1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 * Copyright 2015 Joyent, Inc.
27 */
28
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/time.h>
35 #include <sys/systm.h>
36 #include <sys/sysmacros.h>
37 #include <sys/resource.h>
38 #include <sys/vfs.h>
39 #include <sys/vfs_opreg.h>
40 #include <sys/vnode.h>
41 #include <sys/file.h>
42 #include <sys/stat.h>
43 #include <sys/kmem.h>
44 #include <sys/taskq.h>
45 #include <sys/uio.h>
46 #include <sys/vmsystm.h>
47 #include <sys/atomic.h>
48 #include <sys/vm.h>
49 #include <vm/seg_vn.h>
50 #include <vm/pvn.h>
51 #include <vm/as.h>
52 #include <vm/kpm.h>
53 #include <vm/seg_kpm.h>
54 #include <sys/mman.h>
55 #include <sys/pathname.h>
56 #include <sys/cmn_err.h>
57 #include <sys/errno.h>
58 #include <sys/unistd.h>
59 #include <sys/zfs_dir.h>
60 #include <sys/zfs_acl.h>
61 #include <sys/zfs_ioctl.h>
62 #include <sys/fs/zfs.h>
63 #include <sys/dmu.h>
64 #include <sys/dmu_objset.h>
65 #include <sys/spa.h>
66 #include <sys/txg.h>
67 #include <sys/dbuf.h>
68 #include <sys/zap.h>
69 #include <sys/sa.h>
70 #include <sys/dirent.h>
71 #include <sys/policy.h>
72 #include <sys/sunddi.h>
73 #include <sys/filio.h>
74 #include <sys/sid.h>
75 #include "fs/fs_subr.h"
76 #include <sys/zfs_ctldir.h>
77 #include <sys/zfs_fuid.h>
78 #include <sys/zfs_sa.h>
79 #include <sys/dnlc.h>
80 #include <sys/zfs_rlock.h>
81 #include <sys/extdirent.h>
82 #include <sys/kidmap.h>
83 #include <sys/cred.h>
84 #include <sys/attr.h>
85
86 /*
87 * Programming rules.
88 *
89 * Each vnode op performs some logical unit of work. To do this, the ZPL must
90 * properly lock its in-core state, create a DMU transaction, do the work,
91 * record this work in the intent log (ZIL), commit the DMU transaction,
92 * and wait for the intent log to commit if it is a synchronous operation.
93 * Moreover, the vnode ops must work in both normal and log replay context.
94 * The ordering of events is important to avoid deadlocks and references
95 * to freed memory. The example below illustrates the following Big Rules:
96 *
97 * (1) A check must be made in each zfs thread for a mounted file system.
98 * This is done avoiding races using ZFS_ENTER(zfsvfs).
99 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
100 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
101 * can return EIO from the calling function.
102 *
103 * (2) VN_RELE() should always be the last thing except for zil_commit()
104 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
105 * First, if it's the last reference, the vnode/znode
106 * can be freed, so the zp may point to freed memory. Second, the last
107 * reference will call zfs_zinactive(), which may induce a lot of work --
108 * pushing cached pages (which acquires range locks) and syncing out
109 * cached atime changes. Third, zfs_zinactive() may require a new tx,
110 * which could deadlock the system if you were already holding one.
111 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
112 *
113 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
114 * as they can span dmu_tx_assign() calls.
115 *
116 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
117 * dmu_tx_assign(). This is critical because we don't want to block
118 * while holding locks.
119 *
120 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
121 * reduces lock contention and CPU usage when we must wait (note that if
122 * throughput is constrained by the storage, nearly every transaction
123 * must wait).
124 *
125 * Note, in particular, that if a lock is sometimes acquired before
126 * the tx assigns, and sometimes after (e.g. z_lock), then failing
127 * to use a non-blocking assign can deadlock the system. The scenario:
128 *
129 * Thread A has grabbed a lock before calling dmu_tx_assign().
130 * Thread B is in an already-assigned tx, and blocks for this lock.
131 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
132 * forever, because the previous txg can't quiesce until B's tx commits.
133 *
134 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
135 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
136 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
137 * to indicate that this operation has already called dmu_tx_wait().
138 * This will ensure that we don't retry forever, waiting a short bit
139 * each time.
140 *
141 * (5) If the operation succeeded, generate the intent log entry for it
142 * before dropping locks. This ensures that the ordering of events
143 * in the intent log matches the order in which they actually occurred.
144 * During ZIL replay the zfs_log_* functions will update the sequence
145 * number to indicate the zil transaction has replayed.
146 *
147 * (6) At the end of each vnode op, the DMU tx must always commit,
148 * regardless of whether there were any errors.
149 *
150 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
151 * to ensure that synchronous semantics are provided when necessary.
152 *
153 * In general, this is how things should be ordered in each vnode op:
154 *
155 * ZFS_ENTER(zfsvfs); // exit if unmounted
156 * top:
157 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
158 * rw_enter(...); // grab any other locks you need
159 * tx = dmu_tx_create(...); // get DMU tx
160 * dmu_tx_hold_*(); // hold each object you might modify
161 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
162 * if (error) {
163 * rw_exit(...); // drop locks
164 * zfs_dirent_unlock(dl); // unlock directory entry
165 * VN_RELE(...); // release held vnodes
166 * if (error == ERESTART) {
167 * waited = B_TRUE;
168 * dmu_tx_wait(tx);
169 * dmu_tx_abort(tx);
170 * goto top;
171 * }
172 * dmu_tx_abort(tx); // abort DMU tx
173 * ZFS_EXIT(zfsvfs); // finished in zfs
174 * return (error); // really out of space
175 * }
176 * error = do_real_work(); // do whatever this VOP does
177 * if (error == 0)
178 * zfs_log_*(...); // on success, make ZIL entry
179 * dmu_tx_commit(tx); // commit DMU tx -- error or not
180 * rw_exit(...); // drop locks
181 * zfs_dirent_unlock(dl); // unlock directory entry
182 * VN_RELE(...); // release held vnodes
183 * zil_commit(zilog, foid); // synchronous when necessary
184 * ZFS_EXIT(zfsvfs); // finished in zfs
185 * return (error); // done, report error
186 */
187
188 /* ARGSUSED */
189 static int
190 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
191 {
192 znode_t *zp = VTOZ(*vpp);
193 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
194
195 ZFS_ENTER(zfsvfs);
196 ZFS_VERIFY_ZP(zp);
197
198 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
199 ((flag & FAPPEND) == 0)) {
200 ZFS_EXIT(zfsvfs);
201 return (SET_ERROR(EPERM));
202 }
203
204 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
205 ZTOV(zp)->v_type == VREG &&
206 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
207 if (fs_vscan(*vpp, cr, 0) != 0) {
208 ZFS_EXIT(zfsvfs);
209 return (SET_ERROR(EACCES));
210 }
211 }
212
213 /* Keep a count of the synchronous opens in the znode */
214 if (flag & (FSYNC | FDSYNC))
215 atomic_inc_32(&zp->z_sync_cnt);
216
217 ZFS_EXIT(zfsvfs);
218 return (0);
219 }
220
221 /* ARGSUSED */
222 static int
223 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
224 caller_context_t *ct)
225 {
226 znode_t *zp = VTOZ(vp);
227 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
228
229 /*
230 * Clean up any locks held by this process on the vp.
231 */
232 cleanlocks(vp, ddi_get_pid(), 0);
233 cleanshares(vp, ddi_get_pid());
234
235 ZFS_ENTER(zfsvfs);
236 ZFS_VERIFY_ZP(zp);
237
238 /* Decrement the synchronous opens in the znode */
239 if ((flag & (FSYNC | FDSYNC)) && (count == 1))
240 atomic_dec_32(&zp->z_sync_cnt);
241
242 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
243 ZTOV(zp)->v_type == VREG &&
244 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
245 VERIFY(fs_vscan(vp, cr, 1) == 0);
246
247 ZFS_EXIT(zfsvfs);
248 return (0);
249 }
250
251 /*
252 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
253 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
254 */
255 static int
256 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
257 {
258 znode_t *zp = VTOZ(vp);
259 uint64_t noff = (uint64_t)*off; /* new offset */
260 uint64_t file_sz;
261 int error;
262 boolean_t hole;
263
264 file_sz = zp->z_size;
265 if (noff >= file_sz) {
266 return (SET_ERROR(ENXIO));
267 }
268
269 if (cmd == _FIO_SEEK_HOLE)
270 hole = B_TRUE;
271 else
272 hole = B_FALSE;
273
274 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
275
276 if (error == ESRCH)
277 return (SET_ERROR(ENXIO));
278
279 /*
280 * We could find a hole that begins after the logical end-of-file,
281 * because dmu_offset_next() only works on whole blocks. If the
282 * EOF falls mid-block, then indicate that the "virtual hole"
283 * at the end of the file begins at the logical EOF, rather than
284 * at the end of the last block.
285 */
286 if (noff > file_sz) {
287 ASSERT(hole);
288 noff = file_sz;
289 }
290
291 if (noff < *off)
292 return (error);
293 *off = noff;
294 return (error);
295 }
296
297 /* ARGSUSED */
298 static int
299 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
300 int *rvalp, caller_context_t *ct)
301 {
302 offset_t off;
303 offset_t ndata;
304 dmu_object_info_t doi;
305 int error;
306 zfsvfs_t *zfsvfs;
307 znode_t *zp;
308
309 switch (com) {
310 case _FIOFFS:
311 {
312 return (zfs_sync(vp->v_vfsp, 0, cred));
313
314 /*
315 * The following two ioctls are used by bfu. Faking out,
316 * necessary to avoid bfu errors.
317 */
318 }
319 case _FIOGDIO:
320 case _FIOSDIO:
321 {
322 return (0);
323 }
324
325 case _FIO_SEEK_DATA:
326 case _FIO_SEEK_HOLE:
327 {
328 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
329 return (SET_ERROR(EFAULT));
330
331 zp = VTOZ(vp);
332 zfsvfs = zp->z_zfsvfs;
333 ZFS_ENTER(zfsvfs);
334 ZFS_VERIFY_ZP(zp);
335
336 /* offset parameter is in/out */
337 error = zfs_holey(vp, com, &off);
338 ZFS_EXIT(zfsvfs);
339 if (error)
340 return (error);
341 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
342 return (SET_ERROR(EFAULT));
343 return (0);
344 }
345 case _FIO_COUNT_FILLED:
346 {
347 /*
348 * _FIO_COUNT_FILLED adds a new ioctl command which
349 * exposes the number of filled blocks in a
350 * ZFS object.
351 */
352 zp = VTOZ(vp);
353 zfsvfs = zp->z_zfsvfs;
354 ZFS_ENTER(zfsvfs);
355 ZFS_VERIFY_ZP(zp);
356
357 /*
358 * Wait for all dirty blocks for this object
359 * to get synced out to disk, and the DMU info
360 * updated.
361 */
362 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
363 if (error) {
364 ZFS_EXIT(zfsvfs);
365 return (error);
366 }
367
368 /*
369 * Retrieve fill count from DMU object.
370 */
371 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
372 if (error) {
373 ZFS_EXIT(zfsvfs);
374 return (error);
375 }
376
377 ndata = doi.doi_fill_count;
378
379 ZFS_EXIT(zfsvfs);
380 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
381 return (SET_ERROR(EFAULT));
382 return (0);
383 }
384 }
385 return (SET_ERROR(ENOTTY));
386 }
387
388 /*
389 * Utility functions to map and unmap a single physical page. These
390 * are used to manage the mappable copies of ZFS file data, and therefore
391 * do not update ref/mod bits.
392 */
393 caddr_t
394 zfs_map_page(page_t *pp, enum seg_rw rw)
395 {
396 if (kpm_enable)
397 return (hat_kpm_mapin(pp, 0));
398 ASSERT(rw == S_READ || rw == S_WRITE);
399 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
400 (caddr_t)-1));
401 }
402
403 void
404 zfs_unmap_page(page_t *pp, caddr_t addr)
405 {
406 if (kpm_enable) {
407 hat_kpm_mapout(pp, 0, addr);
408 } else {
409 ppmapout(addr);
410 }
411 }
412
413 /*
414 * When a file is memory mapped, we must keep the IO data synchronized
415 * between the DMU cache and the memory mapped pages. What this means:
416 *
417 * On Write: If we find a memory mapped page, we write to *both*
418 * the page and the dmu buffer.
419 */
420 static void
421 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
422 {
423 int64_t off;
424
425 off = start & PAGEOFFSET;
426 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
427 page_t *pp;
428 uint64_t nbytes = MIN(PAGESIZE - off, len);
429
430 if (pp = page_lookup(vp, start, SE_SHARED)) {
431 caddr_t va;
432
433 va = zfs_map_page(pp, S_WRITE);
434 (void) dmu_read(os, oid, start+off, nbytes, va+off,
435 DMU_READ_PREFETCH);
436 zfs_unmap_page(pp, va);
437 page_unlock(pp);
438 }
439 len -= nbytes;
440 off = 0;
441 }
442 }
443
444 /*
445 * When a file is memory mapped, we must keep the IO data synchronized
446 * between the DMU cache and the memory mapped pages. What this means:
447 *
448 * On Read: We "read" preferentially from memory mapped pages,
449 * else we default from the dmu buffer.
450 *
451 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
452 * the file is memory mapped.
453 */
454 static int
455 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
456 {
457 znode_t *zp = VTOZ(vp);
458 int64_t start, off;
459 int len = nbytes;
460 int error = 0;
461
462 start = uio->uio_loffset;
463 off = start & PAGEOFFSET;
464 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
465 page_t *pp;
466 uint64_t bytes = MIN(PAGESIZE - off, len);
467
468 if (pp = page_lookup(vp, start, SE_SHARED)) {
469 caddr_t va;
470
471 va = zfs_map_page(pp, S_READ);
472 error = uiomove(va + off, bytes, UIO_READ, uio);
473 zfs_unmap_page(pp, va);
474 page_unlock(pp);
475 } else {
476 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
477 uio, bytes);
478 }
479 len -= bytes;
480 off = 0;
481 if (error)
482 break;
483 }
484 return (error);
485 }
486
487 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
488
489 /*
490 * Read bytes from specified file into supplied buffer.
491 *
492 * IN: vp - vnode of file to be read from.
493 * uio - structure supplying read location, range info,
494 * and return buffer.
495 * ioflag - SYNC flags; used to provide FRSYNC semantics.
496 * cr - credentials of caller.
497 * ct - caller context
498 *
499 * OUT: uio - updated offset and range, buffer filled.
500 *
501 * RETURN: 0 on success, error code on failure.
502 *
503 * Side Effects:
504 * vp - atime updated if byte count > 0
505 */
506 /* ARGSUSED */
507 static int
508 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
509 {
510 znode_t *zp = VTOZ(vp);
511 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
512 ssize_t n, nbytes;
513 int error = 0;
514 rl_t *rl;
515 xuio_t *xuio = NULL;
516
517 ZFS_ENTER(zfsvfs);
518 ZFS_VERIFY_ZP(zp);
519
520 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
521 ZFS_EXIT(zfsvfs);
522 return (SET_ERROR(EACCES));
523 }
524
525 /*
526 * Validate file offset
527 */
528 if (uio->uio_loffset < (offset_t)0) {
529 ZFS_EXIT(zfsvfs);
530 return (SET_ERROR(EINVAL));
531 }
532
533 /*
534 * Fasttrack empty reads
535 */
536 if (uio->uio_resid == 0) {
537 ZFS_EXIT(zfsvfs);
538 return (0);
539 }
540
541 /*
542 * Check for mandatory locks
543 */
544 if (MANDMODE(zp->z_mode)) {
545 if (error = chklock(vp, FREAD,
546 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
547 ZFS_EXIT(zfsvfs);
548 return (error);
549 }
550 }
551
552 /*
553 * If we're in FRSYNC mode, sync out this znode before reading it.
554 */
555 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
556 zil_commit(zfsvfs->z_log, zp->z_id);
557
558 /*
559 * Lock the range against changes.
560 */
561 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
562
563 /*
564 * If we are reading past end-of-file we can skip
565 * to the end; but we might still need to set atime.
566 */
567 if (uio->uio_loffset >= zp->z_size) {
568 error = 0;
569 goto out;
570 }
571
572 ASSERT(uio->uio_loffset < zp->z_size);
573 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
574
575 if ((uio->uio_extflg == UIO_XUIO) &&
576 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
577 int nblk;
578 int blksz = zp->z_blksz;
579 uint64_t offset = uio->uio_loffset;
580
581 xuio = (xuio_t *)uio;
582 if ((ISP2(blksz))) {
583 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
584 blksz)) / blksz;
585 } else {
586 ASSERT(offset + n <= blksz);
587 nblk = 1;
588 }
589 (void) dmu_xuio_init(xuio, nblk);
590
591 if (vn_has_cached_data(vp)) {
592 /*
593 * For simplicity, we always allocate a full buffer
594 * even if we only expect to read a portion of a block.
595 */
596 while (--nblk >= 0) {
597 (void) dmu_xuio_add(xuio,
598 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
599 blksz), 0, blksz);
600 }
601 }
602 }
603
604 while (n > 0) {
605 nbytes = MIN(n, zfs_read_chunk_size -
606 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
607
608 if (vn_has_cached_data(vp)) {
609 error = mappedread(vp, nbytes, uio);
610 } else {
611 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
612 uio, nbytes);
613 }
614 if (error) {
615 /* convert checksum errors into IO errors */
616 if (error == ECKSUM)
617 error = SET_ERROR(EIO);
618 break;
619 }
620
621 n -= nbytes;
622 }
623 out:
624 zfs_range_unlock(rl);
625
626 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
627 ZFS_EXIT(zfsvfs);
628 return (error);
629 }
630
631 /*
632 * Write the bytes to a file.
633 *
634 * IN: vp - vnode of file to be written to.
635 * uio - structure supplying write location, range info,
636 * and data buffer.
637 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is
638 * set if in append mode.
639 * cr - credentials of caller.
640 * ct - caller context (NFS/CIFS fem monitor only)
641 *
642 * OUT: uio - updated offset and range.
643 *
644 * RETURN: 0 on success, error code on failure.
645 *
646 * Timestamps:
647 * vp - ctime|mtime updated if byte count > 0
648 */
649
650 /* ARGSUSED */
651 static int
652 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
653 {
654 znode_t *zp = VTOZ(vp);
655 rlim64_t limit = uio->uio_llimit;
656 ssize_t start_resid = uio->uio_resid;
657 ssize_t tx_bytes;
658 uint64_t end_size;
659 dmu_tx_t *tx;
660 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
661 zilog_t *zilog;
662 offset_t woff;
663 ssize_t n, nbytes;
664 rl_t *rl;
665 int max_blksz = zfsvfs->z_max_blksz;
666 int error = 0;
667 arc_buf_t *abuf;
668 iovec_t *aiov = NULL;
669 xuio_t *xuio = NULL;
670 int i_iov = 0;
671 int iovcnt = uio->uio_iovcnt;
672 iovec_t *iovp = uio->uio_iov;
673 int write_eof;
674 int count = 0;
675 sa_bulk_attr_t bulk[4];
676 uint64_t mtime[2], ctime[2];
677
678 /*
679 * Fasttrack empty write
680 */
681 n = start_resid;
682 if (n == 0)
683 return (0);
684
685 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
686 limit = MAXOFFSET_T;
687
688 ZFS_ENTER(zfsvfs);
689 ZFS_VERIFY_ZP(zp);
690
691 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
692 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
693 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
694 &zp->z_size, 8);
695 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
696 &zp->z_pflags, 8);
697
698 /*
699 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
700 * callers might not be able to detect properly that we are read-only,
701 * so check it explicitly here.
702 */
703 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
704 ZFS_EXIT(zfsvfs);
705 return (SET_ERROR(EROFS));
706 }
707
708 /*
709 * If immutable or not appending then return EPERM
710 */
711 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
712 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
713 (uio->uio_loffset < zp->z_size))) {
714 ZFS_EXIT(zfsvfs);
715 return (SET_ERROR(EPERM));
716 }
717
718 zilog = zfsvfs->z_log;
719
720 /*
721 * Validate file offset
722 */
723 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
724 if (woff < 0) {
725 ZFS_EXIT(zfsvfs);
726 return (SET_ERROR(EINVAL));
727 }
728
729 /*
730 * Check for mandatory locks before calling zfs_range_lock()
731 * in order to prevent a deadlock with locks set via fcntl().
732 */
733 if (MANDMODE((mode_t)zp->z_mode) &&
734 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
735 ZFS_EXIT(zfsvfs);
736 return (error);
737 }
738
739 /*
740 * Pre-fault the pages to ensure slow (eg NFS) pages
741 * don't hold up txg.
742 * Skip this if uio contains loaned arc_buf.
743 */
744 if ((uio->uio_extflg == UIO_XUIO) &&
745 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
746 xuio = (xuio_t *)uio;
747 else
748 uio_prefaultpages(MIN(n, max_blksz), uio);
749
750 /*
751 * If in append mode, set the io offset pointer to eof.
752 */
753 if (ioflag & FAPPEND) {
754 /*
755 * Obtain an appending range lock to guarantee file append
756 * semantics. We reset the write offset once we have the lock.
757 */
758 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
759 woff = rl->r_off;
760 if (rl->r_len == UINT64_MAX) {
761 /*
762 * We overlocked the file because this write will cause
763 * the file block size to increase.
764 * Note that zp_size cannot change with this lock held.
765 */
766 woff = zp->z_size;
767 }
768 uio->uio_loffset = woff;
769 } else {
770 /*
771 * Note that if the file block size will change as a result of
772 * this write, then this range lock will lock the entire file
773 * so that we can re-write the block safely.
774 */
775 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
776 }
777
778 if (woff >= limit) {
779 zfs_range_unlock(rl);
780 ZFS_EXIT(zfsvfs);
781 return (SET_ERROR(EFBIG));
782 }
783
784 if ((woff + n) > limit || woff > (limit - n))
785 n = limit - woff;
786
787 /* Will this write extend the file length? */
788 write_eof = (woff + n > zp->z_size);
789
790 end_size = MAX(zp->z_size, woff + n);
791
792 /*
793 * Write the file in reasonable size chunks. Each chunk is written
794 * in a separate transaction; this keeps the intent log records small
795 * and allows us to do more fine-grained space accounting.
796 */
797 while (n > 0) {
798 abuf = NULL;
799 woff = uio->uio_loffset;
800 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
801 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
802 if (abuf != NULL)
803 dmu_return_arcbuf(abuf);
804 error = SET_ERROR(EDQUOT);
805 break;
806 }
807
808 if (xuio && abuf == NULL) {
809 ASSERT(i_iov < iovcnt);
810 aiov = &iovp[i_iov];
811 abuf = dmu_xuio_arcbuf(xuio, i_iov);
812 dmu_xuio_clear(xuio, i_iov);
813 DTRACE_PROBE3(zfs_cp_write, int, i_iov,
814 iovec_t *, aiov, arc_buf_t *, abuf);
815 ASSERT((aiov->iov_base == abuf->b_data) ||
816 ((char *)aiov->iov_base - (char *)abuf->b_data +
817 aiov->iov_len == arc_buf_size(abuf)));
818 i_iov++;
819 } else if (abuf == NULL && n >= max_blksz &&
820 woff >= zp->z_size &&
821 P2PHASE(woff, max_blksz) == 0 &&
822 zp->z_blksz == max_blksz) {
823 /*
824 * This write covers a full block. "Borrow" a buffer
825 * from the dmu so that we can fill it before we enter
826 * a transaction. This avoids the possibility of
827 * holding up the transaction if the data copy hangs
828 * up on a pagefault (e.g., from an NFS server mapping).
829 */
830 size_t cbytes;
831
832 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
833 max_blksz);
834 ASSERT(abuf != NULL);
835 ASSERT(arc_buf_size(abuf) == max_blksz);
836 if (error = uiocopy(abuf->b_data, max_blksz,
837 UIO_WRITE, uio, &cbytes)) {
838 dmu_return_arcbuf(abuf);
839 break;
840 }
841 ASSERT(cbytes == max_blksz);
842 }
843
844 /*
845 * Start a transaction.
846 */
847 tx = dmu_tx_create(zfsvfs->z_os);
848 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
849 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
850 zfs_sa_upgrade_txholds(tx, zp);
851 error = dmu_tx_assign(tx, TXG_WAIT);
852 if (error) {
853 dmu_tx_abort(tx);
854 if (abuf != NULL)
855 dmu_return_arcbuf(abuf);
856 break;
857 }
858
859 /*
860 * If zfs_range_lock() over-locked we grow the blocksize
861 * and then reduce the lock range. This will only happen
862 * on the first iteration since zfs_range_reduce() will
863 * shrink down r_len to the appropriate size.
864 */
865 if (rl->r_len == UINT64_MAX) {
866 uint64_t new_blksz;
867
868 if (zp->z_blksz > max_blksz) {
869 /*
870 * File's blocksize is already larger than the
871 * "recordsize" property. Only let it grow to
872 * the next power of 2.
873 */
874 ASSERT(!ISP2(zp->z_blksz));
875 new_blksz = MIN(end_size,
876 1 << highbit64(zp->z_blksz));
877 } else {
878 new_blksz = MIN(end_size, max_blksz);
879 }
880 zfs_grow_blocksize(zp, new_blksz, tx);
881 zfs_range_reduce(rl, woff, n);
882 }
883
884 /*
885 * XXX - should we really limit each write to z_max_blksz?
886 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
887 */
888 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
889
890 if (abuf == NULL) {
891 tx_bytes = uio->uio_resid;
892 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
893 uio, nbytes, tx);
894 tx_bytes -= uio->uio_resid;
895 } else {
896 tx_bytes = nbytes;
897 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
898 /*
899 * If this is not a full block write, but we are
900 * extending the file past EOF and this data starts
901 * block-aligned, use assign_arcbuf(). Otherwise,
902 * write via dmu_write().
903 */
904 if (tx_bytes < max_blksz && (!write_eof ||
905 aiov->iov_base != abuf->b_data)) {
906 ASSERT(xuio);
907 dmu_write(zfsvfs->z_os, zp->z_id, woff,
908 aiov->iov_len, aiov->iov_base, tx);
909 dmu_return_arcbuf(abuf);
910 xuio_stat_wbuf_copied();
911 } else {
912 ASSERT(xuio || tx_bytes == max_blksz);
913 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
914 woff, abuf, tx);
915 }
916 ASSERT(tx_bytes <= uio->uio_resid);
917 uioskip(uio, tx_bytes);
918 }
919 if (tx_bytes && vn_has_cached_data(vp)) {
920 update_pages(vp, woff,
921 tx_bytes, zfsvfs->z_os, zp->z_id);
922 }
923
924 /*
925 * If we made no progress, we're done. If we made even
926 * partial progress, update the znode and ZIL accordingly.
927 */
928 if (tx_bytes == 0) {
929 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
930 (void *)&zp->z_size, sizeof (uint64_t), tx);
931 dmu_tx_commit(tx);
932 ASSERT(error != 0);
933 break;
934 }
935
936 /*
937 * Clear Set-UID/Set-GID bits on successful write if not
938 * privileged and at least one of the excute bits is set.
939 *
940 * It would be nice to to this after all writes have
941 * been done, but that would still expose the ISUID/ISGID
942 * to another app after the partial write is committed.
943 *
944 * Note: we don't call zfs_fuid_map_id() here because
945 * user 0 is not an ephemeral uid.
946 */
947 mutex_enter(&zp->z_acl_lock);
948 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
949 (S_IXUSR >> 6))) != 0 &&
950 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
951 secpolicy_vnode_setid_retain(cr,
952 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
953 uint64_t newmode;
954 zp->z_mode &= ~(S_ISUID | S_ISGID);
955 newmode = zp->z_mode;
956 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
957 (void *)&newmode, sizeof (uint64_t), tx);
958 }
959 mutex_exit(&zp->z_acl_lock);
960
961 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
962 B_TRUE);
963
964 /*
965 * Update the file size (zp_size) if it has changed;
966 * account for possible concurrent updates.
967 */
968 while ((end_size = zp->z_size) < uio->uio_loffset) {
969 (void) atomic_cas_64(&zp->z_size, end_size,
970 uio->uio_loffset);
971 ASSERT(error == 0);
972 }
973 /*
974 * If we are replaying and eof is non zero then force
975 * the file size to the specified eof. Note, there's no
976 * concurrency during replay.
977 */
978 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
979 zp->z_size = zfsvfs->z_replay_eof;
980
981 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
982
983 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
984 dmu_tx_commit(tx);
985
986 if (error != 0)
987 break;
988 ASSERT(tx_bytes == nbytes);
989 n -= nbytes;
990
991 if (!xuio && n > 0)
992 uio_prefaultpages(MIN(n, max_blksz), uio);
993 }
994
995 zfs_range_unlock(rl);
996
997 /*
998 * If we're in replay mode, or we made no progress, return error.
999 * Otherwise, it's at least a partial write, so it's successful.
1000 */
1001 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1002 ZFS_EXIT(zfsvfs);
1003 return (error);
1004 }
1005
1006 if (ioflag & (FSYNC | FDSYNC) ||
1007 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1008 zil_commit(zilog, zp->z_id);
1009
1010 ZFS_EXIT(zfsvfs);
1011 return (0);
1012 }
1013
1014 void
1015 zfs_get_done(zgd_t *zgd, int error)
1016 {
1017 znode_t *zp = zgd->zgd_private;
1018 objset_t *os = zp->z_zfsvfs->z_os;
1019
1020 if (zgd->zgd_db)
1021 dmu_buf_rele(zgd->zgd_db, zgd);
1022
1023 zfs_range_unlock(zgd->zgd_rl);
1024
1025 /*
1026 * Release the vnode asynchronously as we currently have the
1027 * txg stopped from syncing.
1028 */
1029 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1030
1031 if (error == 0 && zgd->zgd_bp)
1032 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1033
1034 kmem_free(zgd, sizeof (zgd_t));
1035 }
1036
1037 #ifdef DEBUG
1038 static int zil_fault_io = 0;
1039 #endif
1040
1041 /*
1042 * Get data to generate a TX_WRITE intent log record.
1043 */
1044 int
1045 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1046 {
1047 zfsvfs_t *zfsvfs = arg;
1048 objset_t *os = zfsvfs->z_os;
1049 znode_t *zp;
1050 uint64_t object = lr->lr_foid;
1051 uint64_t offset = lr->lr_offset;
1052 uint64_t size = lr->lr_length;
1053 blkptr_t *bp = &lr->lr_blkptr;
1054 dmu_buf_t *db;
1055 zgd_t *zgd;
1056 int error = 0;
1057
1058 ASSERT(zio != NULL);
1059 ASSERT(size != 0);
1060
1061 /*
1062 * Nothing to do if the file has been removed
1063 */
1064 if (zfs_zget(zfsvfs, object, &zp) != 0)
1065 return (SET_ERROR(ENOENT));
1066 if (zp->z_unlinked) {
1067 /*
1068 * Release the vnode asynchronously as we currently have the
1069 * txg stopped from syncing.
1070 */
1071 VN_RELE_ASYNC(ZTOV(zp),
1072 dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1073 return (SET_ERROR(ENOENT));
1074 }
1075
1076 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1077 zgd->zgd_zilog = zfsvfs->z_log;
1078 zgd->zgd_private = zp;
1079
1080 /*
1081 * Write records come in two flavors: immediate and indirect.
1082 * For small writes it's cheaper to store the data with the
1083 * log record (immediate); for large writes it's cheaper to
1084 * sync the data and get a pointer to it (indirect) so that
1085 * we don't have to write the data twice.
1086 */
1087 if (buf != NULL) { /* immediate write */
1088 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1089 /* test for truncation needs to be done while range locked */
1090 if (offset >= zp->z_size) {
1091 error = SET_ERROR(ENOENT);
1092 } else {
1093 error = dmu_read(os, object, offset, size, buf,
1094 DMU_READ_NO_PREFETCH);
1095 }
1096 ASSERT(error == 0 || error == ENOENT);
1097 } else { /* indirect write */
1098 /*
1099 * Have to lock the whole block to ensure when it's
1100 * written out and it's checksum is being calculated
1101 * that no one can change the data. We need to re-check
1102 * blocksize after we get the lock in case it's changed!
1103 */
1104 for (;;) {
1105 uint64_t blkoff;
1106 size = zp->z_blksz;
1107 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1108 offset -= blkoff;
1109 zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1110 RL_READER);
1111 if (zp->z_blksz == size)
1112 break;
1113 offset += blkoff;
1114 zfs_range_unlock(zgd->zgd_rl);
1115 }
1116 /* test for truncation needs to be done while range locked */
1117 if (lr->lr_offset >= zp->z_size)
1118 error = SET_ERROR(ENOENT);
1119 #ifdef DEBUG
1120 if (zil_fault_io) {
1121 error = SET_ERROR(EIO);
1122 zil_fault_io = 0;
1123 }
1124 #endif
1125 if (error == 0)
1126 error = dmu_buf_hold(os, object, offset, zgd, &db,
1127 DMU_READ_NO_PREFETCH);
1128
1129 if (error == 0) {
1130 blkptr_t *obp = dmu_buf_get_blkptr(db);
1131 if (obp) {
1132 ASSERT(BP_IS_HOLE(bp));
1133 *bp = *obp;
1134 }
1135
1136 zgd->zgd_db = db;
1137 zgd->zgd_bp = bp;
1138
1139 ASSERT(db->db_offset == offset);
1140 ASSERT(db->db_size == size);
1141
1142 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1143 zfs_get_done, zgd);
1144 ASSERT(error || lr->lr_length <= zp->z_blksz);
1145
1146 /*
1147 * On success, we need to wait for the write I/O
1148 * initiated by dmu_sync() to complete before we can
1149 * release this dbuf. We will finish everything up
1150 * in the zfs_get_done() callback.
1151 */
1152 if (error == 0)
1153 return (0);
1154
1155 if (error == EALREADY) {
1156 lr->lr_common.lrc_txtype = TX_WRITE2;
1157 error = 0;
1158 }
1159 }
1160 }
1161
1162 zfs_get_done(zgd, error);
1163
1164 return (error);
1165 }
1166
1167 /*ARGSUSED*/
1168 static int
1169 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1170 caller_context_t *ct)
1171 {
1172 znode_t *zp = VTOZ(vp);
1173 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1174 int error;
1175
1176 ZFS_ENTER(zfsvfs);
1177 ZFS_VERIFY_ZP(zp);
1178
1179 if (flag & V_ACE_MASK)
1180 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1181 else
1182 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1183
1184 ZFS_EXIT(zfsvfs);
1185 return (error);
1186 }
1187
1188 /*
1189 * If vnode is for a device return a specfs vnode instead.
1190 */
1191 static int
1192 specvp_check(vnode_t **vpp, cred_t *cr)
1193 {
1194 int error = 0;
1195
1196 if (IS_DEVVP(*vpp)) {
1197 struct vnode *svp;
1198
1199 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1200 VN_RELE(*vpp);
1201 if (svp == NULL)
1202 error = SET_ERROR(ENOSYS);
1203 *vpp = svp;
1204 }
1205 return (error);
1206 }
1207
1208
1209 /*
1210 * Lookup an entry in a directory, or an extended attribute directory.
1211 * If it exists, return a held vnode reference for it.
1212 *
1213 * IN: dvp - vnode of directory to search.
1214 * nm - name of entry to lookup.
1215 * pnp - full pathname to lookup [UNUSED].
1216 * flags - LOOKUP_XATTR set if looking for an attribute.
1217 * rdir - root directory vnode [UNUSED].
1218 * cr - credentials of caller.
1219 * ct - caller context
1220 * direntflags - directory lookup flags
1221 * realpnp - returned pathname.
1222 *
1223 * OUT: vpp - vnode of located entry, NULL if not found.
1224 *
1225 * RETURN: 0 on success, error code on failure.
1226 *
1227 * Timestamps:
1228 * NA
1229 */
1230 /* ARGSUSED */
1231 static int
1232 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1233 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1234 int *direntflags, pathname_t *realpnp)
1235 {
1236 znode_t *zdp = VTOZ(dvp);
1237 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1238 int error = 0;
1239
1240 /* fast path */
1241 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1242
1243 if (dvp->v_type != VDIR) {
1244 return (SET_ERROR(ENOTDIR));
1245 } else if (zdp->z_sa_hdl == NULL) {
1246 return (SET_ERROR(EIO));
1247 }
1248
1249 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1250 error = zfs_fastaccesschk_execute(zdp, cr);
1251 if (!error) {
1252 *vpp = dvp;
1253 VN_HOLD(*vpp);
1254 return (0);
1255 }
1256 return (error);
1257 } else {
1258 vnode_t *tvp = dnlc_lookup(dvp, nm);
1259
1260 if (tvp) {
1261 error = zfs_fastaccesschk_execute(zdp, cr);
1262 if (error) {
1263 VN_RELE(tvp);
1264 return (error);
1265 }
1266 if (tvp == DNLC_NO_VNODE) {
1267 VN_RELE(tvp);
1268 return (SET_ERROR(ENOENT));
1269 } else {
1270 *vpp = tvp;
1271 return (specvp_check(vpp, cr));
1272 }
1273 }
1274 }
1275 }
1276
1277 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1278
1279 ZFS_ENTER(zfsvfs);
1280 ZFS_VERIFY_ZP(zdp);
1281
1282 *vpp = NULL;
1283
1284 if (flags & LOOKUP_XATTR) {
1285 /*
1286 * If the xattr property is off, refuse the lookup request.
1287 */
1288 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1289 ZFS_EXIT(zfsvfs);
1290 return (SET_ERROR(EINVAL));
1291 }
1292
1293 /*
1294 * We don't allow recursive attributes..
1295 * Maybe someday we will.
1296 */
1297 if (zdp->z_pflags & ZFS_XATTR) {
1298 ZFS_EXIT(zfsvfs);
1299 return (SET_ERROR(EINVAL));
1300 }
1301
1302 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1303 ZFS_EXIT(zfsvfs);
1304 return (error);
1305 }
1306
1307 /*
1308 * Do we have permission to get into attribute directory?
1309 */
1310
1311 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1312 B_FALSE, cr)) {
1313 VN_RELE(*vpp);
1314 *vpp = NULL;
1315 }
1316
1317 ZFS_EXIT(zfsvfs);
1318 return (error);
1319 }
1320
1321 if (dvp->v_type != VDIR) {
1322 ZFS_EXIT(zfsvfs);
1323 return (SET_ERROR(ENOTDIR));
1324 }
1325
1326 /*
1327 * Check accessibility of directory.
1328 */
1329
1330 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1331 ZFS_EXIT(zfsvfs);
1332 return (error);
1333 }
1334
1335 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1336 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1337 ZFS_EXIT(zfsvfs);
1338 return (SET_ERROR(EILSEQ));
1339 }
1340
1341 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1342 if (error == 0)
1343 error = specvp_check(vpp, cr);
1344
1345 ZFS_EXIT(zfsvfs);
1346 return (error);
1347 }
1348
1349 /*
1350 * Attempt to create a new entry in a directory. If the entry
1351 * already exists, truncate the file if permissible, else return
1352 * an error. Return the vp of the created or trunc'd file.
1353 *
1354 * IN: dvp - vnode of directory to put new file entry in.
1355 * name - name of new file entry.
1356 * vap - attributes of new file.
1357 * excl - flag indicating exclusive or non-exclusive mode.
1358 * mode - mode to open file with.
1359 * cr - credentials of caller.
1360 * flag - large file flag [UNUSED].
1361 * ct - caller context
1362 * vsecp - ACL to be set
1363 *
1364 * OUT: vpp - vnode of created or trunc'd entry.
1365 *
1366 * RETURN: 0 on success, error code on failure.
1367 *
1368 * Timestamps:
1369 * dvp - ctime|mtime updated if new entry created
1370 * vp - ctime|mtime always, atime if new
1371 */
1372
1373 /* ARGSUSED */
1374 static int
1375 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1376 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1377 vsecattr_t *vsecp)
1378 {
1379 znode_t *zp, *dzp = VTOZ(dvp);
1380 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1381 zilog_t *zilog;
1382 objset_t *os;
1383 zfs_dirlock_t *dl;
1384 dmu_tx_t *tx;
1385 int error;
1386 ksid_t *ksid;
1387 uid_t uid;
1388 gid_t gid = crgetgid(cr);
1389 zfs_acl_ids_t acl_ids;
1390 boolean_t fuid_dirtied;
1391 boolean_t have_acl = B_FALSE;
1392 boolean_t waited = B_FALSE;
1393
1394 /*
1395 * If we have an ephemeral id, ACL, or XVATTR then
1396 * make sure file system is at proper version
1397 */
1398
1399 ksid = crgetsid(cr, KSID_OWNER);
1400 if (ksid)
1401 uid = ksid_getid(ksid);
1402 else
1403 uid = crgetuid(cr);
1404
1405 if (zfsvfs->z_use_fuids == B_FALSE &&
1406 (vsecp || (vap->va_mask & AT_XVATTR) ||
1407 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1408 return (SET_ERROR(EINVAL));
1409
1410 ZFS_ENTER(zfsvfs);
1411 ZFS_VERIFY_ZP(dzp);
1412 os = zfsvfs->z_os;
1413 zilog = zfsvfs->z_log;
1414
1415 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1416 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1417 ZFS_EXIT(zfsvfs);
1418 return (SET_ERROR(EILSEQ));
1419 }
1420
1421 if (vap->va_mask & AT_XVATTR) {
1422 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1423 crgetuid(cr), cr, vap->va_type)) != 0) {
1424 ZFS_EXIT(zfsvfs);
1425 return (error);
1426 }
1427 }
1428 top:
1429 *vpp = NULL;
1430
1431 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1432 vap->va_mode &= ~VSVTX;
1433
1434 if (*name == '\0') {
1435 /*
1436 * Null component name refers to the directory itself.
1437 */
1438 VN_HOLD(dvp);
1439 zp = dzp;
1440 dl = NULL;
1441 error = 0;
1442 } else {
1443 /* possible VN_HOLD(zp) */
1444 int zflg = 0;
1445
1446 if (flag & FIGNORECASE)
1447 zflg |= ZCILOOK;
1448
1449 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1450 NULL, NULL);
1451 if (error) {
1452 if (have_acl)
1453 zfs_acl_ids_free(&acl_ids);
1454 if (strcmp(name, "..") == 0)
1455 error = SET_ERROR(EISDIR);
1456 ZFS_EXIT(zfsvfs);
1457 return (error);
1458 }
1459 }
1460
1461 if (zp == NULL) {
1462 uint64_t txtype;
1463
1464 /*
1465 * Create a new file object and update the directory
1466 * to reference it.
1467 */
1468 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1469 if (have_acl)
1470 zfs_acl_ids_free(&acl_ids);
1471 goto out;
1472 }
1473
1474 /*
1475 * We only support the creation of regular files in
1476 * extended attribute directories.
1477 */
1478
1479 if ((dzp->z_pflags & ZFS_XATTR) &&
1480 (vap->va_type != VREG)) {
1481 if (have_acl)
1482 zfs_acl_ids_free(&acl_ids);
1483 error = SET_ERROR(EINVAL);
1484 goto out;
1485 }
1486
1487 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1488 cr, vsecp, &acl_ids)) != 0)
1489 goto out;
1490 have_acl = B_TRUE;
1491
1492 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1493 zfs_acl_ids_free(&acl_ids);
1494 error = SET_ERROR(EDQUOT);
1495 goto out;
1496 }
1497
1498 tx = dmu_tx_create(os);
1499
1500 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1501 ZFS_SA_BASE_ATTR_SIZE);
1502
1503 fuid_dirtied = zfsvfs->z_fuid_dirty;
1504 if (fuid_dirtied)
1505 zfs_fuid_txhold(zfsvfs, tx);
1506 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1507 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1508 if (!zfsvfs->z_use_sa &&
1509 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1510 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1511 0, acl_ids.z_aclp->z_acl_bytes);
1512 }
1513 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1514 if (error) {
1515 zfs_dirent_unlock(dl);
1516 if (error == ERESTART) {
1517 waited = B_TRUE;
1518 dmu_tx_wait(tx);
1519 dmu_tx_abort(tx);
1520 goto top;
1521 }
1522 zfs_acl_ids_free(&acl_ids);
1523 dmu_tx_abort(tx);
1524 ZFS_EXIT(zfsvfs);
1525 return (error);
1526 }
1527 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1528
1529 if (fuid_dirtied)
1530 zfs_fuid_sync(zfsvfs, tx);
1531
1532 (void) zfs_link_create(dl, zp, tx, ZNEW);
1533 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1534 if (flag & FIGNORECASE)
1535 txtype |= TX_CI;
1536 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1537 vsecp, acl_ids.z_fuidp, vap);
1538 zfs_acl_ids_free(&acl_ids);
1539 dmu_tx_commit(tx);
1540 } else {
1541 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1542
1543 if (have_acl)
1544 zfs_acl_ids_free(&acl_ids);
1545 have_acl = B_FALSE;
1546
1547 /*
1548 * A directory entry already exists for this name.
1549 */
1550 /*
1551 * Can't truncate an existing file if in exclusive mode.
1552 */
1553 if (excl == EXCL) {
1554 error = SET_ERROR(EEXIST);
1555 goto out;
1556 }
1557 /*
1558 * Can't open a directory for writing.
1559 */
1560 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1561 error = SET_ERROR(EISDIR);
1562 goto out;
1563 }
1564 /*
1565 * Verify requested access to file.
1566 */
1567 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1568 goto out;
1569 }
1570
1571 mutex_enter(&dzp->z_lock);
1572 dzp->z_seq++;
1573 mutex_exit(&dzp->z_lock);
1574
1575 /*
1576 * Truncate regular files if requested.
1577 */
1578 if ((ZTOV(zp)->v_type == VREG) &&
1579 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1580 /* we can't hold any locks when calling zfs_freesp() */
1581 zfs_dirent_unlock(dl);
1582 dl = NULL;
1583 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1584 if (error == 0) {
1585 vnevent_create(ZTOV(zp), ct);
1586 }
1587 }
1588 }
1589 out:
1590
1591 if (dl)
1592 zfs_dirent_unlock(dl);
1593
1594 if (error) {
1595 if (zp)
1596 VN_RELE(ZTOV(zp));
1597 } else {
1598 *vpp = ZTOV(zp);
1599 error = specvp_check(vpp, cr);
1600 }
1601
1602 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1603 zil_commit(zilog, 0);
1604
1605 ZFS_EXIT(zfsvfs);
1606 return (error);
1607 }
1608
1609 /*
1610 * Remove an entry from a directory.
1611 *
1612 * IN: dvp - vnode of directory to remove entry from.
1613 * name - name of entry to remove.
1614 * cr - credentials of caller.
1615 * ct - caller context
1616 * flags - case flags
1617 *
1618 * RETURN: 0 on success, error code on failure.
1619 *
1620 * Timestamps:
1621 * dvp - ctime|mtime
1622 * vp - ctime (if nlink > 0)
1623 */
1624
1625 uint64_t null_xattr = 0;
1626
1627 /*ARGSUSED*/
1628 static int
1629 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1630 int flags)
1631 {
1632 znode_t *zp, *dzp = VTOZ(dvp);
1633 znode_t *xzp;
1634 vnode_t *vp;
1635 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1636 zilog_t *zilog;
1637 uint64_t acl_obj, xattr_obj;
1638 uint64_t xattr_obj_unlinked = 0;
1639 uint64_t obj = 0;
1640 zfs_dirlock_t *dl;
1641 dmu_tx_t *tx;
1642 boolean_t may_delete_now, delete_now = FALSE;
1643 boolean_t unlinked, toobig = FALSE;
1644 uint64_t txtype;
1645 pathname_t *realnmp = NULL;
1646 pathname_t realnm;
1647 int error;
1648 int zflg = ZEXISTS;
1649 boolean_t waited = B_FALSE;
1650
1651 ZFS_ENTER(zfsvfs);
1652 ZFS_VERIFY_ZP(dzp);
1653 zilog = zfsvfs->z_log;
1654
1655 if (flags & FIGNORECASE) {
1656 zflg |= ZCILOOK;
1657 pn_alloc(&realnm);
1658 realnmp = &realnm;
1659 }
1660
1661 top:
1662 xattr_obj = 0;
1663 xzp = NULL;
1664 /*
1665 * Attempt to lock directory; fail if entry doesn't exist.
1666 */
1667 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1668 NULL, realnmp)) {
1669 if (realnmp)
1670 pn_free(realnmp);
1671 ZFS_EXIT(zfsvfs);
1672 return (error);
1673 }
1674
1675 vp = ZTOV(zp);
1676
1677 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1678 goto out;
1679 }
1680
1681 /*
1682 * Need to use rmdir for removing directories.
1683 */
1684 if (vp->v_type == VDIR) {
1685 error = SET_ERROR(EPERM);
1686 goto out;
1687 }
1688
1689 vnevent_remove(vp, dvp, name, ct);
1690
1691 if (realnmp)
1692 dnlc_remove(dvp, realnmp->pn_buf);
1693 else
1694 dnlc_remove(dvp, name);
1695
1696 mutex_enter(&vp->v_lock);
1697 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1698 mutex_exit(&vp->v_lock);
1699
1700 /*
1701 * We may delete the znode now, or we may put it in the unlinked set;
1702 * it depends on whether we're the last link, and on whether there are
1703 * other holds on the vnode. So we dmu_tx_hold() the right things to
1704 * allow for either case.
1705 */
1706 obj = zp->z_id;
1707 tx = dmu_tx_create(zfsvfs->z_os);
1708 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1709 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1710 zfs_sa_upgrade_txholds(tx, zp);
1711 zfs_sa_upgrade_txholds(tx, dzp);
1712 if (may_delete_now) {
1713 toobig =
1714 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1715 /* if the file is too big, only hold_free a token amount */
1716 dmu_tx_hold_free(tx, zp->z_id, 0,
1717 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1718 }
1719
1720 /* are there any extended attributes? */
1721 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1722 &xattr_obj, sizeof (xattr_obj));
1723 if (error == 0 && xattr_obj) {
1724 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1725 ASSERT0(error);
1726 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1727 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1728 }
1729
1730 mutex_enter(&zp->z_lock);
1731 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1732 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1733 mutex_exit(&zp->z_lock);
1734
1735 /* charge as an update -- would be nice not to charge at all */
1736 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1737
1738 /*
1739 * Mark this transaction as typically resulting in a net free of space
1740 */
1741 dmu_tx_mark_netfree(tx);
1742
1743 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1744 if (error) {
1745 zfs_dirent_unlock(dl);
1746 VN_RELE(vp);
1747 if (xzp)
1748 VN_RELE(ZTOV(xzp));
1749 if (error == ERESTART) {
1750 waited = B_TRUE;
1751 dmu_tx_wait(tx);
1752 dmu_tx_abort(tx);
1753 goto top;
1754 }
1755 if (realnmp)
1756 pn_free(realnmp);
1757 dmu_tx_abort(tx);
1758 ZFS_EXIT(zfsvfs);
1759 return (error);
1760 }
1761
1762 /*
1763 * Remove the directory entry.
1764 */
1765 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1766
1767 if (error) {
1768 dmu_tx_commit(tx);
1769 goto out;
1770 }
1771
1772 if (unlinked) {
1773 /*
1774 * Hold z_lock so that we can make sure that the ACL obj
1775 * hasn't changed. Could have been deleted due to
1776 * zfs_sa_upgrade().
1777 */
1778 mutex_enter(&zp->z_lock);
1779 mutex_enter(&vp->v_lock);
1780 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1781 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1782 delete_now = may_delete_now && !toobig &&
1783 vp->v_count == 1 && !vn_has_cached_data(vp) &&
1784 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1785 acl_obj;
1786 mutex_exit(&vp->v_lock);
1787 }
1788
1789 if (delete_now) {
1790 if (xattr_obj_unlinked) {
1791 ASSERT3U(xzp->z_links, ==, 2);
1792 mutex_enter(&xzp->z_lock);
1793 xzp->z_unlinked = 1;
1794 xzp->z_links = 0;
1795 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1796 &xzp->z_links, sizeof (xzp->z_links), tx);
1797 ASSERT3U(error, ==, 0);
1798 mutex_exit(&xzp->z_lock);
1799 zfs_unlinked_add(xzp, tx);
1800
1801 if (zp->z_is_sa)
1802 error = sa_remove(zp->z_sa_hdl,
1803 SA_ZPL_XATTR(zfsvfs), tx);
1804 else
1805 error = sa_update(zp->z_sa_hdl,
1806 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1807 sizeof (uint64_t), tx);
1808 ASSERT0(error);
1809 }
1810 mutex_enter(&vp->v_lock);
1811 vp->v_count--;
1812 ASSERT0(vp->v_count);
1813 mutex_exit(&vp->v_lock);
1814 mutex_exit(&zp->z_lock);
1815 zfs_znode_delete(zp, tx);
1816 } else if (unlinked) {
1817 mutex_exit(&zp->z_lock);
1818 zfs_unlinked_add(zp, tx);
1819 }
1820
1821 txtype = TX_REMOVE;
1822 if (flags & FIGNORECASE)
1823 txtype |= TX_CI;
1824 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1825
1826 dmu_tx_commit(tx);
1827 out:
1828 if (realnmp)
1829 pn_free(realnmp);
1830
1831 zfs_dirent_unlock(dl);
1832
1833 if (!delete_now)
1834 VN_RELE(vp);
1835 if (xzp)
1836 VN_RELE(ZTOV(xzp));
1837
1838 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1839 zil_commit(zilog, 0);
1840
1841 ZFS_EXIT(zfsvfs);
1842 return (error);
1843 }
1844
1845 /*
1846 * Create a new directory and insert it into dvp using the name
1847 * provided. Return a pointer to the inserted directory.
1848 *
1849 * IN: dvp - vnode of directory to add subdir to.
1850 * dirname - name of new directory.
1851 * vap - attributes of new directory.
1852 * cr - credentials of caller.
1853 * ct - caller context
1854 * flags - case flags
1855 * vsecp - ACL to be set
1856 *
1857 * OUT: vpp - vnode of created directory.
1858 *
1859 * RETURN: 0 on success, error code on failure.
1860 *
1861 * Timestamps:
1862 * dvp - ctime|mtime updated
1863 * vp - ctime|mtime|atime updated
1864 */
1865 /*ARGSUSED*/
1866 static int
1867 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1868 caller_context_t *ct, int flags, vsecattr_t *vsecp)
1869 {
1870 znode_t *zp, *dzp = VTOZ(dvp);
1871 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1872 zilog_t *zilog;
1873 zfs_dirlock_t *dl;
1874 uint64_t txtype;
1875 dmu_tx_t *tx;
1876 int error;
1877 int zf = ZNEW;
1878 ksid_t *ksid;
1879 uid_t uid;
1880 gid_t gid = crgetgid(cr);
1881 zfs_acl_ids_t acl_ids;
1882 boolean_t fuid_dirtied;
1883 boolean_t waited = B_FALSE;
1884
1885 ASSERT(vap->va_type == VDIR);
1886
1887 /*
1888 * If we have an ephemeral id, ACL, or XVATTR then
1889 * make sure file system is at proper version
1890 */
1891
1892 ksid = crgetsid(cr, KSID_OWNER);
1893 if (ksid)
1894 uid = ksid_getid(ksid);
1895 else
1896 uid = crgetuid(cr);
1897 if (zfsvfs->z_use_fuids == B_FALSE &&
1898 (vsecp || (vap->va_mask & AT_XVATTR) ||
1899 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1900 return (SET_ERROR(EINVAL));
1901
1902 ZFS_ENTER(zfsvfs);
1903 ZFS_VERIFY_ZP(dzp);
1904 zilog = zfsvfs->z_log;
1905
1906 if (dzp->z_pflags & ZFS_XATTR) {
1907 ZFS_EXIT(zfsvfs);
1908 return (SET_ERROR(EINVAL));
1909 }
1910
1911 if (zfsvfs->z_utf8 && u8_validate(dirname,
1912 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1913 ZFS_EXIT(zfsvfs);
1914 return (SET_ERROR(EILSEQ));
1915 }
1916 if (flags & FIGNORECASE)
1917 zf |= ZCILOOK;
1918
1919 if (vap->va_mask & AT_XVATTR) {
1920 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1921 crgetuid(cr), cr, vap->va_type)) != 0) {
1922 ZFS_EXIT(zfsvfs);
1923 return (error);
1924 }
1925 }
1926
1927 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1928 vsecp, &acl_ids)) != 0) {
1929 ZFS_EXIT(zfsvfs);
1930 return (error);
1931 }
1932 /*
1933 * First make sure the new directory doesn't exist.
1934 *
1935 * Existence is checked first to make sure we don't return
1936 * EACCES instead of EEXIST which can cause some applications
1937 * to fail.
1938 */
1939 top:
1940 *vpp = NULL;
1941
1942 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1943 NULL, NULL)) {
1944 zfs_acl_ids_free(&acl_ids);
1945 ZFS_EXIT(zfsvfs);
1946 return (error);
1947 }
1948
1949 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1950 zfs_acl_ids_free(&acl_ids);
1951 zfs_dirent_unlock(dl);
1952 ZFS_EXIT(zfsvfs);
1953 return (error);
1954 }
1955
1956 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1957 zfs_acl_ids_free(&acl_ids);
1958 zfs_dirent_unlock(dl);
1959 ZFS_EXIT(zfsvfs);
1960 return (SET_ERROR(EDQUOT));
1961 }
1962
1963 /*
1964 * Add a new entry to the directory.
1965 */
1966 tx = dmu_tx_create(zfsvfs->z_os);
1967 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1968 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1969 fuid_dirtied = zfsvfs->z_fuid_dirty;
1970 if (fuid_dirtied)
1971 zfs_fuid_txhold(zfsvfs, tx);
1972 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1973 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1974 acl_ids.z_aclp->z_acl_bytes);
1975 }
1976
1977 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1978 ZFS_SA_BASE_ATTR_SIZE);
1979
1980 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1981 if (error) {
1982 zfs_dirent_unlock(dl);
1983 if (error == ERESTART) {
1984 waited = B_TRUE;
1985 dmu_tx_wait(tx);
1986 dmu_tx_abort(tx);
1987 goto top;
1988 }
1989 zfs_acl_ids_free(&acl_ids);
1990 dmu_tx_abort(tx);
1991 ZFS_EXIT(zfsvfs);
1992 return (error);
1993 }
1994
1995 /*
1996 * Create new node.
1997 */
1998 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1999
2000 if (fuid_dirtied)
2001 zfs_fuid_sync(zfsvfs, tx);
2002
2003 /*
2004 * Now put new name in parent dir.
2005 */
2006 (void) zfs_link_create(dl, zp, tx, ZNEW);
2007
2008 *vpp = ZTOV(zp);
2009
2010 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2011 if (flags & FIGNORECASE)
2012 txtype |= TX_CI;
2013 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2014 acl_ids.z_fuidp, vap);
2015
2016 zfs_acl_ids_free(&acl_ids);
2017
2018 dmu_tx_commit(tx);
2019
2020 zfs_dirent_unlock(dl);
2021
2022 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2023 zil_commit(zilog, 0);
2024
2025 ZFS_EXIT(zfsvfs);
2026 return (0);
2027 }
2028
2029 /*
2030 * Remove a directory subdir entry. If the current working
2031 * directory is the same as the subdir to be removed, the
2032 * remove will fail.
2033 *
2034 * IN: dvp - vnode of directory to remove from.
2035 * name - name of directory to be removed.
2036 * cwd - vnode of current working directory.
2037 * cr - credentials of caller.
2038 * ct - caller context
2039 * flags - case flags
2040 *
2041 * RETURN: 0 on success, error code on failure.
2042 *
2043 * Timestamps:
2044 * dvp - ctime|mtime updated
2045 */
2046 /*ARGSUSED*/
2047 static int
2048 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2049 caller_context_t *ct, int flags)
2050 {
2051 znode_t *dzp = VTOZ(dvp);
2052 znode_t *zp;
2053 vnode_t *vp;
2054 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
2055 zilog_t *zilog;
2056 zfs_dirlock_t *dl;
2057 dmu_tx_t *tx;
2058 int error;
2059 int zflg = ZEXISTS;
2060 boolean_t waited = B_FALSE;
2061
2062 ZFS_ENTER(zfsvfs);
2063 ZFS_VERIFY_ZP(dzp);
2064 zilog = zfsvfs->z_log;
2065
2066 if (flags & FIGNORECASE)
2067 zflg |= ZCILOOK;
2068 top:
2069 zp = NULL;
2070
2071 /*
2072 * Attempt to lock directory; fail if entry doesn't exist.
2073 */
2074 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2075 NULL, NULL)) {
2076 ZFS_EXIT(zfsvfs);
2077 return (error);
2078 }
2079
2080 vp = ZTOV(zp);
2081
2082 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2083 goto out;
2084 }
2085
2086 if (vp->v_type != VDIR) {
2087 error = SET_ERROR(ENOTDIR);
2088 goto out;
2089 }
2090
2091 if (vp == cwd) {
2092 error = SET_ERROR(EINVAL);
2093 goto out;
2094 }
2095
2096 vnevent_rmdir(vp, dvp, name, ct);
2097
2098 /*
2099 * Grab a lock on the directory to make sure that noone is
2100 * trying to add (or lookup) entries while we are removing it.
2101 */
2102 rw_enter(&zp->z_name_lock, RW_WRITER);
2103
2104 /*
2105 * Grab a lock on the parent pointer to make sure we play well
2106 * with the treewalk and directory rename code.
2107 */
2108 rw_enter(&zp->z_parent_lock, RW_WRITER);
2109
2110 tx = dmu_tx_create(zfsvfs->z_os);
2111 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2112 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2113 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2114 zfs_sa_upgrade_txholds(tx, zp);
2115 zfs_sa_upgrade_txholds(tx, dzp);
2116 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2117 if (error) {
2118 rw_exit(&zp->z_parent_lock);
2119 rw_exit(&zp->z_name_lock);
2120 zfs_dirent_unlock(dl);
2121 VN_RELE(vp);
2122 if (error == ERESTART) {
2123 waited = B_TRUE;
2124 dmu_tx_wait(tx);
2125 dmu_tx_abort(tx);
2126 goto top;
2127 }
2128 dmu_tx_abort(tx);
2129 ZFS_EXIT(zfsvfs);
2130 return (error);
2131 }
2132
2133 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2134
2135 if (error == 0) {
2136 uint64_t txtype = TX_RMDIR;
2137 if (flags & FIGNORECASE)
2138 txtype |= TX_CI;
2139 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2140 }
2141
2142 dmu_tx_commit(tx);
2143
2144 rw_exit(&zp->z_parent_lock);
2145 rw_exit(&zp->z_name_lock);
2146 out:
2147 zfs_dirent_unlock(dl);
2148
2149 VN_RELE(vp);
2150
2151 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2152 zil_commit(zilog, 0);
2153
2154 ZFS_EXIT(zfsvfs);
2155 return (error);
2156 }
2157
2158 /*
2159 * Read as many directory entries as will fit into the provided
2160 * buffer from the given directory cursor position (specified in
2161 * the uio structure).
2162 *
2163 * IN: vp - vnode of directory to read.
2164 * uio - structure supplying read location, range info,
2165 * and return buffer.
2166 * cr - credentials of caller.
2167 * ct - caller context
2168 * flags - case flags
2169 *
2170 * OUT: uio - updated offset and range, buffer filled.
2171 * eofp - set to true if end-of-file detected.
2172 *
2173 * RETURN: 0 on success, error code on failure.
2174 *
2175 * Timestamps:
2176 * vp - atime updated
2177 *
2178 * Note that the low 4 bits of the cookie returned by zap is always zero.
2179 * This allows us to use the low range for "special" directory entries:
2180 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2181 * we use the offset 2 for the '.zfs' directory.
2182 */
2183 /* ARGSUSED */
2184 static int
2185 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2186 caller_context_t *ct, int flags)
2187 {
2188 znode_t *zp = VTOZ(vp);
2189 iovec_t *iovp;
2190 edirent_t *eodp;
2191 dirent64_t *odp;
2192 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2193 objset_t *os;
2194 caddr_t outbuf;
2195 size_t bufsize;
2196 zap_cursor_t zc;
2197 zap_attribute_t zap;
2198 uint_t bytes_wanted;
2199 uint64_t offset; /* must be unsigned; checks for < 1 */
2200 uint64_t parent;
2201 int local_eof;
2202 int outcount;
2203 int error;
2204 uint8_t prefetch;
2205 boolean_t check_sysattrs;
2206
2207 ZFS_ENTER(zfsvfs);
2208 ZFS_VERIFY_ZP(zp);
2209
2210 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2211 &parent, sizeof (parent))) != 0) {
2212 ZFS_EXIT(zfsvfs);
2213 return (error);
2214 }
2215
2216 /*
2217 * If we are not given an eof variable,
2218 * use a local one.
2219 */
2220 if (eofp == NULL)
2221 eofp = &local_eof;
2222
2223 /*
2224 * Check for valid iov_len.
2225 */
2226 if (uio->uio_iov->iov_len <= 0) {
2227 ZFS_EXIT(zfsvfs);
2228 return (SET_ERROR(EINVAL));
2229 }
2230
2231 /*
2232 * Quit if directory has been removed (posix)
2233 */
2234 if ((*eofp = zp->z_unlinked) != 0) {
2235 ZFS_EXIT(zfsvfs);
2236 return (0);
2237 }
2238
2239 error = 0;
2240 os = zfsvfs->z_os;
2241 offset = uio->uio_loffset;
2242 prefetch = zp->z_zn_prefetch;
2243
2244 /*
2245 * Initialize the iterator cursor.
2246 */
2247 if (offset <= 3) {
2248 /*
2249 * Start iteration from the beginning of the directory.
2250 */
2251 zap_cursor_init(&zc, os, zp->z_id);
2252 } else {
2253 /*
2254 * The offset is a serialized cursor.
2255 */
2256 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2257 }
2258
2259 /*
2260 * Get space to change directory entries into fs independent format.
2261 */
2262 iovp = uio->uio_iov;
2263 bytes_wanted = iovp->iov_len;
2264 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2265 bufsize = bytes_wanted;
2266 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2267 odp = (struct dirent64 *)outbuf;
2268 } else {
2269 bufsize = bytes_wanted;
2270 outbuf = NULL;
2271 odp = (struct dirent64 *)iovp->iov_base;
2272 }
2273 eodp = (struct edirent *)odp;
2274
2275 /*
2276 * If this VFS supports the system attribute view interface; and
2277 * we're looking at an extended attribute directory; and we care
2278 * about normalization conflicts on this vfs; then we must check
2279 * for normalization conflicts with the sysattr name space.
2280 */
2281 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2282 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2283 (flags & V_RDDIR_ENTFLAGS);
2284
2285 /*
2286 * Transform to file-system independent format
2287 */
2288 outcount = 0;
2289 while (outcount < bytes_wanted) {
2290 ino64_t objnum;
2291 ushort_t reclen;
2292 off64_t *next = NULL;
2293
2294 /*
2295 * Special case `.', `..', and `.zfs'.
2296 */
2297 if (offset == 0) {
2298 (void) strcpy(zap.za_name, ".");
2299 zap.za_normalization_conflict = 0;
2300 objnum = zp->z_id;
2301 } else if (offset == 1) {
2302 (void) strcpy(zap.za_name, "..");
2303 zap.za_normalization_conflict = 0;
2304 objnum = parent;
2305 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2306 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2307 zap.za_normalization_conflict = 0;
2308 objnum = ZFSCTL_INO_ROOT;
2309 } else {
2310 /*
2311 * Grab next entry.
2312 */
2313 if (error = zap_cursor_retrieve(&zc, &zap)) {
2314 if ((*eofp = (error == ENOENT)) != 0)
2315 break;
2316 else
2317 goto update;
2318 }
2319
2320 if (zap.za_integer_length != 8 ||
2321 zap.za_num_integers != 1) {
2322 cmn_err(CE_WARN, "zap_readdir: bad directory "
2323 "entry, obj = %lld, offset = %lld\n",
2324 (u_longlong_t)zp->z_id,
2325 (u_longlong_t)offset);
2326 error = SET_ERROR(ENXIO);
2327 goto update;
2328 }
2329
2330 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2331 /*
2332 * MacOS X can extract the object type here such as:
2333 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2334 */
2335
2336 if (check_sysattrs && !zap.za_normalization_conflict) {
2337 zap.za_normalization_conflict =
2338 xattr_sysattr_casechk(zap.za_name);
2339 }
2340 }
2341
2342 if (flags & V_RDDIR_ACCFILTER) {
2343 /*
2344 * If we have no access at all, don't include
2345 * this entry in the returned information
2346 */
2347 znode_t *ezp;
2348 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2349 goto skip_entry;
2350 if (!zfs_has_access(ezp, cr)) {
2351 VN_RELE(ZTOV(ezp));
2352 goto skip_entry;
2353 }
2354 VN_RELE(ZTOV(ezp));
2355 }
2356
2357 if (flags & V_RDDIR_ENTFLAGS)
2358 reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2359 else
2360 reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2361
2362 /*
2363 * Will this entry fit in the buffer?
2364 */
2365 if (outcount + reclen > bufsize) {
2366 /*
2367 * Did we manage to fit anything in the buffer?
2368 */
2369 if (!outcount) {
2370 error = SET_ERROR(EINVAL);
2371 goto update;
2372 }
2373 break;
2374 }
2375 if (flags & V_RDDIR_ENTFLAGS) {
2376 /*
2377 * Add extended flag entry:
2378 */
2379 eodp->ed_ino = objnum;
2380 eodp->ed_reclen = reclen;
2381 /* NOTE: ed_off is the offset for the *next* entry */
2382 next = &(eodp->ed_off);
2383 eodp->ed_eflags = zap.za_normalization_conflict ?
2384 ED_CASE_CONFLICT : 0;
2385 (void) strncpy(eodp->ed_name, zap.za_name,
2386 EDIRENT_NAMELEN(reclen));
2387 eodp = (edirent_t *)((intptr_t)eodp + reclen);
2388 } else {
2389 /*
2390 * Add normal entry:
2391 */
2392 odp->d_ino = objnum;
2393 odp->d_reclen = reclen;
2394 /* NOTE: d_off is the offset for the *next* entry */
2395 next = &(odp->d_off);
2396 (void) strncpy(odp->d_name, zap.za_name,
2397 DIRENT64_NAMELEN(reclen));
2398 odp = (dirent64_t *)((intptr_t)odp + reclen);
2399 }
2400 outcount += reclen;
2401
2402 ASSERT(outcount <= bufsize);
2403
2404 /* Prefetch znode */
2405 if (prefetch)
2406 dmu_prefetch(os, objnum, 0, 0, 0,
2407 ZIO_PRIORITY_SYNC_READ);
2408
2409 skip_entry:
2410 /*
2411 * Move to the next entry, fill in the previous offset.
2412 */
2413 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2414 zap_cursor_advance(&zc);
2415 offset = zap_cursor_serialize(&zc);
2416 } else {
2417 offset += 1;
2418 }
2419 if (next)
2420 *next = offset;
2421 }
2422 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2423
2424 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2425 iovp->iov_base += outcount;
2426 iovp->iov_len -= outcount;
2427 uio->uio_resid -= outcount;
2428 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2429 /*
2430 * Reset the pointer.
2431 */
2432 offset = uio->uio_loffset;
2433 }
2434
2435 update:
2436 zap_cursor_fini(&zc);
2437 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2438 kmem_free(outbuf, bufsize);
2439
2440 if (error == ENOENT)
2441 error = 0;
2442
2443 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2444
2445 uio->uio_loffset = offset;
2446 ZFS_EXIT(zfsvfs);
2447 return (error);
2448 }
2449
2450 ulong_t zfs_fsync_sync_cnt = 4;
2451
2452 static int
2453 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2454 {
2455 znode_t *zp = VTOZ(vp);
2456 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2457
2458 /*
2459 * Regardless of whether this is required for standards conformance,
2460 * this is the logical behavior when fsync() is called on a file with
2461 * dirty pages. We use B_ASYNC since the ZIL transactions are already
2462 * going to be pushed out as part of the zil_commit().
2463 */
2464 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2465 (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2466 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2467
2468 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2469
2470 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2471 ZFS_ENTER(zfsvfs);
2472 ZFS_VERIFY_ZP(zp);
2473 zil_commit(zfsvfs->z_log, zp->z_id);
2474 ZFS_EXIT(zfsvfs);
2475 }
2476 return (0);
2477 }
2478
2479
2480 /*
2481 * Get the requested file attributes and place them in the provided
2482 * vattr structure.
2483 *
2484 * IN: vp - vnode of file.
2485 * vap - va_mask identifies requested attributes.
2486 * If AT_XVATTR set, then optional attrs are requested
2487 * flags - ATTR_NOACLCHECK (CIFS server context)
2488 * cr - credentials of caller.
2489 * ct - caller context
2490 *
2491 * OUT: vap - attribute values.
2492 *
2493 * RETURN: 0 (always succeeds).
2494 */
2495 /* ARGSUSED */
2496 static int
2497 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2498 caller_context_t *ct)
2499 {
2500 znode_t *zp = VTOZ(vp);
2501 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2502 int error = 0;
2503 uint64_t links;
2504 uint64_t mtime[2], ctime[2];
2505 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2506 xoptattr_t *xoap = NULL;
2507 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2508 sa_bulk_attr_t bulk[2];
2509 int count = 0;
2510
2511 ZFS_ENTER(zfsvfs);
2512 ZFS_VERIFY_ZP(zp);
2513
2514 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2515
2516 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2517 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2518
2519 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2520 ZFS_EXIT(zfsvfs);
2521 return (error);
2522 }
2523
2524 /*
2525 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2526 * Also, if we are the owner don't bother, since owner should
2527 * always be allowed to read basic attributes of file.
2528 */
2529 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2530 (vap->va_uid != crgetuid(cr))) {
2531 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2532 skipaclchk, cr)) {
2533 ZFS_EXIT(zfsvfs);
2534 return (error);
2535 }
2536 }
2537
2538 /*
2539 * Return all attributes. It's cheaper to provide the answer
2540 * than to determine whether we were asked the question.
2541 */
2542
2543 mutex_enter(&zp->z_lock);
2544 vap->va_type = vp->v_type;
2545 vap->va_mode = zp->z_mode & MODEMASK;
2546 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2547 vap->va_nodeid = zp->z_id;
2548 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2549 links = zp->z_links + 1;
2550 else
2551 links = zp->z_links;
2552 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */
2553 vap->va_size = zp->z_size;
2554 vap->va_rdev = vp->v_rdev;
2555 vap->va_seq = zp->z_seq;
2556
2557 /*
2558 * Add in any requested optional attributes and the create time.
2559 * Also set the corresponding bits in the returned attribute bitmap.
2560 */
2561 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2562 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2563 xoap->xoa_archive =
2564 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2565 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2566 }
2567
2568 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2569 xoap->xoa_readonly =
2570 ((zp->z_pflags & ZFS_READONLY) != 0);
2571 XVA_SET_RTN(xvap, XAT_READONLY);
2572 }
2573
2574 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2575 xoap->xoa_system =
2576 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2577 XVA_SET_RTN(xvap, XAT_SYSTEM);
2578 }
2579
2580 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2581 xoap->xoa_hidden =
2582 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2583 XVA_SET_RTN(xvap, XAT_HIDDEN);
2584 }
2585
2586 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2587 xoap->xoa_nounlink =
2588 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2589 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2590 }
2591
2592 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2593 xoap->xoa_immutable =
2594 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2595 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2596 }
2597
2598 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2599 xoap->xoa_appendonly =
2600 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2601 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2602 }
2603
2604 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2605 xoap->xoa_nodump =
2606 ((zp->z_pflags & ZFS_NODUMP) != 0);
2607 XVA_SET_RTN(xvap, XAT_NODUMP);
2608 }
2609
2610 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2611 xoap->xoa_opaque =
2612 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2613 XVA_SET_RTN(xvap, XAT_OPAQUE);
2614 }
2615
2616 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2617 xoap->xoa_av_quarantined =
2618 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2619 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2620 }
2621
2622 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2623 xoap->xoa_av_modified =
2624 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2625 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2626 }
2627
2628 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2629 vp->v_type == VREG) {
2630 zfs_sa_get_scanstamp(zp, xvap);
2631 }
2632
2633 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2634 uint64_t times[2];
2635
2636 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2637 times, sizeof (times));
2638 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2639 XVA_SET_RTN(xvap, XAT_CREATETIME);
2640 }
2641
2642 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2643 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2644 XVA_SET_RTN(xvap, XAT_REPARSE);
2645 }
2646 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2647 xoap->xoa_generation = zp->z_gen;
2648 XVA_SET_RTN(xvap, XAT_GEN);
2649 }
2650
2651 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2652 xoap->xoa_offline =
2653 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2654 XVA_SET_RTN(xvap, XAT_OFFLINE);
2655 }
2656
2657 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2658 xoap->xoa_sparse =
2659 ((zp->z_pflags & ZFS_SPARSE) != 0);
2660 XVA_SET_RTN(xvap, XAT_SPARSE);
2661 }
2662 }
2663
2664 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2665 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2666 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2667
2668 mutex_exit(&zp->z_lock);
2669
2670 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2671
2672 if (zp->z_blksz == 0) {
2673 /*
2674 * Block size hasn't been set; suggest maximal I/O transfers.
2675 */
2676 vap->va_blksize = zfsvfs->z_max_blksz;
2677 }
2678
2679 ZFS_EXIT(zfsvfs);
2680 return (0);
2681 }
2682
2683 /*
2684 * Set the file attributes to the values contained in the
2685 * vattr structure.
2686 *
2687 * IN: vp - vnode of file to be modified.
2688 * vap - new attribute values.
2689 * If AT_XVATTR set, then optional attrs are being set
2690 * flags - ATTR_UTIME set if non-default time values provided.
2691 * - ATTR_NOACLCHECK (CIFS context only).
2692 * cr - credentials of caller.
2693 * ct - caller context
2694 *
2695 * RETURN: 0 on success, error code on failure.
2696 *
2697 * Timestamps:
2698 * vp - ctime updated, mtime updated if size changed.
2699 */
2700 /* ARGSUSED */
2701 static int
2702 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2703 caller_context_t *ct)
2704 {
2705 znode_t *zp = VTOZ(vp);
2706 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2707 zilog_t *zilog;
2708 dmu_tx_t *tx;
2709 vattr_t oldva;
2710 xvattr_t tmpxvattr;
2711 uint_t mask = vap->va_mask;
2712 uint_t saved_mask = 0;
2713 int trim_mask = 0;
2714 uint64_t new_mode;
2715 uint64_t new_uid, new_gid;
2716 uint64_t xattr_obj;
2717 uint64_t mtime[2], ctime[2];
2718 znode_t *attrzp;
2719 int need_policy = FALSE;
2720 int err, err2;
2721 zfs_fuid_info_t *fuidp = NULL;
2722 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2723 xoptattr_t *xoap;
2724 zfs_acl_t *aclp;
2725 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2726 boolean_t fuid_dirtied = B_FALSE;
2727 sa_bulk_attr_t bulk[7], xattr_bulk[7];
2728 int count = 0, xattr_count = 0;
2729
2730 if (mask == 0)
2731 return (0);
2732
2733 if (mask & AT_NOSET)
2734 return (SET_ERROR(EINVAL));
2735
2736 ZFS_ENTER(zfsvfs);
2737 ZFS_VERIFY_ZP(zp);
2738
2739 zilog = zfsvfs->z_log;
2740
2741 /*
2742 * Make sure that if we have ephemeral uid/gid or xvattr specified
2743 * that file system is at proper version level
2744 */
2745
2746 if (zfsvfs->z_use_fuids == B_FALSE &&
2747 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2748 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2749 (mask & AT_XVATTR))) {
2750 ZFS_EXIT(zfsvfs);
2751 return (SET_ERROR(EINVAL));
2752 }
2753
2754 if (mask & AT_SIZE && vp->v_type == VDIR) {
2755 ZFS_EXIT(zfsvfs);
2756 return (SET_ERROR(EISDIR));
2757 }
2758
2759 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2760 ZFS_EXIT(zfsvfs);
2761 return (SET_ERROR(EINVAL));
2762 }
2763
2764 /*
2765 * If this is an xvattr_t, then get a pointer to the structure of
2766 * optional attributes. If this is NULL, then we have a vattr_t.
2767 */
2768 xoap = xva_getxoptattr(xvap);
2769
2770 xva_init(&tmpxvattr);
2771
2772 /*
2773 * Immutable files can only alter immutable bit and atime
2774 */
2775 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2776 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2777 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2778 ZFS_EXIT(zfsvfs);
2779 return (SET_ERROR(EPERM));
2780 }
2781
2782 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2783 ZFS_EXIT(zfsvfs);
2784 return (SET_ERROR(EPERM));
2785 }
2786
2787 /*
2788 * Verify timestamps doesn't overflow 32 bits.
2789 * ZFS can handle large timestamps, but 32bit syscalls can't
2790 * handle times greater than 2039. This check should be removed
2791 * once large timestamps are fully supported.
2792 */
2793 if (mask & (AT_ATIME | AT_MTIME)) {
2794 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2795 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2796 ZFS_EXIT(zfsvfs);
2797 return (SET_ERROR(EOVERFLOW));
2798 }
2799 }
2800
2801 top:
2802 attrzp = NULL;
2803 aclp = NULL;
2804
2805 /* Can this be moved to before the top label? */
2806 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2807 ZFS_EXIT(zfsvfs);
2808 return (SET_ERROR(EROFS));
2809 }
2810
2811 /*
2812 * First validate permissions
2813 */
2814
2815 if (mask & AT_SIZE) {
2816 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2817 if (err) {
2818 ZFS_EXIT(zfsvfs);
2819 return (err);
2820 }
2821 /*
2822 * XXX - Note, we are not providing any open
2823 * mode flags here (like FNDELAY), so we may
2824 * block if there are locks present... this
2825 * should be addressed in openat().
2826 */
2827 /* XXX - would it be OK to generate a log record here? */
2828 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2829 if (err) {
2830 ZFS_EXIT(zfsvfs);
2831 return (err);
2832 }
2833
2834 if (vap->va_size == 0)
2835 vnevent_truncate(ZTOV(zp), ct);
2836 }
2837
2838 if (mask & (AT_ATIME|AT_MTIME) ||
2839 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2840 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2841 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2842 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2843 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2844 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2845 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2846 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2847 skipaclchk, cr);
2848 }
2849
2850 if (mask & (AT_UID|AT_GID)) {
2851 int idmask = (mask & (AT_UID|AT_GID));
2852 int take_owner;
2853 int take_group;
2854
2855 /*
2856 * NOTE: even if a new mode is being set,
2857 * we may clear S_ISUID/S_ISGID bits.
2858 */
2859
2860 if (!(mask & AT_MODE))
2861 vap->va_mode = zp->z_mode;
2862
2863 /*
2864 * Take ownership or chgrp to group we are a member of
2865 */
2866
2867 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2868 take_group = (mask & AT_GID) &&
2869 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2870
2871 /*
2872 * If both AT_UID and AT_GID are set then take_owner and
2873 * take_group must both be set in order to allow taking
2874 * ownership.
2875 *
2876 * Otherwise, send the check through secpolicy_vnode_setattr()
2877 *
2878 */
2879
2880 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2881 ((idmask == AT_UID) && take_owner) ||
2882 ((idmask == AT_GID) && take_group)) {
2883 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2884 skipaclchk, cr) == 0) {
2885 /*
2886 * Remove setuid/setgid for non-privileged users
2887 */
2888 secpolicy_setid_clear(vap, cr);
2889 trim_mask = (mask & (AT_UID|AT_GID));
2890 } else {
2891 need_policy = TRUE;
2892 }
2893 } else {
2894 need_policy = TRUE;
2895 }
2896 }
2897
2898 mutex_enter(&zp->z_lock);
2899 oldva.va_mode = zp->z_mode;
2900 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2901 if (mask & AT_XVATTR) {
2902 /*
2903 * Update xvattr mask to include only those attributes
2904 * that are actually changing.
2905 *
2906 * the bits will be restored prior to actually setting
2907 * the attributes so the caller thinks they were set.
2908 */
2909 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2910 if (xoap->xoa_appendonly !=
2911 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2912 need_policy = TRUE;
2913 } else {
2914 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2915 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2916 }
2917 }
2918
2919 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2920 if (xoap->xoa_nounlink !=
2921 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2922 need_policy = TRUE;
2923 } else {
2924 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2925 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2926 }
2927 }
2928
2929 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2930 if (xoap->xoa_immutable !=
2931 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2932 need_policy = TRUE;
2933 } else {
2934 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2935 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2936 }
2937 }
2938
2939 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2940 if (xoap->xoa_nodump !=
2941 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2942 need_policy = TRUE;
2943 } else {
2944 XVA_CLR_REQ(xvap, XAT_NODUMP);
2945 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2946 }
2947 }
2948
2949 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2950 if (xoap->xoa_av_modified !=
2951 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2952 need_policy = TRUE;
2953 } else {
2954 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2955 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2956 }
2957 }
2958
2959 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2960 if ((vp->v_type != VREG &&
2961 xoap->xoa_av_quarantined) ||
2962 xoap->xoa_av_quarantined !=
2963 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2964 need_policy = TRUE;
2965 } else {
2966 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2967 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2968 }
2969 }
2970
2971 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2972 mutex_exit(&zp->z_lock);
2973 ZFS_EXIT(zfsvfs);
2974 return (SET_ERROR(EPERM));
2975 }
2976
2977 if (need_policy == FALSE &&
2978 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2979 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2980 need_policy = TRUE;
2981 }
2982 }
2983
2984 mutex_exit(&zp->z_lock);
2985
2986 if (mask & AT_MODE) {
2987 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2988 err = secpolicy_setid_setsticky_clear(vp, vap,
2989 &oldva, cr);
2990 if (err) {
2991 ZFS_EXIT(zfsvfs);
2992 return (err);
2993 }
2994 trim_mask |= AT_MODE;
2995 } else {
2996 need_policy = TRUE;
2997 }
2998 }
2999
3000 if (need_policy) {
3001 /*
3002 * If trim_mask is set then take ownership
3003 * has been granted or write_acl is present and user
3004 * has the ability to modify mode. In that case remove
3005 * UID|GID and or MODE from mask so that
3006 * secpolicy_vnode_setattr() doesn't revoke it.
3007 */
3008
3009 if (trim_mask) {
3010 saved_mask = vap->va_mask;
3011 vap->va_mask &= ~trim_mask;
3012 }
3013 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3014 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3015 if (err) {
3016 ZFS_EXIT(zfsvfs);
3017 return (err);
3018 }
3019
3020 if (trim_mask)
3021 vap->va_mask |= saved_mask;
3022 }
3023
3024 /*
3025 * secpolicy_vnode_setattr, or take ownership may have
3026 * changed va_mask
3027 */
3028 mask = vap->va_mask;
3029
3030 if ((mask & (AT_UID | AT_GID))) {
3031 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3032 &xattr_obj, sizeof (xattr_obj));
3033
3034 if (err == 0 && xattr_obj) {
3035 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3036 if (err)
3037 goto out2;
3038 }
3039 if (mask & AT_UID) {
3040 new_uid = zfs_fuid_create(zfsvfs,
3041 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3042 if (new_uid != zp->z_uid &&
3043 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3044 if (attrzp)
3045 VN_RELE(ZTOV(attrzp));
3046 err = SET_ERROR(EDQUOT);
3047 goto out2;
3048 }
3049 }
3050
3051 if (mask & AT_GID) {
3052 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3053 cr, ZFS_GROUP, &fuidp);
3054 if (new_gid != zp->z_gid &&
3055 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3056 if (attrzp)
3057 VN_RELE(ZTOV(attrzp));
3058 err = SET_ERROR(EDQUOT);
3059 goto out2;
3060 }
3061 }
3062 }
3063 tx = dmu_tx_create(zfsvfs->z_os);
3064
3065 if (mask & AT_MODE) {
3066 uint64_t pmode = zp->z_mode;
3067 uint64_t acl_obj;
3068 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3069
3070 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3071 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3072 err = SET_ERROR(EPERM);
3073 goto out;
3074 }
3075
3076 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3077 goto out;
3078
3079 mutex_enter(&zp->z_lock);
3080 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3081 /*
3082 * Are we upgrading ACL from old V0 format
3083 * to V1 format?
3084 */
3085 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3086 zfs_znode_acl_version(zp) ==
3087 ZFS_ACL_VERSION_INITIAL) {
3088 dmu_tx_hold_free(tx, acl_obj, 0,
3089 DMU_OBJECT_END);
3090 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3091 0, aclp->z_acl_bytes);
3092 } else {
3093 dmu_tx_hold_write(tx, acl_obj, 0,
3094 aclp->z_acl_bytes);
3095 }
3096 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3097 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3098 0, aclp->z_acl_bytes);
3099 }
3100 mutex_exit(&zp->z_lock);
3101 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3102 } else {
3103 if ((mask & AT_XVATTR) &&
3104 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3105 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3106 else
3107 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3108 }
3109
3110 if (attrzp) {
3111 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3112 }
3113
3114 fuid_dirtied = zfsvfs->z_fuid_dirty;
3115 if (fuid_dirtied)
3116 zfs_fuid_txhold(zfsvfs, tx);
3117
3118 zfs_sa_upgrade_txholds(tx, zp);
3119
3120 err = dmu_tx_assign(tx, TXG_WAIT);
3121 if (err)
3122 goto out;
3123
3124 count = 0;
3125 /*
3126 * Set each attribute requested.
3127 * We group settings according to the locks they need to acquire.
3128 *
3129 * Note: you cannot set ctime directly, although it will be
3130 * updated as a side-effect of calling this function.
3131 */
3132
3133
3134 if (mask & (AT_UID|AT_GID|AT_MODE))
3135 mutex_enter(&zp->z_acl_lock);
3136 mutex_enter(&zp->z_lock);
3137
3138 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3139 &zp->z_pflags, sizeof (zp->z_pflags));
3140
3141 if (attrzp) {
3142 if (mask & (AT_UID|AT_GID|AT_MODE))
3143 mutex_enter(&attrzp->z_acl_lock);
3144 mutex_enter(&attrzp->z_lock);
3145 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3146 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3147 sizeof (attrzp->z_pflags));
3148 }
3149
3150 if (mask & (AT_UID|AT_GID)) {
3151
3152 if (mask & AT_UID) {
3153 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3154 &new_uid, sizeof (new_uid));
3155 zp->z_uid = new_uid;
3156 if (attrzp) {
3157 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3158 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3159 sizeof (new_uid));
3160 attrzp->z_uid = new_uid;
3161 }
3162 }
3163
3164 if (mask & AT_GID) {
3165 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3166 NULL, &new_gid, sizeof (new_gid));
3167 zp->z_gid = new_gid;
3168 if (attrzp) {
3169 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3170 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3171 sizeof (new_gid));
3172 attrzp->z_gid = new_gid;
3173 }
3174 }
3175 if (!(mask & AT_MODE)) {
3176 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3177 NULL, &new_mode, sizeof (new_mode));
3178 new_mode = zp->z_mode;
3179 }
3180 err = zfs_acl_chown_setattr(zp);
3181 ASSERT(err == 0);
3182 if (attrzp) {
3183 err = zfs_acl_chown_setattr(attrzp);
3184 ASSERT(err == 0);
3185 }
3186 }
3187
3188 if (mask & AT_MODE) {
3189 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3190 &new_mode, sizeof (new_mode));
3191 zp->z_mode = new_mode;
3192 ASSERT3U((uintptr_t)aclp, !=, NULL);
3193 err = zfs_aclset_common(zp, aclp, cr, tx);
3194 ASSERT0(err);
3195 if (zp->z_acl_cached)
3196 zfs_acl_free(zp->z_acl_cached);
3197 zp->z_acl_cached = aclp;
3198 aclp = NULL;
3199 }
3200
3201
3202 if (mask & AT_ATIME) {
3203 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3204 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3205 &zp->z_atime, sizeof (zp->z_atime));
3206 }
3207
3208 if (mask & AT_MTIME) {
3209 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3210 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3211 mtime, sizeof (mtime));
3212 }
3213
3214 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3215 if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3216 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3217 NULL, mtime, sizeof (mtime));
3218 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3219 &ctime, sizeof (ctime));
3220 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3221 B_TRUE);
3222 } else if (mask != 0) {
3223 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3224 &ctime, sizeof (ctime));
3225 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3226 B_TRUE);
3227 if (attrzp) {
3228 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3229 SA_ZPL_CTIME(zfsvfs), NULL,
3230 &ctime, sizeof (ctime));
3231 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3232 mtime, ctime, B_TRUE);
3233 }
3234 }
3235 /*
3236 * Do this after setting timestamps to prevent timestamp
3237 * update from toggling bit
3238 */
3239
3240 if (xoap && (mask & AT_XVATTR)) {
3241
3242 /*
3243 * restore trimmed off masks
3244 * so that return masks can be set for caller.
3245 */
3246
3247 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3248 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3249 }
3250 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3251 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3252 }
3253 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3254 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3255 }
3256 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3257 XVA_SET_REQ(xvap, XAT_NODUMP);
3258 }
3259 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3260 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3261 }
3262 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3263 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3264 }
3265
3266 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3267 ASSERT(vp->v_type == VREG);
3268
3269 zfs_xvattr_set(zp, xvap, tx);
3270 }
3271
3272 if (fuid_dirtied)
3273 zfs_fuid_sync(zfsvfs, tx);
3274
3275 if (mask != 0)
3276 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3277
3278 mutex_exit(&zp->z_lock);
3279 if (mask & (AT_UID|AT_GID|AT_MODE))
3280 mutex_exit(&zp->z_acl_lock);
3281
3282 if (attrzp) {
3283 if (mask & (AT_UID|AT_GID|AT_MODE))
3284 mutex_exit(&attrzp->z_acl_lock);
3285 mutex_exit(&attrzp->z_lock);
3286 }
3287 out:
3288 if (err == 0 && attrzp) {
3289 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3290 xattr_count, tx);
3291 ASSERT(err2 == 0);
3292 }
3293
3294 if (attrzp)
3295 VN_RELE(ZTOV(attrzp));
3296
3297 if (aclp)
3298 zfs_acl_free(aclp);
3299
3300 if (fuidp) {
3301 zfs_fuid_info_free(fuidp);
3302 fuidp = NULL;
3303 }
3304
3305 if (err) {
3306 dmu_tx_abort(tx);
3307 if (err == ERESTART)
3308 goto top;
3309 } else {
3310 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3311 dmu_tx_commit(tx);
3312 }
3313
3314 out2:
3315 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3316 zil_commit(zilog, 0);
3317
3318 ZFS_EXIT(zfsvfs);
3319 return (err);
3320 }
3321
3322 typedef struct zfs_zlock {
3323 krwlock_t *zl_rwlock; /* lock we acquired */
3324 znode_t *zl_znode; /* znode we held */
3325 struct zfs_zlock *zl_next; /* next in list */
3326 } zfs_zlock_t;
3327
3328 /*
3329 * Drop locks and release vnodes that were held by zfs_rename_lock().
3330 */
3331 static void
3332 zfs_rename_unlock(zfs_zlock_t **zlpp)
3333 {
3334 zfs_zlock_t *zl;
3335
3336 while ((zl = *zlpp) != NULL) {
3337 if (zl->zl_znode != NULL)
3338 VN_RELE(ZTOV(zl->zl_znode));
3339 rw_exit(zl->zl_rwlock);
3340 *zlpp = zl->zl_next;
3341 kmem_free(zl, sizeof (*zl));
3342 }
3343 }
3344
3345 /*
3346 * Search back through the directory tree, using the ".." entries.
3347 * Lock each directory in the chain to prevent concurrent renames.
3348 * Fail any attempt to move a directory into one of its own descendants.
3349 * XXX - z_parent_lock can overlap with map or grow locks
3350 */
3351 static int
3352 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3353 {
3354 zfs_zlock_t *zl;
3355 znode_t *zp = tdzp;
3356 uint64_t rootid = zp->z_zfsvfs->z_root;
3357 uint64_t oidp = zp->z_id;
3358 krwlock_t *rwlp = &szp->z_parent_lock;
3359 krw_t rw = RW_WRITER;
3360
3361 /*
3362 * First pass write-locks szp and compares to zp->z_id.
3363 * Later passes read-lock zp and compare to zp->z_parent.
3364 */
3365 do {
3366 if (!rw_tryenter(rwlp, rw)) {
3367 /*
3368 * Another thread is renaming in this path.
3369 * Note that if we are a WRITER, we don't have any
3370 * parent_locks held yet.
3371 */
3372 if (rw == RW_READER && zp->z_id > szp->z_id) {
3373 /*
3374 * Drop our locks and restart
3375 */
3376 zfs_rename_unlock(&zl);
3377 *zlpp = NULL;
3378 zp = tdzp;
3379 oidp = zp->z_id;
3380 rwlp = &szp->z_parent_lock;
3381 rw = RW_WRITER;
3382 continue;
3383 } else {
3384 /*
3385 * Wait for other thread to drop its locks
3386 */
3387 rw_enter(rwlp, rw);
3388 }
3389 }
3390
3391 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3392 zl->zl_rwlock = rwlp;
3393 zl->zl_znode = NULL;
3394 zl->zl_next = *zlpp;
3395 *zlpp = zl;
3396
3397 if (oidp == szp->z_id) /* We're a descendant of szp */
3398 return (SET_ERROR(EINVAL));
3399
3400 if (oidp == rootid) /* We've hit the top */
3401 return (0);
3402
3403 if (rw == RW_READER) { /* i.e. not the first pass */
3404 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3405 if (error)
3406 return (error);
3407 zl->zl_znode = zp;
3408 }
3409 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3410 &oidp, sizeof (oidp));
3411 rwlp = &zp->z_parent_lock;
3412 rw = RW_READER;
3413
3414 } while (zp->z_id != sdzp->z_id);
3415
3416 return (0);
3417 }
3418
3419 /*
3420 * Move an entry from the provided source directory to the target
3421 * directory. Change the entry name as indicated.
3422 *
3423 * IN: sdvp - Source directory containing the "old entry".
3424 * snm - Old entry name.
3425 * tdvp - Target directory to contain the "new entry".
3426 * tnm - New entry name.
3427 * cr - credentials of caller.
3428 * ct - caller context
3429 * flags - case flags
3430 *
3431 * RETURN: 0 on success, error code on failure.
3432 *
3433 * Timestamps:
3434 * sdvp,tdvp - ctime|mtime updated
3435 */
3436 /*ARGSUSED*/
3437 static int
3438 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3439 caller_context_t *ct, int flags)
3440 {
3441 znode_t *tdzp, *szp, *tzp;
3442 znode_t *sdzp = VTOZ(sdvp);
3443 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
3444 zilog_t *zilog;
3445 vnode_t *realvp;
3446 zfs_dirlock_t *sdl, *tdl;
3447 dmu_tx_t *tx;
3448 zfs_zlock_t *zl;
3449 int cmp, serr, terr;
3450 int error = 0, rm_err = 0;
3451 int zflg = 0;
3452 boolean_t waited = B_FALSE;
3453
3454 ZFS_ENTER(zfsvfs);
3455 ZFS_VERIFY_ZP(sdzp);
3456 zilog = zfsvfs->z_log;
3457
3458 /*
3459 * Make sure we have the real vp for the target directory.
3460 */
3461 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3462 tdvp = realvp;
3463
3464 tdzp = VTOZ(tdvp);
3465 ZFS_VERIFY_ZP(tdzp);
3466
3467 /*
3468 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3469 * ctldir appear to have the same v_vfsp.
3470 */
3471 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3472 ZFS_EXIT(zfsvfs);
3473 return (SET_ERROR(EXDEV));
3474 }
3475
3476 if (zfsvfs->z_utf8 && u8_validate(tnm,
3477 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3478 ZFS_EXIT(zfsvfs);
3479 return (SET_ERROR(EILSEQ));
3480 }
3481
3482 if (flags & FIGNORECASE)
3483 zflg |= ZCILOOK;
3484
3485 top:
3486 szp = NULL;
3487 tzp = NULL;
3488 zl = NULL;
3489
3490 /*
3491 * This is to prevent the creation of links into attribute space
3492 * by renaming a linked file into/outof an attribute directory.
3493 * See the comment in zfs_link() for why this is considered bad.
3494 */
3495 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3496 ZFS_EXIT(zfsvfs);
3497 return (SET_ERROR(EINVAL));
3498 }
3499
3500 /*
3501 * Lock source and target directory entries. To prevent deadlock,
3502 * a lock ordering must be defined. We lock the directory with
3503 * the smallest object id first, or if it's a tie, the one with
3504 * the lexically first name.
3505 */
3506 if (sdzp->z_id < tdzp->z_id) {
3507 cmp = -1;
3508 } else if (sdzp->z_id > tdzp->z_id) {
3509 cmp = 1;
3510 } else {
3511 /*
3512 * First compare the two name arguments without
3513 * considering any case folding.
3514 */
3515 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3516
3517 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3518 ASSERT(error == 0 || !zfsvfs->z_utf8);
3519 if (cmp == 0) {
3520 /*
3521 * POSIX: "If the old argument and the new argument
3522 * both refer to links to the same existing file,
3523 * the rename() function shall return successfully
3524 * and perform no other action."
3525 */
3526 ZFS_EXIT(zfsvfs);
3527 return (0);
3528 }
3529 /*
3530 * If the file system is case-folding, then we may
3531 * have some more checking to do. A case-folding file
3532 * system is either supporting mixed case sensitivity
3533 * access or is completely case-insensitive. Note
3534 * that the file system is always case preserving.
3535 *
3536 * In mixed sensitivity mode case sensitive behavior
3537 * is the default. FIGNORECASE must be used to
3538 * explicitly request case insensitive behavior.
3539 *
3540 * If the source and target names provided differ only
3541 * by case (e.g., a request to rename 'tim' to 'Tim'),
3542 * we will treat this as a special case in the
3543 * case-insensitive mode: as long as the source name
3544 * is an exact match, we will allow this to proceed as
3545 * a name-change request.
3546 */
3547 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3548 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3549 flags & FIGNORECASE)) &&
3550 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3551 &error) == 0) {
3552 /*
3553 * case preserving rename request, require exact
3554 * name matches
3555 */
3556 zflg |= ZCIEXACT;
3557 zflg &= ~ZCILOOK;
3558 }
3559 }
3560
3561 /*
3562 * If the source and destination directories are the same, we should
3563 * grab the z_name_lock of that directory only once.
3564 */
3565 if (sdzp == tdzp) {
3566 zflg |= ZHAVELOCK;
3567 rw_enter(&sdzp->z_name_lock, RW_READER);
3568 }
3569
3570 if (cmp < 0) {
3571 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3572 ZEXISTS | zflg, NULL, NULL);
3573 terr = zfs_dirent_lock(&tdl,
3574 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3575 } else {
3576 terr = zfs_dirent_lock(&tdl,
3577 tdzp, tnm, &tzp, zflg, NULL, NULL);
3578 serr = zfs_dirent_lock(&sdl,
3579 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3580 NULL, NULL);
3581 }
3582
3583 if (serr) {
3584 /*
3585 * Source entry invalid or not there.
3586 */
3587 if (!terr) {
3588 zfs_dirent_unlock(tdl);
3589 if (tzp)
3590 VN_RELE(ZTOV(tzp));
3591 }
3592
3593 if (sdzp == tdzp)
3594 rw_exit(&sdzp->z_name_lock);
3595
3596 if (strcmp(snm, "..") == 0)
3597 serr = SET_ERROR(EINVAL);
3598 ZFS_EXIT(zfsvfs);
3599 return (serr);
3600 }
3601 if (terr) {
3602 zfs_dirent_unlock(sdl);
3603 VN_RELE(ZTOV(szp));
3604
3605 if (sdzp == tdzp)
3606 rw_exit(&sdzp->z_name_lock);
3607
3608 if (strcmp(tnm, "..") == 0)
3609 terr = SET_ERROR(EINVAL);
3610 ZFS_EXIT(zfsvfs);
3611 return (terr);
3612 }
3613
3614 /*
3615 * Must have write access at the source to remove the old entry
3616 * and write access at the target to create the new entry.
3617 * Note that if target and source are the same, this can be
3618 * done in a single check.
3619 */
3620
3621 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3622 goto out;
3623
3624 if (ZTOV(szp)->v_type == VDIR) {
3625 /*
3626 * Check to make sure rename is valid.
3627 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3628 */
3629 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3630 goto out;
3631 }
3632
3633 /*
3634 * Does target exist?
3635 */
3636 if (tzp) {
3637 /*
3638 * Source and target must be the same type.
3639 */
3640 if (ZTOV(szp)->v_type == VDIR) {
3641 if (ZTOV(tzp)->v_type != VDIR) {
3642 error = SET_ERROR(ENOTDIR);
3643 goto out;
3644 }
3645 } else {
3646 if (ZTOV(tzp)->v_type == VDIR) {
3647 error = SET_ERROR(EISDIR);
3648 goto out;
3649 }
3650 }
3651 /*
3652 * POSIX dictates that when the source and target
3653 * entries refer to the same file object, rename
3654 * must do nothing and exit without error.
3655 */
3656 if (szp->z_id == tzp->z_id) {
3657 error = 0;
3658 goto out;
3659 }
3660 }
3661
3662 vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct);
3663 if (tzp)
3664 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3665
3666 /*
3667 * notify the target directory if it is not the same
3668 * as source directory.
3669 */
3670 if (tdvp != sdvp) {
3671 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct);
3672 }
3673
3674 tx = dmu_tx_create(zfsvfs->z_os);
3675 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3676 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3677 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3678 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3679 if (sdzp != tdzp) {
3680 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3681 zfs_sa_upgrade_txholds(tx, tdzp);
3682 }
3683 if (tzp) {
3684 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3685 zfs_sa_upgrade_txholds(tx, tzp);
3686 }
3687
3688 zfs_sa_upgrade_txholds(tx, szp);
3689 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3690 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3691 if (error) {
3692 if (zl != NULL)
3693 zfs_rename_unlock(&zl);
3694 zfs_dirent_unlock(sdl);
3695 zfs_dirent_unlock(tdl);
3696
3697 if (sdzp == tdzp)
3698 rw_exit(&sdzp->z_name_lock);
3699
3700 VN_RELE(ZTOV(szp));
3701 if (tzp)
3702 VN_RELE(ZTOV(tzp));
3703 if (error == ERESTART) {
3704 waited = B_TRUE;
3705 dmu_tx_wait(tx);
3706 dmu_tx_abort(tx);
3707 goto top;
3708 }
3709 dmu_tx_abort(tx);
3710 ZFS_EXIT(zfsvfs);
3711 return (error);
3712 }
3713
3714 if (tzp) /* Attempt to remove the existing target */
3715 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3716
3717 if (error == 0) {
3718 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3719 if (error == 0) {
3720 szp->z_pflags |= ZFS_AV_MODIFIED;
3721
3722 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3723 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3724 ASSERT0(error);
3725
3726 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3727 if (error == 0) {
3728 zfs_log_rename(zilog, tx, TX_RENAME |
3729 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3730 sdl->dl_name, tdzp, tdl->dl_name, szp);
3731
3732 /*
3733 * Update path information for the target vnode
3734 */
3735 vn_renamepath(tdvp, ZTOV(szp), tnm,
3736 strlen(tnm));
3737 } else {
3738 /*
3739 * At this point, we have successfully created
3740 * the target name, but have failed to remove
3741 * the source name. Since the create was done
3742 * with the ZRENAMING flag, there are
3743 * complications; for one, the link count is
3744 * wrong. The easiest way to deal with this
3745 * is to remove the newly created target, and
3746 * return the original error. This must
3747 * succeed; fortunately, it is very unlikely to
3748 * fail, since we just created it.
3749 */
3750 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3751 ZRENAMING, NULL), ==, 0);
3752 }
3753 }
3754 }
3755
3756 dmu_tx_commit(tx);
3757
3758 if (tzp && rm_err == 0)
3759 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3760
3761 if (error == 0) {
3762 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3763 /* notify the target dir if it is not the same as source dir */
3764 if (tdvp != sdvp)
3765 vnevent_rename_dest_dir(tdvp, ct);
3766 }
3767 out:
3768 if (zl != NULL)
3769 zfs_rename_unlock(&zl);
3770
3771 zfs_dirent_unlock(sdl);
3772 zfs_dirent_unlock(tdl);
3773
3774 if (sdzp == tdzp)
3775 rw_exit(&sdzp->z_name_lock);
3776
3777
3778 VN_RELE(ZTOV(szp));
3779 if (tzp)
3780 VN_RELE(ZTOV(tzp));
3781
3782 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3783 zil_commit(zilog, 0);
3784
3785 ZFS_EXIT(zfsvfs);
3786 return (error);
3787 }
3788
3789 /*
3790 * Insert the indicated symbolic reference entry into the directory.
3791 *
3792 * IN: dvp - Directory to contain new symbolic link.
3793 * link - Name for new symlink entry.
3794 * vap - Attributes of new entry.
3795 * cr - credentials of caller.
3796 * ct - caller context
3797 * flags - case flags
3798 *
3799 * RETURN: 0 on success, error code on failure.
3800 *
3801 * Timestamps:
3802 * dvp - ctime|mtime updated
3803 */
3804 /*ARGSUSED*/
3805 static int
3806 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3807 caller_context_t *ct, int flags)
3808 {
3809 znode_t *zp, *dzp = VTOZ(dvp);
3810 zfs_dirlock_t *dl;
3811 dmu_tx_t *tx;
3812 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3813 zilog_t *zilog;
3814 uint64_t len = strlen(link);
3815 int error;
3816 int zflg = ZNEW;
3817 zfs_acl_ids_t acl_ids;
3818 boolean_t fuid_dirtied;
3819 uint64_t txtype = TX_SYMLINK;
3820 boolean_t waited = B_FALSE;
3821
3822 ASSERT(vap->va_type == VLNK);
3823
3824 ZFS_ENTER(zfsvfs);
3825 ZFS_VERIFY_ZP(dzp);
3826 zilog = zfsvfs->z_log;
3827
3828 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3829 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3830 ZFS_EXIT(zfsvfs);
3831 return (SET_ERROR(EILSEQ));
3832 }
3833 if (flags & FIGNORECASE)
3834 zflg |= ZCILOOK;
3835
3836 if (len > MAXPATHLEN) {
3837 ZFS_EXIT(zfsvfs);
3838 return (SET_ERROR(ENAMETOOLONG));
3839 }
3840
3841 if ((error = zfs_acl_ids_create(dzp, 0,
3842 vap, cr, NULL, &acl_ids)) != 0) {
3843 ZFS_EXIT(zfsvfs);
3844 return (error);
3845 }
3846 top:
3847 /*
3848 * Attempt to lock directory; fail if entry already exists.
3849 */
3850 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3851 if (error) {
3852 zfs_acl_ids_free(&acl_ids);
3853 ZFS_EXIT(zfsvfs);
3854 return (error);
3855 }
3856
3857 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3858 zfs_acl_ids_free(&acl_ids);
3859 zfs_dirent_unlock(dl);
3860 ZFS_EXIT(zfsvfs);
3861 return (error);
3862 }
3863
3864 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3865 zfs_acl_ids_free(&acl_ids);
3866 zfs_dirent_unlock(dl);
3867 ZFS_EXIT(zfsvfs);
3868 return (SET_ERROR(EDQUOT));
3869 }
3870 tx = dmu_tx_create(zfsvfs->z_os);
3871 fuid_dirtied = zfsvfs->z_fuid_dirty;
3872 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3873 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3874 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3875 ZFS_SA_BASE_ATTR_SIZE + len);
3876 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3877 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3878 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3879 acl_ids.z_aclp->z_acl_bytes);
3880 }
3881 if (fuid_dirtied)
3882 zfs_fuid_txhold(zfsvfs, tx);
3883 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3884 if (error) {
3885 zfs_dirent_unlock(dl);
3886 if (error == ERESTART) {
3887 waited = B_TRUE;
3888 dmu_tx_wait(tx);
3889 dmu_tx_abort(tx);
3890 goto top;
3891 }
3892 zfs_acl_ids_free(&acl_ids);
3893 dmu_tx_abort(tx);
3894 ZFS_EXIT(zfsvfs);
3895 return (error);
3896 }
3897
3898 /*
3899 * Create a new object for the symlink.
3900 * for version 4 ZPL datsets the symlink will be an SA attribute
3901 */
3902 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3903
3904 if (fuid_dirtied)
3905 zfs_fuid_sync(zfsvfs, tx);
3906
3907 mutex_enter(&zp->z_lock);
3908 if (zp->z_is_sa)
3909 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3910 link, len, tx);
3911 else
3912 zfs_sa_symlink(zp, link, len, tx);
3913 mutex_exit(&zp->z_lock);
3914
3915 zp->z_size = len;
3916 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3917 &zp->z_size, sizeof (zp->z_size), tx);
3918 /*
3919 * Insert the new object into the directory.
3920 */
3921 (void) zfs_link_create(dl, zp, tx, ZNEW);
3922
3923 if (flags & FIGNORECASE)
3924 txtype |= TX_CI;
3925 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3926
3927 zfs_acl_ids_free(&acl_ids);
3928
3929 dmu_tx_commit(tx);
3930
3931 zfs_dirent_unlock(dl);
3932
3933 VN_RELE(ZTOV(zp));
3934
3935 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3936 zil_commit(zilog, 0);
3937
3938 ZFS_EXIT(zfsvfs);
3939 return (error);
3940 }
3941
3942 /*
3943 * Return, in the buffer contained in the provided uio structure,
3944 * the symbolic path referred to by vp.
3945 *
3946 * IN: vp - vnode of symbolic link.
3947 * uio - structure to contain the link path.
3948 * cr - credentials of caller.
3949 * ct - caller context
3950 *
3951 * OUT: uio - structure containing the link path.
3952 *
3953 * RETURN: 0 on success, error code on failure.
3954 *
3955 * Timestamps:
3956 * vp - atime updated
3957 */
3958 /* ARGSUSED */
3959 static int
3960 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3961 {
3962 znode_t *zp = VTOZ(vp);
3963 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3964 int error;
3965
3966 ZFS_ENTER(zfsvfs);
3967 ZFS_VERIFY_ZP(zp);
3968
3969 mutex_enter(&zp->z_lock);
3970 if (zp->z_is_sa)
3971 error = sa_lookup_uio(zp->z_sa_hdl,
3972 SA_ZPL_SYMLINK(zfsvfs), uio);
3973 else
3974 error = zfs_sa_readlink(zp, uio);
3975 mutex_exit(&zp->z_lock);
3976
3977 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3978
3979 ZFS_EXIT(zfsvfs);
3980 return (error);
3981 }
3982
3983 /*
3984 * Insert a new entry into directory tdvp referencing svp.
3985 *
3986 * IN: tdvp - Directory to contain new entry.
3987 * svp - vnode of new entry.
3988 * name - name of new entry.
3989 * cr - credentials of caller.
3990 * ct - caller context
3991 *
3992 * RETURN: 0 on success, error code on failure.
3993 *
3994 * Timestamps:
3995 * tdvp - ctime|mtime updated
3996 * svp - ctime updated
3997 */
3998 /* ARGSUSED */
3999 static int
4000 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4001 caller_context_t *ct, int flags)
4002 {
4003 znode_t *dzp = VTOZ(tdvp);
4004 znode_t *tzp, *szp;
4005 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
4006 zilog_t *zilog;
4007 zfs_dirlock_t *dl;
4008 dmu_tx_t *tx;
4009 vnode_t *realvp;
4010 int error;
4011 int zf = ZNEW;
4012 uint64_t parent;
4013 uid_t owner;
4014 boolean_t waited = B_FALSE;
4015
4016 ASSERT(tdvp->v_type == VDIR);
4017
4018 ZFS_ENTER(zfsvfs);
4019 ZFS_VERIFY_ZP(dzp);
4020 zilog = zfsvfs->z_log;
4021
4022 if (VOP_REALVP(svp, &realvp, ct) == 0)
4023 svp = realvp;
4024
4025 /*
4026 * POSIX dictates that we return EPERM here.
4027 * Better choices include ENOTSUP or EISDIR.
4028 */
4029 if (svp->v_type == VDIR) {
4030 ZFS_EXIT(zfsvfs);
4031 return (SET_ERROR(EPERM));
4032 }
4033
4034 szp = VTOZ(svp);
4035 ZFS_VERIFY_ZP(szp);
4036
4037 /*
4038 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4039 * ctldir appear to have the same v_vfsp.
4040 */
4041 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4042 ZFS_EXIT(zfsvfs);
4043 return (SET_ERROR(EXDEV));
4044 }
4045
4046 /* Prevent links to .zfs/shares files */
4047
4048 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4049 &parent, sizeof (uint64_t))) != 0) {
4050 ZFS_EXIT(zfsvfs);
4051 return (error);
4052 }
4053 if (parent == zfsvfs->z_shares_dir) {
4054 ZFS_EXIT(zfsvfs);
4055 return (SET_ERROR(EPERM));
4056 }
4057
4058 if (zfsvfs->z_utf8 && u8_validate(name,
4059 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4060 ZFS_EXIT(zfsvfs);
4061 return (SET_ERROR(EILSEQ));
4062 }
4063 if (flags & FIGNORECASE)
4064 zf |= ZCILOOK;
4065
4066 /*
4067 * We do not support links between attributes and non-attributes
4068 * because of the potential security risk of creating links
4069 * into "normal" file space in order to circumvent restrictions
4070 * imposed in attribute space.
4071 */
4072 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4073 ZFS_EXIT(zfsvfs);
4074 return (SET_ERROR(EINVAL));
4075 }
4076
4077
4078 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4079 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4080 ZFS_EXIT(zfsvfs);
4081 return (SET_ERROR(EPERM));
4082 }
4083
4084 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4085 ZFS_EXIT(zfsvfs);
4086 return (error);
4087 }
4088
4089 top:
4090 /*
4091 * Attempt to lock directory; fail if entry already exists.
4092 */
4093 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4094 if (error) {
4095 ZFS_EXIT(zfsvfs);
4096 return (error);
4097 }
4098
4099 tx = dmu_tx_create(zfsvfs->z_os);
4100 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4101 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4102 zfs_sa_upgrade_txholds(tx, szp);
4103 zfs_sa_upgrade_txholds(tx, dzp);
4104 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4105 if (error) {
4106 zfs_dirent_unlock(dl);
4107 if (error == ERESTART) {
4108 waited = B_TRUE;
4109 dmu_tx_wait(tx);
4110 dmu_tx_abort(tx);
4111 goto top;
4112 }
4113 dmu_tx_abort(tx);
4114 ZFS_EXIT(zfsvfs);
4115 return (error);
4116 }
4117
4118 error = zfs_link_create(dl, szp, tx, 0);
4119
4120 if (error == 0) {
4121 uint64_t txtype = TX_LINK;
4122 if (flags & FIGNORECASE)
4123 txtype |= TX_CI;
4124 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4125 }
4126
4127 dmu_tx_commit(tx);
4128
4129 zfs_dirent_unlock(dl);
4130
4131 if (error == 0) {
4132 vnevent_link(svp, ct);
4133 }
4134
4135 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4136 zil_commit(zilog, 0);
4137
4138 ZFS_EXIT(zfsvfs);
4139 return (error);
4140 }
4141
4142 /*
4143 * zfs_null_putapage() is used when the file system has been force
4144 * unmounted. It just drops the pages.
4145 */
4146 /* ARGSUSED */
4147 static int
4148 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4149 size_t *lenp, int flags, cred_t *cr)
4150 {
4151 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4152 return (0);
4153 }
4154
4155 /*
4156 * Push a page out to disk, klustering if possible.
4157 *
4158 * IN: vp - file to push page to.
4159 * pp - page to push.
4160 * flags - additional flags.
4161 * cr - credentials of caller.
4162 *
4163 * OUT: offp - start of range pushed.
4164 * lenp - len of range pushed.
4165 *
4166 * RETURN: 0 on success, error code on failure.
4167 *
4168 * NOTE: callers must have locked the page to be pushed. On
4169 * exit, the page (and all other pages in the kluster) must be
4170 * unlocked.
4171 */
4172 /* ARGSUSED */
4173 static int
4174 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4175 size_t *lenp, int flags, cred_t *cr)
4176 {
4177 znode_t *zp = VTOZ(vp);
4178 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4179 dmu_tx_t *tx;
4180 u_offset_t off, koff;
4181 size_t len, klen;
4182 int err;
4183
4184 off = pp->p_offset;
4185 len = PAGESIZE;
4186 /*
4187 * If our blocksize is bigger than the page size, try to kluster
4188 * multiple pages so that we write a full block (thus avoiding
4189 * a read-modify-write).
4190 */
4191 if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4192 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4193 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4194 ASSERT(koff <= zp->z_size);
4195 if (koff + klen > zp->z_size)
4196 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4197 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4198 }
4199 ASSERT3U(btop(len), ==, btopr(len));
4200
4201 /*
4202 * Can't push pages past end-of-file.
4203 */
4204 if (off >= zp->z_size) {
4205 /* ignore all pages */
4206 err = 0;
4207 goto out;
4208 } else if (off + len > zp->z_size) {
4209 int npages = btopr(zp->z_size - off);
4210 page_t *trunc;
4211
4212 page_list_break(&pp, &trunc, npages);
4213 /* ignore pages past end of file */
4214 if (trunc)
4215 pvn_write_done(trunc, flags);
4216 len = zp->z_size - off;
4217 }
4218
4219 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4220 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4221 err = SET_ERROR(EDQUOT);
4222 goto out;
4223 }
4224 tx = dmu_tx_create(zfsvfs->z_os);
4225 dmu_tx_hold_write(tx, zp->z_id, off, len);
4226
4227 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4228 zfs_sa_upgrade_txholds(tx, zp);
4229 err = dmu_tx_assign(tx, TXG_WAIT);
4230 if (err != 0) {
4231 dmu_tx_abort(tx);
4232 goto out;
4233 }
4234
4235 if (zp->z_blksz <= PAGESIZE) {
4236 caddr_t va = zfs_map_page(pp, S_READ);
4237 ASSERT3U(len, <=, PAGESIZE);
4238 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4239 zfs_unmap_page(pp, va);
4240 } else {
4241 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4242 }
4243
4244 if (err == 0) {
4245 uint64_t mtime[2], ctime[2];
4246 sa_bulk_attr_t bulk[3];
4247 int count = 0;
4248
4249 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4250 &mtime, 16);
4251 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4252 &ctime, 16);
4253 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4254 &zp->z_pflags, 8);
4255 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4256 B_TRUE);
4257 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4258 }
4259 dmu_tx_commit(tx);
4260
4261 out:
4262 pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4263 if (offp)
4264 *offp = off;
4265 if (lenp)
4266 *lenp = len;
4267
4268 return (err);
4269 }
4270
4271 /*
4272 * Copy the portion of the file indicated from pages into the file.
4273 * The pages are stored in a page list attached to the files vnode.
4274 *
4275 * IN: vp - vnode of file to push page data to.
4276 * off - position in file to put data.
4277 * len - amount of data to write.
4278 * flags - flags to control the operation.
4279 * cr - credentials of caller.
4280 * ct - caller context.
4281 *
4282 * RETURN: 0 on success, error code on failure.
4283 *
4284 * Timestamps:
4285 * vp - ctime|mtime updated
4286 */
4287 /*ARGSUSED*/
4288 static int
4289 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4290 caller_context_t *ct)
4291 {
4292 znode_t *zp = VTOZ(vp);
4293 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4294 page_t *pp;
4295 size_t io_len;
4296 u_offset_t io_off;
4297 uint_t blksz;
4298 rl_t *rl;
4299 int error = 0;
4300
4301 ZFS_ENTER(zfsvfs);
4302 ZFS_VERIFY_ZP(zp);
4303
4304 /*
4305 * There's nothing to do if no data is cached.
4306 */
4307 if (!vn_has_cached_data(vp)) {
4308 ZFS_EXIT(zfsvfs);
4309 return (0);
4310 }
4311
4312 /*
4313 * Align this request to the file block size in case we kluster.
4314 * XXX - this can result in pretty aggresive locking, which can
4315 * impact simultanious read/write access. One option might be
4316 * to break up long requests (len == 0) into block-by-block
4317 * operations to get narrower locking.
4318 */
4319 blksz = zp->z_blksz;
4320 if (ISP2(blksz))
4321 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4322 else
4323 io_off = 0;
4324 if (len > 0 && ISP2(blksz))
4325 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4326 else
4327 io_len = 0;
4328
4329 if (io_len == 0) {
4330 /*
4331 * Search the entire vp list for pages >= io_off.
4332 */
4333 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4334 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4335 goto out;
4336 }
4337 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4338
4339 if (off > zp->z_size) {
4340 /* past end of file */
4341 zfs_range_unlock(rl);
4342 ZFS_EXIT(zfsvfs);
4343 return (0);
4344 }
4345
4346 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4347
4348 for (off = io_off; io_off < off + len; io_off += io_len) {
4349 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4350 pp = page_lookup(vp, io_off,
4351 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4352 } else {
4353 pp = page_lookup_nowait(vp, io_off,
4354 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4355 }
4356
4357 if (pp != NULL && pvn_getdirty(pp, flags)) {
4358 int err;
4359
4360 /*
4361 * Found a dirty page to push
4362 */
4363 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4364 if (err)
4365 error = err;
4366 } else {
4367 io_len = PAGESIZE;
4368 }
4369 }
4370 out:
4371 zfs_range_unlock(rl);
4372 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4373 zil_commit(zfsvfs->z_log, zp->z_id);
4374 ZFS_EXIT(zfsvfs);
4375 return (error);
4376 }
4377
4378 /*ARGSUSED*/
4379 void
4380 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4381 {
4382 znode_t *zp = VTOZ(vp);
4383 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4384 int error;
4385
4386 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4387 if (zp->z_sa_hdl == NULL) {
4388 /*
4389 * The fs has been unmounted, or we did a
4390 * suspend/resume and this file no longer exists.
4391 */
4392 if (vn_has_cached_data(vp)) {
4393 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4394 B_INVAL, cr);
4395 }
4396
4397 mutex_enter(&zp->z_lock);
4398 mutex_enter(&vp->v_lock);
4399 ASSERT(vp->v_count == 1);
4400 vp->v_count = 0;
4401 mutex_exit(&vp->v_lock);
4402 mutex_exit(&zp->z_lock);
4403 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4404 zfs_znode_free(zp);
4405 return;
4406 }
4407
4408 /*
4409 * Attempt to push any data in the page cache. If this fails
4410 * we will get kicked out later in zfs_zinactive().
4411 */
4412 if (vn_has_cached_data(vp)) {
4413 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4414 cr);
4415 }
4416
4417 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4418 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4419
4420 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4421 zfs_sa_upgrade_txholds(tx, zp);
4422 error = dmu_tx_assign(tx, TXG_WAIT);
4423 if (error) {
4424 dmu_tx_abort(tx);
4425 } else {
4426 mutex_enter(&zp->z_lock);
4427 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4428 (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4429 zp->z_atime_dirty = 0;
4430 mutex_exit(&zp->z_lock);
4431 dmu_tx_commit(tx);
4432 }
4433 }
4434
4435 zfs_zinactive(zp);
4436 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4437 }
4438
4439 /*
4440 * Bounds-check the seek operation.
4441 *
4442 * IN: vp - vnode seeking within
4443 * ooff - old file offset
4444 * noffp - pointer to new file offset
4445 * ct - caller context
4446 *
4447 * RETURN: 0 on success, EINVAL if new offset invalid.
4448 */
4449 /* ARGSUSED */
4450 static int
4451 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4452 caller_context_t *ct)
4453 {
4454 if (vp->v_type == VDIR)
4455 return (0);
4456 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4457 }
4458
4459 /*
4460 * Pre-filter the generic locking function to trap attempts to place
4461 * a mandatory lock on a memory mapped file.
4462 */
4463 static int
4464 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4465 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4466 {
4467 znode_t *zp = VTOZ(vp);
4468 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4469
4470 ZFS_ENTER(zfsvfs);
4471 ZFS_VERIFY_ZP(zp);
4472
4473 /*
4474 * We are following the UFS semantics with respect to mapcnt
4475 * here: If we see that the file is mapped already, then we will
4476 * return an error, but we don't worry about races between this
4477 * function and zfs_map().
4478 */
4479 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4480 ZFS_EXIT(zfsvfs);
4481 return (SET_ERROR(EAGAIN));
4482 }
4483 ZFS_EXIT(zfsvfs);
4484 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4485 }
4486
4487 /*
4488 * If we can't find a page in the cache, we will create a new page
4489 * and fill it with file data. For efficiency, we may try to fill
4490 * multiple pages at once (klustering) to fill up the supplied page
4491 * list. Note that the pages to be filled are held with an exclusive
4492 * lock to prevent access by other threads while they are being filled.
4493 */
4494 static int
4495 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4496 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4497 {
4498 znode_t *zp = VTOZ(vp);
4499 page_t *pp, *cur_pp;
4500 objset_t *os = zp->z_zfsvfs->z_os;
4501 u_offset_t io_off, total;
4502 size_t io_len;
4503 int err;
4504
4505 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4506 /*
4507 * We only have a single page, don't bother klustering
4508 */
4509 io_off = off;
4510 io_len = PAGESIZE;
4511 pp = page_create_va(vp, io_off, io_len,
4512 PG_EXCL | PG_WAIT, seg, addr);
4513 } else {
4514 /*
4515 * Try to find enough pages to fill the page list
4516 */
4517 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4518 &io_len, off, plsz, 0);
4519 }
4520 if (pp == NULL) {
4521 /*
4522 * The page already exists, nothing to do here.
4523 */
4524 *pl = NULL;
4525 return (0);
4526 }
4527
4528 /*
4529 * Fill the pages in the kluster.
4530 */
4531 cur_pp = pp;
4532 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4533 caddr_t va;
4534
4535 ASSERT3U(io_off, ==, cur_pp->p_offset);
4536 va = zfs_map_page(cur_pp, S_WRITE);
4537 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4538 DMU_READ_PREFETCH);
4539 zfs_unmap_page(cur_pp, va);
4540 if (err) {
4541 /* On error, toss the entire kluster */
4542 pvn_read_done(pp, B_ERROR);
4543 /* convert checksum errors into IO errors */
4544 if (err == ECKSUM)
4545 err = SET_ERROR(EIO);
4546 return (err);
4547 }
4548 cur_pp = cur_pp->p_next;
4549 }
4550
4551 /*
4552 * Fill in the page list array from the kluster starting
4553 * from the desired offset `off'.
4554 * NOTE: the page list will always be null terminated.
4555 */
4556 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4557 ASSERT(pl == NULL || (*pl)->p_offset == off);
4558
4559 return (0);
4560 }
4561
4562 /*
4563 * Return pointers to the pages for the file region [off, off + len]
4564 * in the pl array. If plsz is greater than len, this function may
4565 * also return page pointers from after the specified region
4566 * (i.e. the region [off, off + plsz]). These additional pages are
4567 * only returned if they are already in the cache, or were created as
4568 * part of a klustered read.
4569 *
4570 * IN: vp - vnode of file to get data from.
4571 * off - position in file to get data from.
4572 * len - amount of data to retrieve.
4573 * plsz - length of provided page list.
4574 * seg - segment to obtain pages for.
4575 * addr - virtual address of fault.
4576 * rw - mode of created pages.
4577 * cr - credentials of caller.
4578 * ct - caller context.
4579 *
4580 * OUT: protp - protection mode of created pages.
4581 * pl - list of pages created.
4582 *
4583 * RETURN: 0 on success, error code on failure.
4584 *
4585 * Timestamps:
4586 * vp - atime updated
4587 */
4588 /* ARGSUSED */
4589 static int
4590 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4591 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4592 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4593 {
4594 znode_t *zp = VTOZ(vp);
4595 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4596 page_t **pl0 = pl;
4597 int err = 0;
4598
4599 /* we do our own caching, faultahead is unnecessary */
4600 if (pl == NULL)
4601 return (0);
4602 else if (len > plsz)
4603 len = plsz;
4604 else
4605 len = P2ROUNDUP(len, PAGESIZE);
4606 ASSERT(plsz >= len);
4607
4608 ZFS_ENTER(zfsvfs);
4609 ZFS_VERIFY_ZP(zp);
4610
4611 if (protp)
4612 *protp = PROT_ALL;
4613
4614 /*
4615 * Loop through the requested range [off, off + len) looking
4616 * for pages. If we don't find a page, we will need to create
4617 * a new page and fill it with data from the file.
4618 */
4619 while (len > 0) {
4620 if (*pl = page_lookup(vp, off, SE_SHARED))
4621 *(pl+1) = NULL;
4622 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4623 goto out;
4624 while (*pl) {
4625 ASSERT3U((*pl)->p_offset, ==, off);
4626 off += PAGESIZE;
4627 addr += PAGESIZE;
4628 if (len > 0) {
4629 ASSERT3U(len, >=, PAGESIZE);
4630 len -= PAGESIZE;
4631 }
4632 ASSERT3U(plsz, >=, PAGESIZE);
4633 plsz -= PAGESIZE;
4634 pl++;
4635 }
4636 }
4637
4638 /*
4639 * Fill out the page array with any pages already in the cache.
4640 */
4641 while (plsz > 0 &&
4642 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4643 off += PAGESIZE;
4644 plsz -= PAGESIZE;
4645 }
4646 out:
4647 if (err) {
4648 /*
4649 * Release any pages we have previously locked.
4650 */
4651 while (pl > pl0)
4652 page_unlock(*--pl);
4653 } else {
4654 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4655 }
4656
4657 *pl = NULL;
4658
4659 ZFS_EXIT(zfsvfs);
4660 return (err);
4661 }
4662
4663 /*
4664 * Request a memory map for a section of a file. This code interacts
4665 * with common code and the VM system as follows:
4666 *
4667 * - common code calls mmap(), which ends up in smmap_common()
4668 * - this calls VOP_MAP(), which takes you into (say) zfs
4669 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4670 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4671 * - zfs_addmap() updates z_mapcnt
4672 */
4673 /*ARGSUSED*/
4674 static int
4675 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4676 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4677 caller_context_t *ct)
4678 {
4679 znode_t *zp = VTOZ(vp);
4680 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4681 segvn_crargs_t vn_a;
4682 int error;
4683
4684 ZFS_ENTER(zfsvfs);
4685 ZFS_VERIFY_ZP(zp);
4686
4687 if ((prot & PROT_WRITE) && (zp->z_pflags &
4688 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4689 ZFS_EXIT(zfsvfs);
4690 return (SET_ERROR(EPERM));
4691 }
4692
4693 if ((prot & (PROT_READ | PROT_EXEC)) &&
4694 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4695 ZFS_EXIT(zfsvfs);
4696 return (SET_ERROR(EACCES));
4697 }
4698
4699 if (vp->v_flag & VNOMAP) {
4700 ZFS_EXIT(zfsvfs);
4701 return (SET_ERROR(ENOSYS));
4702 }
4703
4704 if (off < 0 || len > MAXOFFSET_T - off) {
4705 ZFS_EXIT(zfsvfs);
4706 return (SET_ERROR(ENXIO));
4707 }
4708
4709 if (vp->v_type != VREG) {
4710 ZFS_EXIT(zfsvfs);
4711 return (SET_ERROR(ENODEV));
4712 }
4713
4714 /*
4715 * If file is locked, disallow mapping.
4716 */
4717 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4718 ZFS_EXIT(zfsvfs);
4719 return (SET_ERROR(EAGAIN));
4720 }
4721
4722 as_rangelock(as);
4723 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4724 if (error != 0) {
4725 as_rangeunlock(as);
4726 ZFS_EXIT(zfsvfs);
4727 return (error);
4728 }
4729
4730 vn_a.vp = vp;
4731 vn_a.offset = (u_offset_t)off;
4732 vn_a.type = flags & MAP_TYPE;
4733 vn_a.prot = prot;
4734 vn_a.maxprot = maxprot;
4735 vn_a.cred = cr;
4736 vn_a.amp = NULL;
4737 vn_a.flags = flags & ~MAP_TYPE;
4738 vn_a.szc = 0;
4739 vn_a.lgrp_mem_policy_flags = 0;
4740
4741 error = as_map(as, *addrp, len, segvn_create, &vn_a);
4742
4743 as_rangeunlock(as);
4744 ZFS_EXIT(zfsvfs);
4745 return (error);
4746 }
4747
4748 /* ARGSUSED */
4749 static int
4750 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4751 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4752 caller_context_t *ct)
4753 {
4754 uint64_t pages = btopr(len);
4755
4756 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4757 return (0);
4758 }
4759
4760 /*
4761 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4762 * more accurate mtime for the associated file. Since we don't have a way of
4763 * detecting when the data was actually modified, we have to resort to
4764 * heuristics. If an explicit msync() is done, then we mark the mtime when the
4765 * last page is pushed. The problem occurs when the msync() call is omitted,
4766 * which by far the most common case:
4767 *
4768 * open()
4769 * mmap()
4770 * <modify memory>
4771 * munmap()
4772 * close()
4773 * <time lapse>
4774 * putpage() via fsflush
4775 *
4776 * If we wait until fsflush to come along, we can have a modification time that
4777 * is some arbitrary point in the future. In order to prevent this in the
4778 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4779 * torn down.
4780 */
4781 /* ARGSUSED */
4782 static int
4783 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4784 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4785 caller_context_t *ct)
4786 {
4787 uint64_t pages = btopr(len);
4788
4789 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4790 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4791
4792 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4793 vn_has_cached_data(vp))
4794 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4795
4796 return (0);
4797 }
4798
4799 /*
4800 * Free or allocate space in a file. Currently, this function only
4801 * supports the `F_FREESP' command. However, this command is somewhat
4802 * misnamed, as its functionality includes the ability to allocate as
4803 * well as free space.
4804 *
4805 * IN: vp - vnode of file to free data in.
4806 * cmd - action to take (only F_FREESP supported).
4807 * bfp - section of file to free/alloc.
4808 * flag - current file open mode flags.
4809 * offset - current file offset.
4810 * cr - credentials of caller [UNUSED].
4811 * ct - caller context.
4812 *
4813 * RETURN: 0 on success, error code on failure.
4814 *
4815 * Timestamps:
4816 * vp - ctime|mtime updated
4817 */
4818 /* ARGSUSED */
4819 static int
4820 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4821 offset_t offset, cred_t *cr, caller_context_t *ct)
4822 {
4823 znode_t *zp = VTOZ(vp);
4824 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4825 uint64_t off, len;
4826 int error;
4827
4828 ZFS_ENTER(zfsvfs);
4829 ZFS_VERIFY_ZP(zp);
4830
4831 if (cmd != F_FREESP) {
4832 ZFS_EXIT(zfsvfs);
4833 return (SET_ERROR(EINVAL));
4834 }
4835
4836 /*
4837 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4838 * callers might not be able to detect properly that we are read-only,
4839 * so check it explicitly here.
4840 */
4841 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4842 ZFS_EXIT(zfsvfs);
4843 return (SET_ERROR(EROFS));
4844 }
4845
4846 if (error = convoff(vp, bfp, 0, offset)) {
4847 ZFS_EXIT(zfsvfs);
4848 return (error);
4849 }
4850
4851 if (bfp->l_len < 0) {
4852 ZFS_EXIT(zfsvfs);
4853 return (SET_ERROR(EINVAL));
4854 }
4855
4856 off = bfp->l_start;
4857 len = bfp->l_len; /* 0 means from off to end of file */
4858
4859 error = zfs_freesp(zp, off, len, flag, TRUE);
4860
4861 if (error == 0 && off == 0 && len == 0)
4862 vnevent_truncate(ZTOV(zp), ct);
4863
4864 ZFS_EXIT(zfsvfs);
4865 return (error);
4866 }
4867
4868 /*ARGSUSED*/
4869 static int
4870 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4871 {
4872 znode_t *zp = VTOZ(vp);
4873 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4874 uint32_t gen;
4875 uint64_t gen64;
4876 uint64_t object = zp->z_id;
4877 zfid_short_t *zfid;
4878 int size, i, error;
4879
4880 ZFS_ENTER(zfsvfs);
4881 ZFS_VERIFY_ZP(zp);
4882
4883 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4884 &gen64, sizeof (uint64_t))) != 0) {
4885 ZFS_EXIT(zfsvfs);
4886 return (error);
4887 }
4888
4889 gen = (uint32_t)gen64;
4890
4891 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4892 if (fidp->fid_len < size) {
4893 fidp->fid_len = size;
4894 ZFS_EXIT(zfsvfs);
4895 return (SET_ERROR(ENOSPC));
4896 }
4897
4898 zfid = (zfid_short_t *)fidp;
4899
4900 zfid->zf_len = size;
4901
4902 for (i = 0; i < sizeof (zfid->zf_object); i++)
4903 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4904
4905 /* Must have a non-zero generation number to distinguish from .zfs */
4906 if (gen == 0)
4907 gen = 1;
4908 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4909 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4910
4911 if (size == LONG_FID_LEN) {
4912 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
4913 zfid_long_t *zlfid;
4914
4915 zlfid = (zfid_long_t *)fidp;
4916
4917 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4918 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4919
4920 /* XXX - this should be the generation number for the objset */
4921 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4922 zlfid->zf_setgen[i] = 0;
4923 }
4924
4925 ZFS_EXIT(zfsvfs);
4926 return (0);
4927 }
4928
4929 static int
4930 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4931 caller_context_t *ct)
4932 {
4933 znode_t *zp, *xzp;
4934 zfsvfs_t *zfsvfs;
4935 zfs_dirlock_t *dl;
4936 int error;
4937
4938 switch (cmd) {
4939 case _PC_LINK_MAX:
4940 *valp = ULONG_MAX;
4941 return (0);
4942
4943 case _PC_FILESIZEBITS:
4944 *valp = 64;
4945 return (0);
4946
4947 case _PC_XATTR_EXISTS:
4948 zp = VTOZ(vp);
4949 zfsvfs = zp->z_zfsvfs;
4950 ZFS_ENTER(zfsvfs);
4951 ZFS_VERIFY_ZP(zp);
4952 *valp = 0;
4953 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4954 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4955 if (error == 0) {
4956 zfs_dirent_unlock(dl);
4957 if (!zfs_dirempty(xzp))
4958 *valp = 1;
4959 VN_RELE(ZTOV(xzp));
4960 } else if (error == ENOENT) {
4961 /*
4962 * If there aren't extended attributes, it's the
4963 * same as having zero of them.
4964 */
4965 error = 0;
4966 }
4967 ZFS_EXIT(zfsvfs);
4968 return (error);
4969
4970 case _PC_SATTR_ENABLED:
4971 case _PC_SATTR_EXISTS:
4972 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4973 (vp->v_type == VREG || vp->v_type == VDIR);
4974 return (0);
4975
4976 case _PC_ACCESS_FILTERING:
4977 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4978 vp->v_type == VDIR;
4979 return (0);
4980
4981 case _PC_ACL_ENABLED:
4982 *valp = _ACL_ACE_ENABLED;
4983 return (0);
4984
4985 case _PC_MIN_HOLE_SIZE:
4986 *valp = (ulong_t)SPA_MINBLOCKSIZE;
4987 return (0);
4988
4989 case _PC_TIMESTAMP_RESOLUTION:
4990 /* nanosecond timestamp resolution */
4991 *valp = 1L;
4992 return (0);
4993
4994 default:
4995 return (fs_pathconf(vp, cmd, valp, cr, ct));
4996 }
4997 }
4998
4999 /*ARGSUSED*/
5000 static int
5001 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5002 caller_context_t *ct)
5003 {
5004 znode_t *zp = VTOZ(vp);
5005 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5006 int error;
5007 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5008
5009 ZFS_ENTER(zfsvfs);
5010 ZFS_VERIFY_ZP(zp);
5011 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5012 ZFS_EXIT(zfsvfs);
5013
5014 return (error);
5015 }
5016
5017 /*ARGSUSED*/
5018 static int
5019 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5020 caller_context_t *ct)
5021 {
5022 znode_t *zp = VTOZ(vp);
5023 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5024 int error;
5025 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5026 zilog_t *zilog = zfsvfs->z_log;
5027
5028 ZFS_ENTER(zfsvfs);
5029 ZFS_VERIFY_ZP(zp);
5030
5031 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5032
5033 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5034 zil_commit(zilog, 0);
5035
5036 ZFS_EXIT(zfsvfs);
5037 return (error);
5038 }
5039
5040 /*
5041 * The smallest read we may consider to loan out an arcbuf.
5042 * This must be a power of 2.
5043 */
5044 int zcr_blksz_min = (1 << 10); /* 1K */
5045 /*
5046 * If set to less than the file block size, allow loaning out of an
5047 * arcbuf for a partial block read. This must be a power of 2.
5048 */
5049 int zcr_blksz_max = (1 << 17); /* 128K */
5050
5051 /*ARGSUSED*/
5052 static int
5053 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5054 caller_context_t *ct)
5055 {
5056 znode_t *zp = VTOZ(vp);
5057 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5058 int max_blksz = zfsvfs->z_max_blksz;
5059 uio_t *uio = &xuio->xu_uio;
5060 ssize_t size = uio->uio_resid;
5061 offset_t offset = uio->uio_loffset;
5062 int blksz;
5063 int fullblk, i;
5064 arc_buf_t *abuf;
5065 ssize_t maxsize;
5066 int preamble, postamble;
5067
5068 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5069 return (SET_ERROR(EINVAL));
5070
5071 ZFS_ENTER(zfsvfs);
5072 ZFS_VERIFY_ZP(zp);
5073 switch (ioflag) {
5074 case UIO_WRITE:
5075 /*
5076 * Loan out an arc_buf for write if write size is bigger than
5077 * max_blksz, and the file's block size is also max_blksz.
5078 */
5079 blksz = max_blksz;
5080 if (size < blksz || zp->z_blksz != blksz) {
5081 ZFS_EXIT(zfsvfs);
5082 return (SET_ERROR(EINVAL));
5083 }
5084 /*
5085 * Caller requests buffers for write before knowing where the
5086 * write offset might be (e.g. NFS TCP write).
5087 */
5088 if (offset == -1) {
5089 preamble = 0;
5090 } else {
5091 preamble = P2PHASE(offset, blksz);
5092 if (preamble) {
5093 preamble = blksz - preamble;
5094 size -= preamble;
5095 }
5096 }
5097
5098 postamble = P2PHASE(size, blksz);
5099 size -= postamble;
5100
5101 fullblk = size / blksz;
5102 (void) dmu_xuio_init(xuio,
5103 (preamble != 0) + fullblk + (postamble != 0));
5104 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5105 int, postamble, int,
5106 (preamble != 0) + fullblk + (postamble != 0));
5107
5108 /*
5109 * Have to fix iov base/len for partial buffers. They
5110 * currently represent full arc_buf's.
5111 */
5112 if (preamble) {
5113 /* data begins in the middle of the arc_buf */
5114 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5115 blksz);
5116 ASSERT(abuf);
5117 (void) dmu_xuio_add(xuio, abuf,
5118 blksz - preamble, preamble);
5119 }
5120
5121 for (i = 0; i < fullblk; i++) {
5122 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5123 blksz);
5124 ASSERT(abuf);
5125 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5126 }
5127
5128 if (postamble) {
5129 /* data ends in the middle of the arc_buf */
5130 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5131 blksz);
5132 ASSERT(abuf);
5133 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5134 }
5135 break;
5136 case UIO_READ:
5137 /*
5138 * Loan out an arc_buf for read if the read size is larger than
5139 * the current file block size. Block alignment is not
5140 * considered. Partial arc_buf will be loaned out for read.
5141 */
5142 blksz = zp->z_blksz;
5143 if (blksz < zcr_blksz_min)
5144 blksz = zcr_blksz_min;
5145 if (blksz > zcr_blksz_max)
5146 blksz = zcr_blksz_max;
5147 /* avoid potential complexity of dealing with it */
5148 if (blksz > max_blksz) {
5149 ZFS_EXIT(zfsvfs);
5150 return (SET_ERROR(EINVAL));
5151 }
5152
5153 maxsize = zp->z_size - uio->uio_loffset;
5154 if (size > maxsize)
5155 size = maxsize;
5156
5157 if (size < blksz || vn_has_cached_data(vp)) {
5158 ZFS_EXIT(zfsvfs);
5159 return (SET_ERROR(EINVAL));
5160 }
5161 break;
5162 default:
5163 ZFS_EXIT(zfsvfs);
5164 return (SET_ERROR(EINVAL));
5165 }
5166
5167 uio->uio_extflg = UIO_XUIO;
5168 XUIO_XUZC_RW(xuio) = ioflag;
5169 ZFS_EXIT(zfsvfs);
5170 return (0);
5171 }
5172
5173 /*ARGSUSED*/
5174 static int
5175 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5176 {
5177 int i;
5178 arc_buf_t *abuf;
5179 int ioflag = XUIO_XUZC_RW(xuio);
5180
5181 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5182
5183 i = dmu_xuio_cnt(xuio);
5184 while (i-- > 0) {
5185 abuf = dmu_xuio_arcbuf(xuio, i);
5186 /*
5187 * if abuf == NULL, it must be a write buffer
5188 * that has been returned in zfs_write().
5189 */
5190 if (abuf)
5191 dmu_return_arcbuf(abuf);
5192 ASSERT(abuf || ioflag == UIO_WRITE);
5193 }
5194
5195 dmu_xuio_fini(xuio);
5196 return (0);
5197 }
5198
5199 /*
5200 * Predeclare these here so that the compiler assumes that
5201 * this is an "old style" function declaration that does
5202 * not include arguments => we won't get type mismatch errors
5203 * in the initializations that follow.
5204 */
5205 static int zfs_inval();
5206 static int zfs_isdir();
5207
5208 static int
5209 zfs_inval()
5210 {
5211 return (SET_ERROR(EINVAL));
5212 }
5213
5214 static int
5215 zfs_isdir()
5216 {
5217 return (SET_ERROR(EISDIR));
5218 }
5219 /*
5220 * Directory vnode operations template
5221 */
5222 vnodeops_t *zfs_dvnodeops;
5223 const fs_operation_def_t zfs_dvnodeops_template[] = {
5224 VOPNAME_OPEN, { .vop_open = zfs_open },
5225 VOPNAME_CLOSE, { .vop_close = zfs_close },
5226 VOPNAME_READ, { .error = zfs_isdir },
5227 VOPNAME_WRITE, { .error = zfs_isdir },
5228 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5229 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5230 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5231 VOPNAME_ACCESS, { .vop_access = zfs_access },
5232 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5233 VOPNAME_CREATE, { .vop_create = zfs_create },
5234 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5235 VOPNAME_LINK, { .vop_link = zfs_link },
5236 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5237 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir },
5238 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5239 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5240 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink },
5241 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5242 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5243 VOPNAME_FID, { .vop_fid = zfs_fid },
5244 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5245 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5246 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5247 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5248 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5249 NULL, NULL
5250 };
5251
5252 /*
5253 * Regular file vnode operations template
5254 */
5255 vnodeops_t *zfs_fvnodeops;
5256 const fs_operation_def_t zfs_fvnodeops_template[] = {
5257 VOPNAME_OPEN, { .vop_open = zfs_open },
5258 VOPNAME_CLOSE, { .vop_close = zfs_close },
5259 VOPNAME_READ, { .vop_read = zfs_read },
5260 VOPNAME_WRITE, { .vop_write = zfs_write },
5261 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5262 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5263 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5264 VOPNAME_ACCESS, { .vop_access = zfs_access },
5265 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5266 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5267 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5268 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5269 VOPNAME_FID, { .vop_fid = zfs_fid },
5270 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5271 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock },
5272 VOPNAME_SPACE, { .vop_space = zfs_space },
5273 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage },
5274 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage },
5275 VOPNAME_MAP, { .vop_map = zfs_map },
5276 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap },
5277 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap },
5278 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5279 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5280 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5281 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5282 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf },
5283 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf },
5284 NULL, NULL
5285 };
5286
5287 /*
5288 * Symbolic link vnode operations template
5289 */
5290 vnodeops_t *zfs_symvnodeops;
5291 const fs_operation_def_t zfs_symvnodeops_template[] = {
5292 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5293 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5294 VOPNAME_ACCESS, { .vop_access = zfs_access },
5295 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5296 VOPNAME_READLINK, { .vop_readlink = zfs_readlink },
5297 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5298 VOPNAME_FID, { .vop_fid = zfs_fid },
5299 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5300 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5301 NULL, NULL
5302 };
5303
5304 /*
5305 * special share hidden files vnode operations template
5306 */
5307 vnodeops_t *zfs_sharevnodeops;
5308 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5309 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5310 VOPNAME_ACCESS, { .vop_access = zfs_access },
5311 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5312 VOPNAME_FID, { .vop_fid = zfs_fid },
5313 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5314 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5315 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5316 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5317 NULL, NULL
5318 };
5319
5320 /*
5321 * Extended attribute directory vnode operations template
5322 *
5323 * This template is identical to the directory vnodes
5324 * operation template except for restricted operations:
5325 * VOP_MKDIR()
5326 * VOP_SYMLINK()
5327 *
5328 * Note that there are other restrictions embedded in:
5329 * zfs_create() - restrict type to VREG
5330 * zfs_link() - no links into/out of attribute space
5331 * zfs_rename() - no moves into/out of attribute space
5332 */
5333 vnodeops_t *zfs_xdvnodeops;
5334 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5335 VOPNAME_OPEN, { .vop_open = zfs_open },
5336 VOPNAME_CLOSE, { .vop_close = zfs_close },
5337 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5338 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5339 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5340 VOPNAME_ACCESS, { .vop_access = zfs_access },
5341 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5342 VOPNAME_CREATE, { .vop_create = zfs_create },
5343 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5344 VOPNAME_LINK, { .vop_link = zfs_link },
5345 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5346 VOPNAME_MKDIR, { .error = zfs_inval },
5347 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5348 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5349 VOPNAME_SYMLINK, { .error = zfs_inval },
5350 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5351 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5352 VOPNAME_FID, { .vop_fid = zfs_fid },
5353 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5354 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5355 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5356 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5357 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5358 NULL, NULL
5359 };
5360
5361 /*
5362 * Error vnode operations template
5363 */
5364 vnodeops_t *zfs_evnodeops;
5365 const fs_operation_def_t zfs_evnodeops_template[] = {
5366 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5367 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5368 NULL, NULL
5369 };