
new/usr/src/uts/common/exec/elf/elf_notes.c 1

**
 15454 Fri Aug 19 10:01:36 2016
new/usr/src/uts/common/exec/elf/elf_notes.c
7307 Fixing 5780 introduced a regression
**
______unchanged_portion_omitted_

166 int
167 write_elfnotes(proc_t *p, int sig, vnode_t *vp, offset_t offset,
168 rlim64_t rlimit, cred_t *credp, core_content_t content)
169 {
170 union {
171 psinfo_t psinfo;
172 pstatus_t pstatus;
173 lwpsinfo_t lwpsinfo;
174 lwpstatus_t lwpstatus;
175 #if defined(__sparc)
176 gwindows_t gwindows;
177 asrset_t asrset;
178 #endif /* __sparc */
179 char xregs[1];
180 aux_entry_t auxv[__KERN_NAUXV_IMPL];
181 prcred_t pcred;
182 prpriv_t ppriv;
183 priv_impl_info_t prinfo;
184 struct utsname uts;
185 } *bigwad;

187 size_t xregsize = prhasx(p)? prgetprxregsize(p) : 0;
188 size_t crsize = sizeof (prcred_t) + sizeof (gid_t) * (ngroups_max - 1);
189 size_t psize = prgetprivsize();
190 size_t bigsize = MAX(psize, MAX(sizeof (*bigwad),
191 MAX(xregsize, crsize)));

193 priv_impl_info_t *prii;

195 lwpdir_t *ldp;
196 lwpent_t *lep;
197 kthread_t *t;
198 klwp_t *lwp;
199 user_t *up;
200 int i;
201 int nlwp;
202 int nzomb;
203 int error;
204 uchar_t oldsig;
205 uf_info_t *fip;
206 int fd;
207 vnode_t *vroot;

209 #if defined(__i386) || defined(__i386_COMPAT)
210 struct ssd *ssd;
211 size_t ssdsize;
212 #endif /* __i386 || __i386_COMPAT */

214 bigsize = MAX(bigsize, priv_get_implinfo_size());

216 bigwad = kmem_alloc(bigsize, KM_SLEEP);

218 /*
219 * The order of the elfnote entries should be same here
220 * and in the gcore(1) command. Synchronization is
221 * needed between the kernel and gcore(1).
222 */

224 /*

new/usr/src/uts/common/exec/elf/elf_notes.c 2

225 * Get the psinfo, and set the wait status to indicate that a core was
226 * dumped. We have to forge this since p->p_wcode is not set yet.
227 */
228 mutex_enter(&p->p_lock);
229 prgetpsinfo(p, &bigwad->psinfo);
230 mutex_exit(&p->p_lock);
231 bigwad->psinfo.pr_wstat = wstat(CLD_DUMPED, sig);

233 error = elfnote(vp, &offset, NT_PSINFO, sizeof (bigwad->psinfo),
234 (caddr_t)&bigwad->psinfo, rlimit, credp);
235 if (error)
236 goto done;

238 /*
239 * Modify t_whystop and lwp_cursig so it appears that the current LWP
240 * is stopped after faulting on the signal that caused the core dump.
241 * As a result, prgetstatus() will record that signal, the saved
242 * lwp_siginfo, and its signal handler in the core file status. We
243 * restore lwp_cursig in case a subsequent signal was received while
244 * dumping core.
245 */
246 mutex_enter(&p->p_lock);
247 lwp = ttolwp(curthread);

249 oldsig = lwp->lwp_cursig;
250 lwp->lwp_cursig = (uchar_t)sig;
251 curthread->t_whystop = PR_FAULTED;

253 prgetstatus(p, &bigwad->pstatus, p->p_zone);
254 bigwad->pstatus.pr_lwp.pr_why = 0;

256 curthread->t_whystop = 0;
257 lwp->lwp_cursig = oldsig;
258 mutex_exit(&p->p_lock);

260 error = elfnote(vp, &offset, NT_PSTATUS, sizeof (bigwad->pstatus),
261 (caddr_t)&bigwad->pstatus, rlimit, credp);
262 if (error)
263 goto done;

265 error = elfnote(vp, &offset, NT_PLATFORM, strlen(platform) + 1,
266 platform, rlimit, credp);
267 if (error)
268 goto done;

270 up = PTOU(p);
271 for (i = 0; i < __KERN_NAUXV_IMPL; i++) {
272 bigwad->auxv[i].a_type = up->u_auxv[i].a_type;
273 bigwad->auxv[i].a_un.a_val = up->u_auxv[i].a_un.a_val;
274 }
275 error = elfnote(vp, &offset, NT_AUXV, sizeof (bigwad->auxv),
276 (caddr_t)bigwad->auxv, rlimit, credp);
277 if (error)
278 goto done;

280 bcopy(&utsname, &bigwad->uts, sizeof (struct utsname));
281 if (!INGLOBALZONE(p)) {
282 bcopy(p->p_zone->zone_nodename, &bigwad->uts.nodename,
283 _SYS_NMLN);
284 }
285 error = elfnote(vp, &offset, NT_UTSNAME, sizeof (struct utsname),
286 (caddr_t)&bigwad->uts, rlimit, credp);
287 if (error)
288 goto done;

290 prgetcred(p, &bigwad->pcred);

new/usr/src/uts/common/exec/elf/elf_notes.c 3

292 if (bigwad->pcred.pr_ngroups != 0) {
293 crsize = sizeof (prcred_t) +
294 sizeof (gid_t) * (bigwad->pcred.pr_ngroups - 1);
295 } else
296 crsize = sizeof (prcred_t);

298 error = elfnote(vp, &offset, NT_PRCRED, crsize,
299 (caddr_t)&bigwad->pcred, rlimit, credp);
300 if (error)
301 goto done;

303 error = elfnote(vp, &offset, NT_CONTENT, sizeof (core_content_t),
304 (caddr_t)&content, rlimit, credp);
305 if (error)
306 goto done;

308 prgetpriv(p, &bigwad->ppriv);

310 error = elfnote(vp, &offset, NT_PRPRIV, psize,
311 (caddr_t)&bigwad->ppriv, rlimit, credp);
312 if (error)
313 goto done;

315 prii = priv_hold_implinfo();
316 error = elfnote(vp, &offset, NT_PRPRIVINFO, priv_get_implinfo_size(),
317 (caddr_t)prii, rlimit, credp);
318 priv_release_implinfo();
319 if (error)
320 goto done;

322 /* zone can’t go away as long as process exists */
323 error = elfnote(vp, &offset, NT_ZONENAME,
324 strlen(p->p_zone->zone_name) + 1, p->p_zone->zone_name,
325 rlimit, credp);
326 if (error)
327 goto done;

330 /* open file table */
331 vroot = PTOU(p)->u_rdir;
332 if (vroot == NULL)
333 vroot = rootdir;

335 VN_HOLD(vroot);

337 fip = P_FINFO(p);

339 for (fd = 0; fd < fip->fi_nfiles; fd++) {
340 uf_entry_t *ufp;
341 vnode_t *fvp;
342 struct file *fp;
343 vattr_t vattr;
344 prfdinfo_t fdinfo;

346 bzero(&fdinfo, sizeof (fdinfo));

348 mutex_enter(&fip->fi_lock);
349 UF_ENTER(ufp, fip, fd);
350 if (((fp = ufp->uf_file) == NULL) || (fp->f_count < 1)) {
351 UF_EXIT(ufp);
352 mutex_exit(&fip->fi_lock);
353 continue;
354 }

356 fdinfo.pr_fd = fd;

new/usr/src/uts/common/exec/elf/elf_notes.c 4

357 fdinfo.pr_fdflags = ufp->uf_flag;
358 fdinfo.pr_fileflags = fp->f_flag2;
359 fdinfo.pr_fileflags <<= 16;
360 fdinfo.pr_fileflags |= fp->f_flag;
361 if ((fdinfo.pr_fileflags & (FSEARCH | FEXEC)) == 0)
362 fdinfo.pr_fileflags += FOPEN;
363 fdinfo.pr_offset = fp->f_offset;

366 fvp = fp->f_vnode;
367 VN_HOLD(fvp);
368 UF_EXIT(ufp);
369 mutex_exit(&fip->fi_lock);

371 /*
372 * There are some vnodes that have no corresponding
373 * path. Its reasonable for this to fail, in which
374 * case the path will remain an empty string.
375 */
376 (void) vnodetopath(vroot, fvp, fdinfo.pr_path,
377 sizeof (fdinfo.pr_path), credp);

379 if (VOP_GETATTR(fvp, &vattr, 0, credp, NULL) != 0) {
380 /*
381 * Try to write at least a subset of information
382 */
383 fdinfo.pr_major = 0;
384 fdinfo.pr_minor = 0;
385 fdinfo.pr_ino = 0;
386 fdinfo.pr_mode = 0;
387 fdinfo.pr_uid = (uid_t)-1;
388 fdinfo.pr_gid = (gid_t)-1;
389 fdinfo.pr_rmajor = 0;
390 fdinfo.pr_rminor = 0;
391 fdinfo.pr_size = -1;

393 error = elfnote(vp, &offset, NT_FDINFO,
394 sizeof (fdinfo), &fdinfo, rlimit, credp);
395 VN_RELE(fvp);
396 if (error) {
397 #endif /* ! codereview */
398 VN_RELE(vroot);
396 if (error)
399 goto done;
400 }
401 #endif /* ! codereview */
402 continue;
403 }

405 if (fvp->v_type == VSOCK)
406 fdinfo.pr_fileflags |= sock_getfasync(fvp);

408 VN_RELE(fvp);

410 /*
411 * This logic mirrors fstat(), which we cannot use
412 * directly, as it calls copyout().
413 */
414 fdinfo.pr_major = getmajor(vattr.va_fsid);
415 fdinfo.pr_minor = getminor(vattr.va_fsid);
416 fdinfo.pr_ino = (ino64_t)vattr.va_nodeid;
417 fdinfo.pr_mode = VTTOIF(vattr.va_type) | vattr.va_mode;
418 fdinfo.pr_uid = vattr.va_uid;
419 fdinfo.pr_gid = vattr.va_gid;
420 fdinfo.pr_rmajor = getmajor(vattr.va_rdev);
421 fdinfo.pr_rminor = getminor(vattr.va_rdev);

new/usr/src/uts/common/exec/elf/elf_notes.c 5

422 fdinfo.pr_size = (off64_t)vattr.va_size;

424 error = elfnote(vp, &offset, NT_FDINFO,
425 sizeof (fdinfo), &fdinfo, rlimit, credp);
426 if (error) {
427 VN_RELE(vroot);
428 goto done;
429 }
430 }

432 VN_RELE(vroot);

434 #if defined(__i386) || defined(__i386_COMPAT)
435 mutex_enter(&p->p_ldtlock);
436 ssdsize = prnldt(p) * sizeof (struct ssd);
437 if (ssdsize != 0) {
438 ssd = kmem_alloc(ssdsize, KM_SLEEP);
439 prgetldt(p, ssd);
440 error = elfnote(vp, &offset, NT_LDT, ssdsize,
441 (caddr_t)ssd, rlimit, credp);
442 kmem_free(ssd, ssdsize);
443 }
444 mutex_exit(&p->p_ldtlock);
445 if (error)
446 goto done;
447 #endif /* __i386 || defined(__i386_COMPAT) */

449 nlwp = p->p_lwpcnt;
450 nzomb = p->p_zombcnt;
451 /* for each entry in the lwp directory ... */
452 for (ldp = p->p_lwpdir; nlwp + nzomb != 0; ldp++) {

454 if ((lep = ldp->ld_entry) == NULL) /* empty slot */
455 continue;

457 if ((t = lep->le_thread) != NULL) { /* active lwp */
458 ASSERT(nlwp != 0);
459 nlwp--;
460 lwp = ttolwp(t);
461 mutex_enter(&p->p_lock);
462 prgetlwpsinfo(t, &bigwad->lwpsinfo);
463 mutex_exit(&p->p_lock);
464 } else { /* zombie lwp */
465 ASSERT(nzomb != 0);
466 nzomb--;
467 bzero(&bigwad->lwpsinfo, sizeof (bigwad->lwpsinfo));
468 bigwad->lwpsinfo.pr_lwpid = lep->le_lwpid;
469 bigwad->lwpsinfo.pr_state = SZOMB;
470 bigwad->lwpsinfo.pr_sname = ’Z’;
471 bigwad->lwpsinfo.pr_start.tv_sec = lep->le_start;
472 }
473 error = elfnote(vp, &offset, NT_LWPSINFO,
474 sizeof (bigwad->lwpsinfo), (caddr_t)&bigwad->lwpsinfo,
475 rlimit, credp);
476 if (error)
477 goto done;
478 if (t == NULL) /* nothing more to do for a zombie */
479 continue;

481 mutex_enter(&p->p_lock);
482 if (t == curthread) {
483 /*
484 * Modify t_whystop and lwp_cursig so it appears that
485 * the current LWP is stopped after faulting on the
486 * signal that caused the core dump. As a result,
487 * prgetlwpstatus() will record that signal, the saved

new/usr/src/uts/common/exec/elf/elf_notes.c 6

488 * lwp_siginfo, and its signal handler in the core file
489 * status. We restore lwp_cursig in case a subsequent
490 * signal was received while dumping core.
491 */
492 oldsig = lwp->lwp_cursig;
493 lwp->lwp_cursig = (uchar_t)sig;
494 t->t_whystop = PR_FAULTED;

496 prgetlwpstatus(t, &bigwad->lwpstatus, p->p_zone);
497 bigwad->lwpstatus.pr_why = 0;

499 t->t_whystop = 0;
500 lwp->lwp_cursig = oldsig;
501 } else {
502 prgetlwpstatus(t, &bigwad->lwpstatus, p->p_zone);
503 }
504 mutex_exit(&p->p_lock);
505 error = elfnote(vp, &offset, NT_LWPSTATUS,
506 sizeof (bigwad->lwpstatus), (caddr_t)&bigwad->lwpstatus,
507 rlimit, credp);
508 if (error)
509 goto done;

511 #if defined(__sparc)
512 /*
513 * Unspilled SPARC register windows.
514 */
515 {
516 size_t size = prnwindows(lwp);

518 if (size != 0) {
519 size = sizeof (gwindows_t) -
520 (SPARC_MAXREGWINDOW - size) *
521 sizeof (struct rwindow);
522 prgetwindows(lwp, &bigwad->gwindows);
523 error = elfnote(vp, &offset, NT_GWINDOWS,
524 size, (caddr_t)&bigwad->gwindows,
525 rlimit, credp);
526 if (error)
527 goto done;
528 }
529 }
530 /*
531 * Ancillary State Registers.
532 */
533 if (p->p_model == DATAMODEL_LP64) {
534 prgetasregs(lwp, bigwad->asrset);
535 error = elfnote(vp, &offset, NT_ASRS,
536 sizeof (asrset_t), (caddr_t)bigwad->asrset,
537 rlimit, credp);
538 if (error)
539 goto done;
540 }
541 #endif /* __sparc */

543 if (xregsize) {
544 prgetprxregs(lwp, bigwad->xregs);
545 error = elfnote(vp, &offset, NT_PRXREG,
546 xregsize, bigwad->xregs, rlimit, credp);
547 if (error)
548 goto done;
549 }

551 if (t->t_lwp->lwp_spymaster != NULL) {
552 void *psaddr = t->t_lwp->lwp_spymaster;
553 #ifdef _ELF32_COMPAT

new/usr/src/uts/common/exec/elf/elf_notes.c 7

554 /*
555 * On a 64-bit kernel with 32-bit ELF compatibility,
556 * this file is compiled into two different objects:
557 * one is compiled normally, and the other is compiled
558 * with _ELF32_COMPAT set -- and therefore with a
559 * psinfo_t defined to be a psinfo32_t. However, the
560 * psinfo_t denoting our spymaster is always of the
561 * native type; if we are in the _ELF32_COMPAT case,
562 * we need to explicitly convert it.
563 */
564 if (p->p_model == DATAMODEL_ILP32) {
565 psinfo_kto32(psaddr, &bigwad->psinfo);
566 psaddr = &bigwad->psinfo;
567 }
568 #endif

570 error = elfnote(vp, &offset, NT_SPYMASTER,
571 sizeof (psinfo_t), psaddr, rlimit, credp);
572 if (error)
573 goto done;
574 }
575 }
576 ASSERT(nlwp == 0);

578 done:
579 kmem_free(bigwad, bigsize);
580 return (error);
581 }

