs_ar gop4 u. opcputfh sfh =
1734 open_owner _hol d(oop) ; 1800 (vp->v_fTag & VROOT) ? ni->ni_srvparentfh :
1801 VTOSV(vp) - >sv_df h;
1736 ep->error = nfs4_start_open_seqi d_sync(oop, m); 1802 } else {
1737 if (ep->error) { 1803 /* putfh fh to reopen */
1738 open_owner _rel e(oop); 1804 argop[0] . nfs_argop4_u. opcputfh.sfh = rp->r_fh;
1739 oop = NULL; 1805 }
1740 goto bail out;
1741 } 1807 argop[1] . ar rgop = OP_COPEN,
1808 open_args = &argop[l] nfs_argop4_u. opcopen;
1743 /* 1809 open_args->claim= claim
1744 * |If the rnode has a del egation and the del egati on has been
1745 * recovered and the server didn't request a recall and the caller 1811 if (claim== CLAIMNULL) {
1746 * didn't specifically ask for CLAIMPREVI QUS (nfs4frlock during
1747 * recovery) and the rnode hasn't been marked dead, then install 1813 if ((ep->error = vtonane(vp, fn, NAXNANELEI\I)) 1= 0)
1748 * the delegation stateid in the open stream Oherw se, proceed 1814 nfs_cmm_err(ep->error, CE WARN, "nfs4_reopen: vtonane "
1749 * with a CLAIM PREVI QUS or CLAI M NULL OPEN. 1815 “"failed for vp Ox%) for CLAIMNULL with %',
1750 */ 1816 (void *)vp);
1751 mut ex_ent er (& p->r_statev4_| ock); 1817 fail ed_msg =" Ooul dn’t reopen: vtonanme failed for
1752 if (rp->r_deleg type ! = OPEN DELEGATE NONE && 1818 " CLAI M_NULL"
1753 Irp->r_del eg_return_pending & 1819 /* nothing all ocat ed yet */
1754 (rp->r_del eg_needs_recovery == OPEN_DELEGATE_NONE) && 1820 goto kill _file
1755 Irp->r_del eg_needs_recal | && 1821 }
1756 claimT= CLAIM DELEGATE_CUR && !frc_use_cl ai m previous &&
1757 I (rp->r_flags & RARECOVERR)) { 1823 open_ar gs- >open claimd_u.cfile = fn;
1758 nmut ex_ent er (&osp- >0s_sync_| ock) ; 1824 } else if (claim== CLATM PREVIQUS) {
1759 osp->os_del egation = 1;
1760 osp- >open_stateid = rp->r_del eg_st at ei d; 1826 /*
1761 mut ex_exi t (&osp->o0s_sync_| ock) ; 1827 * W& have two cases to deal with here:
1762 mut ex_exit (& p->r_statev4_| ock); 1828 * 1) We're being called to reopen files in order to satisfy
1763 goto bailout; 1829 * a | ock operation request which requires us to explicitly
1764 } 1830 * reopen files which were opened under a delegation. |If
1765 mut ex_exi t (& p->r_statev4_| ock); 1831 * we're in recovery, we *nust* use CLAIMPREVIOUS. In
1832 * that case, frc_use_claimprevious is TRUE and we nust
1767 /* 1833 * use the rnode’s current del egation type (r_del eg_type).
1768 * |f the file failed recovery, just quit. This failure need not 1834 * 2) We're reopening files during sone form of recovery.
1769 * affect other reopens, so don't return an error. 1835 * In this case, frc_use_claimprevious is FALSE and we
1770 =Y 1836 L use the del egation type appropriate for recovery
1771 nmut ex_ent er (& p->r_st at el ock); 1837 * (r_del eg_needs_recovery).
1772 if (rp->r_flags & RARECOVERR) { 1838 */
1773 mut ex_exi t (& p->r_statel ock); 1839 mut ex_ent er (& p->r_st at ev4_| ock);
1774 ep->error = 0O; 1840 open_ar gs- >open_cl ai ml_u. del egate_t ype =

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 29 new usr/ src/ uts/ comon/fs/nfs/nfs4_vnops.c 30
1841 frc_use_cl ai mprevious ?
1842 rp->r_del eg_type : 1908 if (ep->error) {
1843 rp->r_del eg_needs_recovery; 1909 if (lis_recov & !frc_use_cl ai mprevious &&
1844 mut ex_exi t (& p->r_st atev4_| ock); 1910 (ep->error == EINTR || ep->error == ETI MEDOUT | |
1911 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)))
1846 } else if (claim== CLAl M DELEGATE_CUR) { 1912 nf s4open_save_l ost_rqgst(ep->error, & ost_rqgst, oop,
1913 cred_otw, vp, NULL, open_args);
1848 if ((ep->error = vtonane(vp, fn, NAXNANELEI\I)) 1=0) { 1914 abort = nfs4_start_recovery(ep,
1849 nfs _cm _err(ep->error, CE WARN, "nfs4_reopen: vt oname " 1915 VTOM 4(vp), vp, NULL NULL,
1850 "failed for vp Ox%o for CLAI M DELEGATE CUR * 1916 | ost_rqgst. ir _op == OP_OPEN ?
1851 "with %, (void *)vp); 1917 & ost rgst : NULL, OP_OPEN, NULL, NULL, NULL);
1852 failed_nsg = " Coul dn’ t reopen: vtonane failed for " 1918 nf s4ar gs_copen_free(open_args);
1853 " CLAI M_DELEGATE_CUR"; 1919 goto bailout;
1854 /* nothing allocated yet */ 1920 }
1855 goto kill _file;
1856 } 1922 nf sdar gs_copen_free(open_args);
1858 mut ex_ent er (& p->r_st at ev4_| ock); 1924 if (ep->error == EACCES && cred_otw != cr) {
1859 open_ar gs- >open_cl ai mi_u. del egat e_cur _i nfo. del egate_stateid = 1925 crfree(cred_otw);
1860 rp->r_del eg_stat ei d; 1926 cred_otw = cr;
1861 mut ex_exi t (& p->r_stat ev4 I ock) ; 1927 crhol d(cred_otw);
1928 nfs4_end_open_seqi d_sync(oop);
1863 open_ar gs- >open_cl ai mi_u. del egate_cur _info.cfile = fn; 1929 open_owner _rel e(oop);
1864 } 1930 oop = NULL;
1865 open_ar gs- >opent ype = OPEN4_NOCREATE; 1931 goto top;
1866 open_args->owner.clientid = m 2clientid(m); 1932
1867 open_ar gs- >owner . owner _| en = si zeof (oop->00_nane); 1933 1f (ep->error == ETI MEDOUT)
1868 open_ar gs- >owner . owner_val = 1934 goto bail out;
1869 knmem al | oc(open_ar gs- >owner . owner _| en, KM SLEEP); 1935 failed_nmsg = "Couldn’t reopen: rpc error"”;
1870 bcopy(&oop- >00_nane, open_ar gs- >owner . owner_val , 1936 goto kill _file;
1871 open_ar gs- >owner . owner _| en); 1937 }
1872 open_ar gs- >share_access = 0;
1873 open_ar gs- >share_deny = O; 1939 if (nfs4_need_to_bunp_seqi d(&res))
1940 nfs4_set_open_seqi d(seqi d, oop, args.ctag);
1875 mut ex_ent er (&osp- >0s_sync_| ock) ;
1876 NFS4_DEBUG(nf s4_cl i ent _recov_debug, (CE_NOTE, "nfs4_reopen: osp % rp " 1942 switch (res.status) {
1877 "op: read acc %W PRI u64" wite acc %WPRI u64": open ref count %d: " 1943 case NFS4_OK:
1878 "mmap read % PRI u64" mmap wite % PRI u64" claimd ", 1944 if (recov.rs_flags & NFS4_RS_DELAY_MSG) {
1879 (void *)osp, (void *)rp, osp->os_share_acc_read, 1945 nmut ex_ent er (& p->r_st at el ock);
1880 osp->0s_share_acc_wite, osp->o0s_open_ref_count, 1946 rp->r_delay_interval = 0;
1881 osp->0s_nmap_read, osp->o0os_nmap_wite, clain)); 1947 mut ex_exi t (& p->r_st at el ock) ;
1948
1883 if (osp->os_share_acc_read || osp->os_mmap_read) 1949 br eak;
1884 open_args->share_access |= OPEN4_SHARE | ACCESS READ; 1950 case NFS4ERR BAD SEQ D:
1885 if (osp->os_share_acc_wite || osp->os_map_wite) 1951 bsep = nfs4_create_bseqid _entry(oop, NULL, vp, O,
1886 open_ar gs- >share_access | = OPENA_SHARE_ACCESS_WRI TE; 1952 args. ctag, open_args->seqid);
1887 if (osp->os_share_deny_read)
1888 open_ar gs- >share_deny | = OPENA_SHARE_DENY_READ; 1954 abort = nfs4_start recovery(ep, VIOM 4(vp), vp, NULL,
1889 if (osp->o0s_share_deny wite) 1955 NULL, lost _rgst.lr_op == OP_OPEN ? &l ost_rqst :
1890 open_ar gs- >share_deny | = OPEN4A_SHARE_DENY_WRI TE; 1956 NULL, OP_OPEN, bsep, NULL NULL) ;
1891 mut ex_exi t (&osp->0s_sync_| ock);
1958 nf sd4ar gs_copen_free(open_args);
1893 seqi d = nfs4_get _open_ seqi d(oop) + 1; 1959 (void) xdr_free(xdr_ CO\/PGJND4res clnt, (caddr_t)&res);
1894 open_ar gs->seqid = seqid; 1960 nfs4_end_open_seqi d_sync(oop);
1961 open_owner _rel e(oop);
1896 /* Construct the getfh part of the conpound */ 1962 oop = NULL;
1897 argop[2].argop = OP_GETFH, 1963 kmem free(bsep, sizeof (*bsep));
1899 /* Construct the getattr part of the conpound */ 1965 goto kill _file;
1900 argop[3] .argop = OP_GETATTR 1966 case NFS4ERR _NO_GRACE:
1901 argop[3] . nfs_argop4_u. opgetattr.attr_request = NFS4_VATTR_MASK; 1967 nf s4ar gs_copen_free(open_args);
1902 argop[3] . nfs_argop4_u. opgetattr.m = m; 1968 (voi d) xdr_free(xdr_COVMPOUND4res_cl nt, (caddr_t)&res);
1969 nfs4_end_open_seqi d_sync(oop);
1904 t = gethrtinme(); 1970 open_owner _rel e(oop);
1971 oop = NULL;
1906 rfs4call (m, &args, &es, cred_otw, &doqueue, 0, ep); 1972 if (claim== CLAI M PREVIQUS) {

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038

/
Retry as a plain open. We don’t need to worry about
checking the changeinfo: it is acceptable for a
client to re-open a file and continue processing
(i n the absence of |ocks).

CEE LA

NFS4 _DEBUG(nfs4_client_recov_debug, (CE_NOTE,
"nfs4_reopen: CLAI M PREVI QUS: NFS4ERR_NO GRACE;
"will retry as CLAIMNULL"));

claim= CLAI M_NULL;

nfs4_m _kstat_inc_no_grace(m);

goto top;

failed_nsg =
"Coul dn’t reopen: tried reclaimoutside grace period. ";
goto kill _file;
case NFSA4ERR _GRACE:
nfs4_set_grace_wait(m);
nf s4ar gs_copen_free(open_args);
(void) xdr_free(xdr_ OOVPGJND4res clnt, (caddr_t)&res);
nfs4_end_open_seqi d_sync(oop);
open_owner _rel e(oop);
oop = NULL;
ep->error = nfs4_wait_for_grace(m , &recov);
if (ep->error !'= 0)
goto bail out;
goto top;
case NFS4ERR_DELAY:
nfs4_set_del ay_wai t (vp);
nf s4ar gs_copen_ free(open args);
(void) xdr_free(xdr_ COVPCIJND4res clnt, (caddr_t)&res);
nf s4_end_open_seqi d_sync(oop) ;
open_owner _rel e(oop);
oop = NULL;
ep->error = nfs4_wait_for_delay(vp, & ecov);
nfs4_m _kstat_inc_delay(m);
if (ep->error != 0)
goto bail out;
goto top;
case NFS4ERR FHEXPI RED:
/* recover filehandle and retry */
abort = nfs4_start_recovery(ep,
m, vp, NULL, NULL, NULL, OP_OPEN, NULL, NULL, NULL)
nf s4ar gs_copen_free(open_args);
(void) xdr_free(xdr_ OOVPGJND4res clnt, (caddr_t)&res);
nfs4_end_open_seqi d_sync(oop);
open_owner _rel e(oop);

oop = NULL;
if (abort == FALSE)

goto top;
failed_msg = "Couldn’t reopen: recovery aborted";

goto kill _file;
case NFS4ERR RESOURCE:
case NFS4ERR STALE_CLI ENTI D:
case NFS4ERR WRONGSEC:
case NFS4ERR_EXPI RED:
/ *

* Do not mark the file dead and let the calling

* function initiate recovery.

*

/

nf s4ar gs_copen_free(open_args);
(voi d) xdr_free(xdr_COVMPOUND4res_cl nt, (caddr_t)&res);
nfs4_end_open_seqi d_sync(oop);
open_owner _rel e(oop);
oop = NULL;
goto bail out;

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061

2063
2064

2066

2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086

2088
2089
2090
2091

2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104

case NFS4ERR_ACCESS:

if (cred_otw!=cr) {
crfree(cred_otw);
cred_otw = cr;
crhol d(cred_otw);
nf s4ar gs_copen_free(open_args);
(voi d) xdr_free(xdr_COMPOUND4Ares_clnt, (caddr_t)&res);
nfs4_end_open_seqi d_sync(oop);
open_owner _rel e(oop);
o0op = NULL;
goto top;

}
/* fall through */
defaul t:
NFS4_DEBUG(nf s4_cl i ent_fail over_debug, (CE_NOTE,
"nfs4_reopen: r_server Ox%, m _curr_serv Ox%, rnode %"
(voi d*) VTORA4(vp) - >r _server, (void*)ni->ni _curr_serv,
rnoded4i nf o(VTOQ4(vp))))
failed_nsg = "Couldn’t reopen: NFSv4 error";
nf s4ar gs_copen_free(open_args);
(voi d) xdr free(xdr COVMPOUND4r es_cl nt, (caddr_t)&res);
goto kill _file
}

resop = &es.array[1]; /* open res */
op_res = & esop->nfs_resop4_u. opopen;

garp = &es.array[3].nfs_resop4_u.opgetattr.ga_res;

/*

* Check if the path we reopened really is the sanme

* file. We could end up in a situation where the file

* was renmoved and a new file created with the same nane.
*/

resop = &res. array[2] ;
gf _res = &resop->nfs_resop4_u.opgetfh;
(voi d) nfs rw_ enter_sig(&m ->m _fh_|l ock, RWREADER, 0);
fh_different (nf s4cnpf h(& p->r_fh- >sfh fh, &gf_res- >obj ect) !'=0);
if (fh_ dlfferent) {
if (m->m _fh_expire_type == FH4_PERSI STENT | |
m ->mi _f h_expire_type & FH4_NOEXPI RE_W TH_OPEN) {
/* OCops, we don’t have the sanme file */
if (m->m_fh_expire type == FH4_PERSI STENT)
failed _nmsg = "Coul dn’t reopen: Persistent
"file handl e changed";
el se
failed_nsg = "Couldn't reopen: Volatile "
"(no expire on open) file handl e changed";

nf s4ar gs_copen_free(open_args);

(void) xdr_free(xdr_COVPOUNDAres_clnt, (caddr_t)&res);
nfs_rw.exit(&m->m _fh_lock);

goto kill_file;

} else {

We have volatile file handles that don't conpare.
If the fids are the same then we assume that the
file handl e expired but the rnode still refers to
the sane file object.

First check that we have fids or not.

If we don’t we have a dunmb server so we will
just assume every thing is ok for now.
*/

*
*
*
*
*
*
*
*
*

if (lep->error && garp->n4g_va.va_nask & AT_NODEI D &&

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 33

2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139

2141

2143
2144
2145
2146
2147
2148
2149

2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162

2164
2165
2166
2167
2168
2169
2170

rp->r_attr.va_nmask & AT_NODEID &&
rp->r_attr.va_nodei d ! = garp->n4g_va. va_nodei d) {
/*
* We have fids, but they don’'t
* conpare. So kill the file.
*
/

failed_nsg =
"Coul dn’t reopen: file handl e changed"
" due to m smatched fids";

nf s4ar gs_copen_free(open_args);

(voi d) xdr_free(xdr_COVOUND4res_cl nt,
(caddr_t)&res);

nfs_rw exit(&m->m _fh_| ock);

goto kill_file;

} else {

We have vol atile flle handl es that refers
to the sane file (at |east they have the
same fid) or we don't have fids so we

can't tell. :(. W'll be a kind and accepting
client so we'll update the rnode’s file

handl e with the otw handl e.

We need to drop mi->m _fh_|lock since
sh4_update acquires it. Since there is
only one recovery thread there is no

* race.

*/

nfs_rw exit(&m->m _fh_| ock);
sfh4_update(rp->r_fh, &gf_res->object);

* ok kb ok ok ok ok ok

}
} else {
nfs_rw exit(&m->m _fh_|ock);
}
ASSERT(nfs4_consi stent _type(vp));
/*
* If the server wanted an OPEN_CONFIRM but that fails, just start
* over. Presumably if there is a persistent error it wll show up
*

when we resend the OPEN.

*/

if (op_res->rflags & OPENA_RESULT_CONFI RV {
bool _t retry_open = FALSE;

nf s4open_confirn(vp, &seqid, &op_res->stateid,
cred_otw, is_recov, &etry_open,
oop, FALSE, ep, NULL);
if (ep->error || ep->stat) {
nf s4args_copen_free(open_args);
(voi d) xdr_free(xdr_COWOUND4res_cl nt,
nfs4_end_open_seqi d_sync(oop);
open_owner _rel e(oop);
oop = NULL;
goto top;

(caddr_t)&res);

}

mut ex_ent er (&osp- >os _sync_| ock) ;

osp->open_stateid = op_res->st ateld

;)sp >0s_del egation = 0;

*

* Need to reset this bitfield for the possible case where we were

* going to OTWCLOSE the file, got a non-recoverable error, and before
* we could retry the CLOSE, OPENed the file again.

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

2171
2172
2173
2174
2175
2176
2177

2179

2181
2182

2184
2186
2188
2190

2192
2193
2194
2195

2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215

2217

*
/
ASSERT(0sp- >os_open_ovmer ->00_seqi d_i nuse) ;
osp->os_final _close = 0;
0sp- >0s force close = 0;
if (claim== CLAIM DELEGATE_CUR || clai m== CLAI M PREVI OUS)
osp- >os_dc_openacc = open_ar gs- >shar e_access;
mut ex_exi t (&sp- >0s_sync_| ock) ;
nfs4_end_open_seqi d_sync(oop);
/* accept del egation, if any */
nfs4_del egati on_accept(rp, claim op_res, garp, cred_otw);
nf s4ar gs_copen_free(open_args);
nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL);
(voi d) xdr_free(xdr_COVWOUND4Ares_cl nt, (caddr_t)&res);
ASSERT(nfs4_consi stent _type(vp));
open_owner _rel e(oop) ;
crfree(cr);
crfree(cred_otw);
return;
kill_file:
nfs4_fail _recov(vp, failed_nsg, ep->error, ep->stat);

failed reopen
NFS4_DEBUG nf s4_open_st ream debug, (CE_NOTE,
"nfs4_reopen: setting os_failed_reopen for osp %, cr
(void *)osp, (void *)cr, rnodedinfo(rp)));
nut ex_ent er (&osp- >0s _sync_| Iock)
osp->o0s_fail ed_reopen = 1;
mut ex_exi t (&osp->0s_sync_| ock) ;
bai | out :
if (oop !'= NULL)
nfs4_end_open_seqi d_sync(oop);
open_owner _rel e(oop);

}

if (cr !'= NULL)
crfree(cr);

if (cred_otw != NULL)
crfree(cred_otw);

}

/* for . and .. OPENs */

2218 /* ARGSUSED */

2219 static int

2220 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr)
2221 {

2222 rnode4_t *rp;

2223 nfs4_ga_res_t gar;

2225 ASSERT(nfs_zone() == VIOM 4(*vpp)->m _zone);

2227 I*

2228 * |f close-to-open consistency checking is turned off or
2229 * if there is no cached data, we can avoid

2230 * the over the wire getattr. Oherw se, force a
2231 * call to the server to get fresh attributes and to
2232 * check caches. This is required for close-to-open
2233 * consi stency.

2234 */

2235 rp = VIOR4(*vpp);

2236 if (VTOM 4(*vpp)->nmi _flags & M 4_NOCTO | |

%,

rp %",

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

2237
2238

2240
2241
2242

2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256

2258
2259
2260
2261

2263

2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288

2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302

(rp->r_dir == NULL && !nfs4_has_pages(*vpp)))
return (0);

gar.n4g_va.va_mask = AT_ALL;
return (nfs4_ getattr otw(*vpp, &gar, cr, 0));
}
/*
* CLCSE a file
=
/* ARGSUSED */
static int

nfs4_cl ose(vnode_t *vp, int flag, int count,

{

of fset _t offset, cred_t *cr,

cal | er_context _t *ct)

rnode4_t *rp;

int error = 0;

int r_error = 0;

int n4error = 0;

nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
/*

*

rp =

/

R
-~

Renove client state for this (lockowner, file) pair.
| ssue otw v4 call to have the server do the sane.

VTOR4A(vp) ;

zone_enter(2) prevents processes from changing zones with NFS files

open; if we happen to get here fromthe wong zone we can’'t do
anyt hing over the wire.

(VTGVI/ 4(vp)->m _zone != nfs_zone()) {

We could attenpt to clean up |ocks,
that the current process didn't acquire any | ocks on
the file:
will fail
zones,

except we're sure

as that fails too.

*

*

*

*

*

*

* Returning an error here is the sane thing to do. A
* subsequent call to VN _RELE() which translates to a
* nfsd4_inactive() will clean up state:

*

*

*

*

*

*

everything (minus the OTWclose call) should be OK.

del egations, open streans and cached pages inline.
/

return (EIO;

If we are using local locking for this filesystem then
rel ease all of the SYSV style record | ocks. O herwi se,
we are doing network |ocking and we need to rel ease all
of the network locks. Al of the locks held by this
process on this file are rel eased no matter what the

i ncom ng reference count is.

(VTOM 4(vp)->m _flags & M4_LLOCK) {
cl eanl ocks(vp, ttoproc(curthread)->p_pid, 0);
cl eanshares(vp, ttoproc(curthread)->p_pid);

} else

e.error = nfs4_|l ockrel ease(vp, flag, offset, cr);

any attenpt to lock a file belong to another zone
and one can’t lock an NFS file and then change

if the zone of the
vnode's origin is still alive and kicking, the inactive
thread will handl e the request (fromthe correct zone),
If the
zone is going away nfs4_async_inactive() will throw away

35

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315

2317
2318

2320
2321
2322
2323
2324
2325
2326

2328
2329
2330
2331
2332
2333
2334
2335

2337
2338
2339
2340

2342
2343
2344
2345
2346
2347
2348
2349
2350

2352
2353
2354
2355
2356
2357
2358
2359
2360

2362
2363
2364
2365
2366
2367
2368

if (e.error) {
struct I msysid *Insid
Inmsid = nfs4_find_sysi d(VTC]\/I 4(vp));
if (Imsid == NULL)
DTRACE_PROBE2(unknown__sysid, int, e.error,
vnode_t *, vp);
} else {

cl eanl ocks(vp, ttoproc(curthread)->p_pid
(I msysidt(lnmsid) | LMSYSID CLIENT)

return (e.error);

}

if (count > 1)
return (0);

/
f the file has been ‘unlinked , then purge the
DNLC so that this vnode will get reycled quicker

*

*

*

* and the .nfs* file on the server will get renoved.
*/

f

(rp->r_unldvp !'= NULL)
dnl c_purge_vp(vp);

/*

* If the file was open for wite and there are pages,
* do a synchronous flush and commt of all of the

* dirty and uncommitted pages.

*/

ASSERT(!e.error);
if ((flag & FV\RITE) && nfs4_has_pages(vp))
error = nfs4_put page_commit(vp, 0, 0, cr);

mut ex_ent er (& p->r_st at el ock);
r_error = rp->r_error;
rp->r_error =0

mut ex_exi t (& p->r_st at el ock);

/

)

If this file type is one for which no explicit 'open’ was
done, then bail now (ie. no need for protocol 'close’). If
there was an error wthe vm subsystem return that_ error,

*

*

*

*

* ot herwi se,
* the rnode.

*

f (vp->v_type != VREGQ

return (error ? error r_error);

The sync putpage conmmit nay have failed above,
we're working wa regular file,
' cl ose’
needed or not).
"close’.

Report any errors _after_

EE

*/
nf s4cl ose_one(vp, NULL, cr,
nderror = e.error ? e.error

flag, NULL, &e,
geterrno4(e.stat);

/
Error reporting prio (H -> Lo)

i) nfs4_putpage_conmit (error)
ii) rnode’s (r_error)
iii) nfs4cl ose_one (nderror)
/

* Ok ok ok ok ok F

return any errors that may’ ve been reported via

but since

we need to do the protocol
(nfs4close_one will figure out if an otwclose is
doi ng the protocol

CLOSE_NORM 0, 0, 0);

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 37

2369
2370

2372
2373
2374

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385

2387
2388

2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406

2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434

}
| *

*

return (error ? error (r_error ? r_error nderror));

Initialize *lost_rqgstp.
&/

static void
nfs4cl ose_save_l ost_rqgst(int error, nfs4_lost_rqgst_t *lost_rqgstp,

I I
-~

nfs4_open_owner _t *oop, nfs4_open_streamt *osp, cred_t *cr,
vnode_t *vp)

if (error !'= ETIMEDOUT && error != EINTR &&
I NFS4_FRC_UNMT_ERR(error vp >v_vfsp)) {
lost_rqgstp->lr_op =
return;

}

NFS4_DEBUG(nf s4_1 ost _rqst _debug, (CE_NOTE,
"nf s4cl ose_save_lost _rqst: error %", error));

lost_rqgstp->lr_op
/k

* The vp is held and rele’d via the recovery code.
* See nfs4_save_lost_rgst.

*/

= OP_CLOSE

lost_rqgstp->lr_vp = vp;

lost _rgstp->lr_dvp = NULL;
| ost _rqgstp->lr_oop = oop;
| ost _rgstp->lr_osp = osp;

ASSERT(osp != NULL);

ASSERT(nut ex owned(&osp >0s_sync_l ock));
osp->o0s_pendi ng_cl ose = 1;
lost_rgstp->lr_lop = NULL;

| ost _rgstp->lr_cr = cr;
lost_rqgstp->lr_flk = NULL;
lost_rqgstp->lr_putfirst = FALSE;

Assunes you al ready have the open seqid sync grabbed as well as the
"os_sync_lock’. Note: this will release the open seqid sync and
"os_sync_lock’ if client recovery starts. Calling functions have to
be prepared to handl e this.

"recov’ is returned as 1 if the CLOSE operation detected client recovery
was needed and was started, and that the calling function should retry
this function; otherwise it is returned as O.

Errors are returned via the nfs4_error_t paraneter.

static void
nfs4cl ose_otw(rnoded4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop,

nfs4_open_streamt *osp, int *recov, int *did_start_seqid_syncp,
nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_| ockp)

COVPOUND4ar gs_cl nt args;
COVPOUNDAr es_cl nt res;
CLOSE4args *cl ose_args;
nfs_resop4 *resop;
nfs_argop4 argop[3];

int doqueue = 1;
mtinfod4_t *m;

seqi d4 seqi d;

vnode_t *vp;

bool _t needrecov = FALSE;

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

2435
2436

2438
2440
2442

2444
2445

2447

2449
2450
2451
2452
2453
2454

2456
2457

2459
2461

2463
2464
2465

2467
2468
2469

2471
2472

2474

2476
2477

2479
2480
2481

2483
2485

2487
2488
2489

2491
2492
2493
2494
2495
2496
2497
2498
2499
2500

nfs4_lost_rqgst_t lost_rqst;
hrtime_t t;

ASSERT(nfs_zone() == VIOM 4(RTOV4(rp))->m _zone);
ASSERT(MUTEX_HELD(&0sp- >0s_sync_| ock)) ;
NFS4_DEBUG nf s4_cl i ent _state_debug, (CE_NOTE, "nfs4close_otw'));

/* Only set this to 1 if recovery is started */
*recov = 0;

/* do the OTWcall to close the file */
if (cl ose _type == CLGSE = RESEND)
args.ctag = TAG CLOSE_LOST;
else if (close_type == CLOSE_AFTER_RESEND)
args. ctag = TAG_CLOSE_UNDG,
el se
args.ctag = TAG CLOSE;

args.array_len = 3;
args.array = argop;

vp = RTOV4(rp);
m = VIOM 4(vp);
/* putfh target fh */

argop[0] . argop = OP_CPUTFH;

argop[0] . nfs_argop4_u. opcputfh.sfh = rp->r_fh;

argop[1] . argop = OP_GETATTR;

argop[1] . nfs_argop4_u. opgetattr.attr request = NFS4_VATTR_MASK;
argop[1] . nfs_argop4_u. opgetattr.m = m;

argop[2] . ar gop = OP_CLGCSE;

close_args = &argop[2] . nfs_argop4_u. opcl ose;

seqi d = nfs4_get _open_seqi d(oop) + 1;

cl ose_args->seqid = seqid;
cl ose_args->open_stateid = osp->open_statei d;

NFS4_DEBUG(nf s4_cl i ent _cal | _debug, (CE_NOTE,
"nfs4cl ose_otw. % call, rp %", needrecov ? "recov"
rnodedinfo(rp)));

"first"

t = gethrtinme();
rfsdcall (m, &args, &es, cred_otw, &doqueue, 0, ep);

if (!ep->error & nfs4_need_to_bunp_seqid(&es)) {
nfs4_set_open_seqi d(seqi d, oop, args.ctag);
}

needrecov = nfs4_needs_recovery(ep, TRUE, mi->m _vfsp);
if (ep->error && ! needrecov) {
/*

* if there was an error and no recovery is to be done
* then then set up the file to flush its cache if
*/needed for the next caller.

*

mut ex_ent er (& p- >r _st at el ock) ;
PURGE_ATTRCACHE4_LOCKED(r p) ;

rp->r_flags & ~R4VRI TEMODI FI ED;

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 39

2501
2502
2503

2505
2506
2507

2509
2510
2511

2513
2514
2515

2517
2518
2519

2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531

2533
2534
2535

2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552

2554
2555
2556
2557

2559
2560
2561
2562

2564
2565
2566

mut ex_exi t (& p->r_statel ock);
return;

}

if (needrecov) {
bool _t abort;
nfs4_bseqi d_entry_t *bsep = NULL;

if (close_type != CLOSE_RESEND)
nfs4cl ose_save_lost_rqst (ep->error, & ost_rqgst, oop,
osp, cred_otw, vp);

if (lep->error & res.status == NFS4ERR _BAD_SEQ D)
bsep = nfs4_create_bseqi d_entry(oop, NULL, vp,
0, args.ctag, close_args->seqid);

NFS4_DEBUG(nf s4_cl i ent _recov_debug, (CE_NOTE,
"nfs4close_otw. initiating recovery. error %l "
"res.status %", ep->error, res.status));

/*
* Drop the 'os_sync_l ock’ here so we don't hit
* a potential recursive nutex_enter via an
* ' open_stream hol d()’
*/

mut ex_exi t (&osp- >0s sync | ock) ;

*have _sync_| | ockp =

abort = nfs4_start recovery(ep, VTOM 4(vp), vp, NULL, NULL,
(close_type != O_(BE RESEND &&
lost_rgst.lr_op == OP_CLOSE) ? & ost_rgst : NULL,
oP_CLOSE, bsep, NULL, NULL):

/* drop open seq sync, and let the calling function regrab it */
nfs4_end_open_seqi d_sync(oop);
*di d_start_seqi d_syncp = O;

if (bsep)
kmem free(bsep, sizeof (*bsep));

*
* For signals, the caller wants to quit, so don't say to
* retry. For forced unnmount, if it’s a user thread, it
* wants to quit. If it’s a recovery thread, the retry

* will happen higher-up on the call stack. Either way,
* don’t say to retry.

*

f

(abort == FALSE && ep->error != EINTR &&
I NFS4_FRC_UNMT_ERR(ep->error, m->m _vfsp) &&
cl ose_type ! = CLOSE_RESEND &&
cl ose type | = CLOSE_AFTER_RESEND)
*recov = 1;
el se
*recov = 0;

if (lep->error)
(void) xdr_free(xdr_COVPOUNDAres_clnt, (caddr_t)&res);
return;

if (res.status) {
(voi d) xdr_free(xdr_COVPOUND4Ares_clnt, (caddr_t)&res);
return;

}

mut ex_ent er (& p->r_stat ev4_| ock);
rp->created_v4 = 0;
nmut ex_exi t (& p->r_statev4_| ock);

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

2568 resop = &es.array[2];

2569 osp- >open_stateid = resop->nfs_resop4_u. opcl ose. open_st atei d;
2570 osp->os_valid = 0;

2572 /*

2573 * This renmoves the reference obtained at OPEN; ie, when the
2574 * open streamstructure was created.

2575 *

2576 * W don’t have to worry about calling 'open_streamrele’
2577 * since we our currently holding a reference to the open
2578 * stream whi ch neans the count cannot go to O with this
2579 * decrenent.

2580 */

2581 ASSERT(osp->o0s_ref_count >= 2);

2582 osp->os_ref _count--;

2584 if (lep->error)

2585 nfs4_attr_cache(vp,

2586 & es.array[1].nfs_resop4_u.opgetattr.ga_res,
2587 t, cred_otw, TRUE, NULL);

2589 NFS4_DEBUG(nf s4_cl i ent _st ate_debug, (CE_NOTE, "nfs4close_otw "
2590 " returning %", ep->error));

2592 (void) xdr_free(xdr_COVMPOUND4res_clnt, (caddr_t)&res);
2593 }

2595 /* ARGSUSED */

2596 static int

2597 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
2598 cal l er_context_t *ct)

2599 {

2600 rnoded_t *rp;

2601 u_offset_t off;

2602 of fset _t diff;

2603 uint_t on;

2604 uint_t n;

2605 caddr _t base;

2606 uint_t flags;

2607 int error;

2608 mtinfod4_t *m;

2610 rp = VIOR4(vp);

2612 ASSERT(nfs_rw_| ock_hel d(& p->r_rw ock, RW READER));

2614 if (1S SHADO/\(vp, rp))

2615 RTOVA4(rp);

2617 if (vp->v_type != VREG

2618 return (EISDIR);

2620 m = VIOM 4(vp);

2622 if (nfs_zone() != m->m _zone)

2623 return (ElO;

2625 if (uiop->uio_resid == 0)

2626 return (0);

2628 if (uiop->uio_|loffset < 0 || uiop->uio_|loffset + uiop->uio_resid < 0)
2629 return (EINVAL);

2631 mut ex_ent er (& p->r_st at el ock) ;

2632 if (rp->r_flags & R4RECDJERRP)

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 41 new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c 42
2633 error = (rp->r_error ? rp->r_error : EO; 2699 flags = SM DONTNEED;,
2634 el se 2700 el se
2635 error = 0; 2701 flags = 0;
2636 mut ex_exi t (& p->r_st at el ock); 2702 nut ex_exi t (& p->r_st at el ock);
2637 if (error) 2703 if (vpm.enabl e)
2638 return (error); 2704 error = vpmsync_pages(vp, off, n, flags);
2705 } else {
2640 /* 2706 error = segnap_rel ease(segkmap, base, flags);
2641 * Bypass VMif caching has been disabled (e.g., locking) or if 2707
2642 * using client-side direct 1/0O and the file is not mmap’'d and 2708 } else {
2643 * there are no cached pages. 2709 if (vpmenable) {
2644 */ 2710 (void) vpmsync_pages(vp, off, n, 0);
2645 if ((vp->v_flag & VNOCACHE) || 2711 } else {
2646 (((rp->r_flags & RADIRECTIO) || (mi- >m _flags & M4_DI RECTIO)) && 2712 (voi d) segmap_rel ease(segkmap, base, 0);
2647 rp->r_mapcnt == 0 && rp->r_innap == I nfs4_has_pages(vp))) { 2713 }
2648 size_t resid = 0; 2714 }
2715 } while (lerror &% uiop->uio_resid > 0);
2650 return (nfs4read(vp, NULL, uiop->uio_|offset,
2651 ui op->ui o_resid, &esid, cr, FALSE, ui op)); 2717 return (error);
2652 } 2718 }
2654 error = 0; 2720 /* ARGSUSED */
2721 static int
2656 do { 2722 nfs4_wite(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
2657 off = uiop->uio_|offset & MAXBMASK; /* mappi ng of fset */ 2723 cal ler_context_t *ct)
2658 on = uiop->ui o_| of fset & MAXBOFFSET; /* Rel ative of fset */ 2724 {
2659 n = M N(MAXBSI ZE - on, uiop->uio_resid); 2725 rlimed_t limt = uiop->uio_|limt;
2726 rnode4_t *rp;
2661 if (error = nfs4_validate_caches(vp, cr)) 2727 u_of fset _t off;
2662 br eak; 2728 caddr _t base;
2729 uint_t flags;
2664 mut ex_ent er (& p->r _st at el ock) ; 2730 int remainder;
2665 while (rp->r_flags & R4l NCACHEPURGE) { 2731 size_t n;
2666 if (ev_wait_sig(& p->r_cv, & p->r_statelock)) { 2732 int on;
2667 mut ex_exi t (& p->r_statel ock); 2733 int error;
2668 return (EINTR); 2734 int resid;
2669 } 2735 u_offset_t offset;
2670 } 2736 mtinfod4_t *m;
2671 diff = rp->r_size - uiop->uio_|offset; 2737 uint_t bsize;
2672 mut ex_exi t (& p->r_statel ock);
2673 if (diff <= 0) 2739 rp = VIOR4(vp);
2674 br eak;
2675 if (diff < n) 2741 if (1S_SHADONvp, rp))
2676 n = (uint_t)diff; 2742 vp = RTOVA(rp);
2678 if (vpmenable) { 2744 if (vp->v_type != VREG
2679 /* 2745 return (EISDIR);
2680 * Copy data.
2681 */ 2747 m = VIOM 4(vp);
2682 error = vpmdata copy(vp, off + on, n, uiop,
2683 1, NULL, O, S READ); 2749 if (nfs_zone() !'= m->nm _zone)
2684 } else { 2750 return (EIO;
2685 base = segmap_get mapflt(segkmap, vp, off + on, n, 1,
2686 S READ) ; 2752 if (uiop->uio_resid == 0)
2753 return (0);
2688 error = ui onove(base + on, n, U O READ, uiop);
2689 } 2755 mut ex_ent er (& p->r _st at el ock);
2756 it (rp->r_flags & R4RECOVERRP)
2691 if (lerror) { 2757 error = (rp->r_error ? rp->r_error : EIO;
2692 /* 2758 el se
2693 * |f read a whole block or read to eof, 2759 error = 0;
2694 * won’'t need this buffer again soon. 2760 mut ex_exi t (& p->r_st at el ock);
2695 */ 2761 if (error)
2696 mut ex_ent er (& p- >r_st at el ock); 2762 return (error);
2697 if (n + on == MAXBSI ZE ||
2698 ui op->ui o_| of fset == rp->r_size) 2764 if (ioflag & FAPPEND) {

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 43 new usr/src/uts/comon/fs/nfs/nfs4_vnops.c
2765 struct vattr va; 2831 if ((vp >v_flag & VNOCACHE) ||
2832 (((rp->r_flags & RADIRECTIO) || (nmi->mi flags & M4_DIRECTIO) &&
2767 /* 2833 rp->r_mapcnt == 0 && rp->r_i nnap == && ! nfs4_has_pages(vp))) {
2768 * Miust serialize if appending. 2834 size_t bufsize;
2769 */ 2835 int count;
2770 if (nfs_rw_|ock_hel d(& p->r_rw ock, RWREADER)) { 2836 u_offset t org_of fset;
2771 nfs_rw exit (& p->r_rw ock); 2837 stabl e_how4 stab conm
2772 if (nfs_rw enter_sig(& p- >r_rV\A ock, RWWRI TER, 2838 nfs4_fwite:
2773 I NTR4(vp))) 2839 if (rp->r_fl ags & RASTALE) {
2774 return (EINTR); 2840 resid = UIOp >ui o_resid;
2775 } 2841 of fset = ui op->uio_l of f set ;
2842 error = rp->r_error,
2777 va.va_mask = AT_SI ZE; 2843 J=
2778 error = nfs4getattr(vp, &va, cr); 2844 * A close nay have cleared r_error, if so,
2779 if (error) 2845 * propagate ESTALE error return properly
2780 return (error); 2846 */
2781 ui op->ui o_| of fset = va.va_si ze; 2847 if (error == 0)
2782 } 2848 error = ESTALE;
2849 goto bottom
2784 of fset = ui op->ui o_| of fset + uiop->uio_resid; 2850 }
2786 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2852 buf size = M N(ui op->uio_resid, m->nm _stsize);
2787 return (EINVAL); 2853 base = knmem al | oc(buf size, KM SLEEP);
2854 do {
2789 if (limt == RLIMBA_INFINITY || limt > MAXOFFSET_T) 2855 if (iofl ag & FDSYNC)
2790 limt = MAXOFFSET_T; 2856 ab_comm = DATA_SYNC4;
2857 el se
2792 /* 2858 stab_comm = FI LE_SYNC4;
2793 * Check to nmake sure that the process will not exceed 2859 resid = uiop->uio_resid;
2794 * its limt on file size. It is okay to wite up to 2860 of fset = ui op->uio_| of fset;
2795 * the limt, but not beyond. Thus, the wite which 2861 count = M N(ui op->ui o_resid, bufsize);
2796 * reaches the limt will be short and the next wite 2862 org_of fset = uiop->uio_|of fset;
2797 * will return an error. 2863 error = uionove(base, count, U OWRITE, uiop);
2798 */ 2864 if (terror) {
2799 remai nder = 0; 2865 error = nfs4wite(vp, base, org_offset,
2800 if (offset > uiop->uio_llimt) { 2866 count, cr, &stab_comm);
2801 remai nder = offset - uiop->uio_| II m't; 2867 if (lerror)
2802 ui op->uio_resid = uiop->uio_|li - uiop->uio_|offset; 2868 mut ex_ent er (& p->r_st at el ock);
2803 if (uiop->uio_resid <= 0) { 2869 if (rp->r_size < uiop->uio_|offset)
2804 proc_t *p = ttoproc(curthread); 2870 rp->r_size = uiop->uio_|offset;
2871 nut ex_exi t (& p->r_st at el ock) ;
2806 ui op->ui o_resid += renai nder; 2872 }
2807 mut ex_ent er (&p- >p_| ock) ; 2873 }
2808 (void) rctl_action(rctlproc_|l egacy[RLIM T_FSI ZE], 2874 } while ('error && uiop->uio_resid > 0);
2809 p->p_rctls, p, RCA _UNSAFE_SI G NFO); 2875 kmem f ree(base, bufsize);
2810 nut ex_exi t (&p->p_| ock); 2876 goto bottom
2811 return (EFBIG; 2877 }
2812 }
2813 } 2879 bsize = vp->v_vfsp->vfs_bsize;
2815 /* update the change attribute, if we have a wite delegation */ 2881 do {
2882 of f = uiop->uio_|offset & MAXBVASK; /* mappi ng of fset */
2817 mut ex_ent er (& p->r_st at ev4_| ock); 2883 on = uiop->ui o_| of fset & MAXBOFFSET; /* Rel ative of fset */
2818 if (rp->r_deleg_type == OPEN_ DELEGATE WRI TE) 2884 n = M N(MAXBSI ZE - on, uiop->uio_resid);
2819 rp->r_del eg_change++;
2886 resid = ui op->uio_resid;
2821 mut ex_exi t (& p->r_statev4_| ock); 2887 of fset = ui op->uio_| of fset;
2823 if (nfs_rw_ enter_sig(& p->r_| kserlock, RWREADER, |NTR4(vp))) 2889 if (rp->r_flags & R4STALE) {
2824 return (EINTR); 2890 error = rp->r_error;
2891 /*
2826 7% 2892 * A close may have cleared r_error, if so,
2827 * Bypass VMif caching has been disabled (e.g., locking) or if 2893 * propagate ESTALE error return properly
2828 * using client-side direct 1/0O and the file is not mmp’'d and 2894 */
2829 * there are no cached pages. 2895 if (error == 0)
2830 & 2896 error = ESTALE;

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

2897
2898

2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931

2933
2934
2935
2936
2937
2938
2939

2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952

2954
2955
2956
2957

2959
2960

2962

br eak;
}
/*
* Don't create dirty pages faster than they
* can be cl eaned so that the system doesn’t
* get inbalanced. |[If the async queue is
* maxed out, then wait for it to drain before
* creating nore dirty pages. Also, wait for
* any threads doing pagewal ks in the vop_getattr
* entry points so that they don't block for
* |ong periods.
*/

mut ex_ent er (& p->r_stat el ock);
while ((m->ni _nmax_threads !'= 0 &&
rp->r_awcount > 2 * mi->ni_max_threads) ||
rp->r_gcount > 0) {
if (INTR4(vp)) {
klwp_t *lwp = ttolwp(curthread);

if (lw l— NULL)
| wp- >l wp_nost op++;

if (lcv_walt_sig(&p->r_cv, & p->r_statelock)) {

mut ex_exi t (& p- >r_st at el ock);
if (Iwp !'= NULL)

| wp- >l wp_nost op- - ;
error = EINTR
goto bottom

}
if (Iwp !'= NULL)
| wp- >l wp_nost op- -;

cv_wait (& p->r_cv, & p->r_statel ock);

} else

mut ex_exit (& p->r_statel ock);

/
Touch the page and fault it inif it is not in core
bef ore segmap_getmapflt or vpmdata_copy can lock it.
This is to avoid the deadlock if the buffer is mapped
to the same file through nmap which we want to wite.

* Ok ok ok * ok

ui o_pref aul t pages((l ong)n, uiop);
if (vpm_/enabl e) {

* It will use kpm mappi ngs, so no need to
* pass an address.
*/

error = writerp4(rp, NULL, n, uiop, 0);
} else {
if (segmap_kpm {
int pon = uiop->uio_|offset & PAGEOFFSET;
size_t pn = M N(PAGESI ZE - pon,
ui op->ui o_resid);
int pagecreate;

mut ex_ent er (& p->r_st at el ock);

pagecreate = (pon == 0) && (pn == PAGESI ZE ||
ui op->ui o_| of fset + pn >= rp->r_size);

mut ex_exit (& p->r_statel ock);

base = segmap_get mapflt(segkmap, vp, off + on,

pn, !pagecreate, S_WRI TE);

error = witerp4(rp, base + pon, n, uiop,

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

2963

2965
2966
2967
2968
2969
2970

2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011

3013
3014
3015
3016
3017
3018

3020
3021
3022
3023
3024
3025
3026

3028

bott om

pagecreate);

} else {

base = segmap_get mapflt(segknmap, vp, off + on,
READ) ;

n, 0, S|
error = witerp4(rp, base + on, n, uiop,

}

if (terror) {
if (m->m_flags & M 4_NOAQ)
flags = SMWRI TE
else if ((uiop->uio_loffset %bsize) == 0 ||
I'S SWAPVP(vp)) {
/*

* Have witten a whol e bl ock.
* Start an asynchronous wite
* and mark the buffer to

* indicate that it won't be

* needed agai n soon.

*

|

f
} else

ags = 0,
if ((loflag &(FSYNClFDSYNC)) |l
(rp->r_flags & RAOUTOFSPACE)) {
flags & ~SM ASYNC,
flags | = SM WRI TE;

i}f (vpm enabl e) {

error = vpmsync_pages(vp, off, n, flags);

} else {
error = segnap_rel ease(segkmap, base, flags);
} else {
if (vpm_enabl e)
(void) vpmsync_pages(vp, off, n, 0);
} else {
(voi d) segmap_rel ease(segkmap, base, 0);
}
/

*
*Int
* faulting in a page for a wite-only file just
* force a wite.
*/
f (error == EACCES)

goto nfs4_fwite;

}
} while ('error &% uiop->uio_resid > 0);

if (error) {
ui op- >ui o_resi
ui op->ui o_| of f
} else {
ui op->ui o_resid += remai nder;

d resid + remainder;
S =

et of fset;

nmut ex_ent er (& p->r stat ev4_| ock);

if (rp->r_del eg_type == OPEN_ DELEGATE_WRI TE) {
get hr esti me(& p->r attr va_mtine);
rp->r_attr.va_ctine = rp->r_attr. va_ntine

mut ex_exit (& p->r_statev4_| ock);

}

nfs_rw exit (& p->r_| kserl ock);

ags = SMWRITE | SM ASYNC | SM DONTNEED;

he event that we got an access error while

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

3030 return (error);
3031 }

3033 /*

3034 * Flags are conposed of {B_ASYNC, B_|NVAL, B FREE, B_DONTNEED}
3035 */

3036 static int

3037 nfs4_rdw | bn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,

3038 int flags, cred_t *cr)

3039 {

3040 struct buf *bp;

3041 int error;

3042 page_t *savepp;

3043 uchar _t fsdata;

3044 st abl e_how4 stab_comm

3046 ASSERT(nfs_zone() == VIOM 4(vp)->m _zone);

3047 bp = pagei o_setup(pp, len, vp, flags);

3048 ASSERT(bp !'= NULL);

3050 /*

3051 * pagei o_setup should have set b_addr to 0. This
3052 * |s correct since we want to do I/O on a page
3053 * boundary. bp_mapin will use this addr to calculate
3054 * an offset, and then set b_addr to the kernel virtual
3055 * address it allocated for us.

3056 */

3057 ASSERT(bp->b_un. b_addr == 0);

3059 bp->b edev = 0;

3060 bp->b_dev = 0;

3061 bp->b_I bl kno = | bt odb(off);

3062 bp >b file = vp;

3063 bp->b_of fset = (offset_t)off;

3064 bp_mapi n(bp) ;

3066 if ((flags & (B_WRI TE| B_ASYNC)) == (B_WRI TE| B_ASYNC) &&
3067 freemem > desfree)

3068 st ab_conm = UNSTABLE4;

3069 el se

3070 stab_comm = FI LE_SYNC4;

3072 error = nfs4_bio(bp, &tab_comm cr, FALSE);
3074 bp_mapout (bp) ;

3075 pagei o_done(bp);

3077 if (stab_comm == UNSTABLE4)

3078 fsdata = C_DELAYCOMM T;

3079 el se

3080 fsdata = C_NOCOW T;

3082 savepp = pp;

3083 do {

3084 >p_fsdata = fsdata;

3085 } while ((pp pp- >p_next) != savepp);

3087 return (error);

3088 }

3090 /*

3091 */

3092 static int
3093 nf s4rdw _check_osi d(vnode_t *vp, nfs4_error_t *ep, cred_t *cr)
3094 {

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

3095
3096
3097
3098
3099

3101

3104
3105
3106

3108
3109
3110
3111
3112
3113

3115
3116
3117
3118
3119
3120

3122
3123
3124
3125
3126

3128

3130
3131

3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144

3146
3147

3149
3150
3151
3152
3153
3154
8155
3156
3157
3158
3159
3160

nf s4_open_owner _t *oop;

nf s4_open_streamt *osp;

rnode4_t *rp = VIOR4(vp);
mt i nf o4_t *m = VIOM 4(vp)
int reopen_needed

ASSERT(nfs_zone() == mi->ni_zone);

oop = find_open_owner(cr, NFS4_PERM CREATED, ni);
if (!oop)
return (EIO;

/* returns with 'os_sync_l ock’ held */
osp = find_open_strean{oop, rp);
if (losp) {

open_owner _rel e(oop);

return (EIO;

}

if (osp->os_failed_reopen) {
mut ex_exi t (&osp- >0s_sync_| ock);
open_streamrel e(osp, rp);
open_owner _rel e(oop);
return (EIO;

rm ne whether a reopen is needed. If this

(=N

Id be set.

reopen_needed = osp->os_del egati on;

mut ex_exi t (&sp->0s_sync_| ock) ;
open_owner _rel e(oop) ;

if (reopen_needed)
nfs4_error_zinit(ep);
nfs4_reopen(vp, osp, ep, CLAIMNULL, FALSE,
nmut ex_ent er (&sp- >0s_sync_| ock) ;

del egati on open stream then the os_del egation bit

FALSE) ;

if (ep->error || ep->stat || osp->os_failed_reopen) {

mut ex_exi t (&sp- >0s_sync_| ock) ;
open_streamrel e(osp, rp);
return (E1O;

}
mut ex_exi t (&osp->0s_sync_| ock) ;
open_streamrel e(osp, rp);

return (0);
}

/*

* Wite to file. Wites to renpte server in |argest size
* chunks that the server can handle. Wite is synchronous.
*/

static int

nfsd4write(vnode_t *vp, caddr_t base, u_offset_t offset, int
stabl e_how4 *stab_comm

{

mtinfod4_t *m;
COVPOUND4ar gs_cl nt args;
COVPOUNDAr es_cl nt res;
VRl TE4ar gs *wargs;

count,

cred_t

e

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172

3174
3175

3177

3179
3180

3182
3183
3184
3185

3187
3188
3189
3190

3192
3193
3194
3195

3197
3198
3199
3200
3201
3202

3204
3205
3206

3208
3209

3211

3213
3214

3216
3217
3218
3219
3220

3222
3223
3224
3225
3226

WRI TE4res *wr es;

nfs_argop4 argop[2];
nfs_resop4 *resop;

int tsize;

st abl e_how4 st abl e;

rnode4_t *rp;

int doqueue = 1;

bool _t needrecov;
nfs4_recov_state_t recov_state;
nfs4_stateid types t sid_types;
nfs4_error_t e
int recov;

rp = VIOR4(vp);
m = VIOM 4(vp);

ASSERT(nfs_zone() == m ->nmi _zone);

stable = *stab_comm
*stab_comm = FI LE_SYNC4;

needrecov = FALSE;

recov_state.rs_flags = 0;
recov_state.rs_numretry_despite_err = 0;
nfs4_init_stateid_types(&sid_types);

/* 1Is curthread the recovery thread? */
mut ex_ ent er (&ni->ni _| ock);

recov = (m->m recovthread == curthread);
mut ex_exi t (&ni ->ni _| ock) ;

recov_retry:
args.ctag = TAG WR TE;
args.array_len = 2;
args.array = argop;

if ('recov) {

e.error = nfs4_start_fop(VIOM 4(vp), vp, NULL,

& ecov_state, NULL);
if (e.error)
return (e.error);
}
/* 0. putfh target fh */
argop[0] . argop = OP_CPUTFH,
argop[0] . nfs_argop4_u. opcputfh.sfh =

/* 1. wite */
nfsd4args_wite(&argop[l], stable, rp, cr,

do {

war gs- >of fset = (of fset4)offset;
war gs- >dat a_val = base;

if (m->m_io_kstats)
mutex_enter (&m ->mi _| ock);

{ 0, NFS4_OK, RPC_SUCCESS };

rp->r_fh;

&war gs, &si

kstat _rung_ent er (KSTAT_ 10) PTR(mi - >mi

nut ex_exi t (&m ->m _| ock);

}

if ((vp->v_flag & VNOCACHE) ||
(rp->r_flags & RADIRECTIO ||

(m->m _flags & M 4_DI RECTI O))
tsize = MN(m ->nmi _stsi ze,

el se

count);

OH_ WRI TE,

d_types);

_io_kstats));

49

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

3227
3228
3229

3231
3232
3233
3234
3235

3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247

3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289

3291
3292

50

tsize = MN(m->nm _curwite, count);
war gs->data_len = (uint_t)tsize;
rfsdcall (m, &args, &es, cr, &Joqueue, 0, &e);

if (m->m _io_kstats)
mut ex_ent er (& ->mi _| ock) ;
kstat _rung_ eX|t(KSTAT 10 PTR(m >m _i o_kstats));
mut ex_exi t (&m ->nmi _| ock);

}

if ('recov) {
needrecov = nfs4_needs_recovery(&e, FALSE, m ->m _vfsp);
if (e.error & !needrecov)
nfs4_end_fop(VTOM 4(vp), vp, NULL, OH WRI TE,
& ecov_state, needrecov);
return (e.error);

} else {
if (e.error)
return (e.error);

-

* ok %k % ok *

Do handling of OLD_STATEID outside
of the nornal recovery framework.

If wite receives a BAD stateid error while using a
del egation stateid, retry using the open stateid (if it
exists). If it doesn’t have an open stateid, reopen the
* file first, then retry.
*
/
if ('e.error & res.status == NFS4AERR OLD STATEID &&
sid_types.cur_sid type = SPEC S| D)
nfs4_save_statei d(&args->stateid, &sid_types);
if (Trecov)
nfs4_end_f op(VIOM 4(vp), vp, NULL, OH WRI TE,
& ecov_state, needrecov);
(void) xdr_free(xdr_COVPOUNDAres_clnt, (caddr_t)&res);
goto recov_retry;
} else if (e.error == 0 & res.status == NFS4ERR BAD_STATEI D &&
sid_types.cur_sid_type == DEL_SID) {
nfs4_save_statei d(&wargs->stateid, &sid_types);
nmut ex_ent er (& p->r_statev4_| ock);
rp->r_del eg_return_pendi ng = TRUE;
mut ex_exit (& p->r_statev4_| ock);
if (nfs4rdw _check_osid(vp, &e, cr)) {
if (!'recov)
nfs4_end_fop(m, vp, NULL, OH WRI TE,
& ecov_state, needrecov);
(voi d) xdr_free(xdr_COVPOUND4res_cl nt,
(caddr_t) &res);
return (EIO);

}
if (!recov)

nfs4_end_fop(m, vp, NULL, OH WR TE,

& ecov_state, needrecov);
/* hol d needed for nfs4del egreturn_thread */
VN_HOLD(vp) ;
nf s4del egreturn_async(rp, (NFS4_DR PUSH NFS4_DR RECPEN|
NFS4 DR DI SCARD), FALSE);

(void) xdr_free(xdr_ COVPOUNDAT es _clnt, (caddr_t)&res);
goto recov_retry;

}

if (needrecov) {
bool _t abort;

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 51

3294
3295
3296

3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311

3313
3314
3315
3316
3317
3318
3319
3320

3322
3323

3325
3326

3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351

3353
3354
3355
3356
3357
3358

NFS4_DEBUG(nf s4_cl i ent _recov_debug, (CE_NOTE,
"nfsd4write: client got error %, res.status %l"
", so start recovery", e.error, res.status));

abort = nfs4_start_recovery(&e,
VTOM 4(vp), vp, NULL, &wargs->stateid,
NULL, OP_WRITE, NULL, NULL, NULL);
if (lte.error) {
e.error = geterrno4(res.status);
(void) xdr_free(xdr_COVOUND4res_cl nt,
(caddr_t)&res);

}
nfs4_end_fop(VTOM 4(vp), vp, NULL, OH WRITE,
& ecov_state, needrecov);
if (abort == FALSE)
goto recov_retry;
return (e.error);

}

if (res.status) {
e.error = geterrno4(res. status);
(voi d) xdr_free(xdr_COWOUND4res_cl nt, (caddr_t)&res);
if (!recov)
nfs4_end_f op(VTOM 4(vp), vp, NULL, OH WRITE,
& ecov_state, needrecov);
return (e.error);

}

resop = &es.array[1]; /* wite res */
wes = & esop->nfs_resop4_u.opwite;

if ((int)wes->count > tsize) {
(void) xdr_free(xdr_COVPOUNDAres_clnt, (caddr_t)&res);

zcmm_err(getzoneid(), CE_WARN,
"nfsdwite: server wote %I, requested was %",
(int)wes->count, tsize);
if (!recov)
nfs4_end_f op(VIOM 4(vp), vp, NULL, OH WRI TE,
& ecov_state, needrecov);
return (E1O;

}
1f (wes->commtted == UNSTABLE4) {
*stab_comm = UNSTABLE4;
if (wargs->stable == DATA SYNZ | |
war gs- >st abl e == FI LE_SYNC4)
(voi d) xdr_free(xdr_COVWOUND4res_cl nt,
(caddr_t)&res);
zcmm_err (getzonei d(), CE_WARN,
"nfsdwite: server % did not commt
"to stable storage",
rp->r_server->sv_host nane) ;
if (!recov)
nfs4_end_fop(VTOM 4(vp), vp, NULL,
OH WRI TE, &recov_state, needrecov);

return (ElIO;
}
}
tsize = (int)wes->count;
count -= tsize;

base += tsize;
of fset += tsize;
if (m->m_io_kstats) {
mut ex_ent er (&m - >m _| ock) ;

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

3359 KSTAT_I O PTR(m ->m _i o_kstats)->wites++;
3360 KSTAT_| O PTR(m ->m _i o_kstats)->nwitten +=
3361 tsize;

3362 nut ex_exi t (&m ->m _| ock) ;

3363 }

3364 | wp_st at _updat e(LWP_STAT_OUBLK, 1);

3365 mut ex_ent er (& p->r _st at el ock) ;

3366 if (rp->r_flags & R4HAVEVERF)

3367 if (rp->r_witeverf = wes->witeverf) {
3368 nfs4_set _nod(vp);

3369 rp->r_witeverf = wes->witeverf;
3370

3371 } else {

3372 rp->r_witeverf = wes->witeverf;

3373 rp->r_flags | = RAHAVEVERF;

3374 }

3375 PURGE_ATTRCACHE4_LOCKED(r p) ;

3376 rp->r_flags | = RAWRI TEMODI FI ED;

3377 gethrestime(& p->r_attr.va_ntine);

3378 rp->r_attr.va_ctime = rp->r_attr.va_ntine;

3379 mut ex_exi t (& p->r_statel ock);

3380 (voi d) xdr_free(xdr_COVPOUND4Ares_clnt, (caddr_t)&res);
3381 } while (count);

3383 if (!recov)

3384 nfs4_end_fop(VTOM 4(vp), vp, NULL, OH WRI TE, &recov_state,
3385 needr ecov) ;

3387 return (e.error);

3388

3390

3391 Read froma file. Reads data in |argest chunks our interface can handle.
3392

3393 static int

3394 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count,
3395 size_t *residp, cred_t *cr, bool _t async, struct uio *uiop)
3396 {

3397 mtinfod4_t *m;

3398 COVPOUND4ar gs_cl nt args;

3399 COVPOUNDAr es_cl nt res;

3400 READ4ar gs *rargs;

3401 nfs_argop4 argop[2];

3402 int tsize;

3403 int doqueue;

3404 rnode4_t *rp;

3405 int data_len;

3406 bool _t is_eof;

3407 bool _t needrecov = FALSE;

3408 nfs4_recov_state_t recov_state;

3409 nfs4_statei d_types_t sid_types;

3410 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };

3412 rp = VIOR4(vp);

3413 m = VIOM 4(vp);

3414 doqueue = 1;

3416 ASSERT(nfs_zone() == m ->ni_zone);

3418 args.ctag = async ? TAG READAHEAD : TAG_READ;

3420 args.array_len = 2;

3421 args.array = argop;

3423 nfs4_init_statei d_types(&sid_types);

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

3425
3426

3428
3429
3430
3431
3432

3434
3435
3436

3438
3439
3440
3441
3442

3444
3445
3446
3447
3448
3449

3451
3452
3453
3454

3456
3457
3458
3459
3460
3461

3463
3464
3465
3466
3467
3468
3469

3471
3472
3473
3474
3475

3477
3478
3479
3480
3481
3482
3483

3485
3486
3487
3488
3489

recov_state.rs_flags = 0;
recov_state.rs_num retry despite_err = 0;

recov_retry:

#i f def

#endi f

e.error = nfs4_start_fop(m, vp, NULL, OH READ,
&recov_state, NULL);
if (e.error)
return (e.error);

/* putfh target fh */
argop[0] . argop = OP_CPUTFH,
argop[0] . nfs_argop4_u. opcputfh.sfh = rp->r_fh;

/* read */
argop[1] . argop = OP_READ;
rargs = &argop[1].nfs_argop4_u. opread;

rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, m,

OP_READ, &sid_types, async);

do {
if (m->m _io_kstats)
mut ex_ent er (&ni - >ni _| ock) ;
kstat _rung_ enter(KSTAT 10) PTR(m - >m
mut ex_exi t (&mi - >ni _| ock) ;

}

NFS4_DEBUG(nf s4_cl i ent _cal | _debug, (CE_NOTE,
"nfsd4read: % call, rp %",
needrecov ? "recov" "first",
rnodedi nfo(rp)));

if ((vp->v_flag & VNOCACHE) ||
(rp->r_flags & RADIRECTIO ||
(m->m_flags & M4_DI RECTI O))
tsize = MN(m ->m _tsize, count);
el se
tsize = MN(m ->m _curread, count);

rargs->of fset = (of fset4)offset;
rargs->count = (count4)tsize;
rargs->res_data_val _alt = NULL;
rargs->res_nbl k = NULL;
rargs->res_ui op = NULL;
rargs->res_maxsi ze = 0;
rargs->wW ist = NULL

if (uiop)

rargs->res_uiop = uiop;
el se

rargs->res_data_val _alt = base;
rargs->res_maxsize = tsize;

_io_kstats));

rfsdcall (m, &args, &es, cr, &Joqueue, 0, &e);

DEBUG
if (nfs4read_error_inject)
res.status = nfsd4read_error_inject;
nfs4read_error_inject = 0;

if (m->m_io_kstats) {
mut ex_ent er (& - >ni _| ock) ;
kstat_runqg_ e><|t(KSTAT 10 PTR(m >m
mut ex_exi t (&m ->m _| ock) ;

_io_kstats));

53

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

3491
3492
3493
3494
3495
3496

3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554

3556

54

needrecov = nfs4_needs_recovery(&e, FALSE, m ->m _vfsp);
if (e.error =0 & !needrecov)
nfs4_end_fop(m, vp, NULL, OH READ,
& ecov_state, needrecov);
return (e.error);

*

* Do proper retry for OLD and BAD stateid errors outside

* of the normal recovery franework. There are two differences
* between async and sync reads. The first is that we allow

* retry on BAD _STATEID for async reads, but not sync reads.

* The second is that we nmark the file dead for a failed

* attenpt with a special stateid for sync reads, but just

* return EIO for async reads.
*
*
*
*
*
*
f

If a sync read receives a BAD stateid error while using a
del egation stateid, retry using the open stateid (if it
exists). If it doesn’t have an open stateid, reopen the
file first, then retry

(e.error == 0 & (res.status == NFS4ERR OLD_STATEI D | |
res. status == NFS4ERR BAD STATEI D) && async) {
nfs4_end_fop(m, vp, NULL, OH READ,
& ecov_state, needrecov);
if (sid_types.cur_sid_type == SPEC SID) {
(voi d) xdr_free(xdr_COVPOUND4res_cl nt,
(caddr_t)&res);
return (EIO;

}
nfs4_save_statei d(& args->stateid, &sid_types);
(voi d) xdr_free(xdr_CQ\/PQJND4res_cl nt, (caddr t)&res)
got o recov_retry;
} else if (e.error == 0 & res.status == NFS4ERR OLD STATEI D &&
lasync && sid_types.cur_sid_ type != SPEC SID) {
nfs4_save_statei d(& args->stateid, &sid_types);
nfs4_end_fop(mi, vp, NULL, OH READ,
&recov_state, needrecov);
(void) xdr_free(xdr_COWOUND4res_cl nt, (caddr_t)&res);
goto recov_retry;
} else if (e.error == 0 & res.status == NFS4ERR_BAD_STATEI D &&
sid_types.cur_sid_type == DEL_SID) {
nfs4_save_statel d(& args->stateid, &sid_types);
nut ex_ent er (& p->r_st atev4_| ock);
rp->r_del eg_return_pendi ng = TRUE;
nut ex_exi t (& p->r_statev4_| ock);
if (nfs4rdw _check_osid(vp, &e, cr)) {
nfs4_end_fop(m, vp, NULL, OH READ,
& ecov_state, needrecov);
(void) xdr_free(xdr_COVPOUND4res_cl nt,
(caddr_t) &res);
return (EIO);

}
nfs4_end_fop(m, vp, NULL, OH_READ
& ecov_state, needrecov);
/* hol d needed for nfs4del egreturn_thread */
VN_HOLD(vp) ;
nf s4del egreturn_async(rp, (NFS4_DR PUSH| NFS4_DR_RECPEN|
NFS4_DR_DI SCARD), FALSE);
(void) xdr_free(xdr_ COMPOUNDAT es _clnt, (caddr_t)&res);
goto recov_retry;

}
if (needrecov) {
bool _t abort;

NFS4_DEBUG(nf s4_cl i ent _recov_debug, (CE_NOTE,

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569

3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582

3584
3585
3586
3587
3588
3589
3590

3592
3593
3594
3595
3596
3597
3598

3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613

3615
3617
3619

3621
3622 }

"nfs4read: initiating recovery\n"));
abort = nfs4_start_recovery(&e,

m, vp, NULL, & args->stateid,

NULL, OP_READ, NULL, NULL, NULL);
nfs4_end_fop(m, vp, NULL, OH_READ,

& ecov_state, needrecov);

/*
* Do not retry if we got OLD _STATEID using a special
* stateid. This avoids |ooping with a broken server.
*/

55

if (e.error == 0 & res.status == NFS4ERR OLD STATEI D &&

sid_types.cur_sid_type == SPEC SI D)
abort = TRUE;

if (abort == FALSE) {
/*

* Need to retry all possible stateids in

* case the recovery error wasn't stateid

* related or the stateids have becone

*/stal e (server reboot).

*

nfs4_init_statei d_types(&sid_types);

(voi d) xdr_free(xdr_COVWOUND4res_cl nt,
(caddr_t)&res);

goto recov_retry;

}

if (le.error) {
e.error = geterrno4(res.status);
(void) xdr_free(xdr_COVPOUND4res_cl nt,
(caddr_t)&res);

return (e.error);

if (res.status) {
e.error = geterrno4(res. status);
nfs4_end_fop(m, vp, NULL, OH| EAD
&recov_state needrecov) ;
(void) xdr_f ree(xdr_CO\/PQJND4r es_clnt,
return (e.error);

}

data_len = res.array[1].nfs_resop4_u. opread. data_| en;
count -= data_len;

if (base)

base += data_l en;
of fset += data_l en;
if (m->m_io_kstats) {
nut ex_ent er (&m - >m _| ock) ;
KSTAT_I O PTR(mi ->m _i o_| kst at S) - >r eads++;
KSTAT_| O_PTR(ni ->ni _i 0_kstats)->nread += data_| en;
mut ex_exi t (&m ->ni _Tock);

}

| wp_st at _updat e(LWP_STAT_| NBLK, 1);

is_eof = res.array[1].nfs_resop4_u.opread. eof;

(voi d) xdr_free(xdr_COVPOUND4res cl nt, (caddr_t)&res);
} while (count && !is_eof);
*residp = count;
nfs4_end_fop(m, vp, NULL, OH READ, &recov_state, needrecov);

return (e.error);

(caddr _t)&res);

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 56
3624 /* ARGSUSED */

3625 static int

3626 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp,
3627 caller_context_t *ct)

3628 {

3629 if (nfs_zone() != VIOM 4(vp)->m _zone)

3630 return (EIO;

3631 switch (cnd)

3632 case _FI ODI RECTI O

3633 return (nfs4_directio(vp, (int)arg, cr));
3634 defaul t:

3635 return (ENOTTY);

3636 }

3637 }

3639 /* ARGSUSED */

3640 int

3641 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3642 cal l er_context_t *ct)

3643 {

3644 int error;

3645 rnoded4_t *rp = VIOR4(vp);

3647 if (nfs_zone() != VIOM 4(vp)->m _zone)

3648 return (EIO;

3649 /*

3650 * If it has been specified that the return value wll

3651 * just be used as a hint, and we are only being asked
3652 * for size, fsid or rdevid, then return the client’'s

3653 * notion of these values wi thout checking to make sure
3654 * that the attribute cache is up to date.

3655 * The whole point is to avoid an over the wire GETATTR
3656 * call.

3657 */

3658 if (flags & ATTR HINT) {

3659 if (!(vap->va_mask & ~(AT_SIZE | AT_FSID | AT_RDEV))) {
3660 nut ex_ent er (& p- >r _st at el ock);

3661 if (vap->va_mask & AT_SI ZE)

3662 vap- >va_si ze = rp->r_si ze;

3663 if (vap->va_mask & AT FSI D)

3664 vap->va_fsid = rp->r_attr.va_fsid;
3665 if (vap->va_mask & AT_RDEV)

3666 vap->va_rdev = rp->r_attr.va_rdev;
3667 mut ex_exi t (& p->r_st at el ock) ;

3668 return (0);

3669 }

3670 1

3672 /*

3673 * Only need to flush pages if asking for the ntinme

3674 * and if there any dirty pages or any outstanding

3675 * asynchronous (wite) requests for this file

3676 */

3677 if (vap->va_mask & AT_ MTI ME) {

3678 rp = VIOR4(v

3679 if (nfs4_has pages(vp)) {

3680 nut ex_ent er (& p->r_statev4_| ock) ;

3681 if (rp->r_deleg_type != OPEN DELEGATE_WRI TE) {
3682 mut ex_exi t (& p->r_statev4_| ock);
3683 if (rp->r_flags & RADIRTY ||

3684 rp->r_awcount > 0)

3685 mut ex_ent er (& p->r_st at el ock);
3686 rp->r_gcount ++;

3687 mut ex_exi t (& p->r_statel ock);
3688 error =

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 57 new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 58
3689 nfs4_put page(vp, (u_offset_t)O, 3755 * To replace the "guarded" version 3 setattr, we use two types of conpound
3690 0, 0, cr, NULL); 3756 * setattr requests:
3691 mut ex_ent er (& p->r _st at el ock) ; 3757 * 1. The "nornal" setattr, used when the size of the file isn't being
3692 if (error & (error == ENGSPC | | 3758 * changed - { Putfh <fh>; Setattr; Getattr }/
3693 error == EDQUOT)) { 3759 * 2. If the size is changed, precede Setattr wth: Getattr; Verify
3694 if (!rp->r_error) 3760 * with only ctime as the argunment. |If the server ctine differs from
3695 rp->r_error = error; 3761 * what is cached on the client, the verify will fail, but we would
3696 } 3762 * al ready have the ctime fromthe preceding getattr, so just set it
3697 if (--rp->r_gcount == 0) 3763 * and retry. Thus the conpound here is - { Putfh <fh> Getattr; Verify;
3698 cv_broadcast (& p->r_cv); 3764 * Setattr; Cetattr }.
3699 mut ex_exi t (& p->r_stat el ock); 3765 *
3700 } 3766 * The vsecattr_t * input paraneter will be non-NULL if ACLs are being set in
3701 } else { 3767 * this setattr and NULL if they are not.
3702 mut ex_exit (& p->r_statev4_| ock); 3768 */
3703 } 3769 static int
3704 } 3770 nfsdsetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3705 } 3771 vsecattr_t *vsap)
3706 return (nfs4getattr(vp, vap, cr)); 3772 {
3707 } 3773 COVPOUND4ar gs_cl nt args;
3774 COWOUNDAres_clnt res, *resp = NULL;
3709 int 3775 nfs4_ga_ res_t *garp = NULL;
3710 nfs4_conpare_nodes(node_t from server, node_t on_client) 3776 int numops = 3; /* { Putfh; Setattr; Getattr } */
3711 { 3777 nfs_argop4 argop[5];
3712 /* 3778 int verify_argop = -1,
3713 * |f these are the only two bits cleared 3779 int setattr_argop = 1;
3714 * on the server then return 0 (OK) el se 3780 nfs_resop4 *resop;
3715 * return 1 (BAD). 3781 vattr_t va;
3716 */ 3782 rnode4_t *rp;
3717 on_client & ~(S_ISUD S ISG@D); 3783 int doqueue = 1;
3718 if (on_client == fromserver) 3784 uint _t mask = vap->va_nask;
3719 return (0); 3785 node_t onode;
3720 el se 3786 vsecattr_t *vsp;
3721 return (1); 3787 timestruc_t ctinme;
3722 } 3788 bool _t needrecov = FALSE;
3789 nfs4_recov_state_t recov_state;
3724 | * ARGSUSED4* / 3790 nfs4_statei d_types_t sid_types;
3725 static int 3791 statei d4 stateld;
3726 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3792 hrtime_t t;
3727 cal | er_context _t *ct) 3793 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3728 { 3794 servinfod_t *svp;
3729 int error; 3795 bi t map4 supp_attrs;
3731 if (vap->va_mask & AT_NOSET) 3797 ASSERT(nfs_zone() == VIOM 4(vp)->m _zone);
3732 return (EINVAL); 3798 rp = VIOR4(vp);
3799 nfs4_init_statei d_types(&sid_types);
3734 if (nfs_zone() != VIOM 4(vp)->m _zone)
3735 return (EIO; 3801 /*
3802 * Only need to flush pages if there are any pages and
3737 /* 3803 * if the file is marked as dirty in sone fashion. The
3738 * Don't call secpolicy_vnode_setattr, the client cannot 3804 * file nmust be flushed so that we can accurately
3739 * use its cached attributes to nmake security decisions 3805 * determne the size of the file and the cached data
3740 * as the server may be faking node bits or mapping uid/gid. 3806 * after the SETATTR returns. A file is considered to
3741 * Always just let the server to the checking. 3807 * be dirty if it is either marked with R4DI RTY, has
3742 * |f we provide the ability to renove basic priviledges 3808 * outstanding i/o's active, or is mmap'd. In this
3743 * to setattr (e.g. basic without chnod) then we will 3809 * |last case, we can't tell whether there are dirty
3744 * need to add a check here before calling the server. 3810 * pages, so we flush just to be sure.
3745 */ 3811 */
3746 error = nfs4setattr(vp, vap, flags, cr, NULL); 3812 if (nfs4_has_pages(vp) &&
3813 ((rp->r_flags & RADIRTY) ||
3748 if (error == 0 && (vap->va_mask & AT_SI ZE) && vap->va_size == 0) 3814 rp->r_count > 0 ||
3749 vnevent _truncate(vp, ct); 3815 rp->r_mapcnt > 0)) {
3816 ASSERT(vp->v_type != VCHR);
3751 return (error); 3817 e.error = nfs4_putpage(vp, (offset_t)0, 0, O, cr, NULL);
3752 } 3818 if (e.error & (e.error == ENOSPC || e.error == EDQUOT)) {
3819 mut ex_ent er (& p- >r_st at el ock) ;
3754 | * 3820 if (!rp->r_error)

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

3821
3822
3823
3824

3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844

3846
3847

3849
3850
3851
3852

3854
3855

3857
3858
3859

3862
3863
3864

3866
3867
3868
3869
3870
3871
3872
3873
3874

3876
3877
3878

3880
3881
3882
3883
3884

3886

rp->r_error = e.error;
mut ex_exit (& p->r_stat el ock) ;

if (mask & AT_SIZE) {

Verification setattr conpound for non-del eg AT_SI ZE:
Putfh; Getattr; Verify; Setattr; Getattr }

Set ctime |ocal here (outside the do_again |abel)

so that subsequent retries (after failed VER FY)

Wi ll use ctine from GETATTR results (fromfailed

verify conmpound) as VERIFY arg.

If file has del egation, then VERI FY(time_netadata)

is of little added value, so don’t bother.

gx-x-»x»x-x-x-x»x-

/
tex_enter (& p->r_statev4_| ock);
(rp->r_del eg_type == OPEN DELEGATE NONE | |
rp->r_del eg_ return_pending) {

nunops = 5;

ctime = rp—>r_attr.va_cti ne;

—

mut ex_exit (& p->r_statev4_l ock);

}

recov_state.rs_flags = O;
recov_state.rs_numretry_despite_err = O;

args.ctag = TAG SETATTR;

recov_retry:

setattr_argop = nunops - 2;

args.array = argop;
args.array_l en = nunops;

e.error = nfs4_start_op(VIOM 4(vp), vp, NULL, & ecov_state);
if (e.error)
return (e.error);

/* putfh target fh */
argop[0] . argop = OP_CPUTFH,
argop[0] . nfs_ar gop4_u. opcputfh sfh = rp->r_fh;

if (nunt)/ps == 5) {

* W only care about the ctine, but need to get ntine
* and size for proper cache update.

*/

/* getattr */

argop[1] . argop = OP_CETATTR,

argop[1] . nf s_ar gop4_u. opget attr. attr _request = NFS4_VATTR_MASK;

argop[1] . nfs_argop4_u. opgetattr. = VTOM 4(vp);

/* verify - set later in |loop */
verify_argop = 2;
}

/* setattr */

SVp = rp->r_server;

(void) nfs_rw enter_sig(&vp->sv_|ock, RWREADER 0);
supp_attrs = svp->sv_supp_attrs;

nfs_rw exit(&svp->sv_| ock);

nfsdargs_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr,

59

new usr/ src/ uts/ comon/fs/nfs/nfs4_vnops.c 60
3887 supp_attrs, &e.error, &sid_types);

3888 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid;

3889 if (e.error) {

3890 /* req time field(s) overflow - return immediately */

3891 nfs4_end_op(VTOM 4(vp), vp, NULL, &recov_state, needrecov);
3892 nfs4 fattra_free(&argop[set attr_argop] . nfs_ar gop4_u.

3893 opsetattr.obj_attributes);

3894 return (e.error);

3895

3896 onmode = rp->r_attr.va_node;

3898 /* getattr */

3899 ar gop[nunops- 1] . argop = OP_GETATTR;

3900 argop[num)ps 1] . nfs_argop4_u. opgetattr.attr_request = NFS4_VATTR MASK;
3901 I*

3902 * |If we are setting the ACL (indicated only by vsap != NULL), request
3903 * the ACL in this getattr. The ACL returned fromthis getattr will be
3904 * used in updating the ACL cache.

3905 */

3906 if (vsap != NULL)

3907 ar gop[nunops- 1] . nfs_argop4_u. opgetattr.attr_request |=

3908 FATTR4A_ACL_MASK;

3909 ar gop[nunops-1] . nfs_argop4_u. opgetattr.m = VIOM 4(vp);

3911 I

3912 * setattr iterates if the object size is set and the cached ctine
3913 * does not match the file ctime. In that case, verify the ctinme first.
3914 */

3916 do {

3917 if (verify_argop !'=-1) {

3918 /*

3919 * Verify that the ctime natch before doing setattr.
3920 */

3921 va.va_mask = AT_CTI ME;

3922 va.va_ctine = ctine;

3923 SVp = rp->r_server;

3924 (void) nfs_rw enter_sig(&svp->sv_|ock, RWREADER 0);
3925 supp_attrs = svp->sv_supp_attrs;

3926 nfs_rw exit(&vp->sv_| ock);

3927 e.error = nfsdargs_verify(&argop[verify_argop], &va,
3928 OP_VERI FY, supp_attrs);

3929 if (e.error) {

3930 /* req time field(s) overflow - return */

3931 nfs4_end_op(VTOM 4(vp), vp, NULL, &recov_state,
3932 needr ecov) ;

3933 br eak;

3934 }

3935 }

3937 doqueue = 1;

3939 t = gethrtine();

3941 rfs4cal | (VTOM 4(vp), &args, &es, cr, &Joqueue, 0, &e);

3943 /*

3944 * Purge the access cache and ACL cache if changing either the
3945 * owner of the file, the group owner, or the node. These may
3946 * change the access permissions of the file, so purge old
3947 * information and start over again.

3948 */

3949 if (mask & (AT_UD| AT_GD| AT_MXDE)) {

3950 (void) nfs4_access_purge_rp(rp);

3951 if (rp->r_secattr T= NULL) {

3952 mut ex_ent er (& p->r_st at el ock) ;

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

3953
3954
3955
3956
3957
3958
3959

3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972

3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985

3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005

4007
4008

4010
4011
4012
4013
4014
4015
4016
4017
4018

Vsp = rp->r_secattr;
rp->r_secattr = NULL;
mut ex_exi t (& p->r_stat el ock);
if (vsp !'= NULL)
nfs4_acl _free_cache(vsp);

}
}
/*
* If res.array_l en == nunops, then everything succeeded,
* except for possibly the final getattr. |If only the

* |ast getattr failed, give up, and don't try recovery.
*

if (res.array_|l en == nunops) {
nfs4_end_op(VTOM 4(vp), vp, NULL, & ecov_state,
needr ecov) ;
if (! e.error)
resp = &res;
break;

}

/*
* if either rpc call failed or conpletely succeeded - done
*
/
needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
if (e.error)
PURGE_ATTRCACHE4(vp) ;
if (!needrecov)

61

{
nfs4_end_op(VTOM 4(vp), vp, NULL, &recov_state,

needr ecov) ;
br eak;

}

/*

* Do proper retry for OLD STATEI D outside of the nornmal
* recovery framework.

*/

if (e.error == 0 && res.status == NFS4ERR OLD STATEI D &&
sid_types.cur_sid_type != SPEC SID &&
sid_types.cur_sid_type != NO SID) {
nfs4_end_op(VTOM 4(vp), vp, NULL, & ecov_state,
needr ecov) ;
nfs4_save_statei d(&stateid, &sid_types);
nfs4 fattr4a _free(&argop[setattr_argop]. nfs _argop4_u.
opsetattr.obj_attributes);
if (verify_ argop !'= -1) {
nf sd4args_veri fy free(&argop[verlfy argopl);
verify_argop = -1;

}
(void) xdr_free(xdr_COVPOUNDAres_clnt, (caddr_t)&res);
goto recov_retry;

}

if (needrecov) {
bool _t abort;

abort = nfs4_start_recovery(&e,
VTOM 4(vp), vp, NULL, NULL, NULL,
OP_SETATTR, NULL, NULL, NULL);
nfs4_end_op(VTOM 4(vp) vp, NULL, &recov_state,
needrecov) ;
/*
* Do not retry if we failed with OLD _STATEI D usi ng
* a special stateid. This is done to avoid | ooping
* with a broken server.

new usr/ src/ uts/ comon/fs/nfs/nfs4_vnops.c 62
4019 */

4020 if (e.error == 0 & res.status == NFS4ERR OLD STATEI D &&
4021 (sid_types.cur_sid_type == SPEC_SID ||

4022 sid_types.cur_sid_type == NO SID))

4023 abort = TRUE;

4024 if (le.error) {

4025 if (res.status == NFS4ERR_BADOMER)

4026 nfs4_| og_badowner (VTOM 4(vp)

4027 OP_SETATTR) ;

4029 e.error = geterrno4(res.status);

4030 (voi d) xdr_free(xdr_COVPOUND4res_cl nt,
4031 (caddr_t) &res);

4032 }

4033 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4034 opsetattr.obj _attributes);

4035 if (verify_argop !'= -1)

4036 nf s4ar gs_veri fy free(&argop[verify_argop]);
4037 verify_argop = -1;

4038 }

4039 if (abort == FALSE) {

4040 /*

4041 * Need to retry all possible stateids in
4042 * case the recovery error wasn't stateid
4043 * related or the stateids have becone
4044 * stale (server reboot)

4045 */

4046 nfs4_init_statei d_types(&sid_types);

4047 goto recov_retry;

4048

4049 return (e.error);

4050 }

4052 /*

4053 * Need to call nfs4_end_op before nfs4getattr to

4054 * avoid potential nfs4_start_op deadl ock. See RFE

4055 * 4777612. Calls to nfs4_invalidate_pages() and

4056 * nfs4_purge_stale_fh() mght also generate over the
4057 * wire calls which ny cause nfs4_start_op() deadl ock.
4058 */

4059 nfs4_end_op(VIOM 4(vp), vp, NULL, &recov_state, needrecov);
4061 /*

4062 * Check to update | ease.

4063 */

4064 resp = &res;

4065 if (res.status == NFS4_OK) {

4066 break;

4067 }

4069 /*

4070 * Check if verify failed to see if try again

4071

4072 |f ((ver|fy argop == -1) || (res.array_len != 3)) {

4073 /*

4074 * can’'t continue...

4075 */

4076 if (res.status == NFS4ERR_BADOMNER)

4077 nfs4_| og_badowner (VTOM 4(vp), OP_SETATTR);
4079 e.error = geterrno4(res. status);

4080 } else {

4081

4082 * Wien the verify request fails, the client ctime is
4083 * not in sync wth the server. This is the same as
4084 * the version 3 "not synchronized" error, and we

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 63

4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114

4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129

4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147

4149

* handle it in a simlar manner (XXX do we need to0???).
* Use the ctine returned in the first getattr for
* the input to the next verify.
* |f we couldn’t get the attributes, then we give up
* because we can't conplete the operation as required.
*

/

garp = &es.array[1].nfs_resop4_u.opgetattr.ga_res;

}
if (e.error) {
PURGE_ATTRCACHE4(vp) ;
nfs4_purge_stale _fh(e.error, vp, cr);
} else {/
*

* retry with a new verify val ue
*/

ctime = garp->n4g_va.va_cti ne;
(void) xdr_free(xdr_COVMPOUNDAres_clnt, (caddr_t)&res);
resp = NULL;

if (le.error) {
nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
opsetattr.obj _attributes);
if (verify_ argop !'= -1) {
nf s4args_veri fy free(&argop[verify_argop]);
verify_argop = -1;

}
(void) xdr_free(xdr_COWOUND4res_cl nt, (caddr_t)&res);
got o do_agai n;

}Wnile%!e.error);
if (e.er;or) {

* |f we are here, rfs4call has an irrecoverable error - return
*
/
nfs4_fattrd_free(&argop[setattr_argop].nfs_argop4_u.
opsetattr. obj _at tributes);

if (verify_argop !'= -1)
nf s4ar gs verlfy free(&argop[verify_argop]);
verify_argop = -1;

}
if (resp)

(void) xdr_free(xdr_COWOUND4res_cl nt, (caddr_t)resp);
return (e.error);

}

/*
* |f changing the size of the file, invalidate
* any |ocal cached data which is no |longer part
* of the file. W also possibly invalidate the
* last page in the file. W could use
* pvn_vpzero(), but this would nmark the page as
* nmodified and require it to be witten back to
* the server for no particularly good reason.
* This way, if we access it, then we bring it
* back in. A read should be cheaper than a
* wite.
*

/

if (mask & AT_SIZE) {
nfs4_inval i dat e_pages(vp, (vap->va_size & PAGEMASK), cr);
}

/* either no error or one of the postop getattr failed */

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

4151
4152
4153
4154
4155
4156

4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194

4196
4197
4198
4199
4200
4201
4202
4203
4204
4205

4207
4208
4209
4210
4211
4212
4213
4214
4215
4216

/
XXX Performa sinplified version of wcc checking. |nstead of
have another getattr to get pre-op, just purge cache if
any of the ops prior to and including the getattr failed.

If the getattr succeeded then update the attrcache accordingly.

/

* ok kb F ok

garp = NULL;
If (res.status == NFS4_OK) {
/*

* Last getattr
*/

resop = &es.array[nunops - 1];

garp = &resop->nfs_resop4_u.opgetattr.ga_res;
;*
* |In certain cases, nfs4_update_attrcache() will purge the attrcache,
* rather than filling it. See the function its If for details.
*

e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr);
if (garp !'= NULL)
if (garp->nd4g_resbmap & FATTR4A_ACL_MASK) {
nfs4_acl _fill_cache(rp, &garp->n4g_vsa);
vs_ace4_destroy(&gar p- >n4g_vsa);
} else {
if (vsap !'= NULL) {
/

The ACL was supposed to be set and to be
returned in the last getattr of this
conpound, but for some reason the getattr
result doesn’'t contain the ACL. In this
case, purge the ACL cache.

* ok ok k% *
-~

if (rp->r_secattr !'= NULL)
mut ex_ent er (& p- >r _st at el ock) ;
VsSp = rp->r_secattr;
rp->r_secattr = NULL;
mut ex_exi t (& p->r_statel ock);
if (vsp !'= NULL)
nfs4_acl _free_cache(vsp);

}
if (res.status == NFS4_OK && (mask & AT_SIZE)) {
/*

* Set the size, rather than relying on getting it updated
* via a GETATTR. Wth delegations the client tries to

* suppress CETATTR cal | s.

*/

mut ex_ent er (& p->r _st at el ock) ;
rp->r_size = vap->va_si ze;
mut ex_exi t (& p->r_statel ock);

}

/*

*/Can free up request args and res

*

nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.

opsetattr.obj _attributes);

if (verify_argop !'= -1) {
nfsdargs_verify_free(&argop[verify_argop]);
verify_argop = -1,

}
(void) xdr_free(xdr_COWOUND4Ares_clnt, (caddr_t)&res);

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 65
4218 /*

4219 * Sone servers will change the node to clear the setuid

4220 * and setgid bits when changing the uid or gid. The

4221 * client needs to conpensate appropriately.

4222 *

4223 if (mask & (AT_UD | AT_GD)) {

4224 int terror, do_setattr;

4226 do_setattr = 0;

4227 va.va_mask = AT_MODE;

4228 terror = nfs4getattr(vp, &va, cr);

4229 if (Iterror &&

4230 (((mask & AT_MODE) && va.va_node != vap->va_node) ||
4231 (! (mask &ATN[DE) && va.va_node ! = onpde))) {

4232 va.va_mask = AT_MODE;

4233 if (mask & AT_MODE) {

4234 /*

4235 * W asked the npde to be changed and what
4236 * we just got fromthe server in getattr is
4237 * not what we wanted it to be, so set it now
4238 */

4239 va.va_node = vap->va_node;

4240 do_setattr = 1;

4241 } else {

4242 /*

4243 * W did not ask the npbde to be changed,
4244 * Check to see that the server just cleared
4245 * | _SUDand | _GUDfromit. If not then
4246 * set node to onpde with U D/ G D cleared.
4247 */

4248 if (nfs4_conpare_nodes(va.va_node, onode)) {
4249 onode &= ~(S ISUID| S_ISAD);

4250 va.va_node = onode;

4251 do_setattr = 1;

4252 }

4253 }

4255 if (do_setattr)

4256 (void) nfsdsetattr(vp, &a, 0, cr, NULL);
4257 }

4258 }

4260 return (e.error);

4261 }

4263 /* ARGSUSED */

4264 static int

4265 nfs4_access(vnode_t *vp, int nobde, int flags, cred_t *cr, caller_context_t *ct)
4266 {

4267 COVPOUND4ar gs_cl nt args;

4268 COVPOUNDAr es_cl nt res;

4269 int doqueue;

4270 uint32_t acc, resacc, argacc;

4271 rnoded4_t *rp

4272 cred_t *cred, *ncr, *ncrfree = NULL;

4273 nf s4_access_type_t cacc;

4274 int num ops;

4275 nfs_argop4 argop[3];

4276 nfs_resop4 *resop;

4277 bool _t needrecov = FALSE, do_getattr;

4278 nfs4_recov_state_t recov_state;

4279 int rpc_error;

4280 hrtime_t t;

4281 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };

4282 mtinfod4_t *m = VIOM 4(vp);

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

4284
4285

4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302

4304
4305
4306
4307
4308

4310
4311
4312
4313
4314
4315
4316
4317
4318

4320
4321
4322
4323
4324
4325
4326
4327
4328
4329

4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348

if (nfs_zone() != m->ni_zone)
return (EIO;

acc = 0;
if (nmode & VREAD)
acc | = ACCESS4_READ;
if (mode & WRITE) {
if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && ! I SVDEV(vp->v_type))
return (ERCFS);
if (vp->v_type == VDI R)
acc | = ACCESS4_DELETE;
acc | = ACCESS4_MODI FY | ACCESS4_EXTEND;

if (node & VEXEC) {
if (vp->v_type == VDI R)
acc | = ACCESS4_LOOKUP;

acc | = ACCESS4_EXECUTE

el se

}

if (VIOR4(vp)->r_acache !'= NULL)
e.error = nfs4_validate_caches(vp,
if (e.error)
return (e.error);

cr);

}

rp = VIORA(vp)
if (vp->v_type == VDIR)
argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODI FY |
ACCESS4_EXTEND | ACCESS4_LOOKUP;
el se
argacc = ACCESS4_READ |
ACCESS4_EXECUTE;
recov_state.rs_flags = 0;
recov_state.rs_numretry_despite_err = O;

ACCESS4_MODI FY | ACCESS4_EXTEND |

cred =

/*

* ncr and ncrfree both initially

* point to the nenory area returned
* by crnetadjust();

*

ncrfree not NULL when exiting nmeans
* that we need to release it

*/

ncr = crnetadjust(cred);

ncrfree = ncr;

tryagain:

cacc = nfs4_access_check(rp, acc,
if (cacc == NFS4_ACCESS ALLOWED)
if (ncrfree != NULL)
crfree(ncrfree);
return (0);

cred);
{

}
i f (cacc == NFS4_ACCESS DEN ED) {
/*

* |f the cred can be adjusted,
* with the new cred.
*
/
if (ncr

try again

1= NULL) {
cred = ncr;
ncr = NULL;
goto tryagain;

}
if (ncrfree !'= NULL)

66

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 67
4349 crfree(ncrfree);

4350 return (EACCES);

4351 }

4353 recov_retry:

4354 /*

4355 * Don't take with r_statev4_l ock here. r_deleg_type could
4356 * change as soon as lock is released. Since it Is an int,
4357 * there is no atomicity issue.

4358 */

4359 do_get attr = (rp->r_del eg_t ype == OPEN_DELEGATE_NONE) ;

4360 numops = do _getattr ? 3 : 2;

4362 args. ctag = TAG_ACCESS;

4364 args.array_|l en = num ops;

4365 args.array = argop;

4367 if (e.error = nfs4_start_fop(m, vp, NULL, OH ACCESS,

4368 & ecov_state, NULL))

4369 if (ncrfree !'= NULL)

4370 crfree(ncrfree);

4371 return (e.error);

4372 }

4374 /* putfh target fh */

4375 argop[0] . argop = OP_CPUTFH,

4376 ar gop[0] . nfs_ar gop4_u. opcputfh sfh = VIOR4(vp)->r_fh;

4378 /* access */

4379 argop[1] . argop = OP_ACCESS;

4380 argop[1] . nf s_ar gop4_u. opaccess. access = argacc;

4382 /* getattr */

4383 if (do_getattr) {

4384 argop[2] . argop = OP_CETATTR,

4385 argop[2] . nfs_argop4_u. opgetattr. attr _request = NFS4_VATTR_MASK;
4386 argop[2] . nf s_argop4_u. opgetattr. =m;

4387 }

4389 NFS4_DEBUG(nf s4_cl i ent _cal | _debug, (CE_NOTE,

4390 "nfs4_access: % call, rp %", needrecov ? "recov" : "first"
4391 rnodedi nf o(VTOR4(vp))));

4393 doqueue = 1;

4394 t = gethrtinme();

4395 rfsdcal | (VTOM 4(vp), &args, &res, cred, &Joqueue, 0, &e);
4396 rpc_error = e.error;

4398 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);

4399 if (needrecov) {

4400 NFS4 _DEBUG(nfs4_client_recov_debug, (CE NOTE,

4401 "nfs4_access: initiating recovery\n™));

4403 if (nfs4_start_recovery(&, VIOM4(vp), vp, NULL, NULL,
4404 NULL, OP_ACCESS, NULL, NULL, NULL) == FALSE) {
4405 nfs4_end_f op(VTOM 4(vp), vp, NULL, OH ACCESS,
4406 & ecov_state, needrecov);

4407 if (le.error)

4408 (voi d) xdr_free(xdr_COVPOUNDAres_cl nt,
4409 (caddr_t)&res);

4410 goto recov_retry;

4411 }

4412 }

4413 nfs4_end_fop(m, vp, NULL, OH ACCESS, & ecov_state, needrecov);

new usr/ src/ uts/ common/ fs/ nfs/nfs4_vnops.c 68
4415 if (e.error)

4416 goto out;

4418 if (res.status)

4419 e.error = geterrno4(res.status);

4420 /*

4421 * This mght generate over the wire calls throught
4422 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
4423 * here to avoid a deadl ock.

4424 */

4425 nfs4_purge_stale_fh(e.error, vp, cr);

4426 goto out;

4427 }

4428 resop = &es.array[1]; /* access res */

4430 resacc = resop->nfs_resop4_u.opaccess. access;

4432 if (do_getattr) {

4433 resop++; /* getattr res */

4434 nfs4_attr_cache(vp, & esop->nfs_resop4_u.opgetattr.ga_res,
4435 t, cr, FALSE, NULL);

4436 }

4438 if (le.error)

4439 nfs4_access_cache(rp, argacc, resacc, cred);

4440 1=

4441 * we just cached results with cred; if cred is the
4442 * adjusted credentials fromcrnetadjust, we do not want
4443 * to rel ease them before exiting: hence setting ncrfree
4444 * to NULL

4445 */

4446 if (cred !'=cr)

4447 ncrfree = NULL;

4448 /* XXX check the supported bits too? */

4449 if ((acc & resacc) != acc) {

4450 /*

4451 * The foll owi ng code inplenents the semantic
4452 * that a setuid root program has *at |east* the
4453 * perm ssions of the user that is running the
4454 * program See rfs3call () for nobre portions
4455 * of the inplementation of this functionality.
4456 */

4457 [* XXX-LP */

4458 if (ncr 1= NULL) {

4459 (voi d) xdr_free(xdr_COVPOUND4res_cl nt,
4460 (caddr_t) &res);

4461 cred = ncr;

4462 ncr = NULL;

4463 goto tryagain;

4464 }

4465 e.error = EACCES;

4466 }

4467 }

4469 out:

4470 if (!rpc_error)

4471 (void) xdr_free(xdr_COVPOUND4Ares_clnt, (caddr_t)&res);
4473 if (ncrfree !'= NULL)

4474 crfree(ncrfree);

4476 return (e.error);

4477 }

4479 | * ARGSUSED */
4480 static int

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 69 new usr/src/uts/comon/fs/nfs/nfs4_vnops.c
4481 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 4547 NFS4_DEBUG(nf s4_cl i ent _cal | _debug, (CE NOTE,
4482 { 4548 "nfs4_readlink: % call, rp %" needrecov ? "recov" : "first
4483 COVPOUND4ar gs_cl nt args; 4549 rnodedi nf o(VTOR4(vp))));
4484 COVPOUND4r es_cl nt res;
4485 int doqueue; 4551 t = gethrtinme();
4486 rnode4_t *rp;
4487 nfs_argop4 argop[3]; 4553 rfsdcal | (VTOM 4(vp), &args, &res, cr, &doqueue, 0, &e);
4488 nfs_resop4 *resop;
4489 READLI NK4res *Ir_res; 4555 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
4490 nfs4_ga_res_t *garp; 4556 if (needrecov) {
4491 uint_t len; 4557 NFS4_DEBUG(nf s4_cl i ent _recov_debug, (CE_NOTE,
4492 char *linkdata; 4558 "nfs4_readlink: initiating recovery\n"));
4493 bool _t needrecov = FALSE;
4494 nfs4_recov_state_t recov_state; 4560 if (nfs4_start_recovery(& s, VIOM 4(vp), vp, NULL, NULL,
4495 hrtime_t t; 4561 NULL, OP_READLI NK NULL, NULL, NULL) == FALSE) {
4496 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4562 if (Te.error)
4563 (voi d) xdr_free(xdr_COVPOUND4res_cl nt,
4498 if (nfs_zone() !'= VIOM 4(vp)->ni _zone) 4564 (caddr_t)&res);
4499 return (ElO;
4500 /* 4566 nfs4_end_op(VTOM 4(vp), vp, NULL, & ecov_state,
4501 * Can’'t readlink anything other than a synmbolic Iink. 4567 needr ecov) ;
4502 */ 4568 goto recov_retry;
4503 if (vp->v_type != VLNK) 4569 }
4504 return (EINVAL); 4570 }
4506 rp = VIOR4(vp); 4572 nfs4_end_op(VTOM 4(vp), vp, NULL, &recov_state, needrecov);
4507 if (nfs4_do_symink_cache && rp->r_syniink.contents != NULL) {
4508 e.error = nfs4_validate_caches(vp, cr); 4574 if (e.error)
4509 if (e.error) 4575 return (e.error);
4510 return (e.error);
4511 mut ex_ent er (& p- >r _st at el ock) ; 4577 /*
4512 if (rp->r_syni nk contents != NULL) { 4578 * There is an path in the code bel ow which calls
4513 e.error = uionove(rp->r_syniink.contents, 4579 * nfs4_purge_stale_fh(), which nay generate otw calls through
4514 rp->r_synmink.len, U O READ, uiop); 4580 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
4515 mut ex_exi t (& p->r_stat el ock); 4581 * here to avoid nfs4_start_op() deadl ock.
4516 return (e.error); 4582 */
4517 }
4518 mut ex_exi t (& p->r_statel ock); 4584 if (res.status & (res.array_len < args.array_len)) {
4519 } 4585 /*
4520 recov_state.rs_flags = 0; 4586 * either Putfh or Link failed
4521 recov_state.rs_num retry despite_err = 0; 4587 =[]
4588 e.error = geterrno4(res.status);
4523 recov_retry: 4589 nf s4 purge stale_fh(e.error, vp, cr);
4524 args.array_len = 3; 4590 (void) xdr_free(xdr_ COVPOUNDAT es_clnt, (caddr_t)&res);
4525 args.array = argop; 4591 return (e.error);
4526 args. ctag = TAG READLI NK; 4592 }
4528 e.error = nfs4_start_op(VTOM 4(vp), vp, NULL, &recov_state); 4594 resop = &es.array[1]; /* readlink res */
4529 if (e.error) { 4595 Ir_res = & esop->nfs_resop4_u. opreadlink;
4530 return (e.error);
4531 } 4597 /*
4598 * treat symink nanes as data
4533 /* 0. putfh symink fh */ 4599 */
4534 argop[0] . argop = OP_CPUTFH; 4600 linkdata = utf8_to_str(& r_res->link, & en, NULL);
4535 argop[0] . nfs_argop4_u. opcputfh.sfh = VTOR4(vp)->r_fh; 4601 if (linkdata != NULL)
4602 int uio_len =1len - 1;
4537 /* 1. readlink */ 4603 /* len includes null byte, which we won't uionobve */
4538 argop[1] . argop = OP_READLI NK; 4604 e.error = uionove(linkdata, uio_len, U OREAD, uiop);
4605 if (nfs4_do_synmink_cache && rp->r_symink.contents == NULL)
4540 /* 2. getattr */ 4606 mut ex_ent er (& p- >r_st at el ock);
4541 argop[2].argop = OP_GETATTR 4607 if (rp->r_symink.contents == NULL)
4542 argop|[2] . nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR _MASK; 4608 rp->r_synlink.contents = |inkdata,;
4543 argop[2] . nfs_argop4_u. opgetattr.m = VIOM 4(vp); 4609 rp->r_symink.len = uio_len;
4610 rp->r_synlink.size = len;
4545 doqueue = 1; 4611 mut ex_exit (& p->r_statel ock);
4612 } else {

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

4613 mut ex_exi t (& p->r_stat el ock);
4614 kmem free(linkdata, |en);
4615 }
4616 } else {
4617 kmem free(linkdata, |en);
4618 }
4619 1
4620 if (res.status == NFS4_OK) {
4621 resop++; /* getattr res */
4622 garp = & esop->nfs_resop4_u.opgetattr.ga_res;
4623
4624 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr);
4626 (void) xdr_free(xdr_COVWOUND4Ares_clnt, (caddr_t)&res);
4628 /*
4629 * The over the wire error for attenpting to readlink sonething
4630 * other than a synbolic link is ENXIO However, we need to
4631 * return EINVAL instead of ENXIO, so we map it here.
4632 */
4633 return (e.error == ENXIO ? EINVAL : e.error);
4634 }
4636 /*
4637 * Flush local dirty pages to stable storage on the server.
4638 *
4639 * If FNODSYNC is specified, then there is nothing to do because
4640 * netadata changes are not cached on the client before being
4641 *
*

sent to the server.
4642 */
4643 /* ARGSUSED */
4644 static int

4645 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)

4646 {

4647 int error;

4649 if ((syncflag & FNODSYNC) || | S_SWAPVP(vp))

4650 return (0);

4651 if (nfs_zone() != VTOM 4(vp)->m _zone)

4652 return (ElO;

4653 error = nfs4_put page_commit(vp, (offset_t)0, 0, cr);
4654 if (lerror)

4655 error = VTIOR4(vp)->r_error;

4656 return (error);

4657 }

4659 /*

4660 * Weirdness: if the file was renpbved or the target of a renane
4661 * operation while it was open, it got renanmed instead. Here we
4662 * renpve the renaned file.

4663 */

4664 /* ARGSUSED */

4665 void

4666 ?fs4_i nactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4667

4668 rnode4_t *rp;

4670 ASSERT(vp != DNLC_NO_VNODE)

4672 rp = VIOR4(vp);

4674 if (IS_SHADONvp, rp)) {

4675 sv_i nactive(vp);

4676 return;

4677 1

new usr/ src/ uts/ common/ fs/ nfs/nfs4_vnops.c 72
4679 /*

4680 * If this is coming fromthe wong zone, we |et sonmeone in the right
4681 * zone take care of it asynchronously. W can get here due to
4682 * VN_RELE() being called from pageout() or fsflush(). This call may
4683 * potentially turn into an expensive no-op if, for instance, v_count
4684 * gets increnented in the neantime, but it's still correct.

4685 */

4686 if (nfs_zone() !'= VIOM 4(vp)->m _zone) {

4687 nfs4_async_i nactive(vp, cr);

4688 return;

4689 1

4691 /*

4692 * Sone of the cleanup steps might require over-the-wire

4693 * operations. Since VOP_I NACTIVE can get called as a result of
4694 * other over-the-wire operations (e.g., an attribute cache update
4695 * can lead to a DNLC purge), doing those steps now would lead to a
4696 * nested call to the recovery framework, which can deadl ock. So
4697 * do any over-the-wire cleanups asynchronously, in a separate
4698 * thread.

4699 */

4701 mut ex_ent er (& p->r_os_| ock);

4702 mut ex_ent er (& p->r_stat el ock)

4703 mut ex_ent er (& p->r_stat ev4_| ock);

4705 if (vp->v_type == VREG && | i st_head(& p->r_open_streans) != NULL) {
4706 mut ex_exit (& p->r_statev4_| ock);

4707 mut ex_exi t (& p->r_statel ock);

4708 mut ex_exi t (& p->r_os_| ock);

4709 nfs4_async_i nactive(vp, cr);

4710 return;

4711 }

4713 if (rp->r_del eg_type == OPEN_DELEGATE_READ | |

4714 rp->r_del eg_type == OPEN_DELEGATE WRI TE) {

4715 mut ex _exit (& p->r _statev4_| ock);

4716 mut ex_exi t (& p->r_st at el ock) ;

4717 mut ex_exi t (& p->r_os_| ock);

4718 nfs4_async_i nactive(vp, cr);

4719 return;

4720 }

4722 if (rp->r_unldvp !'= NULL) {

4723 mut ex_exi t (& p->r_statev4_| ock);

4724 mut ex_exi t (& p->r_statel ock);

4725 mut ex_exit (& p->r_os_| ock);

4726 nfs4_async_i nactive(vp, cr);

4727 return;

4728

4729 mut ex_exi t (& p->r_statev4_| ock);

4730 mut ex_exi t (& p->r_statel ock);

4731 mut ex_exi t (& p->r_os_| ock);

4733 rp4_addfree(rp, cr);

4734 }

4736 [*

4737 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up
4738 * various bits of state. The caller must not refer to vp after this call.
4739 */

4741 void

4742 nfs4_inactive_otw(vnode_t *vp, cred_t *cr)

4743 {

4744 rnoded4_t *rp = VIOR4A(vp);

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756

4758
4759

4761
4762
4763
4764
4765
4766

4768
4769

4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790

4792
4793
4794
4795
4796

4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810

nfs4_recov_state_t recov_state;
nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
vnode_t *unl dvp;
char *unl nane;
cred_t *unlcred;
COVPOUND4ar gs_cl nt args;
COVPOUND4res_cl nt res, *resp;
nfs_argop4 argop[2]
i nt doqueue;

#i f def DEBUG
char *nane;

#endi f
ASSERT(nfs_zone() == VIOM 4(vp)->m _zone);
ASSERT(!|'S_SHADOW vp, rp));
#i f def DEBUG
name = fn_name(VTOSV(vp)->sv_nane);
NFS4_DEBUG(nf s4_cl i ent _I nacti ve_debug, (CE_NOTE, "nfs4_inactive_otw
"rel ease vnode %", nane));
kmem f ree(name, MAXNAMELEN);
#endi f
if (vp->v_type == VREG {
bool _t recov_failed = FALSE;
e.error = nfs4close_all (vp, cr);
if (e.error) {
/* Check to see if recovery failed */
mut ex_ent er (& VTOM 4(vp) ->mi _| ock)) ;
if (VIOM 4(vp)->ni _flags & M4_| RECOJ FAI L)
recov_failed = TRUE;
nut ex_exi t (& VTOM 4(vp) - >m _I ock));
if (!recov_failed) {
mut ex_ent er (& p->r _st at el ock) ;
if (rp->r_flags & RARECOVERR)
recov_failed = TRUE;
mut ex_exi t (& p->r_stat el ock);
}
if (recov_failed)
NFS4_DEBUQ nf s4_cl i ent _recov_debug,
(CE_NOTE, "nfs4_inactive_otw "
"close failed (recovery failure)"));
}
}
}
redo:

if (rp->r_unldvp == NULL) {
rp4_addfree(rp, cr);
return;

Save the vnode pointer for the directory where the

unl i nked-open file got renamed, then set it to NULL

to prevent another thread fromgetting here before
we’'re done with the remove. Wile we have the

stat el ock, make | ocal copies of the pertinent rnode
fields. |If we weren't to do this in an atomc way, the
the unl* fields could becone inconsistent with respect
to each other due to a race condition between this

code and nfs_renpve(). See bug report 1034328.

* ok % ok ok ok ok % ok
~

mut ex_ent er (& p->r_st at el ock);
if (rp->r_unldvp == NULL) {

73

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

4811
4812
4813
4814

4816
4817
4818
4819
4820
4821
4822

4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840

4842
4843
4844
4845
4846
4847
4848

4850
4851
4852
4853
4854

4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866

4868
4869
4870

4872
4873
4874

4876

mut ex_exit (& p->r_statel ock);
rp4_addfree(rp, cr);
return;

}

unl dvp = rp->r_unl dvp;
rp->r_unldvp = NULL;

unl name = rp->r_unl nane
rp->r_unl name = NULL;

unl cred = rp->r_unl cred;
rp->r_unlcred = NULL;

mut ex_exi t (& p->r_stat el ock);

/
If there are any dirty pages left, then flush
them This is unfortunate because they just
may get thrown away during the renpve operation,
* but we have to do this for correctness.
*
/
if (nfsd4_has_pages(vp) &&
((rp >r_flags & RADIRTY) || rp->r_count > 0)) {
ASSERT(vp->v_type != VCHR);
e.error = nfs4_putpage(vp, (u_offset_t)O0, 0, O, cr,
if (e.error) {
nut ex_ent er (& p- >r_st at el ock);
if (!rp->r_error)
rp->r_error = e.error;
nut ex_exi t (& p->r_st at el ock);

* ok * ok

NULL) ;

}

recov_state.rs_flags = 0;

recov_state.rs_num retry despite_err = 0;
recov_retry_renove:

/*

: Do the renove operation on the renaned file
args. ctag = TAG_| NACTI VE;
/*

:/Rem)ve ops: putfh dir; renove
args.array_len = 2;

args.array = argop;

e.error = nfs4_start_op(VTOM 4(unl dvp),
if (e.error) {
kmem free(unl name, MAXNAMELEN) ;
crfree(unl cred);
VN_RELE(unl dvp) ;

unl dvp, NULL, &recov_state);

/*

* Try again; this tine around r_unldvp will be NULL, so we'll
* just call rp4_addfree() and return.

*/

got o redo;

}

/* putfh dlrectory */

argop[0] . argop = OP_CPUTFH;
argop[0] . nfs_argop4_u. opcput fh. sfh = VTOR4(unl dvp) - >r_fh;
/* renove */

argop[1] . argop = OP_CREMOVE;

argop[1] . nf s_ar gop4_u. opcr enpve. ct arget = unl nane;

doqueue = 1;

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

4877

4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904

4906
4907
4908
4909
4910
4911
4912
4913
4914
4915

4917
4918

4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931

4933
4934
4935
4936
4937
4938

4940
4941
4942

resp = &res;
#if O /* notyet */
/*

Can't do this yet. W nmay be being called from
dnl c_purge_XXX while that routine is holding a
nutex lock to the nc_rele list. The calls to
nfs3_cache_wcc_data nmay result in calls to

dnl c_purge_XXX. This will result in a deadl ock.

EE

*
/
rfs4cal | (VTOM 4(unl dvp), &args, &es, unlcred, &Joqueue, 0, &e);
if (e.error) {
PURGE_ATTRCACHE4(unl dvp) ;
resp = NULL;
} else if (res.status) {
e.error = geterrno4(res.status);
PURGE_ATTRCACHE4(unl dvp) ;
/*

* This code is inactive right now
* but if nmade active there should
* be a nfs4_end_op() call before
* nfs4_purge_stale_fh to avoid start_op()
* deadl ock. See Bugld: 4948726
*
/
nfs4_purge_stale_fh(error, unldvp, cr);
} else {
nfs_resop4 *resop;
REMOVE4res *rmres

resop = &es.array[1];

rmres = & esop->nfs_resop4_u. oprenove;
/*

* Update directory cache attribute,

* readdir and dnlc caches.

*/
nf s4_updat e_di rcaches(& mres->cinfo, unldvp, NULL, NULL, NULL);
#el se
rfs4cal | (VTOM 4(unl dvp), &args, &es, unlcred, &Joqueue, 0, &e);
PURGE_ATTRCACHE4(unl dvp) ;
#endi f

if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) {
if (nfs4_start_recovery(&, VIOM 4(unldvp), unldvp, NULL,
NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
if (le.error)
(voi d) xdr_free(xdr_COVWOUND4res_cl nt,
(caddr_t)&res);
nfs4_end_op(VTOM 4(unl dvp), unldvp, NULL,
&recov_state, TRUE);
goto recov_retry_renove;

}
}
nfs4_end_op(VTOM 4(unl dvp), unldvp, NULL, &recov_state, FALSE);
/*
* Rel ease stuff held for the renove
*/

VN_RELE(unl dvp);
if (le.error &% resp)
(void) xdr_free(xdr_COVPOUND4res_clnt, (caddr_t)resp);

kmem free(unl name, MAXNAMELEN) ;
crfree(unlcred);
goto redo;

new usr/ src/ uts/ comon/fs/nfs/nfs4_vnops.c 76
4943 }

4945 | *

4946 * Renpte file system operations having to do with directory mani pul ation.
4947 */

4948 /* ARGSUSED3 */

4949 int

4950 nfs4_| ookup(vnode_t *dvp, char *nm vnode_t **vpp, struct pathnane *pnp,
4951 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,

4952 int *direntflags, pathname_t *real pnp)

4953 {

4954 int error;

4955 vnode_t *vp, *avp = NULL;

4956 rnode4_t *drp;

4958 *vpp = NULL;

4959 if (nfs_zone() != VIOM 4(dvp)->m _zone)

4960 return (EPERM;

4961 /*

4962 * if LOOKUP_XATTR, nust replace dvp (object) with

4963 * object’s attrdir before continuing with |ookup

4964 */

4965 if (flags & LOOKUP_XATTR)

4966 error = nfs4l ookup_xattr(dvp, nm &avp, flags, cr);
4967 if (error)

4968 return (error);

4970 dvp = avp;

4972 /*

4973 * If lookup is for "", just return dvp now. The attrdir
4974 * has already been activated (from nfs4l ookup_xattr), and
4975 * the caller will RELE the original dvp -- not

4976 * the attrdir. So, set vpp and return.

4977 * Currently, when the LOOKUP_XATTR flag is

4978 * passed to VOP_LOOKUP, the nane is always enpty, and
4979 * shortcircuiting here avoids 3 unneeded | ock/ unl ock
4980 * pairs.

4981 *

4982 * If a non-enpty nane was provided, then it is the
4983 * attribute name, and it wll be | ooked up bel ow.

4984 */

4985 if (*nm=="\0") {

4986 *vpp = dvp;

4987 return (0);

4988 }

4990 /*

4991 * The vfs layer never sends a name when asking for the
4992 * attrdir, so we should never get here (unless of course
4993 * name is passed at sone tinme in future -- at which time
4994 * we'll blow up here).

4995 *

4996 ASSERT(0) ;

4997 }

4999 drp = VIOR4(dvp);

5000 if (nfs_rw enter_sig(&drp->r_rw ock, RWREADER, |NTR4(dvp)))
5001 return (EINTR);

5003 error = nfs4l ookup(dvp, nm vpp, cr, 0);

5004 nfs_rw_ exit(&drp->r_rw ock)

5006 /*

5007 * |f vnode is a device, create special vnode.

5008 */

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 77

5009 if (lerror && | SVDEV((*vpp)->v_type)) {

5010 vp = *vpp;

5011 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
5012 VN_RELE(vp);

5013

5015 return (error);

5016 }

5018 /* ARGSUSED */

5019 static int

gg%g ?fs4l ookup_xattr(vnode_t *dvp, char *nm vnode_t **vpp, int flags, cred_t *cr)
5022 int error;

5023 rnode4_t *drp;

5024 int cflag = ((flags & CREATE_XATTR DIR) != 0);

5025 mtinfod4_t *m;

5027 m = VIOM 4(dvp);

5028 if ('(m >m vfsp >vis_flag & VFS_XATTR) &&

5029 lvfs_has_feature(m ->m _vfsp, VFSFT_SYSATTR VI EWB))
5030 return (EINVAL);

5032 drp = VTOR4(dvp);

5033 if (nfs_rw enter_sig(&rp->r_rw ock, RWREADER, |NTR4(dvp)))
5034 return (EINTR);

5036 mut ex_ent er (&dr p- >r _st at el ock) ;

5037 *

5038 * |f the server doesn’t support xattrs just return El NVAL
5039 */

5040 if (drp->r_xattr_dir == NFS4_XATTR DI R_NOTSUPP) {

5041 mut ex eX|t(&drp >r_stat el ock) ;

5042 nfs_rw exit(&drp->r_rw ock);

5043 return (EINVAL);

5044 1

5046 /*

5047 * |f there is a cached xattr directory entry,

5048 * use it as long as the attributes are valid. If the
5049 * attributes are not valid, take the sinple approach and
5050 * free the cached value and re-fetch a new val ue.

5051 *

5052 * W don’t negative entry cache for now, if we did we
5053 * woul d need to check if the file has changed on every
5054 * | ookup. But xattrs don't exist very often and failing
5055 * an openattr is not much nore expensive than and NVERI FY or GETATTR
5056 * so do an openattr over the wire for now.

5057 *

5058 if (drp->r_xattr_dir != NULL)

5059 i f (ATTRCACHE4_VALI D(dvp)) {

5060 VN HC]_D(drp >r_xattr_dir);

5061 *vpp = drp->r_xattr_dir;

5062 nut ex eX|t(&drp >r_statel ock);

5063 nfs_rw exit(&drp->r_rw ock);

5064 return (0);

5065 }

5066 VN _RELE(drp->r_xattr_dir);

5067 drp->r_xattr_dir = NULL;

5068 }

5069 mut ex_exi t (&dr p- >r _st at el ock);

5071 error = nfs4openattr(dvp, vpp, cflag, cr);

5073 nfs_rw exit(&dJrp->r_rw ock);

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

5075 return (error);

5076 }

5078 static int

5079 nf s4l ookup(vnode_t *dvp, char *nm vnode_t **vpp, cred_t *cr, int
5080 {

5081 int error;

5082 rnode4_t *drp;

5084 ASSERT(nfs_zone() == VTOM 4(dvp)->m _zone);

5086 /*

5087 * |f lookup is for "", just return dvp. Don't need
5088 * to send it over the wire, look it up in the dnlc,
5089 * or perform any access checks.

5090 *

5091 if (*nm=="\0") {

5092 VN_HOLD(dvp) ;

5093 *vpp = dvp;

5094 return (0);

5095 }

5097 I*

5098 * Can’'t do | ookups in non-directories.

5099 *

5100 if (dvp->v_type != VDIR)

5101 return (ENOTDIR);

5103 /*

5104 * |f lookup is for ".", just return dvp. Don't need
5105 * to send It over the wire or look it up in the dnlc,
5106 * just need to check access.

5107 */

5108 if (nn{0] =="." & nn{1] == "'\0")

5109 error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5110 if (error)

5111 return (error);

5112 VN_HOLD(dvp) ;

5113 *vpp = dvp;

5114 return (0);

5115 }

5117 drp = VIOR4(dvp);

5118 if (!(drp->r _flags & RALOOKUP)) {

5119 mut ex_ent er (&dr p- >r _st at el ock) ;

5120 drp->r_flags | = R4ALOOKUP,

5121 mut ex_exi t (&dr p->r _st at el ock);

5122 1

5124 *vpp = NULL;

5125 /*

5126 * Lookup this nane in the DNLC. |If there is no entry
5127 * | ookup over the wire.

5128 */

5129 if (!ski pdnl c)

5130 vpp = dnl c_| ookup(dvp, nn;

5131 if (*vpp == NULL) {

5132 /*

5133 * W need to go over the wire to | ookup the nane.
5134 */

5135 return (nfs4l ookupnew_otw(dvp, nm vpp, cr));
5136 }

5138 /*

5139 * W& hit on the dnlc

5140 */

ski pdnl c)

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 79

5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152

5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167

5169
5170
5171
5172

5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187

5189

5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202

5204
5205
5206

if (*vpp != DNLC_NO _VNCDE | |
(dvp->v_vfsp->vfs flag & VFS_RDONLY)) {
/*

* But our attrs may not be valid.
*

if (ATTRCACHE4_VALID(dvp)) {
error = nfs4_waitfor_purge_conpl ete(dvp);

if (error) {
VN_RELE(*vpp) ;
*vpp = NULL;
return (error);
}
/*
* |f after the purge conpletes, check to make sure
* our attrs are still valid.

*

i f (ATTRCACHE4_VALI D(dvp)) {
/‘k

* If we waited for a purge we may have
* |l ost our vnode so | ook it up again.
*/
VN_RELE(*vpp) ;
*vpp = dnl c_| ookup(dvp, nm;
if (*vpp == NULL)

return (nfs4l ookupnew ot W dvp,

nm vpp, cr))

/*
* The access cache should al nost al ways hit
&/

error = nfs4_access(dvp, VEXEC, 0, cr, NULL);

if (error) {
VN_RELE(*vpp) ;
*vpp = NULL

return (error);
}
if (*vpp == DNLC_NO VNODE) {
VN_RELE(*vpp) ;
*vpp = NULL
return (ENCENT);

}
return (0);

}
ASSERT(*vpp != NULL)

/*
* W nay have gotten here we have one of the follow ng cases:
* 1) vpp !'= DNLC_NO_VNODE, our attrs have timed out so we
ki need to validate them
* 2) vpp == DNLC_NO VNODE, a negative entry that we al ways
* rrust val i dat e.
*
* Go to the server and check if the directory has changed, if
* it hasn’t we are done and can use the dnlc entry.
*/
return (nfs4l ookupval i date_otw(dvp, nm vpp, cr));

}

/*

* G to the server and check if the directory has changed, if
* it hasn’t we are done and can use the dnlc entry. |If it

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

has changed we get a new copy of its attributes and check
the access for VEXEC, then rel ookup the filename and

get

its filehandl e and attributes.

PUTFH df h NVERI FY GETATTR ACCESS LOOKUP GETFH GETATTR

The vpp returned is the vnode passed in if the directory is valid,
a new vnode if successful |ookup, or NULL on error.
*

if the NVERIFY fail ed we nust
purge the caches

cache new attributes (will set r_tine_attr_inval)

cache new access
recheck VEXEC access
add nanme to dnlc, possibly negative
if LOOKUP succeeded
cache new attributes
el se
set a new r_tinme_attr_inval for dvp
check to neke sure we have access

5227 static int

5228 nf s4l ookupval i dat e_ot w(vnode_t *dvp, char *nm vnode_t **vpp,

5229 {
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249

5251
5252
5253
5254
5255
5256

5258
5259
5260
5261
5262
5263
5264
5265
5266

5268
5269
5270

5272

COVPOUND4ar gs_cl nt args;

COVPOUNDAr es_cl nt res;

fattr4 *ver_fattr;

fattr4_change dchange;

int32_t *ptr;

int argoplist_size =7 * sizeof (nfs_argop4);
nfs_argop4 *argop;

int doqueue;

mtinfod4_t *m;

nfs4_recov_state_t recov_state;

hrtime_t t;

int isdotdot;

vnode_t *nvp;

nfs_fh4 *fhp;

nfs4_sharedf h_t *sfhp;

nf s4_access_type_t cacc;

rnode4_t *nrp;

rnode4_t *drp = VTCR4(dvp)

nfs4_ga_res_t garp = NULL

nfs4_error t e = { O, NFS4 OK, RPC_SUCCESS };

ASSERT(nfs_zone() == VIOM 4(dvp)->m _zone);
ASSERT(nm ! = NULL)

ASSERT(nn{0] != \0)

ASSERT(dvp- >v type == VDIR);

ASSERT(nni 0] | nn{l] 1="\0");

ASSERT(*vpp '= NULL) ;

if (nn{0] =="." && nn{1] =="." && nnf2] == "'\0") {
i sdotdot = 1;
args. ctag = TAG_LOOKUP_VPARENT;

} else {

cred_t

*cr)

* |f dvp were a stub, it should have triggered and caused

* a mount for us to get this far.
*

/
ASSERT(! RP_I SSTUB(VTOR4(dvp)));

i sdotdot = O;
args. ctag = TAG LOOKUP_VALI D;

-

m = VIOM 4(dvp);

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 81 new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 82
5273 recov_state.rs_flags = O; 5339 rfsdcal | (VTOM 4(dvp), &args, & es, cr, &oqueue, 0, &e);
5274 recov_state.rs_num retry despite_err = 0;
5341 if (!isdotdot && res.status == NFS4ERR_MOVED) {
5276 nvp = NULL; 5342 e.error = nfs4_setup_referral (dvp, nm vpp, cr);
5343 if (e.error "0&&*Vpp"NU L)
5278 /* Save the original mount point security information */ 5344 VN_RELE(*vpp) ;
5279 (void) save_mt_secinfo(m ->m _curr_serv); 5345 nfs4_end_fop(m, dvp, NULL, OH_ LOOKUP,
5346 & ecov_st ate FALSE) ;
5281 recov_retry: 5347 (voi d) xdr free(xdr OO\/POJND4res clnt, (caddr_t)&res);
5282 e.error = nfs4_start_fop(m, dvp, NULL, OH LOOKUP, 5348 kmem free(argop, argoplist_size);
5283 &recov_st ate NULL) ; 5349 return (e.error);
5284 if (e.error) 5350 }
5285 (voi d) check_mt _seci nfo(m ->m _curr_serv, nvp);
5286 VN_RELE(*vpp); 5352 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) {
5287 *vpp = NULL; 5353 I*
5288 return (e.error); 5354 * For WRONGSEC of a non-dotdot case, send secinfo directly
5289 } 5355 * fromthis thread, do not go thru t he recovery thread since
5356 * we need the nminformation.
5291 argop = knem al | oc(argoplist_size, KM SLEEP); 5357 *
5358 * Not doi ng dotdot case because there is no specification
5293 /* PUTFH df h NVERI FY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5359 * for (PUTFH, SECINFO "..") yet.
5294 args.array_len = 7; 5360 */
5295 args.array = argop; 5361 if (!isdotdot && res.status == NFS4ERR WRONGSEC)
5362 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm cr)))
5297 /* 0. putfh file */ 5363 nfs4_end_fop(m, dvp, NULL, OH_LOOKUP,
5298 argop[0] . argop = OP_CPUTFH; 5364 & ecov_state, FALSE);
5299 argop[0] . nfs_ar gop4_u. opcputfh sfh = VIOR4(dvp)->r_fh; 5365 el se
5366 nfs4_end_fop(m, dvp, NULL, OH LOOKUP,
5301 /* 1. nverify the change info */ 5367 & ecov_state, TRUE);
5302 argop[1] . argop = OP_NVERI FY; 5368 (void) xdr_free(xdr_COVPOUNDAres_clnt, (caddr_t)&res);
5303 ver _fattr = &argop[1].nfs_argop4_u.opnverify.obj attributes; 5369 kmem free(argop, argoplist_size);
5304 ver _fattr->attrmask = FATTR4_CHANGE MASK; 5370 if (le.error)
5305 ver_fattr->attrlist4 = (char *)&dchange; 5371 goto recov_retry;
5306 ptr = (int32_t *)&dchange; 5372 (voi d) check_mmt_secinfo(m ->m _curr_serv, nvp);
5307 I XDR_PUT_HYPER(ptr, VTORA4(dvp)->r_change); 5373 VN_RELE(*vpp) ;
5308 ver _fattr->attrlist4_len = sizeof (fattr4_change); 5374 *vpp = NULL,;
5375 return (e.error);
5310 /* 2. getattr directory */ 5376 }
5311 argop[2] .argop = OP_GETATTR
5312 argop[2] .nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5378 if (nfsd4_start_recovery(&e, m, dvp, NULL, NULL, NULL,
5313 argop[2] . nfs_argop4_u. opgetattr.m = VIOM 4(dvp); 5379 OP_LOOKUP, NULL, NULL, NULL) == FALSE)
5380 nfs4_end_fop(m, dvp, NULL, OH_LOOKUP,
5315 /* 3. access directory */ 5381 & ecov_state, TRUE);
5316 argop[3] . argop = OP_ACCESS;
5317 argop| 3] . nfs_argop4_u. opaccess. access = ACCESS4_READ | ACCESS4_DELETE | 5383 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5318 ACCESS4_MODI FY | ACCESS4_EXTEND | ACCESS4 LOOKUP; 5384 kmem free(argop, argoplist_size);
5385 goto recov_retry;
5320 /* 4. |ookup name */ 5386 }
5321 if (isdotdot) { 5387 }
5322 argop[4] . argop = OP_LOOKUPP;
5323 } else { 5389 nfs4_end_fop(m, dvp, NULL, OH LOOKUP, &recov_state, FALSE);
5324 ar gop[4] . argop = OP_CLOCKUP;
5325 argop[4] . nfs_argop4_u. opcl ookup cname = nm 5391 if (e.error || res.array_len == 0) {
5326 } 5392 /*
5393 * |f e.error isn't set, then reply has no ops (or we couldn’t
5328 /* 5. resulting file handle */ 5394 * be here). The only legal way to reply w thout an op array
5329 argop[5].argop = OP_GETFH, 5395 * is via NFS4ERR_M NOR_VERS_M SMATCH. An ops array shoul d
5396 * be in the reply for all other status val ues.
5331 /* 6. resultingfile attributes */ 5397 *
5332 argop[6] . argop = OP_GETATTR 5398 * For valid replies without an ops array, return ENOTSUP
5333 argop[6] . nfs_argop4_u. opgetattr.attr_request = NFS4_VATTR_MASK; 5399 * (geterrno4 xlation of VERS_ M SVMATCH). For illegal replies,
5334 argop[6] . nfs_argop4_u. opgetattr.m = VIOM 4(dvp); 5400 */return ElIO -- don’t trust status.
5401 *
5336 doqueue = 1; 5402 if (e.error == 0)
5337 t gethrtine(); 5403 e.error = (res.status == NFS4ERR_M NOR_VERS_M SMATCH) ?
5404 ENOTSUP : EIO

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 83 new usr/ src/ uts/ comon/fs/nfs/nfs4_vnops.c 84
5405 VN_RELE(*vpp) ; 5471 */
5406 *vpp = NULL 5472 if (cacc == NFS4_ACCESS DENI ED) {
5407 kmem_free(argop, argopl i st_si ze); 5473 e.error = EACCES;
5408 (voi d) check_mmt_secinfo(m->m _curr_serv, nvp); 5474 VN_RELE(*vpp) ;
5409 return (e.error); 5475 *vpp = NULL;
5410 } 5476 goto exit;
5477 }
5412 if (res.status != NFS4ERR_SAME)
5413 e.error = geterrno4(res.status); 5479 /*
5480 * Sonmehow we nust not have asked for enough
5415 /* 5481 * so try a singleton ACCESS, shoul d never happen.
5416 * The NVERI FY "failed" so the directory has changed 5482 =l
5417 * First make sure PUTFH succeeded and NVERI FY "fail ed" 5483 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5418 * cleanly. 5484 if (e.error)
5419 *f 5485 VN_RELE(*vpp) ;
5420 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5486 *vpp = NULL;
5421 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5487 goto exit;
5422 nfs4_purge_stale_fh(e.error, dvp, cr); 5488 }
5423 VN_RELE(*vpp) ; 5489 }
5424 *vpp = NULL,;
5425 goto exit; 5491 e.error = geterrno4(res.status);
5426 } 5492 if (res.array[4].nfs_resop4_u.opl ookup.status != NFS4_OK) {
5493 /*
5428 /* 5494 * The | ookup failed, probably no entry
5429 * We know the NVERI FY "failed" so we nust: 5495 */
5430 * purge the caches (access and indirectly dnlc if needed) 5496 if (e.error == ENOCENT && nfs4_| ookup_neg_cache) {
5431 */ 5497 dnl c_updat e(dvp, nm DNLC _NO_VNODE) ;
5432 nf s4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5498 } else {/
5499 *
5434 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5500 * M ght be some other error, so renove
5435 nfs4_purge_stale fh(e.error, dvp, cr); 5501 * the dnlc entry to nake sure we start all
5436 VN_RELE(*vpp) ; 5502 * over again, next tine.
5437 *vpp = NULL; 5503]
5438 goto exit; 5504 dnl c_renove(dvp, nm;
5439 } 5505 }
5506 VN_RELE(*vpp) ;
5441 /* 5507 *vpp = NULL,;
5442 * Install new cached attributes for the directory 5508 goto exit;
5443 */ 5509 }
5444 nfs4_attr_cache(dvp,
5445 & es.array[2].nfs_resop4_u.opgetattr.ga_res, 5511 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) {
5446 t, cr, FALSE, NULL); 5512 /*
5513 * The file exists but we can't get its fh for
5448 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5514 * sonme unknown reason. Renpve it fromthe dnlc
5449 nfs4_purge_stale fh(e.error, dvp, cr); 5515 * and error out to be safe.
5450 VN_RELE(*vpp) ; 5516 S
5451 *vpp = NULL 5517 dnl c_renmove(dvp, nm;
5452 e.error = geterrno4(res. status); 5518 VN_RELE(*vpp) ;
5453 goto exit; 5519 *vpp = NULL;
5454 } 5520 goto exit;
5521 }
5456 /* 5522 fhp = &es.array[5].nfs_resop4_u. opgetfh. object;
5457 * Now we know the directory is valid, 5523 if (fhp >nfs_fhd4_len == 0) {
5458 * cache new directory access 5524 /*
5459 */ 5525 * The file exists but a bogus fh
5460 nfs4_access_cache(drp, 5526 * sonme unknown reason. Renpve it fromthe dnlc
5461 args. array[3] . nfs_argop4_u. opaccess. access, 5527 * and error out to be safe.
5462 res.array[3].nfs_resop4_u. opaccess. access, Cr); 5528 */
5529 e.error = ENCENT;
5464 /* 5530 dnl c_renmove(dvp, nm;
5465 * recheck VEXEC access 5531 VN_RELE(*vpp) ;
5466 */ 5532 *vpp = NULL;
5467 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5533 goto exit;
5468 if (cacc !'= NFS4_ACCESS ALLONED) { 5534 }
5469 /* 5535 sfhp = sfh4_get(fhp, m);
5470 * Directory perm ssions mght have been revoked

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

5537
5538

5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567

5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584

5586
5587
5588
5589
5590
5591
5592

5594
5595
5596
5597
5598

5600
5602

if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_CK)
garp = &es.array[6].nfs_resop4_u.opgetattr.ga_res;

*

* Make the new rnode
*
/

if (isdotdot) {
e.error = nfs4_nake_dotdot(sfhp, t, dvp, cr, &iwp, 1);
if (e.error) {
sfh4_rel e(&sfhp);
VN_RELE(*vpp) ;
*vpp = NULL;
goto exit;
}
/*
* XXX i f nfs4_nake_dotdot uses an existing rnode
* XXX it doesn’t update the attributes.
* XXX for now just save them again to save an OTW
*
/
nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL);
} else {
nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr,
dvp, fn_get(VTOSV(dvp)->sv_nane, nm sfhp));
/

If v_type == VNON, then garp was NULL because
the last op in the conpound failed and makenfs4node
could not find the vnode for sfhp. It created
a new vnode, so we have nothing to purge here.

if (nvp->v_type == VNON) {
vattr_t vattr;

* Ok kR Kk 3k

vattr.va_mask = AT_TYPE;
/ *

* N.B. W’ ve already called nfs4_end_fop above.

*
/
e.error = nfs4getattr(nvp, &vattr, cr);
if (e.error) {
sfh4_rel e(&sfhp);
VN_RELE(*vpp) ;
*vpp = NULL;
VN_RELE(nvp) ;
goto exit;

}
nvp->v_type = vattr.va_type;

}
l:f h4_rel e(&sf hp);

nrp = VIOR4(nvp);

nmut ex_ent er (&nr p->r_st atev4_| ock);

if (!nrp->created_v4)
nut ex_exi t (&nr p->r_statev4_| ock) ;
dnl c_updat e(dvp, nm nvp);

} else
nut ex_exi t (&nr p->r_st at ev4_| ock);

VN_RELE(*vpp) ;
*Vpp = nvp;

hrtime_t now
hrtime_t delta = 0;

e.error = 0;

/| *

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

5603 * Because the NVERI FY "succeeded" we know that the
5604 * directory attributes are still valid

5605 * so update r_tine_attr_inval

5606 */

5607 now = gethrtime();

5608 mut ex_ent er (&dr p- >r _st at el ock) ;

5609 if (!(m->nm_flags & M4_NOAC) && ! (dvp->v_flag & VNOCACHE)) {
5610 delta = now - drp->r_tine_attr_saved,
5611 if (delta < m->m _acdirmn)

5612 delta = m->nm _acdirmn;

5613 else if (delta > m->m _acdirnax)

5614 delta = m ->m _acdirnax;

5615

5616 drp->r_time_attr_inval = now + delta;

5617 mut ex_exi t (&dr p->r _st at el ock) ;

5618 dnl c_updat e(dvp, nm *vpp);

5620 /*

5621 * Even though we have a valid directory attr cache
5622 * and dnlc entry, we may not have access.
5623 * This should al npst always hit the cache.
5624 */

5625 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5626 if (e.error) {

5627 VN_RELE(*vpp) ;

5628 *vpp = NULL;

5629 }

5631 if (*vpp == DNLC_NO_VNODE) {

5632 VN_RELE(*vpp) ;

5633 *vpp = NULL;

5634 e.error = ENCENT;

5635 }

5636 }

5638 exit:

5639 (void) xdr_free(xdr_COWOUNDAres_clnt, (caddr_t)&res);
5640 kmem free(argop, argoplist_size);

5641 (void) check_mt_seci nfo(m ->ni _curr_serv, nvp);

5642 return (e.error);

5643 }

5645 /*

5646 * W need to go over the wire to | ookup the name, but

5647 * while we are there verify the directory has not

5648 * changed but if it has, get new attributes and check access
5649 *

5650 * PUTFH df h SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH

5651 * NVERI FY GETATTR ACCESS
5652 *

5653 * Wth the results:

5654 * if the NVERIFY failed we nust purge the caches, add new attri butes,
5655 * and cache new access.

5656 * set a new r_time_attr_inval

5657 * add name to dnlc, possibly negative

5658 * if LOOKUP succeeded

5659 * cache new attributes

5660 */

5661 static int

5662 nf s4l ookupnew_ot w(vnode_t *dvp, char *nm vnode_t **vpp, cred_t *cr)
5663 {

5664 COVPOUND4ar gs_cl nt args;

5665 COVPOUND4r es_cl nt res;

5666 fattr4 *ver_fattr;

5667 fattr4_change dchange;

5668 int32_t *ptr;

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 87

5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683

5685
5686
5687
5688
5689
5690

5692
5693
5694
5695
5696
5697
5698
5699
5700

5702
5703
5704

5706
5707
5708

5710

5712
5713

5715
5716
5717
5718
5719
5720
5721

5723

5725
5726
5727

5729
5730
5731

5733
5734

nfs4_ga_res_t *garp = NULL;

int argoplist_size = 9 * sizeof (nfs_argop4);
nfs_argop4 *argop;

int doqueue;

mtinfod4_t *m;

nfs4_recov_state_t recov_state;

hrtime_t t;

int isdotdot;

vnode_t *nvp;

nfs_fh4 *fhp;

nfs4_sharedf h_t *sfhp;

nfs4_access type t cacc;

rnode4_t *nr

rnode4_t *drp = VTCR4(dvp)

nfs4_error_t e { 0, NFS4_O<, RPC_SUCCESS };

ASSERT(nfs_zone() == VIOM 4(dvp)->m _zone);
ASSERT(nm =" NULL) ;

ASSERT(nn{0] != o);

ASSERT(dvp- >v type == VDI

ASSERT(nn{O] =" || nn{l] 1="\0");

ASSERT(*vpp == NULL)

if (nnf0] =="." && nn{l] =="'." & nn{2] =="'\0") {
i sdotdot = 1;
args. ctag = TAG LOOKUP_PARENT;

} else {

* |f dvp were a stub, it should have triggered and caused
* a mount for us to get this far.
=l

ASSERT(! RP_| SSTUB(VTOR4(dvp)));

i sdotdot = O;

args. ctag = TAG LOOKUP;
}

m = VIOM 4(dvp);

recov_state.rs_flags = 0;
recov_state.rs_numretry_despite_err = O;
nvp = NULL;

/* Save the original mount point security information */
(void) save_mmt_seci nfo(m ->m _curr_serv);

recov_retry:

e.error = nfs4_start_fop(m, dvp, NULL, OH LOOKUP,
&recov_state, NULL);
if (e.error) {
(void) check_mt_secinfo(m->m _curr_serv, nvp);
return (e.error);

}
argop = knem al | oc(argoplist_size, KM SLEEP);

/* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERI FY GETATTR ACCESS */
args.array_len = 9;
args.array = argop;

/* 0. putfh file */
argop[0] . argop = OP_CPUTFH,
argop[0] . nfs_argop4_u. opcputfh.sfh = VITOR4(dvp)->r_fh;

/* 1. savefh for the nverify */
argop[1] . argop = OP_SAVEFH,

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

5736
5737
5738
5739
5740
5741
5742

5744
5745

5747
5748
5749
5750

5752
5753

5755
5756
5757
5758
5759
5760
5761
5762

5764
5765
5766
5767

5769
5770
5771
5772

5774
5775

5777

5779
5780
5781
5782
5783
5784
5785
5786
5787
5788

5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800

/* 2. | ookup name */
if (isdotdot) {
argop[2] . argop = OP_LOOKUPP;
} else {
argop[2] . argop = OP_CLOCKUP;
argop[2] . nf s_ar gop4_u. opcl ookup cname = nm

}

/* 3. resulting file handle */
argop[3] .argop = OP_GETFH,

/* 4. resulting file attributes */

argop[4] . argop = OP_CGETATTR

argop[4] . nfs_argop4_u. opgetattr. attr _request = NFS4_VATTR_MASK;
argop[4] . nfs_argop4_u. opgetattr.m = VIOM 4(dvp);

/* 5. restorefh back the directory for the nverify */
argop[5] . argop = OP_RESTOREFH,

/* 6. nverify the change info */

argop[6] . argop = OP_NVERI FY;

ver_fattr = &argop[6].nfs_argop4_u. opnverlfy obj _attributes;
ver_fattr->attrmsk = FATTR4_CHANGE MASK;
ver_fattr->attrlist4 = (char *)&dchange;

ptr = (int32_t *)&dchange;

| XDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change);
ver_fattr->attrlist4_len = sizeof (fattr4_change);

/* 7. getattr directory */

argop[7] . argop = OP_GETATTR

argop[7] . nfs_argop4_u. opgetattr.attr_request = NFS4_VATTR_MASK;
argop[7] . nfs_argop4_u. opgetattr. m = VIOM 4(dvp);

/* 8. access directory */

argop[8] . argop = OP_ACCESS;

ar gop[8] . nfs_ar gop4_u. opaccess. access = ACCESS4_READ | ACCESS4_DELETE |
ACC—SS4 MODI FY | ACCESS4_EXTEND | ACCESS4_LOOKUP;

doqueue = 1;
t = gethrtine();

rfs4cal | (VTOM 4(dvp), &args, &es, cr, &doqueue, 0, &e);

if (!isdotdot && res.status == NFS4ERR MOVED) ({
e.error = nfs4_setup_referra|(dvp, nm vpp, cr);
if (e.error '=0 & *vpp != NULL)
VN_RELE(*vpp) ;
nfs4_end_fop(m, dvp, NULL, OH LOOKUP,
& ecov_state, FALSE);
(voi d) xdr free(xdr CCNPOJND4res clnt, (caddr_t)&res);
kmem free(argop, argoplist_size);
return (e.error);

}

if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) {

/
For WRONGSEC of a non-dotdot case, send secinfo directly
fromthis thread, do not go thru the recovery thread since
we need the nminfornation.

Not doi ng dotdot case because there is no specification
for (PUTFH, SECINFO "..") yet.

* ok % ok Ok o %

if (!isdotdot && res.status == NFS4ERR WRONGSEC)
if ((e.error = nfsA seci nf o_vnode_otw(dvp, nm cr)))

88

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 89 new usr/src/ uts/ comon/ fs/ nfs/nfs4_vnops.c 90
5801 nfs4_end_fop(m, dvp, NULL, OH_LOOKUP, 5867 if (e.error == ENCENT && nfs4_| ookup_neg_cache)
5802 & ecov_state, FALSE); 5868 dnl c updat e(dvp, nm DNLC_NO _VNODE);
5803 el se 5869 goto exit;
5804 nfs4_end_fop(m, dvp, NULL, OH_LOOKUP, 5870 }
5805 & ecov_state, TRUE);
5806 (void) xdr_free(xdr_COWOUND4res_cl nt, (caddr_t)&res); 5872 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) {
5807 kmem free(argop, argoplist_size); 5873 /*
5808 if (le.error) 5874 * The file exists but we can’t get its fh for
5809 goto recov_retry; 5875 * some unknown reason. Error out to be safe.
5810 (voi d) check_mt_secinfo(m->m _curr_serv, nvp); 5876 */
5811 return (e.error); 5877 goto exit;
5812 } 5878 }
5814 if (nfsd4_start_recovery(&e, m, dvp, NULL, NULL, NULL, 5880 fhp = &es.array[3].nfs_resop4_u. opgetfh. object;
5815 OP_LOOKUP, "NULL, NULL, NULL) == FALSE) { 5881 if (fhp->nfs fh4 len == 0) {
5816 nfs4_end_f0p(m dvp, NULL, OH_LOOKUP, 5882 =
5817 &recov_state, TRUE) ; 5883 * The file exists but a bogus fh
5884 * some unknown reason. FError out to be safe.
5819 (void) xdr_free(xdr_COWOUND4res_clnt, (caddr_t)&res); 5885 */
5820 kmem free(argop, argoplist_size); 5886 e.error = EIQ
5821 goto recov_retry; 5887 goto exit;
5822 } 5888
5823 } 5889 sfhp = sfh4_get(fhp, m);
5825 nfs4_end_fop(m, dvp, NULL, OH LOOKUP, &recov_state, FALSE); 5891 if (res.array[4].nfs resop4 u.opgetattr.status != NFS4_OK) {
5892 sfh4_rel e(&sfhp);
5827 if (e.error || res.array_len == 0) { 5893 goto exit;
5828 /* 5894
5829 * |f e.error isn't set, then reply has no ops (or we couldn’t 5895 garp = &es.array[4].nfs_resop4_u.opgetattr.ga_res;
5830 * be here). The only legal way to reply w thout an op array
5831 * is via NFS4ERR_M NOR_VERS_M SMATCH. An ops array shoul d 5897 /*
5832 * pe in the reply for all other status val ues. 5898 * The RESTOREFH may have fail ed
5833 * 5899 *
5834 * For valid replies without an ops array, return ENOTSUP 5900 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) {
5835 * (geterrno4 xlation of VERS_ M SVATCH). For illegal replies, 5901 sfh4_rel e(&sfhp);
5836 * return EIO -- don’t trust status. 5902 e.error = EIQ
5837 L 5903 goto exit;
5838 f (e.error == 0) 5904 }
5839 e.error = (res.status == NFS4ERR_M NOR_VERS_M SMATCH) ?
5840 ENOTSUP : EIO 5906 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR _SAME) {
5907 /*
5842 kmem free(argop, argoplist_size); 5908 * First make sure the NVERIFY failed as we expected,
5843 (voi d) check_mt _seci nfo(m ->ni _curr_serv, nvp); 5909 *if it didn't then be conservative and error out
5844 return (e.error); 5910 * as we can’'t trust the directory.
5845 } 5911 */
5912 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) {
5847 e.error = geterrno4(res.status); 5913 sfh4_rel e(&sfhp);
5914 e.error = EIQ
5849 /* 5915 goto exit;
5850 */The PUTFH and SAVEFH may have fail ed. 5916 }
5851
5852 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5918 /*
5853 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5919 * We know the NVERI FY "failed" so the directory has changed,
5854 nfs4_purge_stale_fh(e.error, dvp, cr); 5920 * SO we nust:
5855 goto exit; 5921 * purge the caches (access and indirectly dnlc if needed)
5856 } 5922 */
5923 nf s4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE);
5858 /*
5859 * Check if the file exists, if it does delay entering 5925 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5860 * into the dnlc until after we update the directory 5926 sfhd_rel e(&sfhp);
5861 * attributes so we don't cause it to get purged imediately. 5927 goto exit;
5862 */ 5928 }
5863 if (res.array[2].nfs_resop4_u.opl ookup.status != NFS4_OK) { 5929 nfs4_attr_cache(dvp,
5864 /* 5930 & es.array[7] .nfs_resop4_u.opgetattr.ga_res,
5865 * The | ookup failed, probably no entry 5931 t, cr, FALSE, NULL);
5866 */

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

5933
5934
5935
5936
5937
5938

5940
5941
5942
5943
5944
5945
5946

5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960

5962
5963
5964
5965
5966
5967
5968
5969
5970
5971

5973
5974
5975
5976

5978

5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995

5997
5998

if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) {
nfs4_purge_stale_fh(e.error, dvp, cr);
sfh4_rel e(&sfhp)
e.error = geterrno4(res.status);
goto exit;

}

/*
* Now we know the directory is valid,
* cache new directory access
*/
nfs4_access_cache(drp,
args. array[8].nfs_argop4_u. opaccess. access,
res.array[8] .nfs_resop4_u. opaccess. access, cr);

/ *
* recheck VEXEC access
*
/

cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr);
if (cacc !'= NFS4_ACCESS ALLONED) {
/*

* Directory perm ssions mght have been revoked
*/

if (cacc == NFS4_ACCESS DENI ED) {
sfh4 rel e(&sfhp);
e.error = EACCES;
goto exit;

}

/*

* Sonmehow we nust not have asked for enough

* so try a singleton ACCESS shoul d never happen
*/

e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
if (e.error) {

sfh4_rel e(&sf hp);

goto exit;

}

e.error

} else {
hrtime_t now
hrtime_t delta = 0;

= geterrno4(res. status);

e.error = 0;

/*

* Because the NVERI FY "succeeded" we know that the
* directory attributes are still valid

* so update r_tine_attr_inval

)

now = gethrtime();
nut ex_ent er (&dr p- >r _st at el ock) ;
if (!(m‘->m‘_f|ags & M 4_NOAC) && !(dvp->v_flag & VNOCACHE)) {
delta = now - drp->r_tine_attr_saved;
if (delta < m->m acd|rmn)
delta = m->m _acdirmn;
else if (delta > m->m acdlrmax)
delta = m ->m _acdirmax;

drp->r_tine_attr_inval = now + delta;
mut ex_exi t (&dr p->r _st at el ock) ;
/*
* Even though we have a valid directory attr cache,

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

i) §

5999 * we may not have access.

6000 * This should al nost always hit the cache.

6001 */

6002 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
6003 if (e.error) {

6004 sfhd_rel e(&sfhp);

6005 goto exit;

6006 }

6007 }

6009 I*

6010 * Now we have successfully conpleted the | ookup, if the
6011 * directory has changed we now have the valid attributes.
6012 * W al so know we have directory access.

6013 * Create the new rnode and insert it in the dnlc.

6014 */

6015 if (isdotdot) {

6016 e.error = nfs4_meke_dotdot (sfhp, t, dvp, cr, &nvp,
6017 if (e.error) {

6018 sfh4_rel e(&sfhp);

6019 goto exit;

6020 }

6021 /*

6022 * XXX i f nfs4_nake_dotdot uses an existing rnode
6023 * XXX it doesn’t update the attributes.

6024 * XXX for now just save themagain to save an OTW
6025 */

6026 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL);
6027 } else {

6028 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr,
6029 dvp, fn_get(VTOSV(dvp)->sv_nane, nm sfhp));
6030 1

6031 sfh4_rel e(&sfhp);

6033 nrp = VIOR4(nvp);

6034 nmut ex_ent er (&nr p->r _st at ev4_| ock) ;

6035 if (!nrp->created_v4)

6036 nmut ex_exi t (&nrp->r_statev4_| ock);

6037 dnl c_updat e(dvp, nm nvp);

6038 } else

6039 mut ex_exi t (&nrp->r_statev4_| ock);

6041 *vVpp = nvp;

6043 exit:

6044 (void) xdr_free(xdr_COVMPOUND4res_clnt, (caddr_t)&res);
6045 kmem f ree(argop, argoplist_size);

6046 (void) check_mt_secinfo(m ->nmi _curr_serv, nvp);

6047 return (e.error);

6048 }

6050 #ifdef DEBUG

6051 void

6052 ?fs4l ookup_dunp_conpound(char *where, nfs_argop4 *argbase, int argcnt)
6053

6054 uint_t i, len;

6055 zonei d_t zoneid = getzoneid();

6056 char *s;

6058 zcm err(zoneld CE_NOTE, "%: dunping cnpd", where);
6059 for (i =0; i < argent; |++) {

6060 nfs_ar gop4 *op = &argbase[i];

6061 switch (op- >argop) {

6062 case OP_CPUTI

6063 case CFLPUTFH

6064 zcmm_err(zoneid, CE_NOTE, "\t op %, putfh",

i);

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098

6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130

br eak;

case OP_PUTROOTFH:
zcmm_err(zonei d, CE_NOTE,
br eak;

case OP_CLOOKUP:
s = op->nfs_argop4_u. opcl ookup. cnane;
zcmm_err (zoneid, CE_NOTE, "\t op %,
br eak;

case OP_LOOKUP:

| ookup %", i

93

"\t op %, putrootfh", i);

> 95

s = utf8_to_str(&op->nfs_argop4_u. opl ookup. obj nane,

& en, NULL);

zcm err(zonel d, CE_NOTE,
kmem free(s, | en)
br eak;

case CP_LCX}(UPP:
zcmm_err(zoneid,
br eak;

case OP_CETFH:
zcmm_err(zoneid,
br eak;

case OP_CGETATTR
zcmm_err(zoneid,
break;

case OP_OPENATTR
zcmm_err (zonei d,
br eak;

defaul t:
zcmm_err(zoneid,

op- >ar gop) ;

br eak;

"\t op %, |ookup %", i

CE_NOTE, "\t op %, |ookupp ..",

CE_NOTE, "\t op %, getfh", i);
CE_NOTE, "\t op %, getattr", i);
CE_NOTE, "\t op %,

CE_NOTE, "\t op %, opcode %", i

P
#endi f

/

® Ok ok ok Sk Rk Ok O 3k R ok b 3k ok Rk SRk Ok % b % O % Ok % k%

nf s4l ookup_setup - constructs a nmulti-|ookup conpound request.

G ven the path "nml/nn2/..

may be created:

./nm", the follow ng conpound requests

Note: Getfh is not be needed because filehandle attr is mandatory, but
is faster, for now

14 _getattrs indicates the type of conpound requested.
LKP4_NO ATTRI BUTE - no attributes (used by secinfo):

conpound { Put*fh; Lookup {nnl}; Lookup {nnR}; Lookup {nm} }

total nunmber of ops is n + 1.

LKP4_LAST_NAMED_ATTR - nul ti-conponent path for a naned
attribute: create | ookups plus one OPENATTR/ GETFH GETATTR
before the | ast conponent, and only get attributes
for the | ast conponent. Note that the second-to-Iast
pat hname conponent is XATTR_RPATH, which does NOT go
over-the-wire as a | ookup.

conpound { Put*fh;
Openattr;

Lookup {nni};
Cetfh; Getattr;

Lookup {nnR};
Lookup {nmm};

... Lookup {nmm-2};
Getfh; Getattr }
and total nunmber of ops is n + 5.

LKP4_LAST_ATTRDIR - multi-conponent path for the hidden naned
attribute directory: create |ookups plus an OPENATTR

openattr", i);

S E

i);

’

it

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 94
6131 * replacing the |ast |ookup. Note that the |ast pathnane
6132 * conponent i s XATTR_RPATH, which does NOT go over-the-wre
6133 * as a | ookup.

6134 *

6135 * conpound { Put*fh; Lookup {nnl}; Lookup {nnR}; Getfh; Getattr;
6136 * Openattr; Getfh; CGetattr }

6137 *

6138 * and total number of ops is n + 5.

6139 *

6140 * LKP4_ALL_ATTRI BUTES - create |ookups and get attributes for internediate
6141 * nodes t oo.

6142 *

6143 * conpound { Put*fh; Lookup {nnml}; Getfh; Getattr;

6144 * Lookup {nn2}; . Lookup {nmm}; Getfh; Getattr }
6145 *

6146 * and total nunber of ops is 3*n + 1.

6147 *

6148 * cases: returns the index in the arg array of the final LOOKUP op, or
6149 * -1 if no LOOKUPs were used.

6150 *

6151 int

6152 nf s4l ookup_setup(char *nm | ookup4_paramt *|ookupargp, int needgetfh)
6153 {

6154 enum | kp4_attr_setup | 4_getattrs = | ookupargp->l4_getattrs;
6155 nfs_argop4 *argbase, *argop;

6156 int arglen, argent;

6157 int n=1; /* nunber of conponents */

6158 int nga =1 /* nunber of Getattr’s in request */

6159 char "\NO0", *s, *p;

6160 int Iookup |dx = —1

6161 int argoplist_size;

6163 /* set | ookuparg response result to 0 */

6164 | ookupar gp- >r esp- >status = NFS4_OK;

6166 /* skip leading "/" or "." e.g. ".//./" if there is */

6167 for (; ; nm+) {

6168 if (*nm!="/" & *nm!=".")

6169 break;

6171 /* ".." is counted as 1 conponent */

6172 if (*nm=="." & *(nm+ 1) !="/")

6173 break;

6174 1

6176 /*

6177 * Find n = nunber of conponents - nmnust be null term nated
6178 * Skip "." conponents.

6179 *

6180 if (*nm!="\0")

6181 for (n =1, s =nm *s !="\0"; s++) {

6182 if ((*s=="/1") & (*(s + 1) !="/") &&
6183 (*(s +1) '="\0) &&

6184 F(*(s + 1) =="." && (*(s +2) =="/" ||
6185 *(s +2) =="'\0)))

6186 n++;

6187 }

6188 el se

6189 n = 0;

6191 /*

6192 */nga i's number of conponents that need Cetfh+GCetattr

6193 *

6194 switch (l4_getattrs) {

6195 case LKP4_NO ATTRI BUTES:

6196 nga = 0;

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 95

6197 br eak;

6198 case LKP4_ALL_ATTRI BUTES:

6199 nga = n;

6200 /*

6201 * Always have at least 1 getfh, getattr pair
6202 */

6203 if (nga == 0)

6204 ngat++;

6205 br eak;

6206 case LKP4_LAST_ATTRD R

6207 case LKP4_LAST _NAMED ATTR:

6208 nga = n+l;

6209 br eak;

6210 }

6212 /*

6213 * |f change to use the filehandle attr instead of getfh
6214 * the following Iine can be del eted.

6215 */

6216 nga *= 2;

6218 /*

6219 * cal cul ate nunber of ops in request as

6220 * header + trailer + |ookups + getattrs

6221 *

6222 argl en = | ookupar gp- >header _| en + | ookupargp->trailer_len + n + nga;
6224 argoplist_size = arglen * sizeof (nfs_argop4);

6225 argop = argbase = kmem al | oc(argoplist_size, KM SLEEP);
6226 | ookupar gp- >ar gsp- >array = argop;

6228 argcnt = | ookupar gp- >header _| en;

6229 argop += argcnt;

6231 /*

6232 * | oop and create a | ookup op and possibly getattr/getfh for
6233 * each conponent. Skip "." conponents.

6234 */

6235 for (s =nm *s !="\0"; s =p) {

6236 /*

6237 * Set up a pathnane struct for each conponent if needed
6238 *

6239 while (*s =="/")

6240 S++;

6241 if (*s =="\0")

6242 br eak;

6244 for (p=s; (*p!="/1") & (*p '="'\0"); p++)
6245 ;

6246 c = *p;

6247 *p = '\0";

6249 if (s[0] =="." && s[1] =="'\0") {

6250 *p = c;

6251 conti nue;

6252 }

6253 if (14 getattrs == LKP4_LAST ATTRDI R &&

6254 strcnp(s, XATTR RPATH) == 0) {

6255 /* getfh XXX may not be needed in future */
6256 ar gop- >argop = OP_CETFH,

6257 ar gop++;

6258 argent ++;

6260 /* getattr */

6261 ar gop- >argop = OP_GETATTR;

6262 argop->nfs_argop4_u.opgetattr.attr_request =

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

6263 | ookupar gp- >ga_bi ts;

6264 ar gop- >nfs_argop4_u. opgetattr.m =

6265 | ookupar gp->ni ;

6266 ar gop++;

6267 ar gcnt ++;

6269 /* openattr */

6270 ar gop- >argop = OP_COPENATTR;

6271 } else if (l4_getattrs == LKP4_LAST_NAMED ATTR &&
6272 strcnp(s, XATTR_RPATH) == 0) {

6273 /* openattr */

6274 ar gop- >argop = OP_OPENATTR;

6275 ar gop++;

6276 argent ++;

6278 /* getfh XXX may not be needed in future */
6279 ar gop- >argop = OP_CETFH,

6280 ar gop++;

6281 argcnt ++;

6283 /* getattr */

6284 ar gop- >argop = OP_CETATTR,

6285 ar gop- >nf s_argop4_u. opgetattr. attr_request
6286 | ookupar gp- >ga_bits;

6287 argop- >nfs_argop4_u. opgetattr.m =

6288 | ookupar gp- >mi ;

6289 ar gop++;

6290 ar gent ++;

6291 *p = c;

6292 conti nue;

6293 } else if (s[0] =="'." && s[1] =="." && s[2] == "\
6294 /* | ookupp */

6295 ar gop- >argop = OP_LOOKUPP;

6296 } else {

6297 /* | ookup */

6298 ar gop- >argop = OP_LOOKUP;

6299 (void) str_to_utf8(s,

6300 &ar gop- >nf s_ar gop4_u. opl ookup. obj nane) ;
6301 }

6302 | ookup_i dx = argcnt;

6303 ar gop++;

6304 ar gcnt ++;

6306 *p = c;

6308 if (14_getattrs == LKP4_ALL_ATTRI BUTES) {

6309 /* getfh XXX may not be needed in future */
6310 ar gop- >argop = OP_CETFH;

6311 ar gop++;

6312 ar gent ++;

6314 /* getattr */

6315 argop->argop = OP_GETATTR;

6316 ar gop- >nfs_argop4_u. opgetattr.attr_request
6317 | ookupar gp- >ga_bi ts;

6318 ar gop- >nfs_argop4_u. opgetattr.m =

6319 | ookupar gp->m ;

6320 ar gop++;

6321 ar gent ++;

6322 }

6323 1

6325 if ((l4_getattrs != LKP4_NO ATTRI BUTES) &&

6326 ((14_getattrs != LKPA_ALL_ATTRI BUTES) || (I ookup_idx <
6327 if (needgetfh) {

6328 /* stick in a post-I|ookup getfh */

0) {

0))) {

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

6329 ar gop- >argop = OP_CETFH,
6330 ar gent ++;

6331 ar gop++;

6332 }

6333 /* post-| ookup getattr */

6334 ar gop- >argop = OP_CETATTR,

6335 ar gop->nfs_argop4_u. opgetattr.attr_request
6336 | ookupar gp- >ga_bi t s;

6337 ar gop- >nfs_argop4_u. opgetattr.m
6338 ar gent ++;

6339

6340 argcnt += | ookupargp->trailer_|en;

6341 | ookupar gp- >argsp- >array_l en = argcnt;
6342 | ookupar gp- >argl en = argl en;

6344 #ifdef DEBUG

6345 if (nfs4_client_| ookup_debug)

6346 nf s4l ookup_dunp_conpound(" nf s4l ookup_set up",
6347 #endi f

6349 return (I ookup_idx);

6350 }

6352 static int

6353 ?f sdopenattr(vnode_t *dvp, vnode_t **avp, int cflag,
6354

6355 COVPOUNDA4ar gs_cl nt args;

6356 COVPOUNDAT es_cl nt res

6357 CETFH4r es *gf _res = NULL

6358 nfs_argop4 argop[4] ;

6359 nfs_resop4 *resop = NULL;

6360 nfs4_sharedf h_t *sfhp;

6361 hrtime_t t;

6362 nfs4_error_t e;

6364 rnode4_t *drp;

6365 int doqueue = 1;

6366 vnode_t *vp;

6367 int needrecov = 0;

6368 nfs4_recov_state_t recov_state;

6370 ASSERT(nfs_zone() == VIOM 4(dvp)->m _zone);
6372 *avp = NULL;

6373 recov_state.rs_flags = 0;

6374 recov_state.rs_numretry_despite_err
6376 recov_retry:

6377 /* COVPOUND: putfh, openattr, getfh,
6378 args.array_len = 4;

6379 args.array = argop;

6380 args.ctag = TAG OPENATTR,

6382 e.error = nfs4_start_op(VTIOM 4(dvp),
6383 if (e.error)

6384 return (e.error);

6386 drp = VIOR4(dvp)

6388 /* putfh */

6389 argop[0] . argop = OP_CPUTFH,

6390 argop[0] . nfs_ar gop4_u. opcput f h. sfh

6392 /* openattr */

6393 argop[1] . argop = OP_OPENATTR,

6394 argop[1] . nf s_ar gop4_u. opopenattr.createdir

= | ookupar gp->m ;

NULL, &recov_state);

= (cflag ? TRUE :

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

6396
6397

6399
6400
6401
6402

6404
6405
6406

6408
6410

6412
6413
6414

6416
6417

6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430

6432
6433
6434
6435

6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451

6453
6454
6455
6456

6458
6459
6460

/* getfh */
argop[2].argop = OP_GETFH,

/* getattr */

argop[3] .argop = OP_CGETATTR

argop[3] . nfs_argop4_u. opgetattr.attr_request = NFS4_VATTR_MASK;
argop|[3] . nfs_argop4_u. opgetattr.m = VIOM 4(dvp);

NFS4_DEBUG(nf s4_cl i ent _cal | _debug, (CE_NOTE,
"nfsd4openattr: % call, drp %", needrecov ? "recov" : "first",
rnodedi nfo(drp)));

t = gethrtinme();
rfsdcal | (VTOM 4(dvp), &args, &es, cr, &Joqueue, 0, &e);

needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp);
if (needrecov) {
bool _t abort;

NFS4_DEBUG(nf s4_cl i ent _recov_debug, (CE_NOTE,
"nf sdopenattr: initiating recovery\n"));

abort = nfs4_start_recovery(&e,
VTOM 4(dvp), dvp, NULL, NULL, NULL
oP CPENATTR NULL, NULL NULL)
nfs4_end_op(VTOM 4(dvp) dvp NULL, &recov_state, needrecov);
if (Te.error)
e.error = geterrno4(res.status);
(voi d) xdr_free(xdr_COWOUND4res_cl nt, (caddr_t)&res);

}
i f (abort == FALSE)

goto recov_retry;
return (e.error);

}

if (e.error) {
nfs4_end_op(VTOM 4(dvp), dvp, NULL, &recov_state, needrecov);
return (e.error);

}
if (res.status) {
/*

* |f OTWerrro is NOTSUPP, then it shoul d be
* translated to EINVAL. Al Solaris file system
* inplenmentations return EINVAL to the syscall |ayer
* when the attrdir cannot be created due to an
* inplementation restriction or noxattr mount option.
*

/

if (res.status == NFS4ERR_NOTSUPP) {
mut ex_ent er (&dr p- >r _st at el ock) ;
if (drp->r_xattr_dir)
VN_RELE(dr p->r_xattr_dir);
VN_HOLD(NFS4_XATTR_DI R_NOTSUPP) ;
drp->r_xattr_dir = NFS4_XATTR DI R_NOTSUPP;
mut ex_exi t (&dr p- >r_st at el ock);

e.error = EI NVAL;
} else {

e.error = geterrno4(res. status);
}

if (e.error) {
(voi d) xdr_free(xdr_COWOUND4res_clnt, (caddr_t)&res);
nfs4_end_op(VTOM 4(dvp), dvp, NULL, &recov_state,

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

6461
6462
6463
6464

6466
6467

6469
6470

6472
6473
6474
6475
6476
6477
6478
6479

6481
6482
6483
6484
6485

6487
6488

6490
6491
6492

6494

6496
6497
6498
6499
6500

6502
6503
6504
6505
6506
6507
6508

6510
6512
6514

6516
6517

6519
6520
6521
6522
6523
6524
6525
6526

needr ecov) ;
return (e.error);

}

resop = &es.array[0]; /* putfh res */
ASSERT(resop->nfs_resop4_u. opgetfh.status == NFS4_OK);

resop = &es.array[1]; /* openattr res */
ASSERT(resop->nfs_resop4_u. opopenattr.status == NFS4_CK);

resop = &es.array[2]; /* getfh res */
gf _res = &resop->nfs_resop4_u. opgetfh;
if (gf _res->object.nfs_fh4_len == 0) {
*avp = NULL;
(voi d) xdr_free(xdr_COVMPOUND4res_cl nt,
nfs4_end_op(VTOM 4(dvp),
return (ENCENT);

(caddr_t)&res);

}

sfhp = sfh4_get (&gf _res->object, VIOM 4(dvp));

vp = makenfs4node(sfhp, é&res. array[3] nfs_resop4_u.opgetattr.ga_res,
dvp >v_vfsp, t, cr, dvp,
fn_get (VTOSV(dvp) - >sv_nane, XATTR_RPATH, sfhp));

sfh4_ reI e(&sfhp);

if (e.error)
PURGE_ATTRCACHE4(vp) ;

mut ex_ent er (&p->v_| ock);
Vp- >V flag | = V_XATTRDI R,
mut ex_exi t (& p->v_| ock) ;

*avp = vp;

mut ex_ent er (&dr p- >r _st at el ock) ;

if (drp->r_xattr_dir)
VN_RELE(drp->r_xattr_dir);

VN_HOLD(vp) ;

dr p- >r_xattr_di r = vp;

/*

* I nvalidate pathconf4 cache because r_xattr_dir is no |onger
* NULL. xattrs could be created at any tinme, and we have no
* way to update pc4_xattr_exists in the base object if/when
*/it happens.

*

dr p->r _pat hconf.pc4_xattr_valid = 0;
mut ex_exi t (&dr p->r _st at el ock) ;
nfs4_end_op(VTOM 4(dvp), dvp, NULL, & ecov_state, needrecov);

(void) xdr_free(xdr_COVPOUND4res_clnt, (caddr_t)&res);

return (0);
}
/* ARGSUSED */
static int

nfs4_create(vnode_t *dvp, char *nm struct vattr *va, enum vcexcl exclusive,

int node, vnode_t **vpp, cred_t *cr,
vsecattr_t *vsecp)

int error;
vnode_t *vp = NULL;

dvp, NULL, &recov_state, needrecov);

int flags, caller_context_t *ct,

new usr/ src/ uts/ comon/fs/nfs/nfs4_vnops.c 100
6527 rnode4_t *rp

6528 struct vattr vattr;

6529 rnode4_t *drp;

6530 vnode_t *tenpvp;

6531 enum cr eat enpbde4 cr eat enpde;

6532 bool _t must_trunc = FALSE;

6533 int truncating = O;

6535 if (nfs_zone() != VIOM 4(dvp)->m _zone)

6536 return (EPERM ;

6537 if (exclusive == EXCL 3& (dvp->v_flag & V_XATTRDIR)) {

6538 return (EINVAL);

6539 }

6541 /* . and .. have special neaning in the protocol, reject them */
6543 if (nn{0] =="." && (nn{1] == "\0" || (nn{1] =="." && nn{2] == '\0")))
6544 return (EISDIR);

6546 drp = VIOR4(dvp);

6548 if (nfs_rw enter_sig(&drp->r_rw ock, RWWRI TER, | NTR4(dvp)))
6549 return (EINTR);

6551 top:

6552 /*

6553 * W nake a copy of the attributes because the caller does not
6554 * expect us to change what va points to.

6555 */

6556 vattr = *va;

6558 I*

6559 * |f the pathname is "", then dvp is the root vnode of

6560 * a renote file mounted over a local directory.

6561 * Al that needs to be done is access

6562 * checking and truncation. Note that we avoid doi ng

6563 * open W create because the parent directory m ght

6564 * be in pseudo-fs and the open would fail.

6565 */

6566 if (*nm=="\0") {

6567 error = 0;

6568 VN_HOLD(dvp) ;

6569 vp = dvp;

6570 must _trunc = TRUE;

6571 } else {

6572 /*

6573 * W need to go over the wire, just to be sure whether the
6574 * file exists or not. Using the DNLC can be dangerous in
6575 */thi s case when maki ng a decision regarding existence.
6576 *

6577 error = nfs4l ookup(dvp, nm &vp, cr, 1);

6578 }

6580 if (exclusive)

6581 creat enbde = EXCLUSI VE4;

6582 el se

6583 creat ennde = GUARDED4;

6585 /*

6586 * error would be set if the file does not exist on the

6587 * server, so lets go create it.

6588 */

6589 if (error) {

6590 goto create_otw

6591 1

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 101

6593 /*

6594 * File does exist on the server

6595 */

6596 if (exclusive == EXCL)

6597 error = EEXI ST,

6598 else if (vp->v_type == VDIR & (node & VWRI TE))

6599 error = ElISD R;

6600 el se {

6601 /*

6602 * |f vnode is a device,

6603 */

6604 if (ISVDEV(vp->v_type)) {

6605 tenpvp = vp;

6606 vp = specvp(vp,

6607 VN_RELE(t enpvp) ;

6608 }

6609 if (!(error = VOP_ACCESS(vp,

6610 if ((vattr.va_mask & AT_SI Z

6611 vp->v_type == VREG {

6612 rp = VIOR4(vp);

6613 /*
*
*
*

create special vnode.

vp->v_rdev, vp->v_type, cr);

node, 0, cr, ct))) {
E) &&

6614
6615
6616
6617
6618
6619
6620
6621
6622
6623 }

6625
6626
6627
6628
6629
6630 }

6632

Check here for large file handl ed

by LF-unaware process (as
ufs_create() does)

*

if (!(flags & FOFFMAX)) {
mut ex_ent er (& p->r _st at el ock) ;
if (rp->r_size > MAXOFF32_T)
error = EOVERFLOW
mut ex_exi t (& p->r_statel ock);

/* if error is set then we need to return */
if (error) {

nfs_rw_ exit(&drp->r_rw ock);

VN _RELE(vp) ;

return (error)

if (must_trunc) {

6633 vattr.va_mask = AT_SI ZE;

6634 error = nfs4setattr(vp, &attr, 0, cr
6635 NULL) ;

6636 } else {

6637 /

6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658 }

we know we have a regular file that already
exi sts and we may end up truncating the file
as a result of the open_otw, so flush out
any dirty pages for this file first.

/

EE

if (nfs4_has_pages(vp) &&
((rp->r_flags & R4ADI RTY) ||
rp->r_count > 0 ||
rp->r_mapcnt > 0)) {
error = nfs4_putpage(vp,
(offset_t)0, 0, O, cr, ct);
if (error & (error == ENGSPC ||
error == El)) {
mut ex_ent er (
& p->r_st at el ock);
if (Irp->r_error)
rp->r_error =
error;
mut ex_exit(
& p->r _st at el ock) ;

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

6659 }
6660 vatt
6661

6662 vatt
6663

6664

6665

6666 }
6667 }

6668 }

6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681 }

}
nfs_rw_ exit(&drp->r_rw ock);
if (error) {
VN_RELE(vp) ;
} else {
vnode_t *tvp;
rnoded_t *trp;
tvp = vp;
if (vp- >v_type == VREG {
trp = VIOR4A(vp);
if (IS SHADOA(Vp, t

6683
6684
6685
6686
6687
6688 }

6690
6691
6692

if (must_trunc) {
/*
* existing file got
*/

vnevent _create(tvp,

*Vpp = vp;
return (error);

6694 create_otw

r.va_mask = (AT_SI ZE |
AT_TYPE | AT_MODE);
r.va_type = VREG

creat ennde = UNCHECKED4;
truncating = 1;
goto create_otw

truncated, notify.

ct);

excl usive, node, vpp, cr);

a regular file, then flags wll
we nust set at |east one
it’s open(O_CREAT) driving

then either FREAD, FWRI TE, or FRDWR has al ready been

by app).

6695 dnl c_renove(dvp, nm;

6697 ASSERT(vattr.va_mask & AT_TYPE);

6699 /*

6700 * |f not aregular file let nfs4nknod() handle it.
6701 */

6702 if (vattr.va_type != VREQ {

6703 error = nfsdnknod(dvp, nm &vattr,
6704 nfs_rw exit(&drp->r_rw ock);

6705 return (error);

6706 1

6708 /*

6709 * It _is_aregular file.

6710 */

6711 ASSERT(vattr.va_mask & AT_MODE);

6712 i f (MANDMODE(vattr.va_node)) {

6713 nfs_rw exit(&drp->r_rw ock);

6714 return (EACCES);

6715 1

6717 /*

6718 * |f this happens to be a nmknod of

6719 * have neither FREAD or FWRI TE. However,
6720 * for the call to nfsd4open_otw. |If

6721 * nfs4_create,

6722 * set (based on opennpde specified

6723 */

6724 if ((flags & (FREAD|FWRITE)) == 0)

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 103 new usr/src/uts/comon/fs/nfs/nfs4_vnops.c
6725 flags | = (FREAD| FWRI TE); 6791 trp = VIOR4(tvp);
6792 if (1 S_SHADOWtvp, trp))
6727 error = nfsd4open_otw(dvp, nm &attr, vpp, cr, 1, flags, createnode, 0); 6793 tvp = RTOJ4(trp);
6794 vnevent _create(tvp, ct);
6729 if (vp l- NULL) { 6795
6730 * if create was successful, throw away the file' s pages */ 6796 return (error);
6731 |f (Yerror & (vattr.va_ mask & AT _SIZE)) 6797 }
6732 nfs4 | nvaI i dat e_pages(vp, (vattr.va_size & PAGEMASK),
6733 6799 /*
6734 /* rel ease the Iookup hol d */ 6800 * Create conpound (for nkdir, nmknod, symink):
6735 VN_ ELE(vp) ; 6801 * { Putfh <dfh>; Create; Getfh; Getattr }
6736 vp = NULL; 6802 * It's okay if setattr failed to set gid - this is not considered
6737 } 6803 * an error, but purge attrs in that case.
6804 */
6739 I* 6805 static int
6740 * validate that we opened a regular file. This handl es a m sbehaving 6806 cal |l _nfs4_create_req(vnode_t *dvp, char *nm void *data, struct vattr *va,
6741 * server that returns an incorrect FH. 6807 vnode_t **vpp, cred_t *cr, nfs_ftype4 type)
6742 */ 6808 {
6743 if ((error == 0) && *vpp && (*vpp)->v_type = VREG { 6809 int need_end_op = FALSE;
6744 error = El SDIR; 6810 COVPOUND4ar gs_cl nt args;
6745 VN_RELE(*vpp) ; 6811 COVPOUND4res_clnt res, *resp = NULL;
6746 } 6812 nfs_argop4 *argop;
6813 nfs_resop4 *resop;
6748 l* 6814 int doqueue;
6749 * |If this is not an exclusive create, then the CREATE 6815 mtinfod_t *m;
6750 * request will be made with the GUARDED node set. This 6816 rnode4_t *drp = VTOR4(dvp);
6751 * means that the server will return EEXIST if the file 6817 change_i nf 04 *cinfo;
6752 * exists. The file could exist because of a retransmtted 6818 CETFH4res *gf _res;
6753 * request. In this case, we recover by starting over and 6819 struct vattr vattr;
6754 * checking to see whether the file exists. This second 6820 vnode_t *vp;
6755 * tinme through it should and a CREATE request will not be 6821 fattr4 *crattr;
6756 * sent. 6822 bool _t needrecov = FALSE;
6757 * 6823 nfs4_recov_state_t recov_state;
6758 * This handl es the problem of a dangling CREATE request 6824 nfs4_sharedfh_t *sfhp = NULL;
6759 * which contains attributes which indicate that the file 6825 hrtime_t t;
6760 * should be truncated. This retransmtted request coul d 6826 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS
6761 * possibly truncate valid data in the file if not caught 6827 int nunops, argoplist_size, setgid flag, i dx _create, idx_fattr;
6762 * by the duplicate request mechanismon the server or if 6828 dirattr_info_t dinfo, *di nf op;
6763 * not caught by other neans. The scenario is: 6829 servinfod_t *svp;
6764 * 6830 bi t map4 supp_attrs;
6765 * Cient transmts CREATE request with size = 0
6766 * Client tines out, retransmts request. 6832 ASSERT(type == NFADIR || type == NFALNK || type == NF4BLK ||
6767 * Response to the first request arrives fromthe server 6833 type == NF4CHR || type == NF4SOCK || type == NF4FI FO);
6768 * and the client proceeds on.
6769 * Client wites data to the file. 6835 m = VIOM 4(dvp);
6770 * The server now processes retransmtted CREATE request
6771 * and truncates file. 6837 /*
6772 * 6838 * Make sure we properly deal with setting the right gid
6773 * The use of the GUARDED CREATE request prevents this from 6839 * on a new directory to reflect the parent’s setgid bit
6774 * happeni ng because the retransmtted CREATE would fail 6840 */
6775 * with EEXI ST and woul d not truncate the file. 6841 setgid_flag = 0;
6776 */ 6842 if (type == NF4DI R)
6777 if (error == EEXI ST && exclusive == NONEXCL) { 6843 struct vattr dva;
6778 #ifdef DEBUG
6779 nfs4_create_m sses++; 6845 va- >va_node &- ~VSA D;
6780 #endif 6846 dva.va_mask = AT_MODE | AT_G D
6781 goto top; 6847 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) {
6782 }
6783 nfs_rw eX|t(&drp >r_rw ock); 6849 /*
6784 if (truncating & !error && *vpp) { 6850 * |f the parent’s directory has the setgid bit set
6785 vnode_t *tvp; 6851 * _and_ the client was able to get a valid mapping
6786 rnoded_t *trp; 6852 * for the parent dir’s owner_group, we want to
6787 /* 6853 * append NVERI FY(owner _group == dva.va_gid) and
6788 * existing file got truncated, notify. 6854 * SETTATTR to the CREATE conpound.
6789 */ 6855 *
6790 tvp = *vpp; 6856 if (m->m_flags & M4_GRPID || dva.va_npde & VSG D)

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 105

6857 setgid_flag = 1;

6858 va- >va_node |: VSG D,

6859 if (dva.va_gid != G D _NOBODY) {
6860 va- >va_| mask | = AT_G D;
6861 va->va_gid = dva.va_gid;
6862 }

6863 }

6864 }

6865 }

6867 I*

6868 * Create ops:

6869 * O:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new)
6870 * 5:restorefh(dir) 6:getattr(dir)

6871 *

6872 * if (setgid)

6873 * O:putfh(dir) 1:create 2:getfh(new) 3:getattr(new)
6874 * 4:savef h(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new)
6875 * 8:nverify 9:setattr

6876 */

6877 if (setgid_ flag) {

6878 nunops = 0,

6879 i dx create = i

6880 idx_fattr = 3;

6881 } else {

6882 nunmops = 7;

6883 idx_create = 2;

6884 idx_fattr = 4;

6885 }

6887 ASSERT(nfs_zone() == m->m _zone);

6888 if (nfs_rw enter_sig(&rp->r_rw ock, RWWR TER, |NTR4(dvp))) {
6889 return (EINTR);

6890

6891 recov_state.rs_flags = 0;

6892 recov_state.rs_numretry_despite_err = O;

6894 argopl i st_size = nunmops * sizeof (nfs_argop4);

6895 argop = knmem al | oc(argoplist_size, KM SLEEP);

6897 recov_retry:

6898 if (type == NF4LNK)

6899 args. ctag = TAG SYM.I NK;

6900 else if (type == NF4DI R

6901 args.ctag = TAG MKDI R

6902 el se

6903 args. ctag = TAG_MKNOD;

6905 args.array_|l en = nunops;

6906 args.array = argop;

6908 if (e.error = nfs4_start_op(m, dvp, NULL, & ecov_state)) {
6909 nfs_rw_exit (&drp->r rwi ock) ;

6910 kmem free(argop, argoplist_size);

6911 return (e.error);

6912 }

6913 need_end_op = TRUE;

6916 /* 0: putfh dlrectory */

6917 argop[0] . argop = OP_CPUTFH,

6918 argop[0] . nfs_ar gop4_u. opcputfh sfh = drp->r_fh;

6920 /* 1/ 2: Create object */

6921 argop[i dx_create].argop = OP_CCREATE;

6922 argop[idx_create].nfs_argop4_u. opccreate. cname = nm

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

6923 argop[i dx_create].nfs_argop4_u.opccreate.type = type;

6924 if (type == NF4LNK) {

6925 /*

6926 * symlink, treat name as data

6927 */

6928 ASSERT(data != NULL);

6929 argop[idx_create].nfs_argop4_u. opccreate.ftyped_u.clinkdata
6930 (char *)data;

6931 }

6932 if (type == NF4BLK || type == NF4CHR) {

6933 ASSERT(data != NULL);

6934 argop[i dx_create]. nfs_ar gop4_u. opccreate. ftyped_u. devdat a
6935 *((specdat a4 *)data);

6936 }

6938 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs;
6940 svp = drp->r_server;

6941 (void) nfs_rw enter_sig(&vp->sv_| ock, RWREADER, 0);

6942 supp_attrs = svp->sv_supp_attrs;

6943 nfs_rw exit(&vp->sv_| ock);

6945 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) {
6946 nfs_rw exit(&drp->r_rw ock);

6947 nfs4_end_op(m, dvp, NULL, &recov_state, needrecov);

6948 e.error = EINVAL;

6949 kmem free(argop, argoplist_size);

6950 return (e.error);

6951 }

6953 /* 2/3: getfh fh of created object */

6954 ASSERT(i dx_create + 1 == idx_fattr - 1);

6955 argop[idx_create + 1].argop = OP_GETFH;

6957 /* 3/4: getattr of new obj ect */

6958 argop[idx_fattr].argop = OP_GETATTR,

6959 argop[idx_fattr].nfs_argop4_u.opgetattr. attr _request = NFS4_VATTR_MASK;
6960 argop[idx_fattr].nfs_argop4_u.opgetattr.m = m;

6962 if (setgid_flag) {

6963 vattr_t _v;

6965 argop[4] . argop = OP_SAVEFH;

6967 argop[5] . argop = OP_CPUT

6968 argop[5] . nfs_argop4_u. opcputfh sfh = drp->r_fh;

6970 argop[6] . argop = OP_CETATTR,

6971 argop[6] . nfs_argop4_u. opgetattr. attr _request = NFS4_VATTR_MASK;
6972 argop[6] . nf s_argop4_u. opgetattr. =m;

6974 argop[7] . argop = OP_RESTOREFH,

6976 /*

6977 * nverify

6978

6979 * XXX - Revisit the last argunent to nfs4_end_op()

6980 once 5020486 is fixed.

6981 */

6982 v.va_mask = AT_Q D

6983 v.va_gid = va->va_gid;

6984 if (e.error = nfsdargs_verify(&argop[8], & v, OP_NVER FY,
6985 supp_attrs)) {

6986 nfs4_end_op(m, dvp, *vpp, & ecov_state, TRUE);
6987 nfs_rw eX|t(&drp >r_rw ock);

6988 nfs4 fattr4 free(crattr);

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

6989
6990
6991

6993
6994
6995
6996
6997
6998
6999
7000
7001
7002

7004
7005
7006
7007
7008
7009
7010
7011
7012
7013

7015

7017
7018
7019
7020

7022

7024
7025
7026

7028
7029
7030
7031
7032
7033

7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049

7051
7053

kmem f ree(argop, argoplist_size);
return (e.error);

}

/*
* setattr
*
* We _know_ we're not nessing with AT_SIZE or AT_XTI ME,
* so no need for stateid or flags. Also we specify NULL
*

rp since we're only interested in setting owner_group
* attributes.
*/

nf sdargs_ setattr(&argop[g] & v, NULL, O, NULL, cr, supp_attrs,

&e.error,

if (e.error) {

nfs4_end_op(m, dvp, *vpp, & ecov_state, TRUE);
nfs_rw eX|t(&drp >r_rw ock);

nfs4 fattra free(crattr)
nfsdargs_verify_free(&ar gop[8]);
kmem f ree(argop, argoplist_size);

return (e.error);

} else {
argop[1] . argop = OP_SAVEFH;
argop[5] . argop = OP_RESTOREFH,
argop[6] . argop = OP_GETATTR,
argop[6] . nfs_argop4_u. opgetattr. attr _request = NFS4_VATTR_MASK;
argop[6] . nfs_argop4_u. opgetattr. =m;

}
dnl c_renove(dvp, nm;

doqueue = 1;
t = gethrtinme();
rfsdcall (m, &args, &es, cr, &oqueue, 0, &e);

needrecov = nfs4_needs_recovery(&e, FALSE, m ->m _vfsp);
if (e.error)
PURCGE_ATTRCACHE4(dvp) ;
if (!needrecov)
goto out;

}

if (needrecov) {
if (nfsd4_start_recovery(&e, m, dvp, NULL, NULL, NULL,
OP_CREATE, NULL, NULL, NULL) == FALSE)
nfs4_end_op(m, dvp, NULL, &recov_state,
needrecov)

need_end_op = FALS

nfs4_fattr4 free(crattr)

if (setgid_flag) {
nfsdargs_verify_free(&argop[8]);
nf s4args_setattr_free(&argop[9]);

}
(void) xdr_free(xdr_COVMPOUND4res_clnt, (caddr_t)&res);
goto recov_retry;

}
resp = &res;

if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) {

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

7055
7056

7058

7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087

7089
7090

7092
7093

7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120

108

if (res.status == NFS4ERR_BADOMER)
nfs4 Iog badowner(m OP_CREATE) ;

e.error = geterrno4(res.status);

/
This check is left over fromwhen create was inpl enmented
using a setattr op (instead of createattrs). |If the
putfh/create/getfh failed, the error was returned. |f

setattr/getattr failed, we keep going.

It might be better to get rid of the GETFH al so, and j ust
do PUTFH CREATE/ GETATTR since the FH attr is mandat ory.
Then if any of the operations failed, we could return the
* error now, and renopve much of the error code bel ow.
*/
if (res.array_len <= idx_fattr) {

/*

* ok % ok ok b 3k

* Either Putfh, Create or Getfh fail ed.
*
/
PURGE_ATTRCACHE4(dvp) ;
/*

* nfs4_purge_stale_fh() nmay generate otw calls through
* nfs4_invalidate_pages. Hence the need to call
* nfs4_end_op() here to avoid nfs4_start_op() deadl ock.
*

/

nfs4_end_op(m, dvp, NULL, & ecov_state,
needr ecov) ;

need_end_op = FALSE;

nfs4_purge_stale_fh(e.error, dvp, cr);

goto out;

}

resop = &es.array[idx_create]; /* create res */
cinfo = & esop->nfs_resop4_u. opcreate. ci nfo;

resop = &es.array[idx_create + 1]; /* getfh res */
gf _res = &resop->nfs_resop4_u. opgetfh;

sfhp = sfh4_get (&gf _res->object, m);
if (e.error) {
*vpp = vp = nakenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp,
fn_get (VTOSV(dvp) - >sv_nane, nm sfhp));
if (vp->v_type == VNON)
)/attr.va_mask = AT_TYPE;
*
* Need to call nfs4_end_op before nfs4getattr to avoid
* potential nfs4_start_op deadl ock. See RFE 4777612.
*
/

nfs4_end_op(m, dvp, NULL, &recov_state,
needr ecov) ;
need_end_op = FALSE;
e.error = nfs4getattr(vp, &attr, cr);
if (e.error) {
VN_RELE(vp) ;
*vpp = NULL
goto out;

vp->v_type = vattr.va_type;

e.error = 0;
} else {
*vpp = vp = nakenfs4node(sf hp,
& es.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res,
dvp->v_vfsp, t, cr,

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

7121
7122

7124
7125
7126
7127
7128
7129
7130
7131
7132
7133

7135
7136

7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150

7152
7153
7154

7156
7157
7158
7159
7160
7161
7162
7163
7164

7166

7168
7169
7170
7171
7172
7173
7174
7175

7177
7178
7179
7180
7181
7182

7184
7185
7186

dvp, fn_get(VTOSV(dvp)->sv_nanme, nm sfhp));

}
| *

* | f compound succeeded, then update dir attrs
*
/

if (res.status == NFS4_OK) {

dinfo.di _garp = &es.array[6].nfs_resop4_u.opgetattr.ga_res;

dinfo.di _cred = cr;
dinfo.di_time_call
di nfop = &di nfo;

=1,

} else
di nfop = NULL;

/* Update directory cache attribute, readdir and dnlc caches */

nf s4_updat e_di rcaches(ci nfo, dvp, vp, nm dinfop);
out:
if (sfhp !'= NULL)
sfh4_rel e(&sfhp);
nfs_rw exit(&drp->r_rw ock);
nfs4d fattr4 free(crattr);
if (setgid_flag)
nfsdargs_verify_free(&argop[8]);
nfsdargs_setattr_free(&rgop[9]);
}
if (resp)
(voi d) xdr_free(xdr_COVPOUND4res_clnt, (caddr_t)resp);
if (need_end_op)
nfs4_end_op(m, dvp, NULL, &recov_state, needrecov);
kmem free(argop, argoplist_size);
return (e.error);
}
/* ARGSUSED */
static int

nf s4nknod(vnode_t *dvp, char *nm struct vattr *va, enum vcexcl exclusive,

int node, vnode_t **vpp, cred_t *cr)
{
int error;
vnode_t *vp;
nfs_ftype4d type;
specdat a4 spec, *specp = NULL;

ASSERT(nfs_zone() == VIOM 4(dvp)->m _zone);

switch (va->va_type) {

case VCHR:

case VBLK:
type = (va->va type == VCHR) ? NF4CHR :
spec. specdatal = get rra] or(va->va_rdev);
spec. specdat a2 = get mi nor (va->va_rdev);
specp = &spec;
br eak;

NF4BLK;

case VFI FO
type = NF4FI FO
br eak;

case VSOCK:
type = NF4SOCK;
br eak;

defaul t:

}

return (EINVAL);

new usr/ src/ uts/ comon/fs/nfs/nfs4_vnops.c 110
7188 error = call_nfs4_create_req(dvp, nm specp, va, &p, cr, type);
7189 if (error) {

7190 return (error);

7191 }

7193 /*

7194 * This might not be needed any nore; special case to deal
7195 * with problematic v2/v3 servers. Since create was unabl e
7196 * to set group correctly, not sure what hope setattr has.
7197 */

7198 if (va->va_gid != VTCR4(vp) = _attr.va_gid) {

7199 va->va_mask = AT_GQ D

7200 (voi d) nfs4setattr(vp, va, 0, cr, NULL);

7201 }

7203 *

7204 * |f vnode is a device create special vnode

7205 */

7206 if (ISVDEV(vp->v_type))

7207 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
7208 VN_RELE(vp) ;

7209 } else {

7210 *Vpp = vp;

7211

7212 return (error);

7213 }

7215 [*

7216 * Renpve requires that the current fh be the target directory.
7217 * After the operation, the current fh is unchanged.

7218 * The conpound op structure is:

7219 * PUTFH(t argetdir), REMOVE

7220 *

7221 * Weirdness: if the vnode to be renoved is open

7222 * we renane it instead of renpbving it and nfs_inactive

7223 * will renpve the new nane.

7224 *|

7225 | * ARGSUSED */

7226 static int

7227 ?fs4_rerr0ve(vnode_t *dvp, char *nm cred_t *cr, caller_context_t *ct, int flags)
7228

7229 COVPOUND4ar gs_cl nt args;

7230 COVWPOUNDAres_clnt res, *resp = NULL

7231 REMOVE4res *rmres

7232 nfs_argop4 argop[3];

7233 nfs_resop4 *resop;

7234 vnode_t *vp;

7235 char *tnpnaneg;

7236 int doqueue;

7237 mtinfo4_t *m;

7238 rnode4_t *rp;

7239 rnode4_t *drp;

7240 int needrecov = 0;

7241 nfs4_recov_state_t recov_state;

7242 int isopen;

7243 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };

7244 dirattr_info_t dinfo;

7246 if (nfs_zone() != VIOM 4(dvp)->ni _zone)

7247 return (EPERM;

7248 drp = VIOR4(dvp);

7249 if (nfs_rw_ent er_si g(&Jrp->r_rw ock, RWWR TER, | NTR4(dvp)))
7250 return (EINTR);

7252 e.error = nfs4l ookup(dvp, nm &vp, cr, 0);

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 111

7253
7254
7255
7256

7258
7259
7260
7261
7262

7264
7265
7266
7267
7268

7270

7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288

7290
7291
7292
7293
7294
7295
7296
7297
7298

7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318

if (e.error) {
nfs_rw exit(&drp->r_rw ock);
return (e.error);

}

if (vp->v_type == VDIR) {
VN_RELE(vp) ;
nfs_rw_ exit(&drp->r_rw ock);
return (EISDIR);

}

/*

* First just renove the entry fromthe name cache, as it
* is nost likely the only entry for this vp.

*/

dnl c_renove(dvp, nm;

rp = VIOR4(vp);

/*

* For regular file types, check to see if the file is open by |ooking
* at the open streans.

* For all other types, check the reference count on the vnode. Since
* they are not opened OTWthey never have an open stream

*

* |f the file is open, rename it to .nfsXXXX

*

if (vp->v_type != VREG {

If the file has a v_count > 1 then there may be nore than one
entry in the nane cache due nmultiple Iinks or an open file,
but we don’t have the real reference count so flush all

/possi bl e entries.

-
* Ok ok ok * F|

if (vp->v_count > 1)
dnl c_purge_vp(vp);
/*
* Now we have the real reference count.

*
/
i sopen = vp->v_count > 1;
} else {
mut ex_ent er (& p->r _os_| ock) ;
isopen = list_head(& p->r_open_streans) != NULL;

mut ex_exi t (& p->r_os_| ock);

}

mut ex_ent er (& p->r_st at el ock) ;
if (isopen &&
(rp->r_unldvp == NULL || strcnp(nm rp->r_unlnane) == 0)) {
mut ex_exi t (& p->r_statel ock);
t npnane = newnane();
e.error = nfs4renane(dvp, nm dvp, tnpnane, cr, ct);
if (e.error)
kmem f ree(t mpname, MAXNAMELEN) ;
el se {
mut ex_ent er (& p- >r_st at el ock);
if (rp->r_unldvp == NULL) {
VN_HOLD(dvp) ;
rp->r_unldvp = dvp;
if (rp->r_unlcred !'= NULL)
crfree(rp->r_unlcred);
crhold(cr);
rp->r_unl cred
rp- >r _unl nanme
} else {

cr;
t npnane;

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331

7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348

7350

7352
7353
7354

7356
7357
7358
7359
7360
7361
7362

7364
7365
7366
7367
7368
7369

7371
7372
7373

7375
7376
7377

7379
7380
7381
7382

7384

kmem free(rp->r_unl nane, MAXNAMELEN) ;
rp->r_unl nane = tnpnane;

}
nut ex_exi t (& p->r_st at el ock);

}
VN_RELE(vp) ;
nfs_rw exit(&drp->r_rw ock);
return (e.error);

}

/*

* Actually renpve the file/dir

*

/
nmut ex_exi t (& p->r_st at el ock);

/
We need to flush any dirty pages whi ch happen to
be hangi ng around before renopving the file.

This shoul dn’t happen very often since in NFSv4
we shoul d be close to open consistent.

* Ok ok ok F ok

if (nfs4_has_pages(vp) &&
((rp->r_flags & RADIRTY) || rp->r_count > 0)) {
e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct);
if (e.error & (e.error == ENOSPC || e.error == EDQUOT))
nut ex_ent er (& p- >r _st at el ock);
if (!rp->r_error)
rp->r_error = e.error;
nut ex_exi t (& p->r_st at el ock);

}
m = VIOM 4(dvp);

(void) nfs4del egreturn(rp, NFS4_DR RECPEN);
recov_state.rs_flags = 0;
recov_state.rs_numretry_despite_err = O;

recov_retry:
/*
* Renpve ops: putfh dir; renove
*/

args. ctag = TAG REMOVE;
args.array_len = 3;
args.array = argop;

e.error = nfs4_start_op(VTIOM 4(dvp), dvp, NULL, &recov_state);
if (e.error)

nfs_rw exit(&drp->r_rw ock);

VN_RELE(vp) ;

return (e.error);

}

/* putfh directory */
argop[0] . argop = OP_CPUTFH;
argop[0] . nfs_argop4_u. opcputfh.sfh = drp->r_fh;

/* renove */
argop[1] . argop = OP_CREMOVE;
argop[1] . nfs_argop4_u. opcrenpve. ctarget = nm

/* getattr dir */

argop[2].argop = OP_GETATTR

argop|[2] . nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR _MASK;
argop[2] . nfs_argop4_u. opgetattr.m = m;

doqueue = 1;

{

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 113

7385
7386

7388

7390
7391
7392

7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404

7406
7407
7408
7409
7410
7411
7412
7413

7415
7416

7418
7419
7420
7421
7422
7423
7424

7426
7427
7428

7430
7431
7432
7433
7434
7435
7436
7437

7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450 }

dinfo.di_tinme_call
rfs4call (m,

= gethrtinme();
&args, &res, cr, &doqueue, 0, &e);

PURGE_ATTRCACHE4(vp)

needrecov = nfs4_needs_recovery(&e, FALSE, m ->nm _vfsp);
if (e.error)
PURGE_ATTRCACHE4(dvp) ;

if (needrecov) {
if (nfsd4_start_recovery(&, VIOM 4(dvp), dvp,
NULL, NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
if (le.error)
(voi d) xdr_free(xdr_COVPOUND4res_cl nt,
(caddr_t)&res);
nfs4_end_op(VTOM 4(dvp), dvp, NULL, & ecov_state,
needr ecov) ;
goto recov_retry;

Mat chi ng nfs4_end_op() for start_op() above.
There is a path in the code bel ow which calls
nfs4_purge_stale_fh(), which may generate otw calls through
nfs4_inval i date_pages. Hence we need to call nfs4_end_op()
* here to avoid nfs4_start_op() deadl ock.

*

/
nfs4_end_op(VTOM 4(dvp), dvp, NULL, & ecov_state, needrecov);

R

if (le.error) {
resp = &res;

if (res.status) {
e.error = geterrno4(res. status);
PURGE_ATTRCACHE4(dvp) ;
nfs4_purge_stale fh(e.error, dvp, cr);

} else {
resop = &es.array[1]; /* renove res */
rmres = & esop->nfs_resop4_u. oprenove;

dinfo.di _garp =
& es.array[2].nfs_resop4_u.opgetattr.ga_res;
dinfo.di _cred = cr;

/* Update directory attr, readdir and dnlc caches */
nfs4_updat e_di rcaches(& mres->cinfo, dvp, NULL, NULL,

&di nf o) ;
) }
nfs_rw_ exit(&drp->r_rw ock);
if (resp)

(void) xdr_free(xdr_COVPOUND4res_clnt, (caddr_t)resp);
if (e.error == 0) {

vnode_t *tvp;

rnoded_t *trp;

trp = VIOR4(vp);

tvp = vp;

if (1S_SHADONvp, trp))

tvp = RTOVA(trp);
vnevent _renove(tvp, dvp, nm ct);

}
VN_RELE(vp) ;
return (e.error);

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

7452 | *

7453 * Link requires that the current fh be the target directory and the
7454 * saved fh be the source fh. After the operation, the current fh is unchanged.
7455 * Thus the conmpound op structure is:

7456 * PUTFH(file), SAVEFH, PUTFH(targetdir)

7457 * GETATTR(fil e)

7458 */

7459 /* ARGSUSED */

7460 static int

7461 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm cred_t
7462 call er_context _t *ct, int flags)

7463 {

7464 COVPOUND4ar gs_cl nt args;

7465 COWPOUNDAres_clnt res, *resp = NULL;

7466 LI NK4res *In_res;

7467 int argoplist_size =7 * sizeof (nfs_argop4);
7468 nfs_argop4 *argop;

7469 nfs_resop4 *resop;

7470 vnode_t *real vp, *nvp;

7471 int doqueue;

7472 mtinfod4_t *m;

7473 rnode4_t *tdrp;

7474 bool _t needrecov = FALSE;

7475 nfs4_recov_state_t recov_state;

7476 hrtime_t t;

7477 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
7478 dirattr_info_t dinfo;

7480 ASSERT(*tnm!= "\0");

7481 ASSERT(tdvp->v_type == VDI R);

7482 ASSERT(nf s4_consi st ent type(tdvp))

7483 ASSERT(nf s4_consi st ent _type(svp));

7485 if (nfs_zone() !'= VIOM 4(tdvp)->ni_zone)

7486 return (EPERM;

7487 if (VOP_REALVP(svp, &r eal vp, ct) == 0) {

7488 svp = real vp;

7489 ASSERT(nf s4_consi stent _type(svp));

7490 }

7492 tdrp = VIOR4(tdvp);

7493 m = VIOM 4(svp);

7495 if (!(m->m_flags & M4_LINK)) {

7496 return (EOPNOTSUPP) ;

7497

7498 recov_state.rs_flags = 0;

7499 recov_state.rs_num retry despite_err = 0;

7501 if (nfs_rw_ enter_sig(&drp->r_rw ock, RWWR TER
7502 return (EINTR);

7504 recov_retry:

7505 argop = knem al | oc(argoplist_size, KM SLEEP);
7507 args.ctag = TAG LI NK;

7509 /*

7510 * Link ops: putfh fl; savefh; putfh tdir; |ink;
7511 * restorefh; getattr(fl)

7512 */

7513 args.array_len = 7;

7514 args.array = argop;

7516 e.error = nfs4_start_op(VTOM 4(svp), svp, tdvp,

LI NK, RESTOREFH,

*cr,

I NTR4(tdvp)))

getattr(dir);

& ecov_state);

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

7517
7518
7519
7520
7521

7523
7524
7525

7527
7528

7530
7531
7532

7534
7535
7536

7538
7539
7540
7541

7543
7544

7546
7547
7548
7549

7551

7553
7554

7556

7558
7559
7560
7561
7562
7563
7564

7566
7567

7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582

if (e.error)
kmem free(argop, argoplist_size);
nfs_rw exit (& drp->r_rw ock);
return (e.error);

}

/* 0. putfh file */
argop[0] . argop = OP_CPUTFH
argop[0] . nfs_argop4_u. opcputfh sfh = VIOR4(svp)->r_fh;

/* 1. save current fh to free up the space for the dir */
argop[1] . argop = OP_SAVEFH,

/* 2. putfh targetdir */
argop[2] .argop = OP_CPUTFH,
argop[2] . nfs_argop4_u. opcput fh.sfh = tdrp->r_fh;

/* 3. link: current_fh is targetdir, saved_fh is source */
argop[3] .argop = OP_CLI NK;
argop[3] . nfs_argop4_u. opcl i nk. cnewnane = tnm

/* 4. Get attributes of dir */

argop[4] . argop = OP_GETATTR

argop[4] . nfs_argop4_u. opgetattr.attr_request = NFS4_VATTR_MASK;
argop[4] . nfs_argop4_u. opgetattr.m = m;

/* 5. If link was successful, restore current vp to file */
argop[5] . argop = OP_RESTOREFH,

/* 6. CGet attributes of |inked object */

argop[6] . argop = OP_GETATTR

argop[6] . nfs_argop4_u. opgetattr.attr_request = NFS4_VATTR_MASK;
argop[6] . nfs_argop4_u. opgetattr.m = m;

dnl c_renove(tdvp, tnm;

doqueue = 1;
t = gethrtinme();

rfs4call (VTIOM 4(svp), &args, &es, cr, &doqueue, 0, &e);

needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp);
if (e.error =0 &% !needrecov) {

PURGE_ATTRCACHE4(t dvp)

PURGE_ATTRCACHE4(svp)

nfs4_end_op(VTOM 4(svp), svp, tdvp, & ecov_state, needrecov);

goto out;

}

if (needrecov) {
bool _t abort;

abort = nfs4_start_recovery(&, VIOM 4(svp), svp, tdvp,
NULL, NUCL, OP_LINK, NULL, NULL, NULL);
if (abort == FALSE)
nfs4_end_op(VTOVI 4(svp), svp, tdvp, &recov_state,
needr ecov) ;
kmem f ree(argop, argoplist_size);
if (le.error)
(voi d) xdr_free(xdr_COVPOUNDAres_cl nt,
(caddr_t)&res);
goto recov_retry;
} else {
if (e.error '=0) {
PURGE_ATTRCACHE4(t dvp) ;
PURGE_ATTRCACHE4(svp) ;

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

7583
7584
7585
7586
7587
7588
7589

7591

7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614

7616

7618
7619
7620
7621
7622
7623
7624
7625
7626

7628
7629
7630
7631
7632
7633
7634
7635
7636
7637

7639
7640
7641
7642
7643
7644
7645
7646

7648

nfs4_end_op(VTOM 4(svp), svp, tdvp,
& ecov_state, needrecov);
goto out;

}
/* fall through for res.status case */

}
nfs4_end_op(VTOM 4(svp), svp, tdvp, & ecov_state, needrecov);

resp = &res;
if (res.status) {
/* 1f link succeeded, then don't return error */
e.error = geterrno4(res.status);
if (res.array_len <= 4) {
/*

* Either Putfh, Savefh, Putfh dir, or Link failed
S

PURGE_ATTRCACHE4(svp)

PURGE_ATTRCACHEA(t dvp) ;

if (e.error == EOPNOTSUPP) {
mut ex_ent er (&m - >m _| ock);
m->m _flags & ~M 4_LINK;
mut ex_exi t (&m ->m _| ock);

* XXX-LP */

if (e.error == EISDIR && crgetuid(cr) != 0)
e.error = EPERM

goto out;

}
/* Remap EISDIR to EPERM for non-root user for SWS */
/
i

/* either no error or one of the postop getattr failed */

XXX - if LINK succeeded, but no attrs were returned for |ink
file, purge its cache.

have another getattr to get pre-op, just purge cache if
any of the ops prior to and including the getattr failed.

*

*

*

*

* XXX Performa sinplified version of wec checking. Instead of

*

*

* |f the getattr succeeded then update the attrcache accordingly.
*

/*

* update cache with link file postattrs.

* Note: at this point resop points to link res.

*/

resop = &res array[3]; /* link res */

In_res &resop >nfs resop4 u. opl i nk;

if (res. status == NFS4_|

e.error = nfs4_update_attrcache(res. status,

&res.array[6].nfs_resop4_u.opgetattr.ga_res,
t, svp, cr);

/*

* Call makenfs4node to create the new shadow vp for tnm

* We pass NULL attrs because we just cached attrs for

* the src object. Al we're trying to acconplish is to

* to create the new shadow vnode.

*/

nvp = makenf s4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr,
tdvp, fn_get(VTOSV(tdvp)->sv_nane, tnm VTOR4(svp)->r_fh));

/* Update target cache attribute, readdir and dnlc caches */

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 117 new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 118
7649 dinfo.di_garp = &es.array[4].nfs_resop4_u.opgetattr.ga_res; 7715 int did_link = 0;
7650 dinfo.di_tinme_ cal I =t; 7716 int do_link = 1;
7651 dinfo.di _cred = ; 7717 nfsstat4 stat = NFS4_CK;
7653 nfs4_updat e_di rcaches(& n_res->cinfo, tdvp, nvp, tnm &dinfo); 7719 ASSERT(nfs_zone() == VTOM 4(odvp) ->mi _zone);
7654 ASSERT(nf s4_consi st ent _type(tdvp)); 7720 ASSERT(nf s4_consi stent _type(odvp));
7655 ASSERT(nf s4_consi stent _t ype(svp)); 7721 ASSERT(nf s4_consi st ent _t ype(ndvp)) ;
7656 ASSERT(nf s4_consi st ent _type(nvp));
7657 VN_RELE(nvp) ; 7723 if (onnfO] =="." && (onn{ 1] == "\0" ||
7724 (onnf1] =="'." && onnj =="'\0")))
7659 if (le.error) { 7725 return (EINVAL);
7660 vnode_t *tvp;
7661 rnoded_t *trp; 7727 if (nnnf0] =="." && (nnn{l] ="\0" ||
7662 /* 7728 (nnn{1] =="'." && nnn =="'\0")))
7663 * Notify the source file of this Iink operation. 7729 return (EINVAL);
7664 */
7665 trp = VTCR4(svp) 7731 odrp = VTOR4(odvp);
7666 = 7732 ndrp = VTOR4(ndvp);
7667 |f (IS SHADO/‘(svp, trp)) 7733 if ((intptr_t)odrp < (intptr_t)ndrp)
7668 tvp = RTOVA(trp); 7734 1f (nfs_rw_ enter_sig(&odrp->r_rw ock, RWWRI TER, | NTR4(odvp)))
7669 vnevent Ilnk(tvp, ct); 7735 return (EINTR);
7670 } 7736 if (nfs_rw enter S|g(&ndrp >r_rw ock, RWWRI TER, | NTR4(ndvp))) {
7671 out: 7737 nfs_rw exit (&odrp->r_rw ock);
7672 kmem free(argop, argoplist_size); 7738 return (EINTR);
7673 if (resp) 7739 }
7674 (voi d) xdr_free(xdr_COVPOUND4res_cl nt, (caddr_t)resp); 7740 } else {
7741 if (nfs_rw enter_sig(&ndrp->r_rw ock, RWWRI TER, | NTR4(ndvp)))
7676 nfs_rw exit (& drp->r_rw ock); 7742 return (EINTR);
7743 if (nfs_rw enter_sig(&odrp->r_rw ock, RWWR TER, | NTR4(odvp))) {
7678 return (e.error); 7744 nfs_rw exit(&ndrp->r_rw ock);
7679 } 7745 return (EINTR);
7746 }
7681 /* ARGSUSED */ 7747 }
7682 static int
7683 nfs4_renane(vnode_t *odvp, char *onm vnode_t *ndvp, char *nnm cred_t *cr, 7749 /*
7684 call er_context _t *ct, int flags) 7750 * Lookup the target file. |If it exists, it needs to be
7685 { 7751 * checked to see whether it is a mount point and whether
7686 vnode_t *real vp; 7752 * it is active (open).
7753 */
7688 if (nfs_zone() != VIOM 4(odvp)->mi _zone) 7754 error = nfs4l ookup(ndvp, nnm &nvp, cr, 0);
7689 return (EPERV; 7755 if (lerror) {
7690 if (VOP_REALVP(ndvp, &real vp, ct) == 0) 7756 int i sactive;
7691 ndvp = real vp;
7758 ASSERT(nf s4_consi stent _type(nvp));
7693 return (nfsd4renanme(odvp, onm ndvp, nnm cr, ct)); 7759 *
7694 } 7760 * |f this file has been nounted on, then just
7761 * return busy because renamng to it would renove
7696 /* 7762 * the nounted file system fromthe nanme space.
7697 * nfsdrenane does the real work of renaming in NFS Version 4. 7763 */
7698 * 7764 if (vn_ismtpt(nvp)) {
7699 * A file handle is considered volatile for renam ng purposes if either 7765 VN_RELE(nvp);
7700 * of the volatile bits are turned on. However, the conpound may differ 7766 nfs_rw exit(&odrp->r_rw ock);
7701 * based on the likelihood of the filehandl e to change during renane. 7767 nfs_rw_ exit(&ndrp->r_rw ock);
7702 */ 7768 return (EBUSY);
7703 static int 7769 }
7704 nf s4renane(vnode_t *odvp, char *onm vnode_t *ndvp, char *nnm cred_t *cr,
7705 call er_context_t *ct) 7771 /*
7706 { 7772 * First just renmpbve the entry fromthe name cache, as it
7707 int error; 7773 * is nost likely the only entry for this vp.
7708 mtinfod4_t *m; 7774 */
7709 vnode_t *nvp = NULL; 7775 dnl c_renove(ndvp, nnm;
7710 vnode_t *ovp = NULL;
7711 char *tnpnanme = NULL; 7777 rp = VIOR4(nvp);
7712 rnode4_t *rp;
7713 rnode4_t *odrp; 7779 if (nvp->v_type = VREG {
7714 rnode4_t *ndrp; 7780 /*

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

7781
7782
7783
7784
7785
7786

7788
7789
7790
7791
7792
7793

7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808

7810
7811
7812
7813
7814
7815
7816
7817
7818

7820

7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832

7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846

} else {

-

* Ok ok ok % ok %

*

*/

119

* Purge the name cache of all references to this vnode

* so that we can check the reference count to infer
* whether it is active or not.
*/
if (nvp->v_count > 1)
dnl c_purge_vp(nvp);

i sactive = nvp->v_count > 1;
mut ex_ent er (& p->r_os_| ock);

isactive = |ist_head(& p->r_open_streans) != NULL;
mut ex_exi t (& p->r_os_| ock);

If the vnode is active and is not a directory,
arrange to rename it to a

tenporary file so that it will continue to be
accessible. This inplenents the "unlink-open-file"
semantics for the target of a rename operation.
Before doing this though, make sure that the
source and target files are not already the sane.

if (isactive & nvp->v_type != VDIR) {
/*

* Lookup the source nane.
&/
error = nfs4l ookup(odvp, onm &ovp, cr, 0);

/*
* The source nane *shoul d* al ready exist.
*/
if (error) {
VN_RELE(nvp) ;
nfs_rw_ exit(&odrp->r_rw ock);
nfs_rw_ exit(&ndrp->r_rw ock);
return (error);

}
ASSERT(nf s4_consi stent _type(ovp));
/*
* Conpare the two vnodes. |f they are the sane,

* just release all held vnodes and return success.
*

if (VWN.CWP(ovp, nvp)) {
VN_RELE(ovp) ;
VN_RELE(nvp) ;
nfs_rw_ exit(&odrp->r_rw ock);
nfs_rw exit(&ndrp->r_rw ock);
return (0);

-

directories in renane operations. W already
know that the target is not a directory. |If
*/the source is a directory, return an error.
*
if (ovp->v_type == VDIR) {
VN_RELE(ovp) ;
VN_RELE(nvp) ;
nfs_rw exit(&odrp->r_rw ock);
nfs_rw_ exit(&ndrp->r_rw ock);
return (ENOTDIR);

*
* Can't mix and match directories and non-
*
*

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

7847 link_call:

7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867

7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887

7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904

7906

7908
7909

7911
7912

}
if (ovp

the source file, and is active. We first
try to Link it to a tenporary filenane to
avoi d having the server renoving the file

-- see bug 1165874).

The do_link and did_link booleans are

B T B
~

* as if the server didn't support LINK

*
/
t npnane = newnane();
error = 0;
if (do_link) {
error = nfs4_link(ndvp, nvp, tnpnane,
) NULL, 0);
if (error == EOPNOTSUPP || !do_link) {
error = nfs4_renane(ndvp, nnm ndvp,
cr, NULL, 0);
did_link = 0;
} else {
did_link = 1;

}

if (error) {
kmem free(tnpname, MAXNAMELEN);
VN_RELE(ovp) ;
VN_RELE(nvp) ;
nfs_rw exit(&odrp->r_rw ock);
nfs_rw_ exit(&ndrp->r_rw ock);
return (error);

}

nmut ex_ent er (& p- >r_st at el ock);
if (rp->r_unldvp == NULL) {
VN_HOLD(ndvp) ;
rp->r_unldvp = ndvp;
if (rp->r_unlcred !'= NULL)
crfree(rp->r_unlcred);
crhold(cr);
rp->r_unlcred
rp->r_unl name
} else {
if (rp->r_unlnane)

cr;
t mpnane;

The target file exists, is not the sane as

conpl etely (which could cause data loss to
the user’s POV in the event the Renane fails

introduced in the event we get NFS4ERR _FI LE_OPEN
returned for the Renanme. Sone servers can

not Renane over an Qpen file, so they return
this error. The client needs to Renpve the
newly created Link and do two Renanes, just

cr,

t npnane,

kmem free(rp->r_unl name, MAXNAMELEN);

rp->r_unl nane = tnpnane;

}
nut ex_exi t (& p->r_st at el ock);

}

(voi d) nfs4del egreturn(VTOR4(nvp), NFS4_ DR PUSH| NFS4_

ASSERT(nf s4_consi stent _type(nvp));

= NULL) {

DR_REOPEN) ;

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937

7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964

7966

7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978

® ok ko ko Rk ok kb F ok F ok

* VWen renaming directories to be a subdlrectory of a
* different parent, the dnlc entry for ".." will no

* longer be valid, so it nust be renpved.

*

* W do a | ookup here to determ ne whether we are renam ng
* a directory and we need to check if we are renaning
* an unlinked file. This mght have already been done
* in previous code, so we check ovp == NULL to avoid

* doing it tw ce.

*/

error = nfs4l ookup(odvp, onm &ovp, cr, 0);

/*

* The source nane *shoul d* al ready exist.
)

if (error) {
nfs_rw exit(&odrp->r_rw ock);
nfs_rw exit(&ndrp->r_rw ock),
if (nvp) {

VN_RELE(nvp) ;

}
return (error);

}
ASSERT(ovp != NULL);
ASSERT(nf s4_consi stent _type(ovp));

I's the object being renamed a dir, and if so, is

it being renaned to a child of itself? The underlying
fs should ultimately return EINVAL for this case;
however, buggy beta non-Sol aris NFSv4 servers at
interop testing events have all owed this behavior,

and it caused our client to panic due to a recursive
nut ex_enter in fn_nove.

The tedious |ocking in fn_nove could be changed to

deal with this case, and the client could avoid the

pani c; however, the client would just confuse itself

| ater and m shehave. A better way to handl e the broken
server is to detect this condition and return El NVAL

wi t hout ever sending the the bogus renane to the server.
We know the renanme is invalid -- just fail it now

*/

if

}

(ovp->v_type == VDI R && VN_CWP(ndvp, ovp)) {
VN_RELE(ovp) ;
nfs_rw_ exit(&odrp->r_rw ock);
nfs_rw_ exit(&ndrp->r_rw ock);
if (nvp) {
VN_RELE(nvp) ;

}
return (EINVAL);

(voi d) nfs4del egreturn(VTOR4(ovp), NFS4_DR PUSH NFS4_DR _RECPEN);

/*

*
*
*
*
*
*
*
*
*
*

I f FH4_VOL_RENAME or FH4_VOLATILE _ANY bits are set, it is
possibl'e for the filehandl e to change due to the renarne.

If neither of these bits is set, but FH4_VOL_M GRATION i s set,
the fh will not change because of the renane, but we still need
to update its rnode entry with the new nane for

an eventual fh change due to migration. The FH4_NOEXPI RE_ON_OPEN
has no effect on these for now, but for future inprovenents,

we might want to use it too to sinplify handling of files

that are open with that flag on. (XXX)

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

7979
7980
7981
7982
7983
7984
7985

7987
7988
7989

7991
7992
7993
7994
7995
7996
7997
7998
7999
8000

8002

8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017

8019
8020
8021
8022
8023

8025
8026
8027
8028
8029
8030
8031
8032
8033

8035
8036
8037
8038
8039
8040
8041
8042
8043
8044

m = VIOM 4(odvp);
if (NFS4_VOLATILE FH(mi))

error = nfsdrenane_vol atile_fh(odvp, onm ovp, ndvp, nnm cr,

&stat);
el se
error = nfsd4renane_persistent _fh(odvp, onm ovp, ndvp,
&stat);

ASSERT(nf s4_consi stent _type(odvp));
ASSERT(nf s4_consi st ent _t ype(ndvp));
ASSERT(nf s4_consi stent _type(ovp));

if (stat == NFS4ERR FI LE_OPEN && did_|ink) {

do_link = 0;

/
Before the 'link_call’ code, we did a nfs4_| ookup
that puts a VN_HOLD on nvp. After the nfs4_link
call we call VN RELE to match that hold. W need
to place an additional VN HOLD here since we wll
be hitting that VN _RELE again.

* Ok ok k% ok %
-

VN_HOLD(nvp) ;
(void) nfs4_renove(ndvp, tnpnane, cr, NULL, 0);

/* Undo the unlinked file nam ng stuff we just did */
mut ex_ent er (& p->r _st at el ock) ;
if (rp->r_unldvp) {
VN_RELE(ndvp) ;
rp->r_unldvp = NULL;
if (rp->r_unlcred != NULL)
crfree(rp >r _unlcred);
rp->r_unlcred = NULL
/* rp->r_unl anme poi nts to t mpnane */
if (rp->r_unl nane)
kmem free(rp->r_unl name, MAXNAMELEN) ;
rp->r_unl name = NULL

mut ex_exi t (& p->r_stat el ock);

if (nvp) {
VN_RELE(nvp);

}
goto link_call;

}
if (error) {
VN_RELE(ovp) ;
nfs_rw_ exit(&odrp->r_rw ock);
nfs_rw_ exit(&ndrp->r_rw ock);
if (nvp) {
VN_RELE(nvp) ;
return (error);
}
/*

* when renaming directories to be a subdirectory of a
* different parent, the dnlc entry for ".." will no
* |onger be valid, so it nust be renpved

*/

rp = VIOR4(ovp);
if (ndvp != odvp) {
if (ovp->v_type == VDIR) {
dnl c rermve(ovp, ")
if (rp->r_dir 1= NULL)

nnm cr,

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

8045
8046
8047

8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065

8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084

8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096

8098
8099
8100
8101
8102
8103

8105
8106
8107
8108

8110

nfs4_purge_rddir_cache(ovp);

}

/*
* |If we are renaming the unlinked file, update the
* r_unldvp and r_unl nane as needed.
*
/
mut ex_ent er (& p->r_st at el ock);
if (rp->r_unldvp !'= NULL) {
if (strcenp(rp->r_unlnane, onm == 0) {
(void) strncpy(rp->r_unlnane, nnm MAXNAMELEN);
rp->r_unl name[MAXNAMELEN - 1] = '"\0";
if (ndvp !'= rp->r_unldvp) {
VN_RELE(r p->r _unl dvp);
rp->r_unldvp = ndvp;
VN_HOLD(ndvp) ;

) }
mut ex_exi t (& p->r_st at el ock);
/*
* Notify the renane vnevents to source vnode, and to the target
* vnode if it already existed.
*/
if (error == 0) {
vnode_t *tvp;
rnoded_t *trp;
/*

* Notify the vnode. Each links is represented by
* a different vnode, in nfsv4.

*/
if (nvp) {

trp = VTCR4(nvp) ;

tvp = nvp;

if (IS SHADCM(nvp, trp))

tvp = RTOVA(trp);

vnevent _renane_dest (tvp, ndvp, nnm ct);
}
/*

* if the source and destination directory are not the
* same notify the destination directory.
*

if (VIOR4(odvp) != VTO?4(ndvp)) {
trp = VTCR4(n vp);
tvp = ndvp
if (Is_ SHADCM(ndvp, trp))
tvp = RTOV4A(trp);
vnevent _renanme_dest _dir(tvp, ct);

}
0?4(ovp);

(SSHADO/‘(ovp, trp))
tvp = RTOVA(trp);
vnevent _renane_src(tvp, odvp, onm ct);

trp
tvp
if

}

if (nvp) {
VN_RELE(nvp) ;

}
VN_RELE(ovp) ;
nfs_rw exit(&odrp->r_rw ock);

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

8111 nfs_rw_ exit(&ndrp->r_rw ock);

8113 return (error);

8114 }

8116 /*

8117 * \WWen the parent directory has changed, sv_dfh nust be updated

8118 */

8119 static void

8120 updat e_parentdir_sfh(vnode_t *vp, vnode_t *ndvp)

8121 {

8122 svnode_t *sv = VTOSV(vp);

8123 nf s4 sharedfh t *old_dfh = sv->sv_dfh;

8124 nfs4_sharedfh_t *new dfh = VTOR4(ndvp)->r_fh;

8126 sfh4_hol d(new_df h) ;

8127 sv->sv_df h = new_df h;

8128 sfh4_rel e(&ol d_df h);

8129 }

8131 /*

8132 * nfs4renane_persistent does the otw portion of renam ng in NFS Version 4,
8133 * when it is known that the filehandle is persistent through renane.
8134 *

8135 * Renane requires that the current fh be the target directory and the
8136 * saved fh be the source directory. After the operation, the current fh
8137 * is unchanged.

8138 * The conpound op structure for persistent fh renanme is:

8139 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME

8140 * Rather than bother with the directory postop args, we'll sinply
8141 * update that a change occurred in the cache, so no post-op getattrs.
8142 */

8143 static int

8144 nf s4renanme_persi stent _f h(vnode_t *odvp, char *onm vnode_t *renvp,
8145 vnode_t *ndvp, char *nnm cred_t *cr, nfsstat4 *statp)

8146 {

8147 COVPOUND4ar gs_cl nt args;

8148 COVPOUND4res_clnt res, *resp = NULL;

8149 nfs_argop4 *argop;

8150 nfs_resop4 *resop;

8151 int doqueue, argoplist_size;

8152 mtinfod4_t *m;

8153 rnode4_t *odrp = VTOR4(odvp);

8154 rnode4_t *ndrp = VIOR4(ndvp);

8155 RENAVE4res *rn_res;

8156 bool _t needrecov;

8157 nfs4_recov_state_t recov_state;

8158 nfs4_error_t e = { 0, NFS4_OK, RPC SUCCESS };

8159 dirattr_info_t dinfo, *dinfop;

8161 ASSERT(nfs_zone() == VIOM 4(odvp)->m _zone);

8163 recov_state.rs_flags = 0;

8164 recov_state.rs_numretry_despite_err = 0;

8166 /*

8167 * Renane ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir
8168 *

8169 * |f source/target are different dirs, then append putfh(src); getattr
8170

8171 args.array_len = (odvp == ndvp) ? 5 : 7;

8172 argoplist_size = args.array_len * sizeof (nfs_argop4);

8173 args.array = argop = knem al |l oc(argoplist_size, KM SLEEP);
8175 recov_retry:

8176

*statp = NFS4_OK;

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

8178
8179

8181
8182
8183
8184
8185
8186

8188
8189
8190

8192
8193

8195
8196
8197

8199
8200
8201
8202

8204
8205
8206
8207

8209

8211
8212
8213

8215
8216
8217
8218
8219

8221
8222

8224
8225
8226

8228
8229
8230
8231
8232
8233
8234

8236
8237
8238
8239
8240
8241
8242

/* No need to Lookup the file, persistent fh */
args.ctag = TAG_RENAME;

m = VIOM 4(odvp);
e.error = nfs4_start_op(m, odvp, ndvp, & ecov_state);
if (e.error) {

kmem free(argop, argoplist_size);

return (e.error);

}

/* 0: putfh source directory */
argop|[0] . argop = OP_CPUTFH;
argop[O] . nfs_argop4_u. opcput fh. sfh = odrp->r_fh;

/* 1. Save source fh to free up current for target */
argop[1] . argop = OP_SAVEFH;

/* 2: putfh targetdir */
argop[2] .argop = OP_CPUTFH
argop| 2] . nfs_argop4_u. opcputfh sfh = ndrp->r_fh;

/* 3: current_fh is targetdir, saved_fh is sourcedir */
argop[3] . argop = OP_CRENAME;

argop| 3] . nfs_argop4_u. opcr enane. col dnane
ar gop[3] . nfs_argop4_u. opcr enane. cnewnane

onm
nnm

/* 4: getattr (targetdir) */

argop[4] . argop = OP_GETATTR;

argop[4] . nfs_argop4_u. opgetattr.attr request = NFS4_VATTR_MASK;
argop[4] . nfs_argop4_u. opgetattr.m = m;

if (ndvp !'= odvp) {

/* 5. putfh (sourcedir) */
argop[5] . argop = OP_CPUTFH;
argop[5] . nfs_argop4_u. opcputfh sfh = ndrp->r_fh;

/* 6: getattr (sourcedir) */

argop[6] . argop = OP_CETATTR,

argop| 6] .

argop[6] . nf s_argop4_u. opgetattr. =m;
}

dnl c_renove(odvp, onn);
dnl c_renove(ndvp, nnm;

doqueue = 1;
dinfo.di _tinme_call = gethrtine();
rfsacal | (mi, &args, &es, cr, &loqueue, 0, &e);

needrecov = nfs4_needs_recovery(&e, FALSE, m ->nm _vfsp);
if (e.error)
PURCGE_ATTRCACHE4(odvp) ;
PURGE_ATTRCACHE4(ndvp) ;
} else {
*statp = res.status;
}

if (needrecov) {
if (nfsd4_start_recovery(&, m, odvp, ndvp, NULL, NULL,
OP_RENAME, NULL, NULL, NULL) == FALSE) {

nfs4_end_op(m, odvp, ndvp, & ecov_state, needrecov);

if (le.error)
(void) xdr_free(xdr_COVOUNDAres_cl nt,
(caddr_t)&res);

nfs_argop4_u. opgetattr. attr _request = NFS4_VATTR_MASK;

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

8243
8244
8245

8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264

8266
8267

8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279

8281
8282

8284
8285
8286
8287
8288
8289

8291
8292
8293
8294

8296
8297
8298

8300
8301
8302
8303

8305
8306
8307
8308

}

goto recov_retry;

if (le.error) {

}

resp = &res;

/*

* as long as OP_RENAME
*/

if (res.status != NFS4_OK && res.array_len <= 4) {

e.error = geterrno4(res. status);

PURGE_ATTRCACHE4(odvp) ;

PURGE_ATTRCACHE4(ndvp) ;

/*

* System V defines renane to return EEX ST, not

* ENOTEMPTY if the target directory is not enpty.

* Qver the wire, the error is NFSERR_ENOTEMPTY
* which geterrno4 maps to ENOTEMPTY.
*
/
f

(e.error == ENOTEMPTY)
e.error = EEXI ST,
} else {

resop = &es.array[3]; /* renanme res */
rn_res = & esop->nfs_resop4_u. oprenane;

if (res.status == NFS4_OK) {
/*

* Update target attribute, readdir and dnlc
* caches.
*/
dinfo.di _garp =
& es.array[4].nfs_resop4_u.opgetattr.ga_res;
dinfo.di _cred = cr;
di nfop = &di nfo;
} else
di nfop = NULL

nfs4_updat e_di rcaches(& n_res->target_cinfo,
ndvp, NULL, NULL, dinfop);

/*
* Update source attribute, readdir and dnlc caches
*

*/
if (ndvp !'= odvp) {
updat e_par entdir_sfh(renvp, ndvp);

if (dinfop)
dinfo.di _garp =
&(res.array[6].nfs_resop4_u.
opgetattr.ga_res);

nfs4_updat e_di rcaches(&r n_res->source_cinfo,
odvp, NULL, NULL, dinfop);
}

fn_rmove(VTOSV(renvp) - >sv_nane, VTOSV(ndvp)->sv_nane,
nnmn ;

if (resp)

(voi d) xdr_free(xdr_COVPOUND4Ares_clnt, (caddr_t)resp);

nfs4_end_op(m, odvp, ndvp, &recov _state, needrecov)
kmem free(argop, argoplist_size);

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

8310 return (e.error);

8311 }

8313 /*

8314 * nfs4renane_vol atile_fh does the otw part of renami ng in NFS Version 4, when
8315 * it is possible for the filehandl e to change due to the renane.

8316 *

8317 * The conpound req in this case includes a post-renanme | ookup and getattr
8318 * to ensure that we have the correct fh and attributes for the object.
8319 *

8320 * Renane requires that the current fh be the target directory and the
8321 * saved fh be the source directory. After the operation, the current fh
8322 * is unchanged.

8323 *

8324 * W need the new fil ehandl e (hence a LOOKUP and GETFH) so that we can
8325 * update the filehandle for the renaned object. W also get the old
8326 * filehandle for historical reasons; this should be taken out sonetine.
8327 * This results in a rather cunbersone conpound...

8328 *

8329 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old),

8330 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR

8331 *

8332 */

8333 static int

8334 nf s4renane_vol atile_fh(vnode_t *odvp, char *onm vnode_t *ovp,

8335 vnode_t *ndvp, char *nnm cred_t *cr, nfsstat4 *statp)

8336 {

8337 COVPOUND4ar gs_cl nt args;

8338 COVPOUND4res_cl nt res, *resp = NULL;

8339 int argoplist_size;

8340 nfs_argop4 *argop;

8341 nfs_resop4 *resop;

8342 int doqueue;

8343 mtinfo4_t *m;

8344 rnode4_t *odrp = VIOR4(odvp); /* old directory */

8345 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */

8346 rnoded4_t *orp = VIOR4(ovp); /* object being renamed */

8347 RENAVE4res *rn_res;

8348 CETFH4res *ngf _res;

8349 bool _t needrecov;

8350 nfs4_recov_state_t recov_state;

8351 hrtime_t t;

8352 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };

8353 dirattr_info_t dinfo, *dinfop = &dinfo;

8355 ASSERT(nfs_zone() == VTOM 4(odvp)->m _zone);

8357 recov_state.rs_flags = 0;

8358 recov_state.rs_numretry_despite_err = 0;

8360 recov_retry:

8361 *statp = NFS4_OK

8363 /*

8364 * There is a wi ndow between the RPC and updating the path and
8365 * filehandl e stored in the rnode. Lock out the FHEXPI RED recovery
8366 * code, so that it doesn't try to use the old path during that
8367 * wi ndow.

8368 */

8369 mut ex_ent er (&or p- >r _st at el ock) ;

8370 while (orp->r_flags & RARECEXPFFD {

8371 klwp_t *Iwp = ttolwp(curthread);

8373 if (Iwp !'= NULL)

8374 | wp- >l wp_nost op++;

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385

8387

8389
8390
8391
8392

8394
8395
8396
8397
8398
8399
8400
8401
8402
8403

8405
8406
8407
8408
8409
8410
8411
8412
8413
8414

8416
8417
8418

8420
8421

8423
8424
8425

8427
8428

8430
8431
8432

8434
8435
8436
8437

8439
8440

if (cv_wait_sig(&orp->r_cv, &orp->r_statel ock)
mut ex_exi t (&or p- >r_st at el ock) ;
if (Iwp !'= NULL)
| wp- >l wp_nost op- - ;
return (EINTR);

}
i1f (Iwp !'= NULL)
| wp- >l wp_nost op- -;
}
orp->r_flags | = RARECEXPFH,
mut ex_exi t (&or p- >r _st at el ock);
m = VIOM 4(odvp);

args. ctag = TAG RENAMVE VFH,
args.array_len = (odvp == ndvp) ? 10 : 12;
argoplist_size = args.array_|len * sizeof (nfs_argop4);
argop = knmem al | oc(argoplist_size, KM SLEEP);

/*
* Renane ops:
* PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old),
* PUTFH(t argetdir), RENAVE, GETATTR(targetdir)
* LOOKUP(trgt), GETFH(new), GETATTR,
*
* if (odvp != ndvp)
* add putfh(sourcedir), getattr(sourcedir) }
*
/

args.array = argop;

e.error = nfs4_start_fop(m, odvp, ndvp, OH VFH RENAME,
& ecov_state, NULL);
if (e.error)
kmem free(argop, argoplist_size);
mut ex_ent er (&or p- >r _st at el ock) ;
orp->r_flags & ~R4ARECEXPFH,
cv_broadcast (&orp->r_cv);
mut ex_exi t (&or p->r _st at el ock) ;
return (e.error);

}

/* 0: putfh source directory */
argop[0] . argop = OP_CPUTFH,
argop[0] . nfs_ar gop4_u. opcputfh sfh = odrp->r_fh;

/* 1: Save source fh to free up current for target */
argop[1] . argop = OP_SAVEFH;

/* 2: Lookup pre-rename fh of renamed object */
argop[2] . argop = OP_CLOOKUP;
argop[2] . nfs_ar gop4_u. opcl ookup. cnane = onm

/* 3. getfh fh of renamed obj ect (before renane) *
argop[3] . argop = OP_GETFH;

/* 4: putfh targetdir */
argop[4] . argop = OP_CPUTFH,
ar gop[4] . nfs_ar gop4_u. opcputfh sfh = ndrp->r_fh;

/* 5. current_fh is targetdir,
argop[5] . argop = OP_CRENAME;

argop[5] . nf s_ar gop4_u. opcr enane. col dname = onm
argop[5] . nfs_argop4_u. opcr enane. cnewnanme = nnm

saved_fh is sourcedir */

/* 6: getattr of target dir (post op attrs) */
argop[6] . argop = OP_GETATTR

:O)

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 129

8441
8442

8444
8445
8446

8448
8449

8451
8452
8453
8454

8456
8457
8458
8459
8460
8461
8462
8463

8465
8466
8467
8468
8469

8471
8472

8474
8475
8476

8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489

8491
8492

8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506

argop[6] . nfs_argop4_u. opgetattr.attr_request = NFS4_VATTR_MASK;
argop[6] . nfs_argop4_u. opgetattr.m = m;

/* 7: Lookup post-renane fh of renamed object */
argop|[7] . argop = OP_CLOOKUP;
ar gop[7] . nf s_ar gop4_u. opcl ookup. cnane = nnm

/* 8: getfh fh of renanmed object (after renane)
argop[8] . argop = OP_GETFH;

/* 9: getattr of renaned object */

argop[9] . argop OP_GETATTR;

argop[9] . nfs argop4 u.opgetattr.attr request = NFS4_VATTR_MASK;
argop[9] . nfs_argop4_u. opgetattr.m = m;

/*
* |f source/target dirs are different, then get new post-op
* attrs for source dir also.
*/
if (ndvp != odvp) {
/* 10: putfh (sourcedlr) */
ar gop[10] . argop = OP_CPUTFH,;
argop[10] . nf s_ar gop4_u. opcputfh sfh = ndrp->r_fh;

/* 11: getattr (sourcedir) */

argop[11] . argop = OP_GETATTR

argop[11] . nfs_argop4_u. opgetattr.attr_request = NFS4_VATTR_MASK;
argop[11] . nf s_argop4_u. opgetattr.m = m;

}

dnl c_renove(odvp, onn;
dnl c_renove(ndvp, nnm;

doqueue = 1;
t = gethrtinme();
rfs4call (m, &args, &es, cr, &Joqueue, 0, &e);

needrecov = nfs4_needs_recovery(&e, FALSE, mi->nm _vfsp);
if (e.error) {
PURGE_ATTRCACHE4(odvp) ;
PURGE_ATTRCACHE4(ndvp) ;
if (!needrecov) {
nfs4_end_fop(m, odvp, ndvp, OH VFH RENAME,
& ecov_state, needrecov);
goto out;

} else {
*statp = res.status;
}

if (needrecov) {
bool _t abort;

abort = nfs4_start_recovery(&, m, odvp, ndvp, NULL, NULL,
oP RENANE NULL, NULL, NULL);
if (abort == FALSE)
nfs4_end_fop(m, odvp, ndvp, OH VFH RENAME,
& ecov_state, needrecov);
kmem f ree(argop, argoplist_size);
if (le.error)
(voi d) xdr_free(xdr_COVWOUND4res_cl nt,
(caddr_t)&res);
nut ex_ent er (&or p- >r _st at el ock) ;
orp->r_flags & ~R4ARECEXPFH,
cv_broadcast (&orp->r_cv);
nmut ex_exi t (&or p- >r _st at el ock);

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

8507
8508
8509
8510
8511
8512
8513
8514
8515
8516

8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541

8543
8544

8546
8547
8548
8549
8550
8551
8552
8553

8555
8556

8558
8559
8560

8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572

goto recov_retry;
} else {
if (e.error '=0) {
nfs4_end_fop(m, odvp, ndvp, OH VFH RENAME,
& ecov_state, needrecov);
goto out;

}
/* fall through for res.status case */

-

}

resp = &res;
/*
* |f OP_RENAME (or any prev op) failed, then return an error.
* OP_RENAME is index 5, so if array Ien <= 6 we return an error.
*/
if ((res.status != NFS4_OK) && (res.array_len <= 6)) {
/'k

* Error in an op other than last Getattr

*/

e.error = geterrno4(res.status);
PURGE_ATTRCACHE4(odvp) ;

PURGE_ATTRCACHE4(ndvp) ;

/*

* System V defines renane to return EEXI ST, not
* ENOTEMPTY if the target directory is not enpty.
* Over the wire, the error is NFSERR ENOTEMPTY
* which geterrno4 maps to ENOTEMPTY.

*/

if (e.error == ENOTEMPTY)
e.error = EEXI ST,
nfs4_end_fop(m, odvp, ndvp, OH VFH RENAME, &recov_state,
needrecov) ;
goto out;

}

/* renane results */
rn_res = &res.array[5].nfs_resop4_u. oprenane;

if (res. status == NFS4_OK)
* Update target attribute, readdir and dnlc caches */
d| nfo.di _garp =
& es.array[6].nfs_resop4_u.opgetattr.ga_res;
dinfo.di _cred = cr;
dinfo.di _time_call =t;
} else
di nfop = NULL;

/* Update source cache attribute, readdir and dnlc caches */
nfs4_updat e_di rcaches(& n_res->target_cinfo, ndvp, NULL, NULL, dinfop);

/* Update source cache attribute, readdir and dnlc caches */
if (ndvp != odvp) {
updat e_par entdi r_sfh(ovp, ndvp);

/
If dinfop is non-NULL, then conpound succeded, so
set di_garp to attrs for source dir. dinfop is only
set to NULL when conpound fails.

* ok kb ok

if (dinfop)
dinfo.di _garp =
&res.array[11].nfs_resop4_u.opgetattr.ga_res;
nfs4 update di rcaches(& n_res->source_cinfo, odvp, NULL, NULL,
di nf op) ;

130

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 131

8574
8575
8576
8577
8578
8579
8580
8581

8583
8584
8585
8586

8588

8590
8591
8592
8593
8594
8595

8597 out:

8598
8599
8600
8601
8602
8603
8604

8606
8607 }

8609 /*

Update the rnode with the new conponent nane and args,

and if the file handl e changed, also update it with the new fh.
This is only necessary if the target object has an rnode

entry and there is no need to create one for it.

R

*/
resop = &es.array[8]; /* getfh newres */
ngf _res = & esop->nfs_resop4_u. opgetfh;

/*
* Update the path and filehandle for the renaned object.
*/

nf s4r enanme_updat e(ovp, ndvp, &ngf_res->object, nnn;
nfs4_end_fop(m, odvp, ndvp, OH VFH RENAME, &recov_state, needrecov);

if (res.status == NFS4_OK) {
resop++; /* getattr res */
e.error = nfs4_update_attrcache(res. status,
&resop->nfs_resop4_u.opgetattr.ga_res,
t, ovp, cr);

kmem f ree(argop, argoplist_size);
if (resp)
(voi d) xdr_free(xdr_COVPOUND4res_clnt, (caddr_t)resp);
mut ex_ent er (&or p- >r _st at el ock);
orp->r_flags & ~RARECEXPFH;
cv_broadcast (&or p->r_cv);
nmut ex_exi t (&or p->r_stat el ock) ;

return (e.error);

ARGSUSED */

8610 static int
8611 nfs4_nkdir(vnode_t *dvp, char *nm struct vattr *va, vnode_t **vpp, cred_t *cr,

8612
8613 {
8614
8615

8617
8618
8619
8620
8621
8622
8623
8624
8625

8627
8628
8629
8630
8631
8632
8633
8634

8636
8637
8638 }

cal l er_context_t *ct,

int flags, vsecattr_t *vsecp)

int error;
vnode_t *vp;

if (nfs_zone() != VIOM 4(dvp)->m _zone)
return (EPERV;
/

*

* As ".." has special neaning and rather than send a nkdir
* over the wire to just let the server freak out, we just
* short circuit it here and return EEXI ST

*/

if (nnf0] =="." && nn{1] =="
return’ (EEXI ST);

&& nni2] == '\0")

/*

* Decision to get the right gid and setgid bit of the

* new directory is now made in call_nfs4_create_req.

*

/
va- >va_mask | = AT_MODE;
error = call_nfs4_create_req(dvp, nm NULL, va, &p, cr, NF4DIR);
if (error)

return (error);

*vpp = vp;
return (0);

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

8641 /*

8642 * rndir is using the sane renpbve v4 op as does renpve.

8643 * Renpve requires that the current fh be the target directory.
8644 * After the operation, the current fh is unchanged.

8645 * The conpound op structure is:

8646 * PUTFH(t argetdir), REMOVE

8647 *

8648 /* ARGSUSED4* /

8649 static int

8650 nfs4_rndir(vnode_t *dvp, char *nm vnode_t *cdir, cred_t *cr,
8651 caller_context_t *ct, int flags)

8652 {

8653 int need_end_op = FALSE;

8654 COVPOUND4ar gs_cl nt args;

8655 COVPOUND4res_clnt res, *resp = NULL;

8656 REMOVE4res *rmres;

8657 nfs_argop4 argop[3];

8658 nfs_resop4 *resop;

8659 vnode_t *vp;

8660 int doqueue;

8661 mtinfod4_t *m;

8662 rnode4_t *drp;

8663 bool _t needrecov = FALSE;

8664 nfs4_recov_state_t recov_state;

8665 nfs4_error_t e = { 0, NFS4_OK, RPC SUCCESS };

8666 dirattr_info_t dinfo, *dinfop;

8668 if (nfs_zone() != VIOM 4(dvp)->m _zone)

8669 return (EPERM ;

8670 I*

8671 * As ".." has special nmeaning and rather than send a rndir
8672 * over the wire to just let the server freak out, we just
8673 * short circuit it here and return EEX ST

8674 */

8675 |f(nn{0] ="', && nn{1l] =="'." && nni2] == "'\0")
8676 return (EEXI ST);

8678 drp = VIOR4(dvp);

8679 if (nfs_rw enter_sig(&rp->r_rw ock, RWWRI TER, | NTR4(dvp)))
8680 return (EINTR);

8682 /*

8683 * Attenpt to prevent a rndir(".") from succeeding.
8684 */

8685 e.error = nfs4l ookup(dvp, nm &vp, cr, 0);

8686 if (e.error)

8687 nfs_rw exit(&drp->r_rw ock);

8688 return (e.error);

8689 }

8690 if (vp == cdir)

8691 VN_RELE(vp);

8692 nfs_rw_ exit(&drp->r_rw ock);

8693 return (EINVAL);

8694 }

8696 /*

8697 * Since nfsv4 renpve op works on both files and directories,
8698 * check that the renpved object is indeed a directory.
8699 */

8700 if (vp->v_type != VDIR) {

8701 VN_RELE(vp);

8702 nfs_rw_ exit(&drp->r_rw ock);

8703 return (ENOTDIR);

8704 }

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

8706
8707
8708
8709
8710

8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725

8727
8728
8729

8731
8732

8734
8735
8736
8737
8738

8740
8741
8742
8743
8744
8745

8747
8748
8749

8751
8752
8753

8755
8756
8757
8758

8760
8761
8762

8764

8766
8767
8768
8769

*
* First just renpve the entry fromthe nanme cache, as it
* is nost likely an entry for this vp.

*/

dnl c_renove(dvp, nm;

/*

* |f there vnode reference count is greater than one, then

* there nay be additional references in the DNLC which wll

* need to be purged. First, trying renoving the entry for

* the parent directory and see if that renpves the additional
*
*
*

reference(s). If that doesn't do it, then use dnlc_purge_vp
to conpletely renpve any references to the directory which
m ght still exist in the DNLC
*/
if (vp->v_count > 1) {
dnl c_renmove(vp, "..");

if (vp->v_count > 1)
dnl c_purge_vp(vp);
}

m = VIOM 4(dvp);
recov_state.rs_flags = 0;
recov_state.rs_numretry_despite_err = 0;

recov_retry:

args.ctag = TAG RVDI R

/*
* Rndir ops: putfh dir; renove
*
/
args.array_len = 3;
args.array = argop;

e.error = nfs4_start_op(VTOM 4(dvp), dvp, NULL, & ecov_state);
if (e.error)

nfs_rw exit(&drp->r_rw ock);

return (e.error);

}
need_end_op = TRUE;

/* putfh directory */
argop[0] . argop = OP_CPUTFH
argop[0] . nfs_ar gop4_u. opcputfh sfh = drp->r_fh;

/* renove */
argop[1] . argop = OP_CREMOVE;
argop[1] . nf s_ar gop4_u. opcrenove. ctarget = nm

/* getattr (postop attrs for dir that contained renoved dir)
argop[2].argop = OP_GETATTR

argop|[2] . nfs_argop4_u. opgetattr.attr_request = NFS4_VATTR_MASK;
argop|[2] . nfs_argop4_u. opgetattr.m = m;

dinfo.di _time_call = gethrtine();
doqueue = 1;
rfsdcall (m, &args, &es, cr, &oqueue, 0, &e);

PURGE_ATTRCACHE4(vp) ;
needrecov = nfs4_needs_recovery(& e, FALSE, m ->m _vfsp);

if (e.error) {
PURGE_ATTRCACHE4(dvp) ;
}

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

8771
8772
8773
8774
8775
8776

8778
8779
8780
8781
8782
8783

8785
8786

8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809

8811
8812
8813
8814
8815
8816
8817
8818

8820
8821
8822

8824
8825
8826
8827
8828

8830
8831

8833

8835
8836

if (needrecov) {

}

if (nfsd4_start_recovery(&, VIOM 4(dvp), dvp, NULL, NULL,
NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
if (Te.error)
(void) xdr_free(xdr_COVPOUND4res_cl nt,
(caddr_t)&res);

nfs4_end_op(VTOM 4(dvp), dvp, NULL, & ecov_state,
needr ecov) ;

need_end_op = FALSE;

goto recov_retry;

if (le.error) {

}

resp = &res;

/*

* Only return error if first 2 ops (OP_REMOVE or earlier)
* failed

*

if (res.status != NFS4_CK && res.array_len <= 2) {
e.error = geterrno4(res. status);
PURGE_ATTRCACHE4(dvp) ;
nfs4_end_op(VTOM 4(dvp) dvp, NULL,
&recov_state, needrecov);
need_end_op = FALSE
;1fs4 purge_stal e fh(e error, dvp, cr);

* System V defines rndir to return EEXI ST, not

* ENOTEMPTY if the directory is not enpty. Over
* the wire, the error is NFSERR ENOTEMPTY whi ch
*/get errno4 maps to ENOTEMPTY.

*

if (e.error == ENOTEMPTY)
e.error = EEXI ST;
} else {
resop = &es.array[1]; /* renove res */
rmres = & esop->nfs_resop4_u. oprenove;

if (res.status == NFS4_OK)
resop = &es.array[2]; /* dir attrs */
dinfo.di _garp =
& esop- >nfs_resop4_u. opgetattr.ga_res;
dinfo.di _cred = cr;
di nfop = &dinfo;

di nfop = NULL;

} else

/* Update dir attribute, readdir and dnlc caches */
nfs4_updat e_di rcaches(& mres->cinfo, dvp, NULL, NULL,
di nf op) ;

/* destroy rddir cache for dir that was renmoved */
if (VIOR4(vp)->r_dir !'= NULL)
nfs4_purge_rddir_cache(vp);

if (need_end_op)

nfs4_end_op(VTOM 4(dvp), dvp, NULL, &recov_state, needrecov);

nfs_rw_ exit(&drp->r_rw ock);

if (resp)

(void) xdr_free(xdr_COVPOUND4Ares_clnt, (caddr_t)resp);

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

8838
8839
8840
8841
8842
8843
8844
8845
8846

8848

8850
8851 }

8853 /

if (e.error == 0) {

vnode_t *tvp;

rnoded_t *trp;

trp = VIOR4(vp);

tvp = vp,

if (IS_SHADONvp, trp))

tvp = RTOVA(trp);

vnevent _rmdir(tvp, dvp, nm ct);

}

VN_RELE(vp) ;

return (e.error);

* ARGSUSED */

8854 static int

8856
8857 {
8858
8859

8855 nfs4_synlink(vnode_t *dvp, char *Inm struct vattr *tva, char *tnm cred_t
caller_context _t *ct, int flags)
int error;
vnode_t *vp;
rnoded_t *rp;

8860
8861
8862

8864
8865
8866
8867

8869
8870
8871

8873
8874
8875

8877

8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893

8895
8896 }

8899 /
8900
8901
8902

char *contents;

mtinfo4_t *m = VIOM 4(dvp);

if (nfs_zone() != m->ni_zone)
return (EPERV);

if ('(m->m_flags & M4_SYM.I NK))
return (EOPNOTSUPP) ;

error = call_nfs4_create_req(dvp, Inm tnm tva,

if (error)
return (error);

&p, cr, NFALNK);

ASSERT(nfs4_consi stent _type(vp));
rp = VIOR4(vp);
if (nfs4_do_symink_cache && rp->r_syniink.contents == NULL) {

contents = kmem al | oc(MAXPATHLEN, KM SLEEP);

if (contents != NULL)

mut ex_ent er (& p- >r_st at el ock);

if (rp->r_symink.contents == NULL) {
rp->r_symink.len = strlen(tnm;
bcopy(tnm contents, rp->r_synlink.len);
rp->r_synlink.contents = contents;
rp->r_synmink.size = MAXPATHLEN;
mut ex_exi t (& p->r_stat el ock);

} else {
mut ex_exit (& p->r_statel ock);
kmem free((void *)contents, MAXPATHLEN);

}
{/N_REL E(vp);

return (error);

*
* Read directory entries.

* There are sone weird things to | ook out for here. The uio_loffset
* field is either 0 or it is the offset returned froma previous

*cr,

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 136
8903 * readdir. It is an opaque value used by the server to find the

8904 * correct directory block to read. The count field is the nunber

8905 * of blocks to read on the server. This is advisory only, the server
8906 * may return only one block’s worth of entries. Entries nay be conpressed
8907 * on the server.

8908 */

8909 /* ARGSUSED */

8910 static int

8911 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,

8912 cal l er_context _t *ct, int flags)

8913 {

8914 int error;

8915 uint_t count;

8916 rnode4_t *rp;

8917 rddi r4_cache *rdc;

8918 rddi r4_cache *rrdc;

8920 if (nfs_zone() !'= VIOM 4(vp)->ni _zone)

8921 return (ElO;

8922 rp = VIOR4(vp);

8924 ASSERT(nfs_rw_| ock_hel d(& p->r_rw ock, RW READER));

8926 /*

8927 * Make sure that the directory cache is valid.

8928 */

8929 if (rp->r_dir !'= NULL)

8930 if (nfs_disable_rddir_cache !=0) {

8931 /*

8932 * Setting nfs_disable_rddir_cache in /etc/system
8933 * allows interoperability with servers that do not
8934 * properly update the attributes of directories.
8935 * Any cached information gets purged before an
8936 * access is made to it.

8937 */

8938 nfs4_purge_rddir_cache(vp);

8939 }

8941 error = nfs4_validate_caches(vp, cr);

8942 if (error)

8943 return (error);

8944 }

8946 count = M N(ui op->ui o_i ov->i ov_| en, MAXBSI ZE);

8948 /*

8949 * Short circuit last readdir which always returns 0 bytes.
8950 * This can be done after the directory has been read through
8951 * conpletely at |east once. This will set r_direof which
8952 * can be used to find the value of the |ast cookie.

8953 */

8954 mut ex_ent er (& p->r_st at el ock) ;

8955 if (rp->r_direof = NULL &&

8956 ui op->ui o_| of fset == rp->r_direof->nfs4_ncookie) {

8957 mut ex_exit (& p->r_statel ock);

8958 #i fdef DEBUG

8959 nfs4_readdir_cache_shorts++;

8960 #endi f

8961 if (eofp)

8962 *eofp = 1,

8963 return (0);

8964 }

8966 /*

8967 * Look for a cache entry. Cache entries are identified

8968 * by the NFS cookie value and the byte count requested.

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

8969
8970

8972
8973
8974
8975
8976
8977
8978

8980
8981
8982
8983
8984
8985
8986

8988
8989
8990
8991

8993
8994
8995
8996
8997
8998
8999
9000
9001

9003

9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016

9018
9019
9020
9021
9022
9023

9025
9026
9027
9028
9029
9030
9031
9032
9033
9034

*
/
rdc = rddir4_cache_| ookup(rp, uiop->uio_|loffset, count);

*

* |f rdc is NULL then the | ookup resulted in an unrecoverable error.
/

*
if (rdc == NULL) {
mut ex_exi t (& p->r_statel ock);
return (EINTR);
}
/*
* Check to see if we need to fill this entry in.
*
/
if (rdc->flags & RDDI RREQ {
rdc->fl ags & ~RDDI RREQ
rdc->flags | = RDDI R;
mut ex_exi t (& p->r_stat el ock);

/*
* Do the readdir.
S

nf s4readdi r(vp, rdc, cr);

/*
* Reacquire the lock, so that we can continue
&/

mut ex_ent er (& p->r_st at el ock);
*
* The entry is now conplete
)

rdc->fl ags & ~RDDIR;

}
ASSERT(! (rdc->flags & RDDIR));
/*
* |f an error occurred while attenpting
* to fill the cache entry, mark the entry invalid and
* just return the error.
*

if (rdc->error) {
error = rdc->error;
rdc->fl ags | = RDDI RREQ
rddir4_cache_rele(rp, rdc);
mut ex_exi t (& p->r_stat el ock);
return (error);

}

/*

* The cache entry is conplete and good,

* copyout the dirent structs to the calling

* thread.

*/

error = uionobve(rdc->entries, rdc->actlen, U O READ, uiop);

/
If no error occurred during the copyout,
update the offset in the uio struct to
contain the value of the next NFS 4 cookie
* and set the eof value appropriately.
*
/

if (lerror)

ui op->ui o_| of fset = rdc->nfs4_ncooki e;

if (eofp)

*eof p = rdc->eof ;

* ok ko

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

9035

9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050

9052
9053
9054
9055
9056
9057

9059
9060
9061
9062
9063
9064
9065
9066
9067
9068

9070
9071
9072
9073
9074
9075
9076
9077
9078

9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096

9098
9099
9100

}

/*

* Decide whether to do readahead. Don't if we
* have already read to the end of directory.
S

if (rdc->eof) {
/*
* Make the entry the direof only if it is cached
)

if (rdc->flags & RDDI RCACHED)

rp->r_direof = rdc;
rddir4_cache_rel e(rp, rdc);
mut ex_exi t (& p->r_stat el ock);
return (error);

/* Determine if a readdir readahead should be done */
if (!(rp->r_flags & RALOOKUP)) {
rddir4_cache_rele(rp, rdc);
mut ex_exi t (& p->r_statel ock);
return (error);

Now | ook for a readahead entry.

*
*
*
* Check to see whether we found an entry for the readahead.

* |f so, we don’t need to do anything further, so free the new
* entry if one was allocated. Oherwi se, allocate a new entry,
* it to the cache, and then initiate an asynchronous readdir

* operation to fill it.

*

-

o~

¢ = rddir4_cache_| ookup(rp, rdc->nfs4_ncookie, count);

* A readdir cache entry could not be obtained for the readahead.

* this case we skip the readahead and return.
*
/
if (rrdc == NULL) {
rddir4_cache_rele(rp, rdc);
mut ex_exi t (& p->r_statel ock);
return (error);

}

/*
* Check to see if we need to fill this entry in.
*

/
if (rrdc->flags & RDDI RREQ {
rrdc->fl ags & ~RDDI RREQ
rrdc->flags | = RDDI R
rddir4_cache_rele(rp, rdc);
mut ex_exit (& p->r_statel ock);

#i f def DEBUG

#endi f

nf s4_r eaddi r _r eadahead++;

/*

* Do the readdir.

*/

nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir);
return (error);

}

rddi r4_cache_rel e(rp, rrdc);
rddi r4_cache_rele(rp, rdc);
mut ex_exit (& p->r_stat el ock);

add

I'n

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

9101 return (error);

9102 }

9104 static int

9105 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr)

9106 {

9107 int error;

9108 rnoded4_t *rp;

9110 ASSERT(nfs_zone() == VIOM 4(vp)->ni _zone);

9112 rp = VIOR4(vp);

9114 I*

9115 * (Obtain the readdir results for the caller.

9116 td

9117 nf s4readdir(vp, rdc, cr);

9119 mut ex_ent er (& p->r_st at el ock);

9120 /*

9121 * The entry is now conplete

9122 */

9123 rdc->flags & ~RDDIR;

9125 error = rdc->error;

9126 if (error)

9127 rdc->fl ags | = RDDI RREQ

9128 rddi r4_cache_rele(rp, rdc);

9129 mut ex_exi t (& p->r_st at el ock);

9131 return (error);

9132 }

9134 /*

9135 * Read directory entries.

9136 * There are sone weird things to | ook out for here. The uio_loffset
9137 * field is either O or it is the offset returned froma previous
9138 * readdir. It is an opaque value used by the server to find the
9139 * correct directory block to read. The count field is the nunber
9140 * of blocks to read on the server. This is advisory only, the server
9141 * may return only one block’s worth of entries. Entries nay be conpressed
9142 * on the server.

9143 *

9144 * Cenerates the foll ow ng conpound request:

9145 * 1. If readdir offset is zero and no dnlc entry for parent exists,
9146 * nmust include a Lookupp as well. In this case, send:

9147 * { Putfh <fh> Readdir; Lookupp; Getfh; Getattr }

9148 * 2. Otherwise just do: { Putfh <fh> Readdir }

9149 *

9150 * Get conplete attributes and filehandles for entries if this is the
9151 * first read of the directory. Otherwi se, just get fileids.

9152 */

9153 static void

9154 ?fs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr)

9155

9156 COVPOUND4ar gs_cl nt args;

9157 COVPOUNDAr es_cl nt res;

9158 READDI R4ar gs *rargs;

9159 READDI R4res_clnt *rd_res;

9160 bi t map4 rd_bitsval;

9161 nfs_argop4 argop[5];

9162 nfs_resop4 *resop;

9163 rnoded4_t *rp = VIOR4(vp);

9164 mtinfod4_t *m = VIOM 4(vp);

9165 int doqueue;

9166 u_l onglong_t nodei d, pnodeid; /* id's of dir and its parents */

new usr/ src/ uts/ comon/fs/nfs/nfs4_vnops.c 140
9167 vnode_t *dvp;

9168 nfs_cooki e4 cookie = (nfs_cookied)rdc->nfs4_cookie;

9169 int numops, res_opcnt;

9170 bool _t needrecov = FALSE;

9171 nfs4_recov_state_t recov_state;

9172 hrtime_t t;

9173 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };

9175 ASSERT(nfs_zone() == m ->nm _zone);

9176 ASSERT(rdc->fl ags & RDDI R);

9177 ASSERT(rdc->entries == NULL);

9179 /*

9180 * If rp were a stub, it should have triggered and caused

9181 * a nmount for us to get this far.

9182 */

9183 ASSERT(! RP_I SSTUB(rp));

9185 numops = 2;

9186 if (cookie == (nfs_cookied4)0 || cookie == (nfs_cookie4)l) {

9187 /*

9188 * Since nfsv4 readdir nay not return entries for “." and "..",
9189 * the client nust recreate them

9190 * To find the correct nodeid, do the follow ng:

9191 * For current node, get nodeid fromdnlc.

9192 * - if current node is rootvp, set pnodeid to nodeid.

9193 * - else if parent is in the dnlc, get its nodeid fromthere.
9194 * - el se add LOOKUPP+GETATTR to conpound.

9195 */

9196 nodeid = rp->r_attr.va_nodei d;

9197 if (vp->v_flag & VROOT)

9198 pnodei d = nodei d; /* root of nount point */
9199 } else {

9200 dvp = dnl c_Il ookup(vp, "..");

9201 if (dvp !'= NULL && dvp != DNLC_NO_VNCDE)

9202 /* parent in dnlc cache - no need for otw */
9203 pnodei d = VTOR4(dvp)->r_attr.va_nodei d;

9204 } else {

9205 /*

9206 * parent not in dnlc cache,

9207 * do | ookupp to get its id

9208 */

9209 numops = 5;

9210 pnodeid = 0; /* set later by getattr parent */
9211 }

9212 if (dvp)

9213 VN_RELE(dvp);

9214 }

9215 }

9216 recov_state.rs_flags = O;

9217 recov_state.rs_numretry_despite_err = 0;

9219 /* Save the original mount point security flavor */

9220 (void) save_mmt_secinfo(m ->m _curr_serv);

9222 recov_retry:

9223 args. ctag = TAG READDI R

9225 args.array = argop;

9226 args.array_l en = num ops;

9228 if (e.error = nfs4_start_fop(VIOM 4(vp), vp, NULL, OH READDI R

9229 & ecov_state, NULL)) {

9230 *

9231 * If readdir a node that is a stub for a crossed nount point,
9232 * keep the original secinfo flavor for the current file

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 141 new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 142
9233 * system not the crossed one. 9299 mut ex_exit (& p->r_statel ock);
9234 */ 9300 }
9235 (voi d) check_mt _seci nfo(m ->m _curr_serv, vp); 9301 rargs->dircount = M N(rdc->buflen, m->m _tsize);
9236 rdc->error = e.error; 9302 rargs->nmaxcount = m->ni _tsize;
9237 return; 9303 rargs->attr_request = rd_bitsval;
9238 } 9304 rargs->rdc = rdc;
9305 rargs->dvp = vp;
9240 /* 9306 rargs->m = m;
9241 * Determne which attrs to request for dirents. This code 9307 rargs->cr = cr;
9242 * nust be protected by nfs4_start/end_fop because of r_server
9243 * (which wi Il change during failover recovery).
9244 ki 9310 /*
9245 */ 9311 * |f count < than the mininmumrequired, we return no entries
9246 if (rp->r_flags & (R4ALOOKUP | R4READDI RWATTR)) { 9312 * and fail with El NVAL
9247 /* 9313 */
9248 * Get all vattr attrs plus filehandle and rdattr_error 9314 if (rargs->dircount < (DI RENT64_RECLEN(1) + DI RENT64_RECLEN(2))) {
9249 */ 9315 rdc->error = El NVAL;
9250 rd_bitsval = NFS4_VATTR MASK | 9316 goto out;
9251 FATTR4_RDATTR_ERROR_MASK | 9317 }
9252 FATTRA_FI LEHANDLE_MASK;
9319 if (args.array_len == 5) {
9254 if (rp->r_flags & RAREADDI RWATTR) { 9320 /*
9255 mut ex_ent er (& p- >r_st at el ock) ; 9321 * Add | ookupp and getattr for parent nodeid.
9256 rp->r_flags & ~R4READDI RWATTR; 9322 */
9257) nut ex_exi t (& p->r_st at el ock); 9323 argop[2] . argop = OP_LOOKUPP;
9258
9259 } else { 9325 argop[3] . argop = OP_CETFH;
9260 servinfo4_t *svp = rp->r_server;
9327 /* getattr parent */
9262 1= 9328 argop[4] . argop = OP_GETATTR,
9263 * Already read directory. Use readdir with 9329 argop[4] . nfs_argop4_u. opgetattr. attr _request = NFS4_VATTR_MASK;
9264 * no attrs (except for nounted_on_fileid) for updates. 9330 argop[4] . nfs_argop4_u. opgetattr. =m;
9265 */ 9331 }
9266 rd_bitsval = FATTR4A_RDATTR_ERROR_MASK;
9333 doqueue = 1;
9268 /*
9269 * request nmounted on fileid if supported, else request 9335 if (m->m_io_kstats) {
9270 * fileid. maybe we should verify that fileid is supported 9336 mut ex_ent er (& - >ni _| ock) ;
9271 * and request sonething else if not. 9337 kstat _rung_ent er (KSTAT_| 10) PTR(m ->m _i o_kstats));
9272 */ 9338 mut ex_exi t (&m ->m _| ock);
9273 (void) nfs_rw enter_sig(&svp->sv_| ock, RWREADER, 0); 9339 }
9274 if (svp->sv_supp_attrs & FATTR4 IVOJNTED ON_FI LEI D_MASK)
9275 rd_bitsval |= FATTR4_MOUNTED ON_FI LEI D_MASK; 9341 /* capture the time of this call */
9276 nfs_rw exit(&vp->sv_| ock); 9342 rargs->t =t = gethrtinme();
9277 }
9344 rfsdcall (m, &args, &es, cr, &oqueue, 0, &e);
9279 /* putfh directory fh */
9280 argop[0] . argop = OP_CPUTFH 9346 if (m->m _io_kstats)
9281 ar gop[0] . nfs_ar gop4_u. opcputfh sfh = rp->r_fh; 9347 mut ex_ent er (&m - >ni _| ock) ;
9348 kstat _rung_ eX|t(KSTAT 10 PTR(m >m _io_kstats));
9283 argop[1] . argop = OP_READDI R; 9349 mut ex_exi t (&m ->m _| ock);
9284 rargs = &argop[1].nfs_argop4_u. opreaddir; 9350 }
9285 *
9286 * 1 and 2 are reserved for client "." and ".." entry offset. 9352 needrecov = nfs4_needs_recovery(&e, FALSE, m ->nm _vfsp);
9287 * cookie 0 should be used over-the-wire to start reading at
9288 * the beginning of the directory excluding "." and "..". 9354 /*
9289 */ 9355 * |f RPC error occurred and it isn’t an error that
9290 if (rdc->nfs4_cookie == 0 || 9356 * triggers recovery, then go ahead and fail now.
9291 rdc->nfs4_cooki e 1] 9357 */
9292 rdc->nfs4_cookie == 2) { 9358 if (e.error =0 & !needrecov) {
9293 rargs->cooki e = (nfs_cookie4)0; 9359 rdc->error = e.error;
9294 rargs- >cooki everf = 0; 9360 goto out;
9295 } else { 9361 }
9296 rargs->cooki e = (nfs_cooki e4)rdc->nfs4_cooki e;
9297 mut ex_ent er (& p- >r _st at el ock) ; 9363 if (needrecov) {
9298 rargs- >cooki everf = rp->r_cooki everf4; 9364 bool _t abort;

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 143 new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c 144
9431 */
9366 NFS4_DEBUG(nf s4_cl i ent _recov_debug, (CE_NOTE, 9432 (voi d) check_mmt_secinfo(m ->m _curr_serv, vp);
9367 "nfsd4readdir: initiating recovery.\n")); 9433 return;
9434 }
9369 abort = nfs4_start_recovery(&, VIOM4(vp), vp, NULL, NULL, 9435 }
9370 NULL, OP_READDI R, NULL, NULL, NULL);
9371 if (abort == FALSE) { 9437 resop = &es.array[1]; /* readdir res */
9372 nfs4_end_f op(VTOM 4(vp), vp, NULL, OH READDI R, 9438 rd_res = &resop->nfs_resop4_u. opreaddirclnt;
9373 & ecov_state, needrecov);
9374 if (le.error) 9440 mut ex_ent er (& p->r_st at el ock);
9375 (void) xdr_free(xdr_COVWOUND4res_cl nt, 9441 rp->r_cooki everf4 = rd_res->cooki everf;
9376 (caddr_t)&res); 9442 mut ex_exi t (& p->r_stat el ock);
9377 if (rdc->entries !'= NULL)
9378 kmem free(rdc->entries, rdc->entlen); 9444 /*
9379 rdc->entries = NULL; 9445 * For and ".." entries
9380 } 9446 * e.g.
9381 goto recov_retry; 9447 * seek(cookie=0) -> "." entry with d_off =1
9382 } 9448 * seek(cookie=1) -> ".." entry with d_off = 2
9449 */
9384 if (e.error 1=0) { 9450 if (cookie == (nfs_cookied4) 0) {
9385 rdc->error = e.error; 9451 if (rd_res->dotp)
9386 goto out; 9452 rd_res->dot p->d_i no = nodei d;
9387 } 9453 if (rd_res->dotdotp)
9454 rd_res->dot dot p- >d_i no = pnodei d;
9389 /* fall through for res.status case */ 9455 }
9390 } 9456 if (cookie == (nfs_cookie4) 1) {
9457 if (rd_res->dotdotp)
9392 res_opcnt = res.array_|en; 9458 rd_res->dot dot p- >d_i no = pnodei d;
9459 }
9394 /*
9395 * | f conpound failed first 2 ops (PUTFH+READDI R), then return
9396 * failure here. Subsequent ops are for filling out dot-dot 9462 /* LOOKUPP+GETATTR attenped */
9397 * dirent, and if they fail, we still want to give the caller 9463 if (args.array_len == 5 && rd_res->dotdotp) {
9398 * the dirents returned by (the successful) READDI R op, so we need 9464 if (res.status == NFS4_OK && res_opcnt == 5) {
9399 * to silently ignore failure for subsequent ops (LOOKUPP+CGETATTR) . 9465 nfs_fh4 *fhp;
9400 * 9466 nfs4_sharedf h_t *sfhp;
9401 * One exanpl e where PUTFH+READDI R ops woul d succeed but 9467 vnode_t *pvp;
9402 * LOOKUPP+GETATTR woul d fail would be a dir that has r perm 9468 nfs4_ga_res_t *garp;
9403 * pbut lacks x. In this case, a PCSI X server’s VOP_READDI R
9404 * woul d succeed; however, VOP_LOOKUP(..) would fail since no 9470 resop++; /* | ookupp */
9405 * x perm W need to cone up with a non-vendor-specific way 9471 resop++; /* getfh */
9406 * for a POSI X server to return d_ino fromdotdot’s dirent if 9472 fhp = &resop->nfs_resop4_u. opgetfh. object;
9407 * client only requests nmounted_on_fileid, and just say the
9408 * LOOKUPP succeeded and fill out the GETATTR. However, if 9474 resop++; /* getattr of parent */
9409 * client requested any mandatory attrs, server woul d be required
9410 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9476 7
9411 * for dotdot. 9477 * First, take care of finishing the
9412 */ 9478 * readdir results.
9479 */
9414 if (res.status) { 9480 garp = & esop->nfs_resop4_u.opgetattr.ga_res;
9415 if (res_opcnt <= 2) { 9481 /*
9416 e.error = geterrno4(res. status); 9482 * The d_ino of .. nust be the inode nunber
9417 nfs4_end_f op(VTOM 4(vp), vp, NULL, OH READDIR, 9483 * of the nounted filesystem
9418 & ecov_state, needrecov); 9484 */
9419 nfs4_purge_stale_fh(e.error, vp, cr); 9485 i f (garp->n4g_va.va_nask & AT_NODEI D)
9420 rdc->error = e.error; 9486 rd_res->dot dot p->d_i no =
9421 (voi d) xdr_free(xdr_COWOUND4res_clnt, (caddr_t)&res); 9487 gar p- >n4g_va. va_nodei d;
9422 if (rdc->entries !'= NULL) {
9423 kmem free(rdc->entries, rdc->entlen);
9424 rdc->entries = NULL; 9490 I
9425 } 9491 * Next, create the ".." dnlc entry
9426 /* 9492 */
9427 * |f readdir a node that is a stub for a 9493 sfhp = sfh4_get(fhp, m);
9428 * crossed nount point, keep the original 9494 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &wvp, 0)) {
9429 * secinfo flavor for the current file system 9495 dnl c_update(vp, "..", pvp);
9430 * not the crossed one. 9496 VN_RELE(pvp) ;

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 145 new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c 146
9497 } 9563 if (bp->b_resid == bp->b_bcount &&
9498 sfhd_rel e(&sfhp); 9564 of fset >= rp- >r _size) {
9499 } 9565 /*
9500 } 9566 * We didn't read anything at all as we are
9567 * past EOF. Return an error indicator back
9502 if (m->m_io_kstats) { 9568 * but don’t destroy the pages (yet).
9503 mut ex_ent er (&m - >m _| ock) ; 9569 */
9504 KSTAT_|1 O PTR(mi ->mi _i o_| kst at s) - >reads++; 9570 error = NFS_EOF;
9505 KSTAT_| O PTR(ni ->ni _i 0_kstats)->nread += rdc->actlen; 9571 }
9506 mut ex_exi t (&mi ->m _Tock); 9572 nut ex_exi t (& p->r_st at el ock);
9507 } 9573 } else if (error == EACCES && last_time == FALSE) {
9574 goto read_agai n;
9509 (void) xdr_free(xdr_COVMPOUND4res_clnt, (caddr_t)&res); 9575 }
9576 } else {
9511 out: 9577 if (I(rp->r_flags & R4STALE)) {
9512 /* 9578 write_again:
9513 * |f readdir a node that is a stub for a crossed nmount point, 9579 /*
9514 * keep the original secinfo flavor for the current file system 9580 * Rel eases the osp, if it is provided.
9515 * not the crossed one. 9581 * Puts a hold on the cred_otw and the new
9516 */ 9582 * osp (if found).
9517 (void) check_mt _secinfo(m->m _curr_serv, vp); 9583 */
9584 cred_otw = nfs4_get_otw cred_by_osp(rp, cr, &osp,
9519 nfs4_end_fop(m, vp, NULL, OH READDI R, &recov_state, needrecov); 9585 &irst_time, & ast_tine);
9520 } 9586 mut ex ent er (& p->r_statel ock)
9587 count = M N(bp->b_bcount, rp- >r_si ze - offset);
9588 nut ex_exi t (& p->r_statel ock) ;
9523 static int 9589 if (count < 0)
9524 nfs4_bio(struct buf *bp, stable_howd *stab_comm cred_t *cr, bool _t readahead) 9590 crm_err (CE_PANIC, "nfs4_bio: wite count < 0");
9525 { 9591 #ifdef DEBUG
9526 rnoded4_t *rp = VIOR4(bp->b_vp); 9592 if (count == 0)
9527 int count; 9593 zonei d_t zoneid = getzoneid();
9528 int error;
9529 cred_t *cred_otw = NULL; 9595 zcmm_err (zonei d, CE_WARN,
9530 of fset _t offset; 9596 "nfs4_bio: zero length wite at %1d",
9531 nfs4_open_streamt *osp = NULL; 9597 of fset);
9532 bool _t first_time = TRUE; /* first tine getting otw cred */ 9598 zcm err(zoneld CE_CONT, "fl ags=0x%,
9533 bool _t last_tinme = FALSE; /* last tine getting otw cred */ 9599 "b_bcount=%d, file size=%1Id",
9600 rp->r_flags, (I ong) bp- >b_bcount
9535 ASSERT(nfs_zone() == VIOM 4(bp->b_vp)->m _zone); 9601 rp->r_size);
9602 sfh4_printfhandl e(VTOR4(bp->b_vp)->r_fh);
9537 DTRACE | Ol(start, struct buf *, bp); 9603 if (nfs4_bio_do_stop)
9538 of fset = | dbtob(bp->b_| bl kno); 9604 debug_ent er(" nfs4_bio");
9605 }
9540 if (bp->b_flags & B READ) { 9606 #endi f
9541 read_agai n: 9607 error = nfsd4wite(bp->b_vp, bp->b_un.b_addr, offset,
9542 /* 9608 count, cred_otw, stab_conm;
9543 * Rel eases the osp, if it is provided. 9609 if (error == EACCES && |l ast_tinme == FALSE) {
9544 * Puts a hold on the cred_otw and the new osp (if found). 9610 crfree(cred_otw)
9545 */ 9611 goto wite_again;
9546 cred_otw = nfs4_get_otw cred_by_osp(rp, cr, &osp, 9612 }
9547 &fl rst_time, & ast_tine); 9613 bp->b_error = error;
9548 error = bp->b_error = nfs4read(bp >b_vp, bp->b_un.b_addr, 9614 if (error & error != EINIR &&
9549 of fset, bp->b_bcount, &bp->b_resid, cred_otw, 9615 ! (bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) {
9550 readahead, NULL); 9616 /*
9551 crfree(cred_otw); 9617 * Don’t print EDQUOT errors on the console.
9552 if (terror) { 9618 * Don’t print asynchronous EACCES errors.
9553 if (bp->b_resid) { 9619 * Don't print EFBIG errors.
9554 /* 9620 * Print all other wite errors.
9555 * Didn't get it all because we hit ECF, 9621 */
9556 * zero all the nenory beyond the ECF. 9622 if (error != EDQUOT && error != EFBIG &&
9557 *f 9623 (error != EACCES ||
9558 /* bzero(rdaddr + */ 9624 ! (bp->b_flags & B_ASYNC)))
9559 bzer o(bp->b_un. b_addr + 9625 nfs4_wite_error(bp->b_vp,
9560 bp->b_bcount - bp->b_resid, bp->b_resid); 9626 error, cred_otw);
9561 } 9627 /*
9562 nmut ex_ent er (& p- >r_st at el ock); 9628 * Update r_error and r_flags as appropriate.

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 147 new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 148
9629 * |f the error was ESTALE, then mark the 9695 return (V_WR TELOCK_FALSE);
9630 * rnode as not being witeabl e and save 9696 nfs_rw exit(& p->r_rw ock);
9631 * the error status. Qherw se, save any 9697 }
9632 * errors which occur from asynchronous
9633 * page invalidations. Any errors occurring 9699 (void) nfs_rw enter_sig(& p->r_rw ock, RWWRI TER, FALSE);
9634 * from ot her operations should be saved 9700 return (V_WRI TELOCK_TRUE) ;
9635 * by the caller. 9701 }
9636 */
9637 mut ex_ent er (& p->r_st at el ock); 9703 /* ARGSUSED */
9638 if (error == ESTALE) { 9704 void
9639 rp->r_flags | = R4STALE; 9705 nfs4_rwunl ock(vnode_t *vp, int wite_|lock, caller_context_t *ctp)
9640 if (!rp->r_error) 9706 {
9641 rp->r_error = error; 9707 rnoded4_t *rp = VIOR4(vp);
9642 } elseif (!rp->r_error &&
9643 (bp->b_flags & 9709 nfs_rw exit(& p->r_rw ock);
9644 (B_I NVAL| B_FORCE| B_ASYNC)) == 9710 }
9645 (B_I NVAL| B_ FCRCE| B_ASYNC)) {
9646 rp->r_error = error; 9712 /* ARGSUSED */
9647 } 9713 static int
9648) mut ex_exit (& p->r_stat el ock); 9714 ?fs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
9649 9715
9650 crfree(cred_otw); 9716 if (nfs_zone() !'= VIOM 4(vp)->ni _zone)
9651 } else { 9717 return (ElO;
9652 error = rp->r_error;
9653 /* 9719 I
9654 * A close may have cleared r_error, if so, 9720 * Because we stuff the readdir cookie into the offset field
9655 * propagate ESTALE error return properly 9721 * soneone nay attenpt to do an |seek with the cooki e which
9656 */ 9722 * we want to succeed.
9657 if (error == 0) 9723 *
9658 error = ESTALE; 9724 if (vp->v_type == VDIR)
9659 } 9725 return (0);
9660 1 9726 if (*noffp < 0)
9727 return (EINVAL);
9662 if (error 1= 0 & error != NFS_EOF) 9728 return (0);
9663 bp->b_flags | = B_ERROR, 9729 }
9665 if (osp)
9666 open_streamrel e(osp, rp); 9732 | *
9733 * Return all the pages from[off..off+len) in file
9668 DTRACE | Ol(done, struct buf *, bp); 9734 */
9735 /* ARGSUSED */
9670 return (error); 9736 static int
9671 } 9737 nfs4_get page(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
9738 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
9673 /* ARGSUSED */ 9739 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
9674 int 9740 {
9675 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 9741 rnode4_t *rp;
9676 { 9742 int error;
9677 return (EREMOTE); 9743 mtinfod4_t *m;
9678 }
9745 if (nfs_zone() != VIOM 4(vp)->m _zone)
9680 /* ARGSUSED2 */ 9746 return (EIO;
9681 int 9747 rp = VIOR4(vp);
9682 nfs4_rw ock(vnode_t *vp, int wite_lock, caller_context_t *ctp) 9748 if (I S_SHADCva, rp))
9683 { 9749 vp = RTOV4(rp);
9684 rnode4_t *rp = VIOR4(vp);
9751 if (vp->v_flag & VNOVAP)
9686 if (!wite_lock) { 9752 return (ENOSYS);
9687 (void) nfs_rw enter_sig(& p->r_rw ock, RWREADER, FALSE);
9688 return (V_WRI TELOCK_FALSE) ; 9754 if (protp !'= NULL)
9689 1 9755 *protp = PROT_ALL;
9691 if ((rp->r_flags & R4DIRECTIO || 9757 /*
9692 (VTOM 4(vp)->m _flags & M4_DI RECTIO)) { 9758 * Now validate that the caches are up to date.
9693 (void) nfs_rw enter_sig(& p->r_rw ock, RWREADER, FALSE); 9759 */
9694 if (rp->r_mapcnt == 0 & ! nfs4_has pages(vp)) 9760 if (error = nfs4_validate_caches(vp, cr))

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

9761
9763

9764 retry:

9765

9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782

9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796

9798

9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812

9814
9815
9816
9817
9818
9819
9820

9822
9823 }

9825 /*

return (error);
m = VIOM 4(vp);
mut ex_ent er (& p->r_st at el ock);

/
Don’t create dirty pages faster than they

can be cleaned so that the system doesn’t

get inbal anced. |If the async queue is

maxed out, then wait for it to drain before
creating nore dirty pages. Also, wait for
any threads doing pagewal ks in the vop_getattr
entry points so that they don't block for

| ong peri ods.

EREEE R
-~

(rw = S CREATE)
vm e ((m->m _max_threads != 0 &&
rp >r_awcount > 2 * mi->mi _max_threads) ||
rp->r_gcount > 0)
cv_wait (& p->r_cv, & p->r_statel ock);

-

*
* |f we are getting called as a side effect of an nfs_wite()
* operation the local file size mght not be extended yet.

* In this case we want to be able to return pages of zeroes.

/
if (off + Ien > rp->r_size + PACEOFFSET && seg != segkmap) {
S4_DEBUG(nfs4 _pagei o_debug,
(CE NOTE, "get page beyond EOF: off=%1d,
"l en= %Iu size=%lu, attrsize =%Ilu", off,
(u_IongIong_t)Ien, rp->r_size, rp->r_attr.va_size))
mut ex_exi t (& p->r_statel ock);
return (EFAULT); /* beyond ECF */
}

nmut ex_exi t (& p->r_st at el ock);

if (len <= PAGESI ZE)
error = nfs4_getapage(vp, off, len, protp, pl, plsz
seg, addr, rw, cr);
NFS4_DEBUG(nfs4 _pagei o_debug && error,
(CE_NOTE, "getpage error %d; off=%1d, "
"l en= @6Id" error, off, (u_longlong_t)len))
} else {
error = pvn_get pages(nfs4_getapage, vp, off, len, protp,
pl, plsz, seg, addr, rw, cr);
NFS4_DEBUG(nfs4 _pagei o_debug && error,

(CE NOTE, getpages error %; off=%Id, "

"l en=%1d", error, off, (u_longlong_t)len));
}
switch (error) {
case NFS_ECF:

nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr,
goto retry;

case ESTALE:
nfs4_purge_stale_fh(error, vp, cr);

}

return (error);

FALSE) ;

9826 * Called from pvn_get pages or nfs4_getpage to get a particul ar page.

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 150

9827

9828 /*

*/

ARGSUSED */

9829 static int

9830 nfs4 getapage(vnode t *vp, u_offset_t off,

9831
9832

page_t *pl[],
enum seg_rw rw, cred_t *cr)

9833 {

9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849

9851
9852

9854
9855
9856

9858
9859
9860
9861

9863
9864

9866
9867
9868

9870
9871
9872
9873
9874
9875
9876
9877
9878
9879

9881
9882
9883
9884
9885
9886
9887
9888
9889
9890

9892

reread:

rnode4_t *
uint _t bsi
struct buf

size_t len, uint_t
size_t plsz, struct seg *seg, caddr_t addr,

*protp,

rp;
ze;
*bp

page_t *pp

u_of fset_t
u_of fset_t
u_of fset _t
u_of fset _t
size_t io

| bn;

io_off;

bl kof f;

rabl kof f;
| en;

uint _t blksize;

int error;

int readahead;
int readahead_i ssued =
int ra_w ndow, /* readahead wi ndow */

page_t

*pagef ound;

page_t *savepp;

if (nfs_zone() !=

VTOM 4(vp) - >mi _zone)

return (EIO;

rp = VIOR4(vp);
ASSERT(!l S SHADQva, rp));
bsi ze = MAX(vp->v_vfsp- >vfs bsi ze, PAGCESI ZE);

bp = NULL;
p = NULL;
pagef ound

if (pl !=
pl

error =
I bn = off
bl kof f =1

/*

= NULL;
NULL)
[0] = NULL

| bsize;
bn * b5|ze;

* Queueing up the readahead before doing the synchronous read
* results in a significant increase in read throughput because

* of the

increased parallelismbetween the async threads and

* the process context.

|f ((off & ((vp->v vfsp >vfs_bsize) -
CREATE &&

rw!=

1)) == 0 &&
s

I (vp->v_flag & VNOCACHE)) {
mut ex_ent er (& p->r_st at el ock);

/

* ok kb Ok ok Ok ok F

if

Cal cul ate the nunber of readaheads to do.

a) No readaheads at offset = 0.

b) Do maxi mun(nfs4_nra) readaheads when the readahead
w ndow i s cl osed.

c) Do readaheads between 1 to (nfs4_nra - 1) depending
upon how far the readahead wi ndow i s open or close.

d) No readaheads if rp->r_nextr is not within the scope
of the readahead w ndow (randomi/o).

/

(off == 0)

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

9893
9894
9895
9896
9897
9898
9899
9900
9901

9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929

9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958

readahead = 0;
else if (blkoff == rp->r_nextr)
readahead = nfs4_nra;
else if (rp->r_nextr > bl koff &&
((ra_window = (rp->r_nextr - blkoff) / bsize)
<= (nfsd4_nra - 1)))
readahead = nfs4_nra - ra_wi ndow,
el se
readahead = 0;

rabl kof f = rp->r_nextr;
whil e (readahead > 0 && rabl kof f + bsize < rp->r_size) {
nut ex_exi t (& p->r_st at el ock
i f (nfs4_async_readahead(vp, "rabl koff + bsi ze,
addr + (rabl koff + bsize - off),
seg, cr, nfs4_readahead) < 0)
mut ex_ent er (& p->r_statel ock);

br eak;
readahead- - ;
rabl kof f += bsi ze;
/*

* Indicate that we did a readahead so
* readahead offset is not updated

* by the synchronous read bel ow.

*/

readahead_i ssued = 1;
nut ex_ent er (& p- >r_st at el ock);
/*

* set readahead offset to

* of fset of last async readahead
* request.

*/

rp->r_nextr = rabl koff;

}
mut ex_exit (& p->r_statel ock);

if ((pagefound = page_exists(vp, off)) == NULL) {
if ({

pl == NULL)
(void) nfs4_async_readahead(vp, bl koff, addr, seg, cr,
nfs4_r eadahead) ;
} else if (rw == S CREATE) {

*

* Block for this page is not allocated, or the offset
* is beyond the current allocation size, or we're

* allocating a swap slot and the page was not found,
*/so allocate it and return a zero page.

*

if ((pp = page_create_va(vp, off,
PAGESI ZE, PG WAIT, seg, addr)) == NULL)

cmm_err (CE_PANI C, "nfs4_getapage: page_create");

io_len = PAGESI ZE

nut ex_ent er (& p- >r _st at el ock);

rp->r_nextr = off + PAGESI ZE;

nut ex_exi t (& p->r_st at el ock);
} else {/

*

* Need to go to server to get a block
*
/
nmut ex_ent er (& p- >r_st at el ock);
if (blkoff < rp->r_size &&
bl kof f + bsize > rp->r_size) {
/*

* If less than a block left in

new usr/ src/ uts/ comon/fs/nfs/nfs4_vnops.c 152
9959 * file read | ess than a bl ock.

9960 */

9961 if (rp->r_size <= off) {

9962 /*

9963 * Trying to access beyond EOF,
9964 * set up to get at |east one page.
9965 */

9966 bl ksi ze = off + PAGESI ZE - bl kof f
9967 } else

9968 bI ksize = rp->r_size - bl koff;

9969 } else if ((off ==0) ||

9970 (off !'= rp->r nextr && !readahead_i ssued)) {
9971 bl ksi ze = PAGESI ZE;

9972 bl koff = off; /* block = page here */

9973 } else

9974 bl ksi ze = bsi ze;

9975 nut ex_exi t (& p->r_st at el ock);

9977 pp = pvn_read_kluster(vp, off, seg, addr, & o_off,
9978 & o_len, blkoff, blksize, 0)

9980 /*

9981 * Sonme other thread has entered the page,

9982 * so just use it.

9983 *

9984 if (pp == NULL)

9985 got o agai n;

9987 /*

9988 * Now round the request size up to page boundari es.
9989 * This ensures that the entire page wll be

9990 * initialized to zeroes if EOF is encountered.
9991 &

9992 io_len = ptob(btopr(io_len));

9994 bp = pagei o_setup(pp, io_len, vp, B_READ);

9995 ASSERT(bp != NULL);

9997 /*

9998 * pagei o_setup shoul d have set b_addr to 0. This
9999 * is correct since we want to do I/O on a page
10000 * boundary. bp_mapin will use this addr to calculate
10001 * an offset, and then set b_addr to the kernel virtual
10002 * address it allocated for us.

10003 *

10004 ASSERT(bp->b_un. b_addr == 0);

10006 bp->b_edev = O;

10007 bp->b_dev = 0;

10008 bp->b_| bl kno = I bt odb(io_off);

10009 bp->b_file = v

10010 bp->b_of fset = (offset _t)off;

10011 bp_mapi n(bp) ;

10013 /*

10014 * |f doing a wite beyond what we believe is ECF,
10015 * don’t bother trying to read the pages fromthe
10016 * server, we'll just zero the pages here. W
10017 * don't check that the rwflag is S WRITE here
10018 * because sone inplenentations nay attenpt a
10019 * read access to the buffer before copying data.
10020 */

10021 mut ex_ent er (& p->r_st at el ock) ;

10022 if (io_off >= rp->r_size & seg == segkmap) {
10023 mut ex_exi t (& p->r_stat el ock) ;

10024 bzero(bp->b_un. b_addr, io_len);

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

10025
10026
10027
10028

10030
10031
10032
10033
10034

10036
10037
10038
10039

10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054

10056
10057
10058
10059
10060
10061
10062

10064 out
10065
10066

10068
10069
10070
10071
10072

10074
10075

10077
10078
10079
10080
10081

} else {
nut ex_exi t (& p->r_stat el ock);

error = nfs4_bio(bp, NULL, cr, FALSE);

}

/*
* Unmap the buffer before freeing it.
*

bp_mapout (bp);
pagei o_done(bp);

savepp = pp;
do {

pp->p_fsdata = C_NOCOW T;
} while ((pp = pp->p_next) != savepp);

if (error == NFS_EOF) {
/

beyond ECF, return error.

sone inplenentations may attenpt a read

* Ok ok ok % k% 3k

if (seg == segkmap)
error = 0;

el se
error = EFAULT;

}

if (!readahead_i ssued && !error) {
nmut ex_ent er (& p- >r _st at el ock);
rp->r_nextr = io_off + io_len;
nmut ex_exi t (& p->r_stat el ock) ;

if (pl == NULL)
return (error);

if (error) {
if (pp !'= NULL)

pvn_read_done(pp, B_ERROR);
return (error);

}

if (pagefound) {
se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);
/*
* Page exists in the cache, acquire the appropriate |ock.
* |f this fails, start all over again.
*
/

if ((pp = page_l ookup(vp, off, se)) == NULL) {

10082 #i fdef DEBUG

10083
10084 #endi f
10085
10086
10087
10088
10089
10090

nfs4_| ost page++;
goto reread;

}
pl[0] = pp;
pl [1] NULL;
return (0);

If doing a wite systemcall just return
zeroed pages, else user tried to get pages
We don’t check
that the rwflag is S WRI TE here because

access to the buffer before copying data.

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

10092
10093

10095
10096

10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109

10111
10113

10115
10116
10117
10118
10119
10120
10121
10122
10123
10124

10126
10127
10128
10129
10130
10131
10132
10133
10134
10135

10137
10138
10139
10140
10141
10142

10144
10145

10147
10148
10149
10150
10151
10152
10153

10155
10156

if (pp !'= NULL)
pvn_plist_init(pp, pl, plsz, off, io_len, rw;
return (error);
}
static void

nfs4_readahead(vnode_t *vp, u_offset_t blkoff,
cred_t *cr)

caddr _t addr,

struct seg *seg,

may have

In all

rect since
use this addr
nel virtual

{ ‘
int error;
page_t *
u_of fset _t |o_off;
size_t io_len;
struct buf *bp;
uint _t bsize, blksize;
rnode4_t *rp = VIOR4(vp);
page_t *savepp;
ASSERT(nfs_zone() == VIOM 4(vp)->m _zone);
bsi ze = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
nut ex_ent er (& p- >r _st at el ock);
if (blkoff < rp->r_size && bl koff + bsize > rp->r_size) {
/*
* |f less than a block left in file read |ess
* than a bl ock.
*/
bl ksi ze = rp->r_size - bl koff;
} else
bl ksi ze = bsi ze;
nut ex_exi t (& p->r_st at el ock);
pp = pvn read_kl uster(vp, blkoff, segkmap, addr,
o_off, & o_len, blkoff, bIkS|ze 1);
*
* The isra flag passed to the kluster function is 1, we
* gotten a return value of NULL for a variety of reasons (# of free
* pages < minfree, soneone entered the page on the vnode etc).
* cases, we want to punt on the readahead.
*
/
if (pp == NULL)
return;
/*
* Now round the request size up to page boundari es.
* This ensures that the entire page will be
* initialized to zeroes if EOF is encountered.
*
/
io_len = ptob(btopr(io_len));
bp = pagei o_setup(pp, io_len, vp, B READ);
ASSERT(bp !'= NULL);
/*
* pagei o_setup shoul d have set b_addr to 0. This is cor
* we want to do I/0O on a page boundary. bp_mapin() will
* to calculate an offset, and then set b_addr to the ker
* address it allocated for us.
*
/
ASSERT(bp->b_un. b_addr == 0);
bp->b_edev = 0;
bp->b_dev = 0;

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 155 new usr/src/uts/comon/fs/nfs/nfs4_vnops.c
10157 bp->b_| bl kno = | bt odb(io_off); 10223 ASSERT(cr !'= NULL);
10158 bp->b_file = vp;
10159 bp->b_of fset = (of fset_t)bl kof f; 10225 if (!(flags & B_ASYNC) && nfs_zone() != VIOM 4(vp)->m _zone)
10160 bp_mapi n(bp) ; 10226 return (EIO;
10162 /* 10228 rp = VIOR4(vp);
10163 * |f doing a wite beyond what we believe is EOF, don’t bother trying 10229 if (1S_SHADONvVp, rp))
10164 * to read the pages fromthe server, we'll just zero the pages here. 10230 vp = RTOV4(rp);
10165 * We don’t check that the rwflag is S WRI TE here because sone
10166 * inplenentations nay attenpt a read access to the buffer before 10232 /*
10167 * copyi ng data. 10233 * XXX - Why should this check be made here?
10168 */ 10234 */
10169 nut ex_ent er (& p- >r _st at el ock); 10235 if (vp->v_flag & VNOVAP)
10170 if (io_off >= rp->r_size & seg == segkmap) { 10236 return (ENOSYS);
10171 mut ex_exi t (& p->r_st at el ock) ;
10172 bzero(bp->b_un.b_addr, io_len); 10238 if (len == 0 && !(flags & B_INVAL) &&
10173 error = 0; 10239 (vp >v_vfsp->vfs_flag & VFS_RDONLY))
10174 } else { 10240 return (0);
10175 mut ex_exi t (& p->r_statel ock);
10176 error = nfs4_bio(bp, NULL, cr, TRUE); 10242 mut ex_ent er (& p- >r_st at el ock) ;
10177 if (error == NFS_EOF) 10243 rp->r_count ++;
10178 error = 0; 10244 nmut ex_exi t (& p->r_stat el ock) ;
10179 } 10245 error = nfs4_putpages(vp, off, len, flags, cr);
10246 nut ex_ent er (& p- >r _st at el ock);
10181 /* 10247 rp->r_count--;
10182 * Unmap the buffer before freeing it. 10248 cv_broadcast (& p->r_cv);
10183 */ 10249 mut ex_exi t (& p->r_stat el ock) ;
10184 bp_mapout (bp) ;
10185 pagei o_done(bp) ; 10251 return (error);
10252 }
10187 savepp = pp;
10188 do { 10254 /*
10189 pp->p_fsdata = C_NOCOW T; 10255 * Wite out a single page, possibly klustering adjacent dirty pages.
10190 } while ((pp = pp->p_next) != savepp); 10256 */
10257 int
10192 pvn_read_done(pp, error ? B_ READ | B_ERROR : B_READ); 10258 nfs4_put apage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
10259 int flags, cred_t *cr)
10194 /* 10260 {
10195 * In case of error set readahead of fset 10261 u_offset_t io_off;
10196 * to the lowest offset. 10262 u_offset_t |bn off
10197 * pvn_read_done() calls VN DI SPOSE to destroy the pages 10263 u_offset_t |bn;
10198 @[] 10264 size_t io_len;
10199 if (error & rp->r_nextr > io_off) { 10265 uint_t bsize;
10200 mut ex_ent er (& p->r_st at el ock) ; 10266 int error;
10201 if (rp->r_nextr > io_off) 10267 rnoded4_t *rp;
10202 rp->r_nextr = io_off;
10203 nut ex_exi t (& p->r_st at el ock); 10269 ASSERT(! (vp->v_vfsp->vfs_flag & VFS _RDONLY));
10204 } 10270 ASSERT(pp != NULL);
10205 } 10271 ASSERT(cr != NULL);
; 10272 ASSERT((flags & B_ASYNC) || nfs_zone() == VIOM 4(vp)->mi _zone);
10207 /*
10208 * Fl ags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 10274 rp = VIOR4(vp);
10209 * If len == 0, do fromoff to ECF. 10275 ASSERT(rp->r_count > 0);
10210 * 10276 ASSERT(! | S_SHADON vp, Tp));
10211 * The normal cases should be len == 0 & off == 0 (entire vp list) or
10212 * len == MAXBSI ZE (from segnap_rel ease actions), and |en == PAGESI| ZE 10278 bsi ze = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
10213 * (from pageout). 10279 | bn = pp->p_offset / bsize;
10214 */ 10280 I bn_off = 1lbn * bsize;
10215 /* ARGSUSED */
10216 static int 10282 /*
10217 nfs4_put page(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 10283 * Find a kluster that fits in one block, or in
10218 cal l er_context_t *ct) 10284 * one page if pages are bigger than blocks. |If
10219 { 10285 * there is less file space allocated than a whol e
10220 int error; 10286 * page, we'll shorten the i/o request bel ow.
10221 rnode4_t *rp; 10287 */
10288 pp = pvn_wite_kluster(vp, pp, & o_off, & o_len, Ibn_off,

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 157

10289

10291
10292
10293
10294
10295

10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354

| *
*
*

roundup(bsi ze, PAGESIZE), flags);

pvn_wite_kluster shouldn’t have returned a page with offset
behind the original page we were given. Verify that.

*

/

ASSERT((pp->p_offset / bsize) >= |bn);

/*

* Now pp will have the list of kept dirty pages marked for

* wite back. It will also handle invalidation and freeing

* of pages that are not dirty. Check for page |length rounding

* probl ens.

*/

if (io_off +io_len > Ibn_off + bsize) {
ASSERT((io_off + io_len) - (Ibn_off + bsize) < PAGESIZE);
io_len = Ibn_off + bsize - io_off;

——

I T T

if

The RAMODI NPROGRESS fl ag nakes sure that nfs4_bio() sees a

consi stent value of r_size. RAMODI NPROGRESS is set in witerp4().
When RAMODI NPROGRESS is set it indicates that a uionove() is in
progress and the r_size has not been nade consistent with the
new size of the file. Wien the uionove() conpletes the r_size is
updat ed and the R4AMODI NPROGRESS flag is cl eared.

The RAMODI NPROGRESS fl ag nakes sure that nfs4_bio() sees a
consi stent value of r_size. Wthout this handshaking, it is
possi bl e that nfs4_bio() picks up the old value of r_size
before the uionpbve() in witerp4() conpletes. This will result
in the wite through nfs4_bio() being dropped.

More precisely, there is a wi ndow between the tine the ui onove(
conpletes and the tinme the r_size is updated. If a VOP_PUTPAGE()
operation intervenes in this “window, the page will be picked up,
because it is dirty (it will be unlocked, unless it was
pagecreate’ d). Wen the page is picked up as dirty, the dirty
bit is reset (pvn_getdirty()). In nfsdwite(), r_sizeis
checked. This will still be the ol d size. Therefore the page wil |
not be witten out. Wien segnap_rel ease() calls VOP_PUTPAGE(),
the page will be found to be clean and the wite will be dropped.

(rp->r_flags & R4AMODI NPROGRESS) {
mut ex_ent er (& p- >r_st at el ock) ;
if ((rp->r_flags & RAMODI NPROGRESS) &&
rp->r_nodaddr + MAXBSI ZE > io_off &&
rp->r_npdaddr < io_off + io_len) {
page_t *plist;
/

*
* Awite is in progress for this region of the file.
* |f we did not detect RAMODI NPROGRESS here then this
* path through nfs_putapage() would eventually go to
* nfs4_bio() and may not wite out all of the data
* in the pages. W end up losing data. So we decide
* to set the nodified bit on each page in the page
* list and mark the rnode with R4ADI RTY. This wite
* will be restarted at some later tine.
*/
plist = pp;
while (plist !'= NULL) {

pp = plist;

page_sub(&plist, pp);
hat _set nod(pp) ;
page_i o_unl ock(pp);
page_unl ock(pp);

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

10355
10356
10357
10358
10359
10360
10361
10362
10363
10364

10366
10367
10368
10369
10370

10372
10373
10374
10375
10376
10377

10379
10380
10381
10382
10383
10384

10386
10388
10390
10392

10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420

}

rp->r_flags | = R4DI

RTY;

mut ex_exit (& p->r statel ock) ;

if (offp)
offp = io_

if (lenp)
*lenp = io_

return (0);

of f;

| en;

}
nut ex_exi t (& p->r_st at el ock);

}
if (flags

} else
er

if (offp)

& B_ASYNC)

nf s4_sync_put apage) ;

{
error = nfs4_async_put apage(vp, pp,

ror = nfs4_sync_put apage(vp, pp,

*offp = io_off;

if (lenp)

return (er

static int
nfs4_sync_put apage(vnode_t *vp, page_t *pp,
int flags, cred_t *cr)

{

int error;
rnode4_t *

=io_len;
ror);

rp;

ASSERT(nfs_zone() == VIOM 4(vp)->m

flags | = B_.WRI TE;

error = nf

s4_rdw | bn(vp, pp, io_off,

rp = VIOR4(vp);

if ((error
error

(flags & (B_| NVAL| B_FORCE))

if

——

f

u_of f se

_zone);

== ENOSPC || error == EDQUOT ||
&&

== EACCES)

(! (rp->r_flags & RAOGUTOFSPACE))
mut ex_enter (& p->r_statel ock)
rp->r_flags | = RAOUTOFSPACE;
mut ex_exi t (& p->r_statel ock);

ags | = B_ERROR;

pvn_write_done(pp, flags);

/

¥k ok ok ok ok % Ok Ok ko F ok k% ok

If this was not an async thread,
wite out the pages, but this time, also destroy
them whether or not the wite is successful. This
will prevent menory fromfilling up with these
pages and destroying themis the only alternative
1f they can’t be witten out.

io_len,

158

io_off, io_len, flags, cr,

io_off, io_len, flags, cr);

t_t io_off, size_t

flags, cr);

error == EFBIG ||

1= (BII\NAL|BF(RCE)) {

then try again to

Don’t do this if this is an async thread because
when the pages are unl ocked in pvn_wite_done,
some other thread could have cone al ong, |ocked
them and queued for an async thread. It would be
possible for all of the async threads to be tied
up waiting to lock the pages again and they woul d
all already be | ocked and waiting for an async
Deadl ock.

thread to handl e them

io_len,

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 159 new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c 160

10421 if (!(flags & B_ASYNQ)) { 10487 * rp->r_l kserlock to avoid a race with concurrent |ock requests.
10422 error = nfs4_putpage(vp, io_off, io_len, 10488 *
10423 B_INVAL | B_FORCE, cr, NULL); 10489 * Atomically increnent r_inmap after acquiring r_rw ock. The
10424 } 10490 * jdea here is to acquire r_rwiock to block read/wite and
10425 } else { 10491 * not to protect r_inmap. r_inmap will informnfs4_read/ wite()
10426 if (error) 10492 * that we are in nfs4_map(). Now, r_rwock is acquired in order
10427 flags | = B_ERROR 10493 * and we can prevent the deadl ock that woul d have occurred
10428 else if (rp->r_flags & RAQUTOFSPACE) { 10494 * when nfs4_addmap() woul d have acquired it out of order.
10429 mut ex_ent er (& p->r_st at el ock) ; 10495 *
10430 rp->r_flags & ~RAOUTOFSPACE; 10496 * Since we are not protecting r_inmap by any |ock, we do not
10431 mut ex_exi t (& p->r_statel ock); 10497 * hold any | ock when we decrenent it. We atom cally decrenent
10432 } 10498 * r_inmap after we release r_| kserl ock.
10433 pvn_write_done(pp, flags); 10499 */
10434 1 f (freemem < desfree)
10435 (void) nfs4_commt_vp(vp, (u_offset_t)O, O, cr, 10501 if (nfs_rw enter_sig(& p->r_rw ock, RWWRI TER, | NTR4(vp)))
10436 NFS4_VRI TE_NOWAI T) ; 10502 return (EINTR);
10437 } 10503 atomi c_add_i nt (& p->r_i nmap, 1);
10504 nfs_rw exit (& p->r_rw ock);
10439 return (error);
10440 } 10506 if (nfs_rw enter_sig(& p->r_|kserlock, RWREADER |INTR4(vp))) {
10507 atom c_add_i nt (& p->r_i nmap, —1)
10442 #ifdef DEBUG 10508 return (EINTR);
10443 int nfs4_force_open_before_mmap = O; 10509 }
10444 #endi f
10446 /* ARGSUSED */ 10512 if (vp->v_flag & VNOCACHE) {
10447 static int 10513 error = EAGAIN,;
10448 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10514 got o done;
10449 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10515 }
10450 cal l er_context_t *ct)
10451 { 10517 /*
10452 struct segvn_crargs vn_a; 10518 * Don't allow concurrent |ocks and mapping if mandatory locking is
10453 int error = 0; 10519 * enabl ed.
10454 rnoded4_t *rp = VTO?4(vp), 10520 */
10455 mtinfo4_t *m = VIOM 4(vp); 10521 if (flk_has_renote_| ocks(vp)) {
10522 struct vattr va;
10457 if (nfs_zone() != VIOM 4(vp)->nm _zone) 10523 va.va_nmask = AT_MODE;
10458 return (EIO; 10524 error = nfs4getattr(vp, &va, cr);
10525 if (error !'=0)
10460 if (vp->v_flag & VNOVAP) 10526 goto done;
10461 return (ENOSYS); 10527 if (MANDLOCK(vp, va.va_node)) {
10528 error = EAGAI N,
10463 if (off <0 || (off + len) <O0) 10529 got o done;
10464 return (ENXIO); 10530 }
10531 }
10466 if (vp->v_type != VREQ
10467 return (ENCDEV); 10533 /*
10534 * It is possible that the rnode has a | ost |ock request that we
10469 /* 10535 * are still trying to recover, and that the request conflicts with
10470 * |f the file is delegated to the client don't do anything. 10536 * this map request.
10471 * |f the file is not del egated, then validate the data cache. 10537 *
10472 */ 10538 * An alternative approach would be for nfs4_safemap() to consider
10473 nmut ex_ent er (& p- >r_st at ev4_| ock); 10539 * queued | ock requests when deciding whether to set or clear
10474 if (rp->r_deleg_type == OPEN_ DELEGATE = NONE) { 10540 * VNOCACHE. This would require the frlock code path to call
10475 mut ex_exi t (& p->r_statev4_| ock); 10541 * nfs4_safemap() after enqueing a | ost request.
10476 error = nfs4_validat e_caches(vp, cr); 10542 */
10477 if (error) 10543 if (nfs4_map_l ost_| ock_conflict(vp)) {
10478 return (error); 10544 error = EAGAIN;
10479 } else { 10545 goto done;
10480 mut ex_exit (& p->r_statev4_| ock); 10546 }
10481 }
10548 as_r angel ock(as);
10483 /* 10549 error = choose_addr(as, addrp, len, off, ADDR VACALIGN, flags);
10484 * Check to see if the vnode is currently marked as not cachabl e. 10550 if (error I=0) {
10485 * This nmeans portions of the file are | ocked (through VOP_FRLOCK). 10551 as_r angeunl ock(as);

10486 * In this case the map request nust be refused. W use 10552 got o done;

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

10553

10555
10556
10557
10558
10559
10560

10562
10563
10564
10565
10566
10567
10568

}
if (vp->v_type == VREG {
/*
* W& need to retrieve the open stream
*
/

nfs4_open_streamt
nfs4_open_owner _t

*osp = NULL;
*oop = NULL;

oop = find_open_owner(cr,
if (oop !'= NULL) {
/* returns with 'os_sync_l ock’ held */
osp = find_open_strean(oop, rp);
open_owner _rel e(oop) ;

NFS4_PERM CREATED, mi);

%f (osp == NULL) {

10569 #ifdef DEBUG

10570
10571
10572
10573
10574 #endi f
10575
10576
10577
10578
10579
10580
10581
10582
10583

10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597

10599
10600
10601
10602
10603
10604
10605
10606
10607
10608

10610
10611

10613 done
10614
10615
10616
10617 }

if (nfs4_force_open_before_mmap) {
error = EIQ
got o done;

}

/* returns with 'os_sync_l ock’ held */
error = open_and_get _osp(vp, cr, &osp);
if (osp == NULL)
S4_DEBUG(nf s4_mmap_debug, (CE_NOTE,
"nfs4_map: we tried to OPEN the file "
"but again no osp, so fail
goto done;

}

if (osp->os_failed_reopen) {

mut ex_exi t (&osp->0s_sync_| ock);

open_streamrel e(osp, rp);

NFS4 “DEBUG(nf s4_open_st r eam debug,
"nfs4_map: os_failed_reopen set on
"osp %, cr %, rp %", (void *)osp,
(voird *)cr, rnodedinfo(rp)));

error = EIQ

got o done;

(CE_NOTE

mut ex_exi t (&osp- >0s_sync_| ock) ;
open_streamrel e(osp, rp);

}

vn_a.vp = vp;
vn_a. of fset = off;

vn_a.type = (fl ags & MAP_TYPE) ;
vn_a.prot = (uchar_t)prot;

vn_a. maxprot = (uchar_t) maxprot;
vn_a.flags = (flags & ~MAP_TYPE) ;
vn_a.cred = ;

vn_a. anp NULL;

vn_a. szc 0;

vn_a.l grp_nempolicy_flags = 0;

error = as_map(as,
as_rangeunl ock(as);

*addrp, len, segvn_create, &n_a);

nfs_rw exit (& p->r_| kserl ock);
atom c_add_i nt (& p->r_i nmap, -1);
return (error);

with E10Y));

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

10619 /*
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632

* % ok k% k% ok K ok ko

*

10633 */

We're nost likely dealing with a kernel nodule that |ikes to READ
and mmap without OPENing the file (ie: |ookup/read/ mmap), so lets
officially OPEN the file to create the necessary client state

for bookkeepi ng of os_mmap_read/wite counts.

Since VOP_MAP only passes in a pointer to the vnode rather than

a doubl e pointer, we can’'t handle the case where nfs4open_otw()
returns a different vnode than the one passed into VOP_MAP (since
VOP_DELMAP wi || not see the vnode nfs4open_otw used). In this case,
we return NULL and let nfs4_map() fail. Note: the only case where
this should happen is if the file got renoved and replaced with the
sane nanme on the server (in addition to the fact that we're trying
to VOP_MAP withouth VOP_OPENing the file in the first place).

10634 static int

10636 {
10637
10638
10639
10640
10641
10642
10643

10645

10635 open_and_get _osp(vnode_t *map_vp, cred_t *cr, nfs4_open_streamt **ospp)
rnode4_t *rp, *dr p;
vnode_t *dvp, *open_vp;
char file_name[MAXNAVELEN] ;
int just_created,
nf s4_open_stream t *osp;
nfs4_open_owner _t *oop;
int error;
*ospp = NULL;
open_vp = nmap_vp;

10646

10648
10649
10650
10651

10653
10654
10655
10656

10658
10659
10660
10661
10662

10664
10665
10666
10667

10669
10670
10671
10672
10673
10674
10675

10677

10679
10680
10681
10682
10683
10684

rp = VIOR4(open_vp);

if ((error = vtodv(open vp,
return (error);

drp = VTOR4(dvp);

&dJvp, cr, TRUE)) != 0)

if (nfs_rw_enter_sig(&drp->r_rw ock,
VN_RELE(dvp) ;
return (EINTR);

RW READER, | NTR4(dvp))) {

}

if ((error = vtonane(open_vp, file_nane, MAXNAMELEN)) != 0) {
nfs_rw exit (&drp->r_rw ock);
VN_RELE(dvp) ;
return (error);

}

nut ex_ent er (& p->r_statev4_| ock);
if (rp->created_v4) {
rp->created_v4 = 0;
mut ex_exi t (& p->r_st at ev4_| ock);

dnl c_update(dvp, file_nane, open_vp);
/* This is needed so we don’t bunp t he open ref count */
just_created = 1;
} else {
mut ex_exi t (& p->r_statev4_| ock);
just_created = 0;

}
VN_HOLD(map_vp) ;

error = nfsd4open_otw(dvp, file_nane, NULL, &open_vp, cr,
just_created);
if (error) {
nfs_rw exit(&drp->r_rw ock);
VN_RELE(dvp);
VN_RELE(map_ vp)

0, FREAD,

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 163 new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c 164
10685 return (error); 10751 if (vp->v_flag & VNOVAP)
10686 } 10752 return (ENOSYS);
10688 nfs_rw exit (&drp->r_rw ock); 10754 /*
10689 VN_RELE(dvp); 10755 * Don't need to update the open streamfirst, since this
10756 * mmap can’'t add any additional share access that isn't
10691 /* 10757 * already contained in the open stream (for the case where we
10692 * | f nfsdopen_otw() returned a different vnode then "undo" 10758 * open/ mmap/ only update rp->r_napcnt/server reboots/reopen doesn’t
10693 * the open and return failure to the caller. 10759 * take into account os_nmap_read[wite] counts).
10694 */ 10760 */
10695 if (!'VN_.CMP(open_vp, map_vp)) { 10761 atom c_add_| ong((ul ong_t *)&r p->r_nmapcnt, btopr(len));
10696 nfs4_error_t e;
10763 if (vp->v_type == VREG {
10698 NFS4_DEBUG(nf s4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10764 /*
10699 "open returned a different vnode")); 10765 * W need to retrieve the open stream and update the counts.
10700 /* 10766 * |f there is no open stream here, sonething is wong.
10701 * |f there's an error, ignore it, 10767 */
10702 * and | et VOP_I NACTI VE handle it. 10768 nfs4_open_stream t *osp = NULL;
10703 */ 10769 nf s4_open_owner _t *oop = NULL;
10704 (voi d) nfs4cl ose_one(open_vp, NULL, cr, FREAD, NULL, &e,
10705 CLOSE_NORM 0, 0, 0); 10771 oop = find_open_owner(cr, NFS4_PERM CREATED, m);
10706 VN_RELE(map_vp) ; 10772 if (oop !'= NULL) {
10707 return (ElIO); 10773 /* returns with 'os_sync_l ock’ held */
10708 } 10774 osp = find_open_strean(oop, rp);
10775 open_owner _rel e(oop);
10710 VN_RELE(map_vp); 10776 }
10777 if (osp == NULL)
10712 oop = find_open_owner(cr, NFS4_PERM CREATED, VTOM 4(open_vp)); 10778 NFS4_DEBUG(nf s4_mmap_debug, (CE_NOTE,
10713 if (loop) { 10779 "nfs4_addnap: we should have an osp"
10714 nfs4_error_t e; 10780 "but we don’t, so fail with EIQ"));
10781 error = EIQ
10716 NFS4_DEBUG nf s4_nmmap_debug, (CE_NOTE, "open_and_get _osp: " 10782 goto out;
10717 "no open owner")); 10783 }
10718 /*
10719 * |f there’'s an error, ignore it, 10785 NFS4_DEBUG(nf s4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %, "
10720 * and | et VOP_I NACTIVE handle it. 10786 " pages %d, prot Ox¥%", (void *)osp, btopr(len), prot));
10721 */
10722 (void) nfs4cl ose_one(open_vp, NULL, cr, FREAD, NULL, &e, 10788 /*
10723 CLCSE_NORM 0, 0, 0); 10789 * Update the map count in the open stream
10724 return (EIO); 10790 * This is necessary in the case where we
10725 } 10791 * open/ mmap/ cl ose/, then the server reboots, and we
10726 osp = find_open_strean{oop, rp); 10792 * attenpt to reopen. |f the mmap doesn’t add share
10727 open_owner _rel e(oop); 10793 * access then we send an invalid reopen with
10728 *0spp = 0sp; 10794 * access = NONE.
10729 return (0); 10795 *
10730 } 10796 * We need to specifically check each PROT_* so a mmap
10797 * call of (PROT_WRITE | PROT_EXEC) will ensure us both
10732 /* 10798 * read and wite access. A sinple conparison of prot
10733 * Pl ease be aware that when this function is called, the address space wite 10799 * to ~PROT_WRITE to determine read access is insufficient
10734 * a_lock is held. Do not put over the wire calls in this function. 10800 * since prot can be |= with PROT_USER etc.
10735 */ 10801 */
10736 /* ARGSUSED */
10737 static int 10803 /*
10738 nfs4_addnmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10804 * Unl ess we’'re MAP_SHARED, no sense in adding os_rmap_wite
10739 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10805 */
10740 cal l er_context_t *ct) 10806 if ((flags & MAP_SHARED) && (maxprot & PROT_WRI TE))
10741 { 10807 osp->0s_mmap_wite += btopr(len);
10742 rnode4_t *rp; 10808 if (maxprot & PROT_READ)
10743 int error = 0; 10809 osp->os_nmmap_read += btopr(len);
10744 mt i nf o4_t *m; 10810 if (maxprot & PROT_EXEC)
10811 osp->o0s_map_read += btopr(len);
10746 m = VIOM 4(vp); 10812 /*
10747 rp = VIOR4(vp); 10813 * Ensure that os_nmap_read gets increnented, even if
10814 * maxprot were to | ook |ike PROT_NONE.
10749 if (nfs_zone() != m->nm _zone) 10815 */
10750 return (EIO; 10816 if (!'(maxprot & PROT_READ) && ! (maxprot & PROT_WRI TE) &&

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

10817 ! (maxprot & PROT_EXEC))

10818 osp->o0s_mmap_read += btopr(len);
10819 osp->0s_mapcnt += btopr(len);

10820 nut ex_exi t (&osp->0s_sync_| ock);

10821 open_streamrel e(osp, rp);

10822 }

10824 out:

10825 /*

10826 * |If we got an error, then undo our

10827 * increnenting of 'r_mapcnt’.

10828 */

10830 if (error) {

10831 atom c_add_Il ong((ul ong_t *)& p->r_mapcnt, -btopr(len));
10832 ASSERT(r p->r _mapcnt >= 0);

10833

10834 return (error);

10835 }

10837 /* ARGSUSED */

10838 static int

10839 nfs4_cnp(vnode_t *vpl, vnode_t *vp2, caller_context_t *ct)
10840 {

10842 return (VIOR4(vpl) == VIOR4(vp2));

10843 }

10845 /* ARGSUSED */

10846 static int

10847 nfs4_frlock(vnode_t *vp, int cnd, struct flock64 *bfp, int flag,
10848 of fset_t offset, struct flk_callback *flk_cbp, cred_t *cr,
10849 cal l er_context_t *ct)

10850 {

10851 int rc;

10852 u_offset_t start, end;

10853 rnoded4_t *rp;

10854 int error =0, intr = INTR4(vp);

10855 nfs4_error_t e;

10857 if (nfs_zone() != VIOM 4(vp)->ni _zone)

10858 return (EIO;

10860 /* check for valid cnd paraneter */

10861 if (cnd !'= F_GETLK && cnd !'= F_SETLK & cnd != F_SETLKW
10862 return (EI NVAL);

10864 /* Verify | _type. */

10865 switch (bfp- >| _type) {

10866 case F_RDLCK

10867 if (cmd != F_GETLK && ! (flag & FREAD))
10868 return (EBADF);

10869 br eak;

10870 case F_WRLCK:

10871 if (cmd = F_CGETLK && ! (flag & FWRI TE))
10872 return (EBADF);

10873 br eak;

10874 case F_UNLCK:

10875 intr = 0;

10876 break;

10878 defaul t:

10879 return (EI NVAL);

10880 }

10882 /* check the validity of the |lock range */

new usr/ src/ uts/ common/ fs/ nfs/nfs4_vnops.c 166
10883 if (rc = flk_convert_|lock_data(vp, bfp, &start, &end, offset))
10884 return (rc);

10885 if (rc = flk_check_|l ock_data(start, end, MAXEND))

10886 return (rc);

10888 /*

10889 * |f the filesystemis nounted using |ocal |ocking, pass the
10890 * request off to the local |ocking code.

10891 *

10892 if (VTC]VI4(vp) >m _flags & M4_LLOCK || vp->v_type != VREG {
10893 (chd == F_SETLK || cnd == F_SETLKW {

10894 /*

10895 * For conplete safety, we should be hol ding
10896 * r_l kserl ock. However, we can’'t call

10897 * nfs4_safelock and then fs_frlock while

10898 * holding r_I kserlock, so just invoke

10899 * nfs4_safel ock and expect that this will

10900 * catch enough of the cases.

10901 */

10902 if (Infs4_safel ock(vp bfp, cr))

10903 return (EAGAIN);

10904 }

10905 return (fs_frlock(vp, cnmd, bfp, flag, offset, flk_cbp, cr, ct));
10906 }

10908 rp = VIOR4(vp);

10910 *

10911 * Check whether the given | ock request can proceed, given the
10912 * current file mappings.

10913 */

10914 if (nfs_rw enter_sig(& p->r_I| kserlock, RWWRI TER, intr))

10915 return (EINTR);

10916 if (cmd == F_SETLK || cmd == F - SETLKW {

10917 if (Tnfs4_safel ock(vp bfp, cr)) {

10918 rc = EAGAI N,

10919 got o done;

10920 }

10921 }

10923 /*

10924 * Flush the cache after waiting for async 1/Oto finish. For new
10925 * locks, this is so that the process gets the latest bits fromthe
10926 * server. For unlocks, this is so that other clients see the
10927 * latest bits once the file has been unlocked. |If currently dirty
10928 * pages can’'t be flushed, then don’t allow a |lock to be set. But
10929 * al low unl ocks to succeed, to avoid having orphan | ocks on the
10930 * server.

10931 *

10932 if (cmd != F_GETLK) {

10933 nmut ex_ent er (& p->r_st at el ock);

10934 whil e (rp->r_count > 0) {

10935 if (intr) {

10936 klwp_t *Iwp = ttolwp(curthread);

10938 if (Iwp !'= NULL)

10939 | wp- >l wp_nost op++;

10940 if (cv_wait_sig(& p->r_cv,

10941 & p->r_statel ock) == 0) {

10942 if (Iwp !'= NULL)

10943 | wp- >l wp_nost op- -;

10944 rc = EINTR

10945 br eak;

10946 }

10947 if (lwp !'= NULL)

10948 | wp- >l wp_nost op- - ;

10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968

10970
10971
10972
10973
10974
10975
10976

10978
10979

10981
10982

10984
10985

10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001

11003
11004
11005
11006
11007

11009
11010
11011
11012

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c
} else
cv_wait (& p->r_cv, & p->r_statel ock);
nut ex_exi t (& p->r_st at el ock);
if (rc!=0)
got o done;
error = nfs4_putpage(vp, (offset_t)0, O, B_INVAL, cr, ct);
if (error) {
if (error == ENOSPC || error == El
nut ex_ent er (& p->r_st at el ock);
if (!rp->r_error)
rp->r_error = error;
nut ex_exi t (& p->r_stat el ock);
}
if (bfp->_type !'= F_UNLCK) {
rc = ENOLCK;
got o done;
}
}
}
/*
* Call the lock nanager to do the real work of contacting
* the server and obtaining the |ock.
*
nf s4frl ock(NFS4_LCK_CTYPE_NORM vp, cnd, bfp, flag, offset,
cr, &e, NULL, NULL);
rc = e.error;
if (rc ==0)
nfs4_| ockconpl etion(vp, cnd);
done:
nfs_rw_ exit (& p->r_| kserl ock);
return (rc);
}
/*
* Free storage space associated with the specified vnode. The portion
* to be freed is specified by bfp->_start and bfp->l _len (al ready
* nornalized to a "whence" of 0).
*
* This is an experinental facility whose continued existence is not
* guaranteed. Currently, we only support the special case
* of | _len == 0, neaning free to end of file.
*
/
/* ARGSUSED */
static int
nfs4_space(vnode_t *vp, int cnd, struct flock64 *bfp, int flag,
offset_t offset, cred_t *cr, caller_context_t *ct)
{
int error;
if (nfs_zone() != VIOM 4(vp)->m _zone)
return (EIO;
ASSERT(vp->v_type == VREG);
if (cmd !'= F_FREESP)
return (EI NVAL);
error = convoff(vp, bfp, 0, offset);
if (lerror) {
ASSERT(bf p->l _start >= 0);
if (bfp->l_len == 0)
struct vattr va;

11013

167

new usr/ src/ uts/ common/ fs/ nfs/nfs4_vnops.c 168

11015 va.va_mask = AT_SI ZE;

11016 va.va_size = bfp->l _start;

11017 error = nfs4setattr(vp, &a, 0, cr, NULL);

11019 if (error == 0 && bfp->l _start == 0)

11020 vnevent _truncate(vp, ct);

11021 } else

11022 error = ElI NVAL;

11023 }

11025 return (error);

11026 }

11028 /* ARGSUSED */

11029 int

11030 nfs4_real vp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct)

11031 {

11032 rnode4_t *rp;

11033 rp = VIOR4(Vp)

11035 if (vp->v_type == VREG && | S_SHADOW vp, rp)) {

11036 vp = RTOVA(rp);

11037

11038 *Vpp = vp;

11039 return (0);

11040 }

11042 /*

11043 * Setup and add an address space cal |l back to do the work of the delnap call.

11044 * The callback will (and nmust be) deleted in the actual callback function.

11045 *

11046 * This is done in order to take care of the problemthat we have with hol di ng

11047 * the address space’s a_lock for a long period of time (e.g. if the NFS server

11048 * is down). Callbacks will be executed in the address space code while the

11049 * a_lock 1s not held. Holding the address space’s a_l ock causes things such

11050 * as ps and fork to hang because they are trying to acquire this lock as well.

11051 */

11052 /* ARGSUSED */

11053 static int

11054 nfs4_del map(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,

11055 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,

11056 cal l er_context_t *ct)

11057 {

11058 int cal |l er_found;

11059 int error;

11060 rnode4_t *rp;

11061 nfs4_del map_args_t *dmapp;

11062 nfs4_del mapcal | _t *del map_cal | ;

11064 if (vp->v_flag & VNOVAP)

11065 return (ENOCSYS);

11067 /*

11068 * A process may not change zones if it has NFS pages mmap’ ed

11069 *in, so we can't legitimately get here fromthe wong zone.

11070 *

11071 ASSERT(nfs_zone() == VIOM 4(vp)->m _zone);

11073 rp = VIOR4(vp);

11075 /*

11076 * The way that the address space of this process deletes its mapping

11077 * of this file is via the followi ng call chains:

11078 * - as_free()->SEGOP_UNVAP()/segvn_unmap() - >VOP_DELMAP() / nf s4_del map()

11079 * - as_unmap() - >SEGOP_UNVAP() / segvn_unmap() - >VOP_DELMAP() / nf s4_del map()
*

11080

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 169

11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118

11120
11121

11123
11124
11125

11127

11129
11130
11131
11132
11133
11134
11135
11136
11137

11139
11140

11142
11143 }

—hQ) ok k ok k Ok 3 b OF 3k Ok ok b SRk ok % Rk Ok % bk o

Wth the use of address space call backs we are allowed to drop the
address space | ock, a_lock, while executing the NFS operations that
need to go over the wire. Returning EAGAIN to the caller of this
function is what drives the execution of the callback that we add
bel ow. The callback will be executed by the address space code
after dropping the a_|ock. Wen the callback is finished, since
we dropped the a_lock, it nmust be re-acquired and segvn_unnmap()

is called again on the same segnment to finish the rest of the work
that needs to happen during unnapping.

This action of calling back into the segnent driver causes
nfs4_del map() to get called again, but since the callback was

al ready executed at this point, it already did the work and there
is nothing left for us to do.

To Sunmari ze:

- The first time nfs4_delmap is called by the current thread is when
we add the caller associated with this delmap to the del nap caller
list, add the call back, and return EAGAI N

- The second tinme in this call chain when nfs4_delmap is called we
will find this caller in the delnmap caller list and realize there
is no nore work to do thus renoving this caller fromthe |ist and
returning the error that was set in the call back execution.

cal l er_found = nfs4_find_and_del ete_del mapcal | (rp, &error);
if (caller_found)
/*
* “error’ is fromthe actual delmap operations. To avoid
* hangs, we need to handle the return of EAGAIN differently
* since this is what drives the callback execution.
* In this case, we don't want to return EAGAIN and do the
* cal | back execution because there are none to execute.
*
if (error == EAGAIN)
return (0);
el se
return (error);
}
/* current caller was not in the list */
del map_call = nfs4_init_del mapcal | ();

nmut ex_ent er (& p- >r_st at el ock) ;
list_insert_tail (& p->r_indel map, del map_call);
mut ex_exi t (& p->r_st at el ock) ;

dmapp = knmem al | oc(si zeof (nfs4_del map_args_t), KM SLEEP);

drmapp- >vp = vp;

dmapp->of f = of f;

dmapp- >addr = addr;
dmapp->len = len;

dmapp- >prot = prot;

dmapp- >maxpr ot = maXprot;
dmapp- >flags = flags;

dmapp- >cr = cr;

dmapp- >cal l er = del map_cal | ;

error = as_add_cal | back(as, nfs4_del map_cal | back, dmapp,
AS_UNMAP_EVENT, addr, |en, KM SLEEP);

return (error ? error EAGAI N) ;

11145 static nfs4_del mapcal | _t *
11146 nfs4_init_del mapcal | ()

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

11147 {
11148

11150
11151
11152

11154
11155 }

nfs4_del mapcal | _t *del map_cal | ;

del map_cal | = knem al | oc(si zeof (nfs4_del mapcall_t), KM SLEEP);

del map_cal | ->cal | _id = curthread;
del map_cal | ->error = O;

return (del map_call);

11157 static void
11158 nfs4_free_del mapcal | (nfs4_del mapcal | _t *del map_cal |)

11159 {

11160

11161 }
/

11163
11164
11165
11166
11167
11168
11169
11170

* ok k ok ko

*

*/

kmem free(del map_cal |, sizeof (nfs4_delmapcall_t));

11171 static int

11172 nfs4_find_and_del et e_del mapcal | (rnode4_t *rp,

11173 {
11174

11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205 }

11207 /
11208
11209
11210
11211
11212

*
*

*
*
*
*

nf s4_del mapcal | _t *del map_cal | ;

/*

Searches for the current del map caller (based on curthread) in the |ist

callers. |If it is found, we renpve it and free the del map caller.
Ret ur ns:
0 if the caller wasn't found
1if the caller was found, renoved and freed. *errp will be set
to what the result of the del map was.

int *errp)

* If the list doesn't exist yet, we create it and return

* that the caller wasn't found.

*/

nut ex_ent er (& p- >r _st at el ock) ;

if (!(rp->r_flags & RADELMAPLI ST)) {
/* The list does not exist */

No list = no callers.

l'ist_create(& p->r_indel map, sizeof (nfs4_del mapcall_t),

of f set of (nfs4_del mapcal | _t, call_node));

rp->r_flags | = RADELMAPLI ST;
nut ex_exi t (& p->r_st at el ock);

return (0);
} else {
/* The |ist exists so search it */
for (del map_call = 1ist_head(& p->r_indel map);
del map_cal | != NULL;
del map_call = list_next (& p->r_indel nap, del map_call))
if (delmap_call->call_id == curthread) {
/* current caller is in the list */
*errp = del map_cal |l ->error;
|'i st_renove(& p->r_indel map, del map_call);
nut ex_exi t (& p->r_st at el ock);
nfs4_free_del mapcal | (del map_cal |);
return (1);
}
}

}
nut ex_exi t (& p->r_st at el ock);

return (0);

Renove sone pages from an nmmap’ d vnode.

count of pages.

Just update the
If doing close-to-open, then flush and

comit all
O her wi se,

any dirty pages.

of the pages associated with this file.
start an asynchronous page flush to wite out
This will also associate a credenti al

170

of

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

11213 *

11214 */

11215 /*

with the rnode which can be used to wite the pages.

ARGSUSED */

11216 static void

11218 {
11219
11220
11221
11222

11217 nfs4_del map_cal | back(struct as *as, void *arg, uint_t event)
nfs4_error_t = { 0, NFS4_OK, RPC_SUCCESS };
rnode4_t : xr p,
mti nf o4_t
nfs4_del map_args_t *dnapp (nfs4_del map_args_t *)arg;

11224
11225

11227
11228

11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250

11252
11253
11254

11256
11257
11258
11259
11260
11261

11263

11265
11266
11267

11269
11270
11271
11272
11273
11274
11275
11276
11277
11278

rp = VIOR4(dmapp- >vp)
m = VIOM 4(dnapp- >vp);

atom c_add_| ong((ul ong_t *) & p->r
ASSERT(r p->r _mapcnt >= 0);

_mapcnt, -btopr(dmapp->len));

/
Initiate a page flush and potential commt if there are
pages, the file systemwas not nounted readonly, the segnent
was mapped shared, and the pages thensel ves were writeable.

* ok ok 3k
-~

if (nfs4_has_pages(dmapp->vp) &&
I (dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) &&
dmapp- >f | ags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) {
nmut ex_ent er (& p->r _st at el ock);
rp->r_flags | = R4DI RTY;
nmut ex_exi t (& p->r_st at el ock);
e.error = nfs4_putpage_conmm t (dmapp- >vp,
dmapp- >l en, dmapp->cr);
if (le.error)
mut ex_ent er (& p->r _st at el ock) ;
e.error = rp->r_error;
rp->r_error = 0;
mut ex_exi t (& p->r_statel ock);

dmapp- >of f,

} else
e.error = 0O;

if ((rp->r_flags & RADIRECTIO) || (m->m _flags & M 4_Dl RECTI O))
(voi d) nfs4_put page(dmapp- >vp, dmapp->off, dmapp->len,
B_I NVAL, dmapp->cr, NULL);

if (e.error) {
e.stat = puterrno4(e.error);
nfs4 queue fact (RF_DELNMAP CB_ERR m, e.stat, O,
OP_COW T, FALSE, NULL, O, dnapp >vp) ;
drmapp->cal l er->error = e.error;

}

/* Check to see if we need to close the file */

if (dmapp->vp->v_type == VREG {
nf s4cl ose_one(dnmapp- >vp, NULL, dmapp->cr, 0, NULL, &e,
CLOSE_DELMAP, dmapp- >l en, dnapp- >nmaxpr ot ,

if (e.error =0 || e.stat = NFS4_CK) {
/*
* Since it is possible that e.error == 0 and
* e.stat != NFS4_CK (and vice versa),
* we do the proper checking in order to get both
* e.error and e.stat reporting the correct info.
*/
if (e.stat == NFS4_OK)
e.stat

= puterrno4(e.error);
if (e.error == 0)

dmapp- >f | ags) ;

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

11279

11281
11282
11283
11284
11285

11287
11288
11289

11292
11293
11294
11295

11297
11298
11299

11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320

11322
11323

e.error = geterrno4(e.stat);

nfs4_queue_fact (RF_DELVAP_CB_ERR, mi,
OP_CLOSE, FALSE, NULL, 0, dmapp- >vp)
drmapp- >cal | er->error = e.error;

}

(void) as_del ete_cal | back(as, arg);
kmem free(dmapp, si zeof (nfs4_delmap_args_t));

static uint_t
fattr4_nmaxfilesize_to_bits(uint64_t 11)

{ .
uint_t | =1;

if (Il ==0) {
return (0);

if (11 & Oxffffffff00000000) {

I += 32; |1 >>= 32;

& Oxffff0000) {
| += 16; |l >>= 16;

& 0xff00) {
| +=8; Il

}
if (1

£l
>>:8;
£l & OxfO) {
I +=4; |1

>>= 4;

f (Il & 0xc) {

I +=2; 11
f (Il & 0x2) {
| += 1;

>>= 2;

}
i

}
return (1);

}

static int

nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr)

11324 {

11325
11326

11328
11329
11330
11331
11332

11334
11335

11337
11338
11339
11340
11341
11342
11343
11344

vnode_t *avp = NULL;
int error;

if ((error = nfs4lookup_xattr(vp,
LOOKUP_XATTR, cr)) ==
error = do_xattr_exi sts_check(avp,

" gavp,

val p, cr);

if (avp)
VN_RELE(avp) ;

return (error);

}
/* ARGSUSED */

nt
nf s4_pat hconf (vnode_t *vp, int cnd,
call er_context_t *ct)
{

ulong_t *valp, cred_t *cr,

int error;
hrtine t t,
rnoded_t *rp;

e.stat,

0,

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

11345
11346

11348

11350
11351
11352
11353
11354
11355
11356
11357
11358
11359

11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410

nfs4_ga_res_t gar;
nfs4_ga_ext _res_t ger;

gar.nd4g_ext_res = &ger;

if (nfs_zone() != VIOM 4(vp)->
return (ElO;

if (cmd ==
*val p = MAXPATHLEN;
return (0);

}

if (cnd == _PC ACL_ENABLED) {
*val p = _ACL_ACE_ENABL
return (0);

}

e = VTORA(vp) ;

(cmd == _PC_XATTR_EXI STS) {

/*

PC_PATH MAX || cnd ==

m _zone)

_PC_SYM.I NK_NAX)

ED;

173

The existence of the xattr directory is not sufficient
for determ ning whether generic user attributes exists.
The attribute directory could only be a transient directory

used for Solaris sy

sattr support.

Do a smal |

readdi r

pc4_xattr_valid can be only be trusted when r_xattr_dir

1s NULL. Once the

* could help out.
S

xadir vp exists,

*
*
*
*
* to verify if the only entries are sysattrs or not.
*
*
*
*
*

we can create xattrs,
and we don’t have any way to update the
pc4_xattr_exists fromthe xattr or xadir.

"base" object’s
Maybe FEM

i f (ATTRCACHE4_VALI D(vp) && rp->r_pathconf.pcd_xattr_valid &&

rp->r_xattr_dir ==
return (nfs4_h

}
} else { /* OLD CODE */
i f (ATTRCACHE4_VALI D{(v
mut ex_enter (&

NULL
ave_xattrs(vp, valp,

p)) {

p->r_statel ock);

cr));

if (rp->r_pathconf.pc4_cache val id) {

case

case _|

case

case

case _|

def aul

= 0;

(cnd) {
_PC_FI LESI ZEBI TS:
*valp =

rp->r_pat hconf.

rp->r_pat hconf.

br eak;

_PC_NAME_MAX:

*valp =

rp >r _pat hconf.

PC C}EMN RESTRI CTED:
*valp =

rp->r_pat hconf.

br eak;

t:
error = EI NVAL;
br eak;

rp->r_pat hconf.

pcd_filesizebits;

pc4_link_max;

pc4_nane_max;

pc4_chown_restricted;

pc4_no_trunc;

mut ex_exi t (& p->r_st at el ock) ;

new usr

/'src/ uts/ common/ f s/ nfs/nfs4_vnops. c

11411 #ifdef DEBUG

11412

nfs4_pat hconf _cache_hi t s++;

11413 #endi f

11414
11415
11416
11417
11418

return (error);

mut ex_exi t (& p->r_statel ock);

}
11419 #ifdef DEBUG

11420

nf s4_pat hconf _cache_m sses++;

11421 #endi f

11423
11425

11427
11428
11429
11430
11431
11432
11433

11435
11436
11437

11439
11440

11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466

11468
11469 }

11471 /
11472
11473
11474

t = gethrtine();
error = nfs4_attr_otw(vp, TAG PATHCONF, &gar,

if (error) {
mut ex_ent er (& p->r_st at el ock);
rp->r_pat hconf. pc4_cache_val i d
rp->r_pat hconf.pc4_xattr_valid
nut ex_exi t (& p->r_st at el ock);
return (error);

FALSE,
FALSE

}

/* interpret the max filesize */
gar. n4g_ext _res->n4g_pc4. pc4_fil esizebits =

NFS4_PATHCONF_

MASK,

fattr4_nmaxfil esize_to_bits(gar.nd4g_ext_res->nd4g_maxfil esize);

/* Store the attributes we just received */
nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL);

switch (crmd) {
case _PC FI LESI ZEBI TS:
*val p = gar.n4g_ext _res->n4g_pc4. pc4_fil esizebits;
br eak;
case PC LI NK_MAX:
*val p = gar.n4g_ext _res->n4g_pc4. pc4_| i nk_nax;
br eak;
case _PC _NAME_MAX:
*val p gar. n4g_ext _res->n4g_pc4. pc4_nanme_max;
bre
case _PC_ C}EVN RESTRI CTED:
*val p = gar.n4g_ext _res->n4g_pc4. pc4_chown_restricted,;
br eak;
case _PC_NO TRUNC:
*val p = gar.n4g_ext _res->n4g_pc4. pc4_no_trunc;
br eak;
case PC XATTR EXI STS:
if (gar.n4g_ext_res->n4g_pc4. pcd_xattr_exists) {
if (error = nfs4_have_xattrs(vp, valp, cr))
return (error);
}
br eak;
defaul t:
return (EI NVAL);
}
return (0);

*
* Called by async thread to do synchronous pageio. Do the i/o, wait

* for it to conplete, and cleanup the page |ist when done.
S

11475 static int

11476 nfs4_sync_pagei o(vnode_t *vp,

page_t *pp, u_offset_t io_off, size_t

io_len,

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

flags, cr,

cr);

11477 int flags, cred_t *cr)

11478 {

11479 int error;

11481 ASSERT(nfs_zone() == VIOM 4(vp)->ni _zone);

11483 error = nfs4_rdwlbn(vp, pp, io_off, io_len, flags, cr);
11484 if (flags & B_READ)

11485 pvn_read_done(pp, (error ? B_.ERROR : 0) | flags);
11486 el se

11487 pvn_write_done(pp, (error ? B.ERROR: 0) | flags);
11488 return (error)

11489 }

11491 /* ARGSUSED */

11492 static int

11493 nfs4_pagei o(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
11494 int flags, cred_t *cr, caller_context_t *ct)

11495 {

11496 int error;

11497 rnoded4_t *rp;

11499 if (!I(flags & B_ASYNC) && nfs_zone() != VIOM 4(vp)->mi _zone)
11500 return (EIO;

11502 if (pp == NULL)

11503 return (EINVAL);

11505 rp = VIOR4(vp);

11506 nut ex_ent er (& p- >r _st at el ock);

11507 rp->r_count ++;

11508 nut ex_exi t (& p->r_st at el ock);

11510 if (flags & B_ASYNO) ({

11511 error = nfs4_async_pagei o(vp, pp, io_off, io_len,
11512 nf s4_sync_pagei 0) ;

11513 } else

11514 error = nfs4_rdwlbn(vp, pp, io_off, io_len, flags,
11515 nmut ex_ent er (& p- >r_st at el ock) ;

11516 rp->r_count--;

11517 cv_broadcast (& p->r_cv);

11518 nut ex_exi t (& p->r_st at el ock);

11519 return (error);

11520 }

11522 /* ARGSUSED */

11523 static void

11524 nf s4_di spose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr,
11525 call er_context_t *ct)

11526 {

11527 int error;

11528 rnode4_t *rp;

11529 page_t *plist;

11530 page_t *pptr;

11531 of fset 3 of fset;

11532 count 3 | en;

11533 k_sigset_t smask;

11535 /*

11536 * W should get called with fl equal to either B_FREE or
11537 * B_INVAL. Any other value is illegal.

11538 *

11539 * The page that we are either supposed to free or destroy
11540 * shoul d be exclusive |ocked and its io |ock should not
11541 * be held

11542 */

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

11543
11544

11546

11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561

11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578

11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604

11606
11607
11608

ASSERT(fl == B _FREE || fl == B_I NVAL);

ASSERT((PAGE_EXCL(pp) && !page_iol ock_assert(pp)) || panicstr);
rp = VIOR4(vp);

/*
* |f the page doesn’t need to be conmitted or we shouldn’t
* even bother attenpting to commit it, then just nake sure
* that the p_fsdata byte is clear and then either free or

* destroy the page as appropriate.

*

/

f

(pp->p_fsdata == C_NOCOWM T || (rp->r_flags & RASTALE)) {
NOCOW T

page_free(pp, dn);

page_destroy(pp, dn);
return;

*

- -

If there is a page invalidation operation going on, then
if this is one of the pages being destroyed, then just
clear the p_fsdata byte and then either free or destroy
the page as appropriate.

é*x—x—x-*
-~

tex_enter (& p->r_statel ock);
((rp->r_flags & RATRUNCATE) && pp->p_offset >= rp->r_truncaddr) {
nmut ex_exi t (& p->r_st at el ock);
pp->p_fsdata = C NOCOWM T;
if (fT == B_FREE)
page_free(pp, dn);

—

el se
page_destroy(pp, dn);
return;

- -

I I

If we are freeing this page and soneone el se is already
waiting to do a commt, then just unlock the page and
return. That other thread will take care of commi ting
this page. The page can be freed sonetinme after the
commit has finished. Oherwise, if the page is marked
as delay commit, then we may be getting called from
pvn_wite_done, one page at a tinmne. This could result
In one conmit per page, so we end up doing |ots of small
commits instead of fewer larger commts. This is bad,
we want do as few commits as possible.

if (fl == B_FREE)
if (rp->r_flags & RACOW TWAIT) {
page_unl ock(pp);
mut ex_exi t (& p->r_statel ock);
return;

}

if (pp->p_fsdata == C_DELAYCOWM T) {
pp->p_fsdata = C_COWM T;
page_unl ock(pp);
mut ex_exi t (& p->r_statel ock);
return;

}

/*
* Check to see if there is a signal which would prevent an
* attenpt to commit the pages from being successful. [If so,

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 177 new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c
11609 * then don't bother with all of the work to gather pages and
11610 * generate the unsuccessful RPC. Just return from here and 11676 /*
11611 * | et the page be committed at sone later tine. 11677 * |f we got an error during the commt, just unlock all
11612 */ 11678 * of the pages. The pages will get retransnmitted to the
11613 si gi ntr(&mask, VIOM 4(vp)->m _flags & M4_INT); 11679 * server during a putpage operation.
11614 if (ttolwp(curthread) !'= NULL & |SSI G(curthr ead JUSTLOXKING)) { 11680 */
11615 si guni ntr (&mask) ; 11681 if (error) {
11616 page_unl ock(pp) ; 11682 while (plist !'= NULL) {
11617 nut ex_exi t (& p->r_st at el ock); 11683 pptr = plist;
11618 return; 11684 page_sub(&plist, pptr);
11619 } 11685 page_unl ock(pptr);
11620 si guni ntr (&mask) ; 11686 }
11687 return;
11622 /* 11688 }
11623 * W are starting to need to commit pages, so let’s try
11624 * to commit as many as possible at once to reduce the 11690 /*
11625 * over head. 11691 * We've tried as hard as we can to conmit the data to stable
11626 * 11692 * storage on the server. W just unlock the rest of the pages
11627 * Set the ‘commit inprogress’ state bit. W nust 11693 * and clear the conmit required state. They will be put
11628 * first wait until any current one finishes. Then 11694 * onto the tail of the cachelist if they are nol onger
11629 * we initialize the c_pages list with this page. 11695 * mapped.
11630 */ 11696 */
11631 while (rp->r_flags & RACOWM T) { 11697 while (plist !: pp) {
11632 rp->r_flags | = RACOW TWAI T; 11698 pptr = plist;
11633 cv_wait (& p->r_commt.c_cv, & p->r_statelock); 11699 page_: sub(&pl ist, pt r);
11634 rp->r_flags & ~R4ACOW TWAIT; 11700 pptr->p_fsdata = C_NOCOW T;
11635 } 11701 page_unl ock(pptr)
11636 rp->r_flags | = RACOWM T, 11702 }
11637 nut ex_exi t (& p->r_st at el ock);
11638 ASSERT(rp->r_conmit.c_pages == NULL); 11704 /*
11639 rp->r_conmit.c_pages = pp; 11705 * It is possible that nfs4_commit didn't return error but
11640 rp->r_conmit.c_conmmbase = (ffset 3) pp- >p_of f set ; 11706 * sone other thread has nodified the page we are going
11641 rp->r_conmmt.c_conm en = PAGESI Z 11707 * to free/destroy.
11708 * In this case we need to rewite the page. Do an explicit check
11643 /* 11709 * before attenpting to free/destroy the page. If nodified, needs to
11644 * Gather together all other pages which can be conmitted. 11710 * be rewitten so unlock the page and return.
11645 * They will all be chained off r_commt.c_pages. 11711 *
11646 */ 11712 if (hat_isnod(pp)) {
11647 nfs4_get_comm t(vp); 11713 pp->p_fsdata = C_NOCOW T;
11714 page_unl ock(pp);
11649 fe 11715 return;
11650 * Clear the ‘commit inprogress’ status and di sconnect 11716 }
11651 * the list of pages to be committed fromthe rnode.
11652 * At this sane tine, we also save the starting offset 11718 s
11653 * and length of data to be conmitted on the server. 11719 * Now, as appropriate, either free or destroy the page
11654 */ 11720 * that we were called with.
11655 plist = rp->r_commit.c_pages; 11721 */
11656 rp->r_conmit.c_pages = NULL; 11722 pp->p_| fsdata = C_NOCOW T;
11657 of fset = rp->r_conmm t.c_combase; 11723 if (fT == B_FREE)
11658 len = rp->r_conmit.c_com en; 11724 page_free(pp, dn);
11659 nut ex_ent er (& p- >r _st at el ock); 11725 el se
11660 rp->r_flags & ~R4ACOWM T, 11726 page_destroy(pp, dn);
11661 cv_broadcast (& p->r_comit.c_cv); 11727 }
11662 nut ex_exi t (& p->r_st at el ock);
11729 /*
11664 if (curproc == proc_pageout || curproc == proc_fsflush || 11730 * Commt requires that the current fh be the file witten to.
11665 nfs_zone() != VIOM 4(vp)->m _zone) { 11731 * The conpound op structure is:
11666 nfs4_async_commit(vp, plist, offset, |len, 11732 * PUTFH(file), COWM T
11667 cr, do_nfs4_async_comit); 11733 */
11668 return; 11734 static int
11669 } 11735 nfs4_comm t (vnode_t *vp, offset4 offset, count4 count, cred_t *cr)
11736 {
11671 /* 11737 COVPOUND4ar gs_cl nt args;
11672 * Actually generate the COWM T op over the wire operation. 11738 COVPOUND4r es_cl nt res;
11673 */ 11739 COW T4res *cmres;
11674 error = nfs4_commt(vp, (offsetd4)offset, (countd)len, cr); 11740 nfs_argop4 argop[2];

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751

11753
11755

11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773

11775
11776
11777
11778
11779
11780
11781
11782

11784
11785
11786

11788
11789
11790
11791

11793
11794

11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806

nfs_resop4 *resop;

int doqueue;

mtinfo4_t *m;

rnoded_t *rp;

cred_t *cred_otw = NULL;

bool _t needrecov = FALSE;
nfs4_recov_state_t recov_state;
nfs4_open_streamt *osp = NULL;
bool _t first_tine = TRUE;

bool _t last_time = FALSE
nfs4_error_t e —{ 0, NFS4_OK, RPC_SUCCESS };

ASSERT(nfs_zone() == VIOM 4(vp)->m _zone);

rp = VIOR4(vp);

m = VIOM 4(vp);

recov_state.rs flags = 0;

recov_state.rs_numretry_despite_err = 0;
get _commi t _cred:

/*

* Rel eases the osp, if a valid open streamis provided.

* Puts a hold on the cred_otw and the new osp (if found).

*
/
cred_otw = nfs4_get_otw cred_by_osp(rp, cr, &osp,
&irst_tinme, & ast_tine);
args.ctag = TAG_COVMT
recov_retry:
/*

* Commit ops: putfh file; commt
*
/
args.array_len = 2;
args.array = argop;

e.error = nfs4_start_fop(VIOM 4(vp), vp, NULL, OH COWM T,
& ecov_state, NULL);
if (e.error)
crfree(cred_otw);
if (osp !'= NULL)
open_streamrel e(osp, rp);
return (e.error);

}

/* putfh directory */
argop[0] . argop = OP_CPUTFH;
argop[0] . nfs_argop4_u. opcputfh sfh = rp->r_fh;

/* commit */

argop[1].argop = OP_COW T;

argop[1] . nfs_ar gop4_u. opconmit. of fset = of fset;
argop[1] . nf s_argop4_u. opconmi t. count = count;

doqueue = 1;
rfsdcall (m, &args, &res, cred_otw, &dJoqueue, 0, &e);

needrecov = nfs4_needs_recovery(&e, FALSE, ni->ni_vfsp);
if (!'needrecov && e.error)

nfs4_end_f op(VTOM 4(vp), vp, NULL, CH COW T, &recov_state,

needr ecov);
crfree(cred_otw);
if (e.error == EACCES && | ast _tinme == FALSE)
goto get_commit_cred;
if (osp !'= NULL)
open_streamrel e(osp, rp);
return (e.error);

/* first time getting OTWcred */
/* last tinme getting OTWcred */

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827

11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872

if (needrecov) {

if (res.

} else {

if (nfs4_start_recovery(&, VIOM4(vp), vp, NULL, NULL,
NULL, OP_COMM T, NULL, NULL, NULL) == FALSE) {
nf s4_end fop(VTG\/I 4(vp), vp, NULL, OH_ COW T,
&recov_state, needr ecov) ;
if (le.error)
(void) xdr_free(xdr_COVPOUND4res_cl nt,
(caddr_t) &res);
goto recov_retry;

if (e.error) {
nfs4_end_fop(VTOM 4(vp), vp, NULL, OH COW T,
& ecov_state, needrecov);
crfree(cred_otw);
if (osp !'= NULL)
open_streamrel e(osp, rp);
return (e.error);

/* fall through for res.status case */

status) {
e.error = geterrno4(res. status);
if (e.error == EACCES && last_time == FALSE) {
crfree(cred_otw);
nfs4_end_fop(VTIOM 4(vp), vp, NULL, OH COW T,
& ecov_state, needrecov)
(voi d) xdr free(xdr COVPOUNDAT es _clnt, (caddr_t)&res);
goto get_conmit_cred;

——

—h ok %k K kK kX
-~

Can't do a nfs4_purge_stale_fh here because this
can cause a deadl ock. nfs4_commit can
be call ed from nfs4_di spose which can be called
indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh
can call back to pvn_vplist_dirty.
if (e.error == ESTALE)
mut ex_ent er (& p->r _st at el ock) ;
rp->r_flags | = RASTALE;
if (!rp->r_error)
rp->r_error = e.error;
mut ex_exit (& p->r_statel ock);
PURGE_ATTRCACHE4(vp) ;
} else {
mut ex_ent er (& p->r_st at el ock);
if (!rp->r_error)
rp->r_error = e.error;
mut ex_exi t (& p->r_statel ock);

ASSERT(rp- >r_flags & RAHAVEVERF);
resop = &res array[1]; /* conmt res */
cmres = &esop->nfs resop4 u. opcommi t;
mut ex_ent er (& p->r _st atel ock) ;
if (cmres->witeverf == rp- >r_writeverf) {
mut ex_exi t (& p->r_stat el ock);
(void) xdr_free(xdr_COVMPOUND4res_cl nt, (caddr_t)&res);
nfs4_end_fop(VTOM 4(vp), vp, NULL, OH COW T,
& ecov_state, needrecov);
crfree(cred_otw);
if (osp !'= NULL)
open_streamrel e(osp, rp);
return (0);

180

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 181 new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c 182
11873 nfs4_set m)d(vp)
11874 rp->r_witeverf = cmres->witeverf; 11940 /*
11875 mut ex_exi t (& p->r_stat el ock) ; 11941 * Step through all of the pages associated with this vnode
11876 e.error = NFS_VERF_M SMATCH; 11942 * | ooking for pages which need to be commtted.
11877 } 11943 */
11944 do {
11879 (void) xdr_free(xdr_COVMPOUND4res_clnt, (caddr_t)&res); 11945 /* Skip marker pages. */
11880 nfs4_end_fop(VTOM 4(vp), vp, NULL, OH COW T, &recov_state, needrecov); 11946 if (pp->p_hash == PVN_VPLI ST_HASH TAG
11881 crfree(cred_otw); 11947 conti nue;
11882 if (osp !'= NULL)
11883 open_streamrel e(osp, rp); 11949 /*
11950 * First short-cut everything (w thout the page_l ock)
11885 return (e.error); 11951 * and see if this page does not need to be conmtted
11886 } 11952 * or is nodified if so then we'll just skip it.
11953 */
11888 static void 11954 if (pp->p_fsdata == C_NOCOW T || hat_i snod(pp))
11889 nfs4_set_nod(vnode_t *vp) 11955 conti nue;
11890 {
11891 ASSERT(nfs_zone() == VIOM 4(vp)->mn _zone); 11957 I *
11958 * Attenpt to lock the page. |If we can't, then
11893 /* make sure we’'re | ooking at the master vnode, not a shadow */ 11959 * soneone else is nmessing with it or we have been
11894 pvn_vplist_setdirty(RTOV4(VTOR4(vp)), nfs_setnod_check); 11960 * called fromnfs4_di spose and this is the page that
11895 } 11961 * nfs4_di spose was called with.. anyway just skip it.
11962 */
11897 /* 11963 if (!page_ tryl ock(pp, SE_EXCL))
11898 * This function is used to gather a page list of the pages which 11964 conti nue;
11899 * can be committed on the server.
11900 * 11966 /*
11901 * The calling thread nust have set RACOW T. This bit is used to 11967 * Lets check again now that we have the page | ock.
11902 * serialize access to the conmt structure in the rnode. As |ong 11968 */
11903 * as the thread has set RACOW T, then it can nmani pul ate the conm t 11969 if (pp->p_fsdata == C_NOCOW T || hat_isnod(pp)) {
11904 * structure without requiring any other | ocks. 11970 page_unl ock(pp);
11905 * 11971 conti nue;
11906 * When this function is called from nfs4_di spose() the page passed 11972 }
11907 * into nfs4_dispose() will be SE EXCL | ocked, and so this function
11908 * will skip it. This is not a problemsince we initially add the 11974 /* this had better not be a free page */
11909 * page to the r_commit page list. 11975 ASSERT(PP_I| SFREE(pp) == 0);
11910 *
11911 */ 11977 /*
11912 static void 11978 * The page needs to be conmitted and we |ocked it.
11913 nfs4_get _commit(vnode_t *vp) 11979 * Update the base and length paranmeters and add it
11914 { 11980 * to r_pages.
11915 rnode4_t *rp; 11981 &
11916 page_t *pp; 11982 if (rp->r_commt.c_pages == NULL) {
11917 kmut ex_t *vphm 11983 rp->r_conmmt.c conmbase = (of fset3) pp->p_offset;
11984 rp->r_commit.c_conm en = PAGESI ZE;
11919 rp = VIOR4(vp); 11985 } else if (pp->p_offset < rp->r_commit.c_combase) {
11986 rp->r_conmt.c_commen = rp->r_commit.c_commbase -
11921 ASSERT(rp->r_flags & RACOWM T) ; 11987 (of fset3) pp->p_offset + rp->r_comit.c_comm en;
11988 rp->r_conmit.c_combase = (offset3)pp->p_offset;
11923 /* make sure we’'re | ooking at the master vnode, not a shadow */ 11989 } else if ((rp->r_commt.c_commbase + rp->r_conmt.c_conmnl en)
11990 <= pp->p_offset) {
11925 if (1S_SHADONvVp, rp)) 11991 rp->r_commit.c_conmm en = (offset3) pp >p of fset -
11926 vp = RTOV4(rp); 11992) rp->r_comm t.c_conmbase + PAGESI
11993
11928 vphm = page_vnode_nut ex(vp) ; 11994 page_add(& p->r_conmm t.c_pages, pp);
11929 mut ex_ent er (vphn) ; 11995 } while ((pp = pp->p_vpnext) != vp->v_pages);
11931 /* 11997 nut ex_exi t (vphm ;
11932 * If there are no pages associated with this vnode, then 11998 }
11933 * just return.
11934 S 12000 /*
11935 if ((pp = vp->v_pages) == NULL) { 12001 * This routine is used to gather together a page |ist of the pages
11936 mut ex_exi t (vphm; 12002 * which are to be committed on the server. This routine nust not
11937 return; 12003 * be called if the calling thread holds any | ocked pages.
11938 } 12004 *

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

12005
12006
12007
12008
12009

*
*
*
*

*/

The calling thread nust have set RACOW T.
serialize access to the conmit structure in the rnode.
as the thread has set RACOW T, then it can mani pul ate the commt
structure without requiring any other |ocks.

This bit is used to
As | ong

12010 static void

12011 nfs4_get _commt_range(vnode_t *vp, u_offset_t soff,

12012 {

12014
12015
12016
12017
12018
12019
12020

12022
12024

12026
12027

12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052

12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069 }

size_t len)

rnode4_t *rp;

page_t *pp;

u_of fset _t end;

u_of fset_t off;

ASSERT(len !'= 0);

rp = VIORA(vp);
ASSERT(rp->r_flags & RACOWM T);

ASSERT(nfs_zone() == VIOM 4(vp)->mni _zone);

/* make sure we're |ooking at the master vnode, not a shadow */
if (ISSHADO/‘(vp, rp))

ova(rp);

*

* If there are no pages associated with this vnode, then
* just return.

*

if ((pp = vp->v_pages) == NULL)
return;

/*
* Cal cul ate the ending of fset.
*/

end = soff + len;

for (off = soff; off < end; off += PAGESIZE) {
/*

* Lookup each page by vp, offset.
S

if ((pp = page_l ookup_nowai t (vp, off, SE EXCL)) == NULL)
cont i nue;

/*

* |f this page does not need to be conmitted or is

* nodified, then just skip it.

*/

if (pp->p_fsdata == C_ NOCOW T || hat_i snod(pp)) {
page_unl ock(pp);

conti nue;
}
ASSERT(PP_| SFREE(pp) == 0)
/*

* The page needs to be conmitted and we |ocked it.
* Update the base and | ength paraneters and add it
* to r_pages.

*/

if (rp->r_commt.c_pages == NULL) {
rp->r_commt.c_commbase = (of fset3)pp->p_offset;
rp->r_conmit.c_conmm en = PAGESI ZE;
} else {
rp->r_commt.c_comm en = (of fset3)pp->p_offset -
rp->r_commit.c_conmbase + PAGESI ZE;

}
page_add(& p->r _conmi t.c_pages, pp);

183

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

12071 /*

12072
12073
12074

* Called fromnfs4_cl ose(),

nfs4_fsync() and nfs4_del map().

* Flushes and commts data to the server.

*/

12075 static int

12076 nfs4_put page_conmm t (vnode_t *vp, offset_t poff,

12077
12078
12079
12080

12082

12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094

12096
12097
12098
12099
12100
12101
12102
12103

12105
12106
12107

12109
12110
12111

12113
12114
12115
12116
12117
12118
12119
12120

12122
12123

12125
12126
12127
12128
12129
12130

12132
12133
12134
12135
12136

{

top:

size_t plen,
int error;

verifierd wite_verf;

rnode4_t *rp = VIOR4(vp);

ASSERT(nfs_zone() == VIOM 4(vp)->m _zone);

/*

* Flush the data portion of the file and then commit any
* portions which need to be coomitted. This may need to
* be done twice if the server has changed state since

* data was last witten. The data will need to be

* rewitten to the server and then a new commit done.

*

* In fact, this nmay need to be done several times if the
* server is having problens and crashing while we are

* attenpting to do this.

*

/
/*

* Do a flush based on the poff and plen argunents. This
* will synchronously wite out any nodified pages in the
* range specified by (poff, plen). This starts all of the
* i/o operations which will be waited for in the next

* call to nfs4_putpage

*

/

mut ex_enter(&rp >r_statel ock);
wite verf = rp->_witeverf;
mut ex_exi t (& p->r_stat el ock) ;

error = nfs4 putpage(vp, poff, plen, B_ASYNC, cr, NULL);
if (error == GAl N)

error = 0;
/*
* a flush based on the poff and plen arguments. This
* II synchronously wite out any nodified pages in the
* ange specified by (poff, plen) and wait until all of
* the asynchronous i/0’s in that range are done as well.
*
if (lerror)

error = nfs4_putpage(vp, poff, plen, 0, cr, NULL);
if (error)

return (error);

nut ex_ent er (& p- >r _st at el ock);

if (rp->r_witeverf !=wite verf) {
mut ex_exi t (& p->r_stat el ock) ;
goto top;

}
mut ex_exi t (& p->r_stat el ock) ;

/
Now conmmit any pages whi ch might need to be committed.
If the error, NFS_VERF_M SMATCH, is returned, then
start over with the flush operation.

/

* Ok Ok k%

cred_t

*cr)

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 185 new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c 186
12137 error = nfs4_conmit_vp(vp, poff, plen, cr, NFS4_WRI TE WAIT); 12203 rp->r_conmt.c_pages = NULL;
12204 of fset = rp->r_comm t.c_combase;
12139 if (error == NFS_VERF_M SMATCH) 12205 len = rp->r_commt.c_comm en;
12140 goto top; 12206 nut ex_ent er (& p- >r _st at el ock);
12207 rp->r_flags & ~R4ACOW T;
12142 return (error); 12208 cv_broadcast (& p->r_comit.c_cv);
12143 } 12209 mut ex_exi t (& p->r_stat el ock) ;
12145 /| * 12211 /*
12146 * nfs4_commt_vp() wll wait for other pending commts and 12212 * |f any pages need to be commtted, commt them and
12147 * will either commt the whole file or a range, plen dictates 12213 * then unlock them so that they can be freed sone
12148 * if we commit whole file. a value of zero indicates the whole 12214 * tine later.
12149 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 12215 */
12150 */ 12216 if (plist == NULL)
12151 static int 12217 return (0);
12152 nfs4_comm t _vp(vnode_t *vp, u_offset_t poff, size_t plen,
12153 cred_t *cr, int wait_on_wites) 12219 /*
12154 { 12220 * No error occurred during the flush portion
12155 rnode4_t *rp; 12221 * of this operation, so now attenpt to conmt
12156 page_t *plist; 12222 * the data to stable storage on the server.
12157 of fset 3 of fset; 12223 *
12158 count 3 | en; 12224 * This will unlock all of the pages on the |ist.
12225 *
12160 ASSERT(nfs_zone() == VIOM 4(vp)->m _zone); 12226) return (nfs4_sync_commit(vp, plist, offset, len, cr));
12227
12162 rp = VIOR4(vp);
12229 static int
12164 /* 12230 nfs4_sync_conmm t(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
12165 * before we gather commitabl e pages neke 12231 cred_t *cr)
12166 * sure there are no outstanding async wites 12232 {
12167 */ 12233 int error;
12168 if (rp->r_count & wait_on_wites == NFS4_VWRI TE WAIT) { 12234 page_t *pp;
12169 nut ex_ent er (& p- >r _st at el ock) ;
12170 while (rp->r_count > 0) { 12236 ASSERT(nfs_zone() == VIOM 4(vp)->mi _zone);
12171 cv_wait (& p->r_cv, & p->r_statel ock);
12172 } 12238 error = nfs4_commt(vp, (offset4d)offset, (count3)count, cr);
12173 mut ex_exi t (& p->r_stat el ock);
12174 } 12240 /*
12241 * If we got an error, then just unlock all of the pages
12176 /* 12242 * on the list.
12177 * Set the ‘commit inprogress’ state bit. W nust 12243 *
12178 * first wait until any current one finishes. 12244 if (error) {
12179 */ 12245 while (plist !'= NULL) {
12180 mut ex_ent er (& p- >r_st at el ock) ; 12246 pp = plist;
12181 while (rp->r_flags & RACOWM T) { 12247 page_sub(&plist, pp);
12182 rp->r_flags | = RACOW TWAI T; 12248 page_unl ock(pp);
12183 cv_wait (& p->r_commt.c_cv, & p->r_statelock); 12249 }
12184 rp->r_flags & ~R4ACOWM TVAIT; 12250 return (error);
12185 } 12251 }
12186 rp->r_flags | = RACOWM T; 12252 /*
12187 nut ex_exi t (& p->r_st at el ock); 12253 * W've tried as hard as we can to commit the data to stable
12254 * storage on the server. W just unlock the pages and cl ear
12189 I * 12255 * the commit required state. They will get freed later.
12190 * Gather all of the pages which need to be 12256 */
12191 * conmitted. 12257 while (plist !'= NULL) {
12192 */ 12258 pp = plist;
12193 if (plen == 0) 12259 page_sub(&plist, pp);
12194 nfs4_get_commit(vp); 12260 pp->p_fsdata = C_NOCOW T;
12195 el se 12261 page_unl ock(pp);
12196 nfs4_get_conmm t _range(vp, poff, plen); 12262
12198 /* 12264 return (error);
12199 * Clear the ‘commit inprogress’ bit and disconnect the 12265 }
12200 * page list which was gathered by nfs4_get_commit.
12201 */ 12267 static void
12202 plist = rp->r_commt.c_pages; 12268 do_nfs4_async_conmmit (vnode_t *vp, page_t *plist, offset3 offset, count3 count,

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

12269 cred_t *cr)

12270 {

12272 (void) nfs4_sync_commit(vp, plist, offset, count, cr);
12273 }

12275 | * ARGSUSED*/

12276 static int

12277 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
12278 cal l er_context_t *ct)

12279 {

12280 int error = 0;

12281 mti nf o4_t *m ;

12282 vattr_t va;

12283 vsecattr_t nf sace4_vsap;

12285 m = VIOM 4(vp);

12286 if (nfs zone() I'= m->m _zone)

12287 return (ElIO;

12288 if (m->ni_flags & M4_ACL)

12289 /* if we have a delegation, return it */

12290 if (VIOR4(vp)->r_del eg_type ! = OPEN_DELEGATE_NONE)
12291 (voi d) nfs4del egreturn(VTOR4(vp),

12292 NFS4 DR RECPEN| NFS4 DR PUSH) '

12294 error = nfs4_is_acl _mask_val id(vsecattr->vsa_mask,
12295 NFS4_ACL_SET) ;

12296 if (error) /* El NVAL */

12297 return (error);

12299 if (vsecattr->vsa_mask & (VSA ACL | VSA DFACL)) {
12300 /*

12301 * These are aclent_t type entries.

12302 */

12303 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap,
12304 vp->v_type == VDIR, FALSE);

12305 if (error)

12306 return (error);

12307 } else {

12308 /*

12309 * These are ace_t type entries.

12310 */

12311 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap,
12312 FALSE) ;

12313 if (error)

12314 return (error);

12315 }

12316 bzero(&va, sizeof (va));

12317 error = nfs4setattr(vp, &a, flag, cr, &nfsace4_vsap);
12318 vs_ace4_destroy(&nfsaced_vsap);

12319 return (error);

12320 }

12321 return (ENOSYS);

12322 }

12324 /* ARGSUSED */

12325 int

12326 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
12327 cal l er_context_t *ct)

12328 {

12329 int error;

12330 mti nf o4_t *m;

12331 nfs4 ga_res_t gar;

12332 rnode4_t *rp = VIOR4(vp);

12334 m = VIOM 4(vp);

new usr/ src/ uts/ common/ fs/ nfs/nfs4_vnops.c 188
12335 if (nfs_zone() != m->nmi _zone)

12336 return (EIO);

12338 bzero(&gar, sizeof (gar));

12339 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask;

12341 /*

12342 * vsecattr->vsa_nask holds the original acl request mask.

12343 * This is needed when determining what to return.

12344 * (See: nfs4_create_getsecattr_return())

12345 */

12346 error = nfs4_is_acl _mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET);
12347 if (error) /* ETNVAL */

12348 return (error);

12350 *

12351 * |f this is a referral stub, don’t try to go OTWfor an ACL

12352 */

12353 if (RP_ISSTUB REFERRAL(VTOR4(Vp)))

12354 return (fs_fab_acl (vp, vsecattr, flag, cr, ct));

12356 if (m->m_flags & M4_ACL) {

12357 /*

12358 * Check if the data is cached and the cache is valid. |If it
12359 * is we don't go over the wre.

12360 */

12361 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) {

12362 mut ex_ent er (& p->r_st at el ock) ;

12363 if (rp->r_secattr !'= NULL)

12364 error = nfs4_create_getsecattr_return(

12365 rp->r_secattr, vsecattr, rp->r_attr.va_uid,
12366 rp->r_attr.va_gid,

12367 vp->v_type == VDI R);

12368 if (terror) { /* error == 0 - Success! */
12369 mut ex_exi t (& p->r_statel ock);

12370 return (error);

12371 }

12372

12373 mut ex_exi t (& p->r_stat el ock);

12374 }

12376 /*

12377 * The getattr otw call will always get both the acl, in
12378 * the formof a list of nfsace4’s, and the nunber of acl
12379 */entri es; independent of the value of gar.n4g_vsa.vsa_mask.
12380

12381 gar.n4g_va.va_mask = AT_ALL;

12382 error = nfs4 _getattr otw(vp, &gar, cr, 1);

12383 if (error) {

12384 vs_ace4_destroy(&gar.n4g_vsa);

12385 if (error == ENOTSUP || error == EOPNOTSUPP)

12386 error = fs_fab_acl (vp, vsecattr, flag, cr, ct);
12387 return (error);

12388 }

12390 if (!(gar.ndg_resbmap & FATTR4A_ACL_MASK)) {

12391 /*

12392 * No error was returned, but according to the response
12393 * bitmap, neither was an acl.

12394 */

12395 vs_ace4_destroy(&gar.n4g_vsa);

12396 error = fs_fab_acl (vp, vsecattr, flag, cr, ct);
12397 return (error);

12398 }

12400 /*

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

12401 * Update the cache with the ACL.

12402 */

12403 nfs4_acl _fill_cache(rp, &gar.n4g_vsa);

12405 error = nfs4_create_getsecattr_return(&gar.n4g_vsa,

12406 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid,

12407 vp->v_type == VDIR);

12408 vs_ace4_destroy(&gar.n4g_vsa);

12409 if ((error) && (vsecattr->vsa_mask &

12410 VSA ACL | VSA ACLONT | VSA_ DFACL | VSA DFACLCNT)) &&
12411 (error I = EACCES)) {

12412 error = fs_fab_acl (vp, vsecattr, flag, cr, ct);
12413

12414 return (error);

12415

12416 error = fs_fab_acl (vp, vsecattr, flag, cr, ct);

12417 return (error);

12418 }

12420 /*

12421 * The function returns:

12422 * - 0 (zero) if the passed in "acl_nmask" is a valid request.

12423 * - EINVAL i f the passed in "acl_nask" is an invalid request.

12424 *

12425 * In the case of getting an acl (op == NFS4_ACL_CET) the mask is invalid if:
12426 * We have a mixture of ACE and ACL requests (e.g. VSA ACL | VSA ACE)
12427 *

12428 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if:
12429 * We have a mixture of ACE and ACL requests (e.g. VSA ACL | VSA ACE)
12430 * W have a count field set without the corresponding acl field set. (e.g.
12431 * VSA ACECNT is set, but VSA ACE is not)

12432 */

12433 static int

12434 nfs4_is_acl _mask_val i d(uint_t acl_nmask, nfs4_acl_op_t op)

12435 {

12436 /* Shortcut the masks that are always valid. */

12437 if (acl _mask == (VSA _ACE | VSA ACECNT))

12438 return (0);

12439 if (acl_mask == (VSA ACL | VSA ACLCNT | VSA DFACL | VSA DFACLCNT))
12440 return (0);

12442 if (acl_mask & (VSA_ACE | VSA ACECNT)) {

12443 /*

12444 * W can’'t have any VSA ACL type stuff in the mask now.
12445 *

12446 if (acl _mask & (VSA_ACL | VSA ACLCNT | VSA DFACL |

12447 VSA_DFACLCNT))

12448 return (ElINVAL);

12450 if (op == NFS4_ACL_SET)

12451 if ((acl _mask & VSA ACECNT) && !(acl _mask & VSA ACE))
12452 return (ElINVAL);

12453 }

12454 }

12456 if (acl_mask & (VSA_ACL | VSA ACLCNT | VSA DFACL | VSA DFACLCNT)) {
12457 I *

12458 * W& can’t have any VSA ACE type stuff in the mask now.
12459 */

12460 if (acl _mask & (VSA ACE | VSA ACECNT))

12461 return (EINVAL);

12463 if (op == NFS4_ACL_SET)

12464 if ((acl_mask & VSA ACLCNT) && !(acl _nmask & VSA ACL))
12465 return (ElNVAL);

new usr/ src/ uts/ common/ fs/ nfs/nfs4_vnops.c 190
12467 if ((acl _mask & VSA DFACLCNT) &&

12468 I (acT_mask & VSA DFACL))

12469 return (EINVAL);

12470 }

12471

12472 return (0);

12473 }

12475 | *

12476 * The theory behind creating the correct getsecattr return is sinply this:
12477 "Don’t return anything that the caller is not expecting to have to free."
12478

12479 static int

12480 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap,
12481 uid_t uid, gid_t gid, int isdir)

12482 {

12483 int error = 0;

12484 /* Save the mask since the translators nodify it. */

12485 uint_t orig_mask = vsap->vsa_nask;

12487 if (orig_mask & (VSA_ACE | VSA ACECNT)) {

12488 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, FALSE);
12490 if (error)

12491 return (error);

12493 /*

12494 * If the caller only asked for the ace count (VSA_ACECNT)
12495 * don't give themthe full acl (VSA ACE), free it.

12496 */

12497 if (lorig_mask & VSA ACE) {

12498 if (vsap->vsa_aclentp != NULL)

12499 kmem free(vsap->vsa_acl entp,

12500 vsap->vsa_acl cnt * sizeof (ace_t));
12501 vsap->vsa_acl entp = NULL;

12502 }

12503

12504 vsap- >vsa_mask = orig_mask;

12506 } else if (orig mask & (VSA ACL | VSA ACLCNT | VSA DFACL

12507 VSA _DFACLCNT)) {

12508 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid,

12509 isdir, FALSE);

12511 if (error)

12512 return (error);

12514 /*

12515 * If the caller only asked for the acl count (VSA_ACLCNT)
12516 * and/or the default acl count (VSA _DFACLCNT) don’t give them
12517 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it.
12518 *

12519 if (lorig_mask & VSA ACL) {

12520 if (vsap->vsa_aclentp !'= NULL) {

12521 kmem f ree(vsap->vsa_acl ent p,

12522 vsap->vsa_acl cnt * sizeof (aclent_t));
12523 vsap->vsa_acl entp = NULL;

12524 }

12525 }

12527 if (lorig_mask & VSA DFACL)

12528 if (vsap->vsa_dfaclentp !'= NULL) {

12529 kmem free(vsap->vsa_df acl entp,

12530 vsap->vsa_dfacl cnt * sizeof (aclent_t));
12531 vsap->vsa_dfacl entp = NULL;

12532 }

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 191

12533
12534
12535
12536
12537 }

vsap->vsa_mask = orig_mask;

}
return (0);

12539 /* ARGSUSED */

12540

int
12541 nfs4_shrl ock(vnode_t *vp, int cnd, struct shrlock *shr, int flag, cred_t *cr,

12542
12543 {
12544

12546
12547
12548
12549
12550
12551
12552

12554
12555
12556
12557
12558
12559
12560

12562
12563
12564
12565
12566
12567

12569
12570
12571
12572
12573
12574
12575
12576
12577

12579
12580
12581
12582
12583
12584
12585

12587
12588
12589
12590

12592
12593 }

12595 /*

cal l er_context_t *ct)

int error;

if (nfs_zone() != VIOM 4(vp)->ni _zone)
return (ElIO);

*

* check for valid cnd paraneter
=

if (cmd !'= F_SHARE && cnd ! = F_UNSHARE && cnd ! = F_HASREMOTELOCKS)
return (EI NVAL);

/*

* Check access pernissions

*

/

if ((cmd & F_SHARE) &&
(((shr->s_access & F_RDACC) && (flag & FREAD) == 0) ||
(shr->s_access == F_WRACC && (flag & FWRITE) == 0)))

return (EBADF);

/*

* If the filesystemis nounted using |ocal |ocking, pass the
* request off to the local share code.

*

if (VTOM 4(vp)->m _flags & M 4_LLOCK)
return (fs_shrlock(vp, cnd, shr, flag, cr, ct));

switch (crmd) {

case F_SHARE:

case F_UNSHARE:
*

* This will be properly inplenented |ater,
* see RFE: 4823948 .
*/
error = EAGAI N
br eak;
case F_HASREMOTELOCKS:
/*
* NFS client can't store rempte |ocks itself
*/

shr->s_access = 0;

error = 0;
br eak;
defaul t:
error = EI NVAL;
br eak;
}

return (error);

12596 * Common code call ed by directory ops to update the attrcache

12597 */

12598 static int

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

12599 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp,

12600
12601
12602

12604

12606
12607
12608
12609
12610

12612
12613
12614
12615
12616
12617
12618

12620
12621
12622
12623
12624
12625
12626

{

}
| *

hrtime_t t, vnode_t *vp, cred_t *cr)

int error = 0;
ASSERT(nfs_zone() == VIOM 4(vp)->mni _zone);

if (status != NFS4_OK) {
/* getattr not done or failed */
PURGE_ATTRCACHE4(vp) ;
return (error);

}

if (garp) {

nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL);
} else {

PURGE_ATTRCACHE4(vp) ;

return (error);

* Update directory caches for directory nodification ops (link, renane, etc.)
* When dinfo is NULL, manage dircaches in the old way.

*/

static void
nf s4_updat e_di rcaches(change_i nfo4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm

12627 {

12628
12630

12632
12633
12634

12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655

12657
12658

12660
12661

12663
12664

dirattr_info_t *dinfo)

rnode4_t *drp = VIOR4(dvp);

ASSERT(nfs_zone() == VIOM 4(dvp)->m _zone);

/* Purge rddir cache for dir since it changed */
if (drp->r_dir !'= NULL)
nf s4_purge_rddir_cache(dvp);

/*
* |f caller provided dinfo, then use it to manage dir caches.
*
/
if (dinfo !'= NULL) {
if (vp !'= NULL) {
mut ex_ent er (&YTOR4(vp) - >r _st at ev4_| ock) ;
if (!'VIOR4(vp)->created_v4)
mut ex_exi t (&TOR4A(vp) - >r_st at evd_| ock);
dnl c_updat e(dvp, nm vp);
} else {
/*

* XXX don’t update if the created_v4 flag is
* set
*/
mut ex_exi t (&TOR4(vp) - >r _st at ev4_| ock) ;
NFS4_DEBUG(nf s4_cl i ent _stat e_debug,
(CE_NOTE, "nfs4_update_dircaches: "
"don’t update dnlc: created_v4 flag"));

}

nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_tinme_call,
di nf o->di _cred, FALSE, cinfo);

return;
}
/*
* Caller didn't provide dinfo, then check change_info4 to update DNLC.

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701

12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724

® ok % ok kb % ok k& ok ok ok ok F F F
-~

Since caller nodified dir but didn't receive post-dirnod-op dir
attrs, the dir’'s attrs nust be purged.

XXX t his check and dnl ¢ updat e/ purge should really be atomic,
XXX but can't use rnode statel ock because it’'l| deadlock in
dnl c_purge_vp, however, the risk is nmninal even if a race
XXX does occur.

XXX W al so may want to check that atomic is true in the
XXX change_info struct. If it is not, the change_info may
XXX reflect changes by nore than one clients which neans that
/XXX our cache may not be valid.
*
PURGE_ATTRCACHE4(dvp) ;
if (drp->r_change == cinfo->before) {
/* no changes took place in the directory prior to our link */
if (vp !'= NULL)
mut ex_ent er (&YTOR4(vp) - >r _st at ev4_| ock) ;
if (!'VIOR4(vp)->created_v4)
mut ex_exi t (&TOR4A(vp) - >r _st at evd_| ock);
dnl c_updat e(dvp, nm vp);
} else {
/*

R T

* XXX dont’
* is set
S

update if the created_v4 flag

nmut ex_exi t (&TOR4A(vp) - >r_st at ev4_| ock) ;
NFS4_DEBUG(nf s4_cl i ent _st at e_debug, (CE_NOTE,
"nfs4_update_dircaches: don't"
" update dnlc: created_v4 flag"));

} else {
/* Another client nodified directory - purge its dnlc cache */
dnl c_purge_vp(dvp);

The OPEN_CONFI RM operation confirms the sequence nunber used in OPENing a
file.

The ’reopening_file boolean should be set to TRUE if we are reopening this
file (ie: client recovery) and otherw se set to FALSE.

"nfs4_start/end_op’ shoul d have been called by the proper (ie: not recovery
initiated) calling functions.

"resend’ is set to TRUEif this is a OPEN_CONFIRM i ssued as a result
of resending a 'lost’ open request.

"num bseqid_retryp’ makes sure we don’t |oop forever on a broken
server that hands out BAD_SEQ D on open confirm

Errors are returned via the nfs4_error_t paraneter.

voi d

nf s4open_confirn{vnode_t *vp

12725 {

12726
12727
12728
12729
12730

seqi d4 *seqid, stateid4 *stateid, cred_t *cr,
bool _t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop,
bool _t resend, nfs4_error_t *ep, int *num bseqid_retryp)

COVPOUND4ar gs_cl nt args;
COVPOUND4r es_cl nt res;
nfs_argop4 argop[2];
nfs_resop4 *resop,

int doqueue = 1;

193

new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c

12731
12732
12733

12735
12736
12737
12738
12739
12740

12742
12743
12744

12746
12747
12748
12749

12751
12752

12754
12755
12756

12758
12759

12761
12762
12763

12765
12767

12769
12770
12771

12773
12774
12775

12777
12778

12780
12781

12783
12784
12785
12786

12788
12789
12790
12791
12792
12793
12794
12795
12796

mtinfo4_t *m;
OPEN_CONFI RM4ar gs *open_confirm args;
int needrecov;

ASSERT(nfs_zone() == VIOM 4(vp)->ni _zone);
#i f DEBUG

nut ex_ent er (&oop- >00_| ock) ;
ASSERT(oop- >00_seqi d_i nuse) ;
nut ex_exi t (&oop- >00_I ock) ;
#endi f
recov_retry_confirm

nfs4_error_zinit(ep);
*retry_open = FALSE;

if (resend)

args. ctag = TAG_OPEN_CONFI RM _LOST;
el se

args.ctag = TAG OPEN_CONFI RM

args.array_len = 2;
args.array = argop;

/* putfh target fh */
argop[0] . argop = OP_CPUTFH
argop[0] . nfs_argop4_u. opcputfh sfh =

argop[1] .argop = CP OPEN_CONFI RM
open_confirmargs = &argop[1].nfs_argop4_u. opopen_confirm

VTOR4A(vp) ->r_fh;

(*seqid) += 1;
open_confirmargs->seqid = *seqid;
open_confirmargs->open_stateid = *stateid,;

m = VIOM 4(vp);

rfs4call (m, &args, &es, cr, & Joqueue, 0, ep);
if (lep->error && nfs4_need_to_bunp_seqi d(& es))

nfs4_set_open_seqi d((*seqi d), oop, args.ctag);
}

needrecov = nfs4_needs_recovery(ep,
if (!'needrecov && ep->error)
return;

FALSE, m ->m _vfsp);

if (needrecov)
bool _t abort = FALSE;

if (reopening_file == FALSE)

{
nfs4_bseqid_entry_t *bsep = NULL;

if (lep->error & res.status == NFS4ERR_BAD_SEQ D)

bsep = nfs4_create_bseqi d_entry(oop, NULL,
vp, 0, args.ctag,
open_confirm args->seqid);
abort = nfs4_start_recovery(ep, VIOM 4(vp), vp, NULL,
NULL, NULL, OP_OPEN_CONFI RM bsep, NULL, NULL)

if (bsep) {
kmem free(bsep, sizeof (*bsep));
if (numbseqid_retryp &
--(*num_ bseql d_retryp) == 0)
abort = TRUE;

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c 195 new usr/src/uts/comon/ fs/nfs/nfs4_vnops.c
12797 if ((ep->error == ETI MEDOUT || 12863 return (I mget_sysid(ORI G KNCONF(mi), &m ->m _curr_serv->sv_addr,
12798 res. status == NFS4ERR_RESOURCE) && 12864 m ->m _curr_serv->sv_hostname, NULL));
12799 abort == FALSE && resend == FALSE) { 12865 }
12800 if (lep->error)
12801 (void) xdr_free(xdr_COVPOUND4res_cl nt, 12867 #i f def DEBUG
12802 (caddr _t)&res); 12868 /*
12869 * Return a string version of the call type for easy reading.
12804 del ay(SEC TO TI CK(confirmretry_sec)); 12870 */
12805 goto recov_retry_confirm 12871 static char *
12806 } 12872 nfs4frlock_get_cal |l _type(nfs4_l ock_call _type_t ctype)
12807 /* State may have changed so retry the entire OPEN op */ 12873 {
12808 if (abort == FALSE) 12874 switch (ctype) {
12809 *retry_open = TRUE; 12875 case NFS4_LCK_CTYPE_NORM
12810 el se 12876 return ("NORVAL");
12811 *retry open = FALSE; 12877 case NFS4_LCK_CTYPE_| RECLAI M
12812 if (lep->error) 12878 return ("RECLAIM);
12813 (voi d) xdr_free(xdr_COVPOUND4res_cl nt, (caddr_t)&res); 12879 case NFS4_LCK_CTYPE_RESEND:
12814 return; 12880 return ("RESEND");
12815 } 12881 case NFS4_LCK_CTYPE_REI NSTATE:
12882 return ("REINSTATE");
12817 if (res.status) { 12883 defaul t:
12818 (voi d) xdr_free(xdr_COWOUND4res_cl nt, (caddr_t)&res); 12884 cm err(CE PANI C, "nfs4frlock_get_call _type: got illegal
12819 return; 12885 "type %", ctype);
12820 } 12886 return ("");
12887 }
12822 resop = &es.array[1]; /* open confirmres */ 12888 }
12823 bcopy(& esop- >nf s_resop4_u. opopen_confirm open_stateid, 12889 #endi f
12824 stateid, sizeof (*stateid));
12891 /*
12826 (void) xdr_free(xdr_COVMPOUND4res_clnt, (caddr_t)&res); 12892 * Map the frlock cmd and | ock type to the NFSv4 over-the-wire | ock type
12827 } 12893 * Unl ock requests don’t have an over-the-wire | ocktype, so we just return
12894 * sonet hi ng non-threatening.
12829 /* 12895 */
12830 * Return the credentials associated with a client state object. The
12831 * caller is responsible for freeing the credentials. 12897 static nfs_| ock_type4
12832 */ 12898 flk_to_l ocktype(int crmd, int | _type)
12899 {
12834 static cred_t * 12900 ASSERT(| _type == F_RDLCK || | _type == F_WRLCK || | _type == F_UNLCK);
12835 state_to_cred(nfs4_open_streamt *osp)
12836 { 12902 switch (I_type) {
12837 cred_t *cr; 12903 case F_UNLCK:
12904 return (READ_LT);
12839 /* 12905 case F_RDLCK:
12840 * It's ok to not lock the open stream and open owner to get 12906 if (cmd == F_SETLK)
12841 * the oo_cred since this is only witten once (upon creation) 12907 return (READ_LT);
12842 * and wiTl not change. 12908 el se
12843 / 12909 return (READW.LT);
12844 = osp- >0S_open_owner - >00_cr ed; 12910 case F_WRLCK:
12845 crhol d(cr); 12911 if (cmd == F_SETLK)
12912 return (WRITE_LT);
12847 return (cr); 12913 el se
12848 } 12914 return (WRI TEWLT);
12915 }
12850 /* 12916 panic("fl k_to_|l ocktype");
12851 * nfs4_find_sysid 12917 / * NOTREACHED* /
12852 * 12918 }
12853 * Find the sysid for the knetconfig associated with the given m.
12854 */ 12920 /*
12855 static struct Imsysid * 12921 * Do sone prelimnary checks for nfs4frlock.
12856 nfs4_find_sysid(mtinfod4_t *m) 12922 */
12857 { 12923 static int
12858 ASSERT(nfs_zone() == m ->ni_zone); 12924 nfs4frlock_validate_args(int crnd, flock64_t *flk, int flag, vnode_t *vp,
12925 u_of fset_t offset)
12860 /* 12926 {
12861 * Switch from RDVA knconf to original nmount knconf 12927 int error = 0;
12862 */

new usr/src/uts/comon/fs/nfs/nfs4_vnops.c

12929 /*

12930 * If we are setting a lock, check that the file is opened
12931 * with the correct node.

12932 */

12933 if (cmd == F_SETLK || cnd == F_SETLKW {

12934 |f ((flk->I _type ——FRDLCK&&(fIag&FREAD) == 0) ||
12935 (flk->I _type == F_WRLCK && (flag & FWRITE) == 0)) {
12936 NFS4 _DEBUG(nfs4_client_| ock_debug, (CE_NOTE,
12937 "nfs4frlock_val i date_args: file was opened with "
12938 "incorrect node"));

12939 return (EBADF);

12940 }

12941 }

12943 /* Convert the offset. It may need to be restored before returning. */
12944 if (error = convoff(vp, flk, O, offset))

12945 NFS4_DEBUG(nf s4_cl i ent _| ock_debug, (CE_NOTE,

12946 "nfs4frlock_validate_args: convoff => error= %\ n",
12947 error));

12948 return (error);

12949 }

12951 return (error);

12952 }

12954 [*

12955 * Set the flock64’s I msysid for nfs4frlock.

12956 */

12957 static int

12958 nfs4frlock_get_sysid(struct I msysid **|spp, vnode_t *vp, flock64_t *flk)
12959 {

12960 ASSERT(nfs_zone() == VIOM 4(vp)->m _zone);

12962 /* Find the Imsysid */

12963 *Ispp = nfs4_find_sysid(VIOM 4(vp));

12965 if (*I'spp == NULL) {

12966 NFS4_DEBUG(nf s4_cl i ent _| ock_debug, (CE_NOTE,

12967 "nfsafrlock_get_sysid: no sysid, return ENOLCK"));
12968 return (ENOLCK);

12969 }

12971 flk->I _sysid = I msysidt(*Ispp);

12973 return (0);

12974 }

12976 /*

12977 * Do the remaining prelimnary setup for nfs4frlock.

12978 */

12979 static void

12980 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep,
12981 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr,
12982 cred_t **cred_otw)

12983 {

12984 /*

12985 * set tick_delay to the base delay tine.

12986 * (nfs4_base_wait_tinme is in nsecs)

110 * (NFS4_BASE_ WAIT_TIME is in secs)

12987 */

12989 *tick_delayp = drv_usectohz(nfs4_base_wait_tinme * 1000

113 *tick_del ayp = drv_usect ohz(NFS4_BASE WAI T_TI ME * 1000 *! 1000)
12991 /*

12992 * If lock is relative to EOF, we need the newest |ength of the

new usr/src/ uts/ comon/fs/ nfs/nfs4_vnops.c 198
12993 * file. Therefore invalidate the ATTR CACHE.
12994 */
12996 *whencep = flk->l_whence;
12998 if (*whencep == 2) /* SEEK_END */
12999 PURGE_ATTRCACHE4(vp)
13001 recov_statep->rs_flags = 0;
13002 recov_statep->rs_numretry _despite_err = 0O;
13003 *cred_otw = nfs4_get_otw cred(search_cr, VTOM 4(vp), NULL);
13004 }
__unchanged_portion_omtted_
14757 | *
14758 * Wait for 'tick_delay’ clock ticks.
14759 * Inplenent exponential backoff until hit the |ease_tine of this nfs4_server.
14760 *
14761 * The client should retry to acquire the lock faster than the |ease period.
14762 * \We use roughly half of the lease time to use a simlar calculation as it is
14763 * used in nfs4_renew | ease_thread().
1884 * NOTE | ock_|l ease_tinme is in seconds.
14764
14765 * XXX For future inprovenents, should inplenent a waiting queue schene.
14766 */

14767 static int

14768 nfs4_bl ock_and_wai t (cl ock_t

14769 {
14770
14771
14772
1891
1892

14774
14775
14776
14777

14779 #endif /* |

14780
14781
14782

14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
1898

1899

14802
14803

*tick_delay, rnode4_t *rp)

| ong max_nsec_delay = 1 * 1000; /* 1 sec */
nfs4_server_t *sp;

mtinfo4 t *m = VIOM 4(RTOVA(rp));

long milliseconds_del ay;

tinme_t |ock_|ease_tine;

/* wait tick_delay clock ticks or siginteruptus */
if (delay_sig(*tick_delay)) {

return (EINTR);
}

coderevi ew */

NFS4_DEBUG(nf s4_cl i ent
"rei ssue the |ock request:
"mlliseconds", *tick_delay,

| ock_debug, (CE_NOTE, "nfs4_bl ock_and_wait:
bl ocked for %d clock ticks: %d "
drv_hztousec(*tick_delay) / 1000));

*

* Get the current lease tinme and propagation time for the server
* associated with the given file. Note that both tinmes could

* change imedi ately after this section.

*/

nfs_rw enter_sig(&->m _recovl ock, RWREADER, 0);
sp = find_nfs4_server(m);
if (sp !'= NULL) {
if (V(m->m _vfsp->vf s_fl ag & VFS_UNMOUNTED)) ({
max_nsec_del ay = sp->s_lease_tinme * 1000 / 2 -
(3 * sp >propagati on_del ay.tv_sec *
1000

nmut ex_exi t (&sp->s_l ock);
nfs4_server_rel e(sp);

}
nfs_rw exit(&->m _recovl ock);
/* get the lease time */
| ock_l ease_tinme = r2lease_tine(rp);

max_nsec_del ay = MAX(max_mnsec_del ay,
*tick_delay = M N(drv_usect ohz(max_nsec_del ay *

nf s4 base _wait_tinme);
1000), *tick _delay * 2);

new usr/src/ uts/ comon/fs/nfs/nfs4_vnops.c 199

1901 /* drv_hztousec converts ticks to nmicroseconds */

1902 m|liseconds_del ay = drv_hztousec(*tick_delay) / 1000;

1903 if (mlliseconds_ delay < lock_l ease_time * 1000) {

1904 *tick_delay = 2 * *tick_del ay;

1905 if (drv_ hztousec(*tlck delay) > | ock_| ease_tine * 1000 * 1000)
1906 *tick_delay = drv_usectohz(lock_| ease_ti ne*1000*1000);
1907 }

14804 return (0)

14805 }

14807 void

14808 nfs4_vnops_init(void)

14809 {

14810 }

__unchanged_portion_onitted_

new usr/ src/ uts/comon/ nfs/rnode4. h

R R R R

19631 Mon May 12 10: 06: 22 2014
new usr/ src/ uts/comon/ nfs/rnode4. h
4827 nfs4: slow file |ocking
4837 NFSv4 client lock retry delay upper limt should be shorter

LR

__unchanged_portion_omtted_
388 #ifdef _KERNEL
390 extern | ong nrnode;

392 /* Used for r_delay_interval */
393 #define NFS4_I NI TI AL_DELAY_| NTERVAL 1
394 #define NFS4_MAX_DELAY_| NTERVAL 20

396 /* Used for check_rtable4 */

397 #define NFSVA_RTABLE4_OK

398 #define NFSV4 RTABLE4 NOT_FREE_LI ST
399 #define NFSV4 RTABLE4 DI RTY PAGES
400 #define NFSV4_RTABLE4_POS_R_COUNT

wWN RO

402 extern rnode4_t *r4find(r4hashg_t *, nfs4_sharedfh_t *, struct vfs *);
403 extern rnode4_t *r4find_unl ocked(nfs4_sharedfh_t *, struct vfs *);
404 extern void r4flush(struct vfs *, cred_t *);

405 extern void destroy_rtabl e4(struct vfs *, cred_t *);

406 extern int check_rtabl e4(struct vfs *);

407 extern void rp4_addfree(rnoded4_t *, cred_t *);

408 extern void rp4_addhash(rnode4_t *);

409 extern void rp4_rnmhash(rnode4_t *);

410 extern void rp4_r mhash Iocked(rnode4 t *);

411 extern int rtabl edhash(nfs4_sharedfh_t *);

413 extern vnode_t *makenfs4node(nfs4_sharedfh_t *, nfs4_ga_res_t *, struct vfs *,
414 hrtime_t, cred_t *, vnode_t *, nfs4_fnane_t
415 extern vnode_t *nakenfs4node_by_fh(nfs4_sharedfh_t *, nfs4_sharedfh_t *,
416 nfs4 _fname_t **, nfs4 ga res_t *, mtinfo4 t *, cred_t *, hrtime_t);

418 extern nfs4_opinst_t *r4nmkopenlist(struct mtinfo4 *);
419 extern void r4rel eopenl i st(nfs4_opinst_t *);
420 extern int r4find_by_fsid(mtinfo4_t *, fattr4_fsid *);

422 |* Access cache calls */

423 extern nfs4_access_type_t nfsd4_access_check(rnoded4_t *, uint32_t, cred t *);

424 extern void
425 extern int

nfs4_access_cache(rnode4_t *rp, uint32_t, uint32_t, cred_t
nfs4_access_purge_rp(rnoded_t *);

427 extern int nfs4_free_data_reclai m(rnode4_t *);
428 extern void nfs4_rnode_i nval i dat e(struct vfs *)

430 extern tine_t r2l ease_tinme(rnoded_t *);
430 extern int nfs4_directio(vnode t *, int, cred_t *);

432 /* shadow vnode functions */

433 extern void sv_activate(vnode_t **, vnode_t *, nfs4_fnane_t **, int);
434 extern vnode_t *sv_find(vnode_t *, vnode_t *, nfs4_fname_t **);

435 extern void sV update pat h(vnode_t *, char *, char *);

436 extern void sv_i nactive(vnode_t *);

437 extern void sv_exchange(vnode_t **);

438 extern void sv_uninit(svnode_t *);

439 extern void nfs4_cl ear _open_streans(rnoded_t *);

441 | *

442 * Mark cached attributes as timed out

443 *

444 * The caller nust not be holding the rnode r_statel ock nutex.

new usr/ src/ uts/comon/ nfs/rnode4. h

445 =/

446 #define PURGE_ATTRCACHE4 LOCKED(r p)

447 rp->r_tine_attr_inval = gethrtime();
448 rp->r_tine_attr_saved = rp->r_time_attr_inval;
449 rp->r_pat hconf.pc4_xattr_valid = 0;
450 rp->r_pat hconf. pcd4_cache_valid = O;
452 #define PURGE_ATTRCACHE4(vp) {

453 rnoded4_t *rp = VIOR4A(vp);

454 mut ex_ent er (& p->r_st at el ock) ;

455 PURGE_ATTRCACHE4_LLOCKED(r p) ;

456 mut ex_exit (& p->r_statel ock)

457 }

__unchanged_portion_onitted_

——— —

—— e ——

