1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
  24  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
  25  * Copyright (c) 2014 Integros [integros.com]
  26  * Copyright 2015 Joyent, Inc.
  27  */
  28 
  29 /* Portions Copyright 2007 Jeremy Teo */
  30 /* Portions Copyright 2010 Robert Milkowski */
  31 
  32 #include <sys/types.h>
  33 #include <sys/param.h>
  34 #include <sys/time.h>
  35 #include <sys/systm.h>
  36 #include <sys/sysmacros.h>
  37 #include <sys/resource.h>
  38 #include <sys/vfs.h>
  39 #include <sys/vfs_opreg.h>
  40 #include <sys/vnode.h>
  41 #include <sys/file.h>
  42 #include <sys/stat.h>
  43 #include <sys/kmem.h>
  44 #include <sys/taskq.h>
  45 #include <sys/uio.h>
  46 #include <sys/vmsystm.h>
  47 #include <sys/atomic.h>
  48 #include <sys/vm.h>
  49 #include <vm/seg_vn.h>
  50 #include <vm/pvn.h>
  51 #include <vm/as.h>
  52 #include <vm/kpm.h>
  53 #include <vm/seg_kpm.h>
  54 #include <sys/mman.h>
  55 #include <sys/pathname.h>
  56 #include <sys/cmn_err.h>
  57 #include <sys/errno.h>
  58 #include <sys/unistd.h>
  59 #include <sys/zfs_dir.h>
  60 #include <sys/zfs_acl.h>
  61 #include <sys/zfs_ioctl.h>
  62 #include <sys/fs/zfs.h>
  63 #include <sys/dmu.h>
  64 #include <sys/dmu_objset.h>
  65 #include <sys/spa.h>
  66 #include <sys/txg.h>
  67 #include <sys/dbuf.h>
  68 #include <sys/zap.h>
  69 #include <sys/sa.h>
  70 #include <sys/dirent.h>
  71 #include <sys/policy.h>
  72 #include <sys/sunddi.h>
  73 #include <sys/filio.h>
  74 #include <sys/sid.h>
  75 #include "fs/fs_subr.h"
  76 #include <sys/zfs_ctldir.h>
  77 #include <sys/zfs_fuid.h>
  78 #include <sys/zfs_sa.h>
  79 #include <sys/dnlc.h>
  80 #include <sys/zfs_rlock.h>
  81 #include <sys/extdirent.h>
  82 #include <sys/kidmap.h>
  83 #include <sys/cred.h>
  84 #include <sys/attr.h>
  85 
  86 /*
  87  * Programming rules.
  88  *
  89  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
  90  * properly lock its in-core state, create a DMU transaction, do the work,
  91  * record this work in the intent log (ZIL), commit the DMU transaction,
  92  * and wait for the intent log to commit if it is a synchronous operation.
  93  * Moreover, the vnode ops must work in both normal and log replay context.
  94  * The ordering of events is important to avoid deadlocks and references
  95  * to freed memory.  The example below illustrates the following Big Rules:
  96  *
  97  *  (1) A check must be made in each zfs thread for a mounted file system.
  98  *      This is done avoiding races using ZFS_ENTER(zfsvfs).
  99  *      A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
 100  *      must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
 101  *      can return EIO from the calling function.
 102  *
 103  *  (2) VN_RELE() should always be the last thing except for zil_commit()
 104  *      (if necessary) and ZFS_EXIT(). This is for 3 reasons:
 105  *      First, if it's the last reference, the vnode/znode
 106  *      can be freed, so the zp may point to freed memory.  Second, the last
 107  *      reference will call zfs_zinactive(), which may induce a lot of work --
 108  *      pushing cached pages (which acquires range locks) and syncing out
 109  *      cached atime changes.  Third, zfs_zinactive() may require a new tx,
 110  *      which could deadlock the system if you were already holding one.
 111  *      If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
 112  *
 113  *  (3) All range locks must be grabbed before calling dmu_tx_assign(),
 114  *      as they can span dmu_tx_assign() calls.
 115  *
 116  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
 117  *      dmu_tx_assign().  This is critical because we don't want to block
 118  *      while holding locks.
 119  *
 120  *      If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
 121  *      reduces lock contention and CPU usage when we must wait (note that if
 122  *      throughput is constrained by the storage, nearly every transaction
 123  *      must wait).
 124  *
 125  *      Note, in particular, that if a lock is sometimes acquired before
 126  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
 127  *      to use a non-blocking assign can deadlock the system.  The scenario:
 128  *
 129  *      Thread A has grabbed a lock before calling dmu_tx_assign().
 130  *      Thread B is in an already-assigned tx, and blocks for this lock.
 131  *      Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
 132  *      forever, because the previous txg can't quiesce until B's tx commits.
 133  *
 134  *      If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
 135  *      then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
 136  *      calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
 137  *      to indicate that this operation has already called dmu_tx_wait().
 138  *      This will ensure that we don't retry forever, waiting a short bit
 139  *      each time.
 140  *
 141  *  (5) If the operation succeeded, generate the intent log entry for it
 142  *      before dropping locks.  This ensures that the ordering of events
 143  *      in the intent log matches the order in which they actually occurred.
 144  *      During ZIL replay the zfs_log_* functions will update the sequence
 145  *      number to indicate the zil transaction has replayed.
 146  *
 147  *  (6) At the end of each vnode op, the DMU tx must always commit,
 148  *      regardless of whether there were any errors.
 149  *
 150  *  (7) After dropping all locks, invoke zil_commit(zilog, foid)
 151  *      to ensure that synchronous semantics are provided when necessary.
 152  *
 153  * In general, this is how things should be ordered in each vnode op:
 154  *
 155  *      ZFS_ENTER(zfsvfs);              // exit if unmounted
 156  * top:
 157  *      zfs_dirent_lock(&dl, ...)   // lock directory entry (may VN_HOLD())
 158  *      rw_enter(...);                  // grab any other locks you need
 159  *      tx = dmu_tx_create(...);        // get DMU tx
 160  *      dmu_tx_hold_*();                // hold each object you might modify
 161  *      error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
 162  *      if (error) {
 163  *              rw_exit(...);           // drop locks
 164  *              zfs_dirent_unlock(dl);  // unlock directory entry
 165  *              VN_RELE(...);           // release held vnodes
 166  *              if (error == ERESTART) {
 167  *                      waited = B_TRUE;
 168  *                      dmu_tx_wait(tx);
 169  *                      dmu_tx_abort(tx);
 170  *                      goto top;
 171  *              }
 172  *              dmu_tx_abort(tx);       // abort DMU tx
 173  *              ZFS_EXIT(zfsvfs);       // finished in zfs
 174  *              return (error);         // really out of space
 175  *      }
 176  *      error = do_real_work();         // do whatever this VOP does
 177  *      if (error == 0)
 178  *              zfs_log_*(...);         // on success, make ZIL entry
 179  *      dmu_tx_commit(tx);              // commit DMU tx -- error or not
 180  *      rw_exit(...);                   // drop locks
 181  *      zfs_dirent_unlock(dl);          // unlock directory entry
 182  *      VN_RELE(...);                   // release held vnodes
 183  *      zil_commit(zilog, foid);        // synchronous when necessary
 184  *      ZFS_EXIT(zfsvfs);               // finished in zfs
 185  *      return (error);                 // done, report error
 186  */
 187 
 188 /* ARGSUSED */
 189 static int
 190 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
 191 {
 192         znode_t *zp = VTOZ(*vpp);
 193         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
 194 
 195         ZFS_ENTER(zfsvfs);
 196         ZFS_VERIFY_ZP(zp);
 197 
 198         if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
 199             ((flag & FAPPEND) == 0)) {
 200                 ZFS_EXIT(zfsvfs);
 201                 return (SET_ERROR(EPERM));
 202         }
 203 
 204         if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
 205             ZTOV(zp)->v_type == VREG &&
 206             !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
 207                 if (fs_vscan(*vpp, cr, 0) != 0) {
 208                         ZFS_EXIT(zfsvfs);
 209                         return (SET_ERROR(EACCES));
 210                 }
 211         }
 212 
 213         /* Keep a count of the synchronous opens in the znode */
 214         if (flag & (FSYNC | FDSYNC))
 215                 atomic_inc_32(&zp->z_sync_cnt);
 216 
 217         ZFS_EXIT(zfsvfs);
 218         return (0);
 219 }
 220 
 221 /* ARGSUSED */
 222 static int
 223 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
 224     caller_context_t *ct)
 225 {
 226         znode_t *zp = VTOZ(vp);
 227         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
 228 
 229         /*
 230          * Clean up any locks held by this process on the vp.
 231          */
 232         cleanlocks(vp, ddi_get_pid(), 0);
 233         cleanshares(vp, ddi_get_pid());
 234 
 235         ZFS_ENTER(zfsvfs);
 236         ZFS_VERIFY_ZP(zp);
 237 
 238         /* Decrement the synchronous opens in the znode */
 239         if ((flag & (FSYNC | FDSYNC)) && (count == 1))
 240                 atomic_dec_32(&zp->z_sync_cnt);
 241 
 242         if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
 243             ZTOV(zp)->v_type == VREG &&
 244             !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
 245                 VERIFY(fs_vscan(vp, cr, 1) == 0);
 246 
 247         ZFS_EXIT(zfsvfs);
 248         return (0);
 249 }
 250 
 251 /*
 252  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
 253  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
 254  */
 255 static int
 256 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
 257 {
 258         znode_t *zp = VTOZ(vp);
 259         uint64_t noff = (uint64_t)*off; /* new offset */
 260         uint64_t file_sz;
 261         int error;
 262         boolean_t hole;
 263 
 264         file_sz = zp->z_size;
 265         if (noff >= file_sz)  {
 266                 return (SET_ERROR(ENXIO));
 267         }
 268 
 269         if (cmd == _FIO_SEEK_HOLE)
 270                 hole = B_TRUE;
 271         else
 272                 hole = B_FALSE;
 273 
 274         error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
 275 
 276         if (error == ESRCH)
 277                 return (SET_ERROR(ENXIO));
 278 
 279         /*
 280          * We could find a hole that begins after the logical end-of-file,
 281          * because dmu_offset_next() only works on whole blocks.  If the
 282          * EOF falls mid-block, then indicate that the "virtual hole"
 283          * at the end of the file begins at the logical EOF, rather than
 284          * at the end of the last block.
 285          */
 286         if (noff > file_sz) {
 287                 ASSERT(hole);
 288                 noff = file_sz;
 289         }
 290 
 291         if (noff < *off)
 292                 return (error);
 293         *off = noff;
 294         return (error);
 295 }
 296 
 297 /* ARGSUSED */
 298 static int
 299 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
 300     int *rvalp, caller_context_t *ct)
 301 {
 302         offset_t off;
 303         offset_t ndata;
 304         dmu_object_info_t doi;
 305         int error;
 306         zfsvfs_t *zfsvfs;
 307         znode_t *zp;
 308 
 309         switch (com) {
 310         case _FIOFFS:
 311         {
 312                 return (zfs_sync(vp->v_vfsp, 0, cred));
 313 
 314                 /*
 315                  * The following two ioctls are used by bfu.  Faking out,
 316                  * necessary to avoid bfu errors.
 317                  */
 318         }
 319         case _FIOGDIO:
 320         case _FIOSDIO:
 321         {
 322                 return (0);
 323         }
 324 
 325         case _FIO_SEEK_DATA:
 326         case _FIO_SEEK_HOLE:
 327         {
 328                 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
 329                         return (SET_ERROR(EFAULT));
 330 
 331                 zp = VTOZ(vp);
 332                 zfsvfs = zp->z_zfsvfs;
 333                 ZFS_ENTER(zfsvfs);
 334                 ZFS_VERIFY_ZP(zp);
 335 
 336                 /* offset parameter is in/out */
 337                 error = zfs_holey(vp, com, &off);
 338                 ZFS_EXIT(zfsvfs);
 339                 if (error)
 340                         return (error);
 341                 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
 342                         return (SET_ERROR(EFAULT));
 343                 return (0);
 344         }
 345         case _FIO_COUNT_FILLED:
 346         {
 347                 /*
 348                  * _FIO_COUNT_FILLED adds a new ioctl command which
 349                  * exposes the number of filled blocks in a
 350                  * ZFS object.
 351                  */
 352                 zp = VTOZ(vp);
 353                 zfsvfs = zp->z_zfsvfs;
 354                 ZFS_ENTER(zfsvfs);
 355                 ZFS_VERIFY_ZP(zp);
 356 
 357                 /*
 358                  * Wait for all dirty blocks for this object
 359                  * to get synced out to disk, and the DMU info
 360                  * updated.
 361                  */
 362                 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
 363                 if (error) {
 364                         ZFS_EXIT(zfsvfs);
 365                         return (error);
 366                 }
 367 
 368                 /*
 369                  * Retrieve fill count from DMU object.
 370                  */
 371                 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
 372                 if (error) {
 373                         ZFS_EXIT(zfsvfs);
 374                         return (error);
 375                 }
 376 
 377                 ndata = doi.doi_fill_count;
 378 
 379                 ZFS_EXIT(zfsvfs);
 380                 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
 381                         return (SET_ERROR(EFAULT));
 382                 return (0);
 383         }
 384         }
 385         return (SET_ERROR(ENOTTY));
 386 }
 387 
 388 /*
 389  * Utility functions to map and unmap a single physical page.  These
 390  * are used to manage the mappable copies of ZFS file data, and therefore
 391  * do not update ref/mod bits.
 392  */
 393 caddr_t
 394 zfs_map_page(page_t *pp, enum seg_rw rw)
 395 {
 396         if (kpm_enable)
 397                 return (hat_kpm_mapin(pp, 0));
 398         ASSERT(rw == S_READ || rw == S_WRITE);
 399         return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
 400             (caddr_t)-1));
 401 }
 402 
 403 void
 404 zfs_unmap_page(page_t *pp, caddr_t addr)
 405 {
 406         if (kpm_enable) {
 407                 hat_kpm_mapout(pp, 0, addr);
 408         } else {
 409                 ppmapout(addr);
 410         }
 411 }
 412 
 413 /*
 414  * When a file is memory mapped, we must keep the IO data synchronized
 415  * between the DMU cache and the memory mapped pages.  What this means:
 416  *
 417  * On Write:    If we find a memory mapped page, we write to *both*
 418  *              the page and the dmu buffer.
 419  */
 420 static void
 421 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
 422 {
 423         int64_t off;
 424 
 425         off = start & PAGEOFFSET;
 426         for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
 427                 page_t *pp;
 428                 uint64_t nbytes = MIN(PAGESIZE - off, len);
 429 
 430                 if (pp = page_lookup(vp, start, SE_SHARED)) {
 431                         caddr_t va;
 432 
 433                         va = zfs_map_page(pp, S_WRITE);
 434                         (void) dmu_read(os, oid, start+off, nbytes, va+off,
 435                             DMU_READ_PREFETCH);
 436                         zfs_unmap_page(pp, va);
 437                         page_unlock(pp);
 438                 }
 439                 len -= nbytes;
 440                 off = 0;
 441         }
 442 }
 443 
 444 /*
 445  * When a file is memory mapped, we must keep the IO data synchronized
 446  * between the DMU cache and the memory mapped pages.  What this means:
 447  *
 448  * On Read:     We "read" preferentially from memory mapped pages,
 449  *              else we default from the dmu buffer.
 450  *
 451  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
 452  *       the file is memory mapped.
 453  */
 454 static int
 455 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
 456 {
 457         znode_t *zp = VTOZ(vp);
 458         int64_t start, off;
 459         int len = nbytes;
 460         int error = 0;
 461 
 462         start = uio->uio_loffset;
 463         off = start & PAGEOFFSET;
 464         for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
 465                 page_t *pp;
 466                 uint64_t bytes = MIN(PAGESIZE - off, len);
 467 
 468                 if (pp = page_lookup(vp, start, SE_SHARED)) {
 469                         caddr_t va;
 470 
 471                         va = zfs_map_page(pp, S_READ);
 472                         error = uiomove(va + off, bytes, UIO_READ, uio);
 473                         zfs_unmap_page(pp, va);
 474                         page_unlock(pp);
 475                 } else {
 476                         error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 477                             uio, bytes);
 478                 }
 479                 len -= bytes;
 480                 off = 0;
 481                 if (error)
 482                         break;
 483         }
 484         return (error);
 485 }
 486 
 487 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
 488 
 489 /*
 490  * Read bytes from specified file into supplied buffer.
 491  *
 492  *      IN:     vp      - vnode of file to be read from.
 493  *              uio     - structure supplying read location, range info,
 494  *                        and return buffer.
 495  *              ioflag  - SYNC flags; used to provide FRSYNC semantics.
 496  *              cr      - credentials of caller.
 497  *              ct      - caller context
 498  *
 499  *      OUT:    uio     - updated offset and range, buffer filled.
 500  *
 501  *      RETURN: 0 on success, error code on failure.
 502  *
 503  * Side Effects:
 504  *      vp - atime updated if byte count > 0
 505  */
 506 /* ARGSUSED */
 507 static int
 508 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
 509 {
 510         znode_t         *zp = VTOZ(vp);
 511         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
 512         ssize_t         n, nbytes;
 513         int             error = 0;
 514         rl_t            *rl;
 515         xuio_t          *xuio = NULL;
 516 
 517         ZFS_ENTER(zfsvfs);
 518         ZFS_VERIFY_ZP(zp);
 519 
 520         if (zp->z_pflags & ZFS_AV_QUARANTINED) {
 521                 ZFS_EXIT(zfsvfs);
 522                 return (SET_ERROR(EACCES));
 523         }
 524 
 525         /*
 526          * Validate file offset
 527          */
 528         if (uio->uio_loffset < (offset_t)0) {
 529                 ZFS_EXIT(zfsvfs);
 530                 return (SET_ERROR(EINVAL));
 531         }
 532 
 533         /*
 534          * Fasttrack empty reads
 535          */
 536         if (uio->uio_resid == 0) {
 537                 ZFS_EXIT(zfsvfs);
 538                 return (0);
 539         }
 540 
 541         /*
 542          * Check for mandatory locks
 543          */
 544         if (MANDMODE(zp->z_mode)) {
 545                 if (error = chklock(vp, FREAD,
 546                     uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
 547                         ZFS_EXIT(zfsvfs);
 548                         return (error);
 549                 }
 550         }
 551 
 552         /*
 553          * If we're in FRSYNC mode, sync out this znode before reading it.
 554          */
 555         if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
 556                 zil_commit(zfsvfs->z_log, zp->z_id);
 557 
 558         /*
 559          * Lock the range against changes.
 560          */
 561         rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
 562 
 563         /*
 564          * If we are reading past end-of-file we can skip
 565          * to the end; but we might still need to set atime.
 566          */
 567         if (uio->uio_loffset >= zp->z_size) {
 568                 error = 0;
 569                 goto out;
 570         }
 571 
 572         ASSERT(uio->uio_loffset < zp->z_size);
 573         n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
 574 
 575         if ((uio->uio_extflg == UIO_XUIO) &&
 576             (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
 577                 int nblk;
 578                 int blksz = zp->z_blksz;
 579                 uint64_t offset = uio->uio_loffset;
 580 
 581                 xuio = (xuio_t *)uio;
 582                 if ((ISP2(blksz))) {
 583                         nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
 584                             blksz)) / blksz;
 585                 } else {
 586                         ASSERT(offset + n <= blksz);
 587                         nblk = 1;
 588                 }
 589                 (void) dmu_xuio_init(xuio, nblk);
 590 
 591                 if (vn_has_cached_data(vp)) {
 592                         /*
 593                          * For simplicity, we always allocate a full buffer
 594                          * even if we only expect to read a portion of a block.
 595                          */
 596                         while (--nblk >= 0) {
 597                                 (void) dmu_xuio_add(xuio,
 598                                     dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
 599                                     blksz), 0, blksz);
 600                         }
 601                 }
 602         }
 603 
 604         while (n > 0) {
 605                 nbytes = MIN(n, zfs_read_chunk_size -
 606                     P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
 607 
 608                 if (vn_has_cached_data(vp)) {
 609                         error = mappedread(vp, nbytes, uio);
 610                 } else {
 611                         error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 612                             uio, nbytes);
 613                 }
 614                 if (error) {
 615                         /* convert checksum errors into IO errors */
 616                         if (error == ECKSUM)
 617                                 error = SET_ERROR(EIO);
 618                         break;
 619                 }
 620 
 621                 n -= nbytes;
 622         }
 623 out:
 624         zfs_range_unlock(rl);
 625 
 626         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
 627         ZFS_EXIT(zfsvfs);
 628         return (error);
 629 }
 630 
 631 /*
 632  * Write the bytes to a file.
 633  *
 634  *      IN:     vp      - vnode of file to be written to.
 635  *              uio     - structure supplying write location, range info,
 636  *                        and data buffer.
 637  *              ioflag  - FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
 638  *                        set if in append mode.
 639  *              cr      - credentials of caller.
 640  *              ct      - caller context (NFS/CIFS fem monitor only)
 641  *
 642  *      OUT:    uio     - updated offset and range.
 643  *
 644  *      RETURN: 0 on success, error code on failure.
 645  *
 646  * Timestamps:
 647  *      vp - ctime|mtime updated if byte count > 0
 648  */
 649 
 650 /* ARGSUSED */
 651 static int
 652 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
 653 {
 654         znode_t         *zp = VTOZ(vp);
 655         rlim64_t        limit = uio->uio_llimit;
 656         ssize_t         start_resid = uio->uio_resid;
 657         ssize_t         tx_bytes;
 658         uint64_t        end_size;
 659         dmu_tx_t        *tx;
 660         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
 661         zilog_t         *zilog;
 662         offset_t        woff;
 663         ssize_t         n, nbytes;
 664         rl_t            *rl;
 665         int             max_blksz = zfsvfs->z_max_blksz;
 666         int             error = 0;
 667         arc_buf_t       *abuf;
 668         iovec_t         *aiov = NULL;
 669         xuio_t          *xuio = NULL;
 670         int             i_iov = 0;
 671         int             iovcnt = uio->uio_iovcnt;
 672         iovec_t         *iovp = uio->uio_iov;
 673         int             write_eof;
 674         int             count = 0;
 675         sa_bulk_attr_t  bulk[4];
 676         uint64_t        mtime[2], ctime[2];
 677 
 678         /*
 679          * Fasttrack empty write
 680          */
 681         n = start_resid;
 682         if (n == 0)
 683                 return (0);
 684 
 685         if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
 686                 limit = MAXOFFSET_T;
 687 
 688         ZFS_ENTER(zfsvfs);
 689         ZFS_VERIFY_ZP(zp);
 690 
 691         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
 692         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
 693         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
 694             &zp->z_size, 8);
 695         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
 696             &zp->z_pflags, 8);
 697 
 698         /*
 699          * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
 700          * callers might not be able to detect properly that we are read-only,
 701          * so check it explicitly here.
 702          */
 703         if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
 704                 ZFS_EXIT(zfsvfs);
 705                 return (SET_ERROR(EROFS));
 706         }
 707 
 708         /*
 709          * If immutable or not appending then return EPERM
 710          */
 711         if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
 712             ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
 713             (uio->uio_loffset < zp->z_size))) {
 714                 ZFS_EXIT(zfsvfs);
 715                 return (SET_ERROR(EPERM));
 716         }
 717 
 718         zilog = zfsvfs->z_log;
 719 
 720         /*
 721          * Validate file offset
 722          */
 723         woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
 724         if (woff < 0) {
 725                 ZFS_EXIT(zfsvfs);
 726                 return (SET_ERROR(EINVAL));
 727         }
 728 
 729         /*
 730          * Check for mandatory locks before calling zfs_range_lock()
 731          * in order to prevent a deadlock with locks set via fcntl().
 732          */
 733         if (MANDMODE((mode_t)zp->z_mode) &&
 734             (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
 735                 ZFS_EXIT(zfsvfs);
 736                 return (error);
 737         }
 738 
 739         /*
 740          * Pre-fault the pages to ensure slow (eg NFS) pages
 741          * don't hold up txg.
 742          * Skip this if uio contains loaned arc_buf.
 743          */
 744         if ((uio->uio_extflg == UIO_XUIO) &&
 745             (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
 746                 xuio = (xuio_t *)uio;
 747         else
 748                 uio_prefaultpages(MIN(n, max_blksz), uio);
 749 
 750         /*
 751          * If in append mode, set the io offset pointer to eof.
 752          */
 753         if (ioflag & FAPPEND) {
 754                 /*
 755                  * Obtain an appending range lock to guarantee file append
 756                  * semantics.  We reset the write offset once we have the lock.
 757                  */
 758                 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
 759                 woff = rl->r_off;
 760                 if (rl->r_len == UINT64_MAX) {
 761                         /*
 762                          * We overlocked the file because this write will cause
 763                          * the file block size to increase.
 764                          * Note that zp_size cannot change with this lock held.
 765                          */
 766                         woff = zp->z_size;
 767                 }
 768                 uio->uio_loffset = woff;
 769         } else {
 770                 /*
 771                  * Note that if the file block size will change as a result of
 772                  * this write, then this range lock will lock the entire file
 773                  * so that we can re-write the block safely.
 774                  */
 775                 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
 776         }
 777 
 778         if (woff >= limit) {
 779                 zfs_range_unlock(rl);
 780                 ZFS_EXIT(zfsvfs);
 781                 return (SET_ERROR(EFBIG));
 782         }
 783 
 784         if ((woff + n) > limit || woff > (limit - n))
 785                 n = limit - woff;
 786 
 787         /* Will this write extend the file length? */
 788         write_eof = (woff + n > zp->z_size);
 789 
 790         end_size = MAX(zp->z_size, woff + n);
 791 
 792         /*
 793          * Write the file in reasonable size chunks.  Each chunk is written
 794          * in a separate transaction; this keeps the intent log records small
 795          * and allows us to do more fine-grained space accounting.
 796          */
 797         while (n > 0) {
 798                 abuf = NULL;
 799                 woff = uio->uio_loffset;
 800                 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
 801                     zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
 802                         if (abuf != NULL)
 803                                 dmu_return_arcbuf(abuf);
 804                         error = SET_ERROR(EDQUOT);
 805                         break;
 806                 }
 807 
 808                 if (xuio && abuf == NULL) {
 809                         ASSERT(i_iov < iovcnt);
 810                         aiov = &iovp[i_iov];
 811                         abuf = dmu_xuio_arcbuf(xuio, i_iov);
 812                         dmu_xuio_clear(xuio, i_iov);
 813                         DTRACE_PROBE3(zfs_cp_write, int, i_iov,
 814                             iovec_t *, aiov, arc_buf_t *, abuf);
 815                         ASSERT((aiov->iov_base == abuf->b_data) ||
 816                             ((char *)aiov->iov_base - (char *)abuf->b_data +
 817                             aiov->iov_len == arc_buf_size(abuf)));
 818                         i_iov++;
 819                 } else if (abuf == NULL && n >= max_blksz &&
 820                     woff >= zp->z_size &&
 821                     P2PHASE(woff, max_blksz) == 0 &&
 822                     zp->z_blksz == max_blksz) {
 823                         /*
 824                          * This write covers a full block.  "Borrow" a buffer
 825                          * from the dmu so that we can fill it before we enter
 826                          * a transaction.  This avoids the possibility of
 827                          * holding up the transaction if the data copy hangs
 828                          * up on a pagefault (e.g., from an NFS server mapping).
 829                          */
 830                         size_t cbytes;
 831 
 832                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
 833                             max_blksz);
 834                         ASSERT(abuf != NULL);
 835                         ASSERT(arc_buf_size(abuf) == max_blksz);
 836                         if (error = uiocopy(abuf->b_data, max_blksz,
 837                             UIO_WRITE, uio, &cbytes)) {
 838                                 dmu_return_arcbuf(abuf);
 839                                 break;
 840                         }
 841                         ASSERT(cbytes == max_blksz);
 842                 }
 843 
 844                 /*
 845                  * Start a transaction.
 846                  */
 847                 tx = dmu_tx_create(zfsvfs->z_os);
 848                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
 849                 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
 850                 zfs_sa_upgrade_txholds(tx, zp);
 851                 error = dmu_tx_assign(tx, TXG_WAIT);
 852                 if (error) {
 853                         dmu_tx_abort(tx);
 854                         if (abuf != NULL)
 855                                 dmu_return_arcbuf(abuf);
 856                         break;
 857                 }
 858 
 859                 /*
 860                  * If zfs_range_lock() over-locked we grow the blocksize
 861                  * and then reduce the lock range.  This will only happen
 862                  * on the first iteration since zfs_range_reduce() will
 863                  * shrink down r_len to the appropriate size.
 864                  */
 865                 if (rl->r_len == UINT64_MAX) {
 866                         uint64_t new_blksz;
 867 
 868                         if (zp->z_blksz > max_blksz) {
 869                                 /*
 870                                  * File's blocksize is already larger than the
 871                                  * "recordsize" property.  Only let it grow to
 872                                  * the next power of 2.
 873                                  */
 874                                 ASSERT(!ISP2(zp->z_blksz));
 875                                 new_blksz = MIN(end_size,
 876                                     1 << highbit64(zp->z_blksz));
 877                         } else {
 878                                 new_blksz = MIN(end_size, max_blksz);
 879                         }
 880                         zfs_grow_blocksize(zp, new_blksz, tx);
 881                         zfs_range_reduce(rl, woff, n);
 882                 }
 883 
 884                 /*
 885                  * XXX - should we really limit each write to z_max_blksz?
 886                  * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
 887                  */
 888                 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
 889 
 890                 if (abuf == NULL) {
 891                         tx_bytes = uio->uio_resid;
 892                         error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 893                             uio, nbytes, tx);
 894                         tx_bytes -= uio->uio_resid;
 895                 } else {
 896                         tx_bytes = nbytes;
 897                         ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
 898                         /*
 899                          * If this is not a full block write, but we are
 900                          * extending the file past EOF and this data starts
 901                          * block-aligned, use assign_arcbuf().  Otherwise,
 902                          * write via dmu_write().
 903                          */
 904                         if (tx_bytes < max_blksz && (!write_eof ||
 905                             aiov->iov_base != abuf->b_data)) {
 906                                 ASSERT(xuio);
 907                                 dmu_write(zfsvfs->z_os, zp->z_id, woff,
 908                                     aiov->iov_len, aiov->iov_base, tx);
 909                                 dmu_return_arcbuf(abuf);
 910                                 xuio_stat_wbuf_copied();
 911                         } else {
 912                                 ASSERT(xuio || tx_bytes == max_blksz);
 913                                 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
 914                                     woff, abuf, tx);
 915                         }
 916                         ASSERT(tx_bytes <= uio->uio_resid);
 917                         uioskip(uio, tx_bytes);
 918                 }
 919                 if (tx_bytes && vn_has_cached_data(vp)) {
 920                         update_pages(vp, woff,
 921                             tx_bytes, zfsvfs->z_os, zp->z_id);
 922                 }
 923 
 924                 /*
 925                  * If we made no progress, we're done.  If we made even
 926                  * partial progress, update the znode and ZIL accordingly.
 927                  */
 928                 if (tx_bytes == 0) {
 929                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
 930                             (void *)&zp->z_size, sizeof (uint64_t), tx);
 931                         dmu_tx_commit(tx);
 932                         ASSERT(error != 0);
 933                         break;
 934                 }
 935 
 936                 /*
 937                  * Clear Set-UID/Set-GID bits on successful write if not
 938                  * privileged and at least one of the excute bits is set.
 939                  *
 940                  * It would be nice to to this after all writes have
 941                  * been done, but that would still expose the ISUID/ISGID
 942                  * to another app after the partial write is committed.
 943                  *
 944                  * Note: we don't call zfs_fuid_map_id() here because
 945                  * user 0 is not an ephemeral uid.
 946                  */
 947                 mutex_enter(&zp->z_acl_lock);
 948                 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
 949                     (S_IXUSR >> 6))) != 0 &&
 950                     (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
 951                     secpolicy_vnode_setid_retain(cr,
 952                     (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
 953                         uint64_t newmode;
 954                         zp->z_mode &= ~(S_ISUID | S_ISGID);
 955                         newmode = zp->z_mode;
 956                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
 957                             (void *)&newmode, sizeof (uint64_t), tx);
 958                 }
 959                 mutex_exit(&zp->z_acl_lock);
 960 
 961                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
 962                     B_TRUE);
 963 
 964                 /*
 965                  * Update the file size (zp_size) if it has changed;
 966                  * account for possible concurrent updates.
 967                  */
 968                 while ((end_size = zp->z_size) < uio->uio_loffset) {
 969                         (void) atomic_cas_64(&zp->z_size, end_size,
 970                             uio->uio_loffset);
 971                         ASSERT(error == 0);
 972                 }
 973                 /*
 974                  * If we are replaying and eof is non zero then force
 975                  * the file size to the specified eof. Note, there's no
 976                  * concurrency during replay.
 977                  */
 978                 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
 979                         zp->z_size = zfsvfs->z_replay_eof;
 980 
 981                 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
 982 
 983                 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
 984                 dmu_tx_commit(tx);
 985 
 986                 if (error != 0)
 987                         break;
 988                 ASSERT(tx_bytes == nbytes);
 989                 n -= nbytes;
 990 
 991                 if (!xuio && n > 0)
 992                         uio_prefaultpages(MIN(n, max_blksz), uio);
 993         }
 994 
 995         zfs_range_unlock(rl);
 996 
 997         /*
 998          * If we're in replay mode, or we made no progress, return error.
 999          * Otherwise, it's at least a partial write, so it's successful.
1000          */
1001         if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1002                 ZFS_EXIT(zfsvfs);
1003                 return (error);
1004         }
1005 
1006         if (ioflag & (FSYNC | FDSYNC) ||
1007             zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1008                 zil_commit(zilog, zp->z_id);
1009 
1010         ZFS_EXIT(zfsvfs);
1011         return (0);
1012 }
1013 
1014 void
1015 zfs_get_done(zgd_t *zgd, int error)
1016 {
1017         znode_t *zp = zgd->zgd_private;
1018         objset_t *os = zp->z_zfsvfs->z_os;
1019 
1020         if (zgd->zgd_db)
1021                 dmu_buf_rele(zgd->zgd_db, zgd);
1022 
1023         zfs_range_unlock(zgd->zgd_rl);
1024 
1025         /*
1026          * Release the vnode asynchronously as we currently have the
1027          * txg stopped from syncing.
1028          */
1029         VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1030 
1031         if (error == 0 && zgd->zgd_bp)
1032                 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1033 
1034         kmem_free(zgd, sizeof (zgd_t));
1035 }
1036 
1037 #ifdef DEBUG
1038 static int zil_fault_io = 0;
1039 #endif
1040 
1041 /*
1042  * Get data to generate a TX_WRITE intent log record.
1043  */
1044 int
1045 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1046 {
1047         zfsvfs_t *zfsvfs = arg;
1048         objset_t *os = zfsvfs->z_os;
1049         znode_t *zp;
1050         uint64_t object = lr->lr_foid;
1051         uint64_t offset = lr->lr_offset;
1052         uint64_t size = lr->lr_length;
1053         blkptr_t *bp = &lr->lr_blkptr;
1054         dmu_buf_t *db;
1055         zgd_t *zgd;
1056         int error = 0;
1057 
1058         ASSERT(zio != NULL);
1059         ASSERT(size != 0);
1060 
1061         /*
1062          * Nothing to do if the file has been removed
1063          */
1064         if (zfs_zget(zfsvfs, object, &zp) != 0)
1065                 return (SET_ERROR(ENOENT));
1066         if (zp->z_unlinked) {
1067                 /*
1068                  * Release the vnode asynchronously as we currently have the
1069                  * txg stopped from syncing.
1070                  */
1071                 VN_RELE_ASYNC(ZTOV(zp),
1072                     dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1073                 return (SET_ERROR(ENOENT));
1074         }
1075 
1076         zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1077         zgd->zgd_zilog = zfsvfs->z_log;
1078         zgd->zgd_private = zp;
1079 
1080         /*
1081          * Write records come in two flavors: immediate and indirect.
1082          * For small writes it's cheaper to store the data with the
1083          * log record (immediate); for large writes it's cheaper to
1084          * sync the data and get a pointer to it (indirect) so that
1085          * we don't have to write the data twice.
1086          */
1087         if (buf != NULL) { /* immediate write */
1088                 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1089                 /* test for truncation needs to be done while range locked */
1090                 if (offset >= zp->z_size) {
1091                         error = SET_ERROR(ENOENT);
1092                 } else {
1093                         error = dmu_read(os, object, offset, size, buf,
1094                             DMU_READ_NO_PREFETCH);
1095                 }
1096                 ASSERT(error == 0 || error == ENOENT);
1097         } else { /* indirect write */
1098                 /*
1099                  * Have to lock the whole block to ensure when it's
1100                  * written out and it's checksum is being calculated
1101                  * that no one can change the data. We need to re-check
1102                  * blocksize after we get the lock in case it's changed!
1103                  */
1104                 for (;;) {
1105                         uint64_t blkoff;
1106                         size = zp->z_blksz;
1107                         blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1108                         offset -= blkoff;
1109                         zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1110                             RL_READER);
1111                         if (zp->z_blksz == size)
1112                                 break;
1113                         offset += blkoff;
1114                         zfs_range_unlock(zgd->zgd_rl);
1115                 }
1116                 /* test for truncation needs to be done while range locked */
1117                 if (lr->lr_offset >= zp->z_size)
1118                         error = SET_ERROR(ENOENT);
1119 #ifdef DEBUG
1120                 if (zil_fault_io) {
1121                         error = SET_ERROR(EIO);
1122                         zil_fault_io = 0;
1123                 }
1124 #endif
1125                 if (error == 0)
1126                         error = dmu_buf_hold(os, object, offset, zgd, &db,
1127                             DMU_READ_NO_PREFETCH);
1128 
1129                 if (error == 0) {
1130                         blkptr_t *obp = dmu_buf_get_blkptr(db);
1131                         if (obp) {
1132                                 ASSERT(BP_IS_HOLE(bp));
1133                                 *bp = *obp;
1134                         }
1135 
1136                         zgd->zgd_db = db;
1137                         zgd->zgd_bp = bp;
1138 
1139                         ASSERT(db->db_offset == offset);
1140                         ASSERT(db->db_size == size);
1141 
1142                         error = dmu_sync(zio, lr->lr_common.lrc_txg,
1143                             zfs_get_done, zgd);
1144                         ASSERT(error || lr->lr_length <= zp->z_blksz);
1145 
1146                         /*
1147                          * On success, we need to wait for the write I/O
1148                          * initiated by dmu_sync() to complete before we can
1149                          * release this dbuf.  We will finish everything up
1150                          * in the zfs_get_done() callback.
1151                          */
1152                         if (error == 0)
1153                                 return (0);
1154 
1155                         if (error == EALREADY) {
1156                                 lr->lr_common.lrc_txtype = TX_WRITE2;
1157                                 error = 0;
1158                         }
1159                 }
1160         }
1161 
1162         zfs_get_done(zgd, error);
1163 
1164         return (error);
1165 }
1166 
1167 /*ARGSUSED*/
1168 static int
1169 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1170     caller_context_t *ct)
1171 {
1172         znode_t *zp = VTOZ(vp);
1173         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1174         int error;
1175 
1176         ZFS_ENTER(zfsvfs);
1177         ZFS_VERIFY_ZP(zp);
1178 
1179         if (flag & V_ACE_MASK)
1180                 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1181         else
1182                 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1183 
1184         ZFS_EXIT(zfsvfs);
1185         return (error);
1186 }
1187 
1188 /*
1189  * If vnode is for a device return a specfs vnode instead.
1190  */
1191 static int
1192 specvp_check(vnode_t **vpp, cred_t *cr)
1193 {
1194         int error = 0;
1195 
1196         if (IS_DEVVP(*vpp)) {
1197                 struct vnode *svp;
1198 
1199                 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1200                 VN_RELE(*vpp);
1201                 if (svp == NULL)
1202                         error = SET_ERROR(ENOSYS);
1203                 *vpp = svp;
1204         }
1205         return (error);
1206 }
1207 
1208 
1209 /*
1210  * Lookup an entry in a directory, or an extended attribute directory.
1211  * If it exists, return a held vnode reference for it.
1212  *
1213  *      IN:     dvp     - vnode of directory to search.
1214  *              nm      - name of entry to lookup.
1215  *              pnp     - full pathname to lookup [UNUSED].
1216  *              flags   - LOOKUP_XATTR set if looking for an attribute.
1217  *              rdir    - root directory vnode [UNUSED].
1218  *              cr      - credentials of caller.
1219  *              ct      - caller context
1220  *              direntflags - directory lookup flags
1221  *              realpnp - returned pathname.
1222  *
1223  *      OUT:    vpp     - vnode of located entry, NULL if not found.
1224  *
1225  *      RETURN: 0 on success, error code on failure.
1226  *
1227  * Timestamps:
1228  *      NA
1229  */
1230 /* ARGSUSED */
1231 static int
1232 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1233     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1234     int *direntflags, pathname_t *realpnp)
1235 {
1236         znode_t *zdp = VTOZ(dvp);
1237         zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1238         int     error = 0;
1239 
1240         /* fast path */
1241         if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1242 
1243                 if (dvp->v_type != VDIR) {
1244                         return (SET_ERROR(ENOTDIR));
1245                 } else if (zdp->z_sa_hdl == NULL) {
1246                         return (SET_ERROR(EIO));
1247                 }
1248 
1249                 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1250                         error = zfs_fastaccesschk_execute(zdp, cr);
1251                         if (!error) {
1252                                 *vpp = dvp;
1253                                 VN_HOLD(*vpp);
1254                                 return (0);
1255                         }
1256                         return (error);
1257                 } else {
1258                         vnode_t *tvp = dnlc_lookup(dvp, nm);
1259 
1260                         if (tvp) {
1261                                 error = zfs_fastaccesschk_execute(zdp, cr);
1262                                 if (error) {
1263                                         VN_RELE(tvp);
1264                                         return (error);
1265                                 }
1266                                 if (tvp == DNLC_NO_VNODE) {
1267                                         VN_RELE(tvp);
1268                                         return (SET_ERROR(ENOENT));
1269                                 } else {
1270                                         *vpp = tvp;
1271                                         return (specvp_check(vpp, cr));
1272                                 }
1273                         }
1274                 }
1275         }
1276 
1277         DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1278 
1279         ZFS_ENTER(zfsvfs);
1280         ZFS_VERIFY_ZP(zdp);
1281 
1282         *vpp = NULL;
1283 
1284         if (flags & LOOKUP_XATTR) {
1285                 /*
1286                  * If the xattr property is off, refuse the lookup request.
1287                  */
1288                 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1289                         ZFS_EXIT(zfsvfs);
1290                         return (SET_ERROR(EINVAL));
1291                 }
1292 
1293                 /*
1294                  * We don't allow recursive attributes..
1295                  * Maybe someday we will.
1296                  */
1297                 if (zdp->z_pflags & ZFS_XATTR) {
1298                         ZFS_EXIT(zfsvfs);
1299                         return (SET_ERROR(EINVAL));
1300                 }
1301 
1302                 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1303                         ZFS_EXIT(zfsvfs);
1304                         return (error);
1305                 }
1306 
1307                 /*
1308                  * Do we have permission to get into attribute directory?
1309                  */
1310 
1311                 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1312                     B_FALSE, cr)) {
1313                         VN_RELE(*vpp);
1314                         *vpp = NULL;
1315                 }
1316 
1317                 ZFS_EXIT(zfsvfs);
1318                 return (error);
1319         }
1320 
1321         if (dvp->v_type != VDIR) {
1322                 ZFS_EXIT(zfsvfs);
1323                 return (SET_ERROR(ENOTDIR));
1324         }
1325 
1326         /*
1327          * Check accessibility of directory.
1328          */
1329 
1330         if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1331                 ZFS_EXIT(zfsvfs);
1332                 return (error);
1333         }
1334 
1335         if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1336             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1337                 ZFS_EXIT(zfsvfs);
1338                 return (SET_ERROR(EILSEQ));
1339         }
1340 
1341         error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1342         if (error == 0)
1343                 error = specvp_check(vpp, cr);
1344 
1345         ZFS_EXIT(zfsvfs);
1346         return (error);
1347 }
1348 
1349 /*
1350  * Attempt to create a new entry in a directory.  If the entry
1351  * already exists, truncate the file if permissible, else return
1352  * an error.  Return the vp of the created or trunc'd file.
1353  *
1354  *      IN:     dvp     - vnode of directory to put new file entry in.
1355  *              name    - name of new file entry.
1356  *              vap     - attributes of new file.
1357  *              excl    - flag indicating exclusive or non-exclusive mode.
1358  *              mode    - mode to open file with.
1359  *              cr      - credentials of caller.
1360  *              flag    - large file flag [UNUSED].
1361  *              ct      - caller context
1362  *              vsecp   - ACL to be set
1363  *
1364  *      OUT:    vpp     - vnode of created or trunc'd entry.
1365  *
1366  *      RETURN: 0 on success, error code on failure.
1367  *
1368  * Timestamps:
1369  *      dvp - ctime|mtime updated if new entry created
1370  *       vp - ctime|mtime always, atime if new
1371  */
1372 
1373 /* ARGSUSED */
1374 static int
1375 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1376     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1377     vsecattr_t *vsecp)
1378 {
1379         znode_t         *zp, *dzp = VTOZ(dvp);
1380         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1381         zilog_t         *zilog;
1382         objset_t        *os;
1383         zfs_dirlock_t   *dl;
1384         dmu_tx_t        *tx;
1385         int             error;
1386         ksid_t          *ksid;
1387         uid_t           uid;
1388         gid_t           gid = crgetgid(cr);
1389         zfs_acl_ids_t   acl_ids;
1390         boolean_t       fuid_dirtied;
1391         boolean_t       have_acl = B_FALSE;
1392         boolean_t       waited = B_FALSE;
1393 
1394         /*
1395          * If we have an ephemeral id, ACL, or XVATTR then
1396          * make sure file system is at proper version
1397          */
1398 
1399         ksid = crgetsid(cr, KSID_OWNER);
1400         if (ksid)
1401                 uid = ksid_getid(ksid);
1402         else
1403                 uid = crgetuid(cr);
1404 
1405         if (zfsvfs->z_use_fuids == B_FALSE &&
1406             (vsecp || (vap->va_mask & AT_XVATTR) ||
1407             IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1408                 return (SET_ERROR(EINVAL));
1409 
1410         ZFS_ENTER(zfsvfs);
1411         ZFS_VERIFY_ZP(dzp);
1412         os = zfsvfs->z_os;
1413         zilog = zfsvfs->z_log;
1414 
1415         if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1416             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1417                 ZFS_EXIT(zfsvfs);
1418                 return (SET_ERROR(EILSEQ));
1419         }
1420 
1421         if (vap->va_mask & AT_XVATTR) {
1422                 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1423                     crgetuid(cr), cr, vap->va_type)) != 0) {
1424                         ZFS_EXIT(zfsvfs);
1425                         return (error);
1426                 }
1427         }
1428 top:
1429         *vpp = NULL;
1430 
1431         if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1432                 vap->va_mode &= ~VSVTX;
1433 
1434         if (*name == '\0') {
1435                 /*
1436                  * Null component name refers to the directory itself.
1437                  */
1438                 VN_HOLD(dvp);
1439                 zp = dzp;
1440                 dl = NULL;
1441                 error = 0;
1442         } else {
1443                 /* possible VN_HOLD(zp) */
1444                 int zflg = 0;
1445 
1446                 if (flag & FIGNORECASE)
1447                         zflg |= ZCILOOK;
1448 
1449                 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1450                     NULL, NULL);
1451                 if (error) {
1452                         if (have_acl)
1453                                 zfs_acl_ids_free(&acl_ids);
1454                         if (strcmp(name, "..") == 0)
1455                                 error = SET_ERROR(EISDIR);
1456                         ZFS_EXIT(zfsvfs);
1457                         return (error);
1458                 }
1459         }
1460 
1461         if (zp == NULL) {
1462                 uint64_t txtype;
1463 
1464                 /*
1465                  * Create a new file object and update the directory
1466                  * to reference it.
1467                  */
1468                 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1469                         if (have_acl)
1470                                 zfs_acl_ids_free(&acl_ids);
1471                         goto out;
1472                 }
1473 
1474                 /*
1475                  * We only support the creation of regular files in
1476                  * extended attribute directories.
1477                  */
1478 
1479                 if ((dzp->z_pflags & ZFS_XATTR) &&
1480                     (vap->va_type != VREG)) {
1481                         if (have_acl)
1482                                 zfs_acl_ids_free(&acl_ids);
1483                         error = SET_ERROR(EINVAL);
1484                         goto out;
1485                 }
1486 
1487                 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1488                     cr, vsecp, &acl_ids)) != 0)
1489                         goto out;
1490                 have_acl = B_TRUE;
1491 
1492                 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1493                         zfs_acl_ids_free(&acl_ids);
1494                         error = SET_ERROR(EDQUOT);
1495                         goto out;
1496                 }
1497 
1498                 tx = dmu_tx_create(os);
1499 
1500                 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1501                     ZFS_SA_BASE_ATTR_SIZE);
1502 
1503                 fuid_dirtied = zfsvfs->z_fuid_dirty;
1504                 if (fuid_dirtied)
1505                         zfs_fuid_txhold(zfsvfs, tx);
1506                 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1507                 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1508                 if (!zfsvfs->z_use_sa &&
1509                     acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1510                         dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1511                             0, acl_ids.z_aclp->z_acl_bytes);
1512                 }
1513                 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1514                 if (error) {
1515                         zfs_dirent_unlock(dl);
1516                         if (error == ERESTART) {
1517                                 waited = B_TRUE;
1518                                 dmu_tx_wait(tx);
1519                                 dmu_tx_abort(tx);
1520                                 goto top;
1521                         }
1522                         zfs_acl_ids_free(&acl_ids);
1523                         dmu_tx_abort(tx);
1524                         ZFS_EXIT(zfsvfs);
1525                         return (error);
1526                 }
1527                 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1528 
1529                 if (fuid_dirtied)
1530                         zfs_fuid_sync(zfsvfs, tx);
1531 
1532                 (void) zfs_link_create(dl, zp, tx, ZNEW);
1533                 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1534                 if (flag & FIGNORECASE)
1535                         txtype |= TX_CI;
1536                 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1537                     vsecp, acl_ids.z_fuidp, vap);
1538                 zfs_acl_ids_free(&acl_ids);
1539                 dmu_tx_commit(tx);
1540         } else {
1541                 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1542 
1543                 if (have_acl)
1544                         zfs_acl_ids_free(&acl_ids);
1545                 have_acl = B_FALSE;
1546 
1547                 /*
1548                  * A directory entry already exists for this name.
1549                  */
1550                 /*
1551                  * Can't truncate an existing file if in exclusive mode.
1552                  */
1553                 if (excl == EXCL) {
1554                         error = SET_ERROR(EEXIST);
1555                         goto out;
1556                 }
1557                 /*
1558                  * Can't open a directory for writing.
1559                  */
1560                 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1561                         error = SET_ERROR(EISDIR);
1562                         goto out;
1563                 }
1564                 /*
1565                  * Verify requested access to file.
1566                  */
1567                 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1568                         goto out;
1569                 }
1570 
1571                 mutex_enter(&dzp->z_lock);
1572                 dzp->z_seq++;
1573                 mutex_exit(&dzp->z_lock);
1574 
1575                 /*
1576                  * Truncate regular files if requested.
1577                  */
1578                 if ((ZTOV(zp)->v_type == VREG) &&
1579                     (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1580                         /* we can't hold any locks when calling zfs_freesp() */
1581                         zfs_dirent_unlock(dl);
1582                         dl = NULL;
1583                         error = zfs_freesp(zp, 0, 0, mode, TRUE);
1584                         if (error == 0) {
1585                                 vnevent_create(ZTOV(zp), ct);
1586                         }
1587                 }
1588         }
1589 out:
1590 
1591         if (dl)
1592                 zfs_dirent_unlock(dl);
1593 
1594         if (error) {
1595                 if (zp)
1596                         VN_RELE(ZTOV(zp));
1597         } else {
1598                 *vpp = ZTOV(zp);
1599                 error = specvp_check(vpp, cr);
1600         }
1601 
1602         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1603                 zil_commit(zilog, 0);
1604 
1605         ZFS_EXIT(zfsvfs);
1606         return (error);
1607 }
1608 
1609 /*
1610  * Remove an entry from a directory.
1611  *
1612  *      IN:     dvp     - vnode of directory to remove entry from.
1613  *              name    - name of entry to remove.
1614  *              cr      - credentials of caller.
1615  *              ct      - caller context
1616  *              flags   - case flags
1617  *
1618  *      RETURN: 0 on success, error code on failure.
1619  *
1620  * Timestamps:
1621  *      dvp - ctime|mtime
1622  *       vp - ctime (if nlink > 0)
1623  */
1624 
1625 uint64_t null_xattr = 0;
1626 
1627 /*ARGSUSED*/
1628 static int
1629 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1630     int flags)
1631 {
1632         znode_t         *zp, *dzp = VTOZ(dvp);
1633         znode_t         *xzp;
1634         vnode_t         *vp;
1635         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1636         zilog_t         *zilog;
1637         uint64_t        acl_obj, xattr_obj;
1638         uint64_t        xattr_obj_unlinked = 0;
1639         uint64_t        obj = 0;
1640         zfs_dirlock_t   *dl;
1641         dmu_tx_t        *tx;
1642         boolean_t       may_delete_now, delete_now = FALSE;
1643         boolean_t       unlinked, toobig = FALSE;
1644         uint64_t        txtype;
1645         pathname_t      *realnmp = NULL;
1646         pathname_t      realnm;
1647         int             error;
1648         int             zflg = ZEXISTS;
1649         boolean_t       waited = B_FALSE;
1650 
1651         ZFS_ENTER(zfsvfs);
1652         ZFS_VERIFY_ZP(dzp);
1653         zilog = zfsvfs->z_log;
1654 
1655         if (flags & FIGNORECASE) {
1656                 zflg |= ZCILOOK;
1657                 pn_alloc(&realnm);
1658                 realnmp = &realnm;
1659         }
1660 
1661 top:
1662         xattr_obj = 0;
1663         xzp = NULL;
1664         /*
1665          * Attempt to lock directory; fail if entry doesn't exist.
1666          */
1667         if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1668             NULL, realnmp)) {
1669                 if (realnmp)
1670                         pn_free(realnmp);
1671                 ZFS_EXIT(zfsvfs);
1672                 return (error);
1673         }
1674 
1675         vp = ZTOV(zp);
1676 
1677         if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1678                 goto out;
1679         }
1680 
1681         /*
1682          * Need to use rmdir for removing directories.
1683          */
1684         if (vp->v_type == VDIR) {
1685                 error = SET_ERROR(EPERM);
1686                 goto out;
1687         }
1688 
1689         vnevent_remove(vp, dvp, name, ct);
1690 
1691         if (realnmp)
1692                 dnlc_remove(dvp, realnmp->pn_buf);
1693         else
1694                 dnlc_remove(dvp, name);
1695 
1696         mutex_enter(&vp->v_lock);
1697         may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1698         mutex_exit(&vp->v_lock);
1699 
1700         /*
1701          * We may delete the znode now, or we may put it in the unlinked set;
1702          * it depends on whether we're the last link, and on whether there are
1703          * other holds on the vnode.  So we dmu_tx_hold() the right things to
1704          * allow for either case.
1705          */
1706         obj = zp->z_id;
1707         tx = dmu_tx_create(zfsvfs->z_os);
1708         dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1709         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1710         zfs_sa_upgrade_txholds(tx, zp);
1711         zfs_sa_upgrade_txholds(tx, dzp);
1712         if (may_delete_now) {
1713                 toobig =
1714                     zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1715                 /* if the file is too big, only hold_free a token amount */
1716                 dmu_tx_hold_free(tx, zp->z_id, 0,
1717                     (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1718         }
1719 
1720         /* are there any extended attributes? */
1721         error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1722             &xattr_obj, sizeof (xattr_obj));
1723         if (error == 0 && xattr_obj) {
1724                 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1725                 ASSERT0(error);
1726                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1727                 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1728         }
1729 
1730         mutex_enter(&zp->z_lock);
1731         if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1732                 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1733         mutex_exit(&zp->z_lock);
1734 
1735         /* charge as an update -- would be nice not to charge at all */
1736         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1737 
1738         /*
1739          * Mark this transaction as typically resulting in a net free of space
1740          */
1741         dmu_tx_mark_netfree(tx);
1742 
1743         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1744         if (error) {
1745                 zfs_dirent_unlock(dl);
1746                 VN_RELE(vp);
1747                 if (xzp)
1748                         VN_RELE(ZTOV(xzp));
1749                 if (error == ERESTART) {
1750                         waited = B_TRUE;
1751                         dmu_tx_wait(tx);
1752                         dmu_tx_abort(tx);
1753                         goto top;
1754                 }
1755                 if (realnmp)
1756                         pn_free(realnmp);
1757                 dmu_tx_abort(tx);
1758                 ZFS_EXIT(zfsvfs);
1759                 return (error);
1760         }
1761 
1762         /*
1763          * Remove the directory entry.
1764          */
1765         error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1766 
1767         if (error) {
1768                 dmu_tx_commit(tx);
1769                 goto out;
1770         }
1771 
1772         if (unlinked) {
1773                 /*
1774                  * Hold z_lock so that we can make sure that the ACL obj
1775                  * hasn't changed.  Could have been deleted due to
1776                  * zfs_sa_upgrade().
1777                  */
1778                 mutex_enter(&zp->z_lock);
1779                 mutex_enter(&vp->v_lock);
1780                 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1781                     &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1782                 delete_now = may_delete_now && !toobig &&
1783                     vp->v_count == 1 && !vn_has_cached_data(vp) &&
1784                     xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1785                     acl_obj;
1786                 mutex_exit(&vp->v_lock);
1787         }
1788 
1789         if (delete_now) {
1790                 if (xattr_obj_unlinked) {
1791                         ASSERT3U(xzp->z_links, ==, 2);
1792                         mutex_enter(&xzp->z_lock);
1793                         xzp->z_unlinked = 1;
1794                         xzp->z_links = 0;
1795                         error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1796                             &xzp->z_links, sizeof (xzp->z_links), tx);
1797                         ASSERT3U(error,  ==,  0);
1798                         mutex_exit(&xzp->z_lock);
1799                         zfs_unlinked_add(xzp, tx);
1800 
1801                         if (zp->z_is_sa)
1802                                 error = sa_remove(zp->z_sa_hdl,
1803                                     SA_ZPL_XATTR(zfsvfs), tx);
1804                         else
1805                                 error = sa_update(zp->z_sa_hdl,
1806                                     SA_ZPL_XATTR(zfsvfs), &null_xattr,
1807                                     sizeof (uint64_t), tx);
1808                         ASSERT0(error);
1809                 }
1810                 mutex_enter(&vp->v_lock);
1811                 vp->v_count--;
1812                 ASSERT0(vp->v_count);
1813                 mutex_exit(&vp->v_lock);
1814                 mutex_exit(&zp->z_lock);
1815                 zfs_znode_delete(zp, tx);
1816         } else if (unlinked) {
1817                 mutex_exit(&zp->z_lock);
1818                 zfs_unlinked_add(zp, tx);
1819         }
1820 
1821         txtype = TX_REMOVE;
1822         if (flags & FIGNORECASE)
1823                 txtype |= TX_CI;
1824         zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1825 
1826         dmu_tx_commit(tx);
1827 out:
1828         if (realnmp)
1829                 pn_free(realnmp);
1830 
1831         zfs_dirent_unlock(dl);
1832 
1833         if (!delete_now)
1834                 VN_RELE(vp);
1835         if (xzp)
1836                 VN_RELE(ZTOV(xzp));
1837 
1838         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1839                 zil_commit(zilog, 0);
1840 
1841         ZFS_EXIT(zfsvfs);
1842         return (error);
1843 }
1844 
1845 /*
1846  * Create a new directory and insert it into dvp using the name
1847  * provided.  Return a pointer to the inserted directory.
1848  *
1849  *      IN:     dvp     - vnode of directory to add subdir to.
1850  *              dirname - name of new directory.
1851  *              vap     - attributes of new directory.
1852  *              cr      - credentials of caller.
1853  *              ct      - caller context
1854  *              flags   - case flags
1855  *              vsecp   - ACL to be set
1856  *
1857  *      OUT:    vpp     - vnode of created directory.
1858  *
1859  *      RETURN: 0 on success, error code on failure.
1860  *
1861  * Timestamps:
1862  *      dvp - ctime|mtime updated
1863  *       vp - ctime|mtime|atime updated
1864  */
1865 /*ARGSUSED*/
1866 static int
1867 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1868     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1869 {
1870         znode_t         *zp, *dzp = VTOZ(dvp);
1871         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1872         zilog_t         *zilog;
1873         zfs_dirlock_t   *dl;
1874         uint64_t        txtype;
1875         dmu_tx_t        *tx;
1876         int             error;
1877         int             zf = ZNEW;
1878         ksid_t          *ksid;
1879         uid_t           uid;
1880         gid_t           gid = crgetgid(cr);
1881         zfs_acl_ids_t   acl_ids;
1882         boolean_t       fuid_dirtied;
1883         boolean_t       waited = B_FALSE;
1884 
1885         ASSERT(vap->va_type == VDIR);
1886 
1887         /*
1888          * If we have an ephemeral id, ACL, or XVATTR then
1889          * make sure file system is at proper version
1890          */
1891 
1892         ksid = crgetsid(cr, KSID_OWNER);
1893         if (ksid)
1894                 uid = ksid_getid(ksid);
1895         else
1896                 uid = crgetuid(cr);
1897         if (zfsvfs->z_use_fuids == B_FALSE &&
1898             (vsecp || (vap->va_mask & AT_XVATTR) ||
1899             IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1900                 return (SET_ERROR(EINVAL));
1901 
1902         ZFS_ENTER(zfsvfs);
1903         ZFS_VERIFY_ZP(dzp);
1904         zilog = zfsvfs->z_log;
1905 
1906         if (dzp->z_pflags & ZFS_XATTR) {
1907                 ZFS_EXIT(zfsvfs);
1908                 return (SET_ERROR(EINVAL));
1909         }
1910 
1911         if (zfsvfs->z_utf8 && u8_validate(dirname,
1912             strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1913                 ZFS_EXIT(zfsvfs);
1914                 return (SET_ERROR(EILSEQ));
1915         }
1916         if (flags & FIGNORECASE)
1917                 zf |= ZCILOOK;
1918 
1919         if (vap->va_mask & AT_XVATTR) {
1920                 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1921                     crgetuid(cr), cr, vap->va_type)) != 0) {
1922                         ZFS_EXIT(zfsvfs);
1923                         return (error);
1924                 }
1925         }
1926 
1927         if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1928             vsecp, &acl_ids)) != 0) {
1929                 ZFS_EXIT(zfsvfs);
1930                 return (error);
1931         }
1932         /*
1933          * First make sure the new directory doesn't exist.
1934          *
1935          * Existence is checked first to make sure we don't return
1936          * EACCES instead of EEXIST which can cause some applications
1937          * to fail.
1938          */
1939 top:
1940         *vpp = NULL;
1941 
1942         if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1943             NULL, NULL)) {
1944                 zfs_acl_ids_free(&acl_ids);
1945                 ZFS_EXIT(zfsvfs);
1946                 return (error);
1947         }
1948 
1949         if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1950                 zfs_acl_ids_free(&acl_ids);
1951                 zfs_dirent_unlock(dl);
1952                 ZFS_EXIT(zfsvfs);
1953                 return (error);
1954         }
1955 
1956         if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1957                 zfs_acl_ids_free(&acl_ids);
1958                 zfs_dirent_unlock(dl);
1959                 ZFS_EXIT(zfsvfs);
1960                 return (SET_ERROR(EDQUOT));
1961         }
1962 
1963         /*
1964          * Add a new entry to the directory.
1965          */
1966         tx = dmu_tx_create(zfsvfs->z_os);
1967         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1968         dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1969         fuid_dirtied = zfsvfs->z_fuid_dirty;
1970         if (fuid_dirtied)
1971                 zfs_fuid_txhold(zfsvfs, tx);
1972         if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1973                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1974                     acl_ids.z_aclp->z_acl_bytes);
1975         }
1976 
1977         dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1978             ZFS_SA_BASE_ATTR_SIZE);
1979 
1980         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1981         if (error) {
1982                 zfs_dirent_unlock(dl);
1983                 if (error == ERESTART) {
1984                         waited = B_TRUE;
1985                         dmu_tx_wait(tx);
1986                         dmu_tx_abort(tx);
1987                         goto top;
1988                 }
1989                 zfs_acl_ids_free(&acl_ids);
1990                 dmu_tx_abort(tx);
1991                 ZFS_EXIT(zfsvfs);
1992                 return (error);
1993         }
1994 
1995         /*
1996          * Create new node.
1997          */
1998         zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1999 
2000         if (fuid_dirtied)
2001                 zfs_fuid_sync(zfsvfs, tx);
2002 
2003         /*
2004          * Now put new name in parent dir.
2005          */
2006         (void) zfs_link_create(dl, zp, tx, ZNEW);
2007 
2008         *vpp = ZTOV(zp);
2009 
2010         txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2011         if (flags & FIGNORECASE)
2012                 txtype |= TX_CI;
2013         zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2014             acl_ids.z_fuidp, vap);
2015 
2016         zfs_acl_ids_free(&acl_ids);
2017 
2018         dmu_tx_commit(tx);
2019 
2020         zfs_dirent_unlock(dl);
2021 
2022         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2023                 zil_commit(zilog, 0);
2024 
2025         ZFS_EXIT(zfsvfs);
2026         return (0);
2027 }
2028 
2029 /*
2030  * Remove a directory subdir entry.  If the current working
2031  * directory is the same as the subdir to be removed, the
2032  * remove will fail.
2033  *
2034  *      IN:     dvp     - vnode of directory to remove from.
2035  *              name    - name of directory to be removed.
2036  *              cwd     - vnode of current working directory.
2037  *              cr      - credentials of caller.
2038  *              ct      - caller context
2039  *              flags   - case flags
2040  *
2041  *      RETURN: 0 on success, error code on failure.
2042  *
2043  * Timestamps:
2044  *      dvp - ctime|mtime updated
2045  */
2046 /*ARGSUSED*/
2047 static int
2048 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2049     caller_context_t *ct, int flags)
2050 {
2051         znode_t         *dzp = VTOZ(dvp);
2052         znode_t         *zp;
2053         vnode_t         *vp;
2054         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
2055         zilog_t         *zilog;
2056         zfs_dirlock_t   *dl;
2057         dmu_tx_t        *tx;
2058         int             error;
2059         int             zflg = ZEXISTS;
2060         boolean_t       waited = B_FALSE;
2061 
2062         ZFS_ENTER(zfsvfs);
2063         ZFS_VERIFY_ZP(dzp);
2064         zilog = zfsvfs->z_log;
2065 
2066         if (flags & FIGNORECASE)
2067                 zflg |= ZCILOOK;
2068 top:
2069         zp = NULL;
2070 
2071         /*
2072          * Attempt to lock directory; fail if entry doesn't exist.
2073          */
2074         if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2075             NULL, NULL)) {
2076                 ZFS_EXIT(zfsvfs);
2077                 return (error);
2078         }
2079 
2080         vp = ZTOV(zp);
2081 
2082         if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2083                 goto out;
2084         }
2085 
2086         if (vp->v_type != VDIR) {
2087                 error = SET_ERROR(ENOTDIR);
2088                 goto out;
2089         }
2090 
2091         if (vp == cwd) {
2092                 error = SET_ERROR(EINVAL);
2093                 goto out;
2094         }
2095 
2096         vnevent_rmdir(vp, dvp, name, ct);
2097 
2098         /*
2099          * Grab a lock on the directory to make sure that noone is
2100          * trying to add (or lookup) entries while we are removing it.
2101          */
2102         rw_enter(&zp->z_name_lock, RW_WRITER);
2103 
2104         /*
2105          * Grab a lock on the parent pointer to make sure we play well
2106          * with the treewalk and directory rename code.
2107          */
2108         rw_enter(&zp->z_parent_lock, RW_WRITER);
2109 
2110         tx = dmu_tx_create(zfsvfs->z_os);
2111         dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2112         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2113         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2114         zfs_sa_upgrade_txholds(tx, zp);
2115         zfs_sa_upgrade_txholds(tx, dzp);
2116         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2117         if (error) {
2118                 rw_exit(&zp->z_parent_lock);
2119                 rw_exit(&zp->z_name_lock);
2120                 zfs_dirent_unlock(dl);
2121                 VN_RELE(vp);
2122                 if (error == ERESTART) {
2123                         waited = B_TRUE;
2124                         dmu_tx_wait(tx);
2125                         dmu_tx_abort(tx);
2126                         goto top;
2127                 }
2128                 dmu_tx_abort(tx);
2129                 ZFS_EXIT(zfsvfs);
2130                 return (error);
2131         }
2132 
2133         error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2134 
2135         if (error == 0) {
2136                 uint64_t txtype = TX_RMDIR;
2137                 if (flags & FIGNORECASE)
2138                         txtype |= TX_CI;
2139                 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2140         }
2141 
2142         dmu_tx_commit(tx);
2143 
2144         rw_exit(&zp->z_parent_lock);
2145         rw_exit(&zp->z_name_lock);
2146 out:
2147         zfs_dirent_unlock(dl);
2148 
2149         VN_RELE(vp);
2150 
2151         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2152                 zil_commit(zilog, 0);
2153 
2154         ZFS_EXIT(zfsvfs);
2155         return (error);
2156 }
2157 
2158 /*
2159  * Read as many directory entries as will fit into the provided
2160  * buffer from the given directory cursor position (specified in
2161  * the uio structure).
2162  *
2163  *      IN:     vp      - vnode of directory to read.
2164  *              uio     - structure supplying read location, range info,
2165  *                        and return buffer.
2166  *              cr      - credentials of caller.
2167  *              ct      - caller context
2168  *              flags   - case flags
2169  *
2170  *      OUT:    uio     - updated offset and range, buffer filled.
2171  *              eofp    - set to true if end-of-file detected.
2172  *
2173  *      RETURN: 0 on success, error code on failure.
2174  *
2175  * Timestamps:
2176  *      vp - atime updated
2177  *
2178  * Note that the low 4 bits of the cookie returned by zap is always zero.
2179  * This allows us to use the low range for "special" directory entries:
2180  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2181  * we use the offset 2 for the '.zfs' directory.
2182  */
2183 /* ARGSUSED */
2184 static int
2185 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2186     caller_context_t *ct, int flags)
2187 {
2188         znode_t         *zp = VTOZ(vp);
2189         iovec_t         *iovp;
2190         edirent_t       *eodp;
2191         dirent64_t      *odp;
2192         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
2193         objset_t        *os;
2194         caddr_t         outbuf;
2195         size_t          bufsize;
2196         zap_cursor_t    zc;
2197         zap_attribute_t zap;
2198         uint_t          bytes_wanted;
2199         uint64_t        offset; /* must be unsigned; checks for < 1 */
2200         uint64_t        parent;
2201         int             local_eof;
2202         int             outcount;
2203         int             error;
2204         uint8_t         prefetch;
2205         boolean_t       check_sysattrs;
2206 
2207         ZFS_ENTER(zfsvfs);
2208         ZFS_VERIFY_ZP(zp);
2209 
2210         if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2211             &parent, sizeof (parent))) != 0) {
2212                 ZFS_EXIT(zfsvfs);
2213                 return (error);
2214         }
2215 
2216         /*
2217          * If we are not given an eof variable,
2218          * use a local one.
2219          */
2220         if (eofp == NULL)
2221                 eofp = &local_eof;
2222 
2223         /*
2224          * Check for valid iov_len.
2225          */
2226         if (uio->uio_iov->iov_len <= 0) {
2227                 ZFS_EXIT(zfsvfs);
2228                 return (SET_ERROR(EINVAL));
2229         }
2230 
2231         /*
2232          * Quit if directory has been removed (posix)
2233          */
2234         if ((*eofp = zp->z_unlinked) != 0) {
2235                 ZFS_EXIT(zfsvfs);
2236                 return (0);
2237         }
2238 
2239         error = 0;
2240         os = zfsvfs->z_os;
2241         offset = uio->uio_loffset;
2242         prefetch = zp->z_zn_prefetch;
2243 
2244         /*
2245          * Initialize the iterator cursor.
2246          */
2247         if (offset <= 3) {
2248                 /*
2249                  * Start iteration from the beginning of the directory.
2250                  */
2251                 zap_cursor_init(&zc, os, zp->z_id);
2252         } else {
2253                 /*
2254                  * The offset is a serialized cursor.
2255                  */
2256                 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2257         }
2258 
2259         /*
2260          * Get space to change directory entries into fs independent format.
2261          */
2262         iovp = uio->uio_iov;
2263         bytes_wanted = iovp->iov_len;
2264         if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2265                 bufsize = bytes_wanted;
2266                 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2267                 odp = (struct dirent64 *)outbuf;
2268         } else {
2269                 bufsize = bytes_wanted;
2270                 outbuf = NULL;
2271                 odp = (struct dirent64 *)iovp->iov_base;
2272         }
2273         eodp = (struct edirent *)odp;
2274 
2275         /*
2276          * If this VFS supports the system attribute view interface; and
2277          * we're looking at an extended attribute directory; and we care
2278          * about normalization conflicts on this vfs; then we must check
2279          * for normalization conflicts with the sysattr name space.
2280          */
2281         check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2282             (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2283             (flags & V_RDDIR_ENTFLAGS);
2284 
2285         /*
2286          * Transform to file-system independent format
2287          */
2288         outcount = 0;
2289         while (outcount < bytes_wanted) {
2290                 ino64_t objnum;
2291                 ushort_t reclen;
2292                 off64_t *next = NULL;
2293 
2294                 /*
2295                  * Special case `.', `..', and `.zfs'.
2296                  */
2297                 if (offset == 0) {
2298                         (void) strcpy(zap.za_name, ".");
2299                         zap.za_normalization_conflict = 0;
2300                         objnum = zp->z_id;
2301                 } else if (offset == 1) {
2302                         (void) strcpy(zap.za_name, "..");
2303                         zap.za_normalization_conflict = 0;
2304                         objnum = parent;
2305                 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2306                         (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2307                         zap.za_normalization_conflict = 0;
2308                         objnum = ZFSCTL_INO_ROOT;
2309                 } else {
2310                         /*
2311                          * Grab next entry.
2312                          */
2313                         if (error = zap_cursor_retrieve(&zc, &zap)) {
2314                                 if ((*eofp = (error == ENOENT)) != 0)
2315                                         break;
2316                                 else
2317                                         goto update;
2318                         }
2319 
2320                         if (zap.za_integer_length != 8 ||
2321                             zap.za_num_integers != 1) {
2322                                 cmn_err(CE_WARN, "zap_readdir: bad directory "
2323                                     "entry, obj = %lld, offset = %lld\n",
2324                                     (u_longlong_t)zp->z_id,
2325                                     (u_longlong_t)offset);
2326                                 error = SET_ERROR(ENXIO);
2327                                 goto update;
2328                         }
2329 
2330                         objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2331                         /*
2332                          * MacOS X can extract the object type here such as:
2333                          * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2334                          */
2335 
2336                         if (check_sysattrs && !zap.za_normalization_conflict) {
2337                                 zap.za_normalization_conflict =
2338                                     xattr_sysattr_casechk(zap.za_name);
2339                         }
2340                 }
2341 
2342                 if (flags & V_RDDIR_ACCFILTER) {
2343                         /*
2344                          * If we have no access at all, don't include
2345                          * this entry in the returned information
2346                          */
2347                         znode_t *ezp;
2348                         if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2349                                 goto skip_entry;
2350                         if (!zfs_has_access(ezp, cr)) {
2351                                 VN_RELE(ZTOV(ezp));
2352                                 goto skip_entry;
2353                         }
2354                         VN_RELE(ZTOV(ezp));
2355                 }
2356 
2357                 if (flags & V_RDDIR_ENTFLAGS)
2358                         reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2359                 else
2360                         reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2361 
2362                 /*
2363                  * Will this entry fit in the buffer?
2364                  */
2365                 if (outcount + reclen > bufsize) {
2366                         /*
2367                          * Did we manage to fit anything in the buffer?
2368                          */
2369                         if (!outcount) {
2370                                 error = SET_ERROR(EINVAL);
2371                                 goto update;
2372                         }
2373                         break;
2374                 }
2375                 if (flags & V_RDDIR_ENTFLAGS) {
2376                         /*
2377                          * Add extended flag entry:
2378                          */
2379                         eodp->ed_ino = objnum;
2380                         eodp->ed_reclen = reclen;
2381                         /* NOTE: ed_off is the offset for the *next* entry */
2382                         next = &(eodp->ed_off);
2383                         eodp->ed_eflags = zap.za_normalization_conflict ?
2384                             ED_CASE_CONFLICT : 0;
2385                         (void) strncpy(eodp->ed_name, zap.za_name,
2386                             EDIRENT_NAMELEN(reclen));
2387                         eodp = (edirent_t *)((intptr_t)eodp + reclen);
2388                 } else {
2389                         /*
2390                          * Add normal entry:
2391                          */
2392                         odp->d_ino = objnum;
2393                         odp->d_reclen = reclen;
2394                         /* NOTE: d_off is the offset for the *next* entry */
2395                         next = &(odp->d_off);
2396                         (void) strncpy(odp->d_name, zap.za_name,
2397                             DIRENT64_NAMELEN(reclen));
2398                         odp = (dirent64_t *)((intptr_t)odp + reclen);
2399                 }
2400                 outcount += reclen;
2401 
2402                 ASSERT(outcount <= bufsize);
2403 
2404                 /* Prefetch znode */
2405                 if (prefetch)
2406                         dmu_prefetch(os, objnum, 0, 0, 0,
2407                             ZIO_PRIORITY_SYNC_READ);
2408 
2409         skip_entry:
2410                 /*
2411                  * Move to the next entry, fill in the previous offset.
2412                  */
2413                 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2414                         zap_cursor_advance(&zc);
2415                         offset = zap_cursor_serialize(&zc);
2416                 } else {
2417                         offset += 1;
2418                 }
2419                 if (next)
2420                         *next = offset;
2421         }
2422         zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2423 
2424         if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2425                 iovp->iov_base += outcount;
2426                 iovp->iov_len -= outcount;
2427                 uio->uio_resid -= outcount;
2428         } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2429                 /*
2430                  * Reset the pointer.
2431                  */
2432                 offset = uio->uio_loffset;
2433         }
2434 
2435 update:
2436         zap_cursor_fini(&zc);
2437         if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2438                 kmem_free(outbuf, bufsize);
2439 
2440         if (error == ENOENT)
2441                 error = 0;
2442 
2443         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2444 
2445         uio->uio_loffset = offset;
2446         ZFS_EXIT(zfsvfs);
2447         return (error);
2448 }
2449 
2450 ulong_t zfs_fsync_sync_cnt = 4;
2451 
2452 static int
2453 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2454 {
2455         znode_t *zp = VTOZ(vp);
2456         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2457 
2458         /*
2459          * Regardless of whether this is required for standards conformance,
2460          * this is the logical behavior when fsync() is called on a file with
2461          * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2462          * going to be pushed out as part of the zil_commit().
2463          */
2464         if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2465             (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2466                 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2467 
2468         (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2469 
2470         if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2471                 ZFS_ENTER(zfsvfs);
2472                 ZFS_VERIFY_ZP(zp);
2473                 zil_commit(zfsvfs->z_log, zp->z_id);
2474                 ZFS_EXIT(zfsvfs);
2475         }
2476         return (0);
2477 }
2478 
2479 
2480 /*
2481  * Get the requested file attributes and place them in the provided
2482  * vattr structure.
2483  *
2484  *      IN:     vp      - vnode of file.
2485  *              vap     - va_mask identifies requested attributes.
2486  *                        If AT_XVATTR set, then optional attrs are requested
2487  *              flags   - ATTR_NOACLCHECK (CIFS server context)
2488  *              cr      - credentials of caller.
2489  *              ct      - caller context
2490  *
2491  *      OUT:    vap     - attribute values.
2492  *
2493  *      RETURN: 0 (always succeeds).
2494  */
2495 /* ARGSUSED */
2496 static int
2497 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2498     caller_context_t *ct)
2499 {
2500         znode_t *zp = VTOZ(vp);
2501         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2502         int     error = 0;
2503         uint64_t links;
2504         uint64_t mtime[2], ctime[2];
2505         xvattr_t *xvap = (xvattr_t *)vap;       /* vap may be an xvattr_t * */
2506         xoptattr_t *xoap = NULL;
2507         boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2508         sa_bulk_attr_t bulk[2];
2509         int count = 0;
2510 
2511         ZFS_ENTER(zfsvfs);
2512         ZFS_VERIFY_ZP(zp);
2513 
2514         zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2515 
2516         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2517         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2518 
2519         if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2520                 ZFS_EXIT(zfsvfs);
2521                 return (error);
2522         }
2523 
2524         /*
2525          * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2526          * Also, if we are the owner don't bother, since owner should
2527          * always be allowed to read basic attributes of file.
2528          */
2529         if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2530             (vap->va_uid != crgetuid(cr))) {
2531                 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2532                     skipaclchk, cr)) {
2533                         ZFS_EXIT(zfsvfs);
2534                         return (error);
2535                 }
2536         }
2537 
2538         /*
2539          * Return all attributes.  It's cheaper to provide the answer
2540          * than to determine whether we were asked the question.
2541          */
2542 
2543         mutex_enter(&zp->z_lock);
2544         vap->va_type = vp->v_type;
2545         vap->va_mode = zp->z_mode & MODEMASK;
2546         vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2547         vap->va_nodeid = zp->z_id;
2548         if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2549                 links = zp->z_links + 1;
2550         else
2551                 links = zp->z_links;
2552         vap->va_nlink = MIN(links, UINT32_MAX);      /* nlink_t limit! */
2553         vap->va_size = zp->z_size;
2554         vap->va_rdev = vp->v_rdev;
2555         vap->va_seq = zp->z_seq;
2556 
2557         /*
2558          * Add in any requested optional attributes and the create time.
2559          * Also set the corresponding bits in the returned attribute bitmap.
2560          */
2561         if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2562                 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2563                         xoap->xoa_archive =
2564                             ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2565                         XVA_SET_RTN(xvap, XAT_ARCHIVE);
2566                 }
2567 
2568                 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2569                         xoap->xoa_readonly =
2570                             ((zp->z_pflags & ZFS_READONLY) != 0);
2571                         XVA_SET_RTN(xvap, XAT_READONLY);
2572                 }
2573 
2574                 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2575                         xoap->xoa_system =
2576                             ((zp->z_pflags & ZFS_SYSTEM) != 0);
2577                         XVA_SET_RTN(xvap, XAT_SYSTEM);
2578                 }
2579 
2580                 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2581                         xoap->xoa_hidden =
2582                             ((zp->z_pflags & ZFS_HIDDEN) != 0);
2583                         XVA_SET_RTN(xvap, XAT_HIDDEN);
2584                 }
2585 
2586                 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2587                         xoap->xoa_nounlink =
2588                             ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2589                         XVA_SET_RTN(xvap, XAT_NOUNLINK);
2590                 }
2591 
2592                 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2593                         xoap->xoa_immutable =
2594                             ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2595                         XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2596                 }
2597 
2598                 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2599                         xoap->xoa_appendonly =
2600                             ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2601                         XVA_SET_RTN(xvap, XAT_APPENDONLY);
2602                 }
2603 
2604                 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2605                         xoap->xoa_nodump =
2606                             ((zp->z_pflags & ZFS_NODUMP) != 0);
2607                         XVA_SET_RTN(xvap, XAT_NODUMP);
2608                 }
2609 
2610                 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2611                         xoap->xoa_opaque =
2612                             ((zp->z_pflags & ZFS_OPAQUE) != 0);
2613                         XVA_SET_RTN(xvap, XAT_OPAQUE);
2614                 }
2615 
2616                 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2617                         xoap->xoa_av_quarantined =
2618                             ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2619                         XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2620                 }
2621 
2622                 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2623                         xoap->xoa_av_modified =
2624                             ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2625                         XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2626                 }
2627 
2628                 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2629                     vp->v_type == VREG) {
2630                         zfs_sa_get_scanstamp(zp, xvap);
2631                 }
2632 
2633                 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2634                         uint64_t times[2];
2635 
2636                         (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2637                             times, sizeof (times));
2638                         ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2639                         XVA_SET_RTN(xvap, XAT_CREATETIME);
2640                 }
2641 
2642                 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2643                         xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2644                         XVA_SET_RTN(xvap, XAT_REPARSE);
2645                 }
2646                 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2647                         xoap->xoa_generation = zp->z_gen;
2648                         XVA_SET_RTN(xvap, XAT_GEN);
2649                 }
2650 
2651                 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2652                         xoap->xoa_offline =
2653                             ((zp->z_pflags & ZFS_OFFLINE) != 0);
2654                         XVA_SET_RTN(xvap, XAT_OFFLINE);
2655                 }
2656 
2657                 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2658                         xoap->xoa_sparse =
2659                             ((zp->z_pflags & ZFS_SPARSE) != 0);
2660                         XVA_SET_RTN(xvap, XAT_SPARSE);
2661                 }
2662         }
2663 
2664         ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2665         ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2666         ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2667 
2668         mutex_exit(&zp->z_lock);
2669 
2670         sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2671 
2672         if (zp->z_blksz == 0) {
2673                 /*
2674                  * Block size hasn't been set; suggest maximal I/O transfers.
2675                  */
2676                 vap->va_blksize = zfsvfs->z_max_blksz;
2677         }
2678 
2679         ZFS_EXIT(zfsvfs);
2680         return (0);
2681 }
2682 
2683 /*
2684  * Set the file attributes to the values contained in the
2685  * vattr structure.
2686  *
2687  *      IN:     vp      - vnode of file to be modified.
2688  *              vap     - new attribute values.
2689  *                        If AT_XVATTR set, then optional attrs are being set
2690  *              flags   - ATTR_UTIME set if non-default time values provided.
2691  *                      - ATTR_NOACLCHECK (CIFS context only).
2692  *              cr      - credentials of caller.
2693  *              ct      - caller context
2694  *
2695  *      RETURN: 0 on success, error code on failure.
2696  *
2697  * Timestamps:
2698  *      vp - ctime updated, mtime updated if size changed.
2699  */
2700 /* ARGSUSED */
2701 static int
2702 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2703     caller_context_t *ct)
2704 {
2705         znode_t         *zp = VTOZ(vp);
2706         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
2707         zilog_t         *zilog;
2708         dmu_tx_t        *tx;
2709         vattr_t         oldva;
2710         xvattr_t        tmpxvattr;
2711         uint_t          mask = vap->va_mask;
2712         uint_t          saved_mask = 0;
2713         int             trim_mask = 0;
2714         uint64_t        new_mode;
2715         uint64_t        new_uid, new_gid;
2716         uint64_t        xattr_obj;
2717         uint64_t        mtime[2], ctime[2];
2718         znode_t         *attrzp;
2719         int             need_policy = FALSE;
2720         int             err, err2;
2721         zfs_fuid_info_t *fuidp = NULL;
2722         xvattr_t *xvap = (xvattr_t *)vap;       /* vap may be an xvattr_t * */
2723         xoptattr_t      *xoap;
2724         zfs_acl_t       *aclp;
2725         boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2726         boolean_t       fuid_dirtied = B_FALSE;
2727         sa_bulk_attr_t  bulk[7], xattr_bulk[7];
2728         int             count = 0, xattr_count = 0;
2729 
2730         if (mask == 0)
2731                 return (0);
2732 
2733         if (mask & AT_NOSET)
2734                 return (SET_ERROR(EINVAL));
2735 
2736         ZFS_ENTER(zfsvfs);
2737         ZFS_VERIFY_ZP(zp);
2738 
2739         zilog = zfsvfs->z_log;
2740 
2741         /*
2742          * Make sure that if we have ephemeral uid/gid or xvattr specified
2743          * that file system is at proper version level
2744          */
2745 
2746         if (zfsvfs->z_use_fuids == B_FALSE &&
2747             (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2748             ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2749             (mask & AT_XVATTR))) {
2750                 ZFS_EXIT(zfsvfs);
2751                 return (SET_ERROR(EINVAL));
2752         }
2753 
2754         if (mask & AT_SIZE && vp->v_type == VDIR) {
2755                 ZFS_EXIT(zfsvfs);
2756                 return (SET_ERROR(EISDIR));
2757         }
2758 
2759         if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2760                 ZFS_EXIT(zfsvfs);
2761                 return (SET_ERROR(EINVAL));
2762         }
2763 
2764         /*
2765          * If this is an xvattr_t, then get a pointer to the structure of
2766          * optional attributes.  If this is NULL, then we have a vattr_t.
2767          */
2768         xoap = xva_getxoptattr(xvap);
2769 
2770         xva_init(&tmpxvattr);
2771 
2772         /*
2773          * Immutable files can only alter immutable bit and atime
2774          */
2775         if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2776             ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2777             ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2778                 ZFS_EXIT(zfsvfs);
2779                 return (SET_ERROR(EPERM));
2780         }
2781 
2782         if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2783                 ZFS_EXIT(zfsvfs);
2784                 return (SET_ERROR(EPERM));
2785         }
2786 
2787         /*
2788          * Verify timestamps doesn't overflow 32 bits.
2789          * ZFS can handle large timestamps, but 32bit syscalls can't
2790          * handle times greater than 2039.  This check should be removed
2791          * once large timestamps are fully supported.
2792          */
2793         if (mask & (AT_ATIME | AT_MTIME)) {
2794                 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2795                     ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2796                         ZFS_EXIT(zfsvfs);
2797                         return (SET_ERROR(EOVERFLOW));
2798                 }
2799         }
2800 
2801 top:
2802         attrzp = NULL;
2803         aclp = NULL;
2804 
2805         /* Can this be moved to before the top label? */
2806         if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2807                 ZFS_EXIT(zfsvfs);
2808                 return (SET_ERROR(EROFS));
2809         }
2810 
2811         /*
2812          * First validate permissions
2813          */
2814 
2815         if (mask & AT_SIZE) {
2816                 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2817                 if (err) {
2818                         ZFS_EXIT(zfsvfs);
2819                         return (err);
2820                 }
2821                 /*
2822                  * XXX - Note, we are not providing any open
2823                  * mode flags here (like FNDELAY), so we may
2824                  * block if there are locks present... this
2825                  * should be addressed in openat().
2826                  */
2827                 /* XXX - would it be OK to generate a log record here? */
2828                 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2829                 if (err) {
2830                         ZFS_EXIT(zfsvfs);
2831                         return (err);
2832                 }
2833 
2834                 if (vap->va_size == 0)
2835                         vnevent_truncate(ZTOV(zp), ct);
2836         }
2837 
2838         if (mask & (AT_ATIME|AT_MTIME) ||
2839             ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2840             XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2841             XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2842             XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2843             XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2844             XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2845             XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2846                 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2847                     skipaclchk, cr);
2848         }
2849 
2850         if (mask & (AT_UID|AT_GID)) {
2851                 int     idmask = (mask & (AT_UID|AT_GID));
2852                 int     take_owner;
2853                 int     take_group;
2854 
2855                 /*
2856                  * NOTE: even if a new mode is being set,
2857                  * we may clear S_ISUID/S_ISGID bits.
2858                  */
2859 
2860                 if (!(mask & AT_MODE))
2861                         vap->va_mode = zp->z_mode;
2862 
2863                 /*
2864                  * Take ownership or chgrp to group we are a member of
2865                  */
2866 
2867                 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2868                 take_group = (mask & AT_GID) &&
2869                     zfs_groupmember(zfsvfs, vap->va_gid, cr);
2870 
2871                 /*
2872                  * If both AT_UID and AT_GID are set then take_owner and
2873                  * take_group must both be set in order to allow taking
2874                  * ownership.
2875                  *
2876                  * Otherwise, send the check through secpolicy_vnode_setattr()
2877                  *
2878                  */
2879 
2880                 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2881                     ((idmask == AT_UID) && take_owner) ||
2882                     ((idmask == AT_GID) && take_group)) {
2883                         if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2884                             skipaclchk, cr) == 0) {
2885                                 /*
2886                                  * Remove setuid/setgid for non-privileged users
2887                                  */
2888                                 secpolicy_setid_clear(vap, cr);
2889                                 trim_mask = (mask & (AT_UID|AT_GID));
2890                         } else {
2891                                 need_policy =  TRUE;
2892                         }
2893                 } else {
2894                         need_policy =  TRUE;
2895                 }
2896         }
2897 
2898         mutex_enter(&zp->z_lock);
2899         oldva.va_mode = zp->z_mode;
2900         zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2901         if (mask & AT_XVATTR) {
2902                 /*
2903                  * Update xvattr mask to include only those attributes
2904                  * that are actually changing.
2905                  *
2906                  * the bits will be restored prior to actually setting
2907                  * the attributes so the caller thinks they were set.
2908                  */
2909                 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2910                         if (xoap->xoa_appendonly !=
2911                             ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2912                                 need_policy = TRUE;
2913                         } else {
2914                                 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2915                                 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2916                         }
2917                 }
2918 
2919                 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2920                         if (xoap->xoa_nounlink !=
2921                             ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2922                                 need_policy = TRUE;
2923                         } else {
2924                                 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2925                                 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2926                         }
2927                 }
2928 
2929                 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2930                         if (xoap->xoa_immutable !=
2931                             ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2932                                 need_policy = TRUE;
2933                         } else {
2934                                 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2935                                 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2936                         }
2937                 }
2938 
2939                 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2940                         if (xoap->xoa_nodump !=
2941                             ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2942                                 need_policy = TRUE;
2943                         } else {
2944                                 XVA_CLR_REQ(xvap, XAT_NODUMP);
2945                                 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2946                         }
2947                 }
2948 
2949                 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2950                         if (xoap->xoa_av_modified !=
2951                             ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2952                                 need_policy = TRUE;
2953                         } else {
2954                                 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2955                                 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2956                         }
2957                 }
2958 
2959                 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2960                         if ((vp->v_type != VREG &&
2961                             xoap->xoa_av_quarantined) ||
2962                             xoap->xoa_av_quarantined !=
2963                             ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2964                                 need_policy = TRUE;
2965                         } else {
2966                                 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2967                                 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2968                         }
2969                 }
2970 
2971                 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2972                         mutex_exit(&zp->z_lock);
2973                         ZFS_EXIT(zfsvfs);
2974                         return (SET_ERROR(EPERM));
2975                 }
2976 
2977                 if (need_policy == FALSE &&
2978                     (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2979                     XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2980                         need_policy = TRUE;
2981                 }
2982         }
2983 
2984         mutex_exit(&zp->z_lock);
2985 
2986         if (mask & AT_MODE) {
2987                 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2988                         err = secpolicy_setid_setsticky_clear(vp, vap,
2989                             &oldva, cr);
2990                         if (err) {
2991                                 ZFS_EXIT(zfsvfs);
2992                                 return (err);
2993                         }
2994                         trim_mask |= AT_MODE;
2995                 } else {
2996                         need_policy = TRUE;
2997                 }
2998         }
2999 
3000         if (need_policy) {
3001                 /*
3002                  * If trim_mask is set then take ownership
3003                  * has been granted or write_acl is present and user
3004                  * has the ability to modify mode.  In that case remove
3005                  * UID|GID and or MODE from mask so that
3006                  * secpolicy_vnode_setattr() doesn't revoke it.
3007                  */
3008 
3009                 if (trim_mask) {
3010                         saved_mask = vap->va_mask;
3011                         vap->va_mask &= ~trim_mask;
3012                 }
3013                 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3014                     (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3015                 if (err) {
3016                         ZFS_EXIT(zfsvfs);
3017                         return (err);
3018                 }
3019 
3020                 if (trim_mask)
3021                         vap->va_mask |= saved_mask;
3022         }
3023 
3024         /*
3025          * secpolicy_vnode_setattr, or take ownership may have
3026          * changed va_mask
3027          */
3028         mask = vap->va_mask;
3029 
3030         if ((mask & (AT_UID | AT_GID))) {
3031                 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3032                     &xattr_obj, sizeof (xattr_obj));
3033 
3034                 if (err == 0 && xattr_obj) {
3035                         err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3036                         if (err)
3037                                 goto out2;
3038                 }
3039                 if (mask & AT_UID) {
3040                         new_uid = zfs_fuid_create(zfsvfs,
3041                             (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3042                         if (new_uid != zp->z_uid &&
3043                             zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3044                                 if (attrzp)
3045                                         VN_RELE(ZTOV(attrzp));
3046                                 err = SET_ERROR(EDQUOT);
3047                                 goto out2;
3048                         }
3049                 }
3050 
3051                 if (mask & AT_GID) {
3052                         new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3053                             cr, ZFS_GROUP, &fuidp);
3054                         if (new_gid != zp->z_gid &&
3055                             zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3056                                 if (attrzp)
3057                                         VN_RELE(ZTOV(attrzp));
3058                                 err = SET_ERROR(EDQUOT);
3059                                 goto out2;
3060                         }
3061                 }
3062         }
3063         tx = dmu_tx_create(zfsvfs->z_os);
3064 
3065         if (mask & AT_MODE) {
3066                 uint64_t pmode = zp->z_mode;
3067                 uint64_t acl_obj;
3068                 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3069 
3070                 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3071                     !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3072                         err = SET_ERROR(EPERM);
3073                         goto out;
3074                 }
3075 
3076                 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3077                         goto out;
3078 
3079                 mutex_enter(&zp->z_lock);
3080                 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3081                         /*
3082                          * Are we upgrading ACL from old V0 format
3083                          * to V1 format?
3084                          */
3085                         if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3086                             zfs_znode_acl_version(zp) ==
3087                             ZFS_ACL_VERSION_INITIAL) {
3088                                 dmu_tx_hold_free(tx, acl_obj, 0,
3089                                     DMU_OBJECT_END);
3090                                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3091                                     0, aclp->z_acl_bytes);
3092                         } else {
3093                                 dmu_tx_hold_write(tx, acl_obj, 0,
3094                                     aclp->z_acl_bytes);
3095                         }
3096                 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3097                         dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3098                             0, aclp->z_acl_bytes);
3099                 }
3100                 mutex_exit(&zp->z_lock);
3101                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3102         } else {
3103                 if ((mask & AT_XVATTR) &&
3104                     XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3105                         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3106                 else
3107                         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3108         }
3109 
3110         if (attrzp) {
3111                 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3112         }
3113 
3114         fuid_dirtied = zfsvfs->z_fuid_dirty;
3115         if (fuid_dirtied)
3116                 zfs_fuid_txhold(zfsvfs, tx);
3117 
3118         zfs_sa_upgrade_txholds(tx, zp);
3119 
3120         err = dmu_tx_assign(tx, TXG_WAIT);
3121         if (err)
3122                 goto out;
3123 
3124         count = 0;
3125         /*
3126          * Set each attribute requested.
3127          * We group settings according to the locks they need to acquire.
3128          *
3129          * Note: you cannot set ctime directly, although it will be
3130          * updated as a side-effect of calling this function.
3131          */
3132 
3133 
3134         if (mask & (AT_UID|AT_GID|AT_MODE))
3135                 mutex_enter(&zp->z_acl_lock);
3136         mutex_enter(&zp->z_lock);
3137 
3138         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3139             &zp->z_pflags, sizeof (zp->z_pflags));
3140 
3141         if (attrzp) {
3142                 if (mask & (AT_UID|AT_GID|AT_MODE))
3143                         mutex_enter(&attrzp->z_acl_lock);
3144                 mutex_enter(&attrzp->z_lock);
3145                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3146                     SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3147                     sizeof (attrzp->z_pflags));
3148         }
3149 
3150         if (mask & (AT_UID|AT_GID)) {
3151 
3152                 if (mask & AT_UID) {
3153                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3154                             &new_uid, sizeof (new_uid));
3155                         zp->z_uid = new_uid;
3156                         if (attrzp) {
3157                                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3158                                     SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3159                                     sizeof (new_uid));
3160                                 attrzp->z_uid = new_uid;
3161                         }
3162                 }
3163 
3164                 if (mask & AT_GID) {
3165                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3166                             NULL, &new_gid, sizeof (new_gid));
3167                         zp->z_gid = new_gid;
3168                         if (attrzp) {
3169                                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3170                                     SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3171                                     sizeof (new_gid));
3172                                 attrzp->z_gid = new_gid;
3173                         }
3174                 }
3175                 if (!(mask & AT_MODE)) {
3176                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3177                             NULL, &new_mode, sizeof (new_mode));
3178                         new_mode = zp->z_mode;
3179                 }
3180                 err = zfs_acl_chown_setattr(zp);
3181                 ASSERT(err == 0);
3182                 if (attrzp) {
3183                         err = zfs_acl_chown_setattr(attrzp);
3184                         ASSERT(err == 0);
3185                 }
3186         }
3187 
3188         if (mask & AT_MODE) {
3189                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3190                     &new_mode, sizeof (new_mode));
3191                 zp->z_mode = new_mode;
3192                 ASSERT3U((uintptr_t)aclp, !=, NULL);
3193                 err = zfs_aclset_common(zp, aclp, cr, tx);
3194                 ASSERT0(err);
3195                 if (zp->z_acl_cached)
3196                         zfs_acl_free(zp->z_acl_cached);
3197                 zp->z_acl_cached = aclp;
3198                 aclp = NULL;
3199         }
3200 
3201 
3202         if (mask & AT_ATIME) {
3203                 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3204                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3205                     &zp->z_atime, sizeof (zp->z_atime));
3206         }
3207 
3208         if (mask & AT_MTIME) {
3209                 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3210                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3211                     mtime, sizeof (mtime));
3212         }
3213 
3214         /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3215         if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3216                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3217                     NULL, mtime, sizeof (mtime));
3218                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3219                     &ctime, sizeof (ctime));
3220                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3221                     B_TRUE);
3222         } else if (mask != 0) {
3223                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3224                     &ctime, sizeof (ctime));
3225                 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3226                     B_TRUE);
3227                 if (attrzp) {
3228                         SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3229                             SA_ZPL_CTIME(zfsvfs), NULL,
3230                             &ctime, sizeof (ctime));
3231                         zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3232                             mtime, ctime, B_TRUE);
3233                 }
3234         }
3235         /*
3236          * Do this after setting timestamps to prevent timestamp
3237          * update from toggling bit
3238          */
3239 
3240         if (xoap && (mask & AT_XVATTR)) {
3241 
3242                 /*
3243                  * restore trimmed off masks
3244                  * so that return masks can be set for caller.
3245                  */
3246 
3247                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3248                         XVA_SET_REQ(xvap, XAT_APPENDONLY);
3249                 }
3250                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3251                         XVA_SET_REQ(xvap, XAT_NOUNLINK);
3252                 }
3253                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3254                         XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3255                 }
3256                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3257                         XVA_SET_REQ(xvap, XAT_NODUMP);
3258                 }
3259                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3260                         XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3261                 }
3262                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3263                         XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3264                 }
3265 
3266                 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3267                         ASSERT(vp->v_type == VREG);
3268 
3269                 zfs_xvattr_set(zp, xvap, tx);
3270         }
3271 
3272         if (fuid_dirtied)
3273                 zfs_fuid_sync(zfsvfs, tx);
3274 
3275         if (mask != 0)
3276                 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3277 
3278         mutex_exit(&zp->z_lock);
3279         if (mask & (AT_UID|AT_GID|AT_MODE))
3280                 mutex_exit(&zp->z_acl_lock);
3281 
3282         if (attrzp) {
3283                 if (mask & (AT_UID|AT_GID|AT_MODE))
3284                         mutex_exit(&attrzp->z_acl_lock);
3285                 mutex_exit(&attrzp->z_lock);
3286         }
3287 out:
3288         if (err == 0 && attrzp) {
3289                 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3290                     xattr_count, tx);
3291                 ASSERT(err2 == 0);
3292         }
3293 
3294         if (attrzp)
3295                 VN_RELE(ZTOV(attrzp));
3296 
3297         if (aclp)
3298                 zfs_acl_free(aclp);
3299 
3300         if (fuidp) {
3301                 zfs_fuid_info_free(fuidp);
3302                 fuidp = NULL;
3303         }
3304 
3305         if (err) {
3306                 dmu_tx_abort(tx);
3307                 if (err == ERESTART)
3308                         goto top;
3309         } else {
3310                 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3311                 dmu_tx_commit(tx);
3312         }
3313 
3314 out2:
3315         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3316                 zil_commit(zilog, 0);
3317 
3318         ZFS_EXIT(zfsvfs);
3319         return (err);
3320 }
3321 
3322 typedef struct zfs_zlock {
3323         krwlock_t       *zl_rwlock;     /* lock we acquired */
3324         znode_t         *zl_znode;      /* znode we held */
3325         struct zfs_zlock *zl_next;      /* next in list */
3326 } zfs_zlock_t;
3327 
3328 /*
3329  * Drop locks and release vnodes that were held by zfs_rename_lock().
3330  */
3331 static void
3332 zfs_rename_unlock(zfs_zlock_t **zlpp)
3333 {
3334         zfs_zlock_t *zl;
3335 
3336         while ((zl = *zlpp) != NULL) {
3337                 if (zl->zl_znode != NULL)
3338                         VN_RELE(ZTOV(zl->zl_znode));
3339                 rw_exit(zl->zl_rwlock);
3340                 *zlpp = zl->zl_next;
3341                 kmem_free(zl, sizeof (*zl));
3342         }
3343 }
3344 
3345 /*
3346  * Search back through the directory tree, using the ".." entries.
3347  * Lock each directory in the chain to prevent concurrent renames.
3348  * Fail any attempt to move a directory into one of its own descendants.
3349  * XXX - z_parent_lock can overlap with map or grow locks
3350  */
3351 static int
3352 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3353 {
3354         zfs_zlock_t     *zl;
3355         znode_t         *zp = tdzp;
3356         uint64_t        rootid = zp->z_zfsvfs->z_root;
3357         uint64_t        oidp = zp->z_id;
3358         krwlock_t       *rwlp = &szp->z_parent_lock;
3359         krw_t           rw = RW_WRITER;
3360 
3361         /*
3362          * First pass write-locks szp and compares to zp->z_id.
3363          * Later passes read-lock zp and compare to zp->z_parent.
3364          */
3365         do {
3366                 if (!rw_tryenter(rwlp, rw)) {
3367                         /*
3368                          * Another thread is renaming in this path.
3369                          * Note that if we are a WRITER, we don't have any
3370                          * parent_locks held yet.
3371                          */
3372                         if (rw == RW_READER && zp->z_id > szp->z_id) {
3373                                 /*
3374                                  * Drop our locks and restart
3375                                  */
3376                                 zfs_rename_unlock(&zl);
3377                                 *zlpp = NULL;
3378                                 zp = tdzp;
3379                                 oidp = zp->z_id;
3380                                 rwlp = &szp->z_parent_lock;
3381                                 rw = RW_WRITER;
3382                                 continue;
3383                         } else {
3384                                 /*
3385                                  * Wait for other thread to drop its locks
3386                                  */
3387                                 rw_enter(rwlp, rw);
3388                         }
3389                 }
3390 
3391                 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3392                 zl->zl_rwlock = rwlp;
3393                 zl->zl_znode = NULL;
3394                 zl->zl_next = *zlpp;
3395                 *zlpp = zl;
3396 
3397                 if (oidp == szp->z_id)               /* We're a descendant of szp */
3398                         return (SET_ERROR(EINVAL));
3399 
3400                 if (oidp == rootid)             /* We've hit the top */
3401                         return (0);
3402 
3403                 if (rw == RW_READER) {          /* i.e. not the first pass */
3404                         int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3405                         if (error)
3406                                 return (error);
3407                         zl->zl_znode = zp;
3408                 }
3409                 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3410                     &oidp, sizeof (oidp));
3411                 rwlp = &zp->z_parent_lock;
3412                 rw = RW_READER;
3413 
3414         } while (zp->z_id != sdzp->z_id);
3415 
3416         return (0);
3417 }
3418 
3419 /*
3420  * Move an entry from the provided source directory to the target
3421  * directory.  Change the entry name as indicated.
3422  *
3423  *      IN:     sdvp    - Source directory containing the "old entry".
3424  *              snm     - Old entry name.
3425  *              tdvp    - Target directory to contain the "new entry".
3426  *              tnm     - New entry name.
3427  *              cr      - credentials of caller.
3428  *              ct      - caller context
3429  *              flags   - case flags
3430  *
3431  *      RETURN: 0 on success, error code on failure.
3432  *
3433  * Timestamps:
3434  *      sdvp,tdvp - ctime|mtime updated
3435  */
3436 /*ARGSUSED*/
3437 static int
3438 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3439     caller_context_t *ct, int flags)
3440 {
3441         znode_t         *tdzp, *szp, *tzp;
3442         znode_t         *sdzp = VTOZ(sdvp);
3443         zfsvfs_t        *zfsvfs = sdzp->z_zfsvfs;
3444         zilog_t         *zilog;
3445         vnode_t         *realvp;
3446         zfs_dirlock_t   *sdl, *tdl;
3447         dmu_tx_t        *tx;
3448         zfs_zlock_t     *zl;
3449         int             cmp, serr, terr;
3450         int             error = 0, rm_err = 0;
3451         int             zflg = 0;
3452         boolean_t       waited = B_FALSE;
3453 
3454         ZFS_ENTER(zfsvfs);
3455         ZFS_VERIFY_ZP(sdzp);
3456         zilog = zfsvfs->z_log;
3457 
3458         /*
3459          * Make sure we have the real vp for the target directory.
3460          */
3461         if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3462                 tdvp = realvp;
3463 
3464         tdzp = VTOZ(tdvp);
3465         ZFS_VERIFY_ZP(tdzp);
3466 
3467         /*
3468          * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3469          * ctldir appear to have the same v_vfsp.
3470          */
3471         if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3472                 ZFS_EXIT(zfsvfs);
3473                 return (SET_ERROR(EXDEV));
3474         }
3475 
3476         if (zfsvfs->z_utf8 && u8_validate(tnm,
3477             strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3478                 ZFS_EXIT(zfsvfs);
3479                 return (SET_ERROR(EILSEQ));
3480         }
3481 
3482         if (flags & FIGNORECASE)
3483                 zflg |= ZCILOOK;
3484 
3485 top:
3486         szp = NULL;
3487         tzp = NULL;
3488         zl = NULL;
3489 
3490         /*
3491          * This is to prevent the creation of links into attribute space
3492          * by renaming a linked file into/outof an attribute directory.
3493          * See the comment in zfs_link() for why this is considered bad.
3494          */
3495         if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3496                 ZFS_EXIT(zfsvfs);
3497                 return (SET_ERROR(EINVAL));
3498         }
3499 
3500         /*
3501          * Lock source and target directory entries.  To prevent deadlock,
3502          * a lock ordering must be defined.  We lock the directory with
3503          * the smallest object id first, or if it's a tie, the one with
3504          * the lexically first name.
3505          */
3506         if (sdzp->z_id < tdzp->z_id) {
3507                 cmp = -1;
3508         } else if (sdzp->z_id > tdzp->z_id) {
3509                 cmp = 1;
3510         } else {
3511                 /*
3512                  * First compare the two name arguments without
3513                  * considering any case folding.
3514                  */
3515                 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3516 
3517                 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3518                 ASSERT(error == 0 || !zfsvfs->z_utf8);
3519                 if (cmp == 0) {
3520                         /*
3521                          * POSIX: "If the old argument and the new argument
3522                          * both refer to links to the same existing file,
3523                          * the rename() function shall return successfully
3524                          * and perform no other action."
3525                          */
3526                         ZFS_EXIT(zfsvfs);
3527                         return (0);
3528                 }
3529                 /*
3530                  * If the file system is case-folding, then we may
3531                  * have some more checking to do.  A case-folding file
3532                  * system is either supporting mixed case sensitivity
3533                  * access or is completely case-insensitive.  Note
3534                  * that the file system is always case preserving.
3535                  *
3536                  * In mixed sensitivity mode case sensitive behavior
3537                  * is the default.  FIGNORECASE must be used to
3538                  * explicitly request case insensitive behavior.
3539                  *
3540                  * If the source and target names provided differ only
3541                  * by case (e.g., a request to rename 'tim' to 'Tim'),
3542                  * we will treat this as a special case in the
3543                  * case-insensitive mode: as long as the source name
3544                  * is an exact match, we will allow this to proceed as
3545                  * a name-change request.
3546                  */
3547                 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3548                     (zfsvfs->z_case == ZFS_CASE_MIXED &&
3549                     flags & FIGNORECASE)) &&
3550                     u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3551                     &error) == 0) {
3552                         /*
3553                          * case preserving rename request, require exact
3554                          * name matches
3555                          */
3556                         zflg |= ZCIEXACT;
3557                         zflg &= ~ZCILOOK;
3558                 }
3559         }
3560 
3561         /*
3562          * If the source and destination directories are the same, we should
3563          * grab the z_name_lock of that directory only once.
3564          */
3565         if (sdzp == tdzp) {
3566                 zflg |= ZHAVELOCK;
3567                 rw_enter(&sdzp->z_name_lock, RW_READER);
3568         }
3569 
3570         if (cmp < 0) {
3571                 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3572                     ZEXISTS | zflg, NULL, NULL);
3573                 terr = zfs_dirent_lock(&tdl,
3574                     tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3575         } else {
3576                 terr = zfs_dirent_lock(&tdl,
3577                     tdzp, tnm, &tzp, zflg, NULL, NULL);
3578                 serr = zfs_dirent_lock(&sdl,
3579                     sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3580                     NULL, NULL);
3581         }
3582 
3583         if (serr) {
3584                 /*
3585                  * Source entry invalid or not there.
3586                  */
3587                 if (!terr) {
3588                         zfs_dirent_unlock(tdl);
3589                         if (tzp)
3590                                 VN_RELE(ZTOV(tzp));
3591                 }
3592 
3593                 if (sdzp == tdzp)
3594                         rw_exit(&sdzp->z_name_lock);
3595 
3596                 if (strcmp(snm, "..") == 0)
3597                         serr = SET_ERROR(EINVAL);
3598                 ZFS_EXIT(zfsvfs);
3599                 return (serr);
3600         }
3601         if (terr) {
3602                 zfs_dirent_unlock(sdl);
3603                 VN_RELE(ZTOV(szp));
3604 
3605                 if (sdzp == tdzp)
3606                         rw_exit(&sdzp->z_name_lock);
3607 
3608                 if (strcmp(tnm, "..") == 0)
3609                         terr = SET_ERROR(EINVAL);
3610                 ZFS_EXIT(zfsvfs);
3611                 return (terr);
3612         }
3613 
3614         /*
3615          * Must have write access at the source to remove the old entry
3616          * and write access at the target to create the new entry.
3617          * Note that if target and source are the same, this can be
3618          * done in a single check.
3619          */
3620 
3621         if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3622                 goto out;
3623 
3624         if (ZTOV(szp)->v_type == VDIR) {
3625                 /*
3626                  * Check to make sure rename is valid.
3627                  * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3628                  */
3629                 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3630                         goto out;
3631         }
3632 
3633         /*
3634          * Does target exist?
3635          */
3636         if (tzp) {
3637                 /*
3638                  * Source and target must be the same type.
3639                  */
3640                 if (ZTOV(szp)->v_type == VDIR) {
3641                         if (ZTOV(tzp)->v_type != VDIR) {
3642                                 error = SET_ERROR(ENOTDIR);
3643                                 goto out;
3644                         }
3645                 } else {
3646                         if (ZTOV(tzp)->v_type == VDIR) {
3647                                 error = SET_ERROR(EISDIR);
3648                                 goto out;
3649                         }
3650                 }
3651                 /*
3652                  * POSIX dictates that when the source and target
3653                  * entries refer to the same file object, rename
3654                  * must do nothing and exit without error.
3655                  */
3656                 if (szp->z_id == tzp->z_id) {
3657                         error = 0;
3658                         goto out;
3659                 }
3660         }
3661 
3662         vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct);
3663         if (tzp)
3664                 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3665 
3666         /*
3667          * notify the target directory if it is not the same
3668          * as source directory.
3669          */
3670         if (tdvp != sdvp) {
3671                 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct);
3672         }
3673 
3674         tx = dmu_tx_create(zfsvfs->z_os);
3675         dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3676         dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3677         dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3678         dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3679         if (sdzp != tdzp) {
3680                 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3681                 zfs_sa_upgrade_txholds(tx, tdzp);
3682         }
3683         if (tzp) {
3684                 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3685                 zfs_sa_upgrade_txholds(tx, tzp);
3686         }
3687 
3688         zfs_sa_upgrade_txholds(tx, szp);
3689         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3690         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3691         if (error) {
3692                 if (zl != NULL)
3693                         zfs_rename_unlock(&zl);
3694                 zfs_dirent_unlock(sdl);
3695                 zfs_dirent_unlock(tdl);
3696 
3697                 if (sdzp == tdzp)
3698                         rw_exit(&sdzp->z_name_lock);
3699 
3700                 VN_RELE(ZTOV(szp));
3701                 if (tzp)
3702                         VN_RELE(ZTOV(tzp));
3703                 if (error == ERESTART) {
3704                         waited = B_TRUE;
3705                         dmu_tx_wait(tx);
3706                         dmu_tx_abort(tx);
3707                         goto top;
3708                 }
3709                 dmu_tx_abort(tx);
3710                 ZFS_EXIT(zfsvfs);
3711                 return (error);
3712         }
3713 
3714         if (tzp)        /* Attempt to remove the existing target */
3715                 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3716 
3717         if (error == 0) {
3718                 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3719                 if (error == 0) {
3720                         szp->z_pflags |= ZFS_AV_MODIFIED;
3721 
3722                         error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3723                             (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3724                         ASSERT0(error);
3725 
3726                         error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3727                         if (error == 0) {
3728                                 zfs_log_rename(zilog, tx, TX_RENAME |
3729                                     (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3730                                     sdl->dl_name, tdzp, tdl->dl_name, szp);
3731 
3732                                 /*
3733                                  * Update path information for the target vnode
3734                                  */
3735                                 vn_renamepath(tdvp, ZTOV(szp), tnm,
3736                                     strlen(tnm));
3737                         } else {
3738                                 /*
3739                                  * At this point, we have successfully created
3740                                  * the target name, but have failed to remove
3741                                  * the source name.  Since the create was done
3742                                  * with the ZRENAMING flag, there are
3743                                  * complications; for one, the link count is
3744                                  * wrong.  The easiest way to deal with this
3745                                  * is to remove the newly created target, and
3746                                  * return the original error.  This must
3747                                  * succeed; fortunately, it is very unlikely to
3748                                  * fail, since we just created it.
3749                                  */
3750                                 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3751                                     ZRENAMING, NULL), ==, 0);
3752                         }
3753                 }
3754         }
3755 
3756         dmu_tx_commit(tx);
3757 
3758         if (tzp && rm_err == 0)
3759                 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3760 
3761         if (error == 0) {
3762                 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3763                 /* notify the target dir if it is not the same as source dir */
3764                 if (tdvp != sdvp)
3765                         vnevent_rename_dest_dir(tdvp, ct);
3766         }
3767 out:
3768         if (zl != NULL)
3769                 zfs_rename_unlock(&zl);
3770 
3771         zfs_dirent_unlock(sdl);
3772         zfs_dirent_unlock(tdl);
3773 
3774         if (sdzp == tdzp)
3775                 rw_exit(&sdzp->z_name_lock);
3776 
3777 
3778         VN_RELE(ZTOV(szp));
3779         if (tzp)
3780                 VN_RELE(ZTOV(tzp));
3781 
3782         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3783                 zil_commit(zilog, 0);
3784 
3785         ZFS_EXIT(zfsvfs);
3786         return (error);
3787 }
3788 
3789 /*
3790  * Insert the indicated symbolic reference entry into the directory.
3791  *
3792  *      IN:     dvp     - Directory to contain new symbolic link.
3793  *              link    - Name for new symlink entry.
3794  *              vap     - Attributes of new entry.
3795  *              cr      - credentials of caller.
3796  *              ct      - caller context
3797  *              flags   - case flags
3798  *
3799  *      RETURN: 0 on success, error code on failure.
3800  *
3801  * Timestamps:
3802  *      dvp - ctime|mtime updated
3803  */
3804 /*ARGSUSED*/
3805 static int
3806 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3807     caller_context_t *ct, int flags)
3808 {
3809         znode_t         *zp, *dzp = VTOZ(dvp);
3810         zfs_dirlock_t   *dl;
3811         dmu_tx_t        *tx;
3812         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
3813         zilog_t         *zilog;
3814         uint64_t        len = strlen(link);
3815         int             error;
3816         int             zflg = ZNEW;
3817         zfs_acl_ids_t   acl_ids;
3818         boolean_t       fuid_dirtied;
3819         uint64_t        txtype = TX_SYMLINK;
3820         boolean_t       waited = B_FALSE;
3821 
3822         ASSERT(vap->va_type == VLNK);
3823 
3824         ZFS_ENTER(zfsvfs);
3825         ZFS_VERIFY_ZP(dzp);
3826         zilog = zfsvfs->z_log;
3827 
3828         if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3829             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3830                 ZFS_EXIT(zfsvfs);
3831                 return (SET_ERROR(EILSEQ));
3832         }
3833         if (flags & FIGNORECASE)
3834                 zflg |= ZCILOOK;
3835 
3836         if (len > MAXPATHLEN) {
3837                 ZFS_EXIT(zfsvfs);
3838                 return (SET_ERROR(ENAMETOOLONG));
3839         }
3840 
3841         if ((error = zfs_acl_ids_create(dzp, 0,
3842             vap, cr, NULL, &acl_ids)) != 0) {
3843                 ZFS_EXIT(zfsvfs);
3844                 return (error);
3845         }
3846 top:
3847         /*
3848          * Attempt to lock directory; fail if entry already exists.
3849          */
3850         error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3851         if (error) {
3852                 zfs_acl_ids_free(&acl_ids);
3853                 ZFS_EXIT(zfsvfs);
3854                 return (error);
3855         }
3856 
3857         if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3858                 zfs_acl_ids_free(&acl_ids);
3859                 zfs_dirent_unlock(dl);
3860                 ZFS_EXIT(zfsvfs);
3861                 return (error);
3862         }
3863 
3864         if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3865                 zfs_acl_ids_free(&acl_ids);
3866                 zfs_dirent_unlock(dl);
3867                 ZFS_EXIT(zfsvfs);
3868                 return (SET_ERROR(EDQUOT));
3869         }
3870         tx = dmu_tx_create(zfsvfs->z_os);
3871         fuid_dirtied = zfsvfs->z_fuid_dirty;
3872         dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3873         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3874         dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3875             ZFS_SA_BASE_ATTR_SIZE + len);
3876         dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3877         if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3878                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3879                     acl_ids.z_aclp->z_acl_bytes);
3880         }
3881         if (fuid_dirtied)
3882                 zfs_fuid_txhold(zfsvfs, tx);
3883         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3884         if (error) {
3885                 zfs_dirent_unlock(dl);
3886                 if (error == ERESTART) {
3887                         waited = B_TRUE;
3888                         dmu_tx_wait(tx);
3889                         dmu_tx_abort(tx);
3890                         goto top;
3891                 }
3892                 zfs_acl_ids_free(&acl_ids);
3893                 dmu_tx_abort(tx);
3894                 ZFS_EXIT(zfsvfs);
3895                 return (error);
3896         }
3897 
3898         /*
3899          * Create a new object for the symlink.
3900          * for version 4 ZPL datsets the symlink will be an SA attribute
3901          */
3902         zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3903 
3904         if (fuid_dirtied)
3905                 zfs_fuid_sync(zfsvfs, tx);
3906 
3907         mutex_enter(&zp->z_lock);
3908         if (zp->z_is_sa)
3909                 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3910                     link, len, tx);
3911         else
3912                 zfs_sa_symlink(zp, link, len, tx);
3913         mutex_exit(&zp->z_lock);
3914 
3915         zp->z_size = len;
3916         (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3917             &zp->z_size, sizeof (zp->z_size), tx);
3918         /*
3919          * Insert the new object into the directory.
3920          */
3921         (void) zfs_link_create(dl, zp, tx, ZNEW);
3922 
3923         if (flags & FIGNORECASE)
3924                 txtype |= TX_CI;
3925         zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3926 
3927         zfs_acl_ids_free(&acl_ids);
3928 
3929         dmu_tx_commit(tx);
3930 
3931         zfs_dirent_unlock(dl);
3932 
3933         VN_RELE(ZTOV(zp));
3934 
3935         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3936                 zil_commit(zilog, 0);
3937 
3938         ZFS_EXIT(zfsvfs);
3939         return (error);
3940 }
3941 
3942 /*
3943  * Return, in the buffer contained in the provided uio structure,
3944  * the symbolic path referred to by vp.
3945  *
3946  *      IN:     vp      - vnode of symbolic link.
3947  *              uio     - structure to contain the link path.
3948  *              cr      - credentials of caller.
3949  *              ct      - caller context
3950  *
3951  *      OUT:    uio     - structure containing the link path.
3952  *
3953  *      RETURN: 0 on success, error code on failure.
3954  *
3955  * Timestamps:
3956  *      vp - atime updated
3957  */
3958 /* ARGSUSED */
3959 static int
3960 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3961 {
3962         znode_t         *zp = VTOZ(vp);
3963         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
3964         int             error;
3965 
3966         ZFS_ENTER(zfsvfs);
3967         ZFS_VERIFY_ZP(zp);
3968 
3969         mutex_enter(&zp->z_lock);
3970         if (zp->z_is_sa)
3971                 error = sa_lookup_uio(zp->z_sa_hdl,
3972                     SA_ZPL_SYMLINK(zfsvfs), uio);
3973         else
3974                 error = zfs_sa_readlink(zp, uio);
3975         mutex_exit(&zp->z_lock);
3976 
3977         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3978 
3979         ZFS_EXIT(zfsvfs);
3980         return (error);
3981 }
3982 
3983 /*
3984  * Insert a new entry into directory tdvp referencing svp.
3985  *
3986  *      IN:     tdvp    - Directory to contain new entry.
3987  *              svp     - vnode of new entry.
3988  *              name    - name of new entry.
3989  *              cr      - credentials of caller.
3990  *              ct      - caller context
3991  *
3992  *      RETURN: 0 on success, error code on failure.
3993  *
3994  * Timestamps:
3995  *      tdvp - ctime|mtime updated
3996  *       svp - ctime updated
3997  */
3998 /* ARGSUSED */
3999 static int
4000 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4001     caller_context_t *ct, int flags)
4002 {
4003         znode_t         *dzp = VTOZ(tdvp);
4004         znode_t         *tzp, *szp;
4005         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
4006         zilog_t         *zilog;
4007         zfs_dirlock_t   *dl;
4008         dmu_tx_t        *tx;
4009         vnode_t         *realvp;
4010         int             error;
4011         int             zf = ZNEW;
4012         uint64_t        parent;
4013         uid_t           owner;
4014         boolean_t       waited = B_FALSE;
4015 
4016         ASSERT(tdvp->v_type == VDIR);
4017 
4018         ZFS_ENTER(zfsvfs);
4019         ZFS_VERIFY_ZP(dzp);
4020         zilog = zfsvfs->z_log;
4021 
4022         if (VOP_REALVP(svp, &realvp, ct) == 0)
4023                 svp = realvp;
4024 
4025         /*
4026          * POSIX dictates that we return EPERM here.
4027          * Better choices include ENOTSUP or EISDIR.
4028          */
4029         if (svp->v_type == VDIR) {
4030                 ZFS_EXIT(zfsvfs);
4031                 return (SET_ERROR(EPERM));
4032         }
4033 
4034         szp = VTOZ(svp);
4035         ZFS_VERIFY_ZP(szp);
4036 
4037         /*
4038          * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4039          * ctldir appear to have the same v_vfsp.
4040          */
4041         if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4042                 ZFS_EXIT(zfsvfs);
4043                 return (SET_ERROR(EXDEV));
4044         }
4045 
4046         /* Prevent links to .zfs/shares files */
4047 
4048         if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4049             &parent, sizeof (uint64_t))) != 0) {
4050                 ZFS_EXIT(zfsvfs);
4051                 return (error);
4052         }
4053         if (parent == zfsvfs->z_shares_dir) {
4054                 ZFS_EXIT(zfsvfs);
4055                 return (SET_ERROR(EPERM));
4056         }
4057 
4058         if (zfsvfs->z_utf8 && u8_validate(name,
4059             strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4060                 ZFS_EXIT(zfsvfs);
4061                 return (SET_ERROR(EILSEQ));
4062         }
4063         if (flags & FIGNORECASE)
4064                 zf |= ZCILOOK;
4065 
4066         /*
4067          * We do not support links between attributes and non-attributes
4068          * because of the potential security risk of creating links
4069          * into "normal" file space in order to circumvent restrictions
4070          * imposed in attribute space.
4071          */
4072         if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4073                 ZFS_EXIT(zfsvfs);
4074                 return (SET_ERROR(EINVAL));
4075         }
4076 
4077 
4078         owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4079         if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4080                 ZFS_EXIT(zfsvfs);
4081                 return (SET_ERROR(EPERM));
4082         }
4083 
4084         if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4085                 ZFS_EXIT(zfsvfs);
4086                 return (error);
4087         }
4088 
4089 top:
4090         /*
4091          * Attempt to lock directory; fail if entry already exists.
4092          */
4093         error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4094         if (error) {
4095                 ZFS_EXIT(zfsvfs);
4096                 return (error);
4097         }
4098 
4099         tx = dmu_tx_create(zfsvfs->z_os);
4100         dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4101         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4102         zfs_sa_upgrade_txholds(tx, szp);
4103         zfs_sa_upgrade_txholds(tx, dzp);
4104         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4105         if (error) {
4106                 zfs_dirent_unlock(dl);
4107                 if (error == ERESTART) {
4108                         waited = B_TRUE;
4109                         dmu_tx_wait(tx);
4110                         dmu_tx_abort(tx);
4111                         goto top;
4112                 }
4113                 dmu_tx_abort(tx);
4114                 ZFS_EXIT(zfsvfs);
4115                 return (error);
4116         }
4117 
4118         error = zfs_link_create(dl, szp, tx, 0);
4119 
4120         if (error == 0) {
4121                 uint64_t txtype = TX_LINK;
4122                 if (flags & FIGNORECASE)
4123                         txtype |= TX_CI;
4124                 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4125         }
4126 
4127         dmu_tx_commit(tx);
4128 
4129         zfs_dirent_unlock(dl);
4130 
4131         if (error == 0) {
4132                 vnevent_link(svp, ct);
4133         }
4134 
4135         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4136                 zil_commit(zilog, 0);
4137 
4138         ZFS_EXIT(zfsvfs);
4139         return (error);
4140 }
4141 
4142 /*
4143  * zfs_null_putapage() is used when the file system has been force
4144  * unmounted. It just drops the pages.
4145  */
4146 /* ARGSUSED */
4147 static int
4148 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4149     size_t *lenp, int flags, cred_t *cr)
4150 {
4151         pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4152         return (0);
4153 }
4154 
4155 /*
4156  * Push a page out to disk, klustering if possible.
4157  *
4158  *      IN:     vp      - file to push page to.
4159  *              pp      - page to push.
4160  *              flags   - additional flags.
4161  *              cr      - credentials of caller.
4162  *
4163  *      OUT:    offp    - start of range pushed.
4164  *              lenp    - len of range pushed.
4165  *
4166  *      RETURN: 0 on success, error code on failure.
4167  *
4168  * NOTE: callers must have locked the page to be pushed.  On
4169  * exit, the page (and all other pages in the kluster) must be
4170  * unlocked.
4171  */
4172 /* ARGSUSED */
4173 static int
4174 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4175     size_t *lenp, int flags, cred_t *cr)
4176 {
4177         znode_t         *zp = VTOZ(vp);
4178         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4179         dmu_tx_t        *tx;
4180         u_offset_t      off, koff;
4181         size_t          len, klen;
4182         int             err;
4183 
4184         off = pp->p_offset;
4185         len = PAGESIZE;
4186         /*
4187          * If our blocksize is bigger than the page size, try to kluster
4188          * multiple pages so that we write a full block (thus avoiding
4189          * a read-modify-write).
4190          */
4191         if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4192                 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4193                 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4194                 ASSERT(koff <= zp->z_size);
4195                 if (koff + klen > zp->z_size)
4196                         klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4197                 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4198         }
4199         ASSERT3U(btop(len), ==, btopr(len));
4200 
4201         /*
4202          * Can't push pages past end-of-file.
4203          */
4204         if (off >= zp->z_size) {
4205                 /* ignore all pages */
4206                 err = 0;
4207                 goto out;
4208         } else if (off + len > zp->z_size) {
4209                 int npages = btopr(zp->z_size - off);
4210                 page_t *trunc;
4211 
4212                 page_list_break(&pp, &trunc, npages);
4213                 /* ignore pages past end of file */
4214                 if (trunc)
4215                         pvn_write_done(trunc, flags);
4216                 len = zp->z_size - off;
4217         }
4218 
4219         if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4220             zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4221                 err = SET_ERROR(EDQUOT);
4222                 goto out;
4223         }
4224         tx = dmu_tx_create(zfsvfs->z_os);
4225         dmu_tx_hold_write(tx, zp->z_id, off, len);
4226 
4227         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4228         zfs_sa_upgrade_txholds(tx, zp);
4229         err = dmu_tx_assign(tx, TXG_WAIT);
4230         if (err != 0) {
4231                 dmu_tx_abort(tx);
4232                 goto out;
4233         }
4234 
4235         if (zp->z_blksz <= PAGESIZE) {
4236                 caddr_t va = zfs_map_page(pp, S_READ);
4237                 ASSERT3U(len, <=, PAGESIZE);
4238                 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4239                 zfs_unmap_page(pp, va);
4240         } else {
4241                 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4242         }
4243 
4244         if (err == 0) {
4245                 uint64_t mtime[2], ctime[2];
4246                 sa_bulk_attr_t bulk[3];
4247                 int count = 0;
4248 
4249                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4250                     &mtime, 16);
4251                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4252                     &ctime, 16);
4253                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4254                     &zp->z_pflags, 8);
4255                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4256                     B_TRUE);
4257                 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4258         }
4259         dmu_tx_commit(tx);
4260 
4261 out:
4262         pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4263         if (offp)
4264                 *offp = off;
4265         if (lenp)
4266                 *lenp = len;
4267 
4268         return (err);
4269 }
4270 
4271 /*
4272  * Copy the portion of the file indicated from pages into the file.
4273  * The pages are stored in a page list attached to the files vnode.
4274  *
4275  *      IN:     vp      - vnode of file to push page data to.
4276  *              off     - position in file to put data.
4277  *              len     - amount of data to write.
4278  *              flags   - flags to control the operation.
4279  *              cr      - credentials of caller.
4280  *              ct      - caller context.
4281  *
4282  *      RETURN: 0 on success, error code on failure.
4283  *
4284  * Timestamps:
4285  *      vp - ctime|mtime updated
4286  */
4287 /*ARGSUSED*/
4288 static int
4289 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4290     caller_context_t *ct)
4291 {
4292         znode_t         *zp = VTOZ(vp);
4293         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4294         page_t          *pp;
4295         size_t          io_len;
4296         u_offset_t      io_off;
4297         uint_t          blksz;
4298         rl_t            *rl;
4299         int             error = 0;
4300 
4301         ZFS_ENTER(zfsvfs);
4302         ZFS_VERIFY_ZP(zp);
4303 
4304         /*
4305          * There's nothing to do if no data is cached.
4306          */
4307         if (!vn_has_cached_data(vp)) {
4308                 ZFS_EXIT(zfsvfs);
4309                 return (0);
4310         }
4311 
4312         /*
4313          * Align this request to the file block size in case we kluster.
4314          * XXX - this can result in pretty aggresive locking, which can
4315          * impact simultanious read/write access.  One option might be
4316          * to break up long requests (len == 0) into block-by-block
4317          * operations to get narrower locking.
4318          */
4319         blksz = zp->z_blksz;
4320         if (ISP2(blksz))
4321                 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4322         else
4323                 io_off = 0;
4324         if (len > 0 && ISP2(blksz))
4325                 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4326         else
4327                 io_len = 0;
4328 
4329         if (io_len == 0) {
4330                 /*
4331                  * Search the entire vp list for pages >= io_off.
4332                  */
4333                 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4334                 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4335                 goto out;
4336         }
4337         rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4338 
4339         if (off > zp->z_size) {
4340                 /* past end of file */
4341                 zfs_range_unlock(rl);
4342                 ZFS_EXIT(zfsvfs);
4343                 return (0);
4344         }
4345 
4346         len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4347 
4348         for (off = io_off; io_off < off + len; io_off += io_len) {
4349                 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4350                         pp = page_lookup(vp, io_off,
4351                             (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4352                 } else {
4353                         pp = page_lookup_nowait(vp, io_off,
4354                             (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4355                 }
4356 
4357                 if (pp != NULL && pvn_getdirty(pp, flags)) {
4358                         int err;
4359 
4360                         /*
4361                          * Found a dirty page to push
4362                          */
4363                         err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4364                         if (err)
4365                                 error = err;
4366                 } else {
4367                         io_len = PAGESIZE;
4368                 }
4369         }
4370 out:
4371         zfs_range_unlock(rl);
4372         if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4373                 zil_commit(zfsvfs->z_log, zp->z_id);
4374         ZFS_EXIT(zfsvfs);
4375         return (error);
4376 }
4377 
4378 /*ARGSUSED*/
4379 void
4380 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4381 {
4382         znode_t *zp = VTOZ(vp);
4383         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4384         int error;
4385 
4386         rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4387         if (zp->z_sa_hdl == NULL) {
4388                 /*
4389                  * The fs has been unmounted, or we did a
4390                  * suspend/resume and this file no longer exists.
4391                  */
4392                 if (vn_has_cached_data(vp)) {
4393                         (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4394                             B_INVAL, cr);
4395                 }
4396 
4397                 mutex_enter(&zp->z_lock);
4398                 mutex_enter(&vp->v_lock);
4399                 ASSERT(vp->v_count == 1);
4400                 vp->v_count = 0;
4401                 mutex_exit(&vp->v_lock);
4402                 mutex_exit(&zp->z_lock);
4403                 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4404                 zfs_znode_free(zp);
4405                 return;
4406         }
4407 
4408         /*
4409          * Attempt to push any data in the page cache.  If this fails
4410          * we will get kicked out later in zfs_zinactive().
4411          */
4412         if (vn_has_cached_data(vp)) {
4413                 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4414                     cr);
4415         }
4416 
4417         if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4418                 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4419 
4420                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4421                 zfs_sa_upgrade_txholds(tx, zp);
4422                 error = dmu_tx_assign(tx, TXG_WAIT);
4423                 if (error) {
4424                         dmu_tx_abort(tx);
4425                 } else {
4426                         mutex_enter(&zp->z_lock);
4427                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4428                             (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4429                         zp->z_atime_dirty = 0;
4430                         mutex_exit(&zp->z_lock);
4431                         dmu_tx_commit(tx);
4432                 }
4433         }
4434 
4435         zfs_zinactive(zp);
4436         rw_exit(&zfsvfs->z_teardown_inactive_lock);
4437 }
4438 
4439 /*
4440  * Bounds-check the seek operation.
4441  *
4442  *      IN:     vp      - vnode seeking within
4443  *              ooff    - old file offset
4444  *              noffp   - pointer to new file offset
4445  *              ct      - caller context
4446  *
4447  *      RETURN: 0 on success, EINVAL if new offset invalid.
4448  */
4449 /* ARGSUSED */
4450 static int
4451 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4452     caller_context_t *ct)
4453 {
4454         if (vp->v_type == VDIR)
4455                 return (0);
4456         return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4457 }
4458 
4459 /*
4460  * Pre-filter the generic locking function to trap attempts to place
4461  * a mandatory lock on a memory mapped file.
4462  */
4463 static int
4464 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4465     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4466 {
4467         znode_t *zp = VTOZ(vp);
4468         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4469 
4470         ZFS_ENTER(zfsvfs);
4471         ZFS_VERIFY_ZP(zp);
4472 
4473         /*
4474          * We are following the UFS semantics with respect to mapcnt
4475          * here: If we see that the file is mapped already, then we will
4476          * return an error, but we don't worry about races between this
4477          * function and zfs_map().
4478          */
4479         if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4480                 ZFS_EXIT(zfsvfs);
4481                 return (SET_ERROR(EAGAIN));
4482         }
4483         ZFS_EXIT(zfsvfs);
4484         return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4485 }
4486 
4487 /*
4488  * If we can't find a page in the cache, we will create a new page
4489  * and fill it with file data.  For efficiency, we may try to fill
4490  * multiple pages at once (klustering) to fill up the supplied page
4491  * list.  Note that the pages to be filled are held with an exclusive
4492  * lock to prevent access by other threads while they are being filled.
4493  */
4494 static int
4495 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4496     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4497 {
4498         znode_t *zp = VTOZ(vp);
4499         page_t *pp, *cur_pp;
4500         objset_t *os = zp->z_zfsvfs->z_os;
4501         u_offset_t io_off, total;
4502         size_t io_len;
4503         int err;
4504 
4505         if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4506                 /*
4507                  * We only have a single page, don't bother klustering
4508                  */
4509                 io_off = off;
4510                 io_len = PAGESIZE;
4511                 pp = page_create_va(vp, io_off, io_len,
4512                     PG_EXCL | PG_WAIT, seg, addr);
4513         } else {
4514                 /*
4515                  * Try to find enough pages to fill the page list
4516                  */
4517                 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4518                     &io_len, off, plsz, 0);
4519         }
4520         if (pp == NULL) {
4521                 /*
4522                  * The page already exists, nothing to do here.
4523                  */
4524                 *pl = NULL;
4525                 return (0);
4526         }
4527 
4528         /*
4529          * Fill the pages in the kluster.
4530          */
4531         cur_pp = pp;
4532         for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4533                 caddr_t va;
4534 
4535                 ASSERT3U(io_off, ==, cur_pp->p_offset);
4536                 va = zfs_map_page(cur_pp, S_WRITE);
4537                 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4538                     DMU_READ_PREFETCH);
4539                 zfs_unmap_page(cur_pp, va);
4540                 if (err) {
4541                         /* On error, toss the entire kluster */
4542                         pvn_read_done(pp, B_ERROR);
4543                         /* convert checksum errors into IO errors */
4544                         if (err == ECKSUM)
4545                                 err = SET_ERROR(EIO);
4546                         return (err);
4547                 }
4548                 cur_pp = cur_pp->p_next;
4549         }
4550 
4551         /*
4552          * Fill in the page list array from the kluster starting
4553          * from the desired offset `off'.
4554          * NOTE: the page list will always be null terminated.
4555          */
4556         pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4557         ASSERT(pl == NULL || (*pl)->p_offset == off);
4558 
4559         return (0);
4560 }
4561 
4562 /*
4563  * Return pointers to the pages for the file region [off, off + len]
4564  * in the pl array.  If plsz is greater than len, this function may
4565  * also return page pointers from after the specified region
4566  * (i.e. the region [off, off + plsz]).  These additional pages are
4567  * only returned if they are already in the cache, or were created as
4568  * part of a klustered read.
4569  *
4570  *      IN:     vp      - vnode of file to get data from.
4571  *              off     - position in file to get data from.
4572  *              len     - amount of data to retrieve.
4573  *              plsz    - length of provided page list.
4574  *              seg     - segment to obtain pages for.
4575  *              addr    - virtual address of fault.
4576  *              rw      - mode of created pages.
4577  *              cr      - credentials of caller.
4578  *              ct      - caller context.
4579  *
4580  *      OUT:    protp   - protection mode of created pages.
4581  *              pl      - list of pages created.
4582  *
4583  *      RETURN: 0 on success, error code on failure.
4584  *
4585  * Timestamps:
4586  *      vp - atime updated
4587  */
4588 /* ARGSUSED */
4589 static int
4590 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4591     page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4592     enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4593 {
4594         znode_t         *zp = VTOZ(vp);
4595         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4596         page_t          **pl0 = pl;
4597         int             err = 0;
4598 
4599         /* we do our own caching, faultahead is unnecessary */
4600         if (pl == NULL)
4601                 return (0);
4602         else if (len > plsz)
4603                 len = plsz;
4604         else
4605                 len = P2ROUNDUP(len, PAGESIZE);
4606         ASSERT(plsz >= len);
4607 
4608         ZFS_ENTER(zfsvfs);
4609         ZFS_VERIFY_ZP(zp);
4610 
4611         if (protp)
4612                 *protp = PROT_ALL;
4613 
4614         /*
4615          * Loop through the requested range [off, off + len) looking
4616          * for pages.  If we don't find a page, we will need to create
4617          * a new page and fill it with data from the file.
4618          */
4619         while (len > 0) {
4620                 if (*pl = page_lookup(vp, off, SE_SHARED))
4621                         *(pl+1) = NULL;
4622                 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4623                         goto out;
4624                 while (*pl) {
4625                         ASSERT3U((*pl)->p_offset, ==, off);
4626                         off += PAGESIZE;
4627                         addr += PAGESIZE;
4628                         if (len > 0) {
4629                                 ASSERT3U(len, >=, PAGESIZE);
4630                                 len -= PAGESIZE;
4631                         }
4632                         ASSERT3U(plsz, >=, PAGESIZE);
4633                         plsz -= PAGESIZE;
4634                         pl++;
4635                 }
4636         }
4637 
4638         /*
4639          * Fill out the page array with any pages already in the cache.
4640          */
4641         while (plsz > 0 &&
4642             (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4643                         off += PAGESIZE;
4644                         plsz -= PAGESIZE;
4645         }
4646 out:
4647         if (err) {
4648                 /*
4649                  * Release any pages we have previously locked.
4650                  */
4651                 while (pl > pl0)
4652                         page_unlock(*--pl);
4653         } else {
4654                 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4655         }
4656 
4657         *pl = NULL;
4658 
4659         ZFS_EXIT(zfsvfs);
4660         return (err);
4661 }
4662 
4663 /*
4664  * Request a memory map for a section of a file.  This code interacts
4665  * with common code and the VM system as follows:
4666  *
4667  * - common code calls mmap(), which ends up in smmap_common()
4668  * - this calls VOP_MAP(), which takes you into (say) zfs
4669  * - zfs_map() calls as_map(), passing segvn_create() as the callback
4670  * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4671  * - zfs_addmap() updates z_mapcnt
4672  */
4673 /*ARGSUSED*/
4674 static int
4675 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4676     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4677     caller_context_t *ct)
4678 {
4679         znode_t *zp = VTOZ(vp);
4680         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4681         segvn_crargs_t  vn_a;
4682         int             error;
4683 
4684         ZFS_ENTER(zfsvfs);
4685         ZFS_VERIFY_ZP(zp);
4686 
4687         if ((prot & PROT_WRITE) && (zp->z_pflags &
4688             (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4689                 ZFS_EXIT(zfsvfs);
4690                 return (SET_ERROR(EPERM));
4691         }
4692 
4693         if ((prot & (PROT_READ | PROT_EXEC)) &&
4694             (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4695                 ZFS_EXIT(zfsvfs);
4696                 return (SET_ERROR(EACCES));
4697         }
4698 
4699         if (vp->v_flag & VNOMAP) {
4700                 ZFS_EXIT(zfsvfs);
4701                 return (SET_ERROR(ENOSYS));
4702         }
4703 
4704         if (off < 0 || len > MAXOFFSET_T - off) {
4705                 ZFS_EXIT(zfsvfs);
4706                 return (SET_ERROR(ENXIO));
4707         }
4708 
4709         if (vp->v_type != VREG) {
4710                 ZFS_EXIT(zfsvfs);
4711                 return (SET_ERROR(ENODEV));
4712         }
4713 
4714         /*
4715          * If file is locked, disallow mapping.
4716          */
4717         if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4718                 ZFS_EXIT(zfsvfs);
4719                 return (SET_ERROR(EAGAIN));
4720         }
4721 
4722         as_rangelock(as);
4723         error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4724         if (error != 0) {
4725                 as_rangeunlock(as);
4726                 ZFS_EXIT(zfsvfs);
4727                 return (error);
4728         }
4729 
4730         vn_a.vp = vp;
4731         vn_a.offset = (u_offset_t)off;
4732         vn_a.type = flags & MAP_TYPE;
4733         vn_a.prot = prot;
4734         vn_a.maxprot = maxprot;
4735         vn_a.cred = cr;
4736         vn_a.amp = NULL;
4737         vn_a.flags = flags & ~MAP_TYPE;
4738         vn_a.szc = 0;
4739         vn_a.lgrp_mem_policy_flags = 0;
4740 
4741         error = as_map(as, *addrp, len, segvn_create, &vn_a);
4742 
4743         as_rangeunlock(as);
4744         ZFS_EXIT(zfsvfs);
4745         return (error);
4746 }
4747 
4748 /* ARGSUSED */
4749 static int
4750 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4751     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4752     caller_context_t *ct)
4753 {
4754         uint64_t pages = btopr(len);
4755 
4756         atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4757         return (0);
4758 }
4759 
4760 /*
4761  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4762  * more accurate mtime for the associated file.  Since we don't have a way of
4763  * detecting when the data was actually modified, we have to resort to
4764  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4765  * last page is pushed.  The problem occurs when the msync() call is omitted,
4766  * which by far the most common case:
4767  *
4768  *      open()
4769  *      mmap()
4770  *      <modify memory>
4771  *      munmap()
4772  *      close()
4773  *      <time lapse>
4774  *      putpage() via fsflush
4775  *
4776  * If we wait until fsflush to come along, we can have a modification time that
4777  * is some arbitrary point in the future.  In order to prevent this in the
4778  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4779  * torn down.
4780  */
4781 /* ARGSUSED */
4782 static int
4783 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4784     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4785     caller_context_t *ct)
4786 {
4787         uint64_t pages = btopr(len);
4788 
4789         ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4790         atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4791 
4792         if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4793             vn_has_cached_data(vp))
4794                 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4795 
4796         return (0);
4797 }
4798 
4799 /*
4800  * Free or allocate space in a file.  Currently, this function only
4801  * supports the `F_FREESP' command.  However, this command is somewhat
4802  * misnamed, as its functionality includes the ability to allocate as
4803  * well as free space.
4804  *
4805  *      IN:     vp      - vnode of file to free data in.
4806  *              cmd     - action to take (only F_FREESP supported).
4807  *              bfp     - section of file to free/alloc.
4808  *              flag    - current file open mode flags.
4809  *              offset  - current file offset.
4810  *              cr      - credentials of caller [UNUSED].
4811  *              ct      - caller context.
4812  *
4813  *      RETURN: 0 on success, error code on failure.
4814  *
4815  * Timestamps:
4816  *      vp - ctime|mtime updated
4817  */
4818 /* ARGSUSED */
4819 static int
4820 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4821     offset_t offset, cred_t *cr, caller_context_t *ct)
4822 {
4823         znode_t         *zp = VTOZ(vp);
4824         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4825         uint64_t        off, len;
4826         int             error;
4827 
4828         ZFS_ENTER(zfsvfs);
4829         ZFS_VERIFY_ZP(zp);
4830 
4831         if (cmd != F_FREESP) {
4832                 ZFS_EXIT(zfsvfs);
4833                 return (SET_ERROR(EINVAL));
4834         }
4835 
4836         /*
4837          * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4838          * callers might not be able to detect properly that we are read-only,
4839          * so check it explicitly here.
4840          */
4841         if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4842                 ZFS_EXIT(zfsvfs);
4843                 return (SET_ERROR(EROFS));
4844         }
4845 
4846         if (error = convoff(vp, bfp, 0, offset)) {
4847                 ZFS_EXIT(zfsvfs);
4848                 return (error);
4849         }
4850 
4851         if (bfp->l_len < 0) {
4852                 ZFS_EXIT(zfsvfs);
4853                 return (SET_ERROR(EINVAL));
4854         }
4855 
4856         off = bfp->l_start;
4857         len = bfp->l_len; /* 0 means from off to end of file */
4858 
4859         error = zfs_freesp(zp, off, len, flag, TRUE);
4860 
4861         if (error == 0 && off == 0 && len == 0)
4862                 vnevent_truncate(ZTOV(zp), ct);
4863 
4864         ZFS_EXIT(zfsvfs);
4865         return (error);
4866 }
4867 
4868 /*ARGSUSED*/
4869 static int
4870 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4871 {
4872         znode_t         *zp = VTOZ(vp);
4873         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4874         uint32_t        gen;
4875         uint64_t        gen64;
4876         uint64_t        object = zp->z_id;
4877         zfid_short_t    *zfid;
4878         int             size, i, error;
4879 
4880         ZFS_ENTER(zfsvfs);
4881         ZFS_VERIFY_ZP(zp);
4882 
4883         if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4884             &gen64, sizeof (uint64_t))) != 0) {
4885                 ZFS_EXIT(zfsvfs);
4886                 return (error);
4887         }
4888 
4889         gen = (uint32_t)gen64;
4890 
4891         size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4892         if (fidp->fid_len < size) {
4893                 fidp->fid_len = size;
4894                 ZFS_EXIT(zfsvfs);
4895                 return (SET_ERROR(ENOSPC));
4896         }
4897 
4898         zfid = (zfid_short_t *)fidp;
4899 
4900         zfid->zf_len = size;
4901 
4902         for (i = 0; i < sizeof (zfid->zf_object); i++)
4903                 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4904 
4905         /* Must have a non-zero generation number to distinguish from .zfs */
4906         if (gen == 0)
4907                 gen = 1;
4908         for (i = 0; i < sizeof (zfid->zf_gen); i++)
4909                 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4910 
4911         if (size == LONG_FID_LEN) {
4912                 uint64_t        objsetid = dmu_objset_id(zfsvfs->z_os);
4913                 zfid_long_t     *zlfid;
4914 
4915                 zlfid = (zfid_long_t *)fidp;
4916 
4917                 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4918                         zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4919 
4920                 /* XXX - this should be the generation number for the objset */
4921                 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4922                         zlfid->zf_setgen[i] = 0;
4923         }
4924 
4925         ZFS_EXIT(zfsvfs);
4926         return (0);
4927 }
4928 
4929 static int
4930 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4931     caller_context_t *ct)
4932 {
4933         znode_t         *zp, *xzp;
4934         zfsvfs_t        *zfsvfs;
4935         zfs_dirlock_t   *dl;
4936         int             error;
4937 
4938         switch (cmd) {
4939         case _PC_LINK_MAX:
4940                 *valp = ULONG_MAX;
4941                 return (0);
4942 
4943         case _PC_FILESIZEBITS:
4944                 *valp = 64;
4945                 return (0);
4946 
4947         case _PC_XATTR_EXISTS:
4948                 zp = VTOZ(vp);
4949                 zfsvfs = zp->z_zfsvfs;
4950                 ZFS_ENTER(zfsvfs);
4951                 ZFS_VERIFY_ZP(zp);
4952                 *valp = 0;
4953                 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4954                     ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4955                 if (error == 0) {
4956                         zfs_dirent_unlock(dl);
4957                         if (!zfs_dirempty(xzp))
4958                                 *valp = 1;
4959                         VN_RELE(ZTOV(xzp));
4960                 } else if (error == ENOENT) {
4961                         /*
4962                          * If there aren't extended attributes, it's the
4963                          * same as having zero of them.
4964                          */
4965                         error = 0;
4966                 }
4967                 ZFS_EXIT(zfsvfs);
4968                 return (error);
4969 
4970         case _PC_SATTR_ENABLED:
4971         case _PC_SATTR_EXISTS:
4972                 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4973                     (vp->v_type == VREG || vp->v_type == VDIR);
4974                 return (0);
4975 
4976         case _PC_ACCESS_FILTERING:
4977                 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4978                     vp->v_type == VDIR;
4979                 return (0);
4980 
4981         case _PC_ACL_ENABLED:
4982                 *valp = _ACL_ACE_ENABLED;
4983                 return (0);
4984 
4985         case _PC_MIN_HOLE_SIZE:
4986                 *valp = (ulong_t)SPA_MINBLOCKSIZE;
4987                 return (0);
4988 
4989         case _PC_TIMESTAMP_RESOLUTION:
4990                 /* nanosecond timestamp resolution */
4991                 *valp = 1L;
4992                 return (0);
4993 
4994         default:
4995                 return (fs_pathconf(vp, cmd, valp, cr, ct));
4996         }
4997 }
4998 
4999 /*ARGSUSED*/
5000 static int
5001 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5002     caller_context_t *ct)
5003 {
5004         znode_t *zp = VTOZ(vp);
5005         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5006         int error;
5007         boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5008 
5009         ZFS_ENTER(zfsvfs);
5010         ZFS_VERIFY_ZP(zp);
5011         error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5012         ZFS_EXIT(zfsvfs);
5013 
5014         return (error);
5015 }
5016 
5017 /*ARGSUSED*/
5018 static int
5019 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5020     caller_context_t *ct)
5021 {
5022         znode_t *zp = VTOZ(vp);
5023         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5024         int error;
5025         boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5026         zilog_t *zilog = zfsvfs->z_log;
5027 
5028         ZFS_ENTER(zfsvfs);
5029         ZFS_VERIFY_ZP(zp);
5030 
5031         error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5032 
5033         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5034                 zil_commit(zilog, 0);
5035 
5036         ZFS_EXIT(zfsvfs);
5037         return (error);
5038 }
5039 
5040 /*
5041  * The smallest read we may consider to loan out an arcbuf.
5042  * This must be a power of 2.
5043  */
5044 int zcr_blksz_min = (1 << 10);    /* 1K */
5045 /*
5046  * If set to less than the file block size, allow loaning out of an
5047  * arcbuf for a partial block read.  This must be a power of 2.
5048  */
5049 int zcr_blksz_max = (1 << 17);    /* 128K */
5050 
5051 /*ARGSUSED*/
5052 static int
5053 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5054     caller_context_t *ct)
5055 {
5056         znode_t *zp = VTOZ(vp);
5057         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5058         int max_blksz = zfsvfs->z_max_blksz;
5059         uio_t *uio = &xuio->xu_uio;
5060         ssize_t size = uio->uio_resid;
5061         offset_t offset = uio->uio_loffset;
5062         int blksz;
5063         int fullblk, i;
5064         arc_buf_t *abuf;
5065         ssize_t maxsize;
5066         int preamble, postamble;
5067 
5068         if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5069                 return (SET_ERROR(EINVAL));
5070 
5071         ZFS_ENTER(zfsvfs);
5072         ZFS_VERIFY_ZP(zp);
5073         switch (ioflag) {
5074         case UIO_WRITE:
5075                 /*
5076                  * Loan out an arc_buf for write if write size is bigger than
5077                  * max_blksz, and the file's block size is also max_blksz.
5078                  */
5079                 blksz = max_blksz;
5080                 if (size < blksz || zp->z_blksz != blksz) {
5081                         ZFS_EXIT(zfsvfs);
5082                         return (SET_ERROR(EINVAL));
5083                 }
5084                 /*
5085                  * Caller requests buffers for write before knowing where the
5086                  * write offset might be (e.g. NFS TCP write).
5087                  */
5088                 if (offset == -1) {
5089                         preamble = 0;
5090                 } else {
5091                         preamble = P2PHASE(offset, blksz);
5092                         if (preamble) {
5093                                 preamble = blksz - preamble;
5094                                 size -= preamble;
5095                         }
5096                 }
5097 
5098                 postamble = P2PHASE(size, blksz);
5099                 size -= postamble;
5100 
5101                 fullblk = size / blksz;
5102                 (void) dmu_xuio_init(xuio,
5103                     (preamble != 0) + fullblk + (postamble != 0));
5104                 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5105                     int, postamble, int,
5106                     (preamble != 0) + fullblk + (postamble != 0));
5107 
5108                 /*
5109                  * Have to fix iov base/len for partial buffers.  They
5110                  * currently represent full arc_buf's.
5111                  */
5112                 if (preamble) {
5113                         /* data begins in the middle of the arc_buf */
5114                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5115                             blksz);
5116                         ASSERT(abuf);
5117                         (void) dmu_xuio_add(xuio, abuf,
5118                             blksz - preamble, preamble);
5119                 }
5120 
5121                 for (i = 0; i < fullblk; i++) {
5122                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5123                             blksz);
5124                         ASSERT(abuf);
5125                         (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5126                 }
5127 
5128                 if (postamble) {
5129                         /* data ends in the middle of the arc_buf */
5130                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5131                             blksz);
5132                         ASSERT(abuf);
5133                         (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5134                 }
5135                 break;
5136         case UIO_READ:
5137                 /*
5138                  * Loan out an arc_buf for read if the read size is larger than
5139                  * the current file block size.  Block alignment is not
5140                  * considered.  Partial arc_buf will be loaned out for read.
5141                  */
5142                 blksz = zp->z_blksz;
5143                 if (blksz < zcr_blksz_min)
5144                         blksz = zcr_blksz_min;
5145                 if (blksz > zcr_blksz_max)
5146                         blksz = zcr_blksz_max;
5147                 /* avoid potential complexity of dealing with it */
5148                 if (blksz > max_blksz) {
5149                         ZFS_EXIT(zfsvfs);
5150                         return (SET_ERROR(EINVAL));
5151                 }
5152 
5153                 maxsize = zp->z_size - uio->uio_loffset;
5154                 if (size > maxsize)
5155                         size = maxsize;
5156 
5157                 if (size < blksz || vn_has_cached_data(vp)) {
5158                         ZFS_EXIT(zfsvfs);
5159                         return (SET_ERROR(EINVAL));
5160                 }
5161                 break;
5162         default:
5163                 ZFS_EXIT(zfsvfs);
5164                 return (SET_ERROR(EINVAL));
5165         }
5166 
5167         uio->uio_extflg = UIO_XUIO;
5168         XUIO_XUZC_RW(xuio) = ioflag;
5169         ZFS_EXIT(zfsvfs);
5170         return (0);
5171 }
5172 
5173 /*ARGSUSED*/
5174 static int
5175 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5176 {
5177         int i;
5178         arc_buf_t *abuf;
5179         int ioflag = XUIO_XUZC_RW(xuio);
5180 
5181         ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5182 
5183         i = dmu_xuio_cnt(xuio);
5184         while (i-- > 0) {
5185                 abuf = dmu_xuio_arcbuf(xuio, i);
5186                 /*
5187                  * if abuf == NULL, it must be a write buffer
5188                  * that has been returned in zfs_write().
5189                  */
5190                 if (abuf)
5191                         dmu_return_arcbuf(abuf);
5192                 ASSERT(abuf || ioflag == UIO_WRITE);
5193         }
5194 
5195         dmu_xuio_fini(xuio);
5196         return (0);
5197 }
5198 
5199 /*
5200  * Predeclare these here so that the compiler assumes that
5201  * this is an "old style" function declaration that does
5202  * not include arguments => we won't get type mismatch errors
5203  * in the initializations that follow.
5204  */
5205 static int zfs_inval();
5206 static int zfs_isdir();
5207 
5208 static int
5209 zfs_inval()
5210 {
5211         return (SET_ERROR(EINVAL));
5212 }
5213 
5214 static int
5215 zfs_isdir()
5216 {
5217         return (SET_ERROR(EISDIR));
5218 }
5219 /*
5220  * Directory vnode operations template
5221  */
5222 vnodeops_t *zfs_dvnodeops;
5223 const fs_operation_def_t zfs_dvnodeops_template[] = {
5224         VOPNAME_OPEN,           { .vop_open = zfs_open },
5225         VOPNAME_CLOSE,          { .vop_close = zfs_close },
5226         VOPNAME_READ,           { .error = zfs_isdir },
5227         VOPNAME_WRITE,          { .error = zfs_isdir },
5228         VOPNAME_IOCTL,          { .vop_ioctl = zfs_ioctl },
5229         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5230         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5231         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5232         VOPNAME_LOOKUP,         { .vop_lookup = zfs_lookup },
5233         VOPNAME_CREATE,         { .vop_create = zfs_create },
5234         VOPNAME_REMOVE,         { .vop_remove = zfs_remove },
5235         VOPNAME_LINK,           { .vop_link = zfs_link },
5236         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5237         VOPNAME_MKDIR,          { .vop_mkdir = zfs_mkdir },
5238         VOPNAME_RMDIR,          { .vop_rmdir = zfs_rmdir },
5239         VOPNAME_READDIR,        { .vop_readdir = zfs_readdir },
5240         VOPNAME_SYMLINK,        { .vop_symlink = zfs_symlink },
5241         VOPNAME_FSYNC,          { .vop_fsync = zfs_fsync },
5242         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5243         VOPNAME_FID,            { .vop_fid = zfs_fid },
5244         VOPNAME_SEEK,           { .vop_seek = zfs_seek },
5245         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5246         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5247         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5248         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5249         NULL,                   NULL
5250 };
5251 
5252 /*
5253  * Regular file vnode operations template
5254  */
5255 vnodeops_t *zfs_fvnodeops;
5256 const fs_operation_def_t zfs_fvnodeops_template[] = {
5257         VOPNAME_OPEN,           { .vop_open = zfs_open },
5258         VOPNAME_CLOSE,          { .vop_close = zfs_close },
5259         VOPNAME_READ,           { .vop_read = zfs_read },
5260         VOPNAME_WRITE,          { .vop_write = zfs_write },
5261         VOPNAME_IOCTL,          { .vop_ioctl = zfs_ioctl },
5262         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5263         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5264         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5265         VOPNAME_LOOKUP,         { .vop_lookup = zfs_lookup },
5266         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5267         VOPNAME_FSYNC,          { .vop_fsync = zfs_fsync },
5268         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5269         VOPNAME_FID,            { .vop_fid = zfs_fid },
5270         VOPNAME_SEEK,           { .vop_seek = zfs_seek },
5271         VOPNAME_FRLOCK,         { .vop_frlock = zfs_frlock },
5272         VOPNAME_SPACE,          { .vop_space = zfs_space },
5273         VOPNAME_GETPAGE,        { .vop_getpage = zfs_getpage },
5274         VOPNAME_PUTPAGE,        { .vop_putpage = zfs_putpage },
5275         VOPNAME_MAP,            { .vop_map = zfs_map },
5276         VOPNAME_ADDMAP,         { .vop_addmap = zfs_addmap },
5277         VOPNAME_DELMAP,         { .vop_delmap = zfs_delmap },
5278         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5279         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5280         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5281         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5282         VOPNAME_REQZCBUF,       { .vop_reqzcbuf = zfs_reqzcbuf },
5283         VOPNAME_RETZCBUF,       { .vop_retzcbuf = zfs_retzcbuf },
5284         NULL,                   NULL
5285 };
5286 
5287 /*
5288  * Symbolic link vnode operations template
5289  */
5290 vnodeops_t *zfs_symvnodeops;
5291 const fs_operation_def_t zfs_symvnodeops_template[] = {
5292         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5293         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5294         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5295         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5296         VOPNAME_READLINK,       { .vop_readlink = zfs_readlink },
5297         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5298         VOPNAME_FID,            { .vop_fid = zfs_fid },
5299         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5300         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5301         NULL,                   NULL
5302 };
5303 
5304 /*
5305  * special share hidden files vnode operations template
5306  */
5307 vnodeops_t *zfs_sharevnodeops;
5308 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5309         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5310         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5311         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5312         VOPNAME_FID,            { .vop_fid = zfs_fid },
5313         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5314         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5315         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5316         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5317         NULL,                   NULL
5318 };
5319 
5320 /*
5321  * Extended attribute directory vnode operations template
5322  *
5323  * This template is identical to the directory vnodes
5324  * operation template except for restricted operations:
5325  *      VOP_MKDIR()
5326  *      VOP_SYMLINK()
5327  *
5328  * Note that there are other restrictions embedded in:
5329  *      zfs_create()    - restrict type to VREG
5330  *      zfs_link()      - no links into/out of attribute space
5331  *      zfs_rename()    - no moves into/out of attribute space
5332  */
5333 vnodeops_t *zfs_xdvnodeops;
5334 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5335         VOPNAME_OPEN,           { .vop_open = zfs_open },
5336         VOPNAME_CLOSE,          { .vop_close = zfs_close },
5337         VOPNAME_IOCTL,          { .vop_ioctl = zfs_ioctl },
5338         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5339         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5340         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5341         VOPNAME_LOOKUP,         { .vop_lookup = zfs_lookup },
5342         VOPNAME_CREATE,         { .vop_create = zfs_create },
5343         VOPNAME_REMOVE,         { .vop_remove = zfs_remove },
5344         VOPNAME_LINK,           { .vop_link = zfs_link },
5345         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5346         VOPNAME_MKDIR,          { .error = zfs_inval },
5347         VOPNAME_RMDIR,          { .vop_rmdir = zfs_rmdir },
5348         VOPNAME_READDIR,        { .vop_readdir = zfs_readdir },
5349         VOPNAME_SYMLINK,        { .error = zfs_inval },
5350         VOPNAME_FSYNC,          { .vop_fsync = zfs_fsync },
5351         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5352         VOPNAME_FID,            { .vop_fid = zfs_fid },
5353         VOPNAME_SEEK,           { .vop_seek = zfs_seek },
5354         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5355         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5356         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5357         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5358         NULL,                   NULL
5359 };
5360 
5361 /*
5362  * Error vnode operations template
5363  */
5364 vnodeops_t *zfs_evnodeops;
5365 const fs_operation_def_t zfs_evnodeops_template[] = {
5366         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5367         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5368         NULL,                   NULL
5369 };