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__unchanged_portion_onitted_

166 int

167 wite_elfnotes(proc_t *p, int sig, vnode_t *vp, offset_t offset,
168 rlimb4_t rlimt, cred_t *credp, core_content_t content)
169 {

170 uni on {

171 psinfo_t psi nfo;

172 pstatus_t pstatus;

173 I wpsi nfo_t I wpsi nf o;

174 | wpst at us_t | wpst at us;

175 #if defined(__sparc)

176 gw ndows_t gwi ndows;

177 asrset _t asrset;

178 #endif /* __sparc */

179 char xregs[1];

180 aux_entry_t auxv([ __| KERN NAUXV_| MPL] ;

181 prcred_t pcred;

182 prpriv_t ppriv;

183 priv_inpl _info_t prinfo;

184 struct utsnane uts;

185 } *bi gwad;

187 size_t xregsize = prhasx(p)? prgetprxregsize(p) : 0;
188 size_t ch|ze = sizeof (prcred_t) + sizeof (gid_t) * (ngroups_max -
189 size_t psize = prgetprivsize();

190 size_t bigsize = MAX(psi ze, M’-\X(si zeof (*bigwad),
191 MAX( xr egsi ze, crsize)));

193 priv_inmpl_info_t *prii;

195 Iwpdir_t *Ildp;

196 I wpent _t *lep;

197 kthread_t *t;

198 klwp_t *1 wp;

199 user _t *up;

200 int i;

201 int nlwp;

202 int nzonb;

203 int error;

204 uchar _t ol dsi g;

205 uf _info_t *fip;

206 int fd;

207 vnode_t *vroot;

209 #if defined(__i386) || defi ned(__i 386_COVPAT)

210 struct ssd *ssd

211 size_t ssdsize;

212 #endif /* __i386 || _i 386_COWPAT */

214 bi gsi ze = MAX(bi gsize, priv_get_inplinfo_size());
216 bi gwad = knem al | oc(bi gsi ze, KM _SLEEP);

218 /*

219 * The order of the elfnote entries should be same here
220 * and in the gcore(l) conmand. Synchronization is
221 * needed between the kernel and gcore(1l).

222 */

224 /*

1);
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* Get the psinfo, and set the wait status to indicate that a core was
* dunped. W have to forge this since p->p_wcode is not set yet.
*
/
nmut ex_ent er (&p->p_| ock);
prget psi nfo(p, &bi gwad->psinfo);
mut ex_exi t (&p- >p_l ock) ;
bi gwad- >psi nfo. pr_wstat = wstat (CLD_DUMPED, sig);

error = el fnote(vp, &offset, NT_PSINFO, sizeof (bigwad->psinfo),
(caddr_t) &i gwad->psinfo, rlimt, credp);

if (error)

got o done;
/*
* Modify t_whystop and Iwp_cursig so it appears that the current LW
* is stopped after faulting on the signal that caused the core dunp.
* As a result, prgetstatus() will record that signal, the saved
* |wp_siginfo, and its signal handler in the core file status. W
* restore Iwp_cursig in case a subsequent signal was received while
* dunpi ng core.
*/

mut ex_ent er (&p->p_| ock);
Iwp = ttolwp(curthread);

oldsig = | wp->lwp_cursig;
I wp- >l wp_cursig = (uchar_t)sig;
curthread->t_whystop = PR _FAULTED;

prgetstatus(p, &bigwad->pstatus, p >p_zone);
bi gwad- >pst at us. pr_| wp. pr_why = 0;

curthread->t_whystop = O;
I wp- >l wp_cursig = oldsig;
mut ex_exi t (&p->p_| ock) ;

error = elfnote(vp, &offset, NT_PSTATUS, sizeof (bigwad->pstatus),
(caddr_t) &i gwad- >pstatus, rlimt, credp);
if (error)
got o done;

error = elfnote(vp, &offset, NT_PLATFORM strlen(platform + 1,
platform rlimt, credp);
if (error)
got o done;

up = PTOJ( p);
for (i 0; i< __ KERN_NAUXV_I MPL; i ++)

b| gv\ad- >auxv[i].a_type = up->u_auxv[i].a_type;

bi gwad- >auxv[i].a_un.a_val = up->u_auxv[i].a_un.a_val;

}
error = el fnote(vp, &offset, NT_AUXV, sizeof (bigwad->auxv),
(caddr_t)bi gwad- >auxv, rlimt, credp);
if (error)
goto done;

bcopy(&ut snanme, &bi gwad->uts, sizeof (struct utsnane));
if (11NGLOBALZONE(p)) {
bcopy( p- >p_zone->zone_nodenane, &bi gwad- >uts. nodenane,
_SYS_NWMLN) ;

}
error = el fnote(vp, &offset, NT_UTSNAME, sizeof (struct utsnane),
(caddr _t) &i gwad- >ut s, rllmt credp)
if (error)
got o done;

prgetcred(p, &bigwad->pcred);
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292 if (bigwad->pcred.pr_ngroups != 0) {

293 crsize = sizeof (prcred_t) +

294 si zeof (gid_t) * (bigwad->pcred.pr_ngroups - 1);
295 } else

296 crsize = sizeof (prcred_t);

298 error = elfnote(vp, &offset, NT_PRCRED, crsize,

299 (caddr_t) &bi gwad->pcred, rlimt, credp);

300 if (error)

301 got o done;

303 error = elfnote(vp, &offset, NT_CONTENT, sizeof (core_content_t),
304 (caddr_t)&content, rlimt, credp);

305 if (error)

306 got o done;

308 prgetpriv(p, &bigwad->ppriv);

310 error = elfnote(vp, &offset, NT_PRPRIV, psize,

311 (caddr_t) &bi gwad->ppriv, rlimt, credp);

312 if (error)

313 got o done;

315 prii = priv_hold_inmplinfo();

316 error = el fnote(vp, &offset, NT_PRPRIVINFO priv_get_inplinfo_size(),
317 (caddr_t)prii, rlimt, credp);

318 priv_release_inplinfo();

319 i1f (error)

320 goto done;

322 /* zone can't go away as |long as process exists */

323 error = elfnote(vp, &offset, NT_ZONENAME,

324 strlen(p->p_zone->zone_nane) + 1, p->p_zone->zone_nane,
325 rlimt, credp);

326 if (error)

327 got o done;

330 /* open file table */

331 vroot = PTOUY(p)->u_rdir;

332 if (vroot == NULL)

333 vroot = rootdir;

335 VN_HOLD( vroot);

337 fip = P_FINFQ(p);

339 for (fd = 0; fd < fip->fi_nfiles; fd++) {

340 uf _entry_t *ufp;

341 vnode_t *fvp;

342 struct file *fp;

343 vattr_t vattr;

344 prfdinfo_t fdinfo;

346 bzero(&f di nfo, sizeof (fdinfo));

348 nutex_enter (& i p->fi _| ock);

349 UF_ENTER(ufp, fip, fd);

350 if (((fp = ufp->uf _file) == NULL) || (fp->f_count < 1)) {
351 UF_EXI T(ufp);

352 mut ex_exi t (& i p->fi_l ock);

353 conti nue;

354 }

356 fdinfo.pr_fd = fd;
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357 fdinfo.pr_fdflags = ufp->uf_flag;

358 fdinfo.pr_fileflags = fp->f_flag2;

359 fdinfo.pr_fileflags <<= 16;

360 fdinfo.pr_fileflags |= fp->f_flag;

361 if ((fdinfo. pr _fileflags & (FSEARCH | FEXEC)) == 0)
362 fdinfo.pr_fileflags += FOPEN,

363 fdinfo. pr_offset = fp->f_offset;

366 fvp = fp->f_vnode;

367 VN_HOLD( f vp);

368 UF_EXI T(uf p);

369 mut ex_exi t (& i p->fi_l ock);

371 /*

372 * There are some vnodes that have no corresponding
373 * path. |Its reasonable for this to fail, in which
374 * case the path will renain an enpty strlng.

375 */

376 (voi d) vnodetopat h(vroot, fvp, fdinfo.pr_path,

377 si zeof (fdinfo.pr_| pat h), credp);

379 if (VOP_GETATTR(fvp, &vattr, 0, credp, NULL) != 0) {
380 /*

381 * Try to wite at | east a subset of information
382 */

383 fdinfo.pr_major = 0;

384 fdinfo.pr_mnor = 0;

385 fdinfo.pr_ino = 0;

386 fdinfo.pr_npde = 0;

387 fdinfo.pr_uid = (uid_t)-1;

388 fdinfo.pr_gid = (gid_t)-1;

389 fdinfo.pr_rmajor = 0;

390 fdinfo.pr_rmnor = 0;

391 fdinfo.pr_size = -1,

393 error = el fnote(vp, &offset, NT_FDI NFQ,

394 sizeof (fdinfo), & dinfo, rlimt, credp);
395 VN_RELE(fvp);

396 if (error) {

397 #endif /* | codereview */

398 VN_RELE(vroot);

396 if (error)

399 got o done;

400

401 #endif /* | codereview */

402 conti nue;

403 }

405 if (fvp->v_type == VSOCK)

406 fdinfo.pr_fileflags | = sock_getfasync(fvp);
408 VN_RELE(fvp);

410 /*

411 * This logic mirrors fstat(), which we cannot use
412 * directly, as it calls copyout ().

413 */

414 fdinfo.pr_nejor = getmajor(vattr.va_fsid);

415 fdinfo.pr_mnor = getmnor(vattr.va_fsid);

416 fdinfo.pr_ino = (ino64_t)vattr.va_nodeid

417 fdinfo.pr_node = VITO F(vattr.va_type) | vattr.va_node;
418 fdinfo.pr_uid = vattr.va_uid;

419 fdinfo.pr_gid = vattr.va_gid,

420 fdinfo.pr_rnajor = getnmajor(vattr.va_rdev);

421 fdinfo.pr_rmnor = getmnor(vattr.va_rdev);
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fdinfo.pr_size = (off64_t)vattr.va_size;

error = elfnote(vp, &offset, NT_FDI NFO
si zeof (fdinfo), &dinfo, rlimt, credp);
if (error)
VN_RELE( vroot);
goto done;
}
}
VN_RELE( vroot);
#if defined(__i386) || defined(__i 386_COVPAT)
mut ex_ent er (&p->p_I dt | ock) ;
ssdsi ze = prnldt(p) * si zeof (struct ssd);
if (ssdsize !'=0) {
ssd = kmem al | oc(ssdsi ze, KM SLEEP);
prgetldt(p, ssd);
error = el fnot e(vp, &of f set, NT_LDT, ssdsize,
(caddr_t)ssd, rlimt, credp);
kmem free(ssd, ssdsize);

#endi f

}
mut ex_exi t (&p->p_l dtl ock);

if (error)
goto don
/* __ 1386 || defl ned( __i 386_COWPAT) */
nlwp = p->p_lwpent;
nzonb = p->p_zonbcnt;
/* for each entry in the Iwp directory ... */
for (Idp = p->p_Ilwpdir; nlwp + nzonmb I'= 0; |dp++) {
if ((lep = Idp >Id _entry) == NULL) /* enmpty slot */
contin
if ((t =1lep->le_thread) != NULL) { /* active lwp */
AISSERT(nIWp 1= 0);
n )
lwp = ttolwp(t);
mut ex_ent er(&p >p_| ock) ;
prget Twpsinfo(t, &bi gwad >| wpsi nf o) ;
nut ex_exi t (&p->p_| ock);
} else { /* zonbie Iwp */
ASSERT(nzomb ! = 0);
nzonb- -

bzer 0(&b| gwad- >l wpsi nfo, sizeof (bigwad->lwpsinfo));
bi gwad- >l wpsi nf o. pr prl d = lep->le_|l wid;
bi gwad- >l wpsi nf o. pr_state = SZOVB;

bi gwad- >l wpsi nfo. pr_sname = 'Z";

bi gwad- >l wpsi nfo. pr_start.tv_sec = lep->le_start;

error = elfnote(vp, &offset, NT_LWPSI NFQ,
si zeof (bi gwad->l wpsi nfo), (caddr_t) &bi gwad- >l wpsi nf o,

rlimt, credp);
if (error)
got o done;
if (t == NULL) /* nothing nore to do for a zonbie */
conti nue;

mt ex enter(&p >p_|l ock) ;
if (t == curthread) {
/*

* Modify t_whystop and Iwp_cursig so it appears that
* the current LWP is stopped after faulting on the
* signal that caused the core dunp. As a result,

* prgetlwpstatus() will

record that signal, the saved
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Iwp_siginfo, and its signal handler in the core file
status. We restore Iwp_cursig in case a subsequent

*

*

* signal was received while dunping core.
S

|

oldsig = pr—>|wp_cursig;

I wp->lwp_cursig = (uchar_t)sig;
t->t_whystop = PR_FAULTED,
prget|wpstatus(t, &bigwad->l wpstat us,
bi gwad- >l wpst at us. pr_why = 0;

p->p_zone);

t->t _whystop = 0;
| wp- >l wp_cursig = ol dsig;
} else {
prgetl wpstatus(t, &bigwad->l wpstatus, p->p_zone);
mut ex_exi t (&p->p_| ock);
error = el fnote(vp, &offset, NT_LWPSTATUS,
si zeof (bi gwad->l wpstatus), (caddr_t) &bi gwad- >l wpst at us,

rlimt, credp);
if (error)
got o done;

__sparc)
/*
* Unspilled SPARC register w ndows.
*
/
{

size_t size = prnw ndows(|wp);
if (size !'=0) {
size = sizeof (gw ndows_t) -
( SPARC_MAXREGW NDOW - si ze)
si zeof (struct rw ndow);
prget wi ndows(| wp, &bi gwad->gw ndows) ;
error = elfnote(vp, &offset, NT_GW NDOAS,
size, (caddr_t) &bi gwad->gwi ndows,
rlimt, credp);
if (error)
got o done;

}

/*

* Ancillary State Registers.
*/

if (p->p_nmobdel == DATAMODEL_LP64) {
prgetasregs(lwp, bigwad->asrset);
error = elfnote(vp, &offset, NT_ASRS,
si zeof (asrset_t), (caddr _t)bi gv\ad >asrset,

rlimt, credp);
if (error)
got o done;

}
__sparc */

if (xregsize) {

prget prxregs(lwp, bigwad->xregs);

error = el fnote(vp, &offset, NT_PRXREG
xregsi ze, bigwad->xregs, rlimt, credp);
if (error)

goto done;

}

if (t->t_lwp->lwp_spymaster !'= NULL) {
void *psaddr = t->t_|wp->l wp_spymaster;

_ELF32_COWPAT

6
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578 done:
579

580

581 }

}

/*

* On a 64-bit kernel with 32-bit ELF conpatibility,
* this file is conpiled into two different objects:
* one is conpiled normally, and the other is conpiled
* with _ELF32_COWPAT set -- and therefore with a

* psinfo_t defined to be a psinfo32_t. However, the
* psinfo_t denoting our spymaster is always of the
* native type; if we are in the _ELF32_COWAT case,
* we need to explicitly convert it.

*

/

if (p->p_nmodel == DATAMODEL | LP32) {
psi nf o_kt 032( psaddr, &bi gwad- >psi nfo);
psaddr = &bi gwad- >psi nfo;

error = el fnote(vp, &offset, NT_SPYMASTER,
si zeof (psinfo_t), psaddr, rlimt, credp);
if (error)
got o done;

ASSERT(nlwp == 0);

kmem f ree( bi gwad, bi gsize);

return (error);




