1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2015 Joyent, Inc. 27 */ 28 29 /* Portions Copyright 2007 Jeremy Teo */ 30 /* Portions Copyright 2010 Robert Milkowski */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/time.h> 35 #include <sys/systm.h> 36 #include <sys/sysmacros.h> 37 #include <sys/resource.h> 38 #include <sys/vfs.h> 39 #include <sys/vfs_opreg.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/stat.h> 43 #include <sys/kmem.h> 44 #include <sys/taskq.h> 45 #include <sys/uio.h> 46 #include <sys/vmsystm.h> 47 #include <sys/atomic.h> 48 #include <sys/vm.h> 49 #include <vm/seg_vn.h> 50 #include <vm/pvn.h> 51 #include <vm/as.h> 52 #include <vm/kpm.h> 53 #include <vm/seg_kpm.h> 54 #include <sys/mman.h> 55 #include <sys/pathname.h> 56 #include <sys/cmn_err.h> 57 #include <sys/errno.h> 58 #include <sys/unistd.h> 59 #include <sys/zfs_dir.h> 60 #include <sys/zfs_acl.h> 61 #include <sys/zfs_ioctl.h> 62 #include <sys/fs/zfs.h> 63 #include <sys/dmu.h> 64 #include <sys/dmu_objset.h> 65 #include <sys/spa.h> 66 #include <sys/txg.h> 67 #include <sys/dbuf.h> 68 #include <sys/zap.h> 69 #include <sys/sa.h> 70 #include <sys/dirent.h> 71 #include <sys/policy.h> 72 #include <sys/sunddi.h> 73 #include <sys/filio.h> 74 #include <sys/sid.h> 75 #include "fs/fs_subr.h" 76 #include <sys/zfs_ctldir.h> 77 #include <sys/zfs_fuid.h> 78 #include <sys/zfs_sa.h> 79 #include <sys/dnlc.h> 80 #include <sys/zfs_rlock.h> 81 #include <sys/extdirent.h> 82 #include <sys/kidmap.h> 83 #include <sys/cred.h> 84 #include <sys/attr.h> 85 86 /* 87 * Programming rules. 88 * 89 * Each vnode op performs some logical unit of work. To do this, the ZPL must 90 * properly lock its in-core state, create a DMU transaction, do the work, 91 * record this work in the intent log (ZIL), commit the DMU transaction, 92 * and wait for the intent log to commit if it is a synchronous operation. 93 * Moreover, the vnode ops must work in both normal and log replay context. 94 * The ordering of events is important to avoid deadlocks and references 95 * to freed memory. The example below illustrates the following Big Rules: 96 * 97 * (1) A check must be made in each zfs thread for a mounted file system. 98 * This is done avoiding races using ZFS_ENTER(zfsvfs). 99 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 100 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 101 * can return EIO from the calling function. 102 * 103 * (2) VN_RELE() should always be the last thing except for zil_commit() 104 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 105 * First, if it's the last reference, the vnode/znode 106 * can be freed, so the zp may point to freed memory. Second, the last 107 * reference will call zfs_zinactive(), which may induce a lot of work -- 108 * pushing cached pages (which acquires range locks) and syncing out 109 * cached atime changes. Third, zfs_zinactive() may require a new tx, 110 * which could deadlock the system if you were already holding one. 111 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 112 * 113 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 114 * as they can span dmu_tx_assign() calls. 115 * 116 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 117 * dmu_tx_assign(). This is critical because we don't want to block 118 * while holding locks. 119 * 120 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 121 * reduces lock contention and CPU usage when we must wait (note that if 122 * throughput is constrained by the storage, nearly every transaction 123 * must wait). 124 * 125 * Note, in particular, that if a lock is sometimes acquired before 126 * the tx assigns, and sometimes after (e.g. z_lock), then failing 127 * to use a non-blocking assign can deadlock the system. The scenario: 128 * 129 * Thread A has grabbed a lock before calling dmu_tx_assign(). 130 * Thread B is in an already-assigned tx, and blocks for this lock. 131 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 132 * forever, because the previous txg can't quiesce until B's tx commits. 133 * 134 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 135 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 136 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT, 137 * to indicate that this operation has already called dmu_tx_wait(). 138 * This will ensure that we don't retry forever, waiting a short bit 139 * each time. 140 * 141 * (5) If the operation succeeded, generate the intent log entry for it 142 * before dropping locks. This ensures that the ordering of events 143 * in the intent log matches the order in which they actually occurred. 144 * During ZIL replay the zfs_log_* functions will update the sequence 145 * number to indicate the zil transaction has replayed. 146 * 147 * (6) At the end of each vnode op, the DMU tx must always commit, 148 * regardless of whether there were any errors. 149 * 150 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 151 * to ensure that synchronous semantics are provided when necessary. 152 * 153 * In general, this is how things should be ordered in each vnode op: 154 * 155 * ZFS_ENTER(zfsvfs); // exit if unmounted 156 * top: 157 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 158 * rw_enter(...); // grab any other locks you need 159 * tx = dmu_tx_create(...); // get DMU tx 160 * dmu_tx_hold_*(); // hold each object you might modify 161 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 162 * if (error) { 163 * rw_exit(...); // drop locks 164 * zfs_dirent_unlock(dl); // unlock directory entry 165 * VN_RELE(...); // release held vnodes 166 * if (error == ERESTART) { 167 * waited = B_TRUE; 168 * dmu_tx_wait(tx); 169 * dmu_tx_abort(tx); 170 * goto top; 171 * } 172 * dmu_tx_abort(tx); // abort DMU tx 173 * ZFS_EXIT(zfsvfs); // finished in zfs 174 * return (error); // really out of space 175 * } 176 * error = do_real_work(); // do whatever this VOP does 177 * if (error == 0) 178 * zfs_log_*(...); // on success, make ZIL entry 179 * dmu_tx_commit(tx); // commit DMU tx -- error or not 180 * rw_exit(...); // drop locks 181 * zfs_dirent_unlock(dl); // unlock directory entry 182 * VN_RELE(...); // release held vnodes 183 * zil_commit(zilog, foid); // synchronous when necessary 184 * ZFS_EXIT(zfsvfs); // finished in zfs 185 * return (error); // done, report error 186 */ 187 188 /* ARGSUSED */ 189 static int 190 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 191 { 192 znode_t *zp = VTOZ(*vpp); 193 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 194 195 ZFS_ENTER(zfsvfs); 196 ZFS_VERIFY_ZP(zp); 197 198 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 199 ((flag & FAPPEND) == 0)) { 200 ZFS_EXIT(zfsvfs); 201 return (SET_ERROR(EPERM)); 202 } 203 204 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 205 ZTOV(zp)->v_type == VREG && 206 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 207 if (fs_vscan(*vpp, cr, 0) != 0) { 208 ZFS_EXIT(zfsvfs); 209 return (SET_ERROR(EACCES)); 210 } 211 } 212 213 /* Keep a count of the synchronous opens in the znode */ 214 if (flag & (FSYNC | FDSYNC)) 215 atomic_inc_32(&zp->z_sync_cnt); 216 217 ZFS_EXIT(zfsvfs); 218 return (0); 219 } 220 221 /* ARGSUSED */ 222 static int 223 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 224 caller_context_t *ct) 225 { 226 znode_t *zp = VTOZ(vp); 227 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 228 229 /* 230 * Clean up any locks held by this process on the vp. 231 */ 232 cleanlocks(vp, ddi_get_pid(), 0); 233 cleanshares(vp, ddi_get_pid()); 234 235 ZFS_ENTER(zfsvfs); 236 ZFS_VERIFY_ZP(zp); 237 238 /* Decrement the synchronous opens in the znode */ 239 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 240 atomic_dec_32(&zp->z_sync_cnt); 241 242 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 243 ZTOV(zp)->v_type == VREG && 244 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 245 VERIFY(fs_vscan(vp, cr, 1) == 0); 246 247 ZFS_EXIT(zfsvfs); 248 return (0); 249 } 250 251 /* 252 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 253 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 254 */ 255 static int 256 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 257 { 258 znode_t *zp = VTOZ(vp); 259 uint64_t noff = (uint64_t)*off; /* new offset */ 260 uint64_t file_sz; 261 int error; 262 boolean_t hole; 263 264 file_sz = zp->z_size; 265 if (noff >= file_sz) { 266 return (SET_ERROR(ENXIO)); 267 } 268 269 if (cmd == _FIO_SEEK_HOLE) 270 hole = B_TRUE; 271 else 272 hole = B_FALSE; 273 274 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 275 276 if (error == ESRCH) 277 return (SET_ERROR(ENXIO)); 278 279 /* 280 * We could find a hole that begins after the logical end-of-file, 281 * because dmu_offset_next() only works on whole blocks. If the 282 * EOF falls mid-block, then indicate that the "virtual hole" 283 * at the end of the file begins at the logical EOF, rather than 284 * at the end of the last block. 285 */ 286 if (noff > file_sz) { 287 ASSERT(hole); 288 noff = file_sz; 289 } 290 291 if (noff < *off) 292 return (error); 293 *off = noff; 294 return (error); 295 } 296 297 /* ARGSUSED */ 298 static int 299 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 300 int *rvalp, caller_context_t *ct) 301 { 302 offset_t off; 303 offset_t ndata; 304 dmu_object_info_t doi; 305 int error; 306 zfsvfs_t *zfsvfs; 307 znode_t *zp; 308 309 switch (com) { 310 case _FIOFFS: 311 { 312 return (zfs_sync(vp->v_vfsp, 0, cred)); 313 314 /* 315 * The following two ioctls are used by bfu. Faking out, 316 * necessary to avoid bfu errors. 317 */ 318 } 319 case _FIOGDIO: 320 case _FIOSDIO: 321 { 322 return (0); 323 } 324 325 case _FIO_SEEK_DATA: 326 case _FIO_SEEK_HOLE: 327 { 328 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 329 return (SET_ERROR(EFAULT)); 330 331 zp = VTOZ(vp); 332 zfsvfs = zp->z_zfsvfs; 333 ZFS_ENTER(zfsvfs); 334 ZFS_VERIFY_ZP(zp); 335 336 /* offset parameter is in/out */ 337 error = zfs_holey(vp, com, &off); 338 ZFS_EXIT(zfsvfs); 339 if (error) 340 return (error); 341 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 342 return (SET_ERROR(EFAULT)); 343 return (0); 344 } 345 case _FIO_COUNT_FILLED: 346 { 347 /* 348 * _FIO_COUNT_FILLED adds a new ioctl command which 349 * exposes the number of filled blocks in a 350 * ZFS object. 351 */ 352 zp = VTOZ(vp); 353 zfsvfs = zp->z_zfsvfs; 354 ZFS_ENTER(zfsvfs); 355 ZFS_VERIFY_ZP(zp); 356 357 /* 358 * Wait for all dirty blocks for this object 359 * to get synced out to disk, and the DMU info 360 * updated. 361 */ 362 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id); 363 if (error) { 364 ZFS_EXIT(zfsvfs); 365 return (error); 366 } 367 368 /* 369 * Retrieve fill count from DMU object. 370 */ 371 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi); 372 if (error) { 373 ZFS_EXIT(zfsvfs); 374 return (error); 375 } 376 377 ndata = doi.doi_fill_count; 378 379 ZFS_EXIT(zfsvfs); 380 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag)) 381 return (SET_ERROR(EFAULT)); 382 return (0); 383 } 384 } 385 return (SET_ERROR(ENOTTY)); 386 } 387 388 /* 389 * Utility functions to map and unmap a single physical page. These 390 * are used to manage the mappable copies of ZFS file data, and therefore 391 * do not update ref/mod bits. 392 */ 393 caddr_t 394 zfs_map_page(page_t *pp, enum seg_rw rw) 395 { 396 if (kpm_enable) 397 return (hat_kpm_mapin(pp, 0)); 398 ASSERT(rw == S_READ || rw == S_WRITE); 399 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 400 (caddr_t)-1)); 401 } 402 403 void 404 zfs_unmap_page(page_t *pp, caddr_t addr) 405 { 406 if (kpm_enable) { 407 hat_kpm_mapout(pp, 0, addr); 408 } else { 409 ppmapout(addr); 410 } 411 } 412 413 /* 414 * When a file is memory mapped, we must keep the IO data synchronized 415 * between the DMU cache and the memory mapped pages. What this means: 416 * 417 * On Write: If we find a memory mapped page, we write to *both* 418 * the page and the dmu buffer. 419 */ 420 static void 421 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 422 { 423 int64_t off; 424 425 off = start & PAGEOFFSET; 426 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 427 page_t *pp; 428 uint64_t nbytes = MIN(PAGESIZE - off, len); 429 430 if (pp = page_lookup(vp, start, SE_SHARED)) { 431 caddr_t va; 432 433 va = zfs_map_page(pp, S_WRITE); 434 (void) dmu_read(os, oid, start+off, nbytes, va+off, 435 DMU_READ_PREFETCH); 436 zfs_unmap_page(pp, va); 437 page_unlock(pp); 438 } 439 len -= nbytes; 440 off = 0; 441 } 442 } 443 444 /* 445 * When a file is memory mapped, we must keep the IO data synchronized 446 * between the DMU cache and the memory mapped pages. What this means: 447 * 448 * On Read: We "read" preferentially from memory mapped pages, 449 * else we default from the dmu buffer. 450 * 451 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 452 * the file is memory mapped. 453 */ 454 static int 455 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 456 { 457 znode_t *zp = VTOZ(vp); 458 int64_t start, off; 459 int len = nbytes; 460 int error = 0; 461 462 start = uio->uio_loffset; 463 off = start & PAGEOFFSET; 464 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 465 page_t *pp; 466 uint64_t bytes = MIN(PAGESIZE - off, len); 467 468 if (pp = page_lookup(vp, start, SE_SHARED)) { 469 caddr_t va; 470 471 va = zfs_map_page(pp, S_READ); 472 error = uiomove(va + off, bytes, UIO_READ, uio); 473 zfs_unmap_page(pp, va); 474 page_unlock(pp); 475 } else { 476 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 477 uio, bytes); 478 } 479 len -= bytes; 480 off = 0; 481 if (error) 482 break; 483 } 484 return (error); 485 } 486 487 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 488 489 /* 490 * Read bytes from specified file into supplied buffer. 491 * 492 * IN: vp - vnode of file to be read from. 493 * uio - structure supplying read location, range info, 494 * and return buffer. 495 * ioflag - SYNC flags; used to provide FRSYNC semantics. 496 * cr - credentials of caller. 497 * ct - caller context 498 * 499 * OUT: uio - updated offset and range, buffer filled. 500 * 501 * RETURN: 0 on success, error code on failure. 502 * 503 * Side Effects: 504 * vp - atime updated if byte count > 0 505 */ 506 /* ARGSUSED */ 507 static int 508 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 509 { 510 znode_t *zp = VTOZ(vp); 511 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 512 ssize_t n, nbytes; 513 int error = 0; 514 rl_t *rl; 515 xuio_t *xuio = NULL; 516 517 ZFS_ENTER(zfsvfs); 518 ZFS_VERIFY_ZP(zp); 519 520 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 521 ZFS_EXIT(zfsvfs); 522 return (SET_ERROR(EACCES)); 523 } 524 525 /* 526 * Validate file offset 527 */ 528 if (uio->uio_loffset < (offset_t)0) { 529 ZFS_EXIT(zfsvfs); 530 return (SET_ERROR(EINVAL)); 531 } 532 533 /* 534 * Fasttrack empty reads 535 */ 536 if (uio->uio_resid == 0) { 537 ZFS_EXIT(zfsvfs); 538 return (0); 539 } 540 541 /* 542 * Check for mandatory locks 543 */ 544 if (MANDMODE(zp->z_mode)) { 545 if (error = chklock(vp, FREAD, 546 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 547 ZFS_EXIT(zfsvfs); 548 return (error); 549 } 550 } 551 552 /* 553 * If we're in FRSYNC mode, sync out this znode before reading it. 554 */ 555 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 556 zil_commit(zfsvfs->z_log, zp->z_id); 557 558 /* 559 * Lock the range against changes. 560 */ 561 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 562 563 /* 564 * If we are reading past end-of-file we can skip 565 * to the end; but we might still need to set atime. 566 */ 567 if (uio->uio_loffset >= zp->z_size) { 568 error = 0; 569 goto out; 570 } 571 572 ASSERT(uio->uio_loffset < zp->z_size); 573 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 574 575 if ((uio->uio_extflg == UIO_XUIO) && 576 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 577 int nblk; 578 int blksz = zp->z_blksz; 579 uint64_t offset = uio->uio_loffset; 580 581 xuio = (xuio_t *)uio; 582 if ((ISP2(blksz))) { 583 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 584 blksz)) / blksz; 585 } else { 586 ASSERT(offset + n <= blksz); 587 nblk = 1; 588 } 589 (void) dmu_xuio_init(xuio, nblk); 590 591 if (vn_has_cached_data(vp)) { 592 /* 593 * For simplicity, we always allocate a full buffer 594 * even if we only expect to read a portion of a block. 595 */ 596 while (--nblk >= 0) { 597 (void) dmu_xuio_add(xuio, 598 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 599 blksz), 0, blksz); 600 } 601 } 602 } 603 604 while (n > 0) { 605 nbytes = MIN(n, zfs_read_chunk_size - 606 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 607 608 if (vn_has_cached_data(vp)) { 609 error = mappedread(vp, nbytes, uio); 610 } else { 611 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 612 uio, nbytes); 613 } 614 if (error) { 615 /* convert checksum errors into IO errors */ 616 if (error == ECKSUM) 617 error = SET_ERROR(EIO); 618 break; 619 } 620 621 n -= nbytes; 622 } 623 out: 624 zfs_range_unlock(rl); 625 626 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 627 ZFS_EXIT(zfsvfs); 628 return (error); 629 } 630 631 /* 632 * Write the bytes to a file. 633 * 634 * IN: vp - vnode of file to be written to. 635 * uio - structure supplying write location, range info, 636 * and data buffer. 637 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 638 * set if in append mode. 639 * cr - credentials of caller. 640 * ct - caller context (NFS/CIFS fem monitor only) 641 * 642 * OUT: uio - updated offset and range. 643 * 644 * RETURN: 0 on success, error code on failure. 645 * 646 * Timestamps: 647 * vp - ctime|mtime updated if byte count > 0 648 */ 649 650 /* ARGSUSED */ 651 static int 652 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 653 { 654 znode_t *zp = VTOZ(vp); 655 rlim64_t limit = uio->uio_llimit; 656 ssize_t start_resid = uio->uio_resid; 657 ssize_t tx_bytes; 658 uint64_t end_size; 659 dmu_tx_t *tx; 660 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 661 zilog_t *zilog; 662 offset_t woff; 663 ssize_t n, nbytes; 664 rl_t *rl; 665 int max_blksz = zfsvfs->z_max_blksz; 666 int error = 0; 667 arc_buf_t *abuf; 668 iovec_t *aiov = NULL; 669 xuio_t *xuio = NULL; 670 int i_iov = 0; 671 int iovcnt = uio->uio_iovcnt; 672 iovec_t *iovp = uio->uio_iov; 673 int write_eof; 674 int count = 0; 675 sa_bulk_attr_t bulk[4]; 676 uint64_t mtime[2], ctime[2]; 677 678 /* 679 * Fasttrack empty write 680 */ 681 n = start_resid; 682 if (n == 0) 683 return (0); 684 685 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 686 limit = MAXOFFSET_T; 687 688 ZFS_ENTER(zfsvfs); 689 ZFS_VERIFY_ZP(zp); 690 691 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 692 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 693 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 694 &zp->z_size, 8); 695 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 696 &zp->z_pflags, 8); 697 698 /* 699 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 700 * callers might not be able to detect properly that we are read-only, 701 * so check it explicitly here. 702 */ 703 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 704 ZFS_EXIT(zfsvfs); 705 return (SET_ERROR(EROFS)); 706 } 707 708 /* 709 * If immutable or not appending then return EPERM 710 */ 711 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 712 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 713 (uio->uio_loffset < zp->z_size))) { 714 ZFS_EXIT(zfsvfs); 715 return (SET_ERROR(EPERM)); 716 } 717 718 zilog = zfsvfs->z_log; 719 720 /* 721 * Validate file offset 722 */ 723 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 724 if (woff < 0) { 725 ZFS_EXIT(zfsvfs); 726 return (SET_ERROR(EINVAL)); 727 } 728 729 /* 730 * Check for mandatory locks before calling zfs_range_lock() 731 * in order to prevent a deadlock with locks set via fcntl(). 732 */ 733 if (MANDMODE((mode_t)zp->z_mode) && 734 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 735 ZFS_EXIT(zfsvfs); 736 return (error); 737 } 738 739 /* 740 * Pre-fault the pages to ensure slow (eg NFS) pages 741 * don't hold up txg. 742 * Skip this if uio contains loaned arc_buf. 743 */ 744 if ((uio->uio_extflg == UIO_XUIO) && 745 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 746 xuio = (xuio_t *)uio; 747 else 748 uio_prefaultpages(MIN(n, max_blksz), uio); 749 750 /* 751 * If in append mode, set the io offset pointer to eof. 752 */ 753 if (ioflag & FAPPEND) { 754 /* 755 * Obtain an appending range lock to guarantee file append 756 * semantics. We reset the write offset once we have the lock. 757 */ 758 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 759 woff = rl->r_off; 760 if (rl->r_len == UINT64_MAX) { 761 /* 762 * We overlocked the file because this write will cause 763 * the file block size to increase. 764 * Note that zp_size cannot change with this lock held. 765 */ 766 woff = zp->z_size; 767 } 768 uio->uio_loffset = woff; 769 } else { 770 /* 771 * Note that if the file block size will change as a result of 772 * this write, then this range lock will lock the entire file 773 * so that we can re-write the block safely. 774 */ 775 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 776 } 777 778 if (woff >= limit) { 779 zfs_range_unlock(rl); 780 ZFS_EXIT(zfsvfs); 781 return (SET_ERROR(EFBIG)); 782 } 783 784 if ((woff + n) > limit || woff > (limit - n)) 785 n = limit - woff; 786 787 /* Will this write extend the file length? */ 788 write_eof = (woff + n > zp->z_size); 789 790 end_size = MAX(zp->z_size, woff + n); 791 792 /* 793 * Write the file in reasonable size chunks. Each chunk is written 794 * in a separate transaction; this keeps the intent log records small 795 * and allows us to do more fine-grained space accounting. 796 */ 797 while (n > 0) { 798 abuf = NULL; 799 woff = uio->uio_loffset; 800 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 801 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 802 if (abuf != NULL) 803 dmu_return_arcbuf(abuf); 804 error = SET_ERROR(EDQUOT); 805 break; 806 } 807 808 if (xuio && abuf == NULL) { 809 ASSERT(i_iov < iovcnt); 810 aiov = &iovp[i_iov]; 811 abuf = dmu_xuio_arcbuf(xuio, i_iov); 812 dmu_xuio_clear(xuio, i_iov); 813 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 814 iovec_t *, aiov, arc_buf_t *, abuf); 815 ASSERT((aiov->iov_base == abuf->b_data) || 816 ((char *)aiov->iov_base - (char *)abuf->b_data + 817 aiov->iov_len == arc_buf_size(abuf))); 818 i_iov++; 819 } else if (abuf == NULL && n >= max_blksz && 820 woff >= zp->z_size && 821 P2PHASE(woff, max_blksz) == 0 && 822 zp->z_blksz == max_blksz) { 823 /* 824 * This write covers a full block. "Borrow" a buffer 825 * from the dmu so that we can fill it before we enter 826 * a transaction. This avoids the possibility of 827 * holding up the transaction if the data copy hangs 828 * up on a pagefault (e.g., from an NFS server mapping). 829 */ 830 size_t cbytes; 831 832 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 833 max_blksz); 834 ASSERT(abuf != NULL); 835 ASSERT(arc_buf_size(abuf) == max_blksz); 836 if (error = uiocopy(abuf->b_data, max_blksz, 837 UIO_WRITE, uio, &cbytes)) { 838 dmu_return_arcbuf(abuf); 839 break; 840 } 841 ASSERT(cbytes == max_blksz); 842 } 843 844 /* 845 * Start a transaction. 846 */ 847 tx = dmu_tx_create(zfsvfs->z_os); 848 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 849 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 850 zfs_sa_upgrade_txholds(tx, zp); 851 error = dmu_tx_assign(tx, TXG_WAIT); 852 if (error) { 853 dmu_tx_abort(tx); 854 if (abuf != NULL) 855 dmu_return_arcbuf(abuf); 856 break; 857 } 858 859 /* 860 * If zfs_range_lock() over-locked we grow the blocksize 861 * and then reduce the lock range. This will only happen 862 * on the first iteration since zfs_range_reduce() will 863 * shrink down r_len to the appropriate size. 864 */ 865 if (rl->r_len == UINT64_MAX) { 866 uint64_t new_blksz; 867 868 if (zp->z_blksz > max_blksz) { 869 /* 870 * File's blocksize is already larger than the 871 * "recordsize" property. Only let it grow to 872 * the next power of 2. 873 */ 874 ASSERT(!ISP2(zp->z_blksz)); 875 new_blksz = MIN(end_size, 876 1 << highbit64(zp->z_blksz)); 877 } else { 878 new_blksz = MIN(end_size, max_blksz); 879 } 880 zfs_grow_blocksize(zp, new_blksz, tx); 881 zfs_range_reduce(rl, woff, n); 882 } 883 884 /* 885 * XXX - should we really limit each write to z_max_blksz? 886 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 887 */ 888 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 889 890 if (abuf == NULL) { 891 tx_bytes = uio->uio_resid; 892 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 893 uio, nbytes, tx); 894 tx_bytes -= uio->uio_resid; 895 } else { 896 tx_bytes = nbytes; 897 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 898 /* 899 * If this is not a full block write, but we are 900 * extending the file past EOF and this data starts 901 * block-aligned, use assign_arcbuf(). Otherwise, 902 * write via dmu_write(). 903 */ 904 if (tx_bytes < max_blksz && (!write_eof || 905 aiov->iov_base != abuf->b_data)) { 906 ASSERT(xuio); 907 dmu_write(zfsvfs->z_os, zp->z_id, woff, 908 aiov->iov_len, aiov->iov_base, tx); 909 dmu_return_arcbuf(abuf); 910 xuio_stat_wbuf_copied(); 911 } else { 912 ASSERT(xuio || tx_bytes == max_blksz); 913 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 914 woff, abuf, tx); 915 } 916 ASSERT(tx_bytes <= uio->uio_resid); 917 uioskip(uio, tx_bytes); 918 } 919 if (tx_bytes && vn_has_cached_data(vp)) { 920 update_pages(vp, woff, 921 tx_bytes, zfsvfs->z_os, zp->z_id); 922 } 923 924 /* 925 * If we made no progress, we're done. If we made even 926 * partial progress, update the znode and ZIL accordingly. 927 */ 928 if (tx_bytes == 0) { 929 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 930 (void *)&zp->z_size, sizeof (uint64_t), tx); 931 dmu_tx_commit(tx); 932 ASSERT(error != 0); 933 break; 934 } 935 936 /* 937 * Clear Set-UID/Set-GID bits on successful write if not 938 * privileged and at least one of the excute bits is set. 939 * 940 * It would be nice to to this after all writes have 941 * been done, but that would still expose the ISUID/ISGID 942 * to another app after the partial write is committed. 943 * 944 * Note: we don't call zfs_fuid_map_id() here because 945 * user 0 is not an ephemeral uid. 946 */ 947 mutex_enter(&zp->z_acl_lock); 948 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 949 (S_IXUSR >> 6))) != 0 && 950 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 951 secpolicy_vnode_setid_retain(cr, 952 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 953 uint64_t newmode; 954 zp->z_mode &= ~(S_ISUID | S_ISGID); 955 newmode = zp->z_mode; 956 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 957 (void *)&newmode, sizeof (uint64_t), tx); 958 } 959 mutex_exit(&zp->z_acl_lock); 960 961 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 962 B_TRUE); 963 964 /* 965 * Update the file size (zp_size) if it has changed; 966 * account for possible concurrent updates. 967 */ 968 while ((end_size = zp->z_size) < uio->uio_loffset) { 969 (void) atomic_cas_64(&zp->z_size, end_size, 970 uio->uio_loffset); 971 ASSERT(error == 0); 972 } 973 /* 974 * If we are replaying and eof is non zero then force 975 * the file size to the specified eof. Note, there's no 976 * concurrency during replay. 977 */ 978 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 979 zp->z_size = zfsvfs->z_replay_eof; 980 981 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 982 983 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 984 dmu_tx_commit(tx); 985 986 if (error != 0) 987 break; 988 ASSERT(tx_bytes == nbytes); 989 n -= nbytes; 990 991 if (!xuio && n > 0) 992 uio_prefaultpages(MIN(n, max_blksz), uio); 993 } 994 995 zfs_range_unlock(rl); 996 997 /* 998 * If we're in replay mode, or we made no progress, return error. 999 * Otherwise, it's at least a partial write, so it's successful. 1000 */ 1001 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 1002 ZFS_EXIT(zfsvfs); 1003 return (error); 1004 } 1005 1006 if (ioflag & (FSYNC | FDSYNC) || 1007 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1008 zil_commit(zilog, zp->z_id); 1009 1010 ZFS_EXIT(zfsvfs); 1011 return (0); 1012 } 1013 1014 void 1015 zfs_get_done(zgd_t *zgd, int error) 1016 { 1017 znode_t *zp = zgd->zgd_private; 1018 objset_t *os = zp->z_zfsvfs->z_os; 1019 1020 if (zgd->zgd_db) 1021 dmu_buf_rele(zgd->zgd_db, zgd); 1022 1023 zfs_range_unlock(zgd->zgd_rl); 1024 1025 /* 1026 * Release the vnode asynchronously as we currently have the 1027 * txg stopped from syncing. 1028 */ 1029 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1030 1031 if (error == 0 && zgd->zgd_bp) 1032 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1033 1034 kmem_free(zgd, sizeof (zgd_t)); 1035 } 1036 1037 #ifdef DEBUG 1038 static int zil_fault_io = 0; 1039 #endif 1040 1041 /* 1042 * Get data to generate a TX_WRITE intent log record. 1043 */ 1044 int 1045 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1046 { 1047 zfsvfs_t *zfsvfs = arg; 1048 objset_t *os = zfsvfs->z_os; 1049 znode_t *zp; 1050 uint64_t object = lr->lr_foid; 1051 uint64_t offset = lr->lr_offset; 1052 uint64_t size = lr->lr_length; 1053 blkptr_t *bp = &lr->lr_blkptr; 1054 dmu_buf_t *db; 1055 zgd_t *zgd; 1056 int error = 0; 1057 1058 ASSERT(zio != NULL); 1059 ASSERT(size != 0); 1060 1061 /* 1062 * Nothing to do if the file has been removed 1063 */ 1064 if (zfs_zget(zfsvfs, object, &zp) != 0) 1065 return (SET_ERROR(ENOENT)); 1066 if (zp->z_unlinked) { 1067 /* 1068 * Release the vnode asynchronously as we currently have the 1069 * txg stopped from syncing. 1070 */ 1071 VN_RELE_ASYNC(ZTOV(zp), 1072 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1073 return (SET_ERROR(ENOENT)); 1074 } 1075 1076 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1077 zgd->zgd_zilog = zfsvfs->z_log; 1078 zgd->zgd_private = zp; 1079 1080 /* 1081 * Write records come in two flavors: immediate and indirect. 1082 * For small writes it's cheaper to store the data with the 1083 * log record (immediate); for large writes it's cheaper to 1084 * sync the data and get a pointer to it (indirect) so that 1085 * we don't have to write the data twice. 1086 */ 1087 if (buf != NULL) { /* immediate write */ 1088 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1089 /* test for truncation needs to be done while range locked */ 1090 if (offset >= zp->z_size) { 1091 error = SET_ERROR(ENOENT); 1092 } else { 1093 error = dmu_read(os, object, offset, size, buf, 1094 DMU_READ_NO_PREFETCH); 1095 } 1096 ASSERT(error == 0 || error == ENOENT); 1097 } else { /* indirect write */ 1098 /* 1099 * Have to lock the whole block to ensure when it's 1100 * written out and it's checksum is being calculated 1101 * that no one can change the data. We need to re-check 1102 * blocksize after we get the lock in case it's changed! 1103 */ 1104 for (;;) { 1105 uint64_t blkoff; 1106 size = zp->z_blksz; 1107 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1108 offset -= blkoff; 1109 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1110 RL_READER); 1111 if (zp->z_blksz == size) 1112 break; 1113 offset += blkoff; 1114 zfs_range_unlock(zgd->zgd_rl); 1115 } 1116 /* test for truncation needs to be done while range locked */ 1117 if (lr->lr_offset >= zp->z_size) 1118 error = SET_ERROR(ENOENT); 1119 #ifdef DEBUG 1120 if (zil_fault_io) { 1121 error = SET_ERROR(EIO); 1122 zil_fault_io = 0; 1123 } 1124 #endif 1125 if (error == 0) 1126 error = dmu_buf_hold(os, object, offset, zgd, &db, 1127 DMU_READ_NO_PREFETCH); 1128 1129 if (error == 0) { 1130 blkptr_t *obp = dmu_buf_get_blkptr(db); 1131 if (obp) { 1132 ASSERT(BP_IS_HOLE(bp)); 1133 *bp = *obp; 1134 } 1135 1136 zgd->zgd_db = db; 1137 zgd->zgd_bp = bp; 1138 1139 ASSERT(db->db_offset == offset); 1140 ASSERT(db->db_size == size); 1141 1142 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1143 zfs_get_done, zgd); 1144 ASSERT(error || lr->lr_length <= zp->z_blksz); 1145 1146 /* 1147 * On success, we need to wait for the write I/O 1148 * initiated by dmu_sync() to complete before we can 1149 * release this dbuf. We will finish everything up 1150 * in the zfs_get_done() callback. 1151 */ 1152 if (error == 0) 1153 return (0); 1154 1155 if (error == EALREADY) { 1156 lr->lr_common.lrc_txtype = TX_WRITE2; 1157 error = 0; 1158 } 1159 } 1160 } 1161 1162 zfs_get_done(zgd, error); 1163 1164 return (error); 1165 } 1166 1167 /*ARGSUSED*/ 1168 static int 1169 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1170 caller_context_t *ct) 1171 { 1172 znode_t *zp = VTOZ(vp); 1173 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1174 int error; 1175 1176 ZFS_ENTER(zfsvfs); 1177 ZFS_VERIFY_ZP(zp); 1178 1179 if (flag & V_ACE_MASK) 1180 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1181 else 1182 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1183 1184 ZFS_EXIT(zfsvfs); 1185 return (error); 1186 } 1187 1188 /* 1189 * If vnode is for a device return a specfs vnode instead. 1190 */ 1191 static int 1192 specvp_check(vnode_t **vpp, cred_t *cr) 1193 { 1194 int error = 0; 1195 1196 if (IS_DEVVP(*vpp)) { 1197 struct vnode *svp; 1198 1199 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1200 VN_RELE(*vpp); 1201 if (svp == NULL) 1202 error = SET_ERROR(ENOSYS); 1203 *vpp = svp; 1204 } 1205 return (error); 1206 } 1207 1208 1209 /* 1210 * Lookup an entry in a directory, or an extended attribute directory. 1211 * If it exists, return a held vnode reference for it. 1212 * 1213 * IN: dvp - vnode of directory to search. 1214 * nm - name of entry to lookup. 1215 * pnp - full pathname to lookup [UNUSED]. 1216 * flags - LOOKUP_XATTR set if looking for an attribute. 1217 * rdir - root directory vnode [UNUSED]. 1218 * cr - credentials of caller. 1219 * ct - caller context 1220 * direntflags - directory lookup flags 1221 * realpnp - returned pathname. 1222 * 1223 * OUT: vpp - vnode of located entry, NULL if not found. 1224 * 1225 * RETURN: 0 on success, error code on failure. 1226 * 1227 * Timestamps: 1228 * NA 1229 */ 1230 /* ARGSUSED */ 1231 static int 1232 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1233 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1234 int *direntflags, pathname_t *realpnp) 1235 { 1236 znode_t *zdp = VTOZ(dvp); 1237 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1238 int error = 0; 1239 1240 /* fast path */ 1241 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1242 1243 if (dvp->v_type != VDIR) { 1244 return (SET_ERROR(ENOTDIR)); 1245 } else if (zdp->z_sa_hdl == NULL) { 1246 return (SET_ERROR(EIO)); 1247 } 1248 1249 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1250 error = zfs_fastaccesschk_execute(zdp, cr); 1251 if (!error) { 1252 *vpp = dvp; 1253 VN_HOLD(*vpp); 1254 return (0); 1255 } 1256 return (error); 1257 } else { 1258 vnode_t *tvp = dnlc_lookup(dvp, nm); 1259 1260 if (tvp) { 1261 error = zfs_fastaccesschk_execute(zdp, cr); 1262 if (error) { 1263 VN_RELE(tvp); 1264 return (error); 1265 } 1266 if (tvp == DNLC_NO_VNODE) { 1267 VN_RELE(tvp); 1268 return (SET_ERROR(ENOENT)); 1269 } else { 1270 *vpp = tvp; 1271 return (specvp_check(vpp, cr)); 1272 } 1273 } 1274 } 1275 } 1276 1277 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1278 1279 ZFS_ENTER(zfsvfs); 1280 ZFS_VERIFY_ZP(zdp); 1281 1282 *vpp = NULL; 1283 1284 if (flags & LOOKUP_XATTR) { 1285 /* 1286 * If the xattr property is off, refuse the lookup request. 1287 */ 1288 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1289 ZFS_EXIT(zfsvfs); 1290 return (SET_ERROR(EINVAL)); 1291 } 1292 1293 /* 1294 * We don't allow recursive attributes.. 1295 * Maybe someday we will. 1296 */ 1297 if (zdp->z_pflags & ZFS_XATTR) { 1298 ZFS_EXIT(zfsvfs); 1299 return (SET_ERROR(EINVAL)); 1300 } 1301 1302 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1303 ZFS_EXIT(zfsvfs); 1304 return (error); 1305 } 1306 1307 /* 1308 * Do we have permission to get into attribute directory? 1309 */ 1310 1311 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1312 B_FALSE, cr)) { 1313 VN_RELE(*vpp); 1314 *vpp = NULL; 1315 } 1316 1317 ZFS_EXIT(zfsvfs); 1318 return (error); 1319 } 1320 1321 if (dvp->v_type != VDIR) { 1322 ZFS_EXIT(zfsvfs); 1323 return (SET_ERROR(ENOTDIR)); 1324 } 1325 1326 /* 1327 * Check accessibility of directory. 1328 */ 1329 1330 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1331 ZFS_EXIT(zfsvfs); 1332 return (error); 1333 } 1334 1335 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1336 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1337 ZFS_EXIT(zfsvfs); 1338 return (SET_ERROR(EILSEQ)); 1339 } 1340 1341 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1342 if (error == 0) 1343 error = specvp_check(vpp, cr); 1344 1345 ZFS_EXIT(zfsvfs); 1346 return (error); 1347 } 1348 1349 /* 1350 * Attempt to create a new entry in a directory. If the entry 1351 * already exists, truncate the file if permissible, else return 1352 * an error. Return the vp of the created or trunc'd file. 1353 * 1354 * IN: dvp - vnode of directory to put new file entry in. 1355 * name - name of new file entry. 1356 * vap - attributes of new file. 1357 * excl - flag indicating exclusive or non-exclusive mode. 1358 * mode - mode to open file with. 1359 * cr - credentials of caller. 1360 * flag - large file flag [UNUSED]. 1361 * ct - caller context 1362 * vsecp - ACL to be set 1363 * 1364 * OUT: vpp - vnode of created or trunc'd entry. 1365 * 1366 * RETURN: 0 on success, error code on failure. 1367 * 1368 * Timestamps: 1369 * dvp - ctime|mtime updated if new entry created 1370 * vp - ctime|mtime always, atime if new 1371 */ 1372 1373 /* ARGSUSED */ 1374 static int 1375 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1376 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1377 vsecattr_t *vsecp) 1378 { 1379 znode_t *zp, *dzp = VTOZ(dvp); 1380 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1381 zilog_t *zilog; 1382 objset_t *os; 1383 zfs_dirlock_t *dl; 1384 dmu_tx_t *tx; 1385 int error; 1386 ksid_t *ksid; 1387 uid_t uid; 1388 gid_t gid = crgetgid(cr); 1389 zfs_acl_ids_t acl_ids; 1390 boolean_t fuid_dirtied; 1391 boolean_t have_acl = B_FALSE; 1392 boolean_t waited = B_FALSE; 1393 1394 /* 1395 * If we have an ephemeral id, ACL, or XVATTR then 1396 * make sure file system is at proper version 1397 */ 1398 1399 ksid = crgetsid(cr, KSID_OWNER); 1400 if (ksid) 1401 uid = ksid_getid(ksid); 1402 else 1403 uid = crgetuid(cr); 1404 1405 if (zfsvfs->z_use_fuids == B_FALSE && 1406 (vsecp || (vap->va_mask & AT_XVATTR) || 1407 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1408 return (SET_ERROR(EINVAL)); 1409 1410 ZFS_ENTER(zfsvfs); 1411 ZFS_VERIFY_ZP(dzp); 1412 os = zfsvfs->z_os; 1413 zilog = zfsvfs->z_log; 1414 1415 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1416 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1417 ZFS_EXIT(zfsvfs); 1418 return (SET_ERROR(EILSEQ)); 1419 } 1420 1421 if (vap->va_mask & AT_XVATTR) { 1422 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1423 crgetuid(cr), cr, vap->va_type)) != 0) { 1424 ZFS_EXIT(zfsvfs); 1425 return (error); 1426 } 1427 } 1428 top: 1429 *vpp = NULL; 1430 1431 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1432 vap->va_mode &= ~VSVTX; 1433 1434 if (*name == '\0') { 1435 /* 1436 * Null component name refers to the directory itself. 1437 */ 1438 VN_HOLD(dvp); 1439 zp = dzp; 1440 dl = NULL; 1441 error = 0; 1442 } else { 1443 /* possible VN_HOLD(zp) */ 1444 int zflg = 0; 1445 1446 if (flag & FIGNORECASE) 1447 zflg |= ZCILOOK; 1448 1449 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1450 NULL, NULL); 1451 if (error) { 1452 if (have_acl) 1453 zfs_acl_ids_free(&acl_ids); 1454 if (strcmp(name, "..") == 0) 1455 error = SET_ERROR(EISDIR); 1456 ZFS_EXIT(zfsvfs); 1457 return (error); 1458 } 1459 } 1460 1461 if (zp == NULL) { 1462 uint64_t txtype; 1463 1464 /* 1465 * Create a new file object and update the directory 1466 * to reference it. 1467 */ 1468 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1469 if (have_acl) 1470 zfs_acl_ids_free(&acl_ids); 1471 goto out; 1472 } 1473 1474 /* 1475 * We only support the creation of regular files in 1476 * extended attribute directories. 1477 */ 1478 1479 if ((dzp->z_pflags & ZFS_XATTR) && 1480 (vap->va_type != VREG)) { 1481 if (have_acl) 1482 zfs_acl_ids_free(&acl_ids); 1483 error = SET_ERROR(EINVAL); 1484 goto out; 1485 } 1486 1487 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1488 cr, vsecp, &acl_ids)) != 0) 1489 goto out; 1490 have_acl = B_TRUE; 1491 1492 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1493 zfs_acl_ids_free(&acl_ids); 1494 error = SET_ERROR(EDQUOT); 1495 goto out; 1496 } 1497 1498 tx = dmu_tx_create(os); 1499 1500 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1501 ZFS_SA_BASE_ATTR_SIZE); 1502 1503 fuid_dirtied = zfsvfs->z_fuid_dirty; 1504 if (fuid_dirtied) 1505 zfs_fuid_txhold(zfsvfs, tx); 1506 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1507 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1508 if (!zfsvfs->z_use_sa && 1509 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1510 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1511 0, acl_ids.z_aclp->z_acl_bytes); 1512 } 1513 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1514 if (error) { 1515 zfs_dirent_unlock(dl); 1516 if (error == ERESTART) { 1517 waited = B_TRUE; 1518 dmu_tx_wait(tx); 1519 dmu_tx_abort(tx); 1520 goto top; 1521 } 1522 zfs_acl_ids_free(&acl_ids); 1523 dmu_tx_abort(tx); 1524 ZFS_EXIT(zfsvfs); 1525 return (error); 1526 } 1527 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1528 1529 if (fuid_dirtied) 1530 zfs_fuid_sync(zfsvfs, tx); 1531 1532 (void) zfs_link_create(dl, zp, tx, ZNEW); 1533 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1534 if (flag & FIGNORECASE) 1535 txtype |= TX_CI; 1536 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1537 vsecp, acl_ids.z_fuidp, vap); 1538 zfs_acl_ids_free(&acl_ids); 1539 dmu_tx_commit(tx); 1540 } else { 1541 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1542 1543 if (have_acl) 1544 zfs_acl_ids_free(&acl_ids); 1545 have_acl = B_FALSE; 1546 1547 /* 1548 * A directory entry already exists for this name. 1549 */ 1550 /* 1551 * Can't truncate an existing file if in exclusive mode. 1552 */ 1553 if (excl == EXCL) { 1554 error = SET_ERROR(EEXIST); 1555 goto out; 1556 } 1557 /* 1558 * Can't open a directory for writing. 1559 */ 1560 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1561 error = SET_ERROR(EISDIR); 1562 goto out; 1563 } 1564 /* 1565 * Verify requested access to file. 1566 */ 1567 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1568 goto out; 1569 } 1570 1571 mutex_enter(&dzp->z_lock); 1572 dzp->z_seq++; 1573 mutex_exit(&dzp->z_lock); 1574 1575 /* 1576 * Truncate regular files if requested. 1577 */ 1578 if ((ZTOV(zp)->v_type == VREG) && 1579 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1580 /* we can't hold any locks when calling zfs_freesp() */ 1581 zfs_dirent_unlock(dl); 1582 dl = NULL; 1583 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1584 if (error == 0) { 1585 vnevent_create(ZTOV(zp), ct); 1586 } 1587 } 1588 } 1589 out: 1590 1591 if (dl) 1592 zfs_dirent_unlock(dl); 1593 1594 if (error) { 1595 if (zp) 1596 VN_RELE(ZTOV(zp)); 1597 } else { 1598 *vpp = ZTOV(zp); 1599 error = specvp_check(vpp, cr); 1600 } 1601 1602 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1603 zil_commit(zilog, 0); 1604 1605 ZFS_EXIT(zfsvfs); 1606 return (error); 1607 } 1608 1609 /* 1610 * Remove an entry from a directory. 1611 * 1612 * IN: dvp - vnode of directory to remove entry from. 1613 * name - name of entry to remove. 1614 * cr - credentials of caller. 1615 * ct - caller context 1616 * flags - case flags 1617 * 1618 * RETURN: 0 on success, error code on failure. 1619 * 1620 * Timestamps: 1621 * dvp - ctime|mtime 1622 * vp - ctime (if nlink > 0) 1623 */ 1624 1625 uint64_t null_xattr = 0; 1626 1627 /*ARGSUSED*/ 1628 static int 1629 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1630 int flags) 1631 { 1632 znode_t *zp, *dzp = VTOZ(dvp); 1633 znode_t *xzp; 1634 vnode_t *vp; 1635 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1636 zilog_t *zilog; 1637 uint64_t acl_obj, xattr_obj; 1638 uint64_t xattr_obj_unlinked = 0; 1639 uint64_t obj = 0; 1640 zfs_dirlock_t *dl; 1641 dmu_tx_t *tx; 1642 boolean_t may_delete_now, delete_now = FALSE; 1643 boolean_t unlinked, toobig = FALSE; 1644 uint64_t txtype; 1645 pathname_t *realnmp = NULL; 1646 pathname_t realnm; 1647 int error; 1648 int zflg = ZEXISTS; 1649 boolean_t waited = B_FALSE; 1650 1651 ZFS_ENTER(zfsvfs); 1652 ZFS_VERIFY_ZP(dzp); 1653 zilog = zfsvfs->z_log; 1654 1655 if (flags & FIGNORECASE) { 1656 zflg |= ZCILOOK; 1657 pn_alloc(&realnm); 1658 realnmp = &realnm; 1659 } 1660 1661 top: 1662 xattr_obj = 0; 1663 xzp = NULL; 1664 /* 1665 * Attempt to lock directory; fail if entry doesn't exist. 1666 */ 1667 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1668 NULL, realnmp)) { 1669 if (realnmp) 1670 pn_free(realnmp); 1671 ZFS_EXIT(zfsvfs); 1672 return (error); 1673 } 1674 1675 vp = ZTOV(zp); 1676 1677 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1678 goto out; 1679 } 1680 1681 /* 1682 * Need to use rmdir for removing directories. 1683 */ 1684 if (vp->v_type == VDIR) { 1685 error = SET_ERROR(EPERM); 1686 goto out; 1687 } 1688 1689 vnevent_remove(vp, dvp, name, ct); 1690 1691 if (realnmp) 1692 dnlc_remove(dvp, realnmp->pn_buf); 1693 else 1694 dnlc_remove(dvp, name); 1695 1696 mutex_enter(&vp->v_lock); 1697 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1698 mutex_exit(&vp->v_lock); 1699 1700 /* 1701 * We may delete the znode now, or we may put it in the unlinked set; 1702 * it depends on whether we're the last link, and on whether there are 1703 * other holds on the vnode. So we dmu_tx_hold() the right things to 1704 * allow for either case. 1705 */ 1706 obj = zp->z_id; 1707 tx = dmu_tx_create(zfsvfs->z_os); 1708 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1709 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1710 zfs_sa_upgrade_txholds(tx, zp); 1711 zfs_sa_upgrade_txholds(tx, dzp); 1712 if (may_delete_now) { 1713 toobig = 1714 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1715 /* if the file is too big, only hold_free a token amount */ 1716 dmu_tx_hold_free(tx, zp->z_id, 0, 1717 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1718 } 1719 1720 /* are there any extended attributes? */ 1721 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1722 &xattr_obj, sizeof (xattr_obj)); 1723 if (error == 0 && xattr_obj) { 1724 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1725 ASSERT0(error); 1726 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1727 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1728 } 1729 1730 mutex_enter(&zp->z_lock); 1731 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1732 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1733 mutex_exit(&zp->z_lock); 1734 1735 /* charge as an update -- would be nice not to charge at all */ 1736 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1737 1738 /* 1739 * Mark this transaction as typically resulting in a net free of space 1740 */ 1741 dmu_tx_mark_netfree(tx); 1742 1743 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1744 if (error) { 1745 zfs_dirent_unlock(dl); 1746 VN_RELE(vp); 1747 if (xzp) 1748 VN_RELE(ZTOV(xzp)); 1749 if (error == ERESTART) { 1750 waited = B_TRUE; 1751 dmu_tx_wait(tx); 1752 dmu_tx_abort(tx); 1753 goto top; 1754 } 1755 if (realnmp) 1756 pn_free(realnmp); 1757 dmu_tx_abort(tx); 1758 ZFS_EXIT(zfsvfs); 1759 return (error); 1760 } 1761 1762 /* 1763 * Remove the directory entry. 1764 */ 1765 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1766 1767 if (error) { 1768 dmu_tx_commit(tx); 1769 goto out; 1770 } 1771 1772 if (unlinked) { 1773 /* 1774 * Hold z_lock so that we can make sure that the ACL obj 1775 * hasn't changed. Could have been deleted due to 1776 * zfs_sa_upgrade(). 1777 */ 1778 mutex_enter(&zp->z_lock); 1779 mutex_enter(&vp->v_lock); 1780 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1781 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1782 delete_now = may_delete_now && !toobig && 1783 vp->v_count == 1 && !vn_has_cached_data(vp) && 1784 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1785 acl_obj; 1786 mutex_exit(&vp->v_lock); 1787 } 1788 1789 if (delete_now) { 1790 if (xattr_obj_unlinked) { 1791 ASSERT3U(xzp->z_links, ==, 2); 1792 mutex_enter(&xzp->z_lock); 1793 xzp->z_unlinked = 1; 1794 xzp->z_links = 0; 1795 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1796 &xzp->z_links, sizeof (xzp->z_links), tx); 1797 ASSERT3U(error, ==, 0); 1798 mutex_exit(&xzp->z_lock); 1799 zfs_unlinked_add(xzp, tx); 1800 1801 if (zp->z_is_sa) 1802 error = sa_remove(zp->z_sa_hdl, 1803 SA_ZPL_XATTR(zfsvfs), tx); 1804 else 1805 error = sa_update(zp->z_sa_hdl, 1806 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1807 sizeof (uint64_t), tx); 1808 ASSERT0(error); 1809 } 1810 mutex_enter(&vp->v_lock); 1811 vp->v_count--; 1812 ASSERT0(vp->v_count); 1813 mutex_exit(&vp->v_lock); 1814 mutex_exit(&zp->z_lock); 1815 zfs_znode_delete(zp, tx); 1816 } else if (unlinked) { 1817 mutex_exit(&zp->z_lock); 1818 zfs_unlinked_add(zp, tx); 1819 } 1820 1821 txtype = TX_REMOVE; 1822 if (flags & FIGNORECASE) 1823 txtype |= TX_CI; 1824 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1825 1826 dmu_tx_commit(tx); 1827 out: 1828 if (realnmp) 1829 pn_free(realnmp); 1830 1831 zfs_dirent_unlock(dl); 1832 1833 if (!delete_now) 1834 VN_RELE(vp); 1835 if (xzp) 1836 VN_RELE(ZTOV(xzp)); 1837 1838 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1839 zil_commit(zilog, 0); 1840 1841 ZFS_EXIT(zfsvfs); 1842 return (error); 1843 } 1844 1845 /* 1846 * Create a new directory and insert it into dvp using the name 1847 * provided. Return a pointer to the inserted directory. 1848 * 1849 * IN: dvp - vnode of directory to add subdir to. 1850 * dirname - name of new directory. 1851 * vap - attributes of new directory. 1852 * cr - credentials of caller. 1853 * ct - caller context 1854 * flags - case flags 1855 * vsecp - ACL to be set 1856 * 1857 * OUT: vpp - vnode of created directory. 1858 * 1859 * RETURN: 0 on success, error code on failure. 1860 * 1861 * Timestamps: 1862 * dvp - ctime|mtime updated 1863 * vp - ctime|mtime|atime updated 1864 */ 1865 /*ARGSUSED*/ 1866 static int 1867 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1868 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1869 { 1870 znode_t *zp, *dzp = VTOZ(dvp); 1871 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1872 zilog_t *zilog; 1873 zfs_dirlock_t *dl; 1874 uint64_t txtype; 1875 dmu_tx_t *tx; 1876 int error; 1877 int zf = ZNEW; 1878 ksid_t *ksid; 1879 uid_t uid; 1880 gid_t gid = crgetgid(cr); 1881 zfs_acl_ids_t acl_ids; 1882 boolean_t fuid_dirtied; 1883 boolean_t waited = B_FALSE; 1884 1885 ASSERT(vap->va_type == VDIR); 1886 1887 /* 1888 * If we have an ephemeral id, ACL, or XVATTR then 1889 * make sure file system is at proper version 1890 */ 1891 1892 ksid = crgetsid(cr, KSID_OWNER); 1893 if (ksid) 1894 uid = ksid_getid(ksid); 1895 else 1896 uid = crgetuid(cr); 1897 if (zfsvfs->z_use_fuids == B_FALSE && 1898 (vsecp || (vap->va_mask & AT_XVATTR) || 1899 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1900 return (SET_ERROR(EINVAL)); 1901 1902 ZFS_ENTER(zfsvfs); 1903 ZFS_VERIFY_ZP(dzp); 1904 zilog = zfsvfs->z_log; 1905 1906 if (dzp->z_pflags & ZFS_XATTR) { 1907 ZFS_EXIT(zfsvfs); 1908 return (SET_ERROR(EINVAL)); 1909 } 1910 1911 if (zfsvfs->z_utf8 && u8_validate(dirname, 1912 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1913 ZFS_EXIT(zfsvfs); 1914 return (SET_ERROR(EILSEQ)); 1915 } 1916 if (flags & FIGNORECASE) 1917 zf |= ZCILOOK; 1918 1919 if (vap->va_mask & AT_XVATTR) { 1920 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1921 crgetuid(cr), cr, vap->va_type)) != 0) { 1922 ZFS_EXIT(zfsvfs); 1923 return (error); 1924 } 1925 } 1926 1927 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1928 vsecp, &acl_ids)) != 0) { 1929 ZFS_EXIT(zfsvfs); 1930 return (error); 1931 } 1932 /* 1933 * First make sure the new directory doesn't exist. 1934 * 1935 * Existence is checked first to make sure we don't return 1936 * EACCES instead of EEXIST which can cause some applications 1937 * to fail. 1938 */ 1939 top: 1940 *vpp = NULL; 1941 1942 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1943 NULL, NULL)) { 1944 zfs_acl_ids_free(&acl_ids); 1945 ZFS_EXIT(zfsvfs); 1946 return (error); 1947 } 1948 1949 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1950 zfs_acl_ids_free(&acl_ids); 1951 zfs_dirent_unlock(dl); 1952 ZFS_EXIT(zfsvfs); 1953 return (error); 1954 } 1955 1956 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1957 zfs_acl_ids_free(&acl_ids); 1958 zfs_dirent_unlock(dl); 1959 ZFS_EXIT(zfsvfs); 1960 return (SET_ERROR(EDQUOT)); 1961 } 1962 1963 /* 1964 * Add a new entry to the directory. 1965 */ 1966 tx = dmu_tx_create(zfsvfs->z_os); 1967 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1968 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1969 fuid_dirtied = zfsvfs->z_fuid_dirty; 1970 if (fuid_dirtied) 1971 zfs_fuid_txhold(zfsvfs, tx); 1972 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1973 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1974 acl_ids.z_aclp->z_acl_bytes); 1975 } 1976 1977 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1978 ZFS_SA_BASE_ATTR_SIZE); 1979 1980 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1981 if (error) { 1982 zfs_dirent_unlock(dl); 1983 if (error == ERESTART) { 1984 waited = B_TRUE; 1985 dmu_tx_wait(tx); 1986 dmu_tx_abort(tx); 1987 goto top; 1988 } 1989 zfs_acl_ids_free(&acl_ids); 1990 dmu_tx_abort(tx); 1991 ZFS_EXIT(zfsvfs); 1992 return (error); 1993 } 1994 1995 /* 1996 * Create new node. 1997 */ 1998 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1999 2000 if (fuid_dirtied) 2001 zfs_fuid_sync(zfsvfs, tx); 2002 2003 /* 2004 * Now put new name in parent dir. 2005 */ 2006 (void) zfs_link_create(dl, zp, tx, ZNEW); 2007 2008 *vpp = ZTOV(zp); 2009 2010 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 2011 if (flags & FIGNORECASE) 2012 txtype |= TX_CI; 2013 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 2014 acl_ids.z_fuidp, vap); 2015 2016 zfs_acl_ids_free(&acl_ids); 2017 2018 dmu_tx_commit(tx); 2019 2020 zfs_dirent_unlock(dl); 2021 2022 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2023 zil_commit(zilog, 0); 2024 2025 ZFS_EXIT(zfsvfs); 2026 return (0); 2027 } 2028 2029 /* 2030 * Remove a directory subdir entry. If the current working 2031 * directory is the same as the subdir to be removed, the 2032 * remove will fail. 2033 * 2034 * IN: dvp - vnode of directory to remove from. 2035 * name - name of directory to be removed. 2036 * cwd - vnode of current working directory. 2037 * cr - credentials of caller. 2038 * ct - caller context 2039 * flags - case flags 2040 * 2041 * RETURN: 0 on success, error code on failure. 2042 * 2043 * Timestamps: 2044 * dvp - ctime|mtime updated 2045 */ 2046 /*ARGSUSED*/ 2047 static int 2048 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 2049 caller_context_t *ct, int flags) 2050 { 2051 znode_t *dzp = VTOZ(dvp); 2052 znode_t *zp; 2053 vnode_t *vp; 2054 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2055 zilog_t *zilog; 2056 zfs_dirlock_t *dl; 2057 dmu_tx_t *tx; 2058 int error; 2059 int zflg = ZEXISTS; 2060 boolean_t waited = B_FALSE; 2061 2062 ZFS_ENTER(zfsvfs); 2063 ZFS_VERIFY_ZP(dzp); 2064 zilog = zfsvfs->z_log; 2065 2066 if (flags & FIGNORECASE) 2067 zflg |= ZCILOOK; 2068 top: 2069 zp = NULL; 2070 2071 /* 2072 * Attempt to lock directory; fail if entry doesn't exist. 2073 */ 2074 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2075 NULL, NULL)) { 2076 ZFS_EXIT(zfsvfs); 2077 return (error); 2078 } 2079 2080 vp = ZTOV(zp); 2081 2082 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2083 goto out; 2084 } 2085 2086 if (vp->v_type != VDIR) { 2087 error = SET_ERROR(ENOTDIR); 2088 goto out; 2089 } 2090 2091 if (vp == cwd) { 2092 error = SET_ERROR(EINVAL); 2093 goto out; 2094 } 2095 2096 vnevent_rmdir(vp, dvp, name, ct); 2097 2098 /* 2099 * Grab a lock on the directory to make sure that noone is 2100 * trying to add (or lookup) entries while we are removing it. 2101 */ 2102 rw_enter(&zp->z_name_lock, RW_WRITER); 2103 2104 /* 2105 * Grab a lock on the parent pointer to make sure we play well 2106 * with the treewalk and directory rename code. 2107 */ 2108 rw_enter(&zp->z_parent_lock, RW_WRITER); 2109 2110 tx = dmu_tx_create(zfsvfs->z_os); 2111 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2112 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2113 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2114 zfs_sa_upgrade_txholds(tx, zp); 2115 zfs_sa_upgrade_txholds(tx, dzp); 2116 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 2117 if (error) { 2118 rw_exit(&zp->z_parent_lock); 2119 rw_exit(&zp->z_name_lock); 2120 zfs_dirent_unlock(dl); 2121 VN_RELE(vp); 2122 if (error == ERESTART) { 2123 waited = B_TRUE; 2124 dmu_tx_wait(tx); 2125 dmu_tx_abort(tx); 2126 goto top; 2127 } 2128 dmu_tx_abort(tx); 2129 ZFS_EXIT(zfsvfs); 2130 return (error); 2131 } 2132 2133 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2134 2135 if (error == 0) { 2136 uint64_t txtype = TX_RMDIR; 2137 if (flags & FIGNORECASE) 2138 txtype |= TX_CI; 2139 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2140 } 2141 2142 dmu_tx_commit(tx); 2143 2144 rw_exit(&zp->z_parent_lock); 2145 rw_exit(&zp->z_name_lock); 2146 out: 2147 zfs_dirent_unlock(dl); 2148 2149 VN_RELE(vp); 2150 2151 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2152 zil_commit(zilog, 0); 2153 2154 ZFS_EXIT(zfsvfs); 2155 return (error); 2156 } 2157 2158 /* 2159 * Read as many directory entries as will fit into the provided 2160 * buffer from the given directory cursor position (specified in 2161 * the uio structure). 2162 * 2163 * IN: vp - vnode of directory to read. 2164 * uio - structure supplying read location, range info, 2165 * and return buffer. 2166 * cr - credentials of caller. 2167 * ct - caller context 2168 * flags - case flags 2169 * 2170 * OUT: uio - updated offset and range, buffer filled. 2171 * eofp - set to true if end-of-file detected. 2172 * 2173 * RETURN: 0 on success, error code on failure. 2174 * 2175 * Timestamps: 2176 * vp - atime updated 2177 * 2178 * Note that the low 4 bits of the cookie returned by zap is always zero. 2179 * This allows us to use the low range for "special" directory entries: 2180 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2181 * we use the offset 2 for the '.zfs' directory. 2182 */ 2183 /* ARGSUSED */ 2184 static int 2185 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2186 caller_context_t *ct, int flags) 2187 { 2188 znode_t *zp = VTOZ(vp); 2189 iovec_t *iovp; 2190 edirent_t *eodp; 2191 dirent64_t *odp; 2192 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2193 objset_t *os; 2194 caddr_t outbuf; 2195 size_t bufsize; 2196 zap_cursor_t zc; 2197 zap_attribute_t zap; 2198 uint_t bytes_wanted; 2199 uint64_t offset; /* must be unsigned; checks for < 1 */ 2200 uint64_t parent; 2201 int local_eof; 2202 int outcount; 2203 int error; 2204 uint8_t prefetch; 2205 boolean_t check_sysattrs; 2206 2207 ZFS_ENTER(zfsvfs); 2208 ZFS_VERIFY_ZP(zp); 2209 2210 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2211 &parent, sizeof (parent))) != 0) { 2212 ZFS_EXIT(zfsvfs); 2213 return (error); 2214 } 2215 2216 /* 2217 * If we are not given an eof variable, 2218 * use a local one. 2219 */ 2220 if (eofp == NULL) 2221 eofp = &local_eof; 2222 2223 /* 2224 * Check for valid iov_len. 2225 */ 2226 if (uio->uio_iov->iov_len <= 0) { 2227 ZFS_EXIT(zfsvfs); 2228 return (SET_ERROR(EINVAL)); 2229 } 2230 2231 /* 2232 * Quit if directory has been removed (posix) 2233 */ 2234 if ((*eofp = zp->z_unlinked) != 0) { 2235 ZFS_EXIT(zfsvfs); 2236 return (0); 2237 } 2238 2239 error = 0; 2240 os = zfsvfs->z_os; 2241 offset = uio->uio_loffset; 2242 prefetch = zp->z_zn_prefetch; 2243 2244 /* 2245 * Initialize the iterator cursor. 2246 */ 2247 if (offset <= 3) { 2248 /* 2249 * Start iteration from the beginning of the directory. 2250 */ 2251 zap_cursor_init(&zc, os, zp->z_id); 2252 } else { 2253 /* 2254 * The offset is a serialized cursor. 2255 */ 2256 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2257 } 2258 2259 /* 2260 * Get space to change directory entries into fs independent format. 2261 */ 2262 iovp = uio->uio_iov; 2263 bytes_wanted = iovp->iov_len; 2264 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2265 bufsize = bytes_wanted; 2266 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2267 odp = (struct dirent64 *)outbuf; 2268 } else { 2269 bufsize = bytes_wanted; 2270 outbuf = NULL; 2271 odp = (struct dirent64 *)iovp->iov_base; 2272 } 2273 eodp = (struct edirent *)odp; 2274 2275 /* 2276 * If this VFS supports the system attribute view interface; and 2277 * we're looking at an extended attribute directory; and we care 2278 * about normalization conflicts on this vfs; then we must check 2279 * for normalization conflicts with the sysattr name space. 2280 */ 2281 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2282 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2283 (flags & V_RDDIR_ENTFLAGS); 2284 2285 /* 2286 * Transform to file-system independent format 2287 */ 2288 outcount = 0; 2289 while (outcount < bytes_wanted) { 2290 ino64_t objnum; 2291 ushort_t reclen; 2292 off64_t *next = NULL; 2293 2294 /* 2295 * Special case `.', `..', and `.zfs'. 2296 */ 2297 if (offset == 0) { 2298 (void) strcpy(zap.za_name, "."); 2299 zap.za_normalization_conflict = 0; 2300 objnum = zp->z_id; 2301 } else if (offset == 1) { 2302 (void) strcpy(zap.za_name, ".."); 2303 zap.za_normalization_conflict = 0; 2304 objnum = parent; 2305 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2306 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2307 zap.za_normalization_conflict = 0; 2308 objnum = ZFSCTL_INO_ROOT; 2309 } else { 2310 /* 2311 * Grab next entry. 2312 */ 2313 if (error = zap_cursor_retrieve(&zc, &zap)) { 2314 if ((*eofp = (error == ENOENT)) != 0) 2315 break; 2316 else 2317 goto update; 2318 } 2319 2320 if (zap.za_integer_length != 8 || 2321 zap.za_num_integers != 1) { 2322 cmn_err(CE_WARN, "zap_readdir: bad directory " 2323 "entry, obj = %lld, offset = %lld\n", 2324 (u_longlong_t)zp->z_id, 2325 (u_longlong_t)offset); 2326 error = SET_ERROR(ENXIO); 2327 goto update; 2328 } 2329 2330 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2331 /* 2332 * MacOS X can extract the object type here such as: 2333 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2334 */ 2335 2336 if (check_sysattrs && !zap.za_normalization_conflict) { 2337 zap.za_normalization_conflict = 2338 xattr_sysattr_casechk(zap.za_name); 2339 } 2340 } 2341 2342 if (flags & V_RDDIR_ACCFILTER) { 2343 /* 2344 * If we have no access at all, don't include 2345 * this entry in the returned information 2346 */ 2347 znode_t *ezp; 2348 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2349 goto skip_entry; 2350 if (!zfs_has_access(ezp, cr)) { 2351 VN_RELE(ZTOV(ezp)); 2352 goto skip_entry; 2353 } 2354 VN_RELE(ZTOV(ezp)); 2355 } 2356 2357 if (flags & V_RDDIR_ENTFLAGS) 2358 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2359 else 2360 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2361 2362 /* 2363 * Will this entry fit in the buffer? 2364 */ 2365 if (outcount + reclen > bufsize) { 2366 /* 2367 * Did we manage to fit anything in the buffer? 2368 */ 2369 if (!outcount) { 2370 error = SET_ERROR(EINVAL); 2371 goto update; 2372 } 2373 break; 2374 } 2375 if (flags & V_RDDIR_ENTFLAGS) { 2376 /* 2377 * Add extended flag entry: 2378 */ 2379 eodp->ed_ino = objnum; 2380 eodp->ed_reclen = reclen; 2381 /* NOTE: ed_off is the offset for the *next* entry */ 2382 next = &(eodp->ed_off); 2383 eodp->ed_eflags = zap.za_normalization_conflict ? 2384 ED_CASE_CONFLICT : 0; 2385 (void) strncpy(eodp->ed_name, zap.za_name, 2386 EDIRENT_NAMELEN(reclen)); 2387 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2388 } else { 2389 /* 2390 * Add normal entry: 2391 */ 2392 odp->d_ino = objnum; 2393 odp->d_reclen = reclen; 2394 /* NOTE: d_off is the offset for the *next* entry */ 2395 next = &(odp->d_off); 2396 (void) strncpy(odp->d_name, zap.za_name, 2397 DIRENT64_NAMELEN(reclen)); 2398 odp = (dirent64_t *)((intptr_t)odp + reclen); 2399 } 2400 outcount += reclen; 2401 2402 ASSERT(outcount <= bufsize); 2403 2404 /* Prefetch znode */ 2405 if (prefetch) 2406 dmu_prefetch(os, objnum, 0, 0, 0, 2407 ZIO_PRIORITY_SYNC_READ); 2408 2409 skip_entry: 2410 /* 2411 * Move to the next entry, fill in the previous offset. 2412 */ 2413 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2414 zap_cursor_advance(&zc); 2415 offset = zap_cursor_serialize(&zc); 2416 } else { 2417 offset += 1; 2418 } 2419 if (next) 2420 *next = offset; 2421 } 2422 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2423 2424 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2425 iovp->iov_base += outcount; 2426 iovp->iov_len -= outcount; 2427 uio->uio_resid -= outcount; 2428 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2429 /* 2430 * Reset the pointer. 2431 */ 2432 offset = uio->uio_loffset; 2433 } 2434 2435 update: 2436 zap_cursor_fini(&zc); 2437 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2438 kmem_free(outbuf, bufsize); 2439 2440 if (error == ENOENT) 2441 error = 0; 2442 2443 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2444 2445 uio->uio_loffset = offset; 2446 ZFS_EXIT(zfsvfs); 2447 return (error); 2448 } 2449 2450 ulong_t zfs_fsync_sync_cnt = 4; 2451 2452 static int 2453 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2454 { 2455 znode_t *zp = VTOZ(vp); 2456 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2457 2458 /* 2459 * Regardless of whether this is required for standards conformance, 2460 * this is the logical behavior when fsync() is called on a file with 2461 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2462 * going to be pushed out as part of the zil_commit(). 2463 */ 2464 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2465 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2466 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2467 2468 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2469 2470 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2471 ZFS_ENTER(zfsvfs); 2472 ZFS_VERIFY_ZP(zp); 2473 zil_commit(zfsvfs->z_log, zp->z_id); 2474 ZFS_EXIT(zfsvfs); 2475 } 2476 return (0); 2477 } 2478 2479 2480 /* 2481 * Get the requested file attributes and place them in the provided 2482 * vattr structure. 2483 * 2484 * IN: vp - vnode of file. 2485 * vap - va_mask identifies requested attributes. 2486 * If AT_XVATTR set, then optional attrs are requested 2487 * flags - ATTR_NOACLCHECK (CIFS server context) 2488 * cr - credentials of caller. 2489 * ct - caller context 2490 * 2491 * OUT: vap - attribute values. 2492 * 2493 * RETURN: 0 (always succeeds). 2494 */ 2495 /* ARGSUSED */ 2496 static int 2497 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2498 caller_context_t *ct) 2499 { 2500 znode_t *zp = VTOZ(vp); 2501 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2502 int error = 0; 2503 uint64_t links; 2504 uint64_t mtime[2], ctime[2]; 2505 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2506 xoptattr_t *xoap = NULL; 2507 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2508 sa_bulk_attr_t bulk[2]; 2509 int count = 0; 2510 2511 ZFS_ENTER(zfsvfs); 2512 ZFS_VERIFY_ZP(zp); 2513 2514 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2515 2516 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2517 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2518 2519 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2520 ZFS_EXIT(zfsvfs); 2521 return (error); 2522 } 2523 2524 /* 2525 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2526 * Also, if we are the owner don't bother, since owner should 2527 * always be allowed to read basic attributes of file. 2528 */ 2529 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2530 (vap->va_uid != crgetuid(cr))) { 2531 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2532 skipaclchk, cr)) { 2533 ZFS_EXIT(zfsvfs); 2534 return (error); 2535 } 2536 } 2537 2538 /* 2539 * Return all attributes. It's cheaper to provide the answer 2540 * than to determine whether we were asked the question. 2541 */ 2542 2543 mutex_enter(&zp->z_lock); 2544 vap->va_type = vp->v_type; 2545 vap->va_mode = zp->z_mode & MODEMASK; 2546 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2547 vap->va_nodeid = zp->z_id; 2548 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2549 links = zp->z_links + 1; 2550 else 2551 links = zp->z_links; 2552 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2553 vap->va_size = zp->z_size; 2554 vap->va_rdev = vp->v_rdev; 2555 vap->va_seq = zp->z_seq; 2556 2557 /* 2558 * Add in any requested optional attributes and the create time. 2559 * Also set the corresponding bits in the returned attribute bitmap. 2560 */ 2561 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2562 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2563 xoap->xoa_archive = 2564 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2565 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2566 } 2567 2568 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2569 xoap->xoa_readonly = 2570 ((zp->z_pflags & ZFS_READONLY) != 0); 2571 XVA_SET_RTN(xvap, XAT_READONLY); 2572 } 2573 2574 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2575 xoap->xoa_system = 2576 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2577 XVA_SET_RTN(xvap, XAT_SYSTEM); 2578 } 2579 2580 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2581 xoap->xoa_hidden = 2582 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2583 XVA_SET_RTN(xvap, XAT_HIDDEN); 2584 } 2585 2586 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2587 xoap->xoa_nounlink = 2588 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2589 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2590 } 2591 2592 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2593 xoap->xoa_immutable = 2594 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2595 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2596 } 2597 2598 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2599 xoap->xoa_appendonly = 2600 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2601 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2602 } 2603 2604 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2605 xoap->xoa_nodump = 2606 ((zp->z_pflags & ZFS_NODUMP) != 0); 2607 XVA_SET_RTN(xvap, XAT_NODUMP); 2608 } 2609 2610 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2611 xoap->xoa_opaque = 2612 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2613 XVA_SET_RTN(xvap, XAT_OPAQUE); 2614 } 2615 2616 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2617 xoap->xoa_av_quarantined = 2618 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2619 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2620 } 2621 2622 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2623 xoap->xoa_av_modified = 2624 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2625 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2626 } 2627 2628 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2629 vp->v_type == VREG) { 2630 zfs_sa_get_scanstamp(zp, xvap); 2631 } 2632 2633 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2634 uint64_t times[2]; 2635 2636 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2637 times, sizeof (times)); 2638 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2639 XVA_SET_RTN(xvap, XAT_CREATETIME); 2640 } 2641 2642 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2643 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2644 XVA_SET_RTN(xvap, XAT_REPARSE); 2645 } 2646 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2647 xoap->xoa_generation = zp->z_gen; 2648 XVA_SET_RTN(xvap, XAT_GEN); 2649 } 2650 2651 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2652 xoap->xoa_offline = 2653 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2654 XVA_SET_RTN(xvap, XAT_OFFLINE); 2655 } 2656 2657 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2658 xoap->xoa_sparse = 2659 ((zp->z_pflags & ZFS_SPARSE) != 0); 2660 XVA_SET_RTN(xvap, XAT_SPARSE); 2661 } 2662 } 2663 2664 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2665 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2666 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2667 2668 mutex_exit(&zp->z_lock); 2669 2670 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2671 2672 if (zp->z_blksz == 0) { 2673 /* 2674 * Block size hasn't been set; suggest maximal I/O transfers. 2675 */ 2676 vap->va_blksize = zfsvfs->z_max_blksz; 2677 } 2678 2679 ZFS_EXIT(zfsvfs); 2680 return (0); 2681 } 2682 2683 /* 2684 * Set the file attributes to the values contained in the 2685 * vattr structure. 2686 * 2687 * IN: vp - vnode of file to be modified. 2688 * vap - new attribute values. 2689 * If AT_XVATTR set, then optional attrs are being set 2690 * flags - ATTR_UTIME set if non-default time values provided. 2691 * - ATTR_NOACLCHECK (CIFS context only). 2692 * cr - credentials of caller. 2693 * ct - caller context 2694 * 2695 * RETURN: 0 on success, error code on failure. 2696 * 2697 * Timestamps: 2698 * vp - ctime updated, mtime updated if size changed. 2699 */ 2700 /* ARGSUSED */ 2701 static int 2702 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2703 caller_context_t *ct) 2704 { 2705 znode_t *zp = VTOZ(vp); 2706 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2707 zilog_t *zilog; 2708 dmu_tx_t *tx; 2709 vattr_t oldva; 2710 xvattr_t tmpxvattr; 2711 uint_t mask = vap->va_mask; 2712 uint_t saved_mask = 0; 2713 int trim_mask = 0; 2714 uint64_t new_mode; 2715 uint64_t new_uid, new_gid; 2716 uint64_t xattr_obj; 2717 uint64_t mtime[2], ctime[2]; 2718 znode_t *attrzp; 2719 int need_policy = FALSE; 2720 int err, err2; 2721 zfs_fuid_info_t *fuidp = NULL; 2722 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2723 xoptattr_t *xoap; 2724 zfs_acl_t *aclp; 2725 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2726 boolean_t fuid_dirtied = B_FALSE; 2727 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2728 int count = 0, xattr_count = 0; 2729 2730 if (mask == 0) 2731 return (0); 2732 2733 if (mask & AT_NOSET) 2734 return (SET_ERROR(EINVAL)); 2735 2736 ZFS_ENTER(zfsvfs); 2737 ZFS_VERIFY_ZP(zp); 2738 2739 zilog = zfsvfs->z_log; 2740 2741 /* 2742 * Make sure that if we have ephemeral uid/gid or xvattr specified 2743 * that file system is at proper version level 2744 */ 2745 2746 if (zfsvfs->z_use_fuids == B_FALSE && 2747 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2748 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2749 (mask & AT_XVATTR))) { 2750 ZFS_EXIT(zfsvfs); 2751 return (SET_ERROR(EINVAL)); 2752 } 2753 2754 if (mask & AT_SIZE && vp->v_type == VDIR) { 2755 ZFS_EXIT(zfsvfs); 2756 return (SET_ERROR(EISDIR)); 2757 } 2758 2759 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2760 ZFS_EXIT(zfsvfs); 2761 return (SET_ERROR(EINVAL)); 2762 } 2763 2764 /* 2765 * If this is an xvattr_t, then get a pointer to the structure of 2766 * optional attributes. If this is NULL, then we have a vattr_t. 2767 */ 2768 xoap = xva_getxoptattr(xvap); 2769 2770 xva_init(&tmpxvattr); 2771 2772 /* 2773 * Immutable files can only alter immutable bit and atime 2774 */ 2775 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2776 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2777 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2778 ZFS_EXIT(zfsvfs); 2779 return (SET_ERROR(EPERM)); 2780 } 2781 2782 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2783 ZFS_EXIT(zfsvfs); 2784 return (SET_ERROR(EPERM)); 2785 } 2786 2787 /* 2788 * Verify timestamps doesn't overflow 32 bits. 2789 * ZFS can handle large timestamps, but 32bit syscalls can't 2790 * handle times greater than 2039. This check should be removed 2791 * once large timestamps are fully supported. 2792 */ 2793 if (mask & (AT_ATIME | AT_MTIME)) { 2794 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2795 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2796 ZFS_EXIT(zfsvfs); 2797 return (SET_ERROR(EOVERFLOW)); 2798 } 2799 } 2800 2801 top: 2802 attrzp = NULL; 2803 aclp = NULL; 2804 2805 /* Can this be moved to before the top label? */ 2806 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2807 ZFS_EXIT(zfsvfs); 2808 return (SET_ERROR(EROFS)); 2809 } 2810 2811 /* 2812 * First validate permissions 2813 */ 2814 2815 if (mask & AT_SIZE) { 2816 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2817 if (err) { 2818 ZFS_EXIT(zfsvfs); 2819 return (err); 2820 } 2821 /* 2822 * XXX - Note, we are not providing any open 2823 * mode flags here (like FNDELAY), so we may 2824 * block if there are locks present... this 2825 * should be addressed in openat(). 2826 */ 2827 /* XXX - would it be OK to generate a log record here? */ 2828 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2829 if (err) { 2830 ZFS_EXIT(zfsvfs); 2831 return (err); 2832 } 2833 2834 if (vap->va_size == 0) 2835 vnevent_truncate(ZTOV(zp), ct); 2836 } 2837 2838 if (mask & (AT_ATIME|AT_MTIME) || 2839 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2840 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2841 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2842 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2843 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2844 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2845 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2846 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2847 skipaclchk, cr); 2848 } 2849 2850 if (mask & (AT_UID|AT_GID)) { 2851 int idmask = (mask & (AT_UID|AT_GID)); 2852 int take_owner; 2853 int take_group; 2854 2855 /* 2856 * NOTE: even if a new mode is being set, 2857 * we may clear S_ISUID/S_ISGID bits. 2858 */ 2859 2860 if (!(mask & AT_MODE)) 2861 vap->va_mode = zp->z_mode; 2862 2863 /* 2864 * Take ownership or chgrp to group we are a member of 2865 */ 2866 2867 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2868 take_group = (mask & AT_GID) && 2869 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2870 2871 /* 2872 * If both AT_UID and AT_GID are set then take_owner and 2873 * take_group must both be set in order to allow taking 2874 * ownership. 2875 * 2876 * Otherwise, send the check through secpolicy_vnode_setattr() 2877 * 2878 */ 2879 2880 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2881 ((idmask == AT_UID) && take_owner) || 2882 ((idmask == AT_GID) && take_group)) { 2883 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2884 skipaclchk, cr) == 0) { 2885 /* 2886 * Remove setuid/setgid for non-privileged users 2887 */ 2888 secpolicy_setid_clear(vap, cr); 2889 trim_mask = (mask & (AT_UID|AT_GID)); 2890 } else { 2891 need_policy = TRUE; 2892 } 2893 } else { 2894 need_policy = TRUE; 2895 } 2896 } 2897 2898 mutex_enter(&zp->z_lock); 2899 oldva.va_mode = zp->z_mode; 2900 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2901 if (mask & AT_XVATTR) { 2902 /* 2903 * Update xvattr mask to include only those attributes 2904 * that are actually changing. 2905 * 2906 * the bits will be restored prior to actually setting 2907 * the attributes so the caller thinks they were set. 2908 */ 2909 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2910 if (xoap->xoa_appendonly != 2911 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2912 need_policy = TRUE; 2913 } else { 2914 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2915 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2916 } 2917 } 2918 2919 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2920 if (xoap->xoa_nounlink != 2921 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2922 need_policy = TRUE; 2923 } else { 2924 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2925 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2926 } 2927 } 2928 2929 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2930 if (xoap->xoa_immutable != 2931 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2932 need_policy = TRUE; 2933 } else { 2934 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2935 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2936 } 2937 } 2938 2939 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2940 if (xoap->xoa_nodump != 2941 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2942 need_policy = TRUE; 2943 } else { 2944 XVA_CLR_REQ(xvap, XAT_NODUMP); 2945 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2946 } 2947 } 2948 2949 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2950 if (xoap->xoa_av_modified != 2951 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2952 need_policy = TRUE; 2953 } else { 2954 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2955 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2956 } 2957 } 2958 2959 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2960 if ((vp->v_type != VREG && 2961 xoap->xoa_av_quarantined) || 2962 xoap->xoa_av_quarantined != 2963 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2964 need_policy = TRUE; 2965 } else { 2966 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2967 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2968 } 2969 } 2970 2971 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2972 mutex_exit(&zp->z_lock); 2973 ZFS_EXIT(zfsvfs); 2974 return (SET_ERROR(EPERM)); 2975 } 2976 2977 if (need_policy == FALSE && 2978 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2979 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2980 need_policy = TRUE; 2981 } 2982 } 2983 2984 mutex_exit(&zp->z_lock); 2985 2986 if (mask & AT_MODE) { 2987 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2988 err = secpolicy_setid_setsticky_clear(vp, vap, 2989 &oldva, cr); 2990 if (err) { 2991 ZFS_EXIT(zfsvfs); 2992 return (err); 2993 } 2994 trim_mask |= AT_MODE; 2995 } else { 2996 need_policy = TRUE; 2997 } 2998 } 2999 3000 if (need_policy) { 3001 /* 3002 * If trim_mask is set then take ownership 3003 * has been granted or write_acl is present and user 3004 * has the ability to modify mode. In that case remove 3005 * UID|GID and or MODE from mask so that 3006 * secpolicy_vnode_setattr() doesn't revoke it. 3007 */ 3008 3009 if (trim_mask) { 3010 saved_mask = vap->va_mask; 3011 vap->va_mask &= ~trim_mask; 3012 } 3013 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 3014 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 3015 if (err) { 3016 ZFS_EXIT(zfsvfs); 3017 return (err); 3018 } 3019 3020 if (trim_mask) 3021 vap->va_mask |= saved_mask; 3022 } 3023 3024 /* 3025 * secpolicy_vnode_setattr, or take ownership may have 3026 * changed va_mask 3027 */ 3028 mask = vap->va_mask; 3029 3030 if ((mask & (AT_UID | AT_GID))) { 3031 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 3032 &xattr_obj, sizeof (xattr_obj)); 3033 3034 if (err == 0 && xattr_obj) { 3035 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 3036 if (err) 3037 goto out2; 3038 } 3039 if (mask & AT_UID) { 3040 new_uid = zfs_fuid_create(zfsvfs, 3041 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 3042 if (new_uid != zp->z_uid && 3043 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 3044 if (attrzp) 3045 VN_RELE(ZTOV(attrzp)); 3046 err = SET_ERROR(EDQUOT); 3047 goto out2; 3048 } 3049 } 3050 3051 if (mask & AT_GID) { 3052 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 3053 cr, ZFS_GROUP, &fuidp); 3054 if (new_gid != zp->z_gid && 3055 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 3056 if (attrzp) 3057 VN_RELE(ZTOV(attrzp)); 3058 err = SET_ERROR(EDQUOT); 3059 goto out2; 3060 } 3061 } 3062 } 3063 tx = dmu_tx_create(zfsvfs->z_os); 3064 3065 if (mask & AT_MODE) { 3066 uint64_t pmode = zp->z_mode; 3067 uint64_t acl_obj; 3068 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 3069 3070 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 3071 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 3072 err = SET_ERROR(EPERM); 3073 goto out; 3074 } 3075 3076 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3077 goto out; 3078 3079 mutex_enter(&zp->z_lock); 3080 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3081 /* 3082 * Are we upgrading ACL from old V0 format 3083 * to V1 format? 3084 */ 3085 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3086 zfs_znode_acl_version(zp) == 3087 ZFS_ACL_VERSION_INITIAL) { 3088 dmu_tx_hold_free(tx, acl_obj, 0, 3089 DMU_OBJECT_END); 3090 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3091 0, aclp->z_acl_bytes); 3092 } else { 3093 dmu_tx_hold_write(tx, acl_obj, 0, 3094 aclp->z_acl_bytes); 3095 } 3096 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3097 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3098 0, aclp->z_acl_bytes); 3099 } 3100 mutex_exit(&zp->z_lock); 3101 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3102 } else { 3103 if ((mask & AT_XVATTR) && 3104 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3105 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3106 else 3107 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3108 } 3109 3110 if (attrzp) { 3111 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3112 } 3113 3114 fuid_dirtied = zfsvfs->z_fuid_dirty; 3115 if (fuid_dirtied) 3116 zfs_fuid_txhold(zfsvfs, tx); 3117 3118 zfs_sa_upgrade_txholds(tx, zp); 3119 3120 err = dmu_tx_assign(tx, TXG_WAIT); 3121 if (err) 3122 goto out; 3123 3124 count = 0; 3125 /* 3126 * Set each attribute requested. 3127 * We group settings according to the locks they need to acquire. 3128 * 3129 * Note: you cannot set ctime directly, although it will be 3130 * updated as a side-effect of calling this function. 3131 */ 3132 3133 3134 if (mask & (AT_UID|AT_GID|AT_MODE)) 3135 mutex_enter(&zp->z_acl_lock); 3136 mutex_enter(&zp->z_lock); 3137 3138 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3139 &zp->z_pflags, sizeof (zp->z_pflags)); 3140 3141 if (attrzp) { 3142 if (mask & (AT_UID|AT_GID|AT_MODE)) 3143 mutex_enter(&attrzp->z_acl_lock); 3144 mutex_enter(&attrzp->z_lock); 3145 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3146 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3147 sizeof (attrzp->z_pflags)); 3148 } 3149 3150 if (mask & (AT_UID|AT_GID)) { 3151 3152 if (mask & AT_UID) { 3153 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3154 &new_uid, sizeof (new_uid)); 3155 zp->z_uid = new_uid; 3156 if (attrzp) { 3157 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3158 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3159 sizeof (new_uid)); 3160 attrzp->z_uid = new_uid; 3161 } 3162 } 3163 3164 if (mask & AT_GID) { 3165 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3166 NULL, &new_gid, sizeof (new_gid)); 3167 zp->z_gid = new_gid; 3168 if (attrzp) { 3169 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3170 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3171 sizeof (new_gid)); 3172 attrzp->z_gid = new_gid; 3173 } 3174 } 3175 if (!(mask & AT_MODE)) { 3176 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3177 NULL, &new_mode, sizeof (new_mode)); 3178 new_mode = zp->z_mode; 3179 } 3180 err = zfs_acl_chown_setattr(zp); 3181 ASSERT(err == 0); 3182 if (attrzp) { 3183 err = zfs_acl_chown_setattr(attrzp); 3184 ASSERT(err == 0); 3185 } 3186 } 3187 3188 if (mask & AT_MODE) { 3189 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3190 &new_mode, sizeof (new_mode)); 3191 zp->z_mode = new_mode; 3192 ASSERT3U((uintptr_t)aclp, !=, NULL); 3193 err = zfs_aclset_common(zp, aclp, cr, tx); 3194 ASSERT0(err); 3195 if (zp->z_acl_cached) 3196 zfs_acl_free(zp->z_acl_cached); 3197 zp->z_acl_cached = aclp; 3198 aclp = NULL; 3199 } 3200 3201 3202 if (mask & AT_ATIME) { 3203 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3204 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3205 &zp->z_atime, sizeof (zp->z_atime)); 3206 } 3207 3208 if (mask & AT_MTIME) { 3209 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3210 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3211 mtime, sizeof (mtime)); 3212 } 3213 3214 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3215 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3216 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3217 NULL, mtime, sizeof (mtime)); 3218 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3219 &ctime, sizeof (ctime)); 3220 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3221 B_TRUE); 3222 } else if (mask != 0) { 3223 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3224 &ctime, sizeof (ctime)); 3225 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3226 B_TRUE); 3227 if (attrzp) { 3228 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3229 SA_ZPL_CTIME(zfsvfs), NULL, 3230 &ctime, sizeof (ctime)); 3231 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3232 mtime, ctime, B_TRUE); 3233 } 3234 } 3235 /* 3236 * Do this after setting timestamps to prevent timestamp 3237 * update from toggling bit 3238 */ 3239 3240 if (xoap && (mask & AT_XVATTR)) { 3241 3242 /* 3243 * restore trimmed off masks 3244 * so that return masks can be set for caller. 3245 */ 3246 3247 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3248 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3249 } 3250 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3251 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3252 } 3253 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3254 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3255 } 3256 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3257 XVA_SET_REQ(xvap, XAT_NODUMP); 3258 } 3259 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3260 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3261 } 3262 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3263 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3264 } 3265 3266 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3267 ASSERT(vp->v_type == VREG); 3268 3269 zfs_xvattr_set(zp, xvap, tx); 3270 } 3271 3272 if (fuid_dirtied) 3273 zfs_fuid_sync(zfsvfs, tx); 3274 3275 if (mask != 0) 3276 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3277 3278 mutex_exit(&zp->z_lock); 3279 if (mask & (AT_UID|AT_GID|AT_MODE)) 3280 mutex_exit(&zp->z_acl_lock); 3281 3282 if (attrzp) { 3283 if (mask & (AT_UID|AT_GID|AT_MODE)) 3284 mutex_exit(&attrzp->z_acl_lock); 3285 mutex_exit(&attrzp->z_lock); 3286 } 3287 out: 3288 if (err == 0 && attrzp) { 3289 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3290 xattr_count, tx); 3291 ASSERT(err2 == 0); 3292 } 3293 3294 if (attrzp) 3295 VN_RELE(ZTOV(attrzp)); 3296 3297 if (aclp) 3298 zfs_acl_free(aclp); 3299 3300 if (fuidp) { 3301 zfs_fuid_info_free(fuidp); 3302 fuidp = NULL; 3303 } 3304 3305 if (err) { 3306 dmu_tx_abort(tx); 3307 if (err == ERESTART) 3308 goto top; 3309 } else { 3310 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3311 dmu_tx_commit(tx); 3312 } 3313 3314 out2: 3315 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3316 zil_commit(zilog, 0); 3317 3318 ZFS_EXIT(zfsvfs); 3319 return (err); 3320 } 3321 3322 typedef struct zfs_zlock { 3323 krwlock_t *zl_rwlock; /* lock we acquired */ 3324 znode_t *zl_znode; /* znode we held */ 3325 struct zfs_zlock *zl_next; /* next in list */ 3326 } zfs_zlock_t; 3327 3328 /* 3329 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3330 */ 3331 static void 3332 zfs_rename_unlock(zfs_zlock_t **zlpp) 3333 { 3334 zfs_zlock_t *zl; 3335 3336 while ((zl = *zlpp) != NULL) { 3337 if (zl->zl_znode != NULL) 3338 VN_RELE(ZTOV(zl->zl_znode)); 3339 rw_exit(zl->zl_rwlock); 3340 *zlpp = zl->zl_next; 3341 kmem_free(zl, sizeof (*zl)); 3342 } 3343 } 3344 3345 /* 3346 * Search back through the directory tree, using the ".." entries. 3347 * Lock each directory in the chain to prevent concurrent renames. 3348 * Fail any attempt to move a directory into one of its own descendants. 3349 * XXX - z_parent_lock can overlap with map or grow locks 3350 */ 3351 static int 3352 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3353 { 3354 zfs_zlock_t *zl; 3355 znode_t *zp = tdzp; 3356 uint64_t rootid = zp->z_zfsvfs->z_root; 3357 uint64_t oidp = zp->z_id; 3358 krwlock_t *rwlp = &szp->z_parent_lock; 3359 krw_t rw = RW_WRITER; 3360 3361 /* 3362 * First pass write-locks szp and compares to zp->z_id. 3363 * Later passes read-lock zp and compare to zp->z_parent. 3364 */ 3365 do { 3366 if (!rw_tryenter(rwlp, rw)) { 3367 /* 3368 * Another thread is renaming in this path. 3369 * Note that if we are a WRITER, we don't have any 3370 * parent_locks held yet. 3371 */ 3372 if (rw == RW_READER && zp->z_id > szp->z_id) { 3373 /* 3374 * Drop our locks and restart 3375 */ 3376 zfs_rename_unlock(&zl); 3377 *zlpp = NULL; 3378 zp = tdzp; 3379 oidp = zp->z_id; 3380 rwlp = &szp->z_parent_lock; 3381 rw = RW_WRITER; 3382 continue; 3383 } else { 3384 /* 3385 * Wait for other thread to drop its locks 3386 */ 3387 rw_enter(rwlp, rw); 3388 } 3389 } 3390 3391 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3392 zl->zl_rwlock = rwlp; 3393 zl->zl_znode = NULL; 3394 zl->zl_next = *zlpp; 3395 *zlpp = zl; 3396 3397 if (oidp == szp->z_id) /* We're a descendant of szp */ 3398 return (SET_ERROR(EINVAL)); 3399 3400 if (oidp == rootid) /* We've hit the top */ 3401 return (0); 3402 3403 if (rw == RW_READER) { /* i.e. not the first pass */ 3404 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3405 if (error) 3406 return (error); 3407 zl->zl_znode = zp; 3408 } 3409 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3410 &oidp, sizeof (oidp)); 3411 rwlp = &zp->z_parent_lock; 3412 rw = RW_READER; 3413 3414 } while (zp->z_id != sdzp->z_id); 3415 3416 return (0); 3417 } 3418 3419 /* 3420 * Move an entry from the provided source directory to the target 3421 * directory. Change the entry name as indicated. 3422 * 3423 * IN: sdvp - Source directory containing the "old entry". 3424 * snm - Old entry name. 3425 * tdvp - Target directory to contain the "new entry". 3426 * tnm - New entry name. 3427 * cr - credentials of caller. 3428 * ct - caller context 3429 * flags - case flags 3430 * 3431 * RETURN: 0 on success, error code on failure. 3432 * 3433 * Timestamps: 3434 * sdvp,tdvp - ctime|mtime updated 3435 */ 3436 /*ARGSUSED*/ 3437 static int 3438 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3439 caller_context_t *ct, int flags) 3440 { 3441 znode_t *tdzp, *szp, *tzp; 3442 znode_t *sdzp = VTOZ(sdvp); 3443 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3444 zilog_t *zilog; 3445 vnode_t *realvp; 3446 zfs_dirlock_t *sdl, *tdl; 3447 dmu_tx_t *tx; 3448 zfs_zlock_t *zl; 3449 int cmp, serr, terr; 3450 int error = 0, rm_err = 0; 3451 int zflg = 0; 3452 boolean_t waited = B_FALSE; 3453 3454 ZFS_ENTER(zfsvfs); 3455 ZFS_VERIFY_ZP(sdzp); 3456 zilog = zfsvfs->z_log; 3457 3458 /* 3459 * Make sure we have the real vp for the target directory. 3460 */ 3461 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3462 tdvp = realvp; 3463 3464 tdzp = VTOZ(tdvp); 3465 ZFS_VERIFY_ZP(tdzp); 3466 3467 /* 3468 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3469 * ctldir appear to have the same v_vfsp. 3470 */ 3471 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3472 ZFS_EXIT(zfsvfs); 3473 return (SET_ERROR(EXDEV)); 3474 } 3475 3476 if (zfsvfs->z_utf8 && u8_validate(tnm, 3477 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3478 ZFS_EXIT(zfsvfs); 3479 return (SET_ERROR(EILSEQ)); 3480 } 3481 3482 if (flags & FIGNORECASE) 3483 zflg |= ZCILOOK; 3484 3485 top: 3486 szp = NULL; 3487 tzp = NULL; 3488 zl = NULL; 3489 3490 /* 3491 * This is to prevent the creation of links into attribute space 3492 * by renaming a linked file into/outof an attribute directory. 3493 * See the comment in zfs_link() for why this is considered bad. 3494 */ 3495 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3496 ZFS_EXIT(zfsvfs); 3497 return (SET_ERROR(EINVAL)); 3498 } 3499 3500 /* 3501 * Lock source and target directory entries. To prevent deadlock, 3502 * a lock ordering must be defined. We lock the directory with 3503 * the smallest object id first, or if it's a tie, the one with 3504 * the lexically first name. 3505 */ 3506 if (sdzp->z_id < tdzp->z_id) { 3507 cmp = -1; 3508 } else if (sdzp->z_id > tdzp->z_id) { 3509 cmp = 1; 3510 } else { 3511 /* 3512 * First compare the two name arguments without 3513 * considering any case folding. 3514 */ 3515 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3516 3517 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3518 ASSERT(error == 0 || !zfsvfs->z_utf8); 3519 if (cmp == 0) { 3520 /* 3521 * POSIX: "If the old argument and the new argument 3522 * both refer to links to the same existing file, 3523 * the rename() function shall return successfully 3524 * and perform no other action." 3525 */ 3526 ZFS_EXIT(zfsvfs); 3527 return (0); 3528 } 3529 /* 3530 * If the file system is case-folding, then we may 3531 * have some more checking to do. A case-folding file 3532 * system is either supporting mixed case sensitivity 3533 * access or is completely case-insensitive. Note 3534 * that the file system is always case preserving. 3535 * 3536 * In mixed sensitivity mode case sensitive behavior 3537 * is the default. FIGNORECASE must be used to 3538 * explicitly request case insensitive behavior. 3539 * 3540 * If the source and target names provided differ only 3541 * by case (e.g., a request to rename 'tim' to 'Tim'), 3542 * we will treat this as a special case in the 3543 * case-insensitive mode: as long as the source name 3544 * is an exact match, we will allow this to proceed as 3545 * a name-change request. 3546 */ 3547 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3548 (zfsvfs->z_case == ZFS_CASE_MIXED && 3549 flags & FIGNORECASE)) && 3550 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3551 &error) == 0) { 3552 /* 3553 * case preserving rename request, require exact 3554 * name matches 3555 */ 3556 zflg |= ZCIEXACT; 3557 zflg &= ~ZCILOOK; 3558 } 3559 } 3560 3561 /* 3562 * If the source and destination directories are the same, we should 3563 * grab the z_name_lock of that directory only once. 3564 */ 3565 if (sdzp == tdzp) { 3566 zflg |= ZHAVELOCK; 3567 rw_enter(&sdzp->z_name_lock, RW_READER); 3568 } 3569 3570 if (cmp < 0) { 3571 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3572 ZEXISTS | zflg, NULL, NULL); 3573 terr = zfs_dirent_lock(&tdl, 3574 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3575 } else { 3576 terr = zfs_dirent_lock(&tdl, 3577 tdzp, tnm, &tzp, zflg, NULL, NULL); 3578 serr = zfs_dirent_lock(&sdl, 3579 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3580 NULL, NULL); 3581 } 3582 3583 if (serr) { 3584 /* 3585 * Source entry invalid or not there. 3586 */ 3587 if (!terr) { 3588 zfs_dirent_unlock(tdl); 3589 if (tzp) 3590 VN_RELE(ZTOV(tzp)); 3591 } 3592 3593 if (sdzp == tdzp) 3594 rw_exit(&sdzp->z_name_lock); 3595 3596 if (strcmp(snm, "..") == 0) 3597 serr = SET_ERROR(EINVAL); 3598 ZFS_EXIT(zfsvfs); 3599 return (serr); 3600 } 3601 if (terr) { 3602 zfs_dirent_unlock(sdl); 3603 VN_RELE(ZTOV(szp)); 3604 3605 if (sdzp == tdzp) 3606 rw_exit(&sdzp->z_name_lock); 3607 3608 if (strcmp(tnm, "..") == 0) 3609 terr = SET_ERROR(EINVAL); 3610 ZFS_EXIT(zfsvfs); 3611 return (terr); 3612 } 3613 3614 /* 3615 * Must have write access at the source to remove the old entry 3616 * and write access at the target to create the new entry. 3617 * Note that if target and source are the same, this can be 3618 * done in a single check. 3619 */ 3620 3621 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3622 goto out; 3623 3624 if (ZTOV(szp)->v_type == VDIR) { 3625 /* 3626 * Check to make sure rename is valid. 3627 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3628 */ 3629 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3630 goto out; 3631 } 3632 3633 /* 3634 * Does target exist? 3635 */ 3636 if (tzp) { 3637 /* 3638 * Source and target must be the same type. 3639 */ 3640 if (ZTOV(szp)->v_type == VDIR) { 3641 if (ZTOV(tzp)->v_type != VDIR) { 3642 error = SET_ERROR(ENOTDIR); 3643 goto out; 3644 } 3645 } else { 3646 if (ZTOV(tzp)->v_type == VDIR) { 3647 error = SET_ERROR(EISDIR); 3648 goto out; 3649 } 3650 } 3651 /* 3652 * POSIX dictates that when the source and target 3653 * entries refer to the same file object, rename 3654 * must do nothing and exit without error. 3655 */ 3656 if (szp->z_id == tzp->z_id) { 3657 error = 0; 3658 goto out; 3659 } 3660 } 3661 3662 vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct); 3663 if (tzp) 3664 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3665 3666 /* 3667 * notify the target directory if it is not the same 3668 * as source directory. 3669 */ 3670 if (tdvp != sdvp) { 3671 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct); 3672 } 3673 3674 tx = dmu_tx_create(zfsvfs->z_os); 3675 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3676 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3677 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3678 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3679 if (sdzp != tdzp) { 3680 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3681 zfs_sa_upgrade_txholds(tx, tdzp); 3682 } 3683 if (tzp) { 3684 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3685 zfs_sa_upgrade_txholds(tx, tzp); 3686 } 3687 3688 zfs_sa_upgrade_txholds(tx, szp); 3689 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3690 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3691 if (error) { 3692 if (zl != NULL) 3693 zfs_rename_unlock(&zl); 3694 zfs_dirent_unlock(sdl); 3695 zfs_dirent_unlock(tdl); 3696 3697 if (sdzp == tdzp) 3698 rw_exit(&sdzp->z_name_lock); 3699 3700 VN_RELE(ZTOV(szp)); 3701 if (tzp) 3702 VN_RELE(ZTOV(tzp)); 3703 if (error == ERESTART) { 3704 waited = B_TRUE; 3705 dmu_tx_wait(tx); 3706 dmu_tx_abort(tx); 3707 goto top; 3708 } 3709 dmu_tx_abort(tx); 3710 ZFS_EXIT(zfsvfs); 3711 return (error); 3712 } 3713 3714 if (tzp) /* Attempt to remove the existing target */ 3715 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3716 3717 if (error == 0) { 3718 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3719 if (error == 0) { 3720 szp->z_pflags |= ZFS_AV_MODIFIED; 3721 3722 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3723 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3724 ASSERT0(error); 3725 3726 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3727 if (error == 0) { 3728 zfs_log_rename(zilog, tx, TX_RENAME | 3729 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 3730 sdl->dl_name, tdzp, tdl->dl_name, szp); 3731 3732 /* 3733 * Update path information for the target vnode 3734 */ 3735 vn_renamepath(tdvp, ZTOV(szp), tnm, 3736 strlen(tnm)); 3737 } else { 3738 /* 3739 * At this point, we have successfully created 3740 * the target name, but have failed to remove 3741 * the source name. Since the create was done 3742 * with the ZRENAMING flag, there are 3743 * complications; for one, the link count is 3744 * wrong. The easiest way to deal with this 3745 * is to remove the newly created target, and 3746 * return the original error. This must 3747 * succeed; fortunately, it is very unlikely to 3748 * fail, since we just created it. 3749 */ 3750 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3751 ZRENAMING, NULL), ==, 0); 3752 } 3753 } 3754 } 3755 3756 dmu_tx_commit(tx); 3757 3758 if (tzp && rm_err == 0) 3759 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3760 3761 if (error == 0) { 3762 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3763 /* notify the target dir if it is not the same as source dir */ 3764 if (tdvp != sdvp) 3765 vnevent_rename_dest_dir(tdvp, ct); 3766 } 3767 out: 3768 if (zl != NULL) 3769 zfs_rename_unlock(&zl); 3770 3771 zfs_dirent_unlock(sdl); 3772 zfs_dirent_unlock(tdl); 3773 3774 if (sdzp == tdzp) 3775 rw_exit(&sdzp->z_name_lock); 3776 3777 3778 VN_RELE(ZTOV(szp)); 3779 if (tzp) 3780 VN_RELE(ZTOV(tzp)); 3781 3782 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3783 zil_commit(zilog, 0); 3784 3785 ZFS_EXIT(zfsvfs); 3786 return (error); 3787 } 3788 3789 /* 3790 * Insert the indicated symbolic reference entry into the directory. 3791 * 3792 * IN: dvp - Directory to contain new symbolic link. 3793 * link - Name for new symlink entry. 3794 * vap - Attributes of new entry. 3795 * cr - credentials of caller. 3796 * ct - caller context 3797 * flags - case flags 3798 * 3799 * RETURN: 0 on success, error code on failure. 3800 * 3801 * Timestamps: 3802 * dvp - ctime|mtime updated 3803 */ 3804 /*ARGSUSED*/ 3805 static int 3806 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3807 caller_context_t *ct, int flags) 3808 { 3809 znode_t *zp, *dzp = VTOZ(dvp); 3810 zfs_dirlock_t *dl; 3811 dmu_tx_t *tx; 3812 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3813 zilog_t *zilog; 3814 uint64_t len = strlen(link); 3815 int error; 3816 int zflg = ZNEW; 3817 zfs_acl_ids_t acl_ids; 3818 boolean_t fuid_dirtied; 3819 uint64_t txtype = TX_SYMLINK; 3820 boolean_t waited = B_FALSE; 3821 3822 ASSERT(vap->va_type == VLNK); 3823 3824 ZFS_ENTER(zfsvfs); 3825 ZFS_VERIFY_ZP(dzp); 3826 zilog = zfsvfs->z_log; 3827 3828 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3829 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3830 ZFS_EXIT(zfsvfs); 3831 return (SET_ERROR(EILSEQ)); 3832 } 3833 if (flags & FIGNORECASE) 3834 zflg |= ZCILOOK; 3835 3836 if (len > MAXPATHLEN) { 3837 ZFS_EXIT(zfsvfs); 3838 return (SET_ERROR(ENAMETOOLONG)); 3839 } 3840 3841 if ((error = zfs_acl_ids_create(dzp, 0, 3842 vap, cr, NULL, &acl_ids)) != 0) { 3843 ZFS_EXIT(zfsvfs); 3844 return (error); 3845 } 3846 top: 3847 /* 3848 * Attempt to lock directory; fail if entry already exists. 3849 */ 3850 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3851 if (error) { 3852 zfs_acl_ids_free(&acl_ids); 3853 ZFS_EXIT(zfsvfs); 3854 return (error); 3855 } 3856 3857 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3858 zfs_acl_ids_free(&acl_ids); 3859 zfs_dirent_unlock(dl); 3860 ZFS_EXIT(zfsvfs); 3861 return (error); 3862 } 3863 3864 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3865 zfs_acl_ids_free(&acl_ids); 3866 zfs_dirent_unlock(dl); 3867 ZFS_EXIT(zfsvfs); 3868 return (SET_ERROR(EDQUOT)); 3869 } 3870 tx = dmu_tx_create(zfsvfs->z_os); 3871 fuid_dirtied = zfsvfs->z_fuid_dirty; 3872 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3873 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3874 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3875 ZFS_SA_BASE_ATTR_SIZE + len); 3876 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3877 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3878 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3879 acl_ids.z_aclp->z_acl_bytes); 3880 } 3881 if (fuid_dirtied) 3882 zfs_fuid_txhold(zfsvfs, tx); 3883 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3884 if (error) { 3885 zfs_dirent_unlock(dl); 3886 if (error == ERESTART) { 3887 waited = B_TRUE; 3888 dmu_tx_wait(tx); 3889 dmu_tx_abort(tx); 3890 goto top; 3891 } 3892 zfs_acl_ids_free(&acl_ids); 3893 dmu_tx_abort(tx); 3894 ZFS_EXIT(zfsvfs); 3895 return (error); 3896 } 3897 3898 /* 3899 * Create a new object for the symlink. 3900 * for version 4 ZPL datsets the symlink will be an SA attribute 3901 */ 3902 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3903 3904 if (fuid_dirtied) 3905 zfs_fuid_sync(zfsvfs, tx); 3906 3907 mutex_enter(&zp->z_lock); 3908 if (zp->z_is_sa) 3909 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3910 link, len, tx); 3911 else 3912 zfs_sa_symlink(zp, link, len, tx); 3913 mutex_exit(&zp->z_lock); 3914 3915 zp->z_size = len; 3916 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3917 &zp->z_size, sizeof (zp->z_size), tx); 3918 /* 3919 * Insert the new object into the directory. 3920 */ 3921 (void) zfs_link_create(dl, zp, tx, ZNEW); 3922 3923 if (flags & FIGNORECASE) 3924 txtype |= TX_CI; 3925 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3926 3927 zfs_acl_ids_free(&acl_ids); 3928 3929 dmu_tx_commit(tx); 3930 3931 zfs_dirent_unlock(dl); 3932 3933 VN_RELE(ZTOV(zp)); 3934 3935 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3936 zil_commit(zilog, 0); 3937 3938 ZFS_EXIT(zfsvfs); 3939 return (error); 3940 } 3941 3942 /* 3943 * Return, in the buffer contained in the provided uio structure, 3944 * the symbolic path referred to by vp. 3945 * 3946 * IN: vp - vnode of symbolic link. 3947 * uio - structure to contain the link path. 3948 * cr - credentials of caller. 3949 * ct - caller context 3950 * 3951 * OUT: uio - structure containing the link path. 3952 * 3953 * RETURN: 0 on success, error code on failure. 3954 * 3955 * Timestamps: 3956 * vp - atime updated 3957 */ 3958 /* ARGSUSED */ 3959 static int 3960 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3961 { 3962 znode_t *zp = VTOZ(vp); 3963 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3964 int error; 3965 3966 ZFS_ENTER(zfsvfs); 3967 ZFS_VERIFY_ZP(zp); 3968 3969 mutex_enter(&zp->z_lock); 3970 if (zp->z_is_sa) 3971 error = sa_lookup_uio(zp->z_sa_hdl, 3972 SA_ZPL_SYMLINK(zfsvfs), uio); 3973 else 3974 error = zfs_sa_readlink(zp, uio); 3975 mutex_exit(&zp->z_lock); 3976 3977 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3978 3979 ZFS_EXIT(zfsvfs); 3980 return (error); 3981 } 3982 3983 /* 3984 * Insert a new entry into directory tdvp referencing svp. 3985 * 3986 * IN: tdvp - Directory to contain new entry. 3987 * svp - vnode of new entry. 3988 * name - name of new entry. 3989 * cr - credentials of caller. 3990 * ct - caller context 3991 * 3992 * RETURN: 0 on success, error code on failure. 3993 * 3994 * Timestamps: 3995 * tdvp - ctime|mtime updated 3996 * svp - ctime updated 3997 */ 3998 /* ARGSUSED */ 3999 static int 4000 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 4001 caller_context_t *ct, int flags) 4002 { 4003 znode_t *dzp = VTOZ(tdvp); 4004 znode_t *tzp, *szp; 4005 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 4006 zilog_t *zilog; 4007 zfs_dirlock_t *dl; 4008 dmu_tx_t *tx; 4009 vnode_t *realvp; 4010 int error; 4011 int zf = ZNEW; 4012 uint64_t parent; 4013 uid_t owner; 4014 boolean_t waited = B_FALSE; 4015 4016 ASSERT(tdvp->v_type == VDIR); 4017 4018 ZFS_ENTER(zfsvfs); 4019 ZFS_VERIFY_ZP(dzp); 4020 zilog = zfsvfs->z_log; 4021 4022 if (VOP_REALVP(svp, &realvp, ct) == 0) 4023 svp = realvp; 4024 4025 /* 4026 * POSIX dictates that we return EPERM here. 4027 * Better choices include ENOTSUP or EISDIR. 4028 */ 4029 if (svp->v_type == VDIR) { 4030 ZFS_EXIT(zfsvfs); 4031 return (SET_ERROR(EPERM)); 4032 } 4033 4034 szp = VTOZ(svp); 4035 ZFS_VERIFY_ZP(szp); 4036 4037 /* 4038 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 4039 * ctldir appear to have the same v_vfsp. 4040 */ 4041 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 4042 ZFS_EXIT(zfsvfs); 4043 return (SET_ERROR(EXDEV)); 4044 } 4045 4046 /* Prevent links to .zfs/shares files */ 4047 4048 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 4049 &parent, sizeof (uint64_t))) != 0) { 4050 ZFS_EXIT(zfsvfs); 4051 return (error); 4052 } 4053 if (parent == zfsvfs->z_shares_dir) { 4054 ZFS_EXIT(zfsvfs); 4055 return (SET_ERROR(EPERM)); 4056 } 4057 4058 if (zfsvfs->z_utf8 && u8_validate(name, 4059 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4060 ZFS_EXIT(zfsvfs); 4061 return (SET_ERROR(EILSEQ)); 4062 } 4063 if (flags & FIGNORECASE) 4064 zf |= ZCILOOK; 4065 4066 /* 4067 * We do not support links between attributes and non-attributes 4068 * because of the potential security risk of creating links 4069 * into "normal" file space in order to circumvent restrictions 4070 * imposed in attribute space. 4071 */ 4072 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 4073 ZFS_EXIT(zfsvfs); 4074 return (SET_ERROR(EINVAL)); 4075 } 4076 4077 4078 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 4079 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 4080 ZFS_EXIT(zfsvfs); 4081 return (SET_ERROR(EPERM)); 4082 } 4083 4084 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4085 ZFS_EXIT(zfsvfs); 4086 return (error); 4087 } 4088 4089 top: 4090 /* 4091 * Attempt to lock directory; fail if entry already exists. 4092 */ 4093 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4094 if (error) { 4095 ZFS_EXIT(zfsvfs); 4096 return (error); 4097 } 4098 4099 tx = dmu_tx_create(zfsvfs->z_os); 4100 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4101 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4102 zfs_sa_upgrade_txholds(tx, szp); 4103 zfs_sa_upgrade_txholds(tx, dzp); 4104 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 4105 if (error) { 4106 zfs_dirent_unlock(dl); 4107 if (error == ERESTART) { 4108 waited = B_TRUE; 4109 dmu_tx_wait(tx); 4110 dmu_tx_abort(tx); 4111 goto top; 4112 } 4113 dmu_tx_abort(tx); 4114 ZFS_EXIT(zfsvfs); 4115 return (error); 4116 } 4117 4118 error = zfs_link_create(dl, szp, tx, 0); 4119 4120 if (error == 0) { 4121 uint64_t txtype = TX_LINK; 4122 if (flags & FIGNORECASE) 4123 txtype |= TX_CI; 4124 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4125 } 4126 4127 dmu_tx_commit(tx); 4128 4129 zfs_dirent_unlock(dl); 4130 4131 if (error == 0) { 4132 vnevent_link(svp, ct); 4133 } 4134 4135 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4136 zil_commit(zilog, 0); 4137 4138 ZFS_EXIT(zfsvfs); 4139 return (error); 4140 } 4141 4142 /* 4143 * zfs_null_putapage() is used when the file system has been force 4144 * unmounted. It just drops the pages. 4145 */ 4146 /* ARGSUSED */ 4147 static int 4148 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4149 size_t *lenp, int flags, cred_t *cr) 4150 { 4151 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4152 return (0); 4153 } 4154 4155 /* 4156 * Push a page out to disk, klustering if possible. 4157 * 4158 * IN: vp - file to push page to. 4159 * pp - page to push. 4160 * flags - additional flags. 4161 * cr - credentials of caller. 4162 * 4163 * OUT: offp - start of range pushed. 4164 * lenp - len of range pushed. 4165 * 4166 * RETURN: 0 on success, error code on failure. 4167 * 4168 * NOTE: callers must have locked the page to be pushed. On 4169 * exit, the page (and all other pages in the kluster) must be 4170 * unlocked. 4171 */ 4172 /* ARGSUSED */ 4173 static int 4174 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4175 size_t *lenp, int flags, cred_t *cr) 4176 { 4177 znode_t *zp = VTOZ(vp); 4178 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4179 dmu_tx_t *tx; 4180 u_offset_t off, koff; 4181 size_t len, klen; 4182 int err; 4183 4184 off = pp->p_offset; 4185 len = PAGESIZE; 4186 /* 4187 * If our blocksize is bigger than the page size, try to kluster 4188 * multiple pages so that we write a full block (thus avoiding 4189 * a read-modify-write). 4190 */ 4191 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4192 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4193 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4194 ASSERT(koff <= zp->z_size); 4195 if (koff + klen > zp->z_size) 4196 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4197 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4198 } 4199 ASSERT3U(btop(len), ==, btopr(len)); 4200 4201 /* 4202 * Can't push pages past end-of-file. 4203 */ 4204 if (off >= zp->z_size) { 4205 /* ignore all pages */ 4206 err = 0; 4207 goto out; 4208 } else if (off + len > zp->z_size) { 4209 int npages = btopr(zp->z_size - off); 4210 page_t *trunc; 4211 4212 page_list_break(&pp, &trunc, npages); 4213 /* ignore pages past end of file */ 4214 if (trunc) 4215 pvn_write_done(trunc, flags); 4216 len = zp->z_size - off; 4217 } 4218 4219 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4220 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4221 err = SET_ERROR(EDQUOT); 4222 goto out; 4223 } 4224 tx = dmu_tx_create(zfsvfs->z_os); 4225 dmu_tx_hold_write(tx, zp->z_id, off, len); 4226 4227 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4228 zfs_sa_upgrade_txholds(tx, zp); 4229 err = dmu_tx_assign(tx, TXG_WAIT); 4230 if (err != 0) { 4231 dmu_tx_abort(tx); 4232 goto out; 4233 } 4234 4235 if (zp->z_blksz <= PAGESIZE) { 4236 caddr_t va = zfs_map_page(pp, S_READ); 4237 ASSERT3U(len, <=, PAGESIZE); 4238 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4239 zfs_unmap_page(pp, va); 4240 } else { 4241 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4242 } 4243 4244 if (err == 0) { 4245 uint64_t mtime[2], ctime[2]; 4246 sa_bulk_attr_t bulk[3]; 4247 int count = 0; 4248 4249 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4250 &mtime, 16); 4251 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4252 &ctime, 16); 4253 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4254 &zp->z_pflags, 8); 4255 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4256 B_TRUE); 4257 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4258 } 4259 dmu_tx_commit(tx); 4260 4261 out: 4262 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4263 if (offp) 4264 *offp = off; 4265 if (lenp) 4266 *lenp = len; 4267 4268 return (err); 4269 } 4270 4271 /* 4272 * Copy the portion of the file indicated from pages into the file. 4273 * The pages are stored in a page list attached to the files vnode. 4274 * 4275 * IN: vp - vnode of file to push page data to. 4276 * off - position in file to put data. 4277 * len - amount of data to write. 4278 * flags - flags to control the operation. 4279 * cr - credentials of caller. 4280 * ct - caller context. 4281 * 4282 * RETURN: 0 on success, error code on failure. 4283 * 4284 * Timestamps: 4285 * vp - ctime|mtime updated 4286 */ 4287 /*ARGSUSED*/ 4288 static int 4289 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4290 caller_context_t *ct) 4291 { 4292 znode_t *zp = VTOZ(vp); 4293 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4294 page_t *pp; 4295 size_t io_len; 4296 u_offset_t io_off; 4297 uint_t blksz; 4298 rl_t *rl; 4299 int error = 0; 4300 4301 ZFS_ENTER(zfsvfs); 4302 ZFS_VERIFY_ZP(zp); 4303 4304 /* 4305 * There's nothing to do if no data is cached. 4306 */ 4307 if (!vn_has_cached_data(vp)) { 4308 ZFS_EXIT(zfsvfs); 4309 return (0); 4310 } 4311 4312 /* 4313 * Align this request to the file block size in case we kluster. 4314 * XXX - this can result in pretty aggresive locking, which can 4315 * impact simultanious read/write access. One option might be 4316 * to break up long requests (len == 0) into block-by-block 4317 * operations to get narrower locking. 4318 */ 4319 blksz = zp->z_blksz; 4320 if (ISP2(blksz)) 4321 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4322 else 4323 io_off = 0; 4324 if (len > 0 && ISP2(blksz)) 4325 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4326 else 4327 io_len = 0; 4328 4329 if (io_len == 0) { 4330 /* 4331 * Search the entire vp list for pages >= io_off. 4332 */ 4333 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4334 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4335 goto out; 4336 } 4337 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4338 4339 if (off > zp->z_size) { 4340 /* past end of file */ 4341 zfs_range_unlock(rl); 4342 ZFS_EXIT(zfsvfs); 4343 return (0); 4344 } 4345 4346 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4347 4348 for (off = io_off; io_off < off + len; io_off += io_len) { 4349 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4350 pp = page_lookup(vp, io_off, 4351 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4352 } else { 4353 pp = page_lookup_nowait(vp, io_off, 4354 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4355 } 4356 4357 if (pp != NULL && pvn_getdirty(pp, flags)) { 4358 int err; 4359 4360 /* 4361 * Found a dirty page to push 4362 */ 4363 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4364 if (err) 4365 error = err; 4366 } else { 4367 io_len = PAGESIZE; 4368 } 4369 } 4370 out: 4371 zfs_range_unlock(rl); 4372 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4373 zil_commit(zfsvfs->z_log, zp->z_id); 4374 ZFS_EXIT(zfsvfs); 4375 return (error); 4376 } 4377 4378 /*ARGSUSED*/ 4379 void 4380 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4381 { 4382 znode_t *zp = VTOZ(vp); 4383 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4384 int error; 4385 4386 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4387 if (zp->z_sa_hdl == NULL) { 4388 /* 4389 * The fs has been unmounted, or we did a 4390 * suspend/resume and this file no longer exists. 4391 */ 4392 if (vn_has_cached_data(vp)) { 4393 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4394 B_INVAL, cr); 4395 } 4396 4397 mutex_enter(&zp->z_lock); 4398 mutex_enter(&vp->v_lock); 4399 ASSERT(vp->v_count == 1); 4400 vp->v_count = 0; 4401 mutex_exit(&vp->v_lock); 4402 mutex_exit(&zp->z_lock); 4403 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4404 zfs_znode_free(zp); 4405 return; 4406 } 4407 4408 /* 4409 * Attempt to push any data in the page cache. If this fails 4410 * we will get kicked out later in zfs_zinactive(). 4411 */ 4412 if (vn_has_cached_data(vp)) { 4413 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4414 cr); 4415 } 4416 4417 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4418 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4419 4420 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4421 zfs_sa_upgrade_txholds(tx, zp); 4422 error = dmu_tx_assign(tx, TXG_WAIT); 4423 if (error) { 4424 dmu_tx_abort(tx); 4425 } else { 4426 mutex_enter(&zp->z_lock); 4427 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4428 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4429 zp->z_atime_dirty = 0; 4430 mutex_exit(&zp->z_lock); 4431 dmu_tx_commit(tx); 4432 } 4433 } 4434 4435 zfs_zinactive(zp); 4436 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4437 } 4438 4439 /* 4440 * Bounds-check the seek operation. 4441 * 4442 * IN: vp - vnode seeking within 4443 * ooff - old file offset 4444 * noffp - pointer to new file offset 4445 * ct - caller context 4446 * 4447 * RETURN: 0 on success, EINVAL if new offset invalid. 4448 */ 4449 /* ARGSUSED */ 4450 static int 4451 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4452 caller_context_t *ct) 4453 { 4454 if (vp->v_type == VDIR) 4455 return (0); 4456 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4457 } 4458 4459 /* 4460 * Pre-filter the generic locking function to trap attempts to place 4461 * a mandatory lock on a memory mapped file. 4462 */ 4463 static int 4464 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4465 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4466 { 4467 znode_t *zp = VTOZ(vp); 4468 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4469 4470 ZFS_ENTER(zfsvfs); 4471 ZFS_VERIFY_ZP(zp); 4472 4473 /* 4474 * We are following the UFS semantics with respect to mapcnt 4475 * here: If we see that the file is mapped already, then we will 4476 * return an error, but we don't worry about races between this 4477 * function and zfs_map(). 4478 */ 4479 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4480 ZFS_EXIT(zfsvfs); 4481 return (SET_ERROR(EAGAIN)); 4482 } 4483 ZFS_EXIT(zfsvfs); 4484 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4485 } 4486 4487 /* 4488 * If we can't find a page in the cache, we will create a new page 4489 * and fill it with file data. For efficiency, we may try to fill 4490 * multiple pages at once (klustering) to fill up the supplied page 4491 * list. Note that the pages to be filled are held with an exclusive 4492 * lock to prevent access by other threads while they are being filled. 4493 */ 4494 static int 4495 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4496 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4497 { 4498 znode_t *zp = VTOZ(vp); 4499 page_t *pp, *cur_pp; 4500 objset_t *os = zp->z_zfsvfs->z_os; 4501 u_offset_t io_off, total; 4502 size_t io_len; 4503 int err; 4504 4505 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4506 /* 4507 * We only have a single page, don't bother klustering 4508 */ 4509 io_off = off; 4510 io_len = PAGESIZE; 4511 pp = page_create_va(vp, io_off, io_len, 4512 PG_EXCL | PG_WAIT, seg, addr); 4513 } else { 4514 /* 4515 * Try to find enough pages to fill the page list 4516 */ 4517 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4518 &io_len, off, plsz, 0); 4519 } 4520 if (pp == NULL) { 4521 /* 4522 * The page already exists, nothing to do here. 4523 */ 4524 *pl = NULL; 4525 return (0); 4526 } 4527 4528 /* 4529 * Fill the pages in the kluster. 4530 */ 4531 cur_pp = pp; 4532 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4533 caddr_t va; 4534 4535 ASSERT3U(io_off, ==, cur_pp->p_offset); 4536 va = zfs_map_page(cur_pp, S_WRITE); 4537 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4538 DMU_READ_PREFETCH); 4539 zfs_unmap_page(cur_pp, va); 4540 if (err) { 4541 /* On error, toss the entire kluster */ 4542 pvn_read_done(pp, B_ERROR); 4543 /* convert checksum errors into IO errors */ 4544 if (err == ECKSUM) 4545 err = SET_ERROR(EIO); 4546 return (err); 4547 } 4548 cur_pp = cur_pp->p_next; 4549 } 4550 4551 /* 4552 * Fill in the page list array from the kluster starting 4553 * from the desired offset `off'. 4554 * NOTE: the page list will always be null terminated. 4555 */ 4556 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4557 ASSERT(pl == NULL || (*pl)->p_offset == off); 4558 4559 return (0); 4560 } 4561 4562 /* 4563 * Return pointers to the pages for the file region [off, off + len] 4564 * in the pl array. If plsz is greater than len, this function may 4565 * also return page pointers from after the specified region 4566 * (i.e. the region [off, off + plsz]). These additional pages are 4567 * only returned if they are already in the cache, or were created as 4568 * part of a klustered read. 4569 * 4570 * IN: vp - vnode of file to get data from. 4571 * off - position in file to get data from. 4572 * len - amount of data to retrieve. 4573 * plsz - length of provided page list. 4574 * seg - segment to obtain pages for. 4575 * addr - virtual address of fault. 4576 * rw - mode of created pages. 4577 * cr - credentials of caller. 4578 * ct - caller context. 4579 * 4580 * OUT: protp - protection mode of created pages. 4581 * pl - list of pages created. 4582 * 4583 * RETURN: 0 on success, error code on failure. 4584 * 4585 * Timestamps: 4586 * vp - atime updated 4587 */ 4588 /* ARGSUSED */ 4589 static int 4590 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4591 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4592 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4593 { 4594 znode_t *zp = VTOZ(vp); 4595 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4596 page_t **pl0 = pl; 4597 int err = 0; 4598 4599 /* we do our own caching, faultahead is unnecessary */ 4600 if (pl == NULL) 4601 return (0); 4602 else if (len > plsz) 4603 len = plsz; 4604 else 4605 len = P2ROUNDUP(len, PAGESIZE); 4606 ASSERT(plsz >= len); 4607 4608 ZFS_ENTER(zfsvfs); 4609 ZFS_VERIFY_ZP(zp); 4610 4611 if (protp) 4612 *protp = PROT_ALL; 4613 4614 /* 4615 * Loop through the requested range [off, off + len) looking 4616 * for pages. If we don't find a page, we will need to create 4617 * a new page and fill it with data from the file. 4618 */ 4619 while (len > 0) { 4620 if (*pl = page_lookup(vp, off, SE_SHARED)) 4621 *(pl+1) = NULL; 4622 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4623 goto out; 4624 while (*pl) { 4625 ASSERT3U((*pl)->p_offset, ==, off); 4626 off += PAGESIZE; 4627 addr += PAGESIZE; 4628 if (len > 0) { 4629 ASSERT3U(len, >=, PAGESIZE); 4630 len -= PAGESIZE; 4631 } 4632 ASSERT3U(plsz, >=, PAGESIZE); 4633 plsz -= PAGESIZE; 4634 pl++; 4635 } 4636 } 4637 4638 /* 4639 * Fill out the page array with any pages already in the cache. 4640 */ 4641 while (plsz > 0 && 4642 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4643 off += PAGESIZE; 4644 plsz -= PAGESIZE; 4645 } 4646 out: 4647 if (err) { 4648 /* 4649 * Release any pages we have previously locked. 4650 */ 4651 while (pl > pl0) 4652 page_unlock(*--pl); 4653 } else { 4654 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4655 } 4656 4657 *pl = NULL; 4658 4659 ZFS_EXIT(zfsvfs); 4660 return (err); 4661 } 4662 4663 /* 4664 * Request a memory map for a section of a file. This code interacts 4665 * with common code and the VM system as follows: 4666 * 4667 * - common code calls mmap(), which ends up in smmap_common() 4668 * - this calls VOP_MAP(), which takes you into (say) zfs 4669 * - zfs_map() calls as_map(), passing segvn_create() as the callback 4670 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 4671 * - zfs_addmap() updates z_mapcnt 4672 */ 4673 /*ARGSUSED*/ 4674 static int 4675 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4676 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4677 caller_context_t *ct) 4678 { 4679 znode_t *zp = VTOZ(vp); 4680 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4681 segvn_crargs_t vn_a; 4682 int error; 4683 4684 ZFS_ENTER(zfsvfs); 4685 ZFS_VERIFY_ZP(zp); 4686 4687 if ((prot & PROT_WRITE) && (zp->z_pflags & 4688 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4689 ZFS_EXIT(zfsvfs); 4690 return (SET_ERROR(EPERM)); 4691 } 4692 4693 if ((prot & (PROT_READ | PROT_EXEC)) && 4694 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4695 ZFS_EXIT(zfsvfs); 4696 return (SET_ERROR(EACCES)); 4697 } 4698 4699 if (vp->v_flag & VNOMAP) { 4700 ZFS_EXIT(zfsvfs); 4701 return (SET_ERROR(ENOSYS)); 4702 } 4703 4704 if (off < 0 || len > MAXOFFSET_T - off) { 4705 ZFS_EXIT(zfsvfs); 4706 return (SET_ERROR(ENXIO)); 4707 } 4708 4709 if (vp->v_type != VREG) { 4710 ZFS_EXIT(zfsvfs); 4711 return (SET_ERROR(ENODEV)); 4712 } 4713 4714 /* 4715 * If file is locked, disallow mapping. 4716 */ 4717 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4718 ZFS_EXIT(zfsvfs); 4719 return (SET_ERROR(EAGAIN)); 4720 } 4721 4722 as_rangelock(as); 4723 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4724 if (error != 0) { 4725 as_rangeunlock(as); 4726 ZFS_EXIT(zfsvfs); 4727 return (error); 4728 } 4729 4730 vn_a.vp = vp; 4731 vn_a.offset = (u_offset_t)off; 4732 vn_a.type = flags & MAP_TYPE; 4733 vn_a.prot = prot; 4734 vn_a.maxprot = maxprot; 4735 vn_a.cred = cr; 4736 vn_a.amp = NULL; 4737 vn_a.flags = flags & ~MAP_TYPE; 4738 vn_a.szc = 0; 4739 vn_a.lgrp_mem_policy_flags = 0; 4740 4741 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4742 4743 as_rangeunlock(as); 4744 ZFS_EXIT(zfsvfs); 4745 return (error); 4746 } 4747 4748 /* ARGSUSED */ 4749 static int 4750 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4751 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4752 caller_context_t *ct) 4753 { 4754 uint64_t pages = btopr(len); 4755 4756 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4757 return (0); 4758 } 4759 4760 /* 4761 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4762 * more accurate mtime for the associated file. Since we don't have a way of 4763 * detecting when the data was actually modified, we have to resort to 4764 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4765 * last page is pushed. The problem occurs when the msync() call is omitted, 4766 * which by far the most common case: 4767 * 4768 * open() 4769 * mmap() 4770 * <modify memory> 4771 * munmap() 4772 * close() 4773 * <time lapse> 4774 * putpage() via fsflush 4775 * 4776 * If we wait until fsflush to come along, we can have a modification time that 4777 * is some arbitrary point in the future. In order to prevent this in the 4778 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4779 * torn down. 4780 */ 4781 /* ARGSUSED */ 4782 static int 4783 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4784 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4785 caller_context_t *ct) 4786 { 4787 uint64_t pages = btopr(len); 4788 4789 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4790 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4791 4792 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4793 vn_has_cached_data(vp)) 4794 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4795 4796 return (0); 4797 } 4798 4799 /* 4800 * Free or allocate space in a file. Currently, this function only 4801 * supports the `F_FREESP' command. However, this command is somewhat 4802 * misnamed, as its functionality includes the ability to allocate as 4803 * well as free space. 4804 * 4805 * IN: vp - vnode of file to free data in. 4806 * cmd - action to take (only F_FREESP supported). 4807 * bfp - section of file to free/alloc. 4808 * flag - current file open mode flags. 4809 * offset - current file offset. 4810 * cr - credentials of caller [UNUSED]. 4811 * ct - caller context. 4812 * 4813 * RETURN: 0 on success, error code on failure. 4814 * 4815 * Timestamps: 4816 * vp - ctime|mtime updated 4817 */ 4818 /* ARGSUSED */ 4819 static int 4820 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4821 offset_t offset, cred_t *cr, caller_context_t *ct) 4822 { 4823 znode_t *zp = VTOZ(vp); 4824 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4825 uint64_t off, len; 4826 int error; 4827 4828 ZFS_ENTER(zfsvfs); 4829 ZFS_VERIFY_ZP(zp); 4830 4831 if (cmd != F_FREESP) { 4832 ZFS_EXIT(zfsvfs); 4833 return (SET_ERROR(EINVAL)); 4834 } 4835 4836 /* 4837 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 4838 * callers might not be able to detect properly that we are read-only, 4839 * so check it explicitly here. 4840 */ 4841 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 4842 ZFS_EXIT(zfsvfs); 4843 return (SET_ERROR(EROFS)); 4844 } 4845 4846 if (error = convoff(vp, bfp, 0, offset)) { 4847 ZFS_EXIT(zfsvfs); 4848 return (error); 4849 } 4850 4851 if (bfp->l_len < 0) { 4852 ZFS_EXIT(zfsvfs); 4853 return (SET_ERROR(EINVAL)); 4854 } 4855 4856 off = bfp->l_start; 4857 len = bfp->l_len; /* 0 means from off to end of file */ 4858 4859 error = zfs_freesp(zp, off, len, flag, TRUE); 4860 4861 if (error == 0 && off == 0 && len == 0) 4862 vnevent_truncate(ZTOV(zp), ct); 4863 4864 ZFS_EXIT(zfsvfs); 4865 return (error); 4866 } 4867 4868 /*ARGSUSED*/ 4869 static int 4870 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4871 { 4872 znode_t *zp = VTOZ(vp); 4873 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4874 uint32_t gen; 4875 uint64_t gen64; 4876 uint64_t object = zp->z_id; 4877 zfid_short_t *zfid; 4878 int size, i, error; 4879 4880 ZFS_ENTER(zfsvfs); 4881 ZFS_VERIFY_ZP(zp); 4882 4883 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4884 &gen64, sizeof (uint64_t))) != 0) { 4885 ZFS_EXIT(zfsvfs); 4886 return (error); 4887 } 4888 4889 gen = (uint32_t)gen64; 4890 4891 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4892 if (fidp->fid_len < size) { 4893 fidp->fid_len = size; 4894 ZFS_EXIT(zfsvfs); 4895 return (SET_ERROR(ENOSPC)); 4896 } 4897 4898 zfid = (zfid_short_t *)fidp; 4899 4900 zfid->zf_len = size; 4901 4902 for (i = 0; i < sizeof (zfid->zf_object); i++) 4903 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4904 4905 /* Must have a non-zero generation number to distinguish from .zfs */ 4906 if (gen == 0) 4907 gen = 1; 4908 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4909 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4910 4911 if (size == LONG_FID_LEN) { 4912 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4913 zfid_long_t *zlfid; 4914 4915 zlfid = (zfid_long_t *)fidp; 4916 4917 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4918 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4919 4920 /* XXX - this should be the generation number for the objset */ 4921 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4922 zlfid->zf_setgen[i] = 0; 4923 } 4924 4925 ZFS_EXIT(zfsvfs); 4926 return (0); 4927 } 4928 4929 static int 4930 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4931 caller_context_t *ct) 4932 { 4933 znode_t *zp, *xzp; 4934 zfsvfs_t *zfsvfs; 4935 zfs_dirlock_t *dl; 4936 int error; 4937 4938 switch (cmd) { 4939 case _PC_LINK_MAX: 4940 *valp = ULONG_MAX; 4941 return (0); 4942 4943 case _PC_FILESIZEBITS: 4944 *valp = 64; 4945 return (0); 4946 4947 case _PC_XATTR_EXISTS: 4948 zp = VTOZ(vp); 4949 zfsvfs = zp->z_zfsvfs; 4950 ZFS_ENTER(zfsvfs); 4951 ZFS_VERIFY_ZP(zp); 4952 *valp = 0; 4953 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4954 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4955 if (error == 0) { 4956 zfs_dirent_unlock(dl); 4957 if (!zfs_dirempty(xzp)) 4958 *valp = 1; 4959 VN_RELE(ZTOV(xzp)); 4960 } else if (error == ENOENT) { 4961 /* 4962 * If there aren't extended attributes, it's the 4963 * same as having zero of them. 4964 */ 4965 error = 0; 4966 } 4967 ZFS_EXIT(zfsvfs); 4968 return (error); 4969 4970 case _PC_SATTR_ENABLED: 4971 case _PC_SATTR_EXISTS: 4972 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4973 (vp->v_type == VREG || vp->v_type == VDIR); 4974 return (0); 4975 4976 case _PC_ACCESS_FILTERING: 4977 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4978 vp->v_type == VDIR; 4979 return (0); 4980 4981 case _PC_ACL_ENABLED: 4982 *valp = _ACL_ACE_ENABLED; 4983 return (0); 4984 4985 case _PC_MIN_HOLE_SIZE: 4986 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4987 return (0); 4988 4989 case _PC_TIMESTAMP_RESOLUTION: 4990 /* nanosecond timestamp resolution */ 4991 *valp = 1L; 4992 return (0); 4993 4994 default: 4995 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4996 } 4997 } 4998 4999 /*ARGSUSED*/ 5000 static int 5001 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5002 caller_context_t *ct) 5003 { 5004 znode_t *zp = VTOZ(vp); 5005 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5006 int error; 5007 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5008 5009 ZFS_ENTER(zfsvfs); 5010 ZFS_VERIFY_ZP(zp); 5011 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 5012 ZFS_EXIT(zfsvfs); 5013 5014 return (error); 5015 } 5016 5017 /*ARGSUSED*/ 5018 static int 5019 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5020 caller_context_t *ct) 5021 { 5022 znode_t *zp = VTOZ(vp); 5023 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5024 int error; 5025 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5026 zilog_t *zilog = zfsvfs->z_log; 5027 5028 ZFS_ENTER(zfsvfs); 5029 ZFS_VERIFY_ZP(zp); 5030 5031 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 5032 5033 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 5034 zil_commit(zilog, 0); 5035 5036 ZFS_EXIT(zfsvfs); 5037 return (error); 5038 } 5039 5040 /* 5041 * The smallest read we may consider to loan out an arcbuf. 5042 * This must be a power of 2. 5043 */ 5044 int zcr_blksz_min = (1 << 10); /* 1K */ 5045 /* 5046 * If set to less than the file block size, allow loaning out of an 5047 * arcbuf for a partial block read. This must be a power of 2. 5048 */ 5049 int zcr_blksz_max = (1 << 17); /* 128K */ 5050 5051 /*ARGSUSED*/ 5052 static int 5053 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 5054 caller_context_t *ct) 5055 { 5056 znode_t *zp = VTOZ(vp); 5057 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5058 int max_blksz = zfsvfs->z_max_blksz; 5059 uio_t *uio = &xuio->xu_uio; 5060 ssize_t size = uio->uio_resid; 5061 offset_t offset = uio->uio_loffset; 5062 int blksz; 5063 int fullblk, i; 5064 arc_buf_t *abuf; 5065 ssize_t maxsize; 5066 int preamble, postamble; 5067 5068 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 5069 return (SET_ERROR(EINVAL)); 5070 5071 ZFS_ENTER(zfsvfs); 5072 ZFS_VERIFY_ZP(zp); 5073 switch (ioflag) { 5074 case UIO_WRITE: 5075 /* 5076 * Loan out an arc_buf for write if write size is bigger than 5077 * max_blksz, and the file's block size is also max_blksz. 5078 */ 5079 blksz = max_blksz; 5080 if (size < blksz || zp->z_blksz != blksz) { 5081 ZFS_EXIT(zfsvfs); 5082 return (SET_ERROR(EINVAL)); 5083 } 5084 /* 5085 * Caller requests buffers for write before knowing where the 5086 * write offset might be (e.g. NFS TCP write). 5087 */ 5088 if (offset == -1) { 5089 preamble = 0; 5090 } else { 5091 preamble = P2PHASE(offset, blksz); 5092 if (preamble) { 5093 preamble = blksz - preamble; 5094 size -= preamble; 5095 } 5096 } 5097 5098 postamble = P2PHASE(size, blksz); 5099 size -= postamble; 5100 5101 fullblk = size / blksz; 5102 (void) dmu_xuio_init(xuio, 5103 (preamble != 0) + fullblk + (postamble != 0)); 5104 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5105 int, postamble, int, 5106 (preamble != 0) + fullblk + (postamble != 0)); 5107 5108 /* 5109 * Have to fix iov base/len for partial buffers. They 5110 * currently represent full arc_buf's. 5111 */ 5112 if (preamble) { 5113 /* data begins in the middle of the arc_buf */ 5114 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5115 blksz); 5116 ASSERT(abuf); 5117 (void) dmu_xuio_add(xuio, abuf, 5118 blksz - preamble, preamble); 5119 } 5120 5121 for (i = 0; i < fullblk; i++) { 5122 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5123 blksz); 5124 ASSERT(abuf); 5125 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5126 } 5127 5128 if (postamble) { 5129 /* data ends in the middle of the arc_buf */ 5130 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5131 blksz); 5132 ASSERT(abuf); 5133 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5134 } 5135 break; 5136 case UIO_READ: 5137 /* 5138 * Loan out an arc_buf for read if the read size is larger than 5139 * the current file block size. Block alignment is not 5140 * considered. Partial arc_buf will be loaned out for read. 5141 */ 5142 blksz = zp->z_blksz; 5143 if (blksz < zcr_blksz_min) 5144 blksz = zcr_blksz_min; 5145 if (blksz > zcr_blksz_max) 5146 blksz = zcr_blksz_max; 5147 /* avoid potential complexity of dealing with it */ 5148 if (blksz > max_blksz) { 5149 ZFS_EXIT(zfsvfs); 5150 return (SET_ERROR(EINVAL)); 5151 } 5152 5153 maxsize = zp->z_size - uio->uio_loffset; 5154 if (size > maxsize) 5155 size = maxsize; 5156 5157 if (size < blksz || vn_has_cached_data(vp)) { 5158 ZFS_EXIT(zfsvfs); 5159 return (SET_ERROR(EINVAL)); 5160 } 5161 break; 5162 default: 5163 ZFS_EXIT(zfsvfs); 5164 return (SET_ERROR(EINVAL)); 5165 } 5166 5167 uio->uio_extflg = UIO_XUIO; 5168 XUIO_XUZC_RW(xuio) = ioflag; 5169 ZFS_EXIT(zfsvfs); 5170 return (0); 5171 } 5172 5173 /*ARGSUSED*/ 5174 static int 5175 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5176 { 5177 int i; 5178 arc_buf_t *abuf; 5179 int ioflag = XUIO_XUZC_RW(xuio); 5180 5181 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5182 5183 i = dmu_xuio_cnt(xuio); 5184 while (i-- > 0) { 5185 abuf = dmu_xuio_arcbuf(xuio, i); 5186 /* 5187 * if abuf == NULL, it must be a write buffer 5188 * that has been returned in zfs_write(). 5189 */ 5190 if (abuf) 5191 dmu_return_arcbuf(abuf); 5192 ASSERT(abuf || ioflag == UIO_WRITE); 5193 } 5194 5195 dmu_xuio_fini(xuio); 5196 return (0); 5197 } 5198 5199 /* 5200 * Predeclare these here so that the compiler assumes that 5201 * this is an "old style" function declaration that does 5202 * not include arguments => we won't get type mismatch errors 5203 * in the initializations that follow. 5204 */ 5205 static int zfs_inval(); 5206 static int zfs_isdir(); 5207 5208 static int 5209 zfs_inval() 5210 { 5211 return (SET_ERROR(EINVAL)); 5212 } 5213 5214 static int 5215 zfs_isdir() 5216 { 5217 return (SET_ERROR(EISDIR)); 5218 } 5219 /* 5220 * Directory vnode operations template 5221 */ 5222 vnodeops_t *zfs_dvnodeops; 5223 const fs_operation_def_t zfs_dvnodeops_template[] = { 5224 VOPNAME_OPEN, { .vop_open = zfs_open }, 5225 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5226 VOPNAME_READ, { .error = zfs_isdir }, 5227 VOPNAME_WRITE, { .error = zfs_isdir }, 5228 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5229 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5230 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5231 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5232 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5233 VOPNAME_CREATE, { .vop_create = zfs_create }, 5234 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5235 VOPNAME_LINK, { .vop_link = zfs_link }, 5236 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5237 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5238 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5239 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5240 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5241 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5242 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5243 VOPNAME_FID, { .vop_fid = zfs_fid }, 5244 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5245 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5246 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5247 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5248 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5249 NULL, NULL 5250 }; 5251 5252 /* 5253 * Regular file vnode operations template 5254 */ 5255 vnodeops_t *zfs_fvnodeops; 5256 const fs_operation_def_t zfs_fvnodeops_template[] = { 5257 VOPNAME_OPEN, { .vop_open = zfs_open }, 5258 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5259 VOPNAME_READ, { .vop_read = zfs_read }, 5260 VOPNAME_WRITE, { .vop_write = zfs_write }, 5261 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5262 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5263 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5264 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5265 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5266 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5267 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5268 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5269 VOPNAME_FID, { .vop_fid = zfs_fid }, 5270 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5271 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5272 VOPNAME_SPACE, { .vop_space = zfs_space }, 5273 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5274 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5275 VOPNAME_MAP, { .vop_map = zfs_map }, 5276 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5277 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5278 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5279 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5280 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5281 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5282 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5283 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5284 NULL, NULL 5285 }; 5286 5287 /* 5288 * Symbolic link vnode operations template 5289 */ 5290 vnodeops_t *zfs_symvnodeops; 5291 const fs_operation_def_t zfs_symvnodeops_template[] = { 5292 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5293 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5294 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5295 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5296 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5297 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5298 VOPNAME_FID, { .vop_fid = zfs_fid }, 5299 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5300 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5301 NULL, NULL 5302 }; 5303 5304 /* 5305 * special share hidden files vnode operations template 5306 */ 5307 vnodeops_t *zfs_sharevnodeops; 5308 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5309 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5310 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5311 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5312 VOPNAME_FID, { .vop_fid = zfs_fid }, 5313 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5314 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5315 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5316 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5317 NULL, NULL 5318 }; 5319 5320 /* 5321 * Extended attribute directory vnode operations template 5322 * 5323 * This template is identical to the directory vnodes 5324 * operation template except for restricted operations: 5325 * VOP_MKDIR() 5326 * VOP_SYMLINK() 5327 * 5328 * Note that there are other restrictions embedded in: 5329 * zfs_create() - restrict type to VREG 5330 * zfs_link() - no links into/out of attribute space 5331 * zfs_rename() - no moves into/out of attribute space 5332 */ 5333 vnodeops_t *zfs_xdvnodeops; 5334 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5335 VOPNAME_OPEN, { .vop_open = zfs_open }, 5336 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5337 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5338 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5339 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5340 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5341 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5342 VOPNAME_CREATE, { .vop_create = zfs_create }, 5343 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5344 VOPNAME_LINK, { .vop_link = zfs_link }, 5345 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5346 VOPNAME_MKDIR, { .error = zfs_inval }, 5347 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5348 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5349 VOPNAME_SYMLINK, { .error = zfs_inval }, 5350 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5351 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5352 VOPNAME_FID, { .vop_fid = zfs_fid }, 5353 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5354 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5355 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5356 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5357 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5358 NULL, NULL 5359 }; 5360 5361 /* 5362 * Error vnode operations template 5363 */ 5364 vnodeops_t *zfs_evnodeops; 5365 const fs_operation_def_t zfs_evnodeops_template[] = { 5366 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5367 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5368 NULL, NULL 5369 };