1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* Portions Copyright 2007 Jeremy Teo */ 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/taskq.h> 43 #include <sys/uio.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/vm.h> 47 #include <vm/seg_vn.h> 48 #include <vm/pvn.h> 49 #include <vm/as.h> 50 #include <vm/kpm.h> 51 #include <vm/seg_kpm.h> 52 #include <sys/mman.h> 53 #include <sys/pathname.h> 54 #include <sys/cmn_err.h> 55 #include <sys/errno.h> 56 #include <sys/unistd.h> 57 #include <sys/zfs_dir.h> 58 #include <sys/zfs_acl.h> 59 #include <sys/zfs_ioctl.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/dmu.h> 62 #include <sys/dmu_objset.h> 63 #include <sys/spa.h> 64 #include <sys/txg.h> 65 #include <sys/dbuf.h> 66 #include <sys/zap.h> 67 #include <sys/sa.h> 68 #include <sys/dirent.h> 69 #include <sys/policy.h> 70 #include <sys/sunddi.h> 71 #include <sys/filio.h> 72 #include <sys/sid.h> 73 #include "fs/fs_subr.h" 74 #include <sys/zfs_ctldir.h> 75 #include <sys/zfs_fuid.h> 76 #include <sys/zfs_sa.h> 77 #include <sys/dnlc.h> 78 #include <sys/zfs_rlock.h> 79 #include <sys/extdirent.h> 80 #include <sys/kidmap.h> 81 #include <sys/cred.h> 82 #include <sys/attr.h> 83 84 /* 85 * Programming rules. 86 * 87 * Each vnode op performs some logical unit of work. To do this, the ZPL must 88 * properly lock its in-core state, create a DMU transaction, do the work, 89 * record this work in the intent log (ZIL), commit the DMU transaction, 90 * and wait for the intent log to commit if it is a synchronous operation. 91 * Moreover, the vnode ops must work in both normal and log replay context. 92 * The ordering of events is important to avoid deadlocks and references 93 * to freed memory. The example below illustrates the following Big Rules: 94 * 95 * (1) A check must be made in each zfs thread for a mounted file system. 96 * This is done avoiding races using ZFS_ENTER(zfsvfs). 97 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 98 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 99 * can return EIO from the calling function. 100 * 101 * (2) VN_RELE() should always be the last thing except for zil_commit() 102 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 103 * First, if it's the last reference, the vnode/znode 104 * can be freed, so the zp may point to freed memory. Second, the last 105 * reference will call zfs_zinactive(), which may induce a lot of work -- 106 * pushing cached pages (which acquires range locks) and syncing out 107 * cached atime changes. Third, zfs_zinactive() may require a new tx, 108 * which could deadlock the system if you were already holding one. 109 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 110 * 111 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 112 * as they can span dmu_tx_assign() calls. 113 * 114 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 115 * dmu_tx_assign(). This is critical because we don't want to block 116 * while holding locks. 117 * 118 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 119 * reduces lock contention and CPU usage when we must wait (note that if 120 * throughput is constrained by the storage, nearly every transaction 121 * must wait). 122 * 123 * Note, in particular, that if a lock is sometimes acquired before 124 * the tx assigns, and sometimes after (e.g. z_lock), then failing 125 * to use a non-blocking assign can deadlock the system. The scenario: 126 * 127 * Thread A has grabbed a lock before calling dmu_tx_assign(). 128 * Thread B is in an already-assigned tx, and blocks for this lock. 129 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 130 * forever, because the previous txg can't quiesce until B's tx commits. 131 * 132 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 133 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 134 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT, 135 * to indicate that this operation has already called dmu_tx_wait(). 136 * This will ensure that we don't retry forever, waiting a short bit 137 * each time. 138 * 139 * (5) If the operation succeeded, generate the intent log entry for it 140 * before dropping locks. This ensures that the ordering of events 141 * in the intent log matches the order in which they actually occurred. 142 * During ZIL replay the zfs_log_* functions will update the sequence 143 * number to indicate the zil transaction has replayed. 144 * 145 * (6) At the end of each vnode op, the DMU tx must always commit, 146 * regardless of whether there were any errors. 147 * 148 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 149 * to ensure that synchronous semantics are provided when necessary. 150 * 151 * In general, this is how things should be ordered in each vnode op: 152 * 153 * ZFS_ENTER(zfsvfs); // exit if unmounted 154 * top: 155 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 156 * rw_enter(...); // grab any other locks you need 157 * tx = dmu_tx_create(...); // get DMU tx 158 * dmu_tx_hold_*(); // hold each object you might modify 159 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 160 * if (error) { 161 * rw_exit(...); // drop locks 162 * zfs_dirent_unlock(dl); // unlock directory entry 163 * VN_RELE(...); // release held vnodes 164 * if (error == ERESTART) { 165 * waited = B_TRUE; 166 * dmu_tx_wait(tx); 167 * dmu_tx_abort(tx); 168 * goto top; 169 * } 170 * dmu_tx_abort(tx); // abort DMU tx 171 * ZFS_EXIT(zfsvfs); // finished in zfs 172 * return (error); // really out of space 173 * } 174 * error = do_real_work(); // do whatever this VOP does 175 * if (error == 0) 176 * zfs_log_*(...); // on success, make ZIL entry 177 * dmu_tx_commit(tx); // commit DMU tx -- error or not 178 * rw_exit(...); // drop locks 179 * zfs_dirent_unlock(dl); // unlock directory entry 180 * VN_RELE(...); // release held vnodes 181 * zil_commit(zilog, foid); // synchronous when necessary 182 * ZFS_EXIT(zfsvfs); // finished in zfs 183 * return (error); // done, report error 184 */ 185 186 /* ARGSUSED */ 187 static int 188 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 189 { 190 znode_t *zp = VTOZ(*vpp); 191 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 192 193 ZFS_ENTER(zfsvfs); 194 ZFS_VERIFY_ZP(zp); 195 196 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 197 ((flag & FAPPEND) == 0)) { 198 ZFS_EXIT(zfsvfs); 199 return (SET_ERROR(EPERM)); 200 } 201 202 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 203 ZTOV(zp)->v_type == VREG && 204 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 205 if (fs_vscan(*vpp, cr, 0) != 0) { 206 ZFS_EXIT(zfsvfs); 207 return (SET_ERROR(EACCES)); 208 } 209 } 210 211 /* Keep a count of the synchronous opens in the znode */ 212 if (flag & (FSYNC | FDSYNC)) 213 atomic_inc_32(&zp->z_sync_cnt); 214 215 ZFS_EXIT(zfsvfs); 216 return (0); 217 } 218 219 /* ARGSUSED */ 220 static int 221 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 222 caller_context_t *ct) 223 { 224 znode_t *zp = VTOZ(vp); 225 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 226 227 /* 228 * Clean up any locks held by this process on the vp. 229 */ 230 cleanlocks(vp, ddi_get_pid(), 0); 231 cleanshares(vp, ddi_get_pid()); 232 233 ZFS_ENTER(zfsvfs); 234 ZFS_VERIFY_ZP(zp); 235 236 /* Decrement the synchronous opens in the znode */ 237 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 238 atomic_dec_32(&zp->z_sync_cnt); 239 240 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 241 ZTOV(zp)->v_type == VREG && 242 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 243 VERIFY(fs_vscan(vp, cr, 1) == 0); 244 245 ZFS_EXIT(zfsvfs); 246 return (0); 247 } 248 249 /* 250 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 251 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 252 */ 253 static int 254 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 255 { 256 znode_t *zp = VTOZ(vp); 257 uint64_t noff = (uint64_t)*off; /* new offset */ 258 uint64_t file_sz; 259 int error; 260 boolean_t hole; 261 262 file_sz = zp->z_size; 263 if (noff >= file_sz) { 264 return (SET_ERROR(ENXIO)); 265 } 266 267 if (cmd == _FIO_SEEK_HOLE) 268 hole = B_TRUE; 269 else 270 hole = B_FALSE; 271 272 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 273 274 if (error == ESRCH) 275 return (SET_ERROR(ENXIO)); 276 277 /* 278 * We could find a hole that begins after the logical end-of-file, 279 * because dmu_offset_next() only works on whole blocks. If the 280 * EOF falls mid-block, then indicate that the "virtual hole" 281 * at the end of the file begins at the logical EOF, rather than 282 * at the end of the last block. 283 */ 284 if (noff > file_sz) { 285 ASSERT(hole); 286 noff = file_sz; 287 } 288 289 if (noff < *off) 290 return (error); 291 *off = noff; 292 return (error); 293 } 294 295 /* ARGSUSED */ 296 static int 297 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 298 int *rvalp, caller_context_t *ct) 299 { 300 offset_t off; 301 offset_t ndata; 302 dmu_object_info_t doi; 303 int error; 304 zfsvfs_t *zfsvfs; 305 znode_t *zp; 306 307 switch (com) { 308 case _FIOFFS: 309 { 310 return (zfs_sync(vp->v_vfsp, 0, cred)); 311 312 /* 313 * The following two ioctls are used by bfu. Faking out, 314 * necessary to avoid bfu errors. 315 */ 316 } 317 case _FIOGDIO: 318 case _FIOSDIO: 319 { 320 return (0); 321 } 322 323 case _FIO_SEEK_DATA: 324 case _FIO_SEEK_HOLE: 325 { 326 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 327 return (SET_ERROR(EFAULT)); 328 329 zp = VTOZ(vp); 330 zfsvfs = zp->z_zfsvfs; 331 ZFS_ENTER(zfsvfs); 332 ZFS_VERIFY_ZP(zp); 333 334 /* offset parameter is in/out */ 335 error = zfs_holey(vp, com, &off); 336 ZFS_EXIT(zfsvfs); 337 if (error) 338 return (error); 339 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 340 return (SET_ERROR(EFAULT)); 341 return (0); 342 } 343 case _FIO_COUNT_FILLED: 344 { 345 /* 346 * _FIO_COUNT_FILLED adds a new ioctl command which 347 * exposes the number of filled blocks in a 348 * ZFS object. 349 */ 350 zp = VTOZ(vp); 351 zfsvfs = zp->z_zfsvfs; 352 ZFS_ENTER(zfsvfs); 353 ZFS_VERIFY_ZP(zp); 354 355 /* 356 * Wait for all dirty blocks for this object 357 * to get synced out to disk, and the DMU info 358 * updated. 359 */ 360 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id); 361 if (error) { 362 ZFS_EXIT(zfsvfs); 363 return (error); 364 } 365 366 /* 367 * Retrieve fill count from DMU object. 368 */ 369 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi); 370 if (error) { 371 ZFS_EXIT(zfsvfs); 372 return (error); 373 } 374 375 ndata = doi.doi_fill_count; 376 377 ZFS_EXIT(zfsvfs); 378 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag)) 379 return (SET_ERROR(EFAULT)); 380 return (0); 381 } 382 } 383 return (SET_ERROR(ENOTTY)); 384 } 385 386 /* 387 * Utility functions to map and unmap a single physical page. These 388 * are used to manage the mappable copies of ZFS file data, and therefore 389 * do not update ref/mod bits. 390 */ 391 caddr_t 392 zfs_map_page(page_t *pp, enum seg_rw rw) 393 { 394 if (kpm_enable) 395 return (hat_kpm_mapin(pp, 0)); 396 ASSERT(rw == S_READ || rw == S_WRITE); 397 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 398 (caddr_t)-1)); 399 } 400 401 void 402 zfs_unmap_page(page_t *pp, caddr_t addr) 403 { 404 if (kpm_enable) { 405 hat_kpm_mapout(pp, 0, addr); 406 } else { 407 ppmapout(addr); 408 } 409 } 410 411 /* 412 * When a file is memory mapped, we must keep the IO data synchronized 413 * between the DMU cache and the memory mapped pages. What this means: 414 * 415 * On Write: If we find a memory mapped page, we write to *both* 416 * the page and the dmu buffer. 417 */ 418 static void 419 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 420 { 421 int64_t off; 422 423 off = start & PAGEOFFSET; 424 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 425 page_t *pp; 426 uint64_t nbytes = MIN(PAGESIZE - off, len); 427 428 if (pp = page_lookup(vp, start, SE_SHARED)) { 429 caddr_t va; 430 431 va = zfs_map_page(pp, S_WRITE); 432 (void) dmu_read(os, oid, start+off, nbytes, va+off, 433 DMU_READ_PREFETCH); 434 zfs_unmap_page(pp, va); 435 page_unlock(pp); 436 } 437 len -= nbytes; 438 off = 0; 439 } 440 } 441 442 /* 443 * When a file is memory mapped, we must keep the IO data synchronized 444 * between the DMU cache and the memory mapped pages. What this means: 445 * 446 * On Read: We "read" preferentially from memory mapped pages, 447 * else we default from the dmu buffer. 448 * 449 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 450 * the file is memory mapped. 451 */ 452 static int 453 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 454 { 455 znode_t *zp = VTOZ(vp); 456 int64_t start, off; 457 int len = nbytes; 458 int error = 0; 459 460 start = uio->uio_loffset; 461 off = start & PAGEOFFSET; 462 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 463 page_t *pp; 464 uint64_t bytes = MIN(PAGESIZE - off, len); 465 466 if (pp = page_lookup(vp, start, SE_SHARED)) { 467 caddr_t va; 468 469 va = zfs_map_page(pp, S_READ); 470 error = uiomove(va + off, bytes, UIO_READ, uio); 471 zfs_unmap_page(pp, va); 472 page_unlock(pp); 473 } else { 474 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 475 uio, bytes); 476 } 477 len -= bytes; 478 off = 0; 479 if (error) 480 break; 481 } 482 return (error); 483 } 484 485 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 486 487 /* 488 * Read bytes from specified file into supplied buffer. 489 * 490 * IN: vp - vnode of file to be read from. 491 * uio - structure supplying read location, range info, 492 * and return buffer. 493 * ioflag - SYNC flags; used to provide FRSYNC semantics. 494 * cr - credentials of caller. 495 * ct - caller context 496 * 497 * OUT: uio - updated offset and range, buffer filled. 498 * 499 * RETURN: 0 on success, error code on failure. 500 * 501 * Side Effects: 502 * vp - atime updated if byte count > 0 503 */ 504 /* ARGSUSED */ 505 static int 506 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 507 { 508 znode_t *zp = VTOZ(vp); 509 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 510 ssize_t n, nbytes; 511 int error = 0; 512 rl_t *rl; 513 xuio_t *xuio = NULL; 514 515 ZFS_ENTER(zfsvfs); 516 ZFS_VERIFY_ZP(zp); 517 518 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 519 ZFS_EXIT(zfsvfs); 520 return (SET_ERROR(EACCES)); 521 } 522 523 /* 524 * Validate file offset 525 */ 526 if (uio->uio_loffset < (offset_t)0) { 527 ZFS_EXIT(zfsvfs); 528 return (SET_ERROR(EINVAL)); 529 } 530 531 /* 532 * Fasttrack empty reads 533 */ 534 if (uio->uio_resid == 0) { 535 ZFS_EXIT(zfsvfs); 536 return (0); 537 } 538 539 /* 540 * Check for mandatory locks 541 */ 542 if (MANDMODE(zp->z_mode)) { 543 if (error = chklock(vp, FREAD, 544 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 545 ZFS_EXIT(zfsvfs); 546 return (error); 547 } 548 } 549 550 /* 551 * If we're in FRSYNC mode, sync out this znode before reading it. 552 */ 553 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 554 zil_commit(zfsvfs->z_log, zp->z_id); 555 556 /* 557 * Lock the range against changes. 558 */ 559 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 560 561 /* 562 * If we are reading past end-of-file we can skip 563 * to the end; but we might still need to set atime. 564 */ 565 if (uio->uio_loffset >= zp->z_size) { 566 error = 0; 567 goto out; 568 } 569 570 ASSERT(uio->uio_loffset < zp->z_size); 571 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 572 573 if ((uio->uio_extflg == UIO_XUIO) && 574 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 575 int nblk; 576 int blksz = zp->z_blksz; 577 uint64_t offset = uio->uio_loffset; 578 579 xuio = (xuio_t *)uio; 580 if ((ISP2(blksz))) { 581 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 582 blksz)) / blksz; 583 } else { 584 ASSERT(offset + n <= blksz); 585 nblk = 1; 586 } 587 (void) dmu_xuio_init(xuio, nblk); 588 589 if (vn_has_cached_data(vp)) { 590 /* 591 * For simplicity, we always allocate a full buffer 592 * even if we only expect to read a portion of a block. 593 */ 594 while (--nblk >= 0) { 595 (void) dmu_xuio_add(xuio, 596 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 597 blksz), 0, blksz); 598 } 599 } 600 } 601 602 while (n > 0) { 603 nbytes = MIN(n, zfs_read_chunk_size - 604 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 605 606 if (vn_has_cached_data(vp)) { 607 error = mappedread(vp, nbytes, uio); 608 } else { 609 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 610 uio, nbytes); 611 } 612 if (error) { 613 /* convert checksum errors into IO errors */ 614 if (error == ECKSUM) 615 error = SET_ERROR(EIO); 616 break; 617 } 618 619 n -= nbytes; 620 } 621 out: 622 zfs_range_unlock(rl); 623 624 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 625 ZFS_EXIT(zfsvfs); 626 return (error); 627 } 628 629 /* 630 * Write the bytes to a file. 631 * 632 * IN: vp - vnode of file to be written to. 633 * uio - structure supplying write location, range info, 634 * and data buffer. 635 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 636 * set if in append mode. 637 * cr - credentials of caller. 638 * ct - caller context (NFS/CIFS fem monitor only) 639 * 640 * OUT: uio - updated offset and range. 641 * 642 * RETURN: 0 on success, error code on failure. 643 * 644 * Timestamps: 645 * vp - ctime|mtime updated if byte count > 0 646 */ 647 648 /* ARGSUSED */ 649 static int 650 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 651 { 652 znode_t *zp = VTOZ(vp); 653 rlim64_t limit = uio->uio_llimit; 654 ssize_t start_resid = uio->uio_resid; 655 ssize_t tx_bytes; 656 uint64_t end_size; 657 dmu_tx_t *tx; 658 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 659 zilog_t *zilog; 660 offset_t woff; 661 ssize_t n, nbytes; 662 rl_t *rl; 663 int max_blksz = zfsvfs->z_max_blksz; 664 int error = 0; 665 arc_buf_t *abuf; 666 iovec_t *aiov = NULL; 667 xuio_t *xuio = NULL; 668 int i_iov = 0; 669 int iovcnt = uio->uio_iovcnt; 670 iovec_t *iovp = uio->uio_iov; 671 int write_eof; 672 int count = 0; 673 sa_bulk_attr_t bulk[4]; 674 uint64_t mtime[2], ctime[2]; 675 676 /* 677 * Fasttrack empty write 678 */ 679 n = start_resid; 680 if (n == 0) 681 return (0); 682 683 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 684 limit = MAXOFFSET_T; 685 686 ZFS_ENTER(zfsvfs); 687 ZFS_VERIFY_ZP(zp); 688 689 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 690 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 691 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 692 &zp->z_size, 8); 693 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 694 &zp->z_pflags, 8); 695 696 /* 697 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 698 * callers might not be able to detect properly that we are read-only, 699 * so check it explicitly here. 700 */ 701 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 702 ZFS_EXIT(zfsvfs); 703 return (SET_ERROR(EROFS)); 704 } 705 706 /* 707 * If immutable or not appending then return EPERM 708 */ 709 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 710 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 711 (uio->uio_loffset < zp->z_size))) { 712 ZFS_EXIT(zfsvfs); 713 return (SET_ERROR(EPERM)); 714 } 715 716 zilog = zfsvfs->z_log; 717 718 /* 719 * Validate file offset 720 */ 721 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 722 if (woff < 0) { 723 ZFS_EXIT(zfsvfs); 724 return (SET_ERROR(EINVAL)); 725 } 726 727 /* 728 * Check for mandatory locks before calling zfs_range_lock() 729 * in order to prevent a deadlock with locks set via fcntl(). 730 */ 731 if (MANDMODE((mode_t)zp->z_mode) && 732 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 733 ZFS_EXIT(zfsvfs); 734 return (error); 735 } 736 737 /* 738 * Pre-fault the pages to ensure slow (eg NFS) pages 739 * don't hold up txg. 740 * Skip this if uio contains loaned arc_buf. 741 */ 742 if ((uio->uio_extflg == UIO_XUIO) && 743 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 744 xuio = (xuio_t *)uio; 745 else 746 uio_prefaultpages(MIN(n, max_blksz), uio); 747 748 /* 749 * If in append mode, set the io offset pointer to eof. 750 */ 751 if (ioflag & FAPPEND) { 752 /* 753 * Obtain an appending range lock to guarantee file append 754 * semantics. We reset the write offset once we have the lock. 755 */ 756 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 757 woff = rl->r_off; 758 if (rl->r_len == UINT64_MAX) { 759 /* 760 * We overlocked the file because this write will cause 761 * the file block size to increase. 762 * Note that zp_size cannot change with this lock held. 763 */ 764 woff = zp->z_size; 765 } 766 uio->uio_loffset = woff; 767 } else { 768 /* 769 * Note that if the file block size will change as a result of 770 * this write, then this range lock will lock the entire file 771 * so that we can re-write the block safely. 772 */ 773 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 774 } 775 776 if (woff >= limit) { 777 zfs_range_unlock(rl); 778 ZFS_EXIT(zfsvfs); 779 return (SET_ERROR(EFBIG)); 780 } 781 782 if ((woff + n) > limit || woff > (limit - n)) 783 n = limit - woff; 784 785 /* Will this write extend the file length? */ 786 write_eof = (woff + n > zp->z_size); 787 788 end_size = MAX(zp->z_size, woff + n); 789 790 /* 791 * Write the file in reasonable size chunks. Each chunk is written 792 * in a separate transaction; this keeps the intent log records small 793 * and allows us to do more fine-grained space accounting. 794 */ 795 while (n > 0) { 796 abuf = NULL; 797 woff = uio->uio_loffset; 798 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 799 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 800 if (abuf != NULL) 801 dmu_return_arcbuf(abuf); 802 error = SET_ERROR(EDQUOT); 803 break; 804 } 805 806 if (xuio && abuf == NULL) { 807 ASSERT(i_iov < iovcnt); 808 aiov = &iovp[i_iov]; 809 abuf = dmu_xuio_arcbuf(xuio, i_iov); 810 dmu_xuio_clear(xuio, i_iov); 811 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 812 iovec_t *, aiov, arc_buf_t *, abuf); 813 ASSERT((aiov->iov_base == abuf->b_data) || 814 ((char *)aiov->iov_base - (char *)abuf->b_data + 815 aiov->iov_len == arc_buf_size(abuf))); 816 i_iov++; 817 } else if (abuf == NULL && n >= max_blksz && 818 woff >= zp->z_size && 819 P2PHASE(woff, max_blksz) == 0 && 820 zp->z_blksz == max_blksz) { 821 /* 822 * This write covers a full block. "Borrow" a buffer 823 * from the dmu so that we can fill it before we enter 824 * a transaction. This avoids the possibility of 825 * holding up the transaction if the data copy hangs 826 * up on a pagefault (e.g., from an NFS server mapping). 827 */ 828 size_t cbytes; 829 830 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 831 max_blksz); 832 ASSERT(abuf != NULL); 833 ASSERT(arc_buf_size(abuf) == max_blksz); 834 if (error = uiocopy(abuf->b_data, max_blksz, 835 UIO_WRITE, uio, &cbytes)) { 836 dmu_return_arcbuf(abuf); 837 break; 838 } 839 ASSERT(cbytes == max_blksz); 840 } 841 842 /* 843 * Start a transaction. 844 */ 845 tx = dmu_tx_create(zfsvfs->z_os); 846 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 847 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 848 zfs_sa_upgrade_txholds(tx, zp); 849 error = dmu_tx_assign(tx, TXG_WAIT); 850 if (error) { 851 dmu_tx_abort(tx); 852 if (abuf != NULL) 853 dmu_return_arcbuf(abuf); 854 break; 855 } 856 857 /* 858 * If zfs_range_lock() over-locked we grow the blocksize 859 * and then reduce the lock range. This will only happen 860 * on the first iteration since zfs_range_reduce() will 861 * shrink down r_len to the appropriate size. 862 */ 863 if (rl->r_len == UINT64_MAX) { 864 uint64_t new_blksz; 865 866 if (zp->z_blksz > max_blksz) { 867 /* 868 * File's blocksize is already larger than the 869 * "recordsize" property. Only let it grow to 870 * the next power of 2. 871 */ 872 ASSERT(!ISP2(zp->z_blksz)); 873 new_blksz = MIN(end_size, 874 1 << highbit64(zp->z_blksz)); 875 } else { 876 new_blksz = MIN(end_size, max_blksz); 877 } 878 zfs_grow_blocksize(zp, new_blksz, tx); 879 zfs_range_reduce(rl, woff, n); 880 } 881 882 /* 883 * XXX - should we really limit each write to z_max_blksz? 884 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 885 */ 886 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 887 888 if (abuf == NULL) { 889 tx_bytes = uio->uio_resid; 890 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 891 uio, nbytes, tx); 892 tx_bytes -= uio->uio_resid; 893 } else { 894 tx_bytes = nbytes; 895 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 896 /* 897 * If this is not a full block write, but we are 898 * extending the file past EOF and this data starts 899 * block-aligned, use assign_arcbuf(). Otherwise, 900 * write via dmu_write(). 901 */ 902 if (tx_bytes < max_blksz && (!write_eof || 903 aiov->iov_base != abuf->b_data)) { 904 ASSERT(xuio); 905 dmu_write(zfsvfs->z_os, zp->z_id, woff, 906 aiov->iov_len, aiov->iov_base, tx); 907 dmu_return_arcbuf(abuf); 908 xuio_stat_wbuf_copied(); 909 } else { 910 ASSERT(xuio || tx_bytes == max_blksz); 911 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 912 woff, abuf, tx); 913 } 914 ASSERT(tx_bytes <= uio->uio_resid); 915 uioskip(uio, tx_bytes); 916 } 917 if (tx_bytes && vn_has_cached_data(vp)) { 918 update_pages(vp, woff, 919 tx_bytes, zfsvfs->z_os, zp->z_id); 920 } 921 922 /* 923 * If we made no progress, we're done. If we made even 924 * partial progress, update the znode and ZIL accordingly. 925 */ 926 if (tx_bytes == 0) { 927 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 928 (void *)&zp->z_size, sizeof (uint64_t), tx); 929 dmu_tx_commit(tx); 930 ASSERT(error != 0); 931 break; 932 } 933 934 /* 935 * Clear Set-UID/Set-GID bits on successful write if not 936 * privileged and at least one of the excute bits is set. 937 * 938 * It would be nice to to this after all writes have 939 * been done, but that would still expose the ISUID/ISGID 940 * to another app after the partial write is committed. 941 * 942 * Note: we don't call zfs_fuid_map_id() here because 943 * user 0 is not an ephemeral uid. 944 */ 945 mutex_enter(&zp->z_acl_lock); 946 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 947 (S_IXUSR >> 6))) != 0 && 948 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 949 secpolicy_vnode_setid_retain(cr, 950 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 951 uint64_t newmode; 952 zp->z_mode &= ~(S_ISUID | S_ISGID); 953 newmode = zp->z_mode; 954 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 955 (void *)&newmode, sizeof (uint64_t), tx); 956 } 957 mutex_exit(&zp->z_acl_lock); 958 959 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 960 B_TRUE); 961 962 /* 963 * Update the file size (zp_size) if it has changed; 964 * account for possible concurrent updates. 965 */ 966 while ((end_size = zp->z_size) < uio->uio_loffset) { 967 (void) atomic_cas_64(&zp->z_size, end_size, 968 uio->uio_loffset); 969 ASSERT(error == 0); 970 } 971 /* 972 * If we are replaying and eof is non zero then force 973 * the file size to the specified eof. Note, there's no 974 * concurrency during replay. 975 */ 976 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 977 zp->z_size = zfsvfs->z_replay_eof; 978 979 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 980 981 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 982 dmu_tx_commit(tx); 983 984 if (error != 0) 985 break; 986 ASSERT(tx_bytes == nbytes); 987 n -= nbytes; 988 989 if (!xuio && n > 0) 990 uio_prefaultpages(MIN(n, max_blksz), uio); 991 } 992 993 zfs_range_unlock(rl); 994 995 /* 996 * If we're in replay mode, or we made no progress, return error. 997 * Otherwise, it's at least a partial write, so it's successful. 998 */ 999 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 1000 ZFS_EXIT(zfsvfs); 1001 return (error); 1002 } 1003 1004 if (ioflag & (FSYNC | FDSYNC) || 1005 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1006 zil_commit(zilog, zp->z_id); 1007 1008 ZFS_EXIT(zfsvfs); 1009 return (0); 1010 } 1011 1012 void 1013 zfs_get_done(zgd_t *zgd, int error) 1014 { 1015 znode_t *zp = zgd->zgd_private; 1016 objset_t *os = zp->z_zfsvfs->z_os; 1017 1018 if (zgd->zgd_db) 1019 dmu_buf_rele(zgd->zgd_db, zgd); 1020 1021 zfs_range_unlock(zgd->zgd_rl); 1022 1023 /* 1024 * Release the vnode asynchronously as we currently have the 1025 * txg stopped from syncing. 1026 */ 1027 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1028 1029 if (error == 0 && zgd->zgd_bp) 1030 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1031 1032 kmem_free(zgd, sizeof (zgd_t)); 1033 } 1034 1035 #ifdef DEBUG 1036 static int zil_fault_io = 0; 1037 #endif 1038 1039 /* 1040 * Get data to generate a TX_WRITE intent log record. 1041 */ 1042 int 1043 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1044 { 1045 zfsvfs_t *zfsvfs = arg; 1046 objset_t *os = zfsvfs->z_os; 1047 znode_t *zp; 1048 uint64_t object = lr->lr_foid; 1049 uint64_t offset = lr->lr_offset; 1050 uint64_t size = lr->lr_length; 1051 blkptr_t *bp = &lr->lr_blkptr; 1052 dmu_buf_t *db; 1053 zgd_t *zgd; 1054 int error = 0; 1055 1056 ASSERT(zio != NULL); 1057 ASSERT(size != 0); 1058 1059 /* 1060 * Nothing to do if the file has been removed 1061 */ 1062 if (zfs_zget(zfsvfs, object, &zp) != 0) 1063 return (SET_ERROR(ENOENT)); 1064 if (zp->z_unlinked) { 1065 /* 1066 * Release the vnode asynchronously as we currently have the 1067 * txg stopped from syncing. 1068 */ 1069 VN_RELE_ASYNC(ZTOV(zp), 1070 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1071 return (SET_ERROR(ENOENT)); 1072 } 1073 1074 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1075 zgd->zgd_zilog = zfsvfs->z_log; 1076 zgd->zgd_private = zp; 1077 1078 /* 1079 * Write records come in two flavors: immediate and indirect. 1080 * For small writes it's cheaper to store the data with the 1081 * log record (immediate); for large writes it's cheaper to 1082 * sync the data and get a pointer to it (indirect) so that 1083 * we don't have to write the data twice. 1084 */ 1085 if (buf != NULL) { /* immediate write */ 1086 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1087 /* test for truncation needs to be done while range locked */ 1088 if (offset >= zp->z_size) { 1089 error = SET_ERROR(ENOENT); 1090 } else { 1091 error = dmu_read(os, object, offset, size, buf, 1092 DMU_READ_NO_PREFETCH); 1093 } 1094 ASSERT(error == 0 || error == ENOENT); 1095 } else { /* indirect write */ 1096 /* 1097 * Have to lock the whole block to ensure when it's 1098 * written out and it's checksum is being calculated 1099 * that no one can change the data. We need to re-check 1100 * blocksize after we get the lock in case it's changed! 1101 */ 1102 for (;;) { 1103 uint64_t blkoff; 1104 size = zp->z_blksz; 1105 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1106 offset -= blkoff; 1107 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1108 RL_READER); 1109 if (zp->z_blksz == size) 1110 break; 1111 offset += blkoff; 1112 zfs_range_unlock(zgd->zgd_rl); 1113 } 1114 /* test for truncation needs to be done while range locked */ 1115 if (lr->lr_offset >= zp->z_size) 1116 error = SET_ERROR(ENOENT); 1117 #ifdef DEBUG 1118 if (zil_fault_io) { 1119 error = SET_ERROR(EIO); 1120 zil_fault_io = 0; 1121 } 1122 #endif 1123 if (error == 0) 1124 error = dmu_buf_hold(os, object, offset, zgd, &db, 1125 DMU_READ_NO_PREFETCH); 1126 1127 if (error == 0) { 1128 blkptr_t *obp = dmu_buf_get_blkptr(db); 1129 if (obp) { 1130 ASSERT(BP_IS_HOLE(bp)); 1131 *bp = *obp; 1132 } 1133 1134 zgd->zgd_db = db; 1135 zgd->zgd_bp = bp; 1136 1137 ASSERT(db->db_offset == offset); 1138 ASSERT(db->db_size == size); 1139 1140 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1141 zfs_get_done, zgd); 1142 ASSERT(error || lr->lr_length <= zp->z_blksz); 1143 1144 /* 1145 * On success, we need to wait for the write I/O 1146 * initiated by dmu_sync() to complete before we can 1147 * release this dbuf. We will finish everything up 1148 * in the zfs_get_done() callback. 1149 */ 1150 if (error == 0) 1151 return (0); 1152 1153 if (error == EALREADY) { 1154 lr->lr_common.lrc_txtype = TX_WRITE2; 1155 error = 0; 1156 } 1157 } 1158 } 1159 1160 zfs_get_done(zgd, error); 1161 1162 return (error); 1163 } 1164 1165 /*ARGSUSED*/ 1166 static int 1167 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1168 caller_context_t *ct) 1169 { 1170 znode_t *zp = VTOZ(vp); 1171 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1172 int error; 1173 1174 ZFS_ENTER(zfsvfs); 1175 ZFS_VERIFY_ZP(zp); 1176 1177 if (flag & V_ACE_MASK) 1178 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1179 else 1180 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1181 1182 ZFS_EXIT(zfsvfs); 1183 return (error); 1184 } 1185 1186 /* 1187 * If vnode is for a device return a specfs vnode instead. 1188 */ 1189 static int 1190 specvp_check(vnode_t **vpp, cred_t *cr) 1191 { 1192 int error = 0; 1193 1194 if (IS_DEVVP(*vpp)) { 1195 struct vnode *svp; 1196 1197 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1198 VN_RELE(*vpp); 1199 if (svp == NULL) 1200 error = SET_ERROR(ENOSYS); 1201 *vpp = svp; 1202 } 1203 return (error); 1204 } 1205 1206 1207 /* 1208 * Lookup an entry in a directory, or an extended attribute directory. 1209 * If it exists, return a held vnode reference for it. 1210 * 1211 * IN: dvp - vnode of directory to search. 1212 * nm - name of entry to lookup. 1213 * pnp - full pathname to lookup [UNUSED]. 1214 * flags - LOOKUP_XATTR set if looking for an attribute. 1215 * rdir - root directory vnode [UNUSED]. 1216 * cr - credentials of caller. 1217 * ct - caller context 1218 * direntflags - directory lookup flags 1219 * realpnp - returned pathname. 1220 * 1221 * OUT: vpp - vnode of located entry, NULL if not found. 1222 * 1223 * RETURN: 0 on success, error code on failure. 1224 * 1225 * Timestamps: 1226 * NA 1227 */ 1228 /* ARGSUSED */ 1229 static int 1230 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1231 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1232 int *direntflags, pathname_t *realpnp) 1233 { 1234 znode_t *zdp = VTOZ(dvp); 1235 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1236 int error = 0; 1237 1238 /* fast path */ 1239 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1240 1241 if (dvp->v_type != VDIR) { 1242 return (SET_ERROR(ENOTDIR)); 1243 } else if (zdp->z_sa_hdl == NULL) { 1244 return (SET_ERROR(EIO)); 1245 } 1246 1247 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1248 error = zfs_fastaccesschk_execute(zdp, cr); 1249 if (!error) { 1250 *vpp = dvp; 1251 VN_HOLD(*vpp); 1252 return (0); 1253 } 1254 return (error); 1255 } else { 1256 vnode_t *tvp = dnlc_lookup(dvp, nm); 1257 1258 if (tvp) { 1259 error = zfs_fastaccesschk_execute(zdp, cr); 1260 if (error) { 1261 VN_RELE(tvp); 1262 return (error); 1263 } 1264 if (tvp == DNLC_NO_VNODE) { 1265 VN_RELE(tvp); 1266 return (SET_ERROR(ENOENT)); 1267 } else { 1268 *vpp = tvp; 1269 return (specvp_check(vpp, cr)); 1270 } 1271 } 1272 } 1273 } 1274 1275 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1276 1277 ZFS_ENTER(zfsvfs); 1278 ZFS_VERIFY_ZP(zdp); 1279 1280 *vpp = NULL; 1281 1282 if (flags & LOOKUP_XATTR) { 1283 /* 1284 * If the xattr property is off, refuse the lookup request. 1285 */ 1286 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1287 ZFS_EXIT(zfsvfs); 1288 return (SET_ERROR(EINVAL)); 1289 } 1290 1291 /* 1292 * We don't allow recursive attributes.. 1293 * Maybe someday we will. 1294 */ 1295 if (zdp->z_pflags & ZFS_XATTR) { 1296 ZFS_EXIT(zfsvfs); 1297 return (SET_ERROR(EINVAL)); 1298 } 1299 1300 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1301 ZFS_EXIT(zfsvfs); 1302 return (error); 1303 } 1304 1305 /* 1306 * Do we have permission to get into attribute directory? 1307 */ 1308 1309 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1310 B_FALSE, cr)) { 1311 VN_RELE(*vpp); 1312 *vpp = NULL; 1313 } 1314 1315 ZFS_EXIT(zfsvfs); 1316 return (error); 1317 } 1318 1319 if (dvp->v_type != VDIR) { 1320 ZFS_EXIT(zfsvfs); 1321 return (SET_ERROR(ENOTDIR)); 1322 } 1323 1324 /* 1325 * Check accessibility of directory. 1326 */ 1327 1328 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1329 ZFS_EXIT(zfsvfs); 1330 return (error); 1331 } 1332 1333 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1334 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1335 ZFS_EXIT(zfsvfs); 1336 return (SET_ERROR(EILSEQ)); 1337 } 1338 1339 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1340 if (error == 0) 1341 error = specvp_check(vpp, cr); 1342 1343 ZFS_EXIT(zfsvfs); 1344 return (error); 1345 } 1346 1347 /* 1348 * Attempt to create a new entry in a directory. If the entry 1349 * already exists, truncate the file if permissible, else return 1350 * an error. Return the vp of the created or trunc'd file. 1351 * 1352 * IN: dvp - vnode of directory to put new file entry in. 1353 * name - name of new file entry. 1354 * vap - attributes of new file. 1355 * excl - flag indicating exclusive or non-exclusive mode. 1356 * mode - mode to open file with. 1357 * cr - credentials of caller. 1358 * flag - large file flag [UNUSED]. 1359 * ct - caller context 1360 * vsecp - ACL to be set 1361 * 1362 * OUT: vpp - vnode of created or trunc'd entry. 1363 * 1364 * RETURN: 0 on success, error code on failure. 1365 * 1366 * Timestamps: 1367 * dvp - ctime|mtime updated if new entry created 1368 * vp - ctime|mtime always, atime if new 1369 */ 1370 1371 /* ARGSUSED */ 1372 static int 1373 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1374 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1375 vsecattr_t *vsecp) 1376 { 1377 znode_t *zp, *dzp = VTOZ(dvp); 1378 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1379 zilog_t *zilog; 1380 objset_t *os; 1381 zfs_dirlock_t *dl; 1382 dmu_tx_t *tx; 1383 int error; 1384 ksid_t *ksid; 1385 uid_t uid; 1386 gid_t gid = crgetgid(cr); 1387 zfs_acl_ids_t acl_ids; 1388 boolean_t fuid_dirtied; 1389 boolean_t have_acl = B_FALSE; 1390 boolean_t waited = B_FALSE; 1391 1392 /* 1393 * If we have an ephemeral id, ACL, or XVATTR then 1394 * make sure file system is at proper version 1395 */ 1396 1397 ksid = crgetsid(cr, KSID_OWNER); 1398 if (ksid) 1399 uid = ksid_getid(ksid); 1400 else 1401 uid = crgetuid(cr); 1402 1403 if (zfsvfs->z_use_fuids == B_FALSE && 1404 (vsecp || (vap->va_mask & AT_XVATTR) || 1405 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1406 return (SET_ERROR(EINVAL)); 1407 1408 ZFS_ENTER(zfsvfs); 1409 ZFS_VERIFY_ZP(dzp); 1410 os = zfsvfs->z_os; 1411 zilog = zfsvfs->z_log; 1412 1413 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1414 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1415 ZFS_EXIT(zfsvfs); 1416 return (SET_ERROR(EILSEQ)); 1417 } 1418 1419 if (vap->va_mask & AT_XVATTR) { 1420 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1421 crgetuid(cr), cr, vap->va_type)) != 0) { 1422 ZFS_EXIT(zfsvfs); 1423 return (error); 1424 } 1425 } 1426 top: 1427 *vpp = NULL; 1428 1429 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1430 vap->va_mode &= ~VSVTX; 1431 1432 if (*name == '\0') { 1433 /* 1434 * Null component name refers to the directory itself. 1435 */ 1436 VN_HOLD(dvp); 1437 zp = dzp; 1438 dl = NULL; 1439 error = 0; 1440 } else { 1441 /* possible VN_HOLD(zp) */ 1442 int zflg = 0; 1443 1444 if (flag & FIGNORECASE) 1445 zflg |= ZCILOOK; 1446 1447 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1448 NULL, NULL); 1449 if (error) { 1450 if (have_acl) 1451 zfs_acl_ids_free(&acl_ids); 1452 if (strcmp(name, "..") == 0) 1453 error = SET_ERROR(EISDIR); 1454 ZFS_EXIT(zfsvfs); 1455 return (error); 1456 } 1457 } 1458 1459 if (zp == NULL) { 1460 uint64_t txtype; 1461 1462 /* 1463 * Create a new file object and update the directory 1464 * to reference it. 1465 */ 1466 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1467 if (have_acl) 1468 zfs_acl_ids_free(&acl_ids); 1469 goto out; 1470 } 1471 1472 /* 1473 * We only support the creation of regular files in 1474 * extended attribute directories. 1475 */ 1476 1477 if ((dzp->z_pflags & ZFS_XATTR) && 1478 (vap->va_type != VREG)) { 1479 if (have_acl) 1480 zfs_acl_ids_free(&acl_ids); 1481 error = SET_ERROR(EINVAL); 1482 goto out; 1483 } 1484 1485 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1486 cr, vsecp, &acl_ids)) != 0) 1487 goto out; 1488 have_acl = B_TRUE; 1489 1490 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1491 zfs_acl_ids_free(&acl_ids); 1492 error = SET_ERROR(EDQUOT); 1493 goto out; 1494 } 1495 1496 tx = dmu_tx_create(os); 1497 1498 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1499 ZFS_SA_BASE_ATTR_SIZE); 1500 1501 fuid_dirtied = zfsvfs->z_fuid_dirty; 1502 if (fuid_dirtied) 1503 zfs_fuid_txhold(zfsvfs, tx); 1504 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1505 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1506 if (!zfsvfs->z_use_sa && 1507 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1508 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1509 0, acl_ids.z_aclp->z_acl_bytes); 1510 } 1511 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1512 if (error) { 1513 zfs_dirent_unlock(dl); 1514 if (error == ERESTART) { 1515 waited = B_TRUE; 1516 dmu_tx_wait(tx); 1517 dmu_tx_abort(tx); 1518 goto top; 1519 } 1520 zfs_acl_ids_free(&acl_ids); 1521 dmu_tx_abort(tx); 1522 ZFS_EXIT(zfsvfs); 1523 return (error); 1524 } 1525 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1526 1527 if (fuid_dirtied) 1528 zfs_fuid_sync(zfsvfs, tx); 1529 1530 (void) zfs_link_create(dl, zp, tx, ZNEW); 1531 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1532 if (flag & FIGNORECASE) 1533 txtype |= TX_CI; 1534 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1535 vsecp, acl_ids.z_fuidp, vap); 1536 zfs_acl_ids_free(&acl_ids); 1537 dmu_tx_commit(tx); 1538 } else { 1539 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1540 1541 if (have_acl) 1542 zfs_acl_ids_free(&acl_ids); 1543 have_acl = B_FALSE; 1544 1545 /* 1546 * A directory entry already exists for this name. 1547 */ 1548 /* 1549 * Can't truncate an existing file if in exclusive mode. 1550 */ 1551 if (excl == EXCL) { 1552 error = SET_ERROR(EEXIST); 1553 goto out; 1554 } 1555 /* 1556 * Can't open a directory for writing. 1557 */ 1558 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1559 error = SET_ERROR(EISDIR); 1560 goto out; 1561 } 1562 /* 1563 * Verify requested access to file. 1564 */ 1565 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1566 goto out; 1567 } 1568 1569 mutex_enter(&dzp->z_lock); 1570 dzp->z_seq++; 1571 mutex_exit(&dzp->z_lock); 1572 1573 /* 1574 * Truncate regular files if requested. 1575 */ 1576 if ((ZTOV(zp)->v_type == VREG) && 1577 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1578 /* we can't hold any locks when calling zfs_freesp() */ 1579 zfs_dirent_unlock(dl); 1580 dl = NULL; 1581 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1582 if (error == 0) { 1583 vnevent_create(ZTOV(zp), ct); 1584 } 1585 } 1586 } 1587 out: 1588 1589 if (dl) 1590 zfs_dirent_unlock(dl); 1591 1592 if (error) { 1593 if (zp) 1594 VN_RELE(ZTOV(zp)); 1595 } else { 1596 *vpp = ZTOV(zp); 1597 error = specvp_check(vpp, cr); 1598 } 1599 1600 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1601 zil_commit(zilog, 0); 1602 1603 ZFS_EXIT(zfsvfs); 1604 return (error); 1605 } 1606 1607 /* 1608 * Remove an entry from a directory. 1609 * 1610 * IN: dvp - vnode of directory to remove entry from. 1611 * name - name of entry to remove. 1612 * cr - credentials of caller. 1613 * ct - caller context 1614 * flags - case flags 1615 * 1616 * RETURN: 0 on success, error code on failure. 1617 * 1618 * Timestamps: 1619 * dvp - ctime|mtime 1620 * vp - ctime (if nlink > 0) 1621 */ 1622 1623 uint64_t null_xattr = 0; 1624 1625 /*ARGSUSED*/ 1626 static int 1627 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1628 int flags) 1629 { 1630 znode_t *zp, *dzp = VTOZ(dvp); 1631 znode_t *xzp; 1632 vnode_t *vp; 1633 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1634 zilog_t *zilog; 1635 uint64_t acl_obj, xattr_obj; 1636 uint64_t xattr_obj_unlinked = 0; 1637 uint64_t obj = 0; 1638 zfs_dirlock_t *dl; 1639 dmu_tx_t *tx; 1640 boolean_t may_delete_now, delete_now = FALSE; 1641 boolean_t unlinked, toobig = FALSE; 1642 uint64_t txtype; 1643 pathname_t *realnmp = NULL; 1644 pathname_t realnm; 1645 int error; 1646 int zflg = ZEXISTS; 1647 boolean_t waited = B_FALSE; 1648 1649 ZFS_ENTER(zfsvfs); 1650 ZFS_VERIFY_ZP(dzp); 1651 zilog = zfsvfs->z_log; 1652 1653 if (flags & FIGNORECASE) { 1654 zflg |= ZCILOOK; 1655 pn_alloc(&realnm); 1656 realnmp = &realnm; 1657 } 1658 1659 top: 1660 xattr_obj = 0; 1661 xzp = NULL; 1662 /* 1663 * Attempt to lock directory; fail if entry doesn't exist. 1664 */ 1665 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1666 NULL, realnmp)) { 1667 if (realnmp) 1668 pn_free(realnmp); 1669 ZFS_EXIT(zfsvfs); 1670 return (error); 1671 } 1672 1673 vp = ZTOV(zp); 1674 1675 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1676 goto out; 1677 } 1678 1679 /* 1680 * Need to use rmdir for removing directories. 1681 */ 1682 if (vp->v_type == VDIR) { 1683 error = SET_ERROR(EPERM); 1684 goto out; 1685 } 1686 1687 vnevent_remove(vp, dvp, name, ct); 1688 1689 if (realnmp) 1690 dnlc_remove(dvp, realnmp->pn_buf); 1691 else 1692 dnlc_remove(dvp, name); 1693 1694 mutex_enter(&vp->v_lock); 1695 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1696 mutex_exit(&vp->v_lock); 1697 1698 /* 1699 * We may delete the znode now, or we may put it in the unlinked set; 1700 * it depends on whether we're the last link, and on whether there are 1701 * other holds on the vnode. So we dmu_tx_hold() the right things to 1702 * allow for either case. 1703 */ 1704 obj = zp->z_id; 1705 tx = dmu_tx_create(zfsvfs->z_os); 1706 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1707 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1708 zfs_sa_upgrade_txholds(tx, zp); 1709 zfs_sa_upgrade_txholds(tx, dzp); 1710 if (may_delete_now) { 1711 toobig = 1712 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1713 /* if the file is too big, only hold_free a token amount */ 1714 dmu_tx_hold_free(tx, zp->z_id, 0, 1715 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1716 } 1717 1718 /* are there any extended attributes? */ 1719 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1720 &xattr_obj, sizeof (xattr_obj)); 1721 if (error == 0 && xattr_obj) { 1722 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1723 ASSERT0(error); 1724 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1725 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1726 } 1727 1728 mutex_enter(&zp->z_lock); 1729 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1730 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1731 mutex_exit(&zp->z_lock); 1732 1733 /* charge as an update -- would be nice not to charge at all */ 1734 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1735 1736 /* 1737 * Mark this transaction as typically resulting in a net free of space 1738 */ 1739 dmu_tx_mark_netfree(tx); 1740 1741 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1742 if (error) { 1743 zfs_dirent_unlock(dl); 1744 VN_RELE(vp); 1745 if (xzp) 1746 VN_RELE(ZTOV(xzp)); 1747 if (error == ERESTART) { 1748 waited = B_TRUE; 1749 dmu_tx_wait(tx); 1750 dmu_tx_abort(tx); 1751 goto top; 1752 } 1753 if (realnmp) 1754 pn_free(realnmp); 1755 dmu_tx_abort(tx); 1756 ZFS_EXIT(zfsvfs); 1757 return (error); 1758 } 1759 1760 /* 1761 * Remove the directory entry. 1762 */ 1763 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1764 1765 if (error) { 1766 dmu_tx_commit(tx); 1767 goto out; 1768 } 1769 1770 if (unlinked) { 1771 /* 1772 * Hold z_lock so that we can make sure that the ACL obj 1773 * hasn't changed. Could have been deleted due to 1774 * zfs_sa_upgrade(). 1775 */ 1776 mutex_enter(&zp->z_lock); 1777 mutex_enter(&vp->v_lock); 1778 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1779 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1780 delete_now = may_delete_now && !toobig && 1781 vp->v_count == 1 && !vn_has_cached_data(vp) && 1782 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1783 acl_obj; 1784 mutex_exit(&vp->v_lock); 1785 } 1786 1787 if (delete_now) { 1788 if (xattr_obj_unlinked) { 1789 ASSERT3U(xzp->z_links, ==, 2); 1790 mutex_enter(&xzp->z_lock); 1791 xzp->z_unlinked = 1; 1792 xzp->z_links = 0; 1793 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1794 &xzp->z_links, sizeof (xzp->z_links), tx); 1795 ASSERT3U(error, ==, 0); 1796 mutex_exit(&xzp->z_lock); 1797 zfs_unlinked_add(xzp, tx); 1798 1799 if (zp->z_is_sa) 1800 error = sa_remove(zp->z_sa_hdl, 1801 SA_ZPL_XATTR(zfsvfs), tx); 1802 else 1803 error = sa_update(zp->z_sa_hdl, 1804 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1805 sizeof (uint64_t), tx); 1806 ASSERT0(error); 1807 } 1808 mutex_enter(&vp->v_lock); 1809 vp->v_count--; 1810 ASSERT0(vp->v_count); 1811 mutex_exit(&vp->v_lock); 1812 mutex_exit(&zp->z_lock); 1813 zfs_znode_delete(zp, tx); 1814 } else if (unlinked) { 1815 mutex_exit(&zp->z_lock); 1816 zfs_unlinked_add(zp, tx); 1817 } 1818 1819 txtype = TX_REMOVE; 1820 if (flags & FIGNORECASE) 1821 txtype |= TX_CI; 1822 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1823 1824 dmu_tx_commit(tx); 1825 out: 1826 if (realnmp) 1827 pn_free(realnmp); 1828 1829 zfs_dirent_unlock(dl); 1830 1831 if (!delete_now) 1832 VN_RELE(vp); 1833 if (xzp) 1834 VN_RELE(ZTOV(xzp)); 1835 1836 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1837 zil_commit(zilog, 0); 1838 1839 ZFS_EXIT(zfsvfs); 1840 return (error); 1841 } 1842 1843 /* 1844 * Create a new directory and insert it into dvp using the name 1845 * provided. Return a pointer to the inserted directory. 1846 * 1847 * IN: dvp - vnode of directory to add subdir to. 1848 * dirname - name of new directory. 1849 * vap - attributes of new directory. 1850 * cr - credentials of caller. 1851 * ct - caller context 1852 * flags - case flags 1853 * vsecp - ACL to be set 1854 * 1855 * OUT: vpp - vnode of created directory. 1856 * 1857 * RETURN: 0 on success, error code on failure. 1858 * 1859 * Timestamps: 1860 * dvp - ctime|mtime updated 1861 * vp - ctime|mtime|atime updated 1862 */ 1863 /*ARGSUSED*/ 1864 static int 1865 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1866 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1867 { 1868 znode_t *zp, *dzp = VTOZ(dvp); 1869 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1870 zilog_t *zilog; 1871 zfs_dirlock_t *dl; 1872 uint64_t txtype; 1873 dmu_tx_t *tx; 1874 int error; 1875 int zf = ZNEW; 1876 ksid_t *ksid; 1877 uid_t uid; 1878 gid_t gid = crgetgid(cr); 1879 zfs_acl_ids_t acl_ids; 1880 boolean_t fuid_dirtied; 1881 boolean_t waited = B_FALSE; 1882 1883 ASSERT(vap->va_type == VDIR); 1884 1885 /* 1886 * If we have an ephemeral id, ACL, or XVATTR then 1887 * make sure file system is at proper version 1888 */ 1889 1890 ksid = crgetsid(cr, KSID_OWNER); 1891 if (ksid) 1892 uid = ksid_getid(ksid); 1893 else 1894 uid = crgetuid(cr); 1895 if (zfsvfs->z_use_fuids == B_FALSE && 1896 (vsecp || (vap->va_mask & AT_XVATTR) || 1897 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1898 return (SET_ERROR(EINVAL)); 1899 1900 ZFS_ENTER(zfsvfs); 1901 ZFS_VERIFY_ZP(dzp); 1902 zilog = zfsvfs->z_log; 1903 1904 if (dzp->z_pflags & ZFS_XATTR) { 1905 ZFS_EXIT(zfsvfs); 1906 return (SET_ERROR(EINVAL)); 1907 } 1908 1909 if (zfsvfs->z_utf8 && u8_validate(dirname, 1910 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1911 ZFS_EXIT(zfsvfs); 1912 return (SET_ERROR(EILSEQ)); 1913 } 1914 if (flags & FIGNORECASE) 1915 zf |= ZCILOOK; 1916 1917 if (vap->va_mask & AT_XVATTR) { 1918 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1919 crgetuid(cr), cr, vap->va_type)) != 0) { 1920 ZFS_EXIT(zfsvfs); 1921 return (error); 1922 } 1923 } 1924 1925 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1926 vsecp, &acl_ids)) != 0) { 1927 ZFS_EXIT(zfsvfs); 1928 return (error); 1929 } 1930 /* 1931 * First make sure the new directory doesn't exist. 1932 * 1933 * Existence is checked first to make sure we don't return 1934 * EACCES instead of EEXIST which can cause some applications 1935 * to fail. 1936 */ 1937 top: 1938 *vpp = NULL; 1939 1940 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1941 NULL, NULL)) { 1942 zfs_acl_ids_free(&acl_ids); 1943 ZFS_EXIT(zfsvfs); 1944 return (error); 1945 } 1946 1947 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1948 zfs_acl_ids_free(&acl_ids); 1949 zfs_dirent_unlock(dl); 1950 ZFS_EXIT(zfsvfs); 1951 return (error); 1952 } 1953 1954 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1955 zfs_acl_ids_free(&acl_ids); 1956 zfs_dirent_unlock(dl); 1957 ZFS_EXIT(zfsvfs); 1958 return (SET_ERROR(EDQUOT)); 1959 } 1960 1961 /* 1962 * Add a new entry to the directory. 1963 */ 1964 tx = dmu_tx_create(zfsvfs->z_os); 1965 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1966 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1967 fuid_dirtied = zfsvfs->z_fuid_dirty; 1968 if (fuid_dirtied) 1969 zfs_fuid_txhold(zfsvfs, tx); 1970 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1971 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1972 acl_ids.z_aclp->z_acl_bytes); 1973 } 1974 1975 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1976 ZFS_SA_BASE_ATTR_SIZE); 1977 1978 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1979 if (error) { 1980 zfs_dirent_unlock(dl); 1981 if (error == ERESTART) { 1982 waited = B_TRUE; 1983 dmu_tx_wait(tx); 1984 dmu_tx_abort(tx); 1985 goto top; 1986 } 1987 zfs_acl_ids_free(&acl_ids); 1988 dmu_tx_abort(tx); 1989 ZFS_EXIT(zfsvfs); 1990 return (error); 1991 } 1992 1993 /* 1994 * Create new node. 1995 */ 1996 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1997 1998 if (fuid_dirtied) 1999 zfs_fuid_sync(zfsvfs, tx); 2000 2001 /* 2002 * Now put new name in parent dir. 2003 */ 2004 (void) zfs_link_create(dl, zp, tx, ZNEW); 2005 2006 *vpp = ZTOV(zp); 2007 2008 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 2009 if (flags & FIGNORECASE) 2010 txtype |= TX_CI; 2011 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 2012 acl_ids.z_fuidp, vap); 2013 2014 zfs_acl_ids_free(&acl_ids); 2015 2016 dmu_tx_commit(tx); 2017 2018 zfs_dirent_unlock(dl); 2019 2020 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2021 zil_commit(zilog, 0); 2022 2023 ZFS_EXIT(zfsvfs); 2024 return (0); 2025 } 2026 2027 /* 2028 * Remove a directory subdir entry. If the current working 2029 * directory is the same as the subdir to be removed, the 2030 * remove will fail. 2031 * 2032 * IN: dvp - vnode of directory to remove from. 2033 * name - name of directory to be removed. 2034 * cwd - vnode of current working directory. 2035 * cr - credentials of caller. 2036 * ct - caller context 2037 * flags - case flags 2038 * 2039 * RETURN: 0 on success, error code on failure. 2040 * 2041 * Timestamps: 2042 * dvp - ctime|mtime updated 2043 */ 2044 /*ARGSUSED*/ 2045 static int 2046 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 2047 caller_context_t *ct, int flags) 2048 { 2049 znode_t *dzp = VTOZ(dvp); 2050 znode_t *zp; 2051 vnode_t *vp; 2052 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2053 zilog_t *zilog; 2054 zfs_dirlock_t *dl; 2055 dmu_tx_t *tx; 2056 int error; 2057 int zflg = ZEXISTS; 2058 boolean_t waited = B_FALSE; 2059 2060 ZFS_ENTER(zfsvfs); 2061 ZFS_VERIFY_ZP(dzp); 2062 zilog = zfsvfs->z_log; 2063 2064 if (flags & FIGNORECASE) 2065 zflg |= ZCILOOK; 2066 top: 2067 zp = NULL; 2068 2069 /* 2070 * Attempt to lock directory; fail if entry doesn't exist. 2071 */ 2072 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2073 NULL, NULL)) { 2074 ZFS_EXIT(zfsvfs); 2075 return (error); 2076 } 2077 2078 vp = ZTOV(zp); 2079 2080 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2081 goto out; 2082 } 2083 2084 if (vp->v_type != VDIR) { 2085 error = SET_ERROR(ENOTDIR); 2086 goto out; 2087 } 2088 2089 if (vp == cwd) { 2090 error = SET_ERROR(EINVAL); 2091 goto out; 2092 } 2093 2094 vnevent_rmdir(vp, dvp, name, ct); 2095 2096 /* 2097 * Grab a lock on the directory to make sure that noone is 2098 * trying to add (or lookup) entries while we are removing it. 2099 */ 2100 rw_enter(&zp->z_name_lock, RW_WRITER); 2101 2102 /* 2103 * Grab a lock on the parent pointer to make sure we play well 2104 * with the treewalk and directory rename code. 2105 */ 2106 rw_enter(&zp->z_parent_lock, RW_WRITER); 2107 2108 tx = dmu_tx_create(zfsvfs->z_os); 2109 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2110 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2111 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2112 zfs_sa_upgrade_txholds(tx, zp); 2113 zfs_sa_upgrade_txholds(tx, dzp); 2114 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 2115 if (error) { 2116 rw_exit(&zp->z_parent_lock); 2117 rw_exit(&zp->z_name_lock); 2118 zfs_dirent_unlock(dl); 2119 VN_RELE(vp); 2120 if (error == ERESTART) { 2121 waited = B_TRUE; 2122 dmu_tx_wait(tx); 2123 dmu_tx_abort(tx); 2124 goto top; 2125 } 2126 dmu_tx_abort(tx); 2127 ZFS_EXIT(zfsvfs); 2128 return (error); 2129 } 2130 2131 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2132 2133 if (error == 0) { 2134 uint64_t txtype = TX_RMDIR; 2135 if (flags & FIGNORECASE) 2136 txtype |= TX_CI; 2137 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2138 } 2139 2140 dmu_tx_commit(tx); 2141 2142 rw_exit(&zp->z_parent_lock); 2143 rw_exit(&zp->z_name_lock); 2144 out: 2145 zfs_dirent_unlock(dl); 2146 2147 VN_RELE(vp); 2148 2149 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2150 zil_commit(zilog, 0); 2151 2152 ZFS_EXIT(zfsvfs); 2153 return (error); 2154 } 2155 2156 /* 2157 * Read as many directory entries as will fit into the provided 2158 * buffer from the given directory cursor position (specified in 2159 * the uio structure). 2160 * 2161 * IN: vp - vnode of directory to read. 2162 * uio - structure supplying read location, range info, 2163 * and return buffer. 2164 * cr - credentials of caller. 2165 * ct - caller context 2166 * flags - case flags 2167 * 2168 * OUT: uio - updated offset and range, buffer filled. 2169 * eofp - set to true if end-of-file detected. 2170 * 2171 * RETURN: 0 on success, error code on failure. 2172 * 2173 * Timestamps: 2174 * vp - atime updated 2175 * 2176 * Note that the low 4 bits of the cookie returned by zap is always zero. 2177 * This allows us to use the low range for "special" directory entries: 2178 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2179 * we use the offset 2 for the '.zfs' directory. 2180 */ 2181 /* ARGSUSED */ 2182 static int 2183 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2184 caller_context_t *ct, int flags) 2185 { 2186 znode_t *zp = VTOZ(vp); 2187 iovec_t *iovp; 2188 edirent_t *eodp; 2189 dirent64_t *odp; 2190 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2191 objset_t *os; 2192 caddr_t outbuf; 2193 size_t bufsize; 2194 zap_cursor_t zc; 2195 zap_attribute_t zap; 2196 uint_t bytes_wanted; 2197 uint64_t offset; /* must be unsigned; checks for < 1 */ 2198 uint64_t parent; 2199 int local_eof; 2200 int outcount; 2201 int error; 2202 uint8_t prefetch; 2203 boolean_t check_sysattrs; 2204 2205 ZFS_ENTER(zfsvfs); 2206 ZFS_VERIFY_ZP(zp); 2207 2208 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2209 &parent, sizeof (parent))) != 0) { 2210 ZFS_EXIT(zfsvfs); 2211 return (error); 2212 } 2213 2214 /* 2215 * If we are not given an eof variable, 2216 * use a local one. 2217 */ 2218 if (eofp == NULL) 2219 eofp = &local_eof; 2220 2221 /* 2222 * Check for valid iov_len. 2223 */ 2224 if (uio->uio_iov->iov_len <= 0) { 2225 ZFS_EXIT(zfsvfs); 2226 return (SET_ERROR(EINVAL)); 2227 } 2228 2229 /* 2230 * Quit if directory has been removed (posix) 2231 */ 2232 if ((*eofp = zp->z_unlinked) != 0) { 2233 ZFS_EXIT(zfsvfs); 2234 return (0); 2235 } 2236 2237 error = 0; 2238 os = zfsvfs->z_os; 2239 offset = uio->uio_loffset; 2240 prefetch = zp->z_zn_prefetch; 2241 2242 /* 2243 * Initialize the iterator cursor. 2244 */ 2245 if (offset <= 3) { 2246 /* 2247 * Start iteration from the beginning of the directory. 2248 */ 2249 zap_cursor_init(&zc, os, zp->z_id); 2250 } else { 2251 /* 2252 * The offset is a serialized cursor. 2253 */ 2254 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2255 } 2256 2257 /* 2258 * Get space to change directory entries into fs independent format. 2259 */ 2260 iovp = uio->uio_iov; 2261 bytes_wanted = iovp->iov_len; 2262 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2263 bufsize = bytes_wanted; 2264 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2265 odp = (struct dirent64 *)outbuf; 2266 } else { 2267 bufsize = bytes_wanted; 2268 outbuf = NULL; 2269 odp = (struct dirent64 *)iovp->iov_base; 2270 } 2271 eodp = (struct edirent *)odp; 2272 2273 /* 2274 * If this VFS supports the system attribute view interface; and 2275 * we're looking at an extended attribute directory; and we care 2276 * about normalization conflicts on this vfs; then we must check 2277 * for normalization conflicts with the sysattr name space. 2278 */ 2279 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2280 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2281 (flags & V_RDDIR_ENTFLAGS); 2282 2283 /* 2284 * Transform to file-system independent format 2285 */ 2286 outcount = 0; 2287 while (outcount < bytes_wanted) { 2288 ino64_t objnum; 2289 ushort_t reclen; 2290 off64_t *next = NULL; 2291 2292 /* 2293 * Special case `.', `..', and `.zfs'. 2294 */ 2295 if (offset == 0) { 2296 (void) strcpy(zap.za_name, "."); 2297 zap.za_normalization_conflict = 0; 2298 objnum = zp->z_id; 2299 } else if (offset == 1) { 2300 (void) strcpy(zap.za_name, ".."); 2301 zap.za_normalization_conflict = 0; 2302 objnum = parent; 2303 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2304 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2305 zap.za_normalization_conflict = 0; 2306 objnum = ZFSCTL_INO_ROOT; 2307 } else { 2308 /* 2309 * Grab next entry. 2310 */ 2311 if (error = zap_cursor_retrieve(&zc, &zap)) { 2312 if ((*eofp = (error == ENOENT)) != 0) 2313 break; 2314 else 2315 goto update; 2316 } 2317 2318 if (zap.za_integer_length != 8 || 2319 zap.za_num_integers != 1) { 2320 cmn_err(CE_WARN, "zap_readdir: bad directory " 2321 "entry, obj = %lld, offset = %lld\n", 2322 (u_longlong_t)zp->z_id, 2323 (u_longlong_t)offset); 2324 error = SET_ERROR(ENXIO); 2325 goto update; 2326 } 2327 2328 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2329 /* 2330 * MacOS X can extract the object type here such as: 2331 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2332 */ 2333 2334 if (check_sysattrs && !zap.za_normalization_conflict) { 2335 zap.za_normalization_conflict = 2336 xattr_sysattr_casechk(zap.za_name); 2337 } 2338 } 2339 2340 if (flags & V_RDDIR_ACCFILTER) { 2341 /* 2342 * If we have no access at all, don't include 2343 * this entry in the returned information 2344 */ 2345 znode_t *ezp; 2346 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2347 goto skip_entry; 2348 if (!zfs_has_access(ezp, cr)) { 2349 VN_RELE(ZTOV(ezp)); 2350 goto skip_entry; 2351 } 2352 VN_RELE(ZTOV(ezp)); 2353 } 2354 2355 if (flags & V_RDDIR_ENTFLAGS) 2356 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2357 else 2358 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2359 2360 /* 2361 * Will this entry fit in the buffer? 2362 */ 2363 if (outcount + reclen > bufsize) { 2364 /* 2365 * Did we manage to fit anything in the buffer? 2366 */ 2367 if (!outcount) { 2368 error = SET_ERROR(EINVAL); 2369 goto update; 2370 } 2371 break; 2372 } 2373 if (flags & V_RDDIR_ENTFLAGS) { 2374 /* 2375 * Add extended flag entry: 2376 */ 2377 eodp->ed_ino = objnum; 2378 eodp->ed_reclen = reclen; 2379 /* NOTE: ed_off is the offset for the *next* entry */ 2380 next = &(eodp->ed_off); 2381 eodp->ed_eflags = zap.za_normalization_conflict ? 2382 ED_CASE_CONFLICT : 0; 2383 (void) strncpy(eodp->ed_name, zap.za_name, 2384 EDIRENT_NAMELEN(reclen)); 2385 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2386 } else { 2387 /* 2388 * Add normal entry: 2389 */ 2390 odp->d_ino = objnum; 2391 odp->d_reclen = reclen; 2392 /* NOTE: d_off is the offset for the *next* entry */ 2393 next = &(odp->d_off); 2394 (void) strncpy(odp->d_name, zap.za_name, 2395 DIRENT64_NAMELEN(reclen)); 2396 odp = (dirent64_t *)((intptr_t)odp + reclen); 2397 } 2398 outcount += reclen; 2399 2400 ASSERT(outcount <= bufsize); 2401 2402 /* Prefetch znode */ 2403 if (prefetch) 2404 dmu_prefetch(os, objnum, 0, 0, 0, 2405 ZIO_PRIORITY_SYNC_READ); 2406 2407 skip_entry: 2408 /* 2409 * Move to the next entry, fill in the previous offset. 2410 */ 2411 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2412 zap_cursor_advance(&zc); 2413 offset = zap_cursor_serialize(&zc); 2414 } else { 2415 offset += 1; 2416 } 2417 if (next) 2418 *next = offset; 2419 } 2420 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2421 2422 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2423 iovp->iov_base += outcount; 2424 iovp->iov_len -= outcount; 2425 uio->uio_resid -= outcount; 2426 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2427 /* 2428 * Reset the pointer. 2429 */ 2430 offset = uio->uio_loffset; 2431 } 2432 2433 update: 2434 zap_cursor_fini(&zc); 2435 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2436 kmem_free(outbuf, bufsize); 2437 2438 if (error == ENOENT) 2439 error = 0; 2440 2441 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2442 2443 uio->uio_loffset = offset; 2444 ZFS_EXIT(zfsvfs); 2445 return (error); 2446 } 2447 2448 ulong_t zfs_fsync_sync_cnt = 4; 2449 2450 static int 2451 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2452 { 2453 znode_t *zp = VTOZ(vp); 2454 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2455 2456 /* 2457 * Regardless of whether this is required for standards conformance, 2458 * this is the logical behavior when fsync() is called on a file with 2459 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2460 * going to be pushed out as part of the zil_commit(). 2461 */ 2462 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2463 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2464 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2465 2466 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2467 2468 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2469 ZFS_ENTER(zfsvfs); 2470 ZFS_VERIFY_ZP(zp); 2471 zil_commit(zfsvfs->z_log, zp->z_id); 2472 ZFS_EXIT(zfsvfs); 2473 } 2474 return (0); 2475 } 2476 2477 2478 /* 2479 * Get the requested file attributes and place them in the provided 2480 * vattr structure. 2481 * 2482 * IN: vp - vnode of file. 2483 * vap - va_mask identifies requested attributes. 2484 * If AT_XVATTR set, then optional attrs are requested 2485 * flags - ATTR_NOACLCHECK (CIFS server context) 2486 * cr - credentials of caller. 2487 * ct - caller context 2488 * 2489 * OUT: vap - attribute values. 2490 * 2491 * RETURN: 0 (always succeeds). 2492 */ 2493 /* ARGSUSED */ 2494 static int 2495 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2496 caller_context_t *ct) 2497 { 2498 znode_t *zp = VTOZ(vp); 2499 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2500 int error = 0; 2501 uint64_t links; 2502 uint64_t mtime[2], ctime[2]; 2503 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2504 xoptattr_t *xoap = NULL; 2505 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2506 sa_bulk_attr_t bulk[2]; 2507 int count = 0; 2508 2509 ZFS_ENTER(zfsvfs); 2510 ZFS_VERIFY_ZP(zp); 2511 2512 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2513 2514 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2515 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2516 2517 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2518 ZFS_EXIT(zfsvfs); 2519 return (error); 2520 } 2521 2522 /* 2523 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2524 * Also, if we are the owner don't bother, since owner should 2525 * always be allowed to read basic attributes of file. 2526 */ 2527 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2528 (vap->va_uid != crgetuid(cr))) { 2529 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2530 skipaclchk, cr)) { 2531 ZFS_EXIT(zfsvfs); 2532 return (error); 2533 } 2534 } 2535 2536 /* 2537 * Return all attributes. It's cheaper to provide the answer 2538 * than to determine whether we were asked the question. 2539 */ 2540 2541 mutex_enter(&zp->z_lock); 2542 vap->va_type = vp->v_type; 2543 vap->va_mode = zp->z_mode & MODEMASK; 2544 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2545 vap->va_nodeid = zp->z_id; 2546 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2547 links = zp->z_links + 1; 2548 else 2549 links = zp->z_links; 2550 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2551 vap->va_size = zp->z_size; 2552 vap->va_rdev = vp->v_rdev; 2553 vap->va_seq = zp->z_seq; 2554 2555 /* 2556 * Add in any requested optional attributes and the create time. 2557 * Also set the corresponding bits in the returned attribute bitmap. 2558 */ 2559 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2560 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2561 xoap->xoa_archive = 2562 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2563 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2564 } 2565 2566 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2567 xoap->xoa_readonly = 2568 ((zp->z_pflags & ZFS_READONLY) != 0); 2569 XVA_SET_RTN(xvap, XAT_READONLY); 2570 } 2571 2572 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2573 xoap->xoa_system = 2574 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2575 XVA_SET_RTN(xvap, XAT_SYSTEM); 2576 } 2577 2578 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2579 xoap->xoa_hidden = 2580 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2581 XVA_SET_RTN(xvap, XAT_HIDDEN); 2582 } 2583 2584 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2585 xoap->xoa_nounlink = 2586 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2587 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2588 } 2589 2590 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2591 xoap->xoa_immutable = 2592 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2593 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2594 } 2595 2596 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2597 xoap->xoa_appendonly = 2598 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2599 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2600 } 2601 2602 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2603 xoap->xoa_nodump = 2604 ((zp->z_pflags & ZFS_NODUMP) != 0); 2605 XVA_SET_RTN(xvap, XAT_NODUMP); 2606 } 2607 2608 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2609 xoap->xoa_opaque = 2610 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2611 XVA_SET_RTN(xvap, XAT_OPAQUE); 2612 } 2613 2614 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2615 xoap->xoa_av_quarantined = 2616 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2617 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2618 } 2619 2620 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2621 xoap->xoa_av_modified = 2622 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2623 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2624 } 2625 2626 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2627 vp->v_type == VREG) { 2628 zfs_sa_get_scanstamp(zp, xvap); 2629 } 2630 2631 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2632 uint64_t times[2]; 2633 2634 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2635 times, sizeof (times)); 2636 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2637 XVA_SET_RTN(xvap, XAT_CREATETIME); 2638 } 2639 2640 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2641 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2642 XVA_SET_RTN(xvap, XAT_REPARSE); 2643 } 2644 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2645 xoap->xoa_generation = zp->z_gen; 2646 XVA_SET_RTN(xvap, XAT_GEN); 2647 } 2648 2649 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2650 xoap->xoa_offline = 2651 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2652 XVA_SET_RTN(xvap, XAT_OFFLINE); 2653 } 2654 2655 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2656 xoap->xoa_sparse = 2657 ((zp->z_pflags & ZFS_SPARSE) != 0); 2658 XVA_SET_RTN(xvap, XAT_SPARSE); 2659 } 2660 } 2661 2662 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2663 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2664 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2665 2666 mutex_exit(&zp->z_lock); 2667 2668 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2669 2670 if (zp->z_blksz == 0) { 2671 /* 2672 * Block size hasn't been set; suggest maximal I/O transfers. 2673 */ 2674 vap->va_blksize = zfsvfs->z_max_blksz; 2675 } 2676 2677 ZFS_EXIT(zfsvfs); 2678 return (0); 2679 } 2680 2681 /* 2682 * Set the file attributes to the values contained in the 2683 * vattr structure. 2684 * 2685 * IN: vp - vnode of file to be modified. 2686 * vap - new attribute values. 2687 * If AT_XVATTR set, then optional attrs are being set 2688 * flags - ATTR_UTIME set if non-default time values provided. 2689 * - ATTR_NOACLCHECK (CIFS context only). 2690 * cr - credentials of caller. 2691 * ct - caller context 2692 * 2693 * RETURN: 0 on success, error code on failure. 2694 * 2695 * Timestamps: 2696 * vp - ctime updated, mtime updated if size changed. 2697 */ 2698 /* ARGSUSED */ 2699 static int 2700 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2701 caller_context_t *ct) 2702 { 2703 znode_t *zp = VTOZ(vp); 2704 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2705 zilog_t *zilog; 2706 dmu_tx_t *tx; 2707 vattr_t oldva; 2708 xvattr_t tmpxvattr; 2709 uint_t mask = vap->va_mask; 2710 uint_t saved_mask = 0; 2711 int trim_mask = 0; 2712 uint64_t new_mode; 2713 uint64_t new_uid, new_gid; 2714 uint64_t xattr_obj; 2715 uint64_t mtime[2], ctime[2]; 2716 znode_t *attrzp; 2717 int need_policy = FALSE; 2718 int err, err2; 2719 zfs_fuid_info_t *fuidp = NULL; 2720 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2721 xoptattr_t *xoap; 2722 zfs_acl_t *aclp; 2723 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2724 boolean_t fuid_dirtied = B_FALSE; 2725 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2726 int count = 0, xattr_count = 0; 2727 2728 if (mask == 0) 2729 return (0); 2730 2731 if (mask & AT_NOSET) 2732 return (SET_ERROR(EINVAL)); 2733 2734 ZFS_ENTER(zfsvfs); 2735 ZFS_VERIFY_ZP(zp); 2736 2737 zilog = zfsvfs->z_log; 2738 2739 /* 2740 * Make sure that if we have ephemeral uid/gid or xvattr specified 2741 * that file system is at proper version level 2742 */ 2743 2744 if (zfsvfs->z_use_fuids == B_FALSE && 2745 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2746 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2747 (mask & AT_XVATTR))) { 2748 ZFS_EXIT(zfsvfs); 2749 return (SET_ERROR(EINVAL)); 2750 } 2751 2752 if (mask & AT_SIZE && vp->v_type == VDIR) { 2753 ZFS_EXIT(zfsvfs); 2754 return (SET_ERROR(EISDIR)); 2755 } 2756 2757 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2758 ZFS_EXIT(zfsvfs); 2759 return (SET_ERROR(EINVAL)); 2760 } 2761 2762 /* 2763 * If this is an xvattr_t, then get a pointer to the structure of 2764 * optional attributes. If this is NULL, then we have a vattr_t. 2765 */ 2766 xoap = xva_getxoptattr(xvap); 2767 2768 xva_init(&tmpxvattr); 2769 2770 /* 2771 * Immutable files can only alter immutable bit and atime 2772 */ 2773 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2774 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2775 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2776 ZFS_EXIT(zfsvfs); 2777 return (SET_ERROR(EPERM)); 2778 } 2779 2780 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2781 ZFS_EXIT(zfsvfs); 2782 return (SET_ERROR(EPERM)); 2783 } 2784 2785 /* 2786 * Verify timestamps doesn't overflow 32 bits. 2787 * ZFS can handle large timestamps, but 32bit syscalls can't 2788 * handle times greater than 2039. This check should be removed 2789 * once large timestamps are fully supported. 2790 */ 2791 if (mask & (AT_ATIME | AT_MTIME)) { 2792 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2793 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2794 ZFS_EXIT(zfsvfs); 2795 return (SET_ERROR(EOVERFLOW)); 2796 } 2797 } 2798 2799 top: 2800 attrzp = NULL; 2801 aclp = NULL; 2802 2803 /* Can this be moved to before the top label? */ 2804 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2805 ZFS_EXIT(zfsvfs); 2806 return (SET_ERROR(EROFS)); 2807 } 2808 2809 /* 2810 * First validate permissions 2811 */ 2812 2813 if (mask & AT_SIZE) { 2814 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2815 if (err) { 2816 ZFS_EXIT(zfsvfs); 2817 return (err); 2818 } 2819 /* 2820 * XXX - Note, we are not providing any open 2821 * mode flags here (like FNDELAY), so we may 2822 * block if there are locks present... this 2823 * should be addressed in openat(). 2824 */ 2825 /* XXX - would it be OK to generate a log record here? */ 2826 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2827 if (err) { 2828 ZFS_EXIT(zfsvfs); 2829 return (err); 2830 } 2831 2832 if (vap->va_size == 0) 2833 vnevent_truncate(ZTOV(zp), ct); 2834 } 2835 2836 if (mask & (AT_ATIME|AT_MTIME) || 2837 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2838 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2839 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2840 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2841 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2842 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2843 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2844 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2845 skipaclchk, cr); 2846 } 2847 2848 if (mask & (AT_UID|AT_GID)) { 2849 int idmask = (mask & (AT_UID|AT_GID)); 2850 int take_owner; 2851 int take_group; 2852 2853 /* 2854 * NOTE: even if a new mode is being set, 2855 * we may clear S_ISUID/S_ISGID bits. 2856 */ 2857 2858 if (!(mask & AT_MODE)) 2859 vap->va_mode = zp->z_mode; 2860 2861 /* 2862 * Take ownership or chgrp to group we are a member of 2863 */ 2864 2865 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2866 take_group = (mask & AT_GID) && 2867 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2868 2869 /* 2870 * If both AT_UID and AT_GID are set then take_owner and 2871 * take_group must both be set in order to allow taking 2872 * ownership. 2873 * 2874 * Otherwise, send the check through secpolicy_vnode_setattr() 2875 * 2876 */ 2877 2878 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2879 ((idmask == AT_UID) && take_owner) || 2880 ((idmask == AT_GID) && take_group)) { 2881 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2882 skipaclchk, cr) == 0) { 2883 /* 2884 * Remove setuid/setgid for non-privileged users 2885 */ 2886 secpolicy_setid_clear(vap, cr); 2887 trim_mask = (mask & (AT_UID|AT_GID)); 2888 } else { 2889 need_policy = TRUE; 2890 } 2891 } else { 2892 need_policy = TRUE; 2893 } 2894 } 2895 2896 mutex_enter(&zp->z_lock); 2897 oldva.va_mode = zp->z_mode; 2898 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2899 if (mask & AT_XVATTR) { 2900 /* 2901 * Update xvattr mask to include only those attributes 2902 * that are actually changing. 2903 * 2904 * the bits will be restored prior to actually setting 2905 * the attributes so the caller thinks they were set. 2906 */ 2907 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2908 if (xoap->xoa_appendonly != 2909 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2910 need_policy = TRUE; 2911 } else { 2912 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2913 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2914 } 2915 } 2916 2917 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2918 if (xoap->xoa_nounlink != 2919 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2920 need_policy = TRUE; 2921 } else { 2922 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2923 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2924 } 2925 } 2926 2927 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2928 if (xoap->xoa_immutable != 2929 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2930 need_policy = TRUE; 2931 } else { 2932 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2933 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2934 } 2935 } 2936 2937 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2938 if (xoap->xoa_nodump != 2939 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2940 need_policy = TRUE; 2941 } else { 2942 XVA_CLR_REQ(xvap, XAT_NODUMP); 2943 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2944 } 2945 } 2946 2947 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2948 if (xoap->xoa_av_modified != 2949 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2950 need_policy = TRUE; 2951 } else { 2952 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2953 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2954 } 2955 } 2956 2957 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2958 if ((vp->v_type != VREG && 2959 xoap->xoa_av_quarantined) || 2960 xoap->xoa_av_quarantined != 2961 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2962 need_policy = TRUE; 2963 } else { 2964 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2965 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2966 } 2967 } 2968 2969 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2970 mutex_exit(&zp->z_lock); 2971 ZFS_EXIT(zfsvfs); 2972 return (SET_ERROR(EPERM)); 2973 } 2974 2975 if (need_policy == FALSE && 2976 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2977 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2978 need_policy = TRUE; 2979 } 2980 } 2981 2982 mutex_exit(&zp->z_lock); 2983 2984 if (mask & AT_MODE) { 2985 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2986 err = secpolicy_setid_setsticky_clear(vp, vap, 2987 &oldva, cr); 2988 if (err) { 2989 ZFS_EXIT(zfsvfs); 2990 return (err); 2991 } 2992 trim_mask |= AT_MODE; 2993 } else { 2994 need_policy = TRUE; 2995 } 2996 } 2997 2998 if (need_policy) { 2999 /* 3000 * If trim_mask is set then take ownership 3001 * has been granted or write_acl is present and user 3002 * has the ability to modify mode. In that case remove 3003 * UID|GID and or MODE from mask so that 3004 * secpolicy_vnode_setattr() doesn't revoke it. 3005 */ 3006 3007 if (trim_mask) { 3008 saved_mask = vap->va_mask; 3009 vap->va_mask &= ~trim_mask; 3010 } 3011 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 3012 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 3013 if (err) { 3014 ZFS_EXIT(zfsvfs); 3015 return (err); 3016 } 3017 3018 if (trim_mask) 3019 vap->va_mask |= saved_mask; 3020 } 3021 3022 /* 3023 * secpolicy_vnode_setattr, or take ownership may have 3024 * changed va_mask 3025 */ 3026 mask = vap->va_mask; 3027 3028 if ((mask & (AT_UID | AT_GID))) { 3029 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 3030 &xattr_obj, sizeof (xattr_obj)); 3031 3032 if (err == 0 && xattr_obj) { 3033 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 3034 if (err) 3035 goto out2; 3036 } 3037 if (mask & AT_UID) { 3038 new_uid = zfs_fuid_create(zfsvfs, 3039 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 3040 if (new_uid != zp->z_uid && 3041 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 3042 if (attrzp) 3043 VN_RELE(ZTOV(attrzp)); 3044 err = SET_ERROR(EDQUOT); 3045 goto out2; 3046 } 3047 } 3048 3049 if (mask & AT_GID) { 3050 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 3051 cr, ZFS_GROUP, &fuidp); 3052 if (new_gid != zp->z_gid && 3053 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 3054 if (attrzp) 3055 VN_RELE(ZTOV(attrzp)); 3056 err = SET_ERROR(EDQUOT); 3057 goto out2; 3058 } 3059 } 3060 } 3061 tx = dmu_tx_create(zfsvfs->z_os); 3062 3063 if (mask & AT_MODE) { 3064 uint64_t pmode = zp->z_mode; 3065 uint64_t acl_obj; 3066 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 3067 3068 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 3069 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 3070 err = SET_ERROR(EPERM); 3071 goto out; 3072 } 3073 3074 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3075 goto out; 3076 3077 mutex_enter(&zp->z_lock); 3078 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3079 /* 3080 * Are we upgrading ACL from old V0 format 3081 * to V1 format? 3082 */ 3083 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3084 zfs_znode_acl_version(zp) == 3085 ZFS_ACL_VERSION_INITIAL) { 3086 dmu_tx_hold_free(tx, acl_obj, 0, 3087 DMU_OBJECT_END); 3088 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3089 0, aclp->z_acl_bytes); 3090 } else { 3091 dmu_tx_hold_write(tx, acl_obj, 0, 3092 aclp->z_acl_bytes); 3093 } 3094 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3095 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3096 0, aclp->z_acl_bytes); 3097 } 3098 mutex_exit(&zp->z_lock); 3099 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3100 } else { 3101 if ((mask & AT_XVATTR) && 3102 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3103 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3104 else 3105 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3106 } 3107 3108 if (attrzp) { 3109 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3110 } 3111 3112 fuid_dirtied = zfsvfs->z_fuid_dirty; 3113 if (fuid_dirtied) 3114 zfs_fuid_txhold(zfsvfs, tx); 3115 3116 zfs_sa_upgrade_txholds(tx, zp); 3117 3118 err = dmu_tx_assign(tx, TXG_WAIT); 3119 if (err) 3120 goto out; 3121 3122 count = 0; 3123 /* 3124 * Set each attribute requested. 3125 * We group settings according to the locks they need to acquire. 3126 * 3127 * Note: you cannot set ctime directly, although it will be 3128 * updated as a side-effect of calling this function. 3129 */ 3130 3131 3132 if (mask & (AT_UID|AT_GID|AT_MODE)) 3133 mutex_enter(&zp->z_acl_lock); 3134 mutex_enter(&zp->z_lock); 3135 3136 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3137 &zp->z_pflags, sizeof (zp->z_pflags)); 3138 3139 if (attrzp) { 3140 if (mask & (AT_UID|AT_GID|AT_MODE)) 3141 mutex_enter(&attrzp->z_acl_lock); 3142 mutex_enter(&attrzp->z_lock); 3143 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3144 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3145 sizeof (attrzp->z_pflags)); 3146 } 3147 3148 if (mask & (AT_UID|AT_GID)) { 3149 3150 if (mask & AT_UID) { 3151 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3152 &new_uid, sizeof (new_uid)); 3153 zp->z_uid = new_uid; 3154 if (attrzp) { 3155 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3156 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3157 sizeof (new_uid)); 3158 attrzp->z_uid = new_uid; 3159 } 3160 } 3161 3162 if (mask & AT_GID) { 3163 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3164 NULL, &new_gid, sizeof (new_gid)); 3165 zp->z_gid = new_gid; 3166 if (attrzp) { 3167 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3168 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3169 sizeof (new_gid)); 3170 attrzp->z_gid = new_gid; 3171 } 3172 } 3173 if (!(mask & AT_MODE)) { 3174 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3175 NULL, &new_mode, sizeof (new_mode)); 3176 new_mode = zp->z_mode; 3177 } 3178 err = zfs_acl_chown_setattr(zp); 3179 ASSERT(err == 0); 3180 if (attrzp) { 3181 err = zfs_acl_chown_setattr(attrzp); 3182 ASSERT(err == 0); 3183 } 3184 } 3185 3186 if (mask & AT_MODE) { 3187 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3188 &new_mode, sizeof (new_mode)); 3189 zp->z_mode = new_mode; 3190 ASSERT3U((uintptr_t)aclp, !=, NULL); 3191 err = zfs_aclset_common(zp, aclp, cr, tx); 3192 ASSERT0(err); 3193 if (zp->z_acl_cached) 3194 zfs_acl_free(zp->z_acl_cached); 3195 zp->z_acl_cached = aclp; 3196 aclp = NULL; 3197 } 3198 3199 3200 if (mask & AT_ATIME) { 3201 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3202 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3203 &zp->z_atime, sizeof (zp->z_atime)); 3204 } 3205 3206 if (mask & AT_MTIME) { 3207 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3208 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3209 mtime, sizeof (mtime)); 3210 } 3211 3212 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3213 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3214 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3215 NULL, mtime, sizeof (mtime)); 3216 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3217 &ctime, sizeof (ctime)); 3218 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3219 B_TRUE); 3220 } else if (mask != 0) { 3221 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3222 &ctime, sizeof (ctime)); 3223 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3224 B_TRUE); 3225 if (attrzp) { 3226 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3227 SA_ZPL_CTIME(zfsvfs), NULL, 3228 &ctime, sizeof (ctime)); 3229 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3230 mtime, ctime, B_TRUE); 3231 } 3232 } 3233 /* 3234 * Do this after setting timestamps to prevent timestamp 3235 * update from toggling bit 3236 */ 3237 3238 if (xoap && (mask & AT_XVATTR)) { 3239 3240 /* 3241 * restore trimmed off masks 3242 * so that return masks can be set for caller. 3243 */ 3244 3245 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3246 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3247 } 3248 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3249 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3250 } 3251 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3252 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3253 } 3254 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3255 XVA_SET_REQ(xvap, XAT_NODUMP); 3256 } 3257 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3258 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3259 } 3260 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3261 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3262 } 3263 3264 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3265 ASSERT(vp->v_type == VREG); 3266 3267 zfs_xvattr_set(zp, xvap, tx); 3268 } 3269 3270 if (fuid_dirtied) 3271 zfs_fuid_sync(zfsvfs, tx); 3272 3273 if (mask != 0) 3274 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3275 3276 mutex_exit(&zp->z_lock); 3277 if (mask & (AT_UID|AT_GID|AT_MODE)) 3278 mutex_exit(&zp->z_acl_lock); 3279 3280 if (attrzp) { 3281 if (mask & (AT_UID|AT_GID|AT_MODE)) 3282 mutex_exit(&attrzp->z_acl_lock); 3283 mutex_exit(&attrzp->z_lock); 3284 } 3285 out: 3286 if (err == 0 && attrzp) { 3287 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3288 xattr_count, tx); 3289 ASSERT(err2 == 0); 3290 } 3291 3292 if (attrzp) 3293 VN_RELE(ZTOV(attrzp)); 3294 3295 if (aclp) 3296 zfs_acl_free(aclp); 3297 3298 if (fuidp) { 3299 zfs_fuid_info_free(fuidp); 3300 fuidp = NULL; 3301 } 3302 3303 if (err) { 3304 dmu_tx_abort(tx); 3305 if (err == ERESTART) 3306 goto top; 3307 } else { 3308 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3309 dmu_tx_commit(tx); 3310 } 3311 3312 out2: 3313 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3314 zil_commit(zilog, 0); 3315 3316 ZFS_EXIT(zfsvfs); 3317 return (err); 3318 } 3319 3320 typedef struct zfs_zlock { 3321 krwlock_t *zl_rwlock; /* lock we acquired */ 3322 znode_t *zl_znode; /* znode we held */ 3323 struct zfs_zlock *zl_next; /* next in list */ 3324 } zfs_zlock_t; 3325 3326 /* 3327 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3328 */ 3329 static void 3330 zfs_rename_unlock(zfs_zlock_t **zlpp) 3331 { 3332 zfs_zlock_t *zl; 3333 3334 while ((zl = *zlpp) != NULL) { 3335 if (zl->zl_znode != NULL) 3336 VN_RELE(ZTOV(zl->zl_znode)); 3337 rw_exit(zl->zl_rwlock); 3338 *zlpp = zl->zl_next; 3339 kmem_free(zl, sizeof (*zl)); 3340 } 3341 } 3342 3343 /* 3344 * Search back through the directory tree, using the ".." entries. 3345 * Lock each directory in the chain to prevent concurrent renames. 3346 * Fail any attempt to move a directory into one of its own descendants. 3347 * XXX - z_parent_lock can overlap with map or grow locks 3348 */ 3349 static int 3350 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3351 { 3352 zfs_zlock_t *zl; 3353 znode_t *zp = tdzp; 3354 uint64_t rootid = zp->z_zfsvfs->z_root; 3355 uint64_t oidp = zp->z_id; 3356 krwlock_t *rwlp = &szp->z_parent_lock; 3357 krw_t rw = RW_WRITER; 3358 3359 /* 3360 * First pass write-locks szp and compares to zp->z_id. 3361 * Later passes read-lock zp and compare to zp->z_parent. 3362 */ 3363 do { 3364 if (!rw_tryenter(rwlp, rw)) { 3365 /* 3366 * Another thread is renaming in this path. 3367 * Note that if we are a WRITER, we don't have any 3368 * parent_locks held yet. 3369 */ 3370 if (rw == RW_READER && zp->z_id > szp->z_id) { 3371 /* 3372 * Drop our locks and restart 3373 */ 3374 zfs_rename_unlock(&zl); 3375 *zlpp = NULL; 3376 zp = tdzp; 3377 oidp = zp->z_id; 3378 rwlp = &szp->z_parent_lock; 3379 rw = RW_WRITER; 3380 continue; 3381 } else { 3382 /* 3383 * Wait for other thread to drop its locks 3384 */ 3385 rw_enter(rwlp, rw); 3386 } 3387 } 3388 3389 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3390 zl->zl_rwlock = rwlp; 3391 zl->zl_znode = NULL; 3392 zl->zl_next = *zlpp; 3393 *zlpp = zl; 3394 3395 if (oidp == szp->z_id) /* We're a descendant of szp */ 3396 return (SET_ERROR(EINVAL)); 3397 3398 if (oidp == rootid) /* We've hit the top */ 3399 return (0); 3400 3401 if (rw == RW_READER) { /* i.e. not the first pass */ 3402 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3403 if (error) 3404 return (error); 3405 zl->zl_znode = zp; 3406 } 3407 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3408 &oidp, sizeof (oidp)); 3409 rwlp = &zp->z_parent_lock; 3410 rw = RW_READER; 3411 3412 } while (zp->z_id != sdzp->z_id); 3413 3414 return (0); 3415 } 3416 3417 /* 3418 * Move an entry from the provided source directory to the target 3419 * directory. Change the entry name as indicated. 3420 * 3421 * IN: sdvp - Source directory containing the "old entry". 3422 * snm - Old entry name. 3423 * tdvp - Target directory to contain the "new entry". 3424 * tnm - New entry name. 3425 * cr - credentials of caller. 3426 * ct - caller context 3427 * flags - case flags 3428 * 3429 * RETURN: 0 on success, error code on failure. 3430 * 3431 * Timestamps: 3432 * sdvp,tdvp - ctime|mtime updated 3433 */ 3434 /*ARGSUSED*/ 3435 static int 3436 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3437 caller_context_t *ct, int flags) 3438 { 3439 znode_t *tdzp, *szp, *tzp; 3440 znode_t *sdzp = VTOZ(sdvp); 3441 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3442 zilog_t *zilog; 3443 vnode_t *realvp; 3444 zfs_dirlock_t *sdl, *tdl; 3445 dmu_tx_t *tx; 3446 zfs_zlock_t *zl; 3447 int cmp, serr, terr; 3448 int error = 0; 3449 int zflg = 0; 3450 boolean_t waited = B_FALSE; 3451 3452 ZFS_ENTER(zfsvfs); 3453 ZFS_VERIFY_ZP(sdzp); 3454 zilog = zfsvfs->z_log; 3455 3456 /* 3457 * Make sure we have the real vp for the target directory. 3458 */ 3459 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3460 tdvp = realvp; 3461 3462 tdzp = VTOZ(tdvp); 3463 ZFS_VERIFY_ZP(tdzp); 3464 3465 /* 3466 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3467 * ctldir appear to have the same v_vfsp. 3468 */ 3469 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3470 ZFS_EXIT(zfsvfs); 3471 return (SET_ERROR(EXDEV)); 3472 } 3473 3474 if (zfsvfs->z_utf8 && u8_validate(tnm, 3475 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3476 ZFS_EXIT(zfsvfs); 3477 return (SET_ERROR(EILSEQ)); 3478 } 3479 3480 if (flags & FIGNORECASE) 3481 zflg |= ZCILOOK; 3482 3483 top: 3484 szp = NULL; 3485 tzp = NULL; 3486 zl = NULL; 3487 3488 /* 3489 * This is to prevent the creation of links into attribute space 3490 * by renaming a linked file into/outof an attribute directory. 3491 * See the comment in zfs_link() for why this is considered bad. 3492 */ 3493 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3494 ZFS_EXIT(zfsvfs); 3495 return (SET_ERROR(EINVAL)); 3496 } 3497 3498 /* 3499 * Lock source and target directory entries. To prevent deadlock, 3500 * a lock ordering must be defined. We lock the directory with 3501 * the smallest object id first, or if it's a tie, the one with 3502 * the lexically first name. 3503 */ 3504 if (sdzp->z_id < tdzp->z_id) { 3505 cmp = -1; 3506 } else if (sdzp->z_id > tdzp->z_id) { 3507 cmp = 1; 3508 } else { 3509 /* 3510 * First compare the two name arguments without 3511 * considering any case folding. 3512 */ 3513 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3514 3515 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3516 ASSERT(error == 0 || !zfsvfs->z_utf8); 3517 if (cmp == 0) { 3518 /* 3519 * POSIX: "If the old argument and the new argument 3520 * both refer to links to the same existing file, 3521 * the rename() function shall return successfully 3522 * and perform no other action." 3523 */ 3524 ZFS_EXIT(zfsvfs); 3525 return (0); 3526 } 3527 /* 3528 * If the file system is case-folding, then we may 3529 * have some more checking to do. A case-folding file 3530 * system is either supporting mixed case sensitivity 3531 * access or is completely case-insensitive. Note 3532 * that the file system is always case preserving. 3533 * 3534 * In mixed sensitivity mode case sensitive behavior 3535 * is the default. FIGNORECASE must be used to 3536 * explicitly request case insensitive behavior. 3537 * 3538 * If the source and target names provided differ only 3539 * by case (e.g., a request to rename 'tim' to 'Tim'), 3540 * we will treat this as a special case in the 3541 * case-insensitive mode: as long as the source name 3542 * is an exact match, we will allow this to proceed as 3543 * a name-change request. 3544 */ 3545 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3546 (zfsvfs->z_case == ZFS_CASE_MIXED && 3547 flags & FIGNORECASE)) && 3548 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3549 &error) == 0) { 3550 /* 3551 * case preserving rename request, require exact 3552 * name matches 3553 */ 3554 zflg |= ZCIEXACT; 3555 zflg &= ~ZCILOOK; 3556 } 3557 } 3558 3559 /* 3560 * If the source and destination directories are the same, we should 3561 * grab the z_name_lock of that directory only once. 3562 */ 3563 if (sdzp == tdzp) { 3564 zflg |= ZHAVELOCK; 3565 rw_enter(&sdzp->z_name_lock, RW_READER); 3566 } 3567 3568 if (cmp < 0) { 3569 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3570 ZEXISTS | zflg, NULL, NULL); 3571 terr = zfs_dirent_lock(&tdl, 3572 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3573 } else { 3574 terr = zfs_dirent_lock(&tdl, 3575 tdzp, tnm, &tzp, zflg, NULL, NULL); 3576 serr = zfs_dirent_lock(&sdl, 3577 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3578 NULL, NULL); 3579 } 3580 3581 if (serr) { 3582 /* 3583 * Source entry invalid or not there. 3584 */ 3585 if (!terr) { 3586 zfs_dirent_unlock(tdl); 3587 if (tzp) 3588 VN_RELE(ZTOV(tzp)); 3589 } 3590 3591 if (sdzp == tdzp) 3592 rw_exit(&sdzp->z_name_lock); 3593 3594 if (strcmp(snm, "..") == 0) 3595 serr = SET_ERROR(EINVAL); 3596 ZFS_EXIT(zfsvfs); 3597 return (serr); 3598 } 3599 if (terr) { 3600 zfs_dirent_unlock(sdl); 3601 VN_RELE(ZTOV(szp)); 3602 3603 if (sdzp == tdzp) 3604 rw_exit(&sdzp->z_name_lock); 3605 3606 if (strcmp(tnm, "..") == 0) 3607 terr = SET_ERROR(EINVAL); 3608 ZFS_EXIT(zfsvfs); 3609 return (terr); 3610 } 3611 3612 /* 3613 * Must have write access at the source to remove the old entry 3614 * and write access at the target to create the new entry. 3615 * Note that if target and source are the same, this can be 3616 * done in a single check. 3617 */ 3618 3619 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3620 goto out; 3621 3622 if (ZTOV(szp)->v_type == VDIR) { 3623 /* 3624 * Check to make sure rename is valid. 3625 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3626 */ 3627 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3628 goto out; 3629 } 3630 3631 /* 3632 * Does target exist? 3633 */ 3634 if (tzp) { 3635 /* 3636 * Source and target must be the same type. 3637 */ 3638 if (ZTOV(szp)->v_type == VDIR) { 3639 if (ZTOV(tzp)->v_type != VDIR) { 3640 error = SET_ERROR(ENOTDIR); 3641 goto out; 3642 } 3643 } else { 3644 if (ZTOV(tzp)->v_type == VDIR) { 3645 error = SET_ERROR(EISDIR); 3646 goto out; 3647 } 3648 } 3649 /* 3650 * POSIX dictates that when the source and target 3651 * entries refer to the same file object, rename 3652 * must do nothing and exit without error. 3653 */ 3654 if (szp->z_id == tzp->z_id) { 3655 error = 0; 3656 goto out; 3657 } 3658 } 3659 3660 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3661 if (tzp) 3662 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3663 3664 /* 3665 * notify the target directory if it is not the same 3666 * as source directory. 3667 */ 3668 if (tdvp != sdvp) { 3669 vnevent_rename_dest_dir(tdvp, ct); 3670 } 3671 3672 tx = dmu_tx_create(zfsvfs->z_os); 3673 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3674 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3675 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3676 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3677 if (sdzp != tdzp) { 3678 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3679 zfs_sa_upgrade_txholds(tx, tdzp); 3680 } 3681 if (tzp) { 3682 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3683 zfs_sa_upgrade_txholds(tx, tzp); 3684 } 3685 3686 zfs_sa_upgrade_txholds(tx, szp); 3687 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3688 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3689 if (error) { 3690 if (zl != NULL) 3691 zfs_rename_unlock(&zl); 3692 zfs_dirent_unlock(sdl); 3693 zfs_dirent_unlock(tdl); 3694 3695 if (sdzp == tdzp) 3696 rw_exit(&sdzp->z_name_lock); 3697 3698 VN_RELE(ZTOV(szp)); 3699 if (tzp) 3700 VN_RELE(ZTOV(tzp)); 3701 if (error == ERESTART) { 3702 waited = B_TRUE; 3703 dmu_tx_wait(tx); 3704 dmu_tx_abort(tx); 3705 goto top; 3706 } 3707 dmu_tx_abort(tx); 3708 ZFS_EXIT(zfsvfs); 3709 return (error); 3710 } 3711 3712 if (tzp) /* Attempt to remove the existing target */ 3713 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3714 3715 if (error == 0) { 3716 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3717 if (error == 0) { 3718 szp->z_pflags |= ZFS_AV_MODIFIED; 3719 3720 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3721 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3722 ASSERT0(error); 3723 3724 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3725 if (error == 0) { 3726 zfs_log_rename(zilog, tx, TX_RENAME | 3727 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 3728 sdl->dl_name, tdzp, tdl->dl_name, szp); 3729 3730 /* 3731 * Update path information for the target vnode 3732 */ 3733 vn_renamepath(tdvp, ZTOV(szp), tnm, 3734 strlen(tnm)); 3735 } else { 3736 /* 3737 * At this point, we have successfully created 3738 * the target name, but have failed to remove 3739 * the source name. Since the create was done 3740 * with the ZRENAMING flag, there are 3741 * complications; for one, the link count is 3742 * wrong. The easiest way to deal with this 3743 * is to remove the newly created target, and 3744 * return the original error. This must 3745 * succeed; fortunately, it is very unlikely to 3746 * fail, since we just created it. 3747 */ 3748 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3749 ZRENAMING, NULL), ==, 0); 3750 } 3751 } 3752 } 3753 3754 dmu_tx_commit(tx); 3755 out: 3756 if (zl != NULL) 3757 zfs_rename_unlock(&zl); 3758 3759 zfs_dirent_unlock(sdl); 3760 zfs_dirent_unlock(tdl); 3761 3762 if (sdzp == tdzp) 3763 rw_exit(&sdzp->z_name_lock); 3764 3765 3766 VN_RELE(ZTOV(szp)); 3767 if (tzp) 3768 VN_RELE(ZTOV(tzp)); 3769 3770 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3771 zil_commit(zilog, 0); 3772 3773 ZFS_EXIT(zfsvfs); 3774 return (error); 3775 } 3776 3777 /* 3778 * Insert the indicated symbolic reference entry into the directory. 3779 * 3780 * IN: dvp - Directory to contain new symbolic link. 3781 * link - Name for new symlink entry. 3782 * vap - Attributes of new entry. 3783 * cr - credentials of caller. 3784 * ct - caller context 3785 * flags - case flags 3786 * 3787 * RETURN: 0 on success, error code on failure. 3788 * 3789 * Timestamps: 3790 * dvp - ctime|mtime updated 3791 */ 3792 /*ARGSUSED*/ 3793 static int 3794 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3795 caller_context_t *ct, int flags) 3796 { 3797 znode_t *zp, *dzp = VTOZ(dvp); 3798 zfs_dirlock_t *dl; 3799 dmu_tx_t *tx; 3800 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3801 zilog_t *zilog; 3802 uint64_t len = strlen(link); 3803 int error; 3804 int zflg = ZNEW; 3805 zfs_acl_ids_t acl_ids; 3806 boolean_t fuid_dirtied; 3807 uint64_t txtype = TX_SYMLINK; 3808 boolean_t waited = B_FALSE; 3809 3810 ASSERT(vap->va_type == VLNK); 3811 3812 ZFS_ENTER(zfsvfs); 3813 ZFS_VERIFY_ZP(dzp); 3814 zilog = zfsvfs->z_log; 3815 3816 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3817 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3818 ZFS_EXIT(zfsvfs); 3819 return (SET_ERROR(EILSEQ)); 3820 } 3821 if (flags & FIGNORECASE) 3822 zflg |= ZCILOOK; 3823 3824 if (len > MAXPATHLEN) { 3825 ZFS_EXIT(zfsvfs); 3826 return (SET_ERROR(ENAMETOOLONG)); 3827 } 3828 3829 if ((error = zfs_acl_ids_create(dzp, 0, 3830 vap, cr, NULL, &acl_ids)) != 0) { 3831 ZFS_EXIT(zfsvfs); 3832 return (error); 3833 } 3834 top: 3835 /* 3836 * Attempt to lock directory; fail if entry already exists. 3837 */ 3838 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3839 if (error) { 3840 zfs_acl_ids_free(&acl_ids); 3841 ZFS_EXIT(zfsvfs); 3842 return (error); 3843 } 3844 3845 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3846 zfs_acl_ids_free(&acl_ids); 3847 zfs_dirent_unlock(dl); 3848 ZFS_EXIT(zfsvfs); 3849 return (error); 3850 } 3851 3852 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3853 zfs_acl_ids_free(&acl_ids); 3854 zfs_dirent_unlock(dl); 3855 ZFS_EXIT(zfsvfs); 3856 return (SET_ERROR(EDQUOT)); 3857 } 3858 tx = dmu_tx_create(zfsvfs->z_os); 3859 fuid_dirtied = zfsvfs->z_fuid_dirty; 3860 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3861 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3862 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3863 ZFS_SA_BASE_ATTR_SIZE + len); 3864 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3865 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3866 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3867 acl_ids.z_aclp->z_acl_bytes); 3868 } 3869 if (fuid_dirtied) 3870 zfs_fuid_txhold(zfsvfs, tx); 3871 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3872 if (error) { 3873 zfs_dirent_unlock(dl); 3874 if (error == ERESTART) { 3875 waited = B_TRUE; 3876 dmu_tx_wait(tx); 3877 dmu_tx_abort(tx); 3878 goto top; 3879 } 3880 zfs_acl_ids_free(&acl_ids); 3881 dmu_tx_abort(tx); 3882 ZFS_EXIT(zfsvfs); 3883 return (error); 3884 } 3885 3886 /* 3887 * Create a new object for the symlink. 3888 * for version 4 ZPL datsets the symlink will be an SA attribute 3889 */ 3890 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3891 3892 if (fuid_dirtied) 3893 zfs_fuid_sync(zfsvfs, tx); 3894 3895 mutex_enter(&zp->z_lock); 3896 if (zp->z_is_sa) 3897 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3898 link, len, tx); 3899 else 3900 zfs_sa_symlink(zp, link, len, tx); 3901 mutex_exit(&zp->z_lock); 3902 3903 zp->z_size = len; 3904 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3905 &zp->z_size, sizeof (zp->z_size), tx); 3906 /* 3907 * Insert the new object into the directory. 3908 */ 3909 (void) zfs_link_create(dl, zp, tx, ZNEW); 3910 3911 if (flags & FIGNORECASE) 3912 txtype |= TX_CI; 3913 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3914 3915 zfs_acl_ids_free(&acl_ids); 3916 3917 dmu_tx_commit(tx); 3918 3919 zfs_dirent_unlock(dl); 3920 3921 VN_RELE(ZTOV(zp)); 3922 3923 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3924 zil_commit(zilog, 0); 3925 3926 ZFS_EXIT(zfsvfs); 3927 return (error); 3928 } 3929 3930 /* 3931 * Return, in the buffer contained in the provided uio structure, 3932 * the symbolic path referred to by vp. 3933 * 3934 * IN: vp - vnode of symbolic link. 3935 * uio - structure to contain the link path. 3936 * cr - credentials of caller. 3937 * ct - caller context 3938 * 3939 * OUT: uio - structure containing the link path. 3940 * 3941 * RETURN: 0 on success, error code on failure. 3942 * 3943 * Timestamps: 3944 * vp - atime updated 3945 */ 3946 /* ARGSUSED */ 3947 static int 3948 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3949 { 3950 znode_t *zp = VTOZ(vp); 3951 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3952 int error; 3953 3954 ZFS_ENTER(zfsvfs); 3955 ZFS_VERIFY_ZP(zp); 3956 3957 mutex_enter(&zp->z_lock); 3958 if (zp->z_is_sa) 3959 error = sa_lookup_uio(zp->z_sa_hdl, 3960 SA_ZPL_SYMLINK(zfsvfs), uio); 3961 else 3962 error = zfs_sa_readlink(zp, uio); 3963 mutex_exit(&zp->z_lock); 3964 3965 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3966 3967 ZFS_EXIT(zfsvfs); 3968 return (error); 3969 } 3970 3971 /* 3972 * Insert a new entry into directory tdvp referencing svp. 3973 * 3974 * IN: tdvp - Directory to contain new entry. 3975 * svp - vnode of new entry. 3976 * name - name of new entry. 3977 * cr - credentials of caller. 3978 * ct - caller context 3979 * 3980 * RETURN: 0 on success, error code on failure. 3981 * 3982 * Timestamps: 3983 * tdvp - ctime|mtime updated 3984 * svp - ctime updated 3985 */ 3986 /* ARGSUSED */ 3987 static int 3988 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3989 caller_context_t *ct, int flags) 3990 { 3991 znode_t *dzp = VTOZ(tdvp); 3992 znode_t *tzp, *szp; 3993 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3994 zilog_t *zilog; 3995 zfs_dirlock_t *dl; 3996 dmu_tx_t *tx; 3997 vnode_t *realvp; 3998 int error; 3999 int zf = ZNEW; 4000 uint64_t parent; 4001 uid_t owner; 4002 boolean_t waited = B_FALSE; 4003 4004 ASSERT(tdvp->v_type == VDIR); 4005 4006 ZFS_ENTER(zfsvfs); 4007 ZFS_VERIFY_ZP(dzp); 4008 zilog = zfsvfs->z_log; 4009 4010 if (VOP_REALVP(svp, &realvp, ct) == 0) 4011 svp = realvp; 4012 4013 /* 4014 * POSIX dictates that we return EPERM here. 4015 * Better choices include ENOTSUP or EISDIR. 4016 */ 4017 if (svp->v_type == VDIR) { 4018 ZFS_EXIT(zfsvfs); 4019 return (SET_ERROR(EPERM)); 4020 } 4021 4022 szp = VTOZ(svp); 4023 ZFS_VERIFY_ZP(szp); 4024 4025 /* 4026 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 4027 * ctldir appear to have the same v_vfsp. 4028 */ 4029 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 4030 ZFS_EXIT(zfsvfs); 4031 return (SET_ERROR(EXDEV)); 4032 } 4033 4034 /* Prevent links to .zfs/shares files */ 4035 4036 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 4037 &parent, sizeof (uint64_t))) != 0) { 4038 ZFS_EXIT(zfsvfs); 4039 return (error); 4040 } 4041 if (parent == zfsvfs->z_shares_dir) { 4042 ZFS_EXIT(zfsvfs); 4043 return (SET_ERROR(EPERM)); 4044 } 4045 4046 if (zfsvfs->z_utf8 && u8_validate(name, 4047 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4048 ZFS_EXIT(zfsvfs); 4049 return (SET_ERROR(EILSEQ)); 4050 } 4051 if (flags & FIGNORECASE) 4052 zf |= ZCILOOK; 4053 4054 /* 4055 * We do not support links between attributes and non-attributes 4056 * because of the potential security risk of creating links 4057 * into "normal" file space in order to circumvent restrictions 4058 * imposed in attribute space. 4059 */ 4060 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 4061 ZFS_EXIT(zfsvfs); 4062 return (SET_ERROR(EINVAL)); 4063 } 4064 4065 4066 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 4067 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 4068 ZFS_EXIT(zfsvfs); 4069 return (SET_ERROR(EPERM)); 4070 } 4071 4072 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4073 ZFS_EXIT(zfsvfs); 4074 return (error); 4075 } 4076 4077 top: 4078 /* 4079 * Attempt to lock directory; fail if entry already exists. 4080 */ 4081 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4082 if (error) { 4083 ZFS_EXIT(zfsvfs); 4084 return (error); 4085 } 4086 4087 tx = dmu_tx_create(zfsvfs->z_os); 4088 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4089 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4090 zfs_sa_upgrade_txholds(tx, szp); 4091 zfs_sa_upgrade_txholds(tx, dzp); 4092 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 4093 if (error) { 4094 zfs_dirent_unlock(dl); 4095 if (error == ERESTART) { 4096 waited = B_TRUE; 4097 dmu_tx_wait(tx); 4098 dmu_tx_abort(tx); 4099 goto top; 4100 } 4101 dmu_tx_abort(tx); 4102 ZFS_EXIT(zfsvfs); 4103 return (error); 4104 } 4105 4106 error = zfs_link_create(dl, szp, tx, 0); 4107 4108 if (error == 0) { 4109 uint64_t txtype = TX_LINK; 4110 if (flags & FIGNORECASE) 4111 txtype |= TX_CI; 4112 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4113 } 4114 4115 dmu_tx_commit(tx); 4116 4117 zfs_dirent_unlock(dl); 4118 4119 if (error == 0) { 4120 vnevent_link(svp, ct); 4121 } 4122 4123 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4124 zil_commit(zilog, 0); 4125 4126 ZFS_EXIT(zfsvfs); 4127 return (error); 4128 } 4129 4130 /* 4131 * zfs_null_putapage() is used when the file system has been force 4132 * unmounted. It just drops the pages. 4133 */ 4134 /* ARGSUSED */ 4135 static int 4136 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4137 size_t *lenp, int flags, cred_t *cr) 4138 { 4139 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4140 return (0); 4141 } 4142 4143 /* 4144 * Push a page out to disk, klustering if possible. 4145 * 4146 * IN: vp - file to push page to. 4147 * pp - page to push. 4148 * flags - additional flags. 4149 * cr - credentials of caller. 4150 * 4151 * OUT: offp - start of range pushed. 4152 * lenp - len of range pushed. 4153 * 4154 * RETURN: 0 on success, error code on failure. 4155 * 4156 * NOTE: callers must have locked the page to be pushed. On 4157 * exit, the page (and all other pages in the kluster) must be 4158 * unlocked. 4159 */ 4160 /* ARGSUSED */ 4161 static int 4162 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4163 size_t *lenp, int flags, cred_t *cr) 4164 { 4165 znode_t *zp = VTOZ(vp); 4166 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4167 dmu_tx_t *tx; 4168 u_offset_t off, koff; 4169 size_t len, klen; 4170 int err; 4171 4172 off = pp->p_offset; 4173 len = PAGESIZE; 4174 /* 4175 * If our blocksize is bigger than the page size, try to kluster 4176 * multiple pages so that we write a full block (thus avoiding 4177 * a read-modify-write). 4178 */ 4179 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4180 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4181 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4182 ASSERT(koff <= zp->z_size); 4183 if (koff + klen > zp->z_size) 4184 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4185 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4186 } 4187 ASSERT3U(btop(len), ==, btopr(len)); 4188 4189 /* 4190 * Can't push pages past end-of-file. 4191 */ 4192 if (off >= zp->z_size) { 4193 /* ignore all pages */ 4194 err = 0; 4195 goto out; 4196 } else if (off + len > zp->z_size) { 4197 int npages = btopr(zp->z_size - off); 4198 page_t *trunc; 4199 4200 page_list_break(&pp, &trunc, npages); 4201 /* ignore pages past end of file */ 4202 if (trunc) 4203 pvn_write_done(trunc, flags); 4204 len = zp->z_size - off; 4205 } 4206 4207 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4208 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4209 err = SET_ERROR(EDQUOT); 4210 goto out; 4211 } 4212 tx = dmu_tx_create(zfsvfs->z_os); 4213 dmu_tx_hold_write(tx, zp->z_id, off, len); 4214 4215 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4216 zfs_sa_upgrade_txholds(tx, zp); 4217 err = dmu_tx_assign(tx, TXG_WAIT); 4218 if (err != 0) { 4219 dmu_tx_abort(tx); 4220 goto out; 4221 } 4222 4223 if (zp->z_blksz <= PAGESIZE) { 4224 caddr_t va = zfs_map_page(pp, S_READ); 4225 ASSERT3U(len, <=, PAGESIZE); 4226 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4227 zfs_unmap_page(pp, va); 4228 } else { 4229 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4230 } 4231 4232 if (err == 0) { 4233 uint64_t mtime[2], ctime[2]; 4234 sa_bulk_attr_t bulk[3]; 4235 int count = 0; 4236 4237 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4238 &mtime, 16); 4239 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4240 &ctime, 16); 4241 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4242 &zp->z_pflags, 8); 4243 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4244 B_TRUE); 4245 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4246 } 4247 dmu_tx_commit(tx); 4248 4249 out: 4250 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4251 if (offp) 4252 *offp = off; 4253 if (lenp) 4254 *lenp = len; 4255 4256 return (err); 4257 } 4258 4259 /* 4260 * Copy the portion of the file indicated from pages into the file. 4261 * The pages are stored in a page list attached to the files vnode. 4262 * 4263 * IN: vp - vnode of file to push page data to. 4264 * off - position in file to put data. 4265 * len - amount of data to write. 4266 * flags - flags to control the operation. 4267 * cr - credentials of caller. 4268 * ct - caller context. 4269 * 4270 * RETURN: 0 on success, error code on failure. 4271 * 4272 * Timestamps: 4273 * vp - ctime|mtime updated 4274 */ 4275 /*ARGSUSED*/ 4276 static int 4277 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4278 caller_context_t *ct) 4279 { 4280 znode_t *zp = VTOZ(vp); 4281 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4282 page_t *pp; 4283 size_t io_len; 4284 u_offset_t io_off; 4285 uint_t blksz; 4286 rl_t *rl; 4287 int error = 0; 4288 4289 ZFS_ENTER(zfsvfs); 4290 ZFS_VERIFY_ZP(zp); 4291 4292 /* 4293 * There's nothing to do if no data is cached. 4294 */ 4295 if (!vn_has_cached_data(vp)) { 4296 ZFS_EXIT(zfsvfs); 4297 return (0); 4298 } 4299 4300 /* 4301 * Align this request to the file block size in case we kluster. 4302 * XXX - this can result in pretty aggresive locking, which can 4303 * impact simultanious read/write access. One option might be 4304 * to break up long requests (len == 0) into block-by-block 4305 * operations to get narrower locking. 4306 */ 4307 blksz = zp->z_blksz; 4308 if (ISP2(blksz)) 4309 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4310 else 4311 io_off = 0; 4312 if (len > 0 && ISP2(blksz)) 4313 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4314 else 4315 io_len = 0; 4316 4317 if (io_len == 0) { 4318 /* 4319 * Search the entire vp list for pages >= io_off. 4320 */ 4321 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4322 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4323 goto out; 4324 } 4325 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4326 4327 if (off > zp->z_size) { 4328 /* past end of file */ 4329 zfs_range_unlock(rl); 4330 ZFS_EXIT(zfsvfs); 4331 return (0); 4332 } 4333 4334 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4335 4336 for (off = io_off; io_off < off + len; io_off += io_len) { 4337 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4338 pp = page_lookup(vp, io_off, 4339 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4340 } else { 4341 pp = page_lookup_nowait(vp, io_off, 4342 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4343 } 4344 4345 if (pp != NULL && pvn_getdirty(pp, flags)) { 4346 int err; 4347 4348 /* 4349 * Found a dirty page to push 4350 */ 4351 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4352 if (err) 4353 error = err; 4354 } else { 4355 io_len = PAGESIZE; 4356 } 4357 } 4358 out: 4359 zfs_range_unlock(rl); 4360 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4361 zil_commit(zfsvfs->z_log, zp->z_id); 4362 ZFS_EXIT(zfsvfs); 4363 return (error); 4364 } 4365 4366 /*ARGSUSED*/ 4367 void 4368 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4369 { 4370 znode_t *zp = VTOZ(vp); 4371 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4372 int error; 4373 4374 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4375 if (zp->z_sa_hdl == NULL) { 4376 /* 4377 * The fs has been unmounted, or we did a 4378 * suspend/resume and this file no longer exists. 4379 */ 4380 if (vn_has_cached_data(vp)) { 4381 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4382 B_INVAL, cr); 4383 } 4384 4385 mutex_enter(&zp->z_lock); 4386 mutex_enter(&vp->v_lock); 4387 ASSERT(vp->v_count == 1); 4388 vp->v_count = 0; 4389 mutex_exit(&vp->v_lock); 4390 mutex_exit(&zp->z_lock); 4391 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4392 zfs_znode_free(zp); 4393 return; 4394 } 4395 4396 /* 4397 * Attempt to push any data in the page cache. If this fails 4398 * we will get kicked out later in zfs_zinactive(). 4399 */ 4400 if (vn_has_cached_data(vp)) { 4401 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4402 cr); 4403 } 4404 4405 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4406 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4407 4408 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4409 zfs_sa_upgrade_txholds(tx, zp); 4410 error = dmu_tx_assign(tx, TXG_WAIT); 4411 if (error) { 4412 dmu_tx_abort(tx); 4413 } else { 4414 mutex_enter(&zp->z_lock); 4415 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4416 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4417 zp->z_atime_dirty = 0; 4418 mutex_exit(&zp->z_lock); 4419 dmu_tx_commit(tx); 4420 } 4421 } 4422 4423 zfs_zinactive(zp); 4424 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4425 } 4426 4427 /* 4428 * Bounds-check the seek operation. 4429 * 4430 * IN: vp - vnode seeking within 4431 * ooff - old file offset 4432 * noffp - pointer to new file offset 4433 * ct - caller context 4434 * 4435 * RETURN: 0 on success, EINVAL if new offset invalid. 4436 */ 4437 /* ARGSUSED */ 4438 static int 4439 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4440 caller_context_t *ct) 4441 { 4442 if (vp->v_type == VDIR) 4443 return (0); 4444 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4445 } 4446 4447 /* 4448 * Pre-filter the generic locking function to trap attempts to place 4449 * a mandatory lock on a memory mapped file. 4450 */ 4451 static int 4452 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4453 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4454 { 4455 znode_t *zp = VTOZ(vp); 4456 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4457 4458 ZFS_ENTER(zfsvfs); 4459 ZFS_VERIFY_ZP(zp); 4460 4461 /* 4462 * We are following the UFS semantics with respect to mapcnt 4463 * here: If we see that the file is mapped already, then we will 4464 * return an error, but we don't worry about races between this 4465 * function and zfs_map(). 4466 */ 4467 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4468 ZFS_EXIT(zfsvfs); 4469 return (SET_ERROR(EAGAIN)); 4470 } 4471 ZFS_EXIT(zfsvfs); 4472 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4473 } 4474 4475 /* 4476 * If we can't find a page in the cache, we will create a new page 4477 * and fill it with file data. For efficiency, we may try to fill 4478 * multiple pages at once (klustering) to fill up the supplied page 4479 * list. Note that the pages to be filled are held with an exclusive 4480 * lock to prevent access by other threads while they are being filled. 4481 */ 4482 static int 4483 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4484 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4485 { 4486 znode_t *zp = VTOZ(vp); 4487 page_t *pp, *cur_pp; 4488 objset_t *os = zp->z_zfsvfs->z_os; 4489 u_offset_t io_off, total; 4490 size_t io_len; 4491 int err; 4492 4493 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4494 /* 4495 * We only have a single page, don't bother klustering 4496 */ 4497 io_off = off; 4498 io_len = PAGESIZE; 4499 pp = page_create_va(vp, io_off, io_len, 4500 PG_EXCL | PG_WAIT, seg, addr); 4501 } else { 4502 /* 4503 * Try to find enough pages to fill the page list 4504 */ 4505 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4506 &io_len, off, plsz, 0); 4507 } 4508 if (pp == NULL) { 4509 /* 4510 * The page already exists, nothing to do here. 4511 */ 4512 *pl = NULL; 4513 return (0); 4514 } 4515 4516 /* 4517 * Fill the pages in the kluster. 4518 */ 4519 cur_pp = pp; 4520 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4521 caddr_t va; 4522 4523 ASSERT3U(io_off, ==, cur_pp->p_offset); 4524 va = zfs_map_page(cur_pp, S_WRITE); 4525 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4526 DMU_READ_PREFETCH); 4527 zfs_unmap_page(cur_pp, va); 4528 if (err) { 4529 /* On error, toss the entire kluster */ 4530 pvn_read_done(pp, B_ERROR); 4531 /* convert checksum errors into IO errors */ 4532 if (err == ECKSUM) 4533 err = SET_ERROR(EIO); 4534 return (err); 4535 } 4536 cur_pp = cur_pp->p_next; 4537 } 4538 4539 /* 4540 * Fill in the page list array from the kluster starting 4541 * from the desired offset `off'. 4542 * NOTE: the page list will always be null terminated. 4543 */ 4544 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4545 ASSERT(pl == NULL || (*pl)->p_offset == off); 4546 4547 return (0); 4548 } 4549 4550 /* 4551 * Return pointers to the pages for the file region [off, off + len] 4552 * in the pl array. If plsz is greater than len, this function may 4553 * also return page pointers from after the specified region 4554 * (i.e. the region [off, off + plsz]). These additional pages are 4555 * only returned if they are already in the cache, or were created as 4556 * part of a klustered read. 4557 * 4558 * IN: vp - vnode of file to get data from. 4559 * off - position in file to get data from. 4560 * len - amount of data to retrieve. 4561 * plsz - length of provided page list. 4562 * seg - segment to obtain pages for. 4563 * addr - virtual address of fault. 4564 * rw - mode of created pages. 4565 * cr - credentials of caller. 4566 * ct - caller context. 4567 * 4568 * OUT: protp - protection mode of created pages. 4569 * pl - list of pages created. 4570 * 4571 * RETURN: 0 on success, error code on failure. 4572 * 4573 * Timestamps: 4574 * vp - atime updated 4575 */ 4576 /* ARGSUSED */ 4577 static int 4578 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4579 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4580 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4581 { 4582 znode_t *zp = VTOZ(vp); 4583 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4584 page_t **pl0 = pl; 4585 int err = 0; 4586 4587 /* we do our own caching, faultahead is unnecessary */ 4588 if (pl == NULL) 4589 return (0); 4590 else if (len > plsz) 4591 len = plsz; 4592 else 4593 len = P2ROUNDUP(len, PAGESIZE); 4594 ASSERT(plsz >= len); 4595 4596 ZFS_ENTER(zfsvfs); 4597 ZFS_VERIFY_ZP(zp); 4598 4599 if (protp) 4600 *protp = PROT_ALL; 4601 4602 /* 4603 * Loop through the requested range [off, off + len) looking 4604 * for pages. If we don't find a page, we will need to create 4605 * a new page and fill it with data from the file. 4606 */ 4607 while (len > 0) { 4608 if (*pl = page_lookup(vp, off, SE_SHARED)) 4609 *(pl+1) = NULL; 4610 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4611 goto out; 4612 while (*pl) { 4613 ASSERT3U((*pl)->p_offset, ==, off); 4614 off += PAGESIZE; 4615 addr += PAGESIZE; 4616 if (len > 0) { 4617 ASSERT3U(len, >=, PAGESIZE); 4618 len -= PAGESIZE; 4619 } 4620 ASSERT3U(plsz, >=, PAGESIZE); 4621 plsz -= PAGESIZE; 4622 pl++; 4623 } 4624 } 4625 4626 /* 4627 * Fill out the page array with any pages already in the cache. 4628 */ 4629 while (plsz > 0 && 4630 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4631 off += PAGESIZE; 4632 plsz -= PAGESIZE; 4633 } 4634 out: 4635 if (err) { 4636 /* 4637 * Release any pages we have previously locked. 4638 */ 4639 while (pl > pl0) 4640 page_unlock(*--pl); 4641 } else { 4642 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4643 } 4644 4645 *pl = NULL; 4646 4647 ZFS_EXIT(zfsvfs); 4648 return (err); 4649 } 4650 4651 /* 4652 * Request a memory map for a section of a file. This code interacts 4653 * with common code and the VM system as follows: 4654 * 4655 * - common code calls mmap(), which ends up in smmap_common() 4656 * - this calls VOP_MAP(), which takes you into (say) zfs 4657 * - zfs_map() calls as_map(), passing segvn_create() as the callback 4658 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 4659 * - zfs_addmap() updates z_mapcnt 4660 */ 4661 /*ARGSUSED*/ 4662 static int 4663 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4664 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4665 caller_context_t *ct) 4666 { 4667 znode_t *zp = VTOZ(vp); 4668 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4669 segvn_crargs_t vn_a; 4670 int error; 4671 4672 ZFS_ENTER(zfsvfs); 4673 ZFS_VERIFY_ZP(zp); 4674 4675 if ((prot & PROT_WRITE) && (zp->z_pflags & 4676 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4677 ZFS_EXIT(zfsvfs); 4678 return (SET_ERROR(EPERM)); 4679 } 4680 4681 if ((prot & (PROT_READ | PROT_EXEC)) && 4682 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4683 ZFS_EXIT(zfsvfs); 4684 return (SET_ERROR(EACCES)); 4685 } 4686 4687 if (vp->v_flag & VNOMAP) { 4688 ZFS_EXIT(zfsvfs); 4689 return (SET_ERROR(ENOSYS)); 4690 } 4691 4692 if (off < 0 || len > MAXOFFSET_T - off) { 4693 ZFS_EXIT(zfsvfs); 4694 return (SET_ERROR(ENXIO)); 4695 } 4696 4697 if (vp->v_type != VREG) { 4698 ZFS_EXIT(zfsvfs); 4699 return (SET_ERROR(ENODEV)); 4700 } 4701 4702 /* 4703 * If file is locked, disallow mapping. 4704 */ 4705 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4706 ZFS_EXIT(zfsvfs); 4707 return (SET_ERROR(EAGAIN)); 4708 } 4709 4710 as_rangelock(as); 4711 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4712 if (error != 0) { 4713 as_rangeunlock(as); 4714 ZFS_EXIT(zfsvfs); 4715 return (error); 4716 } 4717 4718 vn_a.vp = vp; 4719 vn_a.offset = (u_offset_t)off; 4720 vn_a.type = flags & MAP_TYPE; 4721 vn_a.prot = prot; 4722 vn_a.maxprot = maxprot; 4723 vn_a.cred = cr; 4724 vn_a.amp = NULL; 4725 vn_a.flags = flags & ~MAP_TYPE; 4726 vn_a.szc = 0; 4727 vn_a.lgrp_mem_policy_flags = 0; 4728 4729 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4730 4731 as_rangeunlock(as); 4732 ZFS_EXIT(zfsvfs); 4733 return (error); 4734 } 4735 4736 /* ARGSUSED */ 4737 static int 4738 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4739 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4740 caller_context_t *ct) 4741 { 4742 uint64_t pages = btopr(len); 4743 4744 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4745 return (0); 4746 } 4747 4748 /* 4749 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4750 * more accurate mtime for the associated file. Since we don't have a way of 4751 * detecting when the data was actually modified, we have to resort to 4752 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4753 * last page is pushed. The problem occurs when the msync() call is omitted, 4754 * which by far the most common case: 4755 * 4756 * open() 4757 * mmap() 4758 * <modify memory> 4759 * munmap() 4760 * close() 4761 * <time lapse> 4762 * putpage() via fsflush 4763 * 4764 * If we wait until fsflush to come along, we can have a modification time that 4765 * is some arbitrary point in the future. In order to prevent this in the 4766 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4767 * torn down. 4768 */ 4769 /* ARGSUSED */ 4770 static int 4771 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4772 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4773 caller_context_t *ct) 4774 { 4775 uint64_t pages = btopr(len); 4776 4777 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4778 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4779 4780 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4781 vn_has_cached_data(vp)) 4782 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4783 4784 return (0); 4785 } 4786 4787 /* 4788 * Free or allocate space in a file. Currently, this function only 4789 * supports the `F_FREESP' command. However, this command is somewhat 4790 * misnamed, as its functionality includes the ability to allocate as 4791 * well as free space. 4792 * 4793 * IN: vp - vnode of file to free data in. 4794 * cmd - action to take (only F_FREESP supported). 4795 * bfp - section of file to free/alloc. 4796 * flag - current file open mode flags. 4797 * offset - current file offset. 4798 * cr - credentials of caller [UNUSED]. 4799 * ct - caller context. 4800 * 4801 * RETURN: 0 on success, error code on failure. 4802 * 4803 * Timestamps: 4804 * vp - ctime|mtime updated 4805 */ 4806 /* ARGSUSED */ 4807 static int 4808 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4809 offset_t offset, cred_t *cr, caller_context_t *ct) 4810 { 4811 znode_t *zp = VTOZ(vp); 4812 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4813 uint64_t off, len; 4814 int error; 4815 4816 ZFS_ENTER(zfsvfs); 4817 ZFS_VERIFY_ZP(zp); 4818 4819 if (cmd != F_FREESP) { 4820 ZFS_EXIT(zfsvfs); 4821 return (SET_ERROR(EINVAL)); 4822 } 4823 4824 /* 4825 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 4826 * callers might not be able to detect properly that we are read-only, 4827 * so check it explicitly here. 4828 */ 4829 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 4830 ZFS_EXIT(zfsvfs); 4831 return (SET_ERROR(EROFS)); 4832 } 4833 4834 if (error = convoff(vp, bfp, 0, offset)) { 4835 ZFS_EXIT(zfsvfs); 4836 return (error); 4837 } 4838 4839 if (bfp->l_len < 0) { 4840 ZFS_EXIT(zfsvfs); 4841 return (SET_ERROR(EINVAL)); 4842 } 4843 4844 off = bfp->l_start; 4845 len = bfp->l_len; /* 0 means from off to end of file */ 4846 4847 error = zfs_freesp(zp, off, len, flag, TRUE); 4848 4849 if (error == 0 && off == 0 && len == 0) 4850 vnevent_truncate(ZTOV(zp), ct); 4851 4852 ZFS_EXIT(zfsvfs); 4853 return (error); 4854 } 4855 4856 /*ARGSUSED*/ 4857 static int 4858 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4859 { 4860 znode_t *zp = VTOZ(vp); 4861 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4862 uint32_t gen; 4863 uint64_t gen64; 4864 uint64_t object = zp->z_id; 4865 zfid_short_t *zfid; 4866 int size, i, error; 4867 4868 ZFS_ENTER(zfsvfs); 4869 ZFS_VERIFY_ZP(zp); 4870 4871 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4872 &gen64, sizeof (uint64_t))) != 0) { 4873 ZFS_EXIT(zfsvfs); 4874 return (error); 4875 } 4876 4877 gen = (uint32_t)gen64; 4878 4879 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4880 if (fidp->fid_len < size) { 4881 fidp->fid_len = size; 4882 ZFS_EXIT(zfsvfs); 4883 return (SET_ERROR(ENOSPC)); 4884 } 4885 4886 zfid = (zfid_short_t *)fidp; 4887 4888 zfid->zf_len = size; 4889 4890 for (i = 0; i < sizeof (zfid->zf_object); i++) 4891 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4892 4893 /* Must have a non-zero generation number to distinguish from .zfs */ 4894 if (gen == 0) 4895 gen = 1; 4896 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4897 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4898 4899 if (size == LONG_FID_LEN) { 4900 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4901 zfid_long_t *zlfid; 4902 4903 zlfid = (zfid_long_t *)fidp; 4904 4905 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4906 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4907 4908 /* XXX - this should be the generation number for the objset */ 4909 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4910 zlfid->zf_setgen[i] = 0; 4911 } 4912 4913 ZFS_EXIT(zfsvfs); 4914 return (0); 4915 } 4916 4917 static int 4918 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4919 caller_context_t *ct) 4920 { 4921 znode_t *zp, *xzp; 4922 zfsvfs_t *zfsvfs; 4923 zfs_dirlock_t *dl; 4924 int error; 4925 4926 switch (cmd) { 4927 case _PC_LINK_MAX: 4928 *valp = ULONG_MAX; 4929 return (0); 4930 4931 case _PC_FILESIZEBITS: 4932 *valp = 64; 4933 return (0); 4934 4935 case _PC_XATTR_EXISTS: 4936 zp = VTOZ(vp); 4937 zfsvfs = zp->z_zfsvfs; 4938 ZFS_ENTER(zfsvfs); 4939 ZFS_VERIFY_ZP(zp); 4940 *valp = 0; 4941 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4942 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4943 if (error == 0) { 4944 zfs_dirent_unlock(dl); 4945 if (!zfs_dirempty(xzp)) 4946 *valp = 1; 4947 VN_RELE(ZTOV(xzp)); 4948 } else if (error == ENOENT) { 4949 /* 4950 * If there aren't extended attributes, it's the 4951 * same as having zero of them. 4952 */ 4953 error = 0; 4954 } 4955 ZFS_EXIT(zfsvfs); 4956 return (error); 4957 4958 case _PC_SATTR_ENABLED: 4959 case _PC_SATTR_EXISTS: 4960 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4961 (vp->v_type == VREG || vp->v_type == VDIR); 4962 return (0); 4963 4964 case _PC_ACCESS_FILTERING: 4965 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4966 vp->v_type == VDIR; 4967 return (0); 4968 4969 case _PC_ACL_ENABLED: 4970 *valp = _ACL_ACE_ENABLED; 4971 return (0); 4972 4973 case _PC_MIN_HOLE_SIZE: 4974 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4975 return (0); 4976 4977 case _PC_TIMESTAMP_RESOLUTION: 4978 /* nanosecond timestamp resolution */ 4979 *valp = 1L; 4980 return (0); 4981 4982 default: 4983 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4984 } 4985 } 4986 4987 /*ARGSUSED*/ 4988 static int 4989 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4990 caller_context_t *ct) 4991 { 4992 znode_t *zp = VTOZ(vp); 4993 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4994 int error; 4995 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4996 4997 ZFS_ENTER(zfsvfs); 4998 ZFS_VERIFY_ZP(zp); 4999 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 5000 ZFS_EXIT(zfsvfs); 5001 5002 return (error); 5003 } 5004 5005 /*ARGSUSED*/ 5006 static int 5007 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5008 caller_context_t *ct) 5009 { 5010 znode_t *zp = VTOZ(vp); 5011 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5012 int error; 5013 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5014 zilog_t *zilog = zfsvfs->z_log; 5015 5016 ZFS_ENTER(zfsvfs); 5017 ZFS_VERIFY_ZP(zp); 5018 5019 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 5020 5021 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 5022 zil_commit(zilog, 0); 5023 5024 ZFS_EXIT(zfsvfs); 5025 return (error); 5026 } 5027 5028 /* 5029 * The smallest read we may consider to loan out an arcbuf. 5030 * This must be a power of 2. 5031 */ 5032 int zcr_blksz_min = (1 << 10); /* 1K */ 5033 /* 5034 * If set to less than the file block size, allow loaning out of an 5035 * arcbuf for a partial block read. This must be a power of 2. 5036 */ 5037 int zcr_blksz_max = (1 << 17); /* 128K */ 5038 5039 /*ARGSUSED*/ 5040 static int 5041 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 5042 caller_context_t *ct) 5043 { 5044 znode_t *zp = VTOZ(vp); 5045 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5046 int max_blksz = zfsvfs->z_max_blksz; 5047 uio_t *uio = &xuio->xu_uio; 5048 ssize_t size = uio->uio_resid; 5049 offset_t offset = uio->uio_loffset; 5050 int blksz; 5051 int fullblk, i; 5052 arc_buf_t *abuf; 5053 ssize_t maxsize; 5054 int preamble, postamble; 5055 5056 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 5057 return (SET_ERROR(EINVAL)); 5058 5059 ZFS_ENTER(zfsvfs); 5060 ZFS_VERIFY_ZP(zp); 5061 switch (ioflag) { 5062 case UIO_WRITE: 5063 /* 5064 * Loan out an arc_buf for write if write size is bigger than 5065 * max_blksz, and the file's block size is also max_blksz. 5066 */ 5067 blksz = max_blksz; 5068 if (size < blksz || zp->z_blksz != blksz) { 5069 ZFS_EXIT(zfsvfs); 5070 return (SET_ERROR(EINVAL)); 5071 } 5072 /* 5073 * Caller requests buffers for write before knowing where the 5074 * write offset might be (e.g. NFS TCP write). 5075 */ 5076 if (offset == -1) { 5077 preamble = 0; 5078 } else { 5079 preamble = P2PHASE(offset, blksz); 5080 if (preamble) { 5081 preamble = blksz - preamble; 5082 size -= preamble; 5083 } 5084 } 5085 5086 postamble = P2PHASE(size, blksz); 5087 size -= postamble; 5088 5089 fullblk = size / blksz; 5090 (void) dmu_xuio_init(xuio, 5091 (preamble != 0) + fullblk + (postamble != 0)); 5092 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5093 int, postamble, int, 5094 (preamble != 0) + fullblk + (postamble != 0)); 5095 5096 /* 5097 * Have to fix iov base/len for partial buffers. They 5098 * currently represent full arc_buf's. 5099 */ 5100 if (preamble) { 5101 /* data begins in the middle of the arc_buf */ 5102 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5103 blksz); 5104 ASSERT(abuf); 5105 (void) dmu_xuio_add(xuio, abuf, 5106 blksz - preamble, preamble); 5107 } 5108 5109 for (i = 0; i < fullblk; i++) { 5110 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5111 blksz); 5112 ASSERT(abuf); 5113 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5114 } 5115 5116 if (postamble) { 5117 /* data ends in the middle of the arc_buf */ 5118 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5119 blksz); 5120 ASSERT(abuf); 5121 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5122 } 5123 break; 5124 case UIO_READ: 5125 /* 5126 * Loan out an arc_buf for read if the read size is larger than 5127 * the current file block size. Block alignment is not 5128 * considered. Partial arc_buf will be loaned out for read. 5129 */ 5130 blksz = zp->z_blksz; 5131 if (blksz < zcr_blksz_min) 5132 blksz = zcr_blksz_min; 5133 if (blksz > zcr_blksz_max) 5134 blksz = zcr_blksz_max; 5135 /* avoid potential complexity of dealing with it */ 5136 if (blksz > max_blksz) { 5137 ZFS_EXIT(zfsvfs); 5138 return (SET_ERROR(EINVAL)); 5139 } 5140 5141 maxsize = zp->z_size - uio->uio_loffset; 5142 if (size > maxsize) 5143 size = maxsize; 5144 5145 if (size < blksz || vn_has_cached_data(vp)) { 5146 ZFS_EXIT(zfsvfs); 5147 return (SET_ERROR(EINVAL)); 5148 } 5149 break; 5150 default: 5151 ZFS_EXIT(zfsvfs); 5152 return (SET_ERROR(EINVAL)); 5153 } 5154 5155 uio->uio_extflg = UIO_XUIO; 5156 XUIO_XUZC_RW(xuio) = ioflag; 5157 ZFS_EXIT(zfsvfs); 5158 return (0); 5159 } 5160 5161 /*ARGSUSED*/ 5162 static int 5163 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5164 { 5165 int i; 5166 arc_buf_t *abuf; 5167 int ioflag = XUIO_XUZC_RW(xuio); 5168 5169 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5170 5171 i = dmu_xuio_cnt(xuio); 5172 while (i-- > 0) { 5173 abuf = dmu_xuio_arcbuf(xuio, i); 5174 /* 5175 * if abuf == NULL, it must be a write buffer 5176 * that has been returned in zfs_write(). 5177 */ 5178 if (abuf) 5179 dmu_return_arcbuf(abuf); 5180 ASSERT(abuf || ioflag == UIO_WRITE); 5181 } 5182 5183 dmu_xuio_fini(xuio); 5184 return (0); 5185 } 5186 5187 /* 5188 * Predeclare these here so that the compiler assumes that 5189 * this is an "old style" function declaration that does 5190 * not include arguments => we won't get type mismatch errors 5191 * in the initializations that follow. 5192 */ 5193 static int zfs_inval(); 5194 static int zfs_isdir(); 5195 5196 static int 5197 zfs_inval() 5198 { 5199 return (SET_ERROR(EINVAL)); 5200 } 5201 5202 static int 5203 zfs_isdir() 5204 { 5205 return (SET_ERROR(EISDIR)); 5206 } 5207 /* 5208 * Directory vnode operations template 5209 */ 5210 vnodeops_t *zfs_dvnodeops; 5211 const fs_operation_def_t zfs_dvnodeops_template[] = { 5212 VOPNAME_OPEN, { .vop_open = zfs_open }, 5213 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5214 VOPNAME_READ, { .error = zfs_isdir }, 5215 VOPNAME_WRITE, { .error = zfs_isdir }, 5216 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5217 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5218 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5219 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5220 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5221 VOPNAME_CREATE, { .vop_create = zfs_create }, 5222 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5223 VOPNAME_LINK, { .vop_link = zfs_link }, 5224 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5225 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5226 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5227 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5228 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5229 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5230 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5231 VOPNAME_FID, { .vop_fid = zfs_fid }, 5232 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5233 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5234 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5235 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5236 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5237 NULL, NULL 5238 }; 5239 5240 /* 5241 * Regular file vnode operations template 5242 */ 5243 vnodeops_t *zfs_fvnodeops; 5244 const fs_operation_def_t zfs_fvnodeops_template[] = { 5245 VOPNAME_OPEN, { .vop_open = zfs_open }, 5246 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5247 VOPNAME_READ, { .vop_read = zfs_read }, 5248 VOPNAME_WRITE, { .vop_write = zfs_write }, 5249 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5250 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5251 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5252 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5253 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5254 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5255 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5256 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5257 VOPNAME_FID, { .vop_fid = zfs_fid }, 5258 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5259 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5260 VOPNAME_SPACE, { .vop_space = zfs_space }, 5261 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5262 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5263 VOPNAME_MAP, { .vop_map = zfs_map }, 5264 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5265 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5266 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5267 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5268 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5269 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5270 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5271 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5272 NULL, NULL 5273 }; 5274 5275 /* 5276 * Symbolic link vnode operations template 5277 */ 5278 vnodeops_t *zfs_symvnodeops; 5279 const fs_operation_def_t zfs_symvnodeops_template[] = { 5280 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5281 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5282 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5283 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5284 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5285 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5286 VOPNAME_FID, { .vop_fid = zfs_fid }, 5287 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5288 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5289 NULL, NULL 5290 }; 5291 5292 /* 5293 * special share hidden files vnode operations template 5294 */ 5295 vnodeops_t *zfs_sharevnodeops; 5296 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5297 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5298 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5299 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5300 VOPNAME_FID, { .vop_fid = zfs_fid }, 5301 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5302 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5303 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5304 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5305 NULL, NULL 5306 }; 5307 5308 /* 5309 * Extended attribute directory vnode operations template 5310 * 5311 * This template is identical to the directory vnodes 5312 * operation template except for restricted operations: 5313 * VOP_MKDIR() 5314 * VOP_SYMLINK() 5315 * 5316 * Note that there are other restrictions embedded in: 5317 * zfs_create() - restrict type to VREG 5318 * zfs_link() - no links into/out of attribute space 5319 * zfs_rename() - no moves into/out of attribute space 5320 */ 5321 vnodeops_t *zfs_xdvnodeops; 5322 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5323 VOPNAME_OPEN, { .vop_open = zfs_open }, 5324 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5325 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5326 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5327 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5328 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5329 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5330 VOPNAME_CREATE, { .vop_create = zfs_create }, 5331 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5332 VOPNAME_LINK, { .vop_link = zfs_link }, 5333 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5334 VOPNAME_MKDIR, { .error = zfs_inval }, 5335 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5336 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5337 VOPNAME_SYMLINK, { .error = zfs_inval }, 5338 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5339 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5340 VOPNAME_FID, { .vop_fid = zfs_fid }, 5341 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5342 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5343 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5344 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5345 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5346 NULL, NULL 5347 }; 5348 5349 /* 5350 * Error vnode operations template 5351 */ 5352 vnodeops_t *zfs_evnodeops; 5353 const fs_operation_def_t zfs_evnodeops_template[] = { 5354 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5355 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5356 NULL, NULL 5357 };