Print this page
6940 Cannot unlink directories when over quota
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/zfs_vnops.c
+++ new/usr/src/uts/common/fs/zfs/zfs_vnops.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
25 25 * Copyright (c) 2014 Integros [integros.com]
26 26 * Copyright 2015 Joyent, Inc.
27 27 */
28 28
29 29 /* Portions Copyright 2007 Jeremy Teo */
30 30 /* Portions Copyright 2010 Robert Milkowski */
31 31
32 32 #include <sys/types.h>
33 33 #include <sys/param.h>
34 34 #include <sys/time.h>
35 35 #include <sys/systm.h>
36 36 #include <sys/sysmacros.h>
37 37 #include <sys/resource.h>
38 38 #include <sys/vfs.h>
39 39 #include <sys/vfs_opreg.h>
40 40 #include <sys/vnode.h>
41 41 #include <sys/file.h>
42 42 #include <sys/stat.h>
43 43 #include <sys/kmem.h>
44 44 #include <sys/taskq.h>
45 45 #include <sys/uio.h>
46 46 #include <sys/vmsystm.h>
47 47 #include <sys/atomic.h>
48 48 #include <sys/vm.h>
49 49 #include <vm/seg_vn.h>
50 50 #include <vm/pvn.h>
51 51 #include <vm/as.h>
52 52 #include <vm/kpm.h>
53 53 #include <vm/seg_kpm.h>
54 54 #include <sys/mman.h>
55 55 #include <sys/pathname.h>
56 56 #include <sys/cmn_err.h>
57 57 #include <sys/errno.h>
58 58 #include <sys/unistd.h>
59 59 #include <sys/zfs_dir.h>
60 60 #include <sys/zfs_acl.h>
61 61 #include <sys/zfs_ioctl.h>
62 62 #include <sys/fs/zfs.h>
63 63 #include <sys/dmu.h>
64 64 #include <sys/dmu_objset.h>
65 65 #include <sys/spa.h>
66 66 #include <sys/txg.h>
67 67 #include <sys/dbuf.h>
68 68 #include <sys/zap.h>
69 69 #include <sys/sa.h>
70 70 #include <sys/dirent.h>
71 71 #include <sys/policy.h>
72 72 #include <sys/sunddi.h>
73 73 #include <sys/filio.h>
74 74 #include <sys/sid.h>
75 75 #include "fs/fs_subr.h"
76 76 #include <sys/zfs_ctldir.h>
77 77 #include <sys/zfs_fuid.h>
78 78 #include <sys/zfs_sa.h>
79 79 #include <sys/dnlc.h>
80 80 #include <sys/zfs_rlock.h>
81 81 #include <sys/extdirent.h>
82 82 #include <sys/kidmap.h>
83 83 #include <sys/cred.h>
84 84 #include <sys/attr.h>
85 85
86 86 /*
87 87 * Programming rules.
88 88 *
89 89 * Each vnode op performs some logical unit of work. To do this, the ZPL must
90 90 * properly lock its in-core state, create a DMU transaction, do the work,
91 91 * record this work in the intent log (ZIL), commit the DMU transaction,
92 92 * and wait for the intent log to commit if it is a synchronous operation.
93 93 * Moreover, the vnode ops must work in both normal and log replay context.
94 94 * The ordering of events is important to avoid deadlocks and references
95 95 * to freed memory. The example below illustrates the following Big Rules:
96 96 *
97 97 * (1) A check must be made in each zfs thread for a mounted file system.
98 98 * This is done avoiding races using ZFS_ENTER(zfsvfs).
99 99 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
100 100 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
101 101 * can return EIO from the calling function.
102 102 *
103 103 * (2) VN_RELE() should always be the last thing except for zil_commit()
104 104 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
105 105 * First, if it's the last reference, the vnode/znode
106 106 * can be freed, so the zp may point to freed memory. Second, the last
107 107 * reference will call zfs_zinactive(), which may induce a lot of work --
108 108 * pushing cached pages (which acquires range locks) and syncing out
109 109 * cached atime changes. Third, zfs_zinactive() may require a new tx,
110 110 * which could deadlock the system if you were already holding one.
111 111 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
112 112 *
113 113 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
114 114 * as they can span dmu_tx_assign() calls.
115 115 *
116 116 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
117 117 * dmu_tx_assign(). This is critical because we don't want to block
118 118 * while holding locks.
119 119 *
120 120 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
121 121 * reduces lock contention and CPU usage when we must wait (note that if
122 122 * throughput is constrained by the storage, nearly every transaction
123 123 * must wait).
124 124 *
125 125 * Note, in particular, that if a lock is sometimes acquired before
126 126 * the tx assigns, and sometimes after (e.g. z_lock), then failing
127 127 * to use a non-blocking assign can deadlock the system. The scenario:
128 128 *
129 129 * Thread A has grabbed a lock before calling dmu_tx_assign().
130 130 * Thread B is in an already-assigned tx, and blocks for this lock.
131 131 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
132 132 * forever, because the previous txg can't quiesce until B's tx commits.
133 133 *
134 134 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
135 135 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
136 136 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
137 137 * to indicate that this operation has already called dmu_tx_wait().
138 138 * This will ensure that we don't retry forever, waiting a short bit
139 139 * each time.
140 140 *
141 141 * (5) If the operation succeeded, generate the intent log entry for it
142 142 * before dropping locks. This ensures that the ordering of events
143 143 * in the intent log matches the order in which they actually occurred.
144 144 * During ZIL replay the zfs_log_* functions will update the sequence
145 145 * number to indicate the zil transaction has replayed.
146 146 *
147 147 * (6) At the end of each vnode op, the DMU tx must always commit,
148 148 * regardless of whether there were any errors.
149 149 *
150 150 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
151 151 * to ensure that synchronous semantics are provided when necessary.
152 152 *
153 153 * In general, this is how things should be ordered in each vnode op:
154 154 *
155 155 * ZFS_ENTER(zfsvfs); // exit if unmounted
156 156 * top:
157 157 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
158 158 * rw_enter(...); // grab any other locks you need
159 159 * tx = dmu_tx_create(...); // get DMU tx
160 160 * dmu_tx_hold_*(); // hold each object you might modify
161 161 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
162 162 * if (error) {
163 163 * rw_exit(...); // drop locks
164 164 * zfs_dirent_unlock(dl); // unlock directory entry
165 165 * VN_RELE(...); // release held vnodes
166 166 * if (error == ERESTART) {
167 167 * waited = B_TRUE;
168 168 * dmu_tx_wait(tx);
169 169 * dmu_tx_abort(tx);
170 170 * goto top;
171 171 * }
172 172 * dmu_tx_abort(tx); // abort DMU tx
173 173 * ZFS_EXIT(zfsvfs); // finished in zfs
174 174 * return (error); // really out of space
175 175 * }
176 176 * error = do_real_work(); // do whatever this VOP does
177 177 * if (error == 0)
178 178 * zfs_log_*(...); // on success, make ZIL entry
179 179 * dmu_tx_commit(tx); // commit DMU tx -- error or not
180 180 * rw_exit(...); // drop locks
181 181 * zfs_dirent_unlock(dl); // unlock directory entry
182 182 * VN_RELE(...); // release held vnodes
183 183 * zil_commit(zilog, foid); // synchronous when necessary
184 184 * ZFS_EXIT(zfsvfs); // finished in zfs
185 185 * return (error); // done, report error
186 186 */
187 187
188 188 /* ARGSUSED */
189 189 static int
190 190 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
191 191 {
192 192 znode_t *zp = VTOZ(*vpp);
193 193 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
194 194
195 195 ZFS_ENTER(zfsvfs);
196 196 ZFS_VERIFY_ZP(zp);
197 197
198 198 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
199 199 ((flag & FAPPEND) == 0)) {
200 200 ZFS_EXIT(zfsvfs);
201 201 return (SET_ERROR(EPERM));
202 202 }
203 203
204 204 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
205 205 ZTOV(zp)->v_type == VREG &&
206 206 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
207 207 if (fs_vscan(*vpp, cr, 0) != 0) {
208 208 ZFS_EXIT(zfsvfs);
209 209 return (SET_ERROR(EACCES));
210 210 }
211 211 }
212 212
213 213 /* Keep a count of the synchronous opens in the znode */
214 214 if (flag & (FSYNC | FDSYNC))
215 215 atomic_inc_32(&zp->z_sync_cnt);
216 216
217 217 ZFS_EXIT(zfsvfs);
218 218 return (0);
219 219 }
220 220
221 221 /* ARGSUSED */
222 222 static int
223 223 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
224 224 caller_context_t *ct)
225 225 {
226 226 znode_t *zp = VTOZ(vp);
227 227 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
228 228
229 229 /*
230 230 * Clean up any locks held by this process on the vp.
231 231 */
232 232 cleanlocks(vp, ddi_get_pid(), 0);
233 233 cleanshares(vp, ddi_get_pid());
234 234
235 235 ZFS_ENTER(zfsvfs);
236 236 ZFS_VERIFY_ZP(zp);
237 237
238 238 /* Decrement the synchronous opens in the znode */
239 239 if ((flag & (FSYNC | FDSYNC)) && (count == 1))
240 240 atomic_dec_32(&zp->z_sync_cnt);
241 241
242 242 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
243 243 ZTOV(zp)->v_type == VREG &&
244 244 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
245 245 VERIFY(fs_vscan(vp, cr, 1) == 0);
246 246
247 247 ZFS_EXIT(zfsvfs);
248 248 return (0);
249 249 }
250 250
251 251 /*
252 252 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
253 253 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
254 254 */
255 255 static int
256 256 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
257 257 {
258 258 znode_t *zp = VTOZ(vp);
259 259 uint64_t noff = (uint64_t)*off; /* new offset */
260 260 uint64_t file_sz;
261 261 int error;
262 262 boolean_t hole;
263 263
264 264 file_sz = zp->z_size;
265 265 if (noff >= file_sz) {
266 266 return (SET_ERROR(ENXIO));
267 267 }
268 268
269 269 if (cmd == _FIO_SEEK_HOLE)
270 270 hole = B_TRUE;
271 271 else
272 272 hole = B_FALSE;
273 273
274 274 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
275 275
276 276 if (error == ESRCH)
277 277 return (SET_ERROR(ENXIO));
278 278
279 279 /*
280 280 * We could find a hole that begins after the logical end-of-file,
281 281 * because dmu_offset_next() only works on whole blocks. If the
282 282 * EOF falls mid-block, then indicate that the "virtual hole"
283 283 * at the end of the file begins at the logical EOF, rather than
284 284 * at the end of the last block.
285 285 */
286 286 if (noff > file_sz) {
287 287 ASSERT(hole);
288 288 noff = file_sz;
289 289 }
290 290
291 291 if (noff < *off)
292 292 return (error);
293 293 *off = noff;
294 294 return (error);
295 295 }
296 296
297 297 /* ARGSUSED */
298 298 static int
299 299 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
300 300 int *rvalp, caller_context_t *ct)
301 301 {
302 302 offset_t off;
303 303 offset_t ndata;
304 304 dmu_object_info_t doi;
305 305 int error;
306 306 zfsvfs_t *zfsvfs;
307 307 znode_t *zp;
308 308
309 309 switch (com) {
310 310 case _FIOFFS:
311 311 {
312 312 return (zfs_sync(vp->v_vfsp, 0, cred));
313 313
314 314 /*
315 315 * The following two ioctls are used by bfu. Faking out,
316 316 * necessary to avoid bfu errors.
317 317 */
318 318 }
319 319 case _FIOGDIO:
320 320 case _FIOSDIO:
321 321 {
322 322 return (0);
323 323 }
324 324
325 325 case _FIO_SEEK_DATA:
326 326 case _FIO_SEEK_HOLE:
327 327 {
328 328 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
329 329 return (SET_ERROR(EFAULT));
330 330
331 331 zp = VTOZ(vp);
332 332 zfsvfs = zp->z_zfsvfs;
333 333 ZFS_ENTER(zfsvfs);
334 334 ZFS_VERIFY_ZP(zp);
335 335
336 336 /* offset parameter is in/out */
337 337 error = zfs_holey(vp, com, &off);
338 338 ZFS_EXIT(zfsvfs);
339 339 if (error)
340 340 return (error);
341 341 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
342 342 return (SET_ERROR(EFAULT));
343 343 return (0);
344 344 }
345 345 case _FIO_COUNT_FILLED:
346 346 {
347 347 /*
348 348 * _FIO_COUNT_FILLED adds a new ioctl command which
349 349 * exposes the number of filled blocks in a
350 350 * ZFS object.
351 351 */
352 352 zp = VTOZ(vp);
353 353 zfsvfs = zp->z_zfsvfs;
354 354 ZFS_ENTER(zfsvfs);
355 355 ZFS_VERIFY_ZP(zp);
356 356
357 357 /*
358 358 * Wait for all dirty blocks for this object
359 359 * to get synced out to disk, and the DMU info
360 360 * updated.
361 361 */
362 362 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
363 363 if (error) {
364 364 ZFS_EXIT(zfsvfs);
365 365 return (error);
366 366 }
367 367
368 368 /*
369 369 * Retrieve fill count from DMU object.
370 370 */
371 371 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
372 372 if (error) {
373 373 ZFS_EXIT(zfsvfs);
374 374 return (error);
375 375 }
376 376
377 377 ndata = doi.doi_fill_count;
378 378
379 379 ZFS_EXIT(zfsvfs);
380 380 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
381 381 return (SET_ERROR(EFAULT));
382 382 return (0);
383 383 }
384 384 }
385 385 return (SET_ERROR(ENOTTY));
386 386 }
387 387
388 388 /*
389 389 * Utility functions to map and unmap a single physical page. These
390 390 * are used to manage the mappable copies of ZFS file data, and therefore
391 391 * do not update ref/mod bits.
392 392 */
393 393 caddr_t
394 394 zfs_map_page(page_t *pp, enum seg_rw rw)
395 395 {
396 396 if (kpm_enable)
397 397 return (hat_kpm_mapin(pp, 0));
398 398 ASSERT(rw == S_READ || rw == S_WRITE);
399 399 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
400 400 (caddr_t)-1));
401 401 }
402 402
403 403 void
404 404 zfs_unmap_page(page_t *pp, caddr_t addr)
405 405 {
406 406 if (kpm_enable) {
407 407 hat_kpm_mapout(pp, 0, addr);
408 408 } else {
409 409 ppmapout(addr);
410 410 }
411 411 }
412 412
413 413 /*
414 414 * When a file is memory mapped, we must keep the IO data synchronized
415 415 * between the DMU cache and the memory mapped pages. What this means:
416 416 *
417 417 * On Write: If we find a memory mapped page, we write to *both*
418 418 * the page and the dmu buffer.
419 419 */
420 420 static void
421 421 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
422 422 {
423 423 int64_t off;
424 424
425 425 off = start & PAGEOFFSET;
426 426 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
427 427 page_t *pp;
428 428 uint64_t nbytes = MIN(PAGESIZE - off, len);
429 429
430 430 if (pp = page_lookup(vp, start, SE_SHARED)) {
431 431 caddr_t va;
432 432
433 433 va = zfs_map_page(pp, S_WRITE);
434 434 (void) dmu_read(os, oid, start+off, nbytes, va+off,
435 435 DMU_READ_PREFETCH);
436 436 zfs_unmap_page(pp, va);
437 437 page_unlock(pp);
438 438 }
439 439 len -= nbytes;
440 440 off = 0;
441 441 }
442 442 }
443 443
444 444 /*
445 445 * When a file is memory mapped, we must keep the IO data synchronized
446 446 * between the DMU cache and the memory mapped pages. What this means:
447 447 *
448 448 * On Read: We "read" preferentially from memory mapped pages,
449 449 * else we default from the dmu buffer.
450 450 *
451 451 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
452 452 * the file is memory mapped.
453 453 */
454 454 static int
455 455 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
456 456 {
457 457 znode_t *zp = VTOZ(vp);
458 458 int64_t start, off;
459 459 int len = nbytes;
460 460 int error = 0;
461 461
462 462 start = uio->uio_loffset;
463 463 off = start & PAGEOFFSET;
464 464 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
465 465 page_t *pp;
466 466 uint64_t bytes = MIN(PAGESIZE - off, len);
467 467
468 468 if (pp = page_lookup(vp, start, SE_SHARED)) {
469 469 caddr_t va;
470 470
471 471 va = zfs_map_page(pp, S_READ);
472 472 error = uiomove(va + off, bytes, UIO_READ, uio);
473 473 zfs_unmap_page(pp, va);
474 474 page_unlock(pp);
475 475 } else {
476 476 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
477 477 uio, bytes);
478 478 }
479 479 len -= bytes;
480 480 off = 0;
481 481 if (error)
482 482 break;
483 483 }
484 484 return (error);
485 485 }
486 486
487 487 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
488 488
489 489 /*
490 490 * Read bytes from specified file into supplied buffer.
491 491 *
492 492 * IN: vp - vnode of file to be read from.
493 493 * uio - structure supplying read location, range info,
494 494 * and return buffer.
495 495 * ioflag - SYNC flags; used to provide FRSYNC semantics.
496 496 * cr - credentials of caller.
497 497 * ct - caller context
498 498 *
499 499 * OUT: uio - updated offset and range, buffer filled.
500 500 *
501 501 * RETURN: 0 on success, error code on failure.
502 502 *
503 503 * Side Effects:
504 504 * vp - atime updated if byte count > 0
505 505 */
506 506 /* ARGSUSED */
507 507 static int
508 508 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
509 509 {
510 510 znode_t *zp = VTOZ(vp);
511 511 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
512 512 ssize_t n, nbytes;
513 513 int error = 0;
514 514 rl_t *rl;
515 515 xuio_t *xuio = NULL;
516 516
517 517 ZFS_ENTER(zfsvfs);
518 518 ZFS_VERIFY_ZP(zp);
519 519
520 520 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
521 521 ZFS_EXIT(zfsvfs);
522 522 return (SET_ERROR(EACCES));
523 523 }
524 524
525 525 /*
526 526 * Validate file offset
527 527 */
528 528 if (uio->uio_loffset < (offset_t)0) {
529 529 ZFS_EXIT(zfsvfs);
530 530 return (SET_ERROR(EINVAL));
531 531 }
532 532
533 533 /*
534 534 * Fasttrack empty reads
535 535 */
536 536 if (uio->uio_resid == 0) {
537 537 ZFS_EXIT(zfsvfs);
538 538 return (0);
539 539 }
540 540
541 541 /*
542 542 * Check for mandatory locks
543 543 */
544 544 if (MANDMODE(zp->z_mode)) {
545 545 if (error = chklock(vp, FREAD,
546 546 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
547 547 ZFS_EXIT(zfsvfs);
548 548 return (error);
549 549 }
550 550 }
551 551
552 552 /*
553 553 * If we're in FRSYNC mode, sync out this znode before reading it.
554 554 */
555 555 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
556 556 zil_commit(zfsvfs->z_log, zp->z_id);
557 557
558 558 /*
559 559 * Lock the range against changes.
560 560 */
561 561 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
562 562
563 563 /*
564 564 * If we are reading past end-of-file we can skip
565 565 * to the end; but we might still need to set atime.
566 566 */
567 567 if (uio->uio_loffset >= zp->z_size) {
568 568 error = 0;
569 569 goto out;
570 570 }
571 571
572 572 ASSERT(uio->uio_loffset < zp->z_size);
573 573 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
574 574
575 575 if ((uio->uio_extflg == UIO_XUIO) &&
576 576 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
577 577 int nblk;
578 578 int blksz = zp->z_blksz;
579 579 uint64_t offset = uio->uio_loffset;
580 580
581 581 xuio = (xuio_t *)uio;
582 582 if ((ISP2(blksz))) {
583 583 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
584 584 blksz)) / blksz;
585 585 } else {
586 586 ASSERT(offset + n <= blksz);
587 587 nblk = 1;
588 588 }
589 589 (void) dmu_xuio_init(xuio, nblk);
590 590
591 591 if (vn_has_cached_data(vp)) {
592 592 /*
593 593 * For simplicity, we always allocate a full buffer
594 594 * even if we only expect to read a portion of a block.
595 595 */
596 596 while (--nblk >= 0) {
597 597 (void) dmu_xuio_add(xuio,
598 598 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
599 599 blksz), 0, blksz);
600 600 }
601 601 }
602 602 }
603 603
604 604 while (n > 0) {
605 605 nbytes = MIN(n, zfs_read_chunk_size -
606 606 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
607 607
608 608 if (vn_has_cached_data(vp)) {
609 609 error = mappedread(vp, nbytes, uio);
610 610 } else {
611 611 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
612 612 uio, nbytes);
613 613 }
614 614 if (error) {
615 615 /* convert checksum errors into IO errors */
616 616 if (error == ECKSUM)
617 617 error = SET_ERROR(EIO);
618 618 break;
619 619 }
620 620
621 621 n -= nbytes;
622 622 }
623 623 out:
624 624 zfs_range_unlock(rl);
625 625
626 626 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
627 627 ZFS_EXIT(zfsvfs);
628 628 return (error);
629 629 }
630 630
631 631 /*
632 632 * Write the bytes to a file.
633 633 *
634 634 * IN: vp - vnode of file to be written to.
635 635 * uio - structure supplying write location, range info,
636 636 * and data buffer.
637 637 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is
638 638 * set if in append mode.
639 639 * cr - credentials of caller.
640 640 * ct - caller context (NFS/CIFS fem monitor only)
641 641 *
642 642 * OUT: uio - updated offset and range.
643 643 *
644 644 * RETURN: 0 on success, error code on failure.
645 645 *
646 646 * Timestamps:
647 647 * vp - ctime|mtime updated if byte count > 0
648 648 */
649 649
650 650 /* ARGSUSED */
651 651 static int
652 652 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
653 653 {
654 654 znode_t *zp = VTOZ(vp);
655 655 rlim64_t limit = uio->uio_llimit;
656 656 ssize_t start_resid = uio->uio_resid;
657 657 ssize_t tx_bytes;
658 658 uint64_t end_size;
659 659 dmu_tx_t *tx;
660 660 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
661 661 zilog_t *zilog;
662 662 offset_t woff;
663 663 ssize_t n, nbytes;
664 664 rl_t *rl;
665 665 int max_blksz = zfsvfs->z_max_blksz;
666 666 int error = 0;
667 667 arc_buf_t *abuf;
668 668 iovec_t *aiov = NULL;
669 669 xuio_t *xuio = NULL;
670 670 int i_iov = 0;
671 671 int iovcnt = uio->uio_iovcnt;
672 672 iovec_t *iovp = uio->uio_iov;
673 673 int write_eof;
674 674 int count = 0;
675 675 sa_bulk_attr_t bulk[4];
676 676 uint64_t mtime[2], ctime[2];
677 677
678 678 /*
679 679 * Fasttrack empty write
680 680 */
681 681 n = start_resid;
682 682 if (n == 0)
683 683 return (0);
684 684
685 685 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
686 686 limit = MAXOFFSET_T;
687 687
688 688 ZFS_ENTER(zfsvfs);
689 689 ZFS_VERIFY_ZP(zp);
690 690
691 691 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
692 692 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
693 693 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
694 694 &zp->z_size, 8);
695 695 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
696 696 &zp->z_pflags, 8);
697 697
698 698 /*
699 699 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
700 700 * callers might not be able to detect properly that we are read-only,
701 701 * so check it explicitly here.
702 702 */
703 703 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
704 704 ZFS_EXIT(zfsvfs);
705 705 return (SET_ERROR(EROFS));
706 706 }
707 707
708 708 /*
709 709 * If immutable or not appending then return EPERM
710 710 */
711 711 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
712 712 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
713 713 (uio->uio_loffset < zp->z_size))) {
714 714 ZFS_EXIT(zfsvfs);
715 715 return (SET_ERROR(EPERM));
716 716 }
717 717
718 718 zilog = zfsvfs->z_log;
719 719
720 720 /*
721 721 * Validate file offset
722 722 */
723 723 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
724 724 if (woff < 0) {
725 725 ZFS_EXIT(zfsvfs);
726 726 return (SET_ERROR(EINVAL));
727 727 }
728 728
729 729 /*
730 730 * Check for mandatory locks before calling zfs_range_lock()
731 731 * in order to prevent a deadlock with locks set via fcntl().
732 732 */
733 733 if (MANDMODE((mode_t)zp->z_mode) &&
734 734 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
735 735 ZFS_EXIT(zfsvfs);
736 736 return (error);
737 737 }
738 738
739 739 /*
740 740 * Pre-fault the pages to ensure slow (eg NFS) pages
741 741 * don't hold up txg.
742 742 * Skip this if uio contains loaned arc_buf.
743 743 */
744 744 if ((uio->uio_extflg == UIO_XUIO) &&
745 745 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
746 746 xuio = (xuio_t *)uio;
747 747 else
748 748 uio_prefaultpages(MIN(n, max_blksz), uio);
749 749
750 750 /*
751 751 * If in append mode, set the io offset pointer to eof.
752 752 */
753 753 if (ioflag & FAPPEND) {
754 754 /*
755 755 * Obtain an appending range lock to guarantee file append
756 756 * semantics. We reset the write offset once we have the lock.
757 757 */
758 758 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
759 759 woff = rl->r_off;
760 760 if (rl->r_len == UINT64_MAX) {
761 761 /*
762 762 * We overlocked the file because this write will cause
763 763 * the file block size to increase.
764 764 * Note that zp_size cannot change with this lock held.
765 765 */
766 766 woff = zp->z_size;
767 767 }
768 768 uio->uio_loffset = woff;
769 769 } else {
770 770 /*
771 771 * Note that if the file block size will change as a result of
772 772 * this write, then this range lock will lock the entire file
773 773 * so that we can re-write the block safely.
774 774 */
775 775 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
776 776 }
777 777
778 778 if (woff >= limit) {
779 779 zfs_range_unlock(rl);
780 780 ZFS_EXIT(zfsvfs);
781 781 return (SET_ERROR(EFBIG));
782 782 }
783 783
784 784 if ((woff + n) > limit || woff > (limit - n))
785 785 n = limit - woff;
786 786
787 787 /* Will this write extend the file length? */
788 788 write_eof = (woff + n > zp->z_size);
789 789
790 790 end_size = MAX(zp->z_size, woff + n);
791 791
792 792 /*
793 793 * Write the file in reasonable size chunks. Each chunk is written
794 794 * in a separate transaction; this keeps the intent log records small
795 795 * and allows us to do more fine-grained space accounting.
796 796 */
797 797 while (n > 0) {
798 798 abuf = NULL;
799 799 woff = uio->uio_loffset;
800 800 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
801 801 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
802 802 if (abuf != NULL)
803 803 dmu_return_arcbuf(abuf);
804 804 error = SET_ERROR(EDQUOT);
805 805 break;
806 806 }
807 807
808 808 if (xuio && abuf == NULL) {
809 809 ASSERT(i_iov < iovcnt);
810 810 aiov = &iovp[i_iov];
811 811 abuf = dmu_xuio_arcbuf(xuio, i_iov);
812 812 dmu_xuio_clear(xuio, i_iov);
813 813 DTRACE_PROBE3(zfs_cp_write, int, i_iov,
814 814 iovec_t *, aiov, arc_buf_t *, abuf);
815 815 ASSERT((aiov->iov_base == abuf->b_data) ||
816 816 ((char *)aiov->iov_base - (char *)abuf->b_data +
817 817 aiov->iov_len == arc_buf_size(abuf)));
818 818 i_iov++;
819 819 } else if (abuf == NULL && n >= max_blksz &&
820 820 woff >= zp->z_size &&
821 821 P2PHASE(woff, max_blksz) == 0 &&
822 822 zp->z_blksz == max_blksz) {
823 823 /*
824 824 * This write covers a full block. "Borrow" a buffer
825 825 * from the dmu so that we can fill it before we enter
826 826 * a transaction. This avoids the possibility of
827 827 * holding up the transaction if the data copy hangs
828 828 * up on a pagefault (e.g., from an NFS server mapping).
829 829 */
830 830 size_t cbytes;
831 831
832 832 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
833 833 max_blksz);
834 834 ASSERT(abuf != NULL);
835 835 ASSERT(arc_buf_size(abuf) == max_blksz);
836 836 if (error = uiocopy(abuf->b_data, max_blksz,
837 837 UIO_WRITE, uio, &cbytes)) {
838 838 dmu_return_arcbuf(abuf);
839 839 break;
840 840 }
841 841 ASSERT(cbytes == max_blksz);
842 842 }
843 843
844 844 /*
845 845 * Start a transaction.
846 846 */
847 847 tx = dmu_tx_create(zfsvfs->z_os);
848 848 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
849 849 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
850 850 zfs_sa_upgrade_txholds(tx, zp);
851 851 error = dmu_tx_assign(tx, TXG_WAIT);
852 852 if (error) {
853 853 dmu_tx_abort(tx);
854 854 if (abuf != NULL)
855 855 dmu_return_arcbuf(abuf);
856 856 break;
857 857 }
858 858
859 859 /*
860 860 * If zfs_range_lock() over-locked we grow the blocksize
861 861 * and then reduce the lock range. This will only happen
862 862 * on the first iteration since zfs_range_reduce() will
863 863 * shrink down r_len to the appropriate size.
864 864 */
865 865 if (rl->r_len == UINT64_MAX) {
866 866 uint64_t new_blksz;
867 867
868 868 if (zp->z_blksz > max_blksz) {
869 869 /*
870 870 * File's blocksize is already larger than the
871 871 * "recordsize" property. Only let it grow to
872 872 * the next power of 2.
873 873 */
874 874 ASSERT(!ISP2(zp->z_blksz));
875 875 new_blksz = MIN(end_size,
876 876 1 << highbit64(zp->z_blksz));
877 877 } else {
878 878 new_blksz = MIN(end_size, max_blksz);
879 879 }
880 880 zfs_grow_blocksize(zp, new_blksz, tx);
881 881 zfs_range_reduce(rl, woff, n);
882 882 }
883 883
884 884 /*
885 885 * XXX - should we really limit each write to z_max_blksz?
886 886 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
887 887 */
888 888 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
889 889
890 890 if (abuf == NULL) {
891 891 tx_bytes = uio->uio_resid;
892 892 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
893 893 uio, nbytes, tx);
894 894 tx_bytes -= uio->uio_resid;
895 895 } else {
896 896 tx_bytes = nbytes;
897 897 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
898 898 /*
899 899 * If this is not a full block write, but we are
900 900 * extending the file past EOF and this data starts
901 901 * block-aligned, use assign_arcbuf(). Otherwise,
902 902 * write via dmu_write().
903 903 */
904 904 if (tx_bytes < max_blksz && (!write_eof ||
905 905 aiov->iov_base != abuf->b_data)) {
906 906 ASSERT(xuio);
907 907 dmu_write(zfsvfs->z_os, zp->z_id, woff,
908 908 aiov->iov_len, aiov->iov_base, tx);
909 909 dmu_return_arcbuf(abuf);
910 910 xuio_stat_wbuf_copied();
911 911 } else {
912 912 ASSERT(xuio || tx_bytes == max_blksz);
913 913 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
914 914 woff, abuf, tx);
915 915 }
916 916 ASSERT(tx_bytes <= uio->uio_resid);
917 917 uioskip(uio, tx_bytes);
918 918 }
919 919 if (tx_bytes && vn_has_cached_data(vp)) {
920 920 update_pages(vp, woff,
921 921 tx_bytes, zfsvfs->z_os, zp->z_id);
922 922 }
923 923
924 924 /*
925 925 * If we made no progress, we're done. If we made even
926 926 * partial progress, update the znode and ZIL accordingly.
927 927 */
928 928 if (tx_bytes == 0) {
929 929 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
930 930 (void *)&zp->z_size, sizeof (uint64_t), tx);
931 931 dmu_tx_commit(tx);
932 932 ASSERT(error != 0);
933 933 break;
934 934 }
935 935
936 936 /*
937 937 * Clear Set-UID/Set-GID bits on successful write if not
938 938 * privileged and at least one of the excute bits is set.
939 939 *
940 940 * It would be nice to to this after all writes have
941 941 * been done, but that would still expose the ISUID/ISGID
942 942 * to another app after the partial write is committed.
943 943 *
944 944 * Note: we don't call zfs_fuid_map_id() here because
945 945 * user 0 is not an ephemeral uid.
946 946 */
947 947 mutex_enter(&zp->z_acl_lock);
948 948 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
949 949 (S_IXUSR >> 6))) != 0 &&
950 950 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
951 951 secpolicy_vnode_setid_retain(cr,
952 952 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
953 953 uint64_t newmode;
954 954 zp->z_mode &= ~(S_ISUID | S_ISGID);
955 955 newmode = zp->z_mode;
956 956 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
957 957 (void *)&newmode, sizeof (uint64_t), tx);
958 958 }
959 959 mutex_exit(&zp->z_acl_lock);
960 960
961 961 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
962 962 B_TRUE);
963 963
964 964 /*
965 965 * Update the file size (zp_size) if it has changed;
966 966 * account for possible concurrent updates.
967 967 */
968 968 while ((end_size = zp->z_size) < uio->uio_loffset) {
969 969 (void) atomic_cas_64(&zp->z_size, end_size,
970 970 uio->uio_loffset);
971 971 ASSERT(error == 0);
972 972 }
973 973 /*
974 974 * If we are replaying and eof is non zero then force
975 975 * the file size to the specified eof. Note, there's no
976 976 * concurrency during replay.
977 977 */
978 978 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
979 979 zp->z_size = zfsvfs->z_replay_eof;
980 980
981 981 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
982 982
983 983 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
984 984 dmu_tx_commit(tx);
985 985
986 986 if (error != 0)
987 987 break;
988 988 ASSERT(tx_bytes == nbytes);
989 989 n -= nbytes;
990 990
991 991 if (!xuio && n > 0)
992 992 uio_prefaultpages(MIN(n, max_blksz), uio);
993 993 }
994 994
995 995 zfs_range_unlock(rl);
996 996
997 997 /*
998 998 * If we're in replay mode, or we made no progress, return error.
999 999 * Otherwise, it's at least a partial write, so it's successful.
1000 1000 */
1001 1001 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1002 1002 ZFS_EXIT(zfsvfs);
1003 1003 return (error);
1004 1004 }
1005 1005
1006 1006 if (ioflag & (FSYNC | FDSYNC) ||
1007 1007 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1008 1008 zil_commit(zilog, zp->z_id);
1009 1009
1010 1010 ZFS_EXIT(zfsvfs);
1011 1011 return (0);
1012 1012 }
1013 1013
1014 1014 void
1015 1015 zfs_get_done(zgd_t *zgd, int error)
1016 1016 {
1017 1017 znode_t *zp = zgd->zgd_private;
1018 1018 objset_t *os = zp->z_zfsvfs->z_os;
1019 1019
1020 1020 if (zgd->zgd_db)
1021 1021 dmu_buf_rele(zgd->zgd_db, zgd);
1022 1022
1023 1023 zfs_range_unlock(zgd->zgd_rl);
1024 1024
1025 1025 /*
1026 1026 * Release the vnode asynchronously as we currently have the
1027 1027 * txg stopped from syncing.
1028 1028 */
1029 1029 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1030 1030
1031 1031 if (error == 0 && zgd->zgd_bp)
1032 1032 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1033 1033
1034 1034 kmem_free(zgd, sizeof (zgd_t));
1035 1035 }
1036 1036
1037 1037 #ifdef DEBUG
1038 1038 static int zil_fault_io = 0;
1039 1039 #endif
1040 1040
1041 1041 /*
1042 1042 * Get data to generate a TX_WRITE intent log record.
1043 1043 */
1044 1044 int
1045 1045 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1046 1046 {
1047 1047 zfsvfs_t *zfsvfs = arg;
1048 1048 objset_t *os = zfsvfs->z_os;
1049 1049 znode_t *zp;
1050 1050 uint64_t object = lr->lr_foid;
1051 1051 uint64_t offset = lr->lr_offset;
1052 1052 uint64_t size = lr->lr_length;
1053 1053 blkptr_t *bp = &lr->lr_blkptr;
1054 1054 dmu_buf_t *db;
1055 1055 zgd_t *zgd;
1056 1056 int error = 0;
1057 1057
1058 1058 ASSERT(zio != NULL);
1059 1059 ASSERT(size != 0);
1060 1060
1061 1061 /*
1062 1062 * Nothing to do if the file has been removed
1063 1063 */
1064 1064 if (zfs_zget(zfsvfs, object, &zp) != 0)
1065 1065 return (SET_ERROR(ENOENT));
1066 1066 if (zp->z_unlinked) {
1067 1067 /*
1068 1068 * Release the vnode asynchronously as we currently have the
1069 1069 * txg stopped from syncing.
1070 1070 */
1071 1071 VN_RELE_ASYNC(ZTOV(zp),
1072 1072 dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1073 1073 return (SET_ERROR(ENOENT));
1074 1074 }
1075 1075
1076 1076 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1077 1077 zgd->zgd_zilog = zfsvfs->z_log;
1078 1078 zgd->zgd_private = zp;
1079 1079
1080 1080 /*
1081 1081 * Write records come in two flavors: immediate and indirect.
1082 1082 * For small writes it's cheaper to store the data with the
1083 1083 * log record (immediate); for large writes it's cheaper to
1084 1084 * sync the data and get a pointer to it (indirect) so that
1085 1085 * we don't have to write the data twice.
1086 1086 */
1087 1087 if (buf != NULL) { /* immediate write */
1088 1088 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1089 1089 /* test for truncation needs to be done while range locked */
1090 1090 if (offset >= zp->z_size) {
1091 1091 error = SET_ERROR(ENOENT);
1092 1092 } else {
1093 1093 error = dmu_read(os, object, offset, size, buf,
1094 1094 DMU_READ_NO_PREFETCH);
1095 1095 }
1096 1096 ASSERT(error == 0 || error == ENOENT);
1097 1097 } else { /* indirect write */
1098 1098 /*
1099 1099 * Have to lock the whole block to ensure when it's
1100 1100 * written out and it's checksum is being calculated
1101 1101 * that no one can change the data. We need to re-check
1102 1102 * blocksize after we get the lock in case it's changed!
1103 1103 */
1104 1104 for (;;) {
1105 1105 uint64_t blkoff;
1106 1106 size = zp->z_blksz;
1107 1107 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1108 1108 offset -= blkoff;
1109 1109 zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1110 1110 RL_READER);
1111 1111 if (zp->z_blksz == size)
1112 1112 break;
1113 1113 offset += blkoff;
1114 1114 zfs_range_unlock(zgd->zgd_rl);
1115 1115 }
1116 1116 /* test for truncation needs to be done while range locked */
1117 1117 if (lr->lr_offset >= zp->z_size)
1118 1118 error = SET_ERROR(ENOENT);
1119 1119 #ifdef DEBUG
1120 1120 if (zil_fault_io) {
1121 1121 error = SET_ERROR(EIO);
1122 1122 zil_fault_io = 0;
1123 1123 }
1124 1124 #endif
1125 1125 if (error == 0)
1126 1126 error = dmu_buf_hold(os, object, offset, zgd, &db,
1127 1127 DMU_READ_NO_PREFETCH);
1128 1128
1129 1129 if (error == 0) {
1130 1130 blkptr_t *obp = dmu_buf_get_blkptr(db);
1131 1131 if (obp) {
1132 1132 ASSERT(BP_IS_HOLE(bp));
1133 1133 *bp = *obp;
1134 1134 }
1135 1135
1136 1136 zgd->zgd_db = db;
1137 1137 zgd->zgd_bp = bp;
1138 1138
1139 1139 ASSERT(db->db_offset == offset);
1140 1140 ASSERT(db->db_size == size);
1141 1141
1142 1142 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1143 1143 zfs_get_done, zgd);
1144 1144 ASSERT(error || lr->lr_length <= zp->z_blksz);
1145 1145
1146 1146 /*
1147 1147 * On success, we need to wait for the write I/O
1148 1148 * initiated by dmu_sync() to complete before we can
1149 1149 * release this dbuf. We will finish everything up
1150 1150 * in the zfs_get_done() callback.
1151 1151 */
1152 1152 if (error == 0)
1153 1153 return (0);
1154 1154
1155 1155 if (error == EALREADY) {
1156 1156 lr->lr_common.lrc_txtype = TX_WRITE2;
1157 1157 error = 0;
1158 1158 }
1159 1159 }
1160 1160 }
1161 1161
1162 1162 zfs_get_done(zgd, error);
1163 1163
1164 1164 return (error);
1165 1165 }
1166 1166
1167 1167 /*ARGSUSED*/
1168 1168 static int
1169 1169 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1170 1170 caller_context_t *ct)
1171 1171 {
1172 1172 znode_t *zp = VTOZ(vp);
1173 1173 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1174 1174 int error;
1175 1175
1176 1176 ZFS_ENTER(zfsvfs);
1177 1177 ZFS_VERIFY_ZP(zp);
1178 1178
1179 1179 if (flag & V_ACE_MASK)
1180 1180 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1181 1181 else
1182 1182 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1183 1183
1184 1184 ZFS_EXIT(zfsvfs);
1185 1185 return (error);
1186 1186 }
1187 1187
1188 1188 /*
1189 1189 * If vnode is for a device return a specfs vnode instead.
1190 1190 */
1191 1191 static int
1192 1192 specvp_check(vnode_t **vpp, cred_t *cr)
1193 1193 {
1194 1194 int error = 0;
1195 1195
1196 1196 if (IS_DEVVP(*vpp)) {
1197 1197 struct vnode *svp;
1198 1198
1199 1199 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1200 1200 VN_RELE(*vpp);
1201 1201 if (svp == NULL)
1202 1202 error = SET_ERROR(ENOSYS);
1203 1203 *vpp = svp;
1204 1204 }
1205 1205 return (error);
1206 1206 }
1207 1207
1208 1208
1209 1209 /*
1210 1210 * Lookup an entry in a directory, or an extended attribute directory.
1211 1211 * If it exists, return a held vnode reference for it.
1212 1212 *
1213 1213 * IN: dvp - vnode of directory to search.
1214 1214 * nm - name of entry to lookup.
1215 1215 * pnp - full pathname to lookup [UNUSED].
1216 1216 * flags - LOOKUP_XATTR set if looking for an attribute.
1217 1217 * rdir - root directory vnode [UNUSED].
1218 1218 * cr - credentials of caller.
1219 1219 * ct - caller context
1220 1220 * direntflags - directory lookup flags
1221 1221 * realpnp - returned pathname.
1222 1222 *
1223 1223 * OUT: vpp - vnode of located entry, NULL if not found.
1224 1224 *
1225 1225 * RETURN: 0 on success, error code on failure.
1226 1226 *
1227 1227 * Timestamps:
1228 1228 * NA
1229 1229 */
1230 1230 /* ARGSUSED */
1231 1231 static int
1232 1232 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1233 1233 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1234 1234 int *direntflags, pathname_t *realpnp)
1235 1235 {
1236 1236 znode_t *zdp = VTOZ(dvp);
1237 1237 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1238 1238 int error = 0;
1239 1239
1240 1240 /* fast path */
1241 1241 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1242 1242
1243 1243 if (dvp->v_type != VDIR) {
1244 1244 return (SET_ERROR(ENOTDIR));
1245 1245 } else if (zdp->z_sa_hdl == NULL) {
1246 1246 return (SET_ERROR(EIO));
1247 1247 }
1248 1248
1249 1249 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1250 1250 error = zfs_fastaccesschk_execute(zdp, cr);
1251 1251 if (!error) {
1252 1252 *vpp = dvp;
1253 1253 VN_HOLD(*vpp);
1254 1254 return (0);
1255 1255 }
1256 1256 return (error);
1257 1257 } else {
1258 1258 vnode_t *tvp = dnlc_lookup(dvp, nm);
1259 1259
1260 1260 if (tvp) {
1261 1261 error = zfs_fastaccesschk_execute(zdp, cr);
1262 1262 if (error) {
1263 1263 VN_RELE(tvp);
1264 1264 return (error);
1265 1265 }
1266 1266 if (tvp == DNLC_NO_VNODE) {
1267 1267 VN_RELE(tvp);
1268 1268 return (SET_ERROR(ENOENT));
1269 1269 } else {
1270 1270 *vpp = tvp;
1271 1271 return (specvp_check(vpp, cr));
1272 1272 }
1273 1273 }
1274 1274 }
1275 1275 }
1276 1276
1277 1277 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1278 1278
1279 1279 ZFS_ENTER(zfsvfs);
1280 1280 ZFS_VERIFY_ZP(zdp);
1281 1281
1282 1282 *vpp = NULL;
1283 1283
1284 1284 if (flags & LOOKUP_XATTR) {
1285 1285 /*
1286 1286 * If the xattr property is off, refuse the lookup request.
1287 1287 */
1288 1288 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1289 1289 ZFS_EXIT(zfsvfs);
1290 1290 return (SET_ERROR(EINVAL));
1291 1291 }
1292 1292
1293 1293 /*
1294 1294 * We don't allow recursive attributes..
1295 1295 * Maybe someday we will.
1296 1296 */
1297 1297 if (zdp->z_pflags & ZFS_XATTR) {
1298 1298 ZFS_EXIT(zfsvfs);
1299 1299 return (SET_ERROR(EINVAL));
1300 1300 }
1301 1301
1302 1302 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1303 1303 ZFS_EXIT(zfsvfs);
1304 1304 return (error);
1305 1305 }
1306 1306
1307 1307 /*
1308 1308 * Do we have permission to get into attribute directory?
1309 1309 */
1310 1310
1311 1311 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1312 1312 B_FALSE, cr)) {
1313 1313 VN_RELE(*vpp);
1314 1314 *vpp = NULL;
1315 1315 }
1316 1316
1317 1317 ZFS_EXIT(zfsvfs);
1318 1318 return (error);
1319 1319 }
1320 1320
1321 1321 if (dvp->v_type != VDIR) {
1322 1322 ZFS_EXIT(zfsvfs);
1323 1323 return (SET_ERROR(ENOTDIR));
1324 1324 }
1325 1325
1326 1326 /*
1327 1327 * Check accessibility of directory.
1328 1328 */
1329 1329
1330 1330 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1331 1331 ZFS_EXIT(zfsvfs);
1332 1332 return (error);
1333 1333 }
1334 1334
1335 1335 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1336 1336 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1337 1337 ZFS_EXIT(zfsvfs);
1338 1338 return (SET_ERROR(EILSEQ));
1339 1339 }
1340 1340
1341 1341 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1342 1342 if (error == 0)
1343 1343 error = specvp_check(vpp, cr);
1344 1344
1345 1345 ZFS_EXIT(zfsvfs);
1346 1346 return (error);
1347 1347 }
1348 1348
1349 1349 /*
1350 1350 * Attempt to create a new entry in a directory. If the entry
1351 1351 * already exists, truncate the file if permissible, else return
1352 1352 * an error. Return the vp of the created or trunc'd file.
1353 1353 *
1354 1354 * IN: dvp - vnode of directory to put new file entry in.
1355 1355 * name - name of new file entry.
1356 1356 * vap - attributes of new file.
1357 1357 * excl - flag indicating exclusive or non-exclusive mode.
1358 1358 * mode - mode to open file with.
1359 1359 * cr - credentials of caller.
1360 1360 * flag - large file flag [UNUSED].
1361 1361 * ct - caller context
1362 1362 * vsecp - ACL to be set
1363 1363 *
1364 1364 * OUT: vpp - vnode of created or trunc'd entry.
1365 1365 *
1366 1366 * RETURN: 0 on success, error code on failure.
1367 1367 *
1368 1368 * Timestamps:
1369 1369 * dvp - ctime|mtime updated if new entry created
1370 1370 * vp - ctime|mtime always, atime if new
1371 1371 */
1372 1372
1373 1373 /* ARGSUSED */
1374 1374 static int
1375 1375 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1376 1376 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1377 1377 vsecattr_t *vsecp)
1378 1378 {
1379 1379 znode_t *zp, *dzp = VTOZ(dvp);
1380 1380 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1381 1381 zilog_t *zilog;
1382 1382 objset_t *os;
1383 1383 zfs_dirlock_t *dl;
1384 1384 dmu_tx_t *tx;
1385 1385 int error;
1386 1386 ksid_t *ksid;
1387 1387 uid_t uid;
1388 1388 gid_t gid = crgetgid(cr);
1389 1389 zfs_acl_ids_t acl_ids;
1390 1390 boolean_t fuid_dirtied;
1391 1391 boolean_t have_acl = B_FALSE;
1392 1392 boolean_t waited = B_FALSE;
1393 1393
1394 1394 /*
1395 1395 * If we have an ephemeral id, ACL, or XVATTR then
1396 1396 * make sure file system is at proper version
1397 1397 */
1398 1398
1399 1399 ksid = crgetsid(cr, KSID_OWNER);
1400 1400 if (ksid)
1401 1401 uid = ksid_getid(ksid);
1402 1402 else
1403 1403 uid = crgetuid(cr);
1404 1404
1405 1405 if (zfsvfs->z_use_fuids == B_FALSE &&
1406 1406 (vsecp || (vap->va_mask & AT_XVATTR) ||
1407 1407 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1408 1408 return (SET_ERROR(EINVAL));
1409 1409
1410 1410 ZFS_ENTER(zfsvfs);
1411 1411 ZFS_VERIFY_ZP(dzp);
1412 1412 os = zfsvfs->z_os;
1413 1413 zilog = zfsvfs->z_log;
1414 1414
1415 1415 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1416 1416 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1417 1417 ZFS_EXIT(zfsvfs);
1418 1418 return (SET_ERROR(EILSEQ));
1419 1419 }
1420 1420
1421 1421 if (vap->va_mask & AT_XVATTR) {
1422 1422 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1423 1423 crgetuid(cr), cr, vap->va_type)) != 0) {
1424 1424 ZFS_EXIT(zfsvfs);
1425 1425 return (error);
1426 1426 }
1427 1427 }
1428 1428 top:
1429 1429 *vpp = NULL;
1430 1430
1431 1431 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1432 1432 vap->va_mode &= ~VSVTX;
1433 1433
1434 1434 if (*name == '\0') {
1435 1435 /*
1436 1436 * Null component name refers to the directory itself.
1437 1437 */
1438 1438 VN_HOLD(dvp);
1439 1439 zp = dzp;
1440 1440 dl = NULL;
1441 1441 error = 0;
1442 1442 } else {
1443 1443 /* possible VN_HOLD(zp) */
1444 1444 int zflg = 0;
1445 1445
1446 1446 if (flag & FIGNORECASE)
1447 1447 zflg |= ZCILOOK;
1448 1448
1449 1449 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1450 1450 NULL, NULL);
1451 1451 if (error) {
1452 1452 if (have_acl)
1453 1453 zfs_acl_ids_free(&acl_ids);
1454 1454 if (strcmp(name, "..") == 0)
1455 1455 error = SET_ERROR(EISDIR);
1456 1456 ZFS_EXIT(zfsvfs);
1457 1457 return (error);
1458 1458 }
1459 1459 }
1460 1460
1461 1461 if (zp == NULL) {
1462 1462 uint64_t txtype;
1463 1463
1464 1464 /*
1465 1465 * Create a new file object and update the directory
1466 1466 * to reference it.
1467 1467 */
1468 1468 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1469 1469 if (have_acl)
1470 1470 zfs_acl_ids_free(&acl_ids);
1471 1471 goto out;
1472 1472 }
1473 1473
1474 1474 /*
1475 1475 * We only support the creation of regular files in
1476 1476 * extended attribute directories.
1477 1477 */
1478 1478
1479 1479 if ((dzp->z_pflags & ZFS_XATTR) &&
1480 1480 (vap->va_type != VREG)) {
1481 1481 if (have_acl)
1482 1482 zfs_acl_ids_free(&acl_ids);
1483 1483 error = SET_ERROR(EINVAL);
1484 1484 goto out;
1485 1485 }
1486 1486
1487 1487 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1488 1488 cr, vsecp, &acl_ids)) != 0)
1489 1489 goto out;
1490 1490 have_acl = B_TRUE;
1491 1491
1492 1492 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1493 1493 zfs_acl_ids_free(&acl_ids);
1494 1494 error = SET_ERROR(EDQUOT);
1495 1495 goto out;
1496 1496 }
1497 1497
1498 1498 tx = dmu_tx_create(os);
1499 1499
1500 1500 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1501 1501 ZFS_SA_BASE_ATTR_SIZE);
1502 1502
1503 1503 fuid_dirtied = zfsvfs->z_fuid_dirty;
1504 1504 if (fuid_dirtied)
1505 1505 zfs_fuid_txhold(zfsvfs, tx);
1506 1506 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1507 1507 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1508 1508 if (!zfsvfs->z_use_sa &&
1509 1509 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1510 1510 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1511 1511 0, acl_ids.z_aclp->z_acl_bytes);
1512 1512 }
1513 1513 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1514 1514 if (error) {
1515 1515 zfs_dirent_unlock(dl);
1516 1516 if (error == ERESTART) {
1517 1517 waited = B_TRUE;
1518 1518 dmu_tx_wait(tx);
1519 1519 dmu_tx_abort(tx);
1520 1520 goto top;
1521 1521 }
1522 1522 zfs_acl_ids_free(&acl_ids);
1523 1523 dmu_tx_abort(tx);
1524 1524 ZFS_EXIT(zfsvfs);
1525 1525 return (error);
1526 1526 }
1527 1527 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1528 1528
1529 1529 if (fuid_dirtied)
1530 1530 zfs_fuid_sync(zfsvfs, tx);
1531 1531
1532 1532 (void) zfs_link_create(dl, zp, tx, ZNEW);
1533 1533 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1534 1534 if (flag & FIGNORECASE)
1535 1535 txtype |= TX_CI;
1536 1536 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1537 1537 vsecp, acl_ids.z_fuidp, vap);
1538 1538 zfs_acl_ids_free(&acl_ids);
1539 1539 dmu_tx_commit(tx);
1540 1540 } else {
1541 1541 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1542 1542
1543 1543 if (have_acl)
1544 1544 zfs_acl_ids_free(&acl_ids);
1545 1545 have_acl = B_FALSE;
1546 1546
1547 1547 /*
1548 1548 * A directory entry already exists for this name.
1549 1549 */
1550 1550 /*
1551 1551 * Can't truncate an existing file if in exclusive mode.
1552 1552 */
1553 1553 if (excl == EXCL) {
1554 1554 error = SET_ERROR(EEXIST);
1555 1555 goto out;
1556 1556 }
1557 1557 /*
1558 1558 * Can't open a directory for writing.
1559 1559 */
1560 1560 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1561 1561 error = SET_ERROR(EISDIR);
1562 1562 goto out;
1563 1563 }
1564 1564 /*
1565 1565 * Verify requested access to file.
1566 1566 */
1567 1567 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1568 1568 goto out;
1569 1569 }
1570 1570
1571 1571 mutex_enter(&dzp->z_lock);
1572 1572 dzp->z_seq++;
1573 1573 mutex_exit(&dzp->z_lock);
1574 1574
1575 1575 /*
1576 1576 * Truncate regular files if requested.
1577 1577 */
1578 1578 if ((ZTOV(zp)->v_type == VREG) &&
1579 1579 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1580 1580 /* we can't hold any locks when calling zfs_freesp() */
1581 1581 zfs_dirent_unlock(dl);
1582 1582 dl = NULL;
1583 1583 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1584 1584 if (error == 0) {
1585 1585 vnevent_create(ZTOV(zp), ct);
1586 1586 }
1587 1587 }
1588 1588 }
1589 1589 out:
1590 1590
1591 1591 if (dl)
1592 1592 zfs_dirent_unlock(dl);
1593 1593
1594 1594 if (error) {
1595 1595 if (zp)
1596 1596 VN_RELE(ZTOV(zp));
1597 1597 } else {
1598 1598 *vpp = ZTOV(zp);
1599 1599 error = specvp_check(vpp, cr);
1600 1600 }
1601 1601
1602 1602 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1603 1603 zil_commit(zilog, 0);
1604 1604
1605 1605 ZFS_EXIT(zfsvfs);
1606 1606 return (error);
1607 1607 }
1608 1608
1609 1609 /*
1610 1610 * Remove an entry from a directory.
1611 1611 *
1612 1612 * IN: dvp - vnode of directory to remove entry from.
1613 1613 * name - name of entry to remove.
1614 1614 * cr - credentials of caller.
1615 1615 * ct - caller context
1616 1616 * flags - case flags
1617 1617 *
1618 1618 * RETURN: 0 on success, error code on failure.
1619 1619 *
1620 1620 * Timestamps:
1621 1621 * dvp - ctime|mtime
1622 1622 * vp - ctime (if nlink > 0)
1623 1623 */
1624 1624
1625 1625 uint64_t null_xattr = 0;
1626 1626
1627 1627 /*ARGSUSED*/
1628 1628 static int
1629 1629 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1630 1630 int flags)
1631 1631 {
1632 1632 znode_t *zp, *dzp = VTOZ(dvp);
1633 1633 znode_t *xzp;
1634 1634 vnode_t *vp;
1635 1635 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1636 1636 zilog_t *zilog;
1637 1637 uint64_t acl_obj, xattr_obj;
1638 1638 uint64_t xattr_obj_unlinked = 0;
1639 1639 uint64_t obj = 0;
1640 1640 zfs_dirlock_t *dl;
1641 1641 dmu_tx_t *tx;
1642 1642 boolean_t may_delete_now, delete_now = FALSE;
1643 1643 boolean_t unlinked, toobig = FALSE;
1644 1644 uint64_t txtype;
1645 1645 pathname_t *realnmp = NULL;
1646 1646 pathname_t realnm;
1647 1647 int error;
1648 1648 int zflg = ZEXISTS;
1649 1649 boolean_t waited = B_FALSE;
1650 1650
1651 1651 ZFS_ENTER(zfsvfs);
1652 1652 ZFS_VERIFY_ZP(dzp);
1653 1653 zilog = zfsvfs->z_log;
1654 1654
1655 1655 if (flags & FIGNORECASE) {
1656 1656 zflg |= ZCILOOK;
1657 1657 pn_alloc(&realnm);
1658 1658 realnmp = &realnm;
1659 1659 }
1660 1660
1661 1661 top:
1662 1662 xattr_obj = 0;
1663 1663 xzp = NULL;
1664 1664 /*
1665 1665 * Attempt to lock directory; fail if entry doesn't exist.
1666 1666 */
1667 1667 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1668 1668 NULL, realnmp)) {
1669 1669 if (realnmp)
1670 1670 pn_free(realnmp);
1671 1671 ZFS_EXIT(zfsvfs);
1672 1672 return (error);
1673 1673 }
1674 1674
1675 1675 vp = ZTOV(zp);
1676 1676
1677 1677 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1678 1678 goto out;
1679 1679 }
1680 1680
1681 1681 /*
1682 1682 * Need to use rmdir for removing directories.
1683 1683 */
1684 1684 if (vp->v_type == VDIR) {
1685 1685 error = SET_ERROR(EPERM);
1686 1686 goto out;
1687 1687 }
1688 1688
1689 1689 vnevent_remove(vp, dvp, name, ct);
1690 1690
1691 1691 if (realnmp)
1692 1692 dnlc_remove(dvp, realnmp->pn_buf);
1693 1693 else
1694 1694 dnlc_remove(dvp, name);
1695 1695
1696 1696 mutex_enter(&vp->v_lock);
1697 1697 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1698 1698 mutex_exit(&vp->v_lock);
1699 1699
1700 1700 /*
1701 1701 * We may delete the znode now, or we may put it in the unlinked set;
1702 1702 * it depends on whether we're the last link, and on whether there are
1703 1703 * other holds on the vnode. So we dmu_tx_hold() the right things to
1704 1704 * allow for either case.
1705 1705 */
1706 1706 obj = zp->z_id;
1707 1707 tx = dmu_tx_create(zfsvfs->z_os);
1708 1708 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1709 1709 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1710 1710 zfs_sa_upgrade_txholds(tx, zp);
1711 1711 zfs_sa_upgrade_txholds(tx, dzp);
1712 1712 if (may_delete_now) {
1713 1713 toobig =
1714 1714 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1715 1715 /* if the file is too big, only hold_free a token amount */
1716 1716 dmu_tx_hold_free(tx, zp->z_id, 0,
1717 1717 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1718 1718 }
1719 1719
1720 1720 /* are there any extended attributes? */
1721 1721 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1722 1722 &xattr_obj, sizeof (xattr_obj));
1723 1723 if (error == 0 && xattr_obj) {
1724 1724 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1725 1725 ASSERT0(error);
1726 1726 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1727 1727 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1728 1728 }
1729 1729
1730 1730 mutex_enter(&zp->z_lock);
1731 1731 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1732 1732 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1733 1733 mutex_exit(&zp->z_lock);
1734 1734
1735 1735 /* charge as an update -- would be nice not to charge at all */
1736 1736 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1737 1737
1738 1738 /*
1739 1739 * Mark this transaction as typically resulting in a net free of space
1740 1740 */
1741 1741 dmu_tx_mark_netfree(tx);
1742 1742
1743 1743 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1744 1744 if (error) {
1745 1745 zfs_dirent_unlock(dl);
1746 1746 VN_RELE(vp);
1747 1747 if (xzp)
1748 1748 VN_RELE(ZTOV(xzp));
1749 1749 if (error == ERESTART) {
1750 1750 waited = B_TRUE;
1751 1751 dmu_tx_wait(tx);
1752 1752 dmu_tx_abort(tx);
1753 1753 goto top;
1754 1754 }
1755 1755 if (realnmp)
1756 1756 pn_free(realnmp);
1757 1757 dmu_tx_abort(tx);
1758 1758 ZFS_EXIT(zfsvfs);
1759 1759 return (error);
1760 1760 }
1761 1761
1762 1762 /*
1763 1763 * Remove the directory entry.
1764 1764 */
1765 1765 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1766 1766
1767 1767 if (error) {
1768 1768 dmu_tx_commit(tx);
1769 1769 goto out;
1770 1770 }
1771 1771
1772 1772 if (unlinked) {
1773 1773 /*
1774 1774 * Hold z_lock so that we can make sure that the ACL obj
1775 1775 * hasn't changed. Could have been deleted due to
1776 1776 * zfs_sa_upgrade().
1777 1777 */
1778 1778 mutex_enter(&zp->z_lock);
1779 1779 mutex_enter(&vp->v_lock);
1780 1780 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1781 1781 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1782 1782 delete_now = may_delete_now && !toobig &&
1783 1783 vp->v_count == 1 && !vn_has_cached_data(vp) &&
1784 1784 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1785 1785 acl_obj;
1786 1786 mutex_exit(&vp->v_lock);
1787 1787 }
1788 1788
1789 1789 if (delete_now) {
1790 1790 if (xattr_obj_unlinked) {
1791 1791 ASSERT3U(xzp->z_links, ==, 2);
1792 1792 mutex_enter(&xzp->z_lock);
1793 1793 xzp->z_unlinked = 1;
1794 1794 xzp->z_links = 0;
1795 1795 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1796 1796 &xzp->z_links, sizeof (xzp->z_links), tx);
1797 1797 ASSERT3U(error, ==, 0);
1798 1798 mutex_exit(&xzp->z_lock);
1799 1799 zfs_unlinked_add(xzp, tx);
1800 1800
1801 1801 if (zp->z_is_sa)
1802 1802 error = sa_remove(zp->z_sa_hdl,
1803 1803 SA_ZPL_XATTR(zfsvfs), tx);
1804 1804 else
1805 1805 error = sa_update(zp->z_sa_hdl,
1806 1806 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1807 1807 sizeof (uint64_t), tx);
1808 1808 ASSERT0(error);
1809 1809 }
1810 1810 mutex_enter(&vp->v_lock);
1811 1811 vp->v_count--;
1812 1812 ASSERT0(vp->v_count);
1813 1813 mutex_exit(&vp->v_lock);
1814 1814 mutex_exit(&zp->z_lock);
1815 1815 zfs_znode_delete(zp, tx);
1816 1816 } else if (unlinked) {
1817 1817 mutex_exit(&zp->z_lock);
1818 1818 zfs_unlinked_add(zp, tx);
1819 1819 }
1820 1820
1821 1821 txtype = TX_REMOVE;
1822 1822 if (flags & FIGNORECASE)
1823 1823 txtype |= TX_CI;
1824 1824 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1825 1825
1826 1826 dmu_tx_commit(tx);
1827 1827 out:
1828 1828 if (realnmp)
1829 1829 pn_free(realnmp);
1830 1830
1831 1831 zfs_dirent_unlock(dl);
1832 1832
1833 1833 if (!delete_now)
1834 1834 VN_RELE(vp);
1835 1835 if (xzp)
1836 1836 VN_RELE(ZTOV(xzp));
1837 1837
1838 1838 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1839 1839 zil_commit(zilog, 0);
1840 1840
1841 1841 ZFS_EXIT(zfsvfs);
1842 1842 return (error);
1843 1843 }
1844 1844
1845 1845 /*
1846 1846 * Create a new directory and insert it into dvp using the name
1847 1847 * provided. Return a pointer to the inserted directory.
1848 1848 *
1849 1849 * IN: dvp - vnode of directory to add subdir to.
1850 1850 * dirname - name of new directory.
1851 1851 * vap - attributes of new directory.
1852 1852 * cr - credentials of caller.
1853 1853 * ct - caller context
1854 1854 * flags - case flags
1855 1855 * vsecp - ACL to be set
1856 1856 *
1857 1857 * OUT: vpp - vnode of created directory.
1858 1858 *
1859 1859 * RETURN: 0 on success, error code on failure.
1860 1860 *
1861 1861 * Timestamps:
1862 1862 * dvp - ctime|mtime updated
1863 1863 * vp - ctime|mtime|atime updated
1864 1864 */
1865 1865 /*ARGSUSED*/
1866 1866 static int
1867 1867 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1868 1868 caller_context_t *ct, int flags, vsecattr_t *vsecp)
1869 1869 {
1870 1870 znode_t *zp, *dzp = VTOZ(dvp);
1871 1871 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1872 1872 zilog_t *zilog;
1873 1873 zfs_dirlock_t *dl;
1874 1874 uint64_t txtype;
1875 1875 dmu_tx_t *tx;
1876 1876 int error;
1877 1877 int zf = ZNEW;
1878 1878 ksid_t *ksid;
1879 1879 uid_t uid;
1880 1880 gid_t gid = crgetgid(cr);
1881 1881 zfs_acl_ids_t acl_ids;
1882 1882 boolean_t fuid_dirtied;
1883 1883 boolean_t waited = B_FALSE;
1884 1884
1885 1885 ASSERT(vap->va_type == VDIR);
1886 1886
1887 1887 /*
1888 1888 * If we have an ephemeral id, ACL, or XVATTR then
1889 1889 * make sure file system is at proper version
1890 1890 */
1891 1891
1892 1892 ksid = crgetsid(cr, KSID_OWNER);
1893 1893 if (ksid)
1894 1894 uid = ksid_getid(ksid);
1895 1895 else
1896 1896 uid = crgetuid(cr);
1897 1897 if (zfsvfs->z_use_fuids == B_FALSE &&
1898 1898 (vsecp || (vap->va_mask & AT_XVATTR) ||
1899 1899 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1900 1900 return (SET_ERROR(EINVAL));
1901 1901
1902 1902 ZFS_ENTER(zfsvfs);
1903 1903 ZFS_VERIFY_ZP(dzp);
1904 1904 zilog = zfsvfs->z_log;
1905 1905
1906 1906 if (dzp->z_pflags & ZFS_XATTR) {
1907 1907 ZFS_EXIT(zfsvfs);
1908 1908 return (SET_ERROR(EINVAL));
1909 1909 }
1910 1910
1911 1911 if (zfsvfs->z_utf8 && u8_validate(dirname,
1912 1912 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1913 1913 ZFS_EXIT(zfsvfs);
1914 1914 return (SET_ERROR(EILSEQ));
1915 1915 }
1916 1916 if (flags & FIGNORECASE)
1917 1917 zf |= ZCILOOK;
1918 1918
1919 1919 if (vap->va_mask & AT_XVATTR) {
1920 1920 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1921 1921 crgetuid(cr), cr, vap->va_type)) != 0) {
1922 1922 ZFS_EXIT(zfsvfs);
1923 1923 return (error);
1924 1924 }
1925 1925 }
1926 1926
1927 1927 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1928 1928 vsecp, &acl_ids)) != 0) {
1929 1929 ZFS_EXIT(zfsvfs);
1930 1930 return (error);
1931 1931 }
1932 1932 /*
1933 1933 * First make sure the new directory doesn't exist.
1934 1934 *
1935 1935 * Existence is checked first to make sure we don't return
1936 1936 * EACCES instead of EEXIST which can cause some applications
1937 1937 * to fail.
1938 1938 */
1939 1939 top:
1940 1940 *vpp = NULL;
1941 1941
1942 1942 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1943 1943 NULL, NULL)) {
1944 1944 zfs_acl_ids_free(&acl_ids);
1945 1945 ZFS_EXIT(zfsvfs);
1946 1946 return (error);
1947 1947 }
1948 1948
1949 1949 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1950 1950 zfs_acl_ids_free(&acl_ids);
1951 1951 zfs_dirent_unlock(dl);
1952 1952 ZFS_EXIT(zfsvfs);
1953 1953 return (error);
1954 1954 }
1955 1955
1956 1956 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1957 1957 zfs_acl_ids_free(&acl_ids);
1958 1958 zfs_dirent_unlock(dl);
1959 1959 ZFS_EXIT(zfsvfs);
1960 1960 return (SET_ERROR(EDQUOT));
1961 1961 }
1962 1962
1963 1963 /*
1964 1964 * Add a new entry to the directory.
1965 1965 */
1966 1966 tx = dmu_tx_create(zfsvfs->z_os);
1967 1967 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1968 1968 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1969 1969 fuid_dirtied = zfsvfs->z_fuid_dirty;
1970 1970 if (fuid_dirtied)
1971 1971 zfs_fuid_txhold(zfsvfs, tx);
1972 1972 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1973 1973 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1974 1974 acl_ids.z_aclp->z_acl_bytes);
1975 1975 }
1976 1976
1977 1977 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1978 1978 ZFS_SA_BASE_ATTR_SIZE);
1979 1979
1980 1980 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1981 1981 if (error) {
1982 1982 zfs_dirent_unlock(dl);
1983 1983 if (error == ERESTART) {
1984 1984 waited = B_TRUE;
1985 1985 dmu_tx_wait(tx);
1986 1986 dmu_tx_abort(tx);
1987 1987 goto top;
1988 1988 }
1989 1989 zfs_acl_ids_free(&acl_ids);
1990 1990 dmu_tx_abort(tx);
1991 1991 ZFS_EXIT(zfsvfs);
1992 1992 return (error);
1993 1993 }
1994 1994
1995 1995 /*
1996 1996 * Create new node.
1997 1997 */
1998 1998 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1999 1999
2000 2000 if (fuid_dirtied)
2001 2001 zfs_fuid_sync(zfsvfs, tx);
2002 2002
2003 2003 /*
2004 2004 * Now put new name in parent dir.
2005 2005 */
2006 2006 (void) zfs_link_create(dl, zp, tx, ZNEW);
2007 2007
2008 2008 *vpp = ZTOV(zp);
2009 2009
2010 2010 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2011 2011 if (flags & FIGNORECASE)
2012 2012 txtype |= TX_CI;
2013 2013 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2014 2014 acl_ids.z_fuidp, vap);
2015 2015
2016 2016 zfs_acl_ids_free(&acl_ids);
2017 2017
2018 2018 dmu_tx_commit(tx);
2019 2019
2020 2020 zfs_dirent_unlock(dl);
2021 2021
2022 2022 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2023 2023 zil_commit(zilog, 0);
2024 2024
2025 2025 ZFS_EXIT(zfsvfs);
2026 2026 return (0);
2027 2027 }
2028 2028
2029 2029 /*
2030 2030 * Remove a directory subdir entry. If the current working
2031 2031 * directory is the same as the subdir to be removed, the
2032 2032 * remove will fail.
2033 2033 *
2034 2034 * IN: dvp - vnode of directory to remove from.
2035 2035 * name - name of directory to be removed.
2036 2036 * cwd - vnode of current working directory.
2037 2037 * cr - credentials of caller.
2038 2038 * ct - caller context
2039 2039 * flags - case flags
2040 2040 *
2041 2041 * RETURN: 0 on success, error code on failure.
2042 2042 *
2043 2043 * Timestamps:
2044 2044 * dvp - ctime|mtime updated
2045 2045 */
2046 2046 /*ARGSUSED*/
2047 2047 static int
2048 2048 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2049 2049 caller_context_t *ct, int flags)
2050 2050 {
2051 2051 znode_t *dzp = VTOZ(dvp);
2052 2052 znode_t *zp;
2053 2053 vnode_t *vp;
2054 2054 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
2055 2055 zilog_t *zilog;
2056 2056 zfs_dirlock_t *dl;
2057 2057 dmu_tx_t *tx;
2058 2058 int error;
2059 2059 int zflg = ZEXISTS;
2060 2060 boolean_t waited = B_FALSE;
2061 2061
2062 2062 ZFS_ENTER(zfsvfs);
2063 2063 ZFS_VERIFY_ZP(dzp);
2064 2064 zilog = zfsvfs->z_log;
2065 2065
2066 2066 if (flags & FIGNORECASE)
2067 2067 zflg |= ZCILOOK;
2068 2068 top:
2069 2069 zp = NULL;
2070 2070
2071 2071 /*
2072 2072 * Attempt to lock directory; fail if entry doesn't exist.
2073 2073 */
2074 2074 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2075 2075 NULL, NULL)) {
2076 2076 ZFS_EXIT(zfsvfs);
2077 2077 return (error);
2078 2078 }
2079 2079
2080 2080 vp = ZTOV(zp);
2081 2081
2082 2082 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2083 2083 goto out;
2084 2084 }
2085 2085
2086 2086 if (vp->v_type != VDIR) {
2087 2087 error = SET_ERROR(ENOTDIR);
2088 2088 goto out;
2089 2089 }
2090 2090
2091 2091 if (vp == cwd) {
2092 2092 error = SET_ERROR(EINVAL);
2093 2093 goto out;
2094 2094 }
2095 2095
2096 2096 vnevent_rmdir(vp, dvp, name, ct);
2097 2097
2098 2098 /*
2099 2099 * Grab a lock on the directory to make sure that noone is
2100 2100 * trying to add (or lookup) entries while we are removing it.
2101 2101 */
2102 2102 rw_enter(&zp->z_name_lock, RW_WRITER);
2103 2103
2104 2104 /*
2105 2105 * Grab a lock on the parent pointer to make sure we play well
↓ open down ↓ |
2105 lines elided |
↑ open up ↑ |
2106 2106 * with the treewalk and directory rename code.
2107 2107 */
2108 2108 rw_enter(&zp->z_parent_lock, RW_WRITER);
2109 2109
2110 2110 tx = dmu_tx_create(zfsvfs->z_os);
2111 2111 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2112 2112 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2113 2113 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2114 2114 zfs_sa_upgrade_txholds(tx, zp);
2115 2115 zfs_sa_upgrade_txholds(tx, dzp);
2116 + dmu_tx_mark_netfree(tx);
2116 2117 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2117 2118 if (error) {
2118 2119 rw_exit(&zp->z_parent_lock);
2119 2120 rw_exit(&zp->z_name_lock);
2120 2121 zfs_dirent_unlock(dl);
2121 2122 VN_RELE(vp);
2122 2123 if (error == ERESTART) {
2123 2124 waited = B_TRUE;
2124 2125 dmu_tx_wait(tx);
2125 2126 dmu_tx_abort(tx);
2126 2127 goto top;
2127 2128 }
2128 2129 dmu_tx_abort(tx);
2129 2130 ZFS_EXIT(zfsvfs);
2130 2131 return (error);
2131 2132 }
2132 2133
2133 2134 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2134 2135
2135 2136 if (error == 0) {
2136 2137 uint64_t txtype = TX_RMDIR;
2137 2138 if (flags & FIGNORECASE)
2138 2139 txtype |= TX_CI;
2139 2140 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2140 2141 }
2141 2142
2142 2143 dmu_tx_commit(tx);
2143 2144
2144 2145 rw_exit(&zp->z_parent_lock);
2145 2146 rw_exit(&zp->z_name_lock);
2146 2147 out:
2147 2148 zfs_dirent_unlock(dl);
2148 2149
2149 2150 VN_RELE(vp);
2150 2151
2151 2152 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2152 2153 zil_commit(zilog, 0);
2153 2154
2154 2155 ZFS_EXIT(zfsvfs);
2155 2156 return (error);
2156 2157 }
2157 2158
2158 2159 /*
2159 2160 * Read as many directory entries as will fit into the provided
2160 2161 * buffer from the given directory cursor position (specified in
2161 2162 * the uio structure).
2162 2163 *
2163 2164 * IN: vp - vnode of directory to read.
2164 2165 * uio - structure supplying read location, range info,
2165 2166 * and return buffer.
2166 2167 * cr - credentials of caller.
2167 2168 * ct - caller context
2168 2169 * flags - case flags
2169 2170 *
2170 2171 * OUT: uio - updated offset and range, buffer filled.
2171 2172 * eofp - set to true if end-of-file detected.
2172 2173 *
2173 2174 * RETURN: 0 on success, error code on failure.
2174 2175 *
2175 2176 * Timestamps:
2176 2177 * vp - atime updated
2177 2178 *
2178 2179 * Note that the low 4 bits of the cookie returned by zap is always zero.
2179 2180 * This allows us to use the low range for "special" directory entries:
2180 2181 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2181 2182 * we use the offset 2 for the '.zfs' directory.
2182 2183 */
2183 2184 /* ARGSUSED */
2184 2185 static int
2185 2186 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2186 2187 caller_context_t *ct, int flags)
2187 2188 {
2188 2189 znode_t *zp = VTOZ(vp);
2189 2190 iovec_t *iovp;
2190 2191 edirent_t *eodp;
2191 2192 dirent64_t *odp;
2192 2193 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2193 2194 objset_t *os;
2194 2195 caddr_t outbuf;
2195 2196 size_t bufsize;
2196 2197 zap_cursor_t zc;
2197 2198 zap_attribute_t zap;
2198 2199 uint_t bytes_wanted;
2199 2200 uint64_t offset; /* must be unsigned; checks for < 1 */
2200 2201 uint64_t parent;
2201 2202 int local_eof;
2202 2203 int outcount;
2203 2204 int error;
2204 2205 uint8_t prefetch;
2205 2206 boolean_t check_sysattrs;
2206 2207
2207 2208 ZFS_ENTER(zfsvfs);
2208 2209 ZFS_VERIFY_ZP(zp);
2209 2210
2210 2211 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2211 2212 &parent, sizeof (parent))) != 0) {
2212 2213 ZFS_EXIT(zfsvfs);
2213 2214 return (error);
2214 2215 }
2215 2216
2216 2217 /*
2217 2218 * If we are not given an eof variable,
2218 2219 * use a local one.
2219 2220 */
2220 2221 if (eofp == NULL)
2221 2222 eofp = &local_eof;
2222 2223
2223 2224 /*
2224 2225 * Check for valid iov_len.
2225 2226 */
2226 2227 if (uio->uio_iov->iov_len <= 0) {
2227 2228 ZFS_EXIT(zfsvfs);
2228 2229 return (SET_ERROR(EINVAL));
2229 2230 }
2230 2231
2231 2232 /*
2232 2233 * Quit if directory has been removed (posix)
2233 2234 */
2234 2235 if ((*eofp = zp->z_unlinked) != 0) {
2235 2236 ZFS_EXIT(zfsvfs);
2236 2237 return (0);
2237 2238 }
2238 2239
2239 2240 error = 0;
2240 2241 os = zfsvfs->z_os;
2241 2242 offset = uio->uio_loffset;
2242 2243 prefetch = zp->z_zn_prefetch;
2243 2244
2244 2245 /*
2245 2246 * Initialize the iterator cursor.
2246 2247 */
2247 2248 if (offset <= 3) {
2248 2249 /*
2249 2250 * Start iteration from the beginning of the directory.
2250 2251 */
2251 2252 zap_cursor_init(&zc, os, zp->z_id);
2252 2253 } else {
2253 2254 /*
2254 2255 * The offset is a serialized cursor.
2255 2256 */
2256 2257 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2257 2258 }
2258 2259
2259 2260 /*
2260 2261 * Get space to change directory entries into fs independent format.
2261 2262 */
2262 2263 iovp = uio->uio_iov;
2263 2264 bytes_wanted = iovp->iov_len;
2264 2265 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2265 2266 bufsize = bytes_wanted;
2266 2267 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2267 2268 odp = (struct dirent64 *)outbuf;
2268 2269 } else {
2269 2270 bufsize = bytes_wanted;
2270 2271 outbuf = NULL;
2271 2272 odp = (struct dirent64 *)iovp->iov_base;
2272 2273 }
2273 2274 eodp = (struct edirent *)odp;
2274 2275
2275 2276 /*
2276 2277 * If this VFS supports the system attribute view interface; and
2277 2278 * we're looking at an extended attribute directory; and we care
2278 2279 * about normalization conflicts on this vfs; then we must check
2279 2280 * for normalization conflicts with the sysattr name space.
2280 2281 */
2281 2282 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2282 2283 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2283 2284 (flags & V_RDDIR_ENTFLAGS);
2284 2285
2285 2286 /*
2286 2287 * Transform to file-system independent format
2287 2288 */
2288 2289 outcount = 0;
2289 2290 while (outcount < bytes_wanted) {
2290 2291 ino64_t objnum;
2291 2292 ushort_t reclen;
2292 2293 off64_t *next = NULL;
2293 2294
2294 2295 /*
2295 2296 * Special case `.', `..', and `.zfs'.
2296 2297 */
2297 2298 if (offset == 0) {
2298 2299 (void) strcpy(zap.za_name, ".");
2299 2300 zap.za_normalization_conflict = 0;
2300 2301 objnum = zp->z_id;
2301 2302 } else if (offset == 1) {
2302 2303 (void) strcpy(zap.za_name, "..");
2303 2304 zap.za_normalization_conflict = 0;
2304 2305 objnum = parent;
2305 2306 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2306 2307 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2307 2308 zap.za_normalization_conflict = 0;
2308 2309 objnum = ZFSCTL_INO_ROOT;
2309 2310 } else {
2310 2311 /*
2311 2312 * Grab next entry.
2312 2313 */
2313 2314 if (error = zap_cursor_retrieve(&zc, &zap)) {
2314 2315 if ((*eofp = (error == ENOENT)) != 0)
2315 2316 break;
2316 2317 else
2317 2318 goto update;
2318 2319 }
2319 2320
2320 2321 if (zap.za_integer_length != 8 ||
2321 2322 zap.za_num_integers != 1) {
2322 2323 cmn_err(CE_WARN, "zap_readdir: bad directory "
2323 2324 "entry, obj = %lld, offset = %lld\n",
2324 2325 (u_longlong_t)zp->z_id,
2325 2326 (u_longlong_t)offset);
2326 2327 error = SET_ERROR(ENXIO);
2327 2328 goto update;
2328 2329 }
2329 2330
2330 2331 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2331 2332 /*
2332 2333 * MacOS X can extract the object type here such as:
2333 2334 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2334 2335 */
2335 2336
2336 2337 if (check_sysattrs && !zap.za_normalization_conflict) {
2337 2338 zap.za_normalization_conflict =
2338 2339 xattr_sysattr_casechk(zap.za_name);
2339 2340 }
2340 2341 }
2341 2342
2342 2343 if (flags & V_RDDIR_ACCFILTER) {
2343 2344 /*
2344 2345 * If we have no access at all, don't include
2345 2346 * this entry in the returned information
2346 2347 */
2347 2348 znode_t *ezp;
2348 2349 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2349 2350 goto skip_entry;
2350 2351 if (!zfs_has_access(ezp, cr)) {
2351 2352 VN_RELE(ZTOV(ezp));
2352 2353 goto skip_entry;
2353 2354 }
2354 2355 VN_RELE(ZTOV(ezp));
2355 2356 }
2356 2357
2357 2358 if (flags & V_RDDIR_ENTFLAGS)
2358 2359 reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2359 2360 else
2360 2361 reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2361 2362
2362 2363 /*
2363 2364 * Will this entry fit in the buffer?
2364 2365 */
2365 2366 if (outcount + reclen > bufsize) {
2366 2367 /*
2367 2368 * Did we manage to fit anything in the buffer?
2368 2369 */
2369 2370 if (!outcount) {
2370 2371 error = SET_ERROR(EINVAL);
2371 2372 goto update;
2372 2373 }
2373 2374 break;
2374 2375 }
2375 2376 if (flags & V_RDDIR_ENTFLAGS) {
2376 2377 /*
2377 2378 * Add extended flag entry:
2378 2379 */
2379 2380 eodp->ed_ino = objnum;
2380 2381 eodp->ed_reclen = reclen;
2381 2382 /* NOTE: ed_off is the offset for the *next* entry */
2382 2383 next = &(eodp->ed_off);
2383 2384 eodp->ed_eflags = zap.za_normalization_conflict ?
2384 2385 ED_CASE_CONFLICT : 0;
2385 2386 (void) strncpy(eodp->ed_name, zap.za_name,
2386 2387 EDIRENT_NAMELEN(reclen));
2387 2388 eodp = (edirent_t *)((intptr_t)eodp + reclen);
2388 2389 } else {
2389 2390 /*
2390 2391 * Add normal entry:
2391 2392 */
2392 2393 odp->d_ino = objnum;
2393 2394 odp->d_reclen = reclen;
2394 2395 /* NOTE: d_off is the offset for the *next* entry */
2395 2396 next = &(odp->d_off);
2396 2397 (void) strncpy(odp->d_name, zap.za_name,
2397 2398 DIRENT64_NAMELEN(reclen));
2398 2399 odp = (dirent64_t *)((intptr_t)odp + reclen);
2399 2400 }
2400 2401 outcount += reclen;
2401 2402
2402 2403 ASSERT(outcount <= bufsize);
2403 2404
2404 2405 /* Prefetch znode */
2405 2406 if (prefetch)
2406 2407 dmu_prefetch(os, objnum, 0, 0, 0,
2407 2408 ZIO_PRIORITY_SYNC_READ);
2408 2409
2409 2410 skip_entry:
2410 2411 /*
2411 2412 * Move to the next entry, fill in the previous offset.
2412 2413 */
2413 2414 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2414 2415 zap_cursor_advance(&zc);
2415 2416 offset = zap_cursor_serialize(&zc);
2416 2417 } else {
2417 2418 offset += 1;
2418 2419 }
2419 2420 if (next)
2420 2421 *next = offset;
2421 2422 }
2422 2423 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2423 2424
2424 2425 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2425 2426 iovp->iov_base += outcount;
2426 2427 iovp->iov_len -= outcount;
2427 2428 uio->uio_resid -= outcount;
2428 2429 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2429 2430 /*
2430 2431 * Reset the pointer.
2431 2432 */
2432 2433 offset = uio->uio_loffset;
2433 2434 }
2434 2435
2435 2436 update:
2436 2437 zap_cursor_fini(&zc);
2437 2438 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2438 2439 kmem_free(outbuf, bufsize);
2439 2440
2440 2441 if (error == ENOENT)
2441 2442 error = 0;
2442 2443
2443 2444 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2444 2445
2445 2446 uio->uio_loffset = offset;
2446 2447 ZFS_EXIT(zfsvfs);
2447 2448 return (error);
2448 2449 }
2449 2450
2450 2451 ulong_t zfs_fsync_sync_cnt = 4;
2451 2452
2452 2453 static int
2453 2454 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2454 2455 {
2455 2456 znode_t *zp = VTOZ(vp);
2456 2457 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2457 2458
2458 2459 /*
2459 2460 * Regardless of whether this is required for standards conformance,
2460 2461 * this is the logical behavior when fsync() is called on a file with
2461 2462 * dirty pages. We use B_ASYNC since the ZIL transactions are already
2462 2463 * going to be pushed out as part of the zil_commit().
2463 2464 */
2464 2465 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2465 2466 (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2466 2467 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2467 2468
2468 2469 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2469 2470
2470 2471 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2471 2472 ZFS_ENTER(zfsvfs);
2472 2473 ZFS_VERIFY_ZP(zp);
2473 2474 zil_commit(zfsvfs->z_log, zp->z_id);
2474 2475 ZFS_EXIT(zfsvfs);
2475 2476 }
2476 2477 return (0);
2477 2478 }
2478 2479
2479 2480
2480 2481 /*
2481 2482 * Get the requested file attributes and place them in the provided
2482 2483 * vattr structure.
2483 2484 *
2484 2485 * IN: vp - vnode of file.
2485 2486 * vap - va_mask identifies requested attributes.
2486 2487 * If AT_XVATTR set, then optional attrs are requested
2487 2488 * flags - ATTR_NOACLCHECK (CIFS server context)
2488 2489 * cr - credentials of caller.
2489 2490 * ct - caller context
2490 2491 *
2491 2492 * OUT: vap - attribute values.
2492 2493 *
2493 2494 * RETURN: 0 (always succeeds).
2494 2495 */
2495 2496 /* ARGSUSED */
2496 2497 static int
2497 2498 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2498 2499 caller_context_t *ct)
2499 2500 {
2500 2501 znode_t *zp = VTOZ(vp);
2501 2502 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2502 2503 int error = 0;
2503 2504 uint64_t links;
2504 2505 uint64_t mtime[2], ctime[2];
2505 2506 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2506 2507 xoptattr_t *xoap = NULL;
2507 2508 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2508 2509 sa_bulk_attr_t bulk[2];
2509 2510 int count = 0;
2510 2511
2511 2512 ZFS_ENTER(zfsvfs);
2512 2513 ZFS_VERIFY_ZP(zp);
2513 2514
2514 2515 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2515 2516
2516 2517 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2517 2518 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2518 2519
2519 2520 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2520 2521 ZFS_EXIT(zfsvfs);
2521 2522 return (error);
2522 2523 }
2523 2524
2524 2525 /*
2525 2526 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2526 2527 * Also, if we are the owner don't bother, since owner should
2527 2528 * always be allowed to read basic attributes of file.
2528 2529 */
2529 2530 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2530 2531 (vap->va_uid != crgetuid(cr))) {
2531 2532 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2532 2533 skipaclchk, cr)) {
2533 2534 ZFS_EXIT(zfsvfs);
2534 2535 return (error);
2535 2536 }
2536 2537 }
2537 2538
2538 2539 /*
2539 2540 * Return all attributes. It's cheaper to provide the answer
2540 2541 * than to determine whether we were asked the question.
2541 2542 */
2542 2543
2543 2544 mutex_enter(&zp->z_lock);
2544 2545 vap->va_type = vp->v_type;
2545 2546 vap->va_mode = zp->z_mode & MODEMASK;
2546 2547 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2547 2548 vap->va_nodeid = zp->z_id;
2548 2549 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2549 2550 links = zp->z_links + 1;
2550 2551 else
2551 2552 links = zp->z_links;
2552 2553 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */
2553 2554 vap->va_size = zp->z_size;
2554 2555 vap->va_rdev = vp->v_rdev;
2555 2556 vap->va_seq = zp->z_seq;
2556 2557
2557 2558 /*
2558 2559 * Add in any requested optional attributes and the create time.
2559 2560 * Also set the corresponding bits in the returned attribute bitmap.
2560 2561 */
2561 2562 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2562 2563 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2563 2564 xoap->xoa_archive =
2564 2565 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2565 2566 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2566 2567 }
2567 2568
2568 2569 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2569 2570 xoap->xoa_readonly =
2570 2571 ((zp->z_pflags & ZFS_READONLY) != 0);
2571 2572 XVA_SET_RTN(xvap, XAT_READONLY);
2572 2573 }
2573 2574
2574 2575 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2575 2576 xoap->xoa_system =
2576 2577 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2577 2578 XVA_SET_RTN(xvap, XAT_SYSTEM);
2578 2579 }
2579 2580
2580 2581 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2581 2582 xoap->xoa_hidden =
2582 2583 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2583 2584 XVA_SET_RTN(xvap, XAT_HIDDEN);
2584 2585 }
2585 2586
2586 2587 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2587 2588 xoap->xoa_nounlink =
2588 2589 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2589 2590 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2590 2591 }
2591 2592
2592 2593 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2593 2594 xoap->xoa_immutable =
2594 2595 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2595 2596 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2596 2597 }
2597 2598
2598 2599 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2599 2600 xoap->xoa_appendonly =
2600 2601 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2601 2602 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2602 2603 }
2603 2604
2604 2605 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2605 2606 xoap->xoa_nodump =
2606 2607 ((zp->z_pflags & ZFS_NODUMP) != 0);
2607 2608 XVA_SET_RTN(xvap, XAT_NODUMP);
2608 2609 }
2609 2610
2610 2611 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2611 2612 xoap->xoa_opaque =
2612 2613 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2613 2614 XVA_SET_RTN(xvap, XAT_OPAQUE);
2614 2615 }
2615 2616
2616 2617 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2617 2618 xoap->xoa_av_quarantined =
2618 2619 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2619 2620 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2620 2621 }
2621 2622
2622 2623 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2623 2624 xoap->xoa_av_modified =
2624 2625 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2625 2626 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2626 2627 }
2627 2628
2628 2629 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2629 2630 vp->v_type == VREG) {
2630 2631 zfs_sa_get_scanstamp(zp, xvap);
2631 2632 }
2632 2633
2633 2634 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2634 2635 uint64_t times[2];
2635 2636
2636 2637 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2637 2638 times, sizeof (times));
2638 2639 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2639 2640 XVA_SET_RTN(xvap, XAT_CREATETIME);
2640 2641 }
2641 2642
2642 2643 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2643 2644 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2644 2645 XVA_SET_RTN(xvap, XAT_REPARSE);
2645 2646 }
2646 2647 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2647 2648 xoap->xoa_generation = zp->z_gen;
2648 2649 XVA_SET_RTN(xvap, XAT_GEN);
2649 2650 }
2650 2651
2651 2652 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2652 2653 xoap->xoa_offline =
2653 2654 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2654 2655 XVA_SET_RTN(xvap, XAT_OFFLINE);
2655 2656 }
2656 2657
2657 2658 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2658 2659 xoap->xoa_sparse =
2659 2660 ((zp->z_pflags & ZFS_SPARSE) != 0);
2660 2661 XVA_SET_RTN(xvap, XAT_SPARSE);
2661 2662 }
2662 2663 }
2663 2664
2664 2665 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2665 2666 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2666 2667 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2667 2668
2668 2669 mutex_exit(&zp->z_lock);
2669 2670
2670 2671 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2671 2672
2672 2673 if (zp->z_blksz == 0) {
2673 2674 /*
2674 2675 * Block size hasn't been set; suggest maximal I/O transfers.
2675 2676 */
2676 2677 vap->va_blksize = zfsvfs->z_max_blksz;
2677 2678 }
2678 2679
2679 2680 ZFS_EXIT(zfsvfs);
2680 2681 return (0);
2681 2682 }
2682 2683
2683 2684 /*
2684 2685 * Set the file attributes to the values contained in the
2685 2686 * vattr structure.
2686 2687 *
2687 2688 * IN: vp - vnode of file to be modified.
2688 2689 * vap - new attribute values.
2689 2690 * If AT_XVATTR set, then optional attrs are being set
2690 2691 * flags - ATTR_UTIME set if non-default time values provided.
2691 2692 * - ATTR_NOACLCHECK (CIFS context only).
2692 2693 * cr - credentials of caller.
2693 2694 * ct - caller context
2694 2695 *
2695 2696 * RETURN: 0 on success, error code on failure.
2696 2697 *
2697 2698 * Timestamps:
2698 2699 * vp - ctime updated, mtime updated if size changed.
2699 2700 */
2700 2701 /* ARGSUSED */
2701 2702 static int
2702 2703 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2703 2704 caller_context_t *ct)
2704 2705 {
2705 2706 znode_t *zp = VTOZ(vp);
2706 2707 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2707 2708 zilog_t *zilog;
2708 2709 dmu_tx_t *tx;
2709 2710 vattr_t oldva;
2710 2711 xvattr_t tmpxvattr;
2711 2712 uint_t mask = vap->va_mask;
2712 2713 uint_t saved_mask = 0;
2713 2714 int trim_mask = 0;
2714 2715 uint64_t new_mode;
2715 2716 uint64_t new_uid, new_gid;
2716 2717 uint64_t xattr_obj;
2717 2718 uint64_t mtime[2], ctime[2];
2718 2719 znode_t *attrzp;
2719 2720 int need_policy = FALSE;
2720 2721 int err, err2;
2721 2722 zfs_fuid_info_t *fuidp = NULL;
2722 2723 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2723 2724 xoptattr_t *xoap;
2724 2725 zfs_acl_t *aclp;
2725 2726 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2726 2727 boolean_t fuid_dirtied = B_FALSE;
2727 2728 sa_bulk_attr_t bulk[7], xattr_bulk[7];
2728 2729 int count = 0, xattr_count = 0;
2729 2730
2730 2731 if (mask == 0)
2731 2732 return (0);
2732 2733
2733 2734 if (mask & AT_NOSET)
2734 2735 return (SET_ERROR(EINVAL));
2735 2736
2736 2737 ZFS_ENTER(zfsvfs);
2737 2738 ZFS_VERIFY_ZP(zp);
2738 2739
2739 2740 zilog = zfsvfs->z_log;
2740 2741
2741 2742 /*
2742 2743 * Make sure that if we have ephemeral uid/gid or xvattr specified
2743 2744 * that file system is at proper version level
2744 2745 */
2745 2746
2746 2747 if (zfsvfs->z_use_fuids == B_FALSE &&
2747 2748 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2748 2749 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2749 2750 (mask & AT_XVATTR))) {
2750 2751 ZFS_EXIT(zfsvfs);
2751 2752 return (SET_ERROR(EINVAL));
2752 2753 }
2753 2754
2754 2755 if (mask & AT_SIZE && vp->v_type == VDIR) {
2755 2756 ZFS_EXIT(zfsvfs);
2756 2757 return (SET_ERROR(EISDIR));
2757 2758 }
2758 2759
2759 2760 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2760 2761 ZFS_EXIT(zfsvfs);
2761 2762 return (SET_ERROR(EINVAL));
2762 2763 }
2763 2764
2764 2765 /*
2765 2766 * If this is an xvattr_t, then get a pointer to the structure of
2766 2767 * optional attributes. If this is NULL, then we have a vattr_t.
2767 2768 */
2768 2769 xoap = xva_getxoptattr(xvap);
2769 2770
2770 2771 xva_init(&tmpxvattr);
2771 2772
2772 2773 /*
2773 2774 * Immutable files can only alter immutable bit and atime
2774 2775 */
2775 2776 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2776 2777 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2777 2778 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2778 2779 ZFS_EXIT(zfsvfs);
2779 2780 return (SET_ERROR(EPERM));
2780 2781 }
2781 2782
2782 2783 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2783 2784 ZFS_EXIT(zfsvfs);
2784 2785 return (SET_ERROR(EPERM));
2785 2786 }
2786 2787
2787 2788 /*
2788 2789 * Verify timestamps doesn't overflow 32 bits.
2789 2790 * ZFS can handle large timestamps, but 32bit syscalls can't
2790 2791 * handle times greater than 2039. This check should be removed
2791 2792 * once large timestamps are fully supported.
2792 2793 */
2793 2794 if (mask & (AT_ATIME | AT_MTIME)) {
2794 2795 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2795 2796 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2796 2797 ZFS_EXIT(zfsvfs);
2797 2798 return (SET_ERROR(EOVERFLOW));
2798 2799 }
2799 2800 }
2800 2801
2801 2802 top:
2802 2803 attrzp = NULL;
2803 2804 aclp = NULL;
2804 2805
2805 2806 /* Can this be moved to before the top label? */
2806 2807 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2807 2808 ZFS_EXIT(zfsvfs);
2808 2809 return (SET_ERROR(EROFS));
2809 2810 }
2810 2811
2811 2812 /*
2812 2813 * First validate permissions
2813 2814 */
2814 2815
2815 2816 if (mask & AT_SIZE) {
2816 2817 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2817 2818 if (err) {
2818 2819 ZFS_EXIT(zfsvfs);
2819 2820 return (err);
2820 2821 }
2821 2822 /*
2822 2823 * XXX - Note, we are not providing any open
2823 2824 * mode flags here (like FNDELAY), so we may
2824 2825 * block if there are locks present... this
2825 2826 * should be addressed in openat().
2826 2827 */
2827 2828 /* XXX - would it be OK to generate a log record here? */
2828 2829 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2829 2830 if (err) {
2830 2831 ZFS_EXIT(zfsvfs);
2831 2832 return (err);
2832 2833 }
2833 2834
2834 2835 if (vap->va_size == 0)
2835 2836 vnevent_truncate(ZTOV(zp), ct);
2836 2837 }
2837 2838
2838 2839 if (mask & (AT_ATIME|AT_MTIME) ||
2839 2840 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2840 2841 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2841 2842 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2842 2843 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2843 2844 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2844 2845 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2845 2846 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2846 2847 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2847 2848 skipaclchk, cr);
2848 2849 }
2849 2850
2850 2851 if (mask & (AT_UID|AT_GID)) {
2851 2852 int idmask = (mask & (AT_UID|AT_GID));
2852 2853 int take_owner;
2853 2854 int take_group;
2854 2855
2855 2856 /*
2856 2857 * NOTE: even if a new mode is being set,
2857 2858 * we may clear S_ISUID/S_ISGID bits.
2858 2859 */
2859 2860
2860 2861 if (!(mask & AT_MODE))
2861 2862 vap->va_mode = zp->z_mode;
2862 2863
2863 2864 /*
2864 2865 * Take ownership or chgrp to group we are a member of
2865 2866 */
2866 2867
2867 2868 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2868 2869 take_group = (mask & AT_GID) &&
2869 2870 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2870 2871
2871 2872 /*
2872 2873 * If both AT_UID and AT_GID are set then take_owner and
2873 2874 * take_group must both be set in order to allow taking
2874 2875 * ownership.
2875 2876 *
2876 2877 * Otherwise, send the check through secpolicy_vnode_setattr()
2877 2878 *
2878 2879 */
2879 2880
2880 2881 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2881 2882 ((idmask == AT_UID) && take_owner) ||
2882 2883 ((idmask == AT_GID) && take_group)) {
2883 2884 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2884 2885 skipaclchk, cr) == 0) {
2885 2886 /*
2886 2887 * Remove setuid/setgid for non-privileged users
2887 2888 */
2888 2889 secpolicy_setid_clear(vap, cr);
2889 2890 trim_mask = (mask & (AT_UID|AT_GID));
2890 2891 } else {
2891 2892 need_policy = TRUE;
2892 2893 }
2893 2894 } else {
2894 2895 need_policy = TRUE;
2895 2896 }
2896 2897 }
2897 2898
2898 2899 mutex_enter(&zp->z_lock);
2899 2900 oldva.va_mode = zp->z_mode;
2900 2901 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2901 2902 if (mask & AT_XVATTR) {
2902 2903 /*
2903 2904 * Update xvattr mask to include only those attributes
2904 2905 * that are actually changing.
2905 2906 *
2906 2907 * the bits will be restored prior to actually setting
2907 2908 * the attributes so the caller thinks they were set.
2908 2909 */
2909 2910 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2910 2911 if (xoap->xoa_appendonly !=
2911 2912 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2912 2913 need_policy = TRUE;
2913 2914 } else {
2914 2915 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2915 2916 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2916 2917 }
2917 2918 }
2918 2919
2919 2920 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2920 2921 if (xoap->xoa_nounlink !=
2921 2922 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2922 2923 need_policy = TRUE;
2923 2924 } else {
2924 2925 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2925 2926 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2926 2927 }
2927 2928 }
2928 2929
2929 2930 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2930 2931 if (xoap->xoa_immutable !=
2931 2932 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2932 2933 need_policy = TRUE;
2933 2934 } else {
2934 2935 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2935 2936 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2936 2937 }
2937 2938 }
2938 2939
2939 2940 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2940 2941 if (xoap->xoa_nodump !=
2941 2942 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2942 2943 need_policy = TRUE;
2943 2944 } else {
2944 2945 XVA_CLR_REQ(xvap, XAT_NODUMP);
2945 2946 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2946 2947 }
2947 2948 }
2948 2949
2949 2950 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2950 2951 if (xoap->xoa_av_modified !=
2951 2952 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2952 2953 need_policy = TRUE;
2953 2954 } else {
2954 2955 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2955 2956 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2956 2957 }
2957 2958 }
2958 2959
2959 2960 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2960 2961 if ((vp->v_type != VREG &&
2961 2962 xoap->xoa_av_quarantined) ||
2962 2963 xoap->xoa_av_quarantined !=
2963 2964 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2964 2965 need_policy = TRUE;
2965 2966 } else {
2966 2967 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2967 2968 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2968 2969 }
2969 2970 }
2970 2971
2971 2972 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2972 2973 mutex_exit(&zp->z_lock);
2973 2974 ZFS_EXIT(zfsvfs);
2974 2975 return (SET_ERROR(EPERM));
2975 2976 }
2976 2977
2977 2978 if (need_policy == FALSE &&
2978 2979 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2979 2980 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2980 2981 need_policy = TRUE;
2981 2982 }
2982 2983 }
2983 2984
2984 2985 mutex_exit(&zp->z_lock);
2985 2986
2986 2987 if (mask & AT_MODE) {
2987 2988 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2988 2989 err = secpolicy_setid_setsticky_clear(vp, vap,
2989 2990 &oldva, cr);
2990 2991 if (err) {
2991 2992 ZFS_EXIT(zfsvfs);
2992 2993 return (err);
2993 2994 }
2994 2995 trim_mask |= AT_MODE;
2995 2996 } else {
2996 2997 need_policy = TRUE;
2997 2998 }
2998 2999 }
2999 3000
3000 3001 if (need_policy) {
3001 3002 /*
3002 3003 * If trim_mask is set then take ownership
3003 3004 * has been granted or write_acl is present and user
3004 3005 * has the ability to modify mode. In that case remove
3005 3006 * UID|GID and or MODE from mask so that
3006 3007 * secpolicy_vnode_setattr() doesn't revoke it.
3007 3008 */
3008 3009
3009 3010 if (trim_mask) {
3010 3011 saved_mask = vap->va_mask;
3011 3012 vap->va_mask &= ~trim_mask;
3012 3013 }
3013 3014 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3014 3015 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3015 3016 if (err) {
3016 3017 ZFS_EXIT(zfsvfs);
3017 3018 return (err);
3018 3019 }
3019 3020
3020 3021 if (trim_mask)
3021 3022 vap->va_mask |= saved_mask;
3022 3023 }
3023 3024
3024 3025 /*
3025 3026 * secpolicy_vnode_setattr, or take ownership may have
3026 3027 * changed va_mask
3027 3028 */
3028 3029 mask = vap->va_mask;
3029 3030
3030 3031 if ((mask & (AT_UID | AT_GID))) {
3031 3032 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3032 3033 &xattr_obj, sizeof (xattr_obj));
3033 3034
3034 3035 if (err == 0 && xattr_obj) {
3035 3036 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3036 3037 if (err)
3037 3038 goto out2;
3038 3039 }
3039 3040 if (mask & AT_UID) {
3040 3041 new_uid = zfs_fuid_create(zfsvfs,
3041 3042 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3042 3043 if (new_uid != zp->z_uid &&
3043 3044 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3044 3045 if (attrzp)
3045 3046 VN_RELE(ZTOV(attrzp));
3046 3047 err = SET_ERROR(EDQUOT);
3047 3048 goto out2;
3048 3049 }
3049 3050 }
3050 3051
3051 3052 if (mask & AT_GID) {
3052 3053 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3053 3054 cr, ZFS_GROUP, &fuidp);
3054 3055 if (new_gid != zp->z_gid &&
3055 3056 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3056 3057 if (attrzp)
3057 3058 VN_RELE(ZTOV(attrzp));
3058 3059 err = SET_ERROR(EDQUOT);
3059 3060 goto out2;
3060 3061 }
3061 3062 }
3062 3063 }
3063 3064 tx = dmu_tx_create(zfsvfs->z_os);
3064 3065
3065 3066 if (mask & AT_MODE) {
3066 3067 uint64_t pmode = zp->z_mode;
3067 3068 uint64_t acl_obj;
3068 3069 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3069 3070
3070 3071 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3071 3072 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3072 3073 err = SET_ERROR(EPERM);
3073 3074 goto out;
3074 3075 }
3075 3076
3076 3077 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3077 3078 goto out;
3078 3079
3079 3080 mutex_enter(&zp->z_lock);
3080 3081 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3081 3082 /*
3082 3083 * Are we upgrading ACL from old V0 format
3083 3084 * to V1 format?
3084 3085 */
3085 3086 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3086 3087 zfs_znode_acl_version(zp) ==
3087 3088 ZFS_ACL_VERSION_INITIAL) {
3088 3089 dmu_tx_hold_free(tx, acl_obj, 0,
3089 3090 DMU_OBJECT_END);
3090 3091 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3091 3092 0, aclp->z_acl_bytes);
3092 3093 } else {
3093 3094 dmu_tx_hold_write(tx, acl_obj, 0,
3094 3095 aclp->z_acl_bytes);
3095 3096 }
3096 3097 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3097 3098 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3098 3099 0, aclp->z_acl_bytes);
3099 3100 }
3100 3101 mutex_exit(&zp->z_lock);
3101 3102 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3102 3103 } else {
3103 3104 if ((mask & AT_XVATTR) &&
3104 3105 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3105 3106 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3106 3107 else
3107 3108 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3108 3109 }
3109 3110
3110 3111 if (attrzp) {
3111 3112 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3112 3113 }
3113 3114
3114 3115 fuid_dirtied = zfsvfs->z_fuid_dirty;
3115 3116 if (fuid_dirtied)
3116 3117 zfs_fuid_txhold(zfsvfs, tx);
3117 3118
3118 3119 zfs_sa_upgrade_txholds(tx, zp);
3119 3120
3120 3121 err = dmu_tx_assign(tx, TXG_WAIT);
3121 3122 if (err)
3122 3123 goto out;
3123 3124
3124 3125 count = 0;
3125 3126 /*
3126 3127 * Set each attribute requested.
3127 3128 * We group settings according to the locks they need to acquire.
3128 3129 *
3129 3130 * Note: you cannot set ctime directly, although it will be
3130 3131 * updated as a side-effect of calling this function.
3131 3132 */
3132 3133
3133 3134
3134 3135 if (mask & (AT_UID|AT_GID|AT_MODE))
3135 3136 mutex_enter(&zp->z_acl_lock);
3136 3137 mutex_enter(&zp->z_lock);
3137 3138
3138 3139 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3139 3140 &zp->z_pflags, sizeof (zp->z_pflags));
3140 3141
3141 3142 if (attrzp) {
3142 3143 if (mask & (AT_UID|AT_GID|AT_MODE))
3143 3144 mutex_enter(&attrzp->z_acl_lock);
3144 3145 mutex_enter(&attrzp->z_lock);
3145 3146 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3146 3147 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3147 3148 sizeof (attrzp->z_pflags));
3148 3149 }
3149 3150
3150 3151 if (mask & (AT_UID|AT_GID)) {
3151 3152
3152 3153 if (mask & AT_UID) {
3153 3154 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3154 3155 &new_uid, sizeof (new_uid));
3155 3156 zp->z_uid = new_uid;
3156 3157 if (attrzp) {
3157 3158 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3158 3159 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3159 3160 sizeof (new_uid));
3160 3161 attrzp->z_uid = new_uid;
3161 3162 }
3162 3163 }
3163 3164
3164 3165 if (mask & AT_GID) {
3165 3166 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3166 3167 NULL, &new_gid, sizeof (new_gid));
3167 3168 zp->z_gid = new_gid;
3168 3169 if (attrzp) {
3169 3170 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3170 3171 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3171 3172 sizeof (new_gid));
3172 3173 attrzp->z_gid = new_gid;
3173 3174 }
3174 3175 }
3175 3176 if (!(mask & AT_MODE)) {
3176 3177 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3177 3178 NULL, &new_mode, sizeof (new_mode));
3178 3179 new_mode = zp->z_mode;
3179 3180 }
3180 3181 err = zfs_acl_chown_setattr(zp);
3181 3182 ASSERT(err == 0);
3182 3183 if (attrzp) {
3183 3184 err = zfs_acl_chown_setattr(attrzp);
3184 3185 ASSERT(err == 0);
3185 3186 }
3186 3187 }
3187 3188
3188 3189 if (mask & AT_MODE) {
3189 3190 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3190 3191 &new_mode, sizeof (new_mode));
3191 3192 zp->z_mode = new_mode;
3192 3193 ASSERT3U((uintptr_t)aclp, !=, NULL);
3193 3194 err = zfs_aclset_common(zp, aclp, cr, tx);
3194 3195 ASSERT0(err);
3195 3196 if (zp->z_acl_cached)
3196 3197 zfs_acl_free(zp->z_acl_cached);
3197 3198 zp->z_acl_cached = aclp;
3198 3199 aclp = NULL;
3199 3200 }
3200 3201
3201 3202
3202 3203 if (mask & AT_ATIME) {
3203 3204 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3204 3205 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3205 3206 &zp->z_atime, sizeof (zp->z_atime));
3206 3207 }
3207 3208
3208 3209 if (mask & AT_MTIME) {
3209 3210 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3210 3211 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3211 3212 mtime, sizeof (mtime));
3212 3213 }
3213 3214
3214 3215 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3215 3216 if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3216 3217 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3217 3218 NULL, mtime, sizeof (mtime));
3218 3219 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3219 3220 &ctime, sizeof (ctime));
3220 3221 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3221 3222 B_TRUE);
3222 3223 } else if (mask != 0) {
3223 3224 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3224 3225 &ctime, sizeof (ctime));
3225 3226 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3226 3227 B_TRUE);
3227 3228 if (attrzp) {
3228 3229 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3229 3230 SA_ZPL_CTIME(zfsvfs), NULL,
3230 3231 &ctime, sizeof (ctime));
3231 3232 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3232 3233 mtime, ctime, B_TRUE);
3233 3234 }
3234 3235 }
3235 3236 /*
3236 3237 * Do this after setting timestamps to prevent timestamp
3237 3238 * update from toggling bit
3238 3239 */
3239 3240
3240 3241 if (xoap && (mask & AT_XVATTR)) {
3241 3242
3242 3243 /*
3243 3244 * restore trimmed off masks
3244 3245 * so that return masks can be set for caller.
3245 3246 */
3246 3247
3247 3248 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3248 3249 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3249 3250 }
3250 3251 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3251 3252 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3252 3253 }
3253 3254 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3254 3255 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3255 3256 }
3256 3257 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3257 3258 XVA_SET_REQ(xvap, XAT_NODUMP);
3258 3259 }
3259 3260 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3260 3261 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3261 3262 }
3262 3263 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3263 3264 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3264 3265 }
3265 3266
3266 3267 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3267 3268 ASSERT(vp->v_type == VREG);
3268 3269
3269 3270 zfs_xvattr_set(zp, xvap, tx);
3270 3271 }
3271 3272
3272 3273 if (fuid_dirtied)
3273 3274 zfs_fuid_sync(zfsvfs, tx);
3274 3275
3275 3276 if (mask != 0)
3276 3277 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3277 3278
3278 3279 mutex_exit(&zp->z_lock);
3279 3280 if (mask & (AT_UID|AT_GID|AT_MODE))
3280 3281 mutex_exit(&zp->z_acl_lock);
3281 3282
3282 3283 if (attrzp) {
3283 3284 if (mask & (AT_UID|AT_GID|AT_MODE))
3284 3285 mutex_exit(&attrzp->z_acl_lock);
3285 3286 mutex_exit(&attrzp->z_lock);
3286 3287 }
3287 3288 out:
3288 3289 if (err == 0 && attrzp) {
3289 3290 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3290 3291 xattr_count, tx);
3291 3292 ASSERT(err2 == 0);
3292 3293 }
3293 3294
3294 3295 if (attrzp)
3295 3296 VN_RELE(ZTOV(attrzp));
3296 3297
3297 3298 if (aclp)
3298 3299 zfs_acl_free(aclp);
3299 3300
3300 3301 if (fuidp) {
3301 3302 zfs_fuid_info_free(fuidp);
3302 3303 fuidp = NULL;
3303 3304 }
3304 3305
3305 3306 if (err) {
3306 3307 dmu_tx_abort(tx);
3307 3308 if (err == ERESTART)
3308 3309 goto top;
3309 3310 } else {
3310 3311 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3311 3312 dmu_tx_commit(tx);
3312 3313 }
3313 3314
3314 3315 out2:
3315 3316 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3316 3317 zil_commit(zilog, 0);
3317 3318
3318 3319 ZFS_EXIT(zfsvfs);
3319 3320 return (err);
3320 3321 }
3321 3322
3322 3323 typedef struct zfs_zlock {
3323 3324 krwlock_t *zl_rwlock; /* lock we acquired */
3324 3325 znode_t *zl_znode; /* znode we held */
3325 3326 struct zfs_zlock *zl_next; /* next in list */
3326 3327 } zfs_zlock_t;
3327 3328
3328 3329 /*
3329 3330 * Drop locks and release vnodes that were held by zfs_rename_lock().
3330 3331 */
3331 3332 static void
3332 3333 zfs_rename_unlock(zfs_zlock_t **zlpp)
3333 3334 {
3334 3335 zfs_zlock_t *zl;
3335 3336
3336 3337 while ((zl = *zlpp) != NULL) {
3337 3338 if (zl->zl_znode != NULL)
3338 3339 VN_RELE(ZTOV(zl->zl_znode));
3339 3340 rw_exit(zl->zl_rwlock);
3340 3341 *zlpp = zl->zl_next;
3341 3342 kmem_free(zl, sizeof (*zl));
3342 3343 }
3343 3344 }
3344 3345
3345 3346 /*
3346 3347 * Search back through the directory tree, using the ".." entries.
3347 3348 * Lock each directory in the chain to prevent concurrent renames.
3348 3349 * Fail any attempt to move a directory into one of its own descendants.
3349 3350 * XXX - z_parent_lock can overlap with map or grow locks
3350 3351 */
3351 3352 static int
3352 3353 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3353 3354 {
3354 3355 zfs_zlock_t *zl;
3355 3356 znode_t *zp = tdzp;
3356 3357 uint64_t rootid = zp->z_zfsvfs->z_root;
3357 3358 uint64_t oidp = zp->z_id;
3358 3359 krwlock_t *rwlp = &szp->z_parent_lock;
3359 3360 krw_t rw = RW_WRITER;
3360 3361
3361 3362 /*
3362 3363 * First pass write-locks szp and compares to zp->z_id.
3363 3364 * Later passes read-lock zp and compare to zp->z_parent.
3364 3365 */
3365 3366 do {
3366 3367 if (!rw_tryenter(rwlp, rw)) {
3367 3368 /*
3368 3369 * Another thread is renaming in this path.
3369 3370 * Note that if we are a WRITER, we don't have any
3370 3371 * parent_locks held yet.
3371 3372 */
3372 3373 if (rw == RW_READER && zp->z_id > szp->z_id) {
3373 3374 /*
3374 3375 * Drop our locks and restart
3375 3376 */
3376 3377 zfs_rename_unlock(&zl);
3377 3378 *zlpp = NULL;
3378 3379 zp = tdzp;
3379 3380 oidp = zp->z_id;
3380 3381 rwlp = &szp->z_parent_lock;
3381 3382 rw = RW_WRITER;
3382 3383 continue;
3383 3384 } else {
3384 3385 /*
3385 3386 * Wait for other thread to drop its locks
3386 3387 */
3387 3388 rw_enter(rwlp, rw);
3388 3389 }
3389 3390 }
3390 3391
3391 3392 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3392 3393 zl->zl_rwlock = rwlp;
3393 3394 zl->zl_znode = NULL;
3394 3395 zl->zl_next = *zlpp;
3395 3396 *zlpp = zl;
3396 3397
3397 3398 if (oidp == szp->z_id) /* We're a descendant of szp */
3398 3399 return (SET_ERROR(EINVAL));
3399 3400
3400 3401 if (oidp == rootid) /* We've hit the top */
3401 3402 return (0);
3402 3403
3403 3404 if (rw == RW_READER) { /* i.e. not the first pass */
3404 3405 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3405 3406 if (error)
3406 3407 return (error);
3407 3408 zl->zl_znode = zp;
3408 3409 }
3409 3410 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3410 3411 &oidp, sizeof (oidp));
3411 3412 rwlp = &zp->z_parent_lock;
3412 3413 rw = RW_READER;
3413 3414
3414 3415 } while (zp->z_id != sdzp->z_id);
3415 3416
3416 3417 return (0);
3417 3418 }
3418 3419
3419 3420 /*
3420 3421 * Move an entry from the provided source directory to the target
3421 3422 * directory. Change the entry name as indicated.
3422 3423 *
3423 3424 * IN: sdvp - Source directory containing the "old entry".
3424 3425 * snm - Old entry name.
3425 3426 * tdvp - Target directory to contain the "new entry".
3426 3427 * tnm - New entry name.
3427 3428 * cr - credentials of caller.
3428 3429 * ct - caller context
3429 3430 * flags - case flags
3430 3431 *
3431 3432 * RETURN: 0 on success, error code on failure.
3432 3433 *
3433 3434 * Timestamps:
3434 3435 * sdvp,tdvp - ctime|mtime updated
3435 3436 */
3436 3437 /*ARGSUSED*/
3437 3438 static int
3438 3439 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3439 3440 caller_context_t *ct, int flags)
3440 3441 {
3441 3442 znode_t *tdzp, *szp, *tzp;
3442 3443 znode_t *sdzp = VTOZ(sdvp);
3443 3444 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
3444 3445 zilog_t *zilog;
3445 3446 vnode_t *realvp;
3446 3447 zfs_dirlock_t *sdl, *tdl;
3447 3448 dmu_tx_t *tx;
3448 3449 zfs_zlock_t *zl;
3449 3450 int cmp, serr, terr;
3450 3451 int error = 0, rm_err = 0;
3451 3452 int zflg = 0;
3452 3453 boolean_t waited = B_FALSE;
3453 3454
3454 3455 ZFS_ENTER(zfsvfs);
3455 3456 ZFS_VERIFY_ZP(sdzp);
3456 3457 zilog = zfsvfs->z_log;
3457 3458
3458 3459 /*
3459 3460 * Make sure we have the real vp for the target directory.
3460 3461 */
3461 3462 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3462 3463 tdvp = realvp;
3463 3464
3464 3465 tdzp = VTOZ(tdvp);
3465 3466 ZFS_VERIFY_ZP(tdzp);
3466 3467
3467 3468 /*
3468 3469 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3469 3470 * ctldir appear to have the same v_vfsp.
3470 3471 */
3471 3472 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3472 3473 ZFS_EXIT(zfsvfs);
3473 3474 return (SET_ERROR(EXDEV));
3474 3475 }
3475 3476
3476 3477 if (zfsvfs->z_utf8 && u8_validate(tnm,
3477 3478 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3478 3479 ZFS_EXIT(zfsvfs);
3479 3480 return (SET_ERROR(EILSEQ));
3480 3481 }
3481 3482
3482 3483 if (flags & FIGNORECASE)
3483 3484 zflg |= ZCILOOK;
3484 3485
3485 3486 top:
3486 3487 szp = NULL;
3487 3488 tzp = NULL;
3488 3489 zl = NULL;
3489 3490
3490 3491 /*
3491 3492 * This is to prevent the creation of links into attribute space
3492 3493 * by renaming a linked file into/outof an attribute directory.
3493 3494 * See the comment in zfs_link() for why this is considered bad.
3494 3495 */
3495 3496 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3496 3497 ZFS_EXIT(zfsvfs);
3497 3498 return (SET_ERROR(EINVAL));
3498 3499 }
3499 3500
3500 3501 /*
3501 3502 * Lock source and target directory entries. To prevent deadlock,
3502 3503 * a lock ordering must be defined. We lock the directory with
3503 3504 * the smallest object id first, or if it's a tie, the one with
3504 3505 * the lexically first name.
3505 3506 */
3506 3507 if (sdzp->z_id < tdzp->z_id) {
3507 3508 cmp = -1;
3508 3509 } else if (sdzp->z_id > tdzp->z_id) {
3509 3510 cmp = 1;
3510 3511 } else {
3511 3512 /*
3512 3513 * First compare the two name arguments without
3513 3514 * considering any case folding.
3514 3515 */
3515 3516 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3516 3517
3517 3518 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3518 3519 ASSERT(error == 0 || !zfsvfs->z_utf8);
3519 3520 if (cmp == 0) {
3520 3521 /*
3521 3522 * POSIX: "If the old argument and the new argument
3522 3523 * both refer to links to the same existing file,
3523 3524 * the rename() function shall return successfully
3524 3525 * and perform no other action."
3525 3526 */
3526 3527 ZFS_EXIT(zfsvfs);
3527 3528 return (0);
3528 3529 }
3529 3530 /*
3530 3531 * If the file system is case-folding, then we may
3531 3532 * have some more checking to do. A case-folding file
3532 3533 * system is either supporting mixed case sensitivity
3533 3534 * access or is completely case-insensitive. Note
3534 3535 * that the file system is always case preserving.
3535 3536 *
3536 3537 * In mixed sensitivity mode case sensitive behavior
3537 3538 * is the default. FIGNORECASE must be used to
3538 3539 * explicitly request case insensitive behavior.
3539 3540 *
3540 3541 * If the source and target names provided differ only
3541 3542 * by case (e.g., a request to rename 'tim' to 'Tim'),
3542 3543 * we will treat this as a special case in the
3543 3544 * case-insensitive mode: as long as the source name
3544 3545 * is an exact match, we will allow this to proceed as
3545 3546 * a name-change request.
3546 3547 */
3547 3548 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3548 3549 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3549 3550 flags & FIGNORECASE)) &&
3550 3551 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3551 3552 &error) == 0) {
3552 3553 /*
3553 3554 * case preserving rename request, require exact
3554 3555 * name matches
3555 3556 */
3556 3557 zflg |= ZCIEXACT;
3557 3558 zflg &= ~ZCILOOK;
3558 3559 }
3559 3560 }
3560 3561
3561 3562 /*
3562 3563 * If the source and destination directories are the same, we should
3563 3564 * grab the z_name_lock of that directory only once.
3564 3565 */
3565 3566 if (sdzp == tdzp) {
3566 3567 zflg |= ZHAVELOCK;
3567 3568 rw_enter(&sdzp->z_name_lock, RW_READER);
3568 3569 }
3569 3570
3570 3571 if (cmp < 0) {
3571 3572 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3572 3573 ZEXISTS | zflg, NULL, NULL);
3573 3574 terr = zfs_dirent_lock(&tdl,
3574 3575 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3575 3576 } else {
3576 3577 terr = zfs_dirent_lock(&tdl,
3577 3578 tdzp, tnm, &tzp, zflg, NULL, NULL);
3578 3579 serr = zfs_dirent_lock(&sdl,
3579 3580 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3580 3581 NULL, NULL);
3581 3582 }
3582 3583
3583 3584 if (serr) {
3584 3585 /*
3585 3586 * Source entry invalid or not there.
3586 3587 */
3587 3588 if (!terr) {
3588 3589 zfs_dirent_unlock(tdl);
3589 3590 if (tzp)
3590 3591 VN_RELE(ZTOV(tzp));
3591 3592 }
3592 3593
3593 3594 if (sdzp == tdzp)
3594 3595 rw_exit(&sdzp->z_name_lock);
3595 3596
3596 3597 if (strcmp(snm, "..") == 0)
3597 3598 serr = SET_ERROR(EINVAL);
3598 3599 ZFS_EXIT(zfsvfs);
3599 3600 return (serr);
3600 3601 }
3601 3602 if (terr) {
3602 3603 zfs_dirent_unlock(sdl);
3603 3604 VN_RELE(ZTOV(szp));
3604 3605
3605 3606 if (sdzp == tdzp)
3606 3607 rw_exit(&sdzp->z_name_lock);
3607 3608
3608 3609 if (strcmp(tnm, "..") == 0)
3609 3610 terr = SET_ERROR(EINVAL);
3610 3611 ZFS_EXIT(zfsvfs);
3611 3612 return (terr);
3612 3613 }
3613 3614
3614 3615 /*
3615 3616 * Must have write access at the source to remove the old entry
3616 3617 * and write access at the target to create the new entry.
3617 3618 * Note that if target and source are the same, this can be
3618 3619 * done in a single check.
3619 3620 */
3620 3621
3621 3622 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3622 3623 goto out;
3623 3624
3624 3625 if (ZTOV(szp)->v_type == VDIR) {
3625 3626 /*
3626 3627 * Check to make sure rename is valid.
3627 3628 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3628 3629 */
3629 3630 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3630 3631 goto out;
3631 3632 }
3632 3633
3633 3634 /*
3634 3635 * Does target exist?
3635 3636 */
3636 3637 if (tzp) {
3637 3638 /*
3638 3639 * Source and target must be the same type.
3639 3640 */
3640 3641 if (ZTOV(szp)->v_type == VDIR) {
3641 3642 if (ZTOV(tzp)->v_type != VDIR) {
3642 3643 error = SET_ERROR(ENOTDIR);
3643 3644 goto out;
3644 3645 }
3645 3646 } else {
3646 3647 if (ZTOV(tzp)->v_type == VDIR) {
3647 3648 error = SET_ERROR(EISDIR);
3648 3649 goto out;
3649 3650 }
3650 3651 }
3651 3652 /*
3652 3653 * POSIX dictates that when the source and target
3653 3654 * entries refer to the same file object, rename
3654 3655 * must do nothing and exit without error.
3655 3656 */
3656 3657 if (szp->z_id == tzp->z_id) {
3657 3658 error = 0;
3658 3659 goto out;
3659 3660 }
3660 3661 }
3661 3662
3662 3663 vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct);
3663 3664 if (tzp)
3664 3665 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3665 3666
3666 3667 /*
3667 3668 * notify the target directory if it is not the same
3668 3669 * as source directory.
3669 3670 */
3670 3671 if (tdvp != sdvp) {
3671 3672 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct);
3672 3673 }
3673 3674
3674 3675 tx = dmu_tx_create(zfsvfs->z_os);
3675 3676 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3676 3677 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3677 3678 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3678 3679 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3679 3680 if (sdzp != tdzp) {
3680 3681 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3681 3682 zfs_sa_upgrade_txholds(tx, tdzp);
3682 3683 }
3683 3684 if (tzp) {
3684 3685 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3685 3686 zfs_sa_upgrade_txholds(tx, tzp);
3686 3687 }
3687 3688
3688 3689 zfs_sa_upgrade_txholds(tx, szp);
3689 3690 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3690 3691 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3691 3692 if (error) {
3692 3693 if (zl != NULL)
3693 3694 zfs_rename_unlock(&zl);
3694 3695 zfs_dirent_unlock(sdl);
3695 3696 zfs_dirent_unlock(tdl);
3696 3697
3697 3698 if (sdzp == tdzp)
3698 3699 rw_exit(&sdzp->z_name_lock);
3699 3700
3700 3701 VN_RELE(ZTOV(szp));
3701 3702 if (tzp)
3702 3703 VN_RELE(ZTOV(tzp));
3703 3704 if (error == ERESTART) {
3704 3705 waited = B_TRUE;
3705 3706 dmu_tx_wait(tx);
3706 3707 dmu_tx_abort(tx);
3707 3708 goto top;
3708 3709 }
3709 3710 dmu_tx_abort(tx);
3710 3711 ZFS_EXIT(zfsvfs);
3711 3712 return (error);
3712 3713 }
3713 3714
3714 3715 if (tzp) /* Attempt to remove the existing target */
3715 3716 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3716 3717
3717 3718 if (error == 0) {
3718 3719 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3719 3720 if (error == 0) {
3720 3721 szp->z_pflags |= ZFS_AV_MODIFIED;
3721 3722
3722 3723 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3723 3724 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3724 3725 ASSERT0(error);
3725 3726
3726 3727 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3727 3728 if (error == 0) {
3728 3729 zfs_log_rename(zilog, tx, TX_RENAME |
3729 3730 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3730 3731 sdl->dl_name, tdzp, tdl->dl_name, szp);
3731 3732
3732 3733 /*
3733 3734 * Update path information for the target vnode
3734 3735 */
3735 3736 vn_renamepath(tdvp, ZTOV(szp), tnm,
3736 3737 strlen(tnm));
3737 3738 } else {
3738 3739 /*
3739 3740 * At this point, we have successfully created
3740 3741 * the target name, but have failed to remove
3741 3742 * the source name. Since the create was done
3742 3743 * with the ZRENAMING flag, there are
3743 3744 * complications; for one, the link count is
3744 3745 * wrong. The easiest way to deal with this
3745 3746 * is to remove the newly created target, and
3746 3747 * return the original error. This must
3747 3748 * succeed; fortunately, it is very unlikely to
3748 3749 * fail, since we just created it.
3749 3750 */
3750 3751 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3751 3752 ZRENAMING, NULL), ==, 0);
3752 3753 }
3753 3754 }
3754 3755 }
3755 3756
3756 3757 dmu_tx_commit(tx);
3757 3758
3758 3759 if (tzp && rm_err == 0)
3759 3760 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3760 3761
3761 3762 if (error == 0) {
3762 3763 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3763 3764 /* notify the target dir if it is not the same as source dir */
3764 3765 if (tdvp != sdvp)
3765 3766 vnevent_rename_dest_dir(tdvp, ct);
3766 3767 }
3767 3768 out:
3768 3769 if (zl != NULL)
3769 3770 zfs_rename_unlock(&zl);
3770 3771
3771 3772 zfs_dirent_unlock(sdl);
3772 3773 zfs_dirent_unlock(tdl);
3773 3774
3774 3775 if (sdzp == tdzp)
3775 3776 rw_exit(&sdzp->z_name_lock);
3776 3777
3777 3778
3778 3779 VN_RELE(ZTOV(szp));
3779 3780 if (tzp)
3780 3781 VN_RELE(ZTOV(tzp));
3781 3782
3782 3783 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3783 3784 zil_commit(zilog, 0);
3784 3785
3785 3786 ZFS_EXIT(zfsvfs);
3786 3787 return (error);
3787 3788 }
3788 3789
3789 3790 /*
3790 3791 * Insert the indicated symbolic reference entry into the directory.
3791 3792 *
3792 3793 * IN: dvp - Directory to contain new symbolic link.
3793 3794 * link - Name for new symlink entry.
3794 3795 * vap - Attributes of new entry.
3795 3796 * cr - credentials of caller.
3796 3797 * ct - caller context
3797 3798 * flags - case flags
3798 3799 *
3799 3800 * RETURN: 0 on success, error code on failure.
3800 3801 *
3801 3802 * Timestamps:
3802 3803 * dvp - ctime|mtime updated
3803 3804 */
3804 3805 /*ARGSUSED*/
3805 3806 static int
3806 3807 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3807 3808 caller_context_t *ct, int flags)
3808 3809 {
3809 3810 znode_t *zp, *dzp = VTOZ(dvp);
3810 3811 zfs_dirlock_t *dl;
3811 3812 dmu_tx_t *tx;
3812 3813 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3813 3814 zilog_t *zilog;
3814 3815 uint64_t len = strlen(link);
3815 3816 int error;
3816 3817 int zflg = ZNEW;
3817 3818 zfs_acl_ids_t acl_ids;
3818 3819 boolean_t fuid_dirtied;
3819 3820 uint64_t txtype = TX_SYMLINK;
3820 3821 boolean_t waited = B_FALSE;
3821 3822
3822 3823 ASSERT(vap->va_type == VLNK);
3823 3824
3824 3825 ZFS_ENTER(zfsvfs);
3825 3826 ZFS_VERIFY_ZP(dzp);
3826 3827 zilog = zfsvfs->z_log;
3827 3828
3828 3829 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3829 3830 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3830 3831 ZFS_EXIT(zfsvfs);
3831 3832 return (SET_ERROR(EILSEQ));
3832 3833 }
3833 3834 if (flags & FIGNORECASE)
3834 3835 zflg |= ZCILOOK;
3835 3836
3836 3837 if (len > MAXPATHLEN) {
3837 3838 ZFS_EXIT(zfsvfs);
3838 3839 return (SET_ERROR(ENAMETOOLONG));
3839 3840 }
3840 3841
3841 3842 if ((error = zfs_acl_ids_create(dzp, 0,
3842 3843 vap, cr, NULL, &acl_ids)) != 0) {
3843 3844 ZFS_EXIT(zfsvfs);
3844 3845 return (error);
3845 3846 }
3846 3847 top:
3847 3848 /*
3848 3849 * Attempt to lock directory; fail if entry already exists.
3849 3850 */
3850 3851 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3851 3852 if (error) {
3852 3853 zfs_acl_ids_free(&acl_ids);
3853 3854 ZFS_EXIT(zfsvfs);
3854 3855 return (error);
3855 3856 }
3856 3857
3857 3858 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3858 3859 zfs_acl_ids_free(&acl_ids);
3859 3860 zfs_dirent_unlock(dl);
3860 3861 ZFS_EXIT(zfsvfs);
3861 3862 return (error);
3862 3863 }
3863 3864
3864 3865 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3865 3866 zfs_acl_ids_free(&acl_ids);
3866 3867 zfs_dirent_unlock(dl);
3867 3868 ZFS_EXIT(zfsvfs);
3868 3869 return (SET_ERROR(EDQUOT));
3869 3870 }
3870 3871 tx = dmu_tx_create(zfsvfs->z_os);
3871 3872 fuid_dirtied = zfsvfs->z_fuid_dirty;
3872 3873 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3873 3874 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3874 3875 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3875 3876 ZFS_SA_BASE_ATTR_SIZE + len);
3876 3877 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3877 3878 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3878 3879 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3879 3880 acl_ids.z_aclp->z_acl_bytes);
3880 3881 }
3881 3882 if (fuid_dirtied)
3882 3883 zfs_fuid_txhold(zfsvfs, tx);
3883 3884 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3884 3885 if (error) {
3885 3886 zfs_dirent_unlock(dl);
3886 3887 if (error == ERESTART) {
3887 3888 waited = B_TRUE;
3888 3889 dmu_tx_wait(tx);
3889 3890 dmu_tx_abort(tx);
3890 3891 goto top;
3891 3892 }
3892 3893 zfs_acl_ids_free(&acl_ids);
3893 3894 dmu_tx_abort(tx);
3894 3895 ZFS_EXIT(zfsvfs);
3895 3896 return (error);
3896 3897 }
3897 3898
3898 3899 /*
3899 3900 * Create a new object for the symlink.
3900 3901 * for version 4 ZPL datsets the symlink will be an SA attribute
3901 3902 */
3902 3903 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3903 3904
3904 3905 if (fuid_dirtied)
3905 3906 zfs_fuid_sync(zfsvfs, tx);
3906 3907
3907 3908 mutex_enter(&zp->z_lock);
3908 3909 if (zp->z_is_sa)
3909 3910 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3910 3911 link, len, tx);
3911 3912 else
3912 3913 zfs_sa_symlink(zp, link, len, tx);
3913 3914 mutex_exit(&zp->z_lock);
3914 3915
3915 3916 zp->z_size = len;
3916 3917 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3917 3918 &zp->z_size, sizeof (zp->z_size), tx);
3918 3919 /*
3919 3920 * Insert the new object into the directory.
3920 3921 */
3921 3922 (void) zfs_link_create(dl, zp, tx, ZNEW);
3922 3923
3923 3924 if (flags & FIGNORECASE)
3924 3925 txtype |= TX_CI;
3925 3926 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3926 3927
3927 3928 zfs_acl_ids_free(&acl_ids);
3928 3929
3929 3930 dmu_tx_commit(tx);
3930 3931
3931 3932 zfs_dirent_unlock(dl);
3932 3933
3933 3934 VN_RELE(ZTOV(zp));
3934 3935
3935 3936 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3936 3937 zil_commit(zilog, 0);
3937 3938
3938 3939 ZFS_EXIT(zfsvfs);
3939 3940 return (error);
3940 3941 }
3941 3942
3942 3943 /*
3943 3944 * Return, in the buffer contained in the provided uio structure,
3944 3945 * the symbolic path referred to by vp.
3945 3946 *
3946 3947 * IN: vp - vnode of symbolic link.
3947 3948 * uio - structure to contain the link path.
3948 3949 * cr - credentials of caller.
3949 3950 * ct - caller context
3950 3951 *
3951 3952 * OUT: uio - structure containing the link path.
3952 3953 *
3953 3954 * RETURN: 0 on success, error code on failure.
3954 3955 *
3955 3956 * Timestamps:
3956 3957 * vp - atime updated
3957 3958 */
3958 3959 /* ARGSUSED */
3959 3960 static int
3960 3961 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3961 3962 {
3962 3963 znode_t *zp = VTOZ(vp);
3963 3964 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3964 3965 int error;
3965 3966
3966 3967 ZFS_ENTER(zfsvfs);
3967 3968 ZFS_VERIFY_ZP(zp);
3968 3969
3969 3970 mutex_enter(&zp->z_lock);
3970 3971 if (zp->z_is_sa)
3971 3972 error = sa_lookup_uio(zp->z_sa_hdl,
3972 3973 SA_ZPL_SYMLINK(zfsvfs), uio);
3973 3974 else
3974 3975 error = zfs_sa_readlink(zp, uio);
3975 3976 mutex_exit(&zp->z_lock);
3976 3977
3977 3978 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3978 3979
3979 3980 ZFS_EXIT(zfsvfs);
3980 3981 return (error);
3981 3982 }
3982 3983
3983 3984 /*
3984 3985 * Insert a new entry into directory tdvp referencing svp.
3985 3986 *
3986 3987 * IN: tdvp - Directory to contain new entry.
3987 3988 * svp - vnode of new entry.
3988 3989 * name - name of new entry.
3989 3990 * cr - credentials of caller.
3990 3991 * ct - caller context
3991 3992 *
3992 3993 * RETURN: 0 on success, error code on failure.
3993 3994 *
3994 3995 * Timestamps:
3995 3996 * tdvp - ctime|mtime updated
3996 3997 * svp - ctime updated
3997 3998 */
3998 3999 /* ARGSUSED */
3999 4000 static int
4000 4001 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4001 4002 caller_context_t *ct, int flags)
4002 4003 {
4003 4004 znode_t *dzp = VTOZ(tdvp);
4004 4005 znode_t *tzp, *szp;
4005 4006 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
4006 4007 zilog_t *zilog;
4007 4008 zfs_dirlock_t *dl;
4008 4009 dmu_tx_t *tx;
4009 4010 vnode_t *realvp;
4010 4011 int error;
4011 4012 int zf = ZNEW;
4012 4013 uint64_t parent;
4013 4014 uid_t owner;
4014 4015 boolean_t waited = B_FALSE;
4015 4016
4016 4017 ASSERT(tdvp->v_type == VDIR);
4017 4018
4018 4019 ZFS_ENTER(zfsvfs);
4019 4020 ZFS_VERIFY_ZP(dzp);
4020 4021 zilog = zfsvfs->z_log;
4021 4022
4022 4023 if (VOP_REALVP(svp, &realvp, ct) == 0)
4023 4024 svp = realvp;
4024 4025
4025 4026 /*
4026 4027 * POSIX dictates that we return EPERM here.
4027 4028 * Better choices include ENOTSUP or EISDIR.
4028 4029 */
4029 4030 if (svp->v_type == VDIR) {
4030 4031 ZFS_EXIT(zfsvfs);
4031 4032 return (SET_ERROR(EPERM));
4032 4033 }
4033 4034
4034 4035 szp = VTOZ(svp);
4035 4036 ZFS_VERIFY_ZP(szp);
4036 4037
4037 4038 /*
4038 4039 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4039 4040 * ctldir appear to have the same v_vfsp.
4040 4041 */
4041 4042 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4042 4043 ZFS_EXIT(zfsvfs);
4043 4044 return (SET_ERROR(EXDEV));
4044 4045 }
4045 4046
4046 4047 /* Prevent links to .zfs/shares files */
4047 4048
4048 4049 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4049 4050 &parent, sizeof (uint64_t))) != 0) {
4050 4051 ZFS_EXIT(zfsvfs);
4051 4052 return (error);
4052 4053 }
4053 4054 if (parent == zfsvfs->z_shares_dir) {
4054 4055 ZFS_EXIT(zfsvfs);
4055 4056 return (SET_ERROR(EPERM));
4056 4057 }
4057 4058
4058 4059 if (zfsvfs->z_utf8 && u8_validate(name,
4059 4060 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4060 4061 ZFS_EXIT(zfsvfs);
4061 4062 return (SET_ERROR(EILSEQ));
4062 4063 }
4063 4064 if (flags & FIGNORECASE)
4064 4065 zf |= ZCILOOK;
4065 4066
4066 4067 /*
4067 4068 * We do not support links between attributes and non-attributes
4068 4069 * because of the potential security risk of creating links
4069 4070 * into "normal" file space in order to circumvent restrictions
4070 4071 * imposed in attribute space.
4071 4072 */
4072 4073 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4073 4074 ZFS_EXIT(zfsvfs);
4074 4075 return (SET_ERROR(EINVAL));
4075 4076 }
4076 4077
4077 4078
4078 4079 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4079 4080 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4080 4081 ZFS_EXIT(zfsvfs);
4081 4082 return (SET_ERROR(EPERM));
4082 4083 }
4083 4084
4084 4085 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4085 4086 ZFS_EXIT(zfsvfs);
4086 4087 return (error);
4087 4088 }
4088 4089
4089 4090 top:
4090 4091 /*
4091 4092 * Attempt to lock directory; fail if entry already exists.
4092 4093 */
4093 4094 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4094 4095 if (error) {
4095 4096 ZFS_EXIT(zfsvfs);
4096 4097 return (error);
4097 4098 }
4098 4099
4099 4100 tx = dmu_tx_create(zfsvfs->z_os);
4100 4101 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4101 4102 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4102 4103 zfs_sa_upgrade_txholds(tx, szp);
4103 4104 zfs_sa_upgrade_txholds(tx, dzp);
4104 4105 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4105 4106 if (error) {
4106 4107 zfs_dirent_unlock(dl);
4107 4108 if (error == ERESTART) {
4108 4109 waited = B_TRUE;
4109 4110 dmu_tx_wait(tx);
4110 4111 dmu_tx_abort(tx);
4111 4112 goto top;
4112 4113 }
4113 4114 dmu_tx_abort(tx);
4114 4115 ZFS_EXIT(zfsvfs);
4115 4116 return (error);
4116 4117 }
4117 4118
4118 4119 error = zfs_link_create(dl, szp, tx, 0);
4119 4120
4120 4121 if (error == 0) {
4121 4122 uint64_t txtype = TX_LINK;
4122 4123 if (flags & FIGNORECASE)
4123 4124 txtype |= TX_CI;
4124 4125 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4125 4126 }
4126 4127
4127 4128 dmu_tx_commit(tx);
4128 4129
4129 4130 zfs_dirent_unlock(dl);
4130 4131
4131 4132 if (error == 0) {
4132 4133 vnevent_link(svp, ct);
4133 4134 }
4134 4135
4135 4136 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4136 4137 zil_commit(zilog, 0);
4137 4138
4138 4139 ZFS_EXIT(zfsvfs);
4139 4140 return (error);
4140 4141 }
4141 4142
4142 4143 /*
4143 4144 * zfs_null_putapage() is used when the file system has been force
4144 4145 * unmounted. It just drops the pages.
4145 4146 */
4146 4147 /* ARGSUSED */
4147 4148 static int
4148 4149 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4149 4150 size_t *lenp, int flags, cred_t *cr)
4150 4151 {
4151 4152 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4152 4153 return (0);
4153 4154 }
4154 4155
4155 4156 /*
4156 4157 * Push a page out to disk, klustering if possible.
4157 4158 *
4158 4159 * IN: vp - file to push page to.
4159 4160 * pp - page to push.
4160 4161 * flags - additional flags.
4161 4162 * cr - credentials of caller.
4162 4163 *
4163 4164 * OUT: offp - start of range pushed.
4164 4165 * lenp - len of range pushed.
4165 4166 *
4166 4167 * RETURN: 0 on success, error code on failure.
4167 4168 *
4168 4169 * NOTE: callers must have locked the page to be pushed. On
4169 4170 * exit, the page (and all other pages in the kluster) must be
4170 4171 * unlocked.
4171 4172 */
4172 4173 /* ARGSUSED */
4173 4174 static int
4174 4175 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4175 4176 size_t *lenp, int flags, cred_t *cr)
4176 4177 {
4177 4178 znode_t *zp = VTOZ(vp);
4178 4179 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4179 4180 dmu_tx_t *tx;
4180 4181 u_offset_t off, koff;
4181 4182 size_t len, klen;
4182 4183 int err;
4183 4184
4184 4185 off = pp->p_offset;
4185 4186 len = PAGESIZE;
4186 4187 /*
4187 4188 * If our blocksize is bigger than the page size, try to kluster
4188 4189 * multiple pages so that we write a full block (thus avoiding
4189 4190 * a read-modify-write).
4190 4191 */
4191 4192 if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4192 4193 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4193 4194 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4194 4195 ASSERT(koff <= zp->z_size);
4195 4196 if (koff + klen > zp->z_size)
4196 4197 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4197 4198 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4198 4199 }
4199 4200 ASSERT3U(btop(len), ==, btopr(len));
4200 4201
4201 4202 /*
4202 4203 * Can't push pages past end-of-file.
4203 4204 */
4204 4205 if (off >= zp->z_size) {
4205 4206 /* ignore all pages */
4206 4207 err = 0;
4207 4208 goto out;
4208 4209 } else if (off + len > zp->z_size) {
4209 4210 int npages = btopr(zp->z_size - off);
4210 4211 page_t *trunc;
4211 4212
4212 4213 page_list_break(&pp, &trunc, npages);
4213 4214 /* ignore pages past end of file */
4214 4215 if (trunc)
4215 4216 pvn_write_done(trunc, flags);
4216 4217 len = zp->z_size - off;
4217 4218 }
4218 4219
4219 4220 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4220 4221 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4221 4222 err = SET_ERROR(EDQUOT);
4222 4223 goto out;
4223 4224 }
4224 4225 tx = dmu_tx_create(zfsvfs->z_os);
4225 4226 dmu_tx_hold_write(tx, zp->z_id, off, len);
4226 4227
4227 4228 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4228 4229 zfs_sa_upgrade_txholds(tx, zp);
4229 4230 err = dmu_tx_assign(tx, TXG_WAIT);
4230 4231 if (err != 0) {
4231 4232 dmu_tx_abort(tx);
4232 4233 goto out;
4233 4234 }
4234 4235
4235 4236 if (zp->z_blksz <= PAGESIZE) {
4236 4237 caddr_t va = zfs_map_page(pp, S_READ);
4237 4238 ASSERT3U(len, <=, PAGESIZE);
4238 4239 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4239 4240 zfs_unmap_page(pp, va);
4240 4241 } else {
4241 4242 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4242 4243 }
4243 4244
4244 4245 if (err == 0) {
4245 4246 uint64_t mtime[2], ctime[2];
4246 4247 sa_bulk_attr_t bulk[3];
4247 4248 int count = 0;
4248 4249
4249 4250 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4250 4251 &mtime, 16);
4251 4252 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4252 4253 &ctime, 16);
4253 4254 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4254 4255 &zp->z_pflags, 8);
4255 4256 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4256 4257 B_TRUE);
4257 4258 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4258 4259 }
4259 4260 dmu_tx_commit(tx);
4260 4261
4261 4262 out:
4262 4263 pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4263 4264 if (offp)
4264 4265 *offp = off;
4265 4266 if (lenp)
4266 4267 *lenp = len;
4267 4268
4268 4269 return (err);
4269 4270 }
4270 4271
4271 4272 /*
4272 4273 * Copy the portion of the file indicated from pages into the file.
4273 4274 * The pages are stored in a page list attached to the files vnode.
4274 4275 *
4275 4276 * IN: vp - vnode of file to push page data to.
4276 4277 * off - position in file to put data.
4277 4278 * len - amount of data to write.
4278 4279 * flags - flags to control the operation.
4279 4280 * cr - credentials of caller.
4280 4281 * ct - caller context.
4281 4282 *
4282 4283 * RETURN: 0 on success, error code on failure.
4283 4284 *
4284 4285 * Timestamps:
4285 4286 * vp - ctime|mtime updated
4286 4287 */
4287 4288 /*ARGSUSED*/
4288 4289 static int
4289 4290 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4290 4291 caller_context_t *ct)
4291 4292 {
4292 4293 znode_t *zp = VTOZ(vp);
4293 4294 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4294 4295 page_t *pp;
4295 4296 size_t io_len;
4296 4297 u_offset_t io_off;
4297 4298 uint_t blksz;
4298 4299 rl_t *rl;
4299 4300 int error = 0;
4300 4301
4301 4302 ZFS_ENTER(zfsvfs);
4302 4303 ZFS_VERIFY_ZP(zp);
4303 4304
4304 4305 /*
4305 4306 * There's nothing to do if no data is cached.
4306 4307 */
4307 4308 if (!vn_has_cached_data(vp)) {
4308 4309 ZFS_EXIT(zfsvfs);
4309 4310 return (0);
4310 4311 }
4311 4312
4312 4313 /*
4313 4314 * Align this request to the file block size in case we kluster.
4314 4315 * XXX - this can result in pretty aggresive locking, which can
4315 4316 * impact simultanious read/write access. One option might be
4316 4317 * to break up long requests (len == 0) into block-by-block
4317 4318 * operations to get narrower locking.
4318 4319 */
4319 4320 blksz = zp->z_blksz;
4320 4321 if (ISP2(blksz))
4321 4322 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4322 4323 else
4323 4324 io_off = 0;
4324 4325 if (len > 0 && ISP2(blksz))
4325 4326 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4326 4327 else
4327 4328 io_len = 0;
4328 4329
4329 4330 if (io_len == 0) {
4330 4331 /*
4331 4332 * Search the entire vp list for pages >= io_off.
4332 4333 */
4333 4334 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4334 4335 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4335 4336 goto out;
4336 4337 }
4337 4338 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4338 4339
4339 4340 if (off > zp->z_size) {
4340 4341 /* past end of file */
4341 4342 zfs_range_unlock(rl);
4342 4343 ZFS_EXIT(zfsvfs);
4343 4344 return (0);
4344 4345 }
4345 4346
4346 4347 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4347 4348
4348 4349 for (off = io_off; io_off < off + len; io_off += io_len) {
4349 4350 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4350 4351 pp = page_lookup(vp, io_off,
4351 4352 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4352 4353 } else {
4353 4354 pp = page_lookup_nowait(vp, io_off,
4354 4355 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4355 4356 }
4356 4357
4357 4358 if (pp != NULL && pvn_getdirty(pp, flags)) {
4358 4359 int err;
4359 4360
4360 4361 /*
4361 4362 * Found a dirty page to push
4362 4363 */
4363 4364 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4364 4365 if (err)
4365 4366 error = err;
4366 4367 } else {
4367 4368 io_len = PAGESIZE;
4368 4369 }
4369 4370 }
4370 4371 out:
4371 4372 zfs_range_unlock(rl);
4372 4373 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4373 4374 zil_commit(zfsvfs->z_log, zp->z_id);
4374 4375 ZFS_EXIT(zfsvfs);
4375 4376 return (error);
4376 4377 }
4377 4378
4378 4379 /*ARGSUSED*/
4379 4380 void
4380 4381 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4381 4382 {
4382 4383 znode_t *zp = VTOZ(vp);
4383 4384 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4384 4385 int error;
4385 4386
4386 4387 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4387 4388 if (zp->z_sa_hdl == NULL) {
4388 4389 /*
4389 4390 * The fs has been unmounted, or we did a
4390 4391 * suspend/resume and this file no longer exists.
4391 4392 */
4392 4393 if (vn_has_cached_data(vp)) {
4393 4394 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4394 4395 B_INVAL, cr);
4395 4396 }
4396 4397
4397 4398 mutex_enter(&zp->z_lock);
4398 4399 mutex_enter(&vp->v_lock);
4399 4400 ASSERT(vp->v_count == 1);
4400 4401 vp->v_count = 0;
4401 4402 mutex_exit(&vp->v_lock);
4402 4403 mutex_exit(&zp->z_lock);
4403 4404 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4404 4405 zfs_znode_free(zp);
4405 4406 return;
4406 4407 }
4407 4408
4408 4409 /*
4409 4410 * Attempt to push any data in the page cache. If this fails
4410 4411 * we will get kicked out later in zfs_zinactive().
4411 4412 */
4412 4413 if (vn_has_cached_data(vp)) {
4413 4414 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4414 4415 cr);
4415 4416 }
4416 4417
4417 4418 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4418 4419 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4419 4420
4420 4421 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4421 4422 zfs_sa_upgrade_txholds(tx, zp);
4422 4423 error = dmu_tx_assign(tx, TXG_WAIT);
4423 4424 if (error) {
4424 4425 dmu_tx_abort(tx);
4425 4426 } else {
4426 4427 mutex_enter(&zp->z_lock);
4427 4428 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4428 4429 (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4429 4430 zp->z_atime_dirty = 0;
4430 4431 mutex_exit(&zp->z_lock);
4431 4432 dmu_tx_commit(tx);
4432 4433 }
4433 4434 }
4434 4435
4435 4436 zfs_zinactive(zp);
4436 4437 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4437 4438 }
4438 4439
4439 4440 /*
4440 4441 * Bounds-check the seek operation.
4441 4442 *
4442 4443 * IN: vp - vnode seeking within
4443 4444 * ooff - old file offset
4444 4445 * noffp - pointer to new file offset
4445 4446 * ct - caller context
4446 4447 *
4447 4448 * RETURN: 0 on success, EINVAL if new offset invalid.
4448 4449 */
4449 4450 /* ARGSUSED */
4450 4451 static int
4451 4452 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4452 4453 caller_context_t *ct)
4453 4454 {
4454 4455 if (vp->v_type == VDIR)
4455 4456 return (0);
4456 4457 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4457 4458 }
4458 4459
4459 4460 /*
4460 4461 * Pre-filter the generic locking function to trap attempts to place
4461 4462 * a mandatory lock on a memory mapped file.
4462 4463 */
4463 4464 static int
4464 4465 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4465 4466 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4466 4467 {
4467 4468 znode_t *zp = VTOZ(vp);
4468 4469 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4469 4470
4470 4471 ZFS_ENTER(zfsvfs);
4471 4472 ZFS_VERIFY_ZP(zp);
4472 4473
4473 4474 /*
4474 4475 * We are following the UFS semantics with respect to mapcnt
4475 4476 * here: If we see that the file is mapped already, then we will
4476 4477 * return an error, but we don't worry about races between this
4477 4478 * function and zfs_map().
4478 4479 */
4479 4480 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4480 4481 ZFS_EXIT(zfsvfs);
4481 4482 return (SET_ERROR(EAGAIN));
4482 4483 }
4483 4484 ZFS_EXIT(zfsvfs);
4484 4485 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4485 4486 }
4486 4487
4487 4488 /*
4488 4489 * If we can't find a page in the cache, we will create a new page
4489 4490 * and fill it with file data. For efficiency, we may try to fill
4490 4491 * multiple pages at once (klustering) to fill up the supplied page
4491 4492 * list. Note that the pages to be filled are held with an exclusive
4492 4493 * lock to prevent access by other threads while they are being filled.
4493 4494 */
4494 4495 static int
4495 4496 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4496 4497 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4497 4498 {
4498 4499 znode_t *zp = VTOZ(vp);
4499 4500 page_t *pp, *cur_pp;
4500 4501 objset_t *os = zp->z_zfsvfs->z_os;
4501 4502 u_offset_t io_off, total;
4502 4503 size_t io_len;
4503 4504 int err;
4504 4505
4505 4506 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4506 4507 /*
4507 4508 * We only have a single page, don't bother klustering
4508 4509 */
4509 4510 io_off = off;
4510 4511 io_len = PAGESIZE;
4511 4512 pp = page_create_va(vp, io_off, io_len,
4512 4513 PG_EXCL | PG_WAIT, seg, addr);
4513 4514 } else {
4514 4515 /*
4515 4516 * Try to find enough pages to fill the page list
4516 4517 */
4517 4518 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4518 4519 &io_len, off, plsz, 0);
4519 4520 }
4520 4521 if (pp == NULL) {
4521 4522 /*
4522 4523 * The page already exists, nothing to do here.
4523 4524 */
4524 4525 *pl = NULL;
4525 4526 return (0);
4526 4527 }
4527 4528
4528 4529 /*
4529 4530 * Fill the pages in the kluster.
4530 4531 */
4531 4532 cur_pp = pp;
4532 4533 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4533 4534 caddr_t va;
4534 4535
4535 4536 ASSERT3U(io_off, ==, cur_pp->p_offset);
4536 4537 va = zfs_map_page(cur_pp, S_WRITE);
4537 4538 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4538 4539 DMU_READ_PREFETCH);
4539 4540 zfs_unmap_page(cur_pp, va);
4540 4541 if (err) {
4541 4542 /* On error, toss the entire kluster */
4542 4543 pvn_read_done(pp, B_ERROR);
4543 4544 /* convert checksum errors into IO errors */
4544 4545 if (err == ECKSUM)
4545 4546 err = SET_ERROR(EIO);
4546 4547 return (err);
4547 4548 }
4548 4549 cur_pp = cur_pp->p_next;
4549 4550 }
4550 4551
4551 4552 /*
4552 4553 * Fill in the page list array from the kluster starting
4553 4554 * from the desired offset `off'.
4554 4555 * NOTE: the page list will always be null terminated.
4555 4556 */
4556 4557 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4557 4558 ASSERT(pl == NULL || (*pl)->p_offset == off);
4558 4559
4559 4560 return (0);
4560 4561 }
4561 4562
4562 4563 /*
4563 4564 * Return pointers to the pages for the file region [off, off + len]
4564 4565 * in the pl array. If plsz is greater than len, this function may
4565 4566 * also return page pointers from after the specified region
4566 4567 * (i.e. the region [off, off + plsz]). These additional pages are
4567 4568 * only returned if they are already in the cache, or were created as
4568 4569 * part of a klustered read.
4569 4570 *
4570 4571 * IN: vp - vnode of file to get data from.
4571 4572 * off - position in file to get data from.
4572 4573 * len - amount of data to retrieve.
4573 4574 * plsz - length of provided page list.
4574 4575 * seg - segment to obtain pages for.
4575 4576 * addr - virtual address of fault.
4576 4577 * rw - mode of created pages.
4577 4578 * cr - credentials of caller.
4578 4579 * ct - caller context.
4579 4580 *
4580 4581 * OUT: protp - protection mode of created pages.
4581 4582 * pl - list of pages created.
4582 4583 *
4583 4584 * RETURN: 0 on success, error code on failure.
4584 4585 *
4585 4586 * Timestamps:
4586 4587 * vp - atime updated
4587 4588 */
4588 4589 /* ARGSUSED */
4589 4590 static int
4590 4591 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4591 4592 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4592 4593 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4593 4594 {
4594 4595 znode_t *zp = VTOZ(vp);
4595 4596 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4596 4597 page_t **pl0 = pl;
4597 4598 int err = 0;
4598 4599
4599 4600 /* we do our own caching, faultahead is unnecessary */
4600 4601 if (pl == NULL)
4601 4602 return (0);
4602 4603 else if (len > plsz)
4603 4604 len = plsz;
4604 4605 else
4605 4606 len = P2ROUNDUP(len, PAGESIZE);
4606 4607 ASSERT(plsz >= len);
4607 4608
4608 4609 ZFS_ENTER(zfsvfs);
4609 4610 ZFS_VERIFY_ZP(zp);
4610 4611
4611 4612 if (protp)
4612 4613 *protp = PROT_ALL;
4613 4614
4614 4615 /*
4615 4616 * Loop through the requested range [off, off + len) looking
4616 4617 * for pages. If we don't find a page, we will need to create
4617 4618 * a new page and fill it with data from the file.
4618 4619 */
4619 4620 while (len > 0) {
4620 4621 if (*pl = page_lookup(vp, off, SE_SHARED))
4621 4622 *(pl+1) = NULL;
4622 4623 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4623 4624 goto out;
4624 4625 while (*pl) {
4625 4626 ASSERT3U((*pl)->p_offset, ==, off);
4626 4627 off += PAGESIZE;
4627 4628 addr += PAGESIZE;
4628 4629 if (len > 0) {
4629 4630 ASSERT3U(len, >=, PAGESIZE);
4630 4631 len -= PAGESIZE;
4631 4632 }
4632 4633 ASSERT3U(plsz, >=, PAGESIZE);
4633 4634 plsz -= PAGESIZE;
4634 4635 pl++;
4635 4636 }
4636 4637 }
4637 4638
4638 4639 /*
4639 4640 * Fill out the page array with any pages already in the cache.
4640 4641 */
4641 4642 while (plsz > 0 &&
4642 4643 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4643 4644 off += PAGESIZE;
4644 4645 plsz -= PAGESIZE;
4645 4646 }
4646 4647 out:
4647 4648 if (err) {
4648 4649 /*
4649 4650 * Release any pages we have previously locked.
4650 4651 */
4651 4652 while (pl > pl0)
4652 4653 page_unlock(*--pl);
4653 4654 } else {
4654 4655 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4655 4656 }
4656 4657
4657 4658 *pl = NULL;
4658 4659
4659 4660 ZFS_EXIT(zfsvfs);
4660 4661 return (err);
4661 4662 }
4662 4663
4663 4664 /*
4664 4665 * Request a memory map for a section of a file. This code interacts
4665 4666 * with common code and the VM system as follows:
4666 4667 *
4667 4668 * - common code calls mmap(), which ends up in smmap_common()
4668 4669 * - this calls VOP_MAP(), which takes you into (say) zfs
4669 4670 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4670 4671 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4671 4672 * - zfs_addmap() updates z_mapcnt
4672 4673 */
4673 4674 /*ARGSUSED*/
4674 4675 static int
4675 4676 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4676 4677 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4677 4678 caller_context_t *ct)
4678 4679 {
4679 4680 znode_t *zp = VTOZ(vp);
4680 4681 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4681 4682 segvn_crargs_t vn_a;
4682 4683 int error;
4683 4684
4684 4685 ZFS_ENTER(zfsvfs);
4685 4686 ZFS_VERIFY_ZP(zp);
4686 4687
4687 4688 if ((prot & PROT_WRITE) && (zp->z_pflags &
4688 4689 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4689 4690 ZFS_EXIT(zfsvfs);
4690 4691 return (SET_ERROR(EPERM));
4691 4692 }
4692 4693
4693 4694 if ((prot & (PROT_READ | PROT_EXEC)) &&
4694 4695 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4695 4696 ZFS_EXIT(zfsvfs);
4696 4697 return (SET_ERROR(EACCES));
4697 4698 }
4698 4699
4699 4700 if (vp->v_flag & VNOMAP) {
4700 4701 ZFS_EXIT(zfsvfs);
4701 4702 return (SET_ERROR(ENOSYS));
4702 4703 }
4703 4704
4704 4705 if (off < 0 || len > MAXOFFSET_T - off) {
4705 4706 ZFS_EXIT(zfsvfs);
4706 4707 return (SET_ERROR(ENXIO));
4707 4708 }
4708 4709
4709 4710 if (vp->v_type != VREG) {
4710 4711 ZFS_EXIT(zfsvfs);
4711 4712 return (SET_ERROR(ENODEV));
4712 4713 }
4713 4714
4714 4715 /*
4715 4716 * If file is locked, disallow mapping.
4716 4717 */
4717 4718 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4718 4719 ZFS_EXIT(zfsvfs);
4719 4720 return (SET_ERROR(EAGAIN));
4720 4721 }
4721 4722
4722 4723 as_rangelock(as);
4723 4724 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4724 4725 if (error != 0) {
4725 4726 as_rangeunlock(as);
4726 4727 ZFS_EXIT(zfsvfs);
4727 4728 return (error);
4728 4729 }
4729 4730
4730 4731 vn_a.vp = vp;
4731 4732 vn_a.offset = (u_offset_t)off;
4732 4733 vn_a.type = flags & MAP_TYPE;
4733 4734 vn_a.prot = prot;
4734 4735 vn_a.maxprot = maxprot;
4735 4736 vn_a.cred = cr;
4736 4737 vn_a.amp = NULL;
4737 4738 vn_a.flags = flags & ~MAP_TYPE;
4738 4739 vn_a.szc = 0;
4739 4740 vn_a.lgrp_mem_policy_flags = 0;
4740 4741
4741 4742 error = as_map(as, *addrp, len, segvn_create, &vn_a);
4742 4743
4743 4744 as_rangeunlock(as);
4744 4745 ZFS_EXIT(zfsvfs);
4745 4746 return (error);
4746 4747 }
4747 4748
4748 4749 /* ARGSUSED */
4749 4750 static int
4750 4751 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4751 4752 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4752 4753 caller_context_t *ct)
4753 4754 {
4754 4755 uint64_t pages = btopr(len);
4755 4756
4756 4757 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4757 4758 return (0);
4758 4759 }
4759 4760
4760 4761 /*
4761 4762 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4762 4763 * more accurate mtime for the associated file. Since we don't have a way of
4763 4764 * detecting when the data was actually modified, we have to resort to
4764 4765 * heuristics. If an explicit msync() is done, then we mark the mtime when the
4765 4766 * last page is pushed. The problem occurs when the msync() call is omitted,
4766 4767 * which by far the most common case:
4767 4768 *
4768 4769 * open()
4769 4770 * mmap()
4770 4771 * <modify memory>
4771 4772 * munmap()
4772 4773 * close()
4773 4774 * <time lapse>
4774 4775 * putpage() via fsflush
4775 4776 *
4776 4777 * If we wait until fsflush to come along, we can have a modification time that
4777 4778 * is some arbitrary point in the future. In order to prevent this in the
4778 4779 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4779 4780 * torn down.
4780 4781 */
4781 4782 /* ARGSUSED */
4782 4783 static int
4783 4784 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4784 4785 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4785 4786 caller_context_t *ct)
4786 4787 {
4787 4788 uint64_t pages = btopr(len);
4788 4789
4789 4790 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4790 4791 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4791 4792
4792 4793 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4793 4794 vn_has_cached_data(vp))
4794 4795 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4795 4796
4796 4797 return (0);
4797 4798 }
4798 4799
4799 4800 /*
4800 4801 * Free or allocate space in a file. Currently, this function only
4801 4802 * supports the `F_FREESP' command. However, this command is somewhat
4802 4803 * misnamed, as its functionality includes the ability to allocate as
4803 4804 * well as free space.
4804 4805 *
4805 4806 * IN: vp - vnode of file to free data in.
4806 4807 * cmd - action to take (only F_FREESP supported).
4807 4808 * bfp - section of file to free/alloc.
4808 4809 * flag - current file open mode flags.
4809 4810 * offset - current file offset.
4810 4811 * cr - credentials of caller [UNUSED].
4811 4812 * ct - caller context.
4812 4813 *
4813 4814 * RETURN: 0 on success, error code on failure.
4814 4815 *
4815 4816 * Timestamps:
4816 4817 * vp - ctime|mtime updated
4817 4818 */
4818 4819 /* ARGSUSED */
4819 4820 static int
4820 4821 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4821 4822 offset_t offset, cred_t *cr, caller_context_t *ct)
4822 4823 {
4823 4824 znode_t *zp = VTOZ(vp);
4824 4825 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4825 4826 uint64_t off, len;
4826 4827 int error;
4827 4828
4828 4829 ZFS_ENTER(zfsvfs);
4829 4830 ZFS_VERIFY_ZP(zp);
4830 4831
4831 4832 if (cmd != F_FREESP) {
4832 4833 ZFS_EXIT(zfsvfs);
4833 4834 return (SET_ERROR(EINVAL));
4834 4835 }
4835 4836
4836 4837 /*
4837 4838 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4838 4839 * callers might not be able to detect properly that we are read-only,
4839 4840 * so check it explicitly here.
4840 4841 */
4841 4842 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4842 4843 ZFS_EXIT(zfsvfs);
4843 4844 return (SET_ERROR(EROFS));
4844 4845 }
4845 4846
4846 4847 if (error = convoff(vp, bfp, 0, offset)) {
4847 4848 ZFS_EXIT(zfsvfs);
4848 4849 return (error);
4849 4850 }
4850 4851
4851 4852 if (bfp->l_len < 0) {
4852 4853 ZFS_EXIT(zfsvfs);
4853 4854 return (SET_ERROR(EINVAL));
4854 4855 }
4855 4856
4856 4857 off = bfp->l_start;
4857 4858 len = bfp->l_len; /* 0 means from off to end of file */
4858 4859
4859 4860 error = zfs_freesp(zp, off, len, flag, TRUE);
4860 4861
4861 4862 if (error == 0 && off == 0 && len == 0)
4862 4863 vnevent_truncate(ZTOV(zp), ct);
4863 4864
4864 4865 ZFS_EXIT(zfsvfs);
4865 4866 return (error);
4866 4867 }
4867 4868
4868 4869 /*ARGSUSED*/
4869 4870 static int
4870 4871 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4871 4872 {
4872 4873 znode_t *zp = VTOZ(vp);
4873 4874 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4874 4875 uint32_t gen;
4875 4876 uint64_t gen64;
4876 4877 uint64_t object = zp->z_id;
4877 4878 zfid_short_t *zfid;
4878 4879 int size, i, error;
4879 4880
4880 4881 ZFS_ENTER(zfsvfs);
4881 4882 ZFS_VERIFY_ZP(zp);
4882 4883
4883 4884 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4884 4885 &gen64, sizeof (uint64_t))) != 0) {
4885 4886 ZFS_EXIT(zfsvfs);
4886 4887 return (error);
4887 4888 }
4888 4889
4889 4890 gen = (uint32_t)gen64;
4890 4891
4891 4892 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4892 4893 if (fidp->fid_len < size) {
4893 4894 fidp->fid_len = size;
4894 4895 ZFS_EXIT(zfsvfs);
4895 4896 return (SET_ERROR(ENOSPC));
4896 4897 }
4897 4898
4898 4899 zfid = (zfid_short_t *)fidp;
4899 4900
4900 4901 zfid->zf_len = size;
4901 4902
4902 4903 for (i = 0; i < sizeof (zfid->zf_object); i++)
4903 4904 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4904 4905
4905 4906 /* Must have a non-zero generation number to distinguish from .zfs */
4906 4907 if (gen == 0)
4907 4908 gen = 1;
4908 4909 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4909 4910 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4910 4911
4911 4912 if (size == LONG_FID_LEN) {
4912 4913 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
4913 4914 zfid_long_t *zlfid;
4914 4915
4915 4916 zlfid = (zfid_long_t *)fidp;
4916 4917
4917 4918 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4918 4919 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4919 4920
4920 4921 /* XXX - this should be the generation number for the objset */
4921 4922 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4922 4923 zlfid->zf_setgen[i] = 0;
4923 4924 }
4924 4925
4925 4926 ZFS_EXIT(zfsvfs);
4926 4927 return (0);
4927 4928 }
4928 4929
4929 4930 static int
4930 4931 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4931 4932 caller_context_t *ct)
4932 4933 {
4933 4934 znode_t *zp, *xzp;
4934 4935 zfsvfs_t *zfsvfs;
4935 4936 zfs_dirlock_t *dl;
4936 4937 int error;
4937 4938
4938 4939 switch (cmd) {
4939 4940 case _PC_LINK_MAX:
4940 4941 *valp = ULONG_MAX;
4941 4942 return (0);
4942 4943
4943 4944 case _PC_FILESIZEBITS:
4944 4945 *valp = 64;
4945 4946 return (0);
4946 4947
4947 4948 case _PC_XATTR_EXISTS:
4948 4949 zp = VTOZ(vp);
4949 4950 zfsvfs = zp->z_zfsvfs;
4950 4951 ZFS_ENTER(zfsvfs);
4951 4952 ZFS_VERIFY_ZP(zp);
4952 4953 *valp = 0;
4953 4954 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4954 4955 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4955 4956 if (error == 0) {
4956 4957 zfs_dirent_unlock(dl);
4957 4958 if (!zfs_dirempty(xzp))
4958 4959 *valp = 1;
4959 4960 VN_RELE(ZTOV(xzp));
4960 4961 } else if (error == ENOENT) {
4961 4962 /*
4962 4963 * If there aren't extended attributes, it's the
4963 4964 * same as having zero of them.
4964 4965 */
4965 4966 error = 0;
4966 4967 }
4967 4968 ZFS_EXIT(zfsvfs);
4968 4969 return (error);
4969 4970
4970 4971 case _PC_SATTR_ENABLED:
4971 4972 case _PC_SATTR_EXISTS:
4972 4973 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4973 4974 (vp->v_type == VREG || vp->v_type == VDIR);
4974 4975 return (0);
4975 4976
4976 4977 case _PC_ACCESS_FILTERING:
4977 4978 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4978 4979 vp->v_type == VDIR;
4979 4980 return (0);
4980 4981
4981 4982 case _PC_ACL_ENABLED:
4982 4983 *valp = _ACL_ACE_ENABLED;
4983 4984 return (0);
4984 4985
4985 4986 case _PC_MIN_HOLE_SIZE:
4986 4987 *valp = (ulong_t)SPA_MINBLOCKSIZE;
4987 4988 return (0);
4988 4989
4989 4990 case _PC_TIMESTAMP_RESOLUTION:
4990 4991 /* nanosecond timestamp resolution */
4991 4992 *valp = 1L;
4992 4993 return (0);
4993 4994
4994 4995 default:
4995 4996 return (fs_pathconf(vp, cmd, valp, cr, ct));
4996 4997 }
4997 4998 }
4998 4999
4999 5000 /*ARGSUSED*/
5000 5001 static int
5001 5002 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5002 5003 caller_context_t *ct)
5003 5004 {
5004 5005 znode_t *zp = VTOZ(vp);
5005 5006 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5006 5007 int error;
5007 5008 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5008 5009
5009 5010 ZFS_ENTER(zfsvfs);
5010 5011 ZFS_VERIFY_ZP(zp);
5011 5012 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5012 5013 ZFS_EXIT(zfsvfs);
5013 5014
5014 5015 return (error);
5015 5016 }
5016 5017
5017 5018 /*ARGSUSED*/
5018 5019 static int
5019 5020 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5020 5021 caller_context_t *ct)
5021 5022 {
5022 5023 znode_t *zp = VTOZ(vp);
5023 5024 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5024 5025 int error;
5025 5026 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5026 5027 zilog_t *zilog = zfsvfs->z_log;
5027 5028
5028 5029 ZFS_ENTER(zfsvfs);
5029 5030 ZFS_VERIFY_ZP(zp);
5030 5031
5031 5032 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5032 5033
5033 5034 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5034 5035 zil_commit(zilog, 0);
5035 5036
5036 5037 ZFS_EXIT(zfsvfs);
5037 5038 return (error);
5038 5039 }
5039 5040
5040 5041 /*
5041 5042 * The smallest read we may consider to loan out an arcbuf.
5042 5043 * This must be a power of 2.
5043 5044 */
5044 5045 int zcr_blksz_min = (1 << 10); /* 1K */
5045 5046 /*
5046 5047 * If set to less than the file block size, allow loaning out of an
5047 5048 * arcbuf for a partial block read. This must be a power of 2.
5048 5049 */
5049 5050 int zcr_blksz_max = (1 << 17); /* 128K */
5050 5051
5051 5052 /*ARGSUSED*/
5052 5053 static int
5053 5054 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5054 5055 caller_context_t *ct)
5055 5056 {
5056 5057 znode_t *zp = VTOZ(vp);
5057 5058 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5058 5059 int max_blksz = zfsvfs->z_max_blksz;
5059 5060 uio_t *uio = &xuio->xu_uio;
5060 5061 ssize_t size = uio->uio_resid;
5061 5062 offset_t offset = uio->uio_loffset;
5062 5063 int blksz;
5063 5064 int fullblk, i;
5064 5065 arc_buf_t *abuf;
5065 5066 ssize_t maxsize;
5066 5067 int preamble, postamble;
5067 5068
5068 5069 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5069 5070 return (SET_ERROR(EINVAL));
5070 5071
5071 5072 ZFS_ENTER(zfsvfs);
5072 5073 ZFS_VERIFY_ZP(zp);
5073 5074 switch (ioflag) {
5074 5075 case UIO_WRITE:
5075 5076 /*
5076 5077 * Loan out an arc_buf for write if write size is bigger than
5077 5078 * max_blksz, and the file's block size is also max_blksz.
5078 5079 */
5079 5080 blksz = max_blksz;
5080 5081 if (size < blksz || zp->z_blksz != blksz) {
5081 5082 ZFS_EXIT(zfsvfs);
5082 5083 return (SET_ERROR(EINVAL));
5083 5084 }
5084 5085 /*
5085 5086 * Caller requests buffers for write before knowing where the
5086 5087 * write offset might be (e.g. NFS TCP write).
5087 5088 */
5088 5089 if (offset == -1) {
5089 5090 preamble = 0;
5090 5091 } else {
5091 5092 preamble = P2PHASE(offset, blksz);
5092 5093 if (preamble) {
5093 5094 preamble = blksz - preamble;
5094 5095 size -= preamble;
5095 5096 }
5096 5097 }
5097 5098
5098 5099 postamble = P2PHASE(size, blksz);
5099 5100 size -= postamble;
5100 5101
5101 5102 fullblk = size / blksz;
5102 5103 (void) dmu_xuio_init(xuio,
5103 5104 (preamble != 0) + fullblk + (postamble != 0));
5104 5105 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5105 5106 int, postamble, int,
5106 5107 (preamble != 0) + fullblk + (postamble != 0));
5107 5108
5108 5109 /*
5109 5110 * Have to fix iov base/len for partial buffers. They
5110 5111 * currently represent full arc_buf's.
5111 5112 */
5112 5113 if (preamble) {
5113 5114 /* data begins in the middle of the arc_buf */
5114 5115 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5115 5116 blksz);
5116 5117 ASSERT(abuf);
5117 5118 (void) dmu_xuio_add(xuio, abuf,
5118 5119 blksz - preamble, preamble);
5119 5120 }
5120 5121
5121 5122 for (i = 0; i < fullblk; i++) {
5122 5123 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5123 5124 blksz);
5124 5125 ASSERT(abuf);
5125 5126 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5126 5127 }
5127 5128
5128 5129 if (postamble) {
5129 5130 /* data ends in the middle of the arc_buf */
5130 5131 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5131 5132 blksz);
5132 5133 ASSERT(abuf);
5133 5134 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5134 5135 }
5135 5136 break;
5136 5137 case UIO_READ:
5137 5138 /*
5138 5139 * Loan out an arc_buf for read if the read size is larger than
5139 5140 * the current file block size. Block alignment is not
5140 5141 * considered. Partial arc_buf will be loaned out for read.
5141 5142 */
5142 5143 blksz = zp->z_blksz;
5143 5144 if (blksz < zcr_blksz_min)
5144 5145 blksz = zcr_blksz_min;
5145 5146 if (blksz > zcr_blksz_max)
5146 5147 blksz = zcr_blksz_max;
5147 5148 /* avoid potential complexity of dealing with it */
5148 5149 if (blksz > max_blksz) {
5149 5150 ZFS_EXIT(zfsvfs);
5150 5151 return (SET_ERROR(EINVAL));
5151 5152 }
5152 5153
5153 5154 maxsize = zp->z_size - uio->uio_loffset;
5154 5155 if (size > maxsize)
5155 5156 size = maxsize;
5156 5157
5157 5158 if (size < blksz || vn_has_cached_data(vp)) {
5158 5159 ZFS_EXIT(zfsvfs);
5159 5160 return (SET_ERROR(EINVAL));
5160 5161 }
5161 5162 break;
5162 5163 default:
5163 5164 ZFS_EXIT(zfsvfs);
5164 5165 return (SET_ERROR(EINVAL));
5165 5166 }
5166 5167
5167 5168 uio->uio_extflg = UIO_XUIO;
5168 5169 XUIO_XUZC_RW(xuio) = ioflag;
5169 5170 ZFS_EXIT(zfsvfs);
5170 5171 return (0);
5171 5172 }
5172 5173
5173 5174 /*ARGSUSED*/
5174 5175 static int
5175 5176 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5176 5177 {
5177 5178 int i;
5178 5179 arc_buf_t *abuf;
5179 5180 int ioflag = XUIO_XUZC_RW(xuio);
5180 5181
5181 5182 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5182 5183
5183 5184 i = dmu_xuio_cnt(xuio);
5184 5185 while (i-- > 0) {
5185 5186 abuf = dmu_xuio_arcbuf(xuio, i);
5186 5187 /*
5187 5188 * if abuf == NULL, it must be a write buffer
5188 5189 * that has been returned in zfs_write().
5189 5190 */
5190 5191 if (abuf)
5191 5192 dmu_return_arcbuf(abuf);
5192 5193 ASSERT(abuf || ioflag == UIO_WRITE);
5193 5194 }
5194 5195
5195 5196 dmu_xuio_fini(xuio);
5196 5197 return (0);
5197 5198 }
5198 5199
5199 5200 /*
5200 5201 * Predeclare these here so that the compiler assumes that
5201 5202 * this is an "old style" function declaration that does
5202 5203 * not include arguments => we won't get type mismatch errors
5203 5204 * in the initializations that follow.
5204 5205 */
5205 5206 static int zfs_inval();
5206 5207 static int zfs_isdir();
5207 5208
5208 5209 static int
5209 5210 zfs_inval()
5210 5211 {
5211 5212 return (SET_ERROR(EINVAL));
5212 5213 }
5213 5214
5214 5215 static int
5215 5216 zfs_isdir()
5216 5217 {
5217 5218 return (SET_ERROR(EISDIR));
5218 5219 }
5219 5220 /*
5220 5221 * Directory vnode operations template
5221 5222 */
5222 5223 vnodeops_t *zfs_dvnodeops;
5223 5224 const fs_operation_def_t zfs_dvnodeops_template[] = {
5224 5225 VOPNAME_OPEN, { .vop_open = zfs_open },
5225 5226 VOPNAME_CLOSE, { .vop_close = zfs_close },
5226 5227 VOPNAME_READ, { .error = zfs_isdir },
5227 5228 VOPNAME_WRITE, { .error = zfs_isdir },
5228 5229 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5229 5230 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5230 5231 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5231 5232 VOPNAME_ACCESS, { .vop_access = zfs_access },
5232 5233 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5233 5234 VOPNAME_CREATE, { .vop_create = zfs_create },
5234 5235 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5235 5236 VOPNAME_LINK, { .vop_link = zfs_link },
5236 5237 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5237 5238 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir },
5238 5239 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5239 5240 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5240 5241 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink },
5241 5242 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5242 5243 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5243 5244 VOPNAME_FID, { .vop_fid = zfs_fid },
5244 5245 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5245 5246 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5246 5247 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5247 5248 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5248 5249 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5249 5250 NULL, NULL
5250 5251 };
5251 5252
5252 5253 /*
5253 5254 * Regular file vnode operations template
5254 5255 */
5255 5256 vnodeops_t *zfs_fvnodeops;
5256 5257 const fs_operation_def_t zfs_fvnodeops_template[] = {
5257 5258 VOPNAME_OPEN, { .vop_open = zfs_open },
5258 5259 VOPNAME_CLOSE, { .vop_close = zfs_close },
5259 5260 VOPNAME_READ, { .vop_read = zfs_read },
5260 5261 VOPNAME_WRITE, { .vop_write = zfs_write },
5261 5262 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5262 5263 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5263 5264 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5264 5265 VOPNAME_ACCESS, { .vop_access = zfs_access },
5265 5266 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5266 5267 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5267 5268 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5268 5269 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5269 5270 VOPNAME_FID, { .vop_fid = zfs_fid },
5270 5271 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5271 5272 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock },
5272 5273 VOPNAME_SPACE, { .vop_space = zfs_space },
5273 5274 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage },
5274 5275 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage },
5275 5276 VOPNAME_MAP, { .vop_map = zfs_map },
5276 5277 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap },
5277 5278 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap },
5278 5279 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5279 5280 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5280 5281 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5281 5282 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5282 5283 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf },
5283 5284 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf },
5284 5285 NULL, NULL
5285 5286 };
5286 5287
5287 5288 /*
5288 5289 * Symbolic link vnode operations template
5289 5290 */
5290 5291 vnodeops_t *zfs_symvnodeops;
5291 5292 const fs_operation_def_t zfs_symvnodeops_template[] = {
5292 5293 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5293 5294 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5294 5295 VOPNAME_ACCESS, { .vop_access = zfs_access },
5295 5296 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5296 5297 VOPNAME_READLINK, { .vop_readlink = zfs_readlink },
5297 5298 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5298 5299 VOPNAME_FID, { .vop_fid = zfs_fid },
5299 5300 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5300 5301 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5301 5302 NULL, NULL
5302 5303 };
5303 5304
5304 5305 /*
5305 5306 * special share hidden files vnode operations template
5306 5307 */
5307 5308 vnodeops_t *zfs_sharevnodeops;
5308 5309 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5309 5310 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5310 5311 VOPNAME_ACCESS, { .vop_access = zfs_access },
5311 5312 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5312 5313 VOPNAME_FID, { .vop_fid = zfs_fid },
5313 5314 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5314 5315 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5315 5316 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5316 5317 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5317 5318 NULL, NULL
5318 5319 };
5319 5320
5320 5321 /*
5321 5322 * Extended attribute directory vnode operations template
5322 5323 *
5323 5324 * This template is identical to the directory vnodes
5324 5325 * operation template except for restricted operations:
5325 5326 * VOP_MKDIR()
5326 5327 * VOP_SYMLINK()
5327 5328 *
5328 5329 * Note that there are other restrictions embedded in:
5329 5330 * zfs_create() - restrict type to VREG
5330 5331 * zfs_link() - no links into/out of attribute space
5331 5332 * zfs_rename() - no moves into/out of attribute space
5332 5333 */
5333 5334 vnodeops_t *zfs_xdvnodeops;
5334 5335 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5335 5336 VOPNAME_OPEN, { .vop_open = zfs_open },
5336 5337 VOPNAME_CLOSE, { .vop_close = zfs_close },
5337 5338 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5338 5339 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5339 5340 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5340 5341 VOPNAME_ACCESS, { .vop_access = zfs_access },
5341 5342 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5342 5343 VOPNAME_CREATE, { .vop_create = zfs_create },
5343 5344 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5344 5345 VOPNAME_LINK, { .vop_link = zfs_link },
5345 5346 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5346 5347 VOPNAME_MKDIR, { .error = zfs_inval },
5347 5348 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5348 5349 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5349 5350 VOPNAME_SYMLINK, { .error = zfs_inval },
5350 5351 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5351 5352 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5352 5353 VOPNAME_FID, { .vop_fid = zfs_fid },
5353 5354 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5354 5355 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5355 5356 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5356 5357 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5357 5358 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5358 5359 NULL, NULL
5359 5360 };
5360 5361
5361 5362 /*
5362 5363 * Error vnode operations template
5363 5364 */
5364 5365 vnodeops_t *zfs_evnodeops;
5365 5366 const fs_operation_def_t zfs_evnodeops_template[] = {
5366 5367 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5367 5368 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5368 5369 NULL, NULL
5369 5370 };
↓ open down ↓ |
3244 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX