new usr/src/uts/comon/ exec/el f/elf_notes.c

R R R R

15454 Fri Aug 19 10: 01: 36 2016
new usr/src/uts/comon/ exec/ el f/elf_notes.c
7307 Fixing 5780 introduced a regression

R R R

__unchanged_portion_onitted_

166 int

167 wite_elfnotes(proc_t *p, int sig, vnode_t *vp, offset_t offset,
168 rlimb4_t rlimt, cred_t *credp, core_content_t content)
169 {

170 uni on {

171 psinfo_t psi nfo;

172 pstatus_t pstatus;

173 I wpsi nfo_t I wpsi nf o;

174 | wpst at us_t | wpst at us;

175 #if defined(__sparc)

176 gw ndows_t gwi ndows;

177 asrset _t asrset;

178 #endif /* __sparc */

179 char xregs[1];

180 aux_entry_t auxv([__| KERN NAUXV_| MPL] ;

181 prcred_t pcred;

182 prpriv_t ppriv;

183 priv_inpl _info_t prinfo;

184 struct utsnane uts;

185 } *bi gwad;

187 size_t xregsize = prhasx(p)? prgetprxregsize(p) : 0;
188 size_t ch|ze = sizeof (prcred_t) + sizeof (gid_t) * (ngroups_max -
189 size_t psize = prgetprivsize();

190 size_t bigsize = MAX(psi ze, M’-\X(si zeof (*bigwad),
191 MAX(xr egsi ze, crsize)));

193 priv_inmpl_info_t *prii;

195 Iwpdir_t *Ildp;

196 I wpent _t *lep;

197 kthread_t *t;

198 klwp_t *1 wp;

199 user _t *up;

200 int i;

201 int nlwp;

202 int nzonb;

203 int error;

204 uchar _t ol dsi g;

205 uf _info_t *fip;

206 int fd;

207 vnode_t *vroot;

209 #if defined(__i386) || defi ned(__i 386_COVPAT)

210 struct ssd *ssd

211 size_t ssdsize;

212 #endif /* __i386 || _i 386_COWPAT */

214 bi gsi ze = MAX(bi gsize, priv_get_inplinfo_size());
216 bi gwad = knem al | oc(bi gsi ze, KM _SLEEP);

218 /*

219 * The order of the elfnote entries should be same here
220 * and in the gcore(l) conmand. Synchronization is
221 * needed between the kernel and gcore(1l).

222 */

224 /*

1);

new usr/src/uts/comon/ exec/el f/elf_notes.c

225
226
227
228
229
230
231

233
234
235
236

238
239
240
241
242
243
244
245
246
247

249
250
251

253
254

256
257
258

260
261
262
263

265
266
267
268

270
271
272
273
274
275
276
277
278

280
281
282
283
284
285
286
287
288

* Get the psinfo, and set the wait status to indicate that a core was
* dunped. W have to forge this since p->p_wcode is not set yet.
*
/
nmut ex_ent er (&p->p_| ock);
prget psi nfo(p, &bi gwad->psinfo);
mut ex_exi t (&p- >p_l ock) ;
bi gwad- >psi nfo. pr_wstat = wstat (CLD_DUMPED, sig);

error = el fnote(vp, &offset, NT_PSINFO, sizeof (bigwad->psinfo),
(caddr_t) &i gwad->psinfo, rlimt, credp);

if (error)

got o done;
/*
* Modify t_whystop and Iwp_cursig so it appears that the current LW
* is stopped after faulting on the signal that caused the core dunp.
* As a result, prgetstatus() will record that signal, the saved
* |wp_siginfo, and its signal handler in the core file status. W
* restore Iwp_cursig in case a subsequent signal was received while
* dunpi ng core.
*/

mut ex_ent er (&p->p_| ock);
Iwp = ttolwp(curthread);

oldsig = | wp->lwp_cursig;
I wp- >l wp_cursig = (uchar_t)sig;
curthread->t_whystop = PR _FAULTED;

prgetstatus(p, &bigwad->pstatus, p >p_zone);
bi gwad- >pst at us. pr_| wp. pr_why = 0;

curthread->t_whystop = O;
I wp- >l wp_cursig = oldsig;
mut ex_exi t (&p->p_| ock) ;

error = elfnote(vp, &offset, NT_PSTATUS, sizeof (bigwad->pstatus),
(caddr_t) &i gwad- >pstatus, rlimt, credp);
if (error)
got o done;

error = elfnote(vp, &offset, NT_PLATFORM strlen(platform + 1,
platform rlimt, credp);
if (error)
got o done;

up = PTOJ(p);
for (i 0; i< __ KERN_NAUXV_I MPL; i ++)

b| gv\ad- >auxv[i].a_type = up->u_auxv[i].a_type;

bi gwad- >auxv[i].a_un.a_val = up->u_auxv[i].a_un.a_val;

}
error = el fnote(vp, &offset, NT_AUXV, sizeof (bigwad->auxv),
(caddr_t)bi gwad- >auxv, rlimt, credp);
if (error)
goto done;

bcopy(&ut snanme, &bi gwad->uts, sizeof (struct utsnane));
if (11NGLOBALZONE(p)) {
bcopy(p- >p_zone->zone_nodenane, &bi gwad- >uts. nodenane,
_SYS_NWMLN) ;

}
error = el fnote(vp, &offset, NT_UTSNAME, sizeof (struct utsnane),
(caddr _t) &i gwad- >ut s, rllmt credp)
if (error)
got o done;

prgetcred(p, &bigwad->pcred);

new usr/src/uts/comon/ exec/el f/elf_notes.c

292 if (bigwad->pcred.pr_ngroups != 0) {

293 crsize = sizeof (prcred_t) +

294 si zeof (gid_t) * (bigwad->pcred.pr_ngroups - 1);
295 } else

296 crsize = sizeof (prcred_t);

298 error = elfnote(vp, &offset, NT_PRCRED, crsize,

299 (caddr_t) &bi gwad->pcred, rlimt, credp);

300 if (error)

301 got o done;

303 error = elfnote(vp, &offset, NT_CONTENT, sizeof (core_content_t),
304 (caddr_t)&content, rlimt, credp);

305 if (error)

306 got o done;

308 prgetpriv(p, &bigwad->ppriv);

310 error = elfnote(vp, &offset, NT_PRPRIV, psize,

311 (caddr_t) &bi gwad->ppriv, rlimt, credp);

312 if (error)

313 got o done;

315 prii = priv_hold_inmplinfo();

316 error = el fnote(vp, &offset, NT_PRPRIVINFO priv_get_inplinfo_size(),
317 (caddr_t)prii, rlimt, credp);

318 priv_release_inplinfo();

319 i1f (error)

320 goto done;

322 /* zone can't go away as |long as process exists */

323 error = elfnote(vp, &offset, NT_ZONENAME,

324 strlen(p->p_zone->zone_nane) + 1, p->p_zone->zone_nane,
325 rlimt, credp);

326 if (error)

327 got o done;

330 /* open file table */

331 vroot = PTOUY(p)->u_rdir;

332 if (vroot == NULL)

333 vroot = rootdir;

335 VN_HOLD(vroot);

337 fip = P_FINFQ(p);

339 for (fd = 0; fd < fip->fi_nfiles; fd++) {

340 uf _entry_t *ufp;

341 vnode_t *fvp;

342 struct file *fp;

343 vattr_t vattr;

344 prfdinfo_t fdinfo;

346 bzero(&f di nfo, sizeof (fdinfo));

348 nutex_enter (& i p->fi _| ock);

349 UF_ENTER(ufp, fip, fd);

350 if (((fp = ufp->uf _file) == NULL) || (fp->f_count < 1)) {
351 UF_EXI T(ufp);

352 mut ex_exi t (& i p->fi_l ock);

353 conti nue;

354 }

356 fdinfo.pr_fd = fd;

new usr/src/uts/comon/ exec/ el f/elf_notes.c

357 fdinfo.pr_fdflags = ufp->uf_flag;

358 fdinfo.pr_fileflags = fp->f_flag2;

359 fdinfo.pr_fileflags <<= 16;

360 fdinfo.pr_fileflags |= fp->f_flag;

361 if ((fdinfo. pr _fileflags & (FSEARCH | FEXEC)) == 0)
362 fdinfo.pr_fileflags += FOPEN,

363 fdinfo. pr_offset = fp->f_offset;

366 fvp = fp->f_vnode;

367 VN_HOLD(f vp);

368 UF_EXI T(uf p);

369 mut ex_exi t (& i p->fi_l ock);

371 /*

372 * There are some vnodes that have no corresponding
373 * path. |Its reasonable for this to fail, in which
374 * case the path will renain an enpty strlng.

375 */

376 (voi d) vnodetopat h(vroot, fvp, fdinfo.pr_path,

377 si zeof (fdinfo.pr_| pat h), credp);

379 if (VOP_GETATTR(fvp, &vattr, 0, credp, NULL) != 0) {
380 /*

381 * Try to wite at | east a subset of information
382 */

383 fdinfo.pr_major = 0;

384 fdinfo.pr_mnor = 0;

385 fdinfo.pr_ino = 0;

386 fdinfo.pr_npde = 0;

387 fdinfo.pr_uid = (uid_t)-1;

388 fdinfo.pr_gid = (gid_t)-1;

389 fdinfo.pr_rmajor = 0;

390 fdinfo.pr_rmnor = 0;

391 fdinfo.pr_size = -1,

393 error = el fnote(vp, &offset, NT_FDI NFQ,

394 sizeof (fdinfo), & dinfo, rlimt, credp);
395 VN_RELE(fvp);

396 if (error) {

397 #endif /* | codereview */

398 VN_RELE(vroot);

396 if (error)

399 got o done;

400

401 #endif /* | codereview */

402 conti nue;

403 }

405 if (fvp->v_type == VSOCK)

406 fdinfo.pr_fileflags | = sock_getfasync(fvp);
408 VN_RELE(fvp);

410 /*

411 * This logic mirrors fstat(), which we cannot use
412 * directly, as it calls copyout ().

413 */

414 fdinfo.pr_nejor = getmajor(vattr.va_fsid);

415 fdinfo.pr_mnor = getmnor(vattr.va_fsid);

416 fdinfo.pr_ino = (ino64_t)vattr.va_nodeid

417 fdinfo.pr_node = VITO F(vattr.va_type) | vattr.va_node;
418 fdinfo.pr_uid = vattr.va_uid;

419 fdinfo.pr_gid = vattr.va_gid,

420 fdinfo.pr_rnajor = getnmajor(vattr.va_rdev);

421 fdinfo.pr_rmnor = getmnor(vattr.va_rdev);

new usr/src/uts/comon/ exec/el f/elf_notes.c

422

424
425
426
427
428
429
430

432

434
435

436
437
438
439
440
441
442
443
444
445
446
447

449
450
451
452

454
455

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

481
482
483
484
485
486
487

fdinfo.pr_size = (off64_t)vattr.va_size;

error = elfnote(vp, &offset, NT_FDI NFO
si zeof (fdinfo), &dinfo, rlimt, credp);
if (error)
VN_RELE(vroot);
goto done;
}
}
VN_RELE(vroot);
#if defined(__i386) || defined(__i 386_COVPAT)
mut ex_ent er (&p->p_I dt | ock) ;
ssdsi ze = prnldt(p) * si zeof (struct ssd);
if (ssdsize !'=0) {
ssd = kmem al | oc(ssdsi ze, KM SLEEP);
prgetldt(p, ssd);
error = el fnot e(vp, &of f set, NT_LDT, ssdsize,
(caddr_t)ssd, rlimt, credp);
kmem free(ssd, ssdsize);

#endi f

}
mut ex_exi t (&p->p_l dtl ock);

if (error)
goto don
/* __ 1386 || defl ned(__i 386_COWPAT) */
nlwp = p->p_lwpent;
nzonb = p->p_zonbcnt;
/* for each entry in the Iwp directory ... */
for (Idp = p->p_Ilwpdir; nlwp + nzonmb I'= 0; |dp++) {
if ((lep = Idp >Id _entry) == NULL) /* enmpty slot */
contin
if ((t =1lep->le_thread) != NULL) { /* active lwp */
AISSERT(nIWp 1= 0);
n)
lwp = ttolwp(t);
mut ex_ent er(&p >p_| ock) ;
prget Twpsinfo(t, &bi gwad >| wpsi nf o) ;
nut ex_exi t (&p->p_| ock);
} else { /* zonbie Iwp */
ASSERT(nzomb ! = 0);
nzonb- -

bzer 0(&b| gwad- >l wpsi nfo, sizeof (bigwad->lwpsinfo));
bi gwad- >l wpsi nf o. pr prl d = lep->le_|l wid;
bi gwad- >l wpsi nf o. pr_state = SZOVB;

bi gwad- >l wpsi nfo. pr_sname = 'Z";

bi gwad- >l wpsi nfo. pr_start.tv_sec = lep->le_start;

error = elfnote(vp, &offset, NT_LWPSI NFQ,
si zeof (bi gwad->l wpsi nfo), (caddr_t) &bi gwad- >l wpsi nf o,

rlimt, credp);
if (error)
got o done;
if (t == NULL) /* nothing nore to do for a zonbie */
conti nue;

mt ex enter(&p >p_|l ock) ;
if (t == curthread) {
/*

* Modify t_whystop and Iwp_cursig so it appears that
* the current LWP is stopped after faulting on the
* signal that caused the core dunp. As a result,

* prgetlwpstatus() will

record that signal, the saved

new usr/src/uts/comon/ exec/el f/elf_notes.c

488
489
490
491
492
493
494

496
497

499
500
501
502
503
504
505
506
507
508
509

511 #if defined(

512
513
514
515
516

518
519
520
521
522
523
524
525,
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

541 #endif /*

543
544
545
546
547
548
549

551
552
553 #i f def

Iwp_siginfo, and its signal handler in the core file
status. We restore Iwp_cursig in case a subsequent

*

*

* signal was received while dunping core.
S

|

oldsig = pr—>|wp_cursig;

I wp->lwp_cursig = (uchar_t)sig;
t->t_whystop = PR_FAULTED,
prget|wpstatus(t, &bigwad->l wpstat us,
bi gwad- >l wpst at us. pr_why = 0;

p->p_zone);

t->t _whystop = 0;
| wp- >l wp_cursig = ol dsig;
} else {
prgetl wpstatus(t, &bigwad->l wpstatus, p->p_zone);
mut ex_exi t (&p->p_| ock);
error = el fnote(vp, &offset, NT_LWPSTATUS,
si zeof (bi gwad->l wpstatus), (caddr_t) &bi gwad- >l wpst at us,

rlimt, credp);
if (error)
got o done;

__sparc)
/*
* Unspilled SPARC register w ndows.
*
/
{

size_t size = prnw ndows(|wp);
if (size !'=0) {
size = sizeof (gw ndows_t) -
(SPARC_MAXREGW NDOW - si ze)
si zeof (struct rw ndow);
prget wi ndows(| wp, &bi gwad->gw ndows) ;
error = elfnote(vp, &offset, NT_GW NDOAS,
size, (caddr_t) &bi gwad->gwi ndows,
rlimt, credp);
if (error)
got o done;

}

/*

* Ancillary State Registers.
*/

if (p->p_nmobdel == DATAMODEL_LP64) {
prgetasregs(lwp, bigwad->asrset);
error = elfnote(vp, &offset, NT_ASRS,
si zeof (asrset_t), (caddr _t)bi gv\ad >asrset,

rlimt, credp);
if (error)
got o done;

}
__sparc */

if (xregsize) {

prget prxregs(lwp, bigwad->xregs);

error = el fnote(vp, &offset, NT_PRXREG
xregsi ze, bigwad->xregs, rlimt, credp);
if (error)

goto done;

}

if (t->t_lwp->lwp_spymaster !'= NULL) {
void *psaddr = t->t_|wp->l wp_spymaster;

_ELF32_COWPAT

6

new usr/src/uts/comon/ exec/el f/elf_notes.c

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568 #endi f

570
571
572
573
574
575
576

578 done:
579

580

581 }

}

/*

* On a 64-bit kernel with 32-bit ELF conpatibility,
* this file is conpiled into two different objects:
* one is conpiled normally, and the other is conpiled
* with _ELF32_COWPAT set -- and therefore with a

* psinfo_t defined to be a psinfo32_t. However, the
* psinfo_t denoting our spymaster is always of the
* native type; if we are in the _ELF32_COWAT case,
* we need to explicitly convert it.

*

/

if (p->p_nmodel == DATAMODEL | LP32) {
psi nf o_kt 032(psaddr, &bi gwad- >psi nfo);
psaddr = &bi gwad- >psi nfo;

error = el fnote(vp, &offset, NT_SPYMASTER,
si zeof (psinfo_t), psaddr, rlimt, credp);
if (error)
got o done;

ASSERT(nlwp == 0);

kmem f ree(bi gwad, bi gsize);

return (error);

